Have info_to_howto functions return a success/fail status. Check this result. Stop...
[deliverable/binutils-gdb.git] / bfd / elf32-xtensa.c
1 /* Xtensa-specific support for 32-bit ELF.
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or
7 modify it under the terms of the GNU General Public License as
8 published by the Free Software Foundation; either version 3 of the
9 License, or (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful, but
12 WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23
24 #include <stdarg.h>
25 #include <strings.h>
26
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34
35 #define XTENSA_NO_NOP_REMOVAL 0
36
37 /* Local helper functions. */
38
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46 (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47
48 /* Local functions to handle Xtensa configurability. */
49
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65 (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67 (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71 (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74 (bfd_byte *, bfd_size_type, bfd_size_type);
75
76 /* Functions for link-time code simplifications. */
77
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79 (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81 (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84
85 /* Access to internal relocations, section contents and symbols. */
86
87 static Elf_Internal_Rela *retrieve_internal_relocs
88 (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95
96 /* Miscellaneous utility functions. */
97
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102 (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114
115 /* Other functions called directly by the linker. */
116
117 typedef void (*deps_callback_t)
118 (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120 (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121
122
123 /* Globally visible flag for choosing size optimization of NOP removal
124 instead of branch-target-aware minimization for NOP removal.
125 When nonzero, narrow all instructions and remove all NOPs possible
126 around longcall expansions. */
127
128 int elf32xtensa_size_opt;
129
130
131 /* The "new_section_hook" is used to set up a per-section
132 "xtensa_relax_info" data structure with additional information used
133 during relaxation. */
134
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136
137
138 /* The GNU tools do not easily allow extending interfaces to pass around
139 the pointer to the Xtensa ISA information, so instead we add a global
140 variable here (in BFD) that can be used by any of the tools that need
141 this information. */
142
143 xtensa_isa xtensa_default_isa;
144
145
146 /* When this is true, relocations may have been modified to refer to
147 symbols from other input files. The per-section list of "fix"
148 records needs to be checked when resolving relocations. */
149
150 static bfd_boolean relaxing_section = FALSE;
151
152 /* When this is true, during final links, literals that cannot be
153 coalesced and their relocations may be moved to other sections. */
154
155 int elf32xtensa_no_literal_movement = 1;
156
157 /* Rename one of the generic section flags to better document how it
158 is used here. */
159 /* Whether relocations have been processed. */
160 #define reloc_done sec_flg0
161 \f
162 static reloc_howto_type elf_howto_table[] =
163 {
164 HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
165 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
166 FALSE, 0, 0, FALSE),
167 HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 TRUE, 0xffffffff, 0xffffffff, FALSE),
170
171 /* Replace a 32-bit value with a value from the runtime linker (only
172 used by linker-generated stub functions). The r_addend value is
173 special: 1 means to substitute a pointer to the runtime linker's
174 dynamic resolver function; 2 means to substitute the link map for
175 the shared object. */
176 HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
177 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178
179 HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
181 FALSE, 0, 0xffffffff, FALSE),
182 HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
184 FALSE, 0, 0xffffffff, FALSE),
185 HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
187 FALSE, 0, 0xffffffff, FALSE),
188 HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
190 FALSE, 0, 0xffffffff, FALSE),
191
192 EMPTY_HOWTO (7),
193
194 /* Old relocations for backward compatibility. */
195 HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
197 HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
199 HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201
202 /* Assembly auto-expansion. */
203 HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
204 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
205 /* Relax assembly auto-expansion. */
206 HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208
209 EMPTY_HOWTO (13),
210
211 HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 FALSE, 0, 0xffffffff, TRUE),
214
215 /* GNU extension to record C++ vtable hierarchy. */
216 HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217 NULL, "R_XTENSA_GNU_VTINHERIT",
218 FALSE, 0, 0, FALSE),
219 /* GNU extension to record C++ vtable member usage. */
220 HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221 _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
222 FALSE, 0, 0, FALSE),
223
224 /* Relocations for supporting difference of symbols. */
225 HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
226 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
227 HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
228 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
229 HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
230 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
231
232 /* General immediate operand relocations. */
233 HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
235 HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
237 HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
239 HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
241 HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
243 HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
245 HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
247 HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
249 HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
251 HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
253 HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
255 HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
257 HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
259 HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
261 HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
263
264 /* "Alternate" relocations. The meaning of these is opcode-specific. */
265 HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
267 HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
269 HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
271 HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
273 HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
275 HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
277 HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
279 HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
281 HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
283 HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
285 HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
287 HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
289 HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
291 HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
293 HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
295
296 /* TLS relocations. */
297 HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 FALSE, 0, 0xffffffff, FALSE),
300 HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 FALSE, 0, 0xffffffff, FALSE),
303 HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 FALSE, 0, 0xffffffff, FALSE),
306 HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 FALSE, 0, 0xffffffff, FALSE),
309 HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 FALSE, 0, 0, FALSE),
312 HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 FALSE, 0, 0, FALSE),
315 HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 FALSE, 0, 0, FALSE),
318 };
319
320 #if DEBUG_GEN_RELOC
321 #define TRACE(str) \
322 fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323 #else
324 #define TRACE(str)
325 #endif
326
327 static reloc_howto_type *
328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 bfd_reloc_code_real_type code)
330 {
331 switch (code)
332 {
333 case BFD_RELOC_NONE:
334 TRACE ("BFD_RELOC_NONE");
335 return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336
337 case BFD_RELOC_32:
338 TRACE ("BFD_RELOC_32");
339 return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340
341 case BFD_RELOC_32_PCREL:
342 TRACE ("BFD_RELOC_32_PCREL");
343 return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344
345 case BFD_RELOC_XTENSA_DIFF8:
346 TRACE ("BFD_RELOC_XTENSA_DIFF8");
347 return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348
349 case BFD_RELOC_XTENSA_DIFF16:
350 TRACE ("BFD_RELOC_XTENSA_DIFF16");
351 return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352
353 case BFD_RELOC_XTENSA_DIFF32:
354 TRACE ("BFD_RELOC_XTENSA_DIFF32");
355 return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356
357 case BFD_RELOC_XTENSA_RTLD:
358 TRACE ("BFD_RELOC_XTENSA_RTLD");
359 return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360
361 case BFD_RELOC_XTENSA_GLOB_DAT:
362 TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363 return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364
365 case BFD_RELOC_XTENSA_JMP_SLOT:
366 TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367 return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368
369 case BFD_RELOC_XTENSA_RELATIVE:
370 TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371 return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372
373 case BFD_RELOC_XTENSA_PLT:
374 TRACE ("BFD_RELOC_XTENSA_PLT");
375 return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376
377 case BFD_RELOC_XTENSA_OP0:
378 TRACE ("BFD_RELOC_XTENSA_OP0");
379 return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380
381 case BFD_RELOC_XTENSA_OP1:
382 TRACE ("BFD_RELOC_XTENSA_OP1");
383 return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384
385 case BFD_RELOC_XTENSA_OP2:
386 TRACE ("BFD_RELOC_XTENSA_OP2");
387 return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388
389 case BFD_RELOC_XTENSA_ASM_EXPAND:
390 TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391 return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392
393 case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394 TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395 return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396
397 case BFD_RELOC_VTABLE_INHERIT:
398 TRACE ("BFD_RELOC_VTABLE_INHERIT");
399 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400
401 case BFD_RELOC_VTABLE_ENTRY:
402 TRACE ("BFD_RELOC_VTABLE_ENTRY");
403 return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404
405 case BFD_RELOC_XTENSA_TLSDESC_FN:
406 TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408
409 case BFD_RELOC_XTENSA_TLSDESC_ARG:
410 TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411 return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412
413 case BFD_RELOC_XTENSA_TLS_DTPOFF:
414 TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415 return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416
417 case BFD_RELOC_XTENSA_TLS_TPOFF:
418 TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419 return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420
421 case BFD_RELOC_XTENSA_TLS_FUNC:
422 TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423 return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424
425 case BFD_RELOC_XTENSA_TLS_ARG:
426 TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427 return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428
429 case BFD_RELOC_XTENSA_TLS_CALL:
430 TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431 return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432
433 default:
434 if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 {
437 unsigned n = (R_XTENSA_SLOT0_OP +
438 (code - BFD_RELOC_XTENSA_SLOT0_OP));
439 return &elf_howto_table[n];
440 }
441
442 if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 {
445 unsigned n = (R_XTENSA_SLOT0_ALT +
446 (code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 return &elf_howto_table[n];
448 }
449
450 break;
451 }
452
453 /* xgettext:c-format */
454 _bfd_error_handler (_("%pB: invalid relocation type %d"), abfd, (int) code);
455 bfd_set_error (bfd_error_bad_value);
456 TRACE ("Unknown");
457 return NULL;
458 }
459
460 static reloc_howto_type *
461 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
462 const char *r_name)
463 {
464 unsigned int i;
465
466 for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
467 if (elf_howto_table[i].name != NULL
468 && strcasecmp (elf_howto_table[i].name, r_name) == 0)
469 return &elf_howto_table[i];
470
471 return NULL;
472 }
473
474
475 /* Given an ELF "rela" relocation, find the corresponding howto and record
476 it in the BFD internal arelent representation of the relocation. */
477
478 static bfd_boolean
479 elf_xtensa_info_to_howto_rela (bfd *abfd,
480 arelent *cache_ptr,
481 Elf_Internal_Rela *dst)
482 {
483 unsigned int r_type = ELF32_R_TYPE (dst->r_info);
484
485 if (r_type >= (unsigned int) R_XTENSA_max)
486 {
487 /* xgettext:c-format */
488 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
489 abfd, r_type);
490 bfd_set_error (bfd_error_bad_value);
491 return FALSE;
492 }
493 cache_ptr->howto = &elf_howto_table[r_type];
494 return TRUE;
495 }
496
497 \f
498 /* Functions for the Xtensa ELF linker. */
499
500 /* The name of the dynamic interpreter. This is put in the .interp
501 section. */
502
503 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
504
505 /* The size in bytes of an entry in the procedure linkage table.
506 (This does _not_ include the space for the literals associated with
507 the PLT entry.) */
508
509 #define PLT_ENTRY_SIZE 16
510
511 /* For _really_ large PLTs, we may need to alternate between literals
512 and code to keep the literals within the 256K range of the L32R
513 instructions in the code. It's unlikely that anyone would ever need
514 such a big PLT, but an arbitrary limit on the PLT size would be bad.
515 Thus, we split the PLT into chunks. Since there's very little
516 overhead (2 extra literals) for each chunk, the chunk size is kept
517 small so that the code for handling multiple chunks get used and
518 tested regularly. With 254 entries, there are 1K of literals for
519 each chunk, and that seems like a nice round number. */
520
521 #define PLT_ENTRIES_PER_CHUNK 254
522
523 /* PLT entries are actually used as stub functions for lazy symbol
524 resolution. Once the symbol is resolved, the stub function is never
525 invoked. Note: the 32-byte frame size used here cannot be changed
526 without a corresponding change in the runtime linker. */
527
528 static const bfd_byte elf_xtensa_be_plt_entry[][PLT_ENTRY_SIZE] =
529 {
530 {
531 0x6c, 0x10, 0x04, /* entry sp, 32 */
532 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
533 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
534 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
535 0x0a, 0x80, 0x00, /* jx a8 */
536 0 /* unused */
537 },
538 {
539 0x18, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
540 0x1a, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
541 0x1b, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
542 0x0a, 0x80, 0x00, /* jx a8 */
543 0 /* unused */
544 }
545 };
546
547 static const bfd_byte elf_xtensa_le_plt_entry[][PLT_ENTRY_SIZE] =
548 {
549 {
550 0x36, 0x41, 0x00, /* entry sp, 32 */
551 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
552 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
553 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
554 0xa0, 0x08, 0x00, /* jx a8 */
555 0 /* unused */
556 },
557 {
558 0x81, 0x00, 0x00, /* l32r a8, [got entry for rtld's resolver] */
559 0xa1, 0x00, 0x00, /* l32r a10, [got entry for rtld's link map] */
560 0xb1, 0x00, 0x00, /* l32r a11, [literal for reloc index] */
561 0xa0, 0x08, 0x00, /* jx a8 */
562 0 /* unused */
563 }
564 };
565
566 /* The size of the thread control block. */
567 #define TCB_SIZE 8
568
569 struct elf_xtensa_link_hash_entry
570 {
571 struct elf_link_hash_entry elf;
572
573 bfd_signed_vma tlsfunc_refcount;
574
575 #define GOT_UNKNOWN 0
576 #define GOT_NORMAL 1
577 #define GOT_TLS_GD 2 /* global or local dynamic */
578 #define GOT_TLS_IE 4 /* initial or local exec */
579 #define GOT_TLS_ANY (GOT_TLS_GD | GOT_TLS_IE)
580 unsigned char tls_type;
581 };
582
583 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
584
585 struct elf_xtensa_obj_tdata
586 {
587 struct elf_obj_tdata root;
588
589 /* tls_type for each local got entry. */
590 char *local_got_tls_type;
591
592 bfd_signed_vma *local_tlsfunc_refcounts;
593 };
594
595 #define elf_xtensa_tdata(abfd) \
596 ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
597
598 #define elf_xtensa_local_got_tls_type(abfd) \
599 (elf_xtensa_tdata (abfd)->local_got_tls_type)
600
601 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
602 (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
603
604 #define is_xtensa_elf(bfd) \
605 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
606 && elf_tdata (bfd) != NULL \
607 && elf_object_id (bfd) == XTENSA_ELF_DATA)
608
609 static bfd_boolean
610 elf_xtensa_mkobject (bfd *abfd)
611 {
612 return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
613 XTENSA_ELF_DATA);
614 }
615
616 /* Xtensa ELF linker hash table. */
617
618 struct elf_xtensa_link_hash_table
619 {
620 struct elf_link_hash_table elf;
621
622 /* Short-cuts to get to dynamic linker sections. */
623 asection *sgotloc;
624 asection *spltlittbl;
625
626 /* Total count of PLT relocations seen during check_relocs.
627 The actual PLT code must be split into multiple sections and all
628 the sections have to be created before size_dynamic_sections,
629 where we figure out the exact number of PLT entries that will be
630 needed. It is OK if this count is an overestimate, e.g., some
631 relocations may be removed by GC. */
632 int plt_reloc_count;
633
634 struct elf_xtensa_link_hash_entry *tlsbase;
635 };
636
637 /* Get the Xtensa ELF linker hash table from a link_info structure. */
638
639 #define elf_xtensa_hash_table(p) \
640 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
641 == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
642
643 /* Create an entry in an Xtensa ELF linker hash table. */
644
645 static struct bfd_hash_entry *
646 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
647 struct bfd_hash_table *table,
648 const char *string)
649 {
650 /* Allocate the structure if it has not already been allocated by a
651 subclass. */
652 if (entry == NULL)
653 {
654 entry = bfd_hash_allocate (table,
655 sizeof (struct elf_xtensa_link_hash_entry));
656 if (entry == NULL)
657 return entry;
658 }
659
660 /* Call the allocation method of the superclass. */
661 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
662 if (entry != NULL)
663 {
664 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
665 eh->tlsfunc_refcount = 0;
666 eh->tls_type = GOT_UNKNOWN;
667 }
668
669 return entry;
670 }
671
672 /* Create an Xtensa ELF linker hash table. */
673
674 static struct bfd_link_hash_table *
675 elf_xtensa_link_hash_table_create (bfd *abfd)
676 {
677 struct elf_link_hash_entry *tlsbase;
678 struct elf_xtensa_link_hash_table *ret;
679 bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
680
681 ret = bfd_zmalloc (amt);
682 if (ret == NULL)
683 return NULL;
684
685 if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
686 elf_xtensa_link_hash_newfunc,
687 sizeof (struct elf_xtensa_link_hash_entry),
688 XTENSA_ELF_DATA))
689 {
690 free (ret);
691 return NULL;
692 }
693
694 /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
695 for it later. */
696 tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
697 TRUE, FALSE, FALSE);
698 tlsbase->root.type = bfd_link_hash_new;
699 tlsbase->root.u.undef.abfd = NULL;
700 tlsbase->non_elf = 0;
701 ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
702 ret->tlsbase->tls_type = GOT_UNKNOWN;
703
704 return &ret->elf.root;
705 }
706
707 /* Copy the extra info we tack onto an elf_link_hash_entry. */
708
709 static void
710 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
711 struct elf_link_hash_entry *dir,
712 struct elf_link_hash_entry *ind)
713 {
714 struct elf_xtensa_link_hash_entry *edir, *eind;
715
716 edir = elf_xtensa_hash_entry (dir);
717 eind = elf_xtensa_hash_entry (ind);
718
719 if (ind->root.type == bfd_link_hash_indirect)
720 {
721 edir->tlsfunc_refcount += eind->tlsfunc_refcount;
722 eind->tlsfunc_refcount = 0;
723
724 if (dir->got.refcount <= 0)
725 {
726 edir->tls_type = eind->tls_type;
727 eind->tls_type = GOT_UNKNOWN;
728 }
729 }
730
731 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
732 }
733
734 static inline bfd_boolean
735 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
736 struct bfd_link_info *info)
737 {
738 /* Check if we should do dynamic things to this symbol. The
739 "ignore_protected" argument need not be set, because Xtensa code
740 does not require special handling of STV_PROTECTED to make function
741 pointer comparisons work properly. The PLT addresses are never
742 used for function pointers. */
743
744 return _bfd_elf_dynamic_symbol_p (h, info, 0);
745 }
746
747 \f
748 static int
749 property_table_compare (const void *ap, const void *bp)
750 {
751 const property_table_entry *a = (const property_table_entry *) ap;
752 const property_table_entry *b = (const property_table_entry *) bp;
753
754 if (a->address == b->address)
755 {
756 if (a->size != b->size)
757 return (a->size - b->size);
758
759 if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
760 return ((b->flags & XTENSA_PROP_ALIGN)
761 - (a->flags & XTENSA_PROP_ALIGN));
762
763 if ((a->flags & XTENSA_PROP_ALIGN)
764 && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
765 != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
766 return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
767 - GET_XTENSA_PROP_ALIGNMENT (b->flags));
768
769 if ((a->flags & XTENSA_PROP_UNREACHABLE)
770 != (b->flags & XTENSA_PROP_UNREACHABLE))
771 return ((b->flags & XTENSA_PROP_UNREACHABLE)
772 - (a->flags & XTENSA_PROP_UNREACHABLE));
773
774 return (a->flags - b->flags);
775 }
776
777 return (a->address - b->address);
778 }
779
780
781 static int
782 property_table_matches (const void *ap, const void *bp)
783 {
784 const property_table_entry *a = (const property_table_entry *) ap;
785 const property_table_entry *b = (const property_table_entry *) bp;
786
787 /* Check if one entry overlaps with the other. */
788 if ((b->address >= a->address && b->address < (a->address + a->size))
789 || (a->address >= b->address && a->address < (b->address + b->size)))
790 return 0;
791
792 return (a->address - b->address);
793 }
794
795
796 /* Get the literal table or property table entries for the given
797 section. Sets TABLE_P and returns the number of entries. On
798 error, returns a negative value. */
799
800 static int
801 xtensa_read_table_entries (bfd *abfd,
802 asection *section,
803 property_table_entry **table_p,
804 const char *sec_name,
805 bfd_boolean output_addr)
806 {
807 asection *table_section;
808 bfd_size_type table_size = 0;
809 bfd_byte *table_data;
810 property_table_entry *blocks;
811 int blk, block_count;
812 bfd_size_type num_records;
813 Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
814 bfd_vma section_addr, off;
815 flagword predef_flags;
816 bfd_size_type table_entry_size, section_limit;
817
818 if (!section
819 || !(section->flags & SEC_ALLOC)
820 || (section->flags & SEC_DEBUGGING))
821 {
822 *table_p = NULL;
823 return 0;
824 }
825
826 table_section = xtensa_get_property_section (section, sec_name);
827 if (table_section)
828 table_size = table_section->size;
829
830 if (table_size == 0)
831 {
832 *table_p = NULL;
833 return 0;
834 }
835
836 predef_flags = xtensa_get_property_predef_flags (table_section);
837 table_entry_size = 12;
838 if (predef_flags)
839 table_entry_size -= 4;
840
841 num_records = table_size / table_entry_size;
842 table_data = retrieve_contents (abfd, table_section, TRUE);
843 blocks = (property_table_entry *)
844 bfd_malloc (num_records * sizeof (property_table_entry));
845 block_count = 0;
846
847 if (output_addr)
848 section_addr = section->output_section->vma + section->output_offset;
849 else
850 section_addr = section->vma;
851
852 internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
853 if (internal_relocs && !table_section->reloc_done)
854 {
855 qsort (internal_relocs, table_section->reloc_count,
856 sizeof (Elf_Internal_Rela), internal_reloc_compare);
857 irel = internal_relocs;
858 }
859 else
860 irel = NULL;
861
862 section_limit = bfd_get_section_limit (abfd, section);
863 rel_end = internal_relocs + table_section->reloc_count;
864
865 for (off = 0; off < table_size; off += table_entry_size)
866 {
867 bfd_vma address = bfd_get_32 (abfd, table_data + off);
868
869 /* Skip any relocations before the current offset. This should help
870 avoid confusion caused by unexpected relocations for the preceding
871 table entry. */
872 while (irel &&
873 (irel->r_offset < off
874 || (irel->r_offset == off
875 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
876 {
877 irel += 1;
878 if (irel >= rel_end)
879 irel = 0;
880 }
881
882 if (irel && irel->r_offset == off)
883 {
884 bfd_vma sym_off;
885 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
886 BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
887
888 if (get_elf_r_symndx_section (abfd, r_symndx) != section)
889 continue;
890
891 sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
892 BFD_ASSERT (sym_off == 0);
893 address += (section_addr + sym_off + irel->r_addend);
894 }
895 else
896 {
897 if (address < section_addr
898 || address >= section_addr + section_limit)
899 continue;
900 }
901
902 blocks[block_count].address = address;
903 blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
904 if (predef_flags)
905 blocks[block_count].flags = predef_flags;
906 else
907 blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
908 block_count++;
909 }
910
911 release_contents (table_section, table_data);
912 release_internal_relocs (table_section, internal_relocs);
913
914 if (block_count > 0)
915 {
916 /* Now sort them into address order for easy reference. */
917 qsort (blocks, block_count, sizeof (property_table_entry),
918 property_table_compare);
919
920 /* Check that the table contents are valid. Problems may occur,
921 for example, if an unrelocated object file is stripped. */
922 for (blk = 1; blk < block_count; blk++)
923 {
924 /* The only circumstance where two entries may legitimately
925 have the same address is when one of them is a zero-size
926 placeholder to mark a place where fill can be inserted.
927 The zero-size entry should come first. */
928 if (blocks[blk - 1].address == blocks[blk].address &&
929 blocks[blk - 1].size != 0)
930 {
931 /* xgettext:c-format */
932 _bfd_error_handler (_("%pB(%pA): invalid property table"),
933 abfd, section);
934 bfd_set_error (bfd_error_bad_value);
935 free (blocks);
936 return -1;
937 }
938 }
939 }
940
941 *table_p = blocks;
942 return block_count;
943 }
944
945
946 static property_table_entry *
947 elf_xtensa_find_property_entry (property_table_entry *property_table,
948 int property_table_size,
949 bfd_vma addr)
950 {
951 property_table_entry entry;
952 property_table_entry *rv;
953
954 if (property_table_size == 0)
955 return NULL;
956
957 entry.address = addr;
958 entry.size = 1;
959 entry.flags = 0;
960
961 rv = bsearch (&entry, property_table, property_table_size,
962 sizeof (property_table_entry), property_table_matches);
963 return rv;
964 }
965
966
967 static bfd_boolean
968 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
969 int lit_table_size,
970 bfd_vma addr)
971 {
972 if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
973 return TRUE;
974
975 return FALSE;
976 }
977
978 \f
979 /* Look through the relocs for a section during the first phase, and
980 calculate needed space in the dynamic reloc sections. */
981
982 static bfd_boolean
983 elf_xtensa_check_relocs (bfd *abfd,
984 struct bfd_link_info *info,
985 asection *sec,
986 const Elf_Internal_Rela *relocs)
987 {
988 struct elf_xtensa_link_hash_table *htab;
989 Elf_Internal_Shdr *symtab_hdr;
990 struct elf_link_hash_entry **sym_hashes;
991 const Elf_Internal_Rela *rel;
992 const Elf_Internal_Rela *rel_end;
993
994 if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
995 return TRUE;
996
997 BFD_ASSERT (is_xtensa_elf (abfd));
998
999 htab = elf_xtensa_hash_table (info);
1000 if (htab == NULL)
1001 return FALSE;
1002
1003 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1004 sym_hashes = elf_sym_hashes (abfd);
1005
1006 rel_end = relocs + sec->reloc_count;
1007 for (rel = relocs; rel < rel_end; rel++)
1008 {
1009 unsigned int r_type;
1010 unsigned r_symndx;
1011 struct elf_link_hash_entry *h = NULL;
1012 struct elf_xtensa_link_hash_entry *eh;
1013 int tls_type, old_tls_type;
1014 bfd_boolean is_got = FALSE;
1015 bfd_boolean is_plt = FALSE;
1016 bfd_boolean is_tlsfunc = FALSE;
1017
1018 r_symndx = ELF32_R_SYM (rel->r_info);
1019 r_type = ELF32_R_TYPE (rel->r_info);
1020
1021 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1022 {
1023 /* xgettext:c-format */
1024 _bfd_error_handler (_("%pB: bad symbol index: %d"),
1025 abfd, r_symndx);
1026 return FALSE;
1027 }
1028
1029 if (r_symndx >= symtab_hdr->sh_info)
1030 {
1031 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1032 while (h->root.type == bfd_link_hash_indirect
1033 || h->root.type == bfd_link_hash_warning)
1034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1035 }
1036 eh = elf_xtensa_hash_entry (h);
1037
1038 switch (r_type)
1039 {
1040 case R_XTENSA_TLSDESC_FN:
1041 if (bfd_link_pic (info))
1042 {
1043 tls_type = GOT_TLS_GD;
1044 is_got = TRUE;
1045 is_tlsfunc = TRUE;
1046 }
1047 else
1048 tls_type = GOT_TLS_IE;
1049 break;
1050
1051 case R_XTENSA_TLSDESC_ARG:
1052 if (bfd_link_pic (info))
1053 {
1054 tls_type = GOT_TLS_GD;
1055 is_got = TRUE;
1056 }
1057 else
1058 {
1059 tls_type = GOT_TLS_IE;
1060 if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1061 is_got = TRUE;
1062 }
1063 break;
1064
1065 case R_XTENSA_TLS_DTPOFF:
1066 if (bfd_link_pic (info))
1067 tls_type = GOT_TLS_GD;
1068 else
1069 tls_type = GOT_TLS_IE;
1070 break;
1071
1072 case R_XTENSA_TLS_TPOFF:
1073 tls_type = GOT_TLS_IE;
1074 if (bfd_link_pic (info))
1075 info->flags |= DF_STATIC_TLS;
1076 if (bfd_link_pic (info) || h)
1077 is_got = TRUE;
1078 break;
1079
1080 case R_XTENSA_32:
1081 tls_type = GOT_NORMAL;
1082 is_got = TRUE;
1083 break;
1084
1085 case R_XTENSA_PLT:
1086 tls_type = GOT_NORMAL;
1087 is_plt = TRUE;
1088 break;
1089
1090 case R_XTENSA_GNU_VTINHERIT:
1091 /* This relocation describes the C++ object vtable hierarchy.
1092 Reconstruct it for later use during GC. */
1093 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1094 return FALSE;
1095 continue;
1096
1097 case R_XTENSA_GNU_VTENTRY:
1098 /* This relocation describes which C++ vtable entries are actually
1099 used. Record for later use during GC. */
1100 BFD_ASSERT (h != NULL);
1101 if (h != NULL
1102 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1103 return FALSE;
1104 continue;
1105
1106 default:
1107 /* Nothing to do for any other relocations. */
1108 continue;
1109 }
1110
1111 if (h)
1112 {
1113 if (is_plt)
1114 {
1115 if (h->plt.refcount <= 0)
1116 {
1117 h->needs_plt = 1;
1118 h->plt.refcount = 1;
1119 }
1120 else
1121 h->plt.refcount += 1;
1122
1123 /* Keep track of the total PLT relocation count even if we
1124 don't yet know whether the dynamic sections will be
1125 created. */
1126 htab->plt_reloc_count += 1;
1127
1128 if (elf_hash_table (info)->dynamic_sections_created)
1129 {
1130 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1131 return FALSE;
1132 }
1133 }
1134 else if (is_got)
1135 {
1136 if (h->got.refcount <= 0)
1137 h->got.refcount = 1;
1138 else
1139 h->got.refcount += 1;
1140 }
1141
1142 if (is_tlsfunc)
1143 eh->tlsfunc_refcount += 1;
1144
1145 old_tls_type = eh->tls_type;
1146 }
1147 else
1148 {
1149 /* Allocate storage the first time. */
1150 if (elf_local_got_refcounts (abfd) == NULL)
1151 {
1152 bfd_size_type size = symtab_hdr->sh_info;
1153 void *mem;
1154
1155 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1156 if (mem == NULL)
1157 return FALSE;
1158 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1159
1160 mem = bfd_zalloc (abfd, size);
1161 if (mem == NULL)
1162 return FALSE;
1163 elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1164
1165 mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1166 if (mem == NULL)
1167 return FALSE;
1168 elf_xtensa_local_tlsfunc_refcounts (abfd)
1169 = (bfd_signed_vma *) mem;
1170 }
1171
1172 /* This is a global offset table entry for a local symbol. */
1173 if (is_got || is_plt)
1174 elf_local_got_refcounts (abfd) [r_symndx] += 1;
1175
1176 if (is_tlsfunc)
1177 elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1178
1179 old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1180 }
1181
1182 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1183 tls_type |= old_tls_type;
1184 /* If a TLS symbol is accessed using IE at least once,
1185 there is no point to use a dynamic model for it. */
1186 else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1187 && ((old_tls_type & GOT_TLS_GD) == 0
1188 || (tls_type & GOT_TLS_IE) == 0))
1189 {
1190 if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1191 tls_type = old_tls_type;
1192 else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1193 tls_type |= old_tls_type;
1194 else
1195 {
1196 _bfd_error_handler
1197 /* xgettext:c-format */
1198 (_("%pB: `%s' accessed both as normal and thread local symbol"),
1199 abfd,
1200 h ? h->root.root.string : "<local>");
1201 return FALSE;
1202 }
1203 }
1204
1205 if (old_tls_type != tls_type)
1206 {
1207 if (eh)
1208 eh->tls_type = tls_type;
1209 else
1210 elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1211 }
1212 }
1213
1214 return TRUE;
1215 }
1216
1217
1218 static void
1219 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1220 struct elf_link_hash_entry *h)
1221 {
1222 if (bfd_link_pic (info))
1223 {
1224 if (h->plt.refcount > 0)
1225 {
1226 /* For shared objects, there's no need for PLT entries for local
1227 symbols (use RELATIVE relocs instead of JMP_SLOT relocs). */
1228 if (h->got.refcount < 0)
1229 h->got.refcount = 0;
1230 h->got.refcount += h->plt.refcount;
1231 h->plt.refcount = 0;
1232 }
1233 }
1234 else
1235 {
1236 /* Don't need any dynamic relocations at all. */
1237 h->plt.refcount = 0;
1238 h->got.refcount = 0;
1239 }
1240 }
1241
1242
1243 static void
1244 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1245 struct elf_link_hash_entry *h,
1246 bfd_boolean force_local)
1247 {
1248 /* For a shared link, move the plt refcount to the got refcount to leave
1249 space for RELATIVE relocs. */
1250 elf_xtensa_make_sym_local (info, h);
1251
1252 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1253 }
1254
1255
1256 /* Return the section that should be marked against GC for a given
1257 relocation. */
1258
1259 static asection *
1260 elf_xtensa_gc_mark_hook (asection *sec,
1261 struct bfd_link_info *info,
1262 Elf_Internal_Rela *rel,
1263 struct elf_link_hash_entry *h,
1264 Elf_Internal_Sym *sym)
1265 {
1266 /* Property sections are marked "KEEP" in the linker scripts, but they
1267 should not cause other sections to be marked. (This approach relies
1268 on elf_xtensa_discard_info to remove property table entries that
1269 describe discarded sections. Alternatively, it might be more
1270 efficient to avoid using "KEEP" in the linker scripts and instead use
1271 the gc_mark_extra_sections hook to mark only the property sections
1272 that describe marked sections. That alternative does not work well
1273 with the current property table sections, which do not correspond
1274 one-to-one with the sections they describe, but that should be fixed
1275 someday.) */
1276 if (xtensa_is_property_section (sec))
1277 return NULL;
1278
1279 if (h != NULL)
1280 switch (ELF32_R_TYPE (rel->r_info))
1281 {
1282 case R_XTENSA_GNU_VTINHERIT:
1283 case R_XTENSA_GNU_VTENTRY:
1284 return NULL;
1285 }
1286
1287 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1288 }
1289
1290
1291 /* Create all the dynamic sections. */
1292
1293 static bfd_boolean
1294 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1295 {
1296 struct elf_xtensa_link_hash_table *htab;
1297 flagword flags, noalloc_flags;
1298
1299 htab = elf_xtensa_hash_table (info);
1300 if (htab == NULL)
1301 return FALSE;
1302
1303 /* First do all the standard stuff. */
1304 if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1305 return FALSE;
1306
1307 /* Create any extra PLT sections in case check_relocs has already
1308 been called on all the non-dynamic input files. */
1309 if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1310 return FALSE;
1311
1312 noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1313 | SEC_LINKER_CREATED | SEC_READONLY);
1314 flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1315
1316 /* Mark the ".got.plt" section READONLY. */
1317 if (htab->elf.sgotplt == NULL
1318 || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1319 return FALSE;
1320
1321 /* Create ".got.loc" (literal tables for use by dynamic linker). */
1322 htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1323 flags);
1324 if (htab->sgotloc == NULL
1325 || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1326 return FALSE;
1327
1328 /* Create ".xt.lit.plt" (literal table for ".got.plt*"). */
1329 htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1330 noalloc_flags);
1331 if (htab->spltlittbl == NULL
1332 || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1333 return FALSE;
1334
1335 return TRUE;
1336 }
1337
1338
1339 static bfd_boolean
1340 add_extra_plt_sections (struct bfd_link_info *info, int count)
1341 {
1342 bfd *dynobj = elf_hash_table (info)->dynobj;
1343 int chunk;
1344
1345 /* Iterate over all chunks except 0 which uses the standard ".plt" and
1346 ".got.plt" sections. */
1347 for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1348 {
1349 char *sname;
1350 flagword flags;
1351 asection *s;
1352
1353 /* Stop when we find a section has already been created. */
1354 if (elf_xtensa_get_plt_section (info, chunk))
1355 break;
1356
1357 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1358 | SEC_LINKER_CREATED | SEC_READONLY);
1359
1360 sname = (char *) bfd_malloc (10);
1361 sprintf (sname, ".plt.%u", chunk);
1362 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1363 if (s == NULL
1364 || ! bfd_set_section_alignment (dynobj, s, 2))
1365 return FALSE;
1366
1367 sname = (char *) bfd_malloc (14);
1368 sprintf (sname, ".got.plt.%u", chunk);
1369 s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1370 if (s == NULL
1371 || ! bfd_set_section_alignment (dynobj, s, 2))
1372 return FALSE;
1373 }
1374
1375 return TRUE;
1376 }
1377
1378
1379 /* Adjust a symbol defined by a dynamic object and referenced by a
1380 regular object. The current definition is in some section of the
1381 dynamic object, but we're not including those sections. We have to
1382 change the definition to something the rest of the link can
1383 understand. */
1384
1385 static bfd_boolean
1386 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1387 struct elf_link_hash_entry *h)
1388 {
1389 /* If this is a weak symbol, and there is a real definition, the
1390 processor independent code will have arranged for us to see the
1391 real definition first, and we can just use the same value. */
1392 if (h->is_weakalias)
1393 {
1394 struct elf_link_hash_entry *def = weakdef (h);
1395 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1396 h->root.u.def.section = def->root.u.def.section;
1397 h->root.u.def.value = def->root.u.def.value;
1398 return TRUE;
1399 }
1400
1401 /* This is a reference to a symbol defined by a dynamic object. The
1402 reference must go through the GOT, so there's no need for COPY relocs,
1403 .dynbss, etc. */
1404
1405 return TRUE;
1406 }
1407
1408
1409 static bfd_boolean
1410 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1411 {
1412 struct bfd_link_info *info;
1413 struct elf_xtensa_link_hash_table *htab;
1414 struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1415
1416 if (h->root.type == bfd_link_hash_indirect)
1417 return TRUE;
1418
1419 info = (struct bfd_link_info *) arg;
1420 htab = elf_xtensa_hash_table (info);
1421 if (htab == NULL)
1422 return FALSE;
1423
1424 /* If we saw any use of an IE model for this symbol, we can then optimize
1425 away GOT entries for any TLSDESC_FN relocs. */
1426 if ((eh->tls_type & GOT_TLS_IE) != 0)
1427 {
1428 BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1429 h->got.refcount -= eh->tlsfunc_refcount;
1430 }
1431
1432 if (! elf_xtensa_dynamic_symbol_p (h, info))
1433 elf_xtensa_make_sym_local (info, h);
1434
1435 if (h->plt.refcount > 0)
1436 htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1437
1438 if (h->got.refcount > 0)
1439 htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1440
1441 return TRUE;
1442 }
1443
1444
1445 static void
1446 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1447 {
1448 struct elf_xtensa_link_hash_table *htab;
1449 bfd *i;
1450
1451 htab = elf_xtensa_hash_table (info);
1452 if (htab == NULL)
1453 return;
1454
1455 for (i = info->input_bfds; i; i = i->link.next)
1456 {
1457 bfd_signed_vma *local_got_refcounts;
1458 bfd_size_type j, cnt;
1459 Elf_Internal_Shdr *symtab_hdr;
1460
1461 local_got_refcounts = elf_local_got_refcounts (i);
1462 if (!local_got_refcounts)
1463 continue;
1464
1465 symtab_hdr = &elf_tdata (i)->symtab_hdr;
1466 cnt = symtab_hdr->sh_info;
1467
1468 for (j = 0; j < cnt; ++j)
1469 {
1470 /* If we saw any use of an IE model for this symbol, we can
1471 then optimize away GOT entries for any TLSDESC_FN relocs. */
1472 if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1473 {
1474 bfd_signed_vma *tlsfunc_refcount
1475 = &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1476 BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1477 local_got_refcounts[j] -= *tlsfunc_refcount;
1478 }
1479
1480 if (local_got_refcounts[j] > 0)
1481 htab->elf.srelgot->size += (local_got_refcounts[j]
1482 * sizeof (Elf32_External_Rela));
1483 }
1484 }
1485 }
1486
1487
1488 /* Set the sizes of the dynamic sections. */
1489
1490 static bfd_boolean
1491 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1492 struct bfd_link_info *info)
1493 {
1494 struct elf_xtensa_link_hash_table *htab;
1495 bfd *dynobj, *abfd;
1496 asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1497 bfd_boolean relplt, relgot;
1498 int plt_entries, plt_chunks, chunk;
1499
1500 plt_entries = 0;
1501 plt_chunks = 0;
1502
1503 htab = elf_xtensa_hash_table (info);
1504 if (htab == NULL)
1505 return FALSE;
1506
1507 dynobj = elf_hash_table (info)->dynobj;
1508 if (dynobj == NULL)
1509 abort ();
1510 srelgot = htab->elf.srelgot;
1511 srelplt = htab->elf.srelplt;
1512
1513 if (elf_hash_table (info)->dynamic_sections_created)
1514 {
1515 BFD_ASSERT (htab->elf.srelgot != NULL
1516 && htab->elf.srelplt != NULL
1517 && htab->elf.sgot != NULL
1518 && htab->spltlittbl != NULL
1519 && htab->sgotloc != NULL);
1520
1521 /* Set the contents of the .interp section to the interpreter. */
1522 if (bfd_link_executable (info) && !info->nointerp)
1523 {
1524 s = bfd_get_linker_section (dynobj, ".interp");
1525 if (s == NULL)
1526 abort ();
1527 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1528 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1529 }
1530
1531 /* Allocate room for one word in ".got". */
1532 htab->elf.sgot->size = 4;
1533
1534 /* Allocate space in ".rela.got" for literals that reference global
1535 symbols and space in ".rela.plt" for literals that have PLT
1536 entries. */
1537 elf_link_hash_traverse (elf_hash_table (info),
1538 elf_xtensa_allocate_dynrelocs,
1539 (void *) info);
1540
1541 /* If we are generating a shared object, we also need space in
1542 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1543 reference local symbols. */
1544 if (bfd_link_pic (info))
1545 elf_xtensa_allocate_local_got_size (info);
1546
1547 /* Allocate space in ".plt" to match the size of ".rela.plt". For
1548 each PLT entry, we need the PLT code plus a 4-byte literal.
1549 For each chunk of ".plt", we also need two more 4-byte
1550 literals, two corresponding entries in ".rela.got", and an
1551 8-byte entry in ".xt.lit.plt". */
1552 spltlittbl = htab->spltlittbl;
1553 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1554 plt_chunks =
1555 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1556
1557 /* Iterate over all the PLT chunks, including any extra sections
1558 created earlier because the initial count of PLT relocations
1559 was an overestimate. */
1560 for (chunk = 0;
1561 (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1562 chunk++)
1563 {
1564 int chunk_entries;
1565
1566 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1567 BFD_ASSERT (sgotplt != NULL);
1568
1569 if (chunk < plt_chunks - 1)
1570 chunk_entries = PLT_ENTRIES_PER_CHUNK;
1571 else if (chunk == plt_chunks - 1)
1572 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1573 else
1574 chunk_entries = 0;
1575
1576 if (chunk_entries != 0)
1577 {
1578 sgotplt->size = 4 * (chunk_entries + 2);
1579 splt->size = PLT_ENTRY_SIZE * chunk_entries;
1580 srelgot->size += 2 * sizeof (Elf32_External_Rela);
1581 spltlittbl->size += 8;
1582 }
1583 else
1584 {
1585 sgotplt->size = 0;
1586 splt->size = 0;
1587 }
1588 }
1589
1590 /* Allocate space in ".got.loc" to match the total size of all the
1591 literal tables. */
1592 sgotloc = htab->sgotloc;
1593 sgotloc->size = spltlittbl->size;
1594 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1595 {
1596 if (abfd->flags & DYNAMIC)
1597 continue;
1598 for (s = abfd->sections; s != NULL; s = s->next)
1599 {
1600 if (! discarded_section (s)
1601 && xtensa_is_littable_section (s)
1602 && s != spltlittbl)
1603 sgotloc->size += s->size;
1604 }
1605 }
1606 }
1607
1608 /* Allocate memory for dynamic sections. */
1609 relplt = FALSE;
1610 relgot = FALSE;
1611 for (s = dynobj->sections; s != NULL; s = s->next)
1612 {
1613 const char *name;
1614
1615 if ((s->flags & SEC_LINKER_CREATED) == 0)
1616 continue;
1617
1618 /* It's OK to base decisions on the section name, because none
1619 of the dynobj section names depend upon the input files. */
1620 name = bfd_get_section_name (dynobj, s);
1621
1622 if (CONST_STRNEQ (name, ".rela"))
1623 {
1624 if (s->size != 0)
1625 {
1626 if (strcmp (name, ".rela.plt") == 0)
1627 relplt = TRUE;
1628 else if (strcmp (name, ".rela.got") == 0)
1629 relgot = TRUE;
1630
1631 /* We use the reloc_count field as a counter if we need
1632 to copy relocs into the output file. */
1633 s->reloc_count = 0;
1634 }
1635 }
1636 else if (! CONST_STRNEQ (name, ".plt.")
1637 && ! CONST_STRNEQ (name, ".got.plt.")
1638 && strcmp (name, ".got") != 0
1639 && strcmp (name, ".plt") != 0
1640 && strcmp (name, ".got.plt") != 0
1641 && strcmp (name, ".xt.lit.plt") != 0
1642 && strcmp (name, ".got.loc") != 0)
1643 {
1644 /* It's not one of our sections, so don't allocate space. */
1645 continue;
1646 }
1647
1648 if (s->size == 0)
1649 {
1650 /* If we don't need this section, strip it from the output
1651 file. We must create the ".plt*" and ".got.plt*"
1652 sections in create_dynamic_sections and/or check_relocs
1653 based on a conservative estimate of the PLT relocation
1654 count, because the sections must be created before the
1655 linker maps input sections to output sections. The
1656 linker does that before size_dynamic_sections, where we
1657 compute the exact size of the PLT, so there may be more
1658 of these sections than are actually needed. */
1659 s->flags |= SEC_EXCLUDE;
1660 }
1661 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1662 {
1663 /* Allocate memory for the section contents. */
1664 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1665 if (s->contents == NULL)
1666 return FALSE;
1667 }
1668 }
1669
1670 if (elf_hash_table (info)->dynamic_sections_created)
1671 {
1672 /* Add the special XTENSA_RTLD relocations now. The offsets won't be
1673 known until finish_dynamic_sections, but we need to get the relocs
1674 in place before they are sorted. */
1675 for (chunk = 0; chunk < plt_chunks; chunk++)
1676 {
1677 Elf_Internal_Rela irela;
1678 bfd_byte *loc;
1679
1680 irela.r_offset = 0;
1681 irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1682 irela.r_addend = 0;
1683
1684 loc = (srelgot->contents
1685 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1686 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1687 bfd_elf32_swap_reloca_out (output_bfd, &irela,
1688 loc + sizeof (Elf32_External_Rela));
1689 srelgot->reloc_count += 2;
1690 }
1691
1692 /* Add some entries to the .dynamic section. We fill in the
1693 values later, in elf_xtensa_finish_dynamic_sections, but we
1694 must add the entries now so that we get the correct size for
1695 the .dynamic section. The DT_DEBUG entry is filled in by the
1696 dynamic linker and used by the debugger. */
1697 #define add_dynamic_entry(TAG, VAL) \
1698 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1699
1700 if (bfd_link_executable (info))
1701 {
1702 if (!add_dynamic_entry (DT_DEBUG, 0))
1703 return FALSE;
1704 }
1705
1706 if (relplt)
1707 {
1708 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1709 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1710 || !add_dynamic_entry (DT_JMPREL, 0))
1711 return FALSE;
1712 }
1713
1714 if (relgot)
1715 {
1716 if (!add_dynamic_entry (DT_RELA, 0)
1717 || !add_dynamic_entry (DT_RELASZ, 0)
1718 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1719 return FALSE;
1720 }
1721
1722 if (!add_dynamic_entry (DT_PLTGOT, 0)
1723 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1724 || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1725 return FALSE;
1726 }
1727 #undef add_dynamic_entry
1728
1729 return TRUE;
1730 }
1731
1732 static bfd_boolean
1733 elf_xtensa_always_size_sections (bfd *output_bfd,
1734 struct bfd_link_info *info)
1735 {
1736 struct elf_xtensa_link_hash_table *htab;
1737 asection *tls_sec;
1738
1739 htab = elf_xtensa_hash_table (info);
1740 if (htab == NULL)
1741 return FALSE;
1742
1743 tls_sec = htab->elf.tls_sec;
1744
1745 if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1746 {
1747 struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1748 struct bfd_link_hash_entry *bh = &tlsbase->root;
1749 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1750
1751 tlsbase->type = STT_TLS;
1752 if (!(_bfd_generic_link_add_one_symbol
1753 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1754 tls_sec, 0, NULL, FALSE,
1755 bed->collect, &bh)))
1756 return FALSE;
1757 tlsbase->def_regular = 1;
1758 tlsbase->other = STV_HIDDEN;
1759 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1760 }
1761
1762 return TRUE;
1763 }
1764
1765 \f
1766 /* Return the base VMA address which should be subtracted from real addresses
1767 when resolving @dtpoff relocation.
1768 This is PT_TLS segment p_vaddr. */
1769
1770 static bfd_vma
1771 dtpoff_base (struct bfd_link_info *info)
1772 {
1773 /* If tls_sec is NULL, we should have signalled an error already. */
1774 if (elf_hash_table (info)->tls_sec == NULL)
1775 return 0;
1776 return elf_hash_table (info)->tls_sec->vma;
1777 }
1778
1779 /* Return the relocation value for @tpoff relocation
1780 if STT_TLS virtual address is ADDRESS. */
1781
1782 static bfd_vma
1783 tpoff (struct bfd_link_info *info, bfd_vma address)
1784 {
1785 struct elf_link_hash_table *htab = elf_hash_table (info);
1786 bfd_vma base;
1787
1788 /* If tls_sec is NULL, we should have signalled an error already. */
1789 if (htab->tls_sec == NULL)
1790 return 0;
1791 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1792 return address - htab->tls_sec->vma + base;
1793 }
1794
1795 /* Perform the specified relocation. The instruction at (contents + address)
1796 is modified to set one operand to represent the value in "relocation". The
1797 operand position is determined by the relocation type recorded in the
1798 howto. */
1799
1800 #define CALL_SEGMENT_BITS (30)
1801 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1802
1803 static bfd_reloc_status_type
1804 elf_xtensa_do_reloc (reloc_howto_type *howto,
1805 bfd *abfd,
1806 asection *input_section,
1807 bfd_vma relocation,
1808 bfd_byte *contents,
1809 bfd_vma address,
1810 bfd_boolean is_weak_undef,
1811 char **error_message)
1812 {
1813 xtensa_format fmt;
1814 xtensa_opcode opcode;
1815 xtensa_isa isa = xtensa_default_isa;
1816 static xtensa_insnbuf ibuff = NULL;
1817 static xtensa_insnbuf sbuff = NULL;
1818 bfd_vma self_address;
1819 bfd_size_type input_size;
1820 int opnd, slot;
1821 uint32 newval;
1822
1823 if (!ibuff)
1824 {
1825 ibuff = xtensa_insnbuf_alloc (isa);
1826 sbuff = xtensa_insnbuf_alloc (isa);
1827 }
1828
1829 input_size = bfd_get_section_limit (abfd, input_section);
1830
1831 /* Calculate the PC address for this instruction. */
1832 self_address = (input_section->output_section->vma
1833 + input_section->output_offset
1834 + address);
1835
1836 switch (howto->type)
1837 {
1838 case R_XTENSA_NONE:
1839 case R_XTENSA_DIFF8:
1840 case R_XTENSA_DIFF16:
1841 case R_XTENSA_DIFF32:
1842 case R_XTENSA_TLS_FUNC:
1843 case R_XTENSA_TLS_ARG:
1844 case R_XTENSA_TLS_CALL:
1845 return bfd_reloc_ok;
1846
1847 case R_XTENSA_ASM_EXPAND:
1848 if (!is_weak_undef)
1849 {
1850 /* Check for windowed CALL across a 1GB boundary. */
1851 opcode = get_expanded_call_opcode (contents + address,
1852 input_size - address, 0);
1853 if (is_windowed_call_opcode (opcode))
1854 {
1855 if ((self_address >> CALL_SEGMENT_BITS)
1856 != (relocation >> CALL_SEGMENT_BITS))
1857 {
1858 *error_message = "windowed longcall crosses 1GB boundary; "
1859 "return may fail";
1860 return bfd_reloc_dangerous;
1861 }
1862 }
1863 }
1864 return bfd_reloc_ok;
1865
1866 case R_XTENSA_ASM_SIMPLIFY:
1867 {
1868 /* Convert the L32R/CALLX to CALL. */
1869 bfd_reloc_status_type retval =
1870 elf_xtensa_do_asm_simplify (contents, address, input_size,
1871 error_message);
1872 if (retval != bfd_reloc_ok)
1873 return bfd_reloc_dangerous;
1874
1875 /* The CALL needs to be relocated. Continue below for that part. */
1876 address += 3;
1877 self_address += 3;
1878 howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1879 }
1880 break;
1881
1882 case R_XTENSA_32:
1883 {
1884 bfd_vma x;
1885 x = bfd_get_32 (abfd, contents + address);
1886 x = x + relocation;
1887 bfd_put_32 (abfd, x, contents + address);
1888 }
1889 return bfd_reloc_ok;
1890
1891 case R_XTENSA_32_PCREL:
1892 bfd_put_32 (abfd, relocation - self_address, contents + address);
1893 return bfd_reloc_ok;
1894
1895 case R_XTENSA_PLT:
1896 case R_XTENSA_TLSDESC_FN:
1897 case R_XTENSA_TLSDESC_ARG:
1898 case R_XTENSA_TLS_DTPOFF:
1899 case R_XTENSA_TLS_TPOFF:
1900 bfd_put_32 (abfd, relocation, contents + address);
1901 return bfd_reloc_ok;
1902 }
1903
1904 /* Only instruction slot-specific relocations handled below.... */
1905 slot = get_relocation_slot (howto->type);
1906 if (slot == XTENSA_UNDEFINED)
1907 {
1908 *error_message = "unexpected relocation";
1909 return bfd_reloc_dangerous;
1910 }
1911
1912 /* Read the instruction into a buffer and decode the opcode. */
1913 xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
1914 input_size - address);
1915 fmt = xtensa_format_decode (isa, ibuff);
1916 if (fmt == XTENSA_UNDEFINED)
1917 {
1918 *error_message = "cannot decode instruction format";
1919 return bfd_reloc_dangerous;
1920 }
1921
1922 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
1923
1924 opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
1925 if (opcode == XTENSA_UNDEFINED)
1926 {
1927 *error_message = "cannot decode instruction opcode";
1928 return bfd_reloc_dangerous;
1929 }
1930
1931 /* Check for opcode-specific "alternate" relocations. */
1932 if (is_alt_relocation (howto->type))
1933 {
1934 if (opcode == get_l32r_opcode ())
1935 {
1936 /* Handle the special-case of non-PC-relative L32R instructions. */
1937 bfd *output_bfd = input_section->output_section->owner;
1938 asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
1939 if (!lit4_sec)
1940 {
1941 *error_message = "relocation references missing .lit4 section";
1942 return bfd_reloc_dangerous;
1943 }
1944 self_address = ((lit4_sec->vma & ~0xfff)
1945 + 0x40000 - 3); /* -3 to compensate for do_reloc */
1946 newval = relocation;
1947 opnd = 1;
1948 }
1949 else if (opcode == get_const16_opcode ())
1950 {
1951 /* ALT used for high 16 bits. */
1952 newval = relocation >> 16;
1953 opnd = 1;
1954 }
1955 else
1956 {
1957 /* No other "alternate" relocations currently defined. */
1958 *error_message = "unexpected relocation";
1959 return bfd_reloc_dangerous;
1960 }
1961 }
1962 else /* Not an "alternate" relocation.... */
1963 {
1964 if (opcode == get_const16_opcode ())
1965 {
1966 newval = relocation & 0xffff;
1967 opnd = 1;
1968 }
1969 else
1970 {
1971 /* ...normal PC-relative relocation.... */
1972
1973 /* Determine which operand is being relocated. */
1974 opnd = get_relocation_opnd (opcode, howto->type);
1975 if (opnd == XTENSA_UNDEFINED)
1976 {
1977 *error_message = "unexpected relocation";
1978 return bfd_reloc_dangerous;
1979 }
1980
1981 if (!howto->pc_relative)
1982 {
1983 *error_message = "expected PC-relative relocation";
1984 return bfd_reloc_dangerous;
1985 }
1986
1987 newval = relocation;
1988 }
1989 }
1990
1991 /* Apply the relocation. */
1992 if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
1993 || xtensa_operand_encode (isa, opcode, opnd, &newval)
1994 || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
1995 sbuff, newval))
1996 {
1997 const char *opname = xtensa_opcode_name (isa, opcode);
1998 const char *msg;
1999
2000 msg = "cannot encode";
2001 if (is_direct_call_opcode (opcode))
2002 {
2003 if ((relocation & 0x3) != 0)
2004 msg = "misaligned call target";
2005 else
2006 msg = "call target out of range";
2007 }
2008 else if (opcode == get_l32r_opcode ())
2009 {
2010 if ((relocation & 0x3) != 0)
2011 msg = "misaligned literal target";
2012 else if (is_alt_relocation (howto->type))
2013 msg = "literal target out of range (too many literals)";
2014 else if (self_address > relocation)
2015 msg = "literal target out of range (try using text-section-literals)";
2016 else
2017 msg = "literal placed after use";
2018 }
2019
2020 *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2021 return bfd_reloc_dangerous;
2022 }
2023
2024 /* Check for calls across 1GB boundaries. */
2025 if (is_direct_call_opcode (opcode)
2026 && is_windowed_call_opcode (opcode))
2027 {
2028 if ((self_address >> CALL_SEGMENT_BITS)
2029 != (relocation >> CALL_SEGMENT_BITS))
2030 {
2031 *error_message =
2032 "windowed call crosses 1GB boundary; return may fail";
2033 return bfd_reloc_dangerous;
2034 }
2035 }
2036
2037 /* Write the modified instruction back out of the buffer. */
2038 xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2039 xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2040 input_size - address);
2041 return bfd_reloc_ok;
2042 }
2043
2044
2045 static char *
2046 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2047 {
2048 /* To reduce the size of the memory leak,
2049 we only use a single message buffer. */
2050 static bfd_size_type alloc_size = 0;
2051 static char *message = NULL;
2052 bfd_size_type orig_len, len = 0;
2053 bfd_boolean is_append;
2054 va_list ap;
2055
2056 va_start (ap, arglen);
2057
2058 is_append = (origmsg == message);
2059
2060 orig_len = strlen (origmsg);
2061 len = orig_len + strlen (fmt) + arglen + 20;
2062 if (len > alloc_size)
2063 {
2064 message = (char *) bfd_realloc_or_free (message, len);
2065 alloc_size = len;
2066 }
2067 if (message != NULL)
2068 {
2069 if (!is_append)
2070 memcpy (message, origmsg, orig_len);
2071 vsprintf (message + orig_len, fmt, ap);
2072 }
2073 va_end (ap);
2074 return message;
2075 }
2076
2077
2078 /* This function is registered as the "special_function" in the
2079 Xtensa howto for handling simplify operations.
2080 bfd_perform_relocation / bfd_install_relocation use it to
2081 perform (install) the specified relocation. Since this replaces the code
2082 in bfd_perform_relocation, it is basically an Xtensa-specific,
2083 stripped-down version of bfd_perform_relocation. */
2084
2085 static bfd_reloc_status_type
2086 bfd_elf_xtensa_reloc (bfd *abfd,
2087 arelent *reloc_entry,
2088 asymbol *symbol,
2089 void *data,
2090 asection *input_section,
2091 bfd *output_bfd,
2092 char **error_message)
2093 {
2094 bfd_vma relocation;
2095 bfd_reloc_status_type flag;
2096 bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2097 bfd_vma output_base = 0;
2098 reloc_howto_type *howto = reloc_entry->howto;
2099 asection *reloc_target_output_section;
2100 bfd_boolean is_weak_undef;
2101
2102 if (!xtensa_default_isa)
2103 xtensa_default_isa = xtensa_isa_init (0, 0);
2104
2105 /* ELF relocs are against symbols. If we are producing relocatable
2106 output, and the reloc is against an external symbol, the resulting
2107 reloc will also be against the same symbol. In such a case, we
2108 don't want to change anything about the way the reloc is handled,
2109 since it will all be done at final link time. This test is similar
2110 to what bfd_elf_generic_reloc does except that it lets relocs with
2111 howto->partial_inplace go through even if the addend is non-zero.
2112 (The real problem is that partial_inplace is set for XTENSA_32
2113 relocs to begin with, but that's a long story and there's little we
2114 can do about it now....) */
2115
2116 if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2117 {
2118 reloc_entry->address += input_section->output_offset;
2119 return bfd_reloc_ok;
2120 }
2121
2122 /* Is the address of the relocation really within the section? */
2123 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2124 return bfd_reloc_outofrange;
2125
2126 /* Work out which section the relocation is targeted at and the
2127 initial relocation command value. */
2128
2129 /* Get symbol value. (Common symbols are special.) */
2130 if (bfd_is_com_section (symbol->section))
2131 relocation = 0;
2132 else
2133 relocation = symbol->value;
2134
2135 reloc_target_output_section = symbol->section->output_section;
2136
2137 /* Convert input-section-relative symbol value to absolute. */
2138 if ((output_bfd && !howto->partial_inplace)
2139 || reloc_target_output_section == NULL)
2140 output_base = 0;
2141 else
2142 output_base = reloc_target_output_section->vma;
2143
2144 relocation += output_base + symbol->section->output_offset;
2145
2146 /* Add in supplied addend. */
2147 relocation += reloc_entry->addend;
2148
2149 /* Here the variable relocation holds the final address of the
2150 symbol we are relocating against, plus any addend. */
2151 if (output_bfd)
2152 {
2153 if (!howto->partial_inplace)
2154 {
2155 /* This is a partial relocation, and we want to apply the relocation
2156 to the reloc entry rather than the raw data. Everything except
2157 relocations against section symbols has already been handled
2158 above. */
2159
2160 BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2161 reloc_entry->addend = relocation;
2162 reloc_entry->address += input_section->output_offset;
2163 return bfd_reloc_ok;
2164 }
2165 else
2166 {
2167 reloc_entry->address += input_section->output_offset;
2168 reloc_entry->addend = 0;
2169 }
2170 }
2171
2172 is_weak_undef = (bfd_is_und_section (symbol->section)
2173 && (symbol->flags & BSF_WEAK) != 0);
2174 flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2175 (bfd_byte *) data, (bfd_vma) octets,
2176 is_weak_undef, error_message);
2177
2178 if (flag == bfd_reloc_dangerous)
2179 {
2180 /* Add the symbol name to the error message. */
2181 if (! *error_message)
2182 *error_message = "";
2183 *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2184 strlen (symbol->name) + 17,
2185 symbol->name,
2186 (unsigned long) reloc_entry->addend);
2187 }
2188
2189 return flag;
2190 }
2191
2192
2193 /* Set up an entry in the procedure linkage table. */
2194
2195 static bfd_vma
2196 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2197 bfd *output_bfd,
2198 unsigned reloc_index)
2199 {
2200 asection *splt, *sgotplt;
2201 bfd_vma plt_base, got_base;
2202 bfd_vma code_offset, lit_offset, abi_offset;
2203 int chunk;
2204
2205 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2206 splt = elf_xtensa_get_plt_section (info, chunk);
2207 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2208 BFD_ASSERT (splt != NULL && sgotplt != NULL);
2209
2210 plt_base = splt->output_section->vma + splt->output_offset;
2211 got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2212
2213 lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2214 code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2215
2216 /* Fill in the literal entry. This is the offset of the dynamic
2217 relocation entry. */
2218 bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2219 sgotplt->contents + lit_offset);
2220
2221 /* Fill in the entry in the procedure linkage table. */
2222 memcpy (splt->contents + code_offset,
2223 (bfd_big_endian (output_bfd)
2224 ? elf_xtensa_be_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]
2225 : elf_xtensa_le_plt_entry[XSHAL_ABI != XTHAL_ABI_WINDOWED]),
2226 PLT_ENTRY_SIZE);
2227 abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2228 bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2229 plt_base + code_offset + abi_offset),
2230 splt->contents + code_offset + abi_offset + 1);
2231 bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2232 plt_base + code_offset + abi_offset + 3),
2233 splt->contents + code_offset + abi_offset + 4);
2234 bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2235 plt_base + code_offset + abi_offset + 6),
2236 splt->contents + code_offset + abi_offset + 7);
2237
2238 return plt_base + code_offset;
2239 }
2240
2241
2242 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2243
2244 static bfd_boolean
2245 replace_tls_insn (Elf_Internal_Rela *rel,
2246 bfd *abfd,
2247 asection *input_section,
2248 bfd_byte *contents,
2249 bfd_boolean is_ld_model,
2250 char **error_message)
2251 {
2252 static xtensa_insnbuf ibuff = NULL;
2253 static xtensa_insnbuf sbuff = NULL;
2254 xtensa_isa isa = xtensa_default_isa;
2255 xtensa_format fmt;
2256 xtensa_opcode old_op, new_op;
2257 bfd_size_type input_size;
2258 int r_type;
2259 unsigned dest_reg, src_reg;
2260
2261 if (ibuff == NULL)
2262 {
2263 ibuff = xtensa_insnbuf_alloc (isa);
2264 sbuff = xtensa_insnbuf_alloc (isa);
2265 }
2266
2267 input_size = bfd_get_section_limit (abfd, input_section);
2268
2269 /* Read the instruction into a buffer and decode the opcode. */
2270 xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2271 input_size - rel->r_offset);
2272 fmt = xtensa_format_decode (isa, ibuff);
2273 if (fmt == XTENSA_UNDEFINED)
2274 {
2275 *error_message = "cannot decode instruction format";
2276 return FALSE;
2277 }
2278
2279 BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2280 xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2281
2282 old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2283 if (old_op == XTENSA_UNDEFINED)
2284 {
2285 *error_message = "cannot decode instruction opcode";
2286 return FALSE;
2287 }
2288
2289 r_type = ELF32_R_TYPE (rel->r_info);
2290 switch (r_type)
2291 {
2292 case R_XTENSA_TLS_FUNC:
2293 case R_XTENSA_TLS_ARG:
2294 if (old_op != get_l32r_opcode ()
2295 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2296 sbuff, &dest_reg) != 0)
2297 {
2298 *error_message = "cannot extract L32R destination for TLS access";
2299 return FALSE;
2300 }
2301 break;
2302
2303 case R_XTENSA_TLS_CALL:
2304 if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2305 || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2306 sbuff, &src_reg) != 0)
2307 {
2308 *error_message = "cannot extract CALLXn operands for TLS access";
2309 return FALSE;
2310 }
2311 break;
2312
2313 default:
2314 abort ();
2315 }
2316
2317 if (is_ld_model)
2318 {
2319 switch (r_type)
2320 {
2321 case R_XTENSA_TLS_FUNC:
2322 case R_XTENSA_TLS_ARG:
2323 /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2324 versions of Xtensa). */
2325 new_op = xtensa_opcode_lookup (isa, "nop");
2326 if (new_op == XTENSA_UNDEFINED)
2327 {
2328 new_op = xtensa_opcode_lookup (isa, "or");
2329 if (new_op == XTENSA_UNDEFINED
2330 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2331 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2332 sbuff, 1) != 0
2333 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2334 sbuff, 1) != 0
2335 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2336 sbuff, 1) != 0)
2337 {
2338 *error_message = "cannot encode OR for TLS access";
2339 return FALSE;
2340 }
2341 }
2342 else
2343 {
2344 if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2345 {
2346 *error_message = "cannot encode NOP for TLS access";
2347 return FALSE;
2348 }
2349 }
2350 break;
2351
2352 case R_XTENSA_TLS_CALL:
2353 /* Read THREADPTR into the CALLX's return value register. */
2354 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2355 if (new_op == XTENSA_UNDEFINED
2356 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2357 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2358 sbuff, dest_reg + 2) != 0)
2359 {
2360 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2361 return FALSE;
2362 }
2363 break;
2364 }
2365 }
2366 else
2367 {
2368 switch (r_type)
2369 {
2370 case R_XTENSA_TLS_FUNC:
2371 new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2372 if (new_op == XTENSA_UNDEFINED
2373 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2374 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2375 sbuff, dest_reg) != 0)
2376 {
2377 *error_message = "cannot encode RUR.THREADPTR for TLS access";
2378 return FALSE;
2379 }
2380 break;
2381
2382 case R_XTENSA_TLS_ARG:
2383 /* Nothing to do. Keep the original L32R instruction. */
2384 return TRUE;
2385
2386 case R_XTENSA_TLS_CALL:
2387 /* Add the CALLX's src register (holding the THREADPTR value)
2388 to the first argument register (holding the offset) and put
2389 the result in the CALLX's return value register. */
2390 new_op = xtensa_opcode_lookup (isa, "add");
2391 if (new_op == XTENSA_UNDEFINED
2392 || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2393 || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2394 sbuff, dest_reg + 2) != 0
2395 || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2396 sbuff, dest_reg + 2) != 0
2397 || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2398 sbuff, src_reg) != 0)
2399 {
2400 *error_message = "cannot encode ADD for TLS access";
2401 return FALSE;
2402 }
2403 break;
2404 }
2405 }
2406
2407 xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2408 xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2409 input_size - rel->r_offset);
2410
2411 return TRUE;
2412 }
2413
2414
2415 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2416 ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2417 || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2418 || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2419 || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2420 || (R_TYPE) == R_XTENSA_TLS_FUNC \
2421 || (R_TYPE) == R_XTENSA_TLS_ARG \
2422 || (R_TYPE) == R_XTENSA_TLS_CALL)
2423
2424 /* Relocate an Xtensa ELF section. This is invoked by the linker for
2425 both relocatable and final links. */
2426
2427 static bfd_boolean
2428 elf_xtensa_relocate_section (bfd *output_bfd,
2429 struct bfd_link_info *info,
2430 bfd *input_bfd,
2431 asection *input_section,
2432 bfd_byte *contents,
2433 Elf_Internal_Rela *relocs,
2434 Elf_Internal_Sym *local_syms,
2435 asection **local_sections)
2436 {
2437 struct elf_xtensa_link_hash_table *htab;
2438 Elf_Internal_Shdr *symtab_hdr;
2439 Elf_Internal_Rela *rel;
2440 Elf_Internal_Rela *relend;
2441 struct elf_link_hash_entry **sym_hashes;
2442 property_table_entry *lit_table = 0;
2443 int ltblsize = 0;
2444 char *local_got_tls_types;
2445 char *error_message = NULL;
2446 bfd_size_type input_size;
2447 int tls_type;
2448
2449 if (!xtensa_default_isa)
2450 xtensa_default_isa = xtensa_isa_init (0, 0);
2451
2452 BFD_ASSERT (is_xtensa_elf (input_bfd));
2453
2454 htab = elf_xtensa_hash_table (info);
2455 if (htab == NULL)
2456 return FALSE;
2457
2458 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2459 sym_hashes = elf_sym_hashes (input_bfd);
2460 local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2461
2462 if (elf_hash_table (info)->dynamic_sections_created)
2463 {
2464 ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2465 &lit_table, XTENSA_LIT_SEC_NAME,
2466 TRUE);
2467 if (ltblsize < 0)
2468 return FALSE;
2469 }
2470
2471 input_size = bfd_get_section_limit (input_bfd, input_section);
2472
2473 rel = relocs;
2474 relend = relocs + input_section->reloc_count;
2475 for (; rel < relend; rel++)
2476 {
2477 int r_type;
2478 reloc_howto_type *howto;
2479 unsigned long r_symndx;
2480 struct elf_link_hash_entry *h;
2481 Elf_Internal_Sym *sym;
2482 char sym_type;
2483 const char *name;
2484 asection *sec;
2485 bfd_vma relocation;
2486 bfd_reloc_status_type r;
2487 bfd_boolean is_weak_undef;
2488 bfd_boolean unresolved_reloc;
2489 bfd_boolean warned;
2490 bfd_boolean dynamic_symbol;
2491
2492 r_type = ELF32_R_TYPE (rel->r_info);
2493 if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2494 || r_type == (int) R_XTENSA_GNU_VTENTRY)
2495 continue;
2496
2497 if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2498 {
2499 bfd_set_error (bfd_error_bad_value);
2500 return FALSE;
2501 }
2502 howto = &elf_howto_table[r_type];
2503
2504 r_symndx = ELF32_R_SYM (rel->r_info);
2505
2506 h = NULL;
2507 sym = NULL;
2508 sec = NULL;
2509 is_weak_undef = FALSE;
2510 unresolved_reloc = FALSE;
2511 warned = FALSE;
2512
2513 if (howto->partial_inplace && !bfd_link_relocatable (info))
2514 {
2515 /* Because R_XTENSA_32 was made partial_inplace to fix some
2516 problems with DWARF info in partial links, there may be
2517 an addend stored in the contents. Take it out of there
2518 and move it back into the addend field of the reloc. */
2519 rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2520 bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2521 }
2522
2523 if (r_symndx < symtab_hdr->sh_info)
2524 {
2525 sym = local_syms + r_symndx;
2526 sym_type = ELF32_ST_TYPE (sym->st_info);
2527 sec = local_sections[r_symndx];
2528 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2529 }
2530 else
2531 {
2532 bfd_boolean ignored;
2533
2534 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2535 r_symndx, symtab_hdr, sym_hashes,
2536 h, sec, relocation,
2537 unresolved_reloc, warned, ignored);
2538
2539 if (relocation == 0
2540 && !unresolved_reloc
2541 && h->root.type == bfd_link_hash_undefweak)
2542 is_weak_undef = TRUE;
2543
2544 sym_type = h->type;
2545 }
2546
2547 if (sec != NULL && discarded_section (sec))
2548 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2549 rel, 1, relend, howto, 0, contents);
2550
2551 if (bfd_link_relocatable (info))
2552 {
2553 bfd_vma dest_addr;
2554 asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2555
2556 /* This is a relocatable link.
2557 1) If the reloc is against a section symbol, adjust
2558 according to the output section.
2559 2) If there is a new target for this relocation,
2560 the new target will be in the same output section.
2561 We adjust the relocation by the output section
2562 difference. */
2563
2564 if (relaxing_section)
2565 {
2566 /* Check if this references a section in another input file. */
2567 if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2568 contents))
2569 return FALSE;
2570 }
2571
2572 dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2573 + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2574
2575 if (r_type == R_XTENSA_ASM_SIMPLIFY)
2576 {
2577 error_message = NULL;
2578 /* Convert ASM_SIMPLIFY into the simpler relocation
2579 so that they never escape a relaxing link. */
2580 r = contract_asm_expansion (contents, input_size, rel,
2581 &error_message);
2582 if (r != bfd_reloc_ok)
2583 (*info->callbacks->reloc_dangerous)
2584 (info, error_message,
2585 input_bfd, input_section, rel->r_offset);
2586
2587 r_type = ELF32_R_TYPE (rel->r_info);
2588 }
2589
2590 /* This is a relocatable link, so we don't have to change
2591 anything unless the reloc is against a section symbol,
2592 in which case we have to adjust according to where the
2593 section symbol winds up in the output section. */
2594 if (r_symndx < symtab_hdr->sh_info)
2595 {
2596 sym = local_syms + r_symndx;
2597 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2598 {
2599 sec = local_sections[r_symndx];
2600 rel->r_addend += sec->output_offset + sym->st_value;
2601 }
2602 }
2603
2604 /* If there is an addend with a partial_inplace howto,
2605 then move the addend to the contents. This is a hack
2606 to work around problems with DWARF in relocatable links
2607 with some previous version of BFD. Now we can't easily get
2608 rid of the hack without breaking backward compatibility.... */
2609 r = bfd_reloc_ok;
2610 howto = &elf_howto_table[r_type];
2611 if (howto->partial_inplace && rel->r_addend)
2612 {
2613 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2614 rel->r_addend, contents,
2615 rel->r_offset, FALSE,
2616 &error_message);
2617 rel->r_addend = 0;
2618 }
2619 else
2620 {
2621 /* Put the correct bits in the target instruction, even
2622 though the relocation will still be present in the output
2623 file. This makes disassembly clearer, as well as
2624 allowing loadable kernel modules to work without needing
2625 relocations on anything other than calls and l32r's. */
2626
2627 /* If it is not in the same section, there is nothing we can do. */
2628 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2629 sym_sec->output_section == input_section->output_section)
2630 {
2631 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2632 dest_addr, contents,
2633 rel->r_offset, FALSE,
2634 &error_message);
2635 }
2636 }
2637 if (r != bfd_reloc_ok)
2638 (*info->callbacks->reloc_dangerous)
2639 (info, error_message,
2640 input_bfd, input_section, rel->r_offset);
2641
2642 /* Done with work for relocatable link; continue with next reloc. */
2643 continue;
2644 }
2645
2646 /* This is a final link. */
2647
2648 if (relaxing_section)
2649 {
2650 /* Check if this references a section in another input file. */
2651 do_fix_for_final_link (rel, input_bfd, input_section, contents,
2652 &relocation);
2653 }
2654
2655 /* Sanity check the address. */
2656 if (rel->r_offset >= input_size
2657 && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2658 {
2659 _bfd_error_handler
2660 /* xgettext:c-format */
2661 (_("%pB(%pA+%#" PRIx64 "): "
2662 "relocation offset out of range (size=%#" PRIx64 ")"),
2663 input_bfd, input_section, (uint64_t) rel->r_offset,
2664 (uint64_t) input_size);
2665 bfd_set_error (bfd_error_bad_value);
2666 return FALSE;
2667 }
2668
2669 if (h != NULL)
2670 name = h->root.root.string;
2671 else
2672 {
2673 name = (bfd_elf_string_from_elf_section
2674 (input_bfd, symtab_hdr->sh_link, sym->st_name));
2675 if (name == NULL || *name == '\0')
2676 name = bfd_section_name (input_bfd, sec);
2677 }
2678
2679 if (r_symndx != STN_UNDEF
2680 && r_type != R_XTENSA_NONE
2681 && (h == NULL
2682 || h->root.type == bfd_link_hash_defined
2683 || h->root.type == bfd_link_hash_defweak)
2684 && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2685 {
2686 _bfd_error_handler
2687 ((sym_type == STT_TLS
2688 /* xgettext:c-format */
2689 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
2690 /* xgettext:c-format */
2691 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
2692 input_bfd,
2693 input_section,
2694 (uint64_t) rel->r_offset,
2695 howto->name,
2696 name);
2697 }
2698
2699 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2700
2701 tls_type = GOT_UNKNOWN;
2702 if (h)
2703 tls_type = elf_xtensa_hash_entry (h)->tls_type;
2704 else if (local_got_tls_types)
2705 tls_type = local_got_tls_types [r_symndx];
2706
2707 switch (r_type)
2708 {
2709 case R_XTENSA_32:
2710 case R_XTENSA_PLT:
2711 if (elf_hash_table (info)->dynamic_sections_created
2712 && (input_section->flags & SEC_ALLOC) != 0
2713 && (dynamic_symbol || bfd_link_pic (info)))
2714 {
2715 Elf_Internal_Rela outrel;
2716 bfd_byte *loc;
2717 asection *srel;
2718
2719 if (dynamic_symbol && r_type == R_XTENSA_PLT)
2720 srel = htab->elf.srelplt;
2721 else
2722 srel = htab->elf.srelgot;
2723
2724 BFD_ASSERT (srel != NULL);
2725
2726 outrel.r_offset =
2727 _bfd_elf_section_offset (output_bfd, info,
2728 input_section, rel->r_offset);
2729
2730 if ((outrel.r_offset | 1) == (bfd_vma) -1)
2731 memset (&outrel, 0, sizeof outrel);
2732 else
2733 {
2734 outrel.r_offset += (input_section->output_section->vma
2735 + input_section->output_offset);
2736
2737 /* Complain if the relocation is in a read-only section
2738 and not in a literal pool. */
2739 if ((input_section->flags & SEC_READONLY) != 0
2740 && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2741 outrel.r_offset))
2742 {
2743 error_message =
2744 _("dynamic relocation in read-only section");
2745 (*info->callbacks->reloc_dangerous)
2746 (info, error_message,
2747 input_bfd, input_section, rel->r_offset);
2748 }
2749
2750 if (dynamic_symbol)
2751 {
2752 outrel.r_addend = rel->r_addend;
2753 rel->r_addend = 0;
2754
2755 if (r_type == R_XTENSA_32)
2756 {
2757 outrel.r_info =
2758 ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2759 relocation = 0;
2760 }
2761 else /* r_type == R_XTENSA_PLT */
2762 {
2763 outrel.r_info =
2764 ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2765
2766 /* Create the PLT entry and set the initial
2767 contents of the literal entry to the address of
2768 the PLT entry. */
2769 relocation =
2770 elf_xtensa_create_plt_entry (info, output_bfd,
2771 srel->reloc_count);
2772 }
2773 unresolved_reloc = FALSE;
2774 }
2775 else
2776 {
2777 /* Generate a RELATIVE relocation. */
2778 outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2779 outrel.r_addend = 0;
2780 }
2781 }
2782
2783 loc = (srel->contents
2784 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2785 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2786 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2787 <= srel->size);
2788 }
2789 else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2790 {
2791 /* This should only happen for non-PIC code, which is not
2792 supposed to be used on systems with dynamic linking.
2793 Just ignore these relocations. */
2794 continue;
2795 }
2796 break;
2797
2798 case R_XTENSA_TLS_TPOFF:
2799 /* Switch to LE model for local symbols in an executable. */
2800 if (! bfd_link_pic (info) && ! dynamic_symbol)
2801 {
2802 relocation = tpoff (info, relocation);
2803 break;
2804 }
2805 /* fall through */
2806
2807 case R_XTENSA_TLSDESC_FN:
2808 case R_XTENSA_TLSDESC_ARG:
2809 {
2810 if (r_type == R_XTENSA_TLSDESC_FN)
2811 {
2812 if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2813 r_type = R_XTENSA_NONE;
2814 }
2815 else if (r_type == R_XTENSA_TLSDESC_ARG)
2816 {
2817 if (bfd_link_pic (info))
2818 {
2819 if ((tls_type & GOT_TLS_IE) != 0)
2820 r_type = R_XTENSA_TLS_TPOFF;
2821 }
2822 else
2823 {
2824 r_type = R_XTENSA_TLS_TPOFF;
2825 if (! dynamic_symbol)
2826 {
2827 relocation = tpoff (info, relocation);
2828 break;
2829 }
2830 }
2831 }
2832
2833 if (r_type == R_XTENSA_NONE)
2834 /* Nothing to do here; skip to the next reloc. */
2835 continue;
2836
2837 if (! elf_hash_table (info)->dynamic_sections_created)
2838 {
2839 error_message =
2840 _("TLS relocation invalid without dynamic sections");
2841 (*info->callbacks->reloc_dangerous)
2842 (info, error_message,
2843 input_bfd, input_section, rel->r_offset);
2844 }
2845 else
2846 {
2847 Elf_Internal_Rela outrel;
2848 bfd_byte *loc;
2849 asection *srel = htab->elf.srelgot;
2850 int indx;
2851
2852 outrel.r_offset = (input_section->output_section->vma
2853 + input_section->output_offset
2854 + rel->r_offset);
2855
2856 /* Complain if the relocation is in a read-only section
2857 and not in a literal pool. */
2858 if ((input_section->flags & SEC_READONLY) != 0
2859 && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2860 outrel.r_offset))
2861 {
2862 error_message =
2863 _("dynamic relocation in read-only section");
2864 (*info->callbacks->reloc_dangerous)
2865 (info, error_message,
2866 input_bfd, input_section, rel->r_offset);
2867 }
2868
2869 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2870 if (indx == 0)
2871 outrel.r_addend = relocation - dtpoff_base (info);
2872 else
2873 outrel.r_addend = 0;
2874 rel->r_addend = 0;
2875
2876 outrel.r_info = ELF32_R_INFO (indx, r_type);
2877 relocation = 0;
2878 unresolved_reloc = FALSE;
2879
2880 BFD_ASSERT (srel);
2881 loc = (srel->contents
2882 + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2883 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2884 BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2885 <= srel->size);
2886 }
2887 }
2888 break;
2889
2890 case R_XTENSA_TLS_DTPOFF:
2891 if (! bfd_link_pic (info))
2892 /* Switch from LD model to LE model. */
2893 relocation = tpoff (info, relocation);
2894 else
2895 relocation -= dtpoff_base (info);
2896 break;
2897
2898 case R_XTENSA_TLS_FUNC:
2899 case R_XTENSA_TLS_ARG:
2900 case R_XTENSA_TLS_CALL:
2901 /* Check if optimizing to IE or LE model. */
2902 if ((tls_type & GOT_TLS_IE) != 0)
2903 {
2904 bfd_boolean is_ld_model =
2905 (h && elf_xtensa_hash_entry (h) == htab->tlsbase);
2906 if (! replace_tls_insn (rel, input_bfd, input_section, contents,
2907 is_ld_model, &error_message))
2908 (*info->callbacks->reloc_dangerous)
2909 (info, error_message,
2910 input_bfd, input_section, rel->r_offset);
2911
2912 if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
2913 {
2914 /* Skip subsequent relocations on the same instruction. */
2915 while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
2916 rel++;
2917 }
2918 }
2919 continue;
2920
2921 default:
2922 if (elf_hash_table (info)->dynamic_sections_created
2923 && dynamic_symbol && (is_operand_relocation (r_type)
2924 || r_type == R_XTENSA_32_PCREL))
2925 {
2926 error_message =
2927 vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
2928 strlen (name) + 2, name);
2929 (*info->callbacks->reloc_dangerous)
2930 (info, error_message, input_bfd, input_section, rel->r_offset);
2931 continue;
2932 }
2933 break;
2934 }
2935
2936 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2937 because such sections are not SEC_ALLOC and thus ld.so will
2938 not process them. */
2939 if (unresolved_reloc
2940 && !((input_section->flags & SEC_DEBUGGING) != 0
2941 && h->def_dynamic)
2942 && _bfd_elf_section_offset (output_bfd, info, input_section,
2943 rel->r_offset) != (bfd_vma) -1)
2944 {
2945 _bfd_error_handler
2946 /* xgettext:c-format */
2947 (_("%pB(%pA+%#" PRIx64 "): "
2948 "unresolvable %s relocation against symbol `%s'"),
2949 input_bfd,
2950 input_section,
2951 (uint64_t) rel->r_offset,
2952 howto->name,
2953 name);
2954 return FALSE;
2955 }
2956
2957 /* TLS optimizations may have changed r_type; update "howto". */
2958 howto = &elf_howto_table[r_type];
2959
2960 /* There's no point in calling bfd_perform_relocation here.
2961 Just go directly to our "special function". */
2962 r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2963 relocation + rel->r_addend,
2964 contents, rel->r_offset, is_weak_undef,
2965 &error_message);
2966
2967 if (r != bfd_reloc_ok && !warned)
2968 {
2969 BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
2970 BFD_ASSERT (error_message != NULL);
2971
2972 if (rel->r_addend == 0)
2973 error_message = vsprint_msg (error_message, ": %s",
2974 strlen (name) + 2, name);
2975 else
2976 error_message = vsprint_msg (error_message, ": (%s+0x%x)",
2977 strlen (name) + 22,
2978 name, (int) rel->r_addend);
2979
2980 (*info->callbacks->reloc_dangerous)
2981 (info, error_message, input_bfd, input_section, rel->r_offset);
2982 }
2983 }
2984
2985 if (lit_table)
2986 free (lit_table);
2987
2988 input_section->reloc_done = TRUE;
2989
2990 return TRUE;
2991 }
2992
2993
2994 /* Finish up dynamic symbol handling. There's not much to do here since
2995 the PLT and GOT entries are all set up by relocate_section. */
2996
2997 static bfd_boolean
2998 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
2999 struct bfd_link_info *info ATTRIBUTE_UNUSED,
3000 struct elf_link_hash_entry *h,
3001 Elf_Internal_Sym *sym)
3002 {
3003 if (h->needs_plt && !h->def_regular)
3004 {
3005 /* Mark the symbol as undefined, rather than as defined in
3006 the .plt section. Leave the value alone. */
3007 sym->st_shndx = SHN_UNDEF;
3008 /* If the symbol is weak, we do need to clear the value.
3009 Otherwise, the PLT entry would provide a definition for
3010 the symbol even if the symbol wasn't defined anywhere,
3011 and so the symbol would never be NULL. */
3012 if (!h->ref_regular_nonweak)
3013 sym->st_value = 0;
3014 }
3015
3016 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
3017 if (h == elf_hash_table (info)->hdynamic
3018 || h == elf_hash_table (info)->hgot)
3019 sym->st_shndx = SHN_ABS;
3020
3021 return TRUE;
3022 }
3023
3024
3025 /* Combine adjacent literal table entries in the output. Adjacent
3026 entries within each input section may have been removed during
3027 relaxation, but we repeat the process here, even though it's too late
3028 to shrink the output section, because it's important to minimize the
3029 number of literal table entries to reduce the start-up work for the
3030 runtime linker. Returns the number of remaining table entries or -1
3031 on error. */
3032
3033 static int
3034 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3035 asection *sxtlit,
3036 asection *sgotloc)
3037 {
3038 bfd_byte *contents;
3039 property_table_entry *table;
3040 bfd_size_type section_size, sgotloc_size;
3041 bfd_vma offset;
3042 int n, m, num;
3043
3044 section_size = sxtlit->size;
3045 BFD_ASSERT (section_size % 8 == 0);
3046 num = section_size / 8;
3047
3048 sgotloc_size = sgotloc->size;
3049 if (sgotloc_size != section_size)
3050 {
3051 _bfd_error_handler
3052 (_("internal inconsistency in size of .got.loc section"));
3053 return -1;
3054 }
3055
3056 table = bfd_malloc (num * sizeof (property_table_entry));
3057 if (table == 0)
3058 return -1;
3059
3060 /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3061 propagates to the output section, where it doesn't really apply and
3062 where it breaks the following call to bfd_malloc_and_get_section. */
3063 sxtlit->flags &= ~SEC_IN_MEMORY;
3064
3065 if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3066 {
3067 if (contents != 0)
3068 free (contents);
3069 free (table);
3070 return -1;
3071 }
3072
3073 /* There should never be any relocations left at this point, so this
3074 is quite a bit easier than what is done during relaxation. */
3075
3076 /* Copy the raw contents into a property table array and sort it. */
3077 offset = 0;
3078 for (n = 0; n < num; n++)
3079 {
3080 table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3081 table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3082 offset += 8;
3083 }
3084 qsort (table, num, sizeof (property_table_entry), property_table_compare);
3085
3086 for (n = 0; n < num; n++)
3087 {
3088 bfd_boolean remove_entry = FALSE;
3089
3090 if (table[n].size == 0)
3091 remove_entry = TRUE;
3092 else if (n > 0
3093 && (table[n-1].address + table[n-1].size == table[n].address))
3094 {
3095 table[n-1].size += table[n].size;
3096 remove_entry = TRUE;
3097 }
3098
3099 if (remove_entry)
3100 {
3101 for (m = n; m < num - 1; m++)
3102 {
3103 table[m].address = table[m+1].address;
3104 table[m].size = table[m+1].size;
3105 }
3106
3107 n--;
3108 num--;
3109 }
3110 }
3111
3112 /* Copy the data back to the raw contents. */
3113 offset = 0;
3114 for (n = 0; n < num; n++)
3115 {
3116 bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3117 bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3118 offset += 8;
3119 }
3120
3121 /* Clear the removed bytes. */
3122 if ((bfd_size_type) (num * 8) < section_size)
3123 memset (&contents[num * 8], 0, section_size - num * 8);
3124
3125 if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3126 section_size))
3127 return -1;
3128
3129 /* Copy the contents to ".got.loc". */
3130 memcpy (sgotloc->contents, contents, section_size);
3131
3132 free (contents);
3133 free (table);
3134 return num;
3135 }
3136
3137
3138 /* Finish up the dynamic sections. */
3139
3140 static bfd_boolean
3141 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3142 struct bfd_link_info *info)
3143 {
3144 struct elf_xtensa_link_hash_table *htab;
3145 bfd *dynobj;
3146 asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3147 Elf32_External_Dyn *dyncon, *dynconend;
3148 int num_xtlit_entries = 0;
3149
3150 if (! elf_hash_table (info)->dynamic_sections_created)
3151 return TRUE;
3152
3153 htab = elf_xtensa_hash_table (info);
3154 if (htab == NULL)
3155 return FALSE;
3156
3157 dynobj = elf_hash_table (info)->dynobj;
3158 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3159 BFD_ASSERT (sdyn != NULL);
3160
3161 /* Set the first entry in the global offset table to the address of
3162 the dynamic section. */
3163 sgot = htab->elf.sgot;
3164 if (sgot)
3165 {
3166 BFD_ASSERT (sgot->size == 4);
3167 if (sdyn == NULL)
3168 bfd_put_32 (output_bfd, 0, sgot->contents);
3169 else
3170 bfd_put_32 (output_bfd,
3171 sdyn->output_section->vma + sdyn->output_offset,
3172 sgot->contents);
3173 }
3174
3175 srelplt = htab->elf.srelplt;
3176 if (srelplt && srelplt->size != 0)
3177 {
3178 asection *sgotplt, *srelgot, *spltlittbl;
3179 int chunk, plt_chunks, plt_entries;
3180 Elf_Internal_Rela irela;
3181 bfd_byte *loc;
3182 unsigned rtld_reloc;
3183
3184 srelgot = htab->elf.srelgot;
3185 spltlittbl = htab->spltlittbl;
3186 BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3187
3188 /* Find the first XTENSA_RTLD relocation. Presumably the rest
3189 of them follow immediately after.... */
3190 for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3191 {
3192 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3193 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3194 if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3195 break;
3196 }
3197 BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3198
3199 plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3200 plt_chunks =
3201 (plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3202
3203 for (chunk = 0; chunk < plt_chunks; chunk++)
3204 {
3205 int chunk_entries = 0;
3206
3207 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3208 BFD_ASSERT (sgotplt != NULL);
3209
3210 /* Emit special RTLD relocations for the first two entries in
3211 each chunk of the .got.plt section. */
3212
3213 loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3214 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3215 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3216 irela.r_offset = (sgotplt->output_section->vma
3217 + sgotplt->output_offset);
3218 irela.r_addend = 1; /* tell rtld to set value to resolver function */
3219 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3220 rtld_reloc += 1;
3221 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3222
3223 /* Next literal immediately follows the first. */
3224 loc += sizeof (Elf32_External_Rela);
3225 bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3226 BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3227 irela.r_offset = (sgotplt->output_section->vma
3228 + sgotplt->output_offset + 4);
3229 /* Tell rtld to set value to object's link map. */
3230 irela.r_addend = 2;
3231 bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3232 rtld_reloc += 1;
3233 BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3234
3235 /* Fill in the literal table. */
3236 if (chunk < plt_chunks - 1)
3237 chunk_entries = PLT_ENTRIES_PER_CHUNK;
3238 else
3239 chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3240
3241 BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3242 bfd_put_32 (output_bfd,
3243 sgotplt->output_section->vma + sgotplt->output_offset,
3244 spltlittbl->contents + (chunk * 8) + 0);
3245 bfd_put_32 (output_bfd,
3246 8 + (chunk_entries * 4),
3247 spltlittbl->contents + (chunk * 8) + 4);
3248 }
3249
3250 /* All the dynamic relocations have been emitted at this point.
3251 Make sure the relocation sections are the correct size. */
3252 if (srelgot->size != (sizeof (Elf32_External_Rela)
3253 * srelgot->reloc_count)
3254 || srelplt->size != (sizeof (Elf32_External_Rela)
3255 * srelplt->reloc_count))
3256 abort ();
3257
3258 /* The .xt.lit.plt section has just been modified. This must
3259 happen before the code below which combines adjacent literal
3260 table entries, and the .xt.lit.plt contents have to be forced to
3261 the output here. */
3262 if (! bfd_set_section_contents (output_bfd,
3263 spltlittbl->output_section,
3264 spltlittbl->contents,
3265 spltlittbl->output_offset,
3266 spltlittbl->size))
3267 return FALSE;
3268 /* Clear SEC_HAS_CONTENTS so the contents won't be output again. */
3269 spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3270 }
3271
3272 /* Combine adjacent literal table entries. */
3273 BFD_ASSERT (! bfd_link_relocatable (info));
3274 sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3275 sgotloc = htab->sgotloc;
3276 BFD_ASSERT (sgotloc);
3277 if (sxtlit)
3278 {
3279 num_xtlit_entries =
3280 elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3281 if (num_xtlit_entries < 0)
3282 return FALSE;
3283 }
3284
3285 dyncon = (Elf32_External_Dyn *) sdyn->contents;
3286 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3287 for (; dyncon < dynconend; dyncon++)
3288 {
3289 Elf_Internal_Dyn dyn;
3290
3291 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3292
3293 switch (dyn.d_tag)
3294 {
3295 default:
3296 break;
3297
3298 case DT_XTENSA_GOT_LOC_SZ:
3299 dyn.d_un.d_val = num_xtlit_entries;
3300 break;
3301
3302 case DT_XTENSA_GOT_LOC_OFF:
3303 dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3304 + htab->sgotloc->output_offset);
3305 break;
3306
3307 case DT_PLTGOT:
3308 dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3309 + htab->elf.sgot->output_offset);
3310 break;
3311
3312 case DT_JMPREL:
3313 dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3314 + htab->elf.srelplt->output_offset);
3315 break;
3316
3317 case DT_PLTRELSZ:
3318 dyn.d_un.d_val = htab->elf.srelplt->size;
3319 break;
3320 }
3321
3322 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3323 }
3324
3325 return TRUE;
3326 }
3327
3328 \f
3329 /* Functions for dealing with the e_flags field. */
3330
3331 /* Merge backend specific data from an object file to the output
3332 object file when linking. */
3333
3334 static bfd_boolean
3335 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3336 {
3337 bfd *obfd = info->output_bfd;
3338 unsigned out_mach, in_mach;
3339 flagword out_flag, in_flag;
3340
3341 /* Check if we have the same endianness. */
3342 if (!_bfd_generic_verify_endian_match (ibfd, info))
3343 return FALSE;
3344
3345 /* Don't even pretend to support mixed-format linking. */
3346 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3347 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3348 return FALSE;
3349
3350 out_flag = elf_elfheader (obfd)->e_flags;
3351 in_flag = elf_elfheader (ibfd)->e_flags;
3352
3353 out_mach = out_flag & EF_XTENSA_MACH;
3354 in_mach = in_flag & EF_XTENSA_MACH;
3355 if (out_mach != in_mach)
3356 {
3357 _bfd_error_handler
3358 /* xgettext:c-format */
3359 (_("%pB: incompatible machine type; output is 0x%x; input is 0x%x"),
3360 ibfd, out_mach, in_mach);
3361 bfd_set_error (bfd_error_wrong_format);
3362 return FALSE;
3363 }
3364
3365 if (! elf_flags_init (obfd))
3366 {
3367 elf_flags_init (obfd) = TRUE;
3368 elf_elfheader (obfd)->e_flags = in_flag;
3369
3370 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3371 && bfd_get_arch_info (obfd)->the_default)
3372 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3373 bfd_get_mach (ibfd));
3374
3375 return TRUE;
3376 }
3377
3378 if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3379 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3380
3381 if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3382 elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3383
3384 return TRUE;
3385 }
3386
3387
3388 static bfd_boolean
3389 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3390 {
3391 BFD_ASSERT (!elf_flags_init (abfd)
3392 || elf_elfheader (abfd)->e_flags == flags);
3393
3394 elf_elfheader (abfd)->e_flags |= flags;
3395 elf_flags_init (abfd) = TRUE;
3396
3397 return TRUE;
3398 }
3399
3400
3401 static bfd_boolean
3402 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3403 {
3404 FILE *f = (FILE *) farg;
3405 flagword e_flags = elf_elfheader (abfd)->e_flags;
3406
3407 fprintf (f, "\nXtensa header:\n");
3408 if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3409 fprintf (f, "\nMachine = Base\n");
3410 else
3411 fprintf (f, "\nMachine Id = 0x%x\n", e_flags & EF_XTENSA_MACH);
3412
3413 fprintf (f, "Insn tables = %s\n",
3414 (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3415
3416 fprintf (f, "Literal tables = %s\n",
3417 (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3418
3419 return _bfd_elf_print_private_bfd_data (abfd, farg);
3420 }
3421
3422
3423 /* Set the right machine number for an Xtensa ELF file. */
3424
3425 static bfd_boolean
3426 elf_xtensa_object_p (bfd *abfd)
3427 {
3428 int mach;
3429 unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3430
3431 switch (arch)
3432 {
3433 case E_XTENSA_MACH:
3434 mach = bfd_mach_xtensa;
3435 break;
3436 default:
3437 return FALSE;
3438 }
3439
3440 (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3441 return TRUE;
3442 }
3443
3444
3445 /* The final processing done just before writing out an Xtensa ELF object
3446 file. This gets the Xtensa architecture right based on the machine
3447 number. */
3448
3449 static void
3450 elf_xtensa_final_write_processing (bfd *abfd,
3451 bfd_boolean linker ATTRIBUTE_UNUSED)
3452 {
3453 int mach;
3454 unsigned long val;
3455
3456 switch (mach = bfd_get_mach (abfd))
3457 {
3458 case bfd_mach_xtensa:
3459 val = E_XTENSA_MACH;
3460 break;
3461 default:
3462 return;
3463 }
3464
3465 elf_elfheader (abfd)->e_flags &= (~ EF_XTENSA_MACH);
3466 elf_elfheader (abfd)->e_flags |= val;
3467 }
3468
3469
3470 static enum elf_reloc_type_class
3471 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3472 const asection *rel_sec ATTRIBUTE_UNUSED,
3473 const Elf_Internal_Rela *rela)
3474 {
3475 switch ((int) ELF32_R_TYPE (rela->r_info))
3476 {
3477 case R_XTENSA_RELATIVE:
3478 return reloc_class_relative;
3479 case R_XTENSA_JMP_SLOT:
3480 return reloc_class_plt;
3481 default:
3482 return reloc_class_normal;
3483 }
3484 }
3485
3486 \f
3487 static bfd_boolean
3488 elf_xtensa_discard_info_for_section (bfd *abfd,
3489 struct elf_reloc_cookie *cookie,
3490 struct bfd_link_info *info,
3491 asection *sec)
3492 {
3493 bfd_byte *contents;
3494 bfd_vma offset, actual_offset;
3495 bfd_size_type removed_bytes = 0;
3496 bfd_size_type entry_size;
3497
3498 if (sec->output_section
3499 && bfd_is_abs_section (sec->output_section))
3500 return FALSE;
3501
3502 if (xtensa_is_proptable_section (sec))
3503 entry_size = 12;
3504 else
3505 entry_size = 8;
3506
3507 if (sec->size == 0 || sec->size % entry_size != 0)
3508 return FALSE;
3509
3510 contents = retrieve_contents (abfd, sec, info->keep_memory);
3511 if (!contents)
3512 return FALSE;
3513
3514 cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3515 if (!cookie->rels)
3516 {
3517 release_contents (sec, contents);
3518 return FALSE;
3519 }
3520
3521 /* Sort the relocations. They should already be in order when
3522 relaxation is enabled, but it might not be. */
3523 qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3524 internal_reloc_compare);
3525
3526 cookie->rel = cookie->rels;
3527 cookie->relend = cookie->rels + sec->reloc_count;
3528
3529 for (offset = 0; offset < sec->size; offset += entry_size)
3530 {
3531 actual_offset = offset - removed_bytes;
3532
3533 /* The ...symbol_deleted_p function will skip over relocs but it
3534 won't adjust their offsets, so do that here. */
3535 while (cookie->rel < cookie->relend
3536 && cookie->rel->r_offset < offset)
3537 {
3538 cookie->rel->r_offset -= removed_bytes;
3539 cookie->rel++;
3540 }
3541
3542 while (cookie->rel < cookie->relend
3543 && cookie->rel->r_offset == offset)
3544 {
3545 if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3546 {
3547 /* Remove the table entry. (If the reloc type is NONE, then
3548 the entry has already been merged with another and deleted
3549 during relaxation.) */
3550 if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3551 {
3552 /* Shift the contents up. */
3553 if (offset + entry_size < sec->size)
3554 memmove (&contents[actual_offset],
3555 &contents[actual_offset + entry_size],
3556 sec->size - offset - entry_size);
3557 removed_bytes += entry_size;
3558 }
3559
3560 /* Remove this relocation. */
3561 cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3562 }
3563
3564 /* Adjust the relocation offset for previous removals. This
3565 should not be done before calling ...symbol_deleted_p
3566 because it might mess up the offset comparisons there.
3567 Make sure the offset doesn't underflow in the case where
3568 the first entry is removed. */
3569 if (cookie->rel->r_offset >= removed_bytes)
3570 cookie->rel->r_offset -= removed_bytes;
3571 else
3572 cookie->rel->r_offset = 0;
3573
3574 cookie->rel++;
3575 }
3576 }
3577
3578 if (removed_bytes != 0)
3579 {
3580 /* Adjust any remaining relocs (shouldn't be any). */
3581 for (; cookie->rel < cookie->relend; cookie->rel++)
3582 {
3583 if (cookie->rel->r_offset >= removed_bytes)
3584 cookie->rel->r_offset -= removed_bytes;
3585 else
3586 cookie->rel->r_offset = 0;
3587 }
3588
3589 /* Clear the removed bytes. */
3590 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3591
3592 pin_contents (sec, contents);
3593 pin_internal_relocs (sec, cookie->rels);
3594
3595 /* Shrink size. */
3596 if (sec->rawsize == 0)
3597 sec->rawsize = sec->size;
3598 sec->size -= removed_bytes;
3599
3600 if (xtensa_is_littable_section (sec))
3601 {
3602 asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3603 if (sgotloc)
3604 sgotloc->size -= removed_bytes;
3605 }
3606 }
3607 else
3608 {
3609 release_contents (sec, contents);
3610 release_internal_relocs (sec, cookie->rels);
3611 }
3612
3613 return (removed_bytes != 0);
3614 }
3615
3616
3617 static bfd_boolean
3618 elf_xtensa_discard_info (bfd *abfd,
3619 struct elf_reloc_cookie *cookie,
3620 struct bfd_link_info *info)
3621 {
3622 asection *sec;
3623 bfd_boolean changed = FALSE;
3624
3625 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3626 {
3627 if (xtensa_is_property_section (sec))
3628 {
3629 if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3630 changed = TRUE;
3631 }
3632 }
3633
3634 return changed;
3635 }
3636
3637
3638 static bfd_boolean
3639 elf_xtensa_ignore_discarded_relocs (asection *sec)
3640 {
3641 return xtensa_is_property_section (sec);
3642 }
3643
3644
3645 static unsigned int
3646 elf_xtensa_action_discarded (asection *sec)
3647 {
3648 if (strcmp (".xt_except_table", sec->name) == 0)
3649 return 0;
3650
3651 if (strcmp (".xt_except_desc", sec->name) == 0)
3652 return 0;
3653
3654 return _bfd_elf_default_action_discarded (sec);
3655 }
3656
3657 \f
3658 /* Support for core dump NOTE sections. */
3659
3660 static bfd_boolean
3661 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3662 {
3663 int offset;
3664 unsigned int size;
3665
3666 /* The size for Xtensa is variable, so don't try to recognize the format
3667 based on the size. Just assume this is GNU/Linux. */
3668
3669 /* pr_cursig */
3670 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3671
3672 /* pr_pid */
3673 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3674
3675 /* pr_reg */
3676 offset = 72;
3677 size = note->descsz - offset - 4;
3678
3679 /* Make a ".reg/999" section. */
3680 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3681 size, note->descpos + offset);
3682 }
3683
3684
3685 static bfd_boolean
3686 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3687 {
3688 switch (note->descsz)
3689 {
3690 default:
3691 return FALSE;
3692
3693 case 128: /* GNU/Linux elf_prpsinfo */
3694 elf_tdata (abfd)->core->program
3695 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3696 elf_tdata (abfd)->core->command
3697 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3698 }
3699
3700 /* Note that for some reason, a spurious space is tacked
3701 onto the end of the args in some (at least one anyway)
3702 implementations, so strip it off if it exists. */
3703
3704 {
3705 char *command = elf_tdata (abfd)->core->command;
3706 int n = strlen (command);
3707
3708 if (0 < n && command[n - 1] == ' ')
3709 command[n - 1] = '\0';
3710 }
3711
3712 return TRUE;
3713 }
3714
3715 \f
3716 /* Generic Xtensa configurability stuff. */
3717
3718 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3719 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3720 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3721 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3722 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3723 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3724 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3725 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3726
3727 static void
3728 init_call_opcodes (void)
3729 {
3730 if (callx0_op == XTENSA_UNDEFINED)
3731 {
3732 callx0_op = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3733 callx4_op = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3734 callx8_op = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3735 callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3736 call0_op = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3737 call4_op = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3738 call8_op = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3739 call12_op = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3740 }
3741 }
3742
3743
3744 static bfd_boolean
3745 is_indirect_call_opcode (xtensa_opcode opcode)
3746 {
3747 init_call_opcodes ();
3748 return (opcode == callx0_op
3749 || opcode == callx4_op
3750 || opcode == callx8_op
3751 || opcode == callx12_op);
3752 }
3753
3754
3755 static bfd_boolean
3756 is_direct_call_opcode (xtensa_opcode opcode)
3757 {
3758 init_call_opcodes ();
3759 return (opcode == call0_op
3760 || opcode == call4_op
3761 || opcode == call8_op
3762 || opcode == call12_op);
3763 }
3764
3765
3766 static bfd_boolean
3767 is_windowed_call_opcode (xtensa_opcode opcode)
3768 {
3769 init_call_opcodes ();
3770 return (opcode == call4_op
3771 || opcode == call8_op
3772 || opcode == call12_op
3773 || opcode == callx4_op
3774 || opcode == callx8_op
3775 || opcode == callx12_op);
3776 }
3777
3778
3779 static bfd_boolean
3780 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3781 {
3782 unsigned dst = (unsigned) -1;
3783
3784 init_call_opcodes ();
3785 if (opcode == callx0_op)
3786 dst = 0;
3787 else if (opcode == callx4_op)
3788 dst = 4;
3789 else if (opcode == callx8_op)
3790 dst = 8;
3791 else if (opcode == callx12_op)
3792 dst = 12;
3793
3794 if (dst == (unsigned) -1)
3795 return FALSE;
3796
3797 *pdst = dst;
3798 return TRUE;
3799 }
3800
3801
3802 static xtensa_opcode
3803 get_const16_opcode (void)
3804 {
3805 static bfd_boolean done_lookup = FALSE;
3806 static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3807 if (!done_lookup)
3808 {
3809 const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3810 done_lookup = TRUE;
3811 }
3812 return const16_opcode;
3813 }
3814
3815
3816 static xtensa_opcode
3817 get_l32r_opcode (void)
3818 {
3819 static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3820 static bfd_boolean done_lookup = FALSE;
3821
3822 if (!done_lookup)
3823 {
3824 l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3825 done_lookup = TRUE;
3826 }
3827 return l32r_opcode;
3828 }
3829
3830
3831 static bfd_vma
3832 l32r_offset (bfd_vma addr, bfd_vma pc)
3833 {
3834 bfd_vma offset;
3835
3836 offset = addr - ((pc+3) & -4);
3837 BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3838 offset = (signed int) offset >> 2;
3839 BFD_ASSERT ((signed int) offset >> 16 == -1);
3840 return offset;
3841 }
3842
3843
3844 static int
3845 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3846 {
3847 xtensa_isa isa = xtensa_default_isa;
3848 int last_immed, last_opnd, opi;
3849
3850 if (opcode == XTENSA_UNDEFINED)
3851 return XTENSA_UNDEFINED;
3852
3853 /* Find the last visible PC-relative immediate operand for the opcode.
3854 If there are no PC-relative immediates, then choose the last visible
3855 immediate; otherwise, fail and return XTENSA_UNDEFINED. */
3856 last_immed = XTENSA_UNDEFINED;
3857 last_opnd = xtensa_opcode_num_operands (isa, opcode);
3858 for (opi = last_opnd - 1; opi >= 0; opi--)
3859 {
3860 if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3861 continue;
3862 if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3863 {
3864 last_immed = opi;
3865 break;
3866 }
3867 if (last_immed == XTENSA_UNDEFINED
3868 && xtensa_operand_is_register (isa, opcode, opi) == 0)
3869 last_immed = opi;
3870 }
3871 if (last_immed < 0)
3872 return XTENSA_UNDEFINED;
3873
3874 /* If the operand number was specified in an old-style relocation,
3875 check for consistency with the operand computed above. */
3876 if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3877 {
3878 int reloc_opnd = r_type - R_XTENSA_OP0;
3879 if (reloc_opnd != last_immed)
3880 return XTENSA_UNDEFINED;
3881 }
3882
3883 return last_immed;
3884 }
3885
3886
3887 int
3888 get_relocation_slot (int r_type)
3889 {
3890 switch (r_type)
3891 {
3892 case R_XTENSA_OP0:
3893 case R_XTENSA_OP1:
3894 case R_XTENSA_OP2:
3895 return 0;
3896
3897 default:
3898 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
3899 return r_type - R_XTENSA_SLOT0_OP;
3900 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
3901 return r_type - R_XTENSA_SLOT0_ALT;
3902 break;
3903 }
3904
3905 return XTENSA_UNDEFINED;
3906 }
3907
3908
3909 /* Get the opcode for a relocation. */
3910
3911 static xtensa_opcode
3912 get_relocation_opcode (bfd *abfd,
3913 asection *sec,
3914 bfd_byte *contents,
3915 Elf_Internal_Rela *irel)
3916 {
3917 static xtensa_insnbuf ibuff = NULL;
3918 static xtensa_insnbuf sbuff = NULL;
3919 xtensa_isa isa = xtensa_default_isa;
3920 xtensa_format fmt;
3921 int slot;
3922
3923 if (contents == NULL)
3924 return XTENSA_UNDEFINED;
3925
3926 if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
3927 return XTENSA_UNDEFINED;
3928
3929 if (ibuff == NULL)
3930 {
3931 ibuff = xtensa_insnbuf_alloc (isa);
3932 sbuff = xtensa_insnbuf_alloc (isa);
3933 }
3934
3935 /* Decode the instruction. */
3936 xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
3937 sec->size - irel->r_offset);
3938 fmt = xtensa_format_decode (isa, ibuff);
3939 slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
3940 if (slot == XTENSA_UNDEFINED)
3941 return XTENSA_UNDEFINED;
3942 xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
3943 return xtensa_opcode_decode (isa, fmt, slot, sbuff);
3944 }
3945
3946
3947 bfd_boolean
3948 is_l32r_relocation (bfd *abfd,
3949 asection *sec,
3950 bfd_byte *contents,
3951 Elf_Internal_Rela *irel)
3952 {
3953 xtensa_opcode opcode;
3954 if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
3955 return FALSE;
3956 opcode = get_relocation_opcode (abfd, sec, contents, irel);
3957 return (opcode == get_l32r_opcode ());
3958 }
3959
3960
3961 static bfd_size_type
3962 get_asm_simplify_size (bfd_byte *contents,
3963 bfd_size_type content_len,
3964 bfd_size_type offset)
3965 {
3966 bfd_size_type insnlen, size = 0;
3967
3968 /* Decode the size of the next two instructions. */
3969 insnlen = insn_decode_len (contents, content_len, offset);
3970 if (insnlen == 0)
3971 return 0;
3972
3973 size += insnlen;
3974
3975 insnlen = insn_decode_len (contents, content_len, offset + size);
3976 if (insnlen == 0)
3977 return 0;
3978
3979 size += insnlen;
3980 return size;
3981 }
3982
3983
3984 bfd_boolean
3985 is_alt_relocation (int r_type)
3986 {
3987 return (r_type >= R_XTENSA_SLOT0_ALT
3988 && r_type <= R_XTENSA_SLOT14_ALT);
3989 }
3990
3991
3992 bfd_boolean
3993 is_operand_relocation (int r_type)
3994 {
3995 switch (r_type)
3996 {
3997 case R_XTENSA_OP0:
3998 case R_XTENSA_OP1:
3999 case R_XTENSA_OP2:
4000 return TRUE;
4001
4002 default:
4003 if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4004 return TRUE;
4005 if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4006 return TRUE;
4007 break;
4008 }
4009
4010 return FALSE;
4011 }
4012
4013
4014 #define MIN_INSN_LENGTH 2
4015
4016 /* Return 0 if it fails to decode. */
4017
4018 bfd_size_type
4019 insn_decode_len (bfd_byte *contents,
4020 bfd_size_type content_len,
4021 bfd_size_type offset)
4022 {
4023 int insn_len;
4024 xtensa_isa isa = xtensa_default_isa;
4025 xtensa_format fmt;
4026 static xtensa_insnbuf ibuff = NULL;
4027
4028 if (offset + MIN_INSN_LENGTH > content_len)
4029 return 0;
4030
4031 if (ibuff == NULL)
4032 ibuff = xtensa_insnbuf_alloc (isa);
4033 xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4034 content_len - offset);
4035 fmt = xtensa_format_decode (isa, ibuff);
4036 if (fmt == XTENSA_UNDEFINED)
4037 return 0;
4038 insn_len = xtensa_format_length (isa, fmt);
4039 if (insn_len == XTENSA_UNDEFINED)
4040 return 0;
4041 return insn_len;
4042 }
4043
4044
4045 /* Decode the opcode for a single slot instruction.
4046 Return 0 if it fails to decode or the instruction is multi-slot. */
4047
4048 xtensa_opcode
4049 insn_decode_opcode (bfd_byte *contents,
4050 bfd_size_type content_len,
4051 bfd_size_type offset,
4052 int slot)
4053 {
4054 xtensa_isa isa = xtensa_default_isa;
4055 xtensa_format fmt;
4056 static xtensa_insnbuf insnbuf = NULL;
4057 static xtensa_insnbuf slotbuf = NULL;
4058
4059 if (offset + MIN_INSN_LENGTH > content_len)
4060 return XTENSA_UNDEFINED;
4061
4062 if (insnbuf == NULL)
4063 {
4064 insnbuf = xtensa_insnbuf_alloc (isa);
4065 slotbuf = xtensa_insnbuf_alloc (isa);
4066 }
4067
4068 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4069 content_len - offset);
4070 fmt = xtensa_format_decode (isa, insnbuf);
4071 if (fmt == XTENSA_UNDEFINED)
4072 return XTENSA_UNDEFINED;
4073
4074 if (slot >= xtensa_format_num_slots (isa, fmt))
4075 return XTENSA_UNDEFINED;
4076
4077 xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4078 return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4079 }
4080
4081
4082 /* The offset is the offset in the contents.
4083 The address is the address of that offset. */
4084
4085 static bfd_boolean
4086 check_branch_target_aligned (bfd_byte *contents,
4087 bfd_size_type content_length,
4088 bfd_vma offset,
4089 bfd_vma address)
4090 {
4091 bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4092 if (insn_len == 0)
4093 return FALSE;
4094 return check_branch_target_aligned_address (address, insn_len);
4095 }
4096
4097
4098 static bfd_boolean
4099 check_loop_aligned (bfd_byte *contents,
4100 bfd_size_type content_length,
4101 bfd_vma offset,
4102 bfd_vma address)
4103 {
4104 bfd_size_type loop_len, insn_len;
4105 xtensa_opcode opcode;
4106
4107 opcode = insn_decode_opcode (contents, content_length, offset, 0);
4108 if (opcode == XTENSA_UNDEFINED
4109 || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4110 {
4111 BFD_ASSERT (FALSE);
4112 return FALSE;
4113 }
4114
4115 loop_len = insn_decode_len (contents, content_length, offset);
4116 insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4117 if (loop_len == 0 || insn_len == 0)
4118 {
4119 BFD_ASSERT (FALSE);
4120 return FALSE;
4121 }
4122
4123 return check_branch_target_aligned_address (address + loop_len, insn_len);
4124 }
4125
4126
4127 static bfd_boolean
4128 check_branch_target_aligned_address (bfd_vma addr, int len)
4129 {
4130 if (len == 8)
4131 return (addr % 8 == 0);
4132 return ((addr >> 2) == ((addr + len - 1) >> 2));
4133 }
4134
4135 \f
4136 /* Instruction widening and narrowing. */
4137
4138 /* When FLIX is available we need to access certain instructions only
4139 when they are 16-bit or 24-bit instructions. This table caches
4140 information about such instructions by walking through all the
4141 opcodes and finding the smallest single-slot format into which each
4142 can be encoded. */
4143
4144 static xtensa_format *op_single_fmt_table = NULL;
4145
4146
4147 static void
4148 init_op_single_format_table (void)
4149 {
4150 xtensa_isa isa = xtensa_default_isa;
4151 xtensa_insnbuf ibuf;
4152 xtensa_opcode opcode;
4153 xtensa_format fmt;
4154 int num_opcodes;
4155
4156 if (op_single_fmt_table)
4157 return;
4158
4159 ibuf = xtensa_insnbuf_alloc (isa);
4160 num_opcodes = xtensa_isa_num_opcodes (isa);
4161
4162 op_single_fmt_table = (xtensa_format *)
4163 bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4164 for (opcode = 0; opcode < num_opcodes; opcode++)
4165 {
4166 op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4167 for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4168 {
4169 if (xtensa_format_num_slots (isa, fmt) == 1
4170 && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4171 {
4172 xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4173 int fmt_length = xtensa_format_length (isa, fmt);
4174 if (old_fmt == XTENSA_UNDEFINED
4175 || fmt_length < xtensa_format_length (isa, old_fmt))
4176 op_single_fmt_table[opcode] = fmt;
4177 }
4178 }
4179 }
4180 xtensa_insnbuf_free (isa, ibuf);
4181 }
4182
4183
4184 static xtensa_format
4185 get_single_format (xtensa_opcode opcode)
4186 {
4187 init_op_single_format_table ();
4188 return op_single_fmt_table[opcode];
4189 }
4190
4191
4192 /* For the set of narrowable instructions we do NOT include the
4193 narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4194 involved during linker relaxation that may require these to
4195 re-expand in some conditions. Also, the narrowing "or" -> mov.n
4196 requires special case code to ensure it only works when op1 == op2. */
4197
4198 struct string_pair
4199 {
4200 const char *wide;
4201 const char *narrow;
4202 };
4203
4204 struct string_pair narrowable[] =
4205 {
4206 { "add", "add.n" },
4207 { "addi", "addi.n" },
4208 { "addmi", "addi.n" },
4209 { "l32i", "l32i.n" },
4210 { "movi", "movi.n" },
4211 { "ret", "ret.n" },
4212 { "retw", "retw.n" },
4213 { "s32i", "s32i.n" },
4214 { "or", "mov.n" } /* special case only when op1 == op2 */
4215 };
4216
4217 struct string_pair widenable[] =
4218 {
4219 { "add", "add.n" },
4220 { "addi", "addi.n" },
4221 { "addmi", "addi.n" },
4222 { "beqz", "beqz.n" },
4223 { "bnez", "bnez.n" },
4224 { "l32i", "l32i.n" },
4225 { "movi", "movi.n" },
4226 { "ret", "ret.n" },
4227 { "retw", "retw.n" },
4228 { "s32i", "s32i.n" },
4229 { "or", "mov.n" } /* special case only when op1 == op2 */
4230 };
4231
4232
4233 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4234 3-byte instruction to a 2-byte "density" instruction. If it is valid,
4235 return the instruction buffer holding the narrow instruction. Otherwise,
4236 return 0. The set of valid narrowing are specified by a string table
4237 but require some special case operand checks in some cases. */
4238
4239 static xtensa_insnbuf
4240 can_narrow_instruction (xtensa_insnbuf slotbuf,
4241 xtensa_format fmt,
4242 xtensa_opcode opcode)
4243 {
4244 xtensa_isa isa = xtensa_default_isa;
4245 xtensa_format o_fmt;
4246 unsigned opi;
4247
4248 static xtensa_insnbuf o_insnbuf = NULL;
4249 static xtensa_insnbuf o_slotbuf = NULL;
4250
4251 if (o_insnbuf == NULL)
4252 {
4253 o_insnbuf = xtensa_insnbuf_alloc (isa);
4254 o_slotbuf = xtensa_insnbuf_alloc (isa);
4255 }
4256
4257 for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4258 {
4259 bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4260
4261 if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4262 {
4263 uint32 value, newval;
4264 int i, operand_count, o_operand_count;
4265 xtensa_opcode o_opcode;
4266
4267 /* Address does not matter in this case. We might need to
4268 fix it to handle branches/jumps. */
4269 bfd_vma self_address = 0;
4270
4271 o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4272 if (o_opcode == XTENSA_UNDEFINED)
4273 return 0;
4274 o_fmt = get_single_format (o_opcode);
4275 if (o_fmt == XTENSA_UNDEFINED)
4276 return 0;
4277
4278 if (xtensa_format_length (isa, fmt) != 3
4279 || xtensa_format_length (isa, o_fmt) != 2)
4280 return 0;
4281
4282 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4283 operand_count = xtensa_opcode_num_operands (isa, opcode);
4284 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4285
4286 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4287 return 0;
4288
4289 if (!is_or)
4290 {
4291 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4292 return 0;
4293 }
4294 else
4295 {
4296 uint32 rawval0, rawval1, rawval2;
4297
4298 if (o_operand_count + 1 != operand_count
4299 || xtensa_operand_get_field (isa, opcode, 0,
4300 fmt, 0, slotbuf, &rawval0) != 0
4301 || xtensa_operand_get_field (isa, opcode, 1,
4302 fmt, 0, slotbuf, &rawval1) != 0
4303 || xtensa_operand_get_field (isa, opcode, 2,
4304 fmt, 0, slotbuf, &rawval2) != 0
4305 || rawval1 != rawval2
4306 || rawval0 == rawval1 /* it is a nop */)
4307 return 0;
4308 }
4309
4310 for (i = 0; i < o_operand_count; ++i)
4311 {
4312 if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4313 slotbuf, &value)
4314 || xtensa_operand_decode (isa, opcode, i, &value))
4315 return 0;
4316
4317 /* PC-relative branches need adjustment, but
4318 the PC-rel operand will always have a relocation. */
4319 newval = value;
4320 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4321 self_address)
4322 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4323 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4324 o_slotbuf, newval))
4325 return 0;
4326 }
4327
4328 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4329 return 0;
4330
4331 return o_insnbuf;
4332 }
4333 }
4334 return 0;
4335 }
4336
4337
4338 /* Attempt to narrow an instruction. If the narrowing is valid, perform
4339 the action in-place directly into the contents and return TRUE. Otherwise,
4340 the return value is FALSE and the contents are not modified. */
4341
4342 static bfd_boolean
4343 narrow_instruction (bfd_byte *contents,
4344 bfd_size_type content_length,
4345 bfd_size_type offset)
4346 {
4347 xtensa_opcode opcode;
4348 bfd_size_type insn_len;
4349 xtensa_isa isa = xtensa_default_isa;
4350 xtensa_format fmt;
4351 xtensa_insnbuf o_insnbuf;
4352
4353 static xtensa_insnbuf insnbuf = NULL;
4354 static xtensa_insnbuf slotbuf = NULL;
4355
4356 if (insnbuf == NULL)
4357 {
4358 insnbuf = xtensa_insnbuf_alloc (isa);
4359 slotbuf = xtensa_insnbuf_alloc (isa);
4360 }
4361
4362 BFD_ASSERT (offset < content_length);
4363
4364 if (content_length < 2)
4365 return FALSE;
4366
4367 /* We will hand-code a few of these for a little while.
4368 These have all been specified in the assembler aleady. */
4369 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4370 content_length - offset);
4371 fmt = xtensa_format_decode (isa, insnbuf);
4372 if (xtensa_format_num_slots (isa, fmt) != 1)
4373 return FALSE;
4374
4375 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4376 return FALSE;
4377
4378 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4379 if (opcode == XTENSA_UNDEFINED)
4380 return FALSE;
4381 insn_len = xtensa_format_length (isa, fmt);
4382 if (insn_len > content_length)
4383 return FALSE;
4384
4385 o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4386 if (o_insnbuf)
4387 {
4388 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4389 content_length - offset);
4390 return TRUE;
4391 }
4392
4393 return FALSE;
4394 }
4395
4396
4397 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4398 "density" instruction to a standard 3-byte instruction. If it is valid,
4399 return the instruction buffer holding the wide instruction. Otherwise,
4400 return 0. The set of valid widenings are specified by a string table
4401 but require some special case operand checks in some cases. */
4402
4403 static xtensa_insnbuf
4404 can_widen_instruction (xtensa_insnbuf slotbuf,
4405 xtensa_format fmt,
4406 xtensa_opcode opcode)
4407 {
4408 xtensa_isa isa = xtensa_default_isa;
4409 xtensa_format o_fmt;
4410 unsigned opi;
4411
4412 static xtensa_insnbuf o_insnbuf = NULL;
4413 static xtensa_insnbuf o_slotbuf = NULL;
4414
4415 if (o_insnbuf == NULL)
4416 {
4417 o_insnbuf = xtensa_insnbuf_alloc (isa);
4418 o_slotbuf = xtensa_insnbuf_alloc (isa);
4419 }
4420
4421 for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4422 {
4423 bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4424 bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4425 || strcmp ("bnez", widenable[opi].wide) == 0);
4426
4427 if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4428 {
4429 uint32 value, newval;
4430 int i, operand_count, o_operand_count, check_operand_count;
4431 xtensa_opcode o_opcode;
4432
4433 /* Address does not matter in this case. We might need to fix it
4434 to handle branches/jumps. */
4435 bfd_vma self_address = 0;
4436
4437 o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4438 if (o_opcode == XTENSA_UNDEFINED)
4439 return 0;
4440 o_fmt = get_single_format (o_opcode);
4441 if (o_fmt == XTENSA_UNDEFINED)
4442 return 0;
4443
4444 if (xtensa_format_length (isa, fmt) != 2
4445 || xtensa_format_length (isa, o_fmt) != 3)
4446 return 0;
4447
4448 xtensa_format_encode (isa, o_fmt, o_insnbuf);
4449 operand_count = xtensa_opcode_num_operands (isa, opcode);
4450 o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4451 check_operand_count = o_operand_count;
4452
4453 if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4454 return 0;
4455
4456 if (!is_or)
4457 {
4458 if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4459 return 0;
4460 }
4461 else
4462 {
4463 uint32 rawval0, rawval1;
4464
4465 if (o_operand_count != operand_count + 1
4466 || xtensa_operand_get_field (isa, opcode, 0,
4467 fmt, 0, slotbuf, &rawval0) != 0
4468 || xtensa_operand_get_field (isa, opcode, 1,
4469 fmt, 0, slotbuf, &rawval1) != 0
4470 || rawval0 == rawval1 /* it is a nop */)
4471 return 0;
4472 }
4473 if (is_branch)
4474 check_operand_count--;
4475
4476 for (i = 0; i < check_operand_count; i++)
4477 {
4478 int new_i = i;
4479 if (is_or && i == o_operand_count - 1)
4480 new_i = i - 1;
4481 if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4482 slotbuf, &value)
4483 || xtensa_operand_decode (isa, opcode, new_i, &value))
4484 return 0;
4485
4486 /* PC-relative branches need adjustment, but
4487 the PC-rel operand will always have a relocation. */
4488 newval = value;
4489 if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4490 self_address)
4491 || xtensa_operand_encode (isa, o_opcode, i, &newval)
4492 || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4493 o_slotbuf, newval))
4494 return 0;
4495 }
4496
4497 if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4498 return 0;
4499
4500 return o_insnbuf;
4501 }
4502 }
4503 return 0;
4504 }
4505
4506
4507 /* Attempt to widen an instruction. If the widening is valid, perform
4508 the action in-place directly into the contents and return TRUE. Otherwise,
4509 the return value is FALSE and the contents are not modified. */
4510
4511 static bfd_boolean
4512 widen_instruction (bfd_byte *contents,
4513 bfd_size_type content_length,
4514 bfd_size_type offset)
4515 {
4516 xtensa_opcode opcode;
4517 bfd_size_type insn_len;
4518 xtensa_isa isa = xtensa_default_isa;
4519 xtensa_format fmt;
4520 xtensa_insnbuf o_insnbuf;
4521
4522 static xtensa_insnbuf insnbuf = NULL;
4523 static xtensa_insnbuf slotbuf = NULL;
4524
4525 if (insnbuf == NULL)
4526 {
4527 insnbuf = xtensa_insnbuf_alloc (isa);
4528 slotbuf = xtensa_insnbuf_alloc (isa);
4529 }
4530
4531 BFD_ASSERT (offset < content_length);
4532
4533 if (content_length < 2)
4534 return FALSE;
4535
4536 /* We will hand-code a few of these for a little while.
4537 These have all been specified in the assembler aleady. */
4538 xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4539 content_length - offset);
4540 fmt = xtensa_format_decode (isa, insnbuf);
4541 if (xtensa_format_num_slots (isa, fmt) != 1)
4542 return FALSE;
4543
4544 if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4545 return FALSE;
4546
4547 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4548 if (opcode == XTENSA_UNDEFINED)
4549 return FALSE;
4550 insn_len = xtensa_format_length (isa, fmt);
4551 if (insn_len > content_length)
4552 return FALSE;
4553
4554 o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4555 if (o_insnbuf)
4556 {
4557 xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4558 content_length - offset);
4559 return TRUE;
4560 }
4561 return FALSE;
4562 }
4563
4564 \f
4565 /* Code for transforming CALLs at link-time. */
4566
4567 static bfd_reloc_status_type
4568 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4569 bfd_vma address,
4570 bfd_vma content_length,
4571 char **error_message)
4572 {
4573 static xtensa_insnbuf insnbuf = NULL;
4574 static xtensa_insnbuf slotbuf = NULL;
4575 xtensa_format core_format = XTENSA_UNDEFINED;
4576 xtensa_opcode opcode;
4577 xtensa_opcode direct_call_opcode;
4578 xtensa_isa isa = xtensa_default_isa;
4579 bfd_byte *chbuf = contents + address;
4580 int opn;
4581
4582 if (insnbuf == NULL)
4583 {
4584 insnbuf = xtensa_insnbuf_alloc (isa);
4585 slotbuf = xtensa_insnbuf_alloc (isa);
4586 }
4587
4588 if (content_length < address)
4589 {
4590 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4591 return bfd_reloc_other;
4592 }
4593
4594 opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4595 direct_call_opcode = swap_callx_for_call_opcode (opcode);
4596 if (direct_call_opcode == XTENSA_UNDEFINED)
4597 {
4598 *error_message = _("attempt to convert L32R/CALLX to CALL failed");
4599 return bfd_reloc_other;
4600 }
4601
4602 /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset. */
4603 core_format = xtensa_format_lookup (isa, "x24");
4604 opcode = xtensa_opcode_lookup (isa, "or");
4605 xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4606 for (opn = 0; opn < 3; opn++)
4607 {
4608 uint32 regno = 1;
4609 xtensa_operand_encode (isa, opcode, opn, &regno);
4610 xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4611 slotbuf, regno);
4612 }
4613 xtensa_format_encode (isa, core_format, insnbuf);
4614 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4615 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4616
4617 /* Assemble a CALL ("callN 0") into the 3 byte offset. */
4618 xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4619 xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4620
4621 xtensa_format_encode (isa, core_format, insnbuf);
4622 xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4623 xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4624 content_length - address - 3);
4625
4626 return bfd_reloc_ok;
4627 }
4628
4629
4630 static bfd_reloc_status_type
4631 contract_asm_expansion (bfd_byte *contents,
4632 bfd_vma content_length,
4633 Elf_Internal_Rela *irel,
4634 char **error_message)
4635 {
4636 bfd_reloc_status_type retval =
4637 elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4638 error_message);
4639
4640 if (retval != bfd_reloc_ok)
4641 return bfd_reloc_dangerous;
4642
4643 /* Update the irel->r_offset field so that the right immediate and
4644 the right instruction are modified during the relocation. */
4645 irel->r_offset += 3;
4646 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4647 return bfd_reloc_ok;
4648 }
4649
4650
4651 static xtensa_opcode
4652 swap_callx_for_call_opcode (xtensa_opcode opcode)
4653 {
4654 init_call_opcodes ();
4655
4656 if (opcode == callx0_op) return call0_op;
4657 if (opcode == callx4_op) return call4_op;
4658 if (opcode == callx8_op) return call8_op;
4659 if (opcode == callx12_op) return call12_op;
4660
4661 /* Return XTENSA_UNDEFINED if the opcode is not an indirect call. */
4662 return XTENSA_UNDEFINED;
4663 }
4664
4665
4666 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4667 CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4668 If not, return XTENSA_UNDEFINED. */
4669
4670 #define L32R_TARGET_REG_OPERAND 0
4671 #define CONST16_TARGET_REG_OPERAND 0
4672 #define CALLN_SOURCE_OPERAND 0
4673
4674 static xtensa_opcode
4675 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4676 {
4677 static xtensa_insnbuf insnbuf = NULL;
4678 static xtensa_insnbuf slotbuf = NULL;
4679 xtensa_format fmt;
4680 xtensa_opcode opcode;
4681 xtensa_isa isa = xtensa_default_isa;
4682 uint32 regno, const16_regno, call_regno;
4683 int offset = 0;
4684
4685 if (insnbuf == NULL)
4686 {
4687 insnbuf = xtensa_insnbuf_alloc (isa);
4688 slotbuf = xtensa_insnbuf_alloc (isa);
4689 }
4690
4691 xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4692 fmt = xtensa_format_decode (isa, insnbuf);
4693 if (fmt == XTENSA_UNDEFINED
4694 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4695 return XTENSA_UNDEFINED;
4696
4697 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4698 if (opcode == XTENSA_UNDEFINED)
4699 return XTENSA_UNDEFINED;
4700
4701 if (opcode == get_l32r_opcode ())
4702 {
4703 if (p_uses_l32r)
4704 *p_uses_l32r = TRUE;
4705 if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4706 fmt, 0, slotbuf, &regno)
4707 || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4708 &regno))
4709 return XTENSA_UNDEFINED;
4710 }
4711 else if (opcode == get_const16_opcode ())
4712 {
4713 if (p_uses_l32r)
4714 *p_uses_l32r = FALSE;
4715 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4716 fmt, 0, slotbuf, &regno)
4717 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4718 &regno))
4719 return XTENSA_UNDEFINED;
4720
4721 /* Check that the next instruction is also CONST16. */
4722 offset += xtensa_format_length (isa, fmt);
4723 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4724 fmt = xtensa_format_decode (isa, insnbuf);
4725 if (fmt == XTENSA_UNDEFINED
4726 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4727 return XTENSA_UNDEFINED;
4728 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4729 if (opcode != get_const16_opcode ())
4730 return XTENSA_UNDEFINED;
4731
4732 if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4733 fmt, 0, slotbuf, &const16_regno)
4734 || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4735 &const16_regno)
4736 || const16_regno != regno)
4737 return XTENSA_UNDEFINED;
4738 }
4739 else
4740 return XTENSA_UNDEFINED;
4741
4742 /* Next instruction should be an CALLXn with operand 0 == regno. */
4743 offset += xtensa_format_length (isa, fmt);
4744 xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4745 fmt = xtensa_format_decode (isa, insnbuf);
4746 if (fmt == XTENSA_UNDEFINED
4747 || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4748 return XTENSA_UNDEFINED;
4749 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4750 if (opcode == XTENSA_UNDEFINED
4751 || !is_indirect_call_opcode (opcode))
4752 return XTENSA_UNDEFINED;
4753
4754 if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4755 fmt, 0, slotbuf, &call_regno)
4756 || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4757 &call_regno))
4758 return XTENSA_UNDEFINED;
4759
4760 if (call_regno != regno)
4761 return XTENSA_UNDEFINED;
4762
4763 return opcode;
4764 }
4765
4766 \f
4767 /* Data structures used during relaxation. */
4768
4769 /* r_reloc: relocation values. */
4770
4771 /* Through the relaxation process, we need to keep track of the values
4772 that will result from evaluating relocations. The standard ELF
4773 relocation structure is not sufficient for this purpose because we're
4774 operating on multiple input files at once, so we need to know which
4775 input file a relocation refers to. The r_reloc structure thus
4776 records both the input file (bfd) and ELF relocation.
4777
4778 For efficiency, an r_reloc also contains a "target_offset" field to
4779 cache the target-section-relative offset value that is represented by
4780 the relocation.
4781
4782 The r_reloc also contains a virtual offset that allows multiple
4783 inserted literals to be placed at the same "address" with
4784 different offsets. */
4785
4786 typedef struct r_reloc_struct r_reloc;
4787
4788 struct r_reloc_struct
4789 {
4790 bfd *abfd;
4791 Elf_Internal_Rela rela;
4792 bfd_vma target_offset;
4793 bfd_vma virtual_offset;
4794 };
4795
4796
4797 /* The r_reloc structure is included by value in literal_value, but not
4798 every literal_value has an associated relocation -- some are simple
4799 constants. In such cases, we set all the fields in the r_reloc
4800 struct to zero. The r_reloc_is_const function should be used to
4801 detect this case. */
4802
4803 static bfd_boolean
4804 r_reloc_is_const (const r_reloc *r_rel)
4805 {
4806 return (r_rel->abfd == NULL);
4807 }
4808
4809
4810 static bfd_vma
4811 r_reloc_get_target_offset (const r_reloc *r_rel)
4812 {
4813 bfd_vma target_offset;
4814 unsigned long r_symndx;
4815
4816 BFD_ASSERT (!r_reloc_is_const (r_rel));
4817 r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4818 target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4819 return (target_offset + r_rel->rela.r_addend);
4820 }
4821
4822
4823 static struct elf_link_hash_entry *
4824 r_reloc_get_hash_entry (const r_reloc *r_rel)
4825 {
4826 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4827 return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4828 }
4829
4830
4831 static asection *
4832 r_reloc_get_section (const r_reloc *r_rel)
4833 {
4834 unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4835 return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4836 }
4837
4838
4839 static bfd_boolean
4840 r_reloc_is_defined (const r_reloc *r_rel)
4841 {
4842 asection *sec;
4843 if (r_rel == NULL)
4844 return FALSE;
4845
4846 sec = r_reloc_get_section (r_rel);
4847 if (sec == bfd_abs_section_ptr
4848 || sec == bfd_com_section_ptr
4849 || sec == bfd_und_section_ptr)
4850 return FALSE;
4851 return TRUE;
4852 }
4853
4854
4855 static void
4856 r_reloc_init (r_reloc *r_rel,
4857 bfd *abfd,
4858 Elf_Internal_Rela *irel,
4859 bfd_byte *contents,
4860 bfd_size_type content_length)
4861 {
4862 int r_type;
4863 reloc_howto_type *howto;
4864
4865 if (irel)
4866 {
4867 r_rel->rela = *irel;
4868 r_rel->abfd = abfd;
4869 r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4870 r_rel->virtual_offset = 0;
4871 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4872 howto = &elf_howto_table[r_type];
4873 if (howto->partial_inplace)
4874 {
4875 bfd_vma inplace_val;
4876 BFD_ASSERT (r_rel->rela.r_offset < content_length);
4877
4878 inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4879 r_rel->target_offset += inplace_val;
4880 }
4881 }
4882 else
4883 memset (r_rel, 0, sizeof (r_reloc));
4884 }
4885
4886
4887 #if DEBUG
4888
4889 static void
4890 print_r_reloc (FILE *fp, const r_reloc *r_rel)
4891 {
4892 if (r_reloc_is_defined (r_rel))
4893 {
4894 asection *sec = r_reloc_get_section (r_rel);
4895 fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
4896 }
4897 else if (r_reloc_get_hash_entry (r_rel))
4898 fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
4899 else
4900 fprintf (fp, " ?? + ");
4901
4902 fprintf_vma (fp, r_rel->target_offset);
4903 if (r_rel->virtual_offset)
4904 {
4905 fprintf (fp, " + ");
4906 fprintf_vma (fp, r_rel->virtual_offset);
4907 }
4908
4909 fprintf (fp, ")");
4910 }
4911
4912 #endif /* DEBUG */
4913
4914 \f
4915 /* source_reloc: relocations that reference literals. */
4916
4917 /* To determine whether literals can be coalesced, we need to first
4918 record all the relocations that reference the literals. The
4919 source_reloc structure below is used for this purpose. The
4920 source_reloc entries are kept in a per-literal-section array, sorted
4921 by offset within the literal section (i.e., target offset).
4922
4923 The source_sec and r_rel.rela.r_offset fields identify the source of
4924 the relocation. The r_rel field records the relocation value, i.e.,
4925 the offset of the literal being referenced. The opnd field is needed
4926 to determine the range of the immediate field to which the relocation
4927 applies, so we can determine whether another literal with the same
4928 value is within range. The is_null field is true when the relocation
4929 is being removed (e.g., when an L32R is being removed due to a CALLX
4930 that is converted to a direct CALL). */
4931
4932 typedef struct source_reloc_struct source_reloc;
4933
4934 struct source_reloc_struct
4935 {
4936 asection *source_sec;
4937 r_reloc r_rel;
4938 xtensa_opcode opcode;
4939 int opnd;
4940 bfd_boolean is_null;
4941 bfd_boolean is_abs_literal;
4942 };
4943
4944
4945 static void
4946 init_source_reloc (source_reloc *reloc,
4947 asection *source_sec,
4948 const r_reloc *r_rel,
4949 xtensa_opcode opcode,
4950 int opnd,
4951 bfd_boolean is_abs_literal)
4952 {
4953 reloc->source_sec = source_sec;
4954 reloc->r_rel = *r_rel;
4955 reloc->opcode = opcode;
4956 reloc->opnd = opnd;
4957 reloc->is_null = FALSE;
4958 reloc->is_abs_literal = is_abs_literal;
4959 }
4960
4961
4962 /* Find the source_reloc for a particular source offset and relocation
4963 type. Note that the array is sorted by _target_ offset, so this is
4964 just a linear search. */
4965
4966 static source_reloc *
4967 find_source_reloc (source_reloc *src_relocs,
4968 int src_count,
4969 asection *sec,
4970 Elf_Internal_Rela *irel)
4971 {
4972 int i;
4973
4974 for (i = 0; i < src_count; i++)
4975 {
4976 if (src_relocs[i].source_sec == sec
4977 && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
4978 && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
4979 == ELF32_R_TYPE (irel->r_info)))
4980 return &src_relocs[i];
4981 }
4982
4983 return NULL;
4984 }
4985
4986
4987 static int
4988 source_reloc_compare (const void *ap, const void *bp)
4989 {
4990 const source_reloc *a = (const source_reloc *) ap;
4991 const source_reloc *b = (const source_reloc *) bp;
4992
4993 if (a->r_rel.target_offset != b->r_rel.target_offset)
4994 return (a->r_rel.target_offset - b->r_rel.target_offset);
4995
4996 /* We don't need to sort on these criteria for correctness,
4997 but enforcing a more strict ordering prevents unstable qsort
4998 from behaving differently with different implementations.
4999 Without the code below we get correct but different results
5000 on Solaris 2.7 and 2.8. We would like to always produce the
5001 same results no matter the host. */
5002
5003 if ((!a->is_null) - (!b->is_null))
5004 return ((!a->is_null) - (!b->is_null));
5005 return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5006 }
5007
5008 \f
5009 /* Literal values and value hash tables. */
5010
5011 /* Literals with the same value can be coalesced. The literal_value
5012 structure records the value of a literal: the "r_rel" field holds the
5013 information from the relocation on the literal (if there is one) and
5014 the "value" field holds the contents of the literal word itself.
5015
5016 The value_map structure records a literal value along with the
5017 location of a literal holding that value. The value_map hash table
5018 is indexed by the literal value, so that we can quickly check if a
5019 particular literal value has been seen before and is thus a candidate
5020 for coalescing. */
5021
5022 typedef struct literal_value_struct literal_value;
5023 typedef struct value_map_struct value_map;
5024 typedef struct value_map_hash_table_struct value_map_hash_table;
5025
5026 struct literal_value_struct
5027 {
5028 r_reloc r_rel;
5029 unsigned long value;
5030 bfd_boolean is_abs_literal;
5031 };
5032
5033 struct value_map_struct
5034 {
5035 literal_value val; /* The literal value. */
5036 r_reloc loc; /* Location of the literal. */
5037 value_map *next;
5038 };
5039
5040 struct value_map_hash_table_struct
5041 {
5042 unsigned bucket_count;
5043 value_map **buckets;
5044 unsigned count;
5045 bfd_boolean has_last_loc;
5046 r_reloc last_loc;
5047 };
5048
5049
5050 static void
5051 init_literal_value (literal_value *lit,
5052 const r_reloc *r_rel,
5053 unsigned long value,
5054 bfd_boolean is_abs_literal)
5055 {
5056 lit->r_rel = *r_rel;
5057 lit->value = value;
5058 lit->is_abs_literal = is_abs_literal;
5059 }
5060
5061
5062 static bfd_boolean
5063 literal_value_equal (const literal_value *src1,
5064 const literal_value *src2,
5065 bfd_boolean final_static_link)
5066 {
5067 struct elf_link_hash_entry *h1, *h2;
5068
5069 if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5070 return FALSE;
5071
5072 if (r_reloc_is_const (&src1->r_rel))
5073 return (src1->value == src2->value);
5074
5075 if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5076 != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5077 return FALSE;
5078
5079 if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5080 return FALSE;
5081
5082 if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5083 return FALSE;
5084
5085 if (src1->value != src2->value)
5086 return FALSE;
5087
5088 /* Now check for the same section (if defined) or the same elf_hash
5089 (if undefined or weak). */
5090 h1 = r_reloc_get_hash_entry (&src1->r_rel);
5091 h2 = r_reloc_get_hash_entry (&src2->r_rel);
5092 if (r_reloc_is_defined (&src1->r_rel)
5093 && (final_static_link
5094 || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5095 && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5096 {
5097 if (r_reloc_get_section (&src1->r_rel)
5098 != r_reloc_get_section (&src2->r_rel))
5099 return FALSE;
5100 }
5101 else
5102 {
5103 /* Require that the hash entries (i.e., symbols) be identical. */
5104 if (h1 != h2 || h1 == 0)
5105 return FALSE;
5106 }
5107
5108 if (src1->is_abs_literal != src2->is_abs_literal)
5109 return FALSE;
5110
5111 return TRUE;
5112 }
5113
5114
5115 /* Must be power of 2. */
5116 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5117
5118 static value_map_hash_table *
5119 value_map_hash_table_init (void)
5120 {
5121 value_map_hash_table *values;
5122
5123 values = (value_map_hash_table *)
5124 bfd_zmalloc (sizeof (value_map_hash_table));
5125 values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5126 values->count = 0;
5127 values->buckets = (value_map **)
5128 bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5129 if (values->buckets == NULL)
5130 {
5131 free (values);
5132 return NULL;
5133 }
5134 values->has_last_loc = FALSE;
5135
5136 return values;
5137 }
5138
5139
5140 static void
5141 value_map_hash_table_delete (value_map_hash_table *table)
5142 {
5143 free (table->buckets);
5144 free (table);
5145 }
5146
5147
5148 static unsigned
5149 hash_bfd_vma (bfd_vma val)
5150 {
5151 return (val >> 2) + (val >> 10);
5152 }
5153
5154
5155 static unsigned
5156 literal_value_hash (const literal_value *src)
5157 {
5158 unsigned hash_val;
5159
5160 hash_val = hash_bfd_vma (src->value);
5161 if (!r_reloc_is_const (&src->r_rel))
5162 {
5163 void *sec_or_hash;
5164
5165 hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5166 hash_val += hash_bfd_vma (src->r_rel.target_offset);
5167 hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5168
5169 /* Now check for the same section and the same elf_hash. */
5170 if (r_reloc_is_defined (&src->r_rel))
5171 sec_or_hash = r_reloc_get_section (&src->r_rel);
5172 else
5173 sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5174 hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5175 }
5176 return hash_val;
5177 }
5178
5179
5180 /* Check if the specified literal_value has been seen before. */
5181
5182 static value_map *
5183 value_map_get_cached_value (value_map_hash_table *map,
5184 const literal_value *val,
5185 bfd_boolean final_static_link)
5186 {
5187 value_map *map_e;
5188 value_map *bucket;
5189 unsigned idx;
5190
5191 idx = literal_value_hash (val);
5192 idx = idx & (map->bucket_count - 1);
5193 bucket = map->buckets[idx];
5194 for (map_e = bucket; map_e; map_e = map_e->next)
5195 {
5196 if (literal_value_equal (&map_e->val, val, final_static_link))
5197 return map_e;
5198 }
5199 return NULL;
5200 }
5201
5202
5203 /* Record a new literal value. It is illegal to call this if VALUE
5204 already has an entry here. */
5205
5206 static value_map *
5207 add_value_map (value_map_hash_table *map,
5208 const literal_value *val,
5209 const r_reloc *loc,
5210 bfd_boolean final_static_link)
5211 {
5212 value_map **bucket_p;
5213 unsigned idx;
5214
5215 value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5216 if (val_e == NULL)
5217 {
5218 bfd_set_error (bfd_error_no_memory);
5219 return NULL;
5220 }
5221
5222 BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5223 val_e->val = *val;
5224 val_e->loc = *loc;
5225
5226 idx = literal_value_hash (val);
5227 idx = idx & (map->bucket_count - 1);
5228 bucket_p = &map->buckets[idx];
5229
5230 val_e->next = *bucket_p;
5231 *bucket_p = val_e;
5232 map->count++;
5233 /* FIXME: Consider resizing the hash table if we get too many entries. */
5234
5235 return val_e;
5236 }
5237
5238 \f
5239 /* Lists of text actions (ta_) for narrowing, widening, longcall
5240 conversion, space fill, code & literal removal, etc. */
5241
5242 /* The following text actions are generated:
5243
5244 "ta_remove_insn" remove an instruction or instructions
5245 "ta_remove_longcall" convert longcall to call
5246 "ta_convert_longcall" convert longcall to nop/call
5247 "ta_narrow_insn" narrow a wide instruction
5248 "ta_widen" widen a narrow instruction
5249 "ta_fill" add fill or remove fill
5250 removed < 0 is a fill; branches to the fill address will be
5251 changed to address + fill size (e.g., address - removed)
5252 removed >= 0 branches to the fill address will stay unchanged
5253 "ta_remove_literal" remove a literal; this action is
5254 indicated when a literal is removed
5255 or replaced.
5256 "ta_add_literal" insert a new literal; this action is
5257 indicated when a literal has been moved.
5258 It may use a virtual_offset because
5259 multiple literals can be placed at the
5260 same location.
5261
5262 For each of these text actions, we also record the number of bytes
5263 removed by performing the text action. In the case of a "ta_widen"
5264 or a "ta_fill" that adds space, the removed_bytes will be negative. */
5265
5266 typedef struct text_action_struct text_action;
5267 typedef struct text_action_list_struct text_action_list;
5268 typedef enum text_action_enum_t text_action_t;
5269
5270 enum text_action_enum_t
5271 {
5272 ta_none,
5273 ta_remove_insn, /* removed = -size */
5274 ta_remove_longcall, /* removed = -size */
5275 ta_convert_longcall, /* removed = 0 */
5276 ta_narrow_insn, /* removed = -1 */
5277 ta_widen_insn, /* removed = +1 */
5278 ta_fill, /* removed = +size */
5279 ta_remove_literal,
5280 ta_add_literal
5281 };
5282
5283
5284 /* Structure for a text action record. */
5285 struct text_action_struct
5286 {
5287 text_action_t action;
5288 asection *sec; /* Optional */
5289 bfd_vma offset;
5290 bfd_vma virtual_offset; /* Zero except for adding literals. */
5291 int removed_bytes;
5292 literal_value value; /* Only valid when adding literals. */
5293 };
5294
5295 struct removal_by_action_entry_struct
5296 {
5297 bfd_vma offset;
5298 int removed;
5299 int eq_removed;
5300 int eq_removed_before_fill;
5301 };
5302 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5303
5304 struct removal_by_action_map_struct
5305 {
5306 unsigned n_entries;
5307 removal_by_action_entry *entry;
5308 };
5309 typedef struct removal_by_action_map_struct removal_by_action_map;
5310
5311
5312 /* List of all of the actions taken on a text section. */
5313 struct text_action_list_struct
5314 {
5315 unsigned count;
5316 splay_tree tree;
5317 removal_by_action_map map;
5318 };
5319
5320
5321 static text_action *
5322 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5323 {
5324 text_action a;
5325
5326 /* It is not necessary to fill at the end of a section. */
5327 if (sec->size == offset)
5328 return NULL;
5329
5330 a.offset = offset;
5331 a.action = ta_fill;
5332
5333 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5334 if (node)
5335 return (text_action *)node->value;
5336 return NULL;
5337 }
5338
5339
5340 static int
5341 compute_removed_action_diff (const text_action *ta,
5342 asection *sec,
5343 bfd_vma offset,
5344 int removed,
5345 int removable_space)
5346 {
5347 int new_removed;
5348 int current_removed = 0;
5349
5350 if (ta)
5351 current_removed = ta->removed_bytes;
5352
5353 BFD_ASSERT (ta == NULL || ta->offset == offset);
5354 BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5355
5356 /* It is not necessary to fill at the end of a section. Clean this up. */
5357 if (sec->size == offset)
5358 new_removed = removable_space - 0;
5359 else
5360 {
5361 int space;
5362 int added = -removed - current_removed;
5363 /* Ignore multiples of the section alignment. */
5364 added = ((1 << sec->alignment_power) - 1) & added;
5365 new_removed = (-added);
5366
5367 /* Modify for removable. */
5368 space = removable_space - new_removed;
5369 new_removed = (removable_space
5370 - (((1 << sec->alignment_power) - 1) & space));
5371 }
5372 return (new_removed - current_removed);
5373 }
5374
5375
5376 static void
5377 adjust_fill_action (text_action *ta, int fill_diff)
5378 {
5379 ta->removed_bytes += fill_diff;
5380 }
5381
5382
5383 static int
5384 text_action_compare (splay_tree_key a, splay_tree_key b)
5385 {
5386 text_action *pa = (text_action *)a;
5387 text_action *pb = (text_action *)b;
5388 static const int action_priority[] =
5389 {
5390 [ta_fill] = 0,
5391 [ta_none] = 1,
5392 [ta_convert_longcall] = 2,
5393 [ta_narrow_insn] = 3,
5394 [ta_remove_insn] = 4,
5395 [ta_remove_longcall] = 5,
5396 [ta_remove_literal] = 6,
5397 [ta_widen_insn] = 7,
5398 [ta_add_literal] = 8,
5399 };
5400
5401 if (pa->offset == pb->offset)
5402 {
5403 if (pa->action == pb->action)
5404 return 0;
5405 return action_priority[pa->action] - action_priority[pb->action];
5406 }
5407 else
5408 return pa->offset < pb->offset ? -1 : 1;
5409 }
5410
5411 static text_action *
5412 action_first (text_action_list *action_list)
5413 {
5414 splay_tree_node node = splay_tree_min (action_list->tree);
5415 return node ? (text_action *)node->value : NULL;
5416 }
5417
5418 static text_action *
5419 action_next (text_action_list *action_list, text_action *action)
5420 {
5421 splay_tree_node node = splay_tree_successor (action_list->tree,
5422 (splay_tree_key)action);
5423 return node ? (text_action *)node->value : NULL;
5424 }
5425
5426 /* Add a modification action to the text. For the case of adding or
5427 removing space, modify any current fill and assume that
5428 "unreachable_space" bytes can be freely contracted. Note that a
5429 negative removed value is a fill. */
5430
5431 static void
5432 text_action_add (text_action_list *l,
5433 text_action_t action,
5434 asection *sec,
5435 bfd_vma offset,
5436 int removed)
5437 {
5438 text_action *ta;
5439 text_action a;
5440
5441 /* It is not necessary to fill at the end of a section. */
5442 if (action == ta_fill && sec->size == offset)
5443 return;
5444
5445 /* It is not necessary to fill 0 bytes. */
5446 if (action == ta_fill && removed == 0)
5447 return;
5448
5449 a.action = action;
5450 a.offset = offset;
5451
5452 if (action == ta_fill)
5453 {
5454 splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5455
5456 if (node)
5457 {
5458 ta = (text_action *)node->value;
5459 ta->removed_bytes += removed;
5460 return;
5461 }
5462 }
5463 else
5464 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5465
5466 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5467 ta->action = action;
5468 ta->sec = sec;
5469 ta->offset = offset;
5470 ta->removed_bytes = removed;
5471 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5472 ++l->count;
5473 }
5474
5475
5476 static void
5477 text_action_add_literal (text_action_list *l,
5478 text_action_t action,
5479 const r_reloc *loc,
5480 const literal_value *value,
5481 int removed)
5482 {
5483 text_action *ta;
5484 asection *sec = r_reloc_get_section (loc);
5485 bfd_vma offset = loc->target_offset;
5486 bfd_vma virtual_offset = loc->virtual_offset;
5487
5488 BFD_ASSERT (action == ta_add_literal);
5489
5490 /* Create a new record and fill it up. */
5491 ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5492 ta->action = action;
5493 ta->sec = sec;
5494 ta->offset = offset;
5495 ta->virtual_offset = virtual_offset;
5496 ta->value = *value;
5497 ta->removed_bytes = removed;
5498
5499 BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5500 splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5501 ++l->count;
5502 }
5503
5504
5505 /* Find the total offset adjustment for the relaxations specified by
5506 text_actions, beginning from a particular starting action. This is
5507 typically used from offset_with_removed_text to search an entire list of
5508 actions, but it may also be called directly when adjusting adjacent offsets
5509 so that each search may begin where the previous one left off. */
5510
5511 static int
5512 removed_by_actions (text_action_list *action_list,
5513 text_action **p_start_action,
5514 bfd_vma offset,
5515 bfd_boolean before_fill)
5516 {
5517 text_action *r;
5518 int removed = 0;
5519
5520 r = *p_start_action;
5521 if (r)
5522 {
5523 splay_tree_node node = splay_tree_lookup (action_list->tree,
5524 (splay_tree_key)r);
5525 BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5526 }
5527
5528 while (r)
5529 {
5530 if (r->offset > offset)
5531 break;
5532
5533 if (r->offset == offset
5534 && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5535 break;
5536
5537 removed += r->removed_bytes;
5538
5539 r = action_next (action_list, r);
5540 }
5541
5542 *p_start_action = r;
5543 return removed;
5544 }
5545
5546
5547 static bfd_vma
5548 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5549 {
5550 text_action *r = action_first (action_list);
5551
5552 return offset - removed_by_actions (action_list, &r, offset, FALSE);
5553 }
5554
5555
5556 static unsigned
5557 action_list_count (text_action_list *action_list)
5558 {
5559 return action_list->count;
5560 }
5561
5562 typedef struct map_action_fn_context_struct map_action_fn_context;
5563 struct map_action_fn_context_struct
5564 {
5565 int removed;
5566 removal_by_action_map map;
5567 bfd_boolean eq_complete;
5568 };
5569
5570 static int
5571 map_action_fn (splay_tree_node node, void *p)
5572 {
5573 map_action_fn_context *ctx = p;
5574 text_action *r = (text_action *)node->value;
5575 removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5576
5577 if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5578 {
5579 --ientry;
5580 }
5581 else
5582 {
5583 ++ctx->map.n_entries;
5584 ctx->eq_complete = FALSE;
5585 ientry->offset = r->offset;
5586 ientry->eq_removed_before_fill = ctx->removed;
5587 }
5588
5589 if (!ctx->eq_complete)
5590 {
5591 if (r->action != ta_fill || r->removed_bytes >= 0)
5592 {
5593 ientry->eq_removed = ctx->removed;
5594 ctx->eq_complete = TRUE;
5595 }
5596 else
5597 ientry->eq_removed = ctx->removed + r->removed_bytes;
5598 }
5599
5600 ctx->removed += r->removed_bytes;
5601 ientry->removed = ctx->removed;
5602 return 0;
5603 }
5604
5605 static void
5606 map_removal_by_action (text_action_list *action_list)
5607 {
5608 map_action_fn_context ctx;
5609
5610 ctx.removed = 0;
5611 ctx.map.n_entries = 0;
5612 ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5613 sizeof (removal_by_action_entry));
5614 ctx.eq_complete = FALSE;
5615
5616 splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5617 action_list->map = ctx.map;
5618 }
5619
5620 static int
5621 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5622 bfd_boolean before_fill)
5623 {
5624 unsigned a, b;
5625
5626 if (!action_list->map.entry)
5627 map_removal_by_action (action_list);
5628
5629 if (!action_list->map.n_entries)
5630 return 0;
5631
5632 a = 0;
5633 b = action_list->map.n_entries;
5634
5635 while (b - a > 1)
5636 {
5637 unsigned c = (a + b) / 2;
5638
5639 if (action_list->map.entry[c].offset <= offset)
5640 a = c;
5641 else
5642 b = c;
5643 }
5644
5645 if (action_list->map.entry[a].offset < offset)
5646 {
5647 return action_list->map.entry[a].removed;
5648 }
5649 else if (action_list->map.entry[a].offset == offset)
5650 {
5651 return before_fill ?
5652 action_list->map.entry[a].eq_removed_before_fill :
5653 action_list->map.entry[a].eq_removed;
5654 }
5655 else
5656 {
5657 return 0;
5658 }
5659 }
5660
5661 static bfd_vma
5662 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5663 {
5664 int removed = removed_by_actions_map (action_list, offset, FALSE);
5665 return offset - removed;
5666 }
5667
5668
5669 /* The find_insn_action routine will only find non-fill actions. */
5670
5671 static text_action *
5672 find_insn_action (text_action_list *action_list, bfd_vma offset)
5673 {
5674 static const text_action_t action[] =
5675 {
5676 ta_convert_longcall,
5677 ta_remove_longcall,
5678 ta_widen_insn,
5679 ta_narrow_insn,
5680 ta_remove_insn,
5681 };
5682 text_action a;
5683 unsigned i;
5684
5685 a.offset = offset;
5686 for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5687 {
5688 splay_tree_node node;
5689
5690 a.action = action[i];
5691 node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5692 if (node)
5693 return (text_action *)node->value;
5694 }
5695 return NULL;
5696 }
5697
5698
5699 #if DEBUG
5700
5701 static void
5702 print_action (FILE *fp, text_action *r)
5703 {
5704 const char *t = "unknown";
5705 switch (r->action)
5706 {
5707 case ta_remove_insn:
5708 t = "remove_insn"; break;
5709 case ta_remove_longcall:
5710 t = "remove_longcall"; break;
5711 case ta_convert_longcall:
5712 t = "convert_longcall"; break;
5713 case ta_narrow_insn:
5714 t = "narrow_insn"; break;
5715 case ta_widen_insn:
5716 t = "widen_insn"; break;
5717 case ta_fill:
5718 t = "fill"; break;
5719 case ta_none:
5720 t = "none"; break;
5721 case ta_remove_literal:
5722 t = "remove_literal"; break;
5723 case ta_add_literal:
5724 t = "add_literal"; break;
5725 }
5726
5727 fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5728 r->sec->owner->filename,
5729 r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5730 }
5731
5732 static int
5733 print_action_list_fn (splay_tree_node node, void *p)
5734 {
5735 text_action *r = (text_action *)node->value;
5736
5737 print_action (p, r);
5738 return 0;
5739 }
5740
5741 static void
5742 print_action_list (FILE *fp, text_action_list *action_list)
5743 {
5744 fprintf (fp, "Text Action\n");
5745 splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5746 }
5747
5748 #endif /* DEBUG */
5749
5750 \f
5751 /* Lists of literals being coalesced or removed. */
5752
5753 /* In the usual case, the literal identified by "from" is being
5754 coalesced with another literal identified by "to". If the literal is
5755 unused and is being removed altogether, "to.abfd" will be NULL.
5756 The removed_literal entries are kept on a per-section list, sorted
5757 by the "from" offset field. */
5758
5759 typedef struct removed_literal_struct removed_literal;
5760 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5761 typedef struct removed_literal_list_struct removed_literal_list;
5762
5763 struct removed_literal_struct
5764 {
5765 r_reloc from;
5766 r_reloc to;
5767 removed_literal *next;
5768 };
5769
5770 struct removed_literal_map_entry_struct
5771 {
5772 bfd_vma addr;
5773 removed_literal *literal;
5774 };
5775
5776 struct removed_literal_list_struct
5777 {
5778 removed_literal *head;
5779 removed_literal *tail;
5780
5781 unsigned n_map;
5782 removed_literal_map_entry *map;
5783 };
5784
5785
5786 /* Record that the literal at "from" is being removed. If "to" is not
5787 NULL, the "from" literal is being coalesced with the "to" literal. */
5788
5789 static void
5790 add_removed_literal (removed_literal_list *removed_list,
5791 const r_reloc *from,
5792 const r_reloc *to)
5793 {
5794 removed_literal *r, *new_r, *next_r;
5795
5796 new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5797
5798 new_r->from = *from;
5799 if (to)
5800 new_r->to = *to;
5801 else
5802 new_r->to.abfd = NULL;
5803 new_r->next = NULL;
5804
5805 r = removed_list->head;
5806 if (r == NULL)
5807 {
5808 removed_list->head = new_r;
5809 removed_list->tail = new_r;
5810 }
5811 /* Special check for common case of append. */
5812 else if (removed_list->tail->from.target_offset < from->target_offset)
5813 {
5814 removed_list->tail->next = new_r;
5815 removed_list->tail = new_r;
5816 }
5817 else
5818 {
5819 while (r->from.target_offset < from->target_offset && r->next)
5820 {
5821 r = r->next;
5822 }
5823 next_r = r->next;
5824 r->next = new_r;
5825 new_r->next = next_r;
5826 if (next_r == NULL)
5827 removed_list->tail = new_r;
5828 }
5829 }
5830
5831 static void
5832 map_removed_literal (removed_literal_list *removed_list)
5833 {
5834 unsigned n_map = 0;
5835 unsigned i;
5836 removed_literal_map_entry *map = NULL;
5837 removed_literal *r = removed_list->head;
5838
5839 for (i = 0; r; ++i, r = r->next)
5840 {
5841 if (i == n_map)
5842 {
5843 n_map = (n_map * 2) + 2;
5844 map = bfd_realloc (map, n_map * sizeof (*map));
5845 }
5846 map[i].addr = r->from.target_offset;
5847 map[i].literal = r;
5848 }
5849 removed_list->map = map;
5850 removed_list->n_map = i;
5851 }
5852
5853 static int
5854 removed_literal_compare (const void *a, const void *b)
5855 {
5856 const removed_literal_map_entry *pa = a;
5857 const removed_literal_map_entry *pb = b;
5858
5859 if (pa->addr == pb->addr)
5860 return 0;
5861 else
5862 return pa->addr < pb->addr ? -1 : 1;
5863 }
5864
5865 /* Check if the list of removed literals contains an entry for the
5866 given address. Return the entry if found. */
5867
5868 static removed_literal *
5869 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5870 {
5871 removed_literal_map_entry *p;
5872 removed_literal *r = NULL;
5873
5874 if (removed_list->map == NULL)
5875 map_removed_literal (removed_list);
5876
5877 p = bsearch (&addr, removed_list->map, removed_list->n_map,
5878 sizeof (*removed_list->map), removed_literal_compare);
5879 if (p)
5880 {
5881 while (p != removed_list->map && (p - 1)->addr == addr)
5882 --p;
5883 r = p->literal;
5884 }
5885 return r;
5886 }
5887
5888
5889 #if DEBUG
5890
5891 static void
5892 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
5893 {
5894 removed_literal *r;
5895 r = removed_list->head;
5896 if (r)
5897 fprintf (fp, "Removed Literals\n");
5898 for (; r != NULL; r = r->next)
5899 {
5900 print_r_reloc (fp, &r->from);
5901 fprintf (fp, " => ");
5902 if (r->to.abfd == NULL)
5903 fprintf (fp, "REMOVED");
5904 else
5905 print_r_reloc (fp, &r->to);
5906 fprintf (fp, "\n");
5907 }
5908 }
5909
5910 #endif /* DEBUG */
5911
5912 \f
5913 /* Per-section data for relaxation. */
5914
5915 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
5916
5917 struct xtensa_relax_info_struct
5918 {
5919 bfd_boolean is_relaxable_literal_section;
5920 bfd_boolean is_relaxable_asm_section;
5921 int visited; /* Number of times visited. */
5922
5923 source_reloc *src_relocs; /* Array[src_count]. */
5924 int src_count;
5925 int src_next; /* Next src_relocs entry to assign. */
5926
5927 removed_literal_list removed_list;
5928 text_action_list action_list;
5929
5930 reloc_bfd_fix *fix_list;
5931 reloc_bfd_fix *fix_array;
5932 unsigned fix_array_count;
5933
5934 /* Support for expanding the reloc array that is stored
5935 in the section structure. If the relocations have been
5936 reallocated, the newly allocated relocations will be referenced
5937 here along with the actual size allocated. The relocation
5938 count will always be found in the section structure. */
5939 Elf_Internal_Rela *allocated_relocs;
5940 unsigned relocs_count;
5941 unsigned allocated_relocs_count;
5942 };
5943
5944 struct elf_xtensa_section_data
5945 {
5946 struct bfd_elf_section_data elf;
5947 xtensa_relax_info relax_info;
5948 };
5949
5950
5951 static bfd_boolean
5952 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
5953 {
5954 if (!sec->used_by_bfd)
5955 {
5956 struct elf_xtensa_section_data *sdata;
5957 bfd_size_type amt = sizeof (*sdata);
5958
5959 sdata = bfd_zalloc (abfd, amt);
5960 if (sdata == NULL)
5961 return FALSE;
5962 sec->used_by_bfd = sdata;
5963 }
5964
5965 return _bfd_elf_new_section_hook (abfd, sec);
5966 }
5967
5968
5969 static xtensa_relax_info *
5970 get_xtensa_relax_info (asection *sec)
5971 {
5972 struct elf_xtensa_section_data *section_data;
5973
5974 /* No info available if no section or if it is an output section. */
5975 if (!sec || sec == sec->output_section)
5976 return NULL;
5977
5978 section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
5979 return &section_data->relax_info;
5980 }
5981
5982
5983 static void
5984 init_xtensa_relax_info (asection *sec)
5985 {
5986 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
5987
5988 relax_info->is_relaxable_literal_section = FALSE;
5989 relax_info->is_relaxable_asm_section = FALSE;
5990 relax_info->visited = 0;
5991
5992 relax_info->src_relocs = NULL;
5993 relax_info->src_count = 0;
5994 relax_info->src_next = 0;
5995
5996 relax_info->removed_list.head = NULL;
5997 relax_info->removed_list.tail = NULL;
5998
5999 relax_info->action_list.tree = splay_tree_new (text_action_compare,
6000 NULL, NULL);
6001 relax_info->action_list.map.n_entries = 0;
6002 relax_info->action_list.map.entry = NULL;
6003
6004 relax_info->fix_list = NULL;
6005 relax_info->fix_array = NULL;
6006 relax_info->fix_array_count = 0;
6007
6008 relax_info->allocated_relocs = NULL;
6009 relax_info->relocs_count = 0;
6010 relax_info->allocated_relocs_count = 0;
6011 }
6012
6013 \f
6014 /* Coalescing literals may require a relocation to refer to a section in
6015 a different input file, but the standard relocation information
6016 cannot express that. Instead, the reloc_bfd_fix structures are used
6017 to "fix" the relocations that refer to sections in other input files.
6018 These structures are kept on per-section lists. The "src_type" field
6019 records the relocation type in case there are multiple relocations on
6020 the same location. FIXME: This is ugly; an alternative might be to
6021 add new symbols with the "owner" field to some other input file. */
6022
6023 struct reloc_bfd_fix_struct
6024 {
6025 asection *src_sec;
6026 bfd_vma src_offset;
6027 unsigned src_type; /* Relocation type. */
6028
6029 asection *target_sec;
6030 bfd_vma target_offset;
6031 bfd_boolean translated;
6032
6033 reloc_bfd_fix *next;
6034 };
6035
6036
6037 static reloc_bfd_fix *
6038 reloc_bfd_fix_init (asection *src_sec,
6039 bfd_vma src_offset,
6040 unsigned src_type,
6041 asection *target_sec,
6042 bfd_vma target_offset,
6043 bfd_boolean translated)
6044 {
6045 reloc_bfd_fix *fix;
6046
6047 fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6048 fix->src_sec = src_sec;
6049 fix->src_offset = src_offset;
6050 fix->src_type = src_type;
6051 fix->target_sec = target_sec;
6052 fix->target_offset = target_offset;
6053 fix->translated = translated;
6054
6055 return fix;
6056 }
6057
6058
6059 static void
6060 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6061 {
6062 xtensa_relax_info *relax_info;
6063
6064 relax_info = get_xtensa_relax_info (src_sec);
6065 fix->next = relax_info->fix_list;
6066 relax_info->fix_list = fix;
6067 }
6068
6069
6070 static int
6071 fix_compare (const void *ap, const void *bp)
6072 {
6073 const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6074 const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6075
6076 if (a->src_offset != b->src_offset)
6077 return (a->src_offset - b->src_offset);
6078 return (a->src_type - b->src_type);
6079 }
6080
6081
6082 static void
6083 cache_fix_array (asection *sec)
6084 {
6085 unsigned i, count = 0;
6086 reloc_bfd_fix *r;
6087 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6088
6089 if (relax_info == NULL)
6090 return;
6091 if (relax_info->fix_list == NULL)
6092 return;
6093
6094 for (r = relax_info->fix_list; r != NULL; r = r->next)
6095 count++;
6096
6097 relax_info->fix_array =
6098 (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6099 relax_info->fix_array_count = count;
6100
6101 r = relax_info->fix_list;
6102 for (i = 0; i < count; i++, r = r->next)
6103 {
6104 relax_info->fix_array[count - 1 - i] = *r;
6105 relax_info->fix_array[count - 1 - i].next = NULL;
6106 }
6107
6108 qsort (relax_info->fix_array, relax_info->fix_array_count,
6109 sizeof (reloc_bfd_fix), fix_compare);
6110 }
6111
6112
6113 static reloc_bfd_fix *
6114 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6115 {
6116 xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6117 reloc_bfd_fix *rv;
6118 reloc_bfd_fix key;
6119
6120 if (relax_info == NULL)
6121 return NULL;
6122 if (relax_info->fix_list == NULL)
6123 return NULL;
6124
6125 if (relax_info->fix_array == NULL)
6126 cache_fix_array (sec);
6127
6128 key.src_offset = offset;
6129 key.src_type = type;
6130 rv = bsearch (&key, relax_info->fix_array, relax_info->fix_array_count,
6131 sizeof (reloc_bfd_fix), fix_compare);
6132 return rv;
6133 }
6134
6135 \f
6136 /* Section caching. */
6137
6138 typedef struct section_cache_struct section_cache_t;
6139
6140 struct section_cache_struct
6141 {
6142 asection *sec;
6143
6144 bfd_byte *contents; /* Cache of the section contents. */
6145 bfd_size_type content_length;
6146
6147 property_table_entry *ptbl; /* Cache of the section property table. */
6148 unsigned pte_count;
6149
6150 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6151 unsigned reloc_count;
6152 };
6153
6154
6155 static void
6156 init_section_cache (section_cache_t *sec_cache)
6157 {
6158 memset (sec_cache, 0, sizeof (*sec_cache));
6159 }
6160
6161
6162 static void
6163 free_section_cache (section_cache_t *sec_cache)
6164 {
6165 if (sec_cache->sec)
6166 {
6167 release_contents (sec_cache->sec, sec_cache->contents);
6168 release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6169 if (sec_cache->ptbl)
6170 free (sec_cache->ptbl);
6171 }
6172 }
6173
6174
6175 static bfd_boolean
6176 section_cache_section (section_cache_t *sec_cache,
6177 asection *sec,
6178 struct bfd_link_info *link_info)
6179 {
6180 bfd *abfd;
6181 property_table_entry *prop_table = NULL;
6182 int ptblsize = 0;
6183 bfd_byte *contents = NULL;
6184 Elf_Internal_Rela *internal_relocs = NULL;
6185 bfd_size_type sec_size;
6186
6187 if (sec == NULL)
6188 return FALSE;
6189 if (sec == sec_cache->sec)
6190 return TRUE;
6191
6192 abfd = sec->owner;
6193 sec_size = bfd_get_section_limit (abfd, sec);
6194
6195 /* Get the contents. */
6196 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6197 if (contents == NULL && sec_size != 0)
6198 goto err;
6199
6200 /* Get the relocations. */
6201 internal_relocs = retrieve_internal_relocs (abfd, sec,
6202 link_info->keep_memory);
6203
6204 /* Get the entry table. */
6205 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6206 XTENSA_PROP_SEC_NAME, FALSE);
6207 if (ptblsize < 0)
6208 goto err;
6209
6210 /* Fill in the new section cache. */
6211 free_section_cache (sec_cache);
6212 init_section_cache (sec_cache);
6213
6214 sec_cache->sec = sec;
6215 sec_cache->contents = contents;
6216 sec_cache->content_length = sec_size;
6217 sec_cache->relocs = internal_relocs;
6218 sec_cache->reloc_count = sec->reloc_count;
6219 sec_cache->pte_count = ptblsize;
6220 sec_cache->ptbl = prop_table;
6221
6222 return TRUE;
6223
6224 err:
6225 release_contents (sec, contents);
6226 release_internal_relocs (sec, internal_relocs);
6227 if (prop_table)
6228 free (prop_table);
6229 return FALSE;
6230 }
6231
6232 \f
6233 /* Extended basic blocks. */
6234
6235 /* An ebb_struct represents an Extended Basic Block. Within this
6236 range, we guarantee that all instructions are decodable, the
6237 property table entries are contiguous, and no property table
6238 specifies a segment that cannot have instructions moved. This
6239 structure contains caches of the contents, property table and
6240 relocations for the specified section for easy use. The range is
6241 specified by ranges of indices for the byte offset, property table
6242 offsets and relocation offsets. These must be consistent. */
6243
6244 typedef struct ebb_struct ebb_t;
6245
6246 struct ebb_struct
6247 {
6248 asection *sec;
6249
6250 bfd_byte *contents; /* Cache of the section contents. */
6251 bfd_size_type content_length;
6252
6253 property_table_entry *ptbl; /* Cache of the section property table. */
6254 unsigned pte_count;
6255
6256 Elf_Internal_Rela *relocs; /* Cache of the section relocations. */
6257 unsigned reloc_count;
6258
6259 bfd_vma start_offset; /* Offset in section. */
6260 unsigned start_ptbl_idx; /* Offset in the property table. */
6261 unsigned start_reloc_idx; /* Offset in the relocations. */
6262
6263 bfd_vma end_offset;
6264 unsigned end_ptbl_idx;
6265 unsigned end_reloc_idx;
6266
6267 bfd_boolean ends_section; /* Is this the last ebb in a section? */
6268
6269 /* The unreachable property table at the end of this set of blocks;
6270 NULL if the end is not an unreachable block. */
6271 property_table_entry *ends_unreachable;
6272 };
6273
6274
6275 enum ebb_target_enum
6276 {
6277 EBB_NO_ALIGN = 0,
6278 EBB_DESIRE_TGT_ALIGN,
6279 EBB_REQUIRE_TGT_ALIGN,
6280 EBB_REQUIRE_LOOP_ALIGN,
6281 EBB_REQUIRE_ALIGN
6282 };
6283
6284
6285 /* proposed_action_struct is similar to the text_action_struct except
6286 that is represents a potential transformation, not one that will
6287 occur. We build a list of these for an extended basic block
6288 and use them to compute the actual actions desired. We must be
6289 careful that the entire set of actual actions we perform do not
6290 break any relocations that would fit if the actions were not
6291 performed. */
6292
6293 typedef struct proposed_action_struct proposed_action;
6294
6295 struct proposed_action_struct
6296 {
6297 enum ebb_target_enum align_type; /* for the target alignment */
6298 bfd_vma alignment_pow;
6299 text_action_t action;
6300 bfd_vma offset;
6301 int removed_bytes;
6302 bfd_boolean do_action; /* If false, then we will not perform the action. */
6303 };
6304
6305
6306 /* The ebb_constraint_struct keeps a set of proposed actions for an
6307 extended basic block. */
6308
6309 typedef struct ebb_constraint_struct ebb_constraint;
6310
6311 struct ebb_constraint_struct
6312 {
6313 ebb_t ebb;
6314 bfd_boolean start_movable;
6315
6316 /* Bytes of extra space at the beginning if movable. */
6317 int start_extra_space;
6318
6319 enum ebb_target_enum start_align;
6320
6321 bfd_boolean end_movable;
6322
6323 /* Bytes of extra space at the end if movable. */
6324 int end_extra_space;
6325
6326 unsigned action_count;
6327 unsigned action_allocated;
6328
6329 /* Array of proposed actions. */
6330 proposed_action *actions;
6331
6332 /* Action alignments -- one for each proposed action. */
6333 enum ebb_target_enum *action_aligns;
6334 };
6335
6336
6337 static void
6338 init_ebb_constraint (ebb_constraint *c)
6339 {
6340 memset (c, 0, sizeof (ebb_constraint));
6341 }
6342
6343
6344 static void
6345 free_ebb_constraint (ebb_constraint *c)
6346 {
6347 if (c->actions)
6348 free (c->actions);
6349 }
6350
6351
6352 static void
6353 init_ebb (ebb_t *ebb,
6354 asection *sec,
6355 bfd_byte *contents,
6356 bfd_size_type content_length,
6357 property_table_entry *prop_table,
6358 unsigned ptblsize,
6359 Elf_Internal_Rela *internal_relocs,
6360 unsigned reloc_count)
6361 {
6362 memset (ebb, 0, sizeof (ebb_t));
6363 ebb->sec = sec;
6364 ebb->contents = contents;
6365 ebb->content_length = content_length;
6366 ebb->ptbl = prop_table;
6367 ebb->pte_count = ptblsize;
6368 ebb->relocs = internal_relocs;
6369 ebb->reloc_count = reloc_count;
6370 ebb->start_offset = 0;
6371 ebb->end_offset = ebb->content_length - 1;
6372 ebb->start_ptbl_idx = 0;
6373 ebb->end_ptbl_idx = ptblsize;
6374 ebb->start_reloc_idx = 0;
6375 ebb->end_reloc_idx = reloc_count;
6376 }
6377
6378
6379 /* Extend the ebb to all decodable contiguous sections. The algorithm
6380 for building a basic block around an instruction is to push it
6381 forward until we hit the end of a section, an unreachable block or
6382 a block that cannot be transformed. Then we push it backwards
6383 searching for similar conditions. */
6384
6385 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6386 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6387 static bfd_size_type insn_block_decodable_len
6388 (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6389
6390 static bfd_boolean
6391 extend_ebb_bounds (ebb_t *ebb)
6392 {
6393 if (!extend_ebb_bounds_forward (ebb))
6394 return FALSE;
6395 if (!extend_ebb_bounds_backward (ebb))
6396 return FALSE;
6397 return TRUE;
6398 }
6399
6400
6401 static bfd_boolean
6402 extend_ebb_bounds_forward (ebb_t *ebb)
6403 {
6404 property_table_entry *the_entry, *new_entry;
6405
6406 the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6407
6408 /* Stop when (1) we cannot decode an instruction, (2) we are at
6409 the end of the property tables, (3) we hit a non-contiguous property
6410 table entry, (4) we hit a NO_TRANSFORM region. */
6411
6412 while (1)
6413 {
6414 bfd_vma entry_end;
6415 bfd_size_type insn_block_len;
6416
6417 entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6418 insn_block_len =
6419 insn_block_decodable_len (ebb->contents, ebb->content_length,
6420 ebb->end_offset,
6421 entry_end - ebb->end_offset);
6422 if (insn_block_len != (entry_end - ebb->end_offset))
6423 {
6424 _bfd_error_handler
6425 /* xgettext:c-format */
6426 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6427 "possible configuration mismatch"),
6428 ebb->sec->owner, ebb->sec,
6429 (uint64_t) (ebb->end_offset + insn_block_len));
6430 return FALSE;
6431 }
6432 ebb->end_offset += insn_block_len;
6433
6434 if (ebb->end_offset == ebb->sec->size)
6435 ebb->ends_section = TRUE;
6436
6437 /* Update the reloc counter. */
6438 while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6439 && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6440 < ebb->end_offset))
6441 {
6442 ebb->end_reloc_idx++;
6443 }
6444
6445 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6446 return TRUE;
6447
6448 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6449 if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6450 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6451 || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6452 break;
6453
6454 if (the_entry->address + the_entry->size != new_entry->address)
6455 break;
6456
6457 the_entry = new_entry;
6458 ebb->end_ptbl_idx++;
6459 }
6460
6461 /* Quick check for an unreachable or end of file just at the end. */
6462 if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6463 {
6464 if (ebb->end_offset == ebb->content_length)
6465 ebb->ends_section = TRUE;
6466 }
6467 else
6468 {
6469 new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6470 if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6471 && the_entry->address + the_entry->size == new_entry->address)
6472 ebb->ends_unreachable = new_entry;
6473 }
6474
6475 /* Any other ending requires exact alignment. */
6476 return TRUE;
6477 }
6478
6479
6480 static bfd_boolean
6481 extend_ebb_bounds_backward (ebb_t *ebb)
6482 {
6483 property_table_entry *the_entry, *new_entry;
6484
6485 the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6486
6487 /* Stop when (1) we cannot decode the instructions in the current entry.
6488 (2) we are at the beginning of the property tables, (3) we hit a
6489 non-contiguous property table entry, (4) we hit a NO_TRANSFORM region. */
6490
6491 while (1)
6492 {
6493 bfd_vma block_begin;
6494 bfd_size_type insn_block_len;
6495
6496 block_begin = the_entry->address - ebb->sec->vma;
6497 insn_block_len =
6498 insn_block_decodable_len (ebb->contents, ebb->content_length,
6499 block_begin,
6500 ebb->start_offset - block_begin);
6501 if (insn_block_len != ebb->start_offset - block_begin)
6502 {
6503 _bfd_error_handler
6504 /* xgettext:c-format */
6505 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
6506 "possible configuration mismatch"),
6507 ebb->sec->owner, ebb->sec,
6508 (uint64_t) (ebb->end_offset + insn_block_len));
6509 return FALSE;
6510 }
6511 ebb->start_offset -= insn_block_len;
6512
6513 /* Update the reloc counter. */
6514 while (ebb->start_reloc_idx > 0
6515 && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6516 >= ebb->start_offset))
6517 {
6518 ebb->start_reloc_idx--;
6519 }
6520
6521 if (ebb->start_ptbl_idx == 0)
6522 return TRUE;
6523
6524 new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6525 if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6526 || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6527 || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6528 return TRUE;
6529 if (new_entry->address + new_entry->size != the_entry->address)
6530 return TRUE;
6531
6532 the_entry = new_entry;
6533 ebb->start_ptbl_idx--;
6534 }
6535 return TRUE;
6536 }
6537
6538
6539 static bfd_size_type
6540 insn_block_decodable_len (bfd_byte *contents,
6541 bfd_size_type content_len,
6542 bfd_vma block_offset,
6543 bfd_size_type block_len)
6544 {
6545 bfd_vma offset = block_offset;
6546
6547 while (offset < block_offset + block_len)
6548 {
6549 bfd_size_type insn_len = 0;
6550
6551 insn_len = insn_decode_len (contents, content_len, offset);
6552 if (insn_len == 0)
6553 return (offset - block_offset);
6554 offset += insn_len;
6555 }
6556 return (offset - block_offset);
6557 }
6558
6559
6560 static void
6561 ebb_propose_action (ebb_constraint *c,
6562 enum ebb_target_enum align_type,
6563 bfd_vma alignment_pow,
6564 text_action_t action,
6565 bfd_vma offset,
6566 int removed_bytes,
6567 bfd_boolean do_action)
6568 {
6569 proposed_action *act;
6570
6571 if (c->action_allocated <= c->action_count)
6572 {
6573 unsigned new_allocated, i;
6574 proposed_action *new_actions;
6575
6576 new_allocated = (c->action_count + 2) * 2;
6577 new_actions = (proposed_action *)
6578 bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6579
6580 for (i = 0; i < c->action_count; i++)
6581 new_actions[i] = c->actions[i];
6582 if (c->actions)
6583 free (c->actions);
6584 c->actions = new_actions;
6585 c->action_allocated = new_allocated;
6586 }
6587
6588 act = &c->actions[c->action_count];
6589 act->align_type = align_type;
6590 act->alignment_pow = alignment_pow;
6591 act->action = action;
6592 act->offset = offset;
6593 act->removed_bytes = removed_bytes;
6594 act->do_action = do_action;
6595
6596 c->action_count++;
6597 }
6598
6599 \f
6600 /* Access to internal relocations, section contents and symbols. */
6601
6602 /* During relaxation, we need to modify relocations, section contents,
6603 and symbol definitions, and we need to keep the original values from
6604 being reloaded from the input files, i.e., we need to "pin" the
6605 modified values in memory. We also want to continue to observe the
6606 setting of the "keep-memory" flag. The following functions wrap the
6607 standard BFD functions to take care of this for us. */
6608
6609 static Elf_Internal_Rela *
6610 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6611 {
6612 Elf_Internal_Rela *internal_relocs;
6613
6614 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6615 return NULL;
6616
6617 internal_relocs = elf_section_data (sec)->relocs;
6618 if (internal_relocs == NULL)
6619 internal_relocs = (_bfd_elf_link_read_relocs
6620 (abfd, sec, NULL, NULL, keep_memory));
6621 return internal_relocs;
6622 }
6623
6624
6625 static void
6626 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6627 {
6628 elf_section_data (sec)->relocs = internal_relocs;
6629 }
6630
6631
6632 static void
6633 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6634 {
6635 if (internal_relocs
6636 && elf_section_data (sec)->relocs != internal_relocs)
6637 free (internal_relocs);
6638 }
6639
6640
6641 static bfd_byte *
6642 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6643 {
6644 bfd_byte *contents;
6645 bfd_size_type sec_size;
6646
6647 sec_size = bfd_get_section_limit (abfd, sec);
6648 contents = elf_section_data (sec)->this_hdr.contents;
6649
6650 if (contents == NULL && sec_size != 0)
6651 {
6652 if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6653 {
6654 if (contents)
6655 free (contents);
6656 return NULL;
6657 }
6658 if (keep_memory)
6659 elf_section_data (sec)->this_hdr.contents = contents;
6660 }
6661 return contents;
6662 }
6663
6664
6665 static void
6666 pin_contents (asection *sec, bfd_byte *contents)
6667 {
6668 elf_section_data (sec)->this_hdr.contents = contents;
6669 }
6670
6671
6672 static void
6673 release_contents (asection *sec, bfd_byte *contents)
6674 {
6675 if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6676 free (contents);
6677 }
6678
6679
6680 static Elf_Internal_Sym *
6681 retrieve_local_syms (bfd *input_bfd)
6682 {
6683 Elf_Internal_Shdr *symtab_hdr;
6684 Elf_Internal_Sym *isymbuf;
6685 size_t locsymcount;
6686
6687 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6688 locsymcount = symtab_hdr->sh_info;
6689
6690 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6691 if (isymbuf == NULL && locsymcount != 0)
6692 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6693 NULL, NULL, NULL);
6694
6695 /* Save the symbols for this input file so they won't be read again. */
6696 if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6697 symtab_hdr->contents = (unsigned char *) isymbuf;
6698
6699 return isymbuf;
6700 }
6701
6702 \f
6703 /* Code for link-time relaxation. */
6704
6705 /* Initialization for relaxation: */
6706 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6707 static bfd_boolean find_relaxable_sections
6708 (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6709 static bfd_boolean collect_source_relocs
6710 (bfd *, asection *, struct bfd_link_info *);
6711 static bfd_boolean is_resolvable_asm_expansion
6712 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6713 bfd_boolean *);
6714 static Elf_Internal_Rela *find_associated_l32r_irel
6715 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6716 static bfd_boolean compute_text_actions
6717 (bfd *, asection *, struct bfd_link_info *);
6718 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6719 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6720 typedef struct reloc_range_list_struct reloc_range_list;
6721 static bfd_boolean check_section_ebb_pcrels_fit
6722 (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6723 reloc_range_list *, const ebb_constraint *,
6724 const xtensa_opcode *);
6725 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6726 static void text_action_add_proposed
6727 (text_action_list *, const ebb_constraint *, asection *);
6728 static int compute_fill_extra_space (property_table_entry *);
6729
6730 /* First pass: */
6731 static bfd_boolean compute_removed_literals
6732 (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6733 static Elf_Internal_Rela *get_irel_at_offset
6734 (asection *, Elf_Internal_Rela *, bfd_vma);
6735 static bfd_boolean is_removable_literal
6736 (const source_reloc *, int, const source_reloc *, int, asection *,
6737 property_table_entry *, int);
6738 static bfd_boolean remove_dead_literal
6739 (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6740 Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6741 static bfd_boolean identify_literal_placement
6742 (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6743 value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6744 source_reloc *, property_table_entry *, int, section_cache_t *,
6745 bfd_boolean);
6746 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6747 static bfd_boolean coalesce_shared_literal
6748 (asection *, source_reloc *, property_table_entry *, int, value_map *);
6749 static bfd_boolean move_shared_literal
6750 (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6751 int, const r_reloc *, const literal_value *, section_cache_t *);
6752
6753 /* Second pass: */
6754 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6755 static bfd_boolean translate_section_fixes (asection *);
6756 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6757 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6758 static void shrink_dynamic_reloc_sections
6759 (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6760 static bfd_boolean move_literal
6761 (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6762 xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6763 static bfd_boolean relax_property_section
6764 (bfd *, asection *, struct bfd_link_info *);
6765
6766 /* Third pass: */
6767 static bfd_boolean relax_section_symbols (bfd *, asection *);
6768
6769
6770 static bfd_boolean
6771 elf_xtensa_relax_section (bfd *abfd,
6772 asection *sec,
6773 struct bfd_link_info *link_info,
6774 bfd_boolean *again)
6775 {
6776 static value_map_hash_table *values = NULL;
6777 static bfd_boolean relocations_analyzed = FALSE;
6778 xtensa_relax_info *relax_info;
6779
6780 if (!relocations_analyzed)
6781 {
6782 /* Do some overall initialization for relaxation. */
6783 values = value_map_hash_table_init ();
6784 if (values == NULL)
6785 return FALSE;
6786 relaxing_section = TRUE;
6787 if (!analyze_relocations (link_info))
6788 return FALSE;
6789 relocations_analyzed = TRUE;
6790 }
6791 *again = FALSE;
6792
6793 /* Don't mess with linker-created sections. */
6794 if ((sec->flags & SEC_LINKER_CREATED) != 0)
6795 return TRUE;
6796
6797 relax_info = get_xtensa_relax_info (sec);
6798 BFD_ASSERT (relax_info != NULL);
6799
6800 switch (relax_info->visited)
6801 {
6802 case 0:
6803 /* Note: It would be nice to fold this pass into
6804 analyze_relocations, but it is important for this step that the
6805 sections be examined in link order. */
6806 if (!compute_removed_literals (abfd, sec, link_info, values))
6807 return FALSE;
6808 *again = TRUE;
6809 break;
6810
6811 case 1:
6812 if (values)
6813 value_map_hash_table_delete (values);
6814 values = NULL;
6815 if (!relax_section (abfd, sec, link_info))
6816 return FALSE;
6817 *again = TRUE;
6818 break;
6819
6820 case 2:
6821 if (!relax_section_symbols (abfd, sec))
6822 return FALSE;
6823 break;
6824 }
6825
6826 relax_info->visited++;
6827 return TRUE;
6828 }
6829
6830 \f
6831 /* Initialization for relaxation. */
6832
6833 /* This function is called once at the start of relaxation. It scans
6834 all the input sections and marks the ones that are relaxable (i.e.,
6835 literal sections with L32R relocations against them), and then
6836 collects source_reloc information for all the relocations against
6837 those relaxable sections. During this process, it also detects
6838 longcalls, i.e., calls relaxed by the assembler into indirect
6839 calls, that can be optimized back into direct calls. Within each
6840 extended basic block (ebb) containing an optimized longcall, it
6841 computes a set of "text actions" that can be performed to remove
6842 the L32R associated with the longcall while optionally preserving
6843 branch target alignments. */
6844
6845 static bfd_boolean
6846 analyze_relocations (struct bfd_link_info *link_info)
6847 {
6848 bfd *abfd;
6849 asection *sec;
6850 bfd_boolean is_relaxable = FALSE;
6851
6852 /* Initialize the per-section relaxation info. */
6853 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6854 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6855 {
6856 init_xtensa_relax_info (sec);
6857 }
6858
6859 /* Mark relaxable sections (and count relocations against each one). */
6860 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6861 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6862 {
6863 if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6864 return FALSE;
6865 }
6866
6867 /* Bail out if there are no relaxable sections. */
6868 if (!is_relaxable)
6869 return TRUE;
6870
6871 /* Allocate space for source_relocs. */
6872 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6873 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6874 {
6875 xtensa_relax_info *relax_info;
6876
6877 relax_info = get_xtensa_relax_info (sec);
6878 if (relax_info->is_relaxable_literal_section
6879 || relax_info->is_relaxable_asm_section)
6880 {
6881 relax_info->src_relocs = (source_reloc *)
6882 bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6883 }
6884 else
6885 relax_info->src_count = 0;
6886 }
6887
6888 /* Collect info on relocations against each relaxable section. */
6889 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6890 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6891 {
6892 if (!collect_source_relocs (abfd, sec, link_info))
6893 return FALSE;
6894 }
6895
6896 /* Compute the text actions. */
6897 for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6898 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6899 {
6900 if (!compute_text_actions (abfd, sec, link_info))
6901 return FALSE;
6902 }
6903
6904 return TRUE;
6905 }
6906
6907
6908 /* Find all the sections that might be relaxed. The motivation for
6909 this pass is that collect_source_relocs() needs to record _all_ the
6910 relocations that target each relaxable section. That is expensive
6911 and unnecessary unless the target section is actually going to be
6912 relaxed. This pass identifies all such sections by checking if
6913 they have L32Rs pointing to them. In the process, the total number
6914 of relocations targeting each section is also counted so that we
6915 know how much space to allocate for source_relocs against each
6916 relaxable literal section. */
6917
6918 static bfd_boolean
6919 find_relaxable_sections (bfd *abfd,
6920 asection *sec,
6921 struct bfd_link_info *link_info,
6922 bfd_boolean *is_relaxable_p)
6923 {
6924 Elf_Internal_Rela *internal_relocs;
6925 bfd_byte *contents;
6926 bfd_boolean ok = TRUE;
6927 unsigned i;
6928 xtensa_relax_info *source_relax_info;
6929 bfd_boolean is_l32r_reloc;
6930
6931 internal_relocs = retrieve_internal_relocs (abfd, sec,
6932 link_info->keep_memory);
6933 if (internal_relocs == NULL)
6934 return ok;
6935
6936 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6937 if (contents == NULL && sec->size != 0)
6938 {
6939 ok = FALSE;
6940 goto error_return;
6941 }
6942
6943 source_relax_info = get_xtensa_relax_info (sec);
6944 for (i = 0; i < sec->reloc_count; i++)
6945 {
6946 Elf_Internal_Rela *irel = &internal_relocs[i];
6947 r_reloc r_rel;
6948 asection *target_sec;
6949 xtensa_relax_info *target_relax_info;
6950
6951 /* If this section has not already been marked as "relaxable", and
6952 if it contains any ASM_EXPAND relocations (marking expanded
6953 longcalls) that can be optimized into direct calls, then mark
6954 the section as "relaxable". */
6955 if (source_relax_info
6956 && !source_relax_info->is_relaxable_asm_section
6957 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
6958 {
6959 bfd_boolean is_reachable = FALSE;
6960 if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
6961 link_info, &is_reachable)
6962 && is_reachable)
6963 {
6964 source_relax_info->is_relaxable_asm_section = TRUE;
6965 *is_relaxable_p = TRUE;
6966 }
6967 }
6968
6969 r_reloc_init (&r_rel, abfd, irel, contents,
6970 bfd_get_section_limit (abfd, sec));
6971
6972 target_sec = r_reloc_get_section (&r_rel);
6973 target_relax_info = get_xtensa_relax_info (target_sec);
6974 if (!target_relax_info)
6975 continue;
6976
6977 /* Count PC-relative operand relocations against the target section.
6978 Note: The conditions tested here must match the conditions under
6979 which init_source_reloc is called in collect_source_relocs(). */
6980 is_l32r_reloc = FALSE;
6981 if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
6982 {
6983 xtensa_opcode opcode =
6984 get_relocation_opcode (abfd, sec, contents, irel);
6985 if (opcode != XTENSA_UNDEFINED)
6986 {
6987 is_l32r_reloc = (opcode == get_l32r_opcode ());
6988 if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
6989 || is_l32r_reloc)
6990 target_relax_info->src_count++;
6991 }
6992 }
6993
6994 if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
6995 {
6996 /* Mark the target section as relaxable. */
6997 target_relax_info->is_relaxable_literal_section = TRUE;
6998 *is_relaxable_p = TRUE;
6999 }
7000 }
7001
7002 error_return:
7003 release_contents (sec, contents);
7004 release_internal_relocs (sec, internal_relocs);
7005 return ok;
7006 }
7007
7008
7009 /* Record _all_ the relocations that point to relaxable sections, and
7010 get rid of ASM_EXPAND relocs by either converting them to
7011 ASM_SIMPLIFY or by removing them. */
7012
7013 static bfd_boolean
7014 collect_source_relocs (bfd *abfd,
7015 asection *sec,
7016 struct bfd_link_info *link_info)
7017 {
7018 Elf_Internal_Rela *internal_relocs;
7019 bfd_byte *contents;
7020 bfd_boolean ok = TRUE;
7021 unsigned i;
7022 bfd_size_type sec_size;
7023
7024 internal_relocs = retrieve_internal_relocs (abfd, sec,
7025 link_info->keep_memory);
7026 if (internal_relocs == NULL)
7027 return ok;
7028
7029 sec_size = bfd_get_section_limit (abfd, sec);
7030 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7031 if (contents == NULL && sec_size != 0)
7032 {
7033 ok = FALSE;
7034 goto error_return;
7035 }
7036
7037 /* Record relocations against relaxable literal sections. */
7038 for (i = 0; i < sec->reloc_count; i++)
7039 {
7040 Elf_Internal_Rela *irel = &internal_relocs[i];
7041 r_reloc r_rel;
7042 asection *target_sec;
7043 xtensa_relax_info *target_relax_info;
7044
7045 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7046
7047 target_sec = r_reloc_get_section (&r_rel);
7048 target_relax_info = get_xtensa_relax_info (target_sec);
7049
7050 if (target_relax_info
7051 && (target_relax_info->is_relaxable_literal_section
7052 || target_relax_info->is_relaxable_asm_section))
7053 {
7054 xtensa_opcode opcode = XTENSA_UNDEFINED;
7055 int opnd = -1;
7056 bfd_boolean is_abs_literal = FALSE;
7057
7058 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7059 {
7060 /* None of the current alternate relocs are PC-relative,
7061 and only PC-relative relocs matter here. However, we
7062 still need to record the opcode for literal
7063 coalescing. */
7064 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7065 if (opcode == get_l32r_opcode ())
7066 {
7067 is_abs_literal = TRUE;
7068 opnd = 1;
7069 }
7070 else
7071 opcode = XTENSA_UNDEFINED;
7072 }
7073 else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7074 {
7075 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7076 opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7077 }
7078
7079 if (opcode != XTENSA_UNDEFINED)
7080 {
7081 int src_next = target_relax_info->src_next++;
7082 source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7083
7084 init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7085 is_abs_literal);
7086 }
7087 }
7088 }
7089
7090 /* Now get rid of ASM_EXPAND relocations. At this point, the
7091 src_relocs array for the target literal section may still be
7092 incomplete, but it must at least contain the entries for the L32R
7093 relocations associated with ASM_EXPANDs because they were just
7094 added in the preceding loop over the relocations. */
7095
7096 for (i = 0; i < sec->reloc_count; i++)
7097 {
7098 Elf_Internal_Rela *irel = &internal_relocs[i];
7099 bfd_boolean is_reachable;
7100
7101 if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7102 &is_reachable))
7103 continue;
7104
7105 if (is_reachable)
7106 {
7107 Elf_Internal_Rela *l32r_irel;
7108 r_reloc r_rel;
7109 asection *target_sec;
7110 xtensa_relax_info *target_relax_info;
7111
7112 /* Mark the source_reloc for the L32R so that it will be
7113 removed in compute_removed_literals(), along with the
7114 associated literal. */
7115 l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7116 irel, internal_relocs);
7117 if (l32r_irel == NULL)
7118 continue;
7119
7120 r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7121
7122 target_sec = r_reloc_get_section (&r_rel);
7123 target_relax_info = get_xtensa_relax_info (target_sec);
7124
7125 if (target_relax_info
7126 && (target_relax_info->is_relaxable_literal_section
7127 || target_relax_info->is_relaxable_asm_section))
7128 {
7129 source_reloc *s_reloc;
7130
7131 /* Search the source_relocs for the entry corresponding to
7132 the l32r_irel. Note: The src_relocs array is not yet
7133 sorted, but it wouldn't matter anyway because we're
7134 searching by source offset instead of target offset. */
7135 s_reloc = find_source_reloc (target_relax_info->src_relocs,
7136 target_relax_info->src_next,
7137 sec, l32r_irel);
7138 BFD_ASSERT (s_reloc);
7139 s_reloc->is_null = TRUE;
7140 }
7141
7142 /* Convert this reloc to ASM_SIMPLIFY. */
7143 irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7144 R_XTENSA_ASM_SIMPLIFY);
7145 l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7146
7147 pin_internal_relocs (sec, internal_relocs);
7148 }
7149 else
7150 {
7151 /* It is resolvable but doesn't reach. We resolve now
7152 by eliminating the relocation -- the call will remain
7153 expanded into L32R/CALLX. */
7154 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7155 pin_internal_relocs (sec, internal_relocs);
7156 }
7157 }
7158
7159 error_return:
7160 release_contents (sec, contents);
7161 release_internal_relocs (sec, internal_relocs);
7162 return ok;
7163 }
7164
7165
7166 /* Return TRUE if the asm expansion can be resolved. Generally it can
7167 be resolved on a final link or when a partial link locates it in the
7168 same section as the target. Set "is_reachable" flag if the target of
7169 the call is within the range of a direct call, given the current VMA
7170 for this section and the target section. */
7171
7172 bfd_boolean
7173 is_resolvable_asm_expansion (bfd *abfd,
7174 asection *sec,
7175 bfd_byte *contents,
7176 Elf_Internal_Rela *irel,
7177 struct bfd_link_info *link_info,
7178 bfd_boolean *is_reachable_p)
7179 {
7180 asection *target_sec;
7181 bfd_vma target_offset;
7182 r_reloc r_rel;
7183 xtensa_opcode opcode, direct_call_opcode;
7184 bfd_vma self_address;
7185 bfd_vma dest_address;
7186 bfd_boolean uses_l32r;
7187 bfd_size_type sec_size;
7188
7189 *is_reachable_p = FALSE;
7190
7191 if (contents == NULL)
7192 return FALSE;
7193
7194 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7195 return FALSE;
7196
7197 sec_size = bfd_get_section_limit (abfd, sec);
7198 opcode = get_expanded_call_opcode (contents + irel->r_offset,
7199 sec_size - irel->r_offset, &uses_l32r);
7200 /* Optimization of longcalls that use CONST16 is not yet implemented. */
7201 if (!uses_l32r)
7202 return FALSE;
7203
7204 direct_call_opcode = swap_callx_for_call_opcode (opcode);
7205 if (direct_call_opcode == XTENSA_UNDEFINED)
7206 return FALSE;
7207
7208 /* Check and see that the target resolves. */
7209 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7210 if (!r_reloc_is_defined (&r_rel))
7211 return FALSE;
7212
7213 target_sec = r_reloc_get_section (&r_rel);
7214 target_offset = r_rel.target_offset;
7215
7216 /* If the target is in a shared library, then it doesn't reach. This
7217 isn't supposed to come up because the compiler should never generate
7218 non-PIC calls on systems that use shared libraries, but the linker
7219 shouldn't crash regardless. */
7220 if (!target_sec->output_section)
7221 return FALSE;
7222
7223 /* For relocatable sections, we can only simplify when the output
7224 section of the target is the same as the output section of the
7225 source. */
7226 if (bfd_link_relocatable (link_info)
7227 && (target_sec->output_section != sec->output_section
7228 || is_reloc_sym_weak (abfd, irel)))
7229 return FALSE;
7230
7231 if (target_sec->output_section != sec->output_section)
7232 {
7233 /* If the two sections are sufficiently far away that relaxation
7234 might take the call out of range, we can't simplify. For
7235 example, a positive displacement call into another memory
7236 could get moved to a lower address due to literal removal,
7237 but the destination won't move, and so the displacment might
7238 get larger.
7239
7240 If the displacement is negative, assume the destination could
7241 move as far back as the start of the output section. The
7242 self_address will be at least as far into the output section
7243 as it is prior to relaxation.
7244
7245 If the displacement is postive, assume the destination will be in
7246 it's pre-relaxed location (because relaxation only makes sections
7247 smaller). The self_address could go all the way to the beginning
7248 of the output section. */
7249
7250 dest_address = target_sec->output_section->vma;
7251 self_address = sec->output_section->vma;
7252
7253 if (sec->output_section->vma > target_sec->output_section->vma)
7254 self_address += sec->output_offset + irel->r_offset + 3;
7255 else
7256 dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7257 /* Call targets should be four-byte aligned. */
7258 dest_address = (dest_address + 3) & ~3;
7259 }
7260 else
7261 {
7262
7263 self_address = (sec->output_section->vma
7264 + sec->output_offset + irel->r_offset + 3);
7265 dest_address = (target_sec->output_section->vma
7266 + target_sec->output_offset + target_offset);
7267 }
7268
7269 *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7270 self_address, dest_address);
7271
7272 if ((self_address >> CALL_SEGMENT_BITS) !=
7273 (dest_address >> CALL_SEGMENT_BITS))
7274 return FALSE;
7275
7276 return TRUE;
7277 }
7278
7279
7280 static Elf_Internal_Rela *
7281 find_associated_l32r_irel (bfd *abfd,
7282 asection *sec,
7283 bfd_byte *contents,
7284 Elf_Internal_Rela *other_irel,
7285 Elf_Internal_Rela *internal_relocs)
7286 {
7287 unsigned i;
7288
7289 for (i = 0; i < sec->reloc_count; i++)
7290 {
7291 Elf_Internal_Rela *irel = &internal_relocs[i];
7292
7293 if (irel == other_irel)
7294 continue;
7295 if (irel->r_offset != other_irel->r_offset)
7296 continue;
7297 if (is_l32r_relocation (abfd, sec, contents, irel))
7298 return irel;
7299 }
7300
7301 return NULL;
7302 }
7303
7304
7305 static xtensa_opcode *
7306 build_reloc_opcodes (bfd *abfd,
7307 asection *sec,
7308 bfd_byte *contents,
7309 Elf_Internal_Rela *internal_relocs)
7310 {
7311 unsigned i;
7312 xtensa_opcode *reloc_opcodes =
7313 (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7314 for (i = 0; i < sec->reloc_count; i++)
7315 {
7316 Elf_Internal_Rela *irel = &internal_relocs[i];
7317 reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7318 }
7319 return reloc_opcodes;
7320 }
7321
7322 struct reloc_range_struct
7323 {
7324 bfd_vma addr;
7325 bfd_boolean add; /* TRUE if start of a range, FALSE otherwise. */
7326 /* Original irel index in the array of relocations for a section. */
7327 unsigned irel_index;
7328 };
7329 typedef struct reloc_range_struct reloc_range;
7330
7331 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7332 struct reloc_range_list_entry_struct
7333 {
7334 reloc_range_list_entry *next;
7335 reloc_range_list_entry *prev;
7336 Elf_Internal_Rela *irel;
7337 xtensa_opcode opcode;
7338 int opnum;
7339 };
7340
7341 struct reloc_range_list_struct
7342 {
7343 /* The rest of the structure is only meaningful when ok is TRUE. */
7344 bfd_boolean ok;
7345
7346 unsigned n_range; /* Number of range markers. */
7347 reloc_range *range; /* Sorted range markers. */
7348
7349 unsigned first; /* Index of a first range element in the list. */
7350 unsigned last; /* One past index of a last range element in the list. */
7351
7352 unsigned n_list; /* Number of list elements. */
7353 reloc_range_list_entry *reloc; /* */
7354 reloc_range_list_entry list_root;
7355 };
7356
7357 static int
7358 reloc_range_compare (const void *a, const void *b)
7359 {
7360 const reloc_range *ra = a;
7361 const reloc_range *rb = b;
7362
7363 if (ra->addr != rb->addr)
7364 return ra->addr < rb->addr ? -1 : 1;
7365 if (ra->add != rb->add)
7366 return ra->add ? -1 : 1;
7367 return 0;
7368 }
7369
7370 static void
7371 build_reloc_ranges (bfd *abfd, asection *sec,
7372 bfd_byte *contents,
7373 Elf_Internal_Rela *internal_relocs,
7374 xtensa_opcode *reloc_opcodes,
7375 reloc_range_list *list)
7376 {
7377 unsigned i;
7378 size_t n = 0;
7379 size_t max_n = 0;
7380 reloc_range *ranges = NULL;
7381 reloc_range_list_entry *reloc =
7382 bfd_malloc (sec->reloc_count * sizeof (*reloc));
7383
7384 memset (list, 0, sizeof (*list));
7385 list->ok = TRUE;
7386
7387 for (i = 0; i < sec->reloc_count; i++)
7388 {
7389 Elf_Internal_Rela *irel = &internal_relocs[i];
7390 int r_type = ELF32_R_TYPE (irel->r_info);
7391 reloc_howto_type *howto = &elf_howto_table[r_type];
7392 r_reloc r_rel;
7393
7394 if (r_type == R_XTENSA_ASM_SIMPLIFY
7395 || r_type == R_XTENSA_32_PCREL
7396 || !howto->pc_relative)
7397 continue;
7398
7399 r_reloc_init (&r_rel, abfd, irel, contents,
7400 bfd_get_section_limit (abfd, sec));
7401
7402 if (r_reloc_get_section (&r_rel) != sec)
7403 continue;
7404
7405 if (n + 2 > max_n)
7406 {
7407 max_n = (max_n + 2) * 2;
7408 ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7409 }
7410
7411 ranges[n].addr = irel->r_offset;
7412 ranges[n + 1].addr = r_rel.target_offset;
7413
7414 ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7415 ranges[n + 1].add = !ranges[n].add;
7416
7417 ranges[n].irel_index = i;
7418 ranges[n + 1].irel_index = i;
7419
7420 n += 2;
7421
7422 reloc[i].irel = irel;
7423
7424 /* Every relocation won't possibly be checked in the optimized version of
7425 check_section_ebb_pcrels_fit, so this needs to be done here. */
7426 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7427 {
7428 /* None of the current alternate relocs are PC-relative,
7429 and only PC-relative relocs matter here. */
7430 }
7431 else
7432 {
7433 xtensa_opcode opcode;
7434 int opnum;
7435
7436 if (reloc_opcodes)
7437 opcode = reloc_opcodes[i];
7438 else
7439 opcode = get_relocation_opcode (abfd, sec, contents, irel);
7440
7441 if (opcode == XTENSA_UNDEFINED)
7442 {
7443 list->ok = FALSE;
7444 break;
7445 }
7446
7447 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7448 if (opnum == XTENSA_UNDEFINED)
7449 {
7450 list->ok = FALSE;
7451 break;
7452 }
7453
7454 /* Record relocation opcode and opnum as we've calculated them
7455 anyway and they won't change. */
7456 reloc[i].opcode = opcode;
7457 reloc[i].opnum = opnum;
7458 }
7459 }
7460
7461 if (list->ok)
7462 {
7463 ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7464 qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7465
7466 list->n_range = n;
7467 list->range = ranges;
7468 list->reloc = reloc;
7469 list->list_root.prev = &list->list_root;
7470 list->list_root.next = &list->list_root;
7471 }
7472 else
7473 {
7474 free (ranges);
7475 free (reloc);
7476 }
7477 }
7478
7479 static void reloc_range_list_append (reloc_range_list *list,
7480 unsigned irel_index)
7481 {
7482 reloc_range_list_entry *entry = list->reloc + irel_index;
7483
7484 entry->prev = list->list_root.prev;
7485 entry->next = &list->list_root;
7486 entry->prev->next = entry;
7487 entry->next->prev = entry;
7488 ++list->n_list;
7489 }
7490
7491 static void reloc_range_list_remove (reloc_range_list *list,
7492 unsigned irel_index)
7493 {
7494 reloc_range_list_entry *entry = list->reloc + irel_index;
7495
7496 entry->next->prev = entry->prev;
7497 entry->prev->next = entry->next;
7498 --list->n_list;
7499 }
7500
7501 /* Update relocation list object so that it lists all relocations that cross
7502 [first; last] range. Range bounds should not decrease with successive
7503 invocations. */
7504 static void reloc_range_list_update_range (reloc_range_list *list,
7505 bfd_vma first, bfd_vma last)
7506 {
7507 /* This should not happen: EBBs are iterated from lower addresses to higher.
7508 But even if that happens there's no need to break: just flush current list
7509 and start from scratch. */
7510 if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7511 (list->first > 0 && list->range[list->first - 1].addr >= first))
7512 {
7513 list->first = 0;
7514 list->last = 0;
7515 list->n_list = 0;
7516 list->list_root.next = &list->list_root;
7517 list->list_root.prev = &list->list_root;
7518 fprintf (stderr, "%s: move backwards requested\n", __func__);
7519 }
7520
7521 for (; list->last < list->n_range &&
7522 list->range[list->last].addr <= last; ++list->last)
7523 if (list->range[list->last].add)
7524 reloc_range_list_append (list, list->range[list->last].irel_index);
7525
7526 for (; list->first < list->n_range &&
7527 list->range[list->first].addr < first; ++list->first)
7528 if (!list->range[list->first].add)
7529 reloc_range_list_remove (list, list->range[list->first].irel_index);
7530 }
7531
7532 static void free_reloc_range_list (reloc_range_list *list)
7533 {
7534 free (list->range);
7535 free (list->reloc);
7536 }
7537
7538 /* The compute_text_actions function will build a list of potential
7539 transformation actions for code in the extended basic block of each
7540 longcall that is optimized to a direct call. From this list we
7541 generate a set of actions to actually perform that optimizes for
7542 space and, if not using size_opt, maintains branch target
7543 alignments.
7544
7545 These actions to be performed are placed on a per-section list.
7546 The actual changes are performed by relax_section() in the second
7547 pass. */
7548
7549 bfd_boolean
7550 compute_text_actions (bfd *abfd,
7551 asection *sec,
7552 struct bfd_link_info *link_info)
7553 {
7554 xtensa_opcode *reloc_opcodes = NULL;
7555 xtensa_relax_info *relax_info;
7556 bfd_byte *contents;
7557 Elf_Internal_Rela *internal_relocs;
7558 bfd_boolean ok = TRUE;
7559 unsigned i;
7560 property_table_entry *prop_table = 0;
7561 int ptblsize = 0;
7562 bfd_size_type sec_size;
7563 reloc_range_list relevant_relocs;
7564
7565 relax_info = get_xtensa_relax_info (sec);
7566 BFD_ASSERT (relax_info);
7567 BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7568
7569 /* Do nothing if the section contains no optimized longcalls. */
7570 if (!relax_info->is_relaxable_asm_section)
7571 return ok;
7572
7573 internal_relocs = retrieve_internal_relocs (abfd, sec,
7574 link_info->keep_memory);
7575
7576 if (internal_relocs)
7577 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7578 internal_reloc_compare);
7579
7580 sec_size = bfd_get_section_limit (abfd, sec);
7581 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7582 if (contents == NULL && sec_size != 0)
7583 {
7584 ok = FALSE;
7585 goto error_return;
7586 }
7587
7588 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7589 XTENSA_PROP_SEC_NAME, FALSE);
7590 if (ptblsize < 0)
7591 {
7592 ok = FALSE;
7593 goto error_return;
7594 }
7595
7596 /* Precompute the opcode for each relocation. */
7597 reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7598
7599 build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7600 &relevant_relocs);
7601
7602 for (i = 0; i < sec->reloc_count; i++)
7603 {
7604 Elf_Internal_Rela *irel = &internal_relocs[i];
7605 bfd_vma r_offset;
7606 property_table_entry *the_entry;
7607 int ptbl_idx;
7608 ebb_t *ebb;
7609 ebb_constraint ebb_table;
7610 bfd_size_type simplify_size;
7611
7612 if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7613 continue;
7614 r_offset = irel->r_offset;
7615
7616 simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7617 if (simplify_size == 0)
7618 {
7619 _bfd_error_handler
7620 /* xgettext:c-format */
7621 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction for "
7622 "XTENSA_ASM_SIMPLIFY relocation; "
7623 "possible configuration mismatch"),
7624 sec->owner, sec, (uint64_t) r_offset);
7625 continue;
7626 }
7627
7628 /* If the instruction table is not around, then don't do this
7629 relaxation. */
7630 the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7631 sec->vma + irel->r_offset);
7632 if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7633 {
7634 text_action_add (&relax_info->action_list,
7635 ta_convert_longcall, sec, r_offset,
7636 0);
7637 continue;
7638 }
7639
7640 /* If the next longcall happens to be at the same address as an
7641 unreachable section of size 0, then skip forward. */
7642 ptbl_idx = the_entry - prop_table;
7643 while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7644 && the_entry->size == 0
7645 && ptbl_idx + 1 < ptblsize
7646 && (prop_table[ptbl_idx + 1].address
7647 == prop_table[ptbl_idx].address))
7648 {
7649 ptbl_idx++;
7650 the_entry++;
7651 }
7652
7653 if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7654 /* NO_REORDER is OK */
7655 continue;
7656
7657 init_ebb_constraint (&ebb_table);
7658 ebb = &ebb_table.ebb;
7659 init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7660 internal_relocs, sec->reloc_count);
7661 ebb->start_offset = r_offset + simplify_size;
7662 ebb->end_offset = r_offset + simplify_size;
7663 ebb->start_ptbl_idx = ptbl_idx;
7664 ebb->end_ptbl_idx = ptbl_idx;
7665 ebb->start_reloc_idx = i;
7666 ebb->end_reloc_idx = i;
7667
7668 if (!extend_ebb_bounds (ebb)
7669 || !compute_ebb_proposed_actions (&ebb_table)
7670 || !compute_ebb_actions (&ebb_table)
7671 || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7672 internal_relocs,
7673 &relevant_relocs,
7674 &ebb_table, reloc_opcodes)
7675 || !check_section_ebb_reduces (&ebb_table))
7676 {
7677 /* If anything goes wrong or we get unlucky and something does
7678 not fit, with our plan because of expansion between
7679 critical branches, just convert to a NOP. */
7680
7681 text_action_add (&relax_info->action_list,
7682 ta_convert_longcall, sec, r_offset, 0);
7683 i = ebb_table.ebb.end_reloc_idx;
7684 free_ebb_constraint (&ebb_table);
7685 continue;
7686 }
7687
7688 text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7689
7690 /* Update the index so we do not go looking at the relocations
7691 we have already processed. */
7692 i = ebb_table.ebb.end_reloc_idx;
7693 free_ebb_constraint (&ebb_table);
7694 }
7695
7696 free_reloc_range_list (&relevant_relocs);
7697
7698 #if DEBUG
7699 if (action_list_count (&relax_info->action_list))
7700 print_action_list (stderr, &relax_info->action_list);
7701 #endif
7702
7703 error_return:
7704 release_contents (sec, contents);
7705 release_internal_relocs (sec, internal_relocs);
7706 if (prop_table)
7707 free (prop_table);
7708 if (reloc_opcodes)
7709 free (reloc_opcodes);
7710
7711 return ok;
7712 }
7713
7714
7715 /* Do not widen an instruction if it is preceeded by a
7716 loop opcode. It might cause misalignment. */
7717
7718 static bfd_boolean
7719 prev_instr_is_a_loop (bfd_byte *contents,
7720 bfd_size_type content_length,
7721 bfd_size_type offset)
7722 {
7723 xtensa_opcode prev_opcode;
7724
7725 if (offset < 3)
7726 return FALSE;
7727 prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7728 return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7729 }
7730
7731
7732 /* Find all of the possible actions for an extended basic block. */
7733
7734 bfd_boolean
7735 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7736 {
7737 const ebb_t *ebb = &ebb_table->ebb;
7738 unsigned rel_idx = ebb->start_reloc_idx;
7739 property_table_entry *entry, *start_entry, *end_entry;
7740 bfd_vma offset = 0;
7741 xtensa_isa isa = xtensa_default_isa;
7742 xtensa_format fmt;
7743 static xtensa_insnbuf insnbuf = NULL;
7744 static xtensa_insnbuf slotbuf = NULL;
7745
7746 if (insnbuf == NULL)
7747 {
7748 insnbuf = xtensa_insnbuf_alloc (isa);
7749 slotbuf = xtensa_insnbuf_alloc (isa);
7750 }
7751
7752 start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7753 end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7754
7755 for (entry = start_entry; entry <= end_entry; entry++)
7756 {
7757 bfd_vma start_offset, end_offset;
7758 bfd_size_type insn_len;
7759
7760 start_offset = entry->address - ebb->sec->vma;
7761 end_offset = entry->address + entry->size - ebb->sec->vma;
7762
7763 if (entry == start_entry)
7764 start_offset = ebb->start_offset;
7765 if (entry == end_entry)
7766 end_offset = ebb->end_offset;
7767 offset = start_offset;
7768
7769 if (offset == entry->address - ebb->sec->vma
7770 && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7771 {
7772 enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7773 BFD_ASSERT (offset != end_offset);
7774 if (offset == end_offset)
7775 return FALSE;
7776
7777 insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7778 offset);
7779 if (insn_len == 0)
7780 goto decode_error;
7781
7782 if (check_branch_target_aligned_address (offset, insn_len))
7783 align_type = EBB_REQUIRE_TGT_ALIGN;
7784
7785 ebb_propose_action (ebb_table, align_type, 0,
7786 ta_none, offset, 0, TRUE);
7787 }
7788
7789 while (offset != end_offset)
7790 {
7791 Elf_Internal_Rela *irel;
7792 xtensa_opcode opcode;
7793
7794 while (rel_idx < ebb->end_reloc_idx
7795 && (ebb->relocs[rel_idx].r_offset < offset
7796 || (ebb->relocs[rel_idx].r_offset == offset
7797 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7798 != R_XTENSA_ASM_SIMPLIFY))))
7799 rel_idx++;
7800
7801 /* Check for longcall. */
7802 irel = &ebb->relocs[rel_idx];
7803 if (irel->r_offset == offset
7804 && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7805 {
7806 bfd_size_type simplify_size;
7807
7808 simplify_size = get_asm_simplify_size (ebb->contents,
7809 ebb->content_length,
7810 irel->r_offset);
7811 if (simplify_size == 0)
7812 goto decode_error;
7813
7814 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7815 ta_convert_longcall, offset, 0, TRUE);
7816
7817 offset += simplify_size;
7818 continue;
7819 }
7820
7821 if (offset + MIN_INSN_LENGTH > ebb->content_length)
7822 goto decode_error;
7823 xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7824 ebb->content_length - offset);
7825 fmt = xtensa_format_decode (isa, insnbuf);
7826 if (fmt == XTENSA_UNDEFINED)
7827 goto decode_error;
7828 insn_len = xtensa_format_length (isa, fmt);
7829 if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7830 goto decode_error;
7831
7832 if (xtensa_format_num_slots (isa, fmt) != 1)
7833 {
7834 offset += insn_len;
7835 continue;
7836 }
7837
7838 xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7839 opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7840 if (opcode == XTENSA_UNDEFINED)
7841 goto decode_error;
7842
7843 if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7844 && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7845 && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7846 {
7847 /* Add an instruction narrow action. */
7848 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7849 ta_narrow_insn, offset, 0, FALSE);
7850 }
7851 else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7852 && can_widen_instruction (slotbuf, fmt, opcode) != 0
7853 && ! prev_instr_is_a_loop (ebb->contents,
7854 ebb->content_length, offset))
7855 {
7856 /* Add an instruction widen action. */
7857 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7858 ta_widen_insn, offset, 0, FALSE);
7859 }
7860 else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7861 {
7862 /* Check for branch targets. */
7863 ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7864 ta_none, offset, 0, TRUE);
7865 }
7866
7867 offset += insn_len;
7868 }
7869 }
7870
7871 if (ebb->ends_unreachable)
7872 {
7873 ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7874 ta_fill, ebb->end_offset, 0, TRUE);
7875 }
7876
7877 return TRUE;
7878
7879 decode_error:
7880 _bfd_error_handler
7881 /* xgettext:c-format */
7882 (_("%pB(%pA+%#" PRIx64 "): could not decode instruction; "
7883 "possible configuration mismatch"),
7884 ebb->sec->owner, ebb->sec, (uint64_t) offset);
7885 return FALSE;
7886 }
7887
7888
7889 /* After all of the information has collected about the
7890 transformations possible in an EBB, compute the appropriate actions
7891 here in compute_ebb_actions. We still must check later to make
7892 sure that the actions do not break any relocations. The algorithm
7893 used here is pretty greedy. Basically, it removes as many no-ops
7894 as possible so that the end of the EBB has the same alignment
7895 characteristics as the original. First, it uses narrowing, then
7896 fill space at the end of the EBB, and finally widenings. If that
7897 does not work, it tries again with one fewer no-op removed. The
7898 optimization will only be performed if all of the branch targets
7899 that were aligned before transformation are also aligned after the
7900 transformation.
7901
7902 When the size_opt flag is set, ignore the branch target alignments,
7903 narrow all wide instructions, and remove all no-ops unless the end
7904 of the EBB prevents it. */
7905
7906 bfd_boolean
7907 compute_ebb_actions (ebb_constraint *ebb_table)
7908 {
7909 unsigned i = 0;
7910 unsigned j;
7911 int removed_bytes = 0;
7912 ebb_t *ebb = &ebb_table->ebb;
7913 unsigned seg_idx_start = 0;
7914 unsigned seg_idx_end = 0;
7915
7916 /* We perform this like the assembler relaxation algorithm: Start by
7917 assuming all instructions are narrow and all no-ops removed; then
7918 walk through.... */
7919
7920 /* For each segment of this that has a solid constraint, check to
7921 see if there are any combinations that will keep the constraint.
7922 If so, use it. */
7923 for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
7924 {
7925 bfd_boolean requires_text_end_align = FALSE;
7926 unsigned longcall_count = 0;
7927 unsigned longcall_convert_count = 0;
7928 unsigned narrowable_count = 0;
7929 unsigned narrowable_convert_count = 0;
7930 unsigned widenable_count = 0;
7931 unsigned widenable_convert_count = 0;
7932
7933 proposed_action *action = NULL;
7934 int align = (1 << ebb_table->ebb.sec->alignment_power);
7935
7936 seg_idx_start = seg_idx_end;
7937
7938 for (i = seg_idx_start; i < ebb_table->action_count; i++)
7939 {
7940 action = &ebb_table->actions[i];
7941 if (action->action == ta_convert_longcall)
7942 longcall_count++;
7943 if (action->action == ta_narrow_insn)
7944 narrowable_count++;
7945 if (action->action == ta_widen_insn)
7946 widenable_count++;
7947 if (action->action == ta_fill)
7948 break;
7949 if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
7950 break;
7951 if (action->align_type == EBB_REQUIRE_TGT_ALIGN
7952 && !elf32xtensa_size_opt)
7953 break;
7954 }
7955 seg_idx_end = i;
7956
7957 if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
7958 requires_text_end_align = TRUE;
7959
7960 if (elf32xtensa_size_opt && !requires_text_end_align
7961 && action->align_type != EBB_REQUIRE_LOOP_ALIGN
7962 && action->align_type != EBB_REQUIRE_TGT_ALIGN)
7963 {
7964 longcall_convert_count = longcall_count;
7965 narrowable_convert_count = narrowable_count;
7966 widenable_convert_count = 0;
7967 }
7968 else
7969 {
7970 /* There is a constraint. Convert the max number of longcalls. */
7971 narrowable_convert_count = 0;
7972 longcall_convert_count = 0;
7973 widenable_convert_count = 0;
7974
7975 for (j = 0; j < longcall_count; j++)
7976 {
7977 int removed = (longcall_count - j) * 3 & (align - 1);
7978 unsigned desire_narrow = (align - removed) & (align - 1);
7979 unsigned desire_widen = removed;
7980 if (desire_narrow <= narrowable_count)
7981 {
7982 narrowable_convert_count = desire_narrow;
7983 narrowable_convert_count +=
7984 (align * ((narrowable_count - narrowable_convert_count)
7985 / align));
7986 longcall_convert_count = (longcall_count - j);
7987 widenable_convert_count = 0;
7988 break;
7989 }
7990 if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
7991 {
7992 narrowable_convert_count = 0;
7993 longcall_convert_count = longcall_count - j;
7994 widenable_convert_count = desire_widen;
7995 break;
7996 }
7997 }
7998 }
7999
8000 /* Now the number of conversions are saved. Do them. */
8001 for (i = seg_idx_start; i < seg_idx_end; i++)
8002 {
8003 action = &ebb_table->actions[i];
8004 switch (action->action)
8005 {
8006 case ta_convert_longcall:
8007 if (longcall_convert_count != 0)
8008 {
8009 action->action = ta_remove_longcall;
8010 action->do_action = TRUE;
8011 action->removed_bytes += 3;
8012 longcall_convert_count--;
8013 }
8014 break;
8015 case ta_narrow_insn:
8016 if (narrowable_convert_count != 0)
8017 {
8018 action->do_action = TRUE;
8019 action->removed_bytes += 1;
8020 narrowable_convert_count--;
8021 }
8022 break;
8023 case ta_widen_insn:
8024 if (widenable_convert_count != 0)
8025 {
8026 action->do_action = TRUE;
8027 action->removed_bytes -= 1;
8028 widenable_convert_count--;
8029 }
8030 break;
8031 default:
8032 break;
8033 }
8034 }
8035 }
8036
8037 /* Now we move on to some local opts. Try to remove each of the
8038 remaining longcalls. */
8039
8040 if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8041 {
8042 removed_bytes = 0;
8043 for (i = 0; i < ebb_table->action_count; i++)
8044 {
8045 int old_removed_bytes = removed_bytes;
8046 proposed_action *action = &ebb_table->actions[i];
8047
8048 if (action->do_action && action->action == ta_convert_longcall)
8049 {
8050 bfd_boolean bad_alignment = FALSE;
8051 removed_bytes += 3;
8052 for (j = i + 1; j < ebb_table->action_count; j++)
8053 {
8054 proposed_action *new_action = &ebb_table->actions[j];
8055 bfd_vma offset = new_action->offset;
8056 if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8057 {
8058 if (!check_branch_target_aligned
8059 (ebb_table->ebb.contents,
8060 ebb_table->ebb.content_length,
8061 offset, offset - removed_bytes))
8062 {
8063 bad_alignment = TRUE;
8064 break;
8065 }
8066 }
8067 if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8068 {
8069 if (!check_loop_aligned (ebb_table->ebb.contents,
8070 ebb_table->ebb.content_length,
8071 offset,
8072 offset - removed_bytes))
8073 {
8074 bad_alignment = TRUE;
8075 break;
8076 }
8077 }
8078 if (new_action->action == ta_narrow_insn
8079 && !new_action->do_action
8080 && ebb_table->ebb.sec->alignment_power == 2)
8081 {
8082 /* Narrow an instruction and we are done. */
8083 new_action->do_action = TRUE;
8084 new_action->removed_bytes += 1;
8085 bad_alignment = FALSE;
8086 break;
8087 }
8088 if (new_action->action == ta_widen_insn
8089 && new_action->do_action
8090 && ebb_table->ebb.sec->alignment_power == 2)
8091 {
8092 /* Narrow an instruction and we are done. */
8093 new_action->do_action = FALSE;
8094 new_action->removed_bytes += 1;
8095 bad_alignment = FALSE;
8096 break;
8097 }
8098 if (new_action->do_action)
8099 removed_bytes += new_action->removed_bytes;
8100 }
8101 if (!bad_alignment)
8102 {
8103 action->removed_bytes += 3;
8104 action->action = ta_remove_longcall;
8105 action->do_action = TRUE;
8106 }
8107 }
8108 removed_bytes = old_removed_bytes;
8109 if (action->do_action)
8110 removed_bytes += action->removed_bytes;
8111 }
8112 }
8113
8114 removed_bytes = 0;
8115 for (i = 0; i < ebb_table->action_count; ++i)
8116 {
8117 proposed_action *action = &ebb_table->actions[i];
8118 if (action->do_action)
8119 removed_bytes += action->removed_bytes;
8120 }
8121
8122 if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8123 && ebb->ends_unreachable)
8124 {
8125 proposed_action *action;
8126 int br;
8127 int extra_space;
8128
8129 BFD_ASSERT (ebb_table->action_count != 0);
8130 action = &ebb_table->actions[ebb_table->action_count - 1];
8131 BFD_ASSERT (action->action == ta_fill);
8132 BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8133
8134 extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8135 br = action->removed_bytes + removed_bytes + extra_space;
8136 br = br & ((1 << ebb->sec->alignment_power ) - 1);
8137
8138 action->removed_bytes = extra_space - br;
8139 }
8140 return TRUE;
8141 }
8142
8143
8144 /* The xlate_map is a sorted array of address mappings designed to
8145 answer the offset_with_removed_text() query with a binary search instead
8146 of a linear search through the section's action_list. */
8147
8148 typedef struct xlate_map_entry xlate_map_entry_t;
8149 typedef struct xlate_map xlate_map_t;
8150
8151 struct xlate_map_entry
8152 {
8153 unsigned orig_address;
8154 unsigned new_address;
8155 unsigned size;
8156 };
8157
8158 struct xlate_map
8159 {
8160 unsigned entry_count;
8161 xlate_map_entry_t *entry;
8162 };
8163
8164
8165 static int
8166 xlate_compare (const void *a_v, const void *b_v)
8167 {
8168 const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8169 const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8170 if (a->orig_address < b->orig_address)
8171 return -1;
8172 if (a->orig_address > (b->orig_address + b->size - 1))
8173 return 1;
8174 return 0;
8175 }
8176
8177
8178 static bfd_vma
8179 xlate_offset_with_removed_text (const xlate_map_t *map,
8180 text_action_list *action_list,
8181 bfd_vma offset)
8182 {
8183 void *r;
8184 xlate_map_entry_t *e;
8185
8186 if (map == NULL)
8187 return offset_with_removed_text (action_list, offset);
8188
8189 if (map->entry_count == 0)
8190 return offset;
8191
8192 r = bsearch (&offset, map->entry, map->entry_count,
8193 sizeof (xlate_map_entry_t), &xlate_compare);
8194 e = (xlate_map_entry_t *) r;
8195
8196 BFD_ASSERT (e != NULL);
8197 if (e == NULL)
8198 return offset;
8199 return e->new_address - e->orig_address + offset;
8200 }
8201
8202 typedef struct xlate_map_context_struct xlate_map_context;
8203 struct xlate_map_context_struct
8204 {
8205 xlate_map_t *map;
8206 xlate_map_entry_t *current_entry;
8207 int removed;
8208 };
8209
8210 static int
8211 xlate_map_fn (splay_tree_node node, void *p)
8212 {
8213 text_action *r = (text_action *)node->value;
8214 xlate_map_context *ctx = p;
8215 unsigned orig_size = 0;
8216
8217 switch (r->action)
8218 {
8219 case ta_none:
8220 case ta_remove_insn:
8221 case ta_convert_longcall:
8222 case ta_remove_literal:
8223 case ta_add_literal:
8224 break;
8225 case ta_remove_longcall:
8226 orig_size = 6;
8227 break;
8228 case ta_narrow_insn:
8229 orig_size = 3;
8230 break;
8231 case ta_widen_insn:
8232 orig_size = 2;
8233 break;
8234 case ta_fill:
8235 break;
8236 }
8237 ctx->current_entry->size =
8238 r->offset + orig_size - ctx->current_entry->orig_address;
8239 if (ctx->current_entry->size != 0)
8240 {
8241 ctx->current_entry++;
8242 ctx->map->entry_count++;
8243 }
8244 ctx->current_entry->orig_address = r->offset + orig_size;
8245 ctx->removed += r->removed_bytes;
8246 ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8247 ctx->current_entry->size = 0;
8248 return 0;
8249 }
8250
8251 /* Build a binary searchable offset translation map from a section's
8252 action list. */
8253
8254 static xlate_map_t *
8255 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8256 {
8257 text_action_list *action_list = &relax_info->action_list;
8258 unsigned num_actions = 0;
8259 xlate_map_context ctx;
8260
8261 ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8262
8263 if (ctx.map == NULL)
8264 return NULL;
8265
8266 num_actions = action_list_count (action_list);
8267 ctx.map->entry = (xlate_map_entry_t *)
8268 bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8269 if (ctx.map->entry == NULL)
8270 {
8271 free (ctx.map);
8272 return NULL;
8273 }
8274 ctx.map->entry_count = 0;
8275
8276 ctx.removed = 0;
8277 ctx.current_entry = &ctx.map->entry[0];
8278
8279 ctx.current_entry->orig_address = 0;
8280 ctx.current_entry->new_address = 0;
8281 ctx.current_entry->size = 0;
8282
8283 splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8284
8285 ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8286 - ctx.current_entry->orig_address);
8287 if (ctx.current_entry->size != 0)
8288 ctx.map->entry_count++;
8289
8290 return ctx.map;
8291 }
8292
8293
8294 /* Free an offset translation map. */
8295
8296 static void
8297 free_xlate_map (xlate_map_t *map)
8298 {
8299 if (map && map->entry)
8300 free (map->entry);
8301 if (map)
8302 free (map);
8303 }
8304
8305
8306 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8307 relocations in a section will fit if a proposed set of actions
8308 are performed. */
8309
8310 static bfd_boolean
8311 check_section_ebb_pcrels_fit (bfd *abfd,
8312 asection *sec,
8313 bfd_byte *contents,
8314 Elf_Internal_Rela *internal_relocs,
8315 reloc_range_list *relevant_relocs,
8316 const ebb_constraint *constraint,
8317 const xtensa_opcode *reloc_opcodes)
8318 {
8319 unsigned i, j;
8320 unsigned n = sec->reloc_count;
8321 Elf_Internal_Rela *irel;
8322 xlate_map_t *xmap = NULL;
8323 bfd_boolean ok = TRUE;
8324 xtensa_relax_info *relax_info;
8325 reloc_range_list_entry *entry = NULL;
8326
8327 relax_info = get_xtensa_relax_info (sec);
8328
8329 if (relax_info && sec->reloc_count > 100)
8330 {
8331 xmap = build_xlate_map (sec, relax_info);
8332 /* NULL indicates out of memory, but the slow version
8333 can still be used. */
8334 }
8335
8336 if (relevant_relocs && constraint->action_count)
8337 {
8338 if (!relevant_relocs->ok)
8339 {
8340 ok = FALSE;
8341 n = 0;
8342 }
8343 else
8344 {
8345 bfd_vma min_offset, max_offset;
8346 min_offset = max_offset = constraint->actions[0].offset;
8347
8348 for (i = 1; i < constraint->action_count; ++i)
8349 {
8350 proposed_action *action = &constraint->actions[i];
8351 bfd_vma offset = action->offset;
8352
8353 if (offset < min_offset)
8354 min_offset = offset;
8355 if (offset > max_offset)
8356 max_offset = offset;
8357 }
8358 reloc_range_list_update_range (relevant_relocs, min_offset,
8359 max_offset);
8360 n = relevant_relocs->n_list;
8361 entry = &relevant_relocs->list_root;
8362 }
8363 }
8364 else
8365 {
8366 relevant_relocs = NULL;
8367 }
8368
8369 for (i = 0; i < n; i++)
8370 {
8371 r_reloc r_rel;
8372 bfd_vma orig_self_offset, orig_target_offset;
8373 bfd_vma self_offset, target_offset;
8374 int r_type;
8375 reloc_howto_type *howto;
8376 int self_removed_bytes, target_removed_bytes;
8377
8378 if (relevant_relocs)
8379 {
8380 entry = entry->next;
8381 irel = entry->irel;
8382 }
8383 else
8384 {
8385 irel = internal_relocs + i;
8386 }
8387 r_type = ELF32_R_TYPE (irel->r_info);
8388
8389 howto = &elf_howto_table[r_type];
8390 /* We maintain the required invariant: PC-relative relocations
8391 that fit before linking must fit after linking. Thus we only
8392 need to deal with relocations to the same section that are
8393 PC-relative. */
8394 if (r_type == R_XTENSA_ASM_SIMPLIFY
8395 || r_type == R_XTENSA_32_PCREL
8396 || !howto->pc_relative)
8397 continue;
8398
8399 r_reloc_init (&r_rel, abfd, irel, contents,
8400 bfd_get_section_limit (abfd, sec));
8401
8402 if (r_reloc_get_section (&r_rel) != sec)
8403 continue;
8404
8405 orig_self_offset = irel->r_offset;
8406 orig_target_offset = r_rel.target_offset;
8407
8408 self_offset = orig_self_offset;
8409 target_offset = orig_target_offset;
8410
8411 if (relax_info)
8412 {
8413 self_offset =
8414 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8415 orig_self_offset);
8416 target_offset =
8417 xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8418 orig_target_offset);
8419 }
8420
8421 self_removed_bytes = 0;
8422 target_removed_bytes = 0;
8423
8424 for (j = 0; j < constraint->action_count; ++j)
8425 {
8426 proposed_action *action = &constraint->actions[j];
8427 bfd_vma offset = action->offset;
8428 int removed_bytes = action->removed_bytes;
8429 if (offset < orig_self_offset
8430 || (offset == orig_self_offset && action->action == ta_fill
8431 && action->removed_bytes < 0))
8432 self_removed_bytes += removed_bytes;
8433 if (offset < orig_target_offset
8434 || (offset == orig_target_offset && action->action == ta_fill
8435 && action->removed_bytes < 0))
8436 target_removed_bytes += removed_bytes;
8437 }
8438 self_offset -= self_removed_bytes;
8439 target_offset -= target_removed_bytes;
8440
8441 /* Try to encode it. Get the operand and check. */
8442 if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8443 {
8444 /* None of the current alternate relocs are PC-relative,
8445 and only PC-relative relocs matter here. */
8446 }
8447 else
8448 {
8449 xtensa_opcode opcode;
8450 int opnum;
8451
8452 if (relevant_relocs)
8453 {
8454 opcode = entry->opcode;
8455 opnum = entry->opnum;
8456 }
8457 else
8458 {
8459 if (reloc_opcodes)
8460 opcode = reloc_opcodes[relevant_relocs ?
8461 (unsigned)(entry - relevant_relocs->reloc) : i];
8462 else
8463 opcode = get_relocation_opcode (abfd, sec, contents, irel);
8464 if (opcode == XTENSA_UNDEFINED)
8465 {
8466 ok = FALSE;
8467 break;
8468 }
8469
8470 opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8471 if (opnum == XTENSA_UNDEFINED)
8472 {
8473 ok = FALSE;
8474 break;
8475 }
8476 }
8477
8478 if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8479 {
8480 ok = FALSE;
8481 break;
8482 }
8483 }
8484 }
8485
8486 if (xmap)
8487 free_xlate_map (xmap);
8488
8489 return ok;
8490 }
8491
8492
8493 static bfd_boolean
8494 check_section_ebb_reduces (const ebb_constraint *constraint)
8495 {
8496 int removed = 0;
8497 unsigned i;
8498
8499 for (i = 0; i < constraint->action_count; i++)
8500 {
8501 const proposed_action *action = &constraint->actions[i];
8502 if (action->do_action)
8503 removed += action->removed_bytes;
8504 }
8505 if (removed < 0)
8506 return FALSE;
8507
8508 return TRUE;
8509 }
8510
8511
8512 void
8513 text_action_add_proposed (text_action_list *l,
8514 const ebb_constraint *ebb_table,
8515 asection *sec)
8516 {
8517 unsigned i;
8518
8519 for (i = 0; i < ebb_table->action_count; i++)
8520 {
8521 proposed_action *action = &ebb_table->actions[i];
8522
8523 if (!action->do_action)
8524 continue;
8525 switch (action->action)
8526 {
8527 case ta_remove_insn:
8528 case ta_remove_longcall:
8529 case ta_convert_longcall:
8530 case ta_narrow_insn:
8531 case ta_widen_insn:
8532 case ta_fill:
8533 case ta_remove_literal:
8534 text_action_add (l, action->action, sec, action->offset,
8535 action->removed_bytes);
8536 break;
8537 case ta_none:
8538 break;
8539 default:
8540 BFD_ASSERT (0);
8541 break;
8542 }
8543 }
8544 }
8545
8546
8547 int
8548 compute_fill_extra_space (property_table_entry *entry)
8549 {
8550 int fill_extra_space;
8551
8552 if (!entry)
8553 return 0;
8554
8555 if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8556 return 0;
8557
8558 fill_extra_space = entry->size;
8559 if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8560 {
8561 /* Fill bytes for alignment:
8562 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8563 int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8564 int nsm = (1 << pow) - 1;
8565 bfd_vma addr = entry->address + entry->size;
8566 bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8567 fill_extra_space += align_fill;
8568 }
8569 return fill_extra_space;
8570 }
8571
8572 \f
8573 /* First relaxation pass. */
8574
8575 /* If the section contains relaxable literals, check each literal to
8576 see if it has the same value as another literal that has already
8577 been seen, either in the current section or a previous one. If so,
8578 add an entry to the per-section list of removed literals. The
8579 actual changes are deferred until the next pass. */
8580
8581 static bfd_boolean
8582 compute_removed_literals (bfd *abfd,
8583 asection *sec,
8584 struct bfd_link_info *link_info,
8585 value_map_hash_table *values)
8586 {
8587 xtensa_relax_info *relax_info;
8588 bfd_byte *contents;
8589 Elf_Internal_Rela *internal_relocs;
8590 source_reloc *src_relocs, *rel;
8591 bfd_boolean ok = TRUE;
8592 property_table_entry *prop_table = NULL;
8593 int ptblsize;
8594 int i, prev_i;
8595 bfd_boolean last_loc_is_prev = FALSE;
8596 bfd_vma last_target_offset = 0;
8597 section_cache_t target_sec_cache;
8598 bfd_size_type sec_size;
8599
8600 init_section_cache (&target_sec_cache);
8601
8602 /* Do nothing if it is not a relaxable literal section. */
8603 relax_info = get_xtensa_relax_info (sec);
8604 BFD_ASSERT (relax_info);
8605 if (!relax_info->is_relaxable_literal_section)
8606 return ok;
8607
8608 internal_relocs = retrieve_internal_relocs (abfd, sec,
8609 link_info->keep_memory);
8610
8611 sec_size = bfd_get_section_limit (abfd, sec);
8612 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8613 if (contents == NULL && sec_size != 0)
8614 {
8615 ok = FALSE;
8616 goto error_return;
8617 }
8618
8619 /* Sort the source_relocs by target offset. */
8620 src_relocs = relax_info->src_relocs;
8621 qsort (src_relocs, relax_info->src_count,
8622 sizeof (source_reloc), source_reloc_compare);
8623 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8624 internal_reloc_compare);
8625
8626 ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8627 XTENSA_PROP_SEC_NAME, FALSE);
8628 if (ptblsize < 0)
8629 {
8630 ok = FALSE;
8631 goto error_return;
8632 }
8633
8634 prev_i = -1;
8635 for (i = 0; i < relax_info->src_count; i++)
8636 {
8637 Elf_Internal_Rela *irel = NULL;
8638
8639 rel = &src_relocs[i];
8640 if (get_l32r_opcode () != rel->opcode)
8641 continue;
8642 irel = get_irel_at_offset (sec, internal_relocs,
8643 rel->r_rel.target_offset);
8644
8645 /* If the relocation on this is not a simple R_XTENSA_32 or
8646 R_XTENSA_PLT then do not consider it. This may happen when
8647 the difference of two symbols is used in a literal. */
8648 if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8649 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8650 continue;
8651
8652 /* If the target_offset for this relocation is the same as the
8653 previous relocation, then we've already considered whether the
8654 literal can be coalesced. Skip to the next one.... */
8655 if (i != 0 && prev_i != -1
8656 && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8657 continue;
8658 prev_i = i;
8659
8660 if (last_loc_is_prev &&
8661 last_target_offset + 4 != rel->r_rel.target_offset)
8662 last_loc_is_prev = FALSE;
8663
8664 /* Check if the relocation was from an L32R that is being removed
8665 because a CALLX was converted to a direct CALL, and check if
8666 there are no other relocations to the literal. */
8667 if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8668 sec, prop_table, ptblsize))
8669 {
8670 if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8671 irel, rel, prop_table, ptblsize))
8672 {
8673 ok = FALSE;
8674 goto error_return;
8675 }
8676 last_target_offset = rel->r_rel.target_offset;
8677 continue;
8678 }
8679
8680 if (!identify_literal_placement (abfd, sec, contents, link_info,
8681 values,
8682 &last_loc_is_prev, irel,
8683 relax_info->src_count - i, rel,
8684 prop_table, ptblsize,
8685 &target_sec_cache, rel->is_abs_literal))
8686 {
8687 ok = FALSE;
8688 goto error_return;
8689 }
8690 last_target_offset = rel->r_rel.target_offset;
8691 }
8692
8693 #if DEBUG
8694 print_removed_literals (stderr, &relax_info->removed_list);
8695 print_action_list (stderr, &relax_info->action_list);
8696 #endif /* DEBUG */
8697
8698 error_return:
8699 if (prop_table)
8700 free (prop_table);
8701 free_section_cache (&target_sec_cache);
8702
8703 release_contents (sec, contents);
8704 release_internal_relocs (sec, internal_relocs);
8705 return ok;
8706 }
8707
8708
8709 static Elf_Internal_Rela *
8710 get_irel_at_offset (asection *sec,
8711 Elf_Internal_Rela *internal_relocs,
8712 bfd_vma offset)
8713 {
8714 unsigned i;
8715 Elf_Internal_Rela *irel;
8716 unsigned r_type;
8717 Elf_Internal_Rela key;
8718
8719 if (!internal_relocs)
8720 return NULL;
8721
8722 key.r_offset = offset;
8723 irel = bsearch (&key, internal_relocs, sec->reloc_count,
8724 sizeof (Elf_Internal_Rela), internal_reloc_matches);
8725 if (!irel)
8726 return NULL;
8727
8728 /* bsearch does not guarantee which will be returned if there are
8729 multiple matches. We need the first that is not an alignment. */
8730 i = irel - internal_relocs;
8731 while (i > 0)
8732 {
8733 if (internal_relocs[i-1].r_offset != offset)
8734 break;
8735 i--;
8736 }
8737 for ( ; i < sec->reloc_count; i++)
8738 {
8739 irel = &internal_relocs[i];
8740 r_type = ELF32_R_TYPE (irel->r_info);
8741 if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8742 return irel;
8743 }
8744
8745 return NULL;
8746 }
8747
8748
8749 bfd_boolean
8750 is_removable_literal (const source_reloc *rel,
8751 int i,
8752 const source_reloc *src_relocs,
8753 int src_count,
8754 asection *sec,
8755 property_table_entry *prop_table,
8756 int ptblsize)
8757 {
8758 const source_reloc *curr_rel;
8759 property_table_entry *entry;
8760
8761 if (!rel->is_null)
8762 return FALSE;
8763
8764 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8765 sec->vma + rel->r_rel.target_offset);
8766 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8767 return FALSE;
8768
8769 for (++i; i < src_count; ++i)
8770 {
8771 curr_rel = &src_relocs[i];
8772 /* If all others have the same target offset.... */
8773 if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8774 return TRUE;
8775
8776 if (!curr_rel->is_null
8777 && !xtensa_is_property_section (curr_rel->source_sec)
8778 && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8779 return FALSE;
8780 }
8781 return TRUE;
8782 }
8783
8784
8785 bfd_boolean
8786 remove_dead_literal (bfd *abfd,
8787 asection *sec,
8788 struct bfd_link_info *link_info,
8789 Elf_Internal_Rela *internal_relocs,
8790 Elf_Internal_Rela *irel,
8791 source_reloc *rel,
8792 property_table_entry *prop_table,
8793 int ptblsize)
8794 {
8795 property_table_entry *entry;
8796 xtensa_relax_info *relax_info;
8797
8798 relax_info = get_xtensa_relax_info (sec);
8799 if (!relax_info)
8800 return FALSE;
8801
8802 entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8803 sec->vma + rel->r_rel.target_offset);
8804
8805 /* Mark the unused literal so that it will be removed. */
8806 add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8807
8808 text_action_add (&relax_info->action_list,
8809 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8810
8811 /* If the section is 4-byte aligned, do not add fill. */
8812 if (sec->alignment_power > 2)
8813 {
8814 int fill_extra_space;
8815 bfd_vma entry_sec_offset;
8816 text_action *fa;
8817 property_table_entry *the_add_entry;
8818 int removed_diff;
8819
8820 if (entry)
8821 entry_sec_offset = entry->address - sec->vma + entry->size;
8822 else
8823 entry_sec_offset = rel->r_rel.target_offset + 4;
8824
8825 /* If the literal range is at the end of the section,
8826 do not add fill. */
8827 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8828 entry_sec_offset);
8829 fill_extra_space = compute_fill_extra_space (the_add_entry);
8830
8831 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8832 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8833 -4, fill_extra_space);
8834 if (fa)
8835 adjust_fill_action (fa, removed_diff);
8836 else
8837 text_action_add (&relax_info->action_list,
8838 ta_fill, sec, entry_sec_offset, removed_diff);
8839 }
8840
8841 /* Zero out the relocation on this literal location. */
8842 if (irel)
8843 {
8844 if (elf_hash_table (link_info)->dynamic_sections_created)
8845 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8846
8847 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8848 pin_internal_relocs (sec, internal_relocs);
8849 }
8850
8851 /* Do not modify "last_loc_is_prev". */
8852 return TRUE;
8853 }
8854
8855
8856 bfd_boolean
8857 identify_literal_placement (bfd *abfd,
8858 asection *sec,
8859 bfd_byte *contents,
8860 struct bfd_link_info *link_info,
8861 value_map_hash_table *values,
8862 bfd_boolean *last_loc_is_prev_p,
8863 Elf_Internal_Rela *irel,
8864 int remaining_src_rels,
8865 source_reloc *rel,
8866 property_table_entry *prop_table,
8867 int ptblsize,
8868 section_cache_t *target_sec_cache,
8869 bfd_boolean is_abs_literal)
8870 {
8871 literal_value val;
8872 value_map *val_map;
8873 xtensa_relax_info *relax_info;
8874 bfd_boolean literal_placed = FALSE;
8875 r_reloc r_rel;
8876 unsigned long value;
8877 bfd_boolean final_static_link;
8878 bfd_size_type sec_size;
8879
8880 relax_info = get_xtensa_relax_info (sec);
8881 if (!relax_info)
8882 return FALSE;
8883
8884 sec_size = bfd_get_section_limit (abfd, sec);
8885
8886 final_static_link =
8887 (!bfd_link_relocatable (link_info)
8888 && !elf_hash_table (link_info)->dynamic_sections_created);
8889
8890 /* The placement algorithm first checks to see if the literal is
8891 already in the value map. If so and the value map is reachable
8892 from all uses, then the literal is moved to that location. If
8893 not, then we identify the last location where a fresh literal was
8894 placed. If the literal can be safely moved there, then we do so.
8895 If not, then we assume that the literal is not to move and leave
8896 the literal where it is, marking it as the last literal
8897 location. */
8898
8899 /* Find the literal value. */
8900 value = 0;
8901 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
8902 if (!irel)
8903 {
8904 BFD_ASSERT (rel->r_rel.target_offset < sec_size);
8905 value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
8906 }
8907 init_literal_value (&val, &r_rel, value, is_abs_literal);
8908
8909 /* Check if we've seen another literal with the same value that
8910 is in the same output section. */
8911 val_map = value_map_get_cached_value (values, &val, final_static_link);
8912
8913 if (val_map
8914 && (r_reloc_get_section (&val_map->loc)->output_section
8915 == sec->output_section)
8916 && relocations_reach (rel, remaining_src_rels, &val_map->loc)
8917 && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
8918 {
8919 /* No change to last_loc_is_prev. */
8920 literal_placed = TRUE;
8921 }
8922
8923 /* For relocatable links, do not try to move literals. To do it
8924 correctly might increase the number of relocations in an input
8925 section making the default relocatable linking fail. */
8926 if (!bfd_link_relocatable (link_info) && !literal_placed
8927 && values->has_last_loc && !(*last_loc_is_prev_p))
8928 {
8929 asection *target_sec = r_reloc_get_section (&values->last_loc);
8930 if (target_sec && target_sec->output_section == sec->output_section)
8931 {
8932 /* Increment the virtual offset. */
8933 r_reloc try_loc = values->last_loc;
8934 try_loc.virtual_offset += 4;
8935
8936 /* There is a last loc that was in the same output section. */
8937 if (relocations_reach (rel, remaining_src_rels, &try_loc)
8938 && move_shared_literal (sec, link_info, rel,
8939 prop_table, ptblsize,
8940 &try_loc, &val, target_sec_cache))
8941 {
8942 values->last_loc.virtual_offset += 4;
8943 literal_placed = TRUE;
8944 if (!val_map)
8945 val_map = add_value_map (values, &val, &try_loc,
8946 final_static_link);
8947 else
8948 val_map->loc = try_loc;
8949 }
8950 }
8951 }
8952
8953 if (!literal_placed)
8954 {
8955 /* Nothing worked, leave the literal alone but update the last loc. */
8956 values->has_last_loc = TRUE;
8957 values->last_loc = rel->r_rel;
8958 if (!val_map)
8959 val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
8960 else
8961 val_map->loc = rel->r_rel;
8962 *last_loc_is_prev_p = TRUE;
8963 }
8964
8965 return TRUE;
8966 }
8967
8968
8969 /* Check if the original relocations (presumably on L32R instructions)
8970 identified by reloc[0..N] can be changed to reference the literal
8971 identified by r_rel. If r_rel is out of range for any of the
8972 original relocations, then we don't want to coalesce the original
8973 literal with the one at r_rel. We only check reloc[0..N], where the
8974 offsets are all the same as for reloc[0] (i.e., they're all
8975 referencing the same literal) and where N is also bounded by the
8976 number of remaining entries in the "reloc" array. The "reloc" array
8977 is sorted by target offset so we know all the entries for the same
8978 literal will be contiguous. */
8979
8980 static bfd_boolean
8981 relocations_reach (source_reloc *reloc,
8982 int remaining_relocs,
8983 const r_reloc *r_rel)
8984 {
8985 bfd_vma from_offset, source_address, dest_address;
8986 asection *sec;
8987 int i;
8988
8989 if (!r_reloc_is_defined (r_rel))
8990 return FALSE;
8991
8992 sec = r_reloc_get_section (r_rel);
8993 from_offset = reloc[0].r_rel.target_offset;
8994
8995 for (i = 0; i < remaining_relocs; i++)
8996 {
8997 if (reloc[i].r_rel.target_offset != from_offset)
8998 break;
8999
9000 /* Ignore relocations that have been removed. */
9001 if (reloc[i].is_null)
9002 continue;
9003
9004 /* The original and new output section for these must be the same
9005 in order to coalesce. */
9006 if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9007 != sec->output_section)
9008 return FALSE;
9009
9010 /* Absolute literals in the same output section can always be
9011 combined. */
9012 if (reloc[i].is_abs_literal)
9013 continue;
9014
9015 /* A literal with no PC-relative relocations can be moved anywhere. */
9016 if (reloc[i].opnd != -1)
9017 {
9018 /* Otherwise, check to see that it fits. */
9019 source_address = (reloc[i].source_sec->output_section->vma
9020 + reloc[i].source_sec->output_offset
9021 + reloc[i].r_rel.rela.r_offset);
9022 dest_address = (sec->output_section->vma
9023 + sec->output_offset
9024 + r_rel->target_offset);
9025
9026 if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9027 source_address, dest_address))
9028 return FALSE;
9029 }
9030 }
9031
9032 return TRUE;
9033 }
9034
9035
9036 /* Move a literal to another literal location because it is
9037 the same as the other literal value. */
9038
9039 static bfd_boolean
9040 coalesce_shared_literal (asection *sec,
9041 source_reloc *rel,
9042 property_table_entry *prop_table,
9043 int ptblsize,
9044 value_map *val_map)
9045 {
9046 property_table_entry *entry;
9047 text_action *fa;
9048 property_table_entry *the_add_entry;
9049 int removed_diff;
9050 xtensa_relax_info *relax_info;
9051
9052 relax_info = get_xtensa_relax_info (sec);
9053 if (!relax_info)
9054 return FALSE;
9055
9056 entry = elf_xtensa_find_property_entry
9057 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9058 if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9059 return TRUE;
9060
9061 /* Mark that the literal will be coalesced. */
9062 add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9063
9064 text_action_add (&relax_info->action_list,
9065 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9066
9067 /* If the section is 4-byte aligned, do not add fill. */
9068 if (sec->alignment_power > 2)
9069 {
9070 int fill_extra_space;
9071 bfd_vma entry_sec_offset;
9072
9073 if (entry)
9074 entry_sec_offset = entry->address - sec->vma + entry->size;
9075 else
9076 entry_sec_offset = rel->r_rel.target_offset + 4;
9077
9078 /* If the literal range is at the end of the section,
9079 do not add fill. */
9080 fill_extra_space = 0;
9081 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9082 entry_sec_offset);
9083 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9084 fill_extra_space = the_add_entry->size;
9085
9086 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9087 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9088 -4, fill_extra_space);
9089 if (fa)
9090 adjust_fill_action (fa, removed_diff);
9091 else
9092 text_action_add (&relax_info->action_list,
9093 ta_fill, sec, entry_sec_offset, removed_diff);
9094 }
9095
9096 return TRUE;
9097 }
9098
9099
9100 /* Move a literal to another location. This may actually increase the
9101 total amount of space used because of alignments so we need to do
9102 this carefully. Also, it may make a branch go out of range. */
9103
9104 static bfd_boolean
9105 move_shared_literal (asection *sec,
9106 struct bfd_link_info *link_info,
9107 source_reloc *rel,
9108 property_table_entry *prop_table,
9109 int ptblsize,
9110 const r_reloc *target_loc,
9111 const literal_value *lit_value,
9112 section_cache_t *target_sec_cache)
9113 {
9114 property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9115 text_action *fa, *target_fa;
9116 int removed_diff;
9117 xtensa_relax_info *relax_info, *target_relax_info;
9118 asection *target_sec;
9119 ebb_t *ebb;
9120 ebb_constraint ebb_table;
9121 bfd_boolean relocs_fit;
9122
9123 /* If this routine always returns FALSE, the literals that cannot be
9124 coalesced will not be moved. */
9125 if (elf32xtensa_no_literal_movement)
9126 return FALSE;
9127
9128 relax_info = get_xtensa_relax_info (sec);
9129 if (!relax_info)
9130 return FALSE;
9131
9132 target_sec = r_reloc_get_section (target_loc);
9133 target_relax_info = get_xtensa_relax_info (target_sec);
9134
9135 /* Literals to undefined sections may not be moved because they
9136 must report an error. */
9137 if (bfd_is_und_section (target_sec))
9138 return FALSE;
9139
9140 src_entry = elf_xtensa_find_property_entry
9141 (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9142
9143 if (!section_cache_section (target_sec_cache, target_sec, link_info))
9144 return FALSE;
9145
9146 target_entry = elf_xtensa_find_property_entry
9147 (target_sec_cache->ptbl, target_sec_cache->pte_count,
9148 target_sec->vma + target_loc->target_offset);
9149
9150 if (!target_entry)
9151 return FALSE;
9152
9153 /* Make sure that we have not broken any branches. */
9154 relocs_fit = FALSE;
9155
9156 init_ebb_constraint (&ebb_table);
9157 ebb = &ebb_table.ebb;
9158 init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9159 target_sec_cache->content_length,
9160 target_sec_cache->ptbl, target_sec_cache->pte_count,
9161 target_sec_cache->relocs, target_sec_cache->reloc_count);
9162
9163 /* Propose to add 4 bytes + worst-case alignment size increase to
9164 destination. */
9165 ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9166 ta_fill, target_loc->target_offset,
9167 -4 - (1 << target_sec->alignment_power), TRUE);
9168
9169 /* Check all of the PC-relative relocations to make sure they still fit. */
9170 relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9171 target_sec_cache->contents,
9172 target_sec_cache->relocs, NULL,
9173 &ebb_table, NULL);
9174
9175 if (!relocs_fit)
9176 return FALSE;
9177
9178 text_action_add_literal (&target_relax_info->action_list,
9179 ta_add_literal, target_loc, lit_value, -4);
9180
9181 if (target_sec->alignment_power > 2 && target_entry != src_entry)
9182 {
9183 /* May need to add or remove some fill to maintain alignment. */
9184 int fill_extra_space;
9185 bfd_vma entry_sec_offset;
9186
9187 entry_sec_offset =
9188 target_entry->address - target_sec->vma + target_entry->size;
9189
9190 /* If the literal range is at the end of the section,
9191 do not add fill. */
9192 fill_extra_space = 0;
9193 the_add_entry =
9194 elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9195 target_sec_cache->pte_count,
9196 entry_sec_offset);
9197 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9198 fill_extra_space = the_add_entry->size;
9199
9200 target_fa = find_fill_action (&target_relax_info->action_list,
9201 target_sec, entry_sec_offset);
9202 removed_diff = compute_removed_action_diff (target_fa, target_sec,
9203 entry_sec_offset, 4,
9204 fill_extra_space);
9205 if (target_fa)
9206 adjust_fill_action (target_fa, removed_diff);
9207 else
9208 text_action_add (&target_relax_info->action_list,
9209 ta_fill, target_sec, entry_sec_offset, removed_diff);
9210 }
9211
9212 /* Mark that the literal will be moved to the new location. */
9213 add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9214
9215 /* Remove the literal. */
9216 text_action_add (&relax_info->action_list,
9217 ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9218
9219 /* If the section is 4-byte aligned, do not add fill. */
9220 if (sec->alignment_power > 2 && target_entry != src_entry)
9221 {
9222 int fill_extra_space;
9223 bfd_vma entry_sec_offset;
9224
9225 if (src_entry)
9226 entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9227 else
9228 entry_sec_offset = rel->r_rel.target_offset+4;
9229
9230 /* If the literal range is at the end of the section,
9231 do not add fill. */
9232 fill_extra_space = 0;
9233 the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9234 entry_sec_offset);
9235 if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9236 fill_extra_space = the_add_entry->size;
9237
9238 fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9239 removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9240 -4, fill_extra_space);
9241 if (fa)
9242 adjust_fill_action (fa, removed_diff);
9243 else
9244 text_action_add (&relax_info->action_list,
9245 ta_fill, sec, entry_sec_offset, removed_diff);
9246 }
9247
9248 return TRUE;
9249 }
9250
9251 \f
9252 /* Second relaxation pass. */
9253
9254 static int
9255 action_remove_bytes_fn (splay_tree_node node, void *p)
9256 {
9257 bfd_size_type *final_size = p;
9258 text_action *action = (text_action *)node->value;
9259
9260 *final_size -= action->removed_bytes;
9261 return 0;
9262 }
9263
9264 /* Modify all of the relocations to point to the right spot, and if this
9265 is a relaxable section, delete the unwanted literals and fix the
9266 section size. */
9267
9268 bfd_boolean
9269 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9270 {
9271 Elf_Internal_Rela *internal_relocs;
9272 xtensa_relax_info *relax_info;
9273 bfd_byte *contents;
9274 bfd_boolean ok = TRUE;
9275 unsigned i;
9276 bfd_boolean rv = FALSE;
9277 bfd_boolean virtual_action;
9278 bfd_size_type sec_size;
9279
9280 sec_size = bfd_get_section_limit (abfd, sec);
9281 relax_info = get_xtensa_relax_info (sec);
9282 BFD_ASSERT (relax_info);
9283
9284 /* First translate any of the fixes that have been added already. */
9285 translate_section_fixes (sec);
9286
9287 /* Handle property sections (e.g., literal tables) specially. */
9288 if (xtensa_is_property_section (sec))
9289 {
9290 BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9291 return relax_property_section (abfd, sec, link_info);
9292 }
9293
9294 internal_relocs = retrieve_internal_relocs (abfd, sec,
9295 link_info->keep_memory);
9296 if (!internal_relocs && !action_list_count (&relax_info->action_list))
9297 return TRUE;
9298
9299 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9300 if (contents == NULL && sec_size != 0)
9301 {
9302 ok = FALSE;
9303 goto error_return;
9304 }
9305
9306 if (internal_relocs)
9307 {
9308 for (i = 0; i < sec->reloc_count; i++)
9309 {
9310 Elf_Internal_Rela *irel;
9311 xtensa_relax_info *target_relax_info;
9312 bfd_vma source_offset, old_source_offset;
9313 r_reloc r_rel;
9314 unsigned r_type;
9315 asection *target_sec;
9316
9317 /* Locally change the source address.
9318 Translate the target to the new target address.
9319 If it points to this section and has been removed,
9320 NULLify it.
9321 Write it back. */
9322
9323 irel = &internal_relocs[i];
9324 source_offset = irel->r_offset;
9325 old_source_offset = source_offset;
9326
9327 r_type = ELF32_R_TYPE (irel->r_info);
9328 r_reloc_init (&r_rel, abfd, irel, contents,
9329 bfd_get_section_limit (abfd, sec));
9330
9331 /* If this section could have changed then we may need to
9332 change the relocation's offset. */
9333
9334 if (relax_info->is_relaxable_literal_section
9335 || relax_info->is_relaxable_asm_section)
9336 {
9337 pin_internal_relocs (sec, internal_relocs);
9338
9339 if (r_type != R_XTENSA_NONE
9340 && find_removed_literal (&relax_info->removed_list,
9341 irel->r_offset))
9342 {
9343 /* Remove this relocation. */
9344 if (elf_hash_table (link_info)->dynamic_sections_created)
9345 shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9346 irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9347 irel->r_offset = offset_with_removed_text_map
9348 (&relax_info->action_list, irel->r_offset);
9349 continue;
9350 }
9351
9352 if (r_type == R_XTENSA_ASM_SIMPLIFY)
9353 {
9354 text_action *action =
9355 find_insn_action (&relax_info->action_list,
9356 irel->r_offset);
9357 if (action && (action->action == ta_convert_longcall
9358 || action->action == ta_remove_longcall))
9359 {
9360 bfd_reloc_status_type retval;
9361 char *error_message = NULL;
9362
9363 retval = contract_asm_expansion (contents, sec_size,
9364 irel, &error_message);
9365 if (retval != bfd_reloc_ok)
9366 {
9367 (*link_info->callbacks->reloc_dangerous)
9368 (link_info, error_message, abfd, sec,
9369 irel->r_offset);
9370 goto error_return;
9371 }
9372 /* Update the action so that the code that moves
9373 the contents will do the right thing. */
9374 /* ta_remove_longcall and ta_remove_insn actions are
9375 grouped together in the tree as well as
9376 ta_convert_longcall and ta_none, so that changes below
9377 can be done w/o removing and reinserting action into
9378 the tree. */
9379
9380 if (action->action == ta_remove_longcall)
9381 action->action = ta_remove_insn;
9382 else
9383 action->action = ta_none;
9384 /* Refresh the info in the r_rel. */
9385 r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9386 r_type = ELF32_R_TYPE (irel->r_info);
9387 }
9388 }
9389
9390 source_offset = offset_with_removed_text_map
9391 (&relax_info->action_list, irel->r_offset);
9392 irel->r_offset = source_offset;
9393 }
9394
9395 /* If the target section could have changed then
9396 we may need to change the relocation's target offset. */
9397
9398 target_sec = r_reloc_get_section (&r_rel);
9399
9400 /* For a reference to a discarded section from a DWARF section,
9401 i.e., where action_discarded is PRETEND, the symbol will
9402 eventually be modified to refer to the kept section (at least if
9403 the kept and discarded sections are the same size). Anticipate
9404 that here and adjust things accordingly. */
9405 if (! elf_xtensa_ignore_discarded_relocs (sec)
9406 && elf_xtensa_action_discarded (sec) == PRETEND
9407 && sec->sec_info_type != SEC_INFO_TYPE_STABS
9408 && target_sec != NULL
9409 && discarded_section (target_sec))
9410 {
9411 /* It would be natural to call _bfd_elf_check_kept_section
9412 here, but it's not exported from elflink.c. It's also a
9413 fairly expensive check. Adjusting the relocations to the
9414 discarded section is fairly harmless; it will only adjust
9415 some addends and difference values. If it turns out that
9416 _bfd_elf_check_kept_section fails later, it won't matter,
9417 so just compare the section names to find the right group
9418 member. */
9419 asection *kept = target_sec->kept_section;
9420 if (kept != NULL)
9421 {
9422 if ((kept->flags & SEC_GROUP) != 0)
9423 {
9424 asection *first = elf_next_in_group (kept);
9425 asection *s = first;
9426
9427 kept = NULL;
9428 while (s != NULL)
9429 {
9430 if (strcmp (s->name, target_sec->name) == 0)
9431 {
9432 kept = s;
9433 break;
9434 }
9435 s = elf_next_in_group (s);
9436 if (s == first)
9437 break;
9438 }
9439 }
9440 }
9441 if (kept != NULL
9442 && ((target_sec->rawsize != 0
9443 ? target_sec->rawsize : target_sec->size)
9444 == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9445 target_sec = kept;
9446 }
9447
9448 target_relax_info = get_xtensa_relax_info (target_sec);
9449 if (target_relax_info
9450 && (target_relax_info->is_relaxable_literal_section
9451 || target_relax_info->is_relaxable_asm_section))
9452 {
9453 r_reloc new_reloc;
9454 target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9455
9456 if (r_type == R_XTENSA_DIFF8
9457 || r_type == R_XTENSA_DIFF16
9458 || r_type == R_XTENSA_DIFF32)
9459 {
9460 bfd_signed_vma diff_value = 0;
9461 bfd_vma new_end_offset, diff_mask = 0;
9462
9463 if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9464 {
9465 (*link_info->callbacks->reloc_dangerous)
9466 (link_info, _("invalid relocation address"),
9467 abfd, sec, old_source_offset);
9468 goto error_return;
9469 }
9470
9471 switch (r_type)
9472 {
9473 case R_XTENSA_DIFF8:
9474 diff_value =
9475 bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9476 break;
9477 case R_XTENSA_DIFF16:
9478 diff_value =
9479 bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9480 break;
9481 case R_XTENSA_DIFF32:
9482 diff_value =
9483 bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9484 break;
9485 }
9486
9487 new_end_offset = offset_with_removed_text_map
9488 (&target_relax_info->action_list,
9489 r_rel.target_offset + diff_value);
9490 diff_value = new_end_offset - new_reloc.target_offset;
9491
9492 switch (r_type)
9493 {
9494 case R_XTENSA_DIFF8:
9495 diff_mask = 0x7f;
9496 bfd_put_signed_8 (abfd, diff_value,
9497 &contents[old_source_offset]);
9498 break;
9499 case R_XTENSA_DIFF16:
9500 diff_mask = 0x7fff;
9501 bfd_put_signed_16 (abfd, diff_value,
9502 &contents[old_source_offset]);
9503 break;
9504 case R_XTENSA_DIFF32:
9505 diff_mask = 0x7fffffff;
9506 bfd_put_signed_32 (abfd, diff_value,
9507 &contents[old_source_offset]);
9508 break;
9509 }
9510
9511 /* Check for overflow. Sign bits must be all zeroes or all ones */
9512 if ((diff_value & ~diff_mask) != 0 &&
9513 (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9514 {
9515 (*link_info->callbacks->reloc_dangerous)
9516 (link_info, _("overflow after relaxation"),
9517 abfd, sec, old_source_offset);
9518 goto error_return;
9519 }
9520
9521 pin_contents (sec, contents);
9522 }
9523
9524 /* If the relocation still references a section in the same
9525 input file, modify the relocation directly instead of
9526 adding a "fix" record. */
9527 if (target_sec->owner == abfd)
9528 {
9529 unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9530 irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9531 irel->r_addend = new_reloc.rela.r_addend;
9532 pin_internal_relocs (sec, internal_relocs);
9533 }
9534 else
9535 {
9536 bfd_vma addend_displacement;
9537 reloc_bfd_fix *fix;
9538
9539 addend_displacement =
9540 new_reloc.target_offset + new_reloc.virtual_offset;
9541 fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9542 target_sec,
9543 addend_displacement, TRUE);
9544 add_fix (sec, fix);
9545 }
9546 }
9547 }
9548 }
9549
9550 if ((relax_info->is_relaxable_literal_section
9551 || relax_info->is_relaxable_asm_section)
9552 && action_list_count (&relax_info->action_list))
9553 {
9554 /* Walk through the planned actions and build up a table
9555 of move, copy and fill records. Use the move, copy and
9556 fill records to perform the actions once. */
9557
9558 bfd_size_type final_size, copy_size, orig_insn_size;
9559 bfd_byte *scratch = NULL;
9560 bfd_byte *dup_contents = NULL;
9561 bfd_size_type orig_size = sec->size;
9562 bfd_vma orig_dot = 0;
9563 bfd_vma orig_dot_copied = 0; /* Byte copied already from
9564 orig dot in physical memory. */
9565 bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot. */
9566 bfd_vma dup_dot = 0;
9567
9568 text_action *action;
9569
9570 final_size = sec->size;
9571
9572 splay_tree_foreach (relax_info->action_list.tree,
9573 action_remove_bytes_fn, &final_size);
9574 scratch = (bfd_byte *) bfd_zmalloc (final_size);
9575 dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9576
9577 /* The dot is the current fill location. */
9578 #if DEBUG
9579 print_action_list (stderr, &relax_info->action_list);
9580 #endif
9581
9582 for (action = action_first (&relax_info->action_list); action;
9583 action = action_next (&relax_info->action_list, action))
9584 {
9585 virtual_action = FALSE;
9586 if (action->offset > orig_dot)
9587 {
9588 orig_dot += orig_dot_copied;
9589 orig_dot_copied = 0;
9590 orig_dot_vo = 0;
9591 /* Out of the virtual world. */
9592 }
9593
9594 if (action->offset > orig_dot)
9595 {
9596 copy_size = action->offset - orig_dot;
9597 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9598 orig_dot += copy_size;
9599 dup_dot += copy_size;
9600 BFD_ASSERT (action->offset == orig_dot);
9601 }
9602 else if (action->offset < orig_dot)
9603 {
9604 if (action->action == ta_fill
9605 && action->offset - action->removed_bytes == orig_dot)
9606 {
9607 /* This is OK because the fill only effects the dup_dot. */
9608 }
9609 else if (action->action == ta_add_literal)
9610 {
9611 /* TBD. Might need to handle this. */
9612 }
9613 }
9614 if (action->offset == orig_dot)
9615 {
9616 if (action->virtual_offset > orig_dot_vo)
9617 {
9618 if (orig_dot_vo == 0)
9619 {
9620 /* Need to copy virtual_offset bytes. Probably four. */
9621 copy_size = action->virtual_offset - orig_dot_vo;
9622 memmove (&dup_contents[dup_dot],
9623 &contents[orig_dot], copy_size);
9624 orig_dot_copied = copy_size;
9625 dup_dot += copy_size;
9626 }
9627 virtual_action = TRUE;
9628 }
9629 else
9630 BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9631 }
9632 switch (action->action)
9633 {
9634 case ta_remove_literal:
9635 case ta_remove_insn:
9636 BFD_ASSERT (action->removed_bytes >= 0);
9637 orig_dot += action->removed_bytes;
9638 break;
9639
9640 case ta_narrow_insn:
9641 orig_insn_size = 3;
9642 copy_size = 2;
9643 memmove (scratch, &contents[orig_dot], orig_insn_size);
9644 BFD_ASSERT (action->removed_bytes == 1);
9645 rv = narrow_instruction (scratch, final_size, 0);
9646 BFD_ASSERT (rv);
9647 memmove (&dup_contents[dup_dot], scratch, copy_size);
9648 orig_dot += orig_insn_size;
9649 dup_dot += copy_size;
9650 break;
9651
9652 case ta_fill:
9653 if (action->removed_bytes >= 0)
9654 orig_dot += action->removed_bytes;
9655 else
9656 {
9657 /* Already zeroed in dup_contents. Just bump the
9658 counters. */
9659 dup_dot += (-action->removed_bytes);
9660 }
9661 break;
9662
9663 case ta_none:
9664 BFD_ASSERT (action->removed_bytes == 0);
9665 break;
9666
9667 case ta_convert_longcall:
9668 case ta_remove_longcall:
9669 /* These will be removed or converted before we get here. */
9670 BFD_ASSERT (0);
9671 break;
9672
9673 case ta_widen_insn:
9674 orig_insn_size = 2;
9675 copy_size = 3;
9676 memmove (scratch, &contents[orig_dot], orig_insn_size);
9677 BFD_ASSERT (action->removed_bytes == -1);
9678 rv = widen_instruction (scratch, final_size, 0);
9679 BFD_ASSERT (rv);
9680 memmove (&dup_contents[dup_dot], scratch, copy_size);
9681 orig_dot += orig_insn_size;
9682 dup_dot += copy_size;
9683 break;
9684
9685 case ta_add_literal:
9686 orig_insn_size = 0;
9687 copy_size = 4;
9688 BFD_ASSERT (action->removed_bytes == -4);
9689 /* TBD -- place the literal value here and insert
9690 into the table. */
9691 memset (&dup_contents[dup_dot], 0, 4);
9692 pin_internal_relocs (sec, internal_relocs);
9693 pin_contents (sec, contents);
9694
9695 if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9696 relax_info, &internal_relocs, &action->value))
9697 goto error_return;
9698
9699 if (virtual_action)
9700 orig_dot_vo += copy_size;
9701
9702 orig_dot += orig_insn_size;
9703 dup_dot += copy_size;
9704 break;
9705
9706 default:
9707 /* Not implemented yet. */
9708 BFD_ASSERT (0);
9709 break;
9710 }
9711
9712 BFD_ASSERT (dup_dot <= final_size);
9713 BFD_ASSERT (orig_dot <= orig_size);
9714 }
9715
9716 orig_dot += orig_dot_copied;
9717 orig_dot_copied = 0;
9718
9719 if (orig_dot != orig_size)
9720 {
9721 copy_size = orig_size - orig_dot;
9722 BFD_ASSERT (orig_size > orig_dot);
9723 BFD_ASSERT (dup_dot + copy_size == final_size);
9724 memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9725 orig_dot += copy_size;
9726 dup_dot += copy_size;
9727 }
9728 BFD_ASSERT (orig_size == orig_dot);
9729 BFD_ASSERT (final_size == dup_dot);
9730
9731 /* Move the dup_contents back. */
9732 if (final_size > orig_size)
9733 {
9734 /* Contents need to be reallocated. Swap the dup_contents into
9735 contents. */
9736 sec->contents = dup_contents;
9737 free (contents);
9738 contents = dup_contents;
9739 pin_contents (sec, contents);
9740 }
9741 else
9742 {
9743 BFD_ASSERT (final_size <= orig_size);
9744 memset (contents, 0, orig_size);
9745 memcpy (contents, dup_contents, final_size);
9746 free (dup_contents);
9747 }
9748 free (scratch);
9749 pin_contents (sec, contents);
9750
9751 if (sec->rawsize == 0)
9752 sec->rawsize = sec->size;
9753 sec->size = final_size;
9754 }
9755
9756 error_return:
9757 release_internal_relocs (sec, internal_relocs);
9758 release_contents (sec, contents);
9759 return ok;
9760 }
9761
9762
9763 static bfd_boolean
9764 translate_section_fixes (asection *sec)
9765 {
9766 xtensa_relax_info *relax_info;
9767 reloc_bfd_fix *r;
9768
9769 relax_info = get_xtensa_relax_info (sec);
9770 if (!relax_info)
9771 return TRUE;
9772
9773 for (r = relax_info->fix_list; r != NULL; r = r->next)
9774 if (!translate_reloc_bfd_fix (r))
9775 return FALSE;
9776
9777 return TRUE;
9778 }
9779
9780
9781 /* Translate a fix given the mapping in the relax info for the target
9782 section. If it has already been translated, no work is required. */
9783
9784 static bfd_boolean
9785 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9786 {
9787 reloc_bfd_fix new_fix;
9788 asection *sec;
9789 xtensa_relax_info *relax_info;
9790 removed_literal *removed;
9791 bfd_vma new_offset, target_offset;
9792
9793 if (fix->translated)
9794 return TRUE;
9795
9796 sec = fix->target_sec;
9797 target_offset = fix->target_offset;
9798
9799 relax_info = get_xtensa_relax_info (sec);
9800 if (!relax_info)
9801 {
9802 fix->translated = TRUE;
9803 return TRUE;
9804 }
9805
9806 new_fix = *fix;
9807
9808 /* The fix does not need to be translated if the section cannot change. */
9809 if (!relax_info->is_relaxable_literal_section
9810 && !relax_info->is_relaxable_asm_section)
9811 {
9812 fix->translated = TRUE;
9813 return TRUE;
9814 }
9815
9816 /* If the literal has been moved and this relocation was on an
9817 opcode, then the relocation should move to the new literal
9818 location. Otherwise, the relocation should move within the
9819 section. */
9820
9821 removed = FALSE;
9822 if (is_operand_relocation (fix->src_type))
9823 {
9824 /* Check if the original relocation is against a literal being
9825 removed. */
9826 removed = find_removed_literal (&relax_info->removed_list,
9827 target_offset);
9828 }
9829
9830 if (removed)
9831 {
9832 asection *new_sec;
9833
9834 /* The fact that there is still a relocation to this literal indicates
9835 that the literal is being coalesced, not simply removed. */
9836 BFD_ASSERT (removed->to.abfd != NULL);
9837
9838 /* This was moved to some other address (possibly another section). */
9839 new_sec = r_reloc_get_section (&removed->to);
9840 if (new_sec != sec)
9841 {
9842 sec = new_sec;
9843 relax_info = get_xtensa_relax_info (sec);
9844 if (!relax_info ||
9845 (!relax_info->is_relaxable_literal_section
9846 && !relax_info->is_relaxable_asm_section))
9847 {
9848 target_offset = removed->to.target_offset;
9849 new_fix.target_sec = new_sec;
9850 new_fix.target_offset = target_offset;
9851 new_fix.translated = TRUE;
9852 *fix = new_fix;
9853 return TRUE;
9854 }
9855 }
9856 target_offset = removed->to.target_offset;
9857 new_fix.target_sec = new_sec;
9858 }
9859
9860 /* The target address may have been moved within its section. */
9861 new_offset = offset_with_removed_text (&relax_info->action_list,
9862 target_offset);
9863
9864 new_fix.target_offset = new_offset;
9865 new_fix.target_offset = new_offset;
9866 new_fix.translated = TRUE;
9867 *fix = new_fix;
9868 return TRUE;
9869 }
9870
9871
9872 /* Fix up a relocation to take account of removed literals. */
9873
9874 static asection *
9875 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9876 {
9877 xtensa_relax_info *relax_info;
9878 removed_literal *removed;
9879 bfd_vma target_offset, base_offset;
9880
9881 *new_rel = *orig_rel;
9882
9883 if (!r_reloc_is_defined (orig_rel))
9884 return sec ;
9885
9886 relax_info = get_xtensa_relax_info (sec);
9887 BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9888 || relax_info->is_relaxable_asm_section));
9889
9890 target_offset = orig_rel->target_offset;
9891
9892 removed = FALSE;
9893 if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9894 {
9895 /* Check if the original relocation is against a literal being
9896 removed. */
9897 removed = find_removed_literal (&relax_info->removed_list,
9898 target_offset);
9899 }
9900 if (removed && removed->to.abfd)
9901 {
9902 asection *new_sec;
9903
9904 /* The fact that there is still a relocation to this literal indicates
9905 that the literal is being coalesced, not simply removed. */
9906 BFD_ASSERT (removed->to.abfd != NULL);
9907
9908 /* This was moved to some other address
9909 (possibly in another section). */
9910 *new_rel = removed->to;
9911 new_sec = r_reloc_get_section (new_rel);
9912 if (new_sec != sec)
9913 {
9914 sec = new_sec;
9915 relax_info = get_xtensa_relax_info (sec);
9916 if (!relax_info
9917 || (!relax_info->is_relaxable_literal_section
9918 && !relax_info->is_relaxable_asm_section))
9919 return sec;
9920 }
9921 target_offset = new_rel->target_offset;
9922 }
9923
9924 /* Find the base offset of the reloc symbol, excluding any addend from the
9925 reloc or from the section contents (for a partial_inplace reloc). Then
9926 find the adjusted values of the offsets due to relaxation. The base
9927 offset is needed to determine the change to the reloc's addend; the reloc
9928 addend should not be adjusted due to relaxations located before the base
9929 offset. */
9930
9931 base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
9932 if (base_offset <= target_offset)
9933 {
9934 int base_removed = removed_by_actions_map (&relax_info->action_list,
9935 base_offset, FALSE);
9936 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9937 target_offset, FALSE) -
9938 base_removed;
9939
9940 new_rel->target_offset = target_offset - base_removed - addend_removed;
9941 new_rel->rela.r_addend -= addend_removed;
9942 }
9943 else
9944 {
9945 /* Handle a negative addend. The base offset comes first. */
9946 int tgt_removed = removed_by_actions_map (&relax_info->action_list,
9947 target_offset, FALSE);
9948 int addend_removed = removed_by_actions_map (&relax_info->action_list,
9949 base_offset, FALSE) -
9950 tgt_removed;
9951
9952 new_rel->target_offset = target_offset - tgt_removed;
9953 new_rel->rela.r_addend += addend_removed;
9954 }
9955
9956 return sec;
9957 }
9958
9959
9960 /* For dynamic links, there may be a dynamic relocation for each
9961 literal. The number of dynamic relocations must be computed in
9962 size_dynamic_sections, which occurs before relaxation. When a
9963 literal is removed, this function checks if there is a corresponding
9964 dynamic relocation and shrinks the size of the appropriate dynamic
9965 relocation section accordingly. At this point, the contents of the
9966 dynamic relocation sections have not yet been filled in, so there's
9967 nothing else that needs to be done. */
9968
9969 static void
9970 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
9971 bfd *abfd,
9972 asection *input_section,
9973 Elf_Internal_Rela *rel)
9974 {
9975 struct elf_xtensa_link_hash_table *htab;
9976 Elf_Internal_Shdr *symtab_hdr;
9977 struct elf_link_hash_entry **sym_hashes;
9978 unsigned long r_symndx;
9979 int r_type;
9980 struct elf_link_hash_entry *h;
9981 bfd_boolean dynamic_symbol;
9982
9983 htab = elf_xtensa_hash_table (info);
9984 if (htab == NULL)
9985 return;
9986
9987 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
9988 sym_hashes = elf_sym_hashes (abfd);
9989
9990 r_type = ELF32_R_TYPE (rel->r_info);
9991 r_symndx = ELF32_R_SYM (rel->r_info);
9992
9993 if (r_symndx < symtab_hdr->sh_info)
9994 h = NULL;
9995 else
9996 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9997
9998 dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
9999
10000 if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10001 && (input_section->flags & SEC_ALLOC) != 0
10002 && (dynamic_symbol || bfd_link_pic (info)))
10003 {
10004 asection *srel;
10005 bfd_boolean is_plt = FALSE;
10006
10007 if (dynamic_symbol && r_type == R_XTENSA_PLT)
10008 {
10009 srel = htab->elf.srelplt;
10010 is_plt = TRUE;
10011 }
10012 else
10013 srel = htab->elf.srelgot;
10014
10015 /* Reduce size of the .rela.* section by one reloc. */
10016 BFD_ASSERT (srel != NULL);
10017 BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10018 srel->size -= sizeof (Elf32_External_Rela);
10019
10020 if (is_plt)
10021 {
10022 asection *splt, *sgotplt, *srelgot;
10023 int reloc_index, chunk;
10024
10025 /* Find the PLT reloc index of the entry being removed. This
10026 is computed from the size of ".rela.plt". It is needed to
10027 figure out which PLT chunk to resize. Usually "last index
10028 = size - 1" since the index starts at zero, but in this
10029 context, the size has just been decremented so there's no
10030 need to subtract one. */
10031 reloc_index = srel->size / sizeof (Elf32_External_Rela);
10032
10033 chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10034 splt = elf_xtensa_get_plt_section (info, chunk);
10035 sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10036 BFD_ASSERT (splt != NULL && sgotplt != NULL);
10037
10038 /* Check if an entire PLT chunk has just been eliminated. */
10039 if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10040 {
10041 /* The two magic GOT entries for that chunk can go away. */
10042 srelgot = htab->elf.srelgot;
10043 BFD_ASSERT (srelgot != NULL);
10044 srelgot->reloc_count -= 2;
10045 srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10046 sgotplt->size -= 8;
10047
10048 /* There should be only one entry left (and it will be
10049 removed below). */
10050 BFD_ASSERT (sgotplt->size == 4);
10051 BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10052 }
10053
10054 BFD_ASSERT (sgotplt->size >= 4);
10055 BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10056
10057 sgotplt->size -= 4;
10058 splt->size -= PLT_ENTRY_SIZE;
10059 }
10060 }
10061 }
10062
10063
10064 /* Take an r_rel and move it to another section. This usually
10065 requires extending the interal_relocation array and pinning it. If
10066 the original r_rel is from the same BFD, we can complete this here.
10067 Otherwise, we add a fix record to let the final link fix the
10068 appropriate address. Contents and internal relocations for the
10069 section must be pinned after calling this routine. */
10070
10071 static bfd_boolean
10072 move_literal (bfd *abfd,
10073 struct bfd_link_info *link_info,
10074 asection *sec,
10075 bfd_vma offset,
10076 bfd_byte *contents,
10077 xtensa_relax_info *relax_info,
10078 Elf_Internal_Rela **internal_relocs_p,
10079 const literal_value *lit)
10080 {
10081 Elf_Internal_Rela *new_relocs = NULL;
10082 size_t new_relocs_count = 0;
10083 Elf_Internal_Rela this_rela;
10084 const r_reloc *r_rel;
10085
10086 r_rel = &lit->r_rel;
10087 BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10088
10089 if (r_reloc_is_const (r_rel))
10090 bfd_put_32 (abfd, lit->value, contents + offset);
10091 else
10092 {
10093 int r_type;
10094 unsigned i;
10095 reloc_bfd_fix *fix;
10096 unsigned insert_at;
10097
10098 r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10099
10100 /* This is the difficult case. We have to create a fix up. */
10101 this_rela.r_offset = offset;
10102 this_rela.r_info = ELF32_R_INFO (0, r_type);
10103 this_rela.r_addend =
10104 r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10105 bfd_put_32 (abfd, lit->value, contents + offset);
10106
10107 /* Currently, we cannot move relocations during a relocatable link. */
10108 BFD_ASSERT (!bfd_link_relocatable (link_info));
10109 fix = reloc_bfd_fix_init (sec, offset, r_type,
10110 r_reloc_get_section (r_rel),
10111 r_rel->target_offset + r_rel->virtual_offset,
10112 FALSE);
10113 /* We also need to mark that relocations are needed here. */
10114 sec->flags |= SEC_RELOC;
10115
10116 translate_reloc_bfd_fix (fix);
10117 /* This fix has not yet been translated. */
10118 add_fix (sec, fix);
10119
10120 /* Add the relocation. If we have already allocated our own
10121 space for the relocations and we have room for more, then use
10122 it. Otherwise, allocate new space and move the literals. */
10123 insert_at = sec->reloc_count;
10124 for (i = 0; i < sec->reloc_count; ++i)
10125 {
10126 if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10127 {
10128 insert_at = i;
10129 break;
10130 }
10131 }
10132
10133 if (*internal_relocs_p != relax_info->allocated_relocs
10134 || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10135 {
10136 BFD_ASSERT (relax_info->allocated_relocs == NULL
10137 || sec->reloc_count == relax_info->relocs_count);
10138
10139 if (relax_info->allocated_relocs_count == 0)
10140 new_relocs_count = (sec->reloc_count + 2) * 2;
10141 else
10142 new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10143
10144 new_relocs = (Elf_Internal_Rela *)
10145 bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10146 if (!new_relocs)
10147 return FALSE;
10148
10149 /* We could handle this more quickly by finding the split point. */
10150 if (insert_at != 0)
10151 memcpy (new_relocs, *internal_relocs_p,
10152 insert_at * sizeof (Elf_Internal_Rela));
10153
10154 new_relocs[insert_at] = this_rela;
10155
10156 if (insert_at != sec->reloc_count)
10157 memcpy (new_relocs + insert_at + 1,
10158 (*internal_relocs_p) + insert_at,
10159 (sec->reloc_count - insert_at)
10160 * sizeof (Elf_Internal_Rela));
10161
10162 if (*internal_relocs_p != relax_info->allocated_relocs)
10163 {
10164 /* The first time we re-allocate, we can only free the
10165 old relocs if they were allocated with bfd_malloc.
10166 This is not true when keep_memory is in effect. */
10167 if (!link_info->keep_memory)
10168 free (*internal_relocs_p);
10169 }
10170 else
10171 free (*internal_relocs_p);
10172 relax_info->allocated_relocs = new_relocs;
10173 relax_info->allocated_relocs_count = new_relocs_count;
10174 elf_section_data (sec)->relocs = new_relocs;
10175 sec->reloc_count++;
10176 relax_info->relocs_count = sec->reloc_count;
10177 *internal_relocs_p = new_relocs;
10178 }
10179 else
10180 {
10181 if (insert_at != sec->reloc_count)
10182 {
10183 unsigned idx;
10184 for (idx = sec->reloc_count; idx > insert_at; idx--)
10185 (*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10186 }
10187 (*internal_relocs_p)[insert_at] = this_rela;
10188 sec->reloc_count++;
10189 if (relax_info->allocated_relocs)
10190 relax_info->relocs_count = sec->reloc_count;
10191 }
10192 }
10193 return TRUE;
10194 }
10195
10196
10197 /* This is similar to relax_section except that when a target is moved,
10198 we shift addresses up. We also need to modify the size. This
10199 algorithm does NOT allow for relocations into the middle of the
10200 property sections. */
10201
10202 static bfd_boolean
10203 relax_property_section (bfd *abfd,
10204 asection *sec,
10205 struct bfd_link_info *link_info)
10206 {
10207 Elf_Internal_Rela *internal_relocs;
10208 bfd_byte *contents;
10209 unsigned i;
10210 bfd_boolean ok = TRUE;
10211 bfd_boolean is_full_prop_section;
10212 size_t last_zfill_target_offset = 0;
10213 asection *last_zfill_target_sec = NULL;
10214 bfd_size_type sec_size;
10215 bfd_size_type entry_size;
10216
10217 sec_size = bfd_get_section_limit (abfd, sec);
10218 internal_relocs = retrieve_internal_relocs (abfd, sec,
10219 link_info->keep_memory);
10220 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10221 if (contents == NULL && sec_size != 0)
10222 {
10223 ok = FALSE;
10224 goto error_return;
10225 }
10226
10227 is_full_prop_section = xtensa_is_proptable_section (sec);
10228 if (is_full_prop_section)
10229 entry_size = 12;
10230 else
10231 entry_size = 8;
10232
10233 if (internal_relocs)
10234 {
10235 for (i = 0; i < sec->reloc_count; i++)
10236 {
10237 Elf_Internal_Rela *irel;
10238 xtensa_relax_info *target_relax_info;
10239 unsigned r_type;
10240 asection *target_sec;
10241 literal_value val;
10242 bfd_byte *size_p, *flags_p;
10243
10244 /* Locally change the source address.
10245 Translate the target to the new target address.
10246 If it points to this section and has been removed, MOVE IT.
10247 Also, don't forget to modify the associated SIZE at
10248 (offset + 4). */
10249
10250 irel = &internal_relocs[i];
10251 r_type = ELF32_R_TYPE (irel->r_info);
10252 if (r_type == R_XTENSA_NONE)
10253 continue;
10254
10255 /* Find the literal value. */
10256 r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10257 size_p = &contents[irel->r_offset + 4];
10258 flags_p = NULL;
10259 if (is_full_prop_section)
10260 flags_p = &contents[irel->r_offset + 8];
10261 BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10262
10263 target_sec = r_reloc_get_section (&val.r_rel);
10264 target_relax_info = get_xtensa_relax_info (target_sec);
10265
10266 if (target_relax_info
10267 && (target_relax_info->is_relaxable_literal_section
10268 || target_relax_info->is_relaxable_asm_section ))
10269 {
10270 /* Translate the relocation's destination. */
10271 bfd_vma old_offset = val.r_rel.target_offset;
10272 bfd_vma new_offset;
10273 long old_size, new_size;
10274 int removed_by_old_offset =
10275 removed_by_actions_map (&target_relax_info->action_list,
10276 old_offset, FALSE);
10277 new_offset = old_offset - removed_by_old_offset;
10278
10279 /* Assert that we are not out of bounds. */
10280 old_size = bfd_get_32 (abfd, size_p);
10281 new_size = old_size;
10282
10283 if (old_size == 0)
10284 {
10285 /* Only the first zero-sized unreachable entry is
10286 allowed to expand. In this case the new offset
10287 should be the offset before the fill and the new
10288 size is the expansion size. For other zero-sized
10289 entries the resulting size should be zero with an
10290 offset before or after the fill address depending
10291 on whether the expanding unreachable entry
10292 preceeds it. */
10293 if (last_zfill_target_sec == 0
10294 || last_zfill_target_sec != target_sec
10295 || last_zfill_target_offset != old_offset)
10296 {
10297 bfd_vma new_end_offset = new_offset;
10298
10299 /* Recompute the new_offset, but this time don't
10300 include any fill inserted by relaxation. */
10301 removed_by_old_offset =
10302 removed_by_actions_map (&target_relax_info->action_list,
10303 old_offset, TRUE);
10304 new_offset = old_offset - removed_by_old_offset;
10305
10306 /* If it is not unreachable and we have not yet
10307 seen an unreachable at this address, place it
10308 before the fill address. */
10309 if (flags_p && (bfd_get_32 (abfd, flags_p)
10310 & XTENSA_PROP_UNREACHABLE) != 0)
10311 {
10312 new_size = new_end_offset - new_offset;
10313
10314 last_zfill_target_sec = target_sec;
10315 last_zfill_target_offset = old_offset;
10316 }
10317 }
10318 }
10319 else
10320 {
10321 int removed_by_old_offset_size =
10322 removed_by_actions_map (&target_relax_info->action_list,
10323 old_offset + old_size, TRUE);
10324 new_size -= removed_by_old_offset_size - removed_by_old_offset;
10325 }
10326
10327 if (new_size != old_size)
10328 {
10329 bfd_put_32 (abfd, new_size, size_p);
10330 pin_contents (sec, contents);
10331 }
10332
10333 if (new_offset != old_offset)
10334 {
10335 bfd_vma diff = new_offset - old_offset;
10336 irel->r_addend += diff;
10337 pin_internal_relocs (sec, internal_relocs);
10338 }
10339 }
10340 }
10341 }
10342
10343 /* Combine adjacent property table entries. This is also done in
10344 finish_dynamic_sections() but at that point it's too late to
10345 reclaim the space in the output section, so we do this twice. */
10346
10347 if (internal_relocs && (!bfd_link_relocatable (link_info)
10348 || xtensa_is_littable_section (sec)))
10349 {
10350 Elf_Internal_Rela *last_irel = NULL;
10351 Elf_Internal_Rela *irel, *next_rel, *rel_end;
10352 int removed_bytes = 0;
10353 bfd_vma offset;
10354 flagword predef_flags;
10355
10356 predef_flags = xtensa_get_property_predef_flags (sec);
10357
10358 /* Walk over memory and relocations at the same time.
10359 This REQUIRES that the internal_relocs be sorted by offset. */
10360 qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10361 internal_reloc_compare);
10362
10363 pin_internal_relocs (sec, internal_relocs);
10364 pin_contents (sec, contents);
10365
10366 next_rel = internal_relocs;
10367 rel_end = internal_relocs + sec->reloc_count;
10368
10369 BFD_ASSERT (sec->size % entry_size == 0);
10370
10371 for (offset = 0; offset < sec->size; offset += entry_size)
10372 {
10373 Elf_Internal_Rela *offset_rel, *extra_rel;
10374 bfd_vma bytes_to_remove, size, actual_offset;
10375 bfd_boolean remove_this_rel;
10376 flagword flags;
10377
10378 /* Find the first relocation for the entry at the current offset.
10379 Adjust the offsets of any extra relocations for the previous
10380 entry. */
10381 offset_rel = NULL;
10382 if (next_rel)
10383 {
10384 for (irel = next_rel; irel < rel_end; irel++)
10385 {
10386 if ((irel->r_offset == offset
10387 && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10388 || irel->r_offset > offset)
10389 {
10390 offset_rel = irel;
10391 break;
10392 }
10393 irel->r_offset -= removed_bytes;
10394 }
10395 }
10396
10397 /* Find the next relocation (if there are any left). */
10398 extra_rel = NULL;
10399 if (offset_rel)
10400 {
10401 for (irel = offset_rel + 1; irel < rel_end; irel++)
10402 {
10403 if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10404 {
10405 extra_rel = irel;
10406 break;
10407 }
10408 }
10409 }
10410
10411 /* Check if there are relocations on the current entry. There
10412 should usually be a relocation on the offset field. If there
10413 are relocations on the size or flags, then we can't optimize
10414 this entry. Also, find the next relocation to examine on the
10415 next iteration. */
10416 if (offset_rel)
10417 {
10418 if (offset_rel->r_offset >= offset + entry_size)
10419 {
10420 next_rel = offset_rel;
10421 /* There are no relocations on the current entry, but we
10422 might still be able to remove it if the size is zero. */
10423 offset_rel = NULL;
10424 }
10425 else if (offset_rel->r_offset > offset
10426 || (extra_rel
10427 && extra_rel->r_offset < offset + entry_size))
10428 {
10429 /* There is a relocation on the size or flags, so we can't
10430 do anything with this entry. Continue with the next. */
10431 next_rel = offset_rel;
10432 continue;
10433 }
10434 else
10435 {
10436 BFD_ASSERT (offset_rel->r_offset == offset);
10437 offset_rel->r_offset -= removed_bytes;
10438 next_rel = offset_rel + 1;
10439 }
10440 }
10441 else
10442 next_rel = NULL;
10443
10444 remove_this_rel = FALSE;
10445 bytes_to_remove = 0;
10446 actual_offset = offset - removed_bytes;
10447 size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10448
10449 if (is_full_prop_section)
10450 flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10451 else
10452 flags = predef_flags;
10453
10454 if (size == 0
10455 && (flags & XTENSA_PROP_ALIGN) == 0
10456 && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10457 {
10458 /* Always remove entries with zero size and no alignment. */
10459 bytes_to_remove = entry_size;
10460 if (offset_rel)
10461 remove_this_rel = TRUE;
10462 }
10463 else if (offset_rel
10464 && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10465 {
10466 if (last_irel)
10467 {
10468 flagword old_flags;
10469 bfd_vma old_size =
10470 bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10471 bfd_vma old_address =
10472 (last_irel->r_addend
10473 + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10474 bfd_vma new_address =
10475 (offset_rel->r_addend
10476 + bfd_get_32 (abfd, &contents[actual_offset]));
10477 if (is_full_prop_section)
10478 old_flags = bfd_get_32
10479 (abfd, &contents[last_irel->r_offset + 8]);
10480 else
10481 old_flags = predef_flags;
10482
10483 if ((ELF32_R_SYM (offset_rel->r_info)
10484 == ELF32_R_SYM (last_irel->r_info))
10485 && old_address + old_size == new_address
10486 && old_flags == flags
10487 && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10488 && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10489 {
10490 /* Fix the old size. */
10491 bfd_put_32 (abfd, old_size + size,
10492 &contents[last_irel->r_offset + 4]);
10493 bytes_to_remove = entry_size;
10494 remove_this_rel = TRUE;
10495 }
10496 else
10497 last_irel = offset_rel;
10498 }
10499 else
10500 last_irel = offset_rel;
10501 }
10502
10503 if (remove_this_rel)
10504 {
10505 offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10506 offset_rel->r_offset = 0;
10507 }
10508
10509 if (bytes_to_remove != 0)
10510 {
10511 removed_bytes += bytes_to_remove;
10512 if (offset + bytes_to_remove < sec->size)
10513 memmove (&contents[actual_offset],
10514 &contents[actual_offset + bytes_to_remove],
10515 sec->size - offset - bytes_to_remove);
10516 }
10517 }
10518
10519 if (removed_bytes)
10520 {
10521 /* Fix up any extra relocations on the last entry. */
10522 for (irel = next_rel; irel < rel_end; irel++)
10523 irel->r_offset -= removed_bytes;
10524
10525 /* Clear the removed bytes. */
10526 memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10527
10528 if (sec->rawsize == 0)
10529 sec->rawsize = sec->size;
10530 sec->size -= removed_bytes;
10531
10532 if (xtensa_is_littable_section (sec))
10533 {
10534 asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10535 if (sgotloc)
10536 sgotloc->size -= removed_bytes;
10537 }
10538 }
10539 }
10540
10541 error_return:
10542 release_internal_relocs (sec, internal_relocs);
10543 release_contents (sec, contents);
10544 return ok;
10545 }
10546
10547 \f
10548 /* Third relaxation pass. */
10549
10550 /* Change symbol values to account for removed literals. */
10551
10552 bfd_boolean
10553 relax_section_symbols (bfd *abfd, asection *sec)
10554 {
10555 xtensa_relax_info *relax_info;
10556 unsigned int sec_shndx;
10557 Elf_Internal_Shdr *symtab_hdr;
10558 Elf_Internal_Sym *isymbuf;
10559 unsigned i, num_syms, num_locals;
10560
10561 relax_info = get_xtensa_relax_info (sec);
10562 BFD_ASSERT (relax_info);
10563
10564 if (!relax_info->is_relaxable_literal_section
10565 && !relax_info->is_relaxable_asm_section)
10566 return TRUE;
10567
10568 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10569
10570 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10571 isymbuf = retrieve_local_syms (abfd);
10572
10573 num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10574 num_locals = symtab_hdr->sh_info;
10575
10576 /* Adjust the local symbols defined in this section. */
10577 for (i = 0; i < num_locals; i++)
10578 {
10579 Elf_Internal_Sym *isym = &isymbuf[i];
10580
10581 if (isym->st_shndx == sec_shndx)
10582 {
10583 bfd_vma orig_addr = isym->st_value;
10584 int removed = removed_by_actions_map (&relax_info->action_list,
10585 orig_addr, FALSE);
10586
10587 isym->st_value -= removed;
10588 if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10589 isym->st_size -=
10590 removed_by_actions_map (&relax_info->action_list,
10591 orig_addr + isym->st_size, FALSE) -
10592 removed;
10593 }
10594 }
10595
10596 /* Now adjust the global symbols defined in this section. */
10597 for (i = 0; i < (num_syms - num_locals); i++)
10598 {
10599 struct elf_link_hash_entry *sym_hash;
10600
10601 sym_hash = elf_sym_hashes (abfd)[i];
10602
10603 if (sym_hash->root.type == bfd_link_hash_warning)
10604 sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10605
10606 if ((sym_hash->root.type == bfd_link_hash_defined
10607 || sym_hash->root.type == bfd_link_hash_defweak)
10608 && sym_hash->root.u.def.section == sec)
10609 {
10610 bfd_vma orig_addr = sym_hash->root.u.def.value;
10611 int removed = removed_by_actions_map (&relax_info->action_list,
10612 orig_addr, FALSE);
10613
10614 sym_hash->root.u.def.value -= removed;
10615
10616 if (sym_hash->type == STT_FUNC)
10617 sym_hash->size -=
10618 removed_by_actions_map (&relax_info->action_list,
10619 orig_addr + sym_hash->size, FALSE) -
10620 removed;
10621 }
10622 }
10623
10624 return TRUE;
10625 }
10626
10627 \f
10628 /* "Fix" handling functions, called while performing relocations. */
10629
10630 static bfd_boolean
10631 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10632 bfd *input_bfd,
10633 asection *input_section,
10634 bfd_byte *contents)
10635 {
10636 r_reloc r_rel;
10637 asection *sec, *old_sec;
10638 bfd_vma old_offset;
10639 int r_type = ELF32_R_TYPE (rel->r_info);
10640 reloc_bfd_fix *fix;
10641
10642 if (r_type == R_XTENSA_NONE)
10643 return TRUE;
10644
10645 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10646 if (!fix)
10647 return TRUE;
10648
10649 r_reloc_init (&r_rel, input_bfd, rel, contents,
10650 bfd_get_section_limit (input_bfd, input_section));
10651 old_sec = r_reloc_get_section (&r_rel);
10652 old_offset = r_rel.target_offset;
10653
10654 if (!old_sec || !r_reloc_is_defined (&r_rel))
10655 {
10656 if (r_type != R_XTENSA_ASM_EXPAND)
10657 {
10658 _bfd_error_handler
10659 /* xgettext:c-format */
10660 (_("%pB(%pA+%#" PRIx64 "): unexpected fix for %s relocation"),
10661 input_bfd, input_section, (uint64_t) rel->r_offset,
10662 elf_howto_table[r_type].name);
10663 return FALSE;
10664 }
10665 /* Leave it be. Resolution will happen in a later stage. */
10666 }
10667 else
10668 {
10669 sec = fix->target_sec;
10670 rel->r_addend += ((sec->output_offset + fix->target_offset)
10671 - (old_sec->output_offset + old_offset));
10672 }
10673 return TRUE;
10674 }
10675
10676
10677 static void
10678 do_fix_for_final_link (Elf_Internal_Rela *rel,
10679 bfd *input_bfd,
10680 asection *input_section,
10681 bfd_byte *contents,
10682 bfd_vma *relocationp)
10683 {
10684 asection *sec;
10685 int r_type = ELF32_R_TYPE (rel->r_info);
10686 reloc_bfd_fix *fix;
10687 bfd_vma fixup_diff;
10688
10689 if (r_type == R_XTENSA_NONE)
10690 return;
10691
10692 fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10693 if (!fix)
10694 return;
10695
10696 sec = fix->target_sec;
10697
10698 fixup_diff = rel->r_addend;
10699 if (elf_howto_table[fix->src_type].partial_inplace)
10700 {
10701 bfd_vma inplace_val;
10702 BFD_ASSERT (fix->src_offset
10703 < bfd_get_section_limit (input_bfd, input_section));
10704 inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10705 fixup_diff += inplace_val;
10706 }
10707
10708 *relocationp = (sec->output_section->vma
10709 + sec->output_offset
10710 + fix->target_offset - fixup_diff);
10711 }
10712
10713 \f
10714 /* Miscellaneous utility functions.... */
10715
10716 static asection *
10717 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10718 {
10719 bfd *dynobj;
10720 char plt_name[17];
10721
10722 if (chunk == 0)
10723 return elf_hash_table (info)->splt;
10724
10725 dynobj = elf_hash_table (info)->dynobj;
10726 sprintf (plt_name, ".plt.%u", chunk);
10727 return bfd_get_linker_section (dynobj, plt_name);
10728 }
10729
10730
10731 static asection *
10732 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10733 {
10734 bfd *dynobj;
10735 char got_name[21];
10736
10737 if (chunk == 0)
10738 return elf_hash_table (info)->sgotplt;
10739
10740 dynobj = elf_hash_table (info)->dynobj;
10741 sprintf (got_name, ".got.plt.%u", chunk);
10742 return bfd_get_linker_section (dynobj, got_name);
10743 }
10744
10745
10746 /* Get the input section for a given symbol index.
10747 If the symbol is:
10748 . a section symbol, return the section;
10749 . a common symbol, return the common section;
10750 . an undefined symbol, return the undefined section;
10751 . an indirect symbol, follow the links;
10752 . an absolute value, return the absolute section. */
10753
10754 static asection *
10755 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10756 {
10757 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10758 asection *target_sec = NULL;
10759 if (r_symndx < symtab_hdr->sh_info)
10760 {
10761 Elf_Internal_Sym *isymbuf;
10762 unsigned int section_index;
10763
10764 isymbuf = retrieve_local_syms (abfd);
10765 section_index = isymbuf[r_symndx].st_shndx;
10766
10767 if (section_index == SHN_UNDEF)
10768 target_sec = bfd_und_section_ptr;
10769 else if (section_index == SHN_ABS)
10770 target_sec = bfd_abs_section_ptr;
10771 else if (section_index == SHN_COMMON)
10772 target_sec = bfd_com_section_ptr;
10773 else
10774 target_sec = bfd_section_from_elf_index (abfd, section_index);
10775 }
10776 else
10777 {
10778 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10779 struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10780
10781 while (h->root.type == bfd_link_hash_indirect
10782 || h->root.type == bfd_link_hash_warning)
10783 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10784
10785 switch (h->root.type)
10786 {
10787 case bfd_link_hash_defined:
10788 case bfd_link_hash_defweak:
10789 target_sec = h->root.u.def.section;
10790 break;
10791 case bfd_link_hash_common:
10792 target_sec = bfd_com_section_ptr;
10793 break;
10794 case bfd_link_hash_undefined:
10795 case bfd_link_hash_undefweak:
10796 target_sec = bfd_und_section_ptr;
10797 break;
10798 default: /* New indirect warning. */
10799 target_sec = bfd_und_section_ptr;
10800 break;
10801 }
10802 }
10803 return target_sec;
10804 }
10805
10806
10807 static struct elf_link_hash_entry *
10808 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10809 {
10810 unsigned long indx;
10811 struct elf_link_hash_entry *h;
10812 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10813
10814 if (r_symndx < symtab_hdr->sh_info)
10815 return NULL;
10816
10817 indx = r_symndx - symtab_hdr->sh_info;
10818 h = elf_sym_hashes (abfd)[indx];
10819 while (h->root.type == bfd_link_hash_indirect
10820 || h->root.type == bfd_link_hash_warning)
10821 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10822 return h;
10823 }
10824
10825
10826 /* Get the section-relative offset for a symbol number. */
10827
10828 static bfd_vma
10829 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10830 {
10831 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10832 bfd_vma offset = 0;
10833
10834 if (r_symndx < symtab_hdr->sh_info)
10835 {
10836 Elf_Internal_Sym *isymbuf;
10837 isymbuf = retrieve_local_syms (abfd);
10838 offset = isymbuf[r_symndx].st_value;
10839 }
10840 else
10841 {
10842 unsigned long indx = r_symndx - symtab_hdr->sh_info;
10843 struct elf_link_hash_entry *h =
10844 elf_sym_hashes (abfd)[indx];
10845
10846 while (h->root.type == bfd_link_hash_indirect
10847 || h->root.type == bfd_link_hash_warning)
10848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10849 if (h->root.type == bfd_link_hash_defined
10850 || h->root.type == bfd_link_hash_defweak)
10851 offset = h->root.u.def.value;
10852 }
10853 return offset;
10854 }
10855
10856
10857 static bfd_boolean
10858 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10859 {
10860 unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10861 struct elf_link_hash_entry *h;
10862
10863 h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10864 if (h && h->root.type == bfd_link_hash_defweak)
10865 return TRUE;
10866 return FALSE;
10867 }
10868
10869
10870 static bfd_boolean
10871 pcrel_reloc_fits (xtensa_opcode opc,
10872 int opnd,
10873 bfd_vma self_address,
10874 bfd_vma dest_address)
10875 {
10876 xtensa_isa isa = xtensa_default_isa;
10877 uint32 valp = dest_address;
10878 if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10879 || xtensa_operand_encode (isa, opc, opnd, &valp))
10880 return FALSE;
10881 return TRUE;
10882 }
10883
10884
10885 static bfd_boolean
10886 xtensa_is_property_section (asection *sec)
10887 {
10888 if (xtensa_is_insntable_section (sec)
10889 || xtensa_is_littable_section (sec)
10890 || xtensa_is_proptable_section (sec))
10891 return TRUE;
10892
10893 return FALSE;
10894 }
10895
10896
10897 static bfd_boolean
10898 xtensa_is_insntable_section (asection *sec)
10899 {
10900 if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
10901 || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
10902 return TRUE;
10903
10904 return FALSE;
10905 }
10906
10907
10908 static bfd_boolean
10909 xtensa_is_littable_section (asection *sec)
10910 {
10911 if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
10912 || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
10913 return TRUE;
10914
10915 return FALSE;
10916 }
10917
10918
10919 static bfd_boolean
10920 xtensa_is_proptable_section (asection *sec)
10921 {
10922 if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
10923 || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
10924 return TRUE;
10925
10926 return FALSE;
10927 }
10928
10929
10930 static int
10931 internal_reloc_compare (const void *ap, const void *bp)
10932 {
10933 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10934 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10935
10936 if (a->r_offset != b->r_offset)
10937 return (a->r_offset - b->r_offset);
10938
10939 /* We don't need to sort on these criteria for correctness,
10940 but enforcing a more strict ordering prevents unstable qsort
10941 from behaving differently with different implementations.
10942 Without the code below we get correct but different results
10943 on Solaris 2.7 and 2.8. We would like to always produce the
10944 same results no matter the host. */
10945
10946 if (a->r_info != b->r_info)
10947 return (a->r_info - b->r_info);
10948
10949 return (a->r_addend - b->r_addend);
10950 }
10951
10952
10953 static int
10954 internal_reloc_matches (const void *ap, const void *bp)
10955 {
10956 const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
10957 const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
10958
10959 /* Check if one entry overlaps with the other; this shouldn't happen
10960 except when searching for a match. */
10961 return (a->r_offset - b->r_offset);
10962 }
10963
10964
10965 /* Predicate function used to look up a section in a particular group. */
10966
10967 static bfd_boolean
10968 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
10969 {
10970 const char *gname = inf;
10971 const char *group_name = elf_group_name (sec);
10972
10973 return (group_name == gname
10974 || (group_name != NULL
10975 && gname != NULL
10976 && strcmp (group_name, gname) == 0));
10977 }
10978
10979
10980 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
10981
10982 static char *
10983 xtensa_property_section_name (asection *sec, const char *base_name)
10984 {
10985 const char *suffix, *group_name;
10986 char *prop_sec_name;
10987
10988 group_name = elf_group_name (sec);
10989 if (group_name)
10990 {
10991 suffix = strrchr (sec->name, '.');
10992 if (suffix == sec->name)
10993 suffix = 0;
10994 prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
10995 + (suffix ? strlen (suffix) : 0));
10996 strcpy (prop_sec_name, base_name);
10997 if (suffix)
10998 strcat (prop_sec_name, suffix);
10999 }
11000 else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11001 {
11002 char *linkonce_kind = 0;
11003
11004 if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11005 linkonce_kind = "x.";
11006 else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11007 linkonce_kind = "p.";
11008 else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11009 linkonce_kind = "prop.";
11010 else
11011 abort ();
11012
11013 prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11014 + strlen (linkonce_kind) + 1);
11015 memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11016 strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11017
11018 suffix = sec->name + linkonce_len;
11019 /* For backward compatibility, replace "t." instead of inserting
11020 the new linkonce_kind (but not for "prop" sections). */
11021 if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11022 suffix += 2;
11023 strcat (prop_sec_name + linkonce_len, suffix);
11024 }
11025 else
11026 prop_sec_name = strdup (base_name);
11027
11028 return prop_sec_name;
11029 }
11030
11031
11032 static asection *
11033 xtensa_get_property_section (asection *sec, const char *base_name)
11034 {
11035 char *prop_sec_name;
11036 asection *prop_sec;
11037
11038 prop_sec_name = xtensa_property_section_name (sec, base_name);
11039 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11040 match_section_group,
11041 (void *) elf_group_name (sec));
11042 free (prop_sec_name);
11043 return prop_sec;
11044 }
11045
11046
11047 asection *
11048 xtensa_make_property_section (asection *sec, const char *base_name)
11049 {
11050 char *prop_sec_name;
11051 asection *prop_sec;
11052
11053 /* Check if the section already exists. */
11054 prop_sec_name = xtensa_property_section_name (sec, base_name);
11055 prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11056 match_section_group,
11057 (void *) elf_group_name (sec));
11058 /* If not, create it. */
11059 if (! prop_sec)
11060 {
11061 flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11062 flags |= (bfd_get_section_flags (sec->owner, sec)
11063 & (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11064
11065 prop_sec = bfd_make_section_anyway_with_flags
11066 (sec->owner, strdup (prop_sec_name), flags);
11067 if (! prop_sec)
11068 return 0;
11069
11070 elf_group_name (prop_sec) = elf_group_name (sec);
11071 }
11072
11073 free (prop_sec_name);
11074 return prop_sec;
11075 }
11076
11077
11078 flagword
11079 xtensa_get_property_predef_flags (asection *sec)
11080 {
11081 if (xtensa_is_insntable_section (sec))
11082 return (XTENSA_PROP_INSN
11083 | XTENSA_PROP_NO_TRANSFORM
11084 | XTENSA_PROP_INSN_NO_REORDER);
11085
11086 if (xtensa_is_littable_section (sec))
11087 return (XTENSA_PROP_LITERAL
11088 | XTENSA_PROP_NO_TRANSFORM
11089 | XTENSA_PROP_INSN_NO_REORDER);
11090
11091 return 0;
11092 }
11093
11094 \f
11095 /* Other functions called directly by the linker. */
11096
11097 bfd_boolean
11098 xtensa_callback_required_dependence (bfd *abfd,
11099 asection *sec,
11100 struct bfd_link_info *link_info,
11101 deps_callback_t callback,
11102 void *closure)
11103 {
11104 Elf_Internal_Rela *internal_relocs;
11105 bfd_byte *contents;
11106 unsigned i;
11107 bfd_boolean ok = TRUE;
11108 bfd_size_type sec_size;
11109
11110 sec_size = bfd_get_section_limit (abfd, sec);
11111
11112 /* ".plt*" sections have no explicit relocations but they contain L32R
11113 instructions that reference the corresponding ".got.plt*" sections. */
11114 if ((sec->flags & SEC_LINKER_CREATED) != 0
11115 && CONST_STRNEQ (sec->name, ".plt"))
11116 {
11117 asection *sgotplt;
11118
11119 /* Find the corresponding ".got.plt*" section. */
11120 if (sec->name[4] == '\0')
11121 sgotplt = elf_hash_table (link_info)->sgotplt;
11122 else
11123 {
11124 char got_name[14];
11125 int chunk = 0;
11126
11127 BFD_ASSERT (sec->name[4] == '.');
11128 chunk = strtol (&sec->name[5], NULL, 10);
11129
11130 sprintf (got_name, ".got.plt.%u", chunk);
11131 sgotplt = bfd_get_linker_section (sec->owner, got_name);
11132 }
11133 BFD_ASSERT (sgotplt);
11134
11135 /* Assume worst-case offsets: L32R at the very end of the ".plt"
11136 section referencing a literal at the very beginning of
11137 ".got.plt". This is very close to the real dependence, anyway. */
11138 (*callback) (sec, sec_size, sgotplt, 0, closure);
11139 }
11140
11141 /* Only ELF files are supported for Xtensa. Check here to avoid a segfault
11142 when building uclibc, which runs "ld -b binary /dev/null". */
11143 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11144 return ok;
11145
11146 internal_relocs = retrieve_internal_relocs (abfd, sec,
11147 link_info->keep_memory);
11148 if (internal_relocs == NULL
11149 || sec->reloc_count == 0)
11150 return ok;
11151
11152 /* Cache the contents for the duration of this scan. */
11153 contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11154 if (contents == NULL && sec_size != 0)
11155 {
11156 ok = FALSE;
11157 goto error_return;
11158 }
11159
11160 if (!xtensa_default_isa)
11161 xtensa_default_isa = xtensa_isa_init (0, 0);
11162
11163 for (i = 0; i < sec->reloc_count; i++)
11164 {
11165 Elf_Internal_Rela *irel = &internal_relocs[i];
11166 if (is_l32r_relocation (abfd, sec, contents, irel))
11167 {
11168 r_reloc l32r_rel;
11169 asection *target_sec;
11170 bfd_vma target_offset;
11171
11172 r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11173 target_sec = NULL;
11174 target_offset = 0;
11175 /* L32Rs must be local to the input file. */
11176 if (r_reloc_is_defined (&l32r_rel))
11177 {
11178 target_sec = r_reloc_get_section (&l32r_rel);
11179 target_offset = l32r_rel.target_offset;
11180 }
11181 (*callback) (sec, irel->r_offset, target_sec, target_offset,
11182 closure);
11183 }
11184 }
11185
11186 error_return:
11187 release_internal_relocs (sec, internal_relocs);
11188 release_contents (sec, contents);
11189 return ok;
11190 }
11191
11192 /* The default literal sections should always be marked as "code" (i.e.,
11193 SHF_EXECINSTR). This is particularly important for the Linux kernel
11194 module loader so that the literals are not placed after the text. */
11195 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11196 {
11197 { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11198 { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11199 { STRING_COMMA_LEN (".literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11200 { STRING_COMMA_LEN (".xtensa.info"), 0, SHT_NOTE, 0 },
11201 { NULL, 0, 0, 0, 0 }
11202 };
11203 \f
11204 #define ELF_TARGET_ID XTENSA_ELF_DATA
11205 #ifndef ELF_ARCH
11206 #define TARGET_LITTLE_SYM xtensa_elf32_le_vec
11207 #define TARGET_LITTLE_NAME "elf32-xtensa-le"
11208 #define TARGET_BIG_SYM xtensa_elf32_be_vec
11209 #define TARGET_BIG_NAME "elf32-xtensa-be"
11210 #define ELF_ARCH bfd_arch_xtensa
11211
11212 #define ELF_MACHINE_CODE EM_XTENSA
11213 #define ELF_MACHINE_ALT1 EM_XTENSA_OLD
11214
11215 #define ELF_MAXPAGESIZE 0x1000
11216 #endif /* ELF_ARCH */
11217
11218 #define elf_backend_can_gc_sections 1
11219 #define elf_backend_can_refcount 1
11220 #define elf_backend_plt_readonly 1
11221 #define elf_backend_got_header_size 4
11222 #define elf_backend_want_dynbss 0
11223 #define elf_backend_want_got_plt 1
11224 #define elf_backend_dtrel_excludes_plt 1
11225
11226 #define elf_info_to_howto elf_xtensa_info_to_howto_rela
11227
11228 #define bfd_elf32_mkobject elf_xtensa_mkobject
11229
11230 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11231 #define bfd_elf32_new_section_hook elf_xtensa_new_section_hook
11232 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11233 #define bfd_elf32_bfd_relax_section elf_xtensa_relax_section
11234 #define bfd_elf32_bfd_reloc_type_lookup elf_xtensa_reloc_type_lookup
11235 #define bfd_elf32_bfd_reloc_name_lookup \
11236 elf_xtensa_reloc_name_lookup
11237 #define bfd_elf32_bfd_set_private_flags elf_xtensa_set_private_flags
11238 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11239
11240 #define elf_backend_adjust_dynamic_symbol elf_xtensa_adjust_dynamic_symbol
11241 #define elf_backend_check_relocs elf_xtensa_check_relocs
11242 #define elf_backend_create_dynamic_sections elf_xtensa_create_dynamic_sections
11243 #define elf_backend_discard_info elf_xtensa_discard_info
11244 #define elf_backend_ignore_discarded_relocs elf_xtensa_ignore_discarded_relocs
11245 #define elf_backend_final_write_processing elf_xtensa_final_write_processing
11246 #define elf_backend_finish_dynamic_sections elf_xtensa_finish_dynamic_sections
11247 #define elf_backend_finish_dynamic_symbol elf_xtensa_finish_dynamic_symbol
11248 #define elf_backend_gc_mark_hook elf_xtensa_gc_mark_hook
11249 #define elf_backend_grok_prstatus elf_xtensa_grok_prstatus
11250 #define elf_backend_grok_psinfo elf_xtensa_grok_psinfo
11251 #define elf_backend_hide_symbol elf_xtensa_hide_symbol
11252 #define elf_backend_object_p elf_xtensa_object_p
11253 #define elf_backend_reloc_type_class elf_xtensa_reloc_type_class
11254 #define elf_backend_relocate_section elf_xtensa_relocate_section
11255 #define elf_backend_size_dynamic_sections elf_xtensa_size_dynamic_sections
11256 #define elf_backend_always_size_sections elf_xtensa_always_size_sections
11257 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
11258 #define elf_backend_special_sections elf_xtensa_special_sections
11259 #define elf_backend_action_discarded elf_xtensa_action_discarded
11260 #define elf_backend_copy_indirect_symbol elf_xtensa_copy_indirect_symbol
11261
11262 #include "elf32-target.h"
This page took 0.272213 seconds and 5 git commands to generate.