More fixes for illegal memory accesses triggered by running objdump on fuzzed binaries.
[deliverable/binutils-gdb.git] / bfd / elf64-alpha.c
1 /* Alpha specific support for 64-bit ELF
2 Copyright (C) 1996-2015 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@tamu.edu>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* We need a published ABI spec for this. Until one comes out, don't
24 assume this'll remain unchanged forever. */
25
26 #include "sysdep.h"
27 #include "bfd.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30
31 #include "elf/alpha.h"
32
33 #define ALPHAECOFF
34
35 #define NO_COFF_RELOCS
36 #define NO_COFF_SYMBOLS
37 #define NO_COFF_LINENOS
38
39 /* Get the ECOFF swapping routines. Needed for the debug information. */
40 #include "coff/internal.h"
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/alpha.h"
45 #include "aout/ar.h"
46 #include "libcoff.h"
47 #include "libecoff.h"
48 #define ECOFF_64
49 #include "ecoffswap.h"
50
51 \f
52 /* Instruction data for plt generation and relaxation. */
53
54 #define OP_LDA 0x08
55 #define OP_LDAH 0x09
56 #define OP_LDQ 0x29
57 #define OP_BR 0x30
58 #define OP_BSR 0x34
59
60 #define INSN_LDA (OP_LDA << 26)
61 #define INSN_LDAH (OP_LDAH << 26)
62 #define INSN_LDQ (OP_LDQ << 26)
63 #define INSN_BR (OP_BR << 26)
64
65 #define INSN_ADDQ 0x40000400
66 #define INSN_RDUNIQ 0x0000009e
67 #define INSN_SUBQ 0x40000520
68 #define INSN_S4SUBQ 0x40000560
69 #define INSN_UNOP 0x2ffe0000
70
71 #define INSN_JSR 0x68004000
72 #define INSN_JMP 0x68000000
73 #define INSN_JSR_MASK 0xfc00c000
74
75 #define INSN_A(I,A) (I | (A << 21))
76 #define INSN_AB(I,A,B) (I | (A << 21) | (B << 16))
77 #define INSN_ABC(I,A,B,C) (I | (A << 21) | (B << 16) | C)
78 #define INSN_ABO(I,A,B,O) (I | (A << 21) | (B << 16) | ((O) & 0xffff))
79 #define INSN_AD(I,A,D) (I | (A << 21) | (((D) >> 2) & 0x1fffff))
80
81 /* PLT/GOT Stuff */
82
83 /* Set by ld emulation. Putting this into the link_info or hash structure
84 is simply working too hard. */
85 #ifdef USE_SECUREPLT
86 bfd_boolean elf64_alpha_use_secureplt = TRUE;
87 #else
88 bfd_boolean elf64_alpha_use_secureplt = FALSE;
89 #endif
90
91 #define OLD_PLT_HEADER_SIZE 32
92 #define OLD_PLT_ENTRY_SIZE 12
93 #define NEW_PLT_HEADER_SIZE 36
94 #define NEW_PLT_ENTRY_SIZE 4
95
96 #define PLT_HEADER_SIZE \
97 (elf64_alpha_use_secureplt ? NEW_PLT_HEADER_SIZE : OLD_PLT_HEADER_SIZE)
98 #define PLT_ENTRY_SIZE \
99 (elf64_alpha_use_secureplt ? NEW_PLT_ENTRY_SIZE : OLD_PLT_ENTRY_SIZE)
100
101 #define MAX_GOT_SIZE (64*1024)
102
103 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so"
104 \f
105
106 /* Used to implement multiple .got subsections. */
107 struct alpha_elf_got_entry
108 {
109 struct alpha_elf_got_entry *next;
110
111 /* Which .got subsection? */
112 bfd *gotobj;
113
114 /* The addend in effect for this entry. */
115 bfd_vma addend;
116
117 /* The .got offset for this entry. */
118 int got_offset;
119
120 /* The .plt offset for this entry. */
121 int plt_offset;
122
123 /* How many references to this entry? */
124 int use_count;
125
126 /* The relocation type of this entry. */
127 unsigned char reloc_type;
128
129 /* How a LITERAL is used. */
130 unsigned char flags;
131
132 /* Have we initialized the dynamic relocation for this entry? */
133 unsigned char reloc_done;
134
135 /* Have we adjusted this entry for SEC_MERGE? */
136 unsigned char reloc_xlated;
137 };
138
139 struct alpha_elf_reloc_entry
140 {
141 struct alpha_elf_reloc_entry *next;
142
143 /* Which .reloc section? */
144 asection *srel;
145
146 /* What kind of relocation? */
147 unsigned int rtype;
148
149 /* Is this against read-only section? */
150 unsigned int reltext : 1;
151
152 /* How many did we find? */
153 unsigned long count;
154 };
155
156 struct alpha_elf_link_hash_entry
157 {
158 struct elf_link_hash_entry root;
159
160 /* External symbol information. */
161 EXTR esym;
162
163 /* Cumulative flags for all the .got entries. */
164 int flags;
165
166 /* Contexts in which a literal was referenced. */
167 #define ALPHA_ELF_LINK_HASH_LU_ADDR 0x01
168 #define ALPHA_ELF_LINK_HASH_LU_MEM 0x02
169 #define ALPHA_ELF_LINK_HASH_LU_BYTE 0x04
170 #define ALPHA_ELF_LINK_HASH_LU_JSR 0x08
171 #define ALPHA_ELF_LINK_HASH_LU_TLSGD 0x10
172 #define ALPHA_ELF_LINK_HASH_LU_TLSLDM 0x20
173 #define ALPHA_ELF_LINK_HASH_LU_JSRDIRECT 0x40
174 #define ALPHA_ELF_LINK_HASH_LU_PLT 0x38
175 #define ALPHA_ELF_LINK_HASH_TLS_IE 0x80
176
177 /* Used to implement multiple .got subsections. */
178 struct alpha_elf_got_entry *got_entries;
179
180 /* Used to count non-got, non-plt relocations for delayed sizing
181 of relocation sections. */
182 struct alpha_elf_reloc_entry *reloc_entries;
183 };
184
185 /* Alpha ELF linker hash table. */
186
187 struct alpha_elf_link_hash_table
188 {
189 struct elf_link_hash_table root;
190
191 /* The head of a list of .got subsections linked through
192 alpha_elf_tdata(abfd)->got_link_next. */
193 bfd *got_list;
194
195 /* The most recent relax pass that we've seen. The GOTs
196 should be regenerated if this doesn't match. */
197 int relax_trip;
198 };
199
200 /* Look up an entry in a Alpha ELF linker hash table. */
201
202 #define alpha_elf_link_hash_lookup(table, string, create, copy, follow) \
203 ((struct alpha_elf_link_hash_entry *) \
204 elf_link_hash_lookup (&(table)->root, (string), (create), \
205 (copy), (follow)))
206
207 /* Traverse a Alpha ELF linker hash table. */
208
209 #define alpha_elf_link_hash_traverse(table, func, info) \
210 (elf_link_hash_traverse \
211 (&(table)->root, \
212 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
213 (info)))
214
215 /* Get the Alpha ELF linker hash table from a link_info structure. */
216
217 #define alpha_elf_hash_table(p) \
218 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
219 == ALPHA_ELF_DATA ? ((struct alpha_elf_link_hash_table *) ((p)->hash)) : NULL)
220
221 /* Get the object's symbols as our own entry type. */
222
223 #define alpha_elf_sym_hashes(abfd) \
224 ((struct alpha_elf_link_hash_entry **)elf_sym_hashes(abfd))
225
226 /* Should we do dynamic things to this symbol? This differs from the
227 generic version in that we never need to consider function pointer
228 equality wrt PLT entries -- we don't create a PLT entry if a symbol's
229 address is ever taken. */
230
231 static inline bfd_boolean
232 alpha_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
233 struct bfd_link_info *info)
234 {
235 return _bfd_elf_dynamic_symbol_p (h, info, 0);
236 }
237
238 /* Create an entry in a Alpha ELF linker hash table. */
239
240 static struct bfd_hash_entry *
241 elf64_alpha_link_hash_newfunc (struct bfd_hash_entry *entry,
242 struct bfd_hash_table *table,
243 const char *string)
244 {
245 struct alpha_elf_link_hash_entry *ret =
246 (struct alpha_elf_link_hash_entry *) entry;
247
248 /* Allocate the structure if it has not already been allocated by a
249 subclass. */
250 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
251 ret = ((struct alpha_elf_link_hash_entry *)
252 bfd_hash_allocate (table,
253 sizeof (struct alpha_elf_link_hash_entry)));
254 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
255 return (struct bfd_hash_entry *) ret;
256
257 /* Call the allocation method of the superclass. */
258 ret = ((struct alpha_elf_link_hash_entry *)
259 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
260 table, string));
261 if (ret != (struct alpha_elf_link_hash_entry *) NULL)
262 {
263 /* Set local fields. */
264 memset (&ret->esym, 0, sizeof (EXTR));
265 /* We use -2 as a marker to indicate that the information has
266 not been set. -1 means there is no associated ifd. */
267 ret->esym.ifd = -2;
268 ret->flags = 0;
269 ret->got_entries = NULL;
270 ret->reloc_entries = NULL;
271 }
272
273 return (struct bfd_hash_entry *) ret;
274 }
275
276 /* Create a Alpha ELF linker hash table. */
277
278 static struct bfd_link_hash_table *
279 elf64_alpha_bfd_link_hash_table_create (bfd *abfd)
280 {
281 struct alpha_elf_link_hash_table *ret;
282 bfd_size_type amt = sizeof (struct alpha_elf_link_hash_table);
283
284 ret = (struct alpha_elf_link_hash_table *) bfd_zmalloc (amt);
285 if (ret == (struct alpha_elf_link_hash_table *) NULL)
286 return NULL;
287
288 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
289 elf64_alpha_link_hash_newfunc,
290 sizeof (struct alpha_elf_link_hash_entry),
291 ALPHA_ELF_DATA))
292 {
293 free (ret);
294 return NULL;
295 }
296
297 return &ret->root.root;
298 }
299 \f
300 /* Alpha ELF follows MIPS ELF in using a special find_nearest_line
301 routine in order to handle the ECOFF debugging information. */
302
303 struct alpha_elf_find_line
304 {
305 struct ecoff_debug_info d;
306 struct ecoff_find_line i;
307 };
308
309 /* We have some private fields hanging off of the elf_tdata structure. */
310
311 struct alpha_elf_obj_tdata
312 {
313 struct elf_obj_tdata root;
314
315 /* For every input file, these are the got entries for that object's
316 local symbols. */
317 struct alpha_elf_got_entry ** local_got_entries;
318
319 /* For every input file, this is the object that owns the got that
320 this input file uses. */
321 bfd *gotobj;
322
323 /* For every got, this is a linked list through the objects using this got */
324 bfd *in_got_link_next;
325
326 /* For every got, this is a link to the next got subsegment. */
327 bfd *got_link_next;
328
329 /* For every got, this is the section. */
330 asection *got;
331
332 /* For every got, this is it's total number of words. */
333 int total_got_size;
334
335 /* For every got, this is the sum of the number of words required
336 to hold all of the member object's local got. */
337 int local_got_size;
338
339 /* Used by elf64_alpha_find_nearest_line entry point. */
340 struct alpha_elf_find_line *find_line_info;
341
342 };
343
344 #define alpha_elf_tdata(abfd) \
345 ((struct alpha_elf_obj_tdata *) (abfd)->tdata.any)
346
347 #define is_alpha_elf(bfd) \
348 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
349 && elf_tdata (bfd) != NULL \
350 && elf_object_id (bfd) == ALPHA_ELF_DATA)
351
352 static bfd_boolean
353 elf64_alpha_mkobject (bfd *abfd)
354 {
355 return bfd_elf_allocate_object (abfd, sizeof (struct alpha_elf_obj_tdata),
356 ALPHA_ELF_DATA);
357 }
358
359 static bfd_boolean
360 elf64_alpha_object_p (bfd *abfd)
361 {
362 /* Set the right machine number for an Alpha ELF file. */
363 return bfd_default_set_arch_mach (abfd, bfd_arch_alpha, 0);
364 }
365 \f
366 /* A relocation function which doesn't do anything. */
367
368 static bfd_reloc_status_type
369 elf64_alpha_reloc_nil (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
370 asymbol *sym ATTRIBUTE_UNUSED,
371 void * data ATTRIBUTE_UNUSED, asection *sec,
372 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
373 {
374 if (output_bfd)
375 reloc->address += sec->output_offset;
376 return bfd_reloc_ok;
377 }
378
379 /* A relocation function used for an unsupported reloc. */
380
381 static bfd_reloc_status_type
382 elf64_alpha_reloc_bad (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
383 asymbol *sym ATTRIBUTE_UNUSED,
384 void * data ATTRIBUTE_UNUSED, asection *sec,
385 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
386 {
387 if (output_bfd)
388 reloc->address += sec->output_offset;
389 return bfd_reloc_notsupported;
390 }
391
392 /* Do the work of the GPDISP relocation. */
393
394 static bfd_reloc_status_type
395 elf64_alpha_do_reloc_gpdisp (bfd *abfd, bfd_vma gpdisp, bfd_byte *p_ldah,
396 bfd_byte *p_lda)
397 {
398 bfd_reloc_status_type ret = bfd_reloc_ok;
399 bfd_vma addend;
400 unsigned long i_ldah, i_lda;
401
402 i_ldah = bfd_get_32 (abfd, p_ldah);
403 i_lda = bfd_get_32 (abfd, p_lda);
404
405 /* Complain if the instructions are not correct. */
406 if (((i_ldah >> 26) & 0x3f) != 0x09
407 || ((i_lda >> 26) & 0x3f) != 0x08)
408 ret = bfd_reloc_dangerous;
409
410 /* Extract the user-supplied offset, mirroring the sign extensions
411 that the instructions perform. */
412 addend = ((i_ldah & 0xffff) << 16) | (i_lda & 0xffff);
413 addend = (addend ^ 0x80008000) - 0x80008000;
414
415 gpdisp += addend;
416
417 if ((bfd_signed_vma) gpdisp < -(bfd_signed_vma) 0x80000000
418 || (bfd_signed_vma) gpdisp >= (bfd_signed_vma) 0x7fff8000)
419 ret = bfd_reloc_overflow;
420
421 /* compensate for the sign extension again. */
422 i_ldah = ((i_ldah & 0xffff0000)
423 | (((gpdisp >> 16) + ((gpdisp >> 15) & 1)) & 0xffff));
424 i_lda = (i_lda & 0xffff0000) | (gpdisp & 0xffff);
425
426 bfd_put_32 (abfd, (bfd_vma) i_ldah, p_ldah);
427 bfd_put_32 (abfd, (bfd_vma) i_lda, p_lda);
428
429 return ret;
430 }
431
432 /* The special function for the GPDISP reloc. */
433
434 static bfd_reloc_status_type
435 elf64_alpha_reloc_gpdisp (bfd *abfd, arelent *reloc_entry,
436 asymbol *sym ATTRIBUTE_UNUSED, void * data,
437 asection *input_section, bfd *output_bfd,
438 char **err_msg)
439 {
440 bfd_reloc_status_type ret;
441 bfd_vma gp, relocation;
442 bfd_vma high_address;
443 bfd_byte *p_ldah, *p_lda;
444
445 /* Don't do anything if we're not doing a final link. */
446 if (output_bfd)
447 {
448 reloc_entry->address += input_section->output_offset;
449 return bfd_reloc_ok;
450 }
451
452 high_address = bfd_get_section_limit (abfd, input_section);
453 if (reloc_entry->address > high_address
454 || reloc_entry->address + reloc_entry->addend > high_address)
455 return bfd_reloc_outofrange;
456
457 /* The gp used in the portion of the output object to which this
458 input object belongs is cached on the input bfd. */
459 gp = _bfd_get_gp_value (abfd);
460
461 relocation = (input_section->output_section->vma
462 + input_section->output_offset
463 + reloc_entry->address);
464
465 p_ldah = (bfd_byte *) data + reloc_entry->address;
466 p_lda = p_ldah + reloc_entry->addend;
467
468 ret = elf64_alpha_do_reloc_gpdisp (abfd, gp - relocation, p_ldah, p_lda);
469
470 /* Complain if the instructions are not correct. */
471 if (ret == bfd_reloc_dangerous)
472 *err_msg = _("GPDISP relocation did not find ldah and lda instructions");
473
474 return ret;
475 }
476
477 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
478 from smaller values. Start with zero, widen, *then* decrement. */
479 #define MINUS_ONE (((bfd_vma)0) - 1)
480
481
482 #define SKIP_HOWTO(N) \
483 HOWTO(N, 0, 0, 0, 0, 0, complain_overflow_dont, elf64_alpha_reloc_bad, 0, 0, 0, 0, 0)
484
485 static reloc_howto_type elf64_alpha_howto_table[] =
486 {
487 HOWTO (R_ALPHA_NONE, /* type */
488 0, /* rightshift */
489 3, /* size (0 = byte, 1 = short, 2 = long) */
490 0, /* bitsize */
491 TRUE, /* pc_relative */
492 0, /* bitpos */
493 complain_overflow_dont, /* complain_on_overflow */
494 elf64_alpha_reloc_nil, /* special_function */
495 "NONE", /* name */
496 FALSE, /* partial_inplace */
497 0, /* src_mask */
498 0, /* dst_mask */
499 TRUE), /* pcrel_offset */
500
501 /* A 32 bit reference to a symbol. */
502 HOWTO (R_ALPHA_REFLONG, /* type */
503 0, /* rightshift */
504 2, /* size (0 = byte, 1 = short, 2 = long) */
505 32, /* bitsize */
506 FALSE, /* pc_relative */
507 0, /* bitpos */
508 complain_overflow_bitfield, /* complain_on_overflow */
509 bfd_elf_generic_reloc, /* special_function */
510 "REFLONG", /* name */
511 FALSE, /* partial_inplace */
512 0xffffffff, /* src_mask */
513 0xffffffff, /* dst_mask */
514 FALSE), /* pcrel_offset */
515
516 /* A 64 bit reference to a symbol. */
517 HOWTO (R_ALPHA_REFQUAD, /* type */
518 0, /* rightshift */
519 4, /* size (0 = byte, 1 = short, 2 = long) */
520 64, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_bitfield, /* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "REFQUAD", /* name */
526 FALSE, /* partial_inplace */
527 MINUS_ONE, /* src_mask */
528 MINUS_ONE, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 /* A 32 bit GP relative offset. This is just like REFLONG except
532 that when the value is used the value of the gp register will be
533 added in. */
534 HOWTO (R_ALPHA_GPREL32, /* type */
535 0, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 32, /* bitsize */
538 FALSE, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_bitfield, /* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 "GPREL32", /* name */
543 FALSE, /* partial_inplace */
544 0xffffffff, /* src_mask */
545 0xffffffff, /* dst_mask */
546 FALSE), /* pcrel_offset */
547
548 /* Used for an instruction that refers to memory off the GP register. */
549 HOWTO (R_ALPHA_LITERAL, /* type */
550 0, /* rightshift */
551 1, /* size (0 = byte, 1 = short, 2 = long) */
552 16, /* bitsize */
553 FALSE, /* pc_relative */
554 0, /* bitpos */
555 complain_overflow_signed, /* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "ELF_LITERAL", /* name */
558 FALSE, /* partial_inplace */
559 0xffff, /* src_mask */
560 0xffff, /* dst_mask */
561 FALSE), /* pcrel_offset */
562
563 /* This reloc only appears immediately following an ELF_LITERAL reloc.
564 It identifies a use of the literal. The symbol index is special:
565 1 means the literal address is in the base register of a memory
566 format instruction; 2 means the literal address is in the byte
567 offset register of a byte-manipulation instruction; 3 means the
568 literal address is in the target register of a jsr instruction.
569 This does not actually do any relocation. */
570 HOWTO (R_ALPHA_LITUSE, /* type */
571 0, /* rightshift */
572 1, /* size (0 = byte, 1 = short, 2 = long) */
573 32, /* bitsize */
574 FALSE, /* pc_relative */
575 0, /* bitpos */
576 complain_overflow_dont, /* complain_on_overflow */
577 elf64_alpha_reloc_nil, /* special_function */
578 "LITUSE", /* name */
579 FALSE, /* partial_inplace */
580 0, /* src_mask */
581 0, /* dst_mask */
582 FALSE), /* pcrel_offset */
583
584 /* Load the gp register. This is always used for a ldah instruction
585 which loads the upper 16 bits of the gp register. The symbol
586 index of the GPDISP instruction is an offset in bytes to the lda
587 instruction that loads the lower 16 bits. The value to use for
588 the relocation is the difference between the GP value and the
589 current location; the load will always be done against a register
590 holding the current address.
591
592 NOTE: Unlike ECOFF, partial in-place relocation is not done. If
593 any offset is present in the instructions, it is an offset from
594 the register to the ldah instruction. This lets us avoid any
595 stupid hackery like inventing a gp value to do partial relocation
596 against. Also unlike ECOFF, we do the whole relocation off of
597 the GPDISP rather than a GPDISP_HI16/GPDISP_LO16 pair. An odd,
598 space consuming bit, that, since all the information was present
599 in the GPDISP_HI16 reloc. */
600 HOWTO (R_ALPHA_GPDISP, /* type */
601 16, /* rightshift */
602 2, /* size (0 = byte, 1 = short, 2 = long) */
603 16, /* bitsize */
604 FALSE, /* pc_relative */
605 0, /* bitpos */
606 complain_overflow_dont, /* complain_on_overflow */
607 elf64_alpha_reloc_gpdisp, /* special_function */
608 "GPDISP", /* name */
609 FALSE, /* partial_inplace */
610 0xffff, /* src_mask */
611 0xffff, /* dst_mask */
612 TRUE), /* pcrel_offset */
613
614 /* A 21 bit branch. */
615 HOWTO (R_ALPHA_BRADDR, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 21, /* bitsize */
619 TRUE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "BRADDR", /* name */
624 FALSE, /* partial_inplace */
625 0x1fffff, /* src_mask */
626 0x1fffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
628
629 /* A hint for a jump to a register. */
630 HOWTO (R_ALPHA_HINT, /* type */
631 2, /* rightshift */
632 1, /* size (0 = byte, 1 = short, 2 = long) */
633 14, /* bitsize */
634 TRUE, /* pc_relative */
635 0, /* bitpos */
636 complain_overflow_dont, /* complain_on_overflow */
637 bfd_elf_generic_reloc, /* special_function */
638 "HINT", /* name */
639 FALSE, /* partial_inplace */
640 0x3fff, /* src_mask */
641 0x3fff, /* dst_mask */
642 TRUE), /* pcrel_offset */
643
644 /* 16 bit PC relative offset. */
645 HOWTO (R_ALPHA_SREL16, /* type */
646 0, /* rightshift */
647 1, /* size (0 = byte, 1 = short, 2 = long) */
648 16, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "SREL16", /* name */
654 FALSE, /* partial_inplace */
655 0xffff, /* src_mask */
656 0xffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* 32 bit PC relative offset. */
660 HOWTO (R_ALPHA_SREL32, /* type */
661 0, /* rightshift */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
663 32, /* bitsize */
664 TRUE, /* pc_relative */
665 0, /* bitpos */
666 complain_overflow_signed, /* complain_on_overflow */
667 bfd_elf_generic_reloc, /* special_function */
668 "SREL32", /* name */
669 FALSE, /* partial_inplace */
670 0xffffffff, /* src_mask */
671 0xffffffff, /* dst_mask */
672 TRUE), /* pcrel_offset */
673
674 /* A 64 bit PC relative offset. */
675 HOWTO (R_ALPHA_SREL64, /* type */
676 0, /* rightshift */
677 4, /* size (0 = byte, 1 = short, 2 = long) */
678 64, /* bitsize */
679 TRUE, /* pc_relative */
680 0, /* bitpos */
681 complain_overflow_signed, /* complain_on_overflow */
682 bfd_elf_generic_reloc, /* special_function */
683 "SREL64", /* name */
684 FALSE, /* partial_inplace */
685 MINUS_ONE, /* src_mask */
686 MINUS_ONE, /* dst_mask */
687 TRUE), /* pcrel_offset */
688
689 /* Skip 12 - 16; deprecated ECOFF relocs. */
690 SKIP_HOWTO (12),
691 SKIP_HOWTO (13),
692 SKIP_HOWTO (14),
693 SKIP_HOWTO (15),
694 SKIP_HOWTO (16),
695
696 /* The high 16 bits of the displacement from GP to the target. */
697 HOWTO (R_ALPHA_GPRELHIGH,
698 0, /* rightshift */
699 1, /* size (0 = byte, 1 = short, 2 = long) */
700 16, /* bitsize */
701 FALSE, /* pc_relative */
702 0, /* bitpos */
703 complain_overflow_signed, /* complain_on_overflow */
704 bfd_elf_generic_reloc, /* special_function */
705 "GPRELHIGH", /* name */
706 FALSE, /* partial_inplace */
707 0xffff, /* src_mask */
708 0xffff, /* dst_mask */
709 FALSE), /* pcrel_offset */
710
711 /* The low 16 bits of the displacement from GP to the target. */
712 HOWTO (R_ALPHA_GPRELLOW,
713 0, /* rightshift */
714 1, /* size (0 = byte, 1 = short, 2 = long) */
715 16, /* bitsize */
716 FALSE, /* pc_relative */
717 0, /* bitpos */
718 complain_overflow_dont, /* complain_on_overflow */
719 bfd_elf_generic_reloc, /* special_function */
720 "GPRELLOW", /* name */
721 FALSE, /* partial_inplace */
722 0xffff, /* src_mask */
723 0xffff, /* dst_mask */
724 FALSE), /* pcrel_offset */
725
726 /* A 16-bit displacement from the GP to the target. */
727 HOWTO (R_ALPHA_GPREL16,
728 0, /* rightshift */
729 1, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 FALSE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_signed, /* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "GPREL16", /* name */
736 FALSE, /* partial_inplace */
737 0xffff, /* src_mask */
738 0xffff, /* dst_mask */
739 FALSE), /* pcrel_offset */
740
741 /* Skip 20 - 23; deprecated ECOFF relocs. */
742 SKIP_HOWTO (20),
743 SKIP_HOWTO (21),
744 SKIP_HOWTO (22),
745 SKIP_HOWTO (23),
746
747 /* Misc ELF relocations. */
748
749 /* A dynamic relocation to copy the target into our .dynbss section. */
750 /* Not generated, as all Alpha objects use PIC, so it is not needed. It
751 is present because every other ELF has one, but should not be used
752 because .dynbss is an ugly thing. */
753 HOWTO (R_ALPHA_COPY,
754 0,
755 0,
756 0,
757 FALSE,
758 0,
759 complain_overflow_dont,
760 bfd_elf_generic_reloc,
761 "COPY",
762 FALSE,
763 0,
764 0,
765 TRUE),
766
767 /* A dynamic relocation for a .got entry. */
768 HOWTO (R_ALPHA_GLOB_DAT,
769 0,
770 0,
771 0,
772 FALSE,
773 0,
774 complain_overflow_dont,
775 bfd_elf_generic_reloc,
776 "GLOB_DAT",
777 FALSE,
778 0,
779 0,
780 TRUE),
781
782 /* A dynamic relocation for a .plt entry. */
783 HOWTO (R_ALPHA_JMP_SLOT,
784 0,
785 0,
786 0,
787 FALSE,
788 0,
789 complain_overflow_dont,
790 bfd_elf_generic_reloc,
791 "JMP_SLOT",
792 FALSE,
793 0,
794 0,
795 TRUE),
796
797 /* A dynamic relocation to add the base of the DSO to a 64-bit field. */
798 HOWTO (R_ALPHA_RELATIVE,
799 0,
800 0,
801 0,
802 FALSE,
803 0,
804 complain_overflow_dont,
805 bfd_elf_generic_reloc,
806 "RELATIVE",
807 FALSE,
808 0,
809 0,
810 TRUE),
811
812 /* A 21 bit branch that adjusts for gp loads. */
813 HOWTO (R_ALPHA_BRSGP, /* type */
814 2, /* rightshift */
815 2, /* size (0 = byte, 1 = short, 2 = long) */
816 21, /* bitsize */
817 TRUE, /* pc_relative */
818 0, /* bitpos */
819 complain_overflow_signed, /* complain_on_overflow */
820 bfd_elf_generic_reloc, /* special_function */
821 "BRSGP", /* name */
822 FALSE, /* partial_inplace */
823 0x1fffff, /* src_mask */
824 0x1fffff, /* dst_mask */
825 TRUE), /* pcrel_offset */
826
827 /* Creates a tls_index for the symbol in the got. */
828 HOWTO (R_ALPHA_TLSGD, /* type */
829 0, /* rightshift */
830 1, /* size (0 = byte, 1 = short, 2 = long) */
831 16, /* bitsize */
832 FALSE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_signed, /* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "TLSGD", /* name */
837 FALSE, /* partial_inplace */
838 0xffff, /* src_mask */
839 0xffff, /* dst_mask */
840 FALSE), /* pcrel_offset */
841
842 /* Creates a tls_index for the (current) module in the got. */
843 HOWTO (R_ALPHA_TLSLDM, /* type */
844 0, /* rightshift */
845 1, /* size (0 = byte, 1 = short, 2 = long) */
846 16, /* bitsize */
847 FALSE, /* pc_relative */
848 0, /* bitpos */
849 complain_overflow_signed, /* complain_on_overflow */
850 bfd_elf_generic_reloc, /* special_function */
851 "TLSLDM", /* name */
852 FALSE, /* partial_inplace */
853 0xffff, /* src_mask */
854 0xffff, /* dst_mask */
855 FALSE), /* pcrel_offset */
856
857 /* A dynamic relocation for a DTP module entry. */
858 HOWTO (R_ALPHA_DTPMOD64, /* type */
859 0, /* rightshift */
860 4, /* size (0 = byte, 1 = short, 2 = long) */
861 64, /* bitsize */
862 FALSE, /* pc_relative */
863 0, /* bitpos */
864 complain_overflow_bitfield, /* complain_on_overflow */
865 bfd_elf_generic_reloc, /* special_function */
866 "DTPMOD64", /* name */
867 FALSE, /* partial_inplace */
868 MINUS_ONE, /* src_mask */
869 MINUS_ONE, /* dst_mask */
870 FALSE), /* pcrel_offset */
871
872 /* Creates a 64-bit offset in the got for the displacement
873 from DTP to the target. */
874 HOWTO (R_ALPHA_GOTDTPREL, /* type */
875 0, /* rightshift */
876 1, /* size (0 = byte, 1 = short, 2 = long) */
877 16, /* bitsize */
878 FALSE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_signed, /* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 "GOTDTPREL", /* name */
883 FALSE, /* partial_inplace */
884 0xffff, /* src_mask */
885 0xffff, /* dst_mask */
886 FALSE), /* pcrel_offset */
887
888 /* A dynamic relocation for a displacement from DTP to the target. */
889 HOWTO (R_ALPHA_DTPREL64, /* type */
890 0, /* rightshift */
891 4, /* size (0 = byte, 1 = short, 2 = long) */
892 64, /* bitsize */
893 FALSE, /* pc_relative */
894 0, /* bitpos */
895 complain_overflow_bitfield, /* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 "DTPREL64", /* name */
898 FALSE, /* partial_inplace */
899 MINUS_ONE, /* src_mask */
900 MINUS_ONE, /* dst_mask */
901 FALSE), /* pcrel_offset */
902
903 /* The high 16 bits of the displacement from DTP to the target. */
904 HOWTO (R_ALPHA_DTPRELHI, /* type */
905 0, /* rightshift */
906 1, /* size (0 = byte, 1 = short, 2 = long) */
907 16, /* bitsize */
908 FALSE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_signed, /* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 "DTPRELHI", /* name */
913 FALSE, /* partial_inplace */
914 0xffff, /* src_mask */
915 0xffff, /* dst_mask */
916 FALSE), /* pcrel_offset */
917
918 /* The low 16 bits of the displacement from DTP to the target. */
919 HOWTO (R_ALPHA_DTPRELLO, /* type */
920 0, /* rightshift */
921 1, /* size (0 = byte, 1 = short, 2 = long) */
922 16, /* bitsize */
923 FALSE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont, /* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "DTPRELLO", /* name */
928 FALSE, /* partial_inplace */
929 0xffff, /* src_mask */
930 0xffff, /* dst_mask */
931 FALSE), /* pcrel_offset */
932
933 /* A 16-bit displacement from DTP to the target. */
934 HOWTO (R_ALPHA_DTPREL16, /* type */
935 0, /* rightshift */
936 1, /* size (0 = byte, 1 = short, 2 = long) */
937 16, /* bitsize */
938 FALSE, /* pc_relative */
939 0, /* bitpos */
940 complain_overflow_signed, /* complain_on_overflow */
941 bfd_elf_generic_reloc, /* special_function */
942 "DTPREL16", /* name */
943 FALSE, /* partial_inplace */
944 0xffff, /* src_mask */
945 0xffff, /* dst_mask */
946 FALSE), /* pcrel_offset */
947
948 /* Creates a 64-bit offset in the got for the displacement
949 from TP to the target. */
950 HOWTO (R_ALPHA_GOTTPREL, /* type */
951 0, /* rightshift */
952 1, /* size (0 = byte, 1 = short, 2 = long) */
953 16, /* bitsize */
954 FALSE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_signed, /* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 "GOTTPREL", /* name */
959 FALSE, /* partial_inplace */
960 0xffff, /* src_mask */
961 0xffff, /* dst_mask */
962 FALSE), /* pcrel_offset */
963
964 /* A dynamic relocation for a displacement from TP to the target. */
965 HOWTO (R_ALPHA_TPREL64, /* type */
966 0, /* rightshift */
967 4, /* size (0 = byte, 1 = short, 2 = long) */
968 64, /* bitsize */
969 FALSE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_bitfield, /* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "TPREL64", /* name */
974 FALSE, /* partial_inplace */
975 MINUS_ONE, /* src_mask */
976 MINUS_ONE, /* dst_mask */
977 FALSE), /* pcrel_offset */
978
979 /* The high 16 bits of the displacement from TP to the target. */
980 HOWTO (R_ALPHA_TPRELHI, /* type */
981 0, /* rightshift */
982 1, /* size (0 = byte, 1 = short, 2 = long) */
983 16, /* bitsize */
984 FALSE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_signed, /* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 "TPRELHI", /* name */
989 FALSE, /* partial_inplace */
990 0xffff, /* src_mask */
991 0xffff, /* dst_mask */
992 FALSE), /* pcrel_offset */
993
994 /* The low 16 bits of the displacement from TP to the target. */
995 HOWTO (R_ALPHA_TPRELLO, /* type */
996 0, /* rightshift */
997 1, /* size (0 = byte, 1 = short, 2 = long) */
998 16, /* bitsize */
999 FALSE, /* pc_relative */
1000 0, /* bitpos */
1001 complain_overflow_dont, /* complain_on_overflow */
1002 bfd_elf_generic_reloc, /* special_function */
1003 "TPRELLO", /* name */
1004 FALSE, /* partial_inplace */
1005 0xffff, /* src_mask */
1006 0xffff, /* dst_mask */
1007 FALSE), /* pcrel_offset */
1008
1009 /* A 16-bit displacement from TP to the target. */
1010 HOWTO (R_ALPHA_TPREL16, /* type */
1011 0, /* rightshift */
1012 1, /* size (0 = byte, 1 = short, 2 = long) */
1013 16, /* bitsize */
1014 FALSE, /* pc_relative */
1015 0, /* bitpos */
1016 complain_overflow_signed, /* complain_on_overflow */
1017 bfd_elf_generic_reloc, /* special_function */
1018 "TPREL16", /* name */
1019 FALSE, /* partial_inplace */
1020 0xffff, /* src_mask */
1021 0xffff, /* dst_mask */
1022 FALSE), /* pcrel_offset */
1023 };
1024
1025 /* A mapping from BFD reloc types to Alpha ELF reloc types. */
1026
1027 struct elf_reloc_map
1028 {
1029 bfd_reloc_code_real_type bfd_reloc_val;
1030 int elf_reloc_val;
1031 };
1032
1033 static const struct elf_reloc_map elf64_alpha_reloc_map[] =
1034 {
1035 {BFD_RELOC_NONE, R_ALPHA_NONE},
1036 {BFD_RELOC_32, R_ALPHA_REFLONG},
1037 {BFD_RELOC_64, R_ALPHA_REFQUAD},
1038 {BFD_RELOC_CTOR, R_ALPHA_REFQUAD},
1039 {BFD_RELOC_GPREL32, R_ALPHA_GPREL32},
1040 {BFD_RELOC_ALPHA_ELF_LITERAL, R_ALPHA_LITERAL},
1041 {BFD_RELOC_ALPHA_LITUSE, R_ALPHA_LITUSE},
1042 {BFD_RELOC_ALPHA_GPDISP, R_ALPHA_GPDISP},
1043 {BFD_RELOC_23_PCREL_S2, R_ALPHA_BRADDR},
1044 {BFD_RELOC_ALPHA_HINT, R_ALPHA_HINT},
1045 {BFD_RELOC_16_PCREL, R_ALPHA_SREL16},
1046 {BFD_RELOC_32_PCREL, R_ALPHA_SREL32},
1047 {BFD_RELOC_64_PCREL, R_ALPHA_SREL64},
1048 {BFD_RELOC_ALPHA_GPREL_HI16, R_ALPHA_GPRELHIGH},
1049 {BFD_RELOC_ALPHA_GPREL_LO16, R_ALPHA_GPRELLOW},
1050 {BFD_RELOC_GPREL16, R_ALPHA_GPREL16},
1051 {BFD_RELOC_ALPHA_BRSGP, R_ALPHA_BRSGP},
1052 {BFD_RELOC_ALPHA_TLSGD, R_ALPHA_TLSGD},
1053 {BFD_RELOC_ALPHA_TLSLDM, R_ALPHA_TLSLDM},
1054 {BFD_RELOC_ALPHA_DTPMOD64, R_ALPHA_DTPMOD64},
1055 {BFD_RELOC_ALPHA_GOTDTPREL16, R_ALPHA_GOTDTPREL},
1056 {BFD_RELOC_ALPHA_DTPREL64, R_ALPHA_DTPREL64},
1057 {BFD_RELOC_ALPHA_DTPREL_HI16, R_ALPHA_DTPRELHI},
1058 {BFD_RELOC_ALPHA_DTPREL_LO16, R_ALPHA_DTPRELLO},
1059 {BFD_RELOC_ALPHA_DTPREL16, R_ALPHA_DTPREL16},
1060 {BFD_RELOC_ALPHA_GOTTPREL16, R_ALPHA_GOTTPREL},
1061 {BFD_RELOC_ALPHA_TPREL64, R_ALPHA_TPREL64},
1062 {BFD_RELOC_ALPHA_TPREL_HI16, R_ALPHA_TPRELHI},
1063 {BFD_RELOC_ALPHA_TPREL_LO16, R_ALPHA_TPRELLO},
1064 {BFD_RELOC_ALPHA_TPREL16, R_ALPHA_TPREL16},
1065 };
1066
1067 /* Given a BFD reloc type, return a HOWTO structure. */
1068
1069 static reloc_howto_type *
1070 elf64_alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1071 bfd_reloc_code_real_type code)
1072 {
1073 const struct elf_reloc_map *i, *e;
1074 i = e = elf64_alpha_reloc_map;
1075 e += sizeof (elf64_alpha_reloc_map) / sizeof (struct elf_reloc_map);
1076 for (; i != e; ++i)
1077 {
1078 if (i->bfd_reloc_val == code)
1079 return &elf64_alpha_howto_table[i->elf_reloc_val];
1080 }
1081 return 0;
1082 }
1083
1084 static reloc_howto_type *
1085 elf64_alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1086 const char *r_name)
1087 {
1088 unsigned int i;
1089
1090 for (i = 0;
1091 i < (sizeof (elf64_alpha_howto_table)
1092 / sizeof (elf64_alpha_howto_table[0]));
1093 i++)
1094 if (elf64_alpha_howto_table[i].name != NULL
1095 && strcasecmp (elf64_alpha_howto_table[i].name, r_name) == 0)
1096 return &elf64_alpha_howto_table[i];
1097
1098 return NULL;
1099 }
1100
1101 /* Given an Alpha ELF reloc type, fill in an arelent structure. */
1102
1103 static void
1104 elf64_alpha_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
1105 Elf_Internal_Rela *dst)
1106 {
1107 unsigned r_type = ELF64_R_TYPE(dst->r_info);
1108
1109 if (r_type >= R_ALPHA_max)
1110 {
1111 (*_bfd_error_handler) (_("%B: unrecognised Alpha reloc number: %d"),
1112 abfd, r_type);
1113 bfd_set_error (bfd_error_bad_value);
1114 r_type = R_ALPHA_NONE;
1115 }
1116 cache_ptr->howto = &elf64_alpha_howto_table[r_type];
1117 }
1118
1119 /* These two relocations create a two-word entry in the got. */
1120 #define alpha_got_entry_size(r_type) \
1121 (r_type == R_ALPHA_TLSGD || r_type == R_ALPHA_TLSLDM ? 16 : 8)
1122
1123 /* This is PT_TLS segment p_vaddr. */
1124 #define alpha_get_dtprel_base(info) \
1125 (elf_hash_table (info)->tls_sec->vma)
1126
1127 /* Main program TLS (whose template starts at PT_TLS p_vaddr)
1128 is assigned offset round(16, PT_TLS p_align). */
1129 #define alpha_get_tprel_base(info) \
1130 (elf_hash_table (info)->tls_sec->vma \
1131 - align_power ((bfd_vma) 16, \
1132 elf_hash_table (info)->tls_sec->alignment_power))
1133 \f
1134 /* Handle an Alpha specific section when reading an object file. This
1135 is called when bfd_section_from_shdr finds a section with an unknown
1136 type.
1137 FIXME: We need to handle the SHF_ALPHA_GPREL flag, but I'm not sure
1138 how to. */
1139
1140 static bfd_boolean
1141 elf64_alpha_section_from_shdr (bfd *abfd,
1142 Elf_Internal_Shdr *hdr,
1143 const char *name,
1144 int shindex)
1145 {
1146 asection *newsect;
1147
1148 /* There ought to be a place to keep ELF backend specific flags, but
1149 at the moment there isn't one. We just keep track of the
1150 sections by their name, instead. Fortunately, the ABI gives
1151 suggested names for all the MIPS specific sections, so we will
1152 probably get away with this. */
1153 switch (hdr->sh_type)
1154 {
1155 case SHT_ALPHA_DEBUG:
1156 if (strcmp (name, ".mdebug") != 0)
1157 return FALSE;
1158 break;
1159 default:
1160 return FALSE;
1161 }
1162
1163 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1164 return FALSE;
1165 newsect = hdr->bfd_section;
1166
1167 if (hdr->sh_type == SHT_ALPHA_DEBUG)
1168 {
1169 if (! bfd_set_section_flags (abfd, newsect,
1170 (bfd_get_section_flags (abfd, newsect)
1171 | SEC_DEBUGGING)))
1172 return FALSE;
1173 }
1174
1175 return TRUE;
1176 }
1177
1178 /* Convert Alpha specific section flags to bfd internal section flags. */
1179
1180 static bfd_boolean
1181 elf64_alpha_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
1182 {
1183 if (hdr->sh_flags & SHF_ALPHA_GPREL)
1184 *flags |= SEC_SMALL_DATA;
1185
1186 return TRUE;
1187 }
1188
1189 /* Set the correct type for an Alpha ELF section. We do this by the
1190 section name, which is a hack, but ought to work. */
1191
1192 static bfd_boolean
1193 elf64_alpha_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
1194 {
1195 register const char *name;
1196
1197 name = bfd_get_section_name (abfd, sec);
1198
1199 if (strcmp (name, ".mdebug") == 0)
1200 {
1201 hdr->sh_type = SHT_ALPHA_DEBUG;
1202 /* In a shared object on Irix 5.3, the .mdebug section has an
1203 entsize of 0. FIXME: Does this matter? */
1204 if ((abfd->flags & DYNAMIC) != 0 )
1205 hdr->sh_entsize = 0;
1206 else
1207 hdr->sh_entsize = 1;
1208 }
1209 else if ((sec->flags & SEC_SMALL_DATA)
1210 || strcmp (name, ".sdata") == 0
1211 || strcmp (name, ".sbss") == 0
1212 || strcmp (name, ".lit4") == 0
1213 || strcmp (name, ".lit8") == 0)
1214 hdr->sh_flags |= SHF_ALPHA_GPREL;
1215
1216 return TRUE;
1217 }
1218
1219 /* Hook called by the linker routine which adds symbols from an object
1220 file. We use it to put .comm items in .sbss, and not .bss. */
1221
1222 static bfd_boolean
1223 elf64_alpha_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
1224 Elf_Internal_Sym *sym,
1225 const char **namep ATTRIBUTE_UNUSED,
1226 flagword *flagsp ATTRIBUTE_UNUSED,
1227 asection **secp, bfd_vma *valp)
1228 {
1229 if (sym->st_shndx == SHN_COMMON
1230 && !info->relocatable
1231 && sym->st_size <= elf_gp_size (abfd))
1232 {
1233 /* Common symbols less than or equal to -G nn bytes are
1234 automatically put into .sbss. */
1235
1236 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1237
1238 if (scomm == NULL)
1239 {
1240 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1241 (SEC_ALLOC
1242 | SEC_IS_COMMON
1243 | SEC_LINKER_CREATED));
1244 if (scomm == NULL)
1245 return FALSE;
1246 }
1247
1248 *secp = scomm;
1249 *valp = sym->st_size;
1250 }
1251
1252 return TRUE;
1253 }
1254
1255 /* Create the .got section. */
1256
1257 static bfd_boolean
1258 elf64_alpha_create_got_section (bfd *abfd,
1259 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1260 {
1261 flagword flags;
1262 asection *s;
1263
1264 if (! is_alpha_elf (abfd))
1265 return FALSE;
1266
1267 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1268 | SEC_LINKER_CREATED);
1269 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
1270 if (s == NULL
1271 || !bfd_set_section_alignment (abfd, s, 3))
1272 return FALSE;
1273
1274 alpha_elf_tdata (abfd)->got = s;
1275
1276 /* Make sure the object's gotobj is set to itself so that we default
1277 to every object with its own .got. We'll merge .gots later once
1278 we've collected each object's info. */
1279 alpha_elf_tdata (abfd)->gotobj = abfd;
1280
1281 return TRUE;
1282 }
1283
1284 /* Create all the dynamic sections. */
1285
1286 static bfd_boolean
1287 elf64_alpha_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1288 {
1289 asection *s;
1290 flagword flags;
1291 struct elf_link_hash_entry *h;
1292
1293 if (! is_alpha_elf (abfd))
1294 return FALSE;
1295
1296 /* We need to create .plt, .rela.plt, .got, and .rela.got sections. */
1297
1298 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1299 | SEC_LINKER_CREATED
1300 | (elf64_alpha_use_secureplt ? SEC_READONLY : 0));
1301 s = bfd_make_section_anyway_with_flags (abfd, ".plt", flags);
1302 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 4))
1303 return FALSE;
1304
1305 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
1306 .plt section. */
1307 h = _bfd_elf_define_linkage_sym (abfd, info, s,
1308 "_PROCEDURE_LINKAGE_TABLE_");
1309 elf_hash_table (info)->hplt = h;
1310 if (h == NULL)
1311 return FALSE;
1312
1313 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1314 | SEC_LINKER_CREATED | SEC_READONLY);
1315 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt", flags);
1316 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1317 return FALSE;
1318
1319 if (elf64_alpha_use_secureplt)
1320 {
1321 flags = SEC_ALLOC | SEC_LINKER_CREATED;
1322 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
1323 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1324 return FALSE;
1325 }
1326
1327 /* We may or may not have created a .got section for this object, but
1328 we definitely havn't done the rest of the work. */
1329
1330 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1331 {
1332 if (!elf64_alpha_create_got_section (abfd, info))
1333 return FALSE;
1334 }
1335
1336 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1337 | SEC_LINKER_CREATED | SEC_READONLY);
1338 s = bfd_make_section_anyway_with_flags (abfd, ".rela.got", flags);
1339 if (s == NULL
1340 || !bfd_set_section_alignment (abfd, s, 3))
1341 return FALSE;
1342
1343 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
1344 dynobj's .got section. We don't do this in the linker script
1345 because we don't want to define the symbol if we are not creating
1346 a global offset table. */
1347 h = _bfd_elf_define_linkage_sym (abfd, info, alpha_elf_tdata(abfd)->got,
1348 "_GLOBAL_OFFSET_TABLE_");
1349 elf_hash_table (info)->hgot = h;
1350 if (h == NULL)
1351 return FALSE;
1352
1353 return TRUE;
1354 }
1355 \f
1356 /* Read ECOFF debugging information from a .mdebug section into a
1357 ecoff_debug_info structure. */
1358
1359 static bfd_boolean
1360 elf64_alpha_read_ecoff_info (bfd *abfd, asection *section,
1361 struct ecoff_debug_info *debug)
1362 {
1363 HDRR *symhdr;
1364 const struct ecoff_debug_swap *swap;
1365 char *ext_hdr = NULL;
1366
1367 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1368 memset (debug, 0, sizeof (*debug));
1369
1370 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
1371 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1372 goto error_return;
1373
1374 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
1375 swap->external_hdr_size))
1376 goto error_return;
1377
1378 symhdr = &debug->symbolic_header;
1379 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1380
1381 /* The symbolic header contains absolute file offsets and sizes to
1382 read. */
1383 #define READ(ptr, offset, count, size, type) \
1384 if (symhdr->count == 0) \
1385 debug->ptr = NULL; \
1386 else \
1387 { \
1388 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1389 debug->ptr = (type) bfd_malloc (amt); \
1390 if (debug->ptr == NULL) \
1391 goto error_return; \
1392 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
1393 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1394 goto error_return; \
1395 }
1396
1397 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1398 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1399 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1400 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1401 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1402 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1403 union aux_ext *);
1404 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1405 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1406 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1407 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1408 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1409 #undef READ
1410
1411 debug->fdr = NULL;
1412
1413 return TRUE;
1414
1415 error_return:
1416 if (ext_hdr != NULL)
1417 free (ext_hdr);
1418 if (debug->line != NULL)
1419 free (debug->line);
1420 if (debug->external_dnr != NULL)
1421 free (debug->external_dnr);
1422 if (debug->external_pdr != NULL)
1423 free (debug->external_pdr);
1424 if (debug->external_sym != NULL)
1425 free (debug->external_sym);
1426 if (debug->external_opt != NULL)
1427 free (debug->external_opt);
1428 if (debug->external_aux != NULL)
1429 free (debug->external_aux);
1430 if (debug->ss != NULL)
1431 free (debug->ss);
1432 if (debug->ssext != NULL)
1433 free (debug->ssext);
1434 if (debug->external_fdr != NULL)
1435 free (debug->external_fdr);
1436 if (debug->external_rfd != NULL)
1437 free (debug->external_rfd);
1438 if (debug->external_ext != NULL)
1439 free (debug->external_ext);
1440 return FALSE;
1441 }
1442
1443 /* Alpha ELF local labels start with '$'. */
1444
1445 static bfd_boolean
1446 elf64_alpha_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name)
1447 {
1448 return name[0] == '$';
1449 }
1450
1451 static bfd_boolean
1452 elf64_alpha_find_nearest_line (bfd *abfd, asymbol **symbols,
1453 asection *section, bfd_vma offset,
1454 const char **filename_ptr,
1455 const char **functionname_ptr,
1456 unsigned int *line_ptr,
1457 unsigned int *discriminator_ptr)
1458 {
1459 asection *msec;
1460
1461 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
1462 filename_ptr, functionname_ptr,
1463 line_ptr, discriminator_ptr,
1464 dwarf_debug_sections, 0,
1465 &elf_tdata (abfd)->dwarf2_find_line_info))
1466 return TRUE;
1467
1468 msec = bfd_get_section_by_name (abfd, ".mdebug");
1469 if (msec != NULL)
1470 {
1471 flagword origflags;
1472 struct alpha_elf_find_line *fi;
1473 const struct ecoff_debug_swap * const swap =
1474 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1475
1476 /* If we are called during a link, alpha_elf_final_link may have
1477 cleared the SEC_HAS_CONTENTS field. We force it back on here
1478 if appropriate (which it normally will be). */
1479 origflags = msec->flags;
1480 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
1481 msec->flags |= SEC_HAS_CONTENTS;
1482
1483 fi = alpha_elf_tdata (abfd)->find_line_info;
1484 if (fi == NULL)
1485 {
1486 bfd_size_type external_fdr_size;
1487 char *fraw_src;
1488 char *fraw_end;
1489 struct fdr *fdr_ptr;
1490 bfd_size_type amt = sizeof (struct alpha_elf_find_line);
1491
1492 fi = (struct alpha_elf_find_line *) bfd_zalloc (abfd, amt);
1493 if (fi == NULL)
1494 {
1495 msec->flags = origflags;
1496 return FALSE;
1497 }
1498
1499 if (!elf64_alpha_read_ecoff_info (abfd, msec, &fi->d))
1500 {
1501 msec->flags = origflags;
1502 return FALSE;
1503 }
1504
1505 /* Swap in the FDR information. */
1506 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
1507 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
1508 if (fi->d.fdr == NULL)
1509 {
1510 msec->flags = origflags;
1511 return FALSE;
1512 }
1513 external_fdr_size = swap->external_fdr_size;
1514 fdr_ptr = fi->d.fdr;
1515 fraw_src = (char *) fi->d.external_fdr;
1516 fraw_end = (fraw_src
1517 + fi->d.symbolic_header.ifdMax * external_fdr_size);
1518 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
1519 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
1520
1521 alpha_elf_tdata (abfd)->find_line_info = fi;
1522
1523 /* Note that we don't bother to ever free this information.
1524 find_nearest_line is either called all the time, as in
1525 objdump -l, so the information should be saved, or it is
1526 rarely called, as in ld error messages, so the memory
1527 wasted is unimportant. Still, it would probably be a
1528 good idea for free_cached_info to throw it away. */
1529 }
1530
1531 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
1532 &fi->i, filename_ptr, functionname_ptr,
1533 line_ptr))
1534 {
1535 msec->flags = origflags;
1536 return TRUE;
1537 }
1538
1539 msec->flags = origflags;
1540 }
1541
1542 /* Fall back on the generic ELF find_nearest_line routine. */
1543
1544 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
1545 filename_ptr, functionname_ptr,
1546 line_ptr, discriminator_ptr);
1547 }
1548 \f
1549 /* Structure used to pass information to alpha_elf_output_extsym. */
1550
1551 struct extsym_info
1552 {
1553 bfd *abfd;
1554 struct bfd_link_info *info;
1555 struct ecoff_debug_info *debug;
1556 const struct ecoff_debug_swap *swap;
1557 bfd_boolean failed;
1558 };
1559
1560 static bfd_boolean
1561 elf64_alpha_output_extsym (struct alpha_elf_link_hash_entry *h, void * data)
1562 {
1563 struct extsym_info *einfo = (struct extsym_info *) data;
1564 bfd_boolean strip;
1565 asection *sec, *output_section;
1566
1567 if (h->root.indx == -2)
1568 strip = FALSE;
1569 else if ((h->root.def_dynamic
1570 || h->root.ref_dynamic
1571 || h->root.root.type == bfd_link_hash_new)
1572 && !h->root.def_regular
1573 && !h->root.ref_regular)
1574 strip = TRUE;
1575 else if (einfo->info->strip == strip_all
1576 || (einfo->info->strip == strip_some
1577 && bfd_hash_lookup (einfo->info->keep_hash,
1578 h->root.root.root.string,
1579 FALSE, FALSE) == NULL))
1580 strip = TRUE;
1581 else
1582 strip = FALSE;
1583
1584 if (strip)
1585 return TRUE;
1586
1587 if (h->esym.ifd == -2)
1588 {
1589 h->esym.jmptbl = 0;
1590 h->esym.cobol_main = 0;
1591 h->esym.weakext = 0;
1592 h->esym.reserved = 0;
1593 h->esym.ifd = ifdNil;
1594 h->esym.asym.value = 0;
1595 h->esym.asym.st = stGlobal;
1596
1597 if (h->root.root.type != bfd_link_hash_defined
1598 && h->root.root.type != bfd_link_hash_defweak)
1599 h->esym.asym.sc = scAbs;
1600 else
1601 {
1602 const char *name;
1603
1604 sec = h->root.root.u.def.section;
1605 output_section = sec->output_section;
1606
1607 /* When making a shared library and symbol h is the one from
1608 the another shared library, OUTPUT_SECTION may be null. */
1609 if (output_section == NULL)
1610 h->esym.asym.sc = scUndefined;
1611 else
1612 {
1613 name = bfd_section_name (output_section->owner, output_section);
1614
1615 if (strcmp (name, ".text") == 0)
1616 h->esym.asym.sc = scText;
1617 else if (strcmp (name, ".data") == 0)
1618 h->esym.asym.sc = scData;
1619 else if (strcmp (name, ".sdata") == 0)
1620 h->esym.asym.sc = scSData;
1621 else if (strcmp (name, ".rodata") == 0
1622 || strcmp (name, ".rdata") == 0)
1623 h->esym.asym.sc = scRData;
1624 else if (strcmp (name, ".bss") == 0)
1625 h->esym.asym.sc = scBss;
1626 else if (strcmp (name, ".sbss") == 0)
1627 h->esym.asym.sc = scSBss;
1628 else if (strcmp (name, ".init") == 0)
1629 h->esym.asym.sc = scInit;
1630 else if (strcmp (name, ".fini") == 0)
1631 h->esym.asym.sc = scFini;
1632 else
1633 h->esym.asym.sc = scAbs;
1634 }
1635 }
1636
1637 h->esym.asym.reserved = 0;
1638 h->esym.asym.index = indexNil;
1639 }
1640
1641 if (h->root.root.type == bfd_link_hash_common)
1642 h->esym.asym.value = h->root.root.u.c.size;
1643 else if (h->root.root.type == bfd_link_hash_defined
1644 || h->root.root.type == bfd_link_hash_defweak)
1645 {
1646 if (h->esym.asym.sc == scCommon)
1647 h->esym.asym.sc = scBss;
1648 else if (h->esym.asym.sc == scSCommon)
1649 h->esym.asym.sc = scSBss;
1650
1651 sec = h->root.root.u.def.section;
1652 output_section = sec->output_section;
1653 if (output_section != NULL)
1654 h->esym.asym.value = (h->root.root.u.def.value
1655 + sec->output_offset
1656 + output_section->vma);
1657 else
1658 h->esym.asym.value = 0;
1659 }
1660
1661 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1662 h->root.root.root.string,
1663 &h->esym))
1664 {
1665 einfo->failed = TRUE;
1666 return FALSE;
1667 }
1668
1669 return TRUE;
1670 }
1671 \f
1672 /* Search for and possibly create a got entry. */
1673
1674 static struct alpha_elf_got_entry *
1675 get_got_entry (bfd *abfd, struct alpha_elf_link_hash_entry *h,
1676 unsigned long r_type, unsigned long r_symndx,
1677 bfd_vma r_addend)
1678 {
1679 struct alpha_elf_got_entry *gotent;
1680 struct alpha_elf_got_entry **slot;
1681
1682 if (h)
1683 slot = &h->got_entries;
1684 else
1685 {
1686 /* This is a local .got entry -- record for merge. */
1687
1688 struct alpha_elf_got_entry **local_got_entries;
1689
1690 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
1691 if (!local_got_entries)
1692 {
1693 bfd_size_type size;
1694 Elf_Internal_Shdr *symtab_hdr;
1695
1696 symtab_hdr = &elf_tdata(abfd)->symtab_hdr;
1697 size = symtab_hdr->sh_info;
1698 size *= sizeof (struct alpha_elf_got_entry *);
1699
1700 local_got_entries
1701 = (struct alpha_elf_got_entry **) bfd_zalloc (abfd, size);
1702 if (!local_got_entries)
1703 return NULL;
1704
1705 alpha_elf_tdata (abfd)->local_got_entries = local_got_entries;
1706 }
1707
1708 slot = &local_got_entries[r_symndx];
1709 }
1710
1711 for (gotent = *slot; gotent ; gotent = gotent->next)
1712 if (gotent->gotobj == abfd
1713 && gotent->reloc_type == r_type
1714 && gotent->addend == r_addend)
1715 break;
1716
1717 if (!gotent)
1718 {
1719 int entry_size;
1720 bfd_size_type amt;
1721
1722 amt = sizeof (struct alpha_elf_got_entry);
1723 gotent = (struct alpha_elf_got_entry *) bfd_alloc (abfd, amt);
1724 if (!gotent)
1725 return NULL;
1726
1727 gotent->gotobj = abfd;
1728 gotent->addend = r_addend;
1729 gotent->got_offset = -1;
1730 gotent->plt_offset = -1;
1731 gotent->use_count = 1;
1732 gotent->reloc_type = r_type;
1733 gotent->reloc_done = 0;
1734 gotent->reloc_xlated = 0;
1735
1736 gotent->next = *slot;
1737 *slot = gotent;
1738
1739 entry_size = alpha_got_entry_size (r_type);
1740 alpha_elf_tdata (abfd)->total_got_size += entry_size;
1741 if (!h)
1742 alpha_elf_tdata(abfd)->local_got_size += entry_size;
1743 }
1744 else
1745 gotent->use_count += 1;
1746
1747 return gotent;
1748 }
1749
1750 static bfd_boolean
1751 elf64_alpha_want_plt (struct alpha_elf_link_hash_entry *ah)
1752 {
1753 return ((ah->root.type == STT_FUNC
1754 || ah->root.root.type == bfd_link_hash_undefweak
1755 || ah->root.root.type == bfd_link_hash_undefined)
1756 && (ah->flags & ALPHA_ELF_LINK_HASH_LU_PLT) != 0
1757 && (ah->flags & ~ALPHA_ELF_LINK_HASH_LU_PLT) == 0);
1758 }
1759
1760 /* Handle dynamic relocations when doing an Alpha ELF link. */
1761
1762 static bfd_boolean
1763 elf64_alpha_check_relocs (bfd *abfd, struct bfd_link_info *info,
1764 asection *sec, const Elf_Internal_Rela *relocs)
1765 {
1766 bfd *dynobj;
1767 asection *sreloc;
1768 Elf_Internal_Shdr *symtab_hdr;
1769 struct alpha_elf_link_hash_entry **sym_hashes;
1770 const Elf_Internal_Rela *rel, *relend;
1771 bfd_size_type amt;
1772
1773 if (info->relocatable)
1774 return TRUE;
1775
1776 /* Don't do anything special with non-loaded, non-alloced sections.
1777 In particular, any relocs in such sections should not affect GOT
1778 and PLT reference counting (ie. we don't allow them to create GOT
1779 or PLT entries), there's no possibility or desire to optimize TLS
1780 relocs, and there's not much point in propagating relocs to shared
1781 libs that the dynamic linker won't relocate. */
1782 if ((sec->flags & SEC_ALLOC) == 0)
1783 return TRUE;
1784
1785 BFD_ASSERT (is_alpha_elf (abfd));
1786
1787 dynobj = elf_hash_table (info)->dynobj;
1788 if (dynobj == NULL)
1789 elf_hash_table (info)->dynobj = dynobj = abfd;
1790
1791 sreloc = NULL;
1792 symtab_hdr = &elf_symtab_hdr (abfd);
1793 sym_hashes = alpha_elf_sym_hashes (abfd);
1794
1795 relend = relocs + sec->reloc_count;
1796 for (rel = relocs; rel < relend; ++rel)
1797 {
1798 enum {
1799 NEED_GOT = 1,
1800 NEED_GOT_ENTRY = 2,
1801 NEED_DYNREL = 4
1802 };
1803
1804 unsigned long r_symndx, r_type;
1805 struct alpha_elf_link_hash_entry *h;
1806 unsigned int gotent_flags;
1807 bfd_boolean maybe_dynamic;
1808 unsigned int need;
1809 bfd_vma addend;
1810
1811 r_symndx = ELF64_R_SYM (rel->r_info);
1812 if (r_symndx < symtab_hdr->sh_info)
1813 h = NULL;
1814 else
1815 {
1816 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1817
1818 while (h->root.root.type == bfd_link_hash_indirect
1819 || h->root.root.type == bfd_link_hash_warning)
1820 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
1821
1822 /* PR15323, ref flags aren't set for references in the same
1823 object. */
1824 h->root.root.non_ir_ref = 1;
1825 h->root.ref_regular = 1;
1826 }
1827
1828 /* We can only get preliminary data on whether a symbol is
1829 locally or externally defined, as not all of the input files
1830 have yet been processed. Do something with what we know, as
1831 this may help reduce memory usage and processing time later. */
1832 maybe_dynamic = FALSE;
1833 if (h && ((info->shared
1834 && (!info->symbolic
1835 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
1836 || !h->root.def_regular
1837 || h->root.root.type == bfd_link_hash_defweak))
1838 maybe_dynamic = TRUE;
1839
1840 need = 0;
1841 gotent_flags = 0;
1842 r_type = ELF64_R_TYPE (rel->r_info);
1843 addend = rel->r_addend;
1844
1845 switch (r_type)
1846 {
1847 case R_ALPHA_LITERAL:
1848 need = NEED_GOT | NEED_GOT_ENTRY;
1849
1850 /* Remember how this literal is used from its LITUSEs.
1851 This will be important when it comes to decide if we can
1852 create a .plt entry for a function symbol. */
1853 while (++rel < relend && ELF64_R_TYPE (rel->r_info) == R_ALPHA_LITUSE)
1854 if (rel->r_addend >= 1 && rel->r_addend <= 6)
1855 gotent_flags |= 1 << rel->r_addend;
1856 --rel;
1857
1858 /* No LITUSEs -- presumably the address is used somehow. */
1859 if (gotent_flags == 0)
1860 gotent_flags = ALPHA_ELF_LINK_HASH_LU_ADDR;
1861 break;
1862
1863 case R_ALPHA_GPDISP:
1864 case R_ALPHA_GPREL16:
1865 case R_ALPHA_GPREL32:
1866 case R_ALPHA_GPRELHIGH:
1867 case R_ALPHA_GPRELLOW:
1868 case R_ALPHA_BRSGP:
1869 need = NEED_GOT;
1870 break;
1871
1872 case R_ALPHA_REFLONG:
1873 case R_ALPHA_REFQUAD:
1874 if (info->shared || maybe_dynamic)
1875 need = NEED_DYNREL;
1876 break;
1877
1878 case R_ALPHA_TLSLDM:
1879 /* The symbol for a TLSLDM reloc is ignored. Collapse the
1880 reloc to the STN_UNDEF (0) symbol so that they all match. */
1881 r_symndx = STN_UNDEF;
1882 h = 0;
1883 maybe_dynamic = FALSE;
1884 /* FALLTHRU */
1885
1886 case R_ALPHA_TLSGD:
1887 case R_ALPHA_GOTDTPREL:
1888 need = NEED_GOT | NEED_GOT_ENTRY;
1889 break;
1890
1891 case R_ALPHA_GOTTPREL:
1892 need = NEED_GOT | NEED_GOT_ENTRY;
1893 gotent_flags = ALPHA_ELF_LINK_HASH_TLS_IE;
1894 if (info->shared)
1895 info->flags |= DF_STATIC_TLS;
1896 break;
1897
1898 case R_ALPHA_TPREL64:
1899 if (info->shared && !info->pie)
1900 {
1901 info->flags |= DF_STATIC_TLS;
1902 need = NEED_DYNREL;
1903 }
1904 else if (maybe_dynamic)
1905 need = NEED_DYNREL;
1906 break;
1907 }
1908
1909 if (need & NEED_GOT)
1910 {
1911 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1912 {
1913 if (!elf64_alpha_create_got_section (abfd, info))
1914 return FALSE;
1915 }
1916 }
1917
1918 if (need & NEED_GOT_ENTRY)
1919 {
1920 struct alpha_elf_got_entry *gotent;
1921
1922 gotent = get_got_entry (abfd, h, r_type, r_symndx, addend);
1923 if (!gotent)
1924 return FALSE;
1925
1926 if (gotent_flags)
1927 {
1928 gotent->flags |= gotent_flags;
1929 if (h)
1930 {
1931 gotent_flags |= h->flags;
1932 h->flags = gotent_flags;
1933
1934 /* Make a guess as to whether a .plt entry is needed. */
1935 /* ??? It appears that we won't make it into
1936 adjust_dynamic_symbol for symbols that remain
1937 totally undefined. Copying this check here means
1938 we can create a plt entry for them too. */
1939 h->root.needs_plt
1940 = (maybe_dynamic && elf64_alpha_want_plt (h));
1941 }
1942 }
1943 }
1944
1945 if (need & NEED_DYNREL)
1946 {
1947 /* We need to create the section here now whether we eventually
1948 use it or not so that it gets mapped to an output section by
1949 the linker. If not used, we'll kill it in size_dynamic_sections. */
1950 if (sreloc == NULL)
1951 {
1952 sreloc = _bfd_elf_make_dynamic_reloc_section
1953 (sec, dynobj, 3, abfd, /*rela?*/ TRUE);
1954
1955 if (sreloc == NULL)
1956 return FALSE;
1957 }
1958
1959 if (h)
1960 {
1961 /* Since we havn't seen all of the input symbols yet, we
1962 don't know whether we'll actually need a dynamic relocation
1963 entry for this reloc. So make a record of it. Once we
1964 find out if this thing needs dynamic relocation we'll
1965 expand the relocation sections by the appropriate amount. */
1966
1967 struct alpha_elf_reloc_entry *rent;
1968
1969 for (rent = h->reloc_entries; rent; rent = rent->next)
1970 if (rent->rtype == r_type && rent->srel == sreloc)
1971 break;
1972
1973 if (!rent)
1974 {
1975 amt = sizeof (struct alpha_elf_reloc_entry);
1976 rent = (struct alpha_elf_reloc_entry *) bfd_alloc (abfd, amt);
1977 if (!rent)
1978 return FALSE;
1979
1980 rent->srel = sreloc;
1981 rent->rtype = r_type;
1982 rent->count = 1;
1983 rent->reltext = (sec->flags & SEC_READONLY) != 0;
1984
1985 rent->next = h->reloc_entries;
1986 h->reloc_entries = rent;
1987 }
1988 else
1989 rent->count++;
1990 }
1991 else if (info->shared)
1992 {
1993 /* If this is a shared library, and the section is to be
1994 loaded into memory, we need a RELATIVE reloc. */
1995 sreloc->size += sizeof (Elf64_External_Rela);
1996 if (sec->flags & SEC_READONLY)
1997 info->flags |= DF_TEXTREL;
1998 }
1999 }
2000 }
2001
2002 return TRUE;
2003 }
2004
2005 /* Return the section that should be marked against GC for a given
2006 relocation. */
2007
2008 static asection *
2009 elf64_alpha_gc_mark_hook (asection *sec, struct bfd_link_info *info,
2010 Elf_Internal_Rela *rel,
2011 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym)
2012 {
2013 /* These relocations don't really reference a symbol. Instead we store
2014 extra data in their addend slot. Ignore the symbol. */
2015 switch (ELF64_R_TYPE (rel->r_info))
2016 {
2017 case R_ALPHA_LITUSE:
2018 case R_ALPHA_GPDISP:
2019 case R_ALPHA_HINT:
2020 return NULL;
2021 }
2022
2023 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2024 }
2025
2026 /* Update the got entry reference counts for the section being removed. */
2027
2028 static bfd_boolean
2029 elf64_alpha_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2030 asection *sec, const Elf_Internal_Rela *relocs)
2031 {
2032 Elf_Internal_Shdr *symtab_hdr;
2033 struct alpha_elf_link_hash_entry **sym_hashes;
2034 const Elf_Internal_Rela *rel, *relend;
2035
2036 if (info->relocatable)
2037 return TRUE;
2038
2039 symtab_hdr = &elf_symtab_hdr (abfd);
2040 sym_hashes = alpha_elf_sym_hashes (abfd);
2041
2042 relend = relocs + sec->reloc_count;
2043 for (rel = relocs; rel < relend; rel++)
2044 {
2045 unsigned long r_symndx, r_type;
2046 struct alpha_elf_link_hash_entry *h = NULL;
2047 struct alpha_elf_got_entry *gotent;
2048
2049 r_symndx = ELF64_R_SYM (rel->r_info);
2050 if (r_symndx >= symtab_hdr->sh_info)
2051 {
2052 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2053 while (h->root.root.type == bfd_link_hash_indirect
2054 || h->root.root.type == bfd_link_hash_warning)
2055 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2056 }
2057
2058 r_type = ELF64_R_TYPE (rel->r_info);
2059 switch (r_type)
2060 {
2061 case R_ALPHA_LITERAL:
2062 /* ??? Ignore re-computation of gotent_flags. We're not
2063 carrying a use-count for each bit in that mask. */
2064
2065 case R_ALPHA_TLSGD:
2066 case R_ALPHA_GOTDTPREL:
2067 case R_ALPHA_GOTTPREL:
2068 /* Fetch the got entry from the tables. */
2069 gotent = get_got_entry (abfd, h, r_type, r_symndx, rel->r_addend);
2070
2071 /* The got entry *must* exist, since we should have created it
2072 before during check_relocs. Also note that get_got_entry
2073 assumed this was going to be another use, and so incremented
2074 the use count again. Thus the use count must be at least the
2075 one real use and the "use" we just added. */
2076 if (gotent == NULL || gotent->use_count < 2)
2077 {
2078 abort ();
2079 return FALSE;
2080 }
2081 gotent->use_count -= 2;
2082 break;
2083
2084 default:
2085 break;
2086 }
2087 }
2088
2089 return TRUE;
2090 }
2091
2092 /* Adjust a symbol defined by a dynamic object and referenced by a
2093 regular object. The current definition is in some section of the
2094 dynamic object, but we're not including those sections. We have to
2095 change the definition to something the rest of the link can
2096 understand. */
2097
2098 static bfd_boolean
2099 elf64_alpha_adjust_dynamic_symbol (struct bfd_link_info *info,
2100 struct elf_link_hash_entry *h)
2101 {
2102 bfd *dynobj;
2103 asection *s;
2104 struct alpha_elf_link_hash_entry *ah;
2105
2106 dynobj = elf_hash_table(info)->dynobj;
2107 ah = (struct alpha_elf_link_hash_entry *)h;
2108
2109 /* Now that we've seen all of the input symbols, finalize our decision
2110 about whether this symbol should get a .plt entry. Irritatingly, it
2111 is common for folk to leave undefined symbols in shared libraries,
2112 and they still expect lazy binding; accept undefined symbols in lieu
2113 of STT_FUNC. */
2114 if (alpha_elf_dynamic_symbol_p (h, info) && elf64_alpha_want_plt (ah))
2115 {
2116 h->needs_plt = TRUE;
2117
2118 s = bfd_get_linker_section (dynobj, ".plt");
2119 if (!s && !elf64_alpha_create_dynamic_sections (dynobj, info))
2120 return FALSE;
2121
2122 /* We need one plt entry per got subsection. Delay allocation of
2123 the actual plt entries until size_plt_section, called from
2124 size_dynamic_sections or during relaxation. */
2125
2126 return TRUE;
2127 }
2128 else
2129 h->needs_plt = FALSE;
2130
2131 /* If this is a weak symbol, and there is a real definition, the
2132 processor independent code will have arranged for us to see the
2133 real definition first, and we can just use the same value. */
2134 if (h->u.weakdef != NULL)
2135 {
2136 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2137 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2138 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2139 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2140 return TRUE;
2141 }
2142
2143 /* This is a reference to a symbol defined by a dynamic object which
2144 is not a function. The Alpha, since it uses .got entries for all
2145 symbols even in regular objects, does not need the hackery of a
2146 .dynbss section and COPY dynamic relocations. */
2147
2148 return TRUE;
2149 }
2150
2151 /* Record STO_ALPHA_NOPV and STO_ALPHA_STD_GPLOAD. */
2152
2153 static void
2154 elf64_alpha_merge_symbol_attribute (struct elf_link_hash_entry *h,
2155 const Elf_Internal_Sym *isym,
2156 bfd_boolean definition,
2157 bfd_boolean dynamic)
2158 {
2159 if (!dynamic && definition)
2160 h->other = ((h->other & ELF_ST_VISIBILITY (-1))
2161 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
2162 }
2163
2164 /* Symbol versioning can create new symbols, and make our old symbols
2165 indirect to the new ones. Consolidate the got and reloc information
2166 in these situations. */
2167
2168 static void
2169 elf64_alpha_copy_indirect_symbol (struct bfd_link_info *info,
2170 struct elf_link_hash_entry *dir,
2171 struct elf_link_hash_entry *ind)
2172 {
2173 struct alpha_elf_link_hash_entry *hi
2174 = (struct alpha_elf_link_hash_entry *) ind;
2175 struct alpha_elf_link_hash_entry *hs
2176 = (struct alpha_elf_link_hash_entry *) dir;
2177
2178 /* Do the merging in the superclass. */
2179 _bfd_elf_link_hash_copy_indirect(info, dir, ind);
2180
2181 /* Merge the flags. Whee. */
2182 hs->flags |= hi->flags;
2183
2184 /* ??? It's unclear to me what's really supposed to happen when
2185 "merging" defweak and defined symbols, given that we don't
2186 actually throw away the defweak. This more-or-less copies
2187 the logic related to got and plt entries in the superclass. */
2188 if (ind->root.type != bfd_link_hash_indirect)
2189 return;
2190
2191 /* Merge the .got entries. Cannibalize the old symbol's list in
2192 doing so, since we don't need it anymore. */
2193
2194 if (hs->got_entries == NULL)
2195 hs->got_entries = hi->got_entries;
2196 else
2197 {
2198 struct alpha_elf_got_entry *gi, *gs, *gin, *gsh;
2199
2200 gsh = hs->got_entries;
2201 for (gi = hi->got_entries; gi ; gi = gin)
2202 {
2203 gin = gi->next;
2204 for (gs = gsh; gs ; gs = gs->next)
2205 if (gi->gotobj == gs->gotobj
2206 && gi->reloc_type == gs->reloc_type
2207 && gi->addend == gs->addend)
2208 {
2209 gi->use_count += gs->use_count;
2210 goto got_found;
2211 }
2212 gi->next = hs->got_entries;
2213 hs->got_entries = gi;
2214 got_found:;
2215 }
2216 }
2217 hi->got_entries = NULL;
2218
2219 /* And similar for the reloc entries. */
2220
2221 if (hs->reloc_entries == NULL)
2222 hs->reloc_entries = hi->reloc_entries;
2223 else
2224 {
2225 struct alpha_elf_reloc_entry *ri, *rs, *rin, *rsh;
2226
2227 rsh = hs->reloc_entries;
2228 for (ri = hi->reloc_entries; ri ; ri = rin)
2229 {
2230 rin = ri->next;
2231 for (rs = rsh; rs ; rs = rs->next)
2232 if (ri->rtype == rs->rtype && ri->srel == rs->srel)
2233 {
2234 rs->count += ri->count;
2235 goto found_reloc;
2236 }
2237 ri->next = hs->reloc_entries;
2238 hs->reloc_entries = ri;
2239 found_reloc:;
2240 }
2241 }
2242 hi->reloc_entries = NULL;
2243 }
2244
2245 /* Is it possible to merge two object file's .got tables? */
2246
2247 static bfd_boolean
2248 elf64_alpha_can_merge_gots (bfd *a, bfd *b)
2249 {
2250 int total = alpha_elf_tdata (a)->total_got_size;
2251 bfd *bsub;
2252
2253 /* Trivial quick fallout test. */
2254 if (total + alpha_elf_tdata (b)->total_got_size <= MAX_GOT_SIZE)
2255 return TRUE;
2256
2257 /* By their nature, local .got entries cannot be merged. */
2258 if ((total += alpha_elf_tdata (b)->local_got_size) > MAX_GOT_SIZE)
2259 return FALSE;
2260
2261 /* Failing the common trivial comparison, we must effectively
2262 perform the merge. Not actually performing the merge means that
2263 we don't have to store undo information in case we fail. */
2264 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2265 {
2266 struct alpha_elf_link_hash_entry **hashes = alpha_elf_sym_hashes (bsub);
2267 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2268 int i, n;
2269
2270 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2271 for (i = 0; i < n; ++i)
2272 {
2273 struct alpha_elf_got_entry *ae, *be;
2274 struct alpha_elf_link_hash_entry *h;
2275
2276 h = hashes[i];
2277 while (h->root.root.type == bfd_link_hash_indirect
2278 || h->root.root.type == bfd_link_hash_warning)
2279 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2280
2281 for (be = h->got_entries; be ; be = be->next)
2282 {
2283 if (be->use_count == 0)
2284 continue;
2285 if (be->gotobj != b)
2286 continue;
2287
2288 for (ae = h->got_entries; ae ; ae = ae->next)
2289 if (ae->gotobj == a
2290 && ae->reloc_type == be->reloc_type
2291 && ae->addend == be->addend)
2292 goto global_found;
2293
2294 total += alpha_got_entry_size (be->reloc_type);
2295 if (total > MAX_GOT_SIZE)
2296 return FALSE;
2297 global_found:;
2298 }
2299 }
2300 }
2301
2302 return TRUE;
2303 }
2304
2305 /* Actually merge two .got tables. */
2306
2307 static void
2308 elf64_alpha_merge_gots (bfd *a, bfd *b)
2309 {
2310 int total = alpha_elf_tdata (a)->total_got_size;
2311 bfd *bsub;
2312
2313 /* Remember local expansion. */
2314 {
2315 int e = alpha_elf_tdata (b)->local_got_size;
2316 total += e;
2317 alpha_elf_tdata (a)->local_got_size += e;
2318 }
2319
2320 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2321 {
2322 struct alpha_elf_got_entry **local_got_entries;
2323 struct alpha_elf_link_hash_entry **hashes;
2324 Elf_Internal_Shdr *symtab_hdr;
2325 int i, n;
2326
2327 /* Let the local .got entries know they are part of a new subsegment. */
2328 local_got_entries = alpha_elf_tdata (bsub)->local_got_entries;
2329 if (local_got_entries)
2330 {
2331 n = elf_tdata (bsub)->symtab_hdr.sh_info;
2332 for (i = 0; i < n; ++i)
2333 {
2334 struct alpha_elf_got_entry *ent;
2335 for (ent = local_got_entries[i]; ent; ent = ent->next)
2336 ent->gotobj = a;
2337 }
2338 }
2339
2340 /* Merge the global .got entries. */
2341 hashes = alpha_elf_sym_hashes (bsub);
2342 symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2343
2344 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2345 for (i = 0; i < n; ++i)
2346 {
2347 struct alpha_elf_got_entry *ae, *be, **pbe, **start;
2348 struct alpha_elf_link_hash_entry *h;
2349
2350 h = hashes[i];
2351 while (h->root.root.type == bfd_link_hash_indirect
2352 || h->root.root.type == bfd_link_hash_warning)
2353 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2354
2355 pbe = start = &h->got_entries;
2356 while ((be = *pbe) != NULL)
2357 {
2358 if (be->use_count == 0)
2359 {
2360 *pbe = be->next;
2361 memset (be, 0xa5, sizeof (*be));
2362 goto kill;
2363 }
2364 if (be->gotobj != b)
2365 goto next;
2366
2367 for (ae = *start; ae ; ae = ae->next)
2368 if (ae->gotobj == a
2369 && ae->reloc_type == be->reloc_type
2370 && ae->addend == be->addend)
2371 {
2372 ae->flags |= be->flags;
2373 ae->use_count += be->use_count;
2374 *pbe = be->next;
2375 memset (be, 0xa5, sizeof (*be));
2376 goto kill;
2377 }
2378 be->gotobj = a;
2379 total += alpha_got_entry_size (be->reloc_type);
2380
2381 next:;
2382 pbe = &be->next;
2383 kill:;
2384 }
2385 }
2386
2387 alpha_elf_tdata (bsub)->gotobj = a;
2388 }
2389 alpha_elf_tdata (a)->total_got_size = total;
2390
2391 /* Merge the two in_got chains. */
2392 {
2393 bfd *next;
2394
2395 bsub = a;
2396 while ((next = alpha_elf_tdata (bsub)->in_got_link_next) != NULL)
2397 bsub = next;
2398
2399 alpha_elf_tdata (bsub)->in_got_link_next = b;
2400 }
2401 }
2402
2403 /* Calculate the offsets for the got entries. */
2404
2405 static bfd_boolean
2406 elf64_alpha_calc_got_offsets_for_symbol (struct alpha_elf_link_hash_entry *h,
2407 void * arg ATTRIBUTE_UNUSED)
2408 {
2409 struct alpha_elf_got_entry *gotent;
2410
2411 for (gotent = h->got_entries; gotent; gotent = gotent->next)
2412 if (gotent->use_count > 0)
2413 {
2414 struct alpha_elf_obj_tdata *td;
2415 bfd_size_type *plge;
2416
2417 td = alpha_elf_tdata (gotent->gotobj);
2418 plge = &td->got->size;
2419 gotent->got_offset = *plge;
2420 *plge += alpha_got_entry_size (gotent->reloc_type);
2421 }
2422
2423 return TRUE;
2424 }
2425
2426 static void
2427 elf64_alpha_calc_got_offsets (struct bfd_link_info *info)
2428 {
2429 bfd *i, *got_list;
2430 struct alpha_elf_link_hash_table * htab;
2431
2432 htab = alpha_elf_hash_table (info);
2433 if (htab == NULL)
2434 return;
2435 got_list = htab->got_list;
2436
2437 /* First, zero out the .got sizes, as we may be recalculating the
2438 .got after optimizing it. */
2439 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2440 alpha_elf_tdata(i)->got->size = 0;
2441
2442 /* Next, fill in the offsets for all the global entries. */
2443 alpha_elf_link_hash_traverse (htab,
2444 elf64_alpha_calc_got_offsets_for_symbol,
2445 NULL);
2446
2447 /* Finally, fill in the offsets for the local entries. */
2448 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2449 {
2450 bfd_size_type got_offset = alpha_elf_tdata(i)->got->size;
2451 bfd *j;
2452
2453 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2454 {
2455 struct alpha_elf_got_entry **local_got_entries, *gotent;
2456 int k, n;
2457
2458 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2459 if (!local_got_entries)
2460 continue;
2461
2462 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2463 for (gotent = local_got_entries[k]; gotent; gotent = gotent->next)
2464 if (gotent->use_count > 0)
2465 {
2466 gotent->got_offset = got_offset;
2467 got_offset += alpha_got_entry_size (gotent->reloc_type);
2468 }
2469 }
2470
2471 alpha_elf_tdata(i)->got->size = got_offset;
2472 }
2473 }
2474
2475 /* Constructs the gots. */
2476
2477 static bfd_boolean
2478 elf64_alpha_size_got_sections (struct bfd_link_info *info,
2479 bfd_boolean may_merge)
2480 {
2481 bfd *i, *got_list, *cur_got_obj = NULL;
2482 struct alpha_elf_link_hash_table * htab;
2483
2484 htab = alpha_elf_hash_table (info);
2485 if (htab == NULL)
2486 return FALSE;
2487 got_list = htab->got_list;
2488
2489 /* On the first time through, pretend we have an existing got list
2490 consisting of all of the input files. */
2491 if (got_list == NULL)
2492 {
2493 for (i = info->input_bfds; i ; i = i->link.next)
2494 {
2495 bfd *this_got;
2496
2497 if (! is_alpha_elf (i))
2498 continue;
2499
2500 this_got = alpha_elf_tdata (i)->gotobj;
2501 if (this_got == NULL)
2502 continue;
2503
2504 /* We are assuming no merging has yet occurred. */
2505 BFD_ASSERT (this_got == i);
2506
2507 if (alpha_elf_tdata (this_got)->total_got_size > MAX_GOT_SIZE)
2508 {
2509 /* Yikes! A single object file has too many entries. */
2510 (*_bfd_error_handler)
2511 (_("%B: .got subsegment exceeds 64K (size %d)"),
2512 i, alpha_elf_tdata (this_got)->total_got_size);
2513 return FALSE;
2514 }
2515
2516 if (got_list == NULL)
2517 got_list = this_got;
2518 else
2519 alpha_elf_tdata(cur_got_obj)->got_link_next = this_got;
2520 cur_got_obj = this_got;
2521 }
2522
2523 /* Strange degenerate case of no got references. */
2524 if (got_list == NULL)
2525 return TRUE;
2526
2527 htab->got_list = got_list;
2528 }
2529
2530 cur_got_obj = got_list;
2531 if (cur_got_obj == NULL)
2532 return FALSE;
2533
2534 if (may_merge)
2535 {
2536 i = alpha_elf_tdata(cur_got_obj)->got_link_next;
2537 while (i != NULL)
2538 {
2539 if (elf64_alpha_can_merge_gots (cur_got_obj, i))
2540 {
2541 elf64_alpha_merge_gots (cur_got_obj, i);
2542
2543 alpha_elf_tdata(i)->got->size = 0;
2544 i = alpha_elf_tdata(i)->got_link_next;
2545 alpha_elf_tdata(cur_got_obj)->got_link_next = i;
2546 }
2547 else
2548 {
2549 cur_got_obj = i;
2550 i = alpha_elf_tdata(i)->got_link_next;
2551 }
2552 }
2553 }
2554
2555 /* Once the gots have been merged, fill in the got offsets for
2556 everything therein. */
2557 elf64_alpha_calc_got_offsets (info);
2558
2559 return TRUE;
2560 }
2561
2562 static bfd_boolean
2563 elf64_alpha_size_plt_section_1 (struct alpha_elf_link_hash_entry *h,
2564 void * data)
2565 {
2566 asection *splt = (asection *) data;
2567 struct alpha_elf_got_entry *gotent;
2568 bfd_boolean saw_one = FALSE;
2569
2570 /* If we didn't need an entry before, we still don't. */
2571 if (!h->root.needs_plt)
2572 return TRUE;
2573
2574 /* For each LITERAL got entry still in use, allocate a plt entry. */
2575 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2576 if (gotent->reloc_type == R_ALPHA_LITERAL
2577 && gotent->use_count > 0)
2578 {
2579 if (splt->size == 0)
2580 splt->size = PLT_HEADER_SIZE;
2581 gotent->plt_offset = splt->size;
2582 splt->size += PLT_ENTRY_SIZE;
2583 saw_one = TRUE;
2584 }
2585
2586 /* If there weren't any, there's no longer a need for the PLT entry. */
2587 if (!saw_one)
2588 h->root.needs_plt = FALSE;
2589
2590 return TRUE;
2591 }
2592
2593 /* Called from relax_section to rebuild the PLT in light of potential changes
2594 in the function's status. */
2595
2596 static void
2597 elf64_alpha_size_plt_section (struct bfd_link_info *info)
2598 {
2599 asection *splt, *spltrel, *sgotplt;
2600 unsigned long entries;
2601 bfd *dynobj;
2602 struct alpha_elf_link_hash_table * htab;
2603
2604 htab = alpha_elf_hash_table (info);
2605 if (htab == NULL)
2606 return;
2607
2608 dynobj = elf_hash_table(info)->dynobj;
2609 splt = bfd_get_linker_section (dynobj, ".plt");
2610 if (splt == NULL)
2611 return;
2612
2613 splt->size = 0;
2614
2615 alpha_elf_link_hash_traverse (htab,
2616 elf64_alpha_size_plt_section_1, splt);
2617
2618 /* Every plt entry requires a JMP_SLOT relocation. */
2619 spltrel = bfd_get_linker_section (dynobj, ".rela.plt");
2620 entries = 0;
2621 if (splt->size)
2622 {
2623 if (elf64_alpha_use_secureplt)
2624 entries = (splt->size - NEW_PLT_HEADER_SIZE) / NEW_PLT_ENTRY_SIZE;
2625 else
2626 entries = (splt->size - OLD_PLT_HEADER_SIZE) / OLD_PLT_ENTRY_SIZE;
2627 }
2628 spltrel->size = entries * sizeof (Elf64_External_Rela);
2629
2630 /* When using the secureplt, we need two words somewhere in the data
2631 segment for the dynamic linker to tell us where to go. This is the
2632 entire contents of the .got.plt section. */
2633 if (elf64_alpha_use_secureplt)
2634 {
2635 sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
2636 sgotplt->size = entries ? 16 : 0;
2637 }
2638 }
2639
2640 static bfd_boolean
2641 elf64_alpha_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2642 struct bfd_link_info *info)
2643 {
2644 bfd *i;
2645 struct alpha_elf_link_hash_table * htab;
2646
2647 if (info->relocatable)
2648 return TRUE;
2649
2650 htab = alpha_elf_hash_table (info);
2651 if (htab == NULL)
2652 return FALSE;
2653
2654 if (!elf64_alpha_size_got_sections (info, TRUE))
2655 return FALSE;
2656
2657 /* Allocate space for all of the .got subsections. */
2658 i = htab->got_list;
2659 for ( ; i ; i = alpha_elf_tdata(i)->got_link_next)
2660 {
2661 asection *s = alpha_elf_tdata(i)->got;
2662 if (s->size > 0)
2663 {
2664 s->contents = (bfd_byte *) bfd_zalloc (i, s->size);
2665 if (s->contents == NULL)
2666 return FALSE;
2667 }
2668 }
2669
2670 return TRUE;
2671 }
2672
2673 /* The number of dynamic relocations required by a static relocation. */
2674
2675 static int
2676 alpha_dynamic_entries_for_reloc (int r_type, int dynamic, int shared, int pie)
2677 {
2678 switch (r_type)
2679 {
2680 /* May appear in GOT entries. */
2681 case R_ALPHA_TLSGD:
2682 return (dynamic ? 2 : shared ? 1 : 0);
2683 case R_ALPHA_TLSLDM:
2684 return shared;
2685 case R_ALPHA_LITERAL:
2686 return dynamic || shared;
2687 case R_ALPHA_GOTTPREL:
2688 return dynamic || (shared && !pie);
2689 case R_ALPHA_GOTDTPREL:
2690 return dynamic;
2691
2692 /* May appear in data sections. */
2693 case R_ALPHA_REFLONG:
2694 case R_ALPHA_REFQUAD:
2695 return dynamic || shared;
2696 case R_ALPHA_TPREL64:
2697 return dynamic || (shared && !pie);
2698
2699 /* Everything else is illegal. We'll issue an error during
2700 relocate_section. */
2701 default:
2702 return 0;
2703 }
2704 }
2705
2706 /* Work out the sizes of the dynamic relocation entries. */
2707
2708 static bfd_boolean
2709 elf64_alpha_calc_dynrel_sizes (struct alpha_elf_link_hash_entry *h,
2710 struct bfd_link_info *info)
2711 {
2712 bfd_boolean dynamic;
2713 struct alpha_elf_reloc_entry *relent;
2714 unsigned long entries;
2715
2716 /* If the symbol was defined as a common symbol in a regular object
2717 file, and there was no definition in any dynamic object, then the
2718 linker will have allocated space for the symbol in a common
2719 section but the ELF_LINK_HASH_DEF_REGULAR flag will not have been
2720 set. This is done for dynamic symbols in
2721 elf_adjust_dynamic_symbol but this is not done for non-dynamic
2722 symbols, somehow. */
2723 if (!h->root.def_regular
2724 && h->root.ref_regular
2725 && !h->root.def_dynamic
2726 && (h->root.root.type == bfd_link_hash_defined
2727 || h->root.root.type == bfd_link_hash_defweak)
2728 && !(h->root.root.u.def.section->owner->flags & DYNAMIC))
2729 h->root.def_regular = 1;
2730
2731 /* If the symbol is dynamic, we'll need all the relocations in their
2732 natural form. If this is a shared object, and it has been forced
2733 local, we'll need the same number of RELATIVE relocations. */
2734 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2735
2736 /* If the symbol is a hidden undefined weak, then we never have any
2737 relocations. Avoid the loop which may want to add RELATIVE relocs
2738 based on info->shared. */
2739 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2740 return TRUE;
2741
2742 for (relent = h->reloc_entries; relent; relent = relent->next)
2743 {
2744 entries = alpha_dynamic_entries_for_reloc (relent->rtype, dynamic,
2745 info->shared, info->pie);
2746 if (entries)
2747 {
2748 relent->srel->size +=
2749 entries * sizeof (Elf64_External_Rela) * relent->count;
2750 if (relent->reltext)
2751 info->flags |= DT_TEXTREL;
2752 }
2753 }
2754
2755 return TRUE;
2756 }
2757
2758 /* Subroutine of elf64_alpha_size_rela_got_section for doing the
2759 global symbols. */
2760
2761 static bfd_boolean
2762 elf64_alpha_size_rela_got_1 (struct alpha_elf_link_hash_entry *h,
2763 struct bfd_link_info *info)
2764 {
2765 bfd_boolean dynamic;
2766 struct alpha_elf_got_entry *gotent;
2767 unsigned long entries;
2768
2769 /* If we're using a plt for this symbol, then all of its relocations
2770 for its got entries go into .rela.plt. */
2771 if (h->root.needs_plt)
2772 return TRUE;
2773
2774 /* If the symbol is dynamic, we'll need all the relocations in their
2775 natural form. If this is a shared object, and it has been forced
2776 local, we'll need the same number of RELATIVE relocations. */
2777 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2778
2779 /* If the symbol is a hidden undefined weak, then we never have any
2780 relocations. Avoid the loop which may want to add RELATIVE relocs
2781 based on info->shared. */
2782 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2783 return TRUE;
2784
2785 entries = 0;
2786 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2787 if (gotent->use_count > 0)
2788 entries += alpha_dynamic_entries_for_reloc (gotent->reloc_type, dynamic,
2789 info->shared, info->pie);
2790
2791 if (entries > 0)
2792 {
2793 bfd *dynobj = elf_hash_table(info)->dynobj;
2794 asection *srel = bfd_get_linker_section (dynobj, ".rela.got");
2795 BFD_ASSERT (srel != NULL);
2796 srel->size += sizeof (Elf64_External_Rela) * entries;
2797 }
2798
2799 return TRUE;
2800 }
2801
2802 /* Set the sizes of the dynamic relocation sections. */
2803
2804 static void
2805 elf64_alpha_size_rela_got_section (struct bfd_link_info *info)
2806 {
2807 unsigned long entries;
2808 bfd *i, *dynobj;
2809 asection *srel;
2810 struct alpha_elf_link_hash_table * htab;
2811
2812 htab = alpha_elf_hash_table (info);
2813 if (htab == NULL)
2814 return;
2815
2816 /* Shared libraries often require RELATIVE relocs, and some relocs
2817 require attention for the main application as well. */
2818
2819 entries = 0;
2820 for (i = htab->got_list;
2821 i ; i = alpha_elf_tdata(i)->got_link_next)
2822 {
2823 bfd *j;
2824
2825 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2826 {
2827 struct alpha_elf_got_entry **local_got_entries, *gotent;
2828 int k, n;
2829
2830 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2831 if (!local_got_entries)
2832 continue;
2833
2834 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2835 for (gotent = local_got_entries[k];
2836 gotent ; gotent = gotent->next)
2837 if (gotent->use_count > 0)
2838 entries += (alpha_dynamic_entries_for_reloc
2839 (gotent->reloc_type, 0, info->shared, info->pie));
2840 }
2841 }
2842
2843 dynobj = elf_hash_table(info)->dynobj;
2844 srel = bfd_get_linker_section (dynobj, ".rela.got");
2845 if (!srel)
2846 {
2847 BFD_ASSERT (entries == 0);
2848 return;
2849 }
2850 srel->size = sizeof (Elf64_External_Rela) * entries;
2851
2852 /* Now do the non-local symbols. */
2853 alpha_elf_link_hash_traverse (htab,
2854 elf64_alpha_size_rela_got_1, info);
2855 }
2856
2857 /* Set the sizes of the dynamic sections. */
2858
2859 static bfd_boolean
2860 elf64_alpha_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2861 struct bfd_link_info *info)
2862 {
2863 bfd *dynobj;
2864 asection *s;
2865 bfd_boolean relplt;
2866 struct alpha_elf_link_hash_table * htab;
2867
2868 htab = alpha_elf_hash_table (info);
2869 if (htab == NULL)
2870 return FALSE;
2871
2872 dynobj = elf_hash_table(info)->dynobj;
2873 BFD_ASSERT(dynobj != NULL);
2874
2875 if (elf_hash_table (info)->dynamic_sections_created)
2876 {
2877 /* Set the contents of the .interp section to the interpreter. */
2878 if (info->executable)
2879 {
2880 s = bfd_get_linker_section (dynobj, ".interp");
2881 BFD_ASSERT (s != NULL);
2882 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2883 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2884 }
2885
2886 /* Now that we've seen all of the input files, we can decide which
2887 symbols need dynamic relocation entries and which don't. We've
2888 collected information in check_relocs that we can now apply to
2889 size the dynamic relocation sections. */
2890 alpha_elf_link_hash_traverse (htab,
2891 elf64_alpha_calc_dynrel_sizes, info);
2892
2893 elf64_alpha_size_rela_got_section (info);
2894 elf64_alpha_size_plt_section (info);
2895 }
2896 /* else we're not dynamic and by definition we don't need such things. */
2897
2898 /* The check_relocs and adjust_dynamic_symbol entry points have
2899 determined the sizes of the various dynamic sections. Allocate
2900 memory for them. */
2901 relplt = FALSE;
2902 for (s = dynobj->sections; s != NULL; s = s->next)
2903 {
2904 const char *name;
2905
2906 if (!(s->flags & SEC_LINKER_CREATED))
2907 continue;
2908
2909 /* It's OK to base decisions on the section name, because none
2910 of the dynobj section names depend upon the input files. */
2911 name = bfd_get_section_name (dynobj, s);
2912
2913 if (CONST_STRNEQ (name, ".rela"))
2914 {
2915 if (s->size != 0)
2916 {
2917 if (strcmp (name, ".rela.plt") == 0)
2918 relplt = TRUE;
2919
2920 /* We use the reloc_count field as a counter if we need
2921 to copy relocs into the output file. */
2922 s->reloc_count = 0;
2923 }
2924 }
2925 else if (! CONST_STRNEQ (name, ".got")
2926 && strcmp (name, ".plt") != 0
2927 && strcmp (name, ".dynbss") != 0)
2928 {
2929 /* It's not one of our dynamic sections, so don't allocate space. */
2930 continue;
2931 }
2932
2933 if (s->size == 0)
2934 {
2935 /* If we don't need this section, strip it from the output file.
2936 This is to handle .rela.bss and .rela.plt. We must create it
2937 in create_dynamic_sections, because it must be created before
2938 the linker maps input sections to output sections. The
2939 linker does that before adjust_dynamic_symbol is called, and
2940 it is that function which decides whether anything needs to
2941 go into these sections. */
2942 if (!CONST_STRNEQ (name, ".got"))
2943 s->flags |= SEC_EXCLUDE;
2944 }
2945 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
2946 {
2947 /* Allocate memory for the section contents. */
2948 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2949 if (s->contents == NULL)
2950 return FALSE;
2951 }
2952 }
2953
2954 if (elf_hash_table (info)->dynamic_sections_created)
2955 {
2956 /* Add some entries to the .dynamic section. We fill in the
2957 values later, in elf64_alpha_finish_dynamic_sections, but we
2958 must add the entries now so that we get the correct size for
2959 the .dynamic section. The DT_DEBUG entry is filled in by the
2960 dynamic linker and used by the debugger. */
2961 #define add_dynamic_entry(TAG, VAL) \
2962 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2963
2964 if (info->executable)
2965 {
2966 if (!add_dynamic_entry (DT_DEBUG, 0))
2967 return FALSE;
2968 }
2969
2970 if (relplt)
2971 {
2972 if (!add_dynamic_entry (DT_PLTGOT, 0)
2973 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2974 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2975 || !add_dynamic_entry (DT_JMPREL, 0))
2976 return FALSE;
2977
2978 if (elf64_alpha_use_secureplt
2979 && !add_dynamic_entry (DT_ALPHA_PLTRO, 1))
2980 return FALSE;
2981 }
2982
2983 if (!add_dynamic_entry (DT_RELA, 0)
2984 || !add_dynamic_entry (DT_RELASZ, 0)
2985 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2986 return FALSE;
2987
2988 if (info->flags & DF_TEXTREL)
2989 {
2990 if (!add_dynamic_entry (DT_TEXTREL, 0))
2991 return FALSE;
2992 }
2993 }
2994 #undef add_dynamic_entry
2995
2996 return TRUE;
2997 }
2998 \f
2999 /* These functions do relaxation for Alpha ELF.
3000
3001 Currently I'm only handling what I can do with existing compiler
3002 and assembler support, which means no instructions are removed,
3003 though some may be nopped. At this time GCC does not emit enough
3004 information to do all of the relaxing that is possible. It will
3005 take some not small amount of work for that to happen.
3006
3007 There are a couple of interesting papers that I once read on this
3008 subject, that I cannot find references to at the moment, that
3009 related to Alpha in particular. They are by David Wall, then of
3010 DEC WRL. */
3011
3012 struct alpha_relax_info
3013 {
3014 bfd *abfd;
3015 asection *sec;
3016 bfd_byte *contents;
3017 Elf_Internal_Shdr *symtab_hdr;
3018 Elf_Internal_Rela *relocs, *relend;
3019 struct bfd_link_info *link_info;
3020 bfd_vma gp;
3021 bfd *gotobj;
3022 asection *tsec;
3023 struct alpha_elf_link_hash_entry *h;
3024 struct alpha_elf_got_entry **first_gotent;
3025 struct alpha_elf_got_entry *gotent;
3026 bfd_boolean changed_contents;
3027 bfd_boolean changed_relocs;
3028 unsigned char other;
3029 };
3030
3031 static Elf_Internal_Rela *
3032 elf64_alpha_find_reloc_at_ofs (Elf_Internal_Rela *rel,
3033 Elf_Internal_Rela *relend,
3034 bfd_vma offset, int type)
3035 {
3036 while (rel < relend)
3037 {
3038 if (rel->r_offset == offset
3039 && ELF64_R_TYPE (rel->r_info) == (unsigned int) type)
3040 return rel;
3041 ++rel;
3042 }
3043 return NULL;
3044 }
3045
3046 static bfd_boolean
3047 elf64_alpha_relax_got_load (struct alpha_relax_info *info, bfd_vma symval,
3048 Elf_Internal_Rela *irel, unsigned long r_type)
3049 {
3050 unsigned int insn;
3051 bfd_signed_vma disp;
3052
3053 /* Get the instruction. */
3054 insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
3055
3056 if (insn >> 26 != OP_LDQ)
3057 {
3058 reloc_howto_type *howto = elf64_alpha_howto_table + r_type;
3059 ((*_bfd_error_handler)
3060 ("%B: %A+0x%lx: warning: %s relocation against unexpected insn",
3061 info->abfd, info->sec,
3062 (unsigned long) irel->r_offset, howto->name));
3063 return TRUE;
3064 }
3065
3066 /* Can't relax dynamic symbols. */
3067 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3068 return TRUE;
3069
3070 /* Can't use local-exec relocations in shared libraries. */
3071 if (r_type == R_ALPHA_GOTTPREL
3072 && (info->link_info->shared && !info->link_info->pie))
3073 return TRUE;
3074
3075 if (r_type == R_ALPHA_LITERAL)
3076 {
3077 /* Look for nice constant addresses. This includes the not-uncommon
3078 special case of 0 for undefweak symbols. */
3079 if ((info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3080 || (!info->link_info->shared
3081 && (symval >= (bfd_vma)-0x8000 || symval < 0x8000)))
3082 {
3083 disp = 0;
3084 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3085 insn |= (symval & 0xffff);
3086 r_type = R_ALPHA_NONE;
3087 }
3088 else
3089 {
3090 /* We may only create GPREL relocs during the second pass. */
3091 if (info->link_info->relax_pass == 0)
3092 return TRUE;
3093
3094 disp = symval - info->gp;
3095 insn = (OP_LDA << 26) | (insn & 0x03ff0000);
3096 r_type = R_ALPHA_GPREL16;
3097 }
3098 }
3099 else
3100 {
3101 bfd_vma dtp_base, tp_base;
3102
3103 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3104 dtp_base = alpha_get_dtprel_base (info->link_info);
3105 tp_base = alpha_get_tprel_base (info->link_info);
3106 disp = symval - (r_type == R_ALPHA_GOTDTPREL ? dtp_base : tp_base);
3107
3108 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3109
3110 switch (r_type)
3111 {
3112 case R_ALPHA_GOTDTPREL:
3113 r_type = R_ALPHA_DTPREL16;
3114 break;
3115 case R_ALPHA_GOTTPREL:
3116 r_type = R_ALPHA_TPREL16;
3117 break;
3118 default:
3119 BFD_ASSERT (0);
3120 return FALSE;
3121 }
3122 }
3123
3124 if (disp < -0x8000 || disp >= 0x8000)
3125 return TRUE;
3126
3127 bfd_put_32 (info->abfd, (bfd_vma) insn, info->contents + irel->r_offset);
3128 info->changed_contents = TRUE;
3129
3130 /* Reduce the use count on this got entry by one, possibly
3131 eliminating it. */
3132 if (--info->gotent->use_count == 0)
3133 {
3134 int sz = alpha_got_entry_size (r_type);
3135 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3136 if (!info->h)
3137 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3138 }
3139
3140 /* Smash the existing GOT relocation for its 16-bit immediate pair. */
3141 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), r_type);
3142 info->changed_relocs = TRUE;
3143
3144 /* ??? Search forward through this basic block looking for insns
3145 that use the target register. Stop after an insn modifying the
3146 register is seen, or after a branch or call.
3147
3148 Any such memory load insn may be substituted by a load directly
3149 off the GP. This allows the memory load insn to be issued before
3150 the calculated GP register would otherwise be ready.
3151
3152 Any such jsr insn can be replaced by a bsr if it is in range.
3153
3154 This would mean that we'd have to _add_ relocations, the pain of
3155 which gives one pause. */
3156
3157 return TRUE;
3158 }
3159
3160 static bfd_vma
3161 elf64_alpha_relax_opt_call (struct alpha_relax_info *info, bfd_vma symval)
3162 {
3163 /* If the function has the same gp, and we can identify that the
3164 function does not use its function pointer, we can eliminate the
3165 address load. */
3166
3167 /* If the symbol is marked NOPV, we are being told the function never
3168 needs its procedure value. */
3169 if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_NOPV)
3170 return symval;
3171
3172 /* If the symbol is marked STD_GP, we are being told the function does
3173 a normal ldgp in the first two words. */
3174 else if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_STD_GPLOAD)
3175 ;
3176
3177 /* Otherwise, we may be able to identify a GP load in the first two
3178 words, which we can then skip. */
3179 else
3180 {
3181 Elf_Internal_Rela *tsec_relocs, *tsec_relend, *tsec_free, *gpdisp;
3182 bfd_vma ofs;
3183
3184 /* Load the relocations from the section that the target symbol is in. */
3185 if (info->sec == info->tsec)
3186 {
3187 tsec_relocs = info->relocs;
3188 tsec_relend = info->relend;
3189 tsec_free = NULL;
3190 }
3191 else
3192 {
3193 tsec_relocs = (_bfd_elf_link_read_relocs
3194 (info->abfd, info->tsec, NULL,
3195 (Elf_Internal_Rela *) NULL,
3196 info->link_info->keep_memory));
3197 if (tsec_relocs == NULL)
3198 return 0;
3199 tsec_relend = tsec_relocs + info->tsec->reloc_count;
3200 tsec_free = (info->link_info->keep_memory ? NULL : tsec_relocs);
3201 }
3202
3203 /* Recover the symbol's offset within the section. */
3204 ofs = (symval - info->tsec->output_section->vma
3205 - info->tsec->output_offset);
3206
3207 /* Look for a GPDISP reloc. */
3208 gpdisp = (elf64_alpha_find_reloc_at_ofs
3209 (tsec_relocs, tsec_relend, ofs, R_ALPHA_GPDISP));
3210
3211 if (!gpdisp || gpdisp->r_addend != 4)
3212 {
3213 if (tsec_free)
3214 free (tsec_free);
3215 return 0;
3216 }
3217 if (tsec_free)
3218 free (tsec_free);
3219 }
3220
3221 /* We've now determined that we can skip an initial gp load. Verify
3222 that the call and the target use the same gp. */
3223 if (info->link_info->output_bfd->xvec != info->tsec->owner->xvec
3224 || info->gotobj != alpha_elf_tdata (info->tsec->owner)->gotobj)
3225 return 0;
3226
3227 return symval + 8;
3228 }
3229
3230 static bfd_boolean
3231 elf64_alpha_relax_with_lituse (struct alpha_relax_info *info,
3232 bfd_vma symval, Elf_Internal_Rela *irel)
3233 {
3234 Elf_Internal_Rela *urel, *erel, *irelend = info->relend;
3235 int flags;
3236 bfd_signed_vma disp;
3237 bfd_boolean fits16;
3238 bfd_boolean fits32;
3239 bfd_boolean lit_reused = FALSE;
3240 bfd_boolean all_optimized = TRUE;
3241 bfd_boolean changed_contents;
3242 bfd_boolean changed_relocs;
3243 bfd_byte *contents = info->contents;
3244 bfd *abfd = info->abfd;
3245 bfd_vma sec_output_vma;
3246 unsigned int lit_insn;
3247 int relax_pass;
3248
3249 lit_insn = bfd_get_32 (abfd, contents + irel->r_offset);
3250 if (lit_insn >> 26 != OP_LDQ)
3251 {
3252 ((*_bfd_error_handler)
3253 ("%B: %A+0x%lx: warning: LITERAL relocation against unexpected insn",
3254 abfd, info->sec,
3255 (unsigned long) irel->r_offset));
3256 return TRUE;
3257 }
3258
3259 /* Can't relax dynamic symbols. */
3260 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3261 return TRUE;
3262
3263 changed_contents = info->changed_contents;
3264 changed_relocs = info->changed_relocs;
3265 sec_output_vma = info->sec->output_section->vma + info->sec->output_offset;
3266 relax_pass = info->link_info->relax_pass;
3267
3268 /* Summarize how this particular LITERAL is used. */
3269 for (erel = irel+1, flags = 0; erel < irelend; ++erel)
3270 {
3271 if (ELF64_R_TYPE (erel->r_info) != R_ALPHA_LITUSE)
3272 break;
3273 if (erel->r_addend <= 6)
3274 flags |= 1 << erel->r_addend;
3275 }
3276
3277 /* A little preparation for the loop... */
3278 disp = symval - info->gp;
3279
3280 for (urel = irel+1; urel < erel; ++urel)
3281 {
3282 bfd_vma urel_r_offset = urel->r_offset;
3283 unsigned int insn;
3284 int insn_disp;
3285 bfd_signed_vma xdisp;
3286 Elf_Internal_Rela nrel;
3287
3288 insn = bfd_get_32 (abfd, contents + urel_r_offset);
3289
3290 switch (urel->r_addend)
3291 {
3292 case LITUSE_ALPHA_ADDR:
3293 default:
3294 /* This type is really just a placeholder to note that all
3295 uses cannot be optimized, but to still allow some. */
3296 all_optimized = FALSE;
3297 break;
3298
3299 case LITUSE_ALPHA_BASE:
3300 /* We may only create GPREL relocs during the second pass. */
3301 if (relax_pass == 0)
3302 {
3303 all_optimized = FALSE;
3304 break;
3305 }
3306
3307 /* We can always optimize 16-bit displacements. */
3308
3309 /* Extract the displacement from the instruction, sign-extending
3310 it if necessary, then test whether it is within 16 or 32 bits
3311 displacement from GP. */
3312 insn_disp = ((insn & 0xffff) ^ 0x8000) - 0x8000;
3313
3314 xdisp = disp + insn_disp;
3315 fits16 = (xdisp >= - (bfd_signed_vma) 0x8000 && xdisp < 0x8000);
3316 fits32 = (xdisp >= - (bfd_signed_vma) 0x80000000
3317 && xdisp < 0x7fff8000);
3318
3319 if (fits16)
3320 {
3321 /* Take the op code and dest from this insn, take the base
3322 register from the literal insn. Leave the offset alone. */
3323 insn = (insn & 0xffe0ffff) | (lit_insn & 0x001f0000);
3324 bfd_put_32 (abfd, (bfd_vma) insn, contents + urel_r_offset);
3325 changed_contents = TRUE;
3326
3327 nrel = *urel;
3328 nrel.r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3329 R_ALPHA_GPREL16);
3330 nrel.r_addend = irel->r_addend;
3331
3332 /* As we adjust, move the reloc to the end so that we don't
3333 break the LITERAL+LITUSE chain. */
3334 if (urel < --erel)
3335 *urel-- = *erel;
3336 *erel = nrel;
3337 changed_relocs = TRUE;
3338 }
3339
3340 /* If all mem+byte, we can optimize 32-bit mem displacements. */
3341 else if (fits32 && !(flags & ~6))
3342 {
3343 /* FIXME: sanity check that lit insn Ra is mem insn Rb. */
3344
3345 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3346 R_ALPHA_GPRELHIGH);
3347 lit_insn = (OP_LDAH << 26) | (lit_insn & 0x03ff0000);
3348 bfd_put_32 (abfd, (bfd_vma) lit_insn, contents + irel->r_offset);
3349 lit_reused = TRUE;
3350 changed_contents = TRUE;
3351
3352 /* Since all relocs must be optimized, don't bother swapping
3353 this relocation to the end. */
3354 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3355 R_ALPHA_GPRELLOW);
3356 urel->r_addend = irel->r_addend;
3357 changed_relocs = TRUE;
3358 }
3359 else
3360 all_optimized = FALSE;
3361 break;
3362
3363 case LITUSE_ALPHA_BYTOFF:
3364 /* We can always optimize byte instructions. */
3365
3366 /* FIXME: sanity check the insn for byte op. Check that the
3367 literal dest reg is indeed Rb in the byte insn. */
3368
3369 insn &= ~ (unsigned) 0x001ff000;
3370 insn |= ((symval & 7) << 13) | 0x1000;
3371 bfd_put_32 (abfd, (bfd_vma) insn, contents + urel_r_offset);
3372 changed_contents = TRUE;
3373
3374 nrel = *urel;
3375 nrel.r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3376 nrel.r_addend = 0;
3377
3378 /* As we adjust, move the reloc to the end so that we don't
3379 break the LITERAL+LITUSE chain. */
3380 if (urel < --erel)
3381 *urel-- = *erel;
3382 *erel = nrel;
3383 changed_relocs = TRUE;
3384 break;
3385
3386 case LITUSE_ALPHA_JSR:
3387 case LITUSE_ALPHA_TLSGD:
3388 case LITUSE_ALPHA_TLSLDM:
3389 case LITUSE_ALPHA_JSRDIRECT:
3390 {
3391 bfd_vma optdest, org;
3392 bfd_signed_vma odisp;
3393
3394 /* For undefined weak symbols, we're mostly interested in getting
3395 rid of the got entry whenever possible, so optimize this to a
3396 use of the zero register. */
3397 if (info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3398 {
3399 insn |= 31 << 16;
3400 bfd_put_32 (abfd, (bfd_vma) insn, contents + urel_r_offset);
3401
3402 changed_contents = TRUE;
3403 break;
3404 }
3405
3406 /* If not zero, place to jump without needing pv. */
3407 optdest = elf64_alpha_relax_opt_call (info, symval);
3408 org = sec_output_vma + urel_r_offset + 4;
3409 odisp = (optdest ? optdest : symval) - org;
3410
3411 if (odisp >= -0x400000 && odisp < 0x400000)
3412 {
3413 Elf_Internal_Rela *xrel;
3414
3415 /* Preserve branch prediction call stack when possible. */
3416 if ((insn & INSN_JSR_MASK) == INSN_JSR)
3417 insn = (OP_BSR << 26) | (insn & 0x03e00000);
3418 else
3419 insn = (OP_BR << 26) | (insn & 0x03e00000);
3420 bfd_put_32 (abfd, (bfd_vma) insn, contents + urel_r_offset);
3421 changed_contents = TRUE;
3422
3423 nrel = *urel;
3424 nrel.r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3425 R_ALPHA_BRADDR);
3426 nrel.r_addend = irel->r_addend;
3427
3428 if (optdest)
3429 nrel.r_addend += optdest - symval;
3430 else
3431 all_optimized = FALSE;
3432
3433 /* Kill any HINT reloc that might exist for this insn. */
3434 xrel = (elf64_alpha_find_reloc_at_ofs
3435 (info->relocs, info->relend, urel_r_offset,
3436 R_ALPHA_HINT));
3437 if (xrel)
3438 xrel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3439
3440 /* As we adjust, move the reloc to the end so that we don't
3441 break the LITERAL+LITUSE chain. */
3442 if (urel < --erel)
3443 *urel-- = *erel;
3444 *erel = nrel;
3445
3446 info->changed_relocs = TRUE;
3447 }
3448 else
3449 all_optimized = FALSE;
3450
3451 /* Even if the target is not in range for a direct branch,
3452 if we share a GP, we can eliminate the gp reload. */
3453 if (optdest)
3454 {
3455 Elf_Internal_Rela *gpdisp
3456 = (elf64_alpha_find_reloc_at_ofs
3457 (info->relocs, irelend, urel_r_offset + 4,
3458 R_ALPHA_GPDISP));
3459 if (gpdisp)
3460 {
3461 bfd_byte *p_ldah = contents + gpdisp->r_offset;
3462 bfd_byte *p_lda = p_ldah + gpdisp->r_addend;
3463 unsigned int ldah = bfd_get_32 (abfd, p_ldah);
3464 unsigned int lda = bfd_get_32 (abfd, p_lda);
3465
3466 /* Verify that the instruction is "ldah $29,0($26)".
3467 Consider a function that ends in a noreturn call,
3468 and that the next function begins with an ldgp,
3469 and that by accident there is no padding between.
3470 In that case the insn would use $27 as the base. */
3471 if (ldah == 0x27ba0000 && lda == 0x23bd0000)
3472 {
3473 bfd_put_32 (abfd, (bfd_vma) INSN_UNOP, p_ldah);
3474 bfd_put_32 (abfd, (bfd_vma) INSN_UNOP, p_lda);
3475
3476 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3477 changed_contents = TRUE;
3478 changed_relocs = TRUE;
3479 }
3480 }
3481 }
3482 }
3483 break;
3484 }
3485 }
3486
3487 /* If we reused the literal instruction, we must have optimized all. */
3488 BFD_ASSERT(!lit_reused || all_optimized);
3489
3490 /* If all cases were optimized, we can reduce the use count on this
3491 got entry by one, possibly eliminating it. */
3492 if (all_optimized)
3493 {
3494 if (--info->gotent->use_count == 0)
3495 {
3496 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3497 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3498 if (!info->h)
3499 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3500 }
3501
3502 /* If the literal instruction is no longer needed (it may have been
3503 reused. We can eliminate it. */
3504 /* ??? For now, I don't want to deal with compacting the section,
3505 so just nop it out. */
3506 if (!lit_reused)
3507 {
3508 irel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3509 changed_relocs = TRUE;
3510
3511 bfd_put_32 (abfd, (bfd_vma) INSN_UNOP, contents + irel->r_offset);
3512 changed_contents = TRUE;
3513 }
3514 }
3515
3516 info->changed_contents = changed_contents;
3517 info->changed_relocs = changed_relocs;
3518
3519 if (all_optimized || relax_pass == 0)
3520 return TRUE;
3521 return elf64_alpha_relax_got_load (info, symval, irel, R_ALPHA_LITERAL);
3522 }
3523
3524 static bfd_boolean
3525 elf64_alpha_relax_tls_get_addr (struct alpha_relax_info *info, bfd_vma symval,
3526 Elf_Internal_Rela *irel, bfd_boolean is_gd)
3527 {
3528 bfd_byte *pos[5];
3529 unsigned int insn, tlsgd_reg;
3530 Elf_Internal_Rela *gpdisp, *hint;
3531 bfd_boolean dynamic, use_gottprel;
3532 unsigned long new_symndx;
3533
3534 dynamic = alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info);
3535
3536 /* If a TLS symbol is accessed using IE at least once, there is no point
3537 to use dynamic model for it. */
3538 if (is_gd && info->h && (info->h->flags & ALPHA_ELF_LINK_HASH_TLS_IE))
3539 ;
3540
3541 /* If the symbol is local, and we've already committed to DF_STATIC_TLS,
3542 then we might as well relax to IE. */
3543 else if (info->link_info->shared && !dynamic
3544 && (info->link_info->flags & DF_STATIC_TLS))
3545 ;
3546
3547 /* Otherwise we must be building an executable to do anything. */
3548 else if (info->link_info->shared)
3549 return TRUE;
3550
3551 /* The TLSGD/TLSLDM relocation must be followed by a LITERAL and
3552 the matching LITUSE_TLS relocations. */
3553 if (irel + 2 >= info->relend)
3554 return TRUE;
3555 if (ELF64_R_TYPE (irel[1].r_info) != R_ALPHA_LITERAL
3556 || ELF64_R_TYPE (irel[2].r_info) != R_ALPHA_LITUSE
3557 || irel[2].r_addend != (is_gd ? LITUSE_ALPHA_TLSGD : LITUSE_ALPHA_TLSLDM))
3558 return TRUE;
3559
3560 /* There must be a GPDISP relocation positioned immediately after the
3561 LITUSE relocation. */
3562 gpdisp = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3563 irel[2].r_offset + 4, R_ALPHA_GPDISP);
3564 if (!gpdisp)
3565 return TRUE;
3566
3567 pos[0] = info->contents + irel[0].r_offset;
3568 pos[1] = info->contents + irel[1].r_offset;
3569 pos[2] = info->contents + irel[2].r_offset;
3570 pos[3] = info->contents + gpdisp->r_offset;
3571 pos[4] = pos[3] + gpdisp->r_addend;
3572
3573 /* Beware of the compiler hoisting part of the sequence out a loop
3574 and adjusting the destination register for the TLSGD insn. If this
3575 happens, there will be a move into $16 before the JSR insn, so only
3576 transformations of the first insn pair should use this register. */
3577 tlsgd_reg = bfd_get_32 (info->abfd, pos[0]);
3578 tlsgd_reg = (tlsgd_reg >> 21) & 31;
3579
3580 /* Generally, the positions are not allowed to be out of order, lest the
3581 modified insn sequence have different register lifetimes. We can make
3582 an exception when pos 1 is adjacent to pos 0. */
3583 if (pos[1] + 4 == pos[0])
3584 {
3585 bfd_byte *tmp = pos[0];
3586 pos[0] = pos[1];
3587 pos[1] = tmp;
3588 }
3589 if (pos[1] >= pos[2] || pos[2] >= pos[3])
3590 return TRUE;
3591
3592 /* Reduce the use count on the LITERAL relocation. Do this before we
3593 smash the symndx when we adjust the relocations below. */
3594 {
3595 struct alpha_elf_got_entry *lit_gotent;
3596 struct alpha_elf_link_hash_entry *lit_h;
3597 unsigned long indx;
3598
3599 BFD_ASSERT (ELF64_R_SYM (irel[1].r_info) >= info->symtab_hdr->sh_info);
3600 indx = ELF64_R_SYM (irel[1].r_info) - info->symtab_hdr->sh_info;
3601 lit_h = alpha_elf_sym_hashes (info->abfd)[indx];
3602
3603 while (lit_h->root.root.type == bfd_link_hash_indirect
3604 || lit_h->root.root.type == bfd_link_hash_warning)
3605 lit_h = (struct alpha_elf_link_hash_entry *) lit_h->root.root.u.i.link;
3606
3607 for (lit_gotent = lit_h->got_entries; lit_gotent ;
3608 lit_gotent = lit_gotent->next)
3609 if (lit_gotent->gotobj == info->gotobj
3610 && lit_gotent->reloc_type == R_ALPHA_LITERAL
3611 && lit_gotent->addend == irel[1].r_addend)
3612 break;
3613 BFD_ASSERT (lit_gotent);
3614
3615 if (--lit_gotent->use_count == 0)
3616 {
3617 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3618 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3619 }
3620 }
3621
3622 /* Change
3623
3624 lda $16,x($gp) !tlsgd!1
3625 ldq $27,__tls_get_addr($gp) !literal!1
3626 jsr $26,($27),__tls_get_addr !lituse_tlsgd!1
3627 ldah $29,0($26) !gpdisp!2
3628 lda $29,0($29) !gpdisp!2
3629 to
3630 ldq $16,x($gp) !gottprel
3631 unop
3632 call_pal rduniq
3633 addq $16,$0,$0
3634 unop
3635 or the first pair to
3636 lda $16,x($gp) !tprel
3637 unop
3638 or
3639 ldah $16,x($gp) !tprelhi
3640 lda $16,x($16) !tprello
3641
3642 as appropriate. */
3643
3644 use_gottprel = FALSE;
3645 new_symndx = is_gd ? ELF64_R_SYM (irel->r_info) : STN_UNDEF;
3646
3647 /* Some compilers warn about a Boolean-looking expression being
3648 used in a switch. The explicit cast silences them. */
3649 switch ((int) (!dynamic && !info->link_info->shared))
3650 {
3651 case 1:
3652 {
3653 bfd_vma tp_base;
3654 bfd_signed_vma disp;
3655
3656 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3657 tp_base = alpha_get_tprel_base (info->link_info);
3658 disp = symval - tp_base;
3659
3660 if (disp >= -0x8000 && disp < 0x8000)
3661 {
3662 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (31 << 16);
3663 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3664 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3665
3666 irel[0].r_offset = pos[0] - info->contents;
3667 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPREL16);
3668 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3669 break;
3670 }
3671 else if (disp >= -(bfd_signed_vma) 0x80000000
3672 && disp < (bfd_signed_vma) 0x7fff8000
3673 && pos[0] + 4 == pos[1])
3674 {
3675 insn = (OP_LDAH << 26) | (tlsgd_reg << 21) | (31 << 16);
3676 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3677 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (tlsgd_reg << 16);
3678 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[1]);
3679
3680 irel[0].r_offset = pos[0] - info->contents;
3681 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELHI);
3682 irel[1].r_offset = pos[1] - info->contents;
3683 irel[1].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELLO);
3684 break;
3685 }
3686 }
3687 /* FALLTHRU */
3688
3689 default:
3690 use_gottprel = TRUE;
3691
3692 insn = (OP_LDQ << 26) | (tlsgd_reg << 21) | (29 << 16);
3693 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3694 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3695
3696 irel[0].r_offset = pos[0] - info->contents;
3697 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_GOTTPREL);
3698 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3699 break;
3700 }
3701
3702 bfd_put_32 (info->abfd, (bfd_vma) INSN_RDUNIQ, pos[2]);
3703
3704 insn = INSN_ADDQ | (16 << 21) | (0 << 16) | (0 << 0);
3705 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[3]);
3706
3707 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[4]);
3708
3709 irel[2].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3710 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3711
3712 hint = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3713 irel[2].r_offset, R_ALPHA_HINT);
3714 if (hint)
3715 hint->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3716
3717 info->changed_contents = TRUE;
3718 info->changed_relocs = TRUE;
3719
3720 /* Reduce the use count on the TLSGD/TLSLDM relocation. */
3721 if (--info->gotent->use_count == 0)
3722 {
3723 int sz = alpha_got_entry_size (info->gotent->reloc_type);
3724 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3725 if (!info->h)
3726 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3727 }
3728
3729 /* If we've switched to a GOTTPREL relocation, increment the reference
3730 count on that got entry. */
3731 if (use_gottprel)
3732 {
3733 struct alpha_elf_got_entry *tprel_gotent;
3734
3735 for (tprel_gotent = *info->first_gotent; tprel_gotent ;
3736 tprel_gotent = tprel_gotent->next)
3737 if (tprel_gotent->gotobj == info->gotobj
3738 && tprel_gotent->reloc_type == R_ALPHA_GOTTPREL
3739 && tprel_gotent->addend == irel->r_addend)
3740 break;
3741 if (tprel_gotent)
3742 tprel_gotent->use_count++;
3743 else
3744 {
3745 if (info->gotent->use_count == 0)
3746 tprel_gotent = info->gotent;
3747 else
3748 {
3749 tprel_gotent = (struct alpha_elf_got_entry *)
3750 bfd_alloc (info->abfd, sizeof (struct alpha_elf_got_entry));
3751 if (!tprel_gotent)
3752 return FALSE;
3753
3754 tprel_gotent->next = *info->first_gotent;
3755 *info->first_gotent = tprel_gotent;
3756
3757 tprel_gotent->gotobj = info->gotobj;
3758 tprel_gotent->addend = irel->r_addend;
3759 tprel_gotent->got_offset = -1;
3760 tprel_gotent->reloc_done = 0;
3761 tprel_gotent->reloc_xlated = 0;
3762 }
3763
3764 tprel_gotent->use_count = 1;
3765 tprel_gotent->reloc_type = R_ALPHA_GOTTPREL;
3766 }
3767 }
3768
3769 return TRUE;
3770 }
3771
3772 static bfd_boolean
3773 elf64_alpha_relax_section (bfd *abfd, asection *sec,
3774 struct bfd_link_info *link_info, bfd_boolean *again)
3775 {
3776 Elf_Internal_Shdr *symtab_hdr;
3777 Elf_Internal_Rela *internal_relocs;
3778 Elf_Internal_Rela *irel, *irelend;
3779 Elf_Internal_Sym *isymbuf = NULL;
3780 struct alpha_elf_got_entry **local_got_entries;
3781 struct alpha_relax_info info;
3782 struct alpha_elf_link_hash_table * htab;
3783 int relax_pass;
3784
3785 htab = alpha_elf_hash_table (link_info);
3786 if (htab == NULL)
3787 return FALSE;
3788
3789 /* There's nothing to change, yet. */
3790 *again = FALSE;
3791
3792 if (link_info->relocatable
3793 || ((sec->flags & (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3794 != (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3795 || sec->reloc_count == 0)
3796 return TRUE;
3797
3798 BFD_ASSERT (is_alpha_elf (abfd));
3799 relax_pass = link_info->relax_pass;
3800
3801 /* Make sure our GOT and PLT tables are up-to-date. */
3802 if (htab->relax_trip != link_info->relax_trip)
3803 {
3804 htab->relax_trip = link_info->relax_trip;
3805
3806 /* This should never fail after the initial round, since the only error
3807 is GOT overflow, and relaxation only shrinks the table. However, we
3808 may only merge got sections during the first pass. If we merge
3809 sections after we've created GPREL relocs, the GP for the merged
3810 section backs up which may put the relocs out of range. */
3811 if (!elf64_alpha_size_got_sections (link_info, relax_pass == 0))
3812 abort ();
3813 if (elf_hash_table (link_info)->dynamic_sections_created)
3814 {
3815 elf64_alpha_size_plt_section (link_info);
3816 elf64_alpha_size_rela_got_section (link_info);
3817 }
3818 }
3819
3820 symtab_hdr = &elf_symtab_hdr (abfd);
3821 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
3822
3823 /* Load the relocations for this section. */
3824 internal_relocs = (_bfd_elf_link_read_relocs
3825 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
3826 link_info->keep_memory));
3827 if (internal_relocs == NULL)
3828 return FALSE;
3829
3830 memset(&info, 0, sizeof (info));
3831 info.abfd = abfd;
3832 info.sec = sec;
3833 info.link_info = link_info;
3834 info.symtab_hdr = symtab_hdr;
3835 info.relocs = internal_relocs;
3836 info.relend = irelend = internal_relocs + sec->reloc_count;
3837
3838 /* Find the GP for this object. Do not store the result back via
3839 _bfd_set_gp_value, since this could change again before final. */
3840 info.gotobj = alpha_elf_tdata (abfd)->gotobj;
3841 if (info.gotobj)
3842 {
3843 asection *sgot = alpha_elf_tdata (info.gotobj)->got;
3844 info.gp = (sgot->output_section->vma
3845 + sgot->output_offset
3846 + 0x8000);
3847 }
3848
3849 /* Get the section contents. */
3850 if (elf_section_data (sec)->this_hdr.contents != NULL)
3851 info.contents = elf_section_data (sec)->this_hdr.contents;
3852 else
3853 {
3854 if (!bfd_malloc_and_get_section (abfd, sec, &info.contents))
3855 goto error_return;
3856 }
3857
3858 for (irel = internal_relocs; irel < irelend; irel++)
3859 {
3860 bfd_vma symval;
3861 struct alpha_elf_got_entry *gotent;
3862 unsigned long r_type = ELF64_R_TYPE (irel->r_info);
3863 unsigned long r_symndx = ELF64_R_SYM (irel->r_info);
3864
3865 /* Early exit for unhandled or unrelaxable relocations. */
3866 if (r_type != R_ALPHA_LITERAL)
3867 {
3868 /* We complete everything except LITERAL in the first pass. */
3869 if (relax_pass != 0)
3870 continue;
3871 if (r_type == R_ALPHA_TLSLDM)
3872 {
3873 /* The symbol for a TLSLDM reloc is ignored. Collapse the
3874 reloc to the STN_UNDEF (0) symbol so that they all match. */
3875 r_symndx = STN_UNDEF;
3876 }
3877 else if (r_type != R_ALPHA_GOTDTPREL
3878 && r_type != R_ALPHA_GOTTPREL
3879 && r_type != R_ALPHA_TLSGD)
3880 continue;
3881 }
3882
3883 /* Get the value of the symbol referred to by the reloc. */
3884 if (r_symndx < symtab_hdr->sh_info)
3885 {
3886 /* A local symbol. */
3887 Elf_Internal_Sym *isym;
3888
3889 /* Read this BFD's local symbols. */
3890 if (isymbuf == NULL)
3891 {
3892 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3893 if (isymbuf == NULL)
3894 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3895 symtab_hdr->sh_info, 0,
3896 NULL, NULL, NULL);
3897 if (isymbuf == NULL)
3898 goto error_return;
3899 }
3900
3901 isym = isymbuf + r_symndx;
3902
3903 /* Given the symbol for a TLSLDM reloc is ignored, this also
3904 means forcing the symbol value to the tp base. */
3905 if (r_type == R_ALPHA_TLSLDM)
3906 {
3907 info.tsec = bfd_abs_section_ptr;
3908 symval = alpha_get_tprel_base (info.link_info);
3909 }
3910 else
3911 {
3912 symval = isym->st_value;
3913 if (isym->st_shndx == SHN_UNDEF)
3914 continue;
3915 else if (isym->st_shndx == SHN_ABS)
3916 info.tsec = bfd_abs_section_ptr;
3917 else if (isym->st_shndx == SHN_COMMON)
3918 info.tsec = bfd_com_section_ptr;
3919 else
3920 info.tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3921 }
3922
3923 info.h = NULL;
3924 info.other = isym->st_other;
3925 if (local_got_entries)
3926 info.first_gotent = &local_got_entries[r_symndx];
3927 else
3928 {
3929 info.first_gotent = &info.gotent;
3930 info.gotent = NULL;
3931 }
3932 }
3933 else
3934 {
3935 unsigned long indx;
3936 struct alpha_elf_link_hash_entry *h;
3937
3938 indx = r_symndx - symtab_hdr->sh_info;
3939 h = alpha_elf_sym_hashes (abfd)[indx];
3940 BFD_ASSERT (h != NULL);
3941
3942 while (h->root.root.type == bfd_link_hash_indirect
3943 || h->root.root.type == bfd_link_hash_warning)
3944 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
3945
3946 /* If the symbol is undefined, we can't do anything with it. */
3947 if (h->root.root.type == bfd_link_hash_undefined)
3948 continue;
3949
3950 /* If the symbol isn't defined in the current module,
3951 again we can't do anything. */
3952 if (h->root.root.type == bfd_link_hash_undefweak)
3953 {
3954 info.tsec = bfd_abs_section_ptr;
3955 symval = 0;
3956 }
3957 else if (!h->root.def_regular)
3958 {
3959 /* Except for TLSGD relocs, which can sometimes be
3960 relaxed to GOTTPREL relocs. */
3961 if (r_type != R_ALPHA_TLSGD)
3962 continue;
3963 info.tsec = bfd_abs_section_ptr;
3964 symval = 0;
3965 }
3966 else
3967 {
3968 info.tsec = h->root.root.u.def.section;
3969 symval = h->root.root.u.def.value;
3970 }
3971
3972 info.h = h;
3973 info.other = h->root.other;
3974 info.first_gotent = &h->got_entries;
3975 }
3976
3977 /* Search for the got entry to be used by this relocation. */
3978 for (gotent = *info.first_gotent; gotent ; gotent = gotent->next)
3979 if (gotent->gotobj == info.gotobj
3980 && gotent->reloc_type == r_type
3981 && gotent->addend == irel->r_addend)
3982 break;
3983 info.gotent = gotent;
3984
3985 symval += info.tsec->output_section->vma + info.tsec->output_offset;
3986 symval += irel->r_addend;
3987
3988 switch (r_type)
3989 {
3990 case R_ALPHA_LITERAL:
3991 BFD_ASSERT(info.gotent != NULL);
3992
3993 /* If there exist LITUSE relocations immediately following, this
3994 opens up all sorts of interesting optimizations, because we
3995 now know every location that this address load is used. */
3996 if (irel+1 < irelend
3997 && ELF64_R_TYPE (irel[1].r_info) == R_ALPHA_LITUSE)
3998 {
3999 if (!elf64_alpha_relax_with_lituse (&info, symval, irel))
4000 goto error_return;
4001 }
4002 else
4003 {
4004 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
4005 goto error_return;
4006 }
4007 break;
4008
4009 case R_ALPHA_GOTDTPREL:
4010 case R_ALPHA_GOTTPREL:
4011 BFD_ASSERT(info.gotent != NULL);
4012 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
4013 goto error_return;
4014 break;
4015
4016 case R_ALPHA_TLSGD:
4017 case R_ALPHA_TLSLDM:
4018 BFD_ASSERT(info.gotent != NULL);
4019 if (!elf64_alpha_relax_tls_get_addr (&info, symval, irel,
4020 r_type == R_ALPHA_TLSGD))
4021 goto error_return;
4022 break;
4023 }
4024 }
4025
4026 if (isymbuf != NULL
4027 && symtab_hdr->contents != (unsigned char *) isymbuf)
4028 {
4029 if (!link_info->keep_memory)
4030 free (isymbuf);
4031 else
4032 {
4033 /* Cache the symbols for elf_link_input_bfd. */
4034 symtab_hdr->contents = (unsigned char *) isymbuf;
4035 }
4036 }
4037
4038 if (info.contents != NULL
4039 && elf_section_data (sec)->this_hdr.contents != info.contents)
4040 {
4041 if (!info.changed_contents && !link_info->keep_memory)
4042 free (info.contents);
4043 else
4044 {
4045 /* Cache the section contents for elf_link_input_bfd. */
4046 elf_section_data (sec)->this_hdr.contents = info.contents;
4047 }
4048 }
4049
4050 if (elf_section_data (sec)->relocs != internal_relocs)
4051 {
4052 if (!info.changed_relocs)
4053 free (internal_relocs);
4054 else
4055 elf_section_data (sec)->relocs = internal_relocs;
4056 }
4057
4058 *again = info.changed_contents || info.changed_relocs;
4059
4060 return TRUE;
4061
4062 error_return:
4063 if (isymbuf != NULL
4064 && symtab_hdr->contents != (unsigned char *) isymbuf)
4065 free (isymbuf);
4066 if (info.contents != NULL
4067 && elf_section_data (sec)->this_hdr.contents != info.contents)
4068 free (info.contents);
4069 if (internal_relocs != NULL
4070 && elf_section_data (sec)->relocs != internal_relocs)
4071 free (internal_relocs);
4072 return FALSE;
4073 }
4074 \f
4075 /* Emit a dynamic relocation for (DYNINDX, RTYPE, ADDEND) at (SEC, OFFSET)
4076 into the next available slot in SREL. */
4077
4078 static void
4079 elf64_alpha_emit_dynrel (bfd *abfd, struct bfd_link_info *info,
4080 asection *sec, asection *srel, bfd_vma offset,
4081 long dynindx, long rtype, bfd_vma addend)
4082 {
4083 Elf_Internal_Rela outrel;
4084 bfd_byte *loc;
4085
4086 BFD_ASSERT (srel != NULL);
4087
4088 outrel.r_info = ELF64_R_INFO (dynindx, rtype);
4089 outrel.r_addend = addend;
4090
4091 offset = _bfd_elf_section_offset (abfd, info, sec, offset);
4092 if ((offset | 1) != (bfd_vma) -1)
4093 outrel.r_offset = sec->output_section->vma + sec->output_offset + offset;
4094 else
4095 memset (&outrel, 0, sizeof (outrel));
4096
4097 loc = srel->contents;
4098 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
4099 bfd_elf64_swap_reloca_out (abfd, &outrel, loc);
4100 BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->size);
4101 }
4102
4103 /* Relocate an Alpha ELF section for a relocatable link.
4104
4105 We don't have to change anything unless the reloc is against a section
4106 symbol, in which case we have to adjust according to where the section
4107 symbol winds up in the output section. */
4108
4109 static bfd_boolean
4110 elf64_alpha_relocate_section_r (bfd *output_bfd ATTRIBUTE_UNUSED,
4111 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4112 bfd *input_bfd, asection *input_section,
4113 bfd_byte *contents ATTRIBUTE_UNUSED,
4114 Elf_Internal_Rela *relocs,
4115 Elf_Internal_Sym *local_syms,
4116 asection **local_sections)
4117 {
4118 unsigned long symtab_hdr_sh_info;
4119 Elf_Internal_Rela *rel;
4120 Elf_Internal_Rela *relend;
4121 struct elf_link_hash_entry **sym_hashes;
4122 bfd_boolean ret_val = TRUE;
4123
4124 symtab_hdr_sh_info = elf_symtab_hdr (input_bfd).sh_info;
4125 sym_hashes = elf_sym_hashes (input_bfd);
4126
4127 relend = relocs + input_section->reloc_count;
4128 for (rel = relocs; rel < relend; rel++)
4129 {
4130 unsigned long r_symndx;
4131 Elf_Internal_Sym *sym;
4132 asection *sec;
4133 unsigned long r_type;
4134
4135 r_type = ELF64_R_TYPE (rel->r_info);
4136 if (r_type >= R_ALPHA_max)
4137 {
4138 (*_bfd_error_handler)
4139 (_("%B: unknown relocation type %d"),
4140 input_bfd, (int) r_type);
4141 bfd_set_error (bfd_error_bad_value);
4142 ret_val = FALSE;
4143 continue;
4144 }
4145
4146 /* The symbol associated with GPDISP and LITUSE is
4147 immaterial. Only the addend is significant. */
4148 if (r_type == R_ALPHA_GPDISP || r_type == R_ALPHA_LITUSE)
4149 continue;
4150
4151 r_symndx = ELF64_R_SYM (rel->r_info);
4152 if (r_symndx < symtab_hdr_sh_info)
4153 {
4154 sym = local_syms + r_symndx;
4155 sec = local_sections[r_symndx];
4156 }
4157 else
4158 {
4159 struct elf_link_hash_entry *h;
4160
4161 h = sym_hashes[r_symndx - symtab_hdr_sh_info];
4162
4163 while (h->root.type == bfd_link_hash_indirect
4164 || h->root.type == bfd_link_hash_warning)
4165 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4166
4167 if (h->root.type != bfd_link_hash_defined
4168 && h->root.type != bfd_link_hash_defweak)
4169 continue;
4170
4171 sym = NULL;
4172 sec = h->root.u.def.section;
4173 }
4174
4175 if (sec != NULL && discarded_section (sec))
4176 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4177 rel, 1, relend,
4178 elf64_alpha_howto_table + r_type, 0,
4179 contents);
4180
4181 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4182 rel->r_addend += sec->output_offset;
4183 }
4184
4185 return ret_val;
4186 }
4187
4188 /* Relocate an Alpha ELF section. */
4189
4190 static bfd_boolean
4191 elf64_alpha_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
4192 bfd *input_bfd, asection *input_section,
4193 bfd_byte *contents, Elf_Internal_Rela *relocs,
4194 Elf_Internal_Sym *local_syms,
4195 asection **local_sections)
4196 {
4197 Elf_Internal_Shdr *symtab_hdr;
4198 Elf_Internal_Rela *rel;
4199 Elf_Internal_Rela *relend;
4200 asection *sgot, *srel, *srelgot;
4201 bfd *dynobj, *gotobj;
4202 bfd_vma gp, tp_base, dtp_base;
4203 struct alpha_elf_got_entry **local_got_entries;
4204 bfd_boolean ret_val;
4205
4206 BFD_ASSERT (is_alpha_elf (input_bfd));
4207
4208 /* Handle relocatable links with a smaller loop. */
4209 if (info->relocatable)
4210 return elf64_alpha_relocate_section_r (output_bfd, info, input_bfd,
4211 input_section, contents, relocs,
4212 local_syms, local_sections);
4213
4214 /* This is a final link. */
4215
4216 ret_val = TRUE;
4217
4218 symtab_hdr = &elf_symtab_hdr (input_bfd);
4219
4220 dynobj = elf_hash_table (info)->dynobj;
4221 if (dynobj)
4222 srelgot = bfd_get_linker_section (dynobj, ".rela.got");
4223 else
4224 srelgot = NULL;
4225
4226 if (input_section->flags & SEC_ALLOC)
4227 {
4228 const char *section_name;
4229 section_name = (bfd_elf_string_from_elf_section
4230 (input_bfd, elf_elfheader(input_bfd)->e_shstrndx,
4231 _bfd_elf_single_rel_hdr (input_section)->sh_name));
4232 BFD_ASSERT(section_name != NULL);
4233 srel = bfd_get_linker_section (dynobj, section_name);
4234 }
4235 else
4236 srel = NULL;
4237
4238 /* Find the gp value for this input bfd. */
4239 gotobj = alpha_elf_tdata (input_bfd)->gotobj;
4240 if (gotobj)
4241 {
4242 sgot = alpha_elf_tdata (gotobj)->got;
4243 gp = _bfd_get_gp_value (gotobj);
4244 if (gp == 0)
4245 {
4246 gp = (sgot->output_section->vma
4247 + sgot->output_offset
4248 + 0x8000);
4249 _bfd_set_gp_value (gotobj, gp);
4250 }
4251 }
4252 else
4253 {
4254 sgot = NULL;
4255 gp = 0;
4256 }
4257
4258 local_got_entries = alpha_elf_tdata(input_bfd)->local_got_entries;
4259
4260 if (elf_hash_table (info)->tls_sec != NULL)
4261 {
4262 dtp_base = alpha_get_dtprel_base (info);
4263 tp_base = alpha_get_tprel_base (info);
4264 }
4265 else
4266 dtp_base = tp_base = 0;
4267
4268 relend = relocs + input_section->reloc_count;
4269 for (rel = relocs; rel < relend; rel++)
4270 {
4271 struct alpha_elf_link_hash_entry *h = NULL;
4272 struct alpha_elf_got_entry *gotent;
4273 bfd_reloc_status_type r;
4274 reloc_howto_type *howto;
4275 unsigned long r_symndx;
4276 Elf_Internal_Sym *sym = NULL;
4277 asection *sec = NULL;
4278 bfd_vma value;
4279 bfd_vma addend;
4280 bfd_boolean dynamic_symbol_p;
4281 bfd_boolean unresolved_reloc = FALSE;
4282 bfd_boolean undef_weak_ref = FALSE;
4283 unsigned long r_type;
4284
4285 r_type = ELF64_R_TYPE(rel->r_info);
4286 if (r_type >= R_ALPHA_max)
4287 {
4288 (*_bfd_error_handler)
4289 (_("%B: unknown relocation type %d"),
4290 input_bfd, (int) r_type);
4291 bfd_set_error (bfd_error_bad_value);
4292 ret_val = FALSE;
4293 continue;
4294 }
4295
4296 howto = elf64_alpha_howto_table + r_type;
4297 r_symndx = ELF64_R_SYM(rel->r_info);
4298
4299 /* The symbol for a TLSLDM reloc is ignored. Collapse the
4300 reloc to the STN_UNDEF (0) symbol so that they all match. */
4301 if (r_type == R_ALPHA_TLSLDM)
4302 r_symndx = STN_UNDEF;
4303
4304 if (r_symndx < symtab_hdr->sh_info)
4305 {
4306 asection *msec;
4307 sym = local_syms + r_symndx;
4308 sec = local_sections[r_symndx];
4309 msec = sec;
4310 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4311
4312 /* If this is a tp-relative relocation against sym STN_UNDEF (0),
4313 this is hackery from relax_section. Force the value to
4314 be the tls module base. */
4315 if (r_symndx == STN_UNDEF
4316 && (r_type == R_ALPHA_TLSLDM
4317 || r_type == R_ALPHA_GOTTPREL
4318 || r_type == R_ALPHA_TPREL64
4319 || r_type == R_ALPHA_TPRELHI
4320 || r_type == R_ALPHA_TPRELLO
4321 || r_type == R_ALPHA_TPREL16))
4322 value = dtp_base;
4323
4324 if (local_got_entries)
4325 gotent = local_got_entries[r_symndx];
4326 else
4327 gotent = NULL;
4328
4329 /* Need to adjust local GOT entries' addends for SEC_MERGE
4330 unless it has been done already. */
4331 if ((sec->flags & SEC_MERGE)
4332 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4333 && sec->sec_info_type == SEC_INFO_TYPE_MERGE
4334 && gotent
4335 && !gotent->reloc_xlated)
4336 {
4337 struct alpha_elf_got_entry *ent;
4338
4339 for (ent = gotent; ent; ent = ent->next)
4340 {
4341 ent->reloc_xlated = 1;
4342 if (ent->use_count == 0)
4343 continue;
4344 msec = sec;
4345 ent->addend =
4346 _bfd_merged_section_offset (output_bfd, &msec,
4347 elf_section_data (sec)->
4348 sec_info,
4349 sym->st_value + ent->addend);
4350 ent->addend -= sym->st_value;
4351 ent->addend += msec->output_section->vma
4352 + msec->output_offset
4353 - sec->output_section->vma
4354 - sec->output_offset;
4355 }
4356 }
4357
4358 dynamic_symbol_p = FALSE;
4359 }
4360 else
4361 {
4362 bfd_boolean warned, ignored;
4363 struct elf_link_hash_entry *hh;
4364 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4365
4366 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4367 r_symndx, symtab_hdr, sym_hashes,
4368 hh, sec, value,
4369 unresolved_reloc, warned, ignored);
4370
4371 if (warned)
4372 continue;
4373
4374 if (value == 0
4375 && ! unresolved_reloc
4376 && hh->root.type == bfd_link_hash_undefweak)
4377 undef_weak_ref = TRUE;
4378
4379 h = (struct alpha_elf_link_hash_entry *) hh;
4380 dynamic_symbol_p = alpha_elf_dynamic_symbol_p (&h->root, info);
4381 gotent = h->got_entries;
4382 }
4383
4384 if (sec != NULL && discarded_section (sec))
4385 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4386 rel, 1, relend, howto, 0, contents);
4387
4388 addend = rel->r_addend;
4389 value += addend;
4390
4391 /* Search for the proper got entry. */
4392 for (; gotent ; gotent = gotent->next)
4393 if (gotent->gotobj == gotobj
4394 && gotent->reloc_type == r_type
4395 && gotent->addend == addend)
4396 break;
4397
4398 switch (r_type)
4399 {
4400 case R_ALPHA_GPDISP:
4401 {
4402 bfd_byte *p_ldah, *p_lda;
4403
4404 BFD_ASSERT(gp != 0);
4405
4406 value = (input_section->output_section->vma
4407 + input_section->output_offset
4408 + rel->r_offset);
4409
4410 p_ldah = contents + rel->r_offset;
4411 p_lda = p_ldah + rel->r_addend;
4412
4413 r = elf64_alpha_do_reloc_gpdisp (input_bfd, gp - value,
4414 p_ldah, p_lda);
4415 }
4416 break;
4417
4418 case R_ALPHA_LITERAL:
4419 BFD_ASSERT(sgot != NULL);
4420 BFD_ASSERT(gp != 0);
4421 BFD_ASSERT(gotent != NULL);
4422 BFD_ASSERT(gotent->use_count >= 1);
4423
4424 if (!gotent->reloc_done)
4425 {
4426 gotent->reloc_done = 1;
4427
4428 bfd_put_64 (output_bfd, value,
4429 sgot->contents + gotent->got_offset);
4430
4431 /* If the symbol has been forced local, output a
4432 RELATIVE reloc, otherwise it will be handled in
4433 finish_dynamic_symbol. */
4434 if (info->shared && !dynamic_symbol_p && !undef_weak_ref)
4435 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4436 gotent->got_offset, 0,
4437 R_ALPHA_RELATIVE, value);
4438 }
4439
4440 value = (sgot->output_section->vma
4441 + sgot->output_offset
4442 + gotent->got_offset);
4443 value -= gp;
4444 goto default_reloc;
4445
4446 case R_ALPHA_GPREL32:
4447 case R_ALPHA_GPREL16:
4448 case R_ALPHA_GPRELLOW:
4449 if (dynamic_symbol_p)
4450 {
4451 (*_bfd_error_handler)
4452 (_("%B: gp-relative relocation against dynamic symbol %s"),
4453 input_bfd, h->root.root.root.string);
4454 ret_val = FALSE;
4455 }
4456 BFD_ASSERT(gp != 0);
4457 value -= gp;
4458 goto default_reloc;
4459
4460 case R_ALPHA_GPRELHIGH:
4461 if (dynamic_symbol_p)
4462 {
4463 (*_bfd_error_handler)
4464 (_("%B: gp-relative relocation against dynamic symbol %s"),
4465 input_bfd, h->root.root.root.string);
4466 ret_val = FALSE;
4467 }
4468 BFD_ASSERT(gp != 0);
4469 value -= gp;
4470 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4471 goto default_reloc;
4472
4473 case R_ALPHA_HINT:
4474 /* A call to a dynamic symbol is definitely out of range of
4475 the 16-bit displacement. Don't bother writing anything. */
4476 if (dynamic_symbol_p)
4477 {
4478 r = bfd_reloc_ok;
4479 break;
4480 }
4481 /* The regular PC-relative stuff measures from the start of
4482 the instruction rather than the end. */
4483 value -= 4;
4484 goto default_reloc;
4485
4486 case R_ALPHA_BRADDR:
4487 if (dynamic_symbol_p)
4488 {
4489 (*_bfd_error_handler)
4490 (_("%B: pc-relative relocation against dynamic symbol %s"),
4491 input_bfd, h->root.root.root.string);
4492 ret_val = FALSE;
4493 }
4494 /* The regular PC-relative stuff measures from the start of
4495 the instruction rather than the end. */
4496 value -= 4;
4497 goto default_reloc;
4498
4499 case R_ALPHA_BRSGP:
4500 {
4501 int other;
4502 const char *name;
4503
4504 /* The regular PC-relative stuff measures from the start of
4505 the instruction rather than the end. */
4506 value -= 4;
4507
4508 /* The source and destination gp must be the same. Note that
4509 the source will always have an assigned gp, since we forced
4510 one in check_relocs, but that the destination may not, as
4511 it might not have had any relocations at all. Also take
4512 care not to crash if H is an undefined symbol. */
4513 if (h != NULL && sec != NULL
4514 && alpha_elf_tdata (sec->owner)->gotobj
4515 && gotobj != alpha_elf_tdata (sec->owner)->gotobj)
4516 {
4517 (*_bfd_error_handler)
4518 (_("%B: change in gp: BRSGP %s"),
4519 input_bfd, h->root.root.root.string);
4520 ret_val = FALSE;
4521 }
4522
4523 /* The symbol should be marked either NOPV or STD_GPLOAD. */
4524 if (h != NULL)
4525 other = h->root.other;
4526 else
4527 other = sym->st_other;
4528 switch (other & STO_ALPHA_STD_GPLOAD)
4529 {
4530 case STO_ALPHA_NOPV:
4531 break;
4532 case STO_ALPHA_STD_GPLOAD:
4533 value += 8;
4534 break;
4535 default:
4536 if (h != NULL)
4537 name = h->root.root.root.string;
4538 else
4539 {
4540 name = (bfd_elf_string_from_elf_section
4541 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4542 if (name == NULL)
4543 name = _("<unknown>");
4544 else if (name[0] == 0)
4545 name = bfd_section_name (input_bfd, sec);
4546 }
4547 (*_bfd_error_handler)
4548 (_("%B: !samegp reloc against symbol without .prologue: %s"),
4549 input_bfd, name);
4550 ret_val = FALSE;
4551 break;
4552 }
4553
4554 goto default_reloc;
4555 }
4556
4557 case R_ALPHA_REFLONG:
4558 case R_ALPHA_REFQUAD:
4559 case R_ALPHA_DTPREL64:
4560 case R_ALPHA_TPREL64:
4561 {
4562 long dynindx, dyntype = r_type;
4563 bfd_vma dynaddend;
4564
4565 /* Careful here to remember RELATIVE relocations for global
4566 variables for symbolic shared objects. */
4567
4568 if (dynamic_symbol_p)
4569 {
4570 BFD_ASSERT(h->root.dynindx != -1);
4571 dynindx = h->root.dynindx;
4572 dynaddend = addend;
4573 addend = 0, value = 0;
4574 }
4575 else if (r_type == R_ALPHA_DTPREL64)
4576 {
4577 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4578 value -= dtp_base;
4579 goto default_reloc;
4580 }
4581 else if (r_type == R_ALPHA_TPREL64)
4582 {
4583 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4584 if (!info->shared || info->pie)
4585 {
4586 value -= tp_base;
4587 goto default_reloc;
4588 }
4589 dynindx = 0;
4590 dynaddend = value - dtp_base;
4591 }
4592 else if (info->shared
4593 && r_symndx != STN_UNDEF
4594 && (input_section->flags & SEC_ALLOC)
4595 && !undef_weak_ref
4596 && !(unresolved_reloc
4597 && (_bfd_elf_section_offset (output_bfd, info,
4598 input_section,
4599 rel->r_offset)
4600 == (bfd_vma) -1)))
4601 {
4602 if (r_type == R_ALPHA_REFLONG)
4603 {
4604 (*_bfd_error_handler)
4605 (_("%B: unhandled dynamic relocation against %s"),
4606 input_bfd,
4607 h->root.root.root.string);
4608 ret_val = FALSE;
4609 }
4610 dynindx = 0;
4611 dyntype = R_ALPHA_RELATIVE;
4612 dynaddend = value;
4613 }
4614 else
4615 goto default_reloc;
4616
4617 if (input_section->flags & SEC_ALLOC)
4618 elf64_alpha_emit_dynrel (output_bfd, info, input_section,
4619 srel, rel->r_offset, dynindx,
4620 dyntype, dynaddend);
4621 }
4622 goto default_reloc;
4623
4624 case R_ALPHA_SREL16:
4625 case R_ALPHA_SREL32:
4626 case R_ALPHA_SREL64:
4627 if (dynamic_symbol_p)
4628 {
4629 (*_bfd_error_handler)
4630 (_("%B: pc-relative relocation against dynamic symbol %s"),
4631 input_bfd, h->root.root.root.string);
4632 ret_val = FALSE;
4633 }
4634 else if ((info->shared || info->pie) && undef_weak_ref)
4635 {
4636 (*_bfd_error_handler)
4637 (_("%B: pc-relative relocation against undefined weak symbol %s"),
4638 input_bfd, h->root.root.root.string);
4639 ret_val = FALSE;
4640 }
4641
4642
4643 /* ??? .eh_frame references to discarded sections will be smashed
4644 to relocations against SHN_UNDEF. The .eh_frame format allows
4645 NULL to be encoded as 0 in any format, so this works here. */
4646 if (r_symndx == STN_UNDEF
4647 || (unresolved_reloc
4648 && _bfd_elf_section_offset (output_bfd, info,
4649 input_section,
4650 rel->r_offset) == (bfd_vma) -1))
4651 howto = (elf64_alpha_howto_table
4652 + (r_type - R_ALPHA_SREL32 + R_ALPHA_REFLONG));
4653 goto default_reloc;
4654
4655 case R_ALPHA_TLSLDM:
4656 /* Ignore the symbol for the relocation. The result is always
4657 the current module. */
4658 dynamic_symbol_p = 0;
4659 /* FALLTHRU */
4660
4661 case R_ALPHA_TLSGD:
4662 if (!gotent->reloc_done)
4663 {
4664 gotent->reloc_done = 1;
4665
4666 /* Note that the module index for the main program is 1. */
4667 bfd_put_64 (output_bfd, !info->shared && !dynamic_symbol_p,
4668 sgot->contents + gotent->got_offset);
4669
4670 /* If the symbol has been forced local, output a
4671 DTPMOD64 reloc, otherwise it will be handled in
4672 finish_dynamic_symbol. */
4673 if (info->shared && !dynamic_symbol_p)
4674 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4675 gotent->got_offset, 0,
4676 R_ALPHA_DTPMOD64, 0);
4677
4678 if (dynamic_symbol_p || r_type == R_ALPHA_TLSLDM)
4679 value = 0;
4680 else
4681 {
4682 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4683 value -= dtp_base;
4684 }
4685 bfd_put_64 (output_bfd, value,
4686 sgot->contents + gotent->got_offset + 8);
4687 }
4688
4689 value = (sgot->output_section->vma
4690 + sgot->output_offset
4691 + gotent->got_offset);
4692 value -= gp;
4693 goto default_reloc;
4694
4695 case R_ALPHA_DTPRELHI:
4696 case R_ALPHA_DTPRELLO:
4697 case R_ALPHA_DTPREL16:
4698 if (dynamic_symbol_p)
4699 {
4700 (*_bfd_error_handler)
4701 (_("%B: dtp-relative relocation against dynamic symbol %s"),
4702 input_bfd, h->root.root.root.string);
4703 ret_val = FALSE;
4704 }
4705 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4706 value -= dtp_base;
4707 if (r_type == R_ALPHA_DTPRELHI)
4708 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4709 goto default_reloc;
4710
4711 case R_ALPHA_TPRELHI:
4712 case R_ALPHA_TPRELLO:
4713 case R_ALPHA_TPREL16:
4714 if (info->shared && !info->pie)
4715 {
4716 (*_bfd_error_handler)
4717 (_("%B: TLS local exec code cannot be linked into shared objects"),
4718 input_bfd);
4719 ret_val = FALSE;
4720 }
4721 else if (dynamic_symbol_p)
4722 {
4723 (*_bfd_error_handler)
4724 (_("%B: tp-relative relocation against dynamic symbol %s"),
4725 input_bfd, h->root.root.root.string);
4726 ret_val = FALSE;
4727 }
4728 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4729 value -= tp_base;
4730 if (r_type == R_ALPHA_TPRELHI)
4731 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4732 goto default_reloc;
4733
4734 case R_ALPHA_GOTDTPREL:
4735 case R_ALPHA_GOTTPREL:
4736 BFD_ASSERT(sgot != NULL);
4737 BFD_ASSERT(gp != 0);
4738 BFD_ASSERT(gotent != NULL);
4739 BFD_ASSERT(gotent->use_count >= 1);
4740
4741 if (!gotent->reloc_done)
4742 {
4743 gotent->reloc_done = 1;
4744
4745 if (dynamic_symbol_p)
4746 value = 0;
4747 else
4748 {
4749 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4750 if (r_type == R_ALPHA_GOTDTPREL)
4751 value -= dtp_base;
4752 else if (!info->shared)
4753 value -= tp_base;
4754 else
4755 {
4756 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4757 gotent->got_offset, 0,
4758 R_ALPHA_TPREL64,
4759 value - dtp_base);
4760 value = 0;
4761 }
4762 }
4763 bfd_put_64 (output_bfd, value,
4764 sgot->contents + gotent->got_offset);
4765 }
4766
4767 value = (sgot->output_section->vma
4768 + sgot->output_offset
4769 + gotent->got_offset);
4770 value -= gp;
4771 goto default_reloc;
4772
4773 default:
4774 default_reloc:
4775 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4776 contents, rel->r_offset, value, 0);
4777 break;
4778 }
4779
4780 switch (r)
4781 {
4782 case bfd_reloc_ok:
4783 break;
4784
4785 case bfd_reloc_overflow:
4786 {
4787 const char *name;
4788
4789 /* Don't warn if the overflow is due to pc relative reloc
4790 against discarded section. Section optimization code should
4791 handle it. */
4792
4793 if (r_symndx < symtab_hdr->sh_info
4794 && sec != NULL && howto->pc_relative
4795 && discarded_section (sec))
4796 break;
4797
4798 if (h != NULL)
4799 name = NULL;
4800 else
4801 {
4802 name = (bfd_elf_string_from_elf_section
4803 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4804 if (name == NULL)
4805 return FALSE;
4806 if (*name == '\0')
4807 name = bfd_section_name (input_bfd, sec);
4808 }
4809 if (! ((*info->callbacks->reloc_overflow)
4810 (info, (h ? &h->root.root : NULL), name, howto->name,
4811 (bfd_vma) 0, input_bfd, input_section,
4812 rel->r_offset)))
4813 ret_val = FALSE;
4814 }
4815 break;
4816
4817 default:
4818 case bfd_reloc_outofrange:
4819 abort ();
4820 }
4821 }
4822
4823 return ret_val;
4824 }
4825
4826 /* Finish up dynamic symbol handling. We set the contents of various
4827 dynamic sections here. */
4828
4829 static bfd_boolean
4830 elf64_alpha_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
4831 struct elf_link_hash_entry *h,
4832 Elf_Internal_Sym *sym)
4833 {
4834 struct alpha_elf_link_hash_entry *ah = (struct alpha_elf_link_hash_entry *)h;
4835 bfd *dynobj = elf_hash_table(info)->dynobj;
4836
4837 if (h->needs_plt)
4838 {
4839 /* Fill in the .plt entry for this symbol. */
4840 asection *splt, *sgot, *srel;
4841 Elf_Internal_Rela outrel;
4842 bfd_byte *loc;
4843 bfd_vma got_addr, plt_addr;
4844 bfd_vma plt_index;
4845 struct alpha_elf_got_entry *gotent;
4846
4847 BFD_ASSERT (h->dynindx != -1);
4848
4849 splt = bfd_get_linker_section (dynobj, ".plt");
4850 BFD_ASSERT (splt != NULL);
4851 srel = bfd_get_linker_section (dynobj, ".rela.plt");
4852 BFD_ASSERT (srel != NULL);
4853
4854 for (gotent = ah->got_entries; gotent ; gotent = gotent->next)
4855 if (gotent->reloc_type == R_ALPHA_LITERAL
4856 && gotent->use_count > 0)
4857 {
4858 unsigned int insn;
4859 int disp;
4860
4861 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4862 BFD_ASSERT (sgot != NULL);
4863
4864 BFD_ASSERT (gotent->got_offset != -1);
4865 BFD_ASSERT (gotent->plt_offset != -1);
4866
4867 got_addr = (sgot->output_section->vma
4868 + sgot->output_offset
4869 + gotent->got_offset);
4870 plt_addr = (splt->output_section->vma
4871 + splt->output_offset
4872 + gotent->plt_offset);
4873
4874 plt_index = (gotent->plt_offset-PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
4875
4876 /* Fill in the entry in the procedure linkage table. */
4877 if (elf64_alpha_use_secureplt)
4878 {
4879 disp = (PLT_HEADER_SIZE - 4) - (gotent->plt_offset + 4);
4880 insn = INSN_AD (INSN_BR, 31, disp);
4881 bfd_put_32 (output_bfd, insn,
4882 splt->contents + gotent->plt_offset);
4883
4884 plt_index = ((gotent->plt_offset - NEW_PLT_HEADER_SIZE)
4885 / NEW_PLT_ENTRY_SIZE);
4886 }
4887 else
4888 {
4889 disp = -(gotent->plt_offset + 4);
4890 insn = INSN_AD (INSN_BR, 28, disp);
4891 bfd_put_32 (output_bfd, insn,
4892 splt->contents + gotent->plt_offset);
4893 bfd_put_32 (output_bfd, INSN_UNOP,
4894 splt->contents + gotent->plt_offset + 4);
4895 bfd_put_32 (output_bfd, INSN_UNOP,
4896 splt->contents + gotent->plt_offset + 8);
4897
4898 plt_index = ((gotent->plt_offset - OLD_PLT_HEADER_SIZE)
4899 / OLD_PLT_ENTRY_SIZE);
4900 }
4901
4902 /* Fill in the entry in the .rela.plt section. */
4903 outrel.r_offset = got_addr;
4904 outrel.r_info = ELF64_R_INFO(h->dynindx, R_ALPHA_JMP_SLOT);
4905 outrel.r_addend = 0;
4906
4907 loc = srel->contents + plt_index * sizeof (Elf64_External_Rela);
4908 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
4909
4910 /* Fill in the entry in the .got. */
4911 bfd_put_64 (output_bfd, plt_addr,
4912 sgot->contents + gotent->got_offset);
4913 }
4914 }
4915 else if (alpha_elf_dynamic_symbol_p (h, info))
4916 {
4917 /* Fill in the dynamic relocations for this symbol's .got entries. */
4918 asection *srel;
4919 struct alpha_elf_got_entry *gotent;
4920
4921 srel = bfd_get_linker_section (dynobj, ".rela.got");
4922 BFD_ASSERT (srel != NULL);
4923
4924 for (gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries;
4925 gotent != NULL;
4926 gotent = gotent->next)
4927 {
4928 asection *sgot;
4929 long r_type;
4930
4931 if (gotent->use_count == 0)
4932 continue;
4933
4934 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4935
4936 r_type = gotent->reloc_type;
4937 switch (r_type)
4938 {
4939 case R_ALPHA_LITERAL:
4940 r_type = R_ALPHA_GLOB_DAT;
4941 break;
4942 case R_ALPHA_TLSGD:
4943 r_type = R_ALPHA_DTPMOD64;
4944 break;
4945 case R_ALPHA_GOTDTPREL:
4946 r_type = R_ALPHA_DTPREL64;
4947 break;
4948 case R_ALPHA_GOTTPREL:
4949 r_type = R_ALPHA_TPREL64;
4950 break;
4951 case R_ALPHA_TLSLDM:
4952 default:
4953 abort ();
4954 }
4955
4956 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4957 gotent->got_offset, h->dynindx,
4958 r_type, gotent->addend);
4959
4960 if (gotent->reloc_type == R_ALPHA_TLSGD)
4961 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4962 gotent->got_offset + 8, h->dynindx,
4963 R_ALPHA_DTPREL64, gotent->addend);
4964 }
4965 }
4966
4967 /* Mark some specially defined symbols as absolute. */
4968 if (h == elf_hash_table (info)->hdynamic
4969 || h == elf_hash_table (info)->hgot
4970 || h == elf_hash_table (info)->hplt)
4971 sym->st_shndx = SHN_ABS;
4972
4973 return TRUE;
4974 }
4975
4976 /* Finish up the dynamic sections. */
4977
4978 static bfd_boolean
4979 elf64_alpha_finish_dynamic_sections (bfd *output_bfd,
4980 struct bfd_link_info *info)
4981 {
4982 bfd *dynobj;
4983 asection *sdyn;
4984
4985 dynobj = elf_hash_table (info)->dynobj;
4986 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4987
4988 if (elf_hash_table (info)->dynamic_sections_created)
4989 {
4990 asection *splt, *sgotplt, *srelaplt;
4991 Elf64_External_Dyn *dyncon, *dynconend;
4992 bfd_vma plt_vma, gotplt_vma;
4993
4994 splt = bfd_get_linker_section (dynobj, ".plt");
4995 srelaplt = bfd_get_linker_section (output_bfd, ".rela.plt");
4996 BFD_ASSERT (splt != NULL && sdyn != NULL);
4997
4998 plt_vma = splt->output_section->vma + splt->output_offset;
4999
5000 gotplt_vma = 0;
5001 if (elf64_alpha_use_secureplt)
5002 {
5003 sgotplt = bfd_get_linker_section (dynobj, ".got.plt");
5004 BFD_ASSERT (sgotplt != NULL);
5005 if (sgotplt->size > 0)
5006 gotplt_vma = sgotplt->output_section->vma + sgotplt->output_offset;
5007 }
5008
5009 dyncon = (Elf64_External_Dyn *) sdyn->contents;
5010 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
5011 for (; dyncon < dynconend; dyncon++)
5012 {
5013 Elf_Internal_Dyn dyn;
5014
5015 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
5016
5017 switch (dyn.d_tag)
5018 {
5019 case DT_PLTGOT:
5020 dyn.d_un.d_ptr
5021 = elf64_alpha_use_secureplt ? gotplt_vma : plt_vma;
5022 break;
5023 case DT_PLTRELSZ:
5024 dyn.d_un.d_val = srelaplt ? srelaplt->size : 0;
5025 break;
5026 case DT_JMPREL:
5027 dyn.d_un.d_ptr = srelaplt ? srelaplt->vma : 0;
5028 break;
5029
5030 case DT_RELASZ:
5031 /* My interpretation of the TIS v1.1 ELF document indicates
5032 that RELASZ should not include JMPREL. This is not what
5033 the rest of the BFD does. It is, however, what the
5034 glibc ld.so wants. Do this fixup here until we found
5035 out who is right. */
5036 if (srelaplt)
5037 dyn.d_un.d_val -= srelaplt->size;
5038 break;
5039 }
5040
5041 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
5042 }
5043
5044 /* Initialize the plt header. */
5045 if (splt->size > 0)
5046 {
5047 unsigned int insn;
5048 int ofs;
5049
5050 if (elf64_alpha_use_secureplt)
5051 {
5052 ofs = gotplt_vma - (plt_vma + PLT_HEADER_SIZE);
5053
5054 insn = INSN_ABC (INSN_SUBQ, 27, 28, 25);
5055 bfd_put_32 (output_bfd, insn, splt->contents);
5056
5057 insn = INSN_ABO (INSN_LDAH, 28, 28, (ofs + 0x8000) >> 16);
5058 bfd_put_32 (output_bfd, insn, splt->contents + 4);
5059
5060 insn = INSN_ABC (INSN_S4SUBQ, 25, 25, 25);
5061 bfd_put_32 (output_bfd, insn, splt->contents + 8);
5062
5063 insn = INSN_ABO (INSN_LDA, 28, 28, ofs);
5064 bfd_put_32 (output_bfd, insn, splt->contents + 12);
5065
5066 insn = INSN_ABO (INSN_LDQ, 27, 28, 0);
5067 bfd_put_32 (output_bfd, insn, splt->contents + 16);
5068
5069 insn = INSN_ABC (INSN_ADDQ, 25, 25, 25);
5070 bfd_put_32 (output_bfd, insn, splt->contents + 20);
5071
5072 insn = INSN_ABO (INSN_LDQ, 28, 28, 8);
5073 bfd_put_32 (output_bfd, insn, splt->contents + 24);
5074
5075 insn = INSN_AB (INSN_JMP, 31, 27);
5076 bfd_put_32 (output_bfd, insn, splt->contents + 28);
5077
5078 insn = INSN_AD (INSN_BR, 28, -PLT_HEADER_SIZE);
5079 bfd_put_32 (output_bfd, insn, splt->contents + 32);
5080 }
5081 else
5082 {
5083 insn = INSN_AD (INSN_BR, 27, 0); /* br $27, .+4 */
5084 bfd_put_32 (output_bfd, insn, splt->contents);
5085
5086 insn = INSN_ABO (INSN_LDQ, 27, 27, 12);
5087 bfd_put_32 (output_bfd, insn, splt->contents + 4);
5088
5089 insn = INSN_UNOP;
5090 bfd_put_32 (output_bfd, insn, splt->contents + 8);
5091
5092 insn = INSN_AB (INSN_JMP, 27, 27);
5093 bfd_put_32 (output_bfd, insn, splt->contents + 12);
5094
5095 /* The next two words will be filled in by ld.so. */
5096 bfd_put_64 (output_bfd, 0, splt->contents + 16);
5097 bfd_put_64 (output_bfd, 0, splt->contents + 24);
5098 }
5099
5100 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 0;
5101 }
5102 }
5103
5104 return TRUE;
5105 }
5106
5107 /* We need to use a special link routine to handle the .mdebug section.
5108 We need to merge all instances of these sections together, not write
5109 them all out sequentially. */
5110
5111 static bfd_boolean
5112 elf64_alpha_final_link (bfd *abfd, struct bfd_link_info *info)
5113 {
5114 asection *o;
5115 struct bfd_link_order *p;
5116 asection *mdebug_sec;
5117 struct ecoff_debug_info debug;
5118 const struct ecoff_debug_swap *swap
5119 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5120 HDRR *symhdr = &debug.symbolic_header;
5121 void * mdebug_handle = NULL;
5122 struct alpha_elf_link_hash_table * htab;
5123
5124 htab = alpha_elf_hash_table (info);
5125 if (htab == NULL)
5126 return FALSE;
5127
5128 /* Go through the sections and collect the mdebug information. */
5129 mdebug_sec = NULL;
5130 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5131 {
5132 if (strcmp (o->name, ".mdebug") == 0)
5133 {
5134 struct extsym_info einfo;
5135
5136 /* We have found the .mdebug section in the output file.
5137 Look through all the link_orders comprising it and merge
5138 the information together. */
5139 symhdr->magic = swap->sym_magic;
5140 /* FIXME: What should the version stamp be? */
5141 symhdr->vstamp = 0;
5142 symhdr->ilineMax = 0;
5143 symhdr->cbLine = 0;
5144 symhdr->idnMax = 0;
5145 symhdr->ipdMax = 0;
5146 symhdr->isymMax = 0;
5147 symhdr->ioptMax = 0;
5148 symhdr->iauxMax = 0;
5149 symhdr->issMax = 0;
5150 symhdr->issExtMax = 0;
5151 symhdr->ifdMax = 0;
5152 symhdr->crfd = 0;
5153 symhdr->iextMax = 0;
5154
5155 /* We accumulate the debugging information itself in the
5156 debug_info structure. */
5157 debug.line = NULL;
5158 debug.external_dnr = NULL;
5159 debug.external_pdr = NULL;
5160 debug.external_sym = NULL;
5161 debug.external_opt = NULL;
5162 debug.external_aux = NULL;
5163 debug.ss = NULL;
5164 debug.ssext = debug.ssext_end = NULL;
5165 debug.external_fdr = NULL;
5166 debug.external_rfd = NULL;
5167 debug.external_ext = debug.external_ext_end = NULL;
5168
5169 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5170 if (mdebug_handle == NULL)
5171 return FALSE;
5172
5173 if (1)
5174 {
5175 asection *s;
5176 EXTR esym;
5177 bfd_vma last = 0;
5178 unsigned int i;
5179 static const char * const name[] =
5180 {
5181 ".text", ".init", ".fini", ".data",
5182 ".rodata", ".sdata", ".sbss", ".bss"
5183 };
5184 static const int sc[] = { scText, scInit, scFini, scData,
5185 scRData, scSData, scSBss, scBss };
5186
5187 esym.jmptbl = 0;
5188 esym.cobol_main = 0;
5189 esym.weakext = 0;
5190 esym.reserved = 0;
5191 esym.ifd = ifdNil;
5192 esym.asym.iss = issNil;
5193 esym.asym.st = stLocal;
5194 esym.asym.reserved = 0;
5195 esym.asym.index = indexNil;
5196 for (i = 0; i < 8; i++)
5197 {
5198 esym.asym.sc = sc[i];
5199 s = bfd_get_section_by_name (abfd, name[i]);
5200 if (s != NULL)
5201 {
5202 esym.asym.value = s->vma;
5203 last = s->vma + s->size;
5204 }
5205 else
5206 esym.asym.value = last;
5207
5208 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
5209 name[i], &esym))
5210 return FALSE;
5211 }
5212 }
5213
5214 for (p = o->map_head.link_order;
5215 p != (struct bfd_link_order *) NULL;
5216 p = p->next)
5217 {
5218 asection *input_section;
5219 bfd *input_bfd;
5220 const struct ecoff_debug_swap *input_swap;
5221 struct ecoff_debug_info input_debug;
5222 char *eraw_src;
5223 char *eraw_end;
5224
5225 if (p->type != bfd_indirect_link_order)
5226 {
5227 if (p->type == bfd_data_link_order)
5228 continue;
5229 abort ();
5230 }
5231
5232 input_section = p->u.indirect.section;
5233 input_bfd = input_section->owner;
5234
5235 if (! is_alpha_elf (input_bfd))
5236 /* I don't know what a non ALPHA ELF bfd would be
5237 doing with a .mdebug section, but I don't really
5238 want to deal with it. */
5239 continue;
5240
5241 input_swap = (get_elf_backend_data (input_bfd)
5242 ->elf_backend_ecoff_debug_swap);
5243
5244 BFD_ASSERT (p->size == input_section->size);
5245
5246 /* The ECOFF linking code expects that we have already
5247 read in the debugging information and set up an
5248 ecoff_debug_info structure, so we do that now. */
5249 if (!elf64_alpha_read_ecoff_info (input_bfd, input_section,
5250 &input_debug))
5251 return FALSE;
5252
5253 if (! (bfd_ecoff_debug_accumulate
5254 (mdebug_handle, abfd, &debug, swap, input_bfd,
5255 &input_debug, input_swap, info)))
5256 return FALSE;
5257
5258 /* Loop through the external symbols. For each one with
5259 interesting information, try to find the symbol in
5260 the linker global hash table and save the information
5261 for the output external symbols. */
5262 eraw_src = (char *) input_debug.external_ext;
5263 eraw_end = (eraw_src
5264 + (input_debug.symbolic_header.iextMax
5265 * input_swap->external_ext_size));
5266 for (;
5267 eraw_src < eraw_end;
5268 eraw_src += input_swap->external_ext_size)
5269 {
5270 EXTR ext;
5271 const char *name;
5272 struct alpha_elf_link_hash_entry *h;
5273
5274 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
5275 if (ext.asym.sc == scNil
5276 || ext.asym.sc == scUndefined
5277 || ext.asym.sc == scSUndefined)
5278 continue;
5279
5280 name = input_debug.ssext + ext.asym.iss;
5281 h = alpha_elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
5282 if (h == NULL || h->esym.ifd != -2)
5283 continue;
5284
5285 if (ext.ifd != -1)
5286 {
5287 BFD_ASSERT (ext.ifd
5288 < input_debug.symbolic_header.ifdMax);
5289 ext.ifd = input_debug.ifdmap[ext.ifd];
5290 }
5291
5292 h->esym = ext;
5293 }
5294
5295 /* Free up the information we just read. */
5296 free (input_debug.line);
5297 free (input_debug.external_dnr);
5298 free (input_debug.external_pdr);
5299 free (input_debug.external_sym);
5300 free (input_debug.external_opt);
5301 free (input_debug.external_aux);
5302 free (input_debug.ss);
5303 free (input_debug.ssext);
5304 free (input_debug.external_fdr);
5305 free (input_debug.external_rfd);
5306 free (input_debug.external_ext);
5307
5308 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5309 elf_link_input_bfd ignores this section. */
5310 input_section->flags &=~ SEC_HAS_CONTENTS;
5311 }
5312
5313 /* Build the external symbol information. */
5314 einfo.abfd = abfd;
5315 einfo.info = info;
5316 einfo.debug = &debug;
5317 einfo.swap = swap;
5318 einfo.failed = FALSE;
5319 elf_link_hash_traverse (elf_hash_table (info),
5320 elf64_alpha_output_extsym,
5321 &einfo);
5322 if (einfo.failed)
5323 return FALSE;
5324
5325 /* Set the size of the .mdebug section. */
5326 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
5327
5328 /* Skip this section later on (I don't think this currently
5329 matters, but someday it might). */
5330 o->map_head.link_order = (struct bfd_link_order *) NULL;
5331
5332 mdebug_sec = o;
5333 }
5334 }
5335
5336 /* Invoke the regular ELF backend linker to do all the work. */
5337 if (! bfd_elf_final_link (abfd, info))
5338 return FALSE;
5339
5340 /* Now write out the computed sections. */
5341
5342 /* The .got subsections... */
5343 {
5344 bfd *i, *dynobj = elf_hash_table(info)->dynobj;
5345 for (i = htab->got_list;
5346 i != NULL;
5347 i = alpha_elf_tdata(i)->got_link_next)
5348 {
5349 asection *sgot;
5350
5351 /* elf_bfd_final_link already did everything in dynobj. */
5352 if (i == dynobj)
5353 continue;
5354
5355 sgot = alpha_elf_tdata(i)->got;
5356 if (! bfd_set_section_contents (abfd, sgot->output_section,
5357 sgot->contents,
5358 (file_ptr) sgot->output_offset,
5359 sgot->size))
5360 return FALSE;
5361 }
5362 }
5363
5364 if (mdebug_sec != (asection *) NULL)
5365 {
5366 BFD_ASSERT (abfd->output_has_begun);
5367 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5368 swap, info,
5369 mdebug_sec->filepos))
5370 return FALSE;
5371
5372 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5373 }
5374
5375 return TRUE;
5376 }
5377
5378 static enum elf_reloc_type_class
5379 elf64_alpha_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
5380 const asection *rel_sec ATTRIBUTE_UNUSED,
5381 const Elf_Internal_Rela *rela)
5382 {
5383 switch ((int) ELF64_R_TYPE (rela->r_info))
5384 {
5385 case R_ALPHA_RELATIVE:
5386 return reloc_class_relative;
5387 case R_ALPHA_JMP_SLOT:
5388 return reloc_class_plt;
5389 case R_ALPHA_COPY:
5390 return reloc_class_copy;
5391 default:
5392 return reloc_class_normal;
5393 }
5394 }
5395 \f
5396 static const struct bfd_elf_special_section elf64_alpha_special_sections[] =
5397 {
5398 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5399 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5400 { NULL, 0, 0, 0, 0 }
5401 };
5402
5403 /* ECOFF swapping routines. These are used when dealing with the
5404 .mdebug section, which is in the ECOFF debugging format. Copied
5405 from elf32-mips.c. */
5406 static const struct ecoff_debug_swap
5407 elf64_alpha_ecoff_debug_swap =
5408 {
5409 /* Symbol table magic number. */
5410 magicSym2,
5411 /* Alignment of debugging information. E.g., 4. */
5412 8,
5413 /* Sizes of external symbolic information. */
5414 sizeof (struct hdr_ext),
5415 sizeof (struct dnr_ext),
5416 sizeof (struct pdr_ext),
5417 sizeof (struct sym_ext),
5418 sizeof (struct opt_ext),
5419 sizeof (struct fdr_ext),
5420 sizeof (struct rfd_ext),
5421 sizeof (struct ext_ext),
5422 /* Functions to swap in external symbolic data. */
5423 ecoff_swap_hdr_in,
5424 ecoff_swap_dnr_in,
5425 ecoff_swap_pdr_in,
5426 ecoff_swap_sym_in,
5427 ecoff_swap_opt_in,
5428 ecoff_swap_fdr_in,
5429 ecoff_swap_rfd_in,
5430 ecoff_swap_ext_in,
5431 _bfd_ecoff_swap_tir_in,
5432 _bfd_ecoff_swap_rndx_in,
5433 /* Functions to swap out external symbolic data. */
5434 ecoff_swap_hdr_out,
5435 ecoff_swap_dnr_out,
5436 ecoff_swap_pdr_out,
5437 ecoff_swap_sym_out,
5438 ecoff_swap_opt_out,
5439 ecoff_swap_fdr_out,
5440 ecoff_swap_rfd_out,
5441 ecoff_swap_ext_out,
5442 _bfd_ecoff_swap_tir_out,
5443 _bfd_ecoff_swap_rndx_out,
5444 /* Function to read in symbolic data. */
5445 elf64_alpha_read_ecoff_info
5446 };
5447 \f
5448 /* Use a non-standard hash bucket size of 8. */
5449
5450 static const struct elf_size_info alpha_elf_size_info =
5451 {
5452 sizeof (Elf64_External_Ehdr),
5453 sizeof (Elf64_External_Phdr),
5454 sizeof (Elf64_External_Shdr),
5455 sizeof (Elf64_External_Rel),
5456 sizeof (Elf64_External_Rela),
5457 sizeof (Elf64_External_Sym),
5458 sizeof (Elf64_External_Dyn),
5459 sizeof (Elf_External_Note),
5460 8,
5461 1,
5462 64, 3,
5463 ELFCLASS64, EV_CURRENT,
5464 bfd_elf64_write_out_phdrs,
5465 bfd_elf64_write_shdrs_and_ehdr,
5466 bfd_elf64_checksum_contents,
5467 bfd_elf64_write_relocs,
5468 bfd_elf64_swap_symbol_in,
5469 bfd_elf64_swap_symbol_out,
5470 bfd_elf64_slurp_reloc_table,
5471 bfd_elf64_slurp_symbol_table,
5472 bfd_elf64_swap_dyn_in,
5473 bfd_elf64_swap_dyn_out,
5474 bfd_elf64_swap_reloc_in,
5475 bfd_elf64_swap_reloc_out,
5476 bfd_elf64_swap_reloca_in,
5477 bfd_elf64_swap_reloca_out
5478 };
5479
5480 #define TARGET_LITTLE_SYM alpha_elf64_vec
5481 #define TARGET_LITTLE_NAME "elf64-alpha"
5482 #define ELF_ARCH bfd_arch_alpha
5483 #define ELF_TARGET_ID ALPHA_ELF_DATA
5484 #define ELF_MACHINE_CODE EM_ALPHA
5485 #define ELF_MAXPAGESIZE 0x10000
5486 #define ELF_COMMONPAGESIZE 0x2000
5487
5488 #define bfd_elf64_bfd_link_hash_table_create \
5489 elf64_alpha_bfd_link_hash_table_create
5490
5491 #define bfd_elf64_bfd_reloc_type_lookup \
5492 elf64_alpha_bfd_reloc_type_lookup
5493 #define bfd_elf64_bfd_reloc_name_lookup \
5494 elf64_alpha_bfd_reloc_name_lookup
5495 #define elf_info_to_howto \
5496 elf64_alpha_info_to_howto
5497
5498 #define bfd_elf64_mkobject \
5499 elf64_alpha_mkobject
5500 #define elf_backend_object_p \
5501 elf64_alpha_object_p
5502
5503 #define elf_backend_section_from_shdr \
5504 elf64_alpha_section_from_shdr
5505 #define elf_backend_section_flags \
5506 elf64_alpha_section_flags
5507 #define elf_backend_fake_sections \
5508 elf64_alpha_fake_sections
5509
5510 #define bfd_elf64_bfd_is_local_label_name \
5511 elf64_alpha_is_local_label_name
5512 #define bfd_elf64_find_nearest_line \
5513 elf64_alpha_find_nearest_line
5514 #define bfd_elf64_bfd_relax_section \
5515 elf64_alpha_relax_section
5516
5517 #define elf_backend_add_symbol_hook \
5518 elf64_alpha_add_symbol_hook
5519 #define elf_backend_relocs_compatible \
5520 _bfd_elf_relocs_compatible
5521 #define elf_backend_check_relocs \
5522 elf64_alpha_check_relocs
5523 #define elf_backend_create_dynamic_sections \
5524 elf64_alpha_create_dynamic_sections
5525 #define elf_backend_adjust_dynamic_symbol \
5526 elf64_alpha_adjust_dynamic_symbol
5527 #define elf_backend_merge_symbol_attribute \
5528 elf64_alpha_merge_symbol_attribute
5529 #define elf_backend_copy_indirect_symbol \
5530 elf64_alpha_copy_indirect_symbol
5531 #define elf_backend_always_size_sections \
5532 elf64_alpha_always_size_sections
5533 #define elf_backend_size_dynamic_sections \
5534 elf64_alpha_size_dynamic_sections
5535 #define elf_backend_omit_section_dynsym \
5536 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5537 #define elf_backend_relocate_section \
5538 elf64_alpha_relocate_section
5539 #define elf_backend_finish_dynamic_symbol \
5540 elf64_alpha_finish_dynamic_symbol
5541 #define elf_backend_finish_dynamic_sections \
5542 elf64_alpha_finish_dynamic_sections
5543 #define bfd_elf64_bfd_final_link \
5544 elf64_alpha_final_link
5545 #define elf_backend_reloc_type_class \
5546 elf64_alpha_reloc_type_class
5547
5548 #define elf_backend_can_gc_sections 1
5549 #define elf_backend_gc_mark_hook elf64_alpha_gc_mark_hook
5550 #define elf_backend_gc_sweep_hook elf64_alpha_gc_sweep_hook
5551
5552 #define elf_backend_ecoff_debug_swap \
5553 &elf64_alpha_ecoff_debug_swap
5554
5555 #define elf_backend_size_info \
5556 alpha_elf_size_info
5557
5558 #define elf_backend_special_sections \
5559 elf64_alpha_special_sections
5560
5561 /* A few constants that determine how the .plt section is set up. */
5562 #define elf_backend_want_got_plt 0
5563 #define elf_backend_plt_readonly 0
5564 #define elf_backend_want_plt_sym 1
5565 #define elf_backend_got_header_size 0
5566
5567 #include "elf64-target.h"
5568 \f
5569 /* FreeBSD support. */
5570
5571 #undef TARGET_LITTLE_SYM
5572 #define TARGET_LITTLE_SYM alpha_elf64_fbsd_vec
5573 #undef TARGET_LITTLE_NAME
5574 #define TARGET_LITTLE_NAME "elf64-alpha-freebsd"
5575 #undef ELF_OSABI
5576 #define ELF_OSABI ELFOSABI_FREEBSD
5577
5578 /* The kernel recognizes executables as valid only if they carry a
5579 "FreeBSD" label in the ELF header. So we put this label on all
5580 executables and (for simplicity) also all other object files. */
5581
5582 static void
5583 elf64_alpha_fbsd_post_process_headers (bfd * abfd,
5584 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
5585 {
5586 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
5587
5588 i_ehdrp = elf_elfheader (abfd);
5589
5590 /* Put an ABI label supported by FreeBSD >= 4.1. */
5591 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5592 #ifdef OLD_FREEBSD_ABI_LABEL
5593 /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
5594 memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
5595 #endif
5596 }
5597
5598 #undef elf_backend_post_process_headers
5599 #define elf_backend_post_process_headers \
5600 elf64_alpha_fbsd_post_process_headers
5601
5602 #undef elf64_bed
5603 #define elf64_bed elf64_alpha_fbsd_bed
5604
5605 #include "elf64-target.h"
This page took 0.211617 seconds and 5 git commands to generate.