* elf64-alpha.c (elf64_alpha_gc_mark_hook): New.
[deliverable/binutils-gdb.git] / bfd / elf64-alpha.c
1 /* Alpha specific support for 64-bit ELF
2 Copyright 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Richard Henderson <rth@tamu.edu>.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /* We need a published ABI spec for this. Until one comes out, don't
25 assume this'll remain unchanged forever. */
26
27 #include "sysdep.h"
28 #include "bfd.h"
29 #include "libbfd.h"
30 #include "elf-bfd.h"
31
32 #include "elf/alpha.h"
33
34 #define ALPHAECOFF
35
36 #define NO_COFF_RELOCS
37 #define NO_COFF_SYMBOLS
38 #define NO_COFF_LINENOS
39
40 /* Get the ECOFF swapping routines. Needed for the debug information. */
41 #include "coff/internal.h"
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/alpha.h"
46 #include "aout/ar.h"
47 #include "libcoff.h"
48 #include "libecoff.h"
49 #define ECOFF_64
50 #include "ecoffswap.h"
51
52 \f
53 /* Instruction data for plt generation and relaxation. */
54
55 #define OP_LDA 0x08
56 #define OP_LDAH 0x09
57 #define OP_LDQ 0x29
58 #define OP_BR 0x30
59 #define OP_BSR 0x34
60
61 #define INSN_LDA (OP_LDA << 26)
62 #define INSN_LDAH (OP_LDAH << 26)
63 #define INSN_LDQ (OP_LDQ << 26)
64 #define INSN_BR (OP_BR << 26)
65
66 #define INSN_ADDQ 0x40000400
67 #define INSN_RDUNIQ 0x0000009e
68 #define INSN_SUBQ 0x40000520
69 #define INSN_S4SUBQ 0x40000560
70 #define INSN_UNOP 0x2ffe0000
71
72 #define INSN_JSR 0x68004000
73 #define INSN_JMP 0x68000000
74 #define INSN_JSR_MASK 0xfc00c000
75
76 #define INSN_A(I,A) (I | (A << 21))
77 #define INSN_AB(I,A,B) (I | (A << 21) | (B << 16))
78 #define INSN_ABC(I,A,B,C) (I | (A << 21) | (B << 16) | C)
79 #define INSN_ABO(I,A,B,O) (I | (A << 21) | (B << 16) | ((O) & 0xffff))
80 #define INSN_AD(I,A,D) (I | (A << 21) | (((D) >> 2) & 0x1fffff))
81
82 /* PLT/GOT Stuff */
83
84 /* Set by ld emulation. Putting this into the link_info or hash structure
85 is simply working too hard. */
86 #ifdef USE_SECUREPLT
87 bfd_boolean elf64_alpha_use_secureplt = TRUE;
88 #else
89 bfd_boolean elf64_alpha_use_secureplt = FALSE;
90 #endif
91
92 #define OLD_PLT_HEADER_SIZE 32
93 #define OLD_PLT_ENTRY_SIZE 12
94 #define NEW_PLT_HEADER_SIZE 36
95 #define NEW_PLT_ENTRY_SIZE 4
96
97 #define PLT_HEADER_SIZE \
98 (elf64_alpha_use_secureplt ? NEW_PLT_HEADER_SIZE : OLD_PLT_HEADER_SIZE)
99 #define PLT_ENTRY_SIZE \
100 (elf64_alpha_use_secureplt ? NEW_PLT_ENTRY_SIZE : OLD_PLT_ENTRY_SIZE)
101
102 #define MAX_GOT_SIZE (64*1024)
103
104 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so"
105 \f
106
107 /* Used to implement multiple .got subsections. */
108 struct alpha_elf_got_entry
109 {
110 struct alpha_elf_got_entry *next;
111
112 /* Which .got subsection? */
113 bfd *gotobj;
114
115 /* The addend in effect for this entry. */
116 bfd_vma addend;
117
118 /* The .got offset for this entry. */
119 int got_offset;
120
121 /* The .plt offset for this entry. */
122 int plt_offset;
123
124 /* How many references to this entry? */
125 int use_count;
126
127 /* The relocation type of this entry. */
128 unsigned char reloc_type;
129
130 /* How a LITERAL is used. */
131 unsigned char flags;
132
133 /* Have we initialized the dynamic relocation for this entry? */
134 unsigned char reloc_done;
135
136 /* Have we adjusted this entry for SEC_MERGE? */
137 unsigned char reloc_xlated;
138 };
139
140 struct alpha_elf_reloc_entry
141 {
142 struct alpha_elf_reloc_entry *next;
143
144 /* Which .reloc section? */
145 asection *srel;
146
147 /* What kind of relocation? */
148 unsigned int rtype;
149
150 /* Is this against read-only section? */
151 unsigned int reltext : 1;
152
153 /* How many did we find? */
154 unsigned long count;
155 };
156
157 struct alpha_elf_link_hash_entry
158 {
159 struct elf_link_hash_entry root;
160
161 /* External symbol information. */
162 EXTR esym;
163
164 /* Cumulative flags for all the .got entries. */
165 int flags;
166
167 /* Contexts in which a literal was referenced. */
168 #define ALPHA_ELF_LINK_HASH_LU_ADDR 0x01
169 #define ALPHA_ELF_LINK_HASH_LU_MEM 0x02
170 #define ALPHA_ELF_LINK_HASH_LU_BYTE 0x04
171 #define ALPHA_ELF_LINK_HASH_LU_JSR 0x08
172 #define ALPHA_ELF_LINK_HASH_LU_TLSGD 0x10
173 #define ALPHA_ELF_LINK_HASH_LU_TLSLDM 0x20
174 #define ALPHA_ELF_LINK_HASH_LU_JSRDIRECT 0x40
175 #define ALPHA_ELF_LINK_HASH_LU_PLT 0x38
176 #define ALPHA_ELF_LINK_HASH_TLS_IE 0x80
177
178 /* Used to implement multiple .got subsections. */
179 struct alpha_elf_got_entry *got_entries;
180
181 /* Used to count non-got, non-plt relocations for delayed sizing
182 of relocation sections. */
183 struct alpha_elf_reloc_entry *reloc_entries;
184 };
185
186 /* Alpha ELF linker hash table. */
187
188 struct alpha_elf_link_hash_table
189 {
190 struct elf_link_hash_table root;
191
192 /* The head of a list of .got subsections linked through
193 alpha_elf_tdata(abfd)->got_link_next. */
194 bfd *got_list;
195
196 /* The most recent relax pass that we've seen. The GOTs
197 should be regenerated if this doesn't match. */
198 int relax_trip;
199 };
200
201 /* Look up an entry in a Alpha ELF linker hash table. */
202
203 #define alpha_elf_link_hash_lookup(table, string, create, copy, follow) \
204 ((struct alpha_elf_link_hash_entry *) \
205 elf_link_hash_lookup (&(table)->root, (string), (create), \
206 (copy), (follow)))
207
208 /* Traverse a Alpha ELF linker hash table. */
209
210 #define alpha_elf_link_hash_traverse(table, func, info) \
211 (elf_link_hash_traverse \
212 (&(table)->root, \
213 (bfd_boolean (*) (struct elf_link_hash_entry *, PTR)) (func), \
214 (info)))
215
216 /* Get the Alpha ELF linker hash table from a link_info structure. */
217
218 #define alpha_elf_hash_table(p) \
219 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
220 == ALPHA_ELF_DATA ? ((struct alpha_elf_link_hash_table *) ((p)->hash)) : NULL)
221
222 /* Get the object's symbols as our own entry type. */
223
224 #define alpha_elf_sym_hashes(abfd) \
225 ((struct alpha_elf_link_hash_entry **)elf_sym_hashes(abfd))
226
227 /* Should we do dynamic things to this symbol? This differs from the
228 generic version in that we never need to consider function pointer
229 equality wrt PLT entries -- we don't create a PLT entry if a symbol's
230 address is ever taken. */
231
232 static inline bfd_boolean
233 alpha_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
234 struct bfd_link_info *info)
235 {
236 return _bfd_elf_dynamic_symbol_p (h, info, 0);
237 }
238
239 /* Create an entry in a Alpha ELF linker hash table. */
240
241 static struct bfd_hash_entry *
242 elf64_alpha_link_hash_newfunc (struct bfd_hash_entry *entry,
243 struct bfd_hash_table *table,
244 const char *string)
245 {
246 struct alpha_elf_link_hash_entry *ret =
247 (struct alpha_elf_link_hash_entry *) entry;
248
249 /* Allocate the structure if it has not already been allocated by a
250 subclass. */
251 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
252 ret = ((struct alpha_elf_link_hash_entry *)
253 bfd_hash_allocate (table,
254 sizeof (struct alpha_elf_link_hash_entry)));
255 if (ret == (struct alpha_elf_link_hash_entry *) NULL)
256 return (struct bfd_hash_entry *) ret;
257
258 /* Call the allocation method of the superclass. */
259 ret = ((struct alpha_elf_link_hash_entry *)
260 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
261 table, string));
262 if (ret != (struct alpha_elf_link_hash_entry *) NULL)
263 {
264 /* Set local fields. */
265 memset (&ret->esym, 0, sizeof (EXTR));
266 /* We use -2 as a marker to indicate that the information has
267 not been set. -1 means there is no associated ifd. */
268 ret->esym.ifd = -2;
269 ret->flags = 0;
270 ret->got_entries = NULL;
271 ret->reloc_entries = NULL;
272 }
273
274 return (struct bfd_hash_entry *) ret;
275 }
276
277 /* Create a Alpha ELF linker hash table. */
278
279 static struct bfd_link_hash_table *
280 elf64_alpha_bfd_link_hash_table_create (bfd *abfd)
281 {
282 struct alpha_elf_link_hash_table *ret;
283 bfd_size_type amt = sizeof (struct alpha_elf_link_hash_table);
284
285 ret = (struct alpha_elf_link_hash_table *) bfd_zmalloc (amt);
286 if (ret == (struct alpha_elf_link_hash_table *) NULL)
287 return NULL;
288
289 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
290 elf64_alpha_link_hash_newfunc,
291 sizeof (struct alpha_elf_link_hash_entry),
292 ALPHA_ELF_DATA))
293 {
294 free (ret);
295 return NULL;
296 }
297
298 return &ret->root.root;
299 }
300 \f
301 /* We have some private fields hanging off of the elf_tdata structure. */
302
303 struct alpha_elf_obj_tdata
304 {
305 struct elf_obj_tdata root;
306
307 /* For every input file, these are the got entries for that object's
308 local symbols. */
309 struct alpha_elf_got_entry ** local_got_entries;
310
311 /* For every input file, this is the object that owns the got that
312 this input file uses. */
313 bfd *gotobj;
314
315 /* For every got, this is a linked list through the objects using this got */
316 bfd *in_got_link_next;
317
318 /* For every got, this is a link to the next got subsegment. */
319 bfd *got_link_next;
320
321 /* For every got, this is the section. */
322 asection *got;
323
324 /* For every got, this is it's total number of words. */
325 int total_got_size;
326
327 /* For every got, this is the sum of the number of words required
328 to hold all of the member object's local got. */
329 int local_got_size;
330 };
331
332 #define alpha_elf_tdata(abfd) \
333 ((struct alpha_elf_obj_tdata *) (abfd)->tdata.any)
334
335 #define is_alpha_elf(bfd) \
336 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
337 && elf_tdata (bfd) != NULL \
338 && elf_object_id (bfd) == ALPHA_ELF_DATA)
339
340 static bfd_boolean
341 elf64_alpha_mkobject (bfd *abfd)
342 {
343 return bfd_elf_allocate_object (abfd, sizeof (struct alpha_elf_obj_tdata),
344 ALPHA_ELF_DATA);
345 }
346
347 static bfd_boolean
348 elf64_alpha_object_p (bfd *abfd)
349 {
350 /* Set the right machine number for an Alpha ELF file. */
351 return bfd_default_set_arch_mach (abfd, bfd_arch_alpha, 0);
352 }
353 \f
354 /* A relocation function which doesn't do anything. */
355
356 static bfd_reloc_status_type
357 elf64_alpha_reloc_nil (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
358 asymbol *sym ATTRIBUTE_UNUSED,
359 PTR data ATTRIBUTE_UNUSED, asection *sec,
360 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
361 {
362 if (output_bfd)
363 reloc->address += sec->output_offset;
364 return bfd_reloc_ok;
365 }
366
367 /* A relocation function used for an unsupported reloc. */
368
369 static bfd_reloc_status_type
370 elf64_alpha_reloc_bad (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc,
371 asymbol *sym ATTRIBUTE_UNUSED,
372 PTR data ATTRIBUTE_UNUSED, asection *sec,
373 bfd *output_bfd, char **error_message ATTRIBUTE_UNUSED)
374 {
375 if (output_bfd)
376 reloc->address += sec->output_offset;
377 return bfd_reloc_notsupported;
378 }
379
380 /* Do the work of the GPDISP relocation. */
381
382 static bfd_reloc_status_type
383 elf64_alpha_do_reloc_gpdisp (bfd *abfd, bfd_vma gpdisp, bfd_byte *p_ldah,
384 bfd_byte *p_lda)
385 {
386 bfd_reloc_status_type ret = bfd_reloc_ok;
387 bfd_vma addend;
388 unsigned long i_ldah, i_lda;
389
390 i_ldah = bfd_get_32 (abfd, p_ldah);
391 i_lda = bfd_get_32 (abfd, p_lda);
392
393 /* Complain if the instructions are not correct. */
394 if (((i_ldah >> 26) & 0x3f) != 0x09
395 || ((i_lda >> 26) & 0x3f) != 0x08)
396 ret = bfd_reloc_dangerous;
397
398 /* Extract the user-supplied offset, mirroring the sign extensions
399 that the instructions perform. */
400 addend = ((i_ldah & 0xffff) << 16) | (i_lda & 0xffff);
401 addend = (addend ^ 0x80008000) - 0x80008000;
402
403 gpdisp += addend;
404
405 if ((bfd_signed_vma) gpdisp < -(bfd_signed_vma) 0x80000000
406 || (bfd_signed_vma) gpdisp >= (bfd_signed_vma) 0x7fff8000)
407 ret = bfd_reloc_overflow;
408
409 /* compensate for the sign extension again. */
410 i_ldah = ((i_ldah & 0xffff0000)
411 | (((gpdisp >> 16) + ((gpdisp >> 15) & 1)) & 0xffff));
412 i_lda = (i_lda & 0xffff0000) | (gpdisp & 0xffff);
413
414 bfd_put_32 (abfd, (bfd_vma) i_ldah, p_ldah);
415 bfd_put_32 (abfd, (bfd_vma) i_lda, p_lda);
416
417 return ret;
418 }
419
420 /* The special function for the GPDISP reloc. */
421
422 static bfd_reloc_status_type
423 elf64_alpha_reloc_gpdisp (bfd *abfd, arelent *reloc_entry,
424 asymbol *sym ATTRIBUTE_UNUSED, PTR data,
425 asection *input_section, bfd *output_bfd,
426 char **err_msg)
427 {
428 bfd_reloc_status_type ret;
429 bfd_vma gp, relocation;
430 bfd_vma high_address;
431 bfd_byte *p_ldah, *p_lda;
432
433 /* Don't do anything if we're not doing a final link. */
434 if (output_bfd)
435 {
436 reloc_entry->address += input_section->output_offset;
437 return bfd_reloc_ok;
438 }
439
440 high_address = bfd_get_section_limit (abfd, input_section);
441 if (reloc_entry->address > high_address
442 || reloc_entry->address + reloc_entry->addend > high_address)
443 return bfd_reloc_outofrange;
444
445 /* The gp used in the portion of the output object to which this
446 input object belongs is cached on the input bfd. */
447 gp = _bfd_get_gp_value (abfd);
448
449 relocation = (input_section->output_section->vma
450 + input_section->output_offset
451 + reloc_entry->address);
452
453 p_ldah = (bfd_byte *) data + reloc_entry->address;
454 p_lda = p_ldah + reloc_entry->addend;
455
456 ret = elf64_alpha_do_reloc_gpdisp (abfd, gp - relocation, p_ldah, p_lda);
457
458 /* Complain if the instructions are not correct. */
459 if (ret == bfd_reloc_dangerous)
460 *err_msg = _("GPDISP relocation did not find ldah and lda instructions");
461
462 return ret;
463 }
464
465 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
466 from smaller values. Start with zero, widen, *then* decrement. */
467 #define MINUS_ONE (((bfd_vma)0) - 1)
468
469
470 #define SKIP_HOWTO(N) \
471 HOWTO(N, 0, 0, 0, 0, 0, complain_overflow_dont, elf64_alpha_reloc_bad, 0, 0, 0, 0, 0)
472
473 static reloc_howto_type elf64_alpha_howto_table[] =
474 {
475 HOWTO (R_ALPHA_NONE, /* type */
476 0, /* rightshift */
477 0, /* size (0 = byte, 1 = short, 2 = long) */
478 8, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_dont, /* complain_on_overflow */
482 elf64_alpha_reloc_nil, /* special_function */
483 "NONE", /* name */
484 FALSE, /* partial_inplace */
485 0, /* src_mask */
486 0, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 /* A 32 bit reference to a symbol. */
490 HOWTO (R_ALPHA_REFLONG, /* type */
491 0, /* rightshift */
492 2, /* size (0 = byte, 1 = short, 2 = long) */
493 32, /* bitsize */
494 FALSE, /* pc_relative */
495 0, /* bitpos */
496 complain_overflow_bitfield, /* complain_on_overflow */
497 bfd_elf_generic_reloc, /* special_function */
498 "REFLONG", /* name */
499 FALSE, /* partial_inplace */
500 0xffffffff, /* src_mask */
501 0xffffffff, /* dst_mask */
502 FALSE), /* pcrel_offset */
503
504 /* A 64 bit reference to a symbol. */
505 HOWTO (R_ALPHA_REFQUAD, /* type */
506 0, /* rightshift */
507 4, /* size (0 = byte, 1 = short, 2 = long) */
508 64, /* bitsize */
509 FALSE, /* pc_relative */
510 0, /* bitpos */
511 complain_overflow_bitfield, /* complain_on_overflow */
512 bfd_elf_generic_reloc, /* special_function */
513 "REFQUAD", /* name */
514 FALSE, /* partial_inplace */
515 MINUS_ONE, /* src_mask */
516 MINUS_ONE, /* dst_mask */
517 FALSE), /* pcrel_offset */
518
519 /* A 32 bit GP relative offset. This is just like REFLONG except
520 that when the value is used the value of the gp register will be
521 added in. */
522 HOWTO (R_ALPHA_GPREL32, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_bitfield, /* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "GPREL32", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
535
536 /* Used for an instruction that refers to memory off the GP register. */
537 HOWTO (R_ALPHA_LITERAL, /* type */
538 0, /* rightshift */
539 1, /* size (0 = byte, 1 = short, 2 = long) */
540 16, /* bitsize */
541 FALSE, /* pc_relative */
542 0, /* bitpos */
543 complain_overflow_signed, /* complain_on_overflow */
544 bfd_elf_generic_reloc, /* special_function */
545 "ELF_LITERAL", /* name */
546 FALSE, /* partial_inplace */
547 0xffff, /* src_mask */
548 0xffff, /* dst_mask */
549 FALSE), /* pcrel_offset */
550
551 /* This reloc only appears immediately following an ELF_LITERAL reloc.
552 It identifies a use of the literal. The symbol index is special:
553 1 means the literal address is in the base register of a memory
554 format instruction; 2 means the literal address is in the byte
555 offset register of a byte-manipulation instruction; 3 means the
556 literal address is in the target register of a jsr instruction.
557 This does not actually do any relocation. */
558 HOWTO (R_ALPHA_LITUSE, /* type */
559 0, /* rightshift */
560 1, /* size (0 = byte, 1 = short, 2 = long) */
561 32, /* bitsize */
562 FALSE, /* pc_relative */
563 0, /* bitpos */
564 complain_overflow_dont, /* complain_on_overflow */
565 elf64_alpha_reloc_nil, /* special_function */
566 "LITUSE", /* name */
567 FALSE, /* partial_inplace */
568 0, /* src_mask */
569 0, /* dst_mask */
570 FALSE), /* pcrel_offset */
571
572 /* Load the gp register. This is always used for a ldah instruction
573 which loads the upper 16 bits of the gp register. The symbol
574 index of the GPDISP instruction is an offset in bytes to the lda
575 instruction that loads the lower 16 bits. The value to use for
576 the relocation is the difference between the GP value and the
577 current location; the load will always be done against a register
578 holding the current address.
579
580 NOTE: Unlike ECOFF, partial in-place relocation is not done. If
581 any offset is present in the instructions, it is an offset from
582 the register to the ldah instruction. This lets us avoid any
583 stupid hackery like inventing a gp value to do partial relocation
584 against. Also unlike ECOFF, we do the whole relocation off of
585 the GPDISP rather than a GPDISP_HI16/GPDISP_LO16 pair. An odd,
586 space consuming bit, that, since all the information was present
587 in the GPDISP_HI16 reloc. */
588 HOWTO (R_ALPHA_GPDISP, /* type */
589 16, /* rightshift */
590 2, /* size (0 = byte, 1 = short, 2 = long) */
591 16, /* bitsize */
592 FALSE, /* pc_relative */
593 0, /* bitpos */
594 complain_overflow_dont, /* complain_on_overflow */
595 elf64_alpha_reloc_gpdisp, /* special_function */
596 "GPDISP", /* name */
597 FALSE, /* partial_inplace */
598 0xffff, /* src_mask */
599 0xffff, /* dst_mask */
600 TRUE), /* pcrel_offset */
601
602 /* A 21 bit branch. */
603 HOWTO (R_ALPHA_BRADDR, /* type */
604 2, /* rightshift */
605 2, /* size (0 = byte, 1 = short, 2 = long) */
606 21, /* bitsize */
607 TRUE, /* pc_relative */
608 0, /* bitpos */
609 complain_overflow_signed, /* complain_on_overflow */
610 bfd_elf_generic_reloc, /* special_function */
611 "BRADDR", /* name */
612 FALSE, /* partial_inplace */
613 0x1fffff, /* src_mask */
614 0x1fffff, /* dst_mask */
615 TRUE), /* pcrel_offset */
616
617 /* A hint for a jump to a register. */
618 HOWTO (R_ALPHA_HINT, /* type */
619 2, /* rightshift */
620 1, /* size (0 = byte, 1 = short, 2 = long) */
621 14, /* bitsize */
622 TRUE, /* pc_relative */
623 0, /* bitpos */
624 complain_overflow_dont, /* complain_on_overflow */
625 bfd_elf_generic_reloc, /* special_function */
626 "HINT", /* name */
627 FALSE, /* partial_inplace */
628 0x3fff, /* src_mask */
629 0x3fff, /* dst_mask */
630 TRUE), /* pcrel_offset */
631
632 /* 16 bit PC relative offset. */
633 HOWTO (R_ALPHA_SREL16, /* type */
634 0, /* rightshift */
635 1, /* size (0 = byte, 1 = short, 2 = long) */
636 16, /* bitsize */
637 TRUE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_signed, /* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "SREL16", /* name */
642 FALSE, /* partial_inplace */
643 0xffff, /* src_mask */
644 0xffff, /* dst_mask */
645 TRUE), /* pcrel_offset */
646
647 /* 32 bit PC relative offset. */
648 HOWTO (R_ALPHA_SREL32, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 TRUE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_signed, /* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "SREL32", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 TRUE), /* pcrel_offset */
661
662 /* A 64 bit PC relative offset. */
663 HOWTO (R_ALPHA_SREL64, /* type */
664 0, /* rightshift */
665 4, /* size (0 = byte, 1 = short, 2 = long) */
666 64, /* bitsize */
667 TRUE, /* pc_relative */
668 0, /* bitpos */
669 complain_overflow_signed, /* complain_on_overflow */
670 bfd_elf_generic_reloc, /* special_function */
671 "SREL64", /* name */
672 FALSE, /* partial_inplace */
673 MINUS_ONE, /* src_mask */
674 MINUS_ONE, /* dst_mask */
675 TRUE), /* pcrel_offset */
676
677 /* Skip 12 - 16; deprecated ECOFF relocs. */
678 SKIP_HOWTO (12),
679 SKIP_HOWTO (13),
680 SKIP_HOWTO (14),
681 SKIP_HOWTO (15),
682 SKIP_HOWTO (16),
683
684 /* The high 16 bits of the displacement from GP to the target. */
685 HOWTO (R_ALPHA_GPRELHIGH,
686 0, /* rightshift */
687 1, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_signed, /* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "GPRELHIGH", /* name */
694 FALSE, /* partial_inplace */
695 0xffff, /* src_mask */
696 0xffff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 /* The low 16 bits of the displacement from GP to the target. */
700 HOWTO (R_ALPHA_GPRELLOW,
701 0, /* rightshift */
702 1, /* size (0 = byte, 1 = short, 2 = long) */
703 16, /* bitsize */
704 FALSE, /* pc_relative */
705 0, /* bitpos */
706 complain_overflow_dont, /* complain_on_overflow */
707 bfd_elf_generic_reloc, /* special_function */
708 "GPRELLOW", /* name */
709 FALSE, /* partial_inplace */
710 0xffff, /* src_mask */
711 0xffff, /* dst_mask */
712 FALSE), /* pcrel_offset */
713
714 /* A 16-bit displacement from the GP to the target. */
715 HOWTO (R_ALPHA_GPREL16,
716 0, /* rightshift */
717 1, /* size (0 = byte, 1 = short, 2 = long) */
718 16, /* bitsize */
719 FALSE, /* pc_relative */
720 0, /* bitpos */
721 complain_overflow_signed, /* complain_on_overflow */
722 bfd_elf_generic_reloc, /* special_function */
723 "GPREL16", /* name */
724 FALSE, /* partial_inplace */
725 0xffff, /* src_mask */
726 0xffff, /* dst_mask */
727 FALSE), /* pcrel_offset */
728
729 /* Skip 20 - 23; deprecated ECOFF relocs. */
730 SKIP_HOWTO (20),
731 SKIP_HOWTO (21),
732 SKIP_HOWTO (22),
733 SKIP_HOWTO (23),
734
735 /* Misc ELF relocations. */
736
737 /* A dynamic relocation to copy the target into our .dynbss section. */
738 /* Not generated, as all Alpha objects use PIC, so it is not needed. It
739 is present because every other ELF has one, but should not be used
740 because .dynbss is an ugly thing. */
741 HOWTO (R_ALPHA_COPY,
742 0,
743 0,
744 0,
745 FALSE,
746 0,
747 complain_overflow_dont,
748 bfd_elf_generic_reloc,
749 "COPY",
750 FALSE,
751 0,
752 0,
753 TRUE),
754
755 /* A dynamic relocation for a .got entry. */
756 HOWTO (R_ALPHA_GLOB_DAT,
757 0,
758 0,
759 0,
760 FALSE,
761 0,
762 complain_overflow_dont,
763 bfd_elf_generic_reloc,
764 "GLOB_DAT",
765 FALSE,
766 0,
767 0,
768 TRUE),
769
770 /* A dynamic relocation for a .plt entry. */
771 HOWTO (R_ALPHA_JMP_SLOT,
772 0,
773 0,
774 0,
775 FALSE,
776 0,
777 complain_overflow_dont,
778 bfd_elf_generic_reloc,
779 "JMP_SLOT",
780 FALSE,
781 0,
782 0,
783 TRUE),
784
785 /* A dynamic relocation to add the base of the DSO to a 64-bit field. */
786 HOWTO (R_ALPHA_RELATIVE,
787 0,
788 0,
789 0,
790 FALSE,
791 0,
792 complain_overflow_dont,
793 bfd_elf_generic_reloc,
794 "RELATIVE",
795 FALSE,
796 0,
797 0,
798 TRUE),
799
800 /* A 21 bit branch that adjusts for gp loads. */
801 HOWTO (R_ALPHA_BRSGP, /* type */
802 2, /* rightshift */
803 2, /* size (0 = byte, 1 = short, 2 = long) */
804 21, /* bitsize */
805 TRUE, /* pc_relative */
806 0, /* bitpos */
807 complain_overflow_signed, /* complain_on_overflow */
808 bfd_elf_generic_reloc, /* special_function */
809 "BRSGP", /* name */
810 FALSE, /* partial_inplace */
811 0x1fffff, /* src_mask */
812 0x1fffff, /* dst_mask */
813 TRUE), /* pcrel_offset */
814
815 /* Creates a tls_index for the symbol in the got. */
816 HOWTO (R_ALPHA_TLSGD, /* type */
817 0, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_signed, /* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "TLSGD", /* name */
825 FALSE, /* partial_inplace */
826 0xffff, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* Creates a tls_index for the (current) module in the got. */
831 HOWTO (R_ALPHA_TLSLDM, /* type */
832 0, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_signed, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "TLSLDM", /* name */
840 FALSE, /* partial_inplace */
841 0xffff, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* A dynamic relocation for a DTP module entry. */
846 HOWTO (R_ALPHA_DTPMOD64, /* type */
847 0, /* rightshift */
848 4, /* size (0 = byte, 1 = short, 2 = long) */
849 64, /* bitsize */
850 FALSE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_bitfield, /* complain_on_overflow */
853 bfd_elf_generic_reloc, /* special_function */
854 "DTPMOD64", /* name */
855 FALSE, /* partial_inplace */
856 MINUS_ONE, /* src_mask */
857 MINUS_ONE, /* dst_mask */
858 FALSE), /* pcrel_offset */
859
860 /* Creates a 64-bit offset in the got for the displacement
861 from DTP to the target. */
862 HOWTO (R_ALPHA_GOTDTPREL, /* type */
863 0, /* rightshift */
864 1, /* size (0 = byte, 1 = short, 2 = long) */
865 16, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_signed, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "GOTDTPREL", /* name */
871 FALSE, /* partial_inplace */
872 0xffff, /* src_mask */
873 0xffff, /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* A dynamic relocation for a displacement from DTP to the target. */
877 HOWTO (R_ALPHA_DTPREL64, /* type */
878 0, /* rightshift */
879 4, /* size (0 = byte, 1 = short, 2 = long) */
880 64, /* bitsize */
881 FALSE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_bitfield, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "DTPREL64", /* name */
886 FALSE, /* partial_inplace */
887 MINUS_ONE, /* src_mask */
888 MINUS_ONE, /* dst_mask */
889 FALSE), /* pcrel_offset */
890
891 /* The high 16 bits of the displacement from DTP to the target. */
892 HOWTO (R_ALPHA_DTPRELHI, /* type */
893 0, /* rightshift */
894 1, /* size (0 = byte, 1 = short, 2 = long) */
895 16, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_signed, /* complain_on_overflow */
899 bfd_elf_generic_reloc, /* special_function */
900 "DTPRELHI", /* name */
901 FALSE, /* partial_inplace */
902 0xffff, /* src_mask */
903 0xffff, /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* The low 16 bits of the displacement from DTP to the target. */
907 HOWTO (R_ALPHA_DTPRELLO, /* type */
908 0, /* rightshift */
909 1, /* size (0 = byte, 1 = short, 2 = long) */
910 16, /* bitsize */
911 FALSE, /* pc_relative */
912 0, /* bitpos */
913 complain_overflow_dont, /* complain_on_overflow */
914 bfd_elf_generic_reloc, /* special_function */
915 "DTPRELLO", /* name */
916 FALSE, /* partial_inplace */
917 0xffff, /* src_mask */
918 0xffff, /* dst_mask */
919 FALSE), /* pcrel_offset */
920
921 /* A 16-bit displacement from DTP to the target. */
922 HOWTO (R_ALPHA_DTPREL16, /* type */
923 0, /* rightshift */
924 1, /* size (0 = byte, 1 = short, 2 = long) */
925 16, /* bitsize */
926 FALSE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_signed, /* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "DTPREL16", /* name */
931 FALSE, /* partial_inplace */
932 0xffff, /* src_mask */
933 0xffff, /* dst_mask */
934 FALSE), /* pcrel_offset */
935
936 /* Creates a 64-bit offset in the got for the displacement
937 from TP to the target. */
938 HOWTO (R_ALPHA_GOTTPREL, /* type */
939 0, /* rightshift */
940 1, /* size (0 = byte, 1 = short, 2 = long) */
941 16, /* bitsize */
942 FALSE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_signed, /* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
946 "GOTTPREL", /* name */
947 FALSE, /* partial_inplace */
948 0xffff, /* src_mask */
949 0xffff, /* dst_mask */
950 FALSE), /* pcrel_offset */
951
952 /* A dynamic relocation for a displacement from TP to the target. */
953 HOWTO (R_ALPHA_TPREL64, /* type */
954 0, /* rightshift */
955 4, /* size (0 = byte, 1 = short, 2 = long) */
956 64, /* bitsize */
957 FALSE, /* pc_relative */
958 0, /* bitpos */
959 complain_overflow_bitfield, /* complain_on_overflow */
960 bfd_elf_generic_reloc, /* special_function */
961 "TPREL64", /* name */
962 FALSE, /* partial_inplace */
963 MINUS_ONE, /* src_mask */
964 MINUS_ONE, /* dst_mask */
965 FALSE), /* pcrel_offset */
966
967 /* The high 16 bits of the displacement from TP to the target. */
968 HOWTO (R_ALPHA_TPRELHI, /* type */
969 0, /* rightshift */
970 1, /* size (0 = byte, 1 = short, 2 = long) */
971 16, /* bitsize */
972 FALSE, /* pc_relative */
973 0, /* bitpos */
974 complain_overflow_signed, /* complain_on_overflow */
975 bfd_elf_generic_reloc, /* special_function */
976 "TPRELHI", /* name */
977 FALSE, /* partial_inplace */
978 0xffff, /* src_mask */
979 0xffff, /* dst_mask */
980 FALSE), /* pcrel_offset */
981
982 /* The low 16 bits of the displacement from TP to the target. */
983 HOWTO (R_ALPHA_TPRELLO, /* type */
984 0, /* rightshift */
985 1, /* size (0 = byte, 1 = short, 2 = long) */
986 16, /* bitsize */
987 FALSE, /* pc_relative */
988 0, /* bitpos */
989 complain_overflow_dont, /* complain_on_overflow */
990 bfd_elf_generic_reloc, /* special_function */
991 "TPRELLO", /* name */
992 FALSE, /* partial_inplace */
993 0xffff, /* src_mask */
994 0xffff, /* dst_mask */
995 FALSE), /* pcrel_offset */
996
997 /* A 16-bit displacement from TP to the target. */
998 HOWTO (R_ALPHA_TPREL16, /* type */
999 0, /* rightshift */
1000 1, /* size (0 = byte, 1 = short, 2 = long) */
1001 16, /* bitsize */
1002 FALSE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_signed, /* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "TPREL16", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffff, /* src_mask */
1009 0xffff, /* dst_mask */
1010 FALSE), /* pcrel_offset */
1011 };
1012
1013 /* A mapping from BFD reloc types to Alpha ELF reloc types. */
1014
1015 struct elf_reloc_map
1016 {
1017 bfd_reloc_code_real_type bfd_reloc_val;
1018 int elf_reloc_val;
1019 };
1020
1021 static const struct elf_reloc_map elf64_alpha_reloc_map[] =
1022 {
1023 {BFD_RELOC_NONE, R_ALPHA_NONE},
1024 {BFD_RELOC_32, R_ALPHA_REFLONG},
1025 {BFD_RELOC_64, R_ALPHA_REFQUAD},
1026 {BFD_RELOC_CTOR, R_ALPHA_REFQUAD},
1027 {BFD_RELOC_GPREL32, R_ALPHA_GPREL32},
1028 {BFD_RELOC_ALPHA_ELF_LITERAL, R_ALPHA_LITERAL},
1029 {BFD_RELOC_ALPHA_LITUSE, R_ALPHA_LITUSE},
1030 {BFD_RELOC_ALPHA_GPDISP, R_ALPHA_GPDISP},
1031 {BFD_RELOC_23_PCREL_S2, R_ALPHA_BRADDR},
1032 {BFD_RELOC_ALPHA_HINT, R_ALPHA_HINT},
1033 {BFD_RELOC_16_PCREL, R_ALPHA_SREL16},
1034 {BFD_RELOC_32_PCREL, R_ALPHA_SREL32},
1035 {BFD_RELOC_64_PCREL, R_ALPHA_SREL64},
1036 {BFD_RELOC_ALPHA_GPREL_HI16, R_ALPHA_GPRELHIGH},
1037 {BFD_RELOC_ALPHA_GPREL_LO16, R_ALPHA_GPRELLOW},
1038 {BFD_RELOC_GPREL16, R_ALPHA_GPREL16},
1039 {BFD_RELOC_ALPHA_BRSGP, R_ALPHA_BRSGP},
1040 {BFD_RELOC_ALPHA_TLSGD, R_ALPHA_TLSGD},
1041 {BFD_RELOC_ALPHA_TLSLDM, R_ALPHA_TLSLDM},
1042 {BFD_RELOC_ALPHA_DTPMOD64, R_ALPHA_DTPMOD64},
1043 {BFD_RELOC_ALPHA_GOTDTPREL16, R_ALPHA_GOTDTPREL},
1044 {BFD_RELOC_ALPHA_DTPREL64, R_ALPHA_DTPREL64},
1045 {BFD_RELOC_ALPHA_DTPREL_HI16, R_ALPHA_DTPRELHI},
1046 {BFD_RELOC_ALPHA_DTPREL_LO16, R_ALPHA_DTPRELLO},
1047 {BFD_RELOC_ALPHA_DTPREL16, R_ALPHA_DTPREL16},
1048 {BFD_RELOC_ALPHA_GOTTPREL16, R_ALPHA_GOTTPREL},
1049 {BFD_RELOC_ALPHA_TPREL64, R_ALPHA_TPREL64},
1050 {BFD_RELOC_ALPHA_TPREL_HI16, R_ALPHA_TPRELHI},
1051 {BFD_RELOC_ALPHA_TPREL_LO16, R_ALPHA_TPRELLO},
1052 {BFD_RELOC_ALPHA_TPREL16, R_ALPHA_TPREL16},
1053 };
1054
1055 /* Given a BFD reloc type, return a HOWTO structure. */
1056
1057 static reloc_howto_type *
1058 elf64_alpha_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1059 bfd_reloc_code_real_type code)
1060 {
1061 const struct elf_reloc_map *i, *e;
1062 i = e = elf64_alpha_reloc_map;
1063 e += sizeof (elf64_alpha_reloc_map) / sizeof (struct elf_reloc_map);
1064 for (; i != e; ++i)
1065 {
1066 if (i->bfd_reloc_val == code)
1067 return &elf64_alpha_howto_table[i->elf_reloc_val];
1068 }
1069 return 0;
1070 }
1071
1072 static reloc_howto_type *
1073 elf64_alpha_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1074 const char *r_name)
1075 {
1076 unsigned int i;
1077
1078 for (i = 0;
1079 i < (sizeof (elf64_alpha_howto_table)
1080 / sizeof (elf64_alpha_howto_table[0]));
1081 i++)
1082 if (elf64_alpha_howto_table[i].name != NULL
1083 && strcasecmp (elf64_alpha_howto_table[i].name, r_name) == 0)
1084 return &elf64_alpha_howto_table[i];
1085
1086 return NULL;
1087 }
1088
1089 /* Given an Alpha ELF reloc type, fill in an arelent structure. */
1090
1091 static void
1092 elf64_alpha_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
1093 Elf_Internal_Rela *dst)
1094 {
1095 unsigned r_type = ELF64_R_TYPE(dst->r_info);
1096 BFD_ASSERT (r_type < (unsigned int) R_ALPHA_max);
1097 cache_ptr->howto = &elf64_alpha_howto_table[r_type];
1098 }
1099
1100 /* These two relocations create a two-word entry in the got. */
1101 #define alpha_got_entry_size(r_type) \
1102 (r_type == R_ALPHA_TLSGD || r_type == R_ALPHA_TLSLDM ? 16 : 8)
1103
1104 /* This is PT_TLS segment p_vaddr. */
1105 #define alpha_get_dtprel_base(info) \
1106 (elf_hash_table (info)->tls_sec->vma)
1107
1108 /* Main program TLS (whose template starts at PT_TLS p_vaddr)
1109 is assigned offset round(16, PT_TLS p_align). */
1110 #define alpha_get_tprel_base(info) \
1111 (elf_hash_table (info)->tls_sec->vma \
1112 - align_power ((bfd_vma) 16, \
1113 elf_hash_table (info)->tls_sec->alignment_power))
1114 \f
1115 /* Handle an Alpha specific section when reading an object file. This
1116 is called when bfd_section_from_shdr finds a section with an unknown
1117 type.
1118 FIXME: We need to handle the SHF_ALPHA_GPREL flag, but I'm not sure
1119 how to. */
1120
1121 static bfd_boolean
1122 elf64_alpha_section_from_shdr (bfd *abfd,
1123 Elf_Internal_Shdr *hdr,
1124 const char *name,
1125 int shindex)
1126 {
1127 asection *newsect;
1128
1129 /* There ought to be a place to keep ELF backend specific flags, but
1130 at the moment there isn't one. We just keep track of the
1131 sections by their name, instead. Fortunately, the ABI gives
1132 suggested names for all the MIPS specific sections, so we will
1133 probably get away with this. */
1134 switch (hdr->sh_type)
1135 {
1136 case SHT_ALPHA_DEBUG:
1137 if (strcmp (name, ".mdebug") != 0)
1138 return FALSE;
1139 break;
1140 default:
1141 return FALSE;
1142 }
1143
1144 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
1145 return FALSE;
1146 newsect = hdr->bfd_section;
1147
1148 if (hdr->sh_type == SHT_ALPHA_DEBUG)
1149 {
1150 if (! bfd_set_section_flags (abfd, newsect,
1151 (bfd_get_section_flags (abfd, newsect)
1152 | SEC_DEBUGGING)))
1153 return FALSE;
1154 }
1155
1156 return TRUE;
1157 }
1158
1159 /* Convert Alpha specific section flags to bfd internal section flags. */
1160
1161 static bfd_boolean
1162 elf64_alpha_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
1163 {
1164 if (hdr->sh_flags & SHF_ALPHA_GPREL)
1165 *flags |= SEC_SMALL_DATA;
1166
1167 return TRUE;
1168 }
1169
1170 /* Set the correct type for an Alpha ELF section. We do this by the
1171 section name, which is a hack, but ought to work. */
1172
1173 static bfd_boolean
1174 elf64_alpha_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
1175 {
1176 register const char *name;
1177
1178 name = bfd_get_section_name (abfd, sec);
1179
1180 if (strcmp (name, ".mdebug") == 0)
1181 {
1182 hdr->sh_type = SHT_ALPHA_DEBUG;
1183 /* In a shared object on Irix 5.3, the .mdebug section has an
1184 entsize of 0. FIXME: Does this matter? */
1185 if ((abfd->flags & DYNAMIC) != 0 )
1186 hdr->sh_entsize = 0;
1187 else
1188 hdr->sh_entsize = 1;
1189 }
1190 else if ((sec->flags & SEC_SMALL_DATA)
1191 || strcmp (name, ".sdata") == 0
1192 || strcmp (name, ".sbss") == 0
1193 || strcmp (name, ".lit4") == 0
1194 || strcmp (name, ".lit8") == 0)
1195 hdr->sh_flags |= SHF_ALPHA_GPREL;
1196
1197 return TRUE;
1198 }
1199
1200 /* Hook called by the linker routine which adds symbols from an object
1201 file. We use it to put .comm items in .sbss, and not .bss. */
1202
1203 static bfd_boolean
1204 elf64_alpha_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
1205 Elf_Internal_Sym *sym,
1206 const char **namep ATTRIBUTE_UNUSED,
1207 flagword *flagsp ATTRIBUTE_UNUSED,
1208 asection **secp, bfd_vma *valp)
1209 {
1210 if (sym->st_shndx == SHN_COMMON
1211 && !info->relocatable
1212 && sym->st_size <= elf_gp_size (abfd))
1213 {
1214 /* Common symbols less than or equal to -G nn bytes are
1215 automatically put into .sbss. */
1216
1217 asection *scomm = bfd_get_section_by_name (abfd, ".scommon");
1218
1219 if (scomm == NULL)
1220 {
1221 scomm = bfd_make_section_with_flags (abfd, ".scommon",
1222 (SEC_ALLOC
1223 | SEC_IS_COMMON
1224 | SEC_LINKER_CREATED));
1225 if (scomm == NULL)
1226 return FALSE;
1227 }
1228
1229 *secp = scomm;
1230 *valp = sym->st_size;
1231 }
1232
1233 return TRUE;
1234 }
1235
1236 /* Create the .got section. */
1237
1238 static bfd_boolean
1239 elf64_alpha_create_got_section (bfd *abfd,
1240 struct bfd_link_info *info ATTRIBUTE_UNUSED)
1241 {
1242 flagword flags;
1243 asection *s;
1244
1245 if (! is_alpha_elf (abfd))
1246 return FALSE;
1247
1248 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1249 | SEC_LINKER_CREATED);
1250 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
1251 if (s == NULL
1252 || !bfd_set_section_alignment (abfd, s, 3))
1253 return FALSE;
1254
1255 alpha_elf_tdata (abfd)->got = s;
1256
1257 /* Make sure the object's gotobj is set to itself so that we default
1258 to every object with its own .got. We'll merge .gots later once
1259 we've collected each object's info. */
1260 alpha_elf_tdata (abfd)->gotobj = abfd;
1261
1262 return TRUE;
1263 }
1264
1265 /* Create all the dynamic sections. */
1266
1267 static bfd_boolean
1268 elf64_alpha_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
1269 {
1270 asection *s;
1271 flagword flags;
1272 struct elf_link_hash_entry *h;
1273
1274 if (! is_alpha_elf (abfd))
1275 return FALSE;
1276
1277 /* We need to create .plt, .rela.plt, .got, and .rela.got sections. */
1278
1279 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1280 | SEC_LINKER_CREATED
1281 | (elf64_alpha_use_secureplt ? SEC_READONLY : 0));
1282 s = bfd_make_section_anyway_with_flags (abfd, ".plt", flags);
1283 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 4))
1284 return FALSE;
1285
1286 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
1287 .plt section. */
1288 h = _bfd_elf_define_linkage_sym (abfd, info, s,
1289 "_PROCEDURE_LINKAGE_TABLE_");
1290 elf_hash_table (info)->hplt = h;
1291 if (h == NULL)
1292 return FALSE;
1293
1294 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1295 | SEC_LINKER_CREATED | SEC_READONLY);
1296 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt", flags);
1297 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1298 return FALSE;
1299
1300 if (elf64_alpha_use_secureplt)
1301 {
1302 flags = SEC_ALLOC | SEC_LINKER_CREATED;
1303 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
1304 if (s == NULL || ! bfd_set_section_alignment (abfd, s, 3))
1305 return FALSE;
1306 }
1307
1308 /* We may or may not have created a .got section for this object, but
1309 we definitely havn't done the rest of the work. */
1310
1311 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1312 {
1313 if (!elf64_alpha_create_got_section (abfd, info))
1314 return FALSE;
1315 }
1316
1317 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED | SEC_READONLY);
1319 s = bfd_make_section_anyway_with_flags (abfd, ".rela.got", flags);
1320 if (s == NULL
1321 || !bfd_set_section_alignment (abfd, s, 3))
1322 return FALSE;
1323
1324 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the
1325 dynobj's .got section. We don't do this in the linker script
1326 because we don't want to define the symbol if we are not creating
1327 a global offset table. */
1328 h = _bfd_elf_define_linkage_sym (abfd, info, alpha_elf_tdata(abfd)->got,
1329 "_GLOBAL_OFFSET_TABLE_");
1330 elf_hash_table (info)->hgot = h;
1331 if (h == NULL)
1332 return FALSE;
1333
1334 return TRUE;
1335 }
1336 \f
1337 /* Read ECOFF debugging information from a .mdebug section into a
1338 ecoff_debug_info structure. */
1339
1340 static bfd_boolean
1341 elf64_alpha_read_ecoff_info (bfd *abfd, asection *section,
1342 struct ecoff_debug_info *debug)
1343 {
1344 HDRR *symhdr;
1345 const struct ecoff_debug_swap *swap;
1346 char *ext_hdr = NULL;
1347
1348 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1349 memset (debug, 0, sizeof (*debug));
1350
1351 ext_hdr = (char *) bfd_malloc (swap->external_hdr_size);
1352 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1353 goto error_return;
1354
1355 if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0,
1356 swap->external_hdr_size))
1357 goto error_return;
1358
1359 symhdr = &debug->symbolic_header;
1360 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1361
1362 /* The symbolic header contains absolute file offsets and sizes to
1363 read. */
1364 #define READ(ptr, offset, count, size, type) \
1365 if (symhdr->count == 0) \
1366 debug->ptr = NULL; \
1367 else \
1368 { \
1369 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1370 debug->ptr = (type) bfd_malloc (amt); \
1371 if (debug->ptr == NULL) \
1372 goto error_return; \
1373 if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \
1374 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1375 goto error_return; \
1376 }
1377
1378 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1379 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR);
1380 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR);
1381 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR);
1382 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR);
1383 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1384 union aux_ext *);
1385 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1386 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1387 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR);
1388 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR);
1389 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR);
1390 #undef READ
1391
1392 debug->fdr = NULL;
1393
1394 return TRUE;
1395
1396 error_return:
1397 if (ext_hdr != NULL)
1398 free (ext_hdr);
1399 if (debug->line != NULL)
1400 free (debug->line);
1401 if (debug->external_dnr != NULL)
1402 free (debug->external_dnr);
1403 if (debug->external_pdr != NULL)
1404 free (debug->external_pdr);
1405 if (debug->external_sym != NULL)
1406 free (debug->external_sym);
1407 if (debug->external_opt != NULL)
1408 free (debug->external_opt);
1409 if (debug->external_aux != NULL)
1410 free (debug->external_aux);
1411 if (debug->ss != NULL)
1412 free (debug->ss);
1413 if (debug->ssext != NULL)
1414 free (debug->ssext);
1415 if (debug->external_fdr != NULL)
1416 free (debug->external_fdr);
1417 if (debug->external_rfd != NULL)
1418 free (debug->external_rfd);
1419 if (debug->external_ext != NULL)
1420 free (debug->external_ext);
1421 return FALSE;
1422 }
1423
1424 /* Alpha ELF local labels start with '$'. */
1425
1426 static bfd_boolean
1427 elf64_alpha_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, const char *name)
1428 {
1429 return name[0] == '$';
1430 }
1431
1432 /* Alpha ELF follows MIPS ELF in using a special find_nearest_line
1433 routine in order to handle the ECOFF debugging information. We
1434 still call this mips_elf_find_line because of the slot
1435 find_line_info in elf_obj_tdata is declared that way. */
1436
1437 struct mips_elf_find_line
1438 {
1439 struct ecoff_debug_info d;
1440 struct ecoff_find_line i;
1441 };
1442
1443 static bfd_boolean
1444 elf64_alpha_find_nearest_line (bfd *abfd, asection *section, asymbol **symbols,
1445 bfd_vma offset, const char **filename_ptr,
1446 const char **functionname_ptr,
1447 unsigned int *line_ptr)
1448 {
1449 asection *msec;
1450
1451 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
1452 filename_ptr, functionname_ptr,
1453 line_ptr, 0,
1454 &elf_tdata (abfd)->dwarf2_find_line_info))
1455 return TRUE;
1456
1457 msec = bfd_get_section_by_name (abfd, ".mdebug");
1458 if (msec != NULL)
1459 {
1460 flagword origflags;
1461 struct mips_elf_find_line *fi;
1462 const struct ecoff_debug_swap * const swap =
1463 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1464
1465 /* If we are called during a link, alpha_elf_final_link may have
1466 cleared the SEC_HAS_CONTENTS field. We force it back on here
1467 if appropriate (which it normally will be). */
1468 origflags = msec->flags;
1469 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
1470 msec->flags |= SEC_HAS_CONTENTS;
1471
1472 fi = elf_tdata (abfd)->find_line_info;
1473 if (fi == NULL)
1474 {
1475 bfd_size_type external_fdr_size;
1476 char *fraw_src;
1477 char *fraw_end;
1478 struct fdr *fdr_ptr;
1479 bfd_size_type amt = sizeof (struct mips_elf_find_line);
1480
1481 fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt);
1482 if (fi == NULL)
1483 {
1484 msec->flags = origflags;
1485 return FALSE;
1486 }
1487
1488 if (!elf64_alpha_read_ecoff_info (abfd, msec, &fi->d))
1489 {
1490 msec->flags = origflags;
1491 return FALSE;
1492 }
1493
1494 /* Swap in the FDR information. */
1495 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
1496 fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt);
1497 if (fi->d.fdr == NULL)
1498 {
1499 msec->flags = origflags;
1500 return FALSE;
1501 }
1502 external_fdr_size = swap->external_fdr_size;
1503 fdr_ptr = fi->d.fdr;
1504 fraw_src = (char *) fi->d.external_fdr;
1505 fraw_end = (fraw_src
1506 + fi->d.symbolic_header.ifdMax * external_fdr_size);
1507 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
1508 (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr);
1509
1510 elf_tdata (abfd)->find_line_info = fi;
1511
1512 /* Note that we don't bother to ever free this information.
1513 find_nearest_line is either called all the time, as in
1514 objdump -l, so the information should be saved, or it is
1515 rarely called, as in ld error messages, so the memory
1516 wasted is unimportant. Still, it would probably be a
1517 good idea for free_cached_info to throw it away. */
1518 }
1519
1520 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
1521 &fi->i, filename_ptr, functionname_ptr,
1522 line_ptr))
1523 {
1524 msec->flags = origflags;
1525 return TRUE;
1526 }
1527
1528 msec->flags = origflags;
1529 }
1530
1531 /* Fall back on the generic ELF find_nearest_line routine. */
1532
1533 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
1534 filename_ptr, functionname_ptr,
1535 line_ptr);
1536 }
1537 \f
1538 /* Structure used to pass information to alpha_elf_output_extsym. */
1539
1540 struct extsym_info
1541 {
1542 bfd *abfd;
1543 struct bfd_link_info *info;
1544 struct ecoff_debug_info *debug;
1545 const struct ecoff_debug_swap *swap;
1546 bfd_boolean failed;
1547 };
1548
1549 static bfd_boolean
1550 elf64_alpha_output_extsym (struct alpha_elf_link_hash_entry *h, PTR data)
1551 {
1552 struct extsym_info *einfo = (struct extsym_info *) data;
1553 bfd_boolean strip;
1554 asection *sec, *output_section;
1555
1556 if (h->root.root.type == bfd_link_hash_warning)
1557 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
1558
1559 if (h->root.indx == -2)
1560 strip = FALSE;
1561 else if ((h->root.def_dynamic
1562 || h->root.ref_dynamic
1563 || h->root.root.type == bfd_link_hash_new)
1564 && !h->root.def_regular
1565 && !h->root.ref_regular)
1566 strip = TRUE;
1567 else if (einfo->info->strip == strip_all
1568 || (einfo->info->strip == strip_some
1569 && bfd_hash_lookup (einfo->info->keep_hash,
1570 h->root.root.root.string,
1571 FALSE, FALSE) == NULL))
1572 strip = TRUE;
1573 else
1574 strip = FALSE;
1575
1576 if (strip)
1577 return TRUE;
1578
1579 if (h->esym.ifd == -2)
1580 {
1581 h->esym.jmptbl = 0;
1582 h->esym.cobol_main = 0;
1583 h->esym.weakext = 0;
1584 h->esym.reserved = 0;
1585 h->esym.ifd = ifdNil;
1586 h->esym.asym.value = 0;
1587 h->esym.asym.st = stGlobal;
1588
1589 if (h->root.root.type != bfd_link_hash_defined
1590 && h->root.root.type != bfd_link_hash_defweak)
1591 h->esym.asym.sc = scAbs;
1592 else
1593 {
1594 const char *name;
1595
1596 sec = h->root.root.u.def.section;
1597 output_section = sec->output_section;
1598
1599 /* When making a shared library and symbol h is the one from
1600 the another shared library, OUTPUT_SECTION may be null. */
1601 if (output_section == NULL)
1602 h->esym.asym.sc = scUndefined;
1603 else
1604 {
1605 name = bfd_section_name (output_section->owner, output_section);
1606
1607 if (strcmp (name, ".text") == 0)
1608 h->esym.asym.sc = scText;
1609 else if (strcmp (name, ".data") == 0)
1610 h->esym.asym.sc = scData;
1611 else if (strcmp (name, ".sdata") == 0)
1612 h->esym.asym.sc = scSData;
1613 else if (strcmp (name, ".rodata") == 0
1614 || strcmp (name, ".rdata") == 0)
1615 h->esym.asym.sc = scRData;
1616 else if (strcmp (name, ".bss") == 0)
1617 h->esym.asym.sc = scBss;
1618 else if (strcmp (name, ".sbss") == 0)
1619 h->esym.asym.sc = scSBss;
1620 else if (strcmp (name, ".init") == 0)
1621 h->esym.asym.sc = scInit;
1622 else if (strcmp (name, ".fini") == 0)
1623 h->esym.asym.sc = scFini;
1624 else
1625 h->esym.asym.sc = scAbs;
1626 }
1627 }
1628
1629 h->esym.asym.reserved = 0;
1630 h->esym.asym.index = indexNil;
1631 }
1632
1633 if (h->root.root.type == bfd_link_hash_common)
1634 h->esym.asym.value = h->root.root.u.c.size;
1635 else if (h->root.root.type == bfd_link_hash_defined
1636 || h->root.root.type == bfd_link_hash_defweak)
1637 {
1638 if (h->esym.asym.sc == scCommon)
1639 h->esym.asym.sc = scBss;
1640 else if (h->esym.asym.sc == scSCommon)
1641 h->esym.asym.sc = scSBss;
1642
1643 sec = h->root.root.u.def.section;
1644 output_section = sec->output_section;
1645 if (output_section != NULL)
1646 h->esym.asym.value = (h->root.root.u.def.value
1647 + sec->output_offset
1648 + output_section->vma);
1649 else
1650 h->esym.asym.value = 0;
1651 }
1652
1653 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
1654 h->root.root.root.string,
1655 &h->esym))
1656 {
1657 einfo->failed = TRUE;
1658 return FALSE;
1659 }
1660
1661 return TRUE;
1662 }
1663 \f
1664 /* Search for and possibly create a got entry. */
1665
1666 static struct alpha_elf_got_entry *
1667 get_got_entry (bfd *abfd, struct alpha_elf_link_hash_entry *h,
1668 unsigned long r_type, unsigned long r_symndx,
1669 bfd_vma r_addend)
1670 {
1671 struct alpha_elf_got_entry *gotent;
1672 struct alpha_elf_got_entry **slot;
1673
1674 if (h)
1675 slot = &h->got_entries;
1676 else
1677 {
1678 /* This is a local .got entry -- record for merge. */
1679
1680 struct alpha_elf_got_entry **local_got_entries;
1681
1682 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
1683 if (!local_got_entries)
1684 {
1685 bfd_size_type size;
1686 Elf_Internal_Shdr *symtab_hdr;
1687
1688 symtab_hdr = &elf_tdata(abfd)->symtab_hdr;
1689 size = symtab_hdr->sh_info;
1690 size *= sizeof (struct alpha_elf_got_entry *);
1691
1692 local_got_entries
1693 = (struct alpha_elf_got_entry **) bfd_zalloc (abfd, size);
1694 if (!local_got_entries)
1695 return NULL;
1696
1697 alpha_elf_tdata (abfd)->local_got_entries = local_got_entries;
1698 }
1699
1700 slot = &local_got_entries[r_symndx];
1701 }
1702
1703 for (gotent = *slot; gotent ; gotent = gotent->next)
1704 if (gotent->gotobj == abfd
1705 && gotent->reloc_type == r_type
1706 && gotent->addend == r_addend)
1707 break;
1708
1709 if (!gotent)
1710 {
1711 int entry_size;
1712 bfd_size_type amt;
1713
1714 amt = sizeof (struct alpha_elf_got_entry);
1715 gotent = (struct alpha_elf_got_entry *) bfd_alloc (abfd, amt);
1716 if (!gotent)
1717 return NULL;
1718
1719 gotent->gotobj = abfd;
1720 gotent->addend = r_addend;
1721 gotent->got_offset = -1;
1722 gotent->plt_offset = -1;
1723 gotent->use_count = 1;
1724 gotent->reloc_type = r_type;
1725 gotent->reloc_done = 0;
1726 gotent->reloc_xlated = 0;
1727
1728 gotent->next = *slot;
1729 *slot = gotent;
1730
1731 entry_size = alpha_got_entry_size (r_type);
1732 alpha_elf_tdata (abfd)->total_got_size += entry_size;
1733 if (!h)
1734 alpha_elf_tdata(abfd)->local_got_size += entry_size;
1735 }
1736 else
1737 gotent->use_count += 1;
1738
1739 return gotent;
1740 }
1741
1742 static bfd_boolean
1743 elf64_alpha_want_plt (struct alpha_elf_link_hash_entry *ah)
1744 {
1745 return ((ah->root.type == STT_FUNC
1746 || ah->root.root.type == bfd_link_hash_undefweak
1747 || ah->root.root.type == bfd_link_hash_undefined)
1748 && (ah->flags & ALPHA_ELF_LINK_HASH_LU_PLT) != 0
1749 && (ah->flags & ~ALPHA_ELF_LINK_HASH_LU_PLT) == 0);
1750 }
1751
1752 /* Handle dynamic relocations when doing an Alpha ELF link. */
1753
1754 static bfd_boolean
1755 elf64_alpha_check_relocs (bfd *abfd, struct bfd_link_info *info,
1756 asection *sec, const Elf_Internal_Rela *relocs)
1757 {
1758 bfd *dynobj;
1759 asection *sreloc;
1760 Elf_Internal_Shdr *symtab_hdr;
1761 struct alpha_elf_link_hash_entry **sym_hashes;
1762 const Elf_Internal_Rela *rel, *relend;
1763 bfd_size_type amt;
1764
1765 if (info->relocatable)
1766 return TRUE;
1767
1768 /* Don't do anything special with non-loaded, non-alloced sections.
1769 In particular, any relocs in such sections should not affect GOT
1770 and PLT reference counting (ie. we don't allow them to create GOT
1771 or PLT entries), there's no possibility or desire to optimize TLS
1772 relocs, and there's not much point in propagating relocs to shared
1773 libs that the dynamic linker won't relocate. */
1774 if ((sec->flags & SEC_ALLOC) == 0)
1775 return TRUE;
1776
1777 BFD_ASSERT (is_alpha_elf (abfd));
1778
1779 dynobj = elf_hash_table (info)->dynobj;
1780 if (dynobj == NULL)
1781 elf_hash_table (info)->dynobj = dynobj = abfd;
1782
1783 sreloc = NULL;
1784 symtab_hdr = &elf_symtab_hdr (abfd);
1785 sym_hashes = alpha_elf_sym_hashes (abfd);
1786
1787 relend = relocs + sec->reloc_count;
1788 for (rel = relocs; rel < relend; ++rel)
1789 {
1790 enum {
1791 NEED_GOT = 1,
1792 NEED_GOT_ENTRY = 2,
1793 NEED_DYNREL = 4
1794 };
1795
1796 unsigned long r_symndx, r_type;
1797 struct alpha_elf_link_hash_entry *h;
1798 unsigned int gotent_flags;
1799 bfd_boolean maybe_dynamic;
1800 unsigned int need;
1801 bfd_vma addend;
1802
1803 r_symndx = ELF64_R_SYM (rel->r_info);
1804 if (r_symndx < symtab_hdr->sh_info)
1805 h = NULL;
1806 else
1807 {
1808 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1809
1810 while (h->root.root.type == bfd_link_hash_indirect
1811 || h->root.root.type == bfd_link_hash_warning)
1812 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
1813
1814 h->root.ref_regular = 1;
1815 }
1816
1817 /* We can only get preliminary data on whether a symbol is
1818 locally or externally defined, as not all of the input files
1819 have yet been processed. Do something with what we know, as
1820 this may help reduce memory usage and processing time later. */
1821 maybe_dynamic = FALSE;
1822 if (h && ((info->shared
1823 && (!info->symbolic
1824 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
1825 || !h->root.def_regular
1826 || h->root.root.type == bfd_link_hash_defweak))
1827 maybe_dynamic = TRUE;
1828
1829 need = 0;
1830 gotent_flags = 0;
1831 r_type = ELF64_R_TYPE (rel->r_info);
1832 addend = rel->r_addend;
1833
1834 switch (r_type)
1835 {
1836 case R_ALPHA_LITERAL:
1837 need = NEED_GOT | NEED_GOT_ENTRY;
1838
1839 /* Remember how this literal is used from its LITUSEs.
1840 This will be important when it comes to decide if we can
1841 create a .plt entry for a function symbol. */
1842 while (++rel < relend && ELF64_R_TYPE (rel->r_info) == R_ALPHA_LITUSE)
1843 if (rel->r_addend >= 1 && rel->r_addend <= 6)
1844 gotent_flags |= 1 << rel->r_addend;
1845 --rel;
1846
1847 /* No LITUSEs -- presumably the address is used somehow. */
1848 if (gotent_flags == 0)
1849 gotent_flags = ALPHA_ELF_LINK_HASH_LU_ADDR;
1850 break;
1851
1852 case R_ALPHA_GPDISP:
1853 case R_ALPHA_GPREL16:
1854 case R_ALPHA_GPREL32:
1855 case R_ALPHA_GPRELHIGH:
1856 case R_ALPHA_GPRELLOW:
1857 case R_ALPHA_BRSGP:
1858 need = NEED_GOT;
1859 break;
1860
1861 case R_ALPHA_REFLONG:
1862 case R_ALPHA_REFQUAD:
1863 if (info->shared || maybe_dynamic)
1864 need = NEED_DYNREL;
1865 break;
1866
1867 case R_ALPHA_TLSLDM:
1868 /* The symbol for a TLSLDM reloc is ignored. Collapse the
1869 reloc to the STN_UNDEF (0) symbol so that they all match. */
1870 r_symndx = STN_UNDEF;
1871 h = 0;
1872 maybe_dynamic = FALSE;
1873 /* FALLTHRU */
1874
1875 case R_ALPHA_TLSGD:
1876 case R_ALPHA_GOTDTPREL:
1877 need = NEED_GOT | NEED_GOT_ENTRY;
1878 break;
1879
1880 case R_ALPHA_GOTTPREL:
1881 need = NEED_GOT | NEED_GOT_ENTRY;
1882 gotent_flags = ALPHA_ELF_LINK_HASH_TLS_IE;
1883 if (info->shared)
1884 info->flags |= DF_STATIC_TLS;
1885 break;
1886
1887 case R_ALPHA_TPREL64:
1888 if (info->shared || maybe_dynamic)
1889 need = NEED_DYNREL;
1890 if (info->shared)
1891 info->flags |= DF_STATIC_TLS;
1892 break;
1893 }
1894
1895 if (need & NEED_GOT)
1896 {
1897 if (alpha_elf_tdata(abfd)->gotobj == NULL)
1898 {
1899 if (!elf64_alpha_create_got_section (abfd, info))
1900 return FALSE;
1901 }
1902 }
1903
1904 if (need & NEED_GOT_ENTRY)
1905 {
1906 struct alpha_elf_got_entry *gotent;
1907
1908 gotent = get_got_entry (abfd, h, r_type, r_symndx, addend);
1909 if (!gotent)
1910 return FALSE;
1911
1912 if (gotent_flags)
1913 {
1914 gotent->flags |= gotent_flags;
1915 if (h)
1916 {
1917 gotent_flags |= h->flags;
1918 h->flags = gotent_flags;
1919
1920 /* Make a guess as to whether a .plt entry is needed. */
1921 /* ??? It appears that we won't make it into
1922 adjust_dynamic_symbol for symbols that remain
1923 totally undefined. Copying this check here means
1924 we can create a plt entry for them too. */
1925 h->root.needs_plt
1926 = (maybe_dynamic && elf64_alpha_want_plt (h));
1927 }
1928 }
1929 }
1930
1931 if (need & NEED_DYNREL)
1932 {
1933 /* We need to create the section here now whether we eventually
1934 use it or not so that it gets mapped to an output section by
1935 the linker. If not used, we'll kill it in size_dynamic_sections. */
1936 if (sreloc == NULL)
1937 {
1938 sreloc = _bfd_elf_make_dynamic_reloc_section
1939 (sec, dynobj, 3, abfd, /*rela?*/ TRUE);
1940
1941 if (sreloc == NULL)
1942 return FALSE;
1943 }
1944
1945 if (h)
1946 {
1947 /* Since we havn't seen all of the input symbols yet, we
1948 don't know whether we'll actually need a dynamic relocation
1949 entry for this reloc. So make a record of it. Once we
1950 find out if this thing needs dynamic relocation we'll
1951 expand the relocation sections by the appropriate amount. */
1952
1953 struct alpha_elf_reloc_entry *rent;
1954
1955 for (rent = h->reloc_entries; rent; rent = rent->next)
1956 if (rent->rtype == r_type && rent->srel == sreloc)
1957 break;
1958
1959 if (!rent)
1960 {
1961 amt = sizeof (struct alpha_elf_reloc_entry);
1962 rent = (struct alpha_elf_reloc_entry *) bfd_alloc (abfd, amt);
1963 if (!rent)
1964 return FALSE;
1965
1966 rent->srel = sreloc;
1967 rent->rtype = r_type;
1968 rent->count = 1;
1969 rent->reltext = (sec->flags & SEC_READONLY) != 0;
1970
1971 rent->next = h->reloc_entries;
1972 h->reloc_entries = rent;
1973 }
1974 else
1975 rent->count++;
1976 }
1977 else if (info->shared)
1978 {
1979 /* If this is a shared library, and the section is to be
1980 loaded into memory, we need a RELATIVE reloc. */
1981 sreloc->size += sizeof (Elf64_External_Rela);
1982 if (sec->flags & SEC_READONLY)
1983 info->flags |= DF_TEXTREL;
1984 }
1985 }
1986 }
1987
1988 return TRUE;
1989 }
1990
1991 /* Return the section that should be marked against GC for a given
1992 relocation. */
1993
1994 static asection *
1995 elf64_alpha_gc_mark_hook (asection *sec, struct bfd_link_info *info,
1996 Elf_Internal_Rela *rel,
1997 struct elf_link_hash_entry *h, Elf_Internal_Sym *sym)
1998 {
1999 /* These relocations don't really reference a symbol. Instead we store
2000 extra data in their addend slot. Ignore the symbol. */
2001 switch (ELF64_R_TYPE (rel->r_info))
2002 {
2003 case R_ALPHA_LITUSE:
2004 case R_ALPHA_GPDISP:
2005 case R_ALPHA_HINT:
2006 return NULL;
2007 }
2008
2009 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2010 }
2011
2012 /* Update the got entry reference counts for the section being removed. */
2013
2014 static bfd_boolean
2015 elf64_alpha_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
2016 asection *sec, const Elf_Internal_Rela *relocs)
2017 {
2018 Elf_Internal_Shdr *symtab_hdr;
2019 struct alpha_elf_link_hash_entry **sym_hashes;
2020 const Elf_Internal_Rela *rel, *relend;
2021
2022 if (info->relocatable)
2023 return TRUE;
2024
2025 symtab_hdr = &elf_symtab_hdr (abfd);
2026 sym_hashes = alpha_elf_sym_hashes (abfd);
2027
2028 relend = relocs + sec->reloc_count;
2029 for (rel = relocs; rel < relend; rel++)
2030 {
2031 unsigned long r_symndx, r_type;
2032 struct alpha_elf_link_hash_entry *h = NULL;
2033 struct alpha_elf_got_entry *gotent;
2034
2035 r_symndx = ELF64_R_SYM (rel->r_info);
2036 if (r_symndx >= symtab_hdr->sh_info)
2037 {
2038 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2039 while (h->root.root.type == bfd_link_hash_indirect
2040 || h->root.root.type == bfd_link_hash_warning)
2041 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2042 }
2043
2044 r_type = ELF64_R_TYPE (rel->r_info);
2045 switch (r_type)
2046 {
2047 case R_ALPHA_LITERAL:
2048 /* ??? Ignore re-computation of gotent_flags. We're not
2049 carrying a use-count for each bit in that mask. */
2050
2051 case R_ALPHA_TLSGD:
2052 case R_ALPHA_GOTDTPREL:
2053 case R_ALPHA_GOTTPREL:
2054 /* Fetch the got entry from the tables. */
2055 gotent = get_got_entry (abfd, h, r_type, r_symndx, rel->r_addend);
2056
2057 /* The got entry *must* exist, since we should have created it
2058 before during check_relocs. Also note that get_got_entry
2059 assumed this was going to be another use, and so incremented
2060 the use count again. Thus the use count must be at least the
2061 one real use and the "use" we just added. */
2062 if (gotent == NULL || gotent->use_count < 2)
2063 {
2064 abort ();
2065 return FALSE;
2066 }
2067 gotent->use_count -= 2;
2068 break;
2069
2070 default:
2071 break;
2072 }
2073 }
2074
2075 return TRUE;
2076 }
2077
2078 /* Adjust a symbol defined by a dynamic object and referenced by a
2079 regular object. The current definition is in some section of the
2080 dynamic object, but we're not including those sections. We have to
2081 change the definition to something the rest of the link can
2082 understand. */
2083
2084 static bfd_boolean
2085 elf64_alpha_adjust_dynamic_symbol (struct bfd_link_info *info,
2086 struct elf_link_hash_entry *h)
2087 {
2088 bfd *dynobj;
2089 asection *s;
2090 struct alpha_elf_link_hash_entry *ah;
2091
2092 dynobj = elf_hash_table(info)->dynobj;
2093 ah = (struct alpha_elf_link_hash_entry *)h;
2094
2095 /* Now that we've seen all of the input symbols, finalize our decision
2096 about whether this symbol should get a .plt entry. Irritatingly, it
2097 is common for folk to leave undefined symbols in shared libraries,
2098 and they still expect lazy binding; accept undefined symbols in lieu
2099 of STT_FUNC. */
2100 if (alpha_elf_dynamic_symbol_p (h, info) && elf64_alpha_want_plt (ah))
2101 {
2102 h->needs_plt = TRUE;
2103
2104 s = bfd_get_section_by_name(dynobj, ".plt");
2105 if (!s && !elf64_alpha_create_dynamic_sections (dynobj, info))
2106 return FALSE;
2107
2108 /* We need one plt entry per got subsection. Delay allocation of
2109 the actual plt entries until size_plt_section, called from
2110 size_dynamic_sections or during relaxation. */
2111
2112 return TRUE;
2113 }
2114 else
2115 h->needs_plt = FALSE;
2116
2117 /* If this is a weak symbol, and there is a real definition, the
2118 processor independent code will have arranged for us to see the
2119 real definition first, and we can just use the same value. */
2120 if (h->u.weakdef != NULL)
2121 {
2122 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
2123 || h->u.weakdef->root.type == bfd_link_hash_defweak);
2124 h->root.u.def.section = h->u.weakdef->root.u.def.section;
2125 h->root.u.def.value = h->u.weakdef->root.u.def.value;
2126 return TRUE;
2127 }
2128
2129 /* This is a reference to a symbol defined by a dynamic object which
2130 is not a function. The Alpha, since it uses .got entries for all
2131 symbols even in regular objects, does not need the hackery of a
2132 .dynbss section and COPY dynamic relocations. */
2133
2134 return TRUE;
2135 }
2136
2137 /* Record STO_ALPHA_NOPV and STO_ALPHA_STD_GPLOAD. */
2138
2139 static void
2140 elf64_alpha_merge_symbol_attribute (struct elf_link_hash_entry *h,
2141 const Elf_Internal_Sym *isym,
2142 bfd_boolean definition,
2143 bfd_boolean dynamic)
2144 {
2145 if (!dynamic && definition)
2146 h->other = ((h->other & ELF_ST_VISIBILITY (-1))
2147 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
2148 }
2149
2150 /* Symbol versioning can create new symbols, and make our old symbols
2151 indirect to the new ones. Consolidate the got and reloc information
2152 in these situations. */
2153
2154 static bfd_boolean
2155 elf64_alpha_merge_ind_symbols (struct alpha_elf_link_hash_entry *hi,
2156 PTR dummy ATTRIBUTE_UNUSED)
2157 {
2158 struct alpha_elf_link_hash_entry *hs;
2159
2160 if (hi->root.root.type != bfd_link_hash_indirect)
2161 return TRUE;
2162 hs = hi;
2163 do {
2164 hs = (struct alpha_elf_link_hash_entry *)hs->root.root.u.i.link;
2165 } while (hs->root.root.type == bfd_link_hash_indirect);
2166
2167 /* Merge the flags. Whee. */
2168
2169 hs->flags |= hi->flags;
2170
2171 /* Merge the .got entries. Cannibalize the old symbol's list in
2172 doing so, since we don't need it anymore. */
2173
2174 if (hs->got_entries == NULL)
2175 hs->got_entries = hi->got_entries;
2176 else
2177 {
2178 struct alpha_elf_got_entry *gi, *gs, *gin, *gsh;
2179
2180 gsh = hs->got_entries;
2181 for (gi = hi->got_entries; gi ; gi = gin)
2182 {
2183 gin = gi->next;
2184 for (gs = gsh; gs ; gs = gs->next)
2185 if (gi->gotobj == gs->gotobj
2186 && gi->reloc_type == gs->reloc_type
2187 && gi->addend == gs->addend)
2188 {
2189 gi->use_count += gs->use_count;
2190 goto got_found;
2191 }
2192 gi->next = hs->got_entries;
2193 hs->got_entries = gi;
2194 got_found:;
2195 }
2196 }
2197 hi->got_entries = NULL;
2198
2199 /* And similar for the reloc entries. */
2200
2201 if (hs->reloc_entries == NULL)
2202 hs->reloc_entries = hi->reloc_entries;
2203 else
2204 {
2205 struct alpha_elf_reloc_entry *ri, *rs, *rin, *rsh;
2206
2207 rsh = hs->reloc_entries;
2208 for (ri = hi->reloc_entries; ri ; ri = rin)
2209 {
2210 rin = ri->next;
2211 for (rs = rsh; rs ; rs = rs->next)
2212 if (ri->rtype == rs->rtype && ri->srel == rs->srel)
2213 {
2214 rs->count += ri->count;
2215 goto found_reloc;
2216 }
2217 ri->next = hs->reloc_entries;
2218 hs->reloc_entries = ri;
2219 found_reloc:;
2220 }
2221 }
2222 hi->reloc_entries = NULL;
2223
2224 return TRUE;
2225 }
2226
2227 /* Is it possible to merge two object file's .got tables? */
2228
2229 static bfd_boolean
2230 elf64_alpha_can_merge_gots (bfd *a, bfd *b)
2231 {
2232 int total = alpha_elf_tdata (a)->total_got_size;
2233 bfd *bsub;
2234
2235 /* Trivial quick fallout test. */
2236 if (total + alpha_elf_tdata (b)->total_got_size <= MAX_GOT_SIZE)
2237 return TRUE;
2238
2239 /* By their nature, local .got entries cannot be merged. */
2240 if ((total += alpha_elf_tdata (b)->local_got_size) > MAX_GOT_SIZE)
2241 return FALSE;
2242
2243 /* Failing the common trivial comparison, we must effectively
2244 perform the merge. Not actually performing the merge means that
2245 we don't have to store undo information in case we fail. */
2246 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2247 {
2248 struct alpha_elf_link_hash_entry **hashes = alpha_elf_sym_hashes (bsub);
2249 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2250 int i, n;
2251
2252 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2253 for (i = 0; i < n; ++i)
2254 {
2255 struct alpha_elf_got_entry *ae, *be;
2256 struct alpha_elf_link_hash_entry *h;
2257
2258 h = hashes[i];
2259 while (h->root.root.type == bfd_link_hash_indirect
2260 || h->root.root.type == bfd_link_hash_warning)
2261 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2262
2263 for (be = h->got_entries; be ; be = be->next)
2264 {
2265 if (be->use_count == 0)
2266 continue;
2267 if (be->gotobj != b)
2268 continue;
2269
2270 for (ae = h->got_entries; ae ; ae = ae->next)
2271 if (ae->gotobj == a
2272 && ae->reloc_type == be->reloc_type
2273 && ae->addend == be->addend)
2274 goto global_found;
2275
2276 total += alpha_got_entry_size (be->reloc_type);
2277 if (total > MAX_GOT_SIZE)
2278 return FALSE;
2279 global_found:;
2280 }
2281 }
2282 }
2283
2284 return TRUE;
2285 }
2286
2287 /* Actually merge two .got tables. */
2288
2289 static void
2290 elf64_alpha_merge_gots (bfd *a, bfd *b)
2291 {
2292 int total = alpha_elf_tdata (a)->total_got_size;
2293 bfd *bsub;
2294
2295 /* Remember local expansion. */
2296 {
2297 int e = alpha_elf_tdata (b)->local_got_size;
2298 total += e;
2299 alpha_elf_tdata (a)->local_got_size += e;
2300 }
2301
2302 for (bsub = b; bsub ; bsub = alpha_elf_tdata (bsub)->in_got_link_next)
2303 {
2304 struct alpha_elf_got_entry **local_got_entries;
2305 struct alpha_elf_link_hash_entry **hashes;
2306 Elf_Internal_Shdr *symtab_hdr;
2307 int i, n;
2308
2309 /* Let the local .got entries know they are part of a new subsegment. */
2310 local_got_entries = alpha_elf_tdata (bsub)->local_got_entries;
2311 if (local_got_entries)
2312 {
2313 n = elf_tdata (bsub)->symtab_hdr.sh_info;
2314 for (i = 0; i < n; ++i)
2315 {
2316 struct alpha_elf_got_entry *ent;
2317 for (ent = local_got_entries[i]; ent; ent = ent->next)
2318 ent->gotobj = a;
2319 }
2320 }
2321
2322 /* Merge the global .got entries. */
2323 hashes = alpha_elf_sym_hashes (bsub);
2324 symtab_hdr = &elf_tdata (bsub)->symtab_hdr;
2325
2326 n = NUM_SHDR_ENTRIES (symtab_hdr) - symtab_hdr->sh_info;
2327 for (i = 0; i < n; ++i)
2328 {
2329 struct alpha_elf_got_entry *ae, *be, **pbe, **start;
2330 struct alpha_elf_link_hash_entry *h;
2331
2332 h = hashes[i];
2333 while (h->root.root.type == bfd_link_hash_indirect
2334 || h->root.root.type == bfd_link_hash_warning)
2335 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
2336
2337 pbe = start = &h->got_entries;
2338 while ((be = *pbe) != NULL)
2339 {
2340 if (be->use_count == 0)
2341 {
2342 *pbe = be->next;
2343 memset (be, 0xa5, sizeof (*be));
2344 goto kill;
2345 }
2346 if (be->gotobj != b)
2347 goto next;
2348
2349 for (ae = *start; ae ; ae = ae->next)
2350 if (ae->gotobj == a
2351 && ae->reloc_type == be->reloc_type
2352 && ae->addend == be->addend)
2353 {
2354 ae->flags |= be->flags;
2355 ae->use_count += be->use_count;
2356 *pbe = be->next;
2357 memset (be, 0xa5, sizeof (*be));
2358 goto kill;
2359 }
2360 be->gotobj = a;
2361 total += alpha_got_entry_size (be->reloc_type);
2362
2363 next:;
2364 pbe = &be->next;
2365 kill:;
2366 }
2367 }
2368
2369 alpha_elf_tdata (bsub)->gotobj = a;
2370 }
2371 alpha_elf_tdata (a)->total_got_size = total;
2372
2373 /* Merge the two in_got chains. */
2374 {
2375 bfd *next;
2376
2377 bsub = a;
2378 while ((next = alpha_elf_tdata (bsub)->in_got_link_next) != NULL)
2379 bsub = next;
2380
2381 alpha_elf_tdata (bsub)->in_got_link_next = b;
2382 }
2383 }
2384
2385 /* Calculate the offsets for the got entries. */
2386
2387 static bfd_boolean
2388 elf64_alpha_calc_got_offsets_for_symbol (struct alpha_elf_link_hash_entry *h,
2389 PTR arg ATTRIBUTE_UNUSED)
2390 {
2391 struct alpha_elf_got_entry *gotent;
2392
2393 if (h->root.root.type == bfd_link_hash_warning)
2394 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2395
2396 for (gotent = h->got_entries; gotent; gotent = gotent->next)
2397 if (gotent->use_count > 0)
2398 {
2399 struct alpha_elf_obj_tdata *td;
2400 bfd_size_type *plge;
2401
2402 td = alpha_elf_tdata (gotent->gotobj);
2403 plge = &td->got->size;
2404 gotent->got_offset = *plge;
2405 *plge += alpha_got_entry_size (gotent->reloc_type);
2406 }
2407
2408 return TRUE;
2409 }
2410
2411 static void
2412 elf64_alpha_calc_got_offsets (struct bfd_link_info *info)
2413 {
2414 bfd *i, *got_list;
2415 struct alpha_elf_link_hash_table * htab;
2416
2417 htab = alpha_elf_hash_table (info);
2418 if (htab == NULL)
2419 return;
2420 got_list = htab->got_list;
2421
2422 /* First, zero out the .got sizes, as we may be recalculating the
2423 .got after optimizing it. */
2424 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2425 alpha_elf_tdata(i)->got->size = 0;
2426
2427 /* Next, fill in the offsets for all the global entries. */
2428 alpha_elf_link_hash_traverse (htab,
2429 elf64_alpha_calc_got_offsets_for_symbol,
2430 NULL);
2431
2432 /* Finally, fill in the offsets for the local entries. */
2433 for (i = got_list; i ; i = alpha_elf_tdata(i)->got_link_next)
2434 {
2435 bfd_size_type got_offset = alpha_elf_tdata(i)->got->size;
2436 bfd *j;
2437
2438 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2439 {
2440 struct alpha_elf_got_entry **local_got_entries, *gotent;
2441 int k, n;
2442
2443 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2444 if (!local_got_entries)
2445 continue;
2446
2447 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2448 for (gotent = local_got_entries[k]; gotent; gotent = gotent->next)
2449 if (gotent->use_count > 0)
2450 {
2451 gotent->got_offset = got_offset;
2452 got_offset += alpha_got_entry_size (gotent->reloc_type);
2453 }
2454 }
2455
2456 alpha_elf_tdata(i)->got->size = got_offset;
2457 }
2458 }
2459
2460 /* Constructs the gots. */
2461
2462 static bfd_boolean
2463 elf64_alpha_size_got_sections (struct bfd_link_info *info)
2464 {
2465 bfd *i, *got_list, *cur_got_obj = NULL;
2466 struct alpha_elf_link_hash_table * htab;
2467
2468 htab = alpha_elf_hash_table (info);
2469 if (htab == NULL)
2470 return FALSE;
2471 got_list = htab->got_list;
2472
2473 /* On the first time through, pretend we have an existing got list
2474 consisting of all of the input files. */
2475 if (got_list == NULL)
2476 {
2477 for (i = info->input_bfds; i ; i = i->link_next)
2478 {
2479 bfd *this_got;
2480
2481 if (! is_alpha_elf (i))
2482 continue;
2483
2484 this_got = alpha_elf_tdata (i)->gotobj;
2485 if (this_got == NULL)
2486 continue;
2487
2488 /* We are assuming no merging has yet occurred. */
2489 BFD_ASSERT (this_got == i);
2490
2491 if (alpha_elf_tdata (this_got)->total_got_size > MAX_GOT_SIZE)
2492 {
2493 /* Yikes! A single object file has too many entries. */
2494 (*_bfd_error_handler)
2495 (_("%B: .got subsegment exceeds 64K (size %d)"),
2496 i, alpha_elf_tdata (this_got)->total_got_size);
2497 return FALSE;
2498 }
2499
2500 if (got_list == NULL)
2501 got_list = this_got;
2502 else
2503 alpha_elf_tdata(cur_got_obj)->got_link_next = this_got;
2504 cur_got_obj = this_got;
2505 }
2506
2507 /* Strange degenerate case of no got references. */
2508 if (got_list == NULL)
2509 return TRUE;
2510
2511 htab->got_list = got_list;
2512 }
2513
2514 cur_got_obj = got_list;
2515 if (cur_got_obj == NULL)
2516 return FALSE;
2517
2518 i = alpha_elf_tdata(cur_got_obj)->got_link_next;
2519 while (i != NULL)
2520 {
2521 if (elf64_alpha_can_merge_gots (cur_got_obj, i))
2522 {
2523 elf64_alpha_merge_gots (cur_got_obj, i);
2524
2525 alpha_elf_tdata(i)->got->size = 0;
2526 i = alpha_elf_tdata(i)->got_link_next;
2527 alpha_elf_tdata(cur_got_obj)->got_link_next = i;
2528 }
2529 else
2530 {
2531 cur_got_obj = i;
2532 i = alpha_elf_tdata(i)->got_link_next;
2533 }
2534 }
2535
2536 /* Once the gots have been merged, fill in the got offsets for
2537 everything therein. */
2538 elf64_alpha_calc_got_offsets (info);
2539
2540 return TRUE;
2541 }
2542
2543 static bfd_boolean
2544 elf64_alpha_size_plt_section_1 (struct alpha_elf_link_hash_entry *h, PTR data)
2545 {
2546 asection *splt = (asection *) data;
2547 struct alpha_elf_got_entry *gotent;
2548 bfd_boolean saw_one = FALSE;
2549
2550 /* If we didn't need an entry before, we still don't. */
2551 if (!h->root.needs_plt)
2552 return TRUE;
2553
2554 /* For each LITERAL got entry still in use, allocate a plt entry. */
2555 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2556 if (gotent->reloc_type == R_ALPHA_LITERAL
2557 && gotent->use_count > 0)
2558 {
2559 if (splt->size == 0)
2560 splt->size = PLT_HEADER_SIZE;
2561 gotent->plt_offset = splt->size;
2562 splt->size += PLT_ENTRY_SIZE;
2563 saw_one = TRUE;
2564 }
2565
2566 /* If there weren't any, there's no longer a need for the PLT entry. */
2567 if (!saw_one)
2568 h->root.needs_plt = FALSE;
2569
2570 return TRUE;
2571 }
2572
2573 /* Called from relax_section to rebuild the PLT in light of potential changes
2574 in the function's status. */
2575
2576 static void
2577 elf64_alpha_size_plt_section (struct bfd_link_info *info)
2578 {
2579 asection *splt, *spltrel, *sgotplt;
2580 unsigned long entries;
2581 bfd *dynobj;
2582 struct alpha_elf_link_hash_table * htab;
2583
2584 htab = alpha_elf_hash_table (info);
2585 if (htab == NULL)
2586 return;
2587
2588 dynobj = elf_hash_table(info)->dynobj;
2589 splt = bfd_get_section_by_name (dynobj, ".plt");
2590 if (splt == NULL)
2591 return;
2592
2593 splt->size = 0;
2594
2595 alpha_elf_link_hash_traverse (htab,
2596 elf64_alpha_size_plt_section_1, splt);
2597
2598 /* Every plt entry requires a JMP_SLOT relocation. */
2599 spltrel = bfd_get_section_by_name (dynobj, ".rela.plt");
2600 entries = 0;
2601 if (splt->size)
2602 {
2603 if (elf64_alpha_use_secureplt)
2604 entries = (splt->size - NEW_PLT_HEADER_SIZE) / NEW_PLT_ENTRY_SIZE;
2605 else
2606 entries = (splt->size - OLD_PLT_HEADER_SIZE) / OLD_PLT_ENTRY_SIZE;
2607 }
2608 spltrel->size = entries * sizeof (Elf64_External_Rela);
2609
2610 /* When using the secureplt, we need two words somewhere in the data
2611 segment for the dynamic linker to tell us where to go. This is the
2612 entire contents of the .got.plt section. */
2613 if (elf64_alpha_use_secureplt)
2614 {
2615 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2616 sgotplt->size = entries ? 16 : 0;
2617 }
2618 }
2619
2620 static bfd_boolean
2621 elf64_alpha_always_size_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2622 struct bfd_link_info *info)
2623 {
2624 bfd *i;
2625 struct alpha_elf_link_hash_table * htab;
2626
2627 if (info->relocatable)
2628 return TRUE;
2629
2630 htab = alpha_elf_hash_table (info);
2631 if (htab == NULL)
2632 return FALSE;
2633
2634 /* First, take care of the indirect symbols created by versioning. */
2635 alpha_elf_link_hash_traverse (htab, elf64_alpha_merge_ind_symbols,
2636 NULL);
2637
2638 if (!elf64_alpha_size_got_sections (info))
2639 return FALSE;
2640
2641 /* Allocate space for all of the .got subsections. */
2642 i = htab->got_list;
2643 for ( ; i ; i = alpha_elf_tdata(i)->got_link_next)
2644 {
2645 asection *s = alpha_elf_tdata(i)->got;
2646 if (s->size > 0)
2647 {
2648 s->contents = (bfd_byte *) bfd_zalloc (i, s->size);
2649 if (s->contents == NULL)
2650 return FALSE;
2651 }
2652 }
2653
2654 return TRUE;
2655 }
2656
2657 /* The number of dynamic relocations required by a static relocation. */
2658
2659 static int
2660 alpha_dynamic_entries_for_reloc (int r_type, int dynamic, int shared)
2661 {
2662 switch (r_type)
2663 {
2664 /* May appear in GOT entries. */
2665 case R_ALPHA_TLSGD:
2666 return (dynamic ? 2 : shared ? 1 : 0);
2667 case R_ALPHA_TLSLDM:
2668 return shared;
2669 case R_ALPHA_LITERAL:
2670 case R_ALPHA_GOTTPREL:
2671 return dynamic || shared;
2672 case R_ALPHA_GOTDTPREL:
2673 return dynamic;
2674
2675 /* May appear in data sections. */
2676 case R_ALPHA_REFLONG:
2677 case R_ALPHA_REFQUAD:
2678 case R_ALPHA_TPREL64:
2679 return dynamic || shared;
2680
2681 /* Everything else is illegal. We'll issue an error during
2682 relocate_section. */
2683 default:
2684 return 0;
2685 }
2686 }
2687
2688 /* Work out the sizes of the dynamic relocation entries. */
2689
2690 static bfd_boolean
2691 elf64_alpha_calc_dynrel_sizes (struct alpha_elf_link_hash_entry *h,
2692 struct bfd_link_info *info)
2693 {
2694 bfd_boolean dynamic;
2695 struct alpha_elf_reloc_entry *relent;
2696 unsigned long entries;
2697
2698 if (h->root.root.type == bfd_link_hash_warning)
2699 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2700
2701 /* If the symbol was defined as a common symbol in a regular object
2702 file, and there was no definition in any dynamic object, then the
2703 linker will have allocated space for the symbol in a common
2704 section but the ELF_LINK_HASH_DEF_REGULAR flag will not have been
2705 set. This is done for dynamic symbols in
2706 elf_adjust_dynamic_symbol but this is not done for non-dynamic
2707 symbols, somehow. */
2708 if (!h->root.def_regular
2709 && h->root.ref_regular
2710 && !h->root.def_dynamic
2711 && (h->root.root.type == bfd_link_hash_defined
2712 || h->root.root.type == bfd_link_hash_defweak)
2713 && !(h->root.root.u.def.section->owner->flags & DYNAMIC))
2714 h->root.def_regular = 1;
2715
2716 /* If the symbol is dynamic, we'll need all the relocations in their
2717 natural form. If this is a shared object, and it has been forced
2718 local, we'll need the same number of RELATIVE relocations. */
2719 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2720
2721 /* If the symbol is a hidden undefined weak, then we never have any
2722 relocations. Avoid the loop which may want to add RELATIVE relocs
2723 based on info->shared. */
2724 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2725 return TRUE;
2726
2727 for (relent = h->reloc_entries; relent; relent = relent->next)
2728 {
2729 entries = alpha_dynamic_entries_for_reloc (relent->rtype, dynamic,
2730 info->shared);
2731 if (entries)
2732 {
2733 relent->srel->size +=
2734 entries * sizeof (Elf64_External_Rela) * relent->count;
2735 if (relent->reltext)
2736 info->flags |= DT_TEXTREL;
2737 }
2738 }
2739
2740 return TRUE;
2741 }
2742
2743 /* Subroutine of elf64_alpha_size_rela_got_section for doing the
2744 global symbols. */
2745
2746 static bfd_boolean
2747 elf64_alpha_size_rela_got_1 (struct alpha_elf_link_hash_entry *h,
2748 struct bfd_link_info *info)
2749 {
2750 bfd_boolean dynamic;
2751 struct alpha_elf_got_entry *gotent;
2752 unsigned long entries;
2753
2754 if (h->root.root.type == bfd_link_hash_warning)
2755 h = (struct alpha_elf_link_hash_entry *) h->root.root.u.i.link;
2756
2757 /* If we're using a plt for this symbol, then all of its relocations
2758 for its got entries go into .rela.plt. */
2759 if (h->root.needs_plt)
2760 return TRUE;
2761
2762 /* If the symbol is dynamic, we'll need all the relocations in their
2763 natural form. If this is a shared object, and it has been forced
2764 local, we'll need the same number of RELATIVE relocations. */
2765 dynamic = alpha_elf_dynamic_symbol_p (&h->root, info);
2766
2767 /* If the symbol is a hidden undefined weak, then we never have any
2768 relocations. Avoid the loop which may want to add RELATIVE relocs
2769 based on info->shared. */
2770 if (h->root.root.type == bfd_link_hash_undefweak && !dynamic)
2771 return TRUE;
2772
2773 entries = 0;
2774 for (gotent = h->got_entries; gotent ; gotent = gotent->next)
2775 if (gotent->use_count > 0)
2776 entries += alpha_dynamic_entries_for_reloc (gotent->reloc_type,
2777 dynamic, info->shared);
2778
2779 if (entries > 0)
2780 {
2781 bfd *dynobj = elf_hash_table(info)->dynobj;
2782 asection *srel = bfd_get_section_by_name (dynobj, ".rela.got");
2783 BFD_ASSERT (srel != NULL);
2784 srel->size += sizeof (Elf64_External_Rela) * entries;
2785 }
2786
2787 return TRUE;
2788 }
2789
2790 /* Set the sizes of the dynamic relocation sections. */
2791
2792 static void
2793 elf64_alpha_size_rela_got_section (struct bfd_link_info *info)
2794 {
2795 unsigned long entries;
2796 bfd *i, *dynobj;
2797 asection *srel;
2798 struct alpha_elf_link_hash_table * htab;
2799
2800 htab = alpha_elf_hash_table (info);
2801 if (htab == NULL)
2802 return;
2803
2804 /* Shared libraries often require RELATIVE relocs, and some relocs
2805 require attention for the main application as well. */
2806
2807 entries = 0;
2808 for (i = htab->got_list;
2809 i ; i = alpha_elf_tdata(i)->got_link_next)
2810 {
2811 bfd *j;
2812
2813 for (j = i; j ; j = alpha_elf_tdata(j)->in_got_link_next)
2814 {
2815 struct alpha_elf_got_entry **local_got_entries, *gotent;
2816 int k, n;
2817
2818 local_got_entries = alpha_elf_tdata(j)->local_got_entries;
2819 if (!local_got_entries)
2820 continue;
2821
2822 for (k = 0, n = elf_tdata(j)->symtab_hdr.sh_info; k < n; ++k)
2823 for (gotent = local_got_entries[k];
2824 gotent ; gotent = gotent->next)
2825 if (gotent->use_count > 0)
2826 entries += (alpha_dynamic_entries_for_reloc
2827 (gotent->reloc_type, 0, info->shared));
2828 }
2829 }
2830
2831 dynobj = elf_hash_table(info)->dynobj;
2832 srel = bfd_get_section_by_name (dynobj, ".rela.got");
2833 if (!srel)
2834 {
2835 BFD_ASSERT (entries == 0);
2836 return;
2837 }
2838 srel->size = sizeof (Elf64_External_Rela) * entries;
2839
2840 /* Now do the non-local symbols. */
2841 alpha_elf_link_hash_traverse (htab,
2842 elf64_alpha_size_rela_got_1, info);
2843 }
2844
2845 /* Set the sizes of the dynamic sections. */
2846
2847 static bfd_boolean
2848 elf64_alpha_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
2849 struct bfd_link_info *info)
2850 {
2851 bfd *dynobj;
2852 asection *s;
2853 bfd_boolean relplt;
2854 struct alpha_elf_link_hash_table * htab;
2855
2856 htab = alpha_elf_hash_table (info);
2857 if (htab == NULL)
2858 return FALSE;
2859
2860 dynobj = elf_hash_table(info)->dynobj;
2861 BFD_ASSERT(dynobj != NULL);
2862
2863 if (elf_hash_table (info)->dynamic_sections_created)
2864 {
2865 /* Set the contents of the .interp section to the interpreter. */
2866 if (info->executable)
2867 {
2868 s = bfd_get_section_by_name (dynobj, ".interp");
2869 BFD_ASSERT (s != NULL);
2870 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
2871 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
2872 }
2873
2874 /* Now that we've seen all of the input files, we can decide which
2875 symbols need dynamic relocation entries and which don't. We've
2876 collected information in check_relocs that we can now apply to
2877 size the dynamic relocation sections. */
2878 alpha_elf_link_hash_traverse (htab,
2879 elf64_alpha_calc_dynrel_sizes, info);
2880
2881 elf64_alpha_size_rela_got_section (info);
2882 elf64_alpha_size_plt_section (info);
2883 }
2884 /* else we're not dynamic and by definition we don't need such things. */
2885
2886 /* The check_relocs and adjust_dynamic_symbol entry points have
2887 determined the sizes of the various dynamic sections. Allocate
2888 memory for them. */
2889 relplt = FALSE;
2890 for (s = dynobj->sections; s != NULL; s = s->next)
2891 {
2892 const char *name;
2893
2894 if (!(s->flags & SEC_LINKER_CREATED))
2895 continue;
2896
2897 /* It's OK to base decisions on the section name, because none
2898 of the dynobj section names depend upon the input files. */
2899 name = bfd_get_section_name (dynobj, s);
2900
2901 if (CONST_STRNEQ (name, ".rela"))
2902 {
2903 if (s->size != 0)
2904 {
2905 if (strcmp (name, ".rela.plt") == 0)
2906 relplt = TRUE;
2907
2908 /* We use the reloc_count field as a counter if we need
2909 to copy relocs into the output file. */
2910 s->reloc_count = 0;
2911 }
2912 }
2913 else if (! CONST_STRNEQ (name, ".got")
2914 && strcmp (name, ".plt") != 0
2915 && strcmp (name, ".dynbss") != 0)
2916 {
2917 /* It's not one of our dynamic sections, so don't allocate space. */
2918 continue;
2919 }
2920
2921 if (s->size == 0)
2922 {
2923 /* If we don't need this section, strip it from the output file.
2924 This is to handle .rela.bss and .rela.plt. We must create it
2925 in create_dynamic_sections, because it must be created before
2926 the linker maps input sections to output sections. The
2927 linker does that before adjust_dynamic_symbol is called, and
2928 it is that function which decides whether anything needs to
2929 go into these sections. */
2930 s->flags |= SEC_EXCLUDE;
2931 }
2932 else if ((s->flags & SEC_HAS_CONTENTS) != 0)
2933 {
2934 /* Allocate memory for the section contents. */
2935 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
2936 if (s->contents == NULL)
2937 return FALSE;
2938 }
2939 }
2940
2941 if (elf_hash_table (info)->dynamic_sections_created)
2942 {
2943 /* Add some entries to the .dynamic section. We fill in the
2944 values later, in elf64_alpha_finish_dynamic_sections, but we
2945 must add the entries now so that we get the correct size for
2946 the .dynamic section. The DT_DEBUG entry is filled in by the
2947 dynamic linker and used by the debugger. */
2948 #define add_dynamic_entry(TAG, VAL) \
2949 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
2950
2951 if (info->executable)
2952 {
2953 if (!add_dynamic_entry (DT_DEBUG, 0))
2954 return FALSE;
2955 }
2956
2957 if (relplt)
2958 {
2959 if (!add_dynamic_entry (DT_PLTGOT, 0)
2960 || !add_dynamic_entry (DT_PLTRELSZ, 0)
2961 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
2962 || !add_dynamic_entry (DT_JMPREL, 0))
2963 return FALSE;
2964
2965 if (elf64_alpha_use_secureplt
2966 && !add_dynamic_entry (DT_ALPHA_PLTRO, 1))
2967 return FALSE;
2968 }
2969
2970 if (!add_dynamic_entry (DT_RELA, 0)
2971 || !add_dynamic_entry (DT_RELASZ, 0)
2972 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
2973 return FALSE;
2974
2975 if (info->flags & DF_TEXTREL)
2976 {
2977 if (!add_dynamic_entry (DT_TEXTREL, 0))
2978 return FALSE;
2979 }
2980 }
2981 #undef add_dynamic_entry
2982
2983 return TRUE;
2984 }
2985 \f
2986 /* These functions do relaxation for Alpha ELF.
2987
2988 Currently I'm only handling what I can do with existing compiler
2989 and assembler support, which means no instructions are removed,
2990 though some may be nopped. At this time GCC does not emit enough
2991 information to do all of the relaxing that is possible. It will
2992 take some not small amount of work for that to happen.
2993
2994 There are a couple of interesting papers that I once read on this
2995 subject, that I cannot find references to at the moment, that
2996 related to Alpha in particular. They are by David Wall, then of
2997 DEC WRL. */
2998
2999 struct alpha_relax_info
3000 {
3001 bfd *abfd;
3002 asection *sec;
3003 bfd_byte *contents;
3004 Elf_Internal_Shdr *symtab_hdr;
3005 Elf_Internal_Rela *relocs, *relend;
3006 struct bfd_link_info *link_info;
3007 bfd_vma gp;
3008 bfd *gotobj;
3009 asection *tsec;
3010 struct alpha_elf_link_hash_entry *h;
3011 struct alpha_elf_got_entry **first_gotent;
3012 struct alpha_elf_got_entry *gotent;
3013 bfd_boolean changed_contents;
3014 bfd_boolean changed_relocs;
3015 unsigned char other;
3016 };
3017
3018 static Elf_Internal_Rela *
3019 elf64_alpha_find_reloc_at_ofs (Elf_Internal_Rela *rel,
3020 Elf_Internal_Rela *relend,
3021 bfd_vma offset, int type)
3022 {
3023 while (rel < relend)
3024 {
3025 if (rel->r_offset == offset
3026 && ELF64_R_TYPE (rel->r_info) == (unsigned int) type)
3027 return rel;
3028 ++rel;
3029 }
3030 return NULL;
3031 }
3032
3033 static bfd_boolean
3034 elf64_alpha_relax_got_load (struct alpha_relax_info *info, bfd_vma symval,
3035 Elf_Internal_Rela *irel, unsigned long r_type)
3036 {
3037 unsigned int insn;
3038 bfd_signed_vma disp;
3039
3040 /* Get the instruction. */
3041 insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
3042
3043 if (insn >> 26 != OP_LDQ)
3044 {
3045 reloc_howto_type *howto = elf64_alpha_howto_table + r_type;
3046 ((*_bfd_error_handler)
3047 ("%B: %A+0x%lx: warning: %s relocation against unexpected insn",
3048 info->abfd, info->sec,
3049 (unsigned long) irel->r_offset, howto->name));
3050 return TRUE;
3051 }
3052
3053 /* Can't relax dynamic symbols. */
3054 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3055 return TRUE;
3056
3057 /* Can't use local-exec relocations in shared libraries. */
3058 if (r_type == R_ALPHA_GOTTPREL && info->link_info->shared)
3059 return TRUE;
3060
3061 if (r_type == R_ALPHA_LITERAL)
3062 {
3063 /* Look for nice constant addresses. This includes the not-uncommon
3064 special case of 0 for undefweak symbols. */
3065 if ((info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3066 || (!info->link_info->shared
3067 && (symval >= (bfd_vma)-0x8000 || symval < 0x8000)))
3068 {
3069 disp = 0;
3070 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3071 insn |= (symval & 0xffff);
3072 r_type = R_ALPHA_NONE;
3073 }
3074 else
3075 {
3076 disp = symval - info->gp;
3077 insn = (OP_LDA << 26) | (insn & 0x03ff0000);
3078 r_type = R_ALPHA_GPREL16;
3079 }
3080 }
3081 else
3082 {
3083 bfd_vma dtp_base, tp_base;
3084
3085 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3086 dtp_base = alpha_get_dtprel_base (info->link_info);
3087 tp_base = alpha_get_tprel_base (info->link_info);
3088 disp = symval - (r_type == R_ALPHA_GOTDTPREL ? dtp_base : tp_base);
3089
3090 insn = (OP_LDA << 26) | (insn & (31 << 21)) | (31 << 16);
3091
3092 switch (r_type)
3093 {
3094 case R_ALPHA_GOTDTPREL:
3095 r_type = R_ALPHA_DTPREL16;
3096 break;
3097 case R_ALPHA_GOTTPREL:
3098 r_type = R_ALPHA_TPREL16;
3099 break;
3100 default:
3101 BFD_ASSERT (0);
3102 return FALSE;
3103 }
3104 }
3105
3106 if (disp < -0x8000 || disp >= 0x8000)
3107 return TRUE;
3108
3109 bfd_put_32 (info->abfd, (bfd_vma) insn, info->contents + irel->r_offset);
3110 info->changed_contents = TRUE;
3111
3112 /* Reduce the use count on this got entry by one, possibly
3113 eliminating it. */
3114 if (--info->gotent->use_count == 0)
3115 {
3116 int sz = alpha_got_entry_size (r_type);
3117 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3118 if (!info->h)
3119 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3120 }
3121
3122 /* Smash the existing GOT relocation for its 16-bit immediate pair. */
3123 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info), r_type);
3124 info->changed_relocs = TRUE;
3125
3126 /* ??? Search forward through this basic block looking for insns
3127 that use the target register. Stop after an insn modifying the
3128 register is seen, or after a branch or call.
3129
3130 Any such memory load insn may be substituted by a load directly
3131 off the GP. This allows the memory load insn to be issued before
3132 the calculated GP register would otherwise be ready.
3133
3134 Any such jsr insn can be replaced by a bsr if it is in range.
3135
3136 This would mean that we'd have to _add_ relocations, the pain of
3137 which gives one pause. */
3138
3139 return TRUE;
3140 }
3141
3142 static bfd_vma
3143 elf64_alpha_relax_opt_call (struct alpha_relax_info *info, bfd_vma symval)
3144 {
3145 /* If the function has the same gp, and we can identify that the
3146 function does not use its function pointer, we can eliminate the
3147 address load. */
3148
3149 /* If the symbol is marked NOPV, we are being told the function never
3150 needs its procedure value. */
3151 if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_NOPV)
3152 return symval;
3153
3154 /* If the symbol is marked STD_GP, we are being told the function does
3155 a normal ldgp in the first two words. */
3156 else if ((info->other & STO_ALPHA_STD_GPLOAD) == STO_ALPHA_STD_GPLOAD)
3157 ;
3158
3159 /* Otherwise, we may be able to identify a GP load in the first two
3160 words, which we can then skip. */
3161 else
3162 {
3163 Elf_Internal_Rela *tsec_relocs, *tsec_relend, *tsec_free, *gpdisp;
3164 bfd_vma ofs;
3165
3166 /* Load the relocations from the section that the target symbol is in. */
3167 if (info->sec == info->tsec)
3168 {
3169 tsec_relocs = info->relocs;
3170 tsec_relend = info->relend;
3171 tsec_free = NULL;
3172 }
3173 else
3174 {
3175 tsec_relocs = (_bfd_elf_link_read_relocs
3176 (info->abfd, info->tsec, (PTR) NULL,
3177 (Elf_Internal_Rela *) NULL,
3178 info->link_info->keep_memory));
3179 if (tsec_relocs == NULL)
3180 return 0;
3181 tsec_relend = tsec_relocs + info->tsec->reloc_count;
3182 tsec_free = (info->link_info->keep_memory ? NULL : tsec_relocs);
3183 }
3184
3185 /* Recover the symbol's offset within the section. */
3186 ofs = (symval - info->tsec->output_section->vma
3187 - info->tsec->output_offset);
3188
3189 /* Look for a GPDISP reloc. */
3190 gpdisp = (elf64_alpha_find_reloc_at_ofs
3191 (tsec_relocs, tsec_relend, ofs, R_ALPHA_GPDISP));
3192
3193 if (!gpdisp || gpdisp->r_addend != 4)
3194 {
3195 if (tsec_free)
3196 free (tsec_free);
3197 return 0;
3198 }
3199 if (tsec_free)
3200 free (tsec_free);
3201 }
3202
3203 /* We've now determined that we can skip an initial gp load. Verify
3204 that the call and the target use the same gp. */
3205 if (info->link_info->output_bfd->xvec != info->tsec->owner->xvec
3206 || info->gotobj != alpha_elf_tdata (info->tsec->owner)->gotobj)
3207 return 0;
3208
3209 return symval + 8;
3210 }
3211
3212 static bfd_boolean
3213 elf64_alpha_relax_with_lituse (struct alpha_relax_info *info,
3214 bfd_vma symval, Elf_Internal_Rela *irel)
3215 {
3216 Elf_Internal_Rela *urel, *irelend = info->relend;
3217 int flags, count, i;
3218 bfd_signed_vma disp;
3219 bfd_boolean fits16;
3220 bfd_boolean fits32;
3221 bfd_boolean lit_reused = FALSE;
3222 bfd_boolean all_optimized = TRUE;
3223 unsigned int lit_insn;
3224
3225 lit_insn = bfd_get_32 (info->abfd, info->contents + irel->r_offset);
3226 if (lit_insn >> 26 != OP_LDQ)
3227 {
3228 ((*_bfd_error_handler)
3229 ("%B: %A+0x%lx: warning: LITERAL relocation against unexpected insn",
3230 info->abfd, info->sec,
3231 (unsigned long) irel->r_offset));
3232 return TRUE;
3233 }
3234
3235 /* Can't relax dynamic symbols. */
3236 if (alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info))
3237 return TRUE;
3238
3239 /* Summarize how this particular LITERAL is used. */
3240 for (urel = irel+1, flags = count = 0; urel < irelend; ++urel, ++count)
3241 {
3242 if (ELF64_R_TYPE (urel->r_info) != R_ALPHA_LITUSE)
3243 break;
3244 if (urel->r_addend <= 6)
3245 flags |= 1 << urel->r_addend;
3246 }
3247
3248 /* A little preparation for the loop... */
3249 disp = symval - info->gp;
3250
3251 for (urel = irel+1, i = 0; i < count; ++i, ++urel)
3252 {
3253 unsigned int insn;
3254 int insn_disp;
3255 bfd_signed_vma xdisp;
3256
3257 insn = bfd_get_32 (info->abfd, info->contents + urel->r_offset);
3258
3259 switch (urel->r_addend)
3260 {
3261 case LITUSE_ALPHA_ADDR:
3262 default:
3263 /* This type is really just a placeholder to note that all
3264 uses cannot be optimized, but to still allow some. */
3265 all_optimized = FALSE;
3266 break;
3267
3268 case LITUSE_ALPHA_BASE:
3269 /* We can always optimize 16-bit displacements. */
3270
3271 /* Extract the displacement from the instruction, sign-extending
3272 it if necessary, then test whether it is within 16 or 32 bits
3273 displacement from GP. */
3274 insn_disp = ((insn & 0xffff) ^ 0x8000) - 0x8000;
3275
3276 xdisp = disp + insn_disp;
3277 fits16 = (xdisp >= - (bfd_signed_vma) 0x8000 && xdisp < 0x8000);
3278 fits32 = (xdisp >= - (bfd_signed_vma) 0x80000000
3279 && xdisp < 0x7fff8000);
3280
3281 if (fits16)
3282 {
3283 /* Take the op code and dest from this insn, take the base
3284 register from the literal insn. Leave the offset alone. */
3285 insn = (insn & 0xffe0ffff) | (lit_insn & 0x001f0000);
3286 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3287 R_ALPHA_GPREL16);
3288 urel->r_addend = irel->r_addend;
3289 info->changed_relocs = TRUE;
3290
3291 bfd_put_32 (info->abfd, (bfd_vma) insn,
3292 info->contents + urel->r_offset);
3293 info->changed_contents = TRUE;
3294 }
3295
3296 /* If all mem+byte, we can optimize 32-bit mem displacements. */
3297 else if (fits32 && !(flags & ~6))
3298 {
3299 /* FIXME: sanity check that lit insn Ra is mem insn Rb. */
3300
3301 irel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3302 R_ALPHA_GPRELHIGH);
3303 lit_insn = (OP_LDAH << 26) | (lit_insn & 0x03ff0000);
3304 bfd_put_32 (info->abfd, (bfd_vma) lit_insn,
3305 info->contents + irel->r_offset);
3306 lit_reused = TRUE;
3307 info->changed_contents = TRUE;
3308
3309 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3310 R_ALPHA_GPRELLOW);
3311 urel->r_addend = irel->r_addend;
3312 info->changed_relocs = TRUE;
3313 }
3314 else
3315 all_optimized = FALSE;
3316 break;
3317
3318 case LITUSE_ALPHA_BYTOFF:
3319 /* We can always optimize byte instructions. */
3320
3321 /* FIXME: sanity check the insn for byte op. Check that the
3322 literal dest reg is indeed Rb in the byte insn. */
3323
3324 insn &= ~ (unsigned) 0x001ff000;
3325 insn |= ((symval & 7) << 13) | 0x1000;
3326
3327 urel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3328 urel->r_addend = 0;
3329 info->changed_relocs = TRUE;
3330
3331 bfd_put_32 (info->abfd, (bfd_vma) insn,
3332 info->contents + urel->r_offset);
3333 info->changed_contents = TRUE;
3334 break;
3335
3336 case LITUSE_ALPHA_JSR:
3337 case LITUSE_ALPHA_TLSGD:
3338 case LITUSE_ALPHA_TLSLDM:
3339 case LITUSE_ALPHA_JSRDIRECT:
3340 {
3341 bfd_vma optdest, org;
3342 bfd_signed_vma odisp;
3343
3344 /* For undefined weak symbols, we're mostly interested in getting
3345 rid of the got entry whenever possible, so optimize this to a
3346 use of the zero register. */
3347 if (info->h && info->h->root.root.type == bfd_link_hash_undefweak)
3348 {
3349 insn |= 31 << 16;
3350 bfd_put_32 (info->abfd, (bfd_vma) insn,
3351 info->contents + urel->r_offset);
3352
3353 info->changed_contents = TRUE;
3354 break;
3355 }
3356
3357 /* If not zero, place to jump without needing pv. */
3358 optdest = elf64_alpha_relax_opt_call (info, symval);
3359 org = (info->sec->output_section->vma
3360 + info->sec->output_offset
3361 + urel->r_offset + 4);
3362 odisp = (optdest ? optdest : symval) - org;
3363
3364 if (odisp >= -0x400000 && odisp < 0x400000)
3365 {
3366 Elf_Internal_Rela *xrel;
3367
3368 /* Preserve branch prediction call stack when possible. */
3369 if ((insn & INSN_JSR_MASK) == INSN_JSR)
3370 insn = (OP_BSR << 26) | (insn & 0x03e00000);
3371 else
3372 insn = (OP_BR << 26) | (insn & 0x03e00000);
3373
3374 urel->r_info = ELF64_R_INFO (ELF64_R_SYM (irel->r_info),
3375 R_ALPHA_BRADDR);
3376 urel->r_addend = irel->r_addend;
3377
3378 if (optdest)
3379 urel->r_addend += optdest - symval;
3380 else
3381 all_optimized = FALSE;
3382
3383 bfd_put_32 (info->abfd, (bfd_vma) insn,
3384 info->contents + urel->r_offset);
3385
3386 /* Kill any HINT reloc that might exist for this insn. */
3387 xrel = (elf64_alpha_find_reloc_at_ofs
3388 (info->relocs, info->relend, urel->r_offset,
3389 R_ALPHA_HINT));
3390 if (xrel)
3391 xrel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3392
3393 info->changed_contents = TRUE;
3394 info->changed_relocs = TRUE;
3395 }
3396 else
3397 all_optimized = FALSE;
3398
3399 /* Even if the target is not in range for a direct branch,
3400 if we share a GP, we can eliminate the gp reload. */
3401 if (optdest)
3402 {
3403 Elf_Internal_Rela *gpdisp
3404 = (elf64_alpha_find_reloc_at_ofs
3405 (info->relocs, irelend, urel->r_offset + 4,
3406 R_ALPHA_GPDISP));
3407 if (gpdisp)
3408 {
3409 bfd_byte *p_ldah = info->contents + gpdisp->r_offset;
3410 bfd_byte *p_lda = p_ldah + gpdisp->r_addend;
3411 unsigned int ldah = bfd_get_32 (info->abfd, p_ldah);
3412 unsigned int lda = bfd_get_32 (info->abfd, p_lda);
3413
3414 /* Verify that the instruction is "ldah $29,0($26)".
3415 Consider a function that ends in a noreturn call,
3416 and that the next function begins with an ldgp,
3417 and that by accident there is no padding between.
3418 In that case the insn would use $27 as the base. */
3419 if (ldah == 0x27ba0000 && lda == 0x23bd0000)
3420 {
3421 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, p_ldah);
3422 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, p_lda);
3423
3424 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3425 info->changed_contents = TRUE;
3426 info->changed_relocs = TRUE;
3427 }
3428 }
3429 }
3430 }
3431 break;
3432 }
3433 }
3434
3435 /* If all cases were optimized, we can reduce the use count on this
3436 got entry by one, possibly eliminating it. */
3437 if (all_optimized)
3438 {
3439 if (--info->gotent->use_count == 0)
3440 {
3441 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3442 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3443 if (!info->h)
3444 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3445 }
3446
3447 /* If the literal instruction is no longer needed (it may have been
3448 reused. We can eliminate it. */
3449 /* ??? For now, I don't want to deal with compacting the section,
3450 so just nop it out. */
3451 if (!lit_reused)
3452 {
3453 irel->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3454 info->changed_relocs = TRUE;
3455
3456 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP,
3457 info->contents + irel->r_offset);
3458 info->changed_contents = TRUE;
3459 }
3460
3461 return TRUE;
3462 }
3463 else
3464 return elf64_alpha_relax_got_load (info, symval, irel, R_ALPHA_LITERAL);
3465 }
3466
3467 static bfd_boolean
3468 elf64_alpha_relax_tls_get_addr (struct alpha_relax_info *info, bfd_vma symval,
3469 Elf_Internal_Rela *irel, bfd_boolean is_gd)
3470 {
3471 bfd_byte *pos[5];
3472 unsigned int insn, tlsgd_reg;
3473 Elf_Internal_Rela *gpdisp, *hint;
3474 bfd_boolean dynamic, use_gottprel;
3475 unsigned long new_symndx;
3476
3477 dynamic = alpha_elf_dynamic_symbol_p (&info->h->root, info->link_info);
3478
3479 /* If a TLS symbol is accessed using IE at least once, there is no point
3480 to use dynamic model for it. */
3481 if (is_gd && info->h && (info->h->flags & ALPHA_ELF_LINK_HASH_TLS_IE))
3482 ;
3483
3484 /* If the symbol is local, and we've already committed to DF_STATIC_TLS,
3485 then we might as well relax to IE. */
3486 else if (info->link_info->shared && !dynamic
3487 && (info->link_info->flags & DF_STATIC_TLS))
3488 ;
3489
3490 /* Otherwise we must be building an executable to do anything. */
3491 else if (info->link_info->shared)
3492 return TRUE;
3493
3494 /* The TLSGD/TLSLDM relocation must be followed by a LITERAL and
3495 the matching LITUSE_TLS relocations. */
3496 if (irel + 2 >= info->relend)
3497 return TRUE;
3498 if (ELF64_R_TYPE (irel[1].r_info) != R_ALPHA_LITERAL
3499 || ELF64_R_TYPE (irel[2].r_info) != R_ALPHA_LITUSE
3500 || irel[2].r_addend != (is_gd ? LITUSE_ALPHA_TLSGD : LITUSE_ALPHA_TLSLDM))
3501 return TRUE;
3502
3503 /* There must be a GPDISP relocation positioned immediately after the
3504 LITUSE relocation. */
3505 gpdisp = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3506 irel[2].r_offset + 4, R_ALPHA_GPDISP);
3507 if (!gpdisp)
3508 return TRUE;
3509
3510 pos[0] = info->contents + irel[0].r_offset;
3511 pos[1] = info->contents + irel[1].r_offset;
3512 pos[2] = info->contents + irel[2].r_offset;
3513 pos[3] = info->contents + gpdisp->r_offset;
3514 pos[4] = pos[3] + gpdisp->r_addend;
3515
3516 /* Generally, the positions are not allowed to be out of order, lest the
3517 modified insn sequence have different register lifetimes. We can make
3518 an exception when pos 1 is adjacent to pos 0. */
3519 if (pos[1] + 4 == pos[0])
3520 {
3521 bfd_byte *tmp = pos[0];
3522 pos[0] = pos[1];
3523 pos[1] = tmp;
3524 }
3525 if (pos[1] >= pos[2] || pos[2] >= pos[3])
3526 return TRUE;
3527
3528 /* Reduce the use count on the LITERAL relocation. Do this before we
3529 smash the symndx when we adjust the relocations below. */
3530 {
3531 struct alpha_elf_got_entry *lit_gotent;
3532 struct alpha_elf_link_hash_entry *lit_h;
3533 unsigned long indx;
3534
3535 BFD_ASSERT (ELF64_R_SYM (irel[1].r_info) >= info->symtab_hdr->sh_info);
3536 indx = ELF64_R_SYM (irel[1].r_info) - info->symtab_hdr->sh_info;
3537 lit_h = alpha_elf_sym_hashes (info->abfd)[indx];
3538
3539 while (lit_h->root.root.type == bfd_link_hash_indirect
3540 || lit_h->root.root.type == bfd_link_hash_warning)
3541 lit_h = (struct alpha_elf_link_hash_entry *) lit_h->root.root.u.i.link;
3542
3543 for (lit_gotent = lit_h->got_entries; lit_gotent ;
3544 lit_gotent = lit_gotent->next)
3545 if (lit_gotent->gotobj == info->gotobj
3546 && lit_gotent->reloc_type == R_ALPHA_LITERAL
3547 && lit_gotent->addend == irel[1].r_addend)
3548 break;
3549 BFD_ASSERT (lit_gotent);
3550
3551 if (--lit_gotent->use_count == 0)
3552 {
3553 int sz = alpha_got_entry_size (R_ALPHA_LITERAL);
3554 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3555 }
3556 }
3557
3558 /* Change
3559
3560 lda $16,x($gp) !tlsgd!1
3561 ldq $27,__tls_get_addr($gp) !literal!1
3562 jsr $26,($27),__tls_get_addr !lituse_tlsgd!1
3563 ldah $29,0($26) !gpdisp!2
3564 lda $29,0($29) !gpdisp!2
3565 to
3566 ldq $16,x($gp) !gottprel
3567 unop
3568 call_pal rduniq
3569 addq $16,$0,$0
3570 unop
3571 or the first pair to
3572 lda $16,x($gp) !tprel
3573 unop
3574 or
3575 ldah $16,x($gp) !tprelhi
3576 lda $16,x($16) !tprello
3577
3578 as appropriate. */
3579
3580 use_gottprel = FALSE;
3581 new_symndx = is_gd ? ELF64_R_SYM (irel->r_info) : STN_UNDEF;
3582
3583 /* Beware of the compiler hoisting part of the sequence out a loop
3584 and adjusting the destination register for the TLSGD insn. If this
3585 happens, there will be a move into $16 before the JSR insn, so only
3586 transformations of the first insn pair should use this register. */
3587 tlsgd_reg = bfd_get_32 (info->abfd, pos[0]);
3588 tlsgd_reg = (tlsgd_reg >> 21) & 31;
3589
3590 switch (!dynamic && !info->link_info->shared)
3591 {
3592 case 1:
3593 {
3594 bfd_vma tp_base;
3595 bfd_signed_vma disp;
3596
3597 BFD_ASSERT (elf_hash_table (info->link_info)->tls_sec != NULL);
3598 tp_base = alpha_get_tprel_base (info->link_info);
3599 disp = symval - tp_base;
3600
3601 if (disp >= -0x8000 && disp < 0x8000)
3602 {
3603 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (31 << 16);
3604 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3605 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3606
3607 irel[0].r_offset = pos[0] - info->contents;
3608 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPREL16);
3609 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3610 break;
3611 }
3612 else if (disp >= -(bfd_signed_vma) 0x80000000
3613 && disp < (bfd_signed_vma) 0x7fff8000
3614 && pos[0] + 4 == pos[1])
3615 {
3616 insn = (OP_LDAH << 26) | (tlsgd_reg << 21) | (31 << 16);
3617 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3618 insn = (OP_LDA << 26) | (tlsgd_reg << 21) | (tlsgd_reg << 16);
3619 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[1]);
3620
3621 irel[0].r_offset = pos[0] - info->contents;
3622 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELHI);
3623 irel[1].r_offset = pos[1] - info->contents;
3624 irel[1].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_TPRELLO);
3625 break;
3626 }
3627 }
3628 /* FALLTHRU */
3629
3630 default:
3631 use_gottprel = TRUE;
3632
3633 insn = (OP_LDQ << 26) | (tlsgd_reg << 21) | (29 << 16);
3634 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[0]);
3635 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[1]);
3636
3637 irel[0].r_offset = pos[0] - info->contents;
3638 irel[0].r_info = ELF64_R_INFO (new_symndx, R_ALPHA_GOTTPREL);
3639 irel[1].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3640 break;
3641 }
3642
3643 bfd_put_32 (info->abfd, (bfd_vma) INSN_RDUNIQ, pos[2]);
3644
3645 insn = INSN_ADDQ | (16 << 21) | (0 << 16) | (0 << 0);
3646 bfd_put_32 (info->abfd, (bfd_vma) insn, pos[3]);
3647
3648 bfd_put_32 (info->abfd, (bfd_vma) INSN_UNOP, pos[4]);
3649
3650 irel[2].r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3651 gpdisp->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3652
3653 hint = elf64_alpha_find_reloc_at_ofs (info->relocs, info->relend,
3654 irel[2].r_offset, R_ALPHA_HINT);
3655 if (hint)
3656 hint->r_info = ELF64_R_INFO (0, R_ALPHA_NONE);
3657
3658 info->changed_contents = TRUE;
3659 info->changed_relocs = TRUE;
3660
3661 /* Reduce the use count on the TLSGD/TLSLDM relocation. */
3662 if (--info->gotent->use_count == 0)
3663 {
3664 int sz = alpha_got_entry_size (info->gotent->reloc_type);
3665 alpha_elf_tdata (info->gotobj)->total_got_size -= sz;
3666 if (!info->h)
3667 alpha_elf_tdata (info->gotobj)->local_got_size -= sz;
3668 }
3669
3670 /* If we've switched to a GOTTPREL relocation, increment the reference
3671 count on that got entry. */
3672 if (use_gottprel)
3673 {
3674 struct alpha_elf_got_entry *tprel_gotent;
3675
3676 for (tprel_gotent = *info->first_gotent; tprel_gotent ;
3677 tprel_gotent = tprel_gotent->next)
3678 if (tprel_gotent->gotobj == info->gotobj
3679 && tprel_gotent->reloc_type == R_ALPHA_GOTTPREL
3680 && tprel_gotent->addend == irel->r_addend)
3681 break;
3682 if (tprel_gotent)
3683 tprel_gotent->use_count++;
3684 else
3685 {
3686 if (info->gotent->use_count == 0)
3687 tprel_gotent = info->gotent;
3688 else
3689 {
3690 tprel_gotent = (struct alpha_elf_got_entry *)
3691 bfd_alloc (info->abfd, sizeof (struct alpha_elf_got_entry));
3692 if (!tprel_gotent)
3693 return FALSE;
3694
3695 tprel_gotent->next = *info->first_gotent;
3696 *info->first_gotent = tprel_gotent;
3697
3698 tprel_gotent->gotobj = info->gotobj;
3699 tprel_gotent->addend = irel->r_addend;
3700 tprel_gotent->got_offset = -1;
3701 tprel_gotent->reloc_done = 0;
3702 tprel_gotent->reloc_xlated = 0;
3703 }
3704
3705 tprel_gotent->use_count = 1;
3706 tprel_gotent->reloc_type = R_ALPHA_GOTTPREL;
3707 }
3708 }
3709
3710 return TRUE;
3711 }
3712
3713 static bfd_boolean
3714 elf64_alpha_relax_section (bfd *abfd, asection *sec,
3715 struct bfd_link_info *link_info, bfd_boolean *again)
3716 {
3717 Elf_Internal_Shdr *symtab_hdr;
3718 Elf_Internal_Rela *internal_relocs;
3719 Elf_Internal_Rela *irel, *irelend;
3720 Elf_Internal_Sym *isymbuf = NULL;
3721 struct alpha_elf_got_entry **local_got_entries;
3722 struct alpha_relax_info info;
3723 struct alpha_elf_link_hash_table * htab;
3724
3725 htab = alpha_elf_hash_table (link_info);
3726 if (htab == NULL)
3727 return FALSE;
3728
3729 /* There's nothing to change, yet. */
3730 *again = FALSE;
3731
3732 if (link_info->relocatable
3733 || ((sec->flags & (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3734 != (SEC_CODE | SEC_RELOC | SEC_ALLOC))
3735 || sec->reloc_count == 0)
3736 return TRUE;
3737
3738 BFD_ASSERT (is_alpha_elf (abfd));
3739
3740 /* Make sure our GOT and PLT tables are up-to-date. */
3741 if (htab->relax_trip != link_info->relax_trip)
3742 {
3743 htab->relax_trip = link_info->relax_trip;
3744
3745 /* This should never fail after the initial round, since the only
3746 error is GOT overflow, and relaxation only shrinks the table. */
3747 if (!elf64_alpha_size_got_sections (link_info))
3748 abort ();
3749 if (elf_hash_table (link_info)->dynamic_sections_created)
3750 {
3751 elf64_alpha_size_plt_section (link_info);
3752 elf64_alpha_size_rela_got_section (link_info);
3753 }
3754 }
3755
3756 symtab_hdr = &elf_symtab_hdr (abfd);
3757 local_got_entries = alpha_elf_tdata(abfd)->local_got_entries;
3758
3759 /* Load the relocations for this section. */
3760 internal_relocs = (_bfd_elf_link_read_relocs
3761 (abfd, sec, (PTR) NULL, (Elf_Internal_Rela *) NULL,
3762 link_info->keep_memory));
3763 if (internal_relocs == NULL)
3764 return FALSE;
3765
3766 memset(&info, 0, sizeof (info));
3767 info.abfd = abfd;
3768 info.sec = sec;
3769 info.link_info = link_info;
3770 info.symtab_hdr = symtab_hdr;
3771 info.relocs = internal_relocs;
3772 info.relend = irelend = internal_relocs + sec->reloc_count;
3773
3774 /* Find the GP for this object. Do not store the result back via
3775 _bfd_set_gp_value, since this could change again before final. */
3776 info.gotobj = alpha_elf_tdata (abfd)->gotobj;
3777 if (info.gotobj)
3778 {
3779 asection *sgot = alpha_elf_tdata (info.gotobj)->got;
3780 info.gp = (sgot->output_section->vma
3781 + sgot->output_offset
3782 + 0x8000);
3783 }
3784
3785 /* Get the section contents. */
3786 if (elf_section_data (sec)->this_hdr.contents != NULL)
3787 info.contents = elf_section_data (sec)->this_hdr.contents;
3788 else
3789 {
3790 if (!bfd_malloc_and_get_section (abfd, sec, &info.contents))
3791 goto error_return;
3792 }
3793
3794 for (irel = internal_relocs; irel < irelend; irel++)
3795 {
3796 bfd_vma symval;
3797 struct alpha_elf_got_entry *gotent;
3798 unsigned long r_type = ELF64_R_TYPE (irel->r_info);
3799 unsigned long r_symndx = ELF64_R_SYM (irel->r_info);
3800
3801 /* Early exit for unhandled or unrelaxable relocations. */
3802 switch (r_type)
3803 {
3804 case R_ALPHA_LITERAL:
3805 case R_ALPHA_GPRELHIGH:
3806 case R_ALPHA_GPRELLOW:
3807 case R_ALPHA_GOTDTPREL:
3808 case R_ALPHA_GOTTPREL:
3809 case R_ALPHA_TLSGD:
3810 break;
3811
3812 case R_ALPHA_TLSLDM:
3813 /* The symbol for a TLSLDM reloc is ignored. Collapse the
3814 reloc to the STN_UNDEF (0) symbol so that they all match. */
3815 r_symndx = STN_UNDEF;
3816 break;
3817
3818 default:
3819 continue;
3820 }
3821
3822 /* Get the value of the symbol referred to by the reloc. */
3823 if (r_symndx < symtab_hdr->sh_info)
3824 {
3825 /* A local symbol. */
3826 Elf_Internal_Sym *isym;
3827
3828 /* Read this BFD's local symbols. */
3829 if (isymbuf == NULL)
3830 {
3831 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
3832 if (isymbuf == NULL)
3833 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
3834 symtab_hdr->sh_info, 0,
3835 NULL, NULL, NULL);
3836 if (isymbuf == NULL)
3837 goto error_return;
3838 }
3839
3840 isym = isymbuf + r_symndx;
3841
3842 /* Given the symbol for a TLSLDM reloc is ignored, this also
3843 means forcing the symbol value to the tp base. */
3844 if (r_type == R_ALPHA_TLSLDM)
3845 {
3846 info.tsec = bfd_abs_section_ptr;
3847 symval = alpha_get_tprel_base (info.link_info);
3848 }
3849 else
3850 {
3851 symval = isym->st_value;
3852 if (isym->st_shndx == SHN_UNDEF)
3853 continue;
3854 else if (isym->st_shndx == SHN_ABS)
3855 info.tsec = bfd_abs_section_ptr;
3856 else if (isym->st_shndx == SHN_COMMON)
3857 info.tsec = bfd_com_section_ptr;
3858 else
3859 info.tsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3860 }
3861
3862 info.h = NULL;
3863 info.other = isym->st_other;
3864 if (local_got_entries)
3865 info.first_gotent = &local_got_entries[r_symndx];
3866 else
3867 {
3868 info.first_gotent = &info.gotent;
3869 info.gotent = NULL;
3870 }
3871 }
3872 else
3873 {
3874 unsigned long indx;
3875 struct alpha_elf_link_hash_entry *h;
3876
3877 indx = r_symndx - symtab_hdr->sh_info;
3878 h = alpha_elf_sym_hashes (abfd)[indx];
3879 BFD_ASSERT (h != NULL);
3880
3881 while (h->root.root.type == bfd_link_hash_indirect
3882 || h->root.root.type == bfd_link_hash_warning)
3883 h = (struct alpha_elf_link_hash_entry *)h->root.root.u.i.link;
3884
3885 /* If the symbol is undefined, we can't do anything with it. */
3886 if (h->root.root.type == bfd_link_hash_undefined)
3887 continue;
3888
3889 /* If the symbol isn't defined in the current module,
3890 again we can't do anything. */
3891 if (h->root.root.type == bfd_link_hash_undefweak)
3892 {
3893 info.tsec = bfd_abs_section_ptr;
3894 symval = 0;
3895 }
3896 else if (!h->root.def_regular)
3897 {
3898 /* Except for TLSGD relocs, which can sometimes be
3899 relaxed to GOTTPREL relocs. */
3900 if (r_type != R_ALPHA_TLSGD)
3901 continue;
3902 info.tsec = bfd_abs_section_ptr;
3903 symval = 0;
3904 }
3905 else
3906 {
3907 info.tsec = h->root.root.u.def.section;
3908 symval = h->root.root.u.def.value;
3909 }
3910
3911 info.h = h;
3912 info.other = h->root.other;
3913 info.first_gotent = &h->got_entries;
3914 }
3915
3916 /* Search for the got entry to be used by this relocation. */
3917 for (gotent = *info.first_gotent; gotent ; gotent = gotent->next)
3918 if (gotent->gotobj == info.gotobj
3919 && gotent->reloc_type == r_type
3920 && gotent->addend == irel->r_addend)
3921 break;
3922 info.gotent = gotent;
3923
3924 symval += info.tsec->output_section->vma + info.tsec->output_offset;
3925 symval += irel->r_addend;
3926
3927 switch (r_type)
3928 {
3929 case R_ALPHA_LITERAL:
3930 BFD_ASSERT(info.gotent != NULL);
3931
3932 /* If there exist LITUSE relocations immediately following, this
3933 opens up all sorts of interesting optimizations, because we
3934 now know every location that this address load is used. */
3935 if (irel+1 < irelend
3936 && ELF64_R_TYPE (irel[1].r_info) == R_ALPHA_LITUSE)
3937 {
3938 if (!elf64_alpha_relax_with_lituse (&info, symval, irel))
3939 goto error_return;
3940 }
3941 else
3942 {
3943 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
3944 goto error_return;
3945 }
3946 break;
3947
3948 case R_ALPHA_GOTDTPREL:
3949 case R_ALPHA_GOTTPREL:
3950 BFD_ASSERT(info.gotent != NULL);
3951 if (!elf64_alpha_relax_got_load (&info, symval, irel, r_type))
3952 goto error_return;
3953 break;
3954
3955 case R_ALPHA_TLSGD:
3956 case R_ALPHA_TLSLDM:
3957 BFD_ASSERT(info.gotent != NULL);
3958 if (!elf64_alpha_relax_tls_get_addr (&info, symval, irel,
3959 r_type == R_ALPHA_TLSGD))
3960 goto error_return;
3961 break;
3962 }
3963 }
3964
3965 if (isymbuf != NULL
3966 && symtab_hdr->contents != (unsigned char *) isymbuf)
3967 {
3968 if (!link_info->keep_memory)
3969 free (isymbuf);
3970 else
3971 {
3972 /* Cache the symbols for elf_link_input_bfd. */
3973 symtab_hdr->contents = (unsigned char *) isymbuf;
3974 }
3975 }
3976
3977 if (info.contents != NULL
3978 && elf_section_data (sec)->this_hdr.contents != info.contents)
3979 {
3980 if (!info.changed_contents && !link_info->keep_memory)
3981 free (info.contents);
3982 else
3983 {
3984 /* Cache the section contents for elf_link_input_bfd. */
3985 elf_section_data (sec)->this_hdr.contents = info.contents;
3986 }
3987 }
3988
3989 if (elf_section_data (sec)->relocs != internal_relocs)
3990 {
3991 if (!info.changed_relocs)
3992 free (internal_relocs);
3993 else
3994 elf_section_data (sec)->relocs = internal_relocs;
3995 }
3996
3997 *again = info.changed_contents || info.changed_relocs;
3998
3999 return TRUE;
4000
4001 error_return:
4002 if (isymbuf != NULL
4003 && symtab_hdr->contents != (unsigned char *) isymbuf)
4004 free (isymbuf);
4005 if (info.contents != NULL
4006 && elf_section_data (sec)->this_hdr.contents != info.contents)
4007 free (info.contents);
4008 if (internal_relocs != NULL
4009 && elf_section_data (sec)->relocs != internal_relocs)
4010 free (internal_relocs);
4011 return FALSE;
4012 }
4013 \f
4014 /* Emit a dynamic relocation for (DYNINDX, RTYPE, ADDEND) at (SEC, OFFSET)
4015 into the next available slot in SREL. */
4016
4017 static void
4018 elf64_alpha_emit_dynrel (bfd *abfd, struct bfd_link_info *info,
4019 asection *sec, asection *srel, bfd_vma offset,
4020 long dynindx, long rtype, bfd_vma addend)
4021 {
4022 Elf_Internal_Rela outrel;
4023 bfd_byte *loc;
4024
4025 BFD_ASSERT (srel != NULL);
4026
4027 outrel.r_info = ELF64_R_INFO (dynindx, rtype);
4028 outrel.r_addend = addend;
4029
4030 offset = _bfd_elf_section_offset (abfd, info, sec, offset);
4031 if ((offset | 1) != (bfd_vma) -1)
4032 outrel.r_offset = sec->output_section->vma + sec->output_offset + offset;
4033 else
4034 memset (&outrel, 0, sizeof (outrel));
4035
4036 loc = srel->contents;
4037 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
4038 bfd_elf64_swap_reloca_out (abfd, &outrel, loc);
4039 BFD_ASSERT (sizeof (Elf64_External_Rela) * srel->reloc_count <= srel->size);
4040 }
4041
4042 /* Relocate an Alpha ELF section for a relocatable link.
4043
4044 We don't have to change anything unless the reloc is against a section
4045 symbol, in which case we have to adjust according to where the section
4046 symbol winds up in the output section. */
4047
4048 static bfd_boolean
4049 elf64_alpha_relocate_section_r (bfd *output_bfd ATTRIBUTE_UNUSED,
4050 struct bfd_link_info *info ATTRIBUTE_UNUSED,
4051 bfd *input_bfd, asection *input_section,
4052 bfd_byte *contents ATTRIBUTE_UNUSED,
4053 Elf_Internal_Rela *relocs,
4054 Elf_Internal_Sym *local_syms,
4055 asection **local_sections)
4056 {
4057 unsigned long symtab_hdr_sh_info;
4058 Elf_Internal_Rela *rel;
4059 Elf_Internal_Rela *relend;
4060 struct elf_link_hash_entry **sym_hashes;
4061 bfd_boolean ret_val = TRUE;
4062
4063 symtab_hdr_sh_info = elf_symtab_hdr (input_bfd).sh_info;
4064 sym_hashes = elf_sym_hashes (input_bfd);
4065
4066 relend = relocs + input_section->reloc_count;
4067 for (rel = relocs; rel < relend; rel++)
4068 {
4069 unsigned long r_symndx;
4070 Elf_Internal_Sym *sym;
4071 asection *sec;
4072 unsigned long r_type;
4073
4074 r_type = ELF64_R_TYPE (rel->r_info);
4075 if (r_type >= R_ALPHA_max)
4076 {
4077 (*_bfd_error_handler)
4078 (_("%B: unknown relocation type %d"),
4079 input_bfd, (int) r_type);
4080 bfd_set_error (bfd_error_bad_value);
4081 ret_val = FALSE;
4082 continue;
4083 }
4084
4085 /* The symbol associated with GPDISP and LITUSE is
4086 immaterial. Only the addend is significant. */
4087 if (r_type == R_ALPHA_GPDISP || r_type == R_ALPHA_LITUSE)
4088 continue;
4089
4090 r_symndx = ELF64_R_SYM (rel->r_info);
4091 if (r_symndx < symtab_hdr_sh_info)
4092 {
4093 sym = local_syms + r_symndx;
4094 sec = local_sections[r_symndx];
4095 }
4096 else
4097 {
4098 struct elf_link_hash_entry *h;
4099
4100 h = sym_hashes[r_symndx - symtab_hdr_sh_info];
4101
4102 while (h->root.type == bfd_link_hash_indirect
4103 || h->root.type == bfd_link_hash_warning)
4104 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4105
4106 if (h->root.type != bfd_link_hash_defined
4107 && h->root.type != bfd_link_hash_defweak)
4108 continue;
4109
4110 sym = NULL;
4111 sec = h->root.u.def.section;
4112 }
4113
4114 if (sec != NULL && elf_discarded_section (sec))
4115 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4116 rel, relend,
4117 elf64_alpha_howto_table + r_type,
4118 contents);
4119
4120 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4121 rel->r_addend += sec->output_offset;
4122 }
4123
4124 return ret_val;
4125 }
4126
4127 /* Relocate an Alpha ELF section. */
4128
4129 static bfd_boolean
4130 elf64_alpha_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
4131 bfd *input_bfd, asection *input_section,
4132 bfd_byte *contents, Elf_Internal_Rela *relocs,
4133 Elf_Internal_Sym *local_syms,
4134 asection **local_sections)
4135 {
4136 Elf_Internal_Shdr *symtab_hdr;
4137 Elf_Internal_Rela *rel;
4138 Elf_Internal_Rela *relend;
4139 asection *sgot, *srel, *srelgot;
4140 bfd *dynobj, *gotobj;
4141 bfd_vma gp, tp_base, dtp_base;
4142 struct alpha_elf_got_entry **local_got_entries;
4143 bfd_boolean ret_val;
4144
4145 BFD_ASSERT (is_alpha_elf (input_bfd));
4146
4147 /* Handle relocatable links with a smaller loop. */
4148 if (info->relocatable)
4149 return elf64_alpha_relocate_section_r (output_bfd, info, input_bfd,
4150 input_section, contents, relocs,
4151 local_syms, local_sections);
4152
4153 /* This is a final link. */
4154
4155 ret_val = TRUE;
4156
4157 symtab_hdr = &elf_symtab_hdr (input_bfd);
4158
4159 dynobj = elf_hash_table (info)->dynobj;
4160 if (dynobj)
4161 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
4162 else
4163 srelgot = NULL;
4164
4165 if (input_section->flags & SEC_ALLOC)
4166 {
4167 const char *section_name;
4168 section_name = (bfd_elf_string_from_elf_section
4169 (input_bfd, elf_elfheader(input_bfd)->e_shstrndx,
4170 _bfd_elf_single_rel_hdr (input_section)->sh_name));
4171 BFD_ASSERT(section_name != NULL);
4172 srel = bfd_get_section_by_name (dynobj, section_name);
4173 }
4174 else
4175 srel = NULL;
4176
4177 /* Find the gp value for this input bfd. */
4178 gotobj = alpha_elf_tdata (input_bfd)->gotobj;
4179 if (gotobj)
4180 {
4181 sgot = alpha_elf_tdata (gotobj)->got;
4182 gp = _bfd_get_gp_value (gotobj);
4183 if (gp == 0)
4184 {
4185 gp = (sgot->output_section->vma
4186 + sgot->output_offset
4187 + 0x8000);
4188 _bfd_set_gp_value (gotobj, gp);
4189 }
4190 }
4191 else
4192 {
4193 sgot = NULL;
4194 gp = 0;
4195 }
4196
4197 local_got_entries = alpha_elf_tdata(input_bfd)->local_got_entries;
4198
4199 if (elf_hash_table (info)->tls_sec != NULL)
4200 {
4201 dtp_base = alpha_get_dtprel_base (info);
4202 tp_base = alpha_get_tprel_base (info);
4203 }
4204 else
4205 dtp_base = tp_base = 0;
4206
4207 relend = relocs + input_section->reloc_count;
4208 for (rel = relocs; rel < relend; rel++)
4209 {
4210 struct alpha_elf_link_hash_entry *h = NULL;
4211 struct alpha_elf_got_entry *gotent;
4212 bfd_reloc_status_type r;
4213 reloc_howto_type *howto;
4214 unsigned long r_symndx;
4215 Elf_Internal_Sym *sym = NULL;
4216 asection *sec = NULL;
4217 bfd_vma value;
4218 bfd_vma addend;
4219 bfd_boolean dynamic_symbol_p;
4220 bfd_boolean undef_weak_ref = FALSE;
4221 unsigned long r_type;
4222
4223 r_type = ELF64_R_TYPE(rel->r_info);
4224 if (r_type >= R_ALPHA_max)
4225 {
4226 (*_bfd_error_handler)
4227 (_("%B: unknown relocation type %d"),
4228 input_bfd, (int) r_type);
4229 bfd_set_error (bfd_error_bad_value);
4230 ret_val = FALSE;
4231 continue;
4232 }
4233
4234 howto = elf64_alpha_howto_table + r_type;
4235 r_symndx = ELF64_R_SYM(rel->r_info);
4236
4237 /* The symbol for a TLSLDM reloc is ignored. Collapse the
4238 reloc to the STN_UNDEF (0) symbol so that they all match. */
4239 if (r_type == R_ALPHA_TLSLDM)
4240 r_symndx = STN_UNDEF;
4241
4242 if (r_symndx < symtab_hdr->sh_info)
4243 {
4244 asection *msec;
4245 sym = local_syms + r_symndx;
4246 sec = local_sections[r_symndx];
4247 msec = sec;
4248 value = _bfd_elf_rela_local_sym (output_bfd, sym, &msec, rel);
4249
4250 /* If this is a tp-relative relocation against sym STN_UNDEF (0),
4251 this is hackery from relax_section. Force the value to
4252 be the tls module base. */
4253 if (r_symndx == STN_UNDEF
4254 && (r_type == R_ALPHA_TLSLDM
4255 || r_type == R_ALPHA_GOTTPREL
4256 || r_type == R_ALPHA_TPREL64
4257 || r_type == R_ALPHA_TPRELHI
4258 || r_type == R_ALPHA_TPRELLO
4259 || r_type == R_ALPHA_TPREL16))
4260 value = dtp_base;
4261
4262 if (local_got_entries)
4263 gotent = local_got_entries[r_symndx];
4264 else
4265 gotent = NULL;
4266
4267 /* Need to adjust local GOT entries' addends for SEC_MERGE
4268 unless it has been done already. */
4269 if ((sec->flags & SEC_MERGE)
4270 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
4271 && sec->sec_info_type == ELF_INFO_TYPE_MERGE
4272 && gotent
4273 && !gotent->reloc_xlated)
4274 {
4275 struct alpha_elf_got_entry *ent;
4276
4277 for (ent = gotent; ent; ent = ent->next)
4278 {
4279 ent->reloc_xlated = 1;
4280 if (ent->use_count == 0)
4281 continue;
4282 msec = sec;
4283 ent->addend =
4284 _bfd_merged_section_offset (output_bfd, &msec,
4285 elf_section_data (sec)->
4286 sec_info,
4287 sym->st_value + ent->addend);
4288 ent->addend -= sym->st_value;
4289 ent->addend += msec->output_section->vma
4290 + msec->output_offset
4291 - sec->output_section->vma
4292 - sec->output_offset;
4293 }
4294 }
4295
4296 dynamic_symbol_p = FALSE;
4297 }
4298 else
4299 {
4300 bfd_boolean warned;
4301 bfd_boolean unresolved_reloc;
4302 struct elf_link_hash_entry *hh;
4303 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
4304
4305 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
4306 r_symndx, symtab_hdr, sym_hashes,
4307 hh, sec, value,
4308 unresolved_reloc, warned);
4309
4310 if (warned)
4311 continue;
4312
4313 if (value == 0
4314 && ! unresolved_reloc
4315 && hh->root.type == bfd_link_hash_undefweak)
4316 undef_weak_ref = TRUE;
4317
4318 h = (struct alpha_elf_link_hash_entry *) hh;
4319 dynamic_symbol_p = alpha_elf_dynamic_symbol_p (&h->root, info);
4320 gotent = h->got_entries;
4321 }
4322
4323 if (sec != NULL && elf_discarded_section (sec))
4324 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
4325 rel, relend, howto, contents);
4326
4327 addend = rel->r_addend;
4328 value += addend;
4329
4330 /* Search for the proper got entry. */
4331 for (; gotent ; gotent = gotent->next)
4332 if (gotent->gotobj == gotobj
4333 && gotent->reloc_type == r_type
4334 && gotent->addend == addend)
4335 break;
4336
4337 switch (r_type)
4338 {
4339 case R_ALPHA_GPDISP:
4340 {
4341 bfd_byte *p_ldah, *p_lda;
4342
4343 BFD_ASSERT(gp != 0);
4344
4345 value = (input_section->output_section->vma
4346 + input_section->output_offset
4347 + rel->r_offset);
4348
4349 p_ldah = contents + rel->r_offset;
4350 p_lda = p_ldah + rel->r_addend;
4351
4352 r = elf64_alpha_do_reloc_gpdisp (input_bfd, gp - value,
4353 p_ldah, p_lda);
4354 }
4355 break;
4356
4357 case R_ALPHA_LITERAL:
4358 BFD_ASSERT(sgot != NULL);
4359 BFD_ASSERT(gp != 0);
4360 BFD_ASSERT(gotent != NULL);
4361 BFD_ASSERT(gotent->use_count >= 1);
4362
4363 if (!gotent->reloc_done)
4364 {
4365 gotent->reloc_done = 1;
4366
4367 bfd_put_64 (output_bfd, value,
4368 sgot->contents + gotent->got_offset);
4369
4370 /* If the symbol has been forced local, output a
4371 RELATIVE reloc, otherwise it will be handled in
4372 finish_dynamic_symbol. */
4373 if (info->shared && !dynamic_symbol_p && !undef_weak_ref)
4374 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4375 gotent->got_offset, 0,
4376 R_ALPHA_RELATIVE, value);
4377 }
4378
4379 value = (sgot->output_section->vma
4380 + sgot->output_offset
4381 + gotent->got_offset);
4382 value -= gp;
4383 goto default_reloc;
4384
4385 case R_ALPHA_GPREL32:
4386 case R_ALPHA_GPREL16:
4387 case R_ALPHA_GPRELLOW:
4388 if (dynamic_symbol_p)
4389 {
4390 (*_bfd_error_handler)
4391 (_("%B: gp-relative relocation against dynamic symbol %s"),
4392 input_bfd, h->root.root.root.string);
4393 ret_val = FALSE;
4394 }
4395 BFD_ASSERT(gp != 0);
4396 value -= gp;
4397 goto default_reloc;
4398
4399 case R_ALPHA_GPRELHIGH:
4400 if (dynamic_symbol_p)
4401 {
4402 (*_bfd_error_handler)
4403 (_("%B: gp-relative relocation against dynamic symbol %s"),
4404 input_bfd, h->root.root.root.string);
4405 ret_val = FALSE;
4406 }
4407 BFD_ASSERT(gp != 0);
4408 value -= gp;
4409 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4410 goto default_reloc;
4411
4412 case R_ALPHA_HINT:
4413 /* A call to a dynamic symbol is definitely out of range of
4414 the 16-bit displacement. Don't bother writing anything. */
4415 if (dynamic_symbol_p)
4416 {
4417 r = bfd_reloc_ok;
4418 break;
4419 }
4420 /* The regular PC-relative stuff measures from the start of
4421 the instruction rather than the end. */
4422 value -= 4;
4423 goto default_reloc;
4424
4425 case R_ALPHA_BRADDR:
4426 if (dynamic_symbol_p)
4427 {
4428 (*_bfd_error_handler)
4429 (_("%B: pc-relative relocation against dynamic symbol %s"),
4430 input_bfd, h->root.root.root.string);
4431 ret_val = FALSE;
4432 }
4433 /* The regular PC-relative stuff measures from the start of
4434 the instruction rather than the end. */
4435 value -= 4;
4436 goto default_reloc;
4437
4438 case R_ALPHA_BRSGP:
4439 {
4440 int other;
4441 const char *name;
4442
4443 /* The regular PC-relative stuff measures from the start of
4444 the instruction rather than the end. */
4445 value -= 4;
4446
4447 /* The source and destination gp must be the same. Note that
4448 the source will always have an assigned gp, since we forced
4449 one in check_relocs, but that the destination may not, as
4450 it might not have had any relocations at all. Also take
4451 care not to crash if H is an undefined symbol. */
4452 if (h != NULL && sec != NULL
4453 && alpha_elf_tdata (sec->owner)->gotobj
4454 && gotobj != alpha_elf_tdata (sec->owner)->gotobj)
4455 {
4456 (*_bfd_error_handler)
4457 (_("%B: change in gp: BRSGP %s"),
4458 input_bfd, h->root.root.root.string);
4459 ret_val = FALSE;
4460 }
4461
4462 /* The symbol should be marked either NOPV or STD_GPLOAD. */
4463 if (h != NULL)
4464 other = h->root.other;
4465 else
4466 other = sym->st_other;
4467 switch (other & STO_ALPHA_STD_GPLOAD)
4468 {
4469 case STO_ALPHA_NOPV:
4470 break;
4471 case STO_ALPHA_STD_GPLOAD:
4472 value += 8;
4473 break;
4474 default:
4475 if (h != NULL)
4476 name = h->root.root.root.string;
4477 else
4478 {
4479 name = (bfd_elf_string_from_elf_section
4480 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4481 if (name == NULL)
4482 name = _("<unknown>");
4483 else if (name[0] == 0)
4484 name = bfd_section_name (input_bfd, sec);
4485 }
4486 (*_bfd_error_handler)
4487 (_("%B: !samegp reloc against symbol without .prologue: %s"),
4488 input_bfd, name);
4489 ret_val = FALSE;
4490 break;
4491 }
4492
4493 goto default_reloc;
4494 }
4495
4496 case R_ALPHA_REFLONG:
4497 case R_ALPHA_REFQUAD:
4498 case R_ALPHA_DTPREL64:
4499 case R_ALPHA_TPREL64:
4500 {
4501 long dynindx, dyntype = r_type;
4502 bfd_vma dynaddend;
4503
4504 /* Careful here to remember RELATIVE relocations for global
4505 variables for symbolic shared objects. */
4506
4507 if (dynamic_symbol_p)
4508 {
4509 BFD_ASSERT(h->root.dynindx != -1);
4510 dynindx = h->root.dynindx;
4511 dynaddend = addend;
4512 addend = 0, value = 0;
4513 }
4514 else if (r_type == R_ALPHA_DTPREL64)
4515 {
4516 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4517 value -= dtp_base;
4518 goto default_reloc;
4519 }
4520 else if (r_type == R_ALPHA_TPREL64)
4521 {
4522 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4523 if (!info->shared)
4524 {
4525 value -= tp_base;
4526 goto default_reloc;
4527 }
4528 dynindx = 0;
4529 dynaddend = value - dtp_base;
4530 }
4531 else if (info->shared
4532 && r_symndx != STN_UNDEF
4533 && (input_section->flags & SEC_ALLOC)
4534 && !undef_weak_ref)
4535 {
4536 if (r_type == R_ALPHA_REFLONG)
4537 {
4538 (*_bfd_error_handler)
4539 (_("%B: unhandled dynamic relocation against %s"),
4540 input_bfd,
4541 h->root.root.root.string);
4542 ret_val = FALSE;
4543 }
4544 dynindx = 0;
4545 dyntype = R_ALPHA_RELATIVE;
4546 dynaddend = value;
4547 }
4548 else
4549 goto default_reloc;
4550
4551 if (input_section->flags & SEC_ALLOC)
4552 elf64_alpha_emit_dynrel (output_bfd, info, input_section,
4553 srel, rel->r_offset, dynindx,
4554 dyntype, dynaddend);
4555 }
4556 goto default_reloc;
4557
4558 case R_ALPHA_SREL16:
4559 case R_ALPHA_SREL32:
4560 case R_ALPHA_SREL64:
4561 if (dynamic_symbol_p)
4562 {
4563 (*_bfd_error_handler)
4564 (_("%B: pc-relative relocation against dynamic symbol %s"),
4565 input_bfd, h->root.root.root.string);
4566 ret_val = FALSE;
4567 }
4568 else if ((info->shared || info->pie) && undef_weak_ref)
4569 {
4570 (*_bfd_error_handler)
4571 (_("%B: pc-relative relocation against undefined weak symbol %s"),
4572 input_bfd, h->root.root.root.string);
4573 ret_val = FALSE;
4574 }
4575
4576
4577 /* ??? .eh_frame references to discarded sections will be smashed
4578 to relocations against SHN_UNDEF. The .eh_frame format allows
4579 NULL to be encoded as 0 in any format, so this works here. */
4580 if (r_symndx == STN_UNDEF)
4581 howto = (elf64_alpha_howto_table
4582 + (r_type - R_ALPHA_SREL32 + R_ALPHA_REFLONG));
4583 goto default_reloc;
4584
4585 case R_ALPHA_TLSLDM:
4586 /* Ignore the symbol for the relocation. The result is always
4587 the current module. */
4588 dynamic_symbol_p = 0;
4589 /* FALLTHRU */
4590
4591 case R_ALPHA_TLSGD:
4592 if (!gotent->reloc_done)
4593 {
4594 gotent->reloc_done = 1;
4595
4596 /* Note that the module index for the main program is 1. */
4597 bfd_put_64 (output_bfd, !info->shared && !dynamic_symbol_p,
4598 sgot->contents + gotent->got_offset);
4599
4600 /* If the symbol has been forced local, output a
4601 DTPMOD64 reloc, otherwise it will be handled in
4602 finish_dynamic_symbol. */
4603 if (info->shared && !dynamic_symbol_p)
4604 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4605 gotent->got_offset, 0,
4606 R_ALPHA_DTPMOD64, 0);
4607
4608 if (dynamic_symbol_p || r_type == R_ALPHA_TLSLDM)
4609 value = 0;
4610 else
4611 {
4612 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4613 value -= dtp_base;
4614 }
4615 bfd_put_64 (output_bfd, value,
4616 sgot->contents + gotent->got_offset + 8);
4617 }
4618
4619 value = (sgot->output_section->vma
4620 + sgot->output_offset
4621 + gotent->got_offset);
4622 value -= gp;
4623 goto default_reloc;
4624
4625 case R_ALPHA_DTPRELHI:
4626 case R_ALPHA_DTPRELLO:
4627 case R_ALPHA_DTPREL16:
4628 if (dynamic_symbol_p)
4629 {
4630 (*_bfd_error_handler)
4631 (_("%B: dtp-relative relocation against dynamic symbol %s"),
4632 input_bfd, h->root.root.root.string);
4633 ret_val = FALSE;
4634 }
4635 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4636 value -= dtp_base;
4637 if (r_type == R_ALPHA_DTPRELHI)
4638 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4639 goto default_reloc;
4640
4641 case R_ALPHA_TPRELHI:
4642 case R_ALPHA_TPRELLO:
4643 case R_ALPHA_TPREL16:
4644 if (info->shared)
4645 {
4646 (*_bfd_error_handler)
4647 (_("%B: TLS local exec code cannot be linked into shared objects"),
4648 input_bfd);
4649 ret_val = FALSE;
4650 }
4651 else if (dynamic_symbol_p)
4652 {
4653 (*_bfd_error_handler)
4654 (_("%B: tp-relative relocation against dynamic symbol %s"),
4655 input_bfd, h->root.root.root.string);
4656 ret_val = FALSE;
4657 }
4658 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4659 value -= tp_base;
4660 if (r_type == R_ALPHA_TPRELHI)
4661 value = ((bfd_signed_vma) value >> 16) + ((value >> 15) & 1);
4662 goto default_reloc;
4663
4664 case R_ALPHA_GOTDTPREL:
4665 case R_ALPHA_GOTTPREL:
4666 BFD_ASSERT(sgot != NULL);
4667 BFD_ASSERT(gp != 0);
4668 BFD_ASSERT(gotent != NULL);
4669 BFD_ASSERT(gotent->use_count >= 1);
4670
4671 if (!gotent->reloc_done)
4672 {
4673 gotent->reloc_done = 1;
4674
4675 if (dynamic_symbol_p)
4676 value = 0;
4677 else
4678 {
4679 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL);
4680 if (r_type == R_ALPHA_GOTDTPREL)
4681 value -= dtp_base;
4682 else if (!info->shared)
4683 value -= tp_base;
4684 else
4685 {
4686 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srelgot,
4687 gotent->got_offset, 0,
4688 R_ALPHA_TPREL64,
4689 value - dtp_base);
4690 value = 0;
4691 }
4692 }
4693 bfd_put_64 (output_bfd, value,
4694 sgot->contents + gotent->got_offset);
4695 }
4696
4697 value = (sgot->output_section->vma
4698 + sgot->output_offset
4699 + gotent->got_offset);
4700 value -= gp;
4701 goto default_reloc;
4702
4703 default:
4704 default_reloc:
4705 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4706 contents, rel->r_offset, value, 0);
4707 break;
4708 }
4709
4710 switch (r)
4711 {
4712 case bfd_reloc_ok:
4713 break;
4714
4715 case bfd_reloc_overflow:
4716 {
4717 const char *name;
4718
4719 /* Don't warn if the overflow is due to pc relative reloc
4720 against discarded section. Section optimization code should
4721 handle it. */
4722
4723 if (r_symndx < symtab_hdr->sh_info
4724 && sec != NULL && howto->pc_relative
4725 && elf_discarded_section (sec))
4726 break;
4727
4728 if (h != NULL)
4729 name = NULL;
4730 else
4731 {
4732 name = (bfd_elf_string_from_elf_section
4733 (input_bfd, symtab_hdr->sh_link, sym->st_name));
4734 if (name == NULL)
4735 return FALSE;
4736 if (*name == '\0')
4737 name = bfd_section_name (input_bfd, sec);
4738 }
4739 if (! ((*info->callbacks->reloc_overflow)
4740 (info, (h ? &h->root.root : NULL), name, howto->name,
4741 (bfd_vma) 0, input_bfd, input_section,
4742 rel->r_offset)))
4743 ret_val = FALSE;
4744 }
4745 break;
4746
4747 default:
4748 case bfd_reloc_outofrange:
4749 abort ();
4750 }
4751 }
4752
4753 return ret_val;
4754 }
4755
4756 /* Finish up dynamic symbol handling. We set the contents of various
4757 dynamic sections here. */
4758
4759 static bfd_boolean
4760 elf64_alpha_finish_dynamic_symbol (bfd *output_bfd, struct bfd_link_info *info,
4761 struct elf_link_hash_entry *h,
4762 Elf_Internal_Sym *sym)
4763 {
4764 struct alpha_elf_link_hash_entry *ah = (struct alpha_elf_link_hash_entry *)h;
4765 bfd *dynobj = elf_hash_table(info)->dynobj;
4766
4767 if (h->needs_plt)
4768 {
4769 /* Fill in the .plt entry for this symbol. */
4770 asection *splt, *sgot, *srel;
4771 Elf_Internal_Rela outrel;
4772 bfd_byte *loc;
4773 bfd_vma got_addr, plt_addr;
4774 bfd_vma plt_index;
4775 struct alpha_elf_got_entry *gotent;
4776
4777 BFD_ASSERT (h->dynindx != -1);
4778
4779 splt = bfd_get_section_by_name (dynobj, ".plt");
4780 BFD_ASSERT (splt != NULL);
4781 srel = bfd_get_section_by_name (dynobj, ".rela.plt");
4782 BFD_ASSERT (srel != NULL);
4783
4784 for (gotent = ah->got_entries; gotent ; gotent = gotent->next)
4785 if (gotent->reloc_type == R_ALPHA_LITERAL
4786 && gotent->use_count > 0)
4787 {
4788 unsigned int insn;
4789 int disp;
4790
4791 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4792 BFD_ASSERT (sgot != NULL);
4793
4794 BFD_ASSERT (gotent->got_offset != -1);
4795 BFD_ASSERT (gotent->plt_offset != -1);
4796
4797 got_addr = (sgot->output_section->vma
4798 + sgot->output_offset
4799 + gotent->got_offset);
4800 plt_addr = (splt->output_section->vma
4801 + splt->output_offset
4802 + gotent->plt_offset);
4803
4804 plt_index = (gotent->plt_offset-PLT_HEADER_SIZE) / PLT_ENTRY_SIZE;
4805
4806 /* Fill in the entry in the procedure linkage table. */
4807 if (elf64_alpha_use_secureplt)
4808 {
4809 disp = (PLT_HEADER_SIZE - 4) - (gotent->plt_offset + 4);
4810 insn = INSN_AD (INSN_BR, 31, disp);
4811 bfd_put_32 (output_bfd, insn,
4812 splt->contents + gotent->plt_offset);
4813
4814 plt_index = ((gotent->plt_offset - NEW_PLT_HEADER_SIZE)
4815 / NEW_PLT_ENTRY_SIZE);
4816 }
4817 else
4818 {
4819 disp = -(gotent->plt_offset + 4);
4820 insn = INSN_AD (INSN_BR, 28, disp);
4821 bfd_put_32 (output_bfd, insn,
4822 splt->contents + gotent->plt_offset);
4823 bfd_put_32 (output_bfd, INSN_UNOP,
4824 splt->contents + gotent->plt_offset + 4);
4825 bfd_put_32 (output_bfd, INSN_UNOP,
4826 splt->contents + gotent->plt_offset + 8);
4827
4828 plt_index = ((gotent->plt_offset - OLD_PLT_HEADER_SIZE)
4829 / OLD_PLT_ENTRY_SIZE);
4830 }
4831
4832 /* Fill in the entry in the .rela.plt section. */
4833 outrel.r_offset = got_addr;
4834 outrel.r_info = ELF64_R_INFO(h->dynindx, R_ALPHA_JMP_SLOT);
4835 outrel.r_addend = 0;
4836
4837 loc = srel->contents + plt_index * sizeof (Elf64_External_Rela);
4838 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
4839
4840 /* Fill in the entry in the .got. */
4841 bfd_put_64 (output_bfd, plt_addr,
4842 sgot->contents + gotent->got_offset);
4843 }
4844 }
4845 else if (alpha_elf_dynamic_symbol_p (h, info))
4846 {
4847 /* Fill in the dynamic relocations for this symbol's .got entries. */
4848 asection *srel;
4849 struct alpha_elf_got_entry *gotent;
4850
4851 srel = bfd_get_section_by_name (dynobj, ".rela.got");
4852 BFD_ASSERT (srel != NULL);
4853
4854 for (gotent = ((struct alpha_elf_link_hash_entry *) h)->got_entries;
4855 gotent != NULL;
4856 gotent = gotent->next)
4857 {
4858 asection *sgot;
4859 long r_type;
4860
4861 if (gotent->use_count == 0)
4862 continue;
4863
4864 sgot = alpha_elf_tdata (gotent->gotobj)->got;
4865
4866 r_type = gotent->reloc_type;
4867 switch (r_type)
4868 {
4869 case R_ALPHA_LITERAL:
4870 r_type = R_ALPHA_GLOB_DAT;
4871 break;
4872 case R_ALPHA_TLSGD:
4873 r_type = R_ALPHA_DTPMOD64;
4874 break;
4875 case R_ALPHA_GOTDTPREL:
4876 r_type = R_ALPHA_DTPREL64;
4877 break;
4878 case R_ALPHA_GOTTPREL:
4879 r_type = R_ALPHA_TPREL64;
4880 break;
4881 case R_ALPHA_TLSLDM:
4882 default:
4883 abort ();
4884 }
4885
4886 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4887 gotent->got_offset, h->dynindx,
4888 r_type, gotent->addend);
4889
4890 if (gotent->reloc_type == R_ALPHA_TLSGD)
4891 elf64_alpha_emit_dynrel (output_bfd, info, sgot, srel,
4892 gotent->got_offset + 8, h->dynindx,
4893 R_ALPHA_DTPREL64, gotent->addend);
4894 }
4895 }
4896
4897 /* Mark some specially defined symbols as absolute. */
4898 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
4899 || h == elf_hash_table (info)->hgot
4900 || h == elf_hash_table (info)->hplt)
4901 sym->st_shndx = SHN_ABS;
4902
4903 return TRUE;
4904 }
4905
4906 /* Finish up the dynamic sections. */
4907
4908 static bfd_boolean
4909 elf64_alpha_finish_dynamic_sections (bfd *output_bfd,
4910 struct bfd_link_info *info)
4911 {
4912 bfd *dynobj;
4913 asection *sdyn;
4914
4915 dynobj = elf_hash_table (info)->dynobj;
4916 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
4917
4918 if (elf_hash_table (info)->dynamic_sections_created)
4919 {
4920 asection *splt, *sgotplt, *srelaplt;
4921 Elf64_External_Dyn *dyncon, *dynconend;
4922 bfd_vma plt_vma, gotplt_vma;
4923
4924 splt = bfd_get_section_by_name (dynobj, ".plt");
4925 srelaplt = bfd_get_section_by_name (output_bfd, ".rela.plt");
4926 BFD_ASSERT (splt != NULL && sdyn != NULL);
4927
4928 plt_vma = splt->output_section->vma + splt->output_offset;
4929
4930 gotplt_vma = 0;
4931 if (elf64_alpha_use_secureplt)
4932 {
4933 sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
4934 BFD_ASSERT (sgotplt != NULL);
4935 if (sgotplt->size > 0)
4936 gotplt_vma = sgotplt->output_section->vma + sgotplt->output_offset;
4937 }
4938
4939 dyncon = (Elf64_External_Dyn *) sdyn->contents;
4940 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
4941 for (; dyncon < dynconend; dyncon++)
4942 {
4943 Elf_Internal_Dyn dyn;
4944
4945 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
4946
4947 switch (dyn.d_tag)
4948 {
4949 case DT_PLTGOT:
4950 dyn.d_un.d_ptr
4951 = elf64_alpha_use_secureplt ? gotplt_vma : plt_vma;
4952 break;
4953 case DT_PLTRELSZ:
4954 dyn.d_un.d_val = srelaplt ? srelaplt->size : 0;
4955 break;
4956 case DT_JMPREL:
4957 dyn.d_un.d_ptr = srelaplt ? srelaplt->vma : 0;
4958 break;
4959
4960 case DT_RELASZ:
4961 /* My interpretation of the TIS v1.1 ELF document indicates
4962 that RELASZ should not include JMPREL. This is not what
4963 the rest of the BFD does. It is, however, what the
4964 glibc ld.so wants. Do this fixup here until we found
4965 out who is right. */
4966 if (srelaplt)
4967 dyn.d_un.d_val -= srelaplt->size;
4968 break;
4969 }
4970
4971 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
4972 }
4973
4974 /* Initialize the plt header. */
4975 if (splt->size > 0)
4976 {
4977 unsigned int insn;
4978 int ofs;
4979
4980 if (elf64_alpha_use_secureplt)
4981 {
4982 ofs = gotplt_vma - (plt_vma + PLT_HEADER_SIZE);
4983
4984 insn = INSN_ABC (INSN_SUBQ, 27, 28, 25);
4985 bfd_put_32 (output_bfd, insn, splt->contents);
4986
4987 insn = INSN_ABO (INSN_LDAH, 28, 28, (ofs + 0x8000) >> 16);
4988 bfd_put_32 (output_bfd, insn, splt->contents + 4);
4989
4990 insn = INSN_ABC (INSN_S4SUBQ, 25, 25, 25);
4991 bfd_put_32 (output_bfd, insn, splt->contents + 8);
4992
4993 insn = INSN_ABO (INSN_LDA, 28, 28, ofs);
4994 bfd_put_32 (output_bfd, insn, splt->contents + 12);
4995
4996 insn = INSN_ABO (INSN_LDQ, 27, 28, 0);
4997 bfd_put_32 (output_bfd, insn, splt->contents + 16);
4998
4999 insn = INSN_ABC (INSN_ADDQ, 25, 25, 25);
5000 bfd_put_32 (output_bfd, insn, splt->contents + 20);
5001
5002 insn = INSN_ABO (INSN_LDQ, 28, 28, 8);
5003 bfd_put_32 (output_bfd, insn, splt->contents + 24);
5004
5005 insn = INSN_AB (INSN_JMP, 31, 27);
5006 bfd_put_32 (output_bfd, insn, splt->contents + 28);
5007
5008 insn = INSN_AD (INSN_BR, 28, -PLT_HEADER_SIZE);
5009 bfd_put_32 (output_bfd, insn, splt->contents + 32);
5010 }
5011 else
5012 {
5013 insn = INSN_AD (INSN_BR, 27, 0); /* br $27, .+4 */
5014 bfd_put_32 (output_bfd, insn, splt->contents);
5015
5016 insn = INSN_ABO (INSN_LDQ, 27, 27, 12);
5017 bfd_put_32 (output_bfd, insn, splt->contents + 4);
5018
5019 insn = INSN_UNOP;
5020 bfd_put_32 (output_bfd, insn, splt->contents + 8);
5021
5022 insn = INSN_AB (INSN_JMP, 27, 27);
5023 bfd_put_32 (output_bfd, insn, splt->contents + 12);
5024
5025 /* The next two words will be filled in by ld.so. */
5026 bfd_put_64 (output_bfd, 0, splt->contents + 16);
5027 bfd_put_64 (output_bfd, 0, splt->contents + 24);
5028 }
5029
5030 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 0;
5031 }
5032 }
5033
5034 return TRUE;
5035 }
5036
5037 /* We need to use a special link routine to handle the .mdebug section.
5038 We need to merge all instances of these sections together, not write
5039 them all out sequentially. */
5040
5041 static bfd_boolean
5042 elf64_alpha_final_link (bfd *abfd, struct bfd_link_info *info)
5043 {
5044 asection *o;
5045 struct bfd_link_order *p;
5046 asection *mdebug_sec;
5047 struct ecoff_debug_info debug;
5048 const struct ecoff_debug_swap *swap
5049 = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
5050 HDRR *symhdr = &debug.symbolic_header;
5051 void * mdebug_handle = NULL;
5052 struct alpha_elf_link_hash_table * htab;
5053
5054 htab = alpha_elf_hash_table (info);
5055 if (htab == NULL)
5056 return FALSE;
5057
5058 /* Go through the sections and collect the mdebug information. */
5059 mdebug_sec = NULL;
5060 for (o = abfd->sections; o != (asection *) NULL; o = o->next)
5061 {
5062 if (strcmp (o->name, ".mdebug") == 0)
5063 {
5064 struct extsym_info einfo;
5065
5066 /* We have found the .mdebug section in the output file.
5067 Look through all the link_orders comprising it and merge
5068 the information together. */
5069 symhdr->magic = swap->sym_magic;
5070 /* FIXME: What should the version stamp be? */
5071 symhdr->vstamp = 0;
5072 symhdr->ilineMax = 0;
5073 symhdr->cbLine = 0;
5074 symhdr->idnMax = 0;
5075 symhdr->ipdMax = 0;
5076 symhdr->isymMax = 0;
5077 symhdr->ioptMax = 0;
5078 symhdr->iauxMax = 0;
5079 symhdr->issMax = 0;
5080 symhdr->issExtMax = 0;
5081 symhdr->ifdMax = 0;
5082 symhdr->crfd = 0;
5083 symhdr->iextMax = 0;
5084
5085 /* We accumulate the debugging information itself in the
5086 debug_info structure. */
5087 debug.line = NULL;
5088 debug.external_dnr = NULL;
5089 debug.external_pdr = NULL;
5090 debug.external_sym = NULL;
5091 debug.external_opt = NULL;
5092 debug.external_aux = NULL;
5093 debug.ss = NULL;
5094 debug.ssext = debug.ssext_end = NULL;
5095 debug.external_fdr = NULL;
5096 debug.external_rfd = NULL;
5097 debug.external_ext = debug.external_ext_end = NULL;
5098
5099 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
5100 if (mdebug_handle == (PTR) NULL)
5101 return FALSE;
5102
5103 if (1)
5104 {
5105 asection *s;
5106 EXTR esym;
5107 bfd_vma last = 0;
5108 unsigned int i;
5109 static const char * const name[] =
5110 {
5111 ".text", ".init", ".fini", ".data",
5112 ".rodata", ".sdata", ".sbss", ".bss"
5113 };
5114 static const int sc[] = { scText, scInit, scFini, scData,
5115 scRData, scSData, scSBss, scBss };
5116
5117 esym.jmptbl = 0;
5118 esym.cobol_main = 0;
5119 esym.weakext = 0;
5120 esym.reserved = 0;
5121 esym.ifd = ifdNil;
5122 esym.asym.iss = issNil;
5123 esym.asym.st = stLocal;
5124 esym.asym.reserved = 0;
5125 esym.asym.index = indexNil;
5126 for (i = 0; i < 8; i++)
5127 {
5128 esym.asym.sc = sc[i];
5129 s = bfd_get_section_by_name (abfd, name[i]);
5130 if (s != NULL)
5131 {
5132 esym.asym.value = s->vma;
5133 last = s->vma + s->size;
5134 }
5135 else
5136 esym.asym.value = last;
5137
5138 if (! bfd_ecoff_debug_one_external (abfd, &debug, swap,
5139 name[i], &esym))
5140 return FALSE;
5141 }
5142 }
5143
5144 for (p = o->map_head.link_order;
5145 p != (struct bfd_link_order *) NULL;
5146 p = p->next)
5147 {
5148 asection *input_section;
5149 bfd *input_bfd;
5150 const struct ecoff_debug_swap *input_swap;
5151 struct ecoff_debug_info input_debug;
5152 char *eraw_src;
5153 char *eraw_end;
5154
5155 if (p->type != bfd_indirect_link_order)
5156 {
5157 if (p->type == bfd_data_link_order)
5158 continue;
5159 abort ();
5160 }
5161
5162 input_section = p->u.indirect.section;
5163 input_bfd = input_section->owner;
5164
5165 if (! is_alpha_elf (input_bfd))
5166 /* I don't know what a non ALPHA ELF bfd would be
5167 doing with a .mdebug section, but I don't really
5168 want to deal with it. */
5169 continue;
5170
5171 input_swap = (get_elf_backend_data (input_bfd)
5172 ->elf_backend_ecoff_debug_swap);
5173
5174 BFD_ASSERT (p->size == input_section->size);
5175
5176 /* The ECOFF linking code expects that we have already
5177 read in the debugging information and set up an
5178 ecoff_debug_info structure, so we do that now. */
5179 if (!elf64_alpha_read_ecoff_info (input_bfd, input_section,
5180 &input_debug))
5181 return FALSE;
5182
5183 if (! (bfd_ecoff_debug_accumulate
5184 (mdebug_handle, abfd, &debug, swap, input_bfd,
5185 &input_debug, input_swap, info)))
5186 return FALSE;
5187
5188 /* Loop through the external symbols. For each one with
5189 interesting information, try to find the symbol in
5190 the linker global hash table and save the information
5191 for the output external symbols. */
5192 eraw_src = (char *) input_debug.external_ext;
5193 eraw_end = (eraw_src
5194 + (input_debug.symbolic_header.iextMax
5195 * input_swap->external_ext_size));
5196 for (;
5197 eraw_src < eraw_end;
5198 eraw_src += input_swap->external_ext_size)
5199 {
5200 EXTR ext;
5201 const char *name;
5202 struct alpha_elf_link_hash_entry *h;
5203
5204 (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext);
5205 if (ext.asym.sc == scNil
5206 || ext.asym.sc == scUndefined
5207 || ext.asym.sc == scSUndefined)
5208 continue;
5209
5210 name = input_debug.ssext + ext.asym.iss;
5211 h = alpha_elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
5212 if (h == NULL || h->esym.ifd != -2)
5213 continue;
5214
5215 if (ext.ifd != -1)
5216 {
5217 BFD_ASSERT (ext.ifd
5218 < input_debug.symbolic_header.ifdMax);
5219 ext.ifd = input_debug.ifdmap[ext.ifd];
5220 }
5221
5222 h->esym = ext;
5223 }
5224
5225 /* Free up the information we just read. */
5226 free (input_debug.line);
5227 free (input_debug.external_dnr);
5228 free (input_debug.external_pdr);
5229 free (input_debug.external_sym);
5230 free (input_debug.external_opt);
5231 free (input_debug.external_aux);
5232 free (input_debug.ss);
5233 free (input_debug.ssext);
5234 free (input_debug.external_fdr);
5235 free (input_debug.external_rfd);
5236 free (input_debug.external_ext);
5237
5238 /* Hack: reset the SEC_HAS_CONTENTS flag so that
5239 elf_link_input_bfd ignores this section. */
5240 input_section->flags &=~ SEC_HAS_CONTENTS;
5241 }
5242
5243 /* Build the external symbol information. */
5244 einfo.abfd = abfd;
5245 einfo.info = info;
5246 einfo.debug = &debug;
5247 einfo.swap = swap;
5248 einfo.failed = FALSE;
5249 elf_link_hash_traverse (elf_hash_table (info),
5250 elf64_alpha_output_extsym,
5251 (PTR) &einfo);
5252 if (einfo.failed)
5253 return FALSE;
5254
5255 /* Set the size of the .mdebug section. */
5256 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
5257
5258 /* Skip this section later on (I don't think this currently
5259 matters, but someday it might). */
5260 o->map_head.link_order = (struct bfd_link_order *) NULL;
5261
5262 mdebug_sec = o;
5263 }
5264 }
5265
5266 /* Invoke the regular ELF backend linker to do all the work. */
5267 if (! bfd_elf_final_link (abfd, info))
5268 return FALSE;
5269
5270 /* Now write out the computed sections. */
5271
5272 /* The .got subsections... */
5273 {
5274 bfd *i, *dynobj = elf_hash_table(info)->dynobj;
5275 for (i = htab->got_list;
5276 i != NULL;
5277 i = alpha_elf_tdata(i)->got_link_next)
5278 {
5279 asection *sgot;
5280
5281 /* elf_bfd_final_link already did everything in dynobj. */
5282 if (i == dynobj)
5283 continue;
5284
5285 sgot = alpha_elf_tdata(i)->got;
5286 if (! bfd_set_section_contents (abfd, sgot->output_section,
5287 sgot->contents,
5288 (file_ptr) sgot->output_offset,
5289 sgot->size))
5290 return FALSE;
5291 }
5292 }
5293
5294 if (mdebug_sec != (asection *) NULL)
5295 {
5296 BFD_ASSERT (abfd->output_has_begun);
5297 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
5298 swap, info,
5299 mdebug_sec->filepos))
5300 return FALSE;
5301
5302 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
5303 }
5304
5305 return TRUE;
5306 }
5307
5308 static enum elf_reloc_type_class
5309 elf64_alpha_reloc_type_class (const Elf_Internal_Rela *rela)
5310 {
5311 switch ((int) ELF64_R_TYPE (rela->r_info))
5312 {
5313 case R_ALPHA_RELATIVE:
5314 return reloc_class_relative;
5315 case R_ALPHA_JMP_SLOT:
5316 return reloc_class_plt;
5317 case R_ALPHA_COPY:
5318 return reloc_class_copy;
5319 default:
5320 return reloc_class_normal;
5321 }
5322 }
5323 \f
5324 static const struct bfd_elf_special_section elf64_alpha_special_sections[] =
5325 {
5326 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5327 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_ALPHA_GPREL },
5328 { NULL, 0, 0, 0, 0 }
5329 };
5330
5331 /* ECOFF swapping routines. These are used when dealing with the
5332 .mdebug section, which is in the ECOFF debugging format. Copied
5333 from elf32-mips.c. */
5334 static const struct ecoff_debug_swap
5335 elf64_alpha_ecoff_debug_swap =
5336 {
5337 /* Symbol table magic number. */
5338 magicSym2,
5339 /* Alignment of debugging information. E.g., 4. */
5340 8,
5341 /* Sizes of external symbolic information. */
5342 sizeof (struct hdr_ext),
5343 sizeof (struct dnr_ext),
5344 sizeof (struct pdr_ext),
5345 sizeof (struct sym_ext),
5346 sizeof (struct opt_ext),
5347 sizeof (struct fdr_ext),
5348 sizeof (struct rfd_ext),
5349 sizeof (struct ext_ext),
5350 /* Functions to swap in external symbolic data. */
5351 ecoff_swap_hdr_in,
5352 ecoff_swap_dnr_in,
5353 ecoff_swap_pdr_in,
5354 ecoff_swap_sym_in,
5355 ecoff_swap_opt_in,
5356 ecoff_swap_fdr_in,
5357 ecoff_swap_rfd_in,
5358 ecoff_swap_ext_in,
5359 _bfd_ecoff_swap_tir_in,
5360 _bfd_ecoff_swap_rndx_in,
5361 /* Functions to swap out external symbolic data. */
5362 ecoff_swap_hdr_out,
5363 ecoff_swap_dnr_out,
5364 ecoff_swap_pdr_out,
5365 ecoff_swap_sym_out,
5366 ecoff_swap_opt_out,
5367 ecoff_swap_fdr_out,
5368 ecoff_swap_rfd_out,
5369 ecoff_swap_ext_out,
5370 _bfd_ecoff_swap_tir_out,
5371 _bfd_ecoff_swap_rndx_out,
5372 /* Function to read in symbolic data. */
5373 elf64_alpha_read_ecoff_info
5374 };
5375 \f
5376 /* Use a non-standard hash bucket size of 8. */
5377
5378 static const struct elf_size_info alpha_elf_size_info =
5379 {
5380 sizeof (Elf64_External_Ehdr),
5381 sizeof (Elf64_External_Phdr),
5382 sizeof (Elf64_External_Shdr),
5383 sizeof (Elf64_External_Rel),
5384 sizeof (Elf64_External_Rela),
5385 sizeof (Elf64_External_Sym),
5386 sizeof (Elf64_External_Dyn),
5387 sizeof (Elf_External_Note),
5388 8,
5389 1,
5390 64, 3,
5391 ELFCLASS64, EV_CURRENT,
5392 bfd_elf64_write_out_phdrs,
5393 bfd_elf64_write_shdrs_and_ehdr,
5394 bfd_elf64_checksum_contents,
5395 bfd_elf64_write_relocs,
5396 bfd_elf64_swap_symbol_in,
5397 bfd_elf64_swap_symbol_out,
5398 bfd_elf64_slurp_reloc_table,
5399 bfd_elf64_slurp_symbol_table,
5400 bfd_elf64_swap_dyn_in,
5401 bfd_elf64_swap_dyn_out,
5402 bfd_elf64_swap_reloc_in,
5403 bfd_elf64_swap_reloc_out,
5404 bfd_elf64_swap_reloca_in,
5405 bfd_elf64_swap_reloca_out
5406 };
5407
5408 #define TARGET_LITTLE_SYM bfd_elf64_alpha_vec
5409 #define TARGET_LITTLE_NAME "elf64-alpha"
5410 #define ELF_ARCH bfd_arch_alpha
5411 #define ELF_TARGET_ID ALPHA_ELF_DATA
5412 #define ELF_MACHINE_CODE EM_ALPHA
5413 #define ELF_MAXPAGESIZE 0x10000
5414 #define ELF_COMMONPAGESIZE 0x2000
5415
5416 #define bfd_elf64_bfd_link_hash_table_create \
5417 elf64_alpha_bfd_link_hash_table_create
5418
5419 #define bfd_elf64_bfd_reloc_type_lookup \
5420 elf64_alpha_bfd_reloc_type_lookup
5421 #define bfd_elf64_bfd_reloc_name_lookup \
5422 elf64_alpha_bfd_reloc_name_lookup
5423 #define elf_info_to_howto \
5424 elf64_alpha_info_to_howto
5425
5426 #define bfd_elf64_mkobject \
5427 elf64_alpha_mkobject
5428 #define elf_backend_object_p \
5429 elf64_alpha_object_p
5430
5431 #define elf_backend_section_from_shdr \
5432 elf64_alpha_section_from_shdr
5433 #define elf_backend_section_flags \
5434 elf64_alpha_section_flags
5435 #define elf_backend_fake_sections \
5436 elf64_alpha_fake_sections
5437
5438 #define bfd_elf64_bfd_is_local_label_name \
5439 elf64_alpha_is_local_label_name
5440 #define bfd_elf64_find_nearest_line \
5441 elf64_alpha_find_nearest_line
5442 #define bfd_elf64_bfd_relax_section \
5443 elf64_alpha_relax_section
5444
5445 #define elf_backend_add_symbol_hook \
5446 elf64_alpha_add_symbol_hook
5447 #define elf_backend_relocs_compatible \
5448 _bfd_elf_relocs_compatible
5449 #define elf_backend_check_relocs \
5450 elf64_alpha_check_relocs
5451 #define elf_backend_create_dynamic_sections \
5452 elf64_alpha_create_dynamic_sections
5453 #define elf_backend_adjust_dynamic_symbol \
5454 elf64_alpha_adjust_dynamic_symbol
5455 #define elf_backend_merge_symbol_attribute \
5456 elf64_alpha_merge_symbol_attribute
5457 #define elf_backend_always_size_sections \
5458 elf64_alpha_always_size_sections
5459 #define elf_backend_size_dynamic_sections \
5460 elf64_alpha_size_dynamic_sections
5461 #define elf_backend_omit_section_dynsym \
5462 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
5463 #define elf_backend_relocate_section \
5464 elf64_alpha_relocate_section
5465 #define elf_backend_finish_dynamic_symbol \
5466 elf64_alpha_finish_dynamic_symbol
5467 #define elf_backend_finish_dynamic_sections \
5468 elf64_alpha_finish_dynamic_sections
5469 #define bfd_elf64_bfd_final_link \
5470 elf64_alpha_final_link
5471 #define elf_backend_reloc_type_class \
5472 elf64_alpha_reloc_type_class
5473
5474 #define elf_backend_can_gc_sections 1
5475 #define elf_backend_gc_mark_hook elf64_alpha_gc_mark_hook
5476 #define elf_backend_gc_sweep_hook elf64_alpha_gc_sweep_hook
5477
5478 #define elf_backend_ecoff_debug_swap \
5479 &elf64_alpha_ecoff_debug_swap
5480
5481 #define elf_backend_size_info \
5482 alpha_elf_size_info
5483
5484 #define elf_backend_special_sections \
5485 elf64_alpha_special_sections
5486
5487 /* A few constants that determine how the .plt section is set up. */
5488 #define elf_backend_want_got_plt 0
5489 #define elf_backend_plt_readonly 0
5490 #define elf_backend_want_plt_sym 1
5491 #define elf_backend_got_header_size 0
5492
5493 #include "elf64-target.h"
5494 \f
5495 /* FreeBSD support. */
5496
5497 #undef TARGET_LITTLE_SYM
5498 #define TARGET_LITTLE_SYM bfd_elf64_alpha_freebsd_vec
5499 #undef TARGET_LITTLE_NAME
5500 #define TARGET_LITTLE_NAME "elf64-alpha-freebsd"
5501 #undef ELF_OSABI
5502 #define ELF_OSABI ELFOSABI_FREEBSD
5503
5504 /* The kernel recognizes executables as valid only if they carry a
5505 "FreeBSD" label in the ELF header. So we put this label on all
5506 executables and (for simplicity) also all other object files. */
5507
5508 static void
5509 elf64_alpha_fbsd_post_process_headers (bfd * abfd,
5510 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
5511 {
5512 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
5513
5514 i_ehdrp = elf_elfheader (abfd);
5515
5516 /* Put an ABI label supported by FreeBSD >= 4.1. */
5517 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
5518 #ifdef OLD_FREEBSD_ABI_LABEL
5519 /* The ABI label supported by FreeBSD <= 4.0 is quite nonstandard. */
5520 memcpy (&i_ehdrp->e_ident[EI_ABIVERSION], "FreeBSD", 8);
5521 #endif
5522 }
5523
5524 #undef elf_backend_post_process_headers
5525 #define elf_backend_post_process_headers \
5526 elf64_alpha_fbsd_post_process_headers
5527
5528 #undef elf64_bed
5529 #define elf64_bed elf64_alpha_fbsd_bed
5530
5531 #include "elf64-target.h"
This page took 0.176235 seconds and 5 git commands to generate.