bfd/
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02110-1301, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static bfd_boolean elf64_hppa_dyn_hash_table_init
161 PARAMS ((struct elf64_hppa_dyn_hash_table *ht, bfd *abfd,
162 new_hash_entry_func new));
163 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
164 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
165 const char *string));
166 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
167 PARAMS ((bfd *abfd));
168 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
170 bfd_boolean create, bfd_boolean copy));
171 static void elf64_hppa_dyn_hash_traverse
172 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
173 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
174 PTR info));
175
176 static const char *get_dyn_name
177 PARAMS ((bfd *, struct elf_link_hash_entry *,
178 const Elf_Internal_Rela *, char **, size_t *));
179
180 /* This must follow the definitions of the various derived linker
181 hash tables and shared functions. */
182 #include "elf-hppa.h"
183
184 static bfd_boolean elf64_hppa_object_p
185 PARAMS ((bfd *));
186
187 static void elf64_hppa_post_process_headers
188 PARAMS ((bfd *, struct bfd_link_info *));
189
190 static bfd_boolean elf64_hppa_create_dynamic_sections
191 PARAMS ((bfd *, struct bfd_link_info *));
192
193 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
194 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
195
196 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
197 PARAMS ((struct elf_link_hash_entry *, PTR));
198
199 static bfd_boolean elf64_hppa_size_dynamic_sections
200 PARAMS ((bfd *, struct bfd_link_info *));
201
202 static bfd_boolean elf64_hppa_link_output_symbol_hook
203 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
204 asection *, struct elf_link_hash_entry *));
205
206 static bfd_boolean elf64_hppa_finish_dynamic_symbol
207 PARAMS ((bfd *, struct bfd_link_info *,
208 struct elf_link_hash_entry *, Elf_Internal_Sym *));
209
210 static int elf64_hppa_additional_program_headers
211 PARAMS ((bfd *));
212
213 static bfd_boolean elf64_hppa_modify_segment_map
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
217 PARAMS ((const Elf_Internal_Rela *));
218
219 static bfd_boolean elf64_hppa_finish_dynamic_sections
220 PARAMS ((bfd *, struct bfd_link_info *));
221
222 static bfd_boolean elf64_hppa_check_relocs
223 PARAMS ((bfd *, struct bfd_link_info *,
224 asection *, const Elf_Internal_Rela *));
225
226 static bfd_boolean elf64_hppa_dynamic_symbol_p
227 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
228
229 static bfd_boolean elf64_hppa_mark_exported_functions
230 PARAMS ((struct elf_link_hash_entry *, PTR));
231
232 static bfd_boolean elf64_hppa_finalize_opd
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static bfd_boolean elf64_hppa_finalize_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean allocate_global_data_dlt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean allocate_global_data_plt
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static bfd_boolean allocate_global_data_stub
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247 static bfd_boolean allocate_global_data_opd
248 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
249
250 static bfd_boolean get_reloc_section
251 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
252
253 static bfd_boolean count_dyn_reloc
254 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
255 int, asection *, int, bfd_vma, bfd_vma));
256
257 static bfd_boolean allocate_dynrel_entries
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
260 static bfd_boolean elf64_hppa_finalize_dynreloc
261 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
262
263 static bfd_boolean get_opd
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static bfd_boolean get_plt
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static bfd_boolean get_dlt
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
272 static bfd_boolean get_stub
273 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
274
275 static int elf64_hppa_elf_get_symbol_type
276 PARAMS ((Elf_Internal_Sym *, int));
277
278 static bfd_boolean
279 elf64_hppa_dyn_hash_table_init (ht, abfd, new)
280 struct elf64_hppa_dyn_hash_table *ht;
281 bfd *abfd ATTRIBUTE_UNUSED;
282 new_hash_entry_func new;
283 {
284 memset (ht, 0, sizeof (*ht));
285 return bfd_hash_table_init (&ht->root, new);
286 }
287
288 static struct bfd_hash_entry*
289 elf64_hppa_new_dyn_hash_entry (entry, table, string)
290 struct bfd_hash_entry *entry;
291 struct bfd_hash_table *table;
292 const char *string;
293 {
294 struct elf64_hppa_dyn_hash_entry *ret;
295 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
296
297 /* Allocate the structure if it has not already been allocated by a
298 subclass. */
299 if (!ret)
300 ret = bfd_hash_allocate (table, sizeof (*ret));
301
302 if (!ret)
303 return 0;
304
305 /* Call the allocation method of the superclass. */
306 ret = ((struct elf64_hppa_dyn_hash_entry *)
307 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
308
309 /* Initialize our local data. All zeros. */
310 memset (&ret->dlt_offset, 0,
311 (sizeof (struct elf64_hppa_dyn_hash_entry)
312 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
313
314 return &ret->root;
315 }
316
317 /* Create the derived linker hash table. The PA64 ELF port uses this
318 derived hash table to keep information specific to the PA ElF
319 linker (without using static variables). */
320
321 static struct bfd_link_hash_table*
322 elf64_hppa_hash_table_create (abfd)
323 bfd *abfd;
324 {
325 struct elf64_hppa_link_hash_table *ret;
326
327 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
328 if (!ret)
329 return 0;
330 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
331 _bfd_elf_link_hash_newfunc))
332 {
333 bfd_release (abfd, ret);
334 return 0;
335 }
336
337 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
338 elf64_hppa_new_dyn_hash_entry))
339 return 0;
340 return &ret->root.root;
341 }
342
343 /* Look up an entry in a PA64 ELF linker hash table. */
344
345 static struct elf64_hppa_dyn_hash_entry *
346 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
347 struct elf64_hppa_dyn_hash_table *table;
348 const char *string;
349 bfd_boolean create, copy;
350 {
351 return ((struct elf64_hppa_dyn_hash_entry *)
352 bfd_hash_lookup (&table->root, string, create, copy));
353 }
354
355 /* Traverse a PA64 ELF linker hash table. */
356
357 static void
358 elf64_hppa_dyn_hash_traverse (table, func, info)
359 struct elf64_hppa_dyn_hash_table *table;
360 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
361 PTR info;
362 {
363 (bfd_hash_traverse
364 (&table->root,
365 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
366 info));
367 }
368 \f
369 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
370
371 Additionally we set the default architecture and machine. */
372 static bfd_boolean
373 elf64_hppa_object_p (abfd)
374 bfd *abfd;
375 {
376 Elf_Internal_Ehdr * i_ehdrp;
377 unsigned int flags;
378
379 i_ehdrp = elf_elfheader (abfd);
380 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
381 {
382 /* GCC on hppa-linux produces binaries with OSABI=Linux,
383 but the kernel produces corefiles with OSABI=SysV. */
384 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX &&
385 i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
386 return FALSE;
387 }
388 else
389 {
390 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
391 return FALSE;
392 }
393
394 flags = i_ehdrp->e_flags;
395 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
396 {
397 case EFA_PARISC_1_0:
398 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
399 case EFA_PARISC_1_1:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
401 case EFA_PARISC_2_0:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
403 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
404 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
405 }
406 /* Don't be fussy. */
407 return TRUE;
408 }
409
410 /* Given section type (hdr->sh_type), return a boolean indicating
411 whether or not the section is an elf64-hppa specific section. */
412 static bfd_boolean
413 elf64_hppa_section_from_shdr (bfd *abfd,
414 Elf_Internal_Shdr *hdr,
415 const char *name,
416 int shindex)
417 {
418 asection *newsect;
419
420 switch (hdr->sh_type)
421 {
422 case SHT_PARISC_EXT:
423 if (strcmp (name, ".PARISC.archext") != 0)
424 return FALSE;
425 break;
426 case SHT_PARISC_UNWIND:
427 if (strcmp (name, ".PARISC.unwind") != 0)
428 return FALSE;
429 break;
430 case SHT_PARISC_DOC:
431 case SHT_PARISC_ANNOT:
432 default:
433 return FALSE;
434 }
435
436 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
437 return FALSE;
438 newsect = hdr->bfd_section;
439
440 return TRUE;
441 }
442
443 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
444 name describes what was once potentially anonymous memory. We
445 allocate memory as necessary, possibly reusing PBUF/PLEN. */
446
447 static const char *
448 get_dyn_name (abfd, h, rel, pbuf, plen)
449 bfd *abfd;
450 struct elf_link_hash_entry *h;
451 const Elf_Internal_Rela *rel;
452 char **pbuf;
453 size_t *plen;
454 {
455 asection *sec = abfd->sections;
456 size_t nlen, tlen;
457 char *buf;
458 size_t len;
459
460 if (h && rel->r_addend == 0)
461 return h->root.root.string;
462
463 if (h)
464 nlen = strlen (h->root.root.string);
465 else
466 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
467 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
468
469 len = *plen;
470 buf = *pbuf;
471 if (len < tlen)
472 {
473 if (buf)
474 free (buf);
475 *pbuf = buf = malloc (tlen);
476 *plen = len = tlen;
477 if (!buf)
478 return NULL;
479 }
480
481 if (h)
482 {
483 memcpy (buf, h->root.root.string, nlen);
484 buf[nlen++] = '+';
485 sprintf_vma (buf + nlen, rel->r_addend);
486 }
487 else
488 {
489 nlen = sprintf (buf, "%x:%lx",
490 sec->id & 0xffffffff,
491 (long) ELF64_R_SYM (rel->r_info));
492 if (rel->r_addend)
493 {
494 buf[nlen++] = '+';
495 sprintf_vma (buf + nlen, rel->r_addend);
496 }
497 }
498
499 return buf;
500 }
501
502 /* SEC is a section containing relocs for an input BFD when linking; return
503 a suitable section for holding relocs in the output BFD for a link. */
504
505 static bfd_boolean
506 get_reloc_section (abfd, hppa_info, sec)
507 bfd *abfd;
508 struct elf64_hppa_link_hash_table *hppa_info;
509 asection *sec;
510 {
511 const char *srel_name;
512 asection *srel;
513 bfd *dynobj;
514
515 srel_name = (bfd_elf_string_from_elf_section
516 (abfd, elf_elfheader(abfd)->e_shstrndx,
517 elf_section_data(sec)->rel_hdr.sh_name));
518 if (srel_name == NULL)
519 return FALSE;
520
521 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
522 && strcmp (bfd_get_section_name (abfd, sec),
523 srel_name+5) == 0)
524 || (strncmp (srel_name, ".rel", 4) == 0
525 && strcmp (bfd_get_section_name (abfd, sec),
526 srel_name+4) == 0));
527
528 dynobj = hppa_info->root.dynobj;
529 if (!dynobj)
530 hppa_info->root.dynobj = dynobj = abfd;
531
532 srel = bfd_get_section_by_name (dynobj, srel_name);
533 if (srel == NULL)
534 {
535 srel = bfd_make_section (dynobj, srel_name);
536 if (srel == NULL
537 || !bfd_set_section_flags (dynobj, srel,
538 (SEC_ALLOC
539 | SEC_LOAD
540 | SEC_HAS_CONTENTS
541 | SEC_IN_MEMORY
542 | SEC_LINKER_CREATED
543 | SEC_READONLY))
544 || !bfd_set_section_alignment (dynobj, srel, 3))
545 return FALSE;
546 }
547
548 hppa_info->other_rel_sec = srel;
549 return TRUE;
550 }
551
552 /* Add a new entry to the list of dynamic relocations against DYN_H.
553
554 We use this to keep a record of all the FPTR relocations against a
555 particular symbol so that we can create FPTR relocations in the
556 output file. */
557
558 static bfd_boolean
559 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
560 bfd *abfd;
561 struct elf64_hppa_dyn_hash_entry *dyn_h;
562 int type;
563 asection *sec;
564 int sec_symndx;
565 bfd_vma offset;
566 bfd_vma addend;
567 {
568 struct elf64_hppa_dyn_reloc_entry *rent;
569
570 rent = (struct elf64_hppa_dyn_reloc_entry *)
571 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
572 if (!rent)
573 return FALSE;
574
575 rent->next = dyn_h->reloc_entries;
576 rent->type = type;
577 rent->sec = sec;
578 rent->sec_symndx = sec_symndx;
579 rent->offset = offset;
580 rent->addend = addend;
581 dyn_h->reloc_entries = rent;
582
583 return TRUE;
584 }
585
586 /* Scan the RELOCS and record the type of dynamic entries that each
587 referenced symbol needs. */
588
589 static bfd_boolean
590 elf64_hppa_check_relocs (abfd, info, sec, relocs)
591 bfd *abfd;
592 struct bfd_link_info *info;
593 asection *sec;
594 const Elf_Internal_Rela *relocs;
595 {
596 struct elf64_hppa_link_hash_table *hppa_info;
597 const Elf_Internal_Rela *relend;
598 Elf_Internal_Shdr *symtab_hdr;
599 const Elf_Internal_Rela *rel;
600 asection *dlt, *plt, *stubs;
601 char *buf;
602 size_t buf_len;
603 int sec_symndx;
604
605 if (info->relocatable)
606 return TRUE;
607
608 /* If this is the first dynamic object found in the link, create
609 the special sections required for dynamic linking. */
610 if (! elf_hash_table (info)->dynamic_sections_created)
611 {
612 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
613 return FALSE;
614 }
615
616 hppa_info = elf64_hppa_hash_table (info);
617 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
618
619 /* If necessary, build a new table holding section symbols indices
620 for this BFD. */
621
622 if (info->shared && hppa_info->section_syms_bfd != abfd)
623 {
624 unsigned long i;
625 unsigned int highest_shndx;
626 Elf_Internal_Sym *local_syms = NULL;
627 Elf_Internal_Sym *isym, *isymend;
628 bfd_size_type amt;
629
630 /* We're done with the old cache of section index to section symbol
631 index information. Free it.
632
633 ?!? Note we leak the last section_syms array. Presumably we
634 could free it in one of the later routines in this file. */
635 if (hppa_info->section_syms)
636 free (hppa_info->section_syms);
637
638 /* Read this BFD's local symbols. */
639 if (symtab_hdr->sh_info != 0)
640 {
641 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
642 if (local_syms == NULL)
643 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
644 symtab_hdr->sh_info, 0,
645 NULL, NULL, NULL);
646 if (local_syms == NULL)
647 return FALSE;
648 }
649
650 /* Record the highest section index referenced by the local symbols. */
651 highest_shndx = 0;
652 isymend = local_syms + symtab_hdr->sh_info;
653 for (isym = local_syms; isym < isymend; isym++)
654 {
655 if (isym->st_shndx > highest_shndx)
656 highest_shndx = isym->st_shndx;
657 }
658
659 /* Allocate an array to hold the section index to section symbol index
660 mapping. Bump by one since we start counting at zero. */
661 highest_shndx++;
662 amt = highest_shndx;
663 amt *= sizeof (int);
664 hppa_info->section_syms = (int *) bfd_malloc (amt);
665
666 /* Now walk the local symbols again. If we find a section symbol,
667 record the index of the symbol into the section_syms array. */
668 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
669 {
670 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
671 hppa_info->section_syms[isym->st_shndx] = i;
672 }
673
674 /* We are finished with the local symbols. */
675 if (local_syms != NULL
676 && symtab_hdr->contents != (unsigned char *) local_syms)
677 {
678 if (! info->keep_memory)
679 free (local_syms);
680 else
681 {
682 /* Cache the symbols for elf_link_input_bfd. */
683 symtab_hdr->contents = (unsigned char *) local_syms;
684 }
685 }
686
687 /* Record which BFD we built the section_syms mapping for. */
688 hppa_info->section_syms_bfd = abfd;
689 }
690
691 /* Record the symbol index for this input section. We may need it for
692 relocations when building shared libraries. When not building shared
693 libraries this value is never really used, but assign it to zero to
694 prevent out of bounds memory accesses in other routines. */
695 if (info->shared)
696 {
697 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
698
699 /* If we did not find a section symbol for this section, then
700 something went terribly wrong above. */
701 if (sec_symndx == -1)
702 return FALSE;
703
704 sec_symndx = hppa_info->section_syms[sec_symndx];
705 }
706 else
707 sec_symndx = 0;
708
709 dlt = plt = stubs = NULL;
710 buf = NULL;
711 buf_len = 0;
712
713 relend = relocs + sec->reloc_count;
714 for (rel = relocs; rel < relend; ++rel)
715 {
716 enum
717 {
718 NEED_DLT = 1,
719 NEED_PLT = 2,
720 NEED_STUB = 4,
721 NEED_OPD = 8,
722 NEED_DYNREL = 16,
723 };
724
725 struct elf_link_hash_entry *h = NULL;
726 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
727 struct elf64_hppa_dyn_hash_entry *dyn_h;
728 int need_entry;
729 const char *addr_name;
730 bfd_boolean maybe_dynamic;
731 int dynrel_type = R_PARISC_NONE;
732 static reloc_howto_type *howto;
733
734 if (r_symndx >= symtab_hdr->sh_info)
735 {
736 /* We're dealing with a global symbol -- find its hash entry
737 and mark it as being referenced. */
738 long indx = r_symndx - symtab_hdr->sh_info;
739 h = elf_sym_hashes (abfd)[indx];
740 while (h->root.type == bfd_link_hash_indirect
741 || h->root.type == bfd_link_hash_warning)
742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
743
744 h->ref_regular = 1;
745 }
746
747 /* We can only get preliminary data on whether a symbol is
748 locally or externally defined, as not all of the input files
749 have yet been processed. Do something with what we know, as
750 this may help reduce memory usage and processing time later. */
751 maybe_dynamic = FALSE;
752 if (h && ((info->shared
753 && (!info->symbolic
754 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
755 || !h->def_regular
756 || h->root.type == bfd_link_hash_defweak))
757 maybe_dynamic = TRUE;
758
759 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
760 need_entry = 0;
761 switch (howto->type)
762 {
763 /* These are simple indirect references to symbols through the
764 DLT. We need to create a DLT entry for any symbols which
765 appears in a DLTIND relocation. */
766 case R_PARISC_DLTIND21L:
767 case R_PARISC_DLTIND14R:
768 case R_PARISC_DLTIND14F:
769 case R_PARISC_DLTIND14WR:
770 case R_PARISC_DLTIND14DR:
771 need_entry = NEED_DLT;
772 break;
773
774 /* ?!? These need a DLT entry. But I have no idea what to do with
775 the "link time TP value. */
776 case R_PARISC_LTOFF_TP21L:
777 case R_PARISC_LTOFF_TP14R:
778 case R_PARISC_LTOFF_TP14F:
779 case R_PARISC_LTOFF_TP64:
780 case R_PARISC_LTOFF_TP14WR:
781 case R_PARISC_LTOFF_TP14DR:
782 case R_PARISC_LTOFF_TP16F:
783 case R_PARISC_LTOFF_TP16WF:
784 case R_PARISC_LTOFF_TP16DF:
785 need_entry = NEED_DLT;
786 break;
787
788 /* These are function calls. Depending on their precise target we
789 may need to make a stub for them. The stub uses the PLT, so we
790 need to create PLT entries for these symbols too. */
791 case R_PARISC_PCREL12F:
792 case R_PARISC_PCREL17F:
793 case R_PARISC_PCREL22F:
794 case R_PARISC_PCREL32:
795 case R_PARISC_PCREL64:
796 case R_PARISC_PCREL21L:
797 case R_PARISC_PCREL17R:
798 case R_PARISC_PCREL17C:
799 case R_PARISC_PCREL14R:
800 case R_PARISC_PCREL14F:
801 case R_PARISC_PCREL22C:
802 case R_PARISC_PCREL14WR:
803 case R_PARISC_PCREL14DR:
804 case R_PARISC_PCREL16F:
805 case R_PARISC_PCREL16WF:
806 case R_PARISC_PCREL16DF:
807 need_entry = (NEED_PLT | NEED_STUB);
808 break;
809
810 case R_PARISC_PLTOFF21L:
811 case R_PARISC_PLTOFF14R:
812 case R_PARISC_PLTOFF14F:
813 case R_PARISC_PLTOFF14WR:
814 case R_PARISC_PLTOFF14DR:
815 case R_PARISC_PLTOFF16F:
816 case R_PARISC_PLTOFF16WF:
817 case R_PARISC_PLTOFF16DF:
818 need_entry = (NEED_PLT);
819 break;
820
821 case R_PARISC_DIR64:
822 if (info->shared || maybe_dynamic)
823 need_entry = (NEED_DYNREL);
824 dynrel_type = R_PARISC_DIR64;
825 break;
826
827 /* This is an indirect reference through the DLT to get the address
828 of a OPD descriptor. Thus we need to make a DLT entry that points
829 to an OPD entry. */
830 case R_PARISC_LTOFF_FPTR21L:
831 case R_PARISC_LTOFF_FPTR14R:
832 case R_PARISC_LTOFF_FPTR14WR:
833 case R_PARISC_LTOFF_FPTR14DR:
834 case R_PARISC_LTOFF_FPTR32:
835 case R_PARISC_LTOFF_FPTR64:
836 case R_PARISC_LTOFF_FPTR16F:
837 case R_PARISC_LTOFF_FPTR16WF:
838 case R_PARISC_LTOFF_FPTR16DF:
839 if (info->shared || maybe_dynamic)
840 need_entry = (NEED_DLT | NEED_OPD);
841 else
842 need_entry = (NEED_DLT | NEED_OPD);
843 dynrel_type = R_PARISC_FPTR64;
844 break;
845
846 /* This is a simple OPD entry. */
847 case R_PARISC_FPTR64:
848 if (info->shared || maybe_dynamic)
849 need_entry = (NEED_OPD | NEED_DYNREL);
850 else
851 need_entry = (NEED_OPD);
852 dynrel_type = R_PARISC_FPTR64;
853 break;
854
855 /* Add more cases as needed. */
856 }
857
858 if (!need_entry)
859 continue;
860
861 /* Collect a canonical name for this address. */
862 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
863
864 /* Collect the canonical entry data for this address. */
865 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
866 addr_name, TRUE, TRUE);
867 BFD_ASSERT (dyn_h);
868
869 /* Stash away enough information to be able to find this symbol
870 regardless of whether or not it is local or global. */
871 dyn_h->h = h;
872 dyn_h->owner = abfd;
873 dyn_h->sym_indx = r_symndx;
874
875 /* ?!? We may need to do some error checking in here. */
876 /* Create what's needed. */
877 if (need_entry & NEED_DLT)
878 {
879 if (! hppa_info->dlt_sec
880 && ! get_dlt (abfd, info, hppa_info))
881 goto err_out;
882 dyn_h->want_dlt = 1;
883 }
884
885 if (need_entry & NEED_PLT)
886 {
887 if (! hppa_info->plt_sec
888 && ! get_plt (abfd, info, hppa_info))
889 goto err_out;
890 dyn_h->want_plt = 1;
891 }
892
893 if (need_entry & NEED_STUB)
894 {
895 if (! hppa_info->stub_sec
896 && ! get_stub (abfd, info, hppa_info))
897 goto err_out;
898 dyn_h->want_stub = 1;
899 }
900
901 if (need_entry & NEED_OPD)
902 {
903 if (! hppa_info->opd_sec
904 && ! get_opd (abfd, info, hppa_info))
905 goto err_out;
906
907 dyn_h->want_opd = 1;
908
909 /* FPTRs are not allocated by the dynamic linker for PA64, though
910 it is possible that will change in the future. */
911
912 /* This could be a local function that had its address taken, in
913 which case H will be NULL. */
914 if (h)
915 h->needs_plt = 1;
916 }
917
918 /* Add a new dynamic relocation to the chain of dynamic
919 relocations for this symbol. */
920 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
921 {
922 if (! hppa_info->other_rel_sec
923 && ! get_reloc_section (abfd, hppa_info, sec))
924 goto err_out;
925
926 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
927 sec_symndx, rel->r_offset, rel->r_addend))
928 goto err_out;
929
930 /* If we are building a shared library and we just recorded
931 a dynamic R_PARISC_FPTR64 relocation, then make sure the
932 section symbol for this section ends up in the dynamic
933 symbol table. */
934 if (info->shared && dynrel_type == R_PARISC_FPTR64
935 && ! (bfd_elf_link_record_local_dynamic_symbol
936 (info, abfd, sec_symndx)))
937 return FALSE;
938 }
939 }
940
941 if (buf)
942 free (buf);
943 return TRUE;
944
945 err_out:
946 if (buf)
947 free (buf);
948 return FALSE;
949 }
950
951 struct elf64_hppa_allocate_data
952 {
953 struct bfd_link_info *info;
954 bfd_size_type ofs;
955 };
956
957 /* Should we do dynamic things to this symbol? */
958
959 static bfd_boolean
960 elf64_hppa_dynamic_symbol_p (h, info)
961 struct elf_link_hash_entry *h;
962 struct bfd_link_info *info;
963 {
964 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
965 and relocations that retrieve a function descriptor? Assume the
966 worst for now. */
967 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
968 {
969 /* ??? Why is this here and not elsewhere is_local_label_name. */
970 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
971 return FALSE;
972
973 return TRUE;
974 }
975 else
976 return FALSE;
977 }
978
979 /* Mark all functions exported by this file so that we can later allocate
980 entries in .opd for them. */
981
982 static bfd_boolean
983 elf64_hppa_mark_exported_functions (h, data)
984 struct elf_link_hash_entry *h;
985 PTR data;
986 {
987 struct bfd_link_info *info = (struct bfd_link_info *)data;
988 struct elf64_hppa_link_hash_table *hppa_info;
989
990 hppa_info = elf64_hppa_hash_table (info);
991
992 if (h->root.type == bfd_link_hash_warning)
993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
994
995 if (h
996 && (h->root.type == bfd_link_hash_defined
997 || h->root.type == bfd_link_hash_defweak)
998 && h->root.u.def.section->output_section != NULL
999 && h->type == STT_FUNC)
1000 {
1001 struct elf64_hppa_dyn_hash_entry *dyn_h;
1002
1003 /* Add this symbol to the PA64 linker hash table. */
1004 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1005 h->root.root.string, TRUE, TRUE);
1006 BFD_ASSERT (dyn_h);
1007 dyn_h->h = h;
1008
1009 if (! hppa_info->opd_sec
1010 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1011 return FALSE;
1012
1013 dyn_h->want_opd = 1;
1014 /* Put a flag here for output_symbol_hook. */
1015 dyn_h->st_shndx = -1;
1016 h->needs_plt = 1;
1017 }
1018
1019 return TRUE;
1020 }
1021
1022 /* Allocate space for a DLT entry. */
1023
1024 static bfd_boolean
1025 allocate_global_data_dlt (dyn_h, data)
1026 struct elf64_hppa_dyn_hash_entry *dyn_h;
1027 PTR data;
1028 {
1029 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1030
1031 if (dyn_h->want_dlt)
1032 {
1033 struct elf_link_hash_entry *h = dyn_h->h;
1034
1035 if (x->info->shared)
1036 {
1037 /* Possibly add the symbol to the local dynamic symbol
1038 table since we might need to create a dynamic relocation
1039 against it. */
1040 if (! h
1041 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1042 {
1043 bfd *owner;
1044 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1045
1046 if (! (bfd_elf_link_record_local_dynamic_symbol
1047 (x->info, owner, dyn_h->sym_indx)))
1048 return FALSE;
1049 }
1050 }
1051
1052 dyn_h->dlt_offset = x->ofs;
1053 x->ofs += DLT_ENTRY_SIZE;
1054 }
1055 return TRUE;
1056 }
1057
1058 /* Allocate space for a DLT.PLT entry. */
1059
1060 static bfd_boolean
1061 allocate_global_data_plt (dyn_h, data)
1062 struct elf64_hppa_dyn_hash_entry *dyn_h;
1063 PTR data;
1064 {
1065 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1066
1067 if (dyn_h->want_plt
1068 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1069 && !((dyn_h->h->root.type == bfd_link_hash_defined
1070 || dyn_h->h->root.type == bfd_link_hash_defweak)
1071 && dyn_h->h->root.u.def.section->output_section != NULL))
1072 {
1073 dyn_h->plt_offset = x->ofs;
1074 x->ofs += PLT_ENTRY_SIZE;
1075 if (dyn_h->plt_offset < 0x2000)
1076 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1077 }
1078 else
1079 dyn_h->want_plt = 0;
1080
1081 return TRUE;
1082 }
1083
1084 /* Allocate space for a STUB entry. */
1085
1086 static bfd_boolean
1087 allocate_global_data_stub (dyn_h, data)
1088 struct elf64_hppa_dyn_hash_entry *dyn_h;
1089 PTR data;
1090 {
1091 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1092
1093 if (dyn_h->want_stub
1094 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1095 && !((dyn_h->h->root.type == bfd_link_hash_defined
1096 || dyn_h->h->root.type == bfd_link_hash_defweak)
1097 && dyn_h->h->root.u.def.section->output_section != NULL))
1098 {
1099 dyn_h->stub_offset = x->ofs;
1100 x->ofs += sizeof (plt_stub);
1101 }
1102 else
1103 dyn_h->want_stub = 0;
1104 return TRUE;
1105 }
1106
1107 /* Allocate space for a FPTR entry. */
1108
1109 static bfd_boolean
1110 allocate_global_data_opd (dyn_h, data)
1111 struct elf64_hppa_dyn_hash_entry *dyn_h;
1112 PTR data;
1113 {
1114 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1115
1116 if (dyn_h->want_opd)
1117 {
1118 struct elf_link_hash_entry *h = dyn_h->h;
1119
1120 if (h)
1121 while (h->root.type == bfd_link_hash_indirect
1122 || h->root.type == bfd_link_hash_warning)
1123 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1124
1125 /* We never need an opd entry for a symbol which is not
1126 defined by this output file. */
1127 if (h && (h->root.type == bfd_link_hash_undefined
1128 || h->root.u.def.section->output_section == NULL))
1129 dyn_h->want_opd = 0;
1130
1131 /* If we are creating a shared library, took the address of a local
1132 function or might export this function from this object file, then
1133 we have to create an opd descriptor. */
1134 else if (x->info->shared
1135 || h == NULL
1136 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1137 || (h->root.type == bfd_link_hash_defined
1138 || h->root.type == bfd_link_hash_defweak))
1139 {
1140 /* If we are creating a shared library, then we will have to
1141 create a runtime relocation for the symbol to properly
1142 initialize the .opd entry. Make sure the symbol gets
1143 added to the dynamic symbol table. */
1144 if (x->info->shared
1145 && (h == NULL || (h->dynindx == -1)))
1146 {
1147 bfd *owner;
1148 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1149
1150 if (!bfd_elf_link_record_local_dynamic_symbol
1151 (x->info, owner, dyn_h->sym_indx))
1152 return FALSE;
1153 }
1154
1155 /* This may not be necessary or desirable anymore now that
1156 we have some support for dealing with section symbols
1157 in dynamic relocs. But name munging does make the result
1158 much easier to debug. ie, the EPLT reloc will reference
1159 a symbol like .foobar, instead of .text + offset. */
1160 if (x->info->shared && h)
1161 {
1162 char *new_name;
1163 struct elf_link_hash_entry *nh;
1164
1165 new_name = alloca (strlen (h->root.root.string) + 2);
1166 new_name[0] = '.';
1167 strcpy (new_name + 1, h->root.root.string);
1168
1169 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1170 new_name, TRUE, TRUE, TRUE);
1171
1172 nh->root.type = h->root.type;
1173 nh->root.u.def.value = h->root.u.def.value;
1174 nh->root.u.def.section = h->root.u.def.section;
1175
1176 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1177 return FALSE;
1178
1179 }
1180 dyn_h->opd_offset = x->ofs;
1181 x->ofs += OPD_ENTRY_SIZE;
1182 }
1183
1184 /* Otherwise we do not need an opd entry. */
1185 else
1186 dyn_h->want_opd = 0;
1187 }
1188 return TRUE;
1189 }
1190
1191 /* HP requires the EI_OSABI field to be filled in. The assignment to
1192 EI_ABIVERSION may not be strictly necessary. */
1193
1194 static void
1195 elf64_hppa_post_process_headers (abfd, link_info)
1196 bfd * abfd;
1197 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1198 {
1199 Elf_Internal_Ehdr * i_ehdrp;
1200
1201 i_ehdrp = elf_elfheader (abfd);
1202
1203 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1204 {
1205 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1206 }
1207 else
1208 {
1209 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1210 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1211 }
1212 }
1213
1214 /* Create function descriptor section (.opd). This section is called .opd
1215 because it contains "official procedure descriptors". The "official"
1216 refers to the fact that these descriptors are used when taking the address
1217 of a procedure, thus ensuring a unique address for each procedure. */
1218
1219 static bfd_boolean
1220 get_opd (abfd, info, hppa_info)
1221 bfd *abfd;
1222 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1223 struct elf64_hppa_link_hash_table *hppa_info;
1224 {
1225 asection *opd;
1226 bfd *dynobj;
1227
1228 opd = hppa_info->opd_sec;
1229 if (!opd)
1230 {
1231 dynobj = hppa_info->root.dynobj;
1232 if (!dynobj)
1233 hppa_info->root.dynobj = dynobj = abfd;
1234
1235 opd = bfd_make_section (dynobj, ".opd");
1236 if (!opd
1237 || !bfd_set_section_flags (dynobj, opd,
1238 (SEC_ALLOC
1239 | SEC_LOAD
1240 | SEC_HAS_CONTENTS
1241 | SEC_IN_MEMORY
1242 | SEC_LINKER_CREATED))
1243 || !bfd_set_section_alignment (abfd, opd, 3))
1244 {
1245 BFD_ASSERT (0);
1246 return FALSE;
1247 }
1248
1249 hppa_info->opd_sec = opd;
1250 }
1251
1252 return TRUE;
1253 }
1254
1255 /* Create the PLT section. */
1256
1257 static bfd_boolean
1258 get_plt (abfd, info, hppa_info)
1259 bfd *abfd;
1260 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1261 struct elf64_hppa_link_hash_table *hppa_info;
1262 {
1263 asection *plt;
1264 bfd *dynobj;
1265
1266 plt = hppa_info->plt_sec;
1267 if (!plt)
1268 {
1269 dynobj = hppa_info->root.dynobj;
1270 if (!dynobj)
1271 hppa_info->root.dynobj = dynobj = abfd;
1272
1273 plt = bfd_make_section (dynobj, ".plt");
1274 if (!plt
1275 || !bfd_set_section_flags (dynobj, plt,
1276 (SEC_ALLOC
1277 | SEC_LOAD
1278 | SEC_HAS_CONTENTS
1279 | SEC_IN_MEMORY
1280 | SEC_LINKER_CREATED))
1281 || !bfd_set_section_alignment (abfd, plt, 3))
1282 {
1283 BFD_ASSERT (0);
1284 return FALSE;
1285 }
1286
1287 hppa_info->plt_sec = plt;
1288 }
1289
1290 return TRUE;
1291 }
1292
1293 /* Create the DLT section. */
1294
1295 static bfd_boolean
1296 get_dlt (abfd, info, hppa_info)
1297 bfd *abfd;
1298 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1299 struct elf64_hppa_link_hash_table *hppa_info;
1300 {
1301 asection *dlt;
1302 bfd *dynobj;
1303
1304 dlt = hppa_info->dlt_sec;
1305 if (!dlt)
1306 {
1307 dynobj = hppa_info->root.dynobj;
1308 if (!dynobj)
1309 hppa_info->root.dynobj = dynobj = abfd;
1310
1311 dlt = bfd_make_section (dynobj, ".dlt");
1312 if (!dlt
1313 || !bfd_set_section_flags (dynobj, dlt,
1314 (SEC_ALLOC
1315 | SEC_LOAD
1316 | SEC_HAS_CONTENTS
1317 | SEC_IN_MEMORY
1318 | SEC_LINKER_CREATED))
1319 || !bfd_set_section_alignment (abfd, dlt, 3))
1320 {
1321 BFD_ASSERT (0);
1322 return FALSE;
1323 }
1324
1325 hppa_info->dlt_sec = dlt;
1326 }
1327
1328 return TRUE;
1329 }
1330
1331 /* Create the stubs section. */
1332
1333 static bfd_boolean
1334 get_stub (abfd, info, hppa_info)
1335 bfd *abfd;
1336 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1337 struct elf64_hppa_link_hash_table *hppa_info;
1338 {
1339 asection *stub;
1340 bfd *dynobj;
1341
1342 stub = hppa_info->stub_sec;
1343 if (!stub)
1344 {
1345 dynobj = hppa_info->root.dynobj;
1346 if (!dynobj)
1347 hppa_info->root.dynobj = dynobj = abfd;
1348
1349 stub = bfd_make_section (dynobj, ".stub");
1350 if (!stub
1351 || !bfd_set_section_flags (dynobj, stub,
1352 (SEC_ALLOC
1353 | SEC_LOAD
1354 | SEC_HAS_CONTENTS
1355 | SEC_IN_MEMORY
1356 | SEC_READONLY
1357 | SEC_LINKER_CREATED))
1358 || !bfd_set_section_alignment (abfd, stub, 3))
1359 {
1360 BFD_ASSERT (0);
1361 return FALSE;
1362 }
1363
1364 hppa_info->stub_sec = stub;
1365 }
1366
1367 return TRUE;
1368 }
1369
1370 /* Create sections necessary for dynamic linking. This is only a rough
1371 cut and will likely change as we learn more about the somewhat
1372 unusual dynamic linking scheme HP uses.
1373
1374 .stub:
1375 Contains code to implement cross-space calls. The first time one
1376 of the stubs is used it will call into the dynamic linker, later
1377 calls will go straight to the target.
1378
1379 The only stub we support right now looks like
1380
1381 ldd OFFSET(%dp),%r1
1382 bve %r0(%r1)
1383 ldd OFFSET+8(%dp),%dp
1384
1385 Other stubs may be needed in the future. We may want the remove
1386 the break/nop instruction. It is only used right now to keep the
1387 offset of a .plt entry and a .stub entry in sync.
1388
1389 .dlt:
1390 This is what most people call the .got. HP used a different name.
1391 Losers.
1392
1393 .rela.dlt:
1394 Relocations for the DLT.
1395
1396 .plt:
1397 Function pointers as address,gp pairs.
1398
1399 .rela.plt:
1400 Should contain dynamic IPLT (and EPLT?) relocations.
1401
1402 .opd:
1403 FPTRS
1404
1405 .rela.opd:
1406 EPLT relocations for symbols exported from shared libraries. */
1407
1408 static bfd_boolean
1409 elf64_hppa_create_dynamic_sections (abfd, info)
1410 bfd *abfd;
1411 struct bfd_link_info *info;
1412 {
1413 asection *s;
1414
1415 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1416 return FALSE;
1417
1418 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1419 return FALSE;
1420
1421 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1422 return FALSE;
1423
1424 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1425 return FALSE;
1426
1427 s = bfd_make_section(abfd, ".rela.dlt");
1428 if (s == NULL
1429 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1430 | SEC_HAS_CONTENTS
1431 | SEC_IN_MEMORY
1432 | SEC_READONLY
1433 | SEC_LINKER_CREATED))
1434 || !bfd_set_section_alignment (abfd, s, 3))
1435 return FALSE;
1436 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1437
1438 s = bfd_make_section(abfd, ".rela.plt");
1439 if (s == NULL
1440 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1441 | SEC_HAS_CONTENTS
1442 | SEC_IN_MEMORY
1443 | SEC_READONLY
1444 | SEC_LINKER_CREATED))
1445 || !bfd_set_section_alignment (abfd, s, 3))
1446 return FALSE;
1447 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1448
1449 s = bfd_make_section(abfd, ".rela.data");
1450 if (s == NULL
1451 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1452 | SEC_HAS_CONTENTS
1453 | SEC_IN_MEMORY
1454 | SEC_READONLY
1455 | SEC_LINKER_CREATED))
1456 || !bfd_set_section_alignment (abfd, s, 3))
1457 return FALSE;
1458 elf64_hppa_hash_table (info)->other_rel_sec = s;
1459
1460 s = bfd_make_section(abfd, ".rela.opd");
1461 if (s == NULL
1462 || !bfd_set_section_flags (abfd, s, (SEC_ALLOC | SEC_LOAD
1463 | SEC_HAS_CONTENTS
1464 | SEC_IN_MEMORY
1465 | SEC_READONLY
1466 | SEC_LINKER_CREATED))
1467 || !bfd_set_section_alignment (abfd, s, 3))
1468 return FALSE;
1469 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1470
1471 return TRUE;
1472 }
1473
1474 /* Allocate dynamic relocations for those symbols that turned out
1475 to be dynamic. */
1476
1477 static bfd_boolean
1478 allocate_dynrel_entries (dyn_h, data)
1479 struct elf64_hppa_dyn_hash_entry *dyn_h;
1480 PTR data;
1481 {
1482 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1483 struct elf64_hppa_link_hash_table *hppa_info;
1484 struct elf64_hppa_dyn_reloc_entry *rent;
1485 bfd_boolean dynamic_symbol, shared;
1486
1487 hppa_info = elf64_hppa_hash_table (x->info);
1488 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1489 shared = x->info->shared;
1490
1491 /* We may need to allocate relocations for a non-dynamic symbol
1492 when creating a shared library. */
1493 if (!dynamic_symbol && !shared)
1494 return TRUE;
1495
1496 /* Take care of the normal data relocations. */
1497
1498 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1499 {
1500 /* Allocate one iff we are building a shared library, the relocation
1501 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1502 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1503 continue;
1504
1505 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1506
1507 /* Make sure this symbol gets into the dynamic symbol table if it is
1508 not already recorded. ?!? This should not be in the loop since
1509 the symbol need only be added once. */
1510 if (dyn_h->h == 0
1511 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1512 if (!bfd_elf_link_record_local_dynamic_symbol
1513 (x->info, rent->sec->owner, dyn_h->sym_indx))
1514 return FALSE;
1515 }
1516
1517 /* Take care of the GOT and PLT relocations. */
1518
1519 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1520 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1521
1522 /* If we are building a shared library, then every symbol that has an
1523 opd entry will need an EPLT relocation to relocate the symbol's address
1524 and __gp value based on the runtime load address. */
1525 if (shared && dyn_h->want_opd)
1526 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1527
1528 if (dyn_h->want_plt && dynamic_symbol)
1529 {
1530 bfd_size_type t = 0;
1531
1532 /* Dynamic symbols get one IPLT relocation. Local symbols in
1533 shared libraries get two REL relocations. Local symbols in
1534 main applications get nothing. */
1535 if (dynamic_symbol)
1536 t = sizeof (Elf64_External_Rela);
1537 else if (shared)
1538 t = 2 * sizeof (Elf64_External_Rela);
1539
1540 hppa_info->plt_rel_sec->size += t;
1541 }
1542
1543 return TRUE;
1544 }
1545
1546 /* Adjust a symbol defined by a dynamic object and referenced by a
1547 regular object. */
1548
1549 static bfd_boolean
1550 elf64_hppa_adjust_dynamic_symbol (info, h)
1551 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1552 struct elf_link_hash_entry *h;
1553 {
1554 /* ??? Undefined symbols with PLT entries should be re-defined
1555 to be the PLT entry. */
1556
1557 /* If this is a weak symbol, and there is a real definition, the
1558 processor independent code will have arranged for us to see the
1559 real definition first, and we can just use the same value. */
1560 if (h->u.weakdef != NULL)
1561 {
1562 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1563 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1564 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1565 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1566 return TRUE;
1567 }
1568
1569 /* If this is a reference to a symbol defined by a dynamic object which
1570 is not a function, we might allocate the symbol in our .dynbss section
1571 and allocate a COPY dynamic relocation.
1572
1573 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1574 of hackery. */
1575
1576 return TRUE;
1577 }
1578
1579 /* This function is called via elf_link_hash_traverse to mark millicode
1580 symbols with a dynindx of -1 and to remove the string table reference
1581 from the dynamic symbol table. If the symbol is not a millicode symbol,
1582 elf64_hppa_mark_exported_functions is called. */
1583
1584 static bfd_boolean
1585 elf64_hppa_mark_milli_and_exported_functions (h, data)
1586 struct elf_link_hash_entry *h;
1587 PTR data;
1588 {
1589 struct bfd_link_info *info = (struct bfd_link_info *)data;
1590 struct elf_link_hash_entry *elf = h;
1591
1592 if (elf->root.type == bfd_link_hash_warning)
1593 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1594
1595 if (elf->type == STT_PARISC_MILLI)
1596 {
1597 if (elf->dynindx != -1)
1598 {
1599 elf->dynindx = -1;
1600 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1601 elf->dynstr_index);
1602 }
1603 return TRUE;
1604 }
1605
1606 return elf64_hppa_mark_exported_functions (h, data);
1607 }
1608
1609 /* Set the final sizes of the dynamic sections and allocate memory for
1610 the contents of our special sections. */
1611
1612 static bfd_boolean
1613 elf64_hppa_size_dynamic_sections (output_bfd, info)
1614 bfd *output_bfd;
1615 struct bfd_link_info *info;
1616 {
1617 bfd *dynobj;
1618 asection *s;
1619 bfd_boolean plt;
1620 bfd_boolean relocs;
1621 bfd_boolean reltext;
1622 struct elf64_hppa_allocate_data data;
1623 struct elf64_hppa_link_hash_table *hppa_info;
1624
1625 hppa_info = elf64_hppa_hash_table (info);
1626
1627 dynobj = elf_hash_table (info)->dynobj;
1628 BFD_ASSERT (dynobj != NULL);
1629
1630 /* Mark each function this program exports so that we will allocate
1631 space in the .opd section for each function's FPTR. If we are
1632 creating dynamic sections, change the dynamic index of millicode
1633 symbols to -1 and remove them from the string table for .dynstr.
1634
1635 We have to traverse the main linker hash table since we have to
1636 find functions which may not have been mentioned in any relocs. */
1637 elf_link_hash_traverse (elf_hash_table (info),
1638 (elf_hash_table (info)->dynamic_sections_created
1639 ? elf64_hppa_mark_milli_and_exported_functions
1640 : elf64_hppa_mark_exported_functions),
1641 info);
1642
1643 if (elf_hash_table (info)->dynamic_sections_created)
1644 {
1645 /* Set the contents of the .interp section to the interpreter. */
1646 if (info->executable)
1647 {
1648 s = bfd_get_section_by_name (dynobj, ".interp");
1649 BFD_ASSERT (s != NULL);
1650 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1651 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1652 }
1653 }
1654 else
1655 {
1656 /* We may have created entries in the .rela.got section.
1657 However, if we are not creating the dynamic sections, we will
1658 not actually use these entries. Reset the size of .rela.dlt,
1659 which will cause it to get stripped from the output file
1660 below. */
1661 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1662 if (s != NULL)
1663 s->size = 0;
1664 }
1665
1666 /* Allocate the GOT entries. */
1667
1668 data.info = info;
1669 if (elf64_hppa_hash_table (info)->dlt_sec)
1670 {
1671 data.ofs = 0x0;
1672 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1673 allocate_global_data_dlt, &data);
1674 hppa_info->dlt_sec->size = data.ofs;
1675
1676 data.ofs = 0x0;
1677 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1678 allocate_global_data_plt, &data);
1679 hppa_info->plt_sec->size = data.ofs;
1680
1681 data.ofs = 0x0;
1682 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1683 allocate_global_data_stub, &data);
1684 hppa_info->stub_sec->size = data.ofs;
1685 }
1686
1687 /* Allocate space for entries in the .opd section. */
1688 if (elf64_hppa_hash_table (info)->opd_sec)
1689 {
1690 data.ofs = 0;
1691 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1692 allocate_global_data_opd, &data);
1693 hppa_info->opd_sec->size = data.ofs;
1694 }
1695
1696 /* Now allocate space for dynamic relocations, if necessary. */
1697 if (hppa_info->root.dynamic_sections_created)
1698 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1699 allocate_dynrel_entries, &data);
1700
1701 /* The sizes of all the sections are set. Allocate memory for them. */
1702 plt = FALSE;
1703 relocs = FALSE;
1704 reltext = FALSE;
1705 for (s = dynobj->sections; s != NULL; s = s->next)
1706 {
1707 const char *name;
1708 bfd_boolean strip;
1709
1710 if ((s->flags & SEC_LINKER_CREATED) == 0)
1711 continue;
1712
1713 /* It's OK to base decisions on the section name, because none
1714 of the dynobj section names depend upon the input files. */
1715 name = bfd_get_section_name (dynobj, s);
1716
1717 strip = 0;
1718
1719 if (strcmp (name, ".plt") == 0)
1720 {
1721 /* Strip this section if we don't need it; see the comment below. */
1722 if (s->size == 0)
1723 {
1724 strip = TRUE;
1725 }
1726 else
1727 {
1728 /* Remember whether there is a PLT. */
1729 plt = TRUE;
1730 }
1731 }
1732 else if (strcmp (name, ".dlt") == 0)
1733 {
1734 /* Strip this section if we don't need it; see the comment below. */
1735 if (s->size == 0)
1736 {
1737 strip = TRUE;
1738 }
1739 }
1740 else if (strcmp (name, ".opd") == 0)
1741 {
1742 /* Strip this section if we don't need it; see the comment below. */
1743 if (s->size == 0)
1744 {
1745 strip = TRUE;
1746 }
1747 }
1748 else if (strncmp (name, ".rela", 5) == 0)
1749 {
1750 /* If we don't need this section, strip it from the output file.
1751 This is mostly to handle .rela.bss and .rela.plt. We must
1752 create both sections in create_dynamic_sections, because they
1753 must be created before the linker maps input sections to output
1754 sections. The linker does that before adjust_dynamic_symbol
1755 is called, and it is that function which decides whether
1756 anything needs to go into these sections. */
1757 if (s->size == 0)
1758 {
1759 /* If we don't need this section, strip it from the
1760 output file. This is mostly to handle .rela.bss and
1761 .rela.plt. We must create both sections in
1762 create_dynamic_sections, because they must be created
1763 before the linker maps input sections to output
1764 sections. The linker does that before
1765 adjust_dynamic_symbol is called, and it is that
1766 function which decides whether anything needs to go
1767 into these sections. */
1768 strip = TRUE;
1769 }
1770 else
1771 {
1772 asection *target;
1773
1774 /* Remember whether there are any reloc sections other
1775 than .rela.plt. */
1776 if (strcmp (name, ".rela.plt") != 0)
1777 {
1778 const char *outname;
1779
1780 relocs = TRUE;
1781
1782 /* If this relocation section applies to a read only
1783 section, then we probably need a DT_TEXTREL
1784 entry. The entries in the .rela.plt section
1785 really apply to the .got section, which we
1786 created ourselves and so know is not readonly. */
1787 outname = bfd_get_section_name (output_bfd,
1788 s->output_section);
1789 target = bfd_get_section_by_name (output_bfd, outname + 4);
1790 if (target != NULL
1791 && (target->flags & SEC_READONLY) != 0
1792 && (target->flags & SEC_ALLOC) != 0)
1793 reltext = TRUE;
1794 }
1795
1796 /* We use the reloc_count field as a counter if we need
1797 to copy relocs into the output file. */
1798 s->reloc_count = 0;
1799 }
1800 }
1801 else if (strncmp (name, ".dlt", 4) != 0
1802 && strcmp (name, ".stub") != 0
1803 && strcmp (name, ".got") != 0)
1804 {
1805 /* It's not one of our sections, so don't allocate space. */
1806 continue;
1807 }
1808
1809 if (strip)
1810 {
1811 s->flags |= SEC_EXCLUDE;
1812 continue;
1813 }
1814
1815 /* Allocate memory for the section contents if it has not
1816 been allocated already. We use bfd_zalloc here in case
1817 unused entries are not reclaimed before the section's
1818 contents are written out. This should not happen, but this
1819 way if it does, we get a R_PARISC_NONE reloc instead of
1820 garbage. */
1821 if (s->contents == NULL)
1822 {
1823 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1824 if (s->contents == NULL && s->size != 0)
1825 return FALSE;
1826 }
1827 }
1828
1829 if (elf_hash_table (info)->dynamic_sections_created)
1830 {
1831 /* Always create a DT_PLTGOT. It actually has nothing to do with
1832 the PLT, it is how we communicate the __gp value of a load
1833 module to the dynamic linker. */
1834 #define add_dynamic_entry(TAG, VAL) \
1835 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1836
1837 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1838 || !add_dynamic_entry (DT_PLTGOT, 0))
1839 return FALSE;
1840
1841 /* Add some entries to the .dynamic section. We fill in the
1842 values later, in elf64_hppa_finish_dynamic_sections, but we
1843 must add the entries now so that we get the correct size for
1844 the .dynamic section. The DT_DEBUG entry is filled in by the
1845 dynamic linker and used by the debugger. */
1846 if (! info->shared)
1847 {
1848 if (!add_dynamic_entry (DT_DEBUG, 0)
1849 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1850 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1851 return FALSE;
1852 }
1853
1854 /* Force DT_FLAGS to always be set.
1855 Required by HPUX 11.00 patch PHSS_26559. */
1856 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1857 return FALSE;
1858
1859 if (plt)
1860 {
1861 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1862 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1863 || !add_dynamic_entry (DT_JMPREL, 0))
1864 return FALSE;
1865 }
1866
1867 if (relocs)
1868 {
1869 if (!add_dynamic_entry (DT_RELA, 0)
1870 || !add_dynamic_entry (DT_RELASZ, 0)
1871 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1872 return FALSE;
1873 }
1874
1875 if (reltext)
1876 {
1877 if (!add_dynamic_entry (DT_TEXTREL, 0))
1878 return FALSE;
1879 info->flags |= DF_TEXTREL;
1880 }
1881 }
1882 #undef add_dynamic_entry
1883
1884 return TRUE;
1885 }
1886
1887 /* Called after we have output the symbol into the dynamic symbol
1888 table, but before we output the symbol into the normal symbol
1889 table.
1890
1891 For some symbols we had to change their address when outputting
1892 the dynamic symbol table. We undo that change here so that
1893 the symbols have their expected value in the normal symbol
1894 table. Ick. */
1895
1896 static bfd_boolean
1897 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1898 struct bfd_link_info *info;
1899 const char *name;
1900 Elf_Internal_Sym *sym;
1901 asection *input_sec ATTRIBUTE_UNUSED;
1902 struct elf_link_hash_entry *h;
1903 {
1904 struct elf64_hppa_link_hash_table *hppa_info;
1905 struct elf64_hppa_dyn_hash_entry *dyn_h;
1906
1907 /* We may be called with the file symbol or section symbols.
1908 They never need munging, so it is safe to ignore them. */
1909 if (!name)
1910 return TRUE;
1911
1912 /* Get the PA dyn_symbol (if any) associated with NAME. */
1913 hppa_info = elf64_hppa_hash_table (info);
1914 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1915 name, FALSE, FALSE);
1916 if (!dyn_h || dyn_h->h != h)
1917 return TRUE;
1918
1919 /* Function symbols for which we created .opd entries *may* have been
1920 munged by finish_dynamic_symbol and have to be un-munged here.
1921
1922 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1923 into non-dynamic ones, so we initialize st_shndx to -1 in
1924 mark_exported_functions and check to see if it was overwritten
1925 here instead of just checking dyn_h->h->dynindx. */
1926 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1927 {
1928 /* Restore the saved value and section index. */
1929 sym->st_value = dyn_h->st_value;
1930 sym->st_shndx = dyn_h->st_shndx;
1931 }
1932
1933 return TRUE;
1934 }
1935
1936 /* Finish up dynamic symbol handling. We set the contents of various
1937 dynamic sections here. */
1938
1939 static bfd_boolean
1940 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1941 bfd *output_bfd;
1942 struct bfd_link_info *info;
1943 struct elf_link_hash_entry *h;
1944 Elf_Internal_Sym *sym;
1945 {
1946 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1947 struct elf64_hppa_link_hash_table *hppa_info;
1948 struct elf64_hppa_dyn_hash_entry *dyn_h;
1949
1950 hppa_info = elf64_hppa_hash_table (info);
1951 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1952 h->root.root.string, FALSE, FALSE);
1953
1954 stub = hppa_info->stub_sec;
1955 splt = hppa_info->plt_sec;
1956 sdlt = hppa_info->dlt_sec;
1957 sopd = hppa_info->opd_sec;
1958 spltrel = hppa_info->plt_rel_sec;
1959 sdltrel = hppa_info->dlt_rel_sec;
1960
1961 /* Incredible. It is actually necessary to NOT use the symbol's real
1962 value when building the dynamic symbol table for a shared library.
1963 At least for symbols that refer to functions.
1964
1965 We will store a new value and section index into the symbol long
1966 enough to output it into the dynamic symbol table, then we restore
1967 the original values (in elf64_hppa_link_output_symbol_hook). */
1968 if (dyn_h && dyn_h->want_opd)
1969 {
1970 BFD_ASSERT (sopd != NULL);
1971
1972 /* Save away the original value and section index so that we
1973 can restore them later. */
1974 dyn_h->st_value = sym->st_value;
1975 dyn_h->st_shndx = sym->st_shndx;
1976
1977 /* For the dynamic symbol table entry, we want the value to be
1978 address of this symbol's entry within the .opd section. */
1979 sym->st_value = (dyn_h->opd_offset
1980 + sopd->output_offset
1981 + sopd->output_section->vma);
1982 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1983 sopd->output_section);
1984 }
1985
1986 /* Initialize a .plt entry if requested. */
1987 if (dyn_h && dyn_h->want_plt
1988 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1989 {
1990 bfd_vma value;
1991 Elf_Internal_Rela rel;
1992 bfd_byte *loc;
1993
1994 BFD_ASSERT (splt != NULL && spltrel != NULL);
1995
1996 /* We do not actually care about the value in the PLT entry
1997 if we are creating a shared library and the symbol is
1998 still undefined, we create a dynamic relocation to fill
1999 in the correct value. */
2000 if (info->shared && h->root.type == bfd_link_hash_undefined)
2001 value = 0;
2002 else
2003 value = (h->root.u.def.value + h->root.u.def.section->vma);
2004
2005 /* Fill in the entry in the procedure linkage table.
2006
2007 The format of a plt entry is
2008 <funcaddr> <__gp>.
2009
2010 plt_offset is the offset within the PLT section at which to
2011 install the PLT entry.
2012
2013 We are modifying the in-memory PLT contents here, so we do not add
2014 in the output_offset of the PLT section. */
2015
2016 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2017 value = _bfd_get_gp_value (splt->output_section->owner);
2018 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2019
2020 /* Create a dynamic IPLT relocation for this entry.
2021
2022 We are creating a relocation in the output file's PLT section,
2023 which is included within the DLT secton. So we do need to include
2024 the PLT's output_offset in the computation of the relocation's
2025 address. */
2026 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2027 + splt->output_section->vma);
2028 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2029 rel.r_addend = 0;
2030
2031 loc = spltrel->contents;
2032 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2033 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2034 }
2035
2036 /* Initialize an external call stub entry if requested. */
2037 if (dyn_h && dyn_h->want_stub
2038 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2039 {
2040 bfd_vma value;
2041 int insn;
2042 unsigned int max_offset;
2043
2044 BFD_ASSERT (stub != NULL);
2045
2046 /* Install the generic stub template.
2047
2048 We are modifying the contents of the stub section, so we do not
2049 need to include the stub section's output_offset here. */
2050 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2051
2052 /* Fix up the first ldd instruction.
2053
2054 We are modifying the contents of the STUB section in memory,
2055 so we do not need to include its output offset in this computation.
2056
2057 Note the plt_offset value is the value of the PLT entry relative to
2058 the start of the PLT section. These instructions will reference
2059 data relative to the value of __gp, which may not necessarily have
2060 the same address as the start of the PLT section.
2061
2062 gp_offset contains the offset of __gp within the PLT section. */
2063 value = dyn_h->plt_offset - hppa_info->gp_offset;
2064
2065 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2066 if (output_bfd->arch_info->mach >= 25)
2067 {
2068 /* Wide mode allows 16 bit offsets. */
2069 max_offset = 32768;
2070 insn &= ~ 0xfff1;
2071 insn |= re_assemble_16 ((int) value);
2072 }
2073 else
2074 {
2075 max_offset = 8192;
2076 insn &= ~ 0x3ff1;
2077 insn |= re_assemble_14 ((int) value);
2078 }
2079
2080 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2081 {
2082 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2083 dyn_h->root.string,
2084 (long) value);
2085 return FALSE;
2086 }
2087
2088 bfd_put_32 (stub->owner, (bfd_vma) insn,
2089 stub->contents + dyn_h->stub_offset);
2090
2091 /* Fix up the second ldd instruction. */
2092 value += 8;
2093 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2094 if (output_bfd->arch_info->mach >= 25)
2095 {
2096 insn &= ~ 0xfff1;
2097 insn |= re_assemble_16 ((int) value);
2098 }
2099 else
2100 {
2101 insn &= ~ 0x3ff1;
2102 insn |= re_assemble_14 ((int) value);
2103 }
2104 bfd_put_32 (stub->owner, (bfd_vma) insn,
2105 stub->contents + dyn_h->stub_offset + 8);
2106 }
2107
2108 return TRUE;
2109 }
2110
2111 /* The .opd section contains FPTRs for each function this file
2112 exports. Initialize the FPTR entries. */
2113
2114 static bfd_boolean
2115 elf64_hppa_finalize_opd (dyn_h, data)
2116 struct elf64_hppa_dyn_hash_entry *dyn_h;
2117 PTR data;
2118 {
2119 struct bfd_link_info *info = (struct bfd_link_info *)data;
2120 struct elf64_hppa_link_hash_table *hppa_info;
2121 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2122 asection *sopd;
2123 asection *sopdrel;
2124
2125 hppa_info = elf64_hppa_hash_table (info);
2126 sopd = hppa_info->opd_sec;
2127 sopdrel = hppa_info->opd_rel_sec;
2128
2129 if (h && dyn_h->want_opd)
2130 {
2131 bfd_vma value;
2132
2133 /* The first two words of an .opd entry are zero.
2134
2135 We are modifying the contents of the OPD section in memory, so we
2136 do not need to include its output offset in this computation. */
2137 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2138
2139 value = (h->root.u.def.value
2140 + h->root.u.def.section->output_section->vma
2141 + h->root.u.def.section->output_offset);
2142
2143 /* The next word is the address of the function. */
2144 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2145
2146 /* The last word is our local __gp value. */
2147 value = _bfd_get_gp_value (sopd->output_section->owner);
2148 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2149 }
2150
2151 /* If we are generating a shared library, we must generate EPLT relocations
2152 for each entry in the .opd, even for static functions (they may have
2153 had their address taken). */
2154 if (info->shared && dyn_h && dyn_h->want_opd)
2155 {
2156 Elf_Internal_Rela rel;
2157 bfd_byte *loc;
2158 int dynindx;
2159
2160 /* We may need to do a relocation against a local symbol, in
2161 which case we have to look up it's dynamic symbol index off
2162 the local symbol hash table. */
2163 if (h && h->dynindx != -1)
2164 dynindx = h->dynindx;
2165 else
2166 dynindx
2167 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2168 dyn_h->sym_indx);
2169
2170 /* The offset of this relocation is the absolute address of the
2171 .opd entry for this symbol. */
2172 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2173 + sopd->output_section->vma);
2174
2175 /* If H is non-null, then we have an external symbol.
2176
2177 It is imperative that we use a different dynamic symbol for the
2178 EPLT relocation if the symbol has global scope.
2179
2180 In the dynamic symbol table, the function symbol will have a value
2181 which is address of the function's .opd entry.
2182
2183 Thus, we can not use that dynamic symbol for the EPLT relocation
2184 (if we did, the data in the .opd would reference itself rather
2185 than the actual address of the function). Instead we have to use
2186 a new dynamic symbol which has the same value as the original global
2187 function symbol.
2188
2189 We prefix the original symbol with a "." and use the new symbol in
2190 the EPLT relocation. This new symbol has already been recorded in
2191 the symbol table, we just have to look it up and use it.
2192
2193 We do not have such problems with static functions because we do
2194 not make their addresses in the dynamic symbol table point to
2195 the .opd entry. Ultimately this should be safe since a static
2196 function can not be directly referenced outside of its shared
2197 library.
2198
2199 We do have to play similar games for FPTR relocations in shared
2200 libraries, including those for static symbols. See the FPTR
2201 handling in elf64_hppa_finalize_dynreloc. */
2202 if (h)
2203 {
2204 char *new_name;
2205 struct elf_link_hash_entry *nh;
2206
2207 new_name = alloca (strlen (h->root.root.string) + 2);
2208 new_name[0] = '.';
2209 strcpy (new_name + 1, h->root.root.string);
2210
2211 nh = elf_link_hash_lookup (elf_hash_table (info),
2212 new_name, FALSE, FALSE, FALSE);
2213
2214 /* All we really want from the new symbol is its dynamic
2215 symbol index. */
2216 dynindx = nh->dynindx;
2217 }
2218
2219 rel.r_addend = 0;
2220 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2221
2222 loc = sopdrel->contents;
2223 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2224 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2225 }
2226 return TRUE;
2227 }
2228
2229 /* The .dlt section contains addresses for items referenced through the
2230 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2231 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2232
2233 static bfd_boolean
2234 elf64_hppa_finalize_dlt (dyn_h, data)
2235 struct elf64_hppa_dyn_hash_entry *dyn_h;
2236 PTR data;
2237 {
2238 struct bfd_link_info *info = (struct bfd_link_info *)data;
2239 struct elf64_hppa_link_hash_table *hppa_info;
2240 asection *sdlt, *sdltrel;
2241 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2242
2243 hppa_info = elf64_hppa_hash_table (info);
2244
2245 sdlt = hppa_info->dlt_sec;
2246 sdltrel = hppa_info->dlt_rel_sec;
2247
2248 /* H/DYN_H may refer to a local variable and we know it's
2249 address, so there is no need to create a relocation. Just install
2250 the proper value into the DLT, note this shortcut can not be
2251 skipped when building a shared library. */
2252 if (! info->shared && h && dyn_h->want_dlt)
2253 {
2254 bfd_vma value;
2255
2256 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2257 to point to the FPTR entry in the .opd section.
2258
2259 We include the OPD's output offset in this computation as
2260 we are referring to an absolute address in the resulting
2261 object file. */
2262 if (dyn_h->want_opd)
2263 {
2264 value = (dyn_h->opd_offset
2265 + hppa_info->opd_sec->output_offset
2266 + hppa_info->opd_sec->output_section->vma);
2267 }
2268 else if ((h->root.type == bfd_link_hash_defined
2269 || h->root.type == bfd_link_hash_defweak)
2270 && h->root.u.def.section)
2271 {
2272 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2273 if (h->root.u.def.section->output_section)
2274 value += h->root.u.def.section->output_section->vma;
2275 else
2276 value += h->root.u.def.section->vma;
2277 }
2278 else
2279 /* We have an undefined function reference. */
2280 value = 0;
2281
2282 /* We do not need to include the output offset of the DLT section
2283 here because we are modifying the in-memory contents. */
2284 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2285 }
2286
2287 /* Create a relocation for the DLT entry associated with this symbol.
2288 When building a shared library the symbol does not have to be dynamic. */
2289 if (dyn_h->want_dlt
2290 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2291 {
2292 Elf_Internal_Rela rel;
2293 bfd_byte *loc;
2294 int dynindx;
2295
2296 /* We may need to do a relocation against a local symbol, in
2297 which case we have to look up it's dynamic symbol index off
2298 the local symbol hash table. */
2299 if (h && h->dynindx != -1)
2300 dynindx = h->dynindx;
2301 else
2302 dynindx
2303 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2304 dyn_h->sym_indx);
2305
2306 /* Create a dynamic relocation for this entry. Do include the output
2307 offset of the DLT entry since we need an absolute address in the
2308 resulting object file. */
2309 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2310 + sdlt->output_section->vma);
2311 if (h && h->type == STT_FUNC)
2312 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2313 else
2314 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2315 rel.r_addend = 0;
2316
2317 loc = sdltrel->contents;
2318 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2319 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2320 }
2321 return TRUE;
2322 }
2323
2324 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2325 for dynamic functions used to initialize static data. */
2326
2327 static bfd_boolean
2328 elf64_hppa_finalize_dynreloc (dyn_h, data)
2329 struct elf64_hppa_dyn_hash_entry *dyn_h;
2330 PTR data;
2331 {
2332 struct bfd_link_info *info = (struct bfd_link_info *)data;
2333 struct elf64_hppa_link_hash_table *hppa_info;
2334 struct elf_link_hash_entry *h;
2335 int dynamic_symbol;
2336
2337 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2338
2339 if (!dynamic_symbol && !info->shared)
2340 return TRUE;
2341
2342 if (dyn_h->reloc_entries)
2343 {
2344 struct elf64_hppa_dyn_reloc_entry *rent;
2345 int dynindx;
2346
2347 hppa_info = elf64_hppa_hash_table (info);
2348 h = dyn_h->h;
2349
2350 /* We may need to do a relocation against a local symbol, in
2351 which case we have to look up it's dynamic symbol index off
2352 the local symbol hash table. */
2353 if (h && h->dynindx != -1)
2354 dynindx = h->dynindx;
2355 else
2356 dynindx
2357 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2358 dyn_h->sym_indx);
2359
2360 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2361 {
2362 Elf_Internal_Rela rel;
2363 bfd_byte *loc;
2364
2365 /* Allocate one iff we are building a shared library, the relocation
2366 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2367 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2368 continue;
2369
2370 /* Create a dynamic relocation for this entry.
2371
2372 We need the output offset for the reloc's section because
2373 we are creating an absolute address in the resulting object
2374 file. */
2375 rel.r_offset = (rent->offset + rent->sec->output_offset
2376 + rent->sec->output_section->vma);
2377
2378 /* An FPTR64 relocation implies that we took the address of
2379 a function and that the function has an entry in the .opd
2380 section. We want the FPTR64 relocation to reference the
2381 entry in .opd.
2382
2383 We could munge the symbol value in the dynamic symbol table
2384 (in fact we already do for functions with global scope) to point
2385 to the .opd entry. Then we could use that dynamic symbol in
2386 this relocation.
2387
2388 Or we could do something sensible, not munge the symbol's
2389 address and instead just use a different symbol to reference
2390 the .opd entry. At least that seems sensible until you
2391 realize there's no local dynamic symbols we can use for that
2392 purpose. Thus the hair in the check_relocs routine.
2393
2394 We use a section symbol recorded by check_relocs as the
2395 base symbol for the relocation. The addend is the difference
2396 between the section symbol and the address of the .opd entry. */
2397 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2398 {
2399 bfd_vma value, value2;
2400
2401 /* First compute the address of the opd entry for this symbol. */
2402 value = (dyn_h->opd_offset
2403 + hppa_info->opd_sec->output_section->vma
2404 + hppa_info->opd_sec->output_offset);
2405
2406 /* Compute the value of the start of the section with
2407 the relocation. */
2408 value2 = (rent->sec->output_section->vma
2409 + rent->sec->output_offset);
2410
2411 /* Compute the difference between the start of the section
2412 with the relocation and the opd entry. */
2413 value -= value2;
2414
2415 /* The result becomes the addend of the relocation. */
2416 rel.r_addend = value;
2417
2418 /* The section symbol becomes the symbol for the dynamic
2419 relocation. */
2420 dynindx
2421 = _bfd_elf_link_lookup_local_dynindx (info,
2422 rent->sec->owner,
2423 rent->sec_symndx);
2424 }
2425 else
2426 rel.r_addend = rent->addend;
2427
2428 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2429
2430 loc = hppa_info->other_rel_sec->contents;
2431 loc += (hppa_info->other_rel_sec->reloc_count++
2432 * sizeof (Elf64_External_Rela));
2433 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2434 &rel, loc);
2435 }
2436 }
2437
2438 return TRUE;
2439 }
2440
2441 /* Used to decide how to sort relocs in an optimal manner for the
2442 dynamic linker, before writing them out. */
2443
2444 static enum elf_reloc_type_class
2445 elf64_hppa_reloc_type_class (rela)
2446 const Elf_Internal_Rela *rela;
2447 {
2448 if (ELF64_R_SYM (rela->r_info) == 0)
2449 return reloc_class_relative;
2450
2451 switch ((int) ELF64_R_TYPE (rela->r_info))
2452 {
2453 case R_PARISC_IPLT:
2454 return reloc_class_plt;
2455 case R_PARISC_COPY:
2456 return reloc_class_copy;
2457 default:
2458 return reloc_class_normal;
2459 }
2460 }
2461
2462 /* Finish up the dynamic sections. */
2463
2464 static bfd_boolean
2465 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2466 bfd *output_bfd;
2467 struct bfd_link_info *info;
2468 {
2469 bfd *dynobj;
2470 asection *sdyn;
2471 struct elf64_hppa_link_hash_table *hppa_info;
2472
2473 hppa_info = elf64_hppa_hash_table (info);
2474
2475 /* Finalize the contents of the .opd section. */
2476 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2477 elf64_hppa_finalize_opd,
2478 info);
2479
2480 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2481 elf64_hppa_finalize_dynreloc,
2482 info);
2483
2484 /* Finalize the contents of the .dlt section. */
2485 dynobj = elf_hash_table (info)->dynobj;
2486 /* Finalize the contents of the .dlt section. */
2487 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2488 elf64_hppa_finalize_dlt,
2489 info);
2490
2491 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2492
2493 if (elf_hash_table (info)->dynamic_sections_created)
2494 {
2495 Elf64_External_Dyn *dyncon, *dynconend;
2496
2497 BFD_ASSERT (sdyn != NULL);
2498
2499 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2500 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2501 for (; dyncon < dynconend; dyncon++)
2502 {
2503 Elf_Internal_Dyn dyn;
2504 asection *s;
2505
2506 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2507
2508 switch (dyn.d_tag)
2509 {
2510 default:
2511 break;
2512
2513 case DT_HP_LOAD_MAP:
2514 /* Compute the absolute address of 16byte scratchpad area
2515 for the dynamic linker.
2516
2517 By convention the linker script will allocate the scratchpad
2518 area at the start of the .data section. So all we have to
2519 to is find the start of the .data section. */
2520 s = bfd_get_section_by_name (output_bfd, ".data");
2521 dyn.d_un.d_ptr = s->vma;
2522 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2523 break;
2524
2525 case DT_PLTGOT:
2526 /* HP's use PLTGOT to set the GOT register. */
2527 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2528 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529 break;
2530
2531 case DT_JMPREL:
2532 s = hppa_info->plt_rel_sec;
2533 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2534 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535 break;
2536
2537 case DT_PLTRELSZ:
2538 s = hppa_info->plt_rel_sec;
2539 dyn.d_un.d_val = s->size;
2540 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2541 break;
2542
2543 case DT_RELA:
2544 s = hppa_info->other_rel_sec;
2545 if (! s || ! s->size)
2546 s = hppa_info->dlt_rel_sec;
2547 if (! s || ! s->size)
2548 s = hppa_info->opd_rel_sec;
2549 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2550 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2551 break;
2552
2553 case DT_RELASZ:
2554 s = hppa_info->other_rel_sec;
2555 dyn.d_un.d_val = s->size;
2556 s = hppa_info->dlt_rel_sec;
2557 dyn.d_un.d_val += s->size;
2558 s = hppa_info->opd_rel_sec;
2559 dyn.d_un.d_val += s->size;
2560 /* There is some question about whether or not the size of
2561 the PLT relocs should be included here. HP's tools do
2562 it, so we'll emulate them. */
2563 s = hppa_info->plt_rel_sec;
2564 dyn.d_un.d_val += s->size;
2565 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2566 break;
2567
2568 }
2569 }
2570 }
2571
2572 return TRUE;
2573 }
2574
2575 /* Return the number of additional phdrs we will need.
2576
2577 The generic ELF code only creates PT_PHDRs for executables. The HP
2578 dynamic linker requires PT_PHDRs for dynamic libraries too.
2579
2580 This routine indicates that the backend needs one additional program
2581 header for that case.
2582
2583 Note we do not have access to the link info structure here, so we have
2584 to guess whether or not we are building a shared library based on the
2585 existence of a .interp section. */
2586
2587 static int
2588 elf64_hppa_additional_program_headers (abfd)
2589 bfd *abfd;
2590 {
2591 asection *s;
2592
2593 /* If we are creating a shared library, then we have to create a
2594 PT_PHDR segment. HP's dynamic linker chokes without it. */
2595 s = bfd_get_section_by_name (abfd, ".interp");
2596 if (! s)
2597 return 1;
2598 return 0;
2599 }
2600
2601 /* Allocate and initialize any program headers required by this
2602 specific backend.
2603
2604 The generic ELF code only creates PT_PHDRs for executables. The HP
2605 dynamic linker requires PT_PHDRs for dynamic libraries too.
2606
2607 This allocates the PT_PHDR and initializes it in a manner suitable
2608 for the HP linker.
2609
2610 Note we do not have access to the link info structure here, so we have
2611 to guess whether or not we are building a shared library based on the
2612 existence of a .interp section. */
2613
2614 static bfd_boolean
2615 elf64_hppa_modify_segment_map (abfd, info)
2616 bfd *abfd;
2617 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2618 {
2619 struct elf_segment_map *m;
2620 asection *s;
2621
2622 s = bfd_get_section_by_name (abfd, ".interp");
2623 if (! s)
2624 {
2625 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2626 if (m->p_type == PT_PHDR)
2627 break;
2628 if (m == NULL)
2629 {
2630 m = ((struct elf_segment_map *)
2631 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2632 if (m == NULL)
2633 return FALSE;
2634
2635 m->p_type = PT_PHDR;
2636 m->p_flags = PF_R | PF_X;
2637 m->p_flags_valid = 1;
2638 m->p_paddr_valid = 1;
2639 m->includes_phdrs = 1;
2640
2641 m->next = elf_tdata (abfd)->segment_map;
2642 elf_tdata (abfd)->segment_map = m;
2643 }
2644 }
2645
2646 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2647 if (m->p_type == PT_LOAD)
2648 {
2649 unsigned int i;
2650
2651 for (i = 0; i < m->count; i++)
2652 {
2653 /* The code "hint" is not really a hint. It is a requirement
2654 for certain versions of the HP dynamic linker. Worse yet,
2655 it must be set even if the shared library does not have
2656 any code in its "text" segment (thus the check for .hash
2657 to catch this situation). */
2658 if (m->sections[i]->flags & SEC_CODE
2659 || (strcmp (m->sections[i]->name, ".hash") == 0))
2660 m->p_flags |= (PF_X | PF_HP_CODE);
2661 }
2662 }
2663
2664 return TRUE;
2665 }
2666
2667 /* Called when writing out an object file to decide the type of a
2668 symbol. */
2669 static int
2670 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2671 Elf_Internal_Sym *elf_sym;
2672 int type;
2673 {
2674 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2675 return STT_PARISC_MILLI;
2676 else
2677 return type;
2678 }
2679
2680 static struct bfd_elf_special_section const elf64_hppa_special_sections[]=
2681 {
2682 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2683 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2684 { NULL, 0, 0, 0, 0 }
2685 };
2686
2687 /* The hash bucket size is the standard one, namely 4. */
2688
2689 const struct elf_size_info hppa64_elf_size_info =
2690 {
2691 sizeof (Elf64_External_Ehdr),
2692 sizeof (Elf64_External_Phdr),
2693 sizeof (Elf64_External_Shdr),
2694 sizeof (Elf64_External_Rel),
2695 sizeof (Elf64_External_Rela),
2696 sizeof (Elf64_External_Sym),
2697 sizeof (Elf64_External_Dyn),
2698 sizeof (Elf_External_Note),
2699 4,
2700 1,
2701 64, 3,
2702 ELFCLASS64, EV_CURRENT,
2703 bfd_elf64_write_out_phdrs,
2704 bfd_elf64_write_shdrs_and_ehdr,
2705 bfd_elf64_write_relocs,
2706 bfd_elf64_swap_symbol_in,
2707 bfd_elf64_swap_symbol_out,
2708 bfd_elf64_slurp_reloc_table,
2709 bfd_elf64_slurp_symbol_table,
2710 bfd_elf64_swap_dyn_in,
2711 bfd_elf64_swap_dyn_out,
2712 bfd_elf64_swap_reloc_in,
2713 bfd_elf64_swap_reloc_out,
2714 bfd_elf64_swap_reloca_in,
2715 bfd_elf64_swap_reloca_out
2716 };
2717
2718 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2719 #define TARGET_BIG_NAME "elf64-hppa"
2720 #define ELF_ARCH bfd_arch_hppa
2721 #define ELF_MACHINE_CODE EM_PARISC
2722 /* This is not strictly correct. The maximum page size for PA2.0 is
2723 64M. But everything still uses 4k. */
2724 #define ELF_MAXPAGESIZE 0x1000
2725 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2726 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2727 #define elf_info_to_howto elf_hppa_info_to_howto
2728 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2729
2730 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2731 #define elf_backend_object_p elf64_hppa_object_p
2732 #define elf_backend_final_write_processing \
2733 elf_hppa_final_write_processing
2734 #define elf_backend_fake_sections elf_hppa_fake_sections
2735 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2736
2737 #define elf_backend_relocate_section elf_hppa_relocate_section
2738
2739 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2740
2741 #define elf_backend_create_dynamic_sections \
2742 elf64_hppa_create_dynamic_sections
2743 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2744
2745 #define elf_backend_adjust_dynamic_symbol \
2746 elf64_hppa_adjust_dynamic_symbol
2747
2748 #define elf_backend_size_dynamic_sections \
2749 elf64_hppa_size_dynamic_sections
2750
2751 #define elf_backend_finish_dynamic_symbol \
2752 elf64_hppa_finish_dynamic_symbol
2753 #define elf_backend_finish_dynamic_sections \
2754 elf64_hppa_finish_dynamic_sections
2755
2756 /* Stuff for the BFD linker: */
2757 #define bfd_elf64_bfd_link_hash_table_create \
2758 elf64_hppa_hash_table_create
2759
2760 #define elf_backend_check_relocs \
2761 elf64_hppa_check_relocs
2762
2763 #define elf_backend_size_info \
2764 hppa64_elf_size_info
2765
2766 #define elf_backend_additional_program_headers \
2767 elf64_hppa_additional_program_headers
2768
2769 #define elf_backend_modify_segment_map \
2770 elf64_hppa_modify_segment_map
2771
2772 #define elf_backend_link_output_symbol_hook \
2773 elf64_hppa_link_output_symbol_hook
2774
2775 #define elf_backend_want_got_plt 0
2776 #define elf_backend_plt_readonly 0
2777 #define elf_backend_want_plt_sym 0
2778 #define elf_backend_got_header_size 0
2779 #define elf_backend_type_change_ok TRUE
2780 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2781 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2782 #define elf_backend_rela_normal 1
2783 #define elf_backend_special_sections elf64_hppa_special_sections
2784
2785 #include "elf64-target.h"
2786
2787 #undef TARGET_BIG_SYM
2788 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2789 #undef TARGET_BIG_NAME
2790 #define TARGET_BIG_NAME "elf64-hppa-linux"
2791
2792 #undef elf_backend_special_sections
2793
2794 #define INCLUDED_TARGET_FILE 1
2795 #include "elf64-target.h"
This page took 0.113607 seconds and 4 git commands to generate.