RISC-V: Don't assume the priv attributes are in order when handling them.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
30
31 #define ARCH_SIZE 64
32
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
41 address.
42
43 LDD PLTOFF(%r27),%r1
44 BVE (%r1)
45 LDD PLTOFF+8(%r27),%r27
46
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
51
52 struct elf64_hppa_link_hash_entry
53 {
54 struct elf_link_hash_entry eh;
55
56 /* Offsets for this symbol in various linker sections. */
57 bfd_vma dlt_offset;
58 bfd_vma plt_offset;
59 bfd_vma opd_offset;
60 bfd_vma stub_offset;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* Number of relocs copied in this section. */
91 bfd_size_type count;
92
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
95 int sec_symndx;
96
97 /* The offset within the input section of the relocation. */
98 bfd_vma offset;
99
100 /* The addend for the relocation. */
101 bfd_vma addend;
102
103 } *reloc_entries;
104
105 /* Nonzero if this symbol needs an entry in one of the linker
106 sections. */
107 unsigned want_dlt;
108 unsigned want_plt;
109 unsigned want_opd;
110 unsigned want_stub;
111 };
112
113 struct elf64_hppa_link_hash_table
114 {
115 struct elf_link_hash_table root;
116
117 /* Shortcuts to get to the various linker defined sections. */
118 asection *dlt_sec;
119 asection *dlt_rel_sec;
120 asection *opd_sec;
121 asection *opd_rel_sec;
122 asection *other_rel_sec;
123
124 /* Offset of __gp within .plt section. When the PLT gets large we want
125 to slide __gp into the PLT section so that we can continue to use
126 single DP relative instructions to load values out of the PLT. */
127 bfd_vma gp_offset;
128
129 /* Note this is not strictly correct. We should create a stub section for
130 each input section with calls. The stub section should be placed before
131 the section with the call. */
132 asection *stub_sec;
133
134 bfd_vma text_segment_base;
135 bfd_vma data_segment_base;
136
137 /* We build tables to map from an input section back to its
138 symbol index. This is the BFD for which we currently have
139 a map. */
140 bfd *section_syms_bfd;
141
142 /* Array of symbol numbers for each input section attached to the
143 current BFD. */
144 int *section_syms;
145 };
146
147 #define hppa_link_hash_table(p) \
148 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
149 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
150
151 #define hppa_elf_hash_entry(ent) \
152 ((struct elf64_hppa_link_hash_entry *)(ent))
153
154 #define eh_name(eh) \
155 (eh ? eh->root.root.string : "<undef>")
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
159
160 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
161 (bfd *abfd);
162
163 /* This must follow the definitions of the various derived linker
164 hash tables and shared functions. */
165 #include "elf-hppa.h"
166
167 static bfd_boolean elf64_hppa_object_p
168 (bfd *);
169
170 static bfd_boolean elf64_hppa_create_dynamic_sections
171 (bfd *, struct bfd_link_info *);
172
173 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
174 (struct bfd_link_info *, struct elf_link_hash_entry *);
175
176 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
177 (struct elf_link_hash_entry *, void *);
178
179 static bfd_boolean elf64_hppa_size_dynamic_sections
180 (bfd *, struct bfd_link_info *);
181
182 static int elf64_hppa_link_output_symbol_hook
183 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
184 asection *, struct elf_link_hash_entry *);
185
186 static bfd_boolean elf64_hppa_finish_dynamic_symbol
187 (bfd *, struct bfd_link_info *,
188 struct elf_link_hash_entry *, Elf_Internal_Sym *);
189
190 static bfd_boolean elf64_hppa_finish_dynamic_sections
191 (bfd *, struct bfd_link_info *);
192
193 static bfd_boolean elf64_hppa_check_relocs
194 (bfd *, struct bfd_link_info *,
195 asection *, const Elf_Internal_Rela *);
196
197 static bfd_boolean elf64_hppa_dynamic_symbol_p
198 (struct elf_link_hash_entry *, struct bfd_link_info *);
199
200 static bfd_boolean elf64_hppa_mark_exported_functions
201 (struct elf_link_hash_entry *, void *);
202
203 static bfd_boolean elf64_hppa_finalize_opd
204 (struct elf_link_hash_entry *, void *);
205
206 static bfd_boolean elf64_hppa_finalize_dlt
207 (struct elf_link_hash_entry *, void *);
208
209 static bfd_boolean allocate_global_data_dlt
210 (struct elf_link_hash_entry *, void *);
211
212 static bfd_boolean allocate_global_data_plt
213 (struct elf_link_hash_entry *, void *);
214
215 static bfd_boolean allocate_global_data_stub
216 (struct elf_link_hash_entry *, void *);
217
218 static bfd_boolean allocate_global_data_opd
219 (struct elf_link_hash_entry *, void *);
220
221 static bfd_boolean get_reloc_section
222 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
223
224 static bfd_boolean count_dyn_reloc
225 (bfd *, struct elf64_hppa_link_hash_entry *,
226 int, asection *, int, bfd_vma, bfd_vma);
227
228 static bfd_boolean allocate_dynrel_entries
229 (struct elf_link_hash_entry *, void *);
230
231 static bfd_boolean elf64_hppa_finalize_dynreloc
232 (struct elf_link_hash_entry *, void *);
233
234 static bfd_boolean get_opd
235 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
236
237 static bfd_boolean get_plt
238 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
239
240 static bfd_boolean get_dlt
241 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
242
243 static bfd_boolean get_stub
244 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
245
246 static int elf64_hppa_elf_get_symbol_type
247 (Elf_Internal_Sym *, int);
248
249 /* Initialize an entry in the link hash table. */
250
251 static struct bfd_hash_entry *
252 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
253 struct bfd_hash_table *table,
254 const char *string)
255 {
256 /* Allocate the structure if it has not already been allocated by a
257 subclass. */
258 if (entry == NULL)
259 {
260 entry = bfd_hash_allocate (table,
261 sizeof (struct elf64_hppa_link_hash_entry));
262 if (entry == NULL)
263 return entry;
264 }
265
266 /* Call the allocation method of the superclass. */
267 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
268 if (entry != NULL)
269 {
270 struct elf64_hppa_link_hash_entry *hh;
271
272 /* Initialize our local data. All zeros. */
273 hh = hppa_elf_hash_entry (entry);
274 memset (&hh->dlt_offset, 0,
275 (sizeof (struct elf64_hppa_link_hash_entry)
276 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
277 }
278
279 return entry;
280 }
281
282 /* Create the derived linker hash table. The PA64 ELF port uses this
283 derived hash table to keep information specific to the PA ElF
284 linker (without using static variables). */
285
286 static struct bfd_link_hash_table*
287 elf64_hppa_hash_table_create (bfd *abfd)
288 {
289 struct elf64_hppa_link_hash_table *htab;
290 size_t amt = sizeof (*htab);
291
292 htab = bfd_zmalloc (amt);
293 if (htab == NULL)
294 return NULL;
295
296 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
297 hppa64_link_hash_newfunc,
298 sizeof (struct elf64_hppa_link_hash_entry),
299 HPPA64_ELF_DATA))
300 {
301 free (htab);
302 return NULL;
303 }
304
305 htab->text_segment_base = (bfd_vma) -1;
306 htab->data_segment_base = (bfd_vma) -1;
307
308 return &htab->root.root;
309 }
310 \f
311 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
312
313 Additionally we set the default architecture and machine. */
314 static bfd_boolean
315 elf64_hppa_object_p (bfd *abfd)
316 {
317 Elf_Internal_Ehdr * i_ehdrp;
318 unsigned int flags;
319
320 i_ehdrp = elf_elfheader (abfd);
321 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
322 {
323 /* GCC on hppa-linux produces binaries with OSABI=GNU,
324 but the kernel produces corefiles with OSABI=SysV. */
325 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
326 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
327 return FALSE;
328 }
329 else
330 {
331 /* HPUX produces binaries with OSABI=HPUX,
332 but the kernel produces corefiles with OSABI=SysV. */
333 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
334 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
335 return FALSE;
336 }
337
338 flags = i_ehdrp->e_flags;
339 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
340 {
341 case EFA_PARISC_1_0:
342 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
343 case EFA_PARISC_1_1:
344 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
345 case EFA_PARISC_2_0:
346 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
347 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
348 else
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
350 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
351 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
352 }
353 /* Don't be fussy. */
354 return TRUE;
355 }
356
357 /* Given section type (hdr->sh_type), return a boolean indicating
358 whether or not the section is an elf64-hppa specific section. */
359 static bfd_boolean
360 elf64_hppa_section_from_shdr (bfd *abfd,
361 Elf_Internal_Shdr *hdr,
362 const char *name,
363 int shindex)
364 {
365 switch (hdr->sh_type)
366 {
367 case SHT_PARISC_EXT:
368 if (strcmp (name, ".PARISC.archext") != 0)
369 return FALSE;
370 break;
371 case SHT_PARISC_UNWIND:
372 if (strcmp (name, ".PARISC.unwind") != 0)
373 return FALSE;
374 break;
375 case SHT_PARISC_DOC:
376 case SHT_PARISC_ANNOT:
377 default:
378 return FALSE;
379 }
380
381 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
382 return FALSE;
383
384 return ((hdr->sh_flags & SHF_PARISC_SHORT) == 0
385 || bfd_set_section_flags (hdr->bfd_section,
386 hdr->bfd_section->flags | SEC_SMALL_DATA));
387 }
388
389 /* SEC is a section containing relocs for an input BFD when linking; return
390 a suitable section for holding relocs in the output BFD for a link. */
391
392 static bfd_boolean
393 get_reloc_section (bfd *abfd,
394 struct elf64_hppa_link_hash_table *hppa_info,
395 asection *sec)
396 {
397 const char *srel_name;
398 asection *srel;
399 bfd *dynobj;
400
401 srel_name = (bfd_elf_string_from_elf_section
402 (abfd, elf_elfheader(abfd)->e_shstrndx,
403 _bfd_elf_single_rel_hdr(sec)->sh_name));
404 if (srel_name == NULL)
405 return FALSE;
406
407 dynobj = hppa_info->root.dynobj;
408 if (!dynobj)
409 hppa_info->root.dynobj = dynobj = abfd;
410
411 srel = bfd_get_linker_section (dynobj, srel_name);
412 if (srel == NULL)
413 {
414 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
415 (SEC_ALLOC
416 | SEC_LOAD
417 | SEC_HAS_CONTENTS
418 | SEC_IN_MEMORY
419 | SEC_LINKER_CREATED
420 | SEC_READONLY));
421 if (srel == NULL
422 || !bfd_set_section_alignment (srel, 3))
423 return FALSE;
424 }
425
426 hppa_info->other_rel_sec = srel;
427 return TRUE;
428 }
429
430 /* Add a new entry to the list of dynamic relocations against DYN_H.
431
432 We use this to keep a record of all the FPTR relocations against a
433 particular symbol so that we can create FPTR relocations in the
434 output file. */
435
436 static bfd_boolean
437 count_dyn_reloc (bfd *abfd,
438 struct elf64_hppa_link_hash_entry *hh,
439 int type,
440 asection *sec,
441 int sec_symndx,
442 bfd_vma offset,
443 bfd_vma addend)
444 {
445 struct elf64_hppa_dyn_reloc_entry *rent;
446
447 rent = (struct elf64_hppa_dyn_reloc_entry *)
448 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
449 if (!rent)
450 return FALSE;
451
452 rent->next = hh->reloc_entries;
453 rent->type = type;
454 rent->sec = sec;
455 rent->sec_symndx = sec_symndx;
456 rent->offset = offset;
457 rent->addend = addend;
458 hh->reloc_entries = rent;
459
460 return TRUE;
461 }
462
463 /* Return a pointer to the local DLT, PLT and OPD reference counts
464 for ABFD. Returns NULL if the storage allocation fails. */
465
466 static bfd_signed_vma *
467 hppa64_elf_local_refcounts (bfd *abfd)
468 {
469 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
470 bfd_signed_vma *local_refcounts;
471
472 local_refcounts = elf_local_got_refcounts (abfd);
473 if (local_refcounts == NULL)
474 {
475 bfd_size_type size;
476
477 /* Allocate space for local DLT, PLT and OPD reference
478 counts. Done this way to save polluting elf_obj_tdata
479 with another target specific pointer. */
480 size = symtab_hdr->sh_info;
481 size *= 3 * sizeof (bfd_signed_vma);
482 local_refcounts = bfd_zalloc (abfd, size);
483 elf_local_got_refcounts (abfd) = local_refcounts;
484 }
485 return local_refcounts;
486 }
487
488 /* Scan the RELOCS and record the type of dynamic entries that each
489 referenced symbol needs. */
490
491 static bfd_boolean
492 elf64_hppa_check_relocs (bfd *abfd,
493 struct bfd_link_info *info,
494 asection *sec,
495 const Elf_Internal_Rela *relocs)
496 {
497 struct elf64_hppa_link_hash_table *hppa_info;
498 const Elf_Internal_Rela *relend;
499 Elf_Internal_Shdr *symtab_hdr;
500 const Elf_Internal_Rela *rel;
501 unsigned int sec_symndx;
502
503 if (bfd_link_relocatable (info))
504 return TRUE;
505
506 /* If this is the first dynamic object found in the link, create
507 the special sections required for dynamic linking. */
508 if (! elf_hash_table (info)->dynamic_sections_created)
509 {
510 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
511 return FALSE;
512 }
513
514 hppa_info = hppa_link_hash_table (info);
515 if (hppa_info == NULL)
516 return FALSE;
517 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
518
519 /* If necessary, build a new table holding section symbols indices
520 for this BFD. */
521
522 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
523 {
524 unsigned long i;
525 unsigned int highest_shndx;
526 Elf_Internal_Sym *local_syms = NULL;
527 Elf_Internal_Sym *isym, *isymend;
528 bfd_size_type amt;
529
530 /* We're done with the old cache of section index to section symbol
531 index information. Free it.
532
533 ?!? Note we leak the last section_syms array. Presumably we
534 could free it in one of the later routines in this file. */
535 free (hppa_info->section_syms);
536
537 /* Read this BFD's local symbols. */
538 if (symtab_hdr->sh_info != 0)
539 {
540 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
541 if (local_syms == NULL)
542 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
543 symtab_hdr->sh_info, 0,
544 NULL, NULL, NULL);
545 if (local_syms == NULL)
546 return FALSE;
547 }
548
549 /* Record the highest section index referenced by the local symbols. */
550 highest_shndx = 0;
551 isymend = local_syms + symtab_hdr->sh_info;
552 for (isym = local_syms; isym < isymend; isym++)
553 {
554 if (isym->st_shndx > highest_shndx
555 && isym->st_shndx < SHN_LORESERVE)
556 highest_shndx = isym->st_shndx;
557 }
558
559 /* Allocate an array to hold the section index to section symbol index
560 mapping. Bump by one since we start counting at zero. */
561 highest_shndx++;
562 amt = highest_shndx;
563 amt *= sizeof (int);
564 hppa_info->section_syms = (int *) bfd_malloc (amt);
565
566 /* Now walk the local symbols again. If we find a section symbol,
567 record the index of the symbol into the section_syms array. */
568 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
569 {
570 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
571 hppa_info->section_syms[isym->st_shndx] = i;
572 }
573
574 /* We are finished with the local symbols. */
575 if (local_syms != NULL
576 && symtab_hdr->contents != (unsigned char *) local_syms)
577 {
578 if (! info->keep_memory)
579 free (local_syms);
580 else
581 {
582 /* Cache the symbols for elf_link_input_bfd. */
583 symtab_hdr->contents = (unsigned char *) local_syms;
584 }
585 }
586
587 /* Record which BFD we built the section_syms mapping for. */
588 hppa_info->section_syms_bfd = abfd;
589 }
590
591 /* Record the symbol index for this input section. We may need it for
592 relocations when building shared libraries. When not building shared
593 libraries this value is never really used, but assign it to zero to
594 prevent out of bounds memory accesses in other routines. */
595 if (bfd_link_pic (info))
596 {
597 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
598
599 /* If we did not find a section symbol for this section, then
600 something went terribly wrong above. */
601 if (sec_symndx == SHN_BAD)
602 return FALSE;
603
604 if (sec_symndx < SHN_LORESERVE)
605 sec_symndx = hppa_info->section_syms[sec_symndx];
606 else
607 sec_symndx = 0;
608 }
609 else
610 sec_symndx = 0;
611
612 relend = relocs + sec->reloc_count;
613 for (rel = relocs; rel < relend; ++rel)
614 {
615 enum
616 {
617 NEED_DLT = 1,
618 NEED_PLT = 2,
619 NEED_STUB = 4,
620 NEED_OPD = 8,
621 NEED_DYNREL = 16,
622 };
623
624 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
625 struct elf64_hppa_link_hash_entry *hh;
626 int need_entry;
627 bfd_boolean maybe_dynamic;
628 int dynrel_type = R_PARISC_NONE;
629 static reloc_howto_type *howto;
630
631 if (r_symndx >= symtab_hdr->sh_info)
632 {
633 /* We're dealing with a global symbol -- find its hash entry
634 and mark it as being referenced. */
635 long indx = r_symndx - symtab_hdr->sh_info;
636 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
637 while (hh->eh.root.type == bfd_link_hash_indirect
638 || hh->eh.root.type == bfd_link_hash_warning)
639 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
640
641 /* PR15323, ref flags aren't set for references in the same
642 object. */
643 hh->eh.ref_regular = 1;
644 }
645 else
646 hh = NULL;
647
648 /* We can only get preliminary data on whether a symbol is
649 locally or externally defined, as not all of the input files
650 have yet been processed. Do something with what we know, as
651 this may help reduce memory usage and processing time later. */
652 maybe_dynamic = FALSE;
653 if (hh && ((bfd_link_pic (info)
654 && (!info->symbolic
655 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
656 || !hh->eh.def_regular
657 || hh->eh.root.type == bfd_link_hash_defweak))
658 maybe_dynamic = TRUE;
659
660 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
661 need_entry = 0;
662 switch (howto->type)
663 {
664 /* These are simple indirect references to symbols through the
665 DLT. We need to create a DLT entry for any symbols which
666 appears in a DLTIND relocation. */
667 case R_PARISC_DLTIND21L:
668 case R_PARISC_DLTIND14R:
669 case R_PARISC_DLTIND14F:
670 case R_PARISC_DLTIND14WR:
671 case R_PARISC_DLTIND14DR:
672 need_entry = NEED_DLT;
673 break;
674
675 /* ?!? These need a DLT entry. But I have no idea what to do with
676 the "link time TP value. */
677 case R_PARISC_LTOFF_TP21L:
678 case R_PARISC_LTOFF_TP14R:
679 case R_PARISC_LTOFF_TP14F:
680 case R_PARISC_LTOFF_TP64:
681 case R_PARISC_LTOFF_TP14WR:
682 case R_PARISC_LTOFF_TP14DR:
683 case R_PARISC_LTOFF_TP16F:
684 case R_PARISC_LTOFF_TP16WF:
685 case R_PARISC_LTOFF_TP16DF:
686 need_entry = NEED_DLT;
687 break;
688
689 /* These are function calls. Depending on their precise target we
690 may need to make a stub for them. The stub uses the PLT, so we
691 need to create PLT entries for these symbols too. */
692 case R_PARISC_PCREL12F:
693 case R_PARISC_PCREL17F:
694 case R_PARISC_PCREL22F:
695 case R_PARISC_PCREL32:
696 case R_PARISC_PCREL64:
697 case R_PARISC_PCREL21L:
698 case R_PARISC_PCREL17R:
699 case R_PARISC_PCREL17C:
700 case R_PARISC_PCREL14R:
701 case R_PARISC_PCREL14F:
702 case R_PARISC_PCREL22C:
703 case R_PARISC_PCREL14WR:
704 case R_PARISC_PCREL14DR:
705 case R_PARISC_PCREL16F:
706 case R_PARISC_PCREL16WF:
707 case R_PARISC_PCREL16DF:
708 /* Function calls might need to go through the .plt, and
709 might need a long branch stub. */
710 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
711 need_entry = (NEED_PLT | NEED_STUB);
712 else
713 need_entry = 0;
714 break;
715
716 case R_PARISC_PLTOFF21L:
717 case R_PARISC_PLTOFF14R:
718 case R_PARISC_PLTOFF14F:
719 case R_PARISC_PLTOFF14WR:
720 case R_PARISC_PLTOFF14DR:
721 case R_PARISC_PLTOFF16F:
722 case R_PARISC_PLTOFF16WF:
723 case R_PARISC_PLTOFF16DF:
724 need_entry = (NEED_PLT);
725 break;
726
727 case R_PARISC_DIR64:
728 if (bfd_link_pic (info) || maybe_dynamic)
729 need_entry = (NEED_DYNREL);
730 dynrel_type = R_PARISC_DIR64;
731 break;
732
733 /* This is an indirect reference through the DLT to get the address
734 of a OPD descriptor. Thus we need to make a DLT entry that points
735 to an OPD entry. */
736 case R_PARISC_LTOFF_FPTR21L:
737 case R_PARISC_LTOFF_FPTR14R:
738 case R_PARISC_LTOFF_FPTR14WR:
739 case R_PARISC_LTOFF_FPTR14DR:
740 case R_PARISC_LTOFF_FPTR32:
741 case R_PARISC_LTOFF_FPTR64:
742 case R_PARISC_LTOFF_FPTR16F:
743 case R_PARISC_LTOFF_FPTR16WF:
744 case R_PARISC_LTOFF_FPTR16DF:
745 if (bfd_link_pic (info) || maybe_dynamic)
746 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
747 else
748 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
749 dynrel_type = R_PARISC_FPTR64;
750 break;
751
752 /* This is a simple OPD entry. */
753 case R_PARISC_FPTR64:
754 if (bfd_link_pic (info) || maybe_dynamic)
755 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
756 else
757 need_entry = (NEED_OPD | NEED_PLT);
758 dynrel_type = R_PARISC_FPTR64;
759 break;
760
761 /* Add more cases as needed. */
762 }
763
764 if (!need_entry)
765 continue;
766
767 if (hh)
768 {
769 /* Stash away enough information to be able to find this symbol
770 regardless of whether or not it is local or global. */
771 hh->owner = abfd;
772 hh->sym_indx = r_symndx;
773 }
774
775 /* Create what's needed. */
776 if (need_entry & NEED_DLT)
777 {
778 /* Allocate space for a DLT entry, as well as a dynamic
779 relocation for this entry. */
780 if (! hppa_info->dlt_sec
781 && ! get_dlt (abfd, info, hppa_info))
782 goto err_out;
783
784 if (hh != NULL)
785 {
786 hh->want_dlt = 1;
787 hh->eh.got.refcount += 1;
788 }
789 else
790 {
791 bfd_signed_vma *local_dlt_refcounts;
792
793 /* This is a DLT entry for a local symbol. */
794 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
795 if (local_dlt_refcounts == NULL)
796 return FALSE;
797 local_dlt_refcounts[r_symndx] += 1;
798 }
799 }
800
801 if (need_entry & NEED_PLT)
802 {
803 if (! hppa_info->root.splt
804 && ! get_plt (abfd, info, hppa_info))
805 goto err_out;
806
807 if (hh != NULL)
808 {
809 hh->want_plt = 1;
810 hh->eh.needs_plt = 1;
811 hh->eh.plt.refcount += 1;
812 }
813 else
814 {
815 bfd_signed_vma *local_dlt_refcounts;
816 bfd_signed_vma *local_plt_refcounts;
817
818 /* This is a PLT entry for a local symbol. */
819 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
820 if (local_dlt_refcounts == NULL)
821 return FALSE;
822 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
823 local_plt_refcounts[r_symndx] += 1;
824 }
825 }
826
827 if (need_entry & NEED_STUB)
828 {
829 if (! hppa_info->stub_sec
830 && ! get_stub (abfd, info, hppa_info))
831 goto err_out;
832 if (hh)
833 hh->want_stub = 1;
834 }
835
836 if (need_entry & NEED_OPD)
837 {
838 if (! hppa_info->opd_sec
839 && ! get_opd (abfd, info, hppa_info))
840 goto err_out;
841
842 /* FPTRs are not allocated by the dynamic linker for PA64,
843 though it is possible that will change in the future. */
844
845 if (hh != NULL)
846 hh->want_opd = 1;
847 else
848 {
849 bfd_signed_vma *local_dlt_refcounts;
850 bfd_signed_vma *local_opd_refcounts;
851
852 /* This is a OPD for a local symbol. */
853 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
854 if (local_dlt_refcounts == NULL)
855 return FALSE;
856 local_opd_refcounts = (local_dlt_refcounts
857 + 2 * symtab_hdr->sh_info);
858 local_opd_refcounts[r_symndx] += 1;
859 }
860 }
861
862 /* Add a new dynamic relocation to the chain of dynamic
863 relocations for this symbol. */
864 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
865 {
866 if (! hppa_info->other_rel_sec
867 && ! get_reloc_section (abfd, hppa_info, sec))
868 goto err_out;
869
870 /* Count dynamic relocations against global symbols. */
871 if (hh != NULL
872 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
873 sec_symndx, rel->r_offset, rel->r_addend))
874 goto err_out;
875
876 /* If we are building a shared library and we just recorded
877 a dynamic R_PARISC_FPTR64 relocation, then make sure the
878 section symbol for this section ends up in the dynamic
879 symbol table. */
880 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
881 && ! (bfd_elf_link_record_local_dynamic_symbol
882 (info, abfd, sec_symndx)))
883 return FALSE;
884 }
885 }
886
887 return TRUE;
888
889 err_out:
890 return FALSE;
891 }
892
893 struct elf64_hppa_allocate_data
894 {
895 struct bfd_link_info *info;
896 bfd_size_type ofs;
897 };
898
899 /* Should we do dynamic things to this symbol? */
900
901 static bfd_boolean
902 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
903 struct bfd_link_info *info)
904 {
905 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
906 and relocations that retrieve a function descriptor? Assume the
907 worst for now. */
908 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
909 {
910 /* ??? Why is this here and not elsewhere is_local_label_name. */
911 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
912 return FALSE;
913
914 return TRUE;
915 }
916 else
917 return FALSE;
918 }
919
920 /* Mark all functions exported by this file so that we can later allocate
921 entries in .opd for them. */
922
923 static bfd_boolean
924 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
925 {
926 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
927 struct bfd_link_info *info = (struct bfd_link_info *)data;
928 struct elf64_hppa_link_hash_table *hppa_info;
929
930 hppa_info = hppa_link_hash_table (info);
931 if (hppa_info == NULL)
932 return FALSE;
933
934 if (eh
935 && (eh->root.type == bfd_link_hash_defined
936 || eh->root.type == bfd_link_hash_defweak)
937 && eh->root.u.def.section->output_section != NULL
938 && eh->type == STT_FUNC)
939 {
940 if (! hppa_info->opd_sec
941 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
942 return FALSE;
943
944 hh->want_opd = 1;
945
946 /* Put a flag here for output_symbol_hook. */
947 hh->st_shndx = -1;
948 eh->needs_plt = 1;
949 }
950
951 return TRUE;
952 }
953
954 /* Allocate space for a DLT entry. */
955
956 static bfd_boolean
957 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
958 {
959 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
960 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
961
962 if (hh->want_dlt)
963 {
964 if (bfd_link_pic (x->info))
965 {
966 /* Possibly add the symbol to the local dynamic symbol
967 table since we might need to create a dynamic relocation
968 against it. */
969 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
970 {
971 bfd *owner = eh->root.u.def.section->owner;
972
973 if (! (bfd_elf_link_record_local_dynamic_symbol
974 (x->info, owner, hh->sym_indx)))
975 return FALSE;
976 }
977 }
978
979 hh->dlt_offset = x->ofs;
980 x->ofs += DLT_ENTRY_SIZE;
981 }
982 return TRUE;
983 }
984
985 /* Allocate space for a DLT.PLT entry. */
986
987 static bfd_boolean
988 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
989 {
990 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
991 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
992
993 if (hh->want_plt
994 && elf64_hppa_dynamic_symbol_p (eh, x->info)
995 && !((eh->root.type == bfd_link_hash_defined
996 || eh->root.type == bfd_link_hash_defweak)
997 && eh->root.u.def.section->output_section != NULL))
998 {
999 hh->plt_offset = x->ofs;
1000 x->ofs += PLT_ENTRY_SIZE;
1001 if (hh->plt_offset < 0x2000)
1002 {
1003 struct elf64_hppa_link_hash_table *hppa_info;
1004
1005 hppa_info = hppa_link_hash_table (x->info);
1006 if (hppa_info == NULL)
1007 return FALSE;
1008
1009 hppa_info->gp_offset = hh->plt_offset;
1010 }
1011 }
1012 else
1013 hh->want_plt = 0;
1014
1015 return TRUE;
1016 }
1017
1018 /* Allocate space for a STUB entry. */
1019
1020 static bfd_boolean
1021 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1022 {
1023 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1024 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1025
1026 if (hh->want_stub
1027 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1028 && !((eh->root.type == bfd_link_hash_defined
1029 || eh->root.type == bfd_link_hash_defweak)
1030 && eh->root.u.def.section->output_section != NULL))
1031 {
1032 hh->stub_offset = x->ofs;
1033 x->ofs += sizeof (plt_stub);
1034 }
1035 else
1036 hh->want_stub = 0;
1037 return TRUE;
1038 }
1039
1040 /* Allocate space for a FPTR entry. */
1041
1042 static bfd_boolean
1043 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1044 {
1045 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1046 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1047
1048 if (hh && hh->want_opd)
1049 {
1050 /* We never need an opd entry for a symbol which is not
1051 defined by this output file. */
1052 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1053 || hh->eh.root.type == bfd_link_hash_undefweak
1054 || hh->eh.root.u.def.section->output_section == NULL))
1055 hh->want_opd = 0;
1056
1057 /* If we are creating a shared library, took the address of a local
1058 function or might export this function from this object file, then
1059 we have to create an opd descriptor. */
1060 else if (bfd_link_pic (x->info)
1061 || hh == NULL
1062 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1063 || (hh->eh.root.type == bfd_link_hash_defined
1064 || hh->eh.root.type == bfd_link_hash_defweak))
1065 {
1066 /* If we are creating a shared library, then we will have to
1067 create a runtime relocation for the symbol to properly
1068 initialize the .opd entry. Make sure the symbol gets
1069 added to the dynamic symbol table. */
1070 if (bfd_link_pic (x->info)
1071 && (hh == NULL || (hh->eh.dynindx == -1)))
1072 {
1073 bfd *owner;
1074 /* PR 6511: Default to using the dynamic symbol table. */
1075 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1076
1077 if (!bfd_elf_link_record_local_dynamic_symbol
1078 (x->info, owner, hh->sym_indx))
1079 return FALSE;
1080 }
1081
1082 /* This may not be necessary or desirable anymore now that
1083 we have some support for dealing with section symbols
1084 in dynamic relocs. But name munging does make the result
1085 much easier to debug. ie, the EPLT reloc will reference
1086 a symbol like .foobar, instead of .text + offset. */
1087 if (bfd_link_pic (x->info) && eh)
1088 {
1089 char *new_name;
1090 struct elf_link_hash_entry *nh;
1091
1092 new_name = concat (".", eh->root.root.string, NULL);
1093
1094 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1095 new_name, TRUE, TRUE, TRUE);
1096
1097 free (new_name);
1098 nh->root.type = eh->root.type;
1099 nh->root.u.def.value = eh->root.u.def.value;
1100 nh->root.u.def.section = eh->root.u.def.section;
1101
1102 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1103 return FALSE;
1104 }
1105 hh->opd_offset = x->ofs;
1106 x->ofs += OPD_ENTRY_SIZE;
1107 }
1108
1109 /* Otherwise we do not need an opd entry. */
1110 else
1111 hh->want_opd = 0;
1112 }
1113 return TRUE;
1114 }
1115
1116 /* HP requires the EI_OSABI field to be filled in. The assignment to
1117 EI_ABIVERSION may not be strictly necessary. */
1118
1119 static bfd_boolean
1120 elf64_hppa_init_file_header (bfd *abfd, struct bfd_link_info *info)
1121 {
1122 Elf_Internal_Ehdr *i_ehdrp;
1123
1124 if (!_bfd_elf_init_file_header (abfd, info))
1125 return FALSE;
1126
1127 i_ehdrp = elf_elfheader (abfd);
1128 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1129 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1130 return TRUE;
1131 }
1132
1133 /* Create function descriptor section (.opd). This section is called .opd
1134 because it contains "official procedure descriptors". The "official"
1135 refers to the fact that these descriptors are used when taking the address
1136 of a procedure, thus ensuring a unique address for each procedure. */
1137
1138 static bfd_boolean
1139 get_opd (bfd *abfd,
1140 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1141 struct elf64_hppa_link_hash_table *hppa_info)
1142 {
1143 asection *opd;
1144 bfd *dynobj;
1145
1146 opd = hppa_info->opd_sec;
1147 if (!opd)
1148 {
1149 dynobj = hppa_info->root.dynobj;
1150 if (!dynobj)
1151 hppa_info->root.dynobj = dynobj = abfd;
1152
1153 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1154 (SEC_ALLOC
1155 | SEC_LOAD
1156 | SEC_HAS_CONTENTS
1157 | SEC_IN_MEMORY
1158 | SEC_LINKER_CREATED));
1159 if (!opd
1160 || !bfd_set_section_alignment (opd, 3))
1161 {
1162 BFD_ASSERT (0);
1163 return FALSE;
1164 }
1165
1166 hppa_info->opd_sec = opd;
1167 }
1168
1169 return TRUE;
1170 }
1171
1172 /* Create the PLT section. */
1173
1174 static bfd_boolean
1175 get_plt (bfd *abfd,
1176 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1177 struct elf64_hppa_link_hash_table *hppa_info)
1178 {
1179 asection *plt;
1180 bfd *dynobj;
1181
1182 plt = hppa_info->root.splt;
1183 if (!plt)
1184 {
1185 dynobj = hppa_info->root.dynobj;
1186 if (!dynobj)
1187 hppa_info->root.dynobj = dynobj = abfd;
1188
1189 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1190 (SEC_ALLOC
1191 | SEC_LOAD
1192 | SEC_HAS_CONTENTS
1193 | SEC_IN_MEMORY
1194 | SEC_LINKER_CREATED));
1195 if (!plt
1196 || !bfd_set_section_alignment (plt, 3))
1197 {
1198 BFD_ASSERT (0);
1199 return FALSE;
1200 }
1201
1202 hppa_info->root.splt = plt;
1203 }
1204
1205 return TRUE;
1206 }
1207
1208 /* Create the DLT section. */
1209
1210 static bfd_boolean
1211 get_dlt (bfd *abfd,
1212 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1213 struct elf64_hppa_link_hash_table *hppa_info)
1214 {
1215 asection *dlt;
1216 bfd *dynobj;
1217
1218 dlt = hppa_info->dlt_sec;
1219 if (!dlt)
1220 {
1221 dynobj = hppa_info->root.dynobj;
1222 if (!dynobj)
1223 hppa_info->root.dynobj = dynobj = abfd;
1224
1225 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1226 (SEC_ALLOC
1227 | SEC_LOAD
1228 | SEC_HAS_CONTENTS
1229 | SEC_IN_MEMORY
1230 | SEC_LINKER_CREATED));
1231 if (!dlt
1232 || !bfd_set_section_alignment (dlt, 3))
1233 {
1234 BFD_ASSERT (0);
1235 return FALSE;
1236 }
1237
1238 hppa_info->dlt_sec = dlt;
1239 }
1240
1241 return TRUE;
1242 }
1243
1244 /* Create the stubs section. */
1245
1246 static bfd_boolean
1247 get_stub (bfd *abfd,
1248 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1249 struct elf64_hppa_link_hash_table *hppa_info)
1250 {
1251 asection *stub;
1252 bfd *dynobj;
1253
1254 stub = hppa_info->stub_sec;
1255 if (!stub)
1256 {
1257 dynobj = hppa_info->root.dynobj;
1258 if (!dynobj)
1259 hppa_info->root.dynobj = dynobj = abfd;
1260
1261 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1262 (SEC_ALLOC | SEC_LOAD
1263 | SEC_HAS_CONTENTS
1264 | SEC_IN_MEMORY
1265 | SEC_READONLY
1266 | SEC_LINKER_CREATED));
1267 if (!stub
1268 || !bfd_set_section_alignment (stub, 3))
1269 {
1270 BFD_ASSERT (0);
1271 return FALSE;
1272 }
1273
1274 hppa_info->stub_sec = stub;
1275 }
1276
1277 return TRUE;
1278 }
1279
1280 /* Create sections necessary for dynamic linking. This is only a rough
1281 cut and will likely change as we learn more about the somewhat
1282 unusual dynamic linking scheme HP uses.
1283
1284 .stub:
1285 Contains code to implement cross-space calls. The first time one
1286 of the stubs is used it will call into the dynamic linker, later
1287 calls will go straight to the target.
1288
1289 The only stub we support right now looks like
1290
1291 ldd OFFSET(%dp),%r1
1292 bve %r0(%r1)
1293 ldd OFFSET+8(%dp),%dp
1294
1295 Other stubs may be needed in the future. We may want the remove
1296 the break/nop instruction. It is only used right now to keep the
1297 offset of a .plt entry and a .stub entry in sync.
1298
1299 .dlt:
1300 This is what most people call the .got. HP used a different name.
1301 Losers.
1302
1303 .rela.dlt:
1304 Relocations for the DLT.
1305
1306 .plt:
1307 Function pointers as address,gp pairs.
1308
1309 .rela.plt:
1310 Should contain dynamic IPLT (and EPLT?) relocations.
1311
1312 .opd:
1313 FPTRS
1314
1315 .rela.opd:
1316 EPLT relocations for symbols exported from shared libraries. */
1317
1318 static bfd_boolean
1319 elf64_hppa_create_dynamic_sections (bfd *abfd,
1320 struct bfd_link_info *info)
1321 {
1322 asection *s;
1323 struct elf64_hppa_link_hash_table *hppa_info;
1324
1325 hppa_info = hppa_link_hash_table (info);
1326 if (hppa_info == NULL)
1327 return FALSE;
1328
1329 if (! get_stub (abfd, info, hppa_info))
1330 return FALSE;
1331
1332 if (! get_dlt (abfd, info, hppa_info))
1333 return FALSE;
1334
1335 if (! get_plt (abfd, info, hppa_info))
1336 return FALSE;
1337
1338 if (! get_opd (abfd, info, hppa_info))
1339 return FALSE;
1340
1341 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1342 (SEC_ALLOC | SEC_LOAD
1343 | SEC_HAS_CONTENTS
1344 | SEC_IN_MEMORY
1345 | SEC_READONLY
1346 | SEC_LINKER_CREATED));
1347 if (s == NULL
1348 || !bfd_set_section_alignment (s, 3))
1349 return FALSE;
1350 hppa_info->dlt_rel_sec = s;
1351
1352 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1353 (SEC_ALLOC | SEC_LOAD
1354 | SEC_HAS_CONTENTS
1355 | SEC_IN_MEMORY
1356 | SEC_READONLY
1357 | SEC_LINKER_CREATED));
1358 if (s == NULL
1359 || !bfd_set_section_alignment (s, 3))
1360 return FALSE;
1361 hppa_info->root.srelplt = s;
1362
1363 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1364 (SEC_ALLOC | SEC_LOAD
1365 | SEC_HAS_CONTENTS
1366 | SEC_IN_MEMORY
1367 | SEC_READONLY
1368 | SEC_LINKER_CREATED));
1369 if (s == NULL
1370 || !bfd_set_section_alignment (s, 3))
1371 return FALSE;
1372 hppa_info->other_rel_sec = s;
1373
1374 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1375 (SEC_ALLOC | SEC_LOAD
1376 | SEC_HAS_CONTENTS
1377 | SEC_IN_MEMORY
1378 | SEC_READONLY
1379 | SEC_LINKER_CREATED));
1380 if (s == NULL
1381 || !bfd_set_section_alignment (s, 3))
1382 return FALSE;
1383 hppa_info->opd_rel_sec = s;
1384
1385 return TRUE;
1386 }
1387
1388 /* Allocate dynamic relocations for those symbols that turned out
1389 to be dynamic. */
1390
1391 static bfd_boolean
1392 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1393 {
1394 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1395 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1396 struct elf64_hppa_link_hash_table *hppa_info;
1397 struct elf64_hppa_dyn_reloc_entry *rent;
1398 bfd_boolean dynamic_symbol, shared;
1399
1400 hppa_info = hppa_link_hash_table (x->info);
1401 if (hppa_info == NULL)
1402 return FALSE;
1403
1404 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1405 shared = bfd_link_pic (x->info);
1406
1407 /* We may need to allocate relocations for a non-dynamic symbol
1408 when creating a shared library. */
1409 if (!dynamic_symbol && !shared)
1410 return TRUE;
1411
1412 /* Take care of the normal data relocations. */
1413
1414 for (rent = hh->reloc_entries; rent; rent = rent->next)
1415 {
1416 /* Allocate one iff we are building a shared library, the relocation
1417 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1418 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1419 continue;
1420
1421 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1422
1423 /* Make sure this symbol gets into the dynamic symbol table if it is
1424 not already recorded. ?!? This should not be in the loop since
1425 the symbol need only be added once. */
1426 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1427 if (!bfd_elf_link_record_local_dynamic_symbol
1428 (x->info, rent->sec->owner, hh->sym_indx))
1429 return FALSE;
1430 }
1431
1432 /* Take care of the GOT and PLT relocations. */
1433
1434 if ((dynamic_symbol || shared) && hh->want_dlt)
1435 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1436
1437 /* If we are building a shared library, then every symbol that has an
1438 opd entry will need an EPLT relocation to relocate the symbol's address
1439 and __gp value based on the runtime load address. */
1440 if (shared && hh->want_opd)
1441 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1442
1443 if (hh->want_plt && dynamic_symbol)
1444 {
1445 bfd_size_type t = 0;
1446
1447 /* Dynamic symbols get one IPLT relocation. Local symbols in
1448 shared libraries get two REL relocations. Local symbols in
1449 main applications get nothing. */
1450 if (dynamic_symbol)
1451 t = sizeof (Elf64_External_Rela);
1452 else if (shared)
1453 t = 2 * sizeof (Elf64_External_Rela);
1454
1455 hppa_info->root.srelplt->size += t;
1456 }
1457
1458 return TRUE;
1459 }
1460
1461 /* Adjust a symbol defined by a dynamic object and referenced by a
1462 regular object. */
1463
1464 static bfd_boolean
1465 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1466 struct elf_link_hash_entry *eh)
1467 {
1468 /* ??? Undefined symbols with PLT entries should be re-defined
1469 to be the PLT entry. */
1470
1471 /* If this is a weak symbol, and there is a real definition, the
1472 processor independent code will have arranged for us to see the
1473 real definition first, and we can just use the same value. */
1474 if (eh->is_weakalias)
1475 {
1476 struct elf_link_hash_entry *def = weakdef (eh);
1477 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1478 eh->root.u.def.section = def->root.u.def.section;
1479 eh->root.u.def.value = def->root.u.def.value;
1480 return TRUE;
1481 }
1482
1483 /* If this is a reference to a symbol defined by a dynamic object which
1484 is not a function, we might allocate the symbol in our .dynbss section
1485 and allocate a COPY dynamic relocation.
1486
1487 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1488 of hackery. */
1489
1490 return TRUE;
1491 }
1492
1493 /* This function is called via elf_link_hash_traverse to mark millicode
1494 symbols with a dynindx of -1 and to remove the string table reference
1495 from the dynamic symbol table. If the symbol is not a millicode symbol,
1496 elf64_hppa_mark_exported_functions is called. */
1497
1498 static bfd_boolean
1499 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1500 void *data)
1501 {
1502 struct bfd_link_info *info = (struct bfd_link_info *) data;
1503
1504 if (eh->type == STT_PARISC_MILLI)
1505 {
1506 if (eh->dynindx != -1)
1507 {
1508 eh->dynindx = -1;
1509 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1510 eh->dynstr_index);
1511 }
1512 return TRUE;
1513 }
1514
1515 return elf64_hppa_mark_exported_functions (eh, data);
1516 }
1517
1518 /* Set the final sizes of the dynamic sections and allocate memory for
1519 the contents of our special sections. */
1520
1521 static bfd_boolean
1522 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1523 {
1524 struct elf64_hppa_link_hash_table *hppa_info;
1525 struct elf64_hppa_allocate_data data;
1526 bfd *dynobj;
1527 bfd *ibfd;
1528 asection *sec;
1529 bfd_boolean plt;
1530 bfd_boolean relocs;
1531 bfd_boolean reltext;
1532
1533 hppa_info = hppa_link_hash_table (info);
1534 if (hppa_info == NULL)
1535 return FALSE;
1536
1537 dynobj = hppa_info->root.dynobj;
1538 BFD_ASSERT (dynobj != NULL);
1539
1540 /* Mark each function this program exports so that we will allocate
1541 space in the .opd section for each function's FPTR. If we are
1542 creating dynamic sections, change the dynamic index of millicode
1543 symbols to -1 and remove them from the string table for .dynstr.
1544
1545 We have to traverse the main linker hash table since we have to
1546 find functions which may not have been mentioned in any relocs. */
1547 elf_link_hash_traverse (&hppa_info->root,
1548 (hppa_info->root.dynamic_sections_created
1549 ? elf64_hppa_mark_milli_and_exported_functions
1550 : elf64_hppa_mark_exported_functions),
1551 info);
1552
1553 if (hppa_info->root.dynamic_sections_created)
1554 {
1555 /* Set the contents of the .interp section to the interpreter. */
1556 if (bfd_link_executable (info) && !info->nointerp)
1557 {
1558 sec = bfd_get_linker_section (dynobj, ".interp");
1559 BFD_ASSERT (sec != NULL);
1560 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1561 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1562 }
1563 }
1564 else
1565 {
1566 /* We may have created entries in the .rela.got section.
1567 However, if we are not creating the dynamic sections, we will
1568 not actually use these entries. Reset the size of .rela.dlt,
1569 which will cause it to get stripped from the output file
1570 below. */
1571 sec = hppa_info->dlt_rel_sec;
1572 if (sec != NULL)
1573 sec->size = 0;
1574 }
1575
1576 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1577 dynamic relocs. */
1578 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1579 {
1580 bfd_signed_vma *local_dlt;
1581 bfd_signed_vma *end_local_dlt;
1582 bfd_signed_vma *local_plt;
1583 bfd_signed_vma *end_local_plt;
1584 bfd_signed_vma *local_opd;
1585 bfd_signed_vma *end_local_opd;
1586 bfd_size_type locsymcount;
1587 Elf_Internal_Shdr *symtab_hdr;
1588 asection *srel;
1589
1590 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1591 continue;
1592
1593 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1594 {
1595 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1596
1597 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1598 elf_section_data (sec)->local_dynrel);
1599 hdh_p != NULL;
1600 hdh_p = hdh_p->next)
1601 {
1602 if (!bfd_is_abs_section (hdh_p->sec)
1603 && bfd_is_abs_section (hdh_p->sec->output_section))
1604 {
1605 /* Input section has been discarded, either because
1606 it is a copy of a linkonce section or due to
1607 linker script /DISCARD/, so we'll be discarding
1608 the relocs too. */
1609 }
1610 else if (hdh_p->count != 0)
1611 {
1612 srel = elf_section_data (hdh_p->sec)->sreloc;
1613 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1614 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1615 info->flags |= DF_TEXTREL;
1616 }
1617 }
1618 }
1619
1620 local_dlt = elf_local_got_refcounts (ibfd);
1621 if (!local_dlt)
1622 continue;
1623
1624 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1625 locsymcount = symtab_hdr->sh_info;
1626 end_local_dlt = local_dlt + locsymcount;
1627 sec = hppa_info->dlt_sec;
1628 srel = hppa_info->dlt_rel_sec;
1629 for (; local_dlt < end_local_dlt; ++local_dlt)
1630 {
1631 if (*local_dlt > 0)
1632 {
1633 *local_dlt = sec->size;
1634 sec->size += DLT_ENTRY_SIZE;
1635 if (bfd_link_pic (info))
1636 {
1637 srel->size += sizeof (Elf64_External_Rela);
1638 }
1639 }
1640 else
1641 *local_dlt = (bfd_vma) -1;
1642 }
1643
1644 local_plt = end_local_dlt;
1645 end_local_plt = local_plt + locsymcount;
1646 if (! hppa_info->root.dynamic_sections_created)
1647 {
1648 /* Won't be used, but be safe. */
1649 for (; local_plt < end_local_plt; ++local_plt)
1650 *local_plt = (bfd_vma) -1;
1651 }
1652 else
1653 {
1654 sec = hppa_info->root.splt;
1655 srel = hppa_info->root.srelplt;
1656 for (; local_plt < end_local_plt; ++local_plt)
1657 {
1658 if (*local_plt > 0)
1659 {
1660 *local_plt = sec->size;
1661 sec->size += PLT_ENTRY_SIZE;
1662 if (bfd_link_pic (info))
1663 srel->size += sizeof (Elf64_External_Rela);
1664 }
1665 else
1666 *local_plt = (bfd_vma) -1;
1667 }
1668 }
1669
1670 local_opd = end_local_plt;
1671 end_local_opd = local_opd + locsymcount;
1672 if (! hppa_info->root.dynamic_sections_created)
1673 {
1674 /* Won't be used, but be safe. */
1675 for (; local_opd < end_local_opd; ++local_opd)
1676 *local_opd = (bfd_vma) -1;
1677 }
1678 else
1679 {
1680 sec = hppa_info->opd_sec;
1681 srel = hppa_info->opd_rel_sec;
1682 for (; local_opd < end_local_opd; ++local_opd)
1683 {
1684 if (*local_opd > 0)
1685 {
1686 *local_opd = sec->size;
1687 sec->size += OPD_ENTRY_SIZE;
1688 if (bfd_link_pic (info))
1689 srel->size += sizeof (Elf64_External_Rela);
1690 }
1691 else
1692 *local_opd = (bfd_vma) -1;
1693 }
1694 }
1695 }
1696
1697 /* Allocate the GOT entries. */
1698
1699 data.info = info;
1700 if (hppa_info->dlt_sec)
1701 {
1702 data.ofs = hppa_info->dlt_sec->size;
1703 elf_link_hash_traverse (&hppa_info->root,
1704 allocate_global_data_dlt, &data);
1705 hppa_info->dlt_sec->size = data.ofs;
1706 }
1707
1708 if (hppa_info->root.splt)
1709 {
1710 data.ofs = hppa_info->root.splt->size;
1711 elf_link_hash_traverse (&hppa_info->root,
1712 allocate_global_data_plt, &data);
1713 hppa_info->root.splt->size = data.ofs;
1714 }
1715
1716 if (hppa_info->stub_sec)
1717 {
1718 data.ofs = 0x0;
1719 elf_link_hash_traverse (&hppa_info->root,
1720 allocate_global_data_stub, &data);
1721 hppa_info->stub_sec->size = data.ofs;
1722 }
1723
1724 /* Allocate space for entries in the .opd section. */
1725 if (hppa_info->opd_sec)
1726 {
1727 data.ofs = hppa_info->opd_sec->size;
1728 elf_link_hash_traverse (&hppa_info->root,
1729 allocate_global_data_opd, &data);
1730 hppa_info->opd_sec->size = data.ofs;
1731 }
1732
1733 /* Now allocate space for dynamic relocations, if necessary. */
1734 if (hppa_info->root.dynamic_sections_created)
1735 elf_link_hash_traverse (&hppa_info->root,
1736 allocate_dynrel_entries, &data);
1737
1738 /* The sizes of all the sections are set. Allocate memory for them. */
1739 plt = FALSE;
1740 relocs = FALSE;
1741 reltext = FALSE;
1742 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1743 {
1744 const char *name;
1745
1746 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1747 continue;
1748
1749 /* It's OK to base decisions on the section name, because none
1750 of the dynobj section names depend upon the input files. */
1751 name = bfd_section_name (sec);
1752
1753 if (strcmp (name, ".plt") == 0)
1754 {
1755 /* Remember whether there is a PLT. */
1756 plt = sec->size != 0;
1757 }
1758 else if (strcmp (name, ".opd") == 0
1759 || CONST_STRNEQ (name, ".dlt")
1760 || strcmp (name, ".stub") == 0
1761 || strcmp (name, ".got") == 0)
1762 {
1763 /* Strip this section if we don't need it; see the comment below. */
1764 }
1765 else if (CONST_STRNEQ (name, ".rela"))
1766 {
1767 if (sec->size != 0)
1768 {
1769 asection *target;
1770
1771 /* Remember whether there are any reloc sections other
1772 than .rela.plt. */
1773 if (strcmp (name, ".rela.plt") != 0)
1774 {
1775 const char *outname;
1776
1777 relocs = TRUE;
1778
1779 /* If this relocation section applies to a read only
1780 section, then we probably need a DT_TEXTREL
1781 entry. The entries in the .rela.plt section
1782 really apply to the .got section, which we
1783 created ourselves and so know is not readonly. */
1784 outname = bfd_section_name (sec->output_section);
1785 target = bfd_get_section_by_name (output_bfd, outname + 4);
1786 if (target != NULL
1787 && (target->flags & SEC_READONLY) != 0
1788 && (target->flags & SEC_ALLOC) != 0)
1789 reltext = TRUE;
1790 }
1791
1792 /* We use the reloc_count field as a counter if we need
1793 to copy relocs into the output file. */
1794 sec->reloc_count = 0;
1795 }
1796 }
1797 else
1798 {
1799 /* It's not one of our sections, so don't allocate space. */
1800 continue;
1801 }
1802
1803 if (sec->size == 0)
1804 {
1805 /* If we don't need this section, strip it from the
1806 output file. This is mostly to handle .rela.bss and
1807 .rela.plt. We must create both sections in
1808 create_dynamic_sections, because they must be created
1809 before the linker maps input sections to output
1810 sections. The linker does that before
1811 adjust_dynamic_symbol is called, and it is that
1812 function which decides whether anything needs to go
1813 into these sections. */
1814 sec->flags |= SEC_EXCLUDE;
1815 continue;
1816 }
1817
1818 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1819 continue;
1820
1821 /* Allocate memory for the section contents if it has not
1822 been allocated already. We use bfd_zalloc here in case
1823 unused entries are not reclaimed before the section's
1824 contents are written out. This should not happen, but this
1825 way if it does, we get a R_PARISC_NONE reloc instead of
1826 garbage. */
1827 if (sec->contents == NULL)
1828 {
1829 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1830 if (sec->contents == NULL)
1831 return FALSE;
1832 }
1833 }
1834
1835 if (hppa_info->root.dynamic_sections_created)
1836 {
1837 /* Always create a DT_PLTGOT. It actually has nothing to do with
1838 the PLT, it is how we communicate the __gp value of a load
1839 module to the dynamic linker. */
1840 #define add_dynamic_entry(TAG, VAL) \
1841 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1842
1843 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1844 || !add_dynamic_entry (DT_PLTGOT, 0))
1845 return FALSE;
1846
1847 /* Add some entries to the .dynamic section. We fill in the
1848 values later, in elf64_hppa_finish_dynamic_sections, but we
1849 must add the entries now so that we get the correct size for
1850 the .dynamic section. The DT_DEBUG entry is filled in by the
1851 dynamic linker and used by the debugger. */
1852 if (! bfd_link_pic (info))
1853 {
1854 if (!add_dynamic_entry (DT_DEBUG, 0)
1855 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1856 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1857 return FALSE;
1858 }
1859
1860 /* Force DT_FLAGS to always be set.
1861 Required by HPUX 11.00 patch PHSS_26559. */
1862 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1863 return FALSE;
1864
1865 if (plt)
1866 {
1867 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1868 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1869 || !add_dynamic_entry (DT_JMPREL, 0))
1870 return FALSE;
1871 }
1872
1873 if (relocs)
1874 {
1875 if (!add_dynamic_entry (DT_RELA, 0)
1876 || !add_dynamic_entry (DT_RELASZ, 0)
1877 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1878 return FALSE;
1879 }
1880
1881 if (reltext)
1882 {
1883 if (!add_dynamic_entry (DT_TEXTREL, 0))
1884 return FALSE;
1885 info->flags |= DF_TEXTREL;
1886 }
1887 }
1888 #undef add_dynamic_entry
1889
1890 return TRUE;
1891 }
1892
1893 /* Called after we have output the symbol into the dynamic symbol
1894 table, but before we output the symbol into the normal symbol
1895 table.
1896
1897 For some symbols we had to change their address when outputting
1898 the dynamic symbol table. We undo that change here so that
1899 the symbols have their expected value in the normal symbol
1900 table. Ick. */
1901
1902 static int
1903 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1904 const char *name,
1905 Elf_Internal_Sym *sym,
1906 asection *input_sec ATTRIBUTE_UNUSED,
1907 struct elf_link_hash_entry *eh)
1908 {
1909 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1910
1911 /* We may be called with the file symbol or section symbols.
1912 They never need munging, so it is safe to ignore them. */
1913 if (!name || !eh)
1914 return 1;
1915
1916 /* Function symbols for which we created .opd entries *may* have been
1917 munged by finish_dynamic_symbol and have to be un-munged here.
1918
1919 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1920 into non-dynamic ones, so we initialize st_shndx to -1 in
1921 mark_exported_functions and check to see if it was overwritten
1922 here instead of just checking eh->dynindx. */
1923 if (hh->want_opd && hh->st_shndx != -1)
1924 {
1925 /* Restore the saved value and section index. */
1926 sym->st_value = hh->st_value;
1927 sym->st_shndx = hh->st_shndx;
1928 }
1929
1930 return 1;
1931 }
1932
1933 /* Finish up dynamic symbol handling. We set the contents of various
1934 dynamic sections here. */
1935
1936 static bfd_boolean
1937 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1938 struct bfd_link_info *info,
1939 struct elf_link_hash_entry *eh,
1940 Elf_Internal_Sym *sym)
1941 {
1942 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1943 asection *stub, *splt, *sopd, *spltrel;
1944 struct elf64_hppa_link_hash_table *hppa_info;
1945
1946 hppa_info = hppa_link_hash_table (info);
1947 if (hppa_info == NULL)
1948 return FALSE;
1949
1950 stub = hppa_info->stub_sec;
1951 splt = hppa_info->root.splt;
1952 sopd = hppa_info->opd_sec;
1953 spltrel = hppa_info->root.srelplt;
1954
1955 /* Incredible. It is actually necessary to NOT use the symbol's real
1956 value when building the dynamic symbol table for a shared library.
1957 At least for symbols that refer to functions.
1958
1959 We will store a new value and section index into the symbol long
1960 enough to output it into the dynamic symbol table, then we restore
1961 the original values (in elf64_hppa_link_output_symbol_hook). */
1962 if (hh->want_opd)
1963 {
1964 BFD_ASSERT (sopd != NULL);
1965
1966 /* Save away the original value and section index so that we
1967 can restore them later. */
1968 hh->st_value = sym->st_value;
1969 hh->st_shndx = sym->st_shndx;
1970
1971 /* For the dynamic symbol table entry, we want the value to be
1972 address of this symbol's entry within the .opd section. */
1973 sym->st_value = (hh->opd_offset
1974 + sopd->output_offset
1975 + sopd->output_section->vma);
1976 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1977 sopd->output_section);
1978 }
1979
1980 /* Initialize a .plt entry if requested. */
1981 if (hh->want_plt
1982 && elf64_hppa_dynamic_symbol_p (eh, info))
1983 {
1984 bfd_vma value;
1985 Elf_Internal_Rela rel;
1986 bfd_byte *loc;
1987
1988 BFD_ASSERT (splt != NULL && spltrel != NULL);
1989
1990 /* We do not actually care about the value in the PLT entry
1991 if we are creating a shared library and the symbol is
1992 still undefined, we create a dynamic relocation to fill
1993 in the correct value. */
1994 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1995 value = 0;
1996 else
1997 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
1998
1999 /* Fill in the entry in the procedure linkage table.
2000
2001 The format of a plt entry is
2002 <funcaddr> <__gp>.
2003
2004 plt_offset is the offset within the PLT section at which to
2005 install the PLT entry.
2006
2007 We are modifying the in-memory PLT contents here, so we do not add
2008 in the output_offset of the PLT section. */
2009
2010 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2011 value = _bfd_get_gp_value (info->output_bfd);
2012 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2013
2014 /* Create a dynamic IPLT relocation for this entry.
2015
2016 We are creating a relocation in the output file's PLT section,
2017 which is included within the DLT secton. So we do need to include
2018 the PLT's output_offset in the computation of the relocation's
2019 address. */
2020 rel.r_offset = (hh->plt_offset + splt->output_offset
2021 + splt->output_section->vma);
2022 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2023 rel.r_addend = 0;
2024
2025 loc = spltrel->contents;
2026 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2027 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2028 }
2029
2030 /* Initialize an external call stub entry if requested. */
2031 if (hh->want_stub
2032 && elf64_hppa_dynamic_symbol_p (eh, info))
2033 {
2034 bfd_vma value;
2035 int insn;
2036 unsigned int max_offset;
2037
2038 BFD_ASSERT (stub != NULL);
2039
2040 /* Install the generic stub template.
2041
2042 We are modifying the contents of the stub section, so we do not
2043 need to include the stub section's output_offset here. */
2044 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2045
2046 /* Fix up the first ldd instruction.
2047
2048 We are modifying the contents of the STUB section in memory,
2049 so we do not need to include its output offset in this computation.
2050
2051 Note the plt_offset value is the value of the PLT entry relative to
2052 the start of the PLT section. These instructions will reference
2053 data relative to the value of __gp, which may not necessarily have
2054 the same address as the start of the PLT section.
2055
2056 gp_offset contains the offset of __gp within the PLT section. */
2057 value = hh->plt_offset - hppa_info->gp_offset;
2058
2059 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2060 if (output_bfd->arch_info->mach >= 25)
2061 {
2062 /* Wide mode allows 16 bit offsets. */
2063 max_offset = 32768;
2064 insn &= ~ 0xfff1;
2065 insn |= re_assemble_16 ((int) value);
2066 }
2067 else
2068 {
2069 max_offset = 8192;
2070 insn &= ~ 0x3ff1;
2071 insn |= re_assemble_14 ((int) value);
2072 }
2073
2074 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2075 {
2076 _bfd_error_handler
2077 /* xgettext:c-format */
2078 (_("stub entry for %s cannot load .plt, dp offset = %" PRId64),
2079 hh->eh.root.root.string, (int64_t) value);
2080 return FALSE;
2081 }
2082
2083 bfd_put_32 (stub->owner, (bfd_vma) insn,
2084 stub->contents + hh->stub_offset);
2085
2086 /* Fix up the second ldd instruction. */
2087 value += 8;
2088 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2089 if (output_bfd->arch_info->mach >= 25)
2090 {
2091 insn &= ~ 0xfff1;
2092 insn |= re_assemble_16 ((int) value);
2093 }
2094 else
2095 {
2096 insn &= ~ 0x3ff1;
2097 insn |= re_assemble_14 ((int) value);
2098 }
2099 bfd_put_32 (stub->owner, (bfd_vma) insn,
2100 stub->contents + hh->stub_offset + 8);
2101 }
2102
2103 return TRUE;
2104 }
2105
2106 /* The .opd section contains FPTRs for each function this file
2107 exports. Initialize the FPTR entries. */
2108
2109 static bfd_boolean
2110 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2111 {
2112 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2113 struct bfd_link_info *info = (struct bfd_link_info *)data;
2114 struct elf64_hppa_link_hash_table *hppa_info;
2115 asection *sopd;
2116 asection *sopdrel;
2117
2118 hppa_info = hppa_link_hash_table (info);
2119 if (hppa_info == NULL)
2120 return FALSE;
2121
2122 sopd = hppa_info->opd_sec;
2123 sopdrel = hppa_info->opd_rel_sec;
2124
2125 if (hh->want_opd)
2126 {
2127 bfd_vma value;
2128
2129 /* The first two words of an .opd entry are zero.
2130
2131 We are modifying the contents of the OPD section in memory, so we
2132 do not need to include its output offset in this computation. */
2133 memset (sopd->contents + hh->opd_offset, 0, 16);
2134
2135 value = (eh->root.u.def.value
2136 + eh->root.u.def.section->output_section->vma
2137 + eh->root.u.def.section->output_offset);
2138
2139 /* The next word is the address of the function. */
2140 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2141
2142 /* The last word is our local __gp value. */
2143 value = _bfd_get_gp_value (info->output_bfd);
2144 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2145 }
2146
2147 /* If we are generating a shared library, we must generate EPLT relocations
2148 for each entry in the .opd, even for static functions (they may have
2149 had their address taken). */
2150 if (bfd_link_pic (info) && hh->want_opd)
2151 {
2152 Elf_Internal_Rela rel;
2153 bfd_byte *loc;
2154 int dynindx;
2155
2156 /* We may need to do a relocation against a local symbol, in
2157 which case we have to look up it's dynamic symbol index off
2158 the local symbol hash table. */
2159 if (eh->dynindx != -1)
2160 dynindx = eh->dynindx;
2161 else
2162 dynindx
2163 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2164 hh->sym_indx);
2165
2166 /* The offset of this relocation is the absolute address of the
2167 .opd entry for this symbol. */
2168 rel.r_offset = (hh->opd_offset + sopd->output_offset
2169 + sopd->output_section->vma);
2170
2171 /* If H is non-null, then we have an external symbol.
2172
2173 It is imperative that we use a different dynamic symbol for the
2174 EPLT relocation if the symbol has global scope.
2175
2176 In the dynamic symbol table, the function symbol will have a value
2177 which is address of the function's .opd entry.
2178
2179 Thus, we can not use that dynamic symbol for the EPLT relocation
2180 (if we did, the data in the .opd would reference itself rather
2181 than the actual address of the function). Instead we have to use
2182 a new dynamic symbol which has the same value as the original global
2183 function symbol.
2184
2185 We prefix the original symbol with a "." and use the new symbol in
2186 the EPLT relocation. This new symbol has already been recorded in
2187 the symbol table, we just have to look it up and use it.
2188
2189 We do not have such problems with static functions because we do
2190 not make their addresses in the dynamic symbol table point to
2191 the .opd entry. Ultimately this should be safe since a static
2192 function can not be directly referenced outside of its shared
2193 library.
2194
2195 We do have to play similar games for FPTR relocations in shared
2196 libraries, including those for static symbols. See the FPTR
2197 handling in elf64_hppa_finalize_dynreloc. */
2198 if (eh)
2199 {
2200 char *new_name;
2201 struct elf_link_hash_entry *nh;
2202
2203 new_name = concat (".", eh->root.root.string, NULL);
2204
2205 nh = elf_link_hash_lookup (elf_hash_table (info),
2206 new_name, TRUE, TRUE, FALSE);
2207
2208 /* All we really want from the new symbol is its dynamic
2209 symbol index. */
2210 if (nh)
2211 dynindx = nh->dynindx;
2212 free (new_name);
2213 }
2214
2215 rel.r_addend = 0;
2216 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2217
2218 loc = sopdrel->contents;
2219 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2220 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2221 }
2222 return TRUE;
2223 }
2224
2225 /* The .dlt section contains addresses for items referenced through the
2226 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2227 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2228
2229 static bfd_boolean
2230 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2231 {
2232 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2233 struct bfd_link_info *info = (struct bfd_link_info *)data;
2234 struct elf64_hppa_link_hash_table *hppa_info;
2235 asection *sdlt, *sdltrel;
2236
2237 hppa_info = hppa_link_hash_table (info);
2238 if (hppa_info == NULL)
2239 return FALSE;
2240
2241 sdlt = hppa_info->dlt_sec;
2242 sdltrel = hppa_info->dlt_rel_sec;
2243
2244 /* H/DYN_H may refer to a local variable and we know it's
2245 address, so there is no need to create a relocation. Just install
2246 the proper value into the DLT, note this shortcut can not be
2247 skipped when building a shared library. */
2248 if (! bfd_link_pic (info) && hh && hh->want_dlt)
2249 {
2250 bfd_vma value;
2251
2252 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2253 to point to the FPTR entry in the .opd section.
2254
2255 We include the OPD's output offset in this computation as
2256 we are referring to an absolute address in the resulting
2257 object file. */
2258 if (hh->want_opd)
2259 {
2260 value = (hh->opd_offset
2261 + hppa_info->opd_sec->output_offset
2262 + hppa_info->opd_sec->output_section->vma);
2263 }
2264 else if ((eh->root.type == bfd_link_hash_defined
2265 || eh->root.type == bfd_link_hash_defweak)
2266 && eh->root.u.def.section)
2267 {
2268 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2269 if (eh->root.u.def.section->output_section)
2270 value += eh->root.u.def.section->output_section->vma;
2271 else
2272 value += eh->root.u.def.section->vma;
2273 }
2274 else
2275 /* We have an undefined function reference. */
2276 value = 0;
2277
2278 /* We do not need to include the output offset of the DLT section
2279 here because we are modifying the in-memory contents. */
2280 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2281 }
2282
2283 /* Create a relocation for the DLT entry associated with this symbol.
2284 When building a shared library the symbol does not have to be dynamic. */
2285 if (hh->want_dlt
2286 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2287 {
2288 Elf_Internal_Rela rel;
2289 bfd_byte *loc;
2290 int dynindx;
2291
2292 /* We may need to do a relocation against a local symbol, in
2293 which case we have to look up it's dynamic symbol index off
2294 the local symbol hash table. */
2295 if (eh && eh->dynindx != -1)
2296 dynindx = eh->dynindx;
2297 else
2298 dynindx
2299 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2300 hh->sym_indx);
2301
2302 /* Create a dynamic relocation for this entry. Do include the output
2303 offset of the DLT entry since we need an absolute address in the
2304 resulting object file. */
2305 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2306 + sdlt->output_section->vma);
2307 if (eh && eh->type == STT_FUNC)
2308 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2309 else
2310 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2311 rel.r_addend = 0;
2312
2313 loc = sdltrel->contents;
2314 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2315 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2316 }
2317 return TRUE;
2318 }
2319
2320 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2321 for dynamic functions used to initialize static data. */
2322
2323 static bfd_boolean
2324 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2325 void *data)
2326 {
2327 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2328 struct bfd_link_info *info = (struct bfd_link_info *)data;
2329 struct elf64_hppa_link_hash_table *hppa_info;
2330 int dynamic_symbol;
2331
2332 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2333
2334 if (!dynamic_symbol && !bfd_link_pic (info))
2335 return TRUE;
2336
2337 if (hh->reloc_entries)
2338 {
2339 struct elf64_hppa_dyn_reloc_entry *rent;
2340 int dynindx;
2341
2342 hppa_info = hppa_link_hash_table (info);
2343 if (hppa_info == NULL)
2344 return FALSE;
2345
2346 /* We may need to do a relocation against a local symbol, in
2347 which case we have to look up it's dynamic symbol index off
2348 the local symbol hash table. */
2349 if (eh->dynindx != -1)
2350 dynindx = eh->dynindx;
2351 else
2352 dynindx
2353 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2354 hh->sym_indx);
2355
2356 for (rent = hh->reloc_entries; rent; rent = rent->next)
2357 {
2358 Elf_Internal_Rela rel;
2359 bfd_byte *loc;
2360
2361 /* Allocate one iff we are building a shared library, the relocation
2362 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2363 if (!bfd_link_pic (info)
2364 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2365 continue;
2366
2367 /* Create a dynamic relocation for this entry.
2368
2369 We need the output offset for the reloc's section because
2370 we are creating an absolute address in the resulting object
2371 file. */
2372 rel.r_offset = (rent->offset + rent->sec->output_offset
2373 + rent->sec->output_section->vma);
2374
2375 /* An FPTR64 relocation implies that we took the address of
2376 a function and that the function has an entry in the .opd
2377 section. We want the FPTR64 relocation to reference the
2378 entry in .opd.
2379
2380 We could munge the symbol value in the dynamic symbol table
2381 (in fact we already do for functions with global scope) to point
2382 to the .opd entry. Then we could use that dynamic symbol in
2383 this relocation.
2384
2385 Or we could do something sensible, not munge the symbol's
2386 address and instead just use a different symbol to reference
2387 the .opd entry. At least that seems sensible until you
2388 realize there's no local dynamic symbols we can use for that
2389 purpose. Thus the hair in the check_relocs routine.
2390
2391 We use a section symbol recorded by check_relocs as the
2392 base symbol for the relocation. The addend is the difference
2393 between the section symbol and the address of the .opd entry. */
2394 if (bfd_link_pic (info)
2395 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2396 {
2397 bfd_vma value, value2;
2398
2399 /* First compute the address of the opd entry for this symbol. */
2400 value = (hh->opd_offset
2401 + hppa_info->opd_sec->output_section->vma
2402 + hppa_info->opd_sec->output_offset);
2403
2404 /* Compute the value of the start of the section with
2405 the relocation. */
2406 value2 = (rent->sec->output_section->vma
2407 + rent->sec->output_offset);
2408
2409 /* Compute the difference between the start of the section
2410 with the relocation and the opd entry. */
2411 value -= value2;
2412
2413 /* The result becomes the addend of the relocation. */
2414 rel.r_addend = value;
2415
2416 /* The section symbol becomes the symbol for the dynamic
2417 relocation. */
2418 dynindx
2419 = _bfd_elf_link_lookup_local_dynindx (info,
2420 rent->sec->owner,
2421 rent->sec_symndx);
2422 }
2423 else
2424 rel.r_addend = rent->addend;
2425
2426 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2427
2428 loc = hppa_info->other_rel_sec->contents;
2429 loc += (hppa_info->other_rel_sec->reloc_count++
2430 * sizeof (Elf64_External_Rela));
2431 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2432 }
2433 }
2434
2435 return TRUE;
2436 }
2437
2438 /* Used to decide how to sort relocs in an optimal manner for the
2439 dynamic linker, before writing them out. */
2440
2441 static enum elf_reloc_type_class
2442 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2443 const asection *rel_sec ATTRIBUTE_UNUSED,
2444 const Elf_Internal_Rela *rela)
2445 {
2446 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2447 return reloc_class_relative;
2448
2449 switch ((int) ELF64_R_TYPE (rela->r_info))
2450 {
2451 case R_PARISC_IPLT:
2452 return reloc_class_plt;
2453 case R_PARISC_COPY:
2454 return reloc_class_copy;
2455 default:
2456 return reloc_class_normal;
2457 }
2458 }
2459
2460 /* Finish up the dynamic sections. */
2461
2462 static bfd_boolean
2463 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2464 struct bfd_link_info *info)
2465 {
2466 bfd *dynobj;
2467 asection *sdyn;
2468 struct elf64_hppa_link_hash_table *hppa_info;
2469
2470 hppa_info = hppa_link_hash_table (info);
2471 if (hppa_info == NULL)
2472 return FALSE;
2473
2474 /* Finalize the contents of the .opd section. */
2475 elf_link_hash_traverse (elf_hash_table (info),
2476 elf64_hppa_finalize_opd,
2477 info);
2478
2479 elf_link_hash_traverse (elf_hash_table (info),
2480 elf64_hppa_finalize_dynreloc,
2481 info);
2482
2483 /* Finalize the contents of the .dlt section. */
2484 dynobj = elf_hash_table (info)->dynobj;
2485 /* Finalize the contents of the .dlt section. */
2486 elf_link_hash_traverse (elf_hash_table (info),
2487 elf64_hppa_finalize_dlt,
2488 info);
2489
2490 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2491
2492 if (elf_hash_table (info)->dynamic_sections_created)
2493 {
2494 Elf64_External_Dyn *dyncon, *dynconend;
2495
2496 BFD_ASSERT (sdyn != NULL);
2497
2498 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2499 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2500 for (; dyncon < dynconend; dyncon++)
2501 {
2502 Elf_Internal_Dyn dyn;
2503 asection *s;
2504
2505 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2506
2507 switch (dyn.d_tag)
2508 {
2509 default:
2510 break;
2511
2512 case DT_HP_LOAD_MAP:
2513 /* Compute the absolute address of 16byte scratchpad area
2514 for the dynamic linker.
2515
2516 By convention the linker script will allocate the scratchpad
2517 area at the start of the .data section. So all we have to
2518 to is find the start of the .data section. */
2519 s = bfd_get_section_by_name (output_bfd, ".data");
2520 if (!s)
2521 return FALSE;
2522 dyn.d_un.d_ptr = s->vma;
2523 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2524 break;
2525
2526 case DT_PLTGOT:
2527 /* HP's use PLTGOT to set the GOT register. */
2528 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2529 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2530 break;
2531
2532 case DT_JMPREL:
2533 s = hppa_info->root.srelplt;
2534 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2535 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2536 break;
2537
2538 case DT_PLTRELSZ:
2539 s = hppa_info->root.srelplt;
2540 dyn.d_un.d_val = s->size;
2541 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2542 break;
2543
2544 case DT_RELA:
2545 s = hppa_info->other_rel_sec;
2546 if (! s || ! s->size)
2547 s = hppa_info->dlt_rel_sec;
2548 if (! s || ! s->size)
2549 s = hppa_info->opd_rel_sec;
2550 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2551 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2552 break;
2553
2554 case DT_RELASZ:
2555 s = hppa_info->other_rel_sec;
2556 dyn.d_un.d_val = s->size;
2557 s = hppa_info->dlt_rel_sec;
2558 dyn.d_un.d_val += s->size;
2559 s = hppa_info->opd_rel_sec;
2560 dyn.d_un.d_val += s->size;
2561 /* There is some question about whether or not the size of
2562 the PLT relocs should be included here. HP's tools do
2563 it, so we'll emulate them. */
2564 s = hppa_info->root.srelplt;
2565 dyn.d_un.d_val += s->size;
2566 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2567 break;
2568
2569 }
2570 }
2571 }
2572
2573 return TRUE;
2574 }
2575
2576 /* Support for core dump NOTE sections. */
2577
2578 static bfd_boolean
2579 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2580 {
2581 int offset;
2582 size_t size;
2583
2584 switch (note->descsz)
2585 {
2586 default:
2587 return FALSE;
2588
2589 case 760: /* Linux/hppa */
2590 /* pr_cursig */
2591 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2592
2593 /* pr_pid */
2594 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2595
2596 /* pr_reg */
2597 offset = 112;
2598 size = 640;
2599
2600 break;
2601 }
2602
2603 /* Make a ".reg/999" section. */
2604 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2605 size, note->descpos + offset);
2606 }
2607
2608 static bfd_boolean
2609 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2610 {
2611 char * command;
2612 int n;
2613
2614 switch (note->descsz)
2615 {
2616 default:
2617 return FALSE;
2618
2619 case 136: /* Linux/hppa elf_prpsinfo. */
2620 elf_tdata (abfd)->core->program
2621 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2622 elf_tdata (abfd)->core->command
2623 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2624 }
2625
2626 /* Note that for some reason, a spurious space is tacked
2627 onto the end of the args in some (at least one anyway)
2628 implementations, so strip it off if it exists. */
2629 command = elf_tdata (abfd)->core->command;
2630 n = strlen (command);
2631
2632 if (0 < n && command[n - 1] == ' ')
2633 command[n - 1] = '\0';
2634
2635 return TRUE;
2636 }
2637
2638 /* Return the number of additional phdrs we will need.
2639
2640 The generic ELF code only creates PT_PHDRs for executables. The HP
2641 dynamic linker requires PT_PHDRs for dynamic libraries too.
2642
2643 This routine indicates that the backend needs one additional program
2644 header for that case.
2645
2646 Note we do not have access to the link info structure here, so we have
2647 to guess whether or not we are building a shared library based on the
2648 existence of a .interp section. */
2649
2650 static int
2651 elf64_hppa_additional_program_headers (bfd *abfd,
2652 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2653 {
2654 asection *s;
2655
2656 /* If we are creating a shared library, then we have to create a
2657 PT_PHDR segment. HP's dynamic linker chokes without it. */
2658 s = bfd_get_section_by_name (abfd, ".interp");
2659 if (! s)
2660 return 1;
2661 return 0;
2662 }
2663
2664 static bfd_boolean
2665 elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2666 const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2667 unsigned int count ATTRIBUTE_UNUSED)
2668 {
2669 return TRUE;
2670 }
2671
2672 /* Allocate and initialize any program headers required by this
2673 specific backend.
2674
2675 The generic ELF code only creates PT_PHDRs for executables. The HP
2676 dynamic linker requires PT_PHDRs for dynamic libraries too.
2677
2678 This allocates the PT_PHDR and initializes it in a manner suitable
2679 for the HP linker.
2680
2681 Note we do not have access to the link info structure here, so we have
2682 to guess whether or not we are building a shared library based on the
2683 existence of a .interp section. */
2684
2685 static bfd_boolean
2686 elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2687 {
2688 struct elf_segment_map *m;
2689
2690 m = elf_seg_map (abfd);
2691 if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2692 {
2693 m = ((struct elf_segment_map *)
2694 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2695 if (m == NULL)
2696 return FALSE;
2697
2698 m->p_type = PT_PHDR;
2699 m->p_flags = PF_R | PF_X;
2700 m->p_flags_valid = 1;
2701 m->p_paddr_valid = 1;
2702 m->includes_phdrs = 1;
2703
2704 m->next = elf_seg_map (abfd);
2705 elf_seg_map (abfd) = m;
2706 }
2707
2708 for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2709 if (m->p_type == PT_LOAD)
2710 {
2711 unsigned int i;
2712
2713 for (i = 0; i < m->count; i++)
2714 {
2715 /* The code "hint" is not really a hint. It is a requirement
2716 for certain versions of the HP dynamic linker. Worse yet,
2717 it must be set even if the shared library does not have
2718 any code in its "text" segment (thus the check for .hash
2719 to catch this situation). */
2720 if (m->sections[i]->flags & SEC_CODE
2721 || (strcmp (m->sections[i]->name, ".hash") == 0))
2722 m->p_flags |= (PF_X | PF_HP_CODE);
2723 }
2724 }
2725
2726 return TRUE;
2727 }
2728
2729 /* Called when writing out an object file to decide the type of a
2730 symbol. */
2731 static int
2732 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2733 int type)
2734 {
2735 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2736 return STT_PARISC_MILLI;
2737 else
2738 return type;
2739 }
2740
2741 /* Support HP specific sections for core files. */
2742
2743 static bfd_boolean
2744 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2745 const char *typename)
2746 {
2747 if (hdr->p_type == PT_HP_CORE_KERNEL)
2748 {
2749 asection *sect;
2750
2751 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2752 return FALSE;
2753
2754 sect = bfd_make_section_anyway (abfd, ".kernel");
2755 if (sect == NULL)
2756 return FALSE;
2757 sect->size = hdr->p_filesz;
2758 sect->filepos = hdr->p_offset;
2759 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2760 return TRUE;
2761 }
2762
2763 if (hdr->p_type == PT_HP_CORE_PROC)
2764 {
2765 int sig;
2766
2767 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2768 return FALSE;
2769 if (bfd_bread (&sig, 4, abfd) != 4)
2770 return FALSE;
2771
2772 elf_tdata (abfd)->core->signal = sig;
2773
2774 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2775 return FALSE;
2776
2777 /* GDB uses the ".reg" section to read register contents. */
2778 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2779 hdr->p_offset);
2780 }
2781
2782 if (hdr->p_type == PT_HP_CORE_LOADABLE
2783 || hdr->p_type == PT_HP_CORE_STACK
2784 || hdr->p_type == PT_HP_CORE_MMF)
2785 hdr->p_type = PT_LOAD;
2786
2787 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2788 }
2789
2790 /* Hook called by the linker routine which adds symbols from an object
2791 file. HP's libraries define symbols with HP specific section
2792 indices, which we have to handle. */
2793
2794 static bfd_boolean
2795 elf_hppa_add_symbol_hook (bfd *abfd,
2796 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2797 Elf_Internal_Sym *sym,
2798 const char **namep ATTRIBUTE_UNUSED,
2799 flagword *flagsp ATTRIBUTE_UNUSED,
2800 asection **secp,
2801 bfd_vma *valp)
2802 {
2803 unsigned int sec_index = sym->st_shndx;
2804
2805 switch (sec_index)
2806 {
2807 case SHN_PARISC_ANSI_COMMON:
2808 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2809 (*secp)->flags |= SEC_IS_COMMON;
2810 *valp = sym->st_size;
2811 break;
2812
2813 case SHN_PARISC_HUGE_COMMON:
2814 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2815 (*secp)->flags |= SEC_IS_COMMON;
2816 *valp = sym->st_size;
2817 break;
2818 }
2819
2820 return TRUE;
2821 }
2822
2823 static bfd_boolean
2824 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2825 void *data)
2826 {
2827 struct bfd_link_info *info = data;
2828
2829 /* If we are not creating a shared library, and this symbol is
2830 referenced by a shared library but is not defined anywhere, then
2831 the generic code will warn that it is undefined.
2832
2833 This behavior is undesirable on HPs since the standard shared
2834 libraries contain references to undefined symbols.
2835
2836 So we twiddle the flags associated with such symbols so that they
2837 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2838
2839 Ultimately we should have better controls over the generic ELF BFD
2840 linker code. */
2841 if (! bfd_link_relocatable (info)
2842 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2843 && h->root.type == bfd_link_hash_undefined
2844 && h->ref_dynamic
2845 && !h->ref_regular)
2846 {
2847 h->ref_dynamic = 0;
2848 h->pointer_equality_needed = 1;
2849 }
2850
2851 return TRUE;
2852 }
2853
2854 static bfd_boolean
2855 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2856 void *data)
2857 {
2858 struct bfd_link_info *info = data;
2859
2860 /* If we are not creating a shared library, and this symbol is
2861 referenced by a shared library but is not defined anywhere, then
2862 the generic code will warn that it is undefined.
2863
2864 This behavior is undesirable on HPs since the standard shared
2865 libraries contain references to undefined symbols.
2866
2867 So we twiddle the flags associated with such symbols so that they
2868 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2869
2870 Ultimately we should have better controls over the generic ELF BFD
2871 linker code. */
2872 if (! bfd_link_relocatable (info)
2873 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2874 && h->root.type == bfd_link_hash_undefined
2875 && !h->ref_dynamic
2876 && !h->ref_regular
2877 && h->pointer_equality_needed)
2878 {
2879 h->ref_dynamic = 1;
2880 h->pointer_equality_needed = 0;
2881 }
2882
2883 return TRUE;
2884 }
2885
2886 static bfd_boolean
2887 elf_hppa_is_dynamic_loader_symbol (const char *name)
2888 {
2889 return (! strcmp (name, "__CPU_REVISION")
2890 || ! strcmp (name, "__CPU_KEYBITS_1")
2891 || ! strcmp (name, "__SYSTEM_ID_D")
2892 || ! strcmp (name, "__FPU_MODEL")
2893 || ! strcmp (name, "__FPU_REVISION")
2894 || ! strcmp (name, "__ARGC")
2895 || ! strcmp (name, "__ARGV")
2896 || ! strcmp (name, "__ENVP")
2897 || ! strcmp (name, "__TLS_SIZE_D")
2898 || ! strcmp (name, "__LOAD_INFO")
2899 || ! strcmp (name, "__systab"));
2900 }
2901
2902 /* Record the lowest address for the data and text segments. */
2903 static void
2904 elf_hppa_record_segment_addrs (bfd *abfd,
2905 asection *section,
2906 void *data)
2907 {
2908 struct elf64_hppa_link_hash_table *hppa_info = data;
2909
2910 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2911 {
2912 bfd_vma value;
2913 Elf_Internal_Phdr *p;
2914
2915 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2916 BFD_ASSERT (p != NULL);
2917 value = p->p_vaddr;
2918
2919 if (section->flags & SEC_READONLY)
2920 {
2921 if (value < hppa_info->text_segment_base)
2922 hppa_info->text_segment_base = value;
2923 }
2924 else
2925 {
2926 if (value < hppa_info->data_segment_base)
2927 hppa_info->data_segment_base = value;
2928 }
2929 }
2930 }
2931
2932 /* Called after we have seen all the input files/sections, but before
2933 final symbol resolution and section placement has been determined.
2934
2935 We use this hook to (possibly) provide a value for __gp, then we
2936 fall back to the generic ELF final link routine. */
2937
2938 static bfd_boolean
2939 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2940 {
2941 struct stat buf;
2942 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2943
2944 if (hppa_info == NULL)
2945 return FALSE;
2946
2947 if (! bfd_link_relocatable (info))
2948 {
2949 struct elf_link_hash_entry *gp;
2950 bfd_vma gp_val;
2951
2952 /* The linker script defines a value for __gp iff it was referenced
2953 by one of the objects being linked. First try to find the symbol
2954 in the hash table. If that fails, just compute the value __gp
2955 should have had. */
2956 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2957 FALSE, FALSE);
2958
2959 if (gp)
2960 {
2961
2962 /* Adjust the value of __gp as we may want to slide it into the
2963 .plt section so that the stubs can access PLT entries without
2964 using an addil sequence. */
2965 gp->root.u.def.value += hppa_info->gp_offset;
2966
2967 gp_val = (gp->root.u.def.section->output_section->vma
2968 + gp->root.u.def.section->output_offset
2969 + gp->root.u.def.value);
2970 }
2971 else
2972 {
2973 asection *sec;
2974
2975 /* First look for a .plt section. If found, then __gp is the
2976 address of the .plt + gp_offset.
2977
2978 If no .plt is found, then look for .dlt, .opd and .data (in
2979 that order) and set __gp to the base address of whichever
2980 section is found first. */
2981
2982 sec = hppa_info->root.splt;
2983 if (sec && ! (sec->flags & SEC_EXCLUDE))
2984 gp_val = (sec->output_offset
2985 + sec->output_section->vma
2986 + hppa_info->gp_offset);
2987 else
2988 {
2989 sec = hppa_info->dlt_sec;
2990 if (!sec || (sec->flags & SEC_EXCLUDE))
2991 sec = hppa_info->opd_sec;
2992 if (!sec || (sec->flags & SEC_EXCLUDE))
2993 sec = bfd_get_section_by_name (abfd, ".data");
2994 if (!sec || (sec->flags & SEC_EXCLUDE))
2995 gp_val = 0;
2996 else
2997 gp_val = sec->output_offset + sec->output_section->vma;
2998 }
2999 }
3000
3001 /* Install whatever value we found/computed for __gp. */
3002 _bfd_set_gp_value (abfd, gp_val);
3003 }
3004
3005 /* We need to know the base of the text and data segments so that we
3006 can perform SEGREL relocations. We will record the base addresses
3007 when we encounter the first SEGREL relocation. */
3008 hppa_info->text_segment_base = (bfd_vma)-1;
3009 hppa_info->data_segment_base = (bfd_vma)-1;
3010
3011 /* HP's shared libraries have references to symbols that are not
3012 defined anywhere. The generic ELF BFD linker code will complain
3013 about such symbols.
3014
3015 So we detect the losing case and arrange for the flags on the symbol
3016 to indicate that it was never referenced. This keeps the generic
3017 ELF BFD link code happy and appears to not create any secondary
3018 problems. Ultimately we need a way to control the behavior of the
3019 generic ELF BFD link code better. */
3020 elf_link_hash_traverse (elf_hash_table (info),
3021 elf_hppa_unmark_useless_dynamic_symbols,
3022 info);
3023
3024 /* Invoke the regular ELF backend linker to do all the work. */
3025 if (!bfd_elf_final_link (abfd, info))
3026 return FALSE;
3027
3028 elf_link_hash_traverse (elf_hash_table (info),
3029 elf_hppa_remark_useless_dynamic_symbols,
3030 info);
3031
3032 /* If we're producing a final executable, sort the contents of the
3033 unwind section. */
3034 if (bfd_link_relocatable (info))
3035 return TRUE;
3036
3037 /* Do not attempt to sort non-regular files. This is here
3038 especially for configure scripts and kernel builds which run
3039 tests with "ld [...] -o /dev/null". */
3040 if (stat (bfd_get_filename (abfd), &buf) != 0
3041 || !S_ISREG(buf.st_mode))
3042 return TRUE;
3043
3044 return elf_hppa_sort_unwind (abfd);
3045 }
3046
3047 /* Relocate the given INSN. VALUE should be the actual value we want
3048 to insert into the instruction, ie by this point we should not be
3049 concerned with computing an offset relative to the DLT, PC, etc.
3050 Instead this routine is meant to handle the bit manipulations needed
3051 to insert the relocation into the given instruction. */
3052
3053 static int
3054 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3055 {
3056 switch (r_type)
3057 {
3058 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3059 the "B" instruction. */
3060 case R_PARISC_PCREL22F:
3061 case R_PARISC_PCREL22C:
3062 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3063
3064 /* This is any 12 bit branch. */
3065 case R_PARISC_PCREL12F:
3066 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3067
3068 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3069 to the "B" instruction as well as BE. */
3070 case R_PARISC_PCREL17F:
3071 case R_PARISC_DIR17F:
3072 case R_PARISC_DIR17R:
3073 case R_PARISC_PCREL17C:
3074 case R_PARISC_PCREL17R:
3075 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3076
3077 /* ADDIL or LDIL instructions. */
3078 case R_PARISC_DLTREL21L:
3079 case R_PARISC_DLTIND21L:
3080 case R_PARISC_LTOFF_FPTR21L:
3081 case R_PARISC_PCREL21L:
3082 case R_PARISC_LTOFF_TP21L:
3083 case R_PARISC_DPREL21L:
3084 case R_PARISC_PLTOFF21L:
3085 case R_PARISC_DIR21L:
3086 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3087
3088 /* LDO and integer loads/stores with 14 bit displacements. */
3089 case R_PARISC_DLTREL14R:
3090 case R_PARISC_DLTREL14F:
3091 case R_PARISC_DLTIND14R:
3092 case R_PARISC_DLTIND14F:
3093 case R_PARISC_LTOFF_FPTR14R:
3094 case R_PARISC_PCREL14R:
3095 case R_PARISC_PCREL14F:
3096 case R_PARISC_LTOFF_TP14R:
3097 case R_PARISC_LTOFF_TP14F:
3098 case R_PARISC_DPREL14R:
3099 case R_PARISC_DPREL14F:
3100 case R_PARISC_PLTOFF14R:
3101 case R_PARISC_PLTOFF14F:
3102 case R_PARISC_DIR14R:
3103 case R_PARISC_DIR14F:
3104 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3105
3106 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3107 case R_PARISC_LTOFF_FPTR16F:
3108 case R_PARISC_PCREL16F:
3109 case R_PARISC_LTOFF_TP16F:
3110 case R_PARISC_GPREL16F:
3111 case R_PARISC_PLTOFF16F:
3112 case R_PARISC_DIR16F:
3113 case R_PARISC_LTOFF16F:
3114 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3115
3116 /* Doubleword loads and stores with a 14 bit displacement. */
3117 case R_PARISC_DLTREL14DR:
3118 case R_PARISC_DLTIND14DR:
3119 case R_PARISC_LTOFF_FPTR14DR:
3120 case R_PARISC_LTOFF_FPTR16DF:
3121 case R_PARISC_PCREL14DR:
3122 case R_PARISC_PCREL16DF:
3123 case R_PARISC_LTOFF_TP14DR:
3124 case R_PARISC_LTOFF_TP16DF:
3125 case R_PARISC_DPREL14DR:
3126 case R_PARISC_GPREL16DF:
3127 case R_PARISC_PLTOFF14DR:
3128 case R_PARISC_PLTOFF16DF:
3129 case R_PARISC_DIR14DR:
3130 case R_PARISC_DIR16DF:
3131 case R_PARISC_LTOFF16DF:
3132 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3133 | ((sym_value & 0x1ff8) << 1));
3134
3135 /* Floating point single word load/store instructions. */
3136 case R_PARISC_DLTREL14WR:
3137 case R_PARISC_DLTIND14WR:
3138 case R_PARISC_LTOFF_FPTR14WR:
3139 case R_PARISC_LTOFF_FPTR16WF:
3140 case R_PARISC_PCREL14WR:
3141 case R_PARISC_PCREL16WF:
3142 case R_PARISC_LTOFF_TP14WR:
3143 case R_PARISC_LTOFF_TP16WF:
3144 case R_PARISC_DPREL14WR:
3145 case R_PARISC_GPREL16WF:
3146 case R_PARISC_PLTOFF14WR:
3147 case R_PARISC_PLTOFF16WF:
3148 case R_PARISC_DIR16WF:
3149 case R_PARISC_DIR14WR:
3150 case R_PARISC_LTOFF16WF:
3151 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3152 | ((sym_value & 0x1ffc) << 1));
3153
3154 default:
3155 return insn;
3156 }
3157 }
3158
3159 /* Compute the value for a relocation (REL) during a final link stage,
3160 then insert the value into the proper location in CONTENTS.
3161
3162 VALUE is a tentative value for the relocation and may be overridden
3163 and modified here based on the specific relocation to be performed.
3164
3165 For example we do conversions for PC-relative branches in this routine
3166 or redirection of calls to external routines to stubs.
3167
3168 The work of actually applying the relocation is left to a helper
3169 routine in an attempt to reduce the complexity and size of this
3170 function. */
3171
3172 static bfd_reloc_status_type
3173 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3174 bfd *input_bfd,
3175 bfd *output_bfd,
3176 asection *input_section,
3177 bfd_byte *contents,
3178 bfd_vma value,
3179 struct bfd_link_info *info,
3180 asection *sym_sec,
3181 struct elf_link_hash_entry *eh)
3182 {
3183 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3184 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3185 bfd_vma *local_offsets;
3186 Elf_Internal_Shdr *symtab_hdr;
3187 int insn;
3188 bfd_vma max_branch_offset = 0;
3189 bfd_vma offset = rel->r_offset;
3190 bfd_signed_vma addend = rel->r_addend;
3191 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3192 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3193 unsigned int r_type = howto->type;
3194 bfd_byte *hit_data = contents + offset;
3195
3196 if (hppa_info == NULL)
3197 return bfd_reloc_notsupported;
3198
3199 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3200 local_offsets = elf_local_got_offsets (input_bfd);
3201 insn = bfd_get_32 (input_bfd, hit_data);
3202
3203 switch (r_type)
3204 {
3205 case R_PARISC_NONE:
3206 break;
3207
3208 /* Basic function call support.
3209
3210 Note for a call to a function defined in another dynamic library
3211 we want to redirect the call to a stub. */
3212
3213 /* PC relative relocs without an implicit offset. */
3214 case R_PARISC_PCREL21L:
3215 case R_PARISC_PCREL14R:
3216 case R_PARISC_PCREL14F:
3217 case R_PARISC_PCREL14WR:
3218 case R_PARISC_PCREL14DR:
3219 case R_PARISC_PCREL16F:
3220 case R_PARISC_PCREL16WF:
3221 case R_PARISC_PCREL16DF:
3222 {
3223 /* If this is a call to a function defined in another dynamic
3224 library, then redirect the call to the local stub for this
3225 function. */
3226 if (sym_sec == NULL || sym_sec->output_section == NULL)
3227 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3228 + hppa_info->stub_sec->output_section->vma);
3229
3230 /* Turn VALUE into a proper PC relative address. */
3231 value -= (offset + input_section->output_offset
3232 + input_section->output_section->vma);
3233
3234 /* Adjust for any field selectors. */
3235 if (r_type == R_PARISC_PCREL21L)
3236 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3237 else if (r_type == R_PARISC_PCREL14F
3238 || r_type == R_PARISC_PCREL16F
3239 || r_type == R_PARISC_PCREL16WF
3240 || r_type == R_PARISC_PCREL16DF)
3241 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3242 else
3243 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3244
3245 /* Apply the relocation to the given instruction. */
3246 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3247 break;
3248 }
3249
3250 case R_PARISC_PCREL12F:
3251 case R_PARISC_PCREL22F:
3252 case R_PARISC_PCREL17F:
3253 case R_PARISC_PCREL22C:
3254 case R_PARISC_PCREL17C:
3255 case R_PARISC_PCREL17R:
3256 {
3257 /* If this is a call to a function defined in another dynamic
3258 library, then redirect the call to the local stub for this
3259 function. */
3260 if (sym_sec == NULL || sym_sec->output_section == NULL)
3261 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3262 + hppa_info->stub_sec->output_section->vma);
3263
3264 /* Turn VALUE into a proper PC relative address. */
3265 value -= (offset + input_section->output_offset
3266 + input_section->output_section->vma);
3267 addend -= 8;
3268
3269 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3270 max_branch_offset = (1 << (22-1)) << 2;
3271 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3272 max_branch_offset = (1 << (17-1)) << 2;
3273 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3274 max_branch_offset = (1 << (12-1)) << 2;
3275
3276 /* Make sure we can reach the branch target. */
3277 if (max_branch_offset != 0
3278 && value + addend + max_branch_offset >= 2*max_branch_offset)
3279 {
3280 _bfd_error_handler
3281 /* xgettext:c-format */
3282 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s"),
3283 input_bfd,
3284 input_section,
3285 (uint64_t) offset,
3286 eh ? eh->root.root.string : "unknown");
3287 bfd_set_error (bfd_error_bad_value);
3288 return bfd_reloc_overflow;
3289 }
3290
3291 /* Adjust for any field selectors. */
3292 if (r_type == R_PARISC_PCREL17R)
3293 value = hppa_field_adjust (value, addend, e_rsel);
3294 else
3295 value = hppa_field_adjust (value, addend, e_fsel);
3296
3297 /* All branches are implicitly shifted by 2 places. */
3298 value >>= 2;
3299
3300 /* Apply the relocation to the given instruction. */
3301 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3302 break;
3303 }
3304
3305 /* Indirect references to data through the DLT. */
3306 case R_PARISC_DLTIND14R:
3307 case R_PARISC_DLTIND14F:
3308 case R_PARISC_DLTIND14DR:
3309 case R_PARISC_DLTIND14WR:
3310 case R_PARISC_DLTIND21L:
3311 case R_PARISC_LTOFF_FPTR14R:
3312 case R_PARISC_LTOFF_FPTR14DR:
3313 case R_PARISC_LTOFF_FPTR14WR:
3314 case R_PARISC_LTOFF_FPTR21L:
3315 case R_PARISC_LTOFF_FPTR16F:
3316 case R_PARISC_LTOFF_FPTR16WF:
3317 case R_PARISC_LTOFF_FPTR16DF:
3318 case R_PARISC_LTOFF_TP21L:
3319 case R_PARISC_LTOFF_TP14R:
3320 case R_PARISC_LTOFF_TP14F:
3321 case R_PARISC_LTOFF_TP14WR:
3322 case R_PARISC_LTOFF_TP14DR:
3323 case R_PARISC_LTOFF_TP16F:
3324 case R_PARISC_LTOFF_TP16WF:
3325 case R_PARISC_LTOFF_TP16DF:
3326 case R_PARISC_LTOFF16F:
3327 case R_PARISC_LTOFF16WF:
3328 case R_PARISC_LTOFF16DF:
3329 {
3330 bfd_vma off;
3331
3332 /* If this relocation was against a local symbol, then we still
3333 have not set up the DLT entry (it's not convenient to do so
3334 in the "finalize_dlt" routine because it is difficult to get
3335 to the local symbol's value).
3336
3337 So, if this is a local symbol (h == NULL), then we need to
3338 fill in its DLT entry.
3339
3340 Similarly we may still need to set up an entry in .opd for
3341 a local function which had its address taken. */
3342 if (hh == NULL)
3343 {
3344 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3345
3346 if (local_offsets == NULL)
3347 abort ();
3348
3349 /* Now do .opd creation if needed. */
3350 if (r_type == R_PARISC_LTOFF_FPTR14R
3351 || r_type == R_PARISC_LTOFF_FPTR14DR
3352 || r_type == R_PARISC_LTOFF_FPTR14WR
3353 || r_type == R_PARISC_LTOFF_FPTR21L
3354 || r_type == R_PARISC_LTOFF_FPTR16F
3355 || r_type == R_PARISC_LTOFF_FPTR16WF
3356 || r_type == R_PARISC_LTOFF_FPTR16DF)
3357 {
3358 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3359 off = local_opd_offsets[r_symndx];
3360
3361 /* The last bit records whether we've already initialised
3362 this local .opd entry. */
3363 if ((off & 1) != 0)
3364 {
3365 BFD_ASSERT (off != (bfd_vma) -1);
3366 off &= ~1;
3367 }
3368 else
3369 {
3370 local_opd_offsets[r_symndx] |= 1;
3371
3372 /* The first two words of an .opd entry are zero. */
3373 memset (hppa_info->opd_sec->contents + off, 0, 16);
3374
3375 /* The next word is the address of the function. */
3376 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3377 (hppa_info->opd_sec->contents + off + 16));
3378
3379 /* The last word is our local __gp value. */
3380 value = _bfd_get_gp_value (info->output_bfd);
3381 bfd_put_64 (hppa_info->opd_sec->owner, value,
3382 (hppa_info->opd_sec->contents + off + 24));
3383 }
3384
3385 /* The DLT value is the address of the .opd entry. */
3386 value = (off
3387 + hppa_info->opd_sec->output_offset
3388 + hppa_info->opd_sec->output_section->vma);
3389 addend = 0;
3390 }
3391
3392 local_dlt_offsets = local_offsets;
3393 off = local_dlt_offsets[r_symndx];
3394
3395 if ((off & 1) != 0)
3396 {
3397 BFD_ASSERT (off != (bfd_vma) -1);
3398 off &= ~1;
3399 }
3400 else
3401 {
3402 local_dlt_offsets[r_symndx] |= 1;
3403 bfd_put_64 (hppa_info->dlt_sec->owner,
3404 value + addend,
3405 hppa_info->dlt_sec->contents + off);
3406 }
3407 }
3408 else
3409 off = hh->dlt_offset;
3410
3411 /* We want the value of the DLT offset for this symbol, not
3412 the symbol's actual address. Note that __gp may not point
3413 to the start of the DLT, so we have to compute the absolute
3414 address, then subtract out the value of __gp. */
3415 value = (off
3416 + hppa_info->dlt_sec->output_offset
3417 + hppa_info->dlt_sec->output_section->vma);
3418 value -= _bfd_get_gp_value (output_bfd);
3419
3420 /* All DLTIND relocations are basically the same at this point,
3421 except that we need different field selectors for the 21bit
3422 version vs the 14bit versions. */
3423 if (r_type == R_PARISC_DLTIND21L
3424 || r_type == R_PARISC_LTOFF_FPTR21L
3425 || r_type == R_PARISC_LTOFF_TP21L)
3426 value = hppa_field_adjust (value, 0, e_lsel);
3427 else if (r_type == R_PARISC_DLTIND14F
3428 || r_type == R_PARISC_LTOFF_FPTR16F
3429 || r_type == R_PARISC_LTOFF_FPTR16WF
3430 || r_type == R_PARISC_LTOFF_FPTR16DF
3431 || r_type == R_PARISC_LTOFF16F
3432 || r_type == R_PARISC_LTOFF16DF
3433 || r_type == R_PARISC_LTOFF16WF
3434 || r_type == R_PARISC_LTOFF_TP16F
3435 || r_type == R_PARISC_LTOFF_TP16WF
3436 || r_type == R_PARISC_LTOFF_TP16DF)
3437 value = hppa_field_adjust (value, 0, e_fsel);
3438 else
3439 value = hppa_field_adjust (value, 0, e_rsel);
3440
3441 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3442 break;
3443 }
3444
3445 case R_PARISC_DLTREL14R:
3446 case R_PARISC_DLTREL14F:
3447 case R_PARISC_DLTREL14DR:
3448 case R_PARISC_DLTREL14WR:
3449 case R_PARISC_DLTREL21L:
3450 case R_PARISC_DPREL21L:
3451 case R_PARISC_DPREL14WR:
3452 case R_PARISC_DPREL14DR:
3453 case R_PARISC_DPREL14R:
3454 case R_PARISC_DPREL14F:
3455 case R_PARISC_GPREL16F:
3456 case R_PARISC_GPREL16WF:
3457 case R_PARISC_GPREL16DF:
3458 {
3459 /* Subtract out the global pointer value to make value a DLT
3460 relative address. */
3461 value -= _bfd_get_gp_value (output_bfd);
3462
3463 /* All DLTREL relocations are basically the same at this point,
3464 except that we need different field selectors for the 21bit
3465 version vs the 14bit versions. */
3466 if (r_type == R_PARISC_DLTREL21L
3467 || r_type == R_PARISC_DPREL21L)
3468 value = hppa_field_adjust (value, addend, e_lrsel);
3469 else if (r_type == R_PARISC_DLTREL14F
3470 || r_type == R_PARISC_DPREL14F
3471 || r_type == R_PARISC_GPREL16F
3472 || r_type == R_PARISC_GPREL16WF
3473 || r_type == R_PARISC_GPREL16DF)
3474 value = hppa_field_adjust (value, addend, e_fsel);
3475 else
3476 value = hppa_field_adjust (value, addend, e_rrsel);
3477
3478 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3479 break;
3480 }
3481
3482 case R_PARISC_DIR21L:
3483 case R_PARISC_DIR17R:
3484 case R_PARISC_DIR17F:
3485 case R_PARISC_DIR14R:
3486 case R_PARISC_DIR14F:
3487 case R_PARISC_DIR14WR:
3488 case R_PARISC_DIR14DR:
3489 case R_PARISC_DIR16F:
3490 case R_PARISC_DIR16WF:
3491 case R_PARISC_DIR16DF:
3492 {
3493 /* All DIR relocations are basically the same at this point,
3494 except that branch offsets need to be divided by four, and
3495 we need different field selectors. Note that we don't
3496 redirect absolute calls to local stubs. */
3497
3498 if (r_type == R_PARISC_DIR21L)
3499 value = hppa_field_adjust (value, addend, e_lrsel);
3500 else if (r_type == R_PARISC_DIR17F
3501 || r_type == R_PARISC_DIR16F
3502 || r_type == R_PARISC_DIR16WF
3503 || r_type == R_PARISC_DIR16DF
3504 || r_type == R_PARISC_DIR14F)
3505 value = hppa_field_adjust (value, addend, e_fsel);
3506 else
3507 value = hppa_field_adjust (value, addend, e_rrsel);
3508
3509 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3510 /* All branches are implicitly shifted by 2 places. */
3511 value >>= 2;
3512
3513 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3514 break;
3515 }
3516
3517 case R_PARISC_PLTOFF21L:
3518 case R_PARISC_PLTOFF14R:
3519 case R_PARISC_PLTOFF14F:
3520 case R_PARISC_PLTOFF14WR:
3521 case R_PARISC_PLTOFF14DR:
3522 case R_PARISC_PLTOFF16F:
3523 case R_PARISC_PLTOFF16WF:
3524 case R_PARISC_PLTOFF16DF:
3525 {
3526 /* We want the value of the PLT offset for this symbol, not
3527 the symbol's actual address. Note that __gp may not point
3528 to the start of the DLT, so we have to compute the absolute
3529 address, then subtract out the value of __gp. */
3530 value = (hh->plt_offset
3531 + hppa_info->root.splt->output_offset
3532 + hppa_info->root.splt->output_section->vma);
3533 value -= _bfd_get_gp_value (output_bfd);
3534
3535 /* All PLTOFF relocations are basically the same at this point,
3536 except that we need different field selectors for the 21bit
3537 version vs the 14bit versions. */
3538 if (r_type == R_PARISC_PLTOFF21L)
3539 value = hppa_field_adjust (value, addend, e_lrsel);
3540 else if (r_type == R_PARISC_PLTOFF14F
3541 || r_type == R_PARISC_PLTOFF16F
3542 || r_type == R_PARISC_PLTOFF16WF
3543 || r_type == R_PARISC_PLTOFF16DF)
3544 value = hppa_field_adjust (value, addend, e_fsel);
3545 else
3546 value = hppa_field_adjust (value, addend, e_rrsel);
3547
3548 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3549 break;
3550 }
3551
3552 case R_PARISC_LTOFF_FPTR32:
3553 {
3554 /* FIXME: There used to be code here to create the FPTR itself if
3555 the relocation was against a local symbol. But the code could
3556 never have worked. If the assert below is ever triggered then
3557 the code will need to be reinstated and fixed so that it does
3558 what is needed. */
3559 BFD_ASSERT (hh != NULL);
3560
3561 /* We want the value of the DLT offset for this symbol, not
3562 the symbol's actual address. Note that __gp may not point
3563 to the start of the DLT, so we have to compute the absolute
3564 address, then subtract out the value of __gp. */
3565 value = (hh->dlt_offset
3566 + hppa_info->dlt_sec->output_offset
3567 + hppa_info->dlt_sec->output_section->vma);
3568 value -= _bfd_get_gp_value (output_bfd);
3569 bfd_put_32 (input_bfd, value, hit_data);
3570 return bfd_reloc_ok;
3571 }
3572
3573 case R_PARISC_LTOFF_FPTR64:
3574 case R_PARISC_LTOFF_TP64:
3575 {
3576 /* We may still need to create the FPTR itself if it was for
3577 a local symbol. */
3578 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3579 {
3580 /* The first two words of an .opd entry are zero. */
3581 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3582
3583 /* The next word is the address of the function. */
3584 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3585 (hppa_info->opd_sec->contents
3586 + hh->opd_offset + 16));
3587
3588 /* The last word is our local __gp value. */
3589 value = _bfd_get_gp_value (info->output_bfd);
3590 bfd_put_64 (hppa_info->opd_sec->owner, value,
3591 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3592
3593 /* The DLT value is the address of the .opd entry. */
3594 value = (hh->opd_offset
3595 + hppa_info->opd_sec->output_offset
3596 + hppa_info->opd_sec->output_section->vma);
3597
3598 bfd_put_64 (hppa_info->dlt_sec->owner,
3599 value,
3600 hppa_info->dlt_sec->contents + hh->dlt_offset);
3601 }
3602
3603 /* We want the value of the DLT offset for this symbol, not
3604 the symbol's actual address. Note that __gp may not point
3605 to the start of the DLT, so we have to compute the absolute
3606 address, then subtract out the value of __gp. */
3607 value = (hh->dlt_offset
3608 + hppa_info->dlt_sec->output_offset
3609 + hppa_info->dlt_sec->output_section->vma);
3610 value -= _bfd_get_gp_value (output_bfd);
3611 bfd_put_64 (input_bfd, value, hit_data);
3612 return bfd_reloc_ok;
3613 }
3614
3615 case R_PARISC_DIR32:
3616 bfd_put_32 (input_bfd, value + addend, hit_data);
3617 return bfd_reloc_ok;
3618
3619 case R_PARISC_DIR64:
3620 bfd_put_64 (input_bfd, value + addend, hit_data);
3621 return bfd_reloc_ok;
3622
3623 case R_PARISC_GPREL64:
3624 /* Subtract out the global pointer value to make value a DLT
3625 relative address. */
3626 value -= _bfd_get_gp_value (output_bfd);
3627
3628 bfd_put_64 (input_bfd, value + addend, hit_data);
3629 return bfd_reloc_ok;
3630
3631 case R_PARISC_LTOFF64:
3632 /* We want the value of the DLT offset for this symbol, not
3633 the symbol's actual address. Note that __gp may not point
3634 to the start of the DLT, so we have to compute the absolute
3635 address, then subtract out the value of __gp. */
3636 value = (hh->dlt_offset
3637 + hppa_info->dlt_sec->output_offset
3638 + hppa_info->dlt_sec->output_section->vma);
3639 value -= _bfd_get_gp_value (output_bfd);
3640
3641 bfd_put_64 (input_bfd, value + addend, hit_data);
3642 return bfd_reloc_ok;
3643
3644 case R_PARISC_PCREL32:
3645 {
3646 /* If this is a call to a function defined in another dynamic
3647 library, then redirect the call to the local stub for this
3648 function. */
3649 if (sym_sec == NULL || sym_sec->output_section == NULL)
3650 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3651 + hppa_info->stub_sec->output_section->vma);
3652
3653 /* Turn VALUE into a proper PC relative address. */
3654 value -= (offset + input_section->output_offset
3655 + input_section->output_section->vma);
3656
3657 value += addend;
3658 value -= 8;
3659 bfd_put_32 (input_bfd, value, hit_data);
3660 return bfd_reloc_ok;
3661 }
3662
3663 case R_PARISC_PCREL64:
3664 {
3665 /* If this is a call to a function defined in another dynamic
3666 library, then redirect the call to the local stub for this
3667 function. */
3668 if (sym_sec == NULL || sym_sec->output_section == NULL)
3669 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3670 + hppa_info->stub_sec->output_section->vma);
3671
3672 /* Turn VALUE into a proper PC relative address. */
3673 value -= (offset + input_section->output_offset
3674 + input_section->output_section->vma);
3675
3676 value += addend;
3677 value -= 8;
3678 bfd_put_64 (input_bfd, value, hit_data);
3679 return bfd_reloc_ok;
3680 }
3681
3682 case R_PARISC_FPTR64:
3683 {
3684 bfd_vma off;
3685
3686 /* We may still need to create the FPTR itself if it was for
3687 a local symbol. */
3688 if (hh == NULL)
3689 {
3690 bfd_vma *local_opd_offsets;
3691
3692 if (local_offsets == NULL)
3693 abort ();
3694
3695 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3696 off = local_opd_offsets[r_symndx];
3697
3698 /* The last bit records whether we've already initialised
3699 this local .opd entry. */
3700 if ((off & 1) != 0)
3701 {
3702 BFD_ASSERT (off != (bfd_vma) -1);
3703 off &= ~1;
3704 }
3705 else
3706 {
3707 /* The first two words of an .opd entry are zero. */
3708 memset (hppa_info->opd_sec->contents + off, 0, 16);
3709
3710 /* The next word is the address of the function. */
3711 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3712 (hppa_info->opd_sec->contents + off + 16));
3713
3714 /* The last word is our local __gp value. */
3715 value = _bfd_get_gp_value (info->output_bfd);
3716 bfd_put_64 (hppa_info->opd_sec->owner, value,
3717 hppa_info->opd_sec->contents + off + 24);
3718 }
3719 }
3720 else
3721 off = hh->opd_offset;
3722
3723 if (hh == NULL || hh->want_opd)
3724 /* We want the value of the OPD offset for this symbol. */
3725 value = (off
3726 + hppa_info->opd_sec->output_offset
3727 + hppa_info->opd_sec->output_section->vma);
3728 else
3729 /* We want the address of the symbol. */
3730 value += addend;
3731
3732 bfd_put_64 (input_bfd, value, hit_data);
3733 return bfd_reloc_ok;
3734 }
3735
3736 case R_PARISC_SECREL32:
3737 if (sym_sec)
3738 value -= sym_sec->output_section->vma;
3739 bfd_put_32 (input_bfd, value + addend, hit_data);
3740 return bfd_reloc_ok;
3741
3742 case R_PARISC_SEGREL32:
3743 case R_PARISC_SEGREL64:
3744 {
3745 /* If this is the first SEGREL relocation, then initialize
3746 the segment base values. */
3747 if (hppa_info->text_segment_base == (bfd_vma) -1)
3748 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3749 hppa_info);
3750
3751 /* VALUE holds the absolute address. We want to include the
3752 addend, then turn it into a segment relative address.
3753
3754 The segment is derived from SYM_SEC. We assume that there are
3755 only two segments of note in the resulting executable/shlib.
3756 A readonly segment (.text) and a readwrite segment (.data). */
3757 value += addend;
3758
3759 if (sym_sec->flags & SEC_CODE)
3760 value -= hppa_info->text_segment_base;
3761 else
3762 value -= hppa_info->data_segment_base;
3763
3764 if (r_type == R_PARISC_SEGREL32)
3765 bfd_put_32 (input_bfd, value, hit_data);
3766 else
3767 bfd_put_64 (input_bfd, value, hit_data);
3768 return bfd_reloc_ok;
3769 }
3770
3771 /* Something we don't know how to handle. */
3772 default:
3773 return bfd_reloc_notsupported;
3774 }
3775
3776 /* Update the instruction word. */
3777 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3778 return bfd_reloc_ok;
3779 }
3780
3781 /* Relocate an HPPA ELF section. */
3782
3783 static bfd_boolean
3784 elf64_hppa_relocate_section (bfd *output_bfd,
3785 struct bfd_link_info *info,
3786 bfd *input_bfd,
3787 asection *input_section,
3788 bfd_byte *contents,
3789 Elf_Internal_Rela *relocs,
3790 Elf_Internal_Sym *local_syms,
3791 asection **local_sections)
3792 {
3793 Elf_Internal_Shdr *symtab_hdr;
3794 Elf_Internal_Rela *rel;
3795 Elf_Internal_Rela *relend;
3796 struct elf64_hppa_link_hash_table *hppa_info;
3797
3798 hppa_info = hppa_link_hash_table (info);
3799 if (hppa_info == NULL)
3800 return FALSE;
3801
3802 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3803
3804 rel = relocs;
3805 relend = relocs + input_section->reloc_count;
3806 for (; rel < relend; rel++)
3807 {
3808 int r_type;
3809 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3810 unsigned long r_symndx;
3811 struct elf_link_hash_entry *eh;
3812 Elf_Internal_Sym *sym;
3813 asection *sym_sec;
3814 bfd_vma relocation;
3815 bfd_reloc_status_type r;
3816
3817 r_type = ELF_R_TYPE (rel->r_info);
3818 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3819 {
3820 bfd_set_error (bfd_error_bad_value);
3821 return FALSE;
3822 }
3823 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3824 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3825 continue;
3826
3827 /* This is a final link. */
3828 r_symndx = ELF_R_SYM (rel->r_info);
3829 eh = NULL;
3830 sym = NULL;
3831 sym_sec = NULL;
3832 if (r_symndx < symtab_hdr->sh_info)
3833 {
3834 /* This is a local symbol, hh defaults to NULL. */
3835 sym = local_syms + r_symndx;
3836 sym_sec = local_sections[r_symndx];
3837 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3838 }
3839 else
3840 {
3841 /* This is not a local symbol. */
3842 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3843
3844 /* It seems this can happen with erroneous or unsupported
3845 input (mixing a.out and elf in an archive, for example.) */
3846 if (sym_hashes == NULL)
3847 return FALSE;
3848
3849 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3850
3851 if (info->wrap_hash != NULL
3852 && (input_section->flags & SEC_DEBUGGING) != 0)
3853 eh = ((struct elf_link_hash_entry *)
3854 unwrap_hash_lookup (info, input_bfd, &eh->root));
3855
3856 while (eh->root.type == bfd_link_hash_indirect
3857 || eh->root.type == bfd_link_hash_warning)
3858 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3859
3860 relocation = 0;
3861 if (eh->root.type == bfd_link_hash_defined
3862 || eh->root.type == bfd_link_hash_defweak)
3863 {
3864 sym_sec = eh->root.u.def.section;
3865 if (sym_sec != NULL
3866 && sym_sec->output_section != NULL)
3867 relocation = (eh->root.u.def.value
3868 + sym_sec->output_section->vma
3869 + sym_sec->output_offset);
3870 }
3871 else if (eh->root.type == bfd_link_hash_undefweak)
3872 ;
3873 else if (info->unresolved_syms_in_objects == RM_IGNORE
3874 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3875 ;
3876 else if (!bfd_link_relocatable (info)
3877 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3878 continue;
3879 else if (!bfd_link_relocatable (info))
3880 {
3881 bfd_boolean err;
3882
3883 err = (info->unresolved_syms_in_objects == RM_DIAGNOSE
3884 && !info->warn_unresolved_syms)
3885 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT;
3886
3887 info->callbacks->undefined_symbol
3888 (info, eh->root.root.string, input_bfd,
3889 input_section, rel->r_offset, err);
3890 }
3891
3892 if (!bfd_link_relocatable (info)
3893 && relocation == 0
3894 && eh->root.type != bfd_link_hash_defined
3895 && eh->root.type != bfd_link_hash_defweak
3896 && eh->root.type != bfd_link_hash_undefweak)
3897 {
3898 if (info->unresolved_syms_in_objects == RM_IGNORE
3899 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3900 && eh->type == STT_PARISC_MILLI)
3901 info->callbacks->undefined_symbol
3902 (info, eh_name (eh), input_bfd,
3903 input_section, rel->r_offset, FALSE);
3904 }
3905 }
3906
3907 if (sym_sec != NULL && discarded_section (sym_sec))
3908 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3909 rel, 1, relend, howto, 0, contents);
3910
3911 if (bfd_link_relocatable (info))
3912 continue;
3913
3914 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3915 input_section, contents,
3916 relocation, info, sym_sec,
3917 eh);
3918
3919 if (r != bfd_reloc_ok)
3920 {
3921 switch (r)
3922 {
3923 default:
3924 abort ();
3925 case bfd_reloc_overflow:
3926 {
3927 const char *sym_name;
3928
3929 if (eh != NULL)
3930 sym_name = NULL;
3931 else
3932 {
3933 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3934 symtab_hdr->sh_link,
3935 sym->st_name);
3936 if (sym_name == NULL)
3937 return FALSE;
3938 if (*sym_name == '\0')
3939 sym_name = bfd_section_name (sym_sec);
3940 }
3941
3942 (*info->callbacks->reloc_overflow)
3943 (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3944 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3945 }
3946 break;
3947 }
3948 }
3949 }
3950 return TRUE;
3951 }
3952
3953 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3954 {
3955 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3956 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3957 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3958 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3959 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3960 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3961 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3962 { NULL, 0, 0, 0, 0 }
3963 };
3964
3965 /* The hash bucket size is the standard one, namely 4. */
3966
3967 const struct elf_size_info hppa64_elf_size_info =
3968 {
3969 sizeof (Elf64_External_Ehdr),
3970 sizeof (Elf64_External_Phdr),
3971 sizeof (Elf64_External_Shdr),
3972 sizeof (Elf64_External_Rel),
3973 sizeof (Elf64_External_Rela),
3974 sizeof (Elf64_External_Sym),
3975 sizeof (Elf64_External_Dyn),
3976 sizeof (Elf_External_Note),
3977 4,
3978 1,
3979 64, 3,
3980 ELFCLASS64, EV_CURRENT,
3981 bfd_elf64_write_out_phdrs,
3982 bfd_elf64_write_shdrs_and_ehdr,
3983 bfd_elf64_checksum_contents,
3984 bfd_elf64_write_relocs,
3985 bfd_elf64_swap_symbol_in,
3986 bfd_elf64_swap_symbol_out,
3987 bfd_elf64_slurp_reloc_table,
3988 bfd_elf64_slurp_symbol_table,
3989 bfd_elf64_swap_dyn_in,
3990 bfd_elf64_swap_dyn_out,
3991 bfd_elf64_swap_reloc_in,
3992 bfd_elf64_swap_reloc_out,
3993 bfd_elf64_swap_reloca_in,
3994 bfd_elf64_swap_reloca_out
3995 };
3996
3997 #define TARGET_BIG_SYM hppa_elf64_vec
3998 #define TARGET_BIG_NAME "elf64-hppa"
3999 #define ELF_ARCH bfd_arch_hppa
4000 #define ELF_TARGET_ID HPPA64_ELF_DATA
4001 #define ELF_MACHINE_CODE EM_PARISC
4002 /* This is not strictly correct. The maximum page size for PA2.0 is
4003 64M. But everything still uses 4k. */
4004 #define ELF_MAXPAGESIZE 0x1000
4005 #define ELF_OSABI ELFOSABI_HPUX
4006
4007 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4008 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4009 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4010 #define elf_info_to_howto elf_hppa_info_to_howto
4011 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4012
4013 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4014 #define elf_backend_object_p elf64_hppa_object_p
4015 #define elf_backend_final_write_processing \
4016 elf_hppa_final_write_processing
4017 #define elf_backend_fake_sections elf_hppa_fake_sections
4018 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4019
4020 #define elf_backend_relocate_section elf_hppa_relocate_section
4021
4022 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4023
4024 #define elf_backend_create_dynamic_sections \
4025 elf64_hppa_create_dynamic_sections
4026 #define elf_backend_init_file_header elf64_hppa_init_file_header
4027
4028 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
4029
4030 #define elf_backend_adjust_dynamic_symbol \
4031 elf64_hppa_adjust_dynamic_symbol
4032
4033 #define elf_backend_size_dynamic_sections \
4034 elf64_hppa_size_dynamic_sections
4035
4036 #define elf_backend_finish_dynamic_symbol \
4037 elf64_hppa_finish_dynamic_symbol
4038 #define elf_backend_finish_dynamic_sections \
4039 elf64_hppa_finish_dynamic_sections
4040 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4041 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4042
4043 /* Stuff for the BFD linker: */
4044 #define bfd_elf64_bfd_link_hash_table_create \
4045 elf64_hppa_hash_table_create
4046
4047 #define elf_backend_check_relocs \
4048 elf64_hppa_check_relocs
4049
4050 #define elf_backend_size_info \
4051 hppa64_elf_size_info
4052
4053 #define elf_backend_additional_program_headers \
4054 elf64_hppa_additional_program_headers
4055
4056 #define elf_backend_modify_segment_map \
4057 elf64_hppa_modify_segment_map
4058
4059 #define elf_backend_allow_non_load_phdr \
4060 elf64_hppa_allow_non_load_phdr
4061
4062 #define elf_backend_link_output_symbol_hook \
4063 elf64_hppa_link_output_symbol_hook
4064
4065 #define elf_backend_want_got_plt 0
4066 #define elf_backend_plt_readonly 0
4067 #define elf_backend_want_plt_sym 0
4068 #define elf_backend_got_header_size 0
4069 #define elf_backend_type_change_ok TRUE
4070 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4071 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4072 #define elf_backend_rela_normal 1
4073 #define elf_backend_special_sections elf64_hppa_special_sections
4074 #define elf_backend_action_discarded elf_hppa_action_discarded
4075 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4076
4077 #define elf64_bed elf64_hppa_hpux_bed
4078
4079 #include "elf64-target.h"
4080
4081 #undef TARGET_BIG_SYM
4082 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4083 #undef TARGET_BIG_NAME
4084 #define TARGET_BIG_NAME "elf64-hppa-linux"
4085 #undef ELF_OSABI
4086 #define ELF_OSABI ELFOSABI_GNU
4087 #undef elf64_bed
4088 #define elf64_bed elf64_hppa_linux_bed
4089 #undef elf_backend_special_sections
4090 #define elf_backend_special_sections (elf64_hppa_special_sections + 1)
4091
4092 #include "elf64-target.h"
This page took 0.11699 seconds and 4 git commands to generate.