bfd/
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
161 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
162 const char *string));
163 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164 PARAMS ((bfd *abfd));
165 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
166 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
167 bfd_boolean create, bfd_boolean copy));
168 static void elf64_hppa_dyn_hash_traverse
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
170 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
171 PTR info));
172
173 static const char *get_dyn_name
174 PARAMS ((bfd *, struct elf_link_hash_entry *,
175 const Elf_Internal_Rela *, char **, size_t *));
176
177 /* This must follow the definitions of the various derived linker
178 hash tables and shared functions. */
179 #include "elf-hppa.h"
180
181 static bfd_boolean elf64_hppa_object_p
182 PARAMS ((bfd *));
183
184 static void elf64_hppa_post_process_headers
185 PARAMS ((bfd *, struct bfd_link_info *));
186
187 static bfd_boolean elf64_hppa_create_dynamic_sections
188 PARAMS ((bfd *, struct bfd_link_info *));
189
190 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
191 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
192
193 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195
196 static bfd_boolean elf64_hppa_size_dynamic_sections
197 PARAMS ((bfd *, struct bfd_link_info *));
198
199 static bfd_boolean elf64_hppa_link_output_symbol_hook
200 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
201 asection *, struct elf_link_hash_entry *));
202
203 static bfd_boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd *, struct bfd_link_info *,
205 struct elf_link_hash_entry *, Elf_Internal_Sym *));
206
207 static bfd_boolean elf64_hppa_modify_segment_map
208 PARAMS ((bfd *, struct bfd_link_info *));
209
210 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
211 PARAMS ((const Elf_Internal_Rela *));
212
213 static bfd_boolean elf64_hppa_finish_dynamic_sections
214 PARAMS ((bfd *, struct bfd_link_info *));
215
216 static bfd_boolean elf64_hppa_check_relocs
217 PARAMS ((bfd *, struct bfd_link_info *,
218 asection *, const Elf_Internal_Rela *));
219
220 static bfd_boolean elf64_hppa_dynamic_symbol_p
221 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
222
223 static bfd_boolean elf64_hppa_mark_exported_functions
224 PARAMS ((struct elf_link_hash_entry *, PTR));
225
226 static bfd_boolean elf64_hppa_finalize_opd
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229 static bfd_boolean elf64_hppa_finalize_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232 static bfd_boolean allocate_global_data_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static bfd_boolean allocate_global_data_plt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean allocate_global_data_stub
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean allocate_global_data_opd
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static bfd_boolean get_reloc_section
245 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
246
247 static bfd_boolean count_dyn_reloc
248 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
249 int, asection *, int, bfd_vma, bfd_vma));
250
251 static bfd_boolean allocate_dynrel_entries
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254 static bfd_boolean elf64_hppa_finalize_dynreloc
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257 static bfd_boolean get_opd
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260 static bfd_boolean get_plt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263 static bfd_boolean get_dlt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static bfd_boolean get_stub
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static int elf64_hppa_elf_get_symbol_type
270 PARAMS ((Elf_Internal_Sym *, int));
271
272 static bfd_boolean
273 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
274 bfd *abfd ATTRIBUTE_UNUSED,
275 new_hash_entry_func new,
276 unsigned int entsize)
277 {
278 memset (ht, 0, sizeof (*ht));
279 return bfd_hash_table_init (&ht->root, new, entsize);
280 }
281
282 static struct bfd_hash_entry*
283 elf64_hppa_new_dyn_hash_entry (entry, table, string)
284 struct bfd_hash_entry *entry;
285 struct bfd_hash_table *table;
286 const char *string;
287 {
288 struct elf64_hppa_dyn_hash_entry *ret;
289 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
290
291 /* Allocate the structure if it has not already been allocated by a
292 subclass. */
293 if (!ret)
294 ret = bfd_hash_allocate (table, sizeof (*ret));
295
296 if (!ret)
297 return 0;
298
299 /* Call the allocation method of the superclass. */
300 ret = ((struct elf64_hppa_dyn_hash_entry *)
301 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
302
303 /* Initialize our local data. All zeros. */
304 memset (&ret->dlt_offset, 0,
305 (sizeof (struct elf64_hppa_dyn_hash_entry)
306 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
307
308 return &ret->root;
309 }
310
311 /* Create the derived linker hash table. The PA64 ELF port uses this
312 derived hash table to keep information specific to the PA ElF
313 linker (without using static variables). */
314
315 static struct bfd_link_hash_table*
316 elf64_hppa_hash_table_create (abfd)
317 bfd *abfd;
318 {
319 struct elf64_hppa_link_hash_table *ret;
320
321 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
322 if (!ret)
323 return 0;
324 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
325 _bfd_elf_link_hash_newfunc,
326 sizeof (struct elf_link_hash_entry)))
327 {
328 bfd_release (abfd, ret);
329 return 0;
330 }
331
332 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
333 elf64_hppa_new_dyn_hash_entry,
334 sizeof (struct elf64_hppa_dyn_hash_entry)))
335 return 0;
336 return &ret->root.root;
337 }
338
339 /* Look up an entry in a PA64 ELF linker hash table. */
340
341 static struct elf64_hppa_dyn_hash_entry *
342 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
343 struct elf64_hppa_dyn_hash_table *table;
344 const char *string;
345 bfd_boolean create, copy;
346 {
347 return ((struct elf64_hppa_dyn_hash_entry *)
348 bfd_hash_lookup (&table->root, string, create, copy));
349 }
350
351 /* Traverse a PA64 ELF linker hash table. */
352
353 static void
354 elf64_hppa_dyn_hash_traverse (table, func, info)
355 struct elf64_hppa_dyn_hash_table *table;
356 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
357 PTR info;
358 {
359 (bfd_hash_traverse
360 (&table->root,
361 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
362 info));
363 }
364 \f
365 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
366
367 Additionally we set the default architecture and machine. */
368 static bfd_boolean
369 elf64_hppa_object_p (abfd)
370 bfd *abfd;
371 {
372 Elf_Internal_Ehdr * i_ehdrp;
373 unsigned int flags;
374
375 i_ehdrp = elf_elfheader (abfd);
376 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
377 {
378 /* GCC on hppa-linux produces binaries with OSABI=Linux,
379 but the kernel produces corefiles with OSABI=SysV. */
380 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
381 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
382 return FALSE;
383 }
384 else
385 {
386 /* HPUX produces binaries with OSABI=HPUX,
387 but the kernel produces corefiles with OSABI=SysV. */
388 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
389 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
390 return FALSE;
391 }
392
393 flags = i_ehdrp->e_flags;
394 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
395 {
396 case EFA_PARISC_1_0:
397 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
398 case EFA_PARISC_1_1:
399 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
400 case EFA_PARISC_2_0:
401 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
403 else
404 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
405 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
406 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
407 }
408 /* Don't be fussy. */
409 return TRUE;
410 }
411
412 /* Given section type (hdr->sh_type), return a boolean indicating
413 whether or not the section is an elf64-hppa specific section. */
414 static bfd_boolean
415 elf64_hppa_section_from_shdr (bfd *abfd,
416 Elf_Internal_Shdr *hdr,
417 const char *name,
418 int shindex)
419 {
420 asection *newsect;
421
422 switch (hdr->sh_type)
423 {
424 case SHT_PARISC_EXT:
425 if (strcmp (name, ".PARISC.archext") != 0)
426 return FALSE;
427 break;
428 case SHT_PARISC_UNWIND:
429 if (strcmp (name, ".PARISC.unwind") != 0)
430 return FALSE;
431 break;
432 case SHT_PARISC_DOC:
433 case SHT_PARISC_ANNOT:
434 default:
435 return FALSE;
436 }
437
438 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
439 return FALSE;
440 newsect = hdr->bfd_section;
441
442 return TRUE;
443 }
444
445 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
446 name describes what was once potentially anonymous memory. We
447 allocate memory as necessary, possibly reusing PBUF/PLEN. */
448
449 static const char *
450 get_dyn_name (abfd, h, rel, pbuf, plen)
451 bfd *abfd;
452 struct elf_link_hash_entry *h;
453 const Elf_Internal_Rela *rel;
454 char **pbuf;
455 size_t *plen;
456 {
457 asection *sec = abfd->sections;
458 size_t nlen, tlen;
459 char *buf;
460 size_t len;
461
462 if (h && rel->r_addend == 0)
463 return h->root.root.string;
464
465 if (h)
466 nlen = strlen (h->root.root.string);
467 else
468 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
469 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
470
471 len = *plen;
472 buf = *pbuf;
473 if (len < tlen)
474 {
475 if (buf)
476 free (buf);
477 *pbuf = buf = malloc (tlen);
478 *plen = len = tlen;
479 if (!buf)
480 return NULL;
481 }
482
483 if (h)
484 {
485 memcpy (buf, h->root.root.string, nlen);
486 buf[nlen++] = '+';
487 sprintf_vma (buf + nlen, rel->r_addend);
488 }
489 else
490 {
491 nlen = sprintf (buf, "%x:%lx",
492 sec->id & 0xffffffff,
493 (long) ELF64_R_SYM (rel->r_info));
494 if (rel->r_addend)
495 {
496 buf[nlen++] = '+';
497 sprintf_vma (buf + nlen, rel->r_addend);
498 }
499 }
500
501 return buf;
502 }
503
504 /* SEC is a section containing relocs for an input BFD when linking; return
505 a suitable section for holding relocs in the output BFD for a link. */
506
507 static bfd_boolean
508 get_reloc_section (abfd, hppa_info, sec)
509 bfd *abfd;
510 struct elf64_hppa_link_hash_table *hppa_info;
511 asection *sec;
512 {
513 const char *srel_name;
514 asection *srel;
515 bfd *dynobj;
516
517 srel_name = (bfd_elf_string_from_elf_section
518 (abfd, elf_elfheader(abfd)->e_shstrndx,
519 elf_section_data(sec)->rel_hdr.sh_name));
520 if (srel_name == NULL)
521 return FALSE;
522
523 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
524 && strcmp (bfd_get_section_name (abfd, sec),
525 srel_name+5) == 0)
526 || (strncmp (srel_name, ".rel", 4) == 0
527 && strcmp (bfd_get_section_name (abfd, sec),
528 srel_name+4) == 0));
529
530 dynobj = hppa_info->root.dynobj;
531 if (!dynobj)
532 hppa_info->root.dynobj = dynobj = abfd;
533
534 srel = bfd_get_section_by_name (dynobj, srel_name);
535 if (srel == NULL)
536 {
537 srel = bfd_make_section_with_flags (dynobj, srel_name,
538 (SEC_ALLOC
539 | SEC_LOAD
540 | SEC_HAS_CONTENTS
541 | SEC_IN_MEMORY
542 | SEC_LINKER_CREATED
543 | SEC_READONLY));
544 if (srel == NULL
545 || !bfd_set_section_alignment (dynobj, srel, 3))
546 return FALSE;
547 }
548
549 hppa_info->other_rel_sec = srel;
550 return TRUE;
551 }
552
553 /* Add a new entry to the list of dynamic relocations against DYN_H.
554
555 We use this to keep a record of all the FPTR relocations against a
556 particular symbol so that we can create FPTR relocations in the
557 output file. */
558
559 static bfd_boolean
560 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
561 bfd *abfd;
562 struct elf64_hppa_dyn_hash_entry *dyn_h;
563 int type;
564 asection *sec;
565 int sec_symndx;
566 bfd_vma offset;
567 bfd_vma addend;
568 {
569 struct elf64_hppa_dyn_reloc_entry *rent;
570
571 rent = (struct elf64_hppa_dyn_reloc_entry *)
572 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
573 if (!rent)
574 return FALSE;
575
576 rent->next = dyn_h->reloc_entries;
577 rent->type = type;
578 rent->sec = sec;
579 rent->sec_symndx = sec_symndx;
580 rent->offset = offset;
581 rent->addend = addend;
582 dyn_h->reloc_entries = rent;
583
584 return TRUE;
585 }
586
587 /* Scan the RELOCS and record the type of dynamic entries that each
588 referenced symbol needs. */
589
590 static bfd_boolean
591 elf64_hppa_check_relocs (abfd, info, sec, relocs)
592 bfd *abfd;
593 struct bfd_link_info *info;
594 asection *sec;
595 const Elf_Internal_Rela *relocs;
596 {
597 struct elf64_hppa_link_hash_table *hppa_info;
598 const Elf_Internal_Rela *relend;
599 Elf_Internal_Shdr *symtab_hdr;
600 const Elf_Internal_Rela *rel;
601 asection *dlt, *plt, *stubs;
602 char *buf;
603 size_t buf_len;
604 int sec_symndx;
605
606 if (info->relocatable)
607 return TRUE;
608
609 /* If this is the first dynamic object found in the link, create
610 the special sections required for dynamic linking. */
611 if (! elf_hash_table (info)->dynamic_sections_created)
612 {
613 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
614 return FALSE;
615 }
616
617 hppa_info = elf64_hppa_hash_table (info);
618 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
619
620 /* If necessary, build a new table holding section symbols indices
621 for this BFD. */
622
623 if (info->shared && hppa_info->section_syms_bfd != abfd)
624 {
625 unsigned long i;
626 unsigned int highest_shndx;
627 Elf_Internal_Sym *local_syms = NULL;
628 Elf_Internal_Sym *isym, *isymend;
629 bfd_size_type amt;
630
631 /* We're done with the old cache of section index to section symbol
632 index information. Free it.
633
634 ?!? Note we leak the last section_syms array. Presumably we
635 could free it in one of the later routines in this file. */
636 if (hppa_info->section_syms)
637 free (hppa_info->section_syms);
638
639 /* Read this BFD's local symbols. */
640 if (symtab_hdr->sh_info != 0)
641 {
642 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
643 if (local_syms == NULL)
644 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
645 symtab_hdr->sh_info, 0,
646 NULL, NULL, NULL);
647 if (local_syms == NULL)
648 return FALSE;
649 }
650
651 /* Record the highest section index referenced by the local symbols. */
652 highest_shndx = 0;
653 isymend = local_syms + symtab_hdr->sh_info;
654 for (isym = local_syms; isym < isymend; isym++)
655 {
656 if (isym->st_shndx > highest_shndx)
657 highest_shndx = isym->st_shndx;
658 }
659
660 /* Allocate an array to hold the section index to section symbol index
661 mapping. Bump by one since we start counting at zero. */
662 highest_shndx++;
663 amt = highest_shndx;
664 amt *= sizeof (int);
665 hppa_info->section_syms = (int *) bfd_malloc (amt);
666
667 /* Now walk the local symbols again. If we find a section symbol,
668 record the index of the symbol into the section_syms array. */
669 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
670 {
671 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
672 hppa_info->section_syms[isym->st_shndx] = i;
673 }
674
675 /* We are finished with the local symbols. */
676 if (local_syms != NULL
677 && symtab_hdr->contents != (unsigned char *) local_syms)
678 {
679 if (! info->keep_memory)
680 free (local_syms);
681 else
682 {
683 /* Cache the symbols for elf_link_input_bfd. */
684 symtab_hdr->contents = (unsigned char *) local_syms;
685 }
686 }
687
688 /* Record which BFD we built the section_syms mapping for. */
689 hppa_info->section_syms_bfd = abfd;
690 }
691
692 /* Record the symbol index for this input section. We may need it for
693 relocations when building shared libraries. When not building shared
694 libraries this value is never really used, but assign it to zero to
695 prevent out of bounds memory accesses in other routines. */
696 if (info->shared)
697 {
698 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
699
700 /* If we did not find a section symbol for this section, then
701 something went terribly wrong above. */
702 if (sec_symndx == -1)
703 return FALSE;
704
705 sec_symndx = hppa_info->section_syms[sec_symndx];
706 }
707 else
708 sec_symndx = 0;
709
710 dlt = plt = stubs = NULL;
711 buf = NULL;
712 buf_len = 0;
713
714 relend = relocs + sec->reloc_count;
715 for (rel = relocs; rel < relend; ++rel)
716 {
717 enum
718 {
719 NEED_DLT = 1,
720 NEED_PLT = 2,
721 NEED_STUB = 4,
722 NEED_OPD = 8,
723 NEED_DYNREL = 16,
724 };
725
726 struct elf_link_hash_entry *h = NULL;
727 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
728 struct elf64_hppa_dyn_hash_entry *dyn_h;
729 int need_entry;
730 const char *addr_name;
731 bfd_boolean maybe_dynamic;
732 int dynrel_type = R_PARISC_NONE;
733 static reloc_howto_type *howto;
734
735 if (r_symndx >= symtab_hdr->sh_info)
736 {
737 /* We're dealing with a global symbol -- find its hash entry
738 and mark it as being referenced. */
739 long indx = r_symndx - symtab_hdr->sh_info;
740 h = elf_sym_hashes (abfd)[indx];
741 while (h->root.type == bfd_link_hash_indirect
742 || h->root.type == bfd_link_hash_warning)
743 h = (struct elf_link_hash_entry *) h->root.u.i.link;
744
745 h->ref_regular = 1;
746 }
747
748 /* We can only get preliminary data on whether a symbol is
749 locally or externally defined, as not all of the input files
750 have yet been processed. Do something with what we know, as
751 this may help reduce memory usage and processing time later. */
752 maybe_dynamic = FALSE;
753 if (h && ((info->shared
754 && (!info->symbolic
755 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
756 || !h->def_regular
757 || h->root.type == bfd_link_hash_defweak))
758 maybe_dynamic = TRUE;
759
760 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
761 need_entry = 0;
762 switch (howto->type)
763 {
764 /* These are simple indirect references to symbols through the
765 DLT. We need to create a DLT entry for any symbols which
766 appears in a DLTIND relocation. */
767 case R_PARISC_DLTIND21L:
768 case R_PARISC_DLTIND14R:
769 case R_PARISC_DLTIND14F:
770 case R_PARISC_DLTIND14WR:
771 case R_PARISC_DLTIND14DR:
772 need_entry = NEED_DLT;
773 break;
774
775 /* ?!? These need a DLT entry. But I have no idea what to do with
776 the "link time TP value. */
777 case R_PARISC_LTOFF_TP21L:
778 case R_PARISC_LTOFF_TP14R:
779 case R_PARISC_LTOFF_TP14F:
780 case R_PARISC_LTOFF_TP64:
781 case R_PARISC_LTOFF_TP14WR:
782 case R_PARISC_LTOFF_TP14DR:
783 case R_PARISC_LTOFF_TP16F:
784 case R_PARISC_LTOFF_TP16WF:
785 case R_PARISC_LTOFF_TP16DF:
786 need_entry = NEED_DLT;
787 break;
788
789 /* These are function calls. Depending on their precise target we
790 may need to make a stub for them. The stub uses the PLT, so we
791 need to create PLT entries for these symbols too. */
792 case R_PARISC_PCREL12F:
793 case R_PARISC_PCREL17F:
794 case R_PARISC_PCREL22F:
795 case R_PARISC_PCREL32:
796 case R_PARISC_PCREL64:
797 case R_PARISC_PCREL21L:
798 case R_PARISC_PCREL17R:
799 case R_PARISC_PCREL17C:
800 case R_PARISC_PCREL14R:
801 case R_PARISC_PCREL14F:
802 case R_PARISC_PCREL22C:
803 case R_PARISC_PCREL14WR:
804 case R_PARISC_PCREL14DR:
805 case R_PARISC_PCREL16F:
806 case R_PARISC_PCREL16WF:
807 case R_PARISC_PCREL16DF:
808 need_entry = (NEED_PLT | NEED_STUB);
809 break;
810
811 case R_PARISC_PLTOFF21L:
812 case R_PARISC_PLTOFF14R:
813 case R_PARISC_PLTOFF14F:
814 case R_PARISC_PLTOFF14WR:
815 case R_PARISC_PLTOFF14DR:
816 case R_PARISC_PLTOFF16F:
817 case R_PARISC_PLTOFF16WF:
818 case R_PARISC_PLTOFF16DF:
819 need_entry = (NEED_PLT);
820 break;
821
822 case R_PARISC_DIR64:
823 if (info->shared || maybe_dynamic)
824 need_entry = (NEED_DYNREL);
825 dynrel_type = R_PARISC_DIR64;
826 break;
827
828 /* This is an indirect reference through the DLT to get the address
829 of a OPD descriptor. Thus we need to make a DLT entry that points
830 to an OPD entry. */
831 case R_PARISC_LTOFF_FPTR21L:
832 case R_PARISC_LTOFF_FPTR14R:
833 case R_PARISC_LTOFF_FPTR14WR:
834 case R_PARISC_LTOFF_FPTR14DR:
835 case R_PARISC_LTOFF_FPTR32:
836 case R_PARISC_LTOFF_FPTR64:
837 case R_PARISC_LTOFF_FPTR16F:
838 case R_PARISC_LTOFF_FPTR16WF:
839 case R_PARISC_LTOFF_FPTR16DF:
840 if (info->shared || maybe_dynamic)
841 need_entry = (NEED_DLT | NEED_OPD);
842 else
843 need_entry = (NEED_DLT | NEED_OPD);
844 dynrel_type = R_PARISC_FPTR64;
845 break;
846
847 /* This is a simple OPD entry. */
848 case R_PARISC_FPTR64:
849 if (info->shared || maybe_dynamic)
850 need_entry = (NEED_OPD | NEED_DYNREL);
851 else
852 need_entry = (NEED_OPD);
853 dynrel_type = R_PARISC_FPTR64;
854 break;
855
856 /* Add more cases as needed. */
857 }
858
859 if (!need_entry)
860 continue;
861
862 /* Collect a canonical name for this address. */
863 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
864
865 /* Collect the canonical entry data for this address. */
866 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
867 addr_name, TRUE, TRUE);
868 BFD_ASSERT (dyn_h);
869
870 /* Stash away enough information to be able to find this symbol
871 regardless of whether or not it is local or global. */
872 dyn_h->h = h;
873 dyn_h->owner = abfd;
874 dyn_h->sym_indx = r_symndx;
875
876 /* ?!? We may need to do some error checking in here. */
877 /* Create what's needed. */
878 if (need_entry & NEED_DLT)
879 {
880 if (! hppa_info->dlt_sec
881 && ! get_dlt (abfd, info, hppa_info))
882 goto err_out;
883 dyn_h->want_dlt = 1;
884 }
885
886 if (need_entry & NEED_PLT)
887 {
888 if (! hppa_info->plt_sec
889 && ! get_plt (abfd, info, hppa_info))
890 goto err_out;
891 dyn_h->want_plt = 1;
892 }
893
894 if (need_entry & NEED_STUB)
895 {
896 if (! hppa_info->stub_sec
897 && ! get_stub (abfd, info, hppa_info))
898 goto err_out;
899 dyn_h->want_stub = 1;
900 }
901
902 if (need_entry & NEED_OPD)
903 {
904 if (! hppa_info->opd_sec
905 && ! get_opd (abfd, info, hppa_info))
906 goto err_out;
907
908 dyn_h->want_opd = 1;
909
910 /* FPTRs are not allocated by the dynamic linker for PA64, though
911 it is possible that will change in the future. */
912
913 /* This could be a local function that had its address taken, in
914 which case H will be NULL. */
915 if (h)
916 h->needs_plt = 1;
917 }
918
919 /* Add a new dynamic relocation to the chain of dynamic
920 relocations for this symbol. */
921 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
922 {
923 if (! hppa_info->other_rel_sec
924 && ! get_reloc_section (abfd, hppa_info, sec))
925 goto err_out;
926
927 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
928 sec_symndx, rel->r_offset, rel->r_addend))
929 goto err_out;
930
931 /* If we are building a shared library and we just recorded
932 a dynamic R_PARISC_FPTR64 relocation, then make sure the
933 section symbol for this section ends up in the dynamic
934 symbol table. */
935 if (info->shared && dynrel_type == R_PARISC_FPTR64
936 && ! (bfd_elf_link_record_local_dynamic_symbol
937 (info, abfd, sec_symndx)))
938 return FALSE;
939 }
940 }
941
942 if (buf)
943 free (buf);
944 return TRUE;
945
946 err_out:
947 if (buf)
948 free (buf);
949 return FALSE;
950 }
951
952 struct elf64_hppa_allocate_data
953 {
954 struct bfd_link_info *info;
955 bfd_size_type ofs;
956 };
957
958 /* Should we do dynamic things to this symbol? */
959
960 static bfd_boolean
961 elf64_hppa_dynamic_symbol_p (h, info)
962 struct elf_link_hash_entry *h;
963 struct bfd_link_info *info;
964 {
965 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
966 and relocations that retrieve a function descriptor? Assume the
967 worst for now. */
968 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
969 {
970 /* ??? Why is this here and not elsewhere is_local_label_name. */
971 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
972 return FALSE;
973
974 return TRUE;
975 }
976 else
977 return FALSE;
978 }
979
980 /* Mark all functions exported by this file so that we can later allocate
981 entries in .opd for them. */
982
983 static bfd_boolean
984 elf64_hppa_mark_exported_functions (h, data)
985 struct elf_link_hash_entry *h;
986 PTR data;
987 {
988 struct bfd_link_info *info = (struct bfd_link_info *)data;
989 struct elf64_hppa_link_hash_table *hppa_info;
990
991 hppa_info = elf64_hppa_hash_table (info);
992
993 if (h->root.type == bfd_link_hash_warning)
994 h = (struct elf_link_hash_entry *) h->root.u.i.link;
995
996 if (h
997 && (h->root.type == bfd_link_hash_defined
998 || h->root.type == bfd_link_hash_defweak)
999 && h->root.u.def.section->output_section != NULL
1000 && h->type == STT_FUNC)
1001 {
1002 struct elf64_hppa_dyn_hash_entry *dyn_h;
1003
1004 /* Add this symbol to the PA64 linker hash table. */
1005 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1006 h->root.root.string, TRUE, TRUE);
1007 BFD_ASSERT (dyn_h);
1008 dyn_h->h = h;
1009
1010 if (! hppa_info->opd_sec
1011 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1012 return FALSE;
1013
1014 dyn_h->want_opd = 1;
1015 /* Put a flag here for output_symbol_hook. */
1016 dyn_h->st_shndx = -1;
1017 h->needs_plt = 1;
1018 }
1019
1020 return TRUE;
1021 }
1022
1023 /* Allocate space for a DLT entry. */
1024
1025 static bfd_boolean
1026 allocate_global_data_dlt (dyn_h, data)
1027 struct elf64_hppa_dyn_hash_entry *dyn_h;
1028 PTR data;
1029 {
1030 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1031
1032 if (dyn_h->want_dlt)
1033 {
1034 struct elf_link_hash_entry *h = dyn_h->h;
1035
1036 if (x->info->shared)
1037 {
1038 /* Possibly add the symbol to the local dynamic symbol
1039 table since we might need to create a dynamic relocation
1040 against it. */
1041 if (! h
1042 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1043 {
1044 bfd *owner;
1045 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1046
1047 if (! (bfd_elf_link_record_local_dynamic_symbol
1048 (x->info, owner, dyn_h->sym_indx)))
1049 return FALSE;
1050 }
1051 }
1052
1053 dyn_h->dlt_offset = x->ofs;
1054 x->ofs += DLT_ENTRY_SIZE;
1055 }
1056 return TRUE;
1057 }
1058
1059 /* Allocate space for a DLT.PLT entry. */
1060
1061 static bfd_boolean
1062 allocate_global_data_plt (dyn_h, data)
1063 struct elf64_hppa_dyn_hash_entry *dyn_h;
1064 PTR data;
1065 {
1066 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1067
1068 if (dyn_h->want_plt
1069 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1070 && !((dyn_h->h->root.type == bfd_link_hash_defined
1071 || dyn_h->h->root.type == bfd_link_hash_defweak)
1072 && dyn_h->h->root.u.def.section->output_section != NULL))
1073 {
1074 dyn_h->plt_offset = x->ofs;
1075 x->ofs += PLT_ENTRY_SIZE;
1076 if (dyn_h->plt_offset < 0x2000)
1077 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1078 }
1079 else
1080 dyn_h->want_plt = 0;
1081
1082 return TRUE;
1083 }
1084
1085 /* Allocate space for a STUB entry. */
1086
1087 static bfd_boolean
1088 allocate_global_data_stub (dyn_h, data)
1089 struct elf64_hppa_dyn_hash_entry *dyn_h;
1090 PTR data;
1091 {
1092 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1093
1094 if (dyn_h->want_stub
1095 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1096 && !((dyn_h->h->root.type == bfd_link_hash_defined
1097 || dyn_h->h->root.type == bfd_link_hash_defweak)
1098 && dyn_h->h->root.u.def.section->output_section != NULL))
1099 {
1100 dyn_h->stub_offset = x->ofs;
1101 x->ofs += sizeof (plt_stub);
1102 }
1103 else
1104 dyn_h->want_stub = 0;
1105 return TRUE;
1106 }
1107
1108 /* Allocate space for a FPTR entry. */
1109
1110 static bfd_boolean
1111 allocate_global_data_opd (dyn_h, data)
1112 struct elf64_hppa_dyn_hash_entry *dyn_h;
1113 PTR data;
1114 {
1115 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1116
1117 if (dyn_h->want_opd)
1118 {
1119 struct elf_link_hash_entry *h = dyn_h->h;
1120
1121 if (h)
1122 while (h->root.type == bfd_link_hash_indirect
1123 || h->root.type == bfd_link_hash_warning)
1124 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1125
1126 /* We never need an opd entry for a symbol which is not
1127 defined by this output file. */
1128 if (h && (h->root.type == bfd_link_hash_undefined
1129 || h->root.type == bfd_link_hash_undefweak
1130 || h->root.u.def.section->output_section == NULL))
1131 dyn_h->want_opd = 0;
1132
1133 /* If we are creating a shared library, took the address of a local
1134 function or might export this function from this object file, then
1135 we have to create an opd descriptor. */
1136 else if (x->info->shared
1137 || h == NULL
1138 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1139 || (h->root.type == bfd_link_hash_defined
1140 || h->root.type == bfd_link_hash_defweak))
1141 {
1142 /* If we are creating a shared library, then we will have to
1143 create a runtime relocation for the symbol to properly
1144 initialize the .opd entry. Make sure the symbol gets
1145 added to the dynamic symbol table. */
1146 if (x->info->shared
1147 && (h == NULL || (h->dynindx == -1)))
1148 {
1149 bfd *owner;
1150 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1151
1152 if (!bfd_elf_link_record_local_dynamic_symbol
1153 (x->info, owner, dyn_h->sym_indx))
1154 return FALSE;
1155 }
1156
1157 /* This may not be necessary or desirable anymore now that
1158 we have some support for dealing with section symbols
1159 in dynamic relocs. But name munging does make the result
1160 much easier to debug. ie, the EPLT reloc will reference
1161 a symbol like .foobar, instead of .text + offset. */
1162 if (x->info->shared && h)
1163 {
1164 char *new_name;
1165 struct elf_link_hash_entry *nh;
1166
1167 new_name = alloca (strlen (h->root.root.string) + 2);
1168 new_name[0] = '.';
1169 strcpy (new_name + 1, h->root.root.string);
1170
1171 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1172 new_name, TRUE, TRUE, TRUE);
1173
1174 nh->root.type = h->root.type;
1175 nh->root.u.def.value = h->root.u.def.value;
1176 nh->root.u.def.section = h->root.u.def.section;
1177
1178 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1179 return FALSE;
1180
1181 }
1182 dyn_h->opd_offset = x->ofs;
1183 x->ofs += OPD_ENTRY_SIZE;
1184 }
1185
1186 /* Otherwise we do not need an opd entry. */
1187 else
1188 dyn_h->want_opd = 0;
1189 }
1190 return TRUE;
1191 }
1192
1193 /* HP requires the EI_OSABI field to be filled in. The assignment to
1194 EI_ABIVERSION may not be strictly necessary. */
1195
1196 static void
1197 elf64_hppa_post_process_headers (abfd, link_info)
1198 bfd * abfd;
1199 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1200 {
1201 Elf_Internal_Ehdr * i_ehdrp;
1202
1203 i_ehdrp = elf_elfheader (abfd);
1204
1205 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1206 {
1207 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1208 }
1209 else
1210 {
1211 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1212 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1213 }
1214 }
1215
1216 /* Create function descriptor section (.opd). This section is called .opd
1217 because it contains "official procedure descriptors". The "official"
1218 refers to the fact that these descriptors are used when taking the address
1219 of a procedure, thus ensuring a unique address for each procedure. */
1220
1221 static bfd_boolean
1222 get_opd (abfd, info, hppa_info)
1223 bfd *abfd;
1224 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1225 struct elf64_hppa_link_hash_table *hppa_info;
1226 {
1227 asection *opd;
1228 bfd *dynobj;
1229
1230 opd = hppa_info->opd_sec;
1231 if (!opd)
1232 {
1233 dynobj = hppa_info->root.dynobj;
1234 if (!dynobj)
1235 hppa_info->root.dynobj = dynobj = abfd;
1236
1237 opd = bfd_make_section_with_flags (dynobj, ".opd",
1238 (SEC_ALLOC
1239 | SEC_LOAD
1240 | SEC_HAS_CONTENTS
1241 | SEC_IN_MEMORY
1242 | SEC_LINKER_CREATED));
1243 if (!opd
1244 || !bfd_set_section_alignment (abfd, opd, 3))
1245 {
1246 BFD_ASSERT (0);
1247 return FALSE;
1248 }
1249
1250 hppa_info->opd_sec = opd;
1251 }
1252
1253 return TRUE;
1254 }
1255
1256 /* Create the PLT section. */
1257
1258 static bfd_boolean
1259 get_plt (abfd, info, hppa_info)
1260 bfd *abfd;
1261 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1262 struct elf64_hppa_link_hash_table *hppa_info;
1263 {
1264 asection *plt;
1265 bfd *dynobj;
1266
1267 plt = hppa_info->plt_sec;
1268 if (!plt)
1269 {
1270 dynobj = hppa_info->root.dynobj;
1271 if (!dynobj)
1272 hppa_info->root.dynobj = dynobj = abfd;
1273
1274 plt = bfd_make_section_with_flags (dynobj, ".plt",
1275 (SEC_ALLOC
1276 | SEC_LOAD
1277 | SEC_HAS_CONTENTS
1278 | SEC_IN_MEMORY
1279 | SEC_LINKER_CREATED));
1280 if (!plt
1281 || !bfd_set_section_alignment (abfd, plt, 3))
1282 {
1283 BFD_ASSERT (0);
1284 return FALSE;
1285 }
1286
1287 hppa_info->plt_sec = plt;
1288 }
1289
1290 return TRUE;
1291 }
1292
1293 /* Create the DLT section. */
1294
1295 static bfd_boolean
1296 get_dlt (abfd, info, hppa_info)
1297 bfd *abfd;
1298 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1299 struct elf64_hppa_link_hash_table *hppa_info;
1300 {
1301 asection *dlt;
1302 bfd *dynobj;
1303
1304 dlt = hppa_info->dlt_sec;
1305 if (!dlt)
1306 {
1307 dynobj = hppa_info->root.dynobj;
1308 if (!dynobj)
1309 hppa_info->root.dynobj = dynobj = abfd;
1310
1311 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1312 (SEC_ALLOC
1313 | SEC_LOAD
1314 | SEC_HAS_CONTENTS
1315 | SEC_IN_MEMORY
1316 | SEC_LINKER_CREATED));
1317 if (!dlt
1318 || !bfd_set_section_alignment (abfd, dlt, 3))
1319 {
1320 BFD_ASSERT (0);
1321 return FALSE;
1322 }
1323
1324 hppa_info->dlt_sec = dlt;
1325 }
1326
1327 return TRUE;
1328 }
1329
1330 /* Create the stubs section. */
1331
1332 static bfd_boolean
1333 get_stub (abfd, info, hppa_info)
1334 bfd *abfd;
1335 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1336 struct elf64_hppa_link_hash_table *hppa_info;
1337 {
1338 asection *stub;
1339 bfd *dynobj;
1340
1341 stub = hppa_info->stub_sec;
1342 if (!stub)
1343 {
1344 dynobj = hppa_info->root.dynobj;
1345 if (!dynobj)
1346 hppa_info->root.dynobj = dynobj = abfd;
1347
1348 stub = bfd_make_section_with_flags (dynobj, ".stub",
1349 (SEC_ALLOC | SEC_LOAD
1350 | SEC_HAS_CONTENTS
1351 | SEC_IN_MEMORY
1352 | SEC_READONLY
1353 | SEC_LINKER_CREATED));
1354 if (!stub
1355 || !bfd_set_section_alignment (abfd, stub, 3))
1356 {
1357 BFD_ASSERT (0);
1358 return FALSE;
1359 }
1360
1361 hppa_info->stub_sec = stub;
1362 }
1363
1364 return TRUE;
1365 }
1366
1367 /* Create sections necessary for dynamic linking. This is only a rough
1368 cut and will likely change as we learn more about the somewhat
1369 unusual dynamic linking scheme HP uses.
1370
1371 .stub:
1372 Contains code to implement cross-space calls. The first time one
1373 of the stubs is used it will call into the dynamic linker, later
1374 calls will go straight to the target.
1375
1376 The only stub we support right now looks like
1377
1378 ldd OFFSET(%dp),%r1
1379 bve %r0(%r1)
1380 ldd OFFSET+8(%dp),%dp
1381
1382 Other stubs may be needed in the future. We may want the remove
1383 the break/nop instruction. It is only used right now to keep the
1384 offset of a .plt entry and a .stub entry in sync.
1385
1386 .dlt:
1387 This is what most people call the .got. HP used a different name.
1388 Losers.
1389
1390 .rela.dlt:
1391 Relocations for the DLT.
1392
1393 .plt:
1394 Function pointers as address,gp pairs.
1395
1396 .rela.plt:
1397 Should contain dynamic IPLT (and EPLT?) relocations.
1398
1399 .opd:
1400 FPTRS
1401
1402 .rela.opd:
1403 EPLT relocations for symbols exported from shared libraries. */
1404
1405 static bfd_boolean
1406 elf64_hppa_create_dynamic_sections (abfd, info)
1407 bfd *abfd;
1408 struct bfd_link_info *info;
1409 {
1410 asection *s;
1411
1412 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1413 return FALSE;
1414
1415 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1416 return FALSE;
1417
1418 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1419 return FALSE;
1420
1421 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1422 return FALSE;
1423
1424 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1425 (SEC_ALLOC | SEC_LOAD
1426 | SEC_HAS_CONTENTS
1427 | SEC_IN_MEMORY
1428 | SEC_READONLY
1429 | SEC_LINKER_CREATED));
1430 if (s == NULL
1431 || !bfd_set_section_alignment (abfd, s, 3))
1432 return FALSE;
1433 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1434
1435 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1436 (SEC_ALLOC | SEC_LOAD
1437 | SEC_HAS_CONTENTS
1438 | SEC_IN_MEMORY
1439 | SEC_READONLY
1440 | SEC_LINKER_CREATED));
1441 if (s == NULL
1442 || !bfd_set_section_alignment (abfd, s, 3))
1443 return FALSE;
1444 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1445
1446 s = bfd_make_section_with_flags (abfd, ".rela.data",
1447 (SEC_ALLOC | SEC_LOAD
1448 | SEC_HAS_CONTENTS
1449 | SEC_IN_MEMORY
1450 | SEC_READONLY
1451 | SEC_LINKER_CREATED));
1452 if (s == NULL
1453 || !bfd_set_section_alignment (abfd, s, 3))
1454 return FALSE;
1455 elf64_hppa_hash_table (info)->other_rel_sec = s;
1456
1457 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1458 (SEC_ALLOC | SEC_LOAD
1459 | SEC_HAS_CONTENTS
1460 | SEC_IN_MEMORY
1461 | SEC_READONLY
1462 | SEC_LINKER_CREATED));
1463 if (s == NULL
1464 || !bfd_set_section_alignment (abfd, s, 3))
1465 return FALSE;
1466 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1467
1468 return TRUE;
1469 }
1470
1471 /* Allocate dynamic relocations for those symbols that turned out
1472 to be dynamic. */
1473
1474 static bfd_boolean
1475 allocate_dynrel_entries (dyn_h, data)
1476 struct elf64_hppa_dyn_hash_entry *dyn_h;
1477 PTR data;
1478 {
1479 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1480 struct elf64_hppa_link_hash_table *hppa_info;
1481 struct elf64_hppa_dyn_reloc_entry *rent;
1482 bfd_boolean dynamic_symbol, shared;
1483
1484 hppa_info = elf64_hppa_hash_table (x->info);
1485 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1486 shared = x->info->shared;
1487
1488 /* We may need to allocate relocations for a non-dynamic symbol
1489 when creating a shared library. */
1490 if (!dynamic_symbol && !shared)
1491 return TRUE;
1492
1493 /* Take care of the normal data relocations. */
1494
1495 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1496 {
1497 /* Allocate one iff we are building a shared library, the relocation
1498 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1499 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1500 continue;
1501
1502 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1503
1504 /* Make sure this symbol gets into the dynamic symbol table if it is
1505 not already recorded. ?!? This should not be in the loop since
1506 the symbol need only be added once. */
1507 if (dyn_h->h == 0
1508 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1509 if (!bfd_elf_link_record_local_dynamic_symbol
1510 (x->info, rent->sec->owner, dyn_h->sym_indx))
1511 return FALSE;
1512 }
1513
1514 /* Take care of the GOT and PLT relocations. */
1515
1516 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1517 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1518
1519 /* If we are building a shared library, then every symbol that has an
1520 opd entry will need an EPLT relocation to relocate the symbol's address
1521 and __gp value based on the runtime load address. */
1522 if (shared && dyn_h->want_opd)
1523 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1524
1525 if (dyn_h->want_plt && dynamic_symbol)
1526 {
1527 bfd_size_type t = 0;
1528
1529 /* Dynamic symbols get one IPLT relocation. Local symbols in
1530 shared libraries get two REL relocations. Local symbols in
1531 main applications get nothing. */
1532 if (dynamic_symbol)
1533 t = sizeof (Elf64_External_Rela);
1534 else if (shared)
1535 t = 2 * sizeof (Elf64_External_Rela);
1536
1537 hppa_info->plt_rel_sec->size += t;
1538 }
1539
1540 return TRUE;
1541 }
1542
1543 /* Adjust a symbol defined by a dynamic object and referenced by a
1544 regular object. */
1545
1546 static bfd_boolean
1547 elf64_hppa_adjust_dynamic_symbol (info, h)
1548 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1549 struct elf_link_hash_entry *h;
1550 {
1551 /* ??? Undefined symbols with PLT entries should be re-defined
1552 to be the PLT entry. */
1553
1554 /* If this is a weak symbol, and there is a real definition, the
1555 processor independent code will have arranged for us to see the
1556 real definition first, and we can just use the same value. */
1557 if (h->u.weakdef != NULL)
1558 {
1559 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1560 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1561 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1562 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1563 return TRUE;
1564 }
1565
1566 /* If this is a reference to a symbol defined by a dynamic object which
1567 is not a function, we might allocate the symbol in our .dynbss section
1568 and allocate a COPY dynamic relocation.
1569
1570 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1571 of hackery. */
1572
1573 return TRUE;
1574 }
1575
1576 /* This function is called via elf_link_hash_traverse to mark millicode
1577 symbols with a dynindx of -1 and to remove the string table reference
1578 from the dynamic symbol table. If the symbol is not a millicode symbol,
1579 elf64_hppa_mark_exported_functions is called. */
1580
1581 static bfd_boolean
1582 elf64_hppa_mark_milli_and_exported_functions (h, data)
1583 struct elf_link_hash_entry *h;
1584 PTR data;
1585 {
1586 struct bfd_link_info *info = (struct bfd_link_info *)data;
1587 struct elf_link_hash_entry *elf = h;
1588
1589 if (elf->root.type == bfd_link_hash_warning)
1590 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1591
1592 if (elf->type == STT_PARISC_MILLI)
1593 {
1594 if (elf->dynindx != -1)
1595 {
1596 elf->dynindx = -1;
1597 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1598 elf->dynstr_index);
1599 }
1600 return TRUE;
1601 }
1602
1603 return elf64_hppa_mark_exported_functions (h, data);
1604 }
1605
1606 /* Set the final sizes of the dynamic sections and allocate memory for
1607 the contents of our special sections. */
1608
1609 static bfd_boolean
1610 elf64_hppa_size_dynamic_sections (output_bfd, info)
1611 bfd *output_bfd;
1612 struct bfd_link_info *info;
1613 {
1614 bfd *dynobj;
1615 asection *s;
1616 bfd_boolean plt;
1617 bfd_boolean relocs;
1618 bfd_boolean reltext;
1619 struct elf64_hppa_allocate_data data;
1620 struct elf64_hppa_link_hash_table *hppa_info;
1621
1622 hppa_info = elf64_hppa_hash_table (info);
1623
1624 dynobj = elf_hash_table (info)->dynobj;
1625 BFD_ASSERT (dynobj != NULL);
1626
1627 /* Mark each function this program exports so that we will allocate
1628 space in the .opd section for each function's FPTR. If we are
1629 creating dynamic sections, change the dynamic index of millicode
1630 symbols to -1 and remove them from the string table for .dynstr.
1631
1632 We have to traverse the main linker hash table since we have to
1633 find functions which may not have been mentioned in any relocs. */
1634 elf_link_hash_traverse (elf_hash_table (info),
1635 (elf_hash_table (info)->dynamic_sections_created
1636 ? elf64_hppa_mark_milli_and_exported_functions
1637 : elf64_hppa_mark_exported_functions),
1638 info);
1639
1640 if (elf_hash_table (info)->dynamic_sections_created)
1641 {
1642 /* Set the contents of the .interp section to the interpreter. */
1643 if (info->executable)
1644 {
1645 s = bfd_get_section_by_name (dynobj, ".interp");
1646 BFD_ASSERT (s != NULL);
1647 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1648 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1649 }
1650 }
1651 else
1652 {
1653 /* We may have created entries in the .rela.got section.
1654 However, if we are not creating the dynamic sections, we will
1655 not actually use these entries. Reset the size of .rela.dlt,
1656 which will cause it to get stripped from the output file
1657 below. */
1658 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1659 if (s != NULL)
1660 s->size = 0;
1661 }
1662
1663 /* Allocate the GOT entries. */
1664
1665 data.info = info;
1666 if (elf64_hppa_hash_table (info)->dlt_sec)
1667 {
1668 data.ofs = 0x0;
1669 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1670 allocate_global_data_dlt, &data);
1671 hppa_info->dlt_sec->size = data.ofs;
1672
1673 data.ofs = 0x0;
1674 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1675 allocate_global_data_plt, &data);
1676 hppa_info->plt_sec->size = data.ofs;
1677
1678 data.ofs = 0x0;
1679 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1680 allocate_global_data_stub, &data);
1681 hppa_info->stub_sec->size = data.ofs;
1682 }
1683
1684 /* Allocate space for entries in the .opd section. */
1685 if (elf64_hppa_hash_table (info)->opd_sec)
1686 {
1687 data.ofs = 0;
1688 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1689 allocate_global_data_opd, &data);
1690 hppa_info->opd_sec->size = data.ofs;
1691 }
1692
1693 /* Now allocate space for dynamic relocations, if necessary. */
1694 if (hppa_info->root.dynamic_sections_created)
1695 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1696 allocate_dynrel_entries, &data);
1697
1698 /* The sizes of all the sections are set. Allocate memory for them. */
1699 plt = FALSE;
1700 relocs = FALSE;
1701 reltext = FALSE;
1702 for (s = dynobj->sections; s != NULL; s = s->next)
1703 {
1704 const char *name;
1705
1706 if ((s->flags & SEC_LINKER_CREATED) == 0)
1707 continue;
1708
1709 /* It's OK to base decisions on the section name, because none
1710 of the dynobj section names depend upon the input files. */
1711 name = bfd_get_section_name (dynobj, s);
1712
1713 if (strcmp (name, ".plt") == 0)
1714 {
1715 /* Remember whether there is a PLT. */
1716 plt = s->size != 0;
1717 }
1718 else if (strcmp (name, ".opd") == 0
1719 || strncmp (name, ".dlt", 4) == 0
1720 || strcmp (name, ".stub") == 0
1721 || strcmp (name, ".got") == 0)
1722 {
1723 /* Strip this section if we don't need it; see the comment below. */
1724 }
1725 else if (strncmp (name, ".rela", 5) == 0)
1726 {
1727 if (s->size != 0)
1728 {
1729 asection *target;
1730
1731 /* Remember whether there are any reloc sections other
1732 than .rela.plt. */
1733 if (strcmp (name, ".rela.plt") != 0)
1734 {
1735 const char *outname;
1736
1737 relocs = TRUE;
1738
1739 /* If this relocation section applies to a read only
1740 section, then we probably need a DT_TEXTREL
1741 entry. The entries in the .rela.plt section
1742 really apply to the .got section, which we
1743 created ourselves and so know is not readonly. */
1744 outname = bfd_get_section_name (output_bfd,
1745 s->output_section);
1746 target = bfd_get_section_by_name (output_bfd, outname + 4);
1747 if (target != NULL
1748 && (target->flags & SEC_READONLY) != 0
1749 && (target->flags & SEC_ALLOC) != 0)
1750 reltext = TRUE;
1751 }
1752
1753 /* We use the reloc_count field as a counter if we need
1754 to copy relocs into the output file. */
1755 s->reloc_count = 0;
1756 }
1757 }
1758 else
1759 {
1760 /* It's not one of our sections, so don't allocate space. */
1761 continue;
1762 }
1763
1764 if (s->size == 0)
1765 {
1766 /* If we don't need this section, strip it from the
1767 output file. This is mostly to handle .rela.bss and
1768 .rela.plt. We must create both sections in
1769 create_dynamic_sections, because they must be created
1770 before the linker maps input sections to output
1771 sections. The linker does that before
1772 adjust_dynamic_symbol is called, and it is that
1773 function which decides whether anything needs to go
1774 into these sections. */
1775 s->flags |= SEC_EXCLUDE;
1776 continue;
1777 }
1778
1779 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1780 continue;
1781
1782 /* Allocate memory for the section contents if it has not
1783 been allocated already. We use bfd_zalloc here in case
1784 unused entries are not reclaimed before the section's
1785 contents are written out. This should not happen, but this
1786 way if it does, we get a R_PARISC_NONE reloc instead of
1787 garbage. */
1788 if (s->contents == NULL)
1789 {
1790 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1791 if (s->contents == NULL)
1792 return FALSE;
1793 }
1794 }
1795
1796 if (elf_hash_table (info)->dynamic_sections_created)
1797 {
1798 /* Always create a DT_PLTGOT. It actually has nothing to do with
1799 the PLT, it is how we communicate the __gp value of a load
1800 module to the dynamic linker. */
1801 #define add_dynamic_entry(TAG, VAL) \
1802 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1803
1804 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1805 || !add_dynamic_entry (DT_PLTGOT, 0))
1806 return FALSE;
1807
1808 /* Add some entries to the .dynamic section. We fill in the
1809 values later, in elf64_hppa_finish_dynamic_sections, but we
1810 must add the entries now so that we get the correct size for
1811 the .dynamic section. The DT_DEBUG entry is filled in by the
1812 dynamic linker and used by the debugger. */
1813 if (! info->shared)
1814 {
1815 if (!add_dynamic_entry (DT_DEBUG, 0)
1816 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1817 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1818 return FALSE;
1819 }
1820
1821 /* Force DT_FLAGS to always be set.
1822 Required by HPUX 11.00 patch PHSS_26559. */
1823 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1824 return FALSE;
1825
1826 if (plt)
1827 {
1828 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1829 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1830 || !add_dynamic_entry (DT_JMPREL, 0))
1831 return FALSE;
1832 }
1833
1834 if (relocs)
1835 {
1836 if (!add_dynamic_entry (DT_RELA, 0)
1837 || !add_dynamic_entry (DT_RELASZ, 0)
1838 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1839 return FALSE;
1840 }
1841
1842 if (reltext)
1843 {
1844 if (!add_dynamic_entry (DT_TEXTREL, 0))
1845 return FALSE;
1846 info->flags |= DF_TEXTREL;
1847 }
1848 }
1849 #undef add_dynamic_entry
1850
1851 return TRUE;
1852 }
1853
1854 /* Called after we have output the symbol into the dynamic symbol
1855 table, but before we output the symbol into the normal symbol
1856 table.
1857
1858 For some symbols we had to change their address when outputting
1859 the dynamic symbol table. We undo that change here so that
1860 the symbols have their expected value in the normal symbol
1861 table. Ick. */
1862
1863 static bfd_boolean
1864 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1865 struct bfd_link_info *info;
1866 const char *name;
1867 Elf_Internal_Sym *sym;
1868 asection *input_sec ATTRIBUTE_UNUSED;
1869 struct elf_link_hash_entry *h;
1870 {
1871 struct elf64_hppa_link_hash_table *hppa_info;
1872 struct elf64_hppa_dyn_hash_entry *dyn_h;
1873
1874 /* We may be called with the file symbol or section symbols.
1875 They never need munging, so it is safe to ignore them. */
1876 if (!name)
1877 return TRUE;
1878
1879 /* Get the PA dyn_symbol (if any) associated with NAME. */
1880 hppa_info = elf64_hppa_hash_table (info);
1881 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1882 name, FALSE, FALSE);
1883 if (!dyn_h || dyn_h->h != h)
1884 return TRUE;
1885
1886 /* Function symbols for which we created .opd entries *may* have been
1887 munged by finish_dynamic_symbol and have to be un-munged here.
1888
1889 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1890 into non-dynamic ones, so we initialize st_shndx to -1 in
1891 mark_exported_functions and check to see if it was overwritten
1892 here instead of just checking dyn_h->h->dynindx. */
1893 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1894 {
1895 /* Restore the saved value and section index. */
1896 sym->st_value = dyn_h->st_value;
1897 sym->st_shndx = dyn_h->st_shndx;
1898 }
1899
1900 return TRUE;
1901 }
1902
1903 /* Finish up dynamic symbol handling. We set the contents of various
1904 dynamic sections here. */
1905
1906 static bfd_boolean
1907 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1908 bfd *output_bfd;
1909 struct bfd_link_info *info;
1910 struct elf_link_hash_entry *h;
1911 Elf_Internal_Sym *sym;
1912 {
1913 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1914 struct elf64_hppa_link_hash_table *hppa_info;
1915 struct elf64_hppa_dyn_hash_entry *dyn_h;
1916
1917 hppa_info = elf64_hppa_hash_table (info);
1918 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1919 h->root.root.string, FALSE, FALSE);
1920
1921 stub = hppa_info->stub_sec;
1922 splt = hppa_info->plt_sec;
1923 sdlt = hppa_info->dlt_sec;
1924 sopd = hppa_info->opd_sec;
1925 spltrel = hppa_info->plt_rel_sec;
1926 sdltrel = hppa_info->dlt_rel_sec;
1927
1928 /* Incredible. It is actually necessary to NOT use the symbol's real
1929 value when building the dynamic symbol table for a shared library.
1930 At least for symbols that refer to functions.
1931
1932 We will store a new value and section index into the symbol long
1933 enough to output it into the dynamic symbol table, then we restore
1934 the original values (in elf64_hppa_link_output_symbol_hook). */
1935 if (dyn_h && dyn_h->want_opd)
1936 {
1937 BFD_ASSERT (sopd != NULL);
1938
1939 /* Save away the original value and section index so that we
1940 can restore them later. */
1941 dyn_h->st_value = sym->st_value;
1942 dyn_h->st_shndx = sym->st_shndx;
1943
1944 /* For the dynamic symbol table entry, we want the value to be
1945 address of this symbol's entry within the .opd section. */
1946 sym->st_value = (dyn_h->opd_offset
1947 + sopd->output_offset
1948 + sopd->output_section->vma);
1949 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1950 sopd->output_section);
1951 }
1952
1953 /* Initialize a .plt entry if requested. */
1954 if (dyn_h && dyn_h->want_plt
1955 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1956 {
1957 bfd_vma value;
1958 Elf_Internal_Rela rel;
1959 bfd_byte *loc;
1960
1961 BFD_ASSERT (splt != NULL && spltrel != NULL);
1962
1963 /* We do not actually care about the value in the PLT entry
1964 if we are creating a shared library and the symbol is
1965 still undefined, we create a dynamic relocation to fill
1966 in the correct value. */
1967 if (info->shared && h->root.type == bfd_link_hash_undefined)
1968 value = 0;
1969 else
1970 value = (h->root.u.def.value + h->root.u.def.section->vma);
1971
1972 /* Fill in the entry in the procedure linkage table.
1973
1974 The format of a plt entry is
1975 <funcaddr> <__gp>.
1976
1977 plt_offset is the offset within the PLT section at which to
1978 install the PLT entry.
1979
1980 We are modifying the in-memory PLT contents here, so we do not add
1981 in the output_offset of the PLT section. */
1982
1983 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1984 value = _bfd_get_gp_value (splt->output_section->owner);
1985 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1986
1987 /* Create a dynamic IPLT relocation for this entry.
1988
1989 We are creating a relocation in the output file's PLT section,
1990 which is included within the DLT secton. So we do need to include
1991 the PLT's output_offset in the computation of the relocation's
1992 address. */
1993 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1994 + splt->output_section->vma);
1995 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1996 rel.r_addend = 0;
1997
1998 loc = spltrel->contents;
1999 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2000 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2001 }
2002
2003 /* Initialize an external call stub entry if requested. */
2004 if (dyn_h && dyn_h->want_stub
2005 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2006 {
2007 bfd_vma value;
2008 int insn;
2009 unsigned int max_offset;
2010
2011 BFD_ASSERT (stub != NULL);
2012
2013 /* Install the generic stub template.
2014
2015 We are modifying the contents of the stub section, so we do not
2016 need to include the stub section's output_offset here. */
2017 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2018
2019 /* Fix up the first ldd instruction.
2020
2021 We are modifying the contents of the STUB section in memory,
2022 so we do not need to include its output offset in this computation.
2023
2024 Note the plt_offset value is the value of the PLT entry relative to
2025 the start of the PLT section. These instructions will reference
2026 data relative to the value of __gp, which may not necessarily have
2027 the same address as the start of the PLT section.
2028
2029 gp_offset contains the offset of __gp within the PLT section. */
2030 value = dyn_h->plt_offset - hppa_info->gp_offset;
2031
2032 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2033 if (output_bfd->arch_info->mach >= 25)
2034 {
2035 /* Wide mode allows 16 bit offsets. */
2036 max_offset = 32768;
2037 insn &= ~ 0xfff1;
2038 insn |= re_assemble_16 ((int) value);
2039 }
2040 else
2041 {
2042 max_offset = 8192;
2043 insn &= ~ 0x3ff1;
2044 insn |= re_assemble_14 ((int) value);
2045 }
2046
2047 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2048 {
2049 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2050 dyn_h->root.string,
2051 (long) value);
2052 return FALSE;
2053 }
2054
2055 bfd_put_32 (stub->owner, (bfd_vma) insn,
2056 stub->contents + dyn_h->stub_offset);
2057
2058 /* Fix up the second ldd instruction. */
2059 value += 8;
2060 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2061 if (output_bfd->arch_info->mach >= 25)
2062 {
2063 insn &= ~ 0xfff1;
2064 insn |= re_assemble_16 ((int) value);
2065 }
2066 else
2067 {
2068 insn &= ~ 0x3ff1;
2069 insn |= re_assemble_14 ((int) value);
2070 }
2071 bfd_put_32 (stub->owner, (bfd_vma) insn,
2072 stub->contents + dyn_h->stub_offset + 8);
2073 }
2074
2075 return TRUE;
2076 }
2077
2078 /* The .opd section contains FPTRs for each function this file
2079 exports. Initialize the FPTR entries. */
2080
2081 static bfd_boolean
2082 elf64_hppa_finalize_opd (dyn_h, data)
2083 struct elf64_hppa_dyn_hash_entry *dyn_h;
2084 PTR data;
2085 {
2086 struct bfd_link_info *info = (struct bfd_link_info *)data;
2087 struct elf64_hppa_link_hash_table *hppa_info;
2088 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2089 asection *sopd;
2090 asection *sopdrel;
2091
2092 hppa_info = elf64_hppa_hash_table (info);
2093 sopd = hppa_info->opd_sec;
2094 sopdrel = hppa_info->opd_rel_sec;
2095
2096 if (h && dyn_h->want_opd)
2097 {
2098 bfd_vma value;
2099
2100 /* The first two words of an .opd entry are zero.
2101
2102 We are modifying the contents of the OPD section in memory, so we
2103 do not need to include its output offset in this computation. */
2104 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2105
2106 value = (h->root.u.def.value
2107 + h->root.u.def.section->output_section->vma
2108 + h->root.u.def.section->output_offset);
2109
2110 /* The next word is the address of the function. */
2111 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2112
2113 /* The last word is our local __gp value. */
2114 value = _bfd_get_gp_value (sopd->output_section->owner);
2115 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2116 }
2117
2118 /* If we are generating a shared library, we must generate EPLT relocations
2119 for each entry in the .opd, even for static functions (they may have
2120 had their address taken). */
2121 if (info->shared && dyn_h && dyn_h->want_opd)
2122 {
2123 Elf_Internal_Rela rel;
2124 bfd_byte *loc;
2125 int dynindx;
2126
2127 /* We may need to do a relocation against a local symbol, in
2128 which case we have to look up it's dynamic symbol index off
2129 the local symbol hash table. */
2130 if (h && h->dynindx != -1)
2131 dynindx = h->dynindx;
2132 else
2133 dynindx
2134 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2135 dyn_h->sym_indx);
2136
2137 /* The offset of this relocation is the absolute address of the
2138 .opd entry for this symbol. */
2139 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2140 + sopd->output_section->vma);
2141
2142 /* If H is non-null, then we have an external symbol.
2143
2144 It is imperative that we use a different dynamic symbol for the
2145 EPLT relocation if the symbol has global scope.
2146
2147 In the dynamic symbol table, the function symbol will have a value
2148 which is address of the function's .opd entry.
2149
2150 Thus, we can not use that dynamic symbol for the EPLT relocation
2151 (if we did, the data in the .opd would reference itself rather
2152 than the actual address of the function). Instead we have to use
2153 a new dynamic symbol which has the same value as the original global
2154 function symbol.
2155
2156 We prefix the original symbol with a "." and use the new symbol in
2157 the EPLT relocation. This new symbol has already been recorded in
2158 the symbol table, we just have to look it up and use it.
2159
2160 We do not have such problems with static functions because we do
2161 not make their addresses in the dynamic symbol table point to
2162 the .opd entry. Ultimately this should be safe since a static
2163 function can not be directly referenced outside of its shared
2164 library.
2165
2166 We do have to play similar games for FPTR relocations in shared
2167 libraries, including those for static symbols. See the FPTR
2168 handling in elf64_hppa_finalize_dynreloc. */
2169 if (h)
2170 {
2171 char *new_name;
2172 struct elf_link_hash_entry *nh;
2173
2174 new_name = alloca (strlen (h->root.root.string) + 2);
2175 new_name[0] = '.';
2176 strcpy (new_name + 1, h->root.root.string);
2177
2178 nh = elf_link_hash_lookup (elf_hash_table (info),
2179 new_name, FALSE, FALSE, FALSE);
2180
2181 /* All we really want from the new symbol is its dynamic
2182 symbol index. */
2183 dynindx = nh->dynindx;
2184 }
2185
2186 rel.r_addend = 0;
2187 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2188
2189 loc = sopdrel->contents;
2190 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2191 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2192 }
2193 return TRUE;
2194 }
2195
2196 /* The .dlt section contains addresses for items referenced through the
2197 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2198 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2199
2200 static bfd_boolean
2201 elf64_hppa_finalize_dlt (dyn_h, data)
2202 struct elf64_hppa_dyn_hash_entry *dyn_h;
2203 PTR data;
2204 {
2205 struct bfd_link_info *info = (struct bfd_link_info *)data;
2206 struct elf64_hppa_link_hash_table *hppa_info;
2207 asection *sdlt, *sdltrel;
2208 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2209
2210 hppa_info = elf64_hppa_hash_table (info);
2211
2212 sdlt = hppa_info->dlt_sec;
2213 sdltrel = hppa_info->dlt_rel_sec;
2214
2215 /* H/DYN_H may refer to a local variable and we know it's
2216 address, so there is no need to create a relocation. Just install
2217 the proper value into the DLT, note this shortcut can not be
2218 skipped when building a shared library. */
2219 if (! info->shared && h && dyn_h->want_dlt)
2220 {
2221 bfd_vma value;
2222
2223 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2224 to point to the FPTR entry in the .opd section.
2225
2226 We include the OPD's output offset in this computation as
2227 we are referring to an absolute address in the resulting
2228 object file. */
2229 if (dyn_h->want_opd)
2230 {
2231 value = (dyn_h->opd_offset
2232 + hppa_info->opd_sec->output_offset
2233 + hppa_info->opd_sec->output_section->vma);
2234 }
2235 else if ((h->root.type == bfd_link_hash_defined
2236 || h->root.type == bfd_link_hash_defweak)
2237 && h->root.u.def.section)
2238 {
2239 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2240 if (h->root.u.def.section->output_section)
2241 value += h->root.u.def.section->output_section->vma;
2242 else
2243 value += h->root.u.def.section->vma;
2244 }
2245 else
2246 /* We have an undefined function reference. */
2247 value = 0;
2248
2249 /* We do not need to include the output offset of the DLT section
2250 here because we are modifying the in-memory contents. */
2251 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2252 }
2253
2254 /* Create a relocation for the DLT entry associated with this symbol.
2255 When building a shared library the symbol does not have to be dynamic. */
2256 if (dyn_h->want_dlt
2257 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2258 {
2259 Elf_Internal_Rela rel;
2260 bfd_byte *loc;
2261 int dynindx;
2262
2263 /* We may need to do a relocation against a local symbol, in
2264 which case we have to look up it's dynamic symbol index off
2265 the local symbol hash table. */
2266 if (h && h->dynindx != -1)
2267 dynindx = h->dynindx;
2268 else
2269 dynindx
2270 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2271 dyn_h->sym_indx);
2272
2273 /* Create a dynamic relocation for this entry. Do include the output
2274 offset of the DLT entry since we need an absolute address in the
2275 resulting object file. */
2276 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2277 + sdlt->output_section->vma);
2278 if (h && h->type == STT_FUNC)
2279 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2280 else
2281 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2282 rel.r_addend = 0;
2283
2284 loc = sdltrel->contents;
2285 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2286 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2287 }
2288 return TRUE;
2289 }
2290
2291 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2292 for dynamic functions used to initialize static data. */
2293
2294 static bfd_boolean
2295 elf64_hppa_finalize_dynreloc (dyn_h, data)
2296 struct elf64_hppa_dyn_hash_entry *dyn_h;
2297 PTR data;
2298 {
2299 struct bfd_link_info *info = (struct bfd_link_info *)data;
2300 struct elf64_hppa_link_hash_table *hppa_info;
2301 struct elf_link_hash_entry *h;
2302 int dynamic_symbol;
2303
2304 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2305
2306 if (!dynamic_symbol && !info->shared)
2307 return TRUE;
2308
2309 if (dyn_h->reloc_entries)
2310 {
2311 struct elf64_hppa_dyn_reloc_entry *rent;
2312 int dynindx;
2313
2314 hppa_info = elf64_hppa_hash_table (info);
2315 h = dyn_h->h;
2316
2317 /* We may need to do a relocation against a local symbol, in
2318 which case we have to look up it's dynamic symbol index off
2319 the local symbol hash table. */
2320 if (h && h->dynindx != -1)
2321 dynindx = h->dynindx;
2322 else
2323 dynindx
2324 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2325 dyn_h->sym_indx);
2326
2327 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2328 {
2329 Elf_Internal_Rela rel;
2330 bfd_byte *loc;
2331
2332 /* Allocate one iff we are building a shared library, the relocation
2333 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2334 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2335 continue;
2336
2337 /* Create a dynamic relocation for this entry.
2338
2339 We need the output offset for the reloc's section because
2340 we are creating an absolute address in the resulting object
2341 file. */
2342 rel.r_offset = (rent->offset + rent->sec->output_offset
2343 + rent->sec->output_section->vma);
2344
2345 /* An FPTR64 relocation implies that we took the address of
2346 a function and that the function has an entry in the .opd
2347 section. We want the FPTR64 relocation to reference the
2348 entry in .opd.
2349
2350 We could munge the symbol value in the dynamic symbol table
2351 (in fact we already do for functions with global scope) to point
2352 to the .opd entry. Then we could use that dynamic symbol in
2353 this relocation.
2354
2355 Or we could do something sensible, not munge the symbol's
2356 address and instead just use a different symbol to reference
2357 the .opd entry. At least that seems sensible until you
2358 realize there's no local dynamic symbols we can use for that
2359 purpose. Thus the hair in the check_relocs routine.
2360
2361 We use a section symbol recorded by check_relocs as the
2362 base symbol for the relocation. The addend is the difference
2363 between the section symbol and the address of the .opd entry. */
2364 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2365 {
2366 bfd_vma value, value2;
2367
2368 /* First compute the address of the opd entry for this symbol. */
2369 value = (dyn_h->opd_offset
2370 + hppa_info->opd_sec->output_section->vma
2371 + hppa_info->opd_sec->output_offset);
2372
2373 /* Compute the value of the start of the section with
2374 the relocation. */
2375 value2 = (rent->sec->output_section->vma
2376 + rent->sec->output_offset);
2377
2378 /* Compute the difference between the start of the section
2379 with the relocation and the opd entry. */
2380 value -= value2;
2381
2382 /* The result becomes the addend of the relocation. */
2383 rel.r_addend = value;
2384
2385 /* The section symbol becomes the symbol for the dynamic
2386 relocation. */
2387 dynindx
2388 = _bfd_elf_link_lookup_local_dynindx (info,
2389 rent->sec->owner,
2390 rent->sec_symndx);
2391 }
2392 else
2393 rel.r_addend = rent->addend;
2394
2395 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2396
2397 loc = hppa_info->other_rel_sec->contents;
2398 loc += (hppa_info->other_rel_sec->reloc_count++
2399 * sizeof (Elf64_External_Rela));
2400 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2401 &rel, loc);
2402 }
2403 }
2404
2405 return TRUE;
2406 }
2407
2408 /* Used to decide how to sort relocs in an optimal manner for the
2409 dynamic linker, before writing them out. */
2410
2411 static enum elf_reloc_type_class
2412 elf64_hppa_reloc_type_class (rela)
2413 const Elf_Internal_Rela *rela;
2414 {
2415 if (ELF64_R_SYM (rela->r_info) == 0)
2416 return reloc_class_relative;
2417
2418 switch ((int) ELF64_R_TYPE (rela->r_info))
2419 {
2420 case R_PARISC_IPLT:
2421 return reloc_class_plt;
2422 case R_PARISC_COPY:
2423 return reloc_class_copy;
2424 default:
2425 return reloc_class_normal;
2426 }
2427 }
2428
2429 /* Finish up the dynamic sections. */
2430
2431 static bfd_boolean
2432 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2433 bfd *output_bfd;
2434 struct bfd_link_info *info;
2435 {
2436 bfd *dynobj;
2437 asection *sdyn;
2438 struct elf64_hppa_link_hash_table *hppa_info;
2439
2440 hppa_info = elf64_hppa_hash_table (info);
2441
2442 /* Finalize the contents of the .opd section. */
2443 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2444 elf64_hppa_finalize_opd,
2445 info);
2446
2447 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2448 elf64_hppa_finalize_dynreloc,
2449 info);
2450
2451 /* Finalize the contents of the .dlt section. */
2452 dynobj = elf_hash_table (info)->dynobj;
2453 /* Finalize the contents of the .dlt section. */
2454 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2455 elf64_hppa_finalize_dlt,
2456 info);
2457
2458 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2459
2460 if (elf_hash_table (info)->dynamic_sections_created)
2461 {
2462 Elf64_External_Dyn *dyncon, *dynconend;
2463
2464 BFD_ASSERT (sdyn != NULL);
2465
2466 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2467 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2468 for (; dyncon < dynconend; dyncon++)
2469 {
2470 Elf_Internal_Dyn dyn;
2471 asection *s;
2472
2473 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2474
2475 switch (dyn.d_tag)
2476 {
2477 default:
2478 break;
2479
2480 case DT_HP_LOAD_MAP:
2481 /* Compute the absolute address of 16byte scratchpad area
2482 for the dynamic linker.
2483
2484 By convention the linker script will allocate the scratchpad
2485 area at the start of the .data section. So all we have to
2486 to is find the start of the .data section. */
2487 s = bfd_get_section_by_name (output_bfd, ".data");
2488 dyn.d_un.d_ptr = s->vma;
2489 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2490 break;
2491
2492 case DT_PLTGOT:
2493 /* HP's use PLTGOT to set the GOT register. */
2494 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2495 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2496 break;
2497
2498 case DT_JMPREL:
2499 s = hppa_info->plt_rel_sec;
2500 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2501 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2502 break;
2503
2504 case DT_PLTRELSZ:
2505 s = hppa_info->plt_rel_sec;
2506 dyn.d_un.d_val = s->size;
2507 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2508 break;
2509
2510 case DT_RELA:
2511 s = hppa_info->other_rel_sec;
2512 if (! s || ! s->size)
2513 s = hppa_info->dlt_rel_sec;
2514 if (! s || ! s->size)
2515 s = hppa_info->opd_rel_sec;
2516 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2517 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2518 break;
2519
2520 case DT_RELASZ:
2521 s = hppa_info->other_rel_sec;
2522 dyn.d_un.d_val = s->size;
2523 s = hppa_info->dlt_rel_sec;
2524 dyn.d_un.d_val += s->size;
2525 s = hppa_info->opd_rel_sec;
2526 dyn.d_un.d_val += s->size;
2527 /* There is some question about whether or not the size of
2528 the PLT relocs should be included here. HP's tools do
2529 it, so we'll emulate them. */
2530 s = hppa_info->plt_rel_sec;
2531 dyn.d_un.d_val += s->size;
2532 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2533 break;
2534
2535 }
2536 }
2537 }
2538
2539 return TRUE;
2540 }
2541
2542 /* Support for core dump NOTE sections. */
2543
2544 static bfd_boolean
2545 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2546 {
2547 int offset;
2548 size_t size;
2549
2550 switch (note->descsz)
2551 {
2552 default:
2553 return FALSE;
2554
2555 case 760: /* Linux/hppa */
2556 /* pr_cursig */
2557 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2558
2559 /* pr_pid */
2560 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2561
2562 /* pr_reg */
2563 offset = 112;
2564 size = 640;
2565
2566 break;
2567 }
2568
2569 /* Make a ".reg/999" section. */
2570 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2571 size, note->descpos + offset);
2572 }
2573
2574 static bfd_boolean
2575 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2576 {
2577 char * command;
2578 int n;
2579
2580 switch (note->descsz)
2581 {
2582 default:
2583 return FALSE;
2584
2585 case 136: /* Linux/hppa elf_prpsinfo. */
2586 elf_tdata (abfd)->core_program
2587 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2588 elf_tdata (abfd)->core_command
2589 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2590 }
2591
2592 /* Note that for some reason, a spurious space is tacked
2593 onto the end of the args in some (at least one anyway)
2594 implementations, so strip it off if it exists. */
2595 command = elf_tdata (abfd)->core_command;
2596 n = strlen (command);
2597
2598 if (0 < n && command[n - 1] == ' ')
2599 command[n - 1] = '\0';
2600
2601 return TRUE;
2602 }
2603
2604 /* Return the number of additional phdrs we will need.
2605
2606 The generic ELF code only creates PT_PHDRs for executables. The HP
2607 dynamic linker requires PT_PHDRs for dynamic libraries too.
2608
2609 This routine indicates that the backend needs one additional program
2610 header for that case.
2611
2612 Note we do not have access to the link info structure here, so we have
2613 to guess whether or not we are building a shared library based on the
2614 existence of a .interp section. */
2615
2616 static int
2617 elf64_hppa_additional_program_headers (bfd *abfd,
2618 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2619 {
2620 asection *s;
2621
2622 /* If we are creating a shared library, then we have to create a
2623 PT_PHDR segment. HP's dynamic linker chokes without it. */
2624 s = bfd_get_section_by_name (abfd, ".interp");
2625 if (! s)
2626 return 1;
2627 return 0;
2628 }
2629
2630 /* Allocate and initialize any program headers required by this
2631 specific backend.
2632
2633 The generic ELF code only creates PT_PHDRs for executables. The HP
2634 dynamic linker requires PT_PHDRs for dynamic libraries too.
2635
2636 This allocates the PT_PHDR and initializes it in a manner suitable
2637 for the HP linker.
2638
2639 Note we do not have access to the link info structure here, so we have
2640 to guess whether or not we are building a shared library based on the
2641 existence of a .interp section. */
2642
2643 static bfd_boolean
2644 elf64_hppa_modify_segment_map (abfd, info)
2645 bfd *abfd;
2646 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2647 {
2648 struct elf_segment_map *m;
2649 asection *s;
2650
2651 s = bfd_get_section_by_name (abfd, ".interp");
2652 if (! s)
2653 {
2654 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2655 if (m->p_type == PT_PHDR)
2656 break;
2657 if (m == NULL)
2658 {
2659 m = ((struct elf_segment_map *)
2660 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2661 if (m == NULL)
2662 return FALSE;
2663
2664 m->p_type = PT_PHDR;
2665 m->p_flags = PF_R | PF_X;
2666 m->p_flags_valid = 1;
2667 m->p_paddr_valid = 1;
2668 m->includes_phdrs = 1;
2669
2670 m->next = elf_tdata (abfd)->segment_map;
2671 elf_tdata (abfd)->segment_map = m;
2672 }
2673 }
2674
2675 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2676 if (m->p_type == PT_LOAD)
2677 {
2678 unsigned int i;
2679
2680 for (i = 0; i < m->count; i++)
2681 {
2682 /* The code "hint" is not really a hint. It is a requirement
2683 for certain versions of the HP dynamic linker. Worse yet,
2684 it must be set even if the shared library does not have
2685 any code in its "text" segment (thus the check for .hash
2686 to catch this situation). */
2687 if (m->sections[i]->flags & SEC_CODE
2688 || (strcmp (m->sections[i]->name, ".hash") == 0))
2689 m->p_flags |= (PF_X | PF_HP_CODE);
2690 }
2691 }
2692
2693 return TRUE;
2694 }
2695
2696 /* Called when writing out an object file to decide the type of a
2697 symbol. */
2698 static int
2699 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2700 Elf_Internal_Sym *elf_sym;
2701 int type;
2702 {
2703 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2704 return STT_PARISC_MILLI;
2705 else
2706 return type;
2707 }
2708
2709 /* Support HP specific sections for core files. */
2710 static bfd_boolean
2711 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2712 const char *typename)
2713 {
2714 if (hdr->p_type == PT_HP_CORE_KERNEL)
2715 {
2716 asection *sect;
2717
2718 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2719 return FALSE;
2720
2721 sect = bfd_make_section_anyway (abfd, ".kernel");
2722 if (sect == NULL)
2723 return FALSE;
2724 sect->size = hdr->p_filesz;
2725 sect->filepos = hdr->p_offset;
2726 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2727 return TRUE;
2728 }
2729
2730 if (hdr->p_type == PT_HP_CORE_PROC)
2731 {
2732 int sig;
2733
2734 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2735 return FALSE;
2736 if (bfd_bread (&sig, 4, abfd) != 4)
2737 return FALSE;
2738
2739 elf_tdata (abfd)->core_signal = sig;
2740
2741 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2742 return FALSE;
2743
2744 /* GDB uses the ".reg" section to read register contents. */
2745 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2746 hdr->p_offset);
2747 }
2748
2749 if (hdr->p_type == PT_HP_CORE_LOADABLE
2750 || hdr->p_type == PT_HP_CORE_STACK
2751 || hdr->p_type == PT_HP_CORE_MMF)
2752 hdr->p_type = PT_LOAD;
2753
2754 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2755 }
2756
2757 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2758 {
2759 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2760 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2761 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2762 { ".dlt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2763 { ".sdata", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2764 { ".sbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2765 { ".tbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2766 { NULL, 0, 0, 0, 0 }
2767 };
2768
2769 /* The hash bucket size is the standard one, namely 4. */
2770
2771 const struct elf_size_info hppa64_elf_size_info =
2772 {
2773 sizeof (Elf64_External_Ehdr),
2774 sizeof (Elf64_External_Phdr),
2775 sizeof (Elf64_External_Shdr),
2776 sizeof (Elf64_External_Rel),
2777 sizeof (Elf64_External_Rela),
2778 sizeof (Elf64_External_Sym),
2779 sizeof (Elf64_External_Dyn),
2780 sizeof (Elf_External_Note),
2781 4,
2782 1,
2783 64, 3,
2784 ELFCLASS64, EV_CURRENT,
2785 bfd_elf64_write_out_phdrs,
2786 bfd_elf64_write_shdrs_and_ehdr,
2787 bfd_elf64_write_relocs,
2788 bfd_elf64_swap_symbol_in,
2789 bfd_elf64_swap_symbol_out,
2790 bfd_elf64_slurp_reloc_table,
2791 bfd_elf64_slurp_symbol_table,
2792 bfd_elf64_swap_dyn_in,
2793 bfd_elf64_swap_dyn_out,
2794 bfd_elf64_swap_reloc_in,
2795 bfd_elf64_swap_reloc_out,
2796 bfd_elf64_swap_reloca_in,
2797 bfd_elf64_swap_reloca_out
2798 };
2799
2800 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2801 #define TARGET_BIG_NAME "elf64-hppa"
2802 #define ELF_ARCH bfd_arch_hppa
2803 #define ELF_MACHINE_CODE EM_PARISC
2804 /* This is not strictly correct. The maximum page size for PA2.0 is
2805 64M. But everything still uses 4k. */
2806 #define ELF_MAXPAGESIZE 0x1000
2807 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2808 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2809 #define elf_info_to_howto elf_hppa_info_to_howto
2810 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2811
2812 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2813 #define elf_backend_object_p elf64_hppa_object_p
2814 #define elf_backend_final_write_processing \
2815 elf_hppa_final_write_processing
2816 #define elf_backend_fake_sections elf_hppa_fake_sections
2817 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2818
2819 #define elf_backend_relocate_section elf_hppa_relocate_section
2820
2821 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2822
2823 #define elf_backend_create_dynamic_sections \
2824 elf64_hppa_create_dynamic_sections
2825 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2826
2827 #define elf_backend_adjust_dynamic_symbol \
2828 elf64_hppa_adjust_dynamic_symbol
2829
2830 #define elf_backend_size_dynamic_sections \
2831 elf64_hppa_size_dynamic_sections
2832
2833 #define elf_backend_finish_dynamic_symbol \
2834 elf64_hppa_finish_dynamic_symbol
2835 #define elf_backend_finish_dynamic_sections \
2836 elf64_hppa_finish_dynamic_sections
2837 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2838 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2839
2840 /* Stuff for the BFD linker: */
2841 #define bfd_elf64_bfd_link_hash_table_create \
2842 elf64_hppa_hash_table_create
2843
2844 #define elf_backend_check_relocs \
2845 elf64_hppa_check_relocs
2846
2847 #define elf_backend_size_info \
2848 hppa64_elf_size_info
2849
2850 #define elf_backend_additional_program_headers \
2851 elf64_hppa_additional_program_headers
2852
2853 #define elf_backend_modify_segment_map \
2854 elf64_hppa_modify_segment_map
2855
2856 #define elf_backend_link_output_symbol_hook \
2857 elf64_hppa_link_output_symbol_hook
2858
2859 #define elf_backend_want_got_plt 0
2860 #define elf_backend_plt_readonly 0
2861 #define elf_backend_want_plt_sym 0
2862 #define elf_backend_got_header_size 0
2863 #define elf_backend_type_change_ok TRUE
2864 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2865 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2866 #define elf_backend_rela_normal 1
2867 #define elf_backend_special_sections elf64_hppa_special_sections
2868 #define elf_backend_action_discarded elf_hppa_action_discarded
2869 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2870
2871 #include "elf64-target.h"
2872
2873 #undef TARGET_BIG_SYM
2874 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2875 #undef TARGET_BIG_NAME
2876 #define TARGET_BIG_NAME "elf64-hppa-linux"
2877
2878 #define INCLUDED_TARGET_FILE 1
2879 #include "elf64-target.h"
This page took 0.090515 seconds and 4 git commands to generate.