637d232fe8c7aed27e02f2be4d344955f5c51ee0
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "alloca-conf.h"
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf/hppa.h"
28 #include "libhppa.h"
29 #include "elf64-hppa.h"
30
31
32 #define ARCH_SIZE 64
33
34 #define PLT_ENTRY_SIZE 0x10
35 #define DLT_ENTRY_SIZE 0x8
36 #define OPD_ENTRY_SIZE 0x20
37
38 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
39
40 /* The stub is supposed to load the target address and target's DP
41 value out of the PLT, then do an external branch to the target
42 address.
43
44 LDD PLTOFF(%r27),%r1
45 BVE (%r1)
46 LDD PLTOFF+8(%r27),%r27
47
48 Note that we must use the LDD with a 14 bit displacement, not the one
49 with a 5 bit displacement. */
50 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
51 0x53, 0x7b, 0x00, 0x00 };
52
53 struct elf64_hppa_link_hash_entry
54 {
55 struct elf_link_hash_entry eh;
56
57 /* Offsets for this symbol in various linker sections. */
58 bfd_vma dlt_offset;
59 bfd_vma plt_offset;
60 bfd_vma opd_offset;
61 bfd_vma stub_offset;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* Number of relocs copied in this section. */
92 bfd_size_type count;
93
94 /* The index of the section symbol for the input section of
95 the relocation. Only needed when building shared libraries. */
96 int sec_symndx;
97
98 /* The offset within the input section of the relocation. */
99 bfd_vma offset;
100
101 /* The addend for the relocation. */
102 bfd_vma addend;
103
104 } *reloc_entries;
105
106 /* Nonzero if this symbol needs an entry in one of the linker
107 sections. */
108 unsigned want_dlt;
109 unsigned want_plt;
110 unsigned want_opd;
111 unsigned want_stub;
112 };
113
114 struct elf64_hppa_link_hash_table
115 {
116 struct elf_link_hash_table root;
117
118 /* Shortcuts to get to the various linker defined sections. */
119 asection *dlt_sec;
120 asection *dlt_rel_sec;
121 asection *plt_sec;
122 asection *plt_rel_sec;
123 asection *opd_sec;
124 asection *opd_rel_sec;
125 asection *other_rel_sec;
126
127 /* Offset of __gp within .plt section. When the PLT gets large we want
128 to slide __gp into the PLT section so that we can continue to use
129 single DP relative instructions to load values out of the PLT. */
130 bfd_vma gp_offset;
131
132 /* Note this is not strictly correct. We should create a stub section for
133 each input section with calls. The stub section should be placed before
134 the section with the call. */
135 asection *stub_sec;
136
137 bfd_vma text_segment_base;
138 bfd_vma data_segment_base;
139
140 /* We build tables to map from an input section back to its
141 symbol index. This is the BFD for which we currently have
142 a map. */
143 bfd *section_syms_bfd;
144
145 /* Array of symbol numbers for each input section attached to the
146 current BFD. */
147 int *section_syms;
148 };
149
150 #define hppa_link_hash_table(p) \
151 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
152
153 #define hppa_elf_hash_entry(ent) \
154 ((struct elf64_hppa_link_hash_entry *)(ent))
155
156 #define eh_name(eh) \
157 (eh ? eh->root.root.string : "<undef>")
158
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163 (bfd *abfd);
164
165 /* This must follow the definitions of the various derived linker
166 hash tables and shared functions. */
167 #include "elf-hppa.h"
168
169 static bfd_boolean elf64_hppa_object_p
170 (bfd *);
171
172 static void elf64_hppa_post_process_headers
173 (bfd *, struct bfd_link_info *);
174
175 static bfd_boolean elf64_hppa_create_dynamic_sections
176 (bfd *, struct bfd_link_info *);
177
178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179 (struct bfd_link_info *, struct elf_link_hash_entry *);
180
181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182 (struct elf_link_hash_entry *, void *);
183
184 static bfd_boolean elf64_hppa_size_dynamic_sections
185 (bfd *, struct bfd_link_info *);
186
187 static int elf64_hppa_link_output_symbol_hook
188 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189 asection *, struct elf_link_hash_entry *);
190
191 static bfd_boolean elf64_hppa_finish_dynamic_symbol
192 (bfd *, struct bfd_link_info *,
193 struct elf_link_hash_entry *, Elf_Internal_Sym *);
194
195 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
196 (const Elf_Internal_Rela *);
197
198 static bfd_boolean elf64_hppa_finish_dynamic_sections
199 (bfd *, struct bfd_link_info *);
200
201 static bfd_boolean elf64_hppa_check_relocs
202 (bfd *, struct bfd_link_info *,
203 asection *, const Elf_Internal_Rela *);
204
205 static bfd_boolean elf64_hppa_dynamic_symbol_p
206 (struct elf_link_hash_entry *, struct bfd_link_info *);
207
208 static bfd_boolean elf64_hppa_mark_exported_functions
209 (struct elf_link_hash_entry *, void *);
210
211 static bfd_boolean elf64_hppa_finalize_opd
212 (struct elf_link_hash_entry *, void *);
213
214 static bfd_boolean elf64_hppa_finalize_dlt
215 (struct elf_link_hash_entry *, void *);
216
217 static bfd_boolean allocate_global_data_dlt
218 (struct elf_link_hash_entry *, void *);
219
220 static bfd_boolean allocate_global_data_plt
221 (struct elf_link_hash_entry *, void *);
222
223 static bfd_boolean allocate_global_data_stub
224 (struct elf_link_hash_entry *, void *);
225
226 static bfd_boolean allocate_global_data_opd
227 (struct elf_link_hash_entry *, void *);
228
229 static bfd_boolean get_reloc_section
230 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
231
232 static bfd_boolean count_dyn_reloc
233 (bfd *, struct elf64_hppa_link_hash_entry *,
234 int, asection *, int, bfd_vma, bfd_vma);
235
236 static bfd_boolean allocate_dynrel_entries
237 (struct elf_link_hash_entry *, void *);
238
239 static bfd_boolean elf64_hppa_finalize_dynreloc
240 (struct elf_link_hash_entry *, void *);
241
242 static bfd_boolean get_opd
243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244
245 static bfd_boolean get_plt
246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247
248 static bfd_boolean get_dlt
249 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250
251 static bfd_boolean get_stub
252 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
253
254 static int elf64_hppa_elf_get_symbol_type
255 (Elf_Internal_Sym *, int);
256
257 /* Initialize an entry in the link hash table. */
258
259 static struct bfd_hash_entry *
260 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
261 struct bfd_hash_table *table,
262 const char *string)
263 {
264 /* Allocate the structure if it has not already been allocated by a
265 subclass. */
266 if (entry == NULL)
267 {
268 entry = bfd_hash_allocate (table,
269 sizeof (struct elf64_hppa_link_hash_entry));
270 if (entry == NULL)
271 return entry;
272 }
273
274 /* Call the allocation method of the superclass. */
275 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
276 if (entry != NULL)
277 {
278 struct elf64_hppa_link_hash_entry *hh;
279
280 /* Initialize our local data. All zeros. */
281 hh = hppa_elf_hash_entry (entry);
282 memset (&hh->dlt_offset, 0,
283 (sizeof (struct elf64_hppa_link_hash_entry)
284 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
285 }
286
287 return entry;
288 }
289
290 /* Create the derived linker hash table. The PA64 ELF port uses this
291 derived hash table to keep information specific to the PA ElF
292 linker (without using static variables). */
293
294 static struct bfd_link_hash_table*
295 elf64_hppa_hash_table_create (bfd *abfd)
296 {
297 struct elf64_hppa_link_hash_table *htab;
298 bfd_size_type amt = sizeof (*htab);
299
300 htab = bfd_zalloc (abfd, amt);
301 if (htab == NULL)
302 return NULL;
303
304 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
305 hppa64_link_hash_newfunc,
306 sizeof (struct elf64_hppa_link_hash_entry)))
307 {
308 bfd_release (abfd, htab);
309 return NULL;
310 }
311
312 htab->text_segment_base = (bfd_vma) -1;
313 htab->data_segment_base = (bfd_vma) -1;
314
315 return &htab->root.root;
316 }
317 \f
318 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
319
320 Additionally we set the default architecture and machine. */
321 static bfd_boolean
322 elf64_hppa_object_p (bfd *abfd)
323 {
324 Elf_Internal_Ehdr * i_ehdrp;
325 unsigned int flags;
326
327 i_ehdrp = elf_elfheader (abfd);
328 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
329 {
330 /* GCC on hppa-linux produces binaries with OSABI=Linux,
331 but the kernel produces corefiles with OSABI=SysV. */
332 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
333 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
334 return FALSE;
335 }
336 else
337 {
338 /* HPUX produces binaries with OSABI=HPUX,
339 but the kernel produces corefiles with OSABI=SysV. */
340 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
341 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
342 return FALSE;
343 }
344
345 flags = i_ehdrp->e_flags;
346 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
347 {
348 case EFA_PARISC_1_0:
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
350 case EFA_PARISC_1_1:
351 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
352 case EFA_PARISC_2_0:
353 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
355 else
356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
357 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
358 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
359 }
360 /* Don't be fussy. */
361 return TRUE;
362 }
363
364 /* Given section type (hdr->sh_type), return a boolean indicating
365 whether or not the section is an elf64-hppa specific section. */
366 static bfd_boolean
367 elf64_hppa_section_from_shdr (bfd *abfd,
368 Elf_Internal_Shdr *hdr,
369 const char *name,
370 int shindex)
371 {
372 asection *newsect;
373
374 switch (hdr->sh_type)
375 {
376 case SHT_PARISC_EXT:
377 if (strcmp (name, ".PARISC.archext") != 0)
378 return FALSE;
379 break;
380 case SHT_PARISC_UNWIND:
381 if (strcmp (name, ".PARISC.unwind") != 0)
382 return FALSE;
383 break;
384 case SHT_PARISC_DOC:
385 case SHT_PARISC_ANNOT:
386 default:
387 return FALSE;
388 }
389
390 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
391 return FALSE;
392 newsect = hdr->bfd_section;
393
394 return TRUE;
395 }
396
397 /* SEC is a section containing relocs for an input BFD when linking; return
398 a suitable section for holding relocs in the output BFD for a link. */
399
400 static bfd_boolean
401 get_reloc_section (bfd *abfd,
402 struct elf64_hppa_link_hash_table *hppa_info,
403 asection *sec)
404 {
405 const char *srel_name;
406 asection *srel;
407 bfd *dynobj;
408
409 srel_name = (bfd_elf_string_from_elf_section
410 (abfd, elf_elfheader(abfd)->e_shstrndx,
411 elf_section_data(sec)->rel_hdr.sh_name));
412 if (srel_name == NULL)
413 return FALSE;
414
415 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
416 && strcmp (bfd_get_section_name (abfd, sec),
417 srel_name + 5) == 0)
418 || (CONST_STRNEQ (srel_name, ".rel")
419 && strcmp (bfd_get_section_name (abfd, sec),
420 srel_name + 4) == 0));
421
422 dynobj = hppa_info->root.dynobj;
423 if (!dynobj)
424 hppa_info->root.dynobj = dynobj = abfd;
425
426 srel = bfd_get_section_by_name (dynobj, srel_name);
427 if (srel == NULL)
428 {
429 srel = bfd_make_section_with_flags (dynobj, srel_name,
430 (SEC_ALLOC
431 | SEC_LOAD
432 | SEC_HAS_CONTENTS
433 | SEC_IN_MEMORY
434 | SEC_LINKER_CREATED
435 | SEC_READONLY));
436 if (srel == NULL
437 || !bfd_set_section_alignment (dynobj, srel, 3))
438 return FALSE;
439 }
440
441 hppa_info->other_rel_sec = srel;
442 return TRUE;
443 }
444
445 /* Add a new entry to the list of dynamic relocations against DYN_H.
446
447 We use this to keep a record of all the FPTR relocations against a
448 particular symbol so that we can create FPTR relocations in the
449 output file. */
450
451 static bfd_boolean
452 count_dyn_reloc (bfd *abfd,
453 struct elf64_hppa_link_hash_entry *hh,
454 int type,
455 asection *sec,
456 int sec_symndx,
457 bfd_vma offset,
458 bfd_vma addend)
459 {
460 struct elf64_hppa_dyn_reloc_entry *rent;
461
462 rent = (struct elf64_hppa_dyn_reloc_entry *)
463 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
464 if (!rent)
465 return FALSE;
466
467 rent->next = hh->reloc_entries;
468 rent->type = type;
469 rent->sec = sec;
470 rent->sec_symndx = sec_symndx;
471 rent->offset = offset;
472 rent->addend = addend;
473 hh->reloc_entries = rent;
474
475 return TRUE;
476 }
477
478 /* Return a pointer to the local DLT, PLT and OPD reference counts
479 for ABFD. Returns NULL if the storage allocation fails. */
480
481 static bfd_signed_vma *
482 hppa64_elf_local_refcounts (bfd *abfd)
483 {
484 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
485 bfd_signed_vma *local_refcounts;
486
487 local_refcounts = elf_local_got_refcounts (abfd);
488 if (local_refcounts == NULL)
489 {
490 bfd_size_type size;
491
492 /* Allocate space for local DLT, PLT and OPD reference
493 counts. Done this way to save polluting elf_obj_tdata
494 with another target specific pointer. */
495 size = symtab_hdr->sh_info;
496 size *= 3 * sizeof (bfd_signed_vma);
497 local_refcounts = bfd_zalloc (abfd, size);
498 elf_local_got_refcounts (abfd) = local_refcounts;
499 }
500 return local_refcounts;
501 }
502
503 /* Scan the RELOCS and record the type of dynamic entries that each
504 referenced symbol needs. */
505
506 static bfd_boolean
507 elf64_hppa_check_relocs (bfd *abfd,
508 struct bfd_link_info *info,
509 asection *sec,
510 const Elf_Internal_Rela *relocs)
511 {
512 struct elf64_hppa_link_hash_table *hppa_info;
513 const Elf_Internal_Rela *relend;
514 Elf_Internal_Shdr *symtab_hdr;
515 const Elf_Internal_Rela *rel;
516 asection *dlt, *plt, *stubs;
517 char *buf;
518 size_t buf_len;
519 unsigned int sec_symndx;
520
521 if (info->relocatable)
522 return TRUE;
523
524 /* If this is the first dynamic object found in the link, create
525 the special sections required for dynamic linking. */
526 if (! elf_hash_table (info)->dynamic_sections_created)
527 {
528 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
529 return FALSE;
530 }
531
532 hppa_info = hppa_link_hash_table (info);
533 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
534
535 /* If necessary, build a new table holding section symbols indices
536 for this BFD. */
537
538 if (info->shared && hppa_info->section_syms_bfd != abfd)
539 {
540 unsigned long i;
541 unsigned int highest_shndx;
542 Elf_Internal_Sym *local_syms = NULL;
543 Elf_Internal_Sym *isym, *isymend;
544 bfd_size_type amt;
545
546 /* We're done with the old cache of section index to section symbol
547 index information. Free it.
548
549 ?!? Note we leak the last section_syms array. Presumably we
550 could free it in one of the later routines in this file. */
551 if (hppa_info->section_syms)
552 free (hppa_info->section_syms);
553
554 /* Read this BFD's local symbols. */
555 if (symtab_hdr->sh_info != 0)
556 {
557 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
558 if (local_syms == NULL)
559 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
560 symtab_hdr->sh_info, 0,
561 NULL, NULL, NULL);
562 if (local_syms == NULL)
563 return FALSE;
564 }
565
566 /* Record the highest section index referenced by the local symbols. */
567 highest_shndx = 0;
568 isymend = local_syms + symtab_hdr->sh_info;
569 for (isym = local_syms; isym < isymend; isym++)
570 {
571 if (isym->st_shndx > highest_shndx
572 && isym->st_shndx < SHN_LORESERVE)
573 highest_shndx = isym->st_shndx;
574 }
575
576 /* Allocate an array to hold the section index to section symbol index
577 mapping. Bump by one since we start counting at zero. */
578 highest_shndx++;
579 amt = highest_shndx;
580 amt *= sizeof (int);
581 hppa_info->section_syms = (int *) bfd_malloc (amt);
582
583 /* Now walk the local symbols again. If we find a section symbol,
584 record the index of the symbol into the section_syms array. */
585 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
586 {
587 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
588 hppa_info->section_syms[isym->st_shndx] = i;
589 }
590
591 /* We are finished with the local symbols. */
592 if (local_syms != NULL
593 && symtab_hdr->contents != (unsigned char *) local_syms)
594 {
595 if (! info->keep_memory)
596 free (local_syms);
597 else
598 {
599 /* Cache the symbols for elf_link_input_bfd. */
600 symtab_hdr->contents = (unsigned char *) local_syms;
601 }
602 }
603
604 /* Record which BFD we built the section_syms mapping for. */
605 hppa_info->section_syms_bfd = abfd;
606 }
607
608 /* Record the symbol index for this input section. We may need it for
609 relocations when building shared libraries. When not building shared
610 libraries this value is never really used, but assign it to zero to
611 prevent out of bounds memory accesses in other routines. */
612 if (info->shared)
613 {
614 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
615
616 /* If we did not find a section symbol for this section, then
617 something went terribly wrong above. */
618 if (sec_symndx == SHN_BAD)
619 return FALSE;
620
621 if (sec_symndx < SHN_LORESERVE)
622 sec_symndx = hppa_info->section_syms[sec_symndx];
623 else
624 sec_symndx = 0;
625 }
626 else
627 sec_symndx = 0;
628
629 dlt = plt = stubs = NULL;
630 buf = NULL;
631 buf_len = 0;
632
633 relend = relocs + sec->reloc_count;
634 for (rel = relocs; rel < relend; ++rel)
635 {
636 enum
637 {
638 NEED_DLT = 1,
639 NEED_PLT = 2,
640 NEED_STUB = 4,
641 NEED_OPD = 8,
642 NEED_DYNREL = 16,
643 };
644
645 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
646 struct elf64_hppa_link_hash_entry *hh;
647 int need_entry;
648 bfd_boolean maybe_dynamic;
649 int dynrel_type = R_PARISC_NONE;
650 static reloc_howto_type *howto;
651
652 if (r_symndx >= symtab_hdr->sh_info)
653 {
654 /* We're dealing with a global symbol -- find its hash entry
655 and mark it as being referenced. */
656 long indx = r_symndx - symtab_hdr->sh_info;
657 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
658 while (hh->eh.root.type == bfd_link_hash_indirect
659 || hh->eh.root.type == bfd_link_hash_warning)
660 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
661
662 hh->eh.ref_regular = 1;
663 }
664 else
665 hh = NULL;
666
667 /* We can only get preliminary data on whether a symbol is
668 locally or externally defined, as not all of the input files
669 have yet been processed. Do something with what we know, as
670 this may help reduce memory usage and processing time later. */
671 maybe_dynamic = FALSE;
672 if (hh && ((info->shared
673 && (!info->symbolic
674 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
675 || !hh->eh.def_regular
676 || hh->eh.root.type == bfd_link_hash_defweak))
677 maybe_dynamic = TRUE;
678
679 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
680 need_entry = 0;
681 switch (howto->type)
682 {
683 /* These are simple indirect references to symbols through the
684 DLT. We need to create a DLT entry for any symbols which
685 appears in a DLTIND relocation. */
686 case R_PARISC_DLTIND21L:
687 case R_PARISC_DLTIND14R:
688 case R_PARISC_DLTIND14F:
689 case R_PARISC_DLTIND14WR:
690 case R_PARISC_DLTIND14DR:
691 need_entry = NEED_DLT;
692 break;
693
694 /* ?!? These need a DLT entry. But I have no idea what to do with
695 the "link time TP value. */
696 case R_PARISC_LTOFF_TP21L:
697 case R_PARISC_LTOFF_TP14R:
698 case R_PARISC_LTOFF_TP14F:
699 case R_PARISC_LTOFF_TP64:
700 case R_PARISC_LTOFF_TP14WR:
701 case R_PARISC_LTOFF_TP14DR:
702 case R_PARISC_LTOFF_TP16F:
703 case R_PARISC_LTOFF_TP16WF:
704 case R_PARISC_LTOFF_TP16DF:
705 need_entry = NEED_DLT;
706 break;
707
708 /* These are function calls. Depending on their precise target we
709 may need to make a stub for them. The stub uses the PLT, so we
710 need to create PLT entries for these symbols too. */
711 case R_PARISC_PCREL12F:
712 case R_PARISC_PCREL17F:
713 case R_PARISC_PCREL22F:
714 case R_PARISC_PCREL32:
715 case R_PARISC_PCREL64:
716 case R_PARISC_PCREL21L:
717 case R_PARISC_PCREL17R:
718 case R_PARISC_PCREL17C:
719 case R_PARISC_PCREL14R:
720 case R_PARISC_PCREL14F:
721 case R_PARISC_PCREL22C:
722 case R_PARISC_PCREL14WR:
723 case R_PARISC_PCREL14DR:
724 case R_PARISC_PCREL16F:
725 case R_PARISC_PCREL16WF:
726 case R_PARISC_PCREL16DF:
727 /* Function calls might need to go through the .plt, and
728 might need a long branch stub. */
729 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
730 need_entry = (NEED_PLT | NEED_STUB);
731 else
732 need_entry = 0;
733 break;
734
735 case R_PARISC_PLTOFF21L:
736 case R_PARISC_PLTOFF14R:
737 case R_PARISC_PLTOFF14F:
738 case R_PARISC_PLTOFF14WR:
739 case R_PARISC_PLTOFF14DR:
740 case R_PARISC_PLTOFF16F:
741 case R_PARISC_PLTOFF16WF:
742 case R_PARISC_PLTOFF16DF:
743 need_entry = (NEED_PLT);
744 break;
745
746 case R_PARISC_DIR64:
747 if (info->shared || maybe_dynamic)
748 need_entry = (NEED_DYNREL);
749 dynrel_type = R_PARISC_DIR64;
750 break;
751
752 /* This is an indirect reference through the DLT to get the address
753 of a OPD descriptor. Thus we need to make a DLT entry that points
754 to an OPD entry. */
755 case R_PARISC_LTOFF_FPTR21L:
756 case R_PARISC_LTOFF_FPTR14R:
757 case R_PARISC_LTOFF_FPTR14WR:
758 case R_PARISC_LTOFF_FPTR14DR:
759 case R_PARISC_LTOFF_FPTR32:
760 case R_PARISC_LTOFF_FPTR64:
761 case R_PARISC_LTOFF_FPTR16F:
762 case R_PARISC_LTOFF_FPTR16WF:
763 case R_PARISC_LTOFF_FPTR16DF:
764 if (info->shared || maybe_dynamic)
765 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
766 else
767 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
768 dynrel_type = R_PARISC_FPTR64;
769 break;
770
771 /* This is a simple OPD entry. */
772 case R_PARISC_FPTR64:
773 if (info->shared || maybe_dynamic)
774 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
775 else
776 need_entry = (NEED_OPD | NEED_PLT);
777 dynrel_type = R_PARISC_FPTR64;
778 break;
779
780 /* Add more cases as needed. */
781 }
782
783 if (!need_entry)
784 continue;
785
786 if (hh)
787 {
788 /* Stash away enough information to be able to find this symbol
789 regardless of whether or not it is local or global. */
790 hh->owner = abfd;
791 hh->sym_indx = r_symndx;
792 }
793
794 /* Create what's needed. */
795 if (need_entry & NEED_DLT)
796 {
797 /* Allocate space for a DLT entry, as well as a dynamic
798 relocation for this entry. */
799 if (! hppa_info->dlt_sec
800 && ! get_dlt (abfd, info, hppa_info))
801 goto err_out;
802
803 if (hh != NULL)
804 {
805 hh->want_dlt = 1;
806 hh->eh.got.refcount += 1;
807 }
808 else
809 {
810 bfd_signed_vma *local_dlt_refcounts;
811
812 /* This is a DLT entry for a local symbol. */
813 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
814 if (local_dlt_refcounts == NULL)
815 return FALSE;
816 local_dlt_refcounts[r_symndx] += 1;
817 }
818 }
819
820 if (need_entry & NEED_PLT)
821 {
822 if (! hppa_info->plt_sec
823 && ! get_plt (abfd, info, hppa_info))
824 goto err_out;
825
826 if (hh != NULL)
827 {
828 hh->want_plt = 1;
829 hh->eh.needs_plt = 1;
830 hh->eh.plt.refcount += 1;
831 }
832 else
833 {
834 bfd_signed_vma *local_dlt_refcounts;
835 bfd_signed_vma *local_plt_refcounts;
836
837 /* This is a PLT entry for a local symbol. */
838 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
839 if (local_dlt_refcounts == NULL)
840 return FALSE;
841 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
842 local_plt_refcounts[r_symndx] += 1;
843 }
844 }
845
846 if (need_entry & NEED_STUB)
847 {
848 if (! hppa_info->stub_sec
849 && ! get_stub (abfd, info, hppa_info))
850 goto err_out;
851 if (hh)
852 hh->want_stub = 1;
853 }
854
855 if (need_entry & NEED_OPD)
856 {
857 if (! hppa_info->opd_sec
858 && ! get_opd (abfd, info, hppa_info))
859 goto err_out;
860
861 /* FPTRs are not allocated by the dynamic linker for PA64,
862 though it is possible that will change in the future. */
863
864 if (hh != NULL)
865 hh->want_opd = 1;
866 else
867 {
868 bfd_signed_vma *local_dlt_refcounts;
869 bfd_signed_vma *local_opd_refcounts;
870
871 /* This is a OPD for a local symbol. */
872 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
873 if (local_dlt_refcounts == NULL)
874 return FALSE;
875 local_opd_refcounts = (local_dlt_refcounts
876 + 2 * symtab_hdr->sh_info);
877 local_opd_refcounts[r_symndx] += 1;
878 }
879 }
880
881 /* Add a new dynamic relocation to the chain of dynamic
882 relocations for this symbol. */
883 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
884 {
885 if (! hppa_info->other_rel_sec
886 && ! get_reloc_section (abfd, hppa_info, sec))
887 goto err_out;
888
889 /* Count dynamic relocations against global symbols. */
890 if (hh != NULL
891 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
892 sec_symndx, rel->r_offset, rel->r_addend))
893 goto err_out;
894
895 /* If we are building a shared library and we just recorded
896 a dynamic R_PARISC_FPTR64 relocation, then make sure the
897 section symbol for this section ends up in the dynamic
898 symbol table. */
899 if (info->shared && dynrel_type == R_PARISC_FPTR64
900 && ! (bfd_elf_link_record_local_dynamic_symbol
901 (info, abfd, sec_symndx)))
902 return FALSE;
903 }
904 }
905
906 if (buf)
907 free (buf);
908 return TRUE;
909
910 err_out:
911 if (buf)
912 free (buf);
913 return FALSE;
914 }
915
916 struct elf64_hppa_allocate_data
917 {
918 struct bfd_link_info *info;
919 bfd_size_type ofs;
920 };
921
922 /* Should we do dynamic things to this symbol? */
923
924 static bfd_boolean
925 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
926 struct bfd_link_info *info)
927 {
928 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
929 and relocations that retrieve a function descriptor? Assume the
930 worst for now. */
931 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
932 {
933 /* ??? Why is this here and not elsewhere is_local_label_name. */
934 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
935 return FALSE;
936
937 return TRUE;
938 }
939 else
940 return FALSE;
941 }
942
943 /* Mark all functions exported by this file so that we can later allocate
944 entries in .opd for them. */
945
946 static bfd_boolean
947 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
948 {
949 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
950 struct bfd_link_info *info = (struct bfd_link_info *)data;
951 struct elf64_hppa_link_hash_table *hppa_info;
952
953 hppa_info = hppa_link_hash_table (info);
954
955 if (eh->root.type == bfd_link_hash_warning)
956 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
957
958 if (eh
959 && (eh->root.type == bfd_link_hash_defined
960 || eh->root.type == bfd_link_hash_defweak)
961 && eh->root.u.def.section->output_section != NULL
962 && eh->type == STT_FUNC)
963 {
964 if (! hppa_info->opd_sec
965 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
966 return FALSE;
967
968 hh->want_opd = 1;
969
970 /* Put a flag here for output_symbol_hook. */
971 hh->st_shndx = -1;
972 eh->needs_plt = 1;
973 }
974
975 return TRUE;
976 }
977
978 /* Allocate space for a DLT entry. */
979
980 static bfd_boolean
981 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
982 {
983 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
984 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
985
986 if (hh->want_dlt)
987 {
988 if (x->info->shared)
989 {
990 /* Possibly add the symbol to the local dynamic symbol
991 table since we might need to create a dynamic relocation
992 against it. */
993 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
994 {
995 bfd *owner = eh->root.u.def.section->owner;
996
997 if (! (bfd_elf_link_record_local_dynamic_symbol
998 (x->info, owner, hh->sym_indx)))
999 return FALSE;
1000 }
1001 }
1002
1003 hh->dlt_offset = x->ofs;
1004 x->ofs += DLT_ENTRY_SIZE;
1005 }
1006 return TRUE;
1007 }
1008
1009 /* Allocate space for a DLT.PLT entry. */
1010
1011 static bfd_boolean
1012 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
1013 {
1014 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1015 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1016
1017 if (hh->want_plt
1018 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1019 && !((eh->root.type == bfd_link_hash_defined
1020 || eh->root.type == bfd_link_hash_defweak)
1021 && eh->root.u.def.section->output_section != NULL))
1022 {
1023 hh->plt_offset = x->ofs;
1024 x->ofs += PLT_ENTRY_SIZE;
1025 if (hh->plt_offset < 0x2000)
1026 hppa_link_hash_table (x->info)->gp_offset = hh->plt_offset;
1027 }
1028 else
1029 hh->want_plt = 0;
1030
1031 return TRUE;
1032 }
1033
1034 /* Allocate space for a STUB entry. */
1035
1036 static bfd_boolean
1037 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1038 {
1039 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1040 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1041
1042 if (hh->want_stub
1043 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1044 && !((eh->root.type == bfd_link_hash_defined
1045 || eh->root.type == bfd_link_hash_defweak)
1046 && eh->root.u.def.section->output_section != NULL))
1047 {
1048 hh->stub_offset = x->ofs;
1049 x->ofs += sizeof (plt_stub);
1050 }
1051 else
1052 hh->want_stub = 0;
1053 return TRUE;
1054 }
1055
1056 /* Allocate space for a FPTR entry. */
1057
1058 static bfd_boolean
1059 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1060 {
1061 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1062 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1063
1064 if (hh && hh->want_opd)
1065 {
1066 while (hh->eh.root.type == bfd_link_hash_indirect
1067 || hh->eh.root.type == bfd_link_hash_warning)
1068 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
1069
1070 /* We never need an opd entry for a symbol which is not
1071 defined by this output file. */
1072 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1073 || hh->eh.root.type == bfd_link_hash_undefweak
1074 || hh->eh.root.u.def.section->output_section == NULL))
1075 hh->want_opd = 0;
1076
1077 /* If we are creating a shared library, took the address of a local
1078 function or might export this function from this object file, then
1079 we have to create an opd descriptor. */
1080 else if (x->info->shared
1081 || hh == NULL
1082 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1083 || (hh->eh.root.type == bfd_link_hash_defined
1084 || hh->eh.root.type == bfd_link_hash_defweak))
1085 {
1086 /* If we are creating a shared library, then we will have to
1087 create a runtime relocation for the symbol to properly
1088 initialize the .opd entry. Make sure the symbol gets
1089 added to the dynamic symbol table. */
1090 if (x->info->shared
1091 && (hh == NULL || (hh->eh.dynindx == -1)))
1092 {
1093 bfd *owner;
1094 /* PR 6511: Default to using the dynamic symbol table. */
1095 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1096
1097 if (!bfd_elf_link_record_local_dynamic_symbol
1098 (x->info, owner, hh->sym_indx))
1099 return FALSE;
1100 }
1101
1102 /* This may not be necessary or desirable anymore now that
1103 we have some support for dealing with section symbols
1104 in dynamic relocs. But name munging does make the result
1105 much easier to debug. ie, the EPLT reloc will reference
1106 a symbol like .foobar, instead of .text + offset. */
1107 if (x->info->shared && eh)
1108 {
1109 char *new_name;
1110 struct elf_link_hash_entry *nh;
1111
1112 new_name = alloca (strlen (eh->root.root.string) + 2);
1113 new_name[0] = '.';
1114 strcpy (new_name + 1, eh->root.root.string);
1115
1116 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1117 new_name, TRUE, TRUE, TRUE);
1118
1119 nh->root.type = eh->root.type;
1120 nh->root.u.def.value = eh->root.u.def.value;
1121 nh->root.u.def.section = eh->root.u.def.section;
1122
1123 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1124 return FALSE;
1125
1126 }
1127 hh->opd_offset = x->ofs;
1128 x->ofs += OPD_ENTRY_SIZE;
1129 }
1130
1131 /* Otherwise we do not need an opd entry. */
1132 else
1133 hh->want_opd = 0;
1134 }
1135 return TRUE;
1136 }
1137
1138 /* HP requires the EI_OSABI field to be filled in. The assignment to
1139 EI_ABIVERSION may not be strictly necessary. */
1140
1141 static void
1142 elf64_hppa_post_process_headers (bfd *abfd,
1143 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1144 {
1145 Elf_Internal_Ehdr * i_ehdrp;
1146
1147 i_ehdrp = elf_elfheader (abfd);
1148
1149 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1150 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1151 }
1152
1153 /* Create function descriptor section (.opd). This section is called .opd
1154 because it contains "official procedure descriptors". The "official"
1155 refers to the fact that these descriptors are used when taking the address
1156 of a procedure, thus ensuring a unique address for each procedure. */
1157
1158 static bfd_boolean
1159 get_opd (bfd *abfd,
1160 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1161 struct elf64_hppa_link_hash_table *hppa_info)
1162 {
1163 asection *opd;
1164 bfd *dynobj;
1165
1166 opd = hppa_info->opd_sec;
1167 if (!opd)
1168 {
1169 dynobj = hppa_info->root.dynobj;
1170 if (!dynobj)
1171 hppa_info->root.dynobj = dynobj = abfd;
1172
1173 opd = bfd_make_section_with_flags (dynobj, ".opd",
1174 (SEC_ALLOC
1175 | SEC_LOAD
1176 | SEC_HAS_CONTENTS
1177 | SEC_IN_MEMORY
1178 | SEC_LINKER_CREATED));
1179 if (!opd
1180 || !bfd_set_section_alignment (abfd, opd, 3))
1181 {
1182 BFD_ASSERT (0);
1183 return FALSE;
1184 }
1185
1186 hppa_info->opd_sec = opd;
1187 }
1188
1189 return TRUE;
1190 }
1191
1192 /* Create the PLT section. */
1193
1194 static bfd_boolean
1195 get_plt (bfd *abfd,
1196 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1197 struct elf64_hppa_link_hash_table *hppa_info)
1198 {
1199 asection *plt;
1200 bfd *dynobj;
1201
1202 plt = hppa_info->plt_sec;
1203 if (!plt)
1204 {
1205 dynobj = hppa_info->root.dynobj;
1206 if (!dynobj)
1207 hppa_info->root.dynobj = dynobj = abfd;
1208
1209 plt = bfd_make_section_with_flags (dynobj, ".plt",
1210 (SEC_ALLOC
1211 | SEC_LOAD
1212 | SEC_HAS_CONTENTS
1213 | SEC_IN_MEMORY
1214 | SEC_LINKER_CREATED));
1215 if (!plt
1216 || !bfd_set_section_alignment (abfd, plt, 3))
1217 {
1218 BFD_ASSERT (0);
1219 return FALSE;
1220 }
1221
1222 hppa_info->plt_sec = plt;
1223 }
1224
1225 return TRUE;
1226 }
1227
1228 /* Create the DLT section. */
1229
1230 static bfd_boolean
1231 get_dlt (bfd *abfd,
1232 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1233 struct elf64_hppa_link_hash_table *hppa_info)
1234 {
1235 asection *dlt;
1236 bfd *dynobj;
1237
1238 dlt = hppa_info->dlt_sec;
1239 if (!dlt)
1240 {
1241 dynobj = hppa_info->root.dynobj;
1242 if (!dynobj)
1243 hppa_info->root.dynobj = dynobj = abfd;
1244
1245 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1246 (SEC_ALLOC
1247 | SEC_LOAD
1248 | SEC_HAS_CONTENTS
1249 | SEC_IN_MEMORY
1250 | SEC_LINKER_CREATED));
1251 if (!dlt
1252 || !bfd_set_section_alignment (abfd, dlt, 3))
1253 {
1254 BFD_ASSERT (0);
1255 return FALSE;
1256 }
1257
1258 hppa_info->dlt_sec = dlt;
1259 }
1260
1261 return TRUE;
1262 }
1263
1264 /* Create the stubs section. */
1265
1266 static bfd_boolean
1267 get_stub (bfd *abfd,
1268 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1269 struct elf64_hppa_link_hash_table *hppa_info)
1270 {
1271 asection *stub;
1272 bfd *dynobj;
1273
1274 stub = hppa_info->stub_sec;
1275 if (!stub)
1276 {
1277 dynobj = hppa_info->root.dynobj;
1278 if (!dynobj)
1279 hppa_info->root.dynobj = dynobj = abfd;
1280
1281 stub = bfd_make_section_with_flags (dynobj, ".stub",
1282 (SEC_ALLOC | SEC_LOAD
1283 | SEC_HAS_CONTENTS
1284 | SEC_IN_MEMORY
1285 | SEC_READONLY
1286 | SEC_LINKER_CREATED));
1287 if (!stub
1288 || !bfd_set_section_alignment (abfd, stub, 3))
1289 {
1290 BFD_ASSERT (0);
1291 return FALSE;
1292 }
1293
1294 hppa_info->stub_sec = stub;
1295 }
1296
1297 return TRUE;
1298 }
1299
1300 /* Create sections necessary for dynamic linking. This is only a rough
1301 cut and will likely change as we learn more about the somewhat
1302 unusual dynamic linking scheme HP uses.
1303
1304 .stub:
1305 Contains code to implement cross-space calls. The first time one
1306 of the stubs is used it will call into the dynamic linker, later
1307 calls will go straight to the target.
1308
1309 The only stub we support right now looks like
1310
1311 ldd OFFSET(%dp),%r1
1312 bve %r0(%r1)
1313 ldd OFFSET+8(%dp),%dp
1314
1315 Other stubs may be needed in the future. We may want the remove
1316 the break/nop instruction. It is only used right now to keep the
1317 offset of a .plt entry and a .stub entry in sync.
1318
1319 .dlt:
1320 This is what most people call the .got. HP used a different name.
1321 Losers.
1322
1323 .rela.dlt:
1324 Relocations for the DLT.
1325
1326 .plt:
1327 Function pointers as address,gp pairs.
1328
1329 .rela.plt:
1330 Should contain dynamic IPLT (and EPLT?) relocations.
1331
1332 .opd:
1333 FPTRS
1334
1335 .rela.opd:
1336 EPLT relocations for symbols exported from shared libraries. */
1337
1338 static bfd_boolean
1339 elf64_hppa_create_dynamic_sections (bfd *abfd,
1340 struct bfd_link_info *info)
1341 {
1342 asection *s;
1343
1344 if (! get_stub (abfd, info, hppa_link_hash_table (info)))
1345 return FALSE;
1346
1347 if (! get_dlt (abfd, info, hppa_link_hash_table (info)))
1348 return FALSE;
1349
1350 if (! get_plt (abfd, info, hppa_link_hash_table (info)))
1351 return FALSE;
1352
1353 if (! get_opd (abfd, info, hppa_link_hash_table (info)))
1354 return FALSE;
1355
1356 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1357 (SEC_ALLOC | SEC_LOAD
1358 | SEC_HAS_CONTENTS
1359 | SEC_IN_MEMORY
1360 | SEC_READONLY
1361 | SEC_LINKER_CREATED));
1362 if (s == NULL
1363 || !bfd_set_section_alignment (abfd, s, 3))
1364 return FALSE;
1365 hppa_link_hash_table (info)->dlt_rel_sec = s;
1366
1367 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1368 (SEC_ALLOC | SEC_LOAD
1369 | SEC_HAS_CONTENTS
1370 | SEC_IN_MEMORY
1371 | SEC_READONLY
1372 | SEC_LINKER_CREATED));
1373 if (s == NULL
1374 || !bfd_set_section_alignment (abfd, s, 3))
1375 return FALSE;
1376 hppa_link_hash_table (info)->plt_rel_sec = s;
1377
1378 s = bfd_make_section_with_flags (abfd, ".rela.data",
1379 (SEC_ALLOC | SEC_LOAD
1380 | SEC_HAS_CONTENTS
1381 | SEC_IN_MEMORY
1382 | SEC_READONLY
1383 | SEC_LINKER_CREATED));
1384 if (s == NULL
1385 || !bfd_set_section_alignment (abfd, s, 3))
1386 return FALSE;
1387 hppa_link_hash_table (info)->other_rel_sec = s;
1388
1389 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1390 (SEC_ALLOC | SEC_LOAD
1391 | SEC_HAS_CONTENTS
1392 | SEC_IN_MEMORY
1393 | SEC_READONLY
1394 | SEC_LINKER_CREATED));
1395 if (s == NULL
1396 || !bfd_set_section_alignment (abfd, s, 3))
1397 return FALSE;
1398 hppa_link_hash_table (info)->opd_rel_sec = s;
1399
1400 return TRUE;
1401 }
1402
1403 /* Allocate dynamic relocations for those symbols that turned out
1404 to be dynamic. */
1405
1406 static bfd_boolean
1407 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1408 {
1409 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1410 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1411 struct elf64_hppa_link_hash_table *hppa_info;
1412 struct elf64_hppa_dyn_reloc_entry *rent;
1413 bfd_boolean dynamic_symbol, shared;
1414
1415 hppa_info = hppa_link_hash_table (x->info);
1416 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1417 shared = x->info->shared;
1418
1419 /* We may need to allocate relocations for a non-dynamic symbol
1420 when creating a shared library. */
1421 if (!dynamic_symbol && !shared)
1422 return TRUE;
1423
1424 /* Take care of the normal data relocations. */
1425
1426 for (rent = hh->reloc_entries; rent; rent = rent->next)
1427 {
1428 /* Allocate one iff we are building a shared library, the relocation
1429 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1430 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1431 continue;
1432
1433 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1434
1435 /* Make sure this symbol gets into the dynamic symbol table if it is
1436 not already recorded. ?!? This should not be in the loop since
1437 the symbol need only be added once. */
1438 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1439 if (!bfd_elf_link_record_local_dynamic_symbol
1440 (x->info, rent->sec->owner, hh->sym_indx))
1441 return FALSE;
1442 }
1443
1444 /* Take care of the GOT and PLT relocations. */
1445
1446 if ((dynamic_symbol || shared) && hh->want_dlt)
1447 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1448
1449 /* If we are building a shared library, then every symbol that has an
1450 opd entry will need an EPLT relocation to relocate the symbol's address
1451 and __gp value based on the runtime load address. */
1452 if (shared && hh->want_opd)
1453 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1454
1455 if (hh->want_plt && dynamic_symbol)
1456 {
1457 bfd_size_type t = 0;
1458
1459 /* Dynamic symbols get one IPLT relocation. Local symbols in
1460 shared libraries get two REL relocations. Local symbols in
1461 main applications get nothing. */
1462 if (dynamic_symbol)
1463 t = sizeof (Elf64_External_Rela);
1464 else if (shared)
1465 t = 2 * sizeof (Elf64_External_Rela);
1466
1467 hppa_info->plt_rel_sec->size += t;
1468 }
1469
1470 return TRUE;
1471 }
1472
1473 /* Adjust a symbol defined by a dynamic object and referenced by a
1474 regular object. */
1475
1476 static bfd_boolean
1477 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1478 struct elf_link_hash_entry *eh)
1479 {
1480 /* ??? Undefined symbols with PLT entries should be re-defined
1481 to be the PLT entry. */
1482
1483 /* If this is a weak symbol, and there is a real definition, the
1484 processor independent code will have arranged for us to see the
1485 real definition first, and we can just use the same value. */
1486 if (eh->u.weakdef != NULL)
1487 {
1488 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1489 || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1490 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1491 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1492 return TRUE;
1493 }
1494
1495 /* If this is a reference to a symbol defined by a dynamic object which
1496 is not a function, we might allocate the symbol in our .dynbss section
1497 and allocate a COPY dynamic relocation.
1498
1499 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1500 of hackery. */
1501
1502 return TRUE;
1503 }
1504
1505 /* This function is called via elf_link_hash_traverse to mark millicode
1506 symbols with a dynindx of -1 and to remove the string table reference
1507 from the dynamic symbol table. If the symbol is not a millicode symbol,
1508 elf64_hppa_mark_exported_functions is called. */
1509
1510 static bfd_boolean
1511 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1512 void *data)
1513 {
1514 struct elf_link_hash_entry *elf = eh;
1515 struct bfd_link_info *info = (struct bfd_link_info *)data;
1516
1517 if (elf->root.type == bfd_link_hash_warning)
1518 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1519
1520 if (elf->type == STT_PARISC_MILLI)
1521 {
1522 if (elf->dynindx != -1)
1523 {
1524 elf->dynindx = -1;
1525 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1526 elf->dynstr_index);
1527 }
1528 return TRUE;
1529 }
1530
1531 return elf64_hppa_mark_exported_functions (eh, data);
1532 }
1533
1534 /* Set the final sizes of the dynamic sections and allocate memory for
1535 the contents of our special sections. */
1536
1537 static bfd_boolean
1538 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1539 {
1540 struct elf64_hppa_link_hash_table *hppa_info;
1541 struct elf64_hppa_allocate_data data;
1542 bfd *dynobj;
1543 bfd *ibfd;
1544 asection *sec;
1545 bfd_boolean plt;
1546 bfd_boolean relocs;
1547 bfd_boolean reltext;
1548
1549 hppa_info = hppa_link_hash_table (info);
1550
1551 dynobj = elf_hash_table (info)->dynobj;
1552 BFD_ASSERT (dynobj != NULL);
1553
1554 /* Mark each function this program exports so that we will allocate
1555 space in the .opd section for each function's FPTR. If we are
1556 creating dynamic sections, change the dynamic index of millicode
1557 symbols to -1 and remove them from the string table for .dynstr.
1558
1559 We have to traverse the main linker hash table since we have to
1560 find functions which may not have been mentioned in any relocs. */
1561 elf_link_hash_traverse (elf_hash_table (info),
1562 (elf_hash_table (info)->dynamic_sections_created
1563 ? elf64_hppa_mark_milli_and_exported_functions
1564 : elf64_hppa_mark_exported_functions),
1565 info);
1566
1567 if (elf_hash_table (info)->dynamic_sections_created)
1568 {
1569 /* Set the contents of the .interp section to the interpreter. */
1570 if (info->executable)
1571 {
1572 sec = bfd_get_section_by_name (dynobj, ".interp");
1573 BFD_ASSERT (sec != NULL);
1574 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1575 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1576 }
1577 }
1578 else
1579 {
1580 /* We may have created entries in the .rela.got section.
1581 However, if we are not creating the dynamic sections, we will
1582 not actually use these entries. Reset the size of .rela.dlt,
1583 which will cause it to get stripped from the output file
1584 below. */
1585 sec = bfd_get_section_by_name (dynobj, ".rela.dlt");
1586 if (sec != NULL)
1587 sec->size = 0;
1588 }
1589
1590 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1591 dynamic relocs. */
1592 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1593 {
1594 bfd_signed_vma *local_dlt;
1595 bfd_signed_vma *end_local_dlt;
1596 bfd_signed_vma *local_plt;
1597 bfd_signed_vma *end_local_plt;
1598 bfd_signed_vma *local_opd;
1599 bfd_signed_vma *end_local_opd;
1600 bfd_size_type locsymcount;
1601 Elf_Internal_Shdr *symtab_hdr;
1602 asection *srel;
1603
1604 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1605 continue;
1606
1607 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1608 {
1609 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1610
1611 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1612 elf_section_data (sec)->local_dynrel);
1613 hdh_p != NULL;
1614 hdh_p = hdh_p->next)
1615 {
1616 if (!bfd_is_abs_section (hdh_p->sec)
1617 && bfd_is_abs_section (hdh_p->sec->output_section))
1618 {
1619 /* Input section has been discarded, either because
1620 it is a copy of a linkonce section or due to
1621 linker script /DISCARD/, so we'll be discarding
1622 the relocs too. */
1623 }
1624 else if (hdh_p->count != 0)
1625 {
1626 srel = elf_section_data (hdh_p->sec)->sreloc;
1627 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1628 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1629 info->flags |= DF_TEXTREL;
1630 }
1631 }
1632 }
1633
1634 local_dlt = elf_local_got_refcounts (ibfd);
1635 if (!local_dlt)
1636 continue;
1637
1638 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1639 locsymcount = symtab_hdr->sh_info;
1640 end_local_dlt = local_dlt + locsymcount;
1641 sec = hppa_info->dlt_sec;
1642 srel = hppa_info->dlt_rel_sec;
1643 for (; local_dlt < end_local_dlt; ++local_dlt)
1644 {
1645 if (*local_dlt > 0)
1646 {
1647 *local_dlt = sec->size;
1648 sec->size += DLT_ENTRY_SIZE;
1649 if (info->shared)
1650 {
1651 srel->size += sizeof (Elf64_External_Rela);
1652 }
1653 }
1654 else
1655 *local_dlt = (bfd_vma) -1;
1656 }
1657
1658 local_plt = end_local_dlt;
1659 end_local_plt = local_plt + locsymcount;
1660 if (! hppa_info->root.dynamic_sections_created)
1661 {
1662 /* Won't be used, but be safe. */
1663 for (; local_plt < end_local_plt; ++local_plt)
1664 *local_plt = (bfd_vma) -1;
1665 }
1666 else
1667 {
1668 sec = hppa_info->plt_sec;
1669 srel = hppa_info->plt_rel_sec;
1670 for (; local_plt < end_local_plt; ++local_plt)
1671 {
1672 if (*local_plt > 0)
1673 {
1674 *local_plt = sec->size;
1675 sec->size += PLT_ENTRY_SIZE;
1676 if (info->shared)
1677 srel->size += sizeof (Elf64_External_Rela);
1678 }
1679 else
1680 *local_plt = (bfd_vma) -1;
1681 }
1682 }
1683
1684 local_opd = end_local_plt;
1685 end_local_opd = local_opd + locsymcount;
1686 if (! hppa_info->root.dynamic_sections_created)
1687 {
1688 /* Won't be used, but be safe. */
1689 for (; local_opd < end_local_opd; ++local_opd)
1690 *local_opd = (bfd_vma) -1;
1691 }
1692 else
1693 {
1694 sec = hppa_info->opd_sec;
1695 srel = hppa_info->opd_rel_sec;
1696 for (; local_opd < end_local_opd; ++local_opd)
1697 {
1698 if (*local_opd > 0)
1699 {
1700 *local_opd = sec->size;
1701 sec->size += OPD_ENTRY_SIZE;
1702 if (info->shared)
1703 srel->size += sizeof (Elf64_External_Rela);
1704 }
1705 else
1706 *local_opd = (bfd_vma) -1;
1707 }
1708 }
1709 }
1710
1711 /* Allocate the GOT entries. */
1712
1713 data.info = info;
1714 if (hppa_info->dlt_sec)
1715 {
1716 data.ofs = hppa_info->dlt_sec->size;
1717 elf_link_hash_traverse (elf_hash_table (info),
1718 allocate_global_data_dlt, &data);
1719 hppa_info->dlt_sec->size = data.ofs;
1720 }
1721
1722 if (hppa_info->plt_sec)
1723 {
1724 data.ofs = hppa_info->plt_sec->size;
1725 elf_link_hash_traverse (elf_hash_table (info),
1726 allocate_global_data_plt, &data);
1727 hppa_info->plt_sec->size = data.ofs;
1728 }
1729
1730 if (hppa_info->stub_sec)
1731 {
1732 data.ofs = 0x0;
1733 elf_link_hash_traverse (elf_hash_table (info),
1734 allocate_global_data_stub, &data);
1735 hppa_info->stub_sec->size = data.ofs;
1736 }
1737
1738 /* Allocate space for entries in the .opd section. */
1739 if (hppa_info->opd_sec)
1740 {
1741 data.ofs = hppa_info->opd_sec->size;
1742 elf_link_hash_traverse (elf_hash_table (info),
1743 allocate_global_data_opd, &data);
1744 hppa_info->opd_sec->size = data.ofs;
1745 }
1746
1747 /* Now allocate space for dynamic relocations, if necessary. */
1748 if (hppa_info->root.dynamic_sections_created)
1749 elf_link_hash_traverse (elf_hash_table (info),
1750 allocate_dynrel_entries, &data);
1751
1752 /* The sizes of all the sections are set. Allocate memory for them. */
1753 plt = FALSE;
1754 relocs = FALSE;
1755 reltext = FALSE;
1756 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1757 {
1758 const char *name;
1759
1760 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1761 continue;
1762
1763 /* It's OK to base decisions on the section name, because none
1764 of the dynobj section names depend upon the input files. */
1765 name = bfd_get_section_name (dynobj, sec);
1766
1767 if (strcmp (name, ".plt") == 0)
1768 {
1769 /* Remember whether there is a PLT. */
1770 plt = sec->size != 0;
1771 }
1772 else if (strcmp (name, ".opd") == 0
1773 || CONST_STRNEQ (name, ".dlt")
1774 || strcmp (name, ".stub") == 0
1775 || strcmp (name, ".got") == 0)
1776 {
1777 /* Strip this section if we don't need it; see the comment below. */
1778 }
1779 else if (CONST_STRNEQ (name, ".rela"))
1780 {
1781 if (sec->size != 0)
1782 {
1783 asection *target;
1784
1785 /* Remember whether there are any reloc sections other
1786 than .rela.plt. */
1787 if (strcmp (name, ".rela.plt") != 0)
1788 {
1789 const char *outname;
1790
1791 relocs = TRUE;
1792
1793 /* If this relocation section applies to a read only
1794 section, then we probably need a DT_TEXTREL
1795 entry. The entries in the .rela.plt section
1796 really apply to the .got section, which we
1797 created ourselves and so know is not readonly. */
1798 outname = bfd_get_section_name (output_bfd,
1799 sec->output_section);
1800 target = bfd_get_section_by_name (output_bfd, outname + 4);
1801 if (target != NULL
1802 && (target->flags & SEC_READONLY) != 0
1803 && (target->flags & SEC_ALLOC) != 0)
1804 reltext = TRUE;
1805 }
1806
1807 /* We use the reloc_count field as a counter if we need
1808 to copy relocs into the output file. */
1809 sec->reloc_count = 0;
1810 }
1811 }
1812 else
1813 {
1814 /* It's not one of our sections, so don't allocate space. */
1815 continue;
1816 }
1817
1818 if (sec->size == 0)
1819 {
1820 /* If we don't need this section, strip it from the
1821 output file. This is mostly to handle .rela.bss and
1822 .rela.plt. We must create both sections in
1823 create_dynamic_sections, because they must be created
1824 before the linker maps input sections to output
1825 sections. The linker does that before
1826 adjust_dynamic_symbol is called, and it is that
1827 function which decides whether anything needs to go
1828 into these sections. */
1829 sec->flags |= SEC_EXCLUDE;
1830 continue;
1831 }
1832
1833 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1834 continue;
1835
1836 /* Allocate memory for the section contents if it has not
1837 been allocated already. We use bfd_zalloc here in case
1838 unused entries are not reclaimed before the section's
1839 contents are written out. This should not happen, but this
1840 way if it does, we get a R_PARISC_NONE reloc instead of
1841 garbage. */
1842 if (sec->contents == NULL)
1843 {
1844 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1845 if (sec->contents == NULL)
1846 return FALSE;
1847 }
1848 }
1849
1850 if (elf_hash_table (info)->dynamic_sections_created)
1851 {
1852 /* Always create a DT_PLTGOT. It actually has nothing to do with
1853 the PLT, it is how we communicate the __gp value of a load
1854 module to the dynamic linker. */
1855 #define add_dynamic_entry(TAG, VAL) \
1856 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1857
1858 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1859 || !add_dynamic_entry (DT_PLTGOT, 0))
1860 return FALSE;
1861
1862 /* Add some entries to the .dynamic section. We fill in the
1863 values later, in elf64_hppa_finish_dynamic_sections, but we
1864 must add the entries now so that we get the correct size for
1865 the .dynamic section. The DT_DEBUG entry is filled in by the
1866 dynamic linker and used by the debugger. */
1867 if (! info->shared)
1868 {
1869 if (!add_dynamic_entry (DT_DEBUG, 0)
1870 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1871 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1872 return FALSE;
1873 }
1874
1875 /* Force DT_FLAGS to always be set.
1876 Required by HPUX 11.00 patch PHSS_26559. */
1877 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1878 return FALSE;
1879
1880 if (plt)
1881 {
1882 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1883 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1884 || !add_dynamic_entry (DT_JMPREL, 0))
1885 return FALSE;
1886 }
1887
1888 if (relocs)
1889 {
1890 if (!add_dynamic_entry (DT_RELA, 0)
1891 || !add_dynamic_entry (DT_RELASZ, 0)
1892 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1893 return FALSE;
1894 }
1895
1896 if (reltext)
1897 {
1898 if (!add_dynamic_entry (DT_TEXTREL, 0))
1899 return FALSE;
1900 info->flags |= DF_TEXTREL;
1901 }
1902 }
1903 #undef add_dynamic_entry
1904
1905 return TRUE;
1906 }
1907
1908 /* Called after we have output the symbol into the dynamic symbol
1909 table, but before we output the symbol into the normal symbol
1910 table.
1911
1912 For some symbols we had to change their address when outputting
1913 the dynamic symbol table. We undo that change here so that
1914 the symbols have their expected value in the normal symbol
1915 table. Ick. */
1916
1917 static int
1918 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1919 const char *name,
1920 Elf_Internal_Sym *sym,
1921 asection *input_sec ATTRIBUTE_UNUSED,
1922 struct elf_link_hash_entry *eh)
1923 {
1924 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1925
1926 /* We may be called with the file symbol or section symbols.
1927 They never need munging, so it is safe to ignore them. */
1928 if (!name || !eh)
1929 return 1;
1930
1931 /* Function symbols for which we created .opd entries *may* have been
1932 munged by finish_dynamic_symbol and have to be un-munged here.
1933
1934 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1935 into non-dynamic ones, so we initialize st_shndx to -1 in
1936 mark_exported_functions and check to see if it was overwritten
1937 here instead of just checking eh->dynindx. */
1938 if (hh->want_opd && hh->st_shndx != -1)
1939 {
1940 /* Restore the saved value and section index. */
1941 sym->st_value = hh->st_value;
1942 sym->st_shndx = hh->st_shndx;
1943 }
1944
1945 return 1;
1946 }
1947
1948 /* Finish up dynamic symbol handling. We set the contents of various
1949 dynamic sections here. */
1950
1951 static bfd_boolean
1952 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1953 struct bfd_link_info *info,
1954 struct elf_link_hash_entry *eh,
1955 Elf_Internal_Sym *sym)
1956 {
1957 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1958 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1959 struct elf64_hppa_link_hash_table *hppa_info;
1960
1961 hppa_info = hppa_link_hash_table (info);
1962
1963 stub = hppa_info->stub_sec;
1964 splt = hppa_info->plt_sec;
1965 sdlt = hppa_info->dlt_sec;
1966 sopd = hppa_info->opd_sec;
1967 spltrel = hppa_info->plt_rel_sec;
1968 sdltrel = hppa_info->dlt_rel_sec;
1969
1970 /* Incredible. It is actually necessary to NOT use the symbol's real
1971 value when building the dynamic symbol table for a shared library.
1972 At least for symbols that refer to functions.
1973
1974 We will store a new value and section index into the symbol long
1975 enough to output it into the dynamic symbol table, then we restore
1976 the original values (in elf64_hppa_link_output_symbol_hook). */
1977 if (hh->want_opd)
1978 {
1979 BFD_ASSERT (sopd != NULL);
1980
1981 /* Save away the original value and section index so that we
1982 can restore them later. */
1983 hh->st_value = sym->st_value;
1984 hh->st_shndx = sym->st_shndx;
1985
1986 /* For the dynamic symbol table entry, we want the value to be
1987 address of this symbol's entry within the .opd section. */
1988 sym->st_value = (hh->opd_offset
1989 + sopd->output_offset
1990 + sopd->output_section->vma);
1991 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1992 sopd->output_section);
1993 }
1994
1995 /* Initialize a .plt entry if requested. */
1996 if (hh->want_plt
1997 && elf64_hppa_dynamic_symbol_p (eh, info))
1998 {
1999 bfd_vma value;
2000 Elf_Internal_Rela rel;
2001 bfd_byte *loc;
2002
2003 BFD_ASSERT (splt != NULL && spltrel != NULL);
2004
2005 /* We do not actually care about the value in the PLT entry
2006 if we are creating a shared library and the symbol is
2007 still undefined, we create a dynamic relocation to fill
2008 in the correct value. */
2009 if (info->shared && eh->root.type == bfd_link_hash_undefined)
2010 value = 0;
2011 else
2012 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2013
2014 /* Fill in the entry in the procedure linkage table.
2015
2016 The format of a plt entry is
2017 <funcaddr> <__gp>.
2018
2019 plt_offset is the offset within the PLT section at which to
2020 install the PLT entry.
2021
2022 We are modifying the in-memory PLT contents here, so we do not add
2023 in the output_offset of the PLT section. */
2024
2025 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2026 value = _bfd_get_gp_value (splt->output_section->owner);
2027 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2028
2029 /* Create a dynamic IPLT relocation for this entry.
2030
2031 We are creating a relocation in the output file's PLT section,
2032 which is included within the DLT secton. So we do need to include
2033 the PLT's output_offset in the computation of the relocation's
2034 address. */
2035 rel.r_offset = (hh->plt_offset + splt->output_offset
2036 + splt->output_section->vma);
2037 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2038 rel.r_addend = 0;
2039
2040 loc = spltrel->contents;
2041 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2042 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2043 }
2044
2045 /* Initialize an external call stub entry if requested. */
2046 if (hh->want_stub
2047 && elf64_hppa_dynamic_symbol_p (eh, info))
2048 {
2049 bfd_vma value;
2050 int insn;
2051 unsigned int max_offset;
2052
2053 BFD_ASSERT (stub != NULL);
2054
2055 /* Install the generic stub template.
2056
2057 We are modifying the contents of the stub section, so we do not
2058 need to include the stub section's output_offset here. */
2059 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2060
2061 /* Fix up the first ldd instruction.
2062
2063 We are modifying the contents of the STUB section in memory,
2064 so we do not need to include its output offset in this computation.
2065
2066 Note the plt_offset value is the value of the PLT entry relative to
2067 the start of the PLT section. These instructions will reference
2068 data relative to the value of __gp, which may not necessarily have
2069 the same address as the start of the PLT section.
2070
2071 gp_offset contains the offset of __gp within the PLT section. */
2072 value = hh->plt_offset - hppa_info->gp_offset;
2073
2074 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2075 if (output_bfd->arch_info->mach >= 25)
2076 {
2077 /* Wide mode allows 16 bit offsets. */
2078 max_offset = 32768;
2079 insn &= ~ 0xfff1;
2080 insn |= re_assemble_16 ((int) value);
2081 }
2082 else
2083 {
2084 max_offset = 8192;
2085 insn &= ~ 0x3ff1;
2086 insn |= re_assemble_14 ((int) value);
2087 }
2088
2089 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2090 {
2091 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2092 hh->eh.root.root.string,
2093 (long) value);
2094 return FALSE;
2095 }
2096
2097 bfd_put_32 (stub->owner, (bfd_vma) insn,
2098 stub->contents + hh->stub_offset);
2099
2100 /* Fix up the second ldd instruction. */
2101 value += 8;
2102 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2103 if (output_bfd->arch_info->mach >= 25)
2104 {
2105 insn &= ~ 0xfff1;
2106 insn |= re_assemble_16 ((int) value);
2107 }
2108 else
2109 {
2110 insn &= ~ 0x3ff1;
2111 insn |= re_assemble_14 ((int) value);
2112 }
2113 bfd_put_32 (stub->owner, (bfd_vma) insn,
2114 stub->contents + hh->stub_offset + 8);
2115 }
2116
2117 return TRUE;
2118 }
2119
2120 /* The .opd section contains FPTRs for each function this file
2121 exports. Initialize the FPTR entries. */
2122
2123 static bfd_boolean
2124 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2125 {
2126 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2127 struct bfd_link_info *info = (struct bfd_link_info *)data;
2128 struct elf64_hppa_link_hash_table *hppa_info;
2129 asection *sopd;
2130 asection *sopdrel;
2131
2132 hppa_info = hppa_link_hash_table (info);
2133 sopd = hppa_info->opd_sec;
2134 sopdrel = hppa_info->opd_rel_sec;
2135
2136 if (hh->want_opd)
2137 {
2138 bfd_vma value;
2139
2140 /* The first two words of an .opd entry are zero.
2141
2142 We are modifying the contents of the OPD section in memory, so we
2143 do not need to include its output offset in this computation. */
2144 memset (sopd->contents + hh->opd_offset, 0, 16);
2145
2146 value = (eh->root.u.def.value
2147 + eh->root.u.def.section->output_section->vma
2148 + eh->root.u.def.section->output_offset);
2149
2150 /* The next word is the address of the function. */
2151 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2152
2153 /* The last word is our local __gp value. */
2154 value = _bfd_get_gp_value (sopd->output_section->owner);
2155 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2156 }
2157
2158 /* If we are generating a shared library, we must generate EPLT relocations
2159 for each entry in the .opd, even for static functions (they may have
2160 had their address taken). */
2161 if (info->shared && hh->want_opd)
2162 {
2163 Elf_Internal_Rela rel;
2164 bfd_byte *loc;
2165 int dynindx;
2166
2167 /* We may need to do a relocation against a local symbol, in
2168 which case we have to look up it's dynamic symbol index off
2169 the local symbol hash table. */
2170 if (eh->dynindx != -1)
2171 dynindx = eh->dynindx;
2172 else
2173 dynindx
2174 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2175 hh->sym_indx);
2176
2177 /* The offset of this relocation is the absolute address of the
2178 .opd entry for this symbol. */
2179 rel.r_offset = (hh->opd_offset + sopd->output_offset
2180 + sopd->output_section->vma);
2181
2182 /* If H is non-null, then we have an external symbol.
2183
2184 It is imperative that we use a different dynamic symbol for the
2185 EPLT relocation if the symbol has global scope.
2186
2187 In the dynamic symbol table, the function symbol will have a value
2188 which is address of the function's .opd entry.
2189
2190 Thus, we can not use that dynamic symbol for the EPLT relocation
2191 (if we did, the data in the .opd would reference itself rather
2192 than the actual address of the function). Instead we have to use
2193 a new dynamic symbol which has the same value as the original global
2194 function symbol.
2195
2196 We prefix the original symbol with a "." and use the new symbol in
2197 the EPLT relocation. This new symbol has already been recorded in
2198 the symbol table, we just have to look it up and use it.
2199
2200 We do not have such problems with static functions because we do
2201 not make their addresses in the dynamic symbol table point to
2202 the .opd entry. Ultimately this should be safe since a static
2203 function can not be directly referenced outside of its shared
2204 library.
2205
2206 We do have to play similar games for FPTR relocations in shared
2207 libraries, including those for static symbols. See the FPTR
2208 handling in elf64_hppa_finalize_dynreloc. */
2209 if (eh)
2210 {
2211 char *new_name;
2212 struct elf_link_hash_entry *nh;
2213
2214 new_name = alloca (strlen (eh->root.root.string) + 2);
2215 new_name[0] = '.';
2216 strcpy (new_name + 1, eh->root.root.string);
2217
2218 nh = elf_link_hash_lookup (elf_hash_table (info),
2219 new_name, TRUE, TRUE, FALSE);
2220
2221 /* All we really want from the new symbol is its dynamic
2222 symbol index. */
2223 if (nh)
2224 dynindx = nh->dynindx;
2225 }
2226
2227 rel.r_addend = 0;
2228 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2229
2230 loc = sopdrel->contents;
2231 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2232 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2233 }
2234 return TRUE;
2235 }
2236
2237 /* The .dlt section contains addresses for items referenced through the
2238 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2239 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2240
2241 static bfd_boolean
2242 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2243 {
2244 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2245 struct bfd_link_info *info = (struct bfd_link_info *)data;
2246 struct elf64_hppa_link_hash_table *hppa_info;
2247 asection *sdlt, *sdltrel;
2248
2249 hppa_info = hppa_link_hash_table (info);
2250
2251 sdlt = hppa_info->dlt_sec;
2252 sdltrel = hppa_info->dlt_rel_sec;
2253
2254 /* H/DYN_H may refer to a local variable and we know it's
2255 address, so there is no need to create a relocation. Just install
2256 the proper value into the DLT, note this shortcut can not be
2257 skipped when building a shared library. */
2258 if (! info->shared && hh && hh->want_dlt)
2259 {
2260 bfd_vma value;
2261
2262 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2263 to point to the FPTR entry in the .opd section.
2264
2265 We include the OPD's output offset in this computation as
2266 we are referring to an absolute address in the resulting
2267 object file. */
2268 if (hh->want_opd)
2269 {
2270 value = (hh->opd_offset
2271 + hppa_info->opd_sec->output_offset
2272 + hppa_info->opd_sec->output_section->vma);
2273 }
2274 else if ((eh->root.type == bfd_link_hash_defined
2275 || eh->root.type == bfd_link_hash_defweak)
2276 && eh->root.u.def.section)
2277 {
2278 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2279 if (eh->root.u.def.section->output_section)
2280 value += eh->root.u.def.section->output_section->vma;
2281 else
2282 value += eh->root.u.def.section->vma;
2283 }
2284 else
2285 /* We have an undefined function reference. */
2286 value = 0;
2287
2288 /* We do not need to include the output offset of the DLT section
2289 here because we are modifying the in-memory contents. */
2290 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2291 }
2292
2293 /* Create a relocation for the DLT entry associated with this symbol.
2294 When building a shared library the symbol does not have to be dynamic. */
2295 if (hh->want_dlt
2296 && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
2297 {
2298 Elf_Internal_Rela rel;
2299 bfd_byte *loc;
2300 int dynindx;
2301
2302 /* We may need to do a relocation against a local symbol, in
2303 which case we have to look up it's dynamic symbol index off
2304 the local symbol hash table. */
2305 if (eh && eh->dynindx != -1)
2306 dynindx = eh->dynindx;
2307 else
2308 dynindx
2309 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2310 hh->sym_indx);
2311
2312 /* Create a dynamic relocation for this entry. Do include the output
2313 offset of the DLT entry since we need an absolute address in the
2314 resulting object file. */
2315 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2316 + sdlt->output_section->vma);
2317 if (eh && eh->type == STT_FUNC)
2318 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2319 else
2320 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2321 rel.r_addend = 0;
2322
2323 loc = sdltrel->contents;
2324 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2325 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2326 }
2327 return TRUE;
2328 }
2329
2330 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2331 for dynamic functions used to initialize static data. */
2332
2333 static bfd_boolean
2334 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2335 void *data)
2336 {
2337 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2338 struct bfd_link_info *info = (struct bfd_link_info *)data;
2339 struct elf64_hppa_link_hash_table *hppa_info;
2340 int dynamic_symbol;
2341
2342 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2343
2344 if (!dynamic_symbol && !info->shared)
2345 return TRUE;
2346
2347 if (hh->reloc_entries)
2348 {
2349 struct elf64_hppa_dyn_reloc_entry *rent;
2350 int dynindx;
2351
2352 hppa_info = hppa_link_hash_table (info);
2353
2354 /* We may need to do a relocation against a local symbol, in
2355 which case we have to look up it's dynamic symbol index off
2356 the local symbol hash table. */
2357 if (eh->dynindx != -1)
2358 dynindx = eh->dynindx;
2359 else
2360 dynindx
2361 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2362 hh->sym_indx);
2363
2364 for (rent = hh->reloc_entries; rent; rent = rent->next)
2365 {
2366 Elf_Internal_Rela rel;
2367 bfd_byte *loc;
2368
2369 /* Allocate one iff we are building a shared library, the relocation
2370 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2371 if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2372 continue;
2373
2374 /* Create a dynamic relocation for this entry.
2375
2376 We need the output offset for the reloc's section because
2377 we are creating an absolute address in the resulting object
2378 file. */
2379 rel.r_offset = (rent->offset + rent->sec->output_offset
2380 + rent->sec->output_section->vma);
2381
2382 /* An FPTR64 relocation implies that we took the address of
2383 a function and that the function has an entry in the .opd
2384 section. We want the FPTR64 relocation to reference the
2385 entry in .opd.
2386
2387 We could munge the symbol value in the dynamic symbol table
2388 (in fact we already do for functions with global scope) to point
2389 to the .opd entry. Then we could use that dynamic symbol in
2390 this relocation.
2391
2392 Or we could do something sensible, not munge the symbol's
2393 address and instead just use a different symbol to reference
2394 the .opd entry. At least that seems sensible until you
2395 realize there's no local dynamic symbols we can use for that
2396 purpose. Thus the hair in the check_relocs routine.
2397
2398 We use a section symbol recorded by check_relocs as the
2399 base symbol for the relocation. The addend is the difference
2400 between the section symbol and the address of the .opd entry. */
2401 if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2402 {
2403 bfd_vma value, value2;
2404
2405 /* First compute the address of the opd entry for this symbol. */
2406 value = (hh->opd_offset
2407 + hppa_info->opd_sec->output_section->vma
2408 + hppa_info->opd_sec->output_offset);
2409
2410 /* Compute the value of the start of the section with
2411 the relocation. */
2412 value2 = (rent->sec->output_section->vma
2413 + rent->sec->output_offset);
2414
2415 /* Compute the difference between the start of the section
2416 with the relocation and the opd entry. */
2417 value -= value2;
2418
2419 /* The result becomes the addend of the relocation. */
2420 rel.r_addend = value;
2421
2422 /* The section symbol becomes the symbol for the dynamic
2423 relocation. */
2424 dynindx
2425 = _bfd_elf_link_lookup_local_dynindx (info,
2426 rent->sec->owner,
2427 rent->sec_symndx);
2428 }
2429 else
2430 rel.r_addend = rent->addend;
2431
2432 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2433
2434 loc = hppa_info->other_rel_sec->contents;
2435 loc += (hppa_info->other_rel_sec->reloc_count++
2436 * sizeof (Elf64_External_Rela));
2437 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2438 &rel, loc);
2439 }
2440 }
2441
2442 return TRUE;
2443 }
2444
2445 /* Used to decide how to sort relocs in an optimal manner for the
2446 dynamic linker, before writing them out. */
2447
2448 static enum elf_reloc_type_class
2449 elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
2450 {
2451 if (ELF64_R_SYM (rela->r_info) == 0)
2452 return reloc_class_relative;
2453
2454 switch ((int) ELF64_R_TYPE (rela->r_info))
2455 {
2456 case R_PARISC_IPLT:
2457 return reloc_class_plt;
2458 case R_PARISC_COPY:
2459 return reloc_class_copy;
2460 default:
2461 return reloc_class_normal;
2462 }
2463 }
2464
2465 /* Finish up the dynamic sections. */
2466
2467 static bfd_boolean
2468 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2469 struct bfd_link_info *info)
2470 {
2471 bfd *dynobj;
2472 asection *sdyn;
2473 struct elf64_hppa_link_hash_table *hppa_info;
2474
2475 hppa_info = hppa_link_hash_table (info);
2476
2477 /* Finalize the contents of the .opd section. */
2478 elf_link_hash_traverse (elf_hash_table (info),
2479 elf64_hppa_finalize_opd,
2480 info);
2481
2482 elf_link_hash_traverse (elf_hash_table (info),
2483 elf64_hppa_finalize_dynreloc,
2484 info);
2485
2486 /* Finalize the contents of the .dlt section. */
2487 dynobj = elf_hash_table (info)->dynobj;
2488 /* Finalize the contents of the .dlt section. */
2489 elf_link_hash_traverse (elf_hash_table (info),
2490 elf64_hppa_finalize_dlt,
2491 info);
2492
2493 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2494
2495 if (elf_hash_table (info)->dynamic_sections_created)
2496 {
2497 Elf64_External_Dyn *dyncon, *dynconend;
2498
2499 BFD_ASSERT (sdyn != NULL);
2500
2501 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2502 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2503 for (; dyncon < dynconend; dyncon++)
2504 {
2505 Elf_Internal_Dyn dyn;
2506 asection *s;
2507
2508 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2509
2510 switch (dyn.d_tag)
2511 {
2512 default:
2513 break;
2514
2515 case DT_HP_LOAD_MAP:
2516 /* Compute the absolute address of 16byte scratchpad area
2517 for the dynamic linker.
2518
2519 By convention the linker script will allocate the scratchpad
2520 area at the start of the .data section. So all we have to
2521 to is find the start of the .data section. */
2522 s = bfd_get_section_by_name (output_bfd, ".data");
2523 dyn.d_un.d_ptr = s->vma;
2524 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2525 break;
2526
2527 case DT_PLTGOT:
2528 /* HP's use PLTGOT to set the GOT register. */
2529 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2530 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2531 break;
2532
2533 case DT_JMPREL:
2534 s = hppa_info->plt_rel_sec;
2535 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2536 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2537 break;
2538
2539 case DT_PLTRELSZ:
2540 s = hppa_info->plt_rel_sec;
2541 dyn.d_un.d_val = s->size;
2542 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2543 break;
2544
2545 case DT_RELA:
2546 s = hppa_info->other_rel_sec;
2547 if (! s || ! s->size)
2548 s = hppa_info->dlt_rel_sec;
2549 if (! s || ! s->size)
2550 s = hppa_info->opd_rel_sec;
2551 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2552 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2553 break;
2554
2555 case DT_RELASZ:
2556 s = hppa_info->other_rel_sec;
2557 dyn.d_un.d_val = s->size;
2558 s = hppa_info->dlt_rel_sec;
2559 dyn.d_un.d_val += s->size;
2560 s = hppa_info->opd_rel_sec;
2561 dyn.d_un.d_val += s->size;
2562 /* There is some question about whether or not the size of
2563 the PLT relocs should be included here. HP's tools do
2564 it, so we'll emulate them. */
2565 s = hppa_info->plt_rel_sec;
2566 dyn.d_un.d_val += s->size;
2567 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2568 break;
2569
2570 }
2571 }
2572 }
2573
2574 return TRUE;
2575 }
2576
2577 /* Support for core dump NOTE sections. */
2578
2579 static bfd_boolean
2580 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2581 {
2582 int offset;
2583 size_t size;
2584
2585 switch (note->descsz)
2586 {
2587 default:
2588 return FALSE;
2589
2590 case 760: /* Linux/hppa */
2591 /* pr_cursig */
2592 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2593
2594 /* pr_pid */
2595 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2596
2597 /* pr_reg */
2598 offset = 112;
2599 size = 640;
2600
2601 break;
2602 }
2603
2604 /* Make a ".reg/999" section. */
2605 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2606 size, note->descpos + offset);
2607 }
2608
2609 static bfd_boolean
2610 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2611 {
2612 char * command;
2613 int n;
2614
2615 switch (note->descsz)
2616 {
2617 default:
2618 return FALSE;
2619
2620 case 136: /* Linux/hppa elf_prpsinfo. */
2621 elf_tdata (abfd)->core_program
2622 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2623 elf_tdata (abfd)->core_command
2624 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2625 }
2626
2627 /* Note that for some reason, a spurious space is tacked
2628 onto the end of the args in some (at least one anyway)
2629 implementations, so strip it off if it exists. */
2630 command = elf_tdata (abfd)->core_command;
2631 n = strlen (command);
2632
2633 if (0 < n && command[n - 1] == ' ')
2634 command[n - 1] = '\0';
2635
2636 return TRUE;
2637 }
2638
2639 /* Return the number of additional phdrs we will need.
2640
2641 The generic ELF code only creates PT_PHDRs for executables. The HP
2642 dynamic linker requires PT_PHDRs for dynamic libraries too.
2643
2644 This routine indicates that the backend needs one additional program
2645 header for that case.
2646
2647 Note we do not have access to the link info structure here, so we have
2648 to guess whether or not we are building a shared library based on the
2649 existence of a .interp section. */
2650
2651 static int
2652 elf64_hppa_additional_program_headers (bfd *abfd,
2653 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2654 {
2655 asection *s;
2656
2657 /* If we are creating a shared library, then we have to create a
2658 PT_PHDR segment. HP's dynamic linker chokes without it. */
2659 s = bfd_get_section_by_name (abfd, ".interp");
2660 if (! s)
2661 return 1;
2662 return 0;
2663 }
2664
2665 /* Allocate and initialize any program headers required by this
2666 specific backend.
2667
2668 The generic ELF code only creates PT_PHDRs for executables. The HP
2669 dynamic linker requires PT_PHDRs for dynamic libraries too.
2670
2671 This allocates the PT_PHDR and initializes it in a manner suitable
2672 for the HP linker.
2673
2674 Note we do not have access to the link info structure here, so we have
2675 to guess whether or not we are building a shared library based on the
2676 existence of a .interp section. */
2677
2678 static bfd_boolean
2679 elf64_hppa_modify_segment_map (bfd *abfd,
2680 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2681 {
2682 struct elf_segment_map *m;
2683 asection *s;
2684
2685 s = bfd_get_section_by_name (abfd, ".interp");
2686 if (! s)
2687 {
2688 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2689 if (m->p_type == PT_PHDR)
2690 break;
2691 if (m == NULL)
2692 {
2693 m = ((struct elf_segment_map *)
2694 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2695 if (m == NULL)
2696 return FALSE;
2697
2698 m->p_type = PT_PHDR;
2699 m->p_flags = PF_R | PF_X;
2700 m->p_flags_valid = 1;
2701 m->p_paddr_valid = 1;
2702 m->includes_phdrs = 1;
2703
2704 m->next = elf_tdata (abfd)->segment_map;
2705 elf_tdata (abfd)->segment_map = m;
2706 }
2707 }
2708
2709 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2710 if (m->p_type == PT_LOAD)
2711 {
2712 unsigned int i;
2713
2714 for (i = 0; i < m->count; i++)
2715 {
2716 /* The code "hint" is not really a hint. It is a requirement
2717 for certain versions of the HP dynamic linker. Worse yet,
2718 it must be set even if the shared library does not have
2719 any code in its "text" segment (thus the check for .hash
2720 to catch this situation). */
2721 if (m->sections[i]->flags & SEC_CODE
2722 || (strcmp (m->sections[i]->name, ".hash") == 0))
2723 m->p_flags |= (PF_X | PF_HP_CODE);
2724 }
2725 }
2726
2727 return TRUE;
2728 }
2729
2730 /* Called when writing out an object file to decide the type of a
2731 symbol. */
2732 static int
2733 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2734 int type)
2735 {
2736 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2737 return STT_PARISC_MILLI;
2738 else
2739 return type;
2740 }
2741
2742 /* Support HP specific sections for core files. */
2743 static bfd_boolean
2744 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2745 const char *typename)
2746 {
2747 if (hdr->p_type == PT_HP_CORE_KERNEL)
2748 {
2749 asection *sect;
2750
2751 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2752 return FALSE;
2753
2754 sect = bfd_make_section_anyway (abfd, ".kernel");
2755 if (sect == NULL)
2756 return FALSE;
2757 sect->size = hdr->p_filesz;
2758 sect->filepos = hdr->p_offset;
2759 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2760 return TRUE;
2761 }
2762
2763 if (hdr->p_type == PT_HP_CORE_PROC)
2764 {
2765 int sig;
2766
2767 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2768 return FALSE;
2769 if (bfd_bread (&sig, 4, abfd) != 4)
2770 return FALSE;
2771
2772 elf_tdata (abfd)->core_signal = sig;
2773
2774 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2775 return FALSE;
2776
2777 /* GDB uses the ".reg" section to read register contents. */
2778 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2779 hdr->p_offset);
2780 }
2781
2782 if (hdr->p_type == PT_HP_CORE_LOADABLE
2783 || hdr->p_type == PT_HP_CORE_STACK
2784 || hdr->p_type == PT_HP_CORE_MMF)
2785 hdr->p_type = PT_LOAD;
2786
2787 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2788 }
2789
2790 /* Hook called by the linker routine which adds symbols from an object
2791 file. HP's libraries define symbols with HP specific section
2792 indices, which we have to handle. */
2793
2794 static bfd_boolean
2795 elf_hppa_add_symbol_hook (bfd *abfd,
2796 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2797 Elf_Internal_Sym *sym,
2798 const char **namep ATTRIBUTE_UNUSED,
2799 flagword *flagsp ATTRIBUTE_UNUSED,
2800 asection **secp,
2801 bfd_vma *valp)
2802 {
2803 unsigned int index = sym->st_shndx;
2804
2805 switch (index)
2806 {
2807 case SHN_PARISC_ANSI_COMMON:
2808 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2809 (*secp)->flags |= SEC_IS_COMMON;
2810 *valp = sym->st_size;
2811 break;
2812
2813 case SHN_PARISC_HUGE_COMMON:
2814 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2815 (*secp)->flags |= SEC_IS_COMMON;
2816 *valp = sym->st_size;
2817 break;
2818 }
2819
2820 return TRUE;
2821 }
2822
2823 static bfd_boolean
2824 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2825 void *data)
2826 {
2827 struct bfd_link_info *info = data;
2828
2829 if (h->root.type == bfd_link_hash_warning)
2830 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2831
2832 /* If we are not creating a shared library, and this symbol is
2833 referenced by a shared library but is not defined anywhere, then
2834 the generic code will warn that it is undefined.
2835
2836 This behavior is undesirable on HPs since the standard shared
2837 libraries contain references to undefined symbols.
2838
2839 So we twiddle the flags associated with such symbols so that they
2840 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2841
2842 Ultimately we should have better controls over the generic ELF BFD
2843 linker code. */
2844 if (! info->relocatable
2845 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2846 && h->root.type == bfd_link_hash_undefined
2847 && h->ref_dynamic
2848 && !h->ref_regular)
2849 {
2850 h->ref_dynamic = 0;
2851 h->pointer_equality_needed = 1;
2852 }
2853
2854 return TRUE;
2855 }
2856
2857 static bfd_boolean
2858 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2859 void *data)
2860 {
2861 struct bfd_link_info *info = data;
2862
2863 if (h->root.type == bfd_link_hash_warning)
2864 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2865
2866 /* If we are not creating a shared library, and this symbol is
2867 referenced by a shared library but is not defined anywhere, then
2868 the generic code will warn that it is undefined.
2869
2870 This behavior is undesirable on HPs since the standard shared
2871 libraries contain references to undefined symbols.
2872
2873 So we twiddle the flags associated with such symbols so that they
2874 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2875
2876 Ultimately we should have better controls over the generic ELF BFD
2877 linker code. */
2878 if (! info->relocatable
2879 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2880 && h->root.type == bfd_link_hash_undefined
2881 && !h->ref_dynamic
2882 && !h->ref_regular
2883 && h->pointer_equality_needed)
2884 {
2885 h->ref_dynamic = 1;
2886 h->pointer_equality_needed = 0;
2887 }
2888
2889 return TRUE;
2890 }
2891
2892 static bfd_boolean
2893 elf_hppa_is_dynamic_loader_symbol (const char *name)
2894 {
2895 return (! strcmp (name, "__CPU_REVISION")
2896 || ! strcmp (name, "__CPU_KEYBITS_1")
2897 || ! strcmp (name, "__SYSTEM_ID_D")
2898 || ! strcmp (name, "__FPU_MODEL")
2899 || ! strcmp (name, "__FPU_REVISION")
2900 || ! strcmp (name, "__ARGC")
2901 || ! strcmp (name, "__ARGV")
2902 || ! strcmp (name, "__ENVP")
2903 || ! strcmp (name, "__TLS_SIZE_D")
2904 || ! strcmp (name, "__LOAD_INFO")
2905 || ! strcmp (name, "__systab"));
2906 }
2907
2908 /* Record the lowest address for the data and text segments. */
2909 static void
2910 elf_hppa_record_segment_addrs (bfd *abfd,
2911 asection *section,
2912 void *data)
2913 {
2914 struct elf64_hppa_link_hash_table *hppa_info = data;
2915
2916 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2917 {
2918 bfd_vma value;
2919 Elf_Internal_Phdr *p;
2920
2921 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2922 BFD_ASSERT (p != NULL);
2923 value = p->p_vaddr;
2924
2925 if (section->flags & SEC_READONLY)
2926 {
2927 if (value < hppa_info->text_segment_base)
2928 hppa_info->text_segment_base = value;
2929 }
2930 else
2931 {
2932 if (value < hppa_info->data_segment_base)
2933 hppa_info->data_segment_base = value;
2934 }
2935 }
2936 }
2937
2938 /* Called after we have seen all the input files/sections, but before
2939 final symbol resolution and section placement has been determined.
2940
2941 We use this hook to (possibly) provide a value for __gp, then we
2942 fall back to the generic ELF final link routine. */
2943
2944 static bfd_boolean
2945 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2946 {
2947 bfd_boolean retval;
2948 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2949
2950 if (! info->relocatable)
2951 {
2952 struct elf_link_hash_entry *gp;
2953 bfd_vma gp_val;
2954
2955 /* The linker script defines a value for __gp iff it was referenced
2956 by one of the objects being linked. First try to find the symbol
2957 in the hash table. If that fails, just compute the value __gp
2958 should have had. */
2959 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2960 FALSE, FALSE);
2961
2962 if (gp)
2963 {
2964
2965 /* Adjust the value of __gp as we may want to slide it into the
2966 .plt section so that the stubs can access PLT entries without
2967 using an addil sequence. */
2968 gp->root.u.def.value += hppa_info->gp_offset;
2969
2970 gp_val = (gp->root.u.def.section->output_section->vma
2971 + gp->root.u.def.section->output_offset
2972 + gp->root.u.def.value);
2973 }
2974 else
2975 {
2976 asection *sec;
2977
2978 /* First look for a .plt section. If found, then __gp is the
2979 address of the .plt + gp_offset.
2980
2981 If no .plt is found, then look for .dlt, .opd and .data (in
2982 that order) and set __gp to the base address of whichever
2983 section is found first. */
2984
2985 sec = hppa_info->plt_sec;
2986 if (sec && ! (sec->flags & SEC_EXCLUDE))
2987 gp_val = (sec->output_offset
2988 + sec->output_section->vma
2989 + hppa_info->gp_offset);
2990 else
2991 {
2992 sec = hppa_info->dlt_sec;
2993 if (!sec || (sec->flags & SEC_EXCLUDE))
2994 sec = hppa_info->opd_sec;
2995 if (!sec || (sec->flags & SEC_EXCLUDE))
2996 sec = bfd_get_section_by_name (abfd, ".data");
2997 if (!sec || (sec->flags & SEC_EXCLUDE))
2998 gp_val = 0;
2999 else
3000 gp_val = sec->output_offset + sec->output_section->vma;
3001 }
3002 }
3003
3004 /* Install whatever value we found/computed for __gp. */
3005 _bfd_set_gp_value (abfd, gp_val);
3006 }
3007
3008 /* We need to know the base of the text and data segments so that we
3009 can perform SEGREL relocations. We will record the base addresses
3010 when we encounter the first SEGREL relocation. */
3011 hppa_info->text_segment_base = (bfd_vma)-1;
3012 hppa_info->data_segment_base = (bfd_vma)-1;
3013
3014 /* HP's shared libraries have references to symbols that are not
3015 defined anywhere. The generic ELF BFD linker code will complain
3016 about such symbols.
3017
3018 So we detect the losing case and arrange for the flags on the symbol
3019 to indicate that it was never referenced. This keeps the generic
3020 ELF BFD link code happy and appears to not create any secondary
3021 problems. Ultimately we need a way to control the behavior of the
3022 generic ELF BFD link code better. */
3023 elf_link_hash_traverse (elf_hash_table (info),
3024 elf_hppa_unmark_useless_dynamic_symbols,
3025 info);
3026
3027 /* Invoke the regular ELF backend linker to do all the work. */
3028 retval = bfd_elf_final_link (abfd, info);
3029
3030 elf_link_hash_traverse (elf_hash_table (info),
3031 elf_hppa_remark_useless_dynamic_symbols,
3032 info);
3033
3034 /* If we're producing a final executable, sort the contents of the
3035 unwind section. */
3036 if (retval && !info->relocatable)
3037 retval = elf_hppa_sort_unwind (abfd);
3038
3039 return retval;
3040 }
3041
3042 /* Relocate the given INSN. VALUE should be the actual value we want
3043 to insert into the instruction, ie by this point we should not be
3044 concerned with computing an offset relative to the DLT, PC, etc.
3045 Instead this routine is meant to handle the bit manipulations needed
3046 to insert the relocation into the given instruction. */
3047
3048 static int
3049 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3050 {
3051 switch (r_type)
3052 {
3053 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3054 the "B" instruction. */
3055 case R_PARISC_PCREL22F:
3056 case R_PARISC_PCREL22C:
3057 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3058
3059 /* This is any 12 bit branch. */
3060 case R_PARISC_PCREL12F:
3061 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3062
3063 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3064 to the "B" instruction as well as BE. */
3065 case R_PARISC_PCREL17F:
3066 case R_PARISC_DIR17F:
3067 case R_PARISC_DIR17R:
3068 case R_PARISC_PCREL17C:
3069 case R_PARISC_PCREL17R:
3070 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3071
3072 /* ADDIL or LDIL instructions. */
3073 case R_PARISC_DLTREL21L:
3074 case R_PARISC_DLTIND21L:
3075 case R_PARISC_LTOFF_FPTR21L:
3076 case R_PARISC_PCREL21L:
3077 case R_PARISC_LTOFF_TP21L:
3078 case R_PARISC_DPREL21L:
3079 case R_PARISC_PLTOFF21L:
3080 case R_PARISC_DIR21L:
3081 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3082
3083 /* LDO and integer loads/stores with 14 bit displacements. */
3084 case R_PARISC_DLTREL14R:
3085 case R_PARISC_DLTREL14F:
3086 case R_PARISC_DLTIND14R:
3087 case R_PARISC_DLTIND14F:
3088 case R_PARISC_LTOFF_FPTR14R:
3089 case R_PARISC_PCREL14R:
3090 case R_PARISC_PCREL14F:
3091 case R_PARISC_LTOFF_TP14R:
3092 case R_PARISC_LTOFF_TP14F:
3093 case R_PARISC_DPREL14R:
3094 case R_PARISC_DPREL14F:
3095 case R_PARISC_PLTOFF14R:
3096 case R_PARISC_PLTOFF14F:
3097 case R_PARISC_DIR14R:
3098 case R_PARISC_DIR14F:
3099 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3100
3101 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3102 case R_PARISC_LTOFF_FPTR16F:
3103 case R_PARISC_PCREL16F:
3104 case R_PARISC_LTOFF_TP16F:
3105 case R_PARISC_GPREL16F:
3106 case R_PARISC_PLTOFF16F:
3107 case R_PARISC_DIR16F:
3108 case R_PARISC_LTOFF16F:
3109 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3110
3111 /* Doubleword loads and stores with a 14 bit displacement. */
3112 case R_PARISC_DLTREL14DR:
3113 case R_PARISC_DLTIND14DR:
3114 case R_PARISC_LTOFF_FPTR14DR:
3115 case R_PARISC_LTOFF_FPTR16DF:
3116 case R_PARISC_PCREL14DR:
3117 case R_PARISC_PCREL16DF:
3118 case R_PARISC_LTOFF_TP14DR:
3119 case R_PARISC_LTOFF_TP16DF:
3120 case R_PARISC_DPREL14DR:
3121 case R_PARISC_GPREL16DF:
3122 case R_PARISC_PLTOFF14DR:
3123 case R_PARISC_PLTOFF16DF:
3124 case R_PARISC_DIR14DR:
3125 case R_PARISC_DIR16DF:
3126 case R_PARISC_LTOFF16DF:
3127 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3128 | ((sym_value & 0x1ff8) << 1));
3129
3130 /* Floating point single word load/store instructions. */
3131 case R_PARISC_DLTREL14WR:
3132 case R_PARISC_DLTIND14WR:
3133 case R_PARISC_LTOFF_FPTR14WR:
3134 case R_PARISC_LTOFF_FPTR16WF:
3135 case R_PARISC_PCREL14WR:
3136 case R_PARISC_PCREL16WF:
3137 case R_PARISC_LTOFF_TP14WR:
3138 case R_PARISC_LTOFF_TP16WF:
3139 case R_PARISC_DPREL14WR:
3140 case R_PARISC_GPREL16WF:
3141 case R_PARISC_PLTOFF14WR:
3142 case R_PARISC_PLTOFF16WF:
3143 case R_PARISC_DIR16WF:
3144 case R_PARISC_DIR14WR:
3145 case R_PARISC_LTOFF16WF:
3146 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3147 | ((sym_value & 0x1ffc) << 1));
3148
3149 default:
3150 return insn;
3151 }
3152 }
3153
3154 /* Compute the value for a relocation (REL) during a final link stage,
3155 then insert the value into the proper location in CONTENTS.
3156
3157 VALUE is a tentative value for the relocation and may be overridden
3158 and modified here based on the specific relocation to be performed.
3159
3160 For example we do conversions for PC-relative branches in this routine
3161 or redirection of calls to external routines to stubs.
3162
3163 The work of actually applying the relocation is left to a helper
3164 routine in an attempt to reduce the complexity and size of this
3165 function. */
3166
3167 static bfd_reloc_status_type
3168 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3169 bfd *input_bfd,
3170 bfd *output_bfd,
3171 asection *input_section,
3172 bfd_byte *contents,
3173 bfd_vma value,
3174 struct bfd_link_info *info,
3175 asection *sym_sec,
3176 struct elf_link_hash_entry *eh)
3177 {
3178 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3179 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3180 bfd_vma *local_offsets;
3181 Elf_Internal_Shdr *symtab_hdr;
3182 int insn;
3183 bfd_vma max_branch_offset = 0;
3184 bfd_vma offset = rel->r_offset;
3185 bfd_signed_vma addend = rel->r_addend;
3186 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3187 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3188 unsigned int r_type = howto->type;
3189 bfd_byte *hit_data = contents + offset;
3190
3191 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3192 local_offsets = elf_local_got_offsets (input_bfd);
3193 insn = bfd_get_32 (input_bfd, hit_data);
3194
3195 switch (r_type)
3196 {
3197 case R_PARISC_NONE:
3198 break;
3199
3200 /* Basic function call support.
3201
3202 Note for a call to a function defined in another dynamic library
3203 we want to redirect the call to a stub. */
3204
3205 /* PC relative relocs without an implicit offset. */
3206 case R_PARISC_PCREL21L:
3207 case R_PARISC_PCREL14R:
3208 case R_PARISC_PCREL14F:
3209 case R_PARISC_PCREL14WR:
3210 case R_PARISC_PCREL14DR:
3211 case R_PARISC_PCREL16F:
3212 case R_PARISC_PCREL16WF:
3213 case R_PARISC_PCREL16DF:
3214 {
3215 /* If this is a call to a function defined in another dynamic
3216 library, then redirect the call to the local stub for this
3217 function. */
3218 if (sym_sec == NULL || sym_sec->output_section == NULL)
3219 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3220 + hppa_info->stub_sec->output_section->vma);
3221
3222 /* Turn VALUE into a proper PC relative address. */
3223 value -= (offset + input_section->output_offset
3224 + input_section->output_section->vma);
3225
3226 /* Adjust for any field selectors. */
3227 if (r_type == R_PARISC_PCREL21L)
3228 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3229 else if (r_type == R_PARISC_PCREL14F
3230 || r_type == R_PARISC_PCREL16F
3231 || r_type == R_PARISC_PCREL16WF
3232 || r_type == R_PARISC_PCREL16DF)
3233 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3234 else
3235 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3236
3237 /* Apply the relocation to the given instruction. */
3238 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3239 break;
3240 }
3241
3242 case R_PARISC_PCREL12F:
3243 case R_PARISC_PCREL22F:
3244 case R_PARISC_PCREL17F:
3245 case R_PARISC_PCREL22C:
3246 case R_PARISC_PCREL17C:
3247 case R_PARISC_PCREL17R:
3248 {
3249 /* If this is a call to a function defined in another dynamic
3250 library, then redirect the call to the local stub for this
3251 function. */
3252 if (sym_sec == NULL || sym_sec->output_section == NULL)
3253 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3254 + hppa_info->stub_sec->output_section->vma);
3255
3256 /* Turn VALUE into a proper PC relative address. */
3257 value -= (offset + input_section->output_offset
3258 + input_section->output_section->vma);
3259 addend -= 8;
3260
3261 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3262 max_branch_offset = (1 << (22-1)) << 2;
3263 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3264 max_branch_offset = (1 << (17-1)) << 2;
3265 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3266 max_branch_offset = (1 << (12-1)) << 2;
3267
3268 /* Make sure we can reach the branch target. */
3269 if (max_branch_offset != 0
3270 && value + addend + max_branch_offset >= 2*max_branch_offset)
3271 {
3272 (*_bfd_error_handler)
3273 (_("%B(%A+0x%lx): cannot reach %s"),
3274 input_bfd,
3275 input_section,
3276 offset,
3277 eh->root.root.string);
3278 bfd_set_error (bfd_error_bad_value);
3279 return bfd_reloc_notsupported;
3280 }
3281
3282 /* Adjust for any field selectors. */
3283 if (r_type == R_PARISC_PCREL17R)
3284 value = hppa_field_adjust (value, addend, e_rsel);
3285 else
3286 value = hppa_field_adjust (value, addend, e_fsel);
3287
3288 /* All branches are implicitly shifted by 2 places. */
3289 value >>= 2;
3290
3291 /* Apply the relocation to the given instruction. */
3292 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3293 break;
3294 }
3295
3296 /* Indirect references to data through the DLT. */
3297 case R_PARISC_DLTIND14R:
3298 case R_PARISC_DLTIND14F:
3299 case R_PARISC_DLTIND14DR:
3300 case R_PARISC_DLTIND14WR:
3301 case R_PARISC_DLTIND21L:
3302 case R_PARISC_LTOFF_FPTR14R:
3303 case R_PARISC_LTOFF_FPTR14DR:
3304 case R_PARISC_LTOFF_FPTR14WR:
3305 case R_PARISC_LTOFF_FPTR21L:
3306 case R_PARISC_LTOFF_FPTR16F:
3307 case R_PARISC_LTOFF_FPTR16WF:
3308 case R_PARISC_LTOFF_FPTR16DF:
3309 case R_PARISC_LTOFF_TP21L:
3310 case R_PARISC_LTOFF_TP14R:
3311 case R_PARISC_LTOFF_TP14F:
3312 case R_PARISC_LTOFF_TP14WR:
3313 case R_PARISC_LTOFF_TP14DR:
3314 case R_PARISC_LTOFF_TP16F:
3315 case R_PARISC_LTOFF_TP16WF:
3316 case R_PARISC_LTOFF_TP16DF:
3317 case R_PARISC_LTOFF16F:
3318 case R_PARISC_LTOFF16WF:
3319 case R_PARISC_LTOFF16DF:
3320 {
3321 bfd_vma off;
3322
3323 /* If this relocation was against a local symbol, then we still
3324 have not set up the DLT entry (it's not convenient to do so
3325 in the "finalize_dlt" routine because it is difficult to get
3326 to the local symbol's value).
3327
3328 So, if this is a local symbol (h == NULL), then we need to
3329 fill in its DLT entry.
3330
3331 Similarly we may still need to set up an entry in .opd for
3332 a local function which had its address taken. */
3333 if (hh == NULL)
3334 {
3335 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3336
3337 if (local_offsets == NULL)
3338 abort ();
3339
3340 /* Now do .opd creation if needed. */
3341 if (r_type == R_PARISC_LTOFF_FPTR14R
3342 || r_type == R_PARISC_LTOFF_FPTR14DR
3343 || r_type == R_PARISC_LTOFF_FPTR14WR
3344 || r_type == R_PARISC_LTOFF_FPTR21L
3345 || r_type == R_PARISC_LTOFF_FPTR16F
3346 || r_type == R_PARISC_LTOFF_FPTR16WF
3347 || r_type == R_PARISC_LTOFF_FPTR16DF)
3348 {
3349 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3350 off = local_opd_offsets[r_symndx];
3351
3352 /* The last bit records whether we've already initialised
3353 this local .opd entry. */
3354 if ((off & 1) != 0)
3355 {
3356 BFD_ASSERT (off != (bfd_vma) -1);
3357 off &= ~1;
3358 }
3359 else
3360 {
3361 local_opd_offsets[r_symndx] |= 1;
3362
3363 /* The first two words of an .opd entry are zero. */
3364 memset (hppa_info->opd_sec->contents + off, 0, 16);
3365
3366 /* The next word is the address of the function. */
3367 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3368 (hppa_info->opd_sec->contents + off + 16));
3369
3370 /* The last word is our local __gp value. */
3371 value = _bfd_get_gp_value
3372 (hppa_info->opd_sec->output_section->owner);
3373 bfd_put_64 (hppa_info->opd_sec->owner, value,
3374 (hppa_info->opd_sec->contents + off + 24));
3375 }
3376
3377 /* The DLT value is the address of the .opd entry. */
3378 value = (off
3379 + hppa_info->opd_sec->output_offset
3380 + hppa_info->opd_sec->output_section->vma);
3381 addend = 0;
3382 }
3383
3384 local_dlt_offsets = local_offsets;
3385 off = local_dlt_offsets[r_symndx];
3386
3387 if ((off & 1) != 0)
3388 {
3389 BFD_ASSERT (off != (bfd_vma) -1);
3390 off &= ~1;
3391 }
3392 else
3393 {
3394 local_dlt_offsets[r_symndx] |= 1;
3395 bfd_put_64 (hppa_info->dlt_sec->owner,
3396 value + addend,
3397 hppa_info->dlt_sec->contents + off);
3398 }
3399 }
3400 else
3401 off = hh->dlt_offset;
3402
3403 /* We want the value of the DLT offset for this symbol, not
3404 the symbol's actual address. Note that __gp may not point
3405 to the start of the DLT, so we have to compute the absolute
3406 address, then subtract out the value of __gp. */
3407 value = (off
3408 + hppa_info->dlt_sec->output_offset
3409 + hppa_info->dlt_sec->output_section->vma);
3410 value -= _bfd_get_gp_value (output_bfd);
3411
3412 /* All DLTIND relocations are basically the same at this point,
3413 except that we need different field selectors for the 21bit
3414 version vs the 14bit versions. */
3415 if (r_type == R_PARISC_DLTIND21L
3416 || r_type == R_PARISC_LTOFF_FPTR21L
3417 || r_type == R_PARISC_LTOFF_TP21L)
3418 value = hppa_field_adjust (value, 0, e_lsel);
3419 else if (r_type == R_PARISC_DLTIND14F
3420 || r_type == R_PARISC_LTOFF_FPTR16F
3421 || r_type == R_PARISC_LTOFF_FPTR16WF
3422 || r_type == R_PARISC_LTOFF_FPTR16DF
3423 || r_type == R_PARISC_LTOFF16F
3424 || r_type == R_PARISC_LTOFF16DF
3425 || r_type == R_PARISC_LTOFF16WF
3426 || r_type == R_PARISC_LTOFF_TP16F
3427 || r_type == R_PARISC_LTOFF_TP16WF
3428 || r_type == R_PARISC_LTOFF_TP16DF)
3429 value = hppa_field_adjust (value, 0, e_fsel);
3430 else
3431 value = hppa_field_adjust (value, 0, e_rsel);
3432
3433 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3434 break;
3435 }
3436
3437 case R_PARISC_DLTREL14R:
3438 case R_PARISC_DLTREL14F:
3439 case R_PARISC_DLTREL14DR:
3440 case R_PARISC_DLTREL14WR:
3441 case R_PARISC_DLTREL21L:
3442 case R_PARISC_DPREL21L:
3443 case R_PARISC_DPREL14WR:
3444 case R_PARISC_DPREL14DR:
3445 case R_PARISC_DPREL14R:
3446 case R_PARISC_DPREL14F:
3447 case R_PARISC_GPREL16F:
3448 case R_PARISC_GPREL16WF:
3449 case R_PARISC_GPREL16DF:
3450 {
3451 /* Subtract out the global pointer value to make value a DLT
3452 relative address. */
3453 value -= _bfd_get_gp_value (output_bfd);
3454
3455 /* All DLTREL relocations are basically the same at this point,
3456 except that we need different field selectors for the 21bit
3457 version vs the 14bit versions. */
3458 if (r_type == R_PARISC_DLTREL21L
3459 || r_type == R_PARISC_DPREL21L)
3460 value = hppa_field_adjust (value, addend, e_lrsel);
3461 else if (r_type == R_PARISC_DLTREL14F
3462 || r_type == R_PARISC_DPREL14F
3463 || r_type == R_PARISC_GPREL16F
3464 || r_type == R_PARISC_GPREL16WF
3465 || r_type == R_PARISC_GPREL16DF)
3466 value = hppa_field_adjust (value, addend, e_fsel);
3467 else
3468 value = hppa_field_adjust (value, addend, e_rrsel);
3469
3470 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3471 break;
3472 }
3473
3474 case R_PARISC_DIR21L:
3475 case R_PARISC_DIR17R:
3476 case R_PARISC_DIR17F:
3477 case R_PARISC_DIR14R:
3478 case R_PARISC_DIR14F:
3479 case R_PARISC_DIR14WR:
3480 case R_PARISC_DIR14DR:
3481 case R_PARISC_DIR16F:
3482 case R_PARISC_DIR16WF:
3483 case R_PARISC_DIR16DF:
3484 {
3485 /* All DIR relocations are basically the same at this point,
3486 except that branch offsets need to be divided by four, and
3487 we need different field selectors. Note that we don't
3488 redirect absolute calls to local stubs. */
3489
3490 if (r_type == R_PARISC_DIR21L)
3491 value = hppa_field_adjust (value, addend, e_lrsel);
3492 else if (r_type == R_PARISC_DIR17F
3493 || r_type == R_PARISC_DIR16F
3494 || r_type == R_PARISC_DIR16WF
3495 || r_type == R_PARISC_DIR16DF
3496 || r_type == R_PARISC_DIR14F)
3497 value = hppa_field_adjust (value, addend, e_fsel);
3498 else
3499 value = hppa_field_adjust (value, addend, e_rrsel);
3500
3501 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3502 /* All branches are implicitly shifted by 2 places. */
3503 value >>= 2;
3504
3505 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3506 break;
3507 }
3508
3509 case R_PARISC_PLTOFF21L:
3510 case R_PARISC_PLTOFF14R:
3511 case R_PARISC_PLTOFF14F:
3512 case R_PARISC_PLTOFF14WR:
3513 case R_PARISC_PLTOFF14DR:
3514 case R_PARISC_PLTOFF16F:
3515 case R_PARISC_PLTOFF16WF:
3516 case R_PARISC_PLTOFF16DF:
3517 {
3518 /* We want the value of the PLT offset for this symbol, not
3519 the symbol's actual address. Note that __gp may not point
3520 to the start of the DLT, so we have to compute the absolute
3521 address, then subtract out the value of __gp. */
3522 value = (hh->plt_offset
3523 + hppa_info->plt_sec->output_offset
3524 + hppa_info->plt_sec->output_section->vma);
3525 value -= _bfd_get_gp_value (output_bfd);
3526
3527 /* All PLTOFF relocations are basically the same at this point,
3528 except that we need different field selectors for the 21bit
3529 version vs the 14bit versions. */
3530 if (r_type == R_PARISC_PLTOFF21L)
3531 value = hppa_field_adjust (value, addend, e_lrsel);
3532 else if (r_type == R_PARISC_PLTOFF14F
3533 || r_type == R_PARISC_PLTOFF16F
3534 || r_type == R_PARISC_PLTOFF16WF
3535 || r_type == R_PARISC_PLTOFF16DF)
3536 value = hppa_field_adjust (value, addend, e_fsel);
3537 else
3538 value = hppa_field_adjust (value, addend, e_rrsel);
3539
3540 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3541 break;
3542 }
3543
3544 case R_PARISC_LTOFF_FPTR32:
3545 {
3546 /* We may still need to create the FPTR itself if it was for
3547 a local symbol. */
3548 if (hh == NULL)
3549 {
3550 /* The first two words of an .opd entry are zero. */
3551 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3552
3553 /* The next word is the address of the function. */
3554 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3555 (hppa_info->opd_sec->contents
3556 + hh->opd_offset + 16));
3557
3558 /* The last word is our local __gp value. */
3559 value = _bfd_get_gp_value
3560 (hppa_info->opd_sec->output_section->owner);
3561 bfd_put_64 (hppa_info->opd_sec->owner, value,
3562 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3563
3564 /* The DLT value is the address of the .opd entry. */
3565 value = (hh->opd_offset
3566 + hppa_info->opd_sec->output_offset
3567 + hppa_info->opd_sec->output_section->vma);
3568
3569 bfd_put_64 (hppa_info->dlt_sec->owner,
3570 value,
3571 hppa_info->dlt_sec->contents + hh->dlt_offset);
3572 }
3573
3574 /* We want the value of the DLT offset for this symbol, not
3575 the symbol's actual address. Note that __gp may not point
3576 to the start of the DLT, so we have to compute the absolute
3577 address, then subtract out the value of __gp. */
3578 value = (hh->dlt_offset
3579 + hppa_info->dlt_sec->output_offset
3580 + hppa_info->dlt_sec->output_section->vma);
3581 value -= _bfd_get_gp_value (output_bfd);
3582 bfd_put_32 (input_bfd, value, hit_data);
3583 return bfd_reloc_ok;
3584 }
3585
3586 case R_PARISC_LTOFF_FPTR64:
3587 case R_PARISC_LTOFF_TP64:
3588 {
3589 /* We may still need to create the FPTR itself if it was for
3590 a local symbol. */
3591 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3592 {
3593 /* The first two words of an .opd entry are zero. */
3594 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3595
3596 /* The next word is the address of the function. */
3597 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3598 (hppa_info->opd_sec->contents
3599 + hh->opd_offset + 16));
3600
3601 /* The last word is our local __gp value. */
3602 value = _bfd_get_gp_value
3603 (hppa_info->opd_sec->output_section->owner);
3604 bfd_put_64 (hppa_info->opd_sec->owner, value,
3605 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3606
3607 /* The DLT value is the address of the .opd entry. */
3608 value = (hh->opd_offset
3609 + hppa_info->opd_sec->output_offset
3610 + hppa_info->opd_sec->output_section->vma);
3611
3612 bfd_put_64 (hppa_info->dlt_sec->owner,
3613 value,
3614 hppa_info->dlt_sec->contents + hh->dlt_offset);
3615 }
3616
3617 /* We want the value of the DLT offset for this symbol, not
3618 the symbol's actual address. Note that __gp may not point
3619 to the start of the DLT, so we have to compute the absolute
3620 address, then subtract out the value of __gp. */
3621 value = (hh->dlt_offset
3622 + hppa_info->dlt_sec->output_offset
3623 + hppa_info->dlt_sec->output_section->vma);
3624 value -= _bfd_get_gp_value (output_bfd);
3625 bfd_put_64 (input_bfd, value, hit_data);
3626 return bfd_reloc_ok;
3627 }
3628
3629 case R_PARISC_DIR32:
3630 bfd_put_32 (input_bfd, value + addend, hit_data);
3631 return bfd_reloc_ok;
3632
3633 case R_PARISC_DIR64:
3634 bfd_put_64 (input_bfd, value + addend, hit_data);
3635 return bfd_reloc_ok;
3636
3637 case R_PARISC_GPREL64:
3638 /* Subtract out the global pointer value to make value a DLT
3639 relative address. */
3640 value -= _bfd_get_gp_value (output_bfd);
3641
3642 bfd_put_64 (input_bfd, value + addend, hit_data);
3643 return bfd_reloc_ok;
3644
3645 case R_PARISC_LTOFF64:
3646 /* We want the value of the DLT offset for this symbol, not
3647 the symbol's actual address. Note that __gp may not point
3648 to the start of the DLT, so we have to compute the absolute
3649 address, then subtract out the value of __gp. */
3650 value = (hh->dlt_offset
3651 + hppa_info->dlt_sec->output_offset
3652 + hppa_info->dlt_sec->output_section->vma);
3653 value -= _bfd_get_gp_value (output_bfd);
3654
3655 bfd_put_64 (input_bfd, value + addend, hit_data);
3656 return bfd_reloc_ok;
3657
3658 case R_PARISC_PCREL32:
3659 {
3660 /* If this is a call to a function defined in another dynamic
3661 library, then redirect the call to the local stub for this
3662 function. */
3663 if (sym_sec == NULL || sym_sec->output_section == NULL)
3664 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3665 + hppa_info->stub_sec->output_section->vma);
3666
3667 /* Turn VALUE into a proper PC relative address. */
3668 value -= (offset + input_section->output_offset
3669 + input_section->output_section->vma);
3670
3671 value += addend;
3672 value -= 8;
3673 bfd_put_32 (input_bfd, value, hit_data);
3674 return bfd_reloc_ok;
3675 }
3676
3677 case R_PARISC_PCREL64:
3678 {
3679 /* If this is a call to a function defined in another dynamic
3680 library, then redirect the call to the local stub for this
3681 function. */
3682 if (sym_sec == NULL || sym_sec->output_section == NULL)
3683 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3684 + hppa_info->stub_sec->output_section->vma);
3685
3686 /* Turn VALUE into a proper PC relative address. */
3687 value -= (offset + input_section->output_offset
3688 + input_section->output_section->vma);
3689
3690 value += addend;
3691 value -= 8;
3692 bfd_put_64 (input_bfd, value, hit_data);
3693 return bfd_reloc_ok;
3694 }
3695
3696 case R_PARISC_FPTR64:
3697 {
3698 bfd_vma off;
3699
3700 /* We may still need to create the FPTR itself if it was for
3701 a local symbol. */
3702 if (hh == NULL)
3703 {
3704 bfd_vma *local_opd_offsets;
3705
3706 if (local_offsets == NULL)
3707 abort ();
3708
3709 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3710 off = local_opd_offsets[r_symndx];
3711
3712 /* The last bit records whether we've already initialised
3713 this local .opd entry. */
3714 if ((off & 1) != 0)
3715 {
3716 BFD_ASSERT (off != (bfd_vma) -1);
3717 off &= ~1;
3718 }
3719 else
3720 {
3721 /* The first two words of an .opd entry are zero. */
3722 memset (hppa_info->opd_sec->contents + off, 0, 16);
3723
3724 /* The next word is the address of the function. */
3725 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3726 (hppa_info->opd_sec->contents + off + 16));
3727
3728 /* The last word is our local __gp value. */
3729 value = _bfd_get_gp_value
3730 (hppa_info->opd_sec->output_section->owner);
3731 bfd_put_64 (hppa_info->opd_sec->owner, value,
3732 hppa_info->opd_sec->contents + off + 24);
3733 }
3734 }
3735 else
3736 off = hh->opd_offset;
3737
3738 if (hh == NULL || hh->want_opd)
3739 /* We want the value of the OPD offset for this symbol. */
3740 value = (off
3741 + hppa_info->opd_sec->output_offset
3742 + hppa_info->opd_sec->output_section->vma);
3743 else
3744 /* We want the address of the symbol. */
3745 value += addend;
3746
3747 bfd_put_64 (input_bfd, value, hit_data);
3748 return bfd_reloc_ok;
3749 }
3750
3751 case R_PARISC_SECREL32:
3752 if (sym_sec)
3753 value -= sym_sec->output_section->vma;
3754 bfd_put_32 (input_bfd, value + addend, hit_data);
3755 return bfd_reloc_ok;
3756
3757 case R_PARISC_SEGREL32:
3758 case R_PARISC_SEGREL64:
3759 {
3760 /* If this is the first SEGREL relocation, then initialize
3761 the segment base values. */
3762 if (hppa_info->text_segment_base == (bfd_vma) -1)
3763 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3764 hppa_info);
3765
3766 /* VALUE holds the absolute address. We want to include the
3767 addend, then turn it into a segment relative address.
3768
3769 The segment is derived from SYM_SEC. We assume that there are
3770 only two segments of note in the resulting executable/shlib.
3771 A readonly segment (.text) and a readwrite segment (.data). */
3772 value += addend;
3773
3774 if (sym_sec->flags & SEC_CODE)
3775 value -= hppa_info->text_segment_base;
3776 else
3777 value -= hppa_info->data_segment_base;
3778
3779 if (r_type == R_PARISC_SEGREL32)
3780 bfd_put_32 (input_bfd, value, hit_data);
3781 else
3782 bfd_put_64 (input_bfd, value, hit_data);
3783 return bfd_reloc_ok;
3784 }
3785
3786 /* Something we don't know how to handle. */
3787 default:
3788 return bfd_reloc_notsupported;
3789 }
3790
3791 /* Update the instruction word. */
3792 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3793 return bfd_reloc_ok;
3794 }
3795
3796 /* Relocate an HPPA ELF section. */
3797
3798 static bfd_boolean
3799 elf64_hppa_relocate_section (bfd *output_bfd,
3800 struct bfd_link_info *info,
3801 bfd *input_bfd,
3802 asection *input_section,
3803 bfd_byte *contents,
3804 Elf_Internal_Rela *relocs,
3805 Elf_Internal_Sym *local_syms,
3806 asection **local_sections)
3807 {
3808 Elf_Internal_Shdr *symtab_hdr;
3809 Elf_Internal_Rela *rel;
3810 Elf_Internal_Rela *relend;
3811 struct elf64_hppa_link_hash_table *hppa_info;
3812
3813 hppa_info = hppa_link_hash_table (info);
3814 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3815
3816 rel = relocs;
3817 relend = relocs + input_section->reloc_count;
3818 for (; rel < relend; rel++)
3819 {
3820 int r_type;
3821 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3822 unsigned long r_symndx;
3823 struct elf_link_hash_entry *eh;
3824 Elf_Internal_Sym *sym;
3825 asection *sym_sec;
3826 bfd_vma relocation;
3827 bfd_reloc_status_type r;
3828 bfd_boolean warned_undef;
3829
3830 r_type = ELF_R_TYPE (rel->r_info);
3831 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3832 {
3833 bfd_set_error (bfd_error_bad_value);
3834 return FALSE;
3835 }
3836 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3837 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3838 continue;
3839
3840 /* This is a final link. */
3841 r_symndx = ELF_R_SYM (rel->r_info);
3842 eh = NULL;
3843 sym = NULL;
3844 sym_sec = NULL;
3845 warned_undef = FALSE;
3846 if (r_symndx < symtab_hdr->sh_info)
3847 {
3848 /* This is a local symbol, hh defaults to NULL. */
3849 sym = local_syms + r_symndx;
3850 sym_sec = local_sections[r_symndx];
3851 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3852 }
3853 else
3854 {
3855 /* This is not a local symbol. */
3856 bfd_boolean unresolved_reloc;
3857 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3858
3859 /* It seems this can happen with erroneous or unsupported
3860 input (mixing a.out and elf in an archive, for example.) */
3861 if (sym_hashes == NULL)
3862 return FALSE;
3863
3864 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3865
3866 while (eh->root.type == bfd_link_hash_indirect
3867 || eh->root.type == bfd_link_hash_warning)
3868 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3869
3870 warned_undef = FALSE;
3871 unresolved_reloc = FALSE;
3872 relocation = 0;
3873 if (eh->root.type == bfd_link_hash_defined
3874 || eh->root.type == bfd_link_hash_defweak)
3875 {
3876 sym_sec = eh->root.u.def.section;
3877 if (sym_sec == NULL
3878 || sym_sec->output_section == NULL)
3879 /* Set a flag that will be cleared later if we find a
3880 relocation value for this symbol. output_section
3881 is typically NULL for symbols satisfied by a shared
3882 library. */
3883 unresolved_reloc = TRUE;
3884 else
3885 relocation = (eh->root.u.def.value
3886 + sym_sec->output_section->vma
3887 + sym_sec->output_offset);
3888 }
3889 else if (eh->root.type == bfd_link_hash_undefweak)
3890 ;
3891 else if (info->unresolved_syms_in_objects == RM_IGNORE
3892 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3893 ;
3894 else if (!info->relocatable
3895 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3896 continue;
3897 else if (!info->relocatable)
3898 {
3899 bfd_boolean err;
3900 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3901 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3902 if (!info->callbacks->undefined_symbol (info,
3903 eh->root.root.string,
3904 input_bfd,
3905 input_section,
3906 rel->r_offset, err))
3907 return FALSE;
3908 warned_undef = TRUE;
3909 }
3910
3911 if (!info->relocatable
3912 && relocation == 0
3913 && eh->root.type != bfd_link_hash_defined
3914 && eh->root.type != bfd_link_hash_defweak
3915 && eh->root.type != bfd_link_hash_undefweak)
3916 {
3917 if (info->unresolved_syms_in_objects == RM_IGNORE
3918 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3919 && eh->type == STT_PARISC_MILLI)
3920 {
3921 if (! info->callbacks->undefined_symbol
3922 (info, eh_name (eh), input_bfd,
3923 input_section, rel->r_offset, FALSE))
3924 return FALSE;
3925 warned_undef = TRUE;
3926 }
3927 }
3928 }
3929
3930 if (sym_sec != NULL && elf_discarded_section (sym_sec))
3931 {
3932 /* For relocs against symbols from removed linkonce sections,
3933 or sections discarded by a linker script, we just want the
3934 section contents zeroed. Avoid any special processing. */
3935 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
3936 rel->r_info = 0;
3937 rel->r_addend = 0;
3938 continue;
3939 }
3940
3941 if (info->relocatable)
3942 continue;
3943
3944 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3945 input_section, contents,
3946 relocation, info, sym_sec,
3947 eh);
3948
3949 if (r != bfd_reloc_ok)
3950 {
3951 switch (r)
3952 {
3953 default:
3954 abort ();
3955 case bfd_reloc_overflow:
3956 {
3957 const char *sym_name;
3958
3959 if (eh != NULL)
3960 sym_name = NULL;
3961 else
3962 {
3963 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3964 symtab_hdr->sh_link,
3965 sym->st_name);
3966 if (sym_name == NULL)
3967 return FALSE;
3968 if (*sym_name == '\0')
3969 sym_name = bfd_section_name (input_bfd, sym_sec);
3970 }
3971
3972 if (!((*info->callbacks->reloc_overflow)
3973 (info, (eh ? &eh->root : NULL), sym_name,
3974 howto->name, (bfd_vma) 0, input_bfd,
3975 input_section, rel->r_offset)))
3976 return FALSE;
3977 }
3978 break;
3979 }
3980 }
3981 }
3982 return TRUE;
3983 }
3984
3985 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3986 {
3987 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3988 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3989 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3990 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3991 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3992 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3993 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3994 { NULL, 0, 0, 0, 0 }
3995 };
3996
3997 /* The hash bucket size is the standard one, namely 4. */
3998
3999 const struct elf_size_info hppa64_elf_size_info =
4000 {
4001 sizeof (Elf64_External_Ehdr),
4002 sizeof (Elf64_External_Phdr),
4003 sizeof (Elf64_External_Shdr),
4004 sizeof (Elf64_External_Rel),
4005 sizeof (Elf64_External_Rela),
4006 sizeof (Elf64_External_Sym),
4007 sizeof (Elf64_External_Dyn),
4008 sizeof (Elf_External_Note),
4009 4,
4010 1,
4011 64, 3,
4012 ELFCLASS64, EV_CURRENT,
4013 bfd_elf64_write_out_phdrs,
4014 bfd_elf64_write_shdrs_and_ehdr,
4015 bfd_elf64_checksum_contents,
4016 bfd_elf64_write_relocs,
4017 bfd_elf64_swap_symbol_in,
4018 bfd_elf64_swap_symbol_out,
4019 bfd_elf64_slurp_reloc_table,
4020 bfd_elf64_slurp_symbol_table,
4021 bfd_elf64_swap_dyn_in,
4022 bfd_elf64_swap_dyn_out,
4023 bfd_elf64_swap_reloc_in,
4024 bfd_elf64_swap_reloc_out,
4025 bfd_elf64_swap_reloca_in,
4026 bfd_elf64_swap_reloca_out
4027 };
4028
4029 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
4030 #define TARGET_BIG_NAME "elf64-hppa"
4031 #define ELF_ARCH bfd_arch_hppa
4032 #define ELF_MACHINE_CODE EM_PARISC
4033 /* This is not strictly correct. The maximum page size for PA2.0 is
4034 64M. But everything still uses 4k. */
4035 #define ELF_MAXPAGESIZE 0x1000
4036 #define ELF_OSABI ELFOSABI_HPUX
4037
4038 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4039 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4040 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4041 #define elf_info_to_howto elf_hppa_info_to_howto
4042 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4043
4044 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4045 #define elf_backend_object_p elf64_hppa_object_p
4046 #define elf_backend_final_write_processing \
4047 elf_hppa_final_write_processing
4048 #define elf_backend_fake_sections elf_hppa_fake_sections
4049 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4050
4051 #define elf_backend_relocate_section elf_hppa_relocate_section
4052
4053 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4054
4055 #define elf_backend_create_dynamic_sections \
4056 elf64_hppa_create_dynamic_sections
4057 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4058
4059 #define elf_backend_omit_section_dynsym \
4060 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4061 #define elf_backend_adjust_dynamic_symbol \
4062 elf64_hppa_adjust_dynamic_symbol
4063
4064 #define elf_backend_size_dynamic_sections \
4065 elf64_hppa_size_dynamic_sections
4066
4067 #define elf_backend_finish_dynamic_symbol \
4068 elf64_hppa_finish_dynamic_symbol
4069 #define elf_backend_finish_dynamic_sections \
4070 elf64_hppa_finish_dynamic_sections
4071 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4072 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4073
4074 /* Stuff for the BFD linker: */
4075 #define bfd_elf64_bfd_link_hash_table_create \
4076 elf64_hppa_hash_table_create
4077
4078 #define elf_backend_check_relocs \
4079 elf64_hppa_check_relocs
4080
4081 #define elf_backend_size_info \
4082 hppa64_elf_size_info
4083
4084 #define elf_backend_additional_program_headers \
4085 elf64_hppa_additional_program_headers
4086
4087 #define elf_backend_modify_segment_map \
4088 elf64_hppa_modify_segment_map
4089
4090 #define elf_backend_link_output_symbol_hook \
4091 elf64_hppa_link_output_symbol_hook
4092
4093 #define elf_backend_want_got_plt 0
4094 #define elf_backend_plt_readonly 0
4095 #define elf_backend_want_plt_sym 0
4096 #define elf_backend_got_header_size 0
4097 #define elf_backend_type_change_ok TRUE
4098 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4099 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4100 #define elf_backend_rela_normal 1
4101 #define elf_backend_special_sections elf64_hppa_special_sections
4102 #define elf_backend_action_discarded elf_hppa_action_discarded
4103 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4104
4105 #define elf64_bed elf64_hppa_hpux_bed
4106
4107 #include "elf64-target.h"
4108
4109 #undef TARGET_BIG_SYM
4110 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
4111 #undef TARGET_BIG_NAME
4112 #define TARGET_BIG_NAME "elf64-hppa-linux"
4113 #undef ELF_OSABI
4114 #define ELF_OSABI ELFOSABI_LINUX
4115 #undef elf_backend_post_process_headers
4116 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4117 #undef elf64_bed
4118 #define elf64_bed elf64_hppa_linux_bed
4119
4120 #include "elf64-target.h"
This page took 0.155355 seconds and 3 git commands to generate.