Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
30
31 #define ARCH_SIZE 64
32
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
41 address.
42
43 LDD PLTOFF(%r27),%r1
44 BVE (%r1)
45 LDD PLTOFF+8(%r27),%r27
46
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
51
52 struct elf64_hppa_link_hash_entry
53 {
54 struct elf_link_hash_entry eh;
55
56 /* Offsets for this symbol in various linker sections. */
57 bfd_vma dlt_offset;
58 bfd_vma plt_offset;
59 bfd_vma opd_offset;
60 bfd_vma stub_offset;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* Number of relocs copied in this section. */
91 bfd_size_type count;
92
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
95 int sec_symndx;
96
97 /* The offset within the input section of the relocation. */
98 bfd_vma offset;
99
100 /* The addend for the relocation. */
101 bfd_vma addend;
102
103 } *reloc_entries;
104
105 /* Nonzero if this symbol needs an entry in one of the linker
106 sections. */
107 unsigned want_dlt;
108 unsigned want_plt;
109 unsigned want_opd;
110 unsigned want_stub;
111 };
112
113 struct elf64_hppa_link_hash_table
114 {
115 struct elf_link_hash_table root;
116
117 /* Shortcuts to get to the various linker defined sections. */
118 asection *dlt_sec;
119 asection *dlt_rel_sec;
120 asection *plt_sec;
121 asection *plt_rel_sec;
122 asection *opd_sec;
123 asection *opd_rel_sec;
124 asection *other_rel_sec;
125
126 /* Offset of __gp within .plt section. When the PLT gets large we want
127 to slide __gp into the PLT section so that we can continue to use
128 single DP relative instructions to load values out of the PLT. */
129 bfd_vma gp_offset;
130
131 /* Note this is not strictly correct. We should create a stub section for
132 each input section with calls. The stub section should be placed before
133 the section with the call. */
134 asection *stub_sec;
135
136 bfd_vma text_segment_base;
137 bfd_vma data_segment_base;
138
139 /* We build tables to map from an input section back to its
140 symbol index. This is the BFD for which we currently have
141 a map. */
142 bfd *section_syms_bfd;
143
144 /* Array of symbol numbers for each input section attached to the
145 current BFD. */
146 int *section_syms;
147 };
148
149 #define hppa_link_hash_table(p) \
150 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152
153 #define hppa_elf_hash_entry(ent) \
154 ((struct elf64_hppa_link_hash_entry *)(ent))
155
156 #define eh_name(eh) \
157 (eh ? eh->root.root.string : "<undef>")
158
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163 (bfd *abfd);
164
165 /* This must follow the definitions of the various derived linker
166 hash tables and shared functions. */
167 #include "elf-hppa.h"
168
169 static bfd_boolean elf64_hppa_object_p
170 (bfd *);
171
172 static bfd_boolean elf64_hppa_create_dynamic_sections
173 (bfd *, struct bfd_link_info *);
174
175 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
176 (struct bfd_link_info *, struct elf_link_hash_entry *);
177
178 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
179 (struct elf_link_hash_entry *, void *);
180
181 static bfd_boolean elf64_hppa_size_dynamic_sections
182 (bfd *, struct bfd_link_info *);
183
184 static int elf64_hppa_link_output_symbol_hook
185 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
186 asection *, struct elf_link_hash_entry *);
187
188 static bfd_boolean elf64_hppa_finish_dynamic_symbol
189 (bfd *, struct bfd_link_info *,
190 struct elf_link_hash_entry *, Elf_Internal_Sym *);
191
192 static bfd_boolean elf64_hppa_finish_dynamic_sections
193 (bfd *, struct bfd_link_info *);
194
195 static bfd_boolean elf64_hppa_check_relocs
196 (bfd *, struct bfd_link_info *,
197 asection *, const Elf_Internal_Rela *);
198
199 static bfd_boolean elf64_hppa_dynamic_symbol_p
200 (struct elf_link_hash_entry *, struct bfd_link_info *);
201
202 static bfd_boolean elf64_hppa_mark_exported_functions
203 (struct elf_link_hash_entry *, void *);
204
205 static bfd_boolean elf64_hppa_finalize_opd
206 (struct elf_link_hash_entry *, void *);
207
208 static bfd_boolean elf64_hppa_finalize_dlt
209 (struct elf_link_hash_entry *, void *);
210
211 static bfd_boolean allocate_global_data_dlt
212 (struct elf_link_hash_entry *, void *);
213
214 static bfd_boolean allocate_global_data_plt
215 (struct elf_link_hash_entry *, void *);
216
217 static bfd_boolean allocate_global_data_stub
218 (struct elf_link_hash_entry *, void *);
219
220 static bfd_boolean allocate_global_data_opd
221 (struct elf_link_hash_entry *, void *);
222
223 static bfd_boolean get_reloc_section
224 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
225
226 static bfd_boolean count_dyn_reloc
227 (bfd *, struct elf64_hppa_link_hash_entry *,
228 int, asection *, int, bfd_vma, bfd_vma);
229
230 static bfd_boolean allocate_dynrel_entries
231 (struct elf_link_hash_entry *, void *);
232
233 static bfd_boolean elf64_hppa_finalize_dynreloc
234 (struct elf_link_hash_entry *, void *);
235
236 static bfd_boolean get_opd
237 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
238
239 static bfd_boolean get_plt
240 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241
242 static bfd_boolean get_dlt
243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244
245 static bfd_boolean get_stub
246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247
248 static int elf64_hppa_elf_get_symbol_type
249 (Elf_Internal_Sym *, int);
250
251 /* Initialize an entry in the link hash table. */
252
253 static struct bfd_hash_entry *
254 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
255 struct bfd_hash_table *table,
256 const char *string)
257 {
258 /* Allocate the structure if it has not already been allocated by a
259 subclass. */
260 if (entry == NULL)
261 {
262 entry = bfd_hash_allocate (table,
263 sizeof (struct elf64_hppa_link_hash_entry));
264 if (entry == NULL)
265 return entry;
266 }
267
268 /* Call the allocation method of the superclass. */
269 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
270 if (entry != NULL)
271 {
272 struct elf64_hppa_link_hash_entry *hh;
273
274 /* Initialize our local data. All zeros. */
275 hh = hppa_elf_hash_entry (entry);
276 memset (&hh->dlt_offset, 0,
277 (sizeof (struct elf64_hppa_link_hash_entry)
278 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
279 }
280
281 return entry;
282 }
283
284 /* Create the derived linker hash table. The PA64 ELF port uses this
285 derived hash table to keep information specific to the PA ElF
286 linker (without using static variables). */
287
288 static struct bfd_link_hash_table*
289 elf64_hppa_hash_table_create (bfd *abfd)
290 {
291 struct elf64_hppa_link_hash_table *htab;
292 bfd_size_type amt = sizeof (*htab);
293
294 htab = bfd_zmalloc (amt);
295 if (htab == NULL)
296 return NULL;
297
298 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
299 hppa64_link_hash_newfunc,
300 sizeof (struct elf64_hppa_link_hash_entry),
301 HPPA64_ELF_DATA))
302 {
303 free (htab);
304 return NULL;
305 }
306
307 htab->text_segment_base = (bfd_vma) -1;
308 htab->data_segment_base = (bfd_vma) -1;
309
310 return &htab->root.root;
311 }
312 \f
313 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
314
315 Additionally we set the default architecture and machine. */
316 static bfd_boolean
317 elf64_hppa_object_p (bfd *abfd)
318 {
319 Elf_Internal_Ehdr * i_ehdrp;
320 unsigned int flags;
321
322 i_ehdrp = elf_elfheader (abfd);
323 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
324 {
325 /* GCC on hppa-linux produces binaries with OSABI=GNU,
326 but the kernel produces corefiles with OSABI=SysV. */
327 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
328 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
329 return FALSE;
330 }
331 else
332 {
333 /* HPUX produces binaries with OSABI=HPUX,
334 but the kernel produces corefiles with OSABI=SysV. */
335 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
336 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
337 return FALSE;
338 }
339
340 flags = i_ehdrp->e_flags;
341 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
342 {
343 case EFA_PARISC_1_0:
344 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
345 case EFA_PARISC_1_1:
346 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
347 case EFA_PARISC_2_0:
348 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
350 else
351 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
352 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
353 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
354 }
355 /* Don't be fussy. */
356 return TRUE;
357 }
358
359 /* Given section type (hdr->sh_type), return a boolean indicating
360 whether or not the section is an elf64-hppa specific section. */
361 static bfd_boolean
362 elf64_hppa_section_from_shdr (bfd *abfd,
363 Elf_Internal_Shdr *hdr,
364 const char *name,
365 int shindex)
366 {
367 switch (hdr->sh_type)
368 {
369 case SHT_PARISC_EXT:
370 if (strcmp (name, ".PARISC.archext") != 0)
371 return FALSE;
372 break;
373 case SHT_PARISC_UNWIND:
374 if (strcmp (name, ".PARISC.unwind") != 0)
375 return FALSE;
376 break;
377 case SHT_PARISC_DOC:
378 case SHT_PARISC_ANNOT:
379 default:
380 return FALSE;
381 }
382
383 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
384 return FALSE;
385
386 return TRUE;
387 }
388
389 /* SEC is a section containing relocs for an input BFD when linking; return
390 a suitable section for holding relocs in the output BFD for a link. */
391
392 static bfd_boolean
393 get_reloc_section (bfd *abfd,
394 struct elf64_hppa_link_hash_table *hppa_info,
395 asection *sec)
396 {
397 const char *srel_name;
398 asection *srel;
399 bfd *dynobj;
400
401 srel_name = (bfd_elf_string_from_elf_section
402 (abfd, elf_elfheader(abfd)->e_shstrndx,
403 _bfd_elf_single_rel_hdr(sec)->sh_name));
404 if (srel_name == NULL)
405 return FALSE;
406
407 dynobj = hppa_info->root.dynobj;
408 if (!dynobj)
409 hppa_info->root.dynobj = dynobj = abfd;
410
411 srel = bfd_get_linker_section (dynobj, srel_name);
412 if (srel == NULL)
413 {
414 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
415 (SEC_ALLOC
416 | SEC_LOAD
417 | SEC_HAS_CONTENTS
418 | SEC_IN_MEMORY
419 | SEC_LINKER_CREATED
420 | SEC_READONLY));
421 if (srel == NULL
422 || !bfd_set_section_alignment (srel, 3))
423 return FALSE;
424 }
425
426 hppa_info->other_rel_sec = srel;
427 return TRUE;
428 }
429
430 /* Add a new entry to the list of dynamic relocations against DYN_H.
431
432 We use this to keep a record of all the FPTR relocations against a
433 particular symbol so that we can create FPTR relocations in the
434 output file. */
435
436 static bfd_boolean
437 count_dyn_reloc (bfd *abfd,
438 struct elf64_hppa_link_hash_entry *hh,
439 int type,
440 asection *sec,
441 int sec_symndx,
442 bfd_vma offset,
443 bfd_vma addend)
444 {
445 struct elf64_hppa_dyn_reloc_entry *rent;
446
447 rent = (struct elf64_hppa_dyn_reloc_entry *)
448 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
449 if (!rent)
450 return FALSE;
451
452 rent->next = hh->reloc_entries;
453 rent->type = type;
454 rent->sec = sec;
455 rent->sec_symndx = sec_symndx;
456 rent->offset = offset;
457 rent->addend = addend;
458 hh->reloc_entries = rent;
459
460 return TRUE;
461 }
462
463 /* Return a pointer to the local DLT, PLT and OPD reference counts
464 for ABFD. Returns NULL if the storage allocation fails. */
465
466 static bfd_signed_vma *
467 hppa64_elf_local_refcounts (bfd *abfd)
468 {
469 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
470 bfd_signed_vma *local_refcounts;
471
472 local_refcounts = elf_local_got_refcounts (abfd);
473 if (local_refcounts == NULL)
474 {
475 bfd_size_type size;
476
477 /* Allocate space for local DLT, PLT and OPD reference
478 counts. Done this way to save polluting elf_obj_tdata
479 with another target specific pointer. */
480 size = symtab_hdr->sh_info;
481 size *= 3 * sizeof (bfd_signed_vma);
482 local_refcounts = bfd_zalloc (abfd, size);
483 elf_local_got_refcounts (abfd) = local_refcounts;
484 }
485 return local_refcounts;
486 }
487
488 /* Scan the RELOCS and record the type of dynamic entries that each
489 referenced symbol needs. */
490
491 static bfd_boolean
492 elf64_hppa_check_relocs (bfd *abfd,
493 struct bfd_link_info *info,
494 asection *sec,
495 const Elf_Internal_Rela *relocs)
496 {
497 struct elf64_hppa_link_hash_table *hppa_info;
498 const Elf_Internal_Rela *relend;
499 Elf_Internal_Shdr *symtab_hdr;
500 const Elf_Internal_Rela *rel;
501 unsigned int sec_symndx;
502
503 if (bfd_link_relocatable (info))
504 return TRUE;
505
506 /* If this is the first dynamic object found in the link, create
507 the special sections required for dynamic linking. */
508 if (! elf_hash_table (info)->dynamic_sections_created)
509 {
510 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
511 return FALSE;
512 }
513
514 hppa_info = hppa_link_hash_table (info);
515 if (hppa_info == NULL)
516 return FALSE;
517 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
518
519 /* If necessary, build a new table holding section symbols indices
520 for this BFD. */
521
522 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
523 {
524 unsigned long i;
525 unsigned int highest_shndx;
526 Elf_Internal_Sym *local_syms = NULL;
527 Elf_Internal_Sym *isym, *isymend;
528 bfd_size_type amt;
529
530 /* We're done with the old cache of section index to section symbol
531 index information. Free it.
532
533 ?!? Note we leak the last section_syms array. Presumably we
534 could free it in one of the later routines in this file. */
535 if (hppa_info->section_syms)
536 free (hppa_info->section_syms);
537
538 /* Read this BFD's local symbols. */
539 if (symtab_hdr->sh_info != 0)
540 {
541 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
542 if (local_syms == NULL)
543 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
544 symtab_hdr->sh_info, 0,
545 NULL, NULL, NULL);
546 if (local_syms == NULL)
547 return FALSE;
548 }
549
550 /* Record the highest section index referenced by the local symbols. */
551 highest_shndx = 0;
552 isymend = local_syms + symtab_hdr->sh_info;
553 for (isym = local_syms; isym < isymend; isym++)
554 {
555 if (isym->st_shndx > highest_shndx
556 && isym->st_shndx < SHN_LORESERVE)
557 highest_shndx = isym->st_shndx;
558 }
559
560 /* Allocate an array to hold the section index to section symbol index
561 mapping. Bump by one since we start counting at zero. */
562 highest_shndx++;
563 amt = highest_shndx;
564 amt *= sizeof (int);
565 hppa_info->section_syms = (int *) bfd_malloc (amt);
566
567 /* Now walk the local symbols again. If we find a section symbol,
568 record the index of the symbol into the section_syms array. */
569 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
570 {
571 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
572 hppa_info->section_syms[isym->st_shndx] = i;
573 }
574
575 /* We are finished with the local symbols. */
576 if (local_syms != NULL
577 && symtab_hdr->contents != (unsigned char *) local_syms)
578 {
579 if (! info->keep_memory)
580 free (local_syms);
581 else
582 {
583 /* Cache the symbols for elf_link_input_bfd. */
584 symtab_hdr->contents = (unsigned char *) local_syms;
585 }
586 }
587
588 /* Record which BFD we built the section_syms mapping for. */
589 hppa_info->section_syms_bfd = abfd;
590 }
591
592 /* Record the symbol index for this input section. We may need it for
593 relocations when building shared libraries. When not building shared
594 libraries this value is never really used, but assign it to zero to
595 prevent out of bounds memory accesses in other routines. */
596 if (bfd_link_pic (info))
597 {
598 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
599
600 /* If we did not find a section symbol for this section, then
601 something went terribly wrong above. */
602 if (sec_symndx == SHN_BAD)
603 return FALSE;
604
605 if (sec_symndx < SHN_LORESERVE)
606 sec_symndx = hppa_info->section_syms[sec_symndx];
607 else
608 sec_symndx = 0;
609 }
610 else
611 sec_symndx = 0;
612
613 relend = relocs + sec->reloc_count;
614 for (rel = relocs; rel < relend; ++rel)
615 {
616 enum
617 {
618 NEED_DLT = 1,
619 NEED_PLT = 2,
620 NEED_STUB = 4,
621 NEED_OPD = 8,
622 NEED_DYNREL = 16,
623 };
624
625 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
626 struct elf64_hppa_link_hash_entry *hh;
627 int need_entry;
628 bfd_boolean maybe_dynamic;
629 int dynrel_type = R_PARISC_NONE;
630 static reloc_howto_type *howto;
631
632 if (r_symndx >= symtab_hdr->sh_info)
633 {
634 /* We're dealing with a global symbol -- find its hash entry
635 and mark it as being referenced. */
636 long indx = r_symndx - symtab_hdr->sh_info;
637 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
638 while (hh->eh.root.type == bfd_link_hash_indirect
639 || hh->eh.root.type == bfd_link_hash_warning)
640 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
641
642 /* PR15323, ref flags aren't set for references in the same
643 object. */
644 hh->eh.ref_regular = 1;
645 }
646 else
647 hh = NULL;
648
649 /* We can only get preliminary data on whether a symbol is
650 locally or externally defined, as not all of the input files
651 have yet been processed. Do something with what we know, as
652 this may help reduce memory usage and processing time later. */
653 maybe_dynamic = FALSE;
654 if (hh && ((bfd_link_pic (info)
655 && (!info->symbolic
656 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
657 || !hh->eh.def_regular
658 || hh->eh.root.type == bfd_link_hash_defweak))
659 maybe_dynamic = TRUE;
660
661 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
662 need_entry = 0;
663 switch (howto->type)
664 {
665 /* These are simple indirect references to symbols through the
666 DLT. We need to create a DLT entry for any symbols which
667 appears in a DLTIND relocation. */
668 case R_PARISC_DLTIND21L:
669 case R_PARISC_DLTIND14R:
670 case R_PARISC_DLTIND14F:
671 case R_PARISC_DLTIND14WR:
672 case R_PARISC_DLTIND14DR:
673 need_entry = NEED_DLT;
674 break;
675
676 /* ?!? These need a DLT entry. But I have no idea what to do with
677 the "link time TP value. */
678 case R_PARISC_LTOFF_TP21L:
679 case R_PARISC_LTOFF_TP14R:
680 case R_PARISC_LTOFF_TP14F:
681 case R_PARISC_LTOFF_TP64:
682 case R_PARISC_LTOFF_TP14WR:
683 case R_PARISC_LTOFF_TP14DR:
684 case R_PARISC_LTOFF_TP16F:
685 case R_PARISC_LTOFF_TP16WF:
686 case R_PARISC_LTOFF_TP16DF:
687 need_entry = NEED_DLT;
688 break;
689
690 /* These are function calls. Depending on their precise target we
691 may need to make a stub for them. The stub uses the PLT, so we
692 need to create PLT entries for these symbols too. */
693 case R_PARISC_PCREL12F:
694 case R_PARISC_PCREL17F:
695 case R_PARISC_PCREL22F:
696 case R_PARISC_PCREL32:
697 case R_PARISC_PCREL64:
698 case R_PARISC_PCREL21L:
699 case R_PARISC_PCREL17R:
700 case R_PARISC_PCREL17C:
701 case R_PARISC_PCREL14R:
702 case R_PARISC_PCREL14F:
703 case R_PARISC_PCREL22C:
704 case R_PARISC_PCREL14WR:
705 case R_PARISC_PCREL14DR:
706 case R_PARISC_PCREL16F:
707 case R_PARISC_PCREL16WF:
708 case R_PARISC_PCREL16DF:
709 /* Function calls might need to go through the .plt, and
710 might need a long branch stub. */
711 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
712 need_entry = (NEED_PLT | NEED_STUB);
713 else
714 need_entry = 0;
715 break;
716
717 case R_PARISC_PLTOFF21L:
718 case R_PARISC_PLTOFF14R:
719 case R_PARISC_PLTOFF14F:
720 case R_PARISC_PLTOFF14WR:
721 case R_PARISC_PLTOFF14DR:
722 case R_PARISC_PLTOFF16F:
723 case R_PARISC_PLTOFF16WF:
724 case R_PARISC_PLTOFF16DF:
725 need_entry = (NEED_PLT);
726 break;
727
728 case R_PARISC_DIR64:
729 if (bfd_link_pic (info) || maybe_dynamic)
730 need_entry = (NEED_DYNREL);
731 dynrel_type = R_PARISC_DIR64;
732 break;
733
734 /* This is an indirect reference through the DLT to get the address
735 of a OPD descriptor. Thus we need to make a DLT entry that points
736 to an OPD entry. */
737 case R_PARISC_LTOFF_FPTR21L:
738 case R_PARISC_LTOFF_FPTR14R:
739 case R_PARISC_LTOFF_FPTR14WR:
740 case R_PARISC_LTOFF_FPTR14DR:
741 case R_PARISC_LTOFF_FPTR32:
742 case R_PARISC_LTOFF_FPTR64:
743 case R_PARISC_LTOFF_FPTR16F:
744 case R_PARISC_LTOFF_FPTR16WF:
745 case R_PARISC_LTOFF_FPTR16DF:
746 if (bfd_link_pic (info) || maybe_dynamic)
747 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
748 else
749 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
750 dynrel_type = R_PARISC_FPTR64;
751 break;
752
753 /* This is a simple OPD entry. */
754 case R_PARISC_FPTR64:
755 if (bfd_link_pic (info) || maybe_dynamic)
756 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
757 else
758 need_entry = (NEED_OPD | NEED_PLT);
759 dynrel_type = R_PARISC_FPTR64;
760 break;
761
762 /* Add more cases as needed. */
763 }
764
765 if (!need_entry)
766 continue;
767
768 if (hh)
769 {
770 /* Stash away enough information to be able to find this symbol
771 regardless of whether or not it is local or global. */
772 hh->owner = abfd;
773 hh->sym_indx = r_symndx;
774 }
775
776 /* Create what's needed. */
777 if (need_entry & NEED_DLT)
778 {
779 /* Allocate space for a DLT entry, as well as a dynamic
780 relocation for this entry. */
781 if (! hppa_info->dlt_sec
782 && ! get_dlt (abfd, info, hppa_info))
783 goto err_out;
784
785 if (hh != NULL)
786 {
787 hh->want_dlt = 1;
788 hh->eh.got.refcount += 1;
789 }
790 else
791 {
792 bfd_signed_vma *local_dlt_refcounts;
793
794 /* This is a DLT entry for a local symbol. */
795 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
796 if (local_dlt_refcounts == NULL)
797 return FALSE;
798 local_dlt_refcounts[r_symndx] += 1;
799 }
800 }
801
802 if (need_entry & NEED_PLT)
803 {
804 if (! hppa_info->plt_sec
805 && ! get_plt (abfd, info, hppa_info))
806 goto err_out;
807
808 if (hh != NULL)
809 {
810 hh->want_plt = 1;
811 hh->eh.needs_plt = 1;
812 hh->eh.plt.refcount += 1;
813 }
814 else
815 {
816 bfd_signed_vma *local_dlt_refcounts;
817 bfd_signed_vma *local_plt_refcounts;
818
819 /* This is a PLT entry for a local symbol. */
820 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
821 if (local_dlt_refcounts == NULL)
822 return FALSE;
823 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
824 local_plt_refcounts[r_symndx] += 1;
825 }
826 }
827
828 if (need_entry & NEED_STUB)
829 {
830 if (! hppa_info->stub_sec
831 && ! get_stub (abfd, info, hppa_info))
832 goto err_out;
833 if (hh)
834 hh->want_stub = 1;
835 }
836
837 if (need_entry & NEED_OPD)
838 {
839 if (! hppa_info->opd_sec
840 && ! get_opd (abfd, info, hppa_info))
841 goto err_out;
842
843 /* FPTRs are not allocated by the dynamic linker for PA64,
844 though it is possible that will change in the future. */
845
846 if (hh != NULL)
847 hh->want_opd = 1;
848 else
849 {
850 bfd_signed_vma *local_dlt_refcounts;
851 bfd_signed_vma *local_opd_refcounts;
852
853 /* This is a OPD for a local symbol. */
854 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
855 if (local_dlt_refcounts == NULL)
856 return FALSE;
857 local_opd_refcounts = (local_dlt_refcounts
858 + 2 * symtab_hdr->sh_info);
859 local_opd_refcounts[r_symndx] += 1;
860 }
861 }
862
863 /* Add a new dynamic relocation to the chain of dynamic
864 relocations for this symbol. */
865 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
866 {
867 if (! hppa_info->other_rel_sec
868 && ! get_reloc_section (abfd, hppa_info, sec))
869 goto err_out;
870
871 /* Count dynamic relocations against global symbols. */
872 if (hh != NULL
873 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
874 sec_symndx, rel->r_offset, rel->r_addend))
875 goto err_out;
876
877 /* If we are building a shared library and we just recorded
878 a dynamic R_PARISC_FPTR64 relocation, then make sure the
879 section symbol for this section ends up in the dynamic
880 symbol table. */
881 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
882 && ! (bfd_elf_link_record_local_dynamic_symbol
883 (info, abfd, sec_symndx)))
884 return FALSE;
885 }
886 }
887
888 return TRUE;
889
890 err_out:
891 return FALSE;
892 }
893
894 struct elf64_hppa_allocate_data
895 {
896 struct bfd_link_info *info;
897 bfd_size_type ofs;
898 };
899
900 /* Should we do dynamic things to this symbol? */
901
902 static bfd_boolean
903 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
904 struct bfd_link_info *info)
905 {
906 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
907 and relocations that retrieve a function descriptor? Assume the
908 worst for now. */
909 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
910 {
911 /* ??? Why is this here and not elsewhere is_local_label_name. */
912 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
913 return FALSE;
914
915 return TRUE;
916 }
917 else
918 return FALSE;
919 }
920
921 /* Mark all functions exported by this file so that we can later allocate
922 entries in .opd for them. */
923
924 static bfd_boolean
925 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
926 {
927 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
928 struct bfd_link_info *info = (struct bfd_link_info *)data;
929 struct elf64_hppa_link_hash_table *hppa_info;
930
931 hppa_info = hppa_link_hash_table (info);
932 if (hppa_info == NULL)
933 return FALSE;
934
935 if (eh
936 && (eh->root.type == bfd_link_hash_defined
937 || eh->root.type == bfd_link_hash_defweak)
938 && eh->root.u.def.section->output_section != NULL
939 && eh->type == STT_FUNC)
940 {
941 if (! hppa_info->opd_sec
942 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
943 return FALSE;
944
945 hh->want_opd = 1;
946
947 /* Put a flag here for output_symbol_hook. */
948 hh->st_shndx = -1;
949 eh->needs_plt = 1;
950 }
951
952 return TRUE;
953 }
954
955 /* Allocate space for a DLT entry. */
956
957 static bfd_boolean
958 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
959 {
960 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
961 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
962
963 if (hh->want_dlt)
964 {
965 if (bfd_link_pic (x->info))
966 {
967 /* Possibly add the symbol to the local dynamic symbol
968 table since we might need to create a dynamic relocation
969 against it. */
970 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
971 {
972 bfd *owner = eh->root.u.def.section->owner;
973
974 if (! (bfd_elf_link_record_local_dynamic_symbol
975 (x->info, owner, hh->sym_indx)))
976 return FALSE;
977 }
978 }
979
980 hh->dlt_offset = x->ofs;
981 x->ofs += DLT_ENTRY_SIZE;
982 }
983 return TRUE;
984 }
985
986 /* Allocate space for a DLT.PLT entry. */
987
988 static bfd_boolean
989 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
990 {
991 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
992 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
993
994 if (hh->want_plt
995 && elf64_hppa_dynamic_symbol_p (eh, x->info)
996 && !((eh->root.type == bfd_link_hash_defined
997 || eh->root.type == bfd_link_hash_defweak)
998 && eh->root.u.def.section->output_section != NULL))
999 {
1000 hh->plt_offset = x->ofs;
1001 x->ofs += PLT_ENTRY_SIZE;
1002 if (hh->plt_offset < 0x2000)
1003 {
1004 struct elf64_hppa_link_hash_table *hppa_info;
1005
1006 hppa_info = hppa_link_hash_table (x->info);
1007 if (hppa_info == NULL)
1008 return FALSE;
1009
1010 hppa_info->gp_offset = hh->plt_offset;
1011 }
1012 }
1013 else
1014 hh->want_plt = 0;
1015
1016 return TRUE;
1017 }
1018
1019 /* Allocate space for a STUB entry. */
1020
1021 static bfd_boolean
1022 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1023 {
1024 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1025 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1026
1027 if (hh->want_stub
1028 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1029 && !((eh->root.type == bfd_link_hash_defined
1030 || eh->root.type == bfd_link_hash_defweak)
1031 && eh->root.u.def.section->output_section != NULL))
1032 {
1033 hh->stub_offset = x->ofs;
1034 x->ofs += sizeof (plt_stub);
1035 }
1036 else
1037 hh->want_stub = 0;
1038 return TRUE;
1039 }
1040
1041 /* Allocate space for a FPTR entry. */
1042
1043 static bfd_boolean
1044 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1045 {
1046 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1047 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1048
1049 if (hh && hh->want_opd)
1050 {
1051 /* We never need an opd entry for a symbol which is not
1052 defined by this output file. */
1053 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1054 || hh->eh.root.type == bfd_link_hash_undefweak
1055 || hh->eh.root.u.def.section->output_section == NULL))
1056 hh->want_opd = 0;
1057
1058 /* If we are creating a shared library, took the address of a local
1059 function or might export this function from this object file, then
1060 we have to create an opd descriptor. */
1061 else if (bfd_link_pic (x->info)
1062 || hh == NULL
1063 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1064 || (hh->eh.root.type == bfd_link_hash_defined
1065 || hh->eh.root.type == bfd_link_hash_defweak))
1066 {
1067 /* If we are creating a shared library, then we will have to
1068 create a runtime relocation for the symbol to properly
1069 initialize the .opd entry. Make sure the symbol gets
1070 added to the dynamic symbol table. */
1071 if (bfd_link_pic (x->info)
1072 && (hh == NULL || (hh->eh.dynindx == -1)))
1073 {
1074 bfd *owner;
1075 /* PR 6511: Default to using the dynamic symbol table. */
1076 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1077
1078 if (!bfd_elf_link_record_local_dynamic_symbol
1079 (x->info, owner, hh->sym_indx))
1080 return FALSE;
1081 }
1082
1083 /* This may not be necessary or desirable anymore now that
1084 we have some support for dealing with section symbols
1085 in dynamic relocs. But name munging does make the result
1086 much easier to debug. ie, the EPLT reloc will reference
1087 a symbol like .foobar, instead of .text + offset. */
1088 if (bfd_link_pic (x->info) && eh)
1089 {
1090 char *new_name;
1091 struct elf_link_hash_entry *nh;
1092
1093 new_name = concat (".", eh->root.root.string, NULL);
1094
1095 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1096 new_name, TRUE, TRUE, TRUE);
1097
1098 free (new_name);
1099 nh->root.type = eh->root.type;
1100 nh->root.u.def.value = eh->root.u.def.value;
1101 nh->root.u.def.section = eh->root.u.def.section;
1102
1103 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1104 return FALSE;
1105 }
1106 hh->opd_offset = x->ofs;
1107 x->ofs += OPD_ENTRY_SIZE;
1108 }
1109
1110 /* Otherwise we do not need an opd entry. */
1111 else
1112 hh->want_opd = 0;
1113 }
1114 return TRUE;
1115 }
1116
1117 /* HP requires the EI_OSABI field to be filled in. The assignment to
1118 EI_ABIVERSION may not be strictly necessary. */
1119
1120 static bfd_boolean
1121 elf64_hppa_init_file_header (bfd *abfd, struct bfd_link_info *info)
1122 {
1123 Elf_Internal_Ehdr *i_ehdrp;
1124
1125 if (!_bfd_elf_init_file_header (abfd, info))
1126 return FALSE;
1127
1128 i_ehdrp = elf_elfheader (abfd);
1129 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1130 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1131 return TRUE;
1132 }
1133
1134 /* Create function descriptor section (.opd). This section is called .opd
1135 because it contains "official procedure descriptors". The "official"
1136 refers to the fact that these descriptors are used when taking the address
1137 of a procedure, thus ensuring a unique address for each procedure. */
1138
1139 static bfd_boolean
1140 get_opd (bfd *abfd,
1141 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1142 struct elf64_hppa_link_hash_table *hppa_info)
1143 {
1144 asection *opd;
1145 bfd *dynobj;
1146
1147 opd = hppa_info->opd_sec;
1148 if (!opd)
1149 {
1150 dynobj = hppa_info->root.dynobj;
1151 if (!dynobj)
1152 hppa_info->root.dynobj = dynobj = abfd;
1153
1154 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1155 (SEC_ALLOC
1156 | SEC_LOAD
1157 | SEC_HAS_CONTENTS
1158 | SEC_IN_MEMORY
1159 | SEC_LINKER_CREATED));
1160 if (!opd
1161 || !bfd_set_section_alignment (opd, 3))
1162 {
1163 BFD_ASSERT (0);
1164 return FALSE;
1165 }
1166
1167 hppa_info->opd_sec = opd;
1168 }
1169
1170 return TRUE;
1171 }
1172
1173 /* Create the PLT section. */
1174
1175 static bfd_boolean
1176 get_plt (bfd *abfd,
1177 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1178 struct elf64_hppa_link_hash_table *hppa_info)
1179 {
1180 asection *plt;
1181 bfd *dynobj;
1182
1183 plt = hppa_info->plt_sec;
1184 if (!plt)
1185 {
1186 dynobj = hppa_info->root.dynobj;
1187 if (!dynobj)
1188 hppa_info->root.dynobj = dynobj = abfd;
1189
1190 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1191 (SEC_ALLOC
1192 | SEC_LOAD
1193 | SEC_HAS_CONTENTS
1194 | SEC_IN_MEMORY
1195 | SEC_LINKER_CREATED));
1196 if (!plt
1197 || !bfd_set_section_alignment (plt, 3))
1198 {
1199 BFD_ASSERT (0);
1200 return FALSE;
1201 }
1202
1203 hppa_info->plt_sec = plt;
1204 }
1205
1206 return TRUE;
1207 }
1208
1209 /* Create the DLT section. */
1210
1211 static bfd_boolean
1212 get_dlt (bfd *abfd,
1213 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1214 struct elf64_hppa_link_hash_table *hppa_info)
1215 {
1216 asection *dlt;
1217 bfd *dynobj;
1218
1219 dlt = hppa_info->dlt_sec;
1220 if (!dlt)
1221 {
1222 dynobj = hppa_info->root.dynobj;
1223 if (!dynobj)
1224 hppa_info->root.dynobj = dynobj = abfd;
1225
1226 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1227 (SEC_ALLOC
1228 | SEC_LOAD
1229 | SEC_HAS_CONTENTS
1230 | SEC_IN_MEMORY
1231 | SEC_LINKER_CREATED));
1232 if (!dlt
1233 || !bfd_set_section_alignment (dlt, 3))
1234 {
1235 BFD_ASSERT (0);
1236 return FALSE;
1237 }
1238
1239 hppa_info->dlt_sec = dlt;
1240 }
1241
1242 return TRUE;
1243 }
1244
1245 /* Create the stubs section. */
1246
1247 static bfd_boolean
1248 get_stub (bfd *abfd,
1249 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1250 struct elf64_hppa_link_hash_table *hppa_info)
1251 {
1252 asection *stub;
1253 bfd *dynobj;
1254
1255 stub = hppa_info->stub_sec;
1256 if (!stub)
1257 {
1258 dynobj = hppa_info->root.dynobj;
1259 if (!dynobj)
1260 hppa_info->root.dynobj = dynobj = abfd;
1261
1262 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1263 (SEC_ALLOC | SEC_LOAD
1264 | SEC_HAS_CONTENTS
1265 | SEC_IN_MEMORY
1266 | SEC_READONLY
1267 | SEC_LINKER_CREATED));
1268 if (!stub
1269 || !bfd_set_section_alignment (stub, 3))
1270 {
1271 BFD_ASSERT (0);
1272 return FALSE;
1273 }
1274
1275 hppa_info->stub_sec = stub;
1276 }
1277
1278 return TRUE;
1279 }
1280
1281 /* Create sections necessary for dynamic linking. This is only a rough
1282 cut and will likely change as we learn more about the somewhat
1283 unusual dynamic linking scheme HP uses.
1284
1285 .stub:
1286 Contains code to implement cross-space calls. The first time one
1287 of the stubs is used it will call into the dynamic linker, later
1288 calls will go straight to the target.
1289
1290 The only stub we support right now looks like
1291
1292 ldd OFFSET(%dp),%r1
1293 bve %r0(%r1)
1294 ldd OFFSET+8(%dp),%dp
1295
1296 Other stubs may be needed in the future. We may want the remove
1297 the break/nop instruction. It is only used right now to keep the
1298 offset of a .plt entry and a .stub entry in sync.
1299
1300 .dlt:
1301 This is what most people call the .got. HP used a different name.
1302 Losers.
1303
1304 .rela.dlt:
1305 Relocations for the DLT.
1306
1307 .plt:
1308 Function pointers as address,gp pairs.
1309
1310 .rela.plt:
1311 Should contain dynamic IPLT (and EPLT?) relocations.
1312
1313 .opd:
1314 FPTRS
1315
1316 .rela.opd:
1317 EPLT relocations for symbols exported from shared libraries. */
1318
1319 static bfd_boolean
1320 elf64_hppa_create_dynamic_sections (bfd *abfd,
1321 struct bfd_link_info *info)
1322 {
1323 asection *s;
1324 struct elf64_hppa_link_hash_table *hppa_info;
1325
1326 hppa_info = hppa_link_hash_table (info);
1327 if (hppa_info == NULL)
1328 return FALSE;
1329
1330 if (! get_stub (abfd, info, hppa_info))
1331 return FALSE;
1332
1333 if (! get_dlt (abfd, info, hppa_info))
1334 return FALSE;
1335
1336 if (! get_plt (abfd, info, hppa_info))
1337 return FALSE;
1338
1339 if (! get_opd (abfd, info, hppa_info))
1340 return FALSE;
1341
1342 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1343 (SEC_ALLOC | SEC_LOAD
1344 | SEC_HAS_CONTENTS
1345 | SEC_IN_MEMORY
1346 | SEC_READONLY
1347 | SEC_LINKER_CREATED));
1348 if (s == NULL
1349 || !bfd_set_section_alignment (s, 3))
1350 return FALSE;
1351 hppa_info->dlt_rel_sec = s;
1352
1353 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1354 (SEC_ALLOC | SEC_LOAD
1355 | SEC_HAS_CONTENTS
1356 | SEC_IN_MEMORY
1357 | SEC_READONLY
1358 | SEC_LINKER_CREATED));
1359 if (s == NULL
1360 || !bfd_set_section_alignment (s, 3))
1361 return FALSE;
1362 hppa_info->plt_rel_sec = s;
1363
1364 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1365 (SEC_ALLOC | SEC_LOAD
1366 | SEC_HAS_CONTENTS
1367 | SEC_IN_MEMORY
1368 | SEC_READONLY
1369 | SEC_LINKER_CREATED));
1370 if (s == NULL
1371 || !bfd_set_section_alignment (s, 3))
1372 return FALSE;
1373 hppa_info->other_rel_sec = s;
1374
1375 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1376 (SEC_ALLOC | SEC_LOAD
1377 | SEC_HAS_CONTENTS
1378 | SEC_IN_MEMORY
1379 | SEC_READONLY
1380 | SEC_LINKER_CREATED));
1381 if (s == NULL
1382 || !bfd_set_section_alignment (s, 3))
1383 return FALSE;
1384 hppa_info->opd_rel_sec = s;
1385
1386 return TRUE;
1387 }
1388
1389 /* Allocate dynamic relocations for those symbols that turned out
1390 to be dynamic. */
1391
1392 static bfd_boolean
1393 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1394 {
1395 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1396 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1397 struct elf64_hppa_link_hash_table *hppa_info;
1398 struct elf64_hppa_dyn_reloc_entry *rent;
1399 bfd_boolean dynamic_symbol, shared;
1400
1401 hppa_info = hppa_link_hash_table (x->info);
1402 if (hppa_info == NULL)
1403 return FALSE;
1404
1405 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1406 shared = bfd_link_pic (x->info);
1407
1408 /* We may need to allocate relocations for a non-dynamic symbol
1409 when creating a shared library. */
1410 if (!dynamic_symbol && !shared)
1411 return TRUE;
1412
1413 /* Take care of the normal data relocations. */
1414
1415 for (rent = hh->reloc_entries; rent; rent = rent->next)
1416 {
1417 /* Allocate one iff we are building a shared library, the relocation
1418 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1419 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1420 continue;
1421
1422 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1423
1424 /* Make sure this symbol gets into the dynamic symbol table if it is
1425 not already recorded. ?!? This should not be in the loop since
1426 the symbol need only be added once. */
1427 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1428 if (!bfd_elf_link_record_local_dynamic_symbol
1429 (x->info, rent->sec->owner, hh->sym_indx))
1430 return FALSE;
1431 }
1432
1433 /* Take care of the GOT and PLT relocations. */
1434
1435 if ((dynamic_symbol || shared) && hh->want_dlt)
1436 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1437
1438 /* If we are building a shared library, then every symbol that has an
1439 opd entry will need an EPLT relocation to relocate the symbol's address
1440 and __gp value based on the runtime load address. */
1441 if (shared && hh->want_opd)
1442 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1443
1444 if (hh->want_plt && dynamic_symbol)
1445 {
1446 bfd_size_type t = 0;
1447
1448 /* Dynamic symbols get one IPLT relocation. Local symbols in
1449 shared libraries get two REL relocations. Local symbols in
1450 main applications get nothing. */
1451 if (dynamic_symbol)
1452 t = sizeof (Elf64_External_Rela);
1453 else if (shared)
1454 t = 2 * sizeof (Elf64_External_Rela);
1455
1456 hppa_info->plt_rel_sec->size += t;
1457 }
1458
1459 return TRUE;
1460 }
1461
1462 /* Adjust a symbol defined by a dynamic object and referenced by a
1463 regular object. */
1464
1465 static bfd_boolean
1466 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1467 struct elf_link_hash_entry *eh)
1468 {
1469 /* ??? Undefined symbols with PLT entries should be re-defined
1470 to be the PLT entry. */
1471
1472 /* If this is a weak symbol, and there is a real definition, the
1473 processor independent code will have arranged for us to see the
1474 real definition first, and we can just use the same value. */
1475 if (eh->is_weakalias)
1476 {
1477 struct elf_link_hash_entry *def = weakdef (eh);
1478 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
1479 eh->root.u.def.section = def->root.u.def.section;
1480 eh->root.u.def.value = def->root.u.def.value;
1481 return TRUE;
1482 }
1483
1484 /* If this is a reference to a symbol defined by a dynamic object which
1485 is not a function, we might allocate the symbol in our .dynbss section
1486 and allocate a COPY dynamic relocation.
1487
1488 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1489 of hackery. */
1490
1491 return TRUE;
1492 }
1493
1494 /* This function is called via elf_link_hash_traverse to mark millicode
1495 symbols with a dynindx of -1 and to remove the string table reference
1496 from the dynamic symbol table. If the symbol is not a millicode symbol,
1497 elf64_hppa_mark_exported_functions is called. */
1498
1499 static bfd_boolean
1500 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1501 void *data)
1502 {
1503 struct bfd_link_info *info = (struct bfd_link_info *) data;
1504
1505 if (eh->type == STT_PARISC_MILLI)
1506 {
1507 if (eh->dynindx != -1)
1508 {
1509 eh->dynindx = -1;
1510 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1511 eh->dynstr_index);
1512 }
1513 return TRUE;
1514 }
1515
1516 return elf64_hppa_mark_exported_functions (eh, data);
1517 }
1518
1519 /* Set the final sizes of the dynamic sections and allocate memory for
1520 the contents of our special sections. */
1521
1522 static bfd_boolean
1523 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1524 {
1525 struct elf64_hppa_link_hash_table *hppa_info;
1526 struct elf64_hppa_allocate_data data;
1527 bfd *dynobj;
1528 bfd *ibfd;
1529 asection *sec;
1530 bfd_boolean plt;
1531 bfd_boolean relocs;
1532 bfd_boolean reltext;
1533
1534 hppa_info = hppa_link_hash_table (info);
1535 if (hppa_info == NULL)
1536 return FALSE;
1537
1538 dynobj = hppa_info->root.dynobj;
1539 BFD_ASSERT (dynobj != NULL);
1540
1541 /* Mark each function this program exports so that we will allocate
1542 space in the .opd section for each function's FPTR. If we are
1543 creating dynamic sections, change the dynamic index of millicode
1544 symbols to -1 and remove them from the string table for .dynstr.
1545
1546 We have to traverse the main linker hash table since we have to
1547 find functions which may not have been mentioned in any relocs. */
1548 elf_link_hash_traverse (&hppa_info->root,
1549 (hppa_info->root.dynamic_sections_created
1550 ? elf64_hppa_mark_milli_and_exported_functions
1551 : elf64_hppa_mark_exported_functions),
1552 info);
1553
1554 if (hppa_info->root.dynamic_sections_created)
1555 {
1556 /* Set the contents of the .interp section to the interpreter. */
1557 if (bfd_link_executable (info) && !info->nointerp)
1558 {
1559 sec = bfd_get_linker_section (dynobj, ".interp");
1560 BFD_ASSERT (sec != NULL);
1561 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1562 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1563 }
1564 }
1565 else
1566 {
1567 /* We may have created entries in the .rela.got section.
1568 However, if we are not creating the dynamic sections, we will
1569 not actually use these entries. Reset the size of .rela.dlt,
1570 which will cause it to get stripped from the output file
1571 below. */
1572 sec = hppa_info->dlt_rel_sec;
1573 if (sec != NULL)
1574 sec->size = 0;
1575 }
1576
1577 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1578 dynamic relocs. */
1579 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1580 {
1581 bfd_signed_vma *local_dlt;
1582 bfd_signed_vma *end_local_dlt;
1583 bfd_signed_vma *local_plt;
1584 bfd_signed_vma *end_local_plt;
1585 bfd_signed_vma *local_opd;
1586 bfd_signed_vma *end_local_opd;
1587 bfd_size_type locsymcount;
1588 Elf_Internal_Shdr *symtab_hdr;
1589 asection *srel;
1590
1591 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1592 continue;
1593
1594 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1595 {
1596 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1597
1598 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1599 elf_section_data (sec)->local_dynrel);
1600 hdh_p != NULL;
1601 hdh_p = hdh_p->next)
1602 {
1603 if (!bfd_is_abs_section (hdh_p->sec)
1604 && bfd_is_abs_section (hdh_p->sec->output_section))
1605 {
1606 /* Input section has been discarded, either because
1607 it is a copy of a linkonce section or due to
1608 linker script /DISCARD/, so we'll be discarding
1609 the relocs too. */
1610 }
1611 else if (hdh_p->count != 0)
1612 {
1613 srel = elf_section_data (hdh_p->sec)->sreloc;
1614 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1615 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1616 info->flags |= DF_TEXTREL;
1617 }
1618 }
1619 }
1620
1621 local_dlt = elf_local_got_refcounts (ibfd);
1622 if (!local_dlt)
1623 continue;
1624
1625 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1626 locsymcount = symtab_hdr->sh_info;
1627 end_local_dlt = local_dlt + locsymcount;
1628 sec = hppa_info->dlt_sec;
1629 srel = hppa_info->dlt_rel_sec;
1630 for (; local_dlt < end_local_dlt; ++local_dlt)
1631 {
1632 if (*local_dlt > 0)
1633 {
1634 *local_dlt = sec->size;
1635 sec->size += DLT_ENTRY_SIZE;
1636 if (bfd_link_pic (info))
1637 {
1638 srel->size += sizeof (Elf64_External_Rela);
1639 }
1640 }
1641 else
1642 *local_dlt = (bfd_vma) -1;
1643 }
1644
1645 local_plt = end_local_dlt;
1646 end_local_plt = local_plt + locsymcount;
1647 if (! hppa_info->root.dynamic_sections_created)
1648 {
1649 /* Won't be used, but be safe. */
1650 for (; local_plt < end_local_plt; ++local_plt)
1651 *local_plt = (bfd_vma) -1;
1652 }
1653 else
1654 {
1655 sec = hppa_info->plt_sec;
1656 srel = hppa_info->plt_rel_sec;
1657 for (; local_plt < end_local_plt; ++local_plt)
1658 {
1659 if (*local_plt > 0)
1660 {
1661 *local_plt = sec->size;
1662 sec->size += PLT_ENTRY_SIZE;
1663 if (bfd_link_pic (info))
1664 srel->size += sizeof (Elf64_External_Rela);
1665 }
1666 else
1667 *local_plt = (bfd_vma) -1;
1668 }
1669 }
1670
1671 local_opd = end_local_plt;
1672 end_local_opd = local_opd + locsymcount;
1673 if (! hppa_info->root.dynamic_sections_created)
1674 {
1675 /* Won't be used, but be safe. */
1676 for (; local_opd < end_local_opd; ++local_opd)
1677 *local_opd = (bfd_vma) -1;
1678 }
1679 else
1680 {
1681 sec = hppa_info->opd_sec;
1682 srel = hppa_info->opd_rel_sec;
1683 for (; local_opd < end_local_opd; ++local_opd)
1684 {
1685 if (*local_opd > 0)
1686 {
1687 *local_opd = sec->size;
1688 sec->size += OPD_ENTRY_SIZE;
1689 if (bfd_link_pic (info))
1690 srel->size += sizeof (Elf64_External_Rela);
1691 }
1692 else
1693 *local_opd = (bfd_vma) -1;
1694 }
1695 }
1696 }
1697
1698 /* Allocate the GOT entries. */
1699
1700 data.info = info;
1701 if (hppa_info->dlt_sec)
1702 {
1703 data.ofs = hppa_info->dlt_sec->size;
1704 elf_link_hash_traverse (&hppa_info->root,
1705 allocate_global_data_dlt, &data);
1706 hppa_info->dlt_sec->size = data.ofs;
1707 }
1708
1709 if (hppa_info->plt_sec)
1710 {
1711 data.ofs = hppa_info->plt_sec->size;
1712 elf_link_hash_traverse (&hppa_info->root,
1713 allocate_global_data_plt, &data);
1714 hppa_info->plt_sec->size = data.ofs;
1715 }
1716
1717 if (hppa_info->stub_sec)
1718 {
1719 data.ofs = 0x0;
1720 elf_link_hash_traverse (&hppa_info->root,
1721 allocate_global_data_stub, &data);
1722 hppa_info->stub_sec->size = data.ofs;
1723 }
1724
1725 /* Allocate space for entries in the .opd section. */
1726 if (hppa_info->opd_sec)
1727 {
1728 data.ofs = hppa_info->opd_sec->size;
1729 elf_link_hash_traverse (&hppa_info->root,
1730 allocate_global_data_opd, &data);
1731 hppa_info->opd_sec->size = data.ofs;
1732 }
1733
1734 /* Now allocate space for dynamic relocations, if necessary. */
1735 if (hppa_info->root.dynamic_sections_created)
1736 elf_link_hash_traverse (&hppa_info->root,
1737 allocate_dynrel_entries, &data);
1738
1739 /* The sizes of all the sections are set. Allocate memory for them. */
1740 plt = FALSE;
1741 relocs = FALSE;
1742 reltext = FALSE;
1743 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1744 {
1745 const char *name;
1746
1747 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1748 continue;
1749
1750 /* It's OK to base decisions on the section name, because none
1751 of the dynobj section names depend upon the input files. */
1752 name = bfd_section_name (sec);
1753
1754 if (strcmp (name, ".plt") == 0)
1755 {
1756 /* Remember whether there is a PLT. */
1757 plt = sec->size != 0;
1758 }
1759 else if (strcmp (name, ".opd") == 0
1760 || CONST_STRNEQ (name, ".dlt")
1761 || strcmp (name, ".stub") == 0
1762 || strcmp (name, ".got") == 0)
1763 {
1764 /* Strip this section if we don't need it; see the comment below. */
1765 }
1766 else if (CONST_STRNEQ (name, ".rela"))
1767 {
1768 if (sec->size != 0)
1769 {
1770 asection *target;
1771
1772 /* Remember whether there are any reloc sections other
1773 than .rela.plt. */
1774 if (strcmp (name, ".rela.plt") != 0)
1775 {
1776 const char *outname;
1777
1778 relocs = TRUE;
1779
1780 /* If this relocation section applies to a read only
1781 section, then we probably need a DT_TEXTREL
1782 entry. The entries in the .rela.plt section
1783 really apply to the .got section, which we
1784 created ourselves and so know is not readonly. */
1785 outname = bfd_section_name (sec->output_section);
1786 target = bfd_get_section_by_name (output_bfd, outname + 4);
1787 if (target != NULL
1788 && (target->flags & SEC_READONLY) != 0
1789 && (target->flags & SEC_ALLOC) != 0)
1790 reltext = TRUE;
1791 }
1792
1793 /* We use the reloc_count field as a counter if we need
1794 to copy relocs into the output file. */
1795 sec->reloc_count = 0;
1796 }
1797 }
1798 else
1799 {
1800 /* It's not one of our sections, so don't allocate space. */
1801 continue;
1802 }
1803
1804 if (sec->size == 0)
1805 {
1806 /* If we don't need this section, strip it from the
1807 output file. This is mostly to handle .rela.bss and
1808 .rela.plt. We must create both sections in
1809 create_dynamic_sections, because they must be created
1810 before the linker maps input sections to output
1811 sections. The linker does that before
1812 adjust_dynamic_symbol is called, and it is that
1813 function which decides whether anything needs to go
1814 into these sections. */
1815 sec->flags |= SEC_EXCLUDE;
1816 continue;
1817 }
1818
1819 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1820 continue;
1821
1822 /* Allocate memory for the section contents if it has not
1823 been allocated already. We use bfd_zalloc here in case
1824 unused entries are not reclaimed before the section's
1825 contents are written out. This should not happen, but this
1826 way if it does, we get a R_PARISC_NONE reloc instead of
1827 garbage. */
1828 if (sec->contents == NULL)
1829 {
1830 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1831 if (sec->contents == NULL)
1832 return FALSE;
1833 }
1834 }
1835
1836 if (hppa_info->root.dynamic_sections_created)
1837 {
1838 /* Always create a DT_PLTGOT. It actually has nothing to do with
1839 the PLT, it is how we communicate the __gp value of a load
1840 module to the dynamic linker. */
1841 #define add_dynamic_entry(TAG, VAL) \
1842 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1843
1844 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1845 || !add_dynamic_entry (DT_PLTGOT, 0))
1846 return FALSE;
1847
1848 /* Add some entries to the .dynamic section. We fill in the
1849 values later, in elf64_hppa_finish_dynamic_sections, but we
1850 must add the entries now so that we get the correct size for
1851 the .dynamic section. The DT_DEBUG entry is filled in by the
1852 dynamic linker and used by the debugger. */
1853 if (! bfd_link_pic (info))
1854 {
1855 if (!add_dynamic_entry (DT_DEBUG, 0)
1856 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1857 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1858 return FALSE;
1859 }
1860
1861 /* Force DT_FLAGS to always be set.
1862 Required by HPUX 11.00 patch PHSS_26559. */
1863 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1864 return FALSE;
1865
1866 if (plt)
1867 {
1868 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1869 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1870 || !add_dynamic_entry (DT_JMPREL, 0))
1871 return FALSE;
1872 }
1873
1874 if (relocs)
1875 {
1876 if (!add_dynamic_entry (DT_RELA, 0)
1877 || !add_dynamic_entry (DT_RELASZ, 0)
1878 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1879 return FALSE;
1880 }
1881
1882 if (reltext)
1883 {
1884 if (!add_dynamic_entry (DT_TEXTREL, 0))
1885 return FALSE;
1886 info->flags |= DF_TEXTREL;
1887 }
1888 }
1889 #undef add_dynamic_entry
1890
1891 return TRUE;
1892 }
1893
1894 /* Called after we have output the symbol into the dynamic symbol
1895 table, but before we output the symbol into the normal symbol
1896 table.
1897
1898 For some symbols we had to change their address when outputting
1899 the dynamic symbol table. We undo that change here so that
1900 the symbols have their expected value in the normal symbol
1901 table. Ick. */
1902
1903 static int
1904 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1905 const char *name,
1906 Elf_Internal_Sym *sym,
1907 asection *input_sec ATTRIBUTE_UNUSED,
1908 struct elf_link_hash_entry *eh)
1909 {
1910 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1911
1912 /* We may be called with the file symbol or section symbols.
1913 They never need munging, so it is safe to ignore them. */
1914 if (!name || !eh)
1915 return 1;
1916
1917 /* Function symbols for which we created .opd entries *may* have been
1918 munged by finish_dynamic_symbol and have to be un-munged here.
1919
1920 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1921 into non-dynamic ones, so we initialize st_shndx to -1 in
1922 mark_exported_functions and check to see if it was overwritten
1923 here instead of just checking eh->dynindx. */
1924 if (hh->want_opd && hh->st_shndx != -1)
1925 {
1926 /* Restore the saved value and section index. */
1927 sym->st_value = hh->st_value;
1928 sym->st_shndx = hh->st_shndx;
1929 }
1930
1931 return 1;
1932 }
1933
1934 /* Finish up dynamic symbol handling. We set the contents of various
1935 dynamic sections here. */
1936
1937 static bfd_boolean
1938 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1939 struct bfd_link_info *info,
1940 struct elf_link_hash_entry *eh,
1941 Elf_Internal_Sym *sym)
1942 {
1943 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1944 asection *stub, *splt, *sopd, *spltrel;
1945 struct elf64_hppa_link_hash_table *hppa_info;
1946
1947 hppa_info = hppa_link_hash_table (info);
1948 if (hppa_info == NULL)
1949 return FALSE;
1950
1951 stub = hppa_info->stub_sec;
1952 splt = hppa_info->plt_sec;
1953 sopd = hppa_info->opd_sec;
1954 spltrel = hppa_info->plt_rel_sec;
1955
1956 /* Incredible. It is actually necessary to NOT use the symbol's real
1957 value when building the dynamic symbol table for a shared library.
1958 At least for symbols that refer to functions.
1959
1960 We will store a new value and section index into the symbol long
1961 enough to output it into the dynamic symbol table, then we restore
1962 the original values (in elf64_hppa_link_output_symbol_hook). */
1963 if (hh->want_opd)
1964 {
1965 BFD_ASSERT (sopd != NULL);
1966
1967 /* Save away the original value and section index so that we
1968 can restore them later. */
1969 hh->st_value = sym->st_value;
1970 hh->st_shndx = sym->st_shndx;
1971
1972 /* For the dynamic symbol table entry, we want the value to be
1973 address of this symbol's entry within the .opd section. */
1974 sym->st_value = (hh->opd_offset
1975 + sopd->output_offset
1976 + sopd->output_section->vma);
1977 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1978 sopd->output_section);
1979 }
1980
1981 /* Initialize a .plt entry if requested. */
1982 if (hh->want_plt
1983 && elf64_hppa_dynamic_symbol_p (eh, info))
1984 {
1985 bfd_vma value;
1986 Elf_Internal_Rela rel;
1987 bfd_byte *loc;
1988
1989 BFD_ASSERT (splt != NULL && spltrel != NULL);
1990
1991 /* We do not actually care about the value in the PLT entry
1992 if we are creating a shared library and the symbol is
1993 still undefined, we create a dynamic relocation to fill
1994 in the correct value. */
1995 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1996 value = 0;
1997 else
1998 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
1999
2000 /* Fill in the entry in the procedure linkage table.
2001
2002 The format of a plt entry is
2003 <funcaddr> <__gp>.
2004
2005 plt_offset is the offset within the PLT section at which to
2006 install the PLT entry.
2007
2008 We are modifying the in-memory PLT contents here, so we do not add
2009 in the output_offset of the PLT section. */
2010
2011 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2012 value = _bfd_get_gp_value (info->output_bfd);
2013 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2014
2015 /* Create a dynamic IPLT relocation for this entry.
2016
2017 We are creating a relocation in the output file's PLT section,
2018 which is included within the DLT secton. So we do need to include
2019 the PLT's output_offset in the computation of the relocation's
2020 address. */
2021 rel.r_offset = (hh->plt_offset + splt->output_offset
2022 + splt->output_section->vma);
2023 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2024 rel.r_addend = 0;
2025
2026 loc = spltrel->contents;
2027 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2028 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2029 }
2030
2031 /* Initialize an external call stub entry if requested. */
2032 if (hh->want_stub
2033 && elf64_hppa_dynamic_symbol_p (eh, info))
2034 {
2035 bfd_vma value;
2036 int insn;
2037 unsigned int max_offset;
2038
2039 BFD_ASSERT (stub != NULL);
2040
2041 /* Install the generic stub template.
2042
2043 We are modifying the contents of the stub section, so we do not
2044 need to include the stub section's output_offset here. */
2045 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2046
2047 /* Fix up the first ldd instruction.
2048
2049 We are modifying the contents of the STUB section in memory,
2050 so we do not need to include its output offset in this computation.
2051
2052 Note the plt_offset value is the value of the PLT entry relative to
2053 the start of the PLT section. These instructions will reference
2054 data relative to the value of __gp, which may not necessarily have
2055 the same address as the start of the PLT section.
2056
2057 gp_offset contains the offset of __gp within the PLT section. */
2058 value = hh->plt_offset - hppa_info->gp_offset;
2059
2060 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2061 if (output_bfd->arch_info->mach >= 25)
2062 {
2063 /* Wide mode allows 16 bit offsets. */
2064 max_offset = 32768;
2065 insn &= ~ 0xfff1;
2066 insn |= re_assemble_16 ((int) value);
2067 }
2068 else
2069 {
2070 max_offset = 8192;
2071 insn &= ~ 0x3ff1;
2072 insn |= re_assemble_14 ((int) value);
2073 }
2074
2075 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2076 {
2077 _bfd_error_handler
2078 /* xgettext:c-format */
2079 (_("stub entry for %s cannot load .plt, dp offset = %" PRId64),
2080 hh->eh.root.root.string, (int64_t) value);
2081 return FALSE;
2082 }
2083
2084 bfd_put_32 (stub->owner, (bfd_vma) insn,
2085 stub->contents + hh->stub_offset);
2086
2087 /* Fix up the second ldd instruction. */
2088 value += 8;
2089 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2090 if (output_bfd->arch_info->mach >= 25)
2091 {
2092 insn &= ~ 0xfff1;
2093 insn |= re_assemble_16 ((int) value);
2094 }
2095 else
2096 {
2097 insn &= ~ 0x3ff1;
2098 insn |= re_assemble_14 ((int) value);
2099 }
2100 bfd_put_32 (stub->owner, (bfd_vma) insn,
2101 stub->contents + hh->stub_offset + 8);
2102 }
2103
2104 return TRUE;
2105 }
2106
2107 /* The .opd section contains FPTRs for each function this file
2108 exports. Initialize the FPTR entries. */
2109
2110 static bfd_boolean
2111 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2112 {
2113 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2114 struct bfd_link_info *info = (struct bfd_link_info *)data;
2115 struct elf64_hppa_link_hash_table *hppa_info;
2116 asection *sopd;
2117 asection *sopdrel;
2118
2119 hppa_info = hppa_link_hash_table (info);
2120 if (hppa_info == NULL)
2121 return FALSE;
2122
2123 sopd = hppa_info->opd_sec;
2124 sopdrel = hppa_info->opd_rel_sec;
2125
2126 if (hh->want_opd)
2127 {
2128 bfd_vma value;
2129
2130 /* The first two words of an .opd entry are zero.
2131
2132 We are modifying the contents of the OPD section in memory, so we
2133 do not need to include its output offset in this computation. */
2134 memset (sopd->contents + hh->opd_offset, 0, 16);
2135
2136 value = (eh->root.u.def.value
2137 + eh->root.u.def.section->output_section->vma
2138 + eh->root.u.def.section->output_offset);
2139
2140 /* The next word is the address of the function. */
2141 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2142
2143 /* The last word is our local __gp value. */
2144 value = _bfd_get_gp_value (info->output_bfd);
2145 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2146 }
2147
2148 /* If we are generating a shared library, we must generate EPLT relocations
2149 for each entry in the .opd, even for static functions (they may have
2150 had their address taken). */
2151 if (bfd_link_pic (info) && hh->want_opd)
2152 {
2153 Elf_Internal_Rela rel;
2154 bfd_byte *loc;
2155 int dynindx;
2156
2157 /* We may need to do a relocation against a local symbol, in
2158 which case we have to look up it's dynamic symbol index off
2159 the local symbol hash table. */
2160 if (eh->dynindx != -1)
2161 dynindx = eh->dynindx;
2162 else
2163 dynindx
2164 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2165 hh->sym_indx);
2166
2167 /* The offset of this relocation is the absolute address of the
2168 .opd entry for this symbol. */
2169 rel.r_offset = (hh->opd_offset + sopd->output_offset
2170 + sopd->output_section->vma);
2171
2172 /* If H is non-null, then we have an external symbol.
2173
2174 It is imperative that we use a different dynamic symbol for the
2175 EPLT relocation if the symbol has global scope.
2176
2177 In the dynamic symbol table, the function symbol will have a value
2178 which is address of the function's .opd entry.
2179
2180 Thus, we can not use that dynamic symbol for the EPLT relocation
2181 (if we did, the data in the .opd would reference itself rather
2182 than the actual address of the function). Instead we have to use
2183 a new dynamic symbol which has the same value as the original global
2184 function symbol.
2185
2186 We prefix the original symbol with a "." and use the new symbol in
2187 the EPLT relocation. This new symbol has already been recorded in
2188 the symbol table, we just have to look it up and use it.
2189
2190 We do not have such problems with static functions because we do
2191 not make their addresses in the dynamic symbol table point to
2192 the .opd entry. Ultimately this should be safe since a static
2193 function can not be directly referenced outside of its shared
2194 library.
2195
2196 We do have to play similar games for FPTR relocations in shared
2197 libraries, including those for static symbols. See the FPTR
2198 handling in elf64_hppa_finalize_dynreloc. */
2199 if (eh)
2200 {
2201 char *new_name;
2202 struct elf_link_hash_entry *nh;
2203
2204 new_name = concat (".", eh->root.root.string, NULL);
2205
2206 nh = elf_link_hash_lookup (elf_hash_table (info),
2207 new_name, TRUE, TRUE, FALSE);
2208
2209 /* All we really want from the new symbol is its dynamic
2210 symbol index. */
2211 if (nh)
2212 dynindx = nh->dynindx;
2213 free (new_name);
2214 }
2215
2216 rel.r_addend = 0;
2217 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2218
2219 loc = sopdrel->contents;
2220 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2221 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2222 }
2223 return TRUE;
2224 }
2225
2226 /* The .dlt section contains addresses for items referenced through the
2227 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2228 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2229
2230 static bfd_boolean
2231 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2232 {
2233 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2234 struct bfd_link_info *info = (struct bfd_link_info *)data;
2235 struct elf64_hppa_link_hash_table *hppa_info;
2236 asection *sdlt, *sdltrel;
2237
2238 hppa_info = hppa_link_hash_table (info);
2239 if (hppa_info == NULL)
2240 return FALSE;
2241
2242 sdlt = hppa_info->dlt_sec;
2243 sdltrel = hppa_info->dlt_rel_sec;
2244
2245 /* H/DYN_H may refer to a local variable and we know it's
2246 address, so there is no need to create a relocation. Just install
2247 the proper value into the DLT, note this shortcut can not be
2248 skipped when building a shared library. */
2249 if (! bfd_link_pic (info) && hh && hh->want_dlt)
2250 {
2251 bfd_vma value;
2252
2253 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2254 to point to the FPTR entry in the .opd section.
2255
2256 We include the OPD's output offset in this computation as
2257 we are referring to an absolute address in the resulting
2258 object file. */
2259 if (hh->want_opd)
2260 {
2261 value = (hh->opd_offset
2262 + hppa_info->opd_sec->output_offset
2263 + hppa_info->opd_sec->output_section->vma);
2264 }
2265 else if ((eh->root.type == bfd_link_hash_defined
2266 || eh->root.type == bfd_link_hash_defweak)
2267 && eh->root.u.def.section)
2268 {
2269 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2270 if (eh->root.u.def.section->output_section)
2271 value += eh->root.u.def.section->output_section->vma;
2272 else
2273 value += eh->root.u.def.section->vma;
2274 }
2275 else
2276 /* We have an undefined function reference. */
2277 value = 0;
2278
2279 /* We do not need to include the output offset of the DLT section
2280 here because we are modifying the in-memory contents. */
2281 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2282 }
2283
2284 /* Create a relocation for the DLT entry associated with this symbol.
2285 When building a shared library the symbol does not have to be dynamic. */
2286 if (hh->want_dlt
2287 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2288 {
2289 Elf_Internal_Rela rel;
2290 bfd_byte *loc;
2291 int dynindx;
2292
2293 /* We may need to do a relocation against a local symbol, in
2294 which case we have to look up it's dynamic symbol index off
2295 the local symbol hash table. */
2296 if (eh && eh->dynindx != -1)
2297 dynindx = eh->dynindx;
2298 else
2299 dynindx
2300 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2301 hh->sym_indx);
2302
2303 /* Create a dynamic relocation for this entry. Do include the output
2304 offset of the DLT entry since we need an absolute address in the
2305 resulting object file. */
2306 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2307 + sdlt->output_section->vma);
2308 if (eh && eh->type == STT_FUNC)
2309 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2310 else
2311 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2312 rel.r_addend = 0;
2313
2314 loc = sdltrel->contents;
2315 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2316 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2317 }
2318 return TRUE;
2319 }
2320
2321 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2322 for dynamic functions used to initialize static data. */
2323
2324 static bfd_boolean
2325 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2326 void *data)
2327 {
2328 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2329 struct bfd_link_info *info = (struct bfd_link_info *)data;
2330 struct elf64_hppa_link_hash_table *hppa_info;
2331 int dynamic_symbol;
2332
2333 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2334
2335 if (!dynamic_symbol && !bfd_link_pic (info))
2336 return TRUE;
2337
2338 if (hh->reloc_entries)
2339 {
2340 struct elf64_hppa_dyn_reloc_entry *rent;
2341 int dynindx;
2342
2343 hppa_info = hppa_link_hash_table (info);
2344 if (hppa_info == NULL)
2345 return FALSE;
2346
2347 /* We may need to do a relocation against a local symbol, in
2348 which case we have to look up it's dynamic symbol index off
2349 the local symbol hash table. */
2350 if (eh->dynindx != -1)
2351 dynindx = eh->dynindx;
2352 else
2353 dynindx
2354 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2355 hh->sym_indx);
2356
2357 for (rent = hh->reloc_entries; rent; rent = rent->next)
2358 {
2359 Elf_Internal_Rela rel;
2360 bfd_byte *loc;
2361
2362 /* Allocate one iff we are building a shared library, the relocation
2363 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2364 if (!bfd_link_pic (info)
2365 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2366 continue;
2367
2368 /* Create a dynamic relocation for this entry.
2369
2370 We need the output offset for the reloc's section because
2371 we are creating an absolute address in the resulting object
2372 file. */
2373 rel.r_offset = (rent->offset + rent->sec->output_offset
2374 + rent->sec->output_section->vma);
2375
2376 /* An FPTR64 relocation implies that we took the address of
2377 a function and that the function has an entry in the .opd
2378 section. We want the FPTR64 relocation to reference the
2379 entry in .opd.
2380
2381 We could munge the symbol value in the dynamic symbol table
2382 (in fact we already do for functions with global scope) to point
2383 to the .opd entry. Then we could use that dynamic symbol in
2384 this relocation.
2385
2386 Or we could do something sensible, not munge the symbol's
2387 address and instead just use a different symbol to reference
2388 the .opd entry. At least that seems sensible until you
2389 realize there's no local dynamic symbols we can use for that
2390 purpose. Thus the hair in the check_relocs routine.
2391
2392 We use a section symbol recorded by check_relocs as the
2393 base symbol for the relocation. The addend is the difference
2394 between the section symbol and the address of the .opd entry. */
2395 if (bfd_link_pic (info)
2396 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2397 {
2398 bfd_vma value, value2;
2399
2400 /* First compute the address of the opd entry for this symbol. */
2401 value = (hh->opd_offset
2402 + hppa_info->opd_sec->output_section->vma
2403 + hppa_info->opd_sec->output_offset);
2404
2405 /* Compute the value of the start of the section with
2406 the relocation. */
2407 value2 = (rent->sec->output_section->vma
2408 + rent->sec->output_offset);
2409
2410 /* Compute the difference between the start of the section
2411 with the relocation and the opd entry. */
2412 value -= value2;
2413
2414 /* The result becomes the addend of the relocation. */
2415 rel.r_addend = value;
2416
2417 /* The section symbol becomes the symbol for the dynamic
2418 relocation. */
2419 dynindx
2420 = _bfd_elf_link_lookup_local_dynindx (info,
2421 rent->sec->owner,
2422 rent->sec_symndx);
2423 }
2424 else
2425 rel.r_addend = rent->addend;
2426
2427 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2428
2429 loc = hppa_info->other_rel_sec->contents;
2430 loc += (hppa_info->other_rel_sec->reloc_count++
2431 * sizeof (Elf64_External_Rela));
2432 bfd_elf64_swap_reloca_out (info->output_bfd, &rel, loc);
2433 }
2434 }
2435
2436 return TRUE;
2437 }
2438
2439 /* Used to decide how to sort relocs in an optimal manner for the
2440 dynamic linker, before writing them out. */
2441
2442 static enum elf_reloc_type_class
2443 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2444 const asection *rel_sec ATTRIBUTE_UNUSED,
2445 const Elf_Internal_Rela *rela)
2446 {
2447 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2448 return reloc_class_relative;
2449
2450 switch ((int) ELF64_R_TYPE (rela->r_info))
2451 {
2452 case R_PARISC_IPLT:
2453 return reloc_class_plt;
2454 case R_PARISC_COPY:
2455 return reloc_class_copy;
2456 default:
2457 return reloc_class_normal;
2458 }
2459 }
2460
2461 /* Finish up the dynamic sections. */
2462
2463 static bfd_boolean
2464 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2465 struct bfd_link_info *info)
2466 {
2467 bfd *dynobj;
2468 asection *sdyn;
2469 struct elf64_hppa_link_hash_table *hppa_info;
2470
2471 hppa_info = hppa_link_hash_table (info);
2472 if (hppa_info == NULL)
2473 return FALSE;
2474
2475 /* Finalize the contents of the .opd section. */
2476 elf_link_hash_traverse (elf_hash_table (info),
2477 elf64_hppa_finalize_opd,
2478 info);
2479
2480 elf_link_hash_traverse (elf_hash_table (info),
2481 elf64_hppa_finalize_dynreloc,
2482 info);
2483
2484 /* Finalize the contents of the .dlt section. */
2485 dynobj = elf_hash_table (info)->dynobj;
2486 /* Finalize the contents of the .dlt section. */
2487 elf_link_hash_traverse (elf_hash_table (info),
2488 elf64_hppa_finalize_dlt,
2489 info);
2490
2491 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2492
2493 if (elf_hash_table (info)->dynamic_sections_created)
2494 {
2495 Elf64_External_Dyn *dyncon, *dynconend;
2496
2497 BFD_ASSERT (sdyn != NULL);
2498
2499 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2500 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2501 for (; dyncon < dynconend; dyncon++)
2502 {
2503 Elf_Internal_Dyn dyn;
2504 asection *s;
2505
2506 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2507
2508 switch (dyn.d_tag)
2509 {
2510 default:
2511 break;
2512
2513 case DT_HP_LOAD_MAP:
2514 /* Compute the absolute address of 16byte scratchpad area
2515 for the dynamic linker.
2516
2517 By convention the linker script will allocate the scratchpad
2518 area at the start of the .data section. So all we have to
2519 to is find the start of the .data section. */
2520 s = bfd_get_section_by_name (output_bfd, ".data");
2521 if (!s)
2522 return FALSE;
2523 dyn.d_un.d_ptr = s->vma;
2524 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2525 break;
2526
2527 case DT_PLTGOT:
2528 /* HP's use PLTGOT to set the GOT register. */
2529 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2530 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2531 break;
2532
2533 case DT_JMPREL:
2534 s = hppa_info->plt_rel_sec;
2535 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2536 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2537 break;
2538
2539 case DT_PLTRELSZ:
2540 s = hppa_info->plt_rel_sec;
2541 dyn.d_un.d_val = s->size;
2542 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2543 break;
2544
2545 case DT_RELA:
2546 s = hppa_info->other_rel_sec;
2547 if (! s || ! s->size)
2548 s = hppa_info->dlt_rel_sec;
2549 if (! s || ! s->size)
2550 s = hppa_info->opd_rel_sec;
2551 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2552 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2553 break;
2554
2555 case DT_RELASZ:
2556 s = hppa_info->other_rel_sec;
2557 dyn.d_un.d_val = s->size;
2558 s = hppa_info->dlt_rel_sec;
2559 dyn.d_un.d_val += s->size;
2560 s = hppa_info->opd_rel_sec;
2561 dyn.d_un.d_val += s->size;
2562 /* There is some question about whether or not the size of
2563 the PLT relocs should be included here. HP's tools do
2564 it, so we'll emulate them. */
2565 s = hppa_info->plt_rel_sec;
2566 dyn.d_un.d_val += s->size;
2567 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2568 break;
2569
2570 }
2571 }
2572 }
2573
2574 return TRUE;
2575 }
2576
2577 /* Support for core dump NOTE sections. */
2578
2579 static bfd_boolean
2580 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2581 {
2582 int offset;
2583 size_t size;
2584
2585 switch (note->descsz)
2586 {
2587 default:
2588 return FALSE;
2589
2590 case 760: /* Linux/hppa */
2591 /* pr_cursig */
2592 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2593
2594 /* pr_pid */
2595 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2596
2597 /* pr_reg */
2598 offset = 112;
2599 size = 640;
2600
2601 break;
2602 }
2603
2604 /* Make a ".reg/999" section. */
2605 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2606 size, note->descpos + offset);
2607 }
2608
2609 static bfd_boolean
2610 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2611 {
2612 char * command;
2613 int n;
2614
2615 switch (note->descsz)
2616 {
2617 default:
2618 return FALSE;
2619
2620 case 136: /* Linux/hppa elf_prpsinfo. */
2621 elf_tdata (abfd)->core->program
2622 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2623 elf_tdata (abfd)->core->command
2624 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2625 }
2626
2627 /* Note that for some reason, a spurious space is tacked
2628 onto the end of the args in some (at least one anyway)
2629 implementations, so strip it off if it exists. */
2630 command = elf_tdata (abfd)->core->command;
2631 n = strlen (command);
2632
2633 if (0 < n && command[n - 1] == ' ')
2634 command[n - 1] = '\0';
2635
2636 return TRUE;
2637 }
2638
2639 /* Return the number of additional phdrs we will need.
2640
2641 The generic ELF code only creates PT_PHDRs for executables. The HP
2642 dynamic linker requires PT_PHDRs for dynamic libraries too.
2643
2644 This routine indicates that the backend needs one additional program
2645 header for that case.
2646
2647 Note we do not have access to the link info structure here, so we have
2648 to guess whether or not we are building a shared library based on the
2649 existence of a .interp section. */
2650
2651 static int
2652 elf64_hppa_additional_program_headers (bfd *abfd,
2653 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2654 {
2655 asection *s;
2656
2657 /* If we are creating a shared library, then we have to create a
2658 PT_PHDR segment. HP's dynamic linker chokes without it. */
2659 s = bfd_get_section_by_name (abfd, ".interp");
2660 if (! s)
2661 return 1;
2662 return 0;
2663 }
2664
2665 static bfd_boolean
2666 elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2667 const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2668 unsigned int count ATTRIBUTE_UNUSED)
2669 {
2670 return TRUE;
2671 }
2672
2673 /* Allocate and initialize any program headers required by this
2674 specific backend.
2675
2676 The generic ELF code only creates PT_PHDRs for executables. The HP
2677 dynamic linker requires PT_PHDRs for dynamic libraries too.
2678
2679 This allocates the PT_PHDR and initializes it in a manner suitable
2680 for the HP linker.
2681
2682 Note we do not have access to the link info structure here, so we have
2683 to guess whether or not we are building a shared library based on the
2684 existence of a .interp section. */
2685
2686 static bfd_boolean
2687 elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2688 {
2689 struct elf_segment_map *m;
2690
2691 m = elf_seg_map (abfd);
2692 if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2693 {
2694 m = ((struct elf_segment_map *)
2695 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2696 if (m == NULL)
2697 return FALSE;
2698
2699 m->p_type = PT_PHDR;
2700 m->p_flags = PF_R | PF_X;
2701 m->p_flags_valid = 1;
2702 m->p_paddr_valid = 1;
2703 m->includes_phdrs = 1;
2704
2705 m->next = elf_seg_map (abfd);
2706 elf_seg_map (abfd) = m;
2707 }
2708
2709 for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2710 if (m->p_type == PT_LOAD)
2711 {
2712 unsigned int i;
2713
2714 for (i = 0; i < m->count; i++)
2715 {
2716 /* The code "hint" is not really a hint. It is a requirement
2717 for certain versions of the HP dynamic linker. Worse yet,
2718 it must be set even if the shared library does not have
2719 any code in its "text" segment (thus the check for .hash
2720 to catch this situation). */
2721 if (m->sections[i]->flags & SEC_CODE
2722 || (strcmp (m->sections[i]->name, ".hash") == 0))
2723 m->p_flags |= (PF_X | PF_HP_CODE);
2724 }
2725 }
2726
2727 return TRUE;
2728 }
2729
2730 /* Called when writing out an object file to decide the type of a
2731 symbol. */
2732 static int
2733 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2734 int type)
2735 {
2736 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2737 return STT_PARISC_MILLI;
2738 else
2739 return type;
2740 }
2741
2742 /* Support HP specific sections for core files. */
2743
2744 static bfd_boolean
2745 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2746 const char *typename)
2747 {
2748 if (hdr->p_type == PT_HP_CORE_KERNEL)
2749 {
2750 asection *sect;
2751
2752 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2753 return FALSE;
2754
2755 sect = bfd_make_section_anyway (abfd, ".kernel");
2756 if (sect == NULL)
2757 return FALSE;
2758 sect->size = hdr->p_filesz;
2759 sect->filepos = hdr->p_offset;
2760 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2761 return TRUE;
2762 }
2763
2764 if (hdr->p_type == PT_HP_CORE_PROC)
2765 {
2766 int sig;
2767
2768 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2769 return FALSE;
2770 if (bfd_bread (&sig, 4, abfd) != 4)
2771 return FALSE;
2772
2773 elf_tdata (abfd)->core->signal = sig;
2774
2775 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2776 return FALSE;
2777
2778 /* GDB uses the ".reg" section to read register contents. */
2779 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2780 hdr->p_offset);
2781 }
2782
2783 if (hdr->p_type == PT_HP_CORE_LOADABLE
2784 || hdr->p_type == PT_HP_CORE_STACK
2785 || hdr->p_type == PT_HP_CORE_MMF)
2786 hdr->p_type = PT_LOAD;
2787
2788 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2789 }
2790
2791 /* Hook called by the linker routine which adds symbols from an object
2792 file. HP's libraries define symbols with HP specific section
2793 indices, which we have to handle. */
2794
2795 static bfd_boolean
2796 elf_hppa_add_symbol_hook (bfd *abfd,
2797 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2798 Elf_Internal_Sym *sym,
2799 const char **namep ATTRIBUTE_UNUSED,
2800 flagword *flagsp ATTRIBUTE_UNUSED,
2801 asection **secp,
2802 bfd_vma *valp)
2803 {
2804 unsigned int sec_index = sym->st_shndx;
2805
2806 switch (sec_index)
2807 {
2808 case SHN_PARISC_ANSI_COMMON:
2809 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2810 (*secp)->flags |= SEC_IS_COMMON;
2811 *valp = sym->st_size;
2812 break;
2813
2814 case SHN_PARISC_HUGE_COMMON:
2815 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2816 (*secp)->flags |= SEC_IS_COMMON;
2817 *valp = sym->st_size;
2818 break;
2819 }
2820
2821 return TRUE;
2822 }
2823
2824 static bfd_boolean
2825 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2826 void *data)
2827 {
2828 struct bfd_link_info *info = data;
2829
2830 /* If we are not creating a shared library, and this symbol is
2831 referenced by a shared library but is not defined anywhere, then
2832 the generic code will warn that it is undefined.
2833
2834 This behavior is undesirable on HPs since the standard shared
2835 libraries contain references to undefined symbols.
2836
2837 So we twiddle the flags associated with such symbols so that they
2838 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2839
2840 Ultimately we should have better controls over the generic ELF BFD
2841 linker code. */
2842 if (! bfd_link_relocatable (info)
2843 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2844 && h->root.type == bfd_link_hash_undefined
2845 && h->ref_dynamic
2846 && !h->ref_regular)
2847 {
2848 h->ref_dynamic = 0;
2849 h->pointer_equality_needed = 1;
2850 }
2851
2852 return TRUE;
2853 }
2854
2855 static bfd_boolean
2856 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2857 void *data)
2858 {
2859 struct bfd_link_info *info = data;
2860
2861 /* If we are not creating a shared library, and this symbol is
2862 referenced by a shared library but is not defined anywhere, then
2863 the generic code will warn that it is undefined.
2864
2865 This behavior is undesirable on HPs since the standard shared
2866 libraries contain references to undefined symbols.
2867
2868 So we twiddle the flags associated with such symbols so that they
2869 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2870
2871 Ultimately we should have better controls over the generic ELF BFD
2872 linker code. */
2873 if (! bfd_link_relocatable (info)
2874 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2875 && h->root.type == bfd_link_hash_undefined
2876 && !h->ref_dynamic
2877 && !h->ref_regular
2878 && h->pointer_equality_needed)
2879 {
2880 h->ref_dynamic = 1;
2881 h->pointer_equality_needed = 0;
2882 }
2883
2884 return TRUE;
2885 }
2886
2887 static bfd_boolean
2888 elf_hppa_is_dynamic_loader_symbol (const char *name)
2889 {
2890 return (! strcmp (name, "__CPU_REVISION")
2891 || ! strcmp (name, "__CPU_KEYBITS_1")
2892 || ! strcmp (name, "__SYSTEM_ID_D")
2893 || ! strcmp (name, "__FPU_MODEL")
2894 || ! strcmp (name, "__FPU_REVISION")
2895 || ! strcmp (name, "__ARGC")
2896 || ! strcmp (name, "__ARGV")
2897 || ! strcmp (name, "__ENVP")
2898 || ! strcmp (name, "__TLS_SIZE_D")
2899 || ! strcmp (name, "__LOAD_INFO")
2900 || ! strcmp (name, "__systab"));
2901 }
2902
2903 /* Record the lowest address for the data and text segments. */
2904 static void
2905 elf_hppa_record_segment_addrs (bfd *abfd,
2906 asection *section,
2907 void *data)
2908 {
2909 struct elf64_hppa_link_hash_table *hppa_info = data;
2910
2911 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2912 {
2913 bfd_vma value;
2914 Elf_Internal_Phdr *p;
2915
2916 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2917 BFD_ASSERT (p != NULL);
2918 value = p->p_vaddr;
2919
2920 if (section->flags & SEC_READONLY)
2921 {
2922 if (value < hppa_info->text_segment_base)
2923 hppa_info->text_segment_base = value;
2924 }
2925 else
2926 {
2927 if (value < hppa_info->data_segment_base)
2928 hppa_info->data_segment_base = value;
2929 }
2930 }
2931 }
2932
2933 /* Called after we have seen all the input files/sections, but before
2934 final symbol resolution and section placement has been determined.
2935
2936 We use this hook to (possibly) provide a value for __gp, then we
2937 fall back to the generic ELF final link routine. */
2938
2939 static bfd_boolean
2940 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2941 {
2942 struct stat buf;
2943 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2944
2945 if (hppa_info == NULL)
2946 return FALSE;
2947
2948 if (! bfd_link_relocatable (info))
2949 {
2950 struct elf_link_hash_entry *gp;
2951 bfd_vma gp_val;
2952
2953 /* The linker script defines a value for __gp iff it was referenced
2954 by one of the objects being linked. First try to find the symbol
2955 in the hash table. If that fails, just compute the value __gp
2956 should have had. */
2957 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2958 FALSE, FALSE);
2959
2960 if (gp)
2961 {
2962
2963 /* Adjust the value of __gp as we may want to slide it into the
2964 .plt section so that the stubs can access PLT entries without
2965 using an addil sequence. */
2966 gp->root.u.def.value += hppa_info->gp_offset;
2967
2968 gp_val = (gp->root.u.def.section->output_section->vma
2969 + gp->root.u.def.section->output_offset
2970 + gp->root.u.def.value);
2971 }
2972 else
2973 {
2974 asection *sec;
2975
2976 /* First look for a .plt section. If found, then __gp is the
2977 address of the .plt + gp_offset.
2978
2979 If no .plt is found, then look for .dlt, .opd and .data (in
2980 that order) and set __gp to the base address of whichever
2981 section is found first. */
2982
2983 sec = hppa_info->plt_sec;
2984 if (sec && ! (sec->flags & SEC_EXCLUDE))
2985 gp_val = (sec->output_offset
2986 + sec->output_section->vma
2987 + hppa_info->gp_offset);
2988 else
2989 {
2990 sec = hppa_info->dlt_sec;
2991 if (!sec || (sec->flags & SEC_EXCLUDE))
2992 sec = hppa_info->opd_sec;
2993 if (!sec || (sec->flags & SEC_EXCLUDE))
2994 sec = bfd_get_section_by_name (abfd, ".data");
2995 if (!sec || (sec->flags & SEC_EXCLUDE))
2996 gp_val = 0;
2997 else
2998 gp_val = sec->output_offset + sec->output_section->vma;
2999 }
3000 }
3001
3002 /* Install whatever value we found/computed for __gp. */
3003 _bfd_set_gp_value (abfd, gp_val);
3004 }
3005
3006 /* We need to know the base of the text and data segments so that we
3007 can perform SEGREL relocations. We will record the base addresses
3008 when we encounter the first SEGREL relocation. */
3009 hppa_info->text_segment_base = (bfd_vma)-1;
3010 hppa_info->data_segment_base = (bfd_vma)-1;
3011
3012 /* HP's shared libraries have references to symbols that are not
3013 defined anywhere. The generic ELF BFD linker code will complain
3014 about such symbols.
3015
3016 So we detect the losing case and arrange for the flags on the symbol
3017 to indicate that it was never referenced. This keeps the generic
3018 ELF BFD link code happy and appears to not create any secondary
3019 problems. Ultimately we need a way to control the behavior of the
3020 generic ELF BFD link code better. */
3021 elf_link_hash_traverse (elf_hash_table (info),
3022 elf_hppa_unmark_useless_dynamic_symbols,
3023 info);
3024
3025 /* Invoke the regular ELF backend linker to do all the work. */
3026 if (!bfd_elf_final_link (abfd, info))
3027 return FALSE;
3028
3029 elf_link_hash_traverse (elf_hash_table (info),
3030 elf_hppa_remark_useless_dynamic_symbols,
3031 info);
3032
3033 /* If we're producing a final executable, sort the contents of the
3034 unwind section. */
3035 if (bfd_link_relocatable (info))
3036 return TRUE;
3037
3038 /* Do not attempt to sort non-regular files. This is here
3039 especially for configure scripts and kernel builds which run
3040 tests with "ld [...] -o /dev/null". */
3041 if (stat (abfd->filename, &buf) != 0
3042 || !S_ISREG(buf.st_mode))
3043 return TRUE;
3044
3045 return elf_hppa_sort_unwind (abfd);
3046 }
3047
3048 /* Relocate the given INSN. VALUE should be the actual value we want
3049 to insert into the instruction, ie by this point we should not be
3050 concerned with computing an offset relative to the DLT, PC, etc.
3051 Instead this routine is meant to handle the bit manipulations needed
3052 to insert the relocation into the given instruction. */
3053
3054 static int
3055 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3056 {
3057 switch (r_type)
3058 {
3059 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3060 the "B" instruction. */
3061 case R_PARISC_PCREL22F:
3062 case R_PARISC_PCREL22C:
3063 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3064
3065 /* This is any 12 bit branch. */
3066 case R_PARISC_PCREL12F:
3067 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3068
3069 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3070 to the "B" instruction as well as BE. */
3071 case R_PARISC_PCREL17F:
3072 case R_PARISC_DIR17F:
3073 case R_PARISC_DIR17R:
3074 case R_PARISC_PCREL17C:
3075 case R_PARISC_PCREL17R:
3076 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3077
3078 /* ADDIL or LDIL instructions. */
3079 case R_PARISC_DLTREL21L:
3080 case R_PARISC_DLTIND21L:
3081 case R_PARISC_LTOFF_FPTR21L:
3082 case R_PARISC_PCREL21L:
3083 case R_PARISC_LTOFF_TP21L:
3084 case R_PARISC_DPREL21L:
3085 case R_PARISC_PLTOFF21L:
3086 case R_PARISC_DIR21L:
3087 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3088
3089 /* LDO and integer loads/stores with 14 bit displacements. */
3090 case R_PARISC_DLTREL14R:
3091 case R_PARISC_DLTREL14F:
3092 case R_PARISC_DLTIND14R:
3093 case R_PARISC_DLTIND14F:
3094 case R_PARISC_LTOFF_FPTR14R:
3095 case R_PARISC_PCREL14R:
3096 case R_PARISC_PCREL14F:
3097 case R_PARISC_LTOFF_TP14R:
3098 case R_PARISC_LTOFF_TP14F:
3099 case R_PARISC_DPREL14R:
3100 case R_PARISC_DPREL14F:
3101 case R_PARISC_PLTOFF14R:
3102 case R_PARISC_PLTOFF14F:
3103 case R_PARISC_DIR14R:
3104 case R_PARISC_DIR14F:
3105 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3106
3107 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3108 case R_PARISC_LTOFF_FPTR16F:
3109 case R_PARISC_PCREL16F:
3110 case R_PARISC_LTOFF_TP16F:
3111 case R_PARISC_GPREL16F:
3112 case R_PARISC_PLTOFF16F:
3113 case R_PARISC_DIR16F:
3114 case R_PARISC_LTOFF16F:
3115 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3116
3117 /* Doubleword loads and stores with a 14 bit displacement. */
3118 case R_PARISC_DLTREL14DR:
3119 case R_PARISC_DLTIND14DR:
3120 case R_PARISC_LTOFF_FPTR14DR:
3121 case R_PARISC_LTOFF_FPTR16DF:
3122 case R_PARISC_PCREL14DR:
3123 case R_PARISC_PCREL16DF:
3124 case R_PARISC_LTOFF_TP14DR:
3125 case R_PARISC_LTOFF_TP16DF:
3126 case R_PARISC_DPREL14DR:
3127 case R_PARISC_GPREL16DF:
3128 case R_PARISC_PLTOFF14DR:
3129 case R_PARISC_PLTOFF16DF:
3130 case R_PARISC_DIR14DR:
3131 case R_PARISC_DIR16DF:
3132 case R_PARISC_LTOFF16DF:
3133 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3134 | ((sym_value & 0x1ff8) << 1));
3135
3136 /* Floating point single word load/store instructions. */
3137 case R_PARISC_DLTREL14WR:
3138 case R_PARISC_DLTIND14WR:
3139 case R_PARISC_LTOFF_FPTR14WR:
3140 case R_PARISC_LTOFF_FPTR16WF:
3141 case R_PARISC_PCREL14WR:
3142 case R_PARISC_PCREL16WF:
3143 case R_PARISC_LTOFF_TP14WR:
3144 case R_PARISC_LTOFF_TP16WF:
3145 case R_PARISC_DPREL14WR:
3146 case R_PARISC_GPREL16WF:
3147 case R_PARISC_PLTOFF14WR:
3148 case R_PARISC_PLTOFF16WF:
3149 case R_PARISC_DIR16WF:
3150 case R_PARISC_DIR14WR:
3151 case R_PARISC_LTOFF16WF:
3152 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3153 | ((sym_value & 0x1ffc) << 1));
3154
3155 default:
3156 return insn;
3157 }
3158 }
3159
3160 /* Compute the value for a relocation (REL) during a final link stage,
3161 then insert the value into the proper location in CONTENTS.
3162
3163 VALUE is a tentative value for the relocation and may be overridden
3164 and modified here based on the specific relocation to be performed.
3165
3166 For example we do conversions for PC-relative branches in this routine
3167 or redirection of calls to external routines to stubs.
3168
3169 The work of actually applying the relocation is left to a helper
3170 routine in an attempt to reduce the complexity and size of this
3171 function. */
3172
3173 static bfd_reloc_status_type
3174 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3175 bfd *input_bfd,
3176 bfd *output_bfd,
3177 asection *input_section,
3178 bfd_byte *contents,
3179 bfd_vma value,
3180 struct bfd_link_info *info,
3181 asection *sym_sec,
3182 struct elf_link_hash_entry *eh)
3183 {
3184 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3185 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3186 bfd_vma *local_offsets;
3187 Elf_Internal_Shdr *symtab_hdr;
3188 int insn;
3189 bfd_vma max_branch_offset = 0;
3190 bfd_vma offset = rel->r_offset;
3191 bfd_signed_vma addend = rel->r_addend;
3192 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3193 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3194 unsigned int r_type = howto->type;
3195 bfd_byte *hit_data = contents + offset;
3196
3197 if (hppa_info == NULL)
3198 return bfd_reloc_notsupported;
3199
3200 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3201 local_offsets = elf_local_got_offsets (input_bfd);
3202 insn = bfd_get_32 (input_bfd, hit_data);
3203
3204 switch (r_type)
3205 {
3206 case R_PARISC_NONE:
3207 break;
3208
3209 /* Basic function call support.
3210
3211 Note for a call to a function defined in another dynamic library
3212 we want to redirect the call to a stub. */
3213
3214 /* PC relative relocs without an implicit offset. */
3215 case R_PARISC_PCREL21L:
3216 case R_PARISC_PCREL14R:
3217 case R_PARISC_PCREL14F:
3218 case R_PARISC_PCREL14WR:
3219 case R_PARISC_PCREL14DR:
3220 case R_PARISC_PCREL16F:
3221 case R_PARISC_PCREL16WF:
3222 case R_PARISC_PCREL16DF:
3223 {
3224 /* If this is a call to a function defined in another dynamic
3225 library, then redirect the call to the local stub for this
3226 function. */
3227 if (sym_sec == NULL || sym_sec->output_section == NULL)
3228 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3229 + hppa_info->stub_sec->output_section->vma);
3230
3231 /* Turn VALUE into a proper PC relative address. */
3232 value -= (offset + input_section->output_offset
3233 + input_section->output_section->vma);
3234
3235 /* Adjust for any field selectors. */
3236 if (r_type == R_PARISC_PCREL21L)
3237 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3238 else if (r_type == R_PARISC_PCREL14F
3239 || r_type == R_PARISC_PCREL16F
3240 || r_type == R_PARISC_PCREL16WF
3241 || r_type == R_PARISC_PCREL16DF)
3242 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3243 else
3244 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3245
3246 /* Apply the relocation to the given instruction. */
3247 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3248 break;
3249 }
3250
3251 case R_PARISC_PCREL12F:
3252 case R_PARISC_PCREL22F:
3253 case R_PARISC_PCREL17F:
3254 case R_PARISC_PCREL22C:
3255 case R_PARISC_PCREL17C:
3256 case R_PARISC_PCREL17R:
3257 {
3258 /* If this is a call to a function defined in another dynamic
3259 library, then redirect the call to the local stub for this
3260 function. */
3261 if (sym_sec == NULL || sym_sec->output_section == NULL)
3262 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3263 + hppa_info->stub_sec->output_section->vma);
3264
3265 /* Turn VALUE into a proper PC relative address. */
3266 value -= (offset + input_section->output_offset
3267 + input_section->output_section->vma);
3268 addend -= 8;
3269
3270 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3271 max_branch_offset = (1 << (22-1)) << 2;
3272 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3273 max_branch_offset = (1 << (17-1)) << 2;
3274 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3275 max_branch_offset = (1 << (12-1)) << 2;
3276
3277 /* Make sure we can reach the branch target. */
3278 if (max_branch_offset != 0
3279 && value + addend + max_branch_offset >= 2*max_branch_offset)
3280 {
3281 _bfd_error_handler
3282 /* xgettext:c-format */
3283 (_("%pB(%pA+%#" PRIx64 "): cannot reach %s"),
3284 input_bfd,
3285 input_section,
3286 (uint64_t) offset,
3287 eh ? eh->root.root.string : "unknown");
3288 bfd_set_error (bfd_error_bad_value);
3289 return bfd_reloc_overflow;
3290 }
3291
3292 /* Adjust for any field selectors. */
3293 if (r_type == R_PARISC_PCREL17R)
3294 value = hppa_field_adjust (value, addend, e_rsel);
3295 else
3296 value = hppa_field_adjust (value, addend, e_fsel);
3297
3298 /* All branches are implicitly shifted by 2 places. */
3299 value >>= 2;
3300
3301 /* Apply the relocation to the given instruction. */
3302 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3303 break;
3304 }
3305
3306 /* Indirect references to data through the DLT. */
3307 case R_PARISC_DLTIND14R:
3308 case R_PARISC_DLTIND14F:
3309 case R_PARISC_DLTIND14DR:
3310 case R_PARISC_DLTIND14WR:
3311 case R_PARISC_DLTIND21L:
3312 case R_PARISC_LTOFF_FPTR14R:
3313 case R_PARISC_LTOFF_FPTR14DR:
3314 case R_PARISC_LTOFF_FPTR14WR:
3315 case R_PARISC_LTOFF_FPTR21L:
3316 case R_PARISC_LTOFF_FPTR16F:
3317 case R_PARISC_LTOFF_FPTR16WF:
3318 case R_PARISC_LTOFF_FPTR16DF:
3319 case R_PARISC_LTOFF_TP21L:
3320 case R_PARISC_LTOFF_TP14R:
3321 case R_PARISC_LTOFF_TP14F:
3322 case R_PARISC_LTOFF_TP14WR:
3323 case R_PARISC_LTOFF_TP14DR:
3324 case R_PARISC_LTOFF_TP16F:
3325 case R_PARISC_LTOFF_TP16WF:
3326 case R_PARISC_LTOFF_TP16DF:
3327 case R_PARISC_LTOFF16F:
3328 case R_PARISC_LTOFF16WF:
3329 case R_PARISC_LTOFF16DF:
3330 {
3331 bfd_vma off;
3332
3333 /* If this relocation was against a local symbol, then we still
3334 have not set up the DLT entry (it's not convenient to do so
3335 in the "finalize_dlt" routine because it is difficult to get
3336 to the local symbol's value).
3337
3338 So, if this is a local symbol (h == NULL), then we need to
3339 fill in its DLT entry.
3340
3341 Similarly we may still need to set up an entry in .opd for
3342 a local function which had its address taken. */
3343 if (hh == NULL)
3344 {
3345 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3346
3347 if (local_offsets == NULL)
3348 abort ();
3349
3350 /* Now do .opd creation if needed. */
3351 if (r_type == R_PARISC_LTOFF_FPTR14R
3352 || r_type == R_PARISC_LTOFF_FPTR14DR
3353 || r_type == R_PARISC_LTOFF_FPTR14WR
3354 || r_type == R_PARISC_LTOFF_FPTR21L
3355 || r_type == R_PARISC_LTOFF_FPTR16F
3356 || r_type == R_PARISC_LTOFF_FPTR16WF
3357 || r_type == R_PARISC_LTOFF_FPTR16DF)
3358 {
3359 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3360 off = local_opd_offsets[r_symndx];
3361
3362 /* The last bit records whether we've already initialised
3363 this local .opd entry. */
3364 if ((off & 1) != 0)
3365 {
3366 BFD_ASSERT (off != (bfd_vma) -1);
3367 off &= ~1;
3368 }
3369 else
3370 {
3371 local_opd_offsets[r_symndx] |= 1;
3372
3373 /* The first two words of an .opd entry are zero. */
3374 memset (hppa_info->opd_sec->contents + off, 0, 16);
3375
3376 /* The next word is the address of the function. */
3377 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3378 (hppa_info->opd_sec->contents + off + 16));
3379
3380 /* The last word is our local __gp value. */
3381 value = _bfd_get_gp_value (info->output_bfd);
3382 bfd_put_64 (hppa_info->opd_sec->owner, value,
3383 (hppa_info->opd_sec->contents + off + 24));
3384 }
3385
3386 /* The DLT value is the address of the .opd entry. */
3387 value = (off
3388 + hppa_info->opd_sec->output_offset
3389 + hppa_info->opd_sec->output_section->vma);
3390 addend = 0;
3391 }
3392
3393 local_dlt_offsets = local_offsets;
3394 off = local_dlt_offsets[r_symndx];
3395
3396 if ((off & 1) != 0)
3397 {
3398 BFD_ASSERT (off != (bfd_vma) -1);
3399 off &= ~1;
3400 }
3401 else
3402 {
3403 local_dlt_offsets[r_symndx] |= 1;
3404 bfd_put_64 (hppa_info->dlt_sec->owner,
3405 value + addend,
3406 hppa_info->dlt_sec->contents + off);
3407 }
3408 }
3409 else
3410 off = hh->dlt_offset;
3411
3412 /* We want the value of the DLT offset for this symbol, not
3413 the symbol's actual address. Note that __gp may not point
3414 to the start of the DLT, so we have to compute the absolute
3415 address, then subtract out the value of __gp. */
3416 value = (off
3417 + hppa_info->dlt_sec->output_offset
3418 + hppa_info->dlt_sec->output_section->vma);
3419 value -= _bfd_get_gp_value (output_bfd);
3420
3421 /* All DLTIND relocations are basically the same at this point,
3422 except that we need different field selectors for the 21bit
3423 version vs the 14bit versions. */
3424 if (r_type == R_PARISC_DLTIND21L
3425 || r_type == R_PARISC_LTOFF_FPTR21L
3426 || r_type == R_PARISC_LTOFF_TP21L)
3427 value = hppa_field_adjust (value, 0, e_lsel);
3428 else if (r_type == R_PARISC_DLTIND14F
3429 || r_type == R_PARISC_LTOFF_FPTR16F
3430 || r_type == R_PARISC_LTOFF_FPTR16WF
3431 || r_type == R_PARISC_LTOFF_FPTR16DF
3432 || r_type == R_PARISC_LTOFF16F
3433 || r_type == R_PARISC_LTOFF16DF
3434 || r_type == R_PARISC_LTOFF16WF
3435 || r_type == R_PARISC_LTOFF_TP16F
3436 || r_type == R_PARISC_LTOFF_TP16WF
3437 || r_type == R_PARISC_LTOFF_TP16DF)
3438 value = hppa_field_adjust (value, 0, e_fsel);
3439 else
3440 value = hppa_field_adjust (value, 0, e_rsel);
3441
3442 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3443 break;
3444 }
3445
3446 case R_PARISC_DLTREL14R:
3447 case R_PARISC_DLTREL14F:
3448 case R_PARISC_DLTREL14DR:
3449 case R_PARISC_DLTREL14WR:
3450 case R_PARISC_DLTREL21L:
3451 case R_PARISC_DPREL21L:
3452 case R_PARISC_DPREL14WR:
3453 case R_PARISC_DPREL14DR:
3454 case R_PARISC_DPREL14R:
3455 case R_PARISC_DPREL14F:
3456 case R_PARISC_GPREL16F:
3457 case R_PARISC_GPREL16WF:
3458 case R_PARISC_GPREL16DF:
3459 {
3460 /* Subtract out the global pointer value to make value a DLT
3461 relative address. */
3462 value -= _bfd_get_gp_value (output_bfd);
3463
3464 /* All DLTREL relocations are basically the same at this point,
3465 except that we need different field selectors for the 21bit
3466 version vs the 14bit versions. */
3467 if (r_type == R_PARISC_DLTREL21L
3468 || r_type == R_PARISC_DPREL21L)
3469 value = hppa_field_adjust (value, addend, e_lrsel);
3470 else if (r_type == R_PARISC_DLTREL14F
3471 || r_type == R_PARISC_DPREL14F
3472 || r_type == R_PARISC_GPREL16F
3473 || r_type == R_PARISC_GPREL16WF
3474 || r_type == R_PARISC_GPREL16DF)
3475 value = hppa_field_adjust (value, addend, e_fsel);
3476 else
3477 value = hppa_field_adjust (value, addend, e_rrsel);
3478
3479 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3480 break;
3481 }
3482
3483 case R_PARISC_DIR21L:
3484 case R_PARISC_DIR17R:
3485 case R_PARISC_DIR17F:
3486 case R_PARISC_DIR14R:
3487 case R_PARISC_DIR14F:
3488 case R_PARISC_DIR14WR:
3489 case R_PARISC_DIR14DR:
3490 case R_PARISC_DIR16F:
3491 case R_PARISC_DIR16WF:
3492 case R_PARISC_DIR16DF:
3493 {
3494 /* All DIR relocations are basically the same at this point,
3495 except that branch offsets need to be divided by four, and
3496 we need different field selectors. Note that we don't
3497 redirect absolute calls to local stubs. */
3498
3499 if (r_type == R_PARISC_DIR21L)
3500 value = hppa_field_adjust (value, addend, e_lrsel);
3501 else if (r_type == R_PARISC_DIR17F
3502 || r_type == R_PARISC_DIR16F
3503 || r_type == R_PARISC_DIR16WF
3504 || r_type == R_PARISC_DIR16DF
3505 || r_type == R_PARISC_DIR14F)
3506 value = hppa_field_adjust (value, addend, e_fsel);
3507 else
3508 value = hppa_field_adjust (value, addend, e_rrsel);
3509
3510 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3511 /* All branches are implicitly shifted by 2 places. */
3512 value >>= 2;
3513
3514 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3515 break;
3516 }
3517
3518 case R_PARISC_PLTOFF21L:
3519 case R_PARISC_PLTOFF14R:
3520 case R_PARISC_PLTOFF14F:
3521 case R_PARISC_PLTOFF14WR:
3522 case R_PARISC_PLTOFF14DR:
3523 case R_PARISC_PLTOFF16F:
3524 case R_PARISC_PLTOFF16WF:
3525 case R_PARISC_PLTOFF16DF:
3526 {
3527 /* We want the value of the PLT offset for this symbol, not
3528 the symbol's actual address. Note that __gp may not point
3529 to the start of the DLT, so we have to compute the absolute
3530 address, then subtract out the value of __gp. */
3531 value = (hh->plt_offset
3532 + hppa_info->plt_sec->output_offset
3533 + hppa_info->plt_sec->output_section->vma);
3534 value -= _bfd_get_gp_value (output_bfd);
3535
3536 /* All PLTOFF relocations are basically the same at this point,
3537 except that we need different field selectors for the 21bit
3538 version vs the 14bit versions. */
3539 if (r_type == R_PARISC_PLTOFF21L)
3540 value = hppa_field_adjust (value, addend, e_lrsel);
3541 else if (r_type == R_PARISC_PLTOFF14F
3542 || r_type == R_PARISC_PLTOFF16F
3543 || r_type == R_PARISC_PLTOFF16WF
3544 || r_type == R_PARISC_PLTOFF16DF)
3545 value = hppa_field_adjust (value, addend, e_fsel);
3546 else
3547 value = hppa_field_adjust (value, addend, e_rrsel);
3548
3549 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3550 break;
3551 }
3552
3553 case R_PARISC_LTOFF_FPTR32:
3554 {
3555 /* FIXME: There used to be code here to create the FPTR itself if
3556 the relocation was against a local symbol. But the code could
3557 never have worked. If the assert below is ever triggered then
3558 the code will need to be reinstated and fixed so that it does
3559 what is needed. */
3560 BFD_ASSERT (hh != NULL);
3561
3562 /* We want the value of the DLT offset for this symbol, not
3563 the symbol's actual address. Note that __gp may not point
3564 to the start of the DLT, so we have to compute the absolute
3565 address, then subtract out the value of __gp. */
3566 value = (hh->dlt_offset
3567 + hppa_info->dlt_sec->output_offset
3568 + hppa_info->dlt_sec->output_section->vma);
3569 value -= _bfd_get_gp_value (output_bfd);
3570 bfd_put_32 (input_bfd, value, hit_data);
3571 return bfd_reloc_ok;
3572 }
3573
3574 case R_PARISC_LTOFF_FPTR64:
3575 case R_PARISC_LTOFF_TP64:
3576 {
3577 /* We may still need to create the FPTR itself if it was for
3578 a local symbol. */
3579 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3580 {
3581 /* The first two words of an .opd entry are zero. */
3582 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3583
3584 /* The next word is the address of the function. */
3585 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3586 (hppa_info->opd_sec->contents
3587 + hh->opd_offset + 16));
3588
3589 /* The last word is our local __gp value. */
3590 value = _bfd_get_gp_value (info->output_bfd);
3591 bfd_put_64 (hppa_info->opd_sec->owner, value,
3592 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3593
3594 /* The DLT value is the address of the .opd entry. */
3595 value = (hh->opd_offset
3596 + hppa_info->opd_sec->output_offset
3597 + hppa_info->opd_sec->output_section->vma);
3598
3599 bfd_put_64 (hppa_info->dlt_sec->owner,
3600 value,
3601 hppa_info->dlt_sec->contents + hh->dlt_offset);
3602 }
3603
3604 /* We want the value of the DLT offset for this symbol, not
3605 the symbol's actual address. Note that __gp may not point
3606 to the start of the DLT, so we have to compute the absolute
3607 address, then subtract out the value of __gp. */
3608 value = (hh->dlt_offset
3609 + hppa_info->dlt_sec->output_offset
3610 + hppa_info->dlt_sec->output_section->vma);
3611 value -= _bfd_get_gp_value (output_bfd);
3612 bfd_put_64 (input_bfd, value, hit_data);
3613 return bfd_reloc_ok;
3614 }
3615
3616 case R_PARISC_DIR32:
3617 bfd_put_32 (input_bfd, value + addend, hit_data);
3618 return bfd_reloc_ok;
3619
3620 case R_PARISC_DIR64:
3621 bfd_put_64 (input_bfd, value + addend, hit_data);
3622 return bfd_reloc_ok;
3623
3624 case R_PARISC_GPREL64:
3625 /* Subtract out the global pointer value to make value a DLT
3626 relative address. */
3627 value -= _bfd_get_gp_value (output_bfd);
3628
3629 bfd_put_64 (input_bfd, value + addend, hit_data);
3630 return bfd_reloc_ok;
3631
3632 case R_PARISC_LTOFF64:
3633 /* We want the value of the DLT offset for this symbol, not
3634 the symbol's actual address. Note that __gp may not point
3635 to the start of the DLT, so we have to compute the absolute
3636 address, then subtract out the value of __gp. */
3637 value = (hh->dlt_offset
3638 + hppa_info->dlt_sec->output_offset
3639 + hppa_info->dlt_sec->output_section->vma);
3640 value -= _bfd_get_gp_value (output_bfd);
3641
3642 bfd_put_64 (input_bfd, value + addend, hit_data);
3643 return bfd_reloc_ok;
3644
3645 case R_PARISC_PCREL32:
3646 {
3647 /* If this is a call to a function defined in another dynamic
3648 library, then redirect the call to the local stub for this
3649 function. */
3650 if (sym_sec == NULL || sym_sec->output_section == NULL)
3651 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3652 + hppa_info->stub_sec->output_section->vma);
3653
3654 /* Turn VALUE into a proper PC relative address. */
3655 value -= (offset + input_section->output_offset
3656 + input_section->output_section->vma);
3657
3658 value += addend;
3659 value -= 8;
3660 bfd_put_32 (input_bfd, value, hit_data);
3661 return bfd_reloc_ok;
3662 }
3663
3664 case R_PARISC_PCREL64:
3665 {
3666 /* If this is a call to a function defined in another dynamic
3667 library, then redirect the call to the local stub for this
3668 function. */
3669 if (sym_sec == NULL || sym_sec->output_section == NULL)
3670 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3671 + hppa_info->stub_sec->output_section->vma);
3672
3673 /* Turn VALUE into a proper PC relative address. */
3674 value -= (offset + input_section->output_offset
3675 + input_section->output_section->vma);
3676
3677 value += addend;
3678 value -= 8;
3679 bfd_put_64 (input_bfd, value, hit_data);
3680 return bfd_reloc_ok;
3681 }
3682
3683 case R_PARISC_FPTR64:
3684 {
3685 bfd_vma off;
3686
3687 /* We may still need to create the FPTR itself if it was for
3688 a local symbol. */
3689 if (hh == NULL)
3690 {
3691 bfd_vma *local_opd_offsets;
3692
3693 if (local_offsets == NULL)
3694 abort ();
3695
3696 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3697 off = local_opd_offsets[r_symndx];
3698
3699 /* The last bit records whether we've already initialised
3700 this local .opd entry. */
3701 if ((off & 1) != 0)
3702 {
3703 BFD_ASSERT (off != (bfd_vma) -1);
3704 off &= ~1;
3705 }
3706 else
3707 {
3708 /* The first two words of an .opd entry are zero. */
3709 memset (hppa_info->opd_sec->contents + off, 0, 16);
3710
3711 /* The next word is the address of the function. */
3712 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3713 (hppa_info->opd_sec->contents + off + 16));
3714
3715 /* The last word is our local __gp value. */
3716 value = _bfd_get_gp_value (info->output_bfd);
3717 bfd_put_64 (hppa_info->opd_sec->owner, value,
3718 hppa_info->opd_sec->contents + off + 24);
3719 }
3720 }
3721 else
3722 off = hh->opd_offset;
3723
3724 if (hh == NULL || hh->want_opd)
3725 /* We want the value of the OPD offset for this symbol. */
3726 value = (off
3727 + hppa_info->opd_sec->output_offset
3728 + hppa_info->opd_sec->output_section->vma);
3729 else
3730 /* We want the address of the symbol. */
3731 value += addend;
3732
3733 bfd_put_64 (input_bfd, value, hit_data);
3734 return bfd_reloc_ok;
3735 }
3736
3737 case R_PARISC_SECREL32:
3738 if (sym_sec)
3739 value -= sym_sec->output_section->vma;
3740 bfd_put_32 (input_bfd, value + addend, hit_data);
3741 return bfd_reloc_ok;
3742
3743 case R_PARISC_SEGREL32:
3744 case R_PARISC_SEGREL64:
3745 {
3746 /* If this is the first SEGREL relocation, then initialize
3747 the segment base values. */
3748 if (hppa_info->text_segment_base == (bfd_vma) -1)
3749 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3750 hppa_info);
3751
3752 /* VALUE holds the absolute address. We want to include the
3753 addend, then turn it into a segment relative address.
3754
3755 The segment is derived from SYM_SEC. We assume that there are
3756 only two segments of note in the resulting executable/shlib.
3757 A readonly segment (.text) and a readwrite segment (.data). */
3758 value += addend;
3759
3760 if (sym_sec->flags & SEC_CODE)
3761 value -= hppa_info->text_segment_base;
3762 else
3763 value -= hppa_info->data_segment_base;
3764
3765 if (r_type == R_PARISC_SEGREL32)
3766 bfd_put_32 (input_bfd, value, hit_data);
3767 else
3768 bfd_put_64 (input_bfd, value, hit_data);
3769 return bfd_reloc_ok;
3770 }
3771
3772 /* Something we don't know how to handle. */
3773 default:
3774 return bfd_reloc_notsupported;
3775 }
3776
3777 /* Update the instruction word. */
3778 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3779 return bfd_reloc_ok;
3780 }
3781
3782 /* Relocate an HPPA ELF section. */
3783
3784 static bfd_boolean
3785 elf64_hppa_relocate_section (bfd *output_bfd,
3786 struct bfd_link_info *info,
3787 bfd *input_bfd,
3788 asection *input_section,
3789 bfd_byte *contents,
3790 Elf_Internal_Rela *relocs,
3791 Elf_Internal_Sym *local_syms,
3792 asection **local_sections)
3793 {
3794 Elf_Internal_Shdr *symtab_hdr;
3795 Elf_Internal_Rela *rel;
3796 Elf_Internal_Rela *relend;
3797 struct elf64_hppa_link_hash_table *hppa_info;
3798
3799 hppa_info = hppa_link_hash_table (info);
3800 if (hppa_info == NULL)
3801 return FALSE;
3802
3803 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3804
3805 rel = relocs;
3806 relend = relocs + input_section->reloc_count;
3807 for (; rel < relend; rel++)
3808 {
3809 int r_type;
3810 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3811 unsigned long r_symndx;
3812 struct elf_link_hash_entry *eh;
3813 Elf_Internal_Sym *sym;
3814 asection *sym_sec;
3815 bfd_vma relocation;
3816 bfd_reloc_status_type r;
3817
3818 r_type = ELF_R_TYPE (rel->r_info);
3819 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3820 {
3821 bfd_set_error (bfd_error_bad_value);
3822 return FALSE;
3823 }
3824 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3825 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3826 continue;
3827
3828 /* This is a final link. */
3829 r_symndx = ELF_R_SYM (rel->r_info);
3830 eh = NULL;
3831 sym = NULL;
3832 sym_sec = NULL;
3833 if (r_symndx < symtab_hdr->sh_info)
3834 {
3835 /* This is a local symbol, hh defaults to NULL. */
3836 sym = local_syms + r_symndx;
3837 sym_sec = local_sections[r_symndx];
3838 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3839 }
3840 else
3841 {
3842 /* This is not a local symbol. */
3843 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3844
3845 /* It seems this can happen with erroneous or unsupported
3846 input (mixing a.out and elf in an archive, for example.) */
3847 if (sym_hashes == NULL)
3848 return FALSE;
3849
3850 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3851
3852 if (info->wrap_hash != NULL
3853 && (input_section->flags & SEC_DEBUGGING) != 0)
3854 eh = ((struct elf_link_hash_entry *)
3855 unwrap_hash_lookup (info, input_bfd, &eh->root));
3856
3857 while (eh->root.type == bfd_link_hash_indirect
3858 || eh->root.type == bfd_link_hash_warning)
3859 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3860
3861 relocation = 0;
3862 if (eh->root.type == bfd_link_hash_defined
3863 || eh->root.type == bfd_link_hash_defweak)
3864 {
3865 sym_sec = eh->root.u.def.section;
3866 if (sym_sec != NULL
3867 && sym_sec->output_section != NULL)
3868 relocation = (eh->root.u.def.value
3869 + sym_sec->output_section->vma
3870 + sym_sec->output_offset);
3871 }
3872 else if (eh->root.type == bfd_link_hash_undefweak)
3873 ;
3874 else if (info->unresolved_syms_in_objects == RM_IGNORE
3875 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3876 ;
3877 else if (!bfd_link_relocatable (info)
3878 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3879 continue;
3880 else if (!bfd_link_relocatable (info))
3881 {
3882 bfd_boolean err;
3883 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3884 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3885 (*info->callbacks->undefined_symbol) (info,
3886 eh->root.root.string,
3887 input_bfd,
3888 input_section,
3889 rel->r_offset, err);
3890 }
3891
3892 if (!bfd_link_relocatable (info)
3893 && relocation == 0
3894 && eh->root.type != bfd_link_hash_defined
3895 && eh->root.type != bfd_link_hash_defweak
3896 && eh->root.type != bfd_link_hash_undefweak)
3897 {
3898 if (info->unresolved_syms_in_objects == RM_IGNORE
3899 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3900 && eh->type == STT_PARISC_MILLI)
3901 (*info->callbacks->undefined_symbol)
3902 (info, eh_name (eh), input_bfd,
3903 input_section, rel->r_offset, FALSE);
3904 }
3905 }
3906
3907 if (sym_sec != NULL && discarded_section (sym_sec))
3908 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3909 rel, 1, relend, howto, 0, contents);
3910
3911 if (bfd_link_relocatable (info))
3912 continue;
3913
3914 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3915 input_section, contents,
3916 relocation, info, sym_sec,
3917 eh);
3918
3919 if (r != bfd_reloc_ok)
3920 {
3921 switch (r)
3922 {
3923 default:
3924 abort ();
3925 case bfd_reloc_overflow:
3926 {
3927 const char *sym_name;
3928
3929 if (eh != NULL)
3930 sym_name = NULL;
3931 else
3932 {
3933 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3934 symtab_hdr->sh_link,
3935 sym->st_name);
3936 if (sym_name == NULL)
3937 return FALSE;
3938 if (*sym_name == '\0')
3939 sym_name = bfd_section_name (sym_sec);
3940 }
3941
3942 (*info->callbacks->reloc_overflow)
3943 (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3944 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3945 }
3946 break;
3947 }
3948 }
3949 }
3950 return TRUE;
3951 }
3952
3953 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3954 {
3955 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3956 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3957 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3958 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3959 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3960 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3961 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3962 { NULL, 0, 0, 0, 0 }
3963 };
3964
3965 /* The hash bucket size is the standard one, namely 4. */
3966
3967 const struct elf_size_info hppa64_elf_size_info =
3968 {
3969 sizeof (Elf64_External_Ehdr),
3970 sizeof (Elf64_External_Phdr),
3971 sizeof (Elf64_External_Shdr),
3972 sizeof (Elf64_External_Rel),
3973 sizeof (Elf64_External_Rela),
3974 sizeof (Elf64_External_Sym),
3975 sizeof (Elf64_External_Dyn),
3976 sizeof (Elf_External_Note),
3977 4,
3978 1,
3979 64, 3,
3980 ELFCLASS64, EV_CURRENT,
3981 bfd_elf64_write_out_phdrs,
3982 bfd_elf64_write_shdrs_and_ehdr,
3983 bfd_elf64_checksum_contents,
3984 bfd_elf64_write_relocs,
3985 bfd_elf64_swap_symbol_in,
3986 bfd_elf64_swap_symbol_out,
3987 bfd_elf64_slurp_reloc_table,
3988 bfd_elf64_slurp_symbol_table,
3989 bfd_elf64_swap_dyn_in,
3990 bfd_elf64_swap_dyn_out,
3991 bfd_elf64_swap_reloc_in,
3992 bfd_elf64_swap_reloc_out,
3993 bfd_elf64_swap_reloca_in,
3994 bfd_elf64_swap_reloca_out
3995 };
3996
3997 #define TARGET_BIG_SYM hppa_elf64_vec
3998 #define TARGET_BIG_NAME "elf64-hppa"
3999 #define ELF_ARCH bfd_arch_hppa
4000 #define ELF_TARGET_ID HPPA64_ELF_DATA
4001 #define ELF_MACHINE_CODE EM_PARISC
4002 /* This is not strictly correct. The maximum page size for PA2.0 is
4003 64M. But everything still uses 4k. */
4004 #define ELF_MAXPAGESIZE 0x1000
4005 #define ELF_OSABI ELFOSABI_HPUX
4006
4007 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4008 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4009 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4010 #define elf_info_to_howto elf_hppa_info_to_howto
4011 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4012
4013 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4014 #define elf_backend_object_p elf64_hppa_object_p
4015 #define elf_backend_final_write_processing \
4016 elf_hppa_final_write_processing
4017 #define elf_backend_fake_sections elf_hppa_fake_sections
4018 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4019
4020 #define elf_backend_relocate_section elf_hppa_relocate_section
4021
4022 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4023
4024 #define elf_backend_create_dynamic_sections \
4025 elf64_hppa_create_dynamic_sections
4026 #define elf_backend_init_file_header elf64_hppa_init_file_header
4027
4028 #define elf_backend_omit_section_dynsym _bfd_elf_omit_section_dynsym_all
4029
4030 #define elf_backend_adjust_dynamic_symbol \
4031 elf64_hppa_adjust_dynamic_symbol
4032
4033 #define elf_backend_size_dynamic_sections \
4034 elf64_hppa_size_dynamic_sections
4035
4036 #define elf_backend_finish_dynamic_symbol \
4037 elf64_hppa_finish_dynamic_symbol
4038 #define elf_backend_finish_dynamic_sections \
4039 elf64_hppa_finish_dynamic_sections
4040 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4041 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4042
4043 /* Stuff for the BFD linker: */
4044 #define bfd_elf64_bfd_link_hash_table_create \
4045 elf64_hppa_hash_table_create
4046
4047 #define elf_backend_check_relocs \
4048 elf64_hppa_check_relocs
4049
4050 #define elf_backend_size_info \
4051 hppa64_elf_size_info
4052
4053 #define elf_backend_additional_program_headers \
4054 elf64_hppa_additional_program_headers
4055
4056 #define elf_backend_modify_segment_map \
4057 elf64_hppa_modify_segment_map
4058
4059 #define elf_backend_allow_non_load_phdr \
4060 elf64_hppa_allow_non_load_phdr
4061
4062 #define elf_backend_link_output_symbol_hook \
4063 elf64_hppa_link_output_symbol_hook
4064
4065 #define elf_backend_want_got_plt 0
4066 #define elf_backend_plt_readonly 0
4067 #define elf_backend_want_plt_sym 0
4068 #define elf_backend_got_header_size 0
4069 #define elf_backend_type_change_ok TRUE
4070 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4071 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4072 #define elf_backend_rela_normal 1
4073 #define elf_backend_special_sections elf64_hppa_special_sections
4074 #define elf_backend_action_discarded elf_hppa_action_discarded
4075 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4076
4077 #define elf64_bed elf64_hppa_hpux_bed
4078
4079 #include "elf64-target.h"
4080
4081 #undef TARGET_BIG_SYM
4082 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4083 #undef TARGET_BIG_NAME
4084 #define TARGET_BIG_NAME "elf64-hppa-linux"
4085 #undef ELF_OSABI
4086 #define ELF_OSABI ELFOSABI_GNU
4087 #undef elf64_bed
4088 #define elf64_bed elf64_hppa_linux_bed
4089 #undef elf_backend_special_sections
4090 #define elf_backend_special_sections (elf64_hppa_special_sections + 1)
4091
4092 #include "elf64-target.h"
This page took 0.124043 seconds and 4 git commands to generate.