* aout-adobe.c (aout_32_bfd_reloc_name_lookup): Define.
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
161 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
162 const char *string));
163 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164 PARAMS ((bfd *abfd));
165 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
166 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
167 bfd_boolean create, bfd_boolean copy));
168 static void elf64_hppa_dyn_hash_traverse
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
170 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
171 PTR info));
172
173 static const char *get_dyn_name
174 PARAMS ((bfd *, struct elf_link_hash_entry *,
175 const Elf_Internal_Rela *, char **, size_t *));
176
177 /* This must follow the definitions of the various derived linker
178 hash tables and shared functions. */
179 #include "elf-hppa.h"
180
181 static bfd_boolean elf64_hppa_object_p
182 PARAMS ((bfd *));
183
184 static void elf64_hppa_post_process_headers
185 PARAMS ((bfd *, struct bfd_link_info *));
186
187 static bfd_boolean elf64_hppa_create_dynamic_sections
188 PARAMS ((bfd *, struct bfd_link_info *));
189
190 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
191 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
192
193 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195
196 static bfd_boolean elf64_hppa_size_dynamic_sections
197 PARAMS ((bfd *, struct bfd_link_info *));
198
199 static bfd_boolean elf64_hppa_link_output_symbol_hook
200 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
201 asection *, struct elf_link_hash_entry *));
202
203 static bfd_boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd *, struct bfd_link_info *,
205 struct elf_link_hash_entry *, Elf_Internal_Sym *));
206
207 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
208 PARAMS ((const Elf_Internal_Rela *));
209
210 static bfd_boolean elf64_hppa_finish_dynamic_sections
211 PARAMS ((bfd *, struct bfd_link_info *));
212
213 static bfd_boolean elf64_hppa_check_relocs
214 PARAMS ((bfd *, struct bfd_link_info *,
215 asection *, const Elf_Internal_Rela *));
216
217 static bfd_boolean elf64_hppa_dynamic_symbol_p
218 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
219
220 static bfd_boolean elf64_hppa_mark_exported_functions
221 PARAMS ((struct elf_link_hash_entry *, PTR));
222
223 static bfd_boolean elf64_hppa_finalize_opd
224 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
225
226 static bfd_boolean elf64_hppa_finalize_dlt
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229 static bfd_boolean allocate_global_data_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232 static bfd_boolean allocate_global_data_plt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static bfd_boolean allocate_global_data_stub
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean allocate_global_data_opd
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean get_reloc_section
242 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
243
244 static bfd_boolean count_dyn_reloc
245 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
246 int, asection *, int, bfd_vma, bfd_vma));
247
248 static bfd_boolean allocate_dynrel_entries
249 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
250
251 static bfd_boolean elf64_hppa_finalize_dynreloc
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254 static bfd_boolean get_opd
255 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
256
257 static bfd_boolean get_plt
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260 static bfd_boolean get_dlt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263 static bfd_boolean get_stub
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static int elf64_hppa_elf_get_symbol_type
267 PARAMS ((Elf_Internal_Sym *, int));
268
269 static bfd_boolean
270 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
271 bfd *abfd ATTRIBUTE_UNUSED,
272 new_hash_entry_func new,
273 unsigned int entsize)
274 {
275 memset (ht, 0, sizeof (*ht));
276 return bfd_hash_table_init (&ht->root, new, entsize);
277 }
278
279 static struct bfd_hash_entry*
280 elf64_hppa_new_dyn_hash_entry (entry, table, string)
281 struct bfd_hash_entry *entry;
282 struct bfd_hash_table *table;
283 const char *string;
284 {
285 struct elf64_hppa_dyn_hash_entry *ret;
286 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
287
288 /* Allocate the structure if it has not already been allocated by a
289 subclass. */
290 if (!ret)
291 ret = bfd_hash_allocate (table, sizeof (*ret));
292
293 if (!ret)
294 return 0;
295
296 /* Call the allocation method of the superclass. */
297 ret = ((struct elf64_hppa_dyn_hash_entry *)
298 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
299
300 /* Initialize our local data. All zeros. */
301 memset (&ret->dlt_offset, 0,
302 (sizeof (struct elf64_hppa_dyn_hash_entry)
303 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
304
305 return &ret->root;
306 }
307
308 /* Create the derived linker hash table. The PA64 ELF port uses this
309 derived hash table to keep information specific to the PA ElF
310 linker (without using static variables). */
311
312 static struct bfd_link_hash_table*
313 elf64_hppa_hash_table_create (abfd)
314 bfd *abfd;
315 {
316 struct elf64_hppa_link_hash_table *ret;
317
318 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
319 if (!ret)
320 return 0;
321 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
322 _bfd_elf_link_hash_newfunc,
323 sizeof (struct elf_link_hash_entry)))
324 {
325 bfd_release (abfd, ret);
326 return 0;
327 }
328
329 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
330 elf64_hppa_new_dyn_hash_entry,
331 sizeof (struct elf64_hppa_dyn_hash_entry)))
332 return 0;
333 return &ret->root.root;
334 }
335
336 /* Look up an entry in a PA64 ELF linker hash table. */
337
338 static struct elf64_hppa_dyn_hash_entry *
339 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340 struct elf64_hppa_dyn_hash_table *table;
341 const char *string;
342 bfd_boolean create, copy;
343 {
344 return ((struct elf64_hppa_dyn_hash_entry *)
345 bfd_hash_lookup (&table->root, string, create, copy));
346 }
347
348 /* Traverse a PA64 ELF linker hash table. */
349
350 static void
351 elf64_hppa_dyn_hash_traverse (table, func, info)
352 struct elf64_hppa_dyn_hash_table *table;
353 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354 PTR info;
355 {
356 (bfd_hash_traverse
357 (&table->root,
358 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359 info));
360 }
361 \f
362 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364 Additionally we set the default architecture and machine. */
365 static bfd_boolean
366 elf64_hppa_object_p (abfd)
367 bfd *abfd;
368 {
369 Elf_Internal_Ehdr * i_ehdrp;
370 unsigned int flags;
371
372 i_ehdrp = elf_elfheader (abfd);
373 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374 {
375 /* GCC on hppa-linux produces binaries with OSABI=Linux,
376 but the kernel produces corefiles with OSABI=SysV. */
377 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
378 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
379 return FALSE;
380 }
381 else
382 {
383 /* HPUX produces binaries with OSABI=HPUX,
384 but the kernel produces corefiles with OSABI=SysV. */
385 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
386 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
387 return FALSE;
388 }
389
390 flags = i_ehdrp->e_flags;
391 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
392 {
393 case EFA_PARISC_1_0:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
395 case EFA_PARISC_1_1:
396 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
397 case EFA_PARISC_2_0:
398 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
399 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
400 else
401 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
402 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
403 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
404 }
405 /* Don't be fussy. */
406 return TRUE;
407 }
408
409 /* Given section type (hdr->sh_type), return a boolean indicating
410 whether or not the section is an elf64-hppa specific section. */
411 static bfd_boolean
412 elf64_hppa_section_from_shdr (bfd *abfd,
413 Elf_Internal_Shdr *hdr,
414 const char *name,
415 int shindex)
416 {
417 asection *newsect;
418
419 switch (hdr->sh_type)
420 {
421 case SHT_PARISC_EXT:
422 if (strcmp (name, ".PARISC.archext") != 0)
423 return FALSE;
424 break;
425 case SHT_PARISC_UNWIND:
426 if (strcmp (name, ".PARISC.unwind") != 0)
427 return FALSE;
428 break;
429 case SHT_PARISC_DOC:
430 case SHT_PARISC_ANNOT:
431 default:
432 return FALSE;
433 }
434
435 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
436 return FALSE;
437 newsect = hdr->bfd_section;
438
439 return TRUE;
440 }
441
442 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
443 name describes what was once potentially anonymous memory. We
444 allocate memory as necessary, possibly reusing PBUF/PLEN. */
445
446 static const char *
447 get_dyn_name (abfd, h, rel, pbuf, plen)
448 bfd *abfd;
449 struct elf_link_hash_entry *h;
450 const Elf_Internal_Rela *rel;
451 char **pbuf;
452 size_t *plen;
453 {
454 asection *sec = abfd->sections;
455 size_t nlen, tlen;
456 char *buf;
457 size_t len;
458
459 if (h && rel->r_addend == 0)
460 return h->root.root.string;
461
462 if (h)
463 nlen = strlen (h->root.root.string);
464 else
465 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
466 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
467
468 len = *plen;
469 buf = *pbuf;
470 if (len < tlen)
471 {
472 if (buf)
473 free (buf);
474 *pbuf = buf = malloc (tlen);
475 *plen = len = tlen;
476 if (!buf)
477 return NULL;
478 }
479
480 if (h)
481 {
482 memcpy (buf, h->root.root.string, nlen);
483 buf[nlen++] = '+';
484 sprintf_vma (buf + nlen, rel->r_addend);
485 }
486 else
487 {
488 nlen = sprintf (buf, "%x:%lx",
489 sec->id & 0xffffffff,
490 (long) ELF64_R_SYM (rel->r_info));
491 if (rel->r_addend)
492 {
493 buf[nlen++] = '+';
494 sprintf_vma (buf + nlen, rel->r_addend);
495 }
496 }
497
498 return buf;
499 }
500
501 /* SEC is a section containing relocs for an input BFD when linking; return
502 a suitable section for holding relocs in the output BFD for a link. */
503
504 static bfd_boolean
505 get_reloc_section (abfd, hppa_info, sec)
506 bfd *abfd;
507 struct elf64_hppa_link_hash_table *hppa_info;
508 asection *sec;
509 {
510 const char *srel_name;
511 asection *srel;
512 bfd *dynobj;
513
514 srel_name = (bfd_elf_string_from_elf_section
515 (abfd, elf_elfheader(abfd)->e_shstrndx,
516 elf_section_data(sec)->rel_hdr.sh_name));
517 if (srel_name == NULL)
518 return FALSE;
519
520 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
521 && strcmp (bfd_get_section_name (abfd, sec),
522 srel_name + 5) == 0)
523 || (CONST_STRNEQ (srel_name, ".rel")
524 && strcmp (bfd_get_section_name (abfd, sec),
525 srel_name + 4) == 0));
526
527 dynobj = hppa_info->root.dynobj;
528 if (!dynobj)
529 hppa_info->root.dynobj = dynobj = abfd;
530
531 srel = bfd_get_section_by_name (dynobj, srel_name);
532 if (srel == NULL)
533 {
534 srel = bfd_make_section_with_flags (dynobj, srel_name,
535 (SEC_ALLOC
536 | SEC_LOAD
537 | SEC_HAS_CONTENTS
538 | SEC_IN_MEMORY
539 | SEC_LINKER_CREATED
540 | SEC_READONLY));
541 if (srel == NULL
542 || !bfd_set_section_alignment (dynobj, srel, 3))
543 return FALSE;
544 }
545
546 hppa_info->other_rel_sec = srel;
547 return TRUE;
548 }
549
550 /* Add a new entry to the list of dynamic relocations against DYN_H.
551
552 We use this to keep a record of all the FPTR relocations against a
553 particular symbol so that we can create FPTR relocations in the
554 output file. */
555
556 static bfd_boolean
557 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
558 bfd *abfd;
559 struct elf64_hppa_dyn_hash_entry *dyn_h;
560 int type;
561 asection *sec;
562 int sec_symndx;
563 bfd_vma offset;
564 bfd_vma addend;
565 {
566 struct elf64_hppa_dyn_reloc_entry *rent;
567
568 rent = (struct elf64_hppa_dyn_reloc_entry *)
569 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
570 if (!rent)
571 return FALSE;
572
573 rent->next = dyn_h->reloc_entries;
574 rent->type = type;
575 rent->sec = sec;
576 rent->sec_symndx = sec_symndx;
577 rent->offset = offset;
578 rent->addend = addend;
579 dyn_h->reloc_entries = rent;
580
581 return TRUE;
582 }
583
584 /* Scan the RELOCS and record the type of dynamic entries that each
585 referenced symbol needs. */
586
587 static bfd_boolean
588 elf64_hppa_check_relocs (abfd, info, sec, relocs)
589 bfd *abfd;
590 struct bfd_link_info *info;
591 asection *sec;
592 const Elf_Internal_Rela *relocs;
593 {
594 struct elf64_hppa_link_hash_table *hppa_info;
595 const Elf_Internal_Rela *relend;
596 Elf_Internal_Shdr *symtab_hdr;
597 const Elf_Internal_Rela *rel;
598 asection *dlt, *plt, *stubs;
599 char *buf;
600 size_t buf_len;
601 int sec_symndx;
602
603 if (info->relocatable)
604 return TRUE;
605
606 /* If this is the first dynamic object found in the link, create
607 the special sections required for dynamic linking. */
608 if (! elf_hash_table (info)->dynamic_sections_created)
609 {
610 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
611 return FALSE;
612 }
613
614 hppa_info = elf64_hppa_hash_table (info);
615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
616
617 /* If necessary, build a new table holding section symbols indices
618 for this BFD. */
619
620 if (info->shared && hppa_info->section_syms_bfd != abfd)
621 {
622 unsigned long i;
623 unsigned int highest_shndx;
624 Elf_Internal_Sym *local_syms = NULL;
625 Elf_Internal_Sym *isym, *isymend;
626 bfd_size_type amt;
627
628 /* We're done with the old cache of section index to section symbol
629 index information. Free it.
630
631 ?!? Note we leak the last section_syms array. Presumably we
632 could free it in one of the later routines in this file. */
633 if (hppa_info->section_syms)
634 free (hppa_info->section_syms);
635
636 /* Read this BFD's local symbols. */
637 if (symtab_hdr->sh_info != 0)
638 {
639 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
640 if (local_syms == NULL)
641 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
642 symtab_hdr->sh_info, 0,
643 NULL, NULL, NULL);
644 if (local_syms == NULL)
645 return FALSE;
646 }
647
648 /* Record the highest section index referenced by the local symbols. */
649 highest_shndx = 0;
650 isymend = local_syms + symtab_hdr->sh_info;
651 for (isym = local_syms; isym < isymend; isym++)
652 {
653 if (isym->st_shndx > highest_shndx)
654 highest_shndx = isym->st_shndx;
655 }
656
657 /* Allocate an array to hold the section index to section symbol index
658 mapping. Bump by one since we start counting at zero. */
659 highest_shndx++;
660 amt = highest_shndx;
661 amt *= sizeof (int);
662 hppa_info->section_syms = (int *) bfd_malloc (amt);
663
664 /* Now walk the local symbols again. If we find a section symbol,
665 record the index of the symbol into the section_syms array. */
666 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
667 {
668 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
669 hppa_info->section_syms[isym->st_shndx] = i;
670 }
671
672 /* We are finished with the local symbols. */
673 if (local_syms != NULL
674 && symtab_hdr->contents != (unsigned char *) local_syms)
675 {
676 if (! info->keep_memory)
677 free (local_syms);
678 else
679 {
680 /* Cache the symbols for elf_link_input_bfd. */
681 symtab_hdr->contents = (unsigned char *) local_syms;
682 }
683 }
684
685 /* Record which BFD we built the section_syms mapping for. */
686 hppa_info->section_syms_bfd = abfd;
687 }
688
689 /* Record the symbol index for this input section. We may need it for
690 relocations when building shared libraries. When not building shared
691 libraries this value is never really used, but assign it to zero to
692 prevent out of bounds memory accesses in other routines. */
693 if (info->shared)
694 {
695 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
696
697 /* If we did not find a section symbol for this section, then
698 something went terribly wrong above. */
699 if (sec_symndx == -1)
700 return FALSE;
701
702 sec_symndx = hppa_info->section_syms[sec_symndx];
703 }
704 else
705 sec_symndx = 0;
706
707 dlt = plt = stubs = NULL;
708 buf = NULL;
709 buf_len = 0;
710
711 relend = relocs + sec->reloc_count;
712 for (rel = relocs; rel < relend; ++rel)
713 {
714 enum
715 {
716 NEED_DLT = 1,
717 NEED_PLT = 2,
718 NEED_STUB = 4,
719 NEED_OPD = 8,
720 NEED_DYNREL = 16,
721 };
722
723 struct elf_link_hash_entry *h = NULL;
724 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
725 struct elf64_hppa_dyn_hash_entry *dyn_h;
726 int need_entry;
727 const char *addr_name;
728 bfd_boolean maybe_dynamic;
729 int dynrel_type = R_PARISC_NONE;
730 static reloc_howto_type *howto;
731
732 if (r_symndx >= symtab_hdr->sh_info)
733 {
734 /* We're dealing with a global symbol -- find its hash entry
735 and mark it as being referenced. */
736 long indx = r_symndx - symtab_hdr->sh_info;
737 h = elf_sym_hashes (abfd)[indx];
738 while (h->root.type == bfd_link_hash_indirect
739 || h->root.type == bfd_link_hash_warning)
740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
741
742 h->ref_regular = 1;
743 }
744
745 /* We can only get preliminary data on whether a symbol is
746 locally or externally defined, as not all of the input files
747 have yet been processed. Do something with what we know, as
748 this may help reduce memory usage and processing time later. */
749 maybe_dynamic = FALSE;
750 if (h && ((info->shared
751 && (!info->symbolic
752 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
753 || !h->def_regular
754 || h->root.type == bfd_link_hash_defweak))
755 maybe_dynamic = TRUE;
756
757 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
758 need_entry = 0;
759 switch (howto->type)
760 {
761 /* These are simple indirect references to symbols through the
762 DLT. We need to create a DLT entry for any symbols which
763 appears in a DLTIND relocation. */
764 case R_PARISC_DLTIND21L:
765 case R_PARISC_DLTIND14R:
766 case R_PARISC_DLTIND14F:
767 case R_PARISC_DLTIND14WR:
768 case R_PARISC_DLTIND14DR:
769 need_entry = NEED_DLT;
770 break;
771
772 /* ?!? These need a DLT entry. But I have no idea what to do with
773 the "link time TP value. */
774 case R_PARISC_LTOFF_TP21L:
775 case R_PARISC_LTOFF_TP14R:
776 case R_PARISC_LTOFF_TP14F:
777 case R_PARISC_LTOFF_TP64:
778 case R_PARISC_LTOFF_TP14WR:
779 case R_PARISC_LTOFF_TP14DR:
780 case R_PARISC_LTOFF_TP16F:
781 case R_PARISC_LTOFF_TP16WF:
782 case R_PARISC_LTOFF_TP16DF:
783 need_entry = NEED_DLT;
784 break;
785
786 /* These are function calls. Depending on their precise target we
787 may need to make a stub for them. The stub uses the PLT, so we
788 need to create PLT entries for these symbols too. */
789 case R_PARISC_PCREL12F:
790 case R_PARISC_PCREL17F:
791 case R_PARISC_PCREL22F:
792 case R_PARISC_PCREL32:
793 case R_PARISC_PCREL64:
794 case R_PARISC_PCREL21L:
795 case R_PARISC_PCREL17R:
796 case R_PARISC_PCREL17C:
797 case R_PARISC_PCREL14R:
798 case R_PARISC_PCREL14F:
799 case R_PARISC_PCREL22C:
800 case R_PARISC_PCREL14WR:
801 case R_PARISC_PCREL14DR:
802 case R_PARISC_PCREL16F:
803 case R_PARISC_PCREL16WF:
804 case R_PARISC_PCREL16DF:
805 need_entry = (NEED_PLT | NEED_STUB);
806 break;
807
808 case R_PARISC_PLTOFF21L:
809 case R_PARISC_PLTOFF14R:
810 case R_PARISC_PLTOFF14F:
811 case R_PARISC_PLTOFF14WR:
812 case R_PARISC_PLTOFF14DR:
813 case R_PARISC_PLTOFF16F:
814 case R_PARISC_PLTOFF16WF:
815 case R_PARISC_PLTOFF16DF:
816 need_entry = (NEED_PLT);
817 break;
818
819 case R_PARISC_DIR64:
820 if (info->shared || maybe_dynamic)
821 need_entry = (NEED_DYNREL);
822 dynrel_type = R_PARISC_DIR64;
823 break;
824
825 /* This is an indirect reference through the DLT to get the address
826 of a OPD descriptor. Thus we need to make a DLT entry that points
827 to an OPD entry. */
828 case R_PARISC_LTOFF_FPTR21L:
829 case R_PARISC_LTOFF_FPTR14R:
830 case R_PARISC_LTOFF_FPTR14WR:
831 case R_PARISC_LTOFF_FPTR14DR:
832 case R_PARISC_LTOFF_FPTR32:
833 case R_PARISC_LTOFF_FPTR64:
834 case R_PARISC_LTOFF_FPTR16F:
835 case R_PARISC_LTOFF_FPTR16WF:
836 case R_PARISC_LTOFF_FPTR16DF:
837 if (info->shared || maybe_dynamic)
838 need_entry = (NEED_DLT | NEED_OPD);
839 else
840 need_entry = (NEED_DLT | NEED_OPD);
841 dynrel_type = R_PARISC_FPTR64;
842 break;
843
844 /* This is a simple OPD entry. */
845 case R_PARISC_FPTR64:
846 if (info->shared || maybe_dynamic)
847 need_entry = (NEED_OPD | NEED_DYNREL);
848 else
849 need_entry = (NEED_OPD);
850 dynrel_type = R_PARISC_FPTR64;
851 break;
852
853 /* Add more cases as needed. */
854 }
855
856 if (!need_entry)
857 continue;
858
859 /* Collect a canonical name for this address. */
860 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
861
862 /* Collect the canonical entry data for this address. */
863 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
864 addr_name, TRUE, TRUE);
865 BFD_ASSERT (dyn_h);
866
867 /* Stash away enough information to be able to find this symbol
868 regardless of whether or not it is local or global. */
869 dyn_h->h = h;
870 dyn_h->owner = abfd;
871 dyn_h->sym_indx = r_symndx;
872
873 /* ?!? We may need to do some error checking in here. */
874 /* Create what's needed. */
875 if (need_entry & NEED_DLT)
876 {
877 if (! hppa_info->dlt_sec
878 && ! get_dlt (abfd, info, hppa_info))
879 goto err_out;
880 dyn_h->want_dlt = 1;
881 }
882
883 if (need_entry & NEED_PLT)
884 {
885 if (! hppa_info->plt_sec
886 && ! get_plt (abfd, info, hppa_info))
887 goto err_out;
888 dyn_h->want_plt = 1;
889 }
890
891 if (need_entry & NEED_STUB)
892 {
893 if (! hppa_info->stub_sec
894 && ! get_stub (abfd, info, hppa_info))
895 goto err_out;
896 dyn_h->want_stub = 1;
897 }
898
899 if (need_entry & NEED_OPD)
900 {
901 if (! hppa_info->opd_sec
902 && ! get_opd (abfd, info, hppa_info))
903 goto err_out;
904
905 dyn_h->want_opd = 1;
906
907 /* FPTRs are not allocated by the dynamic linker for PA64, though
908 it is possible that will change in the future. */
909
910 /* This could be a local function that had its address taken, in
911 which case H will be NULL. */
912 if (h)
913 h->needs_plt = 1;
914 }
915
916 /* Add a new dynamic relocation to the chain of dynamic
917 relocations for this symbol. */
918 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
919 {
920 if (! hppa_info->other_rel_sec
921 && ! get_reloc_section (abfd, hppa_info, sec))
922 goto err_out;
923
924 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
925 sec_symndx, rel->r_offset, rel->r_addend))
926 goto err_out;
927
928 /* If we are building a shared library and we just recorded
929 a dynamic R_PARISC_FPTR64 relocation, then make sure the
930 section symbol for this section ends up in the dynamic
931 symbol table. */
932 if (info->shared && dynrel_type == R_PARISC_FPTR64
933 && ! (bfd_elf_link_record_local_dynamic_symbol
934 (info, abfd, sec_symndx)))
935 return FALSE;
936 }
937 }
938
939 if (buf)
940 free (buf);
941 return TRUE;
942
943 err_out:
944 if (buf)
945 free (buf);
946 return FALSE;
947 }
948
949 struct elf64_hppa_allocate_data
950 {
951 struct bfd_link_info *info;
952 bfd_size_type ofs;
953 };
954
955 /* Should we do dynamic things to this symbol? */
956
957 static bfd_boolean
958 elf64_hppa_dynamic_symbol_p (h, info)
959 struct elf_link_hash_entry *h;
960 struct bfd_link_info *info;
961 {
962 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
963 and relocations that retrieve a function descriptor? Assume the
964 worst for now. */
965 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
966 {
967 /* ??? Why is this here and not elsewhere is_local_label_name. */
968 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
969 return FALSE;
970
971 return TRUE;
972 }
973 else
974 return FALSE;
975 }
976
977 /* Mark all functions exported by this file so that we can later allocate
978 entries in .opd for them. */
979
980 static bfd_boolean
981 elf64_hppa_mark_exported_functions (h, data)
982 struct elf_link_hash_entry *h;
983 PTR data;
984 {
985 struct bfd_link_info *info = (struct bfd_link_info *)data;
986 struct elf64_hppa_link_hash_table *hppa_info;
987
988 hppa_info = elf64_hppa_hash_table (info);
989
990 if (h->root.type == bfd_link_hash_warning)
991 h = (struct elf_link_hash_entry *) h->root.u.i.link;
992
993 if (h
994 && (h->root.type == bfd_link_hash_defined
995 || h->root.type == bfd_link_hash_defweak)
996 && h->root.u.def.section->output_section != NULL
997 && h->type == STT_FUNC)
998 {
999 struct elf64_hppa_dyn_hash_entry *dyn_h;
1000
1001 /* Add this symbol to the PA64 linker hash table. */
1002 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1003 h->root.root.string, TRUE, TRUE);
1004 BFD_ASSERT (dyn_h);
1005 dyn_h->h = h;
1006
1007 if (! hppa_info->opd_sec
1008 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1009 return FALSE;
1010
1011 dyn_h->want_opd = 1;
1012 /* Put a flag here for output_symbol_hook. */
1013 dyn_h->st_shndx = -1;
1014 h->needs_plt = 1;
1015 }
1016
1017 return TRUE;
1018 }
1019
1020 /* Allocate space for a DLT entry. */
1021
1022 static bfd_boolean
1023 allocate_global_data_dlt (dyn_h, data)
1024 struct elf64_hppa_dyn_hash_entry *dyn_h;
1025 PTR data;
1026 {
1027 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1028
1029 if (dyn_h->want_dlt)
1030 {
1031 struct elf_link_hash_entry *h = dyn_h->h;
1032
1033 if (x->info->shared)
1034 {
1035 /* Possibly add the symbol to the local dynamic symbol
1036 table since we might need to create a dynamic relocation
1037 against it. */
1038 if (! h
1039 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1040 {
1041 bfd *owner;
1042 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1043
1044 if (! (bfd_elf_link_record_local_dynamic_symbol
1045 (x->info, owner, dyn_h->sym_indx)))
1046 return FALSE;
1047 }
1048 }
1049
1050 dyn_h->dlt_offset = x->ofs;
1051 x->ofs += DLT_ENTRY_SIZE;
1052 }
1053 return TRUE;
1054 }
1055
1056 /* Allocate space for a DLT.PLT entry. */
1057
1058 static bfd_boolean
1059 allocate_global_data_plt (dyn_h, data)
1060 struct elf64_hppa_dyn_hash_entry *dyn_h;
1061 PTR data;
1062 {
1063 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1064
1065 if (dyn_h->want_plt
1066 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1067 && !((dyn_h->h->root.type == bfd_link_hash_defined
1068 || dyn_h->h->root.type == bfd_link_hash_defweak)
1069 && dyn_h->h->root.u.def.section->output_section != NULL))
1070 {
1071 dyn_h->plt_offset = x->ofs;
1072 x->ofs += PLT_ENTRY_SIZE;
1073 if (dyn_h->plt_offset < 0x2000)
1074 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1075 }
1076 else
1077 dyn_h->want_plt = 0;
1078
1079 return TRUE;
1080 }
1081
1082 /* Allocate space for a STUB entry. */
1083
1084 static bfd_boolean
1085 allocate_global_data_stub (dyn_h, data)
1086 struct elf64_hppa_dyn_hash_entry *dyn_h;
1087 PTR data;
1088 {
1089 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1090
1091 if (dyn_h->want_stub
1092 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1093 && !((dyn_h->h->root.type == bfd_link_hash_defined
1094 || dyn_h->h->root.type == bfd_link_hash_defweak)
1095 && dyn_h->h->root.u.def.section->output_section != NULL))
1096 {
1097 dyn_h->stub_offset = x->ofs;
1098 x->ofs += sizeof (plt_stub);
1099 }
1100 else
1101 dyn_h->want_stub = 0;
1102 return TRUE;
1103 }
1104
1105 /* Allocate space for a FPTR entry. */
1106
1107 static bfd_boolean
1108 allocate_global_data_opd (dyn_h, data)
1109 struct elf64_hppa_dyn_hash_entry *dyn_h;
1110 PTR data;
1111 {
1112 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1113
1114 if (dyn_h->want_opd)
1115 {
1116 struct elf_link_hash_entry *h = dyn_h->h;
1117
1118 if (h)
1119 while (h->root.type == bfd_link_hash_indirect
1120 || h->root.type == bfd_link_hash_warning)
1121 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1122
1123 /* We never need an opd entry for a symbol which is not
1124 defined by this output file. */
1125 if (h && (h->root.type == bfd_link_hash_undefined
1126 || h->root.type == bfd_link_hash_undefweak
1127 || h->root.u.def.section->output_section == NULL))
1128 dyn_h->want_opd = 0;
1129
1130 /* If we are creating a shared library, took the address of a local
1131 function or might export this function from this object file, then
1132 we have to create an opd descriptor. */
1133 else if (x->info->shared
1134 || h == NULL
1135 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1136 || (h->root.type == bfd_link_hash_defined
1137 || h->root.type == bfd_link_hash_defweak))
1138 {
1139 /* If we are creating a shared library, then we will have to
1140 create a runtime relocation for the symbol to properly
1141 initialize the .opd entry. Make sure the symbol gets
1142 added to the dynamic symbol table. */
1143 if (x->info->shared
1144 && (h == NULL || (h->dynindx == -1)))
1145 {
1146 bfd *owner;
1147 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1148
1149 if (!bfd_elf_link_record_local_dynamic_symbol
1150 (x->info, owner, dyn_h->sym_indx))
1151 return FALSE;
1152 }
1153
1154 /* This may not be necessary or desirable anymore now that
1155 we have some support for dealing with section symbols
1156 in dynamic relocs. But name munging does make the result
1157 much easier to debug. ie, the EPLT reloc will reference
1158 a symbol like .foobar, instead of .text + offset. */
1159 if (x->info->shared && h)
1160 {
1161 char *new_name;
1162 struct elf_link_hash_entry *nh;
1163
1164 new_name = alloca (strlen (h->root.root.string) + 2);
1165 new_name[0] = '.';
1166 strcpy (new_name + 1, h->root.root.string);
1167
1168 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1169 new_name, TRUE, TRUE, TRUE);
1170
1171 nh->root.type = h->root.type;
1172 nh->root.u.def.value = h->root.u.def.value;
1173 nh->root.u.def.section = h->root.u.def.section;
1174
1175 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1176 return FALSE;
1177
1178 }
1179 dyn_h->opd_offset = x->ofs;
1180 x->ofs += OPD_ENTRY_SIZE;
1181 }
1182
1183 /* Otherwise we do not need an opd entry. */
1184 else
1185 dyn_h->want_opd = 0;
1186 }
1187 return TRUE;
1188 }
1189
1190 /* HP requires the EI_OSABI field to be filled in. The assignment to
1191 EI_ABIVERSION may not be strictly necessary. */
1192
1193 static void
1194 elf64_hppa_post_process_headers (abfd, link_info)
1195 bfd * abfd;
1196 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1197 {
1198 Elf_Internal_Ehdr * i_ehdrp;
1199
1200 i_ehdrp = elf_elfheader (abfd);
1201
1202 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1203 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1204 }
1205
1206 /* Create function descriptor section (.opd). This section is called .opd
1207 because it contains "official procedure descriptors". The "official"
1208 refers to the fact that these descriptors are used when taking the address
1209 of a procedure, thus ensuring a unique address for each procedure. */
1210
1211 static bfd_boolean
1212 get_opd (abfd, info, hppa_info)
1213 bfd *abfd;
1214 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1215 struct elf64_hppa_link_hash_table *hppa_info;
1216 {
1217 asection *opd;
1218 bfd *dynobj;
1219
1220 opd = hppa_info->opd_sec;
1221 if (!opd)
1222 {
1223 dynobj = hppa_info->root.dynobj;
1224 if (!dynobj)
1225 hppa_info->root.dynobj = dynobj = abfd;
1226
1227 opd = bfd_make_section_with_flags (dynobj, ".opd",
1228 (SEC_ALLOC
1229 | SEC_LOAD
1230 | SEC_HAS_CONTENTS
1231 | SEC_IN_MEMORY
1232 | SEC_LINKER_CREATED));
1233 if (!opd
1234 || !bfd_set_section_alignment (abfd, opd, 3))
1235 {
1236 BFD_ASSERT (0);
1237 return FALSE;
1238 }
1239
1240 hppa_info->opd_sec = opd;
1241 }
1242
1243 return TRUE;
1244 }
1245
1246 /* Create the PLT section. */
1247
1248 static bfd_boolean
1249 get_plt (abfd, info, hppa_info)
1250 bfd *abfd;
1251 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1252 struct elf64_hppa_link_hash_table *hppa_info;
1253 {
1254 asection *plt;
1255 bfd *dynobj;
1256
1257 plt = hppa_info->plt_sec;
1258 if (!plt)
1259 {
1260 dynobj = hppa_info->root.dynobj;
1261 if (!dynobj)
1262 hppa_info->root.dynobj = dynobj = abfd;
1263
1264 plt = bfd_make_section_with_flags (dynobj, ".plt",
1265 (SEC_ALLOC
1266 | SEC_LOAD
1267 | SEC_HAS_CONTENTS
1268 | SEC_IN_MEMORY
1269 | SEC_LINKER_CREATED));
1270 if (!plt
1271 || !bfd_set_section_alignment (abfd, plt, 3))
1272 {
1273 BFD_ASSERT (0);
1274 return FALSE;
1275 }
1276
1277 hppa_info->plt_sec = plt;
1278 }
1279
1280 return TRUE;
1281 }
1282
1283 /* Create the DLT section. */
1284
1285 static bfd_boolean
1286 get_dlt (abfd, info, hppa_info)
1287 bfd *abfd;
1288 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1289 struct elf64_hppa_link_hash_table *hppa_info;
1290 {
1291 asection *dlt;
1292 bfd *dynobj;
1293
1294 dlt = hppa_info->dlt_sec;
1295 if (!dlt)
1296 {
1297 dynobj = hppa_info->root.dynobj;
1298 if (!dynobj)
1299 hppa_info->root.dynobj = dynobj = abfd;
1300
1301 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1302 (SEC_ALLOC
1303 | SEC_LOAD
1304 | SEC_HAS_CONTENTS
1305 | SEC_IN_MEMORY
1306 | SEC_LINKER_CREATED));
1307 if (!dlt
1308 || !bfd_set_section_alignment (abfd, dlt, 3))
1309 {
1310 BFD_ASSERT (0);
1311 return FALSE;
1312 }
1313
1314 hppa_info->dlt_sec = dlt;
1315 }
1316
1317 return TRUE;
1318 }
1319
1320 /* Create the stubs section. */
1321
1322 static bfd_boolean
1323 get_stub (abfd, info, hppa_info)
1324 bfd *abfd;
1325 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1326 struct elf64_hppa_link_hash_table *hppa_info;
1327 {
1328 asection *stub;
1329 bfd *dynobj;
1330
1331 stub = hppa_info->stub_sec;
1332 if (!stub)
1333 {
1334 dynobj = hppa_info->root.dynobj;
1335 if (!dynobj)
1336 hppa_info->root.dynobj = dynobj = abfd;
1337
1338 stub = bfd_make_section_with_flags (dynobj, ".stub",
1339 (SEC_ALLOC | SEC_LOAD
1340 | SEC_HAS_CONTENTS
1341 | SEC_IN_MEMORY
1342 | SEC_READONLY
1343 | SEC_LINKER_CREATED));
1344 if (!stub
1345 || !bfd_set_section_alignment (abfd, stub, 3))
1346 {
1347 BFD_ASSERT (0);
1348 return FALSE;
1349 }
1350
1351 hppa_info->stub_sec = stub;
1352 }
1353
1354 return TRUE;
1355 }
1356
1357 /* Create sections necessary for dynamic linking. This is only a rough
1358 cut and will likely change as we learn more about the somewhat
1359 unusual dynamic linking scheme HP uses.
1360
1361 .stub:
1362 Contains code to implement cross-space calls. The first time one
1363 of the stubs is used it will call into the dynamic linker, later
1364 calls will go straight to the target.
1365
1366 The only stub we support right now looks like
1367
1368 ldd OFFSET(%dp),%r1
1369 bve %r0(%r1)
1370 ldd OFFSET+8(%dp),%dp
1371
1372 Other stubs may be needed in the future. We may want the remove
1373 the break/nop instruction. It is only used right now to keep the
1374 offset of a .plt entry and a .stub entry in sync.
1375
1376 .dlt:
1377 This is what most people call the .got. HP used a different name.
1378 Losers.
1379
1380 .rela.dlt:
1381 Relocations for the DLT.
1382
1383 .plt:
1384 Function pointers as address,gp pairs.
1385
1386 .rela.plt:
1387 Should contain dynamic IPLT (and EPLT?) relocations.
1388
1389 .opd:
1390 FPTRS
1391
1392 .rela.opd:
1393 EPLT relocations for symbols exported from shared libraries. */
1394
1395 static bfd_boolean
1396 elf64_hppa_create_dynamic_sections (abfd, info)
1397 bfd *abfd;
1398 struct bfd_link_info *info;
1399 {
1400 asection *s;
1401
1402 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1403 return FALSE;
1404
1405 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1406 return FALSE;
1407
1408 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1409 return FALSE;
1410
1411 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1412 return FALSE;
1413
1414 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1415 (SEC_ALLOC | SEC_LOAD
1416 | SEC_HAS_CONTENTS
1417 | SEC_IN_MEMORY
1418 | SEC_READONLY
1419 | SEC_LINKER_CREATED));
1420 if (s == NULL
1421 || !bfd_set_section_alignment (abfd, s, 3))
1422 return FALSE;
1423 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1424
1425 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1426 (SEC_ALLOC | SEC_LOAD
1427 | SEC_HAS_CONTENTS
1428 | SEC_IN_MEMORY
1429 | SEC_READONLY
1430 | SEC_LINKER_CREATED));
1431 if (s == NULL
1432 || !bfd_set_section_alignment (abfd, s, 3))
1433 return FALSE;
1434 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1435
1436 s = bfd_make_section_with_flags (abfd, ".rela.data",
1437 (SEC_ALLOC | SEC_LOAD
1438 | SEC_HAS_CONTENTS
1439 | SEC_IN_MEMORY
1440 | SEC_READONLY
1441 | SEC_LINKER_CREATED));
1442 if (s == NULL
1443 || !bfd_set_section_alignment (abfd, s, 3))
1444 return FALSE;
1445 elf64_hppa_hash_table (info)->other_rel_sec = s;
1446
1447 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1448 (SEC_ALLOC | SEC_LOAD
1449 | SEC_HAS_CONTENTS
1450 | SEC_IN_MEMORY
1451 | SEC_READONLY
1452 | SEC_LINKER_CREATED));
1453 if (s == NULL
1454 || !bfd_set_section_alignment (abfd, s, 3))
1455 return FALSE;
1456 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1457
1458 return TRUE;
1459 }
1460
1461 /* Allocate dynamic relocations for those symbols that turned out
1462 to be dynamic. */
1463
1464 static bfd_boolean
1465 allocate_dynrel_entries (dyn_h, data)
1466 struct elf64_hppa_dyn_hash_entry *dyn_h;
1467 PTR data;
1468 {
1469 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1470 struct elf64_hppa_link_hash_table *hppa_info;
1471 struct elf64_hppa_dyn_reloc_entry *rent;
1472 bfd_boolean dynamic_symbol, shared;
1473
1474 hppa_info = elf64_hppa_hash_table (x->info);
1475 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1476 shared = x->info->shared;
1477
1478 /* We may need to allocate relocations for a non-dynamic symbol
1479 when creating a shared library. */
1480 if (!dynamic_symbol && !shared)
1481 return TRUE;
1482
1483 /* Take care of the normal data relocations. */
1484
1485 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1486 {
1487 /* Allocate one iff we are building a shared library, the relocation
1488 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1489 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1490 continue;
1491
1492 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1493
1494 /* Make sure this symbol gets into the dynamic symbol table if it is
1495 not already recorded. ?!? This should not be in the loop since
1496 the symbol need only be added once. */
1497 if (dyn_h->h == 0
1498 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1499 if (!bfd_elf_link_record_local_dynamic_symbol
1500 (x->info, rent->sec->owner, dyn_h->sym_indx))
1501 return FALSE;
1502 }
1503
1504 /* Take care of the GOT and PLT relocations. */
1505
1506 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1507 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1508
1509 /* If we are building a shared library, then every symbol that has an
1510 opd entry will need an EPLT relocation to relocate the symbol's address
1511 and __gp value based on the runtime load address. */
1512 if (shared && dyn_h->want_opd)
1513 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1514
1515 if (dyn_h->want_plt && dynamic_symbol)
1516 {
1517 bfd_size_type t = 0;
1518
1519 /* Dynamic symbols get one IPLT relocation. Local symbols in
1520 shared libraries get two REL relocations. Local symbols in
1521 main applications get nothing. */
1522 if (dynamic_symbol)
1523 t = sizeof (Elf64_External_Rela);
1524 else if (shared)
1525 t = 2 * sizeof (Elf64_External_Rela);
1526
1527 hppa_info->plt_rel_sec->size += t;
1528 }
1529
1530 return TRUE;
1531 }
1532
1533 /* Adjust a symbol defined by a dynamic object and referenced by a
1534 regular object. */
1535
1536 static bfd_boolean
1537 elf64_hppa_adjust_dynamic_symbol (info, h)
1538 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1539 struct elf_link_hash_entry *h;
1540 {
1541 /* ??? Undefined symbols with PLT entries should be re-defined
1542 to be the PLT entry. */
1543
1544 /* If this is a weak symbol, and there is a real definition, the
1545 processor independent code will have arranged for us to see the
1546 real definition first, and we can just use the same value. */
1547 if (h->u.weakdef != NULL)
1548 {
1549 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1550 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1551 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1552 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1553 return TRUE;
1554 }
1555
1556 /* If this is a reference to a symbol defined by a dynamic object which
1557 is not a function, we might allocate the symbol in our .dynbss section
1558 and allocate a COPY dynamic relocation.
1559
1560 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1561 of hackery. */
1562
1563 return TRUE;
1564 }
1565
1566 /* This function is called via elf_link_hash_traverse to mark millicode
1567 symbols with a dynindx of -1 and to remove the string table reference
1568 from the dynamic symbol table. If the symbol is not a millicode symbol,
1569 elf64_hppa_mark_exported_functions is called. */
1570
1571 static bfd_boolean
1572 elf64_hppa_mark_milli_and_exported_functions (h, data)
1573 struct elf_link_hash_entry *h;
1574 PTR data;
1575 {
1576 struct bfd_link_info *info = (struct bfd_link_info *)data;
1577 struct elf_link_hash_entry *elf = h;
1578
1579 if (elf->root.type == bfd_link_hash_warning)
1580 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1581
1582 if (elf->type == STT_PARISC_MILLI)
1583 {
1584 if (elf->dynindx != -1)
1585 {
1586 elf->dynindx = -1;
1587 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1588 elf->dynstr_index);
1589 }
1590 return TRUE;
1591 }
1592
1593 return elf64_hppa_mark_exported_functions (h, data);
1594 }
1595
1596 /* Set the final sizes of the dynamic sections and allocate memory for
1597 the contents of our special sections. */
1598
1599 static bfd_boolean
1600 elf64_hppa_size_dynamic_sections (output_bfd, info)
1601 bfd *output_bfd;
1602 struct bfd_link_info *info;
1603 {
1604 bfd *dynobj;
1605 asection *s;
1606 bfd_boolean plt;
1607 bfd_boolean relocs;
1608 bfd_boolean reltext;
1609 struct elf64_hppa_allocate_data data;
1610 struct elf64_hppa_link_hash_table *hppa_info;
1611
1612 hppa_info = elf64_hppa_hash_table (info);
1613
1614 dynobj = elf_hash_table (info)->dynobj;
1615 BFD_ASSERT (dynobj != NULL);
1616
1617 /* Mark each function this program exports so that we will allocate
1618 space in the .opd section for each function's FPTR. If we are
1619 creating dynamic sections, change the dynamic index of millicode
1620 symbols to -1 and remove them from the string table for .dynstr.
1621
1622 We have to traverse the main linker hash table since we have to
1623 find functions which may not have been mentioned in any relocs. */
1624 elf_link_hash_traverse (elf_hash_table (info),
1625 (elf_hash_table (info)->dynamic_sections_created
1626 ? elf64_hppa_mark_milli_and_exported_functions
1627 : elf64_hppa_mark_exported_functions),
1628 info);
1629
1630 if (elf_hash_table (info)->dynamic_sections_created)
1631 {
1632 /* Set the contents of the .interp section to the interpreter. */
1633 if (info->executable)
1634 {
1635 s = bfd_get_section_by_name (dynobj, ".interp");
1636 BFD_ASSERT (s != NULL);
1637 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1638 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1639 }
1640 }
1641 else
1642 {
1643 /* We may have created entries in the .rela.got section.
1644 However, if we are not creating the dynamic sections, we will
1645 not actually use these entries. Reset the size of .rela.dlt,
1646 which will cause it to get stripped from the output file
1647 below. */
1648 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1649 if (s != NULL)
1650 s->size = 0;
1651 }
1652
1653 /* Allocate the GOT entries. */
1654
1655 data.info = info;
1656 if (elf64_hppa_hash_table (info)->dlt_sec)
1657 {
1658 data.ofs = 0x0;
1659 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1660 allocate_global_data_dlt, &data);
1661 hppa_info->dlt_sec->size = data.ofs;
1662
1663 data.ofs = 0x0;
1664 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1665 allocate_global_data_plt, &data);
1666 hppa_info->plt_sec->size = data.ofs;
1667
1668 data.ofs = 0x0;
1669 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1670 allocate_global_data_stub, &data);
1671 hppa_info->stub_sec->size = data.ofs;
1672 }
1673
1674 /* Allocate space for entries in the .opd section. */
1675 if (elf64_hppa_hash_table (info)->opd_sec)
1676 {
1677 data.ofs = 0;
1678 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1679 allocate_global_data_opd, &data);
1680 hppa_info->opd_sec->size = data.ofs;
1681 }
1682
1683 /* Now allocate space for dynamic relocations, if necessary. */
1684 if (hppa_info->root.dynamic_sections_created)
1685 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1686 allocate_dynrel_entries, &data);
1687
1688 /* The sizes of all the sections are set. Allocate memory for them. */
1689 plt = FALSE;
1690 relocs = FALSE;
1691 reltext = FALSE;
1692 for (s = dynobj->sections; s != NULL; s = s->next)
1693 {
1694 const char *name;
1695
1696 if ((s->flags & SEC_LINKER_CREATED) == 0)
1697 continue;
1698
1699 /* It's OK to base decisions on the section name, because none
1700 of the dynobj section names depend upon the input files. */
1701 name = bfd_get_section_name (dynobj, s);
1702
1703 if (strcmp (name, ".plt") == 0)
1704 {
1705 /* Remember whether there is a PLT. */
1706 plt = s->size != 0;
1707 }
1708 else if (strcmp (name, ".opd") == 0
1709 || CONST_STRNEQ (name, ".dlt")
1710 || strcmp (name, ".stub") == 0
1711 || strcmp (name, ".got") == 0)
1712 {
1713 /* Strip this section if we don't need it; see the comment below. */
1714 }
1715 else if (CONST_STRNEQ (name, ".rela"))
1716 {
1717 if (s->size != 0)
1718 {
1719 asection *target;
1720
1721 /* Remember whether there are any reloc sections other
1722 than .rela.plt. */
1723 if (strcmp (name, ".rela.plt") != 0)
1724 {
1725 const char *outname;
1726
1727 relocs = TRUE;
1728
1729 /* If this relocation section applies to a read only
1730 section, then we probably need a DT_TEXTREL
1731 entry. The entries in the .rela.plt section
1732 really apply to the .got section, which we
1733 created ourselves and so know is not readonly. */
1734 outname = bfd_get_section_name (output_bfd,
1735 s->output_section);
1736 target = bfd_get_section_by_name (output_bfd, outname + 4);
1737 if (target != NULL
1738 && (target->flags & SEC_READONLY) != 0
1739 && (target->flags & SEC_ALLOC) != 0)
1740 reltext = TRUE;
1741 }
1742
1743 /* We use the reloc_count field as a counter if we need
1744 to copy relocs into the output file. */
1745 s->reloc_count = 0;
1746 }
1747 }
1748 else
1749 {
1750 /* It's not one of our sections, so don't allocate space. */
1751 continue;
1752 }
1753
1754 if (s->size == 0)
1755 {
1756 /* If we don't need this section, strip it from the
1757 output file. This is mostly to handle .rela.bss and
1758 .rela.plt. We must create both sections in
1759 create_dynamic_sections, because they must be created
1760 before the linker maps input sections to output
1761 sections. The linker does that before
1762 adjust_dynamic_symbol is called, and it is that
1763 function which decides whether anything needs to go
1764 into these sections. */
1765 s->flags |= SEC_EXCLUDE;
1766 continue;
1767 }
1768
1769 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1770 continue;
1771
1772 /* Allocate memory for the section contents if it has not
1773 been allocated already. We use bfd_zalloc here in case
1774 unused entries are not reclaimed before the section's
1775 contents are written out. This should not happen, but this
1776 way if it does, we get a R_PARISC_NONE reloc instead of
1777 garbage. */
1778 if (s->contents == NULL)
1779 {
1780 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1781 if (s->contents == NULL)
1782 return FALSE;
1783 }
1784 }
1785
1786 if (elf_hash_table (info)->dynamic_sections_created)
1787 {
1788 /* Always create a DT_PLTGOT. It actually has nothing to do with
1789 the PLT, it is how we communicate the __gp value of a load
1790 module to the dynamic linker. */
1791 #define add_dynamic_entry(TAG, VAL) \
1792 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1793
1794 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1795 || !add_dynamic_entry (DT_PLTGOT, 0))
1796 return FALSE;
1797
1798 /* Add some entries to the .dynamic section. We fill in the
1799 values later, in elf64_hppa_finish_dynamic_sections, but we
1800 must add the entries now so that we get the correct size for
1801 the .dynamic section. The DT_DEBUG entry is filled in by the
1802 dynamic linker and used by the debugger. */
1803 if (! info->shared)
1804 {
1805 if (!add_dynamic_entry (DT_DEBUG, 0)
1806 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1807 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1808 return FALSE;
1809 }
1810
1811 /* Force DT_FLAGS to always be set.
1812 Required by HPUX 11.00 patch PHSS_26559. */
1813 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1814 return FALSE;
1815
1816 if (plt)
1817 {
1818 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1819 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1820 || !add_dynamic_entry (DT_JMPREL, 0))
1821 return FALSE;
1822 }
1823
1824 if (relocs)
1825 {
1826 if (!add_dynamic_entry (DT_RELA, 0)
1827 || !add_dynamic_entry (DT_RELASZ, 0)
1828 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1829 return FALSE;
1830 }
1831
1832 if (reltext)
1833 {
1834 if (!add_dynamic_entry (DT_TEXTREL, 0))
1835 return FALSE;
1836 info->flags |= DF_TEXTREL;
1837 }
1838 }
1839 #undef add_dynamic_entry
1840
1841 return TRUE;
1842 }
1843
1844 /* Called after we have output the symbol into the dynamic symbol
1845 table, but before we output the symbol into the normal symbol
1846 table.
1847
1848 For some symbols we had to change their address when outputting
1849 the dynamic symbol table. We undo that change here so that
1850 the symbols have their expected value in the normal symbol
1851 table. Ick. */
1852
1853 static bfd_boolean
1854 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1855 struct bfd_link_info *info;
1856 const char *name;
1857 Elf_Internal_Sym *sym;
1858 asection *input_sec ATTRIBUTE_UNUSED;
1859 struct elf_link_hash_entry *h;
1860 {
1861 struct elf64_hppa_link_hash_table *hppa_info;
1862 struct elf64_hppa_dyn_hash_entry *dyn_h;
1863
1864 /* We may be called with the file symbol or section symbols.
1865 They never need munging, so it is safe to ignore them. */
1866 if (!name)
1867 return TRUE;
1868
1869 /* Get the PA dyn_symbol (if any) associated with NAME. */
1870 hppa_info = elf64_hppa_hash_table (info);
1871 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1872 name, FALSE, FALSE);
1873 if (!dyn_h || dyn_h->h != h)
1874 return TRUE;
1875
1876 /* Function symbols for which we created .opd entries *may* have been
1877 munged by finish_dynamic_symbol and have to be un-munged here.
1878
1879 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1880 into non-dynamic ones, so we initialize st_shndx to -1 in
1881 mark_exported_functions and check to see if it was overwritten
1882 here instead of just checking dyn_h->h->dynindx. */
1883 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1884 {
1885 /* Restore the saved value and section index. */
1886 sym->st_value = dyn_h->st_value;
1887 sym->st_shndx = dyn_h->st_shndx;
1888 }
1889
1890 return TRUE;
1891 }
1892
1893 /* Finish up dynamic symbol handling. We set the contents of various
1894 dynamic sections here. */
1895
1896 static bfd_boolean
1897 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1898 bfd *output_bfd;
1899 struct bfd_link_info *info;
1900 struct elf_link_hash_entry *h;
1901 Elf_Internal_Sym *sym;
1902 {
1903 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1904 struct elf64_hppa_link_hash_table *hppa_info;
1905 struct elf64_hppa_dyn_hash_entry *dyn_h;
1906
1907 hppa_info = elf64_hppa_hash_table (info);
1908 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1909 h->root.root.string, FALSE, FALSE);
1910
1911 stub = hppa_info->stub_sec;
1912 splt = hppa_info->plt_sec;
1913 sdlt = hppa_info->dlt_sec;
1914 sopd = hppa_info->opd_sec;
1915 spltrel = hppa_info->plt_rel_sec;
1916 sdltrel = hppa_info->dlt_rel_sec;
1917
1918 /* Incredible. It is actually necessary to NOT use the symbol's real
1919 value when building the dynamic symbol table for a shared library.
1920 At least for symbols that refer to functions.
1921
1922 We will store a new value and section index into the symbol long
1923 enough to output it into the dynamic symbol table, then we restore
1924 the original values (in elf64_hppa_link_output_symbol_hook). */
1925 if (dyn_h && dyn_h->want_opd)
1926 {
1927 BFD_ASSERT (sopd != NULL);
1928
1929 /* Save away the original value and section index so that we
1930 can restore them later. */
1931 dyn_h->st_value = sym->st_value;
1932 dyn_h->st_shndx = sym->st_shndx;
1933
1934 /* For the dynamic symbol table entry, we want the value to be
1935 address of this symbol's entry within the .opd section. */
1936 sym->st_value = (dyn_h->opd_offset
1937 + sopd->output_offset
1938 + sopd->output_section->vma);
1939 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1940 sopd->output_section);
1941 }
1942
1943 /* Initialize a .plt entry if requested. */
1944 if (dyn_h && dyn_h->want_plt
1945 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1946 {
1947 bfd_vma value;
1948 Elf_Internal_Rela rel;
1949 bfd_byte *loc;
1950
1951 BFD_ASSERT (splt != NULL && spltrel != NULL);
1952
1953 /* We do not actually care about the value in the PLT entry
1954 if we are creating a shared library and the symbol is
1955 still undefined, we create a dynamic relocation to fill
1956 in the correct value. */
1957 if (info->shared && h->root.type == bfd_link_hash_undefined)
1958 value = 0;
1959 else
1960 value = (h->root.u.def.value + h->root.u.def.section->vma);
1961
1962 /* Fill in the entry in the procedure linkage table.
1963
1964 The format of a plt entry is
1965 <funcaddr> <__gp>.
1966
1967 plt_offset is the offset within the PLT section at which to
1968 install the PLT entry.
1969
1970 We are modifying the in-memory PLT contents here, so we do not add
1971 in the output_offset of the PLT section. */
1972
1973 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1974 value = _bfd_get_gp_value (splt->output_section->owner);
1975 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1976
1977 /* Create a dynamic IPLT relocation for this entry.
1978
1979 We are creating a relocation in the output file's PLT section,
1980 which is included within the DLT secton. So we do need to include
1981 the PLT's output_offset in the computation of the relocation's
1982 address. */
1983 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1984 + splt->output_section->vma);
1985 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1986 rel.r_addend = 0;
1987
1988 loc = spltrel->contents;
1989 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
1990 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
1991 }
1992
1993 /* Initialize an external call stub entry if requested. */
1994 if (dyn_h && dyn_h->want_stub
1995 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1996 {
1997 bfd_vma value;
1998 int insn;
1999 unsigned int max_offset;
2000
2001 BFD_ASSERT (stub != NULL);
2002
2003 /* Install the generic stub template.
2004
2005 We are modifying the contents of the stub section, so we do not
2006 need to include the stub section's output_offset here. */
2007 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2008
2009 /* Fix up the first ldd instruction.
2010
2011 We are modifying the contents of the STUB section in memory,
2012 so we do not need to include its output offset in this computation.
2013
2014 Note the plt_offset value is the value of the PLT entry relative to
2015 the start of the PLT section. These instructions will reference
2016 data relative to the value of __gp, which may not necessarily have
2017 the same address as the start of the PLT section.
2018
2019 gp_offset contains the offset of __gp within the PLT section. */
2020 value = dyn_h->plt_offset - hppa_info->gp_offset;
2021
2022 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2023 if (output_bfd->arch_info->mach >= 25)
2024 {
2025 /* Wide mode allows 16 bit offsets. */
2026 max_offset = 32768;
2027 insn &= ~ 0xfff1;
2028 insn |= re_assemble_16 ((int) value);
2029 }
2030 else
2031 {
2032 max_offset = 8192;
2033 insn &= ~ 0x3ff1;
2034 insn |= re_assemble_14 ((int) value);
2035 }
2036
2037 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2038 {
2039 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2040 dyn_h->root.string,
2041 (long) value);
2042 return FALSE;
2043 }
2044
2045 bfd_put_32 (stub->owner, (bfd_vma) insn,
2046 stub->contents + dyn_h->stub_offset);
2047
2048 /* Fix up the second ldd instruction. */
2049 value += 8;
2050 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2051 if (output_bfd->arch_info->mach >= 25)
2052 {
2053 insn &= ~ 0xfff1;
2054 insn |= re_assemble_16 ((int) value);
2055 }
2056 else
2057 {
2058 insn &= ~ 0x3ff1;
2059 insn |= re_assemble_14 ((int) value);
2060 }
2061 bfd_put_32 (stub->owner, (bfd_vma) insn,
2062 stub->contents + dyn_h->stub_offset + 8);
2063 }
2064
2065 return TRUE;
2066 }
2067
2068 /* The .opd section contains FPTRs for each function this file
2069 exports. Initialize the FPTR entries. */
2070
2071 static bfd_boolean
2072 elf64_hppa_finalize_opd (dyn_h, data)
2073 struct elf64_hppa_dyn_hash_entry *dyn_h;
2074 PTR data;
2075 {
2076 struct bfd_link_info *info = (struct bfd_link_info *)data;
2077 struct elf64_hppa_link_hash_table *hppa_info;
2078 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2079 asection *sopd;
2080 asection *sopdrel;
2081
2082 hppa_info = elf64_hppa_hash_table (info);
2083 sopd = hppa_info->opd_sec;
2084 sopdrel = hppa_info->opd_rel_sec;
2085
2086 if (h && dyn_h->want_opd)
2087 {
2088 bfd_vma value;
2089
2090 /* The first two words of an .opd entry are zero.
2091
2092 We are modifying the contents of the OPD section in memory, so we
2093 do not need to include its output offset in this computation. */
2094 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2095
2096 value = (h->root.u.def.value
2097 + h->root.u.def.section->output_section->vma
2098 + h->root.u.def.section->output_offset);
2099
2100 /* The next word is the address of the function. */
2101 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2102
2103 /* The last word is our local __gp value. */
2104 value = _bfd_get_gp_value (sopd->output_section->owner);
2105 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2106 }
2107
2108 /* If we are generating a shared library, we must generate EPLT relocations
2109 for each entry in the .opd, even for static functions (they may have
2110 had their address taken). */
2111 if (info->shared && dyn_h && dyn_h->want_opd)
2112 {
2113 Elf_Internal_Rela rel;
2114 bfd_byte *loc;
2115 int dynindx;
2116
2117 /* We may need to do a relocation against a local symbol, in
2118 which case we have to look up it's dynamic symbol index off
2119 the local symbol hash table. */
2120 if (h && h->dynindx != -1)
2121 dynindx = h->dynindx;
2122 else
2123 dynindx
2124 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2125 dyn_h->sym_indx);
2126
2127 /* The offset of this relocation is the absolute address of the
2128 .opd entry for this symbol. */
2129 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2130 + sopd->output_section->vma);
2131
2132 /* If H is non-null, then we have an external symbol.
2133
2134 It is imperative that we use a different dynamic symbol for the
2135 EPLT relocation if the symbol has global scope.
2136
2137 In the dynamic symbol table, the function symbol will have a value
2138 which is address of the function's .opd entry.
2139
2140 Thus, we can not use that dynamic symbol for the EPLT relocation
2141 (if we did, the data in the .opd would reference itself rather
2142 than the actual address of the function). Instead we have to use
2143 a new dynamic symbol which has the same value as the original global
2144 function symbol.
2145
2146 We prefix the original symbol with a "." and use the new symbol in
2147 the EPLT relocation. This new symbol has already been recorded in
2148 the symbol table, we just have to look it up and use it.
2149
2150 We do not have such problems with static functions because we do
2151 not make their addresses in the dynamic symbol table point to
2152 the .opd entry. Ultimately this should be safe since a static
2153 function can not be directly referenced outside of its shared
2154 library.
2155
2156 We do have to play similar games for FPTR relocations in shared
2157 libraries, including those for static symbols. See the FPTR
2158 handling in elf64_hppa_finalize_dynreloc. */
2159 if (h)
2160 {
2161 char *new_name;
2162 struct elf_link_hash_entry *nh;
2163
2164 new_name = alloca (strlen (h->root.root.string) + 2);
2165 new_name[0] = '.';
2166 strcpy (new_name + 1, h->root.root.string);
2167
2168 nh = elf_link_hash_lookup (elf_hash_table (info),
2169 new_name, FALSE, FALSE, FALSE);
2170
2171 /* All we really want from the new symbol is its dynamic
2172 symbol index. */
2173 dynindx = nh->dynindx;
2174 }
2175
2176 rel.r_addend = 0;
2177 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2178
2179 loc = sopdrel->contents;
2180 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2181 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2182 }
2183 return TRUE;
2184 }
2185
2186 /* The .dlt section contains addresses for items referenced through the
2187 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2188 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2189
2190 static bfd_boolean
2191 elf64_hppa_finalize_dlt (dyn_h, data)
2192 struct elf64_hppa_dyn_hash_entry *dyn_h;
2193 PTR data;
2194 {
2195 struct bfd_link_info *info = (struct bfd_link_info *)data;
2196 struct elf64_hppa_link_hash_table *hppa_info;
2197 asection *sdlt, *sdltrel;
2198 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2199
2200 hppa_info = elf64_hppa_hash_table (info);
2201
2202 sdlt = hppa_info->dlt_sec;
2203 sdltrel = hppa_info->dlt_rel_sec;
2204
2205 /* H/DYN_H may refer to a local variable and we know it's
2206 address, so there is no need to create a relocation. Just install
2207 the proper value into the DLT, note this shortcut can not be
2208 skipped when building a shared library. */
2209 if (! info->shared && h && dyn_h->want_dlt)
2210 {
2211 bfd_vma value;
2212
2213 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2214 to point to the FPTR entry in the .opd section.
2215
2216 We include the OPD's output offset in this computation as
2217 we are referring to an absolute address in the resulting
2218 object file. */
2219 if (dyn_h->want_opd)
2220 {
2221 value = (dyn_h->opd_offset
2222 + hppa_info->opd_sec->output_offset
2223 + hppa_info->opd_sec->output_section->vma);
2224 }
2225 else if ((h->root.type == bfd_link_hash_defined
2226 || h->root.type == bfd_link_hash_defweak)
2227 && h->root.u.def.section)
2228 {
2229 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2230 if (h->root.u.def.section->output_section)
2231 value += h->root.u.def.section->output_section->vma;
2232 else
2233 value += h->root.u.def.section->vma;
2234 }
2235 else
2236 /* We have an undefined function reference. */
2237 value = 0;
2238
2239 /* We do not need to include the output offset of the DLT section
2240 here because we are modifying the in-memory contents. */
2241 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2242 }
2243
2244 /* Create a relocation for the DLT entry associated with this symbol.
2245 When building a shared library the symbol does not have to be dynamic. */
2246 if (dyn_h->want_dlt
2247 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2248 {
2249 Elf_Internal_Rela rel;
2250 bfd_byte *loc;
2251 int dynindx;
2252
2253 /* We may need to do a relocation against a local symbol, in
2254 which case we have to look up it's dynamic symbol index off
2255 the local symbol hash table. */
2256 if (h && h->dynindx != -1)
2257 dynindx = h->dynindx;
2258 else
2259 dynindx
2260 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2261 dyn_h->sym_indx);
2262
2263 /* Create a dynamic relocation for this entry. Do include the output
2264 offset of the DLT entry since we need an absolute address in the
2265 resulting object file. */
2266 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2267 + sdlt->output_section->vma);
2268 if (h && h->type == STT_FUNC)
2269 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2270 else
2271 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2272 rel.r_addend = 0;
2273
2274 loc = sdltrel->contents;
2275 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2276 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2277 }
2278 return TRUE;
2279 }
2280
2281 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2282 for dynamic functions used to initialize static data. */
2283
2284 static bfd_boolean
2285 elf64_hppa_finalize_dynreloc (dyn_h, data)
2286 struct elf64_hppa_dyn_hash_entry *dyn_h;
2287 PTR data;
2288 {
2289 struct bfd_link_info *info = (struct bfd_link_info *)data;
2290 struct elf64_hppa_link_hash_table *hppa_info;
2291 struct elf_link_hash_entry *h;
2292 int dynamic_symbol;
2293
2294 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2295
2296 if (!dynamic_symbol && !info->shared)
2297 return TRUE;
2298
2299 if (dyn_h->reloc_entries)
2300 {
2301 struct elf64_hppa_dyn_reloc_entry *rent;
2302 int dynindx;
2303
2304 hppa_info = elf64_hppa_hash_table (info);
2305 h = dyn_h->h;
2306
2307 /* We may need to do a relocation against a local symbol, in
2308 which case we have to look up it's dynamic symbol index off
2309 the local symbol hash table. */
2310 if (h && h->dynindx != -1)
2311 dynindx = h->dynindx;
2312 else
2313 dynindx
2314 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2315 dyn_h->sym_indx);
2316
2317 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2318 {
2319 Elf_Internal_Rela rel;
2320 bfd_byte *loc;
2321
2322 /* Allocate one iff we are building a shared library, the relocation
2323 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2324 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2325 continue;
2326
2327 /* Create a dynamic relocation for this entry.
2328
2329 We need the output offset for the reloc's section because
2330 we are creating an absolute address in the resulting object
2331 file. */
2332 rel.r_offset = (rent->offset + rent->sec->output_offset
2333 + rent->sec->output_section->vma);
2334
2335 /* An FPTR64 relocation implies that we took the address of
2336 a function and that the function has an entry in the .opd
2337 section. We want the FPTR64 relocation to reference the
2338 entry in .opd.
2339
2340 We could munge the symbol value in the dynamic symbol table
2341 (in fact we already do for functions with global scope) to point
2342 to the .opd entry. Then we could use that dynamic symbol in
2343 this relocation.
2344
2345 Or we could do something sensible, not munge the symbol's
2346 address and instead just use a different symbol to reference
2347 the .opd entry. At least that seems sensible until you
2348 realize there's no local dynamic symbols we can use for that
2349 purpose. Thus the hair in the check_relocs routine.
2350
2351 We use a section symbol recorded by check_relocs as the
2352 base symbol for the relocation. The addend is the difference
2353 between the section symbol and the address of the .opd entry. */
2354 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2355 {
2356 bfd_vma value, value2;
2357
2358 /* First compute the address of the opd entry for this symbol. */
2359 value = (dyn_h->opd_offset
2360 + hppa_info->opd_sec->output_section->vma
2361 + hppa_info->opd_sec->output_offset);
2362
2363 /* Compute the value of the start of the section with
2364 the relocation. */
2365 value2 = (rent->sec->output_section->vma
2366 + rent->sec->output_offset);
2367
2368 /* Compute the difference between the start of the section
2369 with the relocation and the opd entry. */
2370 value -= value2;
2371
2372 /* The result becomes the addend of the relocation. */
2373 rel.r_addend = value;
2374
2375 /* The section symbol becomes the symbol for the dynamic
2376 relocation. */
2377 dynindx
2378 = _bfd_elf_link_lookup_local_dynindx (info,
2379 rent->sec->owner,
2380 rent->sec_symndx);
2381 }
2382 else
2383 rel.r_addend = rent->addend;
2384
2385 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2386
2387 loc = hppa_info->other_rel_sec->contents;
2388 loc += (hppa_info->other_rel_sec->reloc_count++
2389 * sizeof (Elf64_External_Rela));
2390 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2391 &rel, loc);
2392 }
2393 }
2394
2395 return TRUE;
2396 }
2397
2398 /* Used to decide how to sort relocs in an optimal manner for the
2399 dynamic linker, before writing them out. */
2400
2401 static enum elf_reloc_type_class
2402 elf64_hppa_reloc_type_class (rela)
2403 const Elf_Internal_Rela *rela;
2404 {
2405 if (ELF64_R_SYM (rela->r_info) == 0)
2406 return reloc_class_relative;
2407
2408 switch ((int) ELF64_R_TYPE (rela->r_info))
2409 {
2410 case R_PARISC_IPLT:
2411 return reloc_class_plt;
2412 case R_PARISC_COPY:
2413 return reloc_class_copy;
2414 default:
2415 return reloc_class_normal;
2416 }
2417 }
2418
2419 /* Finish up the dynamic sections. */
2420
2421 static bfd_boolean
2422 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2423 bfd *output_bfd;
2424 struct bfd_link_info *info;
2425 {
2426 bfd *dynobj;
2427 asection *sdyn;
2428 struct elf64_hppa_link_hash_table *hppa_info;
2429
2430 hppa_info = elf64_hppa_hash_table (info);
2431
2432 /* Finalize the contents of the .opd section. */
2433 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2434 elf64_hppa_finalize_opd,
2435 info);
2436
2437 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2438 elf64_hppa_finalize_dynreloc,
2439 info);
2440
2441 /* Finalize the contents of the .dlt section. */
2442 dynobj = elf_hash_table (info)->dynobj;
2443 /* Finalize the contents of the .dlt section. */
2444 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2445 elf64_hppa_finalize_dlt,
2446 info);
2447
2448 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2449
2450 if (elf_hash_table (info)->dynamic_sections_created)
2451 {
2452 Elf64_External_Dyn *dyncon, *dynconend;
2453
2454 BFD_ASSERT (sdyn != NULL);
2455
2456 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2457 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2458 for (; dyncon < dynconend; dyncon++)
2459 {
2460 Elf_Internal_Dyn dyn;
2461 asection *s;
2462
2463 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2464
2465 switch (dyn.d_tag)
2466 {
2467 default:
2468 break;
2469
2470 case DT_HP_LOAD_MAP:
2471 /* Compute the absolute address of 16byte scratchpad area
2472 for the dynamic linker.
2473
2474 By convention the linker script will allocate the scratchpad
2475 area at the start of the .data section. So all we have to
2476 to is find the start of the .data section. */
2477 s = bfd_get_section_by_name (output_bfd, ".data");
2478 dyn.d_un.d_ptr = s->vma;
2479 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2480 break;
2481
2482 case DT_PLTGOT:
2483 /* HP's use PLTGOT to set the GOT register. */
2484 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2485 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2486 break;
2487
2488 case DT_JMPREL:
2489 s = hppa_info->plt_rel_sec;
2490 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2491 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2492 break;
2493
2494 case DT_PLTRELSZ:
2495 s = hppa_info->plt_rel_sec;
2496 dyn.d_un.d_val = s->size;
2497 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2498 break;
2499
2500 case DT_RELA:
2501 s = hppa_info->other_rel_sec;
2502 if (! s || ! s->size)
2503 s = hppa_info->dlt_rel_sec;
2504 if (! s || ! s->size)
2505 s = hppa_info->opd_rel_sec;
2506 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2507 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2508 break;
2509
2510 case DT_RELASZ:
2511 s = hppa_info->other_rel_sec;
2512 dyn.d_un.d_val = s->size;
2513 s = hppa_info->dlt_rel_sec;
2514 dyn.d_un.d_val += s->size;
2515 s = hppa_info->opd_rel_sec;
2516 dyn.d_un.d_val += s->size;
2517 /* There is some question about whether or not the size of
2518 the PLT relocs should be included here. HP's tools do
2519 it, so we'll emulate them. */
2520 s = hppa_info->plt_rel_sec;
2521 dyn.d_un.d_val += s->size;
2522 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2523 break;
2524
2525 }
2526 }
2527 }
2528
2529 return TRUE;
2530 }
2531
2532 /* Support for core dump NOTE sections. */
2533
2534 static bfd_boolean
2535 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2536 {
2537 int offset;
2538 size_t size;
2539
2540 switch (note->descsz)
2541 {
2542 default:
2543 return FALSE;
2544
2545 case 760: /* Linux/hppa */
2546 /* pr_cursig */
2547 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2548
2549 /* pr_pid */
2550 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2551
2552 /* pr_reg */
2553 offset = 112;
2554 size = 640;
2555
2556 break;
2557 }
2558
2559 /* Make a ".reg/999" section. */
2560 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2561 size, note->descpos + offset);
2562 }
2563
2564 static bfd_boolean
2565 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2566 {
2567 char * command;
2568 int n;
2569
2570 switch (note->descsz)
2571 {
2572 default:
2573 return FALSE;
2574
2575 case 136: /* Linux/hppa elf_prpsinfo. */
2576 elf_tdata (abfd)->core_program
2577 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2578 elf_tdata (abfd)->core_command
2579 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2580 }
2581
2582 /* Note that for some reason, a spurious space is tacked
2583 onto the end of the args in some (at least one anyway)
2584 implementations, so strip it off if it exists. */
2585 command = elf_tdata (abfd)->core_command;
2586 n = strlen (command);
2587
2588 if (0 < n && command[n - 1] == ' ')
2589 command[n - 1] = '\0';
2590
2591 return TRUE;
2592 }
2593
2594 /* Return the number of additional phdrs we will need.
2595
2596 The generic ELF code only creates PT_PHDRs for executables. The HP
2597 dynamic linker requires PT_PHDRs for dynamic libraries too.
2598
2599 This routine indicates that the backend needs one additional program
2600 header for that case.
2601
2602 Note we do not have access to the link info structure here, so we have
2603 to guess whether or not we are building a shared library based on the
2604 existence of a .interp section. */
2605
2606 static int
2607 elf64_hppa_additional_program_headers (bfd *abfd,
2608 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2609 {
2610 asection *s;
2611
2612 /* If we are creating a shared library, then we have to create a
2613 PT_PHDR segment. HP's dynamic linker chokes without it. */
2614 s = bfd_get_section_by_name (abfd, ".interp");
2615 if (! s)
2616 return 1;
2617 return 0;
2618 }
2619
2620 /* Allocate and initialize any program headers required by this
2621 specific backend.
2622
2623 The generic ELF code only creates PT_PHDRs for executables. The HP
2624 dynamic linker requires PT_PHDRs for dynamic libraries too.
2625
2626 This allocates the PT_PHDR and initializes it in a manner suitable
2627 for the HP linker.
2628
2629 Note we do not have access to the link info structure here, so we have
2630 to guess whether or not we are building a shared library based on the
2631 existence of a .interp section. */
2632
2633 static bfd_boolean
2634 elf64_hppa_modify_segment_map (bfd *abfd,
2635 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2636 {
2637 struct elf_segment_map *m;
2638 asection *s;
2639
2640 s = bfd_get_section_by_name (abfd, ".interp");
2641 if (! s)
2642 {
2643 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2644 if (m->p_type == PT_PHDR)
2645 break;
2646 if (m == NULL)
2647 {
2648 m = ((struct elf_segment_map *)
2649 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2650 if (m == NULL)
2651 return FALSE;
2652
2653 m->p_type = PT_PHDR;
2654 m->p_flags = PF_R | PF_X;
2655 m->p_flags_valid = 1;
2656 m->p_paddr_valid = 1;
2657 m->includes_phdrs = 1;
2658
2659 m->next = elf_tdata (abfd)->segment_map;
2660 elf_tdata (abfd)->segment_map = m;
2661 }
2662 }
2663
2664 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2665 if (m->p_type == PT_LOAD)
2666 {
2667 unsigned int i;
2668
2669 for (i = 0; i < m->count; i++)
2670 {
2671 /* The code "hint" is not really a hint. It is a requirement
2672 for certain versions of the HP dynamic linker. Worse yet,
2673 it must be set even if the shared library does not have
2674 any code in its "text" segment (thus the check for .hash
2675 to catch this situation). */
2676 if (m->sections[i]->flags & SEC_CODE
2677 || (strcmp (m->sections[i]->name, ".hash") == 0))
2678 m->p_flags |= (PF_X | PF_HP_CODE);
2679 }
2680 }
2681
2682 return TRUE;
2683 }
2684
2685 /* Called when writing out an object file to decide the type of a
2686 symbol. */
2687 static int
2688 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2689 Elf_Internal_Sym *elf_sym;
2690 int type;
2691 {
2692 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2693 return STT_PARISC_MILLI;
2694 else
2695 return type;
2696 }
2697
2698 /* Support HP specific sections for core files. */
2699 static bfd_boolean
2700 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2701 const char *typename)
2702 {
2703 if (hdr->p_type == PT_HP_CORE_KERNEL)
2704 {
2705 asection *sect;
2706
2707 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2708 return FALSE;
2709
2710 sect = bfd_make_section_anyway (abfd, ".kernel");
2711 if (sect == NULL)
2712 return FALSE;
2713 sect->size = hdr->p_filesz;
2714 sect->filepos = hdr->p_offset;
2715 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2716 return TRUE;
2717 }
2718
2719 if (hdr->p_type == PT_HP_CORE_PROC)
2720 {
2721 int sig;
2722
2723 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2724 return FALSE;
2725 if (bfd_bread (&sig, 4, abfd) != 4)
2726 return FALSE;
2727
2728 elf_tdata (abfd)->core_signal = sig;
2729
2730 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2731 return FALSE;
2732
2733 /* GDB uses the ".reg" section to read register contents. */
2734 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2735 hdr->p_offset);
2736 }
2737
2738 if (hdr->p_type == PT_HP_CORE_LOADABLE
2739 || hdr->p_type == PT_HP_CORE_STACK
2740 || hdr->p_type == PT_HP_CORE_MMF)
2741 hdr->p_type = PT_LOAD;
2742
2743 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2744 }
2745
2746 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2747 {
2748 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2749 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2750 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2751 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2752 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2753 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2754 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2755 { NULL, 0, 0, 0, 0 }
2756 };
2757
2758 /* The hash bucket size is the standard one, namely 4. */
2759
2760 const struct elf_size_info hppa64_elf_size_info =
2761 {
2762 sizeof (Elf64_External_Ehdr),
2763 sizeof (Elf64_External_Phdr),
2764 sizeof (Elf64_External_Shdr),
2765 sizeof (Elf64_External_Rel),
2766 sizeof (Elf64_External_Rela),
2767 sizeof (Elf64_External_Sym),
2768 sizeof (Elf64_External_Dyn),
2769 sizeof (Elf_External_Note),
2770 4,
2771 1,
2772 64, 3,
2773 ELFCLASS64, EV_CURRENT,
2774 bfd_elf64_write_out_phdrs,
2775 bfd_elf64_write_shdrs_and_ehdr,
2776 bfd_elf64_write_relocs,
2777 bfd_elf64_swap_symbol_in,
2778 bfd_elf64_swap_symbol_out,
2779 bfd_elf64_slurp_reloc_table,
2780 bfd_elf64_slurp_symbol_table,
2781 bfd_elf64_swap_dyn_in,
2782 bfd_elf64_swap_dyn_out,
2783 bfd_elf64_swap_reloc_in,
2784 bfd_elf64_swap_reloc_out,
2785 bfd_elf64_swap_reloca_in,
2786 bfd_elf64_swap_reloca_out
2787 };
2788
2789 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2790 #define TARGET_BIG_NAME "elf64-hppa"
2791 #define ELF_ARCH bfd_arch_hppa
2792 #define ELF_MACHINE_CODE EM_PARISC
2793 /* This is not strictly correct. The maximum page size for PA2.0 is
2794 64M. But everything still uses 4k. */
2795 #define ELF_MAXPAGESIZE 0x1000
2796 #define ELF_OSABI ELFOSABI_HPUX
2797
2798 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2799 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
2800 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2801 #define elf_info_to_howto elf_hppa_info_to_howto
2802 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2803
2804 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2805 #define elf_backend_object_p elf64_hppa_object_p
2806 #define elf_backend_final_write_processing \
2807 elf_hppa_final_write_processing
2808 #define elf_backend_fake_sections elf_hppa_fake_sections
2809 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2810
2811 #define elf_backend_relocate_section elf_hppa_relocate_section
2812
2813 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2814
2815 #define elf_backend_create_dynamic_sections \
2816 elf64_hppa_create_dynamic_sections
2817 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2818
2819 #define elf_backend_omit_section_dynsym \
2820 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2821 #define elf_backend_adjust_dynamic_symbol \
2822 elf64_hppa_adjust_dynamic_symbol
2823
2824 #define elf_backend_size_dynamic_sections \
2825 elf64_hppa_size_dynamic_sections
2826
2827 #define elf_backend_finish_dynamic_symbol \
2828 elf64_hppa_finish_dynamic_symbol
2829 #define elf_backend_finish_dynamic_sections \
2830 elf64_hppa_finish_dynamic_sections
2831 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2832 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2833
2834 /* Stuff for the BFD linker: */
2835 #define bfd_elf64_bfd_link_hash_table_create \
2836 elf64_hppa_hash_table_create
2837
2838 #define elf_backend_check_relocs \
2839 elf64_hppa_check_relocs
2840
2841 #define elf_backend_size_info \
2842 hppa64_elf_size_info
2843
2844 #define elf_backend_additional_program_headers \
2845 elf64_hppa_additional_program_headers
2846
2847 #define elf_backend_modify_segment_map \
2848 elf64_hppa_modify_segment_map
2849
2850 #define elf_backend_link_output_symbol_hook \
2851 elf64_hppa_link_output_symbol_hook
2852
2853 #define elf_backend_want_got_plt 0
2854 #define elf_backend_plt_readonly 0
2855 #define elf_backend_want_plt_sym 0
2856 #define elf_backend_got_header_size 0
2857 #define elf_backend_type_change_ok TRUE
2858 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2859 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2860 #define elf_backend_rela_normal 1
2861 #define elf_backend_special_sections elf64_hppa_special_sections
2862 #define elf_backend_action_discarded elf_hppa_action_discarded
2863 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2864
2865 #define elf64_bed elf64_hppa_hpux_bed
2866
2867 #include "elf64-target.h"
2868
2869 #undef TARGET_BIG_SYM
2870 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2871 #undef TARGET_BIG_NAME
2872 #define TARGET_BIG_NAME "elf64-hppa-linux"
2873 #undef ELF_OSABI
2874 #define ELF_OSABI ELFOSABI_LINUX
2875 #undef elf_backend_post_process_headers
2876 #define elf_backend_post_process_headers _bfd_elf_set_osabi
2877 #undef elf64_bed
2878 #define elf64_bed elf64_hppa_linux_bed
2879
2880 #include "elf64-target.h"
This page took 0.083924 seconds and 5 git commands to generate.