include/elf/
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29
30 /* This is the code recommended in the autoconf documentation, almost
31 verbatim. */
32 #ifndef __GNUC__
33 # if HAVE_ALLOCA_H
34 # include <alloca.h>
35 # else
36 # ifdef _AIX
37 /* Indented so that pre-ansi C compilers will ignore it, rather than
38 choke on it. Some versions of AIX require this to be the first
39 thing in the file. */
40 #pragma alloca
41 # else
42 # ifndef alloca /* predefined by HP cc +Olibcalls */
43 # if !defined (__STDC__) && !defined (__hpux)
44 extern char *alloca ();
45 # else
46 extern void *alloca ();
47 # endif /* __STDC__, __hpux */
48 # endif /* alloca */
49 # endif /* _AIX */
50 # endif /* HAVE_ALLOCA_H */
51 #else
52 extern void *alloca (size_t);
53 #endif /* __GNUC__ */
54
55
56 #define ARCH_SIZE 64
57
58 #define PLT_ENTRY_SIZE 0x10
59 #define DLT_ENTRY_SIZE 0x8
60 #define OPD_ENTRY_SIZE 0x20
61
62 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
63
64 /* The stub is supposed to load the target address and target's DP
65 value out of the PLT, then do an external branch to the target
66 address.
67
68 LDD PLTOFF(%r27),%r1
69 BVE (%r1)
70 LDD PLTOFF+8(%r27),%r27
71
72 Note that we must use the LDD with a 14 bit displacement, not the one
73 with a 5 bit displacement. */
74 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
75 0x53, 0x7b, 0x00, 0x00 };
76
77 struct elf64_hppa_dyn_hash_entry
78 {
79 struct bfd_hash_entry root;
80
81 /* Offsets for this symbol in various linker sections. */
82 bfd_vma dlt_offset;
83 bfd_vma plt_offset;
84 bfd_vma opd_offset;
85 bfd_vma stub_offset;
86
87 /* The symbol table entry, if any, that this was derived from. */
88 struct elf_link_hash_entry *h;
89
90 /* The index of the (possibly local) symbol in the input bfd and its
91 associated BFD. Needed so that we can have relocs against local
92 symbols in shared libraries. */
93 long sym_indx;
94 bfd *owner;
95
96 /* Dynamic symbols may need to have two different values. One for
97 the dynamic symbol table, one for the normal symbol table.
98
99 In such cases we store the symbol's real value and section
100 index here so we can restore the real value before we write
101 the normal symbol table. */
102 bfd_vma st_value;
103 int st_shndx;
104
105 /* Used to count non-got, non-plt relocations for delayed sizing
106 of relocation sections. */
107 struct elf64_hppa_dyn_reloc_entry
108 {
109 /* Next relocation in the chain. */
110 struct elf64_hppa_dyn_reloc_entry *next;
111
112 /* The type of the relocation. */
113 int type;
114
115 /* The input section of the relocation. */
116 asection *sec;
117
118 /* The index of the section symbol for the input section of
119 the relocation. Only needed when building shared libraries. */
120 int sec_symndx;
121
122 /* The offset within the input section of the relocation. */
123 bfd_vma offset;
124
125 /* The addend for the relocation. */
126 bfd_vma addend;
127
128 } *reloc_entries;
129
130 /* Nonzero if this symbol needs an entry in one of the linker
131 sections. */
132 unsigned want_dlt;
133 unsigned want_plt;
134 unsigned want_opd;
135 unsigned want_stub;
136 };
137
138 struct elf64_hppa_dyn_hash_table
139 {
140 struct bfd_hash_table root;
141 };
142
143 struct elf64_hppa_link_hash_table
144 {
145 struct elf_link_hash_table root;
146
147 /* Shortcuts to get to the various linker defined sections. */
148 asection *dlt_sec;
149 asection *dlt_rel_sec;
150 asection *plt_sec;
151 asection *plt_rel_sec;
152 asection *opd_sec;
153 asection *opd_rel_sec;
154 asection *other_rel_sec;
155
156 /* Offset of __gp within .plt section. When the PLT gets large we want
157 to slide __gp into the PLT section so that we can continue to use
158 single DP relative instructions to load values out of the PLT. */
159 bfd_vma gp_offset;
160
161 /* Note this is not strictly correct. We should create a stub section for
162 each input section with calls. The stub section should be placed before
163 the section with the call. */
164 asection *stub_sec;
165
166 bfd_vma text_segment_base;
167 bfd_vma data_segment_base;
168
169 struct elf64_hppa_dyn_hash_table dyn_hash_table;
170
171 /* We build tables to map from an input section back to its
172 symbol index. This is the BFD for which we currently have
173 a map. */
174 bfd *section_syms_bfd;
175
176 /* Array of symbol numbers for each input section attached to the
177 current BFD. */
178 int *section_syms;
179 };
180
181 #define elf64_hppa_hash_table(p) \
182 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
183
184 typedef struct bfd_hash_entry *(*new_hash_entry_func)
185 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
186
187 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
188 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
189 const char *string));
190 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
191 PARAMS ((bfd *abfd));
192 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
193 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
194 bfd_boolean create, bfd_boolean copy));
195 static void elf64_hppa_dyn_hash_traverse
196 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
197 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
198 PTR info));
199
200 static const char *get_dyn_name
201 PARAMS ((bfd *, struct elf_link_hash_entry *,
202 const Elf_Internal_Rela *, char **, size_t *));
203
204 /* This must follow the definitions of the various derived linker
205 hash tables and shared functions. */
206 #include "elf-hppa.h"
207
208 static bfd_boolean elf64_hppa_object_p
209 PARAMS ((bfd *));
210
211 static void elf64_hppa_post_process_headers
212 PARAMS ((bfd *, struct bfd_link_info *));
213
214 static bfd_boolean elf64_hppa_create_dynamic_sections
215 PARAMS ((bfd *, struct bfd_link_info *));
216
217 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
218 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
219
220 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
221 PARAMS ((struct elf_link_hash_entry *, PTR));
222
223 static bfd_boolean elf64_hppa_size_dynamic_sections
224 PARAMS ((bfd *, struct bfd_link_info *));
225
226 static bfd_boolean elf64_hppa_link_output_symbol_hook
227 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
228 asection *, struct elf_link_hash_entry *));
229
230 static bfd_boolean elf64_hppa_finish_dynamic_symbol
231 PARAMS ((bfd *, struct bfd_link_info *,
232 struct elf_link_hash_entry *, Elf_Internal_Sym *));
233
234 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
235 PARAMS ((const Elf_Internal_Rela *));
236
237 static bfd_boolean elf64_hppa_finish_dynamic_sections
238 PARAMS ((bfd *, struct bfd_link_info *));
239
240 static bfd_boolean elf64_hppa_check_relocs
241 PARAMS ((bfd *, struct bfd_link_info *,
242 asection *, const Elf_Internal_Rela *));
243
244 static bfd_boolean elf64_hppa_dynamic_symbol_p
245 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
246
247 static bfd_boolean elf64_hppa_mark_exported_functions
248 PARAMS ((struct elf_link_hash_entry *, PTR));
249
250 static bfd_boolean elf64_hppa_finalize_opd
251 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
252
253 static bfd_boolean elf64_hppa_finalize_dlt
254 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
255
256 static bfd_boolean allocate_global_data_dlt
257 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
258
259 static bfd_boolean allocate_global_data_plt
260 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
261
262 static bfd_boolean allocate_global_data_stub
263 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
264
265 static bfd_boolean allocate_global_data_opd
266 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
267
268 static bfd_boolean get_reloc_section
269 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
270
271 static bfd_boolean count_dyn_reloc
272 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
273 int, asection *, int, bfd_vma, bfd_vma));
274
275 static bfd_boolean allocate_dynrel_entries
276 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
277
278 static bfd_boolean elf64_hppa_finalize_dynreloc
279 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
280
281 static bfd_boolean get_opd
282 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
283
284 static bfd_boolean get_plt
285 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
286
287 static bfd_boolean get_dlt
288 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
289
290 static bfd_boolean get_stub
291 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
292
293 static int elf64_hppa_elf_get_symbol_type
294 PARAMS ((Elf_Internal_Sym *, int));
295
296 static bfd_boolean
297 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
298 bfd *abfd ATTRIBUTE_UNUSED,
299 new_hash_entry_func new,
300 unsigned int entsize)
301 {
302 memset (ht, 0, sizeof (*ht));
303 return bfd_hash_table_init (&ht->root, new, entsize);
304 }
305
306 static struct bfd_hash_entry*
307 elf64_hppa_new_dyn_hash_entry (entry, table, string)
308 struct bfd_hash_entry *entry;
309 struct bfd_hash_table *table;
310 const char *string;
311 {
312 struct elf64_hppa_dyn_hash_entry *ret;
313 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
314
315 /* Allocate the structure if it has not already been allocated by a
316 subclass. */
317 if (!ret)
318 ret = bfd_hash_allocate (table, sizeof (*ret));
319
320 if (!ret)
321 return 0;
322
323 /* Call the allocation method of the superclass. */
324 ret = ((struct elf64_hppa_dyn_hash_entry *)
325 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
326
327 /* Initialize our local data. All zeros. */
328 memset (&ret->dlt_offset, 0,
329 (sizeof (struct elf64_hppa_dyn_hash_entry)
330 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
331
332 return &ret->root;
333 }
334
335 /* Create the derived linker hash table. The PA64 ELF port uses this
336 derived hash table to keep information specific to the PA ElF
337 linker (without using static variables). */
338
339 static struct bfd_link_hash_table*
340 elf64_hppa_hash_table_create (abfd)
341 bfd *abfd;
342 {
343 struct elf64_hppa_link_hash_table *ret;
344
345 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
346 if (!ret)
347 return 0;
348 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
349 _bfd_elf_link_hash_newfunc,
350 sizeof (struct elf_link_hash_entry)))
351 {
352 bfd_release (abfd, ret);
353 return 0;
354 }
355
356 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
357 elf64_hppa_new_dyn_hash_entry,
358 sizeof (struct elf64_hppa_dyn_hash_entry)))
359 return 0;
360 return &ret->root.root;
361 }
362
363 /* Look up an entry in a PA64 ELF linker hash table. */
364
365 static struct elf64_hppa_dyn_hash_entry *
366 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
367 struct elf64_hppa_dyn_hash_table *table;
368 const char *string;
369 bfd_boolean create, copy;
370 {
371 return ((struct elf64_hppa_dyn_hash_entry *)
372 bfd_hash_lookup (&table->root, string, create, copy));
373 }
374
375 /* Traverse a PA64 ELF linker hash table. */
376
377 static void
378 elf64_hppa_dyn_hash_traverse (table, func, info)
379 struct elf64_hppa_dyn_hash_table *table;
380 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
381 PTR info;
382 {
383 (bfd_hash_traverse
384 (&table->root,
385 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
386 info));
387 }
388 \f
389 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
390
391 Additionally we set the default architecture and machine. */
392 static bfd_boolean
393 elf64_hppa_object_p (abfd)
394 bfd *abfd;
395 {
396 Elf_Internal_Ehdr * i_ehdrp;
397 unsigned int flags;
398
399 i_ehdrp = elf_elfheader (abfd);
400 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
401 {
402 /* GCC on hppa-linux produces binaries with OSABI=Linux,
403 but the kernel produces corefiles with OSABI=SysV. */
404 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
405 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
406 return FALSE;
407 }
408 else
409 {
410 /* HPUX produces binaries with OSABI=HPUX,
411 but the kernel produces corefiles with OSABI=SysV. */
412 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
413 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
414 return FALSE;
415 }
416
417 flags = i_ehdrp->e_flags;
418 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
419 {
420 case EFA_PARISC_1_0:
421 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
422 case EFA_PARISC_1_1:
423 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
424 case EFA_PARISC_2_0:
425 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
426 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
427 else
428 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
429 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
430 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
431 }
432 /* Don't be fussy. */
433 return TRUE;
434 }
435
436 /* Given section type (hdr->sh_type), return a boolean indicating
437 whether or not the section is an elf64-hppa specific section. */
438 static bfd_boolean
439 elf64_hppa_section_from_shdr (bfd *abfd,
440 Elf_Internal_Shdr *hdr,
441 const char *name,
442 int shindex)
443 {
444 asection *newsect;
445
446 switch (hdr->sh_type)
447 {
448 case SHT_PARISC_EXT:
449 if (strcmp (name, ".PARISC.archext") != 0)
450 return FALSE;
451 break;
452 case SHT_PARISC_UNWIND:
453 if (strcmp (name, ".PARISC.unwind") != 0)
454 return FALSE;
455 break;
456 case SHT_PARISC_DOC:
457 case SHT_PARISC_ANNOT:
458 default:
459 return FALSE;
460 }
461
462 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
463 return FALSE;
464 newsect = hdr->bfd_section;
465
466 return TRUE;
467 }
468
469 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
470 name describes what was once potentially anonymous memory. We
471 allocate memory as necessary, possibly reusing PBUF/PLEN. */
472
473 static const char *
474 get_dyn_name (abfd, h, rel, pbuf, plen)
475 bfd *abfd;
476 struct elf_link_hash_entry *h;
477 const Elf_Internal_Rela *rel;
478 char **pbuf;
479 size_t *plen;
480 {
481 asection *sec = abfd->sections;
482 size_t nlen, tlen;
483 char *buf;
484 size_t len;
485
486 if (h && rel->r_addend == 0)
487 return h->root.root.string;
488
489 if (h)
490 nlen = strlen (h->root.root.string);
491 else
492 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
493 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
494
495 len = *plen;
496 buf = *pbuf;
497 if (len < tlen)
498 {
499 if (buf)
500 free (buf);
501 *pbuf = buf = malloc (tlen);
502 *plen = len = tlen;
503 if (!buf)
504 return NULL;
505 }
506
507 if (h)
508 {
509 memcpy (buf, h->root.root.string, nlen);
510 buf[nlen++] = '+';
511 sprintf_vma (buf + nlen, rel->r_addend);
512 }
513 else
514 {
515 nlen = sprintf (buf, "%x:%lx",
516 sec->id & 0xffffffff,
517 (long) ELF64_R_SYM (rel->r_info));
518 if (rel->r_addend)
519 {
520 buf[nlen++] = '+';
521 sprintf_vma (buf + nlen, rel->r_addend);
522 }
523 }
524
525 return buf;
526 }
527
528 /* SEC is a section containing relocs for an input BFD when linking; return
529 a suitable section for holding relocs in the output BFD for a link. */
530
531 static bfd_boolean
532 get_reloc_section (abfd, hppa_info, sec)
533 bfd *abfd;
534 struct elf64_hppa_link_hash_table *hppa_info;
535 asection *sec;
536 {
537 const char *srel_name;
538 asection *srel;
539 bfd *dynobj;
540
541 srel_name = (bfd_elf_string_from_elf_section
542 (abfd, elf_elfheader(abfd)->e_shstrndx,
543 elf_section_data(sec)->rel_hdr.sh_name));
544 if (srel_name == NULL)
545 return FALSE;
546
547 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
548 && strcmp (bfd_get_section_name (abfd, sec),
549 srel_name + 5) == 0)
550 || (CONST_STRNEQ (srel_name, ".rel")
551 && strcmp (bfd_get_section_name (abfd, sec),
552 srel_name + 4) == 0));
553
554 dynobj = hppa_info->root.dynobj;
555 if (!dynobj)
556 hppa_info->root.dynobj = dynobj = abfd;
557
558 srel = bfd_get_section_by_name (dynobj, srel_name);
559 if (srel == NULL)
560 {
561 srel = bfd_make_section_with_flags (dynobj, srel_name,
562 (SEC_ALLOC
563 | SEC_LOAD
564 | SEC_HAS_CONTENTS
565 | SEC_IN_MEMORY
566 | SEC_LINKER_CREATED
567 | SEC_READONLY));
568 if (srel == NULL
569 || !bfd_set_section_alignment (dynobj, srel, 3))
570 return FALSE;
571 }
572
573 hppa_info->other_rel_sec = srel;
574 return TRUE;
575 }
576
577 /* Add a new entry to the list of dynamic relocations against DYN_H.
578
579 We use this to keep a record of all the FPTR relocations against a
580 particular symbol so that we can create FPTR relocations in the
581 output file. */
582
583 static bfd_boolean
584 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
585 bfd *abfd;
586 struct elf64_hppa_dyn_hash_entry *dyn_h;
587 int type;
588 asection *sec;
589 int sec_symndx;
590 bfd_vma offset;
591 bfd_vma addend;
592 {
593 struct elf64_hppa_dyn_reloc_entry *rent;
594
595 rent = (struct elf64_hppa_dyn_reloc_entry *)
596 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
597 if (!rent)
598 return FALSE;
599
600 rent->next = dyn_h->reloc_entries;
601 rent->type = type;
602 rent->sec = sec;
603 rent->sec_symndx = sec_symndx;
604 rent->offset = offset;
605 rent->addend = addend;
606 dyn_h->reloc_entries = rent;
607
608 return TRUE;
609 }
610
611 /* Scan the RELOCS and record the type of dynamic entries that each
612 referenced symbol needs. */
613
614 static bfd_boolean
615 elf64_hppa_check_relocs (abfd, info, sec, relocs)
616 bfd *abfd;
617 struct bfd_link_info *info;
618 asection *sec;
619 const Elf_Internal_Rela *relocs;
620 {
621 struct elf64_hppa_link_hash_table *hppa_info;
622 const Elf_Internal_Rela *relend;
623 Elf_Internal_Shdr *symtab_hdr;
624 const Elf_Internal_Rela *rel;
625 asection *dlt, *plt, *stubs;
626 char *buf;
627 size_t buf_len;
628 unsigned int sec_symndx;
629
630 if (info->relocatable)
631 return TRUE;
632
633 /* If this is the first dynamic object found in the link, create
634 the special sections required for dynamic linking. */
635 if (! elf_hash_table (info)->dynamic_sections_created)
636 {
637 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
638 return FALSE;
639 }
640
641 hppa_info = elf64_hppa_hash_table (info);
642 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
643
644 /* If necessary, build a new table holding section symbols indices
645 for this BFD. */
646
647 if (info->shared && hppa_info->section_syms_bfd != abfd)
648 {
649 unsigned long i;
650 unsigned int highest_shndx;
651 Elf_Internal_Sym *local_syms = NULL;
652 Elf_Internal_Sym *isym, *isymend;
653 bfd_size_type amt;
654
655 /* We're done with the old cache of section index to section symbol
656 index information. Free it.
657
658 ?!? Note we leak the last section_syms array. Presumably we
659 could free it in one of the later routines in this file. */
660 if (hppa_info->section_syms)
661 free (hppa_info->section_syms);
662
663 /* Read this BFD's local symbols. */
664 if (symtab_hdr->sh_info != 0)
665 {
666 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
667 if (local_syms == NULL)
668 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
669 symtab_hdr->sh_info, 0,
670 NULL, NULL, NULL);
671 if (local_syms == NULL)
672 return FALSE;
673 }
674
675 /* Record the highest section index referenced by the local symbols. */
676 highest_shndx = 0;
677 isymend = local_syms + symtab_hdr->sh_info;
678 for (isym = local_syms; isym < isymend; isym++)
679 {
680 if (isym->st_shndx > highest_shndx
681 && isym->st_shndx < SHN_LORESERVE)
682 highest_shndx = isym->st_shndx;
683 }
684
685 /* Allocate an array to hold the section index to section symbol index
686 mapping. Bump by one since we start counting at zero. */
687 highest_shndx++;
688 amt = highest_shndx;
689 amt *= sizeof (int);
690 hppa_info->section_syms = (int *) bfd_malloc (amt);
691
692 /* Now walk the local symbols again. If we find a section symbol,
693 record the index of the symbol into the section_syms array. */
694 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
695 {
696 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
697 hppa_info->section_syms[isym->st_shndx] = i;
698 }
699
700 /* We are finished with the local symbols. */
701 if (local_syms != NULL
702 && symtab_hdr->contents != (unsigned char *) local_syms)
703 {
704 if (! info->keep_memory)
705 free (local_syms);
706 else
707 {
708 /* Cache the symbols for elf_link_input_bfd. */
709 symtab_hdr->contents = (unsigned char *) local_syms;
710 }
711 }
712
713 /* Record which BFD we built the section_syms mapping for. */
714 hppa_info->section_syms_bfd = abfd;
715 }
716
717 /* Record the symbol index for this input section. We may need it for
718 relocations when building shared libraries. When not building shared
719 libraries this value is never really used, but assign it to zero to
720 prevent out of bounds memory accesses in other routines. */
721 if (info->shared)
722 {
723 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
724
725 /* If we did not find a section symbol for this section, then
726 something went terribly wrong above. */
727 if (sec_symndx == SHN_BAD)
728 return FALSE;
729
730 if (sec_symndx < SHN_LORESERVE)
731 sec_symndx = hppa_info->section_syms[sec_symndx];
732 else
733 sec_symndx = 0;
734 }
735 else
736 sec_symndx = 0;
737
738 dlt = plt = stubs = NULL;
739 buf = NULL;
740 buf_len = 0;
741
742 relend = relocs + sec->reloc_count;
743 for (rel = relocs; rel < relend; ++rel)
744 {
745 enum
746 {
747 NEED_DLT = 1,
748 NEED_PLT = 2,
749 NEED_STUB = 4,
750 NEED_OPD = 8,
751 NEED_DYNREL = 16,
752 };
753
754 struct elf_link_hash_entry *h = NULL;
755 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
756 struct elf64_hppa_dyn_hash_entry *dyn_h;
757 int need_entry;
758 const char *addr_name;
759 bfd_boolean maybe_dynamic;
760 int dynrel_type = R_PARISC_NONE;
761 static reloc_howto_type *howto;
762
763 if (r_symndx >= symtab_hdr->sh_info)
764 {
765 /* We're dealing with a global symbol -- find its hash entry
766 and mark it as being referenced. */
767 long indx = r_symndx - symtab_hdr->sh_info;
768 h = elf_sym_hashes (abfd)[indx];
769 while (h->root.type == bfd_link_hash_indirect
770 || h->root.type == bfd_link_hash_warning)
771 h = (struct elf_link_hash_entry *) h->root.u.i.link;
772
773 h->ref_regular = 1;
774 }
775
776 /* We can only get preliminary data on whether a symbol is
777 locally or externally defined, as not all of the input files
778 have yet been processed. Do something with what we know, as
779 this may help reduce memory usage and processing time later. */
780 maybe_dynamic = FALSE;
781 if (h && ((info->shared
782 && (!info->symbolic
783 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
784 || !h->def_regular
785 || h->root.type == bfd_link_hash_defweak))
786 maybe_dynamic = TRUE;
787
788 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
789 need_entry = 0;
790 switch (howto->type)
791 {
792 /* These are simple indirect references to symbols through the
793 DLT. We need to create a DLT entry for any symbols which
794 appears in a DLTIND relocation. */
795 case R_PARISC_DLTIND21L:
796 case R_PARISC_DLTIND14R:
797 case R_PARISC_DLTIND14F:
798 case R_PARISC_DLTIND14WR:
799 case R_PARISC_DLTIND14DR:
800 need_entry = NEED_DLT;
801 break;
802
803 /* ?!? These need a DLT entry. But I have no idea what to do with
804 the "link time TP value. */
805 case R_PARISC_LTOFF_TP21L:
806 case R_PARISC_LTOFF_TP14R:
807 case R_PARISC_LTOFF_TP14F:
808 case R_PARISC_LTOFF_TP64:
809 case R_PARISC_LTOFF_TP14WR:
810 case R_PARISC_LTOFF_TP14DR:
811 case R_PARISC_LTOFF_TP16F:
812 case R_PARISC_LTOFF_TP16WF:
813 case R_PARISC_LTOFF_TP16DF:
814 need_entry = NEED_DLT;
815 break;
816
817 /* These are function calls. Depending on their precise target we
818 may need to make a stub for them. The stub uses the PLT, so we
819 need to create PLT entries for these symbols too. */
820 case R_PARISC_PCREL12F:
821 case R_PARISC_PCREL17F:
822 case R_PARISC_PCREL22F:
823 case R_PARISC_PCREL32:
824 case R_PARISC_PCREL64:
825 case R_PARISC_PCREL21L:
826 case R_PARISC_PCREL17R:
827 case R_PARISC_PCREL17C:
828 case R_PARISC_PCREL14R:
829 case R_PARISC_PCREL14F:
830 case R_PARISC_PCREL22C:
831 case R_PARISC_PCREL14WR:
832 case R_PARISC_PCREL14DR:
833 case R_PARISC_PCREL16F:
834 case R_PARISC_PCREL16WF:
835 case R_PARISC_PCREL16DF:
836 need_entry = (NEED_PLT | NEED_STUB);
837 break;
838
839 case R_PARISC_PLTOFF21L:
840 case R_PARISC_PLTOFF14R:
841 case R_PARISC_PLTOFF14F:
842 case R_PARISC_PLTOFF14WR:
843 case R_PARISC_PLTOFF14DR:
844 case R_PARISC_PLTOFF16F:
845 case R_PARISC_PLTOFF16WF:
846 case R_PARISC_PLTOFF16DF:
847 need_entry = (NEED_PLT);
848 break;
849
850 case R_PARISC_DIR64:
851 if (info->shared || maybe_dynamic)
852 need_entry = (NEED_DYNREL);
853 dynrel_type = R_PARISC_DIR64;
854 break;
855
856 /* This is an indirect reference through the DLT to get the address
857 of a OPD descriptor. Thus we need to make a DLT entry that points
858 to an OPD entry. */
859 case R_PARISC_LTOFF_FPTR21L:
860 case R_PARISC_LTOFF_FPTR14R:
861 case R_PARISC_LTOFF_FPTR14WR:
862 case R_PARISC_LTOFF_FPTR14DR:
863 case R_PARISC_LTOFF_FPTR32:
864 case R_PARISC_LTOFF_FPTR64:
865 case R_PARISC_LTOFF_FPTR16F:
866 case R_PARISC_LTOFF_FPTR16WF:
867 case R_PARISC_LTOFF_FPTR16DF:
868 if (info->shared || maybe_dynamic)
869 need_entry = (NEED_DLT | NEED_OPD);
870 else
871 need_entry = (NEED_DLT | NEED_OPD);
872 dynrel_type = R_PARISC_FPTR64;
873 break;
874
875 /* This is a simple OPD entry. */
876 case R_PARISC_FPTR64:
877 if (info->shared || maybe_dynamic)
878 need_entry = (NEED_OPD | NEED_DYNREL);
879 else
880 need_entry = (NEED_OPD);
881 dynrel_type = R_PARISC_FPTR64;
882 break;
883
884 /* Add more cases as needed. */
885 }
886
887 if (!need_entry)
888 continue;
889
890 /* Collect a canonical name for this address. */
891 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
892
893 /* Collect the canonical entry data for this address. */
894 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
895 addr_name, TRUE, TRUE);
896 BFD_ASSERT (dyn_h);
897
898 /* Stash away enough information to be able to find this symbol
899 regardless of whether or not it is local or global. */
900 dyn_h->h = h;
901 dyn_h->owner = abfd;
902 dyn_h->sym_indx = r_symndx;
903
904 /* ?!? We may need to do some error checking in here. */
905 /* Create what's needed. */
906 if (need_entry & NEED_DLT)
907 {
908 if (! hppa_info->dlt_sec
909 && ! get_dlt (abfd, info, hppa_info))
910 goto err_out;
911 dyn_h->want_dlt = 1;
912 }
913
914 if (need_entry & NEED_PLT)
915 {
916 if (! hppa_info->plt_sec
917 && ! get_plt (abfd, info, hppa_info))
918 goto err_out;
919 dyn_h->want_plt = 1;
920 }
921
922 if (need_entry & NEED_STUB)
923 {
924 if (! hppa_info->stub_sec
925 && ! get_stub (abfd, info, hppa_info))
926 goto err_out;
927 dyn_h->want_stub = 1;
928 }
929
930 if (need_entry & NEED_OPD)
931 {
932 if (! hppa_info->opd_sec
933 && ! get_opd (abfd, info, hppa_info))
934 goto err_out;
935
936 dyn_h->want_opd = 1;
937
938 /* FPTRs are not allocated by the dynamic linker for PA64, though
939 it is possible that will change in the future. */
940
941 /* This could be a local function that had its address taken, in
942 which case H will be NULL. */
943 if (h)
944 h->needs_plt = 1;
945 }
946
947 /* Add a new dynamic relocation to the chain of dynamic
948 relocations for this symbol. */
949 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
950 {
951 if (! hppa_info->other_rel_sec
952 && ! get_reloc_section (abfd, hppa_info, sec))
953 goto err_out;
954
955 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
956 sec_symndx, rel->r_offset, rel->r_addend))
957 goto err_out;
958
959 /* If we are building a shared library and we just recorded
960 a dynamic R_PARISC_FPTR64 relocation, then make sure the
961 section symbol for this section ends up in the dynamic
962 symbol table. */
963 if (info->shared && dynrel_type == R_PARISC_FPTR64
964 && ! (bfd_elf_link_record_local_dynamic_symbol
965 (info, abfd, sec_symndx)))
966 return FALSE;
967 }
968 }
969
970 if (buf)
971 free (buf);
972 return TRUE;
973
974 err_out:
975 if (buf)
976 free (buf);
977 return FALSE;
978 }
979
980 struct elf64_hppa_allocate_data
981 {
982 struct bfd_link_info *info;
983 bfd_size_type ofs;
984 };
985
986 /* Should we do dynamic things to this symbol? */
987
988 static bfd_boolean
989 elf64_hppa_dynamic_symbol_p (h, info)
990 struct elf_link_hash_entry *h;
991 struct bfd_link_info *info;
992 {
993 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
994 and relocations that retrieve a function descriptor? Assume the
995 worst for now. */
996 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
997 {
998 /* ??? Why is this here and not elsewhere is_local_label_name. */
999 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
1000 return FALSE;
1001
1002 return TRUE;
1003 }
1004 else
1005 return FALSE;
1006 }
1007
1008 /* Mark all functions exported by this file so that we can later allocate
1009 entries in .opd for them. */
1010
1011 static bfd_boolean
1012 elf64_hppa_mark_exported_functions (h, data)
1013 struct elf_link_hash_entry *h;
1014 PTR data;
1015 {
1016 struct bfd_link_info *info = (struct bfd_link_info *)data;
1017 struct elf64_hppa_link_hash_table *hppa_info;
1018
1019 hppa_info = elf64_hppa_hash_table (info);
1020
1021 if (h->root.type == bfd_link_hash_warning)
1022 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1023
1024 if (h
1025 && (h->root.type == bfd_link_hash_defined
1026 || h->root.type == bfd_link_hash_defweak)
1027 && h->root.u.def.section->output_section != NULL
1028 && h->type == STT_FUNC)
1029 {
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031
1032 /* Add this symbol to the PA64 linker hash table. */
1033 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1034 h->root.root.string, TRUE, TRUE);
1035 BFD_ASSERT (dyn_h);
1036 dyn_h->h = h;
1037
1038 if (! hppa_info->opd_sec
1039 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1040 return FALSE;
1041
1042 dyn_h->want_opd = 1;
1043 /* Put a flag here for output_symbol_hook. */
1044 dyn_h->st_shndx = -1;
1045 h->needs_plt = 1;
1046 }
1047
1048 return TRUE;
1049 }
1050
1051 /* Allocate space for a DLT entry. */
1052
1053 static bfd_boolean
1054 allocate_global_data_dlt (dyn_h, data)
1055 struct elf64_hppa_dyn_hash_entry *dyn_h;
1056 PTR data;
1057 {
1058 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1059
1060 if (dyn_h->want_dlt)
1061 {
1062 struct elf_link_hash_entry *h = dyn_h->h;
1063
1064 if (x->info->shared)
1065 {
1066 /* Possibly add the symbol to the local dynamic symbol
1067 table since we might need to create a dynamic relocation
1068 against it. */
1069 if (! h
1070 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1071 {
1072 bfd *owner;
1073 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1074
1075 if (! (bfd_elf_link_record_local_dynamic_symbol
1076 (x->info, owner, dyn_h->sym_indx)))
1077 return FALSE;
1078 }
1079 }
1080
1081 dyn_h->dlt_offset = x->ofs;
1082 x->ofs += DLT_ENTRY_SIZE;
1083 }
1084 return TRUE;
1085 }
1086
1087 /* Allocate space for a DLT.PLT entry. */
1088
1089 static bfd_boolean
1090 allocate_global_data_plt (dyn_h, data)
1091 struct elf64_hppa_dyn_hash_entry *dyn_h;
1092 PTR data;
1093 {
1094 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1095
1096 if (dyn_h->want_plt
1097 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1098 && !((dyn_h->h->root.type == bfd_link_hash_defined
1099 || dyn_h->h->root.type == bfd_link_hash_defweak)
1100 && dyn_h->h->root.u.def.section->output_section != NULL))
1101 {
1102 dyn_h->plt_offset = x->ofs;
1103 x->ofs += PLT_ENTRY_SIZE;
1104 if (dyn_h->plt_offset < 0x2000)
1105 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1106 }
1107 else
1108 dyn_h->want_plt = 0;
1109
1110 return TRUE;
1111 }
1112
1113 /* Allocate space for a STUB entry. */
1114
1115 static bfd_boolean
1116 allocate_global_data_stub (dyn_h, data)
1117 struct elf64_hppa_dyn_hash_entry *dyn_h;
1118 PTR data;
1119 {
1120 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1121
1122 if (dyn_h->want_stub
1123 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1124 && !((dyn_h->h->root.type == bfd_link_hash_defined
1125 || dyn_h->h->root.type == bfd_link_hash_defweak)
1126 && dyn_h->h->root.u.def.section->output_section != NULL))
1127 {
1128 dyn_h->stub_offset = x->ofs;
1129 x->ofs += sizeof (plt_stub);
1130 }
1131 else
1132 dyn_h->want_stub = 0;
1133 return TRUE;
1134 }
1135
1136 /* Allocate space for a FPTR entry. */
1137
1138 static bfd_boolean
1139 allocate_global_data_opd (dyn_h, data)
1140 struct elf64_hppa_dyn_hash_entry *dyn_h;
1141 PTR data;
1142 {
1143 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1144
1145 if (dyn_h->want_opd)
1146 {
1147 struct elf_link_hash_entry *h = dyn_h->h;
1148
1149 if (h)
1150 while (h->root.type == bfd_link_hash_indirect
1151 || h->root.type == bfd_link_hash_warning)
1152 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1153
1154 /* We never need an opd entry for a symbol which is not
1155 defined by this output file. */
1156 if (h && (h->root.type == bfd_link_hash_undefined
1157 || h->root.type == bfd_link_hash_undefweak
1158 || h->root.u.def.section->output_section == NULL))
1159 dyn_h->want_opd = 0;
1160
1161 /* If we are creating a shared library, took the address of a local
1162 function or might export this function from this object file, then
1163 we have to create an opd descriptor. */
1164 else if (x->info->shared
1165 || h == NULL
1166 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1167 || (h->root.type == bfd_link_hash_defined
1168 || h->root.type == bfd_link_hash_defweak))
1169 {
1170 /* If we are creating a shared library, then we will have to
1171 create a runtime relocation for the symbol to properly
1172 initialize the .opd entry. Make sure the symbol gets
1173 added to the dynamic symbol table. */
1174 if (x->info->shared
1175 && (h == NULL || (h->dynindx == -1)))
1176 {
1177 bfd *owner;
1178 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1179
1180 if (!bfd_elf_link_record_local_dynamic_symbol
1181 (x->info, owner, dyn_h->sym_indx))
1182 return FALSE;
1183 }
1184
1185 /* This may not be necessary or desirable anymore now that
1186 we have some support for dealing with section symbols
1187 in dynamic relocs. But name munging does make the result
1188 much easier to debug. ie, the EPLT reloc will reference
1189 a symbol like .foobar, instead of .text + offset. */
1190 if (x->info->shared && h)
1191 {
1192 char *new_name;
1193 struct elf_link_hash_entry *nh;
1194
1195 new_name = alloca (strlen (h->root.root.string) + 2);
1196 new_name[0] = '.';
1197 strcpy (new_name + 1, h->root.root.string);
1198
1199 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1200 new_name, TRUE, TRUE, TRUE);
1201
1202 nh->root.type = h->root.type;
1203 nh->root.u.def.value = h->root.u.def.value;
1204 nh->root.u.def.section = h->root.u.def.section;
1205
1206 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1207 return FALSE;
1208
1209 }
1210 dyn_h->opd_offset = x->ofs;
1211 x->ofs += OPD_ENTRY_SIZE;
1212 }
1213
1214 /* Otherwise we do not need an opd entry. */
1215 else
1216 dyn_h->want_opd = 0;
1217 }
1218 return TRUE;
1219 }
1220
1221 /* HP requires the EI_OSABI field to be filled in. The assignment to
1222 EI_ABIVERSION may not be strictly necessary. */
1223
1224 static void
1225 elf64_hppa_post_process_headers (abfd, link_info)
1226 bfd * abfd;
1227 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1228 {
1229 Elf_Internal_Ehdr * i_ehdrp;
1230
1231 i_ehdrp = elf_elfheader (abfd);
1232
1233 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1234 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1235 }
1236
1237 /* Create function descriptor section (.opd). This section is called .opd
1238 because it contains "official procedure descriptors". The "official"
1239 refers to the fact that these descriptors are used when taking the address
1240 of a procedure, thus ensuring a unique address for each procedure. */
1241
1242 static bfd_boolean
1243 get_opd (abfd, info, hppa_info)
1244 bfd *abfd;
1245 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1246 struct elf64_hppa_link_hash_table *hppa_info;
1247 {
1248 asection *opd;
1249 bfd *dynobj;
1250
1251 opd = hppa_info->opd_sec;
1252 if (!opd)
1253 {
1254 dynobj = hppa_info->root.dynobj;
1255 if (!dynobj)
1256 hppa_info->root.dynobj = dynobj = abfd;
1257
1258 opd = bfd_make_section_with_flags (dynobj, ".opd",
1259 (SEC_ALLOC
1260 | SEC_LOAD
1261 | SEC_HAS_CONTENTS
1262 | SEC_IN_MEMORY
1263 | SEC_LINKER_CREATED));
1264 if (!opd
1265 || !bfd_set_section_alignment (abfd, opd, 3))
1266 {
1267 BFD_ASSERT (0);
1268 return FALSE;
1269 }
1270
1271 hppa_info->opd_sec = opd;
1272 }
1273
1274 return TRUE;
1275 }
1276
1277 /* Create the PLT section. */
1278
1279 static bfd_boolean
1280 get_plt (abfd, info, hppa_info)
1281 bfd *abfd;
1282 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1283 struct elf64_hppa_link_hash_table *hppa_info;
1284 {
1285 asection *plt;
1286 bfd *dynobj;
1287
1288 plt = hppa_info->plt_sec;
1289 if (!plt)
1290 {
1291 dynobj = hppa_info->root.dynobj;
1292 if (!dynobj)
1293 hppa_info->root.dynobj = dynobj = abfd;
1294
1295 plt = bfd_make_section_with_flags (dynobj, ".plt",
1296 (SEC_ALLOC
1297 | SEC_LOAD
1298 | SEC_HAS_CONTENTS
1299 | SEC_IN_MEMORY
1300 | SEC_LINKER_CREATED));
1301 if (!plt
1302 || !bfd_set_section_alignment (abfd, plt, 3))
1303 {
1304 BFD_ASSERT (0);
1305 return FALSE;
1306 }
1307
1308 hppa_info->plt_sec = plt;
1309 }
1310
1311 return TRUE;
1312 }
1313
1314 /* Create the DLT section. */
1315
1316 static bfd_boolean
1317 get_dlt (abfd, info, hppa_info)
1318 bfd *abfd;
1319 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1320 struct elf64_hppa_link_hash_table *hppa_info;
1321 {
1322 asection *dlt;
1323 bfd *dynobj;
1324
1325 dlt = hppa_info->dlt_sec;
1326 if (!dlt)
1327 {
1328 dynobj = hppa_info->root.dynobj;
1329 if (!dynobj)
1330 hppa_info->root.dynobj = dynobj = abfd;
1331
1332 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1333 (SEC_ALLOC
1334 | SEC_LOAD
1335 | SEC_HAS_CONTENTS
1336 | SEC_IN_MEMORY
1337 | SEC_LINKER_CREATED));
1338 if (!dlt
1339 || !bfd_set_section_alignment (abfd, dlt, 3))
1340 {
1341 BFD_ASSERT (0);
1342 return FALSE;
1343 }
1344
1345 hppa_info->dlt_sec = dlt;
1346 }
1347
1348 return TRUE;
1349 }
1350
1351 /* Create the stubs section. */
1352
1353 static bfd_boolean
1354 get_stub (abfd, info, hppa_info)
1355 bfd *abfd;
1356 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1357 struct elf64_hppa_link_hash_table *hppa_info;
1358 {
1359 asection *stub;
1360 bfd *dynobj;
1361
1362 stub = hppa_info->stub_sec;
1363 if (!stub)
1364 {
1365 dynobj = hppa_info->root.dynobj;
1366 if (!dynobj)
1367 hppa_info->root.dynobj = dynobj = abfd;
1368
1369 stub = bfd_make_section_with_flags (dynobj, ".stub",
1370 (SEC_ALLOC | SEC_LOAD
1371 | SEC_HAS_CONTENTS
1372 | SEC_IN_MEMORY
1373 | SEC_READONLY
1374 | SEC_LINKER_CREATED));
1375 if (!stub
1376 || !bfd_set_section_alignment (abfd, stub, 3))
1377 {
1378 BFD_ASSERT (0);
1379 return FALSE;
1380 }
1381
1382 hppa_info->stub_sec = stub;
1383 }
1384
1385 return TRUE;
1386 }
1387
1388 /* Create sections necessary for dynamic linking. This is only a rough
1389 cut and will likely change as we learn more about the somewhat
1390 unusual dynamic linking scheme HP uses.
1391
1392 .stub:
1393 Contains code to implement cross-space calls. The first time one
1394 of the stubs is used it will call into the dynamic linker, later
1395 calls will go straight to the target.
1396
1397 The only stub we support right now looks like
1398
1399 ldd OFFSET(%dp),%r1
1400 bve %r0(%r1)
1401 ldd OFFSET+8(%dp),%dp
1402
1403 Other stubs may be needed in the future. We may want the remove
1404 the break/nop instruction. It is only used right now to keep the
1405 offset of a .plt entry and a .stub entry in sync.
1406
1407 .dlt:
1408 This is what most people call the .got. HP used a different name.
1409 Losers.
1410
1411 .rela.dlt:
1412 Relocations for the DLT.
1413
1414 .plt:
1415 Function pointers as address,gp pairs.
1416
1417 .rela.plt:
1418 Should contain dynamic IPLT (and EPLT?) relocations.
1419
1420 .opd:
1421 FPTRS
1422
1423 .rela.opd:
1424 EPLT relocations for symbols exported from shared libraries. */
1425
1426 static bfd_boolean
1427 elf64_hppa_create_dynamic_sections (abfd, info)
1428 bfd *abfd;
1429 struct bfd_link_info *info;
1430 {
1431 asection *s;
1432
1433 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1434 return FALSE;
1435
1436 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1437 return FALSE;
1438
1439 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1440 return FALSE;
1441
1442 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1443 return FALSE;
1444
1445 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1446 (SEC_ALLOC | SEC_LOAD
1447 | SEC_HAS_CONTENTS
1448 | SEC_IN_MEMORY
1449 | SEC_READONLY
1450 | SEC_LINKER_CREATED));
1451 if (s == NULL
1452 || !bfd_set_section_alignment (abfd, s, 3))
1453 return FALSE;
1454 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1455
1456 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1457 (SEC_ALLOC | SEC_LOAD
1458 | SEC_HAS_CONTENTS
1459 | SEC_IN_MEMORY
1460 | SEC_READONLY
1461 | SEC_LINKER_CREATED));
1462 if (s == NULL
1463 || !bfd_set_section_alignment (abfd, s, 3))
1464 return FALSE;
1465 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1466
1467 s = bfd_make_section_with_flags (abfd, ".rela.data",
1468 (SEC_ALLOC | SEC_LOAD
1469 | SEC_HAS_CONTENTS
1470 | SEC_IN_MEMORY
1471 | SEC_READONLY
1472 | SEC_LINKER_CREATED));
1473 if (s == NULL
1474 || !bfd_set_section_alignment (abfd, s, 3))
1475 return FALSE;
1476 elf64_hppa_hash_table (info)->other_rel_sec = s;
1477
1478 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1479 (SEC_ALLOC | SEC_LOAD
1480 | SEC_HAS_CONTENTS
1481 | SEC_IN_MEMORY
1482 | SEC_READONLY
1483 | SEC_LINKER_CREATED));
1484 if (s == NULL
1485 || !bfd_set_section_alignment (abfd, s, 3))
1486 return FALSE;
1487 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1488
1489 return TRUE;
1490 }
1491
1492 /* Allocate dynamic relocations for those symbols that turned out
1493 to be dynamic. */
1494
1495 static bfd_boolean
1496 allocate_dynrel_entries (dyn_h, data)
1497 struct elf64_hppa_dyn_hash_entry *dyn_h;
1498 PTR data;
1499 {
1500 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1501 struct elf64_hppa_link_hash_table *hppa_info;
1502 struct elf64_hppa_dyn_reloc_entry *rent;
1503 bfd_boolean dynamic_symbol, shared;
1504
1505 hppa_info = elf64_hppa_hash_table (x->info);
1506 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1507 shared = x->info->shared;
1508
1509 /* We may need to allocate relocations for a non-dynamic symbol
1510 when creating a shared library. */
1511 if (!dynamic_symbol && !shared)
1512 return TRUE;
1513
1514 /* Take care of the normal data relocations. */
1515
1516 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1517 {
1518 /* Allocate one iff we are building a shared library, the relocation
1519 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1520 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1521 continue;
1522
1523 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1524
1525 /* Make sure this symbol gets into the dynamic symbol table if it is
1526 not already recorded. ?!? This should not be in the loop since
1527 the symbol need only be added once. */
1528 if (dyn_h->h == 0
1529 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1530 if (!bfd_elf_link_record_local_dynamic_symbol
1531 (x->info, rent->sec->owner, dyn_h->sym_indx))
1532 return FALSE;
1533 }
1534
1535 /* Take care of the GOT and PLT relocations. */
1536
1537 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1538 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1539
1540 /* If we are building a shared library, then every symbol that has an
1541 opd entry will need an EPLT relocation to relocate the symbol's address
1542 and __gp value based on the runtime load address. */
1543 if (shared && dyn_h->want_opd)
1544 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1545
1546 if (dyn_h->want_plt && dynamic_symbol)
1547 {
1548 bfd_size_type t = 0;
1549
1550 /* Dynamic symbols get one IPLT relocation. Local symbols in
1551 shared libraries get two REL relocations. Local symbols in
1552 main applications get nothing. */
1553 if (dynamic_symbol)
1554 t = sizeof (Elf64_External_Rela);
1555 else if (shared)
1556 t = 2 * sizeof (Elf64_External_Rela);
1557
1558 hppa_info->plt_rel_sec->size += t;
1559 }
1560
1561 return TRUE;
1562 }
1563
1564 /* Adjust a symbol defined by a dynamic object and referenced by a
1565 regular object. */
1566
1567 static bfd_boolean
1568 elf64_hppa_adjust_dynamic_symbol (info, h)
1569 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1570 struct elf_link_hash_entry *h;
1571 {
1572 /* ??? Undefined symbols with PLT entries should be re-defined
1573 to be the PLT entry. */
1574
1575 /* If this is a weak symbol, and there is a real definition, the
1576 processor independent code will have arranged for us to see the
1577 real definition first, and we can just use the same value. */
1578 if (h->u.weakdef != NULL)
1579 {
1580 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1581 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1582 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1583 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1584 return TRUE;
1585 }
1586
1587 /* If this is a reference to a symbol defined by a dynamic object which
1588 is not a function, we might allocate the symbol in our .dynbss section
1589 and allocate a COPY dynamic relocation.
1590
1591 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1592 of hackery. */
1593
1594 return TRUE;
1595 }
1596
1597 /* This function is called via elf_link_hash_traverse to mark millicode
1598 symbols with a dynindx of -1 and to remove the string table reference
1599 from the dynamic symbol table. If the symbol is not a millicode symbol,
1600 elf64_hppa_mark_exported_functions is called. */
1601
1602 static bfd_boolean
1603 elf64_hppa_mark_milli_and_exported_functions (h, data)
1604 struct elf_link_hash_entry *h;
1605 PTR data;
1606 {
1607 struct bfd_link_info *info = (struct bfd_link_info *)data;
1608 struct elf_link_hash_entry *elf = h;
1609
1610 if (elf->root.type == bfd_link_hash_warning)
1611 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1612
1613 if (elf->type == STT_PARISC_MILLI)
1614 {
1615 if (elf->dynindx != -1)
1616 {
1617 elf->dynindx = -1;
1618 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1619 elf->dynstr_index);
1620 }
1621 return TRUE;
1622 }
1623
1624 return elf64_hppa_mark_exported_functions (h, data);
1625 }
1626
1627 /* Set the final sizes of the dynamic sections and allocate memory for
1628 the contents of our special sections. */
1629
1630 static bfd_boolean
1631 elf64_hppa_size_dynamic_sections (output_bfd, info)
1632 bfd *output_bfd;
1633 struct bfd_link_info *info;
1634 {
1635 bfd *dynobj;
1636 asection *s;
1637 bfd_boolean plt;
1638 bfd_boolean relocs;
1639 bfd_boolean reltext;
1640 struct elf64_hppa_allocate_data data;
1641 struct elf64_hppa_link_hash_table *hppa_info;
1642
1643 hppa_info = elf64_hppa_hash_table (info);
1644
1645 dynobj = elf_hash_table (info)->dynobj;
1646 BFD_ASSERT (dynobj != NULL);
1647
1648 /* Mark each function this program exports so that we will allocate
1649 space in the .opd section for each function's FPTR. If we are
1650 creating dynamic sections, change the dynamic index of millicode
1651 symbols to -1 and remove them from the string table for .dynstr.
1652
1653 We have to traverse the main linker hash table since we have to
1654 find functions which may not have been mentioned in any relocs. */
1655 elf_link_hash_traverse (elf_hash_table (info),
1656 (elf_hash_table (info)->dynamic_sections_created
1657 ? elf64_hppa_mark_milli_and_exported_functions
1658 : elf64_hppa_mark_exported_functions),
1659 info);
1660
1661 if (elf_hash_table (info)->dynamic_sections_created)
1662 {
1663 /* Set the contents of the .interp section to the interpreter. */
1664 if (info->executable)
1665 {
1666 s = bfd_get_section_by_name (dynobj, ".interp");
1667 BFD_ASSERT (s != NULL);
1668 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1669 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1670 }
1671 }
1672 else
1673 {
1674 /* We may have created entries in the .rela.got section.
1675 However, if we are not creating the dynamic sections, we will
1676 not actually use these entries. Reset the size of .rela.dlt,
1677 which will cause it to get stripped from the output file
1678 below. */
1679 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1680 if (s != NULL)
1681 s->size = 0;
1682 }
1683
1684 /* Allocate the GOT entries. */
1685
1686 data.info = info;
1687 if (elf64_hppa_hash_table (info)->dlt_sec)
1688 {
1689 data.ofs = 0x0;
1690 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1691 allocate_global_data_dlt, &data);
1692 hppa_info->dlt_sec->size = data.ofs;
1693
1694 data.ofs = 0x0;
1695 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1696 allocate_global_data_plt, &data);
1697 hppa_info->plt_sec->size = data.ofs;
1698
1699 data.ofs = 0x0;
1700 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1701 allocate_global_data_stub, &data);
1702 hppa_info->stub_sec->size = data.ofs;
1703 }
1704
1705 /* Allocate space for entries in the .opd section. */
1706 if (elf64_hppa_hash_table (info)->opd_sec)
1707 {
1708 data.ofs = 0;
1709 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1710 allocate_global_data_opd, &data);
1711 hppa_info->opd_sec->size = data.ofs;
1712 }
1713
1714 /* Now allocate space for dynamic relocations, if necessary. */
1715 if (hppa_info->root.dynamic_sections_created)
1716 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1717 allocate_dynrel_entries, &data);
1718
1719 /* The sizes of all the sections are set. Allocate memory for them. */
1720 plt = FALSE;
1721 relocs = FALSE;
1722 reltext = FALSE;
1723 for (s = dynobj->sections; s != NULL; s = s->next)
1724 {
1725 const char *name;
1726
1727 if ((s->flags & SEC_LINKER_CREATED) == 0)
1728 continue;
1729
1730 /* It's OK to base decisions on the section name, because none
1731 of the dynobj section names depend upon the input files. */
1732 name = bfd_get_section_name (dynobj, s);
1733
1734 if (strcmp (name, ".plt") == 0)
1735 {
1736 /* Remember whether there is a PLT. */
1737 plt = s->size != 0;
1738 }
1739 else if (strcmp (name, ".opd") == 0
1740 || CONST_STRNEQ (name, ".dlt")
1741 || strcmp (name, ".stub") == 0
1742 || strcmp (name, ".got") == 0)
1743 {
1744 /* Strip this section if we don't need it; see the comment below. */
1745 }
1746 else if (CONST_STRNEQ (name, ".rela"))
1747 {
1748 if (s->size != 0)
1749 {
1750 asection *target;
1751
1752 /* Remember whether there are any reloc sections other
1753 than .rela.plt. */
1754 if (strcmp (name, ".rela.plt") != 0)
1755 {
1756 const char *outname;
1757
1758 relocs = TRUE;
1759
1760 /* If this relocation section applies to a read only
1761 section, then we probably need a DT_TEXTREL
1762 entry. The entries in the .rela.plt section
1763 really apply to the .got section, which we
1764 created ourselves and so know is not readonly. */
1765 outname = bfd_get_section_name (output_bfd,
1766 s->output_section);
1767 target = bfd_get_section_by_name (output_bfd, outname + 4);
1768 if (target != NULL
1769 && (target->flags & SEC_READONLY) != 0
1770 && (target->flags & SEC_ALLOC) != 0)
1771 reltext = TRUE;
1772 }
1773
1774 /* We use the reloc_count field as a counter if we need
1775 to copy relocs into the output file. */
1776 s->reloc_count = 0;
1777 }
1778 }
1779 else
1780 {
1781 /* It's not one of our sections, so don't allocate space. */
1782 continue;
1783 }
1784
1785 if (s->size == 0)
1786 {
1787 /* If we don't need this section, strip it from the
1788 output file. This is mostly to handle .rela.bss and
1789 .rela.plt. We must create both sections in
1790 create_dynamic_sections, because they must be created
1791 before the linker maps input sections to output
1792 sections. The linker does that before
1793 adjust_dynamic_symbol is called, and it is that
1794 function which decides whether anything needs to go
1795 into these sections. */
1796 s->flags |= SEC_EXCLUDE;
1797 continue;
1798 }
1799
1800 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1801 continue;
1802
1803 /* Allocate memory for the section contents if it has not
1804 been allocated already. We use bfd_zalloc here in case
1805 unused entries are not reclaimed before the section's
1806 contents are written out. This should not happen, but this
1807 way if it does, we get a R_PARISC_NONE reloc instead of
1808 garbage. */
1809 if (s->contents == NULL)
1810 {
1811 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1812 if (s->contents == NULL)
1813 return FALSE;
1814 }
1815 }
1816
1817 if (elf_hash_table (info)->dynamic_sections_created)
1818 {
1819 /* Always create a DT_PLTGOT. It actually has nothing to do with
1820 the PLT, it is how we communicate the __gp value of a load
1821 module to the dynamic linker. */
1822 #define add_dynamic_entry(TAG, VAL) \
1823 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1824
1825 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1826 || !add_dynamic_entry (DT_PLTGOT, 0))
1827 return FALSE;
1828
1829 /* Add some entries to the .dynamic section. We fill in the
1830 values later, in elf64_hppa_finish_dynamic_sections, but we
1831 must add the entries now so that we get the correct size for
1832 the .dynamic section. The DT_DEBUG entry is filled in by the
1833 dynamic linker and used by the debugger. */
1834 if (! info->shared)
1835 {
1836 if (!add_dynamic_entry (DT_DEBUG, 0)
1837 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1838 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1839 return FALSE;
1840 }
1841
1842 /* Force DT_FLAGS to always be set.
1843 Required by HPUX 11.00 patch PHSS_26559. */
1844 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1845 return FALSE;
1846
1847 if (plt)
1848 {
1849 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1850 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1851 || !add_dynamic_entry (DT_JMPREL, 0))
1852 return FALSE;
1853 }
1854
1855 if (relocs)
1856 {
1857 if (!add_dynamic_entry (DT_RELA, 0)
1858 || !add_dynamic_entry (DT_RELASZ, 0)
1859 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1860 return FALSE;
1861 }
1862
1863 if (reltext)
1864 {
1865 if (!add_dynamic_entry (DT_TEXTREL, 0))
1866 return FALSE;
1867 info->flags |= DF_TEXTREL;
1868 }
1869 }
1870 #undef add_dynamic_entry
1871
1872 return TRUE;
1873 }
1874
1875 /* Called after we have output the symbol into the dynamic symbol
1876 table, but before we output the symbol into the normal symbol
1877 table.
1878
1879 For some symbols we had to change their address when outputting
1880 the dynamic symbol table. We undo that change here so that
1881 the symbols have their expected value in the normal symbol
1882 table. Ick. */
1883
1884 static bfd_boolean
1885 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1886 struct bfd_link_info *info;
1887 const char *name;
1888 Elf_Internal_Sym *sym;
1889 asection *input_sec ATTRIBUTE_UNUSED;
1890 struct elf_link_hash_entry *h;
1891 {
1892 struct elf64_hppa_link_hash_table *hppa_info;
1893 struct elf64_hppa_dyn_hash_entry *dyn_h;
1894
1895 /* We may be called with the file symbol or section symbols.
1896 They never need munging, so it is safe to ignore them. */
1897 if (!name)
1898 return TRUE;
1899
1900 /* Get the PA dyn_symbol (if any) associated with NAME. */
1901 hppa_info = elf64_hppa_hash_table (info);
1902 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1903 name, FALSE, FALSE);
1904 if (!dyn_h || dyn_h->h != h)
1905 return TRUE;
1906
1907 /* Function symbols for which we created .opd entries *may* have been
1908 munged by finish_dynamic_symbol and have to be un-munged here.
1909
1910 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1911 into non-dynamic ones, so we initialize st_shndx to -1 in
1912 mark_exported_functions and check to see if it was overwritten
1913 here instead of just checking dyn_h->h->dynindx. */
1914 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1915 {
1916 /* Restore the saved value and section index. */
1917 sym->st_value = dyn_h->st_value;
1918 sym->st_shndx = dyn_h->st_shndx;
1919 }
1920
1921 return TRUE;
1922 }
1923
1924 /* Finish up dynamic symbol handling. We set the contents of various
1925 dynamic sections here. */
1926
1927 static bfd_boolean
1928 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1929 bfd *output_bfd;
1930 struct bfd_link_info *info;
1931 struct elf_link_hash_entry *h;
1932 Elf_Internal_Sym *sym;
1933 {
1934 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1935 struct elf64_hppa_link_hash_table *hppa_info;
1936 struct elf64_hppa_dyn_hash_entry *dyn_h;
1937
1938 hppa_info = elf64_hppa_hash_table (info);
1939 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1940 h->root.root.string, FALSE, FALSE);
1941
1942 stub = hppa_info->stub_sec;
1943 splt = hppa_info->plt_sec;
1944 sdlt = hppa_info->dlt_sec;
1945 sopd = hppa_info->opd_sec;
1946 spltrel = hppa_info->plt_rel_sec;
1947 sdltrel = hppa_info->dlt_rel_sec;
1948
1949 /* Incredible. It is actually necessary to NOT use the symbol's real
1950 value when building the dynamic symbol table for a shared library.
1951 At least for symbols that refer to functions.
1952
1953 We will store a new value and section index into the symbol long
1954 enough to output it into the dynamic symbol table, then we restore
1955 the original values (in elf64_hppa_link_output_symbol_hook). */
1956 if (dyn_h && dyn_h->want_opd)
1957 {
1958 BFD_ASSERT (sopd != NULL);
1959
1960 /* Save away the original value and section index so that we
1961 can restore them later. */
1962 dyn_h->st_value = sym->st_value;
1963 dyn_h->st_shndx = sym->st_shndx;
1964
1965 /* For the dynamic symbol table entry, we want the value to be
1966 address of this symbol's entry within the .opd section. */
1967 sym->st_value = (dyn_h->opd_offset
1968 + sopd->output_offset
1969 + sopd->output_section->vma);
1970 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1971 sopd->output_section);
1972 }
1973
1974 /* Initialize a .plt entry if requested. */
1975 if (dyn_h && dyn_h->want_plt
1976 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1977 {
1978 bfd_vma value;
1979 Elf_Internal_Rela rel;
1980 bfd_byte *loc;
1981
1982 BFD_ASSERT (splt != NULL && spltrel != NULL);
1983
1984 /* We do not actually care about the value in the PLT entry
1985 if we are creating a shared library and the symbol is
1986 still undefined, we create a dynamic relocation to fill
1987 in the correct value. */
1988 if (info->shared && h->root.type == bfd_link_hash_undefined)
1989 value = 0;
1990 else
1991 value = (h->root.u.def.value + h->root.u.def.section->vma);
1992
1993 /* Fill in the entry in the procedure linkage table.
1994
1995 The format of a plt entry is
1996 <funcaddr> <__gp>.
1997
1998 plt_offset is the offset within the PLT section at which to
1999 install the PLT entry.
2000
2001 We are modifying the in-memory PLT contents here, so we do not add
2002 in the output_offset of the PLT section. */
2003
2004 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
2005 value = _bfd_get_gp_value (splt->output_section->owner);
2006 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
2007
2008 /* Create a dynamic IPLT relocation for this entry.
2009
2010 We are creating a relocation in the output file's PLT section,
2011 which is included within the DLT secton. So we do need to include
2012 the PLT's output_offset in the computation of the relocation's
2013 address. */
2014 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
2015 + splt->output_section->vma);
2016 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
2017 rel.r_addend = 0;
2018
2019 loc = spltrel->contents;
2020 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2021 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2022 }
2023
2024 /* Initialize an external call stub entry if requested. */
2025 if (dyn_h && dyn_h->want_stub
2026 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2027 {
2028 bfd_vma value;
2029 int insn;
2030 unsigned int max_offset;
2031
2032 BFD_ASSERT (stub != NULL);
2033
2034 /* Install the generic stub template.
2035
2036 We are modifying the contents of the stub section, so we do not
2037 need to include the stub section's output_offset here. */
2038 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2039
2040 /* Fix up the first ldd instruction.
2041
2042 We are modifying the contents of the STUB section in memory,
2043 so we do not need to include its output offset in this computation.
2044
2045 Note the plt_offset value is the value of the PLT entry relative to
2046 the start of the PLT section. These instructions will reference
2047 data relative to the value of __gp, which may not necessarily have
2048 the same address as the start of the PLT section.
2049
2050 gp_offset contains the offset of __gp within the PLT section. */
2051 value = dyn_h->plt_offset - hppa_info->gp_offset;
2052
2053 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2054 if (output_bfd->arch_info->mach >= 25)
2055 {
2056 /* Wide mode allows 16 bit offsets. */
2057 max_offset = 32768;
2058 insn &= ~ 0xfff1;
2059 insn |= re_assemble_16 ((int) value);
2060 }
2061 else
2062 {
2063 max_offset = 8192;
2064 insn &= ~ 0x3ff1;
2065 insn |= re_assemble_14 ((int) value);
2066 }
2067
2068 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2069 {
2070 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2071 dyn_h->root.string,
2072 (long) value);
2073 return FALSE;
2074 }
2075
2076 bfd_put_32 (stub->owner, (bfd_vma) insn,
2077 stub->contents + dyn_h->stub_offset);
2078
2079 /* Fix up the second ldd instruction. */
2080 value += 8;
2081 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2082 if (output_bfd->arch_info->mach >= 25)
2083 {
2084 insn &= ~ 0xfff1;
2085 insn |= re_assemble_16 ((int) value);
2086 }
2087 else
2088 {
2089 insn &= ~ 0x3ff1;
2090 insn |= re_assemble_14 ((int) value);
2091 }
2092 bfd_put_32 (stub->owner, (bfd_vma) insn,
2093 stub->contents + dyn_h->stub_offset + 8);
2094 }
2095
2096 return TRUE;
2097 }
2098
2099 /* The .opd section contains FPTRs for each function this file
2100 exports. Initialize the FPTR entries. */
2101
2102 static bfd_boolean
2103 elf64_hppa_finalize_opd (dyn_h, data)
2104 struct elf64_hppa_dyn_hash_entry *dyn_h;
2105 PTR data;
2106 {
2107 struct bfd_link_info *info = (struct bfd_link_info *)data;
2108 struct elf64_hppa_link_hash_table *hppa_info;
2109 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2110 asection *sopd;
2111 asection *sopdrel;
2112
2113 hppa_info = elf64_hppa_hash_table (info);
2114 sopd = hppa_info->opd_sec;
2115 sopdrel = hppa_info->opd_rel_sec;
2116
2117 if (h && dyn_h->want_opd)
2118 {
2119 bfd_vma value;
2120
2121 /* The first two words of an .opd entry are zero.
2122
2123 We are modifying the contents of the OPD section in memory, so we
2124 do not need to include its output offset in this computation. */
2125 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2126
2127 value = (h->root.u.def.value
2128 + h->root.u.def.section->output_section->vma
2129 + h->root.u.def.section->output_offset);
2130
2131 /* The next word is the address of the function. */
2132 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2133
2134 /* The last word is our local __gp value. */
2135 value = _bfd_get_gp_value (sopd->output_section->owner);
2136 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2137 }
2138
2139 /* If we are generating a shared library, we must generate EPLT relocations
2140 for each entry in the .opd, even for static functions (they may have
2141 had their address taken). */
2142 if (info->shared && dyn_h && dyn_h->want_opd)
2143 {
2144 Elf_Internal_Rela rel;
2145 bfd_byte *loc;
2146 int dynindx;
2147
2148 /* We may need to do a relocation against a local symbol, in
2149 which case we have to look up it's dynamic symbol index off
2150 the local symbol hash table. */
2151 if (h && h->dynindx != -1)
2152 dynindx = h->dynindx;
2153 else
2154 dynindx
2155 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2156 dyn_h->sym_indx);
2157
2158 /* The offset of this relocation is the absolute address of the
2159 .opd entry for this symbol. */
2160 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2161 + sopd->output_section->vma);
2162
2163 /* If H is non-null, then we have an external symbol.
2164
2165 It is imperative that we use a different dynamic symbol for the
2166 EPLT relocation if the symbol has global scope.
2167
2168 In the dynamic symbol table, the function symbol will have a value
2169 which is address of the function's .opd entry.
2170
2171 Thus, we can not use that dynamic symbol for the EPLT relocation
2172 (if we did, the data in the .opd would reference itself rather
2173 than the actual address of the function). Instead we have to use
2174 a new dynamic symbol which has the same value as the original global
2175 function symbol.
2176
2177 We prefix the original symbol with a "." and use the new symbol in
2178 the EPLT relocation. This new symbol has already been recorded in
2179 the symbol table, we just have to look it up and use it.
2180
2181 We do not have such problems with static functions because we do
2182 not make their addresses in the dynamic symbol table point to
2183 the .opd entry. Ultimately this should be safe since a static
2184 function can not be directly referenced outside of its shared
2185 library.
2186
2187 We do have to play similar games for FPTR relocations in shared
2188 libraries, including those for static symbols. See the FPTR
2189 handling in elf64_hppa_finalize_dynreloc. */
2190 if (h)
2191 {
2192 char *new_name;
2193 struct elf_link_hash_entry *nh;
2194
2195 new_name = alloca (strlen (h->root.root.string) + 2);
2196 new_name[0] = '.';
2197 strcpy (new_name + 1, h->root.root.string);
2198
2199 nh = elf_link_hash_lookup (elf_hash_table (info),
2200 new_name, FALSE, FALSE, FALSE);
2201
2202 /* All we really want from the new symbol is its dynamic
2203 symbol index. */
2204 dynindx = nh->dynindx;
2205 }
2206
2207 rel.r_addend = 0;
2208 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2209
2210 loc = sopdrel->contents;
2211 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2212 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2213 }
2214 return TRUE;
2215 }
2216
2217 /* The .dlt section contains addresses for items referenced through the
2218 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2219 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2220
2221 static bfd_boolean
2222 elf64_hppa_finalize_dlt (dyn_h, data)
2223 struct elf64_hppa_dyn_hash_entry *dyn_h;
2224 PTR data;
2225 {
2226 struct bfd_link_info *info = (struct bfd_link_info *)data;
2227 struct elf64_hppa_link_hash_table *hppa_info;
2228 asection *sdlt, *sdltrel;
2229 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2230
2231 hppa_info = elf64_hppa_hash_table (info);
2232
2233 sdlt = hppa_info->dlt_sec;
2234 sdltrel = hppa_info->dlt_rel_sec;
2235
2236 /* H/DYN_H may refer to a local variable and we know it's
2237 address, so there is no need to create a relocation. Just install
2238 the proper value into the DLT, note this shortcut can not be
2239 skipped when building a shared library. */
2240 if (! info->shared && h && dyn_h->want_dlt)
2241 {
2242 bfd_vma value;
2243
2244 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2245 to point to the FPTR entry in the .opd section.
2246
2247 We include the OPD's output offset in this computation as
2248 we are referring to an absolute address in the resulting
2249 object file. */
2250 if (dyn_h->want_opd)
2251 {
2252 value = (dyn_h->opd_offset
2253 + hppa_info->opd_sec->output_offset
2254 + hppa_info->opd_sec->output_section->vma);
2255 }
2256 else if ((h->root.type == bfd_link_hash_defined
2257 || h->root.type == bfd_link_hash_defweak)
2258 && h->root.u.def.section)
2259 {
2260 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2261 if (h->root.u.def.section->output_section)
2262 value += h->root.u.def.section->output_section->vma;
2263 else
2264 value += h->root.u.def.section->vma;
2265 }
2266 else
2267 /* We have an undefined function reference. */
2268 value = 0;
2269
2270 /* We do not need to include the output offset of the DLT section
2271 here because we are modifying the in-memory contents. */
2272 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2273 }
2274
2275 /* Create a relocation for the DLT entry associated with this symbol.
2276 When building a shared library the symbol does not have to be dynamic. */
2277 if (dyn_h->want_dlt
2278 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2279 {
2280 Elf_Internal_Rela rel;
2281 bfd_byte *loc;
2282 int dynindx;
2283
2284 /* We may need to do a relocation against a local symbol, in
2285 which case we have to look up it's dynamic symbol index off
2286 the local symbol hash table. */
2287 if (h && h->dynindx != -1)
2288 dynindx = h->dynindx;
2289 else
2290 dynindx
2291 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2292 dyn_h->sym_indx);
2293
2294 /* Create a dynamic relocation for this entry. Do include the output
2295 offset of the DLT entry since we need an absolute address in the
2296 resulting object file. */
2297 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2298 + sdlt->output_section->vma);
2299 if (h && h->type == STT_FUNC)
2300 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2301 else
2302 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2303 rel.r_addend = 0;
2304
2305 loc = sdltrel->contents;
2306 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2307 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2308 }
2309 return TRUE;
2310 }
2311
2312 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2313 for dynamic functions used to initialize static data. */
2314
2315 static bfd_boolean
2316 elf64_hppa_finalize_dynreloc (dyn_h, data)
2317 struct elf64_hppa_dyn_hash_entry *dyn_h;
2318 PTR data;
2319 {
2320 struct bfd_link_info *info = (struct bfd_link_info *)data;
2321 struct elf64_hppa_link_hash_table *hppa_info;
2322 struct elf_link_hash_entry *h;
2323 int dynamic_symbol;
2324
2325 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2326
2327 if (!dynamic_symbol && !info->shared)
2328 return TRUE;
2329
2330 if (dyn_h->reloc_entries)
2331 {
2332 struct elf64_hppa_dyn_reloc_entry *rent;
2333 int dynindx;
2334
2335 hppa_info = elf64_hppa_hash_table (info);
2336 h = dyn_h->h;
2337
2338 /* We may need to do a relocation against a local symbol, in
2339 which case we have to look up it's dynamic symbol index off
2340 the local symbol hash table. */
2341 if (h && h->dynindx != -1)
2342 dynindx = h->dynindx;
2343 else
2344 dynindx
2345 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2346 dyn_h->sym_indx);
2347
2348 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2349 {
2350 Elf_Internal_Rela rel;
2351 bfd_byte *loc;
2352
2353 /* Allocate one iff we are building a shared library, the relocation
2354 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2355 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2356 continue;
2357
2358 /* Create a dynamic relocation for this entry.
2359
2360 We need the output offset for the reloc's section because
2361 we are creating an absolute address in the resulting object
2362 file. */
2363 rel.r_offset = (rent->offset + rent->sec->output_offset
2364 + rent->sec->output_section->vma);
2365
2366 /* An FPTR64 relocation implies that we took the address of
2367 a function and that the function has an entry in the .opd
2368 section. We want the FPTR64 relocation to reference the
2369 entry in .opd.
2370
2371 We could munge the symbol value in the dynamic symbol table
2372 (in fact we already do for functions with global scope) to point
2373 to the .opd entry. Then we could use that dynamic symbol in
2374 this relocation.
2375
2376 Or we could do something sensible, not munge the symbol's
2377 address and instead just use a different symbol to reference
2378 the .opd entry. At least that seems sensible until you
2379 realize there's no local dynamic symbols we can use for that
2380 purpose. Thus the hair in the check_relocs routine.
2381
2382 We use a section symbol recorded by check_relocs as the
2383 base symbol for the relocation. The addend is the difference
2384 between the section symbol and the address of the .opd entry. */
2385 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2386 {
2387 bfd_vma value, value2;
2388
2389 /* First compute the address of the opd entry for this symbol. */
2390 value = (dyn_h->opd_offset
2391 + hppa_info->opd_sec->output_section->vma
2392 + hppa_info->opd_sec->output_offset);
2393
2394 /* Compute the value of the start of the section with
2395 the relocation. */
2396 value2 = (rent->sec->output_section->vma
2397 + rent->sec->output_offset);
2398
2399 /* Compute the difference between the start of the section
2400 with the relocation and the opd entry. */
2401 value -= value2;
2402
2403 /* The result becomes the addend of the relocation. */
2404 rel.r_addend = value;
2405
2406 /* The section symbol becomes the symbol for the dynamic
2407 relocation. */
2408 dynindx
2409 = _bfd_elf_link_lookup_local_dynindx (info,
2410 rent->sec->owner,
2411 rent->sec_symndx);
2412 }
2413 else
2414 rel.r_addend = rent->addend;
2415
2416 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2417
2418 loc = hppa_info->other_rel_sec->contents;
2419 loc += (hppa_info->other_rel_sec->reloc_count++
2420 * sizeof (Elf64_External_Rela));
2421 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2422 &rel, loc);
2423 }
2424 }
2425
2426 return TRUE;
2427 }
2428
2429 /* Used to decide how to sort relocs in an optimal manner for the
2430 dynamic linker, before writing them out. */
2431
2432 static enum elf_reloc_type_class
2433 elf64_hppa_reloc_type_class (rela)
2434 const Elf_Internal_Rela *rela;
2435 {
2436 if (ELF64_R_SYM (rela->r_info) == 0)
2437 return reloc_class_relative;
2438
2439 switch ((int) ELF64_R_TYPE (rela->r_info))
2440 {
2441 case R_PARISC_IPLT:
2442 return reloc_class_plt;
2443 case R_PARISC_COPY:
2444 return reloc_class_copy;
2445 default:
2446 return reloc_class_normal;
2447 }
2448 }
2449
2450 /* Finish up the dynamic sections. */
2451
2452 static bfd_boolean
2453 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2454 bfd *output_bfd;
2455 struct bfd_link_info *info;
2456 {
2457 bfd *dynobj;
2458 asection *sdyn;
2459 struct elf64_hppa_link_hash_table *hppa_info;
2460
2461 hppa_info = elf64_hppa_hash_table (info);
2462
2463 /* Finalize the contents of the .opd section. */
2464 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2465 elf64_hppa_finalize_opd,
2466 info);
2467
2468 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2469 elf64_hppa_finalize_dynreloc,
2470 info);
2471
2472 /* Finalize the contents of the .dlt section. */
2473 dynobj = elf_hash_table (info)->dynobj;
2474 /* Finalize the contents of the .dlt section. */
2475 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2476 elf64_hppa_finalize_dlt,
2477 info);
2478
2479 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2480
2481 if (elf_hash_table (info)->dynamic_sections_created)
2482 {
2483 Elf64_External_Dyn *dyncon, *dynconend;
2484
2485 BFD_ASSERT (sdyn != NULL);
2486
2487 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2488 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2489 for (; dyncon < dynconend; dyncon++)
2490 {
2491 Elf_Internal_Dyn dyn;
2492 asection *s;
2493
2494 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2495
2496 switch (dyn.d_tag)
2497 {
2498 default:
2499 break;
2500
2501 case DT_HP_LOAD_MAP:
2502 /* Compute the absolute address of 16byte scratchpad area
2503 for the dynamic linker.
2504
2505 By convention the linker script will allocate the scratchpad
2506 area at the start of the .data section. So all we have to
2507 to is find the start of the .data section. */
2508 s = bfd_get_section_by_name (output_bfd, ".data");
2509 dyn.d_un.d_ptr = s->vma;
2510 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2511 break;
2512
2513 case DT_PLTGOT:
2514 /* HP's use PLTGOT to set the GOT register. */
2515 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2516 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2517 break;
2518
2519 case DT_JMPREL:
2520 s = hppa_info->plt_rel_sec;
2521 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2522 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2523 break;
2524
2525 case DT_PLTRELSZ:
2526 s = hppa_info->plt_rel_sec;
2527 dyn.d_un.d_val = s->size;
2528 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529 break;
2530
2531 case DT_RELA:
2532 s = hppa_info->other_rel_sec;
2533 if (! s || ! s->size)
2534 s = hppa_info->dlt_rel_sec;
2535 if (! s || ! s->size)
2536 s = hppa_info->opd_rel_sec;
2537 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2538 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2539 break;
2540
2541 case DT_RELASZ:
2542 s = hppa_info->other_rel_sec;
2543 dyn.d_un.d_val = s->size;
2544 s = hppa_info->dlt_rel_sec;
2545 dyn.d_un.d_val += s->size;
2546 s = hppa_info->opd_rel_sec;
2547 dyn.d_un.d_val += s->size;
2548 /* There is some question about whether or not the size of
2549 the PLT relocs should be included here. HP's tools do
2550 it, so we'll emulate them. */
2551 s = hppa_info->plt_rel_sec;
2552 dyn.d_un.d_val += s->size;
2553 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2554 break;
2555
2556 }
2557 }
2558 }
2559
2560 return TRUE;
2561 }
2562
2563 /* Support for core dump NOTE sections. */
2564
2565 static bfd_boolean
2566 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2567 {
2568 int offset;
2569 size_t size;
2570
2571 switch (note->descsz)
2572 {
2573 default:
2574 return FALSE;
2575
2576 case 760: /* Linux/hppa */
2577 /* pr_cursig */
2578 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2579
2580 /* pr_pid */
2581 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2582
2583 /* pr_reg */
2584 offset = 112;
2585 size = 640;
2586
2587 break;
2588 }
2589
2590 /* Make a ".reg/999" section. */
2591 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2592 size, note->descpos + offset);
2593 }
2594
2595 static bfd_boolean
2596 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2597 {
2598 char * command;
2599 int n;
2600
2601 switch (note->descsz)
2602 {
2603 default:
2604 return FALSE;
2605
2606 case 136: /* Linux/hppa elf_prpsinfo. */
2607 elf_tdata (abfd)->core_program
2608 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2609 elf_tdata (abfd)->core_command
2610 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2611 }
2612
2613 /* Note that for some reason, a spurious space is tacked
2614 onto the end of the args in some (at least one anyway)
2615 implementations, so strip it off if it exists. */
2616 command = elf_tdata (abfd)->core_command;
2617 n = strlen (command);
2618
2619 if (0 < n && command[n - 1] == ' ')
2620 command[n - 1] = '\0';
2621
2622 return TRUE;
2623 }
2624
2625 /* Return the number of additional phdrs we will need.
2626
2627 The generic ELF code only creates PT_PHDRs for executables. The HP
2628 dynamic linker requires PT_PHDRs for dynamic libraries too.
2629
2630 This routine indicates that the backend needs one additional program
2631 header for that case.
2632
2633 Note we do not have access to the link info structure here, so we have
2634 to guess whether or not we are building a shared library based on the
2635 existence of a .interp section. */
2636
2637 static int
2638 elf64_hppa_additional_program_headers (bfd *abfd,
2639 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2640 {
2641 asection *s;
2642
2643 /* If we are creating a shared library, then we have to create a
2644 PT_PHDR segment. HP's dynamic linker chokes without it. */
2645 s = bfd_get_section_by_name (abfd, ".interp");
2646 if (! s)
2647 return 1;
2648 return 0;
2649 }
2650
2651 /* Allocate and initialize any program headers required by this
2652 specific backend.
2653
2654 The generic ELF code only creates PT_PHDRs for executables. The HP
2655 dynamic linker requires PT_PHDRs for dynamic libraries too.
2656
2657 This allocates the PT_PHDR and initializes it in a manner suitable
2658 for the HP linker.
2659
2660 Note we do not have access to the link info structure here, so we have
2661 to guess whether or not we are building a shared library based on the
2662 existence of a .interp section. */
2663
2664 static bfd_boolean
2665 elf64_hppa_modify_segment_map (bfd *abfd,
2666 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2667 {
2668 struct elf_segment_map *m;
2669 asection *s;
2670
2671 s = bfd_get_section_by_name (abfd, ".interp");
2672 if (! s)
2673 {
2674 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2675 if (m->p_type == PT_PHDR)
2676 break;
2677 if (m == NULL)
2678 {
2679 m = ((struct elf_segment_map *)
2680 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2681 if (m == NULL)
2682 return FALSE;
2683
2684 m->p_type = PT_PHDR;
2685 m->p_flags = PF_R | PF_X;
2686 m->p_flags_valid = 1;
2687 m->p_paddr_valid = 1;
2688 m->includes_phdrs = 1;
2689
2690 m->next = elf_tdata (abfd)->segment_map;
2691 elf_tdata (abfd)->segment_map = m;
2692 }
2693 }
2694
2695 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2696 if (m->p_type == PT_LOAD)
2697 {
2698 unsigned int i;
2699
2700 for (i = 0; i < m->count; i++)
2701 {
2702 /* The code "hint" is not really a hint. It is a requirement
2703 for certain versions of the HP dynamic linker. Worse yet,
2704 it must be set even if the shared library does not have
2705 any code in its "text" segment (thus the check for .hash
2706 to catch this situation). */
2707 if (m->sections[i]->flags & SEC_CODE
2708 || (strcmp (m->sections[i]->name, ".hash") == 0))
2709 m->p_flags |= (PF_X | PF_HP_CODE);
2710 }
2711 }
2712
2713 return TRUE;
2714 }
2715
2716 /* Called when writing out an object file to decide the type of a
2717 symbol. */
2718 static int
2719 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2720 Elf_Internal_Sym *elf_sym;
2721 int type;
2722 {
2723 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2724 return STT_PARISC_MILLI;
2725 else
2726 return type;
2727 }
2728
2729 /* Support HP specific sections for core files. */
2730 static bfd_boolean
2731 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2732 const char *typename)
2733 {
2734 if (hdr->p_type == PT_HP_CORE_KERNEL)
2735 {
2736 asection *sect;
2737
2738 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2739 return FALSE;
2740
2741 sect = bfd_make_section_anyway (abfd, ".kernel");
2742 if (sect == NULL)
2743 return FALSE;
2744 sect->size = hdr->p_filesz;
2745 sect->filepos = hdr->p_offset;
2746 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2747 return TRUE;
2748 }
2749
2750 if (hdr->p_type == PT_HP_CORE_PROC)
2751 {
2752 int sig;
2753
2754 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2755 return FALSE;
2756 if (bfd_bread (&sig, 4, abfd) != 4)
2757 return FALSE;
2758
2759 elf_tdata (abfd)->core_signal = sig;
2760
2761 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2762 return FALSE;
2763
2764 /* GDB uses the ".reg" section to read register contents. */
2765 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2766 hdr->p_offset);
2767 }
2768
2769 if (hdr->p_type == PT_HP_CORE_LOADABLE
2770 || hdr->p_type == PT_HP_CORE_STACK
2771 || hdr->p_type == PT_HP_CORE_MMF)
2772 hdr->p_type = PT_LOAD;
2773
2774 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2775 }
2776
2777 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2778 {
2779 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2780 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2781 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2782 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2783 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2784 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2785 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2786 { NULL, 0, 0, 0, 0 }
2787 };
2788
2789 /* The hash bucket size is the standard one, namely 4. */
2790
2791 const struct elf_size_info hppa64_elf_size_info =
2792 {
2793 sizeof (Elf64_External_Ehdr),
2794 sizeof (Elf64_External_Phdr),
2795 sizeof (Elf64_External_Shdr),
2796 sizeof (Elf64_External_Rel),
2797 sizeof (Elf64_External_Rela),
2798 sizeof (Elf64_External_Sym),
2799 sizeof (Elf64_External_Dyn),
2800 sizeof (Elf_External_Note),
2801 4,
2802 1,
2803 64, 3,
2804 ELFCLASS64, EV_CURRENT,
2805 bfd_elf64_write_out_phdrs,
2806 bfd_elf64_write_shdrs_and_ehdr,
2807 bfd_elf64_checksum_contents,
2808 bfd_elf64_write_relocs,
2809 bfd_elf64_swap_symbol_in,
2810 bfd_elf64_swap_symbol_out,
2811 bfd_elf64_slurp_reloc_table,
2812 bfd_elf64_slurp_symbol_table,
2813 bfd_elf64_swap_dyn_in,
2814 bfd_elf64_swap_dyn_out,
2815 bfd_elf64_swap_reloc_in,
2816 bfd_elf64_swap_reloc_out,
2817 bfd_elf64_swap_reloca_in,
2818 bfd_elf64_swap_reloca_out
2819 };
2820
2821 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2822 #define TARGET_BIG_NAME "elf64-hppa"
2823 #define ELF_ARCH bfd_arch_hppa
2824 #define ELF_MACHINE_CODE EM_PARISC
2825 /* This is not strictly correct. The maximum page size for PA2.0 is
2826 64M. But everything still uses 4k. */
2827 #define ELF_MAXPAGESIZE 0x1000
2828 #define ELF_OSABI ELFOSABI_HPUX
2829
2830 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2831 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
2832 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2833 #define elf_info_to_howto elf_hppa_info_to_howto
2834 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2835
2836 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2837 #define elf_backend_object_p elf64_hppa_object_p
2838 #define elf_backend_final_write_processing \
2839 elf_hppa_final_write_processing
2840 #define elf_backend_fake_sections elf_hppa_fake_sections
2841 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2842
2843 #define elf_backend_relocate_section elf_hppa_relocate_section
2844
2845 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2846
2847 #define elf_backend_create_dynamic_sections \
2848 elf64_hppa_create_dynamic_sections
2849 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2850
2851 #define elf_backend_omit_section_dynsym \
2852 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2853 #define elf_backend_adjust_dynamic_symbol \
2854 elf64_hppa_adjust_dynamic_symbol
2855
2856 #define elf_backend_size_dynamic_sections \
2857 elf64_hppa_size_dynamic_sections
2858
2859 #define elf_backend_finish_dynamic_symbol \
2860 elf64_hppa_finish_dynamic_symbol
2861 #define elf_backend_finish_dynamic_sections \
2862 elf64_hppa_finish_dynamic_sections
2863 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2864 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2865
2866 /* Stuff for the BFD linker: */
2867 #define bfd_elf64_bfd_link_hash_table_create \
2868 elf64_hppa_hash_table_create
2869
2870 #define elf_backend_check_relocs \
2871 elf64_hppa_check_relocs
2872
2873 #define elf_backend_size_info \
2874 hppa64_elf_size_info
2875
2876 #define elf_backend_additional_program_headers \
2877 elf64_hppa_additional_program_headers
2878
2879 #define elf_backend_modify_segment_map \
2880 elf64_hppa_modify_segment_map
2881
2882 #define elf_backend_link_output_symbol_hook \
2883 elf64_hppa_link_output_symbol_hook
2884
2885 #define elf_backend_want_got_plt 0
2886 #define elf_backend_plt_readonly 0
2887 #define elf_backend_want_plt_sym 0
2888 #define elf_backend_got_header_size 0
2889 #define elf_backend_type_change_ok TRUE
2890 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2891 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2892 #define elf_backend_rela_normal 1
2893 #define elf_backend_special_sections elf64_hppa_special_sections
2894 #define elf_backend_action_discarded elf_hppa_action_discarded
2895 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2896
2897 #define elf64_bed elf64_hppa_hpux_bed
2898
2899 #include "elf64-target.h"
2900
2901 #undef TARGET_BIG_SYM
2902 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2903 #undef TARGET_BIG_NAME
2904 #define TARGET_BIG_NAME "elf64-hppa-linux"
2905 #undef ELF_OSABI
2906 #define ELF_OSABI ELFOSABI_LINUX
2907 #undef elf_backend_post_process_headers
2908 #define elf_backend_post_process_headers _bfd_elf_set_osabi
2909 #undef elf64_bed
2910 #define elf64_bed elf64_hppa_linux_bed
2911
2912 #include "elf64-target.h"
This page took 0.088403 seconds and 5 git commands to generate.