2076-01-27 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
161 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
162 const char *string));
163 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164 PARAMS ((bfd *abfd));
165 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
166 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
167 bfd_boolean create, bfd_boolean copy));
168 static void elf64_hppa_dyn_hash_traverse
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
170 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
171 PTR info));
172
173 static const char *get_dyn_name
174 PARAMS ((bfd *, struct elf_link_hash_entry *,
175 const Elf_Internal_Rela *, char **, size_t *));
176
177 /* This must follow the definitions of the various derived linker
178 hash tables and shared functions. */
179 #include "elf-hppa.h"
180
181 static bfd_boolean elf64_hppa_object_p
182 PARAMS ((bfd *));
183
184 static void elf64_hppa_post_process_headers
185 PARAMS ((bfd *, struct bfd_link_info *));
186
187 static bfd_boolean elf64_hppa_create_dynamic_sections
188 PARAMS ((bfd *, struct bfd_link_info *));
189
190 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
191 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
192
193 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195
196 static bfd_boolean elf64_hppa_size_dynamic_sections
197 PARAMS ((bfd *, struct bfd_link_info *));
198
199 static bfd_boolean elf64_hppa_link_output_symbol_hook
200 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
201 asection *, struct elf_link_hash_entry *));
202
203 static bfd_boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd *, struct bfd_link_info *,
205 struct elf_link_hash_entry *, Elf_Internal_Sym *));
206
207 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
208 PARAMS ((const Elf_Internal_Rela *));
209
210 static bfd_boolean elf64_hppa_finish_dynamic_sections
211 PARAMS ((bfd *, struct bfd_link_info *));
212
213 static bfd_boolean elf64_hppa_check_relocs
214 PARAMS ((bfd *, struct bfd_link_info *,
215 asection *, const Elf_Internal_Rela *));
216
217 static bfd_boolean elf64_hppa_dynamic_symbol_p
218 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
219
220 static bfd_boolean elf64_hppa_mark_exported_functions
221 PARAMS ((struct elf_link_hash_entry *, PTR));
222
223 static bfd_boolean elf64_hppa_finalize_opd
224 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
225
226 static bfd_boolean elf64_hppa_finalize_dlt
227 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
228
229 static bfd_boolean allocate_global_data_dlt
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232 static bfd_boolean allocate_global_data_plt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static bfd_boolean allocate_global_data_stub
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean allocate_global_data_opd
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean get_reloc_section
242 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
243
244 static bfd_boolean count_dyn_reloc
245 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
246 int, asection *, int, bfd_vma, bfd_vma));
247
248 static bfd_boolean allocate_dynrel_entries
249 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
250
251 static bfd_boolean elf64_hppa_finalize_dynreloc
252 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
253
254 static bfd_boolean get_opd
255 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
256
257 static bfd_boolean get_plt
258 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
259
260 static bfd_boolean get_dlt
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263 static bfd_boolean get_stub
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static int elf64_hppa_elf_get_symbol_type
267 PARAMS ((Elf_Internal_Sym *, int));
268
269 static bfd_boolean
270 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
271 bfd *abfd ATTRIBUTE_UNUSED,
272 new_hash_entry_func new,
273 unsigned int entsize)
274 {
275 memset (ht, 0, sizeof (*ht));
276 return bfd_hash_table_init (&ht->root, new, entsize);
277 }
278
279 static struct bfd_hash_entry*
280 elf64_hppa_new_dyn_hash_entry (entry, table, string)
281 struct bfd_hash_entry *entry;
282 struct bfd_hash_table *table;
283 const char *string;
284 {
285 struct elf64_hppa_dyn_hash_entry *ret;
286 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
287
288 /* Allocate the structure if it has not already been allocated by a
289 subclass. */
290 if (!ret)
291 ret = bfd_hash_allocate (table, sizeof (*ret));
292
293 if (!ret)
294 return 0;
295
296 /* Call the allocation method of the superclass. */
297 ret = ((struct elf64_hppa_dyn_hash_entry *)
298 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
299
300 /* Initialize our local data. All zeros. */
301 memset (&ret->dlt_offset, 0,
302 (sizeof (struct elf64_hppa_dyn_hash_entry)
303 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
304
305 return &ret->root;
306 }
307
308 /* Create the derived linker hash table. The PA64 ELF port uses this
309 derived hash table to keep information specific to the PA ElF
310 linker (without using static variables). */
311
312 static struct bfd_link_hash_table*
313 elf64_hppa_hash_table_create (abfd)
314 bfd *abfd;
315 {
316 struct elf64_hppa_link_hash_table *ret;
317
318 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
319 if (!ret)
320 return 0;
321 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
322 _bfd_elf_link_hash_newfunc,
323 sizeof (struct elf_link_hash_entry)))
324 {
325 bfd_release (abfd, ret);
326 return 0;
327 }
328
329 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
330 elf64_hppa_new_dyn_hash_entry,
331 sizeof (struct elf64_hppa_dyn_hash_entry)))
332 return 0;
333 return &ret->root.root;
334 }
335
336 /* Look up an entry in a PA64 ELF linker hash table. */
337
338 static struct elf64_hppa_dyn_hash_entry *
339 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
340 struct elf64_hppa_dyn_hash_table *table;
341 const char *string;
342 bfd_boolean create, copy;
343 {
344 return ((struct elf64_hppa_dyn_hash_entry *)
345 bfd_hash_lookup (&table->root, string, create, copy));
346 }
347
348 /* Traverse a PA64 ELF linker hash table. */
349
350 static void
351 elf64_hppa_dyn_hash_traverse (table, func, info)
352 struct elf64_hppa_dyn_hash_table *table;
353 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
354 PTR info;
355 {
356 (bfd_hash_traverse
357 (&table->root,
358 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
359 info));
360 }
361 \f
362 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
363
364 Additionally we set the default architecture and machine. */
365 static bfd_boolean
366 elf64_hppa_object_p (abfd)
367 bfd *abfd;
368 {
369 Elf_Internal_Ehdr * i_ehdrp;
370 unsigned int flags;
371
372 i_ehdrp = elf_elfheader (abfd);
373 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
374 {
375 /* GCC on hppa-linux produces binaries with OSABI=Linux,
376 but the kernel produces corefiles with OSABI=SysV. */
377 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
378 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
379 return FALSE;
380 }
381 else
382 {
383 /* HPUX produces binaries with OSABI=HPUX,
384 but the kernel produces corefiles with OSABI=SysV. */
385 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
386 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
387 return FALSE;
388 }
389
390 flags = i_ehdrp->e_flags;
391 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
392 {
393 case EFA_PARISC_1_0:
394 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
395 case EFA_PARISC_1_1:
396 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
397 case EFA_PARISC_2_0:
398 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
399 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
400 else
401 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
402 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
403 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
404 }
405 /* Don't be fussy. */
406 return TRUE;
407 }
408
409 /* Given section type (hdr->sh_type), return a boolean indicating
410 whether or not the section is an elf64-hppa specific section. */
411 static bfd_boolean
412 elf64_hppa_section_from_shdr (bfd *abfd,
413 Elf_Internal_Shdr *hdr,
414 const char *name,
415 int shindex)
416 {
417 asection *newsect;
418
419 switch (hdr->sh_type)
420 {
421 case SHT_PARISC_EXT:
422 if (strcmp (name, ".PARISC.archext") != 0)
423 return FALSE;
424 break;
425 case SHT_PARISC_UNWIND:
426 if (strcmp (name, ".PARISC.unwind") != 0)
427 return FALSE;
428 break;
429 case SHT_PARISC_DOC:
430 case SHT_PARISC_ANNOT:
431 default:
432 return FALSE;
433 }
434
435 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
436 return FALSE;
437 newsect = hdr->bfd_section;
438
439 return TRUE;
440 }
441
442 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
443 name describes what was once potentially anonymous memory. We
444 allocate memory as necessary, possibly reusing PBUF/PLEN. */
445
446 static const char *
447 get_dyn_name (abfd, h, rel, pbuf, plen)
448 bfd *abfd;
449 struct elf_link_hash_entry *h;
450 const Elf_Internal_Rela *rel;
451 char **pbuf;
452 size_t *plen;
453 {
454 asection *sec = abfd->sections;
455 size_t nlen, tlen;
456 char *buf;
457 size_t len;
458
459 if (h && rel->r_addend == 0)
460 return h->root.root.string;
461
462 if (h)
463 nlen = strlen (h->root.root.string);
464 else
465 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
466 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
467
468 len = *plen;
469 buf = *pbuf;
470 if (len < tlen)
471 {
472 if (buf)
473 free (buf);
474 *pbuf = buf = malloc (tlen);
475 *plen = len = tlen;
476 if (!buf)
477 return NULL;
478 }
479
480 if (h)
481 {
482 memcpy (buf, h->root.root.string, nlen);
483 buf[nlen++] = '+';
484 sprintf_vma (buf + nlen, rel->r_addend);
485 }
486 else
487 {
488 nlen = sprintf (buf, "%x:%lx",
489 sec->id & 0xffffffff,
490 (long) ELF64_R_SYM (rel->r_info));
491 if (rel->r_addend)
492 {
493 buf[nlen++] = '+';
494 sprintf_vma (buf + nlen, rel->r_addend);
495 }
496 }
497
498 return buf;
499 }
500
501 /* SEC is a section containing relocs for an input BFD when linking; return
502 a suitable section for holding relocs in the output BFD for a link. */
503
504 static bfd_boolean
505 get_reloc_section (abfd, hppa_info, sec)
506 bfd *abfd;
507 struct elf64_hppa_link_hash_table *hppa_info;
508 asection *sec;
509 {
510 const char *srel_name;
511 asection *srel;
512 bfd *dynobj;
513
514 srel_name = (bfd_elf_string_from_elf_section
515 (abfd, elf_elfheader(abfd)->e_shstrndx,
516 elf_section_data(sec)->rel_hdr.sh_name));
517 if (srel_name == NULL)
518 return FALSE;
519
520 BFD_ASSERT ((CONST_STRNEQ (srel_name, ".rela")
521 && strcmp (bfd_get_section_name (abfd, sec),
522 srel_name + 5) == 0)
523 || (CONST_STRNEQ (srel_name, ".rel")
524 && strcmp (bfd_get_section_name (abfd, sec),
525 srel_name + 4) == 0));
526
527 dynobj = hppa_info->root.dynobj;
528 if (!dynobj)
529 hppa_info->root.dynobj = dynobj = abfd;
530
531 srel = bfd_get_section_by_name (dynobj, srel_name);
532 if (srel == NULL)
533 {
534 srel = bfd_make_section_with_flags (dynobj, srel_name,
535 (SEC_ALLOC
536 | SEC_LOAD
537 | SEC_HAS_CONTENTS
538 | SEC_IN_MEMORY
539 | SEC_LINKER_CREATED
540 | SEC_READONLY));
541 if (srel == NULL
542 || !bfd_set_section_alignment (dynobj, srel, 3))
543 return FALSE;
544 }
545
546 hppa_info->other_rel_sec = srel;
547 return TRUE;
548 }
549
550 /* Add a new entry to the list of dynamic relocations against DYN_H.
551
552 We use this to keep a record of all the FPTR relocations against a
553 particular symbol so that we can create FPTR relocations in the
554 output file. */
555
556 static bfd_boolean
557 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
558 bfd *abfd;
559 struct elf64_hppa_dyn_hash_entry *dyn_h;
560 int type;
561 asection *sec;
562 int sec_symndx;
563 bfd_vma offset;
564 bfd_vma addend;
565 {
566 struct elf64_hppa_dyn_reloc_entry *rent;
567
568 rent = (struct elf64_hppa_dyn_reloc_entry *)
569 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
570 if (!rent)
571 return FALSE;
572
573 rent->next = dyn_h->reloc_entries;
574 rent->type = type;
575 rent->sec = sec;
576 rent->sec_symndx = sec_symndx;
577 rent->offset = offset;
578 rent->addend = addend;
579 dyn_h->reloc_entries = rent;
580
581 return TRUE;
582 }
583
584 /* Scan the RELOCS and record the type of dynamic entries that each
585 referenced symbol needs. */
586
587 static bfd_boolean
588 elf64_hppa_check_relocs (abfd, info, sec, relocs)
589 bfd *abfd;
590 struct bfd_link_info *info;
591 asection *sec;
592 const Elf_Internal_Rela *relocs;
593 {
594 struct elf64_hppa_link_hash_table *hppa_info;
595 const Elf_Internal_Rela *relend;
596 Elf_Internal_Shdr *symtab_hdr;
597 const Elf_Internal_Rela *rel;
598 asection *dlt, *plt, *stubs;
599 char *buf;
600 size_t buf_len;
601 int sec_symndx;
602
603 if (info->relocatable)
604 return TRUE;
605
606 /* If this is the first dynamic object found in the link, create
607 the special sections required for dynamic linking. */
608 if (! elf_hash_table (info)->dynamic_sections_created)
609 {
610 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
611 return FALSE;
612 }
613
614 hppa_info = elf64_hppa_hash_table (info);
615 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
616
617 /* If necessary, build a new table holding section symbols indices
618 for this BFD. */
619
620 if (info->shared && hppa_info->section_syms_bfd != abfd)
621 {
622 unsigned long i;
623 unsigned int highest_shndx;
624 Elf_Internal_Sym *local_syms = NULL;
625 Elf_Internal_Sym *isym, *isymend;
626 bfd_size_type amt;
627
628 /* We're done with the old cache of section index to section symbol
629 index information. Free it.
630
631 ?!? Note we leak the last section_syms array. Presumably we
632 could free it in one of the later routines in this file. */
633 if (hppa_info->section_syms)
634 free (hppa_info->section_syms);
635
636 /* Read this BFD's local symbols. */
637 if (symtab_hdr->sh_info != 0)
638 {
639 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
640 if (local_syms == NULL)
641 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
642 symtab_hdr->sh_info, 0,
643 NULL, NULL, NULL);
644 if (local_syms == NULL)
645 return FALSE;
646 }
647
648 /* Record the highest section index referenced by the local symbols. */
649 highest_shndx = 0;
650 isymend = local_syms + symtab_hdr->sh_info;
651 for (isym = local_syms; isym < isymend; isym++)
652 {
653 if (isym->st_shndx > highest_shndx)
654 highest_shndx = isym->st_shndx;
655 }
656
657 /* Allocate an array to hold the section index to section symbol index
658 mapping. Bump by one since we start counting at zero. */
659 highest_shndx++;
660 amt = highest_shndx;
661 amt *= sizeof (int);
662 hppa_info->section_syms = (int *) bfd_malloc (amt);
663
664 /* Now walk the local symbols again. If we find a section symbol,
665 record the index of the symbol into the section_syms array. */
666 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
667 {
668 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
669 hppa_info->section_syms[isym->st_shndx] = i;
670 }
671
672 /* We are finished with the local symbols. */
673 if (local_syms != NULL
674 && symtab_hdr->contents != (unsigned char *) local_syms)
675 {
676 if (! info->keep_memory)
677 free (local_syms);
678 else
679 {
680 /* Cache the symbols for elf_link_input_bfd. */
681 symtab_hdr->contents = (unsigned char *) local_syms;
682 }
683 }
684
685 /* Record which BFD we built the section_syms mapping for. */
686 hppa_info->section_syms_bfd = abfd;
687 }
688
689 /* Record the symbol index for this input section. We may need it for
690 relocations when building shared libraries. When not building shared
691 libraries this value is never really used, but assign it to zero to
692 prevent out of bounds memory accesses in other routines. */
693 if (info->shared)
694 {
695 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
696
697 /* If we did not find a section symbol for this section, then
698 something went terribly wrong above. */
699 if (sec_symndx == -1)
700 return FALSE;
701
702 sec_symndx = hppa_info->section_syms[sec_symndx];
703 }
704 else
705 sec_symndx = 0;
706
707 dlt = plt = stubs = NULL;
708 buf = NULL;
709 buf_len = 0;
710
711 relend = relocs + sec->reloc_count;
712 for (rel = relocs; rel < relend; ++rel)
713 {
714 enum
715 {
716 NEED_DLT = 1,
717 NEED_PLT = 2,
718 NEED_STUB = 4,
719 NEED_OPD = 8,
720 NEED_DYNREL = 16,
721 };
722
723 struct elf_link_hash_entry *h = NULL;
724 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
725 struct elf64_hppa_dyn_hash_entry *dyn_h;
726 int need_entry;
727 const char *addr_name;
728 bfd_boolean maybe_dynamic;
729 int dynrel_type = R_PARISC_NONE;
730 static reloc_howto_type *howto;
731
732 if (r_symndx >= symtab_hdr->sh_info)
733 {
734 /* We're dealing with a global symbol -- find its hash entry
735 and mark it as being referenced. */
736 long indx = r_symndx - symtab_hdr->sh_info;
737 h = elf_sym_hashes (abfd)[indx];
738 while (h->root.type == bfd_link_hash_indirect
739 || h->root.type == bfd_link_hash_warning)
740 h = (struct elf_link_hash_entry *) h->root.u.i.link;
741
742 h->ref_regular = 1;
743 }
744
745 /* We can only get preliminary data on whether a symbol is
746 locally or externally defined, as not all of the input files
747 have yet been processed. Do something with what we know, as
748 this may help reduce memory usage and processing time later. */
749 maybe_dynamic = FALSE;
750 if (h && ((info->shared
751 && (!info->symbolic
752 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
753 || !h->def_regular
754 || h->root.type == bfd_link_hash_defweak))
755 maybe_dynamic = TRUE;
756
757 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
758 need_entry = 0;
759 switch (howto->type)
760 {
761 /* These are simple indirect references to symbols through the
762 DLT. We need to create a DLT entry for any symbols which
763 appears in a DLTIND relocation. */
764 case R_PARISC_DLTIND21L:
765 case R_PARISC_DLTIND14R:
766 case R_PARISC_DLTIND14F:
767 case R_PARISC_DLTIND14WR:
768 case R_PARISC_DLTIND14DR:
769 need_entry = NEED_DLT;
770 break;
771
772 /* ?!? These need a DLT entry. But I have no idea what to do with
773 the "link time TP value. */
774 case R_PARISC_LTOFF_TP21L:
775 case R_PARISC_LTOFF_TP14R:
776 case R_PARISC_LTOFF_TP14F:
777 case R_PARISC_LTOFF_TP64:
778 case R_PARISC_LTOFF_TP14WR:
779 case R_PARISC_LTOFF_TP14DR:
780 case R_PARISC_LTOFF_TP16F:
781 case R_PARISC_LTOFF_TP16WF:
782 case R_PARISC_LTOFF_TP16DF:
783 need_entry = NEED_DLT;
784 break;
785
786 /* These are function calls. Depending on their precise target we
787 may need to make a stub for them. The stub uses the PLT, so we
788 need to create PLT entries for these symbols too. */
789 case R_PARISC_PCREL12F:
790 case R_PARISC_PCREL17F:
791 case R_PARISC_PCREL22F:
792 case R_PARISC_PCREL32:
793 case R_PARISC_PCREL64:
794 case R_PARISC_PCREL21L:
795 case R_PARISC_PCREL17R:
796 case R_PARISC_PCREL17C:
797 case R_PARISC_PCREL14R:
798 case R_PARISC_PCREL14F:
799 case R_PARISC_PCREL22C:
800 case R_PARISC_PCREL14WR:
801 case R_PARISC_PCREL14DR:
802 case R_PARISC_PCREL16F:
803 case R_PARISC_PCREL16WF:
804 case R_PARISC_PCREL16DF:
805 need_entry = (NEED_PLT | NEED_STUB);
806 break;
807
808 case R_PARISC_PLTOFF21L:
809 case R_PARISC_PLTOFF14R:
810 case R_PARISC_PLTOFF14F:
811 case R_PARISC_PLTOFF14WR:
812 case R_PARISC_PLTOFF14DR:
813 case R_PARISC_PLTOFF16F:
814 case R_PARISC_PLTOFF16WF:
815 case R_PARISC_PLTOFF16DF:
816 need_entry = (NEED_PLT);
817 break;
818
819 case R_PARISC_DIR64:
820 if (info->shared || maybe_dynamic)
821 need_entry = (NEED_DYNREL);
822 dynrel_type = R_PARISC_DIR64;
823 break;
824
825 /* This is an indirect reference through the DLT to get the address
826 of a OPD descriptor. Thus we need to make a DLT entry that points
827 to an OPD entry. */
828 case R_PARISC_LTOFF_FPTR21L:
829 case R_PARISC_LTOFF_FPTR14R:
830 case R_PARISC_LTOFF_FPTR14WR:
831 case R_PARISC_LTOFF_FPTR14DR:
832 case R_PARISC_LTOFF_FPTR32:
833 case R_PARISC_LTOFF_FPTR64:
834 case R_PARISC_LTOFF_FPTR16F:
835 case R_PARISC_LTOFF_FPTR16WF:
836 case R_PARISC_LTOFF_FPTR16DF:
837 if (info->shared || maybe_dynamic)
838 need_entry = (NEED_DLT | NEED_OPD);
839 else
840 need_entry = (NEED_DLT | NEED_OPD);
841 dynrel_type = R_PARISC_FPTR64;
842 break;
843
844 /* This is a simple OPD entry. */
845 case R_PARISC_FPTR64:
846 if (info->shared || maybe_dynamic)
847 need_entry = (NEED_OPD | NEED_DYNREL);
848 else
849 need_entry = (NEED_OPD);
850 dynrel_type = R_PARISC_FPTR64;
851 break;
852
853 /* Add more cases as needed. */
854 }
855
856 if (!need_entry)
857 continue;
858
859 /* Collect a canonical name for this address. */
860 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
861
862 /* Collect the canonical entry data for this address. */
863 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
864 addr_name, TRUE, TRUE);
865 BFD_ASSERT (dyn_h);
866
867 /* Stash away enough information to be able to find this symbol
868 regardless of whether or not it is local or global. */
869 dyn_h->h = h;
870 dyn_h->owner = abfd;
871 dyn_h->sym_indx = r_symndx;
872
873 /* ?!? We may need to do some error checking in here. */
874 /* Create what's needed. */
875 if (need_entry & NEED_DLT)
876 {
877 if (! hppa_info->dlt_sec
878 && ! get_dlt (abfd, info, hppa_info))
879 goto err_out;
880 dyn_h->want_dlt = 1;
881 }
882
883 if (need_entry & NEED_PLT)
884 {
885 if (! hppa_info->plt_sec
886 && ! get_plt (abfd, info, hppa_info))
887 goto err_out;
888 dyn_h->want_plt = 1;
889 }
890
891 if (need_entry & NEED_STUB)
892 {
893 if (! hppa_info->stub_sec
894 && ! get_stub (abfd, info, hppa_info))
895 goto err_out;
896 dyn_h->want_stub = 1;
897 }
898
899 if (need_entry & NEED_OPD)
900 {
901 if (! hppa_info->opd_sec
902 && ! get_opd (abfd, info, hppa_info))
903 goto err_out;
904
905 dyn_h->want_opd = 1;
906
907 /* FPTRs are not allocated by the dynamic linker for PA64, though
908 it is possible that will change in the future. */
909
910 /* This could be a local function that had its address taken, in
911 which case H will be NULL. */
912 if (h)
913 h->needs_plt = 1;
914 }
915
916 /* Add a new dynamic relocation to the chain of dynamic
917 relocations for this symbol. */
918 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
919 {
920 if (! hppa_info->other_rel_sec
921 && ! get_reloc_section (abfd, hppa_info, sec))
922 goto err_out;
923
924 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
925 sec_symndx, rel->r_offset, rel->r_addend))
926 goto err_out;
927
928 /* If we are building a shared library and we just recorded
929 a dynamic R_PARISC_FPTR64 relocation, then make sure the
930 section symbol for this section ends up in the dynamic
931 symbol table. */
932 if (info->shared && dynrel_type == R_PARISC_FPTR64
933 && ! (bfd_elf_link_record_local_dynamic_symbol
934 (info, abfd, sec_symndx)))
935 return FALSE;
936 }
937 }
938
939 if (buf)
940 free (buf);
941 return TRUE;
942
943 err_out:
944 if (buf)
945 free (buf);
946 return FALSE;
947 }
948
949 struct elf64_hppa_allocate_data
950 {
951 struct bfd_link_info *info;
952 bfd_size_type ofs;
953 };
954
955 /* Should we do dynamic things to this symbol? */
956
957 static bfd_boolean
958 elf64_hppa_dynamic_symbol_p (h, info)
959 struct elf_link_hash_entry *h;
960 struct bfd_link_info *info;
961 {
962 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
963 and relocations that retrieve a function descriptor? Assume the
964 worst for now. */
965 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
966 {
967 /* ??? Why is this here and not elsewhere is_local_label_name. */
968 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
969 return FALSE;
970
971 return TRUE;
972 }
973 else
974 return FALSE;
975 }
976
977 /* Mark all functions exported by this file so that we can later allocate
978 entries in .opd for them. */
979
980 static bfd_boolean
981 elf64_hppa_mark_exported_functions (h, data)
982 struct elf_link_hash_entry *h;
983 PTR data;
984 {
985 struct bfd_link_info *info = (struct bfd_link_info *)data;
986 struct elf64_hppa_link_hash_table *hppa_info;
987
988 hppa_info = elf64_hppa_hash_table (info);
989
990 if (h->root.type == bfd_link_hash_warning)
991 h = (struct elf_link_hash_entry *) h->root.u.i.link;
992
993 if (h
994 && (h->root.type == bfd_link_hash_defined
995 || h->root.type == bfd_link_hash_defweak)
996 && h->root.u.def.section->output_section != NULL
997 && h->type == STT_FUNC)
998 {
999 struct elf64_hppa_dyn_hash_entry *dyn_h;
1000
1001 /* Add this symbol to the PA64 linker hash table. */
1002 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1003 h->root.root.string, TRUE, TRUE);
1004 BFD_ASSERT (dyn_h);
1005 dyn_h->h = h;
1006
1007 if (! hppa_info->opd_sec
1008 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1009 return FALSE;
1010
1011 dyn_h->want_opd = 1;
1012 /* Put a flag here for output_symbol_hook. */
1013 dyn_h->st_shndx = -1;
1014 h->needs_plt = 1;
1015 }
1016
1017 return TRUE;
1018 }
1019
1020 /* Allocate space for a DLT entry. */
1021
1022 static bfd_boolean
1023 allocate_global_data_dlt (dyn_h, data)
1024 struct elf64_hppa_dyn_hash_entry *dyn_h;
1025 PTR data;
1026 {
1027 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1028
1029 if (dyn_h->want_dlt)
1030 {
1031 struct elf_link_hash_entry *h = dyn_h->h;
1032
1033 if (x->info->shared)
1034 {
1035 /* Possibly add the symbol to the local dynamic symbol
1036 table since we might need to create a dynamic relocation
1037 against it. */
1038 if (! h
1039 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1040 {
1041 bfd *owner;
1042 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1043
1044 if (! (bfd_elf_link_record_local_dynamic_symbol
1045 (x->info, owner, dyn_h->sym_indx)))
1046 return FALSE;
1047 }
1048 }
1049
1050 dyn_h->dlt_offset = x->ofs;
1051 x->ofs += DLT_ENTRY_SIZE;
1052 }
1053 return TRUE;
1054 }
1055
1056 /* Allocate space for a DLT.PLT entry. */
1057
1058 static bfd_boolean
1059 allocate_global_data_plt (dyn_h, data)
1060 struct elf64_hppa_dyn_hash_entry *dyn_h;
1061 PTR data;
1062 {
1063 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1064
1065 if (dyn_h->want_plt
1066 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1067 && !((dyn_h->h->root.type == bfd_link_hash_defined
1068 || dyn_h->h->root.type == bfd_link_hash_defweak)
1069 && dyn_h->h->root.u.def.section->output_section != NULL))
1070 {
1071 dyn_h->plt_offset = x->ofs;
1072 x->ofs += PLT_ENTRY_SIZE;
1073 if (dyn_h->plt_offset < 0x2000)
1074 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1075 }
1076 else
1077 dyn_h->want_plt = 0;
1078
1079 return TRUE;
1080 }
1081
1082 /* Allocate space for a STUB entry. */
1083
1084 static bfd_boolean
1085 allocate_global_data_stub (dyn_h, data)
1086 struct elf64_hppa_dyn_hash_entry *dyn_h;
1087 PTR data;
1088 {
1089 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1090
1091 if (dyn_h->want_stub
1092 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1093 && !((dyn_h->h->root.type == bfd_link_hash_defined
1094 || dyn_h->h->root.type == bfd_link_hash_defweak)
1095 && dyn_h->h->root.u.def.section->output_section != NULL))
1096 {
1097 dyn_h->stub_offset = x->ofs;
1098 x->ofs += sizeof (plt_stub);
1099 }
1100 else
1101 dyn_h->want_stub = 0;
1102 return TRUE;
1103 }
1104
1105 /* Allocate space for a FPTR entry. */
1106
1107 static bfd_boolean
1108 allocate_global_data_opd (dyn_h, data)
1109 struct elf64_hppa_dyn_hash_entry *dyn_h;
1110 PTR data;
1111 {
1112 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1113
1114 if (dyn_h->want_opd)
1115 {
1116 struct elf_link_hash_entry *h = dyn_h->h;
1117
1118 if (h)
1119 while (h->root.type == bfd_link_hash_indirect
1120 || h->root.type == bfd_link_hash_warning)
1121 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1122
1123 /* We never need an opd entry for a symbol which is not
1124 defined by this output file. */
1125 if (h && (h->root.type == bfd_link_hash_undefined
1126 || h->root.type == bfd_link_hash_undefweak
1127 || h->root.u.def.section->output_section == NULL))
1128 dyn_h->want_opd = 0;
1129
1130 /* If we are creating a shared library, took the address of a local
1131 function or might export this function from this object file, then
1132 we have to create an opd descriptor. */
1133 else if (x->info->shared
1134 || h == NULL
1135 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1136 || (h->root.type == bfd_link_hash_defined
1137 || h->root.type == bfd_link_hash_defweak))
1138 {
1139 /* If we are creating a shared library, then we will have to
1140 create a runtime relocation for the symbol to properly
1141 initialize the .opd entry. Make sure the symbol gets
1142 added to the dynamic symbol table. */
1143 if (x->info->shared
1144 && (h == NULL || (h->dynindx == -1)))
1145 {
1146 bfd *owner;
1147 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1148
1149 if (!bfd_elf_link_record_local_dynamic_symbol
1150 (x->info, owner, dyn_h->sym_indx))
1151 return FALSE;
1152 }
1153
1154 /* This may not be necessary or desirable anymore now that
1155 we have some support for dealing with section symbols
1156 in dynamic relocs. But name munging does make the result
1157 much easier to debug. ie, the EPLT reloc will reference
1158 a symbol like .foobar, instead of .text + offset. */
1159 if (x->info->shared && h)
1160 {
1161 char *new_name;
1162 struct elf_link_hash_entry *nh;
1163
1164 new_name = alloca (strlen (h->root.root.string) + 2);
1165 new_name[0] = '.';
1166 strcpy (new_name + 1, h->root.root.string);
1167
1168 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1169 new_name, TRUE, TRUE, TRUE);
1170
1171 nh->root.type = h->root.type;
1172 nh->root.u.def.value = h->root.u.def.value;
1173 nh->root.u.def.section = h->root.u.def.section;
1174
1175 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1176 return FALSE;
1177
1178 }
1179 dyn_h->opd_offset = x->ofs;
1180 x->ofs += OPD_ENTRY_SIZE;
1181 }
1182
1183 /* Otherwise we do not need an opd entry. */
1184 else
1185 dyn_h->want_opd = 0;
1186 }
1187 return TRUE;
1188 }
1189
1190 /* HP requires the EI_OSABI field to be filled in. The assignment to
1191 EI_ABIVERSION may not be strictly necessary. */
1192
1193 static void
1194 elf64_hppa_post_process_headers (abfd, link_info)
1195 bfd * abfd;
1196 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1197 {
1198 Elf_Internal_Ehdr * i_ehdrp;
1199
1200 i_ehdrp = elf_elfheader (abfd);
1201
1202 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1203 {
1204 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1205 }
1206 else
1207 {
1208 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1209 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1210 }
1211 }
1212
1213 /* Create function descriptor section (.opd). This section is called .opd
1214 because it contains "official procedure descriptors". The "official"
1215 refers to the fact that these descriptors are used when taking the address
1216 of a procedure, thus ensuring a unique address for each procedure. */
1217
1218 static bfd_boolean
1219 get_opd (abfd, info, hppa_info)
1220 bfd *abfd;
1221 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1222 struct elf64_hppa_link_hash_table *hppa_info;
1223 {
1224 asection *opd;
1225 bfd *dynobj;
1226
1227 opd = hppa_info->opd_sec;
1228 if (!opd)
1229 {
1230 dynobj = hppa_info->root.dynobj;
1231 if (!dynobj)
1232 hppa_info->root.dynobj = dynobj = abfd;
1233
1234 opd = bfd_make_section_with_flags (dynobj, ".opd",
1235 (SEC_ALLOC
1236 | SEC_LOAD
1237 | SEC_HAS_CONTENTS
1238 | SEC_IN_MEMORY
1239 | SEC_LINKER_CREATED));
1240 if (!opd
1241 || !bfd_set_section_alignment (abfd, opd, 3))
1242 {
1243 BFD_ASSERT (0);
1244 return FALSE;
1245 }
1246
1247 hppa_info->opd_sec = opd;
1248 }
1249
1250 return TRUE;
1251 }
1252
1253 /* Create the PLT section. */
1254
1255 static bfd_boolean
1256 get_plt (abfd, info, hppa_info)
1257 bfd *abfd;
1258 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1259 struct elf64_hppa_link_hash_table *hppa_info;
1260 {
1261 asection *plt;
1262 bfd *dynobj;
1263
1264 plt = hppa_info->plt_sec;
1265 if (!plt)
1266 {
1267 dynobj = hppa_info->root.dynobj;
1268 if (!dynobj)
1269 hppa_info->root.dynobj = dynobj = abfd;
1270
1271 plt = bfd_make_section_with_flags (dynobj, ".plt",
1272 (SEC_ALLOC
1273 | SEC_LOAD
1274 | SEC_HAS_CONTENTS
1275 | SEC_IN_MEMORY
1276 | SEC_LINKER_CREATED));
1277 if (!plt
1278 || !bfd_set_section_alignment (abfd, plt, 3))
1279 {
1280 BFD_ASSERT (0);
1281 return FALSE;
1282 }
1283
1284 hppa_info->plt_sec = plt;
1285 }
1286
1287 return TRUE;
1288 }
1289
1290 /* Create the DLT section. */
1291
1292 static bfd_boolean
1293 get_dlt (abfd, info, hppa_info)
1294 bfd *abfd;
1295 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1296 struct elf64_hppa_link_hash_table *hppa_info;
1297 {
1298 asection *dlt;
1299 bfd *dynobj;
1300
1301 dlt = hppa_info->dlt_sec;
1302 if (!dlt)
1303 {
1304 dynobj = hppa_info->root.dynobj;
1305 if (!dynobj)
1306 hppa_info->root.dynobj = dynobj = abfd;
1307
1308 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1309 (SEC_ALLOC
1310 | SEC_LOAD
1311 | SEC_HAS_CONTENTS
1312 | SEC_IN_MEMORY
1313 | SEC_LINKER_CREATED));
1314 if (!dlt
1315 || !bfd_set_section_alignment (abfd, dlt, 3))
1316 {
1317 BFD_ASSERT (0);
1318 return FALSE;
1319 }
1320
1321 hppa_info->dlt_sec = dlt;
1322 }
1323
1324 return TRUE;
1325 }
1326
1327 /* Create the stubs section. */
1328
1329 static bfd_boolean
1330 get_stub (abfd, info, hppa_info)
1331 bfd *abfd;
1332 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1333 struct elf64_hppa_link_hash_table *hppa_info;
1334 {
1335 asection *stub;
1336 bfd *dynobj;
1337
1338 stub = hppa_info->stub_sec;
1339 if (!stub)
1340 {
1341 dynobj = hppa_info->root.dynobj;
1342 if (!dynobj)
1343 hppa_info->root.dynobj = dynobj = abfd;
1344
1345 stub = bfd_make_section_with_flags (dynobj, ".stub",
1346 (SEC_ALLOC | SEC_LOAD
1347 | SEC_HAS_CONTENTS
1348 | SEC_IN_MEMORY
1349 | SEC_READONLY
1350 | SEC_LINKER_CREATED));
1351 if (!stub
1352 || !bfd_set_section_alignment (abfd, stub, 3))
1353 {
1354 BFD_ASSERT (0);
1355 return FALSE;
1356 }
1357
1358 hppa_info->stub_sec = stub;
1359 }
1360
1361 return TRUE;
1362 }
1363
1364 /* Create sections necessary for dynamic linking. This is only a rough
1365 cut and will likely change as we learn more about the somewhat
1366 unusual dynamic linking scheme HP uses.
1367
1368 .stub:
1369 Contains code to implement cross-space calls. The first time one
1370 of the stubs is used it will call into the dynamic linker, later
1371 calls will go straight to the target.
1372
1373 The only stub we support right now looks like
1374
1375 ldd OFFSET(%dp),%r1
1376 bve %r0(%r1)
1377 ldd OFFSET+8(%dp),%dp
1378
1379 Other stubs may be needed in the future. We may want the remove
1380 the break/nop instruction. It is only used right now to keep the
1381 offset of a .plt entry and a .stub entry in sync.
1382
1383 .dlt:
1384 This is what most people call the .got. HP used a different name.
1385 Losers.
1386
1387 .rela.dlt:
1388 Relocations for the DLT.
1389
1390 .plt:
1391 Function pointers as address,gp pairs.
1392
1393 .rela.plt:
1394 Should contain dynamic IPLT (and EPLT?) relocations.
1395
1396 .opd:
1397 FPTRS
1398
1399 .rela.opd:
1400 EPLT relocations for symbols exported from shared libraries. */
1401
1402 static bfd_boolean
1403 elf64_hppa_create_dynamic_sections (abfd, info)
1404 bfd *abfd;
1405 struct bfd_link_info *info;
1406 {
1407 asection *s;
1408
1409 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1410 return FALSE;
1411
1412 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1413 return FALSE;
1414
1415 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1416 return FALSE;
1417
1418 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1419 return FALSE;
1420
1421 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1422 (SEC_ALLOC | SEC_LOAD
1423 | SEC_HAS_CONTENTS
1424 | SEC_IN_MEMORY
1425 | SEC_READONLY
1426 | SEC_LINKER_CREATED));
1427 if (s == NULL
1428 || !bfd_set_section_alignment (abfd, s, 3))
1429 return FALSE;
1430 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1431
1432 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1433 (SEC_ALLOC | SEC_LOAD
1434 | SEC_HAS_CONTENTS
1435 | SEC_IN_MEMORY
1436 | SEC_READONLY
1437 | SEC_LINKER_CREATED));
1438 if (s == NULL
1439 || !bfd_set_section_alignment (abfd, s, 3))
1440 return FALSE;
1441 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1442
1443 s = bfd_make_section_with_flags (abfd, ".rela.data",
1444 (SEC_ALLOC | SEC_LOAD
1445 | SEC_HAS_CONTENTS
1446 | SEC_IN_MEMORY
1447 | SEC_READONLY
1448 | SEC_LINKER_CREATED));
1449 if (s == NULL
1450 || !bfd_set_section_alignment (abfd, s, 3))
1451 return FALSE;
1452 elf64_hppa_hash_table (info)->other_rel_sec = s;
1453
1454 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1455 (SEC_ALLOC | SEC_LOAD
1456 | SEC_HAS_CONTENTS
1457 | SEC_IN_MEMORY
1458 | SEC_READONLY
1459 | SEC_LINKER_CREATED));
1460 if (s == NULL
1461 || !bfd_set_section_alignment (abfd, s, 3))
1462 return FALSE;
1463 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1464
1465 return TRUE;
1466 }
1467
1468 /* Allocate dynamic relocations for those symbols that turned out
1469 to be dynamic. */
1470
1471 static bfd_boolean
1472 allocate_dynrel_entries (dyn_h, data)
1473 struct elf64_hppa_dyn_hash_entry *dyn_h;
1474 PTR data;
1475 {
1476 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1477 struct elf64_hppa_link_hash_table *hppa_info;
1478 struct elf64_hppa_dyn_reloc_entry *rent;
1479 bfd_boolean dynamic_symbol, shared;
1480
1481 hppa_info = elf64_hppa_hash_table (x->info);
1482 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1483 shared = x->info->shared;
1484
1485 /* We may need to allocate relocations for a non-dynamic symbol
1486 when creating a shared library. */
1487 if (!dynamic_symbol && !shared)
1488 return TRUE;
1489
1490 /* Take care of the normal data relocations. */
1491
1492 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1493 {
1494 /* Allocate one iff we are building a shared library, the relocation
1495 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1496 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1497 continue;
1498
1499 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1500
1501 /* Make sure this symbol gets into the dynamic symbol table if it is
1502 not already recorded. ?!? This should not be in the loop since
1503 the symbol need only be added once. */
1504 if (dyn_h->h == 0
1505 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1506 if (!bfd_elf_link_record_local_dynamic_symbol
1507 (x->info, rent->sec->owner, dyn_h->sym_indx))
1508 return FALSE;
1509 }
1510
1511 /* Take care of the GOT and PLT relocations. */
1512
1513 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1514 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1515
1516 /* If we are building a shared library, then every symbol that has an
1517 opd entry will need an EPLT relocation to relocate the symbol's address
1518 and __gp value based on the runtime load address. */
1519 if (shared && dyn_h->want_opd)
1520 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1521
1522 if (dyn_h->want_plt && dynamic_symbol)
1523 {
1524 bfd_size_type t = 0;
1525
1526 /* Dynamic symbols get one IPLT relocation. Local symbols in
1527 shared libraries get two REL relocations. Local symbols in
1528 main applications get nothing. */
1529 if (dynamic_symbol)
1530 t = sizeof (Elf64_External_Rela);
1531 else if (shared)
1532 t = 2 * sizeof (Elf64_External_Rela);
1533
1534 hppa_info->plt_rel_sec->size += t;
1535 }
1536
1537 return TRUE;
1538 }
1539
1540 /* Adjust a symbol defined by a dynamic object and referenced by a
1541 regular object. */
1542
1543 static bfd_boolean
1544 elf64_hppa_adjust_dynamic_symbol (info, h)
1545 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1546 struct elf_link_hash_entry *h;
1547 {
1548 /* ??? Undefined symbols with PLT entries should be re-defined
1549 to be the PLT entry. */
1550
1551 /* If this is a weak symbol, and there is a real definition, the
1552 processor independent code will have arranged for us to see the
1553 real definition first, and we can just use the same value. */
1554 if (h->u.weakdef != NULL)
1555 {
1556 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1557 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1558 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1559 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1560 return TRUE;
1561 }
1562
1563 /* If this is a reference to a symbol defined by a dynamic object which
1564 is not a function, we might allocate the symbol in our .dynbss section
1565 and allocate a COPY dynamic relocation.
1566
1567 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1568 of hackery. */
1569
1570 return TRUE;
1571 }
1572
1573 /* This function is called via elf_link_hash_traverse to mark millicode
1574 symbols with a dynindx of -1 and to remove the string table reference
1575 from the dynamic symbol table. If the symbol is not a millicode symbol,
1576 elf64_hppa_mark_exported_functions is called. */
1577
1578 static bfd_boolean
1579 elf64_hppa_mark_milli_and_exported_functions (h, data)
1580 struct elf_link_hash_entry *h;
1581 PTR data;
1582 {
1583 struct bfd_link_info *info = (struct bfd_link_info *)data;
1584 struct elf_link_hash_entry *elf = h;
1585
1586 if (elf->root.type == bfd_link_hash_warning)
1587 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1588
1589 if (elf->type == STT_PARISC_MILLI)
1590 {
1591 if (elf->dynindx != -1)
1592 {
1593 elf->dynindx = -1;
1594 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1595 elf->dynstr_index);
1596 }
1597 return TRUE;
1598 }
1599
1600 return elf64_hppa_mark_exported_functions (h, data);
1601 }
1602
1603 /* Set the final sizes of the dynamic sections and allocate memory for
1604 the contents of our special sections. */
1605
1606 static bfd_boolean
1607 elf64_hppa_size_dynamic_sections (output_bfd, info)
1608 bfd *output_bfd;
1609 struct bfd_link_info *info;
1610 {
1611 bfd *dynobj;
1612 asection *s;
1613 bfd_boolean plt;
1614 bfd_boolean relocs;
1615 bfd_boolean reltext;
1616 struct elf64_hppa_allocate_data data;
1617 struct elf64_hppa_link_hash_table *hppa_info;
1618
1619 hppa_info = elf64_hppa_hash_table (info);
1620
1621 dynobj = elf_hash_table (info)->dynobj;
1622 BFD_ASSERT (dynobj != NULL);
1623
1624 /* Mark each function this program exports so that we will allocate
1625 space in the .opd section for each function's FPTR. If we are
1626 creating dynamic sections, change the dynamic index of millicode
1627 symbols to -1 and remove them from the string table for .dynstr.
1628
1629 We have to traverse the main linker hash table since we have to
1630 find functions which may not have been mentioned in any relocs. */
1631 elf_link_hash_traverse (elf_hash_table (info),
1632 (elf_hash_table (info)->dynamic_sections_created
1633 ? elf64_hppa_mark_milli_and_exported_functions
1634 : elf64_hppa_mark_exported_functions),
1635 info);
1636
1637 if (elf_hash_table (info)->dynamic_sections_created)
1638 {
1639 /* Set the contents of the .interp section to the interpreter. */
1640 if (info->executable)
1641 {
1642 s = bfd_get_section_by_name (dynobj, ".interp");
1643 BFD_ASSERT (s != NULL);
1644 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1645 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1646 }
1647 }
1648 else
1649 {
1650 /* We may have created entries in the .rela.got section.
1651 However, if we are not creating the dynamic sections, we will
1652 not actually use these entries. Reset the size of .rela.dlt,
1653 which will cause it to get stripped from the output file
1654 below. */
1655 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1656 if (s != NULL)
1657 s->size = 0;
1658 }
1659
1660 /* Allocate the GOT entries. */
1661
1662 data.info = info;
1663 if (elf64_hppa_hash_table (info)->dlt_sec)
1664 {
1665 data.ofs = 0x0;
1666 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1667 allocate_global_data_dlt, &data);
1668 hppa_info->dlt_sec->size = data.ofs;
1669
1670 data.ofs = 0x0;
1671 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1672 allocate_global_data_plt, &data);
1673 hppa_info->plt_sec->size = data.ofs;
1674
1675 data.ofs = 0x0;
1676 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1677 allocate_global_data_stub, &data);
1678 hppa_info->stub_sec->size = data.ofs;
1679 }
1680
1681 /* Allocate space for entries in the .opd section. */
1682 if (elf64_hppa_hash_table (info)->opd_sec)
1683 {
1684 data.ofs = 0;
1685 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1686 allocate_global_data_opd, &data);
1687 hppa_info->opd_sec->size = data.ofs;
1688 }
1689
1690 /* Now allocate space for dynamic relocations, if necessary. */
1691 if (hppa_info->root.dynamic_sections_created)
1692 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1693 allocate_dynrel_entries, &data);
1694
1695 /* The sizes of all the sections are set. Allocate memory for them. */
1696 plt = FALSE;
1697 relocs = FALSE;
1698 reltext = FALSE;
1699 for (s = dynobj->sections; s != NULL; s = s->next)
1700 {
1701 const char *name;
1702
1703 if ((s->flags & SEC_LINKER_CREATED) == 0)
1704 continue;
1705
1706 /* It's OK to base decisions on the section name, because none
1707 of the dynobj section names depend upon the input files. */
1708 name = bfd_get_section_name (dynobj, s);
1709
1710 if (strcmp (name, ".plt") == 0)
1711 {
1712 /* Remember whether there is a PLT. */
1713 plt = s->size != 0;
1714 }
1715 else if (strcmp (name, ".opd") == 0
1716 || CONST_STRNEQ (name, ".dlt")
1717 || strcmp (name, ".stub") == 0
1718 || strcmp (name, ".got") == 0)
1719 {
1720 /* Strip this section if we don't need it; see the comment below. */
1721 }
1722 else if (CONST_STRNEQ (name, ".rela"))
1723 {
1724 if (s->size != 0)
1725 {
1726 asection *target;
1727
1728 /* Remember whether there are any reloc sections other
1729 than .rela.plt. */
1730 if (strcmp (name, ".rela.plt") != 0)
1731 {
1732 const char *outname;
1733
1734 relocs = TRUE;
1735
1736 /* If this relocation section applies to a read only
1737 section, then we probably need a DT_TEXTREL
1738 entry. The entries in the .rela.plt section
1739 really apply to the .got section, which we
1740 created ourselves and so know is not readonly. */
1741 outname = bfd_get_section_name (output_bfd,
1742 s->output_section);
1743 target = bfd_get_section_by_name (output_bfd, outname + 4);
1744 if (target != NULL
1745 && (target->flags & SEC_READONLY) != 0
1746 && (target->flags & SEC_ALLOC) != 0)
1747 reltext = TRUE;
1748 }
1749
1750 /* We use the reloc_count field as a counter if we need
1751 to copy relocs into the output file. */
1752 s->reloc_count = 0;
1753 }
1754 }
1755 else
1756 {
1757 /* It's not one of our sections, so don't allocate space. */
1758 continue;
1759 }
1760
1761 if (s->size == 0)
1762 {
1763 /* If we don't need this section, strip it from the
1764 output file. This is mostly to handle .rela.bss and
1765 .rela.plt. We must create both sections in
1766 create_dynamic_sections, because they must be created
1767 before the linker maps input sections to output
1768 sections. The linker does that before
1769 adjust_dynamic_symbol is called, and it is that
1770 function which decides whether anything needs to go
1771 into these sections. */
1772 s->flags |= SEC_EXCLUDE;
1773 continue;
1774 }
1775
1776 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1777 continue;
1778
1779 /* Allocate memory for the section contents if it has not
1780 been allocated already. We use bfd_zalloc here in case
1781 unused entries are not reclaimed before the section's
1782 contents are written out. This should not happen, but this
1783 way if it does, we get a R_PARISC_NONE reloc instead of
1784 garbage. */
1785 if (s->contents == NULL)
1786 {
1787 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1788 if (s->contents == NULL)
1789 return FALSE;
1790 }
1791 }
1792
1793 if (elf_hash_table (info)->dynamic_sections_created)
1794 {
1795 /* Always create a DT_PLTGOT. It actually has nothing to do with
1796 the PLT, it is how we communicate the __gp value of a load
1797 module to the dynamic linker. */
1798 #define add_dynamic_entry(TAG, VAL) \
1799 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1800
1801 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1802 || !add_dynamic_entry (DT_PLTGOT, 0))
1803 return FALSE;
1804
1805 /* Add some entries to the .dynamic section. We fill in the
1806 values later, in elf64_hppa_finish_dynamic_sections, but we
1807 must add the entries now so that we get the correct size for
1808 the .dynamic section. The DT_DEBUG entry is filled in by the
1809 dynamic linker and used by the debugger. */
1810 if (! info->shared)
1811 {
1812 if (!add_dynamic_entry (DT_DEBUG, 0)
1813 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1814 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1815 return FALSE;
1816 }
1817
1818 /* Force DT_FLAGS to always be set.
1819 Required by HPUX 11.00 patch PHSS_26559. */
1820 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1821 return FALSE;
1822
1823 if (plt)
1824 {
1825 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1826 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1827 || !add_dynamic_entry (DT_JMPREL, 0))
1828 return FALSE;
1829 }
1830
1831 if (relocs)
1832 {
1833 if (!add_dynamic_entry (DT_RELA, 0)
1834 || !add_dynamic_entry (DT_RELASZ, 0)
1835 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1836 return FALSE;
1837 }
1838
1839 if (reltext)
1840 {
1841 if (!add_dynamic_entry (DT_TEXTREL, 0))
1842 return FALSE;
1843 info->flags |= DF_TEXTREL;
1844 }
1845 }
1846 #undef add_dynamic_entry
1847
1848 return TRUE;
1849 }
1850
1851 /* Called after we have output the symbol into the dynamic symbol
1852 table, but before we output the symbol into the normal symbol
1853 table.
1854
1855 For some symbols we had to change their address when outputting
1856 the dynamic symbol table. We undo that change here so that
1857 the symbols have their expected value in the normal symbol
1858 table. Ick. */
1859
1860 static bfd_boolean
1861 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1862 struct bfd_link_info *info;
1863 const char *name;
1864 Elf_Internal_Sym *sym;
1865 asection *input_sec ATTRIBUTE_UNUSED;
1866 struct elf_link_hash_entry *h;
1867 {
1868 struct elf64_hppa_link_hash_table *hppa_info;
1869 struct elf64_hppa_dyn_hash_entry *dyn_h;
1870
1871 /* We may be called with the file symbol or section symbols.
1872 They never need munging, so it is safe to ignore them. */
1873 if (!name)
1874 return TRUE;
1875
1876 /* Get the PA dyn_symbol (if any) associated with NAME. */
1877 hppa_info = elf64_hppa_hash_table (info);
1878 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1879 name, FALSE, FALSE);
1880 if (!dyn_h || dyn_h->h != h)
1881 return TRUE;
1882
1883 /* Function symbols for which we created .opd entries *may* have been
1884 munged by finish_dynamic_symbol and have to be un-munged here.
1885
1886 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1887 into non-dynamic ones, so we initialize st_shndx to -1 in
1888 mark_exported_functions and check to see if it was overwritten
1889 here instead of just checking dyn_h->h->dynindx. */
1890 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1891 {
1892 /* Restore the saved value and section index. */
1893 sym->st_value = dyn_h->st_value;
1894 sym->st_shndx = dyn_h->st_shndx;
1895 }
1896
1897 return TRUE;
1898 }
1899
1900 /* Finish up dynamic symbol handling. We set the contents of various
1901 dynamic sections here. */
1902
1903 static bfd_boolean
1904 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1905 bfd *output_bfd;
1906 struct bfd_link_info *info;
1907 struct elf_link_hash_entry *h;
1908 Elf_Internal_Sym *sym;
1909 {
1910 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1911 struct elf64_hppa_link_hash_table *hppa_info;
1912 struct elf64_hppa_dyn_hash_entry *dyn_h;
1913
1914 hppa_info = elf64_hppa_hash_table (info);
1915 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1916 h->root.root.string, FALSE, FALSE);
1917
1918 stub = hppa_info->stub_sec;
1919 splt = hppa_info->plt_sec;
1920 sdlt = hppa_info->dlt_sec;
1921 sopd = hppa_info->opd_sec;
1922 spltrel = hppa_info->plt_rel_sec;
1923 sdltrel = hppa_info->dlt_rel_sec;
1924
1925 /* Incredible. It is actually necessary to NOT use the symbol's real
1926 value when building the dynamic symbol table for a shared library.
1927 At least for symbols that refer to functions.
1928
1929 We will store a new value and section index into the symbol long
1930 enough to output it into the dynamic symbol table, then we restore
1931 the original values (in elf64_hppa_link_output_symbol_hook). */
1932 if (dyn_h && dyn_h->want_opd)
1933 {
1934 BFD_ASSERT (sopd != NULL);
1935
1936 /* Save away the original value and section index so that we
1937 can restore them later. */
1938 dyn_h->st_value = sym->st_value;
1939 dyn_h->st_shndx = sym->st_shndx;
1940
1941 /* For the dynamic symbol table entry, we want the value to be
1942 address of this symbol's entry within the .opd section. */
1943 sym->st_value = (dyn_h->opd_offset
1944 + sopd->output_offset
1945 + sopd->output_section->vma);
1946 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1947 sopd->output_section);
1948 }
1949
1950 /* Initialize a .plt entry if requested. */
1951 if (dyn_h && dyn_h->want_plt
1952 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1953 {
1954 bfd_vma value;
1955 Elf_Internal_Rela rel;
1956 bfd_byte *loc;
1957
1958 BFD_ASSERT (splt != NULL && spltrel != NULL);
1959
1960 /* We do not actually care about the value in the PLT entry
1961 if we are creating a shared library and the symbol is
1962 still undefined, we create a dynamic relocation to fill
1963 in the correct value. */
1964 if (info->shared && h->root.type == bfd_link_hash_undefined)
1965 value = 0;
1966 else
1967 value = (h->root.u.def.value + h->root.u.def.section->vma);
1968
1969 /* Fill in the entry in the procedure linkage table.
1970
1971 The format of a plt entry is
1972 <funcaddr> <__gp>.
1973
1974 plt_offset is the offset within the PLT section at which to
1975 install the PLT entry.
1976
1977 We are modifying the in-memory PLT contents here, so we do not add
1978 in the output_offset of the PLT section. */
1979
1980 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1981 value = _bfd_get_gp_value (splt->output_section->owner);
1982 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1983
1984 /* Create a dynamic IPLT relocation for this entry.
1985
1986 We are creating a relocation in the output file's PLT section,
1987 which is included within the DLT secton. So we do need to include
1988 the PLT's output_offset in the computation of the relocation's
1989 address. */
1990 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1991 + splt->output_section->vma);
1992 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1993 rel.r_addend = 0;
1994
1995 loc = spltrel->contents;
1996 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
1997 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
1998 }
1999
2000 /* Initialize an external call stub entry if requested. */
2001 if (dyn_h && dyn_h->want_stub
2002 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2003 {
2004 bfd_vma value;
2005 int insn;
2006 unsigned int max_offset;
2007
2008 BFD_ASSERT (stub != NULL);
2009
2010 /* Install the generic stub template.
2011
2012 We are modifying the contents of the stub section, so we do not
2013 need to include the stub section's output_offset here. */
2014 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2015
2016 /* Fix up the first ldd instruction.
2017
2018 We are modifying the contents of the STUB section in memory,
2019 so we do not need to include its output offset in this computation.
2020
2021 Note the plt_offset value is the value of the PLT entry relative to
2022 the start of the PLT section. These instructions will reference
2023 data relative to the value of __gp, which may not necessarily have
2024 the same address as the start of the PLT section.
2025
2026 gp_offset contains the offset of __gp within the PLT section. */
2027 value = dyn_h->plt_offset - hppa_info->gp_offset;
2028
2029 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2030 if (output_bfd->arch_info->mach >= 25)
2031 {
2032 /* Wide mode allows 16 bit offsets. */
2033 max_offset = 32768;
2034 insn &= ~ 0xfff1;
2035 insn |= re_assemble_16 ((int) value);
2036 }
2037 else
2038 {
2039 max_offset = 8192;
2040 insn &= ~ 0x3ff1;
2041 insn |= re_assemble_14 ((int) value);
2042 }
2043
2044 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2045 {
2046 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2047 dyn_h->root.string,
2048 (long) value);
2049 return FALSE;
2050 }
2051
2052 bfd_put_32 (stub->owner, (bfd_vma) insn,
2053 stub->contents + dyn_h->stub_offset);
2054
2055 /* Fix up the second ldd instruction. */
2056 value += 8;
2057 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2058 if (output_bfd->arch_info->mach >= 25)
2059 {
2060 insn &= ~ 0xfff1;
2061 insn |= re_assemble_16 ((int) value);
2062 }
2063 else
2064 {
2065 insn &= ~ 0x3ff1;
2066 insn |= re_assemble_14 ((int) value);
2067 }
2068 bfd_put_32 (stub->owner, (bfd_vma) insn,
2069 stub->contents + dyn_h->stub_offset + 8);
2070 }
2071
2072 return TRUE;
2073 }
2074
2075 /* The .opd section contains FPTRs for each function this file
2076 exports. Initialize the FPTR entries. */
2077
2078 static bfd_boolean
2079 elf64_hppa_finalize_opd (dyn_h, data)
2080 struct elf64_hppa_dyn_hash_entry *dyn_h;
2081 PTR data;
2082 {
2083 struct bfd_link_info *info = (struct bfd_link_info *)data;
2084 struct elf64_hppa_link_hash_table *hppa_info;
2085 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2086 asection *sopd;
2087 asection *sopdrel;
2088
2089 hppa_info = elf64_hppa_hash_table (info);
2090 sopd = hppa_info->opd_sec;
2091 sopdrel = hppa_info->opd_rel_sec;
2092
2093 if (h && dyn_h->want_opd)
2094 {
2095 bfd_vma value;
2096
2097 /* The first two words of an .opd entry are zero.
2098
2099 We are modifying the contents of the OPD section in memory, so we
2100 do not need to include its output offset in this computation. */
2101 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2102
2103 value = (h->root.u.def.value
2104 + h->root.u.def.section->output_section->vma
2105 + h->root.u.def.section->output_offset);
2106
2107 /* The next word is the address of the function. */
2108 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2109
2110 /* The last word is our local __gp value. */
2111 value = _bfd_get_gp_value (sopd->output_section->owner);
2112 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2113 }
2114
2115 /* If we are generating a shared library, we must generate EPLT relocations
2116 for each entry in the .opd, even for static functions (they may have
2117 had their address taken). */
2118 if (info->shared && dyn_h && dyn_h->want_opd)
2119 {
2120 Elf_Internal_Rela rel;
2121 bfd_byte *loc;
2122 int dynindx;
2123
2124 /* We may need to do a relocation against a local symbol, in
2125 which case we have to look up it's dynamic symbol index off
2126 the local symbol hash table. */
2127 if (h && h->dynindx != -1)
2128 dynindx = h->dynindx;
2129 else
2130 dynindx
2131 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2132 dyn_h->sym_indx);
2133
2134 /* The offset of this relocation is the absolute address of the
2135 .opd entry for this symbol. */
2136 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2137 + sopd->output_section->vma);
2138
2139 /* If H is non-null, then we have an external symbol.
2140
2141 It is imperative that we use a different dynamic symbol for the
2142 EPLT relocation if the symbol has global scope.
2143
2144 In the dynamic symbol table, the function symbol will have a value
2145 which is address of the function's .opd entry.
2146
2147 Thus, we can not use that dynamic symbol for the EPLT relocation
2148 (if we did, the data in the .opd would reference itself rather
2149 than the actual address of the function). Instead we have to use
2150 a new dynamic symbol which has the same value as the original global
2151 function symbol.
2152
2153 We prefix the original symbol with a "." and use the new symbol in
2154 the EPLT relocation. This new symbol has already been recorded in
2155 the symbol table, we just have to look it up and use it.
2156
2157 We do not have such problems with static functions because we do
2158 not make their addresses in the dynamic symbol table point to
2159 the .opd entry. Ultimately this should be safe since a static
2160 function can not be directly referenced outside of its shared
2161 library.
2162
2163 We do have to play similar games for FPTR relocations in shared
2164 libraries, including those for static symbols. See the FPTR
2165 handling in elf64_hppa_finalize_dynreloc. */
2166 if (h)
2167 {
2168 char *new_name;
2169 struct elf_link_hash_entry *nh;
2170
2171 new_name = alloca (strlen (h->root.root.string) + 2);
2172 new_name[0] = '.';
2173 strcpy (new_name + 1, h->root.root.string);
2174
2175 nh = elf_link_hash_lookup (elf_hash_table (info),
2176 new_name, FALSE, FALSE, FALSE);
2177
2178 /* All we really want from the new symbol is its dynamic
2179 symbol index. */
2180 dynindx = nh->dynindx;
2181 }
2182
2183 rel.r_addend = 0;
2184 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2185
2186 loc = sopdrel->contents;
2187 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2188 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2189 }
2190 return TRUE;
2191 }
2192
2193 /* The .dlt section contains addresses for items referenced through the
2194 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2195 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2196
2197 static bfd_boolean
2198 elf64_hppa_finalize_dlt (dyn_h, data)
2199 struct elf64_hppa_dyn_hash_entry *dyn_h;
2200 PTR data;
2201 {
2202 struct bfd_link_info *info = (struct bfd_link_info *)data;
2203 struct elf64_hppa_link_hash_table *hppa_info;
2204 asection *sdlt, *sdltrel;
2205 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2206
2207 hppa_info = elf64_hppa_hash_table (info);
2208
2209 sdlt = hppa_info->dlt_sec;
2210 sdltrel = hppa_info->dlt_rel_sec;
2211
2212 /* H/DYN_H may refer to a local variable and we know it's
2213 address, so there is no need to create a relocation. Just install
2214 the proper value into the DLT, note this shortcut can not be
2215 skipped when building a shared library. */
2216 if (! info->shared && h && dyn_h->want_dlt)
2217 {
2218 bfd_vma value;
2219
2220 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2221 to point to the FPTR entry in the .opd section.
2222
2223 We include the OPD's output offset in this computation as
2224 we are referring to an absolute address in the resulting
2225 object file. */
2226 if (dyn_h->want_opd)
2227 {
2228 value = (dyn_h->opd_offset
2229 + hppa_info->opd_sec->output_offset
2230 + hppa_info->opd_sec->output_section->vma);
2231 }
2232 else if ((h->root.type == bfd_link_hash_defined
2233 || h->root.type == bfd_link_hash_defweak)
2234 && h->root.u.def.section)
2235 {
2236 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2237 if (h->root.u.def.section->output_section)
2238 value += h->root.u.def.section->output_section->vma;
2239 else
2240 value += h->root.u.def.section->vma;
2241 }
2242 else
2243 /* We have an undefined function reference. */
2244 value = 0;
2245
2246 /* We do not need to include the output offset of the DLT section
2247 here because we are modifying the in-memory contents. */
2248 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2249 }
2250
2251 /* Create a relocation for the DLT entry associated with this symbol.
2252 When building a shared library the symbol does not have to be dynamic. */
2253 if (dyn_h->want_dlt
2254 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2255 {
2256 Elf_Internal_Rela rel;
2257 bfd_byte *loc;
2258 int dynindx;
2259
2260 /* We may need to do a relocation against a local symbol, in
2261 which case we have to look up it's dynamic symbol index off
2262 the local symbol hash table. */
2263 if (h && h->dynindx != -1)
2264 dynindx = h->dynindx;
2265 else
2266 dynindx
2267 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2268 dyn_h->sym_indx);
2269
2270 /* Create a dynamic relocation for this entry. Do include the output
2271 offset of the DLT entry since we need an absolute address in the
2272 resulting object file. */
2273 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2274 + sdlt->output_section->vma);
2275 if (h && h->type == STT_FUNC)
2276 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2277 else
2278 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2279 rel.r_addend = 0;
2280
2281 loc = sdltrel->contents;
2282 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2283 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2284 }
2285 return TRUE;
2286 }
2287
2288 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2289 for dynamic functions used to initialize static data. */
2290
2291 static bfd_boolean
2292 elf64_hppa_finalize_dynreloc (dyn_h, data)
2293 struct elf64_hppa_dyn_hash_entry *dyn_h;
2294 PTR data;
2295 {
2296 struct bfd_link_info *info = (struct bfd_link_info *)data;
2297 struct elf64_hppa_link_hash_table *hppa_info;
2298 struct elf_link_hash_entry *h;
2299 int dynamic_symbol;
2300
2301 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2302
2303 if (!dynamic_symbol && !info->shared)
2304 return TRUE;
2305
2306 if (dyn_h->reloc_entries)
2307 {
2308 struct elf64_hppa_dyn_reloc_entry *rent;
2309 int dynindx;
2310
2311 hppa_info = elf64_hppa_hash_table (info);
2312 h = dyn_h->h;
2313
2314 /* We may need to do a relocation against a local symbol, in
2315 which case we have to look up it's dynamic symbol index off
2316 the local symbol hash table. */
2317 if (h && h->dynindx != -1)
2318 dynindx = h->dynindx;
2319 else
2320 dynindx
2321 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2322 dyn_h->sym_indx);
2323
2324 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2325 {
2326 Elf_Internal_Rela rel;
2327 bfd_byte *loc;
2328
2329 /* Allocate one iff we are building a shared library, the relocation
2330 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2331 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2332 continue;
2333
2334 /* Create a dynamic relocation for this entry.
2335
2336 We need the output offset for the reloc's section because
2337 we are creating an absolute address in the resulting object
2338 file. */
2339 rel.r_offset = (rent->offset + rent->sec->output_offset
2340 + rent->sec->output_section->vma);
2341
2342 /* An FPTR64 relocation implies that we took the address of
2343 a function and that the function has an entry in the .opd
2344 section. We want the FPTR64 relocation to reference the
2345 entry in .opd.
2346
2347 We could munge the symbol value in the dynamic symbol table
2348 (in fact we already do for functions with global scope) to point
2349 to the .opd entry. Then we could use that dynamic symbol in
2350 this relocation.
2351
2352 Or we could do something sensible, not munge the symbol's
2353 address and instead just use a different symbol to reference
2354 the .opd entry. At least that seems sensible until you
2355 realize there's no local dynamic symbols we can use for that
2356 purpose. Thus the hair in the check_relocs routine.
2357
2358 We use a section symbol recorded by check_relocs as the
2359 base symbol for the relocation. The addend is the difference
2360 between the section symbol and the address of the .opd entry. */
2361 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2362 {
2363 bfd_vma value, value2;
2364
2365 /* First compute the address of the opd entry for this symbol. */
2366 value = (dyn_h->opd_offset
2367 + hppa_info->opd_sec->output_section->vma
2368 + hppa_info->opd_sec->output_offset);
2369
2370 /* Compute the value of the start of the section with
2371 the relocation. */
2372 value2 = (rent->sec->output_section->vma
2373 + rent->sec->output_offset);
2374
2375 /* Compute the difference between the start of the section
2376 with the relocation and the opd entry. */
2377 value -= value2;
2378
2379 /* The result becomes the addend of the relocation. */
2380 rel.r_addend = value;
2381
2382 /* The section symbol becomes the symbol for the dynamic
2383 relocation. */
2384 dynindx
2385 = _bfd_elf_link_lookup_local_dynindx (info,
2386 rent->sec->owner,
2387 rent->sec_symndx);
2388 }
2389 else
2390 rel.r_addend = rent->addend;
2391
2392 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2393
2394 loc = hppa_info->other_rel_sec->contents;
2395 loc += (hppa_info->other_rel_sec->reloc_count++
2396 * sizeof (Elf64_External_Rela));
2397 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2398 &rel, loc);
2399 }
2400 }
2401
2402 return TRUE;
2403 }
2404
2405 /* Used to decide how to sort relocs in an optimal manner for the
2406 dynamic linker, before writing them out. */
2407
2408 static enum elf_reloc_type_class
2409 elf64_hppa_reloc_type_class (rela)
2410 const Elf_Internal_Rela *rela;
2411 {
2412 if (ELF64_R_SYM (rela->r_info) == 0)
2413 return reloc_class_relative;
2414
2415 switch ((int) ELF64_R_TYPE (rela->r_info))
2416 {
2417 case R_PARISC_IPLT:
2418 return reloc_class_plt;
2419 case R_PARISC_COPY:
2420 return reloc_class_copy;
2421 default:
2422 return reloc_class_normal;
2423 }
2424 }
2425
2426 /* Finish up the dynamic sections. */
2427
2428 static bfd_boolean
2429 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2430 bfd *output_bfd;
2431 struct bfd_link_info *info;
2432 {
2433 bfd *dynobj;
2434 asection *sdyn;
2435 struct elf64_hppa_link_hash_table *hppa_info;
2436
2437 hppa_info = elf64_hppa_hash_table (info);
2438
2439 /* Finalize the contents of the .opd section. */
2440 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2441 elf64_hppa_finalize_opd,
2442 info);
2443
2444 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2445 elf64_hppa_finalize_dynreloc,
2446 info);
2447
2448 /* Finalize the contents of the .dlt section. */
2449 dynobj = elf_hash_table (info)->dynobj;
2450 /* Finalize the contents of the .dlt section. */
2451 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2452 elf64_hppa_finalize_dlt,
2453 info);
2454
2455 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2456
2457 if (elf_hash_table (info)->dynamic_sections_created)
2458 {
2459 Elf64_External_Dyn *dyncon, *dynconend;
2460
2461 BFD_ASSERT (sdyn != NULL);
2462
2463 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2464 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2465 for (; dyncon < dynconend; dyncon++)
2466 {
2467 Elf_Internal_Dyn dyn;
2468 asection *s;
2469
2470 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2471
2472 switch (dyn.d_tag)
2473 {
2474 default:
2475 break;
2476
2477 case DT_HP_LOAD_MAP:
2478 /* Compute the absolute address of 16byte scratchpad area
2479 for the dynamic linker.
2480
2481 By convention the linker script will allocate the scratchpad
2482 area at the start of the .data section. So all we have to
2483 to is find the start of the .data section. */
2484 s = bfd_get_section_by_name (output_bfd, ".data");
2485 dyn.d_un.d_ptr = s->vma;
2486 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2487 break;
2488
2489 case DT_PLTGOT:
2490 /* HP's use PLTGOT to set the GOT register. */
2491 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2492 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2493 break;
2494
2495 case DT_JMPREL:
2496 s = hppa_info->plt_rel_sec;
2497 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2498 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2499 break;
2500
2501 case DT_PLTRELSZ:
2502 s = hppa_info->plt_rel_sec;
2503 dyn.d_un.d_val = s->size;
2504 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2505 break;
2506
2507 case DT_RELA:
2508 s = hppa_info->other_rel_sec;
2509 if (! s || ! s->size)
2510 s = hppa_info->dlt_rel_sec;
2511 if (! s || ! s->size)
2512 s = hppa_info->opd_rel_sec;
2513 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2514 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2515 break;
2516
2517 case DT_RELASZ:
2518 s = hppa_info->other_rel_sec;
2519 dyn.d_un.d_val = s->size;
2520 s = hppa_info->dlt_rel_sec;
2521 dyn.d_un.d_val += s->size;
2522 s = hppa_info->opd_rel_sec;
2523 dyn.d_un.d_val += s->size;
2524 /* There is some question about whether or not the size of
2525 the PLT relocs should be included here. HP's tools do
2526 it, so we'll emulate them. */
2527 s = hppa_info->plt_rel_sec;
2528 dyn.d_un.d_val += s->size;
2529 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2530 break;
2531
2532 }
2533 }
2534 }
2535
2536 return TRUE;
2537 }
2538
2539 /* Support for core dump NOTE sections. */
2540
2541 static bfd_boolean
2542 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2543 {
2544 int offset;
2545 size_t size;
2546
2547 switch (note->descsz)
2548 {
2549 default:
2550 return FALSE;
2551
2552 case 760: /* Linux/hppa */
2553 /* pr_cursig */
2554 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2555
2556 /* pr_pid */
2557 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 32);
2558
2559 /* pr_reg */
2560 offset = 112;
2561 size = 640;
2562
2563 break;
2564 }
2565
2566 /* Make a ".reg/999" section. */
2567 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2568 size, note->descpos + offset);
2569 }
2570
2571 static bfd_boolean
2572 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2573 {
2574 char * command;
2575 int n;
2576
2577 switch (note->descsz)
2578 {
2579 default:
2580 return FALSE;
2581
2582 case 136: /* Linux/hppa elf_prpsinfo. */
2583 elf_tdata (abfd)->core_program
2584 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2585 elf_tdata (abfd)->core_command
2586 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2587 }
2588
2589 /* Note that for some reason, a spurious space is tacked
2590 onto the end of the args in some (at least one anyway)
2591 implementations, so strip it off if it exists. */
2592 command = elf_tdata (abfd)->core_command;
2593 n = strlen (command);
2594
2595 if (0 < n && command[n - 1] == ' ')
2596 command[n - 1] = '\0';
2597
2598 return TRUE;
2599 }
2600
2601 /* Return the number of additional phdrs we will need.
2602
2603 The generic ELF code only creates PT_PHDRs for executables. The HP
2604 dynamic linker requires PT_PHDRs for dynamic libraries too.
2605
2606 This routine indicates that the backend needs one additional program
2607 header for that case.
2608
2609 Note we do not have access to the link info structure here, so we have
2610 to guess whether or not we are building a shared library based on the
2611 existence of a .interp section. */
2612
2613 static int
2614 elf64_hppa_additional_program_headers (bfd *abfd,
2615 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2616 {
2617 asection *s;
2618
2619 /* If we are creating a shared library, then we have to create a
2620 PT_PHDR segment. HP's dynamic linker chokes without it. */
2621 s = bfd_get_section_by_name (abfd, ".interp");
2622 if (! s)
2623 return 1;
2624 return 0;
2625 }
2626
2627 /* Allocate and initialize any program headers required by this
2628 specific backend.
2629
2630 The generic ELF code only creates PT_PHDRs for executables. The HP
2631 dynamic linker requires PT_PHDRs for dynamic libraries too.
2632
2633 This allocates the PT_PHDR and initializes it in a manner suitable
2634 for the HP linker.
2635
2636 Note we do not have access to the link info structure here, so we have
2637 to guess whether or not we are building a shared library based on the
2638 existence of a .interp section. */
2639
2640 static bfd_boolean
2641 elf64_hppa_modify_segment_map (bfd *abfd,
2642 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2643 {
2644 struct elf_segment_map *m;
2645 asection *s;
2646
2647 s = bfd_get_section_by_name (abfd, ".interp");
2648 if (! s)
2649 {
2650 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2651 if (m->p_type == PT_PHDR)
2652 break;
2653 if (m == NULL)
2654 {
2655 m = ((struct elf_segment_map *)
2656 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2657 if (m == NULL)
2658 return FALSE;
2659
2660 m->p_type = PT_PHDR;
2661 m->p_flags = PF_R | PF_X;
2662 m->p_flags_valid = 1;
2663 m->p_paddr_valid = 1;
2664 m->includes_phdrs = 1;
2665
2666 m->next = elf_tdata (abfd)->segment_map;
2667 elf_tdata (abfd)->segment_map = m;
2668 }
2669 }
2670
2671 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2672 if (m->p_type == PT_LOAD)
2673 {
2674 unsigned int i;
2675
2676 for (i = 0; i < m->count; i++)
2677 {
2678 /* The code "hint" is not really a hint. It is a requirement
2679 for certain versions of the HP dynamic linker. Worse yet,
2680 it must be set even if the shared library does not have
2681 any code in its "text" segment (thus the check for .hash
2682 to catch this situation). */
2683 if (m->sections[i]->flags & SEC_CODE
2684 || (strcmp (m->sections[i]->name, ".hash") == 0))
2685 m->p_flags |= (PF_X | PF_HP_CODE);
2686 }
2687 }
2688
2689 return TRUE;
2690 }
2691
2692 /* Called when writing out an object file to decide the type of a
2693 symbol. */
2694 static int
2695 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2696 Elf_Internal_Sym *elf_sym;
2697 int type;
2698 {
2699 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2700 return STT_PARISC_MILLI;
2701 else
2702 return type;
2703 }
2704
2705 /* Support HP specific sections for core files. */
2706 static bfd_boolean
2707 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2708 const char *typename)
2709 {
2710 if (hdr->p_type == PT_HP_CORE_KERNEL)
2711 {
2712 asection *sect;
2713
2714 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2715 return FALSE;
2716
2717 sect = bfd_make_section_anyway (abfd, ".kernel");
2718 if (sect == NULL)
2719 return FALSE;
2720 sect->size = hdr->p_filesz;
2721 sect->filepos = hdr->p_offset;
2722 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2723 return TRUE;
2724 }
2725
2726 if (hdr->p_type == PT_HP_CORE_PROC)
2727 {
2728 int sig;
2729
2730 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2731 return FALSE;
2732 if (bfd_bread (&sig, 4, abfd) != 4)
2733 return FALSE;
2734
2735 elf_tdata (abfd)->core_signal = sig;
2736
2737 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2738 return FALSE;
2739
2740 /* GDB uses the ".reg" section to read register contents. */
2741 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2742 hdr->p_offset);
2743 }
2744
2745 if (hdr->p_type == PT_HP_CORE_LOADABLE
2746 || hdr->p_type == PT_HP_CORE_STACK
2747 || hdr->p_type == PT_HP_CORE_MMF)
2748 hdr->p_type = PT_LOAD;
2749
2750 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2751 }
2752
2753 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2754 {
2755 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2756 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2757 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2758 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2759 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2760 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2761 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
2762 { NULL, 0, 0, 0, 0 }
2763 };
2764
2765 /* The hash bucket size is the standard one, namely 4. */
2766
2767 const struct elf_size_info hppa64_elf_size_info =
2768 {
2769 sizeof (Elf64_External_Ehdr),
2770 sizeof (Elf64_External_Phdr),
2771 sizeof (Elf64_External_Shdr),
2772 sizeof (Elf64_External_Rel),
2773 sizeof (Elf64_External_Rela),
2774 sizeof (Elf64_External_Sym),
2775 sizeof (Elf64_External_Dyn),
2776 sizeof (Elf_External_Note),
2777 4,
2778 1,
2779 64, 3,
2780 ELFCLASS64, EV_CURRENT,
2781 bfd_elf64_write_out_phdrs,
2782 bfd_elf64_write_shdrs_and_ehdr,
2783 bfd_elf64_write_relocs,
2784 bfd_elf64_swap_symbol_in,
2785 bfd_elf64_swap_symbol_out,
2786 bfd_elf64_slurp_reloc_table,
2787 bfd_elf64_slurp_symbol_table,
2788 bfd_elf64_swap_dyn_in,
2789 bfd_elf64_swap_dyn_out,
2790 bfd_elf64_swap_reloc_in,
2791 bfd_elf64_swap_reloc_out,
2792 bfd_elf64_swap_reloca_in,
2793 bfd_elf64_swap_reloca_out
2794 };
2795
2796 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2797 #define TARGET_BIG_NAME "elf64-hppa"
2798 #define ELF_ARCH bfd_arch_hppa
2799 #define ELF_MACHINE_CODE EM_PARISC
2800 /* This is not strictly correct. The maximum page size for PA2.0 is
2801 64M. But everything still uses 4k. */
2802 #define ELF_MAXPAGESIZE 0x1000
2803 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2804 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2805 #define elf_info_to_howto elf_hppa_info_to_howto
2806 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2807
2808 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2809 #define elf_backend_object_p elf64_hppa_object_p
2810 #define elf_backend_final_write_processing \
2811 elf_hppa_final_write_processing
2812 #define elf_backend_fake_sections elf_hppa_fake_sections
2813 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2814
2815 #define elf_backend_relocate_section elf_hppa_relocate_section
2816
2817 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2818
2819 #define elf_backend_create_dynamic_sections \
2820 elf64_hppa_create_dynamic_sections
2821 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2822
2823 #define elf_backend_omit_section_dynsym \
2824 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2825 #define elf_backend_adjust_dynamic_symbol \
2826 elf64_hppa_adjust_dynamic_symbol
2827
2828 #define elf_backend_size_dynamic_sections \
2829 elf64_hppa_size_dynamic_sections
2830
2831 #define elf_backend_finish_dynamic_symbol \
2832 elf64_hppa_finish_dynamic_symbol
2833 #define elf_backend_finish_dynamic_sections \
2834 elf64_hppa_finish_dynamic_sections
2835 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
2836 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
2837
2838 /* Stuff for the BFD linker: */
2839 #define bfd_elf64_bfd_link_hash_table_create \
2840 elf64_hppa_hash_table_create
2841
2842 #define elf_backend_check_relocs \
2843 elf64_hppa_check_relocs
2844
2845 #define elf_backend_size_info \
2846 hppa64_elf_size_info
2847
2848 #define elf_backend_additional_program_headers \
2849 elf64_hppa_additional_program_headers
2850
2851 #define elf_backend_modify_segment_map \
2852 elf64_hppa_modify_segment_map
2853
2854 #define elf_backend_link_output_symbol_hook \
2855 elf64_hppa_link_output_symbol_hook
2856
2857 #define elf_backend_want_got_plt 0
2858 #define elf_backend_plt_readonly 0
2859 #define elf_backend_want_plt_sym 0
2860 #define elf_backend_got_header_size 0
2861 #define elf_backend_type_change_ok TRUE
2862 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2863 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2864 #define elf_backend_rela_normal 1
2865 #define elf_backend_special_sections elf64_hppa_special_sections
2866 #define elf_backend_action_discarded elf_hppa_action_discarded
2867 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2868
2869 #define elf64_bed elf64_hppa_hpux_bed
2870
2871 #include "elf64-target.h"
2872
2873 #undef TARGET_BIG_SYM
2874 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2875 #undef TARGET_BIG_NAME
2876 #define TARGET_BIG_NAME "elf64-hppa-linux"
2877 #undef elf64_bed
2878 #define elf64_bed elf64_hppa_linux_bed
2879
2880 #include "elf64-target.h"
This page took 0.10363 seconds and 5 git commands to generate.