* elf64-hppa.c (allocate_global_data_opd): Don't create an OPD entry
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "alloca-conf.h"
22 #include "bfd.h"
23 #include "sysdep.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #define ARCH_SIZE 64
30
31 #define PLT_ENTRY_SIZE 0x10
32 #define DLT_ENTRY_SIZE 0x8
33 #define OPD_ENTRY_SIZE 0x20
34
35 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
36
37 /* The stub is supposed to load the target address and target's DP
38 value out of the PLT, then do an external branch to the target
39 address.
40
41 LDD PLTOFF(%r27),%r1
42 BVE (%r1)
43 LDD PLTOFF+8(%r27),%r27
44
45 Note that we must use the LDD with a 14 bit displacement, not the one
46 with a 5 bit displacement. */
47 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
48 0x53, 0x7b, 0x00, 0x00 };
49
50 struct elf64_hppa_dyn_hash_entry
51 {
52 struct bfd_hash_entry root;
53
54 /* Offsets for this symbol in various linker sections. */
55 bfd_vma dlt_offset;
56 bfd_vma plt_offset;
57 bfd_vma opd_offset;
58 bfd_vma stub_offset;
59
60 /* The symbol table entry, if any, that this was derived from. */
61 struct elf_link_hash_entry *h;
62
63 /* The index of the (possibly local) symbol in the input bfd and its
64 associated BFD. Needed so that we can have relocs against local
65 symbols in shared libraries. */
66 long sym_indx;
67 bfd *owner;
68
69 /* Dynamic symbols may need to have two different values. One for
70 the dynamic symbol table, one for the normal symbol table.
71
72 In such cases we store the symbol's real value and section
73 index here so we can restore the real value before we write
74 the normal symbol table. */
75 bfd_vma st_value;
76 int st_shndx;
77
78 /* Used to count non-got, non-plt relocations for delayed sizing
79 of relocation sections. */
80 struct elf64_hppa_dyn_reloc_entry
81 {
82 /* Next relocation in the chain. */
83 struct elf64_hppa_dyn_reloc_entry *next;
84
85 /* The type of the relocation. */
86 int type;
87
88 /* The input section of the relocation. */
89 asection *sec;
90
91 /* The index of the section symbol for the input section of
92 the relocation. Only needed when building shared libraries. */
93 int sec_symndx;
94
95 /* The offset within the input section of the relocation. */
96 bfd_vma offset;
97
98 /* The addend for the relocation. */
99 bfd_vma addend;
100
101 } *reloc_entries;
102
103 /* Nonzero if this symbol needs an entry in one of the linker
104 sections. */
105 unsigned want_dlt;
106 unsigned want_plt;
107 unsigned want_opd;
108 unsigned want_stub;
109 };
110
111 struct elf64_hppa_dyn_hash_table
112 {
113 struct bfd_hash_table root;
114 };
115
116 struct elf64_hppa_link_hash_table
117 {
118 struct elf_link_hash_table root;
119
120 /* Shortcuts to get to the various linker defined sections. */
121 asection *dlt_sec;
122 asection *dlt_rel_sec;
123 asection *plt_sec;
124 asection *plt_rel_sec;
125 asection *opd_sec;
126 asection *opd_rel_sec;
127 asection *other_rel_sec;
128
129 /* Offset of __gp within .plt section. When the PLT gets large we want
130 to slide __gp into the PLT section so that we can continue to use
131 single DP relative instructions to load values out of the PLT. */
132 bfd_vma gp_offset;
133
134 /* Note this is not strictly correct. We should create a stub section for
135 each input section with calls. The stub section should be placed before
136 the section with the call. */
137 asection *stub_sec;
138
139 bfd_vma text_segment_base;
140 bfd_vma data_segment_base;
141
142 struct elf64_hppa_dyn_hash_table dyn_hash_table;
143
144 /* We build tables to map from an input section back to its
145 symbol index. This is the BFD for which we currently have
146 a map. */
147 bfd *section_syms_bfd;
148
149 /* Array of symbol numbers for each input section attached to the
150 current BFD. */
151 int *section_syms;
152 };
153
154 #define elf64_hppa_hash_table(p) \
155 ((struct elf64_hppa_link_hash_table *) ((p)->hash))
156
157 typedef struct bfd_hash_entry *(*new_hash_entry_func)
158 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
159
160 static struct bfd_hash_entry *elf64_hppa_new_dyn_hash_entry
161 PARAMS ((struct bfd_hash_entry *entry, struct bfd_hash_table *table,
162 const char *string));
163 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
164 PARAMS ((bfd *abfd));
165 static struct elf64_hppa_dyn_hash_entry *elf64_hppa_dyn_hash_lookup
166 PARAMS ((struct elf64_hppa_dyn_hash_table *table, const char *string,
167 bfd_boolean create, bfd_boolean copy));
168 static void elf64_hppa_dyn_hash_traverse
169 PARAMS ((struct elf64_hppa_dyn_hash_table *table,
170 bfd_boolean (*func) (struct elf64_hppa_dyn_hash_entry *, PTR),
171 PTR info));
172
173 static const char *get_dyn_name
174 PARAMS ((bfd *, struct elf_link_hash_entry *,
175 const Elf_Internal_Rela *, char **, size_t *));
176
177 /* This must follow the definitions of the various derived linker
178 hash tables and shared functions. */
179 #include "elf-hppa.h"
180
181 static bfd_boolean elf64_hppa_object_p
182 PARAMS ((bfd *));
183
184 static void elf64_hppa_post_process_headers
185 PARAMS ((bfd *, struct bfd_link_info *));
186
187 static bfd_boolean elf64_hppa_create_dynamic_sections
188 PARAMS ((bfd *, struct bfd_link_info *));
189
190 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
191 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
192
193 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195
196 static bfd_boolean elf64_hppa_size_dynamic_sections
197 PARAMS ((bfd *, struct bfd_link_info *));
198
199 static bfd_boolean elf64_hppa_link_output_symbol_hook
200 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
201 asection *, struct elf_link_hash_entry *));
202
203 static bfd_boolean elf64_hppa_finish_dynamic_symbol
204 PARAMS ((bfd *, struct bfd_link_info *,
205 struct elf_link_hash_entry *, Elf_Internal_Sym *));
206
207 static int elf64_hppa_additional_program_headers
208 PARAMS ((bfd *));
209
210 static bfd_boolean elf64_hppa_modify_segment_map
211 PARAMS ((bfd *, struct bfd_link_info *));
212
213 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
214 PARAMS ((const Elf_Internal_Rela *));
215
216 static bfd_boolean elf64_hppa_finish_dynamic_sections
217 PARAMS ((bfd *, struct bfd_link_info *));
218
219 static bfd_boolean elf64_hppa_check_relocs
220 PARAMS ((bfd *, struct bfd_link_info *,
221 asection *, const Elf_Internal_Rela *));
222
223 static bfd_boolean elf64_hppa_dynamic_symbol_p
224 PARAMS ((struct elf_link_hash_entry *, struct bfd_link_info *));
225
226 static bfd_boolean elf64_hppa_mark_exported_functions
227 PARAMS ((struct elf_link_hash_entry *, PTR));
228
229 static bfd_boolean elf64_hppa_finalize_opd
230 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
231
232 static bfd_boolean elf64_hppa_finalize_dlt
233 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
234
235 static bfd_boolean allocate_global_data_dlt
236 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
237
238 static bfd_boolean allocate_global_data_plt
239 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
240
241 static bfd_boolean allocate_global_data_stub
242 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
243
244 static bfd_boolean allocate_global_data_opd
245 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
246
247 static bfd_boolean get_reloc_section
248 PARAMS ((bfd *, struct elf64_hppa_link_hash_table *, asection *));
249
250 static bfd_boolean count_dyn_reloc
251 PARAMS ((bfd *, struct elf64_hppa_dyn_hash_entry *,
252 int, asection *, int, bfd_vma, bfd_vma));
253
254 static bfd_boolean allocate_dynrel_entries
255 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
256
257 static bfd_boolean elf64_hppa_finalize_dynreloc
258 PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
259
260 static bfd_boolean get_opd
261 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
262
263 static bfd_boolean get_plt
264 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
265
266 static bfd_boolean get_dlt
267 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
268
269 static bfd_boolean get_stub
270 PARAMS ((bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *));
271
272 static int elf64_hppa_elf_get_symbol_type
273 PARAMS ((Elf_Internal_Sym *, int));
274
275 static bfd_boolean
276 elf64_hppa_dyn_hash_table_init (struct elf64_hppa_dyn_hash_table *ht,
277 bfd *abfd ATTRIBUTE_UNUSED,
278 new_hash_entry_func new,
279 unsigned int entsize)
280 {
281 memset (ht, 0, sizeof (*ht));
282 return bfd_hash_table_init (&ht->root, new, entsize);
283 }
284
285 static struct bfd_hash_entry*
286 elf64_hppa_new_dyn_hash_entry (entry, table, string)
287 struct bfd_hash_entry *entry;
288 struct bfd_hash_table *table;
289 const char *string;
290 {
291 struct elf64_hppa_dyn_hash_entry *ret;
292 ret = (struct elf64_hppa_dyn_hash_entry *) entry;
293
294 /* Allocate the structure if it has not already been allocated by a
295 subclass. */
296 if (!ret)
297 ret = bfd_hash_allocate (table, sizeof (*ret));
298
299 if (!ret)
300 return 0;
301
302 /* Call the allocation method of the superclass. */
303 ret = ((struct elf64_hppa_dyn_hash_entry *)
304 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));
305
306 /* Initialize our local data. All zeros. */
307 memset (&ret->dlt_offset, 0,
308 (sizeof (struct elf64_hppa_dyn_hash_entry)
309 - offsetof (struct elf64_hppa_dyn_hash_entry, dlt_offset)));
310
311 return &ret->root;
312 }
313
314 /* Create the derived linker hash table. The PA64 ELF port uses this
315 derived hash table to keep information specific to the PA ElF
316 linker (without using static variables). */
317
318 static struct bfd_link_hash_table*
319 elf64_hppa_hash_table_create (abfd)
320 bfd *abfd;
321 {
322 struct elf64_hppa_link_hash_table *ret;
323
324 ret = bfd_zalloc (abfd, (bfd_size_type) sizeof (*ret));
325 if (!ret)
326 return 0;
327 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
328 _bfd_elf_link_hash_newfunc,
329 sizeof (struct elf_link_hash_entry)))
330 {
331 bfd_release (abfd, ret);
332 return 0;
333 }
334
335 if (!elf64_hppa_dyn_hash_table_init (&ret->dyn_hash_table, abfd,
336 elf64_hppa_new_dyn_hash_entry,
337 sizeof (struct elf64_hppa_dyn_hash_entry)))
338 return 0;
339 return &ret->root.root;
340 }
341
342 /* Look up an entry in a PA64 ELF linker hash table. */
343
344 static struct elf64_hppa_dyn_hash_entry *
345 elf64_hppa_dyn_hash_lookup(table, string, create, copy)
346 struct elf64_hppa_dyn_hash_table *table;
347 const char *string;
348 bfd_boolean create, copy;
349 {
350 return ((struct elf64_hppa_dyn_hash_entry *)
351 bfd_hash_lookup (&table->root, string, create, copy));
352 }
353
354 /* Traverse a PA64 ELF linker hash table. */
355
356 static void
357 elf64_hppa_dyn_hash_traverse (table, func, info)
358 struct elf64_hppa_dyn_hash_table *table;
359 bfd_boolean (*func) PARAMS ((struct elf64_hppa_dyn_hash_entry *, PTR));
360 PTR info;
361 {
362 (bfd_hash_traverse
363 (&table->root,
364 (bfd_boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) func,
365 info));
366 }
367 \f
368 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
369
370 Additionally we set the default architecture and machine. */
371 static bfd_boolean
372 elf64_hppa_object_p (abfd)
373 bfd *abfd;
374 {
375 Elf_Internal_Ehdr * i_ehdrp;
376 unsigned int flags;
377
378 i_ehdrp = elf_elfheader (abfd);
379 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
380 {
381 /* GCC on hppa-linux produces binaries with OSABI=Linux,
382 but the kernel produces corefiles with OSABI=SysV. */
383 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_LINUX
384 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
385 return FALSE;
386 }
387 else
388 {
389 /* HPUX produces binaries with OSABI=HPUX,
390 but the kernel produces corefiles with OSABI=SysV. */
391 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
392 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
393 return FALSE;
394 }
395
396 flags = i_ehdrp->e_flags;
397 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
398 {
399 case EFA_PARISC_1_0:
400 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
401 case EFA_PARISC_1_1:
402 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
403 case EFA_PARISC_2_0:
404 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
405 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
406 else
407 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
408 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
409 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
410 }
411 /* Don't be fussy. */
412 return TRUE;
413 }
414
415 /* Given section type (hdr->sh_type), return a boolean indicating
416 whether or not the section is an elf64-hppa specific section. */
417 static bfd_boolean
418 elf64_hppa_section_from_shdr (bfd *abfd,
419 Elf_Internal_Shdr *hdr,
420 const char *name,
421 int shindex)
422 {
423 asection *newsect;
424
425 switch (hdr->sh_type)
426 {
427 case SHT_PARISC_EXT:
428 if (strcmp (name, ".PARISC.archext") != 0)
429 return FALSE;
430 break;
431 case SHT_PARISC_UNWIND:
432 if (strcmp (name, ".PARISC.unwind") != 0)
433 return FALSE;
434 break;
435 case SHT_PARISC_DOC:
436 case SHT_PARISC_ANNOT:
437 default:
438 return FALSE;
439 }
440
441 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
442 return FALSE;
443 newsect = hdr->bfd_section;
444
445 return TRUE;
446 }
447
448 /* Construct a string for use in the elf64_hppa_dyn_hash_table. The
449 name describes what was once potentially anonymous memory. We
450 allocate memory as necessary, possibly reusing PBUF/PLEN. */
451
452 static const char *
453 get_dyn_name (abfd, h, rel, pbuf, plen)
454 bfd *abfd;
455 struct elf_link_hash_entry *h;
456 const Elf_Internal_Rela *rel;
457 char **pbuf;
458 size_t *plen;
459 {
460 asection *sec = abfd->sections;
461 size_t nlen, tlen;
462 char *buf;
463 size_t len;
464
465 if (h && rel->r_addend == 0)
466 return h->root.root.string;
467
468 if (h)
469 nlen = strlen (h->root.root.string);
470 else
471 nlen = 8 + 1 + sizeof (rel->r_info) * 2 - 8;
472 tlen = nlen + 1 + sizeof (rel->r_addend) * 2 + 1;
473
474 len = *plen;
475 buf = *pbuf;
476 if (len < tlen)
477 {
478 if (buf)
479 free (buf);
480 *pbuf = buf = malloc (tlen);
481 *plen = len = tlen;
482 if (!buf)
483 return NULL;
484 }
485
486 if (h)
487 {
488 memcpy (buf, h->root.root.string, nlen);
489 buf[nlen++] = '+';
490 sprintf_vma (buf + nlen, rel->r_addend);
491 }
492 else
493 {
494 nlen = sprintf (buf, "%x:%lx",
495 sec->id & 0xffffffff,
496 (long) ELF64_R_SYM (rel->r_info));
497 if (rel->r_addend)
498 {
499 buf[nlen++] = '+';
500 sprintf_vma (buf + nlen, rel->r_addend);
501 }
502 }
503
504 return buf;
505 }
506
507 /* SEC is a section containing relocs for an input BFD when linking; return
508 a suitable section for holding relocs in the output BFD for a link. */
509
510 static bfd_boolean
511 get_reloc_section (abfd, hppa_info, sec)
512 bfd *abfd;
513 struct elf64_hppa_link_hash_table *hppa_info;
514 asection *sec;
515 {
516 const char *srel_name;
517 asection *srel;
518 bfd *dynobj;
519
520 srel_name = (bfd_elf_string_from_elf_section
521 (abfd, elf_elfheader(abfd)->e_shstrndx,
522 elf_section_data(sec)->rel_hdr.sh_name));
523 if (srel_name == NULL)
524 return FALSE;
525
526 BFD_ASSERT ((strncmp (srel_name, ".rela", 5) == 0
527 && strcmp (bfd_get_section_name (abfd, sec),
528 srel_name+5) == 0)
529 || (strncmp (srel_name, ".rel", 4) == 0
530 && strcmp (bfd_get_section_name (abfd, sec),
531 srel_name+4) == 0));
532
533 dynobj = hppa_info->root.dynobj;
534 if (!dynobj)
535 hppa_info->root.dynobj = dynobj = abfd;
536
537 srel = bfd_get_section_by_name (dynobj, srel_name);
538 if (srel == NULL)
539 {
540 srel = bfd_make_section_with_flags (dynobj, srel_name,
541 (SEC_ALLOC
542 | SEC_LOAD
543 | SEC_HAS_CONTENTS
544 | SEC_IN_MEMORY
545 | SEC_LINKER_CREATED
546 | SEC_READONLY));
547 if (srel == NULL
548 || !bfd_set_section_alignment (dynobj, srel, 3))
549 return FALSE;
550 }
551
552 hppa_info->other_rel_sec = srel;
553 return TRUE;
554 }
555
556 /* Add a new entry to the list of dynamic relocations against DYN_H.
557
558 We use this to keep a record of all the FPTR relocations against a
559 particular symbol so that we can create FPTR relocations in the
560 output file. */
561
562 static bfd_boolean
563 count_dyn_reloc (abfd, dyn_h, type, sec, sec_symndx, offset, addend)
564 bfd *abfd;
565 struct elf64_hppa_dyn_hash_entry *dyn_h;
566 int type;
567 asection *sec;
568 int sec_symndx;
569 bfd_vma offset;
570 bfd_vma addend;
571 {
572 struct elf64_hppa_dyn_reloc_entry *rent;
573
574 rent = (struct elf64_hppa_dyn_reloc_entry *)
575 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
576 if (!rent)
577 return FALSE;
578
579 rent->next = dyn_h->reloc_entries;
580 rent->type = type;
581 rent->sec = sec;
582 rent->sec_symndx = sec_symndx;
583 rent->offset = offset;
584 rent->addend = addend;
585 dyn_h->reloc_entries = rent;
586
587 return TRUE;
588 }
589
590 /* Scan the RELOCS and record the type of dynamic entries that each
591 referenced symbol needs. */
592
593 static bfd_boolean
594 elf64_hppa_check_relocs (abfd, info, sec, relocs)
595 bfd *abfd;
596 struct bfd_link_info *info;
597 asection *sec;
598 const Elf_Internal_Rela *relocs;
599 {
600 struct elf64_hppa_link_hash_table *hppa_info;
601 const Elf_Internal_Rela *relend;
602 Elf_Internal_Shdr *symtab_hdr;
603 const Elf_Internal_Rela *rel;
604 asection *dlt, *plt, *stubs;
605 char *buf;
606 size_t buf_len;
607 int sec_symndx;
608
609 if (info->relocatable)
610 return TRUE;
611
612 /* If this is the first dynamic object found in the link, create
613 the special sections required for dynamic linking. */
614 if (! elf_hash_table (info)->dynamic_sections_created)
615 {
616 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
617 return FALSE;
618 }
619
620 hppa_info = elf64_hppa_hash_table (info);
621 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
622
623 /* If necessary, build a new table holding section symbols indices
624 for this BFD. */
625
626 if (info->shared && hppa_info->section_syms_bfd != abfd)
627 {
628 unsigned long i;
629 unsigned int highest_shndx;
630 Elf_Internal_Sym *local_syms = NULL;
631 Elf_Internal_Sym *isym, *isymend;
632 bfd_size_type amt;
633
634 /* We're done with the old cache of section index to section symbol
635 index information. Free it.
636
637 ?!? Note we leak the last section_syms array. Presumably we
638 could free it in one of the later routines in this file. */
639 if (hppa_info->section_syms)
640 free (hppa_info->section_syms);
641
642 /* Read this BFD's local symbols. */
643 if (symtab_hdr->sh_info != 0)
644 {
645 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
646 if (local_syms == NULL)
647 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
648 symtab_hdr->sh_info, 0,
649 NULL, NULL, NULL);
650 if (local_syms == NULL)
651 return FALSE;
652 }
653
654 /* Record the highest section index referenced by the local symbols. */
655 highest_shndx = 0;
656 isymend = local_syms + symtab_hdr->sh_info;
657 for (isym = local_syms; isym < isymend; isym++)
658 {
659 if (isym->st_shndx > highest_shndx)
660 highest_shndx = isym->st_shndx;
661 }
662
663 /* Allocate an array to hold the section index to section symbol index
664 mapping. Bump by one since we start counting at zero. */
665 highest_shndx++;
666 amt = highest_shndx;
667 amt *= sizeof (int);
668 hppa_info->section_syms = (int *) bfd_malloc (amt);
669
670 /* Now walk the local symbols again. If we find a section symbol,
671 record the index of the symbol into the section_syms array. */
672 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
673 {
674 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
675 hppa_info->section_syms[isym->st_shndx] = i;
676 }
677
678 /* We are finished with the local symbols. */
679 if (local_syms != NULL
680 && symtab_hdr->contents != (unsigned char *) local_syms)
681 {
682 if (! info->keep_memory)
683 free (local_syms);
684 else
685 {
686 /* Cache the symbols for elf_link_input_bfd. */
687 symtab_hdr->contents = (unsigned char *) local_syms;
688 }
689 }
690
691 /* Record which BFD we built the section_syms mapping for. */
692 hppa_info->section_syms_bfd = abfd;
693 }
694
695 /* Record the symbol index for this input section. We may need it for
696 relocations when building shared libraries. When not building shared
697 libraries this value is never really used, but assign it to zero to
698 prevent out of bounds memory accesses in other routines. */
699 if (info->shared)
700 {
701 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
702
703 /* If we did not find a section symbol for this section, then
704 something went terribly wrong above. */
705 if (sec_symndx == -1)
706 return FALSE;
707
708 sec_symndx = hppa_info->section_syms[sec_symndx];
709 }
710 else
711 sec_symndx = 0;
712
713 dlt = plt = stubs = NULL;
714 buf = NULL;
715 buf_len = 0;
716
717 relend = relocs + sec->reloc_count;
718 for (rel = relocs; rel < relend; ++rel)
719 {
720 enum
721 {
722 NEED_DLT = 1,
723 NEED_PLT = 2,
724 NEED_STUB = 4,
725 NEED_OPD = 8,
726 NEED_DYNREL = 16,
727 };
728
729 struct elf_link_hash_entry *h = NULL;
730 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
731 struct elf64_hppa_dyn_hash_entry *dyn_h;
732 int need_entry;
733 const char *addr_name;
734 bfd_boolean maybe_dynamic;
735 int dynrel_type = R_PARISC_NONE;
736 static reloc_howto_type *howto;
737
738 if (r_symndx >= symtab_hdr->sh_info)
739 {
740 /* We're dealing with a global symbol -- find its hash entry
741 and mark it as being referenced. */
742 long indx = r_symndx - symtab_hdr->sh_info;
743 h = elf_sym_hashes (abfd)[indx];
744 while (h->root.type == bfd_link_hash_indirect
745 || h->root.type == bfd_link_hash_warning)
746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
747
748 h->ref_regular = 1;
749 }
750
751 /* We can only get preliminary data on whether a symbol is
752 locally or externally defined, as not all of the input files
753 have yet been processed. Do something with what we know, as
754 this may help reduce memory usage and processing time later. */
755 maybe_dynamic = FALSE;
756 if (h && ((info->shared
757 && (!info->symbolic
758 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
759 || !h->def_regular
760 || h->root.type == bfd_link_hash_defweak))
761 maybe_dynamic = TRUE;
762
763 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
764 need_entry = 0;
765 switch (howto->type)
766 {
767 /* These are simple indirect references to symbols through the
768 DLT. We need to create a DLT entry for any symbols which
769 appears in a DLTIND relocation. */
770 case R_PARISC_DLTIND21L:
771 case R_PARISC_DLTIND14R:
772 case R_PARISC_DLTIND14F:
773 case R_PARISC_DLTIND14WR:
774 case R_PARISC_DLTIND14DR:
775 need_entry = NEED_DLT;
776 break;
777
778 /* ?!? These need a DLT entry. But I have no idea what to do with
779 the "link time TP value. */
780 case R_PARISC_LTOFF_TP21L:
781 case R_PARISC_LTOFF_TP14R:
782 case R_PARISC_LTOFF_TP14F:
783 case R_PARISC_LTOFF_TP64:
784 case R_PARISC_LTOFF_TP14WR:
785 case R_PARISC_LTOFF_TP14DR:
786 case R_PARISC_LTOFF_TP16F:
787 case R_PARISC_LTOFF_TP16WF:
788 case R_PARISC_LTOFF_TP16DF:
789 need_entry = NEED_DLT;
790 break;
791
792 /* These are function calls. Depending on their precise target we
793 may need to make a stub for them. The stub uses the PLT, so we
794 need to create PLT entries for these symbols too. */
795 case R_PARISC_PCREL12F:
796 case R_PARISC_PCREL17F:
797 case R_PARISC_PCREL22F:
798 case R_PARISC_PCREL32:
799 case R_PARISC_PCREL64:
800 case R_PARISC_PCREL21L:
801 case R_PARISC_PCREL17R:
802 case R_PARISC_PCREL17C:
803 case R_PARISC_PCREL14R:
804 case R_PARISC_PCREL14F:
805 case R_PARISC_PCREL22C:
806 case R_PARISC_PCREL14WR:
807 case R_PARISC_PCREL14DR:
808 case R_PARISC_PCREL16F:
809 case R_PARISC_PCREL16WF:
810 case R_PARISC_PCREL16DF:
811 need_entry = (NEED_PLT | NEED_STUB);
812 break;
813
814 case R_PARISC_PLTOFF21L:
815 case R_PARISC_PLTOFF14R:
816 case R_PARISC_PLTOFF14F:
817 case R_PARISC_PLTOFF14WR:
818 case R_PARISC_PLTOFF14DR:
819 case R_PARISC_PLTOFF16F:
820 case R_PARISC_PLTOFF16WF:
821 case R_PARISC_PLTOFF16DF:
822 need_entry = (NEED_PLT);
823 break;
824
825 case R_PARISC_DIR64:
826 if (info->shared || maybe_dynamic)
827 need_entry = (NEED_DYNREL);
828 dynrel_type = R_PARISC_DIR64;
829 break;
830
831 /* This is an indirect reference through the DLT to get the address
832 of a OPD descriptor. Thus we need to make a DLT entry that points
833 to an OPD entry. */
834 case R_PARISC_LTOFF_FPTR21L:
835 case R_PARISC_LTOFF_FPTR14R:
836 case R_PARISC_LTOFF_FPTR14WR:
837 case R_PARISC_LTOFF_FPTR14DR:
838 case R_PARISC_LTOFF_FPTR32:
839 case R_PARISC_LTOFF_FPTR64:
840 case R_PARISC_LTOFF_FPTR16F:
841 case R_PARISC_LTOFF_FPTR16WF:
842 case R_PARISC_LTOFF_FPTR16DF:
843 if (info->shared || maybe_dynamic)
844 need_entry = (NEED_DLT | NEED_OPD);
845 else
846 need_entry = (NEED_DLT | NEED_OPD);
847 dynrel_type = R_PARISC_FPTR64;
848 break;
849
850 /* This is a simple OPD entry. */
851 case R_PARISC_FPTR64:
852 if (info->shared || maybe_dynamic)
853 need_entry = (NEED_OPD | NEED_DYNREL);
854 else
855 need_entry = (NEED_OPD);
856 dynrel_type = R_PARISC_FPTR64;
857 break;
858
859 /* Add more cases as needed. */
860 }
861
862 if (!need_entry)
863 continue;
864
865 /* Collect a canonical name for this address. */
866 addr_name = get_dyn_name (abfd, h, rel, &buf, &buf_len);
867
868 /* Collect the canonical entry data for this address. */
869 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
870 addr_name, TRUE, TRUE);
871 BFD_ASSERT (dyn_h);
872
873 /* Stash away enough information to be able to find this symbol
874 regardless of whether or not it is local or global. */
875 dyn_h->h = h;
876 dyn_h->owner = abfd;
877 dyn_h->sym_indx = r_symndx;
878
879 /* ?!? We may need to do some error checking in here. */
880 /* Create what's needed. */
881 if (need_entry & NEED_DLT)
882 {
883 if (! hppa_info->dlt_sec
884 && ! get_dlt (abfd, info, hppa_info))
885 goto err_out;
886 dyn_h->want_dlt = 1;
887 }
888
889 if (need_entry & NEED_PLT)
890 {
891 if (! hppa_info->plt_sec
892 && ! get_plt (abfd, info, hppa_info))
893 goto err_out;
894 dyn_h->want_plt = 1;
895 }
896
897 if (need_entry & NEED_STUB)
898 {
899 if (! hppa_info->stub_sec
900 && ! get_stub (abfd, info, hppa_info))
901 goto err_out;
902 dyn_h->want_stub = 1;
903 }
904
905 if (need_entry & NEED_OPD)
906 {
907 if (! hppa_info->opd_sec
908 && ! get_opd (abfd, info, hppa_info))
909 goto err_out;
910
911 dyn_h->want_opd = 1;
912
913 /* FPTRs are not allocated by the dynamic linker for PA64, though
914 it is possible that will change in the future. */
915
916 /* This could be a local function that had its address taken, in
917 which case H will be NULL. */
918 if (h)
919 h->needs_plt = 1;
920 }
921
922 /* Add a new dynamic relocation to the chain of dynamic
923 relocations for this symbol. */
924 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
925 {
926 if (! hppa_info->other_rel_sec
927 && ! get_reloc_section (abfd, hppa_info, sec))
928 goto err_out;
929
930 if (!count_dyn_reloc (abfd, dyn_h, dynrel_type, sec,
931 sec_symndx, rel->r_offset, rel->r_addend))
932 goto err_out;
933
934 /* If we are building a shared library and we just recorded
935 a dynamic R_PARISC_FPTR64 relocation, then make sure the
936 section symbol for this section ends up in the dynamic
937 symbol table. */
938 if (info->shared && dynrel_type == R_PARISC_FPTR64
939 && ! (bfd_elf_link_record_local_dynamic_symbol
940 (info, abfd, sec_symndx)))
941 return FALSE;
942 }
943 }
944
945 if (buf)
946 free (buf);
947 return TRUE;
948
949 err_out:
950 if (buf)
951 free (buf);
952 return FALSE;
953 }
954
955 struct elf64_hppa_allocate_data
956 {
957 struct bfd_link_info *info;
958 bfd_size_type ofs;
959 };
960
961 /* Should we do dynamic things to this symbol? */
962
963 static bfd_boolean
964 elf64_hppa_dynamic_symbol_p (h, info)
965 struct elf_link_hash_entry *h;
966 struct bfd_link_info *info;
967 {
968 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
969 and relocations that retrieve a function descriptor? Assume the
970 worst for now. */
971 if (_bfd_elf_dynamic_symbol_p (h, info, 1))
972 {
973 /* ??? Why is this here and not elsewhere is_local_label_name. */
974 if (h->root.root.string[0] == '$' && h->root.root.string[1] == '$')
975 return FALSE;
976
977 return TRUE;
978 }
979 else
980 return FALSE;
981 }
982
983 /* Mark all functions exported by this file so that we can later allocate
984 entries in .opd for them. */
985
986 static bfd_boolean
987 elf64_hppa_mark_exported_functions (h, data)
988 struct elf_link_hash_entry *h;
989 PTR data;
990 {
991 struct bfd_link_info *info = (struct bfd_link_info *)data;
992 struct elf64_hppa_link_hash_table *hppa_info;
993
994 hppa_info = elf64_hppa_hash_table (info);
995
996 if (h->root.type == bfd_link_hash_warning)
997 h = (struct elf_link_hash_entry *) h->root.u.i.link;
998
999 if (h
1000 && (h->root.type == bfd_link_hash_defined
1001 || h->root.type == bfd_link_hash_defweak)
1002 && h->root.u.def.section->output_section != NULL
1003 && h->type == STT_FUNC)
1004 {
1005 struct elf64_hppa_dyn_hash_entry *dyn_h;
1006
1007 /* Add this symbol to the PA64 linker hash table. */
1008 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1009 h->root.root.string, TRUE, TRUE);
1010 BFD_ASSERT (dyn_h);
1011 dyn_h->h = h;
1012
1013 if (! hppa_info->opd_sec
1014 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
1015 return FALSE;
1016
1017 dyn_h->want_opd = 1;
1018 /* Put a flag here for output_symbol_hook. */
1019 dyn_h->st_shndx = -1;
1020 h->needs_plt = 1;
1021 }
1022
1023 return TRUE;
1024 }
1025
1026 /* Allocate space for a DLT entry. */
1027
1028 static bfd_boolean
1029 allocate_global_data_dlt (dyn_h, data)
1030 struct elf64_hppa_dyn_hash_entry *dyn_h;
1031 PTR data;
1032 {
1033 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1034
1035 if (dyn_h->want_dlt)
1036 {
1037 struct elf_link_hash_entry *h = dyn_h->h;
1038
1039 if (x->info->shared)
1040 {
1041 /* Possibly add the symbol to the local dynamic symbol
1042 table since we might need to create a dynamic relocation
1043 against it. */
1044 if (! h
1045 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI))
1046 {
1047 bfd *owner;
1048 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1049
1050 if (! (bfd_elf_link_record_local_dynamic_symbol
1051 (x->info, owner, dyn_h->sym_indx)))
1052 return FALSE;
1053 }
1054 }
1055
1056 dyn_h->dlt_offset = x->ofs;
1057 x->ofs += DLT_ENTRY_SIZE;
1058 }
1059 return TRUE;
1060 }
1061
1062 /* Allocate space for a DLT.PLT entry. */
1063
1064 static bfd_boolean
1065 allocate_global_data_plt (dyn_h, data)
1066 struct elf64_hppa_dyn_hash_entry *dyn_h;
1067 PTR data;
1068 {
1069 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1070
1071 if (dyn_h->want_plt
1072 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1073 && !((dyn_h->h->root.type == bfd_link_hash_defined
1074 || dyn_h->h->root.type == bfd_link_hash_defweak)
1075 && dyn_h->h->root.u.def.section->output_section != NULL))
1076 {
1077 dyn_h->plt_offset = x->ofs;
1078 x->ofs += PLT_ENTRY_SIZE;
1079 if (dyn_h->plt_offset < 0x2000)
1080 elf64_hppa_hash_table (x->info)->gp_offset = dyn_h->plt_offset;
1081 }
1082 else
1083 dyn_h->want_plt = 0;
1084
1085 return TRUE;
1086 }
1087
1088 /* Allocate space for a STUB entry. */
1089
1090 static bfd_boolean
1091 allocate_global_data_stub (dyn_h, data)
1092 struct elf64_hppa_dyn_hash_entry *dyn_h;
1093 PTR data;
1094 {
1095 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1096
1097 if (dyn_h->want_stub
1098 && elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info)
1099 && !((dyn_h->h->root.type == bfd_link_hash_defined
1100 || dyn_h->h->root.type == bfd_link_hash_defweak)
1101 && dyn_h->h->root.u.def.section->output_section != NULL))
1102 {
1103 dyn_h->stub_offset = x->ofs;
1104 x->ofs += sizeof (plt_stub);
1105 }
1106 else
1107 dyn_h->want_stub = 0;
1108 return TRUE;
1109 }
1110
1111 /* Allocate space for a FPTR entry. */
1112
1113 static bfd_boolean
1114 allocate_global_data_opd (dyn_h, data)
1115 struct elf64_hppa_dyn_hash_entry *dyn_h;
1116 PTR data;
1117 {
1118 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1119
1120 if (dyn_h->want_opd)
1121 {
1122 struct elf_link_hash_entry *h = dyn_h->h;
1123
1124 if (h)
1125 while (h->root.type == bfd_link_hash_indirect
1126 || h->root.type == bfd_link_hash_warning)
1127 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1128
1129 /* We never need an opd entry for a symbol which is not
1130 defined by this output file. */
1131 if (h && (h->root.type == bfd_link_hash_undefined
1132 || h->root.type == bfd_link_hash_undefweak
1133 || h->root.u.def.section->output_section == NULL))
1134 dyn_h->want_opd = 0;
1135
1136 /* If we are creating a shared library, took the address of a local
1137 function or might export this function from this object file, then
1138 we have to create an opd descriptor. */
1139 else if (x->info->shared
1140 || h == NULL
1141 || (h->dynindx == -1 && h->type != STT_PARISC_MILLI)
1142 || (h->root.type == bfd_link_hash_defined
1143 || h->root.type == bfd_link_hash_defweak))
1144 {
1145 /* If we are creating a shared library, then we will have to
1146 create a runtime relocation for the symbol to properly
1147 initialize the .opd entry. Make sure the symbol gets
1148 added to the dynamic symbol table. */
1149 if (x->info->shared
1150 && (h == NULL || (h->dynindx == -1)))
1151 {
1152 bfd *owner;
1153 owner = (h ? h->root.u.def.section->owner : dyn_h->owner);
1154
1155 if (!bfd_elf_link_record_local_dynamic_symbol
1156 (x->info, owner, dyn_h->sym_indx))
1157 return FALSE;
1158 }
1159
1160 /* This may not be necessary or desirable anymore now that
1161 we have some support for dealing with section symbols
1162 in dynamic relocs. But name munging does make the result
1163 much easier to debug. ie, the EPLT reloc will reference
1164 a symbol like .foobar, instead of .text + offset. */
1165 if (x->info->shared && h)
1166 {
1167 char *new_name;
1168 struct elf_link_hash_entry *nh;
1169
1170 new_name = alloca (strlen (h->root.root.string) + 2);
1171 new_name[0] = '.';
1172 strcpy (new_name + 1, h->root.root.string);
1173
1174 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1175 new_name, TRUE, TRUE, TRUE);
1176
1177 nh->root.type = h->root.type;
1178 nh->root.u.def.value = h->root.u.def.value;
1179 nh->root.u.def.section = h->root.u.def.section;
1180
1181 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1182 return FALSE;
1183
1184 }
1185 dyn_h->opd_offset = x->ofs;
1186 x->ofs += OPD_ENTRY_SIZE;
1187 }
1188
1189 /* Otherwise we do not need an opd entry. */
1190 else
1191 dyn_h->want_opd = 0;
1192 }
1193 return TRUE;
1194 }
1195
1196 /* HP requires the EI_OSABI field to be filled in. The assignment to
1197 EI_ABIVERSION may not be strictly necessary. */
1198
1199 static void
1200 elf64_hppa_post_process_headers (abfd, link_info)
1201 bfd * abfd;
1202 struct bfd_link_info * link_info ATTRIBUTE_UNUSED;
1203 {
1204 Elf_Internal_Ehdr * i_ehdrp;
1205
1206 i_ehdrp = elf_elfheader (abfd);
1207
1208 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
1209 {
1210 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_LINUX;
1211 }
1212 else
1213 {
1214 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_HPUX;
1215 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1216 }
1217 }
1218
1219 /* Create function descriptor section (.opd). This section is called .opd
1220 because it contains "official procedure descriptors". The "official"
1221 refers to the fact that these descriptors are used when taking the address
1222 of a procedure, thus ensuring a unique address for each procedure. */
1223
1224 static bfd_boolean
1225 get_opd (abfd, info, hppa_info)
1226 bfd *abfd;
1227 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1228 struct elf64_hppa_link_hash_table *hppa_info;
1229 {
1230 asection *opd;
1231 bfd *dynobj;
1232
1233 opd = hppa_info->opd_sec;
1234 if (!opd)
1235 {
1236 dynobj = hppa_info->root.dynobj;
1237 if (!dynobj)
1238 hppa_info->root.dynobj = dynobj = abfd;
1239
1240 opd = bfd_make_section_with_flags (dynobj, ".opd",
1241 (SEC_ALLOC
1242 | SEC_LOAD
1243 | SEC_HAS_CONTENTS
1244 | SEC_IN_MEMORY
1245 | SEC_LINKER_CREATED));
1246 if (!opd
1247 || !bfd_set_section_alignment (abfd, opd, 3))
1248 {
1249 BFD_ASSERT (0);
1250 return FALSE;
1251 }
1252
1253 hppa_info->opd_sec = opd;
1254 }
1255
1256 return TRUE;
1257 }
1258
1259 /* Create the PLT section. */
1260
1261 static bfd_boolean
1262 get_plt (abfd, info, hppa_info)
1263 bfd *abfd;
1264 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1265 struct elf64_hppa_link_hash_table *hppa_info;
1266 {
1267 asection *plt;
1268 bfd *dynobj;
1269
1270 plt = hppa_info->plt_sec;
1271 if (!plt)
1272 {
1273 dynobj = hppa_info->root.dynobj;
1274 if (!dynobj)
1275 hppa_info->root.dynobj = dynobj = abfd;
1276
1277 plt = bfd_make_section_with_flags (dynobj, ".plt",
1278 (SEC_ALLOC
1279 | SEC_LOAD
1280 | SEC_HAS_CONTENTS
1281 | SEC_IN_MEMORY
1282 | SEC_LINKER_CREATED));
1283 if (!plt
1284 || !bfd_set_section_alignment (abfd, plt, 3))
1285 {
1286 BFD_ASSERT (0);
1287 return FALSE;
1288 }
1289
1290 hppa_info->plt_sec = plt;
1291 }
1292
1293 return TRUE;
1294 }
1295
1296 /* Create the DLT section. */
1297
1298 static bfd_boolean
1299 get_dlt (abfd, info, hppa_info)
1300 bfd *abfd;
1301 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1302 struct elf64_hppa_link_hash_table *hppa_info;
1303 {
1304 asection *dlt;
1305 bfd *dynobj;
1306
1307 dlt = hppa_info->dlt_sec;
1308 if (!dlt)
1309 {
1310 dynobj = hppa_info->root.dynobj;
1311 if (!dynobj)
1312 hppa_info->root.dynobj = dynobj = abfd;
1313
1314 dlt = bfd_make_section_with_flags (dynobj, ".dlt",
1315 (SEC_ALLOC
1316 | SEC_LOAD
1317 | SEC_HAS_CONTENTS
1318 | SEC_IN_MEMORY
1319 | SEC_LINKER_CREATED));
1320 if (!dlt
1321 || !bfd_set_section_alignment (abfd, dlt, 3))
1322 {
1323 BFD_ASSERT (0);
1324 return FALSE;
1325 }
1326
1327 hppa_info->dlt_sec = dlt;
1328 }
1329
1330 return TRUE;
1331 }
1332
1333 /* Create the stubs section. */
1334
1335 static bfd_boolean
1336 get_stub (abfd, info, hppa_info)
1337 bfd *abfd;
1338 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1339 struct elf64_hppa_link_hash_table *hppa_info;
1340 {
1341 asection *stub;
1342 bfd *dynobj;
1343
1344 stub = hppa_info->stub_sec;
1345 if (!stub)
1346 {
1347 dynobj = hppa_info->root.dynobj;
1348 if (!dynobj)
1349 hppa_info->root.dynobj = dynobj = abfd;
1350
1351 stub = bfd_make_section_with_flags (dynobj, ".stub",
1352 (SEC_ALLOC | SEC_LOAD
1353 | SEC_HAS_CONTENTS
1354 | SEC_IN_MEMORY
1355 | SEC_READONLY
1356 | SEC_LINKER_CREATED));
1357 if (!stub
1358 || !bfd_set_section_alignment (abfd, stub, 3))
1359 {
1360 BFD_ASSERT (0);
1361 return FALSE;
1362 }
1363
1364 hppa_info->stub_sec = stub;
1365 }
1366
1367 return TRUE;
1368 }
1369
1370 /* Create sections necessary for dynamic linking. This is only a rough
1371 cut and will likely change as we learn more about the somewhat
1372 unusual dynamic linking scheme HP uses.
1373
1374 .stub:
1375 Contains code to implement cross-space calls. The first time one
1376 of the stubs is used it will call into the dynamic linker, later
1377 calls will go straight to the target.
1378
1379 The only stub we support right now looks like
1380
1381 ldd OFFSET(%dp),%r1
1382 bve %r0(%r1)
1383 ldd OFFSET+8(%dp),%dp
1384
1385 Other stubs may be needed in the future. We may want the remove
1386 the break/nop instruction. It is only used right now to keep the
1387 offset of a .plt entry and a .stub entry in sync.
1388
1389 .dlt:
1390 This is what most people call the .got. HP used a different name.
1391 Losers.
1392
1393 .rela.dlt:
1394 Relocations for the DLT.
1395
1396 .plt:
1397 Function pointers as address,gp pairs.
1398
1399 .rela.plt:
1400 Should contain dynamic IPLT (and EPLT?) relocations.
1401
1402 .opd:
1403 FPTRS
1404
1405 .rela.opd:
1406 EPLT relocations for symbols exported from shared libraries. */
1407
1408 static bfd_boolean
1409 elf64_hppa_create_dynamic_sections (abfd, info)
1410 bfd *abfd;
1411 struct bfd_link_info *info;
1412 {
1413 asection *s;
1414
1415 if (! get_stub (abfd, info, elf64_hppa_hash_table (info)))
1416 return FALSE;
1417
1418 if (! get_dlt (abfd, info, elf64_hppa_hash_table (info)))
1419 return FALSE;
1420
1421 if (! get_plt (abfd, info, elf64_hppa_hash_table (info)))
1422 return FALSE;
1423
1424 if (! get_opd (abfd, info, elf64_hppa_hash_table (info)))
1425 return FALSE;
1426
1427 s = bfd_make_section_with_flags (abfd, ".rela.dlt",
1428 (SEC_ALLOC | SEC_LOAD
1429 | SEC_HAS_CONTENTS
1430 | SEC_IN_MEMORY
1431 | SEC_READONLY
1432 | SEC_LINKER_CREATED));
1433 if (s == NULL
1434 || !bfd_set_section_alignment (abfd, s, 3))
1435 return FALSE;
1436 elf64_hppa_hash_table (info)->dlt_rel_sec = s;
1437
1438 s = bfd_make_section_with_flags (abfd, ".rela.plt",
1439 (SEC_ALLOC | SEC_LOAD
1440 | SEC_HAS_CONTENTS
1441 | SEC_IN_MEMORY
1442 | SEC_READONLY
1443 | SEC_LINKER_CREATED));
1444 if (s == NULL
1445 || !bfd_set_section_alignment (abfd, s, 3))
1446 return FALSE;
1447 elf64_hppa_hash_table (info)->plt_rel_sec = s;
1448
1449 s = bfd_make_section_with_flags (abfd, ".rela.data",
1450 (SEC_ALLOC | SEC_LOAD
1451 | SEC_HAS_CONTENTS
1452 | SEC_IN_MEMORY
1453 | SEC_READONLY
1454 | SEC_LINKER_CREATED));
1455 if (s == NULL
1456 || !bfd_set_section_alignment (abfd, s, 3))
1457 return FALSE;
1458 elf64_hppa_hash_table (info)->other_rel_sec = s;
1459
1460 s = bfd_make_section_with_flags (abfd, ".rela.opd",
1461 (SEC_ALLOC | SEC_LOAD
1462 | SEC_HAS_CONTENTS
1463 | SEC_IN_MEMORY
1464 | SEC_READONLY
1465 | SEC_LINKER_CREATED));
1466 if (s == NULL
1467 || !bfd_set_section_alignment (abfd, s, 3))
1468 return FALSE;
1469 elf64_hppa_hash_table (info)->opd_rel_sec = s;
1470
1471 return TRUE;
1472 }
1473
1474 /* Allocate dynamic relocations for those symbols that turned out
1475 to be dynamic. */
1476
1477 static bfd_boolean
1478 allocate_dynrel_entries (dyn_h, data)
1479 struct elf64_hppa_dyn_hash_entry *dyn_h;
1480 PTR data;
1481 {
1482 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1483 struct elf64_hppa_link_hash_table *hppa_info;
1484 struct elf64_hppa_dyn_reloc_entry *rent;
1485 bfd_boolean dynamic_symbol, shared;
1486
1487 hppa_info = elf64_hppa_hash_table (x->info);
1488 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, x->info);
1489 shared = x->info->shared;
1490
1491 /* We may need to allocate relocations for a non-dynamic symbol
1492 when creating a shared library. */
1493 if (!dynamic_symbol && !shared)
1494 return TRUE;
1495
1496 /* Take care of the normal data relocations. */
1497
1498 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
1499 {
1500 /* Allocate one iff we are building a shared library, the relocation
1501 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1502 if (!shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
1503 continue;
1504
1505 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1506
1507 /* Make sure this symbol gets into the dynamic symbol table if it is
1508 not already recorded. ?!? This should not be in the loop since
1509 the symbol need only be added once. */
1510 if (dyn_h->h == 0
1511 || (dyn_h->h->dynindx == -1 && dyn_h->h->type != STT_PARISC_MILLI))
1512 if (!bfd_elf_link_record_local_dynamic_symbol
1513 (x->info, rent->sec->owner, dyn_h->sym_indx))
1514 return FALSE;
1515 }
1516
1517 /* Take care of the GOT and PLT relocations. */
1518
1519 if ((dynamic_symbol || shared) && dyn_h->want_dlt)
1520 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1521
1522 /* If we are building a shared library, then every symbol that has an
1523 opd entry will need an EPLT relocation to relocate the symbol's address
1524 and __gp value based on the runtime load address. */
1525 if (shared && dyn_h->want_opd)
1526 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1527
1528 if (dyn_h->want_plt && dynamic_symbol)
1529 {
1530 bfd_size_type t = 0;
1531
1532 /* Dynamic symbols get one IPLT relocation. Local symbols in
1533 shared libraries get two REL relocations. Local symbols in
1534 main applications get nothing. */
1535 if (dynamic_symbol)
1536 t = sizeof (Elf64_External_Rela);
1537 else if (shared)
1538 t = 2 * sizeof (Elf64_External_Rela);
1539
1540 hppa_info->plt_rel_sec->size += t;
1541 }
1542
1543 return TRUE;
1544 }
1545
1546 /* Adjust a symbol defined by a dynamic object and referenced by a
1547 regular object. */
1548
1549 static bfd_boolean
1550 elf64_hppa_adjust_dynamic_symbol (info, h)
1551 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1552 struct elf_link_hash_entry *h;
1553 {
1554 /* ??? Undefined symbols with PLT entries should be re-defined
1555 to be the PLT entry. */
1556
1557 /* If this is a weak symbol, and there is a real definition, the
1558 processor independent code will have arranged for us to see the
1559 real definition first, and we can just use the same value. */
1560 if (h->u.weakdef != NULL)
1561 {
1562 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1563 || h->u.weakdef->root.type == bfd_link_hash_defweak);
1564 h->root.u.def.section = h->u.weakdef->root.u.def.section;
1565 h->root.u.def.value = h->u.weakdef->root.u.def.value;
1566 return TRUE;
1567 }
1568
1569 /* If this is a reference to a symbol defined by a dynamic object which
1570 is not a function, we might allocate the symbol in our .dynbss section
1571 and allocate a COPY dynamic relocation.
1572
1573 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1574 of hackery. */
1575
1576 return TRUE;
1577 }
1578
1579 /* This function is called via elf_link_hash_traverse to mark millicode
1580 symbols with a dynindx of -1 and to remove the string table reference
1581 from the dynamic symbol table. If the symbol is not a millicode symbol,
1582 elf64_hppa_mark_exported_functions is called. */
1583
1584 static bfd_boolean
1585 elf64_hppa_mark_milli_and_exported_functions (h, data)
1586 struct elf_link_hash_entry *h;
1587 PTR data;
1588 {
1589 struct bfd_link_info *info = (struct bfd_link_info *)data;
1590 struct elf_link_hash_entry *elf = h;
1591
1592 if (elf->root.type == bfd_link_hash_warning)
1593 elf = (struct elf_link_hash_entry *) elf->root.u.i.link;
1594
1595 if (elf->type == STT_PARISC_MILLI)
1596 {
1597 if (elf->dynindx != -1)
1598 {
1599 elf->dynindx = -1;
1600 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1601 elf->dynstr_index);
1602 }
1603 return TRUE;
1604 }
1605
1606 return elf64_hppa_mark_exported_functions (h, data);
1607 }
1608
1609 /* Set the final sizes of the dynamic sections and allocate memory for
1610 the contents of our special sections. */
1611
1612 static bfd_boolean
1613 elf64_hppa_size_dynamic_sections (output_bfd, info)
1614 bfd *output_bfd;
1615 struct bfd_link_info *info;
1616 {
1617 bfd *dynobj;
1618 asection *s;
1619 bfd_boolean plt;
1620 bfd_boolean relocs;
1621 bfd_boolean reltext;
1622 struct elf64_hppa_allocate_data data;
1623 struct elf64_hppa_link_hash_table *hppa_info;
1624
1625 hppa_info = elf64_hppa_hash_table (info);
1626
1627 dynobj = elf_hash_table (info)->dynobj;
1628 BFD_ASSERT (dynobj != NULL);
1629
1630 /* Mark each function this program exports so that we will allocate
1631 space in the .opd section for each function's FPTR. If we are
1632 creating dynamic sections, change the dynamic index of millicode
1633 symbols to -1 and remove them from the string table for .dynstr.
1634
1635 We have to traverse the main linker hash table since we have to
1636 find functions which may not have been mentioned in any relocs. */
1637 elf_link_hash_traverse (elf_hash_table (info),
1638 (elf_hash_table (info)->dynamic_sections_created
1639 ? elf64_hppa_mark_milli_and_exported_functions
1640 : elf64_hppa_mark_exported_functions),
1641 info);
1642
1643 if (elf_hash_table (info)->dynamic_sections_created)
1644 {
1645 /* Set the contents of the .interp section to the interpreter. */
1646 if (info->executable)
1647 {
1648 s = bfd_get_section_by_name (dynobj, ".interp");
1649 BFD_ASSERT (s != NULL);
1650 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1651 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1652 }
1653 }
1654 else
1655 {
1656 /* We may have created entries in the .rela.got section.
1657 However, if we are not creating the dynamic sections, we will
1658 not actually use these entries. Reset the size of .rela.dlt,
1659 which will cause it to get stripped from the output file
1660 below. */
1661 s = bfd_get_section_by_name (dynobj, ".rela.dlt");
1662 if (s != NULL)
1663 s->size = 0;
1664 }
1665
1666 /* Allocate the GOT entries. */
1667
1668 data.info = info;
1669 if (elf64_hppa_hash_table (info)->dlt_sec)
1670 {
1671 data.ofs = 0x0;
1672 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1673 allocate_global_data_dlt, &data);
1674 hppa_info->dlt_sec->size = data.ofs;
1675
1676 data.ofs = 0x0;
1677 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1678 allocate_global_data_plt, &data);
1679 hppa_info->plt_sec->size = data.ofs;
1680
1681 data.ofs = 0x0;
1682 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1683 allocate_global_data_stub, &data);
1684 hppa_info->stub_sec->size = data.ofs;
1685 }
1686
1687 /* Allocate space for entries in the .opd section. */
1688 if (elf64_hppa_hash_table (info)->opd_sec)
1689 {
1690 data.ofs = 0;
1691 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1692 allocate_global_data_opd, &data);
1693 hppa_info->opd_sec->size = data.ofs;
1694 }
1695
1696 /* Now allocate space for dynamic relocations, if necessary. */
1697 if (hppa_info->root.dynamic_sections_created)
1698 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
1699 allocate_dynrel_entries, &data);
1700
1701 /* The sizes of all the sections are set. Allocate memory for them. */
1702 plt = FALSE;
1703 relocs = FALSE;
1704 reltext = FALSE;
1705 for (s = dynobj->sections; s != NULL; s = s->next)
1706 {
1707 const char *name;
1708
1709 if ((s->flags & SEC_LINKER_CREATED) == 0)
1710 continue;
1711
1712 /* It's OK to base decisions on the section name, because none
1713 of the dynobj section names depend upon the input files. */
1714 name = bfd_get_section_name (dynobj, s);
1715
1716 if (strcmp (name, ".plt") == 0)
1717 {
1718 /* Remember whether there is a PLT. */
1719 plt = s->size != 0;
1720 }
1721 else if (strcmp (name, ".opd") == 0
1722 || strncmp (name, ".dlt", 4) == 0
1723 || strcmp (name, ".stub") == 0
1724 || strcmp (name, ".got") == 0)
1725 {
1726 /* Strip this section if we don't need it; see the comment below. */
1727 }
1728 else if (strncmp (name, ".rela", 5) == 0)
1729 {
1730 if (s->size != 0)
1731 {
1732 asection *target;
1733
1734 /* Remember whether there are any reloc sections other
1735 than .rela.plt. */
1736 if (strcmp (name, ".rela.plt") != 0)
1737 {
1738 const char *outname;
1739
1740 relocs = TRUE;
1741
1742 /* If this relocation section applies to a read only
1743 section, then we probably need a DT_TEXTREL
1744 entry. The entries in the .rela.plt section
1745 really apply to the .got section, which we
1746 created ourselves and so know is not readonly. */
1747 outname = bfd_get_section_name (output_bfd,
1748 s->output_section);
1749 target = bfd_get_section_by_name (output_bfd, outname + 4);
1750 if (target != NULL
1751 && (target->flags & SEC_READONLY) != 0
1752 && (target->flags & SEC_ALLOC) != 0)
1753 reltext = TRUE;
1754 }
1755
1756 /* We use the reloc_count field as a counter if we need
1757 to copy relocs into the output file. */
1758 s->reloc_count = 0;
1759 }
1760 }
1761 else
1762 {
1763 /* It's not one of our sections, so don't allocate space. */
1764 continue;
1765 }
1766
1767 if (s->size == 0)
1768 {
1769 /* If we don't need this section, strip it from the
1770 output file. This is mostly to handle .rela.bss and
1771 .rela.plt. We must create both sections in
1772 create_dynamic_sections, because they must be created
1773 before the linker maps input sections to output
1774 sections. The linker does that before
1775 adjust_dynamic_symbol is called, and it is that
1776 function which decides whether anything needs to go
1777 into these sections. */
1778 s->flags |= SEC_EXCLUDE;
1779 continue;
1780 }
1781
1782 if ((s->flags & SEC_HAS_CONTENTS) == 0)
1783 continue;
1784
1785 /* Allocate memory for the section contents if it has not
1786 been allocated already. We use bfd_zalloc here in case
1787 unused entries are not reclaimed before the section's
1788 contents are written out. This should not happen, but this
1789 way if it does, we get a R_PARISC_NONE reloc instead of
1790 garbage. */
1791 if (s->contents == NULL)
1792 {
1793 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1794 if (s->contents == NULL)
1795 return FALSE;
1796 }
1797 }
1798
1799 if (elf_hash_table (info)->dynamic_sections_created)
1800 {
1801 /* Always create a DT_PLTGOT. It actually has nothing to do with
1802 the PLT, it is how we communicate the __gp value of a load
1803 module to the dynamic linker. */
1804 #define add_dynamic_entry(TAG, VAL) \
1805 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1806
1807 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1808 || !add_dynamic_entry (DT_PLTGOT, 0))
1809 return FALSE;
1810
1811 /* Add some entries to the .dynamic section. We fill in the
1812 values later, in elf64_hppa_finish_dynamic_sections, but we
1813 must add the entries now so that we get the correct size for
1814 the .dynamic section. The DT_DEBUG entry is filled in by the
1815 dynamic linker and used by the debugger. */
1816 if (! info->shared)
1817 {
1818 if (!add_dynamic_entry (DT_DEBUG, 0)
1819 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1820 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1821 return FALSE;
1822 }
1823
1824 /* Force DT_FLAGS to always be set.
1825 Required by HPUX 11.00 patch PHSS_26559. */
1826 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1827 return FALSE;
1828
1829 if (plt)
1830 {
1831 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1832 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1833 || !add_dynamic_entry (DT_JMPREL, 0))
1834 return FALSE;
1835 }
1836
1837 if (relocs)
1838 {
1839 if (!add_dynamic_entry (DT_RELA, 0)
1840 || !add_dynamic_entry (DT_RELASZ, 0)
1841 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1842 return FALSE;
1843 }
1844
1845 if (reltext)
1846 {
1847 if (!add_dynamic_entry (DT_TEXTREL, 0))
1848 return FALSE;
1849 info->flags |= DF_TEXTREL;
1850 }
1851 }
1852 #undef add_dynamic_entry
1853
1854 return TRUE;
1855 }
1856
1857 /* Called after we have output the symbol into the dynamic symbol
1858 table, but before we output the symbol into the normal symbol
1859 table.
1860
1861 For some symbols we had to change their address when outputting
1862 the dynamic symbol table. We undo that change here so that
1863 the symbols have their expected value in the normal symbol
1864 table. Ick. */
1865
1866 static bfd_boolean
1867 elf64_hppa_link_output_symbol_hook (info, name, sym, input_sec, h)
1868 struct bfd_link_info *info;
1869 const char *name;
1870 Elf_Internal_Sym *sym;
1871 asection *input_sec ATTRIBUTE_UNUSED;
1872 struct elf_link_hash_entry *h;
1873 {
1874 struct elf64_hppa_link_hash_table *hppa_info;
1875 struct elf64_hppa_dyn_hash_entry *dyn_h;
1876
1877 /* We may be called with the file symbol or section symbols.
1878 They never need munging, so it is safe to ignore them. */
1879 if (!name)
1880 return TRUE;
1881
1882 /* Get the PA dyn_symbol (if any) associated with NAME. */
1883 hppa_info = elf64_hppa_hash_table (info);
1884 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1885 name, FALSE, FALSE);
1886 if (!dyn_h || dyn_h->h != h)
1887 return TRUE;
1888
1889 /* Function symbols for which we created .opd entries *may* have been
1890 munged by finish_dynamic_symbol and have to be un-munged here.
1891
1892 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1893 into non-dynamic ones, so we initialize st_shndx to -1 in
1894 mark_exported_functions and check to see if it was overwritten
1895 here instead of just checking dyn_h->h->dynindx. */
1896 if (dyn_h->want_opd && dyn_h->st_shndx != -1)
1897 {
1898 /* Restore the saved value and section index. */
1899 sym->st_value = dyn_h->st_value;
1900 sym->st_shndx = dyn_h->st_shndx;
1901 }
1902
1903 return TRUE;
1904 }
1905
1906 /* Finish up dynamic symbol handling. We set the contents of various
1907 dynamic sections here. */
1908
1909 static bfd_boolean
1910 elf64_hppa_finish_dynamic_symbol (output_bfd, info, h, sym)
1911 bfd *output_bfd;
1912 struct bfd_link_info *info;
1913 struct elf_link_hash_entry *h;
1914 Elf_Internal_Sym *sym;
1915 {
1916 asection *stub, *splt, *sdlt, *sopd, *spltrel, *sdltrel;
1917 struct elf64_hppa_link_hash_table *hppa_info;
1918 struct elf64_hppa_dyn_hash_entry *dyn_h;
1919
1920 hppa_info = elf64_hppa_hash_table (info);
1921 dyn_h = elf64_hppa_dyn_hash_lookup (&hppa_info->dyn_hash_table,
1922 h->root.root.string, FALSE, FALSE);
1923
1924 stub = hppa_info->stub_sec;
1925 splt = hppa_info->plt_sec;
1926 sdlt = hppa_info->dlt_sec;
1927 sopd = hppa_info->opd_sec;
1928 spltrel = hppa_info->plt_rel_sec;
1929 sdltrel = hppa_info->dlt_rel_sec;
1930
1931 /* Incredible. It is actually necessary to NOT use the symbol's real
1932 value when building the dynamic symbol table for a shared library.
1933 At least for symbols that refer to functions.
1934
1935 We will store a new value and section index into the symbol long
1936 enough to output it into the dynamic symbol table, then we restore
1937 the original values (in elf64_hppa_link_output_symbol_hook). */
1938 if (dyn_h && dyn_h->want_opd)
1939 {
1940 BFD_ASSERT (sopd != NULL);
1941
1942 /* Save away the original value and section index so that we
1943 can restore them later. */
1944 dyn_h->st_value = sym->st_value;
1945 dyn_h->st_shndx = sym->st_shndx;
1946
1947 /* For the dynamic symbol table entry, we want the value to be
1948 address of this symbol's entry within the .opd section. */
1949 sym->st_value = (dyn_h->opd_offset
1950 + sopd->output_offset
1951 + sopd->output_section->vma);
1952 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1953 sopd->output_section);
1954 }
1955
1956 /* Initialize a .plt entry if requested. */
1957 if (dyn_h && dyn_h->want_plt
1958 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
1959 {
1960 bfd_vma value;
1961 Elf_Internal_Rela rel;
1962 bfd_byte *loc;
1963
1964 BFD_ASSERT (splt != NULL && spltrel != NULL);
1965
1966 /* We do not actually care about the value in the PLT entry
1967 if we are creating a shared library and the symbol is
1968 still undefined, we create a dynamic relocation to fill
1969 in the correct value. */
1970 if (info->shared && h->root.type == bfd_link_hash_undefined)
1971 value = 0;
1972 else
1973 value = (h->root.u.def.value + h->root.u.def.section->vma);
1974
1975 /* Fill in the entry in the procedure linkage table.
1976
1977 The format of a plt entry is
1978 <funcaddr> <__gp>.
1979
1980 plt_offset is the offset within the PLT section at which to
1981 install the PLT entry.
1982
1983 We are modifying the in-memory PLT contents here, so we do not add
1984 in the output_offset of the PLT section. */
1985
1986 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset);
1987 value = _bfd_get_gp_value (splt->output_section->owner);
1988 bfd_put_64 (splt->owner, value, splt->contents + dyn_h->plt_offset + 0x8);
1989
1990 /* Create a dynamic IPLT relocation for this entry.
1991
1992 We are creating a relocation in the output file's PLT section,
1993 which is included within the DLT secton. So we do need to include
1994 the PLT's output_offset in the computation of the relocation's
1995 address. */
1996 rel.r_offset = (dyn_h->plt_offset + splt->output_offset
1997 + splt->output_section->vma);
1998 rel.r_info = ELF64_R_INFO (h->dynindx, R_PARISC_IPLT);
1999 rel.r_addend = 0;
2000
2001 loc = spltrel->contents;
2002 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2003 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2004 }
2005
2006 /* Initialize an external call stub entry if requested. */
2007 if (dyn_h && dyn_h->want_stub
2008 && elf64_hppa_dynamic_symbol_p (dyn_h->h, info))
2009 {
2010 bfd_vma value;
2011 int insn;
2012 unsigned int max_offset;
2013
2014 BFD_ASSERT (stub != NULL);
2015
2016 /* Install the generic stub template.
2017
2018 We are modifying the contents of the stub section, so we do not
2019 need to include the stub section's output_offset here. */
2020 memcpy (stub->contents + dyn_h->stub_offset, plt_stub, sizeof (plt_stub));
2021
2022 /* Fix up the first ldd instruction.
2023
2024 We are modifying the contents of the STUB section in memory,
2025 so we do not need to include its output offset in this computation.
2026
2027 Note the plt_offset value is the value of the PLT entry relative to
2028 the start of the PLT section. These instructions will reference
2029 data relative to the value of __gp, which may not necessarily have
2030 the same address as the start of the PLT section.
2031
2032 gp_offset contains the offset of __gp within the PLT section. */
2033 value = dyn_h->plt_offset - hppa_info->gp_offset;
2034
2035 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset);
2036 if (output_bfd->arch_info->mach >= 25)
2037 {
2038 /* Wide mode allows 16 bit offsets. */
2039 max_offset = 32768;
2040 insn &= ~ 0xfff1;
2041 insn |= re_assemble_16 ((int) value);
2042 }
2043 else
2044 {
2045 max_offset = 8192;
2046 insn &= ~ 0x3ff1;
2047 insn |= re_assemble_14 ((int) value);
2048 }
2049
2050 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2051 {
2052 (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2053 dyn_h->root.string,
2054 (long) value);
2055 return FALSE;
2056 }
2057
2058 bfd_put_32 (stub->owner, (bfd_vma) insn,
2059 stub->contents + dyn_h->stub_offset);
2060
2061 /* Fix up the second ldd instruction. */
2062 value += 8;
2063 insn = bfd_get_32 (stub->owner, stub->contents + dyn_h->stub_offset + 8);
2064 if (output_bfd->arch_info->mach >= 25)
2065 {
2066 insn &= ~ 0xfff1;
2067 insn |= re_assemble_16 ((int) value);
2068 }
2069 else
2070 {
2071 insn &= ~ 0x3ff1;
2072 insn |= re_assemble_14 ((int) value);
2073 }
2074 bfd_put_32 (stub->owner, (bfd_vma) insn,
2075 stub->contents + dyn_h->stub_offset + 8);
2076 }
2077
2078 return TRUE;
2079 }
2080
2081 /* The .opd section contains FPTRs for each function this file
2082 exports. Initialize the FPTR entries. */
2083
2084 static bfd_boolean
2085 elf64_hppa_finalize_opd (dyn_h, data)
2086 struct elf64_hppa_dyn_hash_entry *dyn_h;
2087 PTR data;
2088 {
2089 struct bfd_link_info *info = (struct bfd_link_info *)data;
2090 struct elf64_hppa_link_hash_table *hppa_info;
2091 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2092 asection *sopd;
2093 asection *sopdrel;
2094
2095 hppa_info = elf64_hppa_hash_table (info);
2096 sopd = hppa_info->opd_sec;
2097 sopdrel = hppa_info->opd_rel_sec;
2098
2099 if (h && dyn_h->want_opd)
2100 {
2101 bfd_vma value;
2102
2103 /* The first two words of an .opd entry are zero.
2104
2105 We are modifying the contents of the OPD section in memory, so we
2106 do not need to include its output offset in this computation. */
2107 memset (sopd->contents + dyn_h->opd_offset, 0, 16);
2108
2109 value = (h->root.u.def.value
2110 + h->root.u.def.section->output_section->vma
2111 + h->root.u.def.section->output_offset);
2112
2113 /* The next word is the address of the function. */
2114 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 16);
2115
2116 /* The last word is our local __gp value. */
2117 value = _bfd_get_gp_value (sopd->output_section->owner);
2118 bfd_put_64 (sopd->owner, value, sopd->contents + dyn_h->opd_offset + 24);
2119 }
2120
2121 /* If we are generating a shared library, we must generate EPLT relocations
2122 for each entry in the .opd, even for static functions (they may have
2123 had their address taken). */
2124 if (info->shared && dyn_h && dyn_h->want_opd)
2125 {
2126 Elf_Internal_Rela rel;
2127 bfd_byte *loc;
2128 int dynindx;
2129
2130 /* We may need to do a relocation against a local symbol, in
2131 which case we have to look up it's dynamic symbol index off
2132 the local symbol hash table. */
2133 if (h && h->dynindx != -1)
2134 dynindx = h->dynindx;
2135 else
2136 dynindx
2137 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2138 dyn_h->sym_indx);
2139
2140 /* The offset of this relocation is the absolute address of the
2141 .opd entry for this symbol. */
2142 rel.r_offset = (dyn_h->opd_offset + sopd->output_offset
2143 + sopd->output_section->vma);
2144
2145 /* If H is non-null, then we have an external symbol.
2146
2147 It is imperative that we use a different dynamic symbol for the
2148 EPLT relocation if the symbol has global scope.
2149
2150 In the dynamic symbol table, the function symbol will have a value
2151 which is address of the function's .opd entry.
2152
2153 Thus, we can not use that dynamic symbol for the EPLT relocation
2154 (if we did, the data in the .opd would reference itself rather
2155 than the actual address of the function). Instead we have to use
2156 a new dynamic symbol which has the same value as the original global
2157 function symbol.
2158
2159 We prefix the original symbol with a "." and use the new symbol in
2160 the EPLT relocation. This new symbol has already been recorded in
2161 the symbol table, we just have to look it up and use it.
2162
2163 We do not have such problems with static functions because we do
2164 not make their addresses in the dynamic symbol table point to
2165 the .opd entry. Ultimately this should be safe since a static
2166 function can not be directly referenced outside of its shared
2167 library.
2168
2169 We do have to play similar games for FPTR relocations in shared
2170 libraries, including those for static symbols. See the FPTR
2171 handling in elf64_hppa_finalize_dynreloc. */
2172 if (h)
2173 {
2174 char *new_name;
2175 struct elf_link_hash_entry *nh;
2176
2177 new_name = alloca (strlen (h->root.root.string) + 2);
2178 new_name[0] = '.';
2179 strcpy (new_name + 1, h->root.root.string);
2180
2181 nh = elf_link_hash_lookup (elf_hash_table (info),
2182 new_name, FALSE, FALSE, FALSE);
2183
2184 /* All we really want from the new symbol is its dynamic
2185 symbol index. */
2186 dynindx = nh->dynindx;
2187 }
2188
2189 rel.r_addend = 0;
2190 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2191
2192 loc = sopdrel->contents;
2193 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2194 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2195 }
2196 return TRUE;
2197 }
2198
2199 /* The .dlt section contains addresses for items referenced through the
2200 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2201 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2202
2203 static bfd_boolean
2204 elf64_hppa_finalize_dlt (dyn_h, data)
2205 struct elf64_hppa_dyn_hash_entry *dyn_h;
2206 PTR data;
2207 {
2208 struct bfd_link_info *info = (struct bfd_link_info *)data;
2209 struct elf64_hppa_link_hash_table *hppa_info;
2210 asection *sdlt, *sdltrel;
2211 struct elf_link_hash_entry *h = dyn_h ? dyn_h->h : NULL;
2212
2213 hppa_info = elf64_hppa_hash_table (info);
2214
2215 sdlt = hppa_info->dlt_sec;
2216 sdltrel = hppa_info->dlt_rel_sec;
2217
2218 /* H/DYN_H may refer to a local variable and we know it's
2219 address, so there is no need to create a relocation. Just install
2220 the proper value into the DLT, note this shortcut can not be
2221 skipped when building a shared library. */
2222 if (! info->shared && h && dyn_h->want_dlt)
2223 {
2224 bfd_vma value;
2225
2226 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2227 to point to the FPTR entry in the .opd section.
2228
2229 We include the OPD's output offset in this computation as
2230 we are referring to an absolute address in the resulting
2231 object file. */
2232 if (dyn_h->want_opd)
2233 {
2234 value = (dyn_h->opd_offset
2235 + hppa_info->opd_sec->output_offset
2236 + hppa_info->opd_sec->output_section->vma);
2237 }
2238 else if ((h->root.type == bfd_link_hash_defined
2239 || h->root.type == bfd_link_hash_defweak)
2240 && h->root.u.def.section)
2241 {
2242 value = h->root.u.def.value + h->root.u.def.section->output_offset;
2243 if (h->root.u.def.section->output_section)
2244 value += h->root.u.def.section->output_section->vma;
2245 else
2246 value += h->root.u.def.section->vma;
2247 }
2248 else
2249 /* We have an undefined function reference. */
2250 value = 0;
2251
2252 /* We do not need to include the output offset of the DLT section
2253 here because we are modifying the in-memory contents. */
2254 bfd_put_64 (sdlt->owner, value, sdlt->contents + dyn_h->dlt_offset);
2255 }
2256
2257 /* Create a relocation for the DLT entry associated with this symbol.
2258 When building a shared library the symbol does not have to be dynamic. */
2259 if (dyn_h->want_dlt
2260 && (elf64_hppa_dynamic_symbol_p (dyn_h->h, info) || info->shared))
2261 {
2262 Elf_Internal_Rela rel;
2263 bfd_byte *loc;
2264 int dynindx;
2265
2266 /* We may need to do a relocation against a local symbol, in
2267 which case we have to look up it's dynamic symbol index off
2268 the local symbol hash table. */
2269 if (h && h->dynindx != -1)
2270 dynindx = h->dynindx;
2271 else
2272 dynindx
2273 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2274 dyn_h->sym_indx);
2275
2276 /* Create a dynamic relocation for this entry. Do include the output
2277 offset of the DLT entry since we need an absolute address in the
2278 resulting object file. */
2279 rel.r_offset = (dyn_h->dlt_offset + sdlt->output_offset
2280 + sdlt->output_section->vma);
2281 if (h && h->type == STT_FUNC)
2282 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2283 else
2284 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2285 rel.r_addend = 0;
2286
2287 loc = sdltrel->contents;
2288 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2289 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2290 }
2291 return TRUE;
2292 }
2293
2294 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2295 for dynamic functions used to initialize static data. */
2296
2297 static bfd_boolean
2298 elf64_hppa_finalize_dynreloc (dyn_h, data)
2299 struct elf64_hppa_dyn_hash_entry *dyn_h;
2300 PTR data;
2301 {
2302 struct bfd_link_info *info = (struct bfd_link_info *)data;
2303 struct elf64_hppa_link_hash_table *hppa_info;
2304 struct elf_link_hash_entry *h;
2305 int dynamic_symbol;
2306
2307 dynamic_symbol = elf64_hppa_dynamic_symbol_p (dyn_h->h, info);
2308
2309 if (!dynamic_symbol && !info->shared)
2310 return TRUE;
2311
2312 if (dyn_h->reloc_entries)
2313 {
2314 struct elf64_hppa_dyn_reloc_entry *rent;
2315 int dynindx;
2316
2317 hppa_info = elf64_hppa_hash_table (info);
2318 h = dyn_h->h;
2319
2320 /* We may need to do a relocation against a local symbol, in
2321 which case we have to look up it's dynamic symbol index off
2322 the local symbol hash table. */
2323 if (h && h->dynindx != -1)
2324 dynindx = h->dynindx;
2325 else
2326 dynindx
2327 = _bfd_elf_link_lookup_local_dynindx (info, dyn_h->owner,
2328 dyn_h->sym_indx);
2329
2330 for (rent = dyn_h->reloc_entries; rent; rent = rent->next)
2331 {
2332 Elf_Internal_Rela rel;
2333 bfd_byte *loc;
2334
2335 /* Allocate one iff we are building a shared library, the relocation
2336 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2337 if (!info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2338 continue;
2339
2340 /* Create a dynamic relocation for this entry.
2341
2342 We need the output offset for the reloc's section because
2343 we are creating an absolute address in the resulting object
2344 file. */
2345 rel.r_offset = (rent->offset + rent->sec->output_offset
2346 + rent->sec->output_section->vma);
2347
2348 /* An FPTR64 relocation implies that we took the address of
2349 a function and that the function has an entry in the .opd
2350 section. We want the FPTR64 relocation to reference the
2351 entry in .opd.
2352
2353 We could munge the symbol value in the dynamic symbol table
2354 (in fact we already do for functions with global scope) to point
2355 to the .opd entry. Then we could use that dynamic symbol in
2356 this relocation.
2357
2358 Or we could do something sensible, not munge the symbol's
2359 address and instead just use a different symbol to reference
2360 the .opd entry. At least that seems sensible until you
2361 realize there's no local dynamic symbols we can use for that
2362 purpose. Thus the hair in the check_relocs routine.
2363
2364 We use a section symbol recorded by check_relocs as the
2365 base symbol for the relocation. The addend is the difference
2366 between the section symbol and the address of the .opd entry. */
2367 if (info->shared && rent->type == R_PARISC_FPTR64 && dyn_h->want_opd)
2368 {
2369 bfd_vma value, value2;
2370
2371 /* First compute the address of the opd entry for this symbol. */
2372 value = (dyn_h->opd_offset
2373 + hppa_info->opd_sec->output_section->vma
2374 + hppa_info->opd_sec->output_offset);
2375
2376 /* Compute the value of the start of the section with
2377 the relocation. */
2378 value2 = (rent->sec->output_section->vma
2379 + rent->sec->output_offset);
2380
2381 /* Compute the difference between the start of the section
2382 with the relocation and the opd entry. */
2383 value -= value2;
2384
2385 /* The result becomes the addend of the relocation. */
2386 rel.r_addend = value;
2387
2388 /* The section symbol becomes the symbol for the dynamic
2389 relocation. */
2390 dynindx
2391 = _bfd_elf_link_lookup_local_dynindx (info,
2392 rent->sec->owner,
2393 rent->sec_symndx);
2394 }
2395 else
2396 rel.r_addend = rent->addend;
2397
2398 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2399
2400 loc = hppa_info->other_rel_sec->contents;
2401 loc += (hppa_info->other_rel_sec->reloc_count++
2402 * sizeof (Elf64_External_Rela));
2403 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2404 &rel, loc);
2405 }
2406 }
2407
2408 return TRUE;
2409 }
2410
2411 /* Used to decide how to sort relocs in an optimal manner for the
2412 dynamic linker, before writing them out. */
2413
2414 static enum elf_reloc_type_class
2415 elf64_hppa_reloc_type_class (rela)
2416 const Elf_Internal_Rela *rela;
2417 {
2418 if (ELF64_R_SYM (rela->r_info) == 0)
2419 return reloc_class_relative;
2420
2421 switch ((int) ELF64_R_TYPE (rela->r_info))
2422 {
2423 case R_PARISC_IPLT:
2424 return reloc_class_plt;
2425 case R_PARISC_COPY:
2426 return reloc_class_copy;
2427 default:
2428 return reloc_class_normal;
2429 }
2430 }
2431
2432 /* Finish up the dynamic sections. */
2433
2434 static bfd_boolean
2435 elf64_hppa_finish_dynamic_sections (output_bfd, info)
2436 bfd *output_bfd;
2437 struct bfd_link_info *info;
2438 {
2439 bfd *dynobj;
2440 asection *sdyn;
2441 struct elf64_hppa_link_hash_table *hppa_info;
2442
2443 hppa_info = elf64_hppa_hash_table (info);
2444
2445 /* Finalize the contents of the .opd section. */
2446 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2447 elf64_hppa_finalize_opd,
2448 info);
2449
2450 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2451 elf64_hppa_finalize_dynreloc,
2452 info);
2453
2454 /* Finalize the contents of the .dlt section. */
2455 dynobj = elf_hash_table (info)->dynobj;
2456 /* Finalize the contents of the .dlt section. */
2457 elf64_hppa_dyn_hash_traverse (&hppa_info->dyn_hash_table,
2458 elf64_hppa_finalize_dlt,
2459 info);
2460
2461 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2462
2463 if (elf_hash_table (info)->dynamic_sections_created)
2464 {
2465 Elf64_External_Dyn *dyncon, *dynconend;
2466
2467 BFD_ASSERT (sdyn != NULL);
2468
2469 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2470 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2471 for (; dyncon < dynconend; dyncon++)
2472 {
2473 Elf_Internal_Dyn dyn;
2474 asection *s;
2475
2476 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2477
2478 switch (dyn.d_tag)
2479 {
2480 default:
2481 break;
2482
2483 case DT_HP_LOAD_MAP:
2484 /* Compute the absolute address of 16byte scratchpad area
2485 for the dynamic linker.
2486
2487 By convention the linker script will allocate the scratchpad
2488 area at the start of the .data section. So all we have to
2489 to is find the start of the .data section. */
2490 s = bfd_get_section_by_name (output_bfd, ".data");
2491 dyn.d_un.d_ptr = s->vma;
2492 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2493 break;
2494
2495 case DT_PLTGOT:
2496 /* HP's use PLTGOT to set the GOT register. */
2497 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2498 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2499 break;
2500
2501 case DT_JMPREL:
2502 s = hppa_info->plt_rel_sec;
2503 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2504 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2505 break;
2506
2507 case DT_PLTRELSZ:
2508 s = hppa_info->plt_rel_sec;
2509 dyn.d_un.d_val = s->size;
2510 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2511 break;
2512
2513 case DT_RELA:
2514 s = hppa_info->other_rel_sec;
2515 if (! s || ! s->size)
2516 s = hppa_info->dlt_rel_sec;
2517 if (! s || ! s->size)
2518 s = hppa_info->opd_rel_sec;
2519 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2520 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2521 break;
2522
2523 case DT_RELASZ:
2524 s = hppa_info->other_rel_sec;
2525 dyn.d_un.d_val = s->size;
2526 s = hppa_info->dlt_rel_sec;
2527 dyn.d_un.d_val += s->size;
2528 s = hppa_info->opd_rel_sec;
2529 dyn.d_un.d_val += s->size;
2530 /* There is some question about whether or not the size of
2531 the PLT relocs should be included here. HP's tools do
2532 it, so we'll emulate them. */
2533 s = hppa_info->plt_rel_sec;
2534 dyn.d_un.d_val += s->size;
2535 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2536 break;
2537
2538 }
2539 }
2540 }
2541
2542 return TRUE;
2543 }
2544
2545 /* Return the number of additional phdrs we will need.
2546
2547 The generic ELF code only creates PT_PHDRs for executables. The HP
2548 dynamic linker requires PT_PHDRs for dynamic libraries too.
2549
2550 This routine indicates that the backend needs one additional program
2551 header for that case.
2552
2553 Note we do not have access to the link info structure here, so we have
2554 to guess whether or not we are building a shared library based on the
2555 existence of a .interp section. */
2556
2557 static int
2558 elf64_hppa_additional_program_headers (abfd)
2559 bfd *abfd;
2560 {
2561 asection *s;
2562
2563 /* If we are creating a shared library, then we have to create a
2564 PT_PHDR segment. HP's dynamic linker chokes without it. */
2565 s = bfd_get_section_by_name (abfd, ".interp");
2566 if (! s)
2567 return 1;
2568 return 0;
2569 }
2570
2571 /* Allocate and initialize any program headers required by this
2572 specific backend.
2573
2574 The generic ELF code only creates PT_PHDRs for executables. The HP
2575 dynamic linker requires PT_PHDRs for dynamic libraries too.
2576
2577 This allocates the PT_PHDR and initializes it in a manner suitable
2578 for the HP linker.
2579
2580 Note we do not have access to the link info structure here, so we have
2581 to guess whether or not we are building a shared library based on the
2582 existence of a .interp section. */
2583
2584 static bfd_boolean
2585 elf64_hppa_modify_segment_map (abfd, info)
2586 bfd *abfd;
2587 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2588 {
2589 struct elf_segment_map *m;
2590 asection *s;
2591
2592 s = bfd_get_section_by_name (abfd, ".interp");
2593 if (! s)
2594 {
2595 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2596 if (m->p_type == PT_PHDR)
2597 break;
2598 if (m == NULL)
2599 {
2600 m = ((struct elf_segment_map *)
2601 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2602 if (m == NULL)
2603 return FALSE;
2604
2605 m->p_type = PT_PHDR;
2606 m->p_flags = PF_R | PF_X;
2607 m->p_flags_valid = 1;
2608 m->p_paddr_valid = 1;
2609 m->includes_phdrs = 1;
2610
2611 m->next = elf_tdata (abfd)->segment_map;
2612 elf_tdata (abfd)->segment_map = m;
2613 }
2614 }
2615
2616 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
2617 if (m->p_type == PT_LOAD)
2618 {
2619 unsigned int i;
2620
2621 for (i = 0; i < m->count; i++)
2622 {
2623 /* The code "hint" is not really a hint. It is a requirement
2624 for certain versions of the HP dynamic linker. Worse yet,
2625 it must be set even if the shared library does not have
2626 any code in its "text" segment (thus the check for .hash
2627 to catch this situation). */
2628 if (m->sections[i]->flags & SEC_CODE
2629 || (strcmp (m->sections[i]->name, ".hash") == 0))
2630 m->p_flags |= (PF_X | PF_HP_CODE);
2631 }
2632 }
2633
2634 return TRUE;
2635 }
2636
2637 /* Called when writing out an object file to decide the type of a
2638 symbol. */
2639 static int
2640 elf64_hppa_elf_get_symbol_type (elf_sym, type)
2641 Elf_Internal_Sym *elf_sym;
2642 int type;
2643 {
2644 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2645 return STT_PARISC_MILLI;
2646 else
2647 return type;
2648 }
2649
2650 /* Support HP specific sections for core files. */
2651 static bfd_boolean
2652 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index,
2653 const char *typename)
2654 {
2655 if (hdr->p_type == PT_HP_CORE_KERNEL)
2656 {
2657 asection *sect;
2658
2659 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2660 return FALSE;
2661
2662 sect = bfd_make_section_anyway (abfd, ".kernel");
2663 if (sect == NULL)
2664 return FALSE;
2665 sect->size = hdr->p_filesz;
2666 sect->filepos = hdr->p_offset;
2667 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2668 return TRUE;
2669 }
2670
2671 if (hdr->p_type == PT_HP_CORE_PROC)
2672 {
2673 int sig;
2674
2675 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2676 return FALSE;
2677 if (bfd_bread (&sig, 4, abfd) != 4)
2678 return FALSE;
2679
2680 elf_tdata (abfd)->core_signal = sig;
2681
2682 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, index, typename))
2683 return FALSE;
2684
2685 /* GDB uses the ".reg" section to read register contents. */
2686 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2687 hdr->p_offset);
2688 }
2689
2690 if (hdr->p_type == PT_HP_CORE_LOADABLE
2691 || hdr->p_type == PT_HP_CORE_STACK
2692 || hdr->p_type == PT_HP_CORE_MMF)
2693 hdr->p_type = PT_LOAD;
2694
2695 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, typename);
2696 }
2697
2698 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
2699 {
2700 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2701 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2702 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2703 { ".dlt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2704 { ".sdata", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2705 { ".sbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
2706 { ".tbss", 5, 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_WEAKORDER },
2707 { NULL, 0, 0, 0, 0 }
2708 };
2709
2710 /* The hash bucket size is the standard one, namely 4. */
2711
2712 const struct elf_size_info hppa64_elf_size_info =
2713 {
2714 sizeof (Elf64_External_Ehdr),
2715 sizeof (Elf64_External_Phdr),
2716 sizeof (Elf64_External_Shdr),
2717 sizeof (Elf64_External_Rel),
2718 sizeof (Elf64_External_Rela),
2719 sizeof (Elf64_External_Sym),
2720 sizeof (Elf64_External_Dyn),
2721 sizeof (Elf_External_Note),
2722 4,
2723 1,
2724 64, 3,
2725 ELFCLASS64, EV_CURRENT,
2726 bfd_elf64_write_out_phdrs,
2727 bfd_elf64_write_shdrs_and_ehdr,
2728 bfd_elf64_write_relocs,
2729 bfd_elf64_swap_symbol_in,
2730 bfd_elf64_swap_symbol_out,
2731 bfd_elf64_slurp_reloc_table,
2732 bfd_elf64_slurp_symbol_table,
2733 bfd_elf64_swap_dyn_in,
2734 bfd_elf64_swap_dyn_out,
2735 bfd_elf64_swap_reloc_in,
2736 bfd_elf64_swap_reloc_out,
2737 bfd_elf64_swap_reloca_in,
2738 bfd_elf64_swap_reloca_out
2739 };
2740
2741 #define TARGET_BIG_SYM bfd_elf64_hppa_vec
2742 #define TARGET_BIG_NAME "elf64-hppa"
2743 #define ELF_ARCH bfd_arch_hppa
2744 #define ELF_MACHINE_CODE EM_PARISC
2745 /* This is not strictly correct. The maximum page size for PA2.0 is
2746 64M. But everything still uses 4k. */
2747 #define ELF_MAXPAGESIZE 0x1000
2748 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
2749 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
2750 #define elf_info_to_howto elf_hppa_info_to_howto
2751 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
2752
2753 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
2754 #define elf_backend_object_p elf64_hppa_object_p
2755 #define elf_backend_final_write_processing \
2756 elf_hppa_final_write_processing
2757 #define elf_backend_fake_sections elf_hppa_fake_sections
2758 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
2759
2760 #define elf_backend_relocate_section elf_hppa_relocate_section
2761
2762 #define bfd_elf64_bfd_final_link elf_hppa_final_link
2763
2764 #define elf_backend_create_dynamic_sections \
2765 elf64_hppa_create_dynamic_sections
2766 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
2767
2768 #define elf_backend_adjust_dynamic_symbol \
2769 elf64_hppa_adjust_dynamic_symbol
2770
2771 #define elf_backend_size_dynamic_sections \
2772 elf64_hppa_size_dynamic_sections
2773
2774 #define elf_backend_finish_dynamic_symbol \
2775 elf64_hppa_finish_dynamic_symbol
2776 #define elf_backend_finish_dynamic_sections \
2777 elf64_hppa_finish_dynamic_sections
2778
2779 /* Stuff for the BFD linker: */
2780 #define bfd_elf64_bfd_link_hash_table_create \
2781 elf64_hppa_hash_table_create
2782
2783 #define elf_backend_check_relocs \
2784 elf64_hppa_check_relocs
2785
2786 #define elf_backend_size_info \
2787 hppa64_elf_size_info
2788
2789 #define elf_backend_additional_program_headers \
2790 elf64_hppa_additional_program_headers
2791
2792 #define elf_backend_modify_segment_map \
2793 elf64_hppa_modify_segment_map
2794
2795 #define elf_backend_link_output_symbol_hook \
2796 elf64_hppa_link_output_symbol_hook
2797
2798 #define elf_backend_want_got_plt 0
2799 #define elf_backend_plt_readonly 0
2800 #define elf_backend_want_plt_sym 0
2801 #define elf_backend_got_header_size 0
2802 #define elf_backend_type_change_ok TRUE
2803 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
2804 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
2805 #define elf_backend_rela_normal 1
2806 #define elf_backend_special_sections elf64_hppa_special_sections
2807 #define elf_backend_action_discarded elf_hppa_action_discarded
2808 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
2809
2810 #include "elf64-target.h"
2811
2812 #undef TARGET_BIG_SYM
2813 #define TARGET_BIG_SYM bfd_elf64_hppa_linux_vec
2814 #undef TARGET_BIG_NAME
2815 #define TARGET_BIG_NAME "elf64-hppa-linux"
2816
2817 #undef elf_backend_special_sections
2818
2819 #define INCLUDED_TARGET_FILE 1
2820 #include "elf64-target.h"
This page took 0.105542 seconds and 5 git commands to generate.