bfd_error_handler bfd_vma and bfd_size_type args
[deliverable/binutils-gdb.git] / bfd / elf64-hppa.c
1 /* Support for HPPA 64-bit ELF
2 Copyright (C) 1999-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
30
31 #define ARCH_SIZE 64
32
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38
39 /* The stub is supposed to load the target address and target's DP
40 value out of the PLT, then do an external branch to the target
41 address.
42
43 LDD PLTOFF(%r27),%r1
44 BVE (%r1)
45 LDD PLTOFF+8(%r27),%r27
46
47 Note that we must use the LDD with a 14 bit displacement, not the one
48 with a 5 bit displacement. */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 0x53, 0x7b, 0x00, 0x00 };
51
52 struct elf64_hppa_link_hash_entry
53 {
54 struct elf_link_hash_entry eh;
55
56 /* Offsets for this symbol in various linker sections. */
57 bfd_vma dlt_offset;
58 bfd_vma plt_offset;
59 bfd_vma opd_offset;
60 bfd_vma stub_offset;
61
62 /* The index of the (possibly local) symbol in the input bfd and its
63 associated BFD. Needed so that we can have relocs against local
64 symbols in shared libraries. */
65 long sym_indx;
66 bfd *owner;
67
68 /* Dynamic symbols may need to have two different values. One for
69 the dynamic symbol table, one for the normal symbol table.
70
71 In such cases we store the symbol's real value and section
72 index here so we can restore the real value before we write
73 the normal symbol table. */
74 bfd_vma st_value;
75 int st_shndx;
76
77 /* Used to count non-got, non-plt relocations for delayed sizing
78 of relocation sections. */
79 struct elf64_hppa_dyn_reloc_entry
80 {
81 /* Next relocation in the chain. */
82 struct elf64_hppa_dyn_reloc_entry *next;
83
84 /* The type of the relocation. */
85 int type;
86
87 /* The input section of the relocation. */
88 asection *sec;
89
90 /* Number of relocs copied in this section. */
91 bfd_size_type count;
92
93 /* The index of the section symbol for the input section of
94 the relocation. Only needed when building shared libraries. */
95 int sec_symndx;
96
97 /* The offset within the input section of the relocation. */
98 bfd_vma offset;
99
100 /* The addend for the relocation. */
101 bfd_vma addend;
102
103 } *reloc_entries;
104
105 /* Nonzero if this symbol needs an entry in one of the linker
106 sections. */
107 unsigned want_dlt;
108 unsigned want_plt;
109 unsigned want_opd;
110 unsigned want_stub;
111 };
112
113 struct elf64_hppa_link_hash_table
114 {
115 struct elf_link_hash_table root;
116
117 /* Shortcuts to get to the various linker defined sections. */
118 asection *dlt_sec;
119 asection *dlt_rel_sec;
120 asection *plt_sec;
121 asection *plt_rel_sec;
122 asection *opd_sec;
123 asection *opd_rel_sec;
124 asection *other_rel_sec;
125
126 /* Offset of __gp within .plt section. When the PLT gets large we want
127 to slide __gp into the PLT section so that we can continue to use
128 single DP relative instructions to load values out of the PLT. */
129 bfd_vma gp_offset;
130
131 /* Note this is not strictly correct. We should create a stub section for
132 each input section with calls. The stub section should be placed before
133 the section with the call. */
134 asection *stub_sec;
135
136 bfd_vma text_segment_base;
137 bfd_vma data_segment_base;
138
139 /* We build tables to map from an input section back to its
140 symbol index. This is the BFD for which we currently have
141 a map. */
142 bfd *section_syms_bfd;
143
144 /* Array of symbol numbers for each input section attached to the
145 current BFD. */
146 int *section_syms;
147 };
148
149 #define hppa_link_hash_table(p) \
150 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151 == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152
153 #define hppa_elf_hash_entry(ent) \
154 ((struct elf64_hppa_link_hash_entry *)(ent))
155
156 #define eh_name(eh) \
157 (eh ? eh->root.root.string : "<undef>")
158
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163 (bfd *abfd);
164
165 /* This must follow the definitions of the various derived linker
166 hash tables and shared functions. */
167 #include "elf-hppa.h"
168
169 static bfd_boolean elf64_hppa_object_p
170 (bfd *);
171
172 static void elf64_hppa_post_process_headers
173 (bfd *, struct bfd_link_info *);
174
175 static bfd_boolean elf64_hppa_create_dynamic_sections
176 (bfd *, struct bfd_link_info *);
177
178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179 (struct bfd_link_info *, struct elf_link_hash_entry *);
180
181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182 (struct elf_link_hash_entry *, void *);
183
184 static bfd_boolean elf64_hppa_size_dynamic_sections
185 (bfd *, struct bfd_link_info *);
186
187 static int elf64_hppa_link_output_symbol_hook
188 (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189 asection *, struct elf_link_hash_entry *);
190
191 static bfd_boolean elf64_hppa_finish_dynamic_symbol
192 (bfd *, struct bfd_link_info *,
193 struct elf_link_hash_entry *, Elf_Internal_Sym *);
194
195 static bfd_boolean elf64_hppa_finish_dynamic_sections
196 (bfd *, struct bfd_link_info *);
197
198 static bfd_boolean elf64_hppa_check_relocs
199 (bfd *, struct bfd_link_info *,
200 asection *, const Elf_Internal_Rela *);
201
202 static bfd_boolean elf64_hppa_dynamic_symbol_p
203 (struct elf_link_hash_entry *, struct bfd_link_info *);
204
205 static bfd_boolean elf64_hppa_mark_exported_functions
206 (struct elf_link_hash_entry *, void *);
207
208 static bfd_boolean elf64_hppa_finalize_opd
209 (struct elf_link_hash_entry *, void *);
210
211 static bfd_boolean elf64_hppa_finalize_dlt
212 (struct elf_link_hash_entry *, void *);
213
214 static bfd_boolean allocate_global_data_dlt
215 (struct elf_link_hash_entry *, void *);
216
217 static bfd_boolean allocate_global_data_plt
218 (struct elf_link_hash_entry *, void *);
219
220 static bfd_boolean allocate_global_data_stub
221 (struct elf_link_hash_entry *, void *);
222
223 static bfd_boolean allocate_global_data_opd
224 (struct elf_link_hash_entry *, void *);
225
226 static bfd_boolean get_reloc_section
227 (bfd *, struct elf64_hppa_link_hash_table *, asection *);
228
229 static bfd_boolean count_dyn_reloc
230 (bfd *, struct elf64_hppa_link_hash_entry *,
231 int, asection *, int, bfd_vma, bfd_vma);
232
233 static bfd_boolean allocate_dynrel_entries
234 (struct elf_link_hash_entry *, void *);
235
236 static bfd_boolean elf64_hppa_finalize_dynreloc
237 (struct elf_link_hash_entry *, void *);
238
239 static bfd_boolean get_opd
240 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241
242 static bfd_boolean get_plt
243 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244
245 static bfd_boolean get_dlt
246 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247
248 static bfd_boolean get_stub
249 (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250
251 static int elf64_hppa_elf_get_symbol_type
252 (Elf_Internal_Sym *, int);
253
254 /* Initialize an entry in the link hash table. */
255
256 static struct bfd_hash_entry *
257 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258 struct bfd_hash_table *table,
259 const char *string)
260 {
261 /* Allocate the structure if it has not already been allocated by a
262 subclass. */
263 if (entry == NULL)
264 {
265 entry = bfd_hash_allocate (table,
266 sizeof (struct elf64_hppa_link_hash_entry));
267 if (entry == NULL)
268 return entry;
269 }
270
271 /* Call the allocation method of the superclass. */
272 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
273 if (entry != NULL)
274 {
275 struct elf64_hppa_link_hash_entry *hh;
276
277 /* Initialize our local data. All zeros. */
278 hh = hppa_elf_hash_entry (entry);
279 memset (&hh->dlt_offset, 0,
280 (sizeof (struct elf64_hppa_link_hash_entry)
281 - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
282 }
283
284 return entry;
285 }
286
287 /* Create the derived linker hash table. The PA64 ELF port uses this
288 derived hash table to keep information specific to the PA ElF
289 linker (without using static variables). */
290
291 static struct bfd_link_hash_table*
292 elf64_hppa_hash_table_create (bfd *abfd)
293 {
294 struct elf64_hppa_link_hash_table *htab;
295 bfd_size_type amt = sizeof (*htab);
296
297 htab = bfd_zmalloc (amt);
298 if (htab == NULL)
299 return NULL;
300
301 if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302 hppa64_link_hash_newfunc,
303 sizeof (struct elf64_hppa_link_hash_entry),
304 HPPA64_ELF_DATA))
305 {
306 free (htab);
307 return NULL;
308 }
309
310 htab->text_segment_base = (bfd_vma) -1;
311 htab->data_segment_base = (bfd_vma) -1;
312
313 return &htab->root.root;
314 }
315 \f
316 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
317
318 Additionally we set the default architecture and machine. */
319 static bfd_boolean
320 elf64_hppa_object_p (bfd *abfd)
321 {
322 Elf_Internal_Ehdr * i_ehdrp;
323 unsigned int flags;
324
325 i_ehdrp = elf_elfheader (abfd);
326 if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
327 {
328 /* GCC on hppa-linux produces binaries with OSABI=GNU,
329 but the kernel produces corefiles with OSABI=SysV. */
330 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
331 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
332 return FALSE;
333 }
334 else
335 {
336 /* HPUX produces binaries with OSABI=HPUX,
337 but the kernel produces corefiles with OSABI=SysV. */
338 if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
339 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
340 return FALSE;
341 }
342
343 flags = i_ehdrp->e_flags;
344 switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
345 {
346 case EFA_PARISC_1_0:
347 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
348 case EFA_PARISC_1_1:
349 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
350 case EFA_PARISC_2_0:
351 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
352 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
353 else
354 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
355 case EFA_PARISC_2_0 | EF_PARISC_WIDE:
356 return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357 }
358 /* Don't be fussy. */
359 return TRUE;
360 }
361
362 /* Given section type (hdr->sh_type), return a boolean indicating
363 whether or not the section is an elf64-hppa specific section. */
364 static bfd_boolean
365 elf64_hppa_section_from_shdr (bfd *abfd,
366 Elf_Internal_Shdr *hdr,
367 const char *name,
368 int shindex)
369 {
370 switch (hdr->sh_type)
371 {
372 case SHT_PARISC_EXT:
373 if (strcmp (name, ".PARISC.archext") != 0)
374 return FALSE;
375 break;
376 case SHT_PARISC_UNWIND:
377 if (strcmp (name, ".PARISC.unwind") != 0)
378 return FALSE;
379 break;
380 case SHT_PARISC_DOC:
381 case SHT_PARISC_ANNOT:
382 default:
383 return FALSE;
384 }
385
386 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
387 return FALSE;
388
389 return TRUE;
390 }
391
392 /* SEC is a section containing relocs for an input BFD when linking; return
393 a suitable section for holding relocs in the output BFD for a link. */
394
395 static bfd_boolean
396 get_reloc_section (bfd *abfd,
397 struct elf64_hppa_link_hash_table *hppa_info,
398 asection *sec)
399 {
400 const char *srel_name;
401 asection *srel;
402 bfd *dynobj;
403
404 srel_name = (bfd_elf_string_from_elf_section
405 (abfd, elf_elfheader(abfd)->e_shstrndx,
406 _bfd_elf_single_rel_hdr(sec)->sh_name));
407 if (srel_name == NULL)
408 return FALSE;
409
410 dynobj = hppa_info->root.dynobj;
411 if (!dynobj)
412 hppa_info->root.dynobj = dynobj = abfd;
413
414 srel = bfd_get_linker_section (dynobj, srel_name);
415 if (srel == NULL)
416 {
417 srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
418 (SEC_ALLOC
419 | SEC_LOAD
420 | SEC_HAS_CONTENTS
421 | SEC_IN_MEMORY
422 | SEC_LINKER_CREATED
423 | SEC_READONLY));
424 if (srel == NULL
425 || !bfd_set_section_alignment (dynobj, srel, 3))
426 return FALSE;
427 }
428
429 hppa_info->other_rel_sec = srel;
430 return TRUE;
431 }
432
433 /* Add a new entry to the list of dynamic relocations against DYN_H.
434
435 We use this to keep a record of all the FPTR relocations against a
436 particular symbol so that we can create FPTR relocations in the
437 output file. */
438
439 static bfd_boolean
440 count_dyn_reloc (bfd *abfd,
441 struct elf64_hppa_link_hash_entry *hh,
442 int type,
443 asection *sec,
444 int sec_symndx,
445 bfd_vma offset,
446 bfd_vma addend)
447 {
448 struct elf64_hppa_dyn_reloc_entry *rent;
449
450 rent = (struct elf64_hppa_dyn_reloc_entry *)
451 bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
452 if (!rent)
453 return FALSE;
454
455 rent->next = hh->reloc_entries;
456 rent->type = type;
457 rent->sec = sec;
458 rent->sec_symndx = sec_symndx;
459 rent->offset = offset;
460 rent->addend = addend;
461 hh->reloc_entries = rent;
462
463 return TRUE;
464 }
465
466 /* Return a pointer to the local DLT, PLT and OPD reference counts
467 for ABFD. Returns NULL if the storage allocation fails. */
468
469 static bfd_signed_vma *
470 hppa64_elf_local_refcounts (bfd *abfd)
471 {
472 Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
473 bfd_signed_vma *local_refcounts;
474
475 local_refcounts = elf_local_got_refcounts (abfd);
476 if (local_refcounts == NULL)
477 {
478 bfd_size_type size;
479
480 /* Allocate space for local DLT, PLT and OPD reference
481 counts. Done this way to save polluting elf_obj_tdata
482 with another target specific pointer. */
483 size = symtab_hdr->sh_info;
484 size *= 3 * sizeof (bfd_signed_vma);
485 local_refcounts = bfd_zalloc (abfd, size);
486 elf_local_got_refcounts (abfd) = local_refcounts;
487 }
488 return local_refcounts;
489 }
490
491 /* Scan the RELOCS and record the type of dynamic entries that each
492 referenced symbol needs. */
493
494 static bfd_boolean
495 elf64_hppa_check_relocs (bfd *abfd,
496 struct bfd_link_info *info,
497 asection *sec,
498 const Elf_Internal_Rela *relocs)
499 {
500 struct elf64_hppa_link_hash_table *hppa_info;
501 const Elf_Internal_Rela *relend;
502 Elf_Internal_Shdr *symtab_hdr;
503 const Elf_Internal_Rela *rel;
504 unsigned int sec_symndx;
505
506 if (bfd_link_relocatable (info))
507 return TRUE;
508
509 /* If this is the first dynamic object found in the link, create
510 the special sections required for dynamic linking. */
511 if (! elf_hash_table (info)->dynamic_sections_created)
512 {
513 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
514 return FALSE;
515 }
516
517 hppa_info = hppa_link_hash_table (info);
518 if (hppa_info == NULL)
519 return FALSE;
520 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
521
522 /* If necessary, build a new table holding section symbols indices
523 for this BFD. */
524
525 if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
526 {
527 unsigned long i;
528 unsigned int highest_shndx;
529 Elf_Internal_Sym *local_syms = NULL;
530 Elf_Internal_Sym *isym, *isymend;
531 bfd_size_type amt;
532
533 /* We're done with the old cache of section index to section symbol
534 index information. Free it.
535
536 ?!? Note we leak the last section_syms array. Presumably we
537 could free it in one of the later routines in this file. */
538 if (hppa_info->section_syms)
539 free (hppa_info->section_syms);
540
541 /* Read this BFD's local symbols. */
542 if (symtab_hdr->sh_info != 0)
543 {
544 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
545 if (local_syms == NULL)
546 local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
547 symtab_hdr->sh_info, 0,
548 NULL, NULL, NULL);
549 if (local_syms == NULL)
550 return FALSE;
551 }
552
553 /* Record the highest section index referenced by the local symbols. */
554 highest_shndx = 0;
555 isymend = local_syms + symtab_hdr->sh_info;
556 for (isym = local_syms; isym < isymend; isym++)
557 {
558 if (isym->st_shndx > highest_shndx
559 && isym->st_shndx < SHN_LORESERVE)
560 highest_shndx = isym->st_shndx;
561 }
562
563 /* Allocate an array to hold the section index to section symbol index
564 mapping. Bump by one since we start counting at zero. */
565 highest_shndx++;
566 amt = highest_shndx;
567 amt *= sizeof (int);
568 hppa_info->section_syms = (int *) bfd_malloc (amt);
569
570 /* Now walk the local symbols again. If we find a section symbol,
571 record the index of the symbol into the section_syms array. */
572 for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
573 {
574 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
575 hppa_info->section_syms[isym->st_shndx] = i;
576 }
577
578 /* We are finished with the local symbols. */
579 if (local_syms != NULL
580 && symtab_hdr->contents != (unsigned char *) local_syms)
581 {
582 if (! info->keep_memory)
583 free (local_syms);
584 else
585 {
586 /* Cache the symbols for elf_link_input_bfd. */
587 symtab_hdr->contents = (unsigned char *) local_syms;
588 }
589 }
590
591 /* Record which BFD we built the section_syms mapping for. */
592 hppa_info->section_syms_bfd = abfd;
593 }
594
595 /* Record the symbol index for this input section. We may need it for
596 relocations when building shared libraries. When not building shared
597 libraries this value is never really used, but assign it to zero to
598 prevent out of bounds memory accesses in other routines. */
599 if (bfd_link_pic (info))
600 {
601 sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
602
603 /* If we did not find a section symbol for this section, then
604 something went terribly wrong above. */
605 if (sec_symndx == SHN_BAD)
606 return FALSE;
607
608 if (sec_symndx < SHN_LORESERVE)
609 sec_symndx = hppa_info->section_syms[sec_symndx];
610 else
611 sec_symndx = 0;
612 }
613 else
614 sec_symndx = 0;
615
616 relend = relocs + sec->reloc_count;
617 for (rel = relocs; rel < relend; ++rel)
618 {
619 enum
620 {
621 NEED_DLT = 1,
622 NEED_PLT = 2,
623 NEED_STUB = 4,
624 NEED_OPD = 8,
625 NEED_DYNREL = 16,
626 };
627
628 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
629 struct elf64_hppa_link_hash_entry *hh;
630 int need_entry;
631 bfd_boolean maybe_dynamic;
632 int dynrel_type = R_PARISC_NONE;
633 static reloc_howto_type *howto;
634
635 if (r_symndx >= symtab_hdr->sh_info)
636 {
637 /* We're dealing with a global symbol -- find its hash entry
638 and mark it as being referenced. */
639 long indx = r_symndx - symtab_hdr->sh_info;
640 hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
641 while (hh->eh.root.type == bfd_link_hash_indirect
642 || hh->eh.root.type == bfd_link_hash_warning)
643 hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
644
645 /* PR15323, ref flags aren't set for references in the same
646 object. */
647 hh->eh.root.non_ir_ref_regular = 1;
648 hh->eh.ref_regular = 1;
649 }
650 else
651 hh = NULL;
652
653 /* We can only get preliminary data on whether a symbol is
654 locally or externally defined, as not all of the input files
655 have yet been processed. Do something with what we know, as
656 this may help reduce memory usage and processing time later. */
657 maybe_dynamic = FALSE;
658 if (hh && ((bfd_link_pic (info)
659 && (!info->symbolic
660 || info->unresolved_syms_in_shared_libs == RM_IGNORE))
661 || !hh->eh.def_regular
662 || hh->eh.root.type == bfd_link_hash_defweak))
663 maybe_dynamic = TRUE;
664
665 howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
666 need_entry = 0;
667 switch (howto->type)
668 {
669 /* These are simple indirect references to symbols through the
670 DLT. We need to create a DLT entry for any symbols which
671 appears in a DLTIND relocation. */
672 case R_PARISC_DLTIND21L:
673 case R_PARISC_DLTIND14R:
674 case R_PARISC_DLTIND14F:
675 case R_PARISC_DLTIND14WR:
676 case R_PARISC_DLTIND14DR:
677 need_entry = NEED_DLT;
678 break;
679
680 /* ?!? These need a DLT entry. But I have no idea what to do with
681 the "link time TP value. */
682 case R_PARISC_LTOFF_TP21L:
683 case R_PARISC_LTOFF_TP14R:
684 case R_PARISC_LTOFF_TP14F:
685 case R_PARISC_LTOFF_TP64:
686 case R_PARISC_LTOFF_TP14WR:
687 case R_PARISC_LTOFF_TP14DR:
688 case R_PARISC_LTOFF_TP16F:
689 case R_PARISC_LTOFF_TP16WF:
690 case R_PARISC_LTOFF_TP16DF:
691 need_entry = NEED_DLT;
692 break;
693
694 /* These are function calls. Depending on their precise target we
695 may need to make a stub for them. The stub uses the PLT, so we
696 need to create PLT entries for these symbols too. */
697 case R_PARISC_PCREL12F:
698 case R_PARISC_PCREL17F:
699 case R_PARISC_PCREL22F:
700 case R_PARISC_PCREL32:
701 case R_PARISC_PCREL64:
702 case R_PARISC_PCREL21L:
703 case R_PARISC_PCREL17R:
704 case R_PARISC_PCREL17C:
705 case R_PARISC_PCREL14R:
706 case R_PARISC_PCREL14F:
707 case R_PARISC_PCREL22C:
708 case R_PARISC_PCREL14WR:
709 case R_PARISC_PCREL14DR:
710 case R_PARISC_PCREL16F:
711 case R_PARISC_PCREL16WF:
712 case R_PARISC_PCREL16DF:
713 /* Function calls might need to go through the .plt, and
714 might need a long branch stub. */
715 if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
716 need_entry = (NEED_PLT | NEED_STUB);
717 else
718 need_entry = 0;
719 break;
720
721 case R_PARISC_PLTOFF21L:
722 case R_PARISC_PLTOFF14R:
723 case R_PARISC_PLTOFF14F:
724 case R_PARISC_PLTOFF14WR:
725 case R_PARISC_PLTOFF14DR:
726 case R_PARISC_PLTOFF16F:
727 case R_PARISC_PLTOFF16WF:
728 case R_PARISC_PLTOFF16DF:
729 need_entry = (NEED_PLT);
730 break;
731
732 case R_PARISC_DIR64:
733 if (bfd_link_pic (info) || maybe_dynamic)
734 need_entry = (NEED_DYNREL);
735 dynrel_type = R_PARISC_DIR64;
736 break;
737
738 /* This is an indirect reference through the DLT to get the address
739 of a OPD descriptor. Thus we need to make a DLT entry that points
740 to an OPD entry. */
741 case R_PARISC_LTOFF_FPTR21L:
742 case R_PARISC_LTOFF_FPTR14R:
743 case R_PARISC_LTOFF_FPTR14WR:
744 case R_PARISC_LTOFF_FPTR14DR:
745 case R_PARISC_LTOFF_FPTR32:
746 case R_PARISC_LTOFF_FPTR64:
747 case R_PARISC_LTOFF_FPTR16F:
748 case R_PARISC_LTOFF_FPTR16WF:
749 case R_PARISC_LTOFF_FPTR16DF:
750 if (bfd_link_pic (info) || maybe_dynamic)
751 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
752 else
753 need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754 dynrel_type = R_PARISC_FPTR64;
755 break;
756
757 /* This is a simple OPD entry. */
758 case R_PARISC_FPTR64:
759 if (bfd_link_pic (info) || maybe_dynamic)
760 need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
761 else
762 need_entry = (NEED_OPD | NEED_PLT);
763 dynrel_type = R_PARISC_FPTR64;
764 break;
765
766 /* Add more cases as needed. */
767 }
768
769 if (!need_entry)
770 continue;
771
772 if (hh)
773 {
774 /* Stash away enough information to be able to find this symbol
775 regardless of whether or not it is local or global. */
776 hh->owner = abfd;
777 hh->sym_indx = r_symndx;
778 }
779
780 /* Create what's needed. */
781 if (need_entry & NEED_DLT)
782 {
783 /* Allocate space for a DLT entry, as well as a dynamic
784 relocation for this entry. */
785 if (! hppa_info->dlt_sec
786 && ! get_dlt (abfd, info, hppa_info))
787 goto err_out;
788
789 if (hh != NULL)
790 {
791 hh->want_dlt = 1;
792 hh->eh.got.refcount += 1;
793 }
794 else
795 {
796 bfd_signed_vma *local_dlt_refcounts;
797
798 /* This is a DLT entry for a local symbol. */
799 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
800 if (local_dlt_refcounts == NULL)
801 return FALSE;
802 local_dlt_refcounts[r_symndx] += 1;
803 }
804 }
805
806 if (need_entry & NEED_PLT)
807 {
808 if (! hppa_info->plt_sec
809 && ! get_plt (abfd, info, hppa_info))
810 goto err_out;
811
812 if (hh != NULL)
813 {
814 hh->want_plt = 1;
815 hh->eh.needs_plt = 1;
816 hh->eh.plt.refcount += 1;
817 }
818 else
819 {
820 bfd_signed_vma *local_dlt_refcounts;
821 bfd_signed_vma *local_plt_refcounts;
822
823 /* This is a PLT entry for a local symbol. */
824 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
825 if (local_dlt_refcounts == NULL)
826 return FALSE;
827 local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
828 local_plt_refcounts[r_symndx] += 1;
829 }
830 }
831
832 if (need_entry & NEED_STUB)
833 {
834 if (! hppa_info->stub_sec
835 && ! get_stub (abfd, info, hppa_info))
836 goto err_out;
837 if (hh)
838 hh->want_stub = 1;
839 }
840
841 if (need_entry & NEED_OPD)
842 {
843 if (! hppa_info->opd_sec
844 && ! get_opd (abfd, info, hppa_info))
845 goto err_out;
846
847 /* FPTRs are not allocated by the dynamic linker for PA64,
848 though it is possible that will change in the future. */
849
850 if (hh != NULL)
851 hh->want_opd = 1;
852 else
853 {
854 bfd_signed_vma *local_dlt_refcounts;
855 bfd_signed_vma *local_opd_refcounts;
856
857 /* This is a OPD for a local symbol. */
858 local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
859 if (local_dlt_refcounts == NULL)
860 return FALSE;
861 local_opd_refcounts = (local_dlt_refcounts
862 + 2 * symtab_hdr->sh_info);
863 local_opd_refcounts[r_symndx] += 1;
864 }
865 }
866
867 /* Add a new dynamic relocation to the chain of dynamic
868 relocations for this symbol. */
869 if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
870 {
871 if (! hppa_info->other_rel_sec
872 && ! get_reloc_section (abfd, hppa_info, sec))
873 goto err_out;
874
875 /* Count dynamic relocations against global symbols. */
876 if (hh != NULL
877 && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
878 sec_symndx, rel->r_offset, rel->r_addend))
879 goto err_out;
880
881 /* If we are building a shared library and we just recorded
882 a dynamic R_PARISC_FPTR64 relocation, then make sure the
883 section symbol for this section ends up in the dynamic
884 symbol table. */
885 if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
886 && ! (bfd_elf_link_record_local_dynamic_symbol
887 (info, abfd, sec_symndx)))
888 return FALSE;
889 }
890 }
891
892 return TRUE;
893
894 err_out:
895 return FALSE;
896 }
897
898 struct elf64_hppa_allocate_data
899 {
900 struct bfd_link_info *info;
901 bfd_size_type ofs;
902 };
903
904 /* Should we do dynamic things to this symbol? */
905
906 static bfd_boolean
907 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
908 struct bfd_link_info *info)
909 {
910 /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
911 and relocations that retrieve a function descriptor? Assume the
912 worst for now. */
913 if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
914 {
915 /* ??? Why is this here and not elsewhere is_local_label_name. */
916 if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
917 return FALSE;
918
919 return TRUE;
920 }
921 else
922 return FALSE;
923 }
924
925 /* Mark all functions exported by this file so that we can later allocate
926 entries in .opd for them. */
927
928 static bfd_boolean
929 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
930 {
931 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
932 struct bfd_link_info *info = (struct bfd_link_info *)data;
933 struct elf64_hppa_link_hash_table *hppa_info;
934
935 hppa_info = hppa_link_hash_table (info);
936 if (hppa_info == NULL)
937 return FALSE;
938
939 if (eh
940 && (eh->root.type == bfd_link_hash_defined
941 || eh->root.type == bfd_link_hash_defweak)
942 && eh->root.u.def.section->output_section != NULL
943 && eh->type == STT_FUNC)
944 {
945 if (! hppa_info->opd_sec
946 && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
947 return FALSE;
948
949 hh->want_opd = 1;
950
951 /* Put a flag here for output_symbol_hook. */
952 hh->st_shndx = -1;
953 eh->needs_plt = 1;
954 }
955
956 return TRUE;
957 }
958
959 /* Allocate space for a DLT entry. */
960
961 static bfd_boolean
962 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
963 {
964 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
965 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
966
967 if (hh->want_dlt)
968 {
969 if (bfd_link_pic (x->info))
970 {
971 /* Possibly add the symbol to the local dynamic symbol
972 table since we might need to create a dynamic relocation
973 against it. */
974 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
975 {
976 bfd *owner = eh->root.u.def.section->owner;
977
978 if (! (bfd_elf_link_record_local_dynamic_symbol
979 (x->info, owner, hh->sym_indx)))
980 return FALSE;
981 }
982 }
983
984 hh->dlt_offset = x->ofs;
985 x->ofs += DLT_ENTRY_SIZE;
986 }
987 return TRUE;
988 }
989
990 /* Allocate space for a DLT.PLT entry. */
991
992 static bfd_boolean
993 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
994 {
995 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
996 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
997
998 if (hh->want_plt
999 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1000 && !((eh->root.type == bfd_link_hash_defined
1001 || eh->root.type == bfd_link_hash_defweak)
1002 && eh->root.u.def.section->output_section != NULL))
1003 {
1004 hh->plt_offset = x->ofs;
1005 x->ofs += PLT_ENTRY_SIZE;
1006 if (hh->plt_offset < 0x2000)
1007 {
1008 struct elf64_hppa_link_hash_table *hppa_info;
1009
1010 hppa_info = hppa_link_hash_table (x->info);
1011 if (hppa_info == NULL)
1012 return FALSE;
1013
1014 hppa_info->gp_offset = hh->plt_offset;
1015 }
1016 }
1017 else
1018 hh->want_plt = 0;
1019
1020 return TRUE;
1021 }
1022
1023 /* Allocate space for a STUB entry. */
1024
1025 static bfd_boolean
1026 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1027 {
1028 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1029 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1030
1031 if (hh->want_stub
1032 && elf64_hppa_dynamic_symbol_p (eh, x->info)
1033 && !((eh->root.type == bfd_link_hash_defined
1034 || eh->root.type == bfd_link_hash_defweak)
1035 && eh->root.u.def.section->output_section != NULL))
1036 {
1037 hh->stub_offset = x->ofs;
1038 x->ofs += sizeof (plt_stub);
1039 }
1040 else
1041 hh->want_stub = 0;
1042 return TRUE;
1043 }
1044
1045 /* Allocate space for a FPTR entry. */
1046
1047 static bfd_boolean
1048 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1049 {
1050 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1051 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1052
1053 if (hh && hh->want_opd)
1054 {
1055 /* We never need an opd entry for a symbol which is not
1056 defined by this output file. */
1057 if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1058 || hh->eh.root.type == bfd_link_hash_undefweak
1059 || hh->eh.root.u.def.section->output_section == NULL))
1060 hh->want_opd = 0;
1061
1062 /* If we are creating a shared library, took the address of a local
1063 function or might export this function from this object file, then
1064 we have to create an opd descriptor. */
1065 else if (bfd_link_pic (x->info)
1066 || hh == NULL
1067 || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1068 || (hh->eh.root.type == bfd_link_hash_defined
1069 || hh->eh.root.type == bfd_link_hash_defweak))
1070 {
1071 /* If we are creating a shared library, then we will have to
1072 create a runtime relocation for the symbol to properly
1073 initialize the .opd entry. Make sure the symbol gets
1074 added to the dynamic symbol table. */
1075 if (bfd_link_pic (x->info)
1076 && (hh == NULL || (hh->eh.dynindx == -1)))
1077 {
1078 bfd *owner;
1079 /* PR 6511: Default to using the dynamic symbol table. */
1080 owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1081
1082 if (!bfd_elf_link_record_local_dynamic_symbol
1083 (x->info, owner, hh->sym_indx))
1084 return FALSE;
1085 }
1086
1087 /* This may not be necessary or desirable anymore now that
1088 we have some support for dealing with section symbols
1089 in dynamic relocs. But name munging does make the result
1090 much easier to debug. ie, the EPLT reloc will reference
1091 a symbol like .foobar, instead of .text + offset. */
1092 if (bfd_link_pic (x->info) && eh)
1093 {
1094 char *new_name;
1095 struct elf_link_hash_entry *nh;
1096
1097 new_name = concat (".", eh->root.root.string, NULL);
1098
1099 nh = elf_link_hash_lookup (elf_hash_table (x->info),
1100 new_name, TRUE, TRUE, TRUE);
1101
1102 free (new_name);
1103 nh->root.type = eh->root.type;
1104 nh->root.u.def.value = eh->root.u.def.value;
1105 nh->root.u.def.section = eh->root.u.def.section;
1106
1107 if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1108 return FALSE;
1109 }
1110 hh->opd_offset = x->ofs;
1111 x->ofs += OPD_ENTRY_SIZE;
1112 }
1113
1114 /* Otherwise we do not need an opd entry. */
1115 else
1116 hh->want_opd = 0;
1117 }
1118 return TRUE;
1119 }
1120
1121 /* HP requires the EI_OSABI field to be filled in. The assignment to
1122 EI_ABIVERSION may not be strictly necessary. */
1123
1124 static void
1125 elf64_hppa_post_process_headers (bfd *abfd,
1126 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1127 {
1128 Elf_Internal_Ehdr * i_ehdrp;
1129
1130 i_ehdrp = elf_elfheader (abfd);
1131
1132 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1133 i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1134 }
1135
1136 /* Create function descriptor section (.opd). This section is called .opd
1137 because it contains "official procedure descriptors". The "official"
1138 refers to the fact that these descriptors are used when taking the address
1139 of a procedure, thus ensuring a unique address for each procedure. */
1140
1141 static bfd_boolean
1142 get_opd (bfd *abfd,
1143 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1144 struct elf64_hppa_link_hash_table *hppa_info)
1145 {
1146 asection *opd;
1147 bfd *dynobj;
1148
1149 opd = hppa_info->opd_sec;
1150 if (!opd)
1151 {
1152 dynobj = hppa_info->root.dynobj;
1153 if (!dynobj)
1154 hppa_info->root.dynobj = dynobj = abfd;
1155
1156 opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1157 (SEC_ALLOC
1158 | SEC_LOAD
1159 | SEC_HAS_CONTENTS
1160 | SEC_IN_MEMORY
1161 | SEC_LINKER_CREATED));
1162 if (!opd
1163 || !bfd_set_section_alignment (abfd, opd, 3))
1164 {
1165 BFD_ASSERT (0);
1166 return FALSE;
1167 }
1168
1169 hppa_info->opd_sec = opd;
1170 }
1171
1172 return TRUE;
1173 }
1174
1175 /* Create the PLT section. */
1176
1177 static bfd_boolean
1178 get_plt (bfd *abfd,
1179 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1180 struct elf64_hppa_link_hash_table *hppa_info)
1181 {
1182 asection *plt;
1183 bfd *dynobj;
1184
1185 plt = hppa_info->plt_sec;
1186 if (!plt)
1187 {
1188 dynobj = hppa_info->root.dynobj;
1189 if (!dynobj)
1190 hppa_info->root.dynobj = dynobj = abfd;
1191
1192 plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1193 (SEC_ALLOC
1194 | SEC_LOAD
1195 | SEC_HAS_CONTENTS
1196 | SEC_IN_MEMORY
1197 | SEC_LINKER_CREATED));
1198 if (!plt
1199 || !bfd_set_section_alignment (abfd, plt, 3))
1200 {
1201 BFD_ASSERT (0);
1202 return FALSE;
1203 }
1204
1205 hppa_info->plt_sec = plt;
1206 }
1207
1208 return TRUE;
1209 }
1210
1211 /* Create the DLT section. */
1212
1213 static bfd_boolean
1214 get_dlt (bfd *abfd,
1215 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1216 struct elf64_hppa_link_hash_table *hppa_info)
1217 {
1218 asection *dlt;
1219 bfd *dynobj;
1220
1221 dlt = hppa_info->dlt_sec;
1222 if (!dlt)
1223 {
1224 dynobj = hppa_info->root.dynobj;
1225 if (!dynobj)
1226 hppa_info->root.dynobj = dynobj = abfd;
1227
1228 dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1229 (SEC_ALLOC
1230 | SEC_LOAD
1231 | SEC_HAS_CONTENTS
1232 | SEC_IN_MEMORY
1233 | SEC_LINKER_CREATED));
1234 if (!dlt
1235 || !bfd_set_section_alignment (abfd, dlt, 3))
1236 {
1237 BFD_ASSERT (0);
1238 return FALSE;
1239 }
1240
1241 hppa_info->dlt_sec = dlt;
1242 }
1243
1244 return TRUE;
1245 }
1246
1247 /* Create the stubs section. */
1248
1249 static bfd_boolean
1250 get_stub (bfd *abfd,
1251 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1252 struct elf64_hppa_link_hash_table *hppa_info)
1253 {
1254 asection *stub;
1255 bfd *dynobj;
1256
1257 stub = hppa_info->stub_sec;
1258 if (!stub)
1259 {
1260 dynobj = hppa_info->root.dynobj;
1261 if (!dynobj)
1262 hppa_info->root.dynobj = dynobj = abfd;
1263
1264 stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1265 (SEC_ALLOC | SEC_LOAD
1266 | SEC_HAS_CONTENTS
1267 | SEC_IN_MEMORY
1268 | SEC_READONLY
1269 | SEC_LINKER_CREATED));
1270 if (!stub
1271 || !bfd_set_section_alignment (abfd, stub, 3))
1272 {
1273 BFD_ASSERT (0);
1274 return FALSE;
1275 }
1276
1277 hppa_info->stub_sec = stub;
1278 }
1279
1280 return TRUE;
1281 }
1282
1283 /* Create sections necessary for dynamic linking. This is only a rough
1284 cut and will likely change as we learn more about the somewhat
1285 unusual dynamic linking scheme HP uses.
1286
1287 .stub:
1288 Contains code to implement cross-space calls. The first time one
1289 of the stubs is used it will call into the dynamic linker, later
1290 calls will go straight to the target.
1291
1292 The only stub we support right now looks like
1293
1294 ldd OFFSET(%dp),%r1
1295 bve %r0(%r1)
1296 ldd OFFSET+8(%dp),%dp
1297
1298 Other stubs may be needed in the future. We may want the remove
1299 the break/nop instruction. It is only used right now to keep the
1300 offset of a .plt entry and a .stub entry in sync.
1301
1302 .dlt:
1303 This is what most people call the .got. HP used a different name.
1304 Losers.
1305
1306 .rela.dlt:
1307 Relocations for the DLT.
1308
1309 .plt:
1310 Function pointers as address,gp pairs.
1311
1312 .rela.plt:
1313 Should contain dynamic IPLT (and EPLT?) relocations.
1314
1315 .opd:
1316 FPTRS
1317
1318 .rela.opd:
1319 EPLT relocations for symbols exported from shared libraries. */
1320
1321 static bfd_boolean
1322 elf64_hppa_create_dynamic_sections (bfd *abfd,
1323 struct bfd_link_info *info)
1324 {
1325 asection *s;
1326 struct elf64_hppa_link_hash_table *hppa_info;
1327
1328 hppa_info = hppa_link_hash_table (info);
1329 if (hppa_info == NULL)
1330 return FALSE;
1331
1332 if (! get_stub (abfd, info, hppa_info))
1333 return FALSE;
1334
1335 if (! get_dlt (abfd, info, hppa_info))
1336 return FALSE;
1337
1338 if (! get_plt (abfd, info, hppa_info))
1339 return FALSE;
1340
1341 if (! get_opd (abfd, info, hppa_info))
1342 return FALSE;
1343
1344 s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1345 (SEC_ALLOC | SEC_LOAD
1346 | SEC_HAS_CONTENTS
1347 | SEC_IN_MEMORY
1348 | SEC_READONLY
1349 | SEC_LINKER_CREATED));
1350 if (s == NULL
1351 || !bfd_set_section_alignment (abfd, s, 3))
1352 return FALSE;
1353 hppa_info->dlt_rel_sec = s;
1354
1355 s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1356 (SEC_ALLOC | SEC_LOAD
1357 | SEC_HAS_CONTENTS
1358 | SEC_IN_MEMORY
1359 | SEC_READONLY
1360 | SEC_LINKER_CREATED));
1361 if (s == NULL
1362 || !bfd_set_section_alignment (abfd, s, 3))
1363 return FALSE;
1364 hppa_info->plt_rel_sec = s;
1365
1366 s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1367 (SEC_ALLOC | SEC_LOAD
1368 | SEC_HAS_CONTENTS
1369 | SEC_IN_MEMORY
1370 | SEC_READONLY
1371 | SEC_LINKER_CREATED));
1372 if (s == NULL
1373 || !bfd_set_section_alignment (abfd, s, 3))
1374 return FALSE;
1375 hppa_info->other_rel_sec = s;
1376
1377 s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1378 (SEC_ALLOC | SEC_LOAD
1379 | SEC_HAS_CONTENTS
1380 | SEC_IN_MEMORY
1381 | SEC_READONLY
1382 | SEC_LINKER_CREATED));
1383 if (s == NULL
1384 || !bfd_set_section_alignment (abfd, s, 3))
1385 return FALSE;
1386 hppa_info->opd_rel_sec = s;
1387
1388 return TRUE;
1389 }
1390
1391 /* Allocate dynamic relocations for those symbols that turned out
1392 to be dynamic. */
1393
1394 static bfd_boolean
1395 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1396 {
1397 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1398 struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1399 struct elf64_hppa_link_hash_table *hppa_info;
1400 struct elf64_hppa_dyn_reloc_entry *rent;
1401 bfd_boolean dynamic_symbol, shared;
1402
1403 hppa_info = hppa_link_hash_table (x->info);
1404 if (hppa_info == NULL)
1405 return FALSE;
1406
1407 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1408 shared = bfd_link_pic (x->info);
1409
1410 /* We may need to allocate relocations for a non-dynamic symbol
1411 when creating a shared library. */
1412 if (!dynamic_symbol && !shared)
1413 return TRUE;
1414
1415 /* Take care of the normal data relocations. */
1416
1417 for (rent = hh->reloc_entries; rent; rent = rent->next)
1418 {
1419 /* Allocate one iff we are building a shared library, the relocation
1420 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
1421 if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1422 continue;
1423
1424 hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1425
1426 /* Make sure this symbol gets into the dynamic symbol table if it is
1427 not already recorded. ?!? This should not be in the loop since
1428 the symbol need only be added once. */
1429 if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1430 if (!bfd_elf_link_record_local_dynamic_symbol
1431 (x->info, rent->sec->owner, hh->sym_indx))
1432 return FALSE;
1433 }
1434
1435 /* Take care of the GOT and PLT relocations. */
1436
1437 if ((dynamic_symbol || shared) && hh->want_dlt)
1438 hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1439
1440 /* If we are building a shared library, then every symbol that has an
1441 opd entry will need an EPLT relocation to relocate the symbol's address
1442 and __gp value based on the runtime load address. */
1443 if (shared && hh->want_opd)
1444 hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1445
1446 if (hh->want_plt && dynamic_symbol)
1447 {
1448 bfd_size_type t = 0;
1449
1450 /* Dynamic symbols get one IPLT relocation. Local symbols in
1451 shared libraries get two REL relocations. Local symbols in
1452 main applications get nothing. */
1453 if (dynamic_symbol)
1454 t = sizeof (Elf64_External_Rela);
1455 else if (shared)
1456 t = 2 * sizeof (Elf64_External_Rela);
1457
1458 hppa_info->plt_rel_sec->size += t;
1459 }
1460
1461 return TRUE;
1462 }
1463
1464 /* Adjust a symbol defined by a dynamic object and referenced by a
1465 regular object. */
1466
1467 static bfd_boolean
1468 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1469 struct elf_link_hash_entry *eh)
1470 {
1471 /* ??? Undefined symbols with PLT entries should be re-defined
1472 to be the PLT entry. */
1473
1474 /* If this is a weak symbol, and there is a real definition, the
1475 processor independent code will have arranged for us to see the
1476 real definition first, and we can just use the same value. */
1477 if (eh->u.weakdef != NULL)
1478 {
1479 BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1480 || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1481 eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1482 eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1483 return TRUE;
1484 }
1485
1486 /* If this is a reference to a symbol defined by a dynamic object which
1487 is not a function, we might allocate the symbol in our .dynbss section
1488 and allocate a COPY dynamic relocation.
1489
1490 But PA64 code is canonically PIC, so as a rule we can avoid this sort
1491 of hackery. */
1492
1493 return TRUE;
1494 }
1495
1496 /* This function is called via elf_link_hash_traverse to mark millicode
1497 symbols with a dynindx of -1 and to remove the string table reference
1498 from the dynamic symbol table. If the symbol is not a millicode symbol,
1499 elf64_hppa_mark_exported_functions is called. */
1500
1501 static bfd_boolean
1502 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1503 void *data)
1504 {
1505 struct bfd_link_info *info = (struct bfd_link_info *) data;
1506
1507 if (eh->type == STT_PARISC_MILLI)
1508 {
1509 if (eh->dynindx != -1)
1510 {
1511 eh->dynindx = -1;
1512 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1513 eh->dynstr_index);
1514 }
1515 return TRUE;
1516 }
1517
1518 return elf64_hppa_mark_exported_functions (eh, data);
1519 }
1520
1521 /* Set the final sizes of the dynamic sections and allocate memory for
1522 the contents of our special sections. */
1523
1524 static bfd_boolean
1525 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1526 {
1527 struct elf64_hppa_link_hash_table *hppa_info;
1528 struct elf64_hppa_allocate_data data;
1529 bfd *dynobj;
1530 bfd *ibfd;
1531 asection *sec;
1532 bfd_boolean plt;
1533 bfd_boolean relocs;
1534 bfd_boolean reltext;
1535
1536 hppa_info = hppa_link_hash_table (info);
1537 if (hppa_info == NULL)
1538 return FALSE;
1539
1540 dynobj = hppa_info->root.dynobj;
1541 BFD_ASSERT (dynobj != NULL);
1542
1543 /* Mark each function this program exports so that we will allocate
1544 space in the .opd section for each function's FPTR. If we are
1545 creating dynamic sections, change the dynamic index of millicode
1546 symbols to -1 and remove them from the string table for .dynstr.
1547
1548 We have to traverse the main linker hash table since we have to
1549 find functions which may not have been mentioned in any relocs. */
1550 elf_link_hash_traverse (&hppa_info->root,
1551 (hppa_info->root.dynamic_sections_created
1552 ? elf64_hppa_mark_milli_and_exported_functions
1553 : elf64_hppa_mark_exported_functions),
1554 info);
1555
1556 if (hppa_info->root.dynamic_sections_created)
1557 {
1558 /* Set the contents of the .interp section to the interpreter. */
1559 if (bfd_link_executable (info) && !info->nointerp)
1560 {
1561 sec = bfd_get_linker_section (dynobj, ".interp");
1562 BFD_ASSERT (sec != NULL);
1563 sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1564 sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1565 }
1566 }
1567 else
1568 {
1569 /* We may have created entries in the .rela.got section.
1570 However, if we are not creating the dynamic sections, we will
1571 not actually use these entries. Reset the size of .rela.dlt,
1572 which will cause it to get stripped from the output file
1573 below. */
1574 sec = hppa_info->dlt_rel_sec;
1575 if (sec != NULL)
1576 sec->size = 0;
1577 }
1578
1579 /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1580 dynamic relocs. */
1581 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1582 {
1583 bfd_signed_vma *local_dlt;
1584 bfd_signed_vma *end_local_dlt;
1585 bfd_signed_vma *local_plt;
1586 bfd_signed_vma *end_local_plt;
1587 bfd_signed_vma *local_opd;
1588 bfd_signed_vma *end_local_opd;
1589 bfd_size_type locsymcount;
1590 Elf_Internal_Shdr *symtab_hdr;
1591 asection *srel;
1592
1593 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1594 continue;
1595
1596 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1597 {
1598 struct elf64_hppa_dyn_reloc_entry *hdh_p;
1599
1600 for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1601 elf_section_data (sec)->local_dynrel);
1602 hdh_p != NULL;
1603 hdh_p = hdh_p->next)
1604 {
1605 if (!bfd_is_abs_section (hdh_p->sec)
1606 && bfd_is_abs_section (hdh_p->sec->output_section))
1607 {
1608 /* Input section has been discarded, either because
1609 it is a copy of a linkonce section or due to
1610 linker script /DISCARD/, so we'll be discarding
1611 the relocs too. */
1612 }
1613 else if (hdh_p->count != 0)
1614 {
1615 srel = elf_section_data (hdh_p->sec)->sreloc;
1616 srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1617 if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1618 info->flags |= DF_TEXTREL;
1619 }
1620 }
1621 }
1622
1623 local_dlt = elf_local_got_refcounts (ibfd);
1624 if (!local_dlt)
1625 continue;
1626
1627 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1628 locsymcount = symtab_hdr->sh_info;
1629 end_local_dlt = local_dlt + locsymcount;
1630 sec = hppa_info->dlt_sec;
1631 srel = hppa_info->dlt_rel_sec;
1632 for (; local_dlt < end_local_dlt; ++local_dlt)
1633 {
1634 if (*local_dlt > 0)
1635 {
1636 *local_dlt = sec->size;
1637 sec->size += DLT_ENTRY_SIZE;
1638 if (bfd_link_pic (info))
1639 {
1640 srel->size += sizeof (Elf64_External_Rela);
1641 }
1642 }
1643 else
1644 *local_dlt = (bfd_vma) -1;
1645 }
1646
1647 local_plt = end_local_dlt;
1648 end_local_plt = local_plt + locsymcount;
1649 if (! hppa_info->root.dynamic_sections_created)
1650 {
1651 /* Won't be used, but be safe. */
1652 for (; local_plt < end_local_plt; ++local_plt)
1653 *local_plt = (bfd_vma) -1;
1654 }
1655 else
1656 {
1657 sec = hppa_info->plt_sec;
1658 srel = hppa_info->plt_rel_sec;
1659 for (; local_plt < end_local_plt; ++local_plt)
1660 {
1661 if (*local_plt > 0)
1662 {
1663 *local_plt = sec->size;
1664 sec->size += PLT_ENTRY_SIZE;
1665 if (bfd_link_pic (info))
1666 srel->size += sizeof (Elf64_External_Rela);
1667 }
1668 else
1669 *local_plt = (bfd_vma) -1;
1670 }
1671 }
1672
1673 local_opd = end_local_plt;
1674 end_local_opd = local_opd + locsymcount;
1675 if (! hppa_info->root.dynamic_sections_created)
1676 {
1677 /* Won't be used, but be safe. */
1678 for (; local_opd < end_local_opd; ++local_opd)
1679 *local_opd = (bfd_vma) -1;
1680 }
1681 else
1682 {
1683 sec = hppa_info->opd_sec;
1684 srel = hppa_info->opd_rel_sec;
1685 for (; local_opd < end_local_opd; ++local_opd)
1686 {
1687 if (*local_opd > 0)
1688 {
1689 *local_opd = sec->size;
1690 sec->size += OPD_ENTRY_SIZE;
1691 if (bfd_link_pic (info))
1692 srel->size += sizeof (Elf64_External_Rela);
1693 }
1694 else
1695 *local_opd = (bfd_vma) -1;
1696 }
1697 }
1698 }
1699
1700 /* Allocate the GOT entries. */
1701
1702 data.info = info;
1703 if (hppa_info->dlt_sec)
1704 {
1705 data.ofs = hppa_info->dlt_sec->size;
1706 elf_link_hash_traverse (&hppa_info->root,
1707 allocate_global_data_dlt, &data);
1708 hppa_info->dlt_sec->size = data.ofs;
1709 }
1710
1711 if (hppa_info->plt_sec)
1712 {
1713 data.ofs = hppa_info->plt_sec->size;
1714 elf_link_hash_traverse (&hppa_info->root,
1715 allocate_global_data_plt, &data);
1716 hppa_info->plt_sec->size = data.ofs;
1717 }
1718
1719 if (hppa_info->stub_sec)
1720 {
1721 data.ofs = 0x0;
1722 elf_link_hash_traverse (&hppa_info->root,
1723 allocate_global_data_stub, &data);
1724 hppa_info->stub_sec->size = data.ofs;
1725 }
1726
1727 /* Allocate space for entries in the .opd section. */
1728 if (hppa_info->opd_sec)
1729 {
1730 data.ofs = hppa_info->opd_sec->size;
1731 elf_link_hash_traverse (&hppa_info->root,
1732 allocate_global_data_opd, &data);
1733 hppa_info->opd_sec->size = data.ofs;
1734 }
1735
1736 /* Now allocate space for dynamic relocations, if necessary. */
1737 if (hppa_info->root.dynamic_sections_created)
1738 elf_link_hash_traverse (&hppa_info->root,
1739 allocate_dynrel_entries, &data);
1740
1741 /* The sizes of all the sections are set. Allocate memory for them. */
1742 plt = FALSE;
1743 relocs = FALSE;
1744 reltext = FALSE;
1745 for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1746 {
1747 const char *name;
1748
1749 if ((sec->flags & SEC_LINKER_CREATED) == 0)
1750 continue;
1751
1752 /* It's OK to base decisions on the section name, because none
1753 of the dynobj section names depend upon the input files. */
1754 name = bfd_get_section_name (dynobj, sec);
1755
1756 if (strcmp (name, ".plt") == 0)
1757 {
1758 /* Remember whether there is a PLT. */
1759 plt = sec->size != 0;
1760 }
1761 else if (strcmp (name, ".opd") == 0
1762 || CONST_STRNEQ (name, ".dlt")
1763 || strcmp (name, ".stub") == 0
1764 || strcmp (name, ".got") == 0)
1765 {
1766 /* Strip this section if we don't need it; see the comment below. */
1767 }
1768 else if (CONST_STRNEQ (name, ".rela"))
1769 {
1770 if (sec->size != 0)
1771 {
1772 asection *target;
1773
1774 /* Remember whether there are any reloc sections other
1775 than .rela.plt. */
1776 if (strcmp (name, ".rela.plt") != 0)
1777 {
1778 const char *outname;
1779
1780 relocs = TRUE;
1781
1782 /* If this relocation section applies to a read only
1783 section, then we probably need a DT_TEXTREL
1784 entry. The entries in the .rela.plt section
1785 really apply to the .got section, which we
1786 created ourselves and so know is not readonly. */
1787 outname = bfd_get_section_name (output_bfd,
1788 sec->output_section);
1789 target = bfd_get_section_by_name (output_bfd, outname + 4);
1790 if (target != NULL
1791 && (target->flags & SEC_READONLY) != 0
1792 && (target->flags & SEC_ALLOC) != 0)
1793 reltext = TRUE;
1794 }
1795
1796 /* We use the reloc_count field as a counter if we need
1797 to copy relocs into the output file. */
1798 sec->reloc_count = 0;
1799 }
1800 }
1801 else
1802 {
1803 /* It's not one of our sections, so don't allocate space. */
1804 continue;
1805 }
1806
1807 if (sec->size == 0)
1808 {
1809 /* If we don't need this section, strip it from the
1810 output file. This is mostly to handle .rela.bss and
1811 .rela.plt. We must create both sections in
1812 create_dynamic_sections, because they must be created
1813 before the linker maps input sections to output
1814 sections. The linker does that before
1815 adjust_dynamic_symbol is called, and it is that
1816 function which decides whether anything needs to go
1817 into these sections. */
1818 sec->flags |= SEC_EXCLUDE;
1819 continue;
1820 }
1821
1822 if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1823 continue;
1824
1825 /* Allocate memory for the section contents if it has not
1826 been allocated already. We use bfd_zalloc here in case
1827 unused entries are not reclaimed before the section's
1828 contents are written out. This should not happen, but this
1829 way if it does, we get a R_PARISC_NONE reloc instead of
1830 garbage. */
1831 if (sec->contents == NULL)
1832 {
1833 sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1834 if (sec->contents == NULL)
1835 return FALSE;
1836 }
1837 }
1838
1839 if (hppa_info->root.dynamic_sections_created)
1840 {
1841 /* Always create a DT_PLTGOT. It actually has nothing to do with
1842 the PLT, it is how we communicate the __gp value of a load
1843 module to the dynamic linker. */
1844 #define add_dynamic_entry(TAG, VAL) \
1845 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1846
1847 if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1848 || !add_dynamic_entry (DT_PLTGOT, 0))
1849 return FALSE;
1850
1851 /* Add some entries to the .dynamic section. We fill in the
1852 values later, in elf64_hppa_finish_dynamic_sections, but we
1853 must add the entries now so that we get the correct size for
1854 the .dynamic section. The DT_DEBUG entry is filled in by the
1855 dynamic linker and used by the debugger. */
1856 if (! bfd_link_pic (info))
1857 {
1858 if (!add_dynamic_entry (DT_DEBUG, 0)
1859 || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1860 || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1861 return FALSE;
1862 }
1863
1864 /* Force DT_FLAGS to always be set.
1865 Required by HPUX 11.00 patch PHSS_26559. */
1866 if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1867 return FALSE;
1868
1869 if (plt)
1870 {
1871 if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1872 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1873 || !add_dynamic_entry (DT_JMPREL, 0))
1874 return FALSE;
1875 }
1876
1877 if (relocs)
1878 {
1879 if (!add_dynamic_entry (DT_RELA, 0)
1880 || !add_dynamic_entry (DT_RELASZ, 0)
1881 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1882 return FALSE;
1883 }
1884
1885 if (reltext)
1886 {
1887 if (!add_dynamic_entry (DT_TEXTREL, 0))
1888 return FALSE;
1889 info->flags |= DF_TEXTREL;
1890 }
1891 }
1892 #undef add_dynamic_entry
1893
1894 return TRUE;
1895 }
1896
1897 /* Called after we have output the symbol into the dynamic symbol
1898 table, but before we output the symbol into the normal symbol
1899 table.
1900
1901 For some symbols we had to change their address when outputting
1902 the dynamic symbol table. We undo that change here so that
1903 the symbols have their expected value in the normal symbol
1904 table. Ick. */
1905
1906 static int
1907 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1908 const char *name,
1909 Elf_Internal_Sym *sym,
1910 asection *input_sec ATTRIBUTE_UNUSED,
1911 struct elf_link_hash_entry *eh)
1912 {
1913 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1914
1915 /* We may be called with the file symbol or section symbols.
1916 They never need munging, so it is safe to ignore them. */
1917 if (!name || !eh)
1918 return 1;
1919
1920 /* Function symbols for which we created .opd entries *may* have been
1921 munged by finish_dynamic_symbol and have to be un-munged here.
1922
1923 Note that finish_dynamic_symbol sometimes turns dynamic symbols
1924 into non-dynamic ones, so we initialize st_shndx to -1 in
1925 mark_exported_functions and check to see if it was overwritten
1926 here instead of just checking eh->dynindx. */
1927 if (hh->want_opd && hh->st_shndx != -1)
1928 {
1929 /* Restore the saved value and section index. */
1930 sym->st_value = hh->st_value;
1931 sym->st_shndx = hh->st_shndx;
1932 }
1933
1934 return 1;
1935 }
1936
1937 /* Finish up dynamic symbol handling. We set the contents of various
1938 dynamic sections here. */
1939
1940 static bfd_boolean
1941 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1942 struct bfd_link_info *info,
1943 struct elf_link_hash_entry *eh,
1944 Elf_Internal_Sym *sym)
1945 {
1946 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1947 asection *stub, *splt, *sopd, *spltrel;
1948 struct elf64_hppa_link_hash_table *hppa_info;
1949
1950 hppa_info = hppa_link_hash_table (info);
1951 if (hppa_info == NULL)
1952 return FALSE;
1953
1954 stub = hppa_info->stub_sec;
1955 splt = hppa_info->plt_sec;
1956 sopd = hppa_info->opd_sec;
1957 spltrel = hppa_info->plt_rel_sec;
1958
1959 /* Incredible. It is actually necessary to NOT use the symbol's real
1960 value when building the dynamic symbol table for a shared library.
1961 At least for symbols that refer to functions.
1962
1963 We will store a new value and section index into the symbol long
1964 enough to output it into the dynamic symbol table, then we restore
1965 the original values (in elf64_hppa_link_output_symbol_hook). */
1966 if (hh->want_opd)
1967 {
1968 BFD_ASSERT (sopd != NULL);
1969
1970 /* Save away the original value and section index so that we
1971 can restore them later. */
1972 hh->st_value = sym->st_value;
1973 hh->st_shndx = sym->st_shndx;
1974
1975 /* For the dynamic symbol table entry, we want the value to be
1976 address of this symbol's entry within the .opd section. */
1977 sym->st_value = (hh->opd_offset
1978 + sopd->output_offset
1979 + sopd->output_section->vma);
1980 sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1981 sopd->output_section);
1982 }
1983
1984 /* Initialize a .plt entry if requested. */
1985 if (hh->want_plt
1986 && elf64_hppa_dynamic_symbol_p (eh, info))
1987 {
1988 bfd_vma value;
1989 Elf_Internal_Rela rel;
1990 bfd_byte *loc;
1991
1992 BFD_ASSERT (splt != NULL && spltrel != NULL);
1993
1994 /* We do not actually care about the value in the PLT entry
1995 if we are creating a shared library and the symbol is
1996 still undefined, we create a dynamic relocation to fill
1997 in the correct value. */
1998 if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1999 value = 0;
2000 else
2001 value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2002
2003 /* Fill in the entry in the procedure linkage table.
2004
2005 The format of a plt entry is
2006 <funcaddr> <__gp>.
2007
2008 plt_offset is the offset within the PLT section at which to
2009 install the PLT entry.
2010
2011 We are modifying the in-memory PLT contents here, so we do not add
2012 in the output_offset of the PLT section. */
2013
2014 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2015 value = _bfd_get_gp_value (splt->output_section->owner);
2016 bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2017
2018 /* Create a dynamic IPLT relocation for this entry.
2019
2020 We are creating a relocation in the output file's PLT section,
2021 which is included within the DLT secton. So we do need to include
2022 the PLT's output_offset in the computation of the relocation's
2023 address. */
2024 rel.r_offset = (hh->plt_offset + splt->output_offset
2025 + splt->output_section->vma);
2026 rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2027 rel.r_addend = 0;
2028
2029 loc = spltrel->contents;
2030 loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2031 bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2032 }
2033
2034 /* Initialize an external call stub entry if requested. */
2035 if (hh->want_stub
2036 && elf64_hppa_dynamic_symbol_p (eh, info))
2037 {
2038 bfd_vma value;
2039 int insn;
2040 unsigned int max_offset;
2041
2042 BFD_ASSERT (stub != NULL);
2043
2044 /* Install the generic stub template.
2045
2046 We are modifying the contents of the stub section, so we do not
2047 need to include the stub section's output_offset here. */
2048 memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2049
2050 /* Fix up the first ldd instruction.
2051
2052 We are modifying the contents of the STUB section in memory,
2053 so we do not need to include its output offset in this computation.
2054
2055 Note the plt_offset value is the value of the PLT entry relative to
2056 the start of the PLT section. These instructions will reference
2057 data relative to the value of __gp, which may not necessarily have
2058 the same address as the start of the PLT section.
2059
2060 gp_offset contains the offset of __gp within the PLT section. */
2061 value = hh->plt_offset - hppa_info->gp_offset;
2062
2063 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2064 if (output_bfd->arch_info->mach >= 25)
2065 {
2066 /* Wide mode allows 16 bit offsets. */
2067 max_offset = 32768;
2068 insn &= ~ 0xfff1;
2069 insn |= re_assemble_16 ((int) value);
2070 }
2071 else
2072 {
2073 max_offset = 8192;
2074 insn &= ~ 0x3ff1;
2075 insn |= re_assemble_14 ((int) value);
2076 }
2077
2078 if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2079 {
2080 _bfd_error_handler
2081 /* xgettext:c-format */
2082 (_("stub entry for %s cannot load .plt, dp offset = %Ld"),
2083 hh->eh.root.root.string, value);
2084 return FALSE;
2085 }
2086
2087 bfd_put_32 (stub->owner, (bfd_vma) insn,
2088 stub->contents + hh->stub_offset);
2089
2090 /* Fix up the second ldd instruction. */
2091 value += 8;
2092 insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2093 if (output_bfd->arch_info->mach >= 25)
2094 {
2095 insn &= ~ 0xfff1;
2096 insn |= re_assemble_16 ((int) value);
2097 }
2098 else
2099 {
2100 insn &= ~ 0x3ff1;
2101 insn |= re_assemble_14 ((int) value);
2102 }
2103 bfd_put_32 (stub->owner, (bfd_vma) insn,
2104 stub->contents + hh->stub_offset + 8);
2105 }
2106
2107 return TRUE;
2108 }
2109
2110 /* The .opd section contains FPTRs for each function this file
2111 exports. Initialize the FPTR entries. */
2112
2113 static bfd_boolean
2114 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2115 {
2116 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2117 struct bfd_link_info *info = (struct bfd_link_info *)data;
2118 struct elf64_hppa_link_hash_table *hppa_info;
2119 asection *sopd;
2120 asection *sopdrel;
2121
2122 hppa_info = hppa_link_hash_table (info);
2123 if (hppa_info == NULL)
2124 return FALSE;
2125
2126 sopd = hppa_info->opd_sec;
2127 sopdrel = hppa_info->opd_rel_sec;
2128
2129 if (hh->want_opd)
2130 {
2131 bfd_vma value;
2132
2133 /* The first two words of an .opd entry are zero.
2134
2135 We are modifying the contents of the OPD section in memory, so we
2136 do not need to include its output offset in this computation. */
2137 memset (sopd->contents + hh->opd_offset, 0, 16);
2138
2139 value = (eh->root.u.def.value
2140 + eh->root.u.def.section->output_section->vma
2141 + eh->root.u.def.section->output_offset);
2142
2143 /* The next word is the address of the function. */
2144 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2145
2146 /* The last word is our local __gp value. */
2147 value = _bfd_get_gp_value (sopd->output_section->owner);
2148 bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2149 }
2150
2151 /* If we are generating a shared library, we must generate EPLT relocations
2152 for each entry in the .opd, even for static functions (they may have
2153 had their address taken). */
2154 if (bfd_link_pic (info) && hh->want_opd)
2155 {
2156 Elf_Internal_Rela rel;
2157 bfd_byte *loc;
2158 int dynindx;
2159
2160 /* We may need to do a relocation against a local symbol, in
2161 which case we have to look up it's dynamic symbol index off
2162 the local symbol hash table. */
2163 if (eh->dynindx != -1)
2164 dynindx = eh->dynindx;
2165 else
2166 dynindx
2167 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2168 hh->sym_indx);
2169
2170 /* The offset of this relocation is the absolute address of the
2171 .opd entry for this symbol. */
2172 rel.r_offset = (hh->opd_offset + sopd->output_offset
2173 + sopd->output_section->vma);
2174
2175 /* If H is non-null, then we have an external symbol.
2176
2177 It is imperative that we use a different dynamic symbol for the
2178 EPLT relocation if the symbol has global scope.
2179
2180 In the dynamic symbol table, the function symbol will have a value
2181 which is address of the function's .opd entry.
2182
2183 Thus, we can not use that dynamic symbol for the EPLT relocation
2184 (if we did, the data in the .opd would reference itself rather
2185 than the actual address of the function). Instead we have to use
2186 a new dynamic symbol which has the same value as the original global
2187 function symbol.
2188
2189 We prefix the original symbol with a "." and use the new symbol in
2190 the EPLT relocation. This new symbol has already been recorded in
2191 the symbol table, we just have to look it up and use it.
2192
2193 We do not have such problems with static functions because we do
2194 not make their addresses in the dynamic symbol table point to
2195 the .opd entry. Ultimately this should be safe since a static
2196 function can not be directly referenced outside of its shared
2197 library.
2198
2199 We do have to play similar games for FPTR relocations in shared
2200 libraries, including those for static symbols. See the FPTR
2201 handling in elf64_hppa_finalize_dynreloc. */
2202 if (eh)
2203 {
2204 char *new_name;
2205 struct elf_link_hash_entry *nh;
2206
2207 new_name = concat (".", eh->root.root.string, NULL);
2208
2209 nh = elf_link_hash_lookup (elf_hash_table (info),
2210 new_name, TRUE, TRUE, FALSE);
2211
2212 /* All we really want from the new symbol is its dynamic
2213 symbol index. */
2214 if (nh)
2215 dynindx = nh->dynindx;
2216 free (new_name);
2217 }
2218
2219 rel.r_addend = 0;
2220 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2221
2222 loc = sopdrel->contents;
2223 loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2224 bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2225 }
2226 return TRUE;
2227 }
2228
2229 /* The .dlt section contains addresses for items referenced through the
2230 dlt. Note that we can have a DLTIND relocation for a local symbol, thus
2231 we can not depend on finish_dynamic_symbol to initialize the .dlt. */
2232
2233 static bfd_boolean
2234 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2235 {
2236 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2237 struct bfd_link_info *info = (struct bfd_link_info *)data;
2238 struct elf64_hppa_link_hash_table *hppa_info;
2239 asection *sdlt, *sdltrel;
2240
2241 hppa_info = hppa_link_hash_table (info);
2242 if (hppa_info == NULL)
2243 return FALSE;
2244
2245 sdlt = hppa_info->dlt_sec;
2246 sdltrel = hppa_info->dlt_rel_sec;
2247
2248 /* H/DYN_H may refer to a local variable and we know it's
2249 address, so there is no need to create a relocation. Just install
2250 the proper value into the DLT, note this shortcut can not be
2251 skipped when building a shared library. */
2252 if (! bfd_link_pic (info) && hh && hh->want_dlt)
2253 {
2254 bfd_vma value;
2255
2256 /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2257 to point to the FPTR entry in the .opd section.
2258
2259 We include the OPD's output offset in this computation as
2260 we are referring to an absolute address in the resulting
2261 object file. */
2262 if (hh->want_opd)
2263 {
2264 value = (hh->opd_offset
2265 + hppa_info->opd_sec->output_offset
2266 + hppa_info->opd_sec->output_section->vma);
2267 }
2268 else if ((eh->root.type == bfd_link_hash_defined
2269 || eh->root.type == bfd_link_hash_defweak)
2270 && eh->root.u.def.section)
2271 {
2272 value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2273 if (eh->root.u.def.section->output_section)
2274 value += eh->root.u.def.section->output_section->vma;
2275 else
2276 value += eh->root.u.def.section->vma;
2277 }
2278 else
2279 /* We have an undefined function reference. */
2280 value = 0;
2281
2282 /* We do not need to include the output offset of the DLT section
2283 here because we are modifying the in-memory contents. */
2284 bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2285 }
2286
2287 /* Create a relocation for the DLT entry associated with this symbol.
2288 When building a shared library the symbol does not have to be dynamic. */
2289 if (hh->want_dlt
2290 && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2291 {
2292 Elf_Internal_Rela rel;
2293 bfd_byte *loc;
2294 int dynindx;
2295
2296 /* We may need to do a relocation against a local symbol, in
2297 which case we have to look up it's dynamic symbol index off
2298 the local symbol hash table. */
2299 if (eh && eh->dynindx != -1)
2300 dynindx = eh->dynindx;
2301 else
2302 dynindx
2303 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2304 hh->sym_indx);
2305
2306 /* Create a dynamic relocation for this entry. Do include the output
2307 offset of the DLT entry since we need an absolute address in the
2308 resulting object file. */
2309 rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2310 + sdlt->output_section->vma);
2311 if (eh && eh->type == STT_FUNC)
2312 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2313 else
2314 rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2315 rel.r_addend = 0;
2316
2317 loc = sdltrel->contents;
2318 loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2319 bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2320 }
2321 return TRUE;
2322 }
2323
2324 /* Finalize the dynamic relocations. Specifically the FPTR relocations
2325 for dynamic functions used to initialize static data. */
2326
2327 static bfd_boolean
2328 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2329 void *data)
2330 {
2331 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2332 struct bfd_link_info *info = (struct bfd_link_info *)data;
2333 struct elf64_hppa_link_hash_table *hppa_info;
2334 int dynamic_symbol;
2335
2336 dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2337
2338 if (!dynamic_symbol && !bfd_link_pic (info))
2339 return TRUE;
2340
2341 if (hh->reloc_entries)
2342 {
2343 struct elf64_hppa_dyn_reloc_entry *rent;
2344 int dynindx;
2345
2346 hppa_info = hppa_link_hash_table (info);
2347 if (hppa_info == NULL)
2348 return FALSE;
2349
2350 /* We may need to do a relocation against a local symbol, in
2351 which case we have to look up it's dynamic symbol index off
2352 the local symbol hash table. */
2353 if (eh->dynindx != -1)
2354 dynindx = eh->dynindx;
2355 else
2356 dynindx
2357 = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2358 hh->sym_indx);
2359
2360 for (rent = hh->reloc_entries; rent; rent = rent->next)
2361 {
2362 Elf_Internal_Rela rel;
2363 bfd_byte *loc;
2364
2365 /* Allocate one iff we are building a shared library, the relocation
2366 isn't a R_PARISC_FPTR64, or we don't want an opd entry. */
2367 if (!bfd_link_pic (info)
2368 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2369 continue;
2370
2371 /* Create a dynamic relocation for this entry.
2372
2373 We need the output offset for the reloc's section because
2374 we are creating an absolute address in the resulting object
2375 file. */
2376 rel.r_offset = (rent->offset + rent->sec->output_offset
2377 + rent->sec->output_section->vma);
2378
2379 /* An FPTR64 relocation implies that we took the address of
2380 a function and that the function has an entry in the .opd
2381 section. We want the FPTR64 relocation to reference the
2382 entry in .opd.
2383
2384 We could munge the symbol value in the dynamic symbol table
2385 (in fact we already do for functions with global scope) to point
2386 to the .opd entry. Then we could use that dynamic symbol in
2387 this relocation.
2388
2389 Or we could do something sensible, not munge the symbol's
2390 address and instead just use a different symbol to reference
2391 the .opd entry. At least that seems sensible until you
2392 realize there's no local dynamic symbols we can use for that
2393 purpose. Thus the hair in the check_relocs routine.
2394
2395 We use a section symbol recorded by check_relocs as the
2396 base symbol for the relocation. The addend is the difference
2397 between the section symbol and the address of the .opd entry. */
2398 if (bfd_link_pic (info)
2399 && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2400 {
2401 bfd_vma value, value2;
2402
2403 /* First compute the address of the opd entry for this symbol. */
2404 value = (hh->opd_offset
2405 + hppa_info->opd_sec->output_section->vma
2406 + hppa_info->opd_sec->output_offset);
2407
2408 /* Compute the value of the start of the section with
2409 the relocation. */
2410 value2 = (rent->sec->output_section->vma
2411 + rent->sec->output_offset);
2412
2413 /* Compute the difference between the start of the section
2414 with the relocation and the opd entry. */
2415 value -= value2;
2416
2417 /* The result becomes the addend of the relocation. */
2418 rel.r_addend = value;
2419
2420 /* The section symbol becomes the symbol for the dynamic
2421 relocation. */
2422 dynindx
2423 = _bfd_elf_link_lookup_local_dynindx (info,
2424 rent->sec->owner,
2425 rent->sec_symndx);
2426 }
2427 else
2428 rel.r_addend = rent->addend;
2429
2430 rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2431
2432 loc = hppa_info->other_rel_sec->contents;
2433 loc += (hppa_info->other_rel_sec->reloc_count++
2434 * sizeof (Elf64_External_Rela));
2435 bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2436 &rel, loc);
2437 }
2438 }
2439
2440 return TRUE;
2441 }
2442
2443 /* Used to decide how to sort relocs in an optimal manner for the
2444 dynamic linker, before writing them out. */
2445
2446 static enum elf_reloc_type_class
2447 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2448 const asection *rel_sec ATTRIBUTE_UNUSED,
2449 const Elf_Internal_Rela *rela)
2450 {
2451 if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2452 return reloc_class_relative;
2453
2454 switch ((int) ELF64_R_TYPE (rela->r_info))
2455 {
2456 case R_PARISC_IPLT:
2457 return reloc_class_plt;
2458 case R_PARISC_COPY:
2459 return reloc_class_copy;
2460 default:
2461 return reloc_class_normal;
2462 }
2463 }
2464
2465 /* Finish up the dynamic sections. */
2466
2467 static bfd_boolean
2468 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2469 struct bfd_link_info *info)
2470 {
2471 bfd *dynobj;
2472 asection *sdyn;
2473 struct elf64_hppa_link_hash_table *hppa_info;
2474
2475 hppa_info = hppa_link_hash_table (info);
2476 if (hppa_info == NULL)
2477 return FALSE;
2478
2479 /* Finalize the contents of the .opd section. */
2480 elf_link_hash_traverse (elf_hash_table (info),
2481 elf64_hppa_finalize_opd,
2482 info);
2483
2484 elf_link_hash_traverse (elf_hash_table (info),
2485 elf64_hppa_finalize_dynreloc,
2486 info);
2487
2488 /* Finalize the contents of the .dlt section. */
2489 dynobj = elf_hash_table (info)->dynobj;
2490 /* Finalize the contents of the .dlt section. */
2491 elf_link_hash_traverse (elf_hash_table (info),
2492 elf64_hppa_finalize_dlt,
2493 info);
2494
2495 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2496
2497 if (elf_hash_table (info)->dynamic_sections_created)
2498 {
2499 Elf64_External_Dyn *dyncon, *dynconend;
2500
2501 BFD_ASSERT (sdyn != NULL);
2502
2503 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2504 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2505 for (; dyncon < dynconend; dyncon++)
2506 {
2507 Elf_Internal_Dyn dyn;
2508 asection *s;
2509
2510 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2511
2512 switch (dyn.d_tag)
2513 {
2514 default:
2515 break;
2516
2517 case DT_HP_LOAD_MAP:
2518 /* Compute the absolute address of 16byte scratchpad area
2519 for the dynamic linker.
2520
2521 By convention the linker script will allocate the scratchpad
2522 area at the start of the .data section. So all we have to
2523 to is find the start of the .data section. */
2524 s = bfd_get_section_by_name (output_bfd, ".data");
2525 if (!s)
2526 return FALSE;
2527 dyn.d_un.d_ptr = s->vma;
2528 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529 break;
2530
2531 case DT_PLTGOT:
2532 /* HP's use PLTGOT to set the GOT register. */
2533 dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2534 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535 break;
2536
2537 case DT_JMPREL:
2538 s = hppa_info->plt_rel_sec;
2539 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2540 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2541 break;
2542
2543 case DT_PLTRELSZ:
2544 s = hppa_info->plt_rel_sec;
2545 dyn.d_un.d_val = s->size;
2546 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2547 break;
2548
2549 case DT_RELA:
2550 s = hppa_info->other_rel_sec;
2551 if (! s || ! s->size)
2552 s = hppa_info->dlt_rel_sec;
2553 if (! s || ! s->size)
2554 s = hppa_info->opd_rel_sec;
2555 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2556 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2557 break;
2558
2559 case DT_RELASZ:
2560 s = hppa_info->other_rel_sec;
2561 dyn.d_un.d_val = s->size;
2562 s = hppa_info->dlt_rel_sec;
2563 dyn.d_un.d_val += s->size;
2564 s = hppa_info->opd_rel_sec;
2565 dyn.d_un.d_val += s->size;
2566 /* There is some question about whether or not the size of
2567 the PLT relocs should be included here. HP's tools do
2568 it, so we'll emulate them. */
2569 s = hppa_info->plt_rel_sec;
2570 dyn.d_un.d_val += s->size;
2571 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2572 break;
2573
2574 }
2575 }
2576 }
2577
2578 return TRUE;
2579 }
2580
2581 /* Support for core dump NOTE sections. */
2582
2583 static bfd_boolean
2584 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2585 {
2586 int offset;
2587 size_t size;
2588
2589 switch (note->descsz)
2590 {
2591 default:
2592 return FALSE;
2593
2594 case 760: /* Linux/hppa */
2595 /* pr_cursig */
2596 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2597
2598 /* pr_pid */
2599 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2600
2601 /* pr_reg */
2602 offset = 112;
2603 size = 640;
2604
2605 break;
2606 }
2607
2608 /* Make a ".reg/999" section. */
2609 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2610 size, note->descpos + offset);
2611 }
2612
2613 static bfd_boolean
2614 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2615 {
2616 char * command;
2617 int n;
2618
2619 switch (note->descsz)
2620 {
2621 default:
2622 return FALSE;
2623
2624 case 136: /* Linux/hppa elf_prpsinfo. */
2625 elf_tdata (abfd)->core->program
2626 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2627 elf_tdata (abfd)->core->command
2628 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2629 }
2630
2631 /* Note that for some reason, a spurious space is tacked
2632 onto the end of the args in some (at least one anyway)
2633 implementations, so strip it off if it exists. */
2634 command = elf_tdata (abfd)->core->command;
2635 n = strlen (command);
2636
2637 if (0 < n && command[n - 1] == ' ')
2638 command[n - 1] = '\0';
2639
2640 return TRUE;
2641 }
2642
2643 /* Return the number of additional phdrs we will need.
2644
2645 The generic ELF code only creates PT_PHDRs for executables. The HP
2646 dynamic linker requires PT_PHDRs for dynamic libraries too.
2647
2648 This routine indicates that the backend needs one additional program
2649 header for that case.
2650
2651 Note we do not have access to the link info structure here, so we have
2652 to guess whether or not we are building a shared library based on the
2653 existence of a .interp section. */
2654
2655 static int
2656 elf64_hppa_additional_program_headers (bfd *abfd,
2657 struct bfd_link_info *info ATTRIBUTE_UNUSED)
2658 {
2659 asection *s;
2660
2661 /* If we are creating a shared library, then we have to create a
2662 PT_PHDR segment. HP's dynamic linker chokes without it. */
2663 s = bfd_get_section_by_name (abfd, ".interp");
2664 if (! s)
2665 return 1;
2666 return 0;
2667 }
2668
2669 static bfd_boolean
2670 elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2671 const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2672 unsigned int count ATTRIBUTE_UNUSED)
2673 {
2674 return TRUE;
2675 }
2676
2677 /* Allocate and initialize any program headers required by this
2678 specific backend.
2679
2680 The generic ELF code only creates PT_PHDRs for executables. The HP
2681 dynamic linker requires PT_PHDRs for dynamic libraries too.
2682
2683 This allocates the PT_PHDR and initializes it in a manner suitable
2684 for the HP linker.
2685
2686 Note we do not have access to the link info structure here, so we have
2687 to guess whether or not we are building a shared library based on the
2688 existence of a .interp section. */
2689
2690 static bfd_boolean
2691 elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2692 {
2693 struct elf_segment_map *m;
2694
2695 m = elf_seg_map (abfd);
2696 if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2697 {
2698 m = ((struct elf_segment_map *)
2699 bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2700 if (m == NULL)
2701 return FALSE;
2702
2703 m->p_type = PT_PHDR;
2704 m->p_flags = PF_R | PF_X;
2705 m->p_flags_valid = 1;
2706 m->p_paddr_valid = 1;
2707 m->includes_phdrs = 1;
2708
2709 m->next = elf_seg_map (abfd);
2710 elf_seg_map (abfd) = m;
2711 }
2712
2713 for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2714 if (m->p_type == PT_LOAD)
2715 {
2716 unsigned int i;
2717
2718 for (i = 0; i < m->count; i++)
2719 {
2720 /* The code "hint" is not really a hint. It is a requirement
2721 for certain versions of the HP dynamic linker. Worse yet,
2722 it must be set even if the shared library does not have
2723 any code in its "text" segment (thus the check for .hash
2724 to catch this situation). */
2725 if (m->sections[i]->flags & SEC_CODE
2726 || (strcmp (m->sections[i]->name, ".hash") == 0))
2727 m->p_flags |= (PF_X | PF_HP_CODE);
2728 }
2729 }
2730
2731 return TRUE;
2732 }
2733
2734 /* Called when writing out an object file to decide the type of a
2735 symbol. */
2736 static int
2737 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2738 int type)
2739 {
2740 if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2741 return STT_PARISC_MILLI;
2742 else
2743 return type;
2744 }
2745
2746 /* Support HP specific sections for core files. */
2747
2748 static bfd_boolean
2749 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2750 const char *typename)
2751 {
2752 if (hdr->p_type == PT_HP_CORE_KERNEL)
2753 {
2754 asection *sect;
2755
2756 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2757 return FALSE;
2758
2759 sect = bfd_make_section_anyway (abfd, ".kernel");
2760 if (sect == NULL)
2761 return FALSE;
2762 sect->size = hdr->p_filesz;
2763 sect->filepos = hdr->p_offset;
2764 sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2765 return TRUE;
2766 }
2767
2768 if (hdr->p_type == PT_HP_CORE_PROC)
2769 {
2770 int sig;
2771
2772 if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2773 return FALSE;
2774 if (bfd_bread (&sig, 4, abfd) != 4)
2775 return FALSE;
2776
2777 elf_tdata (abfd)->core->signal = sig;
2778
2779 if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2780 return FALSE;
2781
2782 /* GDB uses the ".reg" section to read register contents. */
2783 return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2784 hdr->p_offset);
2785 }
2786
2787 if (hdr->p_type == PT_HP_CORE_LOADABLE
2788 || hdr->p_type == PT_HP_CORE_STACK
2789 || hdr->p_type == PT_HP_CORE_MMF)
2790 hdr->p_type = PT_LOAD;
2791
2792 return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2793 }
2794
2795 /* Hook called by the linker routine which adds symbols from an object
2796 file. HP's libraries define symbols with HP specific section
2797 indices, which we have to handle. */
2798
2799 static bfd_boolean
2800 elf_hppa_add_symbol_hook (bfd *abfd,
2801 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2802 Elf_Internal_Sym *sym,
2803 const char **namep ATTRIBUTE_UNUSED,
2804 flagword *flagsp ATTRIBUTE_UNUSED,
2805 asection **secp,
2806 bfd_vma *valp)
2807 {
2808 unsigned int sec_index = sym->st_shndx;
2809
2810 switch (sec_index)
2811 {
2812 case SHN_PARISC_ANSI_COMMON:
2813 *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2814 (*secp)->flags |= SEC_IS_COMMON;
2815 *valp = sym->st_size;
2816 break;
2817
2818 case SHN_PARISC_HUGE_COMMON:
2819 *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2820 (*secp)->flags |= SEC_IS_COMMON;
2821 *valp = sym->st_size;
2822 break;
2823 }
2824
2825 return TRUE;
2826 }
2827
2828 static bfd_boolean
2829 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2830 void *data)
2831 {
2832 struct bfd_link_info *info = data;
2833
2834 /* If we are not creating a shared library, and this symbol is
2835 referenced by a shared library but is not defined anywhere, then
2836 the generic code will warn that it is undefined.
2837
2838 This behavior is undesirable on HPs since the standard shared
2839 libraries contain references to undefined symbols.
2840
2841 So we twiddle the flags associated with such symbols so that they
2842 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2843
2844 Ultimately we should have better controls over the generic ELF BFD
2845 linker code. */
2846 if (! bfd_link_relocatable (info)
2847 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2848 && h->root.type == bfd_link_hash_undefined
2849 && h->ref_dynamic
2850 && !h->ref_regular)
2851 {
2852 h->ref_dynamic = 0;
2853 h->pointer_equality_needed = 1;
2854 }
2855
2856 return TRUE;
2857 }
2858
2859 static bfd_boolean
2860 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2861 void *data)
2862 {
2863 struct bfd_link_info *info = data;
2864
2865 /* If we are not creating a shared library, and this symbol is
2866 referenced by a shared library but is not defined anywhere, then
2867 the generic code will warn that it is undefined.
2868
2869 This behavior is undesirable on HPs since the standard shared
2870 libraries contain references to undefined symbols.
2871
2872 So we twiddle the flags associated with such symbols so that they
2873 will not trigger the warning. ?!? FIXME. This is horribly fragile.
2874
2875 Ultimately we should have better controls over the generic ELF BFD
2876 linker code. */
2877 if (! bfd_link_relocatable (info)
2878 && info->unresolved_syms_in_shared_libs != RM_IGNORE
2879 && h->root.type == bfd_link_hash_undefined
2880 && !h->ref_dynamic
2881 && !h->ref_regular
2882 && h->pointer_equality_needed)
2883 {
2884 h->ref_dynamic = 1;
2885 h->pointer_equality_needed = 0;
2886 }
2887
2888 return TRUE;
2889 }
2890
2891 static bfd_boolean
2892 elf_hppa_is_dynamic_loader_symbol (const char *name)
2893 {
2894 return (! strcmp (name, "__CPU_REVISION")
2895 || ! strcmp (name, "__CPU_KEYBITS_1")
2896 || ! strcmp (name, "__SYSTEM_ID_D")
2897 || ! strcmp (name, "__FPU_MODEL")
2898 || ! strcmp (name, "__FPU_REVISION")
2899 || ! strcmp (name, "__ARGC")
2900 || ! strcmp (name, "__ARGV")
2901 || ! strcmp (name, "__ENVP")
2902 || ! strcmp (name, "__TLS_SIZE_D")
2903 || ! strcmp (name, "__LOAD_INFO")
2904 || ! strcmp (name, "__systab"));
2905 }
2906
2907 /* Record the lowest address for the data and text segments. */
2908 static void
2909 elf_hppa_record_segment_addrs (bfd *abfd,
2910 asection *section,
2911 void *data)
2912 {
2913 struct elf64_hppa_link_hash_table *hppa_info = data;
2914
2915 if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2916 {
2917 bfd_vma value;
2918 Elf_Internal_Phdr *p;
2919
2920 p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2921 BFD_ASSERT (p != NULL);
2922 value = p->p_vaddr;
2923
2924 if (section->flags & SEC_READONLY)
2925 {
2926 if (value < hppa_info->text_segment_base)
2927 hppa_info->text_segment_base = value;
2928 }
2929 else
2930 {
2931 if (value < hppa_info->data_segment_base)
2932 hppa_info->data_segment_base = value;
2933 }
2934 }
2935 }
2936
2937 /* Called after we have seen all the input files/sections, but before
2938 final symbol resolution and section placement has been determined.
2939
2940 We use this hook to (possibly) provide a value for __gp, then we
2941 fall back to the generic ELF final link routine. */
2942
2943 static bfd_boolean
2944 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2945 {
2946 struct stat buf;
2947 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2948
2949 if (hppa_info == NULL)
2950 return FALSE;
2951
2952 if (! bfd_link_relocatable (info))
2953 {
2954 struct elf_link_hash_entry *gp;
2955 bfd_vma gp_val;
2956
2957 /* The linker script defines a value for __gp iff it was referenced
2958 by one of the objects being linked. First try to find the symbol
2959 in the hash table. If that fails, just compute the value __gp
2960 should have had. */
2961 gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2962 FALSE, FALSE);
2963
2964 if (gp)
2965 {
2966
2967 /* Adjust the value of __gp as we may want to slide it into the
2968 .plt section so that the stubs can access PLT entries without
2969 using an addil sequence. */
2970 gp->root.u.def.value += hppa_info->gp_offset;
2971
2972 gp_val = (gp->root.u.def.section->output_section->vma
2973 + gp->root.u.def.section->output_offset
2974 + gp->root.u.def.value);
2975 }
2976 else
2977 {
2978 asection *sec;
2979
2980 /* First look for a .plt section. If found, then __gp is the
2981 address of the .plt + gp_offset.
2982
2983 If no .plt is found, then look for .dlt, .opd and .data (in
2984 that order) and set __gp to the base address of whichever
2985 section is found first. */
2986
2987 sec = hppa_info->plt_sec;
2988 if (sec && ! (sec->flags & SEC_EXCLUDE))
2989 gp_val = (sec->output_offset
2990 + sec->output_section->vma
2991 + hppa_info->gp_offset);
2992 else
2993 {
2994 sec = hppa_info->dlt_sec;
2995 if (!sec || (sec->flags & SEC_EXCLUDE))
2996 sec = hppa_info->opd_sec;
2997 if (!sec || (sec->flags & SEC_EXCLUDE))
2998 sec = bfd_get_section_by_name (abfd, ".data");
2999 if (!sec || (sec->flags & SEC_EXCLUDE))
3000 gp_val = 0;
3001 else
3002 gp_val = sec->output_offset + sec->output_section->vma;
3003 }
3004 }
3005
3006 /* Install whatever value we found/computed for __gp. */
3007 _bfd_set_gp_value (abfd, gp_val);
3008 }
3009
3010 /* We need to know the base of the text and data segments so that we
3011 can perform SEGREL relocations. We will record the base addresses
3012 when we encounter the first SEGREL relocation. */
3013 hppa_info->text_segment_base = (bfd_vma)-1;
3014 hppa_info->data_segment_base = (bfd_vma)-1;
3015
3016 /* HP's shared libraries have references to symbols that are not
3017 defined anywhere. The generic ELF BFD linker code will complain
3018 about such symbols.
3019
3020 So we detect the losing case and arrange for the flags on the symbol
3021 to indicate that it was never referenced. This keeps the generic
3022 ELF BFD link code happy and appears to not create any secondary
3023 problems. Ultimately we need a way to control the behavior of the
3024 generic ELF BFD link code better. */
3025 elf_link_hash_traverse (elf_hash_table (info),
3026 elf_hppa_unmark_useless_dynamic_symbols,
3027 info);
3028
3029 /* Invoke the regular ELF backend linker to do all the work. */
3030 if (!bfd_elf_final_link (abfd, info))
3031 return FALSE;
3032
3033 elf_link_hash_traverse (elf_hash_table (info),
3034 elf_hppa_remark_useless_dynamic_symbols,
3035 info);
3036
3037 /* If we're producing a final executable, sort the contents of the
3038 unwind section. */
3039 if (bfd_link_relocatable (info))
3040 return TRUE;
3041
3042 /* Do not attempt to sort non-regular files. This is here
3043 especially for configure scripts and kernel builds which run
3044 tests with "ld [...] -o /dev/null". */
3045 if (stat (abfd->filename, &buf) != 0
3046 || !S_ISREG(buf.st_mode))
3047 return TRUE;
3048
3049 return elf_hppa_sort_unwind (abfd);
3050 }
3051
3052 /* Relocate the given INSN. VALUE should be the actual value we want
3053 to insert into the instruction, ie by this point we should not be
3054 concerned with computing an offset relative to the DLT, PC, etc.
3055 Instead this routine is meant to handle the bit manipulations needed
3056 to insert the relocation into the given instruction. */
3057
3058 static int
3059 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3060 {
3061 switch (r_type)
3062 {
3063 /* This is any 22 bit branch. In PA2.0 syntax it corresponds to
3064 the "B" instruction. */
3065 case R_PARISC_PCREL22F:
3066 case R_PARISC_PCREL22C:
3067 return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3068
3069 /* This is any 12 bit branch. */
3070 case R_PARISC_PCREL12F:
3071 return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3072
3073 /* This is any 17 bit branch. In PA2.0 syntax it also corresponds
3074 to the "B" instruction as well as BE. */
3075 case R_PARISC_PCREL17F:
3076 case R_PARISC_DIR17F:
3077 case R_PARISC_DIR17R:
3078 case R_PARISC_PCREL17C:
3079 case R_PARISC_PCREL17R:
3080 return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3081
3082 /* ADDIL or LDIL instructions. */
3083 case R_PARISC_DLTREL21L:
3084 case R_PARISC_DLTIND21L:
3085 case R_PARISC_LTOFF_FPTR21L:
3086 case R_PARISC_PCREL21L:
3087 case R_PARISC_LTOFF_TP21L:
3088 case R_PARISC_DPREL21L:
3089 case R_PARISC_PLTOFF21L:
3090 case R_PARISC_DIR21L:
3091 return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3092
3093 /* LDO and integer loads/stores with 14 bit displacements. */
3094 case R_PARISC_DLTREL14R:
3095 case R_PARISC_DLTREL14F:
3096 case R_PARISC_DLTIND14R:
3097 case R_PARISC_DLTIND14F:
3098 case R_PARISC_LTOFF_FPTR14R:
3099 case R_PARISC_PCREL14R:
3100 case R_PARISC_PCREL14F:
3101 case R_PARISC_LTOFF_TP14R:
3102 case R_PARISC_LTOFF_TP14F:
3103 case R_PARISC_DPREL14R:
3104 case R_PARISC_DPREL14F:
3105 case R_PARISC_PLTOFF14R:
3106 case R_PARISC_PLTOFF14F:
3107 case R_PARISC_DIR14R:
3108 case R_PARISC_DIR14F:
3109 return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3110
3111 /* PA2.0W LDO and integer loads/stores with 16 bit displacements. */
3112 case R_PARISC_LTOFF_FPTR16F:
3113 case R_PARISC_PCREL16F:
3114 case R_PARISC_LTOFF_TP16F:
3115 case R_PARISC_GPREL16F:
3116 case R_PARISC_PLTOFF16F:
3117 case R_PARISC_DIR16F:
3118 case R_PARISC_LTOFF16F:
3119 return (insn & ~0xffff) | re_assemble_16 (sym_value);
3120
3121 /* Doubleword loads and stores with a 14 bit displacement. */
3122 case R_PARISC_DLTREL14DR:
3123 case R_PARISC_DLTIND14DR:
3124 case R_PARISC_LTOFF_FPTR14DR:
3125 case R_PARISC_LTOFF_FPTR16DF:
3126 case R_PARISC_PCREL14DR:
3127 case R_PARISC_PCREL16DF:
3128 case R_PARISC_LTOFF_TP14DR:
3129 case R_PARISC_LTOFF_TP16DF:
3130 case R_PARISC_DPREL14DR:
3131 case R_PARISC_GPREL16DF:
3132 case R_PARISC_PLTOFF14DR:
3133 case R_PARISC_PLTOFF16DF:
3134 case R_PARISC_DIR14DR:
3135 case R_PARISC_DIR16DF:
3136 case R_PARISC_LTOFF16DF:
3137 return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3138 | ((sym_value & 0x1ff8) << 1));
3139
3140 /* Floating point single word load/store instructions. */
3141 case R_PARISC_DLTREL14WR:
3142 case R_PARISC_DLTIND14WR:
3143 case R_PARISC_LTOFF_FPTR14WR:
3144 case R_PARISC_LTOFF_FPTR16WF:
3145 case R_PARISC_PCREL14WR:
3146 case R_PARISC_PCREL16WF:
3147 case R_PARISC_LTOFF_TP14WR:
3148 case R_PARISC_LTOFF_TP16WF:
3149 case R_PARISC_DPREL14WR:
3150 case R_PARISC_GPREL16WF:
3151 case R_PARISC_PLTOFF14WR:
3152 case R_PARISC_PLTOFF16WF:
3153 case R_PARISC_DIR16WF:
3154 case R_PARISC_DIR14WR:
3155 case R_PARISC_LTOFF16WF:
3156 return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3157 | ((sym_value & 0x1ffc) << 1));
3158
3159 default:
3160 return insn;
3161 }
3162 }
3163
3164 /* Compute the value for a relocation (REL) during a final link stage,
3165 then insert the value into the proper location in CONTENTS.
3166
3167 VALUE is a tentative value for the relocation and may be overridden
3168 and modified here based on the specific relocation to be performed.
3169
3170 For example we do conversions for PC-relative branches in this routine
3171 or redirection of calls to external routines to stubs.
3172
3173 The work of actually applying the relocation is left to a helper
3174 routine in an attempt to reduce the complexity and size of this
3175 function. */
3176
3177 static bfd_reloc_status_type
3178 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3179 bfd *input_bfd,
3180 bfd *output_bfd,
3181 asection *input_section,
3182 bfd_byte *contents,
3183 bfd_vma value,
3184 struct bfd_link_info *info,
3185 asection *sym_sec,
3186 struct elf_link_hash_entry *eh)
3187 {
3188 struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3189 struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3190 bfd_vma *local_offsets;
3191 Elf_Internal_Shdr *symtab_hdr;
3192 int insn;
3193 bfd_vma max_branch_offset = 0;
3194 bfd_vma offset = rel->r_offset;
3195 bfd_signed_vma addend = rel->r_addend;
3196 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3197 unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3198 unsigned int r_type = howto->type;
3199 bfd_byte *hit_data = contents + offset;
3200
3201 if (hppa_info == NULL)
3202 return bfd_reloc_notsupported;
3203
3204 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3205 local_offsets = elf_local_got_offsets (input_bfd);
3206 insn = bfd_get_32 (input_bfd, hit_data);
3207
3208 switch (r_type)
3209 {
3210 case R_PARISC_NONE:
3211 break;
3212
3213 /* Basic function call support.
3214
3215 Note for a call to a function defined in another dynamic library
3216 we want to redirect the call to a stub. */
3217
3218 /* PC relative relocs without an implicit offset. */
3219 case R_PARISC_PCREL21L:
3220 case R_PARISC_PCREL14R:
3221 case R_PARISC_PCREL14F:
3222 case R_PARISC_PCREL14WR:
3223 case R_PARISC_PCREL14DR:
3224 case R_PARISC_PCREL16F:
3225 case R_PARISC_PCREL16WF:
3226 case R_PARISC_PCREL16DF:
3227 {
3228 /* If this is a call to a function defined in another dynamic
3229 library, then redirect the call to the local stub for this
3230 function. */
3231 if (sym_sec == NULL || sym_sec->output_section == NULL)
3232 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3233 + hppa_info->stub_sec->output_section->vma);
3234
3235 /* Turn VALUE into a proper PC relative address. */
3236 value -= (offset + input_section->output_offset
3237 + input_section->output_section->vma);
3238
3239 /* Adjust for any field selectors. */
3240 if (r_type == R_PARISC_PCREL21L)
3241 value = hppa_field_adjust (value, -8 + addend, e_lsel);
3242 else if (r_type == R_PARISC_PCREL14F
3243 || r_type == R_PARISC_PCREL16F
3244 || r_type == R_PARISC_PCREL16WF
3245 || r_type == R_PARISC_PCREL16DF)
3246 value = hppa_field_adjust (value, -8 + addend, e_fsel);
3247 else
3248 value = hppa_field_adjust (value, -8 + addend, e_rsel);
3249
3250 /* Apply the relocation to the given instruction. */
3251 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3252 break;
3253 }
3254
3255 case R_PARISC_PCREL12F:
3256 case R_PARISC_PCREL22F:
3257 case R_PARISC_PCREL17F:
3258 case R_PARISC_PCREL22C:
3259 case R_PARISC_PCREL17C:
3260 case R_PARISC_PCREL17R:
3261 {
3262 /* If this is a call to a function defined in another dynamic
3263 library, then redirect the call to the local stub for this
3264 function. */
3265 if (sym_sec == NULL || sym_sec->output_section == NULL)
3266 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3267 + hppa_info->stub_sec->output_section->vma);
3268
3269 /* Turn VALUE into a proper PC relative address. */
3270 value -= (offset + input_section->output_offset
3271 + input_section->output_section->vma);
3272 addend -= 8;
3273
3274 if (r_type == (unsigned int) R_PARISC_PCREL22F)
3275 max_branch_offset = (1 << (22-1)) << 2;
3276 else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3277 max_branch_offset = (1 << (17-1)) << 2;
3278 else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3279 max_branch_offset = (1 << (12-1)) << 2;
3280
3281 /* Make sure we can reach the branch target. */
3282 if (max_branch_offset != 0
3283 && value + addend + max_branch_offset >= 2*max_branch_offset)
3284 {
3285 _bfd_error_handler
3286 /* xgettext:c-format */
3287 (_("%B(%A+%#Lx): cannot reach %s"),
3288 input_bfd,
3289 input_section,
3290 offset,
3291 eh ? eh->root.root.string : "unknown");
3292 bfd_set_error (bfd_error_bad_value);
3293 return bfd_reloc_overflow;
3294 }
3295
3296 /* Adjust for any field selectors. */
3297 if (r_type == R_PARISC_PCREL17R)
3298 value = hppa_field_adjust (value, addend, e_rsel);
3299 else
3300 value = hppa_field_adjust (value, addend, e_fsel);
3301
3302 /* All branches are implicitly shifted by 2 places. */
3303 value >>= 2;
3304
3305 /* Apply the relocation to the given instruction. */
3306 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3307 break;
3308 }
3309
3310 /* Indirect references to data through the DLT. */
3311 case R_PARISC_DLTIND14R:
3312 case R_PARISC_DLTIND14F:
3313 case R_PARISC_DLTIND14DR:
3314 case R_PARISC_DLTIND14WR:
3315 case R_PARISC_DLTIND21L:
3316 case R_PARISC_LTOFF_FPTR14R:
3317 case R_PARISC_LTOFF_FPTR14DR:
3318 case R_PARISC_LTOFF_FPTR14WR:
3319 case R_PARISC_LTOFF_FPTR21L:
3320 case R_PARISC_LTOFF_FPTR16F:
3321 case R_PARISC_LTOFF_FPTR16WF:
3322 case R_PARISC_LTOFF_FPTR16DF:
3323 case R_PARISC_LTOFF_TP21L:
3324 case R_PARISC_LTOFF_TP14R:
3325 case R_PARISC_LTOFF_TP14F:
3326 case R_PARISC_LTOFF_TP14WR:
3327 case R_PARISC_LTOFF_TP14DR:
3328 case R_PARISC_LTOFF_TP16F:
3329 case R_PARISC_LTOFF_TP16WF:
3330 case R_PARISC_LTOFF_TP16DF:
3331 case R_PARISC_LTOFF16F:
3332 case R_PARISC_LTOFF16WF:
3333 case R_PARISC_LTOFF16DF:
3334 {
3335 bfd_vma off;
3336
3337 /* If this relocation was against a local symbol, then we still
3338 have not set up the DLT entry (it's not convenient to do so
3339 in the "finalize_dlt" routine because it is difficult to get
3340 to the local symbol's value).
3341
3342 So, if this is a local symbol (h == NULL), then we need to
3343 fill in its DLT entry.
3344
3345 Similarly we may still need to set up an entry in .opd for
3346 a local function which had its address taken. */
3347 if (hh == NULL)
3348 {
3349 bfd_vma *local_opd_offsets, *local_dlt_offsets;
3350
3351 if (local_offsets == NULL)
3352 abort ();
3353
3354 /* Now do .opd creation if needed. */
3355 if (r_type == R_PARISC_LTOFF_FPTR14R
3356 || r_type == R_PARISC_LTOFF_FPTR14DR
3357 || r_type == R_PARISC_LTOFF_FPTR14WR
3358 || r_type == R_PARISC_LTOFF_FPTR21L
3359 || r_type == R_PARISC_LTOFF_FPTR16F
3360 || r_type == R_PARISC_LTOFF_FPTR16WF
3361 || r_type == R_PARISC_LTOFF_FPTR16DF)
3362 {
3363 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3364 off = local_opd_offsets[r_symndx];
3365
3366 /* The last bit records whether we've already initialised
3367 this local .opd entry. */
3368 if ((off & 1) != 0)
3369 {
3370 BFD_ASSERT (off != (bfd_vma) -1);
3371 off &= ~1;
3372 }
3373 else
3374 {
3375 local_opd_offsets[r_symndx] |= 1;
3376
3377 /* The first two words of an .opd entry are zero. */
3378 memset (hppa_info->opd_sec->contents + off, 0, 16);
3379
3380 /* The next word is the address of the function. */
3381 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3382 (hppa_info->opd_sec->contents + off + 16));
3383
3384 /* The last word is our local __gp value. */
3385 value = _bfd_get_gp_value
3386 (hppa_info->opd_sec->output_section->owner);
3387 bfd_put_64 (hppa_info->opd_sec->owner, value,
3388 (hppa_info->opd_sec->contents + off + 24));
3389 }
3390
3391 /* The DLT value is the address of the .opd entry. */
3392 value = (off
3393 + hppa_info->opd_sec->output_offset
3394 + hppa_info->opd_sec->output_section->vma);
3395 addend = 0;
3396 }
3397
3398 local_dlt_offsets = local_offsets;
3399 off = local_dlt_offsets[r_symndx];
3400
3401 if ((off & 1) != 0)
3402 {
3403 BFD_ASSERT (off != (bfd_vma) -1);
3404 off &= ~1;
3405 }
3406 else
3407 {
3408 local_dlt_offsets[r_symndx] |= 1;
3409 bfd_put_64 (hppa_info->dlt_sec->owner,
3410 value + addend,
3411 hppa_info->dlt_sec->contents + off);
3412 }
3413 }
3414 else
3415 off = hh->dlt_offset;
3416
3417 /* We want the value of the DLT offset for this symbol, not
3418 the symbol's actual address. Note that __gp may not point
3419 to the start of the DLT, so we have to compute the absolute
3420 address, then subtract out the value of __gp. */
3421 value = (off
3422 + hppa_info->dlt_sec->output_offset
3423 + hppa_info->dlt_sec->output_section->vma);
3424 value -= _bfd_get_gp_value (output_bfd);
3425
3426 /* All DLTIND relocations are basically the same at this point,
3427 except that we need different field selectors for the 21bit
3428 version vs the 14bit versions. */
3429 if (r_type == R_PARISC_DLTIND21L
3430 || r_type == R_PARISC_LTOFF_FPTR21L
3431 || r_type == R_PARISC_LTOFF_TP21L)
3432 value = hppa_field_adjust (value, 0, e_lsel);
3433 else if (r_type == R_PARISC_DLTIND14F
3434 || r_type == R_PARISC_LTOFF_FPTR16F
3435 || r_type == R_PARISC_LTOFF_FPTR16WF
3436 || r_type == R_PARISC_LTOFF_FPTR16DF
3437 || r_type == R_PARISC_LTOFF16F
3438 || r_type == R_PARISC_LTOFF16DF
3439 || r_type == R_PARISC_LTOFF16WF
3440 || r_type == R_PARISC_LTOFF_TP16F
3441 || r_type == R_PARISC_LTOFF_TP16WF
3442 || r_type == R_PARISC_LTOFF_TP16DF)
3443 value = hppa_field_adjust (value, 0, e_fsel);
3444 else
3445 value = hppa_field_adjust (value, 0, e_rsel);
3446
3447 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3448 break;
3449 }
3450
3451 case R_PARISC_DLTREL14R:
3452 case R_PARISC_DLTREL14F:
3453 case R_PARISC_DLTREL14DR:
3454 case R_PARISC_DLTREL14WR:
3455 case R_PARISC_DLTREL21L:
3456 case R_PARISC_DPREL21L:
3457 case R_PARISC_DPREL14WR:
3458 case R_PARISC_DPREL14DR:
3459 case R_PARISC_DPREL14R:
3460 case R_PARISC_DPREL14F:
3461 case R_PARISC_GPREL16F:
3462 case R_PARISC_GPREL16WF:
3463 case R_PARISC_GPREL16DF:
3464 {
3465 /* Subtract out the global pointer value to make value a DLT
3466 relative address. */
3467 value -= _bfd_get_gp_value (output_bfd);
3468
3469 /* All DLTREL relocations are basically the same at this point,
3470 except that we need different field selectors for the 21bit
3471 version vs the 14bit versions. */
3472 if (r_type == R_PARISC_DLTREL21L
3473 || r_type == R_PARISC_DPREL21L)
3474 value = hppa_field_adjust (value, addend, e_lrsel);
3475 else if (r_type == R_PARISC_DLTREL14F
3476 || r_type == R_PARISC_DPREL14F
3477 || r_type == R_PARISC_GPREL16F
3478 || r_type == R_PARISC_GPREL16WF
3479 || r_type == R_PARISC_GPREL16DF)
3480 value = hppa_field_adjust (value, addend, e_fsel);
3481 else
3482 value = hppa_field_adjust (value, addend, e_rrsel);
3483
3484 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3485 break;
3486 }
3487
3488 case R_PARISC_DIR21L:
3489 case R_PARISC_DIR17R:
3490 case R_PARISC_DIR17F:
3491 case R_PARISC_DIR14R:
3492 case R_PARISC_DIR14F:
3493 case R_PARISC_DIR14WR:
3494 case R_PARISC_DIR14DR:
3495 case R_PARISC_DIR16F:
3496 case R_PARISC_DIR16WF:
3497 case R_PARISC_DIR16DF:
3498 {
3499 /* All DIR relocations are basically the same at this point,
3500 except that branch offsets need to be divided by four, and
3501 we need different field selectors. Note that we don't
3502 redirect absolute calls to local stubs. */
3503
3504 if (r_type == R_PARISC_DIR21L)
3505 value = hppa_field_adjust (value, addend, e_lrsel);
3506 else if (r_type == R_PARISC_DIR17F
3507 || r_type == R_PARISC_DIR16F
3508 || r_type == R_PARISC_DIR16WF
3509 || r_type == R_PARISC_DIR16DF
3510 || r_type == R_PARISC_DIR14F)
3511 value = hppa_field_adjust (value, addend, e_fsel);
3512 else
3513 value = hppa_field_adjust (value, addend, e_rrsel);
3514
3515 if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3516 /* All branches are implicitly shifted by 2 places. */
3517 value >>= 2;
3518
3519 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3520 break;
3521 }
3522
3523 case R_PARISC_PLTOFF21L:
3524 case R_PARISC_PLTOFF14R:
3525 case R_PARISC_PLTOFF14F:
3526 case R_PARISC_PLTOFF14WR:
3527 case R_PARISC_PLTOFF14DR:
3528 case R_PARISC_PLTOFF16F:
3529 case R_PARISC_PLTOFF16WF:
3530 case R_PARISC_PLTOFF16DF:
3531 {
3532 /* We want the value of the PLT offset for this symbol, not
3533 the symbol's actual address. Note that __gp may not point
3534 to the start of the DLT, so we have to compute the absolute
3535 address, then subtract out the value of __gp. */
3536 value = (hh->plt_offset
3537 + hppa_info->plt_sec->output_offset
3538 + hppa_info->plt_sec->output_section->vma);
3539 value -= _bfd_get_gp_value (output_bfd);
3540
3541 /* All PLTOFF relocations are basically the same at this point,
3542 except that we need different field selectors for the 21bit
3543 version vs the 14bit versions. */
3544 if (r_type == R_PARISC_PLTOFF21L)
3545 value = hppa_field_adjust (value, addend, e_lrsel);
3546 else if (r_type == R_PARISC_PLTOFF14F
3547 || r_type == R_PARISC_PLTOFF16F
3548 || r_type == R_PARISC_PLTOFF16WF
3549 || r_type == R_PARISC_PLTOFF16DF)
3550 value = hppa_field_adjust (value, addend, e_fsel);
3551 else
3552 value = hppa_field_adjust (value, addend, e_rrsel);
3553
3554 insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3555 break;
3556 }
3557
3558 case R_PARISC_LTOFF_FPTR32:
3559 {
3560 /* We may still need to create the FPTR itself if it was for
3561 a local symbol. */
3562 if (hh == NULL)
3563 {
3564 /* The first two words of an .opd entry are zero. */
3565 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3566
3567 /* The next word is the address of the function. */
3568 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3569 (hppa_info->opd_sec->contents
3570 + hh->opd_offset + 16));
3571
3572 /* The last word is our local __gp value. */
3573 value = _bfd_get_gp_value
3574 (hppa_info->opd_sec->output_section->owner);
3575 bfd_put_64 (hppa_info->opd_sec->owner, value,
3576 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3577
3578 /* The DLT value is the address of the .opd entry. */
3579 value = (hh->opd_offset
3580 + hppa_info->opd_sec->output_offset
3581 + hppa_info->opd_sec->output_section->vma);
3582
3583 bfd_put_64 (hppa_info->dlt_sec->owner,
3584 value,
3585 hppa_info->dlt_sec->contents + hh->dlt_offset);
3586 }
3587
3588 /* We want the value of the DLT offset for this symbol, not
3589 the symbol's actual address. Note that __gp may not point
3590 to the start of the DLT, so we have to compute the absolute
3591 address, then subtract out the value of __gp. */
3592 value = (hh->dlt_offset
3593 + hppa_info->dlt_sec->output_offset
3594 + hppa_info->dlt_sec->output_section->vma);
3595 value -= _bfd_get_gp_value (output_bfd);
3596 bfd_put_32 (input_bfd, value, hit_data);
3597 return bfd_reloc_ok;
3598 }
3599
3600 case R_PARISC_LTOFF_FPTR64:
3601 case R_PARISC_LTOFF_TP64:
3602 {
3603 /* We may still need to create the FPTR itself if it was for
3604 a local symbol. */
3605 if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3606 {
3607 /* The first two words of an .opd entry are zero. */
3608 memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3609
3610 /* The next word is the address of the function. */
3611 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3612 (hppa_info->opd_sec->contents
3613 + hh->opd_offset + 16));
3614
3615 /* The last word is our local __gp value. */
3616 value = _bfd_get_gp_value
3617 (hppa_info->opd_sec->output_section->owner);
3618 bfd_put_64 (hppa_info->opd_sec->owner, value,
3619 hppa_info->opd_sec->contents + hh->opd_offset + 24);
3620
3621 /* The DLT value is the address of the .opd entry. */
3622 value = (hh->opd_offset
3623 + hppa_info->opd_sec->output_offset
3624 + hppa_info->opd_sec->output_section->vma);
3625
3626 bfd_put_64 (hppa_info->dlt_sec->owner,
3627 value,
3628 hppa_info->dlt_sec->contents + hh->dlt_offset);
3629 }
3630
3631 /* We want the value of the DLT offset for this symbol, not
3632 the symbol's actual address. Note that __gp may not point
3633 to the start of the DLT, so we have to compute the absolute
3634 address, then subtract out the value of __gp. */
3635 value = (hh->dlt_offset
3636 + hppa_info->dlt_sec->output_offset
3637 + hppa_info->dlt_sec->output_section->vma);
3638 value -= _bfd_get_gp_value (output_bfd);
3639 bfd_put_64 (input_bfd, value, hit_data);
3640 return bfd_reloc_ok;
3641 }
3642
3643 case R_PARISC_DIR32:
3644 bfd_put_32 (input_bfd, value + addend, hit_data);
3645 return bfd_reloc_ok;
3646
3647 case R_PARISC_DIR64:
3648 bfd_put_64 (input_bfd, value + addend, hit_data);
3649 return bfd_reloc_ok;
3650
3651 case R_PARISC_GPREL64:
3652 /* Subtract out the global pointer value to make value a DLT
3653 relative address. */
3654 value -= _bfd_get_gp_value (output_bfd);
3655
3656 bfd_put_64 (input_bfd, value + addend, hit_data);
3657 return bfd_reloc_ok;
3658
3659 case R_PARISC_LTOFF64:
3660 /* We want the value of the DLT offset for this symbol, not
3661 the symbol's actual address. Note that __gp may not point
3662 to the start of the DLT, so we have to compute the absolute
3663 address, then subtract out the value of __gp. */
3664 value = (hh->dlt_offset
3665 + hppa_info->dlt_sec->output_offset
3666 + hppa_info->dlt_sec->output_section->vma);
3667 value -= _bfd_get_gp_value (output_bfd);
3668
3669 bfd_put_64 (input_bfd, value + addend, hit_data);
3670 return bfd_reloc_ok;
3671
3672 case R_PARISC_PCREL32:
3673 {
3674 /* If this is a call to a function defined in another dynamic
3675 library, then redirect the call to the local stub for this
3676 function. */
3677 if (sym_sec == NULL || sym_sec->output_section == NULL)
3678 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3679 + hppa_info->stub_sec->output_section->vma);
3680
3681 /* Turn VALUE into a proper PC relative address. */
3682 value -= (offset + input_section->output_offset
3683 + input_section->output_section->vma);
3684
3685 value += addend;
3686 value -= 8;
3687 bfd_put_32 (input_bfd, value, hit_data);
3688 return bfd_reloc_ok;
3689 }
3690
3691 case R_PARISC_PCREL64:
3692 {
3693 /* If this is a call to a function defined in another dynamic
3694 library, then redirect the call to the local stub for this
3695 function. */
3696 if (sym_sec == NULL || sym_sec->output_section == NULL)
3697 value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3698 + hppa_info->stub_sec->output_section->vma);
3699
3700 /* Turn VALUE into a proper PC relative address. */
3701 value -= (offset + input_section->output_offset
3702 + input_section->output_section->vma);
3703
3704 value += addend;
3705 value -= 8;
3706 bfd_put_64 (input_bfd, value, hit_data);
3707 return bfd_reloc_ok;
3708 }
3709
3710 case R_PARISC_FPTR64:
3711 {
3712 bfd_vma off;
3713
3714 /* We may still need to create the FPTR itself if it was for
3715 a local symbol. */
3716 if (hh == NULL)
3717 {
3718 bfd_vma *local_opd_offsets;
3719
3720 if (local_offsets == NULL)
3721 abort ();
3722
3723 local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3724 off = local_opd_offsets[r_symndx];
3725
3726 /* The last bit records whether we've already initialised
3727 this local .opd entry. */
3728 if ((off & 1) != 0)
3729 {
3730 BFD_ASSERT (off != (bfd_vma) -1);
3731 off &= ~1;
3732 }
3733 else
3734 {
3735 /* The first two words of an .opd entry are zero. */
3736 memset (hppa_info->opd_sec->contents + off, 0, 16);
3737
3738 /* The next word is the address of the function. */
3739 bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3740 (hppa_info->opd_sec->contents + off + 16));
3741
3742 /* The last word is our local __gp value. */
3743 value = _bfd_get_gp_value
3744 (hppa_info->opd_sec->output_section->owner);
3745 bfd_put_64 (hppa_info->opd_sec->owner, value,
3746 hppa_info->opd_sec->contents + off + 24);
3747 }
3748 }
3749 else
3750 off = hh->opd_offset;
3751
3752 if (hh == NULL || hh->want_opd)
3753 /* We want the value of the OPD offset for this symbol. */
3754 value = (off
3755 + hppa_info->opd_sec->output_offset
3756 + hppa_info->opd_sec->output_section->vma);
3757 else
3758 /* We want the address of the symbol. */
3759 value += addend;
3760
3761 bfd_put_64 (input_bfd, value, hit_data);
3762 return bfd_reloc_ok;
3763 }
3764
3765 case R_PARISC_SECREL32:
3766 if (sym_sec)
3767 value -= sym_sec->output_section->vma;
3768 bfd_put_32 (input_bfd, value + addend, hit_data);
3769 return bfd_reloc_ok;
3770
3771 case R_PARISC_SEGREL32:
3772 case R_PARISC_SEGREL64:
3773 {
3774 /* If this is the first SEGREL relocation, then initialize
3775 the segment base values. */
3776 if (hppa_info->text_segment_base == (bfd_vma) -1)
3777 bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3778 hppa_info);
3779
3780 /* VALUE holds the absolute address. We want to include the
3781 addend, then turn it into a segment relative address.
3782
3783 The segment is derived from SYM_SEC. We assume that there are
3784 only two segments of note in the resulting executable/shlib.
3785 A readonly segment (.text) and a readwrite segment (.data). */
3786 value += addend;
3787
3788 if (sym_sec->flags & SEC_CODE)
3789 value -= hppa_info->text_segment_base;
3790 else
3791 value -= hppa_info->data_segment_base;
3792
3793 if (r_type == R_PARISC_SEGREL32)
3794 bfd_put_32 (input_bfd, value, hit_data);
3795 else
3796 bfd_put_64 (input_bfd, value, hit_data);
3797 return bfd_reloc_ok;
3798 }
3799
3800 /* Something we don't know how to handle. */
3801 default:
3802 return bfd_reloc_notsupported;
3803 }
3804
3805 /* Update the instruction word. */
3806 bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3807 return bfd_reloc_ok;
3808 }
3809
3810 /* Relocate an HPPA ELF section. */
3811
3812 static bfd_boolean
3813 elf64_hppa_relocate_section (bfd *output_bfd,
3814 struct bfd_link_info *info,
3815 bfd *input_bfd,
3816 asection *input_section,
3817 bfd_byte *contents,
3818 Elf_Internal_Rela *relocs,
3819 Elf_Internal_Sym *local_syms,
3820 asection **local_sections)
3821 {
3822 Elf_Internal_Shdr *symtab_hdr;
3823 Elf_Internal_Rela *rel;
3824 Elf_Internal_Rela *relend;
3825 struct elf64_hppa_link_hash_table *hppa_info;
3826
3827 hppa_info = hppa_link_hash_table (info);
3828 if (hppa_info == NULL)
3829 return FALSE;
3830
3831 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3832
3833 rel = relocs;
3834 relend = relocs + input_section->reloc_count;
3835 for (; rel < relend; rel++)
3836 {
3837 int r_type;
3838 reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3839 unsigned long r_symndx;
3840 struct elf_link_hash_entry *eh;
3841 Elf_Internal_Sym *sym;
3842 asection *sym_sec;
3843 bfd_vma relocation;
3844 bfd_reloc_status_type r;
3845
3846 r_type = ELF_R_TYPE (rel->r_info);
3847 if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3848 {
3849 bfd_set_error (bfd_error_bad_value);
3850 return FALSE;
3851 }
3852 if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3853 || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3854 continue;
3855
3856 /* This is a final link. */
3857 r_symndx = ELF_R_SYM (rel->r_info);
3858 eh = NULL;
3859 sym = NULL;
3860 sym_sec = NULL;
3861 if (r_symndx < symtab_hdr->sh_info)
3862 {
3863 /* This is a local symbol, hh defaults to NULL. */
3864 sym = local_syms + r_symndx;
3865 sym_sec = local_sections[r_symndx];
3866 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3867 }
3868 else
3869 {
3870 /* This is not a local symbol. */
3871 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3872
3873 /* It seems this can happen with erroneous or unsupported
3874 input (mixing a.out and elf in an archive, for example.) */
3875 if (sym_hashes == NULL)
3876 return FALSE;
3877
3878 eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3879
3880 if (info->wrap_hash != NULL
3881 && (input_section->flags & SEC_DEBUGGING) != 0)
3882 eh = ((struct elf_link_hash_entry *)
3883 unwrap_hash_lookup (info, input_bfd, &eh->root));
3884
3885 while (eh->root.type == bfd_link_hash_indirect
3886 || eh->root.type == bfd_link_hash_warning)
3887 eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3888
3889 relocation = 0;
3890 if (eh->root.type == bfd_link_hash_defined
3891 || eh->root.type == bfd_link_hash_defweak)
3892 {
3893 sym_sec = eh->root.u.def.section;
3894 if (sym_sec != NULL
3895 && sym_sec->output_section != NULL)
3896 relocation = (eh->root.u.def.value
3897 + sym_sec->output_section->vma
3898 + sym_sec->output_offset);
3899 }
3900 else if (eh->root.type == bfd_link_hash_undefweak)
3901 ;
3902 else if (info->unresolved_syms_in_objects == RM_IGNORE
3903 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3904 ;
3905 else if (!bfd_link_relocatable (info)
3906 && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3907 continue;
3908 else if (!bfd_link_relocatable (info))
3909 {
3910 bfd_boolean err;
3911 err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3912 || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3913 (*info->callbacks->undefined_symbol) (info,
3914 eh->root.root.string,
3915 input_bfd,
3916 input_section,
3917 rel->r_offset, err);
3918 }
3919
3920 if (!bfd_link_relocatable (info)
3921 && relocation == 0
3922 && eh->root.type != bfd_link_hash_defined
3923 && eh->root.type != bfd_link_hash_defweak
3924 && eh->root.type != bfd_link_hash_undefweak)
3925 {
3926 if (info->unresolved_syms_in_objects == RM_IGNORE
3927 && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3928 && eh->type == STT_PARISC_MILLI)
3929 (*info->callbacks->undefined_symbol)
3930 (info, eh_name (eh), input_bfd,
3931 input_section, rel->r_offset, FALSE);
3932 }
3933 }
3934
3935 if (sym_sec != NULL && discarded_section (sym_sec))
3936 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3937 rel, 1, relend, howto, 0, contents);
3938
3939 if (bfd_link_relocatable (info))
3940 continue;
3941
3942 r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3943 input_section, contents,
3944 relocation, info, sym_sec,
3945 eh);
3946
3947 if (r != bfd_reloc_ok)
3948 {
3949 switch (r)
3950 {
3951 default:
3952 abort ();
3953 case bfd_reloc_overflow:
3954 {
3955 const char *sym_name;
3956
3957 if (eh != NULL)
3958 sym_name = NULL;
3959 else
3960 {
3961 sym_name = bfd_elf_string_from_elf_section (input_bfd,
3962 symtab_hdr->sh_link,
3963 sym->st_name);
3964 if (sym_name == NULL)
3965 return FALSE;
3966 if (*sym_name == '\0')
3967 sym_name = bfd_section_name (input_bfd, sym_sec);
3968 }
3969
3970 (*info->callbacks->reloc_overflow)
3971 (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3972 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3973 }
3974 break;
3975 }
3976 }
3977 }
3978 return TRUE;
3979 }
3980
3981 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3982 {
3983 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3984 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3985 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3986 { STRING_COMMA_LEN (".dlt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3987 { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3988 { STRING_COMMA_LEN (".sbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3989 { STRING_COMMA_LEN (".tbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3990 { NULL, 0, 0, 0, 0 }
3991 };
3992
3993 /* The hash bucket size is the standard one, namely 4. */
3994
3995 const struct elf_size_info hppa64_elf_size_info =
3996 {
3997 sizeof (Elf64_External_Ehdr),
3998 sizeof (Elf64_External_Phdr),
3999 sizeof (Elf64_External_Shdr),
4000 sizeof (Elf64_External_Rel),
4001 sizeof (Elf64_External_Rela),
4002 sizeof (Elf64_External_Sym),
4003 sizeof (Elf64_External_Dyn),
4004 sizeof (Elf_External_Note),
4005 4,
4006 1,
4007 64, 3,
4008 ELFCLASS64, EV_CURRENT,
4009 bfd_elf64_write_out_phdrs,
4010 bfd_elf64_write_shdrs_and_ehdr,
4011 bfd_elf64_checksum_contents,
4012 bfd_elf64_write_relocs,
4013 bfd_elf64_swap_symbol_in,
4014 bfd_elf64_swap_symbol_out,
4015 bfd_elf64_slurp_reloc_table,
4016 bfd_elf64_slurp_symbol_table,
4017 bfd_elf64_swap_dyn_in,
4018 bfd_elf64_swap_dyn_out,
4019 bfd_elf64_swap_reloc_in,
4020 bfd_elf64_swap_reloc_out,
4021 bfd_elf64_swap_reloca_in,
4022 bfd_elf64_swap_reloca_out
4023 };
4024
4025 #define TARGET_BIG_SYM hppa_elf64_vec
4026 #define TARGET_BIG_NAME "elf64-hppa"
4027 #define ELF_ARCH bfd_arch_hppa
4028 #define ELF_TARGET_ID HPPA64_ELF_DATA
4029 #define ELF_MACHINE_CODE EM_PARISC
4030 /* This is not strictly correct. The maximum page size for PA2.0 is
4031 64M. But everything still uses 4k. */
4032 #define ELF_MAXPAGESIZE 0x1000
4033 #define ELF_OSABI ELFOSABI_HPUX
4034
4035 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4036 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4037 #define bfd_elf64_bfd_is_local_label_name elf_hppa_is_local_label_name
4038 #define elf_info_to_howto elf_hppa_info_to_howto
4039 #define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
4040
4041 #define elf_backend_section_from_shdr elf64_hppa_section_from_shdr
4042 #define elf_backend_object_p elf64_hppa_object_p
4043 #define elf_backend_final_write_processing \
4044 elf_hppa_final_write_processing
4045 #define elf_backend_fake_sections elf_hppa_fake_sections
4046 #define elf_backend_add_symbol_hook elf_hppa_add_symbol_hook
4047
4048 #define elf_backend_relocate_section elf_hppa_relocate_section
4049
4050 #define bfd_elf64_bfd_final_link elf_hppa_final_link
4051
4052 #define elf_backend_create_dynamic_sections \
4053 elf64_hppa_create_dynamic_sections
4054 #define elf_backend_post_process_headers elf64_hppa_post_process_headers
4055
4056 #define elf_backend_omit_section_dynsym \
4057 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4058 #define elf_backend_adjust_dynamic_symbol \
4059 elf64_hppa_adjust_dynamic_symbol
4060
4061 #define elf_backend_size_dynamic_sections \
4062 elf64_hppa_size_dynamic_sections
4063
4064 #define elf_backend_finish_dynamic_symbol \
4065 elf64_hppa_finish_dynamic_symbol
4066 #define elf_backend_finish_dynamic_sections \
4067 elf64_hppa_finish_dynamic_sections
4068 #define elf_backend_grok_prstatus elf64_hppa_grok_prstatus
4069 #define elf_backend_grok_psinfo elf64_hppa_grok_psinfo
4070
4071 /* Stuff for the BFD linker: */
4072 #define bfd_elf64_bfd_link_hash_table_create \
4073 elf64_hppa_hash_table_create
4074
4075 #define elf_backend_check_relocs \
4076 elf64_hppa_check_relocs
4077
4078 #define elf_backend_size_info \
4079 hppa64_elf_size_info
4080
4081 #define elf_backend_additional_program_headers \
4082 elf64_hppa_additional_program_headers
4083
4084 #define elf_backend_modify_segment_map \
4085 elf64_hppa_modify_segment_map
4086
4087 #define elf_backend_allow_non_load_phdr \
4088 elf64_hppa_allow_non_load_phdr
4089
4090 #define elf_backend_link_output_symbol_hook \
4091 elf64_hppa_link_output_symbol_hook
4092
4093 #define elf_backend_want_got_plt 0
4094 #define elf_backend_plt_readonly 0
4095 #define elf_backend_want_plt_sym 0
4096 #define elf_backend_got_header_size 0
4097 #define elf_backend_type_change_ok TRUE
4098 #define elf_backend_get_symbol_type elf64_hppa_elf_get_symbol_type
4099 #define elf_backend_reloc_type_class elf64_hppa_reloc_type_class
4100 #define elf_backend_rela_normal 1
4101 #define elf_backend_special_sections elf64_hppa_special_sections
4102 #define elf_backend_action_discarded elf_hppa_action_discarded
4103 #define elf_backend_section_from_phdr elf64_hppa_section_from_phdr
4104
4105 #define elf64_bed elf64_hppa_hpux_bed
4106
4107 #include "elf64-target.h"
4108
4109 #undef TARGET_BIG_SYM
4110 #define TARGET_BIG_SYM hppa_elf64_linux_vec
4111 #undef TARGET_BIG_NAME
4112 #define TARGET_BIG_NAME "elf64-hppa-linux"
4113 #undef ELF_OSABI
4114 #define ELF_OSABI ELFOSABI_GNU
4115 #undef elf64_bed
4116 #define elf64_bed elf64_hppa_linux_bed
4117
4118 #include "elf64-target.h"
This page took 0.111453 seconds and 5 git commands to generate.