Update year range in copyright notice of binutils files
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright (C) 2001-2018 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* No specific ABI or "processor-specific supplement" defined. */
24
25 /* TODO:
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37
38 #define MINUS_ONE (((bfd_vma) 0) - 1)
39
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
42 /* Put these everywhere in new code. */
43 #define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47 #define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
51 struct _mmix_elf_section_data
52 {
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
84 };
85
86 #define mmix_elf_section_data(sec) \
87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
88
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91 NULL. */
92 struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109 /* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111 struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
126 into the other members. Is FALSE only for BPO relocs in a GC:ed
127 section. */
128 bfd_boolean valid;
129 };
130
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137 struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
168
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172
173 /* Only intended to be called from a debugger. */
174 extern void mmix_dump_bpo_gregs
175 (struct bfd_link_info *, void (*) (const char *, ...));
176
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
186
187
188 /* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190 static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_dont, /* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
202 FALSE, /* partial_inplace */
203 0, /* src_mask */
204 0, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
217 FALSE, /* partial_inplace */
218 0, /* src_mask */
219 0xff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
227 FALSE, /* pc_relative */
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
232 FALSE, /* partial_inplace */
233 0, /* src_mask */
234 0xffff, /* dst_mask */
235 FALSE), /* pcrel_offset */
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
242 FALSE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
247 FALSE, /* partial_inplace */
248 ~0xffffff, /* src_mask */
249 0xffffff, /* dst_mask */
250 FALSE), /* pcrel_offset */
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
262 FALSE, /* partial_inplace */
263 0, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
277 FALSE, /* partial_inplace */
278 0, /* src_mask */
279 MINUS_ONE, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
287 TRUE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
292 FALSE, /* partial_inplace */
293 0, /* src_mask */
294 0xff, /* dst_mask */
295 TRUE), /* pcrel_offset */
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
307 FALSE, /* partial_inplace */
308 0, /* src_mask */
309 0xffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
322 FALSE, /* partial_inplace */
323 ~0xffffff, /* src_mask */
324 0xffffff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 TRUE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
337 FALSE, /* partial_inplace */
338 0, /* src_mask */
339 0xffffffff, /* dst_mask */
340 TRUE), /* pcrel_offset */
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
347 TRUE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 MINUS_ONE, /* dst_mask */
355 TRUE), /* pcrel_offset */
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
362 FALSE, /* pc_relative */
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
367 FALSE, /* partial_inplace */
368 0, /* src_mask */
369 0, /* dst_mask */
370 TRUE), /* pcrel_offset */
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
395 TRUE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
400 FALSE, /* partial_inplace */
401 ~0x0100ffff, /* src_mask */
402 0x0100ffff, /* dst_mask */
403 TRUE), /* pcrel_offset */
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
409 TRUE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
414 FALSE, /* partial_inplace */
415 ~0x0100ffff, /* src_mask */
416 0x0100ffff, /* dst_mask */
417 TRUE), /* pcrel_offset */
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
428 FALSE, /* partial_inplace */
429 ~0x0100ffff, /* src_mask */
430 0x0100ffff, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
442 FALSE, /* partial_inplace */
443 ~0x0100ffff, /* src_mask */
444 0x0100ffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
455 TRUE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
460 FALSE, /* partial_inplace */
461 ~0x0100ffff, /* src_mask */
462 0x0100ffff, /* dst_mask */
463 TRUE), /* pcrel_offset */
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
474 FALSE, /* partial_inplace */
475 ~0x0100ffff, /* src_mask */
476 0x0100ffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
488 FALSE, /* partial_inplace */
489 ~0x0100ffff, /* src_mask */
490 0x0100ffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
502 FALSE, /* partial_inplace */
503 ~0x0100ffff, /* src_mask */
504 0x0100ffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
516 FALSE, /* partial_inplace */
517 ~0x0100ffff, /* src_mask */
518 0x0100ffff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
531 TRUE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
536 FALSE, /* partial_inplace */
537 ~0x0100ffff, /* src_mask */
538 0x0100ffff, /* dst_mask */
539 TRUE), /* pcrel_offset */
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
550 FALSE, /* partial_inplace */
551 ~0x0100ffff, /* src_mask */
552 0x0100ffff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
559 TRUE, /* pc_relative */
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
564 FALSE, /* partial_inplace */
565 ~0x0100ffff, /* src_mask */
566 0x0100ffff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
573 TRUE, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
578 FALSE, /* partial_inplace */
579 ~0x0100ffff, /* src_mask */
580 0x0100ffff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
596 FALSE, /* partial_inplace */
597 ~0x1ffffff, /* src_mask */
598 0x1ffffff, /* dst_mask */
599 TRUE), /* pcrel_offset */
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
610 FALSE, /* partial_inplace */
611 ~0x1ffffff, /* src_mask */
612 0x1ffffff, /* dst_mask */
613 TRUE), /* pcrel_offset */
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
619 TRUE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
624 FALSE, /* partial_inplace */
625 ~0x1ffffff, /* src_mask */
626 0x1ffffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
638 FALSE, /* partial_inplace */
639 ~0x1ffffff, /* src_mask */
640 0x1ffffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
655 FALSE, /* partial_inplace */
656 ~0x0100ffff, /* src_mask */
657 0x0100ffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
665 TRUE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
670 FALSE, /* partial_inplace */
671 ~0x1ffffff, /* src_mask */
672 0x1ffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
696 FALSE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
701 FALSE, /* partial_inplace */
702 0, /* src_mask */
703 0xff, /* dst_mask */
704 FALSE), /* pcrel_offset */
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 FALSE, /* partial_inplace */
719 0, /* src_mask */
720 0xffff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
755 };
756
757
758 /* Map BFD reloc types to MMIX ELF reloc types. */
759
760 struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793 };
794
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
798 {
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
810 }
811
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815 {
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
826 }
827
828 static bfd_boolean
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
835
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843 }
844
845
846 /* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
897 {
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
964 = ((bfd_byte *) datap
965 - (addr - (isec->output_section->vma + isec->output_offset))
966 + size
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
1009 + size
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
1012 - addr,
1013 error_message);
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
1020 + size
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
1037 value + addr - stubaddr,
1038 error_message);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
1108 /* FALLTHROUGH. */
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
1127 highbit = 1 << 24;
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
1136 (in1 & howto->src_mask)
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
1193 _bfd_error_handler
1194 /* xgettext:c-format */
1195 (_("%B: Internal inconsistency error for value for\n\
1196 linker-allocated global register: linked: %#Lx != relaxed: %#Lx"),
1197 isec->owner,
1198 value,
1199 gregdata->reloc_request[bpo_index].value);
1200 bfd_set_error (bfd_error_bad_value);
1201 return bfd_reloc_overflow;
1202 }
1203
1204 /* Then store the register number and offset for that register
1205 into datap and datap + 1 respectively. */
1206 bfd_put_8 (abfd,
1207 gregdata->reloc_request[bpo_index].regindex
1208 + bpo_greg_section->output_section->vma / 8,
1209 datap);
1210 bfd_put_8 (abfd,
1211 gregdata->reloc_request[bpo_index].offset,
1212 ((unsigned char *) datap) + 1);
1213 return bfd_reloc_ok;
1214 }
1215
1216 case R_MMIX_REG_OR_BYTE:
1217 case R_MMIX_REG:
1218 if (value > 255)
1219 return bfd_reloc_overflow;
1220 bfd_put_8 (abfd, value, datap);
1221 return bfd_reloc_ok;
1222
1223 default:
1224 BAD_CASE (howto->type);
1225 }
1226
1227 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1228 sequence. */
1229
1230 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1231 everything that looks strange. */
1232 if (value & 3)
1233 flag = bfd_reloc_overflow;
1234
1235 bfd_put_32 (abfd,
1236 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1237 (bfd_byte *) datap + offs);
1238 bfd_put_32 (abfd,
1239 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1240 (bfd_byte *) datap + offs + 4);
1241 bfd_put_32 (abfd,
1242 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1243 (bfd_byte *) datap + offs + 8);
1244 bfd_put_32 (abfd,
1245 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1246 (bfd_byte *) datap + offs + 12);
1247
1248 return flag;
1249 }
1250
1251 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1252
1253 static void
1254 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1255 arelent *cache_ptr,
1256 Elf_Internal_Rela *dst)
1257 {
1258 unsigned int r_type;
1259
1260 r_type = ELF64_R_TYPE (dst->r_info);
1261 if (r_type >= (unsigned int) R_MMIX_max)
1262 {
1263 /* xgettext:c-format */
1264 _bfd_error_handler (_("%B: invalid MMIX reloc number: %d"), abfd, r_type);
1265 r_type = 0;
1266 }
1267 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1268 }
1269
1270 /* Any MMIX-specific relocation gets here at assembly time or when linking
1271 to other formats (such as mmo); this is the relocation function from
1272 the reloc_table. We don't get here for final pure ELF linking. */
1273
1274 static bfd_reloc_status_type
1275 mmix_elf_reloc (bfd *abfd,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void * data,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message)
1282 {
1283 bfd_vma relocation;
1284 bfd_reloc_status_type r;
1285 asection *reloc_target_output_section;
1286 bfd_reloc_status_type flag = bfd_reloc_ok;
1287 bfd_vma output_base = 0;
1288
1289 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1290 input_section, output_bfd, error_message);
1291
1292 /* If that was all that was needed (i.e. this isn't a final link, only
1293 some segment adjustments), we're done. */
1294 if (r != bfd_reloc_continue)
1295 return r;
1296
1297 if (bfd_is_und_section (symbol->section)
1298 && (symbol->flags & BSF_WEAK) == 0
1299 && output_bfd == (bfd *) NULL)
1300 return bfd_reloc_undefined;
1301
1302 /* Is the address of the relocation really within the section? */
1303 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1304 return bfd_reloc_outofrange;
1305
1306 /* Work out which section the relocation is targeted at and the
1307 initial relocation command value. */
1308
1309 /* Get symbol value. (Common symbols are special.) */
1310 if (bfd_is_com_section (symbol->section))
1311 relocation = 0;
1312 else
1313 relocation = symbol->value;
1314
1315 reloc_target_output_section = bfd_get_output_section (symbol);
1316
1317 /* Here the variable relocation holds the final address of the symbol we
1318 are relocating against, plus any addend. */
1319 if (output_bfd)
1320 output_base = 0;
1321 else
1322 output_base = reloc_target_output_section->vma;
1323
1324 relocation += output_base + symbol->section->output_offset;
1325
1326 if (output_bfd != (bfd *) NULL)
1327 {
1328 /* Add in supplied addend. */
1329 relocation += reloc_entry->addend;
1330
1331 /* This is a partial relocation, and we want to apply the
1332 relocation to the reloc entry rather than the raw data.
1333 Modify the reloc inplace to reflect what we now know. */
1334 reloc_entry->addend = relocation;
1335 reloc_entry->address += input_section->output_offset;
1336 return flag;
1337 }
1338
1339 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1340 data, reloc_entry->address,
1341 reloc_entry->addend, relocation,
1342 bfd_asymbol_name (symbol),
1343 reloc_target_output_section,
1344 error_message);
1345 }
1346 \f
1347 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1348 for guidance if you're thinking of copying this. */
1349
1350 static bfd_boolean
1351 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1352 struct bfd_link_info *info,
1353 bfd *input_bfd,
1354 asection *input_section,
1355 bfd_byte *contents,
1356 Elf_Internal_Rela *relocs,
1357 Elf_Internal_Sym *local_syms,
1358 asection **local_sections)
1359 {
1360 Elf_Internal_Shdr *symtab_hdr;
1361 struct elf_link_hash_entry **sym_hashes;
1362 Elf_Internal_Rela *rel;
1363 Elf_Internal_Rela *relend;
1364 bfd_size_type size;
1365 size_t pjsno = 0;
1366
1367 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1369 sym_hashes = elf_sym_hashes (input_bfd);
1370 relend = relocs + input_section->reloc_count;
1371
1372 /* Zero the stub area before we start. */
1373 if (input_section->rawsize != 0
1374 && input_section->size > input_section->rawsize)
1375 memset (contents + input_section->rawsize, 0,
1376 input_section->size - input_section->rawsize);
1377
1378 for (rel = relocs; rel < relend; rel ++)
1379 {
1380 reloc_howto_type *howto;
1381 unsigned long r_symndx;
1382 Elf_Internal_Sym *sym;
1383 asection *sec;
1384 struct elf_link_hash_entry *h;
1385 bfd_vma relocation;
1386 bfd_reloc_status_type r;
1387 const char *name = NULL;
1388 int r_type;
1389 bfd_boolean undefined_signalled = FALSE;
1390
1391 r_type = ELF64_R_TYPE (rel->r_info);
1392
1393 if (r_type == R_MMIX_GNU_VTINHERIT
1394 || r_type == R_MMIX_GNU_VTENTRY)
1395 continue;
1396
1397 r_symndx = ELF64_R_SYM (rel->r_info);
1398
1399 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1400 h = NULL;
1401 sym = NULL;
1402 sec = NULL;
1403
1404 if (r_symndx < symtab_hdr->sh_info)
1405 {
1406 sym = local_syms + r_symndx;
1407 sec = local_sections [r_symndx];
1408 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1409
1410 name = bfd_elf_string_from_elf_section (input_bfd,
1411 symtab_hdr->sh_link,
1412 sym->st_name);
1413 if (name == NULL)
1414 name = bfd_section_name (input_bfd, sec);
1415 }
1416 else
1417 {
1418 bfd_boolean unresolved_reloc, ignored;
1419
1420 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1421 r_symndx, symtab_hdr, sym_hashes,
1422 h, sec, relocation,
1423 unresolved_reloc, undefined_signalled,
1424 ignored);
1425 name = h->root.root.string;
1426 }
1427
1428 if (sec != NULL && discarded_section (sec))
1429 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1430 rel, 1, relend, howto, 0, contents);
1431
1432 if (bfd_link_relocatable (info))
1433 {
1434 /* This is a relocatable link. For most relocs we don't have to
1435 change anything, unless the reloc is against a section
1436 symbol, in which case we have to adjust according to where
1437 the section symbol winds up in the output section. */
1438 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1439 rel->r_addend += sec->output_offset;
1440
1441 /* For PUSHJ stub relocs however, we may need to change the
1442 reloc and the section contents, if the reloc doesn't reach
1443 beyond the end of the output section and previous stubs.
1444 Then we change the section contents to be a PUSHJ to the end
1445 of the input section plus stubs (we can do that without using
1446 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1447 at the stub location. */
1448 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1449 {
1450 /* We've already checked whether we need a stub; use that
1451 knowledge. */
1452 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1453 != 0)
1454 {
1455 Elf_Internal_Rela relcpy;
1456
1457 if (mmix_elf_section_data (input_section)
1458 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1459 abort ();
1460
1461 /* There's already a PUSHJ insn there, so just fill in
1462 the offset bits to the stub. */
1463 if (mmix_final_link_relocate (elf_mmix_howto_table
1464 + R_MMIX_ADDR19,
1465 input_section,
1466 contents,
1467 rel->r_offset,
1468 0,
1469 input_section
1470 ->output_section->vma
1471 + input_section->output_offset
1472 + size
1473 + mmix_elf_section_data (input_section)
1474 ->pjs.stub_offset,
1475 NULL, NULL, NULL) != bfd_reloc_ok)
1476 return FALSE;
1477
1478 /* Put a JMP insn at the stub; it goes with the
1479 R_MMIX_JMP reloc. */
1480 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1481 contents
1482 + size
1483 + mmix_elf_section_data (input_section)
1484 ->pjs.stub_offset);
1485
1486 /* Change the reloc to be at the stub, and to a full
1487 R_MMIX_JMP reloc. */
1488 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1489 rel->r_offset
1490 = (size
1491 + mmix_elf_section_data (input_section)
1492 ->pjs.stub_offset);
1493
1494 mmix_elf_section_data (input_section)->pjs.stub_offset
1495 += MAX_PUSHJ_STUB_SIZE;
1496
1497 /* Shift this reloc to the end of the relocs to maintain
1498 the r_offset sorted reloc order. */
1499 relcpy = *rel;
1500 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1501 relend[-1] = relcpy;
1502
1503 /* Back up one reloc, or else we'd skip the next reloc
1504 in turn. */
1505 rel--;
1506 }
1507
1508 pjsno++;
1509 }
1510 continue;
1511 }
1512
1513 r = mmix_final_link_relocate (howto, input_section,
1514 contents, rel->r_offset,
1515 rel->r_addend, relocation, name, sec, NULL);
1516
1517 if (r != bfd_reloc_ok)
1518 {
1519 const char * msg = (const char *) NULL;
1520
1521 switch (r)
1522 {
1523 case bfd_reloc_overflow:
1524 info->callbacks->reloc_overflow
1525 (info, (h ? &h->root : NULL), name, howto->name,
1526 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1527 break;
1528
1529 case bfd_reloc_undefined:
1530 /* We may have sent this message above. */
1531 if (! undefined_signalled)
1532 info->callbacks->undefined_symbol
1533 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1534 undefined_signalled = TRUE;
1535 break;
1536
1537 case bfd_reloc_outofrange:
1538 msg = _("internal error: out of range error");
1539 break;
1540
1541 case bfd_reloc_notsupported:
1542 msg = _("internal error: unsupported relocation error");
1543 break;
1544
1545 case bfd_reloc_dangerous:
1546 msg = _("internal error: dangerous relocation");
1547 break;
1548
1549 default:
1550 msg = _("internal error: unknown error");
1551 break;
1552 }
1553
1554 if (msg)
1555 (*info->callbacks->warning) (info, msg, name, input_bfd,
1556 input_section, rel->r_offset);
1557 }
1558 }
1559
1560 return TRUE;
1561 }
1562 \f
1563 /* Perform a single relocation. By default we use the standard BFD
1564 routines. A few relocs we have to do ourselves. */
1565
1566 static bfd_reloc_status_type
1567 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1568 bfd_byte *contents, bfd_vma r_offset,
1569 bfd_signed_vma r_addend, bfd_vma relocation,
1570 const char *symname, asection *symsec,
1571 char **error_message)
1572 {
1573 bfd_reloc_status_type r = bfd_reloc_ok;
1574 bfd_vma addr
1575 = (input_section->output_section->vma
1576 + input_section->output_offset
1577 + r_offset);
1578 bfd_signed_vma srel
1579 = (bfd_signed_vma) relocation + r_addend;
1580
1581 switch (howto->type)
1582 {
1583 /* All these are PC-relative. */
1584 case R_MMIX_PUSHJ_STUBBABLE:
1585 case R_MMIX_PUSHJ:
1586 case R_MMIX_CBRANCH:
1587 case R_MMIX_ADDR19:
1588 case R_MMIX_GETA:
1589 case R_MMIX_ADDR27:
1590 case R_MMIX_JMP:
1591 contents += r_offset;
1592
1593 srel -= (input_section->output_section->vma
1594 + input_section->output_offset
1595 + r_offset);
1596
1597 r = mmix_elf_perform_relocation (input_section, howto, contents,
1598 addr, srel, error_message);
1599 break;
1600
1601 case R_MMIX_BASE_PLUS_OFFSET:
1602 if (symsec == NULL)
1603 return bfd_reloc_undefined;
1604
1605 /* Check that we're not relocating against a register symbol. */
1606 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1607 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1608 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_SECTION_NAME) == 0)
1610 {
1611 /* Note: This is separated out into two messages in order
1612 to ease the translation into other languages. */
1613 if (symname == NULL || *symname == 0)
1614 _bfd_error_handler
1615 /* xgettext:c-format */
1616 (_("%B: base-plus-offset relocation against register symbol:"
1617 " (unknown) in %A"),
1618 input_section->owner, symsec);
1619 else
1620 _bfd_error_handler
1621 /* xgettext:c-format */
1622 (_("%B: base-plus-offset relocation against register symbol:"
1623 " %s in %A"),
1624 input_section->owner, symname, symsec);
1625 return bfd_reloc_overflow;
1626 }
1627 goto do_mmix_reloc;
1628
1629 case R_MMIX_REG_OR_BYTE:
1630 case R_MMIX_REG:
1631 /* For now, we handle these alike. They must refer to an register
1632 symbol, which is either relative to the register section and in
1633 the range 0..255, or is in the register contents section with vma
1634 regno * 8. */
1635
1636 /* FIXME: A better way to check for reg contents section?
1637 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1638 if (symsec == NULL)
1639 return bfd_reloc_undefined;
1640
1641 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1642 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1643 {
1644 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1645 {
1646 /* The bfd_reloc_outofrange return value, though intuitively
1647 a better value, will not get us an error. */
1648 return bfd_reloc_overflow;
1649 }
1650 srel /= 8;
1651 }
1652 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1653 MMIX_REG_SECTION_NAME) == 0)
1654 {
1655 if (srel < 0 || srel > 255)
1656 /* The bfd_reloc_outofrange return value, though intuitively a
1657 better value, will not get us an error. */
1658 return bfd_reloc_overflow;
1659 }
1660 else
1661 {
1662 /* Note: This is separated out into two messages in order
1663 to ease the translation into other languages. */
1664 if (symname == NULL || *symname == 0)
1665 _bfd_error_handler
1666 /* xgettext:c-format */
1667 (_("%B: register relocation against non-register symbol:"
1668 " (unknown) in %A"),
1669 input_section->owner, symsec);
1670 else
1671 _bfd_error_handler
1672 /* xgettext:c-format */
1673 (_("%B: register relocation against non-register symbol:"
1674 " %s in %A"),
1675 input_section->owner, symname, symsec);
1676
1677 /* The bfd_reloc_outofrange return value, though intuitively a
1678 better value, will not get us an error. */
1679 return bfd_reloc_overflow;
1680 }
1681 do_mmix_reloc:
1682 contents += r_offset;
1683 r = mmix_elf_perform_relocation (input_section, howto, contents,
1684 addr, srel, error_message);
1685 break;
1686
1687 case R_MMIX_LOCAL:
1688 /* This isn't a real relocation, it's just an assertion that the
1689 final relocation value corresponds to a local register. We
1690 ignore the actual relocation; nothing is changed. */
1691 {
1692 asection *regsec
1693 = bfd_get_section_by_name (input_section->output_section->owner,
1694 MMIX_REG_CONTENTS_SECTION_NAME);
1695 bfd_vma first_global;
1696
1697 /* Check that this is an absolute value, or a reference to the
1698 register contents section or the register (symbol) section.
1699 Absolute numbers can get here as undefined section. Undefined
1700 symbols are signalled elsewhere, so there's no conflict in us
1701 accidentally handling it. */
1702 if (!bfd_is_abs_section (symsec)
1703 && !bfd_is_und_section (symsec)
1704 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1705 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1706 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_SECTION_NAME) != 0)
1708 {
1709 _bfd_error_handler
1710 (_("%B: directive LOCAL valid only with a register or absolute value"),
1711 input_section->owner);
1712
1713 return bfd_reloc_overflow;
1714 }
1715
1716 /* If we don't have a register contents section, then $255 is the
1717 first global register. */
1718 if (regsec == NULL)
1719 first_global = 255;
1720 else
1721 {
1722 first_global
1723 = bfd_get_section_vma (input_section->output_section->owner,
1724 regsec) / 8;
1725 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1726 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1727 {
1728 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1729 /* The bfd_reloc_outofrange return value, though
1730 intuitively a better value, will not get us an error. */
1731 return bfd_reloc_overflow;
1732 srel /= 8;
1733 }
1734 }
1735
1736 if ((bfd_vma) srel >= first_global)
1737 {
1738 /* FIXME: Better error message. */
1739 _bfd_error_handler
1740 /* xgettext:c-format */
1741 (_("%B: LOCAL directive: Register $%Ld is not a local register."
1742 " First global register is $%Ld."),
1743 input_section->owner, srel, first_global);
1744
1745 return bfd_reloc_overflow;
1746 }
1747 }
1748 r = bfd_reloc_ok;
1749 break;
1750
1751 default:
1752 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1753 contents, r_offset,
1754 relocation, r_addend);
1755 }
1756
1757 return r;
1758 }
1759 \f
1760 /* Return the section that should be marked against GC for a given
1761 relocation. */
1762
1763 static asection *
1764 mmix_elf_gc_mark_hook (asection *sec,
1765 struct bfd_link_info *info,
1766 Elf_Internal_Rela *rel,
1767 struct elf_link_hash_entry *h,
1768 Elf_Internal_Sym *sym)
1769 {
1770 if (h != NULL)
1771 switch (ELF64_R_TYPE (rel->r_info))
1772 {
1773 case R_MMIX_GNU_VTINHERIT:
1774 case R_MMIX_GNU_VTENTRY:
1775 return NULL;
1776 }
1777
1778 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1779 }
1780 \f
1781 /* Sort register relocs to come before expanding relocs. */
1782
1783 static int
1784 mmix_elf_sort_relocs (const void * p1, const void * p2)
1785 {
1786 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1787 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1788 int r1_is_reg, r2_is_reg;
1789
1790 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1791 insns. */
1792 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1793 return 1;
1794 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1795 return -1;
1796
1797 r1_is_reg
1798 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1799 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1800 r2_is_reg
1801 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1802 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1803 if (r1_is_reg != r2_is_reg)
1804 return r2_is_reg - r1_is_reg;
1805
1806 /* Neither or both are register relocs. Then sort on full offset. */
1807 if (r1->r_offset > r2->r_offset)
1808 return 1;
1809 else if (r1->r_offset < r2->r_offset)
1810 return -1;
1811 return 0;
1812 }
1813
1814 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1815
1816 static bfd_boolean
1817 mmix_elf_check_common_relocs (bfd *abfd,
1818 struct bfd_link_info *info,
1819 asection *sec,
1820 const Elf_Internal_Rela *relocs)
1821 {
1822 bfd *bpo_greg_owner = NULL;
1823 asection *allocated_gregs_section = NULL;
1824 struct bpo_greg_section_info *gregdata = NULL;
1825 struct bpo_reloc_section_info *bpodata = NULL;
1826 const Elf_Internal_Rela *rel;
1827 const Elf_Internal_Rela *rel_end;
1828
1829 /* We currently have to abuse this COFF-specific member, since there's
1830 no target-machine-dedicated member. There's no alternative outside
1831 the bfd_link_info struct; we can't specialize a hash-table since
1832 they're different between ELF and mmo. */
1833 bpo_greg_owner = (bfd *) info->base_file;
1834
1835 rel_end = relocs + sec->reloc_count;
1836 for (rel = relocs; rel < rel_end; rel++)
1837 {
1838 switch (ELF64_R_TYPE (rel->r_info))
1839 {
1840 /* This relocation causes a GREG allocation. We need to count
1841 them, and we need to create a section for them, so we need an
1842 object to fake as the owner of that section. We can't use
1843 the ELF dynobj for this, since the ELF bits assume lots of
1844 DSO-related stuff if that member is non-NULL. */
1845 case R_MMIX_BASE_PLUS_OFFSET:
1846 /* We don't do anything with this reloc for a relocatable link. */
1847 if (bfd_link_relocatable (info))
1848 break;
1849
1850 if (bpo_greg_owner == NULL)
1851 {
1852 bpo_greg_owner = abfd;
1853 info->base_file = bpo_greg_owner;
1854 }
1855
1856 if (allocated_gregs_section == NULL)
1857 allocated_gregs_section
1858 = bfd_get_section_by_name (bpo_greg_owner,
1859 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1860
1861 if (allocated_gregs_section == NULL)
1862 {
1863 allocated_gregs_section
1864 = bfd_make_section_with_flags (bpo_greg_owner,
1865 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1866 (SEC_HAS_CONTENTS
1867 | SEC_IN_MEMORY
1868 | SEC_LINKER_CREATED));
1869 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1870 treated like any other section, and we'd get errors for
1871 address overlap with the text section. Let's set none of
1872 those flags, as that is what currently happens for usual
1873 GREG allocations, and that works. */
1874 if (allocated_gregs_section == NULL
1875 || !bfd_set_section_alignment (bpo_greg_owner,
1876 allocated_gregs_section,
1877 3))
1878 return FALSE;
1879
1880 gregdata = (struct bpo_greg_section_info *)
1881 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1882 if (gregdata == NULL)
1883 return FALSE;
1884 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1885 = gregdata;
1886 }
1887 else if (gregdata == NULL)
1888 gregdata
1889 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1890
1891 /* Get ourselves some auxiliary info for the BPO-relocs. */
1892 if (bpodata == NULL)
1893 {
1894 /* No use doing a separate iteration pass to find the upper
1895 limit - just use the number of relocs. */
1896 bpodata = (struct bpo_reloc_section_info *)
1897 bfd_alloc (bpo_greg_owner,
1898 sizeof (struct bpo_reloc_section_info)
1899 * (sec->reloc_count + 1));
1900 if (bpodata == NULL)
1901 return FALSE;
1902 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1903 bpodata->first_base_plus_offset_reloc
1904 = bpodata->bpo_index
1905 = gregdata->n_max_bpo_relocs;
1906 bpodata->bpo_greg_section
1907 = allocated_gregs_section;
1908 bpodata->n_bpo_relocs_this_section = 0;
1909 }
1910
1911 bpodata->n_bpo_relocs_this_section++;
1912 gregdata->n_max_bpo_relocs++;
1913
1914 /* We don't get another chance to set this before GC; we've not
1915 set up any hook that runs before GC. */
1916 gregdata->n_bpo_relocs
1917 = gregdata->n_max_bpo_relocs;
1918 break;
1919
1920 case R_MMIX_PUSHJ_STUBBABLE:
1921 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1922 break;
1923 }
1924 }
1925
1926 /* Allocate per-reloc stub storage and initialize it to the max stub
1927 size. */
1928 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1929 {
1930 size_t i;
1931
1932 mmix_elf_section_data (sec)->pjs.stub_size
1933 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1934 * sizeof (mmix_elf_section_data (sec)
1935 ->pjs.stub_size[0]));
1936 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1937 return FALSE;
1938
1939 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1940 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1941 }
1942
1943 return TRUE;
1944 }
1945
1946 /* Look through the relocs for a section during the first phase. */
1947
1948 static bfd_boolean
1949 mmix_elf_check_relocs (bfd *abfd,
1950 struct bfd_link_info *info,
1951 asection *sec,
1952 const Elf_Internal_Rela *relocs)
1953 {
1954 Elf_Internal_Shdr *symtab_hdr;
1955 struct elf_link_hash_entry **sym_hashes;
1956 const Elf_Internal_Rela *rel;
1957 const Elf_Internal_Rela *rel_end;
1958
1959 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1960 sym_hashes = elf_sym_hashes (abfd);
1961
1962 /* First we sort the relocs so that any register relocs come before
1963 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1964 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1965 mmix_elf_sort_relocs);
1966
1967 /* Do the common part. */
1968 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1969 return FALSE;
1970
1971 if (bfd_link_relocatable (info))
1972 return TRUE;
1973
1974 rel_end = relocs + sec->reloc_count;
1975 for (rel = relocs; rel < rel_end; rel++)
1976 {
1977 struct elf_link_hash_entry *h;
1978 unsigned long r_symndx;
1979
1980 r_symndx = ELF64_R_SYM (rel->r_info);
1981 if (r_symndx < symtab_hdr->sh_info)
1982 h = NULL;
1983 else
1984 {
1985 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1986 while (h->root.type == bfd_link_hash_indirect
1987 || h->root.type == bfd_link_hash_warning)
1988 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1989 }
1990
1991 switch (ELF64_R_TYPE (rel->r_info))
1992 {
1993 /* This relocation describes the C++ object vtable hierarchy.
1994 Reconstruct it for later use during GC. */
1995 case R_MMIX_GNU_VTINHERIT:
1996 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1997 return FALSE;
1998 break;
1999
2000 /* This relocation describes which C++ vtable entries are actually
2001 used. Record for later use during GC. */
2002 case R_MMIX_GNU_VTENTRY:
2003 BFD_ASSERT (h != NULL);
2004 if (h != NULL
2005 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2006 return FALSE;
2007 break;
2008 }
2009 }
2010
2011 return TRUE;
2012 }
2013
2014 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2015 Copied from elf_link_add_object_symbols. */
2016
2017 bfd_boolean
2018 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2019 {
2020 asection *o;
2021
2022 for (o = abfd->sections; o != NULL; o = o->next)
2023 {
2024 Elf_Internal_Rela *internal_relocs;
2025 bfd_boolean ok;
2026
2027 if ((o->flags & SEC_RELOC) == 0
2028 || o->reloc_count == 0
2029 || ((info->strip == strip_all || info->strip == strip_debugger)
2030 && (o->flags & SEC_DEBUGGING) != 0)
2031 || bfd_is_abs_section (o->output_section))
2032 continue;
2033
2034 internal_relocs
2035 = _bfd_elf_link_read_relocs (abfd, o, NULL,
2036 (Elf_Internal_Rela *) NULL,
2037 info->keep_memory);
2038 if (internal_relocs == NULL)
2039 return FALSE;
2040
2041 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2042
2043 if (! info->keep_memory)
2044 free (internal_relocs);
2045
2046 if (! ok)
2047 return FALSE;
2048 }
2049
2050 return TRUE;
2051 }
2052 \f
2053 /* Change symbols relative to the reg contents section to instead be to
2054 the register section, and scale them down to correspond to the register
2055 number. */
2056
2057 static int
2058 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2059 const char *name ATTRIBUTE_UNUSED,
2060 Elf_Internal_Sym *sym,
2061 asection *input_sec,
2062 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2063 {
2064 if (input_sec != NULL
2065 && input_sec->name != NULL
2066 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2067 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2068 {
2069 sym->st_value /= 8;
2070 sym->st_shndx = SHN_REGISTER;
2071 }
2072
2073 return 1;
2074 }
2075
2076 /* We fake a register section that holds values that are register numbers.
2077 Having a SHN_REGISTER and register section translates better to other
2078 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2079 This section faking is based on a construct in elf32-mips.c. */
2080 static asection mmix_elf_reg_section;
2081 static asymbol mmix_elf_reg_section_symbol;
2082 static asymbol *mmix_elf_reg_section_symbol_ptr;
2083
2084 /* Handle the special section numbers that a symbol may use. */
2085
2086 void
2087 mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
2088 {
2089 elf_symbol_type *elfsym;
2090
2091 elfsym = (elf_symbol_type *) asym;
2092 switch (elfsym->internal_elf_sym.st_shndx)
2093 {
2094 case SHN_REGISTER:
2095 if (mmix_elf_reg_section.name == NULL)
2096 {
2097 /* Initialize the register section. */
2098 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2099 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2100 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2101 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2102 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2103 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2104 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2105 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2106 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2107 }
2108 asym->section = &mmix_elf_reg_section;
2109 break;
2110
2111 default:
2112 break;
2113 }
2114 }
2115
2116 /* Given a BFD section, try to locate the corresponding ELF section
2117 index. */
2118
2119 static bfd_boolean
2120 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2121 asection * sec,
2122 int * retval)
2123 {
2124 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2125 *retval = SHN_REGISTER;
2126 else
2127 return FALSE;
2128
2129 return TRUE;
2130 }
2131
2132 /* Hook called by the linker routine which adds symbols from an object
2133 file. We must handle the special SHN_REGISTER section number here.
2134
2135 We also check that we only have *one* each of the section-start
2136 symbols, since otherwise having two with the same value would cause
2137 them to be "merged", but with the contents serialized. */
2138
2139 static bfd_boolean
2140 mmix_elf_add_symbol_hook (bfd *abfd,
2141 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2142 Elf_Internal_Sym *sym,
2143 const char **namep ATTRIBUTE_UNUSED,
2144 flagword *flagsp ATTRIBUTE_UNUSED,
2145 asection **secp,
2146 bfd_vma *valp ATTRIBUTE_UNUSED)
2147 {
2148 if (sym->st_shndx == SHN_REGISTER)
2149 {
2150 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2151 (*secp)->flags |= SEC_LINKER_CREATED;
2152 }
2153 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2154 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2155 {
2156 /* See if we have another one. */
2157 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2158 *namep,
2159 FALSE,
2160 FALSE,
2161 FALSE);
2162
2163 if (h != NULL && h->type != bfd_link_hash_undefined)
2164 {
2165 /* How do we get the asymbol (or really: the filename) from h?
2166 h->u.def.section->owner is NULL. */
2167 _bfd_error_handler
2168 /* xgettext:c-format */
2169 (_("%B: Error: multiple definition of `%s'; start of %s "
2170 "is set in a earlier linked file\n"),
2171 abfd, *namep,
2172 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
2173 bfd_set_error (bfd_error_bad_value);
2174 return FALSE;
2175 }
2176 }
2177
2178 return TRUE;
2179 }
2180
2181 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2182
2183 static bfd_boolean
2184 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2185 {
2186 const char *colpos;
2187 int digits;
2188
2189 /* Also include the default local-label definition. */
2190 if (_bfd_elf_is_local_label_name (abfd, name))
2191 return TRUE;
2192
2193 if (*name != 'L')
2194 return FALSE;
2195
2196 /* If there's no ":", or more than one, it's not a local symbol. */
2197 colpos = strchr (name, ':');
2198 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2199 return FALSE;
2200
2201 /* Check that there are remaining characters and that they are digits. */
2202 if (colpos[1] == 0)
2203 return FALSE;
2204
2205 digits = strspn (colpos + 1, "0123456789");
2206 return digits != 0 && colpos[1 + digits] == 0;
2207 }
2208
2209 /* We get rid of the register section here. */
2210
2211 bfd_boolean
2212 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2213 {
2214 /* We never output a register section, though we create one for
2215 temporary measures. Check that nobody entered contents into it. */
2216 asection *reg_section;
2217
2218 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2219
2220 if (reg_section != NULL)
2221 {
2222 /* FIXME: Pass error state gracefully. */
2223 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2224 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2225
2226 /* Really remove the section, if it hasn't already been done. */
2227 if (!bfd_section_removed_from_list (abfd, reg_section))
2228 {
2229 bfd_section_list_remove (abfd, reg_section);
2230 --abfd->section_count;
2231 }
2232 }
2233
2234 if (! bfd_elf_final_link (abfd, info))
2235 return FALSE;
2236
2237 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2238 the regular linker machinery. We do it here, like other targets with
2239 special sections. */
2240 if (info->base_file != NULL)
2241 {
2242 asection *greg_section
2243 = bfd_get_section_by_name ((bfd *) info->base_file,
2244 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2245 if (!bfd_set_section_contents (abfd,
2246 greg_section->output_section,
2247 greg_section->contents,
2248 (file_ptr) greg_section->output_offset,
2249 greg_section->size))
2250 return FALSE;
2251 }
2252 return TRUE;
2253 }
2254
2255 /* We need to include the maximum size of PUSHJ-stubs in the initial
2256 section size. This is expected to shrink during linker relaxation. */
2257
2258 static void
2259 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2260 asection *sec,
2261 void *ptr)
2262 {
2263 struct bfd_link_info *info = ptr;
2264
2265 /* Make sure we only do this for section where we know we want this,
2266 otherwise we might end up resetting the size of COMMONs. */
2267 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2268 return;
2269
2270 sec->rawsize = sec->size;
2271 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2272 * MAX_PUSHJ_STUB_SIZE);
2273
2274 /* For use in relocatable link, we start with a max stubs size. See
2275 mmix_elf_relax_section. */
2276 if (bfd_link_relocatable (info) && sec->output_section)
2277 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2278 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2279 * MAX_PUSHJ_STUB_SIZE);
2280 }
2281
2282 /* Initialize stuff for the linker-generated GREGs to match
2283 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2284
2285 bfd_boolean
2286 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2287 struct bfd_link_info *info)
2288 {
2289 asection *bpo_gregs_section;
2290 bfd *bpo_greg_owner;
2291 struct bpo_greg_section_info *gregdata;
2292 size_t n_gregs;
2293 bfd_vma gregs_size;
2294 size_t i;
2295 size_t *bpo_reloc_indexes;
2296 bfd *ibfd;
2297
2298 /* Set the initial size of sections. */
2299 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2300 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2301
2302 /* The bpo_greg_owner bfd is supposed to have been set by
2303 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2304 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2305 bpo_greg_owner = (bfd *) info->base_file;
2306 if (bpo_greg_owner == NULL)
2307 return TRUE;
2308
2309 bpo_gregs_section
2310 = bfd_get_section_by_name (bpo_greg_owner,
2311 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2312
2313 if (bpo_gregs_section == NULL)
2314 return TRUE;
2315
2316 /* We use the target-data handle in the ELF section data. */
2317 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2318 if (gregdata == NULL)
2319 return FALSE;
2320
2321 n_gregs = gregdata->n_bpo_relocs;
2322 gregdata->n_allocated_bpo_gregs = n_gregs;
2323
2324 /* When this reaches zero during relaxation, all entries have been
2325 filled in and the size of the linker gregs can be calculated. */
2326 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2327
2328 /* Set the zeroth-order estimate for the GREGs size. */
2329 gregs_size = n_gregs * 8;
2330
2331 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2332 return FALSE;
2333
2334 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2335 time. Note that we must use the max number ever noted for the array,
2336 since the index numbers were created before GC. */
2337 gregdata->reloc_request
2338 = bfd_zalloc (bpo_greg_owner,
2339 sizeof (struct bpo_reloc_request)
2340 * gregdata->n_max_bpo_relocs);
2341
2342 gregdata->bpo_reloc_indexes
2343 = bpo_reloc_indexes
2344 = bfd_alloc (bpo_greg_owner,
2345 gregdata->n_max_bpo_relocs
2346 * sizeof (size_t));
2347 if (bpo_reloc_indexes == NULL)
2348 return FALSE;
2349
2350 /* The default order is an identity mapping. */
2351 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2352 {
2353 bpo_reloc_indexes[i] = i;
2354 gregdata->reloc_request[i].bpo_reloc_no = i;
2355 }
2356
2357 return TRUE;
2358 }
2359 \f
2360 /* Fill in contents in the linker allocated gregs. Everything is
2361 calculated at this point; we just move the contents into place here. */
2362
2363 bfd_boolean
2364 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2365 struct bfd_link_info *link_info)
2366 {
2367 asection *bpo_gregs_section;
2368 bfd *bpo_greg_owner;
2369 struct bpo_greg_section_info *gregdata;
2370 size_t n_gregs;
2371 size_t i, j;
2372 size_t lastreg;
2373 bfd_byte *contents;
2374
2375 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2376 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2377 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2378 bpo_greg_owner = (bfd *) link_info->base_file;
2379 if (bpo_greg_owner == NULL)
2380 return TRUE;
2381
2382 bpo_gregs_section
2383 = bfd_get_section_by_name (bpo_greg_owner,
2384 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2385
2386 /* This can't happen without DSO handling. When DSOs are handled
2387 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2388 section. */
2389 if (bpo_gregs_section == NULL)
2390 return TRUE;
2391
2392 /* We use the target-data handle in the ELF section data. */
2393
2394 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2395 if (gregdata == NULL)
2396 return FALSE;
2397
2398 n_gregs = gregdata->n_allocated_bpo_gregs;
2399
2400 bpo_gregs_section->contents
2401 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2402 if (contents == NULL)
2403 return FALSE;
2404
2405 /* Sanity check: If these numbers mismatch, some relocation has not been
2406 accounted for and the rest of gregdata is probably inconsistent.
2407 It's a bug, but it's more helpful to identify it than segfaulting
2408 below. */
2409 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2410 != gregdata->n_bpo_relocs)
2411 {
2412 _bfd_error_handler
2413 /* xgettext:c-format */
2414 (_("Internal inconsistency: remaining %lu != max %lu.\n\
2415 Please report this bug."),
2416 (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2417 (unsigned long) gregdata->n_bpo_relocs);
2418 return FALSE;
2419 }
2420
2421 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2422 if (gregdata->reloc_request[i].regindex != lastreg)
2423 {
2424 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2425 contents + j * 8);
2426 lastreg = gregdata->reloc_request[i].regindex;
2427 j++;
2428 }
2429
2430 return TRUE;
2431 }
2432
2433 /* Sort valid relocs to come before non-valid relocs, then on increasing
2434 value. */
2435
2436 static int
2437 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2438 {
2439 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2440 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2441
2442 /* Primary function is validity; non-valid relocs sorted after valid
2443 ones. */
2444 if (r1->valid != r2->valid)
2445 return r2->valid - r1->valid;
2446
2447 /* Then sort on value. Don't simplify and return just the difference of
2448 the values: the upper bits of the 64-bit value would be truncated on
2449 a host with 32-bit ints. */
2450 if (r1->value != r2->value)
2451 return r1->value > r2->value ? 1 : -1;
2452
2453 /* As a last re-sort, use the relocation number, so we get a stable
2454 sort. The *addresses* aren't stable since items are swapped during
2455 sorting. It depends on the qsort implementation if this actually
2456 happens. */
2457 return r1->bpo_reloc_no > r2->bpo_reloc_no
2458 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2459 }
2460
2461 /* For debug use only. Dumps the global register allocations resulting
2462 from base-plus-offset relocs. */
2463
2464 void
2465 mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
2466 void (*pf) (const char *fmt, ...))
2467 {
2468 bfd *bpo_greg_owner;
2469 asection *bpo_gregs_section;
2470 struct bpo_greg_section_info *gregdata;
2471 unsigned int i;
2472
2473 if (link_info == NULL || link_info->base_file == NULL)
2474 return;
2475
2476 bpo_greg_owner = (bfd *) link_info->base_file;
2477
2478 bpo_gregs_section
2479 = bfd_get_section_by_name (bpo_greg_owner,
2480 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2481
2482 if (bpo_gregs_section == NULL)
2483 return;
2484
2485 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2486 if (gregdata == NULL)
2487 return;
2488
2489 if (pf == NULL)
2490 pf = _bfd_error_handler;
2491
2492 /* These format strings are not translated. They are for debug purposes
2493 only and never displayed to an end user. Should they escape, we
2494 surely want them in original. */
2495 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2496 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2497 gregdata->n_max_bpo_relocs,
2498 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2499 gregdata->n_allocated_bpo_gregs);
2500
2501 if (gregdata->reloc_request)
2502 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2503 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2504 i,
2505 (gregdata->bpo_reloc_indexes != NULL
2506 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2507 gregdata->reloc_request[i].bpo_reloc_no,
2508 gregdata->reloc_request[i].valid,
2509
2510 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2511 (unsigned long) gregdata->reloc_request[i].value,
2512 gregdata->reloc_request[i].regindex,
2513 gregdata->reloc_request[i].offset);
2514 }
2515
2516 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2517 when the last such reloc is done, an index-array is sorted according to
2518 the values and iterated over to produce register numbers (indexed by 0
2519 from the first allocated register number) and offsets for use in real
2520 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2521
2522 PUSHJ stub accounting is also done here.
2523
2524 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2525
2526 static bfd_boolean
2527 mmix_elf_relax_section (bfd *abfd,
2528 asection *sec,
2529 struct bfd_link_info *link_info,
2530 bfd_boolean *again)
2531 {
2532 Elf_Internal_Shdr *symtab_hdr;
2533 Elf_Internal_Rela *internal_relocs;
2534 Elf_Internal_Rela *irel, *irelend;
2535 asection *bpo_gregs_section = NULL;
2536 struct bpo_greg_section_info *gregdata;
2537 struct bpo_reloc_section_info *bpodata
2538 = mmix_elf_section_data (sec)->bpo.reloc;
2539 /* The initialization is to quiet compiler warnings. The value is to
2540 spot a missing actual initialization. */
2541 size_t bpono = (size_t) -1;
2542 size_t pjsno = 0;
2543 Elf_Internal_Sym *isymbuf = NULL;
2544 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2545
2546 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2547
2548 /* Assume nothing changes. */
2549 *again = FALSE;
2550
2551 /* We don't have to do anything if this section does not have relocs, or
2552 if this is not a code section. */
2553 if ((sec->flags & SEC_RELOC) == 0
2554 || sec->reloc_count == 0
2555 || (sec->flags & SEC_CODE) == 0
2556 || (sec->flags & SEC_LINKER_CREATED) != 0
2557 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2558 then nothing to do. */
2559 || (bpodata == NULL
2560 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2561 return TRUE;
2562
2563 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2564
2565 if (bpodata != NULL)
2566 {
2567 bpo_gregs_section = bpodata->bpo_greg_section;
2568 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2569 bpono = bpodata->first_base_plus_offset_reloc;
2570 }
2571 else
2572 gregdata = NULL;
2573
2574 /* Get a copy of the native relocations. */
2575 internal_relocs
2576 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2577 (Elf_Internal_Rela *) NULL,
2578 link_info->keep_memory);
2579 if (internal_relocs == NULL)
2580 goto error_return;
2581
2582 /* Walk through them looking for relaxing opportunities. */
2583 irelend = internal_relocs + sec->reloc_count;
2584 for (irel = internal_relocs; irel < irelend; irel++)
2585 {
2586 bfd_vma symval;
2587 struct elf_link_hash_entry *h = NULL;
2588
2589 /* We only process two relocs. */
2590 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2591 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2592 continue;
2593
2594 /* We process relocs in a distinctly different way when this is a
2595 relocatable link (for one, we don't look at symbols), so we avoid
2596 mixing its code with that for the "normal" relaxation. */
2597 if (bfd_link_relocatable (link_info))
2598 {
2599 /* The only transformation in a relocatable link is to generate
2600 a full stub at the location of the stub calculated for the
2601 input section, if the relocated stub location, the end of the
2602 output section plus earlier stubs, cannot be reached. Thus
2603 relocatable linking can only lead to worse code, but it still
2604 works. */
2605 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2606 {
2607 /* If we can reach the end of the output-section and beyond
2608 any current stubs, then we don't need a stub for this
2609 reloc. The relaxed order of output stub allocation may
2610 not exactly match the straightforward order, so we always
2611 assume presence of output stubs, which will allow
2612 relaxation only on relocations indifferent to the
2613 presence of output stub allocations for other relocations
2614 and thus the order of output stub allocation. */
2615 if (bfd_check_overflow (complain_overflow_signed,
2616 19,
2617 0,
2618 bfd_arch_bits_per_address (abfd),
2619 /* Output-stub location. */
2620 sec->output_section->rawsize
2621 + (mmix_elf_section_data (sec
2622 ->output_section)
2623 ->pjs.stubs_size_sum)
2624 /* Location of this PUSHJ reloc. */
2625 - (sec->output_offset + irel->r_offset)
2626 /* Don't count *this* stub twice. */
2627 - (mmix_elf_section_data (sec)
2628 ->pjs.stub_size[pjsno]
2629 + MAX_PUSHJ_STUB_SIZE))
2630 == bfd_reloc_ok)
2631 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2632
2633 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2634 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2635
2636 pjsno++;
2637 }
2638
2639 continue;
2640 }
2641
2642 /* Get the value of the symbol referred to by the reloc. */
2643 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2644 {
2645 /* A local symbol. */
2646 Elf_Internal_Sym *isym;
2647 asection *sym_sec;
2648
2649 /* Read this BFD's local symbols if we haven't already. */
2650 if (isymbuf == NULL)
2651 {
2652 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2653 if (isymbuf == NULL)
2654 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2655 symtab_hdr->sh_info, 0,
2656 NULL, NULL, NULL);
2657 if (isymbuf == 0)
2658 goto error_return;
2659 }
2660
2661 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2662 if (isym->st_shndx == SHN_UNDEF)
2663 sym_sec = bfd_und_section_ptr;
2664 else if (isym->st_shndx == SHN_ABS)
2665 sym_sec = bfd_abs_section_ptr;
2666 else if (isym->st_shndx == SHN_COMMON)
2667 sym_sec = bfd_com_section_ptr;
2668 else
2669 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2670 symval = (isym->st_value
2671 + sym_sec->output_section->vma
2672 + sym_sec->output_offset);
2673 }
2674 else
2675 {
2676 unsigned long indx;
2677
2678 /* An external symbol. */
2679 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2680 h = elf_sym_hashes (abfd)[indx];
2681 BFD_ASSERT (h != NULL);
2682 if (h->root.type == bfd_link_hash_undefweak)
2683 /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to
2684 the canonical value 0 for an unresolved weak symbol to
2685 consider: as the debug-friendly approach, resolve to "abort"
2686 (or a port-specific function), or as the space-friendly
2687 approach resolve to the next instruction (like some other
2688 ports, notably ARM and AArch64). These alternatives require
2689 matching code in mmix_elf_perform_relocation or its caller. */
2690 symval = 0;
2691 else if (h->root.type == bfd_link_hash_defined
2692 || h->root.type == bfd_link_hash_defweak)
2693 symval = (h->root.u.def.value
2694 + h->root.u.def.section->output_section->vma
2695 + h->root.u.def.section->output_offset);
2696 else
2697 {
2698 /* This appears to be a reference to an undefined symbol. Just
2699 ignore it--it will be caught by the regular reloc processing.
2700 We need to keep BPO reloc accounting consistent, though
2701 else we'll abort instead of emitting an error message. */
2702 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2703 && gregdata != NULL)
2704 {
2705 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2706 bpono++;
2707 }
2708 continue;
2709 }
2710 }
2711
2712 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2713 {
2714 bfd_vma value = symval + irel->r_addend;
2715 bfd_vma dot
2716 = (sec->output_section->vma
2717 + sec->output_offset
2718 + irel->r_offset);
2719 bfd_vma stubaddr
2720 = (sec->output_section->vma
2721 + sec->output_offset
2722 + size
2723 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2724
2725 if ((value & 3) == 0
2726 && bfd_check_overflow (complain_overflow_signed,
2727 19,
2728 0,
2729 bfd_arch_bits_per_address (abfd),
2730 value - dot
2731 - (value > dot
2732 ? mmix_elf_section_data (sec)
2733 ->pjs.stub_size[pjsno]
2734 : 0))
2735 == bfd_reloc_ok)
2736 /* If the reloc fits, no stub is needed. */
2737 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2738 else
2739 /* Maybe we can get away with just a JMP insn? */
2740 if ((value & 3) == 0
2741 && bfd_check_overflow (complain_overflow_signed,
2742 27,
2743 0,
2744 bfd_arch_bits_per_address (abfd),
2745 value - stubaddr
2746 - (value > dot
2747 ? mmix_elf_section_data (sec)
2748 ->pjs.stub_size[pjsno] - 4
2749 : 0))
2750 == bfd_reloc_ok)
2751 /* Yep, account for a stub consisting of a single JMP insn. */
2752 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2753 else
2754 /* Nope, go for the full insn stub. It doesn't seem useful to
2755 emit the intermediate sizes; those will only be useful for
2756 a >64M program assuming contiguous code. */
2757 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2758 = MAX_PUSHJ_STUB_SIZE;
2759
2760 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2761 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2762 pjsno++;
2763 continue;
2764 }
2765
2766 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2767
2768 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2769 = symval + irel->r_addend;
2770 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2771 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2772 }
2773
2774 /* Check if that was the last BPO-reloc. If so, sort the values and
2775 calculate how many registers we need to cover them. Set the size of
2776 the linker gregs, and if the number of registers changed, indicate
2777 that we need to relax some more because we have more work to do. */
2778 if (gregdata != NULL
2779 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2780 {
2781 size_t i;
2782 bfd_vma prev_base;
2783 size_t regindex;
2784
2785 /* First, reset the remaining relocs for the next round. */
2786 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2787 = gregdata->n_bpo_relocs;
2788
2789 qsort (gregdata->reloc_request,
2790 gregdata->n_max_bpo_relocs,
2791 sizeof (struct bpo_reloc_request),
2792 bpo_reloc_request_sort_fn);
2793
2794 /* Recalculate indexes. When we find a change (however unlikely
2795 after the initial iteration), we know we need to relax again,
2796 since items in the GREG-array are sorted by increasing value and
2797 stored in the relaxation phase. */
2798 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2799 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2800 != i)
2801 {
2802 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2803 = i;
2804 *again = TRUE;
2805 }
2806
2807 /* Allocate register numbers (indexing from 0). Stop at the first
2808 non-valid reloc. */
2809 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2810 i < gregdata->n_bpo_relocs;
2811 i++)
2812 {
2813 if (gregdata->reloc_request[i].value > prev_base + 255)
2814 {
2815 regindex++;
2816 prev_base = gregdata->reloc_request[i].value;
2817 }
2818 gregdata->reloc_request[i].regindex = regindex;
2819 gregdata->reloc_request[i].offset
2820 = gregdata->reloc_request[i].value - prev_base;
2821 }
2822
2823 /* If it's not the same as the last time, we need to relax again,
2824 because the size of the section has changed. I'm not sure we
2825 actually need to do any adjustments since the shrinking happens
2826 at the start of this section, but better safe than sorry. */
2827 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2828 {
2829 gregdata->n_allocated_bpo_gregs = regindex + 1;
2830 *again = TRUE;
2831 }
2832
2833 bpo_gregs_section->size = (regindex + 1) * 8;
2834 }
2835
2836 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2837 {
2838 if (! link_info->keep_memory)
2839 free (isymbuf);
2840 else
2841 {
2842 /* Cache the symbols for elf_link_input_bfd. */
2843 symtab_hdr->contents = (unsigned char *) isymbuf;
2844 }
2845 }
2846
2847 BFD_ASSERT(pjsno == mmix_elf_section_data (sec)->pjs.n_pushj_relocs);
2848
2849 if (internal_relocs != NULL
2850 && elf_section_data (sec)->relocs != internal_relocs)
2851 free (internal_relocs);
2852
2853 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2854 abort ();
2855
2856 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2857 {
2858 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2859 *again = TRUE;
2860 }
2861
2862 return TRUE;
2863
2864 error_return:
2865 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2866 free (isymbuf);
2867 if (internal_relocs != NULL
2868 && elf_section_data (sec)->relocs != internal_relocs)
2869 free (internal_relocs);
2870 return FALSE;
2871 }
2872 \f
2873 #define ELF_ARCH bfd_arch_mmix
2874 #define ELF_MACHINE_CODE EM_MMIX
2875
2876 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2877 However, that's too much for something somewhere in the linker part of
2878 BFD; perhaps the start-address has to be a non-zero multiple of this
2879 number, or larger than this number. The symptom is that the linker
2880 complains: "warning: allocated section `.text' not in segment". We
2881 settle for 64k; the page-size used in examples is 8k.
2882 #define ELF_MAXPAGESIZE 0x10000
2883
2884 Unfortunately, this causes excessive padding in the supposedly small
2885 for-education programs that are the expected usage (where people would
2886 inspect output). We stick to 256 bytes just to have *some* default
2887 alignment. */
2888 #define ELF_MAXPAGESIZE 0x100
2889
2890 #define TARGET_BIG_SYM mmix_elf64_vec
2891 #define TARGET_BIG_NAME "elf64-mmix"
2892
2893 #define elf_info_to_howto_rel NULL
2894 #define elf_info_to_howto mmix_info_to_howto_rela
2895 #define elf_backend_relocate_section mmix_elf_relocate_section
2896 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2897
2898 #define elf_backend_link_output_symbol_hook \
2899 mmix_elf_link_output_symbol_hook
2900 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2901
2902 #define elf_backend_check_relocs mmix_elf_check_relocs
2903 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2904 #define elf_backend_omit_section_dynsym \
2905 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2906
2907 #define bfd_elf64_bfd_copy_link_hash_symbol_type \
2908 _bfd_generic_copy_link_hash_symbol_type
2909
2910 #define bfd_elf64_bfd_is_local_label_name \
2911 mmix_elf_is_local_label_name
2912
2913 #define elf_backend_may_use_rel_p 0
2914 #define elf_backend_may_use_rela_p 1
2915 #define elf_backend_default_use_rela_p 1
2916
2917 #define elf_backend_can_gc_sections 1
2918 #define elf_backend_section_from_bfd_section \
2919 mmix_elf_section_from_bfd_section
2920
2921 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2922 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2923 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2924
2925 #include "elf64-target.h"
This page took 0.087913 seconds and 5 git commands to generate.