PR ld/20125, MMIX weak symbols
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /* No specific ABI or "processor-specific supplement" defined. */
24
25 /* TODO:
26 - "Traditional" linker relaxation (shrinking whole sections).
27 - Merge reloc stubs jumping to same location.
28 - GETA stub relaxation (call a stub for out of range new
29 R_MMIX_GETA_STUBBABLE). */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37
38 #define MINUS_ONE (((bfd_vma) 0) - 1)
39
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41
42 /* Put these everywhere in new code. */
43 #define FATAL_DEBUG \
44 _bfd_abort (__FILE__, __LINE__, \
45 "Internal: Non-debugged code (test-case missing)")
46
47 #define BAD_CASE(x) \
48 _bfd_abort (__FILE__, __LINE__, \
49 "bad case for " #x)
50
51 struct _mmix_elf_section_data
52 {
53 struct bfd_elf_section_data elf;
54 union
55 {
56 struct bpo_reloc_section_info *reloc;
57 struct bpo_greg_section_info *greg;
58 } bpo;
59
60 struct pushj_stub_info
61 {
62 /* Maximum number of stubs needed for this section. */
63 bfd_size_type n_pushj_relocs;
64
65 /* Size of stubs after a mmix_elf_relax_section round. */
66 bfd_size_type stubs_size_sum;
67
68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
69 of these. Allocated in mmix_elf_check_common_relocs. */
70 bfd_size_type *stub_size;
71
72 /* Offset of next stub during relocation. Somewhat redundant with the
73 above: error coverage is easier and we don't have to reset the
74 stubs_size_sum for relocation. */
75 bfd_size_type stub_offset;
76 } pjs;
77
78 /* Whether there has been a warning that this section could not be
79 linked due to a specific cause. FIXME: a way to access the
80 linker info or output section, then stuff the limiter guard
81 there. */
82 bfd_boolean has_warned_bpo;
83 bfd_boolean has_warned_pushj;
84 };
85
86 #define mmix_elf_section_data(sec) \
87 ((struct _mmix_elf_section_data *) elf_section_data (sec))
88
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91 NULL. */
92 struct bpo_reloc_section_info
93 {
94 /* The base is 1; this is the first number in this section. */
95 size_t first_base_plus_offset_reloc;
96
97 /* Number of BPO-relocs in this section. */
98 size_t n_bpo_relocs_this_section;
99
100 /* Running index, used at relocation time. */
101 size_t bpo_index;
102
103 /* We don't have access to the bfd_link_info struct in
104 mmix_final_link_relocate. What we really want to get at is the
105 global single struct greg_relocation, so we stash it here. */
106 asection *bpo_greg_section;
107 };
108
109 /* Helper struct (in global context) for the one below.
110 There's one of these created for every BPO reloc. */
111 struct bpo_reloc_request
112 {
113 bfd_vma value;
114
115 /* Valid after relaxation. The base is 0; the first register number
116 must be added. The offset is in range 0..255. */
117 size_t regindex;
118 size_t offset;
119
120 /* The order number for this BPO reloc, corresponding to the order in
121 which BPO relocs were found. Used to create an index after reloc
122 requests are sorted. */
123 size_t bpo_reloc_no;
124
125 /* Set when the value is computed. Better than coding "guard values"
126 into the other members. Is FALSE only for BPO relocs in a GC:ed
127 section. */
128 bfd_boolean valid;
129 };
130
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133 which is linked into the register contents section
134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
135 linker; using the same hook as for usual with BPO relocs does not
136 collide. */
137 struct bpo_greg_section_info
138 {
139 /* After GC, this reflects the number of remaining, non-excluded
140 BPO-relocs. */
141 size_t n_bpo_relocs;
142
143 /* This is the number of allocated bpo_reloc_requests; the size of
144 sorted_indexes. Valid after the check.*relocs functions are called
145 for all incoming sections. It includes the number of BPO relocs in
146 sections that were GC:ed. */
147 size_t n_max_bpo_relocs;
148
149 /* A counter used to find out when to fold the BPO gregs, since we
150 don't have a single "after-relaxation" hook. */
151 size_t n_remaining_bpo_relocs_this_relaxation_round;
152
153 /* The number of linker-allocated GREGs resulting from BPO relocs.
154 This is an approximation after _bfd_mmix_before_linker_allocation
155 and supposedly accurate after mmix_elf_relax_section is called for
156 all incoming non-collected sections. */
157 size_t n_allocated_bpo_gregs;
158
159 /* Index into reloc_request[], sorted on increasing "value", secondary
160 by increasing index for strict sorting order. */
161 size_t *bpo_reloc_indexes;
162
163 /* An array of all relocations, with the "value" member filled in by
164 the relaxation function. */
165 struct bpo_reloc_request *reloc_request;
166 };
167
168
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172
173 /* Only intended to be called from a debugger. */
174 extern void mmix_dump_bpo_gregs
175 (struct bfd_link_info *, void (*) (const char *, ...));
176
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 bfd_signed_vma, bfd_vma, const char *, asection *,
185 char **);
186
187
188 /* Watch out: this currently needs to have elements with the same index as
189 their R_MMIX_ number. */
190 static reloc_howto_type elf_mmix_howto_table[] =
191 {
192 /* This reloc does nothing. */
193 HOWTO (R_MMIX_NONE, /* type */
194 0, /* rightshift */
195 3, /* size (0 = byte, 1 = short, 2 = long) */
196 0, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_dont, /* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_MMIX_NONE", /* name */
202 FALSE, /* partial_inplace */
203 0, /* src_mask */
204 0, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 /* An 8 bit absolute relocation. */
208 HOWTO (R_MMIX_8, /* type */
209 0, /* rightshift */
210 0, /* size (0 = byte, 1 = short, 2 = long) */
211 8, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_bitfield, /* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_MMIX_8", /* name */
217 FALSE, /* partial_inplace */
218 0, /* src_mask */
219 0xff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 /* An 16 bit absolute relocation. */
223 HOWTO (R_MMIX_16, /* type */
224 0, /* rightshift */
225 1, /* size (0 = byte, 1 = short, 2 = long) */
226 16, /* bitsize */
227 FALSE, /* pc_relative */
228 0, /* bitpos */
229 complain_overflow_bitfield, /* complain_on_overflow */
230 bfd_elf_generic_reloc, /* special_function */
231 "R_MMIX_16", /* name */
232 FALSE, /* partial_inplace */
233 0, /* src_mask */
234 0xffff, /* dst_mask */
235 FALSE), /* pcrel_offset */
236
237 /* An 24 bit absolute relocation. */
238 HOWTO (R_MMIX_24, /* type */
239 0, /* rightshift */
240 2, /* size (0 = byte, 1 = short, 2 = long) */
241 24, /* bitsize */
242 FALSE, /* pc_relative */
243 0, /* bitpos */
244 complain_overflow_bitfield, /* complain_on_overflow */
245 bfd_elf_generic_reloc, /* special_function */
246 "R_MMIX_24", /* name */
247 FALSE, /* partial_inplace */
248 ~0xffffff, /* src_mask */
249 0xffffff, /* dst_mask */
250 FALSE), /* pcrel_offset */
251
252 /* A 32 bit absolute relocation. */
253 HOWTO (R_MMIX_32, /* type */
254 0, /* rightshift */
255 2, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_bitfield, /* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_MMIX_32", /* name */
262 FALSE, /* partial_inplace */
263 0, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 /* 64 bit relocation. */
268 HOWTO (R_MMIX_64, /* type */
269 0, /* rightshift */
270 4, /* size (0 = byte, 1 = short, 2 = long) */
271 64, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield, /* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_MMIX_64", /* name */
277 FALSE, /* partial_inplace */
278 0, /* src_mask */
279 MINUS_ONE, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 /* An 8 bit PC-relative relocation. */
283 HOWTO (R_MMIX_PC_8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 8, /* bitsize */
287 TRUE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_bitfield, /* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_MMIX_PC_8", /* name */
292 FALSE, /* partial_inplace */
293 0, /* src_mask */
294 0xff, /* dst_mask */
295 TRUE), /* pcrel_offset */
296
297 /* An 16 bit PC-relative relocation. */
298 HOWTO (R_MMIX_PC_16, /* type */
299 0, /* rightshift */
300 1, /* size (0 = byte, 1 = short, 2 = long) */
301 16, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_bitfield, /* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_MMIX_PC_16", /* name */
307 FALSE, /* partial_inplace */
308 0, /* src_mask */
309 0xffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* An 24 bit PC-relative relocation. */
313 HOWTO (R_MMIX_PC_24, /* type */
314 0, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_bitfield, /* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_MMIX_PC_24", /* name */
322 FALSE, /* partial_inplace */
323 ~0xffffff, /* src_mask */
324 0xffffff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* A 32 bit absolute PC-relative relocation. */
328 HOWTO (R_MMIX_PC_32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 TRUE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield, /* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_MMIX_PC_32", /* name */
337 FALSE, /* partial_inplace */
338 0, /* src_mask */
339 0xffffffff, /* dst_mask */
340 TRUE), /* pcrel_offset */
341
342 /* 64 bit PC-relative relocation. */
343 HOWTO (R_MMIX_PC_64, /* type */
344 0, /* rightshift */
345 4, /* size (0 = byte, 1 = short, 2 = long) */
346 64, /* bitsize */
347 TRUE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield, /* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_MMIX_PC_64", /* name */
352 FALSE, /* partial_inplace */
353 0, /* src_mask */
354 MINUS_ONE, /* dst_mask */
355 TRUE), /* pcrel_offset */
356
357 /* GNU extension to record C++ vtable hierarchy. */
358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 0, /* rightshift */
360 0, /* size (0 = byte, 1 = short, 2 = long) */
361 0, /* bitsize */
362 FALSE, /* pc_relative */
363 0, /* bitpos */
364 complain_overflow_dont, /* complain_on_overflow */
365 NULL, /* special_function */
366 "R_MMIX_GNU_VTINHERIT", /* name */
367 FALSE, /* partial_inplace */
368 0, /* src_mask */
369 0, /* dst_mask */
370 TRUE), /* pcrel_offset */
371
372 /* GNU extension to record C++ vtable member usage. */
373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
374 0, /* rightshift */
375 0, /* size (0 = byte, 1 = short, 2 = long) */
376 0, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_dont, /* complain_on_overflow */
380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
381 "R_MMIX_GNU_VTENTRY", /* name */
382 FALSE, /* partial_inplace */
383 0, /* src_mask */
384 0, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 /* The GETA relocation is supposed to get any address that could
388 possibly be reached by the GETA instruction. It can silently expand
389 to get a 64-bit operand, but will complain if any of the two least
390 significant bits are set. The howto members reflect a simple GETA. */
391 HOWTO (R_MMIX_GETA, /* type */
392 2, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 19, /* bitsize */
395 TRUE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_signed, /* complain_on_overflow */
398 mmix_elf_reloc, /* special_function */
399 "R_MMIX_GETA", /* name */
400 FALSE, /* partial_inplace */
401 ~0x0100ffff, /* src_mask */
402 0x0100ffff, /* dst_mask */
403 TRUE), /* pcrel_offset */
404
405 HOWTO (R_MMIX_GETA_1, /* type */
406 2, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 19, /* bitsize */
409 TRUE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_signed, /* complain_on_overflow */
412 mmix_elf_reloc, /* special_function */
413 "R_MMIX_GETA_1", /* name */
414 FALSE, /* partial_inplace */
415 ~0x0100ffff, /* src_mask */
416 0x0100ffff, /* dst_mask */
417 TRUE), /* pcrel_offset */
418
419 HOWTO (R_MMIX_GETA_2, /* type */
420 2, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 19, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 mmix_elf_reloc, /* special_function */
427 "R_MMIX_GETA_2", /* name */
428 FALSE, /* partial_inplace */
429 ~0x0100ffff, /* src_mask */
430 0x0100ffff, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 HOWTO (R_MMIX_GETA_3, /* type */
434 2, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 19, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_signed, /* complain_on_overflow */
440 mmix_elf_reloc, /* special_function */
441 "R_MMIX_GETA_3", /* name */
442 FALSE, /* partial_inplace */
443 ~0x0100ffff, /* src_mask */
444 0x0100ffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 /* The conditional branches are supposed to reach any (code) address.
448 It can silently expand to a 64-bit operand, but will emit an error if
449 any of the two least significant bits are set. The howto members
450 reflect a simple branch. */
451 HOWTO (R_MMIX_CBRANCH, /* type */
452 2, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 19, /* bitsize */
455 TRUE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_signed, /* complain_on_overflow */
458 mmix_elf_reloc, /* special_function */
459 "R_MMIX_CBRANCH", /* name */
460 FALSE, /* partial_inplace */
461 ~0x0100ffff, /* src_mask */
462 0x0100ffff, /* dst_mask */
463 TRUE), /* pcrel_offset */
464
465 HOWTO (R_MMIX_CBRANCH_J, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 19, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_signed, /* complain_on_overflow */
472 mmix_elf_reloc, /* special_function */
473 "R_MMIX_CBRANCH_J", /* name */
474 FALSE, /* partial_inplace */
475 ~0x0100ffff, /* src_mask */
476 0x0100ffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_MMIX_CBRANCH_1, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 19, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed, /* complain_on_overflow */
486 mmix_elf_reloc, /* special_function */
487 "R_MMIX_CBRANCH_1", /* name */
488 FALSE, /* partial_inplace */
489 ~0x0100ffff, /* src_mask */
490 0x0100ffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_MMIX_CBRANCH_2, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 19, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed, /* complain_on_overflow */
500 mmix_elf_reloc, /* special_function */
501 "R_MMIX_CBRANCH_2", /* name */
502 FALSE, /* partial_inplace */
503 ~0x0100ffff, /* src_mask */
504 0x0100ffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_MMIX_CBRANCH_3, /* type */
508 2, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 19, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed, /* complain_on_overflow */
514 mmix_elf_reloc, /* special_function */
515 "R_MMIX_CBRANCH_3", /* name */
516 FALSE, /* partial_inplace */
517 ~0x0100ffff, /* src_mask */
518 0x0100ffff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 /* The PUSHJ instruction can reach any (code) address, as long as it's
522 the beginning of a function (no usable restriction). It can silently
523 expand to a 64-bit operand, but will emit an error if any of the two
524 least significant bits are set. It can also expand into a call to a
525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
526 PUSHJ. */
527 HOWTO (R_MMIX_PUSHJ, /* type */
528 2, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 19, /* bitsize */
531 TRUE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_signed, /* complain_on_overflow */
534 mmix_elf_reloc, /* special_function */
535 "R_MMIX_PUSHJ", /* name */
536 FALSE, /* partial_inplace */
537 ~0x0100ffff, /* src_mask */
538 0x0100ffff, /* dst_mask */
539 TRUE), /* pcrel_offset */
540
541 HOWTO (R_MMIX_PUSHJ_1, /* type */
542 2, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 19, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_signed, /* complain_on_overflow */
548 mmix_elf_reloc, /* special_function */
549 "R_MMIX_PUSHJ_1", /* name */
550 FALSE, /* partial_inplace */
551 ~0x0100ffff, /* src_mask */
552 0x0100ffff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_MMIX_PUSHJ_2, /* type */
556 2, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 19, /* bitsize */
559 TRUE, /* pc_relative */
560 0, /* bitpos */
561 complain_overflow_signed, /* complain_on_overflow */
562 mmix_elf_reloc, /* special_function */
563 "R_MMIX_PUSHJ_2", /* name */
564 FALSE, /* partial_inplace */
565 ~0x0100ffff, /* src_mask */
566 0x0100ffff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_MMIX_PUSHJ_3, /* type */
570 2, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 19, /* bitsize */
573 TRUE, /* pc_relative */
574 0, /* bitpos */
575 complain_overflow_signed, /* complain_on_overflow */
576 mmix_elf_reloc, /* special_function */
577 "R_MMIX_PUSHJ_3", /* name */
578 FALSE, /* partial_inplace */
579 ~0x0100ffff, /* src_mask */
580 0x0100ffff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 /* A JMP is supposed to reach any (code) address. By itself, it can
584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
585 limit is soon reached if you link the program in wildly different
586 memory segments. The howto members reflect a trivial JMP. */
587 HOWTO (R_MMIX_JMP, /* type */
588 2, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 27, /* bitsize */
591 TRUE, /* pc_relative */
592 0, /* bitpos */
593 complain_overflow_signed, /* complain_on_overflow */
594 mmix_elf_reloc, /* special_function */
595 "R_MMIX_JMP", /* name */
596 FALSE, /* partial_inplace */
597 ~0x1ffffff, /* src_mask */
598 0x1ffffff, /* dst_mask */
599 TRUE), /* pcrel_offset */
600
601 HOWTO (R_MMIX_JMP_1, /* type */
602 2, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 27, /* bitsize */
605 TRUE, /* pc_relative */
606 0, /* bitpos */
607 complain_overflow_signed, /* complain_on_overflow */
608 mmix_elf_reloc, /* special_function */
609 "R_MMIX_JMP_1", /* name */
610 FALSE, /* partial_inplace */
611 ~0x1ffffff, /* src_mask */
612 0x1ffffff, /* dst_mask */
613 TRUE), /* pcrel_offset */
614
615 HOWTO (R_MMIX_JMP_2, /* type */
616 2, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 27, /* bitsize */
619 TRUE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_signed, /* complain_on_overflow */
622 mmix_elf_reloc, /* special_function */
623 "R_MMIX_JMP_2", /* name */
624 FALSE, /* partial_inplace */
625 ~0x1ffffff, /* src_mask */
626 0x1ffffff, /* dst_mask */
627 TRUE), /* pcrel_offset */
628
629 HOWTO (R_MMIX_JMP_3, /* type */
630 2, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 27, /* bitsize */
633 TRUE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_signed, /* complain_on_overflow */
636 mmix_elf_reloc, /* special_function */
637 "R_MMIX_JMP_3", /* name */
638 FALSE, /* partial_inplace */
639 ~0x1ffffff, /* src_mask */
640 0x1ffffff, /* dst_mask */
641 TRUE), /* pcrel_offset */
642
643 /* When we don't emit link-time-relaxable code from the assembler, or
644 when relaxation has done all it can do, these relocs are used. For
645 GETA/PUSHJ/branches. */
646 HOWTO (R_MMIX_ADDR19, /* type */
647 2, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 19, /* bitsize */
650 TRUE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_signed, /* complain_on_overflow */
653 mmix_elf_reloc, /* special_function */
654 "R_MMIX_ADDR19", /* name */
655 FALSE, /* partial_inplace */
656 ~0x0100ffff, /* src_mask */
657 0x0100ffff, /* dst_mask */
658 TRUE), /* pcrel_offset */
659
660 /* For JMP. */
661 HOWTO (R_MMIX_ADDR27, /* type */
662 2, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 27, /* bitsize */
665 TRUE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed, /* complain_on_overflow */
668 mmix_elf_reloc, /* special_function */
669 "R_MMIX_ADDR27", /* name */
670 FALSE, /* partial_inplace */
671 ~0x1ffffff, /* src_mask */
672 0x1ffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 /* A general register or the value 0..255. If a value, then the
676 instruction (offset -3) needs adjusting. */
677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
678 0, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 8, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_bitfield, /* complain_on_overflow */
684 mmix_elf_reloc, /* special_function */
685 "R_MMIX_REG_OR_BYTE", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* A general register. */
692 HOWTO (R_MMIX_REG, /* type */
693 0, /* rightshift */
694 1, /* size (0 = byte, 1 = short, 2 = long) */
695 8, /* bitsize */
696 FALSE, /* pc_relative */
697 0, /* bitpos */
698 complain_overflow_bitfield, /* complain_on_overflow */
699 mmix_elf_reloc, /* special_function */
700 "R_MMIX_REG", /* name */
701 FALSE, /* partial_inplace */
702 0, /* src_mask */
703 0xff, /* dst_mask */
704 FALSE), /* pcrel_offset */
705
706 /* A register plus an index, corresponding to the relocation expression.
707 The sizes must correspond to the valid range of the expression, while
708 the bitmasks correspond to what we store in the image. */
709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
710 0, /* rightshift */
711 4, /* size (0 = byte, 1 = short, 2 = long) */
712 64, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield, /* complain_on_overflow */
716 mmix_elf_reloc, /* special_function */
717 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 FALSE, /* partial_inplace */
719 0, /* src_mask */
720 0xffff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 /* A "magic" relocation for a LOCAL expression, asserting that the
724 expression is less than the number of global registers. No actual
725 modification of the contents is done. Implementing this as a
726 relocation was less intrusive than e.g. putting such expressions in a
727 section to discard *after* relocation. */
728 HOWTO (R_MMIX_LOCAL, /* type */
729 0, /* rightshift */
730 0, /* size (0 = byte, 1 = short, 2 = long) */
731 0, /* bitsize */
732 FALSE, /* pc_relative */
733 0, /* bitpos */
734 complain_overflow_dont, /* complain_on_overflow */
735 mmix_elf_reloc, /* special_function */
736 "R_MMIX_LOCAL", /* name */
737 FALSE, /* partial_inplace */
738 0, /* src_mask */
739 0, /* dst_mask */
740 FALSE), /* pcrel_offset */
741
742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 2, /* rightshift */
744 2, /* size (0 = byte, 1 = short, 2 = long) */
745 19, /* bitsize */
746 TRUE, /* pc_relative */
747 0, /* bitpos */
748 complain_overflow_signed, /* complain_on_overflow */
749 mmix_elf_reloc, /* special_function */
750 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 FALSE, /* partial_inplace */
752 ~0x0100ffff, /* src_mask */
753 0x0100ffff, /* dst_mask */
754 TRUE) /* pcrel_offset */
755 };
756
757
758 /* Map BFD reloc types to MMIX ELF reloc types. */
759
760 struct mmix_reloc_map
761 {
762 bfd_reloc_code_real_type bfd_reloc_val;
763 enum elf_mmix_reloc_type elf_reloc_val;
764 };
765
766
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768 {
769 {BFD_RELOC_NONE, R_MMIX_NONE},
770 {BFD_RELOC_8, R_MMIX_8},
771 {BFD_RELOC_16, R_MMIX_16},
772 {BFD_RELOC_24, R_MMIX_24},
773 {BFD_RELOC_32, R_MMIX_32},
774 {BFD_RELOC_64, R_MMIX_64},
775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793 };
794
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 bfd_reloc_code_real_type code)
798 {
799 unsigned int i;
800
801 for (i = 0;
802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803 i++)
804 {
805 if (mmix_reloc_map[i].bfd_reloc_val == code)
806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807 }
808
809 return NULL;
810 }
811
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 const char *r_name)
815 {
816 unsigned int i;
817
818 for (i = 0;
819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820 i++)
821 if (elf_mmix_howto_table[i].name != NULL
822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823 return &elf_mmix_howto_table[i];
824
825 return NULL;
826 }
827
828 static bfd_boolean
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831 if (!sec->used_by_bfd)
832 {
833 struct _mmix_elf_section_data *sdata;
834 bfd_size_type amt = sizeof (*sdata);
835
836 sdata = bfd_zalloc (abfd, amt);
837 if (sdata == NULL)
838 return FALSE;
839 sec->used_by_bfd = sdata;
840 }
841
842 return _bfd_elf_new_section_hook (abfd, sec);
843 }
844
845
846 /* This function performs the actual bitfiddling and sanity check for a
847 final relocation. Each relocation gets its *worst*-case expansion
848 in size when it arrives here; any reduction in size should have been
849 caught in linker relaxation earlier. When we get here, the relocation
850 looks like the smallest instruction with SWYM:s (nop:s) appended to the
851 max size. We fill in those nop:s.
852
853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854 GETA $N,foo
855 ->
856 SETL $N,foo & 0xffff
857 INCML $N,(foo >> 16) & 0xffff
858 INCMH $N,(foo >> 32) & 0xffff
859 INCH $N,(foo >> 48) & 0xffff
860
861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862 condbranches needing relaxation might be rare enough to not be
863 worthwhile.)
864 [P]Bcc $N,foo
865 ->
866 [~P]B~cc $N,.+20
867 SETL $255,foo & ...
868 INCML ...
869 INCMH ...
870 INCH ...
871 GO $255,$255,0
872
873 R_MMIX_PUSHJ: (FIXME: Relaxation...)
874 PUSHJ $N,foo
875 ->
876 SETL $255,foo & ...
877 INCML ...
878 INCMH ...
879 INCH ...
880 PUSHGO $N,$255,0
881
882 R_MMIX_JMP: (FIXME: Relaxation...)
883 JMP foo
884 ->
885 SETL $255,foo & ...
886 INCML ...
887 INCMH ...
888 INCH ...
889 GO $255,$255,0
890
891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
892
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 void *datap, bfd_vma addr, bfd_vma value,
896 char **error_message)
897 {
898 bfd *abfd = isec->owner;
899 bfd_reloc_status_type flag = bfd_reloc_ok;
900 bfd_reloc_status_type r;
901 int offs = 0;
902 int reg = 255;
903
904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905 We handle the differences here and the common sequence later. */
906 switch (howto->type)
907 {
908 case R_MMIX_GETA:
909 offs = 0;
910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911
912 /* We change to an absolute value. */
913 value += addr;
914 break;
915
916 case R_MMIX_CBRANCH:
917 {
918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919
920 /* Invert the condition and prediction bit, and set the offset
921 to five instructions ahead.
922
923 We *can* do better if we want to. If the branch is found to be
924 within limits, we could leave the branch as is; there'll just
925 be a bunch of NOP:s after it. But we shouldn't see this
926 sequence often enough that it's worth doing it. */
927
928 bfd_put_32 (abfd,
929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 | (24/4)),
931 (bfd_byte *) datap);
932
933 /* Put a "GO $255,$255,0" after the common sequence. */
934 bfd_put_32 (abfd,
935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 (bfd_byte *) datap + 20);
937
938 /* Common sequence starts at offset 4. */
939 offs = 4;
940
941 /* We change to an absolute value. */
942 value += addr;
943 }
944 break;
945
946 case R_MMIX_PUSHJ_STUBBABLE:
947 /* If the address fits, we're fine. */
948 if ((value & 3) == 0
949 /* Note rightshift 0; see R_MMIX_JMP case below. */
950 && (r = bfd_check_overflow (complain_overflow_signed,
951 howto->bitsize,
952 0,
953 bfd_arch_bits_per_address (abfd),
954 value)) == bfd_reloc_ok)
955 goto pcrel_mmix_reloc_fits;
956 else
957 {
958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959
960 /* We have the bytes at the PUSHJ insn and need to get the
961 position for the stub. There's supposed to be room allocated
962 for the stub. */
963 bfd_byte *stubcontents
964 = ((bfd_byte *) datap
965 - (addr - (isec->output_section->vma + isec->output_offset))
966 + size
967 + mmix_elf_section_data (isec)->pjs.stub_offset);
968 bfd_vma stubaddr;
969
970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 {
972 /* This shouldn't happen when linking to ELF or mmo, so
973 this is an attempt to link to "binary", right? We
974 can't access the output bfd, so we can't verify that
975 assumption. We only know that the critical
976 mmix_elf_check_common_relocs has not been called,
977 which happens when the output format is different
978 from the input format (and is not mmo). */
979 if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 {
981 /* For the first such error per input section, produce
982 a verbose message. */
983 *error_message
984 = _("invalid input relocation when producing"
985 " non-ELF, non-mmo format output."
986 "\n Please use the objcopy program to convert from"
987 " ELF or mmo,"
988 "\n or assemble using"
989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 return bfd_reloc_dangerous;
992 }
993
994 /* For subsequent errors, return this one, which is
995 rate-limited but looks a little bit different,
996 hopefully without affecting user-friendliness. */
997 return bfd_reloc_overflow;
998 }
999
1000 /* The address doesn't fit, so redirect the PUSHJ to the
1001 location of the stub. */
1002 r = mmix_elf_perform_relocation (isec,
1003 &elf_mmix_howto_table
1004 [R_MMIX_ADDR19],
1005 datap,
1006 addr,
1007 isec->output_section->vma
1008 + isec->output_offset
1009 + size
1010 + (mmix_elf_section_data (isec)
1011 ->pjs.stub_offset)
1012 - addr,
1013 error_message);
1014 if (r != bfd_reloc_ok)
1015 return r;
1016
1017 stubaddr
1018 = (isec->output_section->vma
1019 + isec->output_offset
1020 + size
1021 + mmix_elf_section_data (isec)->pjs.stub_offset);
1022
1023 /* We generate a simple JMP if that suffices, else the whole 5
1024 insn stub. */
1025 if (bfd_check_overflow (complain_overflow_signed,
1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 0,
1028 bfd_arch_bits_per_address (abfd),
1029 addr + value - stubaddr) == bfd_reloc_ok)
1030 {
1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 r = mmix_elf_perform_relocation (isec,
1033 &elf_mmix_howto_table
1034 [R_MMIX_ADDR27],
1035 stubcontents,
1036 stubaddr,
1037 value + addr - stubaddr,
1038 error_message);
1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040
1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 > isec->size)
1043 abort ();
1044
1045 return r;
1046 }
1047 else
1048 {
1049 /* Put a "GO $255,0" after the common sequence. */
1050 bfd_put_32 (abfd,
1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 | 0xff00, (bfd_byte *) stubcontents + 16);
1053
1054 /* Prepare for the general code to set the first part of the
1055 linker stub, and */
1056 value += addr;
1057 datap = stubcontents;
1058 mmix_elf_section_data (isec)->pjs.stub_offset
1059 += MAX_PUSHJ_STUB_SIZE;
1060 }
1061 }
1062 break;
1063
1064 case R_MMIX_PUSHJ:
1065 {
1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067
1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1069 bfd_put_32 (abfd,
1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 | (inreg << 16)
1072 | 0xff00,
1073 (bfd_byte *) datap + 16);
1074
1075 /* We change to an absolute value. */
1076 value += addr;
1077 }
1078 break;
1079
1080 case R_MMIX_JMP:
1081 /* This one is a little special. If we get here on a non-relaxing
1082 link, and the destination is actually in range, we don't need to
1083 execute the nops.
1084 If so, we fall through to the bit-fiddling relocs.
1085
1086 FIXME: bfd_check_overflow seems broken; the relocation is
1087 rightshifted before testing, so supply a zero rightshift. */
1088
1089 if (! ((value & 3) == 0
1090 && (r = bfd_check_overflow (complain_overflow_signed,
1091 howto->bitsize,
1092 0,
1093 bfd_arch_bits_per_address (abfd),
1094 value)) == bfd_reloc_ok))
1095 {
1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 modified below, and put a "GO $255,$255,0" after the
1098 address-loading sequence. */
1099 bfd_put_32 (abfd,
1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 | 0xffff00,
1102 (bfd_byte *) datap + 16);
1103
1104 /* We change to an absolute value. */
1105 value += addr;
1106 break;
1107 }
1108 /* FALLTHROUGH. */
1109 case R_MMIX_ADDR19:
1110 case R_MMIX_ADDR27:
1111 pcrel_mmix_reloc_fits:
1112 /* These must be in range, or else we emit an error. */
1113 if ((value & 3) == 0
1114 /* Note rightshift 0; see above. */
1115 && (r = bfd_check_overflow (complain_overflow_signed,
1116 howto->bitsize,
1117 0,
1118 bfd_arch_bits_per_address (abfd),
1119 value)) == bfd_reloc_ok)
1120 {
1121 bfd_vma in1
1122 = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 bfd_vma highbit;
1124
1125 if ((bfd_signed_vma) value < 0)
1126 {
1127 highbit = 1 << 24;
1128 value += (1 << (howto->bitsize - 1));
1129 }
1130 else
1131 highbit = 0;
1132
1133 value >>= 2;
1134
1135 bfd_put_32 (abfd,
1136 (in1 & howto->src_mask)
1137 | highbit
1138 | (value & howto->dst_mask),
1139 (bfd_byte *) datap);
1140
1141 return bfd_reloc_ok;
1142 }
1143 else
1144 return bfd_reloc_overflow;
1145
1146 case R_MMIX_BASE_PLUS_OFFSET:
1147 {
1148 struct bpo_reloc_section_info *bpodata
1149 = mmix_elf_section_data (isec)->bpo.reloc;
1150 asection *bpo_greg_section;
1151 struct bpo_greg_section_info *gregdata;
1152 size_t bpo_index;
1153
1154 if (bpodata == NULL)
1155 {
1156 /* This shouldn't happen when linking to ELF or mmo, so
1157 this is an attempt to link to "binary", right? We
1158 can't access the output bfd, so we can't verify that
1159 assumption. We only know that the critical
1160 mmix_elf_check_common_relocs has not been called, which
1161 happens when the output format is different from the
1162 input format (and is not mmo). */
1163 if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 {
1165 /* For the first such error per input section, produce
1166 a verbose message. */
1167 *error_message
1168 = _("invalid input relocation when producing"
1169 " non-ELF, non-mmo format output."
1170 "\n Please use the objcopy program to convert from"
1171 " ELF or mmo,"
1172 "\n or compile using the gcc-option"
1173 " \"-mno-base-addresses\".");
1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 return bfd_reloc_dangerous;
1176 }
1177
1178 /* For subsequent errors, return this one, which is
1179 rate-limited but looks a little bit different,
1180 hopefully without affecting user-friendliness. */
1181 return bfd_reloc_overflow;
1182 }
1183
1184 bpo_greg_section = bpodata->bpo_greg_section;
1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187
1188 /* A consistency check: The value we now have in "relocation" must
1189 be the same as the value we stored for that relocation. It
1190 doesn't cost much, so can be left in at all times. */
1191 if (value != gregdata->reloc_request[bpo_index].value)
1192 {
1193 _bfd_error_handler
1194 /* xgettext:c-format */
1195 (_("%B: Internal inconsistency error for value for\n\
1196 linker-allocated global register: linked: %#Lx != relaxed: %#Lx"),
1197 isec->owner,
1198 value,
1199 gregdata->reloc_request[bpo_index].value);
1200 bfd_set_error (bfd_error_bad_value);
1201 return bfd_reloc_overflow;
1202 }
1203
1204 /* Then store the register number and offset for that register
1205 into datap and datap + 1 respectively. */
1206 bfd_put_8 (abfd,
1207 gregdata->reloc_request[bpo_index].regindex
1208 + bpo_greg_section->output_section->vma / 8,
1209 datap);
1210 bfd_put_8 (abfd,
1211 gregdata->reloc_request[bpo_index].offset,
1212 ((unsigned char *) datap) + 1);
1213 return bfd_reloc_ok;
1214 }
1215
1216 case R_MMIX_REG_OR_BYTE:
1217 case R_MMIX_REG:
1218 if (value > 255)
1219 return bfd_reloc_overflow;
1220 bfd_put_8 (abfd, value, datap);
1221 return bfd_reloc_ok;
1222
1223 default:
1224 BAD_CASE (howto->type);
1225 }
1226
1227 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1228 sequence. */
1229
1230 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1231 everything that looks strange. */
1232 if (value & 3)
1233 flag = bfd_reloc_overflow;
1234
1235 bfd_put_32 (abfd,
1236 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1237 (bfd_byte *) datap + offs);
1238 bfd_put_32 (abfd,
1239 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1240 (bfd_byte *) datap + offs + 4);
1241 bfd_put_32 (abfd,
1242 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1243 (bfd_byte *) datap + offs + 8);
1244 bfd_put_32 (abfd,
1245 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1246 (bfd_byte *) datap + offs + 12);
1247
1248 return flag;
1249 }
1250
1251 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1252
1253 static void
1254 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1255 arelent *cache_ptr,
1256 Elf_Internal_Rela *dst)
1257 {
1258 unsigned int r_type;
1259
1260 r_type = ELF64_R_TYPE (dst->r_info);
1261 if (r_type >= (unsigned int) R_MMIX_max)
1262 {
1263 /* xgettext:c-format */
1264 _bfd_error_handler (_("%B: invalid MMIX reloc number: %d"), abfd, r_type);
1265 r_type = 0;
1266 }
1267 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1268 }
1269
1270 /* Any MMIX-specific relocation gets here at assembly time or when linking
1271 to other formats (such as mmo); this is the relocation function from
1272 the reloc_table. We don't get here for final pure ELF linking. */
1273
1274 static bfd_reloc_status_type
1275 mmix_elf_reloc (bfd *abfd,
1276 arelent *reloc_entry,
1277 asymbol *symbol,
1278 void * data,
1279 asection *input_section,
1280 bfd *output_bfd,
1281 char **error_message)
1282 {
1283 bfd_vma relocation;
1284 bfd_reloc_status_type r;
1285 asection *reloc_target_output_section;
1286 bfd_reloc_status_type flag = bfd_reloc_ok;
1287 bfd_vma output_base = 0;
1288
1289 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1290 input_section, output_bfd, error_message);
1291
1292 /* If that was all that was needed (i.e. this isn't a final link, only
1293 some segment adjustments), we're done. */
1294 if (r != bfd_reloc_continue)
1295 return r;
1296
1297 if (bfd_is_und_section (symbol->section)
1298 && (symbol->flags & BSF_WEAK) == 0
1299 && output_bfd == (bfd *) NULL)
1300 return bfd_reloc_undefined;
1301
1302 /* Is the address of the relocation really within the section? */
1303 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1304 return bfd_reloc_outofrange;
1305
1306 /* Work out which section the relocation is targeted at and the
1307 initial relocation command value. */
1308
1309 /* Get symbol value. (Common symbols are special.) */
1310 if (bfd_is_com_section (symbol->section))
1311 relocation = 0;
1312 else
1313 relocation = symbol->value;
1314
1315 reloc_target_output_section = bfd_get_output_section (symbol);
1316
1317 /* Here the variable relocation holds the final address of the symbol we
1318 are relocating against, plus any addend. */
1319 if (output_bfd)
1320 output_base = 0;
1321 else
1322 output_base = reloc_target_output_section->vma;
1323
1324 relocation += output_base + symbol->section->output_offset;
1325
1326 if (output_bfd != (bfd *) NULL)
1327 {
1328 /* Add in supplied addend. */
1329 relocation += reloc_entry->addend;
1330
1331 /* This is a partial relocation, and we want to apply the
1332 relocation to the reloc entry rather than the raw data.
1333 Modify the reloc inplace to reflect what we now know. */
1334 reloc_entry->addend = relocation;
1335 reloc_entry->address += input_section->output_offset;
1336 return flag;
1337 }
1338
1339 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1340 data, reloc_entry->address,
1341 reloc_entry->addend, relocation,
1342 bfd_asymbol_name (symbol),
1343 reloc_target_output_section,
1344 error_message);
1345 }
1346 \f
1347 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1348 for guidance if you're thinking of copying this. */
1349
1350 static bfd_boolean
1351 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1352 struct bfd_link_info *info,
1353 bfd *input_bfd,
1354 asection *input_section,
1355 bfd_byte *contents,
1356 Elf_Internal_Rela *relocs,
1357 Elf_Internal_Sym *local_syms,
1358 asection **local_sections)
1359 {
1360 Elf_Internal_Shdr *symtab_hdr;
1361 struct elf_link_hash_entry **sym_hashes;
1362 Elf_Internal_Rela *rel;
1363 Elf_Internal_Rela *relend;
1364 bfd_size_type size;
1365 size_t pjsno = 0;
1366
1367 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1369 sym_hashes = elf_sym_hashes (input_bfd);
1370 relend = relocs + input_section->reloc_count;
1371
1372 /* Zero the stub area before we start. */
1373 if (input_section->rawsize != 0
1374 && input_section->size > input_section->rawsize)
1375 memset (contents + input_section->rawsize, 0,
1376 input_section->size - input_section->rawsize);
1377
1378 for (rel = relocs; rel < relend; rel ++)
1379 {
1380 reloc_howto_type *howto;
1381 unsigned long r_symndx;
1382 Elf_Internal_Sym *sym;
1383 asection *sec;
1384 struct elf_link_hash_entry *h;
1385 bfd_vma relocation;
1386 bfd_reloc_status_type r;
1387 const char *name = NULL;
1388 int r_type;
1389 bfd_boolean undefined_signalled = FALSE;
1390
1391 r_type = ELF64_R_TYPE (rel->r_info);
1392
1393 if (r_type == R_MMIX_GNU_VTINHERIT
1394 || r_type == R_MMIX_GNU_VTENTRY)
1395 continue;
1396
1397 r_symndx = ELF64_R_SYM (rel->r_info);
1398
1399 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1400 h = NULL;
1401 sym = NULL;
1402 sec = NULL;
1403
1404 if (r_symndx < symtab_hdr->sh_info)
1405 {
1406 sym = local_syms + r_symndx;
1407 sec = local_sections [r_symndx];
1408 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1409
1410 name = bfd_elf_string_from_elf_section (input_bfd,
1411 symtab_hdr->sh_link,
1412 sym->st_name);
1413 if (name == NULL)
1414 name = bfd_section_name (input_bfd, sec);
1415 }
1416 else
1417 {
1418 bfd_boolean unresolved_reloc, ignored;
1419
1420 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1421 r_symndx, symtab_hdr, sym_hashes,
1422 h, sec, relocation,
1423 unresolved_reloc, undefined_signalled,
1424 ignored);
1425 name = h->root.root.string;
1426 }
1427
1428 if (sec != NULL && discarded_section (sec))
1429 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1430 rel, 1, relend, howto, 0, contents);
1431
1432 if (bfd_link_relocatable (info))
1433 {
1434 /* This is a relocatable link. For most relocs we don't have to
1435 change anything, unless the reloc is against a section
1436 symbol, in which case we have to adjust according to where
1437 the section symbol winds up in the output section. */
1438 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1439 rel->r_addend += sec->output_offset;
1440
1441 /* For PUSHJ stub relocs however, we may need to change the
1442 reloc and the section contents, if the reloc doesn't reach
1443 beyond the end of the output section and previous stubs.
1444 Then we change the section contents to be a PUSHJ to the end
1445 of the input section plus stubs (we can do that without using
1446 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1447 at the stub location. */
1448 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1449 {
1450 /* We've already checked whether we need a stub; use that
1451 knowledge. */
1452 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1453 != 0)
1454 {
1455 Elf_Internal_Rela relcpy;
1456
1457 if (mmix_elf_section_data (input_section)
1458 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1459 abort ();
1460
1461 /* There's already a PUSHJ insn there, so just fill in
1462 the offset bits to the stub. */
1463 if (mmix_final_link_relocate (elf_mmix_howto_table
1464 + R_MMIX_ADDR19,
1465 input_section,
1466 contents,
1467 rel->r_offset,
1468 0,
1469 input_section
1470 ->output_section->vma
1471 + input_section->output_offset
1472 + size
1473 + mmix_elf_section_data (input_section)
1474 ->pjs.stub_offset,
1475 NULL, NULL, NULL) != bfd_reloc_ok)
1476 return FALSE;
1477
1478 /* Put a JMP insn at the stub; it goes with the
1479 R_MMIX_JMP reloc. */
1480 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1481 contents
1482 + size
1483 + mmix_elf_section_data (input_section)
1484 ->pjs.stub_offset);
1485
1486 /* Change the reloc to be at the stub, and to a full
1487 R_MMIX_JMP reloc. */
1488 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1489 rel->r_offset
1490 = (size
1491 + mmix_elf_section_data (input_section)
1492 ->pjs.stub_offset);
1493
1494 mmix_elf_section_data (input_section)->pjs.stub_offset
1495 += MAX_PUSHJ_STUB_SIZE;
1496
1497 /* Shift this reloc to the end of the relocs to maintain
1498 the r_offset sorted reloc order. */
1499 relcpy = *rel;
1500 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1501 relend[-1] = relcpy;
1502
1503 /* Back up one reloc, or else we'd skip the next reloc
1504 in turn. */
1505 rel--;
1506 }
1507
1508 pjsno++;
1509 }
1510 continue;
1511 }
1512
1513 r = mmix_final_link_relocate (howto, input_section,
1514 contents, rel->r_offset,
1515 rel->r_addend, relocation, name, sec, NULL);
1516
1517 if (r != bfd_reloc_ok)
1518 {
1519 const char * msg = (const char *) NULL;
1520
1521 switch (r)
1522 {
1523 case bfd_reloc_overflow:
1524 info->callbacks->reloc_overflow
1525 (info, (h ? &h->root : NULL), name, howto->name,
1526 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1527 break;
1528
1529 case bfd_reloc_undefined:
1530 /* We may have sent this message above. */
1531 if (! undefined_signalled)
1532 info->callbacks->undefined_symbol
1533 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
1534 undefined_signalled = TRUE;
1535 break;
1536
1537 case bfd_reloc_outofrange:
1538 msg = _("internal error: out of range error");
1539 break;
1540
1541 case bfd_reloc_notsupported:
1542 msg = _("internal error: unsupported relocation error");
1543 break;
1544
1545 case bfd_reloc_dangerous:
1546 msg = _("internal error: dangerous relocation");
1547 break;
1548
1549 default:
1550 msg = _("internal error: unknown error");
1551 break;
1552 }
1553
1554 if (msg)
1555 (*info->callbacks->warning) (info, msg, name, input_bfd,
1556 input_section, rel->r_offset);
1557 }
1558 }
1559
1560 return TRUE;
1561 }
1562 \f
1563 /* Perform a single relocation. By default we use the standard BFD
1564 routines. A few relocs we have to do ourselves. */
1565
1566 static bfd_reloc_status_type
1567 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1568 bfd_byte *contents, bfd_vma r_offset,
1569 bfd_signed_vma r_addend, bfd_vma relocation,
1570 const char *symname, asection *symsec,
1571 char **error_message)
1572 {
1573 bfd_reloc_status_type r = bfd_reloc_ok;
1574 bfd_vma addr
1575 = (input_section->output_section->vma
1576 + input_section->output_offset
1577 + r_offset);
1578 bfd_signed_vma srel
1579 = (bfd_signed_vma) relocation + r_addend;
1580
1581 switch (howto->type)
1582 {
1583 /* All these are PC-relative. */
1584 case R_MMIX_PUSHJ_STUBBABLE:
1585 case R_MMIX_PUSHJ:
1586 case R_MMIX_CBRANCH:
1587 case R_MMIX_ADDR19:
1588 case R_MMIX_GETA:
1589 case R_MMIX_ADDR27:
1590 case R_MMIX_JMP:
1591 contents += r_offset;
1592
1593 srel -= (input_section->output_section->vma
1594 + input_section->output_offset
1595 + r_offset);
1596
1597 r = mmix_elf_perform_relocation (input_section, howto, contents,
1598 addr, srel, error_message);
1599 break;
1600
1601 case R_MMIX_BASE_PLUS_OFFSET:
1602 if (symsec == NULL)
1603 return bfd_reloc_undefined;
1604
1605 /* Check that we're not relocating against a register symbol. */
1606 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1607 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1608 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1609 MMIX_REG_SECTION_NAME) == 0)
1610 {
1611 /* Note: This is separated out into two messages in order
1612 to ease the translation into other languages. */
1613 if (symname == NULL || *symname == 0)
1614 _bfd_error_handler
1615 /* xgettext:c-format */
1616 (_("%B: base-plus-offset relocation against register symbol:"
1617 " (unknown) in %A"),
1618 input_section->owner, symsec);
1619 else
1620 _bfd_error_handler
1621 /* xgettext:c-format */
1622 (_("%B: base-plus-offset relocation against register symbol:"
1623 " %s in %A"),
1624 input_section->owner, symname, symsec);
1625 return bfd_reloc_overflow;
1626 }
1627 goto do_mmix_reloc;
1628
1629 case R_MMIX_REG_OR_BYTE:
1630 case R_MMIX_REG:
1631 /* For now, we handle these alike. They must refer to an register
1632 symbol, which is either relative to the register section and in
1633 the range 0..255, or is in the register contents section with vma
1634 regno * 8. */
1635
1636 /* FIXME: A better way to check for reg contents section?
1637 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1638 if (symsec == NULL)
1639 return bfd_reloc_undefined;
1640
1641 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1642 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1643 {
1644 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1645 {
1646 /* The bfd_reloc_outofrange return value, though intuitively
1647 a better value, will not get us an error. */
1648 return bfd_reloc_overflow;
1649 }
1650 srel /= 8;
1651 }
1652 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1653 MMIX_REG_SECTION_NAME) == 0)
1654 {
1655 if (srel < 0 || srel > 255)
1656 /* The bfd_reloc_outofrange return value, though intuitively a
1657 better value, will not get us an error. */
1658 return bfd_reloc_overflow;
1659 }
1660 else
1661 {
1662 /* Note: This is separated out into two messages in order
1663 to ease the translation into other languages. */
1664 if (symname == NULL || *symname == 0)
1665 _bfd_error_handler
1666 /* xgettext:c-format */
1667 (_("%B: register relocation against non-register symbol:"
1668 " (unknown) in %A"),
1669 input_section->owner, symsec);
1670 else
1671 _bfd_error_handler
1672 /* xgettext:c-format */
1673 (_("%B: register relocation against non-register symbol:"
1674 " %s in %A"),
1675 input_section->owner, symname, symsec);
1676
1677 /* The bfd_reloc_outofrange return value, though intuitively a
1678 better value, will not get us an error. */
1679 return bfd_reloc_overflow;
1680 }
1681 do_mmix_reloc:
1682 contents += r_offset;
1683 r = mmix_elf_perform_relocation (input_section, howto, contents,
1684 addr, srel, error_message);
1685 break;
1686
1687 case R_MMIX_LOCAL:
1688 /* This isn't a real relocation, it's just an assertion that the
1689 final relocation value corresponds to a local register. We
1690 ignore the actual relocation; nothing is changed. */
1691 {
1692 asection *regsec
1693 = bfd_get_section_by_name (input_section->output_section->owner,
1694 MMIX_REG_CONTENTS_SECTION_NAME);
1695 bfd_vma first_global;
1696
1697 /* Check that this is an absolute value, or a reference to the
1698 register contents section or the register (symbol) section.
1699 Absolute numbers can get here as undefined section. Undefined
1700 symbols are signalled elsewhere, so there's no conflict in us
1701 accidentally handling it. */
1702 if (!bfd_is_abs_section (symsec)
1703 && !bfd_is_und_section (symsec)
1704 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1705 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1706 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1707 MMIX_REG_SECTION_NAME) != 0)
1708 {
1709 _bfd_error_handler
1710 (_("%B: directive LOCAL valid only with a register or absolute value"),
1711 input_section->owner);
1712
1713 return bfd_reloc_overflow;
1714 }
1715
1716 /* If we don't have a register contents section, then $255 is the
1717 first global register. */
1718 if (regsec == NULL)
1719 first_global = 255;
1720 else
1721 {
1722 first_global
1723 = bfd_get_section_vma (input_section->output_section->owner,
1724 regsec) / 8;
1725 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1726 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1727 {
1728 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1729 /* The bfd_reloc_outofrange return value, though
1730 intuitively a better value, will not get us an error. */
1731 return bfd_reloc_overflow;
1732 srel /= 8;
1733 }
1734 }
1735
1736 if ((bfd_vma) srel >= first_global)
1737 {
1738 /* FIXME: Better error message. */
1739 _bfd_error_handler
1740 /* xgettext:c-format */
1741 (_("%B: LOCAL directive: Register $%Ld is not a local register."
1742 " First global register is $%Ld."),
1743 input_section->owner, srel, first_global);
1744
1745 return bfd_reloc_overflow;
1746 }
1747 }
1748 r = bfd_reloc_ok;
1749 break;
1750
1751 default:
1752 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1753 contents, r_offset,
1754 relocation, r_addend);
1755 }
1756
1757 return r;
1758 }
1759 \f
1760 /* Return the section that should be marked against GC for a given
1761 relocation. */
1762
1763 static asection *
1764 mmix_elf_gc_mark_hook (asection *sec,
1765 struct bfd_link_info *info,
1766 Elf_Internal_Rela *rel,
1767 struct elf_link_hash_entry *h,
1768 Elf_Internal_Sym *sym)
1769 {
1770 if (h != NULL)
1771 switch (ELF64_R_TYPE (rel->r_info))
1772 {
1773 case R_MMIX_GNU_VTINHERIT:
1774 case R_MMIX_GNU_VTENTRY:
1775 return NULL;
1776 }
1777
1778 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1779 }
1780
1781 /* Update relocation info for a GC-excluded section. We could supposedly
1782 perform the allocation after GC, but there's no suitable hook between
1783 GC (or section merge) and the point when all input sections must be
1784 present. Better to waste some memory and (perhaps) a little time. */
1785
1786 static bfd_boolean
1787 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1788 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1789 asection *sec,
1790 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1791 {
1792 struct bpo_reloc_section_info *bpodata
1793 = mmix_elf_section_data (sec)->bpo.reloc;
1794 asection *allocated_gregs_section;
1795
1796 /* If no bpodata here, we have nothing to do. */
1797 if (bpodata == NULL)
1798 return TRUE;
1799
1800 allocated_gregs_section = bpodata->bpo_greg_section;
1801
1802 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1803 -= bpodata->n_bpo_relocs_this_section;
1804
1805 return TRUE;
1806 }
1807 \f
1808 /* Sort register relocs to come before expanding relocs. */
1809
1810 static int
1811 mmix_elf_sort_relocs (const void * p1, const void * p2)
1812 {
1813 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1814 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1815 int r1_is_reg, r2_is_reg;
1816
1817 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1818 insns. */
1819 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1820 return 1;
1821 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1822 return -1;
1823
1824 r1_is_reg
1825 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1826 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1827 r2_is_reg
1828 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1829 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1830 if (r1_is_reg != r2_is_reg)
1831 return r2_is_reg - r1_is_reg;
1832
1833 /* Neither or both are register relocs. Then sort on full offset. */
1834 if (r1->r_offset > r2->r_offset)
1835 return 1;
1836 else if (r1->r_offset < r2->r_offset)
1837 return -1;
1838 return 0;
1839 }
1840
1841 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1842
1843 static bfd_boolean
1844 mmix_elf_check_common_relocs (bfd *abfd,
1845 struct bfd_link_info *info,
1846 asection *sec,
1847 const Elf_Internal_Rela *relocs)
1848 {
1849 bfd *bpo_greg_owner = NULL;
1850 asection *allocated_gregs_section = NULL;
1851 struct bpo_greg_section_info *gregdata = NULL;
1852 struct bpo_reloc_section_info *bpodata = NULL;
1853 const Elf_Internal_Rela *rel;
1854 const Elf_Internal_Rela *rel_end;
1855
1856 /* We currently have to abuse this COFF-specific member, since there's
1857 no target-machine-dedicated member. There's no alternative outside
1858 the bfd_link_info struct; we can't specialize a hash-table since
1859 they're different between ELF and mmo. */
1860 bpo_greg_owner = (bfd *) info->base_file;
1861
1862 rel_end = relocs + sec->reloc_count;
1863 for (rel = relocs; rel < rel_end; rel++)
1864 {
1865 switch (ELF64_R_TYPE (rel->r_info))
1866 {
1867 /* This relocation causes a GREG allocation. We need to count
1868 them, and we need to create a section for them, so we need an
1869 object to fake as the owner of that section. We can't use
1870 the ELF dynobj for this, since the ELF bits assume lots of
1871 DSO-related stuff if that member is non-NULL. */
1872 case R_MMIX_BASE_PLUS_OFFSET:
1873 /* We don't do anything with this reloc for a relocatable link. */
1874 if (bfd_link_relocatable (info))
1875 break;
1876
1877 if (bpo_greg_owner == NULL)
1878 {
1879 bpo_greg_owner = abfd;
1880 info->base_file = bpo_greg_owner;
1881 }
1882
1883 if (allocated_gregs_section == NULL)
1884 allocated_gregs_section
1885 = bfd_get_section_by_name (bpo_greg_owner,
1886 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1887
1888 if (allocated_gregs_section == NULL)
1889 {
1890 allocated_gregs_section
1891 = bfd_make_section_with_flags (bpo_greg_owner,
1892 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1893 (SEC_HAS_CONTENTS
1894 | SEC_IN_MEMORY
1895 | SEC_LINKER_CREATED));
1896 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1897 treated like any other section, and we'd get errors for
1898 address overlap with the text section. Let's set none of
1899 those flags, as that is what currently happens for usual
1900 GREG allocations, and that works. */
1901 if (allocated_gregs_section == NULL
1902 || !bfd_set_section_alignment (bpo_greg_owner,
1903 allocated_gregs_section,
1904 3))
1905 return FALSE;
1906
1907 gregdata = (struct bpo_greg_section_info *)
1908 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1909 if (gregdata == NULL)
1910 return FALSE;
1911 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1912 = gregdata;
1913 }
1914 else if (gregdata == NULL)
1915 gregdata
1916 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1917
1918 /* Get ourselves some auxiliary info for the BPO-relocs. */
1919 if (bpodata == NULL)
1920 {
1921 /* No use doing a separate iteration pass to find the upper
1922 limit - just use the number of relocs. */
1923 bpodata = (struct bpo_reloc_section_info *)
1924 bfd_alloc (bpo_greg_owner,
1925 sizeof (struct bpo_reloc_section_info)
1926 * (sec->reloc_count + 1));
1927 if (bpodata == NULL)
1928 return FALSE;
1929 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1930 bpodata->first_base_plus_offset_reloc
1931 = bpodata->bpo_index
1932 = gregdata->n_max_bpo_relocs;
1933 bpodata->bpo_greg_section
1934 = allocated_gregs_section;
1935 bpodata->n_bpo_relocs_this_section = 0;
1936 }
1937
1938 bpodata->n_bpo_relocs_this_section++;
1939 gregdata->n_max_bpo_relocs++;
1940
1941 /* We don't get another chance to set this before GC; we've not
1942 set up any hook that runs before GC. */
1943 gregdata->n_bpo_relocs
1944 = gregdata->n_max_bpo_relocs;
1945 break;
1946
1947 case R_MMIX_PUSHJ_STUBBABLE:
1948 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1949 break;
1950 }
1951 }
1952
1953 /* Allocate per-reloc stub storage and initialize it to the max stub
1954 size. */
1955 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1956 {
1957 size_t i;
1958
1959 mmix_elf_section_data (sec)->pjs.stub_size
1960 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1961 * sizeof (mmix_elf_section_data (sec)
1962 ->pjs.stub_size[0]));
1963 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1964 return FALSE;
1965
1966 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1967 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1968 }
1969
1970 return TRUE;
1971 }
1972
1973 /* Look through the relocs for a section during the first phase. */
1974
1975 static bfd_boolean
1976 mmix_elf_check_relocs (bfd *abfd,
1977 struct bfd_link_info *info,
1978 asection *sec,
1979 const Elf_Internal_Rela *relocs)
1980 {
1981 Elf_Internal_Shdr *symtab_hdr;
1982 struct elf_link_hash_entry **sym_hashes;
1983 const Elf_Internal_Rela *rel;
1984 const Elf_Internal_Rela *rel_end;
1985
1986 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1987 sym_hashes = elf_sym_hashes (abfd);
1988
1989 /* First we sort the relocs so that any register relocs come before
1990 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1991 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1992 mmix_elf_sort_relocs);
1993
1994 /* Do the common part. */
1995 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1996 return FALSE;
1997
1998 if (bfd_link_relocatable (info))
1999 return TRUE;
2000
2001 rel_end = relocs + sec->reloc_count;
2002 for (rel = relocs; rel < rel_end; rel++)
2003 {
2004 struct elf_link_hash_entry *h;
2005 unsigned long r_symndx;
2006
2007 r_symndx = ELF64_R_SYM (rel->r_info);
2008 if (r_symndx < symtab_hdr->sh_info)
2009 h = NULL;
2010 else
2011 {
2012 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2013 while (h->root.type == bfd_link_hash_indirect
2014 || h->root.type == bfd_link_hash_warning)
2015 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2016
2017 /* PR15323, ref flags aren't set for references in the same
2018 object. */
2019 h->root.non_ir_ref_regular = 1;
2020 }
2021
2022 switch (ELF64_R_TYPE (rel->r_info))
2023 {
2024 /* This relocation describes the C++ object vtable hierarchy.
2025 Reconstruct it for later use during GC. */
2026 case R_MMIX_GNU_VTINHERIT:
2027 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2028 return FALSE;
2029 break;
2030
2031 /* This relocation describes which C++ vtable entries are actually
2032 used. Record for later use during GC. */
2033 case R_MMIX_GNU_VTENTRY:
2034 BFD_ASSERT (h != NULL);
2035 if (h != NULL
2036 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2037 return FALSE;
2038 break;
2039 }
2040 }
2041
2042 return TRUE;
2043 }
2044
2045 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2046 Copied from elf_link_add_object_symbols. */
2047
2048 bfd_boolean
2049 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2050 {
2051 asection *o;
2052
2053 for (o = abfd->sections; o != NULL; o = o->next)
2054 {
2055 Elf_Internal_Rela *internal_relocs;
2056 bfd_boolean ok;
2057
2058 if ((o->flags & SEC_RELOC) == 0
2059 || o->reloc_count == 0
2060 || ((info->strip == strip_all || info->strip == strip_debugger)
2061 && (o->flags & SEC_DEBUGGING) != 0)
2062 || bfd_is_abs_section (o->output_section))
2063 continue;
2064
2065 internal_relocs
2066 = _bfd_elf_link_read_relocs (abfd, o, NULL,
2067 (Elf_Internal_Rela *) NULL,
2068 info->keep_memory);
2069 if (internal_relocs == NULL)
2070 return FALSE;
2071
2072 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2073
2074 if (! info->keep_memory)
2075 free (internal_relocs);
2076
2077 if (! ok)
2078 return FALSE;
2079 }
2080
2081 return TRUE;
2082 }
2083 \f
2084 /* Change symbols relative to the reg contents section to instead be to
2085 the register section, and scale them down to correspond to the register
2086 number. */
2087
2088 static int
2089 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2090 const char *name ATTRIBUTE_UNUSED,
2091 Elf_Internal_Sym *sym,
2092 asection *input_sec,
2093 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2094 {
2095 if (input_sec != NULL
2096 && input_sec->name != NULL
2097 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2098 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2099 {
2100 sym->st_value /= 8;
2101 sym->st_shndx = SHN_REGISTER;
2102 }
2103
2104 return 1;
2105 }
2106
2107 /* We fake a register section that holds values that are register numbers.
2108 Having a SHN_REGISTER and register section translates better to other
2109 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2110 This section faking is based on a construct in elf32-mips.c. */
2111 static asection mmix_elf_reg_section;
2112 static asymbol mmix_elf_reg_section_symbol;
2113 static asymbol *mmix_elf_reg_section_symbol_ptr;
2114
2115 /* Handle the special section numbers that a symbol may use. */
2116
2117 void
2118 mmix_elf_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
2119 {
2120 elf_symbol_type *elfsym;
2121
2122 elfsym = (elf_symbol_type *) asym;
2123 switch (elfsym->internal_elf_sym.st_shndx)
2124 {
2125 case SHN_REGISTER:
2126 if (mmix_elf_reg_section.name == NULL)
2127 {
2128 /* Initialize the register section. */
2129 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2130 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2131 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2132 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2133 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2134 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2135 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2136 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2137 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2138 }
2139 asym->section = &mmix_elf_reg_section;
2140 break;
2141
2142 default:
2143 break;
2144 }
2145 }
2146
2147 /* Given a BFD section, try to locate the corresponding ELF section
2148 index. */
2149
2150 static bfd_boolean
2151 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED,
2152 asection * sec,
2153 int * retval)
2154 {
2155 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2156 *retval = SHN_REGISTER;
2157 else
2158 return FALSE;
2159
2160 return TRUE;
2161 }
2162
2163 /* Hook called by the linker routine which adds symbols from an object
2164 file. We must handle the special SHN_REGISTER section number here.
2165
2166 We also check that we only have *one* each of the section-start
2167 symbols, since otherwise having two with the same value would cause
2168 them to be "merged", but with the contents serialized. */
2169
2170 static bfd_boolean
2171 mmix_elf_add_symbol_hook (bfd *abfd,
2172 struct bfd_link_info *info ATTRIBUTE_UNUSED,
2173 Elf_Internal_Sym *sym,
2174 const char **namep ATTRIBUTE_UNUSED,
2175 flagword *flagsp ATTRIBUTE_UNUSED,
2176 asection **secp,
2177 bfd_vma *valp ATTRIBUTE_UNUSED)
2178 {
2179 if (sym->st_shndx == SHN_REGISTER)
2180 {
2181 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2182 (*secp)->flags |= SEC_LINKER_CREATED;
2183 }
2184 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2185 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2186 {
2187 /* See if we have another one. */
2188 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2189 *namep,
2190 FALSE,
2191 FALSE,
2192 FALSE);
2193
2194 if (h != NULL && h->type != bfd_link_hash_undefined)
2195 {
2196 /* How do we get the asymbol (or really: the filename) from h?
2197 h->u.def.section->owner is NULL. */
2198 _bfd_error_handler
2199 /* xgettext:c-format */
2200 (_("%B: Error: multiple definition of `%s'; start of %s "
2201 "is set in a earlier linked file\n"),
2202 abfd, *namep,
2203 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX));
2204 bfd_set_error (bfd_error_bad_value);
2205 return FALSE;
2206 }
2207 }
2208
2209 return TRUE;
2210 }
2211
2212 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2213
2214 static bfd_boolean
2215 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2216 {
2217 const char *colpos;
2218 int digits;
2219
2220 /* Also include the default local-label definition. */
2221 if (_bfd_elf_is_local_label_name (abfd, name))
2222 return TRUE;
2223
2224 if (*name != 'L')
2225 return FALSE;
2226
2227 /* If there's no ":", or more than one, it's not a local symbol. */
2228 colpos = strchr (name, ':');
2229 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2230 return FALSE;
2231
2232 /* Check that there are remaining characters and that they are digits. */
2233 if (colpos[1] == 0)
2234 return FALSE;
2235
2236 digits = strspn (colpos + 1, "0123456789");
2237 return digits != 0 && colpos[1 + digits] == 0;
2238 }
2239
2240 /* We get rid of the register section here. */
2241
2242 bfd_boolean
2243 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2244 {
2245 /* We never output a register section, though we create one for
2246 temporary measures. Check that nobody entered contents into it. */
2247 asection *reg_section;
2248
2249 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2250
2251 if (reg_section != NULL)
2252 {
2253 /* FIXME: Pass error state gracefully. */
2254 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2255 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2256
2257 /* Really remove the section, if it hasn't already been done. */
2258 if (!bfd_section_removed_from_list (abfd, reg_section))
2259 {
2260 bfd_section_list_remove (abfd, reg_section);
2261 --abfd->section_count;
2262 }
2263 }
2264
2265 if (! bfd_elf_final_link (abfd, info))
2266 return FALSE;
2267
2268 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2269 the regular linker machinery. We do it here, like other targets with
2270 special sections. */
2271 if (info->base_file != NULL)
2272 {
2273 asection *greg_section
2274 = bfd_get_section_by_name ((bfd *) info->base_file,
2275 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2276 if (!bfd_set_section_contents (abfd,
2277 greg_section->output_section,
2278 greg_section->contents,
2279 (file_ptr) greg_section->output_offset,
2280 greg_section->size))
2281 return FALSE;
2282 }
2283 return TRUE;
2284 }
2285
2286 /* We need to include the maximum size of PUSHJ-stubs in the initial
2287 section size. This is expected to shrink during linker relaxation. */
2288
2289 static void
2290 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2291 asection *sec,
2292 void *ptr)
2293 {
2294 struct bfd_link_info *info = ptr;
2295
2296 /* Make sure we only do this for section where we know we want this,
2297 otherwise we might end up resetting the size of COMMONs. */
2298 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2299 return;
2300
2301 sec->rawsize = sec->size;
2302 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2303 * MAX_PUSHJ_STUB_SIZE);
2304
2305 /* For use in relocatable link, we start with a max stubs size. See
2306 mmix_elf_relax_section. */
2307 if (bfd_link_relocatable (info) && sec->output_section)
2308 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2309 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2310 * MAX_PUSHJ_STUB_SIZE);
2311 }
2312
2313 /* Initialize stuff for the linker-generated GREGs to match
2314 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2315
2316 bfd_boolean
2317 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2318 struct bfd_link_info *info)
2319 {
2320 asection *bpo_gregs_section;
2321 bfd *bpo_greg_owner;
2322 struct bpo_greg_section_info *gregdata;
2323 size_t n_gregs;
2324 bfd_vma gregs_size;
2325 size_t i;
2326 size_t *bpo_reloc_indexes;
2327 bfd *ibfd;
2328
2329 /* Set the initial size of sections. */
2330 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2331 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2332
2333 /* The bpo_greg_owner bfd is supposed to have been set by
2334 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2335 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2336 bpo_greg_owner = (bfd *) info->base_file;
2337 if (bpo_greg_owner == NULL)
2338 return TRUE;
2339
2340 bpo_gregs_section
2341 = bfd_get_section_by_name (bpo_greg_owner,
2342 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2343
2344 if (bpo_gregs_section == NULL)
2345 return TRUE;
2346
2347 /* We use the target-data handle in the ELF section data. */
2348 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2349 if (gregdata == NULL)
2350 return FALSE;
2351
2352 n_gregs = gregdata->n_bpo_relocs;
2353 gregdata->n_allocated_bpo_gregs = n_gregs;
2354
2355 /* When this reaches zero during relaxation, all entries have been
2356 filled in and the size of the linker gregs can be calculated. */
2357 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2358
2359 /* Set the zeroth-order estimate for the GREGs size. */
2360 gregs_size = n_gregs * 8;
2361
2362 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2363 return FALSE;
2364
2365 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2366 time. Note that we must use the max number ever noted for the array,
2367 since the index numbers were created before GC. */
2368 gregdata->reloc_request
2369 = bfd_zalloc (bpo_greg_owner,
2370 sizeof (struct bpo_reloc_request)
2371 * gregdata->n_max_bpo_relocs);
2372
2373 gregdata->bpo_reloc_indexes
2374 = bpo_reloc_indexes
2375 = bfd_alloc (bpo_greg_owner,
2376 gregdata->n_max_bpo_relocs
2377 * sizeof (size_t));
2378 if (bpo_reloc_indexes == NULL)
2379 return FALSE;
2380
2381 /* The default order is an identity mapping. */
2382 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2383 {
2384 bpo_reloc_indexes[i] = i;
2385 gregdata->reloc_request[i].bpo_reloc_no = i;
2386 }
2387
2388 return TRUE;
2389 }
2390 \f
2391 /* Fill in contents in the linker allocated gregs. Everything is
2392 calculated at this point; we just move the contents into place here. */
2393
2394 bfd_boolean
2395 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2396 struct bfd_link_info *link_info)
2397 {
2398 asection *bpo_gregs_section;
2399 bfd *bpo_greg_owner;
2400 struct bpo_greg_section_info *gregdata;
2401 size_t n_gregs;
2402 size_t i, j;
2403 size_t lastreg;
2404 bfd_byte *contents;
2405
2406 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2407 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2408 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2409 bpo_greg_owner = (bfd *) link_info->base_file;
2410 if (bpo_greg_owner == NULL)
2411 return TRUE;
2412
2413 bpo_gregs_section
2414 = bfd_get_section_by_name (bpo_greg_owner,
2415 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2416
2417 /* This can't happen without DSO handling. When DSOs are handled
2418 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2419 section. */
2420 if (bpo_gregs_section == NULL)
2421 return TRUE;
2422
2423 /* We use the target-data handle in the ELF section data. */
2424
2425 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2426 if (gregdata == NULL)
2427 return FALSE;
2428
2429 n_gregs = gregdata->n_allocated_bpo_gregs;
2430
2431 bpo_gregs_section->contents
2432 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2433 if (contents == NULL)
2434 return FALSE;
2435
2436 /* Sanity check: If these numbers mismatch, some relocation has not been
2437 accounted for and the rest of gregdata is probably inconsistent.
2438 It's a bug, but it's more helpful to identify it than segfaulting
2439 below. */
2440 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2441 != gregdata->n_bpo_relocs)
2442 {
2443 _bfd_error_handler
2444 /* xgettext:c-format */
2445 (_("Internal inconsistency: remaining %lu != max %lu.\n\
2446 Please report this bug."),
2447 (unsigned long) gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2448 (unsigned long) gregdata->n_bpo_relocs);
2449 return FALSE;
2450 }
2451
2452 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2453 if (gregdata->reloc_request[i].regindex != lastreg)
2454 {
2455 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2456 contents + j * 8);
2457 lastreg = gregdata->reloc_request[i].regindex;
2458 j++;
2459 }
2460
2461 return TRUE;
2462 }
2463
2464 /* Sort valid relocs to come before non-valid relocs, then on increasing
2465 value. */
2466
2467 static int
2468 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2469 {
2470 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2471 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2472
2473 /* Primary function is validity; non-valid relocs sorted after valid
2474 ones. */
2475 if (r1->valid != r2->valid)
2476 return r2->valid - r1->valid;
2477
2478 /* Then sort on value. Don't simplify and return just the difference of
2479 the values: the upper bits of the 64-bit value would be truncated on
2480 a host with 32-bit ints. */
2481 if (r1->value != r2->value)
2482 return r1->value > r2->value ? 1 : -1;
2483
2484 /* As a last re-sort, use the relocation number, so we get a stable
2485 sort. The *addresses* aren't stable since items are swapped during
2486 sorting. It depends on the qsort implementation if this actually
2487 happens. */
2488 return r1->bpo_reloc_no > r2->bpo_reloc_no
2489 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2490 }
2491
2492 /* For debug use only. Dumps the global register allocations resulting
2493 from base-plus-offset relocs. */
2494
2495 void
2496 mmix_dump_bpo_gregs (struct bfd_link_info *link_info,
2497 void (*pf) (const char *fmt, ...))
2498 {
2499 bfd *bpo_greg_owner;
2500 asection *bpo_gregs_section;
2501 struct bpo_greg_section_info *gregdata;
2502 unsigned int i;
2503
2504 if (link_info == NULL || link_info->base_file == NULL)
2505 return;
2506
2507 bpo_greg_owner = (bfd *) link_info->base_file;
2508
2509 bpo_gregs_section
2510 = bfd_get_section_by_name (bpo_greg_owner,
2511 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2512
2513 if (bpo_gregs_section == NULL)
2514 return;
2515
2516 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2517 if (gregdata == NULL)
2518 return;
2519
2520 if (pf == NULL)
2521 pf = _bfd_error_handler;
2522
2523 /* These format strings are not translated. They are for debug purposes
2524 only and never displayed to an end user. Should they escape, we
2525 surely want them in original. */
2526 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2527 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2528 gregdata->n_max_bpo_relocs,
2529 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2530 gregdata->n_allocated_bpo_gregs);
2531
2532 if (gregdata->reloc_request)
2533 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2534 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2535 i,
2536 (gregdata->bpo_reloc_indexes != NULL
2537 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2538 gregdata->reloc_request[i].bpo_reloc_no,
2539 gregdata->reloc_request[i].valid,
2540
2541 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2542 (unsigned long) gregdata->reloc_request[i].value,
2543 gregdata->reloc_request[i].regindex,
2544 gregdata->reloc_request[i].offset);
2545 }
2546
2547 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2548 when the last such reloc is done, an index-array is sorted according to
2549 the values and iterated over to produce register numbers (indexed by 0
2550 from the first allocated register number) and offsets for use in real
2551 relocation. (N.B.: Relocatable runs are handled, not just punted.)
2552
2553 PUSHJ stub accounting is also done here.
2554
2555 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2556
2557 static bfd_boolean
2558 mmix_elf_relax_section (bfd *abfd,
2559 asection *sec,
2560 struct bfd_link_info *link_info,
2561 bfd_boolean *again)
2562 {
2563 Elf_Internal_Shdr *symtab_hdr;
2564 Elf_Internal_Rela *internal_relocs;
2565 Elf_Internal_Rela *irel, *irelend;
2566 asection *bpo_gregs_section = NULL;
2567 struct bpo_greg_section_info *gregdata;
2568 struct bpo_reloc_section_info *bpodata
2569 = mmix_elf_section_data (sec)->bpo.reloc;
2570 /* The initialization is to quiet compiler warnings. The value is to
2571 spot a missing actual initialization. */
2572 size_t bpono = (size_t) -1;
2573 size_t pjsno = 0;
2574 Elf_Internal_Sym *isymbuf = NULL;
2575 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2576
2577 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2578
2579 /* Assume nothing changes. */
2580 *again = FALSE;
2581
2582 /* We don't have to do anything if this section does not have relocs, or
2583 if this is not a code section. */
2584 if ((sec->flags & SEC_RELOC) == 0
2585 || sec->reloc_count == 0
2586 || (sec->flags & SEC_CODE) == 0
2587 || (sec->flags & SEC_LINKER_CREATED) != 0
2588 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2589 then nothing to do. */
2590 || (bpodata == NULL
2591 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2592 return TRUE;
2593
2594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2595
2596 if (bpodata != NULL)
2597 {
2598 bpo_gregs_section = bpodata->bpo_greg_section;
2599 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2600 bpono = bpodata->first_base_plus_offset_reloc;
2601 }
2602 else
2603 gregdata = NULL;
2604
2605 /* Get a copy of the native relocations. */
2606 internal_relocs
2607 = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2608 (Elf_Internal_Rela *) NULL,
2609 link_info->keep_memory);
2610 if (internal_relocs == NULL)
2611 goto error_return;
2612
2613 /* Walk through them looking for relaxing opportunities. */
2614 irelend = internal_relocs + sec->reloc_count;
2615 for (irel = internal_relocs; irel < irelend; irel++)
2616 {
2617 bfd_vma symval;
2618 struct elf_link_hash_entry *h = NULL;
2619
2620 /* We only process two relocs. */
2621 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2622 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2623 continue;
2624
2625 /* We process relocs in a distinctly different way when this is a
2626 relocatable link (for one, we don't look at symbols), so we avoid
2627 mixing its code with that for the "normal" relaxation. */
2628 if (bfd_link_relocatable (link_info))
2629 {
2630 /* The only transformation in a relocatable link is to generate
2631 a full stub at the location of the stub calculated for the
2632 input section, if the relocated stub location, the end of the
2633 output section plus earlier stubs, cannot be reached. Thus
2634 relocatable linking can only lead to worse code, but it still
2635 works. */
2636 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2637 {
2638 /* If we can reach the end of the output-section and beyond
2639 any current stubs, then we don't need a stub for this
2640 reloc. The relaxed order of output stub allocation may
2641 not exactly match the straightforward order, so we always
2642 assume presence of output stubs, which will allow
2643 relaxation only on relocations indifferent to the
2644 presence of output stub allocations for other relocations
2645 and thus the order of output stub allocation. */
2646 if (bfd_check_overflow (complain_overflow_signed,
2647 19,
2648 0,
2649 bfd_arch_bits_per_address (abfd),
2650 /* Output-stub location. */
2651 sec->output_section->rawsize
2652 + (mmix_elf_section_data (sec
2653 ->output_section)
2654 ->pjs.stubs_size_sum)
2655 /* Location of this PUSHJ reloc. */
2656 - (sec->output_offset + irel->r_offset)
2657 /* Don't count *this* stub twice. */
2658 - (mmix_elf_section_data (sec)
2659 ->pjs.stub_size[pjsno]
2660 + MAX_PUSHJ_STUB_SIZE))
2661 == bfd_reloc_ok)
2662 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2663
2664 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2665 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2666
2667 pjsno++;
2668 }
2669
2670 continue;
2671 }
2672
2673 /* Get the value of the symbol referred to by the reloc. */
2674 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2675 {
2676 /* A local symbol. */
2677 Elf_Internal_Sym *isym;
2678 asection *sym_sec;
2679
2680 /* Read this BFD's local symbols if we haven't already. */
2681 if (isymbuf == NULL)
2682 {
2683 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2684 if (isymbuf == NULL)
2685 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2686 symtab_hdr->sh_info, 0,
2687 NULL, NULL, NULL);
2688 if (isymbuf == 0)
2689 goto error_return;
2690 }
2691
2692 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2693 if (isym->st_shndx == SHN_UNDEF)
2694 sym_sec = bfd_und_section_ptr;
2695 else if (isym->st_shndx == SHN_ABS)
2696 sym_sec = bfd_abs_section_ptr;
2697 else if (isym->st_shndx == SHN_COMMON)
2698 sym_sec = bfd_com_section_ptr;
2699 else
2700 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2701 symval = (isym->st_value
2702 + sym_sec->output_section->vma
2703 + sym_sec->output_offset);
2704 }
2705 else
2706 {
2707 unsigned long indx;
2708
2709 /* An external symbol. */
2710 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2711 h = elf_sym_hashes (abfd)[indx];
2712 BFD_ASSERT (h != NULL);
2713 if (h->root.type == bfd_link_hash_undefweak)
2714 /* FIXME: for R_MMIX_PUSHJ_STUBBABLE, there are alternatives to
2715 the canonical value 0 for an unresolved weak symbol to
2716 consider: as the debug-friendly approach, resolve to "abort"
2717 (or a port-specific function), or as the space-friendly
2718 approach resolve to the next instruction (like some other
2719 ports, notably ARM and AArch64). These alternatives require
2720 matching code in mmix_elf_perform_relocation or its caller. */
2721 symval = 0;
2722 else if (h->root.type == bfd_link_hash_defined
2723 || h->root.type == bfd_link_hash_defweak)
2724 symval = (h->root.u.def.value
2725 + h->root.u.def.section->output_section->vma
2726 + h->root.u.def.section->output_offset);
2727 else
2728 {
2729 /* This appears to be a reference to an undefined symbol. Just
2730 ignore it--it will be caught by the regular reloc processing.
2731 We need to keep BPO reloc accounting consistent, though
2732 else we'll abort instead of emitting an error message. */
2733 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2734 && gregdata != NULL)
2735 {
2736 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2737 bpono++;
2738 }
2739 continue;
2740 }
2741 }
2742
2743 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2744 {
2745 bfd_vma value = symval + irel->r_addend;
2746 bfd_vma dot
2747 = (sec->output_section->vma
2748 + sec->output_offset
2749 + irel->r_offset);
2750 bfd_vma stubaddr
2751 = (sec->output_section->vma
2752 + sec->output_offset
2753 + size
2754 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2755
2756 if ((value & 3) == 0
2757 && bfd_check_overflow (complain_overflow_signed,
2758 19,
2759 0,
2760 bfd_arch_bits_per_address (abfd),
2761 value - dot
2762 - (value > dot
2763 ? mmix_elf_section_data (sec)
2764 ->pjs.stub_size[pjsno]
2765 : 0))
2766 == bfd_reloc_ok)
2767 /* If the reloc fits, no stub is needed. */
2768 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2769 else
2770 /* Maybe we can get away with just a JMP insn? */
2771 if ((value & 3) == 0
2772 && bfd_check_overflow (complain_overflow_signed,
2773 27,
2774 0,
2775 bfd_arch_bits_per_address (abfd),
2776 value - stubaddr
2777 - (value > dot
2778 ? mmix_elf_section_data (sec)
2779 ->pjs.stub_size[pjsno] - 4
2780 : 0))
2781 == bfd_reloc_ok)
2782 /* Yep, account for a stub consisting of a single JMP insn. */
2783 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2784 else
2785 /* Nope, go for the full insn stub. It doesn't seem useful to
2786 emit the intermediate sizes; those will only be useful for
2787 a >64M program assuming contiguous code. */
2788 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2789 = MAX_PUSHJ_STUB_SIZE;
2790
2791 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2792 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2793 pjsno++;
2794 continue;
2795 }
2796
2797 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2798
2799 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2800 = symval + irel->r_addend;
2801 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2802 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2803 }
2804
2805 /* Check if that was the last BPO-reloc. If so, sort the values and
2806 calculate how many registers we need to cover them. Set the size of
2807 the linker gregs, and if the number of registers changed, indicate
2808 that we need to relax some more because we have more work to do. */
2809 if (gregdata != NULL
2810 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2811 {
2812 size_t i;
2813 bfd_vma prev_base;
2814 size_t regindex;
2815
2816 /* First, reset the remaining relocs for the next round. */
2817 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2818 = gregdata->n_bpo_relocs;
2819
2820 qsort (gregdata->reloc_request,
2821 gregdata->n_max_bpo_relocs,
2822 sizeof (struct bpo_reloc_request),
2823 bpo_reloc_request_sort_fn);
2824
2825 /* Recalculate indexes. When we find a change (however unlikely
2826 after the initial iteration), we know we need to relax again,
2827 since items in the GREG-array are sorted by increasing value and
2828 stored in the relaxation phase. */
2829 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2830 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2831 != i)
2832 {
2833 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2834 = i;
2835 *again = TRUE;
2836 }
2837
2838 /* Allocate register numbers (indexing from 0). Stop at the first
2839 non-valid reloc. */
2840 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2841 i < gregdata->n_bpo_relocs;
2842 i++)
2843 {
2844 if (gregdata->reloc_request[i].value > prev_base + 255)
2845 {
2846 regindex++;
2847 prev_base = gregdata->reloc_request[i].value;
2848 }
2849 gregdata->reloc_request[i].regindex = regindex;
2850 gregdata->reloc_request[i].offset
2851 = gregdata->reloc_request[i].value - prev_base;
2852 }
2853
2854 /* If it's not the same as the last time, we need to relax again,
2855 because the size of the section has changed. I'm not sure we
2856 actually need to do any adjustments since the shrinking happens
2857 at the start of this section, but better safe than sorry. */
2858 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2859 {
2860 gregdata->n_allocated_bpo_gregs = regindex + 1;
2861 *again = TRUE;
2862 }
2863
2864 bpo_gregs_section->size = (regindex + 1) * 8;
2865 }
2866
2867 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2868 {
2869 if (! link_info->keep_memory)
2870 free (isymbuf);
2871 else
2872 {
2873 /* Cache the symbols for elf_link_input_bfd. */
2874 symtab_hdr->contents = (unsigned char *) isymbuf;
2875 }
2876 }
2877
2878 BFD_ASSERT(pjsno == mmix_elf_section_data (sec)->pjs.n_pushj_relocs);
2879
2880 if (internal_relocs != NULL
2881 && elf_section_data (sec)->relocs != internal_relocs)
2882 free (internal_relocs);
2883
2884 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2885 abort ();
2886
2887 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2888 {
2889 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2890 *again = TRUE;
2891 }
2892
2893 return TRUE;
2894
2895 error_return:
2896 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2897 free (isymbuf);
2898 if (internal_relocs != NULL
2899 && elf_section_data (sec)->relocs != internal_relocs)
2900 free (internal_relocs);
2901 return FALSE;
2902 }
2903 \f
2904 #define ELF_ARCH bfd_arch_mmix
2905 #define ELF_MACHINE_CODE EM_MMIX
2906
2907 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2908 However, that's too much for something somewhere in the linker part of
2909 BFD; perhaps the start-address has to be a non-zero multiple of this
2910 number, or larger than this number. The symptom is that the linker
2911 complains: "warning: allocated section `.text' not in segment". We
2912 settle for 64k; the page-size used in examples is 8k.
2913 #define ELF_MAXPAGESIZE 0x10000
2914
2915 Unfortunately, this causes excessive padding in the supposedly small
2916 for-education programs that are the expected usage (where people would
2917 inspect output). We stick to 256 bytes just to have *some* default
2918 alignment. */
2919 #define ELF_MAXPAGESIZE 0x100
2920
2921 #define TARGET_BIG_SYM mmix_elf64_vec
2922 #define TARGET_BIG_NAME "elf64-mmix"
2923
2924 #define elf_info_to_howto_rel NULL
2925 #define elf_info_to_howto mmix_info_to_howto_rela
2926 #define elf_backend_relocate_section mmix_elf_relocate_section
2927 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2928 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2929
2930 #define elf_backend_link_output_symbol_hook \
2931 mmix_elf_link_output_symbol_hook
2932 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2933
2934 #define elf_backend_check_relocs mmix_elf_check_relocs
2935 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2936 #define elf_backend_omit_section_dynsym \
2937 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2938
2939 #define bfd_elf64_bfd_is_local_label_name \
2940 mmix_elf_is_local_label_name
2941
2942 #define elf_backend_may_use_rel_p 0
2943 #define elf_backend_may_use_rela_p 1
2944 #define elf_backend_default_use_rela_p 1
2945
2946 #define elf_backend_can_gc_sections 1
2947 #define elf_backend_section_from_bfd_section \
2948 mmix_elf_section_from_bfd_section
2949
2950 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2951 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2952 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2953
2954 #include "elf64-target.h"
This page took 0.116389 seconds and 5 git commands to generate.