* elf64-ppc.c (elf_backend_add_symbol_hook): Define.
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* No specific ABI or "processor-specific supplement" defined. */
22
23 /* TODO:
24 - "Traditional" linker relaxation (shrinking whole sections).
25 - Merge reloc stubs jumping to same location.
26 - GETA stub relaxation (call a stub for out of range new
27 R_MMIX_GETA_STUBBABLE). */
28
29 #include "bfd.h"
30 #include "sysdep.h"
31 #include "libbfd.h"
32 #include "elf-bfd.h"
33 #include "elf/mmix.h"
34 #include "opcode/mmix.h"
35
36 #define MINUS_ONE (((bfd_vma) 0) - 1)
37
38 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
39
40 /* Put these everywhere in new code. */
41 #define FATAL_DEBUG \
42 _bfd_abort (__FILE__, __LINE__, \
43 "Internal: Non-debugged code (test-case missing)")
44
45 #define BAD_CASE(x) \
46 _bfd_abort (__FILE__, __LINE__, \
47 "bad case for " #x)
48
49 struct _mmix_elf_section_data
50 {
51 struct bfd_elf_section_data elf;
52 union
53 {
54 struct bpo_reloc_section_info *reloc;
55 struct bpo_greg_section_info *greg;
56 } bpo;
57
58 struct pushj_stub_info
59 {
60 /* Maximum number of stubs needed for this section. */
61 bfd_size_type n_pushj_relocs;
62
63 /* Size of stubs after a mmix_elf_relax_section round. */
64 bfd_size_type stubs_size_sum;
65
66 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
67 of these. Allocated in mmix_elf_check_common_relocs. */
68 bfd_size_type *stub_size;
69
70 /* Offset of next stub during relocation. Somewhat redundant with the
71 above: error coverage is easier and we don't have to reset the
72 stubs_size_sum for relocation. */
73 bfd_size_type stub_offset;
74 } pjs;
75 };
76
77 #define mmix_elf_section_data(sec) \
78 ((struct _mmix_elf_section_data *) elf_section_data (sec))
79
80 /* For each section containing a base-plus-offset (BPO) reloc, we attach
81 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
82 NULL. */
83 struct bpo_reloc_section_info
84 {
85 /* The base is 1; this is the first number in this section. */
86 size_t first_base_plus_offset_reloc;
87
88 /* Number of BPO-relocs in this section. */
89 size_t n_bpo_relocs_this_section;
90
91 /* Running index, used at relocation time. */
92 size_t bpo_index;
93
94 /* We don't have access to the bfd_link_info struct in
95 mmix_final_link_relocate. What we really want to get at is the
96 global single struct greg_relocation, so we stash it here. */
97 asection *bpo_greg_section;
98 };
99
100 /* Helper struct (in global context) for the one below.
101 There's one of these created for every BPO reloc. */
102 struct bpo_reloc_request
103 {
104 bfd_vma value;
105
106 /* Valid after relaxation. The base is 0; the first register number
107 must be added. The offset is in range 0..255. */
108 size_t regindex;
109 size_t offset;
110
111 /* The order number for this BPO reloc, corresponding to the order in
112 which BPO relocs were found. Used to create an index after reloc
113 requests are sorted. */
114 size_t bpo_reloc_no;
115
116 /* Set when the value is computed. Better than coding "guard values"
117 into the other members. Is FALSE only for BPO relocs in a GC:ed
118 section. */
119 bfd_boolean valid;
120 };
121
122 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
123 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
124 which is linked into the register contents section
125 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
126 linker; using the same hook as for usual with BPO relocs does not
127 collide. */
128 struct bpo_greg_section_info
129 {
130 /* After GC, this reflects the number of remaining, non-excluded
131 BPO-relocs. */
132 size_t n_bpo_relocs;
133
134 /* This is the number of allocated bpo_reloc_requests; the size of
135 sorted_indexes. Valid after the check.*relocs functions are called
136 for all incoming sections. It includes the number of BPO relocs in
137 sections that were GC:ed. */
138 size_t n_max_bpo_relocs;
139
140 /* A counter used to find out when to fold the BPO gregs, since we
141 don't have a single "after-relaxation" hook. */
142 size_t n_remaining_bpo_relocs_this_relaxation_round;
143
144 /* The number of linker-allocated GREGs resulting from BPO relocs.
145 This is an approximation after _bfd_mmix_before_linker_allocation
146 and supposedly accurate after mmix_elf_relax_section is called for
147 all incoming non-collected sections. */
148 size_t n_allocated_bpo_gregs;
149
150 /* Index into reloc_request[], sorted on increasing "value", secondary
151 by increasing index for strict sorting order. */
152 size_t *bpo_reloc_indexes;
153
154 /* An array of all relocations, with the "value" member filled in by
155 the relaxation function. */
156 struct bpo_reloc_request *reloc_request;
157 };
158
159 static bfd_boolean mmix_elf_link_output_symbol_hook
160 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
161 asection *, struct elf_link_hash_entry *));
162
163 static bfd_reloc_status_type mmix_elf_reloc
164 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
165
166 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
167 PARAMS ((bfd *, bfd_reloc_code_real_type));
168
169 static void mmix_info_to_howto_rela
170 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
171
172 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
173
174 static bfd_boolean mmix_elf_new_section_hook
175 PARAMS ((bfd *, asection *));
176
177 static bfd_boolean mmix_elf_check_relocs
178 PARAMS ((bfd *, struct bfd_link_info *, asection *,
179 const Elf_Internal_Rela *));
180
181 static bfd_boolean mmix_elf_check_common_relocs
182 PARAMS ((bfd *, struct bfd_link_info *, asection *,
183 const Elf_Internal_Rela *));
184
185 static bfd_boolean mmix_elf_relocate_section
186 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
187 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
188
189 static asection * mmix_elf_gc_mark_hook
190 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
191 struct elf_link_hash_entry *, Elf_Internal_Sym *));
192
193 static bfd_boolean mmix_elf_gc_sweep_hook
194 PARAMS ((bfd *, struct bfd_link_info *, asection *,
195 const Elf_Internal_Rela *));
196
197 static bfd_reloc_status_type mmix_final_link_relocate
198 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
199 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
200
201 static bfd_reloc_status_type mmix_elf_perform_relocation
202 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
203
204 static bfd_boolean mmix_elf_section_from_bfd_section
205 PARAMS ((bfd *, asection *, int *));
206
207 static bfd_boolean mmix_elf_add_symbol_hook
208 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
209 const char **, flagword *, asection **, bfd_vma *));
210
211 static bfd_boolean mmix_elf_is_local_label_name
212 PARAMS ((bfd *, const char *));
213
214 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
215
216 static bfd_boolean mmix_elf_relax_section
217 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
218 bfd_boolean *again));
219
220 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
221
222 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
223
224 /* Only intended to be called from a debugger. */
225 extern void mmix_dump_bpo_gregs
226 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
227
228 static void
229 mmix_set_relaxable_size
230 PARAMS ((bfd *, asection *, void *));
231
232 static bfd_boolean
233 mmix_elf_get_section_contents
234 PARAMS ((bfd *, sec_ptr, void *, file_ptr, bfd_size_type));
235
236
237 /* Watch out: this currently needs to have elements with the same index as
238 their R_MMIX_ number. */
239 static reloc_howto_type elf_mmix_howto_table[] =
240 {
241 /* This reloc does nothing. */
242 HOWTO (R_MMIX_NONE, /* type */
243 0, /* rightshift */
244 2, /* size (0 = byte, 1 = short, 2 = long) */
245 32, /* bitsize */
246 FALSE, /* pc_relative */
247 0, /* bitpos */
248 complain_overflow_bitfield, /* complain_on_overflow */
249 bfd_elf_generic_reloc, /* special_function */
250 "R_MMIX_NONE", /* name */
251 FALSE, /* partial_inplace */
252 0, /* src_mask */
253 0, /* dst_mask */
254 FALSE), /* pcrel_offset */
255
256 /* An 8 bit absolute relocation. */
257 HOWTO (R_MMIX_8, /* type */
258 0, /* rightshift */
259 0, /* size (0 = byte, 1 = short, 2 = long) */
260 8, /* bitsize */
261 FALSE, /* pc_relative */
262 0, /* bitpos */
263 complain_overflow_bitfield, /* complain_on_overflow */
264 bfd_elf_generic_reloc, /* special_function */
265 "R_MMIX_8", /* name */
266 FALSE, /* partial_inplace */
267 0, /* src_mask */
268 0xff, /* dst_mask */
269 FALSE), /* pcrel_offset */
270
271 /* An 16 bit absolute relocation. */
272 HOWTO (R_MMIX_16, /* type */
273 0, /* rightshift */
274 1, /* size (0 = byte, 1 = short, 2 = long) */
275 16, /* bitsize */
276 FALSE, /* pc_relative */
277 0, /* bitpos */
278 complain_overflow_bitfield, /* complain_on_overflow */
279 bfd_elf_generic_reloc, /* special_function */
280 "R_MMIX_16", /* name */
281 FALSE, /* partial_inplace */
282 0, /* src_mask */
283 0xffff, /* dst_mask */
284 FALSE), /* pcrel_offset */
285
286 /* An 24 bit absolute relocation. */
287 HOWTO (R_MMIX_24, /* type */
288 0, /* rightshift */
289 2, /* size (0 = byte, 1 = short, 2 = long) */
290 24, /* bitsize */
291 FALSE, /* pc_relative */
292 0, /* bitpos */
293 complain_overflow_bitfield, /* complain_on_overflow */
294 bfd_elf_generic_reloc, /* special_function */
295 "R_MMIX_24", /* name */
296 FALSE, /* partial_inplace */
297 ~0xffffff, /* src_mask */
298 0xffffff, /* dst_mask */
299 FALSE), /* pcrel_offset */
300
301 /* A 32 bit absolute relocation. */
302 HOWTO (R_MMIX_32, /* type */
303 0, /* rightshift */
304 2, /* size (0 = byte, 1 = short, 2 = long) */
305 32, /* bitsize */
306 FALSE, /* pc_relative */
307 0, /* bitpos */
308 complain_overflow_bitfield, /* complain_on_overflow */
309 bfd_elf_generic_reloc, /* special_function */
310 "R_MMIX_32", /* name */
311 FALSE, /* partial_inplace */
312 0, /* src_mask */
313 0xffffffff, /* dst_mask */
314 FALSE), /* pcrel_offset */
315
316 /* 64 bit relocation. */
317 HOWTO (R_MMIX_64, /* type */
318 0, /* rightshift */
319 4, /* size (0 = byte, 1 = short, 2 = long) */
320 64, /* bitsize */
321 FALSE, /* pc_relative */
322 0, /* bitpos */
323 complain_overflow_bitfield, /* complain_on_overflow */
324 bfd_elf_generic_reloc, /* special_function */
325 "R_MMIX_64", /* name */
326 FALSE, /* partial_inplace */
327 0, /* src_mask */
328 MINUS_ONE, /* dst_mask */
329 FALSE), /* pcrel_offset */
330
331 /* An 8 bit PC-relative relocation. */
332 HOWTO (R_MMIX_PC_8, /* type */
333 0, /* rightshift */
334 0, /* size (0 = byte, 1 = short, 2 = long) */
335 8, /* bitsize */
336 TRUE, /* pc_relative */
337 0, /* bitpos */
338 complain_overflow_bitfield, /* complain_on_overflow */
339 bfd_elf_generic_reloc, /* special_function */
340 "R_MMIX_PC_8", /* name */
341 FALSE, /* partial_inplace */
342 0, /* src_mask */
343 0xff, /* dst_mask */
344 TRUE), /* pcrel_offset */
345
346 /* An 16 bit PC-relative relocation. */
347 HOWTO (R_MMIX_PC_16, /* type */
348 0, /* rightshift */
349 1, /* size (0 = byte, 1 = short, 2 = long) */
350 16, /* bitsize */
351 TRUE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield, /* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_MMIX_PC_16", /* name */
356 FALSE, /* partial_inplace */
357 0, /* src_mask */
358 0xffff, /* dst_mask */
359 TRUE), /* pcrel_offset */
360
361 /* An 24 bit PC-relative relocation. */
362 HOWTO (R_MMIX_PC_24, /* type */
363 0, /* rightshift */
364 2, /* size (0 = byte, 1 = short, 2 = long) */
365 24, /* bitsize */
366 TRUE, /* pc_relative */
367 0, /* bitpos */
368 complain_overflow_bitfield, /* complain_on_overflow */
369 bfd_elf_generic_reloc, /* special_function */
370 "R_MMIX_PC_24", /* name */
371 FALSE, /* partial_inplace */
372 ~0xffffff, /* src_mask */
373 0xffffff, /* dst_mask */
374 TRUE), /* pcrel_offset */
375
376 /* A 32 bit absolute PC-relative relocation. */
377 HOWTO (R_MMIX_PC_32, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 TRUE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield, /* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_MMIX_PC_32", /* name */
386 FALSE, /* partial_inplace */
387 0, /* src_mask */
388 0xffffffff, /* dst_mask */
389 TRUE), /* pcrel_offset */
390
391 /* 64 bit PC-relative relocation. */
392 HOWTO (R_MMIX_PC_64, /* type */
393 0, /* rightshift */
394 4, /* size (0 = byte, 1 = short, 2 = long) */
395 64, /* bitsize */
396 TRUE, /* pc_relative */
397 0, /* bitpos */
398 complain_overflow_bitfield, /* complain_on_overflow */
399 bfd_elf_generic_reloc, /* special_function */
400 "R_MMIX_PC_64", /* name */
401 FALSE, /* partial_inplace */
402 0, /* src_mask */
403 MINUS_ONE, /* dst_mask */
404 TRUE), /* pcrel_offset */
405
406 /* GNU extension to record C++ vtable hierarchy. */
407 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
408 0, /* rightshift */
409 0, /* size (0 = byte, 1 = short, 2 = long) */
410 0, /* bitsize */
411 FALSE, /* pc_relative */
412 0, /* bitpos */
413 complain_overflow_dont, /* complain_on_overflow */
414 NULL, /* special_function */
415 "R_MMIX_GNU_VTINHERIT", /* name */
416 FALSE, /* partial_inplace */
417 0, /* src_mask */
418 0, /* dst_mask */
419 TRUE), /* pcrel_offset */
420
421 /* GNU extension to record C++ vtable member usage. */
422 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
423 0, /* rightshift */
424 0, /* size (0 = byte, 1 = short, 2 = long) */
425 0, /* bitsize */
426 FALSE, /* pc_relative */
427 0, /* bitpos */
428 complain_overflow_dont, /* complain_on_overflow */
429 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
430 "R_MMIX_GNU_VTENTRY", /* name */
431 FALSE, /* partial_inplace */
432 0, /* src_mask */
433 0, /* dst_mask */
434 FALSE), /* pcrel_offset */
435
436 /* The GETA relocation is supposed to get any address that could
437 possibly be reached by the GETA instruction. It can silently expand
438 to get a 64-bit operand, but will complain if any of the two least
439 significant bits are set. The howto members reflect a simple GETA. */
440 HOWTO (R_MMIX_GETA, /* type */
441 2, /* rightshift */
442 2, /* size (0 = byte, 1 = short, 2 = long) */
443 19, /* bitsize */
444 TRUE, /* pc_relative */
445 0, /* bitpos */
446 complain_overflow_signed, /* complain_on_overflow */
447 mmix_elf_reloc, /* special_function */
448 "R_MMIX_GETA", /* name */
449 FALSE, /* partial_inplace */
450 ~0x0100ffff, /* src_mask */
451 0x0100ffff, /* dst_mask */
452 TRUE), /* pcrel_offset */
453
454 HOWTO (R_MMIX_GETA_1, /* type */
455 2, /* rightshift */
456 2, /* size (0 = byte, 1 = short, 2 = long) */
457 19, /* bitsize */
458 TRUE, /* pc_relative */
459 0, /* bitpos */
460 complain_overflow_signed, /* complain_on_overflow */
461 mmix_elf_reloc, /* special_function */
462 "R_MMIX_GETA_1", /* name */
463 FALSE, /* partial_inplace */
464 ~0x0100ffff, /* src_mask */
465 0x0100ffff, /* dst_mask */
466 TRUE), /* pcrel_offset */
467
468 HOWTO (R_MMIX_GETA_2, /* type */
469 2, /* rightshift */
470 2, /* size (0 = byte, 1 = short, 2 = long) */
471 19, /* bitsize */
472 TRUE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_signed, /* complain_on_overflow */
475 mmix_elf_reloc, /* special_function */
476 "R_MMIX_GETA_2", /* name */
477 FALSE, /* partial_inplace */
478 ~0x0100ffff, /* src_mask */
479 0x0100ffff, /* dst_mask */
480 TRUE), /* pcrel_offset */
481
482 HOWTO (R_MMIX_GETA_3, /* type */
483 2, /* rightshift */
484 2, /* size (0 = byte, 1 = short, 2 = long) */
485 19, /* bitsize */
486 TRUE, /* pc_relative */
487 0, /* bitpos */
488 complain_overflow_signed, /* complain_on_overflow */
489 mmix_elf_reloc, /* special_function */
490 "R_MMIX_GETA_3", /* name */
491 FALSE, /* partial_inplace */
492 ~0x0100ffff, /* src_mask */
493 0x0100ffff, /* dst_mask */
494 TRUE), /* pcrel_offset */
495
496 /* The conditional branches are supposed to reach any (code) address.
497 It can silently expand to a 64-bit operand, but will emit an error if
498 any of the two least significant bits are set. The howto members
499 reflect a simple branch. */
500 HOWTO (R_MMIX_CBRANCH, /* type */
501 2, /* rightshift */
502 2, /* size (0 = byte, 1 = short, 2 = long) */
503 19, /* bitsize */
504 TRUE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_signed, /* complain_on_overflow */
507 mmix_elf_reloc, /* special_function */
508 "R_MMIX_CBRANCH", /* name */
509 FALSE, /* partial_inplace */
510 ~0x0100ffff, /* src_mask */
511 0x0100ffff, /* dst_mask */
512 TRUE), /* pcrel_offset */
513
514 HOWTO (R_MMIX_CBRANCH_J, /* type */
515 2, /* rightshift */
516 2, /* size (0 = byte, 1 = short, 2 = long) */
517 19, /* bitsize */
518 TRUE, /* pc_relative */
519 0, /* bitpos */
520 complain_overflow_signed, /* complain_on_overflow */
521 mmix_elf_reloc, /* special_function */
522 "R_MMIX_CBRANCH_J", /* name */
523 FALSE, /* partial_inplace */
524 ~0x0100ffff, /* src_mask */
525 0x0100ffff, /* dst_mask */
526 TRUE), /* pcrel_offset */
527
528 HOWTO (R_MMIX_CBRANCH_1, /* type */
529 2, /* rightshift */
530 2, /* size (0 = byte, 1 = short, 2 = long) */
531 19, /* bitsize */
532 TRUE, /* pc_relative */
533 0, /* bitpos */
534 complain_overflow_signed, /* complain_on_overflow */
535 mmix_elf_reloc, /* special_function */
536 "R_MMIX_CBRANCH_1", /* name */
537 FALSE, /* partial_inplace */
538 ~0x0100ffff, /* src_mask */
539 0x0100ffff, /* dst_mask */
540 TRUE), /* pcrel_offset */
541
542 HOWTO (R_MMIX_CBRANCH_2, /* type */
543 2, /* rightshift */
544 2, /* size (0 = byte, 1 = short, 2 = long) */
545 19, /* bitsize */
546 TRUE, /* pc_relative */
547 0, /* bitpos */
548 complain_overflow_signed, /* complain_on_overflow */
549 mmix_elf_reloc, /* special_function */
550 "R_MMIX_CBRANCH_2", /* name */
551 FALSE, /* partial_inplace */
552 ~0x0100ffff, /* src_mask */
553 0x0100ffff, /* dst_mask */
554 TRUE), /* pcrel_offset */
555
556 HOWTO (R_MMIX_CBRANCH_3, /* type */
557 2, /* rightshift */
558 2, /* size (0 = byte, 1 = short, 2 = long) */
559 19, /* bitsize */
560 TRUE, /* pc_relative */
561 0, /* bitpos */
562 complain_overflow_signed, /* complain_on_overflow */
563 mmix_elf_reloc, /* special_function */
564 "R_MMIX_CBRANCH_3", /* name */
565 FALSE, /* partial_inplace */
566 ~0x0100ffff, /* src_mask */
567 0x0100ffff, /* dst_mask */
568 TRUE), /* pcrel_offset */
569
570 /* The PUSHJ instruction can reach any (code) address, as long as it's
571 the beginning of a function (no usable restriction). It can silently
572 expand to a 64-bit operand, but will emit an error if any of the two
573 least significant bits are set. It can also expand into a call to a
574 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
575 PUSHJ. */
576 HOWTO (R_MMIX_PUSHJ, /* type */
577 2, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 19, /* bitsize */
580 TRUE, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_signed, /* complain_on_overflow */
583 mmix_elf_reloc, /* special_function */
584 "R_MMIX_PUSHJ", /* name */
585 FALSE, /* partial_inplace */
586 ~0x0100ffff, /* src_mask */
587 0x0100ffff, /* dst_mask */
588 TRUE), /* pcrel_offset */
589
590 HOWTO (R_MMIX_PUSHJ_1, /* type */
591 2, /* rightshift */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
593 19, /* bitsize */
594 TRUE, /* pc_relative */
595 0, /* bitpos */
596 complain_overflow_signed, /* complain_on_overflow */
597 mmix_elf_reloc, /* special_function */
598 "R_MMIX_PUSHJ_1", /* name */
599 FALSE, /* partial_inplace */
600 ~0x0100ffff, /* src_mask */
601 0x0100ffff, /* dst_mask */
602 TRUE), /* pcrel_offset */
603
604 HOWTO (R_MMIX_PUSHJ_2, /* type */
605 2, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 19, /* bitsize */
608 TRUE, /* pc_relative */
609 0, /* bitpos */
610 complain_overflow_signed, /* complain_on_overflow */
611 mmix_elf_reloc, /* special_function */
612 "R_MMIX_PUSHJ_2", /* name */
613 FALSE, /* partial_inplace */
614 ~0x0100ffff, /* src_mask */
615 0x0100ffff, /* dst_mask */
616 TRUE), /* pcrel_offset */
617
618 HOWTO (R_MMIX_PUSHJ_3, /* type */
619 2, /* rightshift */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
621 19, /* bitsize */
622 TRUE, /* pc_relative */
623 0, /* bitpos */
624 complain_overflow_signed, /* complain_on_overflow */
625 mmix_elf_reloc, /* special_function */
626 "R_MMIX_PUSHJ_3", /* name */
627 FALSE, /* partial_inplace */
628 ~0x0100ffff, /* src_mask */
629 0x0100ffff, /* dst_mask */
630 TRUE), /* pcrel_offset */
631
632 /* A JMP is supposed to reach any (code) address. By itself, it can
633 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
634 limit is soon reached if you link the program in wildly different
635 memory segments. The howto members reflect a trivial JMP. */
636 HOWTO (R_MMIX_JMP, /* type */
637 2, /* rightshift */
638 2, /* size (0 = byte, 1 = short, 2 = long) */
639 27, /* bitsize */
640 TRUE, /* pc_relative */
641 0, /* bitpos */
642 complain_overflow_signed, /* complain_on_overflow */
643 mmix_elf_reloc, /* special_function */
644 "R_MMIX_JMP", /* name */
645 FALSE, /* partial_inplace */
646 ~0x1ffffff, /* src_mask */
647 0x1ffffff, /* dst_mask */
648 TRUE), /* pcrel_offset */
649
650 HOWTO (R_MMIX_JMP_1, /* type */
651 2, /* rightshift */
652 2, /* size (0 = byte, 1 = short, 2 = long) */
653 27, /* bitsize */
654 TRUE, /* pc_relative */
655 0, /* bitpos */
656 complain_overflow_signed, /* complain_on_overflow */
657 mmix_elf_reloc, /* special_function */
658 "R_MMIX_JMP_1", /* name */
659 FALSE, /* partial_inplace */
660 ~0x1ffffff, /* src_mask */
661 0x1ffffff, /* dst_mask */
662 TRUE), /* pcrel_offset */
663
664 HOWTO (R_MMIX_JMP_2, /* type */
665 2, /* rightshift */
666 2, /* size (0 = byte, 1 = short, 2 = long) */
667 27, /* bitsize */
668 TRUE, /* pc_relative */
669 0, /* bitpos */
670 complain_overflow_signed, /* complain_on_overflow */
671 mmix_elf_reloc, /* special_function */
672 "R_MMIX_JMP_2", /* name */
673 FALSE, /* partial_inplace */
674 ~0x1ffffff, /* src_mask */
675 0x1ffffff, /* dst_mask */
676 TRUE), /* pcrel_offset */
677
678 HOWTO (R_MMIX_JMP_3, /* type */
679 2, /* rightshift */
680 2, /* size (0 = byte, 1 = short, 2 = long) */
681 27, /* bitsize */
682 TRUE, /* pc_relative */
683 0, /* bitpos */
684 complain_overflow_signed, /* complain_on_overflow */
685 mmix_elf_reloc, /* special_function */
686 "R_MMIX_JMP_3", /* name */
687 FALSE, /* partial_inplace */
688 ~0x1ffffff, /* src_mask */
689 0x1ffffff, /* dst_mask */
690 TRUE), /* pcrel_offset */
691
692 /* When we don't emit link-time-relaxable code from the assembler, or
693 when relaxation has done all it can do, these relocs are used. For
694 GETA/PUSHJ/branches. */
695 HOWTO (R_MMIX_ADDR19, /* type */
696 2, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 19, /* bitsize */
699 TRUE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_signed, /* complain_on_overflow */
702 mmix_elf_reloc, /* special_function */
703 "R_MMIX_ADDR19", /* name */
704 FALSE, /* partial_inplace */
705 ~0x0100ffff, /* src_mask */
706 0x0100ffff, /* dst_mask */
707 TRUE), /* pcrel_offset */
708
709 /* For JMP. */
710 HOWTO (R_MMIX_ADDR27, /* type */
711 2, /* rightshift */
712 2, /* size (0 = byte, 1 = short, 2 = long) */
713 27, /* bitsize */
714 TRUE, /* pc_relative */
715 0, /* bitpos */
716 complain_overflow_signed, /* complain_on_overflow */
717 mmix_elf_reloc, /* special_function */
718 "R_MMIX_ADDR27", /* name */
719 FALSE, /* partial_inplace */
720 ~0x1ffffff, /* src_mask */
721 0x1ffffff, /* dst_mask */
722 TRUE), /* pcrel_offset */
723
724 /* A general register or the value 0..255. If a value, then the
725 instruction (offset -3) needs adjusting. */
726 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
727 0, /* rightshift */
728 1, /* size (0 = byte, 1 = short, 2 = long) */
729 8, /* bitsize */
730 FALSE, /* pc_relative */
731 0, /* bitpos */
732 complain_overflow_bitfield, /* complain_on_overflow */
733 mmix_elf_reloc, /* special_function */
734 "R_MMIX_REG_OR_BYTE", /* name */
735 FALSE, /* partial_inplace */
736 0, /* src_mask */
737 0xff, /* dst_mask */
738 FALSE), /* pcrel_offset */
739
740 /* A general register. */
741 HOWTO (R_MMIX_REG, /* type */
742 0, /* rightshift */
743 1, /* size (0 = byte, 1 = short, 2 = long) */
744 8, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_bitfield, /* complain_on_overflow */
748 mmix_elf_reloc, /* special_function */
749 "R_MMIX_REG", /* name */
750 FALSE, /* partial_inplace */
751 0, /* src_mask */
752 0xff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 /* A register plus an index, corresponding to the relocation expression.
756 The sizes must correspond to the valid range of the expression, while
757 the bitmasks correspond to what we store in the image. */
758 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
759 0, /* rightshift */
760 4, /* size (0 = byte, 1 = short, 2 = long) */
761 64, /* bitsize */
762 FALSE, /* pc_relative */
763 0, /* bitpos */
764 complain_overflow_bitfield, /* complain_on_overflow */
765 mmix_elf_reloc, /* special_function */
766 "R_MMIX_BASE_PLUS_OFFSET", /* name */
767 FALSE, /* partial_inplace */
768 0, /* src_mask */
769 0xffff, /* dst_mask */
770 FALSE), /* pcrel_offset */
771
772 /* A "magic" relocation for a LOCAL expression, asserting that the
773 expression is less than the number of global registers. No actual
774 modification of the contents is done. Implementing this as a
775 relocation was less intrusive than e.g. putting such expressions in a
776 section to discard *after* relocation. */
777 HOWTO (R_MMIX_LOCAL, /* type */
778 0, /* rightshift */
779 0, /* size (0 = byte, 1 = short, 2 = long) */
780 0, /* bitsize */
781 FALSE, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_dont, /* complain_on_overflow */
784 mmix_elf_reloc, /* special_function */
785 "R_MMIX_LOCAL", /* name */
786 FALSE, /* partial_inplace */
787 0, /* src_mask */
788 0, /* dst_mask */
789 FALSE), /* pcrel_offset */
790
791 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
792 2, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 19, /* bitsize */
795 TRUE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_signed, /* complain_on_overflow */
798 mmix_elf_reloc, /* special_function */
799 "R_MMIX_PUSHJ_STUBBABLE", /* name */
800 FALSE, /* partial_inplace */
801 ~0x0100ffff, /* src_mask */
802 0x0100ffff, /* dst_mask */
803 TRUE) /* pcrel_offset */
804 };
805
806
807 /* Map BFD reloc types to MMIX ELF reloc types. */
808
809 struct mmix_reloc_map
810 {
811 bfd_reloc_code_real_type bfd_reloc_val;
812 enum elf_mmix_reloc_type elf_reloc_val;
813 };
814
815
816 static const struct mmix_reloc_map mmix_reloc_map[] =
817 {
818 {BFD_RELOC_NONE, R_MMIX_NONE},
819 {BFD_RELOC_8, R_MMIX_8},
820 {BFD_RELOC_16, R_MMIX_16},
821 {BFD_RELOC_24, R_MMIX_24},
822 {BFD_RELOC_32, R_MMIX_32},
823 {BFD_RELOC_64, R_MMIX_64},
824 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
825 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
826 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
827 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
828 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
829 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
830 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
831 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
832 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
833 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
834 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
835 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
836 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
837 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
838 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
839 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
840 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
841 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
842 };
843
844 static reloc_howto_type *
845 bfd_elf64_bfd_reloc_type_lookup (abfd, code)
846 bfd *abfd ATTRIBUTE_UNUSED;
847 bfd_reloc_code_real_type code;
848 {
849 unsigned int i;
850
851 for (i = 0;
852 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
853 i++)
854 {
855 if (mmix_reloc_map[i].bfd_reloc_val == code)
856 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
857 }
858
859 return NULL;
860 }
861
862 static bfd_boolean
863 mmix_elf_new_section_hook (abfd, sec)
864 bfd *abfd;
865 asection *sec;
866 {
867 struct _mmix_elf_section_data *sdata;
868 bfd_size_type amt = sizeof (*sdata);
869
870 sdata = (struct _mmix_elf_section_data *) bfd_zalloc (abfd, amt);
871 if (sdata == NULL)
872 return FALSE;
873 sec->used_by_bfd = (PTR) sdata;
874
875 return _bfd_elf_new_section_hook (abfd, sec);
876 }
877
878
879 /* This function performs the actual bitfiddling and sanity check for a
880 final relocation. Each relocation gets its *worst*-case expansion
881 in size when it arrives here; any reduction in size should have been
882 caught in linker relaxation earlier. When we get here, the relocation
883 looks like the smallest instruction with SWYM:s (nop:s) appended to the
884 max size. We fill in those nop:s.
885
886 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
887 GETA $N,foo
888 ->
889 SETL $N,foo & 0xffff
890 INCML $N,(foo >> 16) & 0xffff
891 INCMH $N,(foo >> 32) & 0xffff
892 INCH $N,(foo >> 48) & 0xffff
893
894 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
895 condbranches needing relaxation might be rare enough to not be
896 worthwhile.)
897 [P]Bcc $N,foo
898 ->
899 [~P]B~cc $N,.+20
900 SETL $255,foo & ...
901 INCML ...
902 INCMH ...
903 INCH ...
904 GO $255,$255,0
905
906 R_MMIX_PUSHJ: (FIXME: Relaxation...)
907 PUSHJ $N,foo
908 ->
909 SETL $255,foo & ...
910 INCML ...
911 INCMH ...
912 INCH ...
913 PUSHGO $N,$255,0
914
915 R_MMIX_JMP: (FIXME: Relaxation...)
916 JMP foo
917 ->
918 SETL $255,foo & ...
919 INCML ...
920 INCMH ...
921 INCH ...
922 GO $255,$255,0
923
924 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
925
926 static bfd_reloc_status_type
927 mmix_elf_perform_relocation (isec, howto, datap, addr, value)
928 asection *isec;
929 reloc_howto_type *howto;
930 PTR datap;
931 bfd_vma addr;
932 bfd_vma value;
933 {
934 bfd *abfd = isec->owner;
935 bfd_reloc_status_type flag = bfd_reloc_ok;
936 bfd_reloc_status_type r;
937 int offs = 0;
938 int reg = 255;
939
940 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
941 We handle the differences here and the common sequence later. */
942 switch (howto->type)
943 {
944 case R_MMIX_GETA:
945 offs = 0;
946 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
947
948 /* We change to an absolute value. */
949 value += addr;
950 break;
951
952 case R_MMIX_CBRANCH:
953 {
954 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
955
956 /* Invert the condition and prediction bit, and set the offset
957 to five instructions ahead.
958
959 We *can* do better if we want to. If the branch is found to be
960 within limits, we could leave the branch as is; there'll just
961 be a bunch of NOP:s after it. But we shouldn't see this
962 sequence often enough that it's worth doing it. */
963
964 bfd_put_32 (abfd,
965 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
966 | (24/4)),
967 (bfd_byte *) datap);
968
969 /* Put a "GO $255,$255,0" after the common sequence. */
970 bfd_put_32 (abfd,
971 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
972 (bfd_byte *) datap + 20);
973
974 /* Common sequence starts at offset 4. */
975 offs = 4;
976
977 /* We change to an absolute value. */
978 value += addr;
979 }
980 break;
981
982 case R_MMIX_PUSHJ_STUBBABLE:
983 /* If the address fits, we're fine. */
984 if ((value & 3) == 0
985 /* Note rightshift 0; see R_MMIX_JMP case below. */
986 && (r = bfd_check_overflow (complain_overflow_signed,
987 howto->bitsize,
988 0,
989 bfd_arch_bits_per_address (abfd),
990 value)) == bfd_reloc_ok)
991 goto pcrel_mmix_reloc_fits;
992 else
993 {
994 bfd_size_type raw_size
995 = (isec->_raw_size
996 - mmix_elf_section_data (isec)->pjs.n_pushj_relocs
997 * MAX_PUSHJ_STUB_SIZE);
998
999 /* We have the bytes at the PUSHJ insn and need to get the
1000 position for the stub. There's supposed to be room allocated
1001 for the stub. */
1002 bfd_byte *stubcontents
1003 = ((char *) datap
1004 - (addr - (isec->output_section->vma + isec->output_offset))
1005 + raw_size
1006 + mmix_elf_section_data (isec)->pjs.stub_offset);
1007 bfd_vma stubaddr;
1008
1009 /* The address doesn't fit, so redirect the PUSHJ to the
1010 location of the stub. */
1011 r = mmix_elf_perform_relocation (isec,
1012 &elf_mmix_howto_table
1013 [R_MMIX_ADDR19],
1014 datap,
1015 addr,
1016 isec->output_section->vma
1017 + isec->output_offset
1018 + raw_size
1019 + (mmix_elf_section_data (isec)
1020 ->pjs.stub_offset)
1021 - addr);
1022 if (r != bfd_reloc_ok)
1023 return r;
1024
1025 stubaddr
1026 = (isec->output_section->vma
1027 + isec->output_offset
1028 + raw_size
1029 + mmix_elf_section_data (isec)->pjs.stub_offset);
1030
1031 /* We generate a simple JMP if that suffices, else the whole 5
1032 insn stub. */
1033 if (bfd_check_overflow (complain_overflow_signed,
1034 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1035 0,
1036 bfd_arch_bits_per_address (abfd),
1037 addr + value - stubaddr) == bfd_reloc_ok)
1038 {
1039 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1040 r = mmix_elf_perform_relocation (isec,
1041 &elf_mmix_howto_table
1042 [R_MMIX_ADDR27],
1043 stubcontents,
1044 stubaddr,
1045 value + addr - stubaddr);
1046 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1047
1048 if (raw_size
1049 + mmix_elf_section_data (isec)->pjs.stub_offset
1050 > isec->_cooked_size)
1051 abort ();
1052
1053 return r;
1054 }
1055 else
1056 {
1057 /* Put a "GO $255,0" after the common sequence. */
1058 bfd_put_32 (abfd,
1059 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1060 | 0xff00, (bfd_byte *) stubcontents + 16);
1061
1062 /* Prepare for the general code to set the first part of the
1063 linker stub, and */
1064 value += addr;
1065 datap = stubcontents;
1066 mmix_elf_section_data (isec)->pjs.stub_offset
1067 += MAX_PUSHJ_STUB_SIZE;
1068 }
1069 }
1070 break;
1071
1072 case R_MMIX_PUSHJ:
1073 {
1074 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1075
1076 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1077 bfd_put_32 (abfd,
1078 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1079 | (inreg << 16)
1080 | 0xff00,
1081 (bfd_byte *) datap + 16);
1082
1083 /* We change to an absolute value. */
1084 value += addr;
1085 }
1086 break;
1087
1088 case R_MMIX_JMP:
1089 /* This one is a little special. If we get here on a non-relaxing
1090 link, and the destination is actually in range, we don't need to
1091 execute the nops.
1092 If so, we fall through to the bit-fiddling relocs.
1093
1094 FIXME: bfd_check_overflow seems broken; the relocation is
1095 rightshifted before testing, so supply a zero rightshift. */
1096
1097 if (! ((value & 3) == 0
1098 && (r = bfd_check_overflow (complain_overflow_signed,
1099 howto->bitsize,
1100 0,
1101 bfd_arch_bits_per_address (abfd),
1102 value)) == bfd_reloc_ok))
1103 {
1104 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1105 modified below, and put a "GO $255,$255,0" after the
1106 address-loading sequence. */
1107 bfd_put_32 (abfd,
1108 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1109 | 0xffff00,
1110 (bfd_byte *) datap + 16);
1111
1112 /* We change to an absolute value. */
1113 value += addr;
1114 break;
1115 }
1116 /* FALLTHROUGH. */
1117 case R_MMIX_ADDR19:
1118 case R_MMIX_ADDR27:
1119 pcrel_mmix_reloc_fits:
1120 /* These must be in range, or else we emit an error. */
1121 if ((value & 3) == 0
1122 /* Note rightshift 0; see above. */
1123 && (r = bfd_check_overflow (complain_overflow_signed,
1124 howto->bitsize,
1125 0,
1126 bfd_arch_bits_per_address (abfd),
1127 value)) == bfd_reloc_ok)
1128 {
1129 bfd_vma in1
1130 = bfd_get_32 (abfd, (bfd_byte *) datap);
1131 bfd_vma highbit;
1132
1133 if ((bfd_signed_vma) value < 0)
1134 {
1135 highbit = 1 << 24;
1136 value += (1 << (howto->bitsize - 1));
1137 }
1138 else
1139 highbit = 0;
1140
1141 value >>= 2;
1142
1143 bfd_put_32 (abfd,
1144 (in1 & howto->src_mask)
1145 | highbit
1146 | (value & howto->dst_mask),
1147 (bfd_byte *) datap);
1148
1149 return bfd_reloc_ok;
1150 }
1151 else
1152 return bfd_reloc_overflow;
1153
1154 case R_MMIX_BASE_PLUS_OFFSET:
1155 {
1156 struct bpo_reloc_section_info *bpodata
1157 = mmix_elf_section_data (isec)->bpo.reloc;
1158 asection *bpo_greg_section
1159 = bpodata->bpo_greg_section;
1160 struct bpo_greg_section_info *gregdata
1161 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1162 size_t bpo_index
1163 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1164
1165 /* A consistency check: The value we now have in "relocation" must
1166 be the same as the value we stored for that relocation. It
1167 doesn't cost much, so can be left in at all times. */
1168 if (value != gregdata->reloc_request[bpo_index].value)
1169 {
1170 (*_bfd_error_handler)
1171 (_("%s: Internal inconsistency error for value for\n\
1172 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1173 bfd_get_filename (isec->owner),
1174 (unsigned long) (value >> 32), (unsigned long) value,
1175 (unsigned long) (gregdata->reloc_request[bpo_index].value
1176 >> 32),
1177 (unsigned long) gregdata->reloc_request[bpo_index].value);
1178 bfd_set_error (bfd_error_bad_value);
1179 return bfd_reloc_overflow;
1180 }
1181
1182 /* Then store the register number and offset for that register
1183 into datap and datap + 1 respectively. */
1184 bfd_put_8 (abfd,
1185 gregdata->reloc_request[bpo_index].regindex
1186 + bpo_greg_section->output_section->vma / 8,
1187 datap);
1188 bfd_put_8 (abfd,
1189 gregdata->reloc_request[bpo_index].offset,
1190 ((unsigned char *) datap) + 1);
1191 return bfd_reloc_ok;
1192 }
1193
1194 case R_MMIX_REG_OR_BYTE:
1195 case R_MMIX_REG:
1196 if (value > 255)
1197 return bfd_reloc_overflow;
1198 bfd_put_8 (abfd, value, datap);
1199 return bfd_reloc_ok;
1200
1201 default:
1202 BAD_CASE (howto->type);
1203 }
1204
1205 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1206 sequence. */
1207
1208 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1209 everything that looks strange. */
1210 if (value & 3)
1211 flag = bfd_reloc_overflow;
1212
1213 bfd_put_32 (abfd,
1214 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1215 (bfd_byte *) datap + offs);
1216 bfd_put_32 (abfd,
1217 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1218 (bfd_byte *) datap + offs + 4);
1219 bfd_put_32 (abfd,
1220 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1221 (bfd_byte *) datap + offs + 8);
1222 bfd_put_32 (abfd,
1223 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1224 (bfd_byte *) datap + offs + 12);
1225
1226 return flag;
1227 }
1228
1229 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1230
1231 static void
1232 mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1233 bfd *abfd ATTRIBUTE_UNUSED;
1234 arelent *cache_ptr;
1235 Elf_Internal_Rela *dst;
1236 {
1237 unsigned int r_type;
1238
1239 r_type = ELF64_R_TYPE (dst->r_info);
1240 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1241 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1242 }
1243
1244 /* Any MMIX-specific relocation gets here at assembly time or when linking
1245 to other formats (such as mmo); this is the relocation function from
1246 the reloc_table. We don't get here for final pure ELF linking. */
1247
1248 static bfd_reloc_status_type
1249 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1250 output_bfd, error_message)
1251 bfd *abfd;
1252 arelent *reloc_entry;
1253 asymbol *symbol;
1254 PTR data;
1255 asection *input_section;
1256 bfd *output_bfd;
1257 char **error_message ATTRIBUTE_UNUSED;
1258 {
1259 bfd_vma relocation;
1260 bfd_reloc_status_type r;
1261 asection *reloc_target_output_section;
1262 bfd_reloc_status_type flag = bfd_reloc_ok;
1263 bfd_vma output_base = 0;
1264 bfd_vma addr;
1265
1266 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1267 input_section, output_bfd, error_message);
1268
1269 /* If that was all that was needed (i.e. this isn't a final link, only
1270 some segment adjustments), we're done. */
1271 if (r != bfd_reloc_continue)
1272 return r;
1273
1274 if (bfd_is_und_section (symbol->section)
1275 && (symbol->flags & BSF_WEAK) == 0
1276 && output_bfd == (bfd *) NULL)
1277 return bfd_reloc_undefined;
1278
1279 /* Is the address of the relocation really within the section? */
1280 if (reloc_entry->address > input_section->_cooked_size)
1281 return bfd_reloc_outofrange;
1282
1283 /* Work out which section the relocation is targeted at and the
1284 initial relocation command value. */
1285
1286 /* Get symbol value. (Common symbols are special.) */
1287 if (bfd_is_com_section (symbol->section))
1288 relocation = 0;
1289 else
1290 relocation = symbol->value;
1291
1292 reloc_target_output_section = bfd_get_output_section (symbol);
1293
1294 /* Here the variable relocation holds the final address of the symbol we
1295 are relocating against, plus any addend. */
1296 if (output_bfd)
1297 output_base = 0;
1298 else
1299 output_base = reloc_target_output_section->vma;
1300
1301 relocation += output_base + symbol->section->output_offset;
1302
1303 /* Get position of relocation. */
1304 addr = (reloc_entry->address + input_section->output_section->vma
1305 + input_section->output_offset);
1306 if (output_bfd != (bfd *) NULL)
1307 {
1308 /* Add in supplied addend. */
1309 relocation += reloc_entry->addend;
1310
1311 /* This is a partial relocation, and we want to apply the
1312 relocation to the reloc entry rather than the raw data.
1313 Modify the reloc inplace to reflect what we now know. */
1314 reloc_entry->addend = relocation;
1315 reloc_entry->address += input_section->output_offset;
1316 return flag;
1317 }
1318
1319 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1320 data, reloc_entry->address,
1321 reloc_entry->addend, relocation,
1322 bfd_asymbol_name (symbol),
1323 reloc_target_output_section);
1324 }
1325 \f
1326 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1327 for guidance if you're thinking of copying this. */
1328
1329 static bfd_boolean
1330 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1331 contents, relocs, local_syms, local_sections)
1332 bfd *output_bfd ATTRIBUTE_UNUSED;
1333 struct bfd_link_info *info;
1334 bfd *input_bfd;
1335 asection *input_section;
1336 bfd_byte *contents;
1337 Elf_Internal_Rela *relocs;
1338 Elf_Internal_Sym *local_syms;
1339 asection **local_sections;
1340 {
1341 Elf_Internal_Shdr *symtab_hdr;
1342 struct elf_link_hash_entry **sym_hashes;
1343 Elf_Internal_Rela *rel;
1344 Elf_Internal_Rela *relend;
1345 bfd_size_type raw_size
1346 = (input_section->_raw_size
1347 - mmix_elf_section_data (input_section)->pjs.n_pushj_relocs
1348 * MAX_PUSHJ_STUB_SIZE);
1349 size_t pjsno = 0;
1350
1351 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1352 sym_hashes = elf_sym_hashes (input_bfd);
1353 relend = relocs + input_section->reloc_count;
1354
1355 for (rel = relocs; rel < relend; rel ++)
1356 {
1357 reloc_howto_type *howto;
1358 unsigned long r_symndx;
1359 Elf_Internal_Sym *sym;
1360 asection *sec;
1361 struct elf_link_hash_entry *h;
1362 bfd_vma relocation;
1363 bfd_reloc_status_type r;
1364 const char *name = NULL;
1365 int r_type;
1366 bfd_boolean undefined_signalled = FALSE;
1367
1368 r_type = ELF64_R_TYPE (rel->r_info);
1369
1370 if (r_type == R_MMIX_GNU_VTINHERIT
1371 || r_type == R_MMIX_GNU_VTENTRY)
1372 continue;
1373
1374 r_symndx = ELF64_R_SYM (rel->r_info);
1375
1376 if (info->relocatable)
1377 {
1378 /* This is a relocatable link. For most relocs we don't have to
1379 change anything, unless the reloc is against a section
1380 symbol, in which case we have to adjust according to where
1381 the section symbol winds up in the output section. */
1382 if (r_symndx < symtab_hdr->sh_info)
1383 {
1384 sym = local_syms + r_symndx;
1385
1386 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1387 {
1388 sec = local_sections [r_symndx];
1389 rel->r_addend += sec->output_offset + sym->st_value;
1390 }
1391 }
1392
1393 /* For PUSHJ stub relocs however, we may need to change the
1394 reloc and the section contents, if the reloc doesn't reach
1395 beyond the end of the output section and previous stubs.
1396 Then we change the section contents to be a PUSHJ to the end
1397 of the input section plus stubs (we can do that without using
1398 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1399 at the stub location. */
1400 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1401 {
1402 /* We've already checked whether we need a stub; use that
1403 knowledge. */
1404 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1405 != 0)
1406 {
1407 Elf_Internal_Rela relcpy;
1408
1409 if (mmix_elf_section_data (input_section)
1410 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1411 abort ();
1412
1413 /* There's already a PUSHJ insn there, so just fill in
1414 the offset bits to the stub. */
1415 if (mmix_final_link_relocate (elf_mmix_howto_table
1416 + R_MMIX_ADDR19,
1417 input_section,
1418 contents,
1419 rel->r_offset,
1420 0,
1421 input_section
1422 ->output_section->vma
1423 + input_section->output_offset
1424 + raw_size
1425 + mmix_elf_section_data (input_section)
1426 ->pjs.stub_offset,
1427 NULL, NULL) != bfd_reloc_ok)
1428 return FALSE;
1429
1430 /* Put a JMP insn at the stub; it goes with the
1431 R_MMIX_JMP reloc. */
1432 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1433 contents
1434 + raw_size
1435 + mmix_elf_section_data (input_section)
1436 ->pjs.stub_offset);
1437
1438 /* Change the reloc to be at the stub, and to a full
1439 R_MMIX_JMP reloc. */
1440 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1441 rel->r_offset
1442 = (raw_size
1443 + mmix_elf_section_data (input_section)
1444 ->pjs.stub_offset);
1445
1446 mmix_elf_section_data (input_section)->pjs.stub_offset
1447 += MAX_PUSHJ_STUB_SIZE;
1448
1449 /* Shift this reloc to the end of the relocs to maintain
1450 the r_offset sorted reloc order. */
1451 relcpy = *rel;
1452 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1453 relend[-1] = relcpy;
1454
1455 /* Back up one reloc, or else we'd skip the next reloc
1456 in turn. */
1457 rel--;
1458 }
1459
1460 pjsno++;
1461 }
1462 continue;
1463 }
1464
1465 /* This is a final link. */
1466 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1467 h = NULL;
1468 sym = NULL;
1469 sec = NULL;
1470
1471 if (r_symndx < symtab_hdr->sh_info)
1472 {
1473 sym = local_syms + r_symndx;
1474 sec = local_sections [r_symndx];
1475 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1476
1477 name = bfd_elf_string_from_elf_section
1478 (input_bfd, symtab_hdr->sh_link, sym->st_name);
1479 name = (name == NULL) ? bfd_section_name (input_bfd, sec) : name;
1480 }
1481 else
1482 {
1483 bfd_boolean unresolved_reloc;
1484
1485 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1486 r_symndx, symtab_hdr, sym_hashes,
1487 h, sec, relocation,
1488 unresolved_reloc, undefined_signalled);
1489 }
1490
1491 r = mmix_final_link_relocate (howto, input_section,
1492 contents, rel->r_offset,
1493 rel->r_addend, relocation, name, sec);
1494
1495 if (r != bfd_reloc_ok)
1496 {
1497 bfd_boolean check_ok = TRUE;
1498 const char * msg = (const char *) NULL;
1499
1500 switch (r)
1501 {
1502 case bfd_reloc_overflow:
1503 check_ok = info->callbacks->reloc_overflow
1504 (info, name, howto->name, (bfd_vma) 0,
1505 input_bfd, input_section, rel->r_offset);
1506 break;
1507
1508 case bfd_reloc_undefined:
1509 /* We may have sent this message above. */
1510 if (! undefined_signalled)
1511 check_ok = info->callbacks->undefined_symbol
1512 (info, name, input_bfd, input_section, rel->r_offset,
1513 TRUE);
1514 undefined_signalled = TRUE;
1515 break;
1516
1517 case bfd_reloc_outofrange:
1518 msg = _("internal error: out of range error");
1519 break;
1520
1521 case bfd_reloc_notsupported:
1522 msg = _("internal error: unsupported relocation error");
1523 break;
1524
1525 case bfd_reloc_dangerous:
1526 msg = _("internal error: dangerous relocation");
1527 break;
1528
1529 default:
1530 msg = _("internal error: unknown error");
1531 break;
1532 }
1533
1534 if (msg)
1535 check_ok = info->callbacks->warning
1536 (info, msg, name, input_bfd, input_section, rel->r_offset);
1537
1538 if (! check_ok)
1539 return FALSE;
1540 }
1541 }
1542
1543 return TRUE;
1544 }
1545 \f
1546 /* Perform a single relocation. By default we use the standard BFD
1547 routines. A few relocs we have to do ourselves. */
1548
1549 static bfd_reloc_status_type
1550 mmix_final_link_relocate (howto, input_section, contents,
1551 r_offset, r_addend, relocation, symname, symsec)
1552 reloc_howto_type *howto;
1553 asection *input_section;
1554 bfd_byte *contents;
1555 bfd_vma r_offset;
1556 bfd_signed_vma r_addend;
1557 bfd_vma relocation;
1558 const char *symname;
1559 asection *symsec;
1560 {
1561 bfd_reloc_status_type r = bfd_reloc_ok;
1562 bfd_vma addr
1563 = (input_section->output_section->vma
1564 + input_section->output_offset
1565 + r_offset);
1566 bfd_signed_vma srel
1567 = (bfd_signed_vma) relocation + r_addend;
1568
1569 switch (howto->type)
1570 {
1571 /* All these are PC-relative. */
1572 case R_MMIX_PUSHJ_STUBBABLE:
1573 case R_MMIX_PUSHJ:
1574 case R_MMIX_CBRANCH:
1575 case R_MMIX_ADDR19:
1576 case R_MMIX_GETA:
1577 case R_MMIX_ADDR27:
1578 case R_MMIX_JMP:
1579 contents += r_offset;
1580
1581 srel -= (input_section->output_section->vma
1582 + input_section->output_offset
1583 + r_offset);
1584
1585 r = mmix_elf_perform_relocation (input_section, howto, contents,
1586 addr, srel);
1587 break;
1588
1589 case R_MMIX_BASE_PLUS_OFFSET:
1590 if (symsec == NULL)
1591 return bfd_reloc_undefined;
1592
1593 /* Check that we're not relocating against a register symbol. */
1594 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1595 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1596 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1597 MMIX_REG_SECTION_NAME) == 0)
1598 {
1599 /* Note: This is separated out into two messages in order
1600 to ease the translation into other languages. */
1601 if (symname == NULL || *symname == 0)
1602 (*_bfd_error_handler)
1603 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1604 bfd_get_filename (input_section->owner),
1605 bfd_get_section_name (symsec->owner, symsec));
1606 else
1607 (*_bfd_error_handler)
1608 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1609 bfd_get_filename (input_section->owner), symname,
1610 bfd_get_section_name (symsec->owner, symsec));
1611 return bfd_reloc_overflow;
1612 }
1613 goto do_mmix_reloc;
1614
1615 case R_MMIX_REG_OR_BYTE:
1616 case R_MMIX_REG:
1617 /* For now, we handle these alike. They must refer to an register
1618 symbol, which is either relative to the register section and in
1619 the range 0..255, or is in the register contents section with vma
1620 regno * 8. */
1621
1622 /* FIXME: A better way to check for reg contents section?
1623 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1624 if (symsec == NULL)
1625 return bfd_reloc_undefined;
1626
1627 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1628 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1629 {
1630 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1631 {
1632 /* The bfd_reloc_outofrange return value, though intuitively
1633 a better value, will not get us an error. */
1634 return bfd_reloc_overflow;
1635 }
1636 srel /= 8;
1637 }
1638 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1639 MMIX_REG_SECTION_NAME) == 0)
1640 {
1641 if (srel < 0 || srel > 255)
1642 /* The bfd_reloc_outofrange return value, though intuitively a
1643 better value, will not get us an error. */
1644 return bfd_reloc_overflow;
1645 }
1646 else
1647 {
1648 /* Note: This is separated out into two messages in order
1649 to ease the translation into other languages. */
1650 if (symname == NULL || *symname == 0)
1651 (*_bfd_error_handler)
1652 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1653 bfd_get_filename (input_section->owner),
1654 bfd_get_section_name (symsec->owner, symsec));
1655 else
1656 (*_bfd_error_handler)
1657 (_("%s: register relocation against non-register symbol: %s in %s"),
1658 bfd_get_filename (input_section->owner), symname,
1659 bfd_get_section_name (symsec->owner, symsec));
1660
1661 /* The bfd_reloc_outofrange return value, though intuitively a
1662 better value, will not get us an error. */
1663 return bfd_reloc_overflow;
1664 }
1665 do_mmix_reloc:
1666 contents += r_offset;
1667 r = mmix_elf_perform_relocation (input_section, howto, contents,
1668 addr, srel);
1669 break;
1670
1671 case R_MMIX_LOCAL:
1672 /* This isn't a real relocation, it's just an assertion that the
1673 final relocation value corresponds to a local register. We
1674 ignore the actual relocation; nothing is changed. */
1675 {
1676 asection *regsec
1677 = bfd_get_section_by_name (input_section->output_section->owner,
1678 MMIX_REG_CONTENTS_SECTION_NAME);
1679 bfd_vma first_global;
1680
1681 /* Check that this is an absolute value, or a reference to the
1682 register contents section or the register (symbol) section.
1683 Absolute numbers can get here as undefined section. Undefined
1684 symbols are signalled elsewhere, so there's no conflict in us
1685 accidentally handling it. */
1686 if (!bfd_is_abs_section (symsec)
1687 && !bfd_is_und_section (symsec)
1688 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1689 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1690 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1691 MMIX_REG_SECTION_NAME) != 0)
1692 {
1693 (*_bfd_error_handler)
1694 (_("%s: directive LOCAL valid only with a register or absolute value"),
1695 bfd_get_filename (input_section->owner));
1696
1697 return bfd_reloc_overflow;
1698 }
1699
1700 /* If we don't have a register contents section, then $255 is the
1701 first global register. */
1702 if (regsec == NULL)
1703 first_global = 255;
1704 else
1705 {
1706 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1707 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1708 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1709 {
1710 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1711 /* The bfd_reloc_outofrange return value, though
1712 intuitively a better value, will not get us an error. */
1713 return bfd_reloc_overflow;
1714 srel /= 8;
1715 }
1716 }
1717
1718 if ((bfd_vma) srel >= first_global)
1719 {
1720 /* FIXME: Better error message. */
1721 (*_bfd_error_handler)
1722 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1723 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1724
1725 return bfd_reloc_overflow;
1726 }
1727 }
1728 r = bfd_reloc_ok;
1729 break;
1730
1731 default:
1732 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1733 contents, r_offset,
1734 relocation, r_addend);
1735 }
1736
1737 return r;
1738 }
1739 \f
1740 /* Return the section that should be marked against GC for a given
1741 relocation. */
1742
1743 static asection *
1744 mmix_elf_gc_mark_hook (sec, info, rel, h, sym)
1745 asection *sec;
1746 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1747 Elf_Internal_Rela *rel;
1748 struct elf_link_hash_entry *h;
1749 Elf_Internal_Sym *sym;
1750 {
1751 if (h != NULL)
1752 {
1753 switch (ELF64_R_TYPE (rel->r_info))
1754 {
1755 case R_MMIX_GNU_VTINHERIT:
1756 case R_MMIX_GNU_VTENTRY:
1757 break;
1758
1759 default:
1760 switch (h->root.type)
1761 {
1762 case bfd_link_hash_defined:
1763 case bfd_link_hash_defweak:
1764 return h->root.u.def.section;
1765
1766 case bfd_link_hash_common:
1767 return h->root.u.c.p->section;
1768
1769 default:
1770 break;
1771 }
1772 }
1773 }
1774 else
1775 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1776
1777 return NULL;
1778 }
1779
1780 /* Update relocation info for a GC-excluded section. We could supposedly
1781 perform the allocation after GC, but there's no suitable hook between
1782 GC (or section merge) and the point when all input sections must be
1783 present. Better to waste some memory and (perhaps) a little time. */
1784
1785 static bfd_boolean
1786 mmix_elf_gc_sweep_hook (abfd, info, sec, relocs)
1787 bfd *abfd ATTRIBUTE_UNUSED;
1788 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1789 asection *sec ATTRIBUTE_UNUSED;
1790 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED;
1791 {
1792 struct bpo_reloc_section_info *bpodata
1793 = mmix_elf_section_data (sec)->bpo.reloc;
1794 asection *allocated_gregs_section;
1795
1796 /* If no bpodata here, we have nothing to do. */
1797 if (bpodata == NULL)
1798 return TRUE;
1799
1800 allocated_gregs_section = bpodata->bpo_greg_section;
1801
1802 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1803 -= bpodata->n_bpo_relocs_this_section;
1804
1805 return TRUE;
1806 }
1807 \f
1808 /* Sort register relocs to come before expanding relocs. */
1809
1810 static int
1811 mmix_elf_sort_relocs (p1, p2)
1812 const PTR p1;
1813 const PTR p2;
1814 {
1815 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1816 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1817 int r1_is_reg, r2_is_reg;
1818
1819 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1820 insns. */
1821 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1822 return 1;
1823 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1824 return -1;
1825
1826 r1_is_reg
1827 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1828 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1829 r2_is_reg
1830 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1831 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1832 if (r1_is_reg != r2_is_reg)
1833 return r2_is_reg - r1_is_reg;
1834
1835 /* Neither or both are register relocs. Then sort on full offset. */
1836 if (r1->r_offset > r2->r_offset)
1837 return 1;
1838 else if (r1->r_offset < r2->r_offset)
1839 return -1;
1840 return 0;
1841 }
1842
1843 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1844
1845 static bfd_boolean
1846 mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1847 bfd *abfd;
1848 struct bfd_link_info *info;
1849 asection *sec;
1850 const Elf_Internal_Rela *relocs;
1851 {
1852 bfd *bpo_greg_owner = NULL;
1853 asection *allocated_gregs_section = NULL;
1854 struct bpo_greg_section_info *gregdata = NULL;
1855 struct bpo_reloc_section_info *bpodata = NULL;
1856 const Elf_Internal_Rela *rel;
1857 const Elf_Internal_Rela *rel_end;
1858
1859 /* We currently have to abuse this COFF-specific member, since there's
1860 no target-machine-dedicated member. There's no alternative outside
1861 the bfd_link_info struct; we can't specialize a hash-table since
1862 they're different between ELF and mmo. */
1863 bpo_greg_owner = (bfd *) info->base_file;
1864
1865 rel_end = relocs + sec->reloc_count;
1866 for (rel = relocs; rel < rel_end; rel++)
1867 {
1868 switch (ELF64_R_TYPE (rel->r_info))
1869 {
1870 /* This relocation causes a GREG allocation. We need to count
1871 them, and we need to create a section for them, so we need an
1872 object to fake as the owner of that section. We can't use
1873 the ELF dynobj for this, since the ELF bits assume lots of
1874 DSO-related stuff if that member is non-NULL. */
1875 case R_MMIX_BASE_PLUS_OFFSET:
1876 /* We don't do anything with this reloc for a relocatable link. */
1877 if (info->relocatable)
1878 break;
1879
1880 if (bpo_greg_owner == NULL)
1881 {
1882 bpo_greg_owner = abfd;
1883 info->base_file = (PTR) bpo_greg_owner;
1884 }
1885
1886 if (allocated_gregs_section == NULL)
1887 allocated_gregs_section
1888 = bfd_get_section_by_name (bpo_greg_owner,
1889 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1890
1891 if (allocated_gregs_section == NULL)
1892 {
1893 allocated_gregs_section
1894 = bfd_make_section (bpo_greg_owner,
1895 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1896 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1897 treated like any other section, and we'd get errors for
1898 address overlap with the text section. Let's set none of
1899 those flags, as that is what currently happens for usual
1900 GREG allocations, and that works. */
1901 if (allocated_gregs_section == NULL
1902 || !bfd_set_section_flags (bpo_greg_owner,
1903 allocated_gregs_section,
1904 (SEC_HAS_CONTENTS
1905 | SEC_IN_MEMORY
1906 | SEC_LINKER_CREATED))
1907 || !bfd_set_section_alignment (bpo_greg_owner,
1908 allocated_gregs_section,
1909 3))
1910 return FALSE;
1911
1912 gregdata = (struct bpo_greg_section_info *)
1913 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1914 if (gregdata == NULL)
1915 return FALSE;
1916 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1917 = gregdata;
1918 }
1919 else if (gregdata == NULL)
1920 gregdata
1921 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1922
1923 /* Get ourselves some auxiliary info for the BPO-relocs. */
1924 if (bpodata == NULL)
1925 {
1926 /* No use doing a separate iteration pass to find the upper
1927 limit - just use the number of relocs. */
1928 bpodata = (struct bpo_reloc_section_info *)
1929 bfd_alloc (bpo_greg_owner,
1930 sizeof (struct bpo_reloc_section_info)
1931 * (sec->reloc_count + 1));
1932 if (bpodata == NULL)
1933 return FALSE;
1934 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1935 bpodata->first_base_plus_offset_reloc
1936 = bpodata->bpo_index
1937 = gregdata->n_max_bpo_relocs;
1938 bpodata->bpo_greg_section
1939 = allocated_gregs_section;
1940 bpodata->n_bpo_relocs_this_section = 0;
1941 }
1942
1943 bpodata->n_bpo_relocs_this_section++;
1944 gregdata->n_max_bpo_relocs++;
1945
1946 /* We don't get another chance to set this before GC; we've not
1947 set up any hook that runs before GC. */
1948 gregdata->n_bpo_relocs
1949 = gregdata->n_max_bpo_relocs;
1950 break;
1951
1952 case R_MMIX_PUSHJ_STUBBABLE:
1953 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1954 break;
1955 }
1956 }
1957
1958 /* Allocate per-reloc stub storage and initialize it to the max stub
1959 size. */
1960 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1961 {
1962 size_t i;
1963
1964 mmix_elf_section_data (sec)->pjs.stub_size
1965 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1966 * sizeof (mmix_elf_section_data (sec)
1967 ->pjs.stub_size[0]));
1968 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1969 return FALSE;
1970
1971 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1972 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1973 }
1974
1975 return TRUE;
1976 }
1977
1978 /* Look through the relocs for a section during the first phase. */
1979
1980 static bfd_boolean
1981 mmix_elf_check_relocs (abfd, info, sec, relocs)
1982 bfd *abfd;
1983 struct bfd_link_info *info;
1984 asection *sec;
1985 const Elf_Internal_Rela *relocs;
1986 {
1987 Elf_Internal_Shdr *symtab_hdr;
1988 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1989 const Elf_Internal_Rela *rel;
1990 const Elf_Internal_Rela *rel_end;
1991
1992 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1993 sym_hashes = elf_sym_hashes (abfd);
1994 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1995 if (!elf_bad_symtab (abfd))
1996 sym_hashes_end -= symtab_hdr->sh_info;
1997
1998 /* First we sort the relocs so that any register relocs come before
1999 expansion-relocs to the same insn. FIXME: Not done for mmo. */
2000 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
2001 mmix_elf_sort_relocs);
2002
2003 /* Do the common part. */
2004 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
2005 return FALSE;
2006
2007 if (info->relocatable)
2008 return TRUE;
2009
2010 rel_end = relocs + sec->reloc_count;
2011 for (rel = relocs; rel < rel_end; rel++)
2012 {
2013 struct elf_link_hash_entry *h;
2014 unsigned long r_symndx;
2015
2016 r_symndx = ELF64_R_SYM (rel->r_info);
2017 if (r_symndx < symtab_hdr->sh_info)
2018 h = NULL;
2019 else
2020 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2021
2022 switch (ELF64_R_TYPE (rel->r_info))
2023 {
2024 /* This relocation describes the C++ object vtable hierarchy.
2025 Reconstruct it for later use during GC. */
2026 case R_MMIX_GNU_VTINHERIT:
2027 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2028 return FALSE;
2029 break;
2030
2031 /* This relocation describes which C++ vtable entries are actually
2032 used. Record for later use during GC. */
2033 case R_MMIX_GNU_VTENTRY:
2034 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2035 return FALSE;
2036 break;
2037 }
2038 }
2039
2040 return TRUE;
2041 }
2042
2043 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2044 Copied from elf_link_add_object_symbols. */
2045
2046 bfd_boolean
2047 _bfd_mmix_check_all_relocs (abfd, info)
2048 bfd *abfd;
2049 struct bfd_link_info *info;
2050 {
2051 asection *o;
2052
2053 for (o = abfd->sections; o != NULL; o = o->next)
2054 {
2055 Elf_Internal_Rela *internal_relocs;
2056 bfd_boolean ok;
2057
2058 if ((o->flags & SEC_RELOC) == 0
2059 || o->reloc_count == 0
2060 || ((info->strip == strip_all || info->strip == strip_debugger)
2061 && (o->flags & SEC_DEBUGGING) != 0)
2062 || bfd_is_abs_section (o->output_section))
2063 continue;
2064
2065 internal_relocs
2066 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2067 (Elf_Internal_Rela *) NULL,
2068 info->keep_memory);
2069 if (internal_relocs == NULL)
2070 return FALSE;
2071
2072 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2073
2074 if (! info->keep_memory)
2075 free (internal_relocs);
2076
2077 if (! ok)
2078 return FALSE;
2079 }
2080
2081 return TRUE;
2082 }
2083 \f
2084 /* Change symbols relative to the reg contents section to instead be to
2085 the register section, and scale them down to correspond to the register
2086 number. */
2087
2088 static bfd_boolean
2089 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2090 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2091 const char *name ATTRIBUTE_UNUSED;
2092 Elf_Internal_Sym *sym;
2093 asection *input_sec;
2094 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2095 {
2096 if (input_sec != NULL
2097 && input_sec->name != NULL
2098 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2099 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2100 {
2101 sym->st_value /= 8;
2102 sym->st_shndx = SHN_REGISTER;
2103 }
2104
2105 return TRUE;
2106 }
2107
2108 /* We fake a register section that holds values that are register numbers.
2109 Having a SHN_REGISTER and register section translates better to other
2110 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2111 This section faking is based on a construct in elf32-mips.c. */
2112 static asection mmix_elf_reg_section;
2113 static asymbol mmix_elf_reg_section_symbol;
2114 static asymbol *mmix_elf_reg_section_symbol_ptr;
2115
2116 /* Handle the special section numbers that a symbol may use. */
2117
2118 void
2119 mmix_elf_symbol_processing (abfd, asym)
2120 bfd *abfd ATTRIBUTE_UNUSED;
2121 asymbol *asym;
2122 {
2123 elf_symbol_type *elfsym;
2124
2125 elfsym = (elf_symbol_type *) asym;
2126 switch (elfsym->internal_elf_sym.st_shndx)
2127 {
2128 case SHN_REGISTER:
2129 if (mmix_elf_reg_section.name == NULL)
2130 {
2131 /* Initialize the register section. */
2132 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2133 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2134 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2135 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2136 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2137 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2138 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2139 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2140 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2141 }
2142 asym->section = &mmix_elf_reg_section;
2143 break;
2144
2145 default:
2146 break;
2147 }
2148 }
2149
2150 /* Given a BFD section, try to locate the corresponding ELF section
2151 index. */
2152
2153 static bfd_boolean
2154 mmix_elf_section_from_bfd_section (abfd, sec, retval)
2155 bfd * abfd ATTRIBUTE_UNUSED;
2156 asection * sec;
2157 int * retval;
2158 {
2159 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2160 *retval = SHN_REGISTER;
2161 else
2162 return FALSE;
2163
2164 return TRUE;
2165 }
2166
2167 /* Hook called by the linker routine which adds symbols from an object
2168 file. We must handle the special SHN_REGISTER section number here.
2169
2170 We also check that we only have *one* each of the section-start
2171 symbols, since otherwise having two with the same value would cause
2172 them to be "merged", but with the contents serialized. */
2173
2174 bfd_boolean
2175 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2176 bfd *abfd;
2177 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2178 Elf_Internal_Sym *sym;
2179 const char **namep ATTRIBUTE_UNUSED;
2180 flagword *flagsp ATTRIBUTE_UNUSED;
2181 asection **secp;
2182 bfd_vma *valp ATTRIBUTE_UNUSED;
2183 {
2184 if (sym->st_shndx == SHN_REGISTER)
2185 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2186 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2187 && strncmp (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX,
2188 strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) == 0)
2189 {
2190 /* See if we have another one. */
2191 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2192 *namep,
2193 FALSE,
2194 FALSE,
2195 FALSE);
2196
2197 if (h != NULL && h->type != bfd_link_hash_undefined)
2198 {
2199 /* How do we get the asymbol (or really: the filename) from h?
2200 h->u.def.section->owner is NULL. */
2201 ((*_bfd_error_handler)
2202 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2203 bfd_get_filename (abfd), *namep,
2204 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2205 bfd_set_error (bfd_error_bad_value);
2206 return FALSE;
2207 }
2208 }
2209
2210 return TRUE;
2211 }
2212
2213 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2214
2215 bfd_boolean
2216 mmix_elf_is_local_label_name (abfd, name)
2217 bfd *abfd;
2218 const char *name;
2219 {
2220 const char *colpos;
2221 int digits;
2222
2223 /* Also include the default local-label definition. */
2224 if (_bfd_elf_is_local_label_name (abfd, name))
2225 return TRUE;
2226
2227 if (*name != 'L')
2228 return FALSE;
2229
2230 /* If there's no ":", or more than one, it's not a local symbol. */
2231 colpos = strchr (name, ':');
2232 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2233 return FALSE;
2234
2235 /* Check that there are remaining characters and that they are digits. */
2236 if (colpos[1] == 0)
2237 return FALSE;
2238
2239 digits = strspn (colpos + 1, "0123456789");
2240 return digits != 0 && colpos[1 + digits] == 0;
2241 }
2242
2243 /* We get rid of the register section here. */
2244
2245 bfd_boolean
2246 mmix_elf_final_link (abfd, info)
2247 bfd *abfd;
2248 struct bfd_link_info *info;
2249 {
2250 /* We never output a register section, though we create one for
2251 temporary measures. Check that nobody entered contents into it. */
2252 asection *reg_section;
2253 asection **secpp;
2254
2255 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2256
2257 if (reg_section != NULL)
2258 {
2259 /* FIXME: Pass error state gracefully. */
2260 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2261 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2262
2263 /* Really remove the section. */
2264 for (secpp = &abfd->sections;
2265 *secpp != reg_section;
2266 secpp = &(*secpp)->next)
2267 ;
2268 bfd_section_list_remove (abfd, secpp);
2269 --abfd->section_count;
2270 }
2271
2272 if (! bfd_elf64_bfd_final_link (abfd, info))
2273 return FALSE;
2274
2275 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2276 the regular linker machinery. We do it here, like other targets with
2277 special sections. */
2278 if (info->base_file != NULL)
2279 {
2280 asection *greg_section
2281 = bfd_get_section_by_name ((bfd *) info->base_file,
2282 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2283 if (!bfd_set_section_contents (abfd,
2284 greg_section->output_section,
2285 greg_section->contents,
2286 (file_ptr) greg_section->output_offset,
2287 greg_section->_cooked_size))
2288 return FALSE;
2289 }
2290 return TRUE;
2291 }
2292
2293 /* We need to include the maximum size of PUSHJ-stubs in the initial
2294 section size. This is expected to shrink during linker relaxation.
2295
2296 You might think that we should set *only* _cooked_size, but that won't
2297 work: section contents allocation will be using _raw_size in mixed
2298 format linking and not enough storage will be allocated. FIXME: That's
2299 a major bug, including the name bfd_get_section_size_before_reloc; it
2300 should be bfd_get_section_size_before_relax. The relaxation functions
2301 set _cooked size. Relaxation happens before relocation. All functions
2302 *after relaxation* should be using _cooked size. */
2303
2304 static void
2305 mmix_set_relaxable_size (abfd, sec, ptr)
2306 bfd *abfd ATTRIBUTE_UNUSED;
2307 asection *sec;
2308 void *ptr;
2309 {
2310 struct bfd_link_info *info = ptr;
2311
2312 /* Make sure we only do this for section where we know we want this,
2313 otherwise we might end up resetting the size of COMMONs. */
2314 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2315 return;
2316
2317 sec->_cooked_size
2318 = (sec->_raw_size
2319 + mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2320 * MAX_PUSHJ_STUB_SIZE);
2321 sec->_raw_size = sec->_cooked_size;
2322
2323 /* For use in relocatable link, we start with a max stubs size. See
2324 mmix_elf_relax_section. */
2325 if (info->relocatable && sec->output_section)
2326 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2327 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2328 * MAX_PUSHJ_STUB_SIZE);
2329 }
2330
2331 /* Initialize stuff for the linker-generated GREGs to match
2332 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2333
2334 bfd_boolean
2335 _bfd_mmix_before_linker_allocation (abfd, info)
2336 bfd *abfd ATTRIBUTE_UNUSED;
2337 struct bfd_link_info *info;
2338 {
2339 asection *bpo_gregs_section;
2340 bfd *bpo_greg_owner;
2341 struct bpo_greg_section_info *gregdata;
2342 size_t n_gregs;
2343 bfd_vma gregs_size;
2344 size_t i;
2345 size_t *bpo_reloc_indexes;
2346 bfd *ibfd;
2347
2348 /* Set the initial size of sections. */
2349 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2350 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2351
2352 /* The bpo_greg_owner bfd is supposed to have been set by
2353 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2354 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2355 bpo_greg_owner = (bfd *) info->base_file;
2356 if (bpo_greg_owner == NULL)
2357 return TRUE;
2358
2359 bpo_gregs_section
2360 = bfd_get_section_by_name (bpo_greg_owner,
2361 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2362
2363 if (bpo_gregs_section == NULL)
2364 return TRUE;
2365
2366 /* We use the target-data handle in the ELF section data. */
2367 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2368 if (gregdata == NULL)
2369 return FALSE;
2370
2371 n_gregs = gregdata->n_bpo_relocs;
2372 gregdata->n_allocated_bpo_gregs = n_gregs;
2373
2374 /* When this reaches zero during relaxation, all entries have been
2375 filled in and the size of the linker gregs can be calculated. */
2376 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2377
2378 /* Set the zeroth-order estimate for the GREGs size. */
2379 gregs_size = n_gregs * 8;
2380
2381 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2382 return FALSE;
2383
2384 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2385 time. Note that we must use the max number ever noted for the array,
2386 since the index numbers were created before GC. */
2387 gregdata->reloc_request
2388 = bfd_zalloc (bpo_greg_owner,
2389 sizeof (struct bpo_reloc_request)
2390 * gregdata->n_max_bpo_relocs);
2391
2392 gregdata->bpo_reloc_indexes
2393 = bpo_reloc_indexes
2394 = bfd_alloc (bpo_greg_owner,
2395 gregdata->n_max_bpo_relocs
2396 * sizeof (size_t));
2397 if (bpo_reloc_indexes == NULL)
2398 return FALSE;
2399
2400 /* The default order is an identity mapping. */
2401 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2402 {
2403 bpo_reloc_indexes[i] = i;
2404 gregdata->reloc_request[i].bpo_reloc_no = i;
2405 }
2406
2407 return TRUE;
2408 }
2409 \f
2410 /* Fill in contents in the linker allocated gregs. Everything is
2411 calculated at this point; we just move the contents into place here. */
2412
2413 bfd_boolean
2414 _bfd_mmix_after_linker_allocation (abfd, link_info)
2415 bfd *abfd ATTRIBUTE_UNUSED;
2416 struct bfd_link_info *link_info;
2417 {
2418 asection *bpo_gregs_section;
2419 bfd *bpo_greg_owner;
2420 struct bpo_greg_section_info *gregdata;
2421 size_t n_gregs;
2422 size_t i, j;
2423 size_t lastreg;
2424 bfd_byte *contents;
2425
2426 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2427 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2428 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2429 bpo_greg_owner = (bfd *) link_info->base_file;
2430 if (bpo_greg_owner == NULL)
2431 return TRUE;
2432
2433 bpo_gregs_section
2434 = bfd_get_section_by_name (bpo_greg_owner,
2435 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2436
2437 /* This can't happen without DSO handling. When DSOs are handled
2438 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2439 section. */
2440 if (bpo_gregs_section == NULL)
2441 return TRUE;
2442
2443 /* We use the target-data handle in the ELF section data. */
2444
2445 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2446 if (gregdata == NULL)
2447 return FALSE;
2448
2449 n_gregs = gregdata->n_allocated_bpo_gregs;
2450
2451 /* We need to have a _raw_size contents even though there's only
2452 _cooked_size worth of data, since the generic relocation machinery
2453 will allocate and copy that much temporarily. */
2454 bpo_gregs_section->contents
2455 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->_raw_size);
2456 if (contents == NULL)
2457 return FALSE;
2458
2459 /* Sanity check: If these numbers mismatch, some relocation has not been
2460 accounted for and the rest of gregdata is probably inconsistent.
2461 It's a bug, but it's more helpful to identify it than segfaulting
2462 below. */
2463 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2464 != gregdata->n_bpo_relocs)
2465 {
2466 (*_bfd_error_handler)
2467 (_("Internal inconsistency: remaining %u != max %u.\n\
2468 Please report this bug."),
2469 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2470 gregdata->n_bpo_relocs);
2471 return FALSE;
2472 }
2473
2474 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2475 if (gregdata->reloc_request[i].regindex != lastreg)
2476 {
2477 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2478 contents + j * 8);
2479 lastreg = gregdata->reloc_request[i].regindex;
2480 j++;
2481 }
2482
2483 return TRUE;
2484 }
2485
2486 /* Sort valid relocs to come before non-valid relocs, then on increasing
2487 value. */
2488
2489 static int
2490 bpo_reloc_request_sort_fn (p1, p2)
2491 const PTR p1;
2492 const PTR p2;
2493 {
2494 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2495 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2496
2497 /* Primary function is validity; non-valid relocs sorted after valid
2498 ones. */
2499 if (r1->valid != r2->valid)
2500 return r2->valid - r1->valid;
2501
2502 /* Then sort on value. Don't simplify and return just the difference of
2503 the values: the upper bits of the 64-bit value would be truncated on
2504 a host with 32-bit ints. */
2505 if (r1->value != r2->value)
2506 return r1->value > r2->value ? 1 : -1;
2507
2508 /* As a last re-sort, use the relocation number, so we get a stable
2509 sort. The *addresses* aren't stable since items are swapped during
2510 sorting. It depends on the qsort implementation if this actually
2511 happens. */
2512 return r1->bpo_reloc_no > r2->bpo_reloc_no
2513 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2514 }
2515
2516 /* For debug use only. Dumps the global register allocations resulting
2517 from base-plus-offset relocs. */
2518
2519 void
2520 mmix_dump_bpo_gregs (link_info, pf)
2521 struct bfd_link_info *link_info;
2522 bfd_error_handler_type pf;
2523 {
2524 bfd *bpo_greg_owner;
2525 asection *bpo_gregs_section;
2526 struct bpo_greg_section_info *gregdata;
2527 unsigned int i;
2528
2529 if (link_info == NULL || link_info->base_file == NULL)
2530 return;
2531
2532 bpo_greg_owner = (bfd *) link_info->base_file;
2533
2534 bpo_gregs_section
2535 = bfd_get_section_by_name (bpo_greg_owner,
2536 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2537
2538 if (bpo_gregs_section == NULL)
2539 return;
2540
2541 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2542 if (gregdata == NULL)
2543 return;
2544
2545 if (pf == NULL)
2546 pf = _bfd_error_handler;
2547
2548 /* These format strings are not translated. They are for debug purposes
2549 only and never displayed to an end user. Should they escape, we
2550 surely want them in original. */
2551 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2552 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2553 gregdata->n_max_bpo_relocs,
2554 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2555 gregdata->n_allocated_bpo_gregs);
2556
2557 if (gregdata->reloc_request)
2558 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2559 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2560 i,
2561 (gregdata->bpo_reloc_indexes != NULL
2562 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2563 gregdata->reloc_request[i].bpo_reloc_no,
2564 gregdata->reloc_request[i].valid,
2565
2566 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2567 (unsigned long) gregdata->reloc_request[i].value,
2568 gregdata->reloc_request[i].regindex,
2569 gregdata->reloc_request[i].offset);
2570 }
2571
2572 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2573 when the last such reloc is done, an index-array is sorted according to
2574 the values and iterated over to produce register numbers (indexed by 0
2575 from the first allocated register number) and offsets for use in real
2576 relocation.
2577
2578 PUSHJ stub accounting is also done here.
2579
2580 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2581
2582 static bfd_boolean
2583 mmix_elf_relax_section (abfd, sec, link_info, again)
2584 bfd *abfd;
2585 asection *sec;
2586 struct bfd_link_info *link_info;
2587 bfd_boolean *again;
2588 {
2589 Elf_Internal_Shdr *symtab_hdr;
2590 Elf_Internal_Rela *internal_relocs;
2591 Elf_Internal_Rela *irel, *irelend;
2592 asection *bpo_gregs_section = NULL;
2593 struct bpo_greg_section_info *gregdata;
2594 struct bpo_reloc_section_info *bpodata
2595 = mmix_elf_section_data (sec)->bpo.reloc;
2596 /* The initialization is to quiet compiler warnings. The value is to
2597 spot a missing actual initialization. */
2598 size_t bpono = (size_t) -1;
2599 size_t pjsno = 0;
2600 bfd *bpo_greg_owner;
2601 Elf_Internal_Sym *isymbuf = NULL;
2602 bfd_size_type raw_size
2603 = (sec->_raw_size
2604 - mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2605 * MAX_PUSHJ_STUB_SIZE);
2606
2607 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2608
2609 /* Assume nothing changes. */
2610 *again = FALSE;
2611
2612 /* If this is the first time we have been called for this section,
2613 initialize the cooked size. */
2614 if (sec->_cooked_size == 0 && sec->_raw_size != 0)
2615 abort ();
2616
2617 /* We don't have to do anything if this section does not have relocs, or
2618 if this is not a code section. */
2619 if ((sec->flags & SEC_RELOC) == 0
2620 || sec->reloc_count == 0
2621 || (sec->flags & SEC_CODE) == 0
2622 || (sec->flags & SEC_LINKER_CREATED) != 0
2623 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2624 then nothing to do. */
2625 || (bpodata == NULL
2626 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2627 return TRUE;
2628
2629 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2630
2631 bpo_greg_owner = (bfd *) link_info->base_file;
2632
2633 if (bpodata != NULL)
2634 {
2635 bpo_gregs_section = bpodata->bpo_greg_section;
2636 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2637 bpono = bpodata->first_base_plus_offset_reloc;
2638 }
2639 else
2640 gregdata = NULL;
2641
2642 /* Get a copy of the native relocations. */
2643 internal_relocs
2644 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2645 (Elf_Internal_Rela *) NULL,
2646 link_info->keep_memory);
2647 if (internal_relocs == NULL)
2648 goto error_return;
2649
2650 /* Walk through them looking for relaxing opportunities. */
2651 irelend = internal_relocs + sec->reloc_count;
2652 for (irel = internal_relocs; irel < irelend; irel++)
2653 {
2654 bfd_vma symval;
2655 struct elf_link_hash_entry *h = NULL;
2656
2657 /* We only process two relocs. */
2658 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2659 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2660 continue;
2661
2662 /* We process relocs in a distinctly different way when this is a
2663 relocatable link (for one, we don't look at symbols), so we avoid
2664 mixing its code with that for the "normal" relaxation. */
2665 if (link_info->relocatable)
2666 {
2667 /* The only transformation in a relocatable link is to generate
2668 a full stub at the location of the stub calculated for the
2669 input section, if the relocated stub location, the end of the
2670 output section plus earlier stubs, cannot be reached. Thus
2671 relocatable linking can only lead to worse code, but it still
2672 works. */
2673 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2674 {
2675 /* If we can reach the end of the output-section and beyond
2676 any current stubs, then we don't need a stub for this
2677 reloc. The relaxed order of output stub allocation may
2678 not exactly match the straightforward order, so we always
2679 assume presence of output stubs, which will allow
2680 relaxation only on relocations indifferent to the
2681 presence of output stub allocations for other relocations
2682 and thus the order of output stub allocation. */
2683 if (bfd_check_overflow (complain_overflow_signed,
2684 19,
2685 0,
2686 bfd_arch_bits_per_address (abfd),
2687 /* Output-stub location. */
2688 sec->output_section->_cooked_size
2689 + (mmix_elf_section_data (sec
2690 ->output_section)
2691 ->pjs.stubs_size_sum)
2692 /* Location of this PUSHJ reloc. */
2693 - (sec->output_offset + irel->r_offset)
2694 /* Don't count *this* stub twice. */
2695 - (mmix_elf_section_data (sec)
2696 ->pjs.stub_size[pjsno]
2697 + MAX_PUSHJ_STUB_SIZE))
2698 == bfd_reloc_ok)
2699 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2700
2701 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2702 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2703
2704 pjsno++;
2705 }
2706
2707 continue;
2708 }
2709
2710 /* Get the value of the symbol referred to by the reloc. */
2711 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2712 {
2713 /* A local symbol. */
2714 Elf_Internal_Sym *isym;
2715 asection *sym_sec;
2716
2717 /* Read this BFD's local symbols if we haven't already. */
2718 if (isymbuf == NULL)
2719 {
2720 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2721 if (isymbuf == NULL)
2722 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2723 symtab_hdr->sh_info, 0,
2724 NULL, NULL, NULL);
2725 if (isymbuf == 0)
2726 goto error_return;
2727 }
2728
2729 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2730 if (isym->st_shndx == SHN_UNDEF)
2731 sym_sec = bfd_und_section_ptr;
2732 else if (isym->st_shndx == SHN_ABS)
2733 sym_sec = bfd_abs_section_ptr;
2734 else if (isym->st_shndx == SHN_COMMON)
2735 sym_sec = bfd_com_section_ptr;
2736 else
2737 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2738 symval = (isym->st_value
2739 + sym_sec->output_section->vma
2740 + sym_sec->output_offset);
2741 }
2742 else
2743 {
2744 unsigned long indx;
2745
2746 /* An external symbol. */
2747 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2748 h = elf_sym_hashes (abfd)[indx];
2749 BFD_ASSERT (h != NULL);
2750 if (h->root.type != bfd_link_hash_defined
2751 && h->root.type != bfd_link_hash_defweak)
2752 {
2753 /* This appears to be a reference to an undefined symbol. Just
2754 ignore it--it will be caught by the regular reloc processing.
2755 We need to keep BPO reloc accounting consistent, though
2756 else we'll abort instead of emitting an error message. */
2757 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2758 && gregdata != NULL)
2759 {
2760 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2761 bpono++;
2762 }
2763 continue;
2764 }
2765
2766 symval = (h->root.u.def.value
2767 + h->root.u.def.section->output_section->vma
2768 + h->root.u.def.section->output_offset);
2769 }
2770
2771 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2772 {
2773 bfd_vma value = symval + irel->r_addend;
2774 bfd_vma dot
2775 = (sec->output_section->vma
2776 + sec->output_offset
2777 + irel->r_offset);
2778 bfd_vma stubaddr
2779 = (sec->output_section->vma
2780 + sec->output_offset
2781 + raw_size
2782 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2783
2784 if ((value & 3) == 0
2785 && bfd_check_overflow (complain_overflow_signed,
2786 19,
2787 0,
2788 bfd_arch_bits_per_address (abfd),
2789 value - dot
2790 - (value > dot
2791 ? mmix_elf_section_data (sec)
2792 ->pjs.stub_size[pjsno]
2793 : 0))
2794 == bfd_reloc_ok)
2795 /* If the reloc fits, no stub is needed. */
2796 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2797 else
2798 /* Maybe we can get away with just a JMP insn? */
2799 if ((value & 3) == 0
2800 && bfd_check_overflow (complain_overflow_signed,
2801 27,
2802 0,
2803 bfd_arch_bits_per_address (abfd),
2804 value - stubaddr
2805 - (value > dot
2806 ? mmix_elf_section_data (sec)
2807 ->pjs.stub_size[pjsno] - 4
2808 : 0))
2809 == bfd_reloc_ok)
2810 /* Yep, account for a stub consisting of a single JMP insn. */
2811 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2812 else
2813 /* Nope, go for the full insn stub. It doesn't seem useful to
2814 emit the intermediate sizes; those will only be useful for
2815 a >64M program assuming contiguous code. */
2816 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2817 = MAX_PUSHJ_STUB_SIZE;
2818
2819 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2820 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2821 pjsno++;
2822 continue;
2823 }
2824
2825 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2826
2827 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2828 = symval + irel->r_addend;
2829 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2830 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2831 }
2832
2833 /* Check if that was the last BPO-reloc. If so, sort the values and
2834 calculate how many registers we need to cover them. Set the size of
2835 the linker gregs, and if the number of registers changed, indicate
2836 that we need to relax some more because we have more work to do. */
2837 if (gregdata != NULL
2838 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2839 {
2840 size_t i;
2841 bfd_vma prev_base;
2842 size_t regindex;
2843
2844 /* First, reset the remaining relocs for the next round. */
2845 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2846 = gregdata->n_bpo_relocs;
2847
2848 qsort ((PTR) gregdata->reloc_request,
2849 gregdata->n_max_bpo_relocs,
2850 sizeof (struct bpo_reloc_request),
2851 bpo_reloc_request_sort_fn);
2852
2853 /* Recalculate indexes. When we find a change (however unlikely
2854 after the initial iteration), we know we need to relax again,
2855 since items in the GREG-array are sorted by increasing value and
2856 stored in the relaxation phase. */
2857 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2858 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2859 != i)
2860 {
2861 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2862 = i;
2863 *again = TRUE;
2864 }
2865
2866 /* Allocate register numbers (indexing from 0). Stop at the first
2867 non-valid reloc. */
2868 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2869 i < gregdata->n_bpo_relocs;
2870 i++)
2871 {
2872 if (gregdata->reloc_request[i].value > prev_base + 255)
2873 {
2874 regindex++;
2875 prev_base = gregdata->reloc_request[i].value;
2876 }
2877 gregdata->reloc_request[i].regindex = regindex;
2878 gregdata->reloc_request[i].offset
2879 = gregdata->reloc_request[i].value - prev_base;
2880 }
2881
2882 /* If it's not the same as the last time, we need to relax again,
2883 because the size of the section has changed. I'm not sure we
2884 actually need to do any adjustments since the shrinking happens
2885 at the start of this section, but better safe than sorry. */
2886 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2887 {
2888 gregdata->n_allocated_bpo_gregs = regindex + 1;
2889 *again = TRUE;
2890 }
2891
2892 bpo_gregs_section->_cooked_size = (regindex + 1) * 8;
2893 }
2894
2895 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2896 {
2897 if (! link_info->keep_memory)
2898 free (isymbuf);
2899 else
2900 {
2901 /* Cache the symbols for elf_link_input_bfd. */
2902 symtab_hdr->contents = (unsigned char *) isymbuf;
2903 }
2904 }
2905
2906 if (internal_relocs != NULL
2907 && elf_section_data (sec)->relocs != internal_relocs)
2908 free (internal_relocs);
2909
2910 if (sec->_cooked_size
2911 < raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2912 abort ();
2913
2914 if (sec->_cooked_size
2915 > raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2916 {
2917 sec->_cooked_size
2918 = raw_size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2919 *again = TRUE;
2920 }
2921
2922 return TRUE;
2923
2924 error_return:
2925 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2926 free (isymbuf);
2927 if (internal_relocs != NULL
2928 && elf_section_data (sec)->relocs != internal_relocs)
2929 free (internal_relocs);
2930 return FALSE;
2931 }
2932
2933 /* Because we set _raw_size to include the max size of pushj stubs,
2934 i.e. larger than the actual section input size (see
2935 mmix_set_relaxable_raw_size), we have to take care of that when reading
2936 the section. */
2937
2938 static bfd_boolean
2939 mmix_elf_get_section_contents (abfd, section, location, offset, count)
2940 bfd *abfd;
2941 sec_ptr section;
2942 void *location;
2943 file_ptr offset;
2944 bfd_size_type count;
2945 {
2946 bfd_size_type raw_size
2947 = (section->_raw_size
2948 - mmix_elf_section_data (section)->pjs.n_pushj_relocs
2949 * MAX_PUSHJ_STUB_SIZE);
2950
2951 if (offset + count > section->_raw_size)
2952 {
2953 abort();
2954 bfd_set_error (bfd_error_invalid_operation);
2955 return FALSE;
2956 }
2957
2958 /* Check bounds against the faked raw_size. */
2959 if (offset + count > raw_size)
2960 {
2961 /* Clear the part in the faked area. */
2962 memset (location + raw_size - offset, 0, count - (raw_size - offset));
2963
2964 /* If there's no initial part within the "real" contents, we're
2965 done. */
2966 if ((bfd_size_type) offset >= raw_size)
2967 return TRUE;
2968
2969 /* Else adjust the count and fall through to call the generic
2970 function. */
2971 count = raw_size - offset;
2972 }
2973
2974 return
2975 _bfd_generic_get_section_contents (abfd, section, location, offset,
2976 count);
2977 }
2978
2979 \f
2980 #define ELF_ARCH bfd_arch_mmix
2981 #define ELF_MACHINE_CODE EM_MMIX
2982
2983 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2984 However, that's too much for something somewhere in the linker part of
2985 BFD; perhaps the start-address has to be a non-zero multiple of this
2986 number, or larger than this number. The symptom is that the linker
2987 complains: "warning: allocated section `.text' not in segment". We
2988 settle for 64k; the page-size used in examples is 8k.
2989 #define ELF_MAXPAGESIZE 0x10000
2990
2991 Unfortunately, this causes excessive padding in the supposedly small
2992 for-education programs that are the expected usage (where people would
2993 inspect output). We stick to 256 bytes just to have *some* default
2994 alignment. */
2995 #define ELF_MAXPAGESIZE 0x100
2996
2997 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2998 #define TARGET_BIG_NAME "elf64-mmix"
2999
3000 #define elf_info_to_howto_rel NULL
3001 #define elf_info_to_howto mmix_info_to_howto_rela
3002 #define elf_backend_relocate_section mmix_elf_relocate_section
3003 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
3004 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
3005
3006 #define elf_backend_link_output_symbol_hook \
3007 mmix_elf_link_output_symbol_hook
3008 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
3009
3010 #define elf_backend_check_relocs mmix_elf_check_relocs
3011 #define elf_backend_symbol_processing mmix_elf_symbol_processing
3012
3013 #define bfd_elf64_bfd_is_local_label_name \
3014 mmix_elf_is_local_label_name
3015
3016 #define elf_backend_may_use_rel_p 0
3017 #define elf_backend_may_use_rela_p 1
3018 #define elf_backend_default_use_rela_p 1
3019
3020 #define elf_backend_can_gc_sections 1
3021 #define elf_backend_section_from_bfd_section \
3022 mmix_elf_section_from_bfd_section
3023
3024 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
3025 #define bfd_elf64_bfd_final_link mmix_elf_final_link
3026 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
3027 #define bfd_elf64_get_section_contents mmix_elf_get_section_contents
3028
3029 #include "elf64-target.h"
This page took 0.087602 seconds and 5 git commands to generate.