Switch sources over to use the GPL version 3
[deliverable/binutils-gdb.git] / bfd / elf64-mmix.c
1 /* MMIX-specific support for 64-bit ELF.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Hans-Peter Nilsson <hp@bitrange.com>
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23
24 /* No specific ABI or "processor-specific supplement" defined. */
25
26 /* TODO:
27 - "Traditional" linker relaxation (shrinking whole sections).
28 - Merge reloc stubs jumping to same location.
29 - GETA stub relaxation (call a stub for out of range new
30 R_MMIX_GETA_STUBBABLE). */
31
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "elf-bfd.h"
36 #include "elf/mmix.h"
37 #include "opcode/mmix.h"
38
39 #define MINUS_ONE (((bfd_vma) 0) - 1)
40
41 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
42
43 /* Put these everywhere in new code. */
44 #define FATAL_DEBUG \
45 _bfd_abort (__FILE__, __LINE__, \
46 "Internal: Non-debugged code (test-case missing)")
47
48 #define BAD_CASE(x) \
49 _bfd_abort (__FILE__, __LINE__, \
50 "bad case for " #x)
51
52 struct _mmix_elf_section_data
53 {
54 struct bfd_elf_section_data elf;
55 union
56 {
57 struct bpo_reloc_section_info *reloc;
58 struct bpo_greg_section_info *greg;
59 } bpo;
60
61 struct pushj_stub_info
62 {
63 /* Maximum number of stubs needed for this section. */
64 bfd_size_type n_pushj_relocs;
65
66 /* Size of stubs after a mmix_elf_relax_section round. */
67 bfd_size_type stubs_size_sum;
68
69 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum
70 of these. Allocated in mmix_elf_check_common_relocs. */
71 bfd_size_type *stub_size;
72
73 /* Offset of next stub during relocation. Somewhat redundant with the
74 above: error coverage is easier and we don't have to reset the
75 stubs_size_sum for relocation. */
76 bfd_size_type stub_offset;
77 } pjs;
78 };
79
80 #define mmix_elf_section_data(sec) \
81 ((struct _mmix_elf_section_data *) elf_section_data (sec))
82
83 /* For each section containing a base-plus-offset (BPO) reloc, we attach
84 this struct as mmix_elf_section_data (section)->bpo, which is otherwise
85 NULL. */
86 struct bpo_reloc_section_info
87 {
88 /* The base is 1; this is the first number in this section. */
89 size_t first_base_plus_offset_reloc;
90
91 /* Number of BPO-relocs in this section. */
92 size_t n_bpo_relocs_this_section;
93
94 /* Running index, used at relocation time. */
95 size_t bpo_index;
96
97 /* We don't have access to the bfd_link_info struct in
98 mmix_final_link_relocate. What we really want to get at is the
99 global single struct greg_relocation, so we stash it here. */
100 asection *bpo_greg_section;
101 };
102
103 /* Helper struct (in global context) for the one below.
104 There's one of these created for every BPO reloc. */
105 struct bpo_reloc_request
106 {
107 bfd_vma value;
108
109 /* Valid after relaxation. The base is 0; the first register number
110 must be added. The offset is in range 0..255. */
111 size_t regindex;
112 size_t offset;
113
114 /* The order number for this BPO reloc, corresponding to the order in
115 which BPO relocs were found. Used to create an index after reloc
116 requests are sorted. */
117 size_t bpo_reloc_no;
118
119 /* Set when the value is computed. Better than coding "guard values"
120 into the other members. Is FALSE only for BPO relocs in a GC:ed
121 section. */
122 bfd_boolean valid;
123 };
124
125 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
126 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
127 which is linked into the register contents section
128 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the
129 linker; using the same hook as for usual with BPO relocs does not
130 collide. */
131 struct bpo_greg_section_info
132 {
133 /* After GC, this reflects the number of remaining, non-excluded
134 BPO-relocs. */
135 size_t n_bpo_relocs;
136
137 /* This is the number of allocated bpo_reloc_requests; the size of
138 sorted_indexes. Valid after the check.*relocs functions are called
139 for all incoming sections. It includes the number of BPO relocs in
140 sections that were GC:ed. */
141 size_t n_max_bpo_relocs;
142
143 /* A counter used to find out when to fold the BPO gregs, since we
144 don't have a single "after-relaxation" hook. */
145 size_t n_remaining_bpo_relocs_this_relaxation_round;
146
147 /* The number of linker-allocated GREGs resulting from BPO relocs.
148 This is an approximation after _bfd_mmix_before_linker_allocation
149 and supposedly accurate after mmix_elf_relax_section is called for
150 all incoming non-collected sections. */
151 size_t n_allocated_bpo_gregs;
152
153 /* Index into reloc_request[], sorted on increasing "value", secondary
154 by increasing index for strict sorting order. */
155 size_t *bpo_reloc_indexes;
156
157 /* An array of all relocations, with the "value" member filled in by
158 the relaxation function. */
159 struct bpo_reloc_request *reloc_request;
160 };
161
162 static bfd_boolean mmix_elf_link_output_symbol_hook
163 PARAMS ((struct bfd_link_info *, const char *, Elf_Internal_Sym *,
164 asection *, struct elf_link_hash_entry *));
165
166 static bfd_reloc_status_type mmix_elf_reloc
167 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
168
169 static reloc_howto_type *bfd_elf64_bfd_reloc_type_lookup
170 PARAMS ((bfd *, bfd_reloc_code_real_type));
171
172 static void mmix_info_to_howto_rela
173 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
174
175 static int mmix_elf_sort_relocs PARAMS ((const PTR, const PTR));
176
177 static bfd_boolean mmix_elf_new_section_hook
178 PARAMS ((bfd *, asection *));
179
180 static bfd_boolean mmix_elf_check_relocs
181 PARAMS ((bfd *, struct bfd_link_info *, asection *,
182 const Elf_Internal_Rela *));
183
184 static bfd_boolean mmix_elf_check_common_relocs
185 PARAMS ((bfd *, struct bfd_link_info *, asection *,
186 const Elf_Internal_Rela *));
187
188 static bfd_boolean mmix_elf_relocate_section
189 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
190 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
191
192 static bfd_reloc_status_type mmix_final_link_relocate
193 PARAMS ((reloc_howto_type *, asection *, bfd_byte *,
194 bfd_vma, bfd_signed_vma, bfd_vma, const char *, asection *));
195
196 static bfd_reloc_status_type mmix_elf_perform_relocation
197 PARAMS ((asection *, reloc_howto_type *, PTR, bfd_vma, bfd_vma));
198
199 static bfd_boolean mmix_elf_section_from_bfd_section
200 PARAMS ((bfd *, asection *, int *));
201
202 static bfd_boolean mmix_elf_add_symbol_hook
203 PARAMS ((bfd *, struct bfd_link_info *, Elf_Internal_Sym *,
204 const char **, flagword *, asection **, bfd_vma *));
205
206 static bfd_boolean mmix_elf_is_local_label_name
207 PARAMS ((bfd *, const char *));
208
209 static int bpo_reloc_request_sort_fn PARAMS ((const PTR, const PTR));
210
211 static bfd_boolean mmix_elf_relax_section
212 PARAMS ((bfd *abfd, asection *sec, struct bfd_link_info *link_info,
213 bfd_boolean *again));
214
215 extern bfd_boolean mmix_elf_final_link PARAMS ((bfd *, struct bfd_link_info *));
216
217 extern void mmix_elf_symbol_processing PARAMS ((bfd *, asymbol *));
218
219 /* Only intended to be called from a debugger. */
220 extern void mmix_dump_bpo_gregs
221 PARAMS ((struct bfd_link_info *, bfd_error_handler_type));
222
223 static void
224 mmix_set_relaxable_size
225 PARAMS ((bfd *, asection *, void *));
226
227
228 /* Watch out: this currently needs to have elements with the same index as
229 their R_MMIX_ number. */
230 static reloc_howto_type elf_mmix_howto_table[] =
231 {
232 /* This reloc does nothing. */
233 HOWTO (R_MMIX_NONE, /* type */
234 0, /* rightshift */
235 2, /* size (0 = byte, 1 = short, 2 = long) */
236 32, /* bitsize */
237 FALSE, /* pc_relative */
238 0, /* bitpos */
239 complain_overflow_bitfield, /* complain_on_overflow */
240 bfd_elf_generic_reloc, /* special_function */
241 "R_MMIX_NONE", /* name */
242 FALSE, /* partial_inplace */
243 0, /* src_mask */
244 0, /* dst_mask */
245 FALSE), /* pcrel_offset */
246
247 /* An 8 bit absolute relocation. */
248 HOWTO (R_MMIX_8, /* type */
249 0, /* rightshift */
250 0, /* size (0 = byte, 1 = short, 2 = long) */
251 8, /* bitsize */
252 FALSE, /* pc_relative */
253 0, /* bitpos */
254 complain_overflow_bitfield, /* complain_on_overflow */
255 bfd_elf_generic_reloc, /* special_function */
256 "R_MMIX_8", /* name */
257 FALSE, /* partial_inplace */
258 0, /* src_mask */
259 0xff, /* dst_mask */
260 FALSE), /* pcrel_offset */
261
262 /* An 16 bit absolute relocation. */
263 HOWTO (R_MMIX_16, /* type */
264 0, /* rightshift */
265 1, /* size (0 = byte, 1 = short, 2 = long) */
266 16, /* bitsize */
267 FALSE, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_bitfield, /* complain_on_overflow */
270 bfd_elf_generic_reloc, /* special_function */
271 "R_MMIX_16", /* name */
272 FALSE, /* partial_inplace */
273 0, /* src_mask */
274 0xffff, /* dst_mask */
275 FALSE), /* pcrel_offset */
276
277 /* An 24 bit absolute relocation. */
278 HOWTO (R_MMIX_24, /* type */
279 0, /* rightshift */
280 2, /* size (0 = byte, 1 = short, 2 = long) */
281 24, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_bitfield, /* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_MMIX_24", /* name */
287 FALSE, /* partial_inplace */
288 ~0xffffff, /* src_mask */
289 0xffffff, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* A 32 bit absolute relocation. */
293 HOWTO (R_MMIX_32, /* type */
294 0, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 32, /* bitsize */
297 FALSE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_bitfield, /* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_MMIX_32", /* name */
302 FALSE, /* partial_inplace */
303 0, /* src_mask */
304 0xffffffff, /* dst_mask */
305 FALSE), /* pcrel_offset */
306
307 /* 64 bit relocation. */
308 HOWTO (R_MMIX_64, /* type */
309 0, /* rightshift */
310 4, /* size (0 = byte, 1 = short, 2 = long) */
311 64, /* bitsize */
312 FALSE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_bitfield, /* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_MMIX_64", /* name */
317 FALSE, /* partial_inplace */
318 0, /* src_mask */
319 MINUS_ONE, /* dst_mask */
320 FALSE), /* pcrel_offset */
321
322 /* An 8 bit PC-relative relocation. */
323 HOWTO (R_MMIX_PC_8, /* type */
324 0, /* rightshift */
325 0, /* size (0 = byte, 1 = short, 2 = long) */
326 8, /* bitsize */
327 TRUE, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_bitfield, /* complain_on_overflow */
330 bfd_elf_generic_reloc, /* special_function */
331 "R_MMIX_PC_8", /* name */
332 FALSE, /* partial_inplace */
333 0, /* src_mask */
334 0xff, /* dst_mask */
335 TRUE), /* pcrel_offset */
336
337 /* An 16 bit PC-relative relocation. */
338 HOWTO (R_MMIX_PC_16, /* type */
339 0, /* rightshift */
340 1, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 TRUE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_MMIX_PC_16", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0xffff, /* dst_mask */
350 TRUE), /* pcrel_offset */
351
352 /* An 24 bit PC-relative relocation. */
353 HOWTO (R_MMIX_PC_24, /* type */
354 0, /* rightshift */
355 2, /* size (0 = byte, 1 = short, 2 = long) */
356 24, /* bitsize */
357 TRUE, /* pc_relative */
358 0, /* bitpos */
359 complain_overflow_bitfield, /* complain_on_overflow */
360 bfd_elf_generic_reloc, /* special_function */
361 "R_MMIX_PC_24", /* name */
362 FALSE, /* partial_inplace */
363 ~0xffffff, /* src_mask */
364 0xffffff, /* dst_mask */
365 TRUE), /* pcrel_offset */
366
367 /* A 32 bit absolute PC-relative relocation. */
368 HOWTO (R_MMIX_PC_32, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 TRUE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield, /* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_MMIX_PC_32", /* name */
377 FALSE, /* partial_inplace */
378 0, /* src_mask */
379 0xffffffff, /* dst_mask */
380 TRUE), /* pcrel_offset */
381
382 /* 64 bit PC-relative relocation. */
383 HOWTO (R_MMIX_PC_64, /* type */
384 0, /* rightshift */
385 4, /* size (0 = byte, 1 = short, 2 = long) */
386 64, /* bitsize */
387 TRUE, /* pc_relative */
388 0, /* bitpos */
389 complain_overflow_bitfield, /* complain_on_overflow */
390 bfd_elf_generic_reloc, /* special_function */
391 "R_MMIX_PC_64", /* name */
392 FALSE, /* partial_inplace */
393 0, /* src_mask */
394 MINUS_ONE, /* dst_mask */
395 TRUE), /* pcrel_offset */
396
397 /* GNU extension to record C++ vtable hierarchy. */
398 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
399 0, /* rightshift */
400 0, /* size (0 = byte, 1 = short, 2 = long) */
401 0, /* bitsize */
402 FALSE, /* pc_relative */
403 0, /* bitpos */
404 complain_overflow_dont, /* complain_on_overflow */
405 NULL, /* special_function */
406 "R_MMIX_GNU_VTINHERIT", /* name */
407 FALSE, /* partial_inplace */
408 0, /* src_mask */
409 0, /* dst_mask */
410 TRUE), /* pcrel_offset */
411
412 /* GNU extension to record C++ vtable member usage. */
413 HOWTO (R_MMIX_GNU_VTENTRY, /* type */
414 0, /* rightshift */
415 0, /* size (0 = byte, 1 = short, 2 = long) */
416 0, /* bitsize */
417 FALSE, /* pc_relative */
418 0, /* bitpos */
419 complain_overflow_dont, /* complain_on_overflow */
420 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
421 "R_MMIX_GNU_VTENTRY", /* name */
422 FALSE, /* partial_inplace */
423 0, /* src_mask */
424 0, /* dst_mask */
425 FALSE), /* pcrel_offset */
426
427 /* The GETA relocation is supposed to get any address that could
428 possibly be reached by the GETA instruction. It can silently expand
429 to get a 64-bit operand, but will complain if any of the two least
430 significant bits are set. The howto members reflect a simple GETA. */
431 HOWTO (R_MMIX_GETA, /* type */
432 2, /* rightshift */
433 2, /* size (0 = byte, 1 = short, 2 = long) */
434 19, /* bitsize */
435 TRUE, /* pc_relative */
436 0, /* bitpos */
437 complain_overflow_signed, /* complain_on_overflow */
438 mmix_elf_reloc, /* special_function */
439 "R_MMIX_GETA", /* name */
440 FALSE, /* partial_inplace */
441 ~0x0100ffff, /* src_mask */
442 0x0100ffff, /* dst_mask */
443 TRUE), /* pcrel_offset */
444
445 HOWTO (R_MMIX_GETA_1, /* type */
446 2, /* rightshift */
447 2, /* size (0 = byte, 1 = short, 2 = long) */
448 19, /* bitsize */
449 TRUE, /* pc_relative */
450 0, /* bitpos */
451 complain_overflow_signed, /* complain_on_overflow */
452 mmix_elf_reloc, /* special_function */
453 "R_MMIX_GETA_1", /* name */
454 FALSE, /* partial_inplace */
455 ~0x0100ffff, /* src_mask */
456 0x0100ffff, /* dst_mask */
457 TRUE), /* pcrel_offset */
458
459 HOWTO (R_MMIX_GETA_2, /* type */
460 2, /* rightshift */
461 2, /* size (0 = byte, 1 = short, 2 = long) */
462 19, /* bitsize */
463 TRUE, /* pc_relative */
464 0, /* bitpos */
465 complain_overflow_signed, /* complain_on_overflow */
466 mmix_elf_reloc, /* special_function */
467 "R_MMIX_GETA_2", /* name */
468 FALSE, /* partial_inplace */
469 ~0x0100ffff, /* src_mask */
470 0x0100ffff, /* dst_mask */
471 TRUE), /* pcrel_offset */
472
473 HOWTO (R_MMIX_GETA_3, /* type */
474 2, /* rightshift */
475 2, /* size (0 = byte, 1 = short, 2 = long) */
476 19, /* bitsize */
477 TRUE, /* pc_relative */
478 0, /* bitpos */
479 complain_overflow_signed, /* complain_on_overflow */
480 mmix_elf_reloc, /* special_function */
481 "R_MMIX_GETA_3", /* name */
482 FALSE, /* partial_inplace */
483 ~0x0100ffff, /* src_mask */
484 0x0100ffff, /* dst_mask */
485 TRUE), /* pcrel_offset */
486
487 /* The conditional branches are supposed to reach any (code) address.
488 It can silently expand to a 64-bit operand, but will emit an error if
489 any of the two least significant bits are set. The howto members
490 reflect a simple branch. */
491 HOWTO (R_MMIX_CBRANCH, /* type */
492 2, /* rightshift */
493 2, /* size (0 = byte, 1 = short, 2 = long) */
494 19, /* bitsize */
495 TRUE, /* pc_relative */
496 0, /* bitpos */
497 complain_overflow_signed, /* complain_on_overflow */
498 mmix_elf_reloc, /* special_function */
499 "R_MMIX_CBRANCH", /* name */
500 FALSE, /* partial_inplace */
501 ~0x0100ffff, /* src_mask */
502 0x0100ffff, /* dst_mask */
503 TRUE), /* pcrel_offset */
504
505 HOWTO (R_MMIX_CBRANCH_J, /* type */
506 2, /* rightshift */
507 2, /* size (0 = byte, 1 = short, 2 = long) */
508 19, /* bitsize */
509 TRUE, /* pc_relative */
510 0, /* bitpos */
511 complain_overflow_signed, /* complain_on_overflow */
512 mmix_elf_reloc, /* special_function */
513 "R_MMIX_CBRANCH_J", /* name */
514 FALSE, /* partial_inplace */
515 ~0x0100ffff, /* src_mask */
516 0x0100ffff, /* dst_mask */
517 TRUE), /* pcrel_offset */
518
519 HOWTO (R_MMIX_CBRANCH_1, /* type */
520 2, /* rightshift */
521 2, /* size (0 = byte, 1 = short, 2 = long) */
522 19, /* bitsize */
523 TRUE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_signed, /* complain_on_overflow */
526 mmix_elf_reloc, /* special_function */
527 "R_MMIX_CBRANCH_1", /* name */
528 FALSE, /* partial_inplace */
529 ~0x0100ffff, /* src_mask */
530 0x0100ffff, /* dst_mask */
531 TRUE), /* pcrel_offset */
532
533 HOWTO (R_MMIX_CBRANCH_2, /* type */
534 2, /* rightshift */
535 2, /* size (0 = byte, 1 = short, 2 = long) */
536 19, /* bitsize */
537 TRUE, /* pc_relative */
538 0, /* bitpos */
539 complain_overflow_signed, /* complain_on_overflow */
540 mmix_elf_reloc, /* special_function */
541 "R_MMIX_CBRANCH_2", /* name */
542 FALSE, /* partial_inplace */
543 ~0x0100ffff, /* src_mask */
544 0x0100ffff, /* dst_mask */
545 TRUE), /* pcrel_offset */
546
547 HOWTO (R_MMIX_CBRANCH_3, /* type */
548 2, /* rightshift */
549 2, /* size (0 = byte, 1 = short, 2 = long) */
550 19, /* bitsize */
551 TRUE, /* pc_relative */
552 0, /* bitpos */
553 complain_overflow_signed, /* complain_on_overflow */
554 mmix_elf_reloc, /* special_function */
555 "R_MMIX_CBRANCH_3", /* name */
556 FALSE, /* partial_inplace */
557 ~0x0100ffff, /* src_mask */
558 0x0100ffff, /* dst_mask */
559 TRUE), /* pcrel_offset */
560
561 /* The PUSHJ instruction can reach any (code) address, as long as it's
562 the beginning of a function (no usable restriction). It can silently
563 expand to a 64-bit operand, but will emit an error if any of the two
564 least significant bits are set. It can also expand into a call to a
565 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple
566 PUSHJ. */
567 HOWTO (R_MMIX_PUSHJ, /* type */
568 2, /* rightshift */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
570 19, /* bitsize */
571 TRUE, /* pc_relative */
572 0, /* bitpos */
573 complain_overflow_signed, /* complain_on_overflow */
574 mmix_elf_reloc, /* special_function */
575 "R_MMIX_PUSHJ", /* name */
576 FALSE, /* partial_inplace */
577 ~0x0100ffff, /* src_mask */
578 0x0100ffff, /* dst_mask */
579 TRUE), /* pcrel_offset */
580
581 HOWTO (R_MMIX_PUSHJ_1, /* type */
582 2, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 19, /* bitsize */
585 TRUE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_signed, /* complain_on_overflow */
588 mmix_elf_reloc, /* special_function */
589 "R_MMIX_PUSHJ_1", /* name */
590 FALSE, /* partial_inplace */
591 ~0x0100ffff, /* src_mask */
592 0x0100ffff, /* dst_mask */
593 TRUE), /* pcrel_offset */
594
595 HOWTO (R_MMIX_PUSHJ_2, /* type */
596 2, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 19, /* bitsize */
599 TRUE, /* pc_relative */
600 0, /* bitpos */
601 complain_overflow_signed, /* complain_on_overflow */
602 mmix_elf_reloc, /* special_function */
603 "R_MMIX_PUSHJ_2", /* name */
604 FALSE, /* partial_inplace */
605 ~0x0100ffff, /* src_mask */
606 0x0100ffff, /* dst_mask */
607 TRUE), /* pcrel_offset */
608
609 HOWTO (R_MMIX_PUSHJ_3, /* type */
610 2, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 19, /* bitsize */
613 TRUE, /* pc_relative */
614 0, /* bitpos */
615 complain_overflow_signed, /* complain_on_overflow */
616 mmix_elf_reloc, /* special_function */
617 "R_MMIX_PUSHJ_3", /* name */
618 FALSE, /* partial_inplace */
619 ~0x0100ffff, /* src_mask */
620 0x0100ffff, /* dst_mask */
621 TRUE), /* pcrel_offset */
622
623 /* A JMP is supposed to reach any (code) address. By itself, it can
624 reach +-64M; the expansion can reach all 64 bits. Note that the 64M
625 limit is soon reached if you link the program in wildly different
626 memory segments. The howto members reflect a trivial JMP. */
627 HOWTO (R_MMIX_JMP, /* type */
628 2, /* rightshift */
629 2, /* size (0 = byte, 1 = short, 2 = long) */
630 27, /* bitsize */
631 TRUE, /* pc_relative */
632 0, /* bitpos */
633 complain_overflow_signed, /* complain_on_overflow */
634 mmix_elf_reloc, /* special_function */
635 "R_MMIX_JMP", /* name */
636 FALSE, /* partial_inplace */
637 ~0x1ffffff, /* src_mask */
638 0x1ffffff, /* dst_mask */
639 TRUE), /* pcrel_offset */
640
641 HOWTO (R_MMIX_JMP_1, /* type */
642 2, /* rightshift */
643 2, /* size (0 = byte, 1 = short, 2 = long) */
644 27, /* bitsize */
645 TRUE, /* pc_relative */
646 0, /* bitpos */
647 complain_overflow_signed, /* complain_on_overflow */
648 mmix_elf_reloc, /* special_function */
649 "R_MMIX_JMP_1", /* name */
650 FALSE, /* partial_inplace */
651 ~0x1ffffff, /* src_mask */
652 0x1ffffff, /* dst_mask */
653 TRUE), /* pcrel_offset */
654
655 HOWTO (R_MMIX_JMP_2, /* type */
656 2, /* rightshift */
657 2, /* size (0 = byte, 1 = short, 2 = long) */
658 27, /* bitsize */
659 TRUE, /* pc_relative */
660 0, /* bitpos */
661 complain_overflow_signed, /* complain_on_overflow */
662 mmix_elf_reloc, /* special_function */
663 "R_MMIX_JMP_2", /* name */
664 FALSE, /* partial_inplace */
665 ~0x1ffffff, /* src_mask */
666 0x1ffffff, /* dst_mask */
667 TRUE), /* pcrel_offset */
668
669 HOWTO (R_MMIX_JMP_3, /* type */
670 2, /* rightshift */
671 2, /* size (0 = byte, 1 = short, 2 = long) */
672 27, /* bitsize */
673 TRUE, /* pc_relative */
674 0, /* bitpos */
675 complain_overflow_signed, /* complain_on_overflow */
676 mmix_elf_reloc, /* special_function */
677 "R_MMIX_JMP_3", /* name */
678 FALSE, /* partial_inplace */
679 ~0x1ffffff, /* src_mask */
680 0x1ffffff, /* dst_mask */
681 TRUE), /* pcrel_offset */
682
683 /* When we don't emit link-time-relaxable code from the assembler, or
684 when relaxation has done all it can do, these relocs are used. For
685 GETA/PUSHJ/branches. */
686 HOWTO (R_MMIX_ADDR19, /* type */
687 2, /* rightshift */
688 2, /* size (0 = byte, 1 = short, 2 = long) */
689 19, /* bitsize */
690 TRUE, /* pc_relative */
691 0, /* bitpos */
692 complain_overflow_signed, /* complain_on_overflow */
693 mmix_elf_reloc, /* special_function */
694 "R_MMIX_ADDR19", /* name */
695 FALSE, /* partial_inplace */
696 ~0x0100ffff, /* src_mask */
697 0x0100ffff, /* dst_mask */
698 TRUE), /* pcrel_offset */
699
700 /* For JMP. */
701 HOWTO (R_MMIX_ADDR27, /* type */
702 2, /* rightshift */
703 2, /* size (0 = byte, 1 = short, 2 = long) */
704 27, /* bitsize */
705 TRUE, /* pc_relative */
706 0, /* bitpos */
707 complain_overflow_signed, /* complain_on_overflow */
708 mmix_elf_reloc, /* special_function */
709 "R_MMIX_ADDR27", /* name */
710 FALSE, /* partial_inplace */
711 ~0x1ffffff, /* src_mask */
712 0x1ffffff, /* dst_mask */
713 TRUE), /* pcrel_offset */
714
715 /* A general register or the value 0..255. If a value, then the
716 instruction (offset -3) needs adjusting. */
717 HOWTO (R_MMIX_REG_OR_BYTE, /* type */
718 0, /* rightshift */
719 1, /* size (0 = byte, 1 = short, 2 = long) */
720 8, /* bitsize */
721 FALSE, /* pc_relative */
722 0, /* bitpos */
723 complain_overflow_bitfield, /* complain_on_overflow */
724 mmix_elf_reloc, /* special_function */
725 "R_MMIX_REG_OR_BYTE", /* name */
726 FALSE, /* partial_inplace */
727 0, /* src_mask */
728 0xff, /* dst_mask */
729 FALSE), /* pcrel_offset */
730
731 /* A general register. */
732 HOWTO (R_MMIX_REG, /* type */
733 0, /* rightshift */
734 1, /* size (0 = byte, 1 = short, 2 = long) */
735 8, /* bitsize */
736 FALSE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield, /* complain_on_overflow */
739 mmix_elf_reloc, /* special_function */
740 "R_MMIX_REG", /* name */
741 FALSE, /* partial_inplace */
742 0, /* src_mask */
743 0xff, /* dst_mask */
744 FALSE), /* pcrel_offset */
745
746 /* A register plus an index, corresponding to the relocation expression.
747 The sizes must correspond to the valid range of the expression, while
748 the bitmasks correspond to what we store in the image. */
749 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */
750 0, /* rightshift */
751 4, /* size (0 = byte, 1 = short, 2 = long) */
752 64, /* bitsize */
753 FALSE, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_bitfield, /* complain_on_overflow */
756 mmix_elf_reloc, /* special_function */
757 "R_MMIX_BASE_PLUS_OFFSET", /* name */
758 FALSE, /* partial_inplace */
759 0, /* src_mask */
760 0xffff, /* dst_mask */
761 FALSE), /* pcrel_offset */
762
763 /* A "magic" relocation for a LOCAL expression, asserting that the
764 expression is less than the number of global registers. No actual
765 modification of the contents is done. Implementing this as a
766 relocation was less intrusive than e.g. putting such expressions in a
767 section to discard *after* relocation. */
768 HOWTO (R_MMIX_LOCAL, /* type */
769 0, /* rightshift */
770 0, /* size (0 = byte, 1 = short, 2 = long) */
771 0, /* bitsize */
772 FALSE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 mmix_elf_reloc, /* special_function */
776 "R_MMIX_LOCAL", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0, /* dst_mask */
780 FALSE), /* pcrel_offset */
781
782 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
783 2, /* rightshift */
784 2, /* size (0 = byte, 1 = short, 2 = long) */
785 19, /* bitsize */
786 TRUE, /* pc_relative */
787 0, /* bitpos */
788 complain_overflow_signed, /* complain_on_overflow */
789 mmix_elf_reloc, /* special_function */
790 "R_MMIX_PUSHJ_STUBBABLE", /* name */
791 FALSE, /* partial_inplace */
792 ~0x0100ffff, /* src_mask */
793 0x0100ffff, /* dst_mask */
794 TRUE) /* pcrel_offset */
795 };
796
797
798 /* Map BFD reloc types to MMIX ELF reloc types. */
799
800 struct mmix_reloc_map
801 {
802 bfd_reloc_code_real_type bfd_reloc_val;
803 enum elf_mmix_reloc_type elf_reloc_val;
804 };
805
806
807 static const struct mmix_reloc_map mmix_reloc_map[] =
808 {
809 {BFD_RELOC_NONE, R_MMIX_NONE},
810 {BFD_RELOC_8, R_MMIX_8},
811 {BFD_RELOC_16, R_MMIX_16},
812 {BFD_RELOC_24, R_MMIX_24},
813 {BFD_RELOC_32, R_MMIX_32},
814 {BFD_RELOC_64, R_MMIX_64},
815 {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
816 {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
817 {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
818 {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
819 {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
820 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
821 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
822 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
823 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
824 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
825 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
826 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
827 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
828 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
829 {BFD_RELOC_MMIX_REG, R_MMIX_REG},
830 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
831 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
832 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
833 };
834
835 static reloc_howto_type *
836 bfd_elf64_bfd_reloc_type_lookup (abfd, code)
837 bfd *abfd ATTRIBUTE_UNUSED;
838 bfd_reloc_code_real_type code;
839 {
840 unsigned int i;
841
842 for (i = 0;
843 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
844 i++)
845 {
846 if (mmix_reloc_map[i].bfd_reloc_val == code)
847 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
848 }
849
850 return NULL;
851 }
852
853 static reloc_howto_type *
854 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
855 const char *r_name)
856 {
857 unsigned int i;
858
859 for (i = 0;
860 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
861 i++)
862 if (elf_mmix_howto_table[i].name != NULL
863 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
864 return &elf_mmix_howto_table[i];
865
866 return NULL;
867 }
868
869 static bfd_boolean
870 mmix_elf_new_section_hook (abfd, sec)
871 bfd *abfd;
872 asection *sec;
873 {
874 if (!sec->used_by_bfd)
875 {
876 struct _mmix_elf_section_data *sdata;
877 bfd_size_type amt = sizeof (*sdata);
878
879 sdata = bfd_zalloc (abfd, amt);
880 if (sdata == NULL)
881 return FALSE;
882 sec->used_by_bfd = sdata;
883 }
884
885 return _bfd_elf_new_section_hook (abfd, sec);
886 }
887
888
889 /* This function performs the actual bitfiddling and sanity check for a
890 final relocation. Each relocation gets its *worst*-case expansion
891 in size when it arrives here; any reduction in size should have been
892 caught in linker relaxation earlier. When we get here, the relocation
893 looks like the smallest instruction with SWYM:s (nop:s) appended to the
894 max size. We fill in those nop:s.
895
896 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
897 GETA $N,foo
898 ->
899 SETL $N,foo & 0xffff
900 INCML $N,(foo >> 16) & 0xffff
901 INCMH $N,(foo >> 32) & 0xffff
902 INCH $N,(foo >> 48) & 0xffff
903
904 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
905 condbranches needing relaxation might be rare enough to not be
906 worthwhile.)
907 [P]Bcc $N,foo
908 ->
909 [~P]B~cc $N,.+20
910 SETL $255,foo & ...
911 INCML ...
912 INCMH ...
913 INCH ...
914 GO $255,$255,0
915
916 R_MMIX_PUSHJ: (FIXME: Relaxation...)
917 PUSHJ $N,foo
918 ->
919 SETL $255,foo & ...
920 INCML ...
921 INCMH ...
922 INCH ...
923 PUSHGO $N,$255,0
924
925 R_MMIX_JMP: (FIXME: Relaxation...)
926 JMP foo
927 ->
928 SETL $255,foo & ...
929 INCML ...
930 INCMH ...
931 INCH ...
932 GO $255,$255,0
933
934 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */
935
936 static bfd_reloc_status_type
937 mmix_elf_perform_relocation (isec, howto, datap, addr, value)
938 asection *isec;
939 reloc_howto_type *howto;
940 PTR datap;
941 bfd_vma addr;
942 bfd_vma value;
943 {
944 bfd *abfd = isec->owner;
945 bfd_reloc_status_type flag = bfd_reloc_ok;
946 bfd_reloc_status_type r;
947 int offs = 0;
948 int reg = 255;
949
950 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
951 We handle the differences here and the common sequence later. */
952 switch (howto->type)
953 {
954 case R_MMIX_GETA:
955 offs = 0;
956 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
957
958 /* We change to an absolute value. */
959 value += addr;
960 break;
961
962 case R_MMIX_CBRANCH:
963 {
964 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
965
966 /* Invert the condition and prediction bit, and set the offset
967 to five instructions ahead.
968
969 We *can* do better if we want to. If the branch is found to be
970 within limits, we could leave the branch as is; there'll just
971 be a bunch of NOP:s after it. But we shouldn't see this
972 sequence often enough that it's worth doing it. */
973
974 bfd_put_32 (abfd,
975 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
976 | (24/4)),
977 (bfd_byte *) datap);
978
979 /* Put a "GO $255,$255,0" after the common sequence. */
980 bfd_put_32 (abfd,
981 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
982 (bfd_byte *) datap + 20);
983
984 /* Common sequence starts at offset 4. */
985 offs = 4;
986
987 /* We change to an absolute value. */
988 value += addr;
989 }
990 break;
991
992 case R_MMIX_PUSHJ_STUBBABLE:
993 /* If the address fits, we're fine. */
994 if ((value & 3) == 0
995 /* Note rightshift 0; see R_MMIX_JMP case below. */
996 && (r = bfd_check_overflow (complain_overflow_signed,
997 howto->bitsize,
998 0,
999 bfd_arch_bits_per_address (abfd),
1000 value)) == bfd_reloc_ok)
1001 goto pcrel_mmix_reloc_fits;
1002 else
1003 {
1004 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
1005
1006 /* We have the bytes at the PUSHJ insn and need to get the
1007 position for the stub. There's supposed to be room allocated
1008 for the stub. */
1009 bfd_byte *stubcontents
1010 = ((bfd_byte *) datap
1011 - (addr - (isec->output_section->vma + isec->output_offset))
1012 + size
1013 + mmix_elf_section_data (isec)->pjs.stub_offset);
1014 bfd_vma stubaddr;
1015
1016 /* The address doesn't fit, so redirect the PUSHJ to the
1017 location of the stub. */
1018 r = mmix_elf_perform_relocation (isec,
1019 &elf_mmix_howto_table
1020 [R_MMIX_ADDR19],
1021 datap,
1022 addr,
1023 isec->output_section->vma
1024 + isec->output_offset
1025 + size
1026 + (mmix_elf_section_data (isec)
1027 ->pjs.stub_offset)
1028 - addr);
1029 if (r != bfd_reloc_ok)
1030 return r;
1031
1032 stubaddr
1033 = (isec->output_section->vma
1034 + isec->output_offset
1035 + size
1036 + mmix_elf_section_data (isec)->pjs.stub_offset);
1037
1038 /* We generate a simple JMP if that suffices, else the whole 5
1039 insn stub. */
1040 if (bfd_check_overflow (complain_overflow_signed,
1041 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1042 0,
1043 bfd_arch_bits_per_address (abfd),
1044 addr + value - stubaddr) == bfd_reloc_ok)
1045 {
1046 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1047 r = mmix_elf_perform_relocation (isec,
1048 &elf_mmix_howto_table
1049 [R_MMIX_ADDR27],
1050 stubcontents,
1051 stubaddr,
1052 value + addr - stubaddr);
1053 mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1054
1055 if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1056 > isec->size)
1057 abort ();
1058
1059 return r;
1060 }
1061 else
1062 {
1063 /* Put a "GO $255,0" after the common sequence. */
1064 bfd_put_32 (abfd,
1065 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1066 | 0xff00, (bfd_byte *) stubcontents + 16);
1067
1068 /* Prepare for the general code to set the first part of the
1069 linker stub, and */
1070 value += addr;
1071 datap = stubcontents;
1072 mmix_elf_section_data (isec)->pjs.stub_offset
1073 += MAX_PUSHJ_STUB_SIZE;
1074 }
1075 }
1076 break;
1077
1078 case R_MMIX_PUSHJ:
1079 {
1080 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1081
1082 /* Put a "PUSHGO $N,$255,0" after the common sequence. */
1083 bfd_put_32 (abfd,
1084 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1085 | (inreg << 16)
1086 | 0xff00,
1087 (bfd_byte *) datap + 16);
1088
1089 /* We change to an absolute value. */
1090 value += addr;
1091 }
1092 break;
1093
1094 case R_MMIX_JMP:
1095 /* This one is a little special. If we get here on a non-relaxing
1096 link, and the destination is actually in range, we don't need to
1097 execute the nops.
1098 If so, we fall through to the bit-fiddling relocs.
1099
1100 FIXME: bfd_check_overflow seems broken; the relocation is
1101 rightshifted before testing, so supply a zero rightshift. */
1102
1103 if (! ((value & 3) == 0
1104 && (r = bfd_check_overflow (complain_overflow_signed,
1105 howto->bitsize,
1106 0,
1107 bfd_arch_bits_per_address (abfd),
1108 value)) == bfd_reloc_ok))
1109 {
1110 /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1111 modified below, and put a "GO $255,$255,0" after the
1112 address-loading sequence. */
1113 bfd_put_32 (abfd,
1114 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1115 | 0xffff00,
1116 (bfd_byte *) datap + 16);
1117
1118 /* We change to an absolute value. */
1119 value += addr;
1120 break;
1121 }
1122 /* FALLTHROUGH. */
1123 case R_MMIX_ADDR19:
1124 case R_MMIX_ADDR27:
1125 pcrel_mmix_reloc_fits:
1126 /* These must be in range, or else we emit an error. */
1127 if ((value & 3) == 0
1128 /* Note rightshift 0; see above. */
1129 && (r = bfd_check_overflow (complain_overflow_signed,
1130 howto->bitsize,
1131 0,
1132 bfd_arch_bits_per_address (abfd),
1133 value)) == bfd_reloc_ok)
1134 {
1135 bfd_vma in1
1136 = bfd_get_32 (abfd, (bfd_byte *) datap);
1137 bfd_vma highbit;
1138
1139 if ((bfd_signed_vma) value < 0)
1140 {
1141 highbit = 1 << 24;
1142 value += (1 << (howto->bitsize - 1));
1143 }
1144 else
1145 highbit = 0;
1146
1147 value >>= 2;
1148
1149 bfd_put_32 (abfd,
1150 (in1 & howto->src_mask)
1151 | highbit
1152 | (value & howto->dst_mask),
1153 (bfd_byte *) datap);
1154
1155 return bfd_reloc_ok;
1156 }
1157 else
1158 return bfd_reloc_overflow;
1159
1160 case R_MMIX_BASE_PLUS_OFFSET:
1161 {
1162 struct bpo_reloc_section_info *bpodata
1163 = mmix_elf_section_data (isec)->bpo.reloc;
1164 asection *bpo_greg_section
1165 = bpodata->bpo_greg_section;
1166 struct bpo_greg_section_info *gregdata
1167 = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1168 size_t bpo_index
1169 = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1170
1171 /* A consistency check: The value we now have in "relocation" must
1172 be the same as the value we stored for that relocation. It
1173 doesn't cost much, so can be left in at all times. */
1174 if (value != gregdata->reloc_request[bpo_index].value)
1175 {
1176 (*_bfd_error_handler)
1177 (_("%s: Internal inconsistency error for value for\n\
1178 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1179 bfd_get_filename (isec->owner),
1180 (unsigned long) (value >> 32), (unsigned long) value,
1181 (unsigned long) (gregdata->reloc_request[bpo_index].value
1182 >> 32),
1183 (unsigned long) gregdata->reloc_request[bpo_index].value);
1184 bfd_set_error (bfd_error_bad_value);
1185 return bfd_reloc_overflow;
1186 }
1187
1188 /* Then store the register number and offset for that register
1189 into datap and datap + 1 respectively. */
1190 bfd_put_8 (abfd,
1191 gregdata->reloc_request[bpo_index].regindex
1192 + bpo_greg_section->output_section->vma / 8,
1193 datap);
1194 bfd_put_8 (abfd,
1195 gregdata->reloc_request[bpo_index].offset,
1196 ((unsigned char *) datap) + 1);
1197 return bfd_reloc_ok;
1198 }
1199
1200 case R_MMIX_REG_OR_BYTE:
1201 case R_MMIX_REG:
1202 if (value > 255)
1203 return bfd_reloc_overflow;
1204 bfd_put_8 (abfd, value, datap);
1205 return bfd_reloc_ok;
1206
1207 default:
1208 BAD_CASE (howto->type);
1209 }
1210
1211 /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1212 sequence. */
1213
1214 /* Lowest two bits must be 0. We return bfd_reloc_overflow for
1215 everything that looks strange. */
1216 if (value & 3)
1217 flag = bfd_reloc_overflow;
1218
1219 bfd_put_32 (abfd,
1220 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1221 (bfd_byte *) datap + offs);
1222 bfd_put_32 (abfd,
1223 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1224 (bfd_byte *) datap + offs + 4);
1225 bfd_put_32 (abfd,
1226 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1227 (bfd_byte *) datap + offs + 8);
1228 bfd_put_32 (abfd,
1229 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1230 (bfd_byte *) datap + offs + 12);
1231
1232 return flag;
1233 }
1234
1235 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */
1236
1237 static void
1238 mmix_info_to_howto_rela (abfd, cache_ptr, dst)
1239 bfd *abfd ATTRIBUTE_UNUSED;
1240 arelent *cache_ptr;
1241 Elf_Internal_Rela *dst;
1242 {
1243 unsigned int r_type;
1244
1245 r_type = ELF64_R_TYPE (dst->r_info);
1246 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max);
1247 cache_ptr->howto = &elf_mmix_howto_table[r_type];
1248 }
1249
1250 /* Any MMIX-specific relocation gets here at assembly time or when linking
1251 to other formats (such as mmo); this is the relocation function from
1252 the reloc_table. We don't get here for final pure ELF linking. */
1253
1254 static bfd_reloc_status_type
1255 mmix_elf_reloc (abfd, reloc_entry, symbol, data, input_section,
1256 output_bfd, error_message)
1257 bfd *abfd;
1258 arelent *reloc_entry;
1259 asymbol *symbol;
1260 PTR data;
1261 asection *input_section;
1262 bfd *output_bfd;
1263 char **error_message ATTRIBUTE_UNUSED;
1264 {
1265 bfd_vma relocation;
1266 bfd_reloc_status_type r;
1267 asection *reloc_target_output_section;
1268 bfd_reloc_status_type flag = bfd_reloc_ok;
1269 bfd_vma output_base = 0;
1270 bfd_vma addr;
1271
1272 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1273 input_section, output_bfd, error_message);
1274
1275 /* If that was all that was needed (i.e. this isn't a final link, only
1276 some segment adjustments), we're done. */
1277 if (r != bfd_reloc_continue)
1278 return r;
1279
1280 if (bfd_is_und_section (symbol->section)
1281 && (symbol->flags & BSF_WEAK) == 0
1282 && output_bfd == (bfd *) NULL)
1283 return bfd_reloc_undefined;
1284
1285 /* Is the address of the relocation really within the section? */
1286 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1287 return bfd_reloc_outofrange;
1288
1289 /* Work out which section the relocation is targeted at and the
1290 initial relocation command value. */
1291
1292 /* Get symbol value. (Common symbols are special.) */
1293 if (bfd_is_com_section (symbol->section))
1294 relocation = 0;
1295 else
1296 relocation = symbol->value;
1297
1298 reloc_target_output_section = bfd_get_output_section (symbol);
1299
1300 /* Here the variable relocation holds the final address of the symbol we
1301 are relocating against, plus any addend. */
1302 if (output_bfd)
1303 output_base = 0;
1304 else
1305 output_base = reloc_target_output_section->vma;
1306
1307 relocation += output_base + symbol->section->output_offset;
1308
1309 /* Get position of relocation. */
1310 addr = (reloc_entry->address + input_section->output_section->vma
1311 + input_section->output_offset);
1312 if (output_bfd != (bfd *) NULL)
1313 {
1314 /* Add in supplied addend. */
1315 relocation += reloc_entry->addend;
1316
1317 /* This is a partial relocation, and we want to apply the
1318 relocation to the reloc entry rather than the raw data.
1319 Modify the reloc inplace to reflect what we now know. */
1320 reloc_entry->addend = relocation;
1321 reloc_entry->address += input_section->output_offset;
1322 return flag;
1323 }
1324
1325 return mmix_final_link_relocate (reloc_entry->howto, input_section,
1326 data, reloc_entry->address,
1327 reloc_entry->addend, relocation,
1328 bfd_asymbol_name (symbol),
1329 reloc_target_output_section);
1330 }
1331 \f
1332 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it
1333 for guidance if you're thinking of copying this. */
1334
1335 static bfd_boolean
1336 mmix_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1337 contents, relocs, local_syms, local_sections)
1338 bfd *output_bfd ATTRIBUTE_UNUSED;
1339 struct bfd_link_info *info;
1340 bfd *input_bfd;
1341 asection *input_section;
1342 bfd_byte *contents;
1343 Elf_Internal_Rela *relocs;
1344 Elf_Internal_Sym *local_syms;
1345 asection **local_sections;
1346 {
1347 Elf_Internal_Shdr *symtab_hdr;
1348 struct elf_link_hash_entry **sym_hashes;
1349 Elf_Internal_Rela *rel;
1350 Elf_Internal_Rela *relend;
1351 bfd_size_type size;
1352 size_t pjsno = 0;
1353
1354 size = input_section->rawsize ? input_section->rawsize : input_section->size;
1355 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1356 sym_hashes = elf_sym_hashes (input_bfd);
1357 relend = relocs + input_section->reloc_count;
1358
1359 /* Zero the stub area before we start. */
1360 if (input_section->rawsize != 0
1361 && input_section->size > input_section->rawsize)
1362 memset (contents + input_section->rawsize, 0,
1363 input_section->size - input_section->rawsize);
1364
1365 for (rel = relocs; rel < relend; rel ++)
1366 {
1367 reloc_howto_type *howto;
1368 unsigned long r_symndx;
1369 Elf_Internal_Sym *sym;
1370 asection *sec;
1371 struct elf_link_hash_entry *h;
1372 bfd_vma relocation;
1373 bfd_reloc_status_type r;
1374 const char *name = NULL;
1375 int r_type;
1376 bfd_boolean undefined_signalled = FALSE;
1377
1378 r_type = ELF64_R_TYPE (rel->r_info);
1379
1380 if (r_type == R_MMIX_GNU_VTINHERIT
1381 || r_type == R_MMIX_GNU_VTENTRY)
1382 continue;
1383
1384 r_symndx = ELF64_R_SYM (rel->r_info);
1385
1386 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1387 h = NULL;
1388 sym = NULL;
1389 sec = NULL;
1390
1391 if (r_symndx < symtab_hdr->sh_info)
1392 {
1393 sym = local_syms + r_symndx;
1394 sec = local_sections [r_symndx];
1395 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1396
1397 name = bfd_elf_string_from_elf_section (input_bfd,
1398 symtab_hdr->sh_link,
1399 sym->st_name);
1400 if (name == NULL)
1401 name = bfd_section_name (input_bfd, sec);
1402 }
1403 else
1404 {
1405 bfd_boolean unresolved_reloc;
1406
1407 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1408 r_symndx, symtab_hdr, sym_hashes,
1409 h, sec, relocation,
1410 unresolved_reloc, undefined_signalled);
1411 name = h->root.root.string;
1412 }
1413
1414 if (sec != NULL && elf_discarded_section (sec))
1415 {
1416 /* For relocs against symbols from removed linkonce sections,
1417 or sections discarded by a linker script, we just want the
1418 section contents zeroed. Avoid any special processing. */
1419 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
1420 rel->r_info = 0;
1421 rel->r_addend = 0;
1422 continue;
1423 }
1424
1425 if (info->relocatable)
1426 {
1427 /* This is a relocatable link. For most relocs we don't have to
1428 change anything, unless the reloc is against a section
1429 symbol, in which case we have to adjust according to where
1430 the section symbol winds up in the output section. */
1431 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1432 rel->r_addend += sec->output_offset;
1433
1434 /* For PUSHJ stub relocs however, we may need to change the
1435 reloc and the section contents, if the reloc doesn't reach
1436 beyond the end of the output section and previous stubs.
1437 Then we change the section contents to be a PUSHJ to the end
1438 of the input section plus stubs (we can do that without using
1439 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1440 at the stub location. */
1441 if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1442 {
1443 /* We've already checked whether we need a stub; use that
1444 knowledge. */
1445 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1446 != 0)
1447 {
1448 Elf_Internal_Rela relcpy;
1449
1450 if (mmix_elf_section_data (input_section)
1451 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1452 abort ();
1453
1454 /* There's already a PUSHJ insn there, so just fill in
1455 the offset bits to the stub. */
1456 if (mmix_final_link_relocate (elf_mmix_howto_table
1457 + R_MMIX_ADDR19,
1458 input_section,
1459 contents,
1460 rel->r_offset,
1461 0,
1462 input_section
1463 ->output_section->vma
1464 + input_section->output_offset
1465 + size
1466 + mmix_elf_section_data (input_section)
1467 ->pjs.stub_offset,
1468 NULL, NULL) != bfd_reloc_ok)
1469 return FALSE;
1470
1471 /* Put a JMP insn at the stub; it goes with the
1472 R_MMIX_JMP reloc. */
1473 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1474 contents
1475 + size
1476 + mmix_elf_section_data (input_section)
1477 ->pjs.stub_offset);
1478
1479 /* Change the reloc to be at the stub, and to a full
1480 R_MMIX_JMP reloc. */
1481 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1482 rel->r_offset
1483 = (size
1484 + mmix_elf_section_data (input_section)
1485 ->pjs.stub_offset);
1486
1487 mmix_elf_section_data (input_section)->pjs.stub_offset
1488 += MAX_PUSHJ_STUB_SIZE;
1489
1490 /* Shift this reloc to the end of the relocs to maintain
1491 the r_offset sorted reloc order. */
1492 relcpy = *rel;
1493 memmove (rel, rel + 1, (char *) relend - (char *) rel);
1494 relend[-1] = relcpy;
1495
1496 /* Back up one reloc, or else we'd skip the next reloc
1497 in turn. */
1498 rel--;
1499 }
1500
1501 pjsno++;
1502 }
1503 continue;
1504 }
1505
1506 r = mmix_final_link_relocate (howto, input_section,
1507 contents, rel->r_offset,
1508 rel->r_addend, relocation, name, sec);
1509
1510 if (r != bfd_reloc_ok)
1511 {
1512 bfd_boolean check_ok = TRUE;
1513 const char * msg = (const char *) NULL;
1514
1515 switch (r)
1516 {
1517 case bfd_reloc_overflow:
1518 check_ok = info->callbacks->reloc_overflow
1519 (info, (h ? &h->root : NULL), name, howto->name,
1520 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1521 break;
1522
1523 case bfd_reloc_undefined:
1524 /* We may have sent this message above. */
1525 if (! undefined_signalled)
1526 check_ok = info->callbacks->undefined_symbol
1527 (info, name, input_bfd, input_section, rel->r_offset,
1528 TRUE);
1529 undefined_signalled = TRUE;
1530 break;
1531
1532 case bfd_reloc_outofrange:
1533 msg = _("internal error: out of range error");
1534 break;
1535
1536 case bfd_reloc_notsupported:
1537 msg = _("internal error: unsupported relocation error");
1538 break;
1539
1540 case bfd_reloc_dangerous:
1541 msg = _("internal error: dangerous relocation");
1542 break;
1543
1544 default:
1545 msg = _("internal error: unknown error");
1546 break;
1547 }
1548
1549 if (msg)
1550 check_ok = info->callbacks->warning
1551 (info, msg, name, input_bfd, input_section, rel->r_offset);
1552
1553 if (! check_ok)
1554 return FALSE;
1555 }
1556 }
1557
1558 return TRUE;
1559 }
1560 \f
1561 /* Perform a single relocation. By default we use the standard BFD
1562 routines. A few relocs we have to do ourselves. */
1563
1564 static bfd_reloc_status_type
1565 mmix_final_link_relocate (howto, input_section, contents,
1566 r_offset, r_addend, relocation, symname, symsec)
1567 reloc_howto_type *howto;
1568 asection *input_section;
1569 bfd_byte *contents;
1570 bfd_vma r_offset;
1571 bfd_signed_vma r_addend;
1572 bfd_vma relocation;
1573 const char *symname;
1574 asection *symsec;
1575 {
1576 bfd_reloc_status_type r = bfd_reloc_ok;
1577 bfd_vma addr
1578 = (input_section->output_section->vma
1579 + input_section->output_offset
1580 + r_offset);
1581 bfd_signed_vma srel
1582 = (bfd_signed_vma) relocation + r_addend;
1583
1584 switch (howto->type)
1585 {
1586 /* All these are PC-relative. */
1587 case R_MMIX_PUSHJ_STUBBABLE:
1588 case R_MMIX_PUSHJ:
1589 case R_MMIX_CBRANCH:
1590 case R_MMIX_ADDR19:
1591 case R_MMIX_GETA:
1592 case R_MMIX_ADDR27:
1593 case R_MMIX_JMP:
1594 contents += r_offset;
1595
1596 srel -= (input_section->output_section->vma
1597 + input_section->output_offset
1598 + r_offset);
1599
1600 r = mmix_elf_perform_relocation (input_section, howto, contents,
1601 addr, srel);
1602 break;
1603
1604 case R_MMIX_BASE_PLUS_OFFSET:
1605 if (symsec == NULL)
1606 return bfd_reloc_undefined;
1607
1608 /* Check that we're not relocating against a register symbol. */
1609 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1610 MMIX_REG_CONTENTS_SECTION_NAME) == 0
1611 || strcmp (bfd_get_section_name (symsec->owner, symsec),
1612 MMIX_REG_SECTION_NAME) == 0)
1613 {
1614 /* Note: This is separated out into two messages in order
1615 to ease the translation into other languages. */
1616 if (symname == NULL || *symname == 0)
1617 (*_bfd_error_handler)
1618 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1619 bfd_get_filename (input_section->owner),
1620 bfd_get_section_name (symsec->owner, symsec));
1621 else
1622 (*_bfd_error_handler)
1623 (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1624 bfd_get_filename (input_section->owner), symname,
1625 bfd_get_section_name (symsec->owner, symsec));
1626 return bfd_reloc_overflow;
1627 }
1628 goto do_mmix_reloc;
1629
1630 case R_MMIX_REG_OR_BYTE:
1631 case R_MMIX_REG:
1632 /* For now, we handle these alike. They must refer to an register
1633 symbol, which is either relative to the register section and in
1634 the range 0..255, or is in the register contents section with vma
1635 regno * 8. */
1636
1637 /* FIXME: A better way to check for reg contents section?
1638 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1639 if (symsec == NULL)
1640 return bfd_reloc_undefined;
1641
1642 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1643 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1644 {
1645 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1646 {
1647 /* The bfd_reloc_outofrange return value, though intuitively
1648 a better value, will not get us an error. */
1649 return bfd_reloc_overflow;
1650 }
1651 srel /= 8;
1652 }
1653 else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1654 MMIX_REG_SECTION_NAME) == 0)
1655 {
1656 if (srel < 0 || srel > 255)
1657 /* The bfd_reloc_outofrange return value, though intuitively a
1658 better value, will not get us an error. */
1659 return bfd_reloc_overflow;
1660 }
1661 else
1662 {
1663 /* Note: This is separated out into two messages in order
1664 to ease the translation into other languages. */
1665 if (symname == NULL || *symname == 0)
1666 (*_bfd_error_handler)
1667 (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1668 bfd_get_filename (input_section->owner),
1669 bfd_get_section_name (symsec->owner, symsec));
1670 else
1671 (*_bfd_error_handler)
1672 (_("%s: register relocation against non-register symbol: %s in %s"),
1673 bfd_get_filename (input_section->owner), symname,
1674 bfd_get_section_name (symsec->owner, symsec));
1675
1676 /* The bfd_reloc_outofrange return value, though intuitively a
1677 better value, will not get us an error. */
1678 return bfd_reloc_overflow;
1679 }
1680 do_mmix_reloc:
1681 contents += r_offset;
1682 r = mmix_elf_perform_relocation (input_section, howto, contents,
1683 addr, srel);
1684 break;
1685
1686 case R_MMIX_LOCAL:
1687 /* This isn't a real relocation, it's just an assertion that the
1688 final relocation value corresponds to a local register. We
1689 ignore the actual relocation; nothing is changed. */
1690 {
1691 asection *regsec
1692 = bfd_get_section_by_name (input_section->output_section->owner,
1693 MMIX_REG_CONTENTS_SECTION_NAME);
1694 bfd_vma first_global;
1695
1696 /* Check that this is an absolute value, or a reference to the
1697 register contents section or the register (symbol) section.
1698 Absolute numbers can get here as undefined section. Undefined
1699 symbols are signalled elsewhere, so there's no conflict in us
1700 accidentally handling it. */
1701 if (!bfd_is_abs_section (symsec)
1702 && !bfd_is_und_section (symsec)
1703 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1704 MMIX_REG_CONTENTS_SECTION_NAME) != 0
1705 && strcmp (bfd_get_section_name (symsec->owner, symsec),
1706 MMIX_REG_SECTION_NAME) != 0)
1707 {
1708 (*_bfd_error_handler)
1709 (_("%s: directive LOCAL valid only with a register or absolute value"),
1710 bfd_get_filename (input_section->owner));
1711
1712 return bfd_reloc_overflow;
1713 }
1714
1715 /* If we don't have a register contents section, then $255 is the
1716 first global register. */
1717 if (regsec == NULL)
1718 first_global = 255;
1719 else
1720 {
1721 first_global = bfd_get_section_vma (abfd, regsec) / 8;
1722 if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1723 MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1724 {
1725 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1726 /* The bfd_reloc_outofrange return value, though
1727 intuitively a better value, will not get us an error. */
1728 return bfd_reloc_overflow;
1729 srel /= 8;
1730 }
1731 }
1732
1733 if ((bfd_vma) srel >= first_global)
1734 {
1735 /* FIXME: Better error message. */
1736 (*_bfd_error_handler)
1737 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."),
1738 bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1739
1740 return bfd_reloc_overflow;
1741 }
1742 }
1743 r = bfd_reloc_ok;
1744 break;
1745
1746 default:
1747 r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1748 contents, r_offset,
1749 relocation, r_addend);
1750 }
1751
1752 return r;
1753 }
1754 \f
1755 /* Return the section that should be marked against GC for a given
1756 relocation. */
1757
1758 static asection *
1759 mmix_elf_gc_mark_hook (asection *sec,
1760 struct bfd_link_info *info,
1761 Elf_Internal_Rela *rel,
1762 struct elf_link_hash_entry *h,
1763 Elf_Internal_Sym *sym)
1764 {
1765 if (h != NULL)
1766 switch (ELF64_R_TYPE (rel->r_info))
1767 {
1768 case R_MMIX_GNU_VTINHERIT:
1769 case R_MMIX_GNU_VTENTRY:
1770 return NULL;
1771 }
1772
1773 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1774 }
1775
1776 /* Update relocation info for a GC-excluded section. We could supposedly
1777 perform the allocation after GC, but there's no suitable hook between
1778 GC (or section merge) and the point when all input sections must be
1779 present. Better to waste some memory and (perhaps) a little time. */
1780
1781 static bfd_boolean
1782 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1783 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1784 asection *sec,
1785 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1786 {
1787 struct bpo_reloc_section_info *bpodata
1788 = mmix_elf_section_data (sec)->bpo.reloc;
1789 asection *allocated_gregs_section;
1790
1791 /* If no bpodata here, we have nothing to do. */
1792 if (bpodata == NULL)
1793 return TRUE;
1794
1795 allocated_gregs_section = bpodata->bpo_greg_section;
1796
1797 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1798 -= bpodata->n_bpo_relocs_this_section;
1799
1800 return TRUE;
1801 }
1802 \f
1803 /* Sort register relocs to come before expanding relocs. */
1804
1805 static int
1806 mmix_elf_sort_relocs (p1, p2)
1807 const PTR p1;
1808 const PTR p2;
1809 {
1810 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1811 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1812 int r1_is_reg, r2_is_reg;
1813
1814 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1815 insns. */
1816 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1817 return 1;
1818 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1819 return -1;
1820
1821 r1_is_reg
1822 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1823 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1824 r2_is_reg
1825 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1826 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1827 if (r1_is_reg != r2_is_reg)
1828 return r2_is_reg - r1_is_reg;
1829
1830 /* Neither or both are register relocs. Then sort on full offset. */
1831 if (r1->r_offset > r2->r_offset)
1832 return 1;
1833 else if (r1->r_offset < r2->r_offset)
1834 return -1;
1835 return 0;
1836 }
1837
1838 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */
1839
1840 static bfd_boolean
1841 mmix_elf_check_common_relocs (abfd, info, sec, relocs)
1842 bfd *abfd;
1843 struct bfd_link_info *info;
1844 asection *sec;
1845 const Elf_Internal_Rela *relocs;
1846 {
1847 bfd *bpo_greg_owner = NULL;
1848 asection *allocated_gregs_section = NULL;
1849 struct bpo_greg_section_info *gregdata = NULL;
1850 struct bpo_reloc_section_info *bpodata = NULL;
1851 const Elf_Internal_Rela *rel;
1852 const Elf_Internal_Rela *rel_end;
1853
1854 /* We currently have to abuse this COFF-specific member, since there's
1855 no target-machine-dedicated member. There's no alternative outside
1856 the bfd_link_info struct; we can't specialize a hash-table since
1857 they're different between ELF and mmo. */
1858 bpo_greg_owner = (bfd *) info->base_file;
1859
1860 rel_end = relocs + sec->reloc_count;
1861 for (rel = relocs; rel < rel_end; rel++)
1862 {
1863 switch (ELF64_R_TYPE (rel->r_info))
1864 {
1865 /* This relocation causes a GREG allocation. We need to count
1866 them, and we need to create a section for them, so we need an
1867 object to fake as the owner of that section. We can't use
1868 the ELF dynobj for this, since the ELF bits assume lots of
1869 DSO-related stuff if that member is non-NULL. */
1870 case R_MMIX_BASE_PLUS_OFFSET:
1871 /* We don't do anything with this reloc for a relocatable link. */
1872 if (info->relocatable)
1873 break;
1874
1875 if (bpo_greg_owner == NULL)
1876 {
1877 bpo_greg_owner = abfd;
1878 info->base_file = (PTR) bpo_greg_owner;
1879 }
1880
1881 if (allocated_gregs_section == NULL)
1882 allocated_gregs_section
1883 = bfd_get_section_by_name (bpo_greg_owner,
1884 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1885
1886 if (allocated_gregs_section == NULL)
1887 {
1888 allocated_gregs_section
1889 = bfd_make_section_with_flags (bpo_greg_owner,
1890 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1891 (SEC_HAS_CONTENTS
1892 | SEC_IN_MEMORY
1893 | SEC_LINKER_CREATED));
1894 /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1895 treated like any other section, and we'd get errors for
1896 address overlap with the text section. Let's set none of
1897 those flags, as that is what currently happens for usual
1898 GREG allocations, and that works. */
1899 if (allocated_gregs_section == NULL
1900 || !bfd_set_section_alignment (bpo_greg_owner,
1901 allocated_gregs_section,
1902 3))
1903 return FALSE;
1904
1905 gregdata = (struct bpo_greg_section_info *)
1906 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1907 if (gregdata == NULL)
1908 return FALSE;
1909 mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1910 = gregdata;
1911 }
1912 else if (gregdata == NULL)
1913 gregdata
1914 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1915
1916 /* Get ourselves some auxiliary info for the BPO-relocs. */
1917 if (bpodata == NULL)
1918 {
1919 /* No use doing a separate iteration pass to find the upper
1920 limit - just use the number of relocs. */
1921 bpodata = (struct bpo_reloc_section_info *)
1922 bfd_alloc (bpo_greg_owner,
1923 sizeof (struct bpo_reloc_section_info)
1924 * (sec->reloc_count + 1));
1925 if (bpodata == NULL)
1926 return FALSE;
1927 mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1928 bpodata->first_base_plus_offset_reloc
1929 = bpodata->bpo_index
1930 = gregdata->n_max_bpo_relocs;
1931 bpodata->bpo_greg_section
1932 = allocated_gregs_section;
1933 bpodata->n_bpo_relocs_this_section = 0;
1934 }
1935
1936 bpodata->n_bpo_relocs_this_section++;
1937 gregdata->n_max_bpo_relocs++;
1938
1939 /* We don't get another chance to set this before GC; we've not
1940 set up any hook that runs before GC. */
1941 gregdata->n_bpo_relocs
1942 = gregdata->n_max_bpo_relocs;
1943 break;
1944
1945 case R_MMIX_PUSHJ_STUBBABLE:
1946 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1947 break;
1948 }
1949 }
1950
1951 /* Allocate per-reloc stub storage and initialize it to the max stub
1952 size. */
1953 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1954 {
1955 size_t i;
1956
1957 mmix_elf_section_data (sec)->pjs.stub_size
1958 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1959 * sizeof (mmix_elf_section_data (sec)
1960 ->pjs.stub_size[0]));
1961 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1962 return FALSE;
1963
1964 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1965 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1966 }
1967
1968 return TRUE;
1969 }
1970
1971 /* Look through the relocs for a section during the first phase. */
1972
1973 static bfd_boolean
1974 mmix_elf_check_relocs (abfd, info, sec, relocs)
1975 bfd *abfd;
1976 struct bfd_link_info *info;
1977 asection *sec;
1978 const Elf_Internal_Rela *relocs;
1979 {
1980 Elf_Internal_Shdr *symtab_hdr;
1981 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
1982 const Elf_Internal_Rela *rel;
1983 const Elf_Internal_Rela *rel_end;
1984
1985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1986 sym_hashes = elf_sym_hashes (abfd);
1987 sym_hashes_end = sym_hashes + symtab_hdr->sh_size/sizeof(Elf64_External_Sym);
1988 if (!elf_bad_symtab (abfd))
1989 sym_hashes_end -= symtab_hdr->sh_info;
1990
1991 /* First we sort the relocs so that any register relocs come before
1992 expansion-relocs to the same insn. FIXME: Not done for mmo. */
1993 qsort ((PTR) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1994 mmix_elf_sort_relocs);
1995
1996 /* Do the common part. */
1997 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1998 return FALSE;
1999
2000 if (info->relocatable)
2001 return TRUE;
2002
2003 rel_end = relocs + sec->reloc_count;
2004 for (rel = relocs; rel < rel_end; rel++)
2005 {
2006 struct elf_link_hash_entry *h;
2007 unsigned long r_symndx;
2008
2009 r_symndx = ELF64_R_SYM (rel->r_info);
2010 if (r_symndx < symtab_hdr->sh_info)
2011 h = NULL;
2012 else
2013 {
2014 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2015 while (h->root.type == bfd_link_hash_indirect
2016 || h->root.type == bfd_link_hash_warning)
2017 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2018 }
2019
2020 switch (ELF64_R_TYPE (rel->r_info))
2021 {
2022 /* This relocation describes the C++ object vtable hierarchy.
2023 Reconstruct it for later use during GC. */
2024 case R_MMIX_GNU_VTINHERIT:
2025 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2026 return FALSE;
2027 break;
2028
2029 /* This relocation describes which C++ vtable entries are actually
2030 used. Record for later use during GC. */
2031 case R_MMIX_GNU_VTENTRY:
2032 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2033 return FALSE;
2034 break;
2035 }
2036 }
2037
2038 return TRUE;
2039 }
2040
2041 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2042 Copied from elf_link_add_object_symbols. */
2043
2044 bfd_boolean
2045 _bfd_mmix_check_all_relocs (abfd, info)
2046 bfd *abfd;
2047 struct bfd_link_info *info;
2048 {
2049 asection *o;
2050
2051 for (o = abfd->sections; o != NULL; o = o->next)
2052 {
2053 Elf_Internal_Rela *internal_relocs;
2054 bfd_boolean ok;
2055
2056 if ((o->flags & SEC_RELOC) == 0
2057 || o->reloc_count == 0
2058 || ((info->strip == strip_all || info->strip == strip_debugger)
2059 && (o->flags & SEC_DEBUGGING) != 0)
2060 || bfd_is_abs_section (o->output_section))
2061 continue;
2062
2063 internal_relocs
2064 = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL,
2065 (Elf_Internal_Rela *) NULL,
2066 info->keep_memory);
2067 if (internal_relocs == NULL)
2068 return FALSE;
2069
2070 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2071
2072 if (! info->keep_memory)
2073 free (internal_relocs);
2074
2075 if (! ok)
2076 return FALSE;
2077 }
2078
2079 return TRUE;
2080 }
2081 \f
2082 /* Change symbols relative to the reg contents section to instead be to
2083 the register section, and scale them down to correspond to the register
2084 number. */
2085
2086 static bfd_boolean
2087 mmix_elf_link_output_symbol_hook (info, name, sym, input_sec, h)
2088 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2089 const char *name ATTRIBUTE_UNUSED;
2090 Elf_Internal_Sym *sym;
2091 asection *input_sec;
2092 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED;
2093 {
2094 if (input_sec != NULL
2095 && input_sec->name != NULL
2096 && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2097 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2098 {
2099 sym->st_value /= 8;
2100 sym->st_shndx = SHN_REGISTER;
2101 }
2102
2103 return TRUE;
2104 }
2105
2106 /* We fake a register section that holds values that are register numbers.
2107 Having a SHN_REGISTER and register section translates better to other
2108 formats (e.g. mmo) than for example a STT_REGISTER attribute.
2109 This section faking is based on a construct in elf32-mips.c. */
2110 static asection mmix_elf_reg_section;
2111 static asymbol mmix_elf_reg_section_symbol;
2112 static asymbol *mmix_elf_reg_section_symbol_ptr;
2113
2114 /* Handle the special section numbers that a symbol may use. */
2115
2116 void
2117 mmix_elf_symbol_processing (abfd, asym)
2118 bfd *abfd ATTRIBUTE_UNUSED;
2119 asymbol *asym;
2120 {
2121 elf_symbol_type *elfsym;
2122
2123 elfsym = (elf_symbol_type *) asym;
2124 switch (elfsym->internal_elf_sym.st_shndx)
2125 {
2126 case SHN_REGISTER:
2127 if (mmix_elf_reg_section.name == NULL)
2128 {
2129 /* Initialize the register section. */
2130 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2131 mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2132 mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2133 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2134 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2135 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2136 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2137 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2138 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2139 }
2140 asym->section = &mmix_elf_reg_section;
2141 break;
2142
2143 default:
2144 break;
2145 }
2146 }
2147
2148 /* Given a BFD section, try to locate the corresponding ELF section
2149 index. */
2150
2151 static bfd_boolean
2152 mmix_elf_section_from_bfd_section (abfd, sec, retval)
2153 bfd * abfd ATTRIBUTE_UNUSED;
2154 asection * sec;
2155 int * retval;
2156 {
2157 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2158 *retval = SHN_REGISTER;
2159 else
2160 return FALSE;
2161
2162 return TRUE;
2163 }
2164
2165 /* Hook called by the linker routine which adds symbols from an object
2166 file. We must handle the special SHN_REGISTER section number here.
2167
2168 We also check that we only have *one* each of the section-start
2169 symbols, since otherwise having two with the same value would cause
2170 them to be "merged", but with the contents serialized. */
2171
2172 bfd_boolean
2173 mmix_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
2174 bfd *abfd;
2175 struct bfd_link_info *info ATTRIBUTE_UNUSED;
2176 Elf_Internal_Sym *sym;
2177 const char **namep ATTRIBUTE_UNUSED;
2178 flagword *flagsp ATTRIBUTE_UNUSED;
2179 asection **secp;
2180 bfd_vma *valp ATTRIBUTE_UNUSED;
2181 {
2182 if (sym->st_shndx == SHN_REGISTER)
2183 {
2184 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2185 (*secp)->flags |= SEC_LINKER_CREATED;
2186 }
2187 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2188 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2189 {
2190 /* See if we have another one. */
2191 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2192 *namep,
2193 FALSE,
2194 FALSE,
2195 FALSE);
2196
2197 if (h != NULL && h->type != bfd_link_hash_undefined)
2198 {
2199 /* How do we get the asymbol (or really: the filename) from h?
2200 h->u.def.section->owner is NULL. */
2201 ((*_bfd_error_handler)
2202 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2203 bfd_get_filename (abfd), *namep,
2204 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2205 bfd_set_error (bfd_error_bad_value);
2206 return FALSE;
2207 }
2208 }
2209
2210 return TRUE;
2211 }
2212
2213 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */
2214
2215 bfd_boolean
2216 mmix_elf_is_local_label_name (abfd, name)
2217 bfd *abfd;
2218 const char *name;
2219 {
2220 const char *colpos;
2221 int digits;
2222
2223 /* Also include the default local-label definition. */
2224 if (_bfd_elf_is_local_label_name (abfd, name))
2225 return TRUE;
2226
2227 if (*name != 'L')
2228 return FALSE;
2229
2230 /* If there's no ":", or more than one, it's not a local symbol. */
2231 colpos = strchr (name, ':');
2232 if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2233 return FALSE;
2234
2235 /* Check that there are remaining characters and that they are digits. */
2236 if (colpos[1] == 0)
2237 return FALSE;
2238
2239 digits = strspn (colpos + 1, "0123456789");
2240 return digits != 0 && colpos[1 + digits] == 0;
2241 }
2242
2243 /* We get rid of the register section here. */
2244
2245 bfd_boolean
2246 mmix_elf_final_link (abfd, info)
2247 bfd *abfd;
2248 struct bfd_link_info *info;
2249 {
2250 /* We never output a register section, though we create one for
2251 temporary measures. Check that nobody entered contents into it. */
2252 asection *reg_section;
2253
2254 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2255
2256 if (reg_section != NULL)
2257 {
2258 /* FIXME: Pass error state gracefully. */
2259 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2260 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2261
2262 /* Really remove the section, if it hasn't already been done. */
2263 if (!bfd_section_removed_from_list (abfd, reg_section))
2264 {
2265 bfd_section_list_remove (abfd, reg_section);
2266 --abfd->section_count;
2267 }
2268 }
2269
2270 if (! bfd_elf_final_link (abfd, info))
2271 return FALSE;
2272
2273 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2274 the regular linker machinery. We do it here, like other targets with
2275 special sections. */
2276 if (info->base_file != NULL)
2277 {
2278 asection *greg_section
2279 = bfd_get_section_by_name ((bfd *) info->base_file,
2280 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2281 if (!bfd_set_section_contents (abfd,
2282 greg_section->output_section,
2283 greg_section->contents,
2284 (file_ptr) greg_section->output_offset,
2285 greg_section->size))
2286 return FALSE;
2287 }
2288 return TRUE;
2289 }
2290
2291 /* We need to include the maximum size of PUSHJ-stubs in the initial
2292 section size. This is expected to shrink during linker relaxation. */
2293
2294 static void
2295 mmix_set_relaxable_size (abfd, sec, ptr)
2296 bfd *abfd ATTRIBUTE_UNUSED;
2297 asection *sec;
2298 void *ptr;
2299 {
2300 struct bfd_link_info *info = ptr;
2301
2302 /* Make sure we only do this for section where we know we want this,
2303 otherwise we might end up resetting the size of COMMONs. */
2304 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2305 return;
2306
2307 sec->rawsize = sec->size;
2308 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2309 * MAX_PUSHJ_STUB_SIZE);
2310
2311 /* For use in relocatable link, we start with a max stubs size. See
2312 mmix_elf_relax_section. */
2313 if (info->relocatable && sec->output_section)
2314 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2315 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2316 * MAX_PUSHJ_STUB_SIZE);
2317 }
2318
2319 /* Initialize stuff for the linker-generated GREGs to match
2320 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */
2321
2322 bfd_boolean
2323 _bfd_mmix_before_linker_allocation (abfd, info)
2324 bfd *abfd ATTRIBUTE_UNUSED;
2325 struct bfd_link_info *info;
2326 {
2327 asection *bpo_gregs_section;
2328 bfd *bpo_greg_owner;
2329 struct bpo_greg_section_info *gregdata;
2330 size_t n_gregs;
2331 bfd_vma gregs_size;
2332 size_t i;
2333 size_t *bpo_reloc_indexes;
2334 bfd *ibfd;
2335
2336 /* Set the initial size of sections. */
2337 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
2338 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2339
2340 /* The bpo_greg_owner bfd is supposed to have been set by
2341 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2342 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2343 bpo_greg_owner = (bfd *) info->base_file;
2344 if (bpo_greg_owner == NULL)
2345 return TRUE;
2346
2347 bpo_gregs_section
2348 = bfd_get_section_by_name (bpo_greg_owner,
2349 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2350
2351 if (bpo_gregs_section == NULL)
2352 return TRUE;
2353
2354 /* We use the target-data handle in the ELF section data. */
2355 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2356 if (gregdata == NULL)
2357 return FALSE;
2358
2359 n_gregs = gregdata->n_bpo_relocs;
2360 gregdata->n_allocated_bpo_gregs = n_gregs;
2361
2362 /* When this reaches zero during relaxation, all entries have been
2363 filled in and the size of the linker gregs can be calculated. */
2364 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2365
2366 /* Set the zeroth-order estimate for the GREGs size. */
2367 gregs_size = n_gregs * 8;
2368
2369 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2370 return FALSE;
2371
2372 /* Allocate and set up the GREG arrays. They're filled in at relaxation
2373 time. Note that we must use the max number ever noted for the array,
2374 since the index numbers were created before GC. */
2375 gregdata->reloc_request
2376 = bfd_zalloc (bpo_greg_owner,
2377 sizeof (struct bpo_reloc_request)
2378 * gregdata->n_max_bpo_relocs);
2379
2380 gregdata->bpo_reloc_indexes
2381 = bpo_reloc_indexes
2382 = bfd_alloc (bpo_greg_owner,
2383 gregdata->n_max_bpo_relocs
2384 * sizeof (size_t));
2385 if (bpo_reloc_indexes == NULL)
2386 return FALSE;
2387
2388 /* The default order is an identity mapping. */
2389 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2390 {
2391 bpo_reloc_indexes[i] = i;
2392 gregdata->reloc_request[i].bpo_reloc_no = i;
2393 }
2394
2395 return TRUE;
2396 }
2397 \f
2398 /* Fill in contents in the linker allocated gregs. Everything is
2399 calculated at this point; we just move the contents into place here. */
2400
2401 bfd_boolean
2402 _bfd_mmix_after_linker_allocation (abfd, link_info)
2403 bfd *abfd ATTRIBUTE_UNUSED;
2404 struct bfd_link_info *link_info;
2405 {
2406 asection *bpo_gregs_section;
2407 bfd *bpo_greg_owner;
2408 struct bpo_greg_section_info *gregdata;
2409 size_t n_gregs;
2410 size_t i, j;
2411 size_t lastreg;
2412 bfd_byte *contents;
2413
2414 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2415 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such
2416 object, there was no R_MMIX_BASE_PLUS_OFFSET. */
2417 bpo_greg_owner = (bfd *) link_info->base_file;
2418 if (bpo_greg_owner == NULL)
2419 return TRUE;
2420
2421 bpo_gregs_section
2422 = bfd_get_section_by_name (bpo_greg_owner,
2423 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2424
2425 /* This can't happen without DSO handling. When DSOs are handled
2426 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2427 section. */
2428 if (bpo_gregs_section == NULL)
2429 return TRUE;
2430
2431 /* We use the target-data handle in the ELF section data. */
2432
2433 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2434 if (gregdata == NULL)
2435 return FALSE;
2436
2437 n_gregs = gregdata->n_allocated_bpo_gregs;
2438
2439 bpo_gregs_section->contents
2440 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2441 if (contents == NULL)
2442 return FALSE;
2443
2444 /* Sanity check: If these numbers mismatch, some relocation has not been
2445 accounted for and the rest of gregdata is probably inconsistent.
2446 It's a bug, but it's more helpful to identify it than segfaulting
2447 below. */
2448 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2449 != gregdata->n_bpo_relocs)
2450 {
2451 (*_bfd_error_handler)
2452 (_("Internal inconsistency: remaining %u != max %u.\n\
2453 Please report this bug."),
2454 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2455 gregdata->n_bpo_relocs);
2456 return FALSE;
2457 }
2458
2459 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2460 if (gregdata->reloc_request[i].regindex != lastreg)
2461 {
2462 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2463 contents + j * 8);
2464 lastreg = gregdata->reloc_request[i].regindex;
2465 j++;
2466 }
2467
2468 return TRUE;
2469 }
2470
2471 /* Sort valid relocs to come before non-valid relocs, then on increasing
2472 value. */
2473
2474 static int
2475 bpo_reloc_request_sort_fn (p1, p2)
2476 const PTR p1;
2477 const PTR p2;
2478 {
2479 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2480 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2481
2482 /* Primary function is validity; non-valid relocs sorted after valid
2483 ones. */
2484 if (r1->valid != r2->valid)
2485 return r2->valid - r1->valid;
2486
2487 /* Then sort on value. Don't simplify and return just the difference of
2488 the values: the upper bits of the 64-bit value would be truncated on
2489 a host with 32-bit ints. */
2490 if (r1->value != r2->value)
2491 return r1->value > r2->value ? 1 : -1;
2492
2493 /* As a last re-sort, use the relocation number, so we get a stable
2494 sort. The *addresses* aren't stable since items are swapped during
2495 sorting. It depends on the qsort implementation if this actually
2496 happens. */
2497 return r1->bpo_reloc_no > r2->bpo_reloc_no
2498 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2499 }
2500
2501 /* For debug use only. Dumps the global register allocations resulting
2502 from base-plus-offset relocs. */
2503
2504 void
2505 mmix_dump_bpo_gregs (link_info, pf)
2506 struct bfd_link_info *link_info;
2507 bfd_error_handler_type pf;
2508 {
2509 bfd *bpo_greg_owner;
2510 asection *bpo_gregs_section;
2511 struct bpo_greg_section_info *gregdata;
2512 unsigned int i;
2513
2514 if (link_info == NULL || link_info->base_file == NULL)
2515 return;
2516
2517 bpo_greg_owner = (bfd *) link_info->base_file;
2518
2519 bpo_gregs_section
2520 = bfd_get_section_by_name (bpo_greg_owner,
2521 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2522
2523 if (bpo_gregs_section == NULL)
2524 return;
2525
2526 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2527 if (gregdata == NULL)
2528 return;
2529
2530 if (pf == NULL)
2531 pf = _bfd_error_handler;
2532
2533 /* These format strings are not translated. They are for debug purposes
2534 only and never displayed to an end user. Should they escape, we
2535 surely want them in original. */
2536 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2537 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2538 gregdata->n_max_bpo_relocs,
2539 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2540 gregdata->n_allocated_bpo_gregs);
2541
2542 if (gregdata->reloc_request)
2543 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2544 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n",
2545 i,
2546 (gregdata->bpo_reloc_indexes != NULL
2547 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2548 gregdata->reloc_request[i].bpo_reloc_no,
2549 gregdata->reloc_request[i].valid,
2550
2551 (unsigned long) (gregdata->reloc_request[i].value >> 32),
2552 (unsigned long) gregdata->reloc_request[i].value,
2553 gregdata->reloc_request[i].regindex,
2554 gregdata->reloc_request[i].offset);
2555 }
2556
2557 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2558 when the last such reloc is done, an index-array is sorted according to
2559 the values and iterated over to produce register numbers (indexed by 0
2560 from the first allocated register number) and offsets for use in real
2561 relocation.
2562
2563 PUSHJ stub accounting is also done here.
2564
2565 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */
2566
2567 static bfd_boolean
2568 mmix_elf_relax_section (abfd, sec, link_info, again)
2569 bfd *abfd;
2570 asection *sec;
2571 struct bfd_link_info *link_info;
2572 bfd_boolean *again;
2573 {
2574 Elf_Internal_Shdr *symtab_hdr;
2575 Elf_Internal_Rela *internal_relocs;
2576 Elf_Internal_Rela *irel, *irelend;
2577 asection *bpo_gregs_section = NULL;
2578 struct bpo_greg_section_info *gregdata;
2579 struct bpo_reloc_section_info *bpodata
2580 = mmix_elf_section_data (sec)->bpo.reloc;
2581 /* The initialization is to quiet compiler warnings. The value is to
2582 spot a missing actual initialization. */
2583 size_t bpono = (size_t) -1;
2584 size_t pjsno = 0;
2585 bfd *bpo_greg_owner;
2586 Elf_Internal_Sym *isymbuf = NULL;
2587 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2588
2589 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2590
2591 /* Assume nothing changes. */
2592 *again = FALSE;
2593
2594 /* We don't have to do anything if this section does not have relocs, or
2595 if this is not a code section. */
2596 if ((sec->flags & SEC_RELOC) == 0
2597 || sec->reloc_count == 0
2598 || (sec->flags & SEC_CODE) == 0
2599 || (sec->flags & SEC_LINKER_CREATED) != 0
2600 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2601 then nothing to do. */
2602 || (bpodata == NULL
2603 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2604 return TRUE;
2605
2606 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2607
2608 bpo_greg_owner = (bfd *) link_info->base_file;
2609
2610 if (bpodata != NULL)
2611 {
2612 bpo_gregs_section = bpodata->bpo_greg_section;
2613 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2614 bpono = bpodata->first_base_plus_offset_reloc;
2615 }
2616 else
2617 gregdata = NULL;
2618
2619 /* Get a copy of the native relocations. */
2620 internal_relocs
2621 = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL,
2622 (Elf_Internal_Rela *) NULL,
2623 link_info->keep_memory);
2624 if (internal_relocs == NULL)
2625 goto error_return;
2626
2627 /* Walk through them looking for relaxing opportunities. */
2628 irelend = internal_relocs + sec->reloc_count;
2629 for (irel = internal_relocs; irel < irelend; irel++)
2630 {
2631 bfd_vma symval;
2632 struct elf_link_hash_entry *h = NULL;
2633
2634 /* We only process two relocs. */
2635 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2636 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2637 continue;
2638
2639 /* We process relocs in a distinctly different way when this is a
2640 relocatable link (for one, we don't look at symbols), so we avoid
2641 mixing its code with that for the "normal" relaxation. */
2642 if (link_info->relocatable)
2643 {
2644 /* The only transformation in a relocatable link is to generate
2645 a full stub at the location of the stub calculated for the
2646 input section, if the relocated stub location, the end of the
2647 output section plus earlier stubs, cannot be reached. Thus
2648 relocatable linking can only lead to worse code, but it still
2649 works. */
2650 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2651 {
2652 /* If we can reach the end of the output-section and beyond
2653 any current stubs, then we don't need a stub for this
2654 reloc. The relaxed order of output stub allocation may
2655 not exactly match the straightforward order, so we always
2656 assume presence of output stubs, which will allow
2657 relaxation only on relocations indifferent to the
2658 presence of output stub allocations for other relocations
2659 and thus the order of output stub allocation. */
2660 if (bfd_check_overflow (complain_overflow_signed,
2661 19,
2662 0,
2663 bfd_arch_bits_per_address (abfd),
2664 /* Output-stub location. */
2665 sec->output_section->rawsize
2666 + (mmix_elf_section_data (sec
2667 ->output_section)
2668 ->pjs.stubs_size_sum)
2669 /* Location of this PUSHJ reloc. */
2670 - (sec->output_offset + irel->r_offset)
2671 /* Don't count *this* stub twice. */
2672 - (mmix_elf_section_data (sec)
2673 ->pjs.stub_size[pjsno]
2674 + MAX_PUSHJ_STUB_SIZE))
2675 == bfd_reloc_ok)
2676 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2677
2678 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2679 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2680
2681 pjsno++;
2682 }
2683
2684 continue;
2685 }
2686
2687 /* Get the value of the symbol referred to by the reloc. */
2688 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2689 {
2690 /* A local symbol. */
2691 Elf_Internal_Sym *isym;
2692 asection *sym_sec;
2693
2694 /* Read this BFD's local symbols if we haven't already. */
2695 if (isymbuf == NULL)
2696 {
2697 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2698 if (isymbuf == NULL)
2699 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2700 symtab_hdr->sh_info, 0,
2701 NULL, NULL, NULL);
2702 if (isymbuf == 0)
2703 goto error_return;
2704 }
2705
2706 isym = isymbuf + ELF64_R_SYM (irel->r_info);
2707 if (isym->st_shndx == SHN_UNDEF)
2708 sym_sec = bfd_und_section_ptr;
2709 else if (isym->st_shndx == SHN_ABS)
2710 sym_sec = bfd_abs_section_ptr;
2711 else if (isym->st_shndx == SHN_COMMON)
2712 sym_sec = bfd_com_section_ptr;
2713 else
2714 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2715 symval = (isym->st_value
2716 + sym_sec->output_section->vma
2717 + sym_sec->output_offset);
2718 }
2719 else
2720 {
2721 unsigned long indx;
2722
2723 /* An external symbol. */
2724 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2725 h = elf_sym_hashes (abfd)[indx];
2726 BFD_ASSERT (h != NULL);
2727 if (h->root.type != bfd_link_hash_defined
2728 && h->root.type != bfd_link_hash_defweak)
2729 {
2730 /* This appears to be a reference to an undefined symbol. Just
2731 ignore it--it will be caught by the regular reloc processing.
2732 We need to keep BPO reloc accounting consistent, though
2733 else we'll abort instead of emitting an error message. */
2734 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2735 && gregdata != NULL)
2736 {
2737 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2738 bpono++;
2739 }
2740 continue;
2741 }
2742
2743 symval = (h->root.u.def.value
2744 + h->root.u.def.section->output_section->vma
2745 + h->root.u.def.section->output_offset);
2746 }
2747
2748 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2749 {
2750 bfd_vma value = symval + irel->r_addend;
2751 bfd_vma dot
2752 = (sec->output_section->vma
2753 + sec->output_offset
2754 + irel->r_offset);
2755 bfd_vma stubaddr
2756 = (sec->output_section->vma
2757 + sec->output_offset
2758 + size
2759 + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2760
2761 if ((value & 3) == 0
2762 && bfd_check_overflow (complain_overflow_signed,
2763 19,
2764 0,
2765 bfd_arch_bits_per_address (abfd),
2766 value - dot
2767 - (value > dot
2768 ? mmix_elf_section_data (sec)
2769 ->pjs.stub_size[pjsno]
2770 : 0))
2771 == bfd_reloc_ok)
2772 /* If the reloc fits, no stub is needed. */
2773 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2774 else
2775 /* Maybe we can get away with just a JMP insn? */
2776 if ((value & 3) == 0
2777 && bfd_check_overflow (complain_overflow_signed,
2778 27,
2779 0,
2780 bfd_arch_bits_per_address (abfd),
2781 value - stubaddr
2782 - (value > dot
2783 ? mmix_elf_section_data (sec)
2784 ->pjs.stub_size[pjsno] - 4
2785 : 0))
2786 == bfd_reloc_ok)
2787 /* Yep, account for a stub consisting of a single JMP insn. */
2788 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2789 else
2790 /* Nope, go for the full insn stub. It doesn't seem useful to
2791 emit the intermediate sizes; those will only be useful for
2792 a >64M program assuming contiguous code. */
2793 mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2794 = MAX_PUSHJ_STUB_SIZE;
2795
2796 mmix_elf_section_data (sec)->pjs.stubs_size_sum
2797 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2798 pjsno++;
2799 continue;
2800 }
2801
2802 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */
2803
2804 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2805 = symval + irel->r_addend;
2806 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2807 gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2808 }
2809
2810 /* Check if that was the last BPO-reloc. If so, sort the values and
2811 calculate how many registers we need to cover them. Set the size of
2812 the linker gregs, and if the number of registers changed, indicate
2813 that we need to relax some more because we have more work to do. */
2814 if (gregdata != NULL
2815 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2816 {
2817 size_t i;
2818 bfd_vma prev_base;
2819 size_t regindex;
2820
2821 /* First, reset the remaining relocs for the next round. */
2822 gregdata->n_remaining_bpo_relocs_this_relaxation_round
2823 = gregdata->n_bpo_relocs;
2824
2825 qsort ((PTR) gregdata->reloc_request,
2826 gregdata->n_max_bpo_relocs,
2827 sizeof (struct bpo_reloc_request),
2828 bpo_reloc_request_sort_fn);
2829
2830 /* Recalculate indexes. When we find a change (however unlikely
2831 after the initial iteration), we know we need to relax again,
2832 since items in the GREG-array are sorted by increasing value and
2833 stored in the relaxation phase. */
2834 for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2835 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2836 != i)
2837 {
2838 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2839 = i;
2840 *again = TRUE;
2841 }
2842
2843 /* Allocate register numbers (indexing from 0). Stop at the first
2844 non-valid reloc. */
2845 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2846 i < gregdata->n_bpo_relocs;
2847 i++)
2848 {
2849 if (gregdata->reloc_request[i].value > prev_base + 255)
2850 {
2851 regindex++;
2852 prev_base = gregdata->reloc_request[i].value;
2853 }
2854 gregdata->reloc_request[i].regindex = regindex;
2855 gregdata->reloc_request[i].offset
2856 = gregdata->reloc_request[i].value - prev_base;
2857 }
2858
2859 /* If it's not the same as the last time, we need to relax again,
2860 because the size of the section has changed. I'm not sure we
2861 actually need to do any adjustments since the shrinking happens
2862 at the start of this section, but better safe than sorry. */
2863 if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2864 {
2865 gregdata->n_allocated_bpo_gregs = regindex + 1;
2866 *again = TRUE;
2867 }
2868
2869 bpo_gregs_section->size = (regindex + 1) * 8;
2870 }
2871
2872 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2873 {
2874 if (! link_info->keep_memory)
2875 free (isymbuf);
2876 else
2877 {
2878 /* Cache the symbols for elf_link_input_bfd. */
2879 symtab_hdr->contents = (unsigned char *) isymbuf;
2880 }
2881 }
2882
2883 if (internal_relocs != NULL
2884 && elf_section_data (sec)->relocs != internal_relocs)
2885 free (internal_relocs);
2886
2887 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2888 abort ();
2889
2890 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2891 {
2892 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2893 *again = TRUE;
2894 }
2895
2896 return TRUE;
2897
2898 error_return:
2899 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2900 free (isymbuf);
2901 if (internal_relocs != NULL
2902 && elf_section_data (sec)->relocs != internal_relocs)
2903 free (internal_relocs);
2904 return FALSE;
2905 }
2906 \f
2907 #define ELF_ARCH bfd_arch_mmix
2908 #define ELF_MACHINE_CODE EM_MMIX
2909
2910 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2911 However, that's too much for something somewhere in the linker part of
2912 BFD; perhaps the start-address has to be a non-zero multiple of this
2913 number, or larger than this number. The symptom is that the linker
2914 complains: "warning: allocated section `.text' not in segment". We
2915 settle for 64k; the page-size used in examples is 8k.
2916 #define ELF_MAXPAGESIZE 0x10000
2917
2918 Unfortunately, this causes excessive padding in the supposedly small
2919 for-education programs that are the expected usage (where people would
2920 inspect output). We stick to 256 bytes just to have *some* default
2921 alignment. */
2922 #define ELF_MAXPAGESIZE 0x100
2923
2924 #define TARGET_BIG_SYM bfd_elf64_mmix_vec
2925 #define TARGET_BIG_NAME "elf64-mmix"
2926
2927 #define elf_info_to_howto_rel NULL
2928 #define elf_info_to_howto mmix_info_to_howto_rela
2929 #define elf_backend_relocate_section mmix_elf_relocate_section
2930 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook
2931 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook
2932
2933 #define elf_backend_link_output_symbol_hook \
2934 mmix_elf_link_output_symbol_hook
2935 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook
2936
2937 #define elf_backend_check_relocs mmix_elf_check_relocs
2938 #define elf_backend_symbol_processing mmix_elf_symbol_processing
2939 #define elf_backend_omit_section_dynsym \
2940 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2941
2942 #define bfd_elf64_bfd_is_local_label_name \
2943 mmix_elf_is_local_label_name
2944
2945 #define elf_backend_may_use_rel_p 0
2946 #define elf_backend_may_use_rela_p 1
2947 #define elf_backend_default_use_rela_p 1
2948
2949 #define elf_backend_can_gc_sections 1
2950 #define elf_backend_section_from_bfd_section \
2951 mmix_elf_section_from_bfd_section
2952
2953 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook
2954 #define bfd_elf64_bfd_final_link mmix_elf_final_link
2955 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section
2956
2957 #include "elf64-target.h"
This page took 0.087852 seconds and 5 git commands to generate.