Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
39 #define OCTETS_PER_BYTE(ABFD, SEC) 1
40
41 static bfd_reloc_status_type ppc64_elf_ha_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_branch_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_toc64_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_reloc_status_type ppc64_elf_prefix_reloc
58 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
59 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
60 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
61 static bfd_vma opd_entry_value
62 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
63
64 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
65 #define TARGET_LITTLE_NAME "elf64-powerpcle"
66 #define TARGET_BIG_SYM powerpc_elf64_vec
67 #define TARGET_BIG_NAME "elf64-powerpc"
68 #define ELF_ARCH bfd_arch_powerpc
69 #define ELF_TARGET_ID PPC64_ELF_DATA
70 #define ELF_MACHINE_CODE EM_PPC64
71 #define ELF_MAXPAGESIZE 0x10000
72 #define ELF_COMMONPAGESIZE 0x1000
73 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
74 #define elf_info_to_howto ppc64_elf_info_to_howto
75
76 #define elf_backend_want_got_sym 0
77 #define elf_backend_want_plt_sym 0
78 #define elf_backend_plt_alignment 3
79 #define elf_backend_plt_not_loaded 1
80 #define elf_backend_got_header_size 8
81 #define elf_backend_want_dynrelro 1
82 #define elf_backend_can_gc_sections 1
83 #define elf_backend_can_refcount 1
84 #define elf_backend_rela_normal 1
85 #define elf_backend_dtrel_excludes_plt 1
86 #define elf_backend_default_execstack 0
87
88 #define bfd_elf64_mkobject ppc64_elf_mkobject
89 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
90 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
91 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
92 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
93 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
94 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
95 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
96 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
97 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
98
99 #define elf_backend_object_p ppc64_elf_object_p
100 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
101 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
102 #define elf_backend_write_core_note ppc64_elf_write_core_note
103 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
104 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
105 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
106 #define elf_backend_check_directives ppc64_elf_before_check_relocs
107 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
108 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
109 #define elf_backend_check_relocs ppc64_elf_check_relocs
110 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
111 #define elf_backend_gc_keep ppc64_elf_gc_keep
112 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
113 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
114 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
115 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
116 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
117 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
118 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
119 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
120 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
121 #define elf_backend_action_discarded ppc64_elf_action_discarded
122 #define elf_backend_relocate_section ppc64_elf_relocate_section
123 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
124 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
125 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
126 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
127 #define elf_backend_special_sections ppc64_elf_special_sections
128 #define elf_backend_section_flags ppc64_elf_section_flags
129 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
130 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
131 #define elf_backend_get_reloc_section bfd_get_section_by_name
132
133 /* The name of the dynamic interpreter. This is put in the .interp
134 section. */
135 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
136
137 /* The size in bytes of an entry in the procedure linkage table. */
138 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
139 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
140
141 /* The initial size of the plt reserved for the dynamic linker. */
142 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
143
144 /* Offsets to some stack save slots. */
145 #define STK_LR 16
146 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
147 /* This one is dodgy. ELFv2 does not have a linker word, so use the
148 CR save slot. Used only by optimised __tls_get_addr call stub,
149 relying on __tls_get_addr_opt not saving CR.. */
150 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
151
152 /* TOC base pointers offset from start of TOC. */
153 #define TOC_BASE_OFF 0x8000
154 /* TOC base alignment. */
155 #define TOC_BASE_ALIGN 256
156
157 /* Offset of tp and dtp pointers from start of TLS block. */
158 #define TP_OFFSET 0x7000
159 #define DTP_OFFSET 0x8000
160
161 /* .plt call stub instructions. The normal stub is like this, but
162 sometimes the .plt entry crosses a 64k boundary and we need to
163 insert an addi to adjust r11. */
164 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
165 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
166 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
167 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
168 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
169 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
170 #define BCTR 0x4e800420 /* bctr */
171
172 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
173 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
174 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
175 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
176 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
177
178 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
179 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
180 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
181 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
182 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
183 #define BNECTR 0x4ca20420 /* bnectr+ */
184 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
185
186 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
187 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
188 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
189
190 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
191 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
192 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
193
194 #define LI_R11_0 0x39600000 /* li %r11,0 */
195 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
196 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
197 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
198 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
199 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
200 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
201 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
202 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
203 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
204 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
205 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
206 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
207 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
208 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
209 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
210 #define PADDI_R12_PC 0x0610000039800000ULL
211 #define PLD_R12_PC 0x04100000e5800000ULL
212 #define PNOP 0x0700000000000000ULL
213
214 /* __glink_PLTresolve stub instructions. We enter with the index in R0. */
215 #define GLINK_PLTRESOLVE_SIZE(htab) \
216 (8u + (htab->opd_abi ? 11 * 4 : 14 * 4))
217 /* 0: */
218 /* .quad plt0-1f */
219 /* __glink: */
220 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
221 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
222 /* 1: */
223 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
224 /* ld %2,(0b-1b)(%11) */
225 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
226 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
227 /* ld %12,0(%11) */
228 /* ld %2,8(%11) */
229 /* mtctr %12 */
230 /* ld %11,16(%11) */
231 /* bctr */
232 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
233 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
234 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
235 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
236 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
237
238 /* Pad with this. */
239 #define NOP 0x60000000
240
241 /* Some other nops. */
242 #define CROR_151515 0x4def7b82
243 #define CROR_313131 0x4ffffb82
244
245 /* .glink entries for the first 32k functions are two instructions. */
246 #define LI_R0_0 0x38000000 /* li %r0,0 */
247 #define B_DOT 0x48000000 /* b . */
248
249 /* After that, we need two instructions to load the index, followed by
250 a branch. */
251 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
252 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
253
254 /* Instructions used by the save and restore reg functions. */
255 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
256 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
257 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
258 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
259 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
260 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
261 #define LI_R12_0 0x39800000 /* li %r12,0 */
262 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
263 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
264 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
265 #define BLR 0x4e800020 /* blr */
266
267 /* Since .opd is an array of descriptors and each entry will end up
268 with identical R_PPC64_RELATIVE relocs, there is really no need to
269 propagate .opd relocs; The dynamic linker should be taught to
270 relocate .opd without reloc entries. */
271 #ifndef NO_OPD_RELOCS
272 #define NO_OPD_RELOCS 0
273 #endif
274
275 #ifndef ARRAY_SIZE
276 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
277 #endif
278
279 static inline int
280 abiversion (bfd *abfd)
281 {
282 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
283 }
284
285 static inline void
286 set_abiversion (bfd *abfd, int ver)
287 {
288 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
289 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
290 }
291 \f
292 /* Relocation HOWTO's. */
293 /* Like other ELF RELA targets that don't apply multiple
294 field-altering relocations to the same localation, src_mask is
295 always zero and pcrel_offset is the same as pc_relative.
296 PowerPC can always use a zero bitpos, even when the field is not at
297 the LSB. For example, a REL24 could use rightshift=2, bisize=24
298 and bitpos=2 which matches the ABI description, or as we do here,
299 rightshift=0, bitsize=26 and bitpos=0. */
300 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
301 complain, special_func) \
302 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
303 complain_overflow_ ## complain, special_func, \
304 #type, FALSE, 0, mask, pc_relative)
305
306 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
307
308 static reloc_howto_type ppc64_elf_howto_raw[] =
309 {
310 /* This reloc does nothing. */
311 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
312 bfd_elf_generic_reloc),
313
314 /* A standard 32 bit relocation. */
315 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
316 bfd_elf_generic_reloc),
317
318 /* An absolute 26 bit branch; the lower two bits must be zero.
319 FIXME: we don't check that, we just clear them. */
320 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
321 bfd_elf_generic_reloc),
322
323 /* A standard 16 bit relocation. */
324 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
325 bfd_elf_generic_reloc),
326
327 /* A 16 bit relocation without overflow. */
328 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
329 bfd_elf_generic_reloc),
330
331 /* Bits 16-31 of an address. */
332 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
333 bfd_elf_generic_reloc),
334
335 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
336 bits, treated as a signed number, is negative. */
337 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
338 ppc64_elf_ha_reloc),
339
340 /* An absolute 16 bit branch; the lower two bits must be zero.
341 FIXME: we don't check that, we just clear them. */
342 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
343 ppc64_elf_branch_reloc),
344
345 /* An absolute 16 bit branch, for which bit 10 should be set to
346 indicate that the branch is expected to be taken. The lower two
347 bits must be zero. */
348 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
349 ppc64_elf_brtaken_reloc),
350
351 /* An absolute 16 bit branch, for which bit 10 should be set to
352 indicate that the branch is not expected to be taken. The lower
353 two bits must be zero. */
354 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
355 ppc64_elf_brtaken_reloc),
356
357 /* A relative 26 bit branch; the lower two bits must be zero. */
358 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
359 ppc64_elf_branch_reloc),
360
361 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
362 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A relative 16 bit branch; the lower two bits must be zero. */
366 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
367 ppc64_elf_branch_reloc),
368
369 /* A relative 16 bit branch. Bit 10 should be set to indicate that
370 the branch is expected to be taken. The lower two bits must be
371 zero. */
372 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
373 ppc64_elf_brtaken_reloc),
374
375 /* A relative 16 bit branch. Bit 10 should be set to indicate that
376 the branch is not expected to be taken. The lower two bits must
377 be zero. */
378 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
379 ppc64_elf_brtaken_reloc),
380
381 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
382 symbol. */
383 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
384 ppc64_elf_unhandled_reloc),
385
386 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
387 the symbol. */
388 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
389 ppc64_elf_unhandled_reloc),
390
391 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
392 the symbol. */
393 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
394 ppc64_elf_unhandled_reloc),
395
396 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
397 the symbol. */
398 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
399 ppc64_elf_unhandled_reloc),
400
401 /* This is used only by the dynamic linker. The symbol should exist
402 both in the object being run and in some shared library. The
403 dynamic linker copies the data addressed by the symbol from the
404 shared library into the object, because the object being
405 run has to have the data at some particular address. */
406 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
407 ppc64_elf_unhandled_reloc),
408
409 /* Like R_PPC64_ADDR64, but used when setting global offset table
410 entries. */
411 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
412 ppc64_elf_unhandled_reloc),
413
414 /* Created by the link editor. Marks a procedure linkage table
415 entry for a symbol. */
416 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
417 ppc64_elf_unhandled_reloc),
418
419 /* Used only by the dynamic linker. When the object is run, this
420 doubleword64 is set to the load address of the object, plus the
421 addend. */
422 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
423 bfd_elf_generic_reloc),
424
425 /* Like R_PPC64_ADDR32, but may be unaligned. */
426 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
427 bfd_elf_generic_reloc),
428
429 /* Like R_PPC64_ADDR16, but may be unaligned. */
430 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
431 bfd_elf_generic_reloc),
432
433 /* 32-bit PC relative. */
434 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
435 bfd_elf_generic_reloc),
436
437 /* 32-bit relocation to the symbol's procedure linkage table. */
438 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
439 ppc64_elf_unhandled_reloc),
440
441 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
442 FIXME: R_PPC64_PLTREL32 not supported. */
443 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
444 ppc64_elf_unhandled_reloc),
445
446 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
447 the symbol. */
448 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
449 ppc64_elf_unhandled_reloc),
450
451 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
452 the symbol. */
453 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
454 ppc64_elf_unhandled_reloc),
455
456 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
457 the symbol. */
458 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
459 ppc64_elf_unhandled_reloc),
460
461 /* 16-bit section relative relocation. */
462 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
463 ppc64_elf_sectoff_reloc),
464
465 /* Like R_PPC64_SECTOFF, but no overflow warning. */
466 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
467 ppc64_elf_sectoff_reloc),
468
469 /* 16-bit upper half section relative relocation. */
470 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
471 ppc64_elf_sectoff_reloc),
472
473 /* 16-bit upper half adjusted section relative relocation. */
474 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
475 ppc64_elf_sectoff_ha_reloc),
476
477 /* Like R_PPC64_REL24 without touching the two least significant bits. */
478 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
479 bfd_elf_generic_reloc),
480
481 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
482
483 /* A standard 64-bit relocation. */
484 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
485 bfd_elf_generic_reloc),
486
487 /* The bits 32-47 of an address. */
488 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
489 bfd_elf_generic_reloc),
490
491 /* The bits 32-47 of an address, plus 1 if the contents of the low
492 16 bits, treated as a signed number, is negative. */
493 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
494 ppc64_elf_ha_reloc),
495
496 /* The bits 48-63 of an address. */
497 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
498 bfd_elf_generic_reloc),
499
500 /* The bits 48-63 of an address, plus 1 if the contents of the low
501 16 bits, treated as a signed number, is negative. */
502 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
503 ppc64_elf_ha_reloc),
504
505 /* Like ADDR64, but may be unaligned. */
506 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
507 bfd_elf_generic_reloc),
508
509 /* 64-bit relative relocation. */
510 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
511 bfd_elf_generic_reloc),
512
513 /* 64-bit relocation to the symbol's procedure linkage table. */
514 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
515 ppc64_elf_unhandled_reloc),
516
517 /* 64-bit PC relative relocation to the symbol's procedure linkage
518 table. */
519 /* FIXME: R_PPC64_PLTREL64 not supported. */
520 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
521 ppc64_elf_unhandled_reloc),
522
523 /* 16 bit TOC-relative relocation. */
524 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
525 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
526 ppc64_elf_toc_reloc),
527
528 /* 16 bit TOC-relative relocation without overflow. */
529 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
530 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
531 ppc64_elf_toc_reloc),
532
533 /* 16 bit TOC-relative relocation, high 16 bits. */
534 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
535 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
536 ppc64_elf_toc_reloc),
537
538 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
539 contents of the low 16 bits, treated as a signed number, is
540 negative. */
541 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
542 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
543 ppc64_elf_toc_ha_reloc),
544
545 /* 64-bit relocation; insert value of TOC base (.TOC.). */
546 /* R_PPC64_TOC 51 doubleword64 .TOC. */
547 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
548 ppc64_elf_toc64_reloc),
549
550 /* Like R_PPC64_GOT16, but also informs the link editor that the
551 value to relocate may (!) refer to a PLT entry which the link
552 editor (a) may replace with the symbol value. If the link editor
553 is unable to fully resolve the symbol, it may (b) create a PLT
554 entry and store the address to the new PLT entry in the GOT.
555 This permits lazy resolution of function symbols at run time.
556 The link editor may also skip all of this and just (c) emit a
557 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
558 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
559 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
560 ppc64_elf_unhandled_reloc),
561
562 /* Like R_PPC64_PLTGOT16, but without overflow. */
563 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
564 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
565 ppc64_elf_unhandled_reloc),
566
567 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
568 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
569 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
570 ppc64_elf_unhandled_reloc),
571
572 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
573 1 if the contents of the low 16 bits, treated as a signed number,
574 is negative. */
575 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
576 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
577 ppc64_elf_unhandled_reloc),
578
579 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
580 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
581 bfd_elf_generic_reloc),
582
583 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
584 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
585 bfd_elf_generic_reloc),
586
587 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
588 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
589 ppc64_elf_unhandled_reloc),
590
591 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
592 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
596 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
597 ppc64_elf_unhandled_reloc),
598
599 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
600 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
601 ppc64_elf_sectoff_reloc),
602
603 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
604 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
605 ppc64_elf_sectoff_reloc),
606
607 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
608 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
609 ppc64_elf_toc_reloc),
610
611 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
612 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
613 ppc64_elf_toc_reloc),
614
615 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
616 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
617 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
618 ppc64_elf_unhandled_reloc),
619
620 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
621 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
622 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
623 ppc64_elf_unhandled_reloc),
624
625 /* Marker relocs for TLS. */
626 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
627 bfd_elf_generic_reloc),
628
629 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
630 bfd_elf_generic_reloc),
631
632 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
633 bfd_elf_generic_reloc),
634
635 /* Marker reloc for optimizing r2 save in prologue rather than on
636 each plt call stub. */
637 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
638 bfd_elf_generic_reloc),
639
640 /* Marker relocs on inline plt call instructions. */
641 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
642 bfd_elf_generic_reloc),
643
644 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
645 bfd_elf_generic_reloc),
646
647 /* Computes the load module index of the load module that contains the
648 definition of its TLS sym. */
649 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
650 ppc64_elf_unhandled_reloc),
651
652 /* Computes a dtv-relative displacement, the difference between the value
653 of sym+add and the base address of the thread-local storage block that
654 contains the definition of sym, minus 0x8000. */
655 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
656 ppc64_elf_unhandled_reloc),
657
658 /* A 16 bit dtprel reloc. */
659 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
660 ppc64_elf_unhandled_reloc),
661
662 /* Like DTPREL16, but no overflow. */
663 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16_LO, but next higher group of 16 bits. */
667 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_HI, but adjust for low 16 bits. */
671 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HI, but next higher group of 16 bits. */
675 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
687 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16, but for insns with a DS field. */
691 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
692 ppc64_elf_unhandled_reloc),
693
694 /* Like DTPREL16_DS, but no overflow. */
695 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
696 ppc64_elf_unhandled_reloc),
697
698 /* Computes a tp-relative displacement, the difference between the value of
699 sym+add and the value of the thread pointer (r13). */
700 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
701 ppc64_elf_unhandled_reloc),
702
703 /* A 16 bit tprel reloc. */
704 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
705 ppc64_elf_unhandled_reloc),
706
707 /* Like TPREL16, but no overflow. */
708 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16_LO, but next higher group of 16 bits. */
712 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_HI, but adjust for low 16 bits. */
716 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HI, but next higher group of 16 bits. */
720 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
732 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16, but for insns with a DS field. */
736 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
737 ppc64_elf_unhandled_reloc),
738
739 /* Like TPREL16_DS, but no overflow. */
740 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
741 ppc64_elf_unhandled_reloc),
742
743 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
744 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
745 to the first entry relative to the TOC base (r2). */
746 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
747 ppc64_elf_unhandled_reloc),
748
749 /* Like GOT_TLSGD16, but no overflow. */
750 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
754 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
755 ppc64_elf_unhandled_reloc),
756
757 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
758 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
759 ppc64_elf_unhandled_reloc),
760
761 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
762 with values (sym+add)@dtpmod and zero, and computes the offset to the
763 first entry relative to the TOC base (r2). */
764 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
765 ppc64_elf_unhandled_reloc),
766
767 /* Like GOT_TLSLD16, but no overflow. */
768 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
772 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
773 ppc64_elf_unhandled_reloc),
774
775 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
776 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
777 ppc64_elf_unhandled_reloc),
778
779 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
780 the offset to the entry relative to the TOC base (r2). */
781 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
782 ppc64_elf_unhandled_reloc),
783
784 /* Like GOT_DTPREL16_DS, but no overflow. */
785 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
789 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
790 ppc64_elf_unhandled_reloc),
791
792 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
793 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
794 ppc64_elf_unhandled_reloc),
795
796 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
797 offset to the entry relative to the TOC base (r2). */
798 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
799 ppc64_elf_unhandled_reloc),
800
801 /* Like GOT_TPREL16_DS, but no overflow. */
802 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
806 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
807 ppc64_elf_unhandled_reloc),
808
809 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
810 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
811 ppc64_elf_unhandled_reloc),
812
813 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
814 ppc64_elf_unhandled_reloc),
815
816 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
817 bfd_elf_generic_reloc),
818
819 /* A 16 bit relative relocation. */
820 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
821 bfd_elf_generic_reloc),
822
823 /* A 16 bit relative relocation without overflow. */
824 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
825 bfd_elf_generic_reloc),
826
827 /* The high order 16 bits of a relative address. */
828 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
829 bfd_elf_generic_reloc),
830
831 /* The high order 16 bits of a relative address, plus 1 if the contents of
832 the low 16 bits, treated as a signed number, is negative. */
833 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
834 ppc64_elf_ha_reloc),
835
836 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
837 bfd_elf_generic_reloc),
838
839 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
840 ppc64_elf_ha_reloc),
841
842 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
843 bfd_elf_generic_reloc),
844
845 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
846 ppc64_elf_ha_reloc),
847
848 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
849 bfd_elf_generic_reloc),
850
851 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
852 ppc64_elf_ha_reloc),
853
854 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
855 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
856 ppc64_elf_ha_reloc),
857
858 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
859 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
860 ppc64_elf_ha_reloc),
861
862 /* Like R_PPC64_ADDR16_HI, but no overflow. */
863 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
864 bfd_elf_generic_reloc),
865
866 /* Like R_PPC64_ADDR16_HA, but no overflow. */
867 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
868 ppc64_elf_ha_reloc),
869
870 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
871 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_unhandled_reloc),
873
874 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
875 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_TPREL16_HI, but no overflow. */
879 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Like R_PPC64_TPREL16_HA, but no overflow. */
883 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
884 ppc64_elf_unhandled_reloc),
885
886 /* Marker reloc on ELFv2 large-model function entry. */
887 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
888 bfd_elf_generic_reloc),
889
890 /* Like ADDR64, but use local entry point of function. */
891 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
892 bfd_elf_generic_reloc),
893
894 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
895 bfd_elf_generic_reloc),
896
897 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
898 bfd_elf_generic_reloc),
899
900 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
901 bfd_elf_generic_reloc),
902
903 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
904 ppc64_elf_prefix_reloc),
905
906 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
907 ppc64_elf_prefix_reloc),
908
909 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
910 ppc64_elf_prefix_reloc),
911
912 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
913 ppc64_elf_prefix_reloc),
914
915 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
916 ppc64_elf_prefix_reloc),
917
918 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
919 ppc64_elf_unhandled_reloc),
920
921 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
922 ppc64_elf_unhandled_reloc),
923
924 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
925 ppc64_elf_unhandled_reloc),
926
927 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
928 ppc64_elf_unhandled_reloc),
929
930 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
931 ppc64_elf_unhandled_reloc),
932
933 HOW (R_PPC64_GOT_TLSGD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
934 ppc64_elf_unhandled_reloc),
935
936 HOW (R_PPC64_GOT_TLSLD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
937 ppc64_elf_unhandled_reloc),
938
939 HOW (R_PPC64_GOT_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
940 ppc64_elf_unhandled_reloc),
941
942 HOW (R_PPC64_GOT_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
943 ppc64_elf_unhandled_reloc),
944
945 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
946 bfd_elf_generic_reloc),
947
948 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
949 ppc64_elf_ha_reloc),
950
951 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
952 bfd_elf_generic_reloc),
953
954 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
955 ppc64_elf_ha_reloc),
956
957 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
958 bfd_elf_generic_reloc),
959
960 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
961 ppc64_elf_ha_reloc),
962
963 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
964 bfd_elf_generic_reloc),
965
966 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
967 ppc64_elf_ha_reloc),
968
969 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
970 ppc64_elf_prefix_reloc),
971
972 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
973 ppc64_elf_prefix_reloc),
974
975 /* GNU extension to record C++ vtable hierarchy. */
976 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
977 NULL),
978
979 /* GNU extension to record C++ vtable member usage. */
980 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
981 NULL),
982 };
983
984 \f
985 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
986 be done. */
987
988 static void
989 ppc_howto_init (void)
990 {
991 unsigned int i, type;
992
993 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
994 {
995 type = ppc64_elf_howto_raw[i].type;
996 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
997 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
998 }
999 }
1000
1001 static reloc_howto_type *
1002 ppc64_elf_reloc_type_lookup (bfd *abfd,
1003 bfd_reloc_code_real_type code)
1004 {
1005 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1006
1007 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1008 /* Initialize howto table if needed. */
1009 ppc_howto_init ();
1010
1011 switch (code)
1012 {
1013 default:
1014 /* xgettext:c-format */
1015 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1016 (int) code);
1017 bfd_set_error (bfd_error_bad_value);
1018 return NULL;
1019
1020 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1021 break;
1022 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1023 break;
1024 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1025 break;
1026 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1027 break;
1028 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1029 break;
1030 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1031 break;
1032 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1033 break;
1034 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1035 break;
1036 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1037 break;
1038 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1039 break;
1040 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1041 break;
1042 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1043 break;
1044 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1045 break;
1046 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1047 break;
1048 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1049 break;
1050 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1051 break;
1052 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1053 break;
1054 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1055 break;
1056 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1057 break;
1058 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1059 break;
1060 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1061 break;
1062 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1063 break;
1064 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1065 break;
1066 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1067 break;
1068 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1069 break;
1070 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1071 break;
1072 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1073 break;
1074 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1075 break;
1076 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1077 break;
1078 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1079 break;
1080 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1081 break;
1082 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1083 break;
1084 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1085 break;
1086 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1087 break;
1088 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1089 break;
1090 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1091 break;
1092 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1093 break;
1094 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1095 break;
1096 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1097 break;
1098 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1099 break;
1100 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1101 break;
1102 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1103 break;
1104 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1105 break;
1106 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1107 break;
1108 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1109 break;
1110 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1111 break;
1112 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1113 break;
1114 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1115 break;
1116 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1117 break;
1118 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1119 break;
1120 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1121 break;
1122 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1123 break;
1124 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1125 break;
1126 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1127 break;
1128 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1129 break;
1130 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1131 break;
1132 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1133 break;
1134 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1135 break;
1136 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1137 break;
1138 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1139 break;
1140 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1141 break;
1142 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1143 break;
1144 case BFD_RELOC_PPC64_TLS_PCREL:
1145 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1146 break;
1147 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1148 break;
1149 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1150 break;
1151 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1152 break;
1153 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1154 break;
1155 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1156 break;
1157 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1158 break;
1159 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1160 break;
1161 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1162 break;
1163 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1164 break;
1165 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1166 break;
1167 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1168 break;
1169 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1170 break;
1171 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1172 break;
1173 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1174 break;
1175 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1176 break;
1177 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1178 break;
1179 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1180 break;
1181 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1182 break;
1183 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1184 break;
1185 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1186 break;
1187 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1188 break;
1189 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1190 break;
1191 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1192 break;
1193 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1194 break;
1195 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1196 break;
1197 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1198 break;
1199 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1200 break;
1201 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1202 break;
1203 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1204 break;
1205 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1206 break;
1207 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1208 break;
1209 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1210 break;
1211 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1212 break;
1213 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1214 break;
1215 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1216 break;
1217 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1218 break;
1219 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1220 break;
1221 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1222 break;
1223 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1224 break;
1225 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1226 break;
1227 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1228 break;
1229 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1230 break;
1231 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1232 break;
1233 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1234 break;
1235 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1236 break;
1237 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1238 break;
1239 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1240 break;
1241 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1242 break;
1243 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1244 break;
1245 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1246 break;
1247 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1248 break;
1249 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1250 break;
1251 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1252 break;
1253 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1254 break;
1255 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1256 break;
1257 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1258 break;
1259 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1260 break;
1261 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1262 break;
1263 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1264 break;
1265 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1266 break;
1267 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1268 break;
1269 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1270 break;
1271 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1272 break;
1273 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1274 break;
1275 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1276 break;
1277 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1278 break;
1279 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1280 break;
1281 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1282 break;
1283 case BFD_RELOC_PPC64_GOT_TLSGD34: r = R_PPC64_GOT_TLSGD34;
1284 break;
1285 case BFD_RELOC_PPC64_GOT_TLSLD34: r = R_PPC64_GOT_TLSLD34;
1286 break;
1287 case BFD_RELOC_PPC64_GOT_TPREL34: r = R_PPC64_GOT_TPREL34;
1288 break;
1289 case BFD_RELOC_PPC64_GOT_DTPREL34: r = R_PPC64_GOT_DTPREL34;
1290 break;
1291 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1292 break;
1293 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1294 break;
1295 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1296 break;
1297 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1298 break;
1299 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1300 break;
1301 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1302 break;
1303 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1304 break;
1305 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1306 break;
1307 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1308 break;
1309 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1310 break;
1311 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1312 break;
1313 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1314 break;
1315 }
1316
1317 return ppc64_elf_howto_table[r];
1318 };
1319
1320 static reloc_howto_type *
1321 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1322 const char *r_name)
1323 {
1324 unsigned int i;
1325
1326 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1327 if (ppc64_elf_howto_raw[i].name != NULL
1328 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1329 return &ppc64_elf_howto_raw[i];
1330
1331 return NULL;
1332 }
1333
1334 /* Set the howto pointer for a PowerPC ELF reloc. */
1335
1336 static bfd_boolean
1337 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1338 Elf_Internal_Rela *dst)
1339 {
1340 unsigned int type;
1341
1342 /* Initialize howto table if needed. */
1343 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1344 ppc_howto_init ();
1345
1346 type = ELF64_R_TYPE (dst->r_info);
1347 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1348 {
1349 /* xgettext:c-format */
1350 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1351 abfd, type);
1352 bfd_set_error (bfd_error_bad_value);
1353 return FALSE;
1354 }
1355 cache_ptr->howto = ppc64_elf_howto_table[type];
1356 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1357 {
1358 /* xgettext:c-format */
1359 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1360 abfd, type);
1361 bfd_set_error (bfd_error_bad_value);
1362 return FALSE;
1363 }
1364
1365 return TRUE;
1366 }
1367
1368 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1369
1370 static bfd_reloc_status_type
1371 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1372 void *data, asection *input_section,
1373 bfd *output_bfd, char **error_message)
1374 {
1375 enum elf_ppc64_reloc_type r_type;
1376 long insn;
1377 bfd_size_type octets;
1378 bfd_vma value;
1379
1380 /* If this is a relocatable link (output_bfd test tells us), just
1381 call the generic function. Any adjustment will be done at final
1382 link time. */
1383 if (output_bfd != NULL)
1384 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1385 input_section, output_bfd, error_message);
1386
1387 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1388 We won't actually be using the low bits, so trashing them
1389 doesn't matter. */
1390 r_type = reloc_entry->howto->type;
1391 if (r_type == R_PPC64_ADDR16_HIGHERA34
1392 || r_type == R_PPC64_ADDR16_HIGHESTA34
1393 || r_type == R_PPC64_REL16_HIGHERA34
1394 || r_type == R_PPC64_REL16_HIGHESTA34)
1395 reloc_entry->addend += 1ULL << 33;
1396 else
1397 reloc_entry->addend += 1U << 15;
1398 if (r_type != R_PPC64_REL16DX_HA)
1399 return bfd_reloc_continue;
1400
1401 value = 0;
1402 if (!bfd_is_com_section (symbol->section))
1403 value = symbol->value;
1404 value += (reloc_entry->addend
1405 + symbol->section->output_offset
1406 + symbol->section->output_section->vma);
1407 value -= (reloc_entry->address
1408 + input_section->output_offset
1409 + input_section->output_section->vma);
1410 value = (bfd_signed_vma) value >> 16;
1411
1412 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1413 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1414 insn &= ~0x1fffc1;
1415 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1417 if (value + 0x8000 > 0xffff)
1418 return bfd_reloc_overflow;
1419 return bfd_reloc_ok;
1420 }
1421
1422 static bfd_reloc_status_type
1423 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1424 void *data, asection *input_section,
1425 bfd *output_bfd, char **error_message)
1426 {
1427 if (output_bfd != NULL)
1428 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430
1431 if (strcmp (symbol->section->name, ".opd") == 0
1432 && (symbol->section->owner->flags & DYNAMIC) == 0)
1433 {
1434 bfd_vma dest = opd_entry_value (symbol->section,
1435 symbol->value + reloc_entry->addend,
1436 NULL, NULL, FALSE);
1437 if (dest != (bfd_vma) -1)
1438 reloc_entry->addend = dest - (symbol->value
1439 + symbol->section->output_section->vma
1440 + symbol->section->output_offset);
1441 }
1442 else
1443 {
1444 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1445
1446 if (symbol->section->owner != abfd
1447 && symbol->section->owner != NULL
1448 && abiversion (symbol->section->owner) >= 2)
1449 {
1450 unsigned int i;
1451
1452 for (i = 0; i < symbol->section->owner->symcount; ++i)
1453 {
1454 asymbol *symdef = symbol->section->owner->outsymbols[i];
1455
1456 if (strcmp (symdef->name, symbol->name) == 0)
1457 {
1458 elfsym = (elf_symbol_type *) symdef;
1459 break;
1460 }
1461 }
1462 }
1463 reloc_entry->addend
1464 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1465 }
1466 return bfd_reloc_continue;
1467 }
1468
1469 static bfd_reloc_status_type
1470 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1471 void *data, asection *input_section,
1472 bfd *output_bfd, char **error_message)
1473 {
1474 long insn;
1475 enum elf_ppc64_reloc_type r_type;
1476 bfd_size_type octets;
1477 /* Assume 'at' branch hints. */
1478 bfd_boolean is_isa_v2 = TRUE;
1479
1480 /* If this is a relocatable link (output_bfd test tells us), just
1481 call the generic function. Any adjustment will be done at final
1482 link time. */
1483 if (output_bfd != NULL)
1484 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1485 input_section, output_bfd, error_message);
1486
1487 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1488 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1489 insn &= ~(0x01 << 21);
1490 r_type = reloc_entry->howto->type;
1491 if (r_type == R_PPC64_ADDR14_BRTAKEN
1492 || r_type == R_PPC64_REL14_BRTAKEN)
1493 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1494
1495 if (is_isa_v2)
1496 {
1497 /* Set 'a' bit. This is 0b00010 in BO field for branch
1498 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1499 for branch on CTR insns (BO == 1a00t or 1a01t). */
1500 if ((insn & (0x14 << 21)) == (0x04 << 21))
1501 insn |= 0x02 << 21;
1502 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1503 insn |= 0x08 << 21;
1504 else
1505 goto out;
1506 }
1507 else
1508 {
1509 bfd_vma target = 0;
1510 bfd_vma from;
1511
1512 if (!bfd_is_com_section (symbol->section))
1513 target = symbol->value;
1514 target += symbol->section->output_section->vma;
1515 target += symbol->section->output_offset;
1516 target += reloc_entry->addend;
1517
1518 from = (reloc_entry->address
1519 + input_section->output_offset
1520 + input_section->output_section->vma);
1521
1522 /* Invert 'y' bit if not the default. */
1523 if ((bfd_signed_vma) (target - from) < 0)
1524 insn ^= 0x01 << 21;
1525 }
1526 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1527 out:
1528 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1529 input_section, output_bfd, error_message);
1530 }
1531
1532 static bfd_reloc_status_type
1533 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1534 void *data, asection *input_section,
1535 bfd *output_bfd, char **error_message)
1536 {
1537 /* If this is a relocatable link (output_bfd test tells us), just
1538 call the generic function. Any adjustment will be done at final
1539 link time. */
1540 if (output_bfd != NULL)
1541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1542 input_section, output_bfd, error_message);
1543
1544 /* Subtract the symbol section base address. */
1545 reloc_entry->addend -= symbol->section->output_section->vma;
1546 return bfd_reloc_continue;
1547 }
1548
1549 static bfd_reloc_status_type
1550 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1551 void *data, asection *input_section,
1552 bfd *output_bfd, char **error_message)
1553 {
1554 /* If this is a relocatable link (output_bfd test tells us), just
1555 call the generic function. Any adjustment will be done at final
1556 link time. */
1557 if (output_bfd != NULL)
1558 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1559 input_section, output_bfd, error_message);
1560
1561 /* Subtract the symbol section base address. */
1562 reloc_entry->addend -= symbol->section->output_section->vma;
1563
1564 /* Adjust the addend for sign extension of the low 16 bits. */
1565 reloc_entry->addend += 0x8000;
1566 return bfd_reloc_continue;
1567 }
1568
1569 static bfd_reloc_status_type
1570 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1571 void *data, asection *input_section,
1572 bfd *output_bfd, char **error_message)
1573 {
1574 bfd_vma TOCstart;
1575
1576 /* If this is a relocatable link (output_bfd test tells us), just
1577 call the generic function. Any adjustment will be done at final
1578 link time. */
1579 if (output_bfd != NULL)
1580 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1581 input_section, output_bfd, error_message);
1582
1583 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1584 if (TOCstart == 0)
1585 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1586
1587 /* Subtract the TOC base address. */
1588 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1589 return bfd_reloc_continue;
1590 }
1591
1592 static bfd_reloc_status_type
1593 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1594 void *data, asection *input_section,
1595 bfd *output_bfd, char **error_message)
1596 {
1597 bfd_vma TOCstart;
1598
1599 /* If this is a relocatable link (output_bfd test tells us), just
1600 call the generic function. Any adjustment will be done at final
1601 link time. */
1602 if (output_bfd != NULL)
1603 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1604 input_section, output_bfd, error_message);
1605
1606 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1607 if (TOCstart == 0)
1608 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1609
1610 /* Subtract the TOC base address. */
1611 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1612
1613 /* Adjust the addend for sign extension of the low 16 bits. */
1614 reloc_entry->addend += 0x8000;
1615 return bfd_reloc_continue;
1616 }
1617
1618 static bfd_reloc_status_type
1619 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1620 void *data, asection *input_section,
1621 bfd *output_bfd, char **error_message)
1622 {
1623 bfd_vma TOCstart;
1624 bfd_size_type octets;
1625
1626 /* If this is a relocatable link (output_bfd test tells us), just
1627 call the generic function. Any adjustment will be done at final
1628 link time. */
1629 if (output_bfd != NULL)
1630 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1631 input_section, output_bfd, error_message);
1632
1633 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1634 if (TOCstart == 0)
1635 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1636
1637 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1638 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1639 return bfd_reloc_ok;
1640 }
1641
1642 static bfd_reloc_status_type
1643 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1644 void *data, asection *input_section,
1645 bfd *output_bfd, char **error_message)
1646 {
1647 uint64_t insn;
1648 bfd_vma targ;
1649
1650 if (output_bfd != NULL)
1651 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1652 input_section, output_bfd, error_message);
1653
1654 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1655 insn <<= 32;
1656 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1657
1658 targ = (symbol->section->output_section->vma
1659 + symbol->section->output_offset
1660 + reloc_entry->addend);
1661 if (!bfd_is_com_section (symbol->section))
1662 targ += symbol->value;
1663 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1664 targ += 1ULL << 33;
1665 if (reloc_entry->howto->pc_relative)
1666 {
1667 bfd_vma from = (reloc_entry->address
1668 + input_section->output_offset
1669 + input_section->output_section->vma);
1670 targ -=from;
1671 }
1672 targ >>= reloc_entry->howto->rightshift;
1673 insn &= ~reloc_entry->howto->dst_mask;
1674 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1675 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1676 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1677 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1678 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1679 >= 1ULL << reloc_entry->howto->bitsize))
1680 return bfd_reloc_overflow;
1681 return bfd_reloc_ok;
1682 }
1683
1684 static bfd_reloc_status_type
1685 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1686 void *data, asection *input_section,
1687 bfd *output_bfd, char **error_message)
1688 {
1689 /* If this is a relocatable link (output_bfd test tells us), just
1690 call the generic function. Any adjustment will be done at final
1691 link time. */
1692 if (output_bfd != NULL)
1693 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1694 input_section, output_bfd, error_message);
1695
1696 if (error_message != NULL)
1697 {
1698 static char buf[60];
1699 sprintf (buf, "generic linker can't handle %s",
1700 reloc_entry->howto->name);
1701 *error_message = buf;
1702 }
1703 return bfd_reloc_dangerous;
1704 }
1705
1706 /* Track GOT entries needed for a given symbol. We might need more
1707 than one got entry per symbol. */
1708 struct got_entry
1709 {
1710 struct got_entry *next;
1711
1712 /* The symbol addend that we'll be placing in the GOT. */
1713 bfd_vma addend;
1714
1715 /* Unlike other ELF targets, we use separate GOT entries for the same
1716 symbol referenced from different input files. This is to support
1717 automatic multiple TOC/GOT sections, where the TOC base can vary
1718 from one input file to another. After partitioning into TOC groups
1719 we merge entries within the group.
1720
1721 Point to the BFD owning this GOT entry. */
1722 bfd *owner;
1723
1724 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1725 TLS_TPREL or TLS_DTPREL for tls entries. */
1726 unsigned char tls_type;
1727
1728 /* Non-zero if got.ent points to real entry. */
1729 unsigned char is_indirect;
1730
1731 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1732 union
1733 {
1734 bfd_signed_vma refcount;
1735 bfd_vma offset;
1736 struct got_entry *ent;
1737 } got;
1738 };
1739
1740 /* The same for PLT. */
1741 struct plt_entry
1742 {
1743 struct plt_entry *next;
1744
1745 bfd_vma addend;
1746
1747 union
1748 {
1749 bfd_signed_vma refcount;
1750 bfd_vma offset;
1751 } plt;
1752 };
1753
1754 struct ppc64_elf_obj_tdata
1755 {
1756 struct elf_obj_tdata elf;
1757
1758 /* Shortcuts to dynamic linker sections. */
1759 asection *got;
1760 asection *relgot;
1761
1762 /* Used during garbage collection. We attach global symbols defined
1763 on removed .opd entries to this section so that the sym is removed. */
1764 asection *deleted_section;
1765
1766 /* TLS local dynamic got entry handling. Support for multiple GOT
1767 sections means we potentially need one of these for each input bfd. */
1768 struct got_entry tlsld_got;
1769
1770 union
1771 {
1772 /* A copy of relocs before they are modified for --emit-relocs. */
1773 Elf_Internal_Rela *relocs;
1774
1775 /* Section contents. */
1776 bfd_byte *contents;
1777 } opd;
1778
1779 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1780 the reloc to be in the range -32768 to 32767. */
1781 unsigned int has_small_toc_reloc : 1;
1782
1783 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1784 instruction not one we handle. */
1785 unsigned int unexpected_toc_insn : 1;
1786
1787 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1788 this file. */
1789 unsigned int has_optrel : 1;
1790 };
1791
1792 #define ppc64_elf_tdata(bfd) \
1793 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1794
1795 #define ppc64_tlsld_got(bfd) \
1796 (&ppc64_elf_tdata (bfd)->tlsld_got)
1797
1798 #define is_ppc64_elf(bfd) \
1799 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1800 && elf_object_id (bfd) == PPC64_ELF_DATA)
1801
1802 /* Override the generic function because we store some extras. */
1803
1804 static bfd_boolean
1805 ppc64_elf_mkobject (bfd *abfd)
1806 {
1807 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1808 PPC64_ELF_DATA);
1809 }
1810
1811 /* Fix bad default arch selected for a 64 bit input bfd when the
1812 default is 32 bit. Also select arch based on apuinfo. */
1813
1814 static bfd_boolean
1815 ppc64_elf_object_p (bfd *abfd)
1816 {
1817 if (!abfd->arch_info->the_default)
1818 return TRUE;
1819
1820 if (abfd->arch_info->bits_per_word == 32)
1821 {
1822 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1823
1824 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1825 {
1826 /* Relies on arch after 32 bit default being 64 bit default. */
1827 abfd->arch_info = abfd->arch_info->next;
1828 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1829 }
1830 }
1831 return _bfd_elf_ppc_set_arch (abfd);
1832 }
1833
1834 /* Support for core dump NOTE sections. */
1835
1836 static bfd_boolean
1837 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1838 {
1839 size_t offset, size;
1840
1841 if (note->descsz != 504)
1842 return FALSE;
1843
1844 /* pr_cursig */
1845 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1846
1847 /* pr_pid */
1848 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1849
1850 /* pr_reg */
1851 offset = 112;
1852 size = 384;
1853
1854 /* Make a ".reg/999" section. */
1855 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1856 size, note->descpos + offset);
1857 }
1858
1859 static bfd_boolean
1860 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1861 {
1862 if (note->descsz != 136)
1863 return FALSE;
1864
1865 elf_tdata (abfd)->core->pid
1866 = bfd_get_32 (abfd, note->descdata + 24);
1867 elf_tdata (abfd)->core->program
1868 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1869 elf_tdata (abfd)->core->command
1870 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1871
1872 return TRUE;
1873 }
1874
1875 static char *
1876 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1877 ...)
1878 {
1879 switch (note_type)
1880 {
1881 default:
1882 return NULL;
1883
1884 case NT_PRPSINFO:
1885 {
1886 char data[136] ATTRIBUTE_NONSTRING;
1887 va_list ap;
1888
1889 va_start (ap, note_type);
1890 memset (data, 0, sizeof (data));
1891 strncpy (data + 40, va_arg (ap, const char *), 16);
1892 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1893 DIAGNOSTIC_PUSH;
1894 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1895 -Wstringop-truncation:
1896 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1897 */
1898 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1899 #endif
1900 strncpy (data + 56, va_arg (ap, const char *), 80);
1901 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1902 DIAGNOSTIC_POP;
1903 #endif
1904 va_end (ap);
1905 return elfcore_write_note (abfd, buf, bufsiz,
1906 "CORE", note_type, data, sizeof (data));
1907 }
1908
1909 case NT_PRSTATUS:
1910 {
1911 char data[504];
1912 va_list ap;
1913 long pid;
1914 int cursig;
1915 const void *greg;
1916
1917 va_start (ap, note_type);
1918 memset (data, 0, 112);
1919 pid = va_arg (ap, long);
1920 bfd_put_32 (abfd, pid, data + 32);
1921 cursig = va_arg (ap, int);
1922 bfd_put_16 (abfd, cursig, data + 12);
1923 greg = va_arg (ap, const void *);
1924 memcpy (data + 112, greg, 384);
1925 memset (data + 496, 0, 8);
1926 va_end (ap);
1927 return elfcore_write_note (abfd, buf, bufsiz,
1928 "CORE", note_type, data, sizeof (data));
1929 }
1930 }
1931 }
1932
1933 /* Add extra PPC sections. */
1934
1935 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1936 {
1937 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1938 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1939 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1940 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1941 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1942 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1943 { NULL, 0, 0, 0, 0 }
1944 };
1945
1946 enum _ppc64_sec_type {
1947 sec_normal = 0,
1948 sec_opd = 1,
1949 sec_toc = 2
1950 };
1951
1952 struct _ppc64_elf_section_data
1953 {
1954 struct bfd_elf_section_data elf;
1955
1956 union
1957 {
1958 /* An array with one entry for each opd function descriptor,
1959 and some spares since opd entries may be either 16 or 24 bytes. */
1960 #define OPD_NDX(OFF) ((OFF) >> 4)
1961 struct _opd_sec_data
1962 {
1963 /* Points to the function code section for local opd entries. */
1964 asection **func_sec;
1965
1966 /* After editing .opd, adjust references to opd local syms. */
1967 long *adjust;
1968 } opd;
1969
1970 /* An array for toc sections, indexed by offset/8. */
1971 struct _toc_sec_data
1972 {
1973 /* Specifies the relocation symbol index used at a given toc offset. */
1974 unsigned *symndx;
1975
1976 /* And the relocation addend. */
1977 bfd_vma *add;
1978 } toc;
1979 } u;
1980
1981 enum _ppc64_sec_type sec_type:2;
1982
1983 /* Flag set when small branches are detected. Used to
1984 select suitable defaults for the stub group size. */
1985 unsigned int has_14bit_branch:1;
1986
1987 /* Flag set when PLTCALL relocs are detected. */
1988 unsigned int has_pltcall:1;
1989
1990 /* Flag set when section has PLT/GOT/TOC relocations that can be
1991 optimised. */
1992 unsigned int has_optrel:1;
1993 };
1994
1995 #define ppc64_elf_section_data(sec) \
1996 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
1997
1998 static bfd_boolean
1999 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2000 {
2001 if (!sec->used_by_bfd)
2002 {
2003 struct _ppc64_elf_section_data *sdata;
2004 size_t amt = sizeof (*sdata);
2005
2006 sdata = bfd_zalloc (abfd, amt);
2007 if (sdata == NULL)
2008 return FALSE;
2009 sec->used_by_bfd = sdata;
2010 }
2011
2012 return _bfd_elf_new_section_hook (abfd, sec);
2013 }
2014
2015 static bfd_boolean
2016 ppc64_elf_section_flags (const Elf_Internal_Shdr *hdr)
2017 {
2018 const char *name = hdr->bfd_section->name;
2019
2020 if (strncmp (name, ".sbss", 5) == 0
2021 || strncmp (name, ".sdata", 6) == 0)
2022 hdr->bfd_section->flags |= SEC_SMALL_DATA;
2023
2024 return TRUE;
2025 }
2026
2027 static struct _opd_sec_data *
2028 get_opd_info (asection * sec)
2029 {
2030 if (sec != NULL
2031 && ppc64_elf_section_data (sec) != NULL
2032 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2033 return &ppc64_elf_section_data (sec)->u.opd;
2034 return NULL;
2035 }
2036 \f
2037 /* Parameters for the qsort hook. */
2038 static bfd_boolean synthetic_relocatable;
2039 static asection *synthetic_opd;
2040
2041 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2042
2043 static int
2044 compare_symbols (const void *ap, const void *bp)
2045 {
2046 const asymbol *a = *(const asymbol **) ap;
2047 const asymbol *b = *(const asymbol **) bp;
2048
2049 /* Section symbols first. */
2050 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2051 return -1;
2052 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2053 return 1;
2054
2055 /* then .opd symbols. */
2056 if (synthetic_opd != NULL)
2057 {
2058 if (strcmp (a->section->name, ".opd") == 0
2059 && strcmp (b->section->name, ".opd") != 0)
2060 return -1;
2061 if (strcmp (a->section->name, ".opd") != 0
2062 && strcmp (b->section->name, ".opd") == 0)
2063 return 1;
2064 }
2065
2066 /* then other code symbols. */
2067 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2068 == (SEC_CODE | SEC_ALLOC))
2069 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2070 != (SEC_CODE | SEC_ALLOC)))
2071 return -1;
2072
2073 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2074 != (SEC_CODE | SEC_ALLOC))
2075 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2076 == (SEC_CODE | SEC_ALLOC)))
2077 return 1;
2078
2079 if (synthetic_relocatable)
2080 {
2081 if (a->section->id < b->section->id)
2082 return -1;
2083
2084 if (a->section->id > b->section->id)
2085 return 1;
2086 }
2087
2088 if (a->value + a->section->vma < b->value + b->section->vma)
2089 return -1;
2090
2091 if (a->value + a->section->vma > b->value + b->section->vma)
2092 return 1;
2093
2094 /* For syms with the same value, prefer strong dynamic global function
2095 syms over other syms. */
2096 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2097 return -1;
2098
2099 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2100 return 1;
2101
2102 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2103 return -1;
2104
2105 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2106 return 1;
2107
2108 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2109 return -1;
2110
2111 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2112 return 1;
2113
2114 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2115 return -1;
2116
2117 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2118 return 1;
2119
2120 /* Finally, sort on where the symbol is in memory. The symbols will
2121 be in at most two malloc'd blocks, one for static syms, one for
2122 dynamic syms, and we distinguish the two blocks above by testing
2123 BSF_DYNAMIC. Since we are sorting the symbol pointers which were
2124 originally in the same order as the symbols (and we're not
2125 sorting the symbols themselves), this ensures a stable sort. */
2126 if (a < b)
2127 return -1;
2128 if (a > b)
2129 return 1;
2130 return 0;
2131 }
2132
2133 /* Search SYMS for a symbol of the given VALUE. */
2134
2135 static asymbol *
2136 sym_exists_at (asymbol **syms, size_t lo, size_t hi, unsigned int id,
2137 bfd_vma value)
2138 {
2139 size_t mid;
2140
2141 if (id == (unsigned) -1)
2142 {
2143 while (lo < hi)
2144 {
2145 mid = (lo + hi) >> 1;
2146 if (syms[mid]->value + syms[mid]->section->vma < value)
2147 lo = mid + 1;
2148 else if (syms[mid]->value + syms[mid]->section->vma > value)
2149 hi = mid;
2150 else
2151 return syms[mid];
2152 }
2153 }
2154 else
2155 {
2156 while (lo < hi)
2157 {
2158 mid = (lo + hi) >> 1;
2159 if (syms[mid]->section->id < id)
2160 lo = mid + 1;
2161 else if (syms[mid]->section->id > id)
2162 hi = mid;
2163 else if (syms[mid]->value < value)
2164 lo = mid + 1;
2165 else if (syms[mid]->value > value)
2166 hi = mid;
2167 else
2168 return syms[mid];
2169 }
2170 }
2171 return NULL;
2172 }
2173
2174 static bfd_boolean
2175 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2176 {
2177 bfd_vma vma = *(bfd_vma *) ptr;
2178 return ((section->flags & SEC_ALLOC) != 0
2179 && section->vma <= vma
2180 && vma < section->vma + section->size);
2181 }
2182
2183 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2184 entry syms. Also generate @plt symbols for the glink branch table.
2185 Returns count of synthetic symbols in RET or -1 on error. */
2186
2187 static long
2188 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2189 long static_count, asymbol **static_syms,
2190 long dyn_count, asymbol **dyn_syms,
2191 asymbol **ret)
2192 {
2193 asymbol *s;
2194 size_t i, j, count;
2195 char *names;
2196 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2197 asection *opd = NULL;
2198 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2199 asymbol **syms;
2200 int abi = abiversion (abfd);
2201
2202 *ret = NULL;
2203
2204 if (abi < 2)
2205 {
2206 opd = bfd_get_section_by_name (abfd, ".opd");
2207 if (opd == NULL && abi == 1)
2208 return 0;
2209 }
2210
2211 syms = NULL;
2212 codesecsym = 0;
2213 codesecsymend = 0;
2214 secsymend = 0;
2215 opdsymend = 0;
2216 symcount = 0;
2217 if (opd != NULL)
2218 {
2219 symcount = static_count;
2220 if (!relocatable)
2221 symcount += dyn_count;
2222 if (symcount == 0)
2223 return 0;
2224
2225 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2226 if (syms == NULL)
2227 return -1;
2228
2229 if (!relocatable && static_count != 0 && dyn_count != 0)
2230 {
2231 /* Use both symbol tables. */
2232 memcpy (syms, static_syms, static_count * sizeof (*syms));
2233 memcpy (syms + static_count, dyn_syms,
2234 (dyn_count + 1) * sizeof (*syms));
2235 }
2236 else if (!relocatable && static_count == 0)
2237 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2238 else
2239 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2240
2241 /* Trim uninteresting symbols. Interesting symbols are section,
2242 function, and notype symbols. */
2243 for (i = 0, j = 0; i < symcount; ++i)
2244 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2245 | BSF_RELC | BSF_SRELC)) == 0)
2246 syms[j++] = syms[i];
2247 symcount = j;
2248
2249 synthetic_relocatable = relocatable;
2250 synthetic_opd = opd;
2251 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2252
2253 if (!relocatable && symcount > 1)
2254 {
2255 /* Trim duplicate syms, since we may have merged the normal
2256 and dynamic symbols. Actually, we only care about syms
2257 that have different values, so trim any with the same
2258 value. Don't consider ifunc and ifunc resolver symbols
2259 duplicates however, because GDB wants to know whether a
2260 text symbol is an ifunc resolver. */
2261 for (i = 1, j = 1; i < symcount; ++i)
2262 {
2263 const asymbol *s0 = syms[i - 1];
2264 const asymbol *s1 = syms[i];
2265
2266 if ((s0->value + s0->section->vma
2267 != s1->value + s1->section->vma)
2268 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2269 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2270 syms[j++] = syms[i];
2271 }
2272 symcount = j;
2273 }
2274
2275 i = 0;
2276 /* Note that here and in compare_symbols we can't compare opd and
2277 sym->section directly. With separate debug info files, the
2278 symbols will be extracted from the debug file while abfd passed
2279 to this function is the real binary. */
2280 if (strcmp (syms[i]->section->name, ".opd") == 0)
2281 ++i;
2282 codesecsym = i;
2283
2284 for (; i < symcount; ++i)
2285 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2286 | SEC_THREAD_LOCAL))
2287 != (SEC_CODE | SEC_ALLOC))
2288 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2289 break;
2290 codesecsymend = i;
2291
2292 for (; i < symcount; ++i)
2293 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2294 break;
2295 secsymend = i;
2296
2297 for (; i < symcount; ++i)
2298 if (strcmp (syms[i]->section->name, ".opd") != 0)
2299 break;
2300 opdsymend = i;
2301
2302 for (; i < symcount; ++i)
2303 if (((syms[i]->section->flags
2304 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2305 != (SEC_CODE | SEC_ALLOC))
2306 break;
2307 symcount = i;
2308 }
2309 count = 0;
2310
2311 if (relocatable)
2312 {
2313 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2314 arelent *r;
2315 size_t size;
2316 size_t relcount;
2317
2318 if (opdsymend == secsymend)
2319 goto done;
2320
2321 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2322 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2323 if (relcount == 0)
2324 goto done;
2325
2326 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2327 {
2328 count = -1;
2329 goto done;
2330 }
2331
2332 size = 0;
2333 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2334 {
2335 asymbol *sym;
2336
2337 while (r < opd->relocation + relcount
2338 && r->address < syms[i]->value + opd->vma)
2339 ++r;
2340
2341 if (r == opd->relocation + relcount)
2342 break;
2343
2344 if (r->address != syms[i]->value + opd->vma)
2345 continue;
2346
2347 if (r->howto->type != R_PPC64_ADDR64)
2348 continue;
2349
2350 sym = *r->sym_ptr_ptr;
2351 if (!sym_exists_at (syms, opdsymend, symcount,
2352 sym->section->id, sym->value + r->addend))
2353 {
2354 ++count;
2355 size += sizeof (asymbol);
2356 size += strlen (syms[i]->name) + 2;
2357 }
2358 }
2359
2360 if (size == 0)
2361 goto done;
2362 s = *ret = bfd_malloc (size);
2363 if (s == NULL)
2364 {
2365 count = -1;
2366 goto done;
2367 }
2368
2369 names = (char *) (s + count);
2370
2371 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2372 {
2373 asymbol *sym;
2374
2375 while (r < opd->relocation + relcount
2376 && r->address < syms[i]->value + opd->vma)
2377 ++r;
2378
2379 if (r == opd->relocation + relcount)
2380 break;
2381
2382 if (r->address != syms[i]->value + opd->vma)
2383 continue;
2384
2385 if (r->howto->type != R_PPC64_ADDR64)
2386 continue;
2387
2388 sym = *r->sym_ptr_ptr;
2389 if (!sym_exists_at (syms, opdsymend, symcount,
2390 sym->section->id, sym->value + r->addend))
2391 {
2392 size_t len;
2393
2394 *s = *syms[i];
2395 s->flags |= BSF_SYNTHETIC;
2396 s->section = sym->section;
2397 s->value = sym->value + r->addend;
2398 s->name = names;
2399 *names++ = '.';
2400 len = strlen (syms[i]->name);
2401 memcpy (names, syms[i]->name, len + 1);
2402 names += len + 1;
2403 /* Have udata.p point back to the original symbol this
2404 synthetic symbol was derived from. */
2405 s->udata.p = syms[i];
2406 s++;
2407 }
2408 }
2409 }
2410 else
2411 {
2412 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2413 bfd_byte *contents = NULL;
2414 size_t size;
2415 size_t plt_count = 0;
2416 bfd_vma glink_vma = 0, resolv_vma = 0;
2417 asection *dynamic, *glink = NULL, *relplt = NULL;
2418 arelent *p;
2419
2420 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2421 {
2422 free_contents_and_exit_err:
2423 count = -1;
2424 free_contents_and_exit:
2425 if (contents)
2426 free (contents);
2427 goto done;
2428 }
2429
2430 size = 0;
2431 for (i = secsymend; i < opdsymend; ++i)
2432 {
2433 bfd_vma ent;
2434
2435 /* Ignore bogus symbols. */
2436 if (syms[i]->value > opd->size - 8)
2437 continue;
2438
2439 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2440 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2441 {
2442 ++count;
2443 size += sizeof (asymbol);
2444 size += strlen (syms[i]->name) + 2;
2445 }
2446 }
2447
2448 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2449 if (dyn_count != 0
2450 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2451 {
2452 bfd_byte *dynbuf, *extdyn, *extdynend;
2453 size_t extdynsize;
2454 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2455
2456 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2457 goto free_contents_and_exit_err;
2458
2459 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2460 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2461
2462 extdyn = dynbuf;
2463 extdynend = extdyn + dynamic->size;
2464 for (; extdyn < extdynend; extdyn += extdynsize)
2465 {
2466 Elf_Internal_Dyn dyn;
2467 (*swap_dyn_in) (abfd, extdyn, &dyn);
2468
2469 if (dyn.d_tag == DT_NULL)
2470 break;
2471
2472 if (dyn.d_tag == DT_PPC64_GLINK)
2473 {
2474 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2475 See comment in ppc64_elf_finish_dynamic_sections. */
2476 glink_vma = dyn.d_un.d_val + 8 * 4;
2477 /* The .glink section usually does not survive the final
2478 link; search for the section (usually .text) where the
2479 glink stubs now reside. */
2480 glink = bfd_sections_find_if (abfd, section_covers_vma,
2481 &glink_vma);
2482 break;
2483 }
2484 }
2485
2486 free (dynbuf);
2487 }
2488
2489 if (glink != NULL)
2490 {
2491 /* Determine __glink trampoline by reading the relative branch
2492 from the first glink stub. */
2493 bfd_byte buf[4];
2494 unsigned int off = 0;
2495
2496 while (bfd_get_section_contents (abfd, glink, buf,
2497 glink_vma + off - glink->vma, 4))
2498 {
2499 unsigned int insn = bfd_get_32 (abfd, buf);
2500 insn ^= B_DOT;
2501 if ((insn & ~0x3fffffc) == 0)
2502 {
2503 resolv_vma
2504 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2505 break;
2506 }
2507 off += 4;
2508 if (off > 4)
2509 break;
2510 }
2511
2512 if (resolv_vma)
2513 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2514
2515 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2516 if (relplt != NULL)
2517 {
2518 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2519 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2520 goto free_contents_and_exit_err;
2521
2522 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2523 size += plt_count * sizeof (asymbol);
2524
2525 p = relplt->relocation;
2526 for (i = 0; i < plt_count; i++, p++)
2527 {
2528 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2529 if (p->addend != 0)
2530 size += sizeof ("+0x") - 1 + 16;
2531 }
2532 }
2533 }
2534
2535 if (size == 0)
2536 goto free_contents_and_exit;
2537 s = *ret = bfd_malloc (size);
2538 if (s == NULL)
2539 goto free_contents_and_exit_err;
2540
2541 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2542
2543 for (i = secsymend; i < opdsymend; ++i)
2544 {
2545 bfd_vma ent;
2546
2547 if (syms[i]->value > opd->size - 8)
2548 continue;
2549
2550 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2551 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2552 {
2553 size_t lo, hi;
2554 size_t len;
2555 asection *sec = abfd->sections;
2556
2557 *s = *syms[i];
2558 lo = codesecsym;
2559 hi = codesecsymend;
2560 while (lo < hi)
2561 {
2562 size_t mid = (lo + hi) >> 1;
2563 if (syms[mid]->section->vma < ent)
2564 lo = mid + 1;
2565 else if (syms[mid]->section->vma > ent)
2566 hi = mid;
2567 else
2568 {
2569 sec = syms[mid]->section;
2570 break;
2571 }
2572 }
2573
2574 if (lo >= hi && lo > codesecsym)
2575 sec = syms[lo - 1]->section;
2576
2577 for (; sec != NULL; sec = sec->next)
2578 {
2579 if (sec->vma > ent)
2580 break;
2581 /* SEC_LOAD may not be set if SEC is from a separate debug
2582 info file. */
2583 if ((sec->flags & SEC_ALLOC) == 0)
2584 break;
2585 if ((sec->flags & SEC_CODE) != 0)
2586 s->section = sec;
2587 }
2588 s->flags |= BSF_SYNTHETIC;
2589 s->value = ent - s->section->vma;
2590 s->name = names;
2591 *names++ = '.';
2592 len = strlen (syms[i]->name);
2593 memcpy (names, syms[i]->name, len + 1);
2594 names += len + 1;
2595 /* Have udata.p point back to the original symbol this
2596 synthetic symbol was derived from. */
2597 s->udata.p = syms[i];
2598 s++;
2599 }
2600 }
2601 free (contents);
2602
2603 if (glink != NULL && relplt != NULL)
2604 {
2605 if (resolv_vma)
2606 {
2607 /* Add a symbol for the main glink trampoline. */
2608 memset (s, 0, sizeof *s);
2609 s->the_bfd = abfd;
2610 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2611 s->section = glink;
2612 s->value = resolv_vma - glink->vma;
2613 s->name = names;
2614 memcpy (names, "__glink_PLTresolve",
2615 sizeof ("__glink_PLTresolve"));
2616 names += sizeof ("__glink_PLTresolve");
2617 s++;
2618 count++;
2619 }
2620
2621 /* FIXME: It would be very much nicer to put sym@plt on the
2622 stub rather than on the glink branch table entry. The
2623 objdump disassembler would then use a sensible symbol
2624 name on plt calls. The difficulty in doing so is
2625 a) finding the stubs, and,
2626 b) matching stubs against plt entries, and,
2627 c) there can be multiple stubs for a given plt entry.
2628
2629 Solving (a) could be done by code scanning, but older
2630 ppc64 binaries used different stubs to current code.
2631 (b) is the tricky one since you need to known the toc
2632 pointer for at least one function that uses a pic stub to
2633 be able to calculate the plt address referenced.
2634 (c) means gdb would need to set multiple breakpoints (or
2635 find the glink branch itself) when setting breakpoints
2636 for pending shared library loads. */
2637 p = relplt->relocation;
2638 for (i = 0; i < plt_count; i++, p++)
2639 {
2640 size_t len;
2641
2642 *s = **p->sym_ptr_ptr;
2643 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2644 we are defining a symbol, ensure one of them is set. */
2645 if ((s->flags & BSF_LOCAL) == 0)
2646 s->flags |= BSF_GLOBAL;
2647 s->flags |= BSF_SYNTHETIC;
2648 s->section = glink;
2649 s->value = glink_vma - glink->vma;
2650 s->name = names;
2651 s->udata.p = NULL;
2652 len = strlen ((*p->sym_ptr_ptr)->name);
2653 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2654 names += len;
2655 if (p->addend != 0)
2656 {
2657 memcpy (names, "+0x", sizeof ("+0x") - 1);
2658 names += sizeof ("+0x") - 1;
2659 bfd_sprintf_vma (abfd, names, p->addend);
2660 names += strlen (names);
2661 }
2662 memcpy (names, "@plt", sizeof ("@plt"));
2663 names += sizeof ("@plt");
2664 s++;
2665 if (abi < 2)
2666 {
2667 glink_vma += 8;
2668 if (i >= 0x8000)
2669 glink_vma += 4;
2670 }
2671 else
2672 glink_vma += 4;
2673 }
2674 count += plt_count;
2675 }
2676 }
2677
2678 done:
2679 free (syms);
2680 return count;
2681 }
2682 \f
2683 /* The following functions are specific to the ELF linker, while
2684 functions above are used generally. Those named ppc64_elf_* are
2685 called by the main ELF linker code. They appear in this file more
2686 or less in the order in which they are called. eg.
2687 ppc64_elf_check_relocs is called early in the link process,
2688 ppc64_elf_finish_dynamic_sections is one of the last functions
2689 called.
2690
2691 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2692 functions have both a function code symbol and a function descriptor
2693 symbol. A call to foo in a relocatable object file looks like:
2694
2695 . .text
2696 . x:
2697 . bl .foo
2698 . nop
2699
2700 The function definition in another object file might be:
2701
2702 . .section .opd
2703 . foo: .quad .foo
2704 . .quad .TOC.@tocbase
2705 . .quad 0
2706 .
2707 . .text
2708 . .foo: blr
2709
2710 When the linker resolves the call during a static link, the branch
2711 unsurprisingly just goes to .foo and the .opd information is unused.
2712 If the function definition is in a shared library, things are a little
2713 different: The call goes via a plt call stub, the opd information gets
2714 copied to the plt, and the linker patches the nop.
2715
2716 . x:
2717 . bl .foo_stub
2718 . ld 2,40(1)
2719 .
2720 .
2721 . .foo_stub:
2722 . std 2,40(1) # in practice, the call stub
2723 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2724 . addi 11,11,Lfoo@toc@l # this is the general idea
2725 . ld 12,0(11)
2726 . ld 2,8(11)
2727 . mtctr 12
2728 . ld 11,16(11)
2729 . bctr
2730 .
2731 . .section .plt
2732 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2733
2734 The "reloc ()" notation is supposed to indicate that the linker emits
2735 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2736 copying.
2737
2738 What are the difficulties here? Well, firstly, the relocations
2739 examined by the linker in check_relocs are against the function code
2740 sym .foo, while the dynamic relocation in the plt is emitted against
2741 the function descriptor symbol, foo. Somewhere along the line, we need
2742 to carefully copy dynamic link information from one symbol to the other.
2743 Secondly, the generic part of the elf linker will make .foo a dynamic
2744 symbol as is normal for most other backends. We need foo dynamic
2745 instead, at least for an application final link. However, when
2746 creating a shared library containing foo, we need to have both symbols
2747 dynamic so that references to .foo are satisfied during the early
2748 stages of linking. Otherwise the linker might decide to pull in a
2749 definition from some other object, eg. a static library.
2750
2751 Update: As of August 2004, we support a new convention. Function
2752 calls may use the function descriptor symbol, ie. "bl foo". This
2753 behaves exactly as "bl .foo". */
2754
2755 /* Of those relocs that might be copied as dynamic relocs, this
2756 function selects those that must be copied when linking a shared
2757 library or PIE, even when the symbol is local. */
2758
2759 static int
2760 must_be_dyn_reloc (struct bfd_link_info *info,
2761 enum elf_ppc64_reloc_type r_type)
2762 {
2763 switch (r_type)
2764 {
2765 default:
2766 /* Only relative relocs can be resolved when the object load
2767 address isn't fixed. DTPREL64 is excluded because the
2768 dynamic linker needs to differentiate global dynamic from
2769 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2770 return 1;
2771
2772 case R_PPC64_REL32:
2773 case R_PPC64_REL64:
2774 case R_PPC64_REL30:
2775 case R_PPC64_TOC16:
2776 case R_PPC64_TOC16_DS:
2777 case R_PPC64_TOC16_LO:
2778 case R_PPC64_TOC16_HI:
2779 case R_PPC64_TOC16_HA:
2780 case R_PPC64_TOC16_LO_DS:
2781 return 0;
2782
2783 case R_PPC64_TPREL16:
2784 case R_PPC64_TPREL16_LO:
2785 case R_PPC64_TPREL16_HI:
2786 case R_PPC64_TPREL16_HA:
2787 case R_PPC64_TPREL16_DS:
2788 case R_PPC64_TPREL16_LO_DS:
2789 case R_PPC64_TPREL16_HIGH:
2790 case R_PPC64_TPREL16_HIGHA:
2791 case R_PPC64_TPREL16_HIGHER:
2792 case R_PPC64_TPREL16_HIGHERA:
2793 case R_PPC64_TPREL16_HIGHEST:
2794 case R_PPC64_TPREL16_HIGHESTA:
2795 case R_PPC64_TPREL64:
2796 case R_PPC64_TPREL34:
2797 /* These relocations are relative but in a shared library the
2798 linker doesn't know the thread pointer base. */
2799 return bfd_link_dll (info);
2800 }
2801 }
2802
2803 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2804 copying dynamic variables from a shared lib into an app's .dynbss
2805 section, and instead use a dynamic relocation to point into the
2806 shared lib. With code that gcc generates it is vital that this be
2807 enabled; In the PowerPC64 ELFv1 ABI the address of a function is
2808 actually the address of a function descriptor which resides in the
2809 .opd section. gcc uses the descriptor directly rather than going
2810 via the GOT as some other ABIs do, which means that initialized
2811 function pointers reference the descriptor. Thus, a function
2812 pointer initialized to the address of a function in a shared
2813 library will either require a .dynbss copy and a copy reloc, or a
2814 dynamic reloc. Using a .dynbss copy redefines the function
2815 descriptor symbol to point to the copy. This presents a problem as
2816 a PLT entry for that function is also initialized from the function
2817 descriptor symbol and the copy may not be initialized first. */
2818 #define ELIMINATE_COPY_RELOCS 1
2819
2820 /* Section name for stubs is the associated section name plus this
2821 string. */
2822 #define STUB_SUFFIX ".stub"
2823
2824 /* Linker stubs.
2825 ppc_stub_long_branch:
2826 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2827 destination, but a 24 bit branch in a stub section will reach.
2828 . b dest
2829
2830 ppc_stub_plt_branch:
2831 Similar to the above, but a 24 bit branch in the stub section won't
2832 reach its destination.
2833 . addis %r12,%r2,xxx@toc@ha
2834 . ld %r12,xxx@toc@l(%r12)
2835 . mtctr %r12
2836 . bctr
2837
2838 ppc_stub_plt_call:
2839 Used to call a function in a shared library. If it so happens that
2840 the plt entry referenced crosses a 64k boundary, then an extra
2841 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2842 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2843 . addis %r11,%r2,xxx@toc@ha
2844 . ld %r12,xxx+0@toc@l(%r11)
2845 . mtctr %r12
2846 . ld %r2,xxx+8@toc@l(%r11)
2847 . ld %r11,xxx+16@toc@l(%r11)
2848 . bctr
2849
2850 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2851 code to adjust the value and save r2 to support multiple toc sections.
2852 A ppc_stub_long_branch with an r2 offset looks like:
2853 . std %r2,40(%r1)
2854 . addis %r2,%r2,off@ha
2855 . addi %r2,%r2,off@l
2856 . b dest
2857
2858 A ppc_stub_plt_branch with an r2 offset looks like:
2859 . std %r2,40(%r1)
2860 . addis %r12,%r2,xxx@toc@ha
2861 . ld %r12,xxx@toc@l(%r12)
2862 . addis %r2,%r2,off@ha
2863 . addi %r2,%r2,off@l
2864 . mtctr %r12
2865 . bctr
2866
2867 All of the above stubs are shown as their ELFv1 variants. ELFv2
2868 variants exist too, simpler for plt calls since a new toc pointer
2869 and static chain are not loaded by the stub. In addition, ELFv2
2870 has some more complex stubs to handle calls marked with NOTOC
2871 relocs from functions where r2 is not a valid toc pointer. These
2872 come in two flavours, the ones shown below, and _both variants that
2873 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2874 one call is from a function where r2 is used as the toc pointer but
2875 needs a toc adjusting stub for small-model multi-toc, and another
2876 call is from a function where r2 is not valid.
2877 ppc_stub_long_branch_notoc:
2878 . mflr %r12
2879 . bcl 20,31,1f
2880 . 1:
2881 . mflr %r11
2882 . mtlr %r12
2883 . addis %r12,%r11,dest-1b@ha
2884 . addi %r12,%r12,dest-1b@l
2885 . b dest
2886
2887 ppc_stub_plt_branch_notoc:
2888 . mflr %r12
2889 . bcl 20,31,1f
2890 . 1:
2891 . mflr %r11
2892 . mtlr %r12
2893 . lis %r12,xxx-1b@highest
2894 . ori %r12,%r12,xxx-1b@higher
2895 . sldi %r12,%r12,32
2896 . oris %r12,%r12,xxx-1b@high
2897 . ori %r12,%r12,xxx-1b@l
2898 . add %r12,%r11,%r12
2899 . mtctr %r12
2900 . bctr
2901
2902 ppc_stub_plt_call_notoc:
2903 . mflr %r12
2904 . bcl 20,31,1f
2905 . 1:
2906 . mflr %r11
2907 . mtlr %r12
2908 . lis %r12,xxx-1b@highest
2909 . ori %r12,%r12,xxx-1b@higher
2910 . sldi %r12,%r12,32
2911 . oris %r12,%r12,xxx-1b@high
2912 . ori %r12,%r12,xxx-1b@l
2913 . ldx %r12,%r11,%r12
2914 . mtctr %r12
2915 . bctr
2916
2917 There are also ELFv1 power10 variants of these stubs.
2918 ppc_stub_long_branch_notoc:
2919 . pla %r12,dest@pcrel
2920 . b dest
2921 ppc_stub_plt_branch_notoc:
2922 . lis %r11,(dest-1f)@highesta34
2923 . ori %r11,%r11,(dest-1f)@highera34
2924 . sldi %r11,%r11,34
2925 . 1: pla %r12,dest@pcrel
2926 . add %r12,%r11,%r12
2927 . mtctr %r12
2928 . bctr
2929 ppc_stub_plt_call_notoc:
2930 . lis %r11,(xxx-1f)@highesta34
2931 . ori %r11,%r11,(xxx-1f)@highera34
2932 . sldi %r11,%r11,34
2933 . 1: pla %r12,xxx@pcrel
2934 . ldx %r12,%r11,%r12
2935 . mtctr %r12
2936 . bctr
2937
2938 In cases where the high instructions would add zero, they are
2939 omitted and following instructions modified in some cases.
2940 For example, a power10 ppc_stub_plt_call_notoc might simplify down
2941 to
2942 . pld %r12,xxx@pcrel
2943 . mtctr %r12
2944 . bctr
2945
2946 For a given stub group (a set of sections all using the same toc
2947 pointer value) there will be just one stub type used for any
2948 particular function symbol. For example, if printf is called from
2949 code with the tocsave optimization (ie. r2 saved in function
2950 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2951 and from other code without the tocsave optimization requiring a
2952 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2953 type will be created. Calls with the tocsave optimization will
2954 enter this stub after the instruction saving r2. A similar
2955 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2956 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2957 to call an external function like printf. If other calls to printf
2958 require a ppc_stub_plt_call linkage stub then a single
2959 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2960 call. If other calls to printf require a ppc_stub_plt_call_r2save
2961 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2962 be created and calls not requiring r2 to be saved will enter the
2963 stub after the r2 save instruction. There is an analogous
2964 hierarchy of long branch and plt branch stubs for local call
2965 linkage. */
2966
2967 enum ppc_stub_type
2968 {
2969 ppc_stub_none,
2970 ppc_stub_long_branch,
2971 ppc_stub_long_branch_r2off,
2972 ppc_stub_long_branch_notoc,
2973 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2974 ppc_stub_plt_branch,
2975 ppc_stub_plt_branch_r2off,
2976 ppc_stub_plt_branch_notoc,
2977 ppc_stub_plt_branch_both,
2978 ppc_stub_plt_call,
2979 ppc_stub_plt_call_r2save,
2980 ppc_stub_plt_call_notoc,
2981 ppc_stub_plt_call_both,
2982 ppc_stub_global_entry,
2983 ppc_stub_save_res
2984 };
2985
2986 /* Information on stub grouping. */
2987 struct map_stub
2988 {
2989 /* The stub section. */
2990 asection *stub_sec;
2991 /* This is the section to which stubs in the group will be attached. */
2992 asection *link_sec;
2993 /* Next group. */
2994 struct map_stub *next;
2995 /* Whether to emit a copy of register save/restore functions in this
2996 group. */
2997 int needs_save_res;
2998 /* Current offset within stubs after the insn restoring lr in a
2999 _notoc or _both stub using bcl for pc-relative addressing, or
3000 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
3001 unsigned int lr_restore;
3002 /* Accumulated size of EH info emitted to describe return address
3003 if stubs modify lr. Does not include 17 byte FDE header. */
3004 unsigned int eh_size;
3005 /* Offset in glink_eh_frame to the start of EH info for this group. */
3006 unsigned int eh_base;
3007 };
3008
3009 struct ppc_stub_hash_entry
3010 {
3011 /* Base hash table entry structure. */
3012 struct bfd_hash_entry root;
3013
3014 enum ppc_stub_type stub_type;
3015
3016 /* Group information. */
3017 struct map_stub *group;
3018
3019 /* Offset within stub_sec of the beginning of this stub. */
3020 bfd_vma stub_offset;
3021
3022 /* Given the symbol's value and its section we can determine its final
3023 value when building the stubs (so the stub knows where to jump. */
3024 bfd_vma target_value;
3025 asection *target_section;
3026
3027 /* The symbol table entry, if any, that this was derived from. */
3028 struct ppc_link_hash_entry *h;
3029 struct plt_entry *plt_ent;
3030
3031 /* Symbol type. */
3032 unsigned char symtype;
3033
3034 /* Symbol st_other. */
3035 unsigned char other;
3036 };
3037
3038 struct ppc_branch_hash_entry
3039 {
3040 /* Base hash table entry structure. */
3041 struct bfd_hash_entry root;
3042
3043 /* Offset within branch lookup table. */
3044 unsigned int offset;
3045
3046 /* Generation marker. */
3047 unsigned int iter;
3048 };
3049
3050 /* Used to track dynamic relocations for local symbols. */
3051 struct ppc_dyn_relocs
3052 {
3053 struct ppc_dyn_relocs *next;
3054
3055 /* The input section of the reloc. */
3056 asection *sec;
3057
3058 /* Total number of relocs copied for the input section. */
3059 unsigned int count : 31;
3060
3061 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3062 unsigned int ifunc : 1;
3063 };
3064
3065 struct ppc_link_hash_entry
3066 {
3067 struct elf_link_hash_entry elf;
3068
3069 union
3070 {
3071 /* A pointer to the most recently used stub hash entry against this
3072 symbol. */
3073 struct ppc_stub_hash_entry *stub_cache;
3074
3075 /* A pointer to the next symbol starting with a '.' */
3076 struct ppc_link_hash_entry *next_dot_sym;
3077 } u;
3078
3079 /* Track dynamic relocs copied for this symbol. */
3080 struct elf_dyn_relocs *dyn_relocs;
3081
3082 /* Link between function code and descriptor symbols. */
3083 struct ppc_link_hash_entry *oh;
3084
3085 /* Flag function code and descriptor symbols. */
3086 unsigned int is_func:1;
3087 unsigned int is_func_descriptor:1;
3088 unsigned int fake:1;
3089
3090 /* Whether global opd/toc sym has been adjusted or not.
3091 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3092 should be set for all globals defined in any opd/toc section. */
3093 unsigned int adjust_done:1;
3094
3095 /* Set if this is an out-of-line register save/restore function,
3096 with non-standard calling convention. */
3097 unsigned int save_res:1;
3098
3099 /* Set if a duplicate symbol with non-zero localentry is detected,
3100 even when the duplicate symbol does not provide a definition. */
3101 unsigned int non_zero_localentry:1;
3102
3103 /* Contexts in which symbol is used in the GOT (or TOC).
3104 Bits are or'd into the mask as the corresponding relocs are
3105 encountered during check_relocs, with TLS_TLS being set when any
3106 of the other TLS bits are set. tls_optimize clears bits when
3107 optimizing to indicate the corresponding GOT entry type is not
3108 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3109 set TLS_GDIE when a GD reloc turns into an IE one.
3110 These flags are also kept for local symbols. */
3111 #define TLS_TLS 1 /* Any TLS reloc. */
3112 #define TLS_GD 2 /* GD reloc. */
3113 #define TLS_LD 4 /* LD reloc. */
3114 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3115 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3116 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3117 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3118 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3119 unsigned char tls_mask;
3120
3121 /* The above field is also used to mark function symbols. In which
3122 case TLS_TLS will be 0. */
3123 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3124 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3125 #define NON_GOT 256 /* local symbol plt, not stored. */
3126 };
3127
3128 static inline struct ppc_link_hash_entry *
3129 ppc_elf_hash_entry (struct elf_link_hash_entry *ent)
3130 {
3131 return (struct ppc_link_hash_entry *) ent;
3132 }
3133
3134 /* ppc64 ELF linker hash table. */
3135
3136 struct ppc_link_hash_table
3137 {
3138 struct elf_link_hash_table elf;
3139
3140 /* The stub hash table. */
3141 struct bfd_hash_table stub_hash_table;
3142
3143 /* Another hash table for plt_branch stubs. */
3144 struct bfd_hash_table branch_hash_table;
3145
3146 /* Hash table for function prologue tocsave. */
3147 htab_t tocsave_htab;
3148
3149 /* Various options and other info passed from the linker. */
3150 struct ppc64_elf_params *params;
3151
3152 /* The size of sec_info below. */
3153 unsigned int sec_info_arr_size;
3154
3155 /* Per-section array of extra section info. Done this way rather
3156 than as part of ppc64_elf_section_data so we have the info for
3157 non-ppc64 sections. */
3158 struct
3159 {
3160 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3161 bfd_vma toc_off;
3162
3163 union
3164 {
3165 /* The section group that this section belongs to. */
3166 struct map_stub *group;
3167 /* A temp section list pointer. */
3168 asection *list;
3169 } u;
3170 } *sec_info;
3171
3172 /* Linked list of groups. */
3173 struct map_stub *group;
3174
3175 /* Temp used when calculating TOC pointers. */
3176 bfd_vma toc_curr;
3177 bfd *toc_bfd;
3178 asection *toc_first_sec;
3179
3180 /* Used when adding symbols. */
3181 struct ppc_link_hash_entry *dot_syms;
3182
3183 /* Shortcuts to get to dynamic linker sections. */
3184 asection *glink;
3185 asection *global_entry;
3186 asection *sfpr;
3187 asection *pltlocal;
3188 asection *relpltlocal;
3189 asection *brlt;
3190 asection *relbrlt;
3191 asection *glink_eh_frame;
3192
3193 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3194 struct ppc_link_hash_entry *tls_get_addr;
3195 struct ppc_link_hash_entry *tls_get_addr_fd;
3196 struct ppc_link_hash_entry *tga_desc;
3197 struct ppc_link_hash_entry *tga_desc_fd;
3198 struct map_stub *tga_group;
3199
3200 /* The size of reliplt used by got entry relocs. */
3201 bfd_size_type got_reli_size;
3202
3203 /* Statistics. */
3204 unsigned long stub_count[ppc_stub_global_entry];
3205
3206 /* Number of stubs against global syms. */
3207 unsigned long stub_globals;
3208
3209 /* Set if we're linking code with function descriptors. */
3210 unsigned int opd_abi:1;
3211
3212 /* Support for multiple toc sections. */
3213 unsigned int do_multi_toc:1;
3214 unsigned int multi_toc_needed:1;
3215 unsigned int second_toc_pass:1;
3216 unsigned int do_toc_opt:1;
3217
3218 /* Set if tls optimization is enabled. */
3219 unsigned int do_tls_opt:1;
3220
3221 /* Set if inline plt calls should be converted to direct calls. */
3222 unsigned int can_convert_all_inline_plt:1;
3223
3224 /* Set on error. */
3225 unsigned int stub_error:1;
3226
3227 /* Whether func_desc_adjust needs to be run over symbols. */
3228 unsigned int need_func_desc_adj:1;
3229
3230 /* Whether there exist local gnu indirect function resolvers,
3231 referenced by dynamic relocations. */
3232 unsigned int local_ifunc_resolver:1;
3233 unsigned int maybe_local_ifunc_resolver:1;
3234
3235 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3236 unsigned int has_plt_localentry0:1;
3237
3238 /* Whether calls are made via the PLT from NOTOC functions. */
3239 unsigned int notoc_plt:1;
3240
3241 /* Whether to use power10 instructions in linkage stubs. */
3242 unsigned int power10_stubs:1;
3243
3244 /* Incremented every time we size stubs. */
3245 unsigned int stub_iteration;
3246
3247 /* Small local sym cache. */
3248 struct sym_cache sym_cache;
3249 };
3250
3251 /* Rename some of the generic section flags to better document how they
3252 are used here. */
3253
3254 /* Nonzero if this section has TLS related relocations. */
3255 #define has_tls_reloc sec_flg0
3256
3257 /* Nonzero if this section has a call to __tls_get_addr lacking marker
3258 relocations. */
3259 #define nomark_tls_get_addr sec_flg1
3260
3261 /* Nonzero if this section has any toc or got relocs. */
3262 #define has_toc_reloc sec_flg2
3263
3264 /* Nonzero if this section has a call to another section that uses
3265 the toc or got. */
3266 #define makes_toc_func_call sec_flg3
3267
3268 /* Recursion protection when determining above flag. */
3269 #define call_check_in_progress sec_flg4
3270 #define call_check_done sec_flg5
3271
3272 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3273
3274 #define ppc_hash_table(p) \
3275 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3276 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3277
3278 #define ppc_stub_hash_lookup(table, string, create, copy) \
3279 ((struct ppc_stub_hash_entry *) \
3280 bfd_hash_lookup ((table), (string), (create), (copy)))
3281
3282 #define ppc_branch_hash_lookup(table, string, create, copy) \
3283 ((struct ppc_branch_hash_entry *) \
3284 bfd_hash_lookup ((table), (string), (create), (copy)))
3285
3286 /* Create an entry in the stub hash table. */
3287
3288 static struct bfd_hash_entry *
3289 stub_hash_newfunc (struct bfd_hash_entry *entry,
3290 struct bfd_hash_table *table,
3291 const char *string)
3292 {
3293 /* Allocate the structure if it has not already been allocated by a
3294 subclass. */
3295 if (entry == NULL)
3296 {
3297 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3298 if (entry == NULL)
3299 return entry;
3300 }
3301
3302 /* Call the allocation method of the superclass. */
3303 entry = bfd_hash_newfunc (entry, table, string);
3304 if (entry != NULL)
3305 {
3306 struct ppc_stub_hash_entry *eh;
3307
3308 /* Initialize the local fields. */
3309 eh = (struct ppc_stub_hash_entry *) entry;
3310 eh->stub_type = ppc_stub_none;
3311 eh->group = NULL;
3312 eh->stub_offset = 0;
3313 eh->target_value = 0;
3314 eh->target_section = NULL;
3315 eh->h = NULL;
3316 eh->plt_ent = NULL;
3317 eh->other = 0;
3318 }
3319
3320 return entry;
3321 }
3322
3323 /* Create an entry in the branch hash table. */
3324
3325 static struct bfd_hash_entry *
3326 branch_hash_newfunc (struct bfd_hash_entry *entry,
3327 struct bfd_hash_table *table,
3328 const char *string)
3329 {
3330 /* Allocate the structure if it has not already been allocated by a
3331 subclass. */
3332 if (entry == NULL)
3333 {
3334 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3335 if (entry == NULL)
3336 return entry;
3337 }
3338
3339 /* Call the allocation method of the superclass. */
3340 entry = bfd_hash_newfunc (entry, table, string);
3341 if (entry != NULL)
3342 {
3343 struct ppc_branch_hash_entry *eh;
3344
3345 /* Initialize the local fields. */
3346 eh = (struct ppc_branch_hash_entry *) entry;
3347 eh->offset = 0;
3348 eh->iter = 0;
3349 }
3350
3351 return entry;
3352 }
3353
3354 /* Create an entry in a ppc64 ELF linker hash table. */
3355
3356 static struct bfd_hash_entry *
3357 link_hash_newfunc (struct bfd_hash_entry *entry,
3358 struct bfd_hash_table *table,
3359 const char *string)
3360 {
3361 /* Allocate the structure if it has not already been allocated by a
3362 subclass. */
3363 if (entry == NULL)
3364 {
3365 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3366 if (entry == NULL)
3367 return entry;
3368 }
3369
3370 /* Call the allocation method of the superclass. */
3371 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3372 if (entry != NULL)
3373 {
3374 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3375
3376 memset (&eh->u.stub_cache, 0,
3377 (sizeof (struct ppc_link_hash_entry)
3378 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3379
3380 /* When making function calls, old ABI code references function entry
3381 points (dot symbols), while new ABI code references the function
3382 descriptor symbol. We need to make any combination of reference and
3383 definition work together, without breaking archive linking.
3384
3385 For a defined function "foo" and an undefined call to "bar":
3386 An old object defines "foo" and ".foo", references ".bar" (possibly
3387 "bar" too).
3388 A new object defines "foo" and references "bar".
3389
3390 A new object thus has no problem with its undefined symbols being
3391 satisfied by definitions in an old object. On the other hand, the
3392 old object won't have ".bar" satisfied by a new object.
3393
3394 Keep a list of newly added dot-symbols. */
3395
3396 if (string[0] == '.')
3397 {
3398 struct ppc_link_hash_table *htab;
3399
3400 htab = (struct ppc_link_hash_table *) table;
3401 eh->u.next_dot_sym = htab->dot_syms;
3402 htab->dot_syms = eh;
3403 }
3404 }
3405
3406 return entry;
3407 }
3408
3409 struct tocsave_entry
3410 {
3411 asection *sec;
3412 bfd_vma offset;
3413 };
3414
3415 static hashval_t
3416 tocsave_htab_hash (const void *p)
3417 {
3418 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3419 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3420 }
3421
3422 static int
3423 tocsave_htab_eq (const void *p1, const void *p2)
3424 {
3425 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3426 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3427 return e1->sec == e2->sec && e1->offset == e2->offset;
3428 }
3429
3430 /* Destroy a ppc64 ELF linker hash table. */
3431
3432 static void
3433 ppc64_elf_link_hash_table_free (bfd *obfd)
3434 {
3435 struct ppc_link_hash_table *htab;
3436
3437 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3438 if (htab->tocsave_htab)
3439 htab_delete (htab->tocsave_htab);
3440 bfd_hash_table_free (&htab->branch_hash_table);
3441 bfd_hash_table_free (&htab->stub_hash_table);
3442 _bfd_elf_link_hash_table_free (obfd);
3443 }
3444
3445 /* Create a ppc64 ELF linker hash table. */
3446
3447 static struct bfd_link_hash_table *
3448 ppc64_elf_link_hash_table_create (bfd *abfd)
3449 {
3450 struct ppc_link_hash_table *htab;
3451 size_t amt = sizeof (struct ppc_link_hash_table);
3452
3453 htab = bfd_zmalloc (amt);
3454 if (htab == NULL)
3455 return NULL;
3456
3457 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3458 sizeof (struct ppc_link_hash_entry),
3459 PPC64_ELF_DATA))
3460 {
3461 free (htab);
3462 return NULL;
3463 }
3464
3465 /* Init the stub hash table too. */
3466 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3467 sizeof (struct ppc_stub_hash_entry)))
3468 {
3469 _bfd_elf_link_hash_table_free (abfd);
3470 return NULL;
3471 }
3472
3473 /* And the branch hash table. */
3474 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3475 sizeof (struct ppc_branch_hash_entry)))
3476 {
3477 bfd_hash_table_free (&htab->stub_hash_table);
3478 _bfd_elf_link_hash_table_free (abfd);
3479 return NULL;
3480 }
3481
3482 htab->tocsave_htab = htab_try_create (1024,
3483 tocsave_htab_hash,
3484 tocsave_htab_eq,
3485 NULL);
3486 if (htab->tocsave_htab == NULL)
3487 {
3488 ppc64_elf_link_hash_table_free (abfd);
3489 return NULL;
3490 }
3491 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3492
3493 /* Initializing two fields of the union is just cosmetic. We really
3494 only care about glist, but when compiled on a 32-bit host the
3495 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3496 debugger inspection of these fields look nicer. */
3497 htab->elf.init_got_refcount.refcount = 0;
3498 htab->elf.init_got_refcount.glist = NULL;
3499 htab->elf.init_plt_refcount.refcount = 0;
3500 htab->elf.init_plt_refcount.glist = NULL;
3501 htab->elf.init_got_offset.offset = 0;
3502 htab->elf.init_got_offset.glist = NULL;
3503 htab->elf.init_plt_offset.offset = 0;
3504 htab->elf.init_plt_offset.glist = NULL;
3505
3506 return &htab->elf.root;
3507 }
3508
3509 /* Create sections for linker generated code. */
3510
3511 static bfd_boolean
3512 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3513 {
3514 struct ppc_link_hash_table *htab;
3515 flagword flags;
3516
3517 htab = ppc_hash_table (info);
3518
3519 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3520 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3521 if (htab->params->save_restore_funcs)
3522 {
3523 /* Create .sfpr for code to save and restore fp regs. */
3524 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3525 flags);
3526 if (htab->sfpr == NULL
3527 || !bfd_set_section_alignment (htab->sfpr, 2))
3528 return FALSE;
3529 }
3530
3531 if (bfd_link_relocatable (info))
3532 return TRUE;
3533
3534 /* Create .glink for lazy dynamic linking support. */
3535 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3536 flags);
3537 if (htab->glink == NULL
3538 || !bfd_set_section_alignment (htab->glink, 3))
3539 return FALSE;
3540
3541 /* The part of .glink used by global entry stubs, separate so that
3542 it can be aligned appropriately without affecting htab->glink. */
3543 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3544 flags);
3545 if (htab->global_entry == NULL
3546 || !bfd_set_section_alignment (htab->global_entry, 2))
3547 return FALSE;
3548
3549 if (!info->no_ld_generated_unwind_info)
3550 {
3551 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3552 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3553 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3554 ".eh_frame",
3555 flags);
3556 if (htab->glink_eh_frame == NULL
3557 || !bfd_set_section_alignment (htab->glink_eh_frame, 2))
3558 return FALSE;
3559 }
3560
3561 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3562 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3563 if (htab->elf.iplt == NULL
3564 || !bfd_set_section_alignment (htab->elf.iplt, 3))
3565 return FALSE;
3566
3567 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3568 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3569 htab->elf.irelplt
3570 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3571 if (htab->elf.irelplt == NULL
3572 || !bfd_set_section_alignment (htab->elf.irelplt, 3))
3573 return FALSE;
3574
3575 /* Create branch lookup table for plt_branch stubs. */
3576 flags = (SEC_ALLOC | SEC_LOAD
3577 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3578 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3579 flags);
3580 if (htab->brlt == NULL
3581 || !bfd_set_section_alignment (htab->brlt, 3))
3582 return FALSE;
3583
3584 /* Local plt entries, put in .branch_lt but a separate section for
3585 convenience. */
3586 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3587 flags);
3588 if (htab->pltlocal == NULL
3589 || !bfd_set_section_alignment (htab->pltlocal, 3))
3590 return FALSE;
3591
3592 if (!bfd_link_pic (info))
3593 return TRUE;
3594
3595 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3596 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3597 htab->relbrlt
3598 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3599 if (htab->relbrlt == NULL
3600 || !bfd_set_section_alignment (htab->relbrlt, 3))
3601 return FALSE;
3602
3603 htab->relpltlocal
3604 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3605 if (htab->relpltlocal == NULL
3606 || !bfd_set_section_alignment (htab->relpltlocal, 3))
3607 return FALSE;
3608
3609 return TRUE;
3610 }
3611
3612 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3613
3614 bfd_boolean
3615 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3616 struct ppc64_elf_params *params)
3617 {
3618 struct ppc_link_hash_table *htab;
3619
3620 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3621
3622 /* Always hook our dynamic sections into the first bfd, which is the
3623 linker created stub bfd. This ensures that the GOT header is at
3624 the start of the output TOC section. */
3625 htab = ppc_hash_table (info);
3626 htab->elf.dynobj = params->stub_bfd;
3627 htab->params = params;
3628
3629 return create_linkage_sections (htab->elf.dynobj, info);
3630 }
3631
3632 /* Build a name for an entry in the stub hash table. */
3633
3634 static char *
3635 ppc_stub_name (const asection *input_section,
3636 const asection *sym_sec,
3637 const struct ppc_link_hash_entry *h,
3638 const Elf_Internal_Rela *rel)
3639 {
3640 char *stub_name;
3641 ssize_t len;
3642
3643 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3644 offsets from a sym as a branch target? In fact, we could
3645 probably assume the addend is always zero. */
3646 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3647
3648 if (h)
3649 {
3650 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3651 stub_name = bfd_malloc (len);
3652 if (stub_name == NULL)
3653 return stub_name;
3654
3655 len = sprintf (stub_name, "%08x.%s+%x",
3656 input_section->id & 0xffffffff,
3657 h->elf.root.root.string,
3658 (int) rel->r_addend & 0xffffffff);
3659 }
3660 else
3661 {
3662 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3663 stub_name = bfd_malloc (len);
3664 if (stub_name == NULL)
3665 return stub_name;
3666
3667 len = sprintf (stub_name, "%08x.%x:%x+%x",
3668 input_section->id & 0xffffffff,
3669 sym_sec->id & 0xffffffff,
3670 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3671 (int) rel->r_addend & 0xffffffff);
3672 }
3673 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3674 stub_name[len - 2] = 0;
3675 return stub_name;
3676 }
3677
3678 /* Look up an entry in the stub hash. Stub entries are cached because
3679 creating the stub name takes a bit of time. */
3680
3681 static struct ppc_stub_hash_entry *
3682 ppc_get_stub_entry (const asection *input_section,
3683 const asection *sym_sec,
3684 struct ppc_link_hash_entry *h,
3685 const Elf_Internal_Rela *rel,
3686 struct ppc_link_hash_table *htab)
3687 {
3688 struct ppc_stub_hash_entry *stub_entry;
3689 struct map_stub *group;
3690
3691 /* If this input section is part of a group of sections sharing one
3692 stub section, then use the id of the first section in the group.
3693 Stub names need to include a section id, as there may well be
3694 more than one stub used to reach say, printf, and we need to
3695 distinguish between them. */
3696 group = htab->sec_info[input_section->id].u.group;
3697 if (group == NULL)
3698 return NULL;
3699
3700 if (h != NULL && h->u.stub_cache != NULL
3701 && h->u.stub_cache->h == h
3702 && h->u.stub_cache->group == group)
3703 {
3704 stub_entry = h->u.stub_cache;
3705 }
3706 else
3707 {
3708 char *stub_name;
3709
3710 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3711 if (stub_name == NULL)
3712 return NULL;
3713
3714 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3715 stub_name, FALSE, FALSE);
3716 if (h != NULL)
3717 h->u.stub_cache = stub_entry;
3718
3719 free (stub_name);
3720 }
3721
3722 return stub_entry;
3723 }
3724
3725 /* Add a new stub entry to the stub hash. Not all fields of the new
3726 stub entry are initialised. */
3727
3728 static struct ppc_stub_hash_entry *
3729 ppc_add_stub (const char *stub_name,
3730 asection *section,
3731 struct bfd_link_info *info)
3732 {
3733 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3734 struct map_stub *group;
3735 asection *link_sec;
3736 asection *stub_sec;
3737 struct ppc_stub_hash_entry *stub_entry;
3738
3739 group = htab->sec_info[section->id].u.group;
3740 link_sec = group->link_sec;
3741 stub_sec = group->stub_sec;
3742 if (stub_sec == NULL)
3743 {
3744 size_t namelen;
3745 bfd_size_type len;
3746 char *s_name;
3747
3748 namelen = strlen (link_sec->name);
3749 len = namelen + sizeof (STUB_SUFFIX);
3750 s_name = bfd_alloc (htab->params->stub_bfd, len);
3751 if (s_name == NULL)
3752 return NULL;
3753
3754 memcpy (s_name, link_sec->name, namelen);
3755 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3756 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3757 if (stub_sec == NULL)
3758 return NULL;
3759 group->stub_sec = stub_sec;
3760 }
3761
3762 /* Enter this entry into the linker stub hash table. */
3763 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3764 TRUE, FALSE);
3765 if (stub_entry == NULL)
3766 {
3767 /* xgettext:c-format */
3768 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3769 section->owner, stub_name);
3770 return NULL;
3771 }
3772
3773 stub_entry->group = group;
3774 stub_entry->stub_offset = 0;
3775 return stub_entry;
3776 }
3777
3778 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3779 not already done. */
3780
3781 static bfd_boolean
3782 create_got_section (bfd *abfd, struct bfd_link_info *info)
3783 {
3784 asection *got, *relgot;
3785 flagword flags;
3786 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3787
3788 if (!is_ppc64_elf (abfd))
3789 return FALSE;
3790 if (htab == NULL)
3791 return FALSE;
3792
3793 if (!htab->elf.sgot
3794 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3795 return FALSE;
3796
3797 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3798 | SEC_LINKER_CREATED);
3799
3800 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3801 if (!got
3802 || !bfd_set_section_alignment (got, 3))
3803 return FALSE;
3804
3805 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3806 flags | SEC_READONLY);
3807 if (!relgot
3808 || !bfd_set_section_alignment (relgot, 3))
3809 return FALSE;
3810
3811 ppc64_elf_tdata (abfd)->got = got;
3812 ppc64_elf_tdata (abfd)->relgot = relgot;
3813 return TRUE;
3814 }
3815
3816 /* Follow indirect and warning symbol links. */
3817
3818 static inline struct bfd_link_hash_entry *
3819 follow_link (struct bfd_link_hash_entry *h)
3820 {
3821 while (h->type == bfd_link_hash_indirect
3822 || h->type == bfd_link_hash_warning)
3823 h = h->u.i.link;
3824 return h;
3825 }
3826
3827 static inline struct elf_link_hash_entry *
3828 elf_follow_link (struct elf_link_hash_entry *h)
3829 {
3830 return (struct elf_link_hash_entry *) follow_link (&h->root);
3831 }
3832
3833 static inline struct ppc_link_hash_entry *
3834 ppc_follow_link (struct ppc_link_hash_entry *h)
3835 {
3836 return ppc_elf_hash_entry (elf_follow_link (&h->elf));
3837 }
3838
3839 /* Merge PLT info on FROM with that on TO. */
3840
3841 static void
3842 move_plt_plist (struct ppc_link_hash_entry *from,
3843 struct ppc_link_hash_entry *to)
3844 {
3845 if (from->elf.plt.plist != NULL)
3846 {
3847 if (to->elf.plt.plist != NULL)
3848 {
3849 struct plt_entry **entp;
3850 struct plt_entry *ent;
3851
3852 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3853 {
3854 struct plt_entry *dent;
3855
3856 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3857 if (dent->addend == ent->addend)
3858 {
3859 dent->plt.refcount += ent->plt.refcount;
3860 *entp = ent->next;
3861 break;
3862 }
3863 if (dent == NULL)
3864 entp = &ent->next;
3865 }
3866 *entp = to->elf.plt.plist;
3867 }
3868
3869 to->elf.plt.plist = from->elf.plt.plist;
3870 from->elf.plt.plist = NULL;
3871 }
3872 }
3873
3874 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3875
3876 static void
3877 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3878 struct elf_link_hash_entry *dir,
3879 struct elf_link_hash_entry *ind)
3880 {
3881 struct ppc_link_hash_entry *edir, *eind;
3882
3883 edir = ppc_elf_hash_entry (dir);
3884 eind = ppc_elf_hash_entry (ind);
3885
3886 edir->is_func |= eind->is_func;
3887 edir->is_func_descriptor |= eind->is_func_descriptor;
3888 edir->tls_mask |= eind->tls_mask;
3889 if (eind->oh != NULL)
3890 edir->oh = ppc_follow_link (eind->oh);
3891
3892 if (edir->elf.versioned != versioned_hidden)
3893 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3894 edir->elf.ref_regular |= eind->elf.ref_regular;
3895 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3896 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3897 edir->elf.needs_plt |= eind->elf.needs_plt;
3898 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3899
3900 /* If we were called to copy over info for a weak sym, don't copy
3901 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3902 in order to simplify readonly_dynrelocs and save a field in the
3903 symbol hash entry, but that means dyn_relocs can't be used in any
3904 tests about a specific symbol, or affect other symbol flags which
3905 are then tested. */
3906 if (eind->elf.root.type != bfd_link_hash_indirect)
3907 return;
3908
3909 /* Copy over any dynamic relocs we may have on the indirect sym. */
3910 if (eind->dyn_relocs != NULL)
3911 {
3912 if (edir->dyn_relocs != NULL)
3913 {
3914 struct elf_dyn_relocs **pp;
3915 struct elf_dyn_relocs *p;
3916
3917 /* Add reloc counts against the indirect sym to the direct sym
3918 list. Merge any entries against the same section. */
3919 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3920 {
3921 struct elf_dyn_relocs *q;
3922
3923 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3924 if (q->sec == p->sec)
3925 {
3926 q->pc_count += p->pc_count;
3927 q->count += p->count;
3928 *pp = p->next;
3929 break;
3930 }
3931 if (q == NULL)
3932 pp = &p->next;
3933 }
3934 *pp = edir->dyn_relocs;
3935 }
3936
3937 edir->dyn_relocs = eind->dyn_relocs;
3938 eind->dyn_relocs = NULL;
3939 }
3940
3941 /* Copy over got entries that we may have already seen to the
3942 symbol which just became indirect. */
3943 if (eind->elf.got.glist != NULL)
3944 {
3945 if (edir->elf.got.glist != NULL)
3946 {
3947 struct got_entry **entp;
3948 struct got_entry *ent;
3949
3950 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3951 {
3952 struct got_entry *dent;
3953
3954 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3955 if (dent->addend == ent->addend
3956 && dent->owner == ent->owner
3957 && dent->tls_type == ent->tls_type)
3958 {
3959 dent->got.refcount += ent->got.refcount;
3960 *entp = ent->next;
3961 break;
3962 }
3963 if (dent == NULL)
3964 entp = &ent->next;
3965 }
3966 *entp = edir->elf.got.glist;
3967 }
3968
3969 edir->elf.got.glist = eind->elf.got.glist;
3970 eind->elf.got.glist = NULL;
3971 }
3972
3973 /* And plt entries. */
3974 move_plt_plist (eind, edir);
3975
3976 if (eind->elf.dynindx != -1)
3977 {
3978 if (edir->elf.dynindx != -1)
3979 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
3980 edir->elf.dynstr_index);
3981 edir->elf.dynindx = eind->elf.dynindx;
3982 edir->elf.dynstr_index = eind->elf.dynstr_index;
3983 eind->elf.dynindx = -1;
3984 eind->elf.dynstr_index = 0;
3985 }
3986 }
3987
3988 /* Find the function descriptor hash entry from the given function code
3989 hash entry FH. Link the entries via their OH fields. */
3990
3991 static struct ppc_link_hash_entry *
3992 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3993 {
3994 struct ppc_link_hash_entry *fdh = fh->oh;
3995
3996 if (fdh == NULL)
3997 {
3998 const char *fd_name = fh->elf.root.root.string + 1;
3999
4000 fdh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, fd_name,
4001 FALSE, FALSE, FALSE));
4002 if (fdh == NULL)
4003 return fdh;
4004
4005 fdh->is_func_descriptor = 1;
4006 fdh->oh = fh;
4007 fh->is_func = 1;
4008 fh->oh = fdh;
4009 }
4010
4011 fdh = ppc_follow_link (fdh);
4012 fdh->is_func_descriptor = 1;
4013 fdh->oh = fh;
4014 return fdh;
4015 }
4016
4017 /* Make a fake function descriptor sym for the undefined code sym FH. */
4018
4019 static struct ppc_link_hash_entry *
4020 make_fdh (struct bfd_link_info *info,
4021 struct ppc_link_hash_entry *fh)
4022 {
4023 bfd *abfd = fh->elf.root.u.undef.abfd;
4024 struct bfd_link_hash_entry *bh = NULL;
4025 struct ppc_link_hash_entry *fdh;
4026 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
4027 ? BSF_WEAK
4028 : BSF_GLOBAL);
4029
4030 if (!_bfd_generic_link_add_one_symbol (info, abfd,
4031 fh->elf.root.root.string + 1,
4032 flags, bfd_und_section_ptr, 0,
4033 NULL, FALSE, FALSE, &bh))
4034 return NULL;
4035
4036 fdh = (struct ppc_link_hash_entry *) bh;
4037 fdh->elf.non_elf = 0;
4038 fdh->fake = 1;
4039 fdh->is_func_descriptor = 1;
4040 fdh->oh = fh;
4041 fh->is_func = 1;
4042 fh->oh = fdh;
4043 return fdh;
4044 }
4045
4046 /* Fix function descriptor symbols defined in .opd sections to be
4047 function type. */
4048
4049 static bfd_boolean
4050 ppc64_elf_add_symbol_hook (bfd *ibfd,
4051 struct bfd_link_info *info,
4052 Elf_Internal_Sym *isym,
4053 const char **name,
4054 flagword *flags ATTRIBUTE_UNUSED,
4055 asection **sec,
4056 bfd_vma *value)
4057 {
4058 if (*sec != NULL
4059 && strcmp ((*sec)->name, ".opd") == 0)
4060 {
4061 asection *code_sec;
4062
4063 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4064 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4065 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4066
4067 /* If the symbol is a function defined in .opd, and the function
4068 code is in a discarded group, let it appear to be undefined. */
4069 if (!bfd_link_relocatable (info)
4070 && (*sec)->reloc_count != 0
4071 && opd_entry_value (*sec, *value, &code_sec, NULL,
4072 FALSE) != (bfd_vma) -1
4073 && discarded_section (code_sec))
4074 {
4075 *sec = bfd_und_section_ptr;
4076 isym->st_shndx = SHN_UNDEF;
4077 }
4078 }
4079 else if (*sec != NULL
4080 && strcmp ((*sec)->name, ".toc") == 0
4081 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4082 {
4083 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4084 if (htab != NULL)
4085 htab->params->object_in_toc = 1;
4086 }
4087
4088 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4089 {
4090 if (abiversion (ibfd) == 0)
4091 set_abiversion (ibfd, 2);
4092 else if (abiversion (ibfd) == 1)
4093 {
4094 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4095 " for ABI version 1"), *name);
4096 bfd_set_error (bfd_error_bad_value);
4097 return FALSE;
4098 }
4099 }
4100
4101 return TRUE;
4102 }
4103
4104 /* Merge non-visibility st_other attributes: local entry point. */
4105
4106 static void
4107 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4108 const Elf_Internal_Sym *isym,
4109 bfd_boolean definition,
4110 bfd_boolean dynamic)
4111 {
4112 if (definition && (!dynamic || !h->def_regular))
4113 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4114 | ELF_ST_VISIBILITY (h->other));
4115 }
4116
4117 /* Hook called on merging a symbol. We use this to clear "fake" since
4118 we now have a real symbol. */
4119
4120 static bfd_boolean
4121 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4122 const Elf_Internal_Sym *isym,
4123 asection **psec ATTRIBUTE_UNUSED,
4124 bfd_boolean newdef ATTRIBUTE_UNUSED,
4125 bfd_boolean olddef ATTRIBUTE_UNUSED,
4126 bfd *oldbfd ATTRIBUTE_UNUSED,
4127 const asection *oldsec ATTRIBUTE_UNUSED)
4128 {
4129 ppc_elf_hash_entry (h)->fake = 0;
4130 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4131 ppc_elf_hash_entry (h)->non_zero_localentry = 1;
4132 return TRUE;
4133 }
4134
4135 /* This function makes an old ABI object reference to ".bar" cause the
4136 inclusion of a new ABI object archive that defines "bar".
4137 NAME is a symbol defined in an archive. Return a symbol in the hash
4138 table that might be satisfied by the archive symbols. */
4139
4140 static struct elf_link_hash_entry *
4141 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4142 struct bfd_link_info *info,
4143 const char *name)
4144 {
4145 struct elf_link_hash_entry *h;
4146 char *dot_name;
4147 size_t len;
4148
4149 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4150 if (h != NULL
4151 /* Don't return this sym if it is a fake function descriptor
4152 created by add_symbol_adjust. */
4153 && !ppc_elf_hash_entry (h)->fake)
4154 return h;
4155
4156 if (name[0] == '.')
4157 return h;
4158
4159 len = strlen (name);
4160 dot_name = bfd_alloc (abfd, len + 2);
4161 if (dot_name == NULL)
4162 return (struct elf_link_hash_entry *) -1;
4163 dot_name[0] = '.';
4164 memcpy (dot_name + 1, name, len + 1);
4165 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4166 bfd_release (abfd, dot_name);
4167 if (h != NULL)
4168 return h;
4169
4170 if (strcmp (name, "__tls_get_addr_opt") == 0)
4171 h = _bfd_elf_archive_symbol_lookup (abfd, info, "__tls_get_addr_desc");
4172 return h;
4173 }
4174
4175 /* This function satisfies all old ABI object references to ".bar" if a
4176 new ABI object defines "bar". Well, at least, undefined dot symbols
4177 are made weak. This stops later archive searches from including an
4178 object if we already have a function descriptor definition. It also
4179 prevents the linker complaining about undefined symbols.
4180 We also check and correct mismatched symbol visibility here. The
4181 most restrictive visibility of the function descriptor and the
4182 function entry symbol is used. */
4183
4184 static bfd_boolean
4185 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4186 {
4187 struct ppc_link_hash_table *htab;
4188 struct ppc_link_hash_entry *fdh;
4189
4190 if (eh->elf.root.type == bfd_link_hash_warning)
4191 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4192
4193 if (eh->elf.root.type == bfd_link_hash_indirect)
4194 return TRUE;
4195
4196 if (eh->elf.root.root.string[0] != '.')
4197 abort ();
4198
4199 htab = ppc_hash_table (info);
4200 if (htab == NULL)
4201 return FALSE;
4202
4203 fdh = lookup_fdh (eh, htab);
4204 if (fdh == NULL
4205 && !bfd_link_relocatable (info)
4206 && (eh->elf.root.type == bfd_link_hash_undefined
4207 || eh->elf.root.type == bfd_link_hash_undefweak)
4208 && eh->elf.ref_regular)
4209 {
4210 /* Make an undefined function descriptor sym, in order to
4211 pull in an --as-needed shared lib. Archives are handled
4212 elsewhere. */
4213 fdh = make_fdh (info, eh);
4214 if (fdh == NULL)
4215 return FALSE;
4216 }
4217
4218 if (fdh != NULL)
4219 {
4220 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4221 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4222
4223 /* Make both descriptor and entry symbol have the most
4224 constraining visibility of either symbol. */
4225 if (entry_vis < descr_vis)
4226 fdh->elf.other += entry_vis - descr_vis;
4227 else if (entry_vis > descr_vis)
4228 eh->elf.other += descr_vis - entry_vis;
4229
4230 /* Propagate reference flags from entry symbol to function
4231 descriptor symbol. */
4232 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4233 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4234 fdh->elf.ref_regular |= eh->elf.ref_regular;
4235 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4236
4237 if (!fdh->elf.forced_local
4238 && fdh->elf.dynindx == -1
4239 && fdh->elf.versioned != versioned_hidden
4240 && (bfd_link_dll (info)
4241 || fdh->elf.def_dynamic
4242 || fdh->elf.ref_dynamic)
4243 && (eh->elf.ref_regular
4244 || eh->elf.def_regular))
4245 {
4246 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4247 return FALSE;
4248 }
4249 }
4250
4251 return TRUE;
4252 }
4253
4254 /* Set up opd section info and abiversion for IBFD, and process list
4255 of dot-symbols we made in link_hash_newfunc. */
4256
4257 static bfd_boolean
4258 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4259 {
4260 struct ppc_link_hash_table *htab;
4261 struct ppc_link_hash_entry **p, *eh;
4262 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4263
4264 if (opd != NULL && opd->size != 0)
4265 {
4266 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4267 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4268
4269 if (abiversion (ibfd) == 0)
4270 set_abiversion (ibfd, 1);
4271 else if (abiversion (ibfd) >= 2)
4272 {
4273 /* xgettext:c-format */
4274 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4275 ibfd, abiversion (ibfd));
4276 bfd_set_error (bfd_error_bad_value);
4277 return FALSE;
4278 }
4279 }
4280
4281 if (is_ppc64_elf (info->output_bfd))
4282 {
4283 /* For input files without an explicit abiversion in e_flags
4284 we should have flagged any with symbol st_other bits set
4285 as ELFv1 and above flagged those with .opd as ELFv2.
4286 Set the output abiversion if not yet set, and for any input
4287 still ambiguous, take its abiversion from the output.
4288 Differences in ABI are reported later. */
4289 if (abiversion (info->output_bfd) == 0)
4290 set_abiversion (info->output_bfd, abiversion (ibfd));
4291 else if (abiversion (ibfd) == 0)
4292 set_abiversion (ibfd, abiversion (info->output_bfd));
4293 }
4294
4295 htab = ppc_hash_table (info);
4296 if (htab == NULL)
4297 return TRUE;
4298
4299 if (opd != NULL && opd->size != 0
4300 && (ibfd->flags & DYNAMIC) == 0
4301 && (opd->flags & SEC_RELOC) != 0
4302 && opd->reloc_count != 0
4303 && !bfd_is_abs_section (opd->output_section)
4304 && info->gc_sections)
4305 {
4306 /* Garbage collection needs some extra help with .opd sections.
4307 We don't want to necessarily keep everything referenced by
4308 relocs in .opd, as that would keep all functions. Instead,
4309 if we reference an .opd symbol (a function descriptor), we
4310 want to keep the function code symbol's section. This is
4311 easy for global symbols, but for local syms we need to keep
4312 information about the associated function section. */
4313 bfd_size_type amt;
4314 asection **opd_sym_map;
4315 Elf_Internal_Shdr *symtab_hdr;
4316 Elf_Internal_Rela *relocs, *rel_end, *rel;
4317
4318 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4319 opd_sym_map = bfd_zalloc (ibfd, amt);
4320 if (opd_sym_map == NULL)
4321 return FALSE;
4322 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4323 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4324 info->keep_memory);
4325 if (relocs == NULL)
4326 return FALSE;
4327 symtab_hdr = &elf_symtab_hdr (ibfd);
4328 rel_end = relocs + opd->reloc_count - 1;
4329 for (rel = relocs; rel < rel_end; rel++)
4330 {
4331 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4332 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4333
4334 if (r_type == R_PPC64_ADDR64
4335 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4336 && r_symndx < symtab_hdr->sh_info)
4337 {
4338 Elf_Internal_Sym *isym;
4339 asection *s;
4340
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, r_symndx);
4342 if (isym == NULL)
4343 {
4344 if (elf_section_data (opd)->relocs != relocs)
4345 free (relocs);
4346 return FALSE;
4347 }
4348
4349 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4350 if (s != NULL && s != opd)
4351 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4352 }
4353 }
4354 if (elf_section_data (opd)->relocs != relocs)
4355 free (relocs);
4356 }
4357
4358 p = &htab->dot_syms;
4359 while ((eh = *p) != NULL)
4360 {
4361 *p = NULL;
4362 if (&eh->elf == htab->elf.hgot)
4363 ;
4364 else if (htab->elf.hgot == NULL
4365 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4366 htab->elf.hgot = &eh->elf;
4367 else if (abiversion (ibfd) <= 1)
4368 {
4369 htab->need_func_desc_adj = 1;
4370 if (!add_symbol_adjust (eh, info))
4371 return FALSE;
4372 }
4373 p = &eh->u.next_dot_sym;
4374 }
4375 return TRUE;
4376 }
4377
4378 /* Undo hash table changes when an --as-needed input file is determined
4379 not to be needed. */
4380
4381 static bfd_boolean
4382 ppc64_elf_notice_as_needed (bfd *ibfd,
4383 struct bfd_link_info *info,
4384 enum notice_asneeded_action act)
4385 {
4386 if (act == notice_not_needed)
4387 {
4388 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4389
4390 if (htab == NULL)
4391 return FALSE;
4392
4393 htab->dot_syms = NULL;
4394 }
4395 return _bfd_elf_notice_as_needed (ibfd, info, act);
4396 }
4397
4398 /* If --just-symbols against a final linked binary, then assume we need
4399 toc adjusting stubs when calling functions defined there. */
4400
4401 static void
4402 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4403 {
4404 if ((sec->flags & SEC_CODE) != 0
4405 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4406 && is_ppc64_elf (sec->owner))
4407 {
4408 if (abiversion (sec->owner) >= 2
4409 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4410 sec->has_toc_reloc = 1;
4411 }
4412 _bfd_elf_link_just_syms (sec, info);
4413 }
4414
4415 static struct plt_entry **
4416 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4417 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4418 {
4419 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4420 struct plt_entry **local_plt;
4421 unsigned char *local_got_tls_masks;
4422
4423 if (local_got_ents == NULL)
4424 {
4425 bfd_size_type size = symtab_hdr->sh_info;
4426
4427 size *= (sizeof (*local_got_ents)
4428 + sizeof (*local_plt)
4429 + sizeof (*local_got_tls_masks));
4430 local_got_ents = bfd_zalloc (abfd, size);
4431 if (local_got_ents == NULL)
4432 return NULL;
4433 elf_local_got_ents (abfd) = local_got_ents;
4434 }
4435
4436 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4437 {
4438 struct got_entry *ent;
4439
4440 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4441 if (ent->addend == r_addend
4442 && ent->owner == abfd
4443 && ent->tls_type == tls_type)
4444 break;
4445 if (ent == NULL)
4446 {
4447 size_t amt = sizeof (*ent);
4448 ent = bfd_alloc (abfd, amt);
4449 if (ent == NULL)
4450 return FALSE;
4451 ent->next = local_got_ents[r_symndx];
4452 ent->addend = r_addend;
4453 ent->owner = abfd;
4454 ent->tls_type = tls_type;
4455 ent->is_indirect = FALSE;
4456 ent->got.refcount = 0;
4457 local_got_ents[r_symndx] = ent;
4458 }
4459 ent->got.refcount += 1;
4460 }
4461
4462 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4463 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4464 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4465
4466 return local_plt + r_symndx;
4467 }
4468
4469 static bfd_boolean
4470 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4471 {
4472 struct plt_entry *ent;
4473
4474 for (ent = *plist; ent != NULL; ent = ent->next)
4475 if (ent->addend == addend)
4476 break;
4477 if (ent == NULL)
4478 {
4479 size_t amt = sizeof (*ent);
4480 ent = bfd_alloc (abfd, amt);
4481 if (ent == NULL)
4482 return FALSE;
4483 ent->next = *plist;
4484 ent->addend = addend;
4485 ent->plt.refcount = 0;
4486 *plist = ent;
4487 }
4488 ent->plt.refcount += 1;
4489 return TRUE;
4490 }
4491
4492 static bfd_boolean
4493 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4494 {
4495 return (r_type == R_PPC64_REL24
4496 || r_type == R_PPC64_REL24_NOTOC
4497 || r_type == R_PPC64_REL14
4498 || r_type == R_PPC64_REL14_BRTAKEN
4499 || r_type == R_PPC64_REL14_BRNTAKEN
4500 || r_type == R_PPC64_ADDR24
4501 || r_type == R_PPC64_ADDR14
4502 || r_type == R_PPC64_ADDR14_BRTAKEN
4503 || r_type == R_PPC64_ADDR14_BRNTAKEN
4504 || r_type == R_PPC64_PLTCALL
4505 || r_type == R_PPC64_PLTCALL_NOTOC);
4506 }
4507
4508 /* Relocs on inline plt call sequence insns prior to the call. */
4509
4510 static bfd_boolean
4511 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4512 {
4513 return (r_type == R_PPC64_PLT16_HA
4514 || r_type == R_PPC64_PLT16_HI
4515 || r_type == R_PPC64_PLT16_LO
4516 || r_type == R_PPC64_PLT16_LO_DS
4517 || r_type == R_PPC64_PLT_PCREL34
4518 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4519 || r_type == R_PPC64_PLTSEQ
4520 || r_type == R_PPC64_PLTSEQ_NOTOC);
4521 }
4522
4523 /* Look through the relocs for a section during the first phase, and
4524 calculate needed space in the global offset table, procedure
4525 linkage table, and dynamic reloc sections. */
4526
4527 static bfd_boolean
4528 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4529 asection *sec, const Elf_Internal_Rela *relocs)
4530 {
4531 struct ppc_link_hash_table *htab;
4532 Elf_Internal_Shdr *symtab_hdr;
4533 struct elf_link_hash_entry **sym_hashes;
4534 const Elf_Internal_Rela *rel;
4535 const Elf_Internal_Rela *rel_end;
4536 asection *sreloc;
4537 struct elf_link_hash_entry *tga, *dottga;
4538 bfd_boolean is_opd;
4539
4540 if (bfd_link_relocatable (info))
4541 return TRUE;
4542
4543 /* Don't do anything special with non-loaded, non-alloced sections.
4544 In particular, any relocs in such sections should not affect GOT
4545 and PLT reference counting (ie. we don't allow them to create GOT
4546 or PLT entries), there's no possibility or desire to optimize TLS
4547 relocs, and there's not much point in propagating relocs to shared
4548 libs that the dynamic linker won't relocate. */
4549 if ((sec->flags & SEC_ALLOC) == 0)
4550 return TRUE;
4551
4552 BFD_ASSERT (is_ppc64_elf (abfd));
4553
4554 htab = ppc_hash_table (info);
4555 if (htab == NULL)
4556 return FALSE;
4557
4558 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4559 FALSE, FALSE, TRUE);
4560 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4561 FALSE, FALSE, TRUE);
4562 symtab_hdr = &elf_symtab_hdr (abfd);
4563 sym_hashes = elf_sym_hashes (abfd);
4564 sreloc = NULL;
4565 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4566 rel_end = relocs + sec->reloc_count;
4567 for (rel = relocs; rel < rel_end; rel++)
4568 {
4569 unsigned long r_symndx;
4570 struct elf_link_hash_entry *h;
4571 enum elf_ppc64_reloc_type r_type;
4572 int tls_type;
4573 struct _ppc64_elf_section_data *ppc64_sec;
4574 struct plt_entry **ifunc, **plt_list;
4575
4576 r_symndx = ELF64_R_SYM (rel->r_info);
4577 if (r_symndx < symtab_hdr->sh_info)
4578 h = NULL;
4579 else
4580 {
4581 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4582 h = elf_follow_link (h);
4583
4584 if (h == htab->elf.hgot)
4585 sec->has_toc_reloc = 1;
4586 }
4587
4588 r_type = ELF64_R_TYPE (rel->r_info);
4589 switch (r_type)
4590 {
4591 case R_PPC64_D34:
4592 case R_PPC64_D34_LO:
4593 case R_PPC64_D34_HI30:
4594 case R_PPC64_D34_HA30:
4595 case R_PPC64_D28:
4596 case R_PPC64_TPREL34:
4597 case R_PPC64_DTPREL34:
4598 case R_PPC64_PCREL34:
4599 case R_PPC64_GOT_PCREL34:
4600 case R_PPC64_GOT_TLSGD34:
4601 case R_PPC64_GOT_TLSLD34:
4602 case R_PPC64_GOT_TPREL34:
4603 case R_PPC64_GOT_DTPREL34:
4604 case R_PPC64_PLT_PCREL34:
4605 case R_PPC64_PLT_PCREL34_NOTOC:
4606 case R_PPC64_PCREL28:
4607 htab->power10_stubs = 1;
4608 break;
4609 default:
4610 break;
4611 }
4612
4613 switch (r_type)
4614 {
4615 case R_PPC64_PLT16_HA:
4616 case R_PPC64_GOT_TLSLD16_HA:
4617 case R_PPC64_GOT_TLSGD16_HA:
4618 case R_PPC64_GOT_TPREL16_HA:
4619 case R_PPC64_GOT_DTPREL16_HA:
4620 case R_PPC64_GOT16_HA:
4621 case R_PPC64_TOC16_HA:
4622 case R_PPC64_PLT16_LO:
4623 case R_PPC64_PLT16_LO_DS:
4624 case R_PPC64_GOT_TLSLD16_LO:
4625 case R_PPC64_GOT_TLSGD16_LO:
4626 case R_PPC64_GOT_TPREL16_LO_DS:
4627 case R_PPC64_GOT_DTPREL16_LO_DS:
4628 case R_PPC64_GOT16_LO:
4629 case R_PPC64_GOT16_LO_DS:
4630 case R_PPC64_TOC16_LO:
4631 case R_PPC64_TOC16_LO_DS:
4632 case R_PPC64_GOT_PCREL34:
4633 ppc64_elf_tdata (abfd)->has_optrel = 1;
4634 ppc64_elf_section_data (sec)->has_optrel = 1;
4635 break;
4636 default:
4637 break;
4638 }
4639
4640 ifunc = NULL;
4641 if (h != NULL)
4642 {
4643 if (h->type == STT_GNU_IFUNC)
4644 {
4645 h->needs_plt = 1;
4646 ifunc = &h->plt.plist;
4647 }
4648 }
4649 else
4650 {
4651 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4652 abfd, r_symndx);
4653 if (isym == NULL)
4654 return FALSE;
4655
4656 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4657 {
4658 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4659 rel->r_addend,
4660 NON_GOT | PLT_IFUNC);
4661 if (ifunc == NULL)
4662 return FALSE;
4663 }
4664 }
4665
4666 tls_type = 0;
4667 switch (r_type)
4668 {
4669 case R_PPC64_TLSGD:
4670 case R_PPC64_TLSLD:
4671 /* These special tls relocs tie a call to __tls_get_addr with
4672 its parameter symbol. */
4673 if (h != NULL)
4674 ppc_elf_hash_entry (h)->tls_mask |= TLS_TLS | TLS_MARK;
4675 else
4676 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4677 rel->r_addend,
4678 NON_GOT | TLS_TLS | TLS_MARK))
4679 return FALSE;
4680 sec->has_tls_reloc = 1;
4681 break;
4682
4683 case R_PPC64_GOT_TLSLD16:
4684 case R_PPC64_GOT_TLSLD16_LO:
4685 case R_PPC64_GOT_TLSLD16_HI:
4686 case R_PPC64_GOT_TLSLD16_HA:
4687 case R_PPC64_GOT_TLSLD34:
4688 tls_type = TLS_TLS | TLS_LD;
4689 goto dogottls;
4690
4691 case R_PPC64_GOT_TLSGD16:
4692 case R_PPC64_GOT_TLSGD16_LO:
4693 case R_PPC64_GOT_TLSGD16_HI:
4694 case R_PPC64_GOT_TLSGD16_HA:
4695 case R_PPC64_GOT_TLSGD34:
4696 tls_type = TLS_TLS | TLS_GD;
4697 goto dogottls;
4698
4699 case R_PPC64_GOT_TPREL16_DS:
4700 case R_PPC64_GOT_TPREL16_LO_DS:
4701 case R_PPC64_GOT_TPREL16_HI:
4702 case R_PPC64_GOT_TPREL16_HA:
4703 case R_PPC64_GOT_TPREL34:
4704 if (bfd_link_dll (info))
4705 info->flags |= DF_STATIC_TLS;
4706 tls_type = TLS_TLS | TLS_TPREL;
4707 goto dogottls;
4708
4709 case R_PPC64_GOT_DTPREL16_DS:
4710 case R_PPC64_GOT_DTPREL16_LO_DS:
4711 case R_PPC64_GOT_DTPREL16_HI:
4712 case R_PPC64_GOT_DTPREL16_HA:
4713 case R_PPC64_GOT_DTPREL34:
4714 tls_type = TLS_TLS | TLS_DTPREL;
4715 dogottls:
4716 sec->has_tls_reloc = 1;
4717 goto dogot;
4718
4719 case R_PPC64_GOT16:
4720 case R_PPC64_GOT16_LO:
4721 case R_PPC64_GOT16_HI:
4722 case R_PPC64_GOT16_HA:
4723 case R_PPC64_GOT16_DS:
4724 case R_PPC64_GOT16_LO_DS:
4725 case R_PPC64_GOT_PCREL34:
4726 dogot:
4727 /* This symbol requires a global offset table entry. */
4728 sec->has_toc_reloc = 1;
4729 if (r_type == R_PPC64_GOT_TLSLD16
4730 || r_type == R_PPC64_GOT_TLSGD16
4731 || r_type == R_PPC64_GOT_TPREL16_DS
4732 || r_type == R_PPC64_GOT_DTPREL16_DS
4733 || r_type == R_PPC64_GOT16
4734 || r_type == R_PPC64_GOT16_DS)
4735 {
4736 htab->do_multi_toc = 1;
4737 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4738 }
4739
4740 if (ppc64_elf_tdata (abfd)->got == NULL
4741 && !create_got_section (abfd, info))
4742 return FALSE;
4743
4744 if (h != NULL)
4745 {
4746 struct ppc_link_hash_entry *eh;
4747 struct got_entry *ent;
4748
4749 eh = ppc_elf_hash_entry (h);
4750 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4751 if (ent->addend == rel->r_addend
4752 && ent->owner == abfd
4753 && ent->tls_type == tls_type)
4754 break;
4755 if (ent == NULL)
4756 {
4757 size_t amt = sizeof (*ent);
4758 ent = bfd_alloc (abfd, amt);
4759 if (ent == NULL)
4760 return FALSE;
4761 ent->next = eh->elf.got.glist;
4762 ent->addend = rel->r_addend;
4763 ent->owner = abfd;
4764 ent->tls_type = tls_type;
4765 ent->is_indirect = FALSE;
4766 ent->got.refcount = 0;
4767 eh->elf.got.glist = ent;
4768 }
4769 ent->got.refcount += 1;
4770 eh->tls_mask |= tls_type;
4771 }
4772 else
4773 /* This is a global offset table entry for a local symbol. */
4774 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4775 rel->r_addend, tls_type))
4776 return FALSE;
4777 break;
4778
4779 case R_PPC64_PLT16_HA:
4780 case R_PPC64_PLT16_HI:
4781 case R_PPC64_PLT16_LO:
4782 case R_PPC64_PLT16_LO_DS:
4783 case R_PPC64_PLT_PCREL34:
4784 case R_PPC64_PLT_PCREL34_NOTOC:
4785 case R_PPC64_PLT32:
4786 case R_PPC64_PLT64:
4787 /* This symbol requires a procedure linkage table entry. */
4788 plt_list = ifunc;
4789 if (h != NULL)
4790 {
4791 h->needs_plt = 1;
4792 if (h->root.root.string[0] == '.'
4793 && h->root.root.string[1] != '\0')
4794 ppc_elf_hash_entry (h)->is_func = 1;
4795 ppc_elf_hash_entry (h)->tls_mask |= PLT_KEEP;
4796 plt_list = &h->plt.plist;
4797 }
4798 if (plt_list == NULL)
4799 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4800 rel->r_addend,
4801 NON_GOT | PLT_KEEP);
4802 if (!update_plt_info (abfd, plt_list, rel->r_addend))
4803 return FALSE;
4804 break;
4805
4806 /* The following relocations don't need to propagate the
4807 relocation if linking a shared object since they are
4808 section relative. */
4809 case R_PPC64_SECTOFF:
4810 case R_PPC64_SECTOFF_LO:
4811 case R_PPC64_SECTOFF_HI:
4812 case R_PPC64_SECTOFF_HA:
4813 case R_PPC64_SECTOFF_DS:
4814 case R_PPC64_SECTOFF_LO_DS:
4815 case R_PPC64_DTPREL16:
4816 case R_PPC64_DTPREL16_LO:
4817 case R_PPC64_DTPREL16_HI:
4818 case R_PPC64_DTPREL16_HA:
4819 case R_PPC64_DTPREL16_DS:
4820 case R_PPC64_DTPREL16_LO_DS:
4821 case R_PPC64_DTPREL16_HIGH:
4822 case R_PPC64_DTPREL16_HIGHA:
4823 case R_PPC64_DTPREL16_HIGHER:
4824 case R_PPC64_DTPREL16_HIGHERA:
4825 case R_PPC64_DTPREL16_HIGHEST:
4826 case R_PPC64_DTPREL16_HIGHESTA:
4827 break;
4828
4829 /* Nor do these. */
4830 case R_PPC64_REL16:
4831 case R_PPC64_REL16_LO:
4832 case R_PPC64_REL16_HI:
4833 case R_PPC64_REL16_HA:
4834 case R_PPC64_REL16_HIGH:
4835 case R_PPC64_REL16_HIGHA:
4836 case R_PPC64_REL16_HIGHER:
4837 case R_PPC64_REL16_HIGHERA:
4838 case R_PPC64_REL16_HIGHEST:
4839 case R_PPC64_REL16_HIGHESTA:
4840 case R_PPC64_REL16_HIGHER34:
4841 case R_PPC64_REL16_HIGHERA34:
4842 case R_PPC64_REL16_HIGHEST34:
4843 case R_PPC64_REL16_HIGHESTA34:
4844 case R_PPC64_REL16DX_HA:
4845 break;
4846
4847 /* Not supported as a dynamic relocation. */
4848 case R_PPC64_ADDR64_LOCAL:
4849 if (bfd_link_pic (info))
4850 {
4851 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4852 ppc_howto_init ();
4853 /* xgettext:c-format */
4854 info->callbacks->einfo (_("%H: %s reloc unsupported "
4855 "in shared libraries and PIEs\n"),
4856 abfd, sec, rel->r_offset,
4857 ppc64_elf_howto_table[r_type]->name);
4858 bfd_set_error (bfd_error_bad_value);
4859 return FALSE;
4860 }
4861 break;
4862
4863 case R_PPC64_TOC16:
4864 case R_PPC64_TOC16_DS:
4865 htab->do_multi_toc = 1;
4866 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4867 /* Fall through. */
4868 case R_PPC64_TOC16_LO:
4869 case R_PPC64_TOC16_HI:
4870 case R_PPC64_TOC16_HA:
4871 case R_PPC64_TOC16_LO_DS:
4872 sec->has_toc_reloc = 1;
4873 if (h != NULL && bfd_link_executable (info))
4874 {
4875 /* We may need a copy reloc. */
4876 h->non_got_ref = 1;
4877 /* Strongly prefer a copy reloc over a dynamic reloc.
4878 glibc ld.so as of 2019-08 will error out if one of
4879 these relocations is emitted. */
4880 h->needs_copy = 1;
4881 goto dodyn;
4882 }
4883 break;
4884
4885 /* Marker reloc. */
4886 case R_PPC64_ENTRY:
4887 break;
4888
4889 /* This relocation describes the C++ object vtable hierarchy.
4890 Reconstruct it for later use during GC. */
4891 case R_PPC64_GNU_VTINHERIT:
4892 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4893 return FALSE;
4894 break;
4895
4896 /* This relocation describes which C++ vtable entries are actually
4897 used. Record for later use during GC. */
4898 case R_PPC64_GNU_VTENTRY:
4899 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4900 return FALSE;
4901 break;
4902
4903 case R_PPC64_REL14:
4904 case R_PPC64_REL14_BRTAKEN:
4905 case R_PPC64_REL14_BRNTAKEN:
4906 {
4907 asection *dest = NULL;
4908
4909 /* Heuristic: If jumping outside our section, chances are
4910 we are going to need a stub. */
4911 if (h != NULL)
4912 {
4913 /* If the sym is weak it may be overridden later, so
4914 don't assume we know where a weak sym lives. */
4915 if (h->root.type == bfd_link_hash_defined)
4916 dest = h->root.u.def.section;
4917 }
4918 else
4919 {
4920 Elf_Internal_Sym *isym;
4921
4922 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4923 abfd, r_symndx);
4924 if (isym == NULL)
4925 return FALSE;
4926
4927 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4928 }
4929
4930 if (dest != sec)
4931 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4932 }
4933 goto rel24;
4934
4935 case R_PPC64_PLTCALL:
4936 case R_PPC64_PLTCALL_NOTOC:
4937 ppc64_elf_section_data (sec)->has_pltcall = 1;
4938 /* Fall through. */
4939
4940 case R_PPC64_REL24:
4941 case R_PPC64_REL24_NOTOC:
4942 rel24:
4943 plt_list = ifunc;
4944 if (h != NULL)
4945 {
4946 h->needs_plt = 1;
4947 if (h->root.root.string[0] == '.'
4948 && h->root.root.string[1] != '\0')
4949 ppc_elf_hash_entry (h)->is_func = 1;
4950
4951 if (h == tga || h == dottga)
4952 {
4953 sec->has_tls_reloc = 1;
4954 if (rel != relocs
4955 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4956 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4957 /* We have a new-style __tls_get_addr call with
4958 a marker reloc. */
4959 ;
4960 else
4961 /* Mark this section as having an old-style call. */
4962 sec->nomark_tls_get_addr = 1;
4963 }
4964 plt_list = &h->plt.plist;
4965 }
4966
4967 /* We may need a .plt entry if the function this reloc
4968 refers to is in a shared lib. */
4969 if (plt_list
4970 && !update_plt_info (abfd, plt_list, rel->r_addend))
4971 return FALSE;
4972 break;
4973
4974 case R_PPC64_ADDR14:
4975 case R_PPC64_ADDR14_BRNTAKEN:
4976 case R_PPC64_ADDR14_BRTAKEN:
4977 case R_PPC64_ADDR24:
4978 goto dodyn;
4979
4980 case R_PPC64_TPREL64:
4981 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4982 if (bfd_link_dll (info))
4983 info->flags |= DF_STATIC_TLS;
4984 goto dotlstoc;
4985
4986 case R_PPC64_DTPMOD64:
4987 if (rel + 1 < rel_end
4988 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4989 && rel[1].r_offset == rel->r_offset + 8)
4990 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4991 else
4992 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4993 goto dotlstoc;
4994
4995 case R_PPC64_DTPREL64:
4996 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4997 if (rel != relocs
4998 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4999 && rel[-1].r_offset == rel->r_offset - 8)
5000 /* This is the second reloc of a dtpmod, dtprel pair.
5001 Don't mark with TLS_DTPREL. */
5002 goto dodyn;
5003
5004 dotlstoc:
5005 sec->has_tls_reloc = 1;
5006 if (h != NULL)
5007 ppc_elf_hash_entry (h)->tls_mask |= tls_type & 0xff;
5008 else
5009 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5010 rel->r_addend, tls_type))
5011 return FALSE;
5012
5013 ppc64_sec = ppc64_elf_section_data (sec);
5014 if (ppc64_sec->sec_type != sec_toc)
5015 {
5016 bfd_size_type amt;
5017
5018 /* One extra to simplify get_tls_mask. */
5019 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5020 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5021 if (ppc64_sec->u.toc.symndx == NULL)
5022 return FALSE;
5023 amt = sec->size * sizeof (bfd_vma) / 8;
5024 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5025 if (ppc64_sec->u.toc.add == NULL)
5026 return FALSE;
5027 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5028 ppc64_sec->sec_type = sec_toc;
5029 }
5030 BFD_ASSERT (rel->r_offset % 8 == 0);
5031 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5032 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5033
5034 /* Mark the second slot of a GD or LD entry.
5035 -1 to indicate GD and -2 to indicate LD. */
5036 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5037 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5038 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5039 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5040 goto dodyn;
5041
5042 case R_PPC64_TPREL16:
5043 case R_PPC64_TPREL16_LO:
5044 case R_PPC64_TPREL16_HI:
5045 case R_PPC64_TPREL16_HA:
5046 case R_PPC64_TPREL16_DS:
5047 case R_PPC64_TPREL16_LO_DS:
5048 case R_PPC64_TPREL16_HIGH:
5049 case R_PPC64_TPREL16_HIGHA:
5050 case R_PPC64_TPREL16_HIGHER:
5051 case R_PPC64_TPREL16_HIGHERA:
5052 case R_PPC64_TPREL16_HIGHEST:
5053 case R_PPC64_TPREL16_HIGHESTA:
5054 case R_PPC64_TPREL34:
5055 if (bfd_link_dll (info))
5056 info->flags |= DF_STATIC_TLS;
5057 goto dodyn;
5058
5059 case R_PPC64_ADDR64:
5060 if (is_opd
5061 && rel + 1 < rel_end
5062 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5063 {
5064 if (h != NULL)
5065 ppc_elf_hash_entry (h)->is_func = 1;
5066 }
5067 /* Fall through. */
5068
5069 case R_PPC64_ADDR16:
5070 case R_PPC64_ADDR16_DS:
5071 case R_PPC64_ADDR16_HA:
5072 case R_PPC64_ADDR16_HI:
5073 case R_PPC64_ADDR16_HIGH:
5074 case R_PPC64_ADDR16_HIGHA:
5075 case R_PPC64_ADDR16_HIGHER:
5076 case R_PPC64_ADDR16_HIGHERA:
5077 case R_PPC64_ADDR16_HIGHEST:
5078 case R_PPC64_ADDR16_HIGHESTA:
5079 case R_PPC64_ADDR16_LO:
5080 case R_PPC64_ADDR16_LO_DS:
5081 case R_PPC64_D34:
5082 case R_PPC64_D34_LO:
5083 case R_PPC64_D34_HI30:
5084 case R_PPC64_D34_HA30:
5085 case R_PPC64_ADDR16_HIGHER34:
5086 case R_PPC64_ADDR16_HIGHERA34:
5087 case R_PPC64_ADDR16_HIGHEST34:
5088 case R_PPC64_ADDR16_HIGHESTA34:
5089 case R_PPC64_D28:
5090 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5091 && rel->r_addend == 0)
5092 {
5093 /* We may need a .plt entry if this reloc refers to a
5094 function in a shared lib. */
5095 if (!update_plt_info (abfd, &h->plt.plist, 0))
5096 return FALSE;
5097 h->pointer_equality_needed = 1;
5098 }
5099 /* Fall through. */
5100
5101 case R_PPC64_REL30:
5102 case R_PPC64_REL32:
5103 case R_PPC64_REL64:
5104 case R_PPC64_ADDR32:
5105 case R_PPC64_UADDR16:
5106 case R_PPC64_UADDR32:
5107 case R_PPC64_UADDR64:
5108 case R_PPC64_TOC:
5109 if (h != NULL && bfd_link_executable (info))
5110 /* We may need a copy reloc. */
5111 h->non_got_ref = 1;
5112
5113 /* Don't propagate .opd relocs. */
5114 if (NO_OPD_RELOCS && is_opd)
5115 break;
5116
5117 /* If we are creating a shared library, and this is a reloc
5118 against a global symbol, or a non PC relative reloc
5119 against a local symbol, then we need to copy the reloc
5120 into the shared library. However, if we are linking with
5121 -Bsymbolic, we do not need to copy a reloc against a
5122 global symbol which is defined in an object we are
5123 including in the link (i.e., DEF_REGULAR is set). At
5124 this point we have not seen all the input files, so it is
5125 possible that DEF_REGULAR is not set now but will be set
5126 later (it is never cleared). In case of a weak definition,
5127 DEF_REGULAR may be cleared later by a strong definition in
5128 a shared library. We account for that possibility below by
5129 storing information in the dyn_relocs field of the hash
5130 table entry. A similar situation occurs when creating
5131 shared libraries and symbol visibility changes render the
5132 symbol local.
5133
5134 If on the other hand, we are creating an executable, we
5135 may need to keep relocations for symbols satisfied by a
5136 dynamic library if we manage to avoid copy relocs for the
5137 symbol. */
5138 dodyn:
5139 if ((h != NULL
5140 && (h->root.type == bfd_link_hash_defweak
5141 || !h->def_regular))
5142 || (h != NULL
5143 && !bfd_link_executable (info)
5144 && !SYMBOLIC_BIND (info, h))
5145 || (bfd_link_pic (info)
5146 && must_be_dyn_reloc (info, r_type))
5147 || (!bfd_link_pic (info)
5148 && ifunc != NULL))
5149 {
5150 /* We must copy these reloc types into the output file.
5151 Create a reloc section in dynobj and make room for
5152 this reloc. */
5153 if (sreloc == NULL)
5154 {
5155 sreloc = _bfd_elf_make_dynamic_reloc_section
5156 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5157
5158 if (sreloc == NULL)
5159 return FALSE;
5160 }
5161
5162 /* If this is a global symbol, we count the number of
5163 relocations we need for this symbol. */
5164 if (h != NULL)
5165 {
5166 struct elf_dyn_relocs *p;
5167 struct elf_dyn_relocs **head;
5168
5169 head = &ppc_elf_hash_entry (h)->dyn_relocs;
5170 p = *head;
5171 if (p == NULL || p->sec != sec)
5172 {
5173 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5174 if (p == NULL)
5175 return FALSE;
5176 p->next = *head;
5177 *head = p;
5178 p->sec = sec;
5179 p->count = 0;
5180 p->pc_count = 0;
5181 }
5182 p->count += 1;
5183 if (!must_be_dyn_reloc (info, r_type))
5184 p->pc_count += 1;
5185 }
5186 else
5187 {
5188 /* Track dynamic relocs needed for local syms too.
5189 We really need local syms available to do this
5190 easily. Oh well. */
5191 struct ppc_dyn_relocs *p;
5192 struct ppc_dyn_relocs **head;
5193 bfd_boolean is_ifunc;
5194 asection *s;
5195 void *vpp;
5196 Elf_Internal_Sym *isym;
5197
5198 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5199 abfd, r_symndx);
5200 if (isym == NULL)
5201 return FALSE;
5202
5203 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5204 if (s == NULL)
5205 s = sec;
5206
5207 vpp = &elf_section_data (s)->local_dynrel;
5208 head = (struct ppc_dyn_relocs **) vpp;
5209 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5210 p = *head;
5211 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5212 p = p->next;
5213 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5214 {
5215 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5216 if (p == NULL)
5217 return FALSE;
5218 p->next = *head;
5219 *head = p;
5220 p->sec = sec;
5221 p->ifunc = is_ifunc;
5222 p->count = 0;
5223 }
5224 p->count += 1;
5225 }
5226 }
5227 break;
5228
5229 default:
5230 break;
5231 }
5232 }
5233
5234 return TRUE;
5235 }
5236
5237 /* Merge backend specific data from an object file to the output
5238 object file when linking. */
5239
5240 static bfd_boolean
5241 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5242 {
5243 bfd *obfd = info->output_bfd;
5244 unsigned long iflags, oflags;
5245
5246 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5247 return TRUE;
5248
5249 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5250 return TRUE;
5251
5252 if (!_bfd_generic_verify_endian_match (ibfd, info))
5253 return FALSE;
5254
5255 iflags = elf_elfheader (ibfd)->e_flags;
5256 oflags = elf_elfheader (obfd)->e_flags;
5257
5258 if (iflags & ~EF_PPC64_ABI)
5259 {
5260 _bfd_error_handler
5261 /* xgettext:c-format */
5262 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5263 bfd_set_error (bfd_error_bad_value);
5264 return FALSE;
5265 }
5266 else if (iflags != oflags && iflags != 0)
5267 {
5268 _bfd_error_handler
5269 /* xgettext:c-format */
5270 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5271 ibfd, iflags, oflags);
5272 bfd_set_error (bfd_error_bad_value);
5273 return FALSE;
5274 }
5275
5276 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5277 return FALSE;
5278
5279 /* Merge Tag_compatibility attributes and any common GNU ones. */
5280 return _bfd_elf_merge_object_attributes (ibfd, info);
5281 }
5282
5283 static bfd_boolean
5284 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5285 {
5286 /* Print normal ELF private data. */
5287 _bfd_elf_print_private_bfd_data (abfd, ptr);
5288
5289 if (elf_elfheader (abfd)->e_flags != 0)
5290 {
5291 FILE *file = ptr;
5292
5293 fprintf (file, _("private flags = 0x%lx:"),
5294 elf_elfheader (abfd)->e_flags);
5295
5296 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5297 fprintf (file, _(" [abiv%ld]"),
5298 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5299 fputc ('\n', file);
5300 }
5301
5302 return TRUE;
5303 }
5304
5305 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5306 of the code entry point, and its section, which must be in the same
5307 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5308
5309 static bfd_vma
5310 opd_entry_value (asection *opd_sec,
5311 bfd_vma offset,
5312 asection **code_sec,
5313 bfd_vma *code_off,
5314 bfd_boolean in_code_sec)
5315 {
5316 bfd *opd_bfd = opd_sec->owner;
5317 Elf_Internal_Rela *relocs;
5318 Elf_Internal_Rela *lo, *hi, *look;
5319 bfd_vma val;
5320
5321 /* No relocs implies we are linking a --just-symbols object, or looking
5322 at a final linked executable with addr2line or somesuch. */
5323 if (opd_sec->reloc_count == 0)
5324 {
5325 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5326
5327 if (contents == NULL)
5328 {
5329 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5330 return (bfd_vma) -1;
5331 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5332 }
5333
5334 /* PR 17512: file: 64b9dfbb. */
5335 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5336 return (bfd_vma) -1;
5337
5338 val = bfd_get_64 (opd_bfd, contents + offset);
5339 if (code_sec != NULL)
5340 {
5341 asection *sec, *likely = NULL;
5342
5343 if (in_code_sec)
5344 {
5345 sec = *code_sec;
5346 if (sec->vma <= val
5347 && val < sec->vma + sec->size)
5348 likely = sec;
5349 else
5350 val = -1;
5351 }
5352 else
5353 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5354 if (sec->vma <= val
5355 && (sec->flags & SEC_LOAD) != 0
5356 && (sec->flags & SEC_ALLOC) != 0)
5357 likely = sec;
5358 if (likely != NULL)
5359 {
5360 *code_sec = likely;
5361 if (code_off != NULL)
5362 *code_off = val - likely->vma;
5363 }
5364 }
5365 return val;
5366 }
5367
5368 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5369
5370 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5371 if (relocs == NULL)
5372 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5373 /* PR 17512: file: df8e1fd6. */
5374 if (relocs == NULL)
5375 return (bfd_vma) -1;
5376
5377 /* Go find the opd reloc at the sym address. */
5378 lo = relocs;
5379 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5380 val = (bfd_vma) -1;
5381 while (lo < hi)
5382 {
5383 look = lo + (hi - lo) / 2;
5384 if (look->r_offset < offset)
5385 lo = look + 1;
5386 else if (look->r_offset > offset)
5387 hi = look;
5388 else
5389 {
5390 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5391
5392 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5393 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5394 {
5395 unsigned long symndx = ELF64_R_SYM (look->r_info);
5396 asection *sec = NULL;
5397
5398 if (symndx >= symtab_hdr->sh_info
5399 && elf_sym_hashes (opd_bfd) != NULL)
5400 {
5401 struct elf_link_hash_entry **sym_hashes;
5402 struct elf_link_hash_entry *rh;
5403
5404 sym_hashes = elf_sym_hashes (opd_bfd);
5405 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5406 if (rh != NULL)
5407 {
5408 rh = elf_follow_link (rh);
5409 if (rh->root.type != bfd_link_hash_defined
5410 && rh->root.type != bfd_link_hash_defweak)
5411 break;
5412 if (rh->root.u.def.section->owner == opd_bfd)
5413 {
5414 val = rh->root.u.def.value;
5415 sec = rh->root.u.def.section;
5416 }
5417 }
5418 }
5419
5420 if (sec == NULL)
5421 {
5422 Elf_Internal_Sym *sym;
5423
5424 if (symndx < symtab_hdr->sh_info)
5425 {
5426 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5427 if (sym == NULL)
5428 {
5429 size_t symcnt = symtab_hdr->sh_info;
5430 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5431 symcnt, 0,
5432 NULL, NULL, NULL);
5433 if (sym == NULL)
5434 break;
5435 symtab_hdr->contents = (bfd_byte *) sym;
5436 }
5437 sym += symndx;
5438 }
5439 else
5440 {
5441 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5442 1, symndx,
5443 NULL, NULL, NULL);
5444 if (sym == NULL)
5445 break;
5446 }
5447 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5448 if (sec == NULL)
5449 break;
5450 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5451 val = sym->st_value;
5452 }
5453
5454 val += look->r_addend;
5455 if (code_off != NULL)
5456 *code_off = val;
5457 if (code_sec != NULL)
5458 {
5459 if (in_code_sec && *code_sec != sec)
5460 return -1;
5461 else
5462 *code_sec = sec;
5463 }
5464 if (sec->output_section != NULL)
5465 val += sec->output_section->vma + sec->output_offset;
5466 }
5467 break;
5468 }
5469 }
5470
5471 return val;
5472 }
5473
5474 /* If the ELF symbol SYM might be a function in SEC, return the
5475 function size and set *CODE_OFF to the function's entry point,
5476 otherwise return zero. */
5477
5478 static bfd_size_type
5479 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5480 bfd_vma *code_off)
5481 {
5482 bfd_size_type size;
5483
5484 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5485 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5486 return 0;
5487
5488 size = 0;
5489 if (!(sym->flags & BSF_SYNTHETIC))
5490 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5491
5492 if (strcmp (sym->section->name, ".opd") == 0)
5493 {
5494 struct _opd_sec_data *opd = get_opd_info (sym->section);
5495 bfd_vma symval = sym->value;
5496
5497 if (opd != NULL
5498 && opd->adjust != NULL
5499 && elf_section_data (sym->section)->relocs != NULL)
5500 {
5501 /* opd_entry_value will use cached relocs that have been
5502 adjusted, but with raw symbols. That means both local
5503 and global symbols need adjusting. */
5504 long adjust = opd->adjust[OPD_NDX (symval)];
5505 if (adjust == -1)
5506 return 0;
5507 symval += adjust;
5508 }
5509
5510 if (opd_entry_value (sym->section, symval,
5511 &sec, code_off, TRUE) == (bfd_vma) -1)
5512 return 0;
5513 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5514 symbol. This size has nothing to do with the code size of the
5515 function, which is what we're supposed to return, but the
5516 code size isn't available without looking up the dot-sym.
5517 However, doing that would be a waste of time particularly
5518 since elf_find_function will look at the dot-sym anyway.
5519 Now, elf_find_function will keep the largest size of any
5520 function sym found at the code address of interest, so return
5521 1 here to avoid it incorrectly caching a larger function size
5522 for a small function. This does mean we return the wrong
5523 size for a new-ABI function of size 24, but all that does is
5524 disable caching for such functions. */
5525 if (size == 24)
5526 size = 1;
5527 }
5528 else
5529 {
5530 if (sym->section != sec)
5531 return 0;
5532 *code_off = sym->value;
5533 }
5534 if (size == 0)
5535 size = 1;
5536 return size;
5537 }
5538
5539 /* Return true if symbol is a strong function defined in an ELFv2
5540 object with st_other localentry bits of zero, ie. its local entry
5541 point coincides with its global entry point. */
5542
5543 static bfd_boolean
5544 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5545 {
5546 return (h != NULL
5547 && h->type == STT_FUNC
5548 && h->root.type == bfd_link_hash_defined
5549 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5550 && !ppc_elf_hash_entry (h)->non_zero_localentry
5551 && is_ppc64_elf (h->root.u.def.section->owner)
5552 && abiversion (h->root.u.def.section->owner) >= 2);
5553 }
5554
5555 /* Return true if symbol is defined in a regular object file. */
5556
5557 static bfd_boolean
5558 is_static_defined (struct elf_link_hash_entry *h)
5559 {
5560 return ((h->root.type == bfd_link_hash_defined
5561 || h->root.type == bfd_link_hash_defweak)
5562 && h->root.u.def.section != NULL
5563 && h->root.u.def.section->output_section != NULL);
5564 }
5565
5566 /* If FDH is a function descriptor symbol, return the associated code
5567 entry symbol if it is defined. Return NULL otherwise. */
5568
5569 static struct ppc_link_hash_entry *
5570 defined_code_entry (struct ppc_link_hash_entry *fdh)
5571 {
5572 if (fdh->is_func_descriptor)
5573 {
5574 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5575 if (fh->elf.root.type == bfd_link_hash_defined
5576 || fh->elf.root.type == bfd_link_hash_defweak)
5577 return fh;
5578 }
5579 return NULL;
5580 }
5581
5582 /* If FH is a function code entry symbol, return the associated
5583 function descriptor symbol if it is defined. Return NULL otherwise. */
5584
5585 static struct ppc_link_hash_entry *
5586 defined_func_desc (struct ppc_link_hash_entry *fh)
5587 {
5588 if (fh->oh != NULL
5589 && fh->oh->is_func_descriptor)
5590 {
5591 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5592 if (fdh->elf.root.type == bfd_link_hash_defined
5593 || fdh->elf.root.type == bfd_link_hash_defweak)
5594 return fdh;
5595 }
5596 return NULL;
5597 }
5598
5599 /* Given H is a symbol that satisfies is_static_defined, return the
5600 value in the output file. */
5601
5602 static bfd_vma
5603 defined_sym_val (struct elf_link_hash_entry *h)
5604 {
5605 return (h->root.u.def.section->output_section->vma
5606 + h->root.u.def.section->output_offset
5607 + h->root.u.def.value);
5608 }
5609
5610 /* Return true if H matches __tls_get_addr or one of its variants. */
5611
5612 static bfd_boolean
5613 is_tls_get_addr (struct elf_link_hash_entry *h,
5614 struct ppc_link_hash_table *htab)
5615 {
5616 return (h == &htab->tls_get_addr_fd->elf || h == &htab->tga_desc_fd->elf
5617 || h == &htab->tls_get_addr->elf || h == &htab->tga_desc->elf);
5618 }
5619
5620 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5621
5622 /* Garbage collect sections, after first dealing with dot-symbols. */
5623
5624 static bfd_boolean
5625 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5626 {
5627 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5628
5629 if (htab != NULL && htab->need_func_desc_adj)
5630 {
5631 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5632 htab->need_func_desc_adj = 0;
5633 }
5634 return bfd_elf_gc_sections (abfd, info);
5635 }
5636
5637 /* Mark all our entry sym sections, both opd and code section. */
5638
5639 static void
5640 ppc64_elf_gc_keep (struct bfd_link_info *info)
5641 {
5642 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5643 struct bfd_sym_chain *sym;
5644
5645 if (htab == NULL)
5646 return;
5647
5648 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5649 {
5650 struct ppc_link_hash_entry *eh, *fh;
5651 asection *sec;
5652
5653 eh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym->name,
5654 FALSE, FALSE, TRUE));
5655 if (eh == NULL)
5656 continue;
5657 if (eh->elf.root.type != bfd_link_hash_defined
5658 && eh->elf.root.type != bfd_link_hash_defweak)
5659 continue;
5660
5661 fh = defined_code_entry (eh);
5662 if (fh != NULL)
5663 {
5664 sec = fh->elf.root.u.def.section;
5665 sec->flags |= SEC_KEEP;
5666 }
5667 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5668 && opd_entry_value (eh->elf.root.u.def.section,
5669 eh->elf.root.u.def.value,
5670 &sec, NULL, FALSE) != (bfd_vma) -1)
5671 sec->flags |= SEC_KEEP;
5672
5673 sec = eh->elf.root.u.def.section;
5674 sec->flags |= SEC_KEEP;
5675 }
5676 }
5677
5678 /* Mark sections containing dynamically referenced symbols. When
5679 building shared libraries, we must assume that any visible symbol is
5680 referenced. */
5681
5682 static bfd_boolean
5683 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5684 {
5685 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5686 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
5687 struct ppc_link_hash_entry *fdh;
5688 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5689
5690 /* Dynamic linking info is on the func descriptor sym. */
5691 fdh = defined_func_desc (eh);
5692 if (fdh != NULL)
5693 eh = fdh;
5694
5695 if ((eh->elf.root.type == bfd_link_hash_defined
5696 || eh->elf.root.type == bfd_link_hash_defweak)
5697 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5698 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5699 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5700 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5701 && (!bfd_link_executable (info)
5702 || info->gc_keep_exported
5703 || info->export_dynamic
5704 || (eh->elf.dynamic
5705 && d != NULL
5706 && (*d->match) (&d->head, NULL,
5707 eh->elf.root.root.string)))
5708 && (eh->elf.versioned >= versioned
5709 || !bfd_hide_sym_by_version (info->version_info,
5710 eh->elf.root.root.string)))))
5711 {
5712 asection *code_sec;
5713 struct ppc_link_hash_entry *fh;
5714
5715 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5716
5717 /* Function descriptor syms cause the associated
5718 function code sym section to be marked. */
5719 fh = defined_code_entry (eh);
5720 if (fh != NULL)
5721 {
5722 code_sec = fh->elf.root.u.def.section;
5723 code_sec->flags |= SEC_KEEP;
5724 }
5725 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5726 && opd_entry_value (eh->elf.root.u.def.section,
5727 eh->elf.root.u.def.value,
5728 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5729 code_sec->flags |= SEC_KEEP;
5730 }
5731
5732 return TRUE;
5733 }
5734
5735 /* Return the section that should be marked against GC for a given
5736 relocation. */
5737
5738 static asection *
5739 ppc64_elf_gc_mark_hook (asection *sec,
5740 struct bfd_link_info *info,
5741 Elf_Internal_Rela *rel,
5742 struct elf_link_hash_entry *h,
5743 Elf_Internal_Sym *sym)
5744 {
5745 asection *rsec;
5746
5747 /* Syms return NULL if we're marking .opd, so we avoid marking all
5748 function sections, as all functions are referenced in .opd. */
5749 rsec = NULL;
5750 if (get_opd_info (sec) != NULL)
5751 return rsec;
5752
5753 if (h != NULL)
5754 {
5755 enum elf_ppc64_reloc_type r_type;
5756 struct ppc_link_hash_entry *eh, *fh, *fdh;
5757
5758 r_type = ELF64_R_TYPE (rel->r_info);
5759 switch (r_type)
5760 {
5761 case R_PPC64_GNU_VTINHERIT:
5762 case R_PPC64_GNU_VTENTRY:
5763 break;
5764
5765 default:
5766 switch (h->root.type)
5767 {
5768 case bfd_link_hash_defined:
5769 case bfd_link_hash_defweak:
5770 eh = ppc_elf_hash_entry (h);
5771 fdh = defined_func_desc (eh);
5772 if (fdh != NULL)
5773 {
5774 /* -mcall-aixdesc code references the dot-symbol on
5775 a call reloc. Mark the function descriptor too
5776 against garbage collection. */
5777 fdh->elf.mark = 1;
5778 if (fdh->elf.is_weakalias)
5779 weakdef (&fdh->elf)->mark = 1;
5780 eh = fdh;
5781 }
5782
5783 /* Function descriptor syms cause the associated
5784 function code sym section to be marked. */
5785 fh = defined_code_entry (eh);
5786 if (fh != NULL)
5787 {
5788 /* They also mark their opd section. */
5789 eh->elf.root.u.def.section->gc_mark = 1;
5790
5791 rsec = fh->elf.root.u.def.section;
5792 }
5793 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5794 && opd_entry_value (eh->elf.root.u.def.section,
5795 eh->elf.root.u.def.value,
5796 &rsec, NULL, FALSE) != (bfd_vma) -1)
5797 eh->elf.root.u.def.section->gc_mark = 1;
5798 else
5799 rsec = h->root.u.def.section;
5800 break;
5801
5802 case bfd_link_hash_common:
5803 rsec = h->root.u.c.p->section;
5804 break;
5805
5806 default:
5807 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5808 }
5809 }
5810 }
5811 else
5812 {
5813 struct _opd_sec_data *opd;
5814
5815 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5816 opd = get_opd_info (rsec);
5817 if (opd != NULL && opd->func_sec != NULL)
5818 {
5819 rsec->gc_mark = 1;
5820
5821 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5822 }
5823 }
5824
5825 return rsec;
5826 }
5827
5828 /* The maximum size of .sfpr. */
5829 #define SFPR_MAX (218*4)
5830
5831 struct sfpr_def_parms
5832 {
5833 const char name[12];
5834 unsigned char lo, hi;
5835 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5836 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5837 };
5838
5839 /* Auto-generate _save*, _rest* functions in .sfpr.
5840 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5841 instead. */
5842
5843 static bfd_boolean
5844 sfpr_define (struct bfd_link_info *info,
5845 const struct sfpr_def_parms *parm,
5846 asection *stub_sec)
5847 {
5848 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5849 unsigned int i;
5850 size_t len = strlen (parm->name);
5851 bfd_boolean writing = FALSE;
5852 char sym[16];
5853
5854 if (htab == NULL)
5855 return FALSE;
5856
5857 memcpy (sym, parm->name, len);
5858 sym[len + 2] = 0;
5859
5860 for (i = parm->lo; i <= parm->hi; i++)
5861 {
5862 struct ppc_link_hash_entry *h;
5863
5864 sym[len + 0] = i / 10 + '0';
5865 sym[len + 1] = i % 10 + '0';
5866 h = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym,
5867 writing, TRUE, TRUE));
5868 if (stub_sec != NULL)
5869 {
5870 if (h != NULL
5871 && h->elf.root.type == bfd_link_hash_defined
5872 && h->elf.root.u.def.section == htab->sfpr)
5873 {
5874 struct elf_link_hash_entry *s;
5875 char buf[32];
5876 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5877 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5878 if (s == NULL)
5879 return FALSE;
5880 if (s->root.type == bfd_link_hash_new)
5881 {
5882 s->root.type = bfd_link_hash_defined;
5883 s->root.u.def.section = stub_sec;
5884 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5885 + h->elf.root.u.def.value);
5886 s->ref_regular = 1;
5887 s->def_regular = 1;
5888 s->ref_regular_nonweak = 1;
5889 s->forced_local = 1;
5890 s->non_elf = 0;
5891 s->root.linker_def = 1;
5892 }
5893 }
5894 continue;
5895 }
5896 if (h != NULL)
5897 {
5898 h->save_res = 1;
5899 if (!h->elf.def_regular)
5900 {
5901 h->elf.root.type = bfd_link_hash_defined;
5902 h->elf.root.u.def.section = htab->sfpr;
5903 h->elf.root.u.def.value = htab->sfpr->size;
5904 h->elf.type = STT_FUNC;
5905 h->elf.def_regular = 1;
5906 h->elf.non_elf = 0;
5907 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5908 writing = TRUE;
5909 if (htab->sfpr->contents == NULL)
5910 {
5911 htab->sfpr->contents
5912 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5913 if (htab->sfpr->contents == NULL)
5914 return FALSE;
5915 }
5916 }
5917 }
5918 if (writing)
5919 {
5920 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5921 if (i != parm->hi)
5922 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5923 else
5924 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5925 htab->sfpr->size = p - htab->sfpr->contents;
5926 }
5927 }
5928
5929 return TRUE;
5930 }
5931
5932 static bfd_byte *
5933 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5934 {
5935 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5936 return p + 4;
5937 }
5938
5939 static bfd_byte *
5940 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5941 {
5942 p = savegpr0 (abfd, p, r);
5943 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5944 p = p + 4;
5945 bfd_put_32 (abfd, BLR, p);
5946 return p + 4;
5947 }
5948
5949 static bfd_byte *
5950 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5951 {
5952 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5953 return p + 4;
5954 }
5955
5956 static bfd_byte *
5957 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5958 {
5959 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5960 p = p + 4;
5961 p = restgpr0 (abfd, p, r);
5962 bfd_put_32 (abfd, MTLR_R0, p);
5963 p = p + 4;
5964 if (r == 29)
5965 {
5966 p = restgpr0 (abfd, p, 30);
5967 p = restgpr0 (abfd, p, 31);
5968 }
5969 bfd_put_32 (abfd, BLR, p);
5970 return p + 4;
5971 }
5972
5973 static bfd_byte *
5974 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5975 {
5976 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5977 return p + 4;
5978 }
5979
5980 static bfd_byte *
5981 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5982 {
5983 p = savegpr1 (abfd, p, r);
5984 bfd_put_32 (abfd, BLR, p);
5985 return p + 4;
5986 }
5987
5988 static bfd_byte *
5989 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5990 {
5991 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5992 return p + 4;
5993 }
5994
5995 static bfd_byte *
5996 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5997 {
5998 p = restgpr1 (abfd, p, r);
5999 bfd_put_32 (abfd, BLR, p);
6000 return p + 4;
6001 }
6002
6003 static bfd_byte *
6004 savefpr (bfd *abfd, bfd_byte *p, int r)
6005 {
6006 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6007 return p + 4;
6008 }
6009
6010 static bfd_byte *
6011 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6012 {
6013 p = savefpr (abfd, p, r);
6014 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6015 p = p + 4;
6016 bfd_put_32 (abfd, BLR, p);
6017 return p + 4;
6018 }
6019
6020 static bfd_byte *
6021 restfpr (bfd *abfd, bfd_byte *p, int r)
6022 {
6023 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6024 return p + 4;
6025 }
6026
6027 static bfd_byte *
6028 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6029 {
6030 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6031 p = p + 4;
6032 p = restfpr (abfd, p, r);
6033 bfd_put_32 (abfd, MTLR_R0, p);
6034 p = p + 4;
6035 if (r == 29)
6036 {
6037 p = restfpr (abfd, p, 30);
6038 p = restfpr (abfd, p, 31);
6039 }
6040 bfd_put_32 (abfd, BLR, p);
6041 return p + 4;
6042 }
6043
6044 static bfd_byte *
6045 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6046 {
6047 p = savefpr (abfd, p, r);
6048 bfd_put_32 (abfd, BLR, p);
6049 return p + 4;
6050 }
6051
6052 static bfd_byte *
6053 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6054 {
6055 p = restfpr (abfd, p, r);
6056 bfd_put_32 (abfd, BLR, p);
6057 return p + 4;
6058 }
6059
6060 static bfd_byte *
6061 savevr (bfd *abfd, bfd_byte *p, int r)
6062 {
6063 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6064 p = p + 4;
6065 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6066 return p + 4;
6067 }
6068
6069 static bfd_byte *
6070 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6071 {
6072 p = savevr (abfd, p, r);
6073 bfd_put_32 (abfd, BLR, p);
6074 return p + 4;
6075 }
6076
6077 static bfd_byte *
6078 restvr (bfd *abfd, bfd_byte *p, int r)
6079 {
6080 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6081 p = p + 4;
6082 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6083 return p + 4;
6084 }
6085
6086 static bfd_byte *
6087 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6088 {
6089 p = restvr (abfd, p, r);
6090 bfd_put_32 (abfd, BLR, p);
6091 return p + 4;
6092 }
6093
6094 #define STDU_R1_0R1 0xf8210001
6095 #define ADDI_R1_R1 0x38210000
6096
6097 /* Emit prologue of wrapper preserving regs around a call to
6098 __tls_get_addr_opt. */
6099
6100 static bfd_byte *
6101 tls_get_addr_prologue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6102 {
6103 unsigned int i;
6104
6105 bfd_put_32 (obfd, MFLR_R0, p);
6106 p += 4;
6107 bfd_put_32 (obfd, STD_R0_0R1 + 16, p);
6108 p += 4;
6109
6110 if (htab->opd_abi)
6111 {
6112 for (i = 4; i < 12; i++)
6113 {
6114 bfd_put_32 (obfd,
6115 STD_R0_0R1 | i << 21 | (-(13 - i) * 8 & 0xffff), p);
6116 p += 4;
6117 }
6118 bfd_put_32 (obfd, STDU_R1_0R1 | (-128 & 0xffff), p);
6119 p += 4;
6120 }
6121 else
6122 {
6123 for (i = 4; i < 12; i++)
6124 {
6125 bfd_put_32 (obfd,
6126 STD_R0_0R1 | i << 21 | (-(12 - i) * 8 & 0xffff), p);
6127 p += 4;
6128 }
6129 bfd_put_32 (obfd, STDU_R1_0R1 | (-96 & 0xffff), p);
6130 p += 4;
6131 }
6132 return p;
6133 }
6134
6135 /* Emit epilogue of wrapper preserving regs around a call to
6136 __tls_get_addr_opt. */
6137
6138 static bfd_byte *
6139 tls_get_addr_epilogue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6140 {
6141 unsigned int i;
6142
6143 if (htab->opd_abi)
6144 {
6145 for (i = 4; i < 12; i++)
6146 {
6147 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (128 - (13 - i) * 8), p);
6148 p += 4;
6149 }
6150 bfd_put_32 (obfd, ADDI_R1_R1 | 128, p);
6151 p += 4;
6152 }
6153 else
6154 {
6155 for (i = 4; i < 12; i++)
6156 {
6157 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (96 - (12 - i) * 8), p);
6158 p += 4;
6159 }
6160 bfd_put_32 (obfd, ADDI_R1_R1 | 96, p);
6161 p += 4;
6162 }
6163 bfd_put_32 (obfd, LD_R0_0R1 | 16, p);
6164 p += 4;
6165 bfd_put_32 (obfd, MTLR_R0, p);
6166 p += 4;
6167 bfd_put_32 (obfd, BLR, p);
6168 p += 4;
6169 return p;
6170 }
6171
6172 /* Called via elf_link_hash_traverse to transfer dynamic linking
6173 information on function code symbol entries to their corresponding
6174 function descriptor symbol entries. */
6175
6176 static bfd_boolean
6177 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6178 {
6179 struct bfd_link_info *info;
6180 struct ppc_link_hash_table *htab;
6181 struct ppc_link_hash_entry *fh;
6182 struct ppc_link_hash_entry *fdh;
6183 bfd_boolean force_local;
6184
6185 fh = ppc_elf_hash_entry (h);
6186 if (fh->elf.root.type == bfd_link_hash_indirect)
6187 return TRUE;
6188
6189 if (!fh->is_func)
6190 return TRUE;
6191
6192 if (fh->elf.root.root.string[0] != '.'
6193 || fh->elf.root.root.string[1] == '\0')
6194 return TRUE;
6195
6196 info = inf;
6197 htab = ppc_hash_table (info);
6198 if (htab == NULL)
6199 return FALSE;
6200
6201 /* Find the corresponding function descriptor symbol. */
6202 fdh = lookup_fdh (fh, htab);
6203
6204 /* Resolve undefined references to dot-symbols as the value
6205 in the function descriptor, if we have one in a regular object.
6206 This is to satisfy cases like ".quad .foo". Calls to functions
6207 in dynamic objects are handled elsewhere. */
6208 if ((fh->elf.root.type == bfd_link_hash_undefined
6209 || fh->elf.root.type == bfd_link_hash_undefweak)
6210 && (fdh->elf.root.type == bfd_link_hash_defined
6211 || fdh->elf.root.type == bfd_link_hash_defweak)
6212 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6213 && opd_entry_value (fdh->elf.root.u.def.section,
6214 fdh->elf.root.u.def.value,
6215 &fh->elf.root.u.def.section,
6216 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6217 {
6218 fh->elf.root.type = fdh->elf.root.type;
6219 fh->elf.forced_local = 1;
6220 fh->elf.def_regular = fdh->elf.def_regular;
6221 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6222 }
6223
6224 if (!fh->elf.dynamic)
6225 {
6226 struct plt_entry *ent;
6227
6228 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6229 if (ent->plt.refcount > 0)
6230 break;
6231 if (ent == NULL)
6232 return TRUE;
6233 }
6234
6235 /* Create a descriptor as undefined if necessary. */
6236 if (fdh == NULL
6237 && !bfd_link_executable (info)
6238 && (fh->elf.root.type == bfd_link_hash_undefined
6239 || fh->elf.root.type == bfd_link_hash_undefweak))
6240 {
6241 fdh = make_fdh (info, fh);
6242 if (fdh == NULL)
6243 return FALSE;
6244 }
6245
6246 /* We can't support overriding of symbols on a fake descriptor. */
6247 if (fdh != NULL
6248 && fdh->fake
6249 && (fh->elf.root.type == bfd_link_hash_defined
6250 || fh->elf.root.type == bfd_link_hash_defweak))
6251 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6252
6253 /* Transfer dynamic linking information to the function descriptor. */
6254 if (fdh != NULL)
6255 {
6256 fdh->elf.ref_regular |= fh->elf.ref_regular;
6257 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6258 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6259 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6260 fdh->elf.dynamic |= fh->elf.dynamic;
6261 fdh->elf.needs_plt |= (fh->elf.needs_plt
6262 || fh->elf.type == STT_FUNC
6263 || fh->elf.type == STT_GNU_IFUNC);
6264 move_plt_plist (fh, fdh);
6265
6266 if (!fdh->elf.forced_local
6267 && fh->elf.dynindx != -1)
6268 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6269 return FALSE;
6270 }
6271
6272 /* Now that the info is on the function descriptor, clear the
6273 function code sym info. Any function code syms for which we
6274 don't have a definition in a regular file, we force local.
6275 This prevents a shared library from exporting syms that have
6276 been imported from another library. Function code syms that
6277 are really in the library we must leave global to prevent the
6278 linker dragging in a definition from a static library. */
6279 force_local = (!fh->elf.def_regular
6280 || fdh == NULL
6281 || !fdh->elf.def_regular
6282 || fdh->elf.forced_local);
6283 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6284
6285 return TRUE;
6286 }
6287
6288 static const struct sfpr_def_parms save_res_funcs[] =
6289 {
6290 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6291 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6292 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6293 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6294 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6295 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6296 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6297 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6298 { "._savef", 14, 31, savefpr, savefpr1_tail },
6299 { "._restf", 14, 31, restfpr, restfpr1_tail },
6300 { "_savevr_", 20, 31, savevr, savevr_tail },
6301 { "_restvr_", 20, 31, restvr, restvr_tail }
6302 };
6303
6304 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6305 this hook to a) provide some gcc support functions, and b) transfer
6306 dynamic linking information gathered so far on function code symbol
6307 entries, to their corresponding function descriptor symbol entries. */
6308
6309 static bfd_boolean
6310 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6311 struct bfd_link_info *info)
6312 {
6313 struct ppc_link_hash_table *htab;
6314
6315 htab = ppc_hash_table (info);
6316 if (htab == NULL)
6317 return FALSE;
6318
6319 /* Provide any missing _save* and _rest* functions. */
6320 if (htab->sfpr != NULL)
6321 {
6322 unsigned int i;
6323
6324 htab->sfpr->size = 0;
6325 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6326 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6327 return FALSE;
6328 if (htab->sfpr->size == 0)
6329 htab->sfpr->flags |= SEC_EXCLUDE;
6330 }
6331
6332 if (bfd_link_relocatable (info))
6333 return TRUE;
6334
6335 if (htab->elf.hgot != NULL)
6336 {
6337 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6338 /* Make .TOC. defined so as to prevent it being made dynamic.
6339 The wrong value here is fixed later in ppc64_elf_set_toc. */
6340 if (!htab->elf.hgot->def_regular
6341 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6342 {
6343 htab->elf.hgot->root.type = bfd_link_hash_defined;
6344 htab->elf.hgot->root.u.def.value = 0;
6345 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6346 htab->elf.hgot->def_regular = 1;
6347 htab->elf.hgot->root.linker_def = 1;
6348 }
6349 htab->elf.hgot->type = STT_OBJECT;
6350 htab->elf.hgot->other
6351 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6352 }
6353
6354 if (htab->need_func_desc_adj)
6355 {
6356 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6357 htab->need_func_desc_adj = 0;
6358 }
6359
6360 return TRUE;
6361 }
6362
6363 /* Find dynamic relocs for H that apply to read-only sections. */
6364
6365 static asection *
6366 readonly_dynrelocs (struct elf_link_hash_entry *h)
6367 {
6368 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
6369 struct elf_dyn_relocs *p;
6370
6371 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6372 {
6373 asection *s = p->sec->output_section;
6374
6375 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6376 return p->sec;
6377 }
6378 return NULL;
6379 }
6380
6381 /* Return true if we have dynamic relocs against H or any of its weak
6382 aliases, that apply to read-only sections. Cannot be used after
6383 size_dynamic_sections. */
6384
6385 static bfd_boolean
6386 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6387 {
6388 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
6389 do
6390 {
6391 if (readonly_dynrelocs (&eh->elf))
6392 return TRUE;
6393 eh = ppc_elf_hash_entry (eh->elf.u.alias);
6394 }
6395 while (eh != NULL && &eh->elf != h);
6396
6397 return FALSE;
6398 }
6399
6400 /* Return whether EH has pc-relative dynamic relocs. */
6401
6402 static bfd_boolean
6403 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6404 {
6405 struct elf_dyn_relocs *p;
6406
6407 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6408 if (p->pc_count != 0)
6409 return TRUE;
6410 return FALSE;
6411 }
6412
6413 /* Return true if a global entry stub will be created for H. Valid
6414 for ELFv2 before plt entries have been allocated. */
6415
6416 static bfd_boolean
6417 global_entry_stub (struct elf_link_hash_entry *h)
6418 {
6419 struct plt_entry *pent;
6420
6421 if (!h->pointer_equality_needed
6422 || h->def_regular)
6423 return FALSE;
6424
6425 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6426 if (pent->plt.refcount > 0
6427 && pent->addend == 0)
6428 return TRUE;
6429
6430 return FALSE;
6431 }
6432
6433 /* Adjust a symbol defined by a dynamic object and referenced by a
6434 regular object. The current definition is in some section of the
6435 dynamic object, but we're not including those sections. We have to
6436 change the definition to something the rest of the link can
6437 understand. */
6438
6439 static bfd_boolean
6440 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6441 struct elf_link_hash_entry *h)
6442 {
6443 struct ppc_link_hash_table *htab;
6444 asection *s, *srel;
6445
6446 htab = ppc_hash_table (info);
6447 if (htab == NULL)
6448 return FALSE;
6449
6450 /* Deal with function syms. */
6451 if (h->type == STT_FUNC
6452 || h->type == STT_GNU_IFUNC
6453 || h->needs_plt)
6454 {
6455 bfd_boolean local = (ppc_elf_hash_entry (h)->save_res
6456 || SYMBOL_CALLS_LOCAL (info, h)
6457 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6458 /* Discard dyn_relocs when non-pic if we've decided that a
6459 function symbol is local and not an ifunc. We keep dynamic
6460 relocs for ifuncs when local rather than always emitting a
6461 plt call stub for them and defining the symbol on the call
6462 stub. We can't do that for ELFv1 anyway (a function symbol
6463 is defined on a descriptor, not code) and it can be faster at
6464 run-time due to not needing to bounce through a stub. The
6465 dyn_relocs for ifuncs will be applied even in a static
6466 executable. */
6467 if (!bfd_link_pic (info)
6468 && h->type != STT_GNU_IFUNC
6469 && local)
6470 ppc_elf_hash_entry (h)->dyn_relocs = NULL;
6471
6472 /* Clear procedure linkage table information for any symbol that
6473 won't need a .plt entry. */
6474 struct plt_entry *ent;
6475 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6476 if (ent->plt.refcount > 0)
6477 break;
6478 if (ent == NULL
6479 || (h->type != STT_GNU_IFUNC
6480 && local
6481 && (htab->can_convert_all_inline_plt
6482 || (ppc_elf_hash_entry (h)->tls_mask
6483 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6484 {
6485 h->plt.plist = NULL;
6486 h->needs_plt = 0;
6487 h->pointer_equality_needed = 0;
6488 }
6489 else if (abiversion (info->output_bfd) >= 2)
6490 {
6491 /* Taking a function's address in a read/write section
6492 doesn't require us to define the function symbol in the
6493 executable on a global entry stub. A dynamic reloc can
6494 be used instead. The reason we prefer a few more dynamic
6495 relocs is that calling via a global entry stub costs a
6496 few more instructions, and pointer_equality_needed causes
6497 extra work in ld.so when resolving these symbols. */
6498 if (global_entry_stub (h))
6499 {
6500 if (!readonly_dynrelocs (h))
6501 {
6502 h->pointer_equality_needed = 0;
6503 /* If we haven't seen a branch reloc and the symbol
6504 isn't an ifunc then we don't need a plt entry. */
6505 if (!h->needs_plt)
6506 h->plt.plist = NULL;
6507 }
6508 else if (!bfd_link_pic (info))
6509 /* We are going to be defining the function symbol on the
6510 plt stub, so no dyn_relocs needed when non-pic. */
6511 ppc_elf_hash_entry (h)->dyn_relocs = NULL;
6512 }
6513
6514 /* ELFv2 function symbols can't have copy relocs. */
6515 return TRUE;
6516 }
6517 else if (!h->needs_plt
6518 && !readonly_dynrelocs (h))
6519 {
6520 /* If we haven't seen a branch reloc and the symbol isn't an
6521 ifunc then we don't need a plt entry. */
6522 h->plt.plist = NULL;
6523 h->pointer_equality_needed = 0;
6524 return TRUE;
6525 }
6526 }
6527 else
6528 h->plt.plist = NULL;
6529
6530 /* If this is a weak symbol, and there is a real definition, the
6531 processor independent code will have arranged for us to see the
6532 real definition first, and we can just use the same value. */
6533 if (h->is_weakalias)
6534 {
6535 struct elf_link_hash_entry *def = weakdef (h);
6536 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6537 h->root.u.def.section = def->root.u.def.section;
6538 h->root.u.def.value = def->root.u.def.value;
6539 if (def->root.u.def.section == htab->elf.sdynbss
6540 || def->root.u.def.section == htab->elf.sdynrelro)
6541 ppc_elf_hash_entry (h)->dyn_relocs = NULL;
6542 return TRUE;
6543 }
6544
6545 /* If we are creating a shared library, we must presume that the
6546 only references to the symbol are via the global offset table.
6547 For such cases we need not do anything here; the relocations will
6548 be handled correctly by relocate_section. */
6549 if (!bfd_link_executable (info))
6550 return TRUE;
6551
6552 /* If there are no references to this symbol that do not use the
6553 GOT, we don't need to generate a copy reloc. */
6554 if (!h->non_got_ref)
6555 return TRUE;
6556
6557 /* Don't generate a copy reloc for symbols defined in the executable. */
6558 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6559
6560 /* If -z nocopyreloc was given, don't generate them either. */
6561 || info->nocopyreloc
6562
6563 /* If we don't find any dynamic relocs in read-only sections, then
6564 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6565 || (ELIMINATE_COPY_RELOCS
6566 && !h->needs_copy
6567 && !alias_readonly_dynrelocs (h))
6568
6569 /* Protected variables do not work with .dynbss. The copy in
6570 .dynbss won't be used by the shared library with the protected
6571 definition for the variable. Text relocations are preferable
6572 to an incorrect program. */
6573 || h->protected_def)
6574 return TRUE;
6575
6576 if (h->type == STT_FUNC
6577 || h->type == STT_GNU_IFUNC)
6578 {
6579 /* .dynbss copies of function symbols only work if we have
6580 ELFv1 dot-symbols. ELFv1 compilers since 2004 default to not
6581 use dot-symbols and set the function symbol size to the text
6582 size of the function rather than the size of the descriptor.
6583 That's wrong for copying a descriptor. */
6584 if (ppc_elf_hash_entry (h)->oh == NULL
6585 || !(h->size == 24 || h->size == 16))
6586 return TRUE;
6587
6588 /* We should never get here, but unfortunately there are old
6589 versions of gcc (circa gcc-3.2) that improperly for the
6590 ELFv1 ABI put initialized function pointers, vtable refs and
6591 suchlike in read-only sections. Allow them to proceed, but
6592 warn that this might break at runtime. */
6593 info->callbacks->einfo
6594 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6595 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6596 h->root.root.string);
6597 }
6598
6599 /* This is a reference to a symbol defined by a dynamic object which
6600 is not a function. */
6601
6602 /* We must allocate the symbol in our .dynbss section, which will
6603 become part of the .bss section of the executable. There will be
6604 an entry for this symbol in the .dynsym section. The dynamic
6605 object will contain position independent code, so all references
6606 from the dynamic object to this symbol will go through the global
6607 offset table. The dynamic linker will use the .dynsym entry to
6608 determine the address it must put in the global offset table, so
6609 both the dynamic object and the regular object will refer to the
6610 same memory location for the variable. */
6611 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6612 {
6613 s = htab->elf.sdynrelro;
6614 srel = htab->elf.sreldynrelro;
6615 }
6616 else
6617 {
6618 s = htab->elf.sdynbss;
6619 srel = htab->elf.srelbss;
6620 }
6621 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6622 {
6623 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6624 linker to copy the initial value out of the dynamic object
6625 and into the runtime process image. */
6626 srel->size += sizeof (Elf64_External_Rela);
6627 h->needs_copy = 1;
6628 }
6629
6630 /* We no longer want dyn_relocs. */
6631 ppc_elf_hash_entry (h)->dyn_relocs = NULL;
6632 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6633 }
6634
6635 /* If given a function descriptor symbol, hide both the function code
6636 sym and the descriptor. */
6637 static void
6638 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6639 struct elf_link_hash_entry *h,
6640 bfd_boolean force_local)
6641 {
6642 struct ppc_link_hash_entry *eh;
6643 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6644
6645 if (ppc_hash_table (info) == NULL)
6646 return;
6647
6648 eh = ppc_elf_hash_entry (h);
6649 if (eh->is_func_descriptor)
6650 {
6651 struct ppc_link_hash_entry *fh = eh->oh;
6652
6653 if (fh == NULL)
6654 {
6655 const char *p, *q;
6656 struct elf_link_hash_table *htab = elf_hash_table (info);
6657 char save;
6658
6659 /* We aren't supposed to use alloca in BFD because on
6660 systems which do not have alloca the version in libiberty
6661 calls xmalloc, which might cause the program to crash
6662 when it runs out of memory. This function doesn't have a
6663 return status, so there's no way to gracefully return an
6664 error. So cheat. We know that string[-1] can be safely
6665 accessed; It's either a string in an ELF string table,
6666 or allocated in an objalloc structure. */
6667
6668 p = eh->elf.root.root.string - 1;
6669 save = *p;
6670 *(char *) p = '.';
6671 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6672 FALSE, FALSE));
6673 *(char *) p = save;
6674
6675 /* Unfortunately, if it so happens that the string we were
6676 looking for was allocated immediately before this string,
6677 then we overwrote the string terminator. That's the only
6678 reason the lookup should fail. */
6679 if (fh == NULL)
6680 {
6681 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6682 while (q >= eh->elf.root.root.string && *q == *p)
6683 --q, --p;
6684 if (q < eh->elf.root.root.string && *p == '.')
6685 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6686 FALSE, FALSE));
6687 }
6688 if (fh != NULL)
6689 {
6690 eh->oh = fh;
6691 fh->oh = eh;
6692 }
6693 }
6694 if (fh != NULL)
6695 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6696 }
6697 }
6698
6699 static bfd_boolean
6700 get_sym_h (struct elf_link_hash_entry **hp,
6701 Elf_Internal_Sym **symp,
6702 asection **symsecp,
6703 unsigned char **tls_maskp,
6704 Elf_Internal_Sym **locsymsp,
6705 unsigned long r_symndx,
6706 bfd *ibfd)
6707 {
6708 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6709
6710 if (r_symndx >= symtab_hdr->sh_info)
6711 {
6712 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6713 struct elf_link_hash_entry *h;
6714
6715 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6716 h = elf_follow_link (h);
6717
6718 if (hp != NULL)
6719 *hp = h;
6720
6721 if (symp != NULL)
6722 *symp = NULL;
6723
6724 if (symsecp != NULL)
6725 {
6726 asection *symsec = NULL;
6727 if (h->root.type == bfd_link_hash_defined
6728 || h->root.type == bfd_link_hash_defweak)
6729 symsec = h->root.u.def.section;
6730 *symsecp = symsec;
6731 }
6732
6733 if (tls_maskp != NULL)
6734 *tls_maskp = &ppc_elf_hash_entry (h)->tls_mask;
6735 }
6736 else
6737 {
6738 Elf_Internal_Sym *sym;
6739 Elf_Internal_Sym *locsyms = *locsymsp;
6740
6741 if (locsyms == NULL)
6742 {
6743 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6744 if (locsyms == NULL)
6745 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6746 symtab_hdr->sh_info,
6747 0, NULL, NULL, NULL);
6748 if (locsyms == NULL)
6749 return FALSE;
6750 *locsymsp = locsyms;
6751 }
6752 sym = locsyms + r_symndx;
6753
6754 if (hp != NULL)
6755 *hp = NULL;
6756
6757 if (symp != NULL)
6758 *symp = sym;
6759
6760 if (symsecp != NULL)
6761 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6762
6763 if (tls_maskp != NULL)
6764 {
6765 struct got_entry **lgot_ents;
6766 unsigned char *tls_mask;
6767
6768 tls_mask = NULL;
6769 lgot_ents = elf_local_got_ents (ibfd);
6770 if (lgot_ents != NULL)
6771 {
6772 struct plt_entry **local_plt = (struct plt_entry **)
6773 (lgot_ents + symtab_hdr->sh_info);
6774 unsigned char *lgot_masks = (unsigned char *)
6775 (local_plt + symtab_hdr->sh_info);
6776 tls_mask = &lgot_masks[r_symndx];
6777 }
6778 *tls_maskp = tls_mask;
6779 }
6780 }
6781 return TRUE;
6782 }
6783
6784 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6785 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6786 type suitable for optimization, and 1 otherwise. */
6787
6788 static int
6789 get_tls_mask (unsigned char **tls_maskp,
6790 unsigned long *toc_symndx,
6791 bfd_vma *toc_addend,
6792 Elf_Internal_Sym **locsymsp,
6793 const Elf_Internal_Rela *rel,
6794 bfd *ibfd)
6795 {
6796 unsigned long r_symndx;
6797 int next_r;
6798 struct elf_link_hash_entry *h;
6799 Elf_Internal_Sym *sym;
6800 asection *sec;
6801 bfd_vma off;
6802
6803 r_symndx = ELF64_R_SYM (rel->r_info);
6804 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6805 return 0;
6806
6807 if ((*tls_maskp != NULL
6808 && (**tls_maskp & TLS_TLS) != 0
6809 && **tls_maskp != (TLS_TLS | TLS_MARK))
6810 || sec == NULL
6811 || ppc64_elf_section_data (sec) == NULL
6812 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6813 return 1;
6814
6815 /* Look inside a TOC section too. */
6816 if (h != NULL)
6817 {
6818 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6819 off = h->root.u.def.value;
6820 }
6821 else
6822 off = sym->st_value;
6823 off += rel->r_addend;
6824 BFD_ASSERT (off % 8 == 0);
6825 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6826 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6827 if (toc_symndx != NULL)
6828 *toc_symndx = r_symndx;
6829 if (toc_addend != NULL)
6830 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6831 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6832 return 0;
6833 if ((h == NULL || is_static_defined (h))
6834 && (next_r == -1 || next_r == -2))
6835 return 1 - next_r;
6836 return 1;
6837 }
6838
6839 /* Find (or create) an entry in the tocsave hash table. */
6840
6841 static struct tocsave_entry *
6842 tocsave_find (struct ppc_link_hash_table *htab,
6843 enum insert_option insert,
6844 Elf_Internal_Sym **local_syms,
6845 const Elf_Internal_Rela *irela,
6846 bfd *ibfd)
6847 {
6848 unsigned long r_indx;
6849 struct elf_link_hash_entry *h;
6850 Elf_Internal_Sym *sym;
6851 struct tocsave_entry ent, *p;
6852 hashval_t hash;
6853 struct tocsave_entry **slot;
6854
6855 r_indx = ELF64_R_SYM (irela->r_info);
6856 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6857 return NULL;
6858 if (ent.sec == NULL || ent.sec->output_section == NULL)
6859 {
6860 _bfd_error_handler
6861 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6862 return NULL;
6863 }
6864
6865 if (h != NULL)
6866 ent.offset = h->root.u.def.value;
6867 else
6868 ent.offset = sym->st_value;
6869 ent.offset += irela->r_addend;
6870
6871 hash = tocsave_htab_hash (&ent);
6872 slot = ((struct tocsave_entry **)
6873 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6874 if (slot == NULL)
6875 return NULL;
6876
6877 if (*slot == NULL)
6878 {
6879 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6880 if (p == NULL)
6881 return NULL;
6882 *p = ent;
6883 *slot = p;
6884 }
6885 return *slot;
6886 }
6887
6888 /* Adjust all global syms defined in opd sections. In gcc generated
6889 code for the old ABI, these will already have been done. */
6890
6891 static bfd_boolean
6892 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6893 {
6894 struct ppc_link_hash_entry *eh;
6895 asection *sym_sec;
6896 struct _opd_sec_data *opd;
6897
6898 if (h->root.type == bfd_link_hash_indirect)
6899 return TRUE;
6900
6901 if (h->root.type != bfd_link_hash_defined
6902 && h->root.type != bfd_link_hash_defweak)
6903 return TRUE;
6904
6905 eh = ppc_elf_hash_entry (h);
6906 if (eh->adjust_done)
6907 return TRUE;
6908
6909 sym_sec = eh->elf.root.u.def.section;
6910 opd = get_opd_info (sym_sec);
6911 if (opd != NULL && opd->adjust != NULL)
6912 {
6913 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6914 if (adjust == -1)
6915 {
6916 /* This entry has been deleted. */
6917 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6918 if (dsec == NULL)
6919 {
6920 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6921 if (discarded_section (dsec))
6922 {
6923 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6924 break;
6925 }
6926 }
6927 eh->elf.root.u.def.value = 0;
6928 eh->elf.root.u.def.section = dsec;
6929 }
6930 else
6931 eh->elf.root.u.def.value += adjust;
6932 eh->adjust_done = 1;
6933 }
6934 return TRUE;
6935 }
6936
6937 /* Handles decrementing dynamic reloc counts for the reloc specified by
6938 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6939 have already been determined. */
6940
6941 static bfd_boolean
6942 dec_dynrel_count (bfd_vma r_info,
6943 asection *sec,
6944 struct bfd_link_info *info,
6945 Elf_Internal_Sym **local_syms,
6946 struct elf_link_hash_entry *h,
6947 Elf_Internal_Sym *sym)
6948 {
6949 enum elf_ppc64_reloc_type r_type;
6950 asection *sym_sec = NULL;
6951
6952 /* Can this reloc be dynamic? This switch, and later tests here
6953 should be kept in sync with the code in check_relocs. */
6954 r_type = ELF64_R_TYPE (r_info);
6955 switch (r_type)
6956 {
6957 default:
6958 return TRUE;
6959
6960 case R_PPC64_TOC16:
6961 case R_PPC64_TOC16_DS:
6962 case R_PPC64_TOC16_LO:
6963 case R_PPC64_TOC16_HI:
6964 case R_PPC64_TOC16_HA:
6965 case R_PPC64_TOC16_LO_DS:
6966 if (h == NULL)
6967 return TRUE;
6968 break;
6969
6970 case R_PPC64_TPREL16:
6971 case R_PPC64_TPREL16_LO:
6972 case R_PPC64_TPREL16_HI:
6973 case R_PPC64_TPREL16_HA:
6974 case R_PPC64_TPREL16_DS:
6975 case R_PPC64_TPREL16_LO_DS:
6976 case R_PPC64_TPREL16_HIGH:
6977 case R_PPC64_TPREL16_HIGHA:
6978 case R_PPC64_TPREL16_HIGHER:
6979 case R_PPC64_TPREL16_HIGHERA:
6980 case R_PPC64_TPREL16_HIGHEST:
6981 case R_PPC64_TPREL16_HIGHESTA:
6982 case R_PPC64_TPREL64:
6983 case R_PPC64_TPREL34:
6984 case R_PPC64_DTPMOD64:
6985 case R_PPC64_DTPREL64:
6986 case R_PPC64_ADDR64:
6987 case R_PPC64_REL30:
6988 case R_PPC64_REL32:
6989 case R_PPC64_REL64:
6990 case R_PPC64_ADDR14:
6991 case R_PPC64_ADDR14_BRNTAKEN:
6992 case R_PPC64_ADDR14_BRTAKEN:
6993 case R_PPC64_ADDR16:
6994 case R_PPC64_ADDR16_DS:
6995 case R_PPC64_ADDR16_HA:
6996 case R_PPC64_ADDR16_HI:
6997 case R_PPC64_ADDR16_HIGH:
6998 case R_PPC64_ADDR16_HIGHA:
6999 case R_PPC64_ADDR16_HIGHER:
7000 case R_PPC64_ADDR16_HIGHERA:
7001 case R_PPC64_ADDR16_HIGHEST:
7002 case R_PPC64_ADDR16_HIGHESTA:
7003 case R_PPC64_ADDR16_LO:
7004 case R_PPC64_ADDR16_LO_DS:
7005 case R_PPC64_ADDR24:
7006 case R_PPC64_ADDR32:
7007 case R_PPC64_UADDR16:
7008 case R_PPC64_UADDR32:
7009 case R_PPC64_UADDR64:
7010 case R_PPC64_TOC:
7011 case R_PPC64_D34:
7012 case R_PPC64_D34_LO:
7013 case R_PPC64_D34_HI30:
7014 case R_PPC64_D34_HA30:
7015 case R_PPC64_ADDR16_HIGHER34:
7016 case R_PPC64_ADDR16_HIGHERA34:
7017 case R_PPC64_ADDR16_HIGHEST34:
7018 case R_PPC64_ADDR16_HIGHESTA34:
7019 case R_PPC64_D28:
7020 break;
7021 }
7022
7023 if (local_syms != NULL)
7024 {
7025 unsigned long r_symndx;
7026 bfd *ibfd = sec->owner;
7027
7028 r_symndx = ELF64_R_SYM (r_info);
7029 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7030 return FALSE;
7031 }
7032
7033 if ((h != NULL
7034 && (h->root.type == bfd_link_hash_defweak
7035 || !h->def_regular))
7036 || (h != NULL
7037 && !bfd_link_executable (info)
7038 && !SYMBOLIC_BIND (info, h))
7039 || (bfd_link_pic (info)
7040 && must_be_dyn_reloc (info, r_type))
7041 || (!bfd_link_pic (info)
7042 && (h != NULL
7043 ? h->type == STT_GNU_IFUNC
7044 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
7045 ;
7046 else
7047 return TRUE;
7048
7049 if (h != NULL)
7050 {
7051 struct elf_dyn_relocs *p;
7052 struct elf_dyn_relocs **pp;
7053 pp = &ppc_elf_hash_entry (h)->dyn_relocs;
7054
7055 /* elf_gc_sweep may have already removed all dyn relocs associated
7056 with local syms for a given section. Also, symbol flags are
7057 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7058 report a dynreloc miscount. */
7059 if (*pp == NULL && info->gc_sections)
7060 return TRUE;
7061
7062 while ((p = *pp) != NULL)
7063 {
7064 if (p->sec == sec)
7065 {
7066 if (!must_be_dyn_reloc (info, r_type))
7067 p->pc_count -= 1;
7068 p->count -= 1;
7069 if (p->count == 0)
7070 *pp = p->next;
7071 return TRUE;
7072 }
7073 pp = &p->next;
7074 }
7075 }
7076 else
7077 {
7078 struct ppc_dyn_relocs *p;
7079 struct ppc_dyn_relocs **pp;
7080 void *vpp;
7081 bfd_boolean is_ifunc;
7082
7083 if (local_syms == NULL)
7084 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7085 if (sym_sec == NULL)
7086 sym_sec = sec;
7087
7088 vpp = &elf_section_data (sym_sec)->local_dynrel;
7089 pp = (struct ppc_dyn_relocs **) vpp;
7090
7091 if (*pp == NULL && info->gc_sections)
7092 return TRUE;
7093
7094 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7095 while ((p = *pp) != NULL)
7096 {
7097 if (p->sec == sec && p->ifunc == is_ifunc)
7098 {
7099 p->count -= 1;
7100 if (p->count == 0)
7101 *pp = p->next;
7102 return TRUE;
7103 }
7104 pp = &p->next;
7105 }
7106 }
7107
7108 /* xgettext:c-format */
7109 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
7110 sec->owner, sec);
7111 bfd_set_error (bfd_error_bad_value);
7112 return FALSE;
7113 }
7114
7115 /* Remove unused Official Procedure Descriptor entries. Currently we
7116 only remove those associated with functions in discarded link-once
7117 sections, or weakly defined functions that have been overridden. It
7118 would be possible to remove many more entries for statically linked
7119 applications. */
7120
7121 bfd_boolean
7122 ppc64_elf_edit_opd (struct bfd_link_info *info)
7123 {
7124 bfd *ibfd;
7125 bfd_boolean some_edited = FALSE;
7126 asection *need_pad = NULL;
7127 struct ppc_link_hash_table *htab;
7128
7129 htab = ppc_hash_table (info);
7130 if (htab == NULL)
7131 return FALSE;
7132
7133 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7134 {
7135 asection *sec;
7136 Elf_Internal_Rela *relstart, *rel, *relend;
7137 Elf_Internal_Shdr *symtab_hdr;
7138 Elf_Internal_Sym *local_syms;
7139 struct _opd_sec_data *opd;
7140 bfd_boolean need_edit, add_aux_fields, broken;
7141 bfd_size_type cnt_16b = 0;
7142
7143 if (!is_ppc64_elf (ibfd))
7144 continue;
7145
7146 sec = bfd_get_section_by_name (ibfd, ".opd");
7147 if (sec == NULL || sec->size == 0)
7148 continue;
7149
7150 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7151 continue;
7152
7153 if (sec->output_section == bfd_abs_section_ptr)
7154 continue;
7155
7156 /* Look through the section relocs. */
7157 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7158 continue;
7159
7160 local_syms = NULL;
7161 symtab_hdr = &elf_symtab_hdr (ibfd);
7162
7163 /* Read the relocations. */
7164 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7165 info->keep_memory);
7166 if (relstart == NULL)
7167 return FALSE;
7168
7169 /* First run through the relocs to check they are sane, and to
7170 determine whether we need to edit this opd section. */
7171 need_edit = FALSE;
7172 broken = FALSE;
7173 need_pad = sec;
7174 relend = relstart + sec->reloc_count;
7175 for (rel = relstart; rel < relend; )
7176 {
7177 enum elf_ppc64_reloc_type r_type;
7178 unsigned long r_symndx;
7179 asection *sym_sec;
7180 struct elf_link_hash_entry *h;
7181 Elf_Internal_Sym *sym;
7182 bfd_vma offset;
7183
7184 /* .opd contains an array of 16 or 24 byte entries. We're
7185 only interested in the reloc pointing to a function entry
7186 point. */
7187 offset = rel->r_offset;
7188 if (rel + 1 == relend
7189 || rel[1].r_offset != offset + 8)
7190 {
7191 /* If someone messes with .opd alignment then after a
7192 "ld -r" we might have padding in the middle of .opd.
7193 Also, there's nothing to prevent someone putting
7194 something silly in .opd with the assembler. No .opd
7195 optimization for them! */
7196 broken_opd:
7197 _bfd_error_handler
7198 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7199 broken = TRUE;
7200 break;
7201 }
7202
7203 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7204 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7205 {
7206 _bfd_error_handler
7207 /* xgettext:c-format */
7208 (_("%pB: unexpected reloc type %u in .opd section"),
7209 ibfd, r_type);
7210 broken = TRUE;
7211 break;
7212 }
7213
7214 r_symndx = ELF64_R_SYM (rel->r_info);
7215 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7216 r_symndx, ibfd))
7217 goto error_ret;
7218
7219 if (sym_sec == NULL || sym_sec->owner == NULL)
7220 {
7221 const char *sym_name;
7222 if (h != NULL)
7223 sym_name = h->root.root.string;
7224 else
7225 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7226 sym_sec);
7227
7228 _bfd_error_handler
7229 /* xgettext:c-format */
7230 (_("%pB: undefined sym `%s' in .opd section"),
7231 ibfd, sym_name);
7232 broken = TRUE;
7233 break;
7234 }
7235
7236 /* opd entries are always for functions defined in the
7237 current input bfd. If the symbol isn't defined in the
7238 input bfd, then we won't be using the function in this
7239 bfd; It must be defined in a linkonce section in another
7240 bfd, or is weak. It's also possible that we are
7241 discarding the function due to a linker script /DISCARD/,
7242 which we test for via the output_section. */
7243 if (sym_sec->owner != ibfd
7244 || sym_sec->output_section == bfd_abs_section_ptr)
7245 need_edit = TRUE;
7246
7247 rel += 2;
7248 if (rel + 1 == relend
7249 || (rel + 2 < relend
7250 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7251 ++rel;
7252
7253 if (rel == relend)
7254 {
7255 if (sec->size == offset + 24)
7256 {
7257 need_pad = NULL;
7258 break;
7259 }
7260 if (sec->size == offset + 16)
7261 {
7262 cnt_16b++;
7263 break;
7264 }
7265 goto broken_opd;
7266 }
7267 else if (rel + 1 < relend
7268 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7269 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7270 {
7271 if (rel[0].r_offset == offset + 16)
7272 cnt_16b++;
7273 else if (rel[0].r_offset != offset + 24)
7274 goto broken_opd;
7275 }
7276 else
7277 goto broken_opd;
7278 }
7279
7280 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7281
7282 if (!broken && (need_edit || add_aux_fields))
7283 {
7284 Elf_Internal_Rela *write_rel;
7285 Elf_Internal_Shdr *rel_hdr;
7286 bfd_byte *rptr, *wptr;
7287 bfd_byte *new_contents;
7288 bfd_size_type amt;
7289
7290 new_contents = NULL;
7291 amt = OPD_NDX (sec->size) * sizeof (long);
7292 opd = &ppc64_elf_section_data (sec)->u.opd;
7293 opd->adjust = bfd_zalloc (sec->owner, amt);
7294 if (opd->adjust == NULL)
7295 return FALSE;
7296
7297 /* This seems a waste of time as input .opd sections are all
7298 zeros as generated by gcc, but I suppose there's no reason
7299 this will always be so. We might start putting something in
7300 the third word of .opd entries. */
7301 if ((sec->flags & SEC_IN_MEMORY) == 0)
7302 {
7303 bfd_byte *loc;
7304 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7305 {
7306 if (loc != NULL)
7307 free (loc);
7308 error_ret:
7309 if (local_syms != NULL
7310 && symtab_hdr->contents != (unsigned char *) local_syms)
7311 free (local_syms);
7312 if (elf_section_data (sec)->relocs != relstart)
7313 free (relstart);
7314 return FALSE;
7315 }
7316 sec->contents = loc;
7317 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7318 }
7319
7320 elf_section_data (sec)->relocs = relstart;
7321
7322 new_contents = sec->contents;
7323 if (add_aux_fields)
7324 {
7325 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7326 if (new_contents == NULL)
7327 return FALSE;
7328 need_pad = NULL;
7329 }
7330 wptr = new_contents;
7331 rptr = sec->contents;
7332 write_rel = relstart;
7333 for (rel = relstart; rel < relend; )
7334 {
7335 unsigned long r_symndx;
7336 asection *sym_sec;
7337 struct elf_link_hash_entry *h;
7338 struct ppc_link_hash_entry *fdh = NULL;
7339 Elf_Internal_Sym *sym;
7340 long opd_ent_size;
7341 Elf_Internal_Rela *next_rel;
7342 bfd_boolean skip;
7343
7344 r_symndx = ELF64_R_SYM (rel->r_info);
7345 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7346 r_symndx, ibfd))
7347 goto error_ret;
7348
7349 next_rel = rel + 2;
7350 if (next_rel + 1 == relend
7351 || (next_rel + 2 < relend
7352 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7353 ++next_rel;
7354
7355 /* See if the .opd entry is full 24 byte or
7356 16 byte (with fd_aux entry overlapped with next
7357 fd_func). */
7358 opd_ent_size = 24;
7359 if (next_rel == relend)
7360 {
7361 if (sec->size == rel->r_offset + 16)
7362 opd_ent_size = 16;
7363 }
7364 else if (next_rel->r_offset == rel->r_offset + 16)
7365 opd_ent_size = 16;
7366
7367 if (h != NULL
7368 && h->root.root.string[0] == '.')
7369 {
7370 fdh = ppc_elf_hash_entry (h)->oh;
7371 if (fdh != NULL)
7372 {
7373 fdh = ppc_follow_link (fdh);
7374 if (fdh->elf.root.type != bfd_link_hash_defined
7375 && fdh->elf.root.type != bfd_link_hash_defweak)
7376 fdh = NULL;
7377 }
7378 }
7379
7380 skip = (sym_sec->owner != ibfd
7381 || sym_sec->output_section == bfd_abs_section_ptr);
7382 if (skip)
7383 {
7384 if (fdh != NULL && sym_sec->owner == ibfd)
7385 {
7386 /* Arrange for the function descriptor sym
7387 to be dropped. */
7388 fdh->elf.root.u.def.value = 0;
7389 fdh->elf.root.u.def.section = sym_sec;
7390 }
7391 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7392
7393 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7394 rel = next_rel;
7395 else
7396 while (1)
7397 {
7398 if (!dec_dynrel_count (rel->r_info, sec, info,
7399 NULL, h, sym))
7400 goto error_ret;
7401
7402 if (++rel == next_rel)
7403 break;
7404
7405 r_symndx = ELF64_R_SYM (rel->r_info);
7406 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7407 r_symndx, ibfd))
7408 goto error_ret;
7409 }
7410 }
7411 else
7412 {
7413 /* We'll be keeping this opd entry. */
7414 long adjust;
7415
7416 if (fdh != NULL)
7417 {
7418 /* Redefine the function descriptor symbol to
7419 this location in the opd section. It is
7420 necessary to update the value here rather
7421 than using an array of adjustments as we do
7422 for local symbols, because various places
7423 in the generic ELF code use the value
7424 stored in u.def.value. */
7425 fdh->elf.root.u.def.value = wptr - new_contents;
7426 fdh->adjust_done = 1;
7427 }
7428
7429 /* Local syms are a bit tricky. We could
7430 tweak them as they can be cached, but
7431 we'd need to look through the local syms
7432 for the function descriptor sym which we
7433 don't have at the moment. So keep an
7434 array of adjustments. */
7435 adjust = (wptr - new_contents) - (rptr - sec->contents);
7436 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7437
7438 if (wptr != rptr)
7439 memcpy (wptr, rptr, opd_ent_size);
7440 wptr += opd_ent_size;
7441 if (add_aux_fields && opd_ent_size == 16)
7442 {
7443 memset (wptr, '\0', 8);
7444 wptr += 8;
7445 }
7446
7447 /* We need to adjust any reloc offsets to point to the
7448 new opd entries. */
7449 for ( ; rel != next_rel; ++rel)
7450 {
7451 rel->r_offset += adjust;
7452 if (write_rel != rel)
7453 memcpy (write_rel, rel, sizeof (*rel));
7454 ++write_rel;
7455 }
7456 }
7457
7458 rptr += opd_ent_size;
7459 }
7460
7461 sec->size = wptr - new_contents;
7462 sec->reloc_count = write_rel - relstart;
7463 if (add_aux_fields)
7464 {
7465 free (sec->contents);
7466 sec->contents = new_contents;
7467 }
7468
7469 /* Fudge the header size too, as this is used later in
7470 elf_bfd_final_link if we are emitting relocs. */
7471 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7472 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7473 some_edited = TRUE;
7474 }
7475 else if (elf_section_data (sec)->relocs != relstart)
7476 free (relstart);
7477
7478 if (local_syms != NULL
7479 && symtab_hdr->contents != (unsigned char *) local_syms)
7480 {
7481 if (!info->keep_memory)
7482 free (local_syms);
7483 else
7484 symtab_hdr->contents = (unsigned char *) local_syms;
7485 }
7486 }
7487
7488 if (some_edited)
7489 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7490
7491 /* If we are doing a final link and the last .opd entry is just 16 byte
7492 long, add a 8 byte padding after it. */
7493 if (need_pad != NULL && !bfd_link_relocatable (info))
7494 {
7495 bfd_byte *p;
7496
7497 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7498 {
7499 BFD_ASSERT (need_pad->size > 0);
7500
7501 p = bfd_malloc (need_pad->size + 8);
7502 if (p == NULL)
7503 return FALSE;
7504
7505 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7506 p, 0, need_pad->size))
7507 return FALSE;
7508
7509 need_pad->contents = p;
7510 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7511 }
7512 else
7513 {
7514 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7515 if (p == NULL)
7516 return FALSE;
7517
7518 need_pad->contents = p;
7519 }
7520
7521 memset (need_pad->contents + need_pad->size, 0, 8);
7522 need_pad->size += 8;
7523 }
7524
7525 return TRUE;
7526 }
7527
7528 /* Analyze inline PLT call relocations to see whether calls to locally
7529 defined functions can be converted to direct calls. */
7530
7531 bfd_boolean
7532 ppc64_elf_inline_plt (struct bfd_link_info *info)
7533 {
7534 struct ppc_link_hash_table *htab;
7535 bfd *ibfd;
7536 asection *sec;
7537 bfd_vma low_vma, high_vma, limit;
7538
7539 htab = ppc_hash_table (info);
7540 if (htab == NULL)
7541 return FALSE;
7542
7543 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7544 reduced somewhat to cater for possible stubs that might be added
7545 between the call and its destination. */
7546 if (htab->params->group_size < 0)
7547 {
7548 limit = -htab->params->group_size;
7549 if (limit == 1)
7550 limit = 0x1e00000;
7551 }
7552 else
7553 {
7554 limit = htab->params->group_size;
7555 if (limit == 1)
7556 limit = 0x1c00000;
7557 }
7558
7559 low_vma = -1;
7560 high_vma = 0;
7561 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7562 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7563 {
7564 if (low_vma > sec->vma)
7565 low_vma = sec->vma;
7566 if (high_vma < sec->vma + sec->size)
7567 high_vma = sec->vma + sec->size;
7568 }
7569
7570 /* If a "bl" can reach anywhere in local code sections, then we can
7571 convert all inline PLT sequences to direct calls when the symbol
7572 is local. */
7573 if (high_vma - low_vma < limit)
7574 {
7575 htab->can_convert_all_inline_plt = 1;
7576 return TRUE;
7577 }
7578
7579 /* Otherwise, go looking through relocs for cases where a direct
7580 call won't reach. Mark the symbol on any such reloc to disable
7581 the optimization and keep the PLT entry as it seems likely that
7582 this will be better than creating trampolines. Note that this
7583 will disable the optimization for all inline PLT calls to a
7584 particular symbol, not just those that won't reach. The
7585 difficulty in doing a more precise optimization is that the
7586 linker needs to make a decision depending on whether a
7587 particular R_PPC64_PLTCALL insn can be turned into a direct
7588 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7589 the sequence, and there is nothing that ties those relocs
7590 together except their symbol. */
7591
7592 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7593 {
7594 Elf_Internal_Shdr *symtab_hdr;
7595 Elf_Internal_Sym *local_syms;
7596
7597 if (!is_ppc64_elf (ibfd))
7598 continue;
7599
7600 local_syms = NULL;
7601 symtab_hdr = &elf_symtab_hdr (ibfd);
7602
7603 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7604 if (ppc64_elf_section_data (sec)->has_pltcall
7605 && !bfd_is_abs_section (sec->output_section))
7606 {
7607 Elf_Internal_Rela *relstart, *rel, *relend;
7608
7609 /* Read the relocations. */
7610 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7611 info->keep_memory);
7612 if (relstart == NULL)
7613 return FALSE;
7614
7615 relend = relstart + sec->reloc_count;
7616 for (rel = relstart; rel < relend; rel++)
7617 {
7618 enum elf_ppc64_reloc_type r_type;
7619 unsigned long r_symndx;
7620 asection *sym_sec;
7621 struct elf_link_hash_entry *h;
7622 Elf_Internal_Sym *sym;
7623 unsigned char *tls_maskp;
7624
7625 r_type = ELF64_R_TYPE (rel->r_info);
7626 if (r_type != R_PPC64_PLTCALL
7627 && r_type != R_PPC64_PLTCALL_NOTOC)
7628 continue;
7629
7630 r_symndx = ELF64_R_SYM (rel->r_info);
7631 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7632 r_symndx, ibfd))
7633 {
7634 if (elf_section_data (sec)->relocs != relstart)
7635 free (relstart);
7636 if (local_syms != NULL
7637 && symtab_hdr->contents != (bfd_byte *) local_syms)
7638 free (local_syms);
7639 return FALSE;
7640 }
7641
7642 if (sym_sec != NULL && sym_sec->output_section != NULL)
7643 {
7644 bfd_vma from, to;
7645 if (h != NULL)
7646 to = h->root.u.def.value;
7647 else
7648 to = sym->st_value;
7649 to += (rel->r_addend
7650 + sym_sec->output_offset
7651 + sym_sec->output_section->vma);
7652 from = (rel->r_offset
7653 + sec->output_offset
7654 + sec->output_section->vma);
7655 if (to - from + limit < 2 * limit
7656 && !(r_type == R_PPC64_PLTCALL_NOTOC
7657 && (((h ? h->other : sym->st_other)
7658 & STO_PPC64_LOCAL_MASK)
7659 > 1 << STO_PPC64_LOCAL_BIT)))
7660 *tls_maskp &= ~PLT_KEEP;
7661 }
7662 }
7663 if (elf_section_data (sec)->relocs != relstart)
7664 free (relstart);
7665 }
7666
7667 if (local_syms != NULL
7668 && symtab_hdr->contents != (unsigned char *) local_syms)
7669 {
7670 if (!info->keep_memory)
7671 free (local_syms);
7672 else
7673 symtab_hdr->contents = (unsigned char *) local_syms;
7674 }
7675 }
7676
7677 return TRUE;
7678 }
7679
7680 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7681
7682 asection *
7683 ppc64_elf_tls_setup (struct bfd_link_info *info)
7684 {
7685 struct ppc_link_hash_table *htab;
7686 struct elf_link_hash_entry *tga, *tga_fd, *desc, *desc_fd;
7687
7688 htab = ppc_hash_table (info);
7689 if (htab == NULL)
7690 return NULL;
7691
7692 if (abiversion (info->output_bfd) == 1)
7693 htab->opd_abi = 1;
7694
7695 if (htab->params->no_multi_toc)
7696 htab->do_multi_toc = 0;
7697 else if (!htab->do_multi_toc)
7698 htab->params->no_multi_toc = 1;
7699
7700 /* Default to --no-plt-localentry, as this option can cause problems
7701 with symbol interposition. For example, glibc libpthread.so and
7702 libc.so duplicate many pthread symbols, with a fallback
7703 implementation in libc.so. In some cases the fallback does more
7704 work than the pthread implementation. __pthread_condattr_destroy
7705 is one such symbol: the libpthread.so implementation is
7706 localentry:0 while the libc.so implementation is localentry:8.
7707 An app that "cleverly" uses dlopen to only load necessary
7708 libraries at runtime may omit loading libpthread.so when not
7709 running multi-threaded, which then results in the libc.so
7710 fallback symbols being used and ld.so complaining. Now there
7711 are workarounds in ld (see non_zero_localentry) to detect the
7712 pthread situation, but that may not be the only case where
7713 --plt-localentry can cause trouble. */
7714 if (htab->params->plt_localentry0 < 0)
7715 htab->params->plt_localentry0 = 0;
7716 if (htab->params->plt_localentry0
7717 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7718 FALSE, FALSE, FALSE) == NULL)
7719 _bfd_error_handler
7720 (_("warning: --plt-localentry is especially dangerous without "
7721 "ld.so support to detect ABI violations"));
7722
7723 tga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7724 FALSE, FALSE, TRUE);
7725 htab->tls_get_addr = ppc_elf_hash_entry (tga);
7726
7727 /* Move dynamic linking info to the function descriptor sym. */
7728 if (tga != NULL)
7729 func_desc_adjust (tga, info);
7730 tga_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7731 FALSE, FALSE, TRUE);
7732 htab->tls_get_addr_fd = ppc_elf_hash_entry (tga_fd);
7733
7734 desc = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_desc",
7735 FALSE, FALSE, TRUE);
7736 htab->tga_desc = ppc_elf_hash_entry (desc);
7737 if (desc != NULL)
7738 func_desc_adjust (desc, info);
7739 desc_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_desc",
7740 FALSE, FALSE, TRUE);
7741 htab->tga_desc_fd = ppc_elf_hash_entry (desc_fd);
7742
7743 if (htab->params->tls_get_addr_opt)
7744 {
7745 struct elf_link_hash_entry *opt, *opt_fd;
7746
7747 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7748 FALSE, FALSE, TRUE);
7749 if (opt != NULL)
7750 func_desc_adjust (opt, info);
7751 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7752 FALSE, FALSE, TRUE);
7753 if (opt_fd != NULL
7754 && (opt_fd->root.type == bfd_link_hash_defined
7755 || opt_fd->root.type == bfd_link_hash_defweak))
7756 {
7757 /* If glibc supports an optimized __tls_get_addr call stub,
7758 signalled by the presence of __tls_get_addr_opt, and we'll
7759 be calling __tls_get_addr via a plt call stub, then
7760 make __tls_get_addr point to __tls_get_addr_opt. */
7761 if (!(htab->elf.dynamic_sections_created
7762 && tga_fd != NULL
7763 && (tga_fd->type == STT_FUNC
7764 || tga_fd->needs_plt)
7765 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7766 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd))))
7767 tga_fd = NULL;
7768 if (!(htab->elf.dynamic_sections_created
7769 && desc_fd != NULL
7770 && (desc_fd->type == STT_FUNC
7771 || desc_fd->needs_plt)
7772 && !(SYMBOL_CALLS_LOCAL (info, desc_fd)
7773 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, desc_fd))))
7774 desc_fd = NULL;
7775
7776 if (tga_fd != NULL || desc_fd != NULL)
7777 {
7778 struct plt_entry *ent = NULL;
7779
7780 if (tga_fd != NULL)
7781 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7782 if (ent->plt.refcount > 0)
7783 break;
7784 if (ent == NULL && desc_fd != NULL)
7785 for (ent = desc_fd->plt.plist; ent != NULL; ent = ent->next)
7786 if (ent->plt.refcount > 0)
7787 break;
7788 if (ent != NULL)
7789 {
7790 if (tga_fd != NULL)
7791 {
7792 tga_fd->root.type = bfd_link_hash_indirect;
7793 tga_fd->root.u.i.link = &opt_fd->root;
7794 tga_fd->root.u.i.warning = NULL;
7795 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7796 }
7797 if (desc_fd != NULL)
7798 {
7799 desc_fd->root.type = bfd_link_hash_indirect;
7800 desc_fd->root.u.i.link = &opt_fd->root;
7801 desc_fd->root.u.i.warning = NULL;
7802 ppc64_elf_copy_indirect_symbol (info, opt_fd, desc_fd);
7803 }
7804 opt_fd->mark = 1;
7805 if (opt_fd->dynindx != -1)
7806 {
7807 /* Use __tls_get_addr_opt in dynamic relocations. */
7808 opt_fd->dynindx = -1;
7809 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7810 opt_fd->dynstr_index);
7811 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7812 return NULL;
7813 }
7814 if (tga_fd != NULL)
7815 {
7816 htab->tls_get_addr_fd = ppc_elf_hash_entry (opt_fd);
7817 tga = &htab->tls_get_addr->elf;
7818 if (opt != NULL && tga != NULL)
7819 {
7820 tga->root.type = bfd_link_hash_indirect;
7821 tga->root.u.i.link = &opt->root;
7822 tga->root.u.i.warning = NULL;
7823 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7824 opt->mark = 1;
7825 _bfd_elf_link_hash_hide_symbol (info, opt,
7826 tga->forced_local);
7827 htab->tls_get_addr = ppc_elf_hash_entry (opt);
7828 }
7829 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7830 htab->tls_get_addr_fd->is_func_descriptor = 1;
7831 if (htab->tls_get_addr != NULL)
7832 {
7833 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7834 htab->tls_get_addr->is_func = 1;
7835 }
7836 }
7837 if (desc_fd != NULL)
7838 {
7839 htab->tga_desc_fd = ppc_elf_hash_entry (opt_fd);
7840 if (opt != NULL && desc != NULL)
7841 {
7842 desc->root.type = bfd_link_hash_indirect;
7843 desc->root.u.i.link = &opt->root;
7844 desc->root.u.i.warning = NULL;
7845 ppc64_elf_copy_indirect_symbol (info, opt, desc);
7846 opt->mark = 1;
7847 _bfd_elf_link_hash_hide_symbol (info, opt,
7848 desc->forced_local);
7849 htab->tga_desc = ppc_elf_hash_entry (opt);
7850 }
7851 htab->tga_desc_fd->oh = htab->tga_desc;
7852 htab->tga_desc_fd->is_func_descriptor = 1;
7853 if (htab->tga_desc != NULL)
7854 {
7855 htab->tga_desc->oh = htab->tga_desc_fd;
7856 htab->tga_desc->is_func = 1;
7857 }
7858 }
7859 }
7860 }
7861 }
7862 else if (htab->params->tls_get_addr_opt < 0)
7863 htab->params->tls_get_addr_opt = 0;
7864 }
7865
7866 if (htab->tga_desc_fd != NULL
7867 && htab->params->tls_get_addr_opt
7868 && htab->params->no_tls_get_addr_regsave == -1)
7869 htab->params->no_tls_get_addr_regsave = 0;
7870
7871 return _bfd_elf_tls_setup (info->output_bfd, info);
7872 }
7873
7874 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7875 any of HASH1, HASH2, HASH3, or HASH4. */
7876
7877 static bfd_boolean
7878 branch_reloc_hash_match (const bfd *ibfd,
7879 const Elf_Internal_Rela *rel,
7880 const struct ppc_link_hash_entry *hash1,
7881 const struct ppc_link_hash_entry *hash2,
7882 const struct ppc_link_hash_entry *hash3,
7883 const struct ppc_link_hash_entry *hash4)
7884 {
7885 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7886 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7887 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7888
7889 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7890 {
7891 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7892 struct elf_link_hash_entry *h;
7893
7894 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7895 h = elf_follow_link (h);
7896 if (h == &hash1->elf || h == &hash2->elf
7897 || h == &hash3->elf || h == &hash4->elf)
7898 return TRUE;
7899 }
7900 return FALSE;
7901 }
7902
7903 /* Run through all the TLS relocs looking for optimization
7904 opportunities. The linker has been hacked (see ppc64elf.em) to do
7905 a preliminary section layout so that we know the TLS segment
7906 offsets. We can't optimize earlier because some optimizations need
7907 to know the tp offset, and we need to optimize before allocating
7908 dynamic relocations. */
7909
7910 bfd_boolean
7911 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7912 {
7913 bfd *ibfd;
7914 asection *sec;
7915 struct ppc_link_hash_table *htab;
7916 unsigned char *toc_ref;
7917 int pass;
7918
7919 if (!bfd_link_executable (info))
7920 return TRUE;
7921
7922 htab = ppc_hash_table (info);
7923 if (htab == NULL)
7924 return FALSE;
7925
7926 /* Make two passes over the relocs. On the first pass, mark toc
7927 entries involved with tls relocs, and check that tls relocs
7928 involved in setting up a tls_get_addr call are indeed followed by
7929 such a call. If they are not, we can't do any tls optimization.
7930 On the second pass twiddle tls_mask flags to notify
7931 relocate_section that optimization can be done, and adjust got
7932 and plt refcounts. */
7933 toc_ref = NULL;
7934 for (pass = 0; pass < 2; ++pass)
7935 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7936 {
7937 Elf_Internal_Sym *locsyms = NULL;
7938 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7939
7940 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7941 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7942 {
7943 Elf_Internal_Rela *relstart, *rel, *relend;
7944 bfd_boolean found_tls_get_addr_arg = 0;
7945
7946 /* Read the relocations. */
7947 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7948 info->keep_memory);
7949 if (relstart == NULL)
7950 {
7951 free (toc_ref);
7952 return FALSE;
7953 }
7954
7955 relend = relstart + sec->reloc_count;
7956 for (rel = relstart; rel < relend; rel++)
7957 {
7958 enum elf_ppc64_reloc_type r_type;
7959 unsigned long r_symndx;
7960 struct elf_link_hash_entry *h;
7961 Elf_Internal_Sym *sym;
7962 asection *sym_sec;
7963 unsigned char *tls_mask;
7964 unsigned int tls_set, tls_clear, tls_type = 0;
7965 bfd_vma value;
7966 bfd_boolean ok_tprel, is_local;
7967 long toc_ref_index = 0;
7968 int expecting_tls_get_addr = 0;
7969 bfd_boolean ret = FALSE;
7970
7971 r_symndx = ELF64_R_SYM (rel->r_info);
7972 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7973 r_symndx, ibfd))
7974 {
7975 err_free_rel:
7976 if (elf_section_data (sec)->relocs != relstart)
7977 free (relstart);
7978 if (toc_ref != NULL)
7979 free (toc_ref);
7980 if (locsyms != NULL
7981 && (elf_symtab_hdr (ibfd).contents
7982 != (unsigned char *) locsyms))
7983 free (locsyms);
7984 return ret;
7985 }
7986
7987 if (h != NULL)
7988 {
7989 if (h->root.type == bfd_link_hash_defined
7990 || h->root.type == bfd_link_hash_defweak)
7991 value = h->root.u.def.value;
7992 else if (h->root.type == bfd_link_hash_undefweak)
7993 value = 0;
7994 else
7995 {
7996 found_tls_get_addr_arg = 0;
7997 continue;
7998 }
7999 }
8000 else
8001 /* Symbols referenced by TLS relocs must be of type
8002 STT_TLS. So no need for .opd local sym adjust. */
8003 value = sym->st_value;
8004
8005 ok_tprel = FALSE;
8006 is_local = SYMBOL_REFERENCES_LOCAL (info, h);
8007 if (is_local)
8008 {
8009 if (h != NULL
8010 && h->root.type == bfd_link_hash_undefweak)
8011 ok_tprel = TRUE;
8012 else if (sym_sec != NULL
8013 && sym_sec->output_section != NULL)
8014 {
8015 value += sym_sec->output_offset;
8016 value += sym_sec->output_section->vma;
8017 value -= htab->elf.tls_sec->vma + TP_OFFSET;
8018 /* Note that even though the prefix insns
8019 allow a 1<<33 offset we use the same test
8020 as for addis;addi. There may be a mix of
8021 pcrel and non-pcrel code and the decision
8022 to optimise is per symbol, not per TLS
8023 sequence. */
8024 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
8025 }
8026 }
8027
8028 r_type = ELF64_R_TYPE (rel->r_info);
8029 /* If this section has old-style __tls_get_addr calls
8030 without marker relocs, then check that each
8031 __tls_get_addr call reloc is preceded by a reloc
8032 that conceivably belongs to the __tls_get_addr arg
8033 setup insn. If we don't find matching arg setup
8034 relocs, don't do any tls optimization. */
8035 if (pass == 0
8036 && sec->nomark_tls_get_addr
8037 && h != NULL
8038 && is_tls_get_addr (h, htab)
8039 && !found_tls_get_addr_arg
8040 && is_branch_reloc (r_type))
8041 {
8042 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8043 "TLS optimization disabled\n"),
8044 ibfd, sec, rel->r_offset);
8045 ret = TRUE;
8046 goto err_free_rel;
8047 }
8048
8049 found_tls_get_addr_arg = 0;
8050 switch (r_type)
8051 {
8052 case R_PPC64_GOT_TLSLD16:
8053 case R_PPC64_GOT_TLSLD16_LO:
8054 case R_PPC64_GOT_TLSLD34:
8055 expecting_tls_get_addr = 1;
8056 found_tls_get_addr_arg = 1;
8057 /* Fall through. */
8058
8059 case R_PPC64_GOT_TLSLD16_HI:
8060 case R_PPC64_GOT_TLSLD16_HA:
8061 /* These relocs should never be against a symbol
8062 defined in a shared lib. Leave them alone if
8063 that turns out to be the case. */
8064 if (!is_local)
8065 continue;
8066
8067 /* LD -> LE */
8068 tls_set = 0;
8069 tls_clear = TLS_LD;
8070 tls_type = TLS_TLS | TLS_LD;
8071 break;
8072
8073 case R_PPC64_GOT_TLSGD16:
8074 case R_PPC64_GOT_TLSGD16_LO:
8075 case R_PPC64_GOT_TLSGD34:
8076 expecting_tls_get_addr = 1;
8077 found_tls_get_addr_arg = 1;
8078 /* Fall through. */
8079
8080 case R_PPC64_GOT_TLSGD16_HI:
8081 case R_PPC64_GOT_TLSGD16_HA:
8082 if (ok_tprel)
8083 /* GD -> LE */
8084 tls_set = 0;
8085 else
8086 /* GD -> IE */
8087 tls_set = TLS_TLS | TLS_GDIE;
8088 tls_clear = TLS_GD;
8089 tls_type = TLS_TLS | TLS_GD;
8090 break;
8091
8092 case R_PPC64_GOT_TPREL34:
8093 case R_PPC64_GOT_TPREL16_DS:
8094 case R_PPC64_GOT_TPREL16_LO_DS:
8095 case R_PPC64_GOT_TPREL16_HI:
8096 case R_PPC64_GOT_TPREL16_HA:
8097 if (ok_tprel)
8098 {
8099 /* IE -> LE */
8100 tls_set = 0;
8101 tls_clear = TLS_TPREL;
8102 tls_type = TLS_TLS | TLS_TPREL;
8103 break;
8104 }
8105 continue;
8106
8107 case R_PPC64_TLSLD:
8108 if (!is_local)
8109 continue;
8110 /* Fall through. */
8111 case R_PPC64_TLSGD:
8112 if (rel + 1 < relend
8113 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
8114 {
8115 if (pass != 0
8116 && (ELF64_R_TYPE (rel[1].r_info)
8117 != R_PPC64_PLTSEQ)
8118 && (ELF64_R_TYPE (rel[1].r_info)
8119 != R_PPC64_PLTSEQ_NOTOC))
8120 {
8121 r_symndx = ELF64_R_SYM (rel[1].r_info);
8122 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
8123 r_symndx, ibfd))
8124 goto err_free_rel;
8125 if (h != NULL)
8126 {
8127 struct plt_entry *ent = NULL;
8128
8129 for (ent = h->plt.plist;
8130 ent != NULL;
8131 ent = ent->next)
8132 if (ent->addend == rel[1].r_addend)
8133 break;
8134
8135 if (ent != NULL
8136 && ent->plt.refcount > 0)
8137 ent->plt.refcount -= 1;
8138 }
8139 }
8140 continue;
8141 }
8142 found_tls_get_addr_arg = 1;
8143 /* Fall through. */
8144
8145 case R_PPC64_TLS:
8146 case R_PPC64_TOC16:
8147 case R_PPC64_TOC16_LO:
8148 if (sym_sec == NULL || sym_sec != toc)
8149 continue;
8150
8151 /* Mark this toc entry as referenced by a TLS
8152 code sequence. We can do that now in the
8153 case of R_PPC64_TLS, and after checking for
8154 tls_get_addr for the TOC16 relocs. */
8155 if (toc_ref == NULL)
8156 toc_ref
8157 = bfd_zmalloc (toc->output_section->rawsize / 8);
8158 if (toc_ref == NULL)
8159 goto err_free_rel;
8160
8161 if (h != NULL)
8162 value = h->root.u.def.value;
8163 else
8164 value = sym->st_value;
8165 value += rel->r_addend;
8166 if (value % 8 != 0)
8167 continue;
8168 BFD_ASSERT (value < toc->size
8169 && toc->output_offset % 8 == 0);
8170 toc_ref_index = (value + toc->output_offset) / 8;
8171 if (r_type == R_PPC64_TLS
8172 || r_type == R_PPC64_TLSGD
8173 || r_type == R_PPC64_TLSLD)
8174 {
8175 toc_ref[toc_ref_index] = 1;
8176 continue;
8177 }
8178
8179 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8180 continue;
8181
8182 tls_set = 0;
8183 tls_clear = 0;
8184 expecting_tls_get_addr = 2;
8185 break;
8186
8187 case R_PPC64_TPREL64:
8188 if (pass == 0
8189 || sec != toc
8190 || toc_ref == NULL
8191 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8192 continue;
8193 if (ok_tprel)
8194 {
8195 /* IE -> LE */
8196 tls_set = TLS_EXPLICIT;
8197 tls_clear = TLS_TPREL;
8198 break;
8199 }
8200 continue;
8201
8202 case R_PPC64_DTPMOD64:
8203 if (pass == 0
8204 || sec != toc
8205 || toc_ref == NULL
8206 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8207 continue;
8208 if (rel + 1 < relend
8209 && (rel[1].r_info
8210 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8211 && rel[1].r_offset == rel->r_offset + 8)
8212 {
8213 if (ok_tprel)
8214 /* GD -> LE */
8215 tls_set = TLS_EXPLICIT | TLS_GD;
8216 else
8217 /* GD -> IE */
8218 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8219 tls_clear = TLS_GD;
8220 }
8221 else
8222 {
8223 if (!is_local)
8224 continue;
8225
8226 /* LD -> LE */
8227 tls_set = TLS_EXPLICIT;
8228 tls_clear = TLS_LD;
8229 }
8230 break;
8231
8232 default:
8233 continue;
8234 }
8235
8236 if (pass == 0)
8237 {
8238 if (!expecting_tls_get_addr
8239 || !sec->nomark_tls_get_addr)
8240 continue;
8241
8242 if (rel + 1 < relend
8243 && branch_reloc_hash_match (ibfd, rel + 1,
8244 htab->tls_get_addr_fd,
8245 htab->tga_desc_fd,
8246 htab->tls_get_addr,
8247 htab->tga_desc))
8248 {
8249 if (expecting_tls_get_addr == 2)
8250 {
8251 /* Check for toc tls entries. */
8252 unsigned char *toc_tls;
8253 int retval;
8254
8255 retval = get_tls_mask (&toc_tls, NULL, NULL,
8256 &locsyms,
8257 rel, ibfd);
8258 if (retval == 0)
8259 goto err_free_rel;
8260 if (toc_tls != NULL)
8261 {
8262 if ((*toc_tls & TLS_TLS) != 0
8263 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8264 found_tls_get_addr_arg = 1;
8265 if (retval > 1)
8266 toc_ref[toc_ref_index] = 1;
8267 }
8268 }
8269 continue;
8270 }
8271
8272 /* Uh oh, we didn't find the expected call. We
8273 could just mark this symbol to exclude it
8274 from tls optimization but it's safer to skip
8275 the entire optimization. */
8276 /* xgettext:c-format */
8277 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8278 "TLS optimization disabled\n"),
8279 ibfd, sec, rel->r_offset);
8280 ret = TRUE;
8281 goto err_free_rel;
8282 }
8283
8284 /* If we don't have old-style __tls_get_addr calls
8285 without TLSGD/TLSLD marker relocs, and we haven't
8286 found a new-style __tls_get_addr call with a
8287 marker for this symbol, then we either have a
8288 broken object file or an -mlongcall style
8289 indirect call to __tls_get_addr without a marker.
8290 Disable optimization in this case. */
8291 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8292 && (tls_set & TLS_EXPLICIT) == 0
8293 && !sec->nomark_tls_get_addr
8294 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8295 != (TLS_TLS | TLS_MARK)))
8296 continue;
8297
8298 if (expecting_tls_get_addr == 1 + !sec->nomark_tls_get_addr)
8299 {
8300 struct plt_entry *ent = NULL;
8301
8302 if (htab->tls_get_addr_fd != NULL)
8303 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8304 ent != NULL;
8305 ent = ent->next)
8306 if (ent->addend == 0)
8307 break;
8308
8309 if (ent == NULL && htab->tga_desc_fd != NULL)
8310 for (ent = htab->tga_desc_fd->elf.plt.plist;
8311 ent != NULL;
8312 ent = ent->next)
8313 if (ent->addend == 0)
8314 break;
8315
8316 if (ent == NULL && htab->tls_get_addr != NULL)
8317 for (ent = htab->tls_get_addr->elf.plt.plist;
8318 ent != NULL;
8319 ent = ent->next)
8320 if (ent->addend == 0)
8321 break;
8322
8323 if (ent == NULL && htab->tga_desc != NULL)
8324 for (ent = htab->tga_desc->elf.plt.plist;
8325 ent != NULL;
8326 ent = ent->next)
8327 if (ent->addend == 0)
8328 break;
8329
8330 if (ent != NULL
8331 && ent->plt.refcount > 0)
8332 ent->plt.refcount -= 1;
8333 }
8334
8335 if (tls_clear == 0)
8336 continue;
8337
8338 if ((tls_set & TLS_EXPLICIT) == 0)
8339 {
8340 struct got_entry *ent;
8341
8342 /* Adjust got entry for this reloc. */
8343 if (h != NULL)
8344 ent = h->got.glist;
8345 else
8346 ent = elf_local_got_ents (ibfd)[r_symndx];
8347
8348 for (; ent != NULL; ent = ent->next)
8349 if (ent->addend == rel->r_addend
8350 && ent->owner == ibfd
8351 && ent->tls_type == tls_type)
8352 break;
8353 if (ent == NULL)
8354 abort ();
8355
8356 if (tls_set == 0)
8357 {
8358 /* We managed to get rid of a got entry. */
8359 if (ent->got.refcount > 0)
8360 ent->got.refcount -= 1;
8361 }
8362 }
8363 else
8364 {
8365 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8366 we'll lose one or two dyn relocs. */
8367 if (!dec_dynrel_count (rel->r_info, sec, info,
8368 NULL, h, sym))
8369 return FALSE;
8370
8371 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8372 {
8373 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8374 NULL, h, sym))
8375 return FALSE;
8376 }
8377 }
8378
8379 *tls_mask |= tls_set & 0xff;
8380 *tls_mask &= ~tls_clear;
8381 }
8382
8383 if (elf_section_data (sec)->relocs != relstart)
8384 free (relstart);
8385 }
8386
8387 if (locsyms != NULL
8388 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8389 {
8390 if (!info->keep_memory)
8391 free (locsyms);
8392 else
8393 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8394 }
8395 }
8396
8397 if (toc_ref != NULL)
8398 free (toc_ref);
8399 htab->do_tls_opt = 1;
8400 return TRUE;
8401 }
8402
8403 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8404 the values of any global symbols in a toc section that has been
8405 edited. Globals in toc sections should be a rarity, so this function
8406 sets a flag if any are found in toc sections other than the one just
8407 edited, so that further hash table traversals can be avoided. */
8408
8409 struct adjust_toc_info
8410 {
8411 asection *toc;
8412 unsigned long *skip;
8413 bfd_boolean global_toc_syms;
8414 };
8415
8416 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8417
8418 static bfd_boolean
8419 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8420 {
8421 struct ppc_link_hash_entry *eh;
8422 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8423 unsigned long i;
8424
8425 if (h->root.type != bfd_link_hash_defined
8426 && h->root.type != bfd_link_hash_defweak)
8427 return TRUE;
8428
8429 eh = ppc_elf_hash_entry (h);
8430 if (eh->adjust_done)
8431 return TRUE;
8432
8433 if (eh->elf.root.u.def.section == toc_inf->toc)
8434 {
8435 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8436 i = toc_inf->toc->rawsize >> 3;
8437 else
8438 i = eh->elf.root.u.def.value >> 3;
8439
8440 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8441 {
8442 _bfd_error_handler
8443 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8444 do
8445 ++i;
8446 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8447 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8448 }
8449
8450 eh->elf.root.u.def.value -= toc_inf->skip[i];
8451 eh->adjust_done = 1;
8452 }
8453 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8454 toc_inf->global_toc_syms = TRUE;
8455
8456 return TRUE;
8457 }
8458
8459 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8460 on a _LO variety toc/got reloc. */
8461
8462 static bfd_boolean
8463 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8464 {
8465 return ((insn & (0x3fu << 26)) == 12u << 26 /* addic */
8466 || (insn & (0x3fu << 26)) == 14u << 26 /* addi */
8467 || (insn & (0x3fu << 26)) == 32u << 26 /* lwz */
8468 || (insn & (0x3fu << 26)) == 34u << 26 /* lbz */
8469 || (insn & (0x3fu << 26)) == 36u << 26 /* stw */
8470 || (insn & (0x3fu << 26)) == 38u << 26 /* stb */
8471 || (insn & (0x3fu << 26)) == 40u << 26 /* lhz */
8472 || (insn & (0x3fu << 26)) == 42u << 26 /* lha */
8473 || (insn & (0x3fu << 26)) == 44u << 26 /* sth */
8474 || (insn & (0x3fu << 26)) == 46u << 26 /* lmw */
8475 || (insn & (0x3fu << 26)) == 47u << 26 /* stmw */
8476 || (insn & (0x3fu << 26)) == 48u << 26 /* lfs */
8477 || (insn & (0x3fu << 26)) == 50u << 26 /* lfd */
8478 || (insn & (0x3fu << 26)) == 52u << 26 /* stfs */
8479 || (insn & (0x3fu << 26)) == 54u << 26 /* stfd */
8480 || (insn & (0x3fu << 26)) == 56u << 26 /* lq,lfq */
8481 || ((insn & (0x3fu << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8482 /* Exclude lfqu by testing reloc. If relocs are ever
8483 defined for the reduced D field in psq_lu then those
8484 will need testing too. */
8485 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8486 || ((insn & (0x3fu << 26)) == 58u << 26 /* ld,lwa */
8487 && (insn & 1) == 0)
8488 || (insn & (0x3fu << 26)) == 60u << 26 /* stfq */
8489 || ((insn & (0x3fu << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8490 /* Exclude stfqu. psq_stu as above for psq_lu. */
8491 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8492 || ((insn & (0x3fu << 26)) == 62u << 26 /* std,stq */
8493 && (insn & 1) == 0));
8494 }
8495
8496 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8497 pld ra,symbol@got@pcrel
8498 load/store rt,off(ra)
8499 or
8500 pla ra,symbol@pcrel
8501 load/store rt,off(ra)
8502 may be translated to
8503 pload/pstore rt,symbol+off@pcrel
8504 nop.
8505 This function returns true if the optimization is possible, placing
8506 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8507
8508 On entry to this function, the linker has already determined that
8509 the pld can be replaced with pla: *PINSN1 is that pla insn,
8510 while *PINSN2 is the second instruction. */
8511
8512 static bfd_boolean
8513 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2, bfd_signed_vma *poff)
8514 {
8515 uint64_t insn1 = *pinsn1;
8516 uint64_t insn2 = *pinsn2;
8517 bfd_signed_vma off;
8518
8519 if ((insn2 & (63ULL << 58)) == 1ULL << 58)
8520 {
8521 /* Check that regs match. */
8522 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8523 return FALSE;
8524
8525 /* P8LS or PMLS form, non-pcrel. */
8526 if ((insn2 & (-1ULL << 50) & ~(1ULL << 56)) != (1ULL << 58))
8527 return FALSE;
8528
8529 *pinsn1 = (insn2 & ~(31 << 16) & ~0x3ffff0000ffffULL) | (1ULL << 52);
8530 *pinsn2 = PNOP;
8531 off = ((insn2 >> 16) & 0x3ffff0000ULL) | (insn2 & 0xffff);
8532 *poff = (off ^ 0x200000000ULL) - 0x200000000ULL;
8533 return TRUE;
8534 }
8535
8536 insn2 >>= 32;
8537
8538 /* Check that regs match. */
8539 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8540 return FALSE;
8541
8542 switch ((insn2 >> 26) & 63)
8543 {
8544 default:
8545 return FALSE;
8546
8547 case 32: /* lwz */
8548 case 34: /* lbz */
8549 case 36: /* stw */
8550 case 38: /* stb */
8551 case 40: /* lhz */
8552 case 42: /* lha */
8553 case 44: /* sth */
8554 case 48: /* lfs */
8555 case 50: /* lfd */
8556 case 52: /* stfs */
8557 case 54: /* stfd */
8558 /* These are the PMLS cases, where we just need to tack a prefix
8559 on the insn. */
8560 insn1 = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8561 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8562 off = insn2 & 0xffff;
8563 break;
8564
8565 case 58: /* lwa, ld */
8566 if ((insn2 & 1) != 0)
8567 return FALSE;
8568 insn1 = ((1ULL << 58) | (1ULL << 52)
8569 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8570 | (insn2 & (31ULL << 21)));
8571 off = insn2 & 0xfffc;
8572 break;
8573
8574 case 57: /* lxsd, lxssp */
8575 if ((insn2 & 3) < 2)
8576 return FALSE;
8577 insn1 = ((1ULL << 58) | (1ULL << 52)
8578 | ((40ULL | (insn2 & 3)) << 26)
8579 | (insn2 & (31ULL << 21)));
8580 off = insn2 & 0xfffc;
8581 break;
8582
8583 case 61: /* stxsd, stxssp, lxv, stxv */
8584 if ((insn2 & 3) == 0)
8585 return FALSE;
8586 else if ((insn2 & 3) >= 2)
8587 {
8588 insn1 = ((1ULL << 58) | (1ULL << 52)
8589 | ((44ULL | (insn2 & 3)) << 26)
8590 | (insn2 & (31ULL << 21)));
8591 off = insn2 & 0xfffc;
8592 }
8593 else
8594 {
8595 insn1 = ((1ULL << 58) | (1ULL << 52)
8596 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8597 | (insn2 & (31ULL << 21)));
8598 off = insn2 & 0xfff0;
8599 }
8600 break;
8601
8602 case 56: /* lq */
8603 insn1 = ((1ULL << 58) | (1ULL << 52)
8604 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8605 off = insn2 & 0xffff;
8606 break;
8607
8608 case 6: /* lxvp, stxvp */
8609 if ((insn2 & 0xe) != 0)
8610 return FALSE;
8611 insn1 = ((1ULL << 58) | (1ULL << 52)
8612 | ((insn2 & 1) == 0 ? 58ULL << 26 : 62ULL << 26)
8613 | (insn2 & (31ULL << 21)));
8614 off = insn2 & 0xfff0;
8615 break;
8616
8617 case 62: /* std, stq */
8618 if ((insn2 & 1) != 0)
8619 return FALSE;
8620 insn1 = ((1ULL << 58) | (1ULL << 52)
8621 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8622 | (insn2 & (31ULL << 21)));
8623 off = insn2 & 0xfffc;
8624 break;
8625 }
8626
8627 *pinsn1 = insn1;
8628 *pinsn2 = (uint64_t) NOP << 32;
8629 *poff = (off ^ 0x8000) - 0x8000;
8630 return TRUE;
8631 }
8632
8633 /* Examine all relocs referencing .toc sections in order to remove
8634 unused .toc entries. */
8635
8636 bfd_boolean
8637 ppc64_elf_edit_toc (struct bfd_link_info *info)
8638 {
8639 bfd *ibfd;
8640 struct adjust_toc_info toc_inf;
8641 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8642
8643 htab->do_toc_opt = 1;
8644 toc_inf.global_toc_syms = TRUE;
8645 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8646 {
8647 asection *toc, *sec;
8648 Elf_Internal_Shdr *symtab_hdr;
8649 Elf_Internal_Sym *local_syms;
8650 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8651 unsigned long *skip, *drop;
8652 unsigned char *used;
8653 unsigned char *keep, last, some_unused;
8654
8655 if (!is_ppc64_elf (ibfd))
8656 continue;
8657
8658 toc = bfd_get_section_by_name (ibfd, ".toc");
8659 if (toc == NULL
8660 || toc->size == 0
8661 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8662 || discarded_section (toc))
8663 continue;
8664
8665 toc_relocs = NULL;
8666 local_syms = NULL;
8667 symtab_hdr = &elf_symtab_hdr (ibfd);
8668
8669 /* Look at sections dropped from the final link. */
8670 skip = NULL;
8671 relstart = NULL;
8672 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8673 {
8674 if (sec->reloc_count == 0
8675 || !discarded_section (sec)
8676 || get_opd_info (sec)
8677 || (sec->flags & SEC_ALLOC) == 0
8678 || (sec->flags & SEC_DEBUGGING) != 0)
8679 continue;
8680
8681 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8682 if (relstart == NULL)
8683 goto error_ret;
8684
8685 /* Run through the relocs to see which toc entries might be
8686 unused. */
8687 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8688 {
8689 enum elf_ppc64_reloc_type r_type;
8690 unsigned long r_symndx;
8691 asection *sym_sec;
8692 struct elf_link_hash_entry *h;
8693 Elf_Internal_Sym *sym;
8694 bfd_vma val;
8695
8696 r_type = ELF64_R_TYPE (rel->r_info);
8697 switch (r_type)
8698 {
8699 default:
8700 continue;
8701
8702 case R_PPC64_TOC16:
8703 case R_PPC64_TOC16_LO:
8704 case R_PPC64_TOC16_HI:
8705 case R_PPC64_TOC16_HA:
8706 case R_PPC64_TOC16_DS:
8707 case R_PPC64_TOC16_LO_DS:
8708 break;
8709 }
8710
8711 r_symndx = ELF64_R_SYM (rel->r_info);
8712 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8713 r_symndx, ibfd))
8714 goto error_ret;
8715
8716 if (sym_sec != toc)
8717 continue;
8718
8719 if (h != NULL)
8720 val = h->root.u.def.value;
8721 else
8722 val = sym->st_value;
8723 val += rel->r_addend;
8724
8725 if (val >= toc->size)
8726 continue;
8727
8728 /* Anything in the toc ought to be aligned to 8 bytes.
8729 If not, don't mark as unused. */
8730 if (val & 7)
8731 continue;
8732
8733 if (skip == NULL)
8734 {
8735 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8736 if (skip == NULL)
8737 goto error_ret;
8738 }
8739
8740 skip[val >> 3] = ref_from_discarded;
8741 }
8742
8743 if (elf_section_data (sec)->relocs != relstart)
8744 free (relstart);
8745 }
8746
8747 /* For largetoc loads of address constants, we can convert
8748 . addis rx,2,addr@got@ha
8749 . ld ry,addr@got@l(rx)
8750 to
8751 . addis rx,2,addr@toc@ha
8752 . addi ry,rx,addr@toc@l
8753 when addr is within 2G of the toc pointer. This then means
8754 that the word storing "addr" in the toc is no longer needed. */
8755
8756 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8757 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8758 && toc->reloc_count != 0)
8759 {
8760 /* Read toc relocs. */
8761 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8762 info->keep_memory);
8763 if (toc_relocs == NULL)
8764 goto error_ret;
8765
8766 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8767 {
8768 enum elf_ppc64_reloc_type r_type;
8769 unsigned long r_symndx;
8770 asection *sym_sec;
8771 struct elf_link_hash_entry *h;
8772 Elf_Internal_Sym *sym;
8773 bfd_vma val, addr;
8774
8775 r_type = ELF64_R_TYPE (rel->r_info);
8776 if (r_type != R_PPC64_ADDR64)
8777 continue;
8778
8779 r_symndx = ELF64_R_SYM (rel->r_info);
8780 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8781 r_symndx, ibfd))
8782 goto error_ret;
8783
8784 if (sym_sec == NULL
8785 || sym_sec->output_section == NULL
8786 || discarded_section (sym_sec))
8787 continue;
8788
8789 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8790 continue;
8791
8792 if (h != NULL)
8793 {
8794 if (h->type == STT_GNU_IFUNC)
8795 continue;
8796 val = h->root.u.def.value;
8797 }
8798 else
8799 {
8800 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8801 continue;
8802 val = sym->st_value;
8803 }
8804 val += rel->r_addend;
8805 val += sym_sec->output_section->vma + sym_sec->output_offset;
8806
8807 /* We don't yet know the exact toc pointer value, but we
8808 know it will be somewhere in the toc section. Don't
8809 optimize if the difference from any possible toc
8810 pointer is outside [ff..f80008000, 7fff7fff]. */
8811 addr = toc->output_section->vma + TOC_BASE_OFF;
8812 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8813 continue;
8814
8815 addr = toc->output_section->vma + toc->output_section->rawsize;
8816 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8817 continue;
8818
8819 if (skip == NULL)
8820 {
8821 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8822 if (skip == NULL)
8823 goto error_ret;
8824 }
8825
8826 skip[rel->r_offset >> 3]
8827 |= can_optimize | ((rel - toc_relocs) << 2);
8828 }
8829 }
8830
8831 if (skip == NULL)
8832 continue;
8833
8834 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8835 if (used == NULL)
8836 {
8837 error_ret:
8838 if (local_syms != NULL
8839 && symtab_hdr->contents != (unsigned char *) local_syms)
8840 free (local_syms);
8841 if (sec != NULL
8842 && relstart != NULL
8843 && elf_section_data (sec)->relocs != relstart)
8844 free (relstart);
8845 if (toc_relocs != NULL
8846 && elf_section_data (toc)->relocs != toc_relocs)
8847 free (toc_relocs);
8848 if (skip != NULL)
8849 free (skip);
8850 return FALSE;
8851 }
8852
8853 /* Now check all kept sections that might reference the toc.
8854 Check the toc itself last. */
8855 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8856 : ibfd->sections);
8857 sec != NULL;
8858 sec = (sec == toc ? NULL
8859 : sec->next == NULL ? toc
8860 : sec->next == toc && toc->next ? toc->next
8861 : sec->next))
8862 {
8863 int repeat;
8864
8865 if (sec->reloc_count == 0
8866 || discarded_section (sec)
8867 || get_opd_info (sec)
8868 || (sec->flags & SEC_ALLOC) == 0
8869 || (sec->flags & SEC_DEBUGGING) != 0)
8870 continue;
8871
8872 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8873 info->keep_memory);
8874 if (relstart == NULL)
8875 {
8876 free (used);
8877 goto error_ret;
8878 }
8879
8880 /* Mark toc entries referenced as used. */
8881 do
8882 {
8883 repeat = 0;
8884 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8885 {
8886 enum elf_ppc64_reloc_type r_type;
8887 unsigned long r_symndx;
8888 asection *sym_sec;
8889 struct elf_link_hash_entry *h;
8890 Elf_Internal_Sym *sym;
8891 bfd_vma val;
8892
8893 r_type = ELF64_R_TYPE (rel->r_info);
8894 switch (r_type)
8895 {
8896 case R_PPC64_TOC16:
8897 case R_PPC64_TOC16_LO:
8898 case R_PPC64_TOC16_HI:
8899 case R_PPC64_TOC16_HA:
8900 case R_PPC64_TOC16_DS:
8901 case R_PPC64_TOC16_LO_DS:
8902 /* In case we're taking addresses of toc entries. */
8903 case R_PPC64_ADDR64:
8904 break;
8905
8906 default:
8907 continue;
8908 }
8909
8910 r_symndx = ELF64_R_SYM (rel->r_info);
8911 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8912 r_symndx, ibfd))
8913 {
8914 free (used);
8915 goto error_ret;
8916 }
8917
8918 if (sym_sec != toc)
8919 continue;
8920
8921 if (h != NULL)
8922 val = h->root.u.def.value;
8923 else
8924 val = sym->st_value;
8925 val += rel->r_addend;
8926
8927 if (val >= toc->size)
8928 continue;
8929
8930 if ((skip[val >> 3] & can_optimize) != 0)
8931 {
8932 bfd_vma off;
8933 unsigned char opc;
8934
8935 switch (r_type)
8936 {
8937 case R_PPC64_TOC16_HA:
8938 break;
8939
8940 case R_PPC64_TOC16_LO_DS:
8941 off = rel->r_offset;
8942 off += (bfd_big_endian (ibfd) ? -2 : 3);
8943 if (!bfd_get_section_contents (ibfd, sec, &opc,
8944 off, 1))
8945 {
8946 free (used);
8947 goto error_ret;
8948 }
8949 if ((opc & (0x3f << 2)) == (58u << 2))
8950 break;
8951 /* Fall through. */
8952
8953 default:
8954 /* Wrong sort of reloc, or not a ld. We may
8955 as well clear ref_from_discarded too. */
8956 skip[val >> 3] = 0;
8957 }
8958 }
8959
8960 if (sec != toc)
8961 used[val >> 3] = 1;
8962 /* For the toc section, we only mark as used if this
8963 entry itself isn't unused. */
8964 else if ((used[rel->r_offset >> 3]
8965 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8966 && !used[val >> 3])
8967 {
8968 /* Do all the relocs again, to catch reference
8969 chains. */
8970 repeat = 1;
8971 used[val >> 3] = 1;
8972 }
8973 }
8974 }
8975 while (repeat);
8976
8977 if (elf_section_data (sec)->relocs != relstart)
8978 free (relstart);
8979 }
8980
8981 /* Merge the used and skip arrays. Assume that TOC
8982 doublewords not appearing as either used or unused belong
8983 to an entry more than one doubleword in size. */
8984 for (drop = skip, keep = used, last = 0, some_unused = 0;
8985 drop < skip + (toc->size + 7) / 8;
8986 ++drop, ++keep)
8987 {
8988 if (*keep)
8989 {
8990 *drop &= ~ref_from_discarded;
8991 if ((*drop & can_optimize) != 0)
8992 some_unused = 1;
8993 last = 0;
8994 }
8995 else if ((*drop & ref_from_discarded) != 0)
8996 {
8997 some_unused = 1;
8998 last = ref_from_discarded;
8999 }
9000 else
9001 *drop = last;
9002 }
9003
9004 free (used);
9005
9006 if (some_unused)
9007 {
9008 bfd_byte *contents, *src;
9009 unsigned long off;
9010 Elf_Internal_Sym *sym;
9011 bfd_boolean local_toc_syms = FALSE;
9012
9013 /* Shuffle the toc contents, and at the same time convert the
9014 skip array from booleans into offsets. */
9015 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9016 goto error_ret;
9017
9018 elf_section_data (toc)->this_hdr.contents = contents;
9019
9020 for (src = contents, off = 0, drop = skip;
9021 src < contents + toc->size;
9022 src += 8, ++drop)
9023 {
9024 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9025 off += 8;
9026 else if (off != 0)
9027 {
9028 *drop = off;
9029 memcpy (src - off, src, 8);
9030 }
9031 }
9032 *drop = off;
9033 toc->rawsize = toc->size;
9034 toc->size = src - contents - off;
9035
9036 /* Adjust addends for relocs against the toc section sym,
9037 and optimize any accesses we can. */
9038 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9039 {
9040 if (sec->reloc_count == 0
9041 || discarded_section (sec))
9042 continue;
9043
9044 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9045 info->keep_memory);
9046 if (relstart == NULL)
9047 goto error_ret;
9048
9049 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9050 {
9051 enum elf_ppc64_reloc_type r_type;
9052 unsigned long r_symndx;
9053 asection *sym_sec;
9054 struct elf_link_hash_entry *h;
9055 bfd_vma val;
9056
9057 r_type = ELF64_R_TYPE (rel->r_info);
9058 switch (r_type)
9059 {
9060 default:
9061 continue;
9062
9063 case R_PPC64_TOC16:
9064 case R_PPC64_TOC16_LO:
9065 case R_PPC64_TOC16_HI:
9066 case R_PPC64_TOC16_HA:
9067 case R_PPC64_TOC16_DS:
9068 case R_PPC64_TOC16_LO_DS:
9069 case R_PPC64_ADDR64:
9070 break;
9071 }
9072
9073 r_symndx = ELF64_R_SYM (rel->r_info);
9074 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9075 r_symndx, ibfd))
9076 goto error_ret;
9077
9078 if (sym_sec != toc)
9079 continue;
9080
9081 if (h != NULL)
9082 val = h->root.u.def.value;
9083 else
9084 {
9085 val = sym->st_value;
9086 if (val != 0)
9087 local_toc_syms = TRUE;
9088 }
9089
9090 val += rel->r_addend;
9091
9092 if (val > toc->rawsize)
9093 val = toc->rawsize;
9094 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9095 continue;
9096 else if ((skip[val >> 3] & can_optimize) != 0)
9097 {
9098 Elf_Internal_Rela *tocrel
9099 = toc_relocs + (skip[val >> 3] >> 2);
9100 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9101
9102 switch (r_type)
9103 {
9104 case R_PPC64_TOC16_HA:
9105 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9106 break;
9107
9108 case R_PPC64_TOC16_LO_DS:
9109 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9110 break;
9111
9112 default:
9113 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9114 ppc_howto_init ();
9115 info->callbacks->einfo
9116 /* xgettext:c-format */
9117 (_("%H: %s references "
9118 "optimized away TOC entry\n"),
9119 ibfd, sec, rel->r_offset,
9120 ppc64_elf_howto_table[r_type]->name);
9121 bfd_set_error (bfd_error_bad_value);
9122 goto error_ret;
9123 }
9124 rel->r_addend = tocrel->r_addend;
9125 elf_section_data (sec)->relocs = relstart;
9126 continue;
9127 }
9128
9129 if (h != NULL || sym->st_value != 0)
9130 continue;
9131
9132 rel->r_addend -= skip[val >> 3];
9133 elf_section_data (sec)->relocs = relstart;
9134 }
9135
9136 if (elf_section_data (sec)->relocs != relstart)
9137 free (relstart);
9138 }
9139
9140 /* We shouldn't have local or global symbols defined in the TOC,
9141 but handle them anyway. */
9142 if (local_syms != NULL)
9143 for (sym = local_syms;
9144 sym < local_syms + symtab_hdr->sh_info;
9145 ++sym)
9146 if (sym->st_value != 0
9147 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9148 {
9149 unsigned long i;
9150
9151 if (sym->st_value > toc->rawsize)
9152 i = toc->rawsize >> 3;
9153 else
9154 i = sym->st_value >> 3;
9155
9156 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9157 {
9158 if (local_toc_syms)
9159 _bfd_error_handler
9160 (_("%s defined on removed toc entry"),
9161 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9162 do
9163 ++i;
9164 while ((skip[i] & (ref_from_discarded | can_optimize)));
9165 sym->st_value = (bfd_vma) i << 3;
9166 }
9167
9168 sym->st_value -= skip[i];
9169 symtab_hdr->contents = (unsigned char *) local_syms;
9170 }
9171
9172 /* Adjust any global syms defined in this toc input section. */
9173 if (toc_inf.global_toc_syms)
9174 {
9175 toc_inf.toc = toc;
9176 toc_inf.skip = skip;
9177 toc_inf.global_toc_syms = FALSE;
9178 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9179 &toc_inf);
9180 }
9181
9182 if (toc->reloc_count != 0)
9183 {
9184 Elf_Internal_Shdr *rel_hdr;
9185 Elf_Internal_Rela *wrel;
9186 bfd_size_type sz;
9187
9188 /* Remove unused toc relocs, and adjust those we keep. */
9189 if (toc_relocs == NULL)
9190 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9191 info->keep_memory);
9192 if (toc_relocs == NULL)
9193 goto error_ret;
9194
9195 wrel = toc_relocs;
9196 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9197 if ((skip[rel->r_offset >> 3]
9198 & (ref_from_discarded | can_optimize)) == 0)
9199 {
9200 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9201 wrel->r_info = rel->r_info;
9202 wrel->r_addend = rel->r_addend;
9203 ++wrel;
9204 }
9205 else if (!dec_dynrel_count (rel->r_info, toc, info,
9206 &local_syms, NULL, NULL))
9207 goto error_ret;
9208
9209 elf_section_data (toc)->relocs = toc_relocs;
9210 toc->reloc_count = wrel - toc_relocs;
9211 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9212 sz = rel_hdr->sh_entsize;
9213 rel_hdr->sh_size = toc->reloc_count * sz;
9214 }
9215 }
9216 else if (toc_relocs != NULL
9217 && elf_section_data (toc)->relocs != toc_relocs)
9218 free (toc_relocs);
9219
9220 if (local_syms != NULL
9221 && symtab_hdr->contents != (unsigned char *) local_syms)
9222 {
9223 if (!info->keep_memory)
9224 free (local_syms);
9225 else
9226 symtab_hdr->contents = (unsigned char *) local_syms;
9227 }
9228 free (skip);
9229 }
9230
9231 /* Look for cases where we can change an indirect GOT access to
9232 a GOT relative or PC relative access, possibly reducing the
9233 number of GOT entries. */
9234 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9235 {
9236 asection *sec;
9237 Elf_Internal_Shdr *symtab_hdr;
9238 Elf_Internal_Sym *local_syms;
9239 Elf_Internal_Rela *relstart, *rel;
9240 bfd_vma got;
9241
9242 if (!is_ppc64_elf (ibfd))
9243 continue;
9244
9245 if (!ppc64_elf_tdata (ibfd)->has_optrel)
9246 continue;
9247
9248 sec = ppc64_elf_tdata (ibfd)->got;
9249 got = 0;
9250 if (sec != NULL)
9251 got = sec->output_section->vma + sec->output_offset + 0x8000;
9252
9253 local_syms = NULL;
9254 symtab_hdr = &elf_symtab_hdr (ibfd);
9255
9256 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9257 {
9258 if (sec->reloc_count == 0
9259 || !ppc64_elf_section_data (sec)->has_optrel
9260 || discarded_section (sec))
9261 continue;
9262
9263 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9264 info->keep_memory);
9265 if (relstart == NULL)
9266 {
9267 got_error_ret:
9268 if (local_syms != NULL
9269 && symtab_hdr->contents != (unsigned char *) local_syms)
9270 free (local_syms);
9271 if (sec != NULL
9272 && relstart != NULL
9273 && elf_section_data (sec)->relocs != relstart)
9274 free (relstart);
9275 return FALSE;
9276 }
9277
9278 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9279 {
9280 enum elf_ppc64_reloc_type r_type;
9281 unsigned long r_symndx;
9282 Elf_Internal_Sym *sym;
9283 asection *sym_sec;
9284 struct elf_link_hash_entry *h;
9285 struct got_entry *ent;
9286 bfd_vma val, pc;
9287 unsigned char buf[8];
9288 unsigned int insn;
9289 enum {no_check, check_lo, check_ha} insn_check;
9290
9291 r_type = ELF64_R_TYPE (rel->r_info);
9292 switch (r_type)
9293 {
9294 default:
9295 insn_check = no_check;
9296 break;
9297
9298 case R_PPC64_PLT16_HA:
9299 case R_PPC64_GOT_TLSLD16_HA:
9300 case R_PPC64_GOT_TLSGD16_HA:
9301 case R_PPC64_GOT_TPREL16_HA:
9302 case R_PPC64_GOT_DTPREL16_HA:
9303 case R_PPC64_GOT16_HA:
9304 case R_PPC64_TOC16_HA:
9305 insn_check = check_ha;
9306 break;
9307
9308 case R_PPC64_PLT16_LO:
9309 case R_PPC64_PLT16_LO_DS:
9310 case R_PPC64_GOT_TLSLD16_LO:
9311 case R_PPC64_GOT_TLSGD16_LO:
9312 case R_PPC64_GOT_TPREL16_LO_DS:
9313 case R_PPC64_GOT_DTPREL16_LO_DS:
9314 case R_PPC64_GOT16_LO:
9315 case R_PPC64_GOT16_LO_DS:
9316 case R_PPC64_TOC16_LO:
9317 case R_PPC64_TOC16_LO_DS:
9318 insn_check = check_lo;
9319 break;
9320 }
9321
9322 if (insn_check != no_check)
9323 {
9324 bfd_vma off = rel->r_offset & ~3;
9325
9326 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9327 goto got_error_ret;
9328
9329 insn = bfd_get_32 (ibfd, buf);
9330 if (insn_check == check_lo
9331 ? !ok_lo_toc_insn (insn, r_type)
9332 : ((insn & ((0x3fu << 26) | 0x1f << 16))
9333 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9334 {
9335 char str[12];
9336
9337 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9338 sprintf (str, "%#08x", insn);
9339 info->callbacks->einfo
9340 /* xgettext:c-format */
9341 (_("%H: got/toc optimization is not supported for"
9342 " %s instruction\n"),
9343 ibfd, sec, rel->r_offset & ~3, str);
9344 continue;
9345 }
9346 }
9347
9348 switch (r_type)
9349 {
9350 /* Note that we don't delete GOT entries for
9351 R_PPC64_GOT16_DS since we'd need a lot more
9352 analysis. For starters, the preliminary layout is
9353 before the GOT, PLT, dynamic sections and stubs are
9354 laid out. Then we'd need to allow for changes in
9355 distance between sections caused by alignment. */
9356 default:
9357 continue;
9358
9359 case R_PPC64_GOT16_HA:
9360 case R_PPC64_GOT16_LO_DS:
9361 case R_PPC64_GOT_PCREL34:
9362 break;
9363 }
9364
9365 r_symndx = ELF64_R_SYM (rel->r_info);
9366 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9367 r_symndx, ibfd))
9368 goto got_error_ret;
9369
9370 if (sym_sec == NULL
9371 || sym_sec->output_section == NULL
9372 || discarded_section (sym_sec))
9373 continue;
9374
9375 if ((h ? h->type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
9376 continue;
9377
9378 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9379 continue;
9380
9381 if (h != NULL)
9382 val = h->root.u.def.value;
9383 else
9384 val = sym->st_value;
9385 val += rel->r_addend;
9386 val += sym_sec->output_section->vma + sym_sec->output_offset;
9387
9388 /* Fudge factor to allow for the fact that the preliminary layout
9389 isn't exact. Reduce limits by this factor. */
9390 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9391
9392 switch (r_type)
9393 {
9394 default:
9395 continue;
9396
9397 case R_PPC64_GOT16_HA:
9398 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9399 >= LIMIT_ADJUST (0x100000000ULL))
9400 continue;
9401
9402 if (!bfd_get_section_contents (ibfd, sec, buf,
9403 rel->r_offset & ~3, 4))
9404 goto got_error_ret;
9405 insn = bfd_get_32 (ibfd, buf);
9406 if (((insn & ((0x3fu << 26) | 0x1f << 16))
9407 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9408 continue;
9409 break;
9410
9411 case R_PPC64_GOT16_LO_DS:
9412 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9413 >= LIMIT_ADJUST (0x100000000ULL))
9414 continue;
9415 if (!bfd_get_section_contents (ibfd, sec, buf,
9416 rel->r_offset & ~3, 4))
9417 goto got_error_ret;
9418 insn = bfd_get_32 (ibfd, buf);
9419 if ((insn & (0x3fu << 26 | 0x3)) != 58u << 26 /* ld */)
9420 continue;
9421 break;
9422
9423 case R_PPC64_GOT_PCREL34:
9424 pc = rel->r_offset;
9425 pc += sec->output_section->vma + sec->output_offset;
9426 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9427 >= LIMIT_ADJUST (1ULL << 34))
9428 continue;
9429 if (!bfd_get_section_contents (ibfd, sec, buf,
9430 rel->r_offset & ~3, 8))
9431 goto got_error_ret;
9432 insn = bfd_get_32 (ibfd, buf);
9433 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9434 continue;
9435 insn = bfd_get_32 (ibfd, buf + 4);
9436 if ((insn & (0x3fu << 26)) != 57u << 26)
9437 continue;
9438 break;
9439 }
9440 #undef LIMIT_ADJUST
9441
9442 if (h != NULL)
9443 ent = h->got.glist;
9444 else
9445 {
9446 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9447 ent = local_got_ents[r_symndx];
9448 }
9449 for (; ent != NULL; ent = ent->next)
9450 if (ent->addend == rel->r_addend
9451 && ent->owner == ibfd
9452 && ent->tls_type == 0)
9453 break;
9454 BFD_ASSERT (ent && ent->got.refcount > 0);
9455 ent->got.refcount -= 1;
9456 }
9457
9458 if (elf_section_data (sec)->relocs != relstart)
9459 free (relstart);
9460 }
9461
9462 if (local_syms != NULL
9463 && symtab_hdr->contents != (unsigned char *) local_syms)
9464 {
9465 if (!info->keep_memory)
9466 free (local_syms);
9467 else
9468 symtab_hdr->contents = (unsigned char *) local_syms;
9469 }
9470 }
9471
9472 return TRUE;
9473 }
9474
9475 /* Return true iff input section I references the TOC using
9476 instructions limited to +/-32k offsets. */
9477
9478 bfd_boolean
9479 ppc64_elf_has_small_toc_reloc (asection *i)
9480 {
9481 return (is_ppc64_elf (i->owner)
9482 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9483 }
9484
9485 /* Allocate space for one GOT entry. */
9486
9487 static void
9488 allocate_got (struct elf_link_hash_entry *h,
9489 struct bfd_link_info *info,
9490 struct got_entry *gent)
9491 {
9492 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9493 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
9494 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9495 ? 16 : 8);
9496 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9497 ? 2 : 1) * sizeof (Elf64_External_Rela);
9498 asection *got = ppc64_elf_tdata (gent->owner)->got;
9499
9500 gent->got.offset = got->size;
9501 got->size += entsize;
9502
9503 if (h->type == STT_GNU_IFUNC)
9504 {
9505 htab->elf.irelplt->size += rentsize;
9506 htab->got_reli_size += rentsize;
9507 }
9508 else if (((bfd_link_pic (info)
9509 && !(gent->tls_type != 0
9510 && bfd_link_executable (info)
9511 && SYMBOL_REFERENCES_LOCAL (info, h)))
9512 || (htab->elf.dynamic_sections_created
9513 && h->dynindx != -1
9514 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9515 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9516 {
9517 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9518 relgot->size += rentsize;
9519 }
9520 }
9521
9522 /* This function merges got entries in the same toc group. */
9523
9524 static void
9525 merge_got_entries (struct got_entry **pent)
9526 {
9527 struct got_entry *ent, *ent2;
9528
9529 for (ent = *pent; ent != NULL; ent = ent->next)
9530 if (!ent->is_indirect)
9531 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9532 if (!ent2->is_indirect
9533 && ent2->addend == ent->addend
9534 && ent2->tls_type == ent->tls_type
9535 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9536 {
9537 ent2->is_indirect = TRUE;
9538 ent2->got.ent = ent;
9539 }
9540 }
9541
9542 /* If H is undefined, make it dynamic if that makes sense. */
9543
9544 static bfd_boolean
9545 ensure_undef_dynamic (struct bfd_link_info *info,
9546 struct elf_link_hash_entry *h)
9547 {
9548 struct elf_link_hash_table *htab = elf_hash_table (info);
9549
9550 if (htab->dynamic_sections_created
9551 && ((info->dynamic_undefined_weak != 0
9552 && h->root.type == bfd_link_hash_undefweak)
9553 || h->root.type == bfd_link_hash_undefined)
9554 && h->dynindx == -1
9555 && !h->forced_local
9556 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9557 return bfd_elf_link_record_dynamic_symbol (info, h);
9558 return TRUE;
9559 }
9560
9561 /* Allocate space in .plt, .got and associated reloc sections for
9562 dynamic relocs. */
9563
9564 static bfd_boolean
9565 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9566 {
9567 struct bfd_link_info *info;
9568 struct ppc_link_hash_table *htab;
9569 asection *s;
9570 struct ppc_link_hash_entry *eh;
9571 struct got_entry **pgent, *gent;
9572
9573 if (h->root.type == bfd_link_hash_indirect)
9574 return TRUE;
9575
9576 info = (struct bfd_link_info *) inf;
9577 htab = ppc_hash_table (info);
9578 if (htab == NULL)
9579 return FALSE;
9580
9581 eh = ppc_elf_hash_entry (h);
9582 /* Run through the TLS GD got entries first if we're changing them
9583 to TPREL. */
9584 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9585 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9586 if (gent->got.refcount > 0
9587 && (gent->tls_type & TLS_GD) != 0)
9588 {
9589 /* This was a GD entry that has been converted to TPREL. If
9590 there happens to be a TPREL entry we can use that one. */
9591 struct got_entry *ent;
9592 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9593 if (ent->got.refcount > 0
9594 && (ent->tls_type & TLS_TPREL) != 0
9595 && ent->addend == gent->addend
9596 && ent->owner == gent->owner)
9597 {
9598 gent->got.refcount = 0;
9599 break;
9600 }
9601
9602 /* If not, then we'll be using our own TPREL entry. */
9603 if (gent->got.refcount != 0)
9604 gent->tls_type = TLS_TLS | TLS_TPREL;
9605 }
9606
9607 /* Remove any list entry that won't generate a word in the GOT before
9608 we call merge_got_entries. Otherwise we risk merging to empty
9609 entries. */
9610 pgent = &h->got.glist;
9611 while ((gent = *pgent) != NULL)
9612 if (gent->got.refcount > 0)
9613 {
9614 if ((gent->tls_type & TLS_LD) != 0
9615 && SYMBOL_REFERENCES_LOCAL (info, h))
9616 {
9617 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9618 *pgent = gent->next;
9619 }
9620 else
9621 pgent = &gent->next;
9622 }
9623 else
9624 *pgent = gent->next;
9625
9626 if (!htab->do_multi_toc)
9627 merge_got_entries (&h->got.glist);
9628
9629 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9630 if (!gent->is_indirect)
9631 {
9632 /* Ensure we catch all the cases where this symbol should
9633 be made dynamic. */
9634 if (!ensure_undef_dynamic (info, h))
9635 return FALSE;
9636
9637 if (!is_ppc64_elf (gent->owner))
9638 abort ();
9639
9640 allocate_got (h, info, gent);
9641 }
9642
9643 /* If no dynamic sections we can't have dynamic relocs, except for
9644 IFUNCs which are handled even in static executables. */
9645 if (!htab->elf.dynamic_sections_created
9646 && h->type != STT_GNU_IFUNC)
9647 eh->dyn_relocs = NULL;
9648
9649 /* Discard relocs on undefined symbols that must be local. */
9650 else if (h->root.type == bfd_link_hash_undefined
9651 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9652 eh->dyn_relocs = NULL;
9653
9654 /* Also discard relocs on undefined weak syms with non-default
9655 visibility, or when dynamic_undefined_weak says so. */
9656 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9657 eh->dyn_relocs = NULL;
9658
9659 if (eh->dyn_relocs != NULL)
9660 {
9661 struct elf_dyn_relocs *p, **pp;
9662
9663 /* In the shared -Bsymbolic case, discard space allocated for
9664 dynamic pc-relative relocs against symbols which turn out to
9665 be defined in regular objects. For the normal shared case,
9666 discard space for relocs that have become local due to symbol
9667 visibility changes. */
9668 if (bfd_link_pic (info))
9669 {
9670 /* Relocs that use pc_count are those that appear on a call
9671 insn, or certain REL relocs (see must_be_dyn_reloc) that
9672 can be generated via assembly. We want calls to
9673 protected symbols to resolve directly to the function
9674 rather than going via the plt. If people want function
9675 pointer comparisons to work as expected then they should
9676 avoid writing weird assembly. */
9677 if (SYMBOL_CALLS_LOCAL (info, h))
9678 {
9679 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9680 {
9681 p->count -= p->pc_count;
9682 p->pc_count = 0;
9683 if (p->count == 0)
9684 *pp = p->next;
9685 else
9686 pp = &p->next;
9687 }
9688 }
9689
9690 if (eh->dyn_relocs != NULL)
9691 {
9692 /* Ensure we catch all the cases where this symbol
9693 should be made dynamic. */
9694 if (!ensure_undef_dynamic (info, h))
9695 return FALSE;
9696 }
9697 }
9698
9699 /* For a fixed position executable, discard space for
9700 relocs against symbols which are not dynamic. */
9701 else if (h->type != STT_GNU_IFUNC)
9702 {
9703 if (h->dynamic_adjusted
9704 && !h->def_regular
9705 && !ELF_COMMON_DEF_P (h))
9706 {
9707 /* Ensure we catch all the cases where this symbol
9708 should be made dynamic. */
9709 if (!ensure_undef_dynamic (info, h))
9710 return FALSE;
9711
9712 /* But if that didn't work out, discard dynamic relocs. */
9713 if (h->dynindx == -1)
9714 eh->dyn_relocs = NULL;
9715 }
9716 else
9717 eh->dyn_relocs = NULL;
9718 }
9719
9720 /* Finally, allocate space. */
9721 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9722 {
9723 asection *sreloc = elf_section_data (p->sec)->sreloc;
9724 if (eh->elf.type == STT_GNU_IFUNC)
9725 sreloc = htab->elf.irelplt;
9726 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9727 }
9728 }
9729
9730 /* We might need a PLT entry when the symbol
9731 a) is dynamic, or
9732 b) is an ifunc, or
9733 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9734 d) has plt16 relocs and we are linking statically. */
9735 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9736 || h->type == STT_GNU_IFUNC
9737 || (h->needs_plt && h->dynamic_adjusted)
9738 || (h->needs_plt
9739 && h->def_regular
9740 && !htab->elf.dynamic_sections_created
9741 && !htab->can_convert_all_inline_plt
9742 && (ppc_elf_hash_entry (h)->tls_mask
9743 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9744 {
9745 struct plt_entry *pent;
9746 bfd_boolean doneone = FALSE;
9747 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9748 if (pent->plt.refcount > 0)
9749 {
9750 if (!htab->elf.dynamic_sections_created
9751 || h->dynindx == -1)
9752 {
9753 if (h->type == STT_GNU_IFUNC)
9754 {
9755 s = htab->elf.iplt;
9756 pent->plt.offset = s->size;
9757 s->size += PLT_ENTRY_SIZE (htab);
9758 s = htab->elf.irelplt;
9759 }
9760 else
9761 {
9762 s = htab->pltlocal;
9763 pent->plt.offset = s->size;
9764 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9765 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9766 }
9767 }
9768 else
9769 {
9770 /* If this is the first .plt entry, make room for the special
9771 first entry. */
9772 s = htab->elf.splt;
9773 if (s->size == 0)
9774 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9775
9776 pent->plt.offset = s->size;
9777
9778 /* Make room for this entry. */
9779 s->size += PLT_ENTRY_SIZE (htab);
9780
9781 /* Make room for the .glink code. */
9782 s = htab->glink;
9783 if (s->size == 0)
9784 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9785 if (htab->opd_abi)
9786 {
9787 /* We need bigger stubs past index 32767. */
9788 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9789 s->size += 4;
9790 s->size += 2*4;
9791 }
9792 else
9793 s->size += 4;
9794
9795 /* We also need to make an entry in the .rela.plt section. */
9796 s = htab->elf.srelplt;
9797 }
9798 if (s != NULL)
9799 s->size += sizeof (Elf64_External_Rela);
9800 doneone = TRUE;
9801 }
9802 else
9803 pent->plt.offset = (bfd_vma) -1;
9804 if (!doneone)
9805 {
9806 h->plt.plist = NULL;
9807 h->needs_plt = 0;
9808 }
9809 }
9810 else
9811 {
9812 h->plt.plist = NULL;
9813 h->needs_plt = 0;
9814 }
9815
9816 return TRUE;
9817 }
9818
9819 #define PPC_LO(v) ((v) & 0xffff)
9820 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9821 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9822 #define D34(v) \
9823 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9824 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9825
9826 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9827 to set up space for global entry stubs. These are put in glink,
9828 after the branch table. */
9829
9830 static bfd_boolean
9831 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9832 {
9833 struct bfd_link_info *info;
9834 struct ppc_link_hash_table *htab;
9835 struct plt_entry *pent;
9836 asection *s, *plt;
9837
9838 if (h->root.type == bfd_link_hash_indirect)
9839 return TRUE;
9840
9841 if (!h->pointer_equality_needed)
9842 return TRUE;
9843
9844 if (h->def_regular)
9845 return TRUE;
9846
9847 info = inf;
9848 htab = ppc_hash_table (info);
9849 if (htab == NULL)
9850 return FALSE;
9851
9852 s = htab->global_entry;
9853 plt = htab->elf.splt;
9854 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9855 if (pent->plt.offset != (bfd_vma) -1
9856 && pent->addend == 0)
9857 {
9858 /* For ELFv2, if this symbol is not defined in a regular file
9859 and we are not generating a shared library or pie, then we
9860 need to define the symbol in the executable on a call stub.
9861 This is to avoid text relocations. */
9862 bfd_vma off, stub_align, stub_off, stub_size;
9863 unsigned int align_power;
9864
9865 stub_size = 16;
9866 stub_off = s->size;
9867 if (htab->params->plt_stub_align >= 0)
9868 align_power = htab->params->plt_stub_align;
9869 else
9870 align_power = -htab->params->plt_stub_align;
9871 /* Setting section alignment is delayed until we know it is
9872 non-empty. Otherwise the .text output section will be
9873 aligned at least to plt_stub_align even when no global
9874 entry stubs are needed. */
9875 if (s->alignment_power < align_power)
9876 s->alignment_power = align_power;
9877 stub_align = (bfd_vma) 1 << align_power;
9878 if (htab->params->plt_stub_align >= 0
9879 || ((((stub_off + stub_size - 1) & -stub_align)
9880 - (stub_off & -stub_align))
9881 > ((stub_size - 1) & -stub_align)))
9882 stub_off = (stub_off + stub_align - 1) & -stub_align;
9883 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9884 off -= stub_off + s->output_offset + s->output_section->vma;
9885 /* Note that for --plt-stub-align negative we have a possible
9886 dependency between stub offset and size. Break that
9887 dependency by assuming the max stub size when calculating
9888 the stub offset. */
9889 if (PPC_HA (off) == 0)
9890 stub_size -= 4;
9891 h->root.type = bfd_link_hash_defined;
9892 h->root.u.def.section = s;
9893 h->root.u.def.value = stub_off;
9894 s->size = stub_off + stub_size;
9895 break;
9896 }
9897 return TRUE;
9898 }
9899
9900 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9901 read-only sections. */
9902
9903 static bfd_boolean
9904 maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
9905 {
9906 asection *sec;
9907
9908 if (h->root.type == bfd_link_hash_indirect)
9909 return TRUE;
9910
9911 sec = readonly_dynrelocs (h);
9912 if (sec != NULL)
9913 {
9914 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9915
9916 info->flags |= DF_TEXTREL;
9917 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT'"
9918 " in read-only section `%pA'\n"),
9919 sec->owner, h->root.root.string, sec);
9920
9921 /* Not an error, just cut short the traversal. */
9922 return FALSE;
9923 }
9924 return TRUE;
9925 }
9926
9927 /* Set the sizes of the dynamic sections. */
9928
9929 static bfd_boolean
9930 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9931 struct bfd_link_info *info)
9932 {
9933 struct ppc_link_hash_table *htab;
9934 bfd *dynobj;
9935 asection *s;
9936 bfd_boolean relocs;
9937 bfd *ibfd;
9938 struct got_entry *first_tlsld;
9939
9940 htab = ppc_hash_table (info);
9941 if (htab == NULL)
9942 return FALSE;
9943
9944 dynobj = htab->elf.dynobj;
9945 if (dynobj == NULL)
9946 abort ();
9947
9948 if (htab->elf.dynamic_sections_created)
9949 {
9950 /* Set the contents of the .interp section to the interpreter. */
9951 if (bfd_link_executable (info) && !info->nointerp)
9952 {
9953 s = bfd_get_linker_section (dynobj, ".interp");
9954 if (s == NULL)
9955 abort ();
9956 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9957 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9958 }
9959 }
9960
9961 /* Set up .got offsets for local syms, and space for local dynamic
9962 relocs. */
9963 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9964 {
9965 struct got_entry **lgot_ents;
9966 struct got_entry **end_lgot_ents;
9967 struct plt_entry **local_plt;
9968 struct plt_entry **end_local_plt;
9969 unsigned char *lgot_masks;
9970 bfd_size_type locsymcount;
9971 Elf_Internal_Shdr *symtab_hdr;
9972
9973 if (!is_ppc64_elf (ibfd))
9974 continue;
9975
9976 for (s = ibfd->sections; s != NULL; s = s->next)
9977 {
9978 struct ppc_dyn_relocs *p;
9979
9980 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9981 {
9982 if (!bfd_is_abs_section (p->sec)
9983 && bfd_is_abs_section (p->sec->output_section))
9984 {
9985 /* Input section has been discarded, either because
9986 it is a copy of a linkonce section or due to
9987 linker script /DISCARD/, so we'll be discarding
9988 the relocs too. */
9989 }
9990 else if (p->count != 0)
9991 {
9992 asection *srel = elf_section_data (p->sec)->sreloc;
9993 if (p->ifunc)
9994 srel = htab->elf.irelplt;
9995 srel->size += p->count * sizeof (Elf64_External_Rela);
9996 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9997 info->flags |= DF_TEXTREL;
9998 }
9999 }
10000 }
10001
10002 lgot_ents = elf_local_got_ents (ibfd);
10003 if (!lgot_ents)
10004 continue;
10005
10006 symtab_hdr = &elf_symtab_hdr (ibfd);
10007 locsymcount = symtab_hdr->sh_info;
10008 end_lgot_ents = lgot_ents + locsymcount;
10009 local_plt = (struct plt_entry **) end_lgot_ents;
10010 end_local_plt = local_plt + locsymcount;
10011 lgot_masks = (unsigned char *) end_local_plt;
10012 s = ppc64_elf_tdata (ibfd)->got;
10013 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10014 {
10015 struct got_entry **pent, *ent;
10016
10017 pent = lgot_ents;
10018 while ((ent = *pent) != NULL)
10019 if (ent->got.refcount > 0)
10020 {
10021 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
10022 {
10023 ppc64_tlsld_got (ibfd)->got.refcount += 1;
10024 *pent = ent->next;
10025 }
10026 else
10027 {
10028 unsigned int ent_size = 8;
10029 unsigned int rel_size = sizeof (Elf64_External_Rela);
10030
10031 ent->got.offset = s->size;
10032 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10033 {
10034 ent_size *= 2;
10035 rel_size *= 2;
10036 }
10037 s->size += ent_size;
10038 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10039 {
10040 htab->elf.irelplt->size += rel_size;
10041 htab->got_reli_size += rel_size;
10042 }
10043 else if (bfd_link_pic (info)
10044 && !(ent->tls_type != 0
10045 && bfd_link_executable (info)))
10046 {
10047 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10048 srel->size += rel_size;
10049 }
10050 pent = &ent->next;
10051 }
10052 }
10053 else
10054 *pent = ent->next;
10055 }
10056
10057 /* Allocate space for plt calls to local syms. */
10058 lgot_masks = (unsigned char *) end_local_plt;
10059 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
10060 {
10061 struct plt_entry *ent;
10062
10063 for (ent = *local_plt; ent != NULL; ent = ent->next)
10064 if (ent->plt.refcount > 0)
10065 {
10066 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10067 {
10068 s = htab->elf.iplt;
10069 ent->plt.offset = s->size;
10070 s->size += PLT_ENTRY_SIZE (htab);
10071 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
10072 }
10073 else if (htab->can_convert_all_inline_plt
10074 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
10075 ent->plt.offset = (bfd_vma) -1;
10076 else
10077 {
10078 s = htab->pltlocal;
10079 ent->plt.offset = s->size;
10080 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
10081 if (bfd_link_pic (info))
10082 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
10083 }
10084 }
10085 else
10086 ent->plt.offset = (bfd_vma) -1;
10087 }
10088 }
10089
10090 /* Allocate global sym .plt and .got entries, and space for global
10091 sym dynamic relocs. */
10092 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
10093
10094 if (!htab->opd_abi && !bfd_link_pic (info))
10095 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
10096
10097 first_tlsld = NULL;
10098 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10099 {
10100 struct got_entry *ent;
10101
10102 if (!is_ppc64_elf (ibfd))
10103 continue;
10104
10105 ent = ppc64_tlsld_got (ibfd);
10106 if (ent->got.refcount > 0)
10107 {
10108 if (!htab->do_multi_toc && first_tlsld != NULL)
10109 {
10110 ent->is_indirect = TRUE;
10111 ent->got.ent = first_tlsld;
10112 }
10113 else
10114 {
10115 if (first_tlsld == NULL)
10116 first_tlsld = ent;
10117 s = ppc64_elf_tdata (ibfd)->got;
10118 ent->got.offset = s->size;
10119 ent->owner = ibfd;
10120 s->size += 16;
10121 if (bfd_link_dll (info))
10122 {
10123 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10124 srel->size += sizeof (Elf64_External_Rela);
10125 }
10126 }
10127 }
10128 else
10129 ent->got.offset = (bfd_vma) -1;
10130 }
10131
10132 /* We now have determined the sizes of the various dynamic sections.
10133 Allocate memory for them. */
10134 relocs = FALSE;
10135 for (s = dynobj->sections; s != NULL; s = s->next)
10136 {
10137 if ((s->flags & SEC_LINKER_CREATED) == 0)
10138 continue;
10139
10140 if (s == htab->brlt || s == htab->relbrlt)
10141 /* These haven't been allocated yet; don't strip. */
10142 continue;
10143 else if (s == htab->elf.sgot
10144 || s == htab->elf.splt
10145 || s == htab->elf.iplt
10146 || s == htab->pltlocal
10147 || s == htab->glink
10148 || s == htab->global_entry
10149 || s == htab->elf.sdynbss
10150 || s == htab->elf.sdynrelro)
10151 {
10152 /* Strip this section if we don't need it; see the
10153 comment below. */
10154 }
10155 else if (s == htab->glink_eh_frame)
10156 {
10157 if (!bfd_is_abs_section (s->output_section))
10158 /* Not sized yet. */
10159 continue;
10160 }
10161 else if (CONST_STRNEQ (s->name, ".rela"))
10162 {
10163 if (s->size != 0)
10164 {
10165 if (s != htab->elf.srelplt)
10166 relocs = TRUE;
10167
10168 /* We use the reloc_count field as a counter if we need
10169 to copy relocs into the output file. */
10170 s->reloc_count = 0;
10171 }
10172 }
10173 else
10174 {
10175 /* It's not one of our sections, so don't allocate space. */
10176 continue;
10177 }
10178
10179 if (s->size == 0)
10180 {
10181 /* If we don't need this section, strip it from the
10182 output file. This is mostly to handle .rela.bss and
10183 .rela.plt. We must create both sections in
10184 create_dynamic_sections, because they must be created
10185 before the linker maps input sections to output
10186 sections. The linker does that before
10187 adjust_dynamic_symbol is called, and it is that
10188 function which decides whether anything needs to go
10189 into these sections. */
10190 s->flags |= SEC_EXCLUDE;
10191 continue;
10192 }
10193
10194 if (bfd_is_abs_section (s->output_section))
10195 _bfd_error_handler (_("warning: discarding dynamic section %s"),
10196 s->name);
10197
10198 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10199 continue;
10200
10201 /* Allocate memory for the section contents. We use bfd_zalloc
10202 here in case unused entries are not reclaimed before the
10203 section's contents are written out. This should not happen,
10204 but this way if it does we get a R_PPC64_NONE reloc in .rela
10205 sections instead of garbage.
10206 We also rely on the section contents being zero when writing
10207 the GOT and .dynrelro. */
10208 s->contents = bfd_zalloc (dynobj, s->size);
10209 if (s->contents == NULL)
10210 return FALSE;
10211 }
10212
10213 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10214 {
10215 if (!is_ppc64_elf (ibfd))
10216 continue;
10217
10218 s = ppc64_elf_tdata (ibfd)->got;
10219 if (s != NULL && s != htab->elf.sgot)
10220 {
10221 if (s->size == 0)
10222 s->flags |= SEC_EXCLUDE;
10223 else
10224 {
10225 s->contents = bfd_zalloc (ibfd, s->size);
10226 if (s->contents == NULL)
10227 return FALSE;
10228 }
10229 }
10230 s = ppc64_elf_tdata (ibfd)->relgot;
10231 if (s != NULL)
10232 {
10233 if (s->size == 0)
10234 s->flags |= SEC_EXCLUDE;
10235 else
10236 {
10237 s->contents = bfd_zalloc (ibfd, s->size);
10238 if (s->contents == NULL)
10239 return FALSE;
10240 relocs = TRUE;
10241 s->reloc_count = 0;
10242 }
10243 }
10244 }
10245
10246 if (htab->elf.dynamic_sections_created)
10247 {
10248 bfd_boolean tls_opt;
10249
10250 /* Add some entries to the .dynamic section. We fill in the
10251 values later, in ppc64_elf_finish_dynamic_sections, but we
10252 must add the entries now so that we get the correct size for
10253 the .dynamic section. The DT_DEBUG entry is filled in by the
10254 dynamic linker and used by the debugger. */
10255 #define add_dynamic_entry(TAG, VAL) \
10256 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10257
10258 if (bfd_link_executable (info))
10259 {
10260 if (!add_dynamic_entry (DT_DEBUG, 0))
10261 return FALSE;
10262 }
10263
10264 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10265 {
10266 if (!add_dynamic_entry (DT_PLTGOT, 0)
10267 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10268 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10269 || !add_dynamic_entry (DT_JMPREL, 0)
10270 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10271 return FALSE;
10272 }
10273
10274 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10275 {
10276 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10277 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10278 return FALSE;
10279 }
10280
10281 tls_opt = (htab->params->tls_get_addr_opt
10282 && ((htab->tls_get_addr_fd != NULL
10283 && htab->tls_get_addr_fd->elf.plt.plist != NULL)
10284 || (htab->tga_desc_fd != NULL
10285 && htab->tga_desc_fd->elf.plt.plist != NULL)));
10286 if (tls_opt || !htab->opd_abi)
10287 {
10288 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10289 return FALSE;
10290 }
10291
10292 if (relocs)
10293 {
10294 if (!add_dynamic_entry (DT_RELA, 0)
10295 || !add_dynamic_entry (DT_RELASZ, 0)
10296 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10297 return FALSE;
10298
10299 /* If any dynamic relocs apply to a read-only section,
10300 then we need a DT_TEXTREL entry. */
10301 if ((info->flags & DF_TEXTREL) == 0)
10302 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10303
10304 if ((info->flags & DF_TEXTREL) != 0)
10305 {
10306 if (!add_dynamic_entry (DT_TEXTREL, 0))
10307 return FALSE;
10308 }
10309 }
10310 }
10311 #undef add_dynamic_entry
10312
10313 return TRUE;
10314 }
10315
10316 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10317
10318 static bfd_boolean
10319 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10320 {
10321 if (h->plt.plist != NULL
10322 && !h->def_regular
10323 && !h->pointer_equality_needed)
10324 return FALSE;
10325
10326 return _bfd_elf_hash_symbol (h);
10327 }
10328
10329 /* Determine the type of stub needed, if any, for a call. */
10330
10331 static inline enum ppc_stub_type
10332 ppc_type_of_stub (asection *input_sec,
10333 const Elf_Internal_Rela *rel,
10334 struct ppc_link_hash_entry **hash,
10335 struct plt_entry **plt_ent,
10336 bfd_vma destination,
10337 unsigned long local_off)
10338 {
10339 struct ppc_link_hash_entry *h = *hash;
10340 bfd_vma location;
10341 bfd_vma branch_offset;
10342 bfd_vma max_branch_offset;
10343 enum elf_ppc64_reloc_type r_type;
10344
10345 if (h != NULL)
10346 {
10347 struct plt_entry *ent;
10348 struct ppc_link_hash_entry *fdh = h;
10349 if (h->oh != NULL
10350 && h->oh->is_func_descriptor)
10351 {
10352 fdh = ppc_follow_link (h->oh);
10353 *hash = fdh;
10354 }
10355
10356 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10357 if (ent->addend == rel->r_addend
10358 && ent->plt.offset != (bfd_vma) -1)
10359 {
10360 *plt_ent = ent;
10361 return ppc_stub_plt_call;
10362 }
10363
10364 /* Here, we know we don't have a plt entry. If we don't have a
10365 either a defined function descriptor or a defined entry symbol
10366 in a regular object file, then it is pointless trying to make
10367 any other type of stub. */
10368 if (!is_static_defined (&fdh->elf)
10369 && !is_static_defined (&h->elf))
10370 return ppc_stub_none;
10371 }
10372 else if (elf_local_got_ents (input_sec->owner) != NULL)
10373 {
10374 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10375 struct plt_entry **local_plt = (struct plt_entry **)
10376 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10377 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10378
10379 if (local_plt[r_symndx] != NULL)
10380 {
10381 struct plt_entry *ent;
10382
10383 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10384 if (ent->addend == rel->r_addend
10385 && ent->plt.offset != (bfd_vma) -1)
10386 {
10387 *plt_ent = ent;
10388 return ppc_stub_plt_call;
10389 }
10390 }
10391 }
10392
10393 /* Determine where the call point is. */
10394 location = (input_sec->output_offset
10395 + input_sec->output_section->vma
10396 + rel->r_offset);
10397
10398 branch_offset = destination - location;
10399 r_type = ELF64_R_TYPE (rel->r_info);
10400
10401 /* Determine if a long branch stub is needed. */
10402 max_branch_offset = 1 << 25;
10403 if (r_type == R_PPC64_REL14
10404 || r_type == R_PPC64_REL14_BRTAKEN
10405 || r_type == R_PPC64_REL14_BRNTAKEN)
10406 max_branch_offset = 1 << 15;
10407
10408 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10409 /* We need a stub. Figure out whether a long_branch or plt_branch
10410 is needed later. */
10411 return ppc_stub_long_branch;
10412
10413 return ppc_stub_none;
10414 }
10415
10416 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10417 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10418 . mflr %r12
10419 . bcl 20,31,1f
10420 .1: mflr %r11
10421 . mtlr %r12
10422 . lis %r12,xxx-1b@highest
10423 . ori %r12,%r12,xxx-1b@higher
10424 . sldi %r12,%r12,32
10425 . oris %r12,%r12,xxx-1b@high
10426 . ori %r12,%r12,xxx-1b@l
10427 . add/ldx %r12,%r11,%r12 */
10428
10429 static bfd_byte *
10430 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10431 {
10432 bfd_put_32 (abfd, MFLR_R12, p);
10433 p += 4;
10434 bfd_put_32 (abfd, BCL_20_31, p);
10435 p += 4;
10436 bfd_put_32 (abfd, MFLR_R11, p);
10437 p += 4;
10438 bfd_put_32 (abfd, MTLR_R12, p);
10439 p += 4;
10440 if (off + 0x8000 < 0x10000)
10441 {
10442 if (load)
10443 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10444 else
10445 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10446 p += 4;
10447 }
10448 else if (off + 0x80008000ULL < 0x100000000ULL)
10449 {
10450 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10451 p += 4;
10452 if (load)
10453 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10454 else
10455 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10456 p += 4;
10457 }
10458 else
10459 {
10460 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10461 {
10462 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10463 p += 4;
10464 }
10465 else
10466 {
10467 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10468 p += 4;
10469 if (((off >> 32) & 0xffff) != 0)
10470 {
10471 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10472 p += 4;
10473 }
10474 }
10475 if (((off >> 32) & 0xffffffffULL) != 0)
10476 {
10477 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10478 p += 4;
10479 }
10480 if (PPC_HI (off) != 0)
10481 {
10482 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10483 p += 4;
10484 }
10485 if (PPC_LO (off) != 0)
10486 {
10487 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10488 p += 4;
10489 }
10490 if (load)
10491 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10492 else
10493 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10494 p += 4;
10495 }
10496 return p;
10497 }
10498
10499 static unsigned int
10500 size_offset (bfd_vma off)
10501 {
10502 unsigned int size;
10503 if (off + 0x8000 < 0x10000)
10504 size = 4;
10505 else if (off + 0x80008000ULL < 0x100000000ULL)
10506 size = 8;
10507 else
10508 {
10509 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10510 size = 4;
10511 else
10512 {
10513 size = 4;
10514 if (((off >> 32) & 0xffff) != 0)
10515 size += 4;
10516 }
10517 if (((off >> 32) & 0xffffffffULL) != 0)
10518 size += 4;
10519 if (PPC_HI (off) != 0)
10520 size += 4;
10521 if (PPC_LO (off) != 0)
10522 size += 4;
10523 size += 4;
10524 }
10525 return size + 16;
10526 }
10527
10528 static unsigned int
10529 num_relocs_for_offset (bfd_vma off)
10530 {
10531 unsigned int num_rel;
10532 if (off + 0x8000 < 0x10000)
10533 num_rel = 1;
10534 else if (off + 0x80008000ULL < 0x100000000ULL)
10535 num_rel = 2;
10536 else
10537 {
10538 num_rel = 1;
10539 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10540 && ((off >> 32) & 0xffff) != 0)
10541 num_rel += 1;
10542 if (PPC_HI (off) != 0)
10543 num_rel += 1;
10544 if (PPC_LO (off) != 0)
10545 num_rel += 1;
10546 }
10547 return num_rel;
10548 }
10549
10550 static Elf_Internal_Rela *
10551 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10552 bfd_vma roff, bfd_vma targ, bfd_vma off)
10553 {
10554 bfd_vma relative_targ = targ - (roff - 8);
10555 if (bfd_big_endian (info->output_bfd))
10556 roff += 2;
10557 r->r_offset = roff;
10558 r->r_addend = relative_targ + roff;
10559 if (off + 0x8000 < 0x10000)
10560 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10561 else if (off + 0x80008000ULL < 0x100000000ULL)
10562 {
10563 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10564 ++r;
10565 roff += 4;
10566 r->r_offset = roff;
10567 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10568 r->r_addend = relative_targ + roff;
10569 }
10570 else
10571 {
10572 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10573 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10574 else
10575 {
10576 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10577 if (((off >> 32) & 0xffff) != 0)
10578 {
10579 ++r;
10580 roff += 4;
10581 r->r_offset = roff;
10582 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10583 r->r_addend = relative_targ + roff;
10584 }
10585 }
10586 if (((off >> 32) & 0xffffffffULL) != 0)
10587 roff += 4;
10588 if (PPC_HI (off) != 0)
10589 {
10590 ++r;
10591 roff += 4;
10592 r->r_offset = roff;
10593 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10594 r->r_addend = relative_targ + roff;
10595 }
10596 if (PPC_LO (off) != 0)
10597 {
10598 ++r;
10599 roff += 4;
10600 r->r_offset = roff;
10601 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10602 r->r_addend = relative_targ + roff;
10603 }
10604 }
10605 return r;
10606 }
10607
10608 static bfd_byte *
10609 build_power10_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10610 bfd_boolean load)
10611 {
10612 uint64_t insn;
10613 if (off - odd + (1ULL << 33) < 1ULL << 34)
10614 {
10615 off -= odd;
10616 if (odd)
10617 {
10618 bfd_put_32 (abfd, NOP, p);
10619 p += 4;
10620 }
10621 if (load)
10622 insn = PLD_R12_PC;
10623 else
10624 insn = PADDI_R12_PC;
10625 insn |= D34 (off);
10626 bfd_put_32 (abfd, insn >> 32, p);
10627 p += 4;
10628 bfd_put_32 (abfd, insn, p);
10629 }
10630 /* The minimum value for paddi is -0x200000000. The minimum value
10631 for li is -0x8000, which when shifted by 34 and added gives a
10632 minimum value of -0x2000200000000. The maximum value is
10633 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10634 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10635 {
10636 off -= 8 - odd;
10637 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10638 p += 4;
10639 if (!odd)
10640 {
10641 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10642 p += 4;
10643 }
10644 insn = PADDI_R12_PC | D34 (off);
10645 bfd_put_32 (abfd, insn >> 32, p);
10646 p += 4;
10647 bfd_put_32 (abfd, insn, p);
10648 p += 4;
10649 if (odd)
10650 {
10651 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10652 p += 4;
10653 }
10654 if (load)
10655 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10656 else
10657 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10658 }
10659 else
10660 {
10661 off -= odd + 8;
10662 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10663 p += 4;
10664 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10665 p += 4;
10666 if (odd)
10667 {
10668 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10669 p += 4;
10670 }
10671 insn = PADDI_R12_PC | D34 (off);
10672 bfd_put_32 (abfd, insn >> 32, p);
10673 p += 4;
10674 bfd_put_32 (abfd, insn, p);
10675 p += 4;
10676 if (!odd)
10677 {
10678 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10679 p += 4;
10680 }
10681 if (load)
10682 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10683 else
10684 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10685 }
10686 p += 4;
10687 return p;
10688 }
10689
10690 static unsigned int
10691 size_power10_offset (bfd_vma off, int odd)
10692 {
10693 if (off - odd + (1ULL << 33) < 1ULL << 34)
10694 return odd + 8;
10695 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10696 return 20;
10697 else
10698 return 24;
10699 }
10700
10701 static unsigned int
10702 num_relocs_for_power10_offset (bfd_vma off, int odd)
10703 {
10704 if (off - odd + (1ULL << 33) < 1ULL << 34)
10705 return 1;
10706 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10707 return 2;
10708 else
10709 return 3;
10710 }
10711
10712 static Elf_Internal_Rela *
10713 emit_relocs_for_power10_offset (struct bfd_link_info *info,
10714 Elf_Internal_Rela *r, bfd_vma roff,
10715 bfd_vma targ, bfd_vma off, int odd)
10716 {
10717 if (off - odd + (1ULL << 33) < 1ULL << 34)
10718 roff += odd;
10719 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10720 {
10721 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10722 r->r_offset = roff + d_offset;
10723 r->r_addend = targ + 8 - odd - d_offset;
10724 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10725 ++r;
10726 roff += 8 - odd;
10727 }
10728 else
10729 {
10730 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10731 r->r_offset = roff + d_offset;
10732 r->r_addend = targ + 8 + odd - d_offset;
10733 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10734 ++r;
10735 roff += 4;
10736 r->r_offset = roff + d_offset;
10737 r->r_addend = targ + 4 + odd - d_offset;
10738 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10739 ++r;
10740 roff += 4 + odd;
10741 }
10742 r->r_offset = roff;
10743 r->r_addend = targ;
10744 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10745 return r;
10746 }
10747
10748 /* Emit .eh_frame opcode to advance pc by DELTA. */
10749
10750 static bfd_byte *
10751 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10752 {
10753 delta /= 4;
10754 if (delta < 64)
10755 *eh++ = DW_CFA_advance_loc + delta;
10756 else if (delta < 256)
10757 {
10758 *eh++ = DW_CFA_advance_loc1;
10759 *eh++ = delta;
10760 }
10761 else if (delta < 65536)
10762 {
10763 *eh++ = DW_CFA_advance_loc2;
10764 bfd_put_16 (abfd, delta, eh);
10765 eh += 2;
10766 }
10767 else
10768 {
10769 *eh++ = DW_CFA_advance_loc4;
10770 bfd_put_32 (abfd, delta, eh);
10771 eh += 4;
10772 }
10773 return eh;
10774 }
10775
10776 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10777
10778 static unsigned int
10779 eh_advance_size (unsigned int delta)
10780 {
10781 if (delta < 64 * 4)
10782 /* DW_CFA_advance_loc+[1..63]. */
10783 return 1;
10784 if (delta < 256 * 4)
10785 /* DW_CFA_advance_loc1, byte. */
10786 return 2;
10787 if (delta < 65536 * 4)
10788 /* DW_CFA_advance_loc2, 2 bytes. */
10789 return 3;
10790 /* DW_CFA_advance_loc4, 4 bytes. */
10791 return 5;
10792 }
10793
10794 /* With power7 weakly ordered memory model, it is possible for ld.so
10795 to update a plt entry in one thread and have another thread see a
10796 stale zero toc entry. To avoid this we need some sort of acquire
10797 barrier in the call stub. One solution is to make the load of the
10798 toc word seem to appear to depend on the load of the function entry
10799 word. Another solution is to test for r2 being zero, and branch to
10800 the appropriate glink entry if so.
10801
10802 . fake dep barrier compare
10803 . ld 12,xxx(2) ld 12,xxx(2)
10804 . mtctr 12 mtctr 12
10805 . xor 11,12,12 ld 2,xxx+8(2)
10806 . add 2,2,11 cmpldi 2,0
10807 . ld 2,xxx+8(2) bnectr+
10808 . bctr b <glink_entry>
10809
10810 The solution involving the compare turns out to be faster, so
10811 that's what we use unless the branch won't reach. */
10812
10813 #define ALWAYS_USE_FAKE_DEP 0
10814 #define ALWAYS_EMIT_R2SAVE 0
10815
10816 static inline unsigned int
10817 plt_stub_size (struct ppc_link_hash_table *htab,
10818 struct ppc_stub_hash_entry *stub_entry,
10819 bfd_vma off)
10820 {
10821 unsigned size;
10822
10823 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10824 {
10825 if (htab->power10_stubs)
10826 {
10827 bfd_vma start = (stub_entry->stub_offset
10828 + stub_entry->group->stub_sec->output_offset
10829 + stub_entry->group->stub_sec->output_section->vma);
10830 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10831 start += 4;
10832 size = 8 + size_power10_offset (off, start & 4);
10833 }
10834 else
10835 size = 8 + size_offset (off - 8);
10836 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10837 size += 4;
10838 return size;
10839 }
10840
10841 size = 12;
10842 if (ALWAYS_EMIT_R2SAVE
10843 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10844 size += 4;
10845 if (PPC_HA (off) != 0)
10846 size += 4;
10847 if (htab->opd_abi)
10848 {
10849 size += 4;
10850 if (htab->params->plt_static_chain)
10851 size += 4;
10852 if (htab->params->plt_thread_safe
10853 && htab->elf.dynamic_sections_created
10854 && stub_entry->h != NULL
10855 && stub_entry->h->elf.dynindx != -1)
10856 size += 8;
10857 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10858 size += 4;
10859 }
10860 if (stub_entry->h != NULL
10861 && is_tls_get_addr (&stub_entry->h->elf, htab)
10862 && htab->params->tls_get_addr_opt)
10863 {
10864 if (htab->params->no_tls_get_addr_regsave)
10865 {
10866 size += 7 * 4;
10867 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10868 size += 6 * 4;
10869 }
10870 else
10871 {
10872 size += 30 * 4;
10873 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10874 size += 4;
10875 }
10876 }
10877 return size;
10878 }
10879
10880 /* Depending on the sign of plt_stub_align:
10881 If positive, return the padding to align to a 2**plt_stub_align
10882 boundary.
10883 If negative, if this stub would cross fewer 2**plt_stub_align
10884 boundaries if we align, then return the padding needed to do so. */
10885
10886 static inline unsigned int
10887 plt_stub_pad (struct ppc_link_hash_table *htab,
10888 struct ppc_stub_hash_entry *stub_entry,
10889 bfd_vma plt_off)
10890 {
10891 int stub_align;
10892 unsigned stub_size;
10893 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10894
10895 if (htab->params->plt_stub_align >= 0)
10896 {
10897 stub_align = 1 << htab->params->plt_stub_align;
10898 if ((stub_off & (stub_align - 1)) != 0)
10899 return stub_align - (stub_off & (stub_align - 1));
10900 return 0;
10901 }
10902
10903 stub_align = 1 << -htab->params->plt_stub_align;
10904 stub_size = plt_stub_size (htab, stub_entry, plt_off);
10905 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10906 > ((stub_size - 1) & -stub_align))
10907 return stub_align - (stub_off & (stub_align - 1));
10908 return 0;
10909 }
10910
10911 /* Build a .plt call stub. */
10912
10913 static inline bfd_byte *
10914 build_plt_stub (struct ppc_link_hash_table *htab,
10915 struct ppc_stub_hash_entry *stub_entry,
10916 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10917 {
10918 bfd *obfd = htab->params->stub_bfd;
10919 bfd_boolean plt_load_toc = htab->opd_abi;
10920 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10921 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10922 && htab->elf.dynamic_sections_created
10923 && stub_entry->h != NULL
10924 && stub_entry->h->elf.dynindx != -1);
10925 bfd_boolean use_fake_dep = plt_thread_safe;
10926 bfd_vma cmp_branch_off = 0;
10927
10928 if (!ALWAYS_USE_FAKE_DEP
10929 && plt_load_toc
10930 && plt_thread_safe
10931 && !(is_tls_get_addr (&stub_entry->h->elf, htab)
10932 && htab->params->tls_get_addr_opt))
10933 {
10934 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10935 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10936 / PLT_ENTRY_SIZE (htab));
10937 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10938 bfd_vma to, from;
10939
10940 if (pltindex > 32768)
10941 glinkoff += (pltindex - 32768) * 4;
10942 to = (glinkoff
10943 + htab->glink->output_offset
10944 + htab->glink->output_section->vma);
10945 from = (p - stub_entry->group->stub_sec->contents
10946 + 4 * (ALWAYS_EMIT_R2SAVE
10947 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10948 + 4 * (PPC_HA (offset) != 0)
10949 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10950 != PPC_HA (offset))
10951 + 4 * (plt_static_chain != 0)
10952 + 20
10953 + stub_entry->group->stub_sec->output_offset
10954 + stub_entry->group->stub_sec->output_section->vma);
10955 cmp_branch_off = to - from;
10956 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10957 }
10958
10959 if (PPC_HA (offset) != 0)
10960 {
10961 if (r != NULL)
10962 {
10963 if (ALWAYS_EMIT_R2SAVE
10964 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10965 r[0].r_offset += 4;
10966 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10967 r[1].r_offset = r[0].r_offset + 4;
10968 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10969 r[1].r_addend = r[0].r_addend;
10970 if (plt_load_toc)
10971 {
10972 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10973 {
10974 r[2].r_offset = r[1].r_offset + 4;
10975 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10976 r[2].r_addend = r[0].r_addend;
10977 }
10978 else
10979 {
10980 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10981 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10982 r[2].r_addend = r[0].r_addend + 8;
10983 if (plt_static_chain)
10984 {
10985 r[3].r_offset = r[2].r_offset + 4;
10986 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10987 r[3].r_addend = r[0].r_addend + 16;
10988 }
10989 }
10990 }
10991 }
10992 if (ALWAYS_EMIT_R2SAVE
10993 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10994 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10995 if (plt_load_toc)
10996 {
10997 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10998 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10999 }
11000 else
11001 {
11002 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
11003 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
11004 }
11005 if (plt_load_toc
11006 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11007 {
11008 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
11009 offset = 0;
11010 }
11011 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11012 if (plt_load_toc)
11013 {
11014 if (use_fake_dep)
11015 {
11016 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
11017 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
11018 }
11019 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
11020 if (plt_static_chain)
11021 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
11022 }
11023 }
11024 else
11025 {
11026 if (r != NULL)
11027 {
11028 if (ALWAYS_EMIT_R2SAVE
11029 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11030 r[0].r_offset += 4;
11031 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11032 if (plt_load_toc)
11033 {
11034 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11035 {
11036 r[1].r_offset = r[0].r_offset + 4;
11037 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
11038 r[1].r_addend = r[0].r_addend;
11039 }
11040 else
11041 {
11042 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
11043 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11044 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
11045 if (plt_static_chain)
11046 {
11047 r[2].r_offset = r[1].r_offset + 4;
11048 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11049 r[2].r_addend = r[0].r_addend + 8;
11050 }
11051 }
11052 }
11053 }
11054 if (ALWAYS_EMIT_R2SAVE
11055 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11056 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11057 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
11058 if (plt_load_toc
11059 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11060 {
11061 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
11062 offset = 0;
11063 }
11064 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11065 if (plt_load_toc)
11066 {
11067 if (use_fake_dep)
11068 {
11069 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
11070 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
11071 }
11072 if (plt_static_chain)
11073 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
11074 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
11075 }
11076 }
11077 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
11078 {
11079 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
11080 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
11081 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
11082 }
11083 else
11084 bfd_put_32 (obfd, BCTR, p), p += 4;
11085 return p;
11086 }
11087
11088 /* Build a special .plt call stub for __tls_get_addr. */
11089
11090 #define LD_R0_0R3 0xe8030000
11091 #define LD_R12_0R3 0xe9830000
11092 #define MR_R0_R3 0x7c601b78
11093 #define CMPDI_R0_0 0x2c200000
11094 #define ADD_R3_R12_R13 0x7c6c6a14
11095 #define BEQLR 0x4d820020
11096 #define MR_R3_R0 0x7c030378
11097 #define BCTRL 0x4e800421
11098
11099 static inline bfd_byte *
11100 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
11101 struct ppc_stub_hash_entry *stub_entry,
11102 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
11103 {
11104 bfd *obfd = htab->params->stub_bfd;
11105 bfd_byte *loc = p;
11106 unsigned int i;
11107
11108 bfd_put_32 (obfd, LD_R0_0R3 + 0, p), p += 4;
11109 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
11110 bfd_put_32 (obfd, CMPDI_R0_0, p), p += 4;
11111 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
11112 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
11113 bfd_put_32 (obfd, BEQLR, p), p += 4;
11114 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
11115 if (htab->params->no_tls_get_addr_regsave)
11116 {
11117 if (r != NULL)
11118 r[0].r_offset += 7 * 4;
11119 if (stub_entry->stub_type != ppc_stub_plt_call_r2save)
11120 return build_plt_stub (htab, stub_entry, p, offset, r);
11121
11122 bfd_put_32 (obfd, MFLR_R0, p);
11123 p += 4;
11124 bfd_put_32 (obfd, STD_R0_0R1 + STK_LINKER (htab), p);
11125 p += 4;
11126
11127 if (r != NULL)
11128 r[0].r_offset += 2 * 4;
11129 p = build_plt_stub (htab, stub_entry, p, offset, r);
11130 bfd_put_32 (obfd, BCTRL, p - 4);
11131
11132 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11133 p += 4;
11134 bfd_put_32 (obfd, LD_R0_0R1 + STK_LINKER (htab), p);
11135 p += 4;
11136 bfd_put_32 (obfd, MTLR_R0, p);
11137 p += 4;
11138 bfd_put_32 (obfd, BLR, p);
11139 p += 4;
11140 }
11141 else
11142 {
11143 p = tls_get_addr_prologue (obfd, p, htab);
11144
11145 if (r != NULL)
11146 r[0].r_offset += 18 * 4;
11147
11148 p = build_plt_stub (htab, stub_entry, p, offset, r);
11149 bfd_put_32 (obfd, BCTRL, p - 4);
11150
11151 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
11152 {
11153 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11154 p += 4;
11155 }
11156
11157 p = tls_get_addr_epilogue (obfd, p, htab);
11158 }
11159
11160 if (htab->glink_eh_frame != NULL
11161 && htab->glink_eh_frame->size != 0)
11162 {
11163 bfd_byte *base, *eh;
11164
11165 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
11166 eh = base + stub_entry->group->eh_size;
11167 if (htab->params->no_tls_get_addr_regsave)
11168 {
11169 unsigned int lr_used, delta;
11170 lr_used = stub_entry->stub_offset + (p - 20 - loc);
11171 delta = lr_used - stub_entry->group->lr_restore;
11172 stub_entry->group->lr_restore = lr_used + 16;
11173 eh = eh_advance (htab->elf.dynobj, eh, delta);
11174 *eh++ = DW_CFA_offset_extended_sf;
11175 *eh++ = 65;
11176 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
11177 *eh++ = DW_CFA_advance_loc + 4;
11178 }
11179 else
11180 {
11181 unsigned int cfa_updt, delta;
11182 /* After the bctrl, lr has been modified so we need to emit
11183 .eh_frame info saying the return address is on the stack. In
11184 fact we must put the EH info at or before the call rather
11185 than after it, because the EH info for a call needs to be
11186 specified by that point.
11187 See libgcc/unwind-dw2.c execute_cfa_program.
11188 Any stack pointer update must be described immediately after
11189 the instruction making the change, and since the stdu occurs
11190 after saving regs we put all the reg saves and the cfa
11191 change there. */
11192 cfa_updt = stub_entry->stub_offset + 18 * 4;
11193 delta = cfa_updt - stub_entry->group->lr_restore;
11194 stub_entry->group->lr_restore
11195 = stub_entry->stub_offset + (p - loc) - 4;
11196 eh = eh_advance (htab->elf.dynobj, eh, delta);
11197 *eh++ = DW_CFA_def_cfa_offset;
11198 if (htab->opd_abi)
11199 {
11200 *eh++ = 128;
11201 *eh++ = 1;
11202 }
11203 else
11204 *eh++ = 96;
11205 *eh++ = DW_CFA_offset_extended_sf;
11206 *eh++ = 65;
11207 *eh++ = (-16 / 8) & 0x7f;
11208 for (i = 4; i < 12; i++)
11209 {
11210 *eh++ = DW_CFA_offset + i;
11211 *eh++ = (htab->opd_abi ? 13 : 12) - i;
11212 }
11213 *eh++ = (DW_CFA_advance_loc
11214 + (stub_entry->group->lr_restore - 8 - cfa_updt) / 4);
11215 *eh++ = DW_CFA_def_cfa_offset;
11216 *eh++ = 0;
11217 for (i = 4; i < 12; i++)
11218 *eh++ = DW_CFA_restore + i;
11219 *eh++ = DW_CFA_advance_loc + 2;
11220 }
11221 *eh++ = DW_CFA_restore_extended;
11222 *eh++ = 65;
11223 stub_entry->group->eh_size = eh - base;
11224 }
11225 return p;
11226 }
11227
11228 static Elf_Internal_Rela *
11229 get_relocs (asection *sec, int count)
11230 {
11231 Elf_Internal_Rela *relocs;
11232 struct bfd_elf_section_data *elfsec_data;
11233
11234 elfsec_data = elf_section_data (sec);
11235 relocs = elfsec_data->relocs;
11236 if (relocs == NULL)
11237 {
11238 bfd_size_type relsize;
11239 relsize = sec->reloc_count * sizeof (*relocs);
11240 relocs = bfd_alloc (sec->owner, relsize);
11241 if (relocs == NULL)
11242 return NULL;
11243 elfsec_data->relocs = relocs;
11244 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
11245 sizeof (Elf_Internal_Shdr));
11246 if (elfsec_data->rela.hdr == NULL)
11247 return NULL;
11248 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
11249 * sizeof (Elf64_External_Rela));
11250 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
11251 sec->reloc_count = 0;
11252 }
11253 relocs += sec->reloc_count;
11254 sec->reloc_count += count;
11255 return relocs;
11256 }
11257
11258 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
11259 forms, to the equivalent relocs against the global symbol given by
11260 STUB_ENTRY->H. */
11261
11262 static bfd_boolean
11263 use_global_in_relocs (struct ppc_link_hash_table *htab,
11264 struct ppc_stub_hash_entry *stub_entry,
11265 Elf_Internal_Rela *r, unsigned int num_rel)
11266 {
11267 struct elf_link_hash_entry **hashes;
11268 unsigned long symndx;
11269 struct ppc_link_hash_entry *h;
11270 bfd_vma symval;
11271
11272 /* Relocs are always against symbols in their own object file. Fake
11273 up global sym hashes for the stub bfd (which has no symbols). */
11274 hashes = elf_sym_hashes (htab->params->stub_bfd);
11275 if (hashes == NULL)
11276 {
11277 bfd_size_type hsize;
11278
11279 /* When called the first time, stub_globals will contain the
11280 total number of symbols seen during stub sizing. After
11281 allocating, stub_globals is used as an index to fill the
11282 hashes array. */
11283 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
11284 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
11285 if (hashes == NULL)
11286 return FALSE;
11287 elf_sym_hashes (htab->params->stub_bfd) = hashes;
11288 htab->stub_globals = 1;
11289 }
11290 symndx = htab->stub_globals++;
11291 h = stub_entry->h;
11292 hashes[symndx] = &h->elf;
11293 if (h->oh != NULL && h->oh->is_func)
11294 h = ppc_follow_link (h->oh);
11295 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
11296 || h->elf.root.type == bfd_link_hash_defweak);
11297 symval = defined_sym_val (&h->elf);
11298 while (num_rel-- != 0)
11299 {
11300 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
11301 if (h->elf.root.u.def.section != stub_entry->target_section)
11302 {
11303 /* H is an opd symbol. The addend must be zero, and the
11304 branch reloc is the only one we can convert. */
11305 r->r_addend = 0;
11306 break;
11307 }
11308 else
11309 r->r_addend -= symval;
11310 --r;
11311 }
11312 return TRUE;
11313 }
11314
11315 static bfd_vma
11316 get_r2off (struct bfd_link_info *info,
11317 struct ppc_stub_hash_entry *stub_entry)
11318 {
11319 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11320 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
11321
11322 if (r2off == 0)
11323 {
11324 /* Support linking -R objects. Get the toc pointer from the
11325 opd entry. */
11326 char buf[8];
11327 if (!htab->opd_abi)
11328 return r2off;
11329 asection *opd = stub_entry->h->elf.root.u.def.section;
11330 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
11331
11332 if (strcmp (opd->name, ".opd") != 0
11333 || opd->reloc_count != 0)
11334 {
11335 info->callbacks->einfo
11336 (_("%P: cannot find opd entry toc for `%pT'\n"),
11337 stub_entry->h->elf.root.root.string);
11338 bfd_set_error (bfd_error_bad_value);
11339 return (bfd_vma) -1;
11340 }
11341 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11342 return (bfd_vma) -1;
11343 r2off = bfd_get_64 (opd->owner, buf);
11344 r2off -= elf_gp (info->output_bfd);
11345 }
11346 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11347 return r2off;
11348 }
11349
11350 static bfd_boolean
11351 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11352 {
11353 struct ppc_stub_hash_entry *stub_entry;
11354 struct ppc_branch_hash_entry *br_entry;
11355 struct bfd_link_info *info;
11356 struct ppc_link_hash_table *htab;
11357 bfd_byte *loc;
11358 bfd_byte *p, *relp;
11359 bfd_vma targ, off;
11360 Elf_Internal_Rela *r;
11361 asection *plt;
11362 int num_rel;
11363 int odd;
11364
11365 /* Massage our args to the form they really have. */
11366 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11367 info = in_arg;
11368
11369 /* Fail if the target section could not be assigned to an output
11370 section. The user should fix his linker script. */
11371 if (stub_entry->target_section != NULL
11372 && stub_entry->target_section->output_section == NULL
11373 && info->non_contiguous_regions)
11374 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
11375 "Retry without --enable-non-contiguous-regions.\n"),
11376 stub_entry->target_section);
11377
11378 /* Same for the group. */
11379 if (stub_entry->group->stub_sec != NULL
11380 && stub_entry->group->stub_sec->output_section == NULL
11381 && info->non_contiguous_regions)
11382 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11383 "output section. Retry without "
11384 "--enable-non-contiguous-regions.\n"),
11385 stub_entry->group->stub_sec,
11386 stub_entry->target_section);
11387
11388 htab = ppc_hash_table (info);
11389 if (htab == NULL)
11390 return FALSE;
11391
11392 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11393 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11394
11395 htab->stub_count[stub_entry->stub_type - 1] += 1;
11396 switch (stub_entry->stub_type)
11397 {
11398 case ppc_stub_long_branch:
11399 case ppc_stub_long_branch_r2off:
11400 /* Branches are relative. This is where we are going to. */
11401 targ = (stub_entry->target_value
11402 + stub_entry->target_section->output_offset
11403 + stub_entry->target_section->output_section->vma);
11404 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11405
11406 /* And this is where we are coming from. */
11407 off = (stub_entry->stub_offset
11408 + stub_entry->group->stub_sec->output_offset
11409 + stub_entry->group->stub_sec->output_section->vma);
11410 off = targ - off;
11411
11412 p = loc;
11413 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11414 {
11415 bfd_vma r2off = get_r2off (info, stub_entry);
11416
11417 if (r2off == (bfd_vma) -1)
11418 {
11419 htab->stub_error = TRUE;
11420 return FALSE;
11421 }
11422 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11423 p += 4;
11424 if (PPC_HA (r2off) != 0)
11425 {
11426 bfd_put_32 (htab->params->stub_bfd,
11427 ADDIS_R2_R2 | PPC_HA (r2off), p);
11428 p += 4;
11429 }
11430 if (PPC_LO (r2off) != 0)
11431 {
11432 bfd_put_32 (htab->params->stub_bfd,
11433 ADDI_R2_R2 | PPC_LO (r2off), p);
11434 p += 4;
11435 }
11436 off -= p - loc;
11437 }
11438 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), p);
11439 p += 4;
11440
11441 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11442 {
11443 _bfd_error_handler
11444 (_("long branch stub `%s' offset overflow"),
11445 stub_entry->root.string);
11446 htab->stub_error = TRUE;
11447 return FALSE;
11448 }
11449
11450 if (info->emitrelocations)
11451 {
11452 r = get_relocs (stub_entry->group->stub_sec, 1);
11453 if (r == NULL)
11454 return FALSE;
11455 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11456 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11457 r->r_addend = targ;
11458 if (stub_entry->h != NULL
11459 && !use_global_in_relocs (htab, stub_entry, r, 1))
11460 return FALSE;
11461 }
11462 break;
11463
11464 case ppc_stub_plt_branch:
11465 case ppc_stub_plt_branch_r2off:
11466 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11467 stub_entry->root.string + 9,
11468 FALSE, FALSE);
11469 if (br_entry == NULL)
11470 {
11471 _bfd_error_handler (_("can't find branch stub `%s'"),
11472 stub_entry->root.string);
11473 htab->stub_error = TRUE;
11474 return FALSE;
11475 }
11476
11477 targ = (stub_entry->target_value
11478 + stub_entry->target_section->output_offset
11479 + stub_entry->target_section->output_section->vma);
11480 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11481 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11482
11483 bfd_put_64 (htab->brlt->owner, targ,
11484 htab->brlt->contents + br_entry->offset);
11485
11486 if (br_entry->iter == htab->stub_iteration)
11487 {
11488 br_entry->iter = 0;
11489
11490 if (htab->relbrlt != NULL)
11491 {
11492 /* Create a reloc for the branch lookup table entry. */
11493 Elf_Internal_Rela rela;
11494 bfd_byte *rl;
11495
11496 rela.r_offset = (br_entry->offset
11497 + htab->brlt->output_offset
11498 + htab->brlt->output_section->vma);
11499 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11500 rela.r_addend = targ;
11501
11502 rl = htab->relbrlt->contents;
11503 rl += (htab->relbrlt->reloc_count++
11504 * sizeof (Elf64_External_Rela));
11505 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11506 }
11507 else if (info->emitrelocations)
11508 {
11509 r = get_relocs (htab->brlt, 1);
11510 if (r == NULL)
11511 return FALSE;
11512 /* brlt, being SEC_LINKER_CREATED does not go through the
11513 normal reloc processing. Symbols and offsets are not
11514 translated from input file to output file form, so
11515 set up the offset per the output file. */
11516 r->r_offset = (br_entry->offset
11517 + htab->brlt->output_offset
11518 + htab->brlt->output_section->vma);
11519 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11520 r->r_addend = targ;
11521 }
11522 }
11523
11524 targ = (br_entry->offset
11525 + htab->brlt->output_offset
11526 + htab->brlt->output_section->vma);
11527
11528 off = (elf_gp (info->output_bfd)
11529 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11530 off = targ - off;
11531
11532 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11533 {
11534 info->callbacks->einfo
11535 (_("%P: linkage table error against `%pT'\n"),
11536 stub_entry->root.string);
11537 bfd_set_error (bfd_error_bad_value);
11538 htab->stub_error = TRUE;
11539 return FALSE;
11540 }
11541
11542 if (info->emitrelocations)
11543 {
11544 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11545 if (r == NULL)
11546 return FALSE;
11547 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11548 if (bfd_big_endian (info->output_bfd))
11549 r[0].r_offset += 2;
11550 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11551 r[0].r_offset += 4;
11552 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11553 r[0].r_addend = targ;
11554 if (PPC_HA (off) != 0)
11555 {
11556 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11557 r[1].r_offset = r[0].r_offset + 4;
11558 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11559 r[1].r_addend = r[0].r_addend;
11560 }
11561 }
11562
11563 p = loc;
11564 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11565 {
11566 if (PPC_HA (off) != 0)
11567 {
11568 bfd_put_32 (htab->params->stub_bfd,
11569 ADDIS_R12_R2 | PPC_HA (off), p);
11570 p += 4;
11571 bfd_put_32 (htab->params->stub_bfd,
11572 LD_R12_0R12 | PPC_LO (off), p);
11573 }
11574 else
11575 bfd_put_32 (htab->params->stub_bfd,
11576 LD_R12_0R2 | PPC_LO (off), p);
11577 }
11578 else
11579 {
11580 bfd_vma r2off = get_r2off (info, stub_entry);
11581
11582 if (r2off == (bfd_vma) -1)
11583 {
11584 htab->stub_error = TRUE;
11585 return FALSE;
11586 }
11587
11588 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11589 p += 4;
11590 if (PPC_HA (off) != 0)
11591 {
11592 bfd_put_32 (htab->params->stub_bfd,
11593 ADDIS_R12_R2 | PPC_HA (off), p);
11594 p += 4;
11595 bfd_put_32 (htab->params->stub_bfd,
11596 LD_R12_0R12 | PPC_LO (off), p);
11597 }
11598 else
11599 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), p);
11600
11601 if (PPC_HA (r2off) != 0)
11602 {
11603 p += 4;
11604 bfd_put_32 (htab->params->stub_bfd,
11605 ADDIS_R2_R2 | PPC_HA (r2off), p);
11606 }
11607 if (PPC_LO (r2off) != 0)
11608 {
11609 p += 4;
11610 bfd_put_32 (htab->params->stub_bfd,
11611 ADDI_R2_R2 | PPC_LO (r2off), p);
11612 }
11613 }
11614 p += 4;
11615 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11616 p += 4;
11617 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11618 p += 4;
11619 break;
11620
11621 case ppc_stub_long_branch_notoc:
11622 case ppc_stub_long_branch_both:
11623 case ppc_stub_plt_branch_notoc:
11624 case ppc_stub_plt_branch_both:
11625 case ppc_stub_plt_call_notoc:
11626 case ppc_stub_plt_call_both:
11627 p = loc;
11628 off = (stub_entry->stub_offset
11629 + stub_entry->group->stub_sec->output_offset
11630 + stub_entry->group->stub_sec->output_section->vma);
11631 if (stub_entry->stub_type == ppc_stub_long_branch_both
11632 || stub_entry->stub_type == ppc_stub_plt_branch_both
11633 || stub_entry->stub_type == ppc_stub_plt_call_both)
11634 {
11635 off += 4;
11636 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11637 p += 4;
11638 }
11639 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11640 {
11641 targ = stub_entry->plt_ent->plt.offset & ~1;
11642 if (targ >= (bfd_vma) -2)
11643 abort ();
11644
11645 plt = htab->elf.splt;
11646 if (!htab->elf.dynamic_sections_created
11647 || stub_entry->h == NULL
11648 || stub_entry->h->elf.dynindx == -1)
11649 {
11650 if (stub_entry->symtype == STT_GNU_IFUNC)
11651 plt = htab->elf.iplt;
11652 else
11653 plt = htab->pltlocal;
11654 }
11655 targ += plt->output_offset + plt->output_section->vma;
11656 }
11657 else
11658 targ = (stub_entry->target_value
11659 + stub_entry->target_section->output_offset
11660 + stub_entry->target_section->output_section->vma);
11661 odd = off & 4;
11662 off = targ - off;
11663
11664 relp = p;
11665 num_rel = 0;
11666 if (htab->power10_stubs)
11667 {
11668 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11669 p = build_power10_offset (htab->params->stub_bfd, p, off, odd, load);
11670 }
11671 else
11672 {
11673 /* The notoc stubs calculate their target (either a PLT entry or
11674 the global entry point of a function) relative to the PC
11675 returned by the "bcl" two instructions past the start of the
11676 sequence emitted by build_offset. The offset is therefore 8
11677 less than calculated from the start of the sequence. */
11678 off -= 8;
11679 p = build_offset (htab->params->stub_bfd, p, off,
11680 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11681 }
11682
11683 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11684 {
11685 bfd_vma from;
11686 num_rel = 1;
11687 from = (stub_entry->stub_offset
11688 + stub_entry->group->stub_sec->output_offset
11689 + stub_entry->group->stub_sec->output_section->vma
11690 + (p - loc));
11691 bfd_put_32 (htab->params->stub_bfd,
11692 B_DOT | ((targ - from) & 0x3fffffc), p);
11693 }
11694 else
11695 {
11696 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11697 p += 4;
11698 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11699 }
11700 p += 4;
11701
11702 if (info->emitrelocations)
11703 {
11704 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11705 if (htab->power10_stubs)
11706 num_rel += num_relocs_for_power10_offset (off, odd);
11707 else
11708 {
11709 num_rel += num_relocs_for_offset (off);
11710 roff += 16;
11711 }
11712 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11713 if (r == NULL)
11714 return FALSE;
11715 if (htab->power10_stubs)
11716 r = emit_relocs_for_power10_offset (info, r, roff, targ, off, odd);
11717 else
11718 r = emit_relocs_for_offset (info, r, roff, targ, off);
11719 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11720 || stub_entry->stub_type == ppc_stub_long_branch_both)
11721 {
11722 ++r;
11723 roff = p - 4 - stub_entry->group->stub_sec->contents;
11724 r->r_offset = roff;
11725 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11726 r->r_addend = targ;
11727 if (stub_entry->h != NULL
11728 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11729 return FALSE;
11730 }
11731 }
11732
11733 if (!htab->power10_stubs
11734 && htab->glink_eh_frame != NULL
11735 && htab->glink_eh_frame->size != 0)
11736 {
11737 bfd_byte *base, *eh;
11738 unsigned int lr_used, delta;
11739
11740 base = (htab->glink_eh_frame->contents
11741 + stub_entry->group->eh_base + 17);
11742 eh = base + stub_entry->group->eh_size;
11743 lr_used = stub_entry->stub_offset + 8;
11744 if (stub_entry->stub_type == ppc_stub_long_branch_both
11745 || stub_entry->stub_type == ppc_stub_plt_branch_both
11746 || stub_entry->stub_type == ppc_stub_plt_call_both)
11747 lr_used += 4;
11748 delta = lr_used - stub_entry->group->lr_restore;
11749 stub_entry->group->lr_restore = lr_used + 8;
11750 eh = eh_advance (htab->elf.dynobj, eh, delta);
11751 *eh++ = DW_CFA_register;
11752 *eh++ = 65;
11753 *eh++ = 12;
11754 *eh++ = DW_CFA_advance_loc + 2;
11755 *eh++ = DW_CFA_restore_extended;
11756 *eh++ = 65;
11757 stub_entry->group->eh_size = eh - base;
11758 }
11759 break;
11760
11761 case ppc_stub_plt_call:
11762 case ppc_stub_plt_call_r2save:
11763 if (stub_entry->h != NULL
11764 && stub_entry->h->is_func_descriptor
11765 && stub_entry->h->oh != NULL)
11766 {
11767 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11768
11769 /* If the old-ABI "dot-symbol" is undefined make it weak so
11770 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11771 if (fh->elf.root.type == bfd_link_hash_undefined
11772 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11773 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11774 fh->elf.root.type = bfd_link_hash_undefweak;
11775 }
11776
11777 /* Now build the stub. */
11778 targ = stub_entry->plt_ent->plt.offset & ~1;
11779 if (targ >= (bfd_vma) -2)
11780 abort ();
11781
11782 plt = htab->elf.splt;
11783 if (!htab->elf.dynamic_sections_created
11784 || stub_entry->h == NULL
11785 || stub_entry->h->elf.dynindx == -1)
11786 {
11787 if (stub_entry->symtype == STT_GNU_IFUNC)
11788 plt = htab->elf.iplt;
11789 else
11790 plt = htab->pltlocal;
11791 }
11792 targ += plt->output_offset + plt->output_section->vma;
11793
11794 off = (elf_gp (info->output_bfd)
11795 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11796 off = targ - off;
11797
11798 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11799 {
11800 info->callbacks->einfo
11801 /* xgettext:c-format */
11802 (_("%P: linkage table error against `%pT'\n"),
11803 stub_entry->h != NULL
11804 ? stub_entry->h->elf.root.root.string
11805 : "<local sym>");
11806 bfd_set_error (bfd_error_bad_value);
11807 htab->stub_error = TRUE;
11808 return FALSE;
11809 }
11810
11811 r = NULL;
11812 if (info->emitrelocations)
11813 {
11814 r = get_relocs (stub_entry->group->stub_sec,
11815 ((PPC_HA (off) != 0)
11816 + (htab->opd_abi
11817 ? 2 + (htab->params->plt_static_chain
11818 && PPC_HA (off + 16) == PPC_HA (off))
11819 : 1)));
11820 if (r == NULL)
11821 return FALSE;
11822 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11823 if (bfd_big_endian (info->output_bfd))
11824 r[0].r_offset += 2;
11825 r[0].r_addend = targ;
11826 }
11827 if (stub_entry->h != NULL
11828 && is_tls_get_addr (&stub_entry->h->elf, htab)
11829 && htab->params->tls_get_addr_opt)
11830 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
11831 else
11832 p = build_plt_stub (htab, stub_entry, loc, off, r);
11833 break;
11834
11835 case ppc_stub_save_res:
11836 return TRUE;
11837
11838 default:
11839 BFD_FAIL ();
11840 return FALSE;
11841 }
11842
11843 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11844
11845 if (htab->params->emit_stub_syms)
11846 {
11847 struct elf_link_hash_entry *h;
11848 size_t len1, len2;
11849 char *name;
11850 const char *const stub_str[] = { "long_branch",
11851 "long_branch",
11852 "long_branch",
11853 "long_branch",
11854 "plt_branch",
11855 "plt_branch",
11856 "plt_branch",
11857 "plt_branch",
11858 "plt_call",
11859 "plt_call",
11860 "plt_call",
11861 "plt_call" };
11862
11863 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11864 len2 = strlen (stub_entry->root.string);
11865 name = bfd_malloc (len1 + len2 + 2);
11866 if (name == NULL)
11867 return FALSE;
11868 memcpy (name, stub_entry->root.string, 9);
11869 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11870 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11871 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11872 if (h == NULL)
11873 return FALSE;
11874 if (h->root.type == bfd_link_hash_new)
11875 {
11876 h->root.type = bfd_link_hash_defined;
11877 h->root.u.def.section = stub_entry->group->stub_sec;
11878 h->root.u.def.value = stub_entry->stub_offset;
11879 h->ref_regular = 1;
11880 h->def_regular = 1;
11881 h->ref_regular_nonweak = 1;
11882 h->forced_local = 1;
11883 h->non_elf = 0;
11884 h->root.linker_def = 1;
11885 }
11886 }
11887
11888 return TRUE;
11889 }
11890
11891 /* As above, but don't actually build the stub. Just bump offset so
11892 we know stub section sizes, and select plt_branch stubs where
11893 long_branch stubs won't do. */
11894
11895 static bfd_boolean
11896 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11897 {
11898 struct ppc_stub_hash_entry *stub_entry;
11899 struct bfd_link_info *info;
11900 struct ppc_link_hash_table *htab;
11901 asection *plt;
11902 bfd_vma targ, off, r2off;
11903 unsigned int size, extra, lr_used, delta, odd;
11904
11905 /* Massage our args to the form they really have. */
11906 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11907 info = in_arg;
11908
11909 htab = ppc_hash_table (info);
11910 if (htab == NULL)
11911 return FALSE;
11912
11913 /* Fail if the target section could not be assigned to an output
11914 section. The user should fix his linker script. */
11915 if (stub_entry->target_section != NULL
11916 && stub_entry->target_section->output_section == NULL
11917 && info->non_contiguous_regions)
11918 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output section. "
11919 "Retry without --enable-non-contiguous-regions.\n"),
11920 stub_entry->target_section);
11921
11922 /* Same for the group. */
11923 if (stub_entry->group->stub_sec != NULL
11924 && stub_entry->group->stub_sec->output_section == NULL
11925 && info->non_contiguous_regions)
11926 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11927 "output section. Retry without "
11928 "--enable-non-contiguous-regions.\n"),
11929 stub_entry->group->stub_sec,
11930 stub_entry->target_section);
11931
11932 /* Make a note of the offset within the stubs for this entry. */
11933 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11934
11935 if (stub_entry->h != NULL
11936 && stub_entry->h->save_res
11937 && stub_entry->h->elf.root.type == bfd_link_hash_defined
11938 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
11939 {
11940 /* Don't make stubs to out-of-line register save/restore
11941 functions. Instead, emit copies of the functions. */
11942 stub_entry->group->needs_save_res = 1;
11943 stub_entry->stub_type = ppc_stub_save_res;
11944 return TRUE;
11945 }
11946
11947 switch (stub_entry->stub_type)
11948 {
11949 case ppc_stub_plt_branch:
11950 case ppc_stub_plt_branch_r2off:
11951 /* Reset the stub type from the plt branch variant in case we now
11952 can reach with a shorter stub. */
11953 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11954 /* Fall through. */
11955 case ppc_stub_long_branch:
11956 case ppc_stub_long_branch_r2off:
11957 targ = (stub_entry->target_value
11958 + stub_entry->target_section->output_offset
11959 + stub_entry->target_section->output_section->vma);
11960 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11961 off = (stub_entry->stub_offset
11962 + stub_entry->group->stub_sec->output_offset
11963 + stub_entry->group->stub_sec->output_section->vma);
11964
11965 size = 4;
11966 r2off = 0;
11967 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11968 {
11969 r2off = get_r2off (info, stub_entry);
11970 if (r2off == (bfd_vma) -1)
11971 {
11972 htab->stub_error = TRUE;
11973 return FALSE;
11974 }
11975 size = 8;
11976 if (PPC_HA (r2off) != 0)
11977 size += 4;
11978 if (PPC_LO (r2off) != 0)
11979 size += 4;
11980 off += size - 4;
11981 }
11982 off = targ - off;
11983
11984 /* If the branch offset is too big, use a ppc_stub_plt_branch.
11985 Do the same for -R objects without function descriptors. */
11986 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
11987 && r2off == 0
11988 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
11989 || off + (1 << 25) >= (bfd_vma) (1 << 26))
11990 {
11991 struct ppc_branch_hash_entry *br_entry;
11992
11993 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11994 stub_entry->root.string + 9,
11995 TRUE, FALSE);
11996 if (br_entry == NULL)
11997 {
11998 _bfd_error_handler (_("can't build branch stub `%s'"),
11999 stub_entry->root.string);
12000 htab->stub_error = TRUE;
12001 return FALSE;
12002 }
12003
12004 if (br_entry->iter != htab->stub_iteration)
12005 {
12006 br_entry->iter = htab->stub_iteration;
12007 br_entry->offset = htab->brlt->size;
12008 htab->brlt->size += 8;
12009
12010 if (htab->relbrlt != NULL)
12011 htab->relbrlt->size += sizeof (Elf64_External_Rela);
12012 else if (info->emitrelocations)
12013 {
12014 htab->brlt->reloc_count += 1;
12015 htab->brlt->flags |= SEC_RELOC;
12016 }
12017 }
12018
12019 targ = (br_entry->offset
12020 + htab->brlt->output_offset
12021 + htab->brlt->output_section->vma);
12022 off = (elf_gp (info->output_bfd)
12023 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12024 off = targ - off;
12025
12026 if (info->emitrelocations)
12027 {
12028 stub_entry->group->stub_sec->reloc_count
12029 += 1 + (PPC_HA (off) != 0);
12030 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12031 }
12032
12033 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
12034 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
12035 {
12036 size = 12;
12037 if (PPC_HA (off) != 0)
12038 size = 16;
12039 }
12040 else
12041 {
12042 size = 16;
12043 if (PPC_HA (off) != 0)
12044 size += 4;
12045
12046 if (PPC_HA (r2off) != 0)
12047 size += 4;
12048 if (PPC_LO (r2off) != 0)
12049 size += 4;
12050 }
12051 }
12052 else if (info->emitrelocations)
12053 {
12054 stub_entry->group->stub_sec->reloc_count += 1;
12055 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12056 }
12057 break;
12058
12059 case ppc_stub_plt_branch_notoc:
12060 case ppc_stub_plt_branch_both:
12061 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
12062 /* Fall through. */
12063 case ppc_stub_long_branch_notoc:
12064 case ppc_stub_long_branch_both:
12065 off = (stub_entry->stub_offset
12066 + stub_entry->group->stub_sec->output_offset
12067 + stub_entry->group->stub_sec->output_section->vma);
12068 size = 0;
12069 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12070 size = 4;
12071 off += size;
12072 targ = (stub_entry->target_value
12073 + stub_entry->target_section->output_offset
12074 + stub_entry->target_section->output_section->vma);
12075 odd = off & 4;
12076 off = targ - off;
12077
12078 if (info->emitrelocations)
12079 {
12080 unsigned int num_rel;
12081 if (htab->power10_stubs)
12082 num_rel = num_relocs_for_power10_offset (off, odd);
12083 else
12084 num_rel = num_relocs_for_offset (off - 8);
12085 stub_entry->group->stub_sec->reloc_count += num_rel;
12086 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12087 }
12088
12089 if (htab->power10_stubs)
12090 extra = size_power10_offset (off, odd);
12091 else
12092 extra = size_offset (off - 8);
12093 /* Include branch insn plus those in the offset sequence. */
12094 size += 4 + extra;
12095 /* The branch insn is at the end, or "extra" bytes along. So
12096 its offset will be "extra" bytes less that that already
12097 calculated. */
12098 off -= extra;
12099
12100 if (!htab->power10_stubs)
12101 {
12102 /* After the bcl, lr has been modified so we need to emit
12103 .eh_frame info saying the return address is in r12. */
12104 lr_used = stub_entry->stub_offset + 8;
12105 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12106 lr_used += 4;
12107 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12108 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12109 DW_CFA_restore_extended 65. */
12110 delta = lr_used - stub_entry->group->lr_restore;
12111 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12112 stub_entry->group->lr_restore = lr_used + 8;
12113 }
12114
12115 /* If the branch can't reach, use a plt_branch. */
12116 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
12117 {
12118 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
12119 - ppc_stub_long_branch_notoc);
12120 size += 4;
12121 }
12122 else if (info->emitrelocations)
12123 stub_entry->group->stub_sec->reloc_count +=1;
12124 break;
12125
12126 case ppc_stub_plt_call_notoc:
12127 case ppc_stub_plt_call_both:
12128 off = (stub_entry->stub_offset
12129 + stub_entry->group->stub_sec->output_offset
12130 + stub_entry->group->stub_sec->output_section->vma);
12131 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12132 off += 4;
12133 targ = stub_entry->plt_ent->plt.offset & ~1;
12134 if (targ >= (bfd_vma) -2)
12135 abort ();
12136
12137 plt = htab->elf.splt;
12138 if (!htab->elf.dynamic_sections_created
12139 || stub_entry->h == NULL
12140 || stub_entry->h->elf.dynindx == -1)
12141 {
12142 if (stub_entry->symtype == STT_GNU_IFUNC)
12143 plt = htab->elf.iplt;
12144 else
12145 plt = htab->pltlocal;
12146 }
12147 targ += plt->output_offset + plt->output_section->vma;
12148 odd = off & 4;
12149 off = targ - off;
12150
12151 if (htab->params->plt_stub_align != 0)
12152 {
12153 unsigned pad = plt_stub_pad (htab, stub_entry, off);
12154
12155 stub_entry->group->stub_sec->size += pad;
12156 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12157 off -= pad;
12158 }
12159
12160 if (info->emitrelocations)
12161 {
12162 unsigned int num_rel;
12163 if (htab->power10_stubs)
12164 num_rel = num_relocs_for_power10_offset (off, odd);
12165 else
12166 num_rel = num_relocs_for_offset (off - 8);
12167 stub_entry->group->stub_sec->reloc_count += num_rel;
12168 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12169 }
12170
12171 size = plt_stub_size (htab, stub_entry, off);
12172
12173 if (!htab->power10_stubs)
12174 {
12175 /* After the bcl, lr has been modified so we need to emit
12176 .eh_frame info saying the return address is in r12. */
12177 lr_used = stub_entry->stub_offset + 8;
12178 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12179 lr_used += 4;
12180 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12181 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12182 DW_CFA_restore_extended 65. */
12183 delta = lr_used - stub_entry->group->lr_restore;
12184 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12185 stub_entry->group->lr_restore = lr_used + 8;
12186 }
12187 break;
12188
12189 case ppc_stub_plt_call:
12190 case ppc_stub_plt_call_r2save:
12191 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
12192 if (targ >= (bfd_vma) -2)
12193 abort ();
12194 plt = htab->elf.splt;
12195 if (!htab->elf.dynamic_sections_created
12196 || stub_entry->h == NULL
12197 || stub_entry->h->elf.dynindx == -1)
12198 {
12199 if (stub_entry->symtype == STT_GNU_IFUNC)
12200 plt = htab->elf.iplt;
12201 else
12202 plt = htab->pltlocal;
12203 }
12204 targ += plt->output_offset + plt->output_section->vma;
12205
12206 off = (elf_gp (info->output_bfd)
12207 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12208 off = targ - off;
12209
12210 if (htab->params->plt_stub_align != 0)
12211 {
12212 unsigned pad = plt_stub_pad (htab, stub_entry, off);
12213
12214 stub_entry->group->stub_sec->size += pad;
12215 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12216 }
12217
12218 if (info->emitrelocations)
12219 {
12220 stub_entry->group->stub_sec->reloc_count
12221 += ((PPC_HA (off) != 0)
12222 + (htab->opd_abi
12223 ? 2 + (htab->params->plt_static_chain
12224 && PPC_HA (off + 16) == PPC_HA (off))
12225 : 1));
12226 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12227 }
12228
12229 size = plt_stub_size (htab, stub_entry, off);
12230
12231 if (stub_entry->h != NULL
12232 && is_tls_get_addr (&stub_entry->h->elf, htab)
12233 && htab->params->tls_get_addr_opt
12234 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
12235 {
12236 if (htab->params->no_tls_get_addr_regsave)
12237 {
12238 lr_used = stub_entry->stub_offset + size - 20;
12239 /* The eh_frame info will consist of a DW_CFA_advance_loc
12240 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
12241 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
12242 delta = lr_used - stub_entry->group->lr_restore;
12243 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12244 }
12245 else
12246 {
12247 /* Adjustments to r1 need to be described. */
12248 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12249 delta = cfa_updt - stub_entry->group->lr_restore;
12250 stub_entry->group->eh_size += eh_advance_size (delta);
12251 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12252 }
12253 stub_entry->group->lr_restore = size - 4;
12254 }
12255 break;
12256
12257 default:
12258 BFD_FAIL ();
12259 return FALSE;
12260 }
12261
12262 stub_entry->group->stub_sec->size += size;
12263 return TRUE;
12264 }
12265
12266 /* Set up various things so that we can make a list of input sections
12267 for each output section included in the link. Returns -1 on error,
12268 0 when no stubs will be needed, and 1 on success. */
12269
12270 int
12271 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
12272 {
12273 unsigned int id;
12274 size_t amt;
12275 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12276
12277 if (htab == NULL)
12278 return -1;
12279
12280 htab->sec_info_arr_size = _bfd_section_id;
12281 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
12282 htab->sec_info = bfd_zmalloc (amt);
12283 if (htab->sec_info == NULL)
12284 return -1;
12285
12286 /* Set toc_off for com, und, abs and ind sections. */
12287 for (id = 0; id < 3; id++)
12288 htab->sec_info[id].toc_off = TOC_BASE_OFF;
12289
12290 return 1;
12291 }
12292
12293 /* Set up for first pass at multitoc partitioning. */
12294
12295 void
12296 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
12297 {
12298 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12299
12300 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
12301 htab->toc_bfd = NULL;
12302 htab->toc_first_sec = NULL;
12303 }
12304
12305 /* The linker repeatedly calls this function for each TOC input section
12306 and linker generated GOT section. Group input bfds such that the toc
12307 within a group is less than 64k in size. */
12308
12309 bfd_boolean
12310 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
12311 {
12312 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12313 bfd_vma addr, off, limit;
12314
12315 if (htab == NULL)
12316 return FALSE;
12317
12318 if (!htab->second_toc_pass)
12319 {
12320 /* Keep track of the first .toc or .got section for this input bfd. */
12321 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
12322
12323 if (new_bfd)
12324 {
12325 htab->toc_bfd = isec->owner;
12326 htab->toc_first_sec = isec;
12327 }
12328
12329 addr = isec->output_offset + isec->output_section->vma;
12330 off = addr - htab->toc_curr;
12331 limit = 0x80008000;
12332 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
12333 limit = 0x10000;
12334 if (off + isec->size > limit)
12335 {
12336 addr = (htab->toc_first_sec->output_offset
12337 + htab->toc_first_sec->output_section->vma);
12338 htab->toc_curr = addr;
12339 htab->toc_curr &= -TOC_BASE_ALIGN;
12340 }
12341
12342 /* toc_curr is the base address of this toc group. Set elf_gp
12343 for the input section to be the offset relative to the
12344 output toc base plus 0x8000. Making the input elf_gp an
12345 offset allows us to move the toc as a whole without
12346 recalculating input elf_gp. */
12347 off = htab->toc_curr - elf_gp (info->output_bfd);
12348 off += TOC_BASE_OFF;
12349
12350 /* Die if someone uses a linker script that doesn't keep input
12351 file .toc and .got together. */
12352 if (new_bfd
12353 && elf_gp (isec->owner) != 0
12354 && elf_gp (isec->owner) != off)
12355 return FALSE;
12356
12357 elf_gp (isec->owner) = off;
12358 return TRUE;
12359 }
12360
12361 /* During the second pass toc_first_sec points to the start of
12362 a toc group, and toc_curr is used to track the old elf_gp.
12363 We use toc_bfd to ensure we only look at each bfd once. */
12364 if (htab->toc_bfd == isec->owner)
12365 return TRUE;
12366 htab->toc_bfd = isec->owner;
12367
12368 if (htab->toc_first_sec == NULL
12369 || htab->toc_curr != elf_gp (isec->owner))
12370 {
12371 htab->toc_curr = elf_gp (isec->owner);
12372 htab->toc_first_sec = isec;
12373 }
12374 addr = (htab->toc_first_sec->output_offset
12375 + htab->toc_first_sec->output_section->vma);
12376 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
12377 elf_gp (isec->owner) = off;
12378
12379 return TRUE;
12380 }
12381
12382 /* Called via elf_link_hash_traverse to merge GOT entries for global
12383 symbol H. */
12384
12385 static bfd_boolean
12386 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12387 {
12388 if (h->root.type == bfd_link_hash_indirect)
12389 return TRUE;
12390
12391 merge_got_entries (&h->got.glist);
12392
12393 return TRUE;
12394 }
12395
12396 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12397 symbol H. */
12398
12399 static bfd_boolean
12400 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12401 {
12402 struct got_entry *gent;
12403
12404 if (h->root.type == bfd_link_hash_indirect)
12405 return TRUE;
12406
12407 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12408 if (!gent->is_indirect)
12409 allocate_got (h, (struct bfd_link_info *) inf, gent);
12410 return TRUE;
12411 }
12412
12413 /* Called on the first multitoc pass after the last call to
12414 ppc64_elf_next_toc_section. This function removes duplicate GOT
12415 entries. */
12416
12417 bfd_boolean
12418 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12419 {
12420 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12421 struct bfd *ibfd, *ibfd2;
12422 bfd_boolean done_something;
12423
12424 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12425
12426 if (!htab->do_multi_toc)
12427 return FALSE;
12428
12429 /* Merge global sym got entries within a toc group. */
12430 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12431
12432 /* And tlsld_got. */
12433 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12434 {
12435 struct got_entry *ent, *ent2;
12436
12437 if (!is_ppc64_elf (ibfd))
12438 continue;
12439
12440 ent = ppc64_tlsld_got (ibfd);
12441 if (!ent->is_indirect
12442 && ent->got.offset != (bfd_vma) -1)
12443 {
12444 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12445 {
12446 if (!is_ppc64_elf (ibfd2))
12447 continue;
12448
12449 ent2 = ppc64_tlsld_got (ibfd2);
12450 if (!ent2->is_indirect
12451 && ent2->got.offset != (bfd_vma) -1
12452 && elf_gp (ibfd2) == elf_gp (ibfd))
12453 {
12454 ent2->is_indirect = TRUE;
12455 ent2->got.ent = ent;
12456 }
12457 }
12458 }
12459 }
12460
12461 /* Zap sizes of got sections. */
12462 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12463 htab->elf.irelplt->size -= htab->got_reli_size;
12464 htab->got_reli_size = 0;
12465
12466 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12467 {
12468 asection *got, *relgot;
12469
12470 if (!is_ppc64_elf (ibfd))
12471 continue;
12472
12473 got = ppc64_elf_tdata (ibfd)->got;
12474 if (got != NULL)
12475 {
12476 got->rawsize = got->size;
12477 got->size = 0;
12478 relgot = ppc64_elf_tdata (ibfd)->relgot;
12479 relgot->rawsize = relgot->size;
12480 relgot->size = 0;
12481 }
12482 }
12483
12484 /* Now reallocate the got, local syms first. We don't need to
12485 allocate section contents again since we never increase size. */
12486 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12487 {
12488 struct got_entry **lgot_ents;
12489 struct got_entry **end_lgot_ents;
12490 struct plt_entry **local_plt;
12491 struct plt_entry **end_local_plt;
12492 unsigned char *lgot_masks;
12493 bfd_size_type locsymcount;
12494 Elf_Internal_Shdr *symtab_hdr;
12495 asection *s;
12496
12497 if (!is_ppc64_elf (ibfd))
12498 continue;
12499
12500 lgot_ents = elf_local_got_ents (ibfd);
12501 if (!lgot_ents)
12502 continue;
12503
12504 symtab_hdr = &elf_symtab_hdr (ibfd);
12505 locsymcount = symtab_hdr->sh_info;
12506 end_lgot_ents = lgot_ents + locsymcount;
12507 local_plt = (struct plt_entry **) end_lgot_ents;
12508 end_local_plt = local_plt + locsymcount;
12509 lgot_masks = (unsigned char *) end_local_plt;
12510 s = ppc64_elf_tdata (ibfd)->got;
12511 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12512 {
12513 struct got_entry *ent;
12514
12515 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12516 {
12517 unsigned int ent_size = 8;
12518 unsigned int rel_size = sizeof (Elf64_External_Rela);
12519
12520 ent->got.offset = s->size;
12521 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12522 {
12523 ent_size *= 2;
12524 rel_size *= 2;
12525 }
12526 s->size += ent_size;
12527 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12528 {
12529 htab->elf.irelplt->size += rel_size;
12530 htab->got_reli_size += rel_size;
12531 }
12532 else if (bfd_link_pic (info)
12533 && !(ent->tls_type != 0
12534 && bfd_link_executable (info)))
12535 {
12536 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12537 srel->size += rel_size;
12538 }
12539 }
12540 }
12541 }
12542
12543 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12544
12545 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12546 {
12547 struct got_entry *ent;
12548
12549 if (!is_ppc64_elf (ibfd))
12550 continue;
12551
12552 ent = ppc64_tlsld_got (ibfd);
12553 if (!ent->is_indirect
12554 && ent->got.offset != (bfd_vma) -1)
12555 {
12556 asection *s = ppc64_elf_tdata (ibfd)->got;
12557 ent->got.offset = s->size;
12558 s->size += 16;
12559 if (bfd_link_dll (info))
12560 {
12561 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12562 srel->size += sizeof (Elf64_External_Rela);
12563 }
12564 }
12565 }
12566
12567 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12568 if (!done_something)
12569 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12570 {
12571 asection *got;
12572
12573 if (!is_ppc64_elf (ibfd))
12574 continue;
12575
12576 got = ppc64_elf_tdata (ibfd)->got;
12577 if (got != NULL)
12578 {
12579 done_something = got->rawsize != got->size;
12580 if (done_something)
12581 break;
12582 }
12583 }
12584
12585 if (done_something)
12586 (*htab->params->layout_sections_again) ();
12587
12588 /* Set up for second pass over toc sections to recalculate elf_gp
12589 on input sections. */
12590 htab->toc_bfd = NULL;
12591 htab->toc_first_sec = NULL;
12592 htab->second_toc_pass = TRUE;
12593 return done_something;
12594 }
12595
12596 /* Called after second pass of multitoc partitioning. */
12597
12598 void
12599 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12600 {
12601 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12602
12603 /* After the second pass, toc_curr tracks the TOC offset used
12604 for code sections below in ppc64_elf_next_input_section. */
12605 htab->toc_curr = TOC_BASE_OFF;
12606 }
12607
12608 /* No toc references were found in ISEC. If the code in ISEC makes no
12609 calls, then there's no need to use toc adjusting stubs when branching
12610 into ISEC. Actually, indirect calls from ISEC are OK as they will
12611 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12612 needed, and 2 if a cyclical call-graph was found but no other reason
12613 for a stub was detected. If called from the top level, a return of
12614 2 means the same as a return of 0. */
12615
12616 static int
12617 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12618 {
12619 int ret;
12620
12621 /* Mark this section as checked. */
12622 isec->call_check_done = 1;
12623
12624 /* We know none of our code bearing sections will need toc stubs. */
12625 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12626 return 0;
12627
12628 if (isec->size == 0)
12629 return 0;
12630
12631 if (isec->output_section == NULL)
12632 return 0;
12633
12634 ret = 0;
12635 if (isec->reloc_count != 0)
12636 {
12637 Elf_Internal_Rela *relstart, *rel;
12638 Elf_Internal_Sym *local_syms;
12639 struct ppc_link_hash_table *htab;
12640
12641 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12642 info->keep_memory);
12643 if (relstart == NULL)
12644 return -1;
12645
12646 /* Look for branches to outside of this section. */
12647 local_syms = NULL;
12648 htab = ppc_hash_table (info);
12649 if (htab == NULL)
12650 return -1;
12651
12652 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12653 {
12654 enum elf_ppc64_reloc_type r_type;
12655 unsigned long r_symndx;
12656 struct elf_link_hash_entry *h;
12657 struct ppc_link_hash_entry *eh;
12658 Elf_Internal_Sym *sym;
12659 asection *sym_sec;
12660 struct _opd_sec_data *opd;
12661 bfd_vma sym_value;
12662 bfd_vma dest;
12663
12664 r_type = ELF64_R_TYPE (rel->r_info);
12665 if (r_type != R_PPC64_REL24
12666 && r_type != R_PPC64_REL24_NOTOC
12667 && r_type != R_PPC64_REL14
12668 && r_type != R_PPC64_REL14_BRTAKEN
12669 && r_type != R_PPC64_REL14_BRNTAKEN
12670 && r_type != R_PPC64_PLTCALL
12671 && r_type != R_PPC64_PLTCALL_NOTOC)
12672 continue;
12673
12674 r_symndx = ELF64_R_SYM (rel->r_info);
12675 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12676 isec->owner))
12677 {
12678 ret = -1;
12679 break;
12680 }
12681
12682 /* Calls to dynamic lib functions go through a plt call stub
12683 that uses r2. */
12684 eh = ppc_elf_hash_entry (h);
12685 if (eh != NULL
12686 && (eh->elf.plt.plist != NULL
12687 || (eh->oh != NULL
12688 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12689 {
12690 ret = 1;
12691 break;
12692 }
12693
12694 if (sym_sec == NULL)
12695 /* Ignore other undefined symbols. */
12696 continue;
12697
12698 /* Assume branches to other sections not included in the
12699 link need stubs too, to cover -R and absolute syms. */
12700 if (sym_sec->output_section == NULL)
12701 {
12702 ret = 1;
12703 break;
12704 }
12705
12706 if (h == NULL)
12707 sym_value = sym->st_value;
12708 else
12709 {
12710 if (h->root.type != bfd_link_hash_defined
12711 && h->root.type != bfd_link_hash_defweak)
12712 abort ();
12713 sym_value = h->root.u.def.value;
12714 }
12715 sym_value += rel->r_addend;
12716
12717 /* If this branch reloc uses an opd sym, find the code section. */
12718 opd = get_opd_info (sym_sec);
12719 if (opd != NULL)
12720 {
12721 if (h == NULL && opd->adjust != NULL)
12722 {
12723 long adjust;
12724
12725 adjust = opd->adjust[OPD_NDX (sym_value)];
12726 if (adjust == -1)
12727 /* Assume deleted functions won't ever be called. */
12728 continue;
12729 sym_value += adjust;
12730 }
12731
12732 dest = opd_entry_value (sym_sec, sym_value,
12733 &sym_sec, NULL, FALSE);
12734 if (dest == (bfd_vma) -1)
12735 continue;
12736 }
12737 else
12738 dest = (sym_value
12739 + sym_sec->output_offset
12740 + sym_sec->output_section->vma);
12741
12742 /* Ignore branch to self. */
12743 if (sym_sec == isec)
12744 continue;
12745
12746 /* If the called function uses the toc, we need a stub. */
12747 if (sym_sec->has_toc_reloc
12748 || sym_sec->makes_toc_func_call)
12749 {
12750 ret = 1;
12751 break;
12752 }
12753
12754 /* Assume any branch that needs a long branch stub might in fact
12755 need a plt_branch stub. A plt_branch stub uses r2. */
12756 else if (dest - (isec->output_offset
12757 + isec->output_section->vma
12758 + rel->r_offset) + (1 << 25)
12759 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12760 ? h->other
12761 : sym->st_other))
12762 {
12763 ret = 1;
12764 break;
12765 }
12766
12767 /* If calling back to a section in the process of being
12768 tested, we can't say for sure that no toc adjusting stubs
12769 are needed, so don't return zero. */
12770 else if (sym_sec->call_check_in_progress)
12771 ret = 2;
12772
12773 /* Branches to another section that itself doesn't have any TOC
12774 references are OK. Recursively call ourselves to check. */
12775 else if (!sym_sec->call_check_done)
12776 {
12777 int recur;
12778
12779 /* Mark current section as indeterminate, so that other
12780 sections that call back to current won't be marked as
12781 known. */
12782 isec->call_check_in_progress = 1;
12783 recur = toc_adjusting_stub_needed (info, sym_sec);
12784 isec->call_check_in_progress = 0;
12785
12786 if (recur != 0)
12787 {
12788 ret = recur;
12789 if (recur != 2)
12790 break;
12791 }
12792 }
12793 }
12794
12795 if (local_syms != NULL
12796 && (elf_symtab_hdr (isec->owner).contents
12797 != (unsigned char *) local_syms))
12798 free (local_syms);
12799 if (elf_section_data (isec)->relocs != relstart)
12800 free (relstart);
12801 }
12802
12803 if ((ret & 1) == 0
12804 && isec->map_head.s != NULL
12805 && (strcmp (isec->output_section->name, ".init") == 0
12806 || strcmp (isec->output_section->name, ".fini") == 0))
12807 {
12808 if (isec->map_head.s->has_toc_reloc
12809 || isec->map_head.s->makes_toc_func_call)
12810 ret = 1;
12811 else if (!isec->map_head.s->call_check_done)
12812 {
12813 int recur;
12814 isec->call_check_in_progress = 1;
12815 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12816 isec->call_check_in_progress = 0;
12817 if (recur != 0)
12818 ret = recur;
12819 }
12820 }
12821
12822 if (ret == 1)
12823 isec->makes_toc_func_call = 1;
12824
12825 return ret;
12826 }
12827
12828 /* The linker repeatedly calls this function for each input section,
12829 in the order that input sections are linked into output sections.
12830 Build lists of input sections to determine groupings between which
12831 we may insert linker stubs. */
12832
12833 bfd_boolean
12834 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12835 {
12836 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12837
12838 if (htab == NULL)
12839 return FALSE;
12840
12841 if ((isec->output_section->flags & SEC_CODE) != 0
12842 && isec->output_section->id < htab->sec_info_arr_size)
12843 {
12844 /* This happens to make the list in reverse order,
12845 which is what we want. */
12846 htab->sec_info[isec->id].u.list
12847 = htab->sec_info[isec->output_section->id].u.list;
12848 htab->sec_info[isec->output_section->id].u.list = isec;
12849 }
12850
12851 if (htab->multi_toc_needed)
12852 {
12853 /* Analyse sections that aren't already flagged as needing a
12854 valid toc pointer. Exclude .fixup for the linux kernel.
12855 .fixup contains branches, but only back to the function that
12856 hit an exception. */
12857 if (!(isec->has_toc_reloc
12858 || (isec->flags & SEC_CODE) == 0
12859 || strcmp (isec->name, ".fixup") == 0
12860 || isec->call_check_done))
12861 {
12862 if (toc_adjusting_stub_needed (info, isec) < 0)
12863 return FALSE;
12864 }
12865 /* Make all sections use the TOC assigned for this object file.
12866 This will be wrong for pasted sections; We fix that in
12867 check_pasted_section(). */
12868 if (elf_gp (isec->owner) != 0)
12869 htab->toc_curr = elf_gp (isec->owner);
12870 }
12871
12872 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12873 return TRUE;
12874 }
12875
12876 /* Check that all .init and .fini sections use the same toc, if they
12877 have toc relocs. */
12878
12879 static bfd_boolean
12880 check_pasted_section (struct bfd_link_info *info, const char *name)
12881 {
12882 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12883
12884 if (o != NULL)
12885 {
12886 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12887 bfd_vma toc_off = 0;
12888 asection *i;
12889
12890 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12891 if (i->has_toc_reloc)
12892 {
12893 if (toc_off == 0)
12894 toc_off = htab->sec_info[i->id].toc_off;
12895 else if (toc_off != htab->sec_info[i->id].toc_off)
12896 return FALSE;
12897 }
12898
12899 if (toc_off == 0)
12900 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12901 if (i->makes_toc_func_call)
12902 {
12903 toc_off = htab->sec_info[i->id].toc_off;
12904 break;
12905 }
12906
12907 /* Make sure the whole pasted function uses the same toc offset. */
12908 if (toc_off != 0)
12909 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12910 htab->sec_info[i->id].toc_off = toc_off;
12911 }
12912 return TRUE;
12913 }
12914
12915 bfd_boolean
12916 ppc64_elf_check_init_fini (struct bfd_link_info *info)
12917 {
12918 return (check_pasted_section (info, ".init")
12919 & check_pasted_section (info, ".fini"));
12920 }
12921
12922 /* See whether we can group stub sections together. Grouping stub
12923 sections may result in fewer stubs. More importantly, we need to
12924 put all .init* and .fini* stubs at the beginning of the .init or
12925 .fini output sections respectively, because glibc splits the
12926 _init and _fini functions into multiple parts. Putting a stub in
12927 the middle of a function is not a good idea. */
12928
12929 static bfd_boolean
12930 group_sections (struct bfd_link_info *info,
12931 bfd_size_type stub_group_size,
12932 bfd_boolean stubs_always_before_branch)
12933 {
12934 struct ppc_link_hash_table *htab;
12935 asection *osec;
12936 bfd_boolean suppress_size_errors;
12937
12938 htab = ppc_hash_table (info);
12939 if (htab == NULL)
12940 return FALSE;
12941
12942 suppress_size_errors = FALSE;
12943 if (stub_group_size == 1)
12944 {
12945 /* Default values. */
12946 if (stubs_always_before_branch)
12947 stub_group_size = 0x1e00000;
12948 else
12949 stub_group_size = 0x1c00000;
12950 suppress_size_errors = TRUE;
12951 }
12952
12953 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
12954 {
12955 asection *tail;
12956
12957 if (osec->id >= htab->sec_info_arr_size)
12958 continue;
12959
12960 tail = htab->sec_info[osec->id].u.list;
12961 while (tail != NULL)
12962 {
12963 asection *curr;
12964 asection *prev;
12965 bfd_size_type total;
12966 bfd_boolean big_sec;
12967 bfd_vma curr_toc;
12968 struct map_stub *group;
12969 bfd_size_type group_size;
12970
12971 curr = tail;
12972 total = tail->size;
12973 group_size = (ppc64_elf_section_data (tail) != NULL
12974 && ppc64_elf_section_data (tail)->has_14bit_branch
12975 ? stub_group_size >> 10 : stub_group_size);
12976
12977 big_sec = total > group_size;
12978 if (big_sec && !suppress_size_errors)
12979 /* xgettext:c-format */
12980 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
12981 tail->owner, tail);
12982 curr_toc = htab->sec_info[tail->id].toc_off;
12983
12984 while ((prev = htab->sec_info[curr->id].u.list) != NULL
12985 && ((total += curr->output_offset - prev->output_offset)
12986 < (ppc64_elf_section_data (prev) != NULL
12987 && ppc64_elf_section_data (prev)->has_14bit_branch
12988 ? (group_size = stub_group_size >> 10) : group_size))
12989 && htab->sec_info[prev->id].toc_off == curr_toc)
12990 curr = prev;
12991
12992 /* OK, the size from the start of CURR to the end is less
12993 than group_size and thus can be handled by one stub
12994 section. (or the tail section is itself larger than
12995 group_size, in which case we may be toast.) We should
12996 really be keeping track of the total size of stubs added
12997 here, as stubs contribute to the final output section
12998 size. That's a little tricky, and this way will only
12999 break if stubs added make the total size more than 2^25,
13000 ie. for the default stub_group_size, if stubs total more
13001 than 2097152 bytes, or nearly 75000 plt call stubs. */
13002 group = bfd_alloc (curr->owner, sizeof (*group));
13003 if (group == NULL)
13004 return FALSE;
13005 group->link_sec = curr;
13006 group->stub_sec = NULL;
13007 group->needs_save_res = 0;
13008 group->lr_restore = 0;
13009 group->eh_size = 0;
13010 group->eh_base = 0;
13011 group->next = htab->group;
13012 htab->group = group;
13013 do
13014 {
13015 prev = htab->sec_info[tail->id].u.list;
13016 /* Set up this stub group. */
13017 htab->sec_info[tail->id].u.group = group;
13018 }
13019 while (tail != curr && (tail = prev) != NULL);
13020
13021 /* But wait, there's more! Input sections up to group_size
13022 bytes before the stub section can be handled by it too.
13023 Don't do this if we have a really large section after the
13024 stubs, as adding more stubs increases the chance that
13025 branches may not reach into the stub section. */
13026 if (!stubs_always_before_branch && !big_sec)
13027 {
13028 total = 0;
13029 while (prev != NULL
13030 && ((total += tail->output_offset - prev->output_offset)
13031 < (ppc64_elf_section_data (prev) != NULL
13032 && ppc64_elf_section_data (prev)->has_14bit_branch
13033 ? (group_size = stub_group_size >> 10)
13034 : group_size))
13035 && htab->sec_info[prev->id].toc_off == curr_toc)
13036 {
13037 tail = prev;
13038 prev = htab->sec_info[tail->id].u.list;
13039 htab->sec_info[tail->id].u.group = group;
13040 }
13041 }
13042 tail = prev;
13043 }
13044 }
13045 return TRUE;
13046 }
13047
13048 static const unsigned char glink_eh_frame_cie[] =
13049 {
13050 0, 0, 0, 16, /* length. */
13051 0, 0, 0, 0, /* id. */
13052 1, /* CIE version. */
13053 'z', 'R', 0, /* Augmentation string. */
13054 4, /* Code alignment. */
13055 0x78, /* Data alignment. */
13056 65, /* RA reg. */
13057 1, /* Augmentation size. */
13058 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
13059 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
13060 };
13061
13062 /* Stripping output sections is normally done before dynamic section
13063 symbols have been allocated. This function is called later, and
13064 handles cases like htab->brlt which is mapped to its own output
13065 section. */
13066
13067 static void
13068 maybe_strip_output (struct bfd_link_info *info, asection *isec)
13069 {
13070 if (isec->size == 0
13071 && isec->output_section->size == 0
13072 && !(isec->output_section->flags & SEC_KEEP)
13073 && !bfd_section_removed_from_list (info->output_bfd,
13074 isec->output_section)
13075 && elf_section_data (isec->output_section)->dynindx == 0)
13076 {
13077 isec->output_section->flags |= SEC_EXCLUDE;
13078 bfd_section_list_remove (info->output_bfd, isec->output_section);
13079 info->output_bfd->section_count--;
13080 }
13081 }
13082
13083 /* Determine and set the size of the stub section for a final link.
13084
13085 The basic idea here is to examine all the relocations looking for
13086 PC-relative calls to a target that is unreachable with a "bl"
13087 instruction. */
13088
13089 bfd_boolean
13090 ppc64_elf_size_stubs (struct bfd_link_info *info)
13091 {
13092 bfd_size_type stub_group_size;
13093 bfd_boolean stubs_always_before_branch;
13094 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13095
13096 if (htab == NULL)
13097 return FALSE;
13098
13099 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
13100 htab->params->plt_thread_safe = 1;
13101 if (!htab->opd_abi)
13102 htab->params->plt_thread_safe = 0;
13103 else if (htab->params->plt_thread_safe == -1)
13104 {
13105 static const char *const thread_starter[] =
13106 {
13107 "pthread_create",
13108 /* libstdc++ */
13109 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
13110 /* librt */
13111 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
13112 "mq_notify", "create_timer",
13113 /* libanl */
13114 "getaddrinfo_a",
13115 /* libgomp */
13116 "GOMP_parallel",
13117 "GOMP_parallel_start",
13118 "GOMP_parallel_loop_static",
13119 "GOMP_parallel_loop_static_start",
13120 "GOMP_parallel_loop_dynamic",
13121 "GOMP_parallel_loop_dynamic_start",
13122 "GOMP_parallel_loop_guided",
13123 "GOMP_parallel_loop_guided_start",
13124 "GOMP_parallel_loop_runtime",
13125 "GOMP_parallel_loop_runtime_start",
13126 "GOMP_parallel_sections",
13127 "GOMP_parallel_sections_start",
13128 /* libgo */
13129 "__go_go",
13130 };
13131 unsigned i;
13132
13133 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
13134 {
13135 struct elf_link_hash_entry *h;
13136 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
13137 FALSE, FALSE, TRUE);
13138 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
13139 if (htab->params->plt_thread_safe)
13140 break;
13141 }
13142 }
13143 stubs_always_before_branch = htab->params->group_size < 0;
13144 if (htab->params->group_size < 0)
13145 stub_group_size = -htab->params->group_size;
13146 else
13147 stub_group_size = htab->params->group_size;
13148
13149 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
13150 return FALSE;
13151
13152 htab->tga_group = NULL;
13153 if (!htab->params->no_tls_get_addr_regsave
13154 && htab->tga_desc_fd != NULL
13155 && (htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefined
13156 || htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefweak)
13157 && htab->tls_get_addr_fd != NULL
13158 && is_static_defined (&htab->tls_get_addr_fd->elf))
13159 {
13160 asection *sym_sec, *code_sec, *stub_sec;
13161 bfd_vma sym_value;
13162 struct _opd_sec_data *opd;
13163
13164 sym_sec = htab->tls_get_addr_fd->elf.root.u.def.section;
13165 sym_value = defined_sym_val (&htab->tls_get_addr_fd->elf);
13166 code_sec = sym_sec;
13167 opd = get_opd_info (sym_sec);
13168 if (opd != NULL)
13169 opd_entry_value (sym_sec, sym_value, &code_sec, NULL, FALSE);
13170 htab->tga_group = htab->sec_info[code_sec->id].u.group;
13171 stub_sec = (*htab->params->add_stub_section) (".tga_desc.stub",
13172 htab->tga_group->link_sec);
13173 if (stub_sec == NULL)
13174 return FALSE;
13175 htab->tga_group->stub_sec = stub_sec;
13176
13177 htab->tga_desc_fd->elf.root.type = bfd_link_hash_defined;
13178 htab->tga_desc_fd->elf.root.u.def.section = stub_sec;
13179 htab->tga_desc_fd->elf.root.u.def.value = 0;
13180 htab->tga_desc_fd->elf.type = STT_FUNC;
13181 htab->tga_desc_fd->elf.def_regular = 1;
13182 htab->tga_desc_fd->elf.non_elf = 0;
13183 _bfd_elf_link_hash_hide_symbol (info, &htab->tga_desc_fd->elf, TRUE);
13184 }
13185
13186 #define STUB_SHRINK_ITER 20
13187 /* Loop until no stubs added. After iteration 20 of this loop we may
13188 exit on a stub section shrinking. This is to break out of a
13189 pathological case where adding stubs on one iteration decreases
13190 section gaps (perhaps due to alignment), which then requires
13191 fewer or smaller stubs on the next iteration. */
13192
13193 while (1)
13194 {
13195 bfd *input_bfd;
13196 unsigned int bfd_indx;
13197 struct map_stub *group;
13198
13199 htab->stub_iteration += 1;
13200
13201 for (input_bfd = info->input_bfds, bfd_indx = 0;
13202 input_bfd != NULL;
13203 input_bfd = input_bfd->link.next, bfd_indx++)
13204 {
13205 Elf_Internal_Shdr *symtab_hdr;
13206 asection *section;
13207 Elf_Internal_Sym *local_syms = NULL;
13208
13209 if (!is_ppc64_elf (input_bfd))
13210 continue;
13211
13212 /* We'll need the symbol table in a second. */
13213 symtab_hdr = &elf_symtab_hdr (input_bfd);
13214 if (symtab_hdr->sh_info == 0)
13215 continue;
13216
13217 /* Walk over each section attached to the input bfd. */
13218 for (section = input_bfd->sections;
13219 section != NULL;
13220 section = section->next)
13221 {
13222 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
13223
13224 /* If there aren't any relocs, then there's nothing more
13225 to do. */
13226 if ((section->flags & SEC_RELOC) == 0
13227 || (section->flags & SEC_ALLOC) == 0
13228 || (section->flags & SEC_LOAD) == 0
13229 || (section->flags & SEC_CODE) == 0
13230 || section->reloc_count == 0)
13231 continue;
13232
13233 /* If this section is a link-once section that will be
13234 discarded, then don't create any stubs. */
13235 if (section->output_section == NULL
13236 || section->output_section->owner != info->output_bfd)
13237 continue;
13238
13239 /* Get the relocs. */
13240 internal_relocs
13241 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
13242 info->keep_memory);
13243 if (internal_relocs == NULL)
13244 goto error_ret_free_local;
13245
13246 /* Now examine each relocation. */
13247 irela = internal_relocs;
13248 irelaend = irela + section->reloc_count;
13249 for (; irela < irelaend; irela++)
13250 {
13251 enum elf_ppc64_reloc_type r_type;
13252 unsigned int r_indx;
13253 enum ppc_stub_type stub_type;
13254 struct ppc_stub_hash_entry *stub_entry;
13255 asection *sym_sec, *code_sec;
13256 bfd_vma sym_value, code_value;
13257 bfd_vma destination;
13258 unsigned long local_off;
13259 bfd_boolean ok_dest;
13260 struct ppc_link_hash_entry *hash;
13261 struct ppc_link_hash_entry *fdh;
13262 struct elf_link_hash_entry *h;
13263 Elf_Internal_Sym *sym;
13264 char *stub_name;
13265 const asection *id_sec;
13266 struct _opd_sec_data *opd;
13267 struct plt_entry *plt_ent;
13268
13269 r_type = ELF64_R_TYPE (irela->r_info);
13270 r_indx = ELF64_R_SYM (irela->r_info);
13271
13272 if (r_type >= R_PPC64_max)
13273 {
13274 bfd_set_error (bfd_error_bad_value);
13275 goto error_ret_free_internal;
13276 }
13277
13278 /* Only look for stubs on branch instructions. */
13279 if (r_type != R_PPC64_REL24
13280 && r_type != R_PPC64_REL24_NOTOC
13281 && r_type != R_PPC64_REL14
13282 && r_type != R_PPC64_REL14_BRTAKEN
13283 && r_type != R_PPC64_REL14_BRNTAKEN)
13284 continue;
13285
13286 /* Now determine the call target, its name, value,
13287 section. */
13288 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
13289 r_indx, input_bfd))
13290 goto error_ret_free_internal;
13291 hash = ppc_elf_hash_entry (h);
13292
13293 ok_dest = FALSE;
13294 fdh = NULL;
13295 sym_value = 0;
13296 if (hash == NULL)
13297 {
13298 sym_value = sym->st_value;
13299 if (sym_sec != NULL
13300 && sym_sec->output_section != NULL)
13301 ok_dest = TRUE;
13302 }
13303 else if (hash->elf.root.type == bfd_link_hash_defined
13304 || hash->elf.root.type == bfd_link_hash_defweak)
13305 {
13306 sym_value = hash->elf.root.u.def.value;
13307 if (sym_sec->output_section != NULL)
13308 ok_dest = TRUE;
13309 }
13310 else if (hash->elf.root.type == bfd_link_hash_undefweak
13311 || hash->elf.root.type == bfd_link_hash_undefined)
13312 {
13313 /* Recognise an old ABI func code entry sym, and
13314 use the func descriptor sym instead if it is
13315 defined. */
13316 if (hash->elf.root.root.string[0] == '.'
13317 && hash->oh != NULL)
13318 {
13319 fdh = ppc_follow_link (hash->oh);
13320 if (fdh->elf.root.type == bfd_link_hash_defined
13321 || fdh->elf.root.type == bfd_link_hash_defweak)
13322 {
13323 sym_sec = fdh->elf.root.u.def.section;
13324 sym_value = fdh->elf.root.u.def.value;
13325 if (sym_sec->output_section != NULL)
13326 ok_dest = TRUE;
13327 }
13328 else
13329 fdh = NULL;
13330 }
13331 }
13332 else
13333 {
13334 bfd_set_error (bfd_error_bad_value);
13335 goto error_ret_free_internal;
13336 }
13337
13338 destination = 0;
13339 local_off = 0;
13340 if (ok_dest)
13341 {
13342 sym_value += irela->r_addend;
13343 destination = (sym_value
13344 + sym_sec->output_offset
13345 + sym_sec->output_section->vma);
13346 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
13347 ? hash->elf.other
13348 : sym->st_other);
13349 }
13350
13351 code_sec = sym_sec;
13352 code_value = sym_value;
13353 opd = get_opd_info (sym_sec);
13354 if (opd != NULL)
13355 {
13356 bfd_vma dest;
13357
13358 if (hash == NULL && opd->adjust != NULL)
13359 {
13360 long adjust = opd->adjust[OPD_NDX (sym_value)];
13361 if (adjust == -1)
13362 continue;
13363 code_value += adjust;
13364 sym_value += adjust;
13365 }
13366 dest = opd_entry_value (sym_sec, sym_value,
13367 &code_sec, &code_value, FALSE);
13368 if (dest != (bfd_vma) -1)
13369 {
13370 destination = dest;
13371 if (fdh != NULL)
13372 {
13373 /* Fixup old ABI sym to point at code
13374 entry. */
13375 hash->elf.root.type = bfd_link_hash_defweak;
13376 hash->elf.root.u.def.section = code_sec;
13377 hash->elf.root.u.def.value = code_value;
13378 }
13379 }
13380 }
13381
13382 /* Determine what (if any) linker stub is needed. */
13383 plt_ent = NULL;
13384 stub_type = ppc_type_of_stub (section, irela, &hash,
13385 &plt_ent, destination,
13386 local_off);
13387
13388 if (r_type == R_PPC64_REL24_NOTOC)
13389 {
13390 if (stub_type == ppc_stub_plt_call)
13391 stub_type = ppc_stub_plt_call_notoc;
13392 else if (stub_type == ppc_stub_long_branch
13393 || (code_sec != NULL
13394 && code_sec->output_section != NULL
13395 && (((hash ? hash->elf.other : sym->st_other)
13396 & STO_PPC64_LOCAL_MASK)
13397 > 1 << STO_PPC64_LOCAL_BIT)))
13398 stub_type = ppc_stub_long_branch_notoc;
13399 }
13400 else if (stub_type != ppc_stub_plt_call)
13401 {
13402 /* Check whether we need a TOC adjusting stub.
13403 Since the linker pastes together pieces from
13404 different object files when creating the
13405 _init and _fini functions, it may be that a
13406 call to what looks like a local sym is in
13407 fact a call needing a TOC adjustment. */
13408 if ((code_sec != NULL
13409 && code_sec->output_section != NULL
13410 && (htab->sec_info[code_sec->id].toc_off
13411 != htab->sec_info[section->id].toc_off)
13412 && (code_sec->has_toc_reloc
13413 || code_sec->makes_toc_func_call))
13414 || (((hash ? hash->elf.other : sym->st_other)
13415 & STO_PPC64_LOCAL_MASK)
13416 == 1 << STO_PPC64_LOCAL_BIT))
13417 stub_type = ppc_stub_long_branch_r2off;
13418 }
13419
13420 if (stub_type == ppc_stub_none)
13421 continue;
13422
13423 /* __tls_get_addr calls might be eliminated. */
13424 if (stub_type != ppc_stub_plt_call
13425 && stub_type != ppc_stub_plt_call_notoc
13426 && hash != NULL
13427 && is_tls_get_addr (&hash->elf, htab)
13428 && section->has_tls_reloc
13429 && irela != internal_relocs)
13430 {
13431 /* Get tls info. */
13432 unsigned char *tls_mask;
13433
13434 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13435 irela - 1, input_bfd))
13436 goto error_ret_free_internal;
13437 if ((*tls_mask & TLS_TLS) != 0
13438 && (*tls_mask & (TLS_GD | TLS_LD)) == 0)
13439 continue;
13440 }
13441
13442 if (stub_type == ppc_stub_plt_call)
13443 {
13444 if (!htab->opd_abi
13445 && htab->params->plt_localentry0 != 0
13446 && is_elfv2_localentry0 (&hash->elf))
13447 htab->has_plt_localentry0 = 1;
13448 else if (irela + 1 < irelaend
13449 && irela[1].r_offset == irela->r_offset + 4
13450 && (ELF64_R_TYPE (irela[1].r_info)
13451 == R_PPC64_TOCSAVE))
13452 {
13453 if (!tocsave_find (htab, INSERT,
13454 &local_syms, irela + 1, input_bfd))
13455 goto error_ret_free_internal;
13456 }
13457 else
13458 stub_type = ppc_stub_plt_call_r2save;
13459 }
13460
13461 /* Support for grouping stub sections. */
13462 id_sec = htab->sec_info[section->id].u.group->link_sec;
13463
13464 /* Get the name of this stub. */
13465 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13466 if (!stub_name)
13467 goto error_ret_free_internal;
13468
13469 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13470 stub_name, FALSE, FALSE);
13471 if (stub_entry != NULL)
13472 {
13473 enum ppc_stub_type old_type;
13474 /* A stub has already been created, but it may
13475 not be the required type. We shouldn't be
13476 transitioning from plt_call to long_branch
13477 stubs or vice versa, but we might be
13478 upgrading from plt_call to plt_call_r2save or
13479 from long_branch to long_branch_r2off. */
13480 free (stub_name);
13481 old_type = stub_entry->stub_type;
13482 switch (old_type)
13483 {
13484 default:
13485 abort ();
13486
13487 case ppc_stub_save_res:
13488 continue;
13489
13490 case ppc_stub_plt_call:
13491 case ppc_stub_plt_call_r2save:
13492 case ppc_stub_plt_call_notoc:
13493 case ppc_stub_plt_call_both:
13494 if (stub_type == ppc_stub_plt_call)
13495 continue;
13496 else if (stub_type == ppc_stub_plt_call_r2save)
13497 {
13498 if (old_type == ppc_stub_plt_call_notoc)
13499 stub_type = ppc_stub_plt_call_both;
13500 }
13501 else if (stub_type == ppc_stub_plt_call_notoc)
13502 {
13503 if (old_type == ppc_stub_plt_call_r2save)
13504 stub_type = ppc_stub_plt_call_both;
13505 }
13506 else
13507 abort ();
13508 break;
13509
13510 case ppc_stub_plt_branch:
13511 case ppc_stub_plt_branch_r2off:
13512 case ppc_stub_plt_branch_notoc:
13513 case ppc_stub_plt_branch_both:
13514 old_type += (ppc_stub_long_branch
13515 - ppc_stub_plt_branch);
13516 /* Fall through. */
13517 case ppc_stub_long_branch:
13518 case ppc_stub_long_branch_r2off:
13519 case ppc_stub_long_branch_notoc:
13520 case ppc_stub_long_branch_both:
13521 if (stub_type == ppc_stub_long_branch)
13522 continue;
13523 else if (stub_type == ppc_stub_long_branch_r2off)
13524 {
13525 if (old_type == ppc_stub_long_branch_notoc)
13526 stub_type = ppc_stub_long_branch_both;
13527 }
13528 else if (stub_type == ppc_stub_long_branch_notoc)
13529 {
13530 if (old_type == ppc_stub_long_branch_r2off)
13531 stub_type = ppc_stub_long_branch_both;
13532 }
13533 else
13534 abort ();
13535 break;
13536 }
13537 if (old_type < stub_type)
13538 stub_entry->stub_type = stub_type;
13539 continue;
13540 }
13541
13542 stub_entry = ppc_add_stub (stub_name, section, info);
13543 if (stub_entry == NULL)
13544 {
13545 free (stub_name);
13546 error_ret_free_internal:
13547 if (elf_section_data (section)->relocs == NULL)
13548 free (internal_relocs);
13549 error_ret_free_local:
13550 if (local_syms != NULL
13551 && (symtab_hdr->contents
13552 != (unsigned char *) local_syms))
13553 free (local_syms);
13554 return FALSE;
13555 }
13556
13557 stub_entry->stub_type = stub_type;
13558 if (stub_type >= ppc_stub_plt_call
13559 && stub_type <= ppc_stub_plt_call_both)
13560 {
13561 stub_entry->target_value = sym_value;
13562 stub_entry->target_section = sym_sec;
13563 }
13564 else
13565 {
13566 stub_entry->target_value = code_value;
13567 stub_entry->target_section = code_sec;
13568 }
13569 stub_entry->h = hash;
13570 stub_entry->plt_ent = plt_ent;
13571 stub_entry->symtype
13572 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13573 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13574
13575 if (hash != NULL
13576 && (hash->elf.root.type == bfd_link_hash_defined
13577 || hash->elf.root.type == bfd_link_hash_defweak))
13578 htab->stub_globals += 1;
13579 }
13580
13581 /* We're done with the internal relocs, free them. */
13582 if (elf_section_data (section)->relocs != internal_relocs)
13583 free (internal_relocs);
13584 }
13585
13586 if (local_syms != NULL
13587 && symtab_hdr->contents != (unsigned char *) local_syms)
13588 {
13589 if (!info->keep_memory)
13590 free (local_syms);
13591 else
13592 symtab_hdr->contents = (unsigned char *) local_syms;
13593 }
13594 }
13595
13596 /* We may have added some stubs. Find out the new size of the
13597 stub sections. */
13598 for (group = htab->group; group != NULL; group = group->next)
13599 {
13600 group->lr_restore = 0;
13601 group->eh_size = 0;
13602 if (group->stub_sec != NULL)
13603 {
13604 asection *stub_sec = group->stub_sec;
13605
13606 if (htab->stub_iteration <= STUB_SHRINK_ITER
13607 || stub_sec->rawsize < stub_sec->size)
13608 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13609 stub_sec->rawsize = stub_sec->size;
13610 stub_sec->size = 0;
13611 stub_sec->reloc_count = 0;
13612 stub_sec->flags &= ~SEC_RELOC;
13613 }
13614 }
13615 if (htab->tga_group != NULL)
13616 {
13617 /* See emit_tga_desc and emit_tga_desc_eh_frame. */
13618 htab->tga_group->eh_size
13619 = 1 + 2 + (htab->opd_abi != 0) + 3 + 8 * 2 + 3 + 8 + 3;
13620 htab->tga_group->lr_restore = 23 * 4;
13621 htab->tga_group->stub_sec->size = 24 * 4;
13622 }
13623
13624 if (htab->stub_iteration <= STUB_SHRINK_ITER
13625 || htab->brlt->rawsize < htab->brlt->size)
13626 htab->brlt->rawsize = htab->brlt->size;
13627 htab->brlt->size = 0;
13628 htab->brlt->reloc_count = 0;
13629 htab->brlt->flags &= ~SEC_RELOC;
13630 if (htab->relbrlt != NULL)
13631 htab->relbrlt->size = 0;
13632
13633 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13634
13635 for (group = htab->group; group != NULL; group = group->next)
13636 if (group->needs_save_res)
13637 group->stub_sec->size += htab->sfpr->size;
13638
13639 if (info->emitrelocations
13640 && htab->glink != NULL && htab->glink->size != 0)
13641 {
13642 htab->glink->reloc_count = 1;
13643 htab->glink->flags |= SEC_RELOC;
13644 }
13645
13646 if (htab->glink_eh_frame != NULL
13647 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13648 && htab->glink_eh_frame->output_section->size > 8)
13649 {
13650 size_t size = 0, align = 4;
13651
13652 for (group = htab->group; group != NULL; group = group->next)
13653 if (group->eh_size != 0)
13654 size += (group->eh_size + 17 + align - 1) & -align;
13655 if (htab->glink != NULL && htab->glink->size != 0)
13656 size += (24 + align - 1) & -align;
13657 if (size != 0)
13658 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13659 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13660 size = (size + align - 1) & -align;
13661 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13662 htab->glink_eh_frame->size = size;
13663 }
13664
13665 if (htab->params->plt_stub_align != 0)
13666 for (group = htab->group; group != NULL; group = group->next)
13667 if (group->stub_sec != NULL)
13668 {
13669 int align = abs (htab->params->plt_stub_align);
13670 group->stub_sec->size
13671 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13672 }
13673
13674 for (group = htab->group; group != NULL; group = group->next)
13675 if (group->stub_sec != NULL
13676 && group->stub_sec->rawsize != group->stub_sec->size
13677 && (htab->stub_iteration <= STUB_SHRINK_ITER
13678 || group->stub_sec->rawsize < group->stub_sec->size))
13679 break;
13680
13681 if (group == NULL
13682 && (htab->brlt->rawsize == htab->brlt->size
13683 || (htab->stub_iteration > STUB_SHRINK_ITER
13684 && htab->brlt->rawsize > htab->brlt->size))
13685 && (htab->glink_eh_frame == NULL
13686 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size)
13687 && (htab->tga_group == NULL
13688 || htab->stub_iteration > 1))
13689 break;
13690
13691 /* Ask the linker to do its stuff. */
13692 (*htab->params->layout_sections_again) ();
13693 }
13694
13695 if (htab->glink_eh_frame != NULL
13696 && htab->glink_eh_frame->size != 0)
13697 {
13698 bfd_vma val;
13699 bfd_byte *p, *last_fde;
13700 size_t last_fde_len, size, align, pad;
13701 struct map_stub *group;
13702
13703 /* It is necessary to at least have a rough outline of the
13704 linker generated CIEs and FDEs written before
13705 bfd_elf_discard_info is run, in order for these FDEs to be
13706 indexed in .eh_frame_hdr. */
13707 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13708 if (p == NULL)
13709 return FALSE;
13710 htab->glink_eh_frame->contents = p;
13711 last_fde = p;
13712 align = 4;
13713
13714 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13715 /* CIE length (rewrite in case little-endian). */
13716 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13717 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13718 p += last_fde_len + 4;
13719
13720 for (group = htab->group; group != NULL; group = group->next)
13721 if (group->eh_size != 0)
13722 {
13723 group->eh_base = p - htab->glink_eh_frame->contents;
13724 last_fde = p;
13725 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13726 /* FDE length. */
13727 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13728 p += 4;
13729 /* CIE pointer. */
13730 val = p - htab->glink_eh_frame->contents;
13731 bfd_put_32 (htab->elf.dynobj, val, p);
13732 p += 4;
13733 /* Offset to stub section, written later. */
13734 p += 4;
13735 /* stub section size. */
13736 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13737 p += 4;
13738 /* Augmentation. */
13739 p += 1;
13740 /* Make sure we don't have all nops. This is enough for
13741 elf-eh-frame.c to detect the last non-nop opcode. */
13742 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13743 p = last_fde + last_fde_len + 4;
13744 }
13745 if (htab->glink != NULL && htab->glink->size != 0)
13746 {
13747 last_fde = p;
13748 last_fde_len = ((24 + align - 1) & -align) - 4;
13749 /* FDE length. */
13750 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13751 p += 4;
13752 /* CIE pointer. */
13753 val = p - htab->glink_eh_frame->contents;
13754 bfd_put_32 (htab->elf.dynobj, val, p);
13755 p += 4;
13756 /* Offset to .glink, written later. */
13757 p += 4;
13758 /* .glink size. */
13759 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13760 p += 4;
13761 /* Augmentation. */
13762 p += 1;
13763
13764 *p++ = DW_CFA_advance_loc + 1;
13765 *p++ = DW_CFA_register;
13766 *p++ = 65;
13767 *p++ = htab->opd_abi ? 12 : 0;
13768 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 5 : 7);
13769 *p++ = DW_CFA_restore_extended;
13770 *p++ = 65;
13771 p += ((24 + align - 1) & -align) - 24;
13772 }
13773 /* Subsume any padding into the last FDE if user .eh_frame
13774 sections are aligned more than glink_eh_frame. Otherwise any
13775 zero padding will be seen as a terminator. */
13776 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13777 size = p - htab->glink_eh_frame->contents;
13778 pad = ((size + align - 1) & -align) - size;
13779 htab->glink_eh_frame->size = size + pad;
13780 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13781 }
13782
13783 maybe_strip_output (info, htab->brlt);
13784 if (htab->relbrlt != NULL)
13785 maybe_strip_output (info, htab->relbrlt);
13786 if (htab->glink_eh_frame != NULL)
13787 maybe_strip_output (info, htab->glink_eh_frame);
13788
13789 return TRUE;
13790 }
13791
13792 /* Called after we have determined section placement. If sections
13793 move, we'll be called again. Provide a value for TOCstart. */
13794
13795 bfd_vma
13796 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13797 {
13798 asection *s;
13799 bfd_vma TOCstart, adjust;
13800
13801 if (info != NULL)
13802 {
13803 struct elf_link_hash_entry *h;
13804 struct elf_link_hash_table *htab = elf_hash_table (info);
13805
13806 if (is_elf_hash_table (htab)
13807 && htab->hgot != NULL)
13808 h = htab->hgot;
13809 else
13810 {
13811 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13812 if (is_elf_hash_table (htab))
13813 htab->hgot = h;
13814 }
13815 if (h != NULL
13816 && h->root.type == bfd_link_hash_defined
13817 && !h->root.linker_def
13818 && (!is_elf_hash_table (htab)
13819 || h->def_regular))
13820 {
13821 TOCstart = defined_sym_val (h) - TOC_BASE_OFF;
13822 _bfd_set_gp_value (obfd, TOCstart);
13823 return TOCstart;
13824 }
13825 }
13826
13827 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13828 order. The TOC starts where the first of these sections starts. */
13829 s = bfd_get_section_by_name (obfd, ".got");
13830 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13831 s = bfd_get_section_by_name (obfd, ".toc");
13832 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13833 s = bfd_get_section_by_name (obfd, ".tocbss");
13834 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13835 s = bfd_get_section_by_name (obfd, ".plt");
13836 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13837 {
13838 /* This may happen for
13839 o references to TOC base (SYM@toc / TOC[tc0]) without a
13840 .toc directive
13841 o bad linker script
13842 o --gc-sections and empty TOC sections
13843
13844 FIXME: Warn user? */
13845
13846 /* Look for a likely section. We probably won't even be
13847 using TOCstart. */
13848 for (s = obfd->sections; s != NULL; s = s->next)
13849 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13850 | SEC_EXCLUDE))
13851 == (SEC_ALLOC | SEC_SMALL_DATA))
13852 break;
13853 if (s == NULL)
13854 for (s = obfd->sections; s != NULL; s = s->next)
13855 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13856 == (SEC_ALLOC | SEC_SMALL_DATA))
13857 break;
13858 if (s == NULL)
13859 for (s = obfd->sections; s != NULL; s = s->next)
13860 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13861 == SEC_ALLOC)
13862 break;
13863 if (s == NULL)
13864 for (s = obfd->sections; s != NULL; s = s->next)
13865 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13866 break;
13867 }
13868
13869 TOCstart = 0;
13870 if (s != NULL)
13871 TOCstart = s->output_section->vma + s->output_offset;
13872
13873 /* Force alignment. */
13874 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
13875 TOCstart -= adjust;
13876 _bfd_set_gp_value (obfd, TOCstart);
13877
13878 if (info != NULL && s != NULL)
13879 {
13880 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13881
13882 if (htab != NULL)
13883 {
13884 if (htab->elf.hgot != NULL)
13885 {
13886 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
13887 htab->elf.hgot->root.u.def.section = s;
13888 }
13889 }
13890 else
13891 {
13892 struct bfd_link_hash_entry *bh = NULL;
13893 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
13894 s, TOC_BASE_OFF - adjust,
13895 NULL, FALSE, FALSE, &bh);
13896 }
13897 }
13898 return TOCstart;
13899 }
13900
13901 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
13902 write out any global entry stubs, and PLT relocations. */
13903
13904 static bfd_boolean
13905 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
13906 {
13907 struct bfd_link_info *info;
13908 struct ppc_link_hash_table *htab;
13909 struct plt_entry *ent;
13910 asection *s;
13911
13912 if (h->root.type == bfd_link_hash_indirect)
13913 return TRUE;
13914
13915 info = inf;
13916 htab = ppc_hash_table (info);
13917 if (htab == NULL)
13918 return FALSE;
13919
13920 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13921 if (ent->plt.offset != (bfd_vma) -1)
13922 {
13923 /* This symbol has an entry in the procedure linkage
13924 table. Set it up. */
13925 Elf_Internal_Rela rela;
13926 asection *plt, *relplt;
13927 bfd_byte *loc;
13928
13929 if (!htab->elf.dynamic_sections_created
13930 || h->dynindx == -1)
13931 {
13932 if (!(h->def_regular
13933 && (h->root.type == bfd_link_hash_defined
13934 || h->root.type == bfd_link_hash_defweak)))
13935 continue;
13936 if (h->type == STT_GNU_IFUNC)
13937 {
13938 plt = htab->elf.iplt;
13939 relplt = htab->elf.irelplt;
13940 htab->local_ifunc_resolver = 1;
13941 if (htab->opd_abi)
13942 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13943 else
13944 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13945 }
13946 else
13947 {
13948 plt = htab->pltlocal;
13949 if (bfd_link_pic (info))
13950 {
13951 relplt = htab->relpltlocal;
13952 if (htab->opd_abi)
13953 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13954 else
13955 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13956 }
13957 else
13958 relplt = NULL;
13959 }
13960 rela.r_addend = defined_sym_val (h) + ent->addend;
13961
13962 if (relplt == NULL)
13963 {
13964 loc = plt->contents + ent->plt.offset;
13965 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
13966 if (htab->opd_abi)
13967 {
13968 bfd_vma toc = elf_gp (info->output_bfd);
13969 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
13970 bfd_put_64 (info->output_bfd, toc, loc + 8);
13971 }
13972 }
13973 else
13974 {
13975 rela.r_offset = (plt->output_section->vma
13976 + plt->output_offset
13977 + ent->plt.offset);
13978 loc = relplt->contents + (relplt->reloc_count++
13979 * sizeof (Elf64_External_Rela));
13980 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13981 }
13982 }
13983 else
13984 {
13985 rela.r_offset = (htab->elf.splt->output_section->vma
13986 + htab->elf.splt->output_offset
13987 + ent->plt.offset);
13988 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
13989 rela.r_addend = ent->addend;
13990 loc = (htab->elf.srelplt->contents
13991 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
13992 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
13993 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
13994 htab->maybe_local_ifunc_resolver = 1;
13995 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13996 }
13997 }
13998
13999 if (!h->pointer_equality_needed)
14000 return TRUE;
14001
14002 if (h->def_regular)
14003 return TRUE;
14004
14005 s = htab->global_entry;
14006 if (s == NULL || s->size == 0)
14007 return TRUE;
14008
14009 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14010 if (ent->plt.offset != (bfd_vma) -1
14011 && ent->addend == 0)
14012 {
14013 bfd_byte *p;
14014 asection *plt;
14015 bfd_vma off;
14016
14017 p = s->contents + h->root.u.def.value;
14018 plt = htab->elf.splt;
14019 if (!htab->elf.dynamic_sections_created
14020 || h->dynindx == -1)
14021 {
14022 if (h->type == STT_GNU_IFUNC)
14023 plt = htab->elf.iplt;
14024 else
14025 plt = htab->pltlocal;
14026 }
14027 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
14028 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
14029
14030 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
14031 {
14032 info->callbacks->einfo
14033 (_("%P: linkage table error against `%pT'\n"),
14034 h->root.root.string);
14035 bfd_set_error (bfd_error_bad_value);
14036 htab->stub_error = TRUE;
14037 }
14038
14039 htab->stub_count[ppc_stub_global_entry - 1] += 1;
14040 if (htab->params->emit_stub_syms)
14041 {
14042 size_t len = strlen (h->root.root.string);
14043 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
14044
14045 if (name == NULL)
14046 return FALSE;
14047
14048 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
14049 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
14050 if (h == NULL)
14051 return FALSE;
14052 if (h->root.type == bfd_link_hash_new)
14053 {
14054 h->root.type = bfd_link_hash_defined;
14055 h->root.u.def.section = s;
14056 h->root.u.def.value = p - s->contents;
14057 h->ref_regular = 1;
14058 h->def_regular = 1;
14059 h->ref_regular_nonweak = 1;
14060 h->forced_local = 1;
14061 h->non_elf = 0;
14062 h->root.linker_def = 1;
14063 }
14064 }
14065
14066 if (PPC_HA (off) != 0)
14067 {
14068 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
14069 p += 4;
14070 }
14071 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
14072 p += 4;
14073 bfd_put_32 (s->owner, MTCTR_R12, p);
14074 p += 4;
14075 bfd_put_32 (s->owner, BCTR, p);
14076 break;
14077 }
14078 return TRUE;
14079 }
14080
14081 /* Write PLT relocs for locals. */
14082
14083 static bfd_boolean
14084 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
14085 {
14086 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14087 bfd *ibfd;
14088
14089 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14090 {
14091 struct got_entry **lgot_ents, **end_lgot_ents;
14092 struct plt_entry **local_plt, **lplt, **end_local_plt;
14093 Elf_Internal_Shdr *symtab_hdr;
14094 bfd_size_type locsymcount;
14095 Elf_Internal_Sym *local_syms = NULL;
14096 struct plt_entry *ent;
14097
14098 if (!is_ppc64_elf (ibfd))
14099 continue;
14100
14101 lgot_ents = elf_local_got_ents (ibfd);
14102 if (!lgot_ents)
14103 continue;
14104
14105 symtab_hdr = &elf_symtab_hdr (ibfd);
14106 locsymcount = symtab_hdr->sh_info;
14107 end_lgot_ents = lgot_ents + locsymcount;
14108 local_plt = (struct plt_entry **) end_lgot_ents;
14109 end_local_plt = local_plt + locsymcount;
14110 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
14111 for (ent = *lplt; ent != NULL; ent = ent->next)
14112 if (ent->plt.offset != (bfd_vma) -1)
14113 {
14114 Elf_Internal_Sym *sym;
14115 asection *sym_sec;
14116 asection *plt, *relplt;
14117 bfd_byte *loc;
14118 bfd_vma val;
14119
14120 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
14121 lplt - local_plt, ibfd))
14122 {
14123 if (local_syms != NULL
14124 && symtab_hdr->contents != (unsigned char *) local_syms)
14125 free (local_syms);
14126 return FALSE;
14127 }
14128
14129 val = sym->st_value + ent->addend;
14130 if (ELF_ST_TYPE (sym->st_info) != STT_GNU_IFUNC)
14131 val += PPC64_LOCAL_ENTRY_OFFSET (sym->st_other);
14132 if (sym_sec != NULL && sym_sec->output_section != NULL)
14133 val += sym_sec->output_offset + sym_sec->output_section->vma;
14134
14135 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14136 {
14137 htab->local_ifunc_resolver = 1;
14138 plt = htab->elf.iplt;
14139 relplt = htab->elf.irelplt;
14140 }
14141 else
14142 {
14143 plt = htab->pltlocal;
14144 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
14145 }
14146
14147 if (relplt == NULL)
14148 {
14149 loc = plt->contents + ent->plt.offset;
14150 bfd_put_64 (info->output_bfd, val, loc);
14151 if (htab->opd_abi)
14152 {
14153 bfd_vma toc = elf_gp (ibfd);
14154 bfd_put_64 (info->output_bfd, toc, loc + 8);
14155 }
14156 }
14157 else
14158 {
14159 Elf_Internal_Rela rela;
14160 rela.r_offset = (ent->plt.offset
14161 + plt->output_offset
14162 + plt->output_section->vma);
14163 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14164 {
14165 if (htab->opd_abi)
14166 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14167 else
14168 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14169 }
14170 else
14171 {
14172 if (htab->opd_abi)
14173 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14174 else
14175 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14176 }
14177 rela.r_addend = val;
14178 loc = relplt->contents + (relplt->reloc_count++
14179 * sizeof (Elf64_External_Rela));
14180 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14181 }
14182 }
14183
14184 if (local_syms != NULL
14185 && symtab_hdr->contents != (unsigned char *) local_syms)
14186 {
14187 if (!info->keep_memory)
14188 free (local_syms);
14189 else
14190 symtab_hdr->contents = (unsigned char *) local_syms;
14191 }
14192 }
14193 return TRUE;
14194 }
14195
14196 /* Emit the static wrapper function preserving registers around a
14197 __tls_get_addr_opt call. */
14198
14199 static bfd_boolean
14200 emit_tga_desc (struct ppc_link_hash_table *htab)
14201 {
14202 asection *stub_sec = htab->tga_group->stub_sec;
14203 unsigned int cfa_updt = 11 * 4;
14204 bfd_byte *p;
14205 bfd_vma to, from, delta;
14206
14207 BFD_ASSERT (htab->tga_desc_fd->elf.root.type == bfd_link_hash_defined
14208 && htab->tga_desc_fd->elf.root.u.def.section == stub_sec
14209 && htab->tga_desc_fd->elf.root.u.def.value == 0);
14210 to = defined_sym_val (&htab->tls_get_addr_fd->elf);
14211 from = defined_sym_val (&htab->tga_desc_fd->elf) + cfa_updt;
14212 delta = to - from;
14213 if (delta + (1 << 25) >= 1 << 26)
14214 {
14215 _bfd_error_handler (_("__tls_get_addr call offset overflow"));
14216 htab->stub_error = TRUE;
14217 return FALSE;
14218 }
14219
14220 p = stub_sec->contents;
14221 p = tls_get_addr_prologue (htab->elf.dynobj, p, htab);
14222 bfd_put_32 (stub_sec->owner, B_DOT | 1 | (delta & 0x3fffffc), p);
14223 p += 4;
14224 p = tls_get_addr_epilogue (htab->elf.dynobj, p, htab);
14225 return stub_sec->size == (bfd_size_type) (p - stub_sec->contents);
14226 }
14227
14228 /* Emit eh_frame describing the static wrapper function. */
14229
14230 static bfd_byte *
14231 emit_tga_desc_eh_frame (struct ppc_link_hash_table *htab, bfd_byte *p)
14232 {
14233 unsigned int cfa_updt = 11 * 4;
14234 unsigned int i;
14235
14236 *p++ = DW_CFA_advance_loc + cfa_updt / 4;
14237 *p++ = DW_CFA_def_cfa_offset;
14238 if (htab->opd_abi)
14239 {
14240 *p++ = 128;
14241 *p++ = 1;
14242 }
14243 else
14244 *p++ = 96;
14245 *p++ = DW_CFA_offset_extended_sf;
14246 *p++ = 65;
14247 *p++ = (-16 / 8) & 0x7f;
14248 for (i = 4; i < 12; i++)
14249 {
14250 *p++ = DW_CFA_offset + i;
14251 *p++ = (htab->opd_abi ? 13 : 12) - i;
14252 }
14253 *p++ = DW_CFA_advance_loc + 10;
14254 *p++ = DW_CFA_def_cfa_offset;
14255 *p++ = 0;
14256 for (i = 4; i < 12; i++)
14257 *p++ = DW_CFA_restore + i;
14258 *p++ = DW_CFA_advance_loc + 2;
14259 *p++ = DW_CFA_restore_extended;
14260 *p++ = 65;
14261 return p;
14262 }
14263
14264 /* Build all the stubs associated with the current output file.
14265 The stubs are kept in a hash table attached to the main linker
14266 hash table. This function is called via gldelf64ppc_finish. */
14267
14268 bfd_boolean
14269 ppc64_elf_build_stubs (struct bfd_link_info *info,
14270 char **stats)
14271 {
14272 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14273 struct map_stub *group;
14274 asection *stub_sec;
14275 bfd_byte *p;
14276 int stub_sec_count = 0;
14277
14278 if (htab == NULL)
14279 return FALSE;
14280
14281 /* Allocate memory to hold the linker stubs. */
14282 for (group = htab->group; group != NULL; group = group->next)
14283 {
14284 group->eh_size = 0;
14285 group->lr_restore = 0;
14286 if ((stub_sec = group->stub_sec) != NULL
14287 && stub_sec->size != 0)
14288 {
14289 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
14290 stub_sec->size);
14291 if (stub_sec->contents == NULL)
14292 return FALSE;
14293 stub_sec->size = 0;
14294 }
14295 }
14296
14297 if (htab->glink != NULL && htab->glink->size != 0)
14298 {
14299 unsigned int indx;
14300 bfd_vma plt0;
14301
14302 /* Build the .glink plt call stub. */
14303 if (htab->params->emit_stub_syms)
14304 {
14305 struct elf_link_hash_entry *h;
14306 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
14307 TRUE, FALSE, FALSE);
14308 if (h == NULL)
14309 return FALSE;
14310 if (h->root.type == bfd_link_hash_new)
14311 {
14312 h->root.type = bfd_link_hash_defined;
14313 h->root.u.def.section = htab->glink;
14314 h->root.u.def.value = 8;
14315 h->ref_regular = 1;
14316 h->def_regular = 1;
14317 h->ref_regular_nonweak = 1;
14318 h->forced_local = 1;
14319 h->non_elf = 0;
14320 h->root.linker_def = 1;
14321 }
14322 }
14323 plt0 = (htab->elf.splt->output_section->vma
14324 + htab->elf.splt->output_offset
14325 - 16);
14326 if (info->emitrelocations)
14327 {
14328 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
14329 if (r == NULL)
14330 return FALSE;
14331 r->r_offset = (htab->glink->output_offset
14332 + htab->glink->output_section->vma);
14333 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
14334 r->r_addend = plt0;
14335 }
14336 p = htab->glink->contents;
14337 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
14338 bfd_put_64 (htab->glink->owner, plt0, p);
14339 p += 8;
14340 if (htab->opd_abi)
14341 {
14342 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
14343 p += 4;
14344 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14345 p += 4;
14346 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14347 p += 4;
14348 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14349 p += 4;
14350 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
14351 p += 4;
14352 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14353 p += 4;
14354 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14355 p += 4;
14356 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
14357 p += 4;
14358 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14359 p += 4;
14360 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
14361 p += 4;
14362 }
14363 else
14364 {
14365 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
14366 p += 4;
14367 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14368 p += 4;
14369 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14370 p += 4;
14371 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
14372 p += 4;
14373 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14374 p += 4;
14375 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
14376 p += 4;
14377 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
14378 p += 4;
14379 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14380 p += 4;
14381 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
14382 p += 4;
14383 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14384 p += 4;
14385 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
14386 p += 4;
14387 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14388 p += 4;
14389 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
14390 p += 4;
14391 }
14392 bfd_put_32 (htab->glink->owner, BCTR, p);
14393 p += 4;
14394 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
14395
14396 /* Build the .glink lazy link call stubs. */
14397 indx = 0;
14398 while (p < htab->glink->contents + htab->glink->size)
14399 {
14400 if (htab->opd_abi)
14401 {
14402 if (indx < 0x8000)
14403 {
14404 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
14405 p += 4;
14406 }
14407 else
14408 {
14409 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
14410 p += 4;
14411 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
14412 p);
14413 p += 4;
14414 }
14415 }
14416 bfd_put_32 (htab->glink->owner,
14417 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
14418 indx++;
14419 p += 4;
14420 }
14421 }
14422
14423 if (htab->tga_group != NULL)
14424 {
14425 htab->tga_group->lr_restore = 23 * 4;
14426 htab->tga_group->stub_sec->size = 24 * 4;
14427 if (!emit_tga_desc (htab))
14428 return FALSE;
14429 if (htab->glink_eh_frame != NULL
14430 && htab->glink_eh_frame->size != 0)
14431 {
14432 size_t align = 4;
14433
14434 p = htab->glink_eh_frame->contents;
14435 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14436 p += 17;
14437 htab->tga_group->eh_size = emit_tga_desc_eh_frame (htab, p) - p;
14438 }
14439 }
14440
14441 /* Build .glink global entry stubs, and PLT relocs for globals. */
14442 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
14443
14444 if (!write_plt_relocs_for_local_syms (info))
14445 return FALSE;
14446
14447 if (htab->brlt != NULL && htab->brlt->size != 0)
14448 {
14449 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
14450 htab->brlt->size);
14451 if (htab->brlt->contents == NULL)
14452 return FALSE;
14453 }
14454 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
14455 {
14456 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
14457 htab->relbrlt->size);
14458 if (htab->relbrlt->contents == NULL)
14459 return FALSE;
14460 }
14461
14462 /* Build the stubs as directed by the stub hash table. */
14463 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
14464
14465 for (group = htab->group; group != NULL; group = group->next)
14466 if (group->needs_save_res)
14467 group->stub_sec->size += htab->sfpr->size;
14468
14469 if (htab->relbrlt != NULL)
14470 htab->relbrlt->reloc_count = 0;
14471
14472 if (htab->params->plt_stub_align != 0)
14473 for (group = htab->group; group != NULL; group = group->next)
14474 if ((stub_sec = group->stub_sec) != NULL)
14475 {
14476 int align = abs (htab->params->plt_stub_align);
14477 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
14478 }
14479
14480 for (group = htab->group; group != NULL; group = group->next)
14481 if (group->needs_save_res)
14482 {
14483 stub_sec = group->stub_sec;
14484 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
14485 htab->sfpr->contents, htab->sfpr->size);
14486 if (htab->params->emit_stub_syms)
14487 {
14488 unsigned int i;
14489
14490 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
14491 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
14492 return FALSE;
14493 }
14494 }
14495
14496 if (htab->glink_eh_frame != NULL
14497 && htab->glink_eh_frame->size != 0)
14498 {
14499 bfd_vma val;
14500 size_t align = 4;
14501
14502 p = htab->glink_eh_frame->contents;
14503 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14504
14505 for (group = htab->group; group != NULL; group = group->next)
14506 if (group->eh_size != 0)
14507 {
14508 /* Offset to stub section. */
14509 val = (group->stub_sec->output_section->vma
14510 + group->stub_sec->output_offset);
14511 val -= (htab->glink_eh_frame->output_section->vma
14512 + htab->glink_eh_frame->output_offset
14513 + (p + 8 - htab->glink_eh_frame->contents));
14514 if (val + 0x80000000 > 0xffffffff)
14515 {
14516 _bfd_error_handler
14517 (_("%s offset too large for .eh_frame sdata4 encoding"),
14518 group->stub_sec->name);
14519 return FALSE;
14520 }
14521 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14522 p += (group->eh_size + 17 + 3) & -4;
14523 }
14524 if (htab->glink != NULL && htab->glink->size != 0)
14525 {
14526 /* Offset to .glink. */
14527 val = (htab->glink->output_section->vma
14528 + htab->glink->output_offset
14529 + 8);
14530 val -= (htab->glink_eh_frame->output_section->vma
14531 + htab->glink_eh_frame->output_offset
14532 + (p + 8 - htab->glink_eh_frame->contents));
14533 if (val + 0x80000000 > 0xffffffff)
14534 {
14535 _bfd_error_handler
14536 (_("%s offset too large for .eh_frame sdata4 encoding"),
14537 htab->glink->name);
14538 return FALSE;
14539 }
14540 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14541 p += (24 + align - 1) & -align;
14542 }
14543 }
14544
14545 for (group = htab->group; group != NULL; group = group->next)
14546 if ((stub_sec = group->stub_sec) != NULL)
14547 {
14548 stub_sec_count += 1;
14549 if (stub_sec->rawsize != stub_sec->size
14550 && (htab->stub_iteration <= STUB_SHRINK_ITER
14551 || stub_sec->rawsize < stub_sec->size))
14552 break;
14553 }
14554
14555 if (group != NULL)
14556 {
14557 htab->stub_error = TRUE;
14558 _bfd_error_handler (_("stubs don't match calculated size"));
14559 }
14560
14561 if (htab->stub_error)
14562 return FALSE;
14563
14564 if (stats != NULL)
14565 {
14566 char *groupmsg;
14567 if (asprintf (&groupmsg,
14568 ngettext ("linker stubs in %u group\n",
14569 "linker stubs in %u groups\n",
14570 stub_sec_count),
14571 stub_sec_count) < 0)
14572 *stats = NULL;
14573 else
14574 {
14575 if (asprintf (stats, _("%s"
14576 " branch %lu\n"
14577 " branch toc adj %lu\n"
14578 " branch notoc %lu\n"
14579 " branch both %lu\n"
14580 " long branch %lu\n"
14581 " long toc adj %lu\n"
14582 " long notoc %lu\n"
14583 " long both %lu\n"
14584 " plt call %lu\n"
14585 " plt call save %lu\n"
14586 " plt call notoc %lu\n"
14587 " plt call both %lu\n"
14588 " global entry %lu"),
14589 groupmsg,
14590 htab->stub_count[ppc_stub_long_branch - 1],
14591 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14592 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14593 htab->stub_count[ppc_stub_long_branch_both - 1],
14594 htab->stub_count[ppc_stub_plt_branch - 1],
14595 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14596 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14597 htab->stub_count[ppc_stub_plt_branch_both - 1],
14598 htab->stub_count[ppc_stub_plt_call - 1],
14599 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14600 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14601 htab->stub_count[ppc_stub_plt_call_both - 1],
14602 htab->stub_count[ppc_stub_global_entry - 1]) < 0)
14603 *stats = NULL;
14604 free (groupmsg);
14605 }
14606 }
14607 return TRUE;
14608 }
14609
14610 /* What to do when ld finds relocations against symbols defined in
14611 discarded sections. */
14612
14613 static unsigned int
14614 ppc64_elf_action_discarded (asection *sec)
14615 {
14616 if (strcmp (".opd", sec->name) == 0)
14617 return 0;
14618
14619 if (strcmp (".toc", sec->name) == 0)
14620 return 0;
14621
14622 if (strcmp (".toc1", sec->name) == 0)
14623 return 0;
14624
14625 return _bfd_elf_default_action_discarded (sec);
14626 }
14627
14628 /* These are the dynamic relocations supported by glibc. */
14629
14630 static bfd_boolean
14631 ppc64_glibc_dynamic_reloc (enum elf_ppc64_reloc_type r_type)
14632 {
14633 switch (r_type)
14634 {
14635 case R_PPC64_RELATIVE:
14636 case R_PPC64_NONE:
14637 case R_PPC64_ADDR64:
14638 case R_PPC64_GLOB_DAT:
14639 case R_PPC64_IRELATIVE:
14640 case R_PPC64_JMP_IREL:
14641 case R_PPC64_JMP_SLOT:
14642 case R_PPC64_DTPMOD64:
14643 case R_PPC64_DTPREL64:
14644 case R_PPC64_TPREL64:
14645 case R_PPC64_TPREL16_LO_DS:
14646 case R_PPC64_TPREL16_DS:
14647 case R_PPC64_TPREL16:
14648 case R_PPC64_TPREL16_LO:
14649 case R_PPC64_TPREL16_HI:
14650 case R_PPC64_TPREL16_HIGH:
14651 case R_PPC64_TPREL16_HA:
14652 case R_PPC64_TPREL16_HIGHA:
14653 case R_PPC64_TPREL16_HIGHER:
14654 case R_PPC64_TPREL16_HIGHEST:
14655 case R_PPC64_TPREL16_HIGHERA:
14656 case R_PPC64_TPREL16_HIGHESTA:
14657 case R_PPC64_ADDR16_LO_DS:
14658 case R_PPC64_ADDR16_LO:
14659 case R_PPC64_ADDR16_HI:
14660 case R_PPC64_ADDR16_HIGH:
14661 case R_PPC64_ADDR16_HA:
14662 case R_PPC64_ADDR16_HIGHA:
14663 case R_PPC64_REL30:
14664 case R_PPC64_COPY:
14665 case R_PPC64_UADDR64:
14666 case R_PPC64_UADDR32:
14667 case R_PPC64_ADDR32:
14668 case R_PPC64_ADDR24:
14669 case R_PPC64_ADDR16:
14670 case R_PPC64_UADDR16:
14671 case R_PPC64_ADDR16_DS:
14672 case R_PPC64_ADDR16_HIGHER:
14673 case R_PPC64_ADDR16_HIGHEST:
14674 case R_PPC64_ADDR16_HIGHERA:
14675 case R_PPC64_ADDR16_HIGHESTA:
14676 case R_PPC64_ADDR14:
14677 case R_PPC64_ADDR14_BRTAKEN:
14678 case R_PPC64_ADDR14_BRNTAKEN:
14679 case R_PPC64_REL32:
14680 case R_PPC64_REL64:
14681 return TRUE;
14682
14683 default:
14684 return FALSE;
14685 }
14686 }
14687
14688 /* The RELOCATE_SECTION function is called by the ELF backend linker
14689 to handle the relocations for a section.
14690
14691 The relocs are always passed as Rela structures; if the section
14692 actually uses Rel structures, the r_addend field will always be
14693 zero.
14694
14695 This function is responsible for adjust the section contents as
14696 necessary, and (if using Rela relocs and generating a
14697 relocatable output file) adjusting the reloc addend as
14698 necessary.
14699
14700 This function does not have to worry about setting the reloc
14701 address or the reloc symbol index.
14702
14703 LOCAL_SYMS is a pointer to the swapped in local symbols.
14704
14705 LOCAL_SECTIONS is an array giving the section in the input file
14706 corresponding to the st_shndx field of each local symbol.
14707
14708 The global hash table entry for the global symbols can be found
14709 via elf_sym_hashes (input_bfd).
14710
14711 When generating relocatable output, this function must handle
14712 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14713 going to be the section symbol corresponding to the output
14714 section, which means that the addend must be adjusted
14715 accordingly. */
14716
14717 static bfd_boolean
14718 ppc64_elf_relocate_section (bfd *output_bfd,
14719 struct bfd_link_info *info,
14720 bfd *input_bfd,
14721 asection *input_section,
14722 bfd_byte *contents,
14723 Elf_Internal_Rela *relocs,
14724 Elf_Internal_Sym *local_syms,
14725 asection **local_sections)
14726 {
14727 struct ppc_link_hash_table *htab;
14728 Elf_Internal_Shdr *symtab_hdr;
14729 struct elf_link_hash_entry **sym_hashes;
14730 Elf_Internal_Rela *rel;
14731 Elf_Internal_Rela *wrel;
14732 Elf_Internal_Rela *relend;
14733 Elf_Internal_Rela outrel;
14734 bfd_byte *loc;
14735 struct got_entry **local_got_ents;
14736 bfd_vma TOCstart;
14737 bfd_boolean ret = TRUE;
14738 bfd_boolean is_opd;
14739 /* Assume 'at' branch hints. */
14740 bfd_boolean is_isa_v2 = TRUE;
14741 bfd_boolean warned_dynamic = FALSE;
14742 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14743
14744 /* Initialize howto table if needed. */
14745 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14746 ppc_howto_init ();
14747
14748 htab = ppc_hash_table (info);
14749 if (htab == NULL)
14750 return FALSE;
14751
14752 /* Don't relocate stub sections. */
14753 if (input_section->owner == htab->params->stub_bfd)
14754 return TRUE;
14755
14756 if (!is_ppc64_elf (input_bfd))
14757 {
14758 bfd_set_error (bfd_error_wrong_format);
14759 return FALSE;
14760 }
14761
14762 local_got_ents = elf_local_got_ents (input_bfd);
14763 TOCstart = elf_gp (output_bfd);
14764 symtab_hdr = &elf_symtab_hdr (input_bfd);
14765 sym_hashes = elf_sym_hashes (input_bfd);
14766 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14767
14768 rel = wrel = relocs;
14769 relend = relocs + input_section->reloc_count;
14770 for (; rel < relend; wrel++, rel++)
14771 {
14772 enum elf_ppc64_reloc_type r_type;
14773 bfd_vma addend;
14774 bfd_reloc_status_type r;
14775 Elf_Internal_Sym *sym;
14776 asection *sec;
14777 struct elf_link_hash_entry *h_elf;
14778 struct ppc_link_hash_entry *h;
14779 struct ppc_link_hash_entry *fdh;
14780 const char *sym_name;
14781 unsigned long r_symndx, toc_symndx;
14782 bfd_vma toc_addend;
14783 unsigned char tls_mask, tls_gd, tls_type;
14784 unsigned char sym_type;
14785 bfd_vma relocation;
14786 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14787 bfd_boolean warned;
14788 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14789 unsigned int insn;
14790 unsigned int mask;
14791 struct ppc_stub_hash_entry *stub_entry;
14792 bfd_vma max_br_offset;
14793 bfd_vma from;
14794 Elf_Internal_Rela orig_rel;
14795 reloc_howto_type *howto;
14796 struct reloc_howto_struct alt_howto;
14797 uint64_t pinsn;
14798 bfd_vma offset;
14799
14800 again:
14801 orig_rel = *rel;
14802
14803 r_type = ELF64_R_TYPE (rel->r_info);
14804 r_symndx = ELF64_R_SYM (rel->r_info);
14805
14806 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14807 symbol of the previous ADDR64 reloc. The symbol gives us the
14808 proper TOC base to use. */
14809 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14810 && wrel != relocs
14811 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14812 && is_opd)
14813 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14814
14815 sym = NULL;
14816 sec = NULL;
14817 h_elf = NULL;
14818 sym_name = NULL;
14819 unresolved_reloc = FALSE;
14820 warned = FALSE;
14821
14822 if (r_symndx < symtab_hdr->sh_info)
14823 {
14824 /* It's a local symbol. */
14825 struct _opd_sec_data *opd;
14826
14827 sym = local_syms + r_symndx;
14828 sec = local_sections[r_symndx];
14829 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14830 sym_type = ELF64_ST_TYPE (sym->st_info);
14831 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14832 opd = get_opd_info (sec);
14833 if (opd != NULL && opd->adjust != NULL)
14834 {
14835 long adjust = opd->adjust[OPD_NDX (sym->st_value
14836 + rel->r_addend)];
14837 if (adjust == -1)
14838 relocation = 0;
14839 else
14840 {
14841 /* If this is a relocation against the opd section sym
14842 and we have edited .opd, adjust the reloc addend so
14843 that ld -r and ld --emit-relocs output is correct.
14844 If it is a reloc against some other .opd symbol,
14845 then the symbol value will be adjusted later. */
14846 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
14847 rel->r_addend += adjust;
14848 else
14849 relocation += adjust;
14850 }
14851 }
14852 }
14853 else
14854 {
14855 bfd_boolean ignored;
14856
14857 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
14858 r_symndx, symtab_hdr, sym_hashes,
14859 h_elf, sec, relocation,
14860 unresolved_reloc, warned, ignored);
14861 sym_name = h_elf->root.root.string;
14862 sym_type = h_elf->type;
14863 if (sec != NULL
14864 && sec->owner == output_bfd
14865 && strcmp (sec->name, ".opd") == 0)
14866 {
14867 /* This is a symbol defined in a linker script. All
14868 such are defined in output sections, even those
14869 defined by simple assignment from a symbol defined in
14870 an input section. Transfer the symbol to an
14871 appropriate input .opd section, so that a branch to
14872 this symbol will be mapped to the location specified
14873 by the opd entry. */
14874 struct bfd_link_order *lo;
14875 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
14876 if (lo->type == bfd_indirect_link_order)
14877 {
14878 asection *isec = lo->u.indirect.section;
14879 if (h_elf->root.u.def.value >= isec->output_offset
14880 && h_elf->root.u.def.value < (isec->output_offset
14881 + isec->size))
14882 {
14883 h_elf->root.u.def.value -= isec->output_offset;
14884 h_elf->root.u.def.section = isec;
14885 sec = isec;
14886 break;
14887 }
14888 }
14889 }
14890 }
14891 h = ppc_elf_hash_entry (h_elf);
14892
14893 if (sec != NULL && discarded_section (sec))
14894 {
14895 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
14896 input_bfd, input_section,
14897 contents, rel->r_offset);
14898 wrel->r_offset = rel->r_offset;
14899 wrel->r_info = 0;
14900 wrel->r_addend = 0;
14901
14902 /* For ld -r, remove relocations in debug sections against
14903 symbols defined in discarded sections. Not done for
14904 non-debug to preserve relocs in .eh_frame which the
14905 eh_frame editing code expects to be present. */
14906 if (bfd_link_relocatable (info)
14907 && (input_section->flags & SEC_DEBUGGING))
14908 wrel--;
14909
14910 continue;
14911 }
14912
14913 if (bfd_link_relocatable (info))
14914 goto copy_reloc;
14915
14916 if (h != NULL && &h->elf == htab->elf.hgot)
14917 {
14918 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14919 sec = bfd_abs_section_ptr;
14920 unresolved_reloc = FALSE;
14921 }
14922
14923 /* TLS optimizations. Replace instruction sequences and relocs
14924 based on information we collected in tls_optimize. We edit
14925 RELOCS so that --emit-relocs will output something sensible
14926 for the final instruction stream. */
14927 tls_mask = 0;
14928 tls_gd = 0;
14929 toc_symndx = 0;
14930 if (h != NULL)
14931 tls_mask = h->tls_mask;
14932 else if (local_got_ents != NULL)
14933 {
14934 struct plt_entry **local_plt = (struct plt_entry **)
14935 (local_got_ents + symtab_hdr->sh_info);
14936 unsigned char *lgot_masks = (unsigned char *)
14937 (local_plt + symtab_hdr->sh_info);
14938 tls_mask = lgot_masks[r_symndx];
14939 }
14940 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
14941 && (r_type == R_PPC64_TLS
14942 || r_type == R_PPC64_TLSGD
14943 || r_type == R_PPC64_TLSLD))
14944 {
14945 /* Check for toc tls entries. */
14946 unsigned char *toc_tls;
14947
14948 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14949 &local_syms, rel, input_bfd))
14950 return FALSE;
14951
14952 if (toc_tls)
14953 tls_mask = *toc_tls;
14954 }
14955
14956 /* Check that tls relocs are used with tls syms, and non-tls
14957 relocs are used with non-tls syms. */
14958 if (r_symndx != STN_UNDEF
14959 && r_type != R_PPC64_NONE
14960 && (h == NULL
14961 || h->elf.root.type == bfd_link_hash_defined
14962 || h->elf.root.type == bfd_link_hash_defweak)
14963 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
14964 {
14965 if ((tls_mask & TLS_TLS) != 0
14966 && (r_type == R_PPC64_TLS
14967 || r_type == R_PPC64_TLSGD
14968 || r_type == R_PPC64_TLSLD))
14969 /* R_PPC64_TLS is OK against a symbol in the TOC. */
14970 ;
14971 else
14972 info->callbacks->einfo
14973 (!IS_PPC64_TLS_RELOC (r_type)
14974 /* xgettext:c-format */
14975 ? _("%H: %s used with TLS symbol `%pT'\n")
14976 /* xgettext:c-format */
14977 : _("%H: %s used with non-TLS symbol `%pT'\n"),
14978 input_bfd, input_section, rel->r_offset,
14979 ppc64_elf_howto_table[r_type]->name,
14980 sym_name);
14981 }
14982
14983 /* Ensure reloc mapping code below stays sane. */
14984 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
14985 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
14986 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
14987 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
14988 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
14989 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
14990 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
14991 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
14992 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
14993 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
14994 abort ();
14995
14996 switch (r_type)
14997 {
14998 default:
14999 break;
15000
15001 case R_PPC64_LO_DS_OPT:
15002 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
15003 if ((insn & (0x3fu << 26)) != 58u << 26)
15004 abort ();
15005 insn += (14u << 26) - (58u << 26);
15006 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
15007 r_type = R_PPC64_TOC16_LO;
15008 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15009 break;
15010
15011 case R_PPC64_TOC16:
15012 case R_PPC64_TOC16_LO:
15013 case R_PPC64_TOC16_DS:
15014 case R_PPC64_TOC16_LO_DS:
15015 {
15016 /* Check for toc tls entries. */
15017 unsigned char *toc_tls;
15018 int retval;
15019
15020 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15021 &local_syms, rel, input_bfd);
15022 if (retval == 0)
15023 return FALSE;
15024
15025 if (toc_tls)
15026 {
15027 tls_mask = *toc_tls;
15028 if (r_type == R_PPC64_TOC16_DS
15029 || r_type == R_PPC64_TOC16_LO_DS)
15030 {
15031 if ((tls_mask & TLS_TLS) != 0
15032 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
15033 goto toctprel;
15034 }
15035 else
15036 {
15037 /* If we found a GD reloc pair, then we might be
15038 doing a GD->IE transition. */
15039 if (retval == 2)
15040 {
15041 tls_gd = TLS_GDIE;
15042 if ((tls_mask & TLS_TLS) != 0
15043 && (tls_mask & TLS_GD) == 0)
15044 goto tls_ldgd_opt;
15045 }
15046 else if (retval == 3)
15047 {
15048 if ((tls_mask & TLS_TLS) != 0
15049 && (tls_mask & TLS_LD) == 0)
15050 goto tls_ldgd_opt;
15051 }
15052 }
15053 }
15054 }
15055 break;
15056
15057 case R_PPC64_GOT_TPREL16_HI:
15058 case R_PPC64_GOT_TPREL16_HA:
15059 if ((tls_mask & TLS_TLS) != 0
15060 && (tls_mask & TLS_TPREL) == 0)
15061 {
15062 rel->r_offset -= d_offset;
15063 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15064 r_type = R_PPC64_NONE;
15065 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15066 }
15067 break;
15068
15069 case R_PPC64_GOT_TPREL16_DS:
15070 case R_PPC64_GOT_TPREL16_LO_DS:
15071 if ((tls_mask & TLS_TLS) != 0
15072 && (tls_mask & TLS_TPREL) == 0)
15073 {
15074 toctprel:
15075 insn = bfd_get_32 (input_bfd,
15076 contents + rel->r_offset - d_offset);
15077 insn &= 31 << 21;
15078 insn |= 0x3c0d0000; /* addis 0,13,0 */
15079 bfd_put_32 (input_bfd, insn,
15080 contents + rel->r_offset - d_offset);
15081 r_type = R_PPC64_TPREL16_HA;
15082 if (toc_symndx != 0)
15083 {
15084 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15085 rel->r_addend = toc_addend;
15086 /* We changed the symbol. Start over in order to
15087 get h, sym, sec etc. right. */
15088 goto again;
15089 }
15090 else
15091 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15092 }
15093 break;
15094
15095 case R_PPC64_GOT_TPREL34:
15096 if ((tls_mask & TLS_TLS) != 0
15097 && (tls_mask & TLS_TPREL) == 0)
15098 {
15099 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
15100 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15101 pinsn <<= 32;
15102 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15103 pinsn += ((2ULL << 56) + (-1ULL << 52)
15104 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
15105 bfd_put_32 (input_bfd, pinsn >> 32,
15106 contents + rel->r_offset);
15107 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15108 contents + rel->r_offset + 4);
15109 r_type = R_PPC64_TPREL34;
15110 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15111 }
15112 break;
15113
15114 case R_PPC64_TLS:
15115 if ((tls_mask & TLS_TLS) != 0
15116 && (tls_mask & TLS_TPREL) == 0)
15117 {
15118 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15119 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
15120 if (insn == 0)
15121 break;
15122 if ((rel->r_offset & 3) == 0)
15123 {
15124 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15125 /* Was PPC64_TLS which sits on insn boundary, now
15126 PPC64_TPREL16_LO which is at low-order half-word. */
15127 rel->r_offset += d_offset;
15128 r_type = R_PPC64_TPREL16_LO;
15129 if (toc_symndx != 0)
15130 {
15131 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15132 rel->r_addend = toc_addend;
15133 /* We changed the symbol. Start over in order to
15134 get h, sym, sec etc. right. */
15135 goto again;
15136 }
15137 else
15138 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15139 }
15140 else if ((rel->r_offset & 3) == 1)
15141 {
15142 /* For pcrel IE to LE we already have the full
15143 offset and thus don't need an addi here. A nop
15144 or mr will do. */
15145 if ((insn & (0x3fu << 26)) == 14 << 26)
15146 {
15147 /* Extract regs from addi rt,ra,si. */
15148 unsigned int rt = (insn >> 21) & 0x1f;
15149 unsigned int ra = (insn >> 16) & 0x1f;
15150 if (rt == ra)
15151 insn = NOP;
15152 else
15153 {
15154 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
15155 insn = (rt << 16) | (ra << 21) | (ra << 11);
15156 insn |= (31u << 26) | (444u << 1);
15157 }
15158 }
15159 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
15160 }
15161 }
15162 break;
15163
15164 case R_PPC64_GOT_TLSGD16_HI:
15165 case R_PPC64_GOT_TLSGD16_HA:
15166 tls_gd = TLS_GDIE;
15167 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15168 goto tls_gdld_hi;
15169 break;
15170
15171 case R_PPC64_GOT_TLSLD16_HI:
15172 case R_PPC64_GOT_TLSLD16_HA:
15173 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15174 {
15175 tls_gdld_hi:
15176 if ((tls_mask & tls_gd) != 0)
15177 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
15178 + R_PPC64_GOT_TPREL16_DS);
15179 else
15180 {
15181 rel->r_offset -= d_offset;
15182 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15183 r_type = R_PPC64_NONE;
15184 }
15185 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15186 }
15187 break;
15188
15189 case R_PPC64_GOT_TLSGD16:
15190 case R_PPC64_GOT_TLSGD16_LO:
15191 tls_gd = TLS_GDIE;
15192 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15193 goto tls_ldgd_opt;
15194 break;
15195
15196 case R_PPC64_GOT_TLSLD16:
15197 case R_PPC64_GOT_TLSLD16_LO:
15198 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15199 {
15200 unsigned int insn1, insn2;
15201
15202 tls_ldgd_opt:
15203 offset = (bfd_vma) -1;
15204 /* If not using the newer R_PPC64_TLSGD/LD to mark
15205 __tls_get_addr calls, we must trust that the call
15206 stays with its arg setup insns, ie. that the next
15207 reloc is the __tls_get_addr call associated with
15208 the current reloc. Edit both insns. */
15209 if (input_section->nomark_tls_get_addr
15210 && rel + 1 < relend
15211 && branch_reloc_hash_match (input_bfd, rel + 1,
15212 htab->tls_get_addr_fd,
15213 htab->tga_desc_fd,
15214 htab->tls_get_addr,
15215 htab->tga_desc))
15216 offset = rel[1].r_offset;
15217 /* We read the low GOT_TLS (or TOC16) insn because we
15218 need to keep the destination reg. It may be
15219 something other than the usual r3, and moved to r3
15220 before the call by intervening code. */
15221 insn1 = bfd_get_32 (input_bfd,
15222 contents + rel->r_offset - d_offset);
15223 if ((tls_mask & tls_gd) != 0)
15224 {
15225 /* IE */
15226 insn1 &= (0x1f << 21) | (0x1f << 16);
15227 insn1 |= 58u << 26; /* ld */
15228 insn2 = 0x7c636a14; /* add 3,3,13 */
15229 if (offset != (bfd_vma) -1)
15230 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15231 if (r_type == R_PPC64_TOC16
15232 || r_type == R_PPC64_TOC16_LO)
15233 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
15234 else
15235 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
15236 + R_PPC64_GOT_TPREL16_DS);
15237 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15238 }
15239 else
15240 {
15241 /* LE */
15242 insn1 &= 0x1f << 21;
15243 insn1 |= 0x3c0d0000; /* addis r,13,0 */
15244 insn2 = 0x38630000; /* addi 3,3,0 */
15245 if (tls_gd == 0)
15246 {
15247 /* Was an LD reloc. */
15248 r_symndx = STN_UNDEF;
15249 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15250 }
15251 else if (toc_symndx != 0)
15252 {
15253 r_symndx = toc_symndx;
15254 rel->r_addend = toc_addend;
15255 }
15256 r_type = R_PPC64_TPREL16_HA;
15257 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15258 if (offset != (bfd_vma) -1)
15259 {
15260 rel[1].r_info = ELF64_R_INFO (r_symndx,
15261 R_PPC64_TPREL16_LO);
15262 rel[1].r_offset = offset + d_offset;
15263 rel[1].r_addend = rel->r_addend;
15264 }
15265 }
15266 bfd_put_32 (input_bfd, insn1,
15267 contents + rel->r_offset - d_offset);
15268 if (offset != (bfd_vma) -1)
15269 {
15270 bfd_put_32 (input_bfd, insn2, contents + offset);
15271 if (offset + 8 <= input_section->size)
15272 {
15273 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15274 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
15275 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
15276 }
15277 }
15278 if ((tls_mask & tls_gd) == 0
15279 && (tls_gd == 0 || toc_symndx != 0))
15280 {
15281 /* We changed the symbol. Start over in order
15282 to get h, sym, sec etc. right. */
15283 goto again;
15284 }
15285 }
15286 break;
15287
15288 case R_PPC64_GOT_TLSGD34:
15289 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15290 {
15291 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15292 pinsn <<= 32;
15293 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15294 if ((tls_mask & TLS_GDIE) != 0)
15295 {
15296 /* IE, pla -> pld */
15297 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
15298 r_type = R_PPC64_GOT_TPREL34;
15299 }
15300 else
15301 {
15302 /* LE, pla pcrel -> paddi r13 */
15303 pinsn += (-1ULL << 52) + (13ULL << 16);
15304 r_type = R_PPC64_TPREL34;
15305 }
15306 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15307 bfd_put_32 (input_bfd, pinsn >> 32,
15308 contents + rel->r_offset);
15309 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15310 contents + rel->r_offset + 4);
15311 }
15312 break;
15313
15314 case R_PPC64_GOT_TLSLD34:
15315 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15316 {
15317 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15318 pinsn <<= 32;
15319 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15320 pinsn += (-1ULL << 52) + (13ULL << 16);
15321 bfd_put_32 (input_bfd, pinsn >> 32,
15322 contents + rel->r_offset);
15323 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15324 contents + rel->r_offset + 4);
15325 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15326 r_symndx = STN_UNDEF;
15327 r_type = R_PPC64_TPREL34;
15328 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15329 goto again;
15330 }
15331 break;
15332
15333 case R_PPC64_TLSGD:
15334 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
15335 && rel + 1 < relend)
15336 {
15337 unsigned int insn2;
15338 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15339
15340 offset = rel->r_offset;
15341 if (is_plt_seq_reloc (r_type1))
15342 {
15343 bfd_put_32 (output_bfd, NOP, contents + offset);
15344 if (r_type1 == R_PPC64_PLT_PCREL34
15345 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15346 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15347 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15348 break;
15349 }
15350
15351 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15352 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15353
15354 if ((tls_mask & TLS_GDIE) != 0)
15355 {
15356 /* IE */
15357 r_type = R_PPC64_NONE;
15358 insn2 = 0x7c636a14; /* add 3,3,13 */
15359 }
15360 else
15361 {
15362 /* LE */
15363 if (toc_symndx != 0)
15364 {
15365 r_symndx = toc_symndx;
15366 rel->r_addend = toc_addend;
15367 }
15368 if (r_type1 == R_PPC64_REL24_NOTOC
15369 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15370 {
15371 r_type = R_PPC64_NONE;
15372 insn2 = NOP;
15373 }
15374 else
15375 {
15376 rel->r_offset = offset + d_offset;
15377 r_type = R_PPC64_TPREL16_LO;
15378 insn2 = 0x38630000; /* addi 3,3,0 */
15379 }
15380 }
15381 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15382 /* Zap the reloc on the _tls_get_addr call too. */
15383 BFD_ASSERT (offset == rel[1].r_offset);
15384 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15385 bfd_put_32 (input_bfd, insn2, contents + offset);
15386 if ((tls_mask & TLS_GDIE) == 0
15387 && toc_symndx != 0
15388 && r_type != R_PPC64_NONE)
15389 goto again;
15390 }
15391 break;
15392
15393 case R_PPC64_TLSLD:
15394 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
15395 && rel + 1 < relend)
15396 {
15397 unsigned int insn2;
15398 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15399
15400 offset = rel->r_offset;
15401 if (is_plt_seq_reloc (r_type1))
15402 {
15403 bfd_put_32 (output_bfd, NOP, contents + offset);
15404 if (r_type1 == R_PPC64_PLT_PCREL34
15405 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15406 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15407 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15408 break;
15409 }
15410
15411 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15412 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15413
15414 if (r_type1 == R_PPC64_REL24_NOTOC
15415 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15416 {
15417 r_type = R_PPC64_NONE;
15418 insn2 = NOP;
15419 }
15420 else
15421 {
15422 rel->r_offset = offset + d_offset;
15423 r_symndx = STN_UNDEF;
15424 r_type = R_PPC64_TPREL16_LO;
15425 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15426 insn2 = 0x38630000; /* addi 3,3,0 */
15427 }
15428 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15429 /* Zap the reloc on the _tls_get_addr call too. */
15430 BFD_ASSERT (offset == rel[1].r_offset);
15431 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15432 bfd_put_32 (input_bfd, insn2, contents + offset);
15433 if (r_type != R_PPC64_NONE)
15434 goto again;
15435 }
15436 break;
15437
15438 case R_PPC64_DTPMOD64:
15439 if (rel + 1 < relend
15440 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
15441 && rel[1].r_offset == rel->r_offset + 8)
15442 {
15443 if ((tls_mask & TLS_GD) == 0)
15444 {
15445 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
15446 if ((tls_mask & TLS_GDIE) != 0)
15447 r_type = R_PPC64_TPREL64;
15448 else
15449 {
15450 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15451 r_type = R_PPC64_NONE;
15452 }
15453 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15454 }
15455 }
15456 else
15457 {
15458 if ((tls_mask & TLS_LD) == 0)
15459 {
15460 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15461 r_type = R_PPC64_NONE;
15462 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15463 }
15464 }
15465 break;
15466
15467 case R_PPC64_TPREL64:
15468 if ((tls_mask & TLS_TPREL) == 0)
15469 {
15470 r_type = R_PPC64_NONE;
15471 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15472 }
15473 break;
15474
15475 case R_PPC64_ENTRY:
15476 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15477 if (!bfd_link_pic (info)
15478 && !info->traditional_format
15479 && relocation + 0x80008000 <= 0xffffffff)
15480 {
15481 unsigned int insn1, insn2;
15482
15483 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15484 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15485 if ((insn1 & ~0xfffc) == LD_R2_0R12
15486 && insn2 == ADD_R2_R2_R12)
15487 {
15488 bfd_put_32 (input_bfd,
15489 LIS_R2 + PPC_HA (relocation),
15490 contents + rel->r_offset);
15491 bfd_put_32 (input_bfd,
15492 ADDI_R2_R2 + PPC_LO (relocation),
15493 contents + rel->r_offset + 4);
15494 }
15495 }
15496 else
15497 {
15498 relocation -= (rel->r_offset
15499 + input_section->output_offset
15500 + input_section->output_section->vma);
15501 if (relocation + 0x80008000 <= 0xffffffff)
15502 {
15503 unsigned int insn1, insn2;
15504
15505 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15506 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15507 if ((insn1 & ~0xfffc) == LD_R2_0R12
15508 && insn2 == ADD_R2_R2_R12)
15509 {
15510 bfd_put_32 (input_bfd,
15511 ADDIS_R2_R12 + PPC_HA (relocation),
15512 contents + rel->r_offset);
15513 bfd_put_32 (input_bfd,
15514 ADDI_R2_R2 + PPC_LO (relocation),
15515 contents + rel->r_offset + 4);
15516 }
15517 }
15518 }
15519 break;
15520
15521 case R_PPC64_REL16_HA:
15522 /* If we are generating a non-PIC executable, edit
15523 . 0: addis 2,12,.TOC.-0b@ha
15524 . addi 2,2,.TOC.-0b@l
15525 used by ELFv2 global entry points to set up r2, to
15526 . lis 2,.TOC.@ha
15527 . addi 2,2,.TOC.@l
15528 if .TOC. is in range. */
15529 if (!bfd_link_pic (info)
15530 && !info->traditional_format
15531 && !htab->opd_abi
15532 && rel->r_addend == d_offset
15533 && h != NULL && &h->elf == htab->elf.hgot
15534 && rel + 1 < relend
15535 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
15536 && rel[1].r_offset == rel->r_offset + 4
15537 && rel[1].r_addend == rel->r_addend + 4
15538 && relocation + 0x80008000 <= 0xffffffff)
15539 {
15540 unsigned int insn1, insn2;
15541 offset = rel->r_offset - d_offset;
15542 insn1 = bfd_get_32 (input_bfd, contents + offset);
15543 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15544 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
15545 && (insn2 & 0xffff0000) == ADDI_R2_R2)
15546 {
15547 r_type = R_PPC64_ADDR16_HA;
15548 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15549 rel->r_addend -= d_offset;
15550 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
15551 rel[1].r_addend -= d_offset + 4;
15552 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
15553 }
15554 }
15555 break;
15556 }
15557
15558 /* Handle other relocations that tweak non-addend part of insn. */
15559 insn = 0;
15560 max_br_offset = 1 << 25;
15561 addend = rel->r_addend;
15562 reloc_dest = DEST_NORMAL;
15563 switch (r_type)
15564 {
15565 default:
15566 break;
15567
15568 case R_PPC64_TOCSAVE:
15569 if (relocation + addend == (rel->r_offset
15570 + input_section->output_offset
15571 + input_section->output_section->vma)
15572 && tocsave_find (htab, NO_INSERT,
15573 &local_syms, rel, input_bfd))
15574 {
15575 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15576 if (insn == NOP
15577 || insn == CROR_151515 || insn == CROR_313131)
15578 bfd_put_32 (input_bfd,
15579 STD_R2_0R1 + STK_TOC (htab),
15580 contents + rel->r_offset);
15581 }
15582 break;
15583
15584 /* Branch taken prediction relocations. */
15585 case R_PPC64_ADDR14_BRTAKEN:
15586 case R_PPC64_REL14_BRTAKEN:
15587 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15588 /* Fall through. */
15589
15590 /* Branch not taken prediction relocations. */
15591 case R_PPC64_ADDR14_BRNTAKEN:
15592 case R_PPC64_REL14_BRNTAKEN:
15593 insn |= bfd_get_32 (input_bfd,
15594 contents + rel->r_offset) & ~(0x01 << 21);
15595 /* Fall through. */
15596
15597 case R_PPC64_REL14:
15598 max_br_offset = 1 << 15;
15599 /* Fall through. */
15600
15601 case R_PPC64_REL24:
15602 case R_PPC64_REL24_NOTOC:
15603 case R_PPC64_PLTCALL:
15604 case R_PPC64_PLTCALL_NOTOC:
15605 /* Calls to functions with a different TOC, such as calls to
15606 shared objects, need to alter the TOC pointer. This is
15607 done using a linkage stub. A REL24 branching to these
15608 linkage stubs needs to be followed by a nop, as the nop
15609 will be replaced with an instruction to restore the TOC
15610 base pointer. */
15611 fdh = h;
15612 if (h != NULL
15613 && h->oh != NULL
15614 && h->oh->is_func_descriptor)
15615 fdh = ppc_follow_link (h->oh);
15616 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15617 htab);
15618 if ((r_type == R_PPC64_PLTCALL
15619 || r_type == R_PPC64_PLTCALL_NOTOC)
15620 && stub_entry != NULL
15621 && stub_entry->stub_type >= ppc_stub_plt_call
15622 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15623 stub_entry = NULL;
15624
15625 if (stub_entry != NULL
15626 && ((stub_entry->stub_type >= ppc_stub_plt_call
15627 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15628 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15629 || stub_entry->stub_type == ppc_stub_plt_branch_both
15630 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15631 || stub_entry->stub_type == ppc_stub_long_branch_both))
15632 {
15633 bfd_boolean can_plt_call = FALSE;
15634
15635 if (stub_entry->stub_type == ppc_stub_plt_call
15636 && !htab->opd_abi
15637 && htab->params->plt_localentry0 != 0
15638 && is_elfv2_localentry0 (&h->elf))
15639 {
15640 /* The function doesn't use or change r2. */
15641 can_plt_call = TRUE;
15642 }
15643 else if (r_type == R_PPC64_REL24_NOTOC)
15644 {
15645 /* NOTOC calls don't need to restore r2. */
15646 can_plt_call = TRUE;
15647 }
15648
15649 /* All of these stubs may modify r2, so there must be a
15650 branch and link followed by a nop. The nop is
15651 replaced by an insn to restore r2. */
15652 else if (rel->r_offset + 8 <= input_section->size)
15653 {
15654 unsigned long br;
15655
15656 br = bfd_get_32 (input_bfd,
15657 contents + rel->r_offset);
15658 if ((br & 1) != 0)
15659 {
15660 unsigned long nop;
15661
15662 nop = bfd_get_32 (input_bfd,
15663 contents + rel->r_offset + 4);
15664 if (nop == LD_R2_0R1 + STK_TOC (htab))
15665 can_plt_call = TRUE;
15666 else if (nop == NOP
15667 || nop == CROR_151515
15668 || nop == CROR_313131)
15669 {
15670 if (h != NULL
15671 && is_tls_get_addr (&h->elf, htab)
15672 && htab->params->tls_get_addr_opt)
15673 {
15674 /* Special stub used, leave nop alone. */
15675 }
15676 else
15677 bfd_put_32 (input_bfd,
15678 LD_R2_0R1 + STK_TOC (htab),
15679 contents + rel->r_offset + 4);
15680 can_plt_call = TRUE;
15681 }
15682 }
15683 }
15684
15685 if (!can_plt_call && h != NULL)
15686 {
15687 const char *name = h->elf.root.root.string;
15688
15689 if (*name == '.')
15690 ++name;
15691
15692 if (strncmp (name, "__libc_start_main", 17) == 0
15693 && (name[17] == 0 || name[17] == '@'))
15694 {
15695 /* Allow crt1 branch to go via a toc adjusting
15696 stub. Other calls that never return could do
15697 the same, if we could detect such. */
15698 can_plt_call = TRUE;
15699 }
15700 }
15701
15702 if (!can_plt_call)
15703 {
15704 /* g++ as of 20130507 emits self-calls without a
15705 following nop. This is arguably wrong since we
15706 have conflicting information. On the one hand a
15707 global symbol and on the other a local call
15708 sequence, but don't error for this special case.
15709 It isn't possible to cheaply verify we have
15710 exactly such a call. Allow all calls to the same
15711 section. */
15712 asection *code_sec = sec;
15713
15714 if (get_opd_info (sec) != NULL)
15715 {
15716 bfd_vma off = (relocation + addend
15717 - sec->output_section->vma
15718 - sec->output_offset);
15719
15720 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
15721 }
15722 if (code_sec == input_section)
15723 can_plt_call = TRUE;
15724 }
15725
15726 if (!can_plt_call)
15727 {
15728 if (stub_entry->stub_type >= ppc_stub_plt_call
15729 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15730 info->callbacks->einfo
15731 /* xgettext:c-format */
15732 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15733 "(plt call stub)\n"),
15734 input_bfd, input_section, rel->r_offset, sym_name);
15735 else
15736 info->callbacks->einfo
15737 /* xgettext:c-format */
15738 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15739 "(toc save/adjust stub)\n"),
15740 input_bfd, input_section, rel->r_offset, sym_name);
15741
15742 bfd_set_error (bfd_error_bad_value);
15743 ret = FALSE;
15744 }
15745
15746 if (can_plt_call
15747 && stub_entry->stub_type >= ppc_stub_plt_call
15748 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15749 unresolved_reloc = FALSE;
15750 }
15751
15752 if ((stub_entry == NULL
15753 || stub_entry->stub_type == ppc_stub_long_branch
15754 || stub_entry->stub_type == ppc_stub_plt_branch)
15755 && get_opd_info (sec) != NULL)
15756 {
15757 /* The branch destination is the value of the opd entry. */
15758 bfd_vma off = (relocation + addend
15759 - sec->output_section->vma
15760 - sec->output_offset);
15761 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15762 if (dest != (bfd_vma) -1)
15763 {
15764 relocation = dest;
15765 addend = 0;
15766 reloc_dest = DEST_OPD;
15767 }
15768 }
15769
15770 /* If the branch is out of reach we ought to have a long
15771 branch stub. */
15772 from = (rel->r_offset
15773 + input_section->output_offset
15774 + input_section->output_section->vma);
15775
15776 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15777 ? fdh->elf.other
15778 : sym->st_other);
15779
15780 if (stub_entry != NULL
15781 && (stub_entry->stub_type == ppc_stub_long_branch
15782 || stub_entry->stub_type == ppc_stub_plt_branch)
15783 && (r_type == R_PPC64_ADDR14_BRTAKEN
15784 || r_type == R_PPC64_ADDR14_BRNTAKEN
15785 || (relocation + addend - from + max_br_offset
15786 < 2 * max_br_offset)))
15787 /* Don't use the stub if this branch is in range. */
15788 stub_entry = NULL;
15789
15790 if (stub_entry != NULL
15791 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15792 || stub_entry->stub_type == ppc_stub_long_branch_both
15793 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15794 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15795 && (r_type != R_PPC64_REL24_NOTOC
15796 || ((fdh ? fdh->elf.other : sym->st_other)
15797 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15798 && (relocation + addend - from + max_br_offset
15799 < 2 * max_br_offset))
15800 stub_entry = NULL;
15801
15802 if (stub_entry != NULL
15803 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15804 || stub_entry->stub_type == ppc_stub_long_branch_both
15805 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15806 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15807 && r_type == R_PPC64_REL24_NOTOC
15808 && (relocation + addend - from + max_br_offset
15809 < 2 * max_br_offset))
15810 stub_entry = NULL;
15811
15812 if (stub_entry != NULL)
15813 {
15814 /* Munge up the value and addend so that we call the stub
15815 rather than the procedure directly. */
15816 asection *stub_sec = stub_entry->group->stub_sec;
15817
15818 if (stub_entry->stub_type == ppc_stub_save_res)
15819 relocation += (stub_sec->output_offset
15820 + stub_sec->output_section->vma
15821 + stub_sec->size - htab->sfpr->size
15822 - htab->sfpr->output_offset
15823 - htab->sfpr->output_section->vma);
15824 else
15825 relocation = (stub_entry->stub_offset
15826 + stub_sec->output_offset
15827 + stub_sec->output_section->vma);
15828 addend = 0;
15829 reloc_dest = DEST_STUB;
15830
15831 if (((stub_entry->stub_type == ppc_stub_plt_call
15832 && ALWAYS_EMIT_R2SAVE)
15833 || stub_entry->stub_type == ppc_stub_plt_call_r2save
15834 || stub_entry->stub_type == ppc_stub_plt_call_both)
15835 && !(h != NULL
15836 && is_tls_get_addr (&h->elf, htab)
15837 && htab->params->tls_get_addr_opt)
15838 && rel + 1 < relend
15839 && rel[1].r_offset == rel->r_offset + 4
15840 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
15841 relocation += 4;
15842 else if ((stub_entry->stub_type == ppc_stub_long_branch_both
15843 || stub_entry->stub_type == ppc_stub_plt_branch_both
15844 || stub_entry->stub_type == ppc_stub_plt_call_both)
15845 && r_type == R_PPC64_REL24_NOTOC)
15846 relocation += 4;
15847
15848 if (r_type == R_PPC64_REL24_NOTOC
15849 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
15850 || stub_entry->stub_type == ppc_stub_plt_call_both))
15851 htab->notoc_plt = 1;
15852 }
15853
15854 if (insn != 0)
15855 {
15856 if (is_isa_v2)
15857 {
15858 /* Set 'a' bit. This is 0b00010 in BO field for branch
15859 on CR(BI) insns (BO == 001at or 011at), and 0b01000
15860 for branch on CTR insns (BO == 1a00t or 1a01t). */
15861 if ((insn & (0x14 << 21)) == (0x04 << 21))
15862 insn |= 0x02 << 21;
15863 else if ((insn & (0x14 << 21)) == (0x10 << 21))
15864 insn |= 0x08 << 21;
15865 else
15866 break;
15867 }
15868 else
15869 {
15870 /* Invert 'y' bit if not the default. */
15871 if ((bfd_signed_vma) (relocation + addend - from) < 0)
15872 insn ^= 0x01 << 21;
15873 }
15874
15875 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15876 }
15877
15878 /* NOP out calls to undefined weak functions.
15879 We can thus call a weak function without first
15880 checking whether the function is defined. */
15881 else if (h != NULL
15882 && h->elf.root.type == bfd_link_hash_undefweak
15883 && h->elf.dynindx == -1
15884 && (r_type == R_PPC64_REL24
15885 || r_type == R_PPC64_REL24_NOTOC)
15886 && relocation == 0
15887 && addend == 0)
15888 {
15889 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15890 goto copy_reloc;
15891 }
15892 break;
15893
15894 case R_PPC64_GOT16_DS:
15895 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
15896 break;
15897 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15898 if (relocation + addend - from + 0x8000 < 0x10000
15899 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15900 {
15901 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15902 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
15903 {
15904 insn += (14u << 26) - (58u << 26);
15905 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15906 r_type = R_PPC64_TOC16;
15907 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15908 }
15909 }
15910 break;
15911
15912 case R_PPC64_GOT16_LO_DS:
15913 case R_PPC64_GOT16_HA:
15914 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
15915 break;
15916 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15917 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
15918 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15919 {
15920 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15921 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
15922 {
15923 insn += (14u << 26) - (58u << 26);
15924 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15925 r_type = R_PPC64_TOC16_LO;
15926 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15927 }
15928 else if ((insn & (0x3fu << 26)) == 15u << 26 /* addis */)
15929 {
15930 r_type = R_PPC64_TOC16_HA;
15931 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15932 }
15933 }
15934 break;
15935
15936 case R_PPC64_GOT_PCREL34:
15937 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
15938 break;
15939 from = (rel->r_offset
15940 + input_section->output_section->vma
15941 + input_section->output_offset);
15942 if (relocation - from + (1ULL << 33) < 1ULL << 34
15943 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15944 {
15945 offset = rel->r_offset;
15946 pinsn = bfd_get_32 (input_bfd, contents + offset);
15947 pinsn <<= 32;
15948 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15949 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15950 == ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
15951 {
15952 /* Replace with paddi. */
15953 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
15954 r_type = R_PPC64_PCREL34;
15955 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15956 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
15957 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
15958 goto pcrelopt;
15959 }
15960 }
15961 break;
15962
15963 case R_PPC64_PCREL34:
15964 if (SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15965 {
15966 offset = rel->r_offset;
15967 pinsn = bfd_get_32 (input_bfd, contents + offset);
15968 pinsn <<= 32;
15969 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15970 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15971 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
15972 | (14ULL << 26) /* paddi */))
15973 {
15974 pcrelopt:
15975 if (rel + 1 < relend
15976 && rel[1].r_offset == offset
15977 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT))
15978 {
15979 bfd_vma off2 = rel[1].r_addend;
15980 if (off2 == 0)
15981 /* zero means next insn. */
15982 off2 = 8;
15983 off2 += offset;
15984 if (off2 + 4 <= input_section->size)
15985 {
15986 uint64_t pinsn2;
15987 bfd_signed_vma addend_off;
15988 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
15989 pinsn2 <<= 32;
15990 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
15991 {
15992 if (off2 + 8 > input_section->size)
15993 break;
15994 pinsn2 |= bfd_get_32 (input_bfd,
15995 contents + off2 + 4);
15996 }
15997 if (xlate_pcrel_opt (&pinsn, &pinsn2, &addend_off))
15998 {
15999 addend += addend_off;
16000 rel->r_addend = addend;
16001 bfd_put_32 (input_bfd, pinsn >> 32,
16002 contents + offset);
16003 bfd_put_32 (input_bfd, pinsn,
16004 contents + offset + 4);
16005 bfd_put_32 (input_bfd, pinsn2 >> 32,
16006 contents + off2);
16007 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16008 bfd_put_32 (input_bfd, pinsn2,
16009 contents + off2 + 4);
16010 }
16011 }
16012 }
16013 }
16014 }
16015 break;
16016 }
16017
16018 tls_type = 0;
16019 save_unresolved_reloc = unresolved_reloc;
16020 switch (r_type)
16021 {
16022 default:
16023 /* xgettext:c-format */
16024 _bfd_error_handler (_("%pB: %s unsupported"),
16025 input_bfd, ppc64_elf_howto_table[r_type]->name);
16026
16027 bfd_set_error (bfd_error_bad_value);
16028 ret = FALSE;
16029 goto copy_reloc;
16030
16031 case R_PPC64_NONE:
16032 case R_PPC64_TLS:
16033 case R_PPC64_TLSGD:
16034 case R_PPC64_TLSLD:
16035 case R_PPC64_TOCSAVE:
16036 case R_PPC64_GNU_VTINHERIT:
16037 case R_PPC64_GNU_VTENTRY:
16038 case R_PPC64_ENTRY:
16039 case R_PPC64_PCREL_OPT:
16040 goto copy_reloc;
16041
16042 /* GOT16 relocations. Like an ADDR16 using the symbol's
16043 address in the GOT as relocation value instead of the
16044 symbol's value itself. Also, create a GOT entry for the
16045 symbol and put the symbol value there. */
16046 case R_PPC64_GOT_TLSGD16:
16047 case R_PPC64_GOT_TLSGD16_LO:
16048 case R_PPC64_GOT_TLSGD16_HI:
16049 case R_PPC64_GOT_TLSGD16_HA:
16050 case R_PPC64_GOT_TLSGD34:
16051 tls_type = TLS_TLS | TLS_GD;
16052 goto dogot;
16053
16054 case R_PPC64_GOT_TLSLD16:
16055 case R_PPC64_GOT_TLSLD16_LO:
16056 case R_PPC64_GOT_TLSLD16_HI:
16057 case R_PPC64_GOT_TLSLD16_HA:
16058 case R_PPC64_GOT_TLSLD34:
16059 tls_type = TLS_TLS | TLS_LD;
16060 goto dogot;
16061
16062 case R_PPC64_GOT_TPREL16_DS:
16063 case R_PPC64_GOT_TPREL16_LO_DS:
16064 case R_PPC64_GOT_TPREL16_HI:
16065 case R_PPC64_GOT_TPREL16_HA:
16066 case R_PPC64_GOT_TPREL34:
16067 tls_type = TLS_TLS | TLS_TPREL;
16068 goto dogot;
16069
16070 case R_PPC64_GOT_DTPREL16_DS:
16071 case R_PPC64_GOT_DTPREL16_LO_DS:
16072 case R_PPC64_GOT_DTPREL16_HI:
16073 case R_PPC64_GOT_DTPREL16_HA:
16074 case R_PPC64_GOT_DTPREL34:
16075 tls_type = TLS_TLS | TLS_DTPREL;
16076 goto dogot;
16077
16078 case R_PPC64_GOT16:
16079 case R_PPC64_GOT16_LO:
16080 case R_PPC64_GOT16_HI:
16081 case R_PPC64_GOT16_HA:
16082 case R_PPC64_GOT16_DS:
16083 case R_PPC64_GOT16_LO_DS:
16084 case R_PPC64_GOT_PCREL34:
16085 dogot:
16086 {
16087 /* Relocation is to the entry for this symbol in the global
16088 offset table. */
16089 asection *got;
16090 bfd_vma *offp;
16091 bfd_vma off;
16092 unsigned long indx = 0;
16093 struct got_entry *ent;
16094
16095 if (tls_type == (TLS_TLS | TLS_LD)
16096 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
16097 ent = ppc64_tlsld_got (input_bfd);
16098 else
16099 {
16100 if (h != NULL)
16101 {
16102 if (!htab->elf.dynamic_sections_created
16103 || h->elf.dynindx == -1
16104 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16105 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16106 /* This is actually a static link, or it is a
16107 -Bsymbolic link and the symbol is defined
16108 locally, or the symbol was forced to be local
16109 because of a version file. */
16110 ;
16111 else
16112 {
16113 indx = h->elf.dynindx;
16114 unresolved_reloc = FALSE;
16115 }
16116 ent = h->elf.got.glist;
16117 }
16118 else
16119 {
16120 if (local_got_ents == NULL)
16121 abort ();
16122 ent = local_got_ents[r_symndx];
16123 }
16124
16125 for (; ent != NULL; ent = ent->next)
16126 if (ent->addend == orig_rel.r_addend
16127 && ent->owner == input_bfd
16128 && ent->tls_type == tls_type)
16129 break;
16130 }
16131
16132 if (ent == NULL)
16133 abort ();
16134 if (ent->is_indirect)
16135 ent = ent->got.ent;
16136 offp = &ent->got.offset;
16137 got = ppc64_elf_tdata (ent->owner)->got;
16138 if (got == NULL)
16139 abort ();
16140
16141 /* The offset must always be a multiple of 8. We use the
16142 least significant bit to record whether we have already
16143 processed this entry. */
16144 off = *offp;
16145 if ((off & 1) != 0)
16146 off &= ~1;
16147 else
16148 {
16149 /* Generate relocs for the dynamic linker, except in
16150 the case of TLSLD where we'll use one entry per
16151 module. */
16152 asection *relgot;
16153 bfd_boolean ifunc;
16154
16155 *offp = off | 1;
16156 relgot = NULL;
16157 ifunc = (h != NULL
16158 ? h->elf.type == STT_GNU_IFUNC
16159 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
16160 if (ifunc)
16161 {
16162 relgot = htab->elf.irelplt;
16163 if (indx == 0)
16164 htab->local_ifunc_resolver = 1;
16165 else if (is_static_defined (&h->elf))
16166 htab->maybe_local_ifunc_resolver = 1;
16167 }
16168 else if (indx != 0
16169 || (bfd_link_pic (info)
16170 && (h == NULL
16171 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16172 && !(tls_type != 0
16173 && bfd_link_executable (info)
16174 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
16175 relgot = ppc64_elf_tdata (ent->owner)->relgot;
16176 if (relgot != NULL)
16177 {
16178 outrel.r_offset = (got->output_section->vma
16179 + got->output_offset
16180 + off);
16181 outrel.r_addend = orig_rel.r_addend;
16182 if (tls_type & (TLS_LD | TLS_GD))
16183 {
16184 outrel.r_addend = 0;
16185 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
16186 if (tls_type == (TLS_TLS | TLS_GD))
16187 {
16188 loc = relgot->contents;
16189 loc += (relgot->reloc_count++
16190 * sizeof (Elf64_External_Rela));
16191 bfd_elf64_swap_reloca_out (output_bfd,
16192 &outrel, loc);
16193 outrel.r_offset += 8;
16194 outrel.r_addend = orig_rel.r_addend;
16195 outrel.r_info
16196 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16197 }
16198 }
16199 else if (tls_type == (TLS_TLS | TLS_DTPREL))
16200 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16201 else if (tls_type == (TLS_TLS | TLS_TPREL))
16202 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
16203 else if (indx != 0)
16204 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
16205 else
16206 {
16207 if (ifunc)
16208 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16209 else
16210 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16211
16212 /* Write the .got section contents for the sake
16213 of prelink. */
16214 loc = got->contents + off;
16215 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
16216 loc);
16217 }
16218
16219 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
16220 {
16221 outrel.r_addend += relocation;
16222 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
16223 {
16224 if (htab->elf.tls_sec == NULL)
16225 outrel.r_addend = 0;
16226 else
16227 outrel.r_addend -= htab->elf.tls_sec->vma;
16228 }
16229 }
16230 loc = relgot->contents;
16231 loc += (relgot->reloc_count++
16232 * sizeof (Elf64_External_Rela));
16233 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16234 }
16235
16236 /* Init the .got section contents here if we're not
16237 emitting a reloc. */
16238 else
16239 {
16240 relocation += orig_rel.r_addend;
16241 if (tls_type != 0)
16242 {
16243 if (htab->elf.tls_sec == NULL)
16244 relocation = 0;
16245 else
16246 {
16247 if (tls_type & TLS_LD)
16248 relocation = 0;
16249 else
16250 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
16251 if (tls_type & TLS_TPREL)
16252 relocation += DTP_OFFSET - TP_OFFSET;
16253 }
16254
16255 if (tls_type & (TLS_GD | TLS_LD))
16256 {
16257 bfd_put_64 (output_bfd, relocation,
16258 got->contents + off + 8);
16259 relocation = 1;
16260 }
16261 }
16262 bfd_put_64 (output_bfd, relocation,
16263 got->contents + off);
16264 }
16265 }
16266
16267 if (off >= (bfd_vma) -2)
16268 abort ();
16269
16270 relocation = got->output_section->vma + got->output_offset + off;
16271 addend = 0;
16272 if (!(r_type == R_PPC64_GOT_PCREL34
16273 || r_type == R_PPC64_GOT_TLSGD34
16274 || r_type == R_PPC64_GOT_TLSLD34
16275 || r_type == R_PPC64_GOT_TPREL34
16276 || r_type == R_PPC64_GOT_DTPREL34))
16277 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
16278 }
16279 break;
16280
16281 case R_PPC64_PLT16_HA:
16282 case R_PPC64_PLT16_HI:
16283 case R_PPC64_PLT16_LO:
16284 case R_PPC64_PLT16_LO_DS:
16285 case R_PPC64_PLT_PCREL34:
16286 case R_PPC64_PLT_PCREL34_NOTOC:
16287 case R_PPC64_PLT32:
16288 case R_PPC64_PLT64:
16289 case R_PPC64_PLTSEQ:
16290 case R_PPC64_PLTSEQ_NOTOC:
16291 case R_PPC64_PLTCALL:
16292 case R_PPC64_PLTCALL_NOTOC:
16293 /* Relocation is to the entry for this symbol in the
16294 procedure linkage table. */
16295 unresolved_reloc = TRUE;
16296 {
16297 struct plt_entry **plt_list = NULL;
16298 if (h != NULL)
16299 plt_list = &h->elf.plt.plist;
16300 else if (local_got_ents != NULL)
16301 {
16302 struct plt_entry **local_plt = (struct plt_entry **)
16303 (local_got_ents + symtab_hdr->sh_info);
16304 plt_list = local_plt + r_symndx;
16305 }
16306 if (plt_list)
16307 {
16308 struct plt_entry *ent;
16309
16310 for (ent = *plt_list; ent != NULL; ent = ent->next)
16311 if (ent->plt.offset != (bfd_vma) -1
16312 && ent->addend == orig_rel.r_addend)
16313 {
16314 asection *plt;
16315 bfd_vma got;
16316
16317 plt = htab->elf.splt;
16318 if (!htab->elf.dynamic_sections_created
16319 || h == NULL
16320 || h->elf.dynindx == -1)
16321 {
16322 if (h != NULL
16323 ? h->elf.type == STT_GNU_IFUNC
16324 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16325 plt = htab->elf.iplt;
16326 else
16327 plt = htab->pltlocal;
16328 }
16329 relocation = (plt->output_section->vma
16330 + plt->output_offset
16331 + ent->plt.offset);
16332 if (r_type == R_PPC64_PLT16_HA
16333 || r_type == R_PPC64_PLT16_HI
16334 || r_type == R_PPC64_PLT16_LO
16335 || r_type == R_PPC64_PLT16_LO_DS)
16336 {
16337 got = (elf_gp (output_bfd)
16338 + htab->sec_info[input_section->id].toc_off);
16339 relocation -= got;
16340 }
16341 addend = 0;
16342 unresolved_reloc = FALSE;
16343 break;
16344 }
16345 }
16346 }
16347 break;
16348
16349 case R_PPC64_TOC:
16350 /* Relocation value is TOC base. */
16351 relocation = TOCstart;
16352 if (r_symndx == STN_UNDEF)
16353 relocation += htab->sec_info[input_section->id].toc_off;
16354 else if (unresolved_reloc)
16355 ;
16356 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
16357 relocation += htab->sec_info[sec->id].toc_off;
16358 else
16359 unresolved_reloc = TRUE;
16360 goto dodyn;
16361
16362 /* TOC16 relocs. We want the offset relative to the TOC base,
16363 which is the address of the start of the TOC plus 0x8000.
16364 The TOC consists of sections .got, .toc, .tocbss, and .plt,
16365 in this order. */
16366 case R_PPC64_TOC16:
16367 case R_PPC64_TOC16_LO:
16368 case R_PPC64_TOC16_HI:
16369 case R_PPC64_TOC16_DS:
16370 case R_PPC64_TOC16_LO_DS:
16371 case R_PPC64_TOC16_HA:
16372 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
16373 if (h != NULL)
16374 goto dodyn;
16375 break;
16376
16377 /* Relocate against the beginning of the section. */
16378 case R_PPC64_SECTOFF:
16379 case R_PPC64_SECTOFF_LO:
16380 case R_PPC64_SECTOFF_HI:
16381 case R_PPC64_SECTOFF_DS:
16382 case R_PPC64_SECTOFF_LO_DS:
16383 case R_PPC64_SECTOFF_HA:
16384 if (sec != NULL)
16385 addend -= sec->output_section->vma;
16386 break;
16387
16388 case R_PPC64_REL16:
16389 case R_PPC64_REL16_LO:
16390 case R_PPC64_REL16_HI:
16391 case R_PPC64_REL16_HA:
16392 case R_PPC64_REL16_HIGH:
16393 case R_PPC64_REL16_HIGHA:
16394 case R_PPC64_REL16_HIGHER:
16395 case R_PPC64_REL16_HIGHERA:
16396 case R_PPC64_REL16_HIGHEST:
16397 case R_PPC64_REL16_HIGHESTA:
16398 case R_PPC64_REL16_HIGHER34:
16399 case R_PPC64_REL16_HIGHERA34:
16400 case R_PPC64_REL16_HIGHEST34:
16401 case R_PPC64_REL16_HIGHESTA34:
16402 case R_PPC64_REL16DX_HA:
16403 case R_PPC64_REL14:
16404 case R_PPC64_REL14_BRNTAKEN:
16405 case R_PPC64_REL14_BRTAKEN:
16406 case R_PPC64_REL24:
16407 case R_PPC64_REL24_NOTOC:
16408 case R_PPC64_PCREL34:
16409 case R_PPC64_PCREL28:
16410 break;
16411
16412 case R_PPC64_TPREL16:
16413 case R_PPC64_TPREL16_LO:
16414 case R_PPC64_TPREL16_HI:
16415 case R_PPC64_TPREL16_HA:
16416 case R_PPC64_TPREL16_DS:
16417 case R_PPC64_TPREL16_LO_DS:
16418 case R_PPC64_TPREL16_HIGH:
16419 case R_PPC64_TPREL16_HIGHA:
16420 case R_PPC64_TPREL16_HIGHER:
16421 case R_PPC64_TPREL16_HIGHERA:
16422 case R_PPC64_TPREL16_HIGHEST:
16423 case R_PPC64_TPREL16_HIGHESTA:
16424 case R_PPC64_TPREL34:
16425 if (h != NULL
16426 && h->elf.root.type == bfd_link_hash_undefweak
16427 && h->elf.dynindx == -1)
16428 {
16429 /* Make this relocation against an undefined weak symbol
16430 resolve to zero. This is really just a tweak, since
16431 code using weak externs ought to check that they are
16432 defined before using them. */
16433 bfd_byte *p = contents + rel->r_offset - d_offset;
16434
16435 insn = bfd_get_32 (input_bfd, p);
16436 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
16437 if (insn != 0)
16438 bfd_put_32 (input_bfd, insn, p);
16439 break;
16440 }
16441 if (htab->elf.tls_sec != NULL)
16442 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16443 /* The TPREL16 relocs shouldn't really be used in shared
16444 libs or with non-local symbols as that will result in
16445 DT_TEXTREL being set, but support them anyway. */
16446 goto dodyn;
16447
16448 case R_PPC64_DTPREL16:
16449 case R_PPC64_DTPREL16_LO:
16450 case R_PPC64_DTPREL16_HI:
16451 case R_PPC64_DTPREL16_HA:
16452 case R_PPC64_DTPREL16_DS:
16453 case R_PPC64_DTPREL16_LO_DS:
16454 case R_PPC64_DTPREL16_HIGH:
16455 case R_PPC64_DTPREL16_HIGHA:
16456 case R_PPC64_DTPREL16_HIGHER:
16457 case R_PPC64_DTPREL16_HIGHERA:
16458 case R_PPC64_DTPREL16_HIGHEST:
16459 case R_PPC64_DTPREL16_HIGHESTA:
16460 case R_PPC64_DTPREL34:
16461 if (htab->elf.tls_sec != NULL)
16462 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16463 break;
16464
16465 case R_PPC64_ADDR64_LOCAL:
16466 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
16467 ? h->elf.other
16468 : sym->st_other);
16469 break;
16470
16471 case R_PPC64_DTPMOD64:
16472 relocation = 1;
16473 addend = 0;
16474 goto dodyn;
16475
16476 case R_PPC64_TPREL64:
16477 if (htab->elf.tls_sec != NULL)
16478 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16479 goto dodyn;
16480
16481 case R_PPC64_DTPREL64:
16482 if (htab->elf.tls_sec != NULL)
16483 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16484 /* Fall through. */
16485
16486 /* Relocations that may need to be propagated if this is a
16487 dynamic object. */
16488 case R_PPC64_REL30:
16489 case R_PPC64_REL32:
16490 case R_PPC64_REL64:
16491 case R_PPC64_ADDR14:
16492 case R_PPC64_ADDR14_BRNTAKEN:
16493 case R_PPC64_ADDR14_BRTAKEN:
16494 case R_PPC64_ADDR16:
16495 case R_PPC64_ADDR16_DS:
16496 case R_PPC64_ADDR16_HA:
16497 case R_PPC64_ADDR16_HI:
16498 case R_PPC64_ADDR16_HIGH:
16499 case R_PPC64_ADDR16_HIGHA:
16500 case R_PPC64_ADDR16_HIGHER:
16501 case R_PPC64_ADDR16_HIGHERA:
16502 case R_PPC64_ADDR16_HIGHEST:
16503 case R_PPC64_ADDR16_HIGHESTA:
16504 case R_PPC64_ADDR16_LO:
16505 case R_PPC64_ADDR16_LO_DS:
16506 case R_PPC64_ADDR16_HIGHER34:
16507 case R_PPC64_ADDR16_HIGHERA34:
16508 case R_PPC64_ADDR16_HIGHEST34:
16509 case R_PPC64_ADDR16_HIGHESTA34:
16510 case R_PPC64_ADDR24:
16511 case R_PPC64_ADDR32:
16512 case R_PPC64_ADDR64:
16513 case R_PPC64_UADDR16:
16514 case R_PPC64_UADDR32:
16515 case R_PPC64_UADDR64:
16516 case R_PPC64_D34:
16517 case R_PPC64_D34_LO:
16518 case R_PPC64_D34_HI30:
16519 case R_PPC64_D34_HA30:
16520 case R_PPC64_D28:
16521 dodyn:
16522 if ((input_section->flags & SEC_ALLOC) == 0)
16523 break;
16524
16525 if (NO_OPD_RELOCS && is_opd)
16526 break;
16527
16528 if (bfd_link_pic (info)
16529 ? ((h == NULL
16530 || h->dyn_relocs != NULL)
16531 && ((h != NULL && pc_dynrelocs (h))
16532 || must_be_dyn_reloc (info, r_type)))
16533 : (h != NULL
16534 ? h->dyn_relocs != NULL
16535 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16536 {
16537 bfd_boolean skip, relocate;
16538 asection *sreloc;
16539 bfd_vma out_off;
16540 long indx = 0;
16541
16542 /* When generating a dynamic object, these relocations
16543 are copied into the output file to be resolved at run
16544 time. */
16545
16546 skip = FALSE;
16547 relocate = FALSE;
16548
16549 out_off = _bfd_elf_section_offset (output_bfd, info,
16550 input_section, rel->r_offset);
16551 if (out_off == (bfd_vma) -1)
16552 skip = TRUE;
16553 else if (out_off == (bfd_vma) -2)
16554 skip = TRUE, relocate = TRUE;
16555 out_off += (input_section->output_section->vma
16556 + input_section->output_offset);
16557 outrel.r_offset = out_off;
16558 outrel.r_addend = rel->r_addend;
16559
16560 /* Optimize unaligned reloc use. */
16561 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
16562 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
16563 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
16564 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
16565 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
16566 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
16567 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
16568 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
16569 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
16570
16571 if (skip)
16572 memset (&outrel, 0, sizeof outrel);
16573 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16574 && !is_opd
16575 && r_type != R_PPC64_TOC)
16576 {
16577 indx = h->elf.dynindx;
16578 BFD_ASSERT (indx != -1);
16579 outrel.r_info = ELF64_R_INFO (indx, r_type);
16580 }
16581 else
16582 {
16583 /* This symbol is local, or marked to become local,
16584 or this is an opd section reloc which must point
16585 at a local function. */
16586 outrel.r_addend += relocation;
16587 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16588 {
16589 if (is_opd && h != NULL)
16590 {
16591 /* Lie about opd entries. This case occurs
16592 when building shared libraries and we
16593 reference a function in another shared
16594 lib. The same thing happens for a weak
16595 definition in an application that's
16596 overridden by a strong definition in a
16597 shared lib. (I believe this is a generic
16598 bug in binutils handling of weak syms.)
16599 In these cases we won't use the opd
16600 entry in this lib. */
16601 unresolved_reloc = FALSE;
16602 }
16603 if (!is_opd
16604 && r_type == R_PPC64_ADDR64
16605 && (h != NULL
16606 ? h->elf.type == STT_GNU_IFUNC
16607 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16608 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16609 else
16610 {
16611 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16612
16613 /* We need to relocate .opd contents for ld.so.
16614 Prelink also wants simple and consistent rules
16615 for relocs. This make all RELATIVE relocs have
16616 *r_offset equal to r_addend. */
16617 relocate = TRUE;
16618 }
16619 }
16620 else
16621 {
16622 if (h != NULL
16623 ? h->elf.type == STT_GNU_IFUNC
16624 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16625 {
16626 info->callbacks->einfo
16627 /* xgettext:c-format */
16628 (_("%H: %s for indirect "
16629 "function `%pT' unsupported\n"),
16630 input_bfd, input_section, rel->r_offset,
16631 ppc64_elf_howto_table[r_type]->name,
16632 sym_name);
16633 ret = FALSE;
16634 }
16635 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16636 ;
16637 else if (sec == NULL || sec->owner == NULL)
16638 {
16639 bfd_set_error (bfd_error_bad_value);
16640 return FALSE;
16641 }
16642 else
16643 {
16644 asection *osec = sec->output_section;
16645
16646 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16647 {
16648 /* TLS symbol values are relative to the
16649 TLS segment. Dynamic relocations for
16650 local TLS symbols therefore can't be
16651 reduced to a relocation against their
16652 section symbol because it holds the
16653 address of the section, not a value
16654 relative to the TLS segment. We could
16655 change the .tdata dynamic section symbol
16656 to be zero value but STN_UNDEF works
16657 and is used elsewhere, eg. for TPREL64
16658 GOT relocs against local TLS symbols. */
16659 osec = htab->elf.tls_sec;
16660 indx = 0;
16661 }
16662 else
16663 {
16664 indx = elf_section_data (osec)->dynindx;
16665 if (indx == 0)
16666 {
16667 if ((osec->flags & SEC_READONLY) == 0
16668 && htab->elf.data_index_section != NULL)
16669 osec = htab->elf.data_index_section;
16670 else
16671 osec = htab->elf.text_index_section;
16672 indx = elf_section_data (osec)->dynindx;
16673 }
16674 BFD_ASSERT (indx != 0);
16675 }
16676
16677 /* We are turning this relocation into one
16678 against a section symbol, so subtract out
16679 the output section's address but not the
16680 offset of the input section in the output
16681 section. */
16682 outrel.r_addend -= osec->vma;
16683 }
16684
16685 outrel.r_info = ELF64_R_INFO (indx, r_type);
16686 }
16687 }
16688
16689 sreloc = elf_section_data (input_section)->sreloc;
16690 if (h != NULL
16691 ? h->elf.type == STT_GNU_IFUNC
16692 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16693 {
16694 sreloc = htab->elf.irelplt;
16695 if (indx == 0)
16696 htab->local_ifunc_resolver = 1;
16697 else if (is_static_defined (&h->elf))
16698 htab->maybe_local_ifunc_resolver = 1;
16699 }
16700 if (sreloc == NULL)
16701 abort ();
16702
16703 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16704 >= sreloc->size)
16705 abort ();
16706 loc = sreloc->contents;
16707 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16708 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16709
16710 if (!warned_dynamic
16711 && !ppc64_glibc_dynamic_reloc (ELF64_R_TYPE (outrel.r_info)))
16712 {
16713 info->callbacks->einfo
16714 /* xgettext:c-format */
16715 (_("%X%P: %pB: %s against %pT "
16716 "is not supported by glibc as a dynamic relocation\n"),
16717 input_bfd,
16718 ppc64_elf_howto_table[ELF64_R_TYPE (outrel.r_info)]->name,
16719 sym_name);
16720 warned_dynamic = TRUE;
16721 }
16722
16723 /* If this reloc is against an external symbol, it will
16724 be computed at runtime, so there's no need to do
16725 anything now. However, for the sake of prelink ensure
16726 that the section contents are a known value. */
16727 if (!relocate)
16728 {
16729 unresolved_reloc = FALSE;
16730 /* The value chosen here is quite arbitrary as ld.so
16731 ignores section contents except for the special
16732 case of .opd where the contents might be accessed
16733 before relocation. Choose zero, as that won't
16734 cause reloc overflow. */
16735 relocation = 0;
16736 addend = 0;
16737 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16738 to improve backward compatibility with older
16739 versions of ld. */
16740 if (r_type == R_PPC64_ADDR64)
16741 addend = outrel.r_addend;
16742 /* Adjust pc_relative relocs to have zero in *r_offset. */
16743 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16744 addend = outrel.r_offset;
16745 }
16746 }
16747 break;
16748
16749 case R_PPC64_COPY:
16750 case R_PPC64_GLOB_DAT:
16751 case R_PPC64_JMP_SLOT:
16752 case R_PPC64_JMP_IREL:
16753 case R_PPC64_RELATIVE:
16754 /* We shouldn't ever see these dynamic relocs in relocatable
16755 files. */
16756 /* Fall through. */
16757
16758 case R_PPC64_PLTGOT16:
16759 case R_PPC64_PLTGOT16_DS:
16760 case R_PPC64_PLTGOT16_HA:
16761 case R_PPC64_PLTGOT16_HI:
16762 case R_PPC64_PLTGOT16_LO:
16763 case R_PPC64_PLTGOT16_LO_DS:
16764 case R_PPC64_PLTREL32:
16765 case R_PPC64_PLTREL64:
16766 /* These ones haven't been implemented yet. */
16767
16768 info->callbacks->einfo
16769 /* xgettext:c-format */
16770 (_("%P: %pB: %s is not supported for `%pT'\n"),
16771 input_bfd,
16772 ppc64_elf_howto_table[r_type]->name, sym_name);
16773
16774 bfd_set_error (bfd_error_invalid_operation);
16775 ret = FALSE;
16776 goto copy_reloc;
16777 }
16778
16779 /* Multi-instruction sequences that access the TOC can be
16780 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16781 to nop; addi rb,r2,x; */
16782 switch (r_type)
16783 {
16784 default:
16785 break;
16786
16787 case R_PPC64_GOT_TLSLD16_HI:
16788 case R_PPC64_GOT_TLSGD16_HI:
16789 case R_PPC64_GOT_TPREL16_HI:
16790 case R_PPC64_GOT_DTPREL16_HI:
16791 case R_PPC64_GOT16_HI:
16792 case R_PPC64_TOC16_HI:
16793 /* These relocs would only be useful if building up an
16794 offset to later add to r2, perhaps in an indexed
16795 addressing mode instruction. Don't try to optimize.
16796 Unfortunately, the possibility of someone building up an
16797 offset like this or even with the HA relocs, means that
16798 we need to check the high insn when optimizing the low
16799 insn. */
16800 break;
16801
16802 case R_PPC64_PLTCALL_NOTOC:
16803 if (!unresolved_reloc)
16804 htab->notoc_plt = 1;
16805 /* Fall through. */
16806 case R_PPC64_PLTCALL:
16807 if (unresolved_reloc)
16808 {
16809 /* No plt entry. Make this into a direct call. */
16810 bfd_byte *p = contents + rel->r_offset;
16811 insn = bfd_get_32 (input_bfd, p);
16812 insn &= 1;
16813 bfd_put_32 (input_bfd, B_DOT | insn, p);
16814 if (r_type == R_PPC64_PLTCALL)
16815 bfd_put_32 (input_bfd, NOP, p + 4);
16816 unresolved_reloc = save_unresolved_reloc;
16817 r_type = R_PPC64_REL24;
16818 }
16819 break;
16820
16821 case R_PPC64_PLTSEQ_NOTOC:
16822 case R_PPC64_PLTSEQ:
16823 if (unresolved_reloc)
16824 {
16825 unresolved_reloc = FALSE;
16826 goto nop_it;
16827 }
16828 break;
16829
16830 case R_PPC64_PLT_PCREL34_NOTOC:
16831 if (!unresolved_reloc)
16832 htab->notoc_plt = 1;
16833 /* Fall through. */
16834 case R_PPC64_PLT_PCREL34:
16835 if (unresolved_reloc)
16836 {
16837 bfd_byte *p = contents + rel->r_offset;
16838 bfd_put_32 (input_bfd, PNOP >> 32, p);
16839 bfd_put_32 (input_bfd, PNOP, p + 4);
16840 unresolved_reloc = FALSE;
16841 goto copy_reloc;
16842 }
16843 break;
16844
16845 case R_PPC64_PLT16_HA:
16846 if (unresolved_reloc)
16847 {
16848 unresolved_reloc = FALSE;
16849 goto nop_it;
16850 }
16851 /* Fall through. */
16852 case R_PPC64_GOT_TLSLD16_HA:
16853 case R_PPC64_GOT_TLSGD16_HA:
16854 case R_PPC64_GOT_TPREL16_HA:
16855 case R_PPC64_GOT_DTPREL16_HA:
16856 case R_PPC64_GOT16_HA:
16857 case R_PPC64_TOC16_HA:
16858 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16859 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16860 {
16861 bfd_byte *p;
16862 nop_it:
16863 p = contents + (rel->r_offset & ~3);
16864 bfd_put_32 (input_bfd, NOP, p);
16865 goto copy_reloc;
16866 }
16867 break;
16868
16869 case R_PPC64_PLT16_LO:
16870 case R_PPC64_PLT16_LO_DS:
16871 if (unresolved_reloc)
16872 {
16873 unresolved_reloc = FALSE;
16874 goto nop_it;
16875 }
16876 /* Fall through. */
16877 case R_PPC64_GOT_TLSLD16_LO:
16878 case R_PPC64_GOT_TLSGD16_LO:
16879 case R_PPC64_GOT_TPREL16_LO_DS:
16880 case R_PPC64_GOT_DTPREL16_LO_DS:
16881 case R_PPC64_GOT16_LO:
16882 case R_PPC64_GOT16_LO_DS:
16883 case R_PPC64_TOC16_LO:
16884 case R_PPC64_TOC16_LO_DS:
16885 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16886 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16887 {
16888 bfd_byte *p = contents + (rel->r_offset & ~3);
16889 insn = bfd_get_32 (input_bfd, p);
16890 if ((insn & (0x3fu << 26)) == 12u << 26 /* addic */)
16891 {
16892 /* Transform addic to addi when we change reg. */
16893 insn &= ~((0x3fu << 26) | (0x1f << 16));
16894 insn |= (14u << 26) | (2 << 16);
16895 }
16896 else
16897 {
16898 insn &= ~(0x1f << 16);
16899 insn |= 2 << 16;
16900 }
16901 bfd_put_32 (input_bfd, insn, p);
16902 }
16903 break;
16904
16905 case R_PPC64_TPREL16_HA:
16906 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16907 {
16908 bfd_byte *p = contents + (rel->r_offset & ~3);
16909 insn = bfd_get_32 (input_bfd, p);
16910 if ((insn & ((0x3fu << 26) | 0x1f << 16))
16911 != ((15u << 26) | (13 << 16)) /* addis rt,13,imm */)
16912 /* xgettext:c-format */
16913 info->callbacks->minfo
16914 (_("%H: warning: %s unexpected insn %#x.\n"),
16915 input_bfd, input_section, rel->r_offset,
16916 ppc64_elf_howto_table[r_type]->name, insn);
16917 else
16918 {
16919 bfd_put_32 (input_bfd, NOP, p);
16920 goto copy_reloc;
16921 }
16922 }
16923 break;
16924
16925 case R_PPC64_TPREL16_LO:
16926 case R_PPC64_TPREL16_LO_DS:
16927 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16928 {
16929 bfd_byte *p = contents + (rel->r_offset & ~3);
16930 insn = bfd_get_32 (input_bfd, p);
16931 insn &= ~(0x1f << 16);
16932 insn |= 13 << 16;
16933 bfd_put_32 (input_bfd, insn, p);
16934 }
16935 break;
16936 }
16937
16938 /* Do any further special processing. */
16939 switch (r_type)
16940 {
16941 default:
16942 break;
16943
16944 case R_PPC64_REL16_HA:
16945 case R_PPC64_REL16_HIGHA:
16946 case R_PPC64_REL16_HIGHERA:
16947 case R_PPC64_REL16_HIGHESTA:
16948 case R_PPC64_REL16DX_HA:
16949 case R_PPC64_ADDR16_HA:
16950 case R_PPC64_ADDR16_HIGHA:
16951 case R_PPC64_ADDR16_HIGHERA:
16952 case R_PPC64_ADDR16_HIGHESTA:
16953 case R_PPC64_TOC16_HA:
16954 case R_PPC64_SECTOFF_HA:
16955 case R_PPC64_TPREL16_HA:
16956 case R_PPC64_TPREL16_HIGHA:
16957 case R_PPC64_TPREL16_HIGHERA:
16958 case R_PPC64_TPREL16_HIGHESTA:
16959 case R_PPC64_DTPREL16_HA:
16960 case R_PPC64_DTPREL16_HIGHA:
16961 case R_PPC64_DTPREL16_HIGHERA:
16962 case R_PPC64_DTPREL16_HIGHESTA:
16963 /* It's just possible that this symbol is a weak symbol
16964 that's not actually defined anywhere. In that case,
16965 'sec' would be NULL, and we should leave the symbol
16966 alone (it will be set to zero elsewhere in the link). */
16967 if (sec == NULL)
16968 break;
16969 /* Fall through. */
16970
16971 case R_PPC64_GOT16_HA:
16972 case R_PPC64_PLTGOT16_HA:
16973 case R_PPC64_PLT16_HA:
16974 case R_PPC64_GOT_TLSGD16_HA:
16975 case R_PPC64_GOT_TLSLD16_HA:
16976 case R_PPC64_GOT_TPREL16_HA:
16977 case R_PPC64_GOT_DTPREL16_HA:
16978 /* Add 0x10000 if sign bit in 0:15 is set.
16979 Bits 0:15 are not used. */
16980 addend += 0x8000;
16981 break;
16982
16983 case R_PPC64_D34_HA30:
16984 case R_PPC64_ADDR16_HIGHERA34:
16985 case R_PPC64_ADDR16_HIGHESTA34:
16986 case R_PPC64_REL16_HIGHERA34:
16987 case R_PPC64_REL16_HIGHESTA34:
16988 if (sec != NULL)
16989 addend += 1ULL << 33;
16990 break;
16991
16992 case R_PPC64_ADDR16_DS:
16993 case R_PPC64_ADDR16_LO_DS:
16994 case R_PPC64_GOT16_DS:
16995 case R_PPC64_GOT16_LO_DS:
16996 case R_PPC64_PLT16_LO_DS:
16997 case R_PPC64_SECTOFF_DS:
16998 case R_PPC64_SECTOFF_LO_DS:
16999 case R_PPC64_TOC16_DS:
17000 case R_PPC64_TOC16_LO_DS:
17001 case R_PPC64_PLTGOT16_DS:
17002 case R_PPC64_PLTGOT16_LO_DS:
17003 case R_PPC64_GOT_TPREL16_DS:
17004 case R_PPC64_GOT_TPREL16_LO_DS:
17005 case R_PPC64_GOT_DTPREL16_DS:
17006 case R_PPC64_GOT_DTPREL16_LO_DS:
17007 case R_PPC64_TPREL16_DS:
17008 case R_PPC64_TPREL16_LO_DS:
17009 case R_PPC64_DTPREL16_DS:
17010 case R_PPC64_DTPREL16_LO_DS:
17011 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17012 mask = 3;
17013 /* If this reloc is against an lq, lxv, or stxv insn, then
17014 the value must be a multiple of 16. This is somewhat of
17015 a hack, but the "correct" way to do this by defining _DQ
17016 forms of all the _DS relocs bloats all reloc switches in
17017 this file. It doesn't make much sense to use these
17018 relocs in data, so testing the insn should be safe. */
17019 if ((insn & (0x3fu << 26)) == (56u << 26)
17020 || ((insn & (0x3fu << 26)) == (61u << 26) && (insn & 3) == 1))
17021 mask = 15;
17022 relocation += addend;
17023 addend = insn & (mask ^ 3);
17024 if ((relocation & mask) != 0)
17025 {
17026 relocation ^= relocation & mask;
17027 info->callbacks->einfo
17028 /* xgettext:c-format */
17029 (_("%H: error: %s not a multiple of %u\n"),
17030 input_bfd, input_section, rel->r_offset,
17031 ppc64_elf_howto_table[r_type]->name,
17032 mask + 1);
17033 bfd_set_error (bfd_error_bad_value);
17034 ret = FALSE;
17035 goto copy_reloc;
17036 }
17037 break;
17038 }
17039
17040 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
17041 because such sections are not SEC_ALLOC and thus ld.so will
17042 not process them. */
17043 howto = ppc64_elf_howto_table[(int) r_type];
17044 if (unresolved_reloc
17045 && !((input_section->flags & SEC_DEBUGGING) != 0
17046 && h->elf.def_dynamic)
17047 && _bfd_elf_section_offset (output_bfd, info, input_section,
17048 rel->r_offset) != (bfd_vma) -1)
17049 {
17050 info->callbacks->einfo
17051 /* xgettext:c-format */
17052 (_("%H: unresolvable %s against `%pT'\n"),
17053 input_bfd, input_section, rel->r_offset,
17054 howto->name,
17055 h->elf.root.root.string);
17056 ret = FALSE;
17057 }
17058
17059 /* 16-bit fields in insns mostly have signed values, but a
17060 few insns have 16-bit unsigned values. Really, we should
17061 have different reloc types. */
17062 if (howto->complain_on_overflow != complain_overflow_dont
17063 && howto->dst_mask == 0xffff
17064 && (input_section->flags & SEC_CODE) != 0)
17065 {
17066 enum complain_overflow complain = complain_overflow_signed;
17067
17068 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17069 if ((insn & (0x3fu << 26)) == 10u << 26 /* cmpli */)
17070 complain = complain_overflow_bitfield;
17071 else if (howto->rightshift == 0
17072 ? ((insn & (0x3fu << 26)) == 28u << 26 /* andi */
17073 || (insn & (0x3fu << 26)) == 24u << 26 /* ori */
17074 || (insn & (0x3fu << 26)) == 26u << 26 /* xori */)
17075 : ((insn & (0x3fu << 26)) == 29u << 26 /* andis */
17076 || (insn & (0x3fu << 26)) == 25u << 26 /* oris */
17077 || (insn & (0x3fu << 26)) == 27u << 26 /* xoris */))
17078 complain = complain_overflow_unsigned;
17079 if (howto->complain_on_overflow != complain)
17080 {
17081 alt_howto = *howto;
17082 alt_howto.complain_on_overflow = complain;
17083 howto = &alt_howto;
17084 }
17085 }
17086
17087 switch (r_type)
17088 {
17089 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
17090 case R_PPC64_D34:
17091 case R_PPC64_D34_LO:
17092 case R_PPC64_D34_HI30:
17093 case R_PPC64_D34_HA30:
17094 case R_PPC64_PCREL34:
17095 case R_PPC64_GOT_PCREL34:
17096 case R_PPC64_TPREL34:
17097 case R_PPC64_DTPREL34:
17098 case R_PPC64_GOT_TLSGD34:
17099 case R_PPC64_GOT_TLSLD34:
17100 case R_PPC64_GOT_TPREL34:
17101 case R_PPC64_GOT_DTPREL34:
17102 case R_PPC64_PLT_PCREL34:
17103 case R_PPC64_PLT_PCREL34_NOTOC:
17104 case R_PPC64_D28:
17105 case R_PPC64_PCREL28:
17106 if (rel->r_offset + 8 > input_section->size)
17107 r = bfd_reloc_outofrange;
17108 else
17109 {
17110 relocation += addend;
17111 if (howto->pc_relative)
17112 relocation -= (rel->r_offset
17113 + input_section->output_offset
17114 + input_section->output_section->vma);
17115 relocation >>= howto->rightshift;
17116
17117 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17118 pinsn <<= 32;
17119 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
17120
17121 pinsn &= ~howto->dst_mask;
17122 pinsn |= (((relocation << 16) | (relocation & 0xffff))
17123 & howto->dst_mask);
17124 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
17125 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
17126 r = bfd_reloc_ok;
17127 if (howto->complain_on_overflow == complain_overflow_signed
17128 && (relocation + (1ULL << (howto->bitsize - 1))
17129 >= 1ULL << howto->bitsize))
17130 r = bfd_reloc_overflow;
17131 }
17132 break;
17133
17134 case R_PPC64_REL16DX_HA:
17135 if (rel->r_offset + 4 > input_section->size)
17136 r = bfd_reloc_outofrange;
17137 else
17138 {
17139 relocation += addend;
17140 relocation -= (rel->r_offset
17141 + input_section->output_offset
17142 + input_section->output_section->vma);
17143 relocation = (bfd_signed_vma) relocation >> 16;
17144 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17145 insn &= ~0x1fffc1;
17146 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
17147 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
17148 r = bfd_reloc_ok;
17149 if (relocation + 0x8000 > 0xffff)
17150 r = bfd_reloc_overflow;
17151 }
17152 break;
17153
17154 default:
17155 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
17156 contents, rel->r_offset,
17157 relocation, addend);
17158 }
17159
17160 if (r != bfd_reloc_ok)
17161 {
17162 char *more_info = NULL;
17163 const char *reloc_name = howto->name;
17164
17165 if (reloc_dest != DEST_NORMAL)
17166 {
17167 more_info = bfd_malloc (strlen (reloc_name) + 8);
17168 if (more_info != NULL)
17169 {
17170 strcpy (more_info, reloc_name);
17171 strcat (more_info, (reloc_dest == DEST_OPD
17172 ? " (OPD)" : " (stub)"));
17173 reloc_name = more_info;
17174 }
17175 }
17176
17177 if (r == bfd_reloc_overflow)
17178 {
17179 /* On code like "if (foo) foo();" don't report overflow
17180 on a branch to zero when foo is undefined. */
17181 if (!warned
17182 && (reloc_dest == DEST_STUB
17183 || !(h != NULL
17184 && (h->elf.root.type == bfd_link_hash_undefweak
17185 || h->elf.root.type == bfd_link_hash_undefined)
17186 && is_branch_reloc (r_type))))
17187 info->callbacks->reloc_overflow (info, &h->elf.root,
17188 sym_name, reloc_name,
17189 orig_rel.r_addend,
17190 input_bfd, input_section,
17191 rel->r_offset);
17192 }
17193 else
17194 {
17195 info->callbacks->einfo
17196 /* xgettext:c-format */
17197 (_("%H: %s against `%pT': error %d\n"),
17198 input_bfd, input_section, rel->r_offset,
17199 reloc_name, sym_name, (int) r);
17200 ret = FALSE;
17201 }
17202 if (more_info != NULL)
17203 free (more_info);
17204 }
17205 copy_reloc:
17206 if (wrel != rel)
17207 *wrel = *rel;
17208 }
17209
17210 if (wrel != rel)
17211 {
17212 Elf_Internal_Shdr *rel_hdr;
17213 size_t deleted = rel - wrel;
17214
17215 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
17216 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17217 if (rel_hdr->sh_size == 0)
17218 {
17219 /* It is too late to remove an empty reloc section. Leave
17220 one NONE reloc.
17221 ??? What is wrong with an empty section??? */
17222 rel_hdr->sh_size = rel_hdr->sh_entsize;
17223 deleted -= 1;
17224 }
17225 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
17226 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17227 input_section->reloc_count -= deleted;
17228 }
17229
17230 /* If we're emitting relocations, then shortly after this function
17231 returns, reloc offsets and addends for this section will be
17232 adjusted. Worse, reloc symbol indices will be for the output
17233 file rather than the input. Save a copy of the relocs for
17234 opd_entry_value. */
17235 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
17236 {
17237 bfd_size_type amt;
17238 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
17239 rel = bfd_alloc (input_bfd, amt);
17240 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
17241 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
17242 if (rel == NULL)
17243 return FALSE;
17244 memcpy (rel, relocs, amt);
17245 }
17246 return ret;
17247 }
17248
17249 /* Adjust the value of any local symbols in opd sections. */
17250
17251 static int
17252 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
17253 const char *name ATTRIBUTE_UNUSED,
17254 Elf_Internal_Sym *elfsym,
17255 asection *input_sec,
17256 struct elf_link_hash_entry *h)
17257 {
17258 struct _opd_sec_data *opd;
17259 long adjust;
17260 bfd_vma value;
17261
17262 if (h != NULL)
17263 return 1;
17264
17265 opd = get_opd_info (input_sec);
17266 if (opd == NULL || opd->adjust == NULL)
17267 return 1;
17268
17269 value = elfsym->st_value - input_sec->output_offset;
17270 if (!bfd_link_relocatable (info))
17271 value -= input_sec->output_section->vma;
17272
17273 adjust = opd->adjust[OPD_NDX (value)];
17274 if (adjust == -1)
17275 return 2;
17276
17277 elfsym->st_value += adjust;
17278 return 1;
17279 }
17280
17281 /* Finish up dynamic symbol handling. We set the contents of various
17282 dynamic sections here. */
17283
17284 static bfd_boolean
17285 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
17286 struct bfd_link_info *info,
17287 struct elf_link_hash_entry *h,
17288 Elf_Internal_Sym *sym)
17289 {
17290 struct ppc_link_hash_table *htab;
17291 struct plt_entry *ent;
17292
17293 htab = ppc_hash_table (info);
17294 if (htab == NULL)
17295 return FALSE;
17296
17297 if (!htab->opd_abi && !h->def_regular)
17298 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
17299 if (ent->plt.offset != (bfd_vma) -1)
17300 {
17301 /* Mark the symbol as undefined, rather than as
17302 defined in glink. Leave the value if there were
17303 any relocations where pointer equality matters
17304 (this is a clue for the dynamic linker, to make
17305 function pointer comparisons work between an
17306 application and shared library), otherwise set it
17307 to zero. */
17308 sym->st_shndx = SHN_UNDEF;
17309 if (!h->pointer_equality_needed)
17310 sym->st_value = 0;
17311 else if (!h->ref_regular_nonweak)
17312 {
17313 /* This breaks function pointer comparisons, but
17314 that is better than breaking tests for a NULL
17315 function pointer. */
17316 sym->st_value = 0;
17317 }
17318 break;
17319 }
17320
17321 if (h->needs_copy
17322 && (h->root.type == bfd_link_hash_defined
17323 || h->root.type == bfd_link_hash_defweak)
17324 && (h->root.u.def.section == htab->elf.sdynbss
17325 || h->root.u.def.section == htab->elf.sdynrelro))
17326 {
17327 /* This symbol needs a copy reloc. Set it up. */
17328 Elf_Internal_Rela rela;
17329 asection *srel;
17330 bfd_byte *loc;
17331
17332 if (h->dynindx == -1)
17333 abort ();
17334
17335 rela.r_offset = defined_sym_val (h);
17336 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
17337 rela.r_addend = 0;
17338 if (h->root.u.def.section == htab->elf.sdynrelro)
17339 srel = htab->elf.sreldynrelro;
17340 else
17341 srel = htab->elf.srelbss;
17342 loc = srel->contents;
17343 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
17344 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
17345 }
17346
17347 return TRUE;
17348 }
17349
17350 /* Used to decide how to sort relocs in an optimal manner for the
17351 dynamic linker, before writing them out. */
17352
17353 static enum elf_reloc_type_class
17354 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
17355 const asection *rel_sec,
17356 const Elf_Internal_Rela *rela)
17357 {
17358 enum elf_ppc64_reloc_type r_type;
17359 struct ppc_link_hash_table *htab = ppc_hash_table (info);
17360
17361 if (rel_sec == htab->elf.irelplt)
17362 return reloc_class_ifunc;
17363
17364 r_type = ELF64_R_TYPE (rela->r_info);
17365 switch (r_type)
17366 {
17367 case R_PPC64_RELATIVE:
17368 return reloc_class_relative;
17369 case R_PPC64_JMP_SLOT:
17370 return reloc_class_plt;
17371 case R_PPC64_COPY:
17372 return reloc_class_copy;
17373 default:
17374 return reloc_class_normal;
17375 }
17376 }
17377
17378 /* Finish up the dynamic sections. */
17379
17380 static bfd_boolean
17381 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
17382 struct bfd_link_info *info)
17383 {
17384 struct ppc_link_hash_table *htab;
17385 bfd *dynobj;
17386 asection *sdyn;
17387
17388 htab = ppc_hash_table (info);
17389 if (htab == NULL)
17390 return FALSE;
17391
17392 dynobj = htab->elf.dynobj;
17393 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17394
17395 if (htab->elf.dynamic_sections_created)
17396 {
17397 Elf64_External_Dyn *dyncon, *dynconend;
17398
17399 if (sdyn == NULL || htab->elf.sgot == NULL)
17400 abort ();
17401
17402 dyncon = (Elf64_External_Dyn *) sdyn->contents;
17403 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
17404 for (; dyncon < dynconend; dyncon++)
17405 {
17406 Elf_Internal_Dyn dyn;
17407 asection *s;
17408
17409 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
17410
17411 switch (dyn.d_tag)
17412 {
17413 default:
17414 continue;
17415
17416 case DT_PPC64_GLINK:
17417 s = htab->glink;
17418 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17419 /* We stupidly defined DT_PPC64_GLINK to be the start
17420 of glink rather than the first entry point, which is
17421 what ld.so needs, and now have a bigger stub to
17422 support automatic multiple TOCs. */
17423 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
17424 break;
17425
17426 case DT_PPC64_OPD:
17427 s = bfd_get_section_by_name (output_bfd, ".opd");
17428 if (s == NULL)
17429 continue;
17430 dyn.d_un.d_ptr = s->vma;
17431 break;
17432
17433 case DT_PPC64_OPT:
17434 if ((htab->do_multi_toc && htab->multi_toc_needed)
17435 || htab->notoc_plt)
17436 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
17437 if (htab->has_plt_localentry0)
17438 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
17439 break;
17440
17441 case DT_PPC64_OPDSZ:
17442 s = bfd_get_section_by_name (output_bfd, ".opd");
17443 if (s == NULL)
17444 continue;
17445 dyn.d_un.d_val = s->size;
17446 break;
17447
17448 case DT_PLTGOT:
17449 s = htab->elf.splt;
17450 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17451 break;
17452
17453 case DT_JMPREL:
17454 s = htab->elf.srelplt;
17455 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17456 break;
17457
17458 case DT_PLTRELSZ:
17459 dyn.d_un.d_val = htab->elf.srelplt->size;
17460 break;
17461
17462 case DT_TEXTREL:
17463 if (htab->local_ifunc_resolver)
17464 info->callbacks->einfo
17465 (_("%X%P: text relocations and GNU indirect "
17466 "functions will result in a segfault at runtime\n"));
17467 else if (htab->maybe_local_ifunc_resolver)
17468 info->callbacks->einfo
17469 (_("%P: warning: text relocations and GNU indirect "
17470 "functions may result in a segfault at runtime\n"));
17471 continue;
17472 }
17473
17474 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
17475 }
17476 }
17477
17478 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
17479 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
17480 {
17481 /* Fill in the first entry in the global offset table.
17482 We use it to hold the link-time TOCbase. */
17483 bfd_put_64 (output_bfd,
17484 elf_gp (output_bfd) + TOC_BASE_OFF,
17485 htab->elf.sgot->contents);
17486
17487 /* Set .got entry size. */
17488 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
17489 = 8;
17490 }
17491
17492 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
17493 && htab->elf.splt->output_section != bfd_abs_section_ptr)
17494 {
17495 /* Set .plt entry size. */
17496 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
17497 = PLT_ENTRY_SIZE (htab);
17498 }
17499
17500 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
17501 brlt ourselves if emitrelocations. */
17502 if (htab->brlt != NULL
17503 && htab->brlt->reloc_count != 0
17504 && !_bfd_elf_link_output_relocs (output_bfd,
17505 htab->brlt,
17506 elf_section_data (htab->brlt)->rela.hdr,
17507 elf_section_data (htab->brlt)->relocs,
17508 NULL))
17509 return FALSE;
17510
17511 if (htab->glink != NULL
17512 && htab->glink->reloc_count != 0
17513 && !_bfd_elf_link_output_relocs (output_bfd,
17514 htab->glink,
17515 elf_section_data (htab->glink)->rela.hdr,
17516 elf_section_data (htab->glink)->relocs,
17517 NULL))
17518 return FALSE;
17519
17520
17521 if (htab->glink_eh_frame != NULL
17522 && htab->glink_eh_frame->size != 0
17523 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
17524 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
17525 htab->glink_eh_frame,
17526 htab->glink_eh_frame->contents))
17527 return FALSE;
17528
17529 /* We need to handle writing out multiple GOT sections ourselves,
17530 since we didn't add them to DYNOBJ. We know dynobj is the first
17531 bfd. */
17532 while ((dynobj = dynobj->link.next) != NULL)
17533 {
17534 asection *s;
17535
17536 if (!is_ppc64_elf (dynobj))
17537 continue;
17538
17539 s = ppc64_elf_tdata (dynobj)->got;
17540 if (s != NULL
17541 && s->size != 0
17542 && s->output_section != bfd_abs_section_ptr
17543 && !bfd_set_section_contents (output_bfd, s->output_section,
17544 s->contents, s->output_offset,
17545 s->size))
17546 return FALSE;
17547 s = ppc64_elf_tdata (dynobj)->relgot;
17548 if (s != NULL
17549 && s->size != 0
17550 && s->output_section != bfd_abs_section_ptr
17551 && !bfd_set_section_contents (output_bfd, s->output_section,
17552 s->contents, s->output_offset,
17553 s->size))
17554 return FALSE;
17555 }
17556
17557 return TRUE;
17558 }
17559
17560 #include "elf64-target.h"
17561
17562 /* FreeBSD support */
17563
17564 #undef TARGET_LITTLE_SYM
17565 #undef TARGET_LITTLE_NAME
17566
17567 #undef TARGET_BIG_SYM
17568 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
17569 #undef TARGET_BIG_NAME
17570 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
17571
17572 #undef ELF_OSABI
17573 #define ELF_OSABI ELFOSABI_FREEBSD
17574
17575 #undef elf64_bed
17576 #define elf64_bed elf64_powerpc_fbsd_bed
17577
17578 #include "elf64-target.h"
This page took 0.61033 seconds and 4 git commands to generate.