PowerPC64 GOT reloc optimisation
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 /* All users of this file have bfd_octets_per_byte (abfd, sec) == 1. */
39 #define OCTETS_PER_BYTE(ABFD, SEC) 1
40
41 static bfd_reloc_status_type ppc64_elf_ha_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_branch_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_toc64_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_reloc_status_type ppc64_elf_prefix_reloc
58 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
59 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
60 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
61 static bfd_vma opd_entry_value
62 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
63
64 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
65 #define TARGET_LITTLE_NAME "elf64-powerpcle"
66 #define TARGET_BIG_SYM powerpc_elf64_vec
67 #define TARGET_BIG_NAME "elf64-powerpc"
68 #define ELF_ARCH bfd_arch_powerpc
69 #define ELF_TARGET_ID PPC64_ELF_DATA
70 #define ELF_MACHINE_CODE EM_PPC64
71 #define ELF_MAXPAGESIZE 0x10000
72 #define ELF_COMMONPAGESIZE 0x1000
73 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
74 #define elf_info_to_howto ppc64_elf_info_to_howto
75
76 #define elf_backend_want_got_sym 0
77 #define elf_backend_want_plt_sym 0
78 #define elf_backend_plt_alignment 3
79 #define elf_backend_plt_not_loaded 1
80 #define elf_backend_got_header_size 8
81 #define elf_backend_want_dynrelro 1
82 #define elf_backend_can_gc_sections 1
83 #define elf_backend_can_refcount 1
84 #define elf_backend_rela_normal 1
85 #define elf_backend_dtrel_excludes_plt 1
86 #define elf_backend_default_execstack 0
87
88 #define bfd_elf64_mkobject ppc64_elf_mkobject
89 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
90 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
91 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
92 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
93 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
94 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
95 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
96 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
97 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
98
99 #define elf_backend_object_p ppc64_elf_object_p
100 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
101 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
102 #define elf_backend_write_core_note ppc64_elf_write_core_note
103 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
104 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
105 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
106 #define elf_backend_check_directives ppc64_elf_before_check_relocs
107 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
108 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
109 #define elf_backend_check_relocs ppc64_elf_check_relocs
110 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
111 #define elf_backend_gc_keep ppc64_elf_gc_keep
112 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
113 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
114 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
115 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
116 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
117 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
118 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
119 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
120 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
121 #define elf_backend_action_discarded ppc64_elf_action_discarded
122 #define elf_backend_relocate_section ppc64_elf_relocate_section
123 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
124 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
125 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
126 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
127 #define elf_backend_special_sections ppc64_elf_special_sections
128 #define elf_backend_section_flags ppc64_elf_section_flags
129 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
130 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
131 #define elf_backend_get_reloc_section bfd_get_section_by_name
132
133 /* The name of the dynamic interpreter. This is put in the .interp
134 section. */
135 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
136
137 /* The size in bytes of an entry in the procedure linkage table. */
138 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
139 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
140
141 /* The initial size of the plt reserved for the dynamic linker. */
142 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
143
144 /* Offsets to some stack save slots. */
145 #define STK_LR 16
146 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
147 /* This one is dodgy. ELFv2 does not have a linker word, so use the
148 CR save slot. Used only by optimised __tls_get_addr call stub,
149 relying on __tls_get_addr_opt not saving CR.. */
150 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
151
152 /* TOC base pointers offset from start of TOC. */
153 #define TOC_BASE_OFF 0x8000
154 /* TOC base alignment. */
155 #define TOC_BASE_ALIGN 256
156
157 /* Offset of tp and dtp pointers from start of TLS block. */
158 #define TP_OFFSET 0x7000
159 #define DTP_OFFSET 0x8000
160
161 /* .plt call stub instructions. The normal stub is like this, but
162 sometimes the .plt entry crosses a 64k boundary and we need to
163 insert an addi to adjust r11. */
164 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
165 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
166 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
167 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
168 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
169 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
170 #define BCTR 0x4e800420 /* bctr */
171
172 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
173 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
174 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
175 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
176 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
177
178 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
179 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
180 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
181 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
182 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
183 #define BNECTR 0x4ca20420 /* bnectr+ */
184 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
185
186 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
187 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
188 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
189
190 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
191 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
192 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
193
194 #define LI_R11_0 0x39600000 /* li %r11,0 */
195 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
196 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
197 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
198 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
199 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
200 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
201 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
202 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
203 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
204 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
205 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
206 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
207 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
208 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
209 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
210 #define PADDI_R12_PC 0x0610000039800000ULL
211 #define PLD_R12_PC 0x04100000e5800000ULL
212 #define PNOP 0x0700000000000000ULL
213
214 /* __glink_PLTresolve stub instructions. We enter with the index in R0. */
215 #define GLINK_PLTRESOLVE_SIZE(htab) \
216 (8u + (htab->opd_abi ? 11 * 4 : 14 * 4))
217 /* 0: */
218 /* .quad plt0-1f */
219 /* __glink: */
220 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
221 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
222 /* 1: */
223 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
224 /* ld %2,(0b-1b)(%11) */
225 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
226 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
227 /* ld %12,0(%11) */
228 /* ld %2,8(%11) */
229 /* mtctr %12 */
230 /* ld %11,16(%11) */
231 /* bctr */
232 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
233 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
234 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
235 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
236 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
237
238 /* Pad with this. */
239 #define NOP 0x60000000
240
241 /* Some other nops. */
242 #define CROR_151515 0x4def7b82
243 #define CROR_313131 0x4ffffb82
244
245 /* .glink entries for the first 32k functions are two instructions. */
246 #define LI_R0_0 0x38000000 /* li %r0,0 */
247 #define B_DOT 0x48000000 /* b . */
248
249 /* After that, we need two instructions to load the index, followed by
250 a branch. */
251 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
252 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
253
254 /* Instructions used by the save and restore reg functions. */
255 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
256 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
257 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
258 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
259 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
260 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
261 #define LI_R12_0 0x39800000 /* li %r12,0 */
262 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
263 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
264 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
265 #define BLR 0x4e800020 /* blr */
266
267 /* Since .opd is an array of descriptors and each entry will end up
268 with identical R_PPC64_RELATIVE relocs, there is really no need to
269 propagate .opd relocs; The dynamic linker should be taught to
270 relocate .opd without reloc entries. */
271 #ifndef NO_OPD_RELOCS
272 #define NO_OPD_RELOCS 0
273 #endif
274
275 #ifndef ARRAY_SIZE
276 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
277 #endif
278
279 static inline int
280 abiversion (bfd *abfd)
281 {
282 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
283 }
284
285 static inline void
286 set_abiversion (bfd *abfd, int ver)
287 {
288 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
289 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
290 }
291 \f
292 /* Relocation HOWTO's. */
293 /* Like other ELF RELA targets that don't apply multiple
294 field-altering relocations to the same localation, src_mask is
295 always zero and pcrel_offset is the same as pc_relative.
296 PowerPC can always use a zero bitpos, even when the field is not at
297 the LSB. For example, a REL24 could use rightshift=2, bisize=24
298 and bitpos=2 which matches the ABI description, or as we do here,
299 rightshift=0, bitsize=26 and bitpos=0. */
300 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
301 complain, special_func) \
302 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
303 complain_overflow_ ## complain, special_func, \
304 #type, FALSE, 0, mask, pc_relative)
305
306 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
307
308 static reloc_howto_type ppc64_elf_howto_raw[] =
309 {
310 /* This reloc does nothing. */
311 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
312 bfd_elf_generic_reloc),
313
314 /* A standard 32 bit relocation. */
315 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
316 bfd_elf_generic_reloc),
317
318 /* An absolute 26 bit branch; the lower two bits must be zero.
319 FIXME: we don't check that, we just clear them. */
320 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
321 bfd_elf_generic_reloc),
322
323 /* A standard 16 bit relocation. */
324 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
325 bfd_elf_generic_reloc),
326
327 /* A 16 bit relocation without overflow. */
328 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
329 bfd_elf_generic_reloc),
330
331 /* Bits 16-31 of an address. */
332 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
333 bfd_elf_generic_reloc),
334
335 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
336 bits, treated as a signed number, is negative. */
337 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
338 ppc64_elf_ha_reloc),
339
340 /* An absolute 16 bit branch; the lower two bits must be zero.
341 FIXME: we don't check that, we just clear them. */
342 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
343 ppc64_elf_branch_reloc),
344
345 /* An absolute 16 bit branch, for which bit 10 should be set to
346 indicate that the branch is expected to be taken. The lower two
347 bits must be zero. */
348 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
349 ppc64_elf_brtaken_reloc),
350
351 /* An absolute 16 bit branch, for which bit 10 should be set to
352 indicate that the branch is not expected to be taken. The lower
353 two bits must be zero. */
354 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
355 ppc64_elf_brtaken_reloc),
356
357 /* A relative 26 bit branch; the lower two bits must be zero. */
358 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
359 ppc64_elf_branch_reloc),
360
361 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
362 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A relative 16 bit branch; the lower two bits must be zero. */
366 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
367 ppc64_elf_branch_reloc),
368
369 /* A relative 16 bit branch. Bit 10 should be set to indicate that
370 the branch is expected to be taken. The lower two bits must be
371 zero. */
372 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
373 ppc64_elf_brtaken_reloc),
374
375 /* A relative 16 bit branch. Bit 10 should be set to indicate that
376 the branch is not expected to be taken. The lower two bits must
377 be zero. */
378 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
379 ppc64_elf_brtaken_reloc),
380
381 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
382 symbol. */
383 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
384 ppc64_elf_unhandled_reloc),
385
386 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
387 the symbol. */
388 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
389 ppc64_elf_unhandled_reloc),
390
391 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
392 the symbol. */
393 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
394 ppc64_elf_unhandled_reloc),
395
396 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
397 the symbol. */
398 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
399 ppc64_elf_unhandled_reloc),
400
401 /* This is used only by the dynamic linker. The symbol should exist
402 both in the object being run and in some shared library. The
403 dynamic linker copies the data addressed by the symbol from the
404 shared library into the object, because the object being
405 run has to have the data at some particular address. */
406 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
407 ppc64_elf_unhandled_reloc),
408
409 /* Like R_PPC64_ADDR64, but used when setting global offset table
410 entries. */
411 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
412 ppc64_elf_unhandled_reloc),
413
414 /* Created by the link editor. Marks a procedure linkage table
415 entry for a symbol. */
416 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
417 ppc64_elf_unhandled_reloc),
418
419 /* Used only by the dynamic linker. When the object is run, this
420 doubleword64 is set to the load address of the object, plus the
421 addend. */
422 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
423 bfd_elf_generic_reloc),
424
425 /* Like R_PPC64_ADDR32, but may be unaligned. */
426 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
427 bfd_elf_generic_reloc),
428
429 /* Like R_PPC64_ADDR16, but may be unaligned. */
430 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
431 bfd_elf_generic_reloc),
432
433 /* 32-bit PC relative. */
434 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
435 bfd_elf_generic_reloc),
436
437 /* 32-bit relocation to the symbol's procedure linkage table. */
438 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
439 ppc64_elf_unhandled_reloc),
440
441 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
442 FIXME: R_PPC64_PLTREL32 not supported. */
443 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
444 ppc64_elf_unhandled_reloc),
445
446 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
447 the symbol. */
448 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
449 ppc64_elf_unhandled_reloc),
450
451 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
452 the symbol. */
453 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
454 ppc64_elf_unhandled_reloc),
455
456 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
457 the symbol. */
458 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
459 ppc64_elf_unhandled_reloc),
460
461 /* 16-bit section relative relocation. */
462 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
463 ppc64_elf_sectoff_reloc),
464
465 /* Like R_PPC64_SECTOFF, but no overflow warning. */
466 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
467 ppc64_elf_sectoff_reloc),
468
469 /* 16-bit upper half section relative relocation. */
470 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
471 ppc64_elf_sectoff_reloc),
472
473 /* 16-bit upper half adjusted section relative relocation. */
474 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
475 ppc64_elf_sectoff_ha_reloc),
476
477 /* Like R_PPC64_REL24 without touching the two least significant bits. */
478 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
479 bfd_elf_generic_reloc),
480
481 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
482
483 /* A standard 64-bit relocation. */
484 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
485 bfd_elf_generic_reloc),
486
487 /* The bits 32-47 of an address. */
488 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
489 bfd_elf_generic_reloc),
490
491 /* The bits 32-47 of an address, plus 1 if the contents of the low
492 16 bits, treated as a signed number, is negative. */
493 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
494 ppc64_elf_ha_reloc),
495
496 /* The bits 48-63 of an address. */
497 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
498 bfd_elf_generic_reloc),
499
500 /* The bits 48-63 of an address, plus 1 if the contents of the low
501 16 bits, treated as a signed number, is negative. */
502 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
503 ppc64_elf_ha_reloc),
504
505 /* Like ADDR64, but may be unaligned. */
506 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
507 bfd_elf_generic_reloc),
508
509 /* 64-bit relative relocation. */
510 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
511 bfd_elf_generic_reloc),
512
513 /* 64-bit relocation to the symbol's procedure linkage table. */
514 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
515 ppc64_elf_unhandled_reloc),
516
517 /* 64-bit PC relative relocation to the symbol's procedure linkage
518 table. */
519 /* FIXME: R_PPC64_PLTREL64 not supported. */
520 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
521 ppc64_elf_unhandled_reloc),
522
523 /* 16 bit TOC-relative relocation. */
524 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
525 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
526 ppc64_elf_toc_reloc),
527
528 /* 16 bit TOC-relative relocation without overflow. */
529 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
530 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
531 ppc64_elf_toc_reloc),
532
533 /* 16 bit TOC-relative relocation, high 16 bits. */
534 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
535 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
536 ppc64_elf_toc_reloc),
537
538 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
539 contents of the low 16 bits, treated as a signed number, is
540 negative. */
541 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
542 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
543 ppc64_elf_toc_ha_reloc),
544
545 /* 64-bit relocation; insert value of TOC base (.TOC.). */
546 /* R_PPC64_TOC 51 doubleword64 .TOC. */
547 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
548 ppc64_elf_toc64_reloc),
549
550 /* Like R_PPC64_GOT16, but also informs the link editor that the
551 value to relocate may (!) refer to a PLT entry which the link
552 editor (a) may replace with the symbol value. If the link editor
553 is unable to fully resolve the symbol, it may (b) create a PLT
554 entry and store the address to the new PLT entry in the GOT.
555 This permits lazy resolution of function symbols at run time.
556 The link editor may also skip all of this and just (c) emit a
557 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
558 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
559 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
560 ppc64_elf_unhandled_reloc),
561
562 /* Like R_PPC64_PLTGOT16, but without overflow. */
563 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
564 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
565 ppc64_elf_unhandled_reloc),
566
567 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
568 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
569 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
570 ppc64_elf_unhandled_reloc),
571
572 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
573 1 if the contents of the low 16 bits, treated as a signed number,
574 is negative. */
575 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
576 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
577 ppc64_elf_unhandled_reloc),
578
579 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
580 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
581 bfd_elf_generic_reloc),
582
583 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
584 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
585 bfd_elf_generic_reloc),
586
587 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
588 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
589 ppc64_elf_unhandled_reloc),
590
591 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
592 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
596 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
597 ppc64_elf_unhandled_reloc),
598
599 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
600 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
601 ppc64_elf_sectoff_reloc),
602
603 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
604 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
605 ppc64_elf_sectoff_reloc),
606
607 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
608 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
609 ppc64_elf_toc_reloc),
610
611 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
612 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
613 ppc64_elf_toc_reloc),
614
615 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
616 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
617 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
618 ppc64_elf_unhandled_reloc),
619
620 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
621 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
622 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
623 ppc64_elf_unhandled_reloc),
624
625 /* Marker relocs for TLS. */
626 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
627 bfd_elf_generic_reloc),
628
629 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
630 bfd_elf_generic_reloc),
631
632 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
633 bfd_elf_generic_reloc),
634
635 /* Marker reloc for optimizing r2 save in prologue rather than on
636 each plt call stub. */
637 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
638 bfd_elf_generic_reloc),
639
640 /* Marker relocs on inline plt call instructions. */
641 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
642 bfd_elf_generic_reloc),
643
644 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
645 bfd_elf_generic_reloc),
646
647 /* Computes the load module index of the load module that contains the
648 definition of its TLS sym. */
649 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
650 ppc64_elf_unhandled_reloc),
651
652 /* Computes a dtv-relative displacement, the difference between the value
653 of sym+add and the base address of the thread-local storage block that
654 contains the definition of sym, minus 0x8000. */
655 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
656 ppc64_elf_unhandled_reloc),
657
658 /* A 16 bit dtprel reloc. */
659 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
660 ppc64_elf_unhandled_reloc),
661
662 /* Like DTPREL16, but no overflow. */
663 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16_LO, but next higher group of 16 bits. */
667 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_HI, but adjust for low 16 bits. */
671 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HI, but next higher group of 16 bits. */
675 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
687 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16, but for insns with a DS field. */
691 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
692 ppc64_elf_unhandled_reloc),
693
694 /* Like DTPREL16_DS, but no overflow. */
695 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
696 ppc64_elf_unhandled_reloc),
697
698 /* Computes a tp-relative displacement, the difference between the value of
699 sym+add and the value of the thread pointer (r13). */
700 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
701 ppc64_elf_unhandled_reloc),
702
703 /* A 16 bit tprel reloc. */
704 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
705 ppc64_elf_unhandled_reloc),
706
707 /* Like TPREL16, but no overflow. */
708 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16_LO, but next higher group of 16 bits. */
712 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_HI, but adjust for low 16 bits. */
716 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HI, but next higher group of 16 bits. */
720 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
732 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16, but for insns with a DS field. */
736 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
737 ppc64_elf_unhandled_reloc),
738
739 /* Like TPREL16_DS, but no overflow. */
740 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
741 ppc64_elf_unhandled_reloc),
742
743 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
744 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
745 to the first entry relative to the TOC base (r2). */
746 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
747 ppc64_elf_unhandled_reloc),
748
749 /* Like GOT_TLSGD16, but no overflow. */
750 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
754 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
755 ppc64_elf_unhandled_reloc),
756
757 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
758 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
759 ppc64_elf_unhandled_reloc),
760
761 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
762 with values (sym+add)@dtpmod and zero, and computes the offset to the
763 first entry relative to the TOC base (r2). */
764 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
765 ppc64_elf_unhandled_reloc),
766
767 /* Like GOT_TLSLD16, but no overflow. */
768 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
772 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
773 ppc64_elf_unhandled_reloc),
774
775 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
776 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
777 ppc64_elf_unhandled_reloc),
778
779 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
780 the offset to the entry relative to the TOC base (r2). */
781 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
782 ppc64_elf_unhandled_reloc),
783
784 /* Like GOT_DTPREL16_DS, but no overflow. */
785 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
789 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
790 ppc64_elf_unhandled_reloc),
791
792 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
793 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
794 ppc64_elf_unhandled_reloc),
795
796 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
797 offset to the entry relative to the TOC base (r2). */
798 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
799 ppc64_elf_unhandled_reloc),
800
801 /* Like GOT_TPREL16_DS, but no overflow. */
802 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
806 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
807 ppc64_elf_unhandled_reloc),
808
809 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
810 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
811 ppc64_elf_unhandled_reloc),
812
813 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
814 ppc64_elf_unhandled_reloc),
815
816 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
817 bfd_elf_generic_reloc),
818
819 /* A 16 bit relative relocation. */
820 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
821 bfd_elf_generic_reloc),
822
823 /* A 16 bit relative relocation without overflow. */
824 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
825 bfd_elf_generic_reloc),
826
827 /* The high order 16 bits of a relative address. */
828 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
829 bfd_elf_generic_reloc),
830
831 /* The high order 16 bits of a relative address, plus 1 if the contents of
832 the low 16 bits, treated as a signed number, is negative. */
833 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
834 ppc64_elf_ha_reloc),
835
836 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
837 bfd_elf_generic_reloc),
838
839 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
840 ppc64_elf_ha_reloc),
841
842 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
843 bfd_elf_generic_reloc),
844
845 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
846 ppc64_elf_ha_reloc),
847
848 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
849 bfd_elf_generic_reloc),
850
851 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
852 ppc64_elf_ha_reloc),
853
854 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
855 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
856 ppc64_elf_ha_reloc),
857
858 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
859 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
860 ppc64_elf_ha_reloc),
861
862 /* Like R_PPC64_ADDR16_HI, but no overflow. */
863 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
864 bfd_elf_generic_reloc),
865
866 /* Like R_PPC64_ADDR16_HA, but no overflow. */
867 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
868 ppc64_elf_ha_reloc),
869
870 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
871 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_unhandled_reloc),
873
874 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
875 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_TPREL16_HI, but no overflow. */
879 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Like R_PPC64_TPREL16_HA, but no overflow. */
883 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
884 ppc64_elf_unhandled_reloc),
885
886 /* Marker reloc on ELFv2 large-model function entry. */
887 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
888 bfd_elf_generic_reloc),
889
890 /* Like ADDR64, but use local entry point of function. */
891 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
892 bfd_elf_generic_reloc),
893
894 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
895 bfd_elf_generic_reloc),
896
897 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
898 bfd_elf_generic_reloc),
899
900 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
901 bfd_elf_generic_reloc),
902
903 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
904 ppc64_elf_prefix_reloc),
905
906 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
907 ppc64_elf_prefix_reloc),
908
909 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
910 ppc64_elf_prefix_reloc),
911
912 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
913 ppc64_elf_prefix_reloc),
914
915 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
916 ppc64_elf_prefix_reloc),
917
918 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
919 ppc64_elf_unhandled_reloc),
920
921 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
922 ppc64_elf_unhandled_reloc),
923
924 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
925 ppc64_elf_unhandled_reloc),
926
927 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
928 ppc64_elf_unhandled_reloc),
929
930 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
931 ppc64_elf_unhandled_reloc),
932
933 HOW (R_PPC64_GOT_TLSGD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
934 ppc64_elf_unhandled_reloc),
935
936 HOW (R_PPC64_GOT_TLSLD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
937 ppc64_elf_unhandled_reloc),
938
939 HOW (R_PPC64_GOT_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
940 ppc64_elf_unhandled_reloc),
941
942 HOW (R_PPC64_GOT_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
943 ppc64_elf_unhandled_reloc),
944
945 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
946 bfd_elf_generic_reloc),
947
948 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
949 ppc64_elf_ha_reloc),
950
951 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
952 bfd_elf_generic_reloc),
953
954 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
955 ppc64_elf_ha_reloc),
956
957 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
958 bfd_elf_generic_reloc),
959
960 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
961 ppc64_elf_ha_reloc),
962
963 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
964 bfd_elf_generic_reloc),
965
966 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
967 ppc64_elf_ha_reloc),
968
969 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
970 ppc64_elf_prefix_reloc),
971
972 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
973 ppc64_elf_prefix_reloc),
974
975 /* GNU extension to record C++ vtable hierarchy. */
976 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
977 NULL),
978
979 /* GNU extension to record C++ vtable member usage. */
980 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
981 NULL),
982 };
983
984 \f
985 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
986 be done. */
987
988 static void
989 ppc_howto_init (void)
990 {
991 unsigned int i, type;
992
993 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
994 {
995 type = ppc64_elf_howto_raw[i].type;
996 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
997 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
998 }
999 }
1000
1001 static reloc_howto_type *
1002 ppc64_elf_reloc_type_lookup (bfd *abfd,
1003 bfd_reloc_code_real_type code)
1004 {
1005 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1006
1007 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1008 /* Initialize howto table if needed. */
1009 ppc_howto_init ();
1010
1011 switch (code)
1012 {
1013 default:
1014 /* xgettext:c-format */
1015 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1016 (int) code);
1017 bfd_set_error (bfd_error_bad_value);
1018 return NULL;
1019
1020 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1021 break;
1022 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1023 break;
1024 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1025 break;
1026 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1027 break;
1028 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1029 break;
1030 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1031 break;
1032 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1033 break;
1034 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1035 break;
1036 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1037 break;
1038 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1039 break;
1040 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1041 break;
1042 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1043 break;
1044 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1045 break;
1046 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1047 break;
1048 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1049 break;
1050 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1051 break;
1052 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1053 break;
1054 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1055 break;
1056 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1057 break;
1058 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1059 break;
1060 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1061 break;
1062 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1063 break;
1064 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1065 break;
1066 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1067 break;
1068 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1069 break;
1070 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1071 break;
1072 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1073 break;
1074 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1075 break;
1076 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1077 break;
1078 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1079 break;
1080 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1081 break;
1082 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1083 break;
1084 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1085 break;
1086 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1087 break;
1088 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1089 break;
1090 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1091 break;
1092 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1093 break;
1094 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1095 break;
1096 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1097 break;
1098 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1099 break;
1100 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1101 break;
1102 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1103 break;
1104 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1105 break;
1106 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1107 break;
1108 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1109 break;
1110 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1111 break;
1112 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1113 break;
1114 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1115 break;
1116 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1117 break;
1118 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1119 break;
1120 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1121 break;
1122 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1123 break;
1124 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1125 break;
1126 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1127 break;
1128 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1129 break;
1130 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1131 break;
1132 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1133 break;
1134 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1135 break;
1136 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1137 break;
1138 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1139 break;
1140 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1141 break;
1142 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1143 break;
1144 case BFD_RELOC_PPC64_TLS_PCREL:
1145 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1146 break;
1147 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1148 break;
1149 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1150 break;
1151 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1152 break;
1153 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1154 break;
1155 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1156 break;
1157 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1158 break;
1159 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1160 break;
1161 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1162 break;
1163 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1164 break;
1165 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1166 break;
1167 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1168 break;
1169 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1170 break;
1171 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1172 break;
1173 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1174 break;
1175 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1176 break;
1177 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1178 break;
1179 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1180 break;
1181 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1182 break;
1183 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1184 break;
1185 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1186 break;
1187 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1188 break;
1189 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1190 break;
1191 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1192 break;
1193 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1194 break;
1195 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1196 break;
1197 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1198 break;
1199 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1200 break;
1201 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1202 break;
1203 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1204 break;
1205 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1206 break;
1207 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1208 break;
1209 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1210 break;
1211 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1212 break;
1213 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1214 break;
1215 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1216 break;
1217 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1218 break;
1219 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1220 break;
1221 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1222 break;
1223 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1224 break;
1225 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1226 break;
1227 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1228 break;
1229 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1230 break;
1231 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1232 break;
1233 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1234 break;
1235 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1236 break;
1237 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1238 break;
1239 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1240 break;
1241 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1242 break;
1243 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1244 break;
1245 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1246 break;
1247 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1248 break;
1249 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1250 break;
1251 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1252 break;
1253 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1254 break;
1255 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1256 break;
1257 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1258 break;
1259 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1260 break;
1261 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1262 break;
1263 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1264 break;
1265 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1266 break;
1267 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1268 break;
1269 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1270 break;
1271 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1272 break;
1273 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1274 break;
1275 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1276 break;
1277 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1278 break;
1279 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1280 break;
1281 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1282 break;
1283 case BFD_RELOC_PPC64_GOT_TLSGD34: r = R_PPC64_GOT_TLSGD34;
1284 break;
1285 case BFD_RELOC_PPC64_GOT_TLSLD34: r = R_PPC64_GOT_TLSLD34;
1286 break;
1287 case BFD_RELOC_PPC64_GOT_TPREL34: r = R_PPC64_GOT_TPREL34;
1288 break;
1289 case BFD_RELOC_PPC64_GOT_DTPREL34: r = R_PPC64_GOT_DTPREL34;
1290 break;
1291 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1292 break;
1293 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1294 break;
1295 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1296 break;
1297 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1298 break;
1299 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1300 break;
1301 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1302 break;
1303 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1304 break;
1305 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1306 break;
1307 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1308 break;
1309 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1310 break;
1311 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1312 break;
1313 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1314 break;
1315 }
1316
1317 return ppc64_elf_howto_table[r];
1318 };
1319
1320 static reloc_howto_type *
1321 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1322 const char *r_name)
1323 {
1324 unsigned int i;
1325
1326 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1327 if (ppc64_elf_howto_raw[i].name != NULL
1328 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1329 return &ppc64_elf_howto_raw[i];
1330
1331 return NULL;
1332 }
1333
1334 /* Set the howto pointer for a PowerPC ELF reloc. */
1335
1336 static bfd_boolean
1337 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1338 Elf_Internal_Rela *dst)
1339 {
1340 unsigned int type;
1341
1342 /* Initialize howto table if needed. */
1343 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1344 ppc_howto_init ();
1345
1346 type = ELF64_R_TYPE (dst->r_info);
1347 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1348 {
1349 /* xgettext:c-format */
1350 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1351 abfd, type);
1352 bfd_set_error (bfd_error_bad_value);
1353 return FALSE;
1354 }
1355 cache_ptr->howto = ppc64_elf_howto_table[type];
1356 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1357 {
1358 /* xgettext:c-format */
1359 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1360 abfd, type);
1361 bfd_set_error (bfd_error_bad_value);
1362 return FALSE;
1363 }
1364
1365 return TRUE;
1366 }
1367
1368 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1369
1370 static bfd_reloc_status_type
1371 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1372 void *data, asection *input_section,
1373 bfd *output_bfd, char **error_message)
1374 {
1375 enum elf_ppc64_reloc_type r_type;
1376 long insn;
1377 bfd_size_type octets;
1378 bfd_vma value;
1379
1380 /* If this is a relocatable link (output_bfd test tells us), just
1381 call the generic function. Any adjustment will be done at final
1382 link time. */
1383 if (output_bfd != NULL)
1384 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1385 input_section, output_bfd, error_message);
1386
1387 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1388 We won't actually be using the low bits, so trashing them
1389 doesn't matter. */
1390 r_type = reloc_entry->howto->type;
1391 if (r_type == R_PPC64_ADDR16_HIGHERA34
1392 || r_type == R_PPC64_ADDR16_HIGHESTA34
1393 || r_type == R_PPC64_REL16_HIGHERA34
1394 || r_type == R_PPC64_REL16_HIGHESTA34)
1395 reloc_entry->addend += 1ULL << 33;
1396 else
1397 reloc_entry->addend += 1U << 15;
1398 if (r_type != R_PPC64_REL16DX_HA)
1399 return bfd_reloc_continue;
1400
1401 value = 0;
1402 if (!bfd_is_com_section (symbol->section))
1403 value = symbol->value;
1404 value += (reloc_entry->addend
1405 + symbol->section->output_offset
1406 + symbol->section->output_section->vma);
1407 value -= (reloc_entry->address
1408 + input_section->output_offset
1409 + input_section->output_section->vma);
1410 value = (bfd_signed_vma) value >> 16;
1411
1412 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1413 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1414 insn &= ~0x1fffc1;
1415 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1417 if (value + 0x8000 > 0xffff)
1418 return bfd_reloc_overflow;
1419 return bfd_reloc_ok;
1420 }
1421
1422 static bfd_reloc_status_type
1423 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1424 void *data, asection *input_section,
1425 bfd *output_bfd, char **error_message)
1426 {
1427 if (output_bfd != NULL)
1428 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1429 input_section, output_bfd, error_message);
1430
1431 if (strcmp (symbol->section->name, ".opd") == 0
1432 && (symbol->section->owner->flags & DYNAMIC) == 0)
1433 {
1434 bfd_vma dest = opd_entry_value (symbol->section,
1435 symbol->value + reloc_entry->addend,
1436 NULL, NULL, FALSE);
1437 if (dest != (bfd_vma) -1)
1438 reloc_entry->addend = dest - (symbol->value
1439 + symbol->section->output_section->vma
1440 + symbol->section->output_offset);
1441 }
1442 else
1443 {
1444 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1445
1446 if (symbol->section->owner != abfd
1447 && symbol->section->owner != NULL
1448 && abiversion (symbol->section->owner) >= 2)
1449 {
1450 unsigned int i;
1451
1452 for (i = 0; i < symbol->section->owner->symcount; ++i)
1453 {
1454 asymbol *symdef = symbol->section->owner->outsymbols[i];
1455
1456 if (strcmp (symdef->name, symbol->name) == 0)
1457 {
1458 elfsym = (elf_symbol_type *) symdef;
1459 break;
1460 }
1461 }
1462 }
1463 reloc_entry->addend
1464 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1465 }
1466 return bfd_reloc_continue;
1467 }
1468
1469 static bfd_reloc_status_type
1470 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1471 void *data, asection *input_section,
1472 bfd *output_bfd, char **error_message)
1473 {
1474 long insn;
1475 enum elf_ppc64_reloc_type r_type;
1476 bfd_size_type octets;
1477 /* Assume 'at' branch hints. */
1478 bfd_boolean is_isa_v2 = TRUE;
1479
1480 /* If this is a relocatable link (output_bfd test tells us), just
1481 call the generic function. Any adjustment will be done at final
1482 link time. */
1483 if (output_bfd != NULL)
1484 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1485 input_section, output_bfd, error_message);
1486
1487 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1488 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1489 insn &= ~(0x01 << 21);
1490 r_type = reloc_entry->howto->type;
1491 if (r_type == R_PPC64_ADDR14_BRTAKEN
1492 || r_type == R_PPC64_REL14_BRTAKEN)
1493 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1494
1495 if (is_isa_v2)
1496 {
1497 /* Set 'a' bit. This is 0b00010 in BO field for branch
1498 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1499 for branch on CTR insns (BO == 1a00t or 1a01t). */
1500 if ((insn & (0x14 << 21)) == (0x04 << 21))
1501 insn |= 0x02 << 21;
1502 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1503 insn |= 0x08 << 21;
1504 else
1505 goto out;
1506 }
1507 else
1508 {
1509 bfd_vma target = 0;
1510 bfd_vma from;
1511
1512 if (!bfd_is_com_section (symbol->section))
1513 target = symbol->value;
1514 target += symbol->section->output_section->vma;
1515 target += symbol->section->output_offset;
1516 target += reloc_entry->addend;
1517
1518 from = (reloc_entry->address
1519 + input_section->output_offset
1520 + input_section->output_section->vma);
1521
1522 /* Invert 'y' bit if not the default. */
1523 if ((bfd_signed_vma) (target - from) < 0)
1524 insn ^= 0x01 << 21;
1525 }
1526 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1527 out:
1528 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1529 input_section, output_bfd, error_message);
1530 }
1531
1532 static bfd_reloc_status_type
1533 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1534 void *data, asection *input_section,
1535 bfd *output_bfd, char **error_message)
1536 {
1537 /* If this is a relocatable link (output_bfd test tells us), just
1538 call the generic function. Any adjustment will be done at final
1539 link time. */
1540 if (output_bfd != NULL)
1541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1542 input_section, output_bfd, error_message);
1543
1544 /* Subtract the symbol section base address. */
1545 reloc_entry->addend -= symbol->section->output_section->vma;
1546 return bfd_reloc_continue;
1547 }
1548
1549 static bfd_reloc_status_type
1550 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1551 void *data, asection *input_section,
1552 bfd *output_bfd, char **error_message)
1553 {
1554 /* If this is a relocatable link (output_bfd test tells us), just
1555 call the generic function. Any adjustment will be done at final
1556 link time. */
1557 if (output_bfd != NULL)
1558 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1559 input_section, output_bfd, error_message);
1560
1561 /* Subtract the symbol section base address. */
1562 reloc_entry->addend -= symbol->section->output_section->vma;
1563
1564 /* Adjust the addend for sign extension of the low 16 bits. */
1565 reloc_entry->addend += 0x8000;
1566 return bfd_reloc_continue;
1567 }
1568
1569 static bfd_reloc_status_type
1570 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1571 void *data, asection *input_section,
1572 bfd *output_bfd, char **error_message)
1573 {
1574 bfd_vma TOCstart;
1575
1576 /* If this is a relocatable link (output_bfd test tells us), just
1577 call the generic function. Any adjustment will be done at final
1578 link time. */
1579 if (output_bfd != NULL)
1580 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1581 input_section, output_bfd, error_message);
1582
1583 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1584 if (TOCstart == 0)
1585 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1586
1587 /* Subtract the TOC base address. */
1588 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1589 return bfd_reloc_continue;
1590 }
1591
1592 static bfd_reloc_status_type
1593 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1594 void *data, asection *input_section,
1595 bfd *output_bfd, char **error_message)
1596 {
1597 bfd_vma TOCstart;
1598
1599 /* If this is a relocatable link (output_bfd test tells us), just
1600 call the generic function. Any adjustment will be done at final
1601 link time. */
1602 if (output_bfd != NULL)
1603 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1604 input_section, output_bfd, error_message);
1605
1606 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1607 if (TOCstart == 0)
1608 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1609
1610 /* Subtract the TOC base address. */
1611 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1612
1613 /* Adjust the addend for sign extension of the low 16 bits. */
1614 reloc_entry->addend += 0x8000;
1615 return bfd_reloc_continue;
1616 }
1617
1618 static bfd_reloc_status_type
1619 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1620 void *data, asection *input_section,
1621 bfd *output_bfd, char **error_message)
1622 {
1623 bfd_vma TOCstart;
1624 bfd_size_type octets;
1625
1626 /* If this is a relocatable link (output_bfd test tells us), just
1627 call the generic function. Any adjustment will be done at final
1628 link time. */
1629 if (output_bfd != NULL)
1630 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1631 input_section, output_bfd, error_message);
1632
1633 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1634 if (TOCstart == 0)
1635 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1636
1637 octets = reloc_entry->address * OCTETS_PER_BYTE (abfd, input_section);
1638 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1639 return bfd_reloc_ok;
1640 }
1641
1642 static bfd_reloc_status_type
1643 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1644 void *data, asection *input_section,
1645 bfd *output_bfd, char **error_message)
1646 {
1647 uint64_t insn;
1648 bfd_vma targ;
1649
1650 if (output_bfd != NULL)
1651 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1652 input_section, output_bfd, error_message);
1653
1654 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1655 insn <<= 32;
1656 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1657
1658 targ = (symbol->section->output_section->vma
1659 + symbol->section->output_offset
1660 + reloc_entry->addend);
1661 if (!bfd_is_com_section (symbol->section))
1662 targ += symbol->value;
1663 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1664 targ += 1ULL << 33;
1665 if (reloc_entry->howto->pc_relative)
1666 {
1667 bfd_vma from = (reloc_entry->address
1668 + input_section->output_offset
1669 + input_section->output_section->vma);
1670 targ -=from;
1671 }
1672 targ >>= reloc_entry->howto->rightshift;
1673 insn &= ~reloc_entry->howto->dst_mask;
1674 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1675 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1676 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1677 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1678 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1679 >= 1ULL << reloc_entry->howto->bitsize))
1680 return bfd_reloc_overflow;
1681 return bfd_reloc_ok;
1682 }
1683
1684 static bfd_reloc_status_type
1685 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1686 void *data, asection *input_section,
1687 bfd *output_bfd, char **error_message)
1688 {
1689 /* If this is a relocatable link (output_bfd test tells us), just
1690 call the generic function. Any adjustment will be done at final
1691 link time. */
1692 if (output_bfd != NULL)
1693 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1694 input_section, output_bfd, error_message);
1695
1696 if (error_message != NULL)
1697 {
1698 static char buf[60];
1699 sprintf (buf, "generic linker can't handle %s",
1700 reloc_entry->howto->name);
1701 *error_message = buf;
1702 }
1703 return bfd_reloc_dangerous;
1704 }
1705
1706 /* Track GOT entries needed for a given symbol. We might need more
1707 than one got entry per symbol. */
1708 struct got_entry
1709 {
1710 struct got_entry *next;
1711
1712 /* The symbol addend that we'll be placing in the GOT. */
1713 bfd_vma addend;
1714
1715 /* Unlike other ELF targets, we use separate GOT entries for the same
1716 symbol referenced from different input files. This is to support
1717 automatic multiple TOC/GOT sections, where the TOC base can vary
1718 from one input file to another. After partitioning into TOC groups
1719 we merge entries within the group.
1720
1721 Point to the BFD owning this GOT entry. */
1722 bfd *owner;
1723
1724 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1725 TLS_TPREL or TLS_DTPREL for tls entries. */
1726 unsigned char tls_type;
1727
1728 /* Non-zero if got.ent points to real entry. */
1729 unsigned char is_indirect;
1730
1731 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1732 union
1733 {
1734 bfd_signed_vma refcount;
1735 bfd_vma offset;
1736 struct got_entry *ent;
1737 } got;
1738 };
1739
1740 /* The same for PLT. */
1741 struct plt_entry
1742 {
1743 struct plt_entry *next;
1744
1745 bfd_vma addend;
1746
1747 union
1748 {
1749 bfd_signed_vma refcount;
1750 bfd_vma offset;
1751 } plt;
1752 };
1753
1754 struct ppc64_elf_obj_tdata
1755 {
1756 struct elf_obj_tdata elf;
1757
1758 /* Shortcuts to dynamic linker sections. */
1759 asection *got;
1760 asection *relgot;
1761
1762 /* Used during garbage collection. We attach global symbols defined
1763 on removed .opd entries to this section so that the sym is removed. */
1764 asection *deleted_section;
1765
1766 /* TLS local dynamic got entry handling. Support for multiple GOT
1767 sections means we potentially need one of these for each input bfd. */
1768 struct got_entry tlsld_got;
1769
1770 union
1771 {
1772 /* A copy of relocs before they are modified for --emit-relocs. */
1773 Elf_Internal_Rela *relocs;
1774
1775 /* Section contents. */
1776 bfd_byte *contents;
1777 } opd;
1778
1779 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1780 the reloc to be in the range -32768 to 32767. */
1781 unsigned int has_small_toc_reloc : 1;
1782
1783 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1784 instruction not one we handle. */
1785 unsigned int unexpected_toc_insn : 1;
1786
1787 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1788 this file. */
1789 unsigned int has_optrel : 1;
1790 };
1791
1792 #define ppc64_elf_tdata(bfd) \
1793 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1794
1795 #define ppc64_tlsld_got(bfd) \
1796 (&ppc64_elf_tdata (bfd)->tlsld_got)
1797
1798 #define is_ppc64_elf(bfd) \
1799 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1800 && elf_object_id (bfd) == PPC64_ELF_DATA)
1801
1802 /* Override the generic function because we store some extras. */
1803
1804 static bfd_boolean
1805 ppc64_elf_mkobject (bfd *abfd)
1806 {
1807 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1808 PPC64_ELF_DATA);
1809 }
1810
1811 /* Fix bad default arch selected for a 64 bit input bfd when the
1812 default is 32 bit. Also select arch based on apuinfo. */
1813
1814 static bfd_boolean
1815 ppc64_elf_object_p (bfd *abfd)
1816 {
1817 if (!abfd->arch_info->the_default)
1818 return TRUE;
1819
1820 if (abfd->arch_info->bits_per_word == 32)
1821 {
1822 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1823
1824 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1825 {
1826 /* Relies on arch after 32 bit default being 64 bit default. */
1827 abfd->arch_info = abfd->arch_info->next;
1828 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1829 }
1830 }
1831 return _bfd_elf_ppc_set_arch (abfd);
1832 }
1833
1834 /* Support for core dump NOTE sections. */
1835
1836 static bfd_boolean
1837 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1838 {
1839 size_t offset, size;
1840
1841 if (note->descsz != 504)
1842 return FALSE;
1843
1844 /* pr_cursig */
1845 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1846
1847 /* pr_pid */
1848 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1849
1850 /* pr_reg */
1851 offset = 112;
1852 size = 384;
1853
1854 /* Make a ".reg/999" section. */
1855 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1856 size, note->descpos + offset);
1857 }
1858
1859 static bfd_boolean
1860 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1861 {
1862 if (note->descsz != 136)
1863 return FALSE;
1864
1865 elf_tdata (abfd)->core->pid
1866 = bfd_get_32 (abfd, note->descdata + 24);
1867 elf_tdata (abfd)->core->program
1868 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1869 elf_tdata (abfd)->core->command
1870 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1871
1872 return TRUE;
1873 }
1874
1875 static char *
1876 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1877 ...)
1878 {
1879 switch (note_type)
1880 {
1881 default:
1882 return NULL;
1883
1884 case NT_PRPSINFO:
1885 {
1886 char data[136] ATTRIBUTE_NONSTRING;
1887 va_list ap;
1888
1889 va_start (ap, note_type);
1890 memset (data, 0, sizeof (data));
1891 strncpy (data + 40, va_arg (ap, const char *), 16);
1892 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1893 DIAGNOSTIC_PUSH;
1894 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1895 -Wstringop-truncation:
1896 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1897 */
1898 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1899 #endif
1900 strncpy (data + 56, va_arg (ap, const char *), 80);
1901 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1902 DIAGNOSTIC_POP;
1903 #endif
1904 va_end (ap);
1905 return elfcore_write_note (abfd, buf, bufsiz,
1906 "CORE", note_type, data, sizeof (data));
1907 }
1908
1909 case NT_PRSTATUS:
1910 {
1911 char data[504];
1912 va_list ap;
1913 long pid;
1914 int cursig;
1915 const void *greg;
1916
1917 va_start (ap, note_type);
1918 memset (data, 0, 112);
1919 pid = va_arg (ap, long);
1920 bfd_put_32 (abfd, pid, data + 32);
1921 cursig = va_arg (ap, int);
1922 bfd_put_16 (abfd, cursig, data + 12);
1923 greg = va_arg (ap, const void *);
1924 memcpy (data + 112, greg, 384);
1925 memset (data + 496, 0, 8);
1926 va_end (ap);
1927 return elfcore_write_note (abfd, buf, bufsiz,
1928 "CORE", note_type, data, sizeof (data));
1929 }
1930 }
1931 }
1932
1933 /* Add extra PPC sections. */
1934
1935 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1936 {
1937 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1938 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1939 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1940 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1941 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1942 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1943 { NULL, 0, 0, 0, 0 }
1944 };
1945
1946 enum _ppc64_sec_type {
1947 sec_normal = 0,
1948 sec_opd = 1,
1949 sec_toc = 2
1950 };
1951
1952 struct _ppc64_elf_section_data
1953 {
1954 struct bfd_elf_section_data elf;
1955
1956 union
1957 {
1958 /* An array with one entry for each opd function descriptor,
1959 and some spares since opd entries may be either 16 or 24 bytes. */
1960 #define OPD_NDX(OFF) ((OFF) >> 4)
1961 struct _opd_sec_data
1962 {
1963 /* Points to the function code section for local opd entries. */
1964 asection **func_sec;
1965
1966 /* After editing .opd, adjust references to opd local syms. */
1967 long *adjust;
1968 } opd;
1969
1970 /* An array for toc sections, indexed by offset/8. */
1971 struct _toc_sec_data
1972 {
1973 /* Specifies the relocation symbol index used at a given toc offset. */
1974 unsigned *symndx;
1975
1976 /* And the relocation addend. */
1977 bfd_vma *add;
1978 } toc;
1979 } u;
1980
1981 enum _ppc64_sec_type sec_type:2;
1982
1983 /* Flag set when small branches are detected. Used to
1984 select suitable defaults for the stub group size. */
1985 unsigned int has_14bit_branch:1;
1986
1987 /* Flag set when PLTCALL relocs are detected. */
1988 unsigned int has_pltcall:1;
1989
1990 /* Flag set when section has PLT/GOT/TOC relocations that can be
1991 optimised. */
1992 unsigned int has_optrel:1;
1993 };
1994
1995 #define ppc64_elf_section_data(sec) \
1996 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
1997
1998 static bfd_boolean
1999 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2000 {
2001 if (!sec->used_by_bfd)
2002 {
2003 struct _ppc64_elf_section_data *sdata;
2004 size_t amt = sizeof (*sdata);
2005
2006 sdata = bfd_zalloc (abfd, amt);
2007 if (sdata == NULL)
2008 return FALSE;
2009 sec->used_by_bfd = sdata;
2010 }
2011
2012 return _bfd_elf_new_section_hook (abfd, sec);
2013 }
2014
2015 static bfd_boolean
2016 ppc64_elf_section_flags (const Elf_Internal_Shdr *hdr)
2017 {
2018 const char *name = hdr->bfd_section->name;
2019
2020 if (strncmp (name, ".sbss", 5) == 0
2021 || strncmp (name, ".sdata", 6) == 0)
2022 hdr->bfd_section->flags |= SEC_SMALL_DATA;
2023
2024 return TRUE;
2025 }
2026
2027 static struct _opd_sec_data *
2028 get_opd_info (asection * sec)
2029 {
2030 if (sec != NULL
2031 && ppc64_elf_section_data (sec) != NULL
2032 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2033 return &ppc64_elf_section_data (sec)->u.opd;
2034 return NULL;
2035 }
2036 \f
2037 /* Parameters for the qsort hook. */
2038 static bfd_boolean synthetic_relocatable;
2039 static asection *synthetic_opd;
2040
2041 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2042
2043 static int
2044 compare_symbols (const void *ap, const void *bp)
2045 {
2046 const asymbol *a = *(const asymbol **) ap;
2047 const asymbol *b = *(const asymbol **) bp;
2048
2049 /* Section symbols first. */
2050 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2051 return -1;
2052 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2053 return 1;
2054
2055 /* then .opd symbols. */
2056 if (synthetic_opd != NULL)
2057 {
2058 if (strcmp (a->section->name, ".opd") == 0
2059 && strcmp (b->section->name, ".opd") != 0)
2060 return -1;
2061 if (strcmp (a->section->name, ".opd") != 0
2062 && strcmp (b->section->name, ".opd") == 0)
2063 return 1;
2064 }
2065
2066 /* then other code symbols. */
2067 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2068 == (SEC_CODE | SEC_ALLOC))
2069 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2070 != (SEC_CODE | SEC_ALLOC)))
2071 return -1;
2072
2073 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2074 != (SEC_CODE | SEC_ALLOC))
2075 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2076 == (SEC_CODE | SEC_ALLOC)))
2077 return 1;
2078
2079 if (synthetic_relocatable)
2080 {
2081 if (a->section->id < b->section->id)
2082 return -1;
2083
2084 if (a->section->id > b->section->id)
2085 return 1;
2086 }
2087
2088 if (a->value + a->section->vma < b->value + b->section->vma)
2089 return -1;
2090
2091 if (a->value + a->section->vma > b->value + b->section->vma)
2092 return 1;
2093
2094 /* For syms with the same value, prefer strong dynamic global function
2095 syms over other syms. */
2096 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2097 return -1;
2098
2099 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2100 return 1;
2101
2102 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2103 return -1;
2104
2105 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2106 return 1;
2107
2108 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2109 return -1;
2110
2111 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2112 return 1;
2113
2114 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2115 return -1;
2116
2117 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2118 return 1;
2119
2120 /* Finally, sort on where the symbol is in memory. The symbols will
2121 be in at most two malloc'd blocks, one for static syms, one for
2122 dynamic syms, and we distinguish the two blocks above by testing
2123 BSF_DYNAMIC. Since we are sorting the symbol pointers which were
2124 originally in the same order as the symbols (and we're not
2125 sorting the symbols themselves), this ensures a stable sort. */
2126 if (a < b)
2127 return -1;
2128 if (a > b)
2129 return 1;
2130 return 0;
2131 }
2132
2133 /* Search SYMS for a symbol of the given VALUE. */
2134
2135 static asymbol *
2136 sym_exists_at (asymbol **syms, size_t lo, size_t hi, unsigned int id,
2137 bfd_vma value)
2138 {
2139 size_t mid;
2140
2141 if (id == (unsigned) -1)
2142 {
2143 while (lo < hi)
2144 {
2145 mid = (lo + hi) >> 1;
2146 if (syms[mid]->value + syms[mid]->section->vma < value)
2147 lo = mid + 1;
2148 else if (syms[mid]->value + syms[mid]->section->vma > value)
2149 hi = mid;
2150 else
2151 return syms[mid];
2152 }
2153 }
2154 else
2155 {
2156 while (lo < hi)
2157 {
2158 mid = (lo + hi) >> 1;
2159 if (syms[mid]->section->id < id)
2160 lo = mid + 1;
2161 else if (syms[mid]->section->id > id)
2162 hi = mid;
2163 else if (syms[mid]->value < value)
2164 lo = mid + 1;
2165 else if (syms[mid]->value > value)
2166 hi = mid;
2167 else
2168 return syms[mid];
2169 }
2170 }
2171 return NULL;
2172 }
2173
2174 static bfd_boolean
2175 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2176 {
2177 bfd_vma vma = *(bfd_vma *) ptr;
2178 return ((section->flags & SEC_ALLOC) != 0
2179 && section->vma <= vma
2180 && vma < section->vma + section->size);
2181 }
2182
2183 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2184 entry syms. Also generate @plt symbols for the glink branch table.
2185 Returns count of synthetic symbols in RET or -1 on error. */
2186
2187 static long
2188 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2189 long static_count, asymbol **static_syms,
2190 long dyn_count, asymbol **dyn_syms,
2191 asymbol **ret)
2192 {
2193 asymbol *s;
2194 size_t i, j, count;
2195 char *names;
2196 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2197 asection *opd = NULL;
2198 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2199 asymbol **syms;
2200 int abi = abiversion (abfd);
2201
2202 *ret = NULL;
2203
2204 if (abi < 2)
2205 {
2206 opd = bfd_get_section_by_name (abfd, ".opd");
2207 if (opd == NULL && abi == 1)
2208 return 0;
2209 }
2210
2211 syms = NULL;
2212 codesecsym = 0;
2213 codesecsymend = 0;
2214 secsymend = 0;
2215 opdsymend = 0;
2216 symcount = 0;
2217 if (opd != NULL)
2218 {
2219 symcount = static_count;
2220 if (!relocatable)
2221 symcount += dyn_count;
2222 if (symcount == 0)
2223 return 0;
2224
2225 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2226 if (syms == NULL)
2227 return -1;
2228
2229 if (!relocatable && static_count != 0 && dyn_count != 0)
2230 {
2231 /* Use both symbol tables. */
2232 memcpy (syms, static_syms, static_count * sizeof (*syms));
2233 memcpy (syms + static_count, dyn_syms,
2234 (dyn_count + 1) * sizeof (*syms));
2235 }
2236 else if (!relocatable && static_count == 0)
2237 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2238 else
2239 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2240
2241 /* Trim uninteresting symbols. Interesting symbols are section,
2242 function, and notype symbols. */
2243 for (i = 0, j = 0; i < symcount; ++i)
2244 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2245 | BSF_RELC | BSF_SRELC)) == 0)
2246 syms[j++] = syms[i];
2247 symcount = j;
2248
2249 synthetic_relocatable = relocatable;
2250 synthetic_opd = opd;
2251 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2252
2253 if (!relocatable && symcount > 1)
2254 {
2255 /* Trim duplicate syms, since we may have merged the normal
2256 and dynamic symbols. Actually, we only care about syms
2257 that have different values, so trim any with the same
2258 value. Don't consider ifunc and ifunc resolver symbols
2259 duplicates however, because GDB wants to know whether a
2260 text symbol is an ifunc resolver. */
2261 for (i = 1, j = 1; i < symcount; ++i)
2262 {
2263 const asymbol *s0 = syms[i - 1];
2264 const asymbol *s1 = syms[i];
2265
2266 if ((s0->value + s0->section->vma
2267 != s1->value + s1->section->vma)
2268 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2269 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2270 syms[j++] = syms[i];
2271 }
2272 symcount = j;
2273 }
2274
2275 i = 0;
2276 /* Note that here and in compare_symbols we can't compare opd and
2277 sym->section directly. With separate debug info files, the
2278 symbols will be extracted from the debug file while abfd passed
2279 to this function is the real binary. */
2280 if (strcmp (syms[i]->section->name, ".opd") == 0)
2281 ++i;
2282 codesecsym = i;
2283
2284 for (; i < symcount; ++i)
2285 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2286 | SEC_THREAD_LOCAL))
2287 != (SEC_CODE | SEC_ALLOC))
2288 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2289 break;
2290 codesecsymend = i;
2291
2292 for (; i < symcount; ++i)
2293 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2294 break;
2295 secsymend = i;
2296
2297 for (; i < symcount; ++i)
2298 if (strcmp (syms[i]->section->name, ".opd") != 0)
2299 break;
2300 opdsymend = i;
2301
2302 for (; i < symcount; ++i)
2303 if (((syms[i]->section->flags
2304 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2305 != (SEC_CODE | SEC_ALLOC))
2306 break;
2307 symcount = i;
2308 }
2309 count = 0;
2310
2311 if (relocatable)
2312 {
2313 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2314 arelent *r;
2315 size_t size;
2316 size_t relcount;
2317
2318 if (opdsymend == secsymend)
2319 goto done;
2320
2321 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2322 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2323 if (relcount == 0)
2324 goto done;
2325
2326 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2327 {
2328 count = -1;
2329 goto done;
2330 }
2331
2332 size = 0;
2333 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2334 {
2335 asymbol *sym;
2336
2337 while (r < opd->relocation + relcount
2338 && r->address < syms[i]->value + opd->vma)
2339 ++r;
2340
2341 if (r == opd->relocation + relcount)
2342 break;
2343
2344 if (r->address != syms[i]->value + opd->vma)
2345 continue;
2346
2347 if (r->howto->type != R_PPC64_ADDR64)
2348 continue;
2349
2350 sym = *r->sym_ptr_ptr;
2351 if (!sym_exists_at (syms, opdsymend, symcount,
2352 sym->section->id, sym->value + r->addend))
2353 {
2354 ++count;
2355 size += sizeof (asymbol);
2356 size += strlen (syms[i]->name) + 2;
2357 }
2358 }
2359
2360 if (size == 0)
2361 goto done;
2362 s = *ret = bfd_malloc (size);
2363 if (s == NULL)
2364 {
2365 count = -1;
2366 goto done;
2367 }
2368
2369 names = (char *) (s + count);
2370
2371 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2372 {
2373 asymbol *sym;
2374
2375 while (r < opd->relocation + relcount
2376 && r->address < syms[i]->value + opd->vma)
2377 ++r;
2378
2379 if (r == opd->relocation + relcount)
2380 break;
2381
2382 if (r->address != syms[i]->value + opd->vma)
2383 continue;
2384
2385 if (r->howto->type != R_PPC64_ADDR64)
2386 continue;
2387
2388 sym = *r->sym_ptr_ptr;
2389 if (!sym_exists_at (syms, opdsymend, symcount,
2390 sym->section->id, sym->value + r->addend))
2391 {
2392 size_t len;
2393
2394 *s = *syms[i];
2395 s->flags |= BSF_SYNTHETIC;
2396 s->section = sym->section;
2397 s->value = sym->value + r->addend;
2398 s->name = names;
2399 *names++ = '.';
2400 len = strlen (syms[i]->name);
2401 memcpy (names, syms[i]->name, len + 1);
2402 names += len + 1;
2403 /* Have udata.p point back to the original symbol this
2404 synthetic symbol was derived from. */
2405 s->udata.p = syms[i];
2406 s++;
2407 }
2408 }
2409 }
2410 else
2411 {
2412 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2413 bfd_byte *contents = NULL;
2414 size_t size;
2415 size_t plt_count = 0;
2416 bfd_vma glink_vma = 0, resolv_vma = 0;
2417 asection *dynamic, *glink = NULL, *relplt = NULL;
2418 arelent *p;
2419
2420 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2421 {
2422 free_contents_and_exit_err:
2423 count = -1;
2424 free_contents_and_exit:
2425 if (contents)
2426 free (contents);
2427 goto done;
2428 }
2429
2430 size = 0;
2431 for (i = secsymend; i < opdsymend; ++i)
2432 {
2433 bfd_vma ent;
2434
2435 /* Ignore bogus symbols. */
2436 if (syms[i]->value > opd->size - 8)
2437 continue;
2438
2439 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2440 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2441 {
2442 ++count;
2443 size += sizeof (asymbol);
2444 size += strlen (syms[i]->name) + 2;
2445 }
2446 }
2447
2448 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2449 if (dyn_count != 0
2450 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2451 {
2452 bfd_byte *dynbuf, *extdyn, *extdynend;
2453 size_t extdynsize;
2454 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2455
2456 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2457 goto free_contents_and_exit_err;
2458
2459 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2460 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2461
2462 extdyn = dynbuf;
2463 extdynend = extdyn + dynamic->size;
2464 for (; extdyn < extdynend; extdyn += extdynsize)
2465 {
2466 Elf_Internal_Dyn dyn;
2467 (*swap_dyn_in) (abfd, extdyn, &dyn);
2468
2469 if (dyn.d_tag == DT_NULL)
2470 break;
2471
2472 if (dyn.d_tag == DT_PPC64_GLINK)
2473 {
2474 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2475 See comment in ppc64_elf_finish_dynamic_sections. */
2476 glink_vma = dyn.d_un.d_val + 8 * 4;
2477 /* The .glink section usually does not survive the final
2478 link; search for the section (usually .text) where the
2479 glink stubs now reside. */
2480 glink = bfd_sections_find_if (abfd, section_covers_vma,
2481 &glink_vma);
2482 break;
2483 }
2484 }
2485
2486 free (dynbuf);
2487 }
2488
2489 if (glink != NULL)
2490 {
2491 /* Determine __glink trampoline by reading the relative branch
2492 from the first glink stub. */
2493 bfd_byte buf[4];
2494 unsigned int off = 0;
2495
2496 while (bfd_get_section_contents (abfd, glink, buf,
2497 glink_vma + off - glink->vma, 4))
2498 {
2499 unsigned int insn = bfd_get_32 (abfd, buf);
2500 insn ^= B_DOT;
2501 if ((insn & ~0x3fffffc) == 0)
2502 {
2503 resolv_vma
2504 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2505 break;
2506 }
2507 off += 4;
2508 if (off > 4)
2509 break;
2510 }
2511
2512 if (resolv_vma)
2513 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2514
2515 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2516 if (relplt != NULL)
2517 {
2518 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2519 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2520 goto free_contents_and_exit_err;
2521
2522 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2523 size += plt_count * sizeof (asymbol);
2524
2525 p = relplt->relocation;
2526 for (i = 0; i < plt_count; i++, p++)
2527 {
2528 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2529 if (p->addend != 0)
2530 size += sizeof ("+0x") - 1 + 16;
2531 }
2532 }
2533 }
2534
2535 if (size == 0)
2536 goto free_contents_and_exit;
2537 s = *ret = bfd_malloc (size);
2538 if (s == NULL)
2539 goto free_contents_and_exit_err;
2540
2541 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2542
2543 for (i = secsymend; i < opdsymend; ++i)
2544 {
2545 bfd_vma ent;
2546
2547 if (syms[i]->value > opd->size - 8)
2548 continue;
2549
2550 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2551 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2552 {
2553 size_t lo, hi;
2554 size_t len;
2555 asection *sec = abfd->sections;
2556
2557 *s = *syms[i];
2558 lo = codesecsym;
2559 hi = codesecsymend;
2560 while (lo < hi)
2561 {
2562 size_t mid = (lo + hi) >> 1;
2563 if (syms[mid]->section->vma < ent)
2564 lo = mid + 1;
2565 else if (syms[mid]->section->vma > ent)
2566 hi = mid;
2567 else
2568 {
2569 sec = syms[mid]->section;
2570 break;
2571 }
2572 }
2573
2574 if (lo >= hi && lo > codesecsym)
2575 sec = syms[lo - 1]->section;
2576
2577 for (; sec != NULL; sec = sec->next)
2578 {
2579 if (sec->vma > ent)
2580 break;
2581 /* SEC_LOAD may not be set if SEC is from a separate debug
2582 info file. */
2583 if ((sec->flags & SEC_ALLOC) == 0)
2584 break;
2585 if ((sec->flags & SEC_CODE) != 0)
2586 s->section = sec;
2587 }
2588 s->flags |= BSF_SYNTHETIC;
2589 s->value = ent - s->section->vma;
2590 s->name = names;
2591 *names++ = '.';
2592 len = strlen (syms[i]->name);
2593 memcpy (names, syms[i]->name, len + 1);
2594 names += len + 1;
2595 /* Have udata.p point back to the original symbol this
2596 synthetic symbol was derived from. */
2597 s->udata.p = syms[i];
2598 s++;
2599 }
2600 }
2601 free (contents);
2602
2603 if (glink != NULL && relplt != NULL)
2604 {
2605 if (resolv_vma)
2606 {
2607 /* Add a symbol for the main glink trampoline. */
2608 memset (s, 0, sizeof *s);
2609 s->the_bfd = abfd;
2610 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2611 s->section = glink;
2612 s->value = resolv_vma - glink->vma;
2613 s->name = names;
2614 memcpy (names, "__glink_PLTresolve",
2615 sizeof ("__glink_PLTresolve"));
2616 names += sizeof ("__glink_PLTresolve");
2617 s++;
2618 count++;
2619 }
2620
2621 /* FIXME: It would be very much nicer to put sym@plt on the
2622 stub rather than on the glink branch table entry. The
2623 objdump disassembler would then use a sensible symbol
2624 name on plt calls. The difficulty in doing so is
2625 a) finding the stubs, and,
2626 b) matching stubs against plt entries, and,
2627 c) there can be multiple stubs for a given plt entry.
2628
2629 Solving (a) could be done by code scanning, but older
2630 ppc64 binaries used different stubs to current code.
2631 (b) is the tricky one since you need to known the toc
2632 pointer for at least one function that uses a pic stub to
2633 be able to calculate the plt address referenced.
2634 (c) means gdb would need to set multiple breakpoints (or
2635 find the glink branch itself) when setting breakpoints
2636 for pending shared library loads. */
2637 p = relplt->relocation;
2638 for (i = 0; i < plt_count; i++, p++)
2639 {
2640 size_t len;
2641
2642 *s = **p->sym_ptr_ptr;
2643 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2644 we are defining a symbol, ensure one of them is set. */
2645 if ((s->flags & BSF_LOCAL) == 0)
2646 s->flags |= BSF_GLOBAL;
2647 s->flags |= BSF_SYNTHETIC;
2648 s->section = glink;
2649 s->value = glink_vma - glink->vma;
2650 s->name = names;
2651 s->udata.p = NULL;
2652 len = strlen ((*p->sym_ptr_ptr)->name);
2653 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2654 names += len;
2655 if (p->addend != 0)
2656 {
2657 memcpy (names, "+0x", sizeof ("+0x") - 1);
2658 names += sizeof ("+0x") - 1;
2659 bfd_sprintf_vma (abfd, names, p->addend);
2660 names += strlen (names);
2661 }
2662 memcpy (names, "@plt", sizeof ("@plt"));
2663 names += sizeof ("@plt");
2664 s++;
2665 if (abi < 2)
2666 {
2667 glink_vma += 8;
2668 if (i >= 0x8000)
2669 glink_vma += 4;
2670 }
2671 else
2672 glink_vma += 4;
2673 }
2674 count += plt_count;
2675 }
2676 }
2677
2678 done:
2679 free (syms);
2680 return count;
2681 }
2682 \f
2683 /* The following functions are specific to the ELF linker, while
2684 functions above are used generally. Those named ppc64_elf_* are
2685 called by the main ELF linker code. They appear in this file more
2686 or less in the order in which they are called. eg.
2687 ppc64_elf_check_relocs is called early in the link process,
2688 ppc64_elf_finish_dynamic_sections is one of the last functions
2689 called.
2690
2691 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2692 functions have both a function code symbol and a function descriptor
2693 symbol. A call to foo in a relocatable object file looks like:
2694
2695 . .text
2696 . x:
2697 . bl .foo
2698 . nop
2699
2700 The function definition in another object file might be:
2701
2702 . .section .opd
2703 . foo: .quad .foo
2704 . .quad .TOC.@tocbase
2705 . .quad 0
2706 .
2707 . .text
2708 . .foo: blr
2709
2710 When the linker resolves the call during a static link, the branch
2711 unsurprisingly just goes to .foo and the .opd information is unused.
2712 If the function definition is in a shared library, things are a little
2713 different: The call goes via a plt call stub, the opd information gets
2714 copied to the plt, and the linker patches the nop.
2715
2716 . x:
2717 . bl .foo_stub
2718 . ld 2,40(1)
2719 .
2720 .
2721 . .foo_stub:
2722 . std 2,40(1) # in practice, the call stub
2723 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2724 . addi 11,11,Lfoo@toc@l # this is the general idea
2725 . ld 12,0(11)
2726 . ld 2,8(11)
2727 . mtctr 12
2728 . ld 11,16(11)
2729 . bctr
2730 .
2731 . .section .plt
2732 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2733
2734 The "reloc ()" notation is supposed to indicate that the linker emits
2735 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2736 copying.
2737
2738 What are the difficulties here? Well, firstly, the relocations
2739 examined by the linker in check_relocs are against the function code
2740 sym .foo, while the dynamic relocation in the plt is emitted against
2741 the function descriptor symbol, foo. Somewhere along the line, we need
2742 to carefully copy dynamic link information from one symbol to the other.
2743 Secondly, the generic part of the elf linker will make .foo a dynamic
2744 symbol as is normal for most other backends. We need foo dynamic
2745 instead, at least for an application final link. However, when
2746 creating a shared library containing foo, we need to have both symbols
2747 dynamic so that references to .foo are satisfied during the early
2748 stages of linking. Otherwise the linker might decide to pull in a
2749 definition from some other object, eg. a static library.
2750
2751 Update: As of August 2004, we support a new convention. Function
2752 calls may use the function descriptor symbol, ie. "bl foo". This
2753 behaves exactly as "bl .foo". */
2754
2755 /* Of those relocs that might be copied as dynamic relocs, this
2756 function selects those that must be copied when linking a shared
2757 library or PIE, even when the symbol is local. */
2758
2759 static int
2760 must_be_dyn_reloc (struct bfd_link_info *info,
2761 enum elf_ppc64_reloc_type r_type)
2762 {
2763 switch (r_type)
2764 {
2765 default:
2766 /* Only relative relocs can be resolved when the object load
2767 address isn't fixed. DTPREL64 is excluded because the
2768 dynamic linker needs to differentiate global dynamic from
2769 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2770 return 1;
2771
2772 case R_PPC64_REL32:
2773 case R_PPC64_REL64:
2774 case R_PPC64_REL30:
2775 case R_PPC64_TOC16:
2776 case R_PPC64_TOC16_DS:
2777 case R_PPC64_TOC16_LO:
2778 case R_PPC64_TOC16_HI:
2779 case R_PPC64_TOC16_HA:
2780 case R_PPC64_TOC16_LO_DS:
2781 return 0;
2782
2783 case R_PPC64_TPREL16:
2784 case R_PPC64_TPREL16_LO:
2785 case R_PPC64_TPREL16_HI:
2786 case R_PPC64_TPREL16_HA:
2787 case R_PPC64_TPREL16_DS:
2788 case R_PPC64_TPREL16_LO_DS:
2789 case R_PPC64_TPREL16_HIGH:
2790 case R_PPC64_TPREL16_HIGHA:
2791 case R_PPC64_TPREL16_HIGHER:
2792 case R_PPC64_TPREL16_HIGHERA:
2793 case R_PPC64_TPREL16_HIGHEST:
2794 case R_PPC64_TPREL16_HIGHESTA:
2795 case R_PPC64_TPREL64:
2796 case R_PPC64_TPREL34:
2797 /* These relocations are relative but in a shared library the
2798 linker doesn't know the thread pointer base. */
2799 return bfd_link_dll (info);
2800 }
2801 }
2802
2803 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2804 copying dynamic variables from a shared lib into an app's .dynbss
2805 section, and instead use a dynamic relocation to point into the
2806 shared lib. With code that gcc generates it is vital that this be
2807 enabled; In the PowerPC64 ELFv1 ABI the address of a function is
2808 actually the address of a function descriptor which resides in the
2809 .opd section. gcc uses the descriptor directly rather than going
2810 via the GOT as some other ABIs do, which means that initialized
2811 function pointers reference the descriptor. Thus, a function
2812 pointer initialized to the address of a function in a shared
2813 library will either require a .dynbss copy and a copy reloc, or a
2814 dynamic reloc. Using a .dynbss copy redefines the function
2815 descriptor symbol to point to the copy. This presents a problem as
2816 a PLT entry for that function is also initialized from the function
2817 descriptor symbol and the copy may not be initialized first. */
2818 #define ELIMINATE_COPY_RELOCS 1
2819
2820 /* Section name for stubs is the associated section name plus this
2821 string. */
2822 #define STUB_SUFFIX ".stub"
2823
2824 /* Linker stubs.
2825 ppc_stub_long_branch:
2826 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2827 destination, but a 24 bit branch in a stub section will reach.
2828 . b dest
2829
2830 ppc_stub_plt_branch:
2831 Similar to the above, but a 24 bit branch in the stub section won't
2832 reach its destination.
2833 . addis %r12,%r2,xxx@toc@ha
2834 . ld %r12,xxx@toc@l(%r12)
2835 . mtctr %r12
2836 . bctr
2837
2838 ppc_stub_plt_call:
2839 Used to call a function in a shared library. If it so happens that
2840 the plt entry referenced crosses a 64k boundary, then an extra
2841 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2842 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2843 . addis %r11,%r2,xxx@toc@ha
2844 . ld %r12,xxx+0@toc@l(%r11)
2845 . mtctr %r12
2846 . ld %r2,xxx+8@toc@l(%r11)
2847 . ld %r11,xxx+16@toc@l(%r11)
2848 . bctr
2849
2850 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2851 code to adjust the value and save r2 to support multiple toc sections.
2852 A ppc_stub_long_branch with an r2 offset looks like:
2853 . std %r2,40(%r1)
2854 . addis %r2,%r2,off@ha
2855 . addi %r2,%r2,off@l
2856 . b dest
2857
2858 A ppc_stub_plt_branch with an r2 offset looks like:
2859 . std %r2,40(%r1)
2860 . addis %r12,%r2,xxx@toc@ha
2861 . ld %r12,xxx@toc@l(%r12)
2862 . addis %r2,%r2,off@ha
2863 . addi %r2,%r2,off@l
2864 . mtctr %r12
2865 . bctr
2866
2867 All of the above stubs are shown as their ELFv1 variants. ELFv2
2868 variants exist too, simpler for plt calls since a new toc pointer
2869 and static chain are not loaded by the stub. In addition, ELFv2
2870 has some more complex stubs to handle calls marked with NOTOC
2871 relocs from functions where r2 is not a valid toc pointer. These
2872 come in two flavours, the ones shown below, and _both variants that
2873 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2874 one call is from a function where r2 is used as the toc pointer but
2875 needs a toc adjusting stub for small-model multi-toc, and another
2876 call is from a function where r2 is not valid.
2877 ppc_stub_long_branch_notoc:
2878 . mflr %r12
2879 . bcl 20,31,1f
2880 . 1:
2881 . mflr %r11
2882 . mtlr %r12
2883 . addis %r12,%r11,dest-1b@ha
2884 . addi %r12,%r12,dest-1b@l
2885 . b dest
2886
2887 ppc_stub_plt_branch_notoc:
2888 . mflr %r12
2889 . bcl 20,31,1f
2890 . 1:
2891 . mflr %r11
2892 . mtlr %r12
2893 . lis %r12,xxx-1b@highest
2894 . ori %r12,%r12,xxx-1b@higher
2895 . sldi %r12,%r12,32
2896 . oris %r12,%r12,xxx-1b@high
2897 . ori %r12,%r12,xxx-1b@l
2898 . add %r12,%r11,%r12
2899 . mtctr %r12
2900 . bctr
2901
2902 ppc_stub_plt_call_notoc:
2903 . mflr %r12
2904 . bcl 20,31,1f
2905 . 1:
2906 . mflr %r11
2907 . mtlr %r12
2908 . lis %r12,xxx-1b@highest
2909 . ori %r12,%r12,xxx-1b@higher
2910 . sldi %r12,%r12,32
2911 . oris %r12,%r12,xxx-1b@high
2912 . ori %r12,%r12,xxx-1b@l
2913 . ldx %r12,%r11,%r12
2914 . mtctr %r12
2915 . bctr
2916
2917 There are also ELFv1 powerxx variants of these stubs.
2918 ppc_stub_long_branch_notoc:
2919 . pla %r12,dest@pcrel
2920 . b dest
2921 ppc_stub_plt_branch_notoc:
2922 . lis %r11,(dest-1f)@highesta34
2923 . ori %r11,%r11,(dest-1f)@highera34
2924 . sldi %r11,%r11,34
2925 . 1: pla %r12,dest@pcrel
2926 . add %r12,%r11,%r12
2927 . mtctr %r12
2928 . bctr
2929 ppc_stub_plt_call_notoc:
2930 . lis %r11,(xxx-1f)@highesta34
2931 . ori %r11,%r11,(xxx-1f)@highera34
2932 . sldi %r11,%r11,34
2933 . 1: pla %r12,xxx@pcrel
2934 . ldx %r12,%r11,%r12
2935 . mtctr %r12
2936 . bctr
2937
2938 In cases where the high instructions would add zero, they are
2939 omitted and following instructions modified in some cases.
2940 For example, a powerxx ppc_stub_plt_call_notoc might simplify down
2941 to
2942 . pld %r12,xxx@pcrel
2943 . mtctr %r12
2944 . bctr
2945
2946 For a given stub group (a set of sections all using the same toc
2947 pointer value) there will be just one stub type used for any
2948 particular function symbol. For example, if printf is called from
2949 code with the tocsave optimization (ie. r2 saved in function
2950 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2951 and from other code without the tocsave optimization requiring a
2952 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2953 type will be created. Calls with the tocsave optimization will
2954 enter this stub after the instruction saving r2. A similar
2955 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2956 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2957 to call an external function like printf. If other calls to printf
2958 require a ppc_stub_plt_call linkage stub then a single
2959 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2960 call. If other calls to printf require a ppc_stub_plt_call_r2save
2961 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2962 be created and calls not requiring r2 to be saved will enter the
2963 stub after the r2 save instruction. There is an analogous
2964 hierarchy of long branch and plt branch stubs for local call
2965 linkage. */
2966
2967 enum ppc_stub_type
2968 {
2969 ppc_stub_none,
2970 ppc_stub_long_branch,
2971 ppc_stub_long_branch_r2off,
2972 ppc_stub_long_branch_notoc,
2973 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2974 ppc_stub_plt_branch,
2975 ppc_stub_plt_branch_r2off,
2976 ppc_stub_plt_branch_notoc,
2977 ppc_stub_plt_branch_both,
2978 ppc_stub_plt_call,
2979 ppc_stub_plt_call_r2save,
2980 ppc_stub_plt_call_notoc,
2981 ppc_stub_plt_call_both,
2982 ppc_stub_global_entry,
2983 ppc_stub_save_res
2984 };
2985
2986 /* Information on stub grouping. */
2987 struct map_stub
2988 {
2989 /* The stub section. */
2990 asection *stub_sec;
2991 /* This is the section to which stubs in the group will be attached. */
2992 asection *link_sec;
2993 /* Next group. */
2994 struct map_stub *next;
2995 /* Whether to emit a copy of register save/restore functions in this
2996 group. */
2997 int needs_save_res;
2998 /* Current offset within stubs after the insn restoring lr in a
2999 _notoc or _both stub using bcl for pc-relative addressing, or
3000 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
3001 unsigned int lr_restore;
3002 /* Accumulated size of EH info emitted to describe return address
3003 if stubs modify lr. Does not include 17 byte FDE header. */
3004 unsigned int eh_size;
3005 /* Offset in glink_eh_frame to the start of EH info for this group. */
3006 unsigned int eh_base;
3007 };
3008
3009 struct ppc_stub_hash_entry
3010 {
3011 /* Base hash table entry structure. */
3012 struct bfd_hash_entry root;
3013
3014 enum ppc_stub_type stub_type;
3015
3016 /* Group information. */
3017 struct map_stub *group;
3018
3019 /* Offset within stub_sec of the beginning of this stub. */
3020 bfd_vma stub_offset;
3021
3022 /* Given the symbol's value and its section we can determine its final
3023 value when building the stubs (so the stub knows where to jump. */
3024 bfd_vma target_value;
3025 asection *target_section;
3026
3027 /* The symbol table entry, if any, that this was derived from. */
3028 struct ppc_link_hash_entry *h;
3029 struct plt_entry *plt_ent;
3030
3031 /* Symbol type. */
3032 unsigned char symtype;
3033
3034 /* Symbol st_other. */
3035 unsigned char other;
3036 };
3037
3038 struct ppc_branch_hash_entry
3039 {
3040 /* Base hash table entry structure. */
3041 struct bfd_hash_entry root;
3042
3043 /* Offset within branch lookup table. */
3044 unsigned int offset;
3045
3046 /* Generation marker. */
3047 unsigned int iter;
3048 };
3049
3050 /* Used to track dynamic relocations for local symbols. */
3051 struct ppc_dyn_relocs
3052 {
3053 struct ppc_dyn_relocs *next;
3054
3055 /* The input section of the reloc. */
3056 asection *sec;
3057
3058 /* Total number of relocs copied for the input section. */
3059 unsigned int count : 31;
3060
3061 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3062 unsigned int ifunc : 1;
3063 };
3064
3065 struct ppc_link_hash_entry
3066 {
3067 struct elf_link_hash_entry elf;
3068
3069 union
3070 {
3071 /* A pointer to the most recently used stub hash entry against this
3072 symbol. */
3073 struct ppc_stub_hash_entry *stub_cache;
3074
3075 /* A pointer to the next symbol starting with a '.' */
3076 struct ppc_link_hash_entry *next_dot_sym;
3077 } u;
3078
3079 /* Track dynamic relocs copied for this symbol. */
3080 struct elf_dyn_relocs *dyn_relocs;
3081
3082 /* Link between function code and descriptor symbols. */
3083 struct ppc_link_hash_entry *oh;
3084
3085 /* Flag function code and descriptor symbols. */
3086 unsigned int is_func:1;
3087 unsigned int is_func_descriptor:1;
3088 unsigned int fake:1;
3089
3090 /* Whether global opd/toc sym has been adjusted or not.
3091 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3092 should be set for all globals defined in any opd/toc section. */
3093 unsigned int adjust_done:1;
3094
3095 /* Set if this is an out-of-line register save/restore function,
3096 with non-standard calling convention. */
3097 unsigned int save_res:1;
3098
3099 /* Set if a duplicate symbol with non-zero localentry is detected,
3100 even when the duplicate symbol does not provide a definition. */
3101 unsigned int non_zero_localentry:1;
3102
3103 /* Contexts in which symbol is used in the GOT (or TOC).
3104 Bits are or'd into the mask as the corresponding relocs are
3105 encountered during check_relocs, with TLS_TLS being set when any
3106 of the other TLS bits are set. tls_optimize clears bits when
3107 optimizing to indicate the corresponding GOT entry type is not
3108 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3109 set TLS_GDIE when a GD reloc turns into an IE one.
3110 These flags are also kept for local symbols. */
3111 #define TLS_TLS 1 /* Any TLS reloc. */
3112 #define TLS_GD 2 /* GD reloc. */
3113 #define TLS_LD 4 /* LD reloc. */
3114 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3115 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3116 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3117 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3118 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3119 unsigned char tls_mask;
3120
3121 /* The above field is also used to mark function symbols. In which
3122 case TLS_TLS will be 0. */
3123 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3124 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3125 #define NON_GOT 256 /* local symbol plt, not stored. */
3126 };
3127
3128 static inline struct ppc_link_hash_entry *
3129 ppc_elf_hash_entry (struct elf_link_hash_entry *ent)
3130 {
3131 return (struct ppc_link_hash_entry *) ent;
3132 }
3133
3134 /* ppc64 ELF linker hash table. */
3135
3136 struct ppc_link_hash_table
3137 {
3138 struct elf_link_hash_table elf;
3139
3140 /* The stub hash table. */
3141 struct bfd_hash_table stub_hash_table;
3142
3143 /* Another hash table for plt_branch stubs. */
3144 struct bfd_hash_table branch_hash_table;
3145
3146 /* Hash table for function prologue tocsave. */
3147 htab_t tocsave_htab;
3148
3149 /* Various options and other info passed from the linker. */
3150 struct ppc64_elf_params *params;
3151
3152 /* The size of sec_info below. */
3153 unsigned int sec_info_arr_size;
3154
3155 /* Per-section array of extra section info. Done this way rather
3156 than as part of ppc64_elf_section_data so we have the info for
3157 non-ppc64 sections. */
3158 struct
3159 {
3160 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3161 bfd_vma toc_off;
3162
3163 union
3164 {
3165 /* The section group that this section belongs to. */
3166 struct map_stub *group;
3167 /* A temp section list pointer. */
3168 asection *list;
3169 } u;
3170 } *sec_info;
3171
3172 /* Linked list of groups. */
3173 struct map_stub *group;
3174
3175 /* Temp used when calculating TOC pointers. */
3176 bfd_vma toc_curr;
3177 bfd *toc_bfd;
3178 asection *toc_first_sec;
3179
3180 /* Used when adding symbols. */
3181 struct ppc_link_hash_entry *dot_syms;
3182
3183 /* Shortcuts to get to dynamic linker sections. */
3184 asection *glink;
3185 asection *global_entry;
3186 asection *sfpr;
3187 asection *pltlocal;
3188 asection *relpltlocal;
3189 asection *brlt;
3190 asection *relbrlt;
3191 asection *glink_eh_frame;
3192
3193 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3194 struct ppc_link_hash_entry *tls_get_addr;
3195 struct ppc_link_hash_entry *tls_get_addr_fd;
3196 struct ppc_link_hash_entry *tga_desc;
3197 struct ppc_link_hash_entry *tga_desc_fd;
3198 struct map_stub *tga_group;
3199
3200 /* The size of reliplt used by got entry relocs. */
3201 bfd_size_type got_reli_size;
3202
3203 /* Statistics. */
3204 unsigned long stub_count[ppc_stub_global_entry];
3205
3206 /* Number of stubs against global syms. */
3207 unsigned long stub_globals;
3208
3209 /* Set if we're linking code with function descriptors. */
3210 unsigned int opd_abi:1;
3211
3212 /* Support for multiple toc sections. */
3213 unsigned int do_multi_toc:1;
3214 unsigned int multi_toc_needed:1;
3215 unsigned int second_toc_pass:1;
3216 unsigned int do_toc_opt:1;
3217
3218 /* Set if tls optimization is enabled. */
3219 unsigned int do_tls_opt:1;
3220
3221 /* Set if inline plt calls should be converted to direct calls. */
3222 unsigned int can_convert_all_inline_plt:1;
3223
3224 /* Set on error. */
3225 unsigned int stub_error:1;
3226
3227 /* Whether func_desc_adjust needs to be run over symbols. */
3228 unsigned int need_func_desc_adj:1;
3229
3230 /* Whether there exist local gnu indirect function resolvers,
3231 referenced by dynamic relocations. */
3232 unsigned int local_ifunc_resolver:1;
3233 unsigned int maybe_local_ifunc_resolver:1;
3234
3235 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3236 unsigned int has_plt_localentry0:1;
3237
3238 /* Whether calls are made via the PLT from NOTOC functions. */
3239 unsigned int notoc_plt:1;
3240
3241 /* Whether to use powerxx instructions in linkage stubs. */
3242 unsigned int powerxx_stubs:1;
3243
3244 /* Incremented every time we size stubs. */
3245 unsigned int stub_iteration;
3246
3247 /* Small local sym cache. */
3248 struct sym_cache sym_cache;
3249 };
3250
3251 /* Rename some of the generic section flags to better document how they
3252 are used here. */
3253
3254 /* Nonzero if this section has TLS related relocations. */
3255 #define has_tls_reloc sec_flg0
3256
3257 /* Nonzero if this section has a call to __tls_get_addr lacking marker
3258 relocations. */
3259 #define nomark_tls_get_addr sec_flg1
3260
3261 /* Nonzero if this section has any toc or got relocs. */
3262 #define has_toc_reloc sec_flg2
3263
3264 /* Nonzero if this section has a call to another section that uses
3265 the toc or got. */
3266 #define makes_toc_func_call sec_flg3
3267
3268 /* Recursion protection when determining above flag. */
3269 #define call_check_in_progress sec_flg4
3270 #define call_check_done sec_flg5
3271
3272 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3273
3274 #define ppc_hash_table(p) \
3275 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3276 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3277
3278 #define ppc_stub_hash_lookup(table, string, create, copy) \
3279 ((struct ppc_stub_hash_entry *) \
3280 bfd_hash_lookup ((table), (string), (create), (copy)))
3281
3282 #define ppc_branch_hash_lookup(table, string, create, copy) \
3283 ((struct ppc_branch_hash_entry *) \
3284 bfd_hash_lookup ((table), (string), (create), (copy)))
3285
3286 /* Create an entry in the stub hash table. */
3287
3288 static struct bfd_hash_entry *
3289 stub_hash_newfunc (struct bfd_hash_entry *entry,
3290 struct bfd_hash_table *table,
3291 const char *string)
3292 {
3293 /* Allocate the structure if it has not already been allocated by a
3294 subclass. */
3295 if (entry == NULL)
3296 {
3297 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3298 if (entry == NULL)
3299 return entry;
3300 }
3301
3302 /* Call the allocation method of the superclass. */
3303 entry = bfd_hash_newfunc (entry, table, string);
3304 if (entry != NULL)
3305 {
3306 struct ppc_stub_hash_entry *eh;
3307
3308 /* Initialize the local fields. */
3309 eh = (struct ppc_stub_hash_entry *) entry;
3310 eh->stub_type = ppc_stub_none;
3311 eh->group = NULL;
3312 eh->stub_offset = 0;
3313 eh->target_value = 0;
3314 eh->target_section = NULL;
3315 eh->h = NULL;
3316 eh->plt_ent = NULL;
3317 eh->other = 0;
3318 }
3319
3320 return entry;
3321 }
3322
3323 /* Create an entry in the branch hash table. */
3324
3325 static struct bfd_hash_entry *
3326 branch_hash_newfunc (struct bfd_hash_entry *entry,
3327 struct bfd_hash_table *table,
3328 const char *string)
3329 {
3330 /* Allocate the structure if it has not already been allocated by a
3331 subclass. */
3332 if (entry == NULL)
3333 {
3334 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3335 if (entry == NULL)
3336 return entry;
3337 }
3338
3339 /* Call the allocation method of the superclass. */
3340 entry = bfd_hash_newfunc (entry, table, string);
3341 if (entry != NULL)
3342 {
3343 struct ppc_branch_hash_entry *eh;
3344
3345 /* Initialize the local fields. */
3346 eh = (struct ppc_branch_hash_entry *) entry;
3347 eh->offset = 0;
3348 eh->iter = 0;
3349 }
3350
3351 return entry;
3352 }
3353
3354 /* Create an entry in a ppc64 ELF linker hash table. */
3355
3356 static struct bfd_hash_entry *
3357 link_hash_newfunc (struct bfd_hash_entry *entry,
3358 struct bfd_hash_table *table,
3359 const char *string)
3360 {
3361 /* Allocate the structure if it has not already been allocated by a
3362 subclass. */
3363 if (entry == NULL)
3364 {
3365 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3366 if (entry == NULL)
3367 return entry;
3368 }
3369
3370 /* Call the allocation method of the superclass. */
3371 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3372 if (entry != NULL)
3373 {
3374 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3375
3376 memset (&eh->u.stub_cache, 0,
3377 (sizeof (struct ppc_link_hash_entry)
3378 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3379
3380 /* When making function calls, old ABI code references function entry
3381 points (dot symbols), while new ABI code references the function
3382 descriptor symbol. We need to make any combination of reference and
3383 definition work together, without breaking archive linking.
3384
3385 For a defined function "foo" and an undefined call to "bar":
3386 An old object defines "foo" and ".foo", references ".bar" (possibly
3387 "bar" too).
3388 A new object defines "foo" and references "bar".
3389
3390 A new object thus has no problem with its undefined symbols being
3391 satisfied by definitions in an old object. On the other hand, the
3392 old object won't have ".bar" satisfied by a new object.
3393
3394 Keep a list of newly added dot-symbols. */
3395
3396 if (string[0] == '.')
3397 {
3398 struct ppc_link_hash_table *htab;
3399
3400 htab = (struct ppc_link_hash_table *) table;
3401 eh->u.next_dot_sym = htab->dot_syms;
3402 htab->dot_syms = eh;
3403 }
3404 }
3405
3406 return entry;
3407 }
3408
3409 struct tocsave_entry
3410 {
3411 asection *sec;
3412 bfd_vma offset;
3413 };
3414
3415 static hashval_t
3416 tocsave_htab_hash (const void *p)
3417 {
3418 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3419 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3420 }
3421
3422 static int
3423 tocsave_htab_eq (const void *p1, const void *p2)
3424 {
3425 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3426 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3427 return e1->sec == e2->sec && e1->offset == e2->offset;
3428 }
3429
3430 /* Destroy a ppc64 ELF linker hash table. */
3431
3432 static void
3433 ppc64_elf_link_hash_table_free (bfd *obfd)
3434 {
3435 struct ppc_link_hash_table *htab;
3436
3437 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3438 if (htab->tocsave_htab)
3439 htab_delete (htab->tocsave_htab);
3440 bfd_hash_table_free (&htab->branch_hash_table);
3441 bfd_hash_table_free (&htab->stub_hash_table);
3442 _bfd_elf_link_hash_table_free (obfd);
3443 }
3444
3445 /* Create a ppc64 ELF linker hash table. */
3446
3447 static struct bfd_link_hash_table *
3448 ppc64_elf_link_hash_table_create (bfd *abfd)
3449 {
3450 struct ppc_link_hash_table *htab;
3451 size_t amt = sizeof (struct ppc_link_hash_table);
3452
3453 htab = bfd_zmalloc (amt);
3454 if (htab == NULL)
3455 return NULL;
3456
3457 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3458 sizeof (struct ppc_link_hash_entry),
3459 PPC64_ELF_DATA))
3460 {
3461 free (htab);
3462 return NULL;
3463 }
3464
3465 /* Init the stub hash table too. */
3466 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3467 sizeof (struct ppc_stub_hash_entry)))
3468 {
3469 _bfd_elf_link_hash_table_free (abfd);
3470 return NULL;
3471 }
3472
3473 /* And the branch hash table. */
3474 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3475 sizeof (struct ppc_branch_hash_entry)))
3476 {
3477 bfd_hash_table_free (&htab->stub_hash_table);
3478 _bfd_elf_link_hash_table_free (abfd);
3479 return NULL;
3480 }
3481
3482 htab->tocsave_htab = htab_try_create (1024,
3483 tocsave_htab_hash,
3484 tocsave_htab_eq,
3485 NULL);
3486 if (htab->tocsave_htab == NULL)
3487 {
3488 ppc64_elf_link_hash_table_free (abfd);
3489 return NULL;
3490 }
3491 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3492
3493 /* Initializing two fields of the union is just cosmetic. We really
3494 only care about glist, but when compiled on a 32-bit host the
3495 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3496 debugger inspection of these fields look nicer. */
3497 htab->elf.init_got_refcount.refcount = 0;
3498 htab->elf.init_got_refcount.glist = NULL;
3499 htab->elf.init_plt_refcount.refcount = 0;
3500 htab->elf.init_plt_refcount.glist = NULL;
3501 htab->elf.init_got_offset.offset = 0;
3502 htab->elf.init_got_offset.glist = NULL;
3503 htab->elf.init_plt_offset.offset = 0;
3504 htab->elf.init_plt_offset.glist = NULL;
3505
3506 return &htab->elf.root;
3507 }
3508
3509 /* Create sections for linker generated code. */
3510
3511 static bfd_boolean
3512 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3513 {
3514 struct ppc_link_hash_table *htab;
3515 flagword flags;
3516
3517 htab = ppc_hash_table (info);
3518
3519 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3520 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3521 if (htab->params->save_restore_funcs)
3522 {
3523 /* Create .sfpr for code to save and restore fp regs. */
3524 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3525 flags);
3526 if (htab->sfpr == NULL
3527 || !bfd_set_section_alignment (htab->sfpr, 2))
3528 return FALSE;
3529 }
3530
3531 if (bfd_link_relocatable (info))
3532 return TRUE;
3533
3534 /* Create .glink for lazy dynamic linking support. */
3535 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3536 flags);
3537 if (htab->glink == NULL
3538 || !bfd_set_section_alignment (htab->glink, 3))
3539 return FALSE;
3540
3541 /* The part of .glink used by global entry stubs, separate so that
3542 it can be aligned appropriately without affecting htab->glink. */
3543 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3544 flags);
3545 if (htab->global_entry == NULL
3546 || !bfd_set_section_alignment (htab->global_entry, 2))
3547 return FALSE;
3548
3549 if (!info->no_ld_generated_unwind_info)
3550 {
3551 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3552 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3553 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3554 ".eh_frame",
3555 flags);
3556 if (htab->glink_eh_frame == NULL
3557 || !bfd_set_section_alignment (htab->glink_eh_frame, 2))
3558 return FALSE;
3559 }
3560
3561 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3562 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3563 if (htab->elf.iplt == NULL
3564 || !bfd_set_section_alignment (htab->elf.iplt, 3))
3565 return FALSE;
3566
3567 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3568 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3569 htab->elf.irelplt
3570 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3571 if (htab->elf.irelplt == NULL
3572 || !bfd_set_section_alignment (htab->elf.irelplt, 3))
3573 return FALSE;
3574
3575 /* Create branch lookup table for plt_branch stubs. */
3576 flags = (SEC_ALLOC | SEC_LOAD
3577 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3578 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3579 flags);
3580 if (htab->brlt == NULL
3581 || !bfd_set_section_alignment (htab->brlt, 3))
3582 return FALSE;
3583
3584 /* Local plt entries, put in .branch_lt but a separate section for
3585 convenience. */
3586 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3587 flags);
3588 if (htab->pltlocal == NULL
3589 || !bfd_set_section_alignment (htab->pltlocal, 3))
3590 return FALSE;
3591
3592 if (!bfd_link_pic (info))
3593 return TRUE;
3594
3595 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3596 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3597 htab->relbrlt
3598 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3599 if (htab->relbrlt == NULL
3600 || !bfd_set_section_alignment (htab->relbrlt, 3))
3601 return FALSE;
3602
3603 htab->relpltlocal
3604 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3605 if (htab->relpltlocal == NULL
3606 || !bfd_set_section_alignment (htab->relpltlocal, 3))
3607 return FALSE;
3608
3609 return TRUE;
3610 }
3611
3612 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3613
3614 bfd_boolean
3615 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3616 struct ppc64_elf_params *params)
3617 {
3618 struct ppc_link_hash_table *htab;
3619
3620 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3621
3622 /* Always hook our dynamic sections into the first bfd, which is the
3623 linker created stub bfd. This ensures that the GOT header is at
3624 the start of the output TOC section. */
3625 htab = ppc_hash_table (info);
3626 htab->elf.dynobj = params->stub_bfd;
3627 htab->params = params;
3628
3629 return create_linkage_sections (htab->elf.dynobj, info);
3630 }
3631
3632 /* Build a name for an entry in the stub hash table. */
3633
3634 static char *
3635 ppc_stub_name (const asection *input_section,
3636 const asection *sym_sec,
3637 const struct ppc_link_hash_entry *h,
3638 const Elf_Internal_Rela *rel)
3639 {
3640 char *stub_name;
3641 ssize_t len;
3642
3643 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3644 offsets from a sym as a branch target? In fact, we could
3645 probably assume the addend is always zero. */
3646 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3647
3648 if (h)
3649 {
3650 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3651 stub_name = bfd_malloc (len);
3652 if (stub_name == NULL)
3653 return stub_name;
3654
3655 len = sprintf (stub_name, "%08x.%s+%x",
3656 input_section->id & 0xffffffff,
3657 h->elf.root.root.string,
3658 (int) rel->r_addend & 0xffffffff);
3659 }
3660 else
3661 {
3662 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3663 stub_name = bfd_malloc (len);
3664 if (stub_name == NULL)
3665 return stub_name;
3666
3667 len = sprintf (stub_name, "%08x.%x:%x+%x",
3668 input_section->id & 0xffffffff,
3669 sym_sec->id & 0xffffffff,
3670 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3671 (int) rel->r_addend & 0xffffffff);
3672 }
3673 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3674 stub_name[len - 2] = 0;
3675 return stub_name;
3676 }
3677
3678 /* Look up an entry in the stub hash. Stub entries are cached because
3679 creating the stub name takes a bit of time. */
3680
3681 static struct ppc_stub_hash_entry *
3682 ppc_get_stub_entry (const asection *input_section,
3683 const asection *sym_sec,
3684 struct ppc_link_hash_entry *h,
3685 const Elf_Internal_Rela *rel,
3686 struct ppc_link_hash_table *htab)
3687 {
3688 struct ppc_stub_hash_entry *stub_entry;
3689 struct map_stub *group;
3690
3691 /* If this input section is part of a group of sections sharing one
3692 stub section, then use the id of the first section in the group.
3693 Stub names need to include a section id, as there may well be
3694 more than one stub used to reach say, printf, and we need to
3695 distinguish between them. */
3696 group = htab->sec_info[input_section->id].u.group;
3697 if (group == NULL)
3698 return NULL;
3699
3700 if (h != NULL && h->u.stub_cache != NULL
3701 && h->u.stub_cache->h == h
3702 && h->u.stub_cache->group == group)
3703 {
3704 stub_entry = h->u.stub_cache;
3705 }
3706 else
3707 {
3708 char *stub_name;
3709
3710 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3711 if (stub_name == NULL)
3712 return NULL;
3713
3714 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3715 stub_name, FALSE, FALSE);
3716 if (h != NULL)
3717 h->u.stub_cache = stub_entry;
3718
3719 free (stub_name);
3720 }
3721
3722 return stub_entry;
3723 }
3724
3725 /* Add a new stub entry to the stub hash. Not all fields of the new
3726 stub entry are initialised. */
3727
3728 static struct ppc_stub_hash_entry *
3729 ppc_add_stub (const char *stub_name,
3730 asection *section,
3731 struct bfd_link_info *info)
3732 {
3733 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3734 struct map_stub *group;
3735 asection *link_sec;
3736 asection *stub_sec;
3737 struct ppc_stub_hash_entry *stub_entry;
3738
3739 group = htab->sec_info[section->id].u.group;
3740 link_sec = group->link_sec;
3741 stub_sec = group->stub_sec;
3742 if (stub_sec == NULL)
3743 {
3744 size_t namelen;
3745 bfd_size_type len;
3746 char *s_name;
3747
3748 namelen = strlen (link_sec->name);
3749 len = namelen + sizeof (STUB_SUFFIX);
3750 s_name = bfd_alloc (htab->params->stub_bfd, len);
3751 if (s_name == NULL)
3752 return NULL;
3753
3754 memcpy (s_name, link_sec->name, namelen);
3755 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3756 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3757 if (stub_sec == NULL)
3758 return NULL;
3759 group->stub_sec = stub_sec;
3760 }
3761
3762 /* Enter this entry into the linker stub hash table. */
3763 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3764 TRUE, FALSE);
3765 if (stub_entry == NULL)
3766 {
3767 /* xgettext:c-format */
3768 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3769 section->owner, stub_name);
3770 return NULL;
3771 }
3772
3773 stub_entry->group = group;
3774 stub_entry->stub_offset = 0;
3775 return stub_entry;
3776 }
3777
3778 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3779 not already done. */
3780
3781 static bfd_boolean
3782 create_got_section (bfd *abfd, struct bfd_link_info *info)
3783 {
3784 asection *got, *relgot;
3785 flagword flags;
3786 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3787
3788 if (!is_ppc64_elf (abfd))
3789 return FALSE;
3790 if (htab == NULL)
3791 return FALSE;
3792
3793 if (!htab->elf.sgot
3794 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3795 return FALSE;
3796
3797 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3798 | SEC_LINKER_CREATED);
3799
3800 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3801 if (!got
3802 || !bfd_set_section_alignment (got, 3))
3803 return FALSE;
3804
3805 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3806 flags | SEC_READONLY);
3807 if (!relgot
3808 || !bfd_set_section_alignment (relgot, 3))
3809 return FALSE;
3810
3811 ppc64_elf_tdata (abfd)->got = got;
3812 ppc64_elf_tdata (abfd)->relgot = relgot;
3813 return TRUE;
3814 }
3815
3816 /* Follow indirect and warning symbol links. */
3817
3818 static inline struct bfd_link_hash_entry *
3819 follow_link (struct bfd_link_hash_entry *h)
3820 {
3821 while (h->type == bfd_link_hash_indirect
3822 || h->type == bfd_link_hash_warning)
3823 h = h->u.i.link;
3824 return h;
3825 }
3826
3827 static inline struct elf_link_hash_entry *
3828 elf_follow_link (struct elf_link_hash_entry *h)
3829 {
3830 return (struct elf_link_hash_entry *) follow_link (&h->root);
3831 }
3832
3833 static inline struct ppc_link_hash_entry *
3834 ppc_follow_link (struct ppc_link_hash_entry *h)
3835 {
3836 return ppc_elf_hash_entry (elf_follow_link (&h->elf));
3837 }
3838
3839 /* Merge PLT info on FROM with that on TO. */
3840
3841 static void
3842 move_plt_plist (struct ppc_link_hash_entry *from,
3843 struct ppc_link_hash_entry *to)
3844 {
3845 if (from->elf.plt.plist != NULL)
3846 {
3847 if (to->elf.plt.plist != NULL)
3848 {
3849 struct plt_entry **entp;
3850 struct plt_entry *ent;
3851
3852 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3853 {
3854 struct plt_entry *dent;
3855
3856 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3857 if (dent->addend == ent->addend)
3858 {
3859 dent->plt.refcount += ent->plt.refcount;
3860 *entp = ent->next;
3861 break;
3862 }
3863 if (dent == NULL)
3864 entp = &ent->next;
3865 }
3866 *entp = to->elf.plt.plist;
3867 }
3868
3869 to->elf.plt.plist = from->elf.plt.plist;
3870 from->elf.plt.plist = NULL;
3871 }
3872 }
3873
3874 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3875
3876 static void
3877 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3878 struct elf_link_hash_entry *dir,
3879 struct elf_link_hash_entry *ind)
3880 {
3881 struct ppc_link_hash_entry *edir, *eind;
3882
3883 edir = ppc_elf_hash_entry (dir);
3884 eind = ppc_elf_hash_entry (ind);
3885
3886 edir->is_func |= eind->is_func;
3887 edir->is_func_descriptor |= eind->is_func_descriptor;
3888 edir->tls_mask |= eind->tls_mask;
3889 if (eind->oh != NULL)
3890 edir->oh = ppc_follow_link (eind->oh);
3891
3892 if (edir->elf.versioned != versioned_hidden)
3893 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3894 edir->elf.ref_regular |= eind->elf.ref_regular;
3895 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3896 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3897 edir->elf.needs_plt |= eind->elf.needs_plt;
3898 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3899
3900 /* If we were called to copy over info for a weak sym, don't copy
3901 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3902 in order to simplify readonly_dynrelocs and save a field in the
3903 symbol hash entry, but that means dyn_relocs can't be used in any
3904 tests about a specific symbol, or affect other symbol flags which
3905 are then tested. */
3906 if (eind->elf.root.type != bfd_link_hash_indirect)
3907 return;
3908
3909 /* Copy over any dynamic relocs we may have on the indirect sym. */
3910 if (eind->dyn_relocs != NULL)
3911 {
3912 if (edir->dyn_relocs != NULL)
3913 {
3914 struct elf_dyn_relocs **pp;
3915 struct elf_dyn_relocs *p;
3916
3917 /* Add reloc counts against the indirect sym to the direct sym
3918 list. Merge any entries against the same section. */
3919 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3920 {
3921 struct elf_dyn_relocs *q;
3922
3923 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3924 if (q->sec == p->sec)
3925 {
3926 q->pc_count += p->pc_count;
3927 q->count += p->count;
3928 *pp = p->next;
3929 break;
3930 }
3931 if (q == NULL)
3932 pp = &p->next;
3933 }
3934 *pp = edir->dyn_relocs;
3935 }
3936
3937 edir->dyn_relocs = eind->dyn_relocs;
3938 eind->dyn_relocs = NULL;
3939 }
3940
3941 /* Copy over got entries that we may have already seen to the
3942 symbol which just became indirect. */
3943 if (eind->elf.got.glist != NULL)
3944 {
3945 if (edir->elf.got.glist != NULL)
3946 {
3947 struct got_entry **entp;
3948 struct got_entry *ent;
3949
3950 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3951 {
3952 struct got_entry *dent;
3953
3954 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3955 if (dent->addend == ent->addend
3956 && dent->owner == ent->owner
3957 && dent->tls_type == ent->tls_type)
3958 {
3959 dent->got.refcount += ent->got.refcount;
3960 *entp = ent->next;
3961 break;
3962 }
3963 if (dent == NULL)
3964 entp = &ent->next;
3965 }
3966 *entp = edir->elf.got.glist;
3967 }
3968
3969 edir->elf.got.glist = eind->elf.got.glist;
3970 eind->elf.got.glist = NULL;
3971 }
3972
3973 /* And plt entries. */
3974 move_plt_plist (eind, edir);
3975
3976 if (eind->elf.dynindx != -1)
3977 {
3978 if (edir->elf.dynindx != -1)
3979 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
3980 edir->elf.dynstr_index);
3981 edir->elf.dynindx = eind->elf.dynindx;
3982 edir->elf.dynstr_index = eind->elf.dynstr_index;
3983 eind->elf.dynindx = -1;
3984 eind->elf.dynstr_index = 0;
3985 }
3986 }
3987
3988 /* Find the function descriptor hash entry from the given function code
3989 hash entry FH. Link the entries via their OH fields. */
3990
3991 static struct ppc_link_hash_entry *
3992 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3993 {
3994 struct ppc_link_hash_entry *fdh = fh->oh;
3995
3996 if (fdh == NULL)
3997 {
3998 const char *fd_name = fh->elf.root.root.string + 1;
3999
4000 fdh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, fd_name,
4001 FALSE, FALSE, FALSE));
4002 if (fdh == NULL)
4003 return fdh;
4004
4005 fdh->is_func_descriptor = 1;
4006 fdh->oh = fh;
4007 fh->is_func = 1;
4008 fh->oh = fdh;
4009 }
4010
4011 fdh = ppc_follow_link (fdh);
4012 fdh->is_func_descriptor = 1;
4013 fdh->oh = fh;
4014 return fdh;
4015 }
4016
4017 /* Make a fake function descriptor sym for the undefined code sym FH. */
4018
4019 static struct ppc_link_hash_entry *
4020 make_fdh (struct bfd_link_info *info,
4021 struct ppc_link_hash_entry *fh)
4022 {
4023 bfd *abfd = fh->elf.root.u.undef.abfd;
4024 struct bfd_link_hash_entry *bh = NULL;
4025 struct ppc_link_hash_entry *fdh;
4026 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
4027 ? BSF_WEAK
4028 : BSF_GLOBAL);
4029
4030 if (!_bfd_generic_link_add_one_symbol (info, abfd,
4031 fh->elf.root.root.string + 1,
4032 flags, bfd_und_section_ptr, 0,
4033 NULL, FALSE, FALSE, &bh))
4034 return NULL;
4035
4036 fdh = (struct ppc_link_hash_entry *) bh;
4037 fdh->elf.non_elf = 0;
4038 fdh->fake = 1;
4039 fdh->is_func_descriptor = 1;
4040 fdh->oh = fh;
4041 fh->is_func = 1;
4042 fh->oh = fdh;
4043 return fdh;
4044 }
4045
4046 /* Fix function descriptor symbols defined in .opd sections to be
4047 function type. */
4048
4049 static bfd_boolean
4050 ppc64_elf_add_symbol_hook (bfd *ibfd,
4051 struct bfd_link_info *info,
4052 Elf_Internal_Sym *isym,
4053 const char **name,
4054 flagword *flags ATTRIBUTE_UNUSED,
4055 asection **sec,
4056 bfd_vma *value)
4057 {
4058 if (*sec != NULL
4059 && strcmp ((*sec)->name, ".opd") == 0)
4060 {
4061 asection *code_sec;
4062
4063 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4064 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4065 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4066
4067 /* If the symbol is a function defined in .opd, and the function
4068 code is in a discarded group, let it appear to be undefined. */
4069 if (!bfd_link_relocatable (info)
4070 && (*sec)->reloc_count != 0
4071 && opd_entry_value (*sec, *value, &code_sec, NULL,
4072 FALSE) != (bfd_vma) -1
4073 && discarded_section (code_sec))
4074 {
4075 *sec = bfd_und_section_ptr;
4076 isym->st_shndx = SHN_UNDEF;
4077 }
4078 }
4079 else if (*sec != NULL
4080 && strcmp ((*sec)->name, ".toc") == 0
4081 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4082 {
4083 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4084 if (htab != NULL)
4085 htab->params->object_in_toc = 1;
4086 }
4087
4088 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4089 {
4090 if (abiversion (ibfd) == 0)
4091 set_abiversion (ibfd, 2);
4092 else if (abiversion (ibfd) == 1)
4093 {
4094 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4095 " for ABI version 1"), *name);
4096 bfd_set_error (bfd_error_bad_value);
4097 return FALSE;
4098 }
4099 }
4100
4101 return TRUE;
4102 }
4103
4104 /* Merge non-visibility st_other attributes: local entry point. */
4105
4106 static void
4107 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4108 const Elf_Internal_Sym *isym,
4109 bfd_boolean definition,
4110 bfd_boolean dynamic)
4111 {
4112 if (definition && (!dynamic || !h->def_regular))
4113 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4114 | ELF_ST_VISIBILITY (h->other));
4115 }
4116
4117 /* Hook called on merging a symbol. We use this to clear "fake" since
4118 we now have a real symbol. */
4119
4120 static bfd_boolean
4121 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4122 const Elf_Internal_Sym *isym,
4123 asection **psec ATTRIBUTE_UNUSED,
4124 bfd_boolean newdef ATTRIBUTE_UNUSED,
4125 bfd_boolean olddef ATTRIBUTE_UNUSED,
4126 bfd *oldbfd ATTRIBUTE_UNUSED,
4127 const asection *oldsec ATTRIBUTE_UNUSED)
4128 {
4129 ppc_elf_hash_entry (h)->fake = 0;
4130 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4131 ppc_elf_hash_entry (h)->non_zero_localentry = 1;
4132 return TRUE;
4133 }
4134
4135 /* This function makes an old ABI object reference to ".bar" cause the
4136 inclusion of a new ABI object archive that defines "bar".
4137 NAME is a symbol defined in an archive. Return a symbol in the hash
4138 table that might be satisfied by the archive symbols. */
4139
4140 static struct elf_link_hash_entry *
4141 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4142 struct bfd_link_info *info,
4143 const char *name)
4144 {
4145 struct elf_link_hash_entry *h;
4146 char *dot_name;
4147 size_t len;
4148
4149 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4150 if (h != NULL
4151 /* Don't return this sym if it is a fake function descriptor
4152 created by add_symbol_adjust. */
4153 && !ppc_elf_hash_entry (h)->fake)
4154 return h;
4155
4156 if (name[0] == '.')
4157 return h;
4158
4159 len = strlen (name);
4160 dot_name = bfd_alloc (abfd, len + 2);
4161 if (dot_name == NULL)
4162 return (struct elf_link_hash_entry *) -1;
4163 dot_name[0] = '.';
4164 memcpy (dot_name + 1, name, len + 1);
4165 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4166 bfd_release (abfd, dot_name);
4167 if (h != NULL)
4168 return h;
4169
4170 if (strcmp (name, "__tls_get_addr_opt") == 0)
4171 h = _bfd_elf_archive_symbol_lookup (abfd, info, "__tls_get_addr_desc");
4172 return h;
4173 }
4174
4175 /* This function satisfies all old ABI object references to ".bar" if a
4176 new ABI object defines "bar". Well, at least, undefined dot symbols
4177 are made weak. This stops later archive searches from including an
4178 object if we already have a function descriptor definition. It also
4179 prevents the linker complaining about undefined symbols.
4180 We also check and correct mismatched symbol visibility here. The
4181 most restrictive visibility of the function descriptor and the
4182 function entry symbol is used. */
4183
4184 static bfd_boolean
4185 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4186 {
4187 struct ppc_link_hash_table *htab;
4188 struct ppc_link_hash_entry *fdh;
4189
4190 if (eh->elf.root.type == bfd_link_hash_warning)
4191 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4192
4193 if (eh->elf.root.type == bfd_link_hash_indirect)
4194 return TRUE;
4195
4196 if (eh->elf.root.root.string[0] != '.')
4197 abort ();
4198
4199 htab = ppc_hash_table (info);
4200 if (htab == NULL)
4201 return FALSE;
4202
4203 fdh = lookup_fdh (eh, htab);
4204 if (fdh == NULL
4205 && !bfd_link_relocatable (info)
4206 && (eh->elf.root.type == bfd_link_hash_undefined
4207 || eh->elf.root.type == bfd_link_hash_undefweak)
4208 && eh->elf.ref_regular)
4209 {
4210 /* Make an undefined function descriptor sym, in order to
4211 pull in an --as-needed shared lib. Archives are handled
4212 elsewhere. */
4213 fdh = make_fdh (info, eh);
4214 if (fdh == NULL)
4215 return FALSE;
4216 }
4217
4218 if (fdh != NULL)
4219 {
4220 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4221 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4222
4223 /* Make both descriptor and entry symbol have the most
4224 constraining visibility of either symbol. */
4225 if (entry_vis < descr_vis)
4226 fdh->elf.other += entry_vis - descr_vis;
4227 else if (entry_vis > descr_vis)
4228 eh->elf.other += descr_vis - entry_vis;
4229
4230 /* Propagate reference flags from entry symbol to function
4231 descriptor symbol. */
4232 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4233 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4234 fdh->elf.ref_regular |= eh->elf.ref_regular;
4235 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4236
4237 if (!fdh->elf.forced_local
4238 && fdh->elf.dynindx == -1
4239 && fdh->elf.versioned != versioned_hidden
4240 && (bfd_link_dll (info)
4241 || fdh->elf.def_dynamic
4242 || fdh->elf.ref_dynamic)
4243 && (eh->elf.ref_regular
4244 || eh->elf.def_regular))
4245 {
4246 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4247 return FALSE;
4248 }
4249 }
4250
4251 return TRUE;
4252 }
4253
4254 /* Set up opd section info and abiversion for IBFD, and process list
4255 of dot-symbols we made in link_hash_newfunc. */
4256
4257 static bfd_boolean
4258 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4259 {
4260 struct ppc_link_hash_table *htab;
4261 struct ppc_link_hash_entry **p, *eh;
4262 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4263
4264 if (opd != NULL && opd->size != 0)
4265 {
4266 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4267 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4268
4269 if (abiversion (ibfd) == 0)
4270 set_abiversion (ibfd, 1);
4271 else if (abiversion (ibfd) >= 2)
4272 {
4273 /* xgettext:c-format */
4274 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4275 ibfd, abiversion (ibfd));
4276 bfd_set_error (bfd_error_bad_value);
4277 return FALSE;
4278 }
4279 }
4280
4281 if (is_ppc64_elf (info->output_bfd))
4282 {
4283 /* For input files without an explicit abiversion in e_flags
4284 we should have flagged any with symbol st_other bits set
4285 as ELFv1 and above flagged those with .opd as ELFv2.
4286 Set the output abiversion if not yet set, and for any input
4287 still ambiguous, take its abiversion from the output.
4288 Differences in ABI are reported later. */
4289 if (abiversion (info->output_bfd) == 0)
4290 set_abiversion (info->output_bfd, abiversion (ibfd));
4291 else if (abiversion (ibfd) == 0)
4292 set_abiversion (ibfd, abiversion (info->output_bfd));
4293 }
4294
4295 htab = ppc_hash_table (info);
4296 if (htab == NULL)
4297 return TRUE;
4298
4299 if (opd != NULL && opd->size != 0
4300 && (ibfd->flags & DYNAMIC) == 0
4301 && (opd->flags & SEC_RELOC) != 0
4302 && opd->reloc_count != 0
4303 && !bfd_is_abs_section (opd->output_section)
4304 && info->gc_sections)
4305 {
4306 /* Garbage collection needs some extra help with .opd sections.
4307 We don't want to necessarily keep everything referenced by
4308 relocs in .opd, as that would keep all functions. Instead,
4309 if we reference an .opd symbol (a function descriptor), we
4310 want to keep the function code symbol's section. This is
4311 easy for global symbols, but for local syms we need to keep
4312 information about the associated function section. */
4313 bfd_size_type amt;
4314 asection **opd_sym_map;
4315 Elf_Internal_Shdr *symtab_hdr;
4316 Elf_Internal_Rela *relocs, *rel_end, *rel;
4317
4318 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4319 opd_sym_map = bfd_zalloc (ibfd, amt);
4320 if (opd_sym_map == NULL)
4321 return FALSE;
4322 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4323 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4324 info->keep_memory);
4325 if (relocs == NULL)
4326 return FALSE;
4327 symtab_hdr = &elf_symtab_hdr (ibfd);
4328 rel_end = relocs + opd->reloc_count - 1;
4329 for (rel = relocs; rel < rel_end; rel++)
4330 {
4331 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4332 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4333
4334 if (r_type == R_PPC64_ADDR64
4335 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4336 && r_symndx < symtab_hdr->sh_info)
4337 {
4338 Elf_Internal_Sym *isym;
4339 asection *s;
4340
4341 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, r_symndx);
4342 if (isym == NULL)
4343 {
4344 if (elf_section_data (opd)->relocs != relocs)
4345 free (relocs);
4346 return FALSE;
4347 }
4348
4349 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4350 if (s != NULL && s != opd)
4351 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4352 }
4353 }
4354 if (elf_section_data (opd)->relocs != relocs)
4355 free (relocs);
4356 }
4357
4358 p = &htab->dot_syms;
4359 while ((eh = *p) != NULL)
4360 {
4361 *p = NULL;
4362 if (&eh->elf == htab->elf.hgot)
4363 ;
4364 else if (htab->elf.hgot == NULL
4365 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4366 htab->elf.hgot = &eh->elf;
4367 else if (abiversion (ibfd) <= 1)
4368 {
4369 htab->need_func_desc_adj = 1;
4370 if (!add_symbol_adjust (eh, info))
4371 return FALSE;
4372 }
4373 p = &eh->u.next_dot_sym;
4374 }
4375 return TRUE;
4376 }
4377
4378 /* Undo hash table changes when an --as-needed input file is determined
4379 not to be needed. */
4380
4381 static bfd_boolean
4382 ppc64_elf_notice_as_needed (bfd *ibfd,
4383 struct bfd_link_info *info,
4384 enum notice_asneeded_action act)
4385 {
4386 if (act == notice_not_needed)
4387 {
4388 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4389
4390 if (htab == NULL)
4391 return FALSE;
4392
4393 htab->dot_syms = NULL;
4394 }
4395 return _bfd_elf_notice_as_needed (ibfd, info, act);
4396 }
4397
4398 /* If --just-symbols against a final linked binary, then assume we need
4399 toc adjusting stubs when calling functions defined there. */
4400
4401 static void
4402 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4403 {
4404 if ((sec->flags & SEC_CODE) != 0
4405 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4406 && is_ppc64_elf (sec->owner))
4407 {
4408 if (abiversion (sec->owner) >= 2
4409 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4410 sec->has_toc_reloc = 1;
4411 }
4412 _bfd_elf_link_just_syms (sec, info);
4413 }
4414
4415 static struct plt_entry **
4416 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4417 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4418 {
4419 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4420 struct plt_entry **local_plt;
4421 unsigned char *local_got_tls_masks;
4422
4423 if (local_got_ents == NULL)
4424 {
4425 bfd_size_type size = symtab_hdr->sh_info;
4426
4427 size *= (sizeof (*local_got_ents)
4428 + sizeof (*local_plt)
4429 + sizeof (*local_got_tls_masks));
4430 local_got_ents = bfd_zalloc (abfd, size);
4431 if (local_got_ents == NULL)
4432 return NULL;
4433 elf_local_got_ents (abfd) = local_got_ents;
4434 }
4435
4436 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4437 {
4438 struct got_entry *ent;
4439
4440 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4441 if (ent->addend == r_addend
4442 && ent->owner == abfd
4443 && ent->tls_type == tls_type)
4444 break;
4445 if (ent == NULL)
4446 {
4447 size_t amt = sizeof (*ent);
4448 ent = bfd_alloc (abfd, amt);
4449 if (ent == NULL)
4450 return FALSE;
4451 ent->next = local_got_ents[r_symndx];
4452 ent->addend = r_addend;
4453 ent->owner = abfd;
4454 ent->tls_type = tls_type;
4455 ent->is_indirect = FALSE;
4456 ent->got.refcount = 0;
4457 local_got_ents[r_symndx] = ent;
4458 }
4459 ent->got.refcount += 1;
4460 }
4461
4462 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4463 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4464 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4465
4466 return local_plt + r_symndx;
4467 }
4468
4469 static bfd_boolean
4470 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4471 {
4472 struct plt_entry *ent;
4473
4474 for (ent = *plist; ent != NULL; ent = ent->next)
4475 if (ent->addend == addend)
4476 break;
4477 if (ent == NULL)
4478 {
4479 size_t amt = sizeof (*ent);
4480 ent = bfd_alloc (abfd, amt);
4481 if (ent == NULL)
4482 return FALSE;
4483 ent->next = *plist;
4484 ent->addend = addend;
4485 ent->plt.refcount = 0;
4486 *plist = ent;
4487 }
4488 ent->plt.refcount += 1;
4489 return TRUE;
4490 }
4491
4492 static bfd_boolean
4493 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4494 {
4495 return (r_type == R_PPC64_REL24
4496 || r_type == R_PPC64_REL24_NOTOC
4497 || r_type == R_PPC64_REL14
4498 || r_type == R_PPC64_REL14_BRTAKEN
4499 || r_type == R_PPC64_REL14_BRNTAKEN
4500 || r_type == R_PPC64_ADDR24
4501 || r_type == R_PPC64_ADDR14
4502 || r_type == R_PPC64_ADDR14_BRTAKEN
4503 || r_type == R_PPC64_ADDR14_BRNTAKEN
4504 || r_type == R_PPC64_PLTCALL
4505 || r_type == R_PPC64_PLTCALL_NOTOC);
4506 }
4507
4508 /* Relocs on inline plt call sequence insns prior to the call. */
4509
4510 static bfd_boolean
4511 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4512 {
4513 return (r_type == R_PPC64_PLT16_HA
4514 || r_type == R_PPC64_PLT16_HI
4515 || r_type == R_PPC64_PLT16_LO
4516 || r_type == R_PPC64_PLT16_LO_DS
4517 || r_type == R_PPC64_PLT_PCREL34
4518 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4519 || r_type == R_PPC64_PLTSEQ
4520 || r_type == R_PPC64_PLTSEQ_NOTOC);
4521 }
4522
4523 /* Look through the relocs for a section during the first phase, and
4524 calculate needed space in the global offset table, procedure
4525 linkage table, and dynamic reloc sections. */
4526
4527 static bfd_boolean
4528 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4529 asection *sec, const Elf_Internal_Rela *relocs)
4530 {
4531 struct ppc_link_hash_table *htab;
4532 Elf_Internal_Shdr *symtab_hdr;
4533 struct elf_link_hash_entry **sym_hashes;
4534 const Elf_Internal_Rela *rel;
4535 const Elf_Internal_Rela *rel_end;
4536 asection *sreloc;
4537 struct elf_link_hash_entry *tga, *dottga;
4538 bfd_boolean is_opd;
4539
4540 if (bfd_link_relocatable (info))
4541 return TRUE;
4542
4543 /* Don't do anything special with non-loaded, non-alloced sections.
4544 In particular, any relocs in such sections should not affect GOT
4545 and PLT reference counting (ie. we don't allow them to create GOT
4546 or PLT entries), there's no possibility or desire to optimize TLS
4547 relocs, and there's not much point in propagating relocs to shared
4548 libs that the dynamic linker won't relocate. */
4549 if ((sec->flags & SEC_ALLOC) == 0)
4550 return TRUE;
4551
4552 BFD_ASSERT (is_ppc64_elf (abfd));
4553
4554 htab = ppc_hash_table (info);
4555 if (htab == NULL)
4556 return FALSE;
4557
4558 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4559 FALSE, FALSE, TRUE);
4560 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4561 FALSE, FALSE, TRUE);
4562 symtab_hdr = &elf_symtab_hdr (abfd);
4563 sym_hashes = elf_sym_hashes (abfd);
4564 sreloc = NULL;
4565 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4566 rel_end = relocs + sec->reloc_count;
4567 for (rel = relocs; rel < rel_end; rel++)
4568 {
4569 unsigned long r_symndx;
4570 struct elf_link_hash_entry *h;
4571 enum elf_ppc64_reloc_type r_type;
4572 int tls_type;
4573 struct _ppc64_elf_section_data *ppc64_sec;
4574 struct plt_entry **ifunc, **plt_list;
4575
4576 r_symndx = ELF64_R_SYM (rel->r_info);
4577 if (r_symndx < symtab_hdr->sh_info)
4578 h = NULL;
4579 else
4580 {
4581 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4582 h = elf_follow_link (h);
4583
4584 if (h == htab->elf.hgot)
4585 sec->has_toc_reloc = 1;
4586 }
4587
4588 r_type = ELF64_R_TYPE (rel->r_info);
4589 switch (r_type)
4590 {
4591 case R_PPC64_D34:
4592 case R_PPC64_D34_LO:
4593 case R_PPC64_D34_HI30:
4594 case R_PPC64_D34_HA30:
4595 case R_PPC64_D28:
4596 case R_PPC64_TPREL34:
4597 case R_PPC64_DTPREL34:
4598 case R_PPC64_PCREL34:
4599 case R_PPC64_GOT_PCREL34:
4600 case R_PPC64_GOT_TLSGD34:
4601 case R_PPC64_GOT_TLSLD34:
4602 case R_PPC64_GOT_TPREL34:
4603 case R_PPC64_GOT_DTPREL34:
4604 case R_PPC64_PLT_PCREL34:
4605 case R_PPC64_PLT_PCREL34_NOTOC:
4606 case R_PPC64_PCREL28:
4607 htab->powerxx_stubs = 1;
4608 break;
4609 default:
4610 break;
4611 }
4612
4613 switch (r_type)
4614 {
4615 case R_PPC64_PLT16_HA:
4616 case R_PPC64_GOT_TLSLD16_HA:
4617 case R_PPC64_GOT_TLSGD16_HA:
4618 case R_PPC64_GOT_TPREL16_HA:
4619 case R_PPC64_GOT_DTPREL16_HA:
4620 case R_PPC64_GOT16_HA:
4621 case R_PPC64_TOC16_HA:
4622 case R_PPC64_PLT16_LO:
4623 case R_PPC64_PLT16_LO_DS:
4624 case R_PPC64_GOT_TLSLD16_LO:
4625 case R_PPC64_GOT_TLSGD16_LO:
4626 case R_PPC64_GOT_TPREL16_LO_DS:
4627 case R_PPC64_GOT_DTPREL16_LO_DS:
4628 case R_PPC64_GOT16_LO:
4629 case R_PPC64_GOT16_LO_DS:
4630 case R_PPC64_TOC16_LO:
4631 case R_PPC64_TOC16_LO_DS:
4632 case R_PPC64_GOT_PCREL34:
4633 ppc64_elf_tdata (abfd)->has_optrel = 1;
4634 ppc64_elf_section_data (sec)->has_optrel = 1;
4635 break;
4636 default:
4637 break;
4638 }
4639
4640 ifunc = NULL;
4641 if (h != NULL)
4642 {
4643 if (h->type == STT_GNU_IFUNC)
4644 {
4645 h->needs_plt = 1;
4646 ifunc = &h->plt.plist;
4647 }
4648 }
4649 else
4650 {
4651 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4652 abfd, r_symndx);
4653 if (isym == NULL)
4654 return FALSE;
4655
4656 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4657 {
4658 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4659 rel->r_addend,
4660 NON_GOT | PLT_IFUNC);
4661 if (ifunc == NULL)
4662 return FALSE;
4663 }
4664 }
4665
4666 tls_type = 0;
4667 switch (r_type)
4668 {
4669 case R_PPC64_TLSGD:
4670 case R_PPC64_TLSLD:
4671 /* These special tls relocs tie a call to __tls_get_addr with
4672 its parameter symbol. */
4673 if (h != NULL)
4674 ppc_elf_hash_entry (h)->tls_mask |= TLS_TLS | TLS_MARK;
4675 else
4676 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4677 rel->r_addend,
4678 NON_GOT | TLS_TLS | TLS_MARK))
4679 return FALSE;
4680 sec->has_tls_reloc = 1;
4681 break;
4682
4683 case R_PPC64_GOT_TLSLD16:
4684 case R_PPC64_GOT_TLSLD16_LO:
4685 case R_PPC64_GOT_TLSLD16_HI:
4686 case R_PPC64_GOT_TLSLD16_HA:
4687 case R_PPC64_GOT_TLSLD34:
4688 tls_type = TLS_TLS | TLS_LD;
4689 goto dogottls;
4690
4691 case R_PPC64_GOT_TLSGD16:
4692 case R_PPC64_GOT_TLSGD16_LO:
4693 case R_PPC64_GOT_TLSGD16_HI:
4694 case R_PPC64_GOT_TLSGD16_HA:
4695 case R_PPC64_GOT_TLSGD34:
4696 tls_type = TLS_TLS | TLS_GD;
4697 goto dogottls;
4698
4699 case R_PPC64_GOT_TPREL16_DS:
4700 case R_PPC64_GOT_TPREL16_LO_DS:
4701 case R_PPC64_GOT_TPREL16_HI:
4702 case R_PPC64_GOT_TPREL16_HA:
4703 case R_PPC64_GOT_TPREL34:
4704 if (bfd_link_dll (info))
4705 info->flags |= DF_STATIC_TLS;
4706 tls_type = TLS_TLS | TLS_TPREL;
4707 goto dogottls;
4708
4709 case R_PPC64_GOT_DTPREL16_DS:
4710 case R_PPC64_GOT_DTPREL16_LO_DS:
4711 case R_PPC64_GOT_DTPREL16_HI:
4712 case R_PPC64_GOT_DTPREL16_HA:
4713 case R_PPC64_GOT_DTPREL34:
4714 tls_type = TLS_TLS | TLS_DTPREL;
4715 dogottls:
4716 sec->has_tls_reloc = 1;
4717 goto dogot;
4718
4719 case R_PPC64_GOT16:
4720 case R_PPC64_GOT16_LO:
4721 case R_PPC64_GOT16_HI:
4722 case R_PPC64_GOT16_HA:
4723 case R_PPC64_GOT16_DS:
4724 case R_PPC64_GOT16_LO_DS:
4725 case R_PPC64_GOT_PCREL34:
4726 dogot:
4727 /* This symbol requires a global offset table entry. */
4728 sec->has_toc_reloc = 1;
4729 if (r_type == R_PPC64_GOT_TLSLD16
4730 || r_type == R_PPC64_GOT_TLSGD16
4731 || r_type == R_PPC64_GOT_TPREL16_DS
4732 || r_type == R_PPC64_GOT_DTPREL16_DS
4733 || r_type == R_PPC64_GOT16
4734 || r_type == R_PPC64_GOT16_DS)
4735 {
4736 htab->do_multi_toc = 1;
4737 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4738 }
4739
4740 if (ppc64_elf_tdata (abfd)->got == NULL
4741 && !create_got_section (abfd, info))
4742 return FALSE;
4743
4744 if (h != NULL)
4745 {
4746 struct ppc_link_hash_entry *eh;
4747 struct got_entry *ent;
4748
4749 eh = ppc_elf_hash_entry (h);
4750 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4751 if (ent->addend == rel->r_addend
4752 && ent->owner == abfd
4753 && ent->tls_type == tls_type)
4754 break;
4755 if (ent == NULL)
4756 {
4757 size_t amt = sizeof (*ent);
4758 ent = bfd_alloc (abfd, amt);
4759 if (ent == NULL)
4760 return FALSE;
4761 ent->next = eh->elf.got.glist;
4762 ent->addend = rel->r_addend;
4763 ent->owner = abfd;
4764 ent->tls_type = tls_type;
4765 ent->is_indirect = FALSE;
4766 ent->got.refcount = 0;
4767 eh->elf.got.glist = ent;
4768 }
4769 ent->got.refcount += 1;
4770 eh->tls_mask |= tls_type;
4771 }
4772 else
4773 /* This is a global offset table entry for a local symbol. */
4774 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4775 rel->r_addend, tls_type))
4776 return FALSE;
4777
4778 /* We may also need a plt entry if the symbol turns out to be
4779 an ifunc. */
4780 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1)
4781 {
4782 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
4783 return FALSE;
4784 }
4785 break;
4786
4787 case R_PPC64_PLT16_HA:
4788 case R_PPC64_PLT16_HI:
4789 case R_PPC64_PLT16_LO:
4790 case R_PPC64_PLT16_LO_DS:
4791 case R_PPC64_PLT_PCREL34:
4792 case R_PPC64_PLT_PCREL34_NOTOC:
4793 case R_PPC64_PLT32:
4794 case R_PPC64_PLT64:
4795 /* This symbol requires a procedure linkage table entry. */
4796 plt_list = ifunc;
4797 if (h != NULL)
4798 {
4799 h->needs_plt = 1;
4800 if (h->root.root.string[0] == '.'
4801 && h->root.root.string[1] != '\0')
4802 ppc_elf_hash_entry (h)->is_func = 1;
4803 ppc_elf_hash_entry (h)->tls_mask |= PLT_KEEP;
4804 plt_list = &h->plt.plist;
4805 }
4806 if (plt_list == NULL)
4807 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4808 rel->r_addend,
4809 NON_GOT | PLT_KEEP);
4810 if (!update_plt_info (abfd, plt_list, rel->r_addend))
4811 return FALSE;
4812 break;
4813
4814 /* The following relocations don't need to propagate the
4815 relocation if linking a shared object since they are
4816 section relative. */
4817 case R_PPC64_SECTOFF:
4818 case R_PPC64_SECTOFF_LO:
4819 case R_PPC64_SECTOFF_HI:
4820 case R_PPC64_SECTOFF_HA:
4821 case R_PPC64_SECTOFF_DS:
4822 case R_PPC64_SECTOFF_LO_DS:
4823 case R_PPC64_DTPREL16:
4824 case R_PPC64_DTPREL16_LO:
4825 case R_PPC64_DTPREL16_HI:
4826 case R_PPC64_DTPREL16_HA:
4827 case R_PPC64_DTPREL16_DS:
4828 case R_PPC64_DTPREL16_LO_DS:
4829 case R_PPC64_DTPREL16_HIGH:
4830 case R_PPC64_DTPREL16_HIGHA:
4831 case R_PPC64_DTPREL16_HIGHER:
4832 case R_PPC64_DTPREL16_HIGHERA:
4833 case R_PPC64_DTPREL16_HIGHEST:
4834 case R_PPC64_DTPREL16_HIGHESTA:
4835 break;
4836
4837 /* Nor do these. */
4838 case R_PPC64_REL16:
4839 case R_PPC64_REL16_LO:
4840 case R_PPC64_REL16_HI:
4841 case R_PPC64_REL16_HA:
4842 case R_PPC64_REL16_HIGH:
4843 case R_PPC64_REL16_HIGHA:
4844 case R_PPC64_REL16_HIGHER:
4845 case R_PPC64_REL16_HIGHERA:
4846 case R_PPC64_REL16_HIGHEST:
4847 case R_PPC64_REL16_HIGHESTA:
4848 case R_PPC64_REL16_HIGHER34:
4849 case R_PPC64_REL16_HIGHERA34:
4850 case R_PPC64_REL16_HIGHEST34:
4851 case R_PPC64_REL16_HIGHESTA34:
4852 case R_PPC64_REL16DX_HA:
4853 break;
4854
4855 /* Not supported as a dynamic relocation. */
4856 case R_PPC64_ADDR64_LOCAL:
4857 if (bfd_link_pic (info))
4858 {
4859 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4860 ppc_howto_init ();
4861 /* xgettext:c-format */
4862 info->callbacks->einfo (_("%H: %s reloc unsupported "
4863 "in shared libraries and PIEs\n"),
4864 abfd, sec, rel->r_offset,
4865 ppc64_elf_howto_table[r_type]->name);
4866 bfd_set_error (bfd_error_bad_value);
4867 return FALSE;
4868 }
4869 break;
4870
4871 case R_PPC64_TOC16:
4872 case R_PPC64_TOC16_DS:
4873 htab->do_multi_toc = 1;
4874 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4875 /* Fall through. */
4876 case R_PPC64_TOC16_LO:
4877 case R_PPC64_TOC16_HI:
4878 case R_PPC64_TOC16_HA:
4879 case R_PPC64_TOC16_LO_DS:
4880 sec->has_toc_reloc = 1;
4881 if (h != NULL && bfd_link_executable (info))
4882 {
4883 /* We may need a copy reloc. */
4884 h->non_got_ref = 1;
4885 /* Strongly prefer a copy reloc over a dynamic reloc.
4886 glibc ld.so as of 2019-08 will error out if one of
4887 these relocations is emitted. */
4888 h->needs_copy = 1;
4889 goto dodyn;
4890 }
4891 break;
4892
4893 /* Marker reloc. */
4894 case R_PPC64_ENTRY:
4895 break;
4896
4897 /* This relocation describes the C++ object vtable hierarchy.
4898 Reconstruct it for later use during GC. */
4899 case R_PPC64_GNU_VTINHERIT:
4900 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4901 return FALSE;
4902 break;
4903
4904 /* This relocation describes which C++ vtable entries are actually
4905 used. Record for later use during GC. */
4906 case R_PPC64_GNU_VTENTRY:
4907 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4908 return FALSE;
4909 break;
4910
4911 case R_PPC64_REL14:
4912 case R_PPC64_REL14_BRTAKEN:
4913 case R_PPC64_REL14_BRNTAKEN:
4914 {
4915 asection *dest = NULL;
4916
4917 /* Heuristic: If jumping outside our section, chances are
4918 we are going to need a stub. */
4919 if (h != NULL)
4920 {
4921 /* If the sym is weak it may be overridden later, so
4922 don't assume we know where a weak sym lives. */
4923 if (h->root.type == bfd_link_hash_defined)
4924 dest = h->root.u.def.section;
4925 }
4926 else
4927 {
4928 Elf_Internal_Sym *isym;
4929
4930 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4931 abfd, r_symndx);
4932 if (isym == NULL)
4933 return FALSE;
4934
4935 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4936 }
4937
4938 if (dest != sec)
4939 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4940 }
4941 goto rel24;
4942
4943 case R_PPC64_PLTCALL:
4944 case R_PPC64_PLTCALL_NOTOC:
4945 ppc64_elf_section_data (sec)->has_pltcall = 1;
4946 /* Fall through. */
4947
4948 case R_PPC64_REL24:
4949 case R_PPC64_REL24_NOTOC:
4950 rel24:
4951 plt_list = ifunc;
4952 if (h != NULL)
4953 {
4954 h->needs_plt = 1;
4955 if (h->root.root.string[0] == '.'
4956 && h->root.root.string[1] != '\0')
4957 ppc_elf_hash_entry (h)->is_func = 1;
4958
4959 if (h == tga || h == dottga)
4960 {
4961 sec->has_tls_reloc = 1;
4962 if (rel != relocs
4963 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4964 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4965 /* We have a new-style __tls_get_addr call with
4966 a marker reloc. */
4967 ;
4968 else
4969 /* Mark this section as having an old-style call. */
4970 sec->nomark_tls_get_addr = 1;
4971 }
4972 plt_list = &h->plt.plist;
4973 }
4974
4975 /* We may need a .plt entry if the function this reloc
4976 refers to is in a shared lib. */
4977 if (plt_list
4978 && !update_plt_info (abfd, plt_list, rel->r_addend))
4979 return FALSE;
4980 break;
4981
4982 case R_PPC64_ADDR14:
4983 case R_PPC64_ADDR14_BRNTAKEN:
4984 case R_PPC64_ADDR14_BRTAKEN:
4985 case R_PPC64_ADDR24:
4986 goto dodyn;
4987
4988 case R_PPC64_TPREL64:
4989 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4990 if (bfd_link_dll (info))
4991 info->flags |= DF_STATIC_TLS;
4992 goto dotlstoc;
4993
4994 case R_PPC64_DTPMOD64:
4995 if (rel + 1 < rel_end
4996 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4997 && rel[1].r_offset == rel->r_offset + 8)
4998 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4999 else
5000 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5001 goto dotlstoc;
5002
5003 case R_PPC64_DTPREL64:
5004 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5005 if (rel != relocs
5006 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5007 && rel[-1].r_offset == rel->r_offset - 8)
5008 /* This is the second reloc of a dtpmod, dtprel pair.
5009 Don't mark with TLS_DTPREL. */
5010 goto dodyn;
5011
5012 dotlstoc:
5013 sec->has_tls_reloc = 1;
5014 if (h != NULL)
5015 ppc_elf_hash_entry (h)->tls_mask |= tls_type & 0xff;
5016 else
5017 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5018 rel->r_addend, tls_type))
5019 return FALSE;
5020
5021 ppc64_sec = ppc64_elf_section_data (sec);
5022 if (ppc64_sec->sec_type != sec_toc)
5023 {
5024 bfd_size_type amt;
5025
5026 /* One extra to simplify get_tls_mask. */
5027 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5028 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5029 if (ppc64_sec->u.toc.symndx == NULL)
5030 return FALSE;
5031 amt = sec->size * sizeof (bfd_vma) / 8;
5032 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5033 if (ppc64_sec->u.toc.add == NULL)
5034 return FALSE;
5035 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5036 ppc64_sec->sec_type = sec_toc;
5037 }
5038 BFD_ASSERT (rel->r_offset % 8 == 0);
5039 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5040 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5041
5042 /* Mark the second slot of a GD or LD entry.
5043 -1 to indicate GD and -2 to indicate LD. */
5044 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5045 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5046 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5047 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5048 goto dodyn;
5049
5050 case R_PPC64_TPREL16:
5051 case R_PPC64_TPREL16_LO:
5052 case R_PPC64_TPREL16_HI:
5053 case R_PPC64_TPREL16_HA:
5054 case R_PPC64_TPREL16_DS:
5055 case R_PPC64_TPREL16_LO_DS:
5056 case R_PPC64_TPREL16_HIGH:
5057 case R_PPC64_TPREL16_HIGHA:
5058 case R_PPC64_TPREL16_HIGHER:
5059 case R_PPC64_TPREL16_HIGHERA:
5060 case R_PPC64_TPREL16_HIGHEST:
5061 case R_PPC64_TPREL16_HIGHESTA:
5062 case R_PPC64_TPREL34:
5063 if (bfd_link_dll (info))
5064 info->flags |= DF_STATIC_TLS;
5065 goto dodyn;
5066
5067 case R_PPC64_ADDR64:
5068 if (is_opd
5069 && rel + 1 < rel_end
5070 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5071 {
5072 if (h != NULL)
5073 ppc_elf_hash_entry (h)->is_func = 1;
5074 }
5075 /* Fall through. */
5076
5077 case R_PPC64_ADDR16:
5078 case R_PPC64_ADDR16_DS:
5079 case R_PPC64_ADDR16_HA:
5080 case R_PPC64_ADDR16_HI:
5081 case R_PPC64_ADDR16_HIGH:
5082 case R_PPC64_ADDR16_HIGHA:
5083 case R_PPC64_ADDR16_HIGHER:
5084 case R_PPC64_ADDR16_HIGHERA:
5085 case R_PPC64_ADDR16_HIGHEST:
5086 case R_PPC64_ADDR16_HIGHESTA:
5087 case R_PPC64_ADDR16_LO:
5088 case R_PPC64_ADDR16_LO_DS:
5089 case R_PPC64_D34:
5090 case R_PPC64_D34_LO:
5091 case R_PPC64_D34_HI30:
5092 case R_PPC64_D34_HA30:
5093 case R_PPC64_ADDR16_HIGHER34:
5094 case R_PPC64_ADDR16_HIGHERA34:
5095 case R_PPC64_ADDR16_HIGHEST34:
5096 case R_PPC64_ADDR16_HIGHESTA34:
5097 case R_PPC64_D28:
5098 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5099 && rel->r_addend == 0)
5100 {
5101 /* We may need a .plt entry if this reloc refers to a
5102 function in a shared lib. */
5103 if (!update_plt_info (abfd, &h->plt.plist, 0))
5104 return FALSE;
5105 h->pointer_equality_needed = 1;
5106 }
5107 /* Fall through. */
5108
5109 case R_PPC64_REL30:
5110 case R_PPC64_REL32:
5111 case R_PPC64_REL64:
5112 case R_PPC64_ADDR32:
5113 case R_PPC64_UADDR16:
5114 case R_PPC64_UADDR32:
5115 case R_PPC64_UADDR64:
5116 case R_PPC64_TOC:
5117 if (h != NULL && bfd_link_executable (info))
5118 /* We may need a copy reloc. */
5119 h->non_got_ref = 1;
5120
5121 /* Don't propagate .opd relocs. */
5122 if (NO_OPD_RELOCS && is_opd)
5123 break;
5124
5125 /* If we are creating a shared library, and this is a reloc
5126 against a global symbol, or a non PC relative reloc
5127 against a local symbol, then we need to copy the reloc
5128 into the shared library. However, if we are linking with
5129 -Bsymbolic, we do not need to copy a reloc against a
5130 global symbol which is defined in an object we are
5131 including in the link (i.e., DEF_REGULAR is set). At
5132 this point we have not seen all the input files, so it is
5133 possible that DEF_REGULAR is not set now but will be set
5134 later (it is never cleared). In case of a weak definition,
5135 DEF_REGULAR may be cleared later by a strong definition in
5136 a shared library. We account for that possibility below by
5137 storing information in the dyn_relocs field of the hash
5138 table entry. A similar situation occurs when creating
5139 shared libraries and symbol visibility changes render the
5140 symbol local.
5141
5142 If on the other hand, we are creating an executable, we
5143 may need to keep relocations for symbols satisfied by a
5144 dynamic library if we manage to avoid copy relocs for the
5145 symbol. */
5146 dodyn:
5147 if ((h != NULL
5148 && (h->root.type == bfd_link_hash_defweak
5149 || !h->def_regular))
5150 || (h != NULL
5151 && !bfd_link_executable (info)
5152 && !SYMBOLIC_BIND (info, h))
5153 || (bfd_link_pic (info)
5154 && must_be_dyn_reloc (info, r_type))
5155 || (!bfd_link_pic (info)
5156 && ifunc != NULL))
5157 {
5158 /* We must copy these reloc types into the output file.
5159 Create a reloc section in dynobj and make room for
5160 this reloc. */
5161 if (sreloc == NULL)
5162 {
5163 sreloc = _bfd_elf_make_dynamic_reloc_section
5164 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5165
5166 if (sreloc == NULL)
5167 return FALSE;
5168 }
5169
5170 /* If this is a global symbol, we count the number of
5171 relocations we need for this symbol. */
5172 if (h != NULL)
5173 {
5174 struct elf_dyn_relocs *p;
5175 struct elf_dyn_relocs **head;
5176
5177 head = &ppc_elf_hash_entry (h)->dyn_relocs;
5178 p = *head;
5179 if (p == NULL || p->sec != sec)
5180 {
5181 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5182 if (p == NULL)
5183 return FALSE;
5184 p->next = *head;
5185 *head = p;
5186 p->sec = sec;
5187 p->count = 0;
5188 p->pc_count = 0;
5189 }
5190 p->count += 1;
5191 if (!must_be_dyn_reloc (info, r_type))
5192 p->pc_count += 1;
5193 }
5194 else
5195 {
5196 /* Track dynamic relocs needed for local syms too.
5197 We really need local syms available to do this
5198 easily. Oh well. */
5199 struct ppc_dyn_relocs *p;
5200 struct ppc_dyn_relocs **head;
5201 bfd_boolean is_ifunc;
5202 asection *s;
5203 void *vpp;
5204 Elf_Internal_Sym *isym;
5205
5206 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5207 abfd, r_symndx);
5208 if (isym == NULL)
5209 return FALSE;
5210
5211 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5212 if (s == NULL)
5213 s = sec;
5214
5215 vpp = &elf_section_data (s)->local_dynrel;
5216 head = (struct ppc_dyn_relocs **) vpp;
5217 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5218 p = *head;
5219 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5220 p = p->next;
5221 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5222 {
5223 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5224 if (p == NULL)
5225 return FALSE;
5226 p->next = *head;
5227 *head = p;
5228 p->sec = sec;
5229 p->ifunc = is_ifunc;
5230 p->count = 0;
5231 }
5232 p->count += 1;
5233 }
5234 }
5235 break;
5236
5237 default:
5238 break;
5239 }
5240 }
5241
5242 return TRUE;
5243 }
5244
5245 /* Merge backend specific data from an object file to the output
5246 object file when linking. */
5247
5248 static bfd_boolean
5249 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5250 {
5251 bfd *obfd = info->output_bfd;
5252 unsigned long iflags, oflags;
5253
5254 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5255 return TRUE;
5256
5257 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5258 return TRUE;
5259
5260 if (!_bfd_generic_verify_endian_match (ibfd, info))
5261 return FALSE;
5262
5263 iflags = elf_elfheader (ibfd)->e_flags;
5264 oflags = elf_elfheader (obfd)->e_flags;
5265
5266 if (iflags & ~EF_PPC64_ABI)
5267 {
5268 _bfd_error_handler
5269 /* xgettext:c-format */
5270 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5271 bfd_set_error (bfd_error_bad_value);
5272 return FALSE;
5273 }
5274 else if (iflags != oflags && iflags != 0)
5275 {
5276 _bfd_error_handler
5277 /* xgettext:c-format */
5278 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5279 ibfd, iflags, oflags);
5280 bfd_set_error (bfd_error_bad_value);
5281 return FALSE;
5282 }
5283
5284 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5285 return FALSE;
5286
5287 /* Merge Tag_compatibility attributes and any common GNU ones. */
5288 return _bfd_elf_merge_object_attributes (ibfd, info);
5289 }
5290
5291 static bfd_boolean
5292 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5293 {
5294 /* Print normal ELF private data. */
5295 _bfd_elf_print_private_bfd_data (abfd, ptr);
5296
5297 if (elf_elfheader (abfd)->e_flags != 0)
5298 {
5299 FILE *file = ptr;
5300
5301 fprintf (file, _("private flags = 0x%lx:"),
5302 elf_elfheader (abfd)->e_flags);
5303
5304 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5305 fprintf (file, _(" [abiv%ld]"),
5306 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5307 fputc ('\n', file);
5308 }
5309
5310 return TRUE;
5311 }
5312
5313 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5314 of the code entry point, and its section, which must be in the same
5315 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5316
5317 static bfd_vma
5318 opd_entry_value (asection *opd_sec,
5319 bfd_vma offset,
5320 asection **code_sec,
5321 bfd_vma *code_off,
5322 bfd_boolean in_code_sec)
5323 {
5324 bfd *opd_bfd = opd_sec->owner;
5325 Elf_Internal_Rela *relocs;
5326 Elf_Internal_Rela *lo, *hi, *look;
5327 bfd_vma val;
5328
5329 /* No relocs implies we are linking a --just-symbols object, or looking
5330 at a final linked executable with addr2line or somesuch. */
5331 if (opd_sec->reloc_count == 0)
5332 {
5333 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5334
5335 if (contents == NULL)
5336 {
5337 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5338 return (bfd_vma) -1;
5339 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5340 }
5341
5342 /* PR 17512: file: 64b9dfbb. */
5343 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5344 return (bfd_vma) -1;
5345
5346 val = bfd_get_64 (opd_bfd, contents + offset);
5347 if (code_sec != NULL)
5348 {
5349 asection *sec, *likely = NULL;
5350
5351 if (in_code_sec)
5352 {
5353 sec = *code_sec;
5354 if (sec->vma <= val
5355 && val < sec->vma + sec->size)
5356 likely = sec;
5357 else
5358 val = -1;
5359 }
5360 else
5361 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5362 if (sec->vma <= val
5363 && (sec->flags & SEC_LOAD) != 0
5364 && (sec->flags & SEC_ALLOC) != 0)
5365 likely = sec;
5366 if (likely != NULL)
5367 {
5368 *code_sec = likely;
5369 if (code_off != NULL)
5370 *code_off = val - likely->vma;
5371 }
5372 }
5373 return val;
5374 }
5375
5376 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5377
5378 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5379 if (relocs == NULL)
5380 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5381 /* PR 17512: file: df8e1fd6. */
5382 if (relocs == NULL)
5383 return (bfd_vma) -1;
5384
5385 /* Go find the opd reloc at the sym address. */
5386 lo = relocs;
5387 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5388 val = (bfd_vma) -1;
5389 while (lo < hi)
5390 {
5391 look = lo + (hi - lo) / 2;
5392 if (look->r_offset < offset)
5393 lo = look + 1;
5394 else if (look->r_offset > offset)
5395 hi = look;
5396 else
5397 {
5398 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5399
5400 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5401 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5402 {
5403 unsigned long symndx = ELF64_R_SYM (look->r_info);
5404 asection *sec = NULL;
5405
5406 if (symndx >= symtab_hdr->sh_info
5407 && elf_sym_hashes (opd_bfd) != NULL)
5408 {
5409 struct elf_link_hash_entry **sym_hashes;
5410 struct elf_link_hash_entry *rh;
5411
5412 sym_hashes = elf_sym_hashes (opd_bfd);
5413 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5414 if (rh != NULL)
5415 {
5416 rh = elf_follow_link (rh);
5417 if (rh->root.type != bfd_link_hash_defined
5418 && rh->root.type != bfd_link_hash_defweak)
5419 break;
5420 if (rh->root.u.def.section->owner == opd_bfd)
5421 {
5422 val = rh->root.u.def.value;
5423 sec = rh->root.u.def.section;
5424 }
5425 }
5426 }
5427
5428 if (sec == NULL)
5429 {
5430 Elf_Internal_Sym *sym;
5431
5432 if (symndx < symtab_hdr->sh_info)
5433 {
5434 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5435 if (sym == NULL)
5436 {
5437 size_t symcnt = symtab_hdr->sh_info;
5438 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5439 symcnt, 0,
5440 NULL, NULL, NULL);
5441 if (sym == NULL)
5442 break;
5443 symtab_hdr->contents = (bfd_byte *) sym;
5444 }
5445 sym += symndx;
5446 }
5447 else
5448 {
5449 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5450 1, symndx,
5451 NULL, NULL, NULL);
5452 if (sym == NULL)
5453 break;
5454 }
5455 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5456 if (sec == NULL)
5457 break;
5458 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5459 val = sym->st_value;
5460 }
5461
5462 val += look->r_addend;
5463 if (code_off != NULL)
5464 *code_off = val;
5465 if (code_sec != NULL)
5466 {
5467 if (in_code_sec && *code_sec != sec)
5468 return -1;
5469 else
5470 *code_sec = sec;
5471 }
5472 if (sec->output_section != NULL)
5473 val += sec->output_section->vma + sec->output_offset;
5474 }
5475 break;
5476 }
5477 }
5478
5479 return val;
5480 }
5481
5482 /* If the ELF symbol SYM might be a function in SEC, return the
5483 function size and set *CODE_OFF to the function's entry point,
5484 otherwise return zero. */
5485
5486 static bfd_size_type
5487 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5488 bfd_vma *code_off)
5489 {
5490 bfd_size_type size;
5491
5492 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5493 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5494 return 0;
5495
5496 size = 0;
5497 if (!(sym->flags & BSF_SYNTHETIC))
5498 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5499
5500 if (strcmp (sym->section->name, ".opd") == 0)
5501 {
5502 struct _opd_sec_data *opd = get_opd_info (sym->section);
5503 bfd_vma symval = sym->value;
5504
5505 if (opd != NULL
5506 && opd->adjust != NULL
5507 && elf_section_data (sym->section)->relocs != NULL)
5508 {
5509 /* opd_entry_value will use cached relocs that have been
5510 adjusted, but with raw symbols. That means both local
5511 and global symbols need adjusting. */
5512 long adjust = opd->adjust[OPD_NDX (symval)];
5513 if (adjust == -1)
5514 return 0;
5515 symval += adjust;
5516 }
5517
5518 if (opd_entry_value (sym->section, symval,
5519 &sec, code_off, TRUE) == (bfd_vma) -1)
5520 return 0;
5521 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5522 symbol. This size has nothing to do with the code size of the
5523 function, which is what we're supposed to return, but the
5524 code size isn't available without looking up the dot-sym.
5525 However, doing that would be a waste of time particularly
5526 since elf_find_function will look at the dot-sym anyway.
5527 Now, elf_find_function will keep the largest size of any
5528 function sym found at the code address of interest, so return
5529 1 here to avoid it incorrectly caching a larger function size
5530 for a small function. This does mean we return the wrong
5531 size for a new-ABI function of size 24, but all that does is
5532 disable caching for such functions. */
5533 if (size == 24)
5534 size = 1;
5535 }
5536 else
5537 {
5538 if (sym->section != sec)
5539 return 0;
5540 *code_off = sym->value;
5541 }
5542 if (size == 0)
5543 size = 1;
5544 return size;
5545 }
5546
5547 /* Return true if symbol is a strong function defined in an ELFv2
5548 object with st_other localentry bits of zero, ie. its local entry
5549 point coincides with its global entry point. */
5550
5551 static bfd_boolean
5552 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5553 {
5554 return (h != NULL
5555 && h->type == STT_FUNC
5556 && h->root.type == bfd_link_hash_defined
5557 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5558 && !ppc_elf_hash_entry (h)->non_zero_localentry
5559 && is_ppc64_elf (h->root.u.def.section->owner)
5560 && abiversion (h->root.u.def.section->owner) >= 2);
5561 }
5562
5563 /* Return true if symbol is defined in a regular object file. */
5564
5565 static bfd_boolean
5566 is_static_defined (struct elf_link_hash_entry *h)
5567 {
5568 return ((h->root.type == bfd_link_hash_defined
5569 || h->root.type == bfd_link_hash_defweak)
5570 && h->root.u.def.section != NULL
5571 && h->root.u.def.section->output_section != NULL);
5572 }
5573
5574 /* If FDH is a function descriptor symbol, return the associated code
5575 entry symbol if it is defined. Return NULL otherwise. */
5576
5577 static struct ppc_link_hash_entry *
5578 defined_code_entry (struct ppc_link_hash_entry *fdh)
5579 {
5580 if (fdh->is_func_descriptor)
5581 {
5582 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5583 if (fh->elf.root.type == bfd_link_hash_defined
5584 || fh->elf.root.type == bfd_link_hash_defweak)
5585 return fh;
5586 }
5587 return NULL;
5588 }
5589
5590 /* If FH is a function code entry symbol, return the associated
5591 function descriptor symbol if it is defined. Return NULL otherwise. */
5592
5593 static struct ppc_link_hash_entry *
5594 defined_func_desc (struct ppc_link_hash_entry *fh)
5595 {
5596 if (fh->oh != NULL
5597 && fh->oh->is_func_descriptor)
5598 {
5599 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5600 if (fdh->elf.root.type == bfd_link_hash_defined
5601 || fdh->elf.root.type == bfd_link_hash_defweak)
5602 return fdh;
5603 }
5604 return NULL;
5605 }
5606
5607 /* Given H is a symbol that satisfies is_static_defined, return the
5608 value in the output file. */
5609
5610 static bfd_vma
5611 defined_sym_val (struct elf_link_hash_entry *h)
5612 {
5613 return (h->root.u.def.section->output_section->vma
5614 + h->root.u.def.section->output_offset
5615 + h->root.u.def.value);
5616 }
5617
5618 /* Return true if H matches __tls_get_addr or one of its variants. */
5619
5620 static bfd_boolean
5621 is_tls_get_addr (struct elf_link_hash_entry *h,
5622 struct ppc_link_hash_table *htab)
5623 {
5624 return (h == &htab->tls_get_addr_fd->elf || h == &htab->tga_desc_fd->elf
5625 || h == &htab->tls_get_addr->elf || h == &htab->tga_desc->elf);
5626 }
5627
5628 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5629
5630 /* Garbage collect sections, after first dealing with dot-symbols. */
5631
5632 static bfd_boolean
5633 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5634 {
5635 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5636
5637 if (htab != NULL && htab->need_func_desc_adj)
5638 {
5639 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5640 htab->need_func_desc_adj = 0;
5641 }
5642 return bfd_elf_gc_sections (abfd, info);
5643 }
5644
5645 /* Mark all our entry sym sections, both opd and code section. */
5646
5647 static void
5648 ppc64_elf_gc_keep (struct bfd_link_info *info)
5649 {
5650 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5651 struct bfd_sym_chain *sym;
5652
5653 if (htab == NULL)
5654 return;
5655
5656 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5657 {
5658 struct ppc_link_hash_entry *eh, *fh;
5659 asection *sec;
5660
5661 eh = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym->name,
5662 FALSE, FALSE, TRUE));
5663 if (eh == NULL)
5664 continue;
5665 if (eh->elf.root.type != bfd_link_hash_defined
5666 && eh->elf.root.type != bfd_link_hash_defweak)
5667 continue;
5668
5669 fh = defined_code_entry (eh);
5670 if (fh != NULL)
5671 {
5672 sec = fh->elf.root.u.def.section;
5673 sec->flags |= SEC_KEEP;
5674 }
5675 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5676 && opd_entry_value (eh->elf.root.u.def.section,
5677 eh->elf.root.u.def.value,
5678 &sec, NULL, FALSE) != (bfd_vma) -1)
5679 sec->flags |= SEC_KEEP;
5680
5681 sec = eh->elf.root.u.def.section;
5682 sec->flags |= SEC_KEEP;
5683 }
5684 }
5685
5686 /* Mark sections containing dynamically referenced symbols. When
5687 building shared libraries, we must assume that any visible symbol is
5688 referenced. */
5689
5690 static bfd_boolean
5691 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5692 {
5693 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5694 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
5695 struct ppc_link_hash_entry *fdh;
5696 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5697
5698 /* Dynamic linking info is on the func descriptor sym. */
5699 fdh = defined_func_desc (eh);
5700 if (fdh != NULL)
5701 eh = fdh;
5702
5703 if ((eh->elf.root.type == bfd_link_hash_defined
5704 || eh->elf.root.type == bfd_link_hash_defweak)
5705 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5706 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5707 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5708 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5709 && (!bfd_link_executable (info)
5710 || info->gc_keep_exported
5711 || info->export_dynamic
5712 || (eh->elf.dynamic
5713 && d != NULL
5714 && (*d->match) (&d->head, NULL,
5715 eh->elf.root.root.string)))
5716 && (eh->elf.versioned >= versioned
5717 || !bfd_hide_sym_by_version (info->version_info,
5718 eh->elf.root.root.string)))))
5719 {
5720 asection *code_sec;
5721 struct ppc_link_hash_entry *fh;
5722
5723 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5724
5725 /* Function descriptor syms cause the associated
5726 function code sym section to be marked. */
5727 fh = defined_code_entry (eh);
5728 if (fh != NULL)
5729 {
5730 code_sec = fh->elf.root.u.def.section;
5731 code_sec->flags |= SEC_KEEP;
5732 }
5733 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5734 && opd_entry_value (eh->elf.root.u.def.section,
5735 eh->elf.root.u.def.value,
5736 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5737 code_sec->flags |= SEC_KEEP;
5738 }
5739
5740 return TRUE;
5741 }
5742
5743 /* Return the section that should be marked against GC for a given
5744 relocation. */
5745
5746 static asection *
5747 ppc64_elf_gc_mark_hook (asection *sec,
5748 struct bfd_link_info *info,
5749 Elf_Internal_Rela *rel,
5750 struct elf_link_hash_entry *h,
5751 Elf_Internal_Sym *sym)
5752 {
5753 asection *rsec;
5754
5755 /* Syms return NULL if we're marking .opd, so we avoid marking all
5756 function sections, as all functions are referenced in .opd. */
5757 rsec = NULL;
5758 if (get_opd_info (sec) != NULL)
5759 return rsec;
5760
5761 if (h != NULL)
5762 {
5763 enum elf_ppc64_reloc_type r_type;
5764 struct ppc_link_hash_entry *eh, *fh, *fdh;
5765
5766 r_type = ELF64_R_TYPE (rel->r_info);
5767 switch (r_type)
5768 {
5769 case R_PPC64_GNU_VTINHERIT:
5770 case R_PPC64_GNU_VTENTRY:
5771 break;
5772
5773 default:
5774 switch (h->root.type)
5775 {
5776 case bfd_link_hash_defined:
5777 case bfd_link_hash_defweak:
5778 eh = ppc_elf_hash_entry (h);
5779 fdh = defined_func_desc (eh);
5780 if (fdh != NULL)
5781 {
5782 /* -mcall-aixdesc code references the dot-symbol on
5783 a call reloc. Mark the function descriptor too
5784 against garbage collection. */
5785 fdh->elf.mark = 1;
5786 if (fdh->elf.is_weakalias)
5787 weakdef (&fdh->elf)->mark = 1;
5788 eh = fdh;
5789 }
5790
5791 /* Function descriptor syms cause the associated
5792 function code sym section to be marked. */
5793 fh = defined_code_entry (eh);
5794 if (fh != NULL)
5795 {
5796 /* They also mark their opd section. */
5797 eh->elf.root.u.def.section->gc_mark = 1;
5798
5799 rsec = fh->elf.root.u.def.section;
5800 }
5801 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5802 && opd_entry_value (eh->elf.root.u.def.section,
5803 eh->elf.root.u.def.value,
5804 &rsec, NULL, FALSE) != (bfd_vma) -1)
5805 eh->elf.root.u.def.section->gc_mark = 1;
5806 else
5807 rsec = h->root.u.def.section;
5808 break;
5809
5810 case bfd_link_hash_common:
5811 rsec = h->root.u.c.p->section;
5812 break;
5813
5814 default:
5815 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5816 }
5817 }
5818 }
5819 else
5820 {
5821 struct _opd_sec_data *opd;
5822
5823 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5824 opd = get_opd_info (rsec);
5825 if (opd != NULL && opd->func_sec != NULL)
5826 {
5827 rsec->gc_mark = 1;
5828
5829 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5830 }
5831 }
5832
5833 return rsec;
5834 }
5835
5836 /* The maximum size of .sfpr. */
5837 #define SFPR_MAX (218*4)
5838
5839 struct sfpr_def_parms
5840 {
5841 const char name[12];
5842 unsigned char lo, hi;
5843 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5844 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5845 };
5846
5847 /* Auto-generate _save*, _rest* functions in .sfpr.
5848 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5849 instead. */
5850
5851 static bfd_boolean
5852 sfpr_define (struct bfd_link_info *info,
5853 const struct sfpr_def_parms *parm,
5854 asection *stub_sec)
5855 {
5856 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5857 unsigned int i;
5858 size_t len = strlen (parm->name);
5859 bfd_boolean writing = FALSE;
5860 char sym[16];
5861
5862 if (htab == NULL)
5863 return FALSE;
5864
5865 memcpy (sym, parm->name, len);
5866 sym[len + 2] = 0;
5867
5868 for (i = parm->lo; i <= parm->hi; i++)
5869 {
5870 struct ppc_link_hash_entry *h;
5871
5872 sym[len + 0] = i / 10 + '0';
5873 sym[len + 1] = i % 10 + '0';
5874 h = ppc_elf_hash_entry (elf_link_hash_lookup (&htab->elf, sym,
5875 writing, TRUE, TRUE));
5876 if (stub_sec != NULL)
5877 {
5878 if (h != NULL
5879 && h->elf.root.type == bfd_link_hash_defined
5880 && h->elf.root.u.def.section == htab->sfpr)
5881 {
5882 struct elf_link_hash_entry *s;
5883 char buf[32];
5884 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5885 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5886 if (s == NULL)
5887 return FALSE;
5888 if (s->root.type == bfd_link_hash_new)
5889 {
5890 s->root.type = bfd_link_hash_defined;
5891 s->root.u.def.section = stub_sec;
5892 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5893 + h->elf.root.u.def.value);
5894 s->ref_regular = 1;
5895 s->def_regular = 1;
5896 s->ref_regular_nonweak = 1;
5897 s->forced_local = 1;
5898 s->non_elf = 0;
5899 s->root.linker_def = 1;
5900 }
5901 }
5902 continue;
5903 }
5904 if (h != NULL)
5905 {
5906 h->save_res = 1;
5907 if (!h->elf.def_regular)
5908 {
5909 h->elf.root.type = bfd_link_hash_defined;
5910 h->elf.root.u.def.section = htab->sfpr;
5911 h->elf.root.u.def.value = htab->sfpr->size;
5912 h->elf.type = STT_FUNC;
5913 h->elf.def_regular = 1;
5914 h->elf.non_elf = 0;
5915 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5916 writing = TRUE;
5917 if (htab->sfpr->contents == NULL)
5918 {
5919 htab->sfpr->contents
5920 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5921 if (htab->sfpr->contents == NULL)
5922 return FALSE;
5923 }
5924 }
5925 }
5926 if (writing)
5927 {
5928 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5929 if (i != parm->hi)
5930 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5931 else
5932 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5933 htab->sfpr->size = p - htab->sfpr->contents;
5934 }
5935 }
5936
5937 return TRUE;
5938 }
5939
5940 static bfd_byte *
5941 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5942 {
5943 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5944 return p + 4;
5945 }
5946
5947 static bfd_byte *
5948 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5949 {
5950 p = savegpr0 (abfd, p, r);
5951 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5952 p = p + 4;
5953 bfd_put_32 (abfd, BLR, p);
5954 return p + 4;
5955 }
5956
5957 static bfd_byte *
5958 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5959 {
5960 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5961 return p + 4;
5962 }
5963
5964 static bfd_byte *
5965 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5966 {
5967 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5968 p = p + 4;
5969 p = restgpr0 (abfd, p, r);
5970 bfd_put_32 (abfd, MTLR_R0, p);
5971 p = p + 4;
5972 if (r == 29)
5973 {
5974 p = restgpr0 (abfd, p, 30);
5975 p = restgpr0 (abfd, p, 31);
5976 }
5977 bfd_put_32 (abfd, BLR, p);
5978 return p + 4;
5979 }
5980
5981 static bfd_byte *
5982 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5983 {
5984 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5985 return p + 4;
5986 }
5987
5988 static bfd_byte *
5989 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5990 {
5991 p = savegpr1 (abfd, p, r);
5992 bfd_put_32 (abfd, BLR, p);
5993 return p + 4;
5994 }
5995
5996 static bfd_byte *
5997 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5998 {
5999 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6000 return p + 4;
6001 }
6002
6003 static bfd_byte *
6004 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6005 {
6006 p = restgpr1 (abfd, p, r);
6007 bfd_put_32 (abfd, BLR, p);
6008 return p + 4;
6009 }
6010
6011 static bfd_byte *
6012 savefpr (bfd *abfd, bfd_byte *p, int r)
6013 {
6014 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6015 return p + 4;
6016 }
6017
6018 static bfd_byte *
6019 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6020 {
6021 p = savefpr (abfd, p, r);
6022 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
6023 p = p + 4;
6024 bfd_put_32 (abfd, BLR, p);
6025 return p + 4;
6026 }
6027
6028 static bfd_byte *
6029 restfpr (bfd *abfd, bfd_byte *p, int r)
6030 {
6031 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6032 return p + 4;
6033 }
6034
6035 static bfd_byte *
6036 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6037 {
6038 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
6039 p = p + 4;
6040 p = restfpr (abfd, p, r);
6041 bfd_put_32 (abfd, MTLR_R0, p);
6042 p = p + 4;
6043 if (r == 29)
6044 {
6045 p = restfpr (abfd, p, 30);
6046 p = restfpr (abfd, p, 31);
6047 }
6048 bfd_put_32 (abfd, BLR, p);
6049 return p + 4;
6050 }
6051
6052 static bfd_byte *
6053 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6054 {
6055 p = savefpr (abfd, p, r);
6056 bfd_put_32 (abfd, BLR, p);
6057 return p + 4;
6058 }
6059
6060 static bfd_byte *
6061 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6062 {
6063 p = restfpr (abfd, p, r);
6064 bfd_put_32 (abfd, BLR, p);
6065 return p + 4;
6066 }
6067
6068 static bfd_byte *
6069 savevr (bfd *abfd, bfd_byte *p, int r)
6070 {
6071 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6072 p = p + 4;
6073 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6074 return p + 4;
6075 }
6076
6077 static bfd_byte *
6078 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6079 {
6080 p = savevr (abfd, p, r);
6081 bfd_put_32 (abfd, BLR, p);
6082 return p + 4;
6083 }
6084
6085 static bfd_byte *
6086 restvr (bfd *abfd, bfd_byte *p, int r)
6087 {
6088 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6089 p = p + 4;
6090 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6091 return p + 4;
6092 }
6093
6094 static bfd_byte *
6095 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6096 {
6097 p = restvr (abfd, p, r);
6098 bfd_put_32 (abfd, BLR, p);
6099 return p + 4;
6100 }
6101
6102 #define STDU_R1_0R1 0xf8210001
6103 #define ADDI_R1_R1 0x38210000
6104
6105 /* Emit prologue of wrapper preserving regs around a call to
6106 __tls_get_addr_opt. */
6107
6108 static bfd_byte *
6109 tls_get_addr_prologue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6110 {
6111 unsigned int i;
6112
6113 bfd_put_32 (obfd, MFLR_R0, p);
6114 p += 4;
6115 bfd_put_32 (obfd, STD_R0_0R1 + 16, p);
6116 p += 4;
6117
6118 if (htab->opd_abi)
6119 {
6120 for (i = 4; i < 12; i++)
6121 {
6122 bfd_put_32 (obfd,
6123 STD_R0_0R1 | i << 21 | (-(13 - i) * 8 & 0xffff), p);
6124 p += 4;
6125 }
6126 bfd_put_32 (obfd, STDU_R1_0R1 | (-128 & 0xffff), p);
6127 p += 4;
6128 }
6129 else
6130 {
6131 for (i = 4; i < 12; i++)
6132 {
6133 bfd_put_32 (obfd,
6134 STD_R0_0R1 | i << 21 | (-(12 - i) * 8 & 0xffff), p);
6135 p += 4;
6136 }
6137 bfd_put_32 (obfd, STDU_R1_0R1 | (-96 & 0xffff), p);
6138 p += 4;
6139 }
6140 return p;
6141 }
6142
6143 /* Emit epilogue of wrapper preserving regs around a call to
6144 __tls_get_addr_opt. */
6145
6146 static bfd_byte *
6147 tls_get_addr_epilogue (bfd *obfd, bfd_byte *p, struct ppc_link_hash_table *htab)
6148 {
6149 unsigned int i;
6150
6151 if (htab->opd_abi)
6152 {
6153 for (i = 4; i < 12; i++)
6154 {
6155 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (128 - (13 - i) * 8), p);
6156 p += 4;
6157 }
6158 bfd_put_32 (obfd, ADDI_R1_R1 | 128, p);
6159 p += 4;
6160 }
6161 else
6162 {
6163 for (i = 4; i < 12; i++)
6164 {
6165 bfd_put_32 (obfd, LD_R0_0R1 | i << 21 | (96 - (12 - i) * 8), p);
6166 p += 4;
6167 }
6168 bfd_put_32 (obfd, ADDI_R1_R1 | 96, p);
6169 p += 4;
6170 }
6171 bfd_put_32 (obfd, LD_R0_0R1 | 16, p);
6172 p += 4;
6173 bfd_put_32 (obfd, MTLR_R0, p);
6174 p += 4;
6175 bfd_put_32 (obfd, BLR, p);
6176 p += 4;
6177 return p;
6178 }
6179
6180 /* Called via elf_link_hash_traverse to transfer dynamic linking
6181 information on function code symbol entries to their corresponding
6182 function descriptor symbol entries. */
6183
6184 static bfd_boolean
6185 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6186 {
6187 struct bfd_link_info *info;
6188 struct ppc_link_hash_table *htab;
6189 struct ppc_link_hash_entry *fh;
6190 struct ppc_link_hash_entry *fdh;
6191 bfd_boolean force_local;
6192
6193 fh = ppc_elf_hash_entry (h);
6194 if (fh->elf.root.type == bfd_link_hash_indirect)
6195 return TRUE;
6196
6197 if (!fh->is_func)
6198 return TRUE;
6199
6200 if (fh->elf.root.root.string[0] != '.'
6201 || fh->elf.root.root.string[1] == '\0')
6202 return TRUE;
6203
6204 info = inf;
6205 htab = ppc_hash_table (info);
6206 if (htab == NULL)
6207 return FALSE;
6208
6209 /* Find the corresponding function descriptor symbol. */
6210 fdh = lookup_fdh (fh, htab);
6211
6212 /* Resolve undefined references to dot-symbols as the value
6213 in the function descriptor, if we have one in a regular object.
6214 This is to satisfy cases like ".quad .foo". Calls to functions
6215 in dynamic objects are handled elsewhere. */
6216 if ((fh->elf.root.type == bfd_link_hash_undefined
6217 || fh->elf.root.type == bfd_link_hash_undefweak)
6218 && (fdh->elf.root.type == bfd_link_hash_defined
6219 || fdh->elf.root.type == bfd_link_hash_defweak)
6220 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6221 && opd_entry_value (fdh->elf.root.u.def.section,
6222 fdh->elf.root.u.def.value,
6223 &fh->elf.root.u.def.section,
6224 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6225 {
6226 fh->elf.root.type = fdh->elf.root.type;
6227 fh->elf.forced_local = 1;
6228 fh->elf.def_regular = fdh->elf.def_regular;
6229 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6230 }
6231
6232 if (!fh->elf.dynamic)
6233 {
6234 struct plt_entry *ent;
6235
6236 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6237 if (ent->plt.refcount > 0)
6238 break;
6239 if (ent == NULL)
6240 return TRUE;
6241 }
6242
6243 /* Create a descriptor as undefined if necessary. */
6244 if (fdh == NULL
6245 && !bfd_link_executable (info)
6246 && (fh->elf.root.type == bfd_link_hash_undefined
6247 || fh->elf.root.type == bfd_link_hash_undefweak))
6248 {
6249 fdh = make_fdh (info, fh);
6250 if (fdh == NULL)
6251 return FALSE;
6252 }
6253
6254 /* We can't support overriding of symbols on a fake descriptor. */
6255 if (fdh != NULL
6256 && fdh->fake
6257 && (fh->elf.root.type == bfd_link_hash_defined
6258 || fh->elf.root.type == bfd_link_hash_defweak))
6259 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6260
6261 /* Transfer dynamic linking information to the function descriptor. */
6262 if (fdh != NULL)
6263 {
6264 fdh->elf.ref_regular |= fh->elf.ref_regular;
6265 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6266 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6267 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6268 fdh->elf.dynamic |= fh->elf.dynamic;
6269 fdh->elf.needs_plt |= (fh->elf.needs_plt
6270 || fh->elf.type == STT_FUNC
6271 || fh->elf.type == STT_GNU_IFUNC);
6272 move_plt_plist (fh, fdh);
6273
6274 if (!fdh->elf.forced_local
6275 && fh->elf.dynindx != -1)
6276 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6277 return FALSE;
6278 }
6279
6280 /* Now that the info is on the function descriptor, clear the
6281 function code sym info. Any function code syms for which we
6282 don't have a definition in a regular file, we force local.
6283 This prevents a shared library from exporting syms that have
6284 been imported from another library. Function code syms that
6285 are really in the library we must leave global to prevent the
6286 linker dragging in a definition from a static library. */
6287 force_local = (!fh->elf.def_regular
6288 || fdh == NULL
6289 || !fdh->elf.def_regular
6290 || fdh->elf.forced_local);
6291 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6292
6293 return TRUE;
6294 }
6295
6296 static const struct sfpr_def_parms save_res_funcs[] =
6297 {
6298 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6299 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6300 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6301 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6302 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6303 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6304 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6305 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6306 { "._savef", 14, 31, savefpr, savefpr1_tail },
6307 { "._restf", 14, 31, restfpr, restfpr1_tail },
6308 { "_savevr_", 20, 31, savevr, savevr_tail },
6309 { "_restvr_", 20, 31, restvr, restvr_tail }
6310 };
6311
6312 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6313 this hook to a) provide some gcc support functions, and b) transfer
6314 dynamic linking information gathered so far on function code symbol
6315 entries, to their corresponding function descriptor symbol entries. */
6316
6317 static bfd_boolean
6318 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6319 struct bfd_link_info *info)
6320 {
6321 struct ppc_link_hash_table *htab;
6322
6323 htab = ppc_hash_table (info);
6324 if (htab == NULL)
6325 return FALSE;
6326
6327 /* Provide any missing _save* and _rest* functions. */
6328 if (htab->sfpr != NULL)
6329 {
6330 unsigned int i;
6331
6332 htab->sfpr->size = 0;
6333 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6334 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6335 return FALSE;
6336 if (htab->sfpr->size == 0)
6337 htab->sfpr->flags |= SEC_EXCLUDE;
6338 }
6339
6340 if (bfd_link_relocatable (info))
6341 return TRUE;
6342
6343 if (htab->elf.hgot != NULL)
6344 {
6345 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6346 /* Make .TOC. defined so as to prevent it being made dynamic.
6347 The wrong value here is fixed later in ppc64_elf_set_toc. */
6348 if (!htab->elf.hgot->def_regular
6349 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6350 {
6351 htab->elf.hgot->root.type = bfd_link_hash_defined;
6352 htab->elf.hgot->root.u.def.value = 0;
6353 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6354 htab->elf.hgot->def_regular = 1;
6355 htab->elf.hgot->root.linker_def = 1;
6356 }
6357 htab->elf.hgot->type = STT_OBJECT;
6358 htab->elf.hgot->other
6359 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6360 }
6361
6362 if (htab->need_func_desc_adj)
6363 {
6364 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6365 htab->need_func_desc_adj = 0;
6366 }
6367
6368 return TRUE;
6369 }
6370
6371 /* Find dynamic relocs for H that apply to read-only sections. */
6372
6373 static asection *
6374 readonly_dynrelocs (struct elf_link_hash_entry *h)
6375 {
6376 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
6377 struct elf_dyn_relocs *p;
6378
6379 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6380 {
6381 asection *s = p->sec->output_section;
6382
6383 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6384 return p->sec;
6385 }
6386 return NULL;
6387 }
6388
6389 /* Return true if we have dynamic relocs against H or any of its weak
6390 aliases, that apply to read-only sections. Cannot be used after
6391 size_dynamic_sections. */
6392
6393 static bfd_boolean
6394 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6395 {
6396 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
6397 do
6398 {
6399 if (readonly_dynrelocs (&eh->elf))
6400 return TRUE;
6401 eh = ppc_elf_hash_entry (eh->elf.u.alias);
6402 }
6403 while (eh != NULL && &eh->elf != h);
6404
6405 return FALSE;
6406 }
6407
6408 /* Return whether EH has pc-relative dynamic relocs. */
6409
6410 static bfd_boolean
6411 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6412 {
6413 struct elf_dyn_relocs *p;
6414
6415 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6416 if (p->pc_count != 0)
6417 return TRUE;
6418 return FALSE;
6419 }
6420
6421 /* Return true if a global entry stub will be created for H. Valid
6422 for ELFv2 before plt entries have been allocated. */
6423
6424 static bfd_boolean
6425 global_entry_stub (struct elf_link_hash_entry *h)
6426 {
6427 struct plt_entry *pent;
6428
6429 if (!h->pointer_equality_needed
6430 || h->def_regular)
6431 return FALSE;
6432
6433 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6434 if (pent->plt.refcount > 0
6435 && pent->addend == 0)
6436 return TRUE;
6437
6438 return FALSE;
6439 }
6440
6441 /* Adjust a symbol defined by a dynamic object and referenced by a
6442 regular object. The current definition is in some section of the
6443 dynamic object, but we're not including those sections. We have to
6444 change the definition to something the rest of the link can
6445 understand. */
6446
6447 static bfd_boolean
6448 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6449 struct elf_link_hash_entry *h)
6450 {
6451 struct ppc_link_hash_table *htab;
6452 asection *s, *srel;
6453
6454 htab = ppc_hash_table (info);
6455 if (htab == NULL)
6456 return FALSE;
6457
6458 /* Deal with function syms. */
6459 if (h->type == STT_FUNC
6460 || h->type == STT_GNU_IFUNC
6461 || h->needs_plt)
6462 {
6463 bfd_boolean local = (ppc_elf_hash_entry (h)->save_res
6464 || SYMBOL_CALLS_LOCAL (info, h)
6465 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6466 /* Discard dyn_relocs when non-pic if we've decided that a
6467 function symbol is local and not an ifunc. We keep dynamic
6468 relocs for ifuncs when local rather than always emitting a
6469 plt call stub for them and defining the symbol on the call
6470 stub. We can't do that for ELFv1 anyway (a function symbol
6471 is defined on a descriptor, not code) and it can be faster at
6472 run-time due to not needing to bounce through a stub. The
6473 dyn_relocs for ifuncs will be applied even in a static
6474 executable. */
6475 if (!bfd_link_pic (info)
6476 && h->type != STT_GNU_IFUNC
6477 && local)
6478 ppc_elf_hash_entry (h)->dyn_relocs = NULL;
6479
6480 /* Clear procedure linkage table information for any symbol that
6481 won't need a .plt entry. */
6482 struct plt_entry *ent;
6483 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6484 if (ent->plt.refcount > 0)
6485 break;
6486 if (ent == NULL
6487 || (h->type != STT_GNU_IFUNC
6488 && local
6489 && (htab->can_convert_all_inline_plt
6490 || (ppc_elf_hash_entry (h)->tls_mask
6491 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6492 {
6493 h->plt.plist = NULL;
6494 h->needs_plt = 0;
6495 h->pointer_equality_needed = 0;
6496 }
6497 else if (abiversion (info->output_bfd) >= 2)
6498 {
6499 /* Taking a function's address in a read/write section
6500 doesn't require us to define the function symbol in the
6501 executable on a global entry stub. A dynamic reloc can
6502 be used instead. The reason we prefer a few more dynamic
6503 relocs is that calling via a global entry stub costs a
6504 few more instructions, and pointer_equality_needed causes
6505 extra work in ld.so when resolving these symbols. */
6506 if (global_entry_stub (h))
6507 {
6508 if (!readonly_dynrelocs (h))
6509 {
6510 h->pointer_equality_needed = 0;
6511 /* If we haven't seen a branch reloc and the symbol
6512 isn't an ifunc then we don't need a plt entry. */
6513 if (!h->needs_plt)
6514 h->plt.plist = NULL;
6515 }
6516 else if (!bfd_link_pic (info))
6517 /* We are going to be defining the function symbol on the
6518 plt stub, so no dyn_relocs needed when non-pic. */
6519 ppc_elf_hash_entry (h)->dyn_relocs = NULL;
6520 }
6521
6522 /* ELFv2 function symbols can't have copy relocs. */
6523 return TRUE;
6524 }
6525 else if (!h->needs_plt
6526 && !readonly_dynrelocs (h))
6527 {
6528 /* If we haven't seen a branch reloc and the symbol isn't an
6529 ifunc then we don't need a plt entry. */
6530 h->plt.plist = NULL;
6531 h->pointer_equality_needed = 0;
6532 return TRUE;
6533 }
6534 }
6535 else
6536 h->plt.plist = NULL;
6537
6538 /* If this is a weak symbol, and there is a real definition, the
6539 processor independent code will have arranged for us to see the
6540 real definition first, and we can just use the same value. */
6541 if (h->is_weakalias)
6542 {
6543 struct elf_link_hash_entry *def = weakdef (h);
6544 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6545 h->root.u.def.section = def->root.u.def.section;
6546 h->root.u.def.value = def->root.u.def.value;
6547 if (def->root.u.def.section == htab->elf.sdynbss
6548 || def->root.u.def.section == htab->elf.sdynrelro)
6549 ppc_elf_hash_entry (h)->dyn_relocs = NULL;
6550 return TRUE;
6551 }
6552
6553 /* If we are creating a shared library, we must presume that the
6554 only references to the symbol are via the global offset table.
6555 For such cases we need not do anything here; the relocations will
6556 be handled correctly by relocate_section. */
6557 if (!bfd_link_executable (info))
6558 return TRUE;
6559
6560 /* If there are no references to this symbol that do not use the
6561 GOT, we don't need to generate a copy reloc. */
6562 if (!h->non_got_ref)
6563 return TRUE;
6564
6565 /* Don't generate a copy reloc for symbols defined in the executable. */
6566 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6567
6568 /* If -z nocopyreloc was given, don't generate them either. */
6569 || info->nocopyreloc
6570
6571 /* If we don't find any dynamic relocs in read-only sections, then
6572 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6573 || (ELIMINATE_COPY_RELOCS
6574 && !h->needs_copy
6575 && !alias_readonly_dynrelocs (h))
6576
6577 /* Protected variables do not work with .dynbss. The copy in
6578 .dynbss won't be used by the shared library with the protected
6579 definition for the variable. Text relocations are preferable
6580 to an incorrect program. */
6581 || h->protected_def)
6582 return TRUE;
6583
6584 if (h->type == STT_FUNC
6585 || h->type == STT_GNU_IFUNC)
6586 {
6587 /* .dynbss copies of function symbols only work if we have
6588 ELFv1 dot-symbols. ELFv1 compilers since 2004 default to not
6589 use dot-symbols and set the function symbol size to the text
6590 size of the function rather than the size of the descriptor.
6591 That's wrong for copying a descriptor. */
6592 if (ppc_elf_hash_entry (h)->oh == NULL
6593 || !(h->size == 24 || h->size == 16))
6594 return TRUE;
6595
6596 /* We should never get here, but unfortunately there are old
6597 versions of gcc (circa gcc-3.2) that improperly for the
6598 ELFv1 ABI put initialized function pointers, vtable refs and
6599 suchlike in read-only sections. Allow them to proceed, but
6600 warn that this might break at runtime. */
6601 info->callbacks->einfo
6602 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6603 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6604 h->root.root.string);
6605 }
6606
6607 /* This is a reference to a symbol defined by a dynamic object which
6608 is not a function. */
6609
6610 /* We must allocate the symbol in our .dynbss section, which will
6611 become part of the .bss section of the executable. There will be
6612 an entry for this symbol in the .dynsym section. The dynamic
6613 object will contain position independent code, so all references
6614 from the dynamic object to this symbol will go through the global
6615 offset table. The dynamic linker will use the .dynsym entry to
6616 determine the address it must put in the global offset table, so
6617 both the dynamic object and the regular object will refer to the
6618 same memory location for the variable. */
6619 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6620 {
6621 s = htab->elf.sdynrelro;
6622 srel = htab->elf.sreldynrelro;
6623 }
6624 else
6625 {
6626 s = htab->elf.sdynbss;
6627 srel = htab->elf.srelbss;
6628 }
6629 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6630 {
6631 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6632 linker to copy the initial value out of the dynamic object
6633 and into the runtime process image. */
6634 srel->size += sizeof (Elf64_External_Rela);
6635 h->needs_copy = 1;
6636 }
6637
6638 /* We no longer want dyn_relocs. */
6639 ppc_elf_hash_entry (h)->dyn_relocs = NULL;
6640 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6641 }
6642
6643 /* If given a function descriptor symbol, hide both the function code
6644 sym and the descriptor. */
6645 static void
6646 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6647 struct elf_link_hash_entry *h,
6648 bfd_boolean force_local)
6649 {
6650 struct ppc_link_hash_entry *eh;
6651 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6652
6653 if (ppc_hash_table (info) == NULL)
6654 return;
6655
6656 eh = ppc_elf_hash_entry (h);
6657 if (eh->is_func_descriptor)
6658 {
6659 struct ppc_link_hash_entry *fh = eh->oh;
6660
6661 if (fh == NULL)
6662 {
6663 const char *p, *q;
6664 struct elf_link_hash_table *htab = elf_hash_table (info);
6665 char save;
6666
6667 /* We aren't supposed to use alloca in BFD because on
6668 systems which do not have alloca the version in libiberty
6669 calls xmalloc, which might cause the program to crash
6670 when it runs out of memory. This function doesn't have a
6671 return status, so there's no way to gracefully return an
6672 error. So cheat. We know that string[-1] can be safely
6673 accessed; It's either a string in an ELF string table,
6674 or allocated in an objalloc structure. */
6675
6676 p = eh->elf.root.root.string - 1;
6677 save = *p;
6678 *(char *) p = '.';
6679 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6680 FALSE, FALSE));
6681 *(char *) p = save;
6682
6683 /* Unfortunately, if it so happens that the string we were
6684 looking for was allocated immediately before this string,
6685 then we overwrote the string terminator. That's the only
6686 reason the lookup should fail. */
6687 if (fh == NULL)
6688 {
6689 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6690 while (q >= eh->elf.root.root.string && *q == *p)
6691 --q, --p;
6692 if (q < eh->elf.root.root.string && *p == '.')
6693 fh = ppc_elf_hash_entry (elf_link_hash_lookup (htab, p, FALSE,
6694 FALSE, FALSE));
6695 }
6696 if (fh != NULL)
6697 {
6698 eh->oh = fh;
6699 fh->oh = eh;
6700 }
6701 }
6702 if (fh != NULL)
6703 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6704 }
6705 }
6706
6707 static bfd_boolean
6708 get_sym_h (struct elf_link_hash_entry **hp,
6709 Elf_Internal_Sym **symp,
6710 asection **symsecp,
6711 unsigned char **tls_maskp,
6712 Elf_Internal_Sym **locsymsp,
6713 unsigned long r_symndx,
6714 bfd *ibfd)
6715 {
6716 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6717
6718 if (r_symndx >= symtab_hdr->sh_info)
6719 {
6720 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6721 struct elf_link_hash_entry *h;
6722
6723 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6724 h = elf_follow_link (h);
6725
6726 if (hp != NULL)
6727 *hp = h;
6728
6729 if (symp != NULL)
6730 *symp = NULL;
6731
6732 if (symsecp != NULL)
6733 {
6734 asection *symsec = NULL;
6735 if (h->root.type == bfd_link_hash_defined
6736 || h->root.type == bfd_link_hash_defweak)
6737 symsec = h->root.u.def.section;
6738 *symsecp = symsec;
6739 }
6740
6741 if (tls_maskp != NULL)
6742 *tls_maskp = &ppc_elf_hash_entry (h)->tls_mask;
6743 }
6744 else
6745 {
6746 Elf_Internal_Sym *sym;
6747 Elf_Internal_Sym *locsyms = *locsymsp;
6748
6749 if (locsyms == NULL)
6750 {
6751 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6752 if (locsyms == NULL)
6753 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6754 symtab_hdr->sh_info,
6755 0, NULL, NULL, NULL);
6756 if (locsyms == NULL)
6757 return FALSE;
6758 *locsymsp = locsyms;
6759 }
6760 sym = locsyms + r_symndx;
6761
6762 if (hp != NULL)
6763 *hp = NULL;
6764
6765 if (symp != NULL)
6766 *symp = sym;
6767
6768 if (symsecp != NULL)
6769 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6770
6771 if (tls_maskp != NULL)
6772 {
6773 struct got_entry **lgot_ents;
6774 unsigned char *tls_mask;
6775
6776 tls_mask = NULL;
6777 lgot_ents = elf_local_got_ents (ibfd);
6778 if (lgot_ents != NULL)
6779 {
6780 struct plt_entry **local_plt = (struct plt_entry **)
6781 (lgot_ents + symtab_hdr->sh_info);
6782 unsigned char *lgot_masks = (unsigned char *)
6783 (local_plt + symtab_hdr->sh_info);
6784 tls_mask = &lgot_masks[r_symndx];
6785 }
6786 *tls_maskp = tls_mask;
6787 }
6788 }
6789 return TRUE;
6790 }
6791
6792 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6793 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6794 type suitable for optimization, and 1 otherwise. */
6795
6796 static int
6797 get_tls_mask (unsigned char **tls_maskp,
6798 unsigned long *toc_symndx,
6799 bfd_vma *toc_addend,
6800 Elf_Internal_Sym **locsymsp,
6801 const Elf_Internal_Rela *rel,
6802 bfd *ibfd)
6803 {
6804 unsigned long r_symndx;
6805 int next_r;
6806 struct elf_link_hash_entry *h;
6807 Elf_Internal_Sym *sym;
6808 asection *sec;
6809 bfd_vma off;
6810
6811 r_symndx = ELF64_R_SYM (rel->r_info);
6812 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6813 return 0;
6814
6815 if ((*tls_maskp != NULL
6816 && (**tls_maskp & TLS_TLS) != 0
6817 && **tls_maskp != (TLS_TLS | TLS_MARK))
6818 || sec == NULL
6819 || ppc64_elf_section_data (sec) == NULL
6820 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6821 return 1;
6822
6823 /* Look inside a TOC section too. */
6824 if (h != NULL)
6825 {
6826 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6827 off = h->root.u.def.value;
6828 }
6829 else
6830 off = sym->st_value;
6831 off += rel->r_addend;
6832 BFD_ASSERT (off % 8 == 0);
6833 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6834 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6835 if (toc_symndx != NULL)
6836 *toc_symndx = r_symndx;
6837 if (toc_addend != NULL)
6838 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6839 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6840 return 0;
6841 if ((h == NULL || is_static_defined (h))
6842 && (next_r == -1 || next_r == -2))
6843 return 1 - next_r;
6844 return 1;
6845 }
6846
6847 /* Find (or create) an entry in the tocsave hash table. */
6848
6849 static struct tocsave_entry *
6850 tocsave_find (struct ppc_link_hash_table *htab,
6851 enum insert_option insert,
6852 Elf_Internal_Sym **local_syms,
6853 const Elf_Internal_Rela *irela,
6854 bfd *ibfd)
6855 {
6856 unsigned long r_indx;
6857 struct elf_link_hash_entry *h;
6858 Elf_Internal_Sym *sym;
6859 struct tocsave_entry ent, *p;
6860 hashval_t hash;
6861 struct tocsave_entry **slot;
6862
6863 r_indx = ELF64_R_SYM (irela->r_info);
6864 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6865 return NULL;
6866 if (ent.sec == NULL || ent.sec->output_section == NULL)
6867 {
6868 _bfd_error_handler
6869 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6870 return NULL;
6871 }
6872
6873 if (h != NULL)
6874 ent.offset = h->root.u.def.value;
6875 else
6876 ent.offset = sym->st_value;
6877 ent.offset += irela->r_addend;
6878
6879 hash = tocsave_htab_hash (&ent);
6880 slot = ((struct tocsave_entry **)
6881 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6882 if (slot == NULL)
6883 return NULL;
6884
6885 if (*slot == NULL)
6886 {
6887 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6888 if (p == NULL)
6889 return NULL;
6890 *p = ent;
6891 *slot = p;
6892 }
6893 return *slot;
6894 }
6895
6896 /* Adjust all global syms defined in opd sections. In gcc generated
6897 code for the old ABI, these will already have been done. */
6898
6899 static bfd_boolean
6900 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6901 {
6902 struct ppc_link_hash_entry *eh;
6903 asection *sym_sec;
6904 struct _opd_sec_data *opd;
6905
6906 if (h->root.type == bfd_link_hash_indirect)
6907 return TRUE;
6908
6909 if (h->root.type != bfd_link_hash_defined
6910 && h->root.type != bfd_link_hash_defweak)
6911 return TRUE;
6912
6913 eh = ppc_elf_hash_entry (h);
6914 if (eh->adjust_done)
6915 return TRUE;
6916
6917 sym_sec = eh->elf.root.u.def.section;
6918 opd = get_opd_info (sym_sec);
6919 if (opd != NULL && opd->adjust != NULL)
6920 {
6921 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6922 if (adjust == -1)
6923 {
6924 /* This entry has been deleted. */
6925 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6926 if (dsec == NULL)
6927 {
6928 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6929 if (discarded_section (dsec))
6930 {
6931 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6932 break;
6933 }
6934 }
6935 eh->elf.root.u.def.value = 0;
6936 eh->elf.root.u.def.section = dsec;
6937 }
6938 else
6939 eh->elf.root.u.def.value += adjust;
6940 eh->adjust_done = 1;
6941 }
6942 return TRUE;
6943 }
6944
6945 /* Handles decrementing dynamic reloc counts for the reloc specified by
6946 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6947 have already been determined. */
6948
6949 static bfd_boolean
6950 dec_dynrel_count (bfd_vma r_info,
6951 asection *sec,
6952 struct bfd_link_info *info,
6953 Elf_Internal_Sym **local_syms,
6954 struct elf_link_hash_entry *h,
6955 Elf_Internal_Sym *sym)
6956 {
6957 enum elf_ppc64_reloc_type r_type;
6958 asection *sym_sec = NULL;
6959
6960 /* Can this reloc be dynamic? This switch, and later tests here
6961 should be kept in sync with the code in check_relocs. */
6962 r_type = ELF64_R_TYPE (r_info);
6963 switch (r_type)
6964 {
6965 default:
6966 return TRUE;
6967
6968 case R_PPC64_TOC16:
6969 case R_PPC64_TOC16_DS:
6970 case R_PPC64_TOC16_LO:
6971 case R_PPC64_TOC16_HI:
6972 case R_PPC64_TOC16_HA:
6973 case R_PPC64_TOC16_LO_DS:
6974 if (h == NULL)
6975 return TRUE;
6976 break;
6977
6978 case R_PPC64_TPREL16:
6979 case R_PPC64_TPREL16_LO:
6980 case R_PPC64_TPREL16_HI:
6981 case R_PPC64_TPREL16_HA:
6982 case R_PPC64_TPREL16_DS:
6983 case R_PPC64_TPREL16_LO_DS:
6984 case R_PPC64_TPREL16_HIGH:
6985 case R_PPC64_TPREL16_HIGHA:
6986 case R_PPC64_TPREL16_HIGHER:
6987 case R_PPC64_TPREL16_HIGHERA:
6988 case R_PPC64_TPREL16_HIGHEST:
6989 case R_PPC64_TPREL16_HIGHESTA:
6990 case R_PPC64_TPREL64:
6991 case R_PPC64_TPREL34:
6992 case R_PPC64_DTPMOD64:
6993 case R_PPC64_DTPREL64:
6994 case R_PPC64_ADDR64:
6995 case R_PPC64_REL30:
6996 case R_PPC64_REL32:
6997 case R_PPC64_REL64:
6998 case R_PPC64_ADDR14:
6999 case R_PPC64_ADDR14_BRNTAKEN:
7000 case R_PPC64_ADDR14_BRTAKEN:
7001 case R_PPC64_ADDR16:
7002 case R_PPC64_ADDR16_DS:
7003 case R_PPC64_ADDR16_HA:
7004 case R_PPC64_ADDR16_HI:
7005 case R_PPC64_ADDR16_HIGH:
7006 case R_PPC64_ADDR16_HIGHA:
7007 case R_PPC64_ADDR16_HIGHER:
7008 case R_PPC64_ADDR16_HIGHERA:
7009 case R_PPC64_ADDR16_HIGHEST:
7010 case R_PPC64_ADDR16_HIGHESTA:
7011 case R_PPC64_ADDR16_LO:
7012 case R_PPC64_ADDR16_LO_DS:
7013 case R_PPC64_ADDR24:
7014 case R_PPC64_ADDR32:
7015 case R_PPC64_UADDR16:
7016 case R_PPC64_UADDR32:
7017 case R_PPC64_UADDR64:
7018 case R_PPC64_TOC:
7019 case R_PPC64_D34:
7020 case R_PPC64_D34_LO:
7021 case R_PPC64_D34_HI30:
7022 case R_PPC64_D34_HA30:
7023 case R_PPC64_ADDR16_HIGHER34:
7024 case R_PPC64_ADDR16_HIGHERA34:
7025 case R_PPC64_ADDR16_HIGHEST34:
7026 case R_PPC64_ADDR16_HIGHESTA34:
7027 case R_PPC64_D28:
7028 break;
7029 }
7030
7031 if (local_syms != NULL)
7032 {
7033 unsigned long r_symndx;
7034 bfd *ibfd = sec->owner;
7035
7036 r_symndx = ELF64_R_SYM (r_info);
7037 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7038 return FALSE;
7039 }
7040
7041 if ((h != NULL
7042 && (h->root.type == bfd_link_hash_defweak
7043 || !h->def_regular))
7044 || (h != NULL
7045 && !bfd_link_executable (info)
7046 && !SYMBOLIC_BIND (info, h))
7047 || (bfd_link_pic (info)
7048 && must_be_dyn_reloc (info, r_type))
7049 || (!bfd_link_pic (info)
7050 && (h != NULL
7051 ? h->type == STT_GNU_IFUNC
7052 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
7053 ;
7054 else
7055 return TRUE;
7056
7057 if (h != NULL)
7058 {
7059 struct elf_dyn_relocs *p;
7060 struct elf_dyn_relocs **pp;
7061 pp = &ppc_elf_hash_entry (h)->dyn_relocs;
7062
7063 /* elf_gc_sweep may have already removed all dyn relocs associated
7064 with local syms for a given section. Also, symbol flags are
7065 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7066 report a dynreloc miscount. */
7067 if (*pp == NULL && info->gc_sections)
7068 return TRUE;
7069
7070 while ((p = *pp) != NULL)
7071 {
7072 if (p->sec == sec)
7073 {
7074 if (!must_be_dyn_reloc (info, r_type))
7075 p->pc_count -= 1;
7076 p->count -= 1;
7077 if (p->count == 0)
7078 *pp = p->next;
7079 return TRUE;
7080 }
7081 pp = &p->next;
7082 }
7083 }
7084 else
7085 {
7086 struct ppc_dyn_relocs *p;
7087 struct ppc_dyn_relocs **pp;
7088 void *vpp;
7089 bfd_boolean is_ifunc;
7090
7091 if (local_syms == NULL)
7092 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
7093 if (sym_sec == NULL)
7094 sym_sec = sec;
7095
7096 vpp = &elf_section_data (sym_sec)->local_dynrel;
7097 pp = (struct ppc_dyn_relocs **) vpp;
7098
7099 if (*pp == NULL && info->gc_sections)
7100 return TRUE;
7101
7102 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
7103 while ((p = *pp) != NULL)
7104 {
7105 if (p->sec == sec && p->ifunc == is_ifunc)
7106 {
7107 p->count -= 1;
7108 if (p->count == 0)
7109 *pp = p->next;
7110 return TRUE;
7111 }
7112 pp = &p->next;
7113 }
7114 }
7115
7116 /* xgettext:c-format */
7117 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
7118 sec->owner, sec);
7119 bfd_set_error (bfd_error_bad_value);
7120 return FALSE;
7121 }
7122
7123 /* Remove unused Official Procedure Descriptor entries. Currently we
7124 only remove those associated with functions in discarded link-once
7125 sections, or weakly defined functions that have been overridden. It
7126 would be possible to remove many more entries for statically linked
7127 applications. */
7128
7129 bfd_boolean
7130 ppc64_elf_edit_opd (struct bfd_link_info *info)
7131 {
7132 bfd *ibfd;
7133 bfd_boolean some_edited = FALSE;
7134 asection *need_pad = NULL;
7135 struct ppc_link_hash_table *htab;
7136
7137 htab = ppc_hash_table (info);
7138 if (htab == NULL)
7139 return FALSE;
7140
7141 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7142 {
7143 asection *sec;
7144 Elf_Internal_Rela *relstart, *rel, *relend;
7145 Elf_Internal_Shdr *symtab_hdr;
7146 Elf_Internal_Sym *local_syms;
7147 struct _opd_sec_data *opd;
7148 bfd_boolean need_edit, add_aux_fields, broken;
7149 bfd_size_type cnt_16b = 0;
7150
7151 if (!is_ppc64_elf (ibfd))
7152 continue;
7153
7154 sec = bfd_get_section_by_name (ibfd, ".opd");
7155 if (sec == NULL || sec->size == 0)
7156 continue;
7157
7158 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7159 continue;
7160
7161 if (sec->output_section == bfd_abs_section_ptr)
7162 continue;
7163
7164 /* Look through the section relocs. */
7165 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7166 continue;
7167
7168 local_syms = NULL;
7169 symtab_hdr = &elf_symtab_hdr (ibfd);
7170
7171 /* Read the relocations. */
7172 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7173 info->keep_memory);
7174 if (relstart == NULL)
7175 return FALSE;
7176
7177 /* First run through the relocs to check they are sane, and to
7178 determine whether we need to edit this opd section. */
7179 need_edit = FALSE;
7180 broken = FALSE;
7181 need_pad = sec;
7182 relend = relstart + sec->reloc_count;
7183 for (rel = relstart; rel < relend; )
7184 {
7185 enum elf_ppc64_reloc_type r_type;
7186 unsigned long r_symndx;
7187 asection *sym_sec;
7188 struct elf_link_hash_entry *h;
7189 Elf_Internal_Sym *sym;
7190 bfd_vma offset;
7191
7192 /* .opd contains an array of 16 or 24 byte entries. We're
7193 only interested in the reloc pointing to a function entry
7194 point. */
7195 offset = rel->r_offset;
7196 if (rel + 1 == relend
7197 || rel[1].r_offset != offset + 8)
7198 {
7199 /* If someone messes with .opd alignment then after a
7200 "ld -r" we might have padding in the middle of .opd.
7201 Also, there's nothing to prevent someone putting
7202 something silly in .opd with the assembler. No .opd
7203 optimization for them! */
7204 broken_opd:
7205 _bfd_error_handler
7206 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7207 broken = TRUE;
7208 break;
7209 }
7210
7211 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7212 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7213 {
7214 _bfd_error_handler
7215 /* xgettext:c-format */
7216 (_("%pB: unexpected reloc type %u in .opd section"),
7217 ibfd, r_type);
7218 broken = TRUE;
7219 break;
7220 }
7221
7222 r_symndx = ELF64_R_SYM (rel->r_info);
7223 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7224 r_symndx, ibfd))
7225 goto error_ret;
7226
7227 if (sym_sec == NULL || sym_sec->owner == NULL)
7228 {
7229 const char *sym_name;
7230 if (h != NULL)
7231 sym_name = h->root.root.string;
7232 else
7233 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7234 sym_sec);
7235
7236 _bfd_error_handler
7237 /* xgettext:c-format */
7238 (_("%pB: undefined sym `%s' in .opd section"),
7239 ibfd, sym_name);
7240 broken = TRUE;
7241 break;
7242 }
7243
7244 /* opd entries are always for functions defined in the
7245 current input bfd. If the symbol isn't defined in the
7246 input bfd, then we won't be using the function in this
7247 bfd; It must be defined in a linkonce section in another
7248 bfd, or is weak. It's also possible that we are
7249 discarding the function due to a linker script /DISCARD/,
7250 which we test for via the output_section. */
7251 if (sym_sec->owner != ibfd
7252 || sym_sec->output_section == bfd_abs_section_ptr)
7253 need_edit = TRUE;
7254
7255 rel += 2;
7256 if (rel + 1 == relend
7257 || (rel + 2 < relend
7258 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7259 ++rel;
7260
7261 if (rel == relend)
7262 {
7263 if (sec->size == offset + 24)
7264 {
7265 need_pad = NULL;
7266 break;
7267 }
7268 if (sec->size == offset + 16)
7269 {
7270 cnt_16b++;
7271 break;
7272 }
7273 goto broken_opd;
7274 }
7275 else if (rel + 1 < relend
7276 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7277 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7278 {
7279 if (rel[0].r_offset == offset + 16)
7280 cnt_16b++;
7281 else if (rel[0].r_offset != offset + 24)
7282 goto broken_opd;
7283 }
7284 else
7285 goto broken_opd;
7286 }
7287
7288 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7289
7290 if (!broken && (need_edit || add_aux_fields))
7291 {
7292 Elf_Internal_Rela *write_rel;
7293 Elf_Internal_Shdr *rel_hdr;
7294 bfd_byte *rptr, *wptr;
7295 bfd_byte *new_contents;
7296 bfd_size_type amt;
7297
7298 new_contents = NULL;
7299 amt = OPD_NDX (sec->size) * sizeof (long);
7300 opd = &ppc64_elf_section_data (sec)->u.opd;
7301 opd->adjust = bfd_zalloc (sec->owner, amt);
7302 if (opd->adjust == NULL)
7303 return FALSE;
7304
7305 /* This seems a waste of time as input .opd sections are all
7306 zeros as generated by gcc, but I suppose there's no reason
7307 this will always be so. We might start putting something in
7308 the third word of .opd entries. */
7309 if ((sec->flags & SEC_IN_MEMORY) == 0)
7310 {
7311 bfd_byte *loc;
7312 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7313 {
7314 if (loc != NULL)
7315 free (loc);
7316 error_ret:
7317 if (local_syms != NULL
7318 && symtab_hdr->contents != (unsigned char *) local_syms)
7319 free (local_syms);
7320 if (elf_section_data (sec)->relocs != relstart)
7321 free (relstart);
7322 return FALSE;
7323 }
7324 sec->contents = loc;
7325 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7326 }
7327
7328 elf_section_data (sec)->relocs = relstart;
7329
7330 new_contents = sec->contents;
7331 if (add_aux_fields)
7332 {
7333 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7334 if (new_contents == NULL)
7335 return FALSE;
7336 need_pad = NULL;
7337 }
7338 wptr = new_contents;
7339 rptr = sec->contents;
7340 write_rel = relstart;
7341 for (rel = relstart; rel < relend; )
7342 {
7343 unsigned long r_symndx;
7344 asection *sym_sec;
7345 struct elf_link_hash_entry *h;
7346 struct ppc_link_hash_entry *fdh = NULL;
7347 Elf_Internal_Sym *sym;
7348 long opd_ent_size;
7349 Elf_Internal_Rela *next_rel;
7350 bfd_boolean skip;
7351
7352 r_symndx = ELF64_R_SYM (rel->r_info);
7353 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7354 r_symndx, ibfd))
7355 goto error_ret;
7356
7357 next_rel = rel + 2;
7358 if (next_rel + 1 == relend
7359 || (next_rel + 2 < relend
7360 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7361 ++next_rel;
7362
7363 /* See if the .opd entry is full 24 byte or
7364 16 byte (with fd_aux entry overlapped with next
7365 fd_func). */
7366 opd_ent_size = 24;
7367 if (next_rel == relend)
7368 {
7369 if (sec->size == rel->r_offset + 16)
7370 opd_ent_size = 16;
7371 }
7372 else if (next_rel->r_offset == rel->r_offset + 16)
7373 opd_ent_size = 16;
7374
7375 if (h != NULL
7376 && h->root.root.string[0] == '.')
7377 {
7378 fdh = ppc_elf_hash_entry (h)->oh;
7379 if (fdh != NULL)
7380 {
7381 fdh = ppc_follow_link (fdh);
7382 if (fdh->elf.root.type != bfd_link_hash_defined
7383 && fdh->elf.root.type != bfd_link_hash_defweak)
7384 fdh = NULL;
7385 }
7386 }
7387
7388 skip = (sym_sec->owner != ibfd
7389 || sym_sec->output_section == bfd_abs_section_ptr);
7390 if (skip)
7391 {
7392 if (fdh != NULL && sym_sec->owner == ibfd)
7393 {
7394 /* Arrange for the function descriptor sym
7395 to be dropped. */
7396 fdh->elf.root.u.def.value = 0;
7397 fdh->elf.root.u.def.section = sym_sec;
7398 }
7399 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7400
7401 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7402 rel = next_rel;
7403 else
7404 while (1)
7405 {
7406 if (!dec_dynrel_count (rel->r_info, sec, info,
7407 NULL, h, sym))
7408 goto error_ret;
7409
7410 if (++rel == next_rel)
7411 break;
7412
7413 r_symndx = ELF64_R_SYM (rel->r_info);
7414 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7415 r_symndx, ibfd))
7416 goto error_ret;
7417 }
7418 }
7419 else
7420 {
7421 /* We'll be keeping this opd entry. */
7422 long adjust;
7423
7424 if (fdh != NULL)
7425 {
7426 /* Redefine the function descriptor symbol to
7427 this location in the opd section. It is
7428 necessary to update the value here rather
7429 than using an array of adjustments as we do
7430 for local symbols, because various places
7431 in the generic ELF code use the value
7432 stored in u.def.value. */
7433 fdh->elf.root.u.def.value = wptr - new_contents;
7434 fdh->adjust_done = 1;
7435 }
7436
7437 /* Local syms are a bit tricky. We could
7438 tweak them as they can be cached, but
7439 we'd need to look through the local syms
7440 for the function descriptor sym which we
7441 don't have at the moment. So keep an
7442 array of adjustments. */
7443 adjust = (wptr - new_contents) - (rptr - sec->contents);
7444 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7445
7446 if (wptr != rptr)
7447 memcpy (wptr, rptr, opd_ent_size);
7448 wptr += opd_ent_size;
7449 if (add_aux_fields && opd_ent_size == 16)
7450 {
7451 memset (wptr, '\0', 8);
7452 wptr += 8;
7453 }
7454
7455 /* We need to adjust any reloc offsets to point to the
7456 new opd entries. */
7457 for ( ; rel != next_rel; ++rel)
7458 {
7459 rel->r_offset += adjust;
7460 if (write_rel != rel)
7461 memcpy (write_rel, rel, sizeof (*rel));
7462 ++write_rel;
7463 }
7464 }
7465
7466 rptr += opd_ent_size;
7467 }
7468
7469 sec->size = wptr - new_contents;
7470 sec->reloc_count = write_rel - relstart;
7471 if (add_aux_fields)
7472 {
7473 free (sec->contents);
7474 sec->contents = new_contents;
7475 }
7476
7477 /* Fudge the header size too, as this is used later in
7478 elf_bfd_final_link if we are emitting relocs. */
7479 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7480 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7481 some_edited = TRUE;
7482 }
7483 else if (elf_section_data (sec)->relocs != relstart)
7484 free (relstart);
7485
7486 if (local_syms != NULL
7487 && symtab_hdr->contents != (unsigned char *) local_syms)
7488 {
7489 if (!info->keep_memory)
7490 free (local_syms);
7491 else
7492 symtab_hdr->contents = (unsigned char *) local_syms;
7493 }
7494 }
7495
7496 if (some_edited)
7497 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7498
7499 /* If we are doing a final link and the last .opd entry is just 16 byte
7500 long, add a 8 byte padding after it. */
7501 if (need_pad != NULL && !bfd_link_relocatable (info))
7502 {
7503 bfd_byte *p;
7504
7505 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7506 {
7507 BFD_ASSERT (need_pad->size > 0);
7508
7509 p = bfd_malloc (need_pad->size + 8);
7510 if (p == NULL)
7511 return FALSE;
7512
7513 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7514 p, 0, need_pad->size))
7515 return FALSE;
7516
7517 need_pad->contents = p;
7518 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7519 }
7520 else
7521 {
7522 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7523 if (p == NULL)
7524 return FALSE;
7525
7526 need_pad->contents = p;
7527 }
7528
7529 memset (need_pad->contents + need_pad->size, 0, 8);
7530 need_pad->size += 8;
7531 }
7532
7533 return TRUE;
7534 }
7535
7536 /* Analyze inline PLT call relocations to see whether calls to locally
7537 defined functions can be converted to direct calls. */
7538
7539 bfd_boolean
7540 ppc64_elf_inline_plt (struct bfd_link_info *info)
7541 {
7542 struct ppc_link_hash_table *htab;
7543 bfd *ibfd;
7544 asection *sec;
7545 bfd_vma low_vma, high_vma, limit;
7546
7547 htab = ppc_hash_table (info);
7548 if (htab == NULL)
7549 return FALSE;
7550
7551 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7552 reduced somewhat to cater for possible stubs that might be added
7553 between the call and its destination. */
7554 if (htab->params->group_size < 0)
7555 {
7556 limit = -htab->params->group_size;
7557 if (limit == 1)
7558 limit = 0x1e00000;
7559 }
7560 else
7561 {
7562 limit = htab->params->group_size;
7563 if (limit == 1)
7564 limit = 0x1c00000;
7565 }
7566
7567 low_vma = -1;
7568 high_vma = 0;
7569 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7570 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7571 {
7572 if (low_vma > sec->vma)
7573 low_vma = sec->vma;
7574 if (high_vma < sec->vma + sec->size)
7575 high_vma = sec->vma + sec->size;
7576 }
7577
7578 /* If a "bl" can reach anywhere in local code sections, then we can
7579 convert all inline PLT sequences to direct calls when the symbol
7580 is local. */
7581 if (high_vma - low_vma < limit)
7582 {
7583 htab->can_convert_all_inline_plt = 1;
7584 return TRUE;
7585 }
7586
7587 /* Otherwise, go looking through relocs for cases where a direct
7588 call won't reach. Mark the symbol on any such reloc to disable
7589 the optimization and keep the PLT entry as it seems likely that
7590 this will be better than creating trampolines. Note that this
7591 will disable the optimization for all inline PLT calls to a
7592 particular symbol, not just those that won't reach. The
7593 difficulty in doing a more precise optimization is that the
7594 linker needs to make a decision depending on whether a
7595 particular R_PPC64_PLTCALL insn can be turned into a direct
7596 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7597 the sequence, and there is nothing that ties those relocs
7598 together except their symbol. */
7599
7600 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7601 {
7602 Elf_Internal_Shdr *symtab_hdr;
7603 Elf_Internal_Sym *local_syms;
7604
7605 if (!is_ppc64_elf (ibfd))
7606 continue;
7607
7608 local_syms = NULL;
7609 symtab_hdr = &elf_symtab_hdr (ibfd);
7610
7611 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7612 if (ppc64_elf_section_data (sec)->has_pltcall
7613 && !bfd_is_abs_section (sec->output_section))
7614 {
7615 Elf_Internal_Rela *relstart, *rel, *relend;
7616
7617 /* Read the relocations. */
7618 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7619 info->keep_memory);
7620 if (relstart == NULL)
7621 return FALSE;
7622
7623 relend = relstart + sec->reloc_count;
7624 for (rel = relstart; rel < relend; rel++)
7625 {
7626 enum elf_ppc64_reloc_type r_type;
7627 unsigned long r_symndx;
7628 asection *sym_sec;
7629 struct elf_link_hash_entry *h;
7630 Elf_Internal_Sym *sym;
7631 unsigned char *tls_maskp;
7632
7633 r_type = ELF64_R_TYPE (rel->r_info);
7634 if (r_type != R_PPC64_PLTCALL
7635 && r_type != R_PPC64_PLTCALL_NOTOC)
7636 continue;
7637
7638 r_symndx = ELF64_R_SYM (rel->r_info);
7639 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7640 r_symndx, ibfd))
7641 {
7642 if (elf_section_data (sec)->relocs != relstart)
7643 free (relstart);
7644 if (local_syms != NULL
7645 && symtab_hdr->contents != (bfd_byte *) local_syms)
7646 free (local_syms);
7647 return FALSE;
7648 }
7649
7650 if (sym_sec != NULL && sym_sec->output_section != NULL)
7651 {
7652 bfd_vma from, to;
7653 if (h != NULL)
7654 to = h->root.u.def.value;
7655 else
7656 to = sym->st_value;
7657 to += (rel->r_addend
7658 + sym_sec->output_offset
7659 + sym_sec->output_section->vma);
7660 from = (rel->r_offset
7661 + sec->output_offset
7662 + sec->output_section->vma);
7663 if (to - from + limit < 2 * limit
7664 && !(r_type == R_PPC64_PLTCALL_NOTOC
7665 && (((h ? h->other : sym->st_other)
7666 & STO_PPC64_LOCAL_MASK)
7667 > 1 << STO_PPC64_LOCAL_BIT)))
7668 *tls_maskp &= ~PLT_KEEP;
7669 }
7670 }
7671 if (elf_section_data (sec)->relocs != relstart)
7672 free (relstart);
7673 }
7674
7675 if (local_syms != NULL
7676 && symtab_hdr->contents != (unsigned char *) local_syms)
7677 {
7678 if (!info->keep_memory)
7679 free (local_syms);
7680 else
7681 symtab_hdr->contents = (unsigned char *) local_syms;
7682 }
7683 }
7684
7685 return TRUE;
7686 }
7687
7688 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7689
7690 asection *
7691 ppc64_elf_tls_setup (struct bfd_link_info *info)
7692 {
7693 struct ppc_link_hash_table *htab;
7694 struct elf_link_hash_entry *tga, *tga_fd, *desc, *desc_fd;
7695
7696 htab = ppc_hash_table (info);
7697 if (htab == NULL)
7698 return NULL;
7699
7700 if (abiversion (info->output_bfd) == 1)
7701 htab->opd_abi = 1;
7702
7703 if (htab->params->no_multi_toc)
7704 htab->do_multi_toc = 0;
7705 else if (!htab->do_multi_toc)
7706 htab->params->no_multi_toc = 1;
7707
7708 /* Default to --no-plt-localentry, as this option can cause problems
7709 with symbol interposition. For example, glibc libpthread.so and
7710 libc.so duplicate many pthread symbols, with a fallback
7711 implementation in libc.so. In some cases the fallback does more
7712 work than the pthread implementation. __pthread_condattr_destroy
7713 is one such symbol: the libpthread.so implementation is
7714 localentry:0 while the libc.so implementation is localentry:8.
7715 An app that "cleverly" uses dlopen to only load necessary
7716 libraries at runtime may omit loading libpthread.so when not
7717 running multi-threaded, which then results in the libc.so
7718 fallback symbols being used and ld.so complaining. Now there
7719 are workarounds in ld (see non_zero_localentry) to detect the
7720 pthread situation, but that may not be the only case where
7721 --plt-localentry can cause trouble. */
7722 if (htab->params->plt_localentry0 < 0)
7723 htab->params->plt_localentry0 = 0;
7724 if (htab->params->plt_localentry0
7725 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7726 FALSE, FALSE, FALSE) == NULL)
7727 _bfd_error_handler
7728 (_("warning: --plt-localentry is especially dangerous without "
7729 "ld.so support to detect ABI violations"));
7730
7731 tga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7732 FALSE, FALSE, TRUE);
7733 htab->tls_get_addr = ppc_elf_hash_entry (tga);
7734
7735 /* Move dynamic linking info to the function descriptor sym. */
7736 if (tga != NULL)
7737 func_desc_adjust (tga, info);
7738 tga_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7739 FALSE, FALSE, TRUE);
7740 htab->tls_get_addr_fd = ppc_elf_hash_entry (tga_fd);
7741
7742 desc = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_desc",
7743 FALSE, FALSE, TRUE);
7744 htab->tga_desc = ppc_elf_hash_entry (desc);
7745 if (desc != NULL)
7746 func_desc_adjust (desc, info);
7747 desc_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_desc",
7748 FALSE, FALSE, TRUE);
7749 htab->tga_desc_fd = ppc_elf_hash_entry (desc_fd);
7750
7751 if (htab->params->tls_get_addr_opt)
7752 {
7753 struct elf_link_hash_entry *opt, *opt_fd;
7754
7755 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7756 FALSE, FALSE, TRUE);
7757 if (opt != NULL)
7758 func_desc_adjust (opt, info);
7759 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7760 FALSE, FALSE, TRUE);
7761 if (opt_fd != NULL
7762 && (opt_fd->root.type == bfd_link_hash_defined
7763 || opt_fd->root.type == bfd_link_hash_defweak))
7764 {
7765 /* If glibc supports an optimized __tls_get_addr call stub,
7766 signalled by the presence of __tls_get_addr_opt, and we'll
7767 be calling __tls_get_addr via a plt call stub, then
7768 make __tls_get_addr point to __tls_get_addr_opt. */
7769 if (!(htab->elf.dynamic_sections_created
7770 && tga_fd != NULL
7771 && (tga_fd->type == STT_FUNC
7772 || tga_fd->needs_plt)
7773 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7774 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd))))
7775 tga_fd = NULL;
7776 if (!(htab->elf.dynamic_sections_created
7777 && desc_fd != NULL
7778 && (desc_fd->type == STT_FUNC
7779 || desc_fd->needs_plt)
7780 && !(SYMBOL_CALLS_LOCAL (info, desc_fd)
7781 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, desc_fd))))
7782 desc_fd = NULL;
7783
7784 if (tga_fd != NULL || desc_fd != NULL)
7785 {
7786 struct plt_entry *ent = NULL;
7787
7788 if (tga_fd != NULL)
7789 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7790 if (ent->plt.refcount > 0)
7791 break;
7792 if (ent == NULL && desc_fd != NULL)
7793 for (ent = desc_fd->plt.plist; ent != NULL; ent = ent->next)
7794 if (ent->plt.refcount > 0)
7795 break;
7796 if (ent != NULL)
7797 {
7798 if (tga_fd != NULL)
7799 {
7800 tga_fd->root.type = bfd_link_hash_indirect;
7801 tga_fd->root.u.i.link = &opt_fd->root;
7802 tga_fd->root.u.i.warning = NULL;
7803 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7804 }
7805 if (desc_fd != NULL)
7806 {
7807 desc_fd->root.type = bfd_link_hash_indirect;
7808 desc_fd->root.u.i.link = &opt_fd->root;
7809 desc_fd->root.u.i.warning = NULL;
7810 ppc64_elf_copy_indirect_symbol (info, opt_fd, desc_fd);
7811 }
7812 opt_fd->mark = 1;
7813 if (opt_fd->dynindx != -1)
7814 {
7815 /* Use __tls_get_addr_opt in dynamic relocations. */
7816 opt_fd->dynindx = -1;
7817 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7818 opt_fd->dynstr_index);
7819 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7820 return NULL;
7821 }
7822 if (tga_fd != NULL)
7823 {
7824 htab->tls_get_addr_fd = ppc_elf_hash_entry (opt_fd);
7825 tga = &htab->tls_get_addr->elf;
7826 if (opt != NULL && tga != NULL)
7827 {
7828 tga->root.type = bfd_link_hash_indirect;
7829 tga->root.u.i.link = &opt->root;
7830 tga->root.u.i.warning = NULL;
7831 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7832 opt->mark = 1;
7833 _bfd_elf_link_hash_hide_symbol (info, opt,
7834 tga->forced_local);
7835 htab->tls_get_addr = ppc_elf_hash_entry (opt);
7836 }
7837 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7838 htab->tls_get_addr_fd->is_func_descriptor = 1;
7839 if (htab->tls_get_addr != NULL)
7840 {
7841 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7842 htab->tls_get_addr->is_func = 1;
7843 }
7844 }
7845 if (desc_fd != NULL)
7846 {
7847 htab->tga_desc_fd = ppc_elf_hash_entry (opt_fd);
7848 if (opt != NULL && desc != NULL)
7849 {
7850 desc->root.type = bfd_link_hash_indirect;
7851 desc->root.u.i.link = &opt->root;
7852 desc->root.u.i.warning = NULL;
7853 ppc64_elf_copy_indirect_symbol (info, opt, desc);
7854 opt->mark = 1;
7855 _bfd_elf_link_hash_hide_symbol (info, opt,
7856 desc->forced_local);
7857 htab->tga_desc = ppc_elf_hash_entry (opt);
7858 }
7859 htab->tga_desc_fd->oh = htab->tga_desc;
7860 htab->tga_desc_fd->is_func_descriptor = 1;
7861 if (htab->tga_desc != NULL)
7862 {
7863 htab->tga_desc->oh = htab->tga_desc_fd;
7864 htab->tga_desc->is_func = 1;
7865 }
7866 }
7867 }
7868 }
7869 }
7870 else if (htab->params->tls_get_addr_opt < 0)
7871 htab->params->tls_get_addr_opt = 0;
7872 }
7873
7874 if (htab->tga_desc_fd != NULL
7875 && htab->params->tls_get_addr_opt
7876 && htab->params->no_tls_get_addr_regsave == -1)
7877 htab->params->no_tls_get_addr_regsave = 0;
7878
7879 return _bfd_elf_tls_setup (info->output_bfd, info);
7880 }
7881
7882 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7883 any of HASH1, HASH2, HASH3, or HASH4. */
7884
7885 static bfd_boolean
7886 branch_reloc_hash_match (const bfd *ibfd,
7887 const Elf_Internal_Rela *rel,
7888 const struct ppc_link_hash_entry *hash1,
7889 const struct ppc_link_hash_entry *hash2,
7890 const struct ppc_link_hash_entry *hash3,
7891 const struct ppc_link_hash_entry *hash4)
7892 {
7893 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7894 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7895 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7896
7897 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7898 {
7899 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7900 struct elf_link_hash_entry *h;
7901
7902 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7903 h = elf_follow_link (h);
7904 if (h == &hash1->elf || h == &hash2->elf
7905 || h == &hash3->elf || h == &hash4->elf)
7906 return TRUE;
7907 }
7908 return FALSE;
7909 }
7910
7911 /* Run through all the TLS relocs looking for optimization
7912 opportunities. The linker has been hacked (see ppc64elf.em) to do
7913 a preliminary section layout so that we know the TLS segment
7914 offsets. We can't optimize earlier because some optimizations need
7915 to know the tp offset, and we need to optimize before allocating
7916 dynamic relocations. */
7917
7918 bfd_boolean
7919 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7920 {
7921 bfd *ibfd;
7922 asection *sec;
7923 struct ppc_link_hash_table *htab;
7924 unsigned char *toc_ref;
7925 int pass;
7926
7927 if (!bfd_link_executable (info))
7928 return TRUE;
7929
7930 htab = ppc_hash_table (info);
7931 if (htab == NULL)
7932 return FALSE;
7933
7934 /* Make two passes over the relocs. On the first pass, mark toc
7935 entries involved with tls relocs, and check that tls relocs
7936 involved in setting up a tls_get_addr call are indeed followed by
7937 such a call. If they are not, we can't do any tls optimization.
7938 On the second pass twiddle tls_mask flags to notify
7939 relocate_section that optimization can be done, and adjust got
7940 and plt refcounts. */
7941 toc_ref = NULL;
7942 for (pass = 0; pass < 2; ++pass)
7943 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7944 {
7945 Elf_Internal_Sym *locsyms = NULL;
7946 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7947
7948 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7949 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7950 {
7951 Elf_Internal_Rela *relstart, *rel, *relend;
7952 bfd_boolean found_tls_get_addr_arg = 0;
7953
7954 /* Read the relocations. */
7955 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7956 info->keep_memory);
7957 if (relstart == NULL)
7958 {
7959 free (toc_ref);
7960 return FALSE;
7961 }
7962
7963 relend = relstart + sec->reloc_count;
7964 for (rel = relstart; rel < relend; rel++)
7965 {
7966 enum elf_ppc64_reloc_type r_type;
7967 unsigned long r_symndx;
7968 struct elf_link_hash_entry *h;
7969 Elf_Internal_Sym *sym;
7970 asection *sym_sec;
7971 unsigned char *tls_mask;
7972 unsigned int tls_set, tls_clear, tls_type = 0;
7973 bfd_vma value;
7974 bfd_boolean ok_tprel, is_local;
7975 long toc_ref_index = 0;
7976 int expecting_tls_get_addr = 0;
7977 bfd_boolean ret = FALSE;
7978
7979 r_symndx = ELF64_R_SYM (rel->r_info);
7980 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7981 r_symndx, ibfd))
7982 {
7983 err_free_rel:
7984 if (elf_section_data (sec)->relocs != relstart)
7985 free (relstart);
7986 if (toc_ref != NULL)
7987 free (toc_ref);
7988 if (locsyms != NULL
7989 && (elf_symtab_hdr (ibfd).contents
7990 != (unsigned char *) locsyms))
7991 free (locsyms);
7992 return ret;
7993 }
7994
7995 if (h != NULL)
7996 {
7997 if (h->root.type == bfd_link_hash_defined
7998 || h->root.type == bfd_link_hash_defweak)
7999 value = h->root.u.def.value;
8000 else if (h->root.type == bfd_link_hash_undefweak)
8001 value = 0;
8002 else
8003 {
8004 found_tls_get_addr_arg = 0;
8005 continue;
8006 }
8007 }
8008 else
8009 /* Symbols referenced by TLS relocs must be of type
8010 STT_TLS. So no need for .opd local sym adjust. */
8011 value = sym->st_value;
8012
8013 ok_tprel = FALSE;
8014 is_local = SYMBOL_REFERENCES_LOCAL (info, h);
8015 if (is_local)
8016 {
8017 if (h != NULL
8018 && h->root.type == bfd_link_hash_undefweak)
8019 ok_tprel = TRUE;
8020 else if (sym_sec != NULL
8021 && sym_sec->output_section != NULL)
8022 {
8023 value += sym_sec->output_offset;
8024 value += sym_sec->output_section->vma;
8025 value -= htab->elf.tls_sec->vma + TP_OFFSET;
8026 /* Note that even though the prefix insns
8027 allow a 1<<33 offset we use the same test
8028 as for addis;addi. There may be a mix of
8029 pcrel and non-pcrel code and the decision
8030 to optimise is per symbol, not per TLS
8031 sequence. */
8032 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
8033 }
8034 }
8035
8036 r_type = ELF64_R_TYPE (rel->r_info);
8037 /* If this section has old-style __tls_get_addr calls
8038 without marker relocs, then check that each
8039 __tls_get_addr call reloc is preceded by a reloc
8040 that conceivably belongs to the __tls_get_addr arg
8041 setup insn. If we don't find matching arg setup
8042 relocs, don't do any tls optimization. */
8043 if (pass == 0
8044 && sec->nomark_tls_get_addr
8045 && h != NULL
8046 && is_tls_get_addr (h, htab)
8047 && !found_tls_get_addr_arg
8048 && is_branch_reloc (r_type))
8049 {
8050 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
8051 "TLS optimization disabled\n"),
8052 ibfd, sec, rel->r_offset);
8053 ret = TRUE;
8054 goto err_free_rel;
8055 }
8056
8057 found_tls_get_addr_arg = 0;
8058 switch (r_type)
8059 {
8060 case R_PPC64_GOT_TLSLD16:
8061 case R_PPC64_GOT_TLSLD16_LO:
8062 case R_PPC64_GOT_TLSLD34:
8063 expecting_tls_get_addr = 1;
8064 found_tls_get_addr_arg = 1;
8065 /* Fall through. */
8066
8067 case R_PPC64_GOT_TLSLD16_HI:
8068 case R_PPC64_GOT_TLSLD16_HA:
8069 /* These relocs should never be against a symbol
8070 defined in a shared lib. Leave them alone if
8071 that turns out to be the case. */
8072 if (!is_local)
8073 continue;
8074
8075 /* LD -> LE */
8076 tls_set = 0;
8077 tls_clear = TLS_LD;
8078 tls_type = TLS_TLS | TLS_LD;
8079 break;
8080
8081 case R_PPC64_GOT_TLSGD16:
8082 case R_PPC64_GOT_TLSGD16_LO:
8083 case R_PPC64_GOT_TLSGD34:
8084 expecting_tls_get_addr = 1;
8085 found_tls_get_addr_arg = 1;
8086 /* Fall through. */
8087
8088 case R_PPC64_GOT_TLSGD16_HI:
8089 case R_PPC64_GOT_TLSGD16_HA:
8090 if (ok_tprel)
8091 /* GD -> LE */
8092 tls_set = 0;
8093 else
8094 /* GD -> IE */
8095 tls_set = TLS_TLS | TLS_GDIE;
8096 tls_clear = TLS_GD;
8097 tls_type = TLS_TLS | TLS_GD;
8098 break;
8099
8100 case R_PPC64_GOT_TPREL34:
8101 case R_PPC64_GOT_TPREL16_DS:
8102 case R_PPC64_GOT_TPREL16_LO_DS:
8103 case R_PPC64_GOT_TPREL16_HI:
8104 case R_PPC64_GOT_TPREL16_HA:
8105 if (ok_tprel)
8106 {
8107 /* IE -> LE */
8108 tls_set = 0;
8109 tls_clear = TLS_TPREL;
8110 tls_type = TLS_TLS | TLS_TPREL;
8111 break;
8112 }
8113 continue;
8114
8115 case R_PPC64_TLSLD:
8116 if (!is_local)
8117 continue;
8118 /* Fall through. */
8119 case R_PPC64_TLSGD:
8120 if (rel + 1 < relend
8121 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
8122 {
8123 if (pass != 0
8124 && (ELF64_R_TYPE (rel[1].r_info)
8125 != R_PPC64_PLTSEQ)
8126 && (ELF64_R_TYPE (rel[1].r_info)
8127 != R_PPC64_PLTSEQ_NOTOC))
8128 {
8129 r_symndx = ELF64_R_SYM (rel[1].r_info);
8130 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
8131 r_symndx, ibfd))
8132 goto err_free_rel;
8133 if (h != NULL)
8134 {
8135 struct plt_entry *ent = NULL;
8136
8137 for (ent = h->plt.plist;
8138 ent != NULL;
8139 ent = ent->next)
8140 if (ent->addend == rel[1].r_addend)
8141 break;
8142
8143 if (ent != NULL
8144 && ent->plt.refcount > 0)
8145 ent->plt.refcount -= 1;
8146 }
8147 }
8148 continue;
8149 }
8150 found_tls_get_addr_arg = 1;
8151 /* Fall through. */
8152
8153 case R_PPC64_TLS:
8154 case R_PPC64_TOC16:
8155 case R_PPC64_TOC16_LO:
8156 if (sym_sec == NULL || sym_sec != toc)
8157 continue;
8158
8159 /* Mark this toc entry as referenced by a TLS
8160 code sequence. We can do that now in the
8161 case of R_PPC64_TLS, and after checking for
8162 tls_get_addr for the TOC16 relocs. */
8163 if (toc_ref == NULL)
8164 toc_ref
8165 = bfd_zmalloc (toc->output_section->rawsize / 8);
8166 if (toc_ref == NULL)
8167 goto err_free_rel;
8168
8169 if (h != NULL)
8170 value = h->root.u.def.value;
8171 else
8172 value = sym->st_value;
8173 value += rel->r_addend;
8174 if (value % 8 != 0)
8175 continue;
8176 BFD_ASSERT (value < toc->size
8177 && toc->output_offset % 8 == 0);
8178 toc_ref_index = (value + toc->output_offset) / 8;
8179 if (r_type == R_PPC64_TLS
8180 || r_type == R_PPC64_TLSGD
8181 || r_type == R_PPC64_TLSLD)
8182 {
8183 toc_ref[toc_ref_index] = 1;
8184 continue;
8185 }
8186
8187 if (pass != 0 && toc_ref[toc_ref_index] == 0)
8188 continue;
8189
8190 tls_set = 0;
8191 tls_clear = 0;
8192 expecting_tls_get_addr = 2;
8193 break;
8194
8195 case R_PPC64_TPREL64:
8196 if (pass == 0
8197 || sec != toc
8198 || toc_ref == NULL
8199 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8200 continue;
8201 if (ok_tprel)
8202 {
8203 /* IE -> LE */
8204 tls_set = TLS_EXPLICIT;
8205 tls_clear = TLS_TPREL;
8206 break;
8207 }
8208 continue;
8209
8210 case R_PPC64_DTPMOD64:
8211 if (pass == 0
8212 || sec != toc
8213 || toc_ref == NULL
8214 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
8215 continue;
8216 if (rel + 1 < relend
8217 && (rel[1].r_info
8218 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
8219 && rel[1].r_offset == rel->r_offset + 8)
8220 {
8221 if (ok_tprel)
8222 /* GD -> LE */
8223 tls_set = TLS_EXPLICIT | TLS_GD;
8224 else
8225 /* GD -> IE */
8226 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8227 tls_clear = TLS_GD;
8228 }
8229 else
8230 {
8231 if (!is_local)
8232 continue;
8233
8234 /* LD -> LE */
8235 tls_set = TLS_EXPLICIT;
8236 tls_clear = TLS_LD;
8237 }
8238 break;
8239
8240 default:
8241 continue;
8242 }
8243
8244 if (pass == 0)
8245 {
8246 if (!expecting_tls_get_addr
8247 || !sec->nomark_tls_get_addr)
8248 continue;
8249
8250 if (rel + 1 < relend
8251 && branch_reloc_hash_match (ibfd, rel + 1,
8252 htab->tls_get_addr_fd,
8253 htab->tga_desc_fd,
8254 htab->tls_get_addr,
8255 htab->tga_desc))
8256 {
8257 if (expecting_tls_get_addr == 2)
8258 {
8259 /* Check for toc tls entries. */
8260 unsigned char *toc_tls;
8261 int retval;
8262
8263 retval = get_tls_mask (&toc_tls, NULL, NULL,
8264 &locsyms,
8265 rel, ibfd);
8266 if (retval == 0)
8267 goto err_free_rel;
8268 if (toc_tls != NULL)
8269 {
8270 if ((*toc_tls & TLS_TLS) != 0
8271 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8272 found_tls_get_addr_arg = 1;
8273 if (retval > 1)
8274 toc_ref[toc_ref_index] = 1;
8275 }
8276 }
8277 continue;
8278 }
8279
8280 /* Uh oh, we didn't find the expected call. We
8281 could just mark this symbol to exclude it
8282 from tls optimization but it's safer to skip
8283 the entire optimization. */
8284 /* xgettext:c-format */
8285 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8286 "TLS optimization disabled\n"),
8287 ibfd, sec, rel->r_offset);
8288 ret = TRUE;
8289 goto err_free_rel;
8290 }
8291
8292 /* If we don't have old-style __tls_get_addr calls
8293 without TLSGD/TLSLD marker relocs, and we haven't
8294 found a new-style __tls_get_addr call with a
8295 marker for this symbol, then we either have a
8296 broken object file or an -mlongcall style
8297 indirect call to __tls_get_addr without a marker.
8298 Disable optimization in this case. */
8299 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8300 && (tls_set & TLS_EXPLICIT) == 0
8301 && !sec->nomark_tls_get_addr
8302 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8303 != (TLS_TLS | TLS_MARK)))
8304 continue;
8305
8306 if (expecting_tls_get_addr == 1 + !sec->nomark_tls_get_addr)
8307 {
8308 struct plt_entry *ent = NULL;
8309
8310 if (htab->tls_get_addr_fd != NULL)
8311 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8312 ent != NULL;
8313 ent = ent->next)
8314 if (ent->addend == 0)
8315 break;
8316
8317 if (ent == NULL && htab->tga_desc_fd != NULL)
8318 for (ent = htab->tga_desc_fd->elf.plt.plist;
8319 ent != NULL;
8320 ent = ent->next)
8321 if (ent->addend == 0)
8322 break;
8323
8324 if (ent == NULL && htab->tls_get_addr != NULL)
8325 for (ent = htab->tls_get_addr->elf.plt.plist;
8326 ent != NULL;
8327 ent = ent->next)
8328 if (ent->addend == 0)
8329 break;
8330
8331 if (ent == NULL && htab->tga_desc != NULL)
8332 for (ent = htab->tga_desc->elf.plt.plist;
8333 ent != NULL;
8334 ent = ent->next)
8335 if (ent->addend == 0)
8336 break;
8337
8338 if (ent != NULL
8339 && ent->plt.refcount > 0)
8340 ent->plt.refcount -= 1;
8341 }
8342
8343 if (tls_clear == 0)
8344 continue;
8345
8346 if ((tls_set & TLS_EXPLICIT) == 0)
8347 {
8348 struct got_entry *ent;
8349
8350 /* Adjust got entry for this reloc. */
8351 if (h != NULL)
8352 ent = h->got.glist;
8353 else
8354 ent = elf_local_got_ents (ibfd)[r_symndx];
8355
8356 for (; ent != NULL; ent = ent->next)
8357 if (ent->addend == rel->r_addend
8358 && ent->owner == ibfd
8359 && ent->tls_type == tls_type)
8360 break;
8361 if (ent == NULL)
8362 abort ();
8363
8364 if (tls_set == 0)
8365 {
8366 /* We managed to get rid of a got entry. */
8367 if (ent->got.refcount > 0)
8368 ent->got.refcount -= 1;
8369 }
8370 }
8371 else
8372 {
8373 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8374 we'll lose one or two dyn relocs. */
8375 if (!dec_dynrel_count (rel->r_info, sec, info,
8376 NULL, h, sym))
8377 return FALSE;
8378
8379 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8380 {
8381 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8382 NULL, h, sym))
8383 return FALSE;
8384 }
8385 }
8386
8387 *tls_mask |= tls_set & 0xff;
8388 *tls_mask &= ~tls_clear;
8389 }
8390
8391 if (elf_section_data (sec)->relocs != relstart)
8392 free (relstart);
8393 }
8394
8395 if (locsyms != NULL
8396 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8397 {
8398 if (!info->keep_memory)
8399 free (locsyms);
8400 else
8401 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8402 }
8403 }
8404
8405 if (toc_ref != NULL)
8406 free (toc_ref);
8407 htab->do_tls_opt = 1;
8408 return TRUE;
8409 }
8410
8411 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8412 the values of any global symbols in a toc section that has been
8413 edited. Globals in toc sections should be a rarity, so this function
8414 sets a flag if any are found in toc sections other than the one just
8415 edited, so that further hash table traversals can be avoided. */
8416
8417 struct adjust_toc_info
8418 {
8419 asection *toc;
8420 unsigned long *skip;
8421 bfd_boolean global_toc_syms;
8422 };
8423
8424 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8425
8426 static bfd_boolean
8427 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8428 {
8429 struct ppc_link_hash_entry *eh;
8430 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8431 unsigned long i;
8432
8433 if (h->root.type != bfd_link_hash_defined
8434 && h->root.type != bfd_link_hash_defweak)
8435 return TRUE;
8436
8437 eh = ppc_elf_hash_entry (h);
8438 if (eh->adjust_done)
8439 return TRUE;
8440
8441 if (eh->elf.root.u.def.section == toc_inf->toc)
8442 {
8443 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8444 i = toc_inf->toc->rawsize >> 3;
8445 else
8446 i = eh->elf.root.u.def.value >> 3;
8447
8448 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8449 {
8450 _bfd_error_handler
8451 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8452 do
8453 ++i;
8454 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8455 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8456 }
8457
8458 eh->elf.root.u.def.value -= toc_inf->skip[i];
8459 eh->adjust_done = 1;
8460 }
8461 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8462 toc_inf->global_toc_syms = TRUE;
8463
8464 return TRUE;
8465 }
8466
8467 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8468 on a _LO variety toc/got reloc. */
8469
8470 static bfd_boolean
8471 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8472 {
8473 return ((insn & (0x3fu << 26)) == 12u << 26 /* addic */
8474 || (insn & (0x3fu << 26)) == 14u << 26 /* addi */
8475 || (insn & (0x3fu << 26)) == 32u << 26 /* lwz */
8476 || (insn & (0x3fu << 26)) == 34u << 26 /* lbz */
8477 || (insn & (0x3fu << 26)) == 36u << 26 /* stw */
8478 || (insn & (0x3fu << 26)) == 38u << 26 /* stb */
8479 || (insn & (0x3fu << 26)) == 40u << 26 /* lhz */
8480 || (insn & (0x3fu << 26)) == 42u << 26 /* lha */
8481 || (insn & (0x3fu << 26)) == 44u << 26 /* sth */
8482 || (insn & (0x3fu << 26)) == 46u << 26 /* lmw */
8483 || (insn & (0x3fu << 26)) == 47u << 26 /* stmw */
8484 || (insn & (0x3fu << 26)) == 48u << 26 /* lfs */
8485 || (insn & (0x3fu << 26)) == 50u << 26 /* lfd */
8486 || (insn & (0x3fu << 26)) == 52u << 26 /* stfs */
8487 || (insn & (0x3fu << 26)) == 54u << 26 /* stfd */
8488 || (insn & (0x3fu << 26)) == 56u << 26 /* lq,lfq */
8489 || ((insn & (0x3fu << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8490 /* Exclude lfqu by testing reloc. If relocs are ever
8491 defined for the reduced D field in psq_lu then those
8492 will need testing too. */
8493 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8494 || ((insn & (0x3fu << 26)) == 58u << 26 /* ld,lwa */
8495 && (insn & 1) == 0)
8496 || (insn & (0x3fu << 26)) == 60u << 26 /* stfq */
8497 || ((insn & (0x3fu << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8498 /* Exclude stfqu. psq_stu as above for psq_lu. */
8499 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8500 || ((insn & (0x3fu << 26)) == 62u << 26 /* std,stq */
8501 && (insn & 1) == 0));
8502 }
8503
8504 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8505 pld ra,symbol@got@pcrel
8506 load/store rt,off(ra)
8507 or
8508 pla ra,symbol@pcrel
8509 load/store rt,off(ra)
8510 may be translated to
8511 pload/pstore rt,symbol+off@pcrel
8512 nop.
8513 This function returns true if the optimization is possible, placing
8514 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8515
8516 On entry to this function, the linker has already determined that
8517 the pld can be replaced with pla: *PINSN1 is that pla insn,
8518 while *PINSN2 is the second instruction. */
8519
8520 static bfd_boolean
8521 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2, bfd_signed_vma *poff)
8522 {
8523 uint64_t insn1 = *pinsn1;
8524 uint64_t insn2 = *pinsn2;
8525 bfd_signed_vma off;
8526
8527 if ((insn2 & (63ULL << 58)) == 1ULL << 58)
8528 {
8529 /* Check that regs match. */
8530 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8531 return FALSE;
8532
8533 /* P8LS or PMLS form, non-pcrel. */
8534 if ((insn2 & (-1ULL << 50) & ~(1ULL << 56)) != (1ULL << 58))
8535 return FALSE;
8536
8537 *pinsn1 = (insn2 & ~(31 << 16) & ~0x3ffff0000ffffULL) | (1ULL << 52);
8538 *pinsn2 = PNOP;
8539 off = ((insn2 >> 16) & 0x3ffff0000ULL) | (insn2 & 0xffff);
8540 *poff = (off ^ 0x200000000ULL) - 0x200000000ULL;
8541 return TRUE;
8542 }
8543
8544 insn2 >>= 32;
8545
8546 /* Check that regs match. */
8547 if (((insn2 >> 16) & 31) != ((insn1 >> 21) & 31))
8548 return FALSE;
8549
8550 switch ((insn2 >> 26) & 63)
8551 {
8552 default:
8553 return FALSE;
8554
8555 case 32: /* lwz */
8556 case 34: /* lbz */
8557 case 36: /* stw */
8558 case 38: /* stb */
8559 case 40: /* lhz */
8560 case 42: /* lha */
8561 case 44: /* sth */
8562 case 48: /* lfs */
8563 case 50: /* lfd */
8564 case 52: /* stfs */
8565 case 54: /* stfd */
8566 /* These are the PMLS cases, where we just need to tack a prefix
8567 on the insn. */
8568 insn1 = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8569 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8570 off = insn2 & 0xffff;
8571 break;
8572
8573 case 58: /* lwa, ld */
8574 if ((insn2 & 1) != 0)
8575 return FALSE;
8576 insn1 = ((1ULL << 58) | (1ULL << 52)
8577 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8578 | (insn2 & (31ULL << 21)));
8579 off = insn2 & 0xfffc;
8580 break;
8581
8582 case 57: /* lxsd, lxssp */
8583 if ((insn2 & 3) < 2)
8584 return FALSE;
8585 insn1 = ((1ULL << 58) | (1ULL << 52)
8586 | ((40ULL | (insn2 & 3)) << 26)
8587 | (insn2 & (31ULL << 21)));
8588 off = insn2 & 0xfffc;
8589 break;
8590
8591 case 61: /* stxsd, stxssp, lxv, stxv */
8592 if ((insn2 & 3) == 0)
8593 return FALSE;
8594 else if ((insn2 & 3) >= 2)
8595 {
8596 insn1 = ((1ULL << 58) | (1ULL << 52)
8597 | ((44ULL | (insn2 & 3)) << 26)
8598 | (insn2 & (31ULL << 21)));
8599 off = insn2 & 0xfffc;
8600 }
8601 else
8602 {
8603 insn1 = ((1ULL << 58) | (1ULL << 52)
8604 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8605 | (insn2 & (31ULL << 21)));
8606 off = insn2 & 0xfff0;
8607 }
8608 break;
8609
8610 case 56: /* lq */
8611 insn1 = ((1ULL << 58) | (1ULL << 52)
8612 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8613 off = insn2 & 0xffff;
8614 break;
8615
8616 case 62: /* std, stq */
8617 if ((insn2 & 1) != 0)
8618 return FALSE;
8619 insn1 = ((1ULL << 58) | (1ULL << 52)
8620 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8621 | (insn2 & (31ULL << 21)));
8622 off = insn2 & 0xfffc;
8623 break;
8624 }
8625
8626 *pinsn1 = insn1;
8627 *pinsn2 = (uint64_t) NOP << 32;
8628 *poff = (off ^ 0x8000) - 0x8000;
8629 return TRUE;
8630 }
8631
8632 /* Examine all relocs referencing .toc sections in order to remove
8633 unused .toc entries. */
8634
8635 bfd_boolean
8636 ppc64_elf_edit_toc (struct bfd_link_info *info)
8637 {
8638 bfd *ibfd;
8639 struct adjust_toc_info toc_inf;
8640 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8641
8642 htab->do_toc_opt = 1;
8643 toc_inf.global_toc_syms = TRUE;
8644 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8645 {
8646 asection *toc, *sec;
8647 Elf_Internal_Shdr *symtab_hdr;
8648 Elf_Internal_Sym *local_syms;
8649 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8650 unsigned long *skip, *drop;
8651 unsigned char *used;
8652 unsigned char *keep, last, some_unused;
8653
8654 if (!is_ppc64_elf (ibfd))
8655 continue;
8656
8657 toc = bfd_get_section_by_name (ibfd, ".toc");
8658 if (toc == NULL
8659 || toc->size == 0
8660 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8661 || discarded_section (toc))
8662 continue;
8663
8664 toc_relocs = NULL;
8665 local_syms = NULL;
8666 symtab_hdr = &elf_symtab_hdr (ibfd);
8667
8668 /* Look at sections dropped from the final link. */
8669 skip = NULL;
8670 relstart = NULL;
8671 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8672 {
8673 if (sec->reloc_count == 0
8674 || !discarded_section (sec)
8675 || get_opd_info (sec)
8676 || (sec->flags & SEC_ALLOC) == 0
8677 || (sec->flags & SEC_DEBUGGING) != 0)
8678 continue;
8679
8680 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8681 if (relstart == NULL)
8682 goto error_ret;
8683
8684 /* Run through the relocs to see which toc entries might be
8685 unused. */
8686 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8687 {
8688 enum elf_ppc64_reloc_type r_type;
8689 unsigned long r_symndx;
8690 asection *sym_sec;
8691 struct elf_link_hash_entry *h;
8692 Elf_Internal_Sym *sym;
8693 bfd_vma val;
8694
8695 r_type = ELF64_R_TYPE (rel->r_info);
8696 switch (r_type)
8697 {
8698 default:
8699 continue;
8700
8701 case R_PPC64_TOC16:
8702 case R_PPC64_TOC16_LO:
8703 case R_PPC64_TOC16_HI:
8704 case R_PPC64_TOC16_HA:
8705 case R_PPC64_TOC16_DS:
8706 case R_PPC64_TOC16_LO_DS:
8707 break;
8708 }
8709
8710 r_symndx = ELF64_R_SYM (rel->r_info);
8711 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8712 r_symndx, ibfd))
8713 goto error_ret;
8714
8715 if (sym_sec != toc)
8716 continue;
8717
8718 if (h != NULL)
8719 val = h->root.u.def.value;
8720 else
8721 val = sym->st_value;
8722 val += rel->r_addend;
8723
8724 if (val >= toc->size)
8725 continue;
8726
8727 /* Anything in the toc ought to be aligned to 8 bytes.
8728 If not, don't mark as unused. */
8729 if (val & 7)
8730 continue;
8731
8732 if (skip == NULL)
8733 {
8734 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8735 if (skip == NULL)
8736 goto error_ret;
8737 }
8738
8739 skip[val >> 3] = ref_from_discarded;
8740 }
8741
8742 if (elf_section_data (sec)->relocs != relstart)
8743 free (relstart);
8744 }
8745
8746 /* For largetoc loads of address constants, we can convert
8747 . addis rx,2,addr@got@ha
8748 . ld ry,addr@got@l(rx)
8749 to
8750 . addis rx,2,addr@toc@ha
8751 . addi ry,rx,addr@toc@l
8752 when addr is within 2G of the toc pointer. This then means
8753 that the word storing "addr" in the toc is no longer needed. */
8754
8755 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8756 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8757 && toc->reloc_count != 0)
8758 {
8759 /* Read toc relocs. */
8760 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8761 info->keep_memory);
8762 if (toc_relocs == NULL)
8763 goto error_ret;
8764
8765 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8766 {
8767 enum elf_ppc64_reloc_type r_type;
8768 unsigned long r_symndx;
8769 asection *sym_sec;
8770 struct elf_link_hash_entry *h;
8771 Elf_Internal_Sym *sym;
8772 bfd_vma val, addr;
8773
8774 r_type = ELF64_R_TYPE (rel->r_info);
8775 if (r_type != R_PPC64_ADDR64)
8776 continue;
8777
8778 r_symndx = ELF64_R_SYM (rel->r_info);
8779 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8780 r_symndx, ibfd))
8781 goto error_ret;
8782
8783 if (sym_sec == NULL
8784 || sym_sec->output_section == NULL
8785 || discarded_section (sym_sec))
8786 continue;
8787
8788 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8789 continue;
8790
8791 if (h != NULL)
8792 {
8793 if (h->type == STT_GNU_IFUNC)
8794 continue;
8795 val = h->root.u.def.value;
8796 }
8797 else
8798 {
8799 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8800 continue;
8801 val = sym->st_value;
8802 }
8803 val += rel->r_addend;
8804 val += sym_sec->output_section->vma + sym_sec->output_offset;
8805
8806 /* We don't yet know the exact toc pointer value, but we
8807 know it will be somewhere in the toc section. Don't
8808 optimize if the difference from any possible toc
8809 pointer is outside [ff..f80008000, 7fff7fff]. */
8810 addr = toc->output_section->vma + TOC_BASE_OFF;
8811 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8812 continue;
8813
8814 addr = toc->output_section->vma + toc->output_section->rawsize;
8815 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8816 continue;
8817
8818 if (skip == NULL)
8819 {
8820 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8821 if (skip == NULL)
8822 goto error_ret;
8823 }
8824
8825 skip[rel->r_offset >> 3]
8826 |= can_optimize | ((rel - toc_relocs) << 2);
8827 }
8828 }
8829
8830 if (skip == NULL)
8831 continue;
8832
8833 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8834 if (used == NULL)
8835 {
8836 error_ret:
8837 if (local_syms != NULL
8838 && symtab_hdr->contents != (unsigned char *) local_syms)
8839 free (local_syms);
8840 if (sec != NULL
8841 && relstart != NULL
8842 && elf_section_data (sec)->relocs != relstart)
8843 free (relstart);
8844 if (toc_relocs != NULL
8845 && elf_section_data (toc)->relocs != toc_relocs)
8846 free (toc_relocs);
8847 if (skip != NULL)
8848 free (skip);
8849 return FALSE;
8850 }
8851
8852 /* Now check all kept sections that might reference the toc.
8853 Check the toc itself last. */
8854 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8855 : ibfd->sections);
8856 sec != NULL;
8857 sec = (sec == toc ? NULL
8858 : sec->next == NULL ? toc
8859 : sec->next == toc && toc->next ? toc->next
8860 : sec->next))
8861 {
8862 int repeat;
8863
8864 if (sec->reloc_count == 0
8865 || discarded_section (sec)
8866 || get_opd_info (sec)
8867 || (sec->flags & SEC_ALLOC) == 0
8868 || (sec->flags & SEC_DEBUGGING) != 0)
8869 continue;
8870
8871 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8872 info->keep_memory);
8873 if (relstart == NULL)
8874 {
8875 free (used);
8876 goto error_ret;
8877 }
8878
8879 /* Mark toc entries referenced as used. */
8880 do
8881 {
8882 repeat = 0;
8883 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8884 {
8885 enum elf_ppc64_reloc_type r_type;
8886 unsigned long r_symndx;
8887 asection *sym_sec;
8888 struct elf_link_hash_entry *h;
8889 Elf_Internal_Sym *sym;
8890 bfd_vma val;
8891
8892 r_type = ELF64_R_TYPE (rel->r_info);
8893 switch (r_type)
8894 {
8895 case R_PPC64_TOC16:
8896 case R_PPC64_TOC16_LO:
8897 case R_PPC64_TOC16_HI:
8898 case R_PPC64_TOC16_HA:
8899 case R_PPC64_TOC16_DS:
8900 case R_PPC64_TOC16_LO_DS:
8901 /* In case we're taking addresses of toc entries. */
8902 case R_PPC64_ADDR64:
8903 break;
8904
8905 default:
8906 continue;
8907 }
8908
8909 r_symndx = ELF64_R_SYM (rel->r_info);
8910 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8911 r_symndx, ibfd))
8912 {
8913 free (used);
8914 goto error_ret;
8915 }
8916
8917 if (sym_sec != toc)
8918 continue;
8919
8920 if (h != NULL)
8921 val = h->root.u.def.value;
8922 else
8923 val = sym->st_value;
8924 val += rel->r_addend;
8925
8926 if (val >= toc->size)
8927 continue;
8928
8929 if ((skip[val >> 3] & can_optimize) != 0)
8930 {
8931 bfd_vma off;
8932 unsigned char opc;
8933
8934 switch (r_type)
8935 {
8936 case R_PPC64_TOC16_HA:
8937 break;
8938
8939 case R_PPC64_TOC16_LO_DS:
8940 off = rel->r_offset;
8941 off += (bfd_big_endian (ibfd) ? -2 : 3);
8942 if (!bfd_get_section_contents (ibfd, sec, &opc,
8943 off, 1))
8944 {
8945 free (used);
8946 goto error_ret;
8947 }
8948 if ((opc & (0x3f << 2)) == (58u << 2))
8949 break;
8950 /* Fall through. */
8951
8952 default:
8953 /* Wrong sort of reloc, or not a ld. We may
8954 as well clear ref_from_discarded too. */
8955 skip[val >> 3] = 0;
8956 }
8957 }
8958
8959 if (sec != toc)
8960 used[val >> 3] = 1;
8961 /* For the toc section, we only mark as used if this
8962 entry itself isn't unused. */
8963 else if ((used[rel->r_offset >> 3]
8964 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8965 && !used[val >> 3])
8966 {
8967 /* Do all the relocs again, to catch reference
8968 chains. */
8969 repeat = 1;
8970 used[val >> 3] = 1;
8971 }
8972 }
8973 }
8974 while (repeat);
8975
8976 if (elf_section_data (sec)->relocs != relstart)
8977 free (relstart);
8978 }
8979
8980 /* Merge the used and skip arrays. Assume that TOC
8981 doublewords not appearing as either used or unused belong
8982 to an entry more than one doubleword in size. */
8983 for (drop = skip, keep = used, last = 0, some_unused = 0;
8984 drop < skip + (toc->size + 7) / 8;
8985 ++drop, ++keep)
8986 {
8987 if (*keep)
8988 {
8989 *drop &= ~ref_from_discarded;
8990 if ((*drop & can_optimize) != 0)
8991 some_unused = 1;
8992 last = 0;
8993 }
8994 else if ((*drop & ref_from_discarded) != 0)
8995 {
8996 some_unused = 1;
8997 last = ref_from_discarded;
8998 }
8999 else
9000 *drop = last;
9001 }
9002
9003 free (used);
9004
9005 if (some_unused)
9006 {
9007 bfd_byte *contents, *src;
9008 unsigned long off;
9009 Elf_Internal_Sym *sym;
9010 bfd_boolean local_toc_syms = FALSE;
9011
9012 /* Shuffle the toc contents, and at the same time convert the
9013 skip array from booleans into offsets. */
9014 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
9015 goto error_ret;
9016
9017 elf_section_data (toc)->this_hdr.contents = contents;
9018
9019 for (src = contents, off = 0, drop = skip;
9020 src < contents + toc->size;
9021 src += 8, ++drop)
9022 {
9023 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
9024 off += 8;
9025 else if (off != 0)
9026 {
9027 *drop = off;
9028 memcpy (src - off, src, 8);
9029 }
9030 }
9031 *drop = off;
9032 toc->rawsize = toc->size;
9033 toc->size = src - contents - off;
9034
9035 /* Adjust addends for relocs against the toc section sym,
9036 and optimize any accesses we can. */
9037 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9038 {
9039 if (sec->reloc_count == 0
9040 || discarded_section (sec))
9041 continue;
9042
9043 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9044 info->keep_memory);
9045 if (relstart == NULL)
9046 goto error_ret;
9047
9048 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9049 {
9050 enum elf_ppc64_reloc_type r_type;
9051 unsigned long r_symndx;
9052 asection *sym_sec;
9053 struct elf_link_hash_entry *h;
9054 bfd_vma val;
9055
9056 r_type = ELF64_R_TYPE (rel->r_info);
9057 switch (r_type)
9058 {
9059 default:
9060 continue;
9061
9062 case R_PPC64_TOC16:
9063 case R_PPC64_TOC16_LO:
9064 case R_PPC64_TOC16_HI:
9065 case R_PPC64_TOC16_HA:
9066 case R_PPC64_TOC16_DS:
9067 case R_PPC64_TOC16_LO_DS:
9068 case R_PPC64_ADDR64:
9069 break;
9070 }
9071
9072 r_symndx = ELF64_R_SYM (rel->r_info);
9073 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9074 r_symndx, ibfd))
9075 goto error_ret;
9076
9077 if (sym_sec != toc)
9078 continue;
9079
9080 if (h != NULL)
9081 val = h->root.u.def.value;
9082 else
9083 {
9084 val = sym->st_value;
9085 if (val != 0)
9086 local_toc_syms = TRUE;
9087 }
9088
9089 val += rel->r_addend;
9090
9091 if (val > toc->rawsize)
9092 val = toc->rawsize;
9093 else if ((skip[val >> 3] & ref_from_discarded) != 0)
9094 continue;
9095 else if ((skip[val >> 3] & can_optimize) != 0)
9096 {
9097 Elf_Internal_Rela *tocrel
9098 = toc_relocs + (skip[val >> 3] >> 2);
9099 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
9100
9101 switch (r_type)
9102 {
9103 case R_PPC64_TOC16_HA:
9104 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
9105 break;
9106
9107 case R_PPC64_TOC16_LO_DS:
9108 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
9109 break;
9110
9111 default:
9112 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
9113 ppc_howto_init ();
9114 info->callbacks->einfo
9115 /* xgettext:c-format */
9116 (_("%H: %s references "
9117 "optimized away TOC entry\n"),
9118 ibfd, sec, rel->r_offset,
9119 ppc64_elf_howto_table[r_type]->name);
9120 bfd_set_error (bfd_error_bad_value);
9121 goto error_ret;
9122 }
9123 rel->r_addend = tocrel->r_addend;
9124 elf_section_data (sec)->relocs = relstart;
9125 continue;
9126 }
9127
9128 if (h != NULL || sym->st_value != 0)
9129 continue;
9130
9131 rel->r_addend -= skip[val >> 3];
9132 elf_section_data (sec)->relocs = relstart;
9133 }
9134
9135 if (elf_section_data (sec)->relocs != relstart)
9136 free (relstart);
9137 }
9138
9139 /* We shouldn't have local or global symbols defined in the TOC,
9140 but handle them anyway. */
9141 if (local_syms != NULL)
9142 for (sym = local_syms;
9143 sym < local_syms + symtab_hdr->sh_info;
9144 ++sym)
9145 if (sym->st_value != 0
9146 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
9147 {
9148 unsigned long i;
9149
9150 if (sym->st_value > toc->rawsize)
9151 i = toc->rawsize >> 3;
9152 else
9153 i = sym->st_value >> 3;
9154
9155 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
9156 {
9157 if (local_toc_syms)
9158 _bfd_error_handler
9159 (_("%s defined on removed toc entry"),
9160 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
9161 do
9162 ++i;
9163 while ((skip[i] & (ref_from_discarded | can_optimize)));
9164 sym->st_value = (bfd_vma) i << 3;
9165 }
9166
9167 sym->st_value -= skip[i];
9168 symtab_hdr->contents = (unsigned char *) local_syms;
9169 }
9170
9171 /* Adjust any global syms defined in this toc input section. */
9172 if (toc_inf.global_toc_syms)
9173 {
9174 toc_inf.toc = toc;
9175 toc_inf.skip = skip;
9176 toc_inf.global_toc_syms = FALSE;
9177 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
9178 &toc_inf);
9179 }
9180
9181 if (toc->reloc_count != 0)
9182 {
9183 Elf_Internal_Shdr *rel_hdr;
9184 Elf_Internal_Rela *wrel;
9185 bfd_size_type sz;
9186
9187 /* Remove unused toc relocs, and adjust those we keep. */
9188 if (toc_relocs == NULL)
9189 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
9190 info->keep_memory);
9191 if (toc_relocs == NULL)
9192 goto error_ret;
9193
9194 wrel = toc_relocs;
9195 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
9196 if ((skip[rel->r_offset >> 3]
9197 & (ref_from_discarded | can_optimize)) == 0)
9198 {
9199 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
9200 wrel->r_info = rel->r_info;
9201 wrel->r_addend = rel->r_addend;
9202 ++wrel;
9203 }
9204 else if (!dec_dynrel_count (rel->r_info, toc, info,
9205 &local_syms, NULL, NULL))
9206 goto error_ret;
9207
9208 elf_section_data (toc)->relocs = toc_relocs;
9209 toc->reloc_count = wrel - toc_relocs;
9210 rel_hdr = _bfd_elf_single_rel_hdr (toc);
9211 sz = rel_hdr->sh_entsize;
9212 rel_hdr->sh_size = toc->reloc_count * sz;
9213 }
9214 }
9215 else if (toc_relocs != NULL
9216 && elf_section_data (toc)->relocs != toc_relocs)
9217 free (toc_relocs);
9218
9219 if (local_syms != NULL
9220 && symtab_hdr->contents != (unsigned char *) local_syms)
9221 {
9222 if (!info->keep_memory)
9223 free (local_syms);
9224 else
9225 symtab_hdr->contents = (unsigned char *) local_syms;
9226 }
9227 free (skip);
9228 }
9229
9230 /* Look for cases where we can change an indirect GOT access to
9231 a GOT relative or PC relative access, possibly reducing the
9232 number of GOT entries. */
9233 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9234 {
9235 asection *sec;
9236 Elf_Internal_Shdr *symtab_hdr;
9237 Elf_Internal_Sym *local_syms;
9238 Elf_Internal_Rela *relstart, *rel;
9239 bfd_vma got;
9240
9241 if (!is_ppc64_elf (ibfd))
9242 continue;
9243
9244 if (!ppc64_elf_tdata (ibfd)->has_optrel)
9245 continue;
9246
9247 sec = ppc64_elf_tdata (ibfd)->got;
9248 got = 0;
9249 if (sec != NULL)
9250 got = sec->output_section->vma + sec->output_offset + 0x8000;
9251
9252 local_syms = NULL;
9253 symtab_hdr = &elf_symtab_hdr (ibfd);
9254
9255 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9256 {
9257 if (sec->reloc_count == 0
9258 || !ppc64_elf_section_data (sec)->has_optrel
9259 || discarded_section (sec))
9260 continue;
9261
9262 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9263 info->keep_memory);
9264 if (relstart == NULL)
9265 {
9266 got_error_ret:
9267 if (local_syms != NULL
9268 && symtab_hdr->contents != (unsigned char *) local_syms)
9269 free (local_syms);
9270 if (sec != NULL
9271 && relstart != NULL
9272 && elf_section_data (sec)->relocs != relstart)
9273 free (relstart);
9274 return FALSE;
9275 }
9276
9277 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9278 {
9279 enum elf_ppc64_reloc_type r_type;
9280 unsigned long r_symndx;
9281 Elf_Internal_Sym *sym;
9282 asection *sym_sec;
9283 struct elf_link_hash_entry *h;
9284 struct got_entry *ent;
9285 bfd_vma val, pc;
9286 unsigned char buf[8];
9287 unsigned int insn;
9288 enum {no_check, check_lo, check_ha} insn_check;
9289
9290 r_type = ELF64_R_TYPE (rel->r_info);
9291 switch (r_type)
9292 {
9293 default:
9294 insn_check = no_check;
9295 break;
9296
9297 case R_PPC64_PLT16_HA:
9298 case R_PPC64_GOT_TLSLD16_HA:
9299 case R_PPC64_GOT_TLSGD16_HA:
9300 case R_PPC64_GOT_TPREL16_HA:
9301 case R_PPC64_GOT_DTPREL16_HA:
9302 case R_PPC64_GOT16_HA:
9303 case R_PPC64_TOC16_HA:
9304 insn_check = check_ha;
9305 break;
9306
9307 case R_PPC64_PLT16_LO:
9308 case R_PPC64_PLT16_LO_DS:
9309 case R_PPC64_GOT_TLSLD16_LO:
9310 case R_PPC64_GOT_TLSGD16_LO:
9311 case R_PPC64_GOT_TPREL16_LO_DS:
9312 case R_PPC64_GOT_DTPREL16_LO_DS:
9313 case R_PPC64_GOT16_LO:
9314 case R_PPC64_GOT16_LO_DS:
9315 case R_PPC64_TOC16_LO:
9316 case R_PPC64_TOC16_LO_DS:
9317 insn_check = check_lo;
9318 break;
9319 }
9320
9321 if (insn_check != no_check)
9322 {
9323 bfd_vma off = rel->r_offset & ~3;
9324
9325 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9326 goto got_error_ret;
9327
9328 insn = bfd_get_32 (ibfd, buf);
9329 if (insn_check == check_lo
9330 ? !ok_lo_toc_insn (insn, r_type)
9331 : ((insn & ((0x3fu << 26) | 0x1f << 16))
9332 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9333 {
9334 char str[12];
9335
9336 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9337 sprintf (str, "%#08x", insn);
9338 info->callbacks->einfo
9339 /* xgettext:c-format */
9340 (_("%H: got/toc optimization is not supported for"
9341 " %s instruction\n"),
9342 ibfd, sec, rel->r_offset & ~3, str);
9343 continue;
9344 }
9345 }
9346
9347 switch (r_type)
9348 {
9349 /* Note that we don't delete GOT entries for
9350 R_PPC64_GOT16_DS since we'd need a lot more
9351 analysis. For starters, the preliminary layout is
9352 before the GOT, PLT, dynamic sections and stubs are
9353 laid out. Then we'd need to allow for changes in
9354 distance between sections caused by alignment. */
9355 default:
9356 continue;
9357
9358 case R_PPC64_GOT16_HA:
9359 case R_PPC64_GOT16_LO_DS:
9360 case R_PPC64_GOT_PCREL34:
9361 break;
9362 }
9363
9364 r_symndx = ELF64_R_SYM (rel->r_info);
9365 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9366 r_symndx, ibfd))
9367 goto got_error_ret;
9368
9369 if (sym_sec == NULL
9370 || sym_sec->output_section == NULL
9371 || discarded_section (sym_sec))
9372 continue;
9373
9374 if ((h ? h->type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
9375 continue;
9376
9377 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9378 continue;
9379
9380 if (h != NULL)
9381 val = h->root.u.def.value;
9382 else
9383 val = sym->st_value;
9384 val += rel->r_addend;
9385 val += sym_sec->output_section->vma + sym_sec->output_offset;
9386
9387 /* Fudge factor to allow for the fact that the preliminary layout
9388 isn't exact. Reduce limits by this factor. */
9389 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9390
9391 switch (r_type)
9392 {
9393 default:
9394 continue;
9395
9396 case R_PPC64_GOT16_HA:
9397 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9398 >= LIMIT_ADJUST (0x100000000ULL))
9399 continue;
9400
9401 if (!bfd_get_section_contents (ibfd, sec, buf,
9402 rel->r_offset & ~3, 4))
9403 goto got_error_ret;
9404 insn = bfd_get_32 (ibfd, buf);
9405 if (((insn & ((0x3fu << 26) | 0x1f << 16))
9406 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9407 continue;
9408 break;
9409
9410 case R_PPC64_GOT16_LO_DS:
9411 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9412 >= LIMIT_ADJUST (0x100000000ULL))
9413 continue;
9414 if (!bfd_get_section_contents (ibfd, sec, buf,
9415 rel->r_offset & ~3, 4))
9416 goto got_error_ret;
9417 insn = bfd_get_32 (ibfd, buf);
9418 if ((insn & (0x3fu << 26 | 0x3)) != 58u << 26 /* ld */)
9419 continue;
9420 break;
9421
9422 case R_PPC64_GOT_PCREL34:
9423 pc = rel->r_offset;
9424 pc += sec->output_section->vma + sec->output_offset;
9425 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9426 >= LIMIT_ADJUST (1ULL << 34))
9427 continue;
9428 if (!bfd_get_section_contents (ibfd, sec, buf,
9429 rel->r_offset & ~3, 8))
9430 goto got_error_ret;
9431 insn = bfd_get_32 (ibfd, buf);
9432 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9433 continue;
9434 insn = bfd_get_32 (ibfd, buf + 4);
9435 if ((insn & (0x3fu << 26)) != 57u << 26)
9436 continue;
9437 break;
9438 }
9439 #undef LIMIT_ADJUST
9440
9441 if (h != NULL)
9442 ent = h->got.glist;
9443 else
9444 {
9445 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9446 ent = local_got_ents[r_symndx];
9447 }
9448 for (; ent != NULL; ent = ent->next)
9449 if (ent->addend == rel->r_addend
9450 && ent->owner == ibfd
9451 && ent->tls_type == 0)
9452 break;
9453 BFD_ASSERT (ent && ent->got.refcount > 0);
9454 ent->got.refcount -= 1;
9455 }
9456
9457 if (elf_section_data (sec)->relocs != relstart)
9458 free (relstart);
9459 }
9460
9461 if (local_syms != NULL
9462 && symtab_hdr->contents != (unsigned char *) local_syms)
9463 {
9464 if (!info->keep_memory)
9465 free (local_syms);
9466 else
9467 symtab_hdr->contents = (unsigned char *) local_syms;
9468 }
9469 }
9470
9471 return TRUE;
9472 }
9473
9474 /* Return true iff input section I references the TOC using
9475 instructions limited to +/-32k offsets. */
9476
9477 bfd_boolean
9478 ppc64_elf_has_small_toc_reloc (asection *i)
9479 {
9480 return (is_ppc64_elf (i->owner)
9481 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9482 }
9483
9484 /* Allocate space for one GOT entry. */
9485
9486 static void
9487 allocate_got (struct elf_link_hash_entry *h,
9488 struct bfd_link_info *info,
9489 struct got_entry *gent)
9490 {
9491 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9492 struct ppc_link_hash_entry *eh = ppc_elf_hash_entry (h);
9493 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9494 ? 16 : 8);
9495 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9496 ? 2 : 1) * sizeof (Elf64_External_Rela);
9497 asection *got = ppc64_elf_tdata (gent->owner)->got;
9498
9499 gent->got.offset = got->size;
9500 got->size += entsize;
9501
9502 if (h->type == STT_GNU_IFUNC)
9503 {
9504 htab->elf.irelplt->size += rentsize;
9505 htab->got_reli_size += rentsize;
9506 }
9507 else if (((bfd_link_pic (info)
9508 && !(gent->tls_type != 0
9509 && bfd_link_executable (info)
9510 && SYMBOL_REFERENCES_LOCAL (info, h)))
9511 || (htab->elf.dynamic_sections_created
9512 && h->dynindx != -1
9513 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9514 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9515 {
9516 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9517 relgot->size += rentsize;
9518 }
9519 }
9520
9521 /* This function merges got entries in the same toc group. */
9522
9523 static void
9524 merge_got_entries (struct got_entry **pent)
9525 {
9526 struct got_entry *ent, *ent2;
9527
9528 for (ent = *pent; ent != NULL; ent = ent->next)
9529 if (!ent->is_indirect)
9530 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9531 if (!ent2->is_indirect
9532 && ent2->addend == ent->addend
9533 && ent2->tls_type == ent->tls_type
9534 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9535 {
9536 ent2->is_indirect = TRUE;
9537 ent2->got.ent = ent;
9538 }
9539 }
9540
9541 /* If H is undefined, make it dynamic if that makes sense. */
9542
9543 static bfd_boolean
9544 ensure_undef_dynamic (struct bfd_link_info *info,
9545 struct elf_link_hash_entry *h)
9546 {
9547 struct elf_link_hash_table *htab = elf_hash_table (info);
9548
9549 if (htab->dynamic_sections_created
9550 && ((info->dynamic_undefined_weak != 0
9551 && h->root.type == bfd_link_hash_undefweak)
9552 || h->root.type == bfd_link_hash_undefined)
9553 && h->dynindx == -1
9554 && !h->forced_local
9555 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9556 return bfd_elf_link_record_dynamic_symbol (info, h);
9557 return TRUE;
9558 }
9559
9560 /* Allocate space in .plt, .got and associated reloc sections for
9561 dynamic relocs. */
9562
9563 static bfd_boolean
9564 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9565 {
9566 struct bfd_link_info *info;
9567 struct ppc_link_hash_table *htab;
9568 asection *s;
9569 struct ppc_link_hash_entry *eh;
9570 struct got_entry **pgent, *gent;
9571
9572 if (h->root.type == bfd_link_hash_indirect)
9573 return TRUE;
9574
9575 info = (struct bfd_link_info *) inf;
9576 htab = ppc_hash_table (info);
9577 if (htab == NULL)
9578 return FALSE;
9579
9580 eh = ppc_elf_hash_entry (h);
9581 /* Run through the TLS GD got entries first if we're changing them
9582 to TPREL. */
9583 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9584 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9585 if (gent->got.refcount > 0
9586 && (gent->tls_type & TLS_GD) != 0)
9587 {
9588 /* This was a GD entry that has been converted to TPREL. If
9589 there happens to be a TPREL entry we can use that one. */
9590 struct got_entry *ent;
9591 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9592 if (ent->got.refcount > 0
9593 && (ent->tls_type & TLS_TPREL) != 0
9594 && ent->addend == gent->addend
9595 && ent->owner == gent->owner)
9596 {
9597 gent->got.refcount = 0;
9598 break;
9599 }
9600
9601 /* If not, then we'll be using our own TPREL entry. */
9602 if (gent->got.refcount != 0)
9603 gent->tls_type = TLS_TLS | TLS_TPREL;
9604 }
9605
9606 /* Remove any list entry that won't generate a word in the GOT before
9607 we call merge_got_entries. Otherwise we risk merging to empty
9608 entries. */
9609 pgent = &h->got.glist;
9610 while ((gent = *pgent) != NULL)
9611 if (gent->got.refcount > 0)
9612 {
9613 if ((gent->tls_type & TLS_LD) != 0
9614 && SYMBOL_REFERENCES_LOCAL (info, h))
9615 {
9616 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9617 *pgent = gent->next;
9618 }
9619 else
9620 pgent = &gent->next;
9621 }
9622 else
9623 *pgent = gent->next;
9624
9625 if (!htab->do_multi_toc)
9626 merge_got_entries (&h->got.glist);
9627
9628 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9629 if (!gent->is_indirect)
9630 {
9631 /* Ensure we catch all the cases where this symbol should
9632 be made dynamic. */
9633 if (!ensure_undef_dynamic (info, h))
9634 return FALSE;
9635
9636 if (!is_ppc64_elf (gent->owner))
9637 abort ();
9638
9639 allocate_got (h, info, gent);
9640 }
9641
9642 /* If no dynamic sections we can't have dynamic relocs, except for
9643 IFUNCs which are handled even in static executables. */
9644 if (!htab->elf.dynamic_sections_created
9645 && h->type != STT_GNU_IFUNC)
9646 eh->dyn_relocs = NULL;
9647
9648 /* Discard relocs on undefined symbols that must be local. */
9649 else if (h->root.type == bfd_link_hash_undefined
9650 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9651 eh->dyn_relocs = NULL;
9652
9653 /* Also discard relocs on undefined weak syms with non-default
9654 visibility, or when dynamic_undefined_weak says so. */
9655 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9656 eh->dyn_relocs = NULL;
9657
9658 if (eh->dyn_relocs != NULL)
9659 {
9660 struct elf_dyn_relocs *p, **pp;
9661
9662 /* In the shared -Bsymbolic case, discard space allocated for
9663 dynamic pc-relative relocs against symbols which turn out to
9664 be defined in regular objects. For the normal shared case,
9665 discard space for relocs that have become local due to symbol
9666 visibility changes. */
9667 if (bfd_link_pic (info))
9668 {
9669 /* Relocs that use pc_count are those that appear on a call
9670 insn, or certain REL relocs (see must_be_dyn_reloc) that
9671 can be generated via assembly. We want calls to
9672 protected symbols to resolve directly to the function
9673 rather than going via the plt. If people want function
9674 pointer comparisons to work as expected then they should
9675 avoid writing weird assembly. */
9676 if (SYMBOL_CALLS_LOCAL (info, h))
9677 {
9678 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9679 {
9680 p->count -= p->pc_count;
9681 p->pc_count = 0;
9682 if (p->count == 0)
9683 *pp = p->next;
9684 else
9685 pp = &p->next;
9686 }
9687 }
9688
9689 if (eh->dyn_relocs != NULL)
9690 {
9691 /* Ensure we catch all the cases where this symbol
9692 should be made dynamic. */
9693 if (!ensure_undef_dynamic (info, h))
9694 return FALSE;
9695 }
9696 }
9697
9698 /* For a fixed position executable, discard space for
9699 relocs against symbols which are not dynamic. */
9700 else if (h->type != STT_GNU_IFUNC)
9701 {
9702 if (h->dynamic_adjusted
9703 && !h->def_regular
9704 && !ELF_COMMON_DEF_P (h))
9705 {
9706 /* Ensure we catch all the cases where this symbol
9707 should be made dynamic. */
9708 if (!ensure_undef_dynamic (info, h))
9709 return FALSE;
9710
9711 /* But if that didn't work out, discard dynamic relocs. */
9712 if (h->dynindx == -1)
9713 eh->dyn_relocs = NULL;
9714 }
9715 else
9716 eh->dyn_relocs = NULL;
9717 }
9718
9719 /* Finally, allocate space. */
9720 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9721 {
9722 asection *sreloc = elf_section_data (p->sec)->sreloc;
9723 if (eh->elf.type == STT_GNU_IFUNC)
9724 sreloc = htab->elf.irelplt;
9725 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9726 }
9727 }
9728
9729 /* We might need a PLT entry when the symbol
9730 a) is dynamic, or
9731 b) is an ifunc, or
9732 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9733 d) has plt16 relocs and we are linking statically. */
9734 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9735 || h->type == STT_GNU_IFUNC
9736 || (h->needs_plt && h->dynamic_adjusted)
9737 || (h->needs_plt
9738 && h->def_regular
9739 && !htab->elf.dynamic_sections_created
9740 && !htab->can_convert_all_inline_plt
9741 && (ppc_elf_hash_entry (h)->tls_mask
9742 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9743 {
9744 struct plt_entry *pent;
9745 bfd_boolean doneone = FALSE;
9746 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9747 if (pent->plt.refcount > 0)
9748 {
9749 if (!htab->elf.dynamic_sections_created
9750 || h->dynindx == -1)
9751 {
9752 if (h->type == STT_GNU_IFUNC)
9753 {
9754 s = htab->elf.iplt;
9755 pent->plt.offset = s->size;
9756 s->size += PLT_ENTRY_SIZE (htab);
9757 s = htab->elf.irelplt;
9758 }
9759 else
9760 {
9761 s = htab->pltlocal;
9762 pent->plt.offset = s->size;
9763 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9764 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9765 }
9766 }
9767 else
9768 {
9769 /* If this is the first .plt entry, make room for the special
9770 first entry. */
9771 s = htab->elf.splt;
9772 if (s->size == 0)
9773 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9774
9775 pent->plt.offset = s->size;
9776
9777 /* Make room for this entry. */
9778 s->size += PLT_ENTRY_SIZE (htab);
9779
9780 /* Make room for the .glink code. */
9781 s = htab->glink;
9782 if (s->size == 0)
9783 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9784 if (htab->opd_abi)
9785 {
9786 /* We need bigger stubs past index 32767. */
9787 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9788 s->size += 4;
9789 s->size += 2*4;
9790 }
9791 else
9792 s->size += 4;
9793
9794 /* We also need to make an entry in the .rela.plt section. */
9795 s = htab->elf.srelplt;
9796 }
9797 if (s != NULL)
9798 s->size += sizeof (Elf64_External_Rela);
9799 doneone = TRUE;
9800 }
9801 else
9802 pent->plt.offset = (bfd_vma) -1;
9803 if (!doneone)
9804 {
9805 h->plt.plist = NULL;
9806 h->needs_plt = 0;
9807 }
9808 }
9809 else
9810 {
9811 h->plt.plist = NULL;
9812 h->needs_plt = 0;
9813 }
9814
9815 return TRUE;
9816 }
9817
9818 #define PPC_LO(v) ((v) & 0xffff)
9819 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9820 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9821 #define D34(v) \
9822 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9823 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9824
9825 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9826 to set up space for global entry stubs. These are put in glink,
9827 after the branch table. */
9828
9829 static bfd_boolean
9830 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9831 {
9832 struct bfd_link_info *info;
9833 struct ppc_link_hash_table *htab;
9834 struct plt_entry *pent;
9835 asection *s, *plt;
9836
9837 if (h->root.type == bfd_link_hash_indirect)
9838 return TRUE;
9839
9840 if (!h->pointer_equality_needed)
9841 return TRUE;
9842
9843 if (h->def_regular)
9844 return TRUE;
9845
9846 info = inf;
9847 htab = ppc_hash_table (info);
9848 if (htab == NULL)
9849 return FALSE;
9850
9851 s = htab->global_entry;
9852 plt = htab->elf.splt;
9853 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9854 if (pent->plt.offset != (bfd_vma) -1
9855 && pent->addend == 0)
9856 {
9857 /* For ELFv2, if this symbol is not defined in a regular file
9858 and we are not generating a shared library or pie, then we
9859 need to define the symbol in the executable on a call stub.
9860 This is to avoid text relocations. */
9861 bfd_vma off, stub_align, stub_off, stub_size;
9862 unsigned int align_power;
9863
9864 stub_size = 16;
9865 stub_off = s->size;
9866 if (htab->params->plt_stub_align >= 0)
9867 align_power = htab->params->plt_stub_align;
9868 else
9869 align_power = -htab->params->plt_stub_align;
9870 /* Setting section alignment is delayed until we know it is
9871 non-empty. Otherwise the .text output section will be
9872 aligned at least to plt_stub_align even when no global
9873 entry stubs are needed. */
9874 if (s->alignment_power < align_power)
9875 s->alignment_power = align_power;
9876 stub_align = (bfd_vma) 1 << align_power;
9877 if (htab->params->plt_stub_align >= 0
9878 || ((((stub_off + stub_size - 1) & -stub_align)
9879 - (stub_off & -stub_align))
9880 > ((stub_size - 1) & -stub_align)))
9881 stub_off = (stub_off + stub_align - 1) & -stub_align;
9882 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9883 off -= stub_off + s->output_offset + s->output_section->vma;
9884 /* Note that for --plt-stub-align negative we have a possible
9885 dependency between stub offset and size. Break that
9886 dependency by assuming the max stub size when calculating
9887 the stub offset. */
9888 if (PPC_HA (off) == 0)
9889 stub_size -= 4;
9890 h->root.type = bfd_link_hash_defined;
9891 h->root.u.def.section = s;
9892 h->root.u.def.value = stub_off;
9893 s->size = stub_off + stub_size;
9894 break;
9895 }
9896 return TRUE;
9897 }
9898
9899 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9900 read-only sections. */
9901
9902 static bfd_boolean
9903 maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
9904 {
9905 asection *sec;
9906
9907 if (h->root.type == bfd_link_hash_indirect)
9908 return TRUE;
9909
9910 sec = readonly_dynrelocs (h);
9911 if (sec != NULL)
9912 {
9913 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9914
9915 info->flags |= DF_TEXTREL;
9916 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT'"
9917 " in read-only section `%pA'\n"),
9918 sec->owner, h->root.root.string, sec);
9919
9920 /* Not an error, just cut short the traversal. */
9921 return FALSE;
9922 }
9923 return TRUE;
9924 }
9925
9926 /* Set the sizes of the dynamic sections. */
9927
9928 static bfd_boolean
9929 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9930 struct bfd_link_info *info)
9931 {
9932 struct ppc_link_hash_table *htab;
9933 bfd *dynobj;
9934 asection *s;
9935 bfd_boolean relocs;
9936 bfd *ibfd;
9937 struct got_entry *first_tlsld;
9938
9939 htab = ppc_hash_table (info);
9940 if (htab == NULL)
9941 return FALSE;
9942
9943 dynobj = htab->elf.dynobj;
9944 if (dynobj == NULL)
9945 abort ();
9946
9947 if (htab->elf.dynamic_sections_created)
9948 {
9949 /* Set the contents of the .interp section to the interpreter. */
9950 if (bfd_link_executable (info) && !info->nointerp)
9951 {
9952 s = bfd_get_linker_section (dynobj, ".interp");
9953 if (s == NULL)
9954 abort ();
9955 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9956 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9957 }
9958 }
9959
9960 /* Set up .got offsets for local syms, and space for local dynamic
9961 relocs. */
9962 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9963 {
9964 struct got_entry **lgot_ents;
9965 struct got_entry **end_lgot_ents;
9966 struct plt_entry **local_plt;
9967 struct plt_entry **end_local_plt;
9968 unsigned char *lgot_masks;
9969 bfd_size_type locsymcount;
9970 Elf_Internal_Shdr *symtab_hdr;
9971
9972 if (!is_ppc64_elf (ibfd))
9973 continue;
9974
9975 for (s = ibfd->sections; s != NULL; s = s->next)
9976 {
9977 struct ppc_dyn_relocs *p;
9978
9979 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9980 {
9981 if (!bfd_is_abs_section (p->sec)
9982 && bfd_is_abs_section (p->sec->output_section))
9983 {
9984 /* Input section has been discarded, either because
9985 it is a copy of a linkonce section or due to
9986 linker script /DISCARD/, so we'll be discarding
9987 the relocs too. */
9988 }
9989 else if (p->count != 0)
9990 {
9991 asection *srel = elf_section_data (p->sec)->sreloc;
9992 if (p->ifunc)
9993 srel = htab->elf.irelplt;
9994 srel->size += p->count * sizeof (Elf64_External_Rela);
9995 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9996 info->flags |= DF_TEXTREL;
9997 }
9998 }
9999 }
10000
10001 lgot_ents = elf_local_got_ents (ibfd);
10002 if (!lgot_ents)
10003 continue;
10004
10005 symtab_hdr = &elf_symtab_hdr (ibfd);
10006 locsymcount = symtab_hdr->sh_info;
10007 end_lgot_ents = lgot_ents + locsymcount;
10008 local_plt = (struct plt_entry **) end_lgot_ents;
10009 end_local_plt = local_plt + locsymcount;
10010 lgot_masks = (unsigned char *) end_local_plt;
10011 s = ppc64_elf_tdata (ibfd)->got;
10012 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10013 {
10014 struct got_entry **pent, *ent;
10015
10016 pent = lgot_ents;
10017 while ((ent = *pent) != NULL)
10018 if (ent->got.refcount > 0)
10019 {
10020 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
10021 {
10022 ppc64_tlsld_got (ibfd)->got.refcount += 1;
10023 *pent = ent->next;
10024 }
10025 else
10026 {
10027 unsigned int ent_size = 8;
10028 unsigned int rel_size = sizeof (Elf64_External_Rela);
10029
10030 ent->got.offset = s->size;
10031 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10032 {
10033 ent_size *= 2;
10034 rel_size *= 2;
10035 }
10036 s->size += ent_size;
10037 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10038 {
10039 htab->elf.irelplt->size += rel_size;
10040 htab->got_reli_size += rel_size;
10041 }
10042 else if (bfd_link_pic (info)
10043 && !(ent->tls_type != 0
10044 && bfd_link_executable (info)))
10045 {
10046 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10047 srel->size += rel_size;
10048 }
10049 pent = &ent->next;
10050 }
10051 }
10052 else
10053 *pent = ent->next;
10054 }
10055
10056 /* Allocate space for plt calls to local syms. */
10057 lgot_masks = (unsigned char *) end_local_plt;
10058 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
10059 {
10060 struct plt_entry *ent;
10061
10062 for (ent = *local_plt; ent != NULL; ent = ent->next)
10063 if (ent->plt.refcount > 0)
10064 {
10065 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
10066 {
10067 s = htab->elf.iplt;
10068 ent->plt.offset = s->size;
10069 s->size += PLT_ENTRY_SIZE (htab);
10070 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
10071 }
10072 else if (htab->can_convert_all_inline_plt
10073 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
10074 ent->plt.offset = (bfd_vma) -1;
10075 else
10076 {
10077 s = htab->pltlocal;
10078 ent->plt.offset = s->size;
10079 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
10080 if (bfd_link_pic (info))
10081 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
10082 }
10083 }
10084 else
10085 ent->plt.offset = (bfd_vma) -1;
10086 }
10087 }
10088
10089 /* Allocate global sym .plt and .got entries, and space for global
10090 sym dynamic relocs. */
10091 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
10092
10093 if (!htab->opd_abi && !bfd_link_pic (info))
10094 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
10095
10096 first_tlsld = NULL;
10097 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10098 {
10099 struct got_entry *ent;
10100
10101 if (!is_ppc64_elf (ibfd))
10102 continue;
10103
10104 ent = ppc64_tlsld_got (ibfd);
10105 if (ent->got.refcount > 0)
10106 {
10107 if (!htab->do_multi_toc && first_tlsld != NULL)
10108 {
10109 ent->is_indirect = TRUE;
10110 ent->got.ent = first_tlsld;
10111 }
10112 else
10113 {
10114 if (first_tlsld == NULL)
10115 first_tlsld = ent;
10116 s = ppc64_elf_tdata (ibfd)->got;
10117 ent->got.offset = s->size;
10118 ent->owner = ibfd;
10119 s->size += 16;
10120 if (bfd_link_dll (info))
10121 {
10122 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10123 srel->size += sizeof (Elf64_External_Rela);
10124 }
10125 }
10126 }
10127 else
10128 ent->got.offset = (bfd_vma) -1;
10129 }
10130
10131 /* We now have determined the sizes of the various dynamic sections.
10132 Allocate memory for them. */
10133 relocs = FALSE;
10134 for (s = dynobj->sections; s != NULL; s = s->next)
10135 {
10136 if ((s->flags & SEC_LINKER_CREATED) == 0)
10137 continue;
10138
10139 if (s == htab->brlt || s == htab->relbrlt)
10140 /* These haven't been allocated yet; don't strip. */
10141 continue;
10142 else if (s == htab->elf.sgot
10143 || s == htab->elf.splt
10144 || s == htab->elf.iplt
10145 || s == htab->pltlocal
10146 || s == htab->glink
10147 || s == htab->global_entry
10148 || s == htab->elf.sdynbss
10149 || s == htab->elf.sdynrelro)
10150 {
10151 /* Strip this section if we don't need it; see the
10152 comment below. */
10153 }
10154 else if (s == htab->glink_eh_frame)
10155 {
10156 if (!bfd_is_abs_section (s->output_section))
10157 /* Not sized yet. */
10158 continue;
10159 }
10160 else if (CONST_STRNEQ (s->name, ".rela"))
10161 {
10162 if (s->size != 0)
10163 {
10164 if (s != htab->elf.srelplt)
10165 relocs = TRUE;
10166
10167 /* We use the reloc_count field as a counter if we need
10168 to copy relocs into the output file. */
10169 s->reloc_count = 0;
10170 }
10171 }
10172 else
10173 {
10174 /* It's not one of our sections, so don't allocate space. */
10175 continue;
10176 }
10177
10178 if (s->size == 0)
10179 {
10180 /* If we don't need this section, strip it from the
10181 output file. This is mostly to handle .rela.bss and
10182 .rela.plt. We must create both sections in
10183 create_dynamic_sections, because they must be created
10184 before the linker maps input sections to output
10185 sections. The linker does that before
10186 adjust_dynamic_symbol is called, and it is that
10187 function which decides whether anything needs to go
10188 into these sections. */
10189 s->flags |= SEC_EXCLUDE;
10190 continue;
10191 }
10192
10193 if (bfd_is_abs_section (s->output_section))
10194 _bfd_error_handler (_("warning: discarding dynamic section %s"),
10195 s->name);
10196
10197 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10198 continue;
10199
10200 /* Allocate memory for the section contents. We use bfd_zalloc
10201 here in case unused entries are not reclaimed before the
10202 section's contents are written out. This should not happen,
10203 but this way if it does we get a R_PPC64_NONE reloc in .rela
10204 sections instead of garbage.
10205 We also rely on the section contents being zero when writing
10206 the GOT and .dynrelro. */
10207 s->contents = bfd_zalloc (dynobj, s->size);
10208 if (s->contents == NULL)
10209 return FALSE;
10210 }
10211
10212 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
10213 {
10214 if (!is_ppc64_elf (ibfd))
10215 continue;
10216
10217 s = ppc64_elf_tdata (ibfd)->got;
10218 if (s != NULL && s != htab->elf.sgot)
10219 {
10220 if (s->size == 0)
10221 s->flags |= SEC_EXCLUDE;
10222 else
10223 {
10224 s->contents = bfd_zalloc (ibfd, s->size);
10225 if (s->contents == NULL)
10226 return FALSE;
10227 }
10228 }
10229 s = ppc64_elf_tdata (ibfd)->relgot;
10230 if (s != NULL)
10231 {
10232 if (s->size == 0)
10233 s->flags |= SEC_EXCLUDE;
10234 else
10235 {
10236 s->contents = bfd_zalloc (ibfd, s->size);
10237 if (s->contents == NULL)
10238 return FALSE;
10239 relocs = TRUE;
10240 s->reloc_count = 0;
10241 }
10242 }
10243 }
10244
10245 if (htab->elf.dynamic_sections_created)
10246 {
10247 bfd_boolean tls_opt;
10248
10249 /* Add some entries to the .dynamic section. We fill in the
10250 values later, in ppc64_elf_finish_dynamic_sections, but we
10251 must add the entries now so that we get the correct size for
10252 the .dynamic section. The DT_DEBUG entry is filled in by the
10253 dynamic linker and used by the debugger. */
10254 #define add_dynamic_entry(TAG, VAL) \
10255 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10256
10257 if (bfd_link_executable (info))
10258 {
10259 if (!add_dynamic_entry (DT_DEBUG, 0))
10260 return FALSE;
10261 }
10262
10263 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10264 {
10265 if (!add_dynamic_entry (DT_PLTGOT, 0)
10266 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10267 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10268 || !add_dynamic_entry (DT_JMPREL, 0)
10269 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10270 return FALSE;
10271 }
10272
10273 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10274 {
10275 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10276 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10277 return FALSE;
10278 }
10279
10280 tls_opt = (htab->params->tls_get_addr_opt
10281 && ((htab->tls_get_addr_fd != NULL
10282 && htab->tls_get_addr_fd->elf.plt.plist != NULL)
10283 || (htab->tga_desc_fd != NULL
10284 && htab->tga_desc_fd->elf.plt.plist != NULL)));
10285 if (tls_opt || !htab->opd_abi)
10286 {
10287 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10288 return FALSE;
10289 }
10290
10291 if (relocs)
10292 {
10293 if (!add_dynamic_entry (DT_RELA, 0)
10294 || !add_dynamic_entry (DT_RELASZ, 0)
10295 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10296 return FALSE;
10297
10298 /* If any dynamic relocs apply to a read-only section,
10299 then we need a DT_TEXTREL entry. */
10300 if ((info->flags & DF_TEXTREL) == 0)
10301 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10302
10303 if ((info->flags & DF_TEXTREL) != 0)
10304 {
10305 if (!add_dynamic_entry (DT_TEXTREL, 0))
10306 return FALSE;
10307 }
10308 }
10309 }
10310 #undef add_dynamic_entry
10311
10312 return TRUE;
10313 }
10314
10315 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10316
10317 static bfd_boolean
10318 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10319 {
10320 if (h->plt.plist != NULL
10321 && !h->def_regular
10322 && !h->pointer_equality_needed)
10323 return FALSE;
10324
10325 return _bfd_elf_hash_symbol (h);
10326 }
10327
10328 /* Determine the type of stub needed, if any, for a call. */
10329
10330 static inline enum ppc_stub_type
10331 ppc_type_of_stub (asection *input_sec,
10332 const Elf_Internal_Rela *rel,
10333 struct ppc_link_hash_entry **hash,
10334 struct plt_entry **plt_ent,
10335 bfd_vma destination,
10336 unsigned long local_off)
10337 {
10338 struct ppc_link_hash_entry *h = *hash;
10339 bfd_vma location;
10340 bfd_vma branch_offset;
10341 bfd_vma max_branch_offset;
10342 enum elf_ppc64_reloc_type r_type;
10343
10344 if (h != NULL)
10345 {
10346 struct plt_entry *ent;
10347 struct ppc_link_hash_entry *fdh = h;
10348 if (h->oh != NULL
10349 && h->oh->is_func_descriptor)
10350 {
10351 fdh = ppc_follow_link (h->oh);
10352 *hash = fdh;
10353 }
10354
10355 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10356 if (ent->addend == rel->r_addend
10357 && ent->plt.offset != (bfd_vma) -1)
10358 {
10359 *plt_ent = ent;
10360 return ppc_stub_plt_call;
10361 }
10362
10363 /* Here, we know we don't have a plt entry. If we don't have a
10364 either a defined function descriptor or a defined entry symbol
10365 in a regular object file, then it is pointless trying to make
10366 any other type of stub. */
10367 if (!is_static_defined (&fdh->elf)
10368 && !is_static_defined (&h->elf))
10369 return ppc_stub_none;
10370 }
10371 else if (elf_local_got_ents (input_sec->owner) != NULL)
10372 {
10373 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10374 struct plt_entry **local_plt = (struct plt_entry **)
10375 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10376 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10377
10378 if (local_plt[r_symndx] != NULL)
10379 {
10380 struct plt_entry *ent;
10381
10382 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10383 if (ent->addend == rel->r_addend
10384 && ent->plt.offset != (bfd_vma) -1)
10385 {
10386 *plt_ent = ent;
10387 return ppc_stub_plt_call;
10388 }
10389 }
10390 }
10391
10392 /* Determine where the call point is. */
10393 location = (input_sec->output_offset
10394 + input_sec->output_section->vma
10395 + rel->r_offset);
10396
10397 branch_offset = destination - location;
10398 r_type = ELF64_R_TYPE (rel->r_info);
10399
10400 /* Determine if a long branch stub is needed. */
10401 max_branch_offset = 1 << 25;
10402 if (r_type == R_PPC64_REL14
10403 || r_type == R_PPC64_REL14_BRTAKEN
10404 || r_type == R_PPC64_REL14_BRNTAKEN)
10405 max_branch_offset = 1 << 15;
10406
10407 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10408 /* We need a stub. Figure out whether a long_branch or plt_branch
10409 is needed later. */
10410 return ppc_stub_long_branch;
10411
10412 return ppc_stub_none;
10413 }
10414
10415 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10416 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10417 . mflr %r12
10418 . bcl 20,31,1f
10419 .1: mflr %r11
10420 . mtlr %r12
10421 . lis %r12,xxx-1b@highest
10422 . ori %r12,%r12,xxx-1b@higher
10423 . sldi %r12,%r12,32
10424 . oris %r12,%r12,xxx-1b@high
10425 . ori %r12,%r12,xxx-1b@l
10426 . add/ldx %r12,%r11,%r12 */
10427
10428 static bfd_byte *
10429 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10430 {
10431 bfd_put_32 (abfd, MFLR_R12, p);
10432 p += 4;
10433 bfd_put_32 (abfd, BCL_20_31, p);
10434 p += 4;
10435 bfd_put_32 (abfd, MFLR_R11, p);
10436 p += 4;
10437 bfd_put_32 (abfd, MTLR_R12, p);
10438 p += 4;
10439 if (off + 0x8000 < 0x10000)
10440 {
10441 if (load)
10442 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10443 else
10444 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10445 p += 4;
10446 }
10447 else if (off + 0x80008000ULL < 0x100000000ULL)
10448 {
10449 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10450 p += 4;
10451 if (load)
10452 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10453 else
10454 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10455 p += 4;
10456 }
10457 else
10458 {
10459 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10460 {
10461 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10462 p += 4;
10463 }
10464 else
10465 {
10466 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10467 p += 4;
10468 if (((off >> 32) & 0xffff) != 0)
10469 {
10470 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10471 p += 4;
10472 }
10473 }
10474 if (((off >> 32) & 0xffffffffULL) != 0)
10475 {
10476 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10477 p += 4;
10478 }
10479 if (PPC_HI (off) != 0)
10480 {
10481 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10482 p += 4;
10483 }
10484 if (PPC_LO (off) != 0)
10485 {
10486 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10487 p += 4;
10488 }
10489 if (load)
10490 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10491 else
10492 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10493 p += 4;
10494 }
10495 return p;
10496 }
10497
10498 static unsigned int
10499 size_offset (bfd_vma off)
10500 {
10501 unsigned int size;
10502 if (off + 0x8000 < 0x10000)
10503 size = 4;
10504 else if (off + 0x80008000ULL < 0x100000000ULL)
10505 size = 8;
10506 else
10507 {
10508 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10509 size = 4;
10510 else
10511 {
10512 size = 4;
10513 if (((off >> 32) & 0xffff) != 0)
10514 size += 4;
10515 }
10516 if (((off >> 32) & 0xffffffffULL) != 0)
10517 size += 4;
10518 if (PPC_HI (off) != 0)
10519 size += 4;
10520 if (PPC_LO (off) != 0)
10521 size += 4;
10522 size += 4;
10523 }
10524 return size + 16;
10525 }
10526
10527 static unsigned int
10528 num_relocs_for_offset (bfd_vma off)
10529 {
10530 unsigned int num_rel;
10531 if (off + 0x8000 < 0x10000)
10532 num_rel = 1;
10533 else if (off + 0x80008000ULL < 0x100000000ULL)
10534 num_rel = 2;
10535 else
10536 {
10537 num_rel = 1;
10538 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10539 && ((off >> 32) & 0xffff) != 0)
10540 num_rel += 1;
10541 if (PPC_HI (off) != 0)
10542 num_rel += 1;
10543 if (PPC_LO (off) != 0)
10544 num_rel += 1;
10545 }
10546 return num_rel;
10547 }
10548
10549 static Elf_Internal_Rela *
10550 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10551 bfd_vma roff, bfd_vma targ, bfd_vma off)
10552 {
10553 bfd_vma relative_targ = targ - (roff - 8);
10554 if (bfd_big_endian (info->output_bfd))
10555 roff += 2;
10556 r->r_offset = roff;
10557 r->r_addend = relative_targ + roff;
10558 if (off + 0x8000 < 0x10000)
10559 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10560 else if (off + 0x80008000ULL < 0x100000000ULL)
10561 {
10562 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10563 ++r;
10564 roff += 4;
10565 r->r_offset = roff;
10566 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10567 r->r_addend = relative_targ + roff;
10568 }
10569 else
10570 {
10571 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10572 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10573 else
10574 {
10575 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10576 if (((off >> 32) & 0xffff) != 0)
10577 {
10578 ++r;
10579 roff += 4;
10580 r->r_offset = roff;
10581 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10582 r->r_addend = relative_targ + roff;
10583 }
10584 }
10585 if (((off >> 32) & 0xffffffffULL) != 0)
10586 roff += 4;
10587 if (PPC_HI (off) != 0)
10588 {
10589 ++r;
10590 roff += 4;
10591 r->r_offset = roff;
10592 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10593 r->r_addend = relative_targ + roff;
10594 }
10595 if (PPC_LO (off) != 0)
10596 {
10597 ++r;
10598 roff += 4;
10599 r->r_offset = roff;
10600 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10601 r->r_addend = relative_targ + roff;
10602 }
10603 }
10604 return r;
10605 }
10606
10607 static bfd_byte *
10608 build_powerxx_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10609 bfd_boolean load)
10610 {
10611 uint64_t insn;
10612 if (off - odd + (1ULL << 33) < 1ULL << 34)
10613 {
10614 off -= odd;
10615 if (odd)
10616 {
10617 bfd_put_32 (abfd, NOP, p);
10618 p += 4;
10619 }
10620 if (load)
10621 insn = PLD_R12_PC;
10622 else
10623 insn = PADDI_R12_PC;
10624 insn |= D34 (off);
10625 bfd_put_32 (abfd, insn >> 32, p);
10626 p += 4;
10627 bfd_put_32 (abfd, insn, p);
10628 }
10629 /* The minimum value for paddi is -0x200000000. The minimum value
10630 for li is -0x8000, which when shifted by 34 and added gives a
10631 minimum value of -0x2000200000000. The maximum value is
10632 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10633 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10634 {
10635 off -= 8 - odd;
10636 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10637 p += 4;
10638 if (!odd)
10639 {
10640 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10641 p += 4;
10642 }
10643 insn = PADDI_R12_PC | D34 (off);
10644 bfd_put_32 (abfd, insn >> 32, p);
10645 p += 4;
10646 bfd_put_32 (abfd, insn, p);
10647 p += 4;
10648 if (odd)
10649 {
10650 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10651 p += 4;
10652 }
10653 if (load)
10654 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10655 else
10656 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10657 }
10658 else
10659 {
10660 off -= odd + 8;
10661 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10662 p += 4;
10663 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10664 p += 4;
10665 if (odd)
10666 {
10667 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10668 p += 4;
10669 }
10670 insn = PADDI_R12_PC | D34 (off);
10671 bfd_put_32 (abfd, insn >> 32, p);
10672 p += 4;
10673 bfd_put_32 (abfd, insn, p);
10674 p += 4;
10675 if (!odd)
10676 {
10677 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10678 p += 4;
10679 }
10680 if (load)
10681 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10682 else
10683 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10684 }
10685 p += 4;
10686 return p;
10687 }
10688
10689 static unsigned int
10690 size_powerxx_offset (bfd_vma off, int odd)
10691 {
10692 if (off - odd + (1ULL << 33) < 1ULL << 34)
10693 return odd + 8;
10694 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10695 return 20;
10696 else
10697 return 24;
10698 }
10699
10700 static unsigned int
10701 num_relocs_for_powerxx_offset (bfd_vma off, int odd)
10702 {
10703 if (off - odd + (1ULL << 33) < 1ULL << 34)
10704 return 1;
10705 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10706 return 2;
10707 else
10708 return 3;
10709 }
10710
10711 static Elf_Internal_Rela *
10712 emit_relocs_for_powerxx_offset (struct bfd_link_info *info,
10713 Elf_Internal_Rela *r, bfd_vma roff,
10714 bfd_vma targ, bfd_vma off, int odd)
10715 {
10716 if (off - odd + (1ULL << 33) < 1ULL << 34)
10717 roff += odd;
10718 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10719 {
10720 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10721 r->r_offset = roff + d_offset;
10722 r->r_addend = targ + 8 - odd - d_offset;
10723 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10724 ++r;
10725 roff += 8 - odd;
10726 }
10727 else
10728 {
10729 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10730 r->r_offset = roff + d_offset;
10731 r->r_addend = targ + 8 + odd - d_offset;
10732 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10733 ++r;
10734 roff += 4;
10735 r->r_offset = roff + d_offset;
10736 r->r_addend = targ + 4 + odd - d_offset;
10737 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10738 ++r;
10739 roff += 4 + odd;
10740 }
10741 r->r_offset = roff;
10742 r->r_addend = targ;
10743 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10744 return r;
10745 }
10746
10747 /* Emit .eh_frame opcode to advance pc by DELTA. */
10748
10749 static bfd_byte *
10750 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10751 {
10752 delta /= 4;
10753 if (delta < 64)
10754 *eh++ = DW_CFA_advance_loc + delta;
10755 else if (delta < 256)
10756 {
10757 *eh++ = DW_CFA_advance_loc1;
10758 *eh++ = delta;
10759 }
10760 else if (delta < 65536)
10761 {
10762 *eh++ = DW_CFA_advance_loc2;
10763 bfd_put_16 (abfd, delta, eh);
10764 eh += 2;
10765 }
10766 else
10767 {
10768 *eh++ = DW_CFA_advance_loc4;
10769 bfd_put_32 (abfd, delta, eh);
10770 eh += 4;
10771 }
10772 return eh;
10773 }
10774
10775 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10776
10777 static unsigned int
10778 eh_advance_size (unsigned int delta)
10779 {
10780 if (delta < 64 * 4)
10781 /* DW_CFA_advance_loc+[1..63]. */
10782 return 1;
10783 if (delta < 256 * 4)
10784 /* DW_CFA_advance_loc1, byte. */
10785 return 2;
10786 if (delta < 65536 * 4)
10787 /* DW_CFA_advance_loc2, 2 bytes. */
10788 return 3;
10789 /* DW_CFA_advance_loc4, 4 bytes. */
10790 return 5;
10791 }
10792
10793 /* With power7 weakly ordered memory model, it is possible for ld.so
10794 to update a plt entry in one thread and have another thread see a
10795 stale zero toc entry. To avoid this we need some sort of acquire
10796 barrier in the call stub. One solution is to make the load of the
10797 toc word seem to appear to depend on the load of the function entry
10798 word. Another solution is to test for r2 being zero, and branch to
10799 the appropriate glink entry if so.
10800
10801 . fake dep barrier compare
10802 . ld 12,xxx(2) ld 12,xxx(2)
10803 . mtctr 12 mtctr 12
10804 . xor 11,12,12 ld 2,xxx+8(2)
10805 . add 2,2,11 cmpldi 2,0
10806 . ld 2,xxx+8(2) bnectr+
10807 . bctr b <glink_entry>
10808
10809 The solution involving the compare turns out to be faster, so
10810 that's what we use unless the branch won't reach. */
10811
10812 #define ALWAYS_USE_FAKE_DEP 0
10813 #define ALWAYS_EMIT_R2SAVE 0
10814
10815 static inline unsigned int
10816 plt_stub_size (struct ppc_link_hash_table *htab,
10817 struct ppc_stub_hash_entry *stub_entry,
10818 bfd_vma off)
10819 {
10820 unsigned size;
10821
10822 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10823 {
10824 if (htab->powerxx_stubs)
10825 {
10826 bfd_vma start = (stub_entry->stub_offset
10827 + stub_entry->group->stub_sec->output_offset
10828 + stub_entry->group->stub_sec->output_section->vma);
10829 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10830 start += 4;
10831 size = 8 + size_powerxx_offset (off, start & 4);
10832 }
10833 else
10834 size = 8 + size_offset (off - 8);
10835 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10836 size += 4;
10837 return size;
10838 }
10839
10840 size = 12;
10841 if (ALWAYS_EMIT_R2SAVE
10842 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10843 size += 4;
10844 if (PPC_HA (off) != 0)
10845 size += 4;
10846 if (htab->opd_abi)
10847 {
10848 size += 4;
10849 if (htab->params->plt_static_chain)
10850 size += 4;
10851 if (htab->params->plt_thread_safe
10852 && htab->elf.dynamic_sections_created
10853 && stub_entry->h != NULL
10854 && stub_entry->h->elf.dynindx != -1)
10855 size += 8;
10856 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10857 size += 4;
10858 }
10859 if (stub_entry->h != NULL
10860 && is_tls_get_addr (&stub_entry->h->elf, htab)
10861 && htab->params->tls_get_addr_opt)
10862 {
10863 if (htab->params->no_tls_get_addr_regsave)
10864 {
10865 size += 7 * 4;
10866 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10867 size += 6 * 4;
10868 }
10869 else
10870 {
10871 size += 30 * 4;
10872 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10873 size += 4;
10874 }
10875 }
10876 return size;
10877 }
10878
10879 /* Depending on the sign of plt_stub_align:
10880 If positive, return the padding to align to a 2**plt_stub_align
10881 boundary.
10882 If negative, if this stub would cross fewer 2**plt_stub_align
10883 boundaries if we align, then return the padding needed to do so. */
10884
10885 static inline unsigned int
10886 plt_stub_pad (struct ppc_link_hash_table *htab,
10887 struct ppc_stub_hash_entry *stub_entry,
10888 bfd_vma plt_off)
10889 {
10890 int stub_align;
10891 unsigned stub_size;
10892 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10893
10894 if (htab->params->plt_stub_align >= 0)
10895 {
10896 stub_align = 1 << htab->params->plt_stub_align;
10897 if ((stub_off & (stub_align - 1)) != 0)
10898 return stub_align - (stub_off & (stub_align - 1));
10899 return 0;
10900 }
10901
10902 stub_align = 1 << -htab->params->plt_stub_align;
10903 stub_size = plt_stub_size (htab, stub_entry, plt_off);
10904 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10905 > ((stub_size - 1) & -stub_align))
10906 return stub_align - (stub_off & (stub_align - 1));
10907 return 0;
10908 }
10909
10910 /* Build a .plt call stub. */
10911
10912 static inline bfd_byte *
10913 build_plt_stub (struct ppc_link_hash_table *htab,
10914 struct ppc_stub_hash_entry *stub_entry,
10915 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10916 {
10917 bfd *obfd = htab->params->stub_bfd;
10918 bfd_boolean plt_load_toc = htab->opd_abi;
10919 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10920 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10921 && htab->elf.dynamic_sections_created
10922 && stub_entry->h != NULL
10923 && stub_entry->h->elf.dynindx != -1);
10924 bfd_boolean use_fake_dep = plt_thread_safe;
10925 bfd_vma cmp_branch_off = 0;
10926
10927 if (!ALWAYS_USE_FAKE_DEP
10928 && plt_load_toc
10929 && plt_thread_safe
10930 && !(is_tls_get_addr (&stub_entry->h->elf, htab)
10931 && htab->params->tls_get_addr_opt))
10932 {
10933 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10934 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10935 / PLT_ENTRY_SIZE (htab));
10936 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10937 bfd_vma to, from;
10938
10939 if (pltindex > 32768)
10940 glinkoff += (pltindex - 32768) * 4;
10941 to = (glinkoff
10942 + htab->glink->output_offset
10943 + htab->glink->output_section->vma);
10944 from = (p - stub_entry->group->stub_sec->contents
10945 + 4 * (ALWAYS_EMIT_R2SAVE
10946 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10947 + 4 * (PPC_HA (offset) != 0)
10948 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10949 != PPC_HA (offset))
10950 + 4 * (plt_static_chain != 0)
10951 + 20
10952 + stub_entry->group->stub_sec->output_offset
10953 + stub_entry->group->stub_sec->output_section->vma);
10954 cmp_branch_off = to - from;
10955 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10956 }
10957
10958 if (PPC_HA (offset) != 0)
10959 {
10960 if (r != NULL)
10961 {
10962 if (ALWAYS_EMIT_R2SAVE
10963 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10964 r[0].r_offset += 4;
10965 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10966 r[1].r_offset = r[0].r_offset + 4;
10967 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10968 r[1].r_addend = r[0].r_addend;
10969 if (plt_load_toc)
10970 {
10971 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10972 {
10973 r[2].r_offset = r[1].r_offset + 4;
10974 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10975 r[2].r_addend = r[0].r_addend;
10976 }
10977 else
10978 {
10979 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10980 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10981 r[2].r_addend = r[0].r_addend + 8;
10982 if (plt_static_chain)
10983 {
10984 r[3].r_offset = r[2].r_offset + 4;
10985 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10986 r[3].r_addend = r[0].r_addend + 16;
10987 }
10988 }
10989 }
10990 }
10991 if (ALWAYS_EMIT_R2SAVE
10992 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10993 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10994 if (plt_load_toc)
10995 {
10996 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10997 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10998 }
10999 else
11000 {
11001 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
11002 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
11003 }
11004 if (plt_load_toc
11005 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11006 {
11007 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
11008 offset = 0;
11009 }
11010 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11011 if (plt_load_toc)
11012 {
11013 if (use_fake_dep)
11014 {
11015 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
11016 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
11017 }
11018 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
11019 if (plt_static_chain)
11020 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
11021 }
11022 }
11023 else
11024 {
11025 if (r != NULL)
11026 {
11027 if (ALWAYS_EMIT_R2SAVE
11028 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11029 r[0].r_offset += 4;
11030 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11031 if (plt_load_toc)
11032 {
11033 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11034 {
11035 r[1].r_offset = r[0].r_offset + 4;
11036 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
11037 r[1].r_addend = r[0].r_addend;
11038 }
11039 else
11040 {
11041 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
11042 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11043 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
11044 if (plt_static_chain)
11045 {
11046 r[2].r_offset = r[1].r_offset + 4;
11047 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11048 r[2].r_addend = r[0].r_addend + 8;
11049 }
11050 }
11051 }
11052 }
11053 if (ALWAYS_EMIT_R2SAVE
11054 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
11055 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
11056 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
11057 if (plt_load_toc
11058 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
11059 {
11060 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
11061 offset = 0;
11062 }
11063 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
11064 if (plt_load_toc)
11065 {
11066 if (use_fake_dep)
11067 {
11068 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
11069 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
11070 }
11071 if (plt_static_chain)
11072 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
11073 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
11074 }
11075 }
11076 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
11077 {
11078 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
11079 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
11080 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
11081 }
11082 else
11083 bfd_put_32 (obfd, BCTR, p), p += 4;
11084 return p;
11085 }
11086
11087 /* Build a special .plt call stub for __tls_get_addr. */
11088
11089 #define LD_R0_0R3 0xe8030000
11090 #define LD_R12_0R3 0xe9830000
11091 #define MR_R0_R3 0x7c601b78
11092 #define CMPDI_R0_0 0x2c200000
11093 #define ADD_R3_R12_R13 0x7c6c6a14
11094 #define BEQLR 0x4d820020
11095 #define MR_R3_R0 0x7c030378
11096 #define BCTRL 0x4e800421
11097
11098 static inline bfd_byte *
11099 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
11100 struct ppc_stub_hash_entry *stub_entry,
11101 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
11102 {
11103 bfd *obfd = htab->params->stub_bfd;
11104 bfd_byte *loc = p;
11105 unsigned int i;
11106
11107 bfd_put_32 (obfd, LD_R0_0R3 + 0, p), p += 4;
11108 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
11109 bfd_put_32 (obfd, CMPDI_R0_0, p), p += 4;
11110 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
11111 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
11112 bfd_put_32 (obfd, BEQLR, p), p += 4;
11113 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
11114 if (htab->params->no_tls_get_addr_regsave)
11115 {
11116 if (r != NULL)
11117 r[0].r_offset += 7 * 4;
11118 if (stub_entry->stub_type != ppc_stub_plt_call_r2save)
11119 return build_plt_stub (htab, stub_entry, p, offset, r);
11120
11121 bfd_put_32 (obfd, MFLR_R0, p);
11122 p += 4;
11123 bfd_put_32 (obfd, STD_R0_0R1 + STK_LINKER (htab), p);
11124 p += 4;
11125
11126 if (r != NULL)
11127 r[0].r_offset += 2 * 4;
11128 p = build_plt_stub (htab, stub_entry, p, offset, r);
11129 bfd_put_32 (obfd, BCTRL, p - 4);
11130
11131 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11132 p += 4;
11133 bfd_put_32 (obfd, LD_R0_0R1 + STK_LINKER (htab), p);
11134 p += 4;
11135 bfd_put_32 (obfd, MTLR_R0, p);
11136 p += 4;
11137 bfd_put_32 (obfd, BLR, p);
11138 p += 4;
11139 }
11140 else
11141 {
11142 p = tls_get_addr_prologue (obfd, p, htab);
11143
11144 if (r != NULL)
11145 r[0].r_offset += 18 * 4;
11146
11147 p = build_plt_stub (htab, stub_entry, p, offset, r);
11148 bfd_put_32 (obfd, BCTRL, p - 4);
11149
11150 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
11151 {
11152 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p);
11153 p += 4;
11154 }
11155
11156 p = tls_get_addr_epilogue (obfd, p, htab);
11157 }
11158
11159 if (htab->glink_eh_frame != NULL
11160 && htab->glink_eh_frame->size != 0)
11161 {
11162 bfd_byte *base, *eh;
11163
11164 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
11165 eh = base + stub_entry->group->eh_size;
11166 if (htab->params->no_tls_get_addr_regsave)
11167 {
11168 unsigned int lr_used, delta;
11169 lr_used = stub_entry->stub_offset + (p - 20 - loc);
11170 delta = lr_used - stub_entry->group->lr_restore;
11171 stub_entry->group->lr_restore = lr_used + 16;
11172 eh = eh_advance (htab->elf.dynobj, eh, delta);
11173 *eh++ = DW_CFA_offset_extended_sf;
11174 *eh++ = 65;
11175 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
11176 *eh++ = DW_CFA_advance_loc + 4;
11177 }
11178 else
11179 {
11180 unsigned int cfa_updt, delta;
11181 /* After the bctrl, lr has been modified so we need to emit
11182 .eh_frame info saying the return address is on the stack. In
11183 fact we must put the EH info at or before the call rather
11184 than after it, because the EH info for a call needs to be
11185 specified by that point.
11186 See libgcc/unwind-dw2.c execute_cfa_program.
11187 Any stack pointer update must be described immediately after
11188 the instruction making the change, and since the stdu occurs
11189 after saving regs we put all the reg saves and the cfa
11190 change there. */
11191 cfa_updt = stub_entry->stub_offset + 18 * 4;
11192 delta = cfa_updt - stub_entry->group->lr_restore;
11193 stub_entry->group->lr_restore
11194 = stub_entry->stub_offset + (p - loc) - 4;
11195 eh = eh_advance (htab->elf.dynobj, eh, delta);
11196 *eh++ = DW_CFA_def_cfa_offset;
11197 if (htab->opd_abi)
11198 {
11199 *eh++ = 128;
11200 *eh++ = 1;
11201 }
11202 else
11203 *eh++ = 96;
11204 *eh++ = DW_CFA_offset_extended_sf;
11205 *eh++ = 65;
11206 *eh++ = (-16 / 8) & 0x7f;
11207 for (i = 4; i < 12; i++)
11208 {
11209 *eh++ = DW_CFA_offset + i;
11210 *eh++ = (htab->opd_abi ? 13 : 12) - i;
11211 }
11212 *eh++ = (DW_CFA_advance_loc
11213 + (stub_entry->group->lr_restore - 8 - cfa_updt) / 4);
11214 *eh++ = DW_CFA_def_cfa_offset;
11215 *eh++ = 0;
11216 for (i = 4; i < 12; i++)
11217 *eh++ = DW_CFA_restore + i;
11218 *eh++ = DW_CFA_advance_loc + 2;
11219 }
11220 *eh++ = DW_CFA_restore_extended;
11221 *eh++ = 65;
11222 stub_entry->group->eh_size = eh - base;
11223 }
11224 return p;
11225 }
11226
11227 static Elf_Internal_Rela *
11228 get_relocs (asection *sec, int count)
11229 {
11230 Elf_Internal_Rela *relocs;
11231 struct bfd_elf_section_data *elfsec_data;
11232
11233 elfsec_data = elf_section_data (sec);
11234 relocs = elfsec_data->relocs;
11235 if (relocs == NULL)
11236 {
11237 bfd_size_type relsize;
11238 relsize = sec->reloc_count * sizeof (*relocs);
11239 relocs = bfd_alloc (sec->owner, relsize);
11240 if (relocs == NULL)
11241 return NULL;
11242 elfsec_data->relocs = relocs;
11243 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
11244 sizeof (Elf_Internal_Shdr));
11245 if (elfsec_data->rela.hdr == NULL)
11246 return NULL;
11247 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
11248 * sizeof (Elf64_External_Rela));
11249 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
11250 sec->reloc_count = 0;
11251 }
11252 relocs += sec->reloc_count;
11253 sec->reloc_count += count;
11254 return relocs;
11255 }
11256
11257 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
11258 forms, to the equivalent relocs against the global symbol given by
11259 STUB_ENTRY->H. */
11260
11261 static bfd_boolean
11262 use_global_in_relocs (struct ppc_link_hash_table *htab,
11263 struct ppc_stub_hash_entry *stub_entry,
11264 Elf_Internal_Rela *r, unsigned int num_rel)
11265 {
11266 struct elf_link_hash_entry **hashes;
11267 unsigned long symndx;
11268 struct ppc_link_hash_entry *h;
11269 bfd_vma symval;
11270
11271 /* Relocs are always against symbols in their own object file. Fake
11272 up global sym hashes for the stub bfd (which has no symbols). */
11273 hashes = elf_sym_hashes (htab->params->stub_bfd);
11274 if (hashes == NULL)
11275 {
11276 bfd_size_type hsize;
11277
11278 /* When called the first time, stub_globals will contain the
11279 total number of symbols seen during stub sizing. After
11280 allocating, stub_globals is used as an index to fill the
11281 hashes array. */
11282 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
11283 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
11284 if (hashes == NULL)
11285 return FALSE;
11286 elf_sym_hashes (htab->params->stub_bfd) = hashes;
11287 htab->stub_globals = 1;
11288 }
11289 symndx = htab->stub_globals++;
11290 h = stub_entry->h;
11291 hashes[symndx] = &h->elf;
11292 if (h->oh != NULL && h->oh->is_func)
11293 h = ppc_follow_link (h->oh);
11294 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
11295 || h->elf.root.type == bfd_link_hash_defweak);
11296 symval = defined_sym_val (&h->elf);
11297 while (num_rel-- != 0)
11298 {
11299 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
11300 if (h->elf.root.u.def.section != stub_entry->target_section)
11301 {
11302 /* H is an opd symbol. The addend must be zero, and the
11303 branch reloc is the only one we can convert. */
11304 r->r_addend = 0;
11305 break;
11306 }
11307 else
11308 r->r_addend -= symval;
11309 --r;
11310 }
11311 return TRUE;
11312 }
11313
11314 static bfd_vma
11315 get_r2off (struct bfd_link_info *info,
11316 struct ppc_stub_hash_entry *stub_entry)
11317 {
11318 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11319 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
11320
11321 if (r2off == 0)
11322 {
11323 /* Support linking -R objects. Get the toc pointer from the
11324 opd entry. */
11325 char buf[8];
11326 if (!htab->opd_abi)
11327 return r2off;
11328 asection *opd = stub_entry->h->elf.root.u.def.section;
11329 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
11330
11331 if (strcmp (opd->name, ".opd") != 0
11332 || opd->reloc_count != 0)
11333 {
11334 info->callbacks->einfo
11335 (_("%P: cannot find opd entry toc for `%pT'\n"),
11336 stub_entry->h->elf.root.root.string);
11337 bfd_set_error (bfd_error_bad_value);
11338 return (bfd_vma) -1;
11339 }
11340 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11341 return (bfd_vma) -1;
11342 r2off = bfd_get_64 (opd->owner, buf);
11343 r2off -= elf_gp (info->output_bfd);
11344 }
11345 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11346 return r2off;
11347 }
11348
11349 static bfd_boolean
11350 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11351 {
11352 struct ppc_stub_hash_entry *stub_entry;
11353 struct ppc_branch_hash_entry *br_entry;
11354 struct bfd_link_info *info;
11355 struct ppc_link_hash_table *htab;
11356 bfd_byte *loc;
11357 bfd_byte *p, *relp;
11358 bfd_vma targ, off;
11359 Elf_Internal_Rela *r;
11360 asection *plt;
11361 int num_rel;
11362 int odd;
11363
11364 /* Massage our args to the form they really have. */
11365 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11366 info = in_arg;
11367
11368 /* Fail if the target section could not be assigned to an output
11369 section. The user should fix his linker script. */
11370 if (stub_entry->target_section != NULL
11371 && stub_entry->target_section->output_section == NULL
11372 && info->non_contiguous_regions)
11373 info->callbacks->einfo (_("%F%P: Could not assign '%pA' to an output section. "
11374 "Retry without --enable-non-contiguous-regions.\n"),
11375 stub_entry->target_section);
11376
11377 /* Same for the group. */
11378 if (stub_entry->group->stub_sec != NULL
11379 && stub_entry->group->stub_sec->output_section == NULL
11380 && info->non_contiguous_regions)
11381 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11382 "output section. Retry without "
11383 "--enable-non-contiguous-regions.\n"),
11384 stub_entry->group->stub_sec,
11385 stub_entry->target_section);
11386
11387 htab = ppc_hash_table (info);
11388 if (htab == NULL)
11389 return FALSE;
11390
11391 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11392 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11393
11394 htab->stub_count[stub_entry->stub_type - 1] += 1;
11395 switch (stub_entry->stub_type)
11396 {
11397 case ppc_stub_long_branch:
11398 case ppc_stub_long_branch_r2off:
11399 /* Branches are relative. This is where we are going to. */
11400 targ = (stub_entry->target_value
11401 + stub_entry->target_section->output_offset
11402 + stub_entry->target_section->output_section->vma);
11403 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11404
11405 /* And this is where we are coming from. */
11406 off = (stub_entry->stub_offset
11407 + stub_entry->group->stub_sec->output_offset
11408 + stub_entry->group->stub_sec->output_section->vma);
11409 off = targ - off;
11410
11411 p = loc;
11412 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11413 {
11414 bfd_vma r2off = get_r2off (info, stub_entry);
11415
11416 if (r2off == (bfd_vma) -1)
11417 {
11418 htab->stub_error = TRUE;
11419 return FALSE;
11420 }
11421 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11422 p += 4;
11423 if (PPC_HA (r2off) != 0)
11424 {
11425 bfd_put_32 (htab->params->stub_bfd,
11426 ADDIS_R2_R2 | PPC_HA (r2off), p);
11427 p += 4;
11428 }
11429 if (PPC_LO (r2off) != 0)
11430 {
11431 bfd_put_32 (htab->params->stub_bfd,
11432 ADDI_R2_R2 | PPC_LO (r2off), p);
11433 p += 4;
11434 }
11435 off -= p - loc;
11436 }
11437 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), p);
11438 p += 4;
11439
11440 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11441 {
11442 _bfd_error_handler
11443 (_("long branch stub `%s' offset overflow"),
11444 stub_entry->root.string);
11445 htab->stub_error = TRUE;
11446 return FALSE;
11447 }
11448
11449 if (info->emitrelocations)
11450 {
11451 r = get_relocs (stub_entry->group->stub_sec, 1);
11452 if (r == NULL)
11453 return FALSE;
11454 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11455 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11456 r->r_addend = targ;
11457 if (stub_entry->h != NULL
11458 && !use_global_in_relocs (htab, stub_entry, r, 1))
11459 return FALSE;
11460 }
11461 break;
11462
11463 case ppc_stub_plt_branch:
11464 case ppc_stub_plt_branch_r2off:
11465 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11466 stub_entry->root.string + 9,
11467 FALSE, FALSE);
11468 if (br_entry == NULL)
11469 {
11470 _bfd_error_handler (_("can't find branch stub `%s'"),
11471 stub_entry->root.string);
11472 htab->stub_error = TRUE;
11473 return FALSE;
11474 }
11475
11476 targ = (stub_entry->target_value
11477 + stub_entry->target_section->output_offset
11478 + stub_entry->target_section->output_section->vma);
11479 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11480 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11481
11482 bfd_put_64 (htab->brlt->owner, targ,
11483 htab->brlt->contents + br_entry->offset);
11484
11485 if (br_entry->iter == htab->stub_iteration)
11486 {
11487 br_entry->iter = 0;
11488
11489 if (htab->relbrlt != NULL)
11490 {
11491 /* Create a reloc for the branch lookup table entry. */
11492 Elf_Internal_Rela rela;
11493 bfd_byte *rl;
11494
11495 rela.r_offset = (br_entry->offset
11496 + htab->brlt->output_offset
11497 + htab->brlt->output_section->vma);
11498 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11499 rela.r_addend = targ;
11500
11501 rl = htab->relbrlt->contents;
11502 rl += (htab->relbrlt->reloc_count++
11503 * sizeof (Elf64_External_Rela));
11504 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11505 }
11506 else if (info->emitrelocations)
11507 {
11508 r = get_relocs (htab->brlt, 1);
11509 if (r == NULL)
11510 return FALSE;
11511 /* brlt, being SEC_LINKER_CREATED does not go through the
11512 normal reloc processing. Symbols and offsets are not
11513 translated from input file to output file form, so
11514 set up the offset per the output file. */
11515 r->r_offset = (br_entry->offset
11516 + htab->brlt->output_offset
11517 + htab->brlt->output_section->vma);
11518 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11519 r->r_addend = targ;
11520 }
11521 }
11522
11523 targ = (br_entry->offset
11524 + htab->brlt->output_offset
11525 + htab->brlt->output_section->vma);
11526
11527 off = (elf_gp (info->output_bfd)
11528 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11529 off = targ - off;
11530
11531 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11532 {
11533 info->callbacks->einfo
11534 (_("%P: linkage table error against `%pT'\n"),
11535 stub_entry->root.string);
11536 bfd_set_error (bfd_error_bad_value);
11537 htab->stub_error = TRUE;
11538 return FALSE;
11539 }
11540
11541 if (info->emitrelocations)
11542 {
11543 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11544 if (r == NULL)
11545 return FALSE;
11546 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11547 if (bfd_big_endian (info->output_bfd))
11548 r[0].r_offset += 2;
11549 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11550 r[0].r_offset += 4;
11551 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11552 r[0].r_addend = targ;
11553 if (PPC_HA (off) != 0)
11554 {
11555 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11556 r[1].r_offset = r[0].r_offset + 4;
11557 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11558 r[1].r_addend = r[0].r_addend;
11559 }
11560 }
11561
11562 p = loc;
11563 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11564 {
11565 if (PPC_HA (off) != 0)
11566 {
11567 bfd_put_32 (htab->params->stub_bfd,
11568 ADDIS_R12_R2 | PPC_HA (off), p);
11569 p += 4;
11570 bfd_put_32 (htab->params->stub_bfd,
11571 LD_R12_0R12 | PPC_LO (off), p);
11572 }
11573 else
11574 bfd_put_32 (htab->params->stub_bfd,
11575 LD_R12_0R2 | PPC_LO (off), p);
11576 }
11577 else
11578 {
11579 bfd_vma r2off = get_r2off (info, stub_entry);
11580
11581 if (r2off == (bfd_vma) -1)
11582 {
11583 htab->stub_error = TRUE;
11584 return FALSE;
11585 }
11586
11587 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11588 p += 4;
11589 if (PPC_HA (off) != 0)
11590 {
11591 bfd_put_32 (htab->params->stub_bfd,
11592 ADDIS_R12_R2 | PPC_HA (off), p);
11593 p += 4;
11594 bfd_put_32 (htab->params->stub_bfd,
11595 LD_R12_0R12 | PPC_LO (off), p);
11596 }
11597 else
11598 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), p);
11599
11600 if (PPC_HA (r2off) != 0)
11601 {
11602 p += 4;
11603 bfd_put_32 (htab->params->stub_bfd,
11604 ADDIS_R2_R2 | PPC_HA (r2off), p);
11605 }
11606 if (PPC_LO (r2off) != 0)
11607 {
11608 p += 4;
11609 bfd_put_32 (htab->params->stub_bfd,
11610 ADDI_R2_R2 | PPC_LO (r2off), p);
11611 }
11612 }
11613 p += 4;
11614 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11615 p += 4;
11616 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11617 p += 4;
11618 break;
11619
11620 case ppc_stub_long_branch_notoc:
11621 case ppc_stub_long_branch_both:
11622 case ppc_stub_plt_branch_notoc:
11623 case ppc_stub_plt_branch_both:
11624 case ppc_stub_plt_call_notoc:
11625 case ppc_stub_plt_call_both:
11626 p = loc;
11627 off = (stub_entry->stub_offset
11628 + stub_entry->group->stub_sec->output_offset
11629 + stub_entry->group->stub_sec->output_section->vma);
11630 if (stub_entry->stub_type == ppc_stub_long_branch_both
11631 || stub_entry->stub_type == ppc_stub_plt_branch_both
11632 || stub_entry->stub_type == ppc_stub_plt_call_both)
11633 {
11634 off += 4;
11635 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11636 p += 4;
11637 }
11638 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11639 {
11640 targ = stub_entry->plt_ent->plt.offset & ~1;
11641 if (targ >= (bfd_vma) -2)
11642 abort ();
11643
11644 plt = htab->elf.splt;
11645 if (!htab->elf.dynamic_sections_created
11646 || stub_entry->h == NULL
11647 || stub_entry->h->elf.dynindx == -1)
11648 {
11649 if (stub_entry->symtype == STT_GNU_IFUNC)
11650 plt = htab->elf.iplt;
11651 else
11652 plt = htab->pltlocal;
11653 }
11654 targ += plt->output_offset + plt->output_section->vma;
11655 }
11656 else
11657 targ = (stub_entry->target_value
11658 + stub_entry->target_section->output_offset
11659 + stub_entry->target_section->output_section->vma);
11660 odd = off & 4;
11661 off = targ - off;
11662
11663 relp = p;
11664 num_rel = 0;
11665 if (htab->powerxx_stubs)
11666 {
11667 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11668 p = build_powerxx_offset (htab->params->stub_bfd, p, off, odd, load);
11669 }
11670 else
11671 {
11672 /* The notoc stubs calculate their target (either a PLT entry or
11673 the global entry point of a function) relative to the PC
11674 returned by the "bcl" two instructions past the start of the
11675 sequence emitted by build_offset. The offset is therefore 8
11676 less than calculated from the start of the sequence. */
11677 off -= 8;
11678 p = build_offset (htab->params->stub_bfd, p, off,
11679 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11680 }
11681
11682 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11683 {
11684 bfd_vma from;
11685 num_rel = 1;
11686 from = (stub_entry->stub_offset
11687 + stub_entry->group->stub_sec->output_offset
11688 + stub_entry->group->stub_sec->output_section->vma
11689 + (p - loc));
11690 bfd_put_32 (htab->params->stub_bfd,
11691 B_DOT | ((targ - from) & 0x3fffffc), p);
11692 }
11693 else
11694 {
11695 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11696 p += 4;
11697 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11698 }
11699 p += 4;
11700
11701 if (info->emitrelocations)
11702 {
11703 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11704 if (htab->powerxx_stubs)
11705 num_rel += num_relocs_for_powerxx_offset (off, odd);
11706 else
11707 {
11708 num_rel += num_relocs_for_offset (off);
11709 roff += 16;
11710 }
11711 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11712 if (r == NULL)
11713 return FALSE;
11714 if (htab->powerxx_stubs)
11715 r = emit_relocs_for_powerxx_offset (info, r, roff, targ, off, odd);
11716 else
11717 r = emit_relocs_for_offset (info, r, roff, targ, off);
11718 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11719 || stub_entry->stub_type == ppc_stub_long_branch_both)
11720 {
11721 ++r;
11722 roff = p - 4 - stub_entry->group->stub_sec->contents;
11723 r->r_offset = roff;
11724 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11725 r->r_addend = targ;
11726 if (stub_entry->h != NULL
11727 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11728 return FALSE;
11729 }
11730 }
11731
11732 if (!htab->powerxx_stubs
11733 && htab->glink_eh_frame != NULL
11734 && htab->glink_eh_frame->size != 0)
11735 {
11736 bfd_byte *base, *eh;
11737 unsigned int lr_used, delta;
11738
11739 base = (htab->glink_eh_frame->contents
11740 + stub_entry->group->eh_base + 17);
11741 eh = base + stub_entry->group->eh_size;
11742 lr_used = stub_entry->stub_offset + 8;
11743 if (stub_entry->stub_type == ppc_stub_long_branch_both
11744 || stub_entry->stub_type == ppc_stub_plt_branch_both
11745 || stub_entry->stub_type == ppc_stub_plt_call_both)
11746 lr_used += 4;
11747 delta = lr_used - stub_entry->group->lr_restore;
11748 stub_entry->group->lr_restore = lr_used + 8;
11749 eh = eh_advance (htab->elf.dynobj, eh, delta);
11750 *eh++ = DW_CFA_register;
11751 *eh++ = 65;
11752 *eh++ = 12;
11753 *eh++ = DW_CFA_advance_loc + 2;
11754 *eh++ = DW_CFA_restore_extended;
11755 *eh++ = 65;
11756 stub_entry->group->eh_size = eh - base;
11757 }
11758 break;
11759
11760 case ppc_stub_plt_call:
11761 case ppc_stub_plt_call_r2save:
11762 if (stub_entry->h != NULL
11763 && stub_entry->h->is_func_descriptor
11764 && stub_entry->h->oh != NULL)
11765 {
11766 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11767
11768 /* If the old-ABI "dot-symbol" is undefined make it weak so
11769 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11770 if (fh->elf.root.type == bfd_link_hash_undefined
11771 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11772 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11773 fh->elf.root.type = bfd_link_hash_undefweak;
11774 }
11775
11776 /* Now build the stub. */
11777 targ = stub_entry->plt_ent->plt.offset & ~1;
11778 if (targ >= (bfd_vma) -2)
11779 abort ();
11780
11781 plt = htab->elf.splt;
11782 if (!htab->elf.dynamic_sections_created
11783 || stub_entry->h == NULL
11784 || stub_entry->h->elf.dynindx == -1)
11785 {
11786 if (stub_entry->symtype == STT_GNU_IFUNC)
11787 plt = htab->elf.iplt;
11788 else
11789 plt = htab->pltlocal;
11790 }
11791 targ += plt->output_offset + plt->output_section->vma;
11792
11793 off = (elf_gp (info->output_bfd)
11794 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11795 off = targ - off;
11796
11797 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11798 {
11799 info->callbacks->einfo
11800 /* xgettext:c-format */
11801 (_("%P: linkage table error against `%pT'\n"),
11802 stub_entry->h != NULL
11803 ? stub_entry->h->elf.root.root.string
11804 : "<local sym>");
11805 bfd_set_error (bfd_error_bad_value);
11806 htab->stub_error = TRUE;
11807 return FALSE;
11808 }
11809
11810 r = NULL;
11811 if (info->emitrelocations)
11812 {
11813 r = get_relocs (stub_entry->group->stub_sec,
11814 ((PPC_HA (off) != 0)
11815 + (htab->opd_abi
11816 ? 2 + (htab->params->plt_static_chain
11817 && PPC_HA (off + 16) == PPC_HA (off))
11818 : 1)));
11819 if (r == NULL)
11820 return FALSE;
11821 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11822 if (bfd_big_endian (info->output_bfd))
11823 r[0].r_offset += 2;
11824 r[0].r_addend = targ;
11825 }
11826 if (stub_entry->h != NULL
11827 && is_tls_get_addr (&stub_entry->h->elf, htab)
11828 && htab->params->tls_get_addr_opt)
11829 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
11830 else
11831 p = build_plt_stub (htab, stub_entry, loc, off, r);
11832 break;
11833
11834 case ppc_stub_save_res:
11835 return TRUE;
11836
11837 default:
11838 BFD_FAIL ();
11839 return FALSE;
11840 }
11841
11842 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11843
11844 if (htab->params->emit_stub_syms)
11845 {
11846 struct elf_link_hash_entry *h;
11847 size_t len1, len2;
11848 char *name;
11849 const char *const stub_str[] = { "long_branch",
11850 "long_branch",
11851 "long_branch",
11852 "long_branch",
11853 "plt_branch",
11854 "plt_branch",
11855 "plt_branch",
11856 "plt_branch",
11857 "plt_call",
11858 "plt_call",
11859 "plt_call",
11860 "plt_call" };
11861
11862 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11863 len2 = strlen (stub_entry->root.string);
11864 name = bfd_malloc (len1 + len2 + 2);
11865 if (name == NULL)
11866 return FALSE;
11867 memcpy (name, stub_entry->root.string, 9);
11868 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11869 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11870 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11871 if (h == NULL)
11872 return FALSE;
11873 if (h->root.type == bfd_link_hash_new)
11874 {
11875 h->root.type = bfd_link_hash_defined;
11876 h->root.u.def.section = stub_entry->group->stub_sec;
11877 h->root.u.def.value = stub_entry->stub_offset;
11878 h->ref_regular = 1;
11879 h->def_regular = 1;
11880 h->ref_regular_nonweak = 1;
11881 h->forced_local = 1;
11882 h->non_elf = 0;
11883 h->root.linker_def = 1;
11884 }
11885 }
11886
11887 return TRUE;
11888 }
11889
11890 /* As above, but don't actually build the stub. Just bump offset so
11891 we know stub section sizes, and select plt_branch stubs where
11892 long_branch stubs won't do. */
11893
11894 static bfd_boolean
11895 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11896 {
11897 struct ppc_stub_hash_entry *stub_entry;
11898 struct bfd_link_info *info;
11899 struct ppc_link_hash_table *htab;
11900 asection *plt;
11901 bfd_vma targ, off, r2off;
11902 unsigned int size, extra, lr_used, delta, odd;
11903
11904 /* Massage our args to the form they really have. */
11905 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11906 info = in_arg;
11907
11908 htab = ppc_hash_table (info);
11909 if (htab == NULL)
11910 return FALSE;
11911
11912 /* Fail if the target section could not be assigned to an output
11913 section. The user should fix his linker script. */
11914 if (stub_entry->target_section != NULL
11915 && stub_entry->target_section->output_section == NULL
11916 && info->non_contiguous_regions)
11917 info->callbacks->einfo (_("%F%P: Could not assign %pA to an output section. "
11918 "Retry without --enable-non-contiguous-regions.\n"),
11919 stub_entry->target_section);
11920
11921 /* Same for the group. */
11922 if (stub_entry->group->stub_sec != NULL
11923 && stub_entry->group->stub_sec->output_section == NULL
11924 && info->non_contiguous_regions)
11925 info->callbacks->einfo (_("%F%P: Could not assign group %pA target %pA to an "
11926 "output section. Retry without "
11927 "--enable-non-contiguous-regions.\n"),
11928 stub_entry->group->stub_sec,
11929 stub_entry->target_section);
11930
11931 /* Make a note of the offset within the stubs for this entry. */
11932 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11933
11934 if (stub_entry->h != NULL
11935 && stub_entry->h->save_res
11936 && stub_entry->h->elf.root.type == bfd_link_hash_defined
11937 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
11938 {
11939 /* Don't make stubs to out-of-line register save/restore
11940 functions. Instead, emit copies of the functions. */
11941 stub_entry->group->needs_save_res = 1;
11942 stub_entry->stub_type = ppc_stub_save_res;
11943 return TRUE;
11944 }
11945
11946 switch (stub_entry->stub_type)
11947 {
11948 case ppc_stub_plt_branch:
11949 case ppc_stub_plt_branch_r2off:
11950 /* Reset the stub type from the plt branch variant in case we now
11951 can reach with a shorter stub. */
11952 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11953 /* Fall through. */
11954 case ppc_stub_long_branch:
11955 case ppc_stub_long_branch_r2off:
11956 targ = (stub_entry->target_value
11957 + stub_entry->target_section->output_offset
11958 + stub_entry->target_section->output_section->vma);
11959 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11960 off = (stub_entry->stub_offset
11961 + stub_entry->group->stub_sec->output_offset
11962 + stub_entry->group->stub_sec->output_section->vma);
11963
11964 size = 4;
11965 r2off = 0;
11966 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11967 {
11968 r2off = get_r2off (info, stub_entry);
11969 if (r2off == (bfd_vma) -1)
11970 {
11971 htab->stub_error = TRUE;
11972 return FALSE;
11973 }
11974 size = 8;
11975 if (PPC_HA (r2off) != 0)
11976 size += 4;
11977 if (PPC_LO (r2off) != 0)
11978 size += 4;
11979 off += size - 4;
11980 }
11981 off = targ - off;
11982
11983 /* If the branch offset is too big, use a ppc_stub_plt_branch.
11984 Do the same for -R objects without function descriptors. */
11985 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
11986 && r2off == 0
11987 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
11988 || off + (1 << 25) >= (bfd_vma) (1 << 26))
11989 {
11990 struct ppc_branch_hash_entry *br_entry;
11991
11992 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11993 stub_entry->root.string + 9,
11994 TRUE, FALSE);
11995 if (br_entry == NULL)
11996 {
11997 _bfd_error_handler (_("can't build branch stub `%s'"),
11998 stub_entry->root.string);
11999 htab->stub_error = TRUE;
12000 return FALSE;
12001 }
12002
12003 if (br_entry->iter != htab->stub_iteration)
12004 {
12005 br_entry->iter = htab->stub_iteration;
12006 br_entry->offset = htab->brlt->size;
12007 htab->brlt->size += 8;
12008
12009 if (htab->relbrlt != NULL)
12010 htab->relbrlt->size += sizeof (Elf64_External_Rela);
12011 else if (info->emitrelocations)
12012 {
12013 htab->brlt->reloc_count += 1;
12014 htab->brlt->flags |= SEC_RELOC;
12015 }
12016 }
12017
12018 targ = (br_entry->offset
12019 + htab->brlt->output_offset
12020 + htab->brlt->output_section->vma);
12021 off = (elf_gp (info->output_bfd)
12022 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12023 off = targ - off;
12024
12025 if (info->emitrelocations)
12026 {
12027 stub_entry->group->stub_sec->reloc_count
12028 += 1 + (PPC_HA (off) != 0);
12029 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12030 }
12031
12032 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
12033 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
12034 {
12035 size = 12;
12036 if (PPC_HA (off) != 0)
12037 size = 16;
12038 }
12039 else
12040 {
12041 size = 16;
12042 if (PPC_HA (off) != 0)
12043 size += 4;
12044
12045 if (PPC_HA (r2off) != 0)
12046 size += 4;
12047 if (PPC_LO (r2off) != 0)
12048 size += 4;
12049 }
12050 }
12051 else if (info->emitrelocations)
12052 {
12053 stub_entry->group->stub_sec->reloc_count += 1;
12054 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12055 }
12056 break;
12057
12058 case ppc_stub_plt_branch_notoc:
12059 case ppc_stub_plt_branch_both:
12060 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
12061 /* Fall through. */
12062 case ppc_stub_long_branch_notoc:
12063 case ppc_stub_long_branch_both:
12064 off = (stub_entry->stub_offset
12065 + stub_entry->group->stub_sec->output_offset
12066 + stub_entry->group->stub_sec->output_section->vma);
12067 size = 0;
12068 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12069 size = 4;
12070 off += size;
12071 targ = (stub_entry->target_value
12072 + stub_entry->target_section->output_offset
12073 + stub_entry->target_section->output_section->vma);
12074 odd = off & 4;
12075 off = targ - off;
12076
12077 if (info->emitrelocations)
12078 {
12079 unsigned int num_rel;
12080 if (htab->powerxx_stubs)
12081 num_rel = num_relocs_for_powerxx_offset (off, odd);
12082 else
12083 num_rel = num_relocs_for_offset (off - 8);
12084 stub_entry->group->stub_sec->reloc_count += num_rel;
12085 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12086 }
12087
12088 if (htab->powerxx_stubs)
12089 extra = size_powerxx_offset (off, odd);
12090 else
12091 extra = size_offset (off - 8);
12092 /* Include branch insn plus those in the offset sequence. */
12093 size += 4 + extra;
12094 /* The branch insn is at the end, or "extra" bytes along. So
12095 its offset will be "extra" bytes less that that already
12096 calculated. */
12097 off -= extra;
12098
12099 if (!htab->powerxx_stubs)
12100 {
12101 /* After the bcl, lr has been modified so we need to emit
12102 .eh_frame info saying the return address is in r12. */
12103 lr_used = stub_entry->stub_offset + 8;
12104 if (stub_entry->stub_type == ppc_stub_long_branch_both)
12105 lr_used += 4;
12106 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12107 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12108 DW_CFA_restore_extended 65. */
12109 delta = lr_used - stub_entry->group->lr_restore;
12110 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12111 stub_entry->group->lr_restore = lr_used + 8;
12112 }
12113
12114 /* If the branch can't reach, use a plt_branch. */
12115 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
12116 {
12117 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
12118 - ppc_stub_long_branch_notoc);
12119 size += 4;
12120 }
12121 else if (info->emitrelocations)
12122 stub_entry->group->stub_sec->reloc_count +=1;
12123 break;
12124
12125 case ppc_stub_plt_call_notoc:
12126 case ppc_stub_plt_call_both:
12127 off = (stub_entry->stub_offset
12128 + stub_entry->group->stub_sec->output_offset
12129 + stub_entry->group->stub_sec->output_section->vma);
12130 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12131 off += 4;
12132 targ = stub_entry->plt_ent->plt.offset & ~1;
12133 if (targ >= (bfd_vma) -2)
12134 abort ();
12135
12136 plt = htab->elf.splt;
12137 if (!htab->elf.dynamic_sections_created
12138 || stub_entry->h == NULL
12139 || stub_entry->h->elf.dynindx == -1)
12140 {
12141 if (stub_entry->symtype == STT_GNU_IFUNC)
12142 plt = htab->elf.iplt;
12143 else
12144 plt = htab->pltlocal;
12145 }
12146 targ += plt->output_offset + plt->output_section->vma;
12147 odd = off & 4;
12148 off = targ - off;
12149
12150 if (htab->params->plt_stub_align != 0)
12151 {
12152 unsigned pad = plt_stub_pad (htab, stub_entry, off);
12153
12154 stub_entry->group->stub_sec->size += pad;
12155 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12156 off -= pad;
12157 }
12158
12159 if (info->emitrelocations)
12160 {
12161 unsigned int num_rel;
12162 if (htab->powerxx_stubs)
12163 num_rel = num_relocs_for_powerxx_offset (off, odd);
12164 else
12165 num_rel = num_relocs_for_offset (off - 8);
12166 stub_entry->group->stub_sec->reloc_count += num_rel;
12167 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12168 }
12169
12170 size = plt_stub_size (htab, stub_entry, off);
12171
12172 if (!htab->powerxx_stubs)
12173 {
12174 /* After the bcl, lr has been modified so we need to emit
12175 .eh_frame info saying the return address is in r12. */
12176 lr_used = stub_entry->stub_offset + 8;
12177 if (stub_entry->stub_type == ppc_stub_plt_call_both)
12178 lr_used += 4;
12179 /* The eh_frame info will consist of a DW_CFA_advance_loc or
12180 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
12181 DW_CFA_restore_extended 65. */
12182 delta = lr_used - stub_entry->group->lr_restore;
12183 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12184 stub_entry->group->lr_restore = lr_used + 8;
12185 }
12186 break;
12187
12188 case ppc_stub_plt_call:
12189 case ppc_stub_plt_call_r2save:
12190 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
12191 if (targ >= (bfd_vma) -2)
12192 abort ();
12193 plt = htab->elf.splt;
12194 if (!htab->elf.dynamic_sections_created
12195 || stub_entry->h == NULL
12196 || stub_entry->h->elf.dynindx == -1)
12197 {
12198 if (stub_entry->symtype == STT_GNU_IFUNC)
12199 plt = htab->elf.iplt;
12200 else
12201 plt = htab->pltlocal;
12202 }
12203 targ += plt->output_offset + plt->output_section->vma;
12204
12205 off = (elf_gp (info->output_bfd)
12206 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
12207 off = targ - off;
12208
12209 if (htab->params->plt_stub_align != 0)
12210 {
12211 unsigned pad = plt_stub_pad (htab, stub_entry, off);
12212
12213 stub_entry->group->stub_sec->size += pad;
12214 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
12215 }
12216
12217 if (info->emitrelocations)
12218 {
12219 stub_entry->group->stub_sec->reloc_count
12220 += ((PPC_HA (off) != 0)
12221 + (htab->opd_abi
12222 ? 2 + (htab->params->plt_static_chain
12223 && PPC_HA (off + 16) == PPC_HA (off))
12224 : 1));
12225 stub_entry->group->stub_sec->flags |= SEC_RELOC;
12226 }
12227
12228 size = plt_stub_size (htab, stub_entry, off);
12229
12230 if (stub_entry->h != NULL
12231 && is_tls_get_addr (&stub_entry->h->elf, htab)
12232 && htab->params->tls_get_addr_opt
12233 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
12234 {
12235 if (htab->params->no_tls_get_addr_regsave)
12236 {
12237 lr_used = stub_entry->stub_offset + size - 20;
12238 /* The eh_frame info will consist of a DW_CFA_advance_loc
12239 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
12240 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
12241 delta = lr_used - stub_entry->group->lr_restore;
12242 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
12243 }
12244 else
12245 {
12246 /* Adjustments to r1 need to be described. */
12247 unsigned int cfa_updt = stub_entry->stub_offset + 18 * 4;
12248 delta = cfa_updt - stub_entry->group->lr_restore;
12249 stub_entry->group->eh_size += eh_advance_size (delta);
12250 stub_entry->group->eh_size += htab->opd_abi ? 36 : 35;
12251 }
12252 stub_entry->group->lr_restore = size - 4;
12253 }
12254 break;
12255
12256 default:
12257 BFD_FAIL ();
12258 return FALSE;
12259 }
12260
12261 stub_entry->group->stub_sec->size += size;
12262 return TRUE;
12263 }
12264
12265 /* Set up various things so that we can make a list of input sections
12266 for each output section included in the link. Returns -1 on error,
12267 0 when no stubs will be needed, and 1 on success. */
12268
12269 int
12270 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
12271 {
12272 unsigned int id;
12273 size_t amt;
12274 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12275
12276 if (htab == NULL)
12277 return -1;
12278
12279 htab->sec_info_arr_size = _bfd_section_id;
12280 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
12281 htab->sec_info = bfd_zmalloc (amt);
12282 if (htab->sec_info == NULL)
12283 return -1;
12284
12285 /* Set toc_off for com, und, abs and ind sections. */
12286 for (id = 0; id < 3; id++)
12287 htab->sec_info[id].toc_off = TOC_BASE_OFF;
12288
12289 return 1;
12290 }
12291
12292 /* Set up for first pass at multitoc partitioning. */
12293
12294 void
12295 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
12296 {
12297 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12298
12299 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
12300 htab->toc_bfd = NULL;
12301 htab->toc_first_sec = NULL;
12302 }
12303
12304 /* The linker repeatedly calls this function for each TOC input section
12305 and linker generated GOT section. Group input bfds such that the toc
12306 within a group is less than 64k in size. */
12307
12308 bfd_boolean
12309 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
12310 {
12311 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12312 bfd_vma addr, off, limit;
12313
12314 if (htab == NULL)
12315 return FALSE;
12316
12317 if (!htab->second_toc_pass)
12318 {
12319 /* Keep track of the first .toc or .got section for this input bfd. */
12320 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
12321
12322 if (new_bfd)
12323 {
12324 htab->toc_bfd = isec->owner;
12325 htab->toc_first_sec = isec;
12326 }
12327
12328 addr = isec->output_offset + isec->output_section->vma;
12329 off = addr - htab->toc_curr;
12330 limit = 0x80008000;
12331 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
12332 limit = 0x10000;
12333 if (off + isec->size > limit)
12334 {
12335 addr = (htab->toc_first_sec->output_offset
12336 + htab->toc_first_sec->output_section->vma);
12337 htab->toc_curr = addr;
12338 htab->toc_curr &= -TOC_BASE_ALIGN;
12339 }
12340
12341 /* toc_curr is the base address of this toc group. Set elf_gp
12342 for the input section to be the offset relative to the
12343 output toc base plus 0x8000. Making the input elf_gp an
12344 offset allows us to move the toc as a whole without
12345 recalculating input elf_gp. */
12346 off = htab->toc_curr - elf_gp (info->output_bfd);
12347 off += TOC_BASE_OFF;
12348
12349 /* Die if someone uses a linker script that doesn't keep input
12350 file .toc and .got together. */
12351 if (new_bfd
12352 && elf_gp (isec->owner) != 0
12353 && elf_gp (isec->owner) != off)
12354 return FALSE;
12355
12356 elf_gp (isec->owner) = off;
12357 return TRUE;
12358 }
12359
12360 /* During the second pass toc_first_sec points to the start of
12361 a toc group, and toc_curr is used to track the old elf_gp.
12362 We use toc_bfd to ensure we only look at each bfd once. */
12363 if (htab->toc_bfd == isec->owner)
12364 return TRUE;
12365 htab->toc_bfd = isec->owner;
12366
12367 if (htab->toc_first_sec == NULL
12368 || htab->toc_curr != elf_gp (isec->owner))
12369 {
12370 htab->toc_curr = elf_gp (isec->owner);
12371 htab->toc_first_sec = isec;
12372 }
12373 addr = (htab->toc_first_sec->output_offset
12374 + htab->toc_first_sec->output_section->vma);
12375 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
12376 elf_gp (isec->owner) = off;
12377
12378 return TRUE;
12379 }
12380
12381 /* Called via elf_link_hash_traverse to merge GOT entries for global
12382 symbol H. */
12383
12384 static bfd_boolean
12385 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12386 {
12387 if (h->root.type == bfd_link_hash_indirect)
12388 return TRUE;
12389
12390 merge_got_entries (&h->got.glist);
12391
12392 return TRUE;
12393 }
12394
12395 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12396 symbol H. */
12397
12398 static bfd_boolean
12399 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12400 {
12401 struct got_entry *gent;
12402
12403 if (h->root.type == bfd_link_hash_indirect)
12404 return TRUE;
12405
12406 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12407 if (!gent->is_indirect)
12408 allocate_got (h, (struct bfd_link_info *) inf, gent);
12409 return TRUE;
12410 }
12411
12412 /* Called on the first multitoc pass after the last call to
12413 ppc64_elf_next_toc_section. This function removes duplicate GOT
12414 entries. */
12415
12416 bfd_boolean
12417 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12418 {
12419 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12420 struct bfd *ibfd, *ibfd2;
12421 bfd_boolean done_something;
12422
12423 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12424
12425 if (!htab->do_multi_toc)
12426 return FALSE;
12427
12428 /* Merge global sym got entries within a toc group. */
12429 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12430
12431 /* And tlsld_got. */
12432 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12433 {
12434 struct got_entry *ent, *ent2;
12435
12436 if (!is_ppc64_elf (ibfd))
12437 continue;
12438
12439 ent = ppc64_tlsld_got (ibfd);
12440 if (!ent->is_indirect
12441 && ent->got.offset != (bfd_vma) -1)
12442 {
12443 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12444 {
12445 if (!is_ppc64_elf (ibfd2))
12446 continue;
12447
12448 ent2 = ppc64_tlsld_got (ibfd2);
12449 if (!ent2->is_indirect
12450 && ent2->got.offset != (bfd_vma) -1
12451 && elf_gp (ibfd2) == elf_gp (ibfd))
12452 {
12453 ent2->is_indirect = TRUE;
12454 ent2->got.ent = ent;
12455 }
12456 }
12457 }
12458 }
12459
12460 /* Zap sizes of got sections. */
12461 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12462 htab->elf.irelplt->size -= htab->got_reli_size;
12463 htab->got_reli_size = 0;
12464
12465 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12466 {
12467 asection *got, *relgot;
12468
12469 if (!is_ppc64_elf (ibfd))
12470 continue;
12471
12472 got = ppc64_elf_tdata (ibfd)->got;
12473 if (got != NULL)
12474 {
12475 got->rawsize = got->size;
12476 got->size = 0;
12477 relgot = ppc64_elf_tdata (ibfd)->relgot;
12478 relgot->rawsize = relgot->size;
12479 relgot->size = 0;
12480 }
12481 }
12482
12483 /* Now reallocate the got, local syms first. We don't need to
12484 allocate section contents again since we never increase size. */
12485 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12486 {
12487 struct got_entry **lgot_ents;
12488 struct got_entry **end_lgot_ents;
12489 struct plt_entry **local_plt;
12490 struct plt_entry **end_local_plt;
12491 unsigned char *lgot_masks;
12492 bfd_size_type locsymcount;
12493 Elf_Internal_Shdr *symtab_hdr;
12494 asection *s;
12495
12496 if (!is_ppc64_elf (ibfd))
12497 continue;
12498
12499 lgot_ents = elf_local_got_ents (ibfd);
12500 if (!lgot_ents)
12501 continue;
12502
12503 symtab_hdr = &elf_symtab_hdr (ibfd);
12504 locsymcount = symtab_hdr->sh_info;
12505 end_lgot_ents = lgot_ents + locsymcount;
12506 local_plt = (struct plt_entry **) end_lgot_ents;
12507 end_local_plt = local_plt + locsymcount;
12508 lgot_masks = (unsigned char *) end_local_plt;
12509 s = ppc64_elf_tdata (ibfd)->got;
12510 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12511 {
12512 struct got_entry *ent;
12513
12514 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12515 {
12516 unsigned int ent_size = 8;
12517 unsigned int rel_size = sizeof (Elf64_External_Rela);
12518
12519 ent->got.offset = s->size;
12520 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12521 {
12522 ent_size *= 2;
12523 rel_size *= 2;
12524 }
12525 s->size += ent_size;
12526 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12527 {
12528 htab->elf.irelplt->size += rel_size;
12529 htab->got_reli_size += rel_size;
12530 }
12531 else if (bfd_link_pic (info)
12532 && !(ent->tls_type != 0
12533 && bfd_link_executable (info)))
12534 {
12535 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12536 srel->size += rel_size;
12537 }
12538 }
12539 }
12540 }
12541
12542 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12543
12544 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12545 {
12546 struct got_entry *ent;
12547
12548 if (!is_ppc64_elf (ibfd))
12549 continue;
12550
12551 ent = ppc64_tlsld_got (ibfd);
12552 if (!ent->is_indirect
12553 && ent->got.offset != (bfd_vma) -1)
12554 {
12555 asection *s = ppc64_elf_tdata (ibfd)->got;
12556 ent->got.offset = s->size;
12557 s->size += 16;
12558 if (bfd_link_dll (info))
12559 {
12560 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12561 srel->size += sizeof (Elf64_External_Rela);
12562 }
12563 }
12564 }
12565
12566 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12567 if (!done_something)
12568 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12569 {
12570 asection *got;
12571
12572 if (!is_ppc64_elf (ibfd))
12573 continue;
12574
12575 got = ppc64_elf_tdata (ibfd)->got;
12576 if (got != NULL)
12577 {
12578 done_something = got->rawsize != got->size;
12579 if (done_something)
12580 break;
12581 }
12582 }
12583
12584 if (done_something)
12585 (*htab->params->layout_sections_again) ();
12586
12587 /* Set up for second pass over toc sections to recalculate elf_gp
12588 on input sections. */
12589 htab->toc_bfd = NULL;
12590 htab->toc_first_sec = NULL;
12591 htab->second_toc_pass = TRUE;
12592 return done_something;
12593 }
12594
12595 /* Called after second pass of multitoc partitioning. */
12596
12597 void
12598 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12599 {
12600 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12601
12602 /* After the second pass, toc_curr tracks the TOC offset used
12603 for code sections below in ppc64_elf_next_input_section. */
12604 htab->toc_curr = TOC_BASE_OFF;
12605 }
12606
12607 /* No toc references were found in ISEC. If the code in ISEC makes no
12608 calls, then there's no need to use toc adjusting stubs when branching
12609 into ISEC. Actually, indirect calls from ISEC are OK as they will
12610 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12611 needed, and 2 if a cyclical call-graph was found but no other reason
12612 for a stub was detected. If called from the top level, a return of
12613 2 means the same as a return of 0. */
12614
12615 static int
12616 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12617 {
12618 int ret;
12619
12620 /* Mark this section as checked. */
12621 isec->call_check_done = 1;
12622
12623 /* We know none of our code bearing sections will need toc stubs. */
12624 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12625 return 0;
12626
12627 if (isec->size == 0)
12628 return 0;
12629
12630 if (isec->output_section == NULL)
12631 return 0;
12632
12633 ret = 0;
12634 if (isec->reloc_count != 0)
12635 {
12636 Elf_Internal_Rela *relstart, *rel;
12637 Elf_Internal_Sym *local_syms;
12638 struct ppc_link_hash_table *htab;
12639
12640 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12641 info->keep_memory);
12642 if (relstart == NULL)
12643 return -1;
12644
12645 /* Look for branches to outside of this section. */
12646 local_syms = NULL;
12647 htab = ppc_hash_table (info);
12648 if (htab == NULL)
12649 return -1;
12650
12651 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12652 {
12653 enum elf_ppc64_reloc_type r_type;
12654 unsigned long r_symndx;
12655 struct elf_link_hash_entry *h;
12656 struct ppc_link_hash_entry *eh;
12657 Elf_Internal_Sym *sym;
12658 asection *sym_sec;
12659 struct _opd_sec_data *opd;
12660 bfd_vma sym_value;
12661 bfd_vma dest;
12662
12663 r_type = ELF64_R_TYPE (rel->r_info);
12664 if (r_type != R_PPC64_REL24
12665 && r_type != R_PPC64_REL24_NOTOC
12666 && r_type != R_PPC64_REL14
12667 && r_type != R_PPC64_REL14_BRTAKEN
12668 && r_type != R_PPC64_REL14_BRNTAKEN
12669 && r_type != R_PPC64_PLTCALL
12670 && r_type != R_PPC64_PLTCALL_NOTOC)
12671 continue;
12672
12673 r_symndx = ELF64_R_SYM (rel->r_info);
12674 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12675 isec->owner))
12676 {
12677 ret = -1;
12678 break;
12679 }
12680
12681 /* Calls to dynamic lib functions go through a plt call stub
12682 that uses r2. */
12683 eh = ppc_elf_hash_entry (h);
12684 if (eh != NULL
12685 && (eh->elf.plt.plist != NULL
12686 || (eh->oh != NULL
12687 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12688 {
12689 ret = 1;
12690 break;
12691 }
12692
12693 if (sym_sec == NULL)
12694 /* Ignore other undefined symbols. */
12695 continue;
12696
12697 /* Assume branches to other sections not included in the
12698 link need stubs too, to cover -R and absolute syms. */
12699 if (sym_sec->output_section == NULL)
12700 {
12701 ret = 1;
12702 break;
12703 }
12704
12705 if (h == NULL)
12706 sym_value = sym->st_value;
12707 else
12708 {
12709 if (h->root.type != bfd_link_hash_defined
12710 && h->root.type != bfd_link_hash_defweak)
12711 abort ();
12712 sym_value = h->root.u.def.value;
12713 }
12714 sym_value += rel->r_addend;
12715
12716 /* If this branch reloc uses an opd sym, find the code section. */
12717 opd = get_opd_info (sym_sec);
12718 if (opd != NULL)
12719 {
12720 if (h == NULL && opd->adjust != NULL)
12721 {
12722 long adjust;
12723
12724 adjust = opd->adjust[OPD_NDX (sym_value)];
12725 if (adjust == -1)
12726 /* Assume deleted functions won't ever be called. */
12727 continue;
12728 sym_value += adjust;
12729 }
12730
12731 dest = opd_entry_value (sym_sec, sym_value,
12732 &sym_sec, NULL, FALSE);
12733 if (dest == (bfd_vma) -1)
12734 continue;
12735 }
12736 else
12737 dest = (sym_value
12738 + sym_sec->output_offset
12739 + sym_sec->output_section->vma);
12740
12741 /* Ignore branch to self. */
12742 if (sym_sec == isec)
12743 continue;
12744
12745 /* If the called function uses the toc, we need a stub. */
12746 if (sym_sec->has_toc_reloc
12747 || sym_sec->makes_toc_func_call)
12748 {
12749 ret = 1;
12750 break;
12751 }
12752
12753 /* Assume any branch that needs a long branch stub might in fact
12754 need a plt_branch stub. A plt_branch stub uses r2. */
12755 else if (dest - (isec->output_offset
12756 + isec->output_section->vma
12757 + rel->r_offset) + (1 << 25)
12758 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12759 ? h->other
12760 : sym->st_other))
12761 {
12762 ret = 1;
12763 break;
12764 }
12765
12766 /* If calling back to a section in the process of being
12767 tested, we can't say for sure that no toc adjusting stubs
12768 are needed, so don't return zero. */
12769 else if (sym_sec->call_check_in_progress)
12770 ret = 2;
12771
12772 /* Branches to another section that itself doesn't have any TOC
12773 references are OK. Recursively call ourselves to check. */
12774 else if (!sym_sec->call_check_done)
12775 {
12776 int recur;
12777
12778 /* Mark current section as indeterminate, so that other
12779 sections that call back to current won't be marked as
12780 known. */
12781 isec->call_check_in_progress = 1;
12782 recur = toc_adjusting_stub_needed (info, sym_sec);
12783 isec->call_check_in_progress = 0;
12784
12785 if (recur != 0)
12786 {
12787 ret = recur;
12788 if (recur != 2)
12789 break;
12790 }
12791 }
12792 }
12793
12794 if (local_syms != NULL
12795 && (elf_symtab_hdr (isec->owner).contents
12796 != (unsigned char *) local_syms))
12797 free (local_syms);
12798 if (elf_section_data (isec)->relocs != relstart)
12799 free (relstart);
12800 }
12801
12802 if ((ret & 1) == 0
12803 && isec->map_head.s != NULL
12804 && (strcmp (isec->output_section->name, ".init") == 0
12805 || strcmp (isec->output_section->name, ".fini") == 0))
12806 {
12807 if (isec->map_head.s->has_toc_reloc
12808 || isec->map_head.s->makes_toc_func_call)
12809 ret = 1;
12810 else if (!isec->map_head.s->call_check_done)
12811 {
12812 int recur;
12813 isec->call_check_in_progress = 1;
12814 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12815 isec->call_check_in_progress = 0;
12816 if (recur != 0)
12817 ret = recur;
12818 }
12819 }
12820
12821 if (ret == 1)
12822 isec->makes_toc_func_call = 1;
12823
12824 return ret;
12825 }
12826
12827 /* The linker repeatedly calls this function for each input section,
12828 in the order that input sections are linked into output sections.
12829 Build lists of input sections to determine groupings between which
12830 we may insert linker stubs. */
12831
12832 bfd_boolean
12833 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12834 {
12835 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12836
12837 if (htab == NULL)
12838 return FALSE;
12839
12840 if ((isec->output_section->flags & SEC_CODE) != 0
12841 && isec->output_section->id < htab->sec_info_arr_size)
12842 {
12843 /* This happens to make the list in reverse order,
12844 which is what we want. */
12845 htab->sec_info[isec->id].u.list
12846 = htab->sec_info[isec->output_section->id].u.list;
12847 htab->sec_info[isec->output_section->id].u.list = isec;
12848 }
12849
12850 if (htab->multi_toc_needed)
12851 {
12852 /* Analyse sections that aren't already flagged as needing a
12853 valid toc pointer. Exclude .fixup for the linux kernel.
12854 .fixup contains branches, but only back to the function that
12855 hit an exception. */
12856 if (!(isec->has_toc_reloc
12857 || (isec->flags & SEC_CODE) == 0
12858 || strcmp (isec->name, ".fixup") == 0
12859 || isec->call_check_done))
12860 {
12861 if (toc_adjusting_stub_needed (info, isec) < 0)
12862 return FALSE;
12863 }
12864 /* Make all sections use the TOC assigned for this object file.
12865 This will be wrong for pasted sections; We fix that in
12866 check_pasted_section(). */
12867 if (elf_gp (isec->owner) != 0)
12868 htab->toc_curr = elf_gp (isec->owner);
12869 }
12870
12871 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12872 return TRUE;
12873 }
12874
12875 /* Check that all .init and .fini sections use the same toc, if they
12876 have toc relocs. */
12877
12878 static bfd_boolean
12879 check_pasted_section (struct bfd_link_info *info, const char *name)
12880 {
12881 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12882
12883 if (o != NULL)
12884 {
12885 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12886 bfd_vma toc_off = 0;
12887 asection *i;
12888
12889 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12890 if (i->has_toc_reloc)
12891 {
12892 if (toc_off == 0)
12893 toc_off = htab->sec_info[i->id].toc_off;
12894 else if (toc_off != htab->sec_info[i->id].toc_off)
12895 return FALSE;
12896 }
12897
12898 if (toc_off == 0)
12899 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12900 if (i->makes_toc_func_call)
12901 {
12902 toc_off = htab->sec_info[i->id].toc_off;
12903 break;
12904 }
12905
12906 /* Make sure the whole pasted function uses the same toc offset. */
12907 if (toc_off != 0)
12908 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12909 htab->sec_info[i->id].toc_off = toc_off;
12910 }
12911 return TRUE;
12912 }
12913
12914 bfd_boolean
12915 ppc64_elf_check_init_fini (struct bfd_link_info *info)
12916 {
12917 return (check_pasted_section (info, ".init")
12918 & check_pasted_section (info, ".fini"));
12919 }
12920
12921 /* See whether we can group stub sections together. Grouping stub
12922 sections may result in fewer stubs. More importantly, we need to
12923 put all .init* and .fini* stubs at the beginning of the .init or
12924 .fini output sections respectively, because glibc splits the
12925 _init and _fini functions into multiple parts. Putting a stub in
12926 the middle of a function is not a good idea. */
12927
12928 static bfd_boolean
12929 group_sections (struct bfd_link_info *info,
12930 bfd_size_type stub_group_size,
12931 bfd_boolean stubs_always_before_branch)
12932 {
12933 struct ppc_link_hash_table *htab;
12934 asection *osec;
12935 bfd_boolean suppress_size_errors;
12936
12937 htab = ppc_hash_table (info);
12938 if (htab == NULL)
12939 return FALSE;
12940
12941 suppress_size_errors = FALSE;
12942 if (stub_group_size == 1)
12943 {
12944 /* Default values. */
12945 if (stubs_always_before_branch)
12946 stub_group_size = 0x1e00000;
12947 else
12948 stub_group_size = 0x1c00000;
12949 suppress_size_errors = TRUE;
12950 }
12951
12952 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
12953 {
12954 asection *tail;
12955
12956 if (osec->id >= htab->sec_info_arr_size)
12957 continue;
12958
12959 tail = htab->sec_info[osec->id].u.list;
12960 while (tail != NULL)
12961 {
12962 asection *curr;
12963 asection *prev;
12964 bfd_size_type total;
12965 bfd_boolean big_sec;
12966 bfd_vma curr_toc;
12967 struct map_stub *group;
12968 bfd_size_type group_size;
12969
12970 curr = tail;
12971 total = tail->size;
12972 group_size = (ppc64_elf_section_data (tail) != NULL
12973 && ppc64_elf_section_data (tail)->has_14bit_branch
12974 ? stub_group_size >> 10 : stub_group_size);
12975
12976 big_sec = total > group_size;
12977 if (big_sec && !suppress_size_errors)
12978 /* xgettext:c-format */
12979 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
12980 tail->owner, tail);
12981 curr_toc = htab->sec_info[tail->id].toc_off;
12982
12983 while ((prev = htab->sec_info[curr->id].u.list) != NULL
12984 && ((total += curr->output_offset - prev->output_offset)
12985 < (ppc64_elf_section_data (prev) != NULL
12986 && ppc64_elf_section_data (prev)->has_14bit_branch
12987 ? (group_size = stub_group_size >> 10) : group_size))
12988 && htab->sec_info[prev->id].toc_off == curr_toc)
12989 curr = prev;
12990
12991 /* OK, the size from the start of CURR to the end is less
12992 than group_size and thus can be handled by one stub
12993 section. (or the tail section is itself larger than
12994 group_size, in which case we may be toast.) We should
12995 really be keeping track of the total size of stubs added
12996 here, as stubs contribute to the final output section
12997 size. That's a little tricky, and this way will only
12998 break if stubs added make the total size more than 2^25,
12999 ie. for the default stub_group_size, if stubs total more
13000 than 2097152 bytes, or nearly 75000 plt call stubs. */
13001 group = bfd_alloc (curr->owner, sizeof (*group));
13002 if (group == NULL)
13003 return FALSE;
13004 group->link_sec = curr;
13005 group->stub_sec = NULL;
13006 group->needs_save_res = 0;
13007 group->lr_restore = 0;
13008 group->eh_size = 0;
13009 group->eh_base = 0;
13010 group->next = htab->group;
13011 htab->group = group;
13012 do
13013 {
13014 prev = htab->sec_info[tail->id].u.list;
13015 /* Set up this stub group. */
13016 htab->sec_info[tail->id].u.group = group;
13017 }
13018 while (tail != curr && (tail = prev) != NULL);
13019
13020 /* But wait, there's more! Input sections up to group_size
13021 bytes before the stub section can be handled by it too.
13022 Don't do this if we have a really large section after the
13023 stubs, as adding more stubs increases the chance that
13024 branches may not reach into the stub section. */
13025 if (!stubs_always_before_branch && !big_sec)
13026 {
13027 total = 0;
13028 while (prev != NULL
13029 && ((total += tail->output_offset - prev->output_offset)
13030 < (ppc64_elf_section_data (prev) != NULL
13031 && ppc64_elf_section_data (prev)->has_14bit_branch
13032 ? (group_size = stub_group_size >> 10)
13033 : group_size))
13034 && htab->sec_info[prev->id].toc_off == curr_toc)
13035 {
13036 tail = prev;
13037 prev = htab->sec_info[tail->id].u.list;
13038 htab->sec_info[tail->id].u.group = group;
13039 }
13040 }
13041 tail = prev;
13042 }
13043 }
13044 return TRUE;
13045 }
13046
13047 static const unsigned char glink_eh_frame_cie[] =
13048 {
13049 0, 0, 0, 16, /* length. */
13050 0, 0, 0, 0, /* id. */
13051 1, /* CIE version. */
13052 'z', 'R', 0, /* Augmentation string. */
13053 4, /* Code alignment. */
13054 0x78, /* Data alignment. */
13055 65, /* RA reg. */
13056 1, /* Augmentation size. */
13057 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
13058 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
13059 };
13060
13061 /* Stripping output sections is normally done before dynamic section
13062 symbols have been allocated. This function is called later, and
13063 handles cases like htab->brlt which is mapped to its own output
13064 section. */
13065
13066 static void
13067 maybe_strip_output (struct bfd_link_info *info, asection *isec)
13068 {
13069 if (isec->size == 0
13070 && isec->output_section->size == 0
13071 && !(isec->output_section->flags & SEC_KEEP)
13072 && !bfd_section_removed_from_list (info->output_bfd,
13073 isec->output_section)
13074 && elf_section_data (isec->output_section)->dynindx == 0)
13075 {
13076 isec->output_section->flags |= SEC_EXCLUDE;
13077 bfd_section_list_remove (info->output_bfd, isec->output_section);
13078 info->output_bfd->section_count--;
13079 }
13080 }
13081
13082 /* Determine and set the size of the stub section for a final link.
13083
13084 The basic idea here is to examine all the relocations looking for
13085 PC-relative calls to a target that is unreachable with a "bl"
13086 instruction. */
13087
13088 bfd_boolean
13089 ppc64_elf_size_stubs (struct bfd_link_info *info)
13090 {
13091 bfd_size_type stub_group_size;
13092 bfd_boolean stubs_always_before_branch;
13093 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13094
13095 if (htab == NULL)
13096 return FALSE;
13097
13098 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
13099 htab->params->plt_thread_safe = 1;
13100 if (!htab->opd_abi)
13101 htab->params->plt_thread_safe = 0;
13102 else if (htab->params->plt_thread_safe == -1)
13103 {
13104 static const char *const thread_starter[] =
13105 {
13106 "pthread_create",
13107 /* libstdc++ */
13108 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
13109 /* librt */
13110 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
13111 "mq_notify", "create_timer",
13112 /* libanl */
13113 "getaddrinfo_a",
13114 /* libgomp */
13115 "GOMP_parallel",
13116 "GOMP_parallel_start",
13117 "GOMP_parallel_loop_static",
13118 "GOMP_parallel_loop_static_start",
13119 "GOMP_parallel_loop_dynamic",
13120 "GOMP_parallel_loop_dynamic_start",
13121 "GOMP_parallel_loop_guided",
13122 "GOMP_parallel_loop_guided_start",
13123 "GOMP_parallel_loop_runtime",
13124 "GOMP_parallel_loop_runtime_start",
13125 "GOMP_parallel_sections",
13126 "GOMP_parallel_sections_start",
13127 /* libgo */
13128 "__go_go",
13129 };
13130 unsigned i;
13131
13132 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
13133 {
13134 struct elf_link_hash_entry *h;
13135 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
13136 FALSE, FALSE, TRUE);
13137 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
13138 if (htab->params->plt_thread_safe)
13139 break;
13140 }
13141 }
13142 stubs_always_before_branch = htab->params->group_size < 0;
13143 if (htab->params->group_size < 0)
13144 stub_group_size = -htab->params->group_size;
13145 else
13146 stub_group_size = htab->params->group_size;
13147
13148 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
13149 return FALSE;
13150
13151 htab->tga_group = NULL;
13152 if (!htab->params->no_tls_get_addr_regsave
13153 && htab->tga_desc_fd != NULL
13154 && (htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefined
13155 || htab->tga_desc_fd->elf.root.type == bfd_link_hash_undefweak)
13156 && htab->tls_get_addr_fd != NULL
13157 && is_static_defined (&htab->tls_get_addr_fd->elf))
13158 {
13159 asection *sym_sec, *code_sec, *stub_sec;
13160 bfd_vma sym_value;
13161 struct _opd_sec_data *opd;
13162
13163 sym_sec = htab->tls_get_addr_fd->elf.root.u.def.section;
13164 sym_value = defined_sym_val (&htab->tls_get_addr_fd->elf);
13165 code_sec = sym_sec;
13166 opd = get_opd_info (sym_sec);
13167 if (opd != NULL)
13168 opd_entry_value (sym_sec, sym_value, &code_sec, NULL, FALSE);
13169 htab->tga_group = htab->sec_info[code_sec->id].u.group;
13170 stub_sec = (*htab->params->add_stub_section) (".tga_desc.stub",
13171 htab->tga_group->link_sec);
13172 if (stub_sec == NULL)
13173 return FALSE;
13174 htab->tga_group->stub_sec = stub_sec;
13175
13176 htab->tga_desc_fd->elf.root.type = bfd_link_hash_defined;
13177 htab->tga_desc_fd->elf.root.u.def.section = stub_sec;
13178 htab->tga_desc_fd->elf.root.u.def.value = 0;
13179 htab->tga_desc_fd->elf.type = STT_FUNC;
13180 htab->tga_desc_fd->elf.def_regular = 1;
13181 htab->tga_desc_fd->elf.non_elf = 0;
13182 _bfd_elf_link_hash_hide_symbol (info, &htab->tga_desc_fd->elf, TRUE);
13183 }
13184
13185 #define STUB_SHRINK_ITER 20
13186 /* Loop until no stubs added. After iteration 20 of this loop we may
13187 exit on a stub section shrinking. This is to break out of a
13188 pathological case where adding stubs on one iteration decreases
13189 section gaps (perhaps due to alignment), which then requires
13190 fewer or smaller stubs on the next iteration. */
13191
13192 while (1)
13193 {
13194 bfd *input_bfd;
13195 unsigned int bfd_indx;
13196 struct map_stub *group;
13197
13198 htab->stub_iteration += 1;
13199
13200 for (input_bfd = info->input_bfds, bfd_indx = 0;
13201 input_bfd != NULL;
13202 input_bfd = input_bfd->link.next, bfd_indx++)
13203 {
13204 Elf_Internal_Shdr *symtab_hdr;
13205 asection *section;
13206 Elf_Internal_Sym *local_syms = NULL;
13207
13208 if (!is_ppc64_elf (input_bfd))
13209 continue;
13210
13211 /* We'll need the symbol table in a second. */
13212 symtab_hdr = &elf_symtab_hdr (input_bfd);
13213 if (symtab_hdr->sh_info == 0)
13214 continue;
13215
13216 /* Walk over each section attached to the input bfd. */
13217 for (section = input_bfd->sections;
13218 section != NULL;
13219 section = section->next)
13220 {
13221 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
13222
13223 /* If there aren't any relocs, then there's nothing more
13224 to do. */
13225 if ((section->flags & SEC_RELOC) == 0
13226 || (section->flags & SEC_ALLOC) == 0
13227 || (section->flags & SEC_LOAD) == 0
13228 || (section->flags & SEC_CODE) == 0
13229 || section->reloc_count == 0)
13230 continue;
13231
13232 /* If this section is a link-once section that will be
13233 discarded, then don't create any stubs. */
13234 if (section->output_section == NULL
13235 || section->output_section->owner != info->output_bfd)
13236 continue;
13237
13238 /* Get the relocs. */
13239 internal_relocs
13240 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
13241 info->keep_memory);
13242 if (internal_relocs == NULL)
13243 goto error_ret_free_local;
13244
13245 /* Now examine each relocation. */
13246 irela = internal_relocs;
13247 irelaend = irela + section->reloc_count;
13248 for (; irela < irelaend; irela++)
13249 {
13250 enum elf_ppc64_reloc_type r_type;
13251 unsigned int r_indx;
13252 enum ppc_stub_type stub_type;
13253 struct ppc_stub_hash_entry *stub_entry;
13254 asection *sym_sec, *code_sec;
13255 bfd_vma sym_value, code_value;
13256 bfd_vma destination;
13257 unsigned long local_off;
13258 bfd_boolean ok_dest;
13259 struct ppc_link_hash_entry *hash;
13260 struct ppc_link_hash_entry *fdh;
13261 struct elf_link_hash_entry *h;
13262 Elf_Internal_Sym *sym;
13263 char *stub_name;
13264 const asection *id_sec;
13265 struct _opd_sec_data *opd;
13266 struct plt_entry *plt_ent;
13267
13268 r_type = ELF64_R_TYPE (irela->r_info);
13269 r_indx = ELF64_R_SYM (irela->r_info);
13270
13271 if (r_type >= R_PPC64_max)
13272 {
13273 bfd_set_error (bfd_error_bad_value);
13274 goto error_ret_free_internal;
13275 }
13276
13277 /* Only look for stubs on branch instructions. */
13278 if (r_type != R_PPC64_REL24
13279 && r_type != R_PPC64_REL24_NOTOC
13280 && r_type != R_PPC64_REL14
13281 && r_type != R_PPC64_REL14_BRTAKEN
13282 && r_type != R_PPC64_REL14_BRNTAKEN)
13283 continue;
13284
13285 /* Now determine the call target, its name, value,
13286 section. */
13287 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
13288 r_indx, input_bfd))
13289 goto error_ret_free_internal;
13290 hash = ppc_elf_hash_entry (h);
13291
13292 ok_dest = FALSE;
13293 fdh = NULL;
13294 sym_value = 0;
13295 if (hash == NULL)
13296 {
13297 sym_value = sym->st_value;
13298 if (sym_sec != NULL
13299 && sym_sec->output_section != NULL)
13300 ok_dest = TRUE;
13301 }
13302 else if (hash->elf.root.type == bfd_link_hash_defined
13303 || hash->elf.root.type == bfd_link_hash_defweak)
13304 {
13305 sym_value = hash->elf.root.u.def.value;
13306 if (sym_sec->output_section != NULL)
13307 ok_dest = TRUE;
13308 }
13309 else if (hash->elf.root.type == bfd_link_hash_undefweak
13310 || hash->elf.root.type == bfd_link_hash_undefined)
13311 {
13312 /* Recognise an old ABI func code entry sym, and
13313 use the func descriptor sym instead if it is
13314 defined. */
13315 if (hash->elf.root.root.string[0] == '.'
13316 && hash->oh != NULL)
13317 {
13318 fdh = ppc_follow_link (hash->oh);
13319 if (fdh->elf.root.type == bfd_link_hash_defined
13320 || fdh->elf.root.type == bfd_link_hash_defweak)
13321 {
13322 sym_sec = fdh->elf.root.u.def.section;
13323 sym_value = fdh->elf.root.u.def.value;
13324 if (sym_sec->output_section != NULL)
13325 ok_dest = TRUE;
13326 }
13327 else
13328 fdh = NULL;
13329 }
13330 }
13331 else
13332 {
13333 bfd_set_error (bfd_error_bad_value);
13334 goto error_ret_free_internal;
13335 }
13336
13337 destination = 0;
13338 local_off = 0;
13339 if (ok_dest)
13340 {
13341 sym_value += irela->r_addend;
13342 destination = (sym_value
13343 + sym_sec->output_offset
13344 + sym_sec->output_section->vma);
13345 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
13346 ? hash->elf.other
13347 : sym->st_other);
13348 }
13349
13350 code_sec = sym_sec;
13351 code_value = sym_value;
13352 opd = get_opd_info (sym_sec);
13353 if (opd != NULL)
13354 {
13355 bfd_vma dest;
13356
13357 if (hash == NULL && opd->adjust != NULL)
13358 {
13359 long adjust = opd->adjust[OPD_NDX (sym_value)];
13360 if (adjust == -1)
13361 continue;
13362 code_value += adjust;
13363 sym_value += adjust;
13364 }
13365 dest = opd_entry_value (sym_sec, sym_value,
13366 &code_sec, &code_value, FALSE);
13367 if (dest != (bfd_vma) -1)
13368 {
13369 destination = dest;
13370 if (fdh != NULL)
13371 {
13372 /* Fixup old ABI sym to point at code
13373 entry. */
13374 hash->elf.root.type = bfd_link_hash_defweak;
13375 hash->elf.root.u.def.section = code_sec;
13376 hash->elf.root.u.def.value = code_value;
13377 }
13378 }
13379 }
13380
13381 /* Determine what (if any) linker stub is needed. */
13382 plt_ent = NULL;
13383 stub_type = ppc_type_of_stub (section, irela, &hash,
13384 &plt_ent, destination,
13385 local_off);
13386
13387 if (r_type == R_PPC64_REL24_NOTOC)
13388 {
13389 if (stub_type == ppc_stub_plt_call)
13390 stub_type = ppc_stub_plt_call_notoc;
13391 else if (stub_type == ppc_stub_long_branch
13392 || (code_sec != NULL
13393 && code_sec->output_section != NULL
13394 && (((hash ? hash->elf.other : sym->st_other)
13395 & STO_PPC64_LOCAL_MASK)
13396 > 1 << STO_PPC64_LOCAL_BIT)))
13397 stub_type = ppc_stub_long_branch_notoc;
13398 }
13399 else if (stub_type != ppc_stub_plt_call)
13400 {
13401 /* Check whether we need a TOC adjusting stub.
13402 Since the linker pastes together pieces from
13403 different object files when creating the
13404 _init and _fini functions, it may be that a
13405 call to what looks like a local sym is in
13406 fact a call needing a TOC adjustment. */
13407 if ((code_sec != NULL
13408 && code_sec->output_section != NULL
13409 && (htab->sec_info[code_sec->id].toc_off
13410 != htab->sec_info[section->id].toc_off)
13411 && (code_sec->has_toc_reloc
13412 || code_sec->makes_toc_func_call))
13413 || (((hash ? hash->elf.other : sym->st_other)
13414 & STO_PPC64_LOCAL_MASK)
13415 == 1 << STO_PPC64_LOCAL_BIT))
13416 stub_type = ppc_stub_long_branch_r2off;
13417 }
13418
13419 if (stub_type == ppc_stub_none)
13420 continue;
13421
13422 /* __tls_get_addr calls might be eliminated. */
13423 if (stub_type != ppc_stub_plt_call
13424 && stub_type != ppc_stub_plt_call_notoc
13425 && hash != NULL
13426 && is_tls_get_addr (&hash->elf, htab)
13427 && section->has_tls_reloc
13428 && irela != internal_relocs)
13429 {
13430 /* Get tls info. */
13431 unsigned char *tls_mask;
13432
13433 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13434 irela - 1, input_bfd))
13435 goto error_ret_free_internal;
13436 if ((*tls_mask & TLS_TLS) != 0
13437 && (*tls_mask & (TLS_GD | TLS_LD)) == 0)
13438 continue;
13439 }
13440
13441 if (stub_type == ppc_stub_plt_call)
13442 {
13443 if (!htab->opd_abi
13444 && htab->params->plt_localentry0 != 0
13445 && is_elfv2_localentry0 (&hash->elf))
13446 htab->has_plt_localentry0 = 1;
13447 else if (irela + 1 < irelaend
13448 && irela[1].r_offset == irela->r_offset + 4
13449 && (ELF64_R_TYPE (irela[1].r_info)
13450 == R_PPC64_TOCSAVE))
13451 {
13452 if (!tocsave_find (htab, INSERT,
13453 &local_syms, irela + 1, input_bfd))
13454 goto error_ret_free_internal;
13455 }
13456 else
13457 stub_type = ppc_stub_plt_call_r2save;
13458 }
13459
13460 /* Support for grouping stub sections. */
13461 id_sec = htab->sec_info[section->id].u.group->link_sec;
13462
13463 /* Get the name of this stub. */
13464 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13465 if (!stub_name)
13466 goto error_ret_free_internal;
13467
13468 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13469 stub_name, FALSE, FALSE);
13470 if (stub_entry != NULL)
13471 {
13472 enum ppc_stub_type old_type;
13473 /* A stub has already been created, but it may
13474 not be the required type. We shouldn't be
13475 transitioning from plt_call to long_branch
13476 stubs or vice versa, but we might be
13477 upgrading from plt_call to plt_call_r2save or
13478 from long_branch to long_branch_r2off. */
13479 free (stub_name);
13480 old_type = stub_entry->stub_type;
13481 switch (old_type)
13482 {
13483 default:
13484 abort ();
13485
13486 case ppc_stub_save_res:
13487 continue;
13488
13489 case ppc_stub_plt_call:
13490 case ppc_stub_plt_call_r2save:
13491 case ppc_stub_plt_call_notoc:
13492 case ppc_stub_plt_call_both:
13493 if (stub_type == ppc_stub_plt_call)
13494 continue;
13495 else if (stub_type == ppc_stub_plt_call_r2save)
13496 {
13497 if (old_type == ppc_stub_plt_call_notoc)
13498 stub_type = ppc_stub_plt_call_both;
13499 }
13500 else if (stub_type == ppc_stub_plt_call_notoc)
13501 {
13502 if (old_type == ppc_stub_plt_call_r2save)
13503 stub_type = ppc_stub_plt_call_both;
13504 }
13505 else
13506 abort ();
13507 break;
13508
13509 case ppc_stub_plt_branch:
13510 case ppc_stub_plt_branch_r2off:
13511 case ppc_stub_plt_branch_notoc:
13512 case ppc_stub_plt_branch_both:
13513 old_type += (ppc_stub_long_branch
13514 - ppc_stub_plt_branch);
13515 /* Fall through. */
13516 case ppc_stub_long_branch:
13517 case ppc_stub_long_branch_r2off:
13518 case ppc_stub_long_branch_notoc:
13519 case ppc_stub_long_branch_both:
13520 if (stub_type == ppc_stub_long_branch)
13521 continue;
13522 else if (stub_type == ppc_stub_long_branch_r2off)
13523 {
13524 if (old_type == ppc_stub_long_branch_notoc)
13525 stub_type = ppc_stub_long_branch_both;
13526 }
13527 else if (stub_type == ppc_stub_long_branch_notoc)
13528 {
13529 if (old_type == ppc_stub_long_branch_r2off)
13530 stub_type = ppc_stub_long_branch_both;
13531 }
13532 else
13533 abort ();
13534 break;
13535 }
13536 if (old_type < stub_type)
13537 stub_entry->stub_type = stub_type;
13538 continue;
13539 }
13540
13541 stub_entry = ppc_add_stub (stub_name, section, info);
13542 if (stub_entry == NULL)
13543 {
13544 free (stub_name);
13545 error_ret_free_internal:
13546 if (elf_section_data (section)->relocs == NULL)
13547 free (internal_relocs);
13548 error_ret_free_local:
13549 if (local_syms != NULL
13550 && (symtab_hdr->contents
13551 != (unsigned char *) local_syms))
13552 free (local_syms);
13553 return FALSE;
13554 }
13555
13556 stub_entry->stub_type = stub_type;
13557 if (stub_type >= ppc_stub_plt_call
13558 && stub_type <= ppc_stub_plt_call_both)
13559 {
13560 stub_entry->target_value = sym_value;
13561 stub_entry->target_section = sym_sec;
13562 }
13563 else
13564 {
13565 stub_entry->target_value = code_value;
13566 stub_entry->target_section = code_sec;
13567 }
13568 stub_entry->h = hash;
13569 stub_entry->plt_ent = plt_ent;
13570 stub_entry->symtype
13571 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13572 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13573
13574 if (hash != NULL
13575 && (hash->elf.root.type == bfd_link_hash_defined
13576 || hash->elf.root.type == bfd_link_hash_defweak))
13577 htab->stub_globals += 1;
13578 }
13579
13580 /* We're done with the internal relocs, free them. */
13581 if (elf_section_data (section)->relocs != internal_relocs)
13582 free (internal_relocs);
13583 }
13584
13585 if (local_syms != NULL
13586 && symtab_hdr->contents != (unsigned char *) local_syms)
13587 {
13588 if (!info->keep_memory)
13589 free (local_syms);
13590 else
13591 symtab_hdr->contents = (unsigned char *) local_syms;
13592 }
13593 }
13594
13595 /* We may have added some stubs. Find out the new size of the
13596 stub sections. */
13597 for (group = htab->group; group != NULL; group = group->next)
13598 {
13599 group->lr_restore = 0;
13600 group->eh_size = 0;
13601 if (group->stub_sec != NULL)
13602 {
13603 asection *stub_sec = group->stub_sec;
13604
13605 if (htab->stub_iteration <= STUB_SHRINK_ITER
13606 || stub_sec->rawsize < stub_sec->size)
13607 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13608 stub_sec->rawsize = stub_sec->size;
13609 stub_sec->size = 0;
13610 stub_sec->reloc_count = 0;
13611 stub_sec->flags &= ~SEC_RELOC;
13612 }
13613 }
13614 if (htab->tga_group != NULL)
13615 {
13616 /* See emit_tga_desc and emit_tga_desc_eh_frame. */
13617 htab->tga_group->eh_size
13618 = 1 + 2 + (htab->opd_abi != 0) + 3 + 8 * 2 + 3 + 8 + 3;
13619 htab->tga_group->lr_restore = 23 * 4;
13620 htab->tga_group->stub_sec->size = 24 * 4;
13621 }
13622
13623 if (htab->stub_iteration <= STUB_SHRINK_ITER
13624 || htab->brlt->rawsize < htab->brlt->size)
13625 htab->brlt->rawsize = htab->brlt->size;
13626 htab->brlt->size = 0;
13627 htab->brlt->reloc_count = 0;
13628 htab->brlt->flags &= ~SEC_RELOC;
13629 if (htab->relbrlt != NULL)
13630 htab->relbrlt->size = 0;
13631
13632 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13633
13634 for (group = htab->group; group != NULL; group = group->next)
13635 if (group->needs_save_res)
13636 group->stub_sec->size += htab->sfpr->size;
13637
13638 if (info->emitrelocations
13639 && htab->glink != NULL && htab->glink->size != 0)
13640 {
13641 htab->glink->reloc_count = 1;
13642 htab->glink->flags |= SEC_RELOC;
13643 }
13644
13645 if (htab->glink_eh_frame != NULL
13646 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13647 && htab->glink_eh_frame->output_section->size > 8)
13648 {
13649 size_t size = 0, align = 4;
13650
13651 for (group = htab->group; group != NULL; group = group->next)
13652 if (group->eh_size != 0)
13653 size += (group->eh_size + 17 + align - 1) & -align;
13654 if (htab->glink != NULL && htab->glink->size != 0)
13655 size += (24 + align - 1) & -align;
13656 if (size != 0)
13657 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13658 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13659 size = (size + align - 1) & -align;
13660 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13661 htab->glink_eh_frame->size = size;
13662 }
13663
13664 if (htab->params->plt_stub_align != 0)
13665 for (group = htab->group; group != NULL; group = group->next)
13666 if (group->stub_sec != NULL)
13667 {
13668 int align = abs (htab->params->plt_stub_align);
13669 group->stub_sec->size
13670 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13671 }
13672
13673 for (group = htab->group; group != NULL; group = group->next)
13674 if (group->stub_sec != NULL
13675 && group->stub_sec->rawsize != group->stub_sec->size
13676 && (htab->stub_iteration <= STUB_SHRINK_ITER
13677 || group->stub_sec->rawsize < group->stub_sec->size))
13678 break;
13679
13680 if (group == NULL
13681 && (htab->brlt->rawsize == htab->brlt->size
13682 || (htab->stub_iteration > STUB_SHRINK_ITER
13683 && htab->brlt->rawsize > htab->brlt->size))
13684 && (htab->glink_eh_frame == NULL
13685 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size)
13686 && (htab->tga_group == NULL
13687 || htab->stub_iteration > 1))
13688 break;
13689
13690 /* Ask the linker to do its stuff. */
13691 (*htab->params->layout_sections_again) ();
13692 }
13693
13694 if (htab->glink_eh_frame != NULL
13695 && htab->glink_eh_frame->size != 0)
13696 {
13697 bfd_vma val;
13698 bfd_byte *p, *last_fde;
13699 size_t last_fde_len, size, align, pad;
13700 struct map_stub *group;
13701
13702 /* It is necessary to at least have a rough outline of the
13703 linker generated CIEs and FDEs written before
13704 bfd_elf_discard_info is run, in order for these FDEs to be
13705 indexed in .eh_frame_hdr. */
13706 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13707 if (p == NULL)
13708 return FALSE;
13709 htab->glink_eh_frame->contents = p;
13710 last_fde = p;
13711 align = 4;
13712
13713 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13714 /* CIE length (rewrite in case little-endian). */
13715 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13716 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13717 p += last_fde_len + 4;
13718
13719 for (group = htab->group; group != NULL; group = group->next)
13720 if (group->eh_size != 0)
13721 {
13722 group->eh_base = p - htab->glink_eh_frame->contents;
13723 last_fde = p;
13724 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13725 /* FDE length. */
13726 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13727 p += 4;
13728 /* CIE pointer. */
13729 val = p - htab->glink_eh_frame->contents;
13730 bfd_put_32 (htab->elf.dynobj, val, p);
13731 p += 4;
13732 /* Offset to stub section, written later. */
13733 p += 4;
13734 /* stub section size. */
13735 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13736 p += 4;
13737 /* Augmentation. */
13738 p += 1;
13739 /* Make sure we don't have all nops. This is enough for
13740 elf-eh-frame.c to detect the last non-nop opcode. */
13741 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13742 p = last_fde + last_fde_len + 4;
13743 }
13744 if (htab->glink != NULL && htab->glink->size != 0)
13745 {
13746 last_fde = p;
13747 last_fde_len = ((24 + align - 1) & -align) - 4;
13748 /* FDE length. */
13749 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13750 p += 4;
13751 /* CIE pointer. */
13752 val = p - htab->glink_eh_frame->contents;
13753 bfd_put_32 (htab->elf.dynobj, val, p);
13754 p += 4;
13755 /* Offset to .glink, written later. */
13756 p += 4;
13757 /* .glink size. */
13758 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13759 p += 4;
13760 /* Augmentation. */
13761 p += 1;
13762
13763 *p++ = DW_CFA_advance_loc + 1;
13764 *p++ = DW_CFA_register;
13765 *p++ = 65;
13766 *p++ = htab->opd_abi ? 12 : 0;
13767 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 5 : 7);
13768 *p++ = DW_CFA_restore_extended;
13769 *p++ = 65;
13770 p += ((24 + align - 1) & -align) - 24;
13771 }
13772 /* Subsume any padding into the last FDE if user .eh_frame
13773 sections are aligned more than glink_eh_frame. Otherwise any
13774 zero padding will be seen as a terminator. */
13775 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13776 size = p - htab->glink_eh_frame->contents;
13777 pad = ((size + align - 1) & -align) - size;
13778 htab->glink_eh_frame->size = size + pad;
13779 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13780 }
13781
13782 maybe_strip_output (info, htab->brlt);
13783 if (htab->glink_eh_frame != NULL)
13784 maybe_strip_output (info, htab->glink_eh_frame);
13785
13786 return TRUE;
13787 }
13788
13789 /* Called after we have determined section placement. If sections
13790 move, we'll be called again. Provide a value for TOCstart. */
13791
13792 bfd_vma
13793 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13794 {
13795 asection *s;
13796 bfd_vma TOCstart, adjust;
13797
13798 if (info != NULL)
13799 {
13800 struct elf_link_hash_entry *h;
13801 struct elf_link_hash_table *htab = elf_hash_table (info);
13802
13803 if (is_elf_hash_table (htab)
13804 && htab->hgot != NULL)
13805 h = htab->hgot;
13806 else
13807 {
13808 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13809 if (is_elf_hash_table (htab))
13810 htab->hgot = h;
13811 }
13812 if (h != NULL
13813 && h->root.type == bfd_link_hash_defined
13814 && !h->root.linker_def
13815 && (!is_elf_hash_table (htab)
13816 || h->def_regular))
13817 {
13818 TOCstart = defined_sym_val (h) - TOC_BASE_OFF;
13819 _bfd_set_gp_value (obfd, TOCstart);
13820 return TOCstart;
13821 }
13822 }
13823
13824 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13825 order. The TOC starts where the first of these sections starts. */
13826 s = bfd_get_section_by_name (obfd, ".got");
13827 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13828 s = bfd_get_section_by_name (obfd, ".toc");
13829 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13830 s = bfd_get_section_by_name (obfd, ".tocbss");
13831 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13832 s = bfd_get_section_by_name (obfd, ".plt");
13833 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13834 {
13835 /* This may happen for
13836 o references to TOC base (SYM@toc / TOC[tc0]) without a
13837 .toc directive
13838 o bad linker script
13839 o --gc-sections and empty TOC sections
13840
13841 FIXME: Warn user? */
13842
13843 /* Look for a likely section. We probably won't even be
13844 using TOCstart. */
13845 for (s = obfd->sections; s != NULL; s = s->next)
13846 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13847 | SEC_EXCLUDE))
13848 == (SEC_ALLOC | SEC_SMALL_DATA))
13849 break;
13850 if (s == NULL)
13851 for (s = obfd->sections; s != NULL; s = s->next)
13852 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13853 == (SEC_ALLOC | SEC_SMALL_DATA))
13854 break;
13855 if (s == NULL)
13856 for (s = obfd->sections; s != NULL; s = s->next)
13857 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13858 == SEC_ALLOC)
13859 break;
13860 if (s == NULL)
13861 for (s = obfd->sections; s != NULL; s = s->next)
13862 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13863 break;
13864 }
13865
13866 TOCstart = 0;
13867 if (s != NULL)
13868 TOCstart = s->output_section->vma + s->output_offset;
13869
13870 /* Force alignment. */
13871 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
13872 TOCstart -= adjust;
13873 _bfd_set_gp_value (obfd, TOCstart);
13874
13875 if (info != NULL && s != NULL)
13876 {
13877 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13878
13879 if (htab != NULL)
13880 {
13881 if (htab->elf.hgot != NULL)
13882 {
13883 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
13884 htab->elf.hgot->root.u.def.section = s;
13885 }
13886 }
13887 else
13888 {
13889 struct bfd_link_hash_entry *bh = NULL;
13890 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
13891 s, TOC_BASE_OFF - adjust,
13892 NULL, FALSE, FALSE, &bh);
13893 }
13894 }
13895 return TOCstart;
13896 }
13897
13898 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
13899 write out any global entry stubs, and PLT relocations. */
13900
13901 static bfd_boolean
13902 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
13903 {
13904 struct bfd_link_info *info;
13905 struct ppc_link_hash_table *htab;
13906 struct plt_entry *ent;
13907 asection *s;
13908
13909 if (h->root.type == bfd_link_hash_indirect)
13910 return TRUE;
13911
13912 info = inf;
13913 htab = ppc_hash_table (info);
13914 if (htab == NULL)
13915 return FALSE;
13916
13917 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13918 if (ent->plt.offset != (bfd_vma) -1)
13919 {
13920 /* This symbol has an entry in the procedure linkage
13921 table. Set it up. */
13922 Elf_Internal_Rela rela;
13923 asection *plt, *relplt;
13924 bfd_byte *loc;
13925
13926 if (!htab->elf.dynamic_sections_created
13927 || h->dynindx == -1)
13928 {
13929 if (!(h->def_regular
13930 && (h->root.type == bfd_link_hash_defined
13931 || h->root.type == bfd_link_hash_defweak)))
13932 continue;
13933 if (h->type == STT_GNU_IFUNC)
13934 {
13935 plt = htab->elf.iplt;
13936 relplt = htab->elf.irelplt;
13937 htab->local_ifunc_resolver = 1;
13938 if (htab->opd_abi)
13939 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13940 else
13941 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13942 }
13943 else
13944 {
13945 plt = htab->pltlocal;
13946 if (bfd_link_pic (info))
13947 {
13948 relplt = htab->relpltlocal;
13949 if (htab->opd_abi)
13950 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13951 else
13952 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13953 }
13954 else
13955 relplt = NULL;
13956 }
13957 rela.r_addend = defined_sym_val (h) + ent->addend;
13958
13959 if (relplt == NULL)
13960 {
13961 loc = plt->contents + ent->plt.offset;
13962 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
13963 if (htab->opd_abi)
13964 {
13965 bfd_vma toc = elf_gp (info->output_bfd);
13966 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
13967 bfd_put_64 (info->output_bfd, toc, loc + 8);
13968 }
13969 }
13970 else
13971 {
13972 rela.r_offset = (plt->output_section->vma
13973 + plt->output_offset
13974 + ent->plt.offset);
13975 loc = relplt->contents + (relplt->reloc_count++
13976 * sizeof (Elf64_External_Rela));
13977 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13978 }
13979 }
13980 else
13981 {
13982 rela.r_offset = (htab->elf.splt->output_section->vma
13983 + htab->elf.splt->output_offset
13984 + ent->plt.offset);
13985 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
13986 rela.r_addend = ent->addend;
13987 loc = (htab->elf.srelplt->contents
13988 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
13989 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
13990 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
13991 htab->maybe_local_ifunc_resolver = 1;
13992 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13993 }
13994 }
13995
13996 if (!h->pointer_equality_needed)
13997 return TRUE;
13998
13999 if (h->def_regular)
14000 return TRUE;
14001
14002 s = htab->global_entry;
14003 if (s == NULL || s->size == 0)
14004 return TRUE;
14005
14006 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14007 if (ent->plt.offset != (bfd_vma) -1
14008 && ent->addend == 0)
14009 {
14010 bfd_byte *p;
14011 asection *plt;
14012 bfd_vma off;
14013
14014 p = s->contents + h->root.u.def.value;
14015 plt = htab->elf.splt;
14016 if (!htab->elf.dynamic_sections_created
14017 || h->dynindx == -1)
14018 {
14019 if (h->type == STT_GNU_IFUNC)
14020 plt = htab->elf.iplt;
14021 else
14022 plt = htab->pltlocal;
14023 }
14024 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
14025 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
14026
14027 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
14028 {
14029 info->callbacks->einfo
14030 (_("%P: linkage table error against `%pT'\n"),
14031 h->root.root.string);
14032 bfd_set_error (bfd_error_bad_value);
14033 htab->stub_error = TRUE;
14034 }
14035
14036 htab->stub_count[ppc_stub_global_entry - 1] += 1;
14037 if (htab->params->emit_stub_syms)
14038 {
14039 size_t len = strlen (h->root.root.string);
14040 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
14041
14042 if (name == NULL)
14043 return FALSE;
14044
14045 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
14046 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
14047 if (h == NULL)
14048 return FALSE;
14049 if (h->root.type == bfd_link_hash_new)
14050 {
14051 h->root.type = bfd_link_hash_defined;
14052 h->root.u.def.section = s;
14053 h->root.u.def.value = p - s->contents;
14054 h->ref_regular = 1;
14055 h->def_regular = 1;
14056 h->ref_regular_nonweak = 1;
14057 h->forced_local = 1;
14058 h->non_elf = 0;
14059 h->root.linker_def = 1;
14060 }
14061 }
14062
14063 if (PPC_HA (off) != 0)
14064 {
14065 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
14066 p += 4;
14067 }
14068 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
14069 p += 4;
14070 bfd_put_32 (s->owner, MTCTR_R12, p);
14071 p += 4;
14072 bfd_put_32 (s->owner, BCTR, p);
14073 break;
14074 }
14075 return TRUE;
14076 }
14077
14078 /* Write PLT relocs for locals. */
14079
14080 static bfd_boolean
14081 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
14082 {
14083 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14084 bfd *ibfd;
14085
14086 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
14087 {
14088 struct got_entry **lgot_ents, **end_lgot_ents;
14089 struct plt_entry **local_plt, **lplt, **end_local_plt;
14090 Elf_Internal_Shdr *symtab_hdr;
14091 bfd_size_type locsymcount;
14092 Elf_Internal_Sym *local_syms = NULL;
14093 struct plt_entry *ent;
14094
14095 if (!is_ppc64_elf (ibfd))
14096 continue;
14097
14098 lgot_ents = elf_local_got_ents (ibfd);
14099 if (!lgot_ents)
14100 continue;
14101
14102 symtab_hdr = &elf_symtab_hdr (ibfd);
14103 locsymcount = symtab_hdr->sh_info;
14104 end_lgot_ents = lgot_ents + locsymcount;
14105 local_plt = (struct plt_entry **) end_lgot_ents;
14106 end_local_plt = local_plt + locsymcount;
14107 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
14108 for (ent = *lplt; ent != NULL; ent = ent->next)
14109 if (ent->plt.offset != (bfd_vma) -1)
14110 {
14111 Elf_Internal_Sym *sym;
14112 asection *sym_sec;
14113 asection *plt, *relplt;
14114 bfd_byte *loc;
14115 bfd_vma val;
14116
14117 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
14118 lplt - local_plt, ibfd))
14119 {
14120 if (local_syms != NULL
14121 && symtab_hdr->contents != (unsigned char *) local_syms)
14122 free (local_syms);
14123 return FALSE;
14124 }
14125
14126 val = sym->st_value + ent->addend;
14127 if (ELF_ST_TYPE (sym->st_info) != STT_GNU_IFUNC)
14128 val += PPC64_LOCAL_ENTRY_OFFSET (sym->st_other);
14129 if (sym_sec != NULL && sym_sec->output_section != NULL)
14130 val += sym_sec->output_offset + sym_sec->output_section->vma;
14131
14132 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14133 {
14134 htab->local_ifunc_resolver = 1;
14135 plt = htab->elf.iplt;
14136 relplt = htab->elf.irelplt;
14137 }
14138 else
14139 {
14140 plt = htab->pltlocal;
14141 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
14142 }
14143
14144 if (relplt == NULL)
14145 {
14146 loc = plt->contents + ent->plt.offset;
14147 bfd_put_64 (info->output_bfd, val, loc);
14148 if (htab->opd_abi)
14149 {
14150 bfd_vma toc = elf_gp (ibfd);
14151 bfd_put_64 (info->output_bfd, toc, loc + 8);
14152 }
14153 }
14154 else
14155 {
14156 Elf_Internal_Rela rela;
14157 rela.r_offset = (ent->plt.offset
14158 + plt->output_offset
14159 + plt->output_section->vma);
14160 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
14161 {
14162 if (htab->opd_abi)
14163 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14164 else
14165 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
14166 }
14167 else
14168 {
14169 if (htab->opd_abi)
14170 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
14171 else
14172 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
14173 }
14174 rela.r_addend = val;
14175 loc = relplt->contents + (relplt->reloc_count++
14176 * sizeof (Elf64_External_Rela));
14177 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
14178 }
14179 }
14180
14181 if (local_syms != NULL
14182 && symtab_hdr->contents != (unsigned char *) local_syms)
14183 {
14184 if (!info->keep_memory)
14185 free (local_syms);
14186 else
14187 symtab_hdr->contents = (unsigned char *) local_syms;
14188 }
14189 }
14190 return TRUE;
14191 }
14192
14193 /* Emit the static wrapper function preserving registers around a
14194 __tls_get_addr_opt call. */
14195
14196 static bfd_boolean
14197 emit_tga_desc (struct ppc_link_hash_table *htab)
14198 {
14199 asection *stub_sec = htab->tga_group->stub_sec;
14200 unsigned int cfa_updt = 11 * 4;
14201 bfd_byte *p;
14202 bfd_vma to, from, delta;
14203
14204 BFD_ASSERT (htab->tga_desc_fd->elf.root.type == bfd_link_hash_defined
14205 && htab->tga_desc_fd->elf.root.u.def.section == stub_sec
14206 && htab->tga_desc_fd->elf.root.u.def.value == 0);
14207 to = defined_sym_val (&htab->tls_get_addr_fd->elf);
14208 from = defined_sym_val (&htab->tga_desc_fd->elf) + cfa_updt;
14209 delta = to - from;
14210 if (delta + (1 << 25) >= 1 << 26)
14211 {
14212 _bfd_error_handler (_("__tls_get_addr call offset overflow"));
14213 htab->stub_error = TRUE;
14214 return FALSE;
14215 }
14216
14217 p = stub_sec->contents;
14218 p = tls_get_addr_prologue (htab->elf.dynobj, p, htab);
14219 bfd_put_32 (stub_sec->owner, B_DOT | 1 | (delta & 0x3fffffc), p);
14220 p += 4;
14221 p = tls_get_addr_epilogue (htab->elf.dynobj, p, htab);
14222 return stub_sec->size == (bfd_size_type) (p - stub_sec->contents);
14223 }
14224
14225 /* Emit eh_frame describing the static wrapper function. */
14226
14227 static bfd_byte *
14228 emit_tga_desc_eh_frame (struct ppc_link_hash_table *htab, bfd_byte *p)
14229 {
14230 unsigned int cfa_updt = 11 * 4;
14231 unsigned int i;
14232
14233 *p++ = DW_CFA_advance_loc + cfa_updt / 4;
14234 *p++ = DW_CFA_def_cfa_offset;
14235 if (htab->opd_abi)
14236 {
14237 *p++ = 128;
14238 *p++ = 1;
14239 }
14240 else
14241 *p++ = 96;
14242 *p++ = DW_CFA_offset_extended_sf;
14243 *p++ = 65;
14244 *p++ = (-16 / 8) & 0x7f;
14245 for (i = 4; i < 12; i++)
14246 {
14247 *p++ = DW_CFA_offset + i;
14248 *p++ = (htab->opd_abi ? 13 : 12) - i;
14249 }
14250 *p++ = DW_CFA_advance_loc + 10;
14251 *p++ = DW_CFA_def_cfa_offset;
14252 *p++ = 0;
14253 for (i = 4; i < 12; i++)
14254 *p++ = DW_CFA_restore + i;
14255 *p++ = DW_CFA_advance_loc + 2;
14256 *p++ = DW_CFA_restore_extended;
14257 *p++ = 65;
14258 return p;
14259 }
14260
14261 /* Build all the stubs associated with the current output file.
14262 The stubs are kept in a hash table attached to the main linker
14263 hash table. This function is called via gldelf64ppc_finish. */
14264
14265 bfd_boolean
14266 ppc64_elf_build_stubs (struct bfd_link_info *info,
14267 char **stats)
14268 {
14269 struct ppc_link_hash_table *htab = ppc_hash_table (info);
14270 struct map_stub *group;
14271 asection *stub_sec;
14272 bfd_byte *p;
14273 int stub_sec_count = 0;
14274
14275 if (htab == NULL)
14276 return FALSE;
14277
14278 /* Allocate memory to hold the linker stubs. */
14279 for (group = htab->group; group != NULL; group = group->next)
14280 {
14281 group->eh_size = 0;
14282 group->lr_restore = 0;
14283 if ((stub_sec = group->stub_sec) != NULL
14284 && stub_sec->size != 0)
14285 {
14286 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
14287 stub_sec->size);
14288 if (stub_sec->contents == NULL)
14289 return FALSE;
14290 stub_sec->size = 0;
14291 }
14292 }
14293
14294 if (htab->glink != NULL && htab->glink->size != 0)
14295 {
14296 unsigned int indx;
14297 bfd_vma plt0;
14298
14299 /* Build the .glink plt call stub. */
14300 if (htab->params->emit_stub_syms)
14301 {
14302 struct elf_link_hash_entry *h;
14303 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
14304 TRUE, FALSE, FALSE);
14305 if (h == NULL)
14306 return FALSE;
14307 if (h->root.type == bfd_link_hash_new)
14308 {
14309 h->root.type = bfd_link_hash_defined;
14310 h->root.u.def.section = htab->glink;
14311 h->root.u.def.value = 8;
14312 h->ref_regular = 1;
14313 h->def_regular = 1;
14314 h->ref_regular_nonweak = 1;
14315 h->forced_local = 1;
14316 h->non_elf = 0;
14317 h->root.linker_def = 1;
14318 }
14319 }
14320 plt0 = (htab->elf.splt->output_section->vma
14321 + htab->elf.splt->output_offset
14322 - 16);
14323 if (info->emitrelocations)
14324 {
14325 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
14326 if (r == NULL)
14327 return FALSE;
14328 r->r_offset = (htab->glink->output_offset
14329 + htab->glink->output_section->vma);
14330 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
14331 r->r_addend = plt0;
14332 }
14333 p = htab->glink->contents;
14334 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
14335 bfd_put_64 (htab->glink->owner, plt0, p);
14336 p += 8;
14337 if (htab->opd_abi)
14338 {
14339 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
14340 p += 4;
14341 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14342 p += 4;
14343 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14344 p += 4;
14345 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14346 p += 4;
14347 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
14348 p += 4;
14349 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14350 p += 4;
14351 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14352 p += 4;
14353 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
14354 p += 4;
14355 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14356 p += 4;
14357 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
14358 p += 4;
14359 }
14360 else
14361 {
14362 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
14363 p += 4;
14364 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
14365 p += 4;
14366 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
14367 p += 4;
14368 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
14369 p += 4;
14370 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
14371 p += 4;
14372 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
14373 p += 4;
14374 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
14375 p += 4;
14376 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
14377 p += 4;
14378 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
14379 p += 4;
14380 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
14381 p += 4;
14382 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
14383 p += 4;
14384 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
14385 p += 4;
14386 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
14387 p += 4;
14388 }
14389 bfd_put_32 (htab->glink->owner, BCTR, p);
14390 p += 4;
14391 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
14392
14393 /* Build the .glink lazy link call stubs. */
14394 indx = 0;
14395 while (p < htab->glink->contents + htab->glink->size)
14396 {
14397 if (htab->opd_abi)
14398 {
14399 if (indx < 0x8000)
14400 {
14401 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
14402 p += 4;
14403 }
14404 else
14405 {
14406 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
14407 p += 4;
14408 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
14409 p);
14410 p += 4;
14411 }
14412 }
14413 bfd_put_32 (htab->glink->owner,
14414 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
14415 indx++;
14416 p += 4;
14417 }
14418 }
14419
14420 if (htab->tga_group != NULL)
14421 {
14422 htab->tga_group->lr_restore = 23 * 4;
14423 htab->tga_group->stub_sec->size = 24 * 4;
14424 if (!emit_tga_desc (htab))
14425 return FALSE;
14426 if (htab->glink_eh_frame != NULL
14427 && htab->glink_eh_frame->size != 0)
14428 {
14429 size_t align = 4;
14430
14431 p = htab->glink_eh_frame->contents;
14432 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14433 p += 17;
14434 htab->tga_group->eh_size = emit_tga_desc_eh_frame (htab, p) - p;
14435 }
14436 }
14437
14438 /* Build .glink global entry stubs, and PLT relocs for globals. */
14439 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
14440
14441 if (!write_plt_relocs_for_local_syms (info))
14442 return FALSE;
14443
14444 if (htab->brlt != NULL && htab->brlt->size != 0)
14445 {
14446 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
14447 htab->brlt->size);
14448 if (htab->brlt->contents == NULL)
14449 return FALSE;
14450 }
14451 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
14452 {
14453 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
14454 htab->relbrlt->size);
14455 if (htab->relbrlt->contents == NULL)
14456 return FALSE;
14457 }
14458
14459 /* Build the stubs as directed by the stub hash table. */
14460 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
14461
14462 for (group = htab->group; group != NULL; group = group->next)
14463 if (group->needs_save_res)
14464 group->stub_sec->size += htab->sfpr->size;
14465
14466 if (htab->relbrlt != NULL)
14467 htab->relbrlt->reloc_count = 0;
14468
14469 if (htab->params->plt_stub_align != 0)
14470 for (group = htab->group; group != NULL; group = group->next)
14471 if ((stub_sec = group->stub_sec) != NULL)
14472 {
14473 int align = abs (htab->params->plt_stub_align);
14474 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
14475 }
14476
14477 for (group = htab->group; group != NULL; group = group->next)
14478 if (group->needs_save_res)
14479 {
14480 stub_sec = group->stub_sec;
14481 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
14482 htab->sfpr->contents, htab->sfpr->size);
14483 if (htab->params->emit_stub_syms)
14484 {
14485 unsigned int i;
14486
14487 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
14488 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
14489 return FALSE;
14490 }
14491 }
14492
14493 if (htab->glink_eh_frame != NULL
14494 && htab->glink_eh_frame->size != 0)
14495 {
14496 bfd_vma val;
14497 size_t align = 4;
14498
14499 p = htab->glink_eh_frame->contents;
14500 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14501
14502 for (group = htab->group; group != NULL; group = group->next)
14503 if (group->eh_size != 0)
14504 {
14505 /* Offset to stub section. */
14506 val = (group->stub_sec->output_section->vma
14507 + group->stub_sec->output_offset);
14508 val -= (htab->glink_eh_frame->output_section->vma
14509 + htab->glink_eh_frame->output_offset
14510 + (p + 8 - htab->glink_eh_frame->contents));
14511 if (val + 0x80000000 > 0xffffffff)
14512 {
14513 _bfd_error_handler
14514 (_("%s offset too large for .eh_frame sdata4 encoding"),
14515 group->stub_sec->name);
14516 return FALSE;
14517 }
14518 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14519 p += (group->eh_size + 17 + 3) & -4;
14520 }
14521 if (htab->glink != NULL && htab->glink->size != 0)
14522 {
14523 /* Offset to .glink. */
14524 val = (htab->glink->output_section->vma
14525 + htab->glink->output_offset
14526 + 8);
14527 val -= (htab->glink_eh_frame->output_section->vma
14528 + htab->glink_eh_frame->output_offset
14529 + (p + 8 - htab->glink_eh_frame->contents));
14530 if (val + 0x80000000 > 0xffffffff)
14531 {
14532 _bfd_error_handler
14533 (_("%s offset too large for .eh_frame sdata4 encoding"),
14534 htab->glink->name);
14535 return FALSE;
14536 }
14537 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14538 p += (24 + align - 1) & -align;
14539 }
14540 }
14541
14542 for (group = htab->group; group != NULL; group = group->next)
14543 if ((stub_sec = group->stub_sec) != NULL)
14544 {
14545 stub_sec_count += 1;
14546 if (stub_sec->rawsize != stub_sec->size
14547 && (htab->stub_iteration <= STUB_SHRINK_ITER
14548 || stub_sec->rawsize < stub_sec->size))
14549 break;
14550 }
14551
14552 if (group != NULL)
14553 {
14554 htab->stub_error = TRUE;
14555 _bfd_error_handler (_("stubs don't match calculated size"));
14556 }
14557
14558 if (htab->stub_error)
14559 return FALSE;
14560
14561 if (stats != NULL)
14562 {
14563 char *groupmsg;
14564 if (asprintf (&groupmsg,
14565 ngettext ("linker stubs in %u group\n",
14566 "linker stubs in %u groups\n",
14567 stub_sec_count),
14568 stub_sec_count) < 0)
14569 *stats = NULL;
14570 else
14571 {
14572 if (asprintf (stats, _("%s"
14573 " branch %lu\n"
14574 " branch toc adj %lu\n"
14575 " branch notoc %lu\n"
14576 " branch both %lu\n"
14577 " long branch %lu\n"
14578 " long toc adj %lu\n"
14579 " long notoc %lu\n"
14580 " long both %lu\n"
14581 " plt call %lu\n"
14582 " plt call save %lu\n"
14583 " plt call notoc %lu\n"
14584 " plt call both %lu\n"
14585 " global entry %lu"),
14586 groupmsg,
14587 htab->stub_count[ppc_stub_long_branch - 1],
14588 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14589 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14590 htab->stub_count[ppc_stub_long_branch_both - 1],
14591 htab->stub_count[ppc_stub_plt_branch - 1],
14592 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14593 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14594 htab->stub_count[ppc_stub_plt_branch_both - 1],
14595 htab->stub_count[ppc_stub_plt_call - 1],
14596 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14597 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14598 htab->stub_count[ppc_stub_plt_call_both - 1],
14599 htab->stub_count[ppc_stub_global_entry - 1]) < 0)
14600 *stats = NULL;
14601 free (groupmsg);
14602 }
14603 }
14604 return TRUE;
14605 }
14606
14607 /* What to do when ld finds relocations against symbols defined in
14608 discarded sections. */
14609
14610 static unsigned int
14611 ppc64_elf_action_discarded (asection *sec)
14612 {
14613 if (strcmp (".opd", sec->name) == 0)
14614 return 0;
14615
14616 if (strcmp (".toc", sec->name) == 0)
14617 return 0;
14618
14619 if (strcmp (".toc1", sec->name) == 0)
14620 return 0;
14621
14622 return _bfd_elf_default_action_discarded (sec);
14623 }
14624
14625 /* These are the dynamic relocations supported by glibc. */
14626
14627 static bfd_boolean
14628 ppc64_glibc_dynamic_reloc (enum elf_ppc64_reloc_type r_type)
14629 {
14630 switch (r_type)
14631 {
14632 case R_PPC64_RELATIVE:
14633 case R_PPC64_NONE:
14634 case R_PPC64_ADDR64:
14635 case R_PPC64_GLOB_DAT:
14636 case R_PPC64_IRELATIVE:
14637 case R_PPC64_JMP_IREL:
14638 case R_PPC64_JMP_SLOT:
14639 case R_PPC64_DTPMOD64:
14640 case R_PPC64_DTPREL64:
14641 case R_PPC64_TPREL64:
14642 case R_PPC64_TPREL16_LO_DS:
14643 case R_PPC64_TPREL16_DS:
14644 case R_PPC64_TPREL16:
14645 case R_PPC64_TPREL16_LO:
14646 case R_PPC64_TPREL16_HI:
14647 case R_PPC64_TPREL16_HIGH:
14648 case R_PPC64_TPREL16_HA:
14649 case R_PPC64_TPREL16_HIGHA:
14650 case R_PPC64_TPREL16_HIGHER:
14651 case R_PPC64_TPREL16_HIGHEST:
14652 case R_PPC64_TPREL16_HIGHERA:
14653 case R_PPC64_TPREL16_HIGHESTA:
14654 case R_PPC64_ADDR16_LO_DS:
14655 case R_PPC64_ADDR16_LO:
14656 case R_PPC64_ADDR16_HI:
14657 case R_PPC64_ADDR16_HIGH:
14658 case R_PPC64_ADDR16_HA:
14659 case R_PPC64_ADDR16_HIGHA:
14660 case R_PPC64_REL30:
14661 case R_PPC64_COPY:
14662 case R_PPC64_UADDR64:
14663 case R_PPC64_UADDR32:
14664 case R_PPC64_ADDR32:
14665 case R_PPC64_ADDR24:
14666 case R_PPC64_ADDR16:
14667 case R_PPC64_UADDR16:
14668 case R_PPC64_ADDR16_DS:
14669 case R_PPC64_ADDR16_HIGHER:
14670 case R_PPC64_ADDR16_HIGHEST:
14671 case R_PPC64_ADDR16_HIGHERA:
14672 case R_PPC64_ADDR16_HIGHESTA:
14673 case R_PPC64_ADDR14:
14674 case R_PPC64_ADDR14_BRTAKEN:
14675 case R_PPC64_ADDR14_BRNTAKEN:
14676 case R_PPC64_REL32:
14677 case R_PPC64_REL64:
14678 return TRUE;
14679
14680 default:
14681 return FALSE;
14682 }
14683 }
14684
14685 /* The RELOCATE_SECTION function is called by the ELF backend linker
14686 to handle the relocations for a section.
14687
14688 The relocs are always passed as Rela structures; if the section
14689 actually uses Rel structures, the r_addend field will always be
14690 zero.
14691
14692 This function is responsible for adjust the section contents as
14693 necessary, and (if using Rela relocs and generating a
14694 relocatable output file) adjusting the reloc addend as
14695 necessary.
14696
14697 This function does not have to worry about setting the reloc
14698 address or the reloc symbol index.
14699
14700 LOCAL_SYMS is a pointer to the swapped in local symbols.
14701
14702 LOCAL_SECTIONS is an array giving the section in the input file
14703 corresponding to the st_shndx field of each local symbol.
14704
14705 The global hash table entry for the global symbols can be found
14706 via elf_sym_hashes (input_bfd).
14707
14708 When generating relocatable output, this function must handle
14709 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14710 going to be the section symbol corresponding to the output
14711 section, which means that the addend must be adjusted
14712 accordingly. */
14713
14714 static bfd_boolean
14715 ppc64_elf_relocate_section (bfd *output_bfd,
14716 struct bfd_link_info *info,
14717 bfd *input_bfd,
14718 asection *input_section,
14719 bfd_byte *contents,
14720 Elf_Internal_Rela *relocs,
14721 Elf_Internal_Sym *local_syms,
14722 asection **local_sections)
14723 {
14724 struct ppc_link_hash_table *htab;
14725 Elf_Internal_Shdr *symtab_hdr;
14726 struct elf_link_hash_entry **sym_hashes;
14727 Elf_Internal_Rela *rel;
14728 Elf_Internal_Rela *wrel;
14729 Elf_Internal_Rela *relend;
14730 Elf_Internal_Rela outrel;
14731 bfd_byte *loc;
14732 struct got_entry **local_got_ents;
14733 bfd_vma TOCstart;
14734 bfd_boolean ret = TRUE;
14735 bfd_boolean is_opd;
14736 /* Assume 'at' branch hints. */
14737 bfd_boolean is_isa_v2 = TRUE;
14738 bfd_boolean warned_dynamic = FALSE;
14739 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14740
14741 /* Initialize howto table if needed. */
14742 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14743 ppc_howto_init ();
14744
14745 htab = ppc_hash_table (info);
14746 if (htab == NULL)
14747 return FALSE;
14748
14749 /* Don't relocate stub sections. */
14750 if (input_section->owner == htab->params->stub_bfd)
14751 return TRUE;
14752
14753 if (!is_ppc64_elf (input_bfd))
14754 {
14755 bfd_set_error (bfd_error_wrong_format);
14756 return FALSE;
14757 }
14758
14759 local_got_ents = elf_local_got_ents (input_bfd);
14760 TOCstart = elf_gp (output_bfd);
14761 symtab_hdr = &elf_symtab_hdr (input_bfd);
14762 sym_hashes = elf_sym_hashes (input_bfd);
14763 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14764
14765 rel = wrel = relocs;
14766 relend = relocs + input_section->reloc_count;
14767 for (; rel < relend; wrel++, rel++)
14768 {
14769 enum elf_ppc64_reloc_type r_type;
14770 bfd_vma addend;
14771 bfd_reloc_status_type r;
14772 Elf_Internal_Sym *sym;
14773 asection *sec;
14774 struct elf_link_hash_entry *h_elf;
14775 struct ppc_link_hash_entry *h;
14776 struct ppc_link_hash_entry *fdh;
14777 const char *sym_name;
14778 unsigned long r_symndx, toc_symndx;
14779 bfd_vma toc_addend;
14780 unsigned char tls_mask, tls_gd, tls_type;
14781 unsigned char sym_type;
14782 bfd_vma relocation;
14783 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14784 bfd_boolean warned;
14785 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14786 unsigned int insn;
14787 unsigned int mask;
14788 struct ppc_stub_hash_entry *stub_entry;
14789 bfd_vma max_br_offset;
14790 bfd_vma from;
14791 Elf_Internal_Rela orig_rel;
14792 reloc_howto_type *howto;
14793 struct reloc_howto_struct alt_howto;
14794 uint64_t pinsn;
14795 bfd_vma offset;
14796
14797 again:
14798 orig_rel = *rel;
14799
14800 r_type = ELF64_R_TYPE (rel->r_info);
14801 r_symndx = ELF64_R_SYM (rel->r_info);
14802
14803 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14804 symbol of the previous ADDR64 reloc. The symbol gives us the
14805 proper TOC base to use. */
14806 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14807 && wrel != relocs
14808 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14809 && is_opd)
14810 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14811
14812 sym = NULL;
14813 sec = NULL;
14814 h_elf = NULL;
14815 sym_name = NULL;
14816 unresolved_reloc = FALSE;
14817 warned = FALSE;
14818
14819 if (r_symndx < symtab_hdr->sh_info)
14820 {
14821 /* It's a local symbol. */
14822 struct _opd_sec_data *opd;
14823
14824 sym = local_syms + r_symndx;
14825 sec = local_sections[r_symndx];
14826 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14827 sym_type = ELF64_ST_TYPE (sym->st_info);
14828 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14829 opd = get_opd_info (sec);
14830 if (opd != NULL && opd->adjust != NULL)
14831 {
14832 long adjust = opd->adjust[OPD_NDX (sym->st_value
14833 + rel->r_addend)];
14834 if (adjust == -1)
14835 relocation = 0;
14836 else
14837 {
14838 /* If this is a relocation against the opd section sym
14839 and we have edited .opd, adjust the reloc addend so
14840 that ld -r and ld --emit-relocs output is correct.
14841 If it is a reloc against some other .opd symbol,
14842 then the symbol value will be adjusted later. */
14843 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
14844 rel->r_addend += adjust;
14845 else
14846 relocation += adjust;
14847 }
14848 }
14849 }
14850 else
14851 {
14852 bfd_boolean ignored;
14853
14854 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
14855 r_symndx, symtab_hdr, sym_hashes,
14856 h_elf, sec, relocation,
14857 unresolved_reloc, warned, ignored);
14858 sym_name = h_elf->root.root.string;
14859 sym_type = h_elf->type;
14860 if (sec != NULL
14861 && sec->owner == output_bfd
14862 && strcmp (sec->name, ".opd") == 0)
14863 {
14864 /* This is a symbol defined in a linker script. All
14865 such are defined in output sections, even those
14866 defined by simple assignment from a symbol defined in
14867 an input section. Transfer the symbol to an
14868 appropriate input .opd section, so that a branch to
14869 this symbol will be mapped to the location specified
14870 by the opd entry. */
14871 struct bfd_link_order *lo;
14872 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
14873 if (lo->type == bfd_indirect_link_order)
14874 {
14875 asection *isec = lo->u.indirect.section;
14876 if (h_elf->root.u.def.value >= isec->output_offset
14877 && h_elf->root.u.def.value < (isec->output_offset
14878 + isec->size))
14879 {
14880 h_elf->root.u.def.value -= isec->output_offset;
14881 h_elf->root.u.def.section = isec;
14882 sec = isec;
14883 break;
14884 }
14885 }
14886 }
14887 }
14888 h = ppc_elf_hash_entry (h_elf);
14889
14890 if (sec != NULL && discarded_section (sec))
14891 {
14892 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
14893 input_bfd, input_section,
14894 contents, rel->r_offset);
14895 wrel->r_offset = rel->r_offset;
14896 wrel->r_info = 0;
14897 wrel->r_addend = 0;
14898
14899 /* For ld -r, remove relocations in debug sections against
14900 symbols defined in discarded sections. Not done for
14901 non-debug to preserve relocs in .eh_frame which the
14902 eh_frame editing code expects to be present. */
14903 if (bfd_link_relocatable (info)
14904 && (input_section->flags & SEC_DEBUGGING))
14905 wrel--;
14906
14907 continue;
14908 }
14909
14910 if (bfd_link_relocatable (info))
14911 goto copy_reloc;
14912
14913 if (h != NULL && &h->elf == htab->elf.hgot)
14914 {
14915 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14916 sec = bfd_abs_section_ptr;
14917 unresolved_reloc = FALSE;
14918 }
14919
14920 /* TLS optimizations. Replace instruction sequences and relocs
14921 based on information we collected in tls_optimize. We edit
14922 RELOCS so that --emit-relocs will output something sensible
14923 for the final instruction stream. */
14924 tls_mask = 0;
14925 tls_gd = 0;
14926 toc_symndx = 0;
14927 if (h != NULL)
14928 tls_mask = h->tls_mask;
14929 else if (local_got_ents != NULL)
14930 {
14931 struct plt_entry **local_plt = (struct plt_entry **)
14932 (local_got_ents + symtab_hdr->sh_info);
14933 unsigned char *lgot_masks = (unsigned char *)
14934 (local_plt + symtab_hdr->sh_info);
14935 tls_mask = lgot_masks[r_symndx];
14936 }
14937 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
14938 && (r_type == R_PPC64_TLS
14939 || r_type == R_PPC64_TLSGD
14940 || r_type == R_PPC64_TLSLD))
14941 {
14942 /* Check for toc tls entries. */
14943 unsigned char *toc_tls;
14944
14945 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14946 &local_syms, rel, input_bfd))
14947 return FALSE;
14948
14949 if (toc_tls)
14950 tls_mask = *toc_tls;
14951 }
14952
14953 /* Check that tls relocs are used with tls syms, and non-tls
14954 relocs are used with non-tls syms. */
14955 if (r_symndx != STN_UNDEF
14956 && r_type != R_PPC64_NONE
14957 && (h == NULL
14958 || h->elf.root.type == bfd_link_hash_defined
14959 || h->elf.root.type == bfd_link_hash_defweak)
14960 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
14961 {
14962 if ((tls_mask & TLS_TLS) != 0
14963 && (r_type == R_PPC64_TLS
14964 || r_type == R_PPC64_TLSGD
14965 || r_type == R_PPC64_TLSLD))
14966 /* R_PPC64_TLS is OK against a symbol in the TOC. */
14967 ;
14968 else
14969 info->callbacks->einfo
14970 (!IS_PPC64_TLS_RELOC (r_type)
14971 /* xgettext:c-format */
14972 ? _("%H: %s used with TLS symbol `%pT'\n")
14973 /* xgettext:c-format */
14974 : _("%H: %s used with non-TLS symbol `%pT'\n"),
14975 input_bfd, input_section, rel->r_offset,
14976 ppc64_elf_howto_table[r_type]->name,
14977 sym_name);
14978 }
14979
14980 /* Ensure reloc mapping code below stays sane. */
14981 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
14982 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
14983 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
14984 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
14985 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
14986 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
14987 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
14988 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
14989 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
14990 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
14991 abort ();
14992
14993 switch (r_type)
14994 {
14995 default:
14996 break;
14997
14998 case R_PPC64_LO_DS_OPT:
14999 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
15000 if ((insn & (0x3fu << 26)) != 58u << 26)
15001 abort ();
15002 insn += (14u << 26) - (58u << 26);
15003 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
15004 r_type = R_PPC64_TOC16_LO;
15005 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15006 break;
15007
15008 case R_PPC64_TOC16:
15009 case R_PPC64_TOC16_LO:
15010 case R_PPC64_TOC16_DS:
15011 case R_PPC64_TOC16_LO_DS:
15012 {
15013 /* Check for toc tls entries. */
15014 unsigned char *toc_tls;
15015 int retval;
15016
15017 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
15018 &local_syms, rel, input_bfd);
15019 if (retval == 0)
15020 return FALSE;
15021
15022 if (toc_tls)
15023 {
15024 tls_mask = *toc_tls;
15025 if (r_type == R_PPC64_TOC16_DS
15026 || r_type == R_PPC64_TOC16_LO_DS)
15027 {
15028 if ((tls_mask & TLS_TLS) != 0
15029 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
15030 goto toctprel;
15031 }
15032 else
15033 {
15034 /* If we found a GD reloc pair, then we might be
15035 doing a GD->IE transition. */
15036 if (retval == 2)
15037 {
15038 tls_gd = TLS_GDIE;
15039 if ((tls_mask & TLS_TLS) != 0
15040 && (tls_mask & TLS_GD) == 0)
15041 goto tls_ldgd_opt;
15042 }
15043 else if (retval == 3)
15044 {
15045 if ((tls_mask & TLS_TLS) != 0
15046 && (tls_mask & TLS_LD) == 0)
15047 goto tls_ldgd_opt;
15048 }
15049 }
15050 }
15051 }
15052 break;
15053
15054 case R_PPC64_GOT_TPREL16_HI:
15055 case R_PPC64_GOT_TPREL16_HA:
15056 if ((tls_mask & TLS_TLS) != 0
15057 && (tls_mask & TLS_TPREL) == 0)
15058 {
15059 rel->r_offset -= d_offset;
15060 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15061 r_type = R_PPC64_NONE;
15062 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15063 }
15064 break;
15065
15066 case R_PPC64_GOT_TPREL16_DS:
15067 case R_PPC64_GOT_TPREL16_LO_DS:
15068 if ((tls_mask & TLS_TLS) != 0
15069 && (tls_mask & TLS_TPREL) == 0)
15070 {
15071 toctprel:
15072 insn = bfd_get_32 (input_bfd,
15073 contents + rel->r_offset - d_offset);
15074 insn &= 31 << 21;
15075 insn |= 0x3c0d0000; /* addis 0,13,0 */
15076 bfd_put_32 (input_bfd, insn,
15077 contents + rel->r_offset - d_offset);
15078 r_type = R_PPC64_TPREL16_HA;
15079 if (toc_symndx != 0)
15080 {
15081 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15082 rel->r_addend = toc_addend;
15083 /* We changed the symbol. Start over in order to
15084 get h, sym, sec etc. right. */
15085 goto again;
15086 }
15087 else
15088 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15089 }
15090 break;
15091
15092 case R_PPC64_GOT_TPREL34:
15093 if ((tls_mask & TLS_TLS) != 0
15094 && (tls_mask & TLS_TPREL) == 0)
15095 {
15096 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
15097 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15098 pinsn <<= 32;
15099 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15100 pinsn += ((2ULL << 56) + (-1ULL << 52)
15101 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
15102 bfd_put_32 (input_bfd, pinsn >> 32,
15103 contents + rel->r_offset);
15104 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15105 contents + rel->r_offset + 4);
15106 r_type = R_PPC64_TPREL34;
15107 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15108 }
15109 break;
15110
15111 case R_PPC64_TLS:
15112 if ((tls_mask & TLS_TLS) != 0
15113 && (tls_mask & TLS_TPREL) == 0)
15114 {
15115 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15116 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
15117 if (insn == 0)
15118 break;
15119 if ((rel->r_offset & 3) == 0)
15120 {
15121 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15122 /* Was PPC64_TLS which sits on insn boundary, now
15123 PPC64_TPREL16_LO which is at low-order half-word. */
15124 rel->r_offset += d_offset;
15125 r_type = R_PPC64_TPREL16_LO;
15126 if (toc_symndx != 0)
15127 {
15128 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
15129 rel->r_addend = toc_addend;
15130 /* We changed the symbol. Start over in order to
15131 get h, sym, sec etc. right. */
15132 goto again;
15133 }
15134 else
15135 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15136 }
15137 else if ((rel->r_offset & 3) == 1)
15138 {
15139 /* For pcrel IE to LE we already have the full
15140 offset and thus don't need an addi here. A nop
15141 or mr will do. */
15142 if ((insn & (0x3fu << 26)) == 14 << 26)
15143 {
15144 /* Extract regs from addi rt,ra,si. */
15145 unsigned int rt = (insn >> 21) & 0x1f;
15146 unsigned int ra = (insn >> 16) & 0x1f;
15147 if (rt == ra)
15148 insn = NOP;
15149 else
15150 {
15151 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
15152 insn = (rt << 16) | (ra << 21) | (ra << 11);
15153 insn |= (31u << 26) | (444u << 1);
15154 }
15155 }
15156 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
15157 }
15158 }
15159 break;
15160
15161 case R_PPC64_GOT_TLSGD16_HI:
15162 case R_PPC64_GOT_TLSGD16_HA:
15163 tls_gd = TLS_GDIE;
15164 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15165 goto tls_gdld_hi;
15166 break;
15167
15168 case R_PPC64_GOT_TLSLD16_HI:
15169 case R_PPC64_GOT_TLSLD16_HA:
15170 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15171 {
15172 tls_gdld_hi:
15173 if ((tls_mask & tls_gd) != 0)
15174 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
15175 + R_PPC64_GOT_TPREL16_DS);
15176 else
15177 {
15178 rel->r_offset -= d_offset;
15179 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15180 r_type = R_PPC64_NONE;
15181 }
15182 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15183 }
15184 break;
15185
15186 case R_PPC64_GOT_TLSGD16:
15187 case R_PPC64_GOT_TLSGD16_LO:
15188 tls_gd = TLS_GDIE;
15189 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15190 goto tls_ldgd_opt;
15191 break;
15192
15193 case R_PPC64_GOT_TLSLD16:
15194 case R_PPC64_GOT_TLSLD16_LO:
15195 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15196 {
15197 unsigned int insn1, insn2;
15198
15199 tls_ldgd_opt:
15200 offset = (bfd_vma) -1;
15201 /* If not using the newer R_PPC64_TLSGD/LD to mark
15202 __tls_get_addr calls, we must trust that the call
15203 stays with its arg setup insns, ie. that the next
15204 reloc is the __tls_get_addr call associated with
15205 the current reloc. Edit both insns. */
15206 if (input_section->nomark_tls_get_addr
15207 && rel + 1 < relend
15208 && branch_reloc_hash_match (input_bfd, rel + 1,
15209 htab->tls_get_addr_fd,
15210 htab->tga_desc_fd,
15211 htab->tls_get_addr,
15212 htab->tga_desc))
15213 offset = rel[1].r_offset;
15214 /* We read the low GOT_TLS (or TOC16) insn because we
15215 need to keep the destination reg. It may be
15216 something other than the usual r3, and moved to r3
15217 before the call by intervening code. */
15218 insn1 = bfd_get_32 (input_bfd,
15219 contents + rel->r_offset - d_offset);
15220 if ((tls_mask & tls_gd) != 0)
15221 {
15222 /* IE */
15223 insn1 &= (0x1f << 21) | (0x1f << 16);
15224 insn1 |= 58u << 26; /* ld */
15225 insn2 = 0x7c636a14; /* add 3,3,13 */
15226 if (offset != (bfd_vma) -1)
15227 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15228 if (r_type == R_PPC64_TOC16
15229 || r_type == R_PPC64_TOC16_LO)
15230 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
15231 else
15232 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
15233 + R_PPC64_GOT_TPREL16_DS);
15234 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15235 }
15236 else
15237 {
15238 /* LE */
15239 insn1 &= 0x1f << 21;
15240 insn1 |= 0x3c0d0000; /* addis r,13,0 */
15241 insn2 = 0x38630000; /* addi 3,3,0 */
15242 if (tls_gd == 0)
15243 {
15244 /* Was an LD reloc. */
15245 r_symndx = STN_UNDEF;
15246 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15247 }
15248 else if (toc_symndx != 0)
15249 {
15250 r_symndx = toc_symndx;
15251 rel->r_addend = toc_addend;
15252 }
15253 r_type = R_PPC64_TPREL16_HA;
15254 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15255 if (offset != (bfd_vma) -1)
15256 {
15257 rel[1].r_info = ELF64_R_INFO (r_symndx,
15258 R_PPC64_TPREL16_LO);
15259 rel[1].r_offset = offset + d_offset;
15260 rel[1].r_addend = rel->r_addend;
15261 }
15262 }
15263 bfd_put_32 (input_bfd, insn1,
15264 contents + rel->r_offset - d_offset);
15265 if (offset != (bfd_vma) -1)
15266 {
15267 bfd_put_32 (input_bfd, insn2, contents + offset);
15268 if (offset + 8 <= input_section->size)
15269 {
15270 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15271 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
15272 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
15273 }
15274 }
15275 if ((tls_mask & tls_gd) == 0
15276 && (tls_gd == 0 || toc_symndx != 0))
15277 {
15278 /* We changed the symbol. Start over in order
15279 to get h, sym, sec etc. right. */
15280 goto again;
15281 }
15282 }
15283 break;
15284
15285 case R_PPC64_GOT_TLSGD34:
15286 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
15287 {
15288 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15289 pinsn <<= 32;
15290 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15291 if ((tls_mask & TLS_GDIE) != 0)
15292 {
15293 /* IE, pla -> pld */
15294 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
15295 r_type = R_PPC64_GOT_TPREL34;
15296 }
15297 else
15298 {
15299 /* LE, pla pcrel -> paddi r13 */
15300 pinsn += (-1ULL << 52) + (13ULL << 16);
15301 r_type = R_PPC64_TPREL34;
15302 }
15303 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15304 bfd_put_32 (input_bfd, pinsn >> 32,
15305 contents + rel->r_offset);
15306 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15307 contents + rel->r_offset + 4);
15308 }
15309 break;
15310
15311 case R_PPC64_GOT_TLSLD34:
15312 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
15313 {
15314 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15315 pinsn <<= 32;
15316 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15317 pinsn += (-1ULL << 52) + (13ULL << 16);
15318 bfd_put_32 (input_bfd, pinsn >> 32,
15319 contents + rel->r_offset);
15320 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
15321 contents + rel->r_offset + 4);
15322 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15323 r_symndx = STN_UNDEF;
15324 r_type = R_PPC64_TPREL34;
15325 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15326 goto again;
15327 }
15328 break;
15329
15330 case R_PPC64_TLSGD:
15331 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
15332 && rel + 1 < relend)
15333 {
15334 unsigned int insn2;
15335 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15336
15337 offset = rel->r_offset;
15338 if (is_plt_seq_reloc (r_type1))
15339 {
15340 bfd_put_32 (output_bfd, NOP, contents + offset);
15341 if (r_type1 == R_PPC64_PLT_PCREL34
15342 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15343 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15344 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15345 break;
15346 }
15347
15348 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15349 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15350
15351 if ((tls_mask & TLS_GDIE) != 0)
15352 {
15353 /* IE */
15354 r_type = R_PPC64_NONE;
15355 insn2 = 0x7c636a14; /* add 3,3,13 */
15356 }
15357 else
15358 {
15359 /* LE */
15360 if (toc_symndx != 0)
15361 {
15362 r_symndx = toc_symndx;
15363 rel->r_addend = toc_addend;
15364 }
15365 if (r_type1 == R_PPC64_REL24_NOTOC
15366 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15367 {
15368 r_type = R_PPC64_NONE;
15369 insn2 = NOP;
15370 }
15371 else
15372 {
15373 rel->r_offset = offset + d_offset;
15374 r_type = R_PPC64_TPREL16_LO;
15375 insn2 = 0x38630000; /* addi 3,3,0 */
15376 }
15377 }
15378 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15379 /* Zap the reloc on the _tls_get_addr call too. */
15380 BFD_ASSERT (offset == rel[1].r_offset);
15381 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15382 bfd_put_32 (input_bfd, insn2, contents + offset);
15383 if ((tls_mask & TLS_GDIE) == 0
15384 && toc_symndx != 0
15385 && r_type != R_PPC64_NONE)
15386 goto again;
15387 }
15388 break;
15389
15390 case R_PPC64_TLSLD:
15391 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
15392 && rel + 1 < relend)
15393 {
15394 unsigned int insn2;
15395 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
15396
15397 offset = rel->r_offset;
15398 if (is_plt_seq_reloc (r_type1))
15399 {
15400 bfd_put_32 (output_bfd, NOP, contents + offset);
15401 if (r_type1 == R_PPC64_PLT_PCREL34
15402 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
15403 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15404 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15405 break;
15406 }
15407
15408 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
15409 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
15410
15411 if (r_type1 == R_PPC64_REL24_NOTOC
15412 || r_type1 == R_PPC64_PLTCALL_NOTOC)
15413 {
15414 r_type = R_PPC64_NONE;
15415 insn2 = NOP;
15416 }
15417 else
15418 {
15419 rel->r_offset = offset + d_offset;
15420 r_symndx = STN_UNDEF;
15421 r_type = R_PPC64_TPREL16_LO;
15422 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
15423 insn2 = 0x38630000; /* addi 3,3,0 */
15424 }
15425 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15426 /* Zap the reloc on the _tls_get_addr call too. */
15427 BFD_ASSERT (offset == rel[1].r_offset);
15428 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
15429 bfd_put_32 (input_bfd, insn2, contents + offset);
15430 if (r_type != R_PPC64_NONE)
15431 goto again;
15432 }
15433 break;
15434
15435 case R_PPC64_DTPMOD64:
15436 if (rel + 1 < relend
15437 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
15438 && rel[1].r_offset == rel->r_offset + 8)
15439 {
15440 if ((tls_mask & TLS_GD) == 0)
15441 {
15442 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
15443 if ((tls_mask & TLS_GDIE) != 0)
15444 r_type = R_PPC64_TPREL64;
15445 else
15446 {
15447 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15448 r_type = R_PPC64_NONE;
15449 }
15450 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15451 }
15452 }
15453 else
15454 {
15455 if ((tls_mask & TLS_LD) == 0)
15456 {
15457 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
15458 r_type = R_PPC64_NONE;
15459 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15460 }
15461 }
15462 break;
15463
15464 case R_PPC64_TPREL64:
15465 if ((tls_mask & TLS_TPREL) == 0)
15466 {
15467 r_type = R_PPC64_NONE;
15468 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15469 }
15470 break;
15471
15472 case R_PPC64_ENTRY:
15473 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
15474 if (!bfd_link_pic (info)
15475 && !info->traditional_format
15476 && relocation + 0x80008000 <= 0xffffffff)
15477 {
15478 unsigned int insn1, insn2;
15479
15480 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15481 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15482 if ((insn1 & ~0xfffc) == LD_R2_0R12
15483 && insn2 == ADD_R2_R2_R12)
15484 {
15485 bfd_put_32 (input_bfd,
15486 LIS_R2 + PPC_HA (relocation),
15487 contents + rel->r_offset);
15488 bfd_put_32 (input_bfd,
15489 ADDI_R2_R2 + PPC_LO (relocation),
15490 contents + rel->r_offset + 4);
15491 }
15492 }
15493 else
15494 {
15495 relocation -= (rel->r_offset
15496 + input_section->output_offset
15497 + input_section->output_section->vma);
15498 if (relocation + 0x80008000 <= 0xffffffff)
15499 {
15500 unsigned int insn1, insn2;
15501
15502 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
15503 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
15504 if ((insn1 & ~0xfffc) == LD_R2_0R12
15505 && insn2 == ADD_R2_R2_R12)
15506 {
15507 bfd_put_32 (input_bfd,
15508 ADDIS_R2_R12 + PPC_HA (relocation),
15509 contents + rel->r_offset);
15510 bfd_put_32 (input_bfd,
15511 ADDI_R2_R2 + PPC_LO (relocation),
15512 contents + rel->r_offset + 4);
15513 }
15514 }
15515 }
15516 break;
15517
15518 case R_PPC64_REL16_HA:
15519 /* If we are generating a non-PIC executable, edit
15520 . 0: addis 2,12,.TOC.-0b@ha
15521 . addi 2,2,.TOC.-0b@l
15522 used by ELFv2 global entry points to set up r2, to
15523 . lis 2,.TOC.@ha
15524 . addi 2,2,.TOC.@l
15525 if .TOC. is in range. */
15526 if (!bfd_link_pic (info)
15527 && !info->traditional_format
15528 && !htab->opd_abi
15529 && rel->r_addend == d_offset
15530 && h != NULL && &h->elf == htab->elf.hgot
15531 && rel + 1 < relend
15532 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
15533 && rel[1].r_offset == rel->r_offset + 4
15534 && rel[1].r_addend == rel->r_addend + 4
15535 && relocation + 0x80008000 <= 0xffffffff)
15536 {
15537 unsigned int insn1, insn2;
15538 offset = rel->r_offset - d_offset;
15539 insn1 = bfd_get_32 (input_bfd, contents + offset);
15540 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
15541 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
15542 && (insn2 & 0xffff0000) == ADDI_R2_R2)
15543 {
15544 r_type = R_PPC64_ADDR16_HA;
15545 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15546 rel->r_addend -= d_offset;
15547 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
15548 rel[1].r_addend -= d_offset + 4;
15549 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
15550 }
15551 }
15552 break;
15553 }
15554
15555 /* Handle other relocations that tweak non-addend part of insn. */
15556 insn = 0;
15557 max_br_offset = 1 << 25;
15558 addend = rel->r_addend;
15559 reloc_dest = DEST_NORMAL;
15560 switch (r_type)
15561 {
15562 default:
15563 break;
15564
15565 case R_PPC64_TOCSAVE:
15566 if (relocation + addend == (rel->r_offset
15567 + input_section->output_offset
15568 + input_section->output_section->vma)
15569 && tocsave_find (htab, NO_INSERT,
15570 &local_syms, rel, input_bfd))
15571 {
15572 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15573 if (insn == NOP
15574 || insn == CROR_151515 || insn == CROR_313131)
15575 bfd_put_32 (input_bfd,
15576 STD_R2_0R1 + STK_TOC (htab),
15577 contents + rel->r_offset);
15578 }
15579 break;
15580
15581 /* Branch taken prediction relocations. */
15582 case R_PPC64_ADDR14_BRTAKEN:
15583 case R_PPC64_REL14_BRTAKEN:
15584 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15585 /* Fall through. */
15586
15587 /* Branch not taken prediction relocations. */
15588 case R_PPC64_ADDR14_BRNTAKEN:
15589 case R_PPC64_REL14_BRNTAKEN:
15590 insn |= bfd_get_32 (input_bfd,
15591 contents + rel->r_offset) & ~(0x01 << 21);
15592 /* Fall through. */
15593
15594 case R_PPC64_REL14:
15595 max_br_offset = 1 << 15;
15596 /* Fall through. */
15597
15598 case R_PPC64_REL24:
15599 case R_PPC64_REL24_NOTOC:
15600 case R_PPC64_PLTCALL:
15601 case R_PPC64_PLTCALL_NOTOC:
15602 /* Calls to functions with a different TOC, such as calls to
15603 shared objects, need to alter the TOC pointer. This is
15604 done using a linkage stub. A REL24 branching to these
15605 linkage stubs needs to be followed by a nop, as the nop
15606 will be replaced with an instruction to restore the TOC
15607 base pointer. */
15608 fdh = h;
15609 if (h != NULL
15610 && h->oh != NULL
15611 && h->oh->is_func_descriptor)
15612 fdh = ppc_follow_link (h->oh);
15613 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15614 htab);
15615 if ((r_type == R_PPC64_PLTCALL
15616 || r_type == R_PPC64_PLTCALL_NOTOC)
15617 && stub_entry != NULL
15618 && stub_entry->stub_type >= ppc_stub_plt_call
15619 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15620 stub_entry = NULL;
15621
15622 if (stub_entry != NULL
15623 && ((stub_entry->stub_type >= ppc_stub_plt_call
15624 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15625 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15626 || stub_entry->stub_type == ppc_stub_plt_branch_both
15627 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15628 || stub_entry->stub_type == ppc_stub_long_branch_both))
15629 {
15630 bfd_boolean can_plt_call = FALSE;
15631
15632 if (stub_entry->stub_type == ppc_stub_plt_call
15633 && !htab->opd_abi
15634 && htab->params->plt_localentry0 != 0
15635 && is_elfv2_localentry0 (&h->elf))
15636 {
15637 /* The function doesn't use or change r2. */
15638 can_plt_call = TRUE;
15639 }
15640 else if (r_type == R_PPC64_REL24_NOTOC)
15641 {
15642 /* NOTOC calls don't need to restore r2. */
15643 can_plt_call = TRUE;
15644 }
15645
15646 /* All of these stubs may modify r2, so there must be a
15647 branch and link followed by a nop. The nop is
15648 replaced by an insn to restore r2. */
15649 else if (rel->r_offset + 8 <= input_section->size)
15650 {
15651 unsigned long br;
15652
15653 br = bfd_get_32 (input_bfd,
15654 contents + rel->r_offset);
15655 if ((br & 1) != 0)
15656 {
15657 unsigned long nop;
15658
15659 nop = bfd_get_32 (input_bfd,
15660 contents + rel->r_offset + 4);
15661 if (nop == LD_R2_0R1 + STK_TOC (htab))
15662 can_plt_call = TRUE;
15663 else if (nop == NOP
15664 || nop == CROR_151515
15665 || nop == CROR_313131)
15666 {
15667 if (h != NULL
15668 && is_tls_get_addr (&h->elf, htab)
15669 && htab->params->tls_get_addr_opt)
15670 {
15671 /* Special stub used, leave nop alone. */
15672 }
15673 else
15674 bfd_put_32 (input_bfd,
15675 LD_R2_0R1 + STK_TOC (htab),
15676 contents + rel->r_offset + 4);
15677 can_plt_call = TRUE;
15678 }
15679 }
15680 }
15681
15682 if (!can_plt_call && h != NULL)
15683 {
15684 const char *name = h->elf.root.root.string;
15685
15686 if (*name == '.')
15687 ++name;
15688
15689 if (strncmp (name, "__libc_start_main", 17) == 0
15690 && (name[17] == 0 || name[17] == '@'))
15691 {
15692 /* Allow crt1 branch to go via a toc adjusting
15693 stub. Other calls that never return could do
15694 the same, if we could detect such. */
15695 can_plt_call = TRUE;
15696 }
15697 }
15698
15699 if (!can_plt_call)
15700 {
15701 /* g++ as of 20130507 emits self-calls without a
15702 following nop. This is arguably wrong since we
15703 have conflicting information. On the one hand a
15704 global symbol and on the other a local call
15705 sequence, but don't error for this special case.
15706 It isn't possible to cheaply verify we have
15707 exactly such a call. Allow all calls to the same
15708 section. */
15709 asection *code_sec = sec;
15710
15711 if (get_opd_info (sec) != NULL)
15712 {
15713 bfd_vma off = (relocation + addend
15714 - sec->output_section->vma
15715 - sec->output_offset);
15716
15717 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
15718 }
15719 if (code_sec == input_section)
15720 can_plt_call = TRUE;
15721 }
15722
15723 if (!can_plt_call)
15724 {
15725 if (stub_entry->stub_type >= ppc_stub_plt_call
15726 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15727 info->callbacks->einfo
15728 /* xgettext:c-format */
15729 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15730 "(plt call stub)\n"),
15731 input_bfd, input_section, rel->r_offset, sym_name);
15732 else
15733 info->callbacks->einfo
15734 /* xgettext:c-format */
15735 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15736 "(toc save/adjust stub)\n"),
15737 input_bfd, input_section, rel->r_offset, sym_name);
15738
15739 bfd_set_error (bfd_error_bad_value);
15740 ret = FALSE;
15741 }
15742
15743 if (can_plt_call
15744 && stub_entry->stub_type >= ppc_stub_plt_call
15745 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15746 unresolved_reloc = FALSE;
15747 }
15748
15749 if ((stub_entry == NULL
15750 || stub_entry->stub_type == ppc_stub_long_branch
15751 || stub_entry->stub_type == ppc_stub_plt_branch)
15752 && get_opd_info (sec) != NULL)
15753 {
15754 /* The branch destination is the value of the opd entry. */
15755 bfd_vma off = (relocation + addend
15756 - sec->output_section->vma
15757 - sec->output_offset);
15758 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15759 if (dest != (bfd_vma) -1)
15760 {
15761 relocation = dest;
15762 addend = 0;
15763 reloc_dest = DEST_OPD;
15764 }
15765 }
15766
15767 /* If the branch is out of reach we ought to have a long
15768 branch stub. */
15769 from = (rel->r_offset
15770 + input_section->output_offset
15771 + input_section->output_section->vma);
15772
15773 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15774 ? fdh->elf.other
15775 : sym->st_other);
15776
15777 if (stub_entry != NULL
15778 && (stub_entry->stub_type == ppc_stub_long_branch
15779 || stub_entry->stub_type == ppc_stub_plt_branch)
15780 && (r_type == R_PPC64_ADDR14_BRTAKEN
15781 || r_type == R_PPC64_ADDR14_BRNTAKEN
15782 || (relocation + addend - from + max_br_offset
15783 < 2 * max_br_offset)))
15784 /* Don't use the stub if this branch is in range. */
15785 stub_entry = NULL;
15786
15787 if (stub_entry != NULL
15788 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15789 || stub_entry->stub_type == ppc_stub_long_branch_both
15790 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15791 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15792 && (r_type != R_PPC64_REL24_NOTOC
15793 || ((fdh ? fdh->elf.other : sym->st_other)
15794 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15795 && (relocation + addend - from + max_br_offset
15796 < 2 * max_br_offset))
15797 stub_entry = NULL;
15798
15799 if (stub_entry != NULL
15800 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15801 || stub_entry->stub_type == ppc_stub_long_branch_both
15802 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15803 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15804 && r_type == R_PPC64_REL24_NOTOC
15805 && (relocation + addend - from + max_br_offset
15806 < 2 * max_br_offset))
15807 stub_entry = NULL;
15808
15809 if (stub_entry != NULL)
15810 {
15811 /* Munge up the value and addend so that we call the stub
15812 rather than the procedure directly. */
15813 asection *stub_sec = stub_entry->group->stub_sec;
15814
15815 if (stub_entry->stub_type == ppc_stub_save_res)
15816 relocation += (stub_sec->output_offset
15817 + stub_sec->output_section->vma
15818 + stub_sec->size - htab->sfpr->size
15819 - htab->sfpr->output_offset
15820 - htab->sfpr->output_section->vma);
15821 else
15822 relocation = (stub_entry->stub_offset
15823 + stub_sec->output_offset
15824 + stub_sec->output_section->vma);
15825 addend = 0;
15826 reloc_dest = DEST_STUB;
15827
15828 if (((stub_entry->stub_type == ppc_stub_plt_call
15829 && ALWAYS_EMIT_R2SAVE)
15830 || stub_entry->stub_type == ppc_stub_plt_call_r2save
15831 || stub_entry->stub_type == ppc_stub_plt_call_both)
15832 && !(h != NULL
15833 && is_tls_get_addr (&h->elf, htab)
15834 && htab->params->tls_get_addr_opt)
15835 && rel + 1 < relend
15836 && rel[1].r_offset == rel->r_offset + 4
15837 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
15838 relocation += 4;
15839 else if ((stub_entry->stub_type == ppc_stub_long_branch_both
15840 || stub_entry->stub_type == ppc_stub_plt_branch_both
15841 || stub_entry->stub_type == ppc_stub_plt_call_both)
15842 && r_type == R_PPC64_REL24_NOTOC)
15843 relocation += 4;
15844
15845 if (r_type == R_PPC64_REL24_NOTOC
15846 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
15847 || stub_entry->stub_type == ppc_stub_plt_call_both))
15848 htab->notoc_plt = 1;
15849 }
15850
15851 if (insn != 0)
15852 {
15853 if (is_isa_v2)
15854 {
15855 /* Set 'a' bit. This is 0b00010 in BO field for branch
15856 on CR(BI) insns (BO == 001at or 011at), and 0b01000
15857 for branch on CTR insns (BO == 1a00t or 1a01t). */
15858 if ((insn & (0x14 << 21)) == (0x04 << 21))
15859 insn |= 0x02 << 21;
15860 else if ((insn & (0x14 << 21)) == (0x10 << 21))
15861 insn |= 0x08 << 21;
15862 else
15863 break;
15864 }
15865 else
15866 {
15867 /* Invert 'y' bit if not the default. */
15868 if ((bfd_signed_vma) (relocation + addend - from) < 0)
15869 insn ^= 0x01 << 21;
15870 }
15871
15872 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15873 }
15874
15875 /* NOP out calls to undefined weak functions.
15876 We can thus call a weak function without first
15877 checking whether the function is defined. */
15878 else if (h != NULL
15879 && h->elf.root.type == bfd_link_hash_undefweak
15880 && h->elf.dynindx == -1
15881 && (r_type == R_PPC64_REL24
15882 || r_type == R_PPC64_REL24_NOTOC)
15883 && relocation == 0
15884 && addend == 0)
15885 {
15886 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15887 goto copy_reloc;
15888 }
15889 break;
15890
15891 case R_PPC64_GOT16_DS:
15892 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
15893 break;
15894 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15895 if (relocation + addend - from + 0x8000 < 0x10000
15896 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15897 {
15898 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15899 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
15900 {
15901 insn += (14u << 26) - (58u << 26);
15902 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15903 r_type = R_PPC64_TOC16;
15904 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15905 }
15906 }
15907 break;
15908
15909 case R_PPC64_GOT16_LO_DS:
15910 case R_PPC64_GOT16_HA:
15911 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
15912 break;
15913 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15914 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
15915 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15916 {
15917 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15918 if ((insn & (0x3fu << 26 | 0x3)) == 58u << 26 /* ld */)
15919 {
15920 insn += (14u << 26) - (58u << 26);
15921 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15922 r_type = R_PPC64_TOC16_LO;
15923 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15924 }
15925 else if ((insn & (0x3fu << 26)) == 15u << 26 /* addis */)
15926 {
15927 r_type = R_PPC64_TOC16_HA;
15928 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15929 }
15930 }
15931 break;
15932
15933 case R_PPC64_GOT_PCREL34:
15934 if ((h ? h->elf.type : ELF_ST_TYPE (sym->st_info)) == STT_GNU_IFUNC)
15935 break;
15936 from = (rel->r_offset
15937 + input_section->output_section->vma
15938 + input_section->output_offset);
15939 if (relocation - from + (1ULL << 33) < 1ULL << 34
15940 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15941 {
15942 offset = rel->r_offset;
15943 pinsn = bfd_get_32 (input_bfd, contents + offset);
15944 pinsn <<= 32;
15945 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15946 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15947 == ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
15948 {
15949 /* Replace with paddi. */
15950 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
15951 r_type = R_PPC64_PCREL34;
15952 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15953 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
15954 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
15955 goto pcrelopt;
15956 }
15957 }
15958 break;
15959
15960 case R_PPC64_PCREL34:
15961 if (SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15962 {
15963 offset = rel->r_offset;
15964 pinsn = bfd_get_32 (input_bfd, contents + offset);
15965 pinsn <<= 32;
15966 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15967 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15968 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
15969 | (14ULL << 26) /* paddi */))
15970 {
15971 pcrelopt:
15972 if (rel + 1 < relend
15973 && rel[1].r_offset == offset
15974 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT))
15975 {
15976 bfd_vma off2 = rel[1].r_addend;
15977 if (off2 == 0)
15978 /* zero means next insn. */
15979 off2 = 8;
15980 off2 += offset;
15981 if (off2 + 4 <= input_section->size)
15982 {
15983 uint64_t pinsn2;
15984 bfd_signed_vma addend_off;
15985 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
15986 pinsn2 <<= 32;
15987 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
15988 {
15989 if (off2 + 8 > input_section->size)
15990 break;
15991 pinsn2 |= bfd_get_32 (input_bfd,
15992 contents + off2 + 4);
15993 }
15994 if (xlate_pcrel_opt (&pinsn, &pinsn2, &addend_off))
15995 {
15996 addend += addend_off;
15997 rel->r_addend = addend;
15998 bfd_put_32 (input_bfd, pinsn >> 32,
15999 contents + offset);
16000 bfd_put_32 (input_bfd, pinsn,
16001 contents + offset + 4);
16002 bfd_put_32 (input_bfd, pinsn2 >> 32,
16003 contents + off2);
16004 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
16005 bfd_put_32 (input_bfd, pinsn2,
16006 contents + off2 + 4);
16007 }
16008 }
16009 }
16010 }
16011 }
16012 break;
16013 }
16014
16015 tls_type = 0;
16016 save_unresolved_reloc = unresolved_reloc;
16017 switch (r_type)
16018 {
16019 default:
16020 /* xgettext:c-format */
16021 _bfd_error_handler (_("%pB: %s unsupported"),
16022 input_bfd, ppc64_elf_howto_table[r_type]->name);
16023
16024 bfd_set_error (bfd_error_bad_value);
16025 ret = FALSE;
16026 goto copy_reloc;
16027
16028 case R_PPC64_NONE:
16029 case R_PPC64_TLS:
16030 case R_PPC64_TLSGD:
16031 case R_PPC64_TLSLD:
16032 case R_PPC64_TOCSAVE:
16033 case R_PPC64_GNU_VTINHERIT:
16034 case R_PPC64_GNU_VTENTRY:
16035 case R_PPC64_ENTRY:
16036 case R_PPC64_PCREL_OPT:
16037 goto copy_reloc;
16038
16039 /* GOT16 relocations. Like an ADDR16 using the symbol's
16040 address in the GOT as relocation value instead of the
16041 symbol's value itself. Also, create a GOT entry for the
16042 symbol and put the symbol value there. */
16043 case R_PPC64_GOT_TLSGD16:
16044 case R_PPC64_GOT_TLSGD16_LO:
16045 case R_PPC64_GOT_TLSGD16_HI:
16046 case R_PPC64_GOT_TLSGD16_HA:
16047 case R_PPC64_GOT_TLSGD34:
16048 tls_type = TLS_TLS | TLS_GD;
16049 goto dogot;
16050
16051 case R_PPC64_GOT_TLSLD16:
16052 case R_PPC64_GOT_TLSLD16_LO:
16053 case R_PPC64_GOT_TLSLD16_HI:
16054 case R_PPC64_GOT_TLSLD16_HA:
16055 case R_PPC64_GOT_TLSLD34:
16056 tls_type = TLS_TLS | TLS_LD;
16057 goto dogot;
16058
16059 case R_PPC64_GOT_TPREL16_DS:
16060 case R_PPC64_GOT_TPREL16_LO_DS:
16061 case R_PPC64_GOT_TPREL16_HI:
16062 case R_PPC64_GOT_TPREL16_HA:
16063 case R_PPC64_GOT_TPREL34:
16064 tls_type = TLS_TLS | TLS_TPREL;
16065 goto dogot;
16066
16067 case R_PPC64_GOT_DTPREL16_DS:
16068 case R_PPC64_GOT_DTPREL16_LO_DS:
16069 case R_PPC64_GOT_DTPREL16_HI:
16070 case R_PPC64_GOT_DTPREL16_HA:
16071 case R_PPC64_GOT_DTPREL34:
16072 tls_type = TLS_TLS | TLS_DTPREL;
16073 goto dogot;
16074
16075 case R_PPC64_GOT16:
16076 case R_PPC64_GOT16_LO:
16077 case R_PPC64_GOT16_HI:
16078 case R_PPC64_GOT16_HA:
16079 case R_PPC64_GOT16_DS:
16080 case R_PPC64_GOT16_LO_DS:
16081 case R_PPC64_GOT_PCREL34:
16082 dogot:
16083 {
16084 /* Relocation is to the entry for this symbol in the global
16085 offset table. */
16086 asection *got;
16087 bfd_vma *offp;
16088 bfd_vma off;
16089 unsigned long indx = 0;
16090 struct got_entry *ent;
16091
16092 if (tls_type == (TLS_TLS | TLS_LD)
16093 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
16094 ent = ppc64_tlsld_got (input_bfd);
16095 else
16096 {
16097 if (h != NULL)
16098 {
16099 if (!htab->elf.dynamic_sections_created
16100 || h->elf.dynindx == -1
16101 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16102 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16103 /* This is actually a static link, or it is a
16104 -Bsymbolic link and the symbol is defined
16105 locally, or the symbol was forced to be local
16106 because of a version file. */
16107 ;
16108 else
16109 {
16110 indx = h->elf.dynindx;
16111 unresolved_reloc = FALSE;
16112 }
16113 ent = h->elf.got.glist;
16114 }
16115 else
16116 {
16117 if (local_got_ents == NULL)
16118 abort ();
16119 ent = local_got_ents[r_symndx];
16120 }
16121
16122 for (; ent != NULL; ent = ent->next)
16123 if (ent->addend == orig_rel.r_addend
16124 && ent->owner == input_bfd
16125 && ent->tls_type == tls_type)
16126 break;
16127 }
16128
16129 if (ent == NULL)
16130 abort ();
16131 if (ent->is_indirect)
16132 ent = ent->got.ent;
16133 offp = &ent->got.offset;
16134 got = ppc64_elf_tdata (ent->owner)->got;
16135 if (got == NULL)
16136 abort ();
16137
16138 /* The offset must always be a multiple of 8. We use the
16139 least significant bit to record whether we have already
16140 processed this entry. */
16141 off = *offp;
16142 if ((off & 1) != 0)
16143 off &= ~1;
16144 else
16145 {
16146 /* Generate relocs for the dynamic linker, except in
16147 the case of TLSLD where we'll use one entry per
16148 module. */
16149 asection *relgot;
16150 bfd_boolean ifunc;
16151
16152 *offp = off | 1;
16153 relgot = NULL;
16154 ifunc = (h != NULL
16155 ? h->elf.type == STT_GNU_IFUNC
16156 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
16157 if (ifunc)
16158 {
16159 relgot = htab->elf.irelplt;
16160 if (indx == 0)
16161 htab->local_ifunc_resolver = 1;
16162 else if (is_static_defined (&h->elf))
16163 htab->maybe_local_ifunc_resolver = 1;
16164 }
16165 else if (indx != 0
16166 || (bfd_link_pic (info)
16167 && (h == NULL
16168 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
16169 && !(tls_type != 0
16170 && bfd_link_executable (info)
16171 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
16172 relgot = ppc64_elf_tdata (ent->owner)->relgot;
16173 if (relgot != NULL)
16174 {
16175 outrel.r_offset = (got->output_section->vma
16176 + got->output_offset
16177 + off);
16178 outrel.r_addend = orig_rel.r_addend;
16179 if (tls_type & (TLS_LD | TLS_GD))
16180 {
16181 outrel.r_addend = 0;
16182 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
16183 if (tls_type == (TLS_TLS | TLS_GD))
16184 {
16185 loc = relgot->contents;
16186 loc += (relgot->reloc_count++
16187 * sizeof (Elf64_External_Rela));
16188 bfd_elf64_swap_reloca_out (output_bfd,
16189 &outrel, loc);
16190 outrel.r_offset += 8;
16191 outrel.r_addend = orig_rel.r_addend;
16192 outrel.r_info
16193 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16194 }
16195 }
16196 else if (tls_type == (TLS_TLS | TLS_DTPREL))
16197 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
16198 else if (tls_type == (TLS_TLS | TLS_TPREL))
16199 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
16200 else if (indx != 0)
16201 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
16202 else
16203 {
16204 if (ifunc)
16205 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16206 else
16207 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16208
16209 /* Write the .got section contents for the sake
16210 of prelink. */
16211 loc = got->contents + off;
16212 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
16213 loc);
16214 }
16215
16216 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
16217 {
16218 outrel.r_addend += relocation;
16219 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
16220 {
16221 if (htab->elf.tls_sec == NULL)
16222 outrel.r_addend = 0;
16223 else
16224 outrel.r_addend -= htab->elf.tls_sec->vma;
16225 }
16226 }
16227 loc = relgot->contents;
16228 loc += (relgot->reloc_count++
16229 * sizeof (Elf64_External_Rela));
16230 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16231 }
16232
16233 /* Init the .got section contents here if we're not
16234 emitting a reloc. */
16235 else
16236 {
16237 relocation += orig_rel.r_addend;
16238 if (tls_type != 0)
16239 {
16240 if (htab->elf.tls_sec == NULL)
16241 relocation = 0;
16242 else
16243 {
16244 if (tls_type & TLS_LD)
16245 relocation = 0;
16246 else
16247 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
16248 if (tls_type & TLS_TPREL)
16249 relocation += DTP_OFFSET - TP_OFFSET;
16250 }
16251
16252 if (tls_type & (TLS_GD | TLS_LD))
16253 {
16254 bfd_put_64 (output_bfd, relocation,
16255 got->contents + off + 8);
16256 relocation = 1;
16257 }
16258 }
16259 bfd_put_64 (output_bfd, relocation,
16260 got->contents + off);
16261 }
16262 }
16263
16264 if (off >= (bfd_vma) -2)
16265 abort ();
16266
16267 relocation = got->output_section->vma + got->output_offset + off;
16268 addend = 0;
16269 if (!(r_type == R_PPC64_GOT_PCREL34
16270 || r_type == R_PPC64_GOT_TLSGD34
16271 || r_type == R_PPC64_GOT_TLSLD34
16272 || r_type == R_PPC64_GOT_TPREL34
16273 || r_type == R_PPC64_GOT_DTPREL34))
16274 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
16275 }
16276 break;
16277
16278 case R_PPC64_PLT16_HA:
16279 case R_PPC64_PLT16_HI:
16280 case R_PPC64_PLT16_LO:
16281 case R_PPC64_PLT16_LO_DS:
16282 case R_PPC64_PLT_PCREL34:
16283 case R_PPC64_PLT_PCREL34_NOTOC:
16284 case R_PPC64_PLT32:
16285 case R_PPC64_PLT64:
16286 case R_PPC64_PLTSEQ:
16287 case R_PPC64_PLTSEQ_NOTOC:
16288 case R_PPC64_PLTCALL:
16289 case R_PPC64_PLTCALL_NOTOC:
16290 /* Relocation is to the entry for this symbol in the
16291 procedure linkage table. */
16292 unresolved_reloc = TRUE;
16293 {
16294 struct plt_entry **plt_list = NULL;
16295 if (h != NULL)
16296 plt_list = &h->elf.plt.plist;
16297 else if (local_got_ents != NULL)
16298 {
16299 struct plt_entry **local_plt = (struct plt_entry **)
16300 (local_got_ents + symtab_hdr->sh_info);
16301 plt_list = local_plt + r_symndx;
16302 }
16303 if (plt_list)
16304 {
16305 struct plt_entry *ent;
16306
16307 for (ent = *plt_list; ent != NULL; ent = ent->next)
16308 if (ent->plt.offset != (bfd_vma) -1
16309 && ent->addend == orig_rel.r_addend)
16310 {
16311 asection *plt;
16312 bfd_vma got;
16313
16314 plt = htab->elf.splt;
16315 if (!htab->elf.dynamic_sections_created
16316 || h == NULL
16317 || h->elf.dynindx == -1)
16318 {
16319 if (h != NULL
16320 ? h->elf.type == STT_GNU_IFUNC
16321 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16322 plt = htab->elf.iplt;
16323 else
16324 plt = htab->pltlocal;
16325 }
16326 relocation = (plt->output_section->vma
16327 + plt->output_offset
16328 + ent->plt.offset);
16329 if (r_type == R_PPC64_PLT16_HA
16330 || r_type == R_PPC64_PLT16_HI
16331 || r_type == R_PPC64_PLT16_LO
16332 || r_type == R_PPC64_PLT16_LO_DS)
16333 {
16334 got = (elf_gp (output_bfd)
16335 + htab->sec_info[input_section->id].toc_off);
16336 relocation -= got;
16337 }
16338 addend = 0;
16339 unresolved_reloc = FALSE;
16340 break;
16341 }
16342 }
16343 }
16344 break;
16345
16346 case R_PPC64_TOC:
16347 /* Relocation value is TOC base. */
16348 relocation = TOCstart;
16349 if (r_symndx == STN_UNDEF)
16350 relocation += htab->sec_info[input_section->id].toc_off;
16351 else if (unresolved_reloc)
16352 ;
16353 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
16354 relocation += htab->sec_info[sec->id].toc_off;
16355 else
16356 unresolved_reloc = TRUE;
16357 goto dodyn;
16358
16359 /* TOC16 relocs. We want the offset relative to the TOC base,
16360 which is the address of the start of the TOC plus 0x8000.
16361 The TOC consists of sections .got, .toc, .tocbss, and .plt,
16362 in this order. */
16363 case R_PPC64_TOC16:
16364 case R_PPC64_TOC16_LO:
16365 case R_PPC64_TOC16_HI:
16366 case R_PPC64_TOC16_DS:
16367 case R_PPC64_TOC16_LO_DS:
16368 case R_PPC64_TOC16_HA:
16369 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
16370 if (h != NULL)
16371 goto dodyn;
16372 break;
16373
16374 /* Relocate against the beginning of the section. */
16375 case R_PPC64_SECTOFF:
16376 case R_PPC64_SECTOFF_LO:
16377 case R_PPC64_SECTOFF_HI:
16378 case R_PPC64_SECTOFF_DS:
16379 case R_PPC64_SECTOFF_LO_DS:
16380 case R_PPC64_SECTOFF_HA:
16381 if (sec != NULL)
16382 addend -= sec->output_section->vma;
16383 break;
16384
16385 case R_PPC64_REL16:
16386 case R_PPC64_REL16_LO:
16387 case R_PPC64_REL16_HI:
16388 case R_PPC64_REL16_HA:
16389 case R_PPC64_REL16_HIGH:
16390 case R_PPC64_REL16_HIGHA:
16391 case R_PPC64_REL16_HIGHER:
16392 case R_PPC64_REL16_HIGHERA:
16393 case R_PPC64_REL16_HIGHEST:
16394 case R_PPC64_REL16_HIGHESTA:
16395 case R_PPC64_REL16_HIGHER34:
16396 case R_PPC64_REL16_HIGHERA34:
16397 case R_PPC64_REL16_HIGHEST34:
16398 case R_PPC64_REL16_HIGHESTA34:
16399 case R_PPC64_REL16DX_HA:
16400 case R_PPC64_REL14:
16401 case R_PPC64_REL14_BRNTAKEN:
16402 case R_PPC64_REL14_BRTAKEN:
16403 case R_PPC64_REL24:
16404 case R_PPC64_REL24_NOTOC:
16405 case R_PPC64_PCREL34:
16406 case R_PPC64_PCREL28:
16407 break;
16408
16409 case R_PPC64_TPREL16:
16410 case R_PPC64_TPREL16_LO:
16411 case R_PPC64_TPREL16_HI:
16412 case R_PPC64_TPREL16_HA:
16413 case R_PPC64_TPREL16_DS:
16414 case R_PPC64_TPREL16_LO_DS:
16415 case R_PPC64_TPREL16_HIGH:
16416 case R_PPC64_TPREL16_HIGHA:
16417 case R_PPC64_TPREL16_HIGHER:
16418 case R_PPC64_TPREL16_HIGHERA:
16419 case R_PPC64_TPREL16_HIGHEST:
16420 case R_PPC64_TPREL16_HIGHESTA:
16421 case R_PPC64_TPREL34:
16422 if (h != NULL
16423 && h->elf.root.type == bfd_link_hash_undefweak
16424 && h->elf.dynindx == -1)
16425 {
16426 /* Make this relocation against an undefined weak symbol
16427 resolve to zero. This is really just a tweak, since
16428 code using weak externs ought to check that they are
16429 defined before using them. */
16430 bfd_byte *p = contents + rel->r_offset - d_offset;
16431
16432 insn = bfd_get_32 (input_bfd, p);
16433 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
16434 if (insn != 0)
16435 bfd_put_32 (input_bfd, insn, p);
16436 break;
16437 }
16438 if (htab->elf.tls_sec != NULL)
16439 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16440 /* The TPREL16 relocs shouldn't really be used in shared
16441 libs or with non-local symbols as that will result in
16442 DT_TEXTREL being set, but support them anyway. */
16443 goto dodyn;
16444
16445 case R_PPC64_DTPREL16:
16446 case R_PPC64_DTPREL16_LO:
16447 case R_PPC64_DTPREL16_HI:
16448 case R_PPC64_DTPREL16_HA:
16449 case R_PPC64_DTPREL16_DS:
16450 case R_PPC64_DTPREL16_LO_DS:
16451 case R_PPC64_DTPREL16_HIGH:
16452 case R_PPC64_DTPREL16_HIGHA:
16453 case R_PPC64_DTPREL16_HIGHER:
16454 case R_PPC64_DTPREL16_HIGHERA:
16455 case R_PPC64_DTPREL16_HIGHEST:
16456 case R_PPC64_DTPREL16_HIGHESTA:
16457 case R_PPC64_DTPREL34:
16458 if (htab->elf.tls_sec != NULL)
16459 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16460 break;
16461
16462 case R_PPC64_ADDR64_LOCAL:
16463 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
16464 ? h->elf.other
16465 : sym->st_other);
16466 break;
16467
16468 case R_PPC64_DTPMOD64:
16469 relocation = 1;
16470 addend = 0;
16471 goto dodyn;
16472
16473 case R_PPC64_TPREL64:
16474 if (htab->elf.tls_sec != NULL)
16475 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
16476 goto dodyn;
16477
16478 case R_PPC64_DTPREL64:
16479 if (htab->elf.tls_sec != NULL)
16480 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
16481 /* Fall through. */
16482
16483 /* Relocations that may need to be propagated if this is a
16484 dynamic object. */
16485 case R_PPC64_REL30:
16486 case R_PPC64_REL32:
16487 case R_PPC64_REL64:
16488 case R_PPC64_ADDR14:
16489 case R_PPC64_ADDR14_BRNTAKEN:
16490 case R_PPC64_ADDR14_BRTAKEN:
16491 case R_PPC64_ADDR16:
16492 case R_PPC64_ADDR16_DS:
16493 case R_PPC64_ADDR16_HA:
16494 case R_PPC64_ADDR16_HI:
16495 case R_PPC64_ADDR16_HIGH:
16496 case R_PPC64_ADDR16_HIGHA:
16497 case R_PPC64_ADDR16_HIGHER:
16498 case R_PPC64_ADDR16_HIGHERA:
16499 case R_PPC64_ADDR16_HIGHEST:
16500 case R_PPC64_ADDR16_HIGHESTA:
16501 case R_PPC64_ADDR16_LO:
16502 case R_PPC64_ADDR16_LO_DS:
16503 case R_PPC64_ADDR16_HIGHER34:
16504 case R_PPC64_ADDR16_HIGHERA34:
16505 case R_PPC64_ADDR16_HIGHEST34:
16506 case R_PPC64_ADDR16_HIGHESTA34:
16507 case R_PPC64_ADDR24:
16508 case R_PPC64_ADDR32:
16509 case R_PPC64_ADDR64:
16510 case R_PPC64_UADDR16:
16511 case R_PPC64_UADDR32:
16512 case R_PPC64_UADDR64:
16513 case R_PPC64_D34:
16514 case R_PPC64_D34_LO:
16515 case R_PPC64_D34_HI30:
16516 case R_PPC64_D34_HA30:
16517 case R_PPC64_D28:
16518 dodyn:
16519 if ((input_section->flags & SEC_ALLOC) == 0)
16520 break;
16521
16522 if (NO_OPD_RELOCS && is_opd)
16523 break;
16524
16525 if (bfd_link_pic (info)
16526 ? ((h == NULL
16527 || h->dyn_relocs != NULL)
16528 && ((h != NULL && pc_dynrelocs (h))
16529 || must_be_dyn_reloc (info, r_type)))
16530 : (h != NULL
16531 ? h->dyn_relocs != NULL
16532 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16533 {
16534 bfd_boolean skip, relocate;
16535 asection *sreloc;
16536 bfd_vma out_off;
16537 long indx = 0;
16538
16539 /* When generating a dynamic object, these relocations
16540 are copied into the output file to be resolved at run
16541 time. */
16542
16543 skip = FALSE;
16544 relocate = FALSE;
16545
16546 out_off = _bfd_elf_section_offset (output_bfd, info,
16547 input_section, rel->r_offset);
16548 if (out_off == (bfd_vma) -1)
16549 skip = TRUE;
16550 else if (out_off == (bfd_vma) -2)
16551 skip = TRUE, relocate = TRUE;
16552 out_off += (input_section->output_section->vma
16553 + input_section->output_offset);
16554 outrel.r_offset = out_off;
16555 outrel.r_addend = rel->r_addend;
16556
16557 /* Optimize unaligned reloc use. */
16558 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
16559 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
16560 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
16561 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
16562 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
16563 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
16564 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
16565 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
16566 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
16567
16568 if (skip)
16569 memset (&outrel, 0, sizeof outrel);
16570 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16571 && !is_opd
16572 && r_type != R_PPC64_TOC)
16573 {
16574 indx = h->elf.dynindx;
16575 BFD_ASSERT (indx != -1);
16576 outrel.r_info = ELF64_R_INFO (indx, r_type);
16577 }
16578 else
16579 {
16580 /* This symbol is local, or marked to become local,
16581 or this is an opd section reloc which must point
16582 at a local function. */
16583 outrel.r_addend += relocation;
16584 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16585 {
16586 if (is_opd && h != NULL)
16587 {
16588 /* Lie about opd entries. This case occurs
16589 when building shared libraries and we
16590 reference a function in another shared
16591 lib. The same thing happens for a weak
16592 definition in an application that's
16593 overridden by a strong definition in a
16594 shared lib. (I believe this is a generic
16595 bug in binutils handling of weak syms.)
16596 In these cases we won't use the opd
16597 entry in this lib. */
16598 unresolved_reloc = FALSE;
16599 }
16600 if (!is_opd
16601 && r_type == R_PPC64_ADDR64
16602 && (h != NULL
16603 ? h->elf.type == STT_GNU_IFUNC
16604 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16605 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16606 else
16607 {
16608 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16609
16610 /* We need to relocate .opd contents for ld.so.
16611 Prelink also wants simple and consistent rules
16612 for relocs. This make all RELATIVE relocs have
16613 *r_offset equal to r_addend. */
16614 relocate = TRUE;
16615 }
16616 }
16617 else
16618 {
16619 if (h != NULL
16620 ? h->elf.type == STT_GNU_IFUNC
16621 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16622 {
16623 info->callbacks->einfo
16624 /* xgettext:c-format */
16625 (_("%H: %s for indirect "
16626 "function `%pT' unsupported\n"),
16627 input_bfd, input_section, rel->r_offset,
16628 ppc64_elf_howto_table[r_type]->name,
16629 sym_name);
16630 ret = FALSE;
16631 }
16632 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16633 ;
16634 else if (sec == NULL || sec->owner == NULL)
16635 {
16636 bfd_set_error (bfd_error_bad_value);
16637 return FALSE;
16638 }
16639 else
16640 {
16641 asection *osec = sec->output_section;
16642
16643 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16644 {
16645 /* TLS symbol values are relative to the
16646 TLS segment. Dynamic relocations for
16647 local TLS symbols therefore can't be
16648 reduced to a relocation against their
16649 section symbol because it holds the
16650 address of the section, not a value
16651 relative to the TLS segment. We could
16652 change the .tdata dynamic section symbol
16653 to be zero value but STN_UNDEF works
16654 and is used elsewhere, eg. for TPREL64
16655 GOT relocs against local TLS symbols. */
16656 osec = htab->elf.tls_sec;
16657 indx = 0;
16658 }
16659 else
16660 {
16661 indx = elf_section_data (osec)->dynindx;
16662 if (indx == 0)
16663 {
16664 if ((osec->flags & SEC_READONLY) == 0
16665 && htab->elf.data_index_section != NULL)
16666 osec = htab->elf.data_index_section;
16667 else
16668 osec = htab->elf.text_index_section;
16669 indx = elf_section_data (osec)->dynindx;
16670 }
16671 BFD_ASSERT (indx != 0);
16672 }
16673
16674 /* We are turning this relocation into one
16675 against a section symbol, so subtract out
16676 the output section's address but not the
16677 offset of the input section in the output
16678 section. */
16679 outrel.r_addend -= osec->vma;
16680 }
16681
16682 outrel.r_info = ELF64_R_INFO (indx, r_type);
16683 }
16684 }
16685
16686 sreloc = elf_section_data (input_section)->sreloc;
16687 if (h != NULL
16688 ? h->elf.type == STT_GNU_IFUNC
16689 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16690 {
16691 sreloc = htab->elf.irelplt;
16692 if (indx == 0)
16693 htab->local_ifunc_resolver = 1;
16694 else if (is_static_defined (&h->elf))
16695 htab->maybe_local_ifunc_resolver = 1;
16696 }
16697 if (sreloc == NULL)
16698 abort ();
16699
16700 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16701 >= sreloc->size)
16702 abort ();
16703 loc = sreloc->contents;
16704 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16705 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16706
16707 if (!warned_dynamic
16708 && !ppc64_glibc_dynamic_reloc (ELF64_R_TYPE (outrel.r_info)))
16709 {
16710 info->callbacks->einfo
16711 /* xgettext:c-format */
16712 (_("%X%P: %pB: %s against %pT "
16713 "is not supported by glibc as a dynamic relocation\n"),
16714 input_bfd,
16715 ppc64_elf_howto_table[ELF64_R_TYPE (outrel.r_info)]->name,
16716 sym_name);
16717 warned_dynamic = TRUE;
16718 }
16719
16720 /* If this reloc is against an external symbol, it will
16721 be computed at runtime, so there's no need to do
16722 anything now. However, for the sake of prelink ensure
16723 that the section contents are a known value. */
16724 if (!relocate)
16725 {
16726 unresolved_reloc = FALSE;
16727 /* The value chosen here is quite arbitrary as ld.so
16728 ignores section contents except for the special
16729 case of .opd where the contents might be accessed
16730 before relocation. Choose zero, as that won't
16731 cause reloc overflow. */
16732 relocation = 0;
16733 addend = 0;
16734 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16735 to improve backward compatibility with older
16736 versions of ld. */
16737 if (r_type == R_PPC64_ADDR64)
16738 addend = outrel.r_addend;
16739 /* Adjust pc_relative relocs to have zero in *r_offset. */
16740 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16741 addend = outrel.r_offset;
16742 }
16743 }
16744 break;
16745
16746 case R_PPC64_COPY:
16747 case R_PPC64_GLOB_DAT:
16748 case R_PPC64_JMP_SLOT:
16749 case R_PPC64_JMP_IREL:
16750 case R_PPC64_RELATIVE:
16751 /* We shouldn't ever see these dynamic relocs in relocatable
16752 files. */
16753 /* Fall through. */
16754
16755 case R_PPC64_PLTGOT16:
16756 case R_PPC64_PLTGOT16_DS:
16757 case R_PPC64_PLTGOT16_HA:
16758 case R_PPC64_PLTGOT16_HI:
16759 case R_PPC64_PLTGOT16_LO:
16760 case R_PPC64_PLTGOT16_LO_DS:
16761 case R_PPC64_PLTREL32:
16762 case R_PPC64_PLTREL64:
16763 /* These ones haven't been implemented yet. */
16764
16765 info->callbacks->einfo
16766 /* xgettext:c-format */
16767 (_("%P: %pB: %s is not supported for `%pT'\n"),
16768 input_bfd,
16769 ppc64_elf_howto_table[r_type]->name, sym_name);
16770
16771 bfd_set_error (bfd_error_invalid_operation);
16772 ret = FALSE;
16773 goto copy_reloc;
16774 }
16775
16776 /* Multi-instruction sequences that access the TOC can be
16777 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16778 to nop; addi rb,r2,x; */
16779 switch (r_type)
16780 {
16781 default:
16782 break;
16783
16784 case R_PPC64_GOT_TLSLD16_HI:
16785 case R_PPC64_GOT_TLSGD16_HI:
16786 case R_PPC64_GOT_TPREL16_HI:
16787 case R_PPC64_GOT_DTPREL16_HI:
16788 case R_PPC64_GOT16_HI:
16789 case R_PPC64_TOC16_HI:
16790 /* These relocs would only be useful if building up an
16791 offset to later add to r2, perhaps in an indexed
16792 addressing mode instruction. Don't try to optimize.
16793 Unfortunately, the possibility of someone building up an
16794 offset like this or even with the HA relocs, means that
16795 we need to check the high insn when optimizing the low
16796 insn. */
16797 break;
16798
16799 case R_PPC64_PLTCALL_NOTOC:
16800 if (!unresolved_reloc)
16801 htab->notoc_plt = 1;
16802 /* Fall through. */
16803 case R_PPC64_PLTCALL:
16804 if (unresolved_reloc)
16805 {
16806 /* No plt entry. Make this into a direct call. */
16807 bfd_byte *p = contents + rel->r_offset;
16808 insn = bfd_get_32 (input_bfd, p);
16809 insn &= 1;
16810 bfd_put_32 (input_bfd, B_DOT | insn, p);
16811 if (r_type == R_PPC64_PLTCALL)
16812 bfd_put_32 (input_bfd, NOP, p + 4);
16813 unresolved_reloc = save_unresolved_reloc;
16814 r_type = R_PPC64_REL24;
16815 }
16816 break;
16817
16818 case R_PPC64_PLTSEQ_NOTOC:
16819 case R_PPC64_PLTSEQ:
16820 if (unresolved_reloc)
16821 {
16822 unresolved_reloc = FALSE;
16823 goto nop_it;
16824 }
16825 break;
16826
16827 case R_PPC64_PLT_PCREL34_NOTOC:
16828 if (!unresolved_reloc)
16829 htab->notoc_plt = 1;
16830 /* Fall through. */
16831 case R_PPC64_PLT_PCREL34:
16832 if (unresolved_reloc)
16833 {
16834 bfd_byte *p = contents + rel->r_offset;
16835 bfd_put_32 (input_bfd, PNOP >> 32, p);
16836 bfd_put_32 (input_bfd, PNOP, p + 4);
16837 unresolved_reloc = FALSE;
16838 goto copy_reloc;
16839 }
16840 break;
16841
16842 case R_PPC64_PLT16_HA:
16843 if (unresolved_reloc)
16844 {
16845 unresolved_reloc = FALSE;
16846 goto nop_it;
16847 }
16848 /* Fall through. */
16849 case R_PPC64_GOT_TLSLD16_HA:
16850 case R_PPC64_GOT_TLSGD16_HA:
16851 case R_PPC64_GOT_TPREL16_HA:
16852 case R_PPC64_GOT_DTPREL16_HA:
16853 case R_PPC64_GOT16_HA:
16854 case R_PPC64_TOC16_HA:
16855 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16856 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16857 {
16858 bfd_byte *p;
16859 nop_it:
16860 p = contents + (rel->r_offset & ~3);
16861 bfd_put_32 (input_bfd, NOP, p);
16862 goto copy_reloc;
16863 }
16864 break;
16865
16866 case R_PPC64_PLT16_LO:
16867 case R_PPC64_PLT16_LO_DS:
16868 if (unresolved_reloc)
16869 {
16870 unresolved_reloc = FALSE;
16871 goto nop_it;
16872 }
16873 /* Fall through. */
16874 case R_PPC64_GOT_TLSLD16_LO:
16875 case R_PPC64_GOT_TLSGD16_LO:
16876 case R_PPC64_GOT_TPREL16_LO_DS:
16877 case R_PPC64_GOT_DTPREL16_LO_DS:
16878 case R_PPC64_GOT16_LO:
16879 case R_PPC64_GOT16_LO_DS:
16880 case R_PPC64_TOC16_LO:
16881 case R_PPC64_TOC16_LO_DS:
16882 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16883 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16884 {
16885 bfd_byte *p = contents + (rel->r_offset & ~3);
16886 insn = bfd_get_32 (input_bfd, p);
16887 if ((insn & (0x3fu << 26)) == 12u << 26 /* addic */)
16888 {
16889 /* Transform addic to addi when we change reg. */
16890 insn &= ~((0x3fu << 26) | (0x1f << 16));
16891 insn |= (14u << 26) | (2 << 16);
16892 }
16893 else
16894 {
16895 insn &= ~(0x1f << 16);
16896 insn |= 2 << 16;
16897 }
16898 bfd_put_32 (input_bfd, insn, p);
16899 }
16900 break;
16901
16902 case R_PPC64_TPREL16_HA:
16903 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16904 {
16905 bfd_byte *p = contents + (rel->r_offset & ~3);
16906 insn = bfd_get_32 (input_bfd, p);
16907 if ((insn & ((0x3fu << 26) | 0x1f << 16))
16908 != ((15u << 26) | (13 << 16)) /* addis rt,13,imm */)
16909 /* xgettext:c-format */
16910 info->callbacks->minfo
16911 (_("%H: warning: %s unexpected insn %#x.\n"),
16912 input_bfd, input_section, rel->r_offset,
16913 ppc64_elf_howto_table[r_type]->name, insn);
16914 else
16915 {
16916 bfd_put_32 (input_bfd, NOP, p);
16917 goto copy_reloc;
16918 }
16919 }
16920 break;
16921
16922 case R_PPC64_TPREL16_LO:
16923 case R_PPC64_TPREL16_LO_DS:
16924 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16925 {
16926 bfd_byte *p = contents + (rel->r_offset & ~3);
16927 insn = bfd_get_32 (input_bfd, p);
16928 insn &= ~(0x1f << 16);
16929 insn |= 13 << 16;
16930 bfd_put_32 (input_bfd, insn, p);
16931 }
16932 break;
16933 }
16934
16935 /* Do any further special processing. */
16936 switch (r_type)
16937 {
16938 default:
16939 break;
16940
16941 case R_PPC64_REL16_HA:
16942 case R_PPC64_REL16_HIGHA:
16943 case R_PPC64_REL16_HIGHERA:
16944 case R_PPC64_REL16_HIGHESTA:
16945 case R_PPC64_REL16DX_HA:
16946 case R_PPC64_ADDR16_HA:
16947 case R_PPC64_ADDR16_HIGHA:
16948 case R_PPC64_ADDR16_HIGHERA:
16949 case R_PPC64_ADDR16_HIGHESTA:
16950 case R_PPC64_TOC16_HA:
16951 case R_PPC64_SECTOFF_HA:
16952 case R_PPC64_TPREL16_HA:
16953 case R_PPC64_TPREL16_HIGHA:
16954 case R_PPC64_TPREL16_HIGHERA:
16955 case R_PPC64_TPREL16_HIGHESTA:
16956 case R_PPC64_DTPREL16_HA:
16957 case R_PPC64_DTPREL16_HIGHA:
16958 case R_PPC64_DTPREL16_HIGHERA:
16959 case R_PPC64_DTPREL16_HIGHESTA:
16960 /* It's just possible that this symbol is a weak symbol
16961 that's not actually defined anywhere. In that case,
16962 'sec' would be NULL, and we should leave the symbol
16963 alone (it will be set to zero elsewhere in the link). */
16964 if (sec == NULL)
16965 break;
16966 /* Fall through. */
16967
16968 case R_PPC64_GOT16_HA:
16969 case R_PPC64_PLTGOT16_HA:
16970 case R_PPC64_PLT16_HA:
16971 case R_PPC64_GOT_TLSGD16_HA:
16972 case R_PPC64_GOT_TLSLD16_HA:
16973 case R_PPC64_GOT_TPREL16_HA:
16974 case R_PPC64_GOT_DTPREL16_HA:
16975 /* Add 0x10000 if sign bit in 0:15 is set.
16976 Bits 0:15 are not used. */
16977 addend += 0x8000;
16978 break;
16979
16980 case R_PPC64_D34_HA30:
16981 case R_PPC64_ADDR16_HIGHERA34:
16982 case R_PPC64_ADDR16_HIGHESTA34:
16983 case R_PPC64_REL16_HIGHERA34:
16984 case R_PPC64_REL16_HIGHESTA34:
16985 if (sec != NULL)
16986 addend += 1ULL << 33;
16987 break;
16988
16989 case R_PPC64_ADDR16_DS:
16990 case R_PPC64_ADDR16_LO_DS:
16991 case R_PPC64_GOT16_DS:
16992 case R_PPC64_GOT16_LO_DS:
16993 case R_PPC64_PLT16_LO_DS:
16994 case R_PPC64_SECTOFF_DS:
16995 case R_PPC64_SECTOFF_LO_DS:
16996 case R_PPC64_TOC16_DS:
16997 case R_PPC64_TOC16_LO_DS:
16998 case R_PPC64_PLTGOT16_DS:
16999 case R_PPC64_PLTGOT16_LO_DS:
17000 case R_PPC64_GOT_TPREL16_DS:
17001 case R_PPC64_GOT_TPREL16_LO_DS:
17002 case R_PPC64_GOT_DTPREL16_DS:
17003 case R_PPC64_GOT_DTPREL16_LO_DS:
17004 case R_PPC64_TPREL16_DS:
17005 case R_PPC64_TPREL16_LO_DS:
17006 case R_PPC64_DTPREL16_DS:
17007 case R_PPC64_DTPREL16_LO_DS:
17008 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17009 mask = 3;
17010 /* If this reloc is against an lq, lxv, or stxv insn, then
17011 the value must be a multiple of 16. This is somewhat of
17012 a hack, but the "correct" way to do this by defining _DQ
17013 forms of all the _DS relocs bloats all reloc switches in
17014 this file. It doesn't make much sense to use these
17015 relocs in data, so testing the insn should be safe. */
17016 if ((insn & (0x3fu << 26)) == (56u << 26)
17017 || ((insn & (0x3fu << 26)) == (61u << 26) && (insn & 3) == 1))
17018 mask = 15;
17019 relocation += addend;
17020 addend = insn & (mask ^ 3);
17021 if ((relocation & mask) != 0)
17022 {
17023 relocation ^= relocation & mask;
17024 info->callbacks->einfo
17025 /* xgettext:c-format */
17026 (_("%H: error: %s not a multiple of %u\n"),
17027 input_bfd, input_section, rel->r_offset,
17028 ppc64_elf_howto_table[r_type]->name,
17029 mask + 1);
17030 bfd_set_error (bfd_error_bad_value);
17031 ret = FALSE;
17032 goto copy_reloc;
17033 }
17034 break;
17035 }
17036
17037 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
17038 because such sections are not SEC_ALLOC and thus ld.so will
17039 not process them. */
17040 howto = ppc64_elf_howto_table[(int) r_type];
17041 if (unresolved_reloc
17042 && !((input_section->flags & SEC_DEBUGGING) != 0
17043 && h->elf.def_dynamic)
17044 && _bfd_elf_section_offset (output_bfd, info, input_section,
17045 rel->r_offset) != (bfd_vma) -1)
17046 {
17047 info->callbacks->einfo
17048 /* xgettext:c-format */
17049 (_("%H: unresolvable %s against `%pT'\n"),
17050 input_bfd, input_section, rel->r_offset,
17051 howto->name,
17052 h->elf.root.root.string);
17053 ret = FALSE;
17054 }
17055
17056 /* 16-bit fields in insns mostly have signed values, but a
17057 few insns have 16-bit unsigned values. Really, we should
17058 have different reloc types. */
17059 if (howto->complain_on_overflow != complain_overflow_dont
17060 && howto->dst_mask == 0xffff
17061 && (input_section->flags & SEC_CODE) != 0)
17062 {
17063 enum complain_overflow complain = complain_overflow_signed;
17064
17065 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
17066 if ((insn & (0x3fu << 26)) == 10u << 26 /* cmpli */)
17067 complain = complain_overflow_bitfield;
17068 else if (howto->rightshift == 0
17069 ? ((insn & (0x3fu << 26)) == 28u << 26 /* andi */
17070 || (insn & (0x3fu << 26)) == 24u << 26 /* ori */
17071 || (insn & (0x3fu << 26)) == 26u << 26 /* xori */)
17072 : ((insn & (0x3fu << 26)) == 29u << 26 /* andis */
17073 || (insn & (0x3fu << 26)) == 25u << 26 /* oris */
17074 || (insn & (0x3fu << 26)) == 27u << 26 /* xoris */))
17075 complain = complain_overflow_unsigned;
17076 if (howto->complain_on_overflow != complain)
17077 {
17078 alt_howto = *howto;
17079 alt_howto.complain_on_overflow = complain;
17080 howto = &alt_howto;
17081 }
17082 }
17083
17084 switch (r_type)
17085 {
17086 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
17087 case R_PPC64_D34:
17088 case R_PPC64_D34_LO:
17089 case R_PPC64_D34_HI30:
17090 case R_PPC64_D34_HA30:
17091 case R_PPC64_PCREL34:
17092 case R_PPC64_GOT_PCREL34:
17093 case R_PPC64_TPREL34:
17094 case R_PPC64_DTPREL34:
17095 case R_PPC64_GOT_TLSGD34:
17096 case R_PPC64_GOT_TLSLD34:
17097 case R_PPC64_GOT_TPREL34:
17098 case R_PPC64_GOT_DTPREL34:
17099 case R_PPC64_PLT_PCREL34:
17100 case R_PPC64_PLT_PCREL34_NOTOC:
17101 case R_PPC64_D28:
17102 case R_PPC64_PCREL28:
17103 if (rel->r_offset + 8 > input_section->size)
17104 r = bfd_reloc_outofrange;
17105 else
17106 {
17107 relocation += addend;
17108 if (howto->pc_relative)
17109 relocation -= (rel->r_offset
17110 + input_section->output_offset
17111 + input_section->output_section->vma);
17112 relocation >>= howto->rightshift;
17113
17114 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17115 pinsn <<= 32;
17116 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
17117
17118 pinsn &= ~howto->dst_mask;
17119 pinsn |= (((relocation << 16) | (relocation & 0xffff))
17120 & howto->dst_mask);
17121 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
17122 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
17123 r = bfd_reloc_ok;
17124 if (howto->complain_on_overflow == complain_overflow_signed
17125 && (relocation + (1ULL << (howto->bitsize - 1))
17126 >= 1ULL << howto->bitsize))
17127 r = bfd_reloc_overflow;
17128 }
17129 break;
17130
17131 case R_PPC64_REL16DX_HA:
17132 if (rel->r_offset + 4 > input_section->size)
17133 r = bfd_reloc_outofrange;
17134 else
17135 {
17136 relocation += addend;
17137 relocation -= (rel->r_offset
17138 + input_section->output_offset
17139 + input_section->output_section->vma);
17140 relocation = (bfd_signed_vma) relocation >> 16;
17141 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
17142 insn &= ~0x1fffc1;
17143 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
17144 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
17145 r = bfd_reloc_ok;
17146 if (relocation + 0x8000 > 0xffff)
17147 r = bfd_reloc_overflow;
17148 }
17149 break;
17150
17151 default:
17152 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
17153 contents, rel->r_offset,
17154 relocation, addend);
17155 }
17156
17157 if (r != bfd_reloc_ok)
17158 {
17159 char *more_info = NULL;
17160 const char *reloc_name = howto->name;
17161
17162 if (reloc_dest != DEST_NORMAL)
17163 {
17164 more_info = bfd_malloc (strlen (reloc_name) + 8);
17165 if (more_info != NULL)
17166 {
17167 strcpy (more_info, reloc_name);
17168 strcat (more_info, (reloc_dest == DEST_OPD
17169 ? " (OPD)" : " (stub)"));
17170 reloc_name = more_info;
17171 }
17172 }
17173
17174 if (r == bfd_reloc_overflow)
17175 {
17176 /* On code like "if (foo) foo();" don't report overflow
17177 on a branch to zero when foo is undefined. */
17178 if (!warned
17179 && (reloc_dest == DEST_STUB
17180 || !(h != NULL
17181 && (h->elf.root.type == bfd_link_hash_undefweak
17182 || h->elf.root.type == bfd_link_hash_undefined)
17183 && is_branch_reloc (r_type))))
17184 info->callbacks->reloc_overflow (info, &h->elf.root,
17185 sym_name, reloc_name,
17186 orig_rel.r_addend,
17187 input_bfd, input_section,
17188 rel->r_offset);
17189 }
17190 else
17191 {
17192 info->callbacks->einfo
17193 /* xgettext:c-format */
17194 (_("%H: %s against `%pT': error %d\n"),
17195 input_bfd, input_section, rel->r_offset,
17196 reloc_name, sym_name, (int) r);
17197 ret = FALSE;
17198 }
17199 if (more_info != NULL)
17200 free (more_info);
17201 }
17202 copy_reloc:
17203 if (wrel != rel)
17204 *wrel = *rel;
17205 }
17206
17207 if (wrel != rel)
17208 {
17209 Elf_Internal_Shdr *rel_hdr;
17210 size_t deleted = rel - wrel;
17211
17212 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
17213 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17214 if (rel_hdr->sh_size == 0)
17215 {
17216 /* It is too late to remove an empty reloc section. Leave
17217 one NONE reloc.
17218 ??? What is wrong with an empty section??? */
17219 rel_hdr->sh_size = rel_hdr->sh_entsize;
17220 deleted -= 1;
17221 }
17222 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
17223 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
17224 input_section->reloc_count -= deleted;
17225 }
17226
17227 /* If we're emitting relocations, then shortly after this function
17228 returns, reloc offsets and addends for this section will be
17229 adjusted. Worse, reloc symbol indices will be for the output
17230 file rather than the input. Save a copy of the relocs for
17231 opd_entry_value. */
17232 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
17233 {
17234 bfd_size_type amt;
17235 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
17236 rel = bfd_alloc (input_bfd, amt);
17237 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
17238 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
17239 if (rel == NULL)
17240 return FALSE;
17241 memcpy (rel, relocs, amt);
17242 }
17243 return ret;
17244 }
17245
17246 /* Adjust the value of any local symbols in opd sections. */
17247
17248 static int
17249 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
17250 const char *name ATTRIBUTE_UNUSED,
17251 Elf_Internal_Sym *elfsym,
17252 asection *input_sec,
17253 struct elf_link_hash_entry *h)
17254 {
17255 struct _opd_sec_data *opd;
17256 long adjust;
17257 bfd_vma value;
17258
17259 if (h != NULL)
17260 return 1;
17261
17262 opd = get_opd_info (input_sec);
17263 if (opd == NULL || opd->adjust == NULL)
17264 return 1;
17265
17266 value = elfsym->st_value - input_sec->output_offset;
17267 if (!bfd_link_relocatable (info))
17268 value -= input_sec->output_section->vma;
17269
17270 adjust = opd->adjust[OPD_NDX (value)];
17271 if (adjust == -1)
17272 return 2;
17273
17274 elfsym->st_value += adjust;
17275 return 1;
17276 }
17277
17278 /* Finish up dynamic symbol handling. We set the contents of various
17279 dynamic sections here. */
17280
17281 static bfd_boolean
17282 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
17283 struct bfd_link_info *info,
17284 struct elf_link_hash_entry *h,
17285 Elf_Internal_Sym *sym)
17286 {
17287 struct ppc_link_hash_table *htab;
17288 struct plt_entry *ent;
17289
17290 htab = ppc_hash_table (info);
17291 if (htab == NULL)
17292 return FALSE;
17293
17294 if (!htab->opd_abi && !h->def_regular)
17295 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
17296 if (ent->plt.offset != (bfd_vma) -1)
17297 {
17298 /* Mark the symbol as undefined, rather than as
17299 defined in glink. Leave the value if there were
17300 any relocations where pointer equality matters
17301 (this is a clue for the dynamic linker, to make
17302 function pointer comparisons work between an
17303 application and shared library), otherwise set it
17304 to zero. */
17305 sym->st_shndx = SHN_UNDEF;
17306 if (!h->pointer_equality_needed)
17307 sym->st_value = 0;
17308 else if (!h->ref_regular_nonweak)
17309 {
17310 /* This breaks function pointer comparisons, but
17311 that is better than breaking tests for a NULL
17312 function pointer. */
17313 sym->st_value = 0;
17314 }
17315 break;
17316 }
17317
17318 if (h->needs_copy
17319 && (h->root.type == bfd_link_hash_defined
17320 || h->root.type == bfd_link_hash_defweak)
17321 && (h->root.u.def.section == htab->elf.sdynbss
17322 || h->root.u.def.section == htab->elf.sdynrelro))
17323 {
17324 /* This symbol needs a copy reloc. Set it up. */
17325 Elf_Internal_Rela rela;
17326 asection *srel;
17327 bfd_byte *loc;
17328
17329 if (h->dynindx == -1)
17330 abort ();
17331
17332 rela.r_offset = defined_sym_val (h);
17333 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
17334 rela.r_addend = 0;
17335 if (h->root.u.def.section == htab->elf.sdynrelro)
17336 srel = htab->elf.sreldynrelro;
17337 else
17338 srel = htab->elf.srelbss;
17339 loc = srel->contents;
17340 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
17341 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
17342 }
17343
17344 return TRUE;
17345 }
17346
17347 /* Used to decide how to sort relocs in an optimal manner for the
17348 dynamic linker, before writing them out. */
17349
17350 static enum elf_reloc_type_class
17351 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
17352 const asection *rel_sec,
17353 const Elf_Internal_Rela *rela)
17354 {
17355 enum elf_ppc64_reloc_type r_type;
17356 struct ppc_link_hash_table *htab = ppc_hash_table (info);
17357
17358 if (rel_sec == htab->elf.irelplt)
17359 return reloc_class_ifunc;
17360
17361 r_type = ELF64_R_TYPE (rela->r_info);
17362 switch (r_type)
17363 {
17364 case R_PPC64_RELATIVE:
17365 return reloc_class_relative;
17366 case R_PPC64_JMP_SLOT:
17367 return reloc_class_plt;
17368 case R_PPC64_COPY:
17369 return reloc_class_copy;
17370 default:
17371 return reloc_class_normal;
17372 }
17373 }
17374
17375 /* Finish up the dynamic sections. */
17376
17377 static bfd_boolean
17378 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
17379 struct bfd_link_info *info)
17380 {
17381 struct ppc_link_hash_table *htab;
17382 bfd *dynobj;
17383 asection *sdyn;
17384
17385 htab = ppc_hash_table (info);
17386 if (htab == NULL)
17387 return FALSE;
17388
17389 dynobj = htab->elf.dynobj;
17390 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17391
17392 if (htab->elf.dynamic_sections_created)
17393 {
17394 Elf64_External_Dyn *dyncon, *dynconend;
17395
17396 if (sdyn == NULL || htab->elf.sgot == NULL)
17397 abort ();
17398
17399 dyncon = (Elf64_External_Dyn *) sdyn->contents;
17400 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
17401 for (; dyncon < dynconend; dyncon++)
17402 {
17403 Elf_Internal_Dyn dyn;
17404 asection *s;
17405
17406 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
17407
17408 switch (dyn.d_tag)
17409 {
17410 default:
17411 continue;
17412
17413 case DT_PPC64_GLINK:
17414 s = htab->glink;
17415 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17416 /* We stupidly defined DT_PPC64_GLINK to be the start
17417 of glink rather than the first entry point, which is
17418 what ld.so needs, and now have a bigger stub to
17419 support automatic multiple TOCs. */
17420 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
17421 break;
17422
17423 case DT_PPC64_OPD:
17424 s = bfd_get_section_by_name (output_bfd, ".opd");
17425 if (s == NULL)
17426 continue;
17427 dyn.d_un.d_ptr = s->vma;
17428 break;
17429
17430 case DT_PPC64_OPT:
17431 if ((htab->do_multi_toc && htab->multi_toc_needed)
17432 || htab->notoc_plt)
17433 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
17434 if (htab->has_plt_localentry0)
17435 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
17436 break;
17437
17438 case DT_PPC64_OPDSZ:
17439 s = bfd_get_section_by_name (output_bfd, ".opd");
17440 if (s == NULL)
17441 continue;
17442 dyn.d_un.d_val = s->size;
17443 break;
17444
17445 case DT_PLTGOT:
17446 s = htab->elf.splt;
17447 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17448 break;
17449
17450 case DT_JMPREL:
17451 s = htab->elf.srelplt;
17452 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17453 break;
17454
17455 case DT_PLTRELSZ:
17456 dyn.d_un.d_val = htab->elf.srelplt->size;
17457 break;
17458
17459 case DT_TEXTREL:
17460 if (htab->local_ifunc_resolver)
17461 info->callbacks->einfo
17462 (_("%X%P: text relocations and GNU indirect "
17463 "functions will result in a segfault at runtime\n"));
17464 else if (htab->maybe_local_ifunc_resolver)
17465 info->callbacks->einfo
17466 (_("%P: warning: text relocations and GNU indirect "
17467 "functions may result in a segfault at runtime\n"));
17468 continue;
17469 }
17470
17471 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
17472 }
17473 }
17474
17475 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
17476 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
17477 {
17478 /* Fill in the first entry in the global offset table.
17479 We use it to hold the link-time TOCbase. */
17480 bfd_put_64 (output_bfd,
17481 elf_gp (output_bfd) + TOC_BASE_OFF,
17482 htab->elf.sgot->contents);
17483
17484 /* Set .got entry size. */
17485 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
17486 = 8;
17487 }
17488
17489 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
17490 && htab->elf.splt->output_section != bfd_abs_section_ptr)
17491 {
17492 /* Set .plt entry size. */
17493 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
17494 = PLT_ENTRY_SIZE (htab);
17495 }
17496
17497 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
17498 brlt ourselves if emitrelocations. */
17499 if (htab->brlt != NULL
17500 && htab->brlt->reloc_count != 0
17501 && !_bfd_elf_link_output_relocs (output_bfd,
17502 htab->brlt,
17503 elf_section_data (htab->brlt)->rela.hdr,
17504 elf_section_data (htab->brlt)->relocs,
17505 NULL))
17506 return FALSE;
17507
17508 if (htab->glink != NULL
17509 && htab->glink->reloc_count != 0
17510 && !_bfd_elf_link_output_relocs (output_bfd,
17511 htab->glink,
17512 elf_section_data (htab->glink)->rela.hdr,
17513 elf_section_data (htab->glink)->relocs,
17514 NULL))
17515 return FALSE;
17516
17517
17518 if (htab->glink_eh_frame != NULL
17519 && htab->glink_eh_frame->size != 0
17520 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
17521 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
17522 htab->glink_eh_frame,
17523 htab->glink_eh_frame->contents))
17524 return FALSE;
17525
17526 /* We need to handle writing out multiple GOT sections ourselves,
17527 since we didn't add them to DYNOBJ. We know dynobj is the first
17528 bfd. */
17529 while ((dynobj = dynobj->link.next) != NULL)
17530 {
17531 asection *s;
17532
17533 if (!is_ppc64_elf (dynobj))
17534 continue;
17535
17536 s = ppc64_elf_tdata (dynobj)->got;
17537 if (s != NULL
17538 && s->size != 0
17539 && s->output_section != bfd_abs_section_ptr
17540 && !bfd_set_section_contents (output_bfd, s->output_section,
17541 s->contents, s->output_offset,
17542 s->size))
17543 return FALSE;
17544 s = ppc64_elf_tdata (dynobj)->relgot;
17545 if (s != NULL
17546 && s->size != 0
17547 && s->output_section != bfd_abs_section_ptr
17548 && !bfd_set_section_contents (output_bfd, s->output_section,
17549 s->contents, s->output_offset,
17550 s->size))
17551 return FALSE;
17552 }
17553
17554 return TRUE;
17555 }
17556
17557 #include "elf64-target.h"
17558
17559 /* FreeBSD support */
17560
17561 #undef TARGET_LITTLE_SYM
17562 #undef TARGET_LITTLE_NAME
17563
17564 #undef TARGET_BIG_SYM
17565 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
17566 #undef TARGET_BIG_NAME
17567 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
17568
17569 #undef ELF_OSABI
17570 #define ELF_OSABI ELFOSABI_FREEBSD
17571
17572 #undef elf64_bed
17573 #define elf64_bed elf64_powerpc_fbsd_bed
17574
17575 #include "elf64-target.h"
This page took 0.425336 seconds and 5 git commands to generate.