bfd/
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
90
91 #define elf_backend_object_p ppc64_elf_object_p
92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
94 #define elf_backend_write_core_note ppc64_elf_write_core_note
95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
98 #define elf_backend_check_directives ppc64_elf_process_dot_syms
99 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
101 #define elf_backend_check_relocs ppc64_elf_check_relocs
102 #define elf_backend_gc_keep ppc64_elf_gc_keep
103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE 24
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
130
131 /* TOC base pointers offset from start of TOC. */
132 #define TOC_BASE_OFF 0x8000
133
134 /* Offset of tp and dtp pointers from start of TLS block. */
135 #define TP_OFFSET 0x7000
136 #define DTP_OFFSET 0x8000
137
138 /* .plt call stub instructions. The normal stub is like this, but
139 sometimes the .plt entry crosses a 64k boundary and we need to
140 insert an addi to adjust r12. */
141 #define PLT_CALL_STUB_SIZE (7*4)
142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
147 /* ld %r11,xxx+16@l(%r12) */
148 #define BCTR 0x4e800420 /* bctr */
149
150
151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
155
156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */
157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */
158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
160 #define BNECTR 0x4ca20420 /* bnectr+ */
161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
162
163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
165
166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
167
168 /* glink call stub instructions. We enter with the index in R0. */
169 #define GLINK_CALL_STUB_SIZE (16*4)
170 /* 0: */
171 /* .quad plt0-1f */
172 /* __glink: */
173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
175 /* 1: */
176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
180 /* ld %11,0(%12) */
181 /* ld %2,8(%12) */
182 /* mtctr %11 */
183 /* ld %11,16(%12) */
184 /* bctr */
185
186 /* Pad with this. */
187 #define NOP 0x60000000
188
189 /* Some other nops. */
190 #define CROR_151515 0x4def7b82
191 #define CROR_313131 0x4ffffb82
192
193 /* .glink entries for the first 32k functions are two instructions. */
194 #define LI_R0_0 0x38000000 /* li %r0,0 */
195 #define B_DOT 0x48000000 /* b . */
196
197 /* After that, we need two instructions to load the index, followed by
198 a branch. */
199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
201
202 /* Instructions used by the save and restore reg functions. */
203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
209 #define LI_R12_0 0x39800000 /* li %r12,0 */
210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
213 #define BLR 0x4e800020 /* blr */
214
215 /* Since .opd is an array of descriptors and each entry will end up
216 with identical R_PPC64_RELATIVE relocs, there is really no need to
217 propagate .opd relocs; The dynamic linker should be taught to
218 relocate .opd without reloc entries. */
219 #ifndef NO_OPD_RELOCS
220 #define NO_OPD_RELOCS 0
221 #endif
222 \f
223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
224
225 /* Relocation HOWTO's. */
226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
227
228 static reloc_howto_type ppc64_elf_howto_raw[] = {
229 /* This reloc does nothing. */
230 HOWTO (R_PPC64_NONE, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 32, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 bfd_elf_generic_reloc, /* special_function */
238 "R_PPC64_NONE", /* name */
239 FALSE, /* partial_inplace */
240 0, /* src_mask */
241 0, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 /* A standard 32 bit relocation. */
245 HOWTO (R_PPC64_ADDR32, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_bitfield, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_PPC64_ADDR32", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* An absolute 26 bit branch; the lower two bits must be zero.
260 FIXME: we don't check that, we just clear them. */
261 HOWTO (R_PPC64_ADDR24, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 26, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_bitfield, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_ADDR24", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x03fffffc, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 16 bit relocation. */
276 HOWTO (R_PPC64_ADDR16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR16", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* A 16 bit relocation without overflow. */
291 HOWTO (R_PPC64_ADDR16_LO, /* type */
292 0, /* rightshift */
293 1, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 FALSE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_PPC64_ADDR16_LO", /* name */
300 FALSE, /* partial_inplace */
301 0, /* src_mask */
302 0xffff, /* dst_mask */
303 FALSE), /* pcrel_offset */
304
305 /* Bits 16-31 of an address. */
306 HOWTO (R_PPC64_ADDR16_HI, /* type */
307 16, /* rightshift */
308 1, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 FALSE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_dont, /* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_PPC64_ADDR16_HI", /* name */
315 FALSE, /* partial_inplace */
316 0, /* src_mask */
317 0xffff, /* dst_mask */
318 FALSE), /* pcrel_offset */
319
320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
321 bits, treated as a signed number, is negative. */
322 HOWTO (R_PPC64_ADDR16_HA, /* type */
323 16, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 ppc64_elf_ha_reloc, /* special_function */
330 "R_PPC64_ADDR16_HA", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOWTO (R_PPC64_ADDR14, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 ppc64_elf_branch_reloc, /* special_function */
346 "R_PPC64_ADDR14", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0x0000fffc, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 16, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 ppc64_elf_brtaken_reloc, /* special_function */
363 "R_PPC64_ADDR14_BRTAKEN",/* name */
364 FALSE, /* partial_inplace */
365 0, /* src_mask */
366 0x0000fffc, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* An absolute 16 bit branch, for which bit 10 should be set to
370 indicate that the branch is not expected to be taken. The lower
371 two bits must be zero. */
372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 16, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield, /* complain_on_overflow */
379 ppc64_elf_brtaken_reloc, /* special_function */
380 "R_PPC64_ADDR14_BRNTAKEN",/* name */
381 FALSE, /* partial_inplace */
382 0, /* src_mask */
383 0x0000fffc, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 /* A relative 26 bit branch; the lower two bits must be zero. */
387 HOWTO (R_PPC64_REL24, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 26, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 ppc64_elf_branch_reloc, /* special_function */
395 "R_PPC64_REL24", /* name */
396 FALSE, /* partial_inplace */
397 0, /* src_mask */
398 0x03fffffc, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* A relative 16 bit branch; the lower two bits must be zero. */
402 HOWTO (R_PPC64_REL14, /* type */
403 0, /* rightshift */
404 2, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 ppc64_elf_branch_reloc, /* special_function */
410 "R_PPC64_REL14", /* name */
411 FALSE, /* partial_inplace */
412 0, /* src_mask */
413 0x0000fffc, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* A relative 16 bit branch. Bit 10 should be set to indicate that
417 the branch is expected to be taken. The lower two bits must be
418 zero. */
419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 16, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 ppc64_elf_brtaken_reloc, /* special_function */
427 "R_PPC64_REL14_BRTAKEN", /* name */
428 FALSE, /* partial_inplace */
429 0, /* src_mask */
430 0x0000fffc, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* A relative 16 bit branch. Bit 10 should be set to indicate that
434 the branch is not expected to be taken. The lower two bits must
435 be zero. */
436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 16, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 ppc64_elf_brtaken_reloc, /* special_function */
444 "R_PPC64_REL14_BRNTAKEN",/* name */
445 FALSE, /* partial_inplace */
446 0, /* src_mask */
447 0x0000fffc, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
451 symbol. */
452 HOWTO (R_PPC64_GOT16, /* type */
453 0, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 16, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_signed, /* complain_on_overflow */
459 ppc64_elf_unhandled_reloc, /* special_function */
460 "R_PPC64_GOT16", /* name */
461 FALSE, /* partial_inplace */
462 0, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
467 the symbol. */
468 HOWTO (R_PPC64_GOT16_LO, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 FALSE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_dont, /* complain_on_overflow */
475 ppc64_elf_unhandled_reloc, /* special_function */
476 "R_PPC64_GOT16_LO", /* name */
477 FALSE, /* partial_inplace */
478 0, /* src_mask */
479 0xffff, /* dst_mask */
480 FALSE), /* pcrel_offset */
481
482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
483 the symbol. */
484 HOWTO (R_PPC64_GOT16_HI, /* type */
485 16, /* rightshift */
486 1, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont,/* complain_on_overflow */
491 ppc64_elf_unhandled_reloc, /* special_function */
492 "R_PPC64_GOT16_HI", /* name */
493 FALSE, /* partial_inplace */
494 0, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
499 the symbol. */
500 HOWTO (R_PPC64_GOT16_HA, /* type */
501 16, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_dont,/* complain_on_overflow */
507 ppc64_elf_unhandled_reloc, /* special_function */
508 "R_PPC64_GOT16_HA", /* name */
509 FALSE, /* partial_inplace */
510 0, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* This is used only by the dynamic linker. The symbol should exist
515 both in the object being run and in some shared library. The
516 dynamic linker copies the data addressed by the symbol from the
517 shared library into the object, because the object being
518 run has to have the data at some particular address. */
519 HOWTO (R_PPC64_COPY, /* type */
520 0, /* rightshift */
521 0, /* this one is variable size */
522 0, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 ppc64_elf_unhandled_reloc, /* special_function */
527 "R_PPC64_COPY", /* name */
528 FALSE, /* partial_inplace */
529 0, /* src_mask */
530 0, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* Like R_PPC64_ADDR64, but used when setting global offset table
534 entries. */
535 HOWTO (R_PPC64_GLOB_DAT, /* type */
536 0, /* rightshift */
537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
538 64, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 ppc64_elf_unhandled_reloc, /* special_function */
543 "R_PPC64_GLOB_DAT", /* name */
544 FALSE, /* partial_inplace */
545 0, /* src_mask */
546 ONES (64), /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* Created by the link editor. Marks a procedure linkage table
550 entry for a symbol. */
551 HOWTO (R_PPC64_JMP_SLOT, /* type */
552 0, /* rightshift */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
554 0, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 ppc64_elf_unhandled_reloc, /* special_function */
559 "R_PPC64_JMP_SLOT", /* name */
560 FALSE, /* partial_inplace */
561 0, /* src_mask */
562 0, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 /* Used only by the dynamic linker. When the object is run, this
566 doubleword64 is set to the load address of the object, plus the
567 addend. */
568 HOWTO (R_PPC64_RELATIVE, /* type */
569 0, /* rightshift */
570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
571 64, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_dont, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_PPC64_RELATIVE", /* name */
577 FALSE, /* partial_inplace */
578 0, /* src_mask */
579 ONES (64), /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* Like R_PPC64_ADDR32, but may be unaligned. */
583 HOWTO (R_PPC64_UADDR32, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 32, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_bitfield, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_PPC64_UADDR32", /* name */
592 FALSE, /* partial_inplace */
593 0, /* src_mask */
594 0xffffffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* Like R_PPC64_ADDR16, but may be unaligned. */
598 HOWTO (R_PPC64_UADDR16, /* type */
599 0, /* rightshift */
600 1, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_bitfield, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 "R_PPC64_UADDR16", /* name */
607 FALSE, /* partial_inplace */
608 0, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* 32-bit PC relative. */
613 HOWTO (R_PPC64_REL32, /* type */
614 0, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 32, /* bitsize */
617 TRUE, /* pc_relative */
618 0, /* bitpos */
619 /* FIXME: Verify. Was complain_overflow_bitfield. */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_REL32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* 32-bit relocation to the symbol's procedure linkage table. */
629 HOWTO (R_PPC64_PLT32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 ppc64_elf_unhandled_reloc, /* special_function */
637 "R_PPC64_PLT32", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
644 FIXME: R_PPC64_PLTREL32 not supported. */
645 HOWTO (R_PPC64_PLTREL32, /* type */
646 0, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 32, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "R_PPC64_PLTREL32", /* name */
654 FALSE, /* partial_inplace */
655 0, /* src_mask */
656 0xffffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
660 the symbol. */
661 HOWTO (R_PPC64_PLT16_LO, /* type */
662 0, /* rightshift */
663 1, /* size (0 = byte, 1 = short, 2 = long) */
664 16, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 ppc64_elf_unhandled_reloc, /* special_function */
669 "R_PPC64_PLT16_LO", /* name */
670 FALSE, /* partial_inplace */
671 0, /* src_mask */
672 0xffff, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
676 the symbol. */
677 HOWTO (R_PPC64_PLT16_HI, /* type */
678 16, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 ppc64_elf_unhandled_reloc, /* special_function */
685 "R_PPC64_PLT16_HI", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xffff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
692 the symbol. */
693 HOWTO (R_PPC64_PLT16_HA, /* type */
694 16, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont, /* complain_on_overflow */
700 ppc64_elf_unhandled_reloc, /* special_function */
701 "R_PPC64_PLT16_HA", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xffff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* 16-bit section relative relocation. */
708 HOWTO (R_PPC64_SECTOFF, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 ppc64_elf_sectoff_reloc, /* special_function */
716 "R_PPC64_SECTOFF", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xffff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* Like R_PPC64_SECTOFF, but no overflow warning. */
723 HOWTO (R_PPC64_SECTOFF_LO, /* type */
724 0, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont, /* complain_on_overflow */
730 ppc64_elf_sectoff_reloc, /* special_function */
731 "R_PPC64_SECTOFF_LO", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit upper half section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF_HI, /* type */
739 16, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_dont, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF_HI", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* 16-bit upper half adjusted section relative relocation. */
753 HOWTO (R_PPC64_SECTOFF_HA, /* type */
754 16, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_ha_reloc, /* special_function */
761 "R_PPC64_SECTOFF_HA", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* Like R_PPC64_REL24 without touching the two least significant bits. */
768 HOWTO (R_PPC64_REL30, /* type */
769 2, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 30, /* bitsize */
772 TRUE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_PPC64_REL30", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xfffffffc, /* dst_mask */
780 TRUE), /* pcrel_offset */
781
782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
783
784 /* A standard 64-bit relocation. */
785 HOWTO (R_PPC64_ADDR64, /* type */
786 0, /* rightshift */
787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
788 64, /* bitsize */
789 FALSE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_PPC64_ADDR64", /* name */
794 FALSE, /* partial_inplace */
795 0, /* src_mask */
796 ONES (64), /* dst_mask */
797 FALSE), /* pcrel_offset */
798
799 /* The bits 32-47 of an address. */
800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
801 32, /* rightshift */
802 1, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 FALSE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_PPC64_ADDR16_HIGHER", /* name */
809 FALSE, /* partial_inplace */
810 0, /* src_mask */
811 0xffff, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* The bits 32-47 of an address, plus 1 if the contents of the low
815 16 bits, treated as a signed number, is negative. */
816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
817 32, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_dont, /* complain_on_overflow */
823 ppc64_elf_ha_reloc, /* special_function */
824 "R_PPC64_ADDR16_HIGHERA", /* name */
825 FALSE, /* partial_inplace */
826 0, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* The bits 48-63 of an address. */
831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
832 48, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_PPC64_ADDR16_HIGHEST", /* name */
840 FALSE, /* partial_inplace */
841 0, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* The bits 48-63 of an address, plus 1 if the contents of the low
846 16 bits, treated as a signed number, is negative. */
847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
848 48, /* rightshift */
849 1, /* size (0 = byte, 1 = short, 2 = long) */
850 16, /* bitsize */
851 FALSE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont, /* complain_on_overflow */
854 ppc64_elf_ha_reloc, /* special_function */
855 "R_PPC64_ADDR16_HIGHESTA", /* name */
856 FALSE, /* partial_inplace */
857 0, /* src_mask */
858 0xffff, /* dst_mask */
859 FALSE), /* pcrel_offset */
860
861 /* Like ADDR64, but may be unaligned. */
862 HOWTO (R_PPC64_UADDR64, /* type */
863 0, /* rightshift */
864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
865 64, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_dont, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "R_PPC64_UADDR64", /* name */
871 FALSE, /* partial_inplace */
872 0, /* src_mask */
873 ONES (64), /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* 64-bit relative relocation. */
877 HOWTO (R_PPC64_REL64, /* type */
878 0, /* rightshift */
879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
880 64, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_PPC64_REL64", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 ONES (64), /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* 64-bit relocation to the symbol's procedure linkage table. */
892 HOWTO (R_PPC64_PLT64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 ppc64_elf_unhandled_reloc, /* special_function */
900 "R_PPC64_PLT64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit PC relative relocation to the symbol's procedure linkage
907 table. */
908 /* FIXME: R_PPC64_PLTREL64 not supported. */
909 HOWTO (R_PPC64_PLTREL64, /* type */
910 0, /* rightshift */
911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
912 64, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 ppc64_elf_unhandled_reloc, /* special_function */
917 "R_PPC64_PLTREL64", /* name */
918 FALSE, /* partial_inplace */
919 0, /* src_mask */
920 ONES (64), /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 /* 16 bit TOC-relative relocation. */
924
925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
926 HOWTO (R_PPC64_TOC16, /* type */
927 0, /* rightshift */
928 1, /* size (0 = byte, 1 = short, 2 = long) */
929 16, /* bitsize */
930 FALSE, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_signed, /* complain_on_overflow */
933 ppc64_elf_toc_reloc, /* special_function */
934 "R_PPC64_TOC16", /* name */
935 FALSE, /* partial_inplace */
936 0, /* src_mask */
937 0xffff, /* dst_mask */
938 FALSE), /* pcrel_offset */
939
940 /* 16 bit TOC-relative relocation without overflow. */
941
942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
943 HOWTO (R_PPC64_TOC16_LO, /* type */
944 0, /* rightshift */
945 1, /* size (0 = byte, 1 = short, 2 = long) */
946 16, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_dont, /* complain_on_overflow */
950 ppc64_elf_toc_reloc, /* special_function */
951 "R_PPC64_TOC16_LO", /* name */
952 FALSE, /* partial_inplace */
953 0, /* src_mask */
954 0xffff, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
957 /* 16 bit TOC-relative relocation, high 16 bits. */
958
959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
960 HOWTO (R_PPC64_TOC16_HI, /* type */
961 16, /* rightshift */
962 1, /* size (0 = byte, 1 = short, 2 = long) */
963 16, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont, /* complain_on_overflow */
967 ppc64_elf_toc_reloc, /* special_function */
968 "R_PPC64_TOC16_HI", /* name */
969 FALSE, /* partial_inplace */
970 0, /* src_mask */
971 0xffff, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
975 contents of the low 16 bits, treated as a signed number, is
976 negative. */
977
978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
979 HOWTO (R_PPC64_TOC16_HA, /* type */
980 16, /* rightshift */
981 1, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 ppc64_elf_toc_ha_reloc, /* special_function */
987 "R_PPC64_TOC16_HA", /* name */
988 FALSE, /* partial_inplace */
989 0, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 /* 64-bit relocation; insert value of TOC base (.TOC.). */
994
995 /* R_PPC64_TOC 51 doubleword64 .TOC. */
996 HOWTO (R_PPC64_TOC, /* type */
997 0, /* rightshift */
998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
999 64, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_bitfield, /* complain_on_overflow */
1003 ppc64_elf_toc64_reloc, /* special_function */
1004 "R_PPC64_TOC", /* name */
1005 FALSE, /* partial_inplace */
1006 0, /* src_mask */
1007 ONES (64), /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* Like R_PPC64_GOT16, but also informs the link editor that the
1011 value to relocate may (!) refer to a PLT entry which the link
1012 editor (a) may replace with the symbol value. If the link editor
1013 is unable to fully resolve the symbol, it may (b) create a PLT
1014 entry and store the address to the new PLT entry in the GOT.
1015 This permits lazy resolution of function symbols at run time.
1016 The link editor may also skip all of this and just (c) emit a
1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1019 HOWTO (R_PPC64_PLTGOT16, /* type */
1020 0, /* rightshift */
1021 1, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_signed, /* complain_on_overflow */
1026 ppc64_elf_unhandled_reloc, /* special_function */
1027 "R_PPC64_PLTGOT16", /* name */
1028 FALSE, /* partial_inplace */
1029 0, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1033 /* Like R_PPC64_PLTGOT16, but without overflow. */
1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1036 0, /* rightshift */
1037 1, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 ppc64_elf_unhandled_reloc, /* special_function */
1043 "R_PPC64_PLTGOT16_LO", /* name */
1044 FALSE, /* partial_inplace */
1045 0, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1052 16, /* rightshift */
1053 1, /* size (0 = byte, 1 = short, 2 = long) */
1054 16, /* bitsize */
1055 FALSE, /* pc_relative */
1056 0, /* bitpos */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 ppc64_elf_unhandled_reloc, /* special_function */
1059 "R_PPC64_PLTGOT16_HI", /* name */
1060 FALSE, /* partial_inplace */
1061 0, /* src_mask */
1062 0xffff, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1064
1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1066 1 if the contents of the low 16 bits, treated as a signed number,
1067 is negative. */
1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont,/* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HA", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1084 HOWTO (R_PPC64_ADDR16_DS, /* type */
1085 0, /* rightshift */
1086 1, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_bitfield, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 "R_PPC64_ADDR16_DS", /* name */
1093 FALSE, /* partial_inplace */
1094 0, /* src_mask */
1095 0xfffc, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1100 0, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_PPC64_ADDR16_LO_DS",/* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xfffc, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_GOT16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 ppc64_elf_unhandled_reloc, /* special_function */
1122 "R_PPC64_GOT16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont, /* complain_on_overflow */
1136 ppc64_elf_unhandled_reloc, /* special_function */
1137 "R_PPC64_GOT16_LO_DS", /* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_dont, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_PLT16_LO_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_bitfield, /* complain_on_overflow */
1166 ppc64_elf_sectoff_reloc, /* special_function */
1167 "R_PPC64_SECTOFF_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_sectoff_reloc, /* special_function */
1182 "R_PPC64_SECTOFF_LO_DS",/* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_TOC16_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_toc_reloc, /* special_function */
1197 "R_PPC64_TOC16_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_toc_reloc, /* special_function */
1212 "R_PPC64_TOC16_LO_DS", /* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1221 0, /* rightshift */
1222 1, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_signed, /* complain_on_overflow */
1227 ppc64_elf_unhandled_reloc, /* special_function */
1228 "R_PPC64_PLTGOT16_DS", /* name */
1229 FALSE, /* partial_inplace */
1230 0, /* src_mask */
1231 0xfffc, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1237 0, /* rightshift */
1238 1, /* size (0 = byte, 1 = short, 2 = long) */
1239 16, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 ppc64_elf_unhandled_reloc, /* special_function */
1244 "R_PPC64_PLTGOT16_LO_DS",/* name */
1245 FALSE, /* partial_inplace */
1246 0, /* src_mask */
1247 0xfffc, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* Marker relocs for TLS. */
1251 HOWTO (R_PPC64_TLS,
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 32, /* bitsize */
1255 FALSE, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_PPC64_TLS", /* name */
1260 FALSE, /* partial_inplace */
1261 0, /* src_mask */
1262 0, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 HOWTO (R_PPC64_TLSGD,
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 32, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_dont, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 "R_PPC64_TLSGD", /* name */
1274 FALSE, /* partial_inplace */
1275 0, /* src_mask */
1276 0, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 HOWTO (R_PPC64_TLSLD,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLSLD", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TOCSAVE,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TOCSAVE", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 /* Computes the load module index of the load module that contains the
1308 definition of its TLS sym. */
1309 HOWTO (R_PPC64_DTPMOD64,
1310 0, /* rightshift */
1311 4, /* size (0 = byte, 1 = short, 2 = long) */
1312 64, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 ppc64_elf_unhandled_reloc, /* special_function */
1317 "R_PPC64_DTPMOD64", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 ONES (64), /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 /* Computes a dtv-relative displacement, the difference between the value
1324 of sym+add and the base address of the thread-local storage block that
1325 contains the definition of sym, minus 0x8000. */
1326 HOWTO (R_PPC64_DTPREL64,
1327 0, /* rightshift */
1328 4, /* size (0 = byte, 1 = short, 2 = long) */
1329 64, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 ppc64_elf_unhandled_reloc, /* special_function */
1334 "R_PPC64_DTPREL64", /* name */
1335 FALSE, /* partial_inplace */
1336 0, /* src_mask */
1337 ONES (64), /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* A 16 bit dtprel reloc. */
1341 HOWTO (R_PPC64_DTPREL16,
1342 0, /* rightshift */
1343 1, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_signed, /* complain_on_overflow */
1348 ppc64_elf_unhandled_reloc, /* special_function */
1349 "R_PPC64_DTPREL16", /* name */
1350 FALSE, /* partial_inplace */
1351 0, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* Like DTPREL16, but no overflow. */
1356 HOWTO (R_PPC64_DTPREL16_LO,
1357 0, /* rightshift */
1358 1, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL16_LO", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1371 HOWTO (R_PPC64_DTPREL16_HI,
1372 16, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_dont, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16_HI", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1386 HOWTO (R_PPC64_DTPREL16_HA,
1387 16, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_HA", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HIGHER,
1402 32, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HIGHER", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1417 32, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HIGHERA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1432 48, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHEST", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1447 48, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16, but for insns with a DS field. */
1461 HOWTO (R_PPC64_DTPREL16_DS,
1462 0, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_DS", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xfffc, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_DS, but no overflow. */
1476 HOWTO (R_PPC64_DTPREL16_LO_DS,
1477 0, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_LO_DS", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xfffc, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Computes a tp-relative displacement, the difference between the value of
1491 sym+add and the value of the thread pointer (r13). */
1492 HOWTO (R_PPC64_TPREL64,
1493 0, /* rightshift */
1494 4, /* size (0 = byte, 1 = short, 2 = long) */
1495 64, /* bitsize */
1496 FALSE, /* pc_relative */
1497 0, /* bitpos */
1498 complain_overflow_dont, /* complain_on_overflow */
1499 ppc64_elf_unhandled_reloc, /* special_function */
1500 "R_PPC64_TPREL64", /* name */
1501 FALSE, /* partial_inplace */
1502 0, /* src_mask */
1503 ONES (64), /* dst_mask */
1504 FALSE), /* pcrel_offset */
1505
1506 /* A 16 bit tprel reloc. */
1507 HOWTO (R_PPC64_TPREL16,
1508 0, /* rightshift */
1509 1, /* size (0 = byte, 1 = short, 2 = long) */
1510 16, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_signed, /* complain_on_overflow */
1514 ppc64_elf_unhandled_reloc, /* special_function */
1515 "R_PPC64_TPREL16", /* name */
1516 FALSE, /* partial_inplace */
1517 0, /* src_mask */
1518 0xffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1520
1521 /* Like TPREL16, but no overflow. */
1522 HOWTO (R_PPC64_TPREL16_LO,
1523 0, /* rightshift */
1524 1, /* size (0 = byte, 1 = short, 2 = long) */
1525 16, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL16_LO", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 0xffff, /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* Like TPREL16_LO, but next higher group of 16 bits. */
1537 HOWTO (R_PPC64_TPREL16_HI,
1538 16, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_dont, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16_HI", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16_HI, but adjust for low 16 bits. */
1552 HOWTO (R_PPC64_TPREL16_HA,
1553 16, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_HA", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_HI, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HIGHER,
1568 32, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HIGHER", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HIGHERA,
1583 32, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HIGHERA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHEST,
1598 48, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHEST", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1613 48, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHESTA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16, but for insns with a DS field. */
1627 HOWTO (R_PPC64_TPREL16_DS,
1628 0, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_signed, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_DS", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xfffc, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_DS, but no overflow. */
1642 HOWTO (R_PPC64_TPREL16_LO_DS,
1643 0, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_LO_DS", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xfffc, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1658 to the first entry relative to the TOC base (r2). */
1659 HOWTO (R_PPC64_GOT_TLSGD16,
1660 0, /* rightshift */
1661 1, /* size (0 = byte, 1 = short, 2 = long) */
1662 16, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_signed, /* complain_on_overflow */
1666 ppc64_elf_unhandled_reloc, /* special_function */
1667 "R_PPC64_GOT_TLSGD16", /* name */
1668 FALSE, /* partial_inplace */
1669 0, /* src_mask */
1670 0xffff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 /* Like GOT_TLSGD16, but no overflow. */
1674 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1675 0, /* rightshift */
1676 1, /* size (0 = byte, 1 = short, 2 = long) */
1677 16, /* bitsize */
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 ppc64_elf_unhandled_reloc, /* special_function */
1682 "R_PPC64_GOT_TLSGD16_LO", /* name */
1683 FALSE, /* partial_inplace */
1684 0, /* src_mask */
1685 0xffff, /* dst_mask */
1686 FALSE), /* pcrel_offset */
1687
1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1689 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1690 16, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_dont, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16_HI", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1705 16, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_HA", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1719 with values (sym+add)@dtpmod and zero, and computes the offset to the
1720 first entry relative to the TOC base (r2). */
1721 HOWTO (R_PPC64_GOT_TLSLD16,
1722 0, /* rightshift */
1723 1, /* size (0 = byte, 1 = short, 2 = long) */
1724 16, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_signed, /* complain_on_overflow */
1728 ppc64_elf_unhandled_reloc, /* special_function */
1729 "R_PPC64_GOT_TLSLD16", /* name */
1730 FALSE, /* partial_inplace */
1731 0, /* src_mask */
1732 0xffff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* Like GOT_TLSLD16, but no overflow. */
1736 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1737 0, /* rightshift */
1738 1, /* size (0 = byte, 1 = short, 2 = long) */
1739 16, /* bitsize */
1740 FALSE, /* pc_relative */
1741 0, /* bitpos */
1742 complain_overflow_dont, /* complain_on_overflow */
1743 ppc64_elf_unhandled_reloc, /* special_function */
1744 "R_PPC64_GOT_TLSLD16_LO", /* name */
1745 FALSE, /* partial_inplace */
1746 0, /* src_mask */
1747 0xffff, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1751 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1752 16, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16_HI", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1767 16, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_HA", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1781 the offset to the entry relative to the TOC base (r2). */
1782 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1783 0, /* rightshift */
1784 1, /* size (0 = byte, 1 = short, 2 = long) */
1785 16, /* bitsize */
1786 FALSE, /* pc_relative */
1787 0, /* bitpos */
1788 complain_overflow_signed, /* complain_on_overflow */
1789 ppc64_elf_unhandled_reloc, /* special_function */
1790 "R_PPC64_GOT_DTPREL16_DS", /* name */
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 0xfffc, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 /* Like GOT_DTPREL16_DS, but no overflow. */
1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1798 0, /* rightshift */
1799 1, /* size (0 = byte, 1 = short, 2 = long) */
1800 16, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont, /* complain_on_overflow */
1804 ppc64_elf_unhandled_reloc, /* special_function */
1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0xfffc, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1812 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1813 16, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_dont, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_HI", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xffff, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1828 16, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_HA", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xffff, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1842 offset to the entry relative to the TOC base (r2). */
1843 HOWTO (R_PPC64_GOT_TPREL16_DS,
1844 0, /* rightshift */
1845 1, /* size (0 = byte, 1 = short, 2 = long) */
1846 16, /* bitsize */
1847 FALSE, /* pc_relative */
1848 0, /* bitpos */
1849 complain_overflow_signed, /* complain_on_overflow */
1850 ppc64_elf_unhandled_reloc, /* special_function */
1851 "R_PPC64_GOT_TPREL16_DS", /* name */
1852 FALSE, /* partial_inplace */
1853 0, /* src_mask */
1854 0xfffc, /* dst_mask */
1855 FALSE), /* pcrel_offset */
1856
1857 /* Like GOT_TPREL16_DS, but no overflow. */
1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1859 0, /* rightshift */
1860 1, /* size (0 = byte, 1 = short, 2 = long) */
1861 16, /* bitsize */
1862 FALSE, /* pc_relative */
1863 0, /* bitpos */
1864 complain_overflow_dont, /* complain_on_overflow */
1865 ppc64_elf_unhandled_reloc, /* special_function */
1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1867 FALSE, /* partial_inplace */
1868 0, /* src_mask */
1869 0xfffc, /* dst_mask */
1870 FALSE), /* pcrel_offset */
1871
1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1873 HOWTO (R_PPC64_GOT_TPREL16_HI,
1874 16, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_dont, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_HI", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xffff, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1888 HOWTO (R_PPC64_GOT_TPREL16_HA,
1889 16, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_HA", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xffff, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_PPC64_JMP_IREL, /* type */
1903 0, /* rightshift */
1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont, /* complain_on_overflow */
1909 ppc64_elf_unhandled_reloc, /* special_function */
1910 "R_PPC64_JMP_IREL", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE), /* pcrel_offset */
1915
1916 HOWTO (R_PPC64_IRELATIVE, /* type */
1917 0, /* rightshift */
1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1919 64, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_dont, /* complain_on_overflow */
1923 bfd_elf_generic_reloc, /* special_function */
1924 "R_PPC64_IRELATIVE", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 ONES (64), /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 /* A 16 bit relative relocation. */
1931 HOWTO (R_PPC64_REL16, /* type */
1932 0, /* rightshift */
1933 1, /* size (0 = byte, 1 = short, 2 = long) */
1934 16, /* bitsize */
1935 TRUE, /* pc_relative */
1936 0, /* bitpos */
1937 complain_overflow_bitfield, /* complain_on_overflow */
1938 bfd_elf_generic_reloc, /* special_function */
1939 "R_PPC64_REL16", /* name */
1940 FALSE, /* partial_inplace */
1941 0, /* src_mask */
1942 0xffff, /* dst_mask */
1943 TRUE), /* pcrel_offset */
1944
1945 /* A 16 bit relative relocation without overflow. */
1946 HOWTO (R_PPC64_REL16_LO, /* type */
1947 0, /* rightshift */
1948 1, /* size (0 = byte, 1 = short, 2 = long) */
1949 16, /* bitsize */
1950 TRUE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont,/* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_REL16_LO", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 0xffff, /* dst_mask */
1958 TRUE), /* pcrel_offset */
1959
1960 /* The high order 16 bits of a relative address. */
1961 HOWTO (R_PPC64_REL16_HI, /* type */
1962 16, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_dont, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16_HI", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* The high order 16 bits of a relative address, plus 1 if the contents of
1976 the low 16 bits, treated as a signed number, is negative. */
1977 HOWTO (R_PPC64_REL16_HA, /* type */
1978 16, /* rightshift */
1979 1, /* size (0 = byte, 1 = short, 2 = long) */
1980 16, /* bitsize */
1981 TRUE, /* pc_relative */
1982 0, /* bitpos */
1983 complain_overflow_dont, /* complain_on_overflow */
1984 ppc64_elf_ha_reloc, /* special_function */
1985 "R_PPC64_REL16_HA", /* name */
1986 FALSE, /* partial_inplace */
1987 0, /* src_mask */
1988 0xffff, /* dst_mask */
1989 TRUE), /* pcrel_offset */
1990
1991 /* GNU extension to record C++ vtable hierarchy. */
1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1993 0, /* rightshift */
1994 0, /* size (0 = byte, 1 = short, 2 = long) */
1995 0, /* bitsize */
1996 FALSE, /* pc_relative */
1997 0, /* bitpos */
1998 complain_overflow_dont, /* complain_on_overflow */
1999 NULL, /* special_function */
2000 "R_PPC64_GNU_VTINHERIT", /* name */
2001 FALSE, /* partial_inplace */
2002 0, /* src_mask */
2003 0, /* dst_mask */
2004 FALSE), /* pcrel_offset */
2005
2006 /* GNU extension to record C++ vtable member usage. */
2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2008 0, /* rightshift */
2009 0, /* size (0 = byte, 1 = short, 2 = long) */
2010 0, /* bitsize */
2011 FALSE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_dont, /* complain_on_overflow */
2014 NULL, /* special_function */
2015 "R_PPC64_GNU_VTENTRY", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0, /* dst_mask */
2019 FALSE), /* pcrel_offset */
2020 };
2021
2022 \f
2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2024 be done. */
2025
2026 static void
2027 ppc_howto_init (void)
2028 {
2029 unsigned int i, type;
2030
2031 for (i = 0;
2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2033 i++)
2034 {
2035 type = ppc64_elf_howto_raw[i].type;
2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2037 / sizeof (ppc64_elf_howto_table[0])));
2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2039 }
2040 }
2041
2042 static reloc_howto_type *
2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2044 bfd_reloc_code_real_type code)
2045 {
2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2047
2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2049 /* Initialize howto table if needed. */
2050 ppc_howto_init ();
2051
2052 switch (code)
2053 {
2054 default:
2055 return NULL;
2056
2057 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2058 break;
2059 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2060 break;
2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2062 break;
2063 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2064 break;
2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2066 break;
2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2068 break;
2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2070 break;
2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2072 break;
2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2074 break;
2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2076 break;
2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2078 break;
2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2080 break;
2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2082 break;
2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2084 break;
2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2086 break;
2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2088 break;
2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2090 break;
2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2092 break;
2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2094 break;
2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2096 break;
2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2098 break;
2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2100 break;
2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2102 break;
2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2104 break;
2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2106 break;
2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2108 break;
2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2110 break;
2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2112 break;
2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2114 break;
2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2116 break;
2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2118 break;
2119 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2120 break;
2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2122 break;
2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2124 break;
2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2126 break;
2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2128 break;
2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2130 break;
2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2132 break;
2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2134 break;
2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2136 break;
2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2138 break;
2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2140 break;
2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2142 break;
2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2144 break;
2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2146 break;
2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2148 break;
2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2150 break;
2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2152 break;
2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2154 break;
2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2156 break;
2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2158 break;
2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2160 break;
2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2162 break;
2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2164 break;
2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2166 break;
2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2168 break;
2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2170 break;
2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2172 break;
2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2174 break;
2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2176 break;
2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2178 break;
2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2180 break;
2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2182 break;
2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2184 break;
2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2186 break;
2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2188 break;
2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2190 break;
2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2192 break;
2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2194 break;
2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2196 break;
2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2198 break;
2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2200 break;
2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2202 break;
2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2204 break;
2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2206 break;
2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2208 break;
2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2210 break;
2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2212 break;
2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2214 break;
2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2216 break;
2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2218 break;
2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2220 break;
2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2222 break;
2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2224 break;
2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2226 break;
2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2228 break;
2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2230 break;
2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2232 break;
2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2234 break;
2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2236 break;
2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2238 break;
2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2240 break;
2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2242 break;
2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2244 break;
2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2246 break;
2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2248 break;
2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2250 break;
2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2252 break;
2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2254 break;
2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2256 break;
2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2258 break;
2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2260 break;
2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2262 break;
2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2264 break;
2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2266 break;
2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2268 break;
2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2270 break;
2271 }
2272
2273 return ppc64_elf_howto_table[r];
2274 };
2275
2276 static reloc_howto_type *
2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2278 const char *r_name)
2279 {
2280 unsigned int i;
2281
2282 for (i = 0;
2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2284 i++)
2285 if (ppc64_elf_howto_raw[i].name != NULL
2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2287 return &ppc64_elf_howto_raw[i];
2288
2289 return NULL;
2290 }
2291
2292 /* Set the howto pointer for a PowerPC ELF reloc. */
2293
2294 static void
2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2296 Elf_Internal_Rela *dst)
2297 {
2298 unsigned int type;
2299
2300 /* Initialize howto table if needed. */
2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2302 ppc_howto_init ();
2303
2304 type = ELF64_R_TYPE (dst->r_info);
2305 if (type >= (sizeof (ppc64_elf_howto_table)
2306 / sizeof (ppc64_elf_howto_table[0])))
2307 {
2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2309 abfd, (int) type);
2310 type = R_PPC64_NONE;
2311 }
2312 cache_ptr->howto = ppc64_elf_howto_table[type];
2313 }
2314
2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2316
2317 static bfd_reloc_status_type
2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2319 void *data, asection *input_section,
2320 bfd *output_bfd, char **error_message)
2321 {
2322 /* If this is a relocatable link (output_bfd test tells us), just
2323 call the generic function. Any adjustment will be done at final
2324 link time. */
2325 if (output_bfd != NULL)
2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2327 input_section, output_bfd, error_message);
2328
2329 /* Adjust the addend for sign extension of the low 16 bits.
2330 We won't actually be using the low 16 bits, so trashing them
2331 doesn't matter. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 if (output_bfd != NULL)
2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2343 input_section, output_bfd, error_message);
2344
2345 if (strcmp (symbol->section->name, ".opd") == 0
2346 && (symbol->section->owner->flags & DYNAMIC) == 0)
2347 {
2348 bfd_vma dest = opd_entry_value (symbol->section,
2349 symbol->value + reloc_entry->addend,
2350 NULL, NULL, FALSE);
2351 if (dest != (bfd_vma) -1)
2352 reloc_entry->addend = dest - (symbol->value
2353 + symbol->section->output_section->vma
2354 + symbol->section->output_offset);
2355 }
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 long insn;
2365 enum elf_ppc64_reloc_type r_type;
2366 bfd_size_type octets;
2367 /* Assume 'at' branch hints. */
2368 bfd_boolean is_isa_v2 = TRUE;
2369
2370 /* If this is a relocatable link (output_bfd test tells us), just
2371 call the generic function. Any adjustment will be done at final
2372 link time. */
2373 if (output_bfd != NULL)
2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2375 input_section, output_bfd, error_message);
2376
2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2379 insn &= ~(0x01 << 21);
2380 r_type = reloc_entry->howto->type;
2381 if (r_type == R_PPC64_ADDR14_BRTAKEN
2382 || r_type == R_PPC64_REL14_BRTAKEN)
2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2384
2385 if (is_isa_v2)
2386 {
2387 /* Set 'a' bit. This is 0b00010 in BO field for branch
2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2389 for branch on CTR insns (BO == 1a00t or 1a01t). */
2390 if ((insn & (0x14 << 21)) == (0x04 << 21))
2391 insn |= 0x02 << 21;
2392 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2393 insn |= 0x08 << 21;
2394 else
2395 goto out;
2396 }
2397 else
2398 {
2399 bfd_vma target = 0;
2400 bfd_vma from;
2401
2402 if (!bfd_is_com_section (symbol->section))
2403 target = symbol->value;
2404 target += symbol->section->output_section->vma;
2405 target += symbol->section->output_offset;
2406 target += reloc_entry->addend;
2407
2408 from = (reloc_entry->address
2409 + input_section->output_offset
2410 + input_section->output_section->vma);
2411
2412 /* Invert 'y' bit if not the default. */
2413 if ((bfd_signed_vma) (target - from) < 0)
2414 insn ^= 0x01 << 21;
2415 }
2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2417 out:
2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420 }
2421
2422 static bfd_reloc_status_type
2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2424 void *data, asection *input_section,
2425 bfd *output_bfd, char **error_message)
2426 {
2427 /* If this is a relocatable link (output_bfd test tells us), just
2428 call the generic function. Any adjustment will be done at final
2429 link time. */
2430 if (output_bfd != NULL)
2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2432 input_section, output_bfd, error_message);
2433
2434 /* Subtract the symbol section base address. */
2435 reloc_entry->addend -= symbol->section->output_section->vma;
2436 return bfd_reloc_continue;
2437 }
2438
2439 static bfd_reloc_status_type
2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 /* If this is a relocatable link (output_bfd test tells us), just
2445 call the generic function. Any adjustment will be done at final
2446 link time. */
2447 if (output_bfd != NULL)
2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd, error_message);
2450
2451 /* Subtract the symbol section base address. */
2452 reloc_entry->addend -= symbol->section->output_section->vma;
2453
2454 /* Adjust the addend for sign extension of the low 16 bits. */
2455 reloc_entry->addend += 0x8000;
2456 return bfd_reloc_continue;
2457 }
2458
2459 static bfd_reloc_status_type
2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2461 void *data, asection *input_section,
2462 bfd *output_bfd, char **error_message)
2463 {
2464 bfd_vma TOCstart;
2465
2466 /* If this is a relocatable link (output_bfd test tells us), just
2467 call the generic function. Any adjustment will be done at final
2468 link time. */
2469 if (output_bfd != NULL)
2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2471 input_section, output_bfd, error_message);
2472
2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2474 if (TOCstart == 0)
2475 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2476
2477 /* Subtract the TOC base address. */
2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2479 return bfd_reloc_continue;
2480 }
2481
2482 static bfd_reloc_status_type
2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2484 void *data, asection *input_section,
2485 bfd *output_bfd, char **error_message)
2486 {
2487 bfd_vma TOCstart;
2488
2489 /* If this is a relocatable link (output_bfd test tells us), just
2490 call the generic function. Any adjustment will be done at final
2491 link time. */
2492 if (output_bfd != NULL)
2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2494 input_section, output_bfd, error_message);
2495
2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2497 if (TOCstart == 0)
2498 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2499
2500 /* Subtract the TOC base address. */
2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2502
2503 /* Adjust the addend for sign extension of the low 16 bits. */
2504 reloc_entry->addend += 0x8000;
2505 return bfd_reloc_continue;
2506 }
2507
2508 static bfd_reloc_status_type
2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 bfd_vma TOCstart;
2514 bfd_size_type octets;
2515
2516 /* If this is a relocatable link (output_bfd test tells us), just
2517 call the generic function. Any adjustment will be done at final
2518 link time. */
2519 if (output_bfd != NULL)
2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd, error_message);
2522
2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2524 if (TOCstart == 0)
2525 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2526
2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2529 return bfd_reloc_ok;
2530 }
2531
2532 static bfd_reloc_status_type
2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536 {
2537 /* If this is a relocatable link (output_bfd test tells us), just
2538 call the generic function. Any adjustment will be done at final
2539 link time. */
2540 if (output_bfd != NULL)
2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543
2544 if (error_message != NULL)
2545 {
2546 static char buf[60];
2547 sprintf (buf, "generic linker can't handle %s",
2548 reloc_entry->howto->name);
2549 *error_message = buf;
2550 }
2551 return bfd_reloc_dangerous;
2552 }
2553
2554 /* Track GOT entries needed for a given symbol. We might need more
2555 than one got entry per symbol. */
2556 struct got_entry
2557 {
2558 struct got_entry *next;
2559
2560 /* The symbol addend that we'll be placing in the GOT. */
2561 bfd_vma addend;
2562
2563 /* Unlike other ELF targets, we use separate GOT entries for the same
2564 symbol referenced from different input files. This is to support
2565 automatic multiple TOC/GOT sections, where the TOC base can vary
2566 from one input file to another. After partitioning into TOC groups
2567 we merge entries within the group.
2568
2569 Point to the BFD owning this GOT entry. */
2570 bfd *owner;
2571
2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2573 TLS_TPREL or TLS_DTPREL for tls entries. */
2574 unsigned char tls_type;
2575
2576 /* Non-zero if got.ent points to real entry. */
2577 unsigned char is_indirect;
2578
2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2580 union
2581 {
2582 bfd_signed_vma refcount;
2583 bfd_vma offset;
2584 struct got_entry *ent;
2585 } got;
2586 };
2587
2588 /* The same for PLT. */
2589 struct plt_entry
2590 {
2591 struct plt_entry *next;
2592
2593 bfd_vma addend;
2594
2595 union
2596 {
2597 bfd_signed_vma refcount;
2598 bfd_vma offset;
2599 } plt;
2600 };
2601
2602 struct ppc64_elf_obj_tdata
2603 {
2604 struct elf_obj_tdata elf;
2605
2606 /* Shortcuts to dynamic linker sections. */
2607 asection *got;
2608 asection *relgot;
2609
2610 /* Used during garbage collection. We attach global symbols defined
2611 on removed .opd entries to this section so that the sym is removed. */
2612 asection *deleted_section;
2613
2614 /* TLS local dynamic got entry handling. Support for multiple GOT
2615 sections means we potentially need one of these for each input bfd. */
2616 struct got_entry tlsld_got;
2617
2618 /* A copy of relocs before they are modified for --emit-relocs. */
2619 Elf_Internal_Rela *opd_relocs;
2620
2621 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2622 the reloc to be in the range -32768 to 32767. */
2623 unsigned int has_small_toc_reloc : 1;
2624
2625 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2626 instruction not one we handle. */
2627 unsigned int unexpected_toc_insn : 1;
2628 };
2629
2630 #define ppc64_elf_tdata(bfd) \
2631 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2632
2633 #define ppc64_tlsld_got(bfd) \
2634 (&ppc64_elf_tdata (bfd)->tlsld_got)
2635
2636 #define is_ppc64_elf(bfd) \
2637 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2638 && elf_object_id (bfd) == PPC64_ELF_DATA)
2639
2640 /* Override the generic function because we store some extras. */
2641
2642 static bfd_boolean
2643 ppc64_elf_mkobject (bfd *abfd)
2644 {
2645 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2646 PPC64_ELF_DATA);
2647 }
2648
2649 /* Fix bad default arch selected for a 64 bit input bfd when the
2650 default is 32 bit. */
2651
2652 static bfd_boolean
2653 ppc64_elf_object_p (bfd *abfd)
2654 {
2655 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2656 {
2657 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2658
2659 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2660 {
2661 /* Relies on arch after 32 bit default being 64 bit default. */
2662 abfd->arch_info = abfd->arch_info->next;
2663 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2664 }
2665 }
2666 return TRUE;
2667 }
2668
2669 /* Support for core dump NOTE sections. */
2670
2671 static bfd_boolean
2672 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2673 {
2674 size_t offset, size;
2675
2676 if (note->descsz != 504)
2677 return FALSE;
2678
2679 /* pr_cursig */
2680 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2681
2682 /* pr_pid */
2683 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
2684
2685 /* pr_reg */
2686 offset = 112;
2687 size = 384;
2688
2689 /* Make a ".reg/999" section. */
2690 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2691 size, note->descpos + offset);
2692 }
2693
2694 static bfd_boolean
2695 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2696 {
2697 if (note->descsz != 136)
2698 return FALSE;
2699
2700 elf_tdata (abfd)->core_pid
2701 = bfd_get_32 (abfd, note->descdata + 24);
2702 elf_tdata (abfd)->core_program
2703 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2704 elf_tdata (abfd)->core_command
2705 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2706
2707 return TRUE;
2708 }
2709
2710 static char *
2711 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2712 ...)
2713 {
2714 switch (note_type)
2715 {
2716 default:
2717 return NULL;
2718
2719 case NT_PRPSINFO:
2720 {
2721 char data[136];
2722 va_list ap;
2723
2724 va_start (ap, note_type);
2725 memset (data, 0, sizeof (data));
2726 strncpy (data + 40, va_arg (ap, const char *), 16);
2727 strncpy (data + 56, va_arg (ap, const char *), 80);
2728 va_end (ap);
2729 return elfcore_write_note (abfd, buf, bufsiz,
2730 "CORE", note_type, data, sizeof (data));
2731 }
2732
2733 case NT_PRSTATUS:
2734 {
2735 char data[504];
2736 va_list ap;
2737 long pid;
2738 int cursig;
2739 const void *greg;
2740
2741 va_start (ap, note_type);
2742 memset (data, 0, 112);
2743 pid = va_arg (ap, long);
2744 bfd_put_32 (abfd, pid, data + 32);
2745 cursig = va_arg (ap, int);
2746 bfd_put_16 (abfd, cursig, data + 12);
2747 greg = va_arg (ap, const void *);
2748 memcpy (data + 112, greg, 384);
2749 memset (data + 496, 0, 8);
2750 va_end (ap);
2751 return elfcore_write_note (abfd, buf, bufsiz,
2752 "CORE", note_type, data, sizeof (data));
2753 }
2754 }
2755 }
2756
2757 /* Add extra PPC sections. */
2758
2759 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2760 {
2761 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2762 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2763 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2764 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2765 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2766 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2767 { NULL, 0, 0, 0, 0 }
2768 };
2769
2770 enum _ppc64_sec_type {
2771 sec_normal = 0,
2772 sec_opd = 1,
2773 sec_toc = 2
2774 };
2775
2776 struct _ppc64_elf_section_data
2777 {
2778 struct bfd_elf_section_data elf;
2779
2780 union
2781 {
2782 /* An array with one entry for each opd function descriptor. */
2783 struct _opd_sec_data
2784 {
2785 /* Points to the function code section for local opd entries. */
2786 asection **func_sec;
2787
2788 /* After editing .opd, adjust references to opd local syms. */
2789 long *adjust;
2790 } opd;
2791
2792 /* An array for toc sections, indexed by offset/8. */
2793 struct _toc_sec_data
2794 {
2795 /* Specifies the relocation symbol index used at a given toc offset. */
2796 unsigned *symndx;
2797
2798 /* And the relocation addend. */
2799 bfd_vma *add;
2800 } toc;
2801 } u;
2802
2803 enum _ppc64_sec_type sec_type:2;
2804
2805 /* Flag set when small branches are detected. Used to
2806 select suitable defaults for the stub group size. */
2807 unsigned int has_14bit_branch:1;
2808 };
2809
2810 #define ppc64_elf_section_data(sec) \
2811 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2812
2813 static bfd_boolean
2814 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2815 {
2816 if (!sec->used_by_bfd)
2817 {
2818 struct _ppc64_elf_section_data *sdata;
2819 bfd_size_type amt = sizeof (*sdata);
2820
2821 sdata = bfd_zalloc (abfd, amt);
2822 if (sdata == NULL)
2823 return FALSE;
2824 sec->used_by_bfd = sdata;
2825 }
2826
2827 return _bfd_elf_new_section_hook (abfd, sec);
2828 }
2829
2830 static struct _opd_sec_data *
2831 get_opd_info (asection * sec)
2832 {
2833 if (sec != NULL
2834 && ppc64_elf_section_data (sec) != NULL
2835 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2836 return &ppc64_elf_section_data (sec)->u.opd;
2837 return NULL;
2838 }
2839 \f
2840 /* Parameters for the qsort hook. */
2841 static bfd_boolean synthetic_relocatable;
2842
2843 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2844
2845 static int
2846 compare_symbols (const void *ap, const void *bp)
2847 {
2848 const asymbol *a = * (const asymbol **) ap;
2849 const asymbol *b = * (const asymbol **) bp;
2850
2851 /* Section symbols first. */
2852 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2853 return -1;
2854 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2855 return 1;
2856
2857 /* then .opd symbols. */
2858 if (strcmp (a->section->name, ".opd") == 0
2859 && strcmp (b->section->name, ".opd") != 0)
2860 return -1;
2861 if (strcmp (a->section->name, ".opd") != 0
2862 && strcmp (b->section->name, ".opd") == 0)
2863 return 1;
2864
2865 /* then other code symbols. */
2866 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2867 == (SEC_CODE | SEC_ALLOC)
2868 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2869 != (SEC_CODE | SEC_ALLOC))
2870 return -1;
2871
2872 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2873 != (SEC_CODE | SEC_ALLOC)
2874 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2875 == (SEC_CODE | SEC_ALLOC))
2876 return 1;
2877
2878 if (synthetic_relocatable)
2879 {
2880 if (a->section->id < b->section->id)
2881 return -1;
2882
2883 if (a->section->id > b->section->id)
2884 return 1;
2885 }
2886
2887 if (a->value + a->section->vma < b->value + b->section->vma)
2888 return -1;
2889
2890 if (a->value + a->section->vma > b->value + b->section->vma)
2891 return 1;
2892
2893 /* For syms with the same value, prefer strong dynamic global function
2894 syms over other syms. */
2895 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2896 return -1;
2897
2898 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2899 return 1;
2900
2901 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2902 return -1;
2903
2904 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2905 return 1;
2906
2907 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2908 return -1;
2909
2910 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2911 return 1;
2912
2913 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2914 return -1;
2915
2916 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2917 return 1;
2918
2919 return 0;
2920 }
2921
2922 /* Search SYMS for a symbol of the given VALUE. */
2923
2924 static asymbol *
2925 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2926 {
2927 long mid;
2928
2929 if (id == -1)
2930 {
2931 while (lo < hi)
2932 {
2933 mid = (lo + hi) >> 1;
2934 if (syms[mid]->value + syms[mid]->section->vma < value)
2935 lo = mid + 1;
2936 else if (syms[mid]->value + syms[mid]->section->vma > value)
2937 hi = mid;
2938 else
2939 return syms[mid];
2940 }
2941 }
2942 else
2943 {
2944 while (lo < hi)
2945 {
2946 mid = (lo + hi) >> 1;
2947 if (syms[mid]->section->id < id)
2948 lo = mid + 1;
2949 else if (syms[mid]->section->id > id)
2950 hi = mid;
2951 else if (syms[mid]->value < value)
2952 lo = mid + 1;
2953 else if (syms[mid]->value > value)
2954 hi = mid;
2955 else
2956 return syms[mid];
2957 }
2958 }
2959 return NULL;
2960 }
2961
2962 static bfd_boolean
2963 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2964 {
2965 bfd_vma vma = *(bfd_vma *) ptr;
2966 return ((section->flags & SEC_ALLOC) != 0
2967 && section->vma <= vma
2968 && vma < section->vma + section->size);
2969 }
2970
2971 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2972 entry syms. Also generate @plt symbols for the glink branch table. */
2973
2974 static long
2975 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2976 long static_count, asymbol **static_syms,
2977 long dyn_count, asymbol **dyn_syms,
2978 asymbol **ret)
2979 {
2980 asymbol *s;
2981 long i;
2982 long count;
2983 char *names;
2984 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2985 asection *opd;
2986 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2987 asymbol **syms;
2988
2989 *ret = NULL;
2990
2991 opd = bfd_get_section_by_name (abfd, ".opd");
2992 if (opd == NULL)
2993 return 0;
2994
2995 symcount = static_count;
2996 if (!relocatable)
2997 symcount += dyn_count;
2998 if (symcount == 0)
2999 return 0;
3000
3001 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3002 if (syms == NULL)
3003 return -1;
3004
3005 if (!relocatable && static_count != 0 && dyn_count != 0)
3006 {
3007 /* Use both symbol tables. */
3008 memcpy (syms, static_syms, static_count * sizeof (*syms));
3009 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3010 }
3011 else if (!relocatable && static_count == 0)
3012 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3013 else
3014 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3015
3016 synthetic_relocatable = relocatable;
3017 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3018
3019 if (!relocatable && symcount > 1)
3020 {
3021 long j;
3022 /* Trim duplicate syms, since we may have merged the normal and
3023 dynamic symbols. Actually, we only care about syms that have
3024 different values, so trim any with the same value. */
3025 for (i = 1, j = 1; i < symcount; ++i)
3026 if (syms[i - 1]->value + syms[i - 1]->section->vma
3027 != syms[i]->value + syms[i]->section->vma)
3028 syms[j++] = syms[i];
3029 symcount = j;
3030 }
3031
3032 i = 0;
3033 if (strcmp (syms[i]->section->name, ".opd") == 0)
3034 ++i;
3035 codesecsym = i;
3036
3037 for (; i < symcount; ++i)
3038 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3039 != (SEC_CODE | SEC_ALLOC))
3040 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3041 break;
3042 codesecsymend = i;
3043
3044 for (; i < symcount; ++i)
3045 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3046 break;
3047 secsymend = i;
3048
3049 for (; i < symcount; ++i)
3050 if (strcmp (syms[i]->section->name, ".opd") != 0)
3051 break;
3052 opdsymend = i;
3053
3054 for (; i < symcount; ++i)
3055 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3056 != (SEC_CODE | SEC_ALLOC))
3057 break;
3058 symcount = i;
3059
3060 count = 0;
3061
3062 if (relocatable)
3063 {
3064 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3065 arelent *r;
3066 size_t size;
3067 long relcount;
3068
3069 if (opdsymend == secsymend)
3070 goto done;
3071
3072 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3073 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3074 if (relcount == 0)
3075 goto done;
3076
3077 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3078 {
3079 count = -1;
3080 goto done;
3081 }
3082
3083 size = 0;
3084 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3085 {
3086 asymbol *sym;
3087
3088 while (r < opd->relocation + relcount
3089 && r->address < syms[i]->value + opd->vma)
3090 ++r;
3091
3092 if (r == opd->relocation + relcount)
3093 break;
3094
3095 if (r->address != syms[i]->value + opd->vma)
3096 continue;
3097
3098 if (r->howto->type != R_PPC64_ADDR64)
3099 continue;
3100
3101 sym = *r->sym_ptr_ptr;
3102 if (!sym_exists_at (syms, opdsymend, symcount,
3103 sym->section->id, sym->value + r->addend))
3104 {
3105 ++count;
3106 size += sizeof (asymbol);
3107 size += strlen (syms[i]->name) + 2;
3108 }
3109 }
3110
3111 s = *ret = bfd_malloc (size);
3112 if (s == NULL)
3113 {
3114 count = -1;
3115 goto done;
3116 }
3117
3118 names = (char *) (s + count);
3119
3120 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3121 {
3122 asymbol *sym;
3123
3124 while (r < opd->relocation + relcount
3125 && r->address < syms[i]->value + opd->vma)
3126 ++r;
3127
3128 if (r == opd->relocation + relcount)
3129 break;
3130
3131 if (r->address != syms[i]->value + opd->vma)
3132 continue;
3133
3134 if (r->howto->type != R_PPC64_ADDR64)
3135 continue;
3136
3137 sym = *r->sym_ptr_ptr;
3138 if (!sym_exists_at (syms, opdsymend, symcount,
3139 sym->section->id, sym->value + r->addend))
3140 {
3141 size_t len;
3142
3143 *s = *syms[i];
3144 s->flags |= BSF_SYNTHETIC;
3145 s->section = sym->section;
3146 s->value = sym->value + r->addend;
3147 s->name = names;
3148 *names++ = '.';
3149 len = strlen (syms[i]->name);
3150 memcpy (names, syms[i]->name, len + 1);
3151 names += len + 1;
3152 /* Have udata.p point back to the original symbol this
3153 synthetic symbol was derived from. */
3154 s->udata.p = syms[i];
3155 s++;
3156 }
3157 }
3158 }
3159 else
3160 {
3161 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3162 bfd_byte *contents;
3163 size_t size;
3164 long plt_count = 0;
3165 bfd_vma glink_vma = 0, resolv_vma = 0;
3166 asection *dynamic, *glink = NULL, *relplt = NULL;
3167 arelent *p;
3168
3169 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3170 {
3171 if (contents)
3172 {
3173 free_contents_and_exit:
3174 free (contents);
3175 }
3176 count = -1;
3177 goto done;
3178 }
3179
3180 size = 0;
3181 for (i = secsymend; i < opdsymend; ++i)
3182 {
3183 bfd_vma ent;
3184
3185 /* Ignore bogus symbols. */
3186 if (syms[i]->value > opd->size - 8)
3187 continue;
3188
3189 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3190 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3191 {
3192 ++count;
3193 size += sizeof (asymbol);
3194 size += strlen (syms[i]->name) + 2;
3195 }
3196 }
3197
3198 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3199 if (dyn_count != 0
3200 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3201 {
3202 bfd_byte *dynbuf, *extdyn, *extdynend;
3203 size_t extdynsize;
3204 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3205
3206 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3207 goto free_contents_and_exit;
3208
3209 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3210 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3211
3212 extdyn = dynbuf;
3213 extdynend = extdyn + dynamic->size;
3214 for (; extdyn < extdynend; extdyn += extdynsize)
3215 {
3216 Elf_Internal_Dyn dyn;
3217 (*swap_dyn_in) (abfd, extdyn, &dyn);
3218
3219 if (dyn.d_tag == DT_NULL)
3220 break;
3221
3222 if (dyn.d_tag == DT_PPC64_GLINK)
3223 {
3224 /* The first glink stub starts at offset 32; see comment in
3225 ppc64_elf_finish_dynamic_sections. */
3226 glink_vma = dyn.d_un.d_val + 32;
3227 /* The .glink section usually does not survive the final
3228 link; search for the section (usually .text) where the
3229 glink stubs now reside. */
3230 glink = bfd_sections_find_if (abfd, section_covers_vma,
3231 &glink_vma);
3232 break;
3233 }
3234 }
3235
3236 free (dynbuf);
3237 }
3238
3239 if (glink != NULL)
3240 {
3241 /* Determine __glink trampoline by reading the relative branch
3242 from the first glink stub. */
3243 bfd_byte buf[4];
3244 if (bfd_get_section_contents (abfd, glink, buf,
3245 glink_vma + 4 - glink->vma, 4))
3246 {
3247 unsigned int insn = bfd_get_32 (abfd, buf);
3248 insn ^= B_DOT;
3249 if ((insn & ~0x3fffffc) == 0)
3250 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3251 }
3252
3253 if (resolv_vma)
3254 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3255
3256 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3257 if (relplt != NULL)
3258 {
3259 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3260 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3261 goto free_contents_and_exit;
3262
3263 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3264 size += plt_count * sizeof (asymbol);
3265
3266 p = relplt->relocation;
3267 for (i = 0; i < plt_count; i++, p++)
3268 {
3269 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3270 if (p->addend != 0)
3271 size += sizeof ("+0x") - 1 + 16;
3272 }
3273 }
3274 }
3275
3276 s = *ret = bfd_malloc (size);
3277 if (s == NULL)
3278 goto free_contents_and_exit;
3279
3280 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3281
3282 for (i = secsymend; i < opdsymend; ++i)
3283 {
3284 bfd_vma ent;
3285
3286 if (syms[i]->value > opd->size - 8)
3287 continue;
3288
3289 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3290 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3291 {
3292 long lo, hi;
3293 size_t len;
3294 asection *sec = abfd->sections;
3295
3296 *s = *syms[i];
3297 lo = codesecsym;
3298 hi = codesecsymend;
3299 while (lo < hi)
3300 {
3301 long mid = (lo + hi) >> 1;
3302 if (syms[mid]->section->vma < ent)
3303 lo = mid + 1;
3304 else if (syms[mid]->section->vma > ent)
3305 hi = mid;
3306 else
3307 {
3308 sec = syms[mid]->section;
3309 break;
3310 }
3311 }
3312
3313 if (lo >= hi && lo > codesecsym)
3314 sec = syms[lo - 1]->section;
3315
3316 for (; sec != NULL; sec = sec->next)
3317 {
3318 if (sec->vma > ent)
3319 break;
3320 /* SEC_LOAD may not be set if SEC is from a separate debug
3321 info file. */
3322 if ((sec->flags & SEC_ALLOC) == 0)
3323 break;
3324 if ((sec->flags & SEC_CODE) != 0)
3325 s->section = sec;
3326 }
3327 s->flags |= BSF_SYNTHETIC;
3328 s->value = ent - s->section->vma;
3329 s->name = names;
3330 *names++ = '.';
3331 len = strlen (syms[i]->name);
3332 memcpy (names, syms[i]->name, len + 1);
3333 names += len + 1;
3334 /* Have udata.p point back to the original symbol this
3335 synthetic symbol was derived from. */
3336 s->udata.p = syms[i];
3337 s++;
3338 }
3339 }
3340 free (contents);
3341
3342 if (glink != NULL && relplt != NULL)
3343 {
3344 if (resolv_vma)
3345 {
3346 /* Add a symbol for the main glink trampoline. */
3347 memset (s, 0, sizeof *s);
3348 s->the_bfd = abfd;
3349 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3350 s->section = glink;
3351 s->value = resolv_vma - glink->vma;
3352 s->name = names;
3353 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3354 names += sizeof ("__glink_PLTresolve");
3355 s++;
3356 count++;
3357 }
3358
3359 /* FIXME: It would be very much nicer to put sym@plt on the
3360 stub rather than on the glink branch table entry. The
3361 objdump disassembler would then use a sensible symbol
3362 name on plt calls. The difficulty in doing so is
3363 a) finding the stubs, and,
3364 b) matching stubs against plt entries, and,
3365 c) there can be multiple stubs for a given plt entry.
3366
3367 Solving (a) could be done by code scanning, but older
3368 ppc64 binaries used different stubs to current code.
3369 (b) is the tricky one since you need to known the toc
3370 pointer for at least one function that uses a pic stub to
3371 be able to calculate the plt address referenced.
3372 (c) means gdb would need to set multiple breakpoints (or
3373 find the glink branch itself) when setting breakpoints
3374 for pending shared library loads. */
3375 p = relplt->relocation;
3376 for (i = 0; i < plt_count; i++, p++)
3377 {
3378 size_t len;
3379
3380 *s = **p->sym_ptr_ptr;
3381 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3382 we are defining a symbol, ensure one of them is set. */
3383 if ((s->flags & BSF_LOCAL) == 0)
3384 s->flags |= BSF_GLOBAL;
3385 s->flags |= BSF_SYNTHETIC;
3386 s->section = glink;
3387 s->value = glink_vma - glink->vma;
3388 s->name = names;
3389 s->udata.p = NULL;
3390 len = strlen ((*p->sym_ptr_ptr)->name);
3391 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3392 names += len;
3393 if (p->addend != 0)
3394 {
3395 memcpy (names, "+0x", sizeof ("+0x") - 1);
3396 names += sizeof ("+0x") - 1;
3397 bfd_sprintf_vma (abfd, names, p->addend);
3398 names += strlen (names);
3399 }
3400 memcpy (names, "@plt", sizeof ("@plt"));
3401 names += sizeof ("@plt");
3402 s++;
3403 glink_vma += 8;
3404 if (i >= 0x8000)
3405 glink_vma += 4;
3406 }
3407 count += plt_count;
3408 }
3409 }
3410
3411 done:
3412 free (syms);
3413 return count;
3414 }
3415 \f
3416 /* The following functions are specific to the ELF linker, while
3417 functions above are used generally. Those named ppc64_elf_* are
3418 called by the main ELF linker code. They appear in this file more
3419 or less in the order in which they are called. eg.
3420 ppc64_elf_check_relocs is called early in the link process,
3421 ppc64_elf_finish_dynamic_sections is one of the last functions
3422 called.
3423
3424 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3425 functions have both a function code symbol and a function descriptor
3426 symbol. A call to foo in a relocatable object file looks like:
3427
3428 . .text
3429 . x:
3430 . bl .foo
3431 . nop
3432
3433 The function definition in another object file might be:
3434
3435 . .section .opd
3436 . foo: .quad .foo
3437 . .quad .TOC.@tocbase
3438 . .quad 0
3439 .
3440 . .text
3441 . .foo: blr
3442
3443 When the linker resolves the call during a static link, the branch
3444 unsurprisingly just goes to .foo and the .opd information is unused.
3445 If the function definition is in a shared library, things are a little
3446 different: The call goes via a plt call stub, the opd information gets
3447 copied to the plt, and the linker patches the nop.
3448
3449 . x:
3450 . bl .foo_stub
3451 . ld 2,40(1)
3452 .
3453 .
3454 . .foo_stub:
3455 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3456 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3457 . std 2,40(1) # this is the general idea
3458 . ld 11,0(12)
3459 . ld 2,8(12)
3460 . mtctr 11
3461 . ld 11,16(12)
3462 . bctr
3463 .
3464 . .section .plt
3465 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3466
3467 The "reloc ()" notation is supposed to indicate that the linker emits
3468 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3469 copying.
3470
3471 What are the difficulties here? Well, firstly, the relocations
3472 examined by the linker in check_relocs are against the function code
3473 sym .foo, while the dynamic relocation in the plt is emitted against
3474 the function descriptor symbol, foo. Somewhere along the line, we need
3475 to carefully copy dynamic link information from one symbol to the other.
3476 Secondly, the generic part of the elf linker will make .foo a dynamic
3477 symbol as is normal for most other backends. We need foo dynamic
3478 instead, at least for an application final link. However, when
3479 creating a shared library containing foo, we need to have both symbols
3480 dynamic so that references to .foo are satisfied during the early
3481 stages of linking. Otherwise the linker might decide to pull in a
3482 definition from some other object, eg. a static library.
3483
3484 Update: As of August 2004, we support a new convention. Function
3485 calls may use the function descriptor symbol, ie. "bl foo". This
3486 behaves exactly as "bl .foo". */
3487
3488 /* Of those relocs that might be copied as dynamic relocs, this function
3489 selects those that must be copied when linking a shared library,
3490 even when the symbol is local. */
3491
3492 static int
3493 must_be_dyn_reloc (struct bfd_link_info *info,
3494 enum elf_ppc64_reloc_type r_type)
3495 {
3496 switch (r_type)
3497 {
3498 default:
3499 return 1;
3500
3501 case R_PPC64_REL32:
3502 case R_PPC64_REL64:
3503 case R_PPC64_REL30:
3504 return 0;
3505
3506 case R_PPC64_TPREL16:
3507 case R_PPC64_TPREL16_LO:
3508 case R_PPC64_TPREL16_HI:
3509 case R_PPC64_TPREL16_HA:
3510 case R_PPC64_TPREL16_DS:
3511 case R_PPC64_TPREL16_LO_DS:
3512 case R_PPC64_TPREL16_HIGHER:
3513 case R_PPC64_TPREL16_HIGHERA:
3514 case R_PPC64_TPREL16_HIGHEST:
3515 case R_PPC64_TPREL16_HIGHESTA:
3516 case R_PPC64_TPREL64:
3517 return !info->executable;
3518 }
3519 }
3520
3521 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3522 copying dynamic variables from a shared lib into an app's dynbss
3523 section, and instead use a dynamic relocation to point into the
3524 shared lib. With code that gcc generates, it's vital that this be
3525 enabled; In the PowerPC64 ABI, the address of a function is actually
3526 the address of a function descriptor, which resides in the .opd
3527 section. gcc uses the descriptor directly rather than going via the
3528 GOT as some other ABI's do, which means that initialized function
3529 pointers must reference the descriptor. Thus, a function pointer
3530 initialized to the address of a function in a shared library will
3531 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3532 redefines the function descriptor symbol to point to the copy. This
3533 presents a problem as a plt entry for that function is also
3534 initialized from the function descriptor symbol and the copy reloc
3535 may not be initialized first. */
3536 #define ELIMINATE_COPY_RELOCS 1
3537
3538 /* Section name for stubs is the associated section name plus this
3539 string. */
3540 #define STUB_SUFFIX ".stub"
3541
3542 /* Linker stubs.
3543 ppc_stub_long_branch:
3544 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3545 destination, but a 24 bit branch in a stub section will reach.
3546 . b dest
3547
3548 ppc_stub_plt_branch:
3549 Similar to the above, but a 24 bit branch in the stub section won't
3550 reach its destination.
3551 . addis %r12,%r2,xxx@toc@ha
3552 . ld %r11,xxx@toc@l(%r12)
3553 . mtctr %r11
3554 . bctr
3555
3556 ppc_stub_plt_call:
3557 Used to call a function in a shared library. If it so happens that
3558 the plt entry referenced crosses a 64k boundary, then an extra
3559 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3560 . addis %r12,%r2,xxx@toc@ha
3561 . std %r2,40(%r1)
3562 . ld %r11,xxx+0@toc@l(%r12)
3563 . mtctr %r11
3564 . ld %r2,xxx+8@toc@l(%r12)
3565 . ld %r11,xxx+16@toc@l(%r12)
3566 . bctr
3567
3568 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3569 code to adjust the value and save r2 to support multiple toc sections.
3570 A ppc_stub_long_branch with an r2 offset looks like:
3571 . std %r2,40(%r1)
3572 . addis %r2,%r2,off@ha
3573 . addi %r2,%r2,off@l
3574 . b dest
3575
3576 A ppc_stub_plt_branch with an r2 offset looks like:
3577 . std %r2,40(%r1)
3578 . addis %r12,%r2,xxx@toc@ha
3579 . ld %r11,xxx@toc@l(%r12)
3580 . addis %r2,%r2,off@ha
3581 . addi %r2,%r2,off@l
3582 . mtctr %r11
3583 . bctr
3584
3585 In cases where the "addis" instruction would add zero, the "addis" is
3586 omitted and following instructions modified slightly in some cases.
3587 */
3588
3589 enum ppc_stub_type {
3590 ppc_stub_none,
3591 ppc_stub_long_branch,
3592 ppc_stub_long_branch_r2off,
3593 ppc_stub_plt_branch,
3594 ppc_stub_plt_branch_r2off,
3595 ppc_stub_plt_call,
3596 ppc_stub_plt_call_r2save
3597 };
3598
3599 struct ppc_stub_hash_entry {
3600
3601 /* Base hash table entry structure. */
3602 struct bfd_hash_entry root;
3603
3604 enum ppc_stub_type stub_type;
3605
3606 /* The stub section. */
3607 asection *stub_sec;
3608
3609 /* Offset within stub_sec of the beginning of this stub. */
3610 bfd_vma stub_offset;
3611
3612 /* Given the symbol's value and its section we can determine its final
3613 value when building the stubs (so the stub knows where to jump. */
3614 bfd_vma target_value;
3615 asection *target_section;
3616
3617 /* The symbol table entry, if any, that this was derived from. */
3618 struct ppc_link_hash_entry *h;
3619 struct plt_entry *plt_ent;
3620
3621 /* And the reloc addend that this was derived from. */
3622 bfd_vma addend;
3623
3624 /* Where this stub is being called from, or, in the case of combined
3625 stub sections, the first input section in the group. */
3626 asection *id_sec;
3627 };
3628
3629 struct ppc_branch_hash_entry {
3630
3631 /* Base hash table entry structure. */
3632 struct bfd_hash_entry root;
3633
3634 /* Offset within branch lookup table. */
3635 unsigned int offset;
3636
3637 /* Generation marker. */
3638 unsigned int iter;
3639 };
3640
3641 struct ppc_link_hash_entry
3642 {
3643 struct elf_link_hash_entry elf;
3644
3645 union {
3646 /* A pointer to the most recently used stub hash entry against this
3647 symbol. */
3648 struct ppc_stub_hash_entry *stub_cache;
3649
3650 /* A pointer to the next symbol starting with a '.' */
3651 struct ppc_link_hash_entry *next_dot_sym;
3652 } u;
3653
3654 /* Track dynamic relocs copied for this symbol. */
3655 struct elf_dyn_relocs *dyn_relocs;
3656
3657 /* Link between function code and descriptor symbols. */
3658 struct ppc_link_hash_entry *oh;
3659
3660 /* Flag function code and descriptor symbols. */
3661 unsigned int is_func:1;
3662 unsigned int is_func_descriptor:1;
3663 unsigned int fake:1;
3664
3665 /* Whether global opd/toc sym has been adjusted or not.
3666 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3667 should be set for all globals defined in any opd/toc section. */
3668 unsigned int adjust_done:1;
3669
3670 /* Set if we twiddled this symbol to weak at some stage. */
3671 unsigned int was_undefined:1;
3672
3673 /* Contexts in which symbol is used in the GOT (or TOC).
3674 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3675 corresponding relocs are encountered during check_relocs.
3676 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3677 indicate the corresponding GOT entry type is not needed.
3678 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3679 a TPREL one. We use a separate flag rather than setting TPREL
3680 just for convenience in distinguishing the two cases. */
3681 #define TLS_GD 1 /* GD reloc. */
3682 #define TLS_LD 2 /* LD reloc. */
3683 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3684 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3685 #define TLS_TLS 16 /* Any TLS reloc. */
3686 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3687 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3688 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3689 unsigned char tls_mask;
3690 };
3691
3692 /* ppc64 ELF linker hash table. */
3693
3694 struct ppc_link_hash_table
3695 {
3696 struct elf_link_hash_table elf;
3697
3698 /* The stub hash table. */
3699 struct bfd_hash_table stub_hash_table;
3700
3701 /* Another hash table for plt_branch stubs. */
3702 struct bfd_hash_table branch_hash_table;
3703
3704 /* Hash table for function prologue tocsave. */
3705 htab_t tocsave_htab;
3706
3707 /* Linker stub bfd. */
3708 bfd *stub_bfd;
3709
3710 /* Linker call-backs. */
3711 asection * (*add_stub_section) (const char *, asection *);
3712 void (*layout_sections_again) (void);
3713
3714 /* Array to keep track of which stub sections have been created, and
3715 information on stub grouping. */
3716 struct map_stub {
3717 /* This is the section to which stubs in the group will be attached. */
3718 asection *link_sec;
3719 /* The stub section. */
3720 asection *stub_sec;
3721 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3722 bfd_vma toc_off;
3723 } *stub_group;
3724
3725 /* Temp used when calculating TOC pointers. */
3726 bfd_vma toc_curr;
3727 bfd *toc_bfd;
3728 asection *toc_first_sec;
3729
3730 /* Highest input section id. */
3731 int top_id;
3732
3733 /* Highest output section index. */
3734 int top_index;
3735
3736 /* Used when adding symbols. */
3737 struct ppc_link_hash_entry *dot_syms;
3738
3739 /* List of input sections for each output section. */
3740 asection **input_list;
3741
3742 /* Short-cuts to get to dynamic linker sections. */
3743 asection *got;
3744 asection *plt;
3745 asection *relplt;
3746 asection *iplt;
3747 asection *reliplt;
3748 asection *dynbss;
3749 asection *relbss;
3750 asection *glink;
3751 asection *sfpr;
3752 asection *brlt;
3753 asection *relbrlt;
3754 asection *glink_eh_frame;
3755
3756 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3757 struct ppc_link_hash_entry *tls_get_addr;
3758 struct ppc_link_hash_entry *tls_get_addr_fd;
3759
3760 /* The special .TOC. symbol. */
3761 struct ppc_link_hash_entry *dot_toc_dot;
3762
3763 /* The size of reliplt used by got entry relocs. */
3764 bfd_size_type got_reli_size;
3765
3766 /* Statistics. */
3767 unsigned long stub_count[ppc_stub_plt_call_r2save];
3768
3769 /* Number of stubs against global syms. */
3770 unsigned long stub_globals;
3771
3772 /* Alignment of PLT call stubs. */
3773 unsigned int plt_stub_align:4;
3774
3775 /* Set if PLT call stubs should load r11. */
3776 unsigned int plt_static_chain:1;
3777
3778 /* Set if PLT call stubs need a read-read barrier. */
3779 unsigned int plt_thread_safe:1;
3780
3781 /* Set if we should emit symbols for stubs. */
3782 unsigned int emit_stub_syms:1;
3783
3784 /* Set if __tls_get_addr optimization should not be done. */
3785 unsigned int no_tls_get_addr_opt:1;
3786
3787 /* Support for multiple toc sections. */
3788 unsigned int do_multi_toc:1;
3789 unsigned int multi_toc_needed:1;
3790 unsigned int second_toc_pass:1;
3791 unsigned int do_toc_opt:1;
3792
3793 /* Set on error. */
3794 unsigned int stub_error:1;
3795
3796 /* Temp used by ppc64_elf_process_dot_syms. */
3797 unsigned int twiddled_syms:1;
3798
3799 /* Incremented every time we size stubs. */
3800 unsigned int stub_iteration;
3801
3802 /* Small local sym cache. */
3803 struct sym_cache sym_cache;
3804 };
3805
3806 /* Rename some of the generic section flags to better document how they
3807 are used here. */
3808
3809 /* Nonzero if this section has TLS related relocations. */
3810 #define has_tls_reloc sec_flg0
3811
3812 /* Nonzero if this section has a call to __tls_get_addr. */
3813 #define has_tls_get_addr_call sec_flg1
3814
3815 /* Nonzero if this section has any toc or got relocs. */
3816 #define has_toc_reloc sec_flg2
3817
3818 /* Nonzero if this section has a call to another section that uses
3819 the toc or got. */
3820 #define makes_toc_func_call sec_flg3
3821
3822 /* Recursion protection when determining above flag. */
3823 #define call_check_in_progress sec_flg4
3824 #define call_check_done sec_flg5
3825
3826 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3827
3828 #define ppc_hash_table(p) \
3829 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3830 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3831
3832 #define ppc_stub_hash_lookup(table, string, create, copy) \
3833 ((struct ppc_stub_hash_entry *) \
3834 bfd_hash_lookup ((table), (string), (create), (copy)))
3835
3836 #define ppc_branch_hash_lookup(table, string, create, copy) \
3837 ((struct ppc_branch_hash_entry *) \
3838 bfd_hash_lookup ((table), (string), (create), (copy)))
3839
3840 /* Create an entry in the stub hash table. */
3841
3842 static struct bfd_hash_entry *
3843 stub_hash_newfunc (struct bfd_hash_entry *entry,
3844 struct bfd_hash_table *table,
3845 const char *string)
3846 {
3847 /* Allocate the structure if it has not already been allocated by a
3848 subclass. */
3849 if (entry == NULL)
3850 {
3851 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3852 if (entry == NULL)
3853 return entry;
3854 }
3855
3856 /* Call the allocation method of the superclass. */
3857 entry = bfd_hash_newfunc (entry, table, string);
3858 if (entry != NULL)
3859 {
3860 struct ppc_stub_hash_entry *eh;
3861
3862 /* Initialize the local fields. */
3863 eh = (struct ppc_stub_hash_entry *) entry;
3864 eh->stub_type = ppc_stub_none;
3865 eh->stub_sec = NULL;
3866 eh->stub_offset = 0;
3867 eh->target_value = 0;
3868 eh->target_section = NULL;
3869 eh->h = NULL;
3870 eh->id_sec = NULL;
3871 }
3872
3873 return entry;
3874 }
3875
3876 /* Create an entry in the branch hash table. */
3877
3878 static struct bfd_hash_entry *
3879 branch_hash_newfunc (struct bfd_hash_entry *entry,
3880 struct bfd_hash_table *table,
3881 const char *string)
3882 {
3883 /* Allocate the structure if it has not already been allocated by a
3884 subclass. */
3885 if (entry == NULL)
3886 {
3887 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3888 if (entry == NULL)
3889 return entry;
3890 }
3891
3892 /* Call the allocation method of the superclass. */
3893 entry = bfd_hash_newfunc (entry, table, string);
3894 if (entry != NULL)
3895 {
3896 struct ppc_branch_hash_entry *eh;
3897
3898 /* Initialize the local fields. */
3899 eh = (struct ppc_branch_hash_entry *) entry;
3900 eh->offset = 0;
3901 eh->iter = 0;
3902 }
3903
3904 return entry;
3905 }
3906
3907 /* Create an entry in a ppc64 ELF linker hash table. */
3908
3909 static struct bfd_hash_entry *
3910 link_hash_newfunc (struct bfd_hash_entry *entry,
3911 struct bfd_hash_table *table,
3912 const char *string)
3913 {
3914 /* Allocate the structure if it has not already been allocated by a
3915 subclass. */
3916 if (entry == NULL)
3917 {
3918 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3919 if (entry == NULL)
3920 return entry;
3921 }
3922
3923 /* Call the allocation method of the superclass. */
3924 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3925 if (entry != NULL)
3926 {
3927 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3928
3929 memset (&eh->u.stub_cache, 0,
3930 (sizeof (struct ppc_link_hash_entry)
3931 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3932
3933 /* When making function calls, old ABI code references function entry
3934 points (dot symbols), while new ABI code references the function
3935 descriptor symbol. We need to make any combination of reference and
3936 definition work together, without breaking archive linking.
3937
3938 For a defined function "foo" and an undefined call to "bar":
3939 An old object defines "foo" and ".foo", references ".bar" (possibly
3940 "bar" too).
3941 A new object defines "foo" and references "bar".
3942
3943 A new object thus has no problem with its undefined symbols being
3944 satisfied by definitions in an old object. On the other hand, the
3945 old object won't have ".bar" satisfied by a new object.
3946
3947 Keep a list of newly added dot-symbols. */
3948
3949 if (string[0] == '.')
3950 {
3951 struct ppc_link_hash_table *htab;
3952
3953 htab = (struct ppc_link_hash_table *) table;
3954 eh->u.next_dot_sym = htab->dot_syms;
3955 htab->dot_syms = eh;
3956 }
3957 }
3958
3959 return entry;
3960 }
3961
3962 struct tocsave_entry {
3963 asection *sec;
3964 bfd_vma offset;
3965 };
3966
3967 static hashval_t
3968 tocsave_htab_hash (const void *p)
3969 {
3970 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3971 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
3972 }
3973
3974 static int
3975 tocsave_htab_eq (const void *p1, const void *p2)
3976 {
3977 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3978 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3979 return e1->sec == e2->sec && e1->offset == e2->offset;
3980 }
3981
3982 /* Create a ppc64 ELF linker hash table. */
3983
3984 static struct bfd_link_hash_table *
3985 ppc64_elf_link_hash_table_create (bfd *abfd)
3986 {
3987 struct ppc_link_hash_table *htab;
3988 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3989
3990 htab = bfd_zmalloc (amt);
3991 if (htab == NULL)
3992 return NULL;
3993
3994 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3995 sizeof (struct ppc_link_hash_entry),
3996 PPC64_ELF_DATA))
3997 {
3998 free (htab);
3999 return NULL;
4000 }
4001
4002 /* Init the stub hash table too. */
4003 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4004 sizeof (struct ppc_stub_hash_entry)))
4005 return NULL;
4006
4007 /* And the branch hash table. */
4008 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4009 sizeof (struct ppc_branch_hash_entry)))
4010 return NULL;
4011
4012 htab->tocsave_htab = htab_try_create (1024,
4013 tocsave_htab_hash,
4014 tocsave_htab_eq,
4015 NULL);
4016 if (htab->tocsave_htab == NULL)
4017 return NULL;
4018
4019 /* Initializing two fields of the union is just cosmetic. We really
4020 only care about glist, but when compiled on a 32-bit host the
4021 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4022 debugger inspection of these fields look nicer. */
4023 htab->elf.init_got_refcount.refcount = 0;
4024 htab->elf.init_got_refcount.glist = NULL;
4025 htab->elf.init_plt_refcount.refcount = 0;
4026 htab->elf.init_plt_refcount.glist = NULL;
4027 htab->elf.init_got_offset.offset = 0;
4028 htab->elf.init_got_offset.glist = NULL;
4029 htab->elf.init_plt_offset.offset = 0;
4030 htab->elf.init_plt_offset.glist = NULL;
4031
4032 return &htab->elf.root;
4033 }
4034
4035 /* Free the derived linker hash table. */
4036
4037 static void
4038 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4039 {
4040 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4041
4042 bfd_hash_table_free (&htab->stub_hash_table);
4043 bfd_hash_table_free (&htab->branch_hash_table);
4044 if (htab->tocsave_htab)
4045 htab_delete (htab->tocsave_htab);
4046 _bfd_elf_link_hash_table_free (hash);
4047 }
4048
4049 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4050
4051 void
4052 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4053 {
4054 struct ppc_link_hash_table *htab;
4055
4056 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4057
4058 /* Always hook our dynamic sections into the first bfd, which is the
4059 linker created stub bfd. This ensures that the GOT header is at
4060 the start of the output TOC section. */
4061 htab = ppc_hash_table (info);
4062 if (htab == NULL)
4063 return;
4064 htab->stub_bfd = abfd;
4065 htab->elf.dynobj = abfd;
4066 }
4067
4068 /* Build a name for an entry in the stub hash table. */
4069
4070 static char *
4071 ppc_stub_name (const asection *input_section,
4072 const asection *sym_sec,
4073 const struct ppc_link_hash_entry *h,
4074 const Elf_Internal_Rela *rel)
4075 {
4076 char *stub_name;
4077 ssize_t len;
4078
4079 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4080 offsets from a sym as a branch target? In fact, we could
4081 probably assume the addend is always zero. */
4082 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4083
4084 if (h)
4085 {
4086 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4087 stub_name = bfd_malloc (len);
4088 if (stub_name == NULL)
4089 return stub_name;
4090
4091 len = sprintf (stub_name, "%08x.%s+%x",
4092 input_section->id & 0xffffffff,
4093 h->elf.root.root.string,
4094 (int) rel->r_addend & 0xffffffff);
4095 }
4096 else
4097 {
4098 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4099 stub_name = bfd_malloc (len);
4100 if (stub_name == NULL)
4101 return stub_name;
4102
4103 len = sprintf (stub_name, "%08x.%x:%x+%x",
4104 input_section->id & 0xffffffff,
4105 sym_sec->id & 0xffffffff,
4106 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4107 (int) rel->r_addend & 0xffffffff);
4108 }
4109 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4110 stub_name[len - 2] = 0;
4111 return stub_name;
4112 }
4113
4114 /* Look up an entry in the stub hash. Stub entries are cached because
4115 creating the stub name takes a bit of time. */
4116
4117 static struct ppc_stub_hash_entry *
4118 ppc_get_stub_entry (const asection *input_section,
4119 const asection *sym_sec,
4120 struct ppc_link_hash_entry *h,
4121 const Elf_Internal_Rela *rel,
4122 struct ppc_link_hash_table *htab)
4123 {
4124 struct ppc_stub_hash_entry *stub_entry;
4125 const asection *id_sec;
4126
4127 /* If this input section is part of a group of sections sharing one
4128 stub section, then use the id of the first section in the group.
4129 Stub names need to include a section id, as there may well be
4130 more than one stub used to reach say, printf, and we need to
4131 distinguish between them. */
4132 id_sec = htab->stub_group[input_section->id].link_sec;
4133
4134 if (h != NULL && h->u.stub_cache != NULL
4135 && h->u.stub_cache->h == h
4136 && h->u.stub_cache->id_sec == id_sec)
4137 {
4138 stub_entry = h->u.stub_cache;
4139 }
4140 else
4141 {
4142 char *stub_name;
4143
4144 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4145 if (stub_name == NULL)
4146 return NULL;
4147
4148 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4149 stub_name, FALSE, FALSE);
4150 if (h != NULL)
4151 h->u.stub_cache = stub_entry;
4152
4153 free (stub_name);
4154 }
4155
4156 return stub_entry;
4157 }
4158
4159 /* Add a new stub entry to the stub hash. Not all fields of the new
4160 stub entry are initialised. */
4161
4162 static struct ppc_stub_hash_entry *
4163 ppc_add_stub (const char *stub_name,
4164 asection *section,
4165 struct bfd_link_info *info)
4166 {
4167 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4168 asection *link_sec;
4169 asection *stub_sec;
4170 struct ppc_stub_hash_entry *stub_entry;
4171
4172 link_sec = htab->stub_group[section->id].link_sec;
4173 stub_sec = htab->stub_group[section->id].stub_sec;
4174 if (stub_sec == NULL)
4175 {
4176 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4177 if (stub_sec == NULL)
4178 {
4179 size_t namelen;
4180 bfd_size_type len;
4181 char *s_name;
4182
4183 namelen = strlen (link_sec->name);
4184 len = namelen + sizeof (STUB_SUFFIX);
4185 s_name = bfd_alloc (htab->stub_bfd, len);
4186 if (s_name == NULL)
4187 return NULL;
4188
4189 memcpy (s_name, link_sec->name, namelen);
4190 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4191 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4192 if (stub_sec == NULL)
4193 return NULL;
4194 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4195 }
4196 htab->stub_group[section->id].stub_sec = stub_sec;
4197 }
4198
4199 /* Enter this entry into the linker stub hash table. */
4200 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4201 TRUE, FALSE);
4202 if (stub_entry == NULL)
4203 {
4204 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4205 section->owner, stub_name);
4206 return NULL;
4207 }
4208
4209 stub_entry->stub_sec = stub_sec;
4210 stub_entry->stub_offset = 0;
4211 stub_entry->id_sec = link_sec;
4212 return stub_entry;
4213 }
4214
4215 /* Create sections for linker generated code. */
4216
4217 static bfd_boolean
4218 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4219 {
4220 struct ppc_link_hash_table *htab;
4221 flagword flags;
4222
4223 htab = ppc_hash_table (info);
4224 if (htab == NULL)
4225 return FALSE;
4226
4227 /* Create .sfpr for code to save and restore fp regs. */
4228 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4229 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4230 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4231 flags);
4232 if (htab->sfpr == NULL
4233 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4234 return FALSE;
4235
4236 /* Create .glink for lazy dynamic linking support. */
4237 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4238 flags);
4239 if (htab->glink == NULL
4240 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4241 return FALSE;
4242
4243 if (!info->no_ld_generated_unwind_info)
4244 {
4245 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4246 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4247 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4248 ".eh_frame",
4249 flags);
4250 if (htab->glink_eh_frame == NULL
4251 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
4252 return FALSE;
4253 }
4254
4255 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4256 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4257 if (htab->iplt == NULL
4258 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3))
4259 return FALSE;
4260
4261 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4262 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4263 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj,
4264 ".rela.iplt",
4265 flags);
4266 if (htab->reliplt == NULL
4267 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3))
4268 return FALSE;
4269
4270 /* Create branch lookup table for plt_branch stubs. */
4271 flags = (SEC_ALLOC | SEC_LOAD
4272 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4273 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4274 flags);
4275 if (htab->brlt == NULL
4276 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4277 return FALSE;
4278
4279 if (!info->shared)
4280 return TRUE;
4281
4282 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4283 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4284 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4285 ".rela.branch_lt",
4286 flags);
4287 if (htab->relbrlt == NULL
4288 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4289 return FALSE;
4290
4291 return TRUE;
4292 }
4293
4294 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4295 not already done. */
4296
4297 static bfd_boolean
4298 create_got_section (bfd *abfd, struct bfd_link_info *info)
4299 {
4300 asection *got, *relgot;
4301 flagword flags;
4302 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4303
4304 if (!is_ppc64_elf (abfd))
4305 return FALSE;
4306 if (htab == NULL)
4307 return FALSE;
4308
4309 if (!htab->got)
4310 {
4311 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4312 return FALSE;
4313
4314 htab->got = bfd_get_linker_section (htab->elf.dynobj, ".got");
4315 if (!htab->got)
4316 abort ();
4317 }
4318
4319 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4320 | SEC_LINKER_CREATED);
4321
4322 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4323 if (!got
4324 || !bfd_set_section_alignment (abfd, got, 3))
4325 return FALSE;
4326
4327 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4328 flags | SEC_READONLY);
4329 if (!relgot
4330 || ! bfd_set_section_alignment (abfd, relgot, 3))
4331 return FALSE;
4332
4333 ppc64_elf_tdata (abfd)->got = got;
4334 ppc64_elf_tdata (abfd)->relgot = relgot;
4335 return TRUE;
4336 }
4337
4338 /* Create the dynamic sections, and set up shortcuts. */
4339
4340 static bfd_boolean
4341 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4342 {
4343 struct ppc_link_hash_table *htab;
4344
4345 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4346 return FALSE;
4347
4348 htab = ppc_hash_table (info);
4349 if (htab == NULL)
4350 return FALSE;
4351
4352 if (!htab->got)
4353 htab->got = bfd_get_linker_section (dynobj, ".got");
4354 htab->plt = bfd_get_linker_section (dynobj, ".plt");
4355 htab->relplt = bfd_get_linker_section (dynobj, ".rela.plt");
4356 htab->dynbss = bfd_get_linker_section (dynobj, ".dynbss");
4357 if (!info->shared)
4358 htab->relbss = bfd_get_linker_section (dynobj, ".rela.bss");
4359
4360 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4361 || (!info->shared && !htab->relbss))
4362 abort ();
4363
4364 return TRUE;
4365 }
4366
4367 /* Follow indirect and warning symbol links. */
4368
4369 static inline struct bfd_link_hash_entry *
4370 follow_link (struct bfd_link_hash_entry *h)
4371 {
4372 while (h->type == bfd_link_hash_indirect
4373 || h->type == bfd_link_hash_warning)
4374 h = h->u.i.link;
4375 return h;
4376 }
4377
4378 static inline struct elf_link_hash_entry *
4379 elf_follow_link (struct elf_link_hash_entry *h)
4380 {
4381 return (struct elf_link_hash_entry *) follow_link (&h->root);
4382 }
4383
4384 static inline struct ppc_link_hash_entry *
4385 ppc_follow_link (struct ppc_link_hash_entry *h)
4386 {
4387 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4388 }
4389
4390 /* Merge PLT info on FROM with that on TO. */
4391
4392 static void
4393 move_plt_plist (struct ppc_link_hash_entry *from,
4394 struct ppc_link_hash_entry *to)
4395 {
4396 if (from->elf.plt.plist != NULL)
4397 {
4398 if (to->elf.plt.plist != NULL)
4399 {
4400 struct plt_entry **entp;
4401 struct plt_entry *ent;
4402
4403 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4404 {
4405 struct plt_entry *dent;
4406
4407 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4408 if (dent->addend == ent->addend)
4409 {
4410 dent->plt.refcount += ent->plt.refcount;
4411 *entp = ent->next;
4412 break;
4413 }
4414 if (dent == NULL)
4415 entp = &ent->next;
4416 }
4417 *entp = to->elf.plt.plist;
4418 }
4419
4420 to->elf.plt.plist = from->elf.plt.plist;
4421 from->elf.plt.plist = NULL;
4422 }
4423 }
4424
4425 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4426
4427 static void
4428 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4429 struct elf_link_hash_entry *dir,
4430 struct elf_link_hash_entry *ind)
4431 {
4432 struct ppc_link_hash_entry *edir, *eind;
4433
4434 edir = (struct ppc_link_hash_entry *) dir;
4435 eind = (struct ppc_link_hash_entry *) ind;
4436
4437 edir->is_func |= eind->is_func;
4438 edir->is_func_descriptor |= eind->is_func_descriptor;
4439 edir->tls_mask |= eind->tls_mask;
4440 if (eind->oh != NULL)
4441 edir->oh = ppc_follow_link (eind->oh);
4442
4443 /* If called to transfer flags for a weakdef during processing
4444 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4445 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4446 if (!(ELIMINATE_COPY_RELOCS
4447 && eind->elf.root.type != bfd_link_hash_indirect
4448 && edir->elf.dynamic_adjusted))
4449 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4450
4451 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4452 edir->elf.ref_regular |= eind->elf.ref_regular;
4453 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4454 edir->elf.needs_plt |= eind->elf.needs_plt;
4455
4456 /* Copy over any dynamic relocs we may have on the indirect sym. */
4457 if (eind->dyn_relocs != NULL)
4458 {
4459 if (edir->dyn_relocs != NULL)
4460 {
4461 struct elf_dyn_relocs **pp;
4462 struct elf_dyn_relocs *p;
4463
4464 /* Add reloc counts against the indirect sym to the direct sym
4465 list. Merge any entries against the same section. */
4466 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4467 {
4468 struct elf_dyn_relocs *q;
4469
4470 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4471 if (q->sec == p->sec)
4472 {
4473 q->pc_count += p->pc_count;
4474 q->count += p->count;
4475 *pp = p->next;
4476 break;
4477 }
4478 if (q == NULL)
4479 pp = &p->next;
4480 }
4481 *pp = edir->dyn_relocs;
4482 }
4483
4484 edir->dyn_relocs = eind->dyn_relocs;
4485 eind->dyn_relocs = NULL;
4486 }
4487
4488 /* If we were called to copy over info for a weak sym, that's all.
4489 You might think dyn_relocs need not be copied over; After all,
4490 both syms will be dynamic or both non-dynamic so we're just
4491 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4492 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4493 dyn_relocs in read-only sections, and it does so on what is the
4494 DIR sym here. */
4495 if (eind->elf.root.type != bfd_link_hash_indirect)
4496 return;
4497
4498 /* Copy over got entries that we may have already seen to the
4499 symbol which just became indirect. */
4500 if (eind->elf.got.glist != NULL)
4501 {
4502 if (edir->elf.got.glist != NULL)
4503 {
4504 struct got_entry **entp;
4505 struct got_entry *ent;
4506
4507 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4508 {
4509 struct got_entry *dent;
4510
4511 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4512 if (dent->addend == ent->addend
4513 && dent->owner == ent->owner
4514 && dent->tls_type == ent->tls_type)
4515 {
4516 dent->got.refcount += ent->got.refcount;
4517 *entp = ent->next;
4518 break;
4519 }
4520 if (dent == NULL)
4521 entp = &ent->next;
4522 }
4523 *entp = edir->elf.got.glist;
4524 }
4525
4526 edir->elf.got.glist = eind->elf.got.glist;
4527 eind->elf.got.glist = NULL;
4528 }
4529
4530 /* And plt entries. */
4531 move_plt_plist (eind, edir);
4532
4533 if (eind->elf.dynindx != -1)
4534 {
4535 if (edir->elf.dynindx != -1)
4536 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4537 edir->elf.dynstr_index);
4538 edir->elf.dynindx = eind->elf.dynindx;
4539 edir->elf.dynstr_index = eind->elf.dynstr_index;
4540 eind->elf.dynindx = -1;
4541 eind->elf.dynstr_index = 0;
4542 }
4543 }
4544
4545 /* Find the function descriptor hash entry from the given function code
4546 hash entry FH. Link the entries via their OH fields. */
4547
4548 static struct ppc_link_hash_entry *
4549 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4550 {
4551 struct ppc_link_hash_entry *fdh = fh->oh;
4552
4553 if (fdh == NULL)
4554 {
4555 const char *fd_name = fh->elf.root.root.string + 1;
4556
4557 fdh = (struct ppc_link_hash_entry *)
4558 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4559 if (fdh == NULL)
4560 return fdh;
4561
4562 fdh->is_func_descriptor = 1;
4563 fdh->oh = fh;
4564 fh->is_func = 1;
4565 fh->oh = fdh;
4566 }
4567
4568 return ppc_follow_link (fdh);
4569 }
4570
4571 /* Make a fake function descriptor sym for the code sym FH. */
4572
4573 static struct ppc_link_hash_entry *
4574 make_fdh (struct bfd_link_info *info,
4575 struct ppc_link_hash_entry *fh)
4576 {
4577 bfd *abfd;
4578 asymbol *newsym;
4579 struct bfd_link_hash_entry *bh;
4580 struct ppc_link_hash_entry *fdh;
4581
4582 abfd = fh->elf.root.u.undef.abfd;
4583 newsym = bfd_make_empty_symbol (abfd);
4584 newsym->name = fh->elf.root.root.string + 1;
4585 newsym->section = bfd_und_section_ptr;
4586 newsym->value = 0;
4587 newsym->flags = BSF_WEAK;
4588
4589 bh = NULL;
4590 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4591 newsym->flags, newsym->section,
4592 newsym->value, NULL, FALSE, FALSE,
4593 &bh))
4594 return NULL;
4595
4596 fdh = (struct ppc_link_hash_entry *) bh;
4597 fdh->elf.non_elf = 0;
4598 fdh->fake = 1;
4599 fdh->is_func_descriptor = 1;
4600 fdh->oh = fh;
4601 fh->is_func = 1;
4602 fh->oh = fdh;
4603 return fdh;
4604 }
4605
4606 /* Fix function descriptor symbols defined in .opd sections to be
4607 function type. */
4608
4609 static bfd_boolean
4610 ppc64_elf_add_symbol_hook (bfd *ibfd,
4611 struct bfd_link_info *info,
4612 Elf_Internal_Sym *isym,
4613 const char **name ATTRIBUTE_UNUSED,
4614 flagword *flags ATTRIBUTE_UNUSED,
4615 asection **sec,
4616 bfd_vma *value ATTRIBUTE_UNUSED)
4617 {
4618 if ((ibfd->flags & DYNAMIC) == 0
4619 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4620 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4621
4622 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4623 {
4624 if ((ibfd->flags & DYNAMIC) == 0)
4625 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4626 }
4627 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4628 ;
4629 else if (*sec != NULL
4630 && strcmp ((*sec)->name, ".opd") == 0)
4631 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4632
4633 return TRUE;
4634 }
4635
4636 /* This function makes an old ABI object reference to ".bar" cause the
4637 inclusion of a new ABI object archive that defines "bar".
4638 NAME is a symbol defined in an archive. Return a symbol in the hash
4639 table that might be satisfied by the archive symbols. */
4640
4641 static struct elf_link_hash_entry *
4642 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4643 struct bfd_link_info *info,
4644 const char *name)
4645 {
4646 struct elf_link_hash_entry *h;
4647 char *dot_name;
4648 size_t len;
4649
4650 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4651 if (h != NULL
4652 /* Don't return this sym if it is a fake function descriptor
4653 created by add_symbol_adjust. */
4654 && !(h->root.type == bfd_link_hash_undefweak
4655 && ((struct ppc_link_hash_entry *) h)->fake))
4656 return h;
4657
4658 if (name[0] == '.')
4659 return h;
4660
4661 len = strlen (name);
4662 dot_name = bfd_alloc (abfd, len + 2);
4663 if (dot_name == NULL)
4664 return (struct elf_link_hash_entry *) 0 - 1;
4665 dot_name[0] = '.';
4666 memcpy (dot_name + 1, name, len + 1);
4667 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4668 bfd_release (abfd, dot_name);
4669 return h;
4670 }
4671
4672 /* This function satisfies all old ABI object references to ".bar" if a
4673 new ABI object defines "bar". Well, at least, undefined dot symbols
4674 are made weak. This stops later archive searches from including an
4675 object if we already have a function descriptor definition. It also
4676 prevents the linker complaining about undefined symbols.
4677 We also check and correct mismatched symbol visibility here. The
4678 most restrictive visibility of the function descriptor and the
4679 function entry symbol is used. */
4680
4681 static bfd_boolean
4682 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4683 {
4684 struct ppc_link_hash_table *htab;
4685 struct ppc_link_hash_entry *fdh;
4686
4687 if (eh->elf.root.type == bfd_link_hash_indirect)
4688 return TRUE;
4689
4690 if (eh->elf.root.type == bfd_link_hash_warning)
4691 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4692
4693 if (eh->elf.root.root.string[0] != '.')
4694 abort ();
4695
4696 htab = ppc_hash_table (info);
4697 if (htab == NULL)
4698 return FALSE;
4699
4700 fdh = lookup_fdh (eh, htab);
4701 if (fdh == NULL)
4702 {
4703 if (!info->relocatable
4704 && (eh->elf.root.type == bfd_link_hash_undefined
4705 || eh->elf.root.type == bfd_link_hash_undefweak)
4706 && eh->elf.ref_regular)
4707 {
4708 /* Make an undefweak function descriptor sym, which is enough to
4709 pull in an --as-needed shared lib, but won't cause link
4710 errors. Archives are handled elsewhere. */
4711 fdh = make_fdh (info, eh);
4712 if (fdh == NULL)
4713 return FALSE;
4714 fdh->elf.ref_regular = 1;
4715 }
4716 }
4717 else
4718 {
4719 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4720 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4721 if (entry_vis < descr_vis)
4722 fdh->elf.other += entry_vis - descr_vis;
4723 else if (entry_vis > descr_vis)
4724 eh->elf.other += descr_vis - entry_vis;
4725
4726 if ((fdh->elf.root.type == bfd_link_hash_defined
4727 || fdh->elf.root.type == bfd_link_hash_defweak)
4728 && eh->elf.root.type == bfd_link_hash_undefined)
4729 {
4730 eh->elf.root.type = bfd_link_hash_undefweak;
4731 eh->was_undefined = 1;
4732 htab->twiddled_syms = 1;
4733 }
4734 }
4735
4736 return TRUE;
4737 }
4738
4739 /* Process list of dot-symbols we made in link_hash_newfunc. */
4740
4741 static bfd_boolean
4742 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4743 {
4744 struct ppc_link_hash_table *htab;
4745 struct ppc_link_hash_entry **p, *eh;
4746
4747 if (!is_ppc64_elf (info->output_bfd))
4748 return TRUE;
4749 htab = ppc_hash_table (info);
4750 if (htab == NULL)
4751 return FALSE;
4752
4753 if (is_ppc64_elf (ibfd))
4754 {
4755 p = &htab->dot_syms;
4756 while ((eh = *p) != NULL)
4757 {
4758 *p = NULL;
4759 if (!add_symbol_adjust (eh, info))
4760 return FALSE;
4761 p = &eh->u.next_dot_sym;
4762 }
4763 }
4764
4765 /* Clear the list for non-ppc64 input files. */
4766 p = &htab->dot_syms;
4767 while ((eh = *p) != NULL)
4768 {
4769 *p = NULL;
4770 p = &eh->u.next_dot_sym;
4771 }
4772
4773 /* We need to fix the undefs list for any syms we have twiddled to
4774 undef_weak. */
4775 if (htab->twiddled_syms)
4776 {
4777 bfd_link_repair_undef_list (&htab->elf.root);
4778 htab->twiddled_syms = 0;
4779 }
4780 return TRUE;
4781 }
4782
4783 /* Undo hash table changes when an --as-needed input file is determined
4784 not to be needed. */
4785
4786 static bfd_boolean
4787 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4788 struct bfd_link_info *info)
4789 {
4790 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4791
4792 if (htab == NULL)
4793 return FALSE;
4794
4795 htab->dot_syms = NULL;
4796 return TRUE;
4797 }
4798
4799 /* If --just-symbols against a final linked binary, then assume we need
4800 toc adjusting stubs when calling functions defined there. */
4801
4802 static void
4803 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4804 {
4805 if ((sec->flags & SEC_CODE) != 0
4806 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4807 && is_ppc64_elf (sec->owner))
4808 {
4809 asection *got = bfd_get_section_by_name (sec->owner, ".got");
4810 if (got != NULL
4811 && got->size >= elf_backend_got_header_size
4812 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4813 sec->has_toc_reloc = 1;
4814 }
4815 _bfd_elf_link_just_syms (sec, info);
4816 }
4817
4818 static struct plt_entry **
4819 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4820 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4821 {
4822 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4823 struct plt_entry **local_plt;
4824 unsigned char *local_got_tls_masks;
4825
4826 if (local_got_ents == NULL)
4827 {
4828 bfd_size_type size = symtab_hdr->sh_info;
4829
4830 size *= (sizeof (*local_got_ents)
4831 + sizeof (*local_plt)
4832 + sizeof (*local_got_tls_masks));
4833 local_got_ents = bfd_zalloc (abfd, size);
4834 if (local_got_ents == NULL)
4835 return NULL;
4836 elf_local_got_ents (abfd) = local_got_ents;
4837 }
4838
4839 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
4840 {
4841 struct got_entry *ent;
4842
4843 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4844 if (ent->addend == r_addend
4845 && ent->owner == abfd
4846 && ent->tls_type == tls_type)
4847 break;
4848 if (ent == NULL)
4849 {
4850 bfd_size_type amt = sizeof (*ent);
4851 ent = bfd_alloc (abfd, amt);
4852 if (ent == NULL)
4853 return FALSE;
4854 ent->next = local_got_ents[r_symndx];
4855 ent->addend = r_addend;
4856 ent->owner = abfd;
4857 ent->tls_type = tls_type;
4858 ent->is_indirect = FALSE;
4859 ent->got.refcount = 0;
4860 local_got_ents[r_symndx] = ent;
4861 }
4862 ent->got.refcount += 1;
4863 }
4864
4865 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4866 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4867 local_got_tls_masks[r_symndx] |= tls_type;
4868
4869 return local_plt + r_symndx;
4870 }
4871
4872 static bfd_boolean
4873 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4874 {
4875 struct plt_entry *ent;
4876
4877 for (ent = *plist; ent != NULL; ent = ent->next)
4878 if (ent->addend == addend)
4879 break;
4880 if (ent == NULL)
4881 {
4882 bfd_size_type amt = sizeof (*ent);
4883 ent = bfd_alloc (abfd, amt);
4884 if (ent == NULL)
4885 return FALSE;
4886 ent->next = *plist;
4887 ent->addend = addend;
4888 ent->plt.refcount = 0;
4889 *plist = ent;
4890 }
4891 ent->plt.refcount += 1;
4892 return TRUE;
4893 }
4894
4895 static bfd_boolean
4896 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4897 {
4898 return (r_type == R_PPC64_REL24
4899 || r_type == R_PPC64_REL14
4900 || r_type == R_PPC64_REL14_BRTAKEN
4901 || r_type == R_PPC64_REL14_BRNTAKEN
4902 || r_type == R_PPC64_ADDR24
4903 || r_type == R_PPC64_ADDR14
4904 || r_type == R_PPC64_ADDR14_BRTAKEN
4905 || r_type == R_PPC64_ADDR14_BRNTAKEN);
4906 }
4907
4908 /* Look through the relocs for a section during the first phase, and
4909 calculate needed space in the global offset table, procedure
4910 linkage table, and dynamic reloc sections. */
4911
4912 static bfd_boolean
4913 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4914 asection *sec, const Elf_Internal_Rela *relocs)
4915 {
4916 struct ppc_link_hash_table *htab;
4917 Elf_Internal_Shdr *symtab_hdr;
4918 struct elf_link_hash_entry **sym_hashes;
4919 const Elf_Internal_Rela *rel;
4920 const Elf_Internal_Rela *rel_end;
4921 asection *sreloc;
4922 asection **opd_sym_map;
4923 struct elf_link_hash_entry *tga, *dottga;
4924
4925 if (info->relocatable)
4926 return TRUE;
4927
4928 /* Don't do anything special with non-loaded, non-alloced sections.
4929 In particular, any relocs in such sections should not affect GOT
4930 and PLT reference counting (ie. we don't allow them to create GOT
4931 or PLT entries), there's no possibility or desire to optimize TLS
4932 relocs, and there's not much point in propagating relocs to shared
4933 libs that the dynamic linker won't relocate. */
4934 if ((sec->flags & SEC_ALLOC) == 0)
4935 return TRUE;
4936
4937 BFD_ASSERT (is_ppc64_elf (abfd));
4938
4939 htab = ppc_hash_table (info);
4940 if (htab == NULL)
4941 return FALSE;
4942
4943 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4944 FALSE, FALSE, TRUE);
4945 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4946 FALSE, FALSE, TRUE);
4947 symtab_hdr = &elf_symtab_hdr (abfd);
4948 sym_hashes = elf_sym_hashes (abfd);
4949 sreloc = NULL;
4950 opd_sym_map = NULL;
4951 if (strcmp (sec->name, ".opd") == 0)
4952 {
4953 /* Garbage collection needs some extra help with .opd sections.
4954 We don't want to necessarily keep everything referenced by
4955 relocs in .opd, as that would keep all functions. Instead,
4956 if we reference an .opd symbol (a function descriptor), we
4957 want to keep the function code symbol's section. This is
4958 easy for global symbols, but for local syms we need to keep
4959 information about the associated function section. */
4960 bfd_size_type amt;
4961
4962 amt = sec->size * sizeof (*opd_sym_map) / 8;
4963 opd_sym_map = bfd_zalloc (abfd, amt);
4964 if (opd_sym_map == NULL)
4965 return FALSE;
4966 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4967 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4968 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4969 }
4970
4971 if (htab->sfpr == NULL
4972 && !create_linkage_sections (htab->elf.dynobj, info))
4973 return FALSE;
4974
4975 rel_end = relocs + sec->reloc_count;
4976 for (rel = relocs; rel < rel_end; rel++)
4977 {
4978 unsigned long r_symndx;
4979 struct elf_link_hash_entry *h;
4980 enum elf_ppc64_reloc_type r_type;
4981 int tls_type;
4982 struct _ppc64_elf_section_data *ppc64_sec;
4983 struct plt_entry **ifunc;
4984
4985 r_symndx = ELF64_R_SYM (rel->r_info);
4986 if (r_symndx < symtab_hdr->sh_info)
4987 h = NULL;
4988 else
4989 {
4990 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4991 h = elf_follow_link (h);
4992 }
4993
4994 tls_type = 0;
4995 ifunc = NULL;
4996 if (h != NULL)
4997 {
4998 if (h->type == STT_GNU_IFUNC)
4999 {
5000 h->needs_plt = 1;
5001 ifunc = &h->plt.plist;
5002 }
5003 }
5004 else
5005 {
5006 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5007 abfd, r_symndx);
5008 if (isym == NULL)
5009 return FALSE;
5010
5011 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5012 {
5013 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5014 rel->r_addend, PLT_IFUNC);
5015 if (ifunc == NULL)
5016 return FALSE;
5017 }
5018 }
5019 r_type = ELF64_R_TYPE (rel->r_info);
5020 if (is_branch_reloc (r_type))
5021 {
5022 if (h != NULL && (h == tga || h == dottga))
5023 {
5024 if (rel != relocs
5025 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5026 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5027 /* We have a new-style __tls_get_addr call with a marker
5028 reloc. */
5029 ;
5030 else
5031 /* Mark this section as having an old-style call. */
5032 sec->has_tls_get_addr_call = 1;
5033 }
5034
5035 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5036 if (ifunc != NULL
5037 && !update_plt_info (abfd, ifunc, rel->r_addend))
5038 return FALSE;
5039 }
5040
5041 switch (r_type)
5042 {
5043 case R_PPC64_TLSGD:
5044 case R_PPC64_TLSLD:
5045 /* These special tls relocs tie a call to __tls_get_addr with
5046 its parameter symbol. */
5047 break;
5048
5049 case R_PPC64_GOT_TLSLD16:
5050 case R_PPC64_GOT_TLSLD16_LO:
5051 case R_PPC64_GOT_TLSLD16_HI:
5052 case R_PPC64_GOT_TLSLD16_HA:
5053 tls_type = TLS_TLS | TLS_LD;
5054 goto dogottls;
5055
5056 case R_PPC64_GOT_TLSGD16:
5057 case R_PPC64_GOT_TLSGD16_LO:
5058 case R_PPC64_GOT_TLSGD16_HI:
5059 case R_PPC64_GOT_TLSGD16_HA:
5060 tls_type = TLS_TLS | TLS_GD;
5061 goto dogottls;
5062
5063 case R_PPC64_GOT_TPREL16_DS:
5064 case R_PPC64_GOT_TPREL16_LO_DS:
5065 case R_PPC64_GOT_TPREL16_HI:
5066 case R_PPC64_GOT_TPREL16_HA:
5067 if (!info->executable)
5068 info->flags |= DF_STATIC_TLS;
5069 tls_type = TLS_TLS | TLS_TPREL;
5070 goto dogottls;
5071
5072 case R_PPC64_GOT_DTPREL16_DS:
5073 case R_PPC64_GOT_DTPREL16_LO_DS:
5074 case R_PPC64_GOT_DTPREL16_HI:
5075 case R_PPC64_GOT_DTPREL16_HA:
5076 tls_type = TLS_TLS | TLS_DTPREL;
5077 dogottls:
5078 sec->has_tls_reloc = 1;
5079 /* Fall thru */
5080
5081 case R_PPC64_GOT16:
5082 case R_PPC64_GOT16_DS:
5083 case R_PPC64_GOT16_HA:
5084 case R_PPC64_GOT16_HI:
5085 case R_PPC64_GOT16_LO:
5086 case R_PPC64_GOT16_LO_DS:
5087 /* This symbol requires a global offset table entry. */
5088 sec->has_toc_reloc = 1;
5089 if (r_type == R_PPC64_GOT_TLSLD16
5090 || r_type == R_PPC64_GOT_TLSGD16
5091 || r_type == R_PPC64_GOT_TPREL16_DS
5092 || r_type == R_PPC64_GOT_DTPREL16_DS
5093 || r_type == R_PPC64_GOT16
5094 || r_type == R_PPC64_GOT16_DS)
5095 {
5096 htab->do_multi_toc = 1;
5097 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5098 }
5099
5100 if (ppc64_elf_tdata (abfd)->got == NULL
5101 && !create_got_section (abfd, info))
5102 return FALSE;
5103
5104 if (h != NULL)
5105 {
5106 struct ppc_link_hash_entry *eh;
5107 struct got_entry *ent;
5108
5109 eh = (struct ppc_link_hash_entry *) h;
5110 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5111 if (ent->addend == rel->r_addend
5112 && ent->owner == abfd
5113 && ent->tls_type == tls_type)
5114 break;
5115 if (ent == NULL)
5116 {
5117 bfd_size_type amt = sizeof (*ent);
5118 ent = bfd_alloc (abfd, amt);
5119 if (ent == NULL)
5120 return FALSE;
5121 ent->next = eh->elf.got.glist;
5122 ent->addend = rel->r_addend;
5123 ent->owner = abfd;
5124 ent->tls_type = tls_type;
5125 ent->is_indirect = FALSE;
5126 ent->got.refcount = 0;
5127 eh->elf.got.glist = ent;
5128 }
5129 ent->got.refcount += 1;
5130 eh->tls_mask |= tls_type;
5131 }
5132 else
5133 /* This is a global offset table entry for a local symbol. */
5134 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5135 rel->r_addend, tls_type))
5136 return FALSE;
5137 break;
5138
5139 case R_PPC64_PLT16_HA:
5140 case R_PPC64_PLT16_HI:
5141 case R_PPC64_PLT16_LO:
5142 case R_PPC64_PLT32:
5143 case R_PPC64_PLT64:
5144 /* This symbol requires a procedure linkage table entry. We
5145 actually build the entry in adjust_dynamic_symbol,
5146 because this might be a case of linking PIC code without
5147 linking in any dynamic objects, in which case we don't
5148 need to generate a procedure linkage table after all. */
5149 if (h == NULL)
5150 {
5151 /* It does not make sense to have a procedure linkage
5152 table entry for a local symbol. */
5153 bfd_set_error (bfd_error_bad_value);
5154 return FALSE;
5155 }
5156 else
5157 {
5158 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5159 return FALSE;
5160 h->needs_plt = 1;
5161 if (h->root.root.string[0] == '.'
5162 && h->root.root.string[1] != '\0')
5163 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5164 }
5165 break;
5166
5167 /* The following relocations don't need to propagate the
5168 relocation if linking a shared object since they are
5169 section relative. */
5170 case R_PPC64_SECTOFF:
5171 case R_PPC64_SECTOFF_LO:
5172 case R_PPC64_SECTOFF_HI:
5173 case R_PPC64_SECTOFF_HA:
5174 case R_PPC64_SECTOFF_DS:
5175 case R_PPC64_SECTOFF_LO_DS:
5176 case R_PPC64_DTPREL16:
5177 case R_PPC64_DTPREL16_LO:
5178 case R_PPC64_DTPREL16_HI:
5179 case R_PPC64_DTPREL16_HA:
5180 case R_PPC64_DTPREL16_DS:
5181 case R_PPC64_DTPREL16_LO_DS:
5182 case R_PPC64_DTPREL16_HIGHER:
5183 case R_PPC64_DTPREL16_HIGHERA:
5184 case R_PPC64_DTPREL16_HIGHEST:
5185 case R_PPC64_DTPREL16_HIGHESTA:
5186 break;
5187
5188 /* Nor do these. */
5189 case R_PPC64_REL16:
5190 case R_PPC64_REL16_LO:
5191 case R_PPC64_REL16_HI:
5192 case R_PPC64_REL16_HA:
5193 break;
5194
5195 case R_PPC64_TOC16:
5196 case R_PPC64_TOC16_DS:
5197 htab->do_multi_toc = 1;
5198 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5199 case R_PPC64_TOC16_LO:
5200 case R_PPC64_TOC16_HI:
5201 case R_PPC64_TOC16_HA:
5202 case R_PPC64_TOC16_LO_DS:
5203 sec->has_toc_reloc = 1;
5204 break;
5205
5206 /* This relocation describes the C++ object vtable hierarchy.
5207 Reconstruct it for later use during GC. */
5208 case R_PPC64_GNU_VTINHERIT:
5209 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5210 return FALSE;
5211 break;
5212
5213 /* This relocation describes which C++ vtable entries are actually
5214 used. Record for later use during GC. */
5215 case R_PPC64_GNU_VTENTRY:
5216 BFD_ASSERT (h != NULL);
5217 if (h != NULL
5218 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5219 return FALSE;
5220 break;
5221
5222 case R_PPC64_REL14:
5223 case R_PPC64_REL14_BRTAKEN:
5224 case R_PPC64_REL14_BRNTAKEN:
5225 {
5226 asection *dest = NULL;
5227
5228 /* Heuristic: If jumping outside our section, chances are
5229 we are going to need a stub. */
5230 if (h != NULL)
5231 {
5232 /* If the sym is weak it may be overridden later, so
5233 don't assume we know where a weak sym lives. */
5234 if (h->root.type == bfd_link_hash_defined)
5235 dest = h->root.u.def.section;
5236 }
5237 else
5238 {
5239 Elf_Internal_Sym *isym;
5240
5241 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5242 abfd, r_symndx);
5243 if (isym == NULL)
5244 return FALSE;
5245
5246 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5247 }
5248
5249 if (dest != sec)
5250 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5251 }
5252 /* Fall through. */
5253
5254 case R_PPC64_REL24:
5255 if (h != NULL && ifunc == NULL)
5256 {
5257 /* We may need a .plt entry if the function this reloc
5258 refers to is in a shared lib. */
5259 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5260 return FALSE;
5261 h->needs_plt = 1;
5262 if (h->root.root.string[0] == '.'
5263 && h->root.root.string[1] != '\0')
5264 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5265 if (h == tga || h == dottga)
5266 sec->has_tls_reloc = 1;
5267 }
5268 break;
5269
5270 case R_PPC64_TPREL64:
5271 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5272 if (!info->executable)
5273 info->flags |= DF_STATIC_TLS;
5274 goto dotlstoc;
5275
5276 case R_PPC64_DTPMOD64:
5277 if (rel + 1 < rel_end
5278 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5279 && rel[1].r_offset == rel->r_offset + 8)
5280 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5281 else
5282 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5283 goto dotlstoc;
5284
5285 case R_PPC64_DTPREL64:
5286 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5287 if (rel != relocs
5288 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5289 && rel[-1].r_offset == rel->r_offset - 8)
5290 /* This is the second reloc of a dtpmod, dtprel pair.
5291 Don't mark with TLS_DTPREL. */
5292 goto dodyn;
5293
5294 dotlstoc:
5295 sec->has_tls_reloc = 1;
5296 if (h != NULL)
5297 {
5298 struct ppc_link_hash_entry *eh;
5299 eh = (struct ppc_link_hash_entry *) h;
5300 eh->tls_mask |= tls_type;
5301 }
5302 else
5303 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5304 rel->r_addend, tls_type))
5305 return FALSE;
5306
5307 ppc64_sec = ppc64_elf_section_data (sec);
5308 if (ppc64_sec->sec_type != sec_toc)
5309 {
5310 bfd_size_type amt;
5311
5312 /* One extra to simplify get_tls_mask. */
5313 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5314 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5315 if (ppc64_sec->u.toc.symndx == NULL)
5316 return FALSE;
5317 amt = sec->size * sizeof (bfd_vma) / 8;
5318 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5319 if (ppc64_sec->u.toc.add == NULL)
5320 return FALSE;
5321 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5322 ppc64_sec->sec_type = sec_toc;
5323 }
5324 BFD_ASSERT (rel->r_offset % 8 == 0);
5325 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5326 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5327
5328 /* Mark the second slot of a GD or LD entry.
5329 -1 to indicate GD and -2 to indicate LD. */
5330 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5331 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5332 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5333 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5334 goto dodyn;
5335
5336 case R_PPC64_TPREL16:
5337 case R_PPC64_TPREL16_LO:
5338 case R_PPC64_TPREL16_HI:
5339 case R_PPC64_TPREL16_HA:
5340 case R_PPC64_TPREL16_DS:
5341 case R_PPC64_TPREL16_LO_DS:
5342 case R_PPC64_TPREL16_HIGHER:
5343 case R_PPC64_TPREL16_HIGHERA:
5344 case R_PPC64_TPREL16_HIGHEST:
5345 case R_PPC64_TPREL16_HIGHESTA:
5346 if (info->shared)
5347 {
5348 if (!info->executable)
5349 info->flags |= DF_STATIC_TLS;
5350 goto dodyn;
5351 }
5352 break;
5353
5354 case R_PPC64_ADDR64:
5355 if (opd_sym_map != NULL
5356 && rel + 1 < rel_end
5357 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5358 {
5359 if (h != NULL)
5360 {
5361 if (h->root.root.string[0] == '.'
5362 && h->root.root.string[1] != 0
5363 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5364 ;
5365 else
5366 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5367 }
5368 else
5369 {
5370 asection *s;
5371 Elf_Internal_Sym *isym;
5372
5373 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5374 abfd, r_symndx);
5375 if (isym == NULL)
5376 return FALSE;
5377
5378 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5379 if (s != NULL && s != sec)
5380 opd_sym_map[rel->r_offset / 8] = s;
5381 }
5382 }
5383 /* Fall through. */
5384
5385 case R_PPC64_REL30:
5386 case R_PPC64_REL32:
5387 case R_PPC64_REL64:
5388 case R_PPC64_ADDR14:
5389 case R_PPC64_ADDR14_BRNTAKEN:
5390 case R_PPC64_ADDR14_BRTAKEN:
5391 case R_PPC64_ADDR16:
5392 case R_PPC64_ADDR16_DS:
5393 case R_PPC64_ADDR16_HA:
5394 case R_PPC64_ADDR16_HI:
5395 case R_PPC64_ADDR16_HIGHER:
5396 case R_PPC64_ADDR16_HIGHERA:
5397 case R_PPC64_ADDR16_HIGHEST:
5398 case R_PPC64_ADDR16_HIGHESTA:
5399 case R_PPC64_ADDR16_LO:
5400 case R_PPC64_ADDR16_LO_DS:
5401 case R_PPC64_ADDR24:
5402 case R_PPC64_ADDR32:
5403 case R_PPC64_UADDR16:
5404 case R_PPC64_UADDR32:
5405 case R_PPC64_UADDR64:
5406 case R_PPC64_TOC:
5407 if (h != NULL && !info->shared)
5408 /* We may need a copy reloc. */
5409 h->non_got_ref = 1;
5410
5411 /* Don't propagate .opd relocs. */
5412 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5413 break;
5414
5415 /* If we are creating a shared library, and this is a reloc
5416 against a global symbol, or a non PC relative reloc
5417 against a local symbol, then we need to copy the reloc
5418 into the shared library. However, if we are linking with
5419 -Bsymbolic, we do not need to copy a reloc against a
5420 global symbol which is defined in an object we are
5421 including in the link (i.e., DEF_REGULAR is set). At
5422 this point we have not seen all the input files, so it is
5423 possible that DEF_REGULAR is not set now but will be set
5424 later (it is never cleared). In case of a weak definition,
5425 DEF_REGULAR may be cleared later by a strong definition in
5426 a shared library. We account for that possibility below by
5427 storing information in the dyn_relocs field of the hash
5428 table entry. A similar situation occurs when creating
5429 shared libraries and symbol visibility changes render the
5430 symbol local.
5431
5432 If on the other hand, we are creating an executable, we
5433 may need to keep relocations for symbols satisfied by a
5434 dynamic library if we manage to avoid copy relocs for the
5435 symbol. */
5436 dodyn:
5437 if ((info->shared
5438 && (must_be_dyn_reloc (info, r_type)
5439 || (h != NULL
5440 && (! info->symbolic
5441 || h->root.type == bfd_link_hash_defweak
5442 || !h->def_regular))))
5443 || (ELIMINATE_COPY_RELOCS
5444 && !info->shared
5445 && h != NULL
5446 && (h->root.type == bfd_link_hash_defweak
5447 || !h->def_regular))
5448 || (!info->shared
5449 && ifunc != NULL))
5450 {
5451 struct elf_dyn_relocs *p;
5452 struct elf_dyn_relocs **head;
5453
5454 /* We must copy these reloc types into the output file.
5455 Create a reloc section in dynobj and make room for
5456 this reloc. */
5457 if (sreloc == NULL)
5458 {
5459 sreloc = _bfd_elf_make_dynamic_reloc_section
5460 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5461
5462 if (sreloc == NULL)
5463 return FALSE;
5464 }
5465
5466 /* If this is a global symbol, we count the number of
5467 relocations we need for this symbol. */
5468 if (h != NULL)
5469 {
5470 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5471 }
5472 else
5473 {
5474 /* Track dynamic relocs needed for local syms too.
5475 We really need local syms available to do this
5476 easily. Oh well. */
5477 asection *s;
5478 void *vpp;
5479 Elf_Internal_Sym *isym;
5480
5481 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5482 abfd, r_symndx);
5483 if (isym == NULL)
5484 return FALSE;
5485
5486 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5487 if (s == NULL)
5488 s = sec;
5489
5490 vpp = &elf_section_data (s)->local_dynrel;
5491 head = (struct elf_dyn_relocs **) vpp;
5492 }
5493
5494 p = *head;
5495 if (p == NULL || p->sec != sec)
5496 {
5497 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5498 if (p == NULL)
5499 return FALSE;
5500 p->next = *head;
5501 *head = p;
5502 p->sec = sec;
5503 p->count = 0;
5504 p->pc_count = 0;
5505 }
5506
5507 p->count += 1;
5508 if (!must_be_dyn_reloc (info, r_type))
5509 p->pc_count += 1;
5510 }
5511 break;
5512
5513 default:
5514 break;
5515 }
5516 }
5517
5518 return TRUE;
5519 }
5520
5521 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5522 of the code entry point, and its section. */
5523
5524 static bfd_vma
5525 opd_entry_value (asection *opd_sec,
5526 bfd_vma offset,
5527 asection **code_sec,
5528 bfd_vma *code_off,
5529 bfd_boolean in_code_sec)
5530 {
5531 bfd *opd_bfd = opd_sec->owner;
5532 Elf_Internal_Rela *relocs;
5533 Elf_Internal_Rela *lo, *hi, *look;
5534 bfd_vma val;
5535
5536 /* No relocs implies we are linking a --just-symbols object, or looking
5537 at a final linked executable with addr2line or somesuch. */
5538 if (opd_sec->reloc_count == 0)
5539 {
5540 char buf[8];
5541
5542 if (!bfd_get_section_contents (opd_bfd, opd_sec, buf, offset, 8))
5543 return (bfd_vma) -1;
5544
5545 val = bfd_get_64 (opd_bfd, buf);
5546 if (code_sec != NULL)
5547 {
5548 asection *sec, *likely = NULL;
5549
5550 if (in_code_sec)
5551 {
5552 sec = *code_sec;
5553 if (sec->vma <= val
5554 && val < sec->vma + sec->size)
5555 likely = sec;
5556 else
5557 val = -1;
5558 }
5559 else
5560 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5561 if (sec->vma <= val
5562 && (sec->flags & SEC_LOAD) != 0
5563 && (sec->flags & SEC_ALLOC) != 0)
5564 likely = sec;
5565 if (likely != NULL)
5566 {
5567 *code_sec = likely;
5568 if (code_off != NULL)
5569 *code_off = val - likely->vma;
5570 }
5571 }
5572 return val;
5573 }
5574
5575 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5576
5577 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
5578 if (relocs == NULL)
5579 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5580
5581 /* Go find the opd reloc at the sym address. */
5582 lo = relocs;
5583 BFD_ASSERT (lo != NULL);
5584 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5585 val = (bfd_vma) -1;
5586 while (lo < hi)
5587 {
5588 look = lo + (hi - lo) / 2;
5589 if (look->r_offset < offset)
5590 lo = look + 1;
5591 else if (look->r_offset > offset)
5592 hi = look;
5593 else
5594 {
5595 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5596
5597 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5598 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5599 {
5600 unsigned long symndx = ELF64_R_SYM (look->r_info);
5601 asection *sec;
5602
5603 if (symndx < symtab_hdr->sh_info
5604 || elf_sym_hashes (opd_bfd) == NULL)
5605 {
5606 Elf_Internal_Sym *sym;
5607
5608 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5609 if (sym == NULL)
5610 {
5611 size_t symcnt = symtab_hdr->sh_info;
5612 if (elf_sym_hashes (opd_bfd) == NULL)
5613 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5614 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5615 0, NULL, NULL, NULL);
5616 if (sym == NULL)
5617 break;
5618 symtab_hdr->contents = (bfd_byte *) sym;
5619 }
5620
5621 sym += symndx;
5622 val = sym->st_value;
5623 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5624 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5625 }
5626 else
5627 {
5628 struct elf_link_hash_entry **sym_hashes;
5629 struct elf_link_hash_entry *rh;
5630
5631 sym_hashes = elf_sym_hashes (opd_bfd);
5632 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5633 rh = elf_follow_link (rh);
5634 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5635 || rh->root.type == bfd_link_hash_defweak);
5636 val = rh->root.u.def.value;
5637 sec = rh->root.u.def.section;
5638 }
5639 val += look->r_addend;
5640 if (code_off != NULL)
5641 *code_off = val;
5642 if (code_sec != NULL)
5643 {
5644 if (in_code_sec && *code_sec != sec)
5645 return -1;
5646 else
5647 *code_sec = sec;
5648 }
5649 if (sec != NULL && sec->output_section != NULL)
5650 val += sec->output_section->vma + sec->output_offset;
5651 }
5652 break;
5653 }
5654 }
5655
5656 return val;
5657 }
5658
5659 /* If the ELF symbol SYM might be a function in SEC, return the
5660 function size and set *CODE_OFF to the function's entry point,
5661 otherwise return zero. */
5662
5663 static bfd_size_type
5664 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5665 bfd_vma *code_off)
5666 {
5667 bfd_size_type size;
5668
5669 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5670 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5671 return 0;
5672
5673 size = 0;
5674 if (!(sym->flags & BSF_SYNTHETIC))
5675 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5676
5677 if (strcmp (sym->section->name, ".opd") == 0)
5678 {
5679 if (opd_entry_value (sym->section, sym->value,
5680 &sec, code_off, TRUE) == (bfd_vma) -1)
5681 return 0;
5682 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5683 symbol. This size has nothing to do with the code size of the
5684 function, which is what we're supposed to return, but the
5685 code size isn't available without looking up the dot-sym.
5686 However, doing that would be a waste of time particularly
5687 since elf_find_function will look at the dot-sym anyway.
5688 Now, elf_find_function will keep the largest size of any
5689 function sym found at the code address of interest, so return
5690 1 here to avoid it incorrectly caching a larger function size
5691 for a small function. This does mean we return the wrong
5692 size for a new-ABI function of size 24, but all that does is
5693 disable caching for such functions. */
5694 if (size == 24)
5695 size = 1;
5696 }
5697 else
5698 {
5699 if (sym->section != sec)
5700 return 0;
5701 *code_off = sym->value;
5702 }
5703 if (size == 0)
5704 size = 1;
5705 return size;
5706 }
5707
5708 /* Return true if symbol is defined in a regular object file. */
5709
5710 static bfd_boolean
5711 is_static_defined (struct elf_link_hash_entry *h)
5712 {
5713 return ((h->root.type == bfd_link_hash_defined
5714 || h->root.type == bfd_link_hash_defweak)
5715 && h->root.u.def.section != NULL
5716 && h->root.u.def.section->output_section != NULL);
5717 }
5718
5719 /* If FDH is a function descriptor symbol, return the associated code
5720 entry symbol if it is defined. Return NULL otherwise. */
5721
5722 static struct ppc_link_hash_entry *
5723 defined_code_entry (struct ppc_link_hash_entry *fdh)
5724 {
5725 if (fdh->is_func_descriptor)
5726 {
5727 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5728 if (fh->elf.root.type == bfd_link_hash_defined
5729 || fh->elf.root.type == bfd_link_hash_defweak)
5730 return fh;
5731 }
5732 return NULL;
5733 }
5734
5735 /* If FH is a function code entry symbol, return the associated
5736 function descriptor symbol if it is defined. Return NULL otherwise. */
5737
5738 static struct ppc_link_hash_entry *
5739 defined_func_desc (struct ppc_link_hash_entry *fh)
5740 {
5741 if (fh->oh != NULL
5742 && fh->oh->is_func_descriptor)
5743 {
5744 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5745 if (fdh->elf.root.type == bfd_link_hash_defined
5746 || fdh->elf.root.type == bfd_link_hash_defweak)
5747 return fdh;
5748 }
5749 return NULL;
5750 }
5751
5752 /* Mark all our entry sym sections, both opd and code section. */
5753
5754 static void
5755 ppc64_elf_gc_keep (struct bfd_link_info *info)
5756 {
5757 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5758 struct bfd_sym_chain *sym;
5759
5760 if (htab == NULL)
5761 return;
5762
5763 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5764 {
5765 struct ppc_link_hash_entry *eh, *fh;
5766 asection *sec;
5767
5768 eh = (struct ppc_link_hash_entry *)
5769 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5770 if (eh == NULL)
5771 continue;
5772 if (eh->elf.root.type != bfd_link_hash_defined
5773 && eh->elf.root.type != bfd_link_hash_defweak)
5774 continue;
5775
5776 fh = defined_code_entry (eh);
5777 if (fh != NULL)
5778 {
5779 sec = fh->elf.root.u.def.section;
5780 sec->flags |= SEC_KEEP;
5781 }
5782 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5783 && opd_entry_value (eh->elf.root.u.def.section,
5784 eh->elf.root.u.def.value,
5785 &sec, NULL, FALSE) != (bfd_vma) -1)
5786 sec->flags |= SEC_KEEP;
5787
5788 sec = eh->elf.root.u.def.section;
5789 sec->flags |= SEC_KEEP;
5790 }
5791 }
5792
5793 /* Mark sections containing dynamically referenced symbols. When
5794 building shared libraries, we must assume that any visible symbol is
5795 referenced. */
5796
5797 static bfd_boolean
5798 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5799 {
5800 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5801 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5802 struct ppc_link_hash_entry *fdh;
5803
5804 /* Dynamic linking info is on the func descriptor sym. */
5805 fdh = defined_func_desc (eh);
5806 if (fdh != NULL)
5807 eh = fdh;
5808
5809 if ((eh->elf.root.type == bfd_link_hash_defined
5810 || eh->elf.root.type == bfd_link_hash_defweak)
5811 && (eh->elf.ref_dynamic
5812 || (!info->executable
5813 && eh->elf.def_regular
5814 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5815 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5816 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
5817 || !bfd_hide_sym_by_version (info->version_info,
5818 eh->elf.root.root.string)))))
5819 {
5820 asection *code_sec;
5821 struct ppc_link_hash_entry *fh;
5822
5823 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5824
5825 /* Function descriptor syms cause the associated
5826 function code sym section to be marked. */
5827 fh = defined_code_entry (eh);
5828 if (fh != NULL)
5829 {
5830 code_sec = fh->elf.root.u.def.section;
5831 code_sec->flags |= SEC_KEEP;
5832 }
5833 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5834 && opd_entry_value (eh->elf.root.u.def.section,
5835 eh->elf.root.u.def.value,
5836 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5837 code_sec->flags |= SEC_KEEP;
5838 }
5839
5840 return TRUE;
5841 }
5842
5843 /* Return the section that should be marked against GC for a given
5844 relocation. */
5845
5846 static asection *
5847 ppc64_elf_gc_mark_hook (asection *sec,
5848 struct bfd_link_info *info,
5849 Elf_Internal_Rela *rel,
5850 struct elf_link_hash_entry *h,
5851 Elf_Internal_Sym *sym)
5852 {
5853 asection *rsec;
5854
5855 /* Syms return NULL if we're marking .opd, so we avoid marking all
5856 function sections, as all functions are referenced in .opd. */
5857 rsec = NULL;
5858 if (get_opd_info (sec) != NULL)
5859 return rsec;
5860
5861 if (h != NULL)
5862 {
5863 enum elf_ppc64_reloc_type r_type;
5864 struct ppc_link_hash_entry *eh, *fh, *fdh;
5865
5866 r_type = ELF64_R_TYPE (rel->r_info);
5867 switch (r_type)
5868 {
5869 case R_PPC64_GNU_VTINHERIT:
5870 case R_PPC64_GNU_VTENTRY:
5871 break;
5872
5873 default:
5874 switch (h->root.type)
5875 {
5876 case bfd_link_hash_defined:
5877 case bfd_link_hash_defweak:
5878 eh = (struct ppc_link_hash_entry *) h;
5879 fdh = defined_func_desc (eh);
5880 if (fdh != NULL)
5881 eh = fdh;
5882
5883 /* Function descriptor syms cause the associated
5884 function code sym section to be marked. */
5885 fh = defined_code_entry (eh);
5886 if (fh != NULL)
5887 {
5888 /* They also mark their opd section. */
5889 eh->elf.root.u.def.section->gc_mark = 1;
5890
5891 rsec = fh->elf.root.u.def.section;
5892 }
5893 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5894 && opd_entry_value (eh->elf.root.u.def.section,
5895 eh->elf.root.u.def.value,
5896 &rsec, NULL, FALSE) != (bfd_vma) -1)
5897 eh->elf.root.u.def.section->gc_mark = 1;
5898 else
5899 rsec = h->root.u.def.section;
5900 break;
5901
5902 case bfd_link_hash_common:
5903 rsec = h->root.u.c.p->section;
5904 break;
5905
5906 default:
5907 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5908 }
5909 }
5910 }
5911 else
5912 {
5913 struct _opd_sec_data *opd;
5914
5915 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5916 opd = get_opd_info (rsec);
5917 if (opd != NULL && opd->func_sec != NULL)
5918 {
5919 rsec->gc_mark = 1;
5920
5921 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5922 }
5923 }
5924
5925 return rsec;
5926 }
5927
5928 /* Update the .got, .plt. and dynamic reloc reference counts for the
5929 section being removed. */
5930
5931 static bfd_boolean
5932 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5933 asection *sec, const Elf_Internal_Rela *relocs)
5934 {
5935 struct ppc_link_hash_table *htab;
5936 Elf_Internal_Shdr *symtab_hdr;
5937 struct elf_link_hash_entry **sym_hashes;
5938 struct got_entry **local_got_ents;
5939 const Elf_Internal_Rela *rel, *relend;
5940
5941 if (info->relocatable)
5942 return TRUE;
5943
5944 if ((sec->flags & SEC_ALLOC) == 0)
5945 return TRUE;
5946
5947 elf_section_data (sec)->local_dynrel = NULL;
5948
5949 htab = ppc_hash_table (info);
5950 if (htab == NULL)
5951 return FALSE;
5952
5953 symtab_hdr = &elf_symtab_hdr (abfd);
5954 sym_hashes = elf_sym_hashes (abfd);
5955 local_got_ents = elf_local_got_ents (abfd);
5956
5957 relend = relocs + sec->reloc_count;
5958 for (rel = relocs; rel < relend; rel++)
5959 {
5960 unsigned long r_symndx;
5961 enum elf_ppc64_reloc_type r_type;
5962 struct elf_link_hash_entry *h = NULL;
5963 unsigned char tls_type = 0;
5964
5965 r_symndx = ELF64_R_SYM (rel->r_info);
5966 r_type = ELF64_R_TYPE (rel->r_info);
5967 if (r_symndx >= symtab_hdr->sh_info)
5968 {
5969 struct ppc_link_hash_entry *eh;
5970 struct elf_dyn_relocs **pp;
5971 struct elf_dyn_relocs *p;
5972
5973 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5974 h = elf_follow_link (h);
5975 eh = (struct ppc_link_hash_entry *) h;
5976
5977 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5978 if (p->sec == sec)
5979 {
5980 /* Everything must go for SEC. */
5981 *pp = p->next;
5982 break;
5983 }
5984 }
5985
5986 if (is_branch_reloc (r_type))
5987 {
5988 struct plt_entry **ifunc = NULL;
5989 if (h != NULL)
5990 {
5991 if (h->type == STT_GNU_IFUNC)
5992 ifunc = &h->plt.plist;
5993 }
5994 else if (local_got_ents != NULL)
5995 {
5996 struct plt_entry **local_plt = (struct plt_entry **)
5997 (local_got_ents + symtab_hdr->sh_info);
5998 unsigned char *local_got_tls_masks = (unsigned char *)
5999 (local_plt + symtab_hdr->sh_info);
6000 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
6001 ifunc = local_plt + r_symndx;
6002 }
6003 if (ifunc != NULL)
6004 {
6005 struct plt_entry *ent;
6006
6007 for (ent = *ifunc; ent != NULL; ent = ent->next)
6008 if (ent->addend == rel->r_addend)
6009 break;
6010 if (ent == NULL)
6011 abort ();
6012 if (ent->plt.refcount > 0)
6013 ent->plt.refcount -= 1;
6014 continue;
6015 }
6016 }
6017
6018 switch (r_type)
6019 {
6020 case R_PPC64_GOT_TLSLD16:
6021 case R_PPC64_GOT_TLSLD16_LO:
6022 case R_PPC64_GOT_TLSLD16_HI:
6023 case R_PPC64_GOT_TLSLD16_HA:
6024 tls_type = TLS_TLS | TLS_LD;
6025 goto dogot;
6026
6027 case R_PPC64_GOT_TLSGD16:
6028 case R_PPC64_GOT_TLSGD16_LO:
6029 case R_PPC64_GOT_TLSGD16_HI:
6030 case R_PPC64_GOT_TLSGD16_HA:
6031 tls_type = TLS_TLS | TLS_GD;
6032 goto dogot;
6033
6034 case R_PPC64_GOT_TPREL16_DS:
6035 case R_PPC64_GOT_TPREL16_LO_DS:
6036 case R_PPC64_GOT_TPREL16_HI:
6037 case R_PPC64_GOT_TPREL16_HA:
6038 tls_type = TLS_TLS | TLS_TPREL;
6039 goto dogot;
6040
6041 case R_PPC64_GOT_DTPREL16_DS:
6042 case R_PPC64_GOT_DTPREL16_LO_DS:
6043 case R_PPC64_GOT_DTPREL16_HI:
6044 case R_PPC64_GOT_DTPREL16_HA:
6045 tls_type = TLS_TLS | TLS_DTPREL;
6046 goto dogot;
6047
6048 case R_PPC64_GOT16:
6049 case R_PPC64_GOT16_DS:
6050 case R_PPC64_GOT16_HA:
6051 case R_PPC64_GOT16_HI:
6052 case R_PPC64_GOT16_LO:
6053 case R_PPC64_GOT16_LO_DS:
6054 dogot:
6055 {
6056 struct got_entry *ent;
6057
6058 if (h != NULL)
6059 ent = h->got.glist;
6060 else
6061 ent = local_got_ents[r_symndx];
6062
6063 for (; ent != NULL; ent = ent->next)
6064 if (ent->addend == rel->r_addend
6065 && ent->owner == abfd
6066 && ent->tls_type == tls_type)
6067 break;
6068 if (ent == NULL)
6069 abort ();
6070 if (ent->got.refcount > 0)
6071 ent->got.refcount -= 1;
6072 }
6073 break;
6074
6075 case R_PPC64_PLT16_HA:
6076 case R_PPC64_PLT16_HI:
6077 case R_PPC64_PLT16_LO:
6078 case R_PPC64_PLT32:
6079 case R_PPC64_PLT64:
6080 case R_PPC64_REL14:
6081 case R_PPC64_REL14_BRNTAKEN:
6082 case R_PPC64_REL14_BRTAKEN:
6083 case R_PPC64_REL24:
6084 if (h != NULL)
6085 {
6086 struct plt_entry *ent;
6087
6088 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6089 if (ent->addend == rel->r_addend)
6090 break;
6091 if (ent != NULL && ent->plt.refcount > 0)
6092 ent->plt.refcount -= 1;
6093 }
6094 break;
6095
6096 default:
6097 break;
6098 }
6099 }
6100 return TRUE;
6101 }
6102
6103 /* The maximum size of .sfpr. */
6104 #define SFPR_MAX (218*4)
6105
6106 struct sfpr_def_parms
6107 {
6108 const char name[12];
6109 unsigned char lo, hi;
6110 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6111 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6112 };
6113
6114 /* Auto-generate _save*, _rest* functions in .sfpr. */
6115
6116 static bfd_boolean
6117 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6118 {
6119 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6120 unsigned int i;
6121 size_t len = strlen (parm->name);
6122 bfd_boolean writing = FALSE;
6123 char sym[16];
6124
6125 if (htab == NULL)
6126 return FALSE;
6127
6128 memcpy (sym, parm->name, len);
6129 sym[len + 2] = 0;
6130
6131 for (i = parm->lo; i <= parm->hi; i++)
6132 {
6133 struct elf_link_hash_entry *h;
6134
6135 sym[len + 0] = i / 10 + '0';
6136 sym[len + 1] = i % 10 + '0';
6137 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6138 if (h != NULL
6139 && !h->def_regular)
6140 {
6141 h->root.type = bfd_link_hash_defined;
6142 h->root.u.def.section = htab->sfpr;
6143 h->root.u.def.value = htab->sfpr->size;
6144 h->type = STT_FUNC;
6145 h->def_regular = 1;
6146 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6147 writing = TRUE;
6148 if (htab->sfpr->contents == NULL)
6149 {
6150 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6151 if (htab->sfpr->contents == NULL)
6152 return FALSE;
6153 }
6154 }
6155 if (writing)
6156 {
6157 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6158 if (i != parm->hi)
6159 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6160 else
6161 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6162 htab->sfpr->size = p - htab->sfpr->contents;
6163 }
6164 }
6165
6166 return TRUE;
6167 }
6168
6169 static bfd_byte *
6170 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6171 {
6172 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6173 return p + 4;
6174 }
6175
6176 static bfd_byte *
6177 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6178 {
6179 p = savegpr0 (abfd, p, r);
6180 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6181 p = p + 4;
6182 bfd_put_32 (abfd, BLR, p);
6183 return p + 4;
6184 }
6185
6186 static bfd_byte *
6187 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6188 {
6189 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6190 return p + 4;
6191 }
6192
6193 static bfd_byte *
6194 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6195 {
6196 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6197 p = p + 4;
6198 p = restgpr0 (abfd, p, r);
6199 bfd_put_32 (abfd, MTLR_R0, p);
6200 p = p + 4;
6201 if (r == 29)
6202 {
6203 p = restgpr0 (abfd, p, 30);
6204 p = restgpr0 (abfd, p, 31);
6205 }
6206 bfd_put_32 (abfd, BLR, p);
6207 return p + 4;
6208 }
6209
6210 static bfd_byte *
6211 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6212 {
6213 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6214 return p + 4;
6215 }
6216
6217 static bfd_byte *
6218 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6219 {
6220 p = savegpr1 (abfd, p, r);
6221 bfd_put_32 (abfd, BLR, p);
6222 return p + 4;
6223 }
6224
6225 static bfd_byte *
6226 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6227 {
6228 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6229 return p + 4;
6230 }
6231
6232 static bfd_byte *
6233 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6234 {
6235 p = restgpr1 (abfd, p, r);
6236 bfd_put_32 (abfd, BLR, p);
6237 return p + 4;
6238 }
6239
6240 static bfd_byte *
6241 savefpr (bfd *abfd, bfd_byte *p, int r)
6242 {
6243 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6244 return p + 4;
6245 }
6246
6247 static bfd_byte *
6248 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6249 {
6250 p = savefpr (abfd, p, r);
6251 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6252 p = p + 4;
6253 bfd_put_32 (abfd, BLR, p);
6254 return p + 4;
6255 }
6256
6257 static bfd_byte *
6258 restfpr (bfd *abfd, bfd_byte *p, int r)
6259 {
6260 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6261 return p + 4;
6262 }
6263
6264 static bfd_byte *
6265 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6266 {
6267 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6268 p = p + 4;
6269 p = restfpr (abfd, p, r);
6270 bfd_put_32 (abfd, MTLR_R0, p);
6271 p = p + 4;
6272 if (r == 29)
6273 {
6274 p = restfpr (abfd, p, 30);
6275 p = restfpr (abfd, p, 31);
6276 }
6277 bfd_put_32 (abfd, BLR, p);
6278 return p + 4;
6279 }
6280
6281 static bfd_byte *
6282 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6283 {
6284 p = savefpr (abfd, p, r);
6285 bfd_put_32 (abfd, BLR, p);
6286 return p + 4;
6287 }
6288
6289 static bfd_byte *
6290 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6291 {
6292 p = restfpr (abfd, p, r);
6293 bfd_put_32 (abfd, BLR, p);
6294 return p + 4;
6295 }
6296
6297 static bfd_byte *
6298 savevr (bfd *abfd, bfd_byte *p, int r)
6299 {
6300 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6301 p = p + 4;
6302 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6303 return p + 4;
6304 }
6305
6306 static bfd_byte *
6307 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6308 {
6309 p = savevr (abfd, p, r);
6310 bfd_put_32 (abfd, BLR, p);
6311 return p + 4;
6312 }
6313
6314 static bfd_byte *
6315 restvr (bfd *abfd, bfd_byte *p, int r)
6316 {
6317 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6318 p = p + 4;
6319 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6320 return p + 4;
6321 }
6322
6323 static bfd_byte *
6324 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6325 {
6326 p = restvr (abfd, p, r);
6327 bfd_put_32 (abfd, BLR, p);
6328 return p + 4;
6329 }
6330
6331 /* Called via elf_link_hash_traverse to transfer dynamic linking
6332 information on function code symbol entries to their corresponding
6333 function descriptor symbol entries. */
6334
6335 static bfd_boolean
6336 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6337 {
6338 struct bfd_link_info *info;
6339 struct ppc_link_hash_table *htab;
6340 struct plt_entry *ent;
6341 struct ppc_link_hash_entry *fh;
6342 struct ppc_link_hash_entry *fdh;
6343 bfd_boolean force_local;
6344
6345 fh = (struct ppc_link_hash_entry *) h;
6346 if (fh->elf.root.type == bfd_link_hash_indirect)
6347 return TRUE;
6348
6349 info = inf;
6350 htab = ppc_hash_table (info);
6351 if (htab == NULL)
6352 return FALSE;
6353
6354 /* Resolve undefined references to dot-symbols as the value
6355 in the function descriptor, if we have one in a regular object.
6356 This is to satisfy cases like ".quad .foo". Calls to functions
6357 in dynamic objects are handled elsewhere. */
6358 if (fh->elf.root.type == bfd_link_hash_undefweak
6359 && fh->was_undefined
6360 && (fdh = defined_func_desc (fh)) != NULL
6361 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6362 && opd_entry_value (fdh->elf.root.u.def.section,
6363 fdh->elf.root.u.def.value,
6364 &fh->elf.root.u.def.section,
6365 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6366 {
6367 fh->elf.root.type = fdh->elf.root.type;
6368 fh->elf.forced_local = 1;
6369 fh->elf.def_regular = fdh->elf.def_regular;
6370 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6371 }
6372
6373 /* If this is a function code symbol, transfer dynamic linking
6374 information to the function descriptor symbol. */
6375 if (!fh->is_func)
6376 return TRUE;
6377
6378 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6379 if (ent->plt.refcount > 0)
6380 break;
6381 if (ent == NULL
6382 || fh->elf.root.root.string[0] != '.'
6383 || fh->elf.root.root.string[1] == '\0')
6384 return TRUE;
6385
6386 /* Find the corresponding function descriptor symbol. Create it
6387 as undefined if necessary. */
6388
6389 fdh = lookup_fdh (fh, htab);
6390 if (fdh == NULL
6391 && !info->executable
6392 && (fh->elf.root.type == bfd_link_hash_undefined
6393 || fh->elf.root.type == bfd_link_hash_undefweak))
6394 {
6395 fdh = make_fdh (info, fh);
6396 if (fdh == NULL)
6397 return FALSE;
6398 }
6399
6400 /* Fake function descriptors are made undefweak. If the function
6401 code symbol is strong undefined, make the fake sym the same.
6402 If the function code symbol is defined, then force the fake
6403 descriptor local; We can't support overriding of symbols in a
6404 shared library on a fake descriptor. */
6405
6406 if (fdh != NULL
6407 && fdh->fake
6408 && fdh->elf.root.type == bfd_link_hash_undefweak)
6409 {
6410 if (fh->elf.root.type == bfd_link_hash_undefined)
6411 {
6412 fdh->elf.root.type = bfd_link_hash_undefined;
6413 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6414 }
6415 else if (fh->elf.root.type == bfd_link_hash_defined
6416 || fh->elf.root.type == bfd_link_hash_defweak)
6417 {
6418 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6419 }
6420 }
6421
6422 if (fdh != NULL
6423 && !fdh->elf.forced_local
6424 && (!info->executable
6425 || fdh->elf.def_dynamic
6426 || fdh->elf.ref_dynamic
6427 || (fdh->elf.root.type == bfd_link_hash_undefweak
6428 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6429 {
6430 if (fdh->elf.dynindx == -1)
6431 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6432 return FALSE;
6433 fdh->elf.ref_regular |= fh->elf.ref_regular;
6434 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6435 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6436 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6437 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6438 {
6439 move_plt_plist (fh, fdh);
6440 fdh->elf.needs_plt = 1;
6441 }
6442 fdh->is_func_descriptor = 1;
6443 fdh->oh = fh;
6444 fh->oh = fdh;
6445 }
6446
6447 /* Now that the info is on the function descriptor, clear the
6448 function code sym info. Any function code syms for which we
6449 don't have a definition in a regular file, we force local.
6450 This prevents a shared library from exporting syms that have
6451 been imported from another library. Function code syms that
6452 are really in the library we must leave global to prevent the
6453 linker dragging in a definition from a static library. */
6454 force_local = (!fh->elf.def_regular
6455 || fdh == NULL
6456 || !fdh->elf.def_regular
6457 || fdh->elf.forced_local);
6458 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6459
6460 return TRUE;
6461 }
6462
6463 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6464 this hook to a) provide some gcc support functions, and b) transfer
6465 dynamic linking information gathered so far on function code symbol
6466 entries, to their corresponding function descriptor symbol entries. */
6467
6468 static bfd_boolean
6469 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6470 struct bfd_link_info *info)
6471 {
6472 struct ppc_link_hash_table *htab;
6473 unsigned int i;
6474 static const struct sfpr_def_parms funcs[] =
6475 {
6476 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6477 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6478 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6479 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6480 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6481 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6482 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6483 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6484 { "._savef", 14, 31, savefpr, savefpr1_tail },
6485 { "._restf", 14, 31, restfpr, restfpr1_tail },
6486 { "_savevr_", 20, 31, savevr, savevr_tail },
6487 { "_restvr_", 20, 31, restvr, restvr_tail }
6488 };
6489
6490 htab = ppc_hash_table (info);
6491 if (htab == NULL)
6492 return FALSE;
6493
6494 if (htab->sfpr == NULL)
6495 /* We don't have any relocs. */
6496 return TRUE;
6497
6498 /* Provide any missing _save* and _rest* functions. */
6499 htab->sfpr->size = 0;
6500 if (!info->relocatable)
6501 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6502 if (!sfpr_define (info, &funcs[i]))
6503 return FALSE;
6504
6505 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6506
6507 if (htab->sfpr->size == 0)
6508 htab->sfpr->flags |= SEC_EXCLUDE;
6509
6510 return TRUE;
6511 }
6512
6513 /* Adjust a symbol defined by a dynamic object and referenced by a
6514 regular object. The current definition is in some section of the
6515 dynamic object, but we're not including those sections. We have to
6516 change the definition to something the rest of the link can
6517 understand. */
6518
6519 static bfd_boolean
6520 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6521 struct elf_link_hash_entry *h)
6522 {
6523 struct ppc_link_hash_table *htab;
6524 asection *s;
6525
6526 htab = ppc_hash_table (info);
6527 if (htab == NULL)
6528 return FALSE;
6529
6530 /* Deal with function syms. */
6531 if (h->type == STT_FUNC
6532 || h->type == STT_GNU_IFUNC
6533 || h->needs_plt)
6534 {
6535 /* Clear procedure linkage table information for any symbol that
6536 won't need a .plt entry. */
6537 struct plt_entry *ent;
6538 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6539 if (ent->plt.refcount > 0)
6540 break;
6541 if (ent == NULL
6542 || (h->type != STT_GNU_IFUNC
6543 && (SYMBOL_CALLS_LOCAL (info, h)
6544 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6545 && h->root.type == bfd_link_hash_undefweak))))
6546 {
6547 h->plt.plist = NULL;
6548 h->needs_plt = 0;
6549 }
6550 }
6551 else
6552 h->plt.plist = NULL;
6553
6554 /* If this is a weak symbol, and there is a real definition, the
6555 processor independent code will have arranged for us to see the
6556 real definition first, and we can just use the same value. */
6557 if (h->u.weakdef != NULL)
6558 {
6559 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6560 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6561 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6562 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6563 if (ELIMINATE_COPY_RELOCS)
6564 h->non_got_ref = h->u.weakdef->non_got_ref;
6565 return TRUE;
6566 }
6567
6568 /* If we are creating a shared library, we must presume that the
6569 only references to the symbol are via the global offset table.
6570 For such cases we need not do anything here; the relocations will
6571 be handled correctly by relocate_section. */
6572 if (info->shared)
6573 return TRUE;
6574
6575 /* If there are no references to this symbol that do not use the
6576 GOT, we don't need to generate a copy reloc. */
6577 if (!h->non_got_ref)
6578 return TRUE;
6579
6580 /* Don't generate a copy reloc for symbols defined in the executable. */
6581 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6582 return TRUE;
6583
6584 if (ELIMINATE_COPY_RELOCS)
6585 {
6586 struct ppc_link_hash_entry * eh;
6587 struct elf_dyn_relocs *p;
6588
6589 eh = (struct ppc_link_hash_entry *) h;
6590 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6591 {
6592 s = p->sec->output_section;
6593 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6594 break;
6595 }
6596
6597 /* If we didn't find any dynamic relocs in read-only sections, then
6598 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6599 if (p == NULL)
6600 {
6601 h->non_got_ref = 0;
6602 return TRUE;
6603 }
6604 }
6605
6606 if (h->plt.plist != NULL)
6607 {
6608 /* We should never get here, but unfortunately there are versions
6609 of gcc out there that improperly (for this ABI) put initialized
6610 function pointers, vtable refs and suchlike in read-only
6611 sections. Allow them to proceed, but warn that this might
6612 break at runtime. */
6613 info->callbacks->einfo
6614 (_("%P: copy reloc against `%T' requires lazy plt linking; "
6615 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6616 h->root.root.string);
6617 }
6618
6619 /* This is a reference to a symbol defined by a dynamic object which
6620 is not a function. */
6621
6622 /* We must allocate the symbol in our .dynbss section, which will
6623 become part of the .bss section of the executable. There will be
6624 an entry for this symbol in the .dynsym section. The dynamic
6625 object will contain position independent code, so all references
6626 from the dynamic object to this symbol will go through the global
6627 offset table. The dynamic linker will use the .dynsym entry to
6628 determine the address it must put in the global offset table, so
6629 both the dynamic object and the regular object will refer to the
6630 same memory location for the variable. */
6631
6632 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6633 to copy the initial value out of the dynamic object and into the
6634 runtime process image. We need to remember the offset into the
6635 .rela.bss section we are going to use. */
6636 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6637 {
6638 htab->relbss->size += sizeof (Elf64_External_Rela);
6639 h->needs_copy = 1;
6640 }
6641
6642 s = htab->dynbss;
6643
6644 return _bfd_elf_adjust_dynamic_copy (h, s);
6645 }
6646
6647 /* If given a function descriptor symbol, hide both the function code
6648 sym and the descriptor. */
6649 static void
6650 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6651 struct elf_link_hash_entry *h,
6652 bfd_boolean force_local)
6653 {
6654 struct ppc_link_hash_entry *eh;
6655 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6656
6657 eh = (struct ppc_link_hash_entry *) h;
6658 if (eh->is_func_descriptor)
6659 {
6660 struct ppc_link_hash_entry *fh = eh->oh;
6661
6662 if (fh == NULL)
6663 {
6664 const char *p, *q;
6665 struct ppc_link_hash_table *htab;
6666 char save;
6667
6668 /* We aren't supposed to use alloca in BFD because on
6669 systems which do not have alloca the version in libiberty
6670 calls xmalloc, which might cause the program to crash
6671 when it runs out of memory. This function doesn't have a
6672 return status, so there's no way to gracefully return an
6673 error. So cheat. We know that string[-1] can be safely
6674 accessed; It's either a string in an ELF string table,
6675 or allocated in an objalloc structure. */
6676
6677 p = eh->elf.root.root.string - 1;
6678 save = *p;
6679 *(char *) p = '.';
6680 htab = ppc_hash_table (info);
6681 if (htab == NULL)
6682 return;
6683
6684 fh = (struct ppc_link_hash_entry *)
6685 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6686 *(char *) p = save;
6687
6688 /* Unfortunately, if it so happens that the string we were
6689 looking for was allocated immediately before this string,
6690 then we overwrote the string terminator. That's the only
6691 reason the lookup should fail. */
6692 if (fh == NULL)
6693 {
6694 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6695 while (q >= eh->elf.root.root.string && *q == *p)
6696 --q, --p;
6697 if (q < eh->elf.root.root.string && *p == '.')
6698 fh = (struct ppc_link_hash_entry *)
6699 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6700 }
6701 if (fh != NULL)
6702 {
6703 eh->oh = fh;
6704 fh->oh = eh;
6705 }
6706 }
6707 if (fh != NULL)
6708 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6709 }
6710 }
6711
6712 static bfd_boolean
6713 get_sym_h (struct elf_link_hash_entry **hp,
6714 Elf_Internal_Sym **symp,
6715 asection **symsecp,
6716 unsigned char **tls_maskp,
6717 Elf_Internal_Sym **locsymsp,
6718 unsigned long r_symndx,
6719 bfd *ibfd)
6720 {
6721 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6722
6723 if (r_symndx >= symtab_hdr->sh_info)
6724 {
6725 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6726 struct elf_link_hash_entry *h;
6727
6728 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6729 h = elf_follow_link (h);
6730
6731 if (hp != NULL)
6732 *hp = h;
6733
6734 if (symp != NULL)
6735 *symp = NULL;
6736
6737 if (symsecp != NULL)
6738 {
6739 asection *symsec = NULL;
6740 if (h->root.type == bfd_link_hash_defined
6741 || h->root.type == bfd_link_hash_defweak)
6742 symsec = h->root.u.def.section;
6743 *symsecp = symsec;
6744 }
6745
6746 if (tls_maskp != NULL)
6747 {
6748 struct ppc_link_hash_entry *eh;
6749
6750 eh = (struct ppc_link_hash_entry *) h;
6751 *tls_maskp = &eh->tls_mask;
6752 }
6753 }
6754 else
6755 {
6756 Elf_Internal_Sym *sym;
6757 Elf_Internal_Sym *locsyms = *locsymsp;
6758
6759 if (locsyms == NULL)
6760 {
6761 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6762 if (locsyms == NULL)
6763 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6764 symtab_hdr->sh_info,
6765 0, NULL, NULL, NULL);
6766 if (locsyms == NULL)
6767 return FALSE;
6768 *locsymsp = locsyms;
6769 }
6770 sym = locsyms + r_symndx;
6771
6772 if (hp != NULL)
6773 *hp = NULL;
6774
6775 if (symp != NULL)
6776 *symp = sym;
6777
6778 if (symsecp != NULL)
6779 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6780
6781 if (tls_maskp != NULL)
6782 {
6783 struct got_entry **lgot_ents;
6784 unsigned char *tls_mask;
6785
6786 tls_mask = NULL;
6787 lgot_ents = elf_local_got_ents (ibfd);
6788 if (lgot_ents != NULL)
6789 {
6790 struct plt_entry **local_plt = (struct plt_entry **)
6791 (lgot_ents + symtab_hdr->sh_info);
6792 unsigned char *lgot_masks = (unsigned char *)
6793 (local_plt + symtab_hdr->sh_info);
6794 tls_mask = &lgot_masks[r_symndx];
6795 }
6796 *tls_maskp = tls_mask;
6797 }
6798 }
6799 return TRUE;
6800 }
6801
6802 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6803 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6804 type suitable for optimization, and 1 otherwise. */
6805
6806 static int
6807 get_tls_mask (unsigned char **tls_maskp,
6808 unsigned long *toc_symndx,
6809 bfd_vma *toc_addend,
6810 Elf_Internal_Sym **locsymsp,
6811 const Elf_Internal_Rela *rel,
6812 bfd *ibfd)
6813 {
6814 unsigned long r_symndx;
6815 int next_r;
6816 struct elf_link_hash_entry *h;
6817 Elf_Internal_Sym *sym;
6818 asection *sec;
6819 bfd_vma off;
6820
6821 r_symndx = ELF64_R_SYM (rel->r_info);
6822 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6823 return 0;
6824
6825 if ((*tls_maskp != NULL && **tls_maskp != 0)
6826 || sec == NULL
6827 || ppc64_elf_section_data (sec) == NULL
6828 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6829 return 1;
6830
6831 /* Look inside a TOC section too. */
6832 if (h != NULL)
6833 {
6834 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6835 off = h->root.u.def.value;
6836 }
6837 else
6838 off = sym->st_value;
6839 off += rel->r_addend;
6840 BFD_ASSERT (off % 8 == 0);
6841 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6842 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6843 if (toc_symndx != NULL)
6844 *toc_symndx = r_symndx;
6845 if (toc_addend != NULL)
6846 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6847 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6848 return 0;
6849 if ((h == NULL || is_static_defined (h))
6850 && (next_r == -1 || next_r == -2))
6851 return 1 - next_r;
6852 return 1;
6853 }
6854
6855 /* Find (or create) an entry in the tocsave hash table. */
6856
6857 static struct tocsave_entry *
6858 tocsave_find (struct ppc_link_hash_table *htab,
6859 enum insert_option insert,
6860 Elf_Internal_Sym **local_syms,
6861 const Elf_Internal_Rela *irela,
6862 bfd *ibfd)
6863 {
6864 unsigned long r_indx;
6865 struct elf_link_hash_entry *h;
6866 Elf_Internal_Sym *sym;
6867 struct tocsave_entry ent, *p;
6868 hashval_t hash;
6869 struct tocsave_entry **slot;
6870
6871 r_indx = ELF64_R_SYM (irela->r_info);
6872 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6873 return NULL;
6874 if (ent.sec == NULL || ent.sec->output_section == NULL)
6875 {
6876 (*_bfd_error_handler)
6877 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
6878 return NULL;
6879 }
6880
6881 if (h != NULL)
6882 ent.offset = h->root.u.def.value;
6883 else
6884 ent.offset = sym->st_value;
6885 ent.offset += irela->r_addend;
6886
6887 hash = tocsave_htab_hash (&ent);
6888 slot = ((struct tocsave_entry **)
6889 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6890 if (slot == NULL)
6891 return NULL;
6892
6893 if (*slot == NULL)
6894 {
6895 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6896 if (p == NULL)
6897 return NULL;
6898 *p = ent;
6899 *slot = p;
6900 }
6901 return *slot;
6902 }
6903
6904 /* Adjust all global syms defined in opd sections. In gcc generated
6905 code for the old ABI, these will already have been done. */
6906
6907 static bfd_boolean
6908 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6909 {
6910 struct ppc_link_hash_entry *eh;
6911 asection *sym_sec;
6912 struct _opd_sec_data *opd;
6913
6914 if (h->root.type == bfd_link_hash_indirect)
6915 return TRUE;
6916
6917 if (h->root.type != bfd_link_hash_defined
6918 && h->root.type != bfd_link_hash_defweak)
6919 return TRUE;
6920
6921 eh = (struct ppc_link_hash_entry *) h;
6922 if (eh->adjust_done)
6923 return TRUE;
6924
6925 sym_sec = eh->elf.root.u.def.section;
6926 opd = get_opd_info (sym_sec);
6927 if (opd != NULL && opd->adjust != NULL)
6928 {
6929 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6930 if (adjust == -1)
6931 {
6932 /* This entry has been deleted. */
6933 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6934 if (dsec == NULL)
6935 {
6936 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6937 if (discarded_section (dsec))
6938 {
6939 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6940 break;
6941 }
6942 }
6943 eh->elf.root.u.def.value = 0;
6944 eh->elf.root.u.def.section = dsec;
6945 }
6946 else
6947 eh->elf.root.u.def.value += adjust;
6948 eh->adjust_done = 1;
6949 }
6950 return TRUE;
6951 }
6952
6953 /* Handles decrementing dynamic reloc counts for the reloc specified by
6954 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6955 have already been determined. */
6956
6957 static bfd_boolean
6958 dec_dynrel_count (bfd_vma r_info,
6959 asection *sec,
6960 struct bfd_link_info *info,
6961 Elf_Internal_Sym **local_syms,
6962 struct elf_link_hash_entry *h,
6963 asection *sym_sec)
6964 {
6965 enum elf_ppc64_reloc_type r_type;
6966 struct elf_dyn_relocs *p;
6967 struct elf_dyn_relocs **pp;
6968
6969 /* Can this reloc be dynamic? This switch, and later tests here
6970 should be kept in sync with the code in check_relocs. */
6971 r_type = ELF64_R_TYPE (r_info);
6972 switch (r_type)
6973 {
6974 default:
6975 return TRUE;
6976
6977 case R_PPC64_TPREL16:
6978 case R_PPC64_TPREL16_LO:
6979 case R_PPC64_TPREL16_HI:
6980 case R_PPC64_TPREL16_HA:
6981 case R_PPC64_TPREL16_DS:
6982 case R_PPC64_TPREL16_LO_DS:
6983 case R_PPC64_TPREL16_HIGHER:
6984 case R_PPC64_TPREL16_HIGHERA:
6985 case R_PPC64_TPREL16_HIGHEST:
6986 case R_PPC64_TPREL16_HIGHESTA:
6987 if (!info->shared)
6988 return TRUE;
6989
6990 case R_PPC64_TPREL64:
6991 case R_PPC64_DTPMOD64:
6992 case R_PPC64_DTPREL64:
6993 case R_PPC64_ADDR64:
6994 case R_PPC64_REL30:
6995 case R_PPC64_REL32:
6996 case R_PPC64_REL64:
6997 case R_PPC64_ADDR14:
6998 case R_PPC64_ADDR14_BRNTAKEN:
6999 case R_PPC64_ADDR14_BRTAKEN:
7000 case R_PPC64_ADDR16:
7001 case R_PPC64_ADDR16_DS:
7002 case R_PPC64_ADDR16_HA:
7003 case R_PPC64_ADDR16_HI:
7004 case R_PPC64_ADDR16_HIGHER:
7005 case R_PPC64_ADDR16_HIGHERA:
7006 case R_PPC64_ADDR16_HIGHEST:
7007 case R_PPC64_ADDR16_HIGHESTA:
7008 case R_PPC64_ADDR16_LO:
7009 case R_PPC64_ADDR16_LO_DS:
7010 case R_PPC64_ADDR24:
7011 case R_PPC64_ADDR32:
7012 case R_PPC64_UADDR16:
7013 case R_PPC64_UADDR32:
7014 case R_PPC64_UADDR64:
7015 case R_PPC64_TOC:
7016 break;
7017 }
7018
7019 if (local_syms != NULL)
7020 {
7021 unsigned long r_symndx;
7022 Elf_Internal_Sym *sym;
7023 bfd *ibfd = sec->owner;
7024
7025 r_symndx = ELF64_R_SYM (r_info);
7026 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
7027 return FALSE;
7028 }
7029
7030 if ((info->shared
7031 && (must_be_dyn_reloc (info, r_type)
7032 || (h != NULL
7033 && (!info->symbolic
7034 || h->root.type == bfd_link_hash_defweak
7035 || !h->def_regular))))
7036 || (ELIMINATE_COPY_RELOCS
7037 && !info->shared
7038 && h != NULL
7039 && (h->root.type == bfd_link_hash_defweak
7040 || !h->def_regular)))
7041 ;
7042 else
7043 return TRUE;
7044
7045 if (h != NULL)
7046 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7047 else
7048 {
7049 if (sym_sec != NULL)
7050 {
7051 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
7052 pp = (struct elf_dyn_relocs **) vpp;
7053 }
7054 else
7055 {
7056 void *vpp = &elf_section_data (sec)->local_dynrel;
7057 pp = (struct elf_dyn_relocs **) vpp;
7058 }
7059 }
7060
7061 /* elf_gc_sweep may have already removed all dyn relocs associated
7062 with local syms for a given section. Also, symbol flags are
7063 changed by elf_gc_sweep_symbol, confusing the test above. Don't
7064 report a dynreloc miscount. */
7065 if (*pp == NULL && info->gc_sections)
7066 return TRUE;
7067
7068 while ((p = *pp) != NULL)
7069 {
7070 if (p->sec == sec)
7071 {
7072 if (!must_be_dyn_reloc (info, r_type))
7073 p->pc_count -= 1;
7074 p->count -= 1;
7075 if (p->count == 0)
7076 *pp = p->next;
7077 return TRUE;
7078 }
7079 pp = &p->next;
7080 }
7081
7082 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7083 sec->owner, sec);
7084 bfd_set_error (bfd_error_bad_value);
7085 return FALSE;
7086 }
7087
7088 /* Remove unused Official Procedure Descriptor entries. Currently we
7089 only remove those associated with functions in discarded link-once
7090 sections, or weakly defined functions that have been overridden. It
7091 would be possible to remove many more entries for statically linked
7092 applications. */
7093
7094 bfd_boolean
7095 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7096 {
7097 bfd *ibfd;
7098 bfd_boolean some_edited = FALSE;
7099 asection *need_pad = NULL;
7100
7101 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7102 {
7103 asection *sec;
7104 Elf_Internal_Rela *relstart, *rel, *relend;
7105 Elf_Internal_Shdr *symtab_hdr;
7106 Elf_Internal_Sym *local_syms;
7107 bfd_vma offset;
7108 struct _opd_sec_data *opd;
7109 bfd_boolean need_edit, add_aux_fields;
7110 bfd_size_type cnt_16b = 0;
7111
7112 if (!is_ppc64_elf (ibfd))
7113 continue;
7114
7115 sec = bfd_get_section_by_name (ibfd, ".opd");
7116 if (sec == NULL || sec->size == 0)
7117 continue;
7118
7119 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7120 continue;
7121
7122 if (sec->output_section == bfd_abs_section_ptr)
7123 continue;
7124
7125 /* Look through the section relocs. */
7126 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7127 continue;
7128
7129 local_syms = NULL;
7130 symtab_hdr = &elf_symtab_hdr (ibfd);
7131
7132 /* Read the relocations. */
7133 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7134 info->keep_memory);
7135 if (relstart == NULL)
7136 return FALSE;
7137
7138 /* First run through the relocs to check they are sane, and to
7139 determine whether we need to edit this opd section. */
7140 need_edit = FALSE;
7141 need_pad = sec;
7142 offset = 0;
7143 relend = relstart + sec->reloc_count;
7144 for (rel = relstart; rel < relend; )
7145 {
7146 enum elf_ppc64_reloc_type r_type;
7147 unsigned long r_symndx;
7148 asection *sym_sec;
7149 struct elf_link_hash_entry *h;
7150 Elf_Internal_Sym *sym;
7151
7152 /* .opd contains a regular array of 16 or 24 byte entries. We're
7153 only interested in the reloc pointing to a function entry
7154 point. */
7155 if (rel->r_offset != offset
7156 || rel + 1 >= relend
7157 || (rel + 1)->r_offset != offset + 8)
7158 {
7159 /* If someone messes with .opd alignment then after a
7160 "ld -r" we might have padding in the middle of .opd.
7161 Also, there's nothing to prevent someone putting
7162 something silly in .opd with the assembler. No .opd
7163 optimization for them! */
7164 broken_opd:
7165 (*_bfd_error_handler)
7166 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7167 need_edit = FALSE;
7168 break;
7169 }
7170
7171 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7172 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7173 {
7174 (*_bfd_error_handler)
7175 (_("%B: unexpected reloc type %u in .opd section"),
7176 ibfd, r_type);
7177 need_edit = FALSE;
7178 break;
7179 }
7180
7181 r_symndx = ELF64_R_SYM (rel->r_info);
7182 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7183 r_symndx, ibfd))
7184 goto error_ret;
7185
7186 if (sym_sec == NULL || sym_sec->owner == NULL)
7187 {
7188 const char *sym_name;
7189 if (h != NULL)
7190 sym_name = h->root.root.string;
7191 else
7192 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7193 sym_sec);
7194
7195 (*_bfd_error_handler)
7196 (_("%B: undefined sym `%s' in .opd section"),
7197 ibfd, sym_name);
7198 need_edit = FALSE;
7199 break;
7200 }
7201
7202 /* opd entries are always for functions defined in the
7203 current input bfd. If the symbol isn't defined in the
7204 input bfd, then we won't be using the function in this
7205 bfd; It must be defined in a linkonce section in another
7206 bfd, or is weak. It's also possible that we are
7207 discarding the function due to a linker script /DISCARD/,
7208 which we test for via the output_section. */
7209 if (sym_sec->owner != ibfd
7210 || sym_sec->output_section == bfd_abs_section_ptr)
7211 need_edit = TRUE;
7212
7213 rel += 2;
7214 if (rel == relend
7215 || (rel + 1 == relend && rel->r_offset == offset + 16))
7216 {
7217 if (sec->size == offset + 24)
7218 {
7219 need_pad = NULL;
7220 break;
7221 }
7222 if (rel == relend && sec->size == offset + 16)
7223 {
7224 cnt_16b++;
7225 break;
7226 }
7227 goto broken_opd;
7228 }
7229
7230 if (rel->r_offset == offset + 24)
7231 offset += 24;
7232 else if (rel->r_offset != offset + 16)
7233 goto broken_opd;
7234 else if (rel + 1 < relend
7235 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7236 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7237 {
7238 offset += 16;
7239 cnt_16b++;
7240 }
7241 else if (rel + 2 < relend
7242 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7243 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7244 {
7245 offset += 24;
7246 rel += 1;
7247 }
7248 else
7249 goto broken_opd;
7250 }
7251
7252 add_aux_fields = non_overlapping && cnt_16b > 0;
7253
7254 if (need_edit || add_aux_fields)
7255 {
7256 Elf_Internal_Rela *write_rel;
7257 Elf_Internal_Shdr *rel_hdr;
7258 bfd_byte *rptr, *wptr;
7259 bfd_byte *new_contents;
7260 bfd_boolean skip;
7261 long opd_ent_size;
7262 bfd_size_type amt;
7263
7264 new_contents = NULL;
7265 amt = sec->size * sizeof (long) / 8;
7266 opd = &ppc64_elf_section_data (sec)->u.opd;
7267 opd->adjust = bfd_zalloc (sec->owner, amt);
7268 if (opd->adjust == NULL)
7269 return FALSE;
7270 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7271
7272 /* This seems a waste of time as input .opd sections are all
7273 zeros as generated by gcc, but I suppose there's no reason
7274 this will always be so. We might start putting something in
7275 the third word of .opd entries. */
7276 if ((sec->flags & SEC_IN_MEMORY) == 0)
7277 {
7278 bfd_byte *loc;
7279 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7280 {
7281 if (loc != NULL)
7282 free (loc);
7283 error_ret:
7284 if (local_syms != NULL
7285 && symtab_hdr->contents != (unsigned char *) local_syms)
7286 free (local_syms);
7287 if (elf_section_data (sec)->relocs != relstart)
7288 free (relstart);
7289 return FALSE;
7290 }
7291 sec->contents = loc;
7292 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7293 }
7294
7295 elf_section_data (sec)->relocs = relstart;
7296
7297 new_contents = sec->contents;
7298 if (add_aux_fields)
7299 {
7300 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7301 if (new_contents == NULL)
7302 return FALSE;
7303 need_pad = FALSE;
7304 }
7305 wptr = new_contents;
7306 rptr = sec->contents;
7307
7308 write_rel = relstart;
7309 skip = FALSE;
7310 offset = 0;
7311 opd_ent_size = 0;
7312 for (rel = relstart; rel < relend; rel++)
7313 {
7314 unsigned long r_symndx;
7315 asection *sym_sec;
7316 struct elf_link_hash_entry *h;
7317 Elf_Internal_Sym *sym;
7318
7319 r_symndx = ELF64_R_SYM (rel->r_info);
7320 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7321 r_symndx, ibfd))
7322 goto error_ret;
7323
7324 if (rel->r_offset == offset)
7325 {
7326 struct ppc_link_hash_entry *fdh = NULL;
7327
7328 /* See if the .opd entry is full 24 byte or
7329 16 byte (with fd_aux entry overlapped with next
7330 fd_func). */
7331 opd_ent_size = 24;
7332 if ((rel + 2 == relend && sec->size == offset + 16)
7333 || (rel + 3 < relend
7334 && rel[2].r_offset == offset + 16
7335 && rel[3].r_offset == offset + 24
7336 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7337 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7338 opd_ent_size = 16;
7339
7340 if (h != NULL
7341 && h->root.root.string[0] == '.')
7342 {
7343 struct ppc_link_hash_table *htab;
7344
7345 htab = ppc_hash_table (info);
7346 if (htab != NULL)
7347 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7348 htab);
7349 if (fdh != NULL
7350 && fdh->elf.root.type != bfd_link_hash_defined
7351 && fdh->elf.root.type != bfd_link_hash_defweak)
7352 fdh = NULL;
7353 }
7354
7355 skip = (sym_sec->owner != ibfd
7356 || sym_sec->output_section == bfd_abs_section_ptr);
7357 if (skip)
7358 {
7359 if (fdh != NULL && sym_sec->owner == ibfd)
7360 {
7361 /* Arrange for the function descriptor sym
7362 to be dropped. */
7363 fdh->elf.root.u.def.value = 0;
7364 fdh->elf.root.u.def.section = sym_sec;
7365 }
7366 opd->adjust[rel->r_offset / 8] = -1;
7367 }
7368 else
7369 {
7370 /* We'll be keeping this opd entry. */
7371
7372 if (fdh != NULL)
7373 {
7374 /* Redefine the function descriptor symbol to
7375 this location in the opd section. It is
7376 necessary to update the value here rather
7377 than using an array of adjustments as we do
7378 for local symbols, because various places
7379 in the generic ELF code use the value
7380 stored in u.def.value. */
7381 fdh->elf.root.u.def.value = wptr - new_contents;
7382 fdh->adjust_done = 1;
7383 }
7384
7385 /* Local syms are a bit tricky. We could
7386 tweak them as they can be cached, but
7387 we'd need to look through the local syms
7388 for the function descriptor sym which we
7389 don't have at the moment. So keep an
7390 array of adjustments. */
7391 opd->adjust[rel->r_offset / 8]
7392 = (wptr - new_contents) - (rptr - sec->contents);
7393
7394 if (wptr != rptr)
7395 memcpy (wptr, rptr, opd_ent_size);
7396 wptr += opd_ent_size;
7397 if (add_aux_fields && opd_ent_size == 16)
7398 {
7399 memset (wptr, '\0', 8);
7400 wptr += 8;
7401 }
7402 }
7403 rptr += opd_ent_size;
7404 offset += opd_ent_size;
7405 }
7406
7407 if (skip)
7408 {
7409 if (!NO_OPD_RELOCS
7410 && !info->relocatable
7411 && !dec_dynrel_count (rel->r_info, sec, info,
7412 NULL, h, sym_sec))
7413 goto error_ret;
7414 }
7415 else
7416 {
7417 /* We need to adjust any reloc offsets to point to the
7418 new opd entries. While we're at it, we may as well
7419 remove redundant relocs. */
7420 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7421 if (write_rel != rel)
7422 memcpy (write_rel, rel, sizeof (*rel));
7423 ++write_rel;
7424 }
7425 }
7426
7427 sec->size = wptr - new_contents;
7428 sec->reloc_count = write_rel - relstart;
7429 if (add_aux_fields)
7430 {
7431 free (sec->contents);
7432 sec->contents = new_contents;
7433 }
7434
7435 /* Fudge the header size too, as this is used later in
7436 elf_bfd_final_link if we are emitting relocs. */
7437 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7438 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7439 some_edited = TRUE;
7440 }
7441 else if (elf_section_data (sec)->relocs != relstart)
7442 free (relstart);
7443
7444 if (local_syms != NULL
7445 && symtab_hdr->contents != (unsigned char *) local_syms)
7446 {
7447 if (!info->keep_memory)
7448 free (local_syms);
7449 else
7450 symtab_hdr->contents = (unsigned char *) local_syms;
7451 }
7452 }
7453
7454 if (some_edited)
7455 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7456
7457 /* If we are doing a final link and the last .opd entry is just 16 byte
7458 long, add a 8 byte padding after it. */
7459 if (need_pad != NULL && !info->relocatable)
7460 {
7461 bfd_byte *p;
7462
7463 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7464 {
7465 BFD_ASSERT (need_pad->size > 0);
7466
7467 p = bfd_malloc (need_pad->size + 8);
7468 if (p == NULL)
7469 return FALSE;
7470
7471 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7472 p, 0, need_pad->size))
7473 return FALSE;
7474
7475 need_pad->contents = p;
7476 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7477 }
7478 else
7479 {
7480 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7481 if (p == NULL)
7482 return FALSE;
7483
7484 need_pad->contents = p;
7485 }
7486
7487 memset (need_pad->contents + need_pad->size, 0, 8);
7488 need_pad->size += 8;
7489 }
7490
7491 return TRUE;
7492 }
7493
7494 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7495
7496 asection *
7497 ppc64_elf_tls_setup (struct bfd_link_info *info,
7498 int no_tls_get_addr_opt,
7499 int *no_multi_toc)
7500 {
7501 struct ppc_link_hash_table *htab;
7502
7503 htab = ppc_hash_table (info);
7504 if (htab == NULL)
7505 return NULL;
7506
7507 if (*no_multi_toc)
7508 htab->do_multi_toc = 0;
7509 else if (!htab->do_multi_toc)
7510 *no_multi_toc = 1;
7511
7512 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7513 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7514 FALSE, FALSE, TRUE));
7515 /* Move dynamic linking info to the function descriptor sym. */
7516 if (htab->tls_get_addr != NULL)
7517 func_desc_adjust (&htab->tls_get_addr->elf, info);
7518 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7519 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7520 FALSE, FALSE, TRUE));
7521 if (!no_tls_get_addr_opt)
7522 {
7523 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7524
7525 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7526 FALSE, FALSE, TRUE);
7527 if (opt != NULL)
7528 func_desc_adjust (opt, info);
7529 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7530 FALSE, FALSE, TRUE);
7531 if (opt_fd != NULL
7532 && (opt_fd->root.type == bfd_link_hash_defined
7533 || opt_fd->root.type == bfd_link_hash_defweak))
7534 {
7535 /* If glibc supports an optimized __tls_get_addr call stub,
7536 signalled by the presence of __tls_get_addr_opt, and we'll
7537 be calling __tls_get_addr via a plt call stub, then
7538 make __tls_get_addr point to __tls_get_addr_opt. */
7539 tga_fd = &htab->tls_get_addr_fd->elf;
7540 if (htab->elf.dynamic_sections_created
7541 && tga_fd != NULL
7542 && (tga_fd->type == STT_FUNC
7543 || tga_fd->needs_plt)
7544 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7545 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7546 && tga_fd->root.type == bfd_link_hash_undefweak)))
7547 {
7548 struct plt_entry *ent;
7549
7550 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7551 if (ent->plt.refcount > 0)
7552 break;
7553 if (ent != NULL)
7554 {
7555 tga_fd->root.type = bfd_link_hash_indirect;
7556 tga_fd->root.u.i.link = &opt_fd->root;
7557 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7558 if (opt_fd->dynindx != -1)
7559 {
7560 /* Use __tls_get_addr_opt in dynamic relocations. */
7561 opt_fd->dynindx = -1;
7562 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7563 opt_fd->dynstr_index);
7564 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7565 return NULL;
7566 }
7567 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7568 tga = &htab->tls_get_addr->elf;
7569 if (opt != NULL && tga != NULL)
7570 {
7571 tga->root.type = bfd_link_hash_indirect;
7572 tga->root.u.i.link = &opt->root;
7573 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7574 _bfd_elf_link_hash_hide_symbol (info, opt,
7575 tga->forced_local);
7576 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7577 }
7578 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7579 htab->tls_get_addr_fd->is_func_descriptor = 1;
7580 if (htab->tls_get_addr != NULL)
7581 {
7582 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7583 htab->tls_get_addr->is_func = 1;
7584 }
7585 }
7586 }
7587 }
7588 else
7589 no_tls_get_addr_opt = TRUE;
7590 }
7591 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
7592 return _bfd_elf_tls_setup (info->output_bfd, info);
7593 }
7594
7595 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7596 HASH1 or HASH2. */
7597
7598 static bfd_boolean
7599 branch_reloc_hash_match (const bfd *ibfd,
7600 const Elf_Internal_Rela *rel,
7601 const struct ppc_link_hash_entry *hash1,
7602 const struct ppc_link_hash_entry *hash2)
7603 {
7604 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7605 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7606 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7607
7608 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7609 {
7610 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7611 struct elf_link_hash_entry *h;
7612
7613 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7614 h = elf_follow_link (h);
7615 if (h == &hash1->elf || h == &hash2->elf)
7616 return TRUE;
7617 }
7618 return FALSE;
7619 }
7620
7621 /* Run through all the TLS relocs looking for optimization
7622 opportunities. The linker has been hacked (see ppc64elf.em) to do
7623 a preliminary section layout so that we know the TLS segment
7624 offsets. We can't optimize earlier because some optimizations need
7625 to know the tp offset, and we need to optimize before allocating
7626 dynamic relocations. */
7627
7628 bfd_boolean
7629 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7630 {
7631 bfd *ibfd;
7632 asection *sec;
7633 struct ppc_link_hash_table *htab;
7634 unsigned char *toc_ref;
7635 int pass;
7636
7637 if (info->relocatable || !info->executable)
7638 return TRUE;
7639
7640 htab = ppc_hash_table (info);
7641 if (htab == NULL)
7642 return FALSE;
7643
7644 /* Make two passes over the relocs. On the first pass, mark toc
7645 entries involved with tls relocs, and check that tls relocs
7646 involved in setting up a tls_get_addr call are indeed followed by
7647 such a call. If they are not, we can't do any tls optimization.
7648 On the second pass twiddle tls_mask flags to notify
7649 relocate_section that optimization can be done, and adjust got
7650 and plt refcounts. */
7651 toc_ref = NULL;
7652 for (pass = 0; pass < 2; ++pass)
7653 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7654 {
7655 Elf_Internal_Sym *locsyms = NULL;
7656 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7657
7658 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7659 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7660 {
7661 Elf_Internal_Rela *relstart, *rel, *relend;
7662 bfd_boolean found_tls_get_addr_arg = 0;
7663
7664 /* Read the relocations. */
7665 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7666 info->keep_memory);
7667 if (relstart == NULL)
7668 return FALSE;
7669
7670 relend = relstart + sec->reloc_count;
7671 for (rel = relstart; rel < relend; rel++)
7672 {
7673 enum elf_ppc64_reloc_type r_type;
7674 unsigned long r_symndx;
7675 struct elf_link_hash_entry *h;
7676 Elf_Internal_Sym *sym;
7677 asection *sym_sec;
7678 unsigned char *tls_mask;
7679 unsigned char tls_set, tls_clear, tls_type = 0;
7680 bfd_vma value;
7681 bfd_boolean ok_tprel, is_local;
7682 long toc_ref_index = 0;
7683 int expecting_tls_get_addr = 0;
7684 bfd_boolean ret = FALSE;
7685
7686 r_symndx = ELF64_R_SYM (rel->r_info);
7687 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7688 r_symndx, ibfd))
7689 {
7690 err_free_rel:
7691 if (elf_section_data (sec)->relocs != relstart)
7692 free (relstart);
7693 if (toc_ref != NULL)
7694 free (toc_ref);
7695 if (locsyms != NULL
7696 && (elf_symtab_hdr (ibfd).contents
7697 != (unsigned char *) locsyms))
7698 free (locsyms);
7699 return ret;
7700 }
7701
7702 if (h != NULL)
7703 {
7704 if (h->root.type == bfd_link_hash_defined
7705 || h->root.type == bfd_link_hash_defweak)
7706 value = h->root.u.def.value;
7707 else if (h->root.type == bfd_link_hash_undefweak)
7708 value = 0;
7709 else
7710 {
7711 found_tls_get_addr_arg = 0;
7712 continue;
7713 }
7714 }
7715 else
7716 /* Symbols referenced by TLS relocs must be of type
7717 STT_TLS. So no need for .opd local sym adjust. */
7718 value = sym->st_value;
7719
7720 ok_tprel = FALSE;
7721 is_local = FALSE;
7722 if (h == NULL
7723 || !h->def_dynamic)
7724 {
7725 is_local = TRUE;
7726 if (h != NULL
7727 && h->root.type == bfd_link_hash_undefweak)
7728 ok_tprel = TRUE;
7729 else
7730 {
7731 value += sym_sec->output_offset;
7732 value += sym_sec->output_section->vma;
7733 value -= htab->elf.tls_sec->vma;
7734 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7735 < (bfd_vma) 1 << 32);
7736 }
7737 }
7738
7739 r_type = ELF64_R_TYPE (rel->r_info);
7740 /* If this section has old-style __tls_get_addr calls
7741 without marker relocs, then check that each
7742 __tls_get_addr call reloc is preceded by a reloc
7743 that conceivably belongs to the __tls_get_addr arg
7744 setup insn. If we don't find matching arg setup
7745 relocs, don't do any tls optimization. */
7746 if (pass == 0
7747 && sec->has_tls_get_addr_call
7748 && h != NULL
7749 && (h == &htab->tls_get_addr->elf
7750 || h == &htab->tls_get_addr_fd->elf)
7751 && !found_tls_get_addr_arg
7752 && is_branch_reloc (r_type))
7753 {
7754 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7755 "TLS optimization disabled\n"),
7756 ibfd, sec, rel->r_offset);
7757 ret = TRUE;
7758 goto err_free_rel;
7759 }
7760
7761 found_tls_get_addr_arg = 0;
7762 switch (r_type)
7763 {
7764 case R_PPC64_GOT_TLSLD16:
7765 case R_PPC64_GOT_TLSLD16_LO:
7766 expecting_tls_get_addr = 1;
7767 found_tls_get_addr_arg = 1;
7768 /* Fall thru */
7769
7770 case R_PPC64_GOT_TLSLD16_HI:
7771 case R_PPC64_GOT_TLSLD16_HA:
7772 /* These relocs should never be against a symbol
7773 defined in a shared lib. Leave them alone if
7774 that turns out to be the case. */
7775 if (!is_local)
7776 continue;
7777
7778 /* LD -> LE */
7779 tls_set = 0;
7780 tls_clear = TLS_LD;
7781 tls_type = TLS_TLS | TLS_LD;
7782 break;
7783
7784 case R_PPC64_GOT_TLSGD16:
7785 case R_PPC64_GOT_TLSGD16_LO:
7786 expecting_tls_get_addr = 1;
7787 found_tls_get_addr_arg = 1;
7788 /* Fall thru */
7789
7790 case R_PPC64_GOT_TLSGD16_HI:
7791 case R_PPC64_GOT_TLSGD16_HA:
7792 if (ok_tprel)
7793 /* GD -> LE */
7794 tls_set = 0;
7795 else
7796 /* GD -> IE */
7797 tls_set = TLS_TLS | TLS_TPRELGD;
7798 tls_clear = TLS_GD;
7799 tls_type = TLS_TLS | TLS_GD;
7800 break;
7801
7802 case R_PPC64_GOT_TPREL16_DS:
7803 case R_PPC64_GOT_TPREL16_LO_DS:
7804 case R_PPC64_GOT_TPREL16_HI:
7805 case R_PPC64_GOT_TPREL16_HA:
7806 if (ok_tprel)
7807 {
7808 /* IE -> LE */
7809 tls_set = 0;
7810 tls_clear = TLS_TPREL;
7811 tls_type = TLS_TLS | TLS_TPREL;
7812 break;
7813 }
7814 continue;
7815
7816 case R_PPC64_TLSGD:
7817 case R_PPC64_TLSLD:
7818 found_tls_get_addr_arg = 1;
7819 /* Fall thru */
7820
7821 case R_PPC64_TLS:
7822 case R_PPC64_TOC16:
7823 case R_PPC64_TOC16_LO:
7824 if (sym_sec == NULL || sym_sec != toc)
7825 continue;
7826
7827 /* Mark this toc entry as referenced by a TLS
7828 code sequence. We can do that now in the
7829 case of R_PPC64_TLS, and after checking for
7830 tls_get_addr for the TOC16 relocs. */
7831 if (toc_ref == NULL)
7832 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
7833 if (toc_ref == NULL)
7834 goto err_free_rel;
7835
7836 if (h != NULL)
7837 value = h->root.u.def.value;
7838 else
7839 value = sym->st_value;
7840 value += rel->r_addend;
7841 BFD_ASSERT (value < toc->size && value % 8 == 0);
7842 toc_ref_index = (value + toc->output_offset) / 8;
7843 if (r_type == R_PPC64_TLS
7844 || r_type == R_PPC64_TLSGD
7845 || r_type == R_PPC64_TLSLD)
7846 {
7847 toc_ref[toc_ref_index] = 1;
7848 continue;
7849 }
7850
7851 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7852 continue;
7853
7854 tls_set = 0;
7855 tls_clear = 0;
7856 expecting_tls_get_addr = 2;
7857 break;
7858
7859 case R_PPC64_TPREL64:
7860 if (pass == 0
7861 || sec != toc
7862 || toc_ref == NULL
7863 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7864 continue;
7865 if (ok_tprel)
7866 {
7867 /* IE -> LE */
7868 tls_set = TLS_EXPLICIT;
7869 tls_clear = TLS_TPREL;
7870 break;
7871 }
7872 continue;
7873
7874 case R_PPC64_DTPMOD64:
7875 if (pass == 0
7876 || sec != toc
7877 || toc_ref == NULL
7878 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7879 continue;
7880 if (rel + 1 < relend
7881 && (rel[1].r_info
7882 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7883 && rel[1].r_offset == rel->r_offset + 8)
7884 {
7885 if (ok_tprel)
7886 /* GD -> LE */
7887 tls_set = TLS_EXPLICIT | TLS_GD;
7888 else
7889 /* GD -> IE */
7890 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7891 tls_clear = TLS_GD;
7892 }
7893 else
7894 {
7895 if (!is_local)
7896 continue;
7897
7898 /* LD -> LE */
7899 tls_set = TLS_EXPLICIT;
7900 tls_clear = TLS_LD;
7901 }
7902 break;
7903
7904 default:
7905 continue;
7906 }
7907
7908 if (pass == 0)
7909 {
7910 if (!expecting_tls_get_addr
7911 || !sec->has_tls_get_addr_call)
7912 continue;
7913
7914 if (rel + 1 < relend
7915 && branch_reloc_hash_match (ibfd, rel + 1,
7916 htab->tls_get_addr,
7917 htab->tls_get_addr_fd))
7918 {
7919 if (expecting_tls_get_addr == 2)
7920 {
7921 /* Check for toc tls entries. */
7922 unsigned char *toc_tls;
7923 int retval;
7924
7925 retval = get_tls_mask (&toc_tls, NULL, NULL,
7926 &locsyms,
7927 rel, ibfd);
7928 if (retval == 0)
7929 goto err_free_rel;
7930 if (toc_tls != NULL)
7931 {
7932 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
7933 found_tls_get_addr_arg = 1;
7934 if (retval > 1)
7935 toc_ref[toc_ref_index] = 1;
7936 }
7937 }
7938 continue;
7939 }
7940
7941 if (expecting_tls_get_addr != 1)
7942 continue;
7943
7944 /* Uh oh, we didn't find the expected call. We
7945 could just mark this symbol to exclude it
7946 from tls optimization but it's safer to skip
7947 the entire optimization. */
7948 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
7949 "TLS optimization disabled\n"),
7950 ibfd, sec, rel->r_offset);
7951 ret = TRUE;
7952 goto err_free_rel;
7953 }
7954
7955 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7956 {
7957 struct plt_entry *ent;
7958 for (ent = htab->tls_get_addr->elf.plt.plist;
7959 ent != NULL;
7960 ent = ent->next)
7961 if (ent->addend == 0)
7962 {
7963 if (ent->plt.refcount > 0)
7964 {
7965 ent->plt.refcount -= 1;
7966 expecting_tls_get_addr = 0;
7967 }
7968 break;
7969 }
7970 }
7971
7972 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7973 {
7974 struct plt_entry *ent;
7975 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7976 ent != NULL;
7977 ent = ent->next)
7978 if (ent->addend == 0)
7979 {
7980 if (ent->plt.refcount > 0)
7981 ent->plt.refcount -= 1;
7982 break;
7983 }
7984 }
7985
7986 if (tls_clear == 0)
7987 continue;
7988
7989 if ((tls_set & TLS_EXPLICIT) == 0)
7990 {
7991 struct got_entry *ent;
7992
7993 /* Adjust got entry for this reloc. */
7994 if (h != NULL)
7995 ent = h->got.glist;
7996 else
7997 ent = elf_local_got_ents (ibfd)[r_symndx];
7998
7999 for (; ent != NULL; ent = ent->next)
8000 if (ent->addend == rel->r_addend
8001 && ent->owner == ibfd
8002 && ent->tls_type == tls_type)
8003 break;
8004 if (ent == NULL)
8005 abort ();
8006
8007 if (tls_set == 0)
8008 {
8009 /* We managed to get rid of a got entry. */
8010 if (ent->got.refcount > 0)
8011 ent->got.refcount -= 1;
8012 }
8013 }
8014 else
8015 {
8016 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8017 we'll lose one or two dyn relocs. */
8018 if (!dec_dynrel_count (rel->r_info, sec, info,
8019 NULL, h, sym_sec))
8020 return FALSE;
8021
8022 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8023 {
8024 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8025 NULL, h, sym_sec))
8026 return FALSE;
8027 }
8028 }
8029
8030 *tls_mask |= tls_set;
8031 *tls_mask &= ~tls_clear;
8032 }
8033
8034 if (elf_section_data (sec)->relocs != relstart)
8035 free (relstart);
8036 }
8037
8038 if (locsyms != NULL
8039 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8040 {
8041 if (!info->keep_memory)
8042 free (locsyms);
8043 else
8044 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8045 }
8046 }
8047
8048 if (toc_ref != NULL)
8049 free (toc_ref);
8050 return TRUE;
8051 }
8052
8053 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8054 the values of any global symbols in a toc section that has been
8055 edited. Globals in toc sections should be a rarity, so this function
8056 sets a flag if any are found in toc sections other than the one just
8057 edited, so that futher hash table traversals can be avoided. */
8058
8059 struct adjust_toc_info
8060 {
8061 asection *toc;
8062 unsigned long *skip;
8063 bfd_boolean global_toc_syms;
8064 };
8065
8066 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8067
8068 static bfd_boolean
8069 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8070 {
8071 struct ppc_link_hash_entry *eh;
8072 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8073 unsigned long i;
8074
8075 if (h->root.type != bfd_link_hash_defined
8076 && h->root.type != bfd_link_hash_defweak)
8077 return TRUE;
8078
8079 eh = (struct ppc_link_hash_entry *) h;
8080 if (eh->adjust_done)
8081 return TRUE;
8082
8083 if (eh->elf.root.u.def.section == toc_inf->toc)
8084 {
8085 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8086 i = toc_inf->toc->rawsize >> 3;
8087 else
8088 i = eh->elf.root.u.def.value >> 3;
8089
8090 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8091 {
8092 (*_bfd_error_handler)
8093 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8094 do
8095 ++i;
8096 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8097 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8098 }
8099
8100 eh->elf.root.u.def.value -= toc_inf->skip[i];
8101 eh->adjust_done = 1;
8102 }
8103 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8104 toc_inf->global_toc_syms = TRUE;
8105
8106 return TRUE;
8107 }
8108
8109 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8110
8111 static bfd_boolean
8112 ok_lo_toc_insn (unsigned int insn)
8113 {
8114 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8115 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8116 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8117 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8118 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8119 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8120 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8121 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8122 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8123 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8124 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8125 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8126 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8127 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8128 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8129 && (insn & 3) != 1)
8130 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8131 && ((insn & 3) == 0 || (insn & 3) == 3))
8132 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8133 }
8134
8135 /* Examine all relocs referencing .toc sections in order to remove
8136 unused .toc entries. */
8137
8138 bfd_boolean
8139 ppc64_elf_edit_toc (struct bfd_link_info *info)
8140 {
8141 bfd *ibfd;
8142 struct adjust_toc_info toc_inf;
8143 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8144
8145 htab->do_toc_opt = 1;
8146 toc_inf.global_toc_syms = TRUE;
8147 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8148 {
8149 asection *toc, *sec;
8150 Elf_Internal_Shdr *symtab_hdr;
8151 Elf_Internal_Sym *local_syms;
8152 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8153 unsigned long *skip, *drop;
8154 unsigned char *used;
8155 unsigned char *keep, last, some_unused;
8156
8157 if (!is_ppc64_elf (ibfd))
8158 continue;
8159
8160 toc = bfd_get_section_by_name (ibfd, ".toc");
8161 if (toc == NULL
8162 || toc->size == 0
8163 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8164 || discarded_section (toc))
8165 continue;
8166
8167 toc_relocs = NULL;
8168 local_syms = NULL;
8169 symtab_hdr = &elf_symtab_hdr (ibfd);
8170
8171 /* Look at sections dropped from the final link. */
8172 skip = NULL;
8173 relstart = NULL;
8174 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8175 {
8176 if (sec->reloc_count == 0
8177 || !discarded_section (sec)
8178 || get_opd_info (sec)
8179 || (sec->flags & SEC_ALLOC) == 0
8180 || (sec->flags & SEC_DEBUGGING) != 0)
8181 continue;
8182
8183 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8184 if (relstart == NULL)
8185 goto error_ret;
8186
8187 /* Run through the relocs to see which toc entries might be
8188 unused. */
8189 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8190 {
8191 enum elf_ppc64_reloc_type r_type;
8192 unsigned long r_symndx;
8193 asection *sym_sec;
8194 struct elf_link_hash_entry *h;
8195 Elf_Internal_Sym *sym;
8196 bfd_vma val;
8197
8198 r_type = ELF64_R_TYPE (rel->r_info);
8199 switch (r_type)
8200 {
8201 default:
8202 continue;
8203
8204 case R_PPC64_TOC16:
8205 case R_PPC64_TOC16_LO:
8206 case R_PPC64_TOC16_HI:
8207 case R_PPC64_TOC16_HA:
8208 case R_PPC64_TOC16_DS:
8209 case R_PPC64_TOC16_LO_DS:
8210 break;
8211 }
8212
8213 r_symndx = ELF64_R_SYM (rel->r_info);
8214 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8215 r_symndx, ibfd))
8216 goto error_ret;
8217
8218 if (sym_sec != toc)
8219 continue;
8220
8221 if (h != NULL)
8222 val = h->root.u.def.value;
8223 else
8224 val = sym->st_value;
8225 val += rel->r_addend;
8226
8227 if (val >= toc->size)
8228 continue;
8229
8230 /* Anything in the toc ought to be aligned to 8 bytes.
8231 If not, don't mark as unused. */
8232 if (val & 7)
8233 continue;
8234
8235 if (skip == NULL)
8236 {
8237 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8238 if (skip == NULL)
8239 goto error_ret;
8240 }
8241
8242 skip[val >> 3] = ref_from_discarded;
8243 }
8244
8245 if (elf_section_data (sec)->relocs != relstart)
8246 free (relstart);
8247 }
8248
8249 /* For largetoc loads of address constants, we can convert
8250 . addis rx,2,addr@got@ha
8251 . ld ry,addr@got@l(rx)
8252 to
8253 . addis rx,2,addr@toc@ha
8254 . addi ry,rx,addr@toc@l
8255 when addr is within 2G of the toc pointer. This then means
8256 that the word storing "addr" in the toc is no longer needed. */
8257
8258 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8259 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8260 && toc->reloc_count != 0)
8261 {
8262 /* Read toc relocs. */
8263 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8264 info->keep_memory);
8265 if (toc_relocs == NULL)
8266 goto error_ret;
8267
8268 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8269 {
8270 enum elf_ppc64_reloc_type r_type;
8271 unsigned long r_symndx;
8272 asection *sym_sec;
8273 struct elf_link_hash_entry *h;
8274 Elf_Internal_Sym *sym;
8275 bfd_vma val, addr;
8276
8277 r_type = ELF64_R_TYPE (rel->r_info);
8278 if (r_type != R_PPC64_ADDR64)
8279 continue;
8280
8281 r_symndx = ELF64_R_SYM (rel->r_info);
8282 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8283 r_symndx, ibfd))
8284 goto error_ret;
8285
8286 if (sym_sec == NULL
8287 || discarded_section (sym_sec))
8288 continue;
8289
8290 if (!SYMBOL_CALLS_LOCAL (info, h))
8291 continue;
8292
8293 if (h != NULL)
8294 {
8295 if (h->type == STT_GNU_IFUNC)
8296 continue;
8297 val = h->root.u.def.value;
8298 }
8299 else
8300 {
8301 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8302 continue;
8303 val = sym->st_value;
8304 }
8305 val += rel->r_addend;
8306 val += sym_sec->output_section->vma + sym_sec->output_offset;
8307
8308 /* We don't yet know the exact toc pointer value, but we
8309 know it will be somewhere in the toc section. Don't
8310 optimize if the difference from any possible toc
8311 pointer is outside [ff..f80008000, 7fff7fff]. */
8312 addr = toc->output_section->vma + TOC_BASE_OFF;
8313 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8314 continue;
8315
8316 addr = toc->output_section->vma + toc->output_section->rawsize;
8317 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8318 continue;
8319
8320 if (skip == NULL)
8321 {
8322 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8323 if (skip == NULL)
8324 goto error_ret;
8325 }
8326
8327 skip[rel->r_offset >> 3]
8328 |= can_optimize | ((rel - toc_relocs) << 2);
8329 }
8330 }
8331
8332 if (skip == NULL)
8333 continue;
8334
8335 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8336 if (used == NULL)
8337 {
8338 error_ret:
8339 if (local_syms != NULL
8340 && symtab_hdr->contents != (unsigned char *) local_syms)
8341 free (local_syms);
8342 if (sec != NULL
8343 && relstart != NULL
8344 && elf_section_data (sec)->relocs != relstart)
8345 free (relstart);
8346 if (toc_relocs != NULL
8347 && elf_section_data (toc)->relocs != toc_relocs)
8348 free (toc_relocs);
8349 if (skip != NULL)
8350 free (skip);
8351 return FALSE;
8352 }
8353
8354 /* Now check all kept sections that might reference the toc.
8355 Check the toc itself last. */
8356 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8357 : ibfd->sections);
8358 sec != NULL;
8359 sec = (sec == toc ? NULL
8360 : sec->next == NULL ? toc
8361 : sec->next == toc && toc->next ? toc->next
8362 : sec->next))
8363 {
8364 int repeat;
8365
8366 if (sec->reloc_count == 0
8367 || discarded_section (sec)
8368 || get_opd_info (sec)
8369 || (sec->flags & SEC_ALLOC) == 0
8370 || (sec->flags & SEC_DEBUGGING) != 0)
8371 continue;
8372
8373 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8374 info->keep_memory);
8375 if (relstart == NULL)
8376 goto error_ret;
8377
8378 /* Mark toc entries referenced as used. */
8379 do
8380 {
8381 repeat = 0;
8382 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8383 {
8384 enum elf_ppc64_reloc_type r_type;
8385 unsigned long r_symndx;
8386 asection *sym_sec;
8387 struct elf_link_hash_entry *h;
8388 Elf_Internal_Sym *sym;
8389 bfd_vma val;
8390 enum {no_check, check_lo, check_ha} insn_check;
8391
8392 r_type = ELF64_R_TYPE (rel->r_info);
8393 switch (r_type)
8394 {
8395 default:
8396 insn_check = no_check;
8397 break;
8398
8399 case R_PPC64_GOT_TLSLD16_HA:
8400 case R_PPC64_GOT_TLSGD16_HA:
8401 case R_PPC64_GOT_TPREL16_HA:
8402 case R_PPC64_GOT_DTPREL16_HA:
8403 case R_PPC64_GOT16_HA:
8404 case R_PPC64_TOC16_HA:
8405 insn_check = check_ha;
8406 break;
8407
8408 case R_PPC64_GOT_TLSLD16_LO:
8409 case R_PPC64_GOT_TLSGD16_LO:
8410 case R_PPC64_GOT_TPREL16_LO_DS:
8411 case R_PPC64_GOT_DTPREL16_LO_DS:
8412 case R_PPC64_GOT16_LO:
8413 case R_PPC64_GOT16_LO_DS:
8414 case R_PPC64_TOC16_LO:
8415 case R_PPC64_TOC16_LO_DS:
8416 insn_check = check_lo;
8417 break;
8418 }
8419
8420 if (insn_check != no_check)
8421 {
8422 bfd_vma off = rel->r_offset & ~3;
8423 unsigned char buf[4];
8424 unsigned int insn;
8425
8426 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8427 {
8428 free (used);
8429 goto error_ret;
8430 }
8431 insn = bfd_get_32 (ibfd, buf);
8432 if (insn_check == check_lo
8433 ? !ok_lo_toc_insn (insn)
8434 : ((insn & ((0x3f << 26) | 0x1f << 16))
8435 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8436 {
8437 char str[12];
8438
8439 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8440 sprintf (str, "%#08x", insn);
8441 info->callbacks->einfo
8442 (_("%P: %H: toc optimization is not supported for"
8443 " %s instruction.\n"),
8444 ibfd, sec, rel->r_offset & ~3, str);
8445 }
8446 }
8447
8448 switch (r_type)
8449 {
8450 case R_PPC64_TOC16:
8451 case R_PPC64_TOC16_LO:
8452 case R_PPC64_TOC16_HI:
8453 case R_PPC64_TOC16_HA:
8454 case R_PPC64_TOC16_DS:
8455 case R_PPC64_TOC16_LO_DS:
8456 /* In case we're taking addresses of toc entries. */
8457 case R_PPC64_ADDR64:
8458 break;
8459
8460 default:
8461 continue;
8462 }
8463
8464 r_symndx = ELF64_R_SYM (rel->r_info);
8465 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8466 r_symndx, ibfd))
8467 {
8468 free (used);
8469 goto error_ret;
8470 }
8471
8472 if (sym_sec != toc)
8473 continue;
8474
8475 if (h != NULL)
8476 val = h->root.u.def.value;
8477 else
8478 val = sym->st_value;
8479 val += rel->r_addend;
8480
8481 if (val >= toc->size)
8482 continue;
8483
8484 if ((skip[val >> 3] & can_optimize) != 0)
8485 {
8486 bfd_vma off;
8487 unsigned char opc;
8488
8489 switch (r_type)
8490 {
8491 case R_PPC64_TOC16_HA:
8492 break;
8493
8494 case R_PPC64_TOC16_LO_DS:
8495 off = rel->r_offset;
8496 off += (bfd_big_endian (ibfd) ? -2 : 3);
8497 if (!bfd_get_section_contents (ibfd, sec, &opc,
8498 off, 1))
8499 {
8500 free (used);
8501 goto error_ret;
8502 }
8503 if ((opc & (0x3f << 2)) == (58u << 2))
8504 break;
8505 /* Fall thru */
8506
8507 default:
8508 /* Wrong sort of reloc, or not a ld. We may
8509 as well clear ref_from_discarded too. */
8510 skip[val >> 3] = 0;
8511 }
8512 }
8513
8514 if (sec != toc)
8515 used[val >> 3] = 1;
8516 /* For the toc section, we only mark as used if this
8517 entry itself isn't unused. */
8518 else if ((used[rel->r_offset >> 3]
8519 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8520 && !used[val >> 3])
8521 {
8522 /* Do all the relocs again, to catch reference
8523 chains. */
8524 repeat = 1;
8525 used[val >> 3] = 1;
8526 }
8527 }
8528 }
8529 while (repeat);
8530
8531 if (elf_section_data (sec)->relocs != relstart)
8532 free (relstart);
8533 }
8534
8535 /* Merge the used and skip arrays. Assume that TOC
8536 doublewords not appearing as either used or unused belong
8537 to to an entry more than one doubleword in size. */
8538 for (drop = skip, keep = used, last = 0, some_unused = 0;
8539 drop < skip + (toc->size + 7) / 8;
8540 ++drop, ++keep)
8541 {
8542 if (*keep)
8543 {
8544 *drop &= ~ref_from_discarded;
8545 if ((*drop & can_optimize) != 0)
8546 some_unused = 1;
8547 last = 0;
8548 }
8549 else if ((*drop & ref_from_discarded) != 0)
8550 {
8551 some_unused = 1;
8552 last = ref_from_discarded;
8553 }
8554 else
8555 *drop = last;
8556 }
8557
8558 free (used);
8559
8560 if (some_unused)
8561 {
8562 bfd_byte *contents, *src;
8563 unsigned long off;
8564 Elf_Internal_Sym *sym;
8565 bfd_boolean local_toc_syms = FALSE;
8566
8567 /* Shuffle the toc contents, and at the same time convert the
8568 skip array from booleans into offsets. */
8569 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8570 goto error_ret;
8571
8572 elf_section_data (toc)->this_hdr.contents = contents;
8573
8574 for (src = contents, off = 0, drop = skip;
8575 src < contents + toc->size;
8576 src += 8, ++drop)
8577 {
8578 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8579 off += 8;
8580 else if (off != 0)
8581 {
8582 *drop = off;
8583 memcpy (src - off, src, 8);
8584 }
8585 }
8586 *drop = off;
8587 toc->rawsize = toc->size;
8588 toc->size = src - contents - off;
8589
8590 /* Adjust addends for relocs against the toc section sym,
8591 and optimize any accesses we can. */
8592 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8593 {
8594 if (sec->reloc_count == 0
8595 || discarded_section (sec))
8596 continue;
8597
8598 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8599 info->keep_memory);
8600 if (relstart == NULL)
8601 goto error_ret;
8602
8603 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8604 {
8605 enum elf_ppc64_reloc_type r_type;
8606 unsigned long r_symndx;
8607 asection *sym_sec;
8608 struct elf_link_hash_entry *h;
8609 bfd_vma val;
8610
8611 r_type = ELF64_R_TYPE (rel->r_info);
8612 switch (r_type)
8613 {
8614 default:
8615 continue;
8616
8617 case R_PPC64_TOC16:
8618 case R_PPC64_TOC16_LO:
8619 case R_PPC64_TOC16_HI:
8620 case R_PPC64_TOC16_HA:
8621 case R_PPC64_TOC16_DS:
8622 case R_PPC64_TOC16_LO_DS:
8623 case R_PPC64_ADDR64:
8624 break;
8625 }
8626
8627 r_symndx = ELF64_R_SYM (rel->r_info);
8628 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8629 r_symndx, ibfd))
8630 goto error_ret;
8631
8632 if (sym_sec != toc)
8633 continue;
8634
8635 if (h != NULL)
8636 val = h->root.u.def.value;
8637 else
8638 {
8639 val = sym->st_value;
8640 if (val != 0)
8641 local_toc_syms = TRUE;
8642 }
8643
8644 val += rel->r_addend;
8645
8646 if (val > toc->rawsize)
8647 val = toc->rawsize;
8648 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8649 continue;
8650 else if ((skip[val >> 3] & can_optimize) != 0)
8651 {
8652 Elf_Internal_Rela *tocrel
8653 = toc_relocs + (skip[val >> 3] >> 2);
8654 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8655
8656 switch (r_type)
8657 {
8658 case R_PPC64_TOC16_HA:
8659 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8660 break;
8661
8662 case R_PPC64_TOC16_LO_DS:
8663 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8664 break;
8665
8666 default:
8667 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8668 ppc_howto_init ();
8669 info->callbacks->einfo
8670 (_("%P: %H: %s references "
8671 "optimized away TOC entry\n"),
8672 ibfd, sec, rel->r_offset,
8673 ppc64_elf_howto_table[r_type]->name);
8674 bfd_set_error (bfd_error_bad_value);
8675 goto error_ret;
8676 }
8677 rel->r_addend = tocrel->r_addend;
8678 elf_section_data (sec)->relocs = relstart;
8679 continue;
8680 }
8681
8682 if (h != NULL || sym->st_value != 0)
8683 continue;
8684
8685 rel->r_addend -= skip[val >> 3];
8686 elf_section_data (sec)->relocs = relstart;
8687 }
8688
8689 if (elf_section_data (sec)->relocs != relstart)
8690 free (relstart);
8691 }
8692
8693 /* We shouldn't have local or global symbols defined in the TOC,
8694 but handle them anyway. */
8695 if (local_syms != NULL)
8696 for (sym = local_syms;
8697 sym < local_syms + symtab_hdr->sh_info;
8698 ++sym)
8699 if (sym->st_value != 0
8700 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8701 {
8702 unsigned long i;
8703
8704 if (sym->st_value > toc->rawsize)
8705 i = toc->rawsize >> 3;
8706 else
8707 i = sym->st_value >> 3;
8708
8709 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8710 {
8711 if (local_toc_syms)
8712 (*_bfd_error_handler)
8713 (_("%s defined on removed toc entry"),
8714 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8715 do
8716 ++i;
8717 while ((skip[i] & (ref_from_discarded | can_optimize)));
8718 sym->st_value = (bfd_vma) i << 3;
8719 }
8720
8721 sym->st_value -= skip[i];
8722 symtab_hdr->contents = (unsigned char *) local_syms;
8723 }
8724
8725 /* Adjust any global syms defined in this toc input section. */
8726 if (toc_inf.global_toc_syms)
8727 {
8728 toc_inf.toc = toc;
8729 toc_inf.skip = skip;
8730 toc_inf.global_toc_syms = FALSE;
8731 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8732 &toc_inf);
8733 }
8734
8735 if (toc->reloc_count != 0)
8736 {
8737 Elf_Internal_Shdr *rel_hdr;
8738 Elf_Internal_Rela *wrel;
8739 bfd_size_type sz;
8740
8741 /* Remove unused toc relocs, and adjust those we keep. */
8742 if (toc_relocs == NULL)
8743 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8744 info->keep_memory);
8745 if (toc_relocs == NULL)
8746 goto error_ret;
8747
8748 wrel = toc_relocs;
8749 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8750 if ((skip[rel->r_offset >> 3]
8751 & (ref_from_discarded | can_optimize)) == 0)
8752 {
8753 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8754 wrel->r_info = rel->r_info;
8755 wrel->r_addend = rel->r_addend;
8756 ++wrel;
8757 }
8758 else if (!dec_dynrel_count (rel->r_info, toc, info,
8759 &local_syms, NULL, NULL))
8760 goto error_ret;
8761
8762 elf_section_data (toc)->relocs = toc_relocs;
8763 toc->reloc_count = wrel - toc_relocs;
8764 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8765 sz = rel_hdr->sh_entsize;
8766 rel_hdr->sh_size = toc->reloc_count * sz;
8767 }
8768 }
8769 else if (toc_relocs != NULL
8770 && elf_section_data (toc)->relocs != toc_relocs)
8771 free (toc_relocs);
8772
8773 if (local_syms != NULL
8774 && symtab_hdr->contents != (unsigned char *) local_syms)
8775 {
8776 if (!info->keep_memory)
8777 free (local_syms);
8778 else
8779 symtab_hdr->contents = (unsigned char *) local_syms;
8780 }
8781 free (skip);
8782 }
8783
8784 return TRUE;
8785 }
8786
8787 /* Return true iff input section I references the TOC using
8788 instructions limited to +/-32k offsets. */
8789
8790 bfd_boolean
8791 ppc64_elf_has_small_toc_reloc (asection *i)
8792 {
8793 return (is_ppc64_elf (i->owner)
8794 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
8795 }
8796
8797 /* Allocate space for one GOT entry. */
8798
8799 static void
8800 allocate_got (struct elf_link_hash_entry *h,
8801 struct bfd_link_info *info,
8802 struct got_entry *gent)
8803 {
8804 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8805 bfd_boolean dyn;
8806 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8807 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
8808 ? 16 : 8);
8809 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
8810 ? 2 : 1) * sizeof (Elf64_External_Rela);
8811 asection *got = ppc64_elf_tdata (gent->owner)->got;
8812
8813 gent->got.offset = got->size;
8814 got->size += entsize;
8815
8816 dyn = htab->elf.dynamic_sections_created;
8817 if ((info->shared
8818 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8819 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8820 || h->root.type != bfd_link_hash_undefweak))
8821 {
8822 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
8823 relgot->size += rentsize;
8824 }
8825 else if (h->type == STT_GNU_IFUNC)
8826 {
8827 asection *relgot = htab->reliplt;
8828 relgot->size += rentsize;
8829 htab->got_reli_size += rentsize;
8830 }
8831 }
8832
8833 /* This function merges got entries in the same toc group. */
8834
8835 static void
8836 merge_got_entries (struct got_entry **pent)
8837 {
8838 struct got_entry *ent, *ent2;
8839
8840 for (ent = *pent; ent != NULL; ent = ent->next)
8841 if (!ent->is_indirect)
8842 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
8843 if (!ent2->is_indirect
8844 && ent2->addend == ent->addend
8845 && ent2->tls_type == ent->tls_type
8846 && elf_gp (ent2->owner) == elf_gp (ent->owner))
8847 {
8848 ent2->is_indirect = TRUE;
8849 ent2->got.ent = ent;
8850 }
8851 }
8852
8853 /* Allocate space in .plt, .got and associated reloc sections for
8854 dynamic relocs. */
8855
8856 static bfd_boolean
8857 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8858 {
8859 struct bfd_link_info *info;
8860 struct ppc_link_hash_table *htab;
8861 asection *s;
8862 struct ppc_link_hash_entry *eh;
8863 struct elf_dyn_relocs *p;
8864 struct got_entry **pgent, *gent;
8865
8866 if (h->root.type == bfd_link_hash_indirect)
8867 return TRUE;
8868
8869 info = (struct bfd_link_info *) inf;
8870 htab = ppc_hash_table (info);
8871 if (htab == NULL)
8872 return FALSE;
8873
8874 if ((htab->elf.dynamic_sections_created
8875 && h->dynindx != -1
8876 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
8877 || h->type == STT_GNU_IFUNC)
8878 {
8879 struct plt_entry *pent;
8880 bfd_boolean doneone = FALSE;
8881 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
8882 if (pent->plt.refcount > 0)
8883 {
8884 if (!htab->elf.dynamic_sections_created
8885 || h->dynindx == -1)
8886 {
8887 s = htab->iplt;
8888 pent->plt.offset = s->size;
8889 s->size += PLT_ENTRY_SIZE;
8890 s = htab->reliplt;
8891 }
8892 else
8893 {
8894 /* If this is the first .plt entry, make room for the special
8895 first entry. */
8896 s = htab->plt;
8897 if (s->size == 0)
8898 s->size += PLT_INITIAL_ENTRY_SIZE;
8899
8900 pent->plt.offset = s->size;
8901
8902 /* Make room for this entry. */
8903 s->size += PLT_ENTRY_SIZE;
8904
8905 /* Make room for the .glink code. */
8906 s = htab->glink;
8907 if (s->size == 0)
8908 s->size += GLINK_CALL_STUB_SIZE;
8909 /* We need bigger stubs past index 32767. */
8910 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
8911 s->size += 4;
8912 s->size += 2*4;
8913
8914 /* We also need to make an entry in the .rela.plt section. */
8915 s = htab->relplt;
8916 }
8917 s->size += sizeof (Elf64_External_Rela);
8918 doneone = TRUE;
8919 }
8920 else
8921 pent->plt.offset = (bfd_vma) -1;
8922 if (!doneone)
8923 {
8924 h->plt.plist = NULL;
8925 h->needs_plt = 0;
8926 }
8927 }
8928 else
8929 {
8930 h->plt.plist = NULL;
8931 h->needs_plt = 0;
8932 }
8933
8934 eh = (struct ppc_link_hash_entry *) h;
8935 /* Run through the TLS GD got entries first if we're changing them
8936 to TPREL. */
8937 if ((eh->tls_mask & TLS_TPRELGD) != 0)
8938 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8939 if (gent->got.refcount > 0
8940 && (gent->tls_type & TLS_GD) != 0)
8941 {
8942 /* This was a GD entry that has been converted to TPREL. If
8943 there happens to be a TPREL entry we can use that one. */
8944 struct got_entry *ent;
8945 for (ent = h->got.glist; ent != NULL; ent = ent->next)
8946 if (ent->got.refcount > 0
8947 && (ent->tls_type & TLS_TPREL) != 0
8948 && ent->addend == gent->addend
8949 && ent->owner == gent->owner)
8950 {
8951 gent->got.refcount = 0;
8952 break;
8953 }
8954
8955 /* If not, then we'll be using our own TPREL entry. */
8956 if (gent->got.refcount != 0)
8957 gent->tls_type = TLS_TLS | TLS_TPREL;
8958 }
8959
8960 /* Remove any list entry that won't generate a word in the GOT before
8961 we call merge_got_entries. Otherwise we risk merging to empty
8962 entries. */
8963 pgent = &h->got.glist;
8964 while ((gent = *pgent) != NULL)
8965 if (gent->got.refcount > 0)
8966 {
8967 if ((gent->tls_type & TLS_LD) != 0
8968 && !h->def_dynamic)
8969 {
8970 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
8971 *pgent = gent->next;
8972 }
8973 else
8974 pgent = &gent->next;
8975 }
8976 else
8977 *pgent = gent->next;
8978
8979 if (!htab->do_multi_toc)
8980 merge_got_entries (&h->got.glist);
8981
8982 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8983 if (!gent->is_indirect)
8984 {
8985 /* Make sure this symbol is output as a dynamic symbol.
8986 Undefined weak syms won't yet be marked as dynamic,
8987 nor will all TLS symbols. */
8988 if (h->dynindx == -1
8989 && !h->forced_local
8990 && h->type != STT_GNU_IFUNC
8991 && htab->elf.dynamic_sections_created)
8992 {
8993 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8994 return FALSE;
8995 }
8996
8997 if (!is_ppc64_elf (gent->owner))
8998 abort ();
8999
9000 allocate_got (h, info, gent);
9001 }
9002
9003 if (eh->dyn_relocs == NULL
9004 || (!htab->elf.dynamic_sections_created
9005 && h->type != STT_GNU_IFUNC))
9006 return TRUE;
9007
9008 /* In the shared -Bsymbolic case, discard space allocated for
9009 dynamic pc-relative relocs against symbols which turn out to be
9010 defined in regular objects. For the normal shared case, discard
9011 space for relocs that have become local due to symbol visibility
9012 changes. */
9013
9014 if (info->shared)
9015 {
9016 /* Relocs that use pc_count are those that appear on a call insn,
9017 or certain REL relocs (see must_be_dyn_reloc) that can be
9018 generated via assembly. We want calls to protected symbols to
9019 resolve directly to the function rather than going via the plt.
9020 If people want function pointer comparisons to work as expected
9021 then they should avoid writing weird assembly. */
9022 if (SYMBOL_CALLS_LOCAL (info, h))
9023 {
9024 struct elf_dyn_relocs **pp;
9025
9026 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9027 {
9028 p->count -= p->pc_count;
9029 p->pc_count = 0;
9030 if (p->count == 0)
9031 *pp = p->next;
9032 else
9033 pp = &p->next;
9034 }
9035 }
9036
9037 /* Also discard relocs on undefined weak syms with non-default
9038 visibility. */
9039 if (eh->dyn_relocs != NULL
9040 && h->root.type == bfd_link_hash_undefweak)
9041 {
9042 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9043 eh->dyn_relocs = NULL;
9044
9045 /* Make sure this symbol is output as a dynamic symbol.
9046 Undefined weak syms won't yet be marked as dynamic. */
9047 else if (h->dynindx == -1
9048 && !h->forced_local)
9049 {
9050 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9051 return FALSE;
9052 }
9053 }
9054 }
9055 else if (h->type == STT_GNU_IFUNC)
9056 {
9057 if (!h->non_got_ref)
9058 eh->dyn_relocs = NULL;
9059 }
9060 else if (ELIMINATE_COPY_RELOCS)
9061 {
9062 /* For the non-shared case, discard space for relocs against
9063 symbols which turn out to need copy relocs or are not
9064 dynamic. */
9065
9066 if (!h->non_got_ref
9067 && !h->def_regular)
9068 {
9069 /* Make sure this symbol is output as a dynamic symbol.
9070 Undefined weak syms won't yet be marked as dynamic. */
9071 if (h->dynindx == -1
9072 && !h->forced_local)
9073 {
9074 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9075 return FALSE;
9076 }
9077
9078 /* If that succeeded, we know we'll be keeping all the
9079 relocs. */
9080 if (h->dynindx != -1)
9081 goto keep;
9082 }
9083
9084 eh->dyn_relocs = NULL;
9085
9086 keep: ;
9087 }
9088
9089 /* Finally, allocate space. */
9090 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9091 {
9092 asection *sreloc = elf_section_data (p->sec)->sreloc;
9093 if (!htab->elf.dynamic_sections_created)
9094 sreloc = htab->reliplt;
9095 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9096 }
9097
9098 return TRUE;
9099 }
9100
9101 /* Find any dynamic relocs that apply to read-only sections. */
9102
9103 static bfd_boolean
9104 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9105 {
9106 struct ppc_link_hash_entry *eh;
9107 struct elf_dyn_relocs *p;
9108
9109 eh = (struct ppc_link_hash_entry *) h;
9110 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9111 {
9112 asection *s = p->sec->output_section;
9113
9114 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9115 {
9116 struct bfd_link_info *info = inf;
9117
9118 info->flags |= DF_TEXTREL;
9119
9120 /* Not an error, just cut short the traversal. */
9121 return FALSE;
9122 }
9123 }
9124 return TRUE;
9125 }
9126
9127 /* Set the sizes of the dynamic sections. */
9128
9129 static bfd_boolean
9130 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
9131 struct bfd_link_info *info)
9132 {
9133 struct ppc_link_hash_table *htab;
9134 bfd *dynobj;
9135 asection *s;
9136 bfd_boolean relocs;
9137 bfd *ibfd;
9138 struct got_entry *first_tlsld;
9139
9140 htab = ppc_hash_table (info);
9141 if (htab == NULL)
9142 return FALSE;
9143
9144 dynobj = htab->elf.dynobj;
9145 if (dynobj == NULL)
9146 abort ();
9147
9148 if (htab->elf.dynamic_sections_created)
9149 {
9150 /* Set the contents of the .interp section to the interpreter. */
9151 if (info->executable)
9152 {
9153 s = bfd_get_linker_section (dynobj, ".interp");
9154 if (s == NULL)
9155 abort ();
9156 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9157 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9158 }
9159 }
9160
9161 /* Set up .got offsets for local syms, and space for local dynamic
9162 relocs. */
9163 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9164 {
9165 struct got_entry **lgot_ents;
9166 struct got_entry **end_lgot_ents;
9167 struct plt_entry **local_plt;
9168 struct plt_entry **end_local_plt;
9169 unsigned char *lgot_masks;
9170 bfd_size_type locsymcount;
9171 Elf_Internal_Shdr *symtab_hdr;
9172 asection *srel;
9173
9174 if (!is_ppc64_elf (ibfd))
9175 continue;
9176
9177 for (s = ibfd->sections; s != NULL; s = s->next)
9178 {
9179 struct elf_dyn_relocs *p;
9180
9181 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9182 {
9183 if (!bfd_is_abs_section (p->sec)
9184 && bfd_is_abs_section (p->sec->output_section))
9185 {
9186 /* Input section has been discarded, either because
9187 it is a copy of a linkonce section or due to
9188 linker script /DISCARD/, so we'll be discarding
9189 the relocs too. */
9190 }
9191 else if (p->count != 0)
9192 {
9193 srel = elf_section_data (p->sec)->sreloc;
9194 if (!htab->elf.dynamic_sections_created)
9195 srel = htab->reliplt;
9196 srel->size += p->count * sizeof (Elf64_External_Rela);
9197 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9198 info->flags |= DF_TEXTREL;
9199 }
9200 }
9201 }
9202
9203 lgot_ents = elf_local_got_ents (ibfd);
9204 if (!lgot_ents)
9205 continue;
9206
9207 symtab_hdr = &elf_symtab_hdr (ibfd);
9208 locsymcount = symtab_hdr->sh_info;
9209 end_lgot_ents = lgot_ents + locsymcount;
9210 local_plt = (struct plt_entry **) end_lgot_ents;
9211 end_local_plt = local_plt + locsymcount;
9212 lgot_masks = (unsigned char *) end_local_plt;
9213 s = ppc64_elf_tdata (ibfd)->got;
9214 srel = ppc64_elf_tdata (ibfd)->relgot;
9215 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9216 {
9217 struct got_entry **pent, *ent;
9218
9219 pent = lgot_ents;
9220 while ((ent = *pent) != NULL)
9221 if (ent->got.refcount > 0)
9222 {
9223 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9224 {
9225 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9226 *pent = ent->next;
9227 }
9228 else
9229 {
9230 unsigned int num = 1;
9231 ent->got.offset = s->size;
9232 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9233 num = 2;
9234 s->size += num * 8;
9235 if (info->shared)
9236 srel->size += num * sizeof (Elf64_External_Rela);
9237 else if ((*lgot_masks & PLT_IFUNC) != 0)
9238 {
9239 htab->reliplt->size
9240 += num * sizeof (Elf64_External_Rela);
9241 htab->got_reli_size
9242 += num * sizeof (Elf64_External_Rela);
9243 }
9244 pent = &ent->next;
9245 }
9246 }
9247 else
9248 *pent = ent->next;
9249 }
9250
9251 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9252 for (; local_plt < end_local_plt; ++local_plt)
9253 {
9254 struct plt_entry *ent;
9255
9256 for (ent = *local_plt; ent != NULL; ent = ent->next)
9257 if (ent->plt.refcount > 0)
9258 {
9259 s = htab->iplt;
9260 ent->plt.offset = s->size;
9261 s->size += PLT_ENTRY_SIZE;
9262
9263 htab->reliplt->size += sizeof (Elf64_External_Rela);
9264 }
9265 else
9266 ent->plt.offset = (bfd_vma) -1;
9267 }
9268 }
9269
9270 /* Allocate global sym .plt and .got entries, and space for global
9271 sym dynamic relocs. */
9272 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9273
9274 first_tlsld = NULL;
9275 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9276 {
9277 struct got_entry *ent;
9278
9279 if (!is_ppc64_elf (ibfd))
9280 continue;
9281
9282 ent = ppc64_tlsld_got (ibfd);
9283 if (ent->got.refcount > 0)
9284 {
9285 if (!htab->do_multi_toc && first_tlsld != NULL)
9286 {
9287 ent->is_indirect = TRUE;
9288 ent->got.ent = first_tlsld;
9289 }
9290 else
9291 {
9292 if (first_tlsld == NULL)
9293 first_tlsld = ent;
9294 s = ppc64_elf_tdata (ibfd)->got;
9295 ent->got.offset = s->size;
9296 ent->owner = ibfd;
9297 s->size += 16;
9298 if (info->shared)
9299 {
9300 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9301 srel->size += sizeof (Elf64_External_Rela);
9302 }
9303 }
9304 }
9305 else
9306 ent->got.offset = (bfd_vma) -1;
9307 }
9308
9309 /* We now have determined the sizes of the various dynamic sections.
9310 Allocate memory for them. */
9311 relocs = FALSE;
9312 for (s = dynobj->sections; s != NULL; s = s->next)
9313 {
9314 if ((s->flags & SEC_LINKER_CREATED) == 0)
9315 continue;
9316
9317 if (s == htab->brlt || s == htab->relbrlt)
9318 /* These haven't been allocated yet; don't strip. */
9319 continue;
9320 else if (s == htab->got
9321 || s == htab->plt
9322 || s == htab->iplt
9323 || s == htab->glink
9324 || s == htab->dynbss)
9325 {
9326 /* Strip this section if we don't need it; see the
9327 comment below. */
9328 }
9329 else if (s == htab->glink_eh_frame)
9330 {
9331 if (!bfd_is_abs_section (s->output_section))
9332 /* Not sized yet. */
9333 continue;
9334 }
9335 else if (CONST_STRNEQ (s->name, ".rela"))
9336 {
9337 if (s->size != 0)
9338 {
9339 if (s != htab->relplt)
9340 relocs = TRUE;
9341
9342 /* We use the reloc_count field as a counter if we need
9343 to copy relocs into the output file. */
9344 s->reloc_count = 0;
9345 }
9346 }
9347 else
9348 {
9349 /* It's not one of our sections, so don't allocate space. */
9350 continue;
9351 }
9352
9353 if (s->size == 0)
9354 {
9355 /* If we don't need this section, strip it from the
9356 output file. This is mostly to handle .rela.bss and
9357 .rela.plt. We must create both sections in
9358 create_dynamic_sections, because they must be created
9359 before the linker maps input sections to output
9360 sections. The linker does that before
9361 adjust_dynamic_symbol is called, and it is that
9362 function which decides whether anything needs to go
9363 into these sections. */
9364 s->flags |= SEC_EXCLUDE;
9365 continue;
9366 }
9367
9368 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9369 continue;
9370
9371 /* Allocate memory for the section contents. We use bfd_zalloc
9372 here in case unused entries are not reclaimed before the
9373 section's contents are written out. This should not happen,
9374 but this way if it does we get a R_PPC64_NONE reloc in .rela
9375 sections instead of garbage.
9376 We also rely on the section contents being zero when writing
9377 the GOT. */
9378 s->contents = bfd_zalloc (dynobj, s->size);
9379 if (s->contents == NULL)
9380 return FALSE;
9381 }
9382
9383 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9384 {
9385 if (!is_ppc64_elf (ibfd))
9386 continue;
9387
9388 s = ppc64_elf_tdata (ibfd)->got;
9389 if (s != NULL && s != htab->got)
9390 {
9391 if (s->size == 0)
9392 s->flags |= SEC_EXCLUDE;
9393 else
9394 {
9395 s->contents = bfd_zalloc (ibfd, s->size);
9396 if (s->contents == NULL)
9397 return FALSE;
9398 }
9399 }
9400 s = ppc64_elf_tdata (ibfd)->relgot;
9401 if (s != NULL)
9402 {
9403 if (s->size == 0)
9404 s->flags |= SEC_EXCLUDE;
9405 else
9406 {
9407 s->contents = bfd_zalloc (ibfd, s->size);
9408 if (s->contents == NULL)
9409 return FALSE;
9410 relocs = TRUE;
9411 s->reloc_count = 0;
9412 }
9413 }
9414 }
9415
9416 if (htab->elf.dynamic_sections_created)
9417 {
9418 /* Add some entries to the .dynamic section. We fill in the
9419 values later, in ppc64_elf_finish_dynamic_sections, but we
9420 must add the entries now so that we get the correct size for
9421 the .dynamic section. The DT_DEBUG entry is filled in by the
9422 dynamic linker and used by the debugger. */
9423 #define add_dynamic_entry(TAG, VAL) \
9424 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9425
9426 if (info->executable)
9427 {
9428 if (!add_dynamic_entry (DT_DEBUG, 0))
9429 return FALSE;
9430 }
9431
9432 if (htab->plt != NULL && htab->plt->size != 0)
9433 {
9434 if (!add_dynamic_entry (DT_PLTGOT, 0)
9435 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9436 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9437 || !add_dynamic_entry (DT_JMPREL, 0)
9438 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9439 return FALSE;
9440 }
9441
9442 if (NO_OPD_RELOCS)
9443 {
9444 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9445 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9446 return FALSE;
9447 }
9448
9449 if (!htab->no_tls_get_addr_opt
9450 && htab->tls_get_addr_fd != NULL
9451 && htab->tls_get_addr_fd->elf.plt.plist != NULL
9452 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0))
9453 return FALSE;
9454
9455 if (relocs)
9456 {
9457 if (!add_dynamic_entry (DT_RELA, 0)
9458 || !add_dynamic_entry (DT_RELASZ, 0)
9459 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9460 return FALSE;
9461
9462 /* If any dynamic relocs apply to a read-only section,
9463 then we need a DT_TEXTREL entry. */
9464 if ((info->flags & DF_TEXTREL) == 0)
9465 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
9466
9467 if ((info->flags & DF_TEXTREL) != 0)
9468 {
9469 if (!add_dynamic_entry (DT_TEXTREL, 0))
9470 return FALSE;
9471 }
9472 }
9473 }
9474 #undef add_dynamic_entry
9475
9476 return TRUE;
9477 }
9478
9479 /* Determine the type of stub needed, if any, for a call. */
9480
9481 static inline enum ppc_stub_type
9482 ppc_type_of_stub (asection *input_sec,
9483 const Elf_Internal_Rela *rel,
9484 struct ppc_link_hash_entry **hash,
9485 struct plt_entry **plt_ent,
9486 bfd_vma destination)
9487 {
9488 struct ppc_link_hash_entry *h = *hash;
9489 bfd_vma location;
9490 bfd_vma branch_offset;
9491 bfd_vma max_branch_offset;
9492 enum elf_ppc64_reloc_type r_type;
9493
9494 if (h != NULL)
9495 {
9496 struct plt_entry *ent;
9497 struct ppc_link_hash_entry *fdh = h;
9498 if (h->oh != NULL
9499 && h->oh->is_func_descriptor)
9500 {
9501 fdh = ppc_follow_link (h->oh);
9502 *hash = fdh;
9503 }
9504
9505 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9506 if (ent->addend == rel->r_addend
9507 && ent->plt.offset != (bfd_vma) -1)
9508 {
9509 *plt_ent = ent;
9510 return ppc_stub_plt_call;
9511 }
9512
9513 /* Here, we know we don't have a plt entry. If we don't have a
9514 either a defined function descriptor or a defined entry symbol
9515 in a regular object file, then it is pointless trying to make
9516 any other type of stub. */
9517 if (!is_static_defined (&fdh->elf)
9518 && !is_static_defined (&h->elf))
9519 return ppc_stub_none;
9520 }
9521 else if (elf_local_got_ents (input_sec->owner) != NULL)
9522 {
9523 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
9524 struct plt_entry **local_plt = (struct plt_entry **)
9525 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
9526 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
9527
9528 if (local_plt[r_symndx] != NULL)
9529 {
9530 struct plt_entry *ent;
9531
9532 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
9533 if (ent->addend == rel->r_addend
9534 && ent->plt.offset != (bfd_vma) -1)
9535 {
9536 *plt_ent = ent;
9537 return ppc_stub_plt_call;
9538 }
9539 }
9540 }
9541
9542 /* Determine where the call point is. */
9543 location = (input_sec->output_offset
9544 + input_sec->output_section->vma
9545 + rel->r_offset);
9546
9547 branch_offset = destination - location;
9548 r_type = ELF64_R_TYPE (rel->r_info);
9549
9550 /* Determine if a long branch stub is needed. */
9551 max_branch_offset = 1 << 25;
9552 if (r_type != R_PPC64_REL24)
9553 max_branch_offset = 1 << 15;
9554
9555 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
9556 /* We need a stub. Figure out whether a long_branch or plt_branch
9557 is needed later. */
9558 return ppc_stub_long_branch;
9559
9560 return ppc_stub_none;
9561 }
9562
9563 /* With power7 weakly ordered memory model, it is possible for ld.so
9564 to update a plt entry in one thread and have another thread see a
9565 stale zero toc entry. To avoid this we need some sort of acquire
9566 barrier in the call stub. One solution is to make the load of the
9567 toc word seem to appear to depend on the load of the function entry
9568 word. Another solution is to test for r2 being zero, and branch to
9569 the appropriate glink entry if so.
9570
9571 . fake dep barrier compare
9572 . ld 11,xxx(2) ld 11,xxx(2)
9573 . mtctr 11 mtctr 11
9574 . xor 11,11,11 ld 2,xxx+8(2)
9575 . add 2,2,11 cmpldi 2,0
9576 . ld 2,xxx+8(2) bnectr+
9577 . bctr b <glink_entry>
9578
9579 The solution involving the compare turns out to be faster, so
9580 that's what we use unless the branch won't reach. */
9581
9582 #define ALWAYS_USE_FAKE_DEP 0
9583 #define ALWAYS_EMIT_R2SAVE 0
9584
9585 #define PPC_LO(v) ((v) & 0xffff)
9586 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9587 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9588
9589 static inline unsigned int
9590 plt_stub_size (struct ppc_link_hash_table *htab,
9591 struct ppc_stub_hash_entry *stub_entry,
9592 bfd_vma off)
9593 {
9594 unsigned size = PLT_CALL_STUB_SIZE;
9595
9596 if (!(ALWAYS_EMIT_R2SAVE
9597 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
9598 size -= 4;
9599 if (!htab->plt_static_chain)
9600 size -= 4;
9601 if (htab->plt_thread_safe)
9602 size += 8;
9603 if (PPC_HA (off) == 0)
9604 size -= 4;
9605 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
9606 size += 4;
9607 if (stub_entry->h != NULL
9608 && (stub_entry->h == htab->tls_get_addr_fd
9609 || stub_entry->h == htab->tls_get_addr)
9610 && !htab->no_tls_get_addr_opt)
9611 size += 13 * 4;
9612 return size;
9613 }
9614
9615 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
9616 then return the padding needed to do so. */
9617 static inline unsigned int
9618 plt_stub_pad (struct ppc_link_hash_table *htab,
9619 struct ppc_stub_hash_entry *stub_entry,
9620 bfd_vma plt_off)
9621 {
9622 int stub_align = 1 << htab->plt_stub_align;
9623 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
9624 bfd_vma stub_off = stub_entry->stub_sec->size;
9625
9626 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
9627 > (stub_size & -stub_align))
9628 return stub_align - (stub_off & (stub_align - 1));
9629 return 0;
9630 }
9631
9632 /* Build a .plt call stub. */
9633
9634 static inline bfd_byte *
9635 build_plt_stub (struct ppc_link_hash_table *htab,
9636 struct ppc_stub_hash_entry *stub_entry,
9637 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9638 {
9639 bfd *obfd = htab->stub_bfd;
9640 bfd_boolean plt_static_chain = htab->plt_static_chain;
9641 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
9642 bfd_boolean use_fake_dep = plt_thread_safe;
9643 bfd_vma cmp_branch_off = 0;
9644
9645 if (!ALWAYS_USE_FAKE_DEP
9646 && plt_thread_safe
9647 && !(stub_entry->h != NULL
9648 && (stub_entry->h == htab->tls_get_addr_fd
9649 || stub_entry->h == htab->tls_get_addr)
9650 && !htab->no_tls_get_addr_opt))
9651 {
9652 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
9653 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE;
9654 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
9655 bfd_vma to, from;
9656
9657 if (pltindex > 32768)
9658 glinkoff += (pltindex - 32768) * 4;
9659 to = (glinkoff
9660 + htab->glink->output_offset
9661 + htab->glink->output_section->vma);
9662 from = (p - stub_entry->stub_sec->contents
9663 + 4 * (ALWAYS_EMIT_R2SAVE
9664 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9665 + 4 * (PPC_HA (offset) != 0)
9666 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
9667 != PPC_HA (offset))
9668 + 4 * (plt_static_chain != 0)
9669 + 20
9670 + stub_entry->stub_sec->output_offset
9671 + stub_entry->stub_sec->output_section->vma);
9672 cmp_branch_off = to - from;
9673 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
9674 }
9675
9676 if (PPC_HA (offset) != 0)
9677 {
9678 if (r != NULL)
9679 {
9680 if (ALWAYS_EMIT_R2SAVE
9681 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9682 r[0].r_offset += 4;
9683 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
9684 r[1].r_offset = r[0].r_offset + 4;
9685 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9686 r[1].r_addend = r[0].r_addend;
9687 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9688 {
9689 r[2].r_offset = r[1].r_offset + 4;
9690 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
9691 r[2].r_addend = r[0].r_addend;
9692 }
9693 else
9694 {
9695 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
9696 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9697 r[2].r_addend = r[0].r_addend + 8;
9698 if (plt_static_chain)
9699 {
9700 r[3].r_offset = r[2].r_offset + 4;
9701 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9702 r[3].r_addend = r[0].r_addend + 16;
9703 }
9704 }
9705 }
9706 if (ALWAYS_EMIT_R2SAVE
9707 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9708 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9709 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
9710 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
9711 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9712 {
9713 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
9714 offset = 0;
9715 }
9716 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9717 if (use_fake_dep)
9718 {
9719 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9720 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4;
9721 }
9722 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
9723 if (plt_static_chain)
9724 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
9725 }
9726 else
9727 {
9728 if (r != NULL)
9729 {
9730 if (ALWAYS_EMIT_R2SAVE
9731 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9732 r[0].r_offset += 4;
9733 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9734 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9735 {
9736 r[1].r_offset = r[0].r_offset + 4;
9737 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
9738 r[1].r_addend = r[0].r_addend;
9739 }
9740 else
9741 {
9742 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
9743 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9744 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
9745 if (plt_static_chain)
9746 {
9747 r[2].r_offset = r[1].r_offset + 4;
9748 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9749 r[2].r_addend = r[0].r_addend + 8;
9750 }
9751 }
9752 }
9753 if (ALWAYS_EMIT_R2SAVE
9754 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9755 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9756 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
9757 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9758 {
9759 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
9760 offset = 0;
9761 }
9762 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9763 if (use_fake_dep)
9764 {
9765 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9766 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
9767 }
9768 if (plt_static_chain)
9769 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
9770 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
9771 }
9772 if (plt_thread_safe && !use_fake_dep)
9773 {
9774 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
9775 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
9776 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
9777 }
9778 else
9779 bfd_put_32 (obfd, BCTR, p), p += 4;
9780 return p;
9781 }
9782
9783 /* Build a special .plt call stub for __tls_get_addr. */
9784
9785 #define LD_R11_0R3 0xe9630000
9786 #define LD_R12_0R3 0xe9830000
9787 #define MR_R0_R3 0x7c601b78
9788 #define CMPDI_R11_0 0x2c2b0000
9789 #define ADD_R3_R12_R13 0x7c6c6a14
9790 #define BEQLR 0x4d820020
9791 #define MR_R3_R0 0x7c030378
9792 #define MFLR_R11 0x7d6802a6
9793 #define STD_R11_0R1 0xf9610000
9794 #define BCTRL 0x4e800421
9795 #define LD_R11_0R1 0xe9610000
9796 #define LD_R2_0R1 0xe8410000
9797 #define MTLR_R11 0x7d6803a6
9798
9799 static inline bfd_byte *
9800 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
9801 struct ppc_stub_hash_entry *stub_entry,
9802 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9803 {
9804 bfd *obfd = htab->stub_bfd;
9805
9806 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
9807 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
9808 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
9809 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
9810 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
9811 bfd_put_32 (obfd, BEQLR, p), p += 4;
9812 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
9813 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
9814 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4;
9815
9816 if (r != NULL)
9817 r[0].r_offset += 9 * 4;
9818 p = build_plt_stub (htab, stub_entry, p, offset, r);
9819 bfd_put_32 (obfd, BCTRL, p - 4);
9820
9821 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4;
9822 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4;
9823 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
9824 bfd_put_32 (obfd, BLR, p), p += 4;
9825
9826 return p;
9827 }
9828
9829 static Elf_Internal_Rela *
9830 get_relocs (asection *sec, int count)
9831 {
9832 Elf_Internal_Rela *relocs;
9833 struct bfd_elf_section_data *elfsec_data;
9834
9835 elfsec_data = elf_section_data (sec);
9836 relocs = elfsec_data->relocs;
9837 if (relocs == NULL)
9838 {
9839 bfd_size_type relsize;
9840 relsize = sec->reloc_count * sizeof (*relocs);
9841 relocs = bfd_alloc (sec->owner, relsize);
9842 if (relocs == NULL)
9843 return NULL;
9844 elfsec_data->relocs = relocs;
9845 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
9846 sizeof (Elf_Internal_Shdr));
9847 if (elfsec_data->rela.hdr == NULL)
9848 return NULL;
9849 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
9850 * sizeof (Elf64_External_Rela));
9851 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
9852 sec->reloc_count = 0;
9853 }
9854 relocs += sec->reloc_count;
9855 sec->reloc_count += count;
9856 return relocs;
9857 }
9858
9859 static bfd_vma
9860 get_r2off (struct bfd_link_info *info,
9861 struct ppc_stub_hash_entry *stub_entry)
9862 {
9863 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9864 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
9865
9866 if (r2off == 0)
9867 {
9868 /* Support linking -R objects. Get the toc pointer from the
9869 opd entry. */
9870 char buf[8];
9871 asection *opd = stub_entry->h->elf.root.u.def.section;
9872 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
9873
9874 if (strcmp (opd->name, ".opd") != 0
9875 || opd->reloc_count != 0)
9876 {
9877 info->callbacks->einfo (_("%P: cannot find opd entry toc for `%T'\n"),
9878 stub_entry->h->elf.root.root.string);
9879 bfd_set_error (bfd_error_bad_value);
9880 return 0;
9881 }
9882 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
9883 return 0;
9884 r2off = bfd_get_64 (opd->owner, buf);
9885 r2off -= elf_gp (info->output_bfd);
9886 }
9887 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
9888 return r2off;
9889 }
9890
9891 static bfd_boolean
9892 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
9893 {
9894 struct ppc_stub_hash_entry *stub_entry;
9895 struct ppc_branch_hash_entry *br_entry;
9896 struct bfd_link_info *info;
9897 struct ppc_link_hash_table *htab;
9898 bfd_byte *loc;
9899 bfd_byte *p;
9900 bfd_vma dest, off;
9901 int size;
9902 Elf_Internal_Rela *r;
9903 asection *plt;
9904
9905 /* Massage our args to the form they really have. */
9906 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
9907 info = in_arg;
9908
9909 htab = ppc_hash_table (info);
9910 if (htab == NULL)
9911 return FALSE;
9912
9913 /* Make a note of the offset within the stubs for this entry. */
9914 stub_entry->stub_offset = stub_entry->stub_sec->size;
9915 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
9916
9917 htab->stub_count[stub_entry->stub_type - 1] += 1;
9918 switch (stub_entry->stub_type)
9919 {
9920 case ppc_stub_long_branch:
9921 case ppc_stub_long_branch_r2off:
9922 /* Branches are relative. This is where we are going to. */
9923 off = dest = (stub_entry->target_value
9924 + stub_entry->target_section->output_offset
9925 + stub_entry->target_section->output_section->vma);
9926
9927 /* And this is where we are coming from. */
9928 off -= (stub_entry->stub_offset
9929 + stub_entry->stub_sec->output_offset
9930 + stub_entry->stub_sec->output_section->vma);
9931
9932 size = 4;
9933 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
9934 {
9935 bfd_vma r2off = get_r2off (info, stub_entry);
9936
9937 if (r2off == 0)
9938 {
9939 htab->stub_error = TRUE;
9940 return FALSE;
9941 }
9942 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
9943 loc += 4;
9944 size = 12;
9945 if (PPC_HA (r2off) != 0)
9946 {
9947 size = 16;
9948 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
9949 loc += 4;
9950 }
9951 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
9952 loc += 4;
9953 off -= size - 4;
9954 }
9955 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
9956
9957 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
9958 {
9959 info->callbacks->einfo
9960 (_("%P: long branch stub `%s' offset overflow\n"),
9961 stub_entry->root.string);
9962 htab->stub_error = TRUE;
9963 return FALSE;
9964 }
9965
9966 if (info->emitrelocations)
9967 {
9968 r = get_relocs (stub_entry->stub_sec, 1);
9969 if (r == NULL)
9970 return FALSE;
9971 r->r_offset = loc - stub_entry->stub_sec->contents;
9972 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
9973 r->r_addend = dest;
9974 if (stub_entry->h != NULL)
9975 {
9976 struct elf_link_hash_entry **hashes;
9977 unsigned long symndx;
9978 struct ppc_link_hash_entry *h;
9979
9980 hashes = elf_sym_hashes (htab->stub_bfd);
9981 if (hashes == NULL)
9982 {
9983 bfd_size_type hsize;
9984
9985 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
9986 hashes = bfd_zalloc (htab->stub_bfd, hsize);
9987 if (hashes == NULL)
9988 return FALSE;
9989 elf_sym_hashes (htab->stub_bfd) = hashes;
9990 htab->stub_globals = 1;
9991 }
9992 symndx = htab->stub_globals++;
9993 h = stub_entry->h;
9994 hashes[symndx] = &h->elf;
9995 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
9996 if (h->oh != NULL && h->oh->is_func)
9997 h = ppc_follow_link (h->oh);
9998 if (h->elf.root.u.def.section != stub_entry->target_section)
9999 /* H is an opd symbol. The addend must be zero. */
10000 r->r_addend = 0;
10001 else
10002 {
10003 off = (h->elf.root.u.def.value
10004 + h->elf.root.u.def.section->output_offset
10005 + h->elf.root.u.def.section->output_section->vma);
10006 r->r_addend -= off;
10007 }
10008 }
10009 }
10010 break;
10011
10012 case ppc_stub_plt_branch:
10013 case ppc_stub_plt_branch_r2off:
10014 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10015 stub_entry->root.string + 9,
10016 FALSE, FALSE);
10017 if (br_entry == NULL)
10018 {
10019 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
10020 stub_entry->root.string);
10021 htab->stub_error = TRUE;
10022 return FALSE;
10023 }
10024
10025 dest = (stub_entry->target_value
10026 + stub_entry->target_section->output_offset
10027 + stub_entry->target_section->output_section->vma);
10028
10029 bfd_put_64 (htab->brlt->owner, dest,
10030 htab->brlt->contents + br_entry->offset);
10031
10032 if (br_entry->iter == htab->stub_iteration)
10033 {
10034 br_entry->iter = 0;
10035
10036 if (htab->relbrlt != NULL)
10037 {
10038 /* Create a reloc for the branch lookup table entry. */
10039 Elf_Internal_Rela rela;
10040 bfd_byte *rl;
10041
10042 rela.r_offset = (br_entry->offset
10043 + htab->brlt->output_offset
10044 + htab->brlt->output_section->vma);
10045 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10046 rela.r_addend = dest;
10047
10048 rl = htab->relbrlt->contents;
10049 rl += (htab->relbrlt->reloc_count++
10050 * sizeof (Elf64_External_Rela));
10051 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10052 }
10053 else if (info->emitrelocations)
10054 {
10055 r = get_relocs (htab->brlt, 1);
10056 if (r == NULL)
10057 return FALSE;
10058 /* brlt, being SEC_LINKER_CREATED does not go through the
10059 normal reloc processing. Symbols and offsets are not
10060 translated from input file to output file form, so
10061 set up the offset per the output file. */
10062 r->r_offset = (br_entry->offset
10063 + htab->brlt->output_offset
10064 + htab->brlt->output_section->vma);
10065 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10066 r->r_addend = dest;
10067 }
10068 }
10069
10070 dest = (br_entry->offset
10071 + htab->brlt->output_offset
10072 + htab->brlt->output_section->vma);
10073
10074 off = (dest
10075 - elf_gp (htab->brlt->output_section->owner)
10076 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10077
10078 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10079 {
10080 info->callbacks->einfo
10081 (_("%P: linkage table error against `%T'\n"),
10082 stub_entry->root.string);
10083 bfd_set_error (bfd_error_bad_value);
10084 htab->stub_error = TRUE;
10085 return FALSE;
10086 }
10087
10088 if (info->emitrelocations)
10089 {
10090 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10091 if (r == NULL)
10092 return FALSE;
10093 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10094 if (bfd_big_endian (info->output_bfd))
10095 r[0].r_offset += 2;
10096 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10097 r[0].r_offset += 4;
10098 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10099 r[0].r_addend = dest;
10100 if (PPC_HA (off) != 0)
10101 {
10102 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10103 r[1].r_offset = r[0].r_offset + 4;
10104 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10105 r[1].r_addend = r[0].r_addend;
10106 }
10107 }
10108
10109 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10110 {
10111 if (PPC_HA (off) != 0)
10112 {
10113 size = 16;
10114 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10115 loc += 4;
10116 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10117 }
10118 else
10119 {
10120 size = 12;
10121 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10122 }
10123 }
10124 else
10125 {
10126 bfd_vma r2off = get_r2off (info, stub_entry);
10127
10128 if (r2off == 0)
10129 {
10130 htab->stub_error = TRUE;
10131 return FALSE;
10132 }
10133
10134 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10135 loc += 4;
10136 size = 20;
10137 if (PPC_HA (off) != 0)
10138 {
10139 size += 4;
10140 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10141 loc += 4;
10142 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10143 loc += 4;
10144 }
10145 else
10146 {
10147 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10148 loc += 4;
10149 }
10150
10151 if (PPC_HA (r2off) != 0)
10152 {
10153 size += 4;
10154 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10155 loc += 4;
10156 }
10157 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10158 }
10159 loc += 4;
10160 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
10161 loc += 4;
10162 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10163 break;
10164
10165 case ppc_stub_plt_call:
10166 case ppc_stub_plt_call_r2save:
10167 if (stub_entry->h != NULL
10168 && stub_entry->h->is_func_descriptor
10169 && stub_entry->h->oh != NULL)
10170 {
10171 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10172
10173 /* If the old-ABI "dot-symbol" is undefined make it weak so
10174 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10175 FIXME: We used to define the symbol on one of the call
10176 stubs instead, which is why we test symbol section id
10177 against htab->top_id in various places. Likely all
10178 these checks could now disappear. */
10179 if (fh->elf.root.type == bfd_link_hash_undefined)
10180 fh->elf.root.type = bfd_link_hash_undefweak;
10181 /* Stop undo_symbol_twiddle changing it back to undefined. */
10182 fh->was_undefined = 0;
10183 }
10184
10185 /* Now build the stub. */
10186 dest = stub_entry->plt_ent->plt.offset & ~1;
10187 if (dest >= (bfd_vma) -2)
10188 abort ();
10189
10190 plt = htab->plt;
10191 if (!htab->elf.dynamic_sections_created
10192 || stub_entry->h == NULL
10193 || stub_entry->h->elf.dynindx == -1)
10194 plt = htab->iplt;
10195
10196 dest += plt->output_offset + plt->output_section->vma;
10197
10198 if (stub_entry->h == NULL
10199 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10200 {
10201 Elf_Internal_Rela rela;
10202 bfd_byte *rl;
10203
10204 rela.r_offset = dest;
10205 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10206 rela.r_addend = (stub_entry->target_value
10207 + stub_entry->target_section->output_offset
10208 + stub_entry->target_section->output_section->vma);
10209
10210 rl = (htab->reliplt->contents
10211 + (htab->reliplt->reloc_count++
10212 * sizeof (Elf64_External_Rela)));
10213 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10214 stub_entry->plt_ent->plt.offset |= 1;
10215 }
10216
10217 off = (dest
10218 - elf_gp (plt->output_section->owner)
10219 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10220
10221 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10222 {
10223 info->callbacks->einfo
10224 (_("%P: linkage table error against `%T'\n"),
10225 stub_entry->h != NULL
10226 ? stub_entry->h->elf.root.root.string
10227 : "<local sym>");
10228 bfd_set_error (bfd_error_bad_value);
10229 htab->stub_error = TRUE;
10230 return FALSE;
10231 }
10232
10233 if (htab->plt_stub_align != 0)
10234 {
10235 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10236
10237 stub_entry->stub_sec->size += pad;
10238 stub_entry->stub_offset = stub_entry->stub_sec->size;
10239 loc += pad;
10240 }
10241
10242 r = NULL;
10243 if (info->emitrelocations)
10244 {
10245 r = get_relocs (stub_entry->stub_sec,
10246 (2
10247 + (PPC_HA (off) != 0)
10248 + (htab->plt_static_chain
10249 && PPC_HA (off + 16) == PPC_HA (off))));
10250 if (r == NULL)
10251 return FALSE;
10252 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10253 if (bfd_big_endian (info->output_bfd))
10254 r[0].r_offset += 2;
10255 r[0].r_addend = dest;
10256 }
10257 if (stub_entry->h != NULL
10258 && (stub_entry->h == htab->tls_get_addr_fd
10259 || stub_entry->h == htab->tls_get_addr)
10260 && !htab->no_tls_get_addr_opt)
10261 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10262 else
10263 p = build_plt_stub (htab, stub_entry, loc, off, r);
10264 size = p - loc;
10265 break;
10266
10267 default:
10268 BFD_FAIL ();
10269 return FALSE;
10270 }
10271
10272 stub_entry->stub_sec->size += size;
10273
10274 if (htab->emit_stub_syms)
10275 {
10276 struct elf_link_hash_entry *h;
10277 size_t len1, len2;
10278 char *name;
10279 const char *const stub_str[] = { "long_branch",
10280 "long_branch_r2off",
10281 "plt_branch",
10282 "plt_branch_r2off",
10283 "plt_call",
10284 "plt_call" };
10285
10286 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10287 len2 = strlen (stub_entry->root.string);
10288 name = bfd_malloc (len1 + len2 + 2);
10289 if (name == NULL)
10290 return FALSE;
10291 memcpy (name, stub_entry->root.string, 9);
10292 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10293 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10294 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10295 if (h == NULL)
10296 return FALSE;
10297 if (h->root.type == bfd_link_hash_new)
10298 {
10299 h->root.type = bfd_link_hash_defined;
10300 h->root.u.def.section = stub_entry->stub_sec;
10301 h->root.u.def.value = stub_entry->stub_offset;
10302 h->ref_regular = 1;
10303 h->def_regular = 1;
10304 h->ref_regular_nonweak = 1;
10305 h->forced_local = 1;
10306 h->non_elf = 0;
10307 }
10308 }
10309
10310 return TRUE;
10311 }
10312
10313 /* As above, but don't actually build the stub. Just bump offset so
10314 we know stub section sizes, and select plt_branch stubs where
10315 long_branch stubs won't do. */
10316
10317 static bfd_boolean
10318 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10319 {
10320 struct ppc_stub_hash_entry *stub_entry;
10321 struct bfd_link_info *info;
10322 struct ppc_link_hash_table *htab;
10323 bfd_vma off;
10324 int size;
10325
10326 /* Massage our args to the form they really have. */
10327 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10328 info = in_arg;
10329
10330 htab = ppc_hash_table (info);
10331 if (htab == NULL)
10332 return FALSE;
10333
10334 if (stub_entry->stub_type == ppc_stub_plt_call
10335 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10336 {
10337 asection *plt;
10338 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10339 if (off >= (bfd_vma) -2)
10340 abort ();
10341 plt = htab->plt;
10342 if (!htab->elf.dynamic_sections_created
10343 || stub_entry->h == NULL
10344 || stub_entry->h->elf.dynindx == -1)
10345 plt = htab->iplt;
10346 off += (plt->output_offset
10347 + plt->output_section->vma
10348 - elf_gp (plt->output_section->owner)
10349 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10350
10351 size = plt_stub_size (htab, stub_entry, off);
10352 if (htab->plt_stub_align)
10353 size += plt_stub_pad (htab, stub_entry, off);
10354 if (info->emitrelocations)
10355 {
10356 stub_entry->stub_sec->reloc_count
10357 += (2
10358 + (PPC_HA (off) != 0)
10359 + (htab->plt_static_chain
10360 && PPC_HA (off + 16) == PPC_HA (off)));
10361 stub_entry->stub_sec->flags |= SEC_RELOC;
10362 }
10363 }
10364 else
10365 {
10366 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10367 variants. */
10368 bfd_vma r2off = 0;
10369
10370 off = (stub_entry->target_value
10371 + stub_entry->target_section->output_offset
10372 + stub_entry->target_section->output_section->vma);
10373 off -= (stub_entry->stub_sec->size
10374 + stub_entry->stub_sec->output_offset
10375 + stub_entry->stub_sec->output_section->vma);
10376
10377 /* Reset the stub type from the plt variant in case we now
10378 can reach with a shorter stub. */
10379 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10380 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10381
10382 size = 4;
10383 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10384 {
10385 r2off = get_r2off (info, stub_entry);
10386 if (r2off == 0)
10387 {
10388 htab->stub_error = TRUE;
10389 return FALSE;
10390 }
10391 size = 12;
10392 if (PPC_HA (r2off) != 0)
10393 size = 16;
10394 off -= size - 4;
10395 }
10396
10397 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
10398 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10399 {
10400 struct ppc_branch_hash_entry *br_entry;
10401
10402 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10403 stub_entry->root.string + 9,
10404 TRUE, FALSE);
10405 if (br_entry == NULL)
10406 {
10407 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10408 stub_entry->root.string);
10409 htab->stub_error = TRUE;
10410 return FALSE;
10411 }
10412
10413 if (br_entry->iter != htab->stub_iteration)
10414 {
10415 br_entry->iter = htab->stub_iteration;
10416 br_entry->offset = htab->brlt->size;
10417 htab->brlt->size += 8;
10418
10419 if (htab->relbrlt != NULL)
10420 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10421 else if (info->emitrelocations)
10422 {
10423 htab->brlt->reloc_count += 1;
10424 htab->brlt->flags |= SEC_RELOC;
10425 }
10426 }
10427
10428 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10429 off = (br_entry->offset
10430 + htab->brlt->output_offset
10431 + htab->brlt->output_section->vma
10432 - elf_gp (htab->brlt->output_section->owner)
10433 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10434
10435 if (info->emitrelocations)
10436 {
10437 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10438 stub_entry->stub_sec->flags |= SEC_RELOC;
10439 }
10440
10441 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10442 {
10443 size = 12;
10444 if (PPC_HA (off) != 0)
10445 size = 16;
10446 }
10447 else
10448 {
10449 size = 20;
10450 if (PPC_HA (off) != 0)
10451 size += 4;
10452
10453 if (PPC_HA (r2off) != 0)
10454 size += 4;
10455 }
10456 }
10457 else if (info->emitrelocations)
10458 {
10459 stub_entry->stub_sec->reloc_count += 1;
10460 stub_entry->stub_sec->flags |= SEC_RELOC;
10461 }
10462 }
10463
10464 stub_entry->stub_sec->size += size;
10465 return TRUE;
10466 }
10467
10468 /* Set up various things so that we can make a list of input sections
10469 for each output section included in the link. Returns -1 on error,
10470 0 when no stubs will be needed, and 1 on success. */
10471
10472 int
10473 ppc64_elf_setup_section_lists
10474 (struct bfd_link_info *info,
10475 asection *(*add_stub_section) (const char *, asection *),
10476 void (*layout_sections_again) (void))
10477 {
10478 bfd *input_bfd;
10479 int top_id, top_index, id;
10480 asection *section;
10481 asection **input_list;
10482 bfd_size_type amt;
10483 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10484
10485 if (htab == NULL)
10486 return -1;
10487 /* Stash our params away. */
10488 htab->add_stub_section = add_stub_section;
10489 htab->layout_sections_again = layout_sections_again;
10490
10491 if (htab->brlt == NULL)
10492 return 0;
10493
10494 /* Find the top input section id. */
10495 for (input_bfd = info->input_bfds, top_id = 3;
10496 input_bfd != NULL;
10497 input_bfd = input_bfd->link_next)
10498 {
10499 for (section = input_bfd->sections;
10500 section != NULL;
10501 section = section->next)
10502 {
10503 if (top_id < section->id)
10504 top_id = section->id;
10505 }
10506 }
10507
10508 htab->top_id = top_id;
10509 amt = sizeof (struct map_stub) * (top_id + 1);
10510 htab->stub_group = bfd_zmalloc (amt);
10511 if (htab->stub_group == NULL)
10512 return -1;
10513
10514 /* Set toc_off for com, und, abs and ind sections. */
10515 for (id = 0; id < 3; id++)
10516 htab->stub_group[id].toc_off = TOC_BASE_OFF;
10517
10518 /* We can't use output_bfd->section_count here to find the top output
10519 section index as some sections may have been removed, and
10520 strip_excluded_output_sections doesn't renumber the indices. */
10521 for (section = info->output_bfd->sections, top_index = 0;
10522 section != NULL;
10523 section = section->next)
10524 {
10525 if (top_index < section->index)
10526 top_index = section->index;
10527 }
10528
10529 htab->top_index = top_index;
10530 amt = sizeof (asection *) * (top_index + 1);
10531 input_list = bfd_zmalloc (amt);
10532 htab->input_list = input_list;
10533 if (input_list == NULL)
10534 return -1;
10535
10536 return 1;
10537 }
10538
10539 /* Set up for first pass at multitoc partitioning. */
10540
10541 void
10542 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
10543 {
10544 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10545
10546 elf_gp (info->output_bfd) = ppc64_elf_toc (info->output_bfd);
10547 htab->toc_curr = elf_gp (info->output_bfd);
10548 htab->toc_bfd = NULL;
10549 htab->toc_first_sec = NULL;
10550 }
10551
10552 /* The linker repeatedly calls this function for each TOC input section
10553 and linker generated GOT section. Group input bfds such that the toc
10554 within a group is less than 64k in size. */
10555
10556 bfd_boolean
10557 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
10558 {
10559 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10560 bfd_vma addr, off, limit;
10561
10562 if (htab == NULL)
10563 return FALSE;
10564
10565 if (!htab->second_toc_pass)
10566 {
10567 /* Keep track of the first .toc or .got section for this input bfd. */
10568 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
10569
10570 if (new_bfd)
10571 {
10572 htab->toc_bfd = isec->owner;
10573 htab->toc_first_sec = isec;
10574 }
10575
10576 addr = isec->output_offset + isec->output_section->vma;
10577 off = addr - htab->toc_curr;
10578 limit = 0x80008000;
10579 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
10580 limit = 0x10000;
10581 if (off + isec->size > limit)
10582 {
10583 addr = (htab->toc_first_sec->output_offset
10584 + htab->toc_first_sec->output_section->vma);
10585 htab->toc_curr = addr;
10586 }
10587
10588 /* toc_curr is the base address of this toc group. Set elf_gp
10589 for the input section to be the offset relative to the
10590 output toc base plus 0x8000. Making the input elf_gp an
10591 offset allows us to move the toc as a whole without
10592 recalculating input elf_gp. */
10593 off = htab->toc_curr - elf_gp (isec->output_section->owner);
10594 off += TOC_BASE_OFF;
10595
10596 /* Die if someone uses a linker script that doesn't keep input
10597 file .toc and .got together. */
10598 if (new_bfd
10599 && elf_gp (isec->owner) != 0
10600 && elf_gp (isec->owner) != off)
10601 return FALSE;
10602
10603 elf_gp (isec->owner) = off;
10604 return TRUE;
10605 }
10606
10607 /* During the second pass toc_first_sec points to the start of
10608 a toc group, and toc_curr is used to track the old elf_gp.
10609 We use toc_bfd to ensure we only look at each bfd once. */
10610 if (htab->toc_bfd == isec->owner)
10611 return TRUE;
10612 htab->toc_bfd = isec->owner;
10613
10614 if (htab->toc_first_sec == NULL
10615 || htab->toc_curr != elf_gp (isec->owner))
10616 {
10617 htab->toc_curr = elf_gp (isec->owner);
10618 htab->toc_first_sec = isec;
10619 }
10620 addr = (htab->toc_first_sec->output_offset
10621 + htab->toc_first_sec->output_section->vma);
10622 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
10623 elf_gp (isec->owner) = off;
10624
10625 return TRUE;
10626 }
10627
10628 /* Called via elf_link_hash_traverse to merge GOT entries for global
10629 symbol H. */
10630
10631 static bfd_boolean
10632 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10633 {
10634 if (h->root.type == bfd_link_hash_indirect)
10635 return TRUE;
10636
10637 merge_got_entries (&h->got.glist);
10638
10639 return TRUE;
10640 }
10641
10642 /* Called via elf_link_hash_traverse to allocate GOT entries for global
10643 symbol H. */
10644
10645 static bfd_boolean
10646 reallocate_got (struct elf_link_hash_entry *h, void *inf)
10647 {
10648 struct got_entry *gent;
10649
10650 if (h->root.type == bfd_link_hash_indirect)
10651 return TRUE;
10652
10653 for (gent = h->got.glist; gent != NULL; gent = gent->next)
10654 if (!gent->is_indirect)
10655 allocate_got (h, (struct bfd_link_info *) inf, gent);
10656 return TRUE;
10657 }
10658
10659 /* Called on the first multitoc pass after the last call to
10660 ppc64_elf_next_toc_section. This function removes duplicate GOT
10661 entries. */
10662
10663 bfd_boolean
10664 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
10665 {
10666 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10667 struct bfd *ibfd, *ibfd2;
10668 bfd_boolean done_something;
10669
10670 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
10671
10672 if (!htab->do_multi_toc)
10673 return FALSE;
10674
10675 /* Merge global sym got entries within a toc group. */
10676 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
10677
10678 /* And tlsld_got. */
10679 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10680 {
10681 struct got_entry *ent, *ent2;
10682
10683 if (!is_ppc64_elf (ibfd))
10684 continue;
10685
10686 ent = ppc64_tlsld_got (ibfd);
10687 if (!ent->is_indirect
10688 && ent->got.offset != (bfd_vma) -1)
10689 {
10690 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
10691 {
10692 if (!is_ppc64_elf (ibfd2))
10693 continue;
10694
10695 ent2 = ppc64_tlsld_got (ibfd2);
10696 if (!ent2->is_indirect
10697 && ent2->got.offset != (bfd_vma) -1
10698 && elf_gp (ibfd2) == elf_gp (ibfd))
10699 {
10700 ent2->is_indirect = TRUE;
10701 ent2->got.ent = ent;
10702 }
10703 }
10704 }
10705 }
10706
10707 /* Zap sizes of got sections. */
10708 htab->reliplt->rawsize = htab->reliplt->size;
10709 htab->reliplt->size -= htab->got_reli_size;
10710 htab->got_reli_size = 0;
10711
10712 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10713 {
10714 asection *got, *relgot;
10715
10716 if (!is_ppc64_elf (ibfd))
10717 continue;
10718
10719 got = ppc64_elf_tdata (ibfd)->got;
10720 if (got != NULL)
10721 {
10722 got->rawsize = got->size;
10723 got->size = 0;
10724 relgot = ppc64_elf_tdata (ibfd)->relgot;
10725 relgot->rawsize = relgot->size;
10726 relgot->size = 0;
10727 }
10728 }
10729
10730 /* Now reallocate the got, local syms first. We don't need to
10731 allocate section contents again since we never increase size. */
10732 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10733 {
10734 struct got_entry **lgot_ents;
10735 struct got_entry **end_lgot_ents;
10736 struct plt_entry **local_plt;
10737 struct plt_entry **end_local_plt;
10738 unsigned char *lgot_masks;
10739 bfd_size_type locsymcount;
10740 Elf_Internal_Shdr *symtab_hdr;
10741 asection *s, *srel;
10742
10743 if (!is_ppc64_elf (ibfd))
10744 continue;
10745
10746 lgot_ents = elf_local_got_ents (ibfd);
10747 if (!lgot_ents)
10748 continue;
10749
10750 symtab_hdr = &elf_symtab_hdr (ibfd);
10751 locsymcount = symtab_hdr->sh_info;
10752 end_lgot_ents = lgot_ents + locsymcount;
10753 local_plt = (struct plt_entry **) end_lgot_ents;
10754 end_local_plt = local_plt + locsymcount;
10755 lgot_masks = (unsigned char *) end_local_plt;
10756 s = ppc64_elf_tdata (ibfd)->got;
10757 srel = ppc64_elf_tdata (ibfd)->relgot;
10758 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10759 {
10760 struct got_entry *ent;
10761
10762 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
10763 {
10764 unsigned int num = 1;
10765 ent->got.offset = s->size;
10766 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10767 num = 2;
10768 s->size += num * 8;
10769 if (info->shared)
10770 srel->size += num * sizeof (Elf64_External_Rela);
10771 else if ((*lgot_masks & PLT_IFUNC) != 0)
10772 {
10773 htab->reliplt->size
10774 += num * sizeof (Elf64_External_Rela);
10775 htab->got_reli_size
10776 += num * sizeof (Elf64_External_Rela);
10777 }
10778 }
10779 }
10780 }
10781
10782 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
10783
10784 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10785 {
10786 struct got_entry *ent;
10787
10788 if (!is_ppc64_elf (ibfd))
10789 continue;
10790
10791 ent = ppc64_tlsld_got (ibfd);
10792 if (!ent->is_indirect
10793 && ent->got.offset != (bfd_vma) -1)
10794 {
10795 asection *s = ppc64_elf_tdata (ibfd)->got;
10796 ent->got.offset = s->size;
10797 s->size += 16;
10798 if (info->shared)
10799 {
10800 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10801 srel->size += sizeof (Elf64_External_Rela);
10802 }
10803 }
10804 }
10805
10806 done_something = htab->reliplt->rawsize != htab->reliplt->size;
10807 if (!done_something)
10808 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10809 {
10810 asection *got;
10811
10812 if (!is_ppc64_elf (ibfd))
10813 continue;
10814
10815 got = ppc64_elf_tdata (ibfd)->got;
10816 if (got != NULL)
10817 {
10818 done_something = got->rawsize != got->size;
10819 if (done_something)
10820 break;
10821 }
10822 }
10823
10824 if (done_something)
10825 (*htab->layout_sections_again) ();
10826
10827 /* Set up for second pass over toc sections to recalculate elf_gp
10828 on input sections. */
10829 htab->toc_bfd = NULL;
10830 htab->toc_first_sec = NULL;
10831 htab->second_toc_pass = TRUE;
10832 return done_something;
10833 }
10834
10835 /* Called after second pass of multitoc partitioning. */
10836
10837 void
10838 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
10839 {
10840 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10841
10842 /* After the second pass, toc_curr tracks the TOC offset used
10843 for code sections below in ppc64_elf_next_input_section. */
10844 htab->toc_curr = TOC_BASE_OFF;
10845 }
10846
10847 /* No toc references were found in ISEC. If the code in ISEC makes no
10848 calls, then there's no need to use toc adjusting stubs when branching
10849 into ISEC. Actually, indirect calls from ISEC are OK as they will
10850 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
10851 needed, and 2 if a cyclical call-graph was found but no other reason
10852 for a stub was detected. If called from the top level, a return of
10853 2 means the same as a return of 0. */
10854
10855 static int
10856 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
10857 {
10858 int ret;
10859
10860 /* Mark this section as checked. */
10861 isec->call_check_done = 1;
10862
10863 /* We know none of our code bearing sections will need toc stubs. */
10864 if ((isec->flags & SEC_LINKER_CREATED) != 0)
10865 return 0;
10866
10867 if (isec->size == 0)
10868 return 0;
10869
10870 if (isec->output_section == NULL)
10871 return 0;
10872
10873 ret = 0;
10874 if (isec->reloc_count != 0)
10875 {
10876 Elf_Internal_Rela *relstart, *rel;
10877 Elf_Internal_Sym *local_syms;
10878 struct ppc_link_hash_table *htab;
10879
10880 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
10881 info->keep_memory);
10882 if (relstart == NULL)
10883 return -1;
10884
10885 /* Look for branches to outside of this section. */
10886 local_syms = NULL;
10887 htab = ppc_hash_table (info);
10888 if (htab == NULL)
10889 return -1;
10890
10891 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
10892 {
10893 enum elf_ppc64_reloc_type r_type;
10894 unsigned long r_symndx;
10895 struct elf_link_hash_entry *h;
10896 struct ppc_link_hash_entry *eh;
10897 Elf_Internal_Sym *sym;
10898 asection *sym_sec;
10899 struct _opd_sec_data *opd;
10900 bfd_vma sym_value;
10901 bfd_vma dest;
10902
10903 r_type = ELF64_R_TYPE (rel->r_info);
10904 if (r_type != R_PPC64_REL24
10905 && r_type != R_PPC64_REL14
10906 && r_type != R_PPC64_REL14_BRTAKEN
10907 && r_type != R_PPC64_REL14_BRNTAKEN)
10908 continue;
10909
10910 r_symndx = ELF64_R_SYM (rel->r_info);
10911 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
10912 isec->owner))
10913 {
10914 ret = -1;
10915 break;
10916 }
10917
10918 /* Calls to dynamic lib functions go through a plt call stub
10919 that uses r2. */
10920 eh = (struct ppc_link_hash_entry *) h;
10921 if (eh != NULL
10922 && (eh->elf.plt.plist != NULL
10923 || (eh->oh != NULL
10924 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
10925 {
10926 ret = 1;
10927 break;
10928 }
10929
10930 if (sym_sec == NULL)
10931 /* Ignore other undefined symbols. */
10932 continue;
10933
10934 /* Assume branches to other sections not included in the
10935 link need stubs too, to cover -R and absolute syms. */
10936 if (sym_sec->output_section == NULL)
10937 {
10938 ret = 1;
10939 break;
10940 }
10941
10942 if (h == NULL)
10943 sym_value = sym->st_value;
10944 else
10945 {
10946 if (h->root.type != bfd_link_hash_defined
10947 && h->root.type != bfd_link_hash_defweak)
10948 abort ();
10949 sym_value = h->root.u.def.value;
10950 }
10951 sym_value += rel->r_addend;
10952
10953 /* If this branch reloc uses an opd sym, find the code section. */
10954 opd = get_opd_info (sym_sec);
10955 if (opd != NULL)
10956 {
10957 if (h == NULL && opd->adjust != NULL)
10958 {
10959 long adjust;
10960
10961 adjust = opd->adjust[sym->st_value / 8];
10962 if (adjust == -1)
10963 /* Assume deleted functions won't ever be called. */
10964 continue;
10965 sym_value += adjust;
10966 }
10967
10968 dest = opd_entry_value (sym_sec, sym_value,
10969 &sym_sec, NULL, FALSE);
10970 if (dest == (bfd_vma) -1)
10971 continue;
10972 }
10973 else
10974 dest = (sym_value
10975 + sym_sec->output_offset
10976 + sym_sec->output_section->vma);
10977
10978 /* Ignore branch to self. */
10979 if (sym_sec == isec)
10980 continue;
10981
10982 /* If the called function uses the toc, we need a stub. */
10983 if (sym_sec->has_toc_reloc
10984 || sym_sec->makes_toc_func_call)
10985 {
10986 ret = 1;
10987 break;
10988 }
10989
10990 /* Assume any branch that needs a long branch stub might in fact
10991 need a plt_branch stub. A plt_branch stub uses r2. */
10992 else if (dest - (isec->output_offset
10993 + isec->output_section->vma
10994 + rel->r_offset) + (1 << 25) >= (2 << 25))
10995 {
10996 ret = 1;
10997 break;
10998 }
10999
11000 /* If calling back to a section in the process of being
11001 tested, we can't say for sure that no toc adjusting stubs
11002 are needed, so don't return zero. */
11003 else if (sym_sec->call_check_in_progress)
11004 ret = 2;
11005
11006 /* Branches to another section that itself doesn't have any TOC
11007 references are OK. Recursively call ourselves to check. */
11008 else if (!sym_sec->call_check_done)
11009 {
11010 int recur;
11011
11012 /* Mark current section as indeterminate, so that other
11013 sections that call back to current won't be marked as
11014 known. */
11015 isec->call_check_in_progress = 1;
11016 recur = toc_adjusting_stub_needed (info, sym_sec);
11017 isec->call_check_in_progress = 0;
11018
11019 if (recur != 0)
11020 {
11021 ret = recur;
11022 if (recur != 2)
11023 break;
11024 }
11025 }
11026 }
11027
11028 if (local_syms != NULL
11029 && (elf_symtab_hdr (isec->owner).contents
11030 != (unsigned char *) local_syms))
11031 free (local_syms);
11032 if (elf_section_data (isec)->relocs != relstart)
11033 free (relstart);
11034 }
11035
11036 if ((ret & 1) == 0
11037 && isec->map_head.s != NULL
11038 && (strcmp (isec->output_section->name, ".init") == 0
11039 || strcmp (isec->output_section->name, ".fini") == 0))
11040 {
11041 if (isec->map_head.s->has_toc_reloc
11042 || isec->map_head.s->makes_toc_func_call)
11043 ret = 1;
11044 else if (!isec->map_head.s->call_check_done)
11045 {
11046 int recur;
11047 isec->call_check_in_progress = 1;
11048 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11049 isec->call_check_in_progress = 0;
11050 if (recur != 0)
11051 ret = recur;
11052 }
11053 }
11054
11055 if (ret == 1)
11056 isec->makes_toc_func_call = 1;
11057
11058 return ret;
11059 }
11060
11061 /* The linker repeatedly calls this function for each input section,
11062 in the order that input sections are linked into output sections.
11063 Build lists of input sections to determine groupings between which
11064 we may insert linker stubs. */
11065
11066 bfd_boolean
11067 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11068 {
11069 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11070
11071 if (htab == NULL)
11072 return FALSE;
11073
11074 if ((isec->output_section->flags & SEC_CODE) != 0
11075 && isec->output_section->index <= htab->top_index)
11076 {
11077 asection **list = htab->input_list + isec->output_section->index;
11078 /* Steal the link_sec pointer for our list. */
11079 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11080 /* This happens to make the list in reverse order,
11081 which is what we want. */
11082 PREV_SEC (isec) = *list;
11083 *list = isec;
11084 }
11085
11086 if (htab->multi_toc_needed)
11087 {
11088 /* If a code section has a function that uses the TOC then we need
11089 to use the right TOC (obviously). Also, make sure that .opd gets
11090 the correct TOC value for R_PPC64_TOC relocs that don't have or
11091 can't find their function symbol (shouldn't ever happen now).
11092 Also specially treat .fixup for the linux kernel. .fixup
11093 contains branches, but only back to the function that hit an
11094 exception. */
11095 if (isec->has_toc_reloc
11096 || (isec->flags & SEC_CODE) == 0
11097 || strcmp (isec->name, ".fixup") == 0)
11098 {
11099 if (elf_gp (isec->owner) != 0)
11100 htab->toc_curr = elf_gp (isec->owner);
11101 }
11102 else
11103 {
11104 if (!isec->call_check_done
11105 && toc_adjusting_stub_needed (info, isec) < 0)
11106 return FALSE;
11107 /* If we make a local call from this section, ie. a branch
11108 without a following nop, then we have no place to put a
11109 toc restoring insn. We must use the same toc group as
11110 the callee.
11111 Testing makes_toc_func_call actually tests for *any*
11112 calls to functions that need a good toc pointer. A more
11113 precise test would be better, as this one will set
11114 incorrect values for pasted .init/.fini fragments.
11115 (Fixed later in check_pasted_section.) */
11116 if (isec->makes_toc_func_call
11117 && elf_gp (isec->owner) != 0)
11118 htab->toc_curr = elf_gp (isec->owner);
11119 }
11120 }
11121
11122 /* Functions that don't use the TOC can belong in any TOC group.
11123 Use the last TOC base. */
11124 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11125 return TRUE;
11126 }
11127
11128 /* Check that all .init and .fini sections use the same toc, if they
11129 have toc relocs. */
11130
11131 static bfd_boolean
11132 check_pasted_section (struct bfd_link_info *info, const char *name)
11133 {
11134 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11135
11136 if (o != NULL)
11137 {
11138 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11139 bfd_vma toc_off = 0;
11140 asection *i;
11141
11142 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11143 if (i->has_toc_reloc)
11144 {
11145 if (toc_off == 0)
11146 toc_off = htab->stub_group[i->id].toc_off;
11147 else if (toc_off != htab->stub_group[i->id].toc_off)
11148 return FALSE;
11149 }
11150
11151 if (toc_off == 0)
11152 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11153 if (i->makes_toc_func_call)
11154 {
11155 toc_off = htab->stub_group[i->id].toc_off;
11156 break;
11157 }
11158
11159 /* Make sure the whole pasted function uses the same toc offset. */
11160 if (toc_off != 0)
11161 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11162 htab->stub_group[i->id].toc_off = toc_off;
11163 }
11164 return TRUE;
11165 }
11166
11167 bfd_boolean
11168 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11169 {
11170 return (check_pasted_section (info, ".init")
11171 & check_pasted_section (info, ".fini"));
11172 }
11173
11174 /* See whether we can group stub sections together. Grouping stub
11175 sections may result in fewer stubs. More importantly, we need to
11176 put all .init* and .fini* stubs at the beginning of the .init or
11177 .fini output sections respectively, because glibc splits the
11178 _init and _fini functions into multiple parts. Putting a stub in
11179 the middle of a function is not a good idea. */
11180
11181 static void
11182 group_sections (struct ppc_link_hash_table *htab,
11183 bfd_size_type stub_group_size,
11184 bfd_boolean stubs_always_before_branch)
11185 {
11186 asection **list;
11187 bfd_size_type stub14_group_size;
11188 bfd_boolean suppress_size_errors;
11189
11190 suppress_size_errors = FALSE;
11191 stub14_group_size = stub_group_size;
11192 if (stub_group_size == 1)
11193 {
11194 /* Default values. */
11195 if (stubs_always_before_branch)
11196 {
11197 stub_group_size = 0x1e00000;
11198 stub14_group_size = 0x7800;
11199 }
11200 else
11201 {
11202 stub_group_size = 0x1c00000;
11203 stub14_group_size = 0x7000;
11204 }
11205 suppress_size_errors = TRUE;
11206 }
11207
11208 list = htab->input_list + htab->top_index;
11209 do
11210 {
11211 asection *tail = *list;
11212 while (tail != NULL)
11213 {
11214 asection *curr;
11215 asection *prev;
11216 bfd_size_type total;
11217 bfd_boolean big_sec;
11218 bfd_vma curr_toc;
11219
11220 curr = tail;
11221 total = tail->size;
11222 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11223 && ppc64_elf_section_data (tail)->has_14bit_branch
11224 ? stub14_group_size : stub_group_size);
11225 if (big_sec && !suppress_size_errors)
11226 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11227 tail->owner, tail);
11228 curr_toc = htab->stub_group[tail->id].toc_off;
11229
11230 while ((prev = PREV_SEC (curr)) != NULL
11231 && ((total += curr->output_offset - prev->output_offset)
11232 < (ppc64_elf_section_data (prev) != NULL
11233 && ppc64_elf_section_data (prev)->has_14bit_branch
11234 ? stub14_group_size : stub_group_size))
11235 && htab->stub_group[prev->id].toc_off == curr_toc)
11236 curr = prev;
11237
11238 /* OK, the size from the start of CURR to the end is less
11239 than stub_group_size and thus can be handled by one stub
11240 section. (or the tail section is itself larger than
11241 stub_group_size, in which case we may be toast.) We
11242 should really be keeping track of the total size of stubs
11243 added here, as stubs contribute to the final output
11244 section size. That's a little tricky, and this way will
11245 only break if stubs added make the total size more than
11246 2^25, ie. for the default stub_group_size, if stubs total
11247 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11248 do
11249 {
11250 prev = PREV_SEC (tail);
11251 /* Set up this stub group. */
11252 htab->stub_group[tail->id].link_sec = curr;
11253 }
11254 while (tail != curr && (tail = prev) != NULL);
11255
11256 /* But wait, there's more! Input sections up to stub_group_size
11257 bytes before the stub section can be handled by it too.
11258 Don't do this if we have a really large section after the
11259 stubs, as adding more stubs increases the chance that
11260 branches may not reach into the stub section. */
11261 if (!stubs_always_before_branch && !big_sec)
11262 {
11263 total = 0;
11264 while (prev != NULL
11265 && ((total += tail->output_offset - prev->output_offset)
11266 < (ppc64_elf_section_data (prev) != NULL
11267 && ppc64_elf_section_data (prev)->has_14bit_branch
11268 ? stub14_group_size : stub_group_size))
11269 && htab->stub_group[prev->id].toc_off == curr_toc)
11270 {
11271 tail = prev;
11272 prev = PREV_SEC (tail);
11273 htab->stub_group[tail->id].link_sec = curr;
11274 }
11275 }
11276 tail = prev;
11277 }
11278 }
11279 while (list-- != htab->input_list);
11280 free (htab->input_list);
11281 #undef PREV_SEC
11282 }
11283
11284 static const unsigned char glink_eh_frame_cie[] =
11285 {
11286 0, 0, 0, 16, /* length. */
11287 0, 0, 0, 0, /* id. */
11288 1, /* CIE version. */
11289 'z', 'R', 0, /* Augmentation string. */
11290 4, /* Code alignment. */
11291 0x78, /* Data alignment. */
11292 65, /* RA reg. */
11293 1, /* Augmentation size. */
11294 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11295 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11296 };
11297
11298 /* Stripping output sections is normally done before dynamic section
11299 symbols have been allocated. This function is called later, and
11300 handles cases like htab->brlt which is mapped to its own output
11301 section. */
11302
11303 static void
11304 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11305 {
11306 if (isec->size == 0
11307 && isec->output_section->size == 0
11308 && !(isec->output_section->flags & SEC_KEEP)
11309 && !bfd_section_removed_from_list (info->output_bfd,
11310 isec->output_section)
11311 && elf_section_data (isec->output_section)->dynindx == 0)
11312 {
11313 isec->output_section->flags |= SEC_EXCLUDE;
11314 bfd_section_list_remove (info->output_bfd, isec->output_section);
11315 info->output_bfd->section_count--;
11316 }
11317 }
11318
11319 /* Determine and set the size of the stub section for a final link.
11320
11321 The basic idea here is to examine all the relocations looking for
11322 PC-relative calls to a target that is unreachable with a "bl"
11323 instruction. */
11324
11325 bfd_boolean
11326 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11327 bfd_boolean plt_static_chain, int plt_thread_safe,
11328 int plt_stub_align)
11329 {
11330 bfd_size_type stub_group_size;
11331 bfd_boolean stubs_always_before_branch;
11332 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11333
11334 if (htab == NULL)
11335 return FALSE;
11336
11337 htab->plt_static_chain = plt_static_chain;
11338 htab->plt_stub_align = plt_stub_align;
11339 if (plt_thread_safe == -1 && !info->executable)
11340 plt_thread_safe = 1;
11341 if (plt_thread_safe == -1)
11342 {
11343 static const char *const thread_starter[] =
11344 {
11345 "pthread_create",
11346 /* libstdc++ */
11347 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11348 /* librt */
11349 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11350 "mq_notify", "create_timer",
11351 /* libanl */
11352 "getaddrinfo_a",
11353 /* libgomp */
11354 "GOMP_parallel_start",
11355 "GOMP_parallel_loop_static_start",
11356 "GOMP_parallel_loop_dynamic_start",
11357 "GOMP_parallel_loop_guided_start",
11358 "GOMP_parallel_loop_runtime_start",
11359 "GOMP_parallel_sections_start",
11360 };
11361 unsigned i;
11362
11363 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11364 {
11365 struct elf_link_hash_entry *h;
11366 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11367 FALSE, FALSE, TRUE);
11368 plt_thread_safe = h != NULL && h->ref_regular;
11369 if (plt_thread_safe)
11370 break;
11371 }
11372 }
11373 htab->plt_thread_safe = plt_thread_safe;
11374 htab->dot_toc_dot = ((struct ppc_link_hash_entry *)
11375 elf_link_hash_lookup (&htab->elf, ".TOC.",
11376 FALSE, FALSE, TRUE));
11377 stubs_always_before_branch = group_size < 0;
11378 if (group_size < 0)
11379 stub_group_size = -group_size;
11380 else
11381 stub_group_size = group_size;
11382
11383 group_sections (htab, stub_group_size, stubs_always_before_branch);
11384
11385 while (1)
11386 {
11387 bfd *input_bfd;
11388 unsigned int bfd_indx;
11389 asection *stub_sec;
11390
11391 htab->stub_iteration += 1;
11392
11393 for (input_bfd = info->input_bfds, bfd_indx = 0;
11394 input_bfd != NULL;
11395 input_bfd = input_bfd->link_next, bfd_indx++)
11396 {
11397 Elf_Internal_Shdr *symtab_hdr;
11398 asection *section;
11399 Elf_Internal_Sym *local_syms = NULL;
11400
11401 if (!is_ppc64_elf (input_bfd))
11402 continue;
11403
11404 /* We'll need the symbol table in a second. */
11405 symtab_hdr = &elf_symtab_hdr (input_bfd);
11406 if (symtab_hdr->sh_info == 0)
11407 continue;
11408
11409 /* Walk over each section attached to the input bfd. */
11410 for (section = input_bfd->sections;
11411 section != NULL;
11412 section = section->next)
11413 {
11414 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11415
11416 /* If there aren't any relocs, then there's nothing more
11417 to do. */
11418 if ((section->flags & SEC_RELOC) == 0
11419 || (section->flags & SEC_ALLOC) == 0
11420 || (section->flags & SEC_LOAD) == 0
11421 || (section->flags & SEC_CODE) == 0
11422 || section->reloc_count == 0)
11423 continue;
11424
11425 /* If this section is a link-once section that will be
11426 discarded, then don't create any stubs. */
11427 if (section->output_section == NULL
11428 || section->output_section->owner != info->output_bfd)
11429 continue;
11430
11431 /* Get the relocs. */
11432 internal_relocs
11433 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11434 info->keep_memory);
11435 if (internal_relocs == NULL)
11436 goto error_ret_free_local;
11437
11438 /* Now examine each relocation. */
11439 irela = internal_relocs;
11440 irelaend = irela + section->reloc_count;
11441 for (; irela < irelaend; irela++)
11442 {
11443 enum elf_ppc64_reloc_type r_type;
11444 unsigned int r_indx;
11445 enum ppc_stub_type stub_type;
11446 struct ppc_stub_hash_entry *stub_entry;
11447 asection *sym_sec, *code_sec;
11448 bfd_vma sym_value, code_value;
11449 bfd_vma destination;
11450 bfd_boolean ok_dest;
11451 struct ppc_link_hash_entry *hash;
11452 struct ppc_link_hash_entry *fdh;
11453 struct elf_link_hash_entry *h;
11454 Elf_Internal_Sym *sym;
11455 char *stub_name;
11456 const asection *id_sec;
11457 struct _opd_sec_data *opd;
11458 struct plt_entry *plt_ent;
11459
11460 r_type = ELF64_R_TYPE (irela->r_info);
11461 r_indx = ELF64_R_SYM (irela->r_info);
11462
11463 if (r_type >= R_PPC64_max)
11464 {
11465 bfd_set_error (bfd_error_bad_value);
11466 goto error_ret_free_internal;
11467 }
11468
11469 /* Only look for stubs on branch instructions. */
11470 if (r_type != R_PPC64_REL24
11471 && r_type != R_PPC64_REL14
11472 && r_type != R_PPC64_REL14_BRTAKEN
11473 && r_type != R_PPC64_REL14_BRNTAKEN)
11474 continue;
11475
11476 /* Now determine the call target, its name, value,
11477 section. */
11478 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11479 r_indx, input_bfd))
11480 goto error_ret_free_internal;
11481 hash = (struct ppc_link_hash_entry *) h;
11482
11483 ok_dest = FALSE;
11484 fdh = NULL;
11485 sym_value = 0;
11486 if (hash == NULL)
11487 {
11488 sym_value = sym->st_value;
11489 ok_dest = TRUE;
11490 }
11491 else if (hash->elf.root.type == bfd_link_hash_defined
11492 || hash->elf.root.type == bfd_link_hash_defweak)
11493 {
11494 sym_value = hash->elf.root.u.def.value;
11495 if (sym_sec->output_section != NULL)
11496 ok_dest = TRUE;
11497 }
11498 else if (hash->elf.root.type == bfd_link_hash_undefweak
11499 || hash->elf.root.type == bfd_link_hash_undefined)
11500 {
11501 /* Recognise an old ABI func code entry sym, and
11502 use the func descriptor sym instead if it is
11503 defined. */
11504 if (hash->elf.root.root.string[0] == '.'
11505 && (fdh = lookup_fdh (hash, htab)) != NULL)
11506 {
11507 if (fdh->elf.root.type == bfd_link_hash_defined
11508 || fdh->elf.root.type == bfd_link_hash_defweak)
11509 {
11510 sym_sec = fdh->elf.root.u.def.section;
11511 sym_value = fdh->elf.root.u.def.value;
11512 if (sym_sec->output_section != NULL)
11513 ok_dest = TRUE;
11514 }
11515 else
11516 fdh = NULL;
11517 }
11518 }
11519 else
11520 {
11521 bfd_set_error (bfd_error_bad_value);
11522 goto error_ret_free_internal;
11523 }
11524
11525 destination = 0;
11526 if (ok_dest)
11527 {
11528 sym_value += irela->r_addend;
11529 destination = (sym_value
11530 + sym_sec->output_offset
11531 + sym_sec->output_section->vma);
11532 }
11533
11534 code_sec = sym_sec;
11535 code_value = sym_value;
11536 opd = get_opd_info (sym_sec);
11537 if (opd != NULL)
11538 {
11539 bfd_vma dest;
11540
11541 if (hash == NULL && opd->adjust != NULL)
11542 {
11543 long adjust = opd->adjust[sym_value / 8];
11544 if (adjust == -1)
11545 continue;
11546 code_value += adjust;
11547 sym_value += adjust;
11548 }
11549 dest = opd_entry_value (sym_sec, sym_value,
11550 &code_sec, &code_value, FALSE);
11551 if (dest != (bfd_vma) -1)
11552 {
11553 destination = dest;
11554 if (fdh != NULL)
11555 {
11556 /* Fixup old ABI sym to point at code
11557 entry. */
11558 hash->elf.root.type = bfd_link_hash_defweak;
11559 hash->elf.root.u.def.section = code_sec;
11560 hash->elf.root.u.def.value = code_value;
11561 }
11562 }
11563 }
11564
11565 /* Determine what (if any) linker stub is needed. */
11566 plt_ent = NULL;
11567 stub_type = ppc_type_of_stub (section, irela, &hash,
11568 &plt_ent, destination);
11569
11570 if (stub_type != ppc_stub_plt_call)
11571 {
11572 /* Check whether we need a TOC adjusting stub.
11573 Since the linker pastes together pieces from
11574 different object files when creating the
11575 _init and _fini functions, it may be that a
11576 call to what looks like a local sym is in
11577 fact a call needing a TOC adjustment. */
11578 if (code_sec != NULL
11579 && code_sec->output_section != NULL
11580 && (htab->stub_group[code_sec->id].toc_off
11581 != htab->stub_group[section->id].toc_off)
11582 && (code_sec->has_toc_reloc
11583 || code_sec->makes_toc_func_call))
11584 stub_type = ppc_stub_long_branch_r2off;
11585 }
11586
11587 if (stub_type == ppc_stub_none)
11588 continue;
11589
11590 /* __tls_get_addr calls might be eliminated. */
11591 if (stub_type != ppc_stub_plt_call
11592 && hash != NULL
11593 && (hash == htab->tls_get_addr
11594 || hash == htab->tls_get_addr_fd)
11595 && section->has_tls_reloc
11596 && irela != internal_relocs)
11597 {
11598 /* Get tls info. */
11599 unsigned char *tls_mask;
11600
11601 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
11602 irela - 1, input_bfd))
11603 goto error_ret_free_internal;
11604 if (*tls_mask != 0)
11605 continue;
11606 }
11607
11608 if (stub_type == ppc_stub_plt_call
11609 && irela + 1 < irelaend
11610 && irela[1].r_offset == irela->r_offset + 4
11611 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
11612 {
11613 if (!tocsave_find (htab, INSERT,
11614 &local_syms, irela + 1, input_bfd))
11615 goto error_ret_free_internal;
11616 }
11617 else if (stub_type == ppc_stub_plt_call)
11618 stub_type = ppc_stub_plt_call_r2save;
11619
11620 /* Support for grouping stub sections. */
11621 id_sec = htab->stub_group[section->id].link_sec;
11622
11623 /* Get the name of this stub. */
11624 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
11625 if (!stub_name)
11626 goto error_ret_free_internal;
11627
11628 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
11629 stub_name, FALSE, FALSE);
11630 if (stub_entry != NULL)
11631 {
11632 /* The proper stub has already been created. */
11633 free (stub_name);
11634 if (stub_type == ppc_stub_plt_call_r2save)
11635 stub_entry->stub_type = stub_type;
11636 continue;
11637 }
11638
11639 stub_entry = ppc_add_stub (stub_name, section, info);
11640 if (stub_entry == NULL)
11641 {
11642 free (stub_name);
11643 error_ret_free_internal:
11644 if (elf_section_data (section)->relocs == NULL)
11645 free (internal_relocs);
11646 error_ret_free_local:
11647 if (local_syms != NULL
11648 && (symtab_hdr->contents
11649 != (unsigned char *) local_syms))
11650 free (local_syms);
11651 return FALSE;
11652 }
11653
11654 stub_entry->stub_type = stub_type;
11655 if (stub_type != ppc_stub_plt_call
11656 && stub_type != ppc_stub_plt_call_r2save)
11657 {
11658 stub_entry->target_value = code_value;
11659 stub_entry->target_section = code_sec;
11660 }
11661 else
11662 {
11663 stub_entry->target_value = sym_value;
11664 stub_entry->target_section = sym_sec;
11665 }
11666 stub_entry->h = hash;
11667 stub_entry->plt_ent = plt_ent;
11668 stub_entry->addend = irela->r_addend;
11669
11670 if (stub_entry->h != NULL)
11671 htab->stub_globals += 1;
11672 }
11673
11674 /* We're done with the internal relocs, free them. */
11675 if (elf_section_data (section)->relocs != internal_relocs)
11676 free (internal_relocs);
11677 }
11678
11679 if (local_syms != NULL
11680 && symtab_hdr->contents != (unsigned char *) local_syms)
11681 {
11682 if (!info->keep_memory)
11683 free (local_syms);
11684 else
11685 symtab_hdr->contents = (unsigned char *) local_syms;
11686 }
11687 }
11688
11689 /* We may have added some stubs. Find out the new size of the
11690 stub sections. */
11691 for (stub_sec = htab->stub_bfd->sections;
11692 stub_sec != NULL;
11693 stub_sec = stub_sec->next)
11694 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11695 {
11696 stub_sec->rawsize = stub_sec->size;
11697 stub_sec->size = 0;
11698 stub_sec->reloc_count = 0;
11699 stub_sec->flags &= ~SEC_RELOC;
11700 }
11701
11702 htab->brlt->size = 0;
11703 htab->brlt->reloc_count = 0;
11704 htab->brlt->flags &= ~SEC_RELOC;
11705 if (htab->relbrlt != NULL)
11706 htab->relbrlt->size = 0;
11707
11708 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
11709
11710 if (info->emitrelocations
11711 && htab->glink != NULL && htab->glink->size != 0)
11712 {
11713 htab->glink->reloc_count = 1;
11714 htab->glink->flags |= SEC_RELOC;
11715 }
11716
11717 if (htab->glink_eh_frame != NULL
11718 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
11719 && htab->glink_eh_frame->output_section->size != 0)
11720 {
11721 size_t size = 0, align;
11722
11723 for (stub_sec = htab->stub_bfd->sections;
11724 stub_sec != NULL;
11725 stub_sec = stub_sec->next)
11726 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11727 size += 20;
11728 if (htab->glink != NULL && htab->glink->size != 0)
11729 size += 24;
11730 if (size != 0)
11731 size += sizeof (glink_eh_frame_cie);
11732 align = 1;
11733 align <<= htab->glink_eh_frame->output_section->alignment_power;
11734 align -= 1;
11735 size = (size + align) & ~align;
11736 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11737 htab->glink_eh_frame->size = size;
11738 }
11739
11740 if (htab->plt_stub_align != 0)
11741 for (stub_sec = htab->stub_bfd->sections;
11742 stub_sec != NULL;
11743 stub_sec = stub_sec->next)
11744 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11745 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
11746 & (-1 << htab->plt_stub_align));
11747
11748 for (stub_sec = htab->stub_bfd->sections;
11749 stub_sec != NULL;
11750 stub_sec = stub_sec->next)
11751 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11752 && stub_sec->rawsize != stub_sec->size)
11753 break;
11754
11755 /* Exit from this loop when no stubs have been added, and no stubs
11756 have changed size. */
11757 if (stub_sec == NULL
11758 && (htab->glink_eh_frame == NULL
11759 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
11760 break;
11761
11762 /* Ask the linker to do its stuff. */
11763 (*htab->layout_sections_again) ();
11764 }
11765
11766 maybe_strip_output (info, htab->brlt);
11767 if (htab->glink_eh_frame != NULL)
11768 maybe_strip_output (info, htab->glink_eh_frame);
11769
11770 return TRUE;
11771 }
11772
11773 /* Called after we have determined section placement. If sections
11774 move, we'll be called again. Provide a value for TOCstart. */
11775
11776 bfd_vma
11777 ppc64_elf_toc (bfd *obfd)
11778 {
11779 asection *s;
11780 bfd_vma TOCstart;
11781
11782 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
11783 order. The TOC starts where the first of these sections starts. */
11784 s = bfd_get_section_by_name (obfd, ".got");
11785 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11786 s = bfd_get_section_by_name (obfd, ".toc");
11787 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11788 s = bfd_get_section_by_name (obfd, ".tocbss");
11789 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11790 s = bfd_get_section_by_name (obfd, ".plt");
11791 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11792 {
11793 /* This may happen for
11794 o references to TOC base (SYM@toc / TOC[tc0]) without a
11795 .toc directive
11796 o bad linker script
11797 o --gc-sections and empty TOC sections
11798
11799 FIXME: Warn user? */
11800
11801 /* Look for a likely section. We probably won't even be
11802 using TOCstart. */
11803 for (s = obfd->sections; s != NULL; s = s->next)
11804 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
11805 | SEC_EXCLUDE))
11806 == (SEC_ALLOC | SEC_SMALL_DATA))
11807 break;
11808 if (s == NULL)
11809 for (s = obfd->sections; s != NULL; s = s->next)
11810 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
11811 == (SEC_ALLOC | SEC_SMALL_DATA))
11812 break;
11813 if (s == NULL)
11814 for (s = obfd->sections; s != NULL; s = s->next)
11815 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
11816 == SEC_ALLOC)
11817 break;
11818 if (s == NULL)
11819 for (s = obfd->sections; s != NULL; s = s->next)
11820 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
11821 break;
11822 }
11823
11824 TOCstart = 0;
11825 if (s != NULL)
11826 TOCstart = s->output_section->vma + s->output_offset;
11827
11828 return TOCstart;
11829 }
11830
11831 /* Build all the stubs associated with the current output file.
11832 The stubs are kept in a hash table attached to the main linker
11833 hash table. This function is called via gldelf64ppc_finish. */
11834
11835 bfd_boolean
11836 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
11837 struct bfd_link_info *info,
11838 char **stats)
11839 {
11840 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11841 asection *stub_sec;
11842 bfd_byte *p;
11843 int stub_sec_count = 0;
11844
11845 if (htab == NULL)
11846 return FALSE;
11847
11848 htab->emit_stub_syms = emit_stub_syms;
11849
11850 /* Allocate memory to hold the linker stubs. */
11851 for (stub_sec = htab->stub_bfd->sections;
11852 stub_sec != NULL;
11853 stub_sec = stub_sec->next)
11854 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11855 && stub_sec->size != 0)
11856 {
11857 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
11858 if (stub_sec->contents == NULL)
11859 return FALSE;
11860 /* We want to check that built size is the same as calculated
11861 size. rawsize is a convenient location to use. */
11862 stub_sec->rawsize = stub_sec->size;
11863 stub_sec->size = 0;
11864 }
11865
11866 if (htab->glink != NULL && htab->glink->size != 0)
11867 {
11868 unsigned int indx;
11869 bfd_vma plt0;
11870
11871 /* Build the .glink plt call stub. */
11872 if (htab->emit_stub_syms)
11873 {
11874 struct elf_link_hash_entry *h;
11875 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
11876 TRUE, FALSE, FALSE);
11877 if (h == NULL)
11878 return FALSE;
11879 if (h->root.type == bfd_link_hash_new)
11880 {
11881 h->root.type = bfd_link_hash_defined;
11882 h->root.u.def.section = htab->glink;
11883 h->root.u.def.value = 8;
11884 h->ref_regular = 1;
11885 h->def_regular = 1;
11886 h->ref_regular_nonweak = 1;
11887 h->forced_local = 1;
11888 h->non_elf = 0;
11889 }
11890 }
11891 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
11892 if (info->emitrelocations)
11893 {
11894 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
11895 if (r == NULL)
11896 return FALSE;
11897 r->r_offset = (htab->glink->output_offset
11898 + htab->glink->output_section->vma);
11899 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
11900 r->r_addend = plt0;
11901 }
11902 p = htab->glink->contents;
11903 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
11904 bfd_put_64 (htab->glink->owner, plt0, p);
11905 p += 8;
11906 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
11907 p += 4;
11908 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
11909 p += 4;
11910 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
11911 p += 4;
11912 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
11913 p += 4;
11914 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
11915 p += 4;
11916 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
11917 p += 4;
11918 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
11919 p += 4;
11920 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
11921 p += 4;
11922 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
11923 p += 4;
11924 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
11925 p += 4;
11926 bfd_put_32 (htab->glink->owner, BCTR, p);
11927 p += 4;
11928 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
11929 {
11930 bfd_put_32 (htab->glink->owner, NOP, p);
11931 p += 4;
11932 }
11933
11934 /* Build the .glink lazy link call stubs. */
11935 indx = 0;
11936 while (p < htab->glink->contents + htab->glink->size)
11937 {
11938 if (indx < 0x8000)
11939 {
11940 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
11941 p += 4;
11942 }
11943 else
11944 {
11945 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
11946 p += 4;
11947 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
11948 p += 4;
11949 }
11950 bfd_put_32 (htab->glink->owner,
11951 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
11952 indx++;
11953 p += 4;
11954 }
11955 htab->glink->rawsize = p - htab->glink->contents;
11956 }
11957
11958 if (htab->brlt->size != 0)
11959 {
11960 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
11961 htab->brlt->size);
11962 if (htab->brlt->contents == NULL)
11963 return FALSE;
11964 }
11965 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
11966 {
11967 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
11968 htab->relbrlt->size);
11969 if (htab->relbrlt->contents == NULL)
11970 return FALSE;
11971 }
11972
11973 if (htab->glink_eh_frame != NULL
11974 && htab->glink_eh_frame->size != 0)
11975 {
11976 bfd_vma val;
11977 bfd_byte *last_fde;
11978 size_t last_fde_len, size, align, pad;
11979
11980 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
11981 if (p == NULL)
11982 return FALSE;
11983 htab->glink_eh_frame->contents = p;
11984 last_fde = p;
11985
11986 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11987
11988 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
11989 /* CIE length (rewrite in case little-endian). */
11990 last_fde_len = sizeof (glink_eh_frame_cie) - 4;
11991 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
11992 p += sizeof (glink_eh_frame_cie);
11993
11994 for (stub_sec = htab->stub_bfd->sections;
11995 stub_sec != NULL;
11996 stub_sec = stub_sec->next)
11997 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11998 {
11999 last_fde = p;
12000 last_fde_len = 16;
12001 /* FDE length. */
12002 bfd_put_32 (htab->elf.dynobj, 16, p);
12003 p += 4;
12004 /* CIE pointer. */
12005 val = p - htab->glink_eh_frame->contents;
12006 bfd_put_32 (htab->elf.dynobj, val, p);
12007 p += 4;
12008 /* Offset to stub section. */
12009 val = (stub_sec->output_section->vma
12010 + stub_sec->output_offset);
12011 val -= (htab->glink_eh_frame->output_section->vma
12012 + htab->glink_eh_frame->output_offset);
12013 val -= p - htab->glink_eh_frame->contents;
12014 if (val + 0x80000000 > 0xffffffff)
12015 {
12016 info->callbacks->einfo
12017 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12018 stub_sec->name);
12019 return FALSE;
12020 }
12021 bfd_put_32 (htab->elf.dynobj, val, p);
12022 p += 4;
12023 /* stub section size. */
12024 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
12025 p += 4;
12026 /* Augmentation. */
12027 p += 1;
12028 /* Pad. */
12029 p += 3;
12030 }
12031 if (htab->glink != NULL && htab->glink->size != 0)
12032 {
12033 last_fde = p;
12034 last_fde_len = 20;
12035 /* FDE length. */
12036 bfd_put_32 (htab->elf.dynobj, 20, p);
12037 p += 4;
12038 /* CIE pointer. */
12039 val = p - htab->glink_eh_frame->contents;
12040 bfd_put_32 (htab->elf.dynobj, val, p);
12041 p += 4;
12042 /* Offset to .glink. */
12043 val = (htab->glink->output_section->vma
12044 + htab->glink->output_offset
12045 + 8);
12046 val -= (htab->glink_eh_frame->output_section->vma
12047 + htab->glink_eh_frame->output_offset);
12048 val -= p - htab->glink_eh_frame->contents;
12049 if (val + 0x80000000 > 0xffffffff)
12050 {
12051 info->callbacks->einfo
12052 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
12053 htab->glink->name);
12054 return FALSE;
12055 }
12056 bfd_put_32 (htab->elf.dynobj, val, p);
12057 p += 4;
12058 /* .glink size. */
12059 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p);
12060 p += 4;
12061 /* Augmentation. */
12062 p += 1;
12063
12064 *p++ = DW_CFA_advance_loc + 1;
12065 *p++ = DW_CFA_register;
12066 *p++ = 65;
12067 *p++ = 12;
12068 *p++ = DW_CFA_advance_loc + 4;
12069 *p++ = DW_CFA_restore_extended;
12070 *p++ = 65;
12071 }
12072 /* Subsume any padding into the last FDE if user .eh_frame
12073 sections are aligned more than glink_eh_frame. Otherwise any
12074 zero padding will be seen as a terminator. */
12075 size = p - htab->glink_eh_frame->contents;
12076 align = 1;
12077 align <<= htab->glink_eh_frame->output_section->alignment_power;
12078 align -= 1;
12079 pad = ((size + align) & ~align) - size;
12080 htab->glink_eh_frame->size = size + pad;
12081 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
12082 }
12083
12084 /* Build the stubs as directed by the stub hash table. */
12085 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12086
12087 if (htab->relbrlt != NULL)
12088 htab->relbrlt->reloc_count = 0;
12089
12090 if (htab->plt_stub_align != 0)
12091 for (stub_sec = htab->stub_bfd->sections;
12092 stub_sec != NULL;
12093 stub_sec = stub_sec->next)
12094 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12095 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12096 & (-1 << htab->plt_stub_align));
12097
12098 for (stub_sec = htab->stub_bfd->sections;
12099 stub_sec != NULL;
12100 stub_sec = stub_sec->next)
12101 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12102 {
12103 stub_sec_count += 1;
12104 if (stub_sec->rawsize != stub_sec->size)
12105 break;
12106 }
12107
12108 if (stub_sec != NULL
12109 || htab->glink->rawsize != htab->glink->size
12110 || (htab->glink_eh_frame != NULL
12111 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12112 {
12113 htab->stub_error = TRUE;
12114 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12115 }
12116
12117 if (htab->stub_error)
12118 return FALSE;
12119
12120 if (stats != NULL)
12121 {
12122 *stats = bfd_malloc (500);
12123 if (*stats == NULL)
12124 return FALSE;
12125
12126 sprintf (*stats, _("linker stubs in %u group%s\n"
12127 " branch %lu\n"
12128 " toc adjust %lu\n"
12129 " long branch %lu\n"
12130 " long toc adj %lu\n"
12131 " plt call %lu\n"
12132 " plt call toc %lu"),
12133 stub_sec_count,
12134 stub_sec_count == 1 ? "" : "s",
12135 htab->stub_count[ppc_stub_long_branch - 1],
12136 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12137 htab->stub_count[ppc_stub_plt_branch - 1],
12138 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12139 htab->stub_count[ppc_stub_plt_call - 1],
12140 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12141 }
12142 return TRUE;
12143 }
12144
12145 /* This function undoes the changes made by add_symbol_adjust. */
12146
12147 static bfd_boolean
12148 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12149 {
12150 struct ppc_link_hash_entry *eh;
12151
12152 if (h->root.type == bfd_link_hash_indirect)
12153 return TRUE;
12154
12155 eh = (struct ppc_link_hash_entry *) h;
12156 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12157 return TRUE;
12158
12159 eh->elf.root.type = bfd_link_hash_undefined;
12160 return TRUE;
12161 }
12162
12163 void
12164 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12165 {
12166 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12167
12168 if (htab != NULL)
12169 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12170 }
12171
12172 /* What to do when ld finds relocations against symbols defined in
12173 discarded sections. */
12174
12175 static unsigned int
12176 ppc64_elf_action_discarded (asection *sec)
12177 {
12178 if (strcmp (".opd", sec->name) == 0)
12179 return 0;
12180
12181 if (strcmp (".toc", sec->name) == 0)
12182 return 0;
12183
12184 if (strcmp (".toc1", sec->name) == 0)
12185 return 0;
12186
12187 return _bfd_elf_default_action_discarded (sec);
12188 }
12189
12190 /* The RELOCATE_SECTION function is called by the ELF backend linker
12191 to handle the relocations for a section.
12192
12193 The relocs are always passed as Rela structures; if the section
12194 actually uses Rel structures, the r_addend field will always be
12195 zero.
12196
12197 This function is responsible for adjust the section contents as
12198 necessary, and (if using Rela relocs and generating a
12199 relocatable output file) adjusting the reloc addend as
12200 necessary.
12201
12202 This function does not have to worry about setting the reloc
12203 address or the reloc symbol index.
12204
12205 LOCAL_SYMS is a pointer to the swapped in local symbols.
12206
12207 LOCAL_SECTIONS is an array giving the section in the input file
12208 corresponding to the st_shndx field of each local symbol.
12209
12210 The global hash table entry for the global symbols can be found
12211 via elf_sym_hashes (input_bfd).
12212
12213 When generating relocatable output, this function must handle
12214 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12215 going to be the section symbol corresponding to the output
12216 section, which means that the addend must be adjusted
12217 accordingly. */
12218
12219 static bfd_boolean
12220 ppc64_elf_relocate_section (bfd *output_bfd,
12221 struct bfd_link_info *info,
12222 bfd *input_bfd,
12223 asection *input_section,
12224 bfd_byte *contents,
12225 Elf_Internal_Rela *relocs,
12226 Elf_Internal_Sym *local_syms,
12227 asection **local_sections)
12228 {
12229 struct ppc_link_hash_table *htab;
12230 Elf_Internal_Shdr *symtab_hdr;
12231 struct elf_link_hash_entry **sym_hashes;
12232 Elf_Internal_Rela *rel;
12233 Elf_Internal_Rela *relend;
12234 Elf_Internal_Rela outrel;
12235 bfd_byte *loc;
12236 struct got_entry **local_got_ents;
12237 bfd_vma TOCstart;
12238 bfd_boolean ret = TRUE;
12239 bfd_boolean is_opd;
12240 /* Assume 'at' branch hints. */
12241 bfd_boolean is_isa_v2 = TRUE;
12242 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12243
12244 /* Initialize howto table if needed. */
12245 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12246 ppc_howto_init ();
12247
12248 htab = ppc_hash_table (info);
12249 if (htab == NULL)
12250 return FALSE;
12251
12252 /* Don't relocate stub sections. */
12253 if (input_section->owner == htab->stub_bfd)
12254 return TRUE;
12255
12256 BFD_ASSERT (is_ppc64_elf (input_bfd));
12257
12258 local_got_ents = elf_local_got_ents (input_bfd);
12259 TOCstart = elf_gp (output_bfd);
12260 symtab_hdr = &elf_symtab_hdr (input_bfd);
12261 sym_hashes = elf_sym_hashes (input_bfd);
12262 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12263
12264 rel = relocs;
12265 relend = relocs + input_section->reloc_count;
12266 for (; rel < relend; rel++)
12267 {
12268 enum elf_ppc64_reloc_type r_type;
12269 bfd_vma addend;
12270 bfd_reloc_status_type r;
12271 Elf_Internal_Sym *sym;
12272 asection *sec;
12273 struct elf_link_hash_entry *h_elf;
12274 struct ppc_link_hash_entry *h;
12275 struct ppc_link_hash_entry *fdh;
12276 const char *sym_name;
12277 unsigned long r_symndx, toc_symndx;
12278 bfd_vma toc_addend;
12279 unsigned char tls_mask, tls_gd, tls_type;
12280 unsigned char sym_type;
12281 bfd_vma relocation;
12282 bfd_boolean unresolved_reloc;
12283 bfd_boolean warned;
12284 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
12285 unsigned int insn;
12286 unsigned int mask;
12287 struct ppc_stub_hash_entry *stub_entry;
12288 bfd_vma max_br_offset;
12289 bfd_vma from;
12290 const Elf_Internal_Rela orig_rel = *rel;
12291
12292 r_type = ELF64_R_TYPE (rel->r_info);
12293 r_symndx = ELF64_R_SYM (rel->r_info);
12294
12295 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12296 symbol of the previous ADDR64 reloc. The symbol gives us the
12297 proper TOC base to use. */
12298 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12299 && rel != relocs
12300 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12301 && is_opd)
12302 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12303
12304 sym = NULL;
12305 sec = NULL;
12306 h_elf = NULL;
12307 sym_name = NULL;
12308 unresolved_reloc = FALSE;
12309 warned = FALSE;
12310
12311 if (r_symndx < symtab_hdr->sh_info)
12312 {
12313 /* It's a local symbol. */
12314 struct _opd_sec_data *opd;
12315
12316 sym = local_syms + r_symndx;
12317 sec = local_sections[r_symndx];
12318 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12319 sym_type = ELF64_ST_TYPE (sym->st_info);
12320 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12321 opd = get_opd_info (sec);
12322 if (opd != NULL && opd->adjust != NULL)
12323 {
12324 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12325 if (adjust == -1)
12326 relocation = 0;
12327 else
12328 {
12329 /* If this is a relocation against the opd section sym
12330 and we have edited .opd, adjust the reloc addend so
12331 that ld -r and ld --emit-relocs output is correct.
12332 If it is a reloc against some other .opd symbol,
12333 then the symbol value will be adjusted later. */
12334 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12335 rel->r_addend += adjust;
12336 else
12337 relocation += adjust;
12338 }
12339 }
12340 }
12341 else
12342 {
12343 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12344 r_symndx, symtab_hdr, sym_hashes,
12345 h_elf, sec, relocation,
12346 unresolved_reloc, warned);
12347 sym_name = h_elf->root.root.string;
12348 sym_type = h_elf->type;
12349 if (sec != NULL
12350 && sec->owner == output_bfd
12351 && strcmp (sec->name, ".opd") == 0)
12352 {
12353 /* This is a symbol defined in a linker script. All
12354 such are defined in output sections, even those
12355 defined by simple assignment from a symbol defined in
12356 an input section. Transfer the symbol to an
12357 appropriate input .opd section, so that a branch to
12358 this symbol will be mapped to the location specified
12359 by the opd entry. */
12360 struct bfd_link_order *lo;
12361 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
12362 if (lo->type == bfd_indirect_link_order)
12363 {
12364 asection *isec = lo->u.indirect.section;
12365 if (h_elf->root.u.def.value >= isec->output_offset
12366 && h_elf->root.u.def.value < (isec->output_offset
12367 + isec->size))
12368 {
12369 h_elf->root.u.def.value -= isec->output_offset;
12370 h_elf->root.u.def.section = isec;
12371 sec = isec;
12372 break;
12373 }
12374 }
12375 }
12376 if (h_elf == &htab->dot_toc_dot->elf)
12377 {
12378 relocation = (TOCstart
12379 + htab->stub_group[input_section->id].toc_off);
12380 sec = bfd_abs_section_ptr;
12381 unresolved_reloc = FALSE;
12382 }
12383 }
12384 h = (struct ppc_link_hash_entry *) h_elf;
12385
12386 if (sec != NULL && discarded_section (sec))
12387 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12388 rel, 1, relend,
12389 ppc64_elf_howto_table[r_type], 0,
12390 contents);
12391
12392 if (info->relocatable)
12393 continue;
12394
12395 /* TLS optimizations. Replace instruction sequences and relocs
12396 based on information we collected in tls_optimize. We edit
12397 RELOCS so that --emit-relocs will output something sensible
12398 for the final instruction stream. */
12399 tls_mask = 0;
12400 tls_gd = 0;
12401 toc_symndx = 0;
12402 if (h != NULL)
12403 tls_mask = h->tls_mask;
12404 else if (local_got_ents != NULL)
12405 {
12406 struct plt_entry **local_plt = (struct plt_entry **)
12407 (local_got_ents + symtab_hdr->sh_info);
12408 unsigned char *lgot_masks = (unsigned char *)
12409 (local_plt + symtab_hdr->sh_info);
12410 tls_mask = lgot_masks[r_symndx];
12411 }
12412 if (tls_mask == 0
12413 && (r_type == R_PPC64_TLS
12414 || r_type == R_PPC64_TLSGD
12415 || r_type == R_PPC64_TLSLD))
12416 {
12417 /* Check for toc tls entries. */
12418 unsigned char *toc_tls;
12419
12420 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12421 &local_syms, rel, input_bfd))
12422 return FALSE;
12423
12424 if (toc_tls)
12425 tls_mask = *toc_tls;
12426 }
12427
12428 /* Check that tls relocs are used with tls syms, and non-tls
12429 relocs are used with non-tls syms. */
12430 if (r_symndx != STN_UNDEF
12431 && r_type != R_PPC64_NONE
12432 && (h == NULL
12433 || h->elf.root.type == bfd_link_hash_defined
12434 || h->elf.root.type == bfd_link_hash_defweak)
12435 && (IS_PPC64_TLS_RELOC (r_type)
12436 != (sym_type == STT_TLS
12437 || (sym_type == STT_SECTION
12438 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
12439 {
12440 if (tls_mask != 0
12441 && (r_type == R_PPC64_TLS
12442 || r_type == R_PPC64_TLSGD
12443 || r_type == R_PPC64_TLSLD))
12444 /* R_PPC64_TLS is OK against a symbol in the TOC. */
12445 ;
12446 else
12447 info->callbacks->einfo
12448 (!IS_PPC64_TLS_RELOC (r_type)
12449 ? _("%P: %H: %s used with TLS symbol `%T'\n")
12450 : _("%P: %H: %s used with non-TLS symbol `%T'\n"),
12451 input_bfd, input_section, rel->r_offset,
12452 ppc64_elf_howto_table[r_type]->name,
12453 sym_name);
12454 }
12455
12456 /* Ensure reloc mapping code below stays sane. */
12457 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
12458 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
12459 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
12460 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
12461 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
12462 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
12463 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
12464 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
12465 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
12466 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
12467 abort ();
12468
12469 switch (r_type)
12470 {
12471 default:
12472 break;
12473
12474 case R_PPC64_LO_DS_OPT:
12475 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12476 if ((insn & (0x3f << 26)) != 58u << 26)
12477 abort ();
12478 insn += (14u << 26) - (58u << 26);
12479 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12480 r_type = R_PPC64_TOC16_LO;
12481 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12482 break;
12483
12484 case R_PPC64_TOC16:
12485 case R_PPC64_TOC16_LO:
12486 case R_PPC64_TOC16_DS:
12487 case R_PPC64_TOC16_LO_DS:
12488 {
12489 /* Check for toc tls entries. */
12490 unsigned char *toc_tls;
12491 int retval;
12492
12493 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12494 &local_syms, rel, input_bfd);
12495 if (retval == 0)
12496 return FALSE;
12497
12498 if (toc_tls)
12499 {
12500 tls_mask = *toc_tls;
12501 if (r_type == R_PPC64_TOC16_DS
12502 || r_type == R_PPC64_TOC16_LO_DS)
12503 {
12504 if (tls_mask != 0
12505 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
12506 goto toctprel;
12507 }
12508 else
12509 {
12510 /* If we found a GD reloc pair, then we might be
12511 doing a GD->IE transition. */
12512 if (retval == 2)
12513 {
12514 tls_gd = TLS_TPRELGD;
12515 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12516 goto tls_ldgd_opt;
12517 }
12518 else if (retval == 3)
12519 {
12520 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12521 goto tls_ldgd_opt;
12522 }
12523 }
12524 }
12525 }
12526 break;
12527
12528 case R_PPC64_GOT_TPREL16_HI:
12529 case R_PPC64_GOT_TPREL16_HA:
12530 if (tls_mask != 0
12531 && (tls_mask & TLS_TPREL) == 0)
12532 {
12533 rel->r_offset -= d_offset;
12534 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12535 r_type = R_PPC64_NONE;
12536 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12537 }
12538 break;
12539
12540 case R_PPC64_GOT_TPREL16_DS:
12541 case R_PPC64_GOT_TPREL16_LO_DS:
12542 if (tls_mask != 0
12543 && (tls_mask & TLS_TPREL) == 0)
12544 {
12545 toctprel:
12546 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12547 insn &= 31 << 21;
12548 insn |= 0x3c0d0000; /* addis 0,13,0 */
12549 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12550 r_type = R_PPC64_TPREL16_HA;
12551 if (toc_symndx != 0)
12552 {
12553 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12554 rel->r_addend = toc_addend;
12555 /* We changed the symbol. Start over in order to
12556 get h, sym, sec etc. right. */
12557 rel--;
12558 continue;
12559 }
12560 else
12561 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12562 }
12563 break;
12564
12565 case R_PPC64_TLS:
12566 if (tls_mask != 0
12567 && (tls_mask & TLS_TPREL) == 0)
12568 {
12569 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
12570 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
12571 if (insn == 0)
12572 abort ();
12573 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12574 /* Was PPC64_TLS which sits on insn boundary, now
12575 PPC64_TPREL16_LO which is at low-order half-word. */
12576 rel->r_offset += d_offset;
12577 r_type = R_PPC64_TPREL16_LO;
12578 if (toc_symndx != 0)
12579 {
12580 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12581 rel->r_addend = toc_addend;
12582 /* We changed the symbol. Start over in order to
12583 get h, sym, sec etc. right. */
12584 rel--;
12585 continue;
12586 }
12587 else
12588 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12589 }
12590 break;
12591
12592 case R_PPC64_GOT_TLSGD16_HI:
12593 case R_PPC64_GOT_TLSGD16_HA:
12594 tls_gd = TLS_TPRELGD;
12595 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12596 goto tls_gdld_hi;
12597 break;
12598
12599 case R_PPC64_GOT_TLSLD16_HI:
12600 case R_PPC64_GOT_TLSLD16_HA:
12601 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12602 {
12603 tls_gdld_hi:
12604 if ((tls_mask & tls_gd) != 0)
12605 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12606 + R_PPC64_GOT_TPREL16_DS);
12607 else
12608 {
12609 rel->r_offset -= d_offset;
12610 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12611 r_type = R_PPC64_NONE;
12612 }
12613 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12614 }
12615 break;
12616
12617 case R_PPC64_GOT_TLSGD16:
12618 case R_PPC64_GOT_TLSGD16_LO:
12619 tls_gd = TLS_TPRELGD;
12620 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12621 goto tls_ldgd_opt;
12622 break;
12623
12624 case R_PPC64_GOT_TLSLD16:
12625 case R_PPC64_GOT_TLSLD16_LO:
12626 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12627 {
12628 unsigned int insn1, insn2, insn3;
12629 bfd_vma offset;
12630
12631 tls_ldgd_opt:
12632 offset = (bfd_vma) -1;
12633 /* If not using the newer R_PPC64_TLSGD/LD to mark
12634 __tls_get_addr calls, we must trust that the call
12635 stays with its arg setup insns, ie. that the next
12636 reloc is the __tls_get_addr call associated with
12637 the current reloc. Edit both insns. */
12638 if (input_section->has_tls_get_addr_call
12639 && rel + 1 < relend
12640 && branch_reloc_hash_match (input_bfd, rel + 1,
12641 htab->tls_get_addr,
12642 htab->tls_get_addr_fd))
12643 offset = rel[1].r_offset;
12644 if ((tls_mask & tls_gd) != 0)
12645 {
12646 /* IE */
12647 insn1 = bfd_get_32 (output_bfd,
12648 contents + rel->r_offset - d_offset);
12649 insn1 &= (1 << 26) - (1 << 2);
12650 insn1 |= 58 << 26; /* ld */
12651 insn2 = 0x7c636a14; /* add 3,3,13 */
12652 if (offset != (bfd_vma) -1)
12653 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12654 if ((tls_mask & TLS_EXPLICIT) == 0)
12655 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12656 + R_PPC64_GOT_TPREL16_DS);
12657 else
12658 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
12659 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12660 }
12661 else
12662 {
12663 /* LE */
12664 insn1 = 0x3c6d0000; /* addis 3,13,0 */
12665 insn2 = 0x38630000; /* addi 3,3,0 */
12666 if (tls_gd == 0)
12667 {
12668 /* Was an LD reloc. */
12669 if (toc_symndx)
12670 sec = local_sections[toc_symndx];
12671 for (r_symndx = 0;
12672 r_symndx < symtab_hdr->sh_info;
12673 r_symndx++)
12674 if (local_sections[r_symndx] == sec)
12675 break;
12676 if (r_symndx >= symtab_hdr->sh_info)
12677 r_symndx = STN_UNDEF;
12678 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12679 if (r_symndx != STN_UNDEF)
12680 rel->r_addend -= (local_syms[r_symndx].st_value
12681 + sec->output_offset
12682 + sec->output_section->vma);
12683 }
12684 else if (toc_symndx != 0)
12685 {
12686 r_symndx = toc_symndx;
12687 rel->r_addend = toc_addend;
12688 }
12689 r_type = R_PPC64_TPREL16_HA;
12690 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12691 if (offset != (bfd_vma) -1)
12692 {
12693 rel[1].r_info = ELF64_R_INFO (r_symndx,
12694 R_PPC64_TPREL16_LO);
12695 rel[1].r_offset = offset + d_offset;
12696 rel[1].r_addend = rel->r_addend;
12697 }
12698 }
12699 bfd_put_32 (output_bfd, insn1,
12700 contents + rel->r_offset - d_offset);
12701 if (offset != (bfd_vma) -1)
12702 {
12703 insn3 = bfd_get_32 (output_bfd,
12704 contents + offset + 4);
12705 if (insn3 == NOP
12706 || insn3 == CROR_151515 || insn3 == CROR_313131)
12707 {
12708 rel[1].r_offset += 4;
12709 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12710 insn2 = NOP;
12711 }
12712 bfd_put_32 (output_bfd, insn2, contents + offset);
12713 }
12714 if ((tls_mask & tls_gd) == 0
12715 && (tls_gd == 0 || toc_symndx != 0))
12716 {
12717 /* We changed the symbol. Start over in order
12718 to get h, sym, sec etc. right. */
12719 rel--;
12720 continue;
12721 }
12722 }
12723 break;
12724
12725 case R_PPC64_TLSGD:
12726 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12727 {
12728 unsigned int insn2, insn3;
12729 bfd_vma offset = rel->r_offset;
12730
12731 if ((tls_mask & TLS_TPRELGD) != 0)
12732 {
12733 /* IE */
12734 r_type = R_PPC64_NONE;
12735 insn2 = 0x7c636a14; /* add 3,3,13 */
12736 }
12737 else
12738 {
12739 /* LE */
12740 if (toc_symndx != 0)
12741 {
12742 r_symndx = toc_symndx;
12743 rel->r_addend = toc_addend;
12744 }
12745 r_type = R_PPC64_TPREL16_LO;
12746 rel->r_offset = offset + d_offset;
12747 insn2 = 0x38630000; /* addi 3,3,0 */
12748 }
12749 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12750 /* Zap the reloc on the _tls_get_addr call too. */
12751 BFD_ASSERT (offset == rel[1].r_offset);
12752 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12753 insn3 = bfd_get_32 (output_bfd,
12754 contents + offset + 4);
12755 if (insn3 == NOP
12756 || insn3 == CROR_151515 || insn3 == CROR_313131)
12757 {
12758 rel->r_offset += 4;
12759 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12760 insn2 = NOP;
12761 }
12762 bfd_put_32 (output_bfd, insn2, contents + offset);
12763 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
12764 {
12765 rel--;
12766 continue;
12767 }
12768 }
12769 break;
12770
12771 case R_PPC64_TLSLD:
12772 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12773 {
12774 unsigned int insn2, insn3;
12775 bfd_vma offset = rel->r_offset;
12776
12777 if (toc_symndx)
12778 sec = local_sections[toc_symndx];
12779 for (r_symndx = 0;
12780 r_symndx < symtab_hdr->sh_info;
12781 r_symndx++)
12782 if (local_sections[r_symndx] == sec)
12783 break;
12784 if (r_symndx >= symtab_hdr->sh_info)
12785 r_symndx = STN_UNDEF;
12786 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12787 if (r_symndx != STN_UNDEF)
12788 rel->r_addend -= (local_syms[r_symndx].st_value
12789 + sec->output_offset
12790 + sec->output_section->vma);
12791
12792 r_type = R_PPC64_TPREL16_LO;
12793 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12794 rel->r_offset = offset + d_offset;
12795 /* Zap the reloc on the _tls_get_addr call too. */
12796 BFD_ASSERT (offset == rel[1].r_offset);
12797 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12798 insn2 = 0x38630000; /* addi 3,3,0 */
12799 insn3 = bfd_get_32 (output_bfd,
12800 contents + offset + 4);
12801 if (insn3 == NOP
12802 || insn3 == CROR_151515 || insn3 == CROR_313131)
12803 {
12804 rel->r_offset += 4;
12805 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12806 insn2 = NOP;
12807 }
12808 bfd_put_32 (output_bfd, insn2, contents + offset);
12809 rel--;
12810 continue;
12811 }
12812 break;
12813
12814 case R_PPC64_DTPMOD64:
12815 if (rel + 1 < relend
12816 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
12817 && rel[1].r_offset == rel->r_offset + 8)
12818 {
12819 if ((tls_mask & TLS_GD) == 0)
12820 {
12821 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
12822 if ((tls_mask & TLS_TPRELGD) != 0)
12823 r_type = R_PPC64_TPREL64;
12824 else
12825 {
12826 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12827 r_type = R_PPC64_NONE;
12828 }
12829 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12830 }
12831 }
12832 else
12833 {
12834 if ((tls_mask & TLS_LD) == 0)
12835 {
12836 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12837 r_type = R_PPC64_NONE;
12838 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12839 }
12840 }
12841 break;
12842
12843 case R_PPC64_TPREL64:
12844 if ((tls_mask & TLS_TPREL) == 0)
12845 {
12846 r_type = R_PPC64_NONE;
12847 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12848 }
12849 break;
12850 }
12851
12852 /* Handle other relocations that tweak non-addend part of insn. */
12853 insn = 0;
12854 max_br_offset = 1 << 25;
12855 addend = rel->r_addend;
12856 reloc_dest = DEST_NORMAL;
12857 switch (r_type)
12858 {
12859 default:
12860 break;
12861
12862 case R_PPC64_TOCSAVE:
12863 if (relocation + addend == (rel->r_offset
12864 + input_section->output_offset
12865 + input_section->output_section->vma)
12866 && tocsave_find (htab, NO_INSERT,
12867 &local_syms, rel, input_bfd))
12868 {
12869 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
12870 if (insn == NOP
12871 || insn == CROR_151515 || insn == CROR_313131)
12872 bfd_put_32 (input_bfd, STD_R2_40R1,
12873 contents + rel->r_offset);
12874 }
12875 break;
12876
12877 /* Branch taken prediction relocations. */
12878 case R_PPC64_ADDR14_BRTAKEN:
12879 case R_PPC64_REL14_BRTAKEN:
12880 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
12881 /* Fall thru. */
12882
12883 /* Branch not taken prediction relocations. */
12884 case R_PPC64_ADDR14_BRNTAKEN:
12885 case R_PPC64_REL14_BRNTAKEN:
12886 insn |= bfd_get_32 (output_bfd,
12887 contents + rel->r_offset) & ~(0x01 << 21);
12888 /* Fall thru. */
12889
12890 case R_PPC64_REL14:
12891 max_br_offset = 1 << 15;
12892 /* Fall thru. */
12893
12894 case R_PPC64_REL24:
12895 /* Calls to functions with a different TOC, such as calls to
12896 shared objects, need to alter the TOC pointer. This is
12897 done using a linkage stub. A REL24 branching to these
12898 linkage stubs needs to be followed by a nop, as the nop
12899 will be replaced with an instruction to restore the TOC
12900 base pointer. */
12901 fdh = h;
12902 if (h != NULL
12903 && h->oh != NULL
12904 && h->oh->is_func_descriptor)
12905 fdh = ppc_follow_link (h->oh);
12906 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
12907 htab);
12908 if (stub_entry != NULL
12909 && (stub_entry->stub_type == ppc_stub_plt_call
12910 || stub_entry->stub_type == ppc_stub_plt_call_r2save
12911 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
12912 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
12913 {
12914 bfd_boolean can_plt_call = FALSE;
12915
12916 if (rel->r_offset + 8 <= input_section->size)
12917 {
12918 unsigned long nop;
12919 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
12920 if (nop == NOP
12921 || nop == CROR_151515 || nop == CROR_313131)
12922 {
12923 if (h != NULL
12924 && (h == htab->tls_get_addr_fd
12925 || h == htab->tls_get_addr)
12926 && !htab->no_tls_get_addr_opt)
12927 {
12928 /* Special stub used, leave nop alone. */
12929 }
12930 else
12931 bfd_put_32 (input_bfd, LD_R2_40R1,
12932 contents + rel->r_offset + 4);
12933 can_plt_call = TRUE;
12934 }
12935 }
12936
12937 if (!can_plt_call)
12938 {
12939 if (stub_entry->stub_type == ppc_stub_plt_call
12940 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12941 {
12942 /* If this is a plain branch rather than a branch
12943 and link, don't require a nop. However, don't
12944 allow tail calls in a shared library as they
12945 will result in r2 being corrupted. */
12946 unsigned long br;
12947 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
12948 if (info->executable && (br & 1) == 0)
12949 can_plt_call = TRUE;
12950 else
12951 stub_entry = NULL;
12952 }
12953 else if (h != NULL
12954 && strcmp (h->elf.root.root.string,
12955 ".__libc_start_main") == 0)
12956 {
12957 /* Allow crt1 branch to go via a toc adjusting stub. */
12958 can_plt_call = TRUE;
12959 }
12960 else
12961 {
12962 info->callbacks->einfo
12963 (_("%P: %H: call to `%T' lacks nop, can't restore toc; "
12964 "recompile with -fPIC"),
12965 input_bfd, input_section, rel->r_offset, sym_name);
12966
12967 bfd_set_error (bfd_error_bad_value);
12968 ret = FALSE;
12969 }
12970 }
12971
12972 if (can_plt_call
12973 && (stub_entry->stub_type == ppc_stub_plt_call
12974 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
12975 unresolved_reloc = FALSE;
12976 }
12977
12978 if ((stub_entry == NULL
12979 || stub_entry->stub_type == ppc_stub_long_branch
12980 || stub_entry->stub_type == ppc_stub_plt_branch)
12981 && get_opd_info (sec) != NULL)
12982 {
12983 /* The branch destination is the value of the opd entry. */
12984 bfd_vma off = (relocation + addend
12985 - sec->output_section->vma
12986 - sec->output_offset);
12987 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
12988 if (dest != (bfd_vma) -1)
12989 {
12990 relocation = dest;
12991 addend = 0;
12992 reloc_dest = DEST_OPD;
12993 }
12994 }
12995
12996 /* If the branch is out of reach we ought to have a long
12997 branch stub. */
12998 from = (rel->r_offset
12999 + input_section->output_offset
13000 + input_section->output_section->vma);
13001
13002 if (stub_entry != NULL
13003 && (stub_entry->stub_type == ppc_stub_long_branch
13004 || stub_entry->stub_type == ppc_stub_plt_branch)
13005 && (r_type == R_PPC64_ADDR14_BRTAKEN
13006 || r_type == R_PPC64_ADDR14_BRNTAKEN
13007 || (relocation + addend - from + max_br_offset
13008 < 2 * max_br_offset)))
13009 /* Don't use the stub if this branch is in range. */
13010 stub_entry = NULL;
13011
13012 if (stub_entry != NULL)
13013 {
13014 /* Munge up the value and addend so that we call the stub
13015 rather than the procedure directly. */
13016 relocation = (stub_entry->stub_offset
13017 + stub_entry->stub_sec->output_offset
13018 + stub_entry->stub_sec->output_section->vma);
13019 addend = 0;
13020 reloc_dest = DEST_STUB;
13021
13022 if ((stub_entry->stub_type == ppc_stub_plt_call
13023 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13024 && (ALWAYS_EMIT_R2SAVE
13025 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
13026 && rel + 1 < relend
13027 && rel[1].r_offset == rel->r_offset + 4
13028 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
13029 relocation += 4;
13030 }
13031
13032 if (insn != 0)
13033 {
13034 if (is_isa_v2)
13035 {
13036 /* Set 'a' bit. This is 0b00010 in BO field for branch
13037 on CR(BI) insns (BO == 001at or 011at), and 0b01000
13038 for branch on CTR insns (BO == 1a00t or 1a01t). */
13039 if ((insn & (0x14 << 21)) == (0x04 << 21))
13040 insn |= 0x02 << 21;
13041 else if ((insn & (0x14 << 21)) == (0x10 << 21))
13042 insn |= 0x08 << 21;
13043 else
13044 break;
13045 }
13046 else
13047 {
13048 /* Invert 'y' bit if not the default. */
13049 if ((bfd_signed_vma) (relocation + addend - from) < 0)
13050 insn ^= 0x01 << 21;
13051 }
13052
13053 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
13054 }
13055
13056 /* NOP out calls to undefined weak functions.
13057 We can thus call a weak function without first
13058 checking whether the function is defined. */
13059 else if (h != NULL
13060 && h->elf.root.type == bfd_link_hash_undefweak
13061 && h->elf.dynindx == -1
13062 && r_type == R_PPC64_REL24
13063 && relocation == 0
13064 && addend == 0)
13065 {
13066 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
13067 continue;
13068 }
13069 break;
13070 }
13071
13072 /* Set `addend'. */
13073 tls_type = 0;
13074 switch (r_type)
13075 {
13076 default:
13077 info->callbacks->einfo
13078 (_("%P: %B: unknown relocation type %d for `%T'\n"),
13079 input_bfd, (int) r_type, sym_name);
13080
13081 bfd_set_error (bfd_error_bad_value);
13082 ret = FALSE;
13083 continue;
13084
13085 case R_PPC64_NONE:
13086 case R_PPC64_TLS:
13087 case R_PPC64_TLSGD:
13088 case R_PPC64_TLSLD:
13089 case R_PPC64_TOCSAVE:
13090 case R_PPC64_GNU_VTINHERIT:
13091 case R_PPC64_GNU_VTENTRY:
13092 continue;
13093
13094 /* GOT16 relocations. Like an ADDR16 using the symbol's
13095 address in the GOT as relocation value instead of the
13096 symbol's value itself. Also, create a GOT entry for the
13097 symbol and put the symbol value there. */
13098 case R_PPC64_GOT_TLSGD16:
13099 case R_PPC64_GOT_TLSGD16_LO:
13100 case R_PPC64_GOT_TLSGD16_HI:
13101 case R_PPC64_GOT_TLSGD16_HA:
13102 tls_type = TLS_TLS | TLS_GD;
13103 goto dogot;
13104
13105 case R_PPC64_GOT_TLSLD16:
13106 case R_PPC64_GOT_TLSLD16_LO:
13107 case R_PPC64_GOT_TLSLD16_HI:
13108 case R_PPC64_GOT_TLSLD16_HA:
13109 tls_type = TLS_TLS | TLS_LD;
13110 goto dogot;
13111
13112 case R_PPC64_GOT_TPREL16_DS:
13113 case R_PPC64_GOT_TPREL16_LO_DS:
13114 case R_PPC64_GOT_TPREL16_HI:
13115 case R_PPC64_GOT_TPREL16_HA:
13116 tls_type = TLS_TLS | TLS_TPREL;
13117 goto dogot;
13118
13119 case R_PPC64_GOT_DTPREL16_DS:
13120 case R_PPC64_GOT_DTPREL16_LO_DS:
13121 case R_PPC64_GOT_DTPREL16_HI:
13122 case R_PPC64_GOT_DTPREL16_HA:
13123 tls_type = TLS_TLS | TLS_DTPREL;
13124 goto dogot;
13125
13126 case R_PPC64_GOT16:
13127 case R_PPC64_GOT16_LO:
13128 case R_PPC64_GOT16_HI:
13129 case R_PPC64_GOT16_HA:
13130 case R_PPC64_GOT16_DS:
13131 case R_PPC64_GOT16_LO_DS:
13132 dogot:
13133 {
13134 /* Relocation is to the entry for this symbol in the global
13135 offset table. */
13136 asection *got;
13137 bfd_vma *offp;
13138 bfd_vma off;
13139 unsigned long indx = 0;
13140 struct got_entry *ent;
13141
13142 if (tls_type == (TLS_TLS | TLS_LD)
13143 && (h == NULL
13144 || !h->elf.def_dynamic))
13145 ent = ppc64_tlsld_got (input_bfd);
13146 else
13147 {
13148
13149 if (h != NULL)
13150 {
13151 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13152 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13153 &h->elf)
13154 || (info->shared
13155 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13156 /* This is actually a static link, or it is a
13157 -Bsymbolic link and the symbol is defined
13158 locally, or the symbol was forced to be local
13159 because of a version file. */
13160 ;
13161 else
13162 {
13163 BFD_ASSERT (h->elf.dynindx != -1);
13164 indx = h->elf.dynindx;
13165 unresolved_reloc = FALSE;
13166 }
13167 ent = h->elf.got.glist;
13168 }
13169 else
13170 {
13171 if (local_got_ents == NULL)
13172 abort ();
13173 ent = local_got_ents[r_symndx];
13174 }
13175
13176 for (; ent != NULL; ent = ent->next)
13177 if (ent->addend == orig_rel.r_addend
13178 && ent->owner == input_bfd
13179 && ent->tls_type == tls_type)
13180 break;
13181 }
13182
13183 if (ent == NULL)
13184 abort ();
13185 if (ent->is_indirect)
13186 ent = ent->got.ent;
13187 offp = &ent->got.offset;
13188 got = ppc64_elf_tdata (ent->owner)->got;
13189 if (got == NULL)
13190 abort ();
13191
13192 /* The offset must always be a multiple of 8. We use the
13193 least significant bit to record whether we have already
13194 processed this entry. */
13195 off = *offp;
13196 if ((off & 1) != 0)
13197 off &= ~1;
13198 else
13199 {
13200 /* Generate relocs for the dynamic linker, except in
13201 the case of TLSLD where we'll use one entry per
13202 module. */
13203 asection *relgot;
13204 bfd_boolean ifunc;
13205
13206 *offp = off | 1;
13207 relgot = NULL;
13208 ifunc = (h != NULL
13209 ? h->elf.type == STT_GNU_IFUNC
13210 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13211 if ((info->shared || indx != 0)
13212 && (h == NULL
13213 || (tls_type == (TLS_TLS | TLS_LD)
13214 && !h->elf.def_dynamic)
13215 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13216 || h->elf.root.type != bfd_link_hash_undefweak))
13217 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13218 else if (ifunc)
13219 relgot = htab->reliplt;
13220 if (relgot != NULL)
13221 {
13222 outrel.r_offset = (got->output_section->vma
13223 + got->output_offset
13224 + off);
13225 outrel.r_addend = addend;
13226 if (tls_type & (TLS_LD | TLS_GD))
13227 {
13228 outrel.r_addend = 0;
13229 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13230 if (tls_type == (TLS_TLS | TLS_GD))
13231 {
13232 loc = relgot->contents;
13233 loc += (relgot->reloc_count++
13234 * sizeof (Elf64_External_Rela));
13235 bfd_elf64_swap_reloca_out (output_bfd,
13236 &outrel, loc);
13237 outrel.r_offset += 8;
13238 outrel.r_addend = addend;
13239 outrel.r_info
13240 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13241 }
13242 }
13243 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13244 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13245 else if (tls_type == (TLS_TLS | TLS_TPREL))
13246 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13247 else if (indx != 0)
13248 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13249 else
13250 {
13251 if (ifunc)
13252 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13253 else
13254 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13255
13256 /* Write the .got section contents for the sake
13257 of prelink. */
13258 loc = got->contents + off;
13259 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13260 loc);
13261 }
13262
13263 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13264 {
13265 outrel.r_addend += relocation;
13266 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13267 outrel.r_addend -= htab->elf.tls_sec->vma;
13268 }
13269 loc = relgot->contents;
13270 loc += (relgot->reloc_count++
13271 * sizeof (Elf64_External_Rela));
13272 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13273 }
13274
13275 /* Init the .got section contents here if we're not
13276 emitting a reloc. */
13277 else
13278 {
13279 relocation += addend;
13280 if (tls_type == (TLS_TLS | TLS_LD))
13281 relocation = 1;
13282 else if (tls_type != 0)
13283 {
13284 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13285 if (tls_type == (TLS_TLS | TLS_TPREL))
13286 relocation += DTP_OFFSET - TP_OFFSET;
13287
13288 if (tls_type == (TLS_TLS | TLS_GD))
13289 {
13290 bfd_put_64 (output_bfd, relocation,
13291 got->contents + off + 8);
13292 relocation = 1;
13293 }
13294 }
13295
13296 bfd_put_64 (output_bfd, relocation,
13297 got->contents + off);
13298 }
13299 }
13300
13301 if (off >= (bfd_vma) -2)
13302 abort ();
13303
13304 relocation = got->output_section->vma + got->output_offset + off;
13305 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
13306 }
13307 break;
13308
13309 case R_PPC64_PLT16_HA:
13310 case R_PPC64_PLT16_HI:
13311 case R_PPC64_PLT16_LO:
13312 case R_PPC64_PLT32:
13313 case R_PPC64_PLT64:
13314 /* Relocation is to the entry for this symbol in the
13315 procedure linkage table. */
13316
13317 /* Resolve a PLT reloc against a local symbol directly,
13318 without using the procedure linkage table. */
13319 if (h == NULL)
13320 break;
13321
13322 /* It's possible that we didn't make a PLT entry for this
13323 symbol. This happens when statically linking PIC code,
13324 or when using -Bsymbolic. Go find a match if there is a
13325 PLT entry. */
13326 if (htab->plt != NULL)
13327 {
13328 struct plt_entry *ent;
13329 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
13330 if (ent->addend == orig_rel.r_addend
13331 && ent->plt.offset != (bfd_vma) -1)
13332 {
13333 relocation = (htab->plt->output_section->vma
13334 + htab->plt->output_offset
13335 + ent->plt.offset);
13336 unresolved_reloc = FALSE;
13337 }
13338 }
13339 break;
13340
13341 case R_PPC64_TOC:
13342 /* Relocation value is TOC base. */
13343 relocation = TOCstart;
13344 if (r_symndx == STN_UNDEF)
13345 relocation += htab->stub_group[input_section->id].toc_off;
13346 else if (unresolved_reloc)
13347 ;
13348 else if (sec != NULL && sec->id <= htab->top_id)
13349 relocation += htab->stub_group[sec->id].toc_off;
13350 else
13351 unresolved_reloc = TRUE;
13352 goto dodyn;
13353
13354 /* TOC16 relocs. We want the offset relative to the TOC base,
13355 which is the address of the start of the TOC plus 0x8000.
13356 The TOC consists of sections .got, .toc, .tocbss, and .plt,
13357 in this order. */
13358 case R_PPC64_TOC16:
13359 case R_PPC64_TOC16_LO:
13360 case R_PPC64_TOC16_HI:
13361 case R_PPC64_TOC16_DS:
13362 case R_PPC64_TOC16_LO_DS:
13363 case R_PPC64_TOC16_HA:
13364 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
13365 break;
13366
13367 /* Relocate against the beginning of the section. */
13368 case R_PPC64_SECTOFF:
13369 case R_PPC64_SECTOFF_LO:
13370 case R_PPC64_SECTOFF_HI:
13371 case R_PPC64_SECTOFF_DS:
13372 case R_PPC64_SECTOFF_LO_DS:
13373 case R_PPC64_SECTOFF_HA:
13374 if (sec != NULL)
13375 addend -= sec->output_section->vma;
13376 break;
13377
13378 case R_PPC64_REL16:
13379 case R_PPC64_REL16_LO:
13380 case R_PPC64_REL16_HI:
13381 case R_PPC64_REL16_HA:
13382 break;
13383
13384 case R_PPC64_REL14:
13385 case R_PPC64_REL14_BRNTAKEN:
13386 case R_PPC64_REL14_BRTAKEN:
13387 case R_PPC64_REL24:
13388 break;
13389
13390 case R_PPC64_TPREL16:
13391 case R_PPC64_TPREL16_LO:
13392 case R_PPC64_TPREL16_HI:
13393 case R_PPC64_TPREL16_HA:
13394 case R_PPC64_TPREL16_DS:
13395 case R_PPC64_TPREL16_LO_DS:
13396 case R_PPC64_TPREL16_HIGHER:
13397 case R_PPC64_TPREL16_HIGHERA:
13398 case R_PPC64_TPREL16_HIGHEST:
13399 case R_PPC64_TPREL16_HIGHESTA:
13400 if (h != NULL
13401 && h->elf.root.type == bfd_link_hash_undefweak
13402 && h->elf.dynindx == -1)
13403 {
13404 /* Make this relocation against an undefined weak symbol
13405 resolve to zero. This is really just a tweak, since
13406 code using weak externs ought to check that they are
13407 defined before using them. */
13408 bfd_byte *p = contents + rel->r_offset - d_offset;
13409
13410 insn = bfd_get_32 (output_bfd, p);
13411 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
13412 if (insn != 0)
13413 bfd_put_32 (output_bfd, insn, p);
13414 break;
13415 }
13416 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13417 if (info->shared)
13418 /* The TPREL16 relocs shouldn't really be used in shared
13419 libs as they will result in DT_TEXTREL being set, but
13420 support them anyway. */
13421 goto dodyn;
13422 break;
13423
13424 case R_PPC64_DTPREL16:
13425 case R_PPC64_DTPREL16_LO:
13426 case R_PPC64_DTPREL16_HI:
13427 case R_PPC64_DTPREL16_HA:
13428 case R_PPC64_DTPREL16_DS:
13429 case R_PPC64_DTPREL16_LO_DS:
13430 case R_PPC64_DTPREL16_HIGHER:
13431 case R_PPC64_DTPREL16_HIGHERA:
13432 case R_PPC64_DTPREL16_HIGHEST:
13433 case R_PPC64_DTPREL16_HIGHESTA:
13434 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13435 break;
13436
13437 case R_PPC64_DTPMOD64:
13438 relocation = 1;
13439 addend = 0;
13440 goto dodyn;
13441
13442 case R_PPC64_TPREL64:
13443 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13444 goto dodyn;
13445
13446 case R_PPC64_DTPREL64:
13447 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13448 /* Fall thru */
13449
13450 /* Relocations that may need to be propagated if this is a
13451 dynamic object. */
13452 case R_PPC64_REL30:
13453 case R_PPC64_REL32:
13454 case R_PPC64_REL64:
13455 case R_PPC64_ADDR14:
13456 case R_PPC64_ADDR14_BRNTAKEN:
13457 case R_PPC64_ADDR14_BRTAKEN:
13458 case R_PPC64_ADDR16:
13459 case R_PPC64_ADDR16_DS:
13460 case R_PPC64_ADDR16_HA:
13461 case R_PPC64_ADDR16_HI:
13462 case R_PPC64_ADDR16_HIGHER:
13463 case R_PPC64_ADDR16_HIGHERA:
13464 case R_PPC64_ADDR16_HIGHEST:
13465 case R_PPC64_ADDR16_HIGHESTA:
13466 case R_PPC64_ADDR16_LO:
13467 case R_PPC64_ADDR16_LO_DS:
13468 case R_PPC64_ADDR24:
13469 case R_PPC64_ADDR32:
13470 case R_PPC64_ADDR64:
13471 case R_PPC64_UADDR16:
13472 case R_PPC64_UADDR32:
13473 case R_PPC64_UADDR64:
13474 dodyn:
13475 if ((input_section->flags & SEC_ALLOC) == 0)
13476 break;
13477
13478 if (NO_OPD_RELOCS && is_opd)
13479 break;
13480
13481 if ((info->shared
13482 && (h == NULL
13483 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13484 || h->elf.root.type != bfd_link_hash_undefweak)
13485 && (must_be_dyn_reloc (info, r_type)
13486 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
13487 || (ELIMINATE_COPY_RELOCS
13488 && !info->shared
13489 && h != NULL
13490 && h->elf.dynindx != -1
13491 && !h->elf.non_got_ref
13492 && !h->elf.def_regular)
13493 || (!info->shared
13494 && (h != NULL
13495 ? h->elf.type == STT_GNU_IFUNC
13496 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
13497 {
13498 bfd_boolean skip, relocate;
13499 asection *sreloc;
13500 bfd_vma out_off;
13501
13502 /* When generating a dynamic object, these relocations
13503 are copied into the output file to be resolved at run
13504 time. */
13505
13506 skip = FALSE;
13507 relocate = FALSE;
13508
13509 out_off = _bfd_elf_section_offset (output_bfd, info,
13510 input_section, rel->r_offset);
13511 if (out_off == (bfd_vma) -1)
13512 skip = TRUE;
13513 else if (out_off == (bfd_vma) -2)
13514 skip = TRUE, relocate = TRUE;
13515 out_off += (input_section->output_section->vma
13516 + input_section->output_offset);
13517 outrel.r_offset = out_off;
13518 outrel.r_addend = rel->r_addend;
13519
13520 /* Optimize unaligned reloc use. */
13521 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
13522 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
13523 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
13524 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
13525 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
13526 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
13527 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
13528 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
13529 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
13530
13531 if (skip)
13532 memset (&outrel, 0, sizeof outrel);
13533 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
13534 && !is_opd
13535 && r_type != R_PPC64_TOC)
13536 {
13537 BFD_ASSERT (h->elf.dynindx != -1);
13538 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
13539 }
13540 else
13541 {
13542 /* This symbol is local, or marked to become local,
13543 or this is an opd section reloc which must point
13544 at a local function. */
13545 outrel.r_addend += relocation;
13546 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
13547 {
13548 if (is_opd && h != NULL)
13549 {
13550 /* Lie about opd entries. This case occurs
13551 when building shared libraries and we
13552 reference a function in another shared
13553 lib. The same thing happens for a weak
13554 definition in an application that's
13555 overridden by a strong definition in a
13556 shared lib. (I believe this is a generic
13557 bug in binutils handling of weak syms.)
13558 In these cases we won't use the opd
13559 entry in this lib. */
13560 unresolved_reloc = FALSE;
13561 }
13562 if (!is_opd
13563 && r_type == R_PPC64_ADDR64
13564 && (h != NULL
13565 ? h->elf.type == STT_GNU_IFUNC
13566 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
13567 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13568 else
13569 {
13570 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13571
13572 /* We need to relocate .opd contents for ld.so.
13573 Prelink also wants simple and consistent rules
13574 for relocs. This make all RELATIVE relocs have
13575 *r_offset equal to r_addend. */
13576 relocate = TRUE;
13577 }
13578 }
13579 else
13580 {
13581 long indx = 0;
13582
13583 if (h != NULL
13584 ? h->elf.type == STT_GNU_IFUNC
13585 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13586 {
13587 info->callbacks->einfo
13588 (_("%P: %H: %s for indirect "
13589 "function `%T' unsupported\n"),
13590 input_bfd, input_section, rel->r_offset,
13591 ppc64_elf_howto_table[r_type]->name,
13592 sym_name);
13593 ret = FALSE;
13594 }
13595 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
13596 ;
13597 else if (sec == NULL || sec->owner == NULL)
13598 {
13599 bfd_set_error (bfd_error_bad_value);
13600 return FALSE;
13601 }
13602 else
13603 {
13604 asection *osec;
13605
13606 osec = sec->output_section;
13607 indx = elf_section_data (osec)->dynindx;
13608
13609 if (indx == 0)
13610 {
13611 if ((osec->flags & SEC_READONLY) == 0
13612 && htab->elf.data_index_section != NULL)
13613 osec = htab->elf.data_index_section;
13614 else
13615 osec = htab->elf.text_index_section;
13616 indx = elf_section_data (osec)->dynindx;
13617 }
13618 BFD_ASSERT (indx != 0);
13619
13620 /* We are turning this relocation into one
13621 against a section symbol, so subtract out
13622 the output section's address but not the
13623 offset of the input section in the output
13624 section. */
13625 outrel.r_addend -= osec->vma;
13626 }
13627
13628 outrel.r_info = ELF64_R_INFO (indx, r_type);
13629 }
13630 }
13631
13632 sreloc = elf_section_data (input_section)->sreloc;
13633 if (!htab->elf.dynamic_sections_created)
13634 sreloc = htab->reliplt;
13635 if (sreloc == NULL)
13636 abort ();
13637
13638 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
13639 >= sreloc->size)
13640 abort ();
13641 loc = sreloc->contents;
13642 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
13643 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13644
13645 /* If this reloc is against an external symbol, it will
13646 be computed at runtime, so there's no need to do
13647 anything now. However, for the sake of prelink ensure
13648 that the section contents are a known value. */
13649 if (! relocate)
13650 {
13651 unresolved_reloc = FALSE;
13652 /* The value chosen here is quite arbitrary as ld.so
13653 ignores section contents except for the special
13654 case of .opd where the contents might be accessed
13655 before relocation. Choose zero, as that won't
13656 cause reloc overflow. */
13657 relocation = 0;
13658 addend = 0;
13659 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
13660 to improve backward compatibility with older
13661 versions of ld. */
13662 if (r_type == R_PPC64_ADDR64)
13663 addend = outrel.r_addend;
13664 /* Adjust pc_relative relocs to have zero in *r_offset. */
13665 else if (ppc64_elf_howto_table[r_type]->pc_relative)
13666 addend = (input_section->output_section->vma
13667 + input_section->output_offset
13668 + rel->r_offset);
13669 }
13670 }
13671 break;
13672
13673 case R_PPC64_COPY:
13674 case R_PPC64_GLOB_DAT:
13675 case R_PPC64_JMP_SLOT:
13676 case R_PPC64_JMP_IREL:
13677 case R_PPC64_RELATIVE:
13678 /* We shouldn't ever see these dynamic relocs in relocatable
13679 files. */
13680 /* Fall through. */
13681
13682 case R_PPC64_PLTGOT16:
13683 case R_PPC64_PLTGOT16_DS:
13684 case R_PPC64_PLTGOT16_HA:
13685 case R_PPC64_PLTGOT16_HI:
13686 case R_PPC64_PLTGOT16_LO:
13687 case R_PPC64_PLTGOT16_LO_DS:
13688 case R_PPC64_PLTREL32:
13689 case R_PPC64_PLTREL64:
13690 /* These ones haven't been implemented yet. */
13691
13692 info->callbacks->einfo
13693 (_("%P: %B: %s is not supported for `%T'\n"),
13694 input_bfd,
13695 ppc64_elf_howto_table[r_type]->name, sym_name);
13696
13697 bfd_set_error (bfd_error_invalid_operation);
13698 ret = FALSE;
13699 continue;
13700 }
13701
13702 /* Multi-instruction sequences that access the TOC can be
13703 optimized, eg. addis ra,r2,0; addi rb,ra,x;
13704 to nop; addi rb,r2,x; */
13705 switch (r_type)
13706 {
13707 default:
13708 break;
13709
13710 case R_PPC64_GOT_TLSLD16_HI:
13711 case R_PPC64_GOT_TLSGD16_HI:
13712 case R_PPC64_GOT_TPREL16_HI:
13713 case R_PPC64_GOT_DTPREL16_HI:
13714 case R_PPC64_GOT16_HI:
13715 case R_PPC64_TOC16_HI:
13716 /* These relocs would only be useful if building up an
13717 offset to later add to r2, perhaps in an indexed
13718 addressing mode instruction. Don't try to optimize.
13719 Unfortunately, the possibility of someone building up an
13720 offset like this or even with the HA relocs, means that
13721 we need to check the high insn when optimizing the low
13722 insn. */
13723 break;
13724
13725 case R_PPC64_GOT_TLSLD16_HA:
13726 case R_PPC64_GOT_TLSGD16_HA:
13727 case R_PPC64_GOT_TPREL16_HA:
13728 case R_PPC64_GOT_DTPREL16_HA:
13729 case R_PPC64_GOT16_HA:
13730 case R_PPC64_TOC16_HA:
13731 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13732 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13733 {
13734 bfd_byte *p = contents + (rel->r_offset & ~3);
13735 bfd_put_32 (input_bfd, NOP, p);
13736 }
13737 break;
13738
13739 case R_PPC64_GOT_TLSLD16_LO:
13740 case R_PPC64_GOT_TLSGD16_LO:
13741 case R_PPC64_GOT_TPREL16_LO_DS:
13742 case R_PPC64_GOT_DTPREL16_LO_DS:
13743 case R_PPC64_GOT16_LO:
13744 case R_PPC64_GOT16_LO_DS:
13745 case R_PPC64_TOC16_LO:
13746 case R_PPC64_TOC16_LO_DS:
13747 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13748 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13749 {
13750 bfd_byte *p = contents + (rel->r_offset & ~3);
13751 insn = bfd_get_32 (input_bfd, p);
13752 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
13753 {
13754 /* Transform addic to addi when we change reg. */
13755 insn &= ~((0x3f << 26) | (0x1f << 16));
13756 insn |= (14u << 26) | (2 << 16);
13757 }
13758 else
13759 {
13760 insn &= ~(0x1f << 16);
13761 insn |= 2 << 16;
13762 }
13763 bfd_put_32 (input_bfd, insn, p);
13764 }
13765 break;
13766 }
13767
13768 /* Do any further special processing. */
13769 switch (r_type)
13770 {
13771 default:
13772 break;
13773
13774 case R_PPC64_ADDR16_HA:
13775 case R_PPC64_REL16_HA:
13776 case R_PPC64_ADDR16_HIGHERA:
13777 case R_PPC64_ADDR16_HIGHESTA:
13778 case R_PPC64_TOC16_HA:
13779 case R_PPC64_SECTOFF_HA:
13780 case R_PPC64_TPREL16_HA:
13781 case R_PPC64_DTPREL16_HA:
13782 case R_PPC64_TPREL16_HIGHER:
13783 case R_PPC64_TPREL16_HIGHERA:
13784 case R_PPC64_TPREL16_HIGHEST:
13785 case R_PPC64_TPREL16_HIGHESTA:
13786 case R_PPC64_DTPREL16_HIGHER:
13787 case R_PPC64_DTPREL16_HIGHERA:
13788 case R_PPC64_DTPREL16_HIGHEST:
13789 case R_PPC64_DTPREL16_HIGHESTA:
13790 /* It's just possible that this symbol is a weak symbol
13791 that's not actually defined anywhere. In that case,
13792 'sec' would be NULL, and we should leave the symbol
13793 alone (it will be set to zero elsewhere in the link). */
13794 if (sec == NULL)
13795 break;
13796 /* Fall thru */
13797
13798 case R_PPC64_GOT16_HA:
13799 case R_PPC64_PLTGOT16_HA:
13800 case R_PPC64_PLT16_HA:
13801 case R_PPC64_GOT_TLSGD16_HA:
13802 case R_PPC64_GOT_TLSLD16_HA:
13803 case R_PPC64_GOT_TPREL16_HA:
13804 case R_PPC64_GOT_DTPREL16_HA:
13805 /* Add 0x10000 if sign bit in 0:15 is set.
13806 Bits 0:15 are not used. */
13807 addend += 0x8000;
13808 break;
13809
13810 case R_PPC64_ADDR16_DS:
13811 case R_PPC64_ADDR16_LO_DS:
13812 case R_PPC64_GOT16_DS:
13813 case R_PPC64_GOT16_LO_DS:
13814 case R_PPC64_PLT16_LO_DS:
13815 case R_PPC64_SECTOFF_DS:
13816 case R_PPC64_SECTOFF_LO_DS:
13817 case R_PPC64_TOC16_DS:
13818 case R_PPC64_TOC16_LO_DS:
13819 case R_PPC64_PLTGOT16_DS:
13820 case R_PPC64_PLTGOT16_LO_DS:
13821 case R_PPC64_GOT_TPREL16_DS:
13822 case R_PPC64_GOT_TPREL16_LO_DS:
13823 case R_PPC64_GOT_DTPREL16_DS:
13824 case R_PPC64_GOT_DTPREL16_LO_DS:
13825 case R_PPC64_TPREL16_DS:
13826 case R_PPC64_TPREL16_LO_DS:
13827 case R_PPC64_DTPREL16_DS:
13828 case R_PPC64_DTPREL16_LO_DS:
13829 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
13830 mask = 3;
13831 /* If this reloc is against an lq insn, then the value must be
13832 a multiple of 16. This is somewhat of a hack, but the
13833 "correct" way to do this by defining _DQ forms of all the
13834 _DS relocs bloats all reloc switches in this file. It
13835 doesn't seem to make much sense to use any of these relocs
13836 in data, so testing the insn should be safe. */
13837 if ((insn & (0x3f << 26)) == (56u << 26))
13838 mask = 15;
13839 if (((relocation + addend) & mask) != 0)
13840 {
13841 info->callbacks->einfo
13842 (_("%P: %H: error: %s not a multiple of %u\n"),
13843 input_bfd, input_section, rel->r_offset,
13844 ppc64_elf_howto_table[r_type]->name,
13845 mask + 1);
13846 bfd_set_error (bfd_error_bad_value);
13847 ret = FALSE;
13848 continue;
13849 }
13850 break;
13851 }
13852
13853 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13854 because such sections are not SEC_ALLOC and thus ld.so will
13855 not process them. */
13856 if (unresolved_reloc
13857 && !((input_section->flags & SEC_DEBUGGING) != 0
13858 && h->elf.def_dynamic)
13859 && _bfd_elf_section_offset (output_bfd, info, input_section,
13860 rel->r_offset) != (bfd_vma) -1)
13861 {
13862 info->callbacks->einfo
13863 (_("%P: %H: unresolvable %s against `%T'\n"),
13864 input_bfd, input_section, rel->r_offset,
13865 ppc64_elf_howto_table[(int) r_type]->name,
13866 h->elf.root.root.string);
13867 ret = FALSE;
13868 }
13869
13870 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
13871 input_bfd,
13872 input_section,
13873 contents,
13874 rel->r_offset,
13875 relocation,
13876 addend);
13877
13878 if (r != bfd_reloc_ok)
13879 {
13880 char *more_info = NULL;
13881 const char *reloc_name = ppc64_elf_howto_table[r_type]->name;
13882
13883 if (reloc_dest != DEST_NORMAL)
13884 {
13885 more_info = bfd_malloc (strlen (reloc_name) + 8);
13886 if (more_info != NULL)
13887 {
13888 strcpy (more_info, reloc_name);
13889 strcat (more_info, (reloc_dest == DEST_OPD
13890 ? " (OPD)" : " (stub)"));
13891 reloc_name = more_info;
13892 }
13893 }
13894
13895 if (r == bfd_reloc_overflow)
13896 {
13897 if (warned)
13898 continue;
13899 if (h != NULL
13900 && h->elf.root.type == bfd_link_hash_undefweak
13901 && ppc64_elf_howto_table[r_type]->pc_relative)
13902 {
13903 /* Assume this is a call protected by other code that
13904 detects the symbol is undefined. If this is the case,
13905 we can safely ignore the overflow. If not, the
13906 program is hosed anyway, and a little warning isn't
13907 going to help. */
13908
13909 continue;
13910 }
13911
13912 if (!((*info->callbacks->reloc_overflow)
13913 (info, &h->elf.root, sym_name,
13914 reloc_name, orig_rel.r_addend,
13915 input_bfd, input_section, rel->r_offset)))
13916 return FALSE;
13917 }
13918 else
13919 {
13920 info->callbacks->einfo
13921 (_("%P: %H: %s against `%T': error %d\n"),
13922 input_bfd, input_section, rel->r_offset,
13923 reloc_name, sym_name, (int) r);
13924 ret = FALSE;
13925 }
13926 if (more_info != NULL)
13927 free (more_info);
13928 }
13929 }
13930
13931 /* If we're emitting relocations, then shortly after this function
13932 returns, reloc offsets and addends for this section will be
13933 adjusted. Worse, reloc symbol indices will be for the output
13934 file rather than the input. Save a copy of the relocs for
13935 opd_entry_value. */
13936 if (is_opd && (info->emitrelocations || info->relocatable))
13937 {
13938 bfd_size_type amt;
13939 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
13940 rel = bfd_alloc (input_bfd, amt);
13941 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
13942 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
13943 if (rel == NULL)
13944 return FALSE;
13945 memcpy (rel, relocs, amt);
13946 }
13947 return ret;
13948 }
13949
13950 /* Adjust the value of any local symbols in opd sections. */
13951
13952 static int
13953 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
13954 const char *name ATTRIBUTE_UNUSED,
13955 Elf_Internal_Sym *elfsym,
13956 asection *input_sec,
13957 struct elf_link_hash_entry *h)
13958 {
13959 struct _opd_sec_data *opd;
13960 long adjust;
13961 bfd_vma value;
13962
13963 if (h != NULL)
13964 return 1;
13965
13966 opd = get_opd_info (input_sec);
13967 if (opd == NULL || opd->adjust == NULL)
13968 return 1;
13969
13970 value = elfsym->st_value - input_sec->output_offset;
13971 if (!info->relocatable)
13972 value -= input_sec->output_section->vma;
13973
13974 adjust = opd->adjust[value / 8];
13975 if (adjust == -1)
13976 return 2;
13977
13978 elfsym->st_value += adjust;
13979 return 1;
13980 }
13981
13982 /* Finish up dynamic symbol handling. We set the contents of various
13983 dynamic sections here. */
13984
13985 static bfd_boolean
13986 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
13987 struct bfd_link_info *info,
13988 struct elf_link_hash_entry *h,
13989 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
13990 {
13991 struct ppc_link_hash_table *htab;
13992 struct plt_entry *ent;
13993 Elf_Internal_Rela rela;
13994 bfd_byte *loc;
13995
13996 htab = ppc_hash_table (info);
13997 if (htab == NULL)
13998 return FALSE;
13999
14000 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
14001 if (ent->plt.offset != (bfd_vma) -1)
14002 {
14003 /* This symbol has an entry in the procedure linkage
14004 table. Set it up. */
14005 if (!htab->elf.dynamic_sections_created
14006 || h->dynindx == -1)
14007 {
14008 BFD_ASSERT (h->type == STT_GNU_IFUNC
14009 && h->def_regular
14010 && (h->root.type == bfd_link_hash_defined
14011 || h->root.type == bfd_link_hash_defweak));
14012 rela.r_offset = (htab->iplt->output_section->vma
14013 + htab->iplt->output_offset
14014 + ent->plt.offset);
14015 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
14016 rela.r_addend = (h->root.u.def.value
14017 + h->root.u.def.section->output_offset
14018 + h->root.u.def.section->output_section->vma
14019 + ent->addend);
14020 loc = (htab->reliplt->contents
14021 + (htab->reliplt->reloc_count++
14022 * sizeof (Elf64_External_Rela)));
14023 }
14024 else
14025 {
14026 rela.r_offset = (htab->plt->output_section->vma
14027 + htab->plt->output_offset
14028 + ent->plt.offset);
14029 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
14030 rela.r_addend = ent->addend;
14031 loc = (htab->relplt->contents
14032 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE)
14033 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela))));
14034 }
14035 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14036 }
14037
14038 if (h->needs_copy)
14039 {
14040 /* This symbol needs a copy reloc. Set it up. */
14041
14042 if (h->dynindx == -1
14043 || (h->root.type != bfd_link_hash_defined
14044 && h->root.type != bfd_link_hash_defweak)
14045 || htab->relbss == NULL)
14046 abort ();
14047
14048 rela.r_offset = (h->root.u.def.value
14049 + h->root.u.def.section->output_section->vma
14050 + h->root.u.def.section->output_offset);
14051 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
14052 rela.r_addend = 0;
14053 loc = htab->relbss->contents;
14054 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
14055 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
14056 }
14057
14058 return TRUE;
14059 }
14060
14061 /* Used to decide how to sort relocs in an optimal manner for the
14062 dynamic linker, before writing them out. */
14063
14064 static enum elf_reloc_type_class
14065 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
14066 {
14067 enum elf_ppc64_reloc_type r_type;
14068
14069 r_type = ELF64_R_TYPE (rela->r_info);
14070 switch (r_type)
14071 {
14072 case R_PPC64_RELATIVE:
14073 return reloc_class_relative;
14074 case R_PPC64_JMP_SLOT:
14075 return reloc_class_plt;
14076 case R_PPC64_COPY:
14077 return reloc_class_copy;
14078 default:
14079 return reloc_class_normal;
14080 }
14081 }
14082
14083 /* Finish up the dynamic sections. */
14084
14085 static bfd_boolean
14086 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
14087 struct bfd_link_info *info)
14088 {
14089 struct ppc_link_hash_table *htab;
14090 bfd *dynobj;
14091 asection *sdyn;
14092
14093 htab = ppc_hash_table (info);
14094 if (htab == NULL)
14095 return FALSE;
14096
14097 dynobj = htab->elf.dynobj;
14098 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14099
14100 if (htab->elf.dynamic_sections_created)
14101 {
14102 Elf64_External_Dyn *dyncon, *dynconend;
14103
14104 if (sdyn == NULL || htab->got == NULL)
14105 abort ();
14106
14107 dyncon = (Elf64_External_Dyn *) sdyn->contents;
14108 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
14109 for (; dyncon < dynconend; dyncon++)
14110 {
14111 Elf_Internal_Dyn dyn;
14112 asection *s;
14113
14114 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14115
14116 switch (dyn.d_tag)
14117 {
14118 default:
14119 continue;
14120
14121 case DT_PPC64_GLINK:
14122 s = htab->glink;
14123 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14124 /* We stupidly defined DT_PPC64_GLINK to be the start
14125 of glink rather than the first entry point, which is
14126 what ld.so needs, and now have a bigger stub to
14127 support automatic multiple TOCs. */
14128 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
14129 break;
14130
14131 case DT_PPC64_OPD:
14132 s = bfd_get_section_by_name (output_bfd, ".opd");
14133 if (s == NULL)
14134 continue;
14135 dyn.d_un.d_ptr = s->vma;
14136 break;
14137
14138 case DT_PPC64_OPDSZ:
14139 s = bfd_get_section_by_name (output_bfd, ".opd");
14140 if (s == NULL)
14141 continue;
14142 dyn.d_un.d_val = s->size;
14143 break;
14144
14145 case DT_PLTGOT:
14146 s = htab->plt;
14147 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14148 break;
14149
14150 case DT_JMPREL:
14151 s = htab->relplt;
14152 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14153 break;
14154
14155 case DT_PLTRELSZ:
14156 dyn.d_un.d_val = htab->relplt->size;
14157 break;
14158
14159 case DT_RELASZ:
14160 /* Don't count procedure linkage table relocs in the
14161 overall reloc count. */
14162 s = htab->relplt;
14163 if (s == NULL)
14164 continue;
14165 dyn.d_un.d_val -= s->size;
14166 break;
14167
14168 case DT_RELA:
14169 /* We may not be using the standard ELF linker script.
14170 If .rela.plt is the first .rela section, we adjust
14171 DT_RELA to not include it. */
14172 s = htab->relplt;
14173 if (s == NULL)
14174 continue;
14175 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14176 continue;
14177 dyn.d_un.d_ptr += s->size;
14178 break;
14179 }
14180
14181 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14182 }
14183 }
14184
14185 if (htab->got != NULL && htab->got->size != 0)
14186 {
14187 /* Fill in the first entry in the global offset table.
14188 We use it to hold the link-time TOCbase. */
14189 bfd_put_64 (output_bfd,
14190 elf_gp (output_bfd) + TOC_BASE_OFF,
14191 htab->got->contents);
14192
14193 /* Set .got entry size. */
14194 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
14195 }
14196
14197 if (htab->plt != NULL && htab->plt->size != 0)
14198 {
14199 /* Set .plt entry size. */
14200 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
14201 = PLT_ENTRY_SIZE;
14202 }
14203
14204 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14205 brlt ourselves if emitrelocations. */
14206 if (htab->brlt != NULL
14207 && htab->brlt->reloc_count != 0
14208 && !_bfd_elf_link_output_relocs (output_bfd,
14209 htab->brlt,
14210 elf_section_data (htab->brlt)->rela.hdr,
14211 elf_section_data (htab->brlt)->relocs,
14212 NULL))
14213 return FALSE;
14214
14215 if (htab->glink != NULL
14216 && htab->glink->reloc_count != 0
14217 && !_bfd_elf_link_output_relocs (output_bfd,
14218 htab->glink,
14219 elf_section_data (htab->glink)->rela.hdr,
14220 elf_section_data (htab->glink)->relocs,
14221 NULL))
14222 return FALSE;
14223
14224
14225 if (htab->glink_eh_frame != NULL
14226 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
14227 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14228 htab->glink_eh_frame,
14229 htab->glink_eh_frame->contents))
14230 return FALSE;
14231
14232 /* We need to handle writing out multiple GOT sections ourselves,
14233 since we didn't add them to DYNOBJ. We know dynobj is the first
14234 bfd. */
14235 while ((dynobj = dynobj->link_next) != NULL)
14236 {
14237 asection *s;
14238
14239 if (!is_ppc64_elf (dynobj))
14240 continue;
14241
14242 s = ppc64_elf_tdata (dynobj)->got;
14243 if (s != NULL
14244 && s->size != 0
14245 && s->output_section != bfd_abs_section_ptr
14246 && !bfd_set_section_contents (output_bfd, s->output_section,
14247 s->contents, s->output_offset,
14248 s->size))
14249 return FALSE;
14250 s = ppc64_elf_tdata (dynobj)->relgot;
14251 if (s != NULL
14252 && s->size != 0
14253 && s->output_section != bfd_abs_section_ptr
14254 && !bfd_set_section_contents (output_bfd, s->output_section,
14255 s->contents, s->output_offset,
14256 s->size))
14257 return FALSE;
14258 }
14259
14260 return TRUE;
14261 }
14262
14263 #include "elf64-target.h"
14264
14265 /* FreeBSD support */
14266
14267 #undef TARGET_LITTLE_SYM
14268 #undef TARGET_LITTLE_NAME
14269
14270 #undef TARGET_BIG_SYM
14271 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
14272 #undef TARGET_BIG_NAME
14273 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
14274
14275 #undef ELF_OSABI
14276 #define ELF_OSABI ELFOSABI_FREEBSD
14277
14278 #undef elf64_bed
14279 #define elf64_bed elf64_powerpc_fbsd_bed
14280
14281 #include "elf64-target.h"
14282
This page took 0.521951 seconds and 5 git commands to generate.