gdb: Enable gdbserver by default on sparc-*-linux*
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 Written by Linus Nordberg, Swox AB <info@swox.com>,
5 based on elf32-ppc.c by Ian Lance Taylor.
6 Largely rewritten by Alan Modra.
7
8 This file is part of BFD, the Binary File Descriptor library.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License along
21 with this program; if not, write to the Free Software Foundation, Inc.,
22 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
23
24
25 /* The 64-bit PowerPC ELF ABI may be found at
26 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
27 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
28
29 #include "sysdep.h"
30 #include <stdarg.h>
31 #include "bfd.h"
32 #include "bfdlink.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/ppc64.h"
36 #include "elf64-ppc.h"
37 #include "dwarf2.h"
38
39 static bfd_reloc_status_type ppc64_elf_ha_reloc
40 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
41 static bfd_reloc_status_type ppc64_elf_branch_reloc
42 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
44 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
45 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
46 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
47 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
48 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
49 static bfd_reloc_status_type ppc64_elf_toc_reloc
50 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
51 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
52 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
53 static bfd_reloc_status_type ppc64_elf_toc64_reloc
54 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
55 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
56 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
57 static bfd_vma opd_entry_value
58 (asection *, bfd_vma, asection **, bfd_vma *);
59
60 #define TARGET_LITTLE_SYM bfd_elf64_powerpcle_vec
61 #define TARGET_LITTLE_NAME "elf64-powerpcle"
62 #define TARGET_BIG_SYM bfd_elf64_powerpc_vec
63 #define TARGET_BIG_NAME "elf64-powerpc"
64 #define ELF_ARCH bfd_arch_powerpc
65 #define ELF_TARGET_ID PPC64_ELF_DATA
66 #define ELF_MACHINE_CODE EM_PPC64
67 #define ELF_MAXPAGESIZE 0x10000
68 #define ELF_COMMONPAGESIZE 0x1000
69 #define elf_info_to_howto ppc64_elf_info_to_howto
70
71 #define elf_backend_want_got_sym 0
72 #define elf_backend_want_plt_sym 0
73 #define elf_backend_plt_alignment 3
74 #define elf_backend_plt_not_loaded 1
75 #define elf_backend_got_header_size 8
76 #define elf_backend_can_gc_sections 1
77 #define elf_backend_can_refcount 1
78 #define elf_backend_rela_normal 1
79 #define elf_backend_default_execstack 0
80
81 #define bfd_elf64_mkobject ppc64_elf_mkobject
82 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
83 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
84 #define bfd_elf64_bfd_merge_private_bfd_data _bfd_generic_verify_endian_match
85 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
86 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
87 #define bfd_elf64_bfd_link_hash_table_free ppc64_elf_link_hash_table_free
88 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
89 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
90
91 #define elf_backend_object_p ppc64_elf_object_p
92 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
93 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
94 #define elf_backend_write_core_note ppc64_elf_write_core_note
95 #define elf_backend_create_dynamic_sections ppc64_elf_create_dynamic_sections
96 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
97 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
98 #define elf_backend_check_directives ppc64_elf_process_dot_syms
99 #define elf_backend_as_needed_cleanup ppc64_elf_as_needed_cleanup
100 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
101 #define elf_backend_check_relocs ppc64_elf_check_relocs
102 #define elf_backend_gc_keep ppc64_elf_gc_keep
103 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
104 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
105 #define elf_backend_gc_sweep_hook ppc64_elf_gc_sweep_hook
106 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
107 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
108 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
109 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
110 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
111 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
112 #define elf_backend_action_discarded ppc64_elf_action_discarded
113 #define elf_backend_relocate_section ppc64_elf_relocate_section
114 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
115 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
116 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
117 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
118 #define elf_backend_special_sections ppc64_elf_special_sections
119 #define elf_backend_post_process_headers _bfd_elf_set_osabi
120
121 /* The name of the dynamic interpreter. This is put in the .interp
122 section. */
123 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
124
125 /* The size in bytes of an entry in the procedure linkage table. */
126 #define PLT_ENTRY_SIZE 24
127
128 /* The initial size of the plt reserved for the dynamic linker. */
129 #define PLT_INITIAL_ENTRY_SIZE PLT_ENTRY_SIZE
130
131 /* TOC base pointers offset from start of TOC. */
132 #define TOC_BASE_OFF 0x8000
133
134 /* Offset of tp and dtp pointers from start of TLS block. */
135 #define TP_OFFSET 0x7000
136 #define DTP_OFFSET 0x8000
137
138 /* .plt call stub instructions. The normal stub is like this, but
139 sometimes the .plt entry crosses a 64k boundary and we need to
140 insert an addi to adjust r12. */
141 #define PLT_CALL_STUB_SIZE (7*4)
142 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
143 #define STD_R2_40R1 0xf8410028 /* std %r2,40(%r1) */
144 #define LD_R11_0R12 0xe96c0000 /* ld %r11,xxx+0@l(%r12) */
145 #define MTCTR_R11 0x7d6903a6 /* mtctr %r11 */
146 #define LD_R2_0R12 0xe84c0000 /* ld %r2,xxx+8@l(%r12) */
147 /* ld %r11,xxx+16@l(%r12) */
148 #define BCTR 0x4e800420 /* bctr */
149
150
151 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,off@ha */
152 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
153 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
154 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
155
156 #define XOR_R11_R11_R11 0x7d6b5a78 /* xor %r11,%r11,%r11 */
157 #define ADD_R12_R12_R11 0x7d8c5a14 /* add %r12,%r12,%r11 */
158 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
159 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
160 #define BNECTR 0x4ca20420 /* bnectr+ */
161 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
162
163 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
164 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
165
166 #define LD_R2_40R1 0xe8410028 /* ld %r2,40(%r1) */
167
168 /* glink call stub instructions. We enter with the index in R0. */
169 #define GLINK_CALL_STUB_SIZE (16*4)
170 /* 0: */
171 /* .quad plt0-1f */
172 /* __glink: */
173 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
174 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
175 /* 1: */
176 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
177 #define LD_R2_M16R11 0xe84bfff0 /* ld %2,(0b-1b)(%11) */
178 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
179 #define ADD_R12_R2_R11 0x7d825a14 /* add %12,%2,%11 */
180 /* ld %11,0(%12) */
181 /* ld %2,8(%12) */
182 /* mtctr %11 */
183 /* ld %11,16(%12) */
184 /* bctr */
185
186 /* Pad with this. */
187 #define NOP 0x60000000
188
189 /* Some other nops. */
190 #define CROR_151515 0x4def7b82
191 #define CROR_313131 0x4ffffb82
192
193 /* .glink entries for the first 32k functions are two instructions. */
194 #define LI_R0_0 0x38000000 /* li %r0,0 */
195 #define B_DOT 0x48000000 /* b . */
196
197 /* After that, we need two instructions to load the index, followed by
198 a branch. */
199 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
200 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
201
202 /* Instructions used by the save and restore reg functions. */
203 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
204 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
205 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
206 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
207 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
208 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
209 #define LI_R12_0 0x39800000 /* li %r12,0 */
210 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
211 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
212 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
213 #define BLR 0x4e800020 /* blr */
214
215 /* Since .opd is an array of descriptors and each entry will end up
216 with identical R_PPC64_RELATIVE relocs, there is really no need to
217 propagate .opd relocs; The dynamic linker should be taught to
218 relocate .opd without reloc entries. */
219 #ifndef NO_OPD_RELOCS
220 #define NO_OPD_RELOCS 0
221 #endif
222 \f
223 #define ONES(n) (((bfd_vma) 1 << ((n) - 1) << 1) - 1)
224
225 /* Relocation HOWTO's. */
226 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
227
228 static reloc_howto_type ppc64_elf_howto_raw[] = {
229 /* This reloc does nothing. */
230 HOWTO (R_PPC64_NONE, /* type */
231 0, /* rightshift */
232 2, /* size (0 = byte, 1 = short, 2 = long) */
233 32, /* bitsize */
234 FALSE, /* pc_relative */
235 0, /* bitpos */
236 complain_overflow_dont, /* complain_on_overflow */
237 bfd_elf_generic_reloc, /* special_function */
238 "R_PPC64_NONE", /* name */
239 FALSE, /* partial_inplace */
240 0, /* src_mask */
241 0, /* dst_mask */
242 FALSE), /* pcrel_offset */
243
244 /* A standard 32 bit relocation. */
245 HOWTO (R_PPC64_ADDR32, /* type */
246 0, /* rightshift */
247 2, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_bitfield, /* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_PPC64_ADDR32", /* name */
254 FALSE, /* partial_inplace */
255 0, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 /* An absolute 26 bit branch; the lower two bits must be zero.
260 FIXME: we don't check that, we just clear them. */
261 HOWTO (R_PPC64_ADDR24, /* type */
262 0, /* rightshift */
263 2, /* size (0 = byte, 1 = short, 2 = long) */
264 26, /* bitsize */
265 FALSE, /* pc_relative */
266 0, /* bitpos */
267 complain_overflow_bitfield, /* complain_on_overflow */
268 bfd_elf_generic_reloc, /* special_function */
269 "R_PPC64_ADDR24", /* name */
270 FALSE, /* partial_inplace */
271 0, /* src_mask */
272 0x03fffffc, /* dst_mask */
273 FALSE), /* pcrel_offset */
274
275 /* A standard 16 bit relocation. */
276 HOWTO (R_PPC64_ADDR16, /* type */
277 0, /* rightshift */
278 1, /* size (0 = byte, 1 = short, 2 = long) */
279 16, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_bitfield, /* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_PPC64_ADDR16", /* name */
285 FALSE, /* partial_inplace */
286 0, /* src_mask */
287 0xffff, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* A 16 bit relocation without overflow. */
291 HOWTO (R_PPC64_ADDR16_LO, /* type */
292 0, /* rightshift */
293 1, /* size (0 = byte, 1 = short, 2 = long) */
294 16, /* bitsize */
295 FALSE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_dont,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_PPC64_ADDR16_LO", /* name */
300 FALSE, /* partial_inplace */
301 0, /* src_mask */
302 0xffff, /* dst_mask */
303 FALSE), /* pcrel_offset */
304
305 /* Bits 16-31 of an address. */
306 HOWTO (R_PPC64_ADDR16_HI, /* type */
307 16, /* rightshift */
308 1, /* size (0 = byte, 1 = short, 2 = long) */
309 16, /* bitsize */
310 FALSE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_dont, /* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_PPC64_ADDR16_HI", /* name */
315 FALSE, /* partial_inplace */
316 0, /* src_mask */
317 0xffff, /* dst_mask */
318 FALSE), /* pcrel_offset */
319
320 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
321 bits, treated as a signed number, is negative. */
322 HOWTO (R_PPC64_ADDR16_HA, /* type */
323 16, /* rightshift */
324 1, /* size (0 = byte, 1 = short, 2 = long) */
325 16, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_dont, /* complain_on_overflow */
329 ppc64_elf_ha_reloc, /* special_function */
330 "R_PPC64_ADDR16_HA", /* name */
331 FALSE, /* partial_inplace */
332 0, /* src_mask */
333 0xffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOWTO (R_PPC64_ADDR14, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 16, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield, /* complain_on_overflow */
345 ppc64_elf_branch_reloc, /* special_function */
346 "R_PPC64_ADDR14", /* name */
347 FALSE, /* partial_inplace */
348 0, /* src_mask */
349 0x0000fffc, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 /* An absolute 16 bit branch, for which bit 10 should be set to
353 indicate that the branch is expected to be taken. The lower two
354 bits must be zero. */
355 HOWTO (R_PPC64_ADDR14_BRTAKEN, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 16, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield, /* complain_on_overflow */
362 ppc64_elf_brtaken_reloc, /* special_function */
363 "R_PPC64_ADDR14_BRTAKEN",/* name */
364 FALSE, /* partial_inplace */
365 0, /* src_mask */
366 0x0000fffc, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* An absolute 16 bit branch, for which bit 10 should be set to
370 indicate that the branch is not expected to be taken. The lower
371 two bits must be zero. */
372 HOWTO (R_PPC64_ADDR14_BRNTAKEN, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 16, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield, /* complain_on_overflow */
379 ppc64_elf_brtaken_reloc, /* special_function */
380 "R_PPC64_ADDR14_BRNTAKEN",/* name */
381 FALSE, /* partial_inplace */
382 0, /* src_mask */
383 0x0000fffc, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 /* A relative 26 bit branch; the lower two bits must be zero. */
387 HOWTO (R_PPC64_REL24, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 26, /* bitsize */
391 TRUE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_signed, /* complain_on_overflow */
394 ppc64_elf_branch_reloc, /* special_function */
395 "R_PPC64_REL24", /* name */
396 FALSE, /* partial_inplace */
397 0, /* src_mask */
398 0x03fffffc, /* dst_mask */
399 TRUE), /* pcrel_offset */
400
401 /* A relative 16 bit branch; the lower two bits must be zero. */
402 HOWTO (R_PPC64_REL14, /* type */
403 0, /* rightshift */
404 2, /* size (0 = byte, 1 = short, 2 = long) */
405 16, /* bitsize */
406 TRUE, /* pc_relative */
407 0, /* bitpos */
408 complain_overflow_signed, /* complain_on_overflow */
409 ppc64_elf_branch_reloc, /* special_function */
410 "R_PPC64_REL14", /* name */
411 FALSE, /* partial_inplace */
412 0, /* src_mask */
413 0x0000fffc, /* dst_mask */
414 TRUE), /* pcrel_offset */
415
416 /* A relative 16 bit branch. Bit 10 should be set to indicate that
417 the branch is expected to be taken. The lower two bits must be
418 zero. */
419 HOWTO (R_PPC64_REL14_BRTAKEN, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 16, /* bitsize */
423 TRUE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_signed, /* complain_on_overflow */
426 ppc64_elf_brtaken_reloc, /* special_function */
427 "R_PPC64_REL14_BRTAKEN", /* name */
428 FALSE, /* partial_inplace */
429 0, /* src_mask */
430 0x0000fffc, /* dst_mask */
431 TRUE), /* pcrel_offset */
432
433 /* A relative 16 bit branch. Bit 10 should be set to indicate that
434 the branch is not expected to be taken. The lower two bits must
435 be zero. */
436 HOWTO (R_PPC64_REL14_BRNTAKEN, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 16, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_signed, /* complain_on_overflow */
443 ppc64_elf_brtaken_reloc, /* special_function */
444 "R_PPC64_REL14_BRNTAKEN",/* name */
445 FALSE, /* partial_inplace */
446 0, /* src_mask */
447 0x0000fffc, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
451 symbol. */
452 HOWTO (R_PPC64_GOT16, /* type */
453 0, /* rightshift */
454 1, /* size (0 = byte, 1 = short, 2 = long) */
455 16, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_signed, /* complain_on_overflow */
459 ppc64_elf_unhandled_reloc, /* special_function */
460 "R_PPC64_GOT16", /* name */
461 FALSE, /* partial_inplace */
462 0, /* src_mask */
463 0xffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
467 the symbol. */
468 HOWTO (R_PPC64_GOT16_LO, /* type */
469 0, /* rightshift */
470 1, /* size (0 = byte, 1 = short, 2 = long) */
471 16, /* bitsize */
472 FALSE, /* pc_relative */
473 0, /* bitpos */
474 complain_overflow_dont, /* complain_on_overflow */
475 ppc64_elf_unhandled_reloc, /* special_function */
476 "R_PPC64_GOT16_LO", /* name */
477 FALSE, /* partial_inplace */
478 0, /* src_mask */
479 0xffff, /* dst_mask */
480 FALSE), /* pcrel_offset */
481
482 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
483 the symbol. */
484 HOWTO (R_PPC64_GOT16_HI, /* type */
485 16, /* rightshift */
486 1, /* size (0 = byte, 1 = short, 2 = long) */
487 16, /* bitsize */
488 FALSE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_dont,/* complain_on_overflow */
491 ppc64_elf_unhandled_reloc, /* special_function */
492 "R_PPC64_GOT16_HI", /* name */
493 FALSE, /* partial_inplace */
494 0, /* src_mask */
495 0xffff, /* dst_mask */
496 FALSE), /* pcrel_offset */
497
498 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
499 the symbol. */
500 HOWTO (R_PPC64_GOT16_HA, /* type */
501 16, /* rightshift */
502 1, /* size (0 = byte, 1 = short, 2 = long) */
503 16, /* bitsize */
504 FALSE, /* pc_relative */
505 0, /* bitpos */
506 complain_overflow_dont,/* complain_on_overflow */
507 ppc64_elf_unhandled_reloc, /* special_function */
508 "R_PPC64_GOT16_HA", /* name */
509 FALSE, /* partial_inplace */
510 0, /* src_mask */
511 0xffff, /* dst_mask */
512 FALSE), /* pcrel_offset */
513
514 /* This is used only by the dynamic linker. The symbol should exist
515 both in the object being run and in some shared library. The
516 dynamic linker copies the data addressed by the symbol from the
517 shared library into the object, because the object being
518 run has to have the data at some particular address. */
519 HOWTO (R_PPC64_COPY, /* type */
520 0, /* rightshift */
521 0, /* this one is variable size */
522 0, /* bitsize */
523 FALSE, /* pc_relative */
524 0, /* bitpos */
525 complain_overflow_dont, /* complain_on_overflow */
526 ppc64_elf_unhandled_reloc, /* special_function */
527 "R_PPC64_COPY", /* name */
528 FALSE, /* partial_inplace */
529 0, /* src_mask */
530 0, /* dst_mask */
531 FALSE), /* pcrel_offset */
532
533 /* Like R_PPC64_ADDR64, but used when setting global offset table
534 entries. */
535 HOWTO (R_PPC64_GLOB_DAT, /* type */
536 0, /* rightshift */
537 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
538 64, /* bitsize */
539 FALSE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont, /* complain_on_overflow */
542 ppc64_elf_unhandled_reloc, /* special_function */
543 "R_PPC64_GLOB_DAT", /* name */
544 FALSE, /* partial_inplace */
545 0, /* src_mask */
546 ONES (64), /* dst_mask */
547 FALSE), /* pcrel_offset */
548
549 /* Created by the link editor. Marks a procedure linkage table
550 entry for a symbol. */
551 HOWTO (R_PPC64_JMP_SLOT, /* type */
552 0, /* rightshift */
553 0, /* size (0 = byte, 1 = short, 2 = long) */
554 0, /* bitsize */
555 FALSE, /* pc_relative */
556 0, /* bitpos */
557 complain_overflow_dont, /* complain_on_overflow */
558 ppc64_elf_unhandled_reloc, /* special_function */
559 "R_PPC64_JMP_SLOT", /* name */
560 FALSE, /* partial_inplace */
561 0, /* src_mask */
562 0, /* dst_mask */
563 FALSE), /* pcrel_offset */
564
565 /* Used only by the dynamic linker. When the object is run, this
566 doubleword64 is set to the load address of the object, plus the
567 addend. */
568 HOWTO (R_PPC64_RELATIVE, /* type */
569 0, /* rightshift */
570 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
571 64, /* bitsize */
572 FALSE, /* pc_relative */
573 0, /* bitpos */
574 complain_overflow_dont, /* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_PPC64_RELATIVE", /* name */
577 FALSE, /* partial_inplace */
578 0, /* src_mask */
579 ONES (64), /* dst_mask */
580 FALSE), /* pcrel_offset */
581
582 /* Like R_PPC64_ADDR32, but may be unaligned. */
583 HOWTO (R_PPC64_UADDR32, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 32, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_bitfield, /* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_PPC64_UADDR32", /* name */
592 FALSE, /* partial_inplace */
593 0, /* src_mask */
594 0xffffffff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 /* Like R_PPC64_ADDR16, but may be unaligned. */
598 HOWTO (R_PPC64_UADDR16, /* type */
599 0, /* rightshift */
600 1, /* size (0 = byte, 1 = short, 2 = long) */
601 16, /* bitsize */
602 FALSE, /* pc_relative */
603 0, /* bitpos */
604 complain_overflow_bitfield, /* complain_on_overflow */
605 bfd_elf_generic_reloc, /* special_function */
606 "R_PPC64_UADDR16", /* name */
607 FALSE, /* partial_inplace */
608 0, /* src_mask */
609 0xffff, /* dst_mask */
610 FALSE), /* pcrel_offset */
611
612 /* 32-bit PC relative. */
613 HOWTO (R_PPC64_REL32, /* type */
614 0, /* rightshift */
615 2, /* size (0 = byte, 1 = short, 2 = long) */
616 32, /* bitsize */
617 TRUE, /* pc_relative */
618 0, /* bitpos */
619 /* FIXME: Verify. Was complain_overflow_bitfield. */
620 complain_overflow_signed, /* complain_on_overflow */
621 bfd_elf_generic_reloc, /* special_function */
622 "R_PPC64_REL32", /* name */
623 FALSE, /* partial_inplace */
624 0, /* src_mask */
625 0xffffffff, /* dst_mask */
626 TRUE), /* pcrel_offset */
627
628 /* 32-bit relocation to the symbol's procedure linkage table. */
629 HOWTO (R_PPC64_PLT32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_bitfield, /* complain_on_overflow */
636 ppc64_elf_unhandled_reloc, /* special_function */
637 "R_PPC64_PLT32", /* name */
638 FALSE, /* partial_inplace */
639 0, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
644 FIXME: R_PPC64_PLTREL32 not supported. */
645 HOWTO (R_PPC64_PLTREL32, /* type */
646 0, /* rightshift */
647 2, /* size (0 = byte, 1 = short, 2 = long) */
648 32, /* bitsize */
649 TRUE, /* pc_relative */
650 0, /* bitpos */
651 complain_overflow_signed, /* complain_on_overflow */
652 bfd_elf_generic_reloc, /* special_function */
653 "R_PPC64_PLTREL32", /* name */
654 FALSE, /* partial_inplace */
655 0, /* src_mask */
656 0xffffffff, /* dst_mask */
657 TRUE), /* pcrel_offset */
658
659 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
660 the symbol. */
661 HOWTO (R_PPC64_PLT16_LO, /* type */
662 0, /* rightshift */
663 1, /* size (0 = byte, 1 = short, 2 = long) */
664 16, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_dont, /* complain_on_overflow */
668 ppc64_elf_unhandled_reloc, /* special_function */
669 "R_PPC64_PLT16_LO", /* name */
670 FALSE, /* partial_inplace */
671 0, /* src_mask */
672 0xffff, /* dst_mask */
673 FALSE), /* pcrel_offset */
674
675 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
676 the symbol. */
677 HOWTO (R_PPC64_PLT16_HI, /* type */
678 16, /* rightshift */
679 1, /* size (0 = byte, 1 = short, 2 = long) */
680 16, /* bitsize */
681 FALSE, /* pc_relative */
682 0, /* bitpos */
683 complain_overflow_dont, /* complain_on_overflow */
684 ppc64_elf_unhandled_reloc, /* special_function */
685 "R_PPC64_PLT16_HI", /* name */
686 FALSE, /* partial_inplace */
687 0, /* src_mask */
688 0xffff, /* dst_mask */
689 FALSE), /* pcrel_offset */
690
691 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
692 the symbol. */
693 HOWTO (R_PPC64_PLT16_HA, /* type */
694 16, /* rightshift */
695 1, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont, /* complain_on_overflow */
700 ppc64_elf_unhandled_reloc, /* special_function */
701 "R_PPC64_PLT16_HA", /* name */
702 FALSE, /* partial_inplace */
703 0, /* src_mask */
704 0xffff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 /* 16-bit section relative relocation. */
708 HOWTO (R_PPC64_SECTOFF, /* type */
709 0, /* rightshift */
710 1, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield, /* complain_on_overflow */
715 ppc64_elf_sectoff_reloc, /* special_function */
716 "R_PPC64_SECTOFF", /* name */
717 FALSE, /* partial_inplace */
718 0, /* src_mask */
719 0xffff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 /* Like R_PPC64_SECTOFF, but no overflow warning. */
723 HOWTO (R_PPC64_SECTOFF_LO, /* type */
724 0, /* rightshift */
725 1, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 FALSE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont, /* complain_on_overflow */
730 ppc64_elf_sectoff_reloc, /* special_function */
731 "R_PPC64_SECTOFF_LO", /* name */
732 FALSE, /* partial_inplace */
733 0, /* src_mask */
734 0xffff, /* dst_mask */
735 FALSE), /* pcrel_offset */
736
737 /* 16-bit upper half section relative relocation. */
738 HOWTO (R_PPC64_SECTOFF_HI, /* type */
739 16, /* rightshift */
740 1, /* size (0 = byte, 1 = short, 2 = long) */
741 16, /* bitsize */
742 FALSE, /* pc_relative */
743 0, /* bitpos */
744 complain_overflow_dont, /* complain_on_overflow */
745 ppc64_elf_sectoff_reloc, /* special_function */
746 "R_PPC64_SECTOFF_HI", /* name */
747 FALSE, /* partial_inplace */
748 0, /* src_mask */
749 0xffff, /* dst_mask */
750 FALSE), /* pcrel_offset */
751
752 /* 16-bit upper half adjusted section relative relocation. */
753 HOWTO (R_PPC64_SECTOFF_HA, /* type */
754 16, /* rightshift */
755 1, /* size (0 = byte, 1 = short, 2 = long) */
756 16, /* bitsize */
757 FALSE, /* pc_relative */
758 0, /* bitpos */
759 complain_overflow_dont, /* complain_on_overflow */
760 ppc64_elf_sectoff_ha_reloc, /* special_function */
761 "R_PPC64_SECTOFF_HA", /* name */
762 FALSE, /* partial_inplace */
763 0, /* src_mask */
764 0xffff, /* dst_mask */
765 FALSE), /* pcrel_offset */
766
767 /* Like R_PPC64_REL24 without touching the two least significant bits. */
768 HOWTO (R_PPC64_REL30, /* type */
769 2, /* rightshift */
770 2, /* size (0 = byte, 1 = short, 2 = long) */
771 30, /* bitsize */
772 TRUE, /* pc_relative */
773 0, /* bitpos */
774 complain_overflow_dont, /* complain_on_overflow */
775 bfd_elf_generic_reloc, /* special_function */
776 "R_PPC64_REL30", /* name */
777 FALSE, /* partial_inplace */
778 0, /* src_mask */
779 0xfffffffc, /* dst_mask */
780 TRUE), /* pcrel_offset */
781
782 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
783
784 /* A standard 64-bit relocation. */
785 HOWTO (R_PPC64_ADDR64, /* type */
786 0, /* rightshift */
787 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
788 64, /* bitsize */
789 FALSE, /* pc_relative */
790 0, /* bitpos */
791 complain_overflow_dont, /* complain_on_overflow */
792 bfd_elf_generic_reloc, /* special_function */
793 "R_PPC64_ADDR64", /* name */
794 FALSE, /* partial_inplace */
795 0, /* src_mask */
796 ONES (64), /* dst_mask */
797 FALSE), /* pcrel_offset */
798
799 /* The bits 32-47 of an address. */
800 HOWTO (R_PPC64_ADDR16_HIGHER, /* type */
801 32, /* rightshift */
802 1, /* size (0 = byte, 1 = short, 2 = long) */
803 16, /* bitsize */
804 FALSE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_dont, /* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_PPC64_ADDR16_HIGHER", /* name */
809 FALSE, /* partial_inplace */
810 0, /* src_mask */
811 0xffff, /* dst_mask */
812 FALSE), /* pcrel_offset */
813
814 /* The bits 32-47 of an address, plus 1 if the contents of the low
815 16 bits, treated as a signed number, is negative. */
816 HOWTO (R_PPC64_ADDR16_HIGHERA, /* type */
817 32, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 16, /* bitsize */
820 FALSE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_dont, /* complain_on_overflow */
823 ppc64_elf_ha_reloc, /* special_function */
824 "R_PPC64_ADDR16_HIGHERA", /* name */
825 FALSE, /* partial_inplace */
826 0, /* src_mask */
827 0xffff, /* dst_mask */
828 FALSE), /* pcrel_offset */
829
830 /* The bits 48-63 of an address. */
831 HOWTO (R_PPC64_ADDR16_HIGHEST,/* type */
832 48, /* rightshift */
833 1, /* size (0 = byte, 1 = short, 2 = long) */
834 16, /* bitsize */
835 FALSE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont, /* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_PPC64_ADDR16_HIGHEST", /* name */
840 FALSE, /* partial_inplace */
841 0, /* src_mask */
842 0xffff, /* dst_mask */
843 FALSE), /* pcrel_offset */
844
845 /* The bits 48-63 of an address, plus 1 if the contents of the low
846 16 bits, treated as a signed number, is negative. */
847 HOWTO (R_PPC64_ADDR16_HIGHESTA,/* type */
848 48, /* rightshift */
849 1, /* size (0 = byte, 1 = short, 2 = long) */
850 16, /* bitsize */
851 FALSE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont, /* complain_on_overflow */
854 ppc64_elf_ha_reloc, /* special_function */
855 "R_PPC64_ADDR16_HIGHESTA", /* name */
856 FALSE, /* partial_inplace */
857 0, /* src_mask */
858 0xffff, /* dst_mask */
859 FALSE), /* pcrel_offset */
860
861 /* Like ADDR64, but may be unaligned. */
862 HOWTO (R_PPC64_UADDR64, /* type */
863 0, /* rightshift */
864 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
865 64, /* bitsize */
866 FALSE, /* pc_relative */
867 0, /* bitpos */
868 complain_overflow_dont, /* complain_on_overflow */
869 bfd_elf_generic_reloc, /* special_function */
870 "R_PPC64_UADDR64", /* name */
871 FALSE, /* partial_inplace */
872 0, /* src_mask */
873 ONES (64), /* dst_mask */
874 FALSE), /* pcrel_offset */
875
876 /* 64-bit relative relocation. */
877 HOWTO (R_PPC64_REL64, /* type */
878 0, /* rightshift */
879 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
880 64, /* bitsize */
881 TRUE, /* pc_relative */
882 0, /* bitpos */
883 complain_overflow_dont, /* complain_on_overflow */
884 bfd_elf_generic_reloc, /* special_function */
885 "R_PPC64_REL64", /* name */
886 FALSE, /* partial_inplace */
887 0, /* src_mask */
888 ONES (64), /* dst_mask */
889 TRUE), /* pcrel_offset */
890
891 /* 64-bit relocation to the symbol's procedure linkage table. */
892 HOWTO (R_PPC64_PLT64, /* type */
893 0, /* rightshift */
894 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
895 64, /* bitsize */
896 FALSE, /* pc_relative */
897 0, /* bitpos */
898 complain_overflow_dont, /* complain_on_overflow */
899 ppc64_elf_unhandled_reloc, /* special_function */
900 "R_PPC64_PLT64", /* name */
901 FALSE, /* partial_inplace */
902 0, /* src_mask */
903 ONES (64), /* dst_mask */
904 FALSE), /* pcrel_offset */
905
906 /* 64-bit PC relative relocation to the symbol's procedure linkage
907 table. */
908 /* FIXME: R_PPC64_PLTREL64 not supported. */
909 HOWTO (R_PPC64_PLTREL64, /* type */
910 0, /* rightshift */
911 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
912 64, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont, /* complain_on_overflow */
916 ppc64_elf_unhandled_reloc, /* special_function */
917 "R_PPC64_PLTREL64", /* name */
918 FALSE, /* partial_inplace */
919 0, /* src_mask */
920 ONES (64), /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 /* 16 bit TOC-relative relocation. */
924
925 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
926 HOWTO (R_PPC64_TOC16, /* type */
927 0, /* rightshift */
928 1, /* size (0 = byte, 1 = short, 2 = long) */
929 16, /* bitsize */
930 FALSE, /* pc_relative */
931 0, /* bitpos */
932 complain_overflow_signed, /* complain_on_overflow */
933 ppc64_elf_toc_reloc, /* special_function */
934 "R_PPC64_TOC16", /* name */
935 FALSE, /* partial_inplace */
936 0, /* src_mask */
937 0xffff, /* dst_mask */
938 FALSE), /* pcrel_offset */
939
940 /* 16 bit TOC-relative relocation without overflow. */
941
942 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
943 HOWTO (R_PPC64_TOC16_LO, /* type */
944 0, /* rightshift */
945 1, /* size (0 = byte, 1 = short, 2 = long) */
946 16, /* bitsize */
947 FALSE, /* pc_relative */
948 0, /* bitpos */
949 complain_overflow_dont, /* complain_on_overflow */
950 ppc64_elf_toc_reloc, /* special_function */
951 "R_PPC64_TOC16_LO", /* name */
952 FALSE, /* partial_inplace */
953 0, /* src_mask */
954 0xffff, /* dst_mask */
955 FALSE), /* pcrel_offset */
956
957 /* 16 bit TOC-relative relocation, high 16 bits. */
958
959 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
960 HOWTO (R_PPC64_TOC16_HI, /* type */
961 16, /* rightshift */
962 1, /* size (0 = byte, 1 = short, 2 = long) */
963 16, /* bitsize */
964 FALSE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont, /* complain_on_overflow */
967 ppc64_elf_toc_reloc, /* special_function */
968 "R_PPC64_TOC16_HI", /* name */
969 FALSE, /* partial_inplace */
970 0, /* src_mask */
971 0xffff, /* dst_mask */
972 FALSE), /* pcrel_offset */
973
974 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
975 contents of the low 16 bits, treated as a signed number, is
976 negative. */
977
978 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
979 HOWTO (R_PPC64_TOC16_HA, /* type */
980 16, /* rightshift */
981 1, /* size (0 = byte, 1 = short, 2 = long) */
982 16, /* bitsize */
983 FALSE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont, /* complain_on_overflow */
986 ppc64_elf_toc_ha_reloc, /* special_function */
987 "R_PPC64_TOC16_HA", /* name */
988 FALSE, /* partial_inplace */
989 0, /* src_mask */
990 0xffff, /* dst_mask */
991 FALSE), /* pcrel_offset */
992
993 /* 64-bit relocation; insert value of TOC base (.TOC.). */
994
995 /* R_PPC64_TOC 51 doubleword64 .TOC. */
996 HOWTO (R_PPC64_TOC, /* type */
997 0, /* rightshift */
998 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
999 64, /* bitsize */
1000 FALSE, /* pc_relative */
1001 0, /* bitpos */
1002 complain_overflow_bitfield, /* complain_on_overflow */
1003 ppc64_elf_toc64_reloc, /* special_function */
1004 "R_PPC64_TOC", /* name */
1005 FALSE, /* partial_inplace */
1006 0, /* src_mask */
1007 ONES (64), /* dst_mask */
1008 FALSE), /* pcrel_offset */
1009
1010 /* Like R_PPC64_GOT16, but also informs the link editor that the
1011 value to relocate may (!) refer to a PLT entry which the link
1012 editor (a) may replace with the symbol value. If the link editor
1013 is unable to fully resolve the symbol, it may (b) create a PLT
1014 entry and store the address to the new PLT entry in the GOT.
1015 This permits lazy resolution of function symbols at run time.
1016 The link editor may also skip all of this and just (c) emit a
1017 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
1018 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
1019 HOWTO (R_PPC64_PLTGOT16, /* type */
1020 0, /* rightshift */
1021 1, /* size (0 = byte, 1 = short, 2 = long) */
1022 16, /* bitsize */
1023 FALSE, /* pc_relative */
1024 0, /* bitpos */
1025 complain_overflow_signed, /* complain_on_overflow */
1026 ppc64_elf_unhandled_reloc, /* special_function */
1027 "R_PPC64_PLTGOT16", /* name */
1028 FALSE, /* partial_inplace */
1029 0, /* src_mask */
1030 0xffff, /* dst_mask */
1031 FALSE), /* pcrel_offset */
1032
1033 /* Like R_PPC64_PLTGOT16, but without overflow. */
1034 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1035 HOWTO (R_PPC64_PLTGOT16_LO, /* type */
1036 0, /* rightshift */
1037 1, /* size (0 = byte, 1 = short, 2 = long) */
1038 16, /* bitsize */
1039 FALSE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont, /* complain_on_overflow */
1042 ppc64_elf_unhandled_reloc, /* special_function */
1043 "R_PPC64_PLTGOT16_LO", /* name */
1044 FALSE, /* partial_inplace */
1045 0, /* src_mask */
1046 0xffff, /* dst_mask */
1047 FALSE), /* pcrel_offset */
1048
1049 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
1050 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
1051 HOWTO (R_PPC64_PLTGOT16_HI, /* type */
1052 16, /* rightshift */
1053 1, /* size (0 = byte, 1 = short, 2 = long) */
1054 16, /* bitsize */
1055 FALSE, /* pc_relative */
1056 0, /* bitpos */
1057 complain_overflow_dont, /* complain_on_overflow */
1058 ppc64_elf_unhandled_reloc, /* special_function */
1059 "R_PPC64_PLTGOT16_HI", /* name */
1060 FALSE, /* partial_inplace */
1061 0, /* src_mask */
1062 0xffff, /* dst_mask */
1063 FALSE), /* pcrel_offset */
1064
1065 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
1066 1 if the contents of the low 16 bits, treated as a signed number,
1067 is negative. */
1068 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
1069 HOWTO (R_PPC64_PLTGOT16_HA, /* type */
1070 16, /* rightshift */
1071 1, /* size (0 = byte, 1 = short, 2 = long) */
1072 16, /* bitsize */
1073 FALSE, /* pc_relative */
1074 0, /* bitpos */
1075 complain_overflow_dont,/* complain_on_overflow */
1076 ppc64_elf_unhandled_reloc, /* special_function */
1077 "R_PPC64_PLTGOT16_HA", /* name */
1078 FALSE, /* partial_inplace */
1079 0, /* src_mask */
1080 0xffff, /* dst_mask */
1081 FALSE), /* pcrel_offset */
1082
1083 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
1084 HOWTO (R_PPC64_ADDR16_DS, /* type */
1085 0, /* rightshift */
1086 1, /* size (0 = byte, 1 = short, 2 = long) */
1087 16, /* bitsize */
1088 FALSE, /* pc_relative */
1089 0, /* bitpos */
1090 complain_overflow_bitfield, /* complain_on_overflow */
1091 bfd_elf_generic_reloc, /* special_function */
1092 "R_PPC64_ADDR16_DS", /* name */
1093 FALSE, /* partial_inplace */
1094 0, /* src_mask */
1095 0xfffc, /* dst_mask */
1096 FALSE), /* pcrel_offset */
1097
1098 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
1099 HOWTO (R_PPC64_ADDR16_LO_DS, /* type */
1100 0, /* rightshift */
1101 1, /* size (0 = byte, 1 = short, 2 = long) */
1102 16, /* bitsize */
1103 FALSE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_PPC64_ADDR16_LO_DS",/* name */
1108 FALSE, /* partial_inplace */
1109 0, /* src_mask */
1110 0xfffc, /* dst_mask */
1111 FALSE), /* pcrel_offset */
1112
1113 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
1114 HOWTO (R_PPC64_GOT16_DS, /* type */
1115 0, /* rightshift */
1116 1, /* size (0 = byte, 1 = short, 2 = long) */
1117 16, /* bitsize */
1118 FALSE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_signed, /* complain_on_overflow */
1121 ppc64_elf_unhandled_reloc, /* special_function */
1122 "R_PPC64_GOT16_DS", /* name */
1123 FALSE, /* partial_inplace */
1124 0, /* src_mask */
1125 0xfffc, /* dst_mask */
1126 FALSE), /* pcrel_offset */
1127
1128 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
1129 HOWTO (R_PPC64_GOT16_LO_DS, /* type */
1130 0, /* rightshift */
1131 1, /* size (0 = byte, 1 = short, 2 = long) */
1132 16, /* bitsize */
1133 FALSE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont, /* complain_on_overflow */
1136 ppc64_elf_unhandled_reloc, /* special_function */
1137 "R_PPC64_GOT16_LO_DS", /* name */
1138 FALSE, /* partial_inplace */
1139 0, /* src_mask */
1140 0xfffc, /* dst_mask */
1141 FALSE), /* pcrel_offset */
1142
1143 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
1144 HOWTO (R_PPC64_PLT16_LO_DS, /* type */
1145 0, /* rightshift */
1146 1, /* size (0 = byte, 1 = short, 2 = long) */
1147 16, /* bitsize */
1148 FALSE, /* pc_relative */
1149 0, /* bitpos */
1150 complain_overflow_dont, /* complain_on_overflow */
1151 ppc64_elf_unhandled_reloc, /* special_function */
1152 "R_PPC64_PLT16_LO_DS", /* name */
1153 FALSE, /* partial_inplace */
1154 0, /* src_mask */
1155 0xfffc, /* dst_mask */
1156 FALSE), /* pcrel_offset */
1157
1158 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
1159 HOWTO (R_PPC64_SECTOFF_DS, /* type */
1160 0, /* rightshift */
1161 1, /* size (0 = byte, 1 = short, 2 = long) */
1162 16, /* bitsize */
1163 FALSE, /* pc_relative */
1164 0, /* bitpos */
1165 complain_overflow_bitfield, /* complain_on_overflow */
1166 ppc64_elf_sectoff_reloc, /* special_function */
1167 "R_PPC64_SECTOFF_DS", /* name */
1168 FALSE, /* partial_inplace */
1169 0, /* src_mask */
1170 0xfffc, /* dst_mask */
1171 FALSE), /* pcrel_offset */
1172
1173 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
1174 HOWTO (R_PPC64_SECTOFF_LO_DS, /* type */
1175 0, /* rightshift */
1176 1, /* size (0 = byte, 1 = short, 2 = long) */
1177 16, /* bitsize */
1178 FALSE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont, /* complain_on_overflow */
1181 ppc64_elf_sectoff_reloc, /* special_function */
1182 "R_PPC64_SECTOFF_LO_DS",/* name */
1183 FALSE, /* partial_inplace */
1184 0, /* src_mask */
1185 0xfffc, /* dst_mask */
1186 FALSE), /* pcrel_offset */
1187
1188 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
1189 HOWTO (R_PPC64_TOC16_DS, /* type */
1190 0, /* rightshift */
1191 1, /* size (0 = byte, 1 = short, 2 = long) */
1192 16, /* bitsize */
1193 FALSE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_signed, /* complain_on_overflow */
1196 ppc64_elf_toc_reloc, /* special_function */
1197 "R_PPC64_TOC16_DS", /* name */
1198 FALSE, /* partial_inplace */
1199 0, /* src_mask */
1200 0xfffc, /* dst_mask */
1201 FALSE), /* pcrel_offset */
1202
1203 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
1204 HOWTO (R_PPC64_TOC16_LO_DS, /* type */
1205 0, /* rightshift */
1206 1, /* size (0 = byte, 1 = short, 2 = long) */
1207 16, /* bitsize */
1208 FALSE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont, /* complain_on_overflow */
1211 ppc64_elf_toc_reloc, /* special_function */
1212 "R_PPC64_TOC16_LO_DS", /* name */
1213 FALSE, /* partial_inplace */
1214 0, /* src_mask */
1215 0xfffc, /* dst_mask */
1216 FALSE), /* pcrel_offset */
1217
1218 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
1219 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
1220 HOWTO (R_PPC64_PLTGOT16_DS, /* type */
1221 0, /* rightshift */
1222 1, /* size (0 = byte, 1 = short, 2 = long) */
1223 16, /* bitsize */
1224 FALSE, /* pc_relative */
1225 0, /* bitpos */
1226 complain_overflow_signed, /* complain_on_overflow */
1227 ppc64_elf_unhandled_reloc, /* special_function */
1228 "R_PPC64_PLTGOT16_DS", /* name */
1229 FALSE, /* partial_inplace */
1230 0, /* src_mask */
1231 0xfffc, /* dst_mask */
1232 FALSE), /* pcrel_offset */
1233
1234 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
1235 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
1236 HOWTO (R_PPC64_PLTGOT16_LO_DS,/* type */
1237 0, /* rightshift */
1238 1, /* size (0 = byte, 1 = short, 2 = long) */
1239 16, /* bitsize */
1240 FALSE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont, /* complain_on_overflow */
1243 ppc64_elf_unhandled_reloc, /* special_function */
1244 "R_PPC64_PLTGOT16_LO_DS",/* name */
1245 FALSE, /* partial_inplace */
1246 0, /* src_mask */
1247 0xfffc, /* dst_mask */
1248 FALSE), /* pcrel_offset */
1249
1250 /* Marker relocs for TLS. */
1251 HOWTO (R_PPC64_TLS,
1252 0, /* rightshift */
1253 2, /* size (0 = byte, 1 = short, 2 = long) */
1254 32, /* bitsize */
1255 FALSE, /* pc_relative */
1256 0, /* bitpos */
1257 complain_overflow_dont, /* complain_on_overflow */
1258 bfd_elf_generic_reloc, /* special_function */
1259 "R_PPC64_TLS", /* name */
1260 FALSE, /* partial_inplace */
1261 0, /* src_mask */
1262 0, /* dst_mask */
1263 FALSE), /* pcrel_offset */
1264
1265 HOWTO (R_PPC64_TLSGD,
1266 0, /* rightshift */
1267 2, /* size (0 = byte, 1 = short, 2 = long) */
1268 32, /* bitsize */
1269 FALSE, /* pc_relative */
1270 0, /* bitpos */
1271 complain_overflow_dont, /* complain_on_overflow */
1272 bfd_elf_generic_reloc, /* special_function */
1273 "R_PPC64_TLSGD", /* name */
1274 FALSE, /* partial_inplace */
1275 0, /* src_mask */
1276 0, /* dst_mask */
1277 FALSE), /* pcrel_offset */
1278
1279 HOWTO (R_PPC64_TLSLD,
1280 0, /* rightshift */
1281 2, /* size (0 = byte, 1 = short, 2 = long) */
1282 32, /* bitsize */
1283 FALSE, /* pc_relative */
1284 0, /* bitpos */
1285 complain_overflow_dont, /* complain_on_overflow */
1286 bfd_elf_generic_reloc, /* special_function */
1287 "R_PPC64_TLSLD", /* name */
1288 FALSE, /* partial_inplace */
1289 0, /* src_mask */
1290 0, /* dst_mask */
1291 FALSE), /* pcrel_offset */
1292
1293 HOWTO (R_PPC64_TOCSAVE,
1294 0, /* rightshift */
1295 2, /* size (0 = byte, 1 = short, 2 = long) */
1296 32, /* bitsize */
1297 FALSE, /* pc_relative */
1298 0, /* bitpos */
1299 complain_overflow_dont, /* complain_on_overflow */
1300 bfd_elf_generic_reloc, /* special_function */
1301 "R_PPC64_TOCSAVE", /* name */
1302 FALSE, /* partial_inplace */
1303 0, /* src_mask */
1304 0, /* dst_mask */
1305 FALSE), /* pcrel_offset */
1306
1307 /* Computes the load module index of the load module that contains the
1308 definition of its TLS sym. */
1309 HOWTO (R_PPC64_DTPMOD64,
1310 0, /* rightshift */
1311 4, /* size (0 = byte, 1 = short, 2 = long) */
1312 64, /* bitsize */
1313 FALSE, /* pc_relative */
1314 0, /* bitpos */
1315 complain_overflow_dont, /* complain_on_overflow */
1316 ppc64_elf_unhandled_reloc, /* special_function */
1317 "R_PPC64_DTPMOD64", /* name */
1318 FALSE, /* partial_inplace */
1319 0, /* src_mask */
1320 ONES (64), /* dst_mask */
1321 FALSE), /* pcrel_offset */
1322
1323 /* Computes a dtv-relative displacement, the difference between the value
1324 of sym+add and the base address of the thread-local storage block that
1325 contains the definition of sym, minus 0x8000. */
1326 HOWTO (R_PPC64_DTPREL64,
1327 0, /* rightshift */
1328 4, /* size (0 = byte, 1 = short, 2 = long) */
1329 64, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_dont, /* complain_on_overflow */
1333 ppc64_elf_unhandled_reloc, /* special_function */
1334 "R_PPC64_DTPREL64", /* name */
1335 FALSE, /* partial_inplace */
1336 0, /* src_mask */
1337 ONES (64), /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 /* A 16 bit dtprel reloc. */
1341 HOWTO (R_PPC64_DTPREL16,
1342 0, /* rightshift */
1343 1, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_signed, /* complain_on_overflow */
1348 ppc64_elf_unhandled_reloc, /* special_function */
1349 "R_PPC64_DTPREL16", /* name */
1350 FALSE, /* partial_inplace */
1351 0, /* src_mask */
1352 0xffff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 /* Like DTPREL16, but no overflow. */
1356 HOWTO (R_PPC64_DTPREL16_LO,
1357 0, /* rightshift */
1358 1, /* size (0 = byte, 1 = short, 2 = long) */
1359 16, /* bitsize */
1360 FALSE, /* pc_relative */
1361 0, /* bitpos */
1362 complain_overflow_dont, /* complain_on_overflow */
1363 ppc64_elf_unhandled_reloc, /* special_function */
1364 "R_PPC64_DTPREL16_LO", /* name */
1365 FALSE, /* partial_inplace */
1366 0, /* src_mask */
1367 0xffff, /* dst_mask */
1368 FALSE), /* pcrel_offset */
1369
1370 /* Like DTPREL16_LO, but next higher group of 16 bits. */
1371 HOWTO (R_PPC64_DTPREL16_HI,
1372 16, /* rightshift */
1373 1, /* size (0 = byte, 1 = short, 2 = long) */
1374 16, /* bitsize */
1375 FALSE, /* pc_relative */
1376 0, /* bitpos */
1377 complain_overflow_dont, /* complain_on_overflow */
1378 ppc64_elf_unhandled_reloc, /* special_function */
1379 "R_PPC64_DTPREL16_HI", /* name */
1380 FALSE, /* partial_inplace */
1381 0, /* src_mask */
1382 0xffff, /* dst_mask */
1383 FALSE), /* pcrel_offset */
1384
1385 /* Like DTPREL16_HI, but adjust for low 16 bits. */
1386 HOWTO (R_PPC64_DTPREL16_HA,
1387 16, /* rightshift */
1388 1, /* size (0 = byte, 1 = short, 2 = long) */
1389 16, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 ppc64_elf_unhandled_reloc, /* special_function */
1394 "R_PPC64_DTPREL16_HA", /* name */
1395 FALSE, /* partial_inplace */
1396 0, /* src_mask */
1397 0xffff, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 /* Like DTPREL16_HI, but next higher group of 16 bits. */
1401 HOWTO (R_PPC64_DTPREL16_HIGHER,
1402 32, /* rightshift */
1403 1, /* size (0 = byte, 1 = short, 2 = long) */
1404 16, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont, /* complain_on_overflow */
1408 ppc64_elf_unhandled_reloc, /* special_function */
1409 "R_PPC64_DTPREL16_HIGHER", /* name */
1410 FALSE, /* partial_inplace */
1411 0, /* src_mask */
1412 0xffff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
1416 HOWTO (R_PPC64_DTPREL16_HIGHERA,
1417 32, /* rightshift */
1418 1, /* size (0 = byte, 1 = short, 2 = long) */
1419 16, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont, /* complain_on_overflow */
1423 ppc64_elf_unhandled_reloc, /* special_function */
1424 "R_PPC64_DTPREL16_HIGHERA", /* name */
1425 FALSE, /* partial_inplace */
1426 0, /* src_mask */
1427 0xffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
1431 HOWTO (R_PPC64_DTPREL16_HIGHEST,
1432 48, /* rightshift */
1433 1, /* size (0 = byte, 1 = short, 2 = long) */
1434 16, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 ppc64_elf_unhandled_reloc, /* special_function */
1439 "R_PPC64_DTPREL16_HIGHEST", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0xffff, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
1446 HOWTO (R_PPC64_DTPREL16_HIGHESTA,
1447 48, /* rightshift */
1448 1, /* size (0 = byte, 1 = short, 2 = long) */
1449 16, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 ppc64_elf_unhandled_reloc, /* special_function */
1454 "R_PPC64_DTPREL16_HIGHESTA", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0xffff, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 /* Like DTPREL16, but for insns with a DS field. */
1461 HOWTO (R_PPC64_DTPREL16_DS,
1462 0, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 16, /* bitsize */
1465 FALSE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 ppc64_elf_unhandled_reloc, /* special_function */
1469 "R_PPC64_DTPREL16_DS", /* name */
1470 FALSE, /* partial_inplace */
1471 0, /* src_mask */
1472 0xfffc, /* dst_mask */
1473 FALSE), /* pcrel_offset */
1474
1475 /* Like DTPREL16_DS, but no overflow. */
1476 HOWTO (R_PPC64_DTPREL16_LO_DS,
1477 0, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 16, /* bitsize */
1480 FALSE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_dont, /* complain_on_overflow */
1483 ppc64_elf_unhandled_reloc, /* special_function */
1484 "R_PPC64_DTPREL16_LO_DS", /* name */
1485 FALSE, /* partial_inplace */
1486 0, /* src_mask */
1487 0xfffc, /* dst_mask */
1488 FALSE), /* pcrel_offset */
1489
1490 /* Computes a tp-relative displacement, the difference between the value of
1491 sym+add and the value of the thread pointer (r13). */
1492 HOWTO (R_PPC64_TPREL64,
1493 0, /* rightshift */
1494 4, /* size (0 = byte, 1 = short, 2 = long) */
1495 64, /* bitsize */
1496 FALSE, /* pc_relative */
1497 0, /* bitpos */
1498 complain_overflow_dont, /* complain_on_overflow */
1499 ppc64_elf_unhandled_reloc, /* special_function */
1500 "R_PPC64_TPREL64", /* name */
1501 FALSE, /* partial_inplace */
1502 0, /* src_mask */
1503 ONES (64), /* dst_mask */
1504 FALSE), /* pcrel_offset */
1505
1506 /* A 16 bit tprel reloc. */
1507 HOWTO (R_PPC64_TPREL16,
1508 0, /* rightshift */
1509 1, /* size (0 = byte, 1 = short, 2 = long) */
1510 16, /* bitsize */
1511 FALSE, /* pc_relative */
1512 0, /* bitpos */
1513 complain_overflow_signed, /* complain_on_overflow */
1514 ppc64_elf_unhandled_reloc, /* special_function */
1515 "R_PPC64_TPREL16", /* name */
1516 FALSE, /* partial_inplace */
1517 0, /* src_mask */
1518 0xffff, /* dst_mask */
1519 FALSE), /* pcrel_offset */
1520
1521 /* Like TPREL16, but no overflow. */
1522 HOWTO (R_PPC64_TPREL16_LO,
1523 0, /* rightshift */
1524 1, /* size (0 = byte, 1 = short, 2 = long) */
1525 16, /* bitsize */
1526 FALSE, /* pc_relative */
1527 0, /* bitpos */
1528 complain_overflow_dont, /* complain_on_overflow */
1529 ppc64_elf_unhandled_reloc, /* special_function */
1530 "R_PPC64_TPREL16_LO", /* name */
1531 FALSE, /* partial_inplace */
1532 0, /* src_mask */
1533 0xffff, /* dst_mask */
1534 FALSE), /* pcrel_offset */
1535
1536 /* Like TPREL16_LO, but next higher group of 16 bits. */
1537 HOWTO (R_PPC64_TPREL16_HI,
1538 16, /* rightshift */
1539 1, /* size (0 = byte, 1 = short, 2 = long) */
1540 16, /* bitsize */
1541 FALSE, /* pc_relative */
1542 0, /* bitpos */
1543 complain_overflow_dont, /* complain_on_overflow */
1544 ppc64_elf_unhandled_reloc, /* special_function */
1545 "R_PPC64_TPREL16_HI", /* name */
1546 FALSE, /* partial_inplace */
1547 0, /* src_mask */
1548 0xffff, /* dst_mask */
1549 FALSE), /* pcrel_offset */
1550
1551 /* Like TPREL16_HI, but adjust for low 16 bits. */
1552 HOWTO (R_PPC64_TPREL16_HA,
1553 16, /* rightshift */
1554 1, /* size (0 = byte, 1 = short, 2 = long) */
1555 16, /* bitsize */
1556 FALSE, /* pc_relative */
1557 0, /* bitpos */
1558 complain_overflow_dont, /* complain_on_overflow */
1559 ppc64_elf_unhandled_reloc, /* special_function */
1560 "R_PPC64_TPREL16_HA", /* name */
1561 FALSE, /* partial_inplace */
1562 0, /* src_mask */
1563 0xffff, /* dst_mask */
1564 FALSE), /* pcrel_offset */
1565
1566 /* Like TPREL16_HI, but next higher group of 16 bits. */
1567 HOWTO (R_PPC64_TPREL16_HIGHER,
1568 32, /* rightshift */
1569 1, /* size (0 = byte, 1 = short, 2 = long) */
1570 16, /* bitsize */
1571 FALSE, /* pc_relative */
1572 0, /* bitpos */
1573 complain_overflow_dont, /* complain_on_overflow */
1574 ppc64_elf_unhandled_reloc, /* special_function */
1575 "R_PPC64_TPREL16_HIGHER", /* name */
1576 FALSE, /* partial_inplace */
1577 0, /* src_mask */
1578 0xffff, /* dst_mask */
1579 FALSE), /* pcrel_offset */
1580
1581 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
1582 HOWTO (R_PPC64_TPREL16_HIGHERA,
1583 32, /* rightshift */
1584 1, /* size (0 = byte, 1 = short, 2 = long) */
1585 16, /* bitsize */
1586 FALSE, /* pc_relative */
1587 0, /* bitpos */
1588 complain_overflow_dont, /* complain_on_overflow */
1589 ppc64_elf_unhandled_reloc, /* special_function */
1590 "R_PPC64_TPREL16_HIGHERA", /* name */
1591 FALSE, /* partial_inplace */
1592 0, /* src_mask */
1593 0xffff, /* dst_mask */
1594 FALSE), /* pcrel_offset */
1595
1596 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
1597 HOWTO (R_PPC64_TPREL16_HIGHEST,
1598 48, /* rightshift */
1599 1, /* size (0 = byte, 1 = short, 2 = long) */
1600 16, /* bitsize */
1601 FALSE, /* pc_relative */
1602 0, /* bitpos */
1603 complain_overflow_dont, /* complain_on_overflow */
1604 ppc64_elf_unhandled_reloc, /* special_function */
1605 "R_PPC64_TPREL16_HIGHEST", /* name */
1606 FALSE, /* partial_inplace */
1607 0, /* src_mask */
1608 0xffff, /* dst_mask */
1609 FALSE), /* pcrel_offset */
1610
1611 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
1612 HOWTO (R_PPC64_TPREL16_HIGHESTA,
1613 48, /* rightshift */
1614 1, /* size (0 = byte, 1 = short, 2 = long) */
1615 16, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont, /* complain_on_overflow */
1619 ppc64_elf_unhandled_reloc, /* special_function */
1620 "R_PPC64_TPREL16_HIGHESTA", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0xffff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 /* Like TPREL16, but for insns with a DS field. */
1627 HOWTO (R_PPC64_TPREL16_DS,
1628 0, /* rightshift */
1629 1, /* size (0 = byte, 1 = short, 2 = long) */
1630 16, /* bitsize */
1631 FALSE, /* pc_relative */
1632 0, /* bitpos */
1633 complain_overflow_signed, /* complain_on_overflow */
1634 ppc64_elf_unhandled_reloc, /* special_function */
1635 "R_PPC64_TPREL16_DS", /* name */
1636 FALSE, /* partial_inplace */
1637 0, /* src_mask */
1638 0xfffc, /* dst_mask */
1639 FALSE), /* pcrel_offset */
1640
1641 /* Like TPREL16_DS, but no overflow. */
1642 HOWTO (R_PPC64_TPREL16_LO_DS,
1643 0, /* rightshift */
1644 1, /* size (0 = byte, 1 = short, 2 = long) */
1645 16, /* bitsize */
1646 FALSE, /* pc_relative */
1647 0, /* bitpos */
1648 complain_overflow_dont, /* complain_on_overflow */
1649 ppc64_elf_unhandled_reloc, /* special_function */
1650 "R_PPC64_TPREL16_LO_DS", /* name */
1651 FALSE, /* partial_inplace */
1652 0, /* src_mask */
1653 0xfffc, /* dst_mask */
1654 FALSE), /* pcrel_offset */
1655
1656 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1657 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
1658 to the first entry relative to the TOC base (r2). */
1659 HOWTO (R_PPC64_GOT_TLSGD16,
1660 0, /* rightshift */
1661 1, /* size (0 = byte, 1 = short, 2 = long) */
1662 16, /* bitsize */
1663 FALSE, /* pc_relative */
1664 0, /* bitpos */
1665 complain_overflow_signed, /* complain_on_overflow */
1666 ppc64_elf_unhandled_reloc, /* special_function */
1667 "R_PPC64_GOT_TLSGD16", /* name */
1668 FALSE, /* partial_inplace */
1669 0, /* src_mask */
1670 0xffff, /* dst_mask */
1671 FALSE), /* pcrel_offset */
1672
1673 /* Like GOT_TLSGD16, but no overflow. */
1674 HOWTO (R_PPC64_GOT_TLSGD16_LO,
1675 0, /* rightshift */
1676 1, /* size (0 = byte, 1 = short, 2 = long) */
1677 16, /* bitsize */
1678 FALSE, /* pc_relative */
1679 0, /* bitpos */
1680 complain_overflow_dont, /* complain_on_overflow */
1681 ppc64_elf_unhandled_reloc, /* special_function */
1682 "R_PPC64_GOT_TLSGD16_LO", /* name */
1683 FALSE, /* partial_inplace */
1684 0, /* src_mask */
1685 0xffff, /* dst_mask */
1686 FALSE), /* pcrel_offset */
1687
1688 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
1689 HOWTO (R_PPC64_GOT_TLSGD16_HI,
1690 16, /* rightshift */
1691 1, /* size (0 = byte, 1 = short, 2 = long) */
1692 16, /* bitsize */
1693 FALSE, /* pc_relative */
1694 0, /* bitpos */
1695 complain_overflow_dont, /* complain_on_overflow */
1696 ppc64_elf_unhandled_reloc, /* special_function */
1697 "R_PPC64_GOT_TLSGD16_HI", /* name */
1698 FALSE, /* partial_inplace */
1699 0, /* src_mask */
1700 0xffff, /* dst_mask */
1701 FALSE), /* pcrel_offset */
1702
1703 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
1704 HOWTO (R_PPC64_GOT_TLSGD16_HA,
1705 16, /* rightshift */
1706 1, /* size (0 = byte, 1 = short, 2 = long) */
1707 16, /* bitsize */
1708 FALSE, /* pc_relative */
1709 0, /* bitpos */
1710 complain_overflow_dont, /* complain_on_overflow */
1711 ppc64_elf_unhandled_reloc, /* special_function */
1712 "R_PPC64_GOT_TLSGD16_HA", /* name */
1713 FALSE, /* partial_inplace */
1714 0, /* src_mask */
1715 0xffff, /* dst_mask */
1716 FALSE), /* pcrel_offset */
1717
1718 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
1719 with values (sym+add)@dtpmod and zero, and computes the offset to the
1720 first entry relative to the TOC base (r2). */
1721 HOWTO (R_PPC64_GOT_TLSLD16,
1722 0, /* rightshift */
1723 1, /* size (0 = byte, 1 = short, 2 = long) */
1724 16, /* bitsize */
1725 FALSE, /* pc_relative */
1726 0, /* bitpos */
1727 complain_overflow_signed, /* complain_on_overflow */
1728 ppc64_elf_unhandled_reloc, /* special_function */
1729 "R_PPC64_GOT_TLSLD16", /* name */
1730 FALSE, /* partial_inplace */
1731 0, /* src_mask */
1732 0xffff, /* dst_mask */
1733 FALSE), /* pcrel_offset */
1734
1735 /* Like GOT_TLSLD16, but no overflow. */
1736 HOWTO (R_PPC64_GOT_TLSLD16_LO,
1737 0, /* rightshift */
1738 1, /* size (0 = byte, 1 = short, 2 = long) */
1739 16, /* bitsize */
1740 FALSE, /* pc_relative */
1741 0, /* bitpos */
1742 complain_overflow_dont, /* complain_on_overflow */
1743 ppc64_elf_unhandled_reloc, /* special_function */
1744 "R_PPC64_GOT_TLSLD16_LO", /* name */
1745 FALSE, /* partial_inplace */
1746 0, /* src_mask */
1747 0xffff, /* dst_mask */
1748 FALSE), /* pcrel_offset */
1749
1750 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
1751 HOWTO (R_PPC64_GOT_TLSLD16_HI,
1752 16, /* rightshift */
1753 1, /* size (0 = byte, 1 = short, 2 = long) */
1754 16, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_dont, /* complain_on_overflow */
1758 ppc64_elf_unhandled_reloc, /* special_function */
1759 "R_PPC64_GOT_TLSLD16_HI", /* name */
1760 FALSE, /* partial_inplace */
1761 0, /* src_mask */
1762 0xffff, /* dst_mask */
1763 FALSE), /* pcrel_offset */
1764
1765 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
1766 HOWTO (R_PPC64_GOT_TLSLD16_HA,
1767 16, /* rightshift */
1768 1, /* size (0 = byte, 1 = short, 2 = long) */
1769 16, /* bitsize */
1770 FALSE, /* pc_relative */
1771 0, /* bitpos */
1772 complain_overflow_dont, /* complain_on_overflow */
1773 ppc64_elf_unhandled_reloc, /* special_function */
1774 "R_PPC64_GOT_TLSLD16_HA", /* name */
1775 FALSE, /* partial_inplace */
1776 0, /* src_mask */
1777 0xffff, /* dst_mask */
1778 FALSE), /* pcrel_offset */
1779
1780 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
1781 the offset to the entry relative to the TOC base (r2). */
1782 HOWTO (R_PPC64_GOT_DTPREL16_DS,
1783 0, /* rightshift */
1784 1, /* size (0 = byte, 1 = short, 2 = long) */
1785 16, /* bitsize */
1786 FALSE, /* pc_relative */
1787 0, /* bitpos */
1788 complain_overflow_signed, /* complain_on_overflow */
1789 ppc64_elf_unhandled_reloc, /* special_function */
1790 "R_PPC64_GOT_DTPREL16_DS", /* name */
1791 FALSE, /* partial_inplace */
1792 0, /* src_mask */
1793 0xfffc, /* dst_mask */
1794 FALSE), /* pcrel_offset */
1795
1796 /* Like GOT_DTPREL16_DS, but no overflow. */
1797 HOWTO (R_PPC64_GOT_DTPREL16_LO_DS,
1798 0, /* rightshift */
1799 1, /* size (0 = byte, 1 = short, 2 = long) */
1800 16, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont, /* complain_on_overflow */
1804 ppc64_elf_unhandled_reloc, /* special_function */
1805 "R_PPC64_GOT_DTPREL16_LO_DS", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0xfffc, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
1812 HOWTO (R_PPC64_GOT_DTPREL16_HI,
1813 16, /* rightshift */
1814 1, /* size (0 = byte, 1 = short, 2 = long) */
1815 16, /* bitsize */
1816 FALSE, /* pc_relative */
1817 0, /* bitpos */
1818 complain_overflow_dont, /* complain_on_overflow */
1819 ppc64_elf_unhandled_reloc, /* special_function */
1820 "R_PPC64_GOT_DTPREL16_HI", /* name */
1821 FALSE, /* partial_inplace */
1822 0, /* src_mask */
1823 0xffff, /* dst_mask */
1824 FALSE), /* pcrel_offset */
1825
1826 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
1827 HOWTO (R_PPC64_GOT_DTPREL16_HA,
1828 16, /* rightshift */
1829 1, /* size (0 = byte, 1 = short, 2 = long) */
1830 16, /* bitsize */
1831 FALSE, /* pc_relative */
1832 0, /* bitpos */
1833 complain_overflow_dont, /* complain_on_overflow */
1834 ppc64_elf_unhandled_reloc, /* special_function */
1835 "R_PPC64_GOT_DTPREL16_HA", /* name */
1836 FALSE, /* partial_inplace */
1837 0, /* src_mask */
1838 0xffff, /* dst_mask */
1839 FALSE), /* pcrel_offset */
1840
1841 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
1842 offset to the entry relative to the TOC base (r2). */
1843 HOWTO (R_PPC64_GOT_TPREL16_DS,
1844 0, /* rightshift */
1845 1, /* size (0 = byte, 1 = short, 2 = long) */
1846 16, /* bitsize */
1847 FALSE, /* pc_relative */
1848 0, /* bitpos */
1849 complain_overflow_signed, /* complain_on_overflow */
1850 ppc64_elf_unhandled_reloc, /* special_function */
1851 "R_PPC64_GOT_TPREL16_DS", /* name */
1852 FALSE, /* partial_inplace */
1853 0, /* src_mask */
1854 0xfffc, /* dst_mask */
1855 FALSE), /* pcrel_offset */
1856
1857 /* Like GOT_TPREL16_DS, but no overflow. */
1858 HOWTO (R_PPC64_GOT_TPREL16_LO_DS,
1859 0, /* rightshift */
1860 1, /* size (0 = byte, 1 = short, 2 = long) */
1861 16, /* bitsize */
1862 FALSE, /* pc_relative */
1863 0, /* bitpos */
1864 complain_overflow_dont, /* complain_on_overflow */
1865 ppc64_elf_unhandled_reloc, /* special_function */
1866 "R_PPC64_GOT_TPREL16_LO_DS", /* name */
1867 FALSE, /* partial_inplace */
1868 0, /* src_mask */
1869 0xfffc, /* dst_mask */
1870 FALSE), /* pcrel_offset */
1871
1872 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
1873 HOWTO (R_PPC64_GOT_TPREL16_HI,
1874 16, /* rightshift */
1875 1, /* size (0 = byte, 1 = short, 2 = long) */
1876 16, /* bitsize */
1877 FALSE, /* pc_relative */
1878 0, /* bitpos */
1879 complain_overflow_dont, /* complain_on_overflow */
1880 ppc64_elf_unhandled_reloc, /* special_function */
1881 "R_PPC64_GOT_TPREL16_HI", /* name */
1882 FALSE, /* partial_inplace */
1883 0, /* src_mask */
1884 0xffff, /* dst_mask */
1885 FALSE), /* pcrel_offset */
1886
1887 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
1888 HOWTO (R_PPC64_GOT_TPREL16_HA,
1889 16, /* rightshift */
1890 1, /* size (0 = byte, 1 = short, 2 = long) */
1891 16, /* bitsize */
1892 FALSE, /* pc_relative */
1893 0, /* bitpos */
1894 complain_overflow_dont, /* complain_on_overflow */
1895 ppc64_elf_unhandled_reloc, /* special_function */
1896 "R_PPC64_GOT_TPREL16_HA", /* name */
1897 FALSE, /* partial_inplace */
1898 0, /* src_mask */
1899 0xffff, /* dst_mask */
1900 FALSE), /* pcrel_offset */
1901
1902 HOWTO (R_PPC64_JMP_IREL, /* type */
1903 0, /* rightshift */
1904 0, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1905 0, /* bitsize */
1906 FALSE, /* pc_relative */
1907 0, /* bitpos */
1908 complain_overflow_dont, /* complain_on_overflow */
1909 ppc64_elf_unhandled_reloc, /* special_function */
1910 "R_PPC64_JMP_IREL", /* name */
1911 FALSE, /* partial_inplace */
1912 0, /* src_mask */
1913 0, /* dst_mask */
1914 FALSE), /* pcrel_offset */
1915
1916 HOWTO (R_PPC64_IRELATIVE, /* type */
1917 0, /* rightshift */
1918 4, /* size (0=byte, 1=short, 2=long, 4=64 bits) */
1919 64, /* bitsize */
1920 FALSE, /* pc_relative */
1921 0, /* bitpos */
1922 complain_overflow_dont, /* complain_on_overflow */
1923 bfd_elf_generic_reloc, /* special_function */
1924 "R_PPC64_IRELATIVE", /* name */
1925 FALSE, /* partial_inplace */
1926 0, /* src_mask */
1927 ONES (64), /* dst_mask */
1928 FALSE), /* pcrel_offset */
1929
1930 /* A 16 bit relative relocation. */
1931 HOWTO (R_PPC64_REL16, /* type */
1932 0, /* rightshift */
1933 1, /* size (0 = byte, 1 = short, 2 = long) */
1934 16, /* bitsize */
1935 TRUE, /* pc_relative */
1936 0, /* bitpos */
1937 complain_overflow_bitfield, /* complain_on_overflow */
1938 bfd_elf_generic_reloc, /* special_function */
1939 "R_PPC64_REL16", /* name */
1940 FALSE, /* partial_inplace */
1941 0, /* src_mask */
1942 0xffff, /* dst_mask */
1943 TRUE), /* pcrel_offset */
1944
1945 /* A 16 bit relative relocation without overflow. */
1946 HOWTO (R_PPC64_REL16_LO, /* type */
1947 0, /* rightshift */
1948 1, /* size (0 = byte, 1 = short, 2 = long) */
1949 16, /* bitsize */
1950 TRUE, /* pc_relative */
1951 0, /* bitpos */
1952 complain_overflow_dont,/* complain_on_overflow */
1953 bfd_elf_generic_reloc, /* special_function */
1954 "R_PPC64_REL16_LO", /* name */
1955 FALSE, /* partial_inplace */
1956 0, /* src_mask */
1957 0xffff, /* dst_mask */
1958 TRUE), /* pcrel_offset */
1959
1960 /* The high order 16 bits of a relative address. */
1961 HOWTO (R_PPC64_REL16_HI, /* type */
1962 16, /* rightshift */
1963 1, /* size (0 = byte, 1 = short, 2 = long) */
1964 16, /* bitsize */
1965 TRUE, /* pc_relative */
1966 0, /* bitpos */
1967 complain_overflow_dont, /* complain_on_overflow */
1968 bfd_elf_generic_reloc, /* special_function */
1969 "R_PPC64_REL16_HI", /* name */
1970 FALSE, /* partial_inplace */
1971 0, /* src_mask */
1972 0xffff, /* dst_mask */
1973 TRUE), /* pcrel_offset */
1974
1975 /* The high order 16 bits of a relative address, plus 1 if the contents of
1976 the low 16 bits, treated as a signed number, is negative. */
1977 HOWTO (R_PPC64_REL16_HA, /* type */
1978 16, /* rightshift */
1979 1, /* size (0 = byte, 1 = short, 2 = long) */
1980 16, /* bitsize */
1981 TRUE, /* pc_relative */
1982 0, /* bitpos */
1983 complain_overflow_dont, /* complain_on_overflow */
1984 ppc64_elf_ha_reloc, /* special_function */
1985 "R_PPC64_REL16_HA", /* name */
1986 FALSE, /* partial_inplace */
1987 0, /* src_mask */
1988 0xffff, /* dst_mask */
1989 TRUE), /* pcrel_offset */
1990
1991 /* GNU extension to record C++ vtable hierarchy. */
1992 HOWTO (R_PPC64_GNU_VTINHERIT, /* type */
1993 0, /* rightshift */
1994 0, /* size (0 = byte, 1 = short, 2 = long) */
1995 0, /* bitsize */
1996 FALSE, /* pc_relative */
1997 0, /* bitpos */
1998 complain_overflow_dont, /* complain_on_overflow */
1999 NULL, /* special_function */
2000 "R_PPC64_GNU_VTINHERIT", /* name */
2001 FALSE, /* partial_inplace */
2002 0, /* src_mask */
2003 0, /* dst_mask */
2004 FALSE), /* pcrel_offset */
2005
2006 /* GNU extension to record C++ vtable member usage. */
2007 HOWTO (R_PPC64_GNU_VTENTRY, /* type */
2008 0, /* rightshift */
2009 0, /* size (0 = byte, 1 = short, 2 = long) */
2010 0, /* bitsize */
2011 FALSE, /* pc_relative */
2012 0, /* bitpos */
2013 complain_overflow_dont, /* complain_on_overflow */
2014 NULL, /* special_function */
2015 "R_PPC64_GNU_VTENTRY", /* name */
2016 FALSE, /* partial_inplace */
2017 0, /* src_mask */
2018 0, /* dst_mask */
2019 FALSE), /* pcrel_offset */
2020 };
2021
2022 \f
2023 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
2024 be done. */
2025
2026 static void
2027 ppc_howto_init (void)
2028 {
2029 unsigned int i, type;
2030
2031 for (i = 0;
2032 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2033 i++)
2034 {
2035 type = ppc64_elf_howto_raw[i].type;
2036 BFD_ASSERT (type < (sizeof (ppc64_elf_howto_table)
2037 / sizeof (ppc64_elf_howto_table[0])));
2038 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
2039 }
2040 }
2041
2042 static reloc_howto_type *
2043 ppc64_elf_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2044 bfd_reloc_code_real_type code)
2045 {
2046 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
2047
2048 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2049 /* Initialize howto table if needed. */
2050 ppc_howto_init ();
2051
2052 switch (code)
2053 {
2054 default:
2055 return NULL;
2056
2057 case BFD_RELOC_NONE: r = R_PPC64_NONE;
2058 break;
2059 case BFD_RELOC_32: r = R_PPC64_ADDR32;
2060 break;
2061 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
2062 break;
2063 case BFD_RELOC_16: r = R_PPC64_ADDR16;
2064 break;
2065 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
2066 break;
2067 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
2068 break;
2069 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
2070 break;
2071 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
2072 break;
2073 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
2074 break;
2075 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
2076 break;
2077 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
2078 break;
2079 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
2080 break;
2081 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
2082 break;
2083 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
2084 break;
2085 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
2086 break;
2087 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
2088 break;
2089 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
2090 break;
2091 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
2092 break;
2093 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
2094 break;
2095 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
2096 break;
2097 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
2098 break;
2099 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
2100 break;
2101 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
2102 break;
2103 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
2104 break;
2105 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
2106 break;
2107 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
2108 break;
2109 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
2110 break;
2111 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
2112 break;
2113 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
2114 break;
2115 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
2116 break;
2117 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
2118 break;
2119 case BFD_RELOC_64: r = R_PPC64_ADDR64;
2120 break;
2121 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
2122 break;
2123 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
2124 break;
2125 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
2126 break;
2127 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
2128 break;
2129 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
2130 break;
2131 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
2132 break;
2133 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
2134 break;
2135 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
2136 break;
2137 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
2138 break;
2139 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
2140 break;
2141 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
2142 break;
2143 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
2144 break;
2145 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
2146 break;
2147 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
2148 break;
2149 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
2150 break;
2151 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
2152 break;
2153 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
2154 break;
2155 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
2156 break;
2157 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
2158 break;
2159 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
2160 break;
2161 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
2162 break;
2163 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
2164 break;
2165 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
2166 break;
2167 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
2168 break;
2169 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
2170 break;
2171 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
2172 break;
2173 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
2174 break;
2175 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
2176 break;
2177 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
2178 break;
2179 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
2180 break;
2181 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
2182 break;
2183 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
2184 break;
2185 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
2186 break;
2187 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
2188 break;
2189 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
2190 break;
2191 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
2192 break;
2193 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
2194 break;
2195 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
2196 break;
2197 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
2198 break;
2199 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
2200 break;
2201 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
2202 break;
2203 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
2204 break;
2205 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
2206 break;
2207 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
2208 break;
2209 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
2210 break;
2211 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
2212 break;
2213 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
2214 break;
2215 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
2216 break;
2217 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
2218 break;
2219 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
2220 break;
2221 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
2222 break;
2223 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
2224 break;
2225 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
2226 break;
2227 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
2228 break;
2229 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
2230 break;
2231 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
2232 break;
2233 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
2234 break;
2235 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
2236 break;
2237 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
2238 break;
2239 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
2240 break;
2241 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
2242 break;
2243 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
2244 break;
2245 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
2246 break;
2247 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
2248 break;
2249 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
2250 break;
2251 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
2252 break;
2253 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
2254 break;
2255 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
2256 break;
2257 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
2258 break;
2259 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
2260 break;
2261 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
2262 break;
2263 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
2264 break;
2265 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
2266 break;
2267 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
2268 break;
2269 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
2270 break;
2271 }
2272
2273 return ppc64_elf_howto_table[r];
2274 };
2275
2276 static reloc_howto_type *
2277 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2278 const char *r_name)
2279 {
2280 unsigned int i;
2281
2282 for (i = 0;
2283 i < sizeof (ppc64_elf_howto_raw) / sizeof (ppc64_elf_howto_raw[0]);
2284 i++)
2285 if (ppc64_elf_howto_raw[i].name != NULL
2286 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
2287 return &ppc64_elf_howto_raw[i];
2288
2289 return NULL;
2290 }
2291
2292 /* Set the howto pointer for a PowerPC ELF reloc. */
2293
2294 static void
2295 ppc64_elf_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *cache_ptr,
2296 Elf_Internal_Rela *dst)
2297 {
2298 unsigned int type;
2299
2300 /* Initialize howto table if needed. */
2301 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
2302 ppc_howto_init ();
2303
2304 type = ELF64_R_TYPE (dst->r_info);
2305 if (type >= (sizeof (ppc64_elf_howto_table)
2306 / sizeof (ppc64_elf_howto_table[0])))
2307 {
2308 (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
2309 abfd, (int) type);
2310 type = R_PPC64_NONE;
2311 }
2312 cache_ptr->howto = ppc64_elf_howto_table[type];
2313 }
2314
2315 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
2316
2317 static bfd_reloc_status_type
2318 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2319 void *data, asection *input_section,
2320 bfd *output_bfd, char **error_message)
2321 {
2322 /* If this is a relocatable link (output_bfd test tells us), just
2323 call the generic function. Any adjustment will be done at final
2324 link time. */
2325 if (output_bfd != NULL)
2326 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2327 input_section, output_bfd, error_message);
2328
2329 /* Adjust the addend for sign extension of the low 16 bits.
2330 We won't actually be using the low 16 bits, so trashing them
2331 doesn't matter. */
2332 reloc_entry->addend += 0x8000;
2333 return bfd_reloc_continue;
2334 }
2335
2336 static bfd_reloc_status_type
2337 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2338 void *data, asection *input_section,
2339 bfd *output_bfd, char **error_message)
2340 {
2341 if (output_bfd != NULL)
2342 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2343 input_section, output_bfd, error_message);
2344
2345 if (strcmp (symbol->section->name, ".opd") == 0
2346 && (symbol->section->owner->flags & DYNAMIC) == 0)
2347 {
2348 bfd_vma dest = opd_entry_value (symbol->section,
2349 symbol->value + reloc_entry->addend,
2350 NULL, NULL);
2351 if (dest != (bfd_vma) -1)
2352 reloc_entry->addend = dest - (symbol->value
2353 + symbol->section->output_section->vma
2354 + symbol->section->output_offset);
2355 }
2356 return bfd_reloc_continue;
2357 }
2358
2359 static bfd_reloc_status_type
2360 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2361 void *data, asection *input_section,
2362 bfd *output_bfd, char **error_message)
2363 {
2364 long insn;
2365 enum elf_ppc64_reloc_type r_type;
2366 bfd_size_type octets;
2367 /* Assume 'at' branch hints. */
2368 bfd_boolean is_isa_v2 = TRUE;
2369
2370 /* If this is a relocatable link (output_bfd test tells us), just
2371 call the generic function. Any adjustment will be done at final
2372 link time. */
2373 if (output_bfd != NULL)
2374 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2375 input_section, output_bfd, error_message);
2376
2377 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2378 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
2379 insn &= ~(0x01 << 21);
2380 r_type = reloc_entry->howto->type;
2381 if (r_type == R_PPC64_ADDR14_BRTAKEN
2382 || r_type == R_PPC64_REL14_BRTAKEN)
2383 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
2384
2385 if (is_isa_v2)
2386 {
2387 /* Set 'a' bit. This is 0b00010 in BO field for branch
2388 on CR(BI) insns (BO == 001at or 011at), and 0b01000
2389 for branch on CTR insns (BO == 1a00t or 1a01t). */
2390 if ((insn & (0x14 << 21)) == (0x04 << 21))
2391 insn |= 0x02 << 21;
2392 else if ((insn & (0x14 << 21)) == (0x10 << 21))
2393 insn |= 0x08 << 21;
2394 else
2395 goto out;
2396 }
2397 else
2398 {
2399 bfd_vma target = 0;
2400 bfd_vma from;
2401
2402 if (!bfd_is_com_section (symbol->section))
2403 target = symbol->value;
2404 target += symbol->section->output_section->vma;
2405 target += symbol->section->output_offset;
2406 target += reloc_entry->addend;
2407
2408 from = (reloc_entry->address
2409 + input_section->output_offset
2410 + input_section->output_section->vma);
2411
2412 /* Invert 'y' bit if not the default. */
2413 if ((bfd_signed_vma) (target - from) < 0)
2414 insn ^= 0x01 << 21;
2415 }
2416 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
2417 out:
2418 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
2419 input_section, output_bfd, error_message);
2420 }
2421
2422 static bfd_reloc_status_type
2423 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2424 void *data, asection *input_section,
2425 bfd *output_bfd, char **error_message)
2426 {
2427 /* If this is a relocatable link (output_bfd test tells us), just
2428 call the generic function. Any adjustment will be done at final
2429 link time. */
2430 if (output_bfd != NULL)
2431 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2432 input_section, output_bfd, error_message);
2433
2434 /* Subtract the symbol section base address. */
2435 reloc_entry->addend -= symbol->section->output_section->vma;
2436 return bfd_reloc_continue;
2437 }
2438
2439 static bfd_reloc_status_type
2440 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2441 void *data, asection *input_section,
2442 bfd *output_bfd, char **error_message)
2443 {
2444 /* If this is a relocatable link (output_bfd test tells us), just
2445 call the generic function. Any adjustment will be done at final
2446 link time. */
2447 if (output_bfd != NULL)
2448 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2449 input_section, output_bfd, error_message);
2450
2451 /* Subtract the symbol section base address. */
2452 reloc_entry->addend -= symbol->section->output_section->vma;
2453
2454 /* Adjust the addend for sign extension of the low 16 bits. */
2455 reloc_entry->addend += 0x8000;
2456 return bfd_reloc_continue;
2457 }
2458
2459 static bfd_reloc_status_type
2460 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2461 void *data, asection *input_section,
2462 bfd *output_bfd, char **error_message)
2463 {
2464 bfd_vma TOCstart;
2465
2466 /* If this is a relocatable link (output_bfd test tells us), just
2467 call the generic function. Any adjustment will be done at final
2468 link time. */
2469 if (output_bfd != NULL)
2470 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2471 input_section, output_bfd, error_message);
2472
2473 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2474 if (TOCstart == 0)
2475 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2476
2477 /* Subtract the TOC base address. */
2478 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2479 return bfd_reloc_continue;
2480 }
2481
2482 static bfd_reloc_status_type
2483 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2484 void *data, asection *input_section,
2485 bfd *output_bfd, char **error_message)
2486 {
2487 bfd_vma TOCstart;
2488
2489 /* If this is a relocatable link (output_bfd test tells us), just
2490 call the generic function. Any adjustment will be done at final
2491 link time. */
2492 if (output_bfd != NULL)
2493 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2494 input_section, output_bfd, error_message);
2495
2496 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2497 if (TOCstart == 0)
2498 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2499
2500 /* Subtract the TOC base address. */
2501 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
2502
2503 /* Adjust the addend for sign extension of the low 16 bits. */
2504 reloc_entry->addend += 0x8000;
2505 return bfd_reloc_continue;
2506 }
2507
2508 static bfd_reloc_status_type
2509 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 void *data, asection *input_section,
2511 bfd *output_bfd, char **error_message)
2512 {
2513 bfd_vma TOCstart;
2514 bfd_size_type octets;
2515
2516 /* If this is a relocatable link (output_bfd test tells us), just
2517 call the generic function. Any adjustment will be done at final
2518 link time. */
2519 if (output_bfd != NULL)
2520 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2521 input_section, output_bfd, error_message);
2522
2523 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
2524 if (TOCstart == 0)
2525 TOCstart = ppc64_elf_toc (input_section->output_section->owner);
2526
2527 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2528 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
2529 return bfd_reloc_ok;
2530 }
2531
2532 static bfd_reloc_status_type
2533 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2534 void *data, asection *input_section,
2535 bfd *output_bfd, char **error_message)
2536 {
2537 /* If this is a relocatable link (output_bfd test tells us), just
2538 call the generic function. Any adjustment will be done at final
2539 link time. */
2540 if (output_bfd != NULL)
2541 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2542 input_section, output_bfd, error_message);
2543
2544 if (error_message != NULL)
2545 {
2546 static char buf[60];
2547 sprintf (buf, "generic linker can't handle %s",
2548 reloc_entry->howto->name);
2549 *error_message = buf;
2550 }
2551 return bfd_reloc_dangerous;
2552 }
2553
2554 /* Track GOT entries needed for a given symbol. We might need more
2555 than one got entry per symbol. */
2556 struct got_entry
2557 {
2558 struct got_entry *next;
2559
2560 /* The symbol addend that we'll be placing in the GOT. */
2561 bfd_vma addend;
2562
2563 /* Unlike other ELF targets, we use separate GOT entries for the same
2564 symbol referenced from different input files. This is to support
2565 automatic multiple TOC/GOT sections, where the TOC base can vary
2566 from one input file to another. After partitioning into TOC groups
2567 we merge entries within the group.
2568
2569 Point to the BFD owning this GOT entry. */
2570 bfd *owner;
2571
2572 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
2573 TLS_TPREL or TLS_DTPREL for tls entries. */
2574 unsigned char tls_type;
2575
2576 /* Non-zero if got.ent points to real entry. */
2577 unsigned char is_indirect;
2578
2579 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
2580 union
2581 {
2582 bfd_signed_vma refcount;
2583 bfd_vma offset;
2584 struct got_entry *ent;
2585 } got;
2586 };
2587
2588 /* The same for PLT. */
2589 struct plt_entry
2590 {
2591 struct plt_entry *next;
2592
2593 bfd_vma addend;
2594
2595 union
2596 {
2597 bfd_signed_vma refcount;
2598 bfd_vma offset;
2599 } plt;
2600 };
2601
2602 struct ppc64_elf_obj_tdata
2603 {
2604 struct elf_obj_tdata elf;
2605
2606 /* Shortcuts to dynamic linker sections. */
2607 asection *got;
2608 asection *relgot;
2609
2610 /* Used during garbage collection. We attach global symbols defined
2611 on removed .opd entries to this section so that the sym is removed. */
2612 asection *deleted_section;
2613
2614 /* TLS local dynamic got entry handling. Support for multiple GOT
2615 sections means we potentially need one of these for each input bfd. */
2616 struct got_entry tlsld_got;
2617
2618 /* A copy of relocs before they are modified for --emit-relocs. */
2619 Elf_Internal_Rela *opd_relocs;
2620
2621 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
2622 the reloc to be in the range -32768 to 32767. */
2623 unsigned int has_small_toc_reloc : 1;
2624
2625 /* Set if toc/got ha relocs detected not using r2, or lo reloc
2626 instruction not one we handle. */
2627 unsigned int unexpected_toc_insn : 1;
2628 };
2629
2630 #define ppc64_elf_tdata(bfd) \
2631 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
2632
2633 #define ppc64_tlsld_got(bfd) \
2634 (&ppc64_elf_tdata (bfd)->tlsld_got)
2635
2636 #define is_ppc64_elf(bfd) \
2637 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2638 && elf_object_id (bfd) == PPC64_ELF_DATA)
2639
2640 /* Override the generic function because we store some extras. */
2641
2642 static bfd_boolean
2643 ppc64_elf_mkobject (bfd *abfd)
2644 {
2645 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
2646 PPC64_ELF_DATA);
2647 }
2648
2649 /* Fix bad default arch selected for a 64 bit input bfd when the
2650 default is 32 bit. */
2651
2652 static bfd_boolean
2653 ppc64_elf_object_p (bfd *abfd)
2654 {
2655 if (abfd->arch_info->the_default && abfd->arch_info->bits_per_word == 32)
2656 {
2657 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
2658
2659 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
2660 {
2661 /* Relies on arch after 32 bit default being 64 bit default. */
2662 abfd->arch_info = abfd->arch_info->next;
2663 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
2664 }
2665 }
2666 return TRUE;
2667 }
2668
2669 /* Support for core dump NOTE sections. */
2670
2671 static bfd_boolean
2672 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2673 {
2674 size_t offset, size;
2675
2676 if (note->descsz != 504)
2677 return FALSE;
2678
2679 /* pr_cursig */
2680 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
2681
2682 /* pr_pid */
2683 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 32);
2684
2685 /* pr_reg */
2686 offset = 112;
2687 size = 384;
2688
2689 /* Make a ".reg/999" section. */
2690 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2691 size, note->descpos + offset);
2692 }
2693
2694 static bfd_boolean
2695 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2696 {
2697 if (note->descsz != 136)
2698 return FALSE;
2699
2700 elf_tdata (abfd)->core_pid
2701 = bfd_get_32 (abfd, note->descdata + 24);
2702 elf_tdata (abfd)->core_program
2703 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2704 elf_tdata (abfd)->core_command
2705 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2706
2707 return TRUE;
2708 }
2709
2710 static char *
2711 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
2712 ...)
2713 {
2714 switch (note_type)
2715 {
2716 default:
2717 return NULL;
2718
2719 case NT_PRPSINFO:
2720 {
2721 char data[136];
2722 va_list ap;
2723
2724 va_start (ap, note_type);
2725 memset (data, 0, sizeof (data));
2726 strncpy (data + 40, va_arg (ap, const char *), 16);
2727 strncpy (data + 56, va_arg (ap, const char *), 80);
2728 va_end (ap);
2729 return elfcore_write_note (abfd, buf, bufsiz,
2730 "CORE", note_type, data, sizeof (data));
2731 }
2732
2733 case NT_PRSTATUS:
2734 {
2735 char data[504];
2736 va_list ap;
2737 long pid;
2738 int cursig;
2739 const void *greg;
2740
2741 va_start (ap, note_type);
2742 memset (data, 0, 112);
2743 pid = va_arg (ap, long);
2744 bfd_put_32 (abfd, pid, data + 32);
2745 cursig = va_arg (ap, int);
2746 bfd_put_16 (abfd, cursig, data + 12);
2747 greg = va_arg (ap, const void *);
2748 memcpy (data + 112, greg, 384);
2749 memset (data + 496, 0, 8);
2750 va_end (ap);
2751 return elfcore_write_note (abfd, buf, bufsiz,
2752 "CORE", note_type, data, sizeof (data));
2753 }
2754 }
2755 }
2756
2757 /* Add extra PPC sections. */
2758
2759 static const struct bfd_elf_special_section ppc64_elf_special_sections[]=
2760 {
2761 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
2762 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2763 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2764 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2765 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2766 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2767 { NULL, 0, 0, 0, 0 }
2768 };
2769
2770 enum _ppc64_sec_type {
2771 sec_normal = 0,
2772 sec_opd = 1,
2773 sec_toc = 2
2774 };
2775
2776 struct _ppc64_elf_section_data
2777 {
2778 struct bfd_elf_section_data elf;
2779
2780 union
2781 {
2782 /* An array with one entry for each opd function descriptor. */
2783 struct _opd_sec_data
2784 {
2785 /* Points to the function code section for local opd entries. */
2786 asection **func_sec;
2787
2788 /* After editing .opd, adjust references to opd local syms. */
2789 long *adjust;
2790 } opd;
2791
2792 /* An array for toc sections, indexed by offset/8. */
2793 struct _toc_sec_data
2794 {
2795 /* Specifies the relocation symbol index used at a given toc offset. */
2796 unsigned *symndx;
2797
2798 /* And the relocation addend. */
2799 bfd_vma *add;
2800 } toc;
2801 } u;
2802
2803 enum _ppc64_sec_type sec_type:2;
2804
2805 /* Flag set when small branches are detected. Used to
2806 select suitable defaults for the stub group size. */
2807 unsigned int has_14bit_branch:1;
2808 };
2809
2810 #define ppc64_elf_section_data(sec) \
2811 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
2812
2813 static bfd_boolean
2814 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
2815 {
2816 if (!sec->used_by_bfd)
2817 {
2818 struct _ppc64_elf_section_data *sdata;
2819 bfd_size_type amt = sizeof (*sdata);
2820
2821 sdata = bfd_zalloc (abfd, amt);
2822 if (sdata == NULL)
2823 return FALSE;
2824 sec->used_by_bfd = sdata;
2825 }
2826
2827 return _bfd_elf_new_section_hook (abfd, sec);
2828 }
2829
2830 static struct _opd_sec_data *
2831 get_opd_info (asection * sec)
2832 {
2833 if (sec != NULL
2834 && ppc64_elf_section_data (sec) != NULL
2835 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2836 return &ppc64_elf_section_data (sec)->u.opd;
2837 return NULL;
2838 }
2839 \f
2840 /* Parameters for the qsort hook. */
2841 static bfd_boolean synthetic_relocatable;
2842
2843 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2844
2845 static int
2846 compare_symbols (const void *ap, const void *bp)
2847 {
2848 const asymbol *a = * (const asymbol **) ap;
2849 const asymbol *b = * (const asymbol **) bp;
2850
2851 /* Section symbols first. */
2852 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2853 return -1;
2854 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2855 return 1;
2856
2857 /* then .opd symbols. */
2858 if (strcmp (a->section->name, ".opd") == 0
2859 && strcmp (b->section->name, ".opd") != 0)
2860 return -1;
2861 if (strcmp (a->section->name, ".opd") != 0
2862 && strcmp (b->section->name, ".opd") == 0)
2863 return 1;
2864
2865 /* then other code symbols. */
2866 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2867 == (SEC_CODE | SEC_ALLOC)
2868 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2869 != (SEC_CODE | SEC_ALLOC))
2870 return -1;
2871
2872 if ((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2873 != (SEC_CODE | SEC_ALLOC)
2874 && (b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2875 == (SEC_CODE | SEC_ALLOC))
2876 return 1;
2877
2878 if (synthetic_relocatable)
2879 {
2880 if (a->section->id < b->section->id)
2881 return -1;
2882
2883 if (a->section->id > b->section->id)
2884 return 1;
2885 }
2886
2887 if (a->value + a->section->vma < b->value + b->section->vma)
2888 return -1;
2889
2890 if (a->value + a->section->vma > b->value + b->section->vma)
2891 return 1;
2892
2893 /* For syms with the same value, prefer strong dynamic global function
2894 syms over other syms. */
2895 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2896 return -1;
2897
2898 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2899 return 1;
2900
2901 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2902 return -1;
2903
2904 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2905 return 1;
2906
2907 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2908 return -1;
2909
2910 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2911 return 1;
2912
2913 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2914 return -1;
2915
2916 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2917 return 1;
2918
2919 return 0;
2920 }
2921
2922 /* Search SYMS for a symbol of the given VALUE. */
2923
2924 static asymbol *
2925 sym_exists_at (asymbol **syms, long lo, long hi, int id, bfd_vma value)
2926 {
2927 long mid;
2928
2929 if (id == -1)
2930 {
2931 while (lo < hi)
2932 {
2933 mid = (lo + hi) >> 1;
2934 if (syms[mid]->value + syms[mid]->section->vma < value)
2935 lo = mid + 1;
2936 else if (syms[mid]->value + syms[mid]->section->vma > value)
2937 hi = mid;
2938 else
2939 return syms[mid];
2940 }
2941 }
2942 else
2943 {
2944 while (lo < hi)
2945 {
2946 mid = (lo + hi) >> 1;
2947 if (syms[mid]->section->id < id)
2948 lo = mid + 1;
2949 else if (syms[mid]->section->id > id)
2950 hi = mid;
2951 else if (syms[mid]->value < value)
2952 lo = mid + 1;
2953 else if (syms[mid]->value > value)
2954 hi = mid;
2955 else
2956 return syms[mid];
2957 }
2958 }
2959 return NULL;
2960 }
2961
2962 static bfd_boolean
2963 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2964 {
2965 bfd_vma vma = *(bfd_vma *) ptr;
2966 return ((section->flags & SEC_ALLOC) != 0
2967 && section->vma <= vma
2968 && vma < section->vma + section->size);
2969 }
2970
2971 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2972 entry syms. Also generate @plt symbols for the glink branch table. */
2973
2974 static long
2975 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2976 long static_count, asymbol **static_syms,
2977 long dyn_count, asymbol **dyn_syms,
2978 asymbol **ret)
2979 {
2980 asymbol *s;
2981 long i;
2982 long count;
2983 char *names;
2984 long symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2985 asection *opd;
2986 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2987 asymbol **syms;
2988
2989 *ret = NULL;
2990
2991 opd = bfd_get_section_by_name (abfd, ".opd");
2992 if (opd == NULL)
2993 return 0;
2994
2995 symcount = static_count;
2996 if (!relocatable)
2997 symcount += dyn_count;
2998 if (symcount == 0)
2999 return 0;
3000
3001 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
3002 if (syms == NULL)
3003 return -1;
3004
3005 if (!relocatable && static_count != 0 && dyn_count != 0)
3006 {
3007 /* Use both symbol tables. */
3008 memcpy (syms, static_syms, static_count * sizeof (*syms));
3009 memcpy (syms + static_count, dyn_syms, (dyn_count + 1) * sizeof (*syms));
3010 }
3011 else if (!relocatable && static_count == 0)
3012 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
3013 else
3014 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
3015
3016 synthetic_relocatable = relocatable;
3017 qsort (syms, symcount, sizeof (*syms), compare_symbols);
3018
3019 if (!relocatable && symcount > 1)
3020 {
3021 long j;
3022 /* Trim duplicate syms, since we may have merged the normal and
3023 dynamic symbols. Actually, we only care about syms that have
3024 different values, so trim any with the same value. */
3025 for (i = 1, j = 1; i < symcount; ++i)
3026 if (syms[i - 1]->value + syms[i - 1]->section->vma
3027 != syms[i]->value + syms[i]->section->vma)
3028 syms[j++] = syms[i];
3029 symcount = j;
3030 }
3031
3032 i = 0;
3033 if (strcmp (syms[i]->section->name, ".opd") == 0)
3034 ++i;
3035 codesecsym = i;
3036
3037 for (; i < symcount; ++i)
3038 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3039 != (SEC_CODE | SEC_ALLOC))
3040 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
3041 break;
3042 codesecsymend = i;
3043
3044 for (; i < symcount; ++i)
3045 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
3046 break;
3047 secsymend = i;
3048
3049 for (; i < symcount; ++i)
3050 if (strcmp (syms[i]->section->name, ".opd") != 0)
3051 break;
3052 opdsymend = i;
3053
3054 for (; i < symcount; ++i)
3055 if ((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
3056 != (SEC_CODE | SEC_ALLOC))
3057 break;
3058 symcount = i;
3059
3060 count = 0;
3061
3062 if (relocatable)
3063 {
3064 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3065 arelent *r;
3066 size_t size;
3067 long relcount;
3068
3069 if (opdsymend == secsymend)
3070 goto done;
3071
3072 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3073 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
3074 if (relcount == 0)
3075 goto done;
3076
3077 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
3078 {
3079 count = -1;
3080 goto done;
3081 }
3082
3083 size = 0;
3084 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3085 {
3086 asymbol *sym;
3087
3088 while (r < opd->relocation + relcount
3089 && r->address < syms[i]->value + opd->vma)
3090 ++r;
3091
3092 if (r == opd->relocation + relcount)
3093 break;
3094
3095 if (r->address != syms[i]->value + opd->vma)
3096 continue;
3097
3098 if (r->howto->type != R_PPC64_ADDR64)
3099 continue;
3100
3101 sym = *r->sym_ptr_ptr;
3102 if (!sym_exists_at (syms, opdsymend, symcount,
3103 sym->section->id, sym->value + r->addend))
3104 {
3105 ++count;
3106 size += sizeof (asymbol);
3107 size += strlen (syms[i]->name) + 2;
3108 }
3109 }
3110
3111 s = *ret = bfd_malloc (size);
3112 if (s == NULL)
3113 {
3114 count = -1;
3115 goto done;
3116 }
3117
3118 names = (char *) (s + count);
3119
3120 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
3121 {
3122 asymbol *sym;
3123
3124 while (r < opd->relocation + relcount
3125 && r->address < syms[i]->value + opd->vma)
3126 ++r;
3127
3128 if (r == opd->relocation + relcount)
3129 break;
3130
3131 if (r->address != syms[i]->value + opd->vma)
3132 continue;
3133
3134 if (r->howto->type != R_PPC64_ADDR64)
3135 continue;
3136
3137 sym = *r->sym_ptr_ptr;
3138 if (!sym_exists_at (syms, opdsymend, symcount,
3139 sym->section->id, sym->value + r->addend))
3140 {
3141 size_t len;
3142
3143 *s = *syms[i];
3144 s->flags |= BSF_SYNTHETIC;
3145 s->section = sym->section;
3146 s->value = sym->value + r->addend;
3147 s->name = names;
3148 *names++ = '.';
3149 len = strlen (syms[i]->name);
3150 memcpy (names, syms[i]->name, len + 1);
3151 names += len + 1;
3152 /* Have udata.p point back to the original symbol this
3153 synthetic symbol was derived from. */
3154 s->udata.p = syms[i];
3155 s++;
3156 }
3157 }
3158 }
3159 else
3160 {
3161 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
3162 bfd_byte *contents;
3163 size_t size;
3164 long plt_count = 0;
3165 bfd_vma glink_vma = 0, resolv_vma = 0;
3166 asection *dynamic, *glink = NULL, *relplt = NULL;
3167 arelent *p;
3168
3169 if (!bfd_malloc_and_get_section (abfd, opd, &contents))
3170 {
3171 if (contents)
3172 {
3173 free_contents_and_exit:
3174 free (contents);
3175 }
3176 count = -1;
3177 goto done;
3178 }
3179
3180 size = 0;
3181 for (i = secsymend; i < opdsymend; ++i)
3182 {
3183 bfd_vma ent;
3184
3185 /* Ignore bogus symbols. */
3186 if (syms[i]->value > opd->size - 8)
3187 continue;
3188
3189 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3190 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3191 {
3192 ++count;
3193 size += sizeof (asymbol);
3194 size += strlen (syms[i]->name) + 2;
3195 }
3196 }
3197
3198 /* Get start of .glink stubs from DT_PPC64_GLINK. */
3199 if (dyn_count != 0
3200 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
3201 {
3202 bfd_byte *dynbuf, *extdyn, *extdynend;
3203 size_t extdynsize;
3204 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3205
3206 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
3207 goto free_contents_and_exit;
3208
3209 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
3210 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
3211
3212 extdyn = dynbuf;
3213 extdynend = extdyn + dynamic->size;
3214 for (; extdyn < extdynend; extdyn += extdynsize)
3215 {
3216 Elf_Internal_Dyn dyn;
3217 (*swap_dyn_in) (abfd, extdyn, &dyn);
3218
3219 if (dyn.d_tag == DT_NULL)
3220 break;
3221
3222 if (dyn.d_tag == DT_PPC64_GLINK)
3223 {
3224 /* The first glink stub starts at offset 32; see comment in
3225 ppc64_elf_finish_dynamic_sections. */
3226 glink_vma = dyn.d_un.d_val + 32;
3227 /* The .glink section usually does not survive the final
3228 link; search for the section (usually .text) where the
3229 glink stubs now reside. */
3230 glink = bfd_sections_find_if (abfd, section_covers_vma,
3231 &glink_vma);
3232 break;
3233 }
3234 }
3235
3236 free (dynbuf);
3237 }
3238
3239 if (glink != NULL)
3240 {
3241 /* Determine __glink trampoline by reading the relative branch
3242 from the first glink stub. */
3243 bfd_byte buf[4];
3244 if (bfd_get_section_contents (abfd, glink, buf,
3245 glink_vma + 4 - glink->vma, 4))
3246 {
3247 unsigned int insn = bfd_get_32 (abfd, buf);
3248 insn ^= B_DOT;
3249 if ((insn & ~0x3fffffc) == 0)
3250 resolv_vma = glink_vma + 4 + (insn ^ 0x2000000) - 0x2000000;
3251 }
3252
3253 if (resolv_vma)
3254 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
3255
3256 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
3257 if (relplt != NULL)
3258 {
3259 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
3260 if (! (*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
3261 goto free_contents_and_exit;
3262
3263 plt_count = relplt->size / sizeof (Elf64_External_Rela);
3264 size += plt_count * sizeof (asymbol);
3265
3266 p = relplt->relocation;
3267 for (i = 0; i < plt_count; i++, p++)
3268 {
3269 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
3270 if (p->addend != 0)
3271 size += sizeof ("+0x") - 1 + 16;
3272 }
3273 }
3274 }
3275
3276 s = *ret = bfd_malloc (size);
3277 if (s == NULL)
3278 goto free_contents_and_exit;
3279
3280 names = (char *) (s + count + plt_count + (resolv_vma != 0));
3281
3282 for (i = secsymend; i < opdsymend; ++i)
3283 {
3284 bfd_vma ent;
3285
3286 if (syms[i]->value > opd->size - 8)
3287 continue;
3288
3289 ent = bfd_get_64 (abfd, contents + syms[i]->value);
3290 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
3291 {
3292 long lo, hi;
3293 size_t len;
3294 asection *sec = abfd->sections;
3295
3296 *s = *syms[i];
3297 lo = codesecsym;
3298 hi = codesecsymend;
3299 while (lo < hi)
3300 {
3301 long mid = (lo + hi) >> 1;
3302 if (syms[mid]->section->vma < ent)
3303 lo = mid + 1;
3304 else if (syms[mid]->section->vma > ent)
3305 hi = mid;
3306 else
3307 {
3308 sec = syms[mid]->section;
3309 break;
3310 }
3311 }
3312
3313 if (lo >= hi && lo > codesecsym)
3314 sec = syms[lo - 1]->section;
3315
3316 for (; sec != NULL; sec = sec->next)
3317 {
3318 if (sec->vma > ent)
3319 break;
3320 /* SEC_LOAD may not be set if SEC is from a separate debug
3321 info file. */
3322 if ((sec->flags & SEC_ALLOC) == 0)
3323 break;
3324 if ((sec->flags & SEC_CODE) != 0)
3325 s->section = sec;
3326 }
3327 s->flags |= BSF_SYNTHETIC;
3328 s->value = ent - s->section->vma;
3329 s->name = names;
3330 *names++ = '.';
3331 len = strlen (syms[i]->name);
3332 memcpy (names, syms[i]->name, len + 1);
3333 names += len + 1;
3334 /* Have udata.p point back to the original symbol this
3335 synthetic symbol was derived from. */
3336 s->udata.p = syms[i];
3337 s++;
3338 }
3339 }
3340 free (contents);
3341
3342 if (glink != NULL && relplt != NULL)
3343 {
3344 if (resolv_vma)
3345 {
3346 /* Add a symbol for the main glink trampoline. */
3347 memset (s, 0, sizeof *s);
3348 s->the_bfd = abfd;
3349 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
3350 s->section = glink;
3351 s->value = resolv_vma - glink->vma;
3352 s->name = names;
3353 memcpy (names, "__glink_PLTresolve", sizeof ("__glink_PLTresolve"));
3354 names += sizeof ("__glink_PLTresolve");
3355 s++;
3356 count++;
3357 }
3358
3359 /* FIXME: It would be very much nicer to put sym@plt on the
3360 stub rather than on the glink branch table entry. The
3361 objdump disassembler would then use a sensible symbol
3362 name on plt calls. The difficulty in doing so is
3363 a) finding the stubs, and,
3364 b) matching stubs against plt entries, and,
3365 c) there can be multiple stubs for a given plt entry.
3366
3367 Solving (a) could be done by code scanning, but older
3368 ppc64 binaries used different stubs to current code.
3369 (b) is the tricky one since you need to known the toc
3370 pointer for at least one function that uses a pic stub to
3371 be able to calculate the plt address referenced.
3372 (c) means gdb would need to set multiple breakpoints (or
3373 find the glink branch itself) when setting breakpoints
3374 for pending shared library loads. */
3375 p = relplt->relocation;
3376 for (i = 0; i < plt_count; i++, p++)
3377 {
3378 size_t len;
3379
3380 *s = **p->sym_ptr_ptr;
3381 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
3382 we are defining a symbol, ensure one of them is set. */
3383 if ((s->flags & BSF_LOCAL) == 0)
3384 s->flags |= BSF_GLOBAL;
3385 s->flags |= BSF_SYNTHETIC;
3386 s->section = glink;
3387 s->value = glink_vma - glink->vma;
3388 s->name = names;
3389 s->udata.p = NULL;
3390 len = strlen ((*p->sym_ptr_ptr)->name);
3391 memcpy (names, (*p->sym_ptr_ptr)->name, len);
3392 names += len;
3393 if (p->addend != 0)
3394 {
3395 memcpy (names, "+0x", sizeof ("+0x") - 1);
3396 names += sizeof ("+0x") - 1;
3397 bfd_sprintf_vma (abfd, names, p->addend);
3398 names += strlen (names);
3399 }
3400 memcpy (names, "@plt", sizeof ("@plt"));
3401 names += sizeof ("@plt");
3402 s++;
3403 glink_vma += 8;
3404 if (i >= 0x8000)
3405 glink_vma += 4;
3406 }
3407 count += plt_count;
3408 }
3409 }
3410
3411 done:
3412 free (syms);
3413 return count;
3414 }
3415 \f
3416 /* The following functions are specific to the ELF linker, while
3417 functions above are used generally. Those named ppc64_elf_* are
3418 called by the main ELF linker code. They appear in this file more
3419 or less in the order in which they are called. eg.
3420 ppc64_elf_check_relocs is called early in the link process,
3421 ppc64_elf_finish_dynamic_sections is one of the last functions
3422 called.
3423
3424 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
3425 functions have both a function code symbol and a function descriptor
3426 symbol. A call to foo in a relocatable object file looks like:
3427
3428 . .text
3429 . x:
3430 . bl .foo
3431 . nop
3432
3433 The function definition in another object file might be:
3434
3435 . .section .opd
3436 . foo: .quad .foo
3437 . .quad .TOC.@tocbase
3438 . .quad 0
3439 .
3440 . .text
3441 . .foo: blr
3442
3443 When the linker resolves the call during a static link, the branch
3444 unsurprisingly just goes to .foo and the .opd information is unused.
3445 If the function definition is in a shared library, things are a little
3446 different: The call goes via a plt call stub, the opd information gets
3447 copied to the plt, and the linker patches the nop.
3448
3449 . x:
3450 . bl .foo_stub
3451 . ld 2,40(1)
3452 .
3453 .
3454 . .foo_stub:
3455 . addis 12,2,Lfoo@toc@ha # in practice, the call stub
3456 . addi 12,12,Lfoo@toc@l # is slightly optimized, but
3457 . std 2,40(1) # this is the general idea
3458 . ld 11,0(12)
3459 . ld 2,8(12)
3460 . mtctr 11
3461 . ld 11,16(12)
3462 . bctr
3463 .
3464 . .section .plt
3465 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
3466
3467 The "reloc ()" notation is supposed to indicate that the linker emits
3468 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
3469 copying.
3470
3471 What are the difficulties here? Well, firstly, the relocations
3472 examined by the linker in check_relocs are against the function code
3473 sym .foo, while the dynamic relocation in the plt is emitted against
3474 the function descriptor symbol, foo. Somewhere along the line, we need
3475 to carefully copy dynamic link information from one symbol to the other.
3476 Secondly, the generic part of the elf linker will make .foo a dynamic
3477 symbol as is normal for most other backends. We need foo dynamic
3478 instead, at least for an application final link. However, when
3479 creating a shared library containing foo, we need to have both symbols
3480 dynamic so that references to .foo are satisfied during the early
3481 stages of linking. Otherwise the linker might decide to pull in a
3482 definition from some other object, eg. a static library.
3483
3484 Update: As of August 2004, we support a new convention. Function
3485 calls may use the function descriptor symbol, ie. "bl foo". This
3486 behaves exactly as "bl .foo". */
3487
3488 /* Of those relocs that might be copied as dynamic relocs, this function
3489 selects those that must be copied when linking a shared library,
3490 even when the symbol is local. */
3491
3492 static int
3493 must_be_dyn_reloc (struct bfd_link_info *info,
3494 enum elf_ppc64_reloc_type r_type)
3495 {
3496 switch (r_type)
3497 {
3498 default:
3499 return 1;
3500
3501 case R_PPC64_REL32:
3502 case R_PPC64_REL64:
3503 case R_PPC64_REL30:
3504 return 0;
3505
3506 case R_PPC64_TPREL16:
3507 case R_PPC64_TPREL16_LO:
3508 case R_PPC64_TPREL16_HI:
3509 case R_PPC64_TPREL16_HA:
3510 case R_PPC64_TPREL16_DS:
3511 case R_PPC64_TPREL16_LO_DS:
3512 case R_PPC64_TPREL16_HIGHER:
3513 case R_PPC64_TPREL16_HIGHERA:
3514 case R_PPC64_TPREL16_HIGHEST:
3515 case R_PPC64_TPREL16_HIGHESTA:
3516 case R_PPC64_TPREL64:
3517 return !info->executable;
3518 }
3519 }
3520
3521 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
3522 copying dynamic variables from a shared lib into an app's dynbss
3523 section, and instead use a dynamic relocation to point into the
3524 shared lib. With code that gcc generates, it's vital that this be
3525 enabled; In the PowerPC64 ABI, the address of a function is actually
3526 the address of a function descriptor, which resides in the .opd
3527 section. gcc uses the descriptor directly rather than going via the
3528 GOT as some other ABI's do, which means that initialized function
3529 pointers must reference the descriptor. Thus, a function pointer
3530 initialized to the address of a function in a shared library will
3531 either require a copy reloc, or a dynamic reloc. Using a copy reloc
3532 redefines the function descriptor symbol to point to the copy. This
3533 presents a problem as a plt entry for that function is also
3534 initialized from the function descriptor symbol and the copy reloc
3535 may not be initialized first. */
3536 #define ELIMINATE_COPY_RELOCS 1
3537
3538 /* Section name for stubs is the associated section name plus this
3539 string. */
3540 #define STUB_SUFFIX ".stub"
3541
3542 /* Linker stubs.
3543 ppc_stub_long_branch:
3544 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
3545 destination, but a 24 bit branch in a stub section will reach.
3546 . b dest
3547
3548 ppc_stub_plt_branch:
3549 Similar to the above, but a 24 bit branch in the stub section won't
3550 reach its destination.
3551 . addis %r12,%r2,xxx@toc@ha
3552 . ld %r11,xxx@toc@l(%r12)
3553 . mtctr %r11
3554 . bctr
3555
3556 ppc_stub_plt_call:
3557 Used to call a function in a shared library. If it so happens that
3558 the plt entry referenced crosses a 64k boundary, then an extra
3559 "addi %r12,%r12,xxx@toc@l" will be inserted before the "mtctr".
3560 . addis %r12,%r2,xxx@toc@ha
3561 . std %r2,40(%r1)
3562 . ld %r11,xxx+0@toc@l(%r12)
3563 . mtctr %r11
3564 . ld %r2,xxx+8@toc@l(%r12)
3565 . ld %r11,xxx+16@toc@l(%r12)
3566 . bctr
3567
3568 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
3569 code to adjust the value and save r2 to support multiple toc sections.
3570 A ppc_stub_long_branch with an r2 offset looks like:
3571 . std %r2,40(%r1)
3572 . addis %r2,%r2,off@ha
3573 . addi %r2,%r2,off@l
3574 . b dest
3575
3576 A ppc_stub_plt_branch with an r2 offset looks like:
3577 . std %r2,40(%r1)
3578 . addis %r12,%r2,xxx@toc@ha
3579 . ld %r11,xxx@toc@l(%r12)
3580 . addis %r2,%r2,off@ha
3581 . addi %r2,%r2,off@l
3582 . mtctr %r11
3583 . bctr
3584
3585 In cases where the "addis" instruction would add zero, the "addis" is
3586 omitted and following instructions modified slightly in some cases.
3587 */
3588
3589 enum ppc_stub_type {
3590 ppc_stub_none,
3591 ppc_stub_long_branch,
3592 ppc_stub_long_branch_r2off,
3593 ppc_stub_plt_branch,
3594 ppc_stub_plt_branch_r2off,
3595 ppc_stub_plt_call,
3596 ppc_stub_plt_call_r2save
3597 };
3598
3599 struct ppc_stub_hash_entry {
3600
3601 /* Base hash table entry structure. */
3602 struct bfd_hash_entry root;
3603
3604 enum ppc_stub_type stub_type;
3605
3606 /* The stub section. */
3607 asection *stub_sec;
3608
3609 /* Offset within stub_sec of the beginning of this stub. */
3610 bfd_vma stub_offset;
3611
3612 /* Given the symbol's value and its section we can determine its final
3613 value when building the stubs (so the stub knows where to jump. */
3614 bfd_vma target_value;
3615 asection *target_section;
3616
3617 /* The symbol table entry, if any, that this was derived from. */
3618 struct ppc_link_hash_entry *h;
3619 struct plt_entry *plt_ent;
3620
3621 /* And the reloc addend that this was derived from. */
3622 bfd_vma addend;
3623
3624 /* Where this stub is being called from, or, in the case of combined
3625 stub sections, the first input section in the group. */
3626 asection *id_sec;
3627 };
3628
3629 struct ppc_branch_hash_entry {
3630
3631 /* Base hash table entry structure. */
3632 struct bfd_hash_entry root;
3633
3634 /* Offset within branch lookup table. */
3635 unsigned int offset;
3636
3637 /* Generation marker. */
3638 unsigned int iter;
3639 };
3640
3641 struct ppc_link_hash_entry
3642 {
3643 struct elf_link_hash_entry elf;
3644
3645 union {
3646 /* A pointer to the most recently used stub hash entry against this
3647 symbol. */
3648 struct ppc_stub_hash_entry *stub_cache;
3649
3650 /* A pointer to the next symbol starting with a '.' */
3651 struct ppc_link_hash_entry *next_dot_sym;
3652 } u;
3653
3654 /* Track dynamic relocs copied for this symbol. */
3655 struct elf_dyn_relocs *dyn_relocs;
3656
3657 /* Link between function code and descriptor symbols. */
3658 struct ppc_link_hash_entry *oh;
3659
3660 /* Flag function code and descriptor symbols. */
3661 unsigned int is_func:1;
3662 unsigned int is_func_descriptor:1;
3663 unsigned int fake:1;
3664
3665 /* Whether global opd/toc sym has been adjusted or not.
3666 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3667 should be set for all globals defined in any opd/toc section. */
3668 unsigned int adjust_done:1;
3669
3670 /* Set if we twiddled this symbol to weak at some stage. */
3671 unsigned int was_undefined:1;
3672
3673 /* Contexts in which symbol is used in the GOT (or TOC).
3674 TLS_GD .. TLS_EXPLICIT bits are or'd into the mask as the
3675 corresponding relocs are encountered during check_relocs.
3676 tls_optimize clears TLS_GD .. TLS_TPREL when optimizing to
3677 indicate the corresponding GOT entry type is not needed.
3678 tls_optimize may also set TLS_TPRELGD when a GD reloc turns into
3679 a TPREL one. We use a separate flag rather than setting TPREL
3680 just for convenience in distinguishing the two cases. */
3681 #define TLS_GD 1 /* GD reloc. */
3682 #define TLS_LD 2 /* LD reloc. */
3683 #define TLS_TPREL 4 /* TPREL reloc, => IE. */
3684 #define TLS_DTPREL 8 /* DTPREL reloc, => LD. */
3685 #define TLS_TLS 16 /* Any TLS reloc. */
3686 #define TLS_EXPLICIT 32 /* Marks TOC section TLS relocs. */
3687 #define TLS_TPRELGD 64 /* TPREL reloc resulting from GD->IE. */
3688 #define PLT_IFUNC 128 /* STT_GNU_IFUNC. */
3689 unsigned char tls_mask;
3690 };
3691
3692 /* ppc64 ELF linker hash table. */
3693
3694 struct ppc_link_hash_table
3695 {
3696 struct elf_link_hash_table elf;
3697
3698 /* The stub hash table. */
3699 struct bfd_hash_table stub_hash_table;
3700
3701 /* Another hash table for plt_branch stubs. */
3702 struct bfd_hash_table branch_hash_table;
3703
3704 /* Hash table for function prologue tocsave. */
3705 htab_t tocsave_htab;
3706
3707 /* Linker stub bfd. */
3708 bfd *stub_bfd;
3709
3710 /* Linker call-backs. */
3711 asection * (*add_stub_section) (const char *, asection *);
3712 void (*layout_sections_again) (void);
3713
3714 /* Array to keep track of which stub sections have been created, and
3715 information on stub grouping. */
3716 struct map_stub {
3717 /* This is the section to which stubs in the group will be attached. */
3718 asection *link_sec;
3719 /* The stub section. */
3720 asection *stub_sec;
3721 /* Along with elf_gp, specifies the TOC pointer used in this group. */
3722 bfd_vma toc_off;
3723 } *stub_group;
3724
3725 /* Temp used when calculating TOC pointers. */
3726 bfd_vma toc_curr;
3727 bfd *toc_bfd;
3728 asection *toc_first_sec;
3729
3730 /* Highest input section id. */
3731 int top_id;
3732
3733 /* Highest output section index. */
3734 int top_index;
3735
3736 /* Used when adding symbols. */
3737 struct ppc_link_hash_entry *dot_syms;
3738
3739 /* List of input sections for each output section. */
3740 asection **input_list;
3741
3742 /* Short-cuts to get to dynamic linker sections. */
3743 asection *got;
3744 asection *plt;
3745 asection *relplt;
3746 asection *iplt;
3747 asection *reliplt;
3748 asection *dynbss;
3749 asection *relbss;
3750 asection *glink;
3751 asection *sfpr;
3752 asection *brlt;
3753 asection *relbrlt;
3754 asection *glink_eh_frame;
3755
3756 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3757 struct ppc_link_hash_entry *tls_get_addr;
3758 struct ppc_link_hash_entry *tls_get_addr_fd;
3759
3760 /* The size of reliplt used by got entry relocs. */
3761 bfd_size_type got_reli_size;
3762
3763 /* Statistics. */
3764 unsigned long stub_count[ppc_stub_plt_call_r2save];
3765
3766 /* Number of stubs against global syms. */
3767 unsigned long stub_globals;
3768
3769 /* Alignment of PLT call stubs. */
3770 unsigned int plt_stub_align:4;
3771
3772 /* Set if PLT call stubs should load r11. */
3773 unsigned int plt_static_chain:1;
3774
3775 /* Set if PLT call stubs need a read-read barrier. */
3776 unsigned int plt_thread_safe:1;
3777
3778 /* Set if we should emit symbols for stubs. */
3779 unsigned int emit_stub_syms:1;
3780
3781 /* Set if __tls_get_addr optimization should not be done. */
3782 unsigned int no_tls_get_addr_opt:1;
3783
3784 /* Support for multiple toc sections. */
3785 unsigned int do_multi_toc:1;
3786 unsigned int multi_toc_needed:1;
3787 unsigned int second_toc_pass:1;
3788 unsigned int do_toc_opt:1;
3789
3790 /* Set on error. */
3791 unsigned int stub_error:1;
3792
3793 /* Temp used by ppc64_elf_process_dot_syms. */
3794 unsigned int twiddled_syms:1;
3795
3796 /* Incremented every time we size stubs. */
3797 unsigned int stub_iteration;
3798
3799 /* Small local sym cache. */
3800 struct sym_cache sym_cache;
3801 };
3802
3803 /* Rename some of the generic section flags to better document how they
3804 are used here. */
3805
3806 /* Nonzero if this section has TLS related relocations. */
3807 #define has_tls_reloc sec_flg0
3808
3809 /* Nonzero if this section has a call to __tls_get_addr. */
3810 #define has_tls_get_addr_call sec_flg1
3811
3812 /* Nonzero if this section has any toc or got relocs. */
3813 #define has_toc_reloc sec_flg2
3814
3815 /* Nonzero if this section has a call to another section that uses
3816 the toc or got. */
3817 #define makes_toc_func_call sec_flg3
3818
3819 /* Recursion protection when determining above flag. */
3820 #define call_check_in_progress sec_flg4
3821 #define call_check_done sec_flg5
3822
3823 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3824
3825 #define ppc_hash_table(p) \
3826 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3827 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3828
3829 #define ppc_stub_hash_lookup(table, string, create, copy) \
3830 ((struct ppc_stub_hash_entry *) \
3831 bfd_hash_lookup ((table), (string), (create), (copy)))
3832
3833 #define ppc_branch_hash_lookup(table, string, create, copy) \
3834 ((struct ppc_branch_hash_entry *) \
3835 bfd_hash_lookup ((table), (string), (create), (copy)))
3836
3837 /* Create an entry in the stub hash table. */
3838
3839 static struct bfd_hash_entry *
3840 stub_hash_newfunc (struct bfd_hash_entry *entry,
3841 struct bfd_hash_table *table,
3842 const char *string)
3843 {
3844 /* Allocate the structure if it has not already been allocated by a
3845 subclass. */
3846 if (entry == NULL)
3847 {
3848 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3849 if (entry == NULL)
3850 return entry;
3851 }
3852
3853 /* Call the allocation method of the superclass. */
3854 entry = bfd_hash_newfunc (entry, table, string);
3855 if (entry != NULL)
3856 {
3857 struct ppc_stub_hash_entry *eh;
3858
3859 /* Initialize the local fields. */
3860 eh = (struct ppc_stub_hash_entry *) entry;
3861 eh->stub_type = ppc_stub_none;
3862 eh->stub_sec = NULL;
3863 eh->stub_offset = 0;
3864 eh->target_value = 0;
3865 eh->target_section = NULL;
3866 eh->h = NULL;
3867 eh->id_sec = NULL;
3868 }
3869
3870 return entry;
3871 }
3872
3873 /* Create an entry in the branch hash table. */
3874
3875 static struct bfd_hash_entry *
3876 branch_hash_newfunc (struct bfd_hash_entry *entry,
3877 struct bfd_hash_table *table,
3878 const char *string)
3879 {
3880 /* Allocate the structure if it has not already been allocated by a
3881 subclass. */
3882 if (entry == NULL)
3883 {
3884 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3885 if (entry == NULL)
3886 return entry;
3887 }
3888
3889 /* Call the allocation method of the superclass. */
3890 entry = bfd_hash_newfunc (entry, table, string);
3891 if (entry != NULL)
3892 {
3893 struct ppc_branch_hash_entry *eh;
3894
3895 /* Initialize the local fields. */
3896 eh = (struct ppc_branch_hash_entry *) entry;
3897 eh->offset = 0;
3898 eh->iter = 0;
3899 }
3900
3901 return entry;
3902 }
3903
3904 /* Create an entry in a ppc64 ELF linker hash table. */
3905
3906 static struct bfd_hash_entry *
3907 link_hash_newfunc (struct bfd_hash_entry *entry,
3908 struct bfd_hash_table *table,
3909 const char *string)
3910 {
3911 /* Allocate the structure if it has not already been allocated by a
3912 subclass. */
3913 if (entry == NULL)
3914 {
3915 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3916 if (entry == NULL)
3917 return entry;
3918 }
3919
3920 /* Call the allocation method of the superclass. */
3921 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3922 if (entry != NULL)
3923 {
3924 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3925
3926 memset (&eh->u.stub_cache, 0,
3927 (sizeof (struct ppc_link_hash_entry)
3928 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3929
3930 /* When making function calls, old ABI code references function entry
3931 points (dot symbols), while new ABI code references the function
3932 descriptor symbol. We need to make any combination of reference and
3933 definition work together, without breaking archive linking.
3934
3935 For a defined function "foo" and an undefined call to "bar":
3936 An old object defines "foo" and ".foo", references ".bar" (possibly
3937 "bar" too).
3938 A new object defines "foo" and references "bar".
3939
3940 A new object thus has no problem with its undefined symbols being
3941 satisfied by definitions in an old object. On the other hand, the
3942 old object won't have ".bar" satisfied by a new object.
3943
3944 Keep a list of newly added dot-symbols. */
3945
3946 if (string[0] == '.')
3947 {
3948 struct ppc_link_hash_table *htab;
3949
3950 htab = (struct ppc_link_hash_table *) table;
3951 eh->u.next_dot_sym = htab->dot_syms;
3952 htab->dot_syms = eh;
3953 }
3954 }
3955
3956 return entry;
3957 }
3958
3959 struct tocsave_entry {
3960 asection *sec;
3961 bfd_vma offset;
3962 };
3963
3964 static hashval_t
3965 tocsave_htab_hash (const void *p)
3966 {
3967 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3968 return ((bfd_vma)(intptr_t) e->sec ^ e->offset) >> 3;
3969 }
3970
3971 static int
3972 tocsave_htab_eq (const void *p1, const void *p2)
3973 {
3974 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3975 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3976 return e1->sec == e2->sec && e1->offset == e2->offset;
3977 }
3978
3979 /* Create a ppc64 ELF linker hash table. */
3980
3981 static struct bfd_link_hash_table *
3982 ppc64_elf_link_hash_table_create (bfd *abfd)
3983 {
3984 struct ppc_link_hash_table *htab;
3985 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3986
3987 htab = bfd_zmalloc (amt);
3988 if (htab == NULL)
3989 return NULL;
3990
3991 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3992 sizeof (struct ppc_link_hash_entry),
3993 PPC64_ELF_DATA))
3994 {
3995 free (htab);
3996 return NULL;
3997 }
3998
3999 /* Init the stub hash table too. */
4000 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
4001 sizeof (struct ppc_stub_hash_entry)))
4002 return NULL;
4003
4004 /* And the branch hash table. */
4005 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
4006 sizeof (struct ppc_branch_hash_entry)))
4007 return NULL;
4008
4009 htab->tocsave_htab = htab_try_create (1024,
4010 tocsave_htab_hash,
4011 tocsave_htab_eq,
4012 NULL);
4013 if (htab->tocsave_htab == NULL)
4014 return NULL;
4015
4016 /* Initializing two fields of the union is just cosmetic. We really
4017 only care about glist, but when compiled on a 32-bit host the
4018 bfd_vma fields are larger. Setting the bfd_vma to zero makes
4019 debugger inspection of these fields look nicer. */
4020 htab->elf.init_got_refcount.refcount = 0;
4021 htab->elf.init_got_refcount.glist = NULL;
4022 htab->elf.init_plt_refcount.refcount = 0;
4023 htab->elf.init_plt_refcount.glist = NULL;
4024 htab->elf.init_got_offset.offset = 0;
4025 htab->elf.init_got_offset.glist = NULL;
4026 htab->elf.init_plt_offset.offset = 0;
4027 htab->elf.init_plt_offset.glist = NULL;
4028
4029 return &htab->elf.root;
4030 }
4031
4032 /* Free the derived linker hash table. */
4033
4034 static void
4035 ppc64_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
4036 {
4037 struct ppc_link_hash_table *htab = (struct ppc_link_hash_table *) hash;
4038
4039 bfd_hash_table_free (&htab->stub_hash_table);
4040 bfd_hash_table_free (&htab->branch_hash_table);
4041 if (htab->tocsave_htab)
4042 htab_delete (htab->tocsave_htab);
4043 _bfd_generic_link_hash_table_free (hash);
4044 }
4045
4046 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
4047
4048 void
4049 ppc64_elf_init_stub_bfd (bfd *abfd, struct bfd_link_info *info)
4050 {
4051 struct ppc_link_hash_table *htab;
4052
4053 elf_elfheader (abfd)->e_ident[EI_CLASS] = ELFCLASS64;
4054
4055 /* Always hook our dynamic sections into the first bfd, which is the
4056 linker created stub bfd. This ensures that the GOT header is at
4057 the start of the output TOC section. */
4058 htab = ppc_hash_table (info);
4059 if (htab == NULL)
4060 return;
4061 htab->stub_bfd = abfd;
4062 htab->elf.dynobj = abfd;
4063 }
4064
4065 /* Build a name for an entry in the stub hash table. */
4066
4067 static char *
4068 ppc_stub_name (const asection *input_section,
4069 const asection *sym_sec,
4070 const struct ppc_link_hash_entry *h,
4071 const Elf_Internal_Rela *rel)
4072 {
4073 char *stub_name;
4074 bfd_size_type len;
4075
4076 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
4077 offsets from a sym as a branch target? In fact, we could
4078 probably assume the addend is always zero. */
4079 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
4080
4081 if (h)
4082 {
4083 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
4084 stub_name = bfd_malloc (len);
4085 if (stub_name == NULL)
4086 return stub_name;
4087
4088 sprintf (stub_name, "%08x.%s+%x",
4089 input_section->id & 0xffffffff,
4090 h->elf.root.root.string,
4091 (int) rel->r_addend & 0xffffffff);
4092 }
4093 else
4094 {
4095 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
4096 stub_name = bfd_malloc (len);
4097 if (stub_name == NULL)
4098 return stub_name;
4099
4100 sprintf (stub_name, "%08x.%x:%x+%x",
4101 input_section->id & 0xffffffff,
4102 sym_sec->id & 0xffffffff,
4103 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
4104 (int) rel->r_addend & 0xffffffff);
4105 }
4106 if (stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
4107 stub_name[len - 2] = 0;
4108 return stub_name;
4109 }
4110
4111 /* Look up an entry in the stub hash. Stub entries are cached because
4112 creating the stub name takes a bit of time. */
4113
4114 static struct ppc_stub_hash_entry *
4115 ppc_get_stub_entry (const asection *input_section,
4116 const asection *sym_sec,
4117 struct ppc_link_hash_entry *h,
4118 const Elf_Internal_Rela *rel,
4119 struct ppc_link_hash_table *htab)
4120 {
4121 struct ppc_stub_hash_entry *stub_entry;
4122 const asection *id_sec;
4123
4124 /* If this input section is part of a group of sections sharing one
4125 stub section, then use the id of the first section in the group.
4126 Stub names need to include a section id, as there may well be
4127 more than one stub used to reach say, printf, and we need to
4128 distinguish between them. */
4129 id_sec = htab->stub_group[input_section->id].link_sec;
4130
4131 if (h != NULL && h->u.stub_cache != NULL
4132 && h->u.stub_cache->h == h
4133 && h->u.stub_cache->id_sec == id_sec)
4134 {
4135 stub_entry = h->u.stub_cache;
4136 }
4137 else
4138 {
4139 char *stub_name;
4140
4141 stub_name = ppc_stub_name (id_sec, sym_sec, h, rel);
4142 if (stub_name == NULL)
4143 return NULL;
4144
4145 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
4146 stub_name, FALSE, FALSE);
4147 if (h != NULL)
4148 h->u.stub_cache = stub_entry;
4149
4150 free (stub_name);
4151 }
4152
4153 return stub_entry;
4154 }
4155
4156 /* Add a new stub entry to the stub hash. Not all fields of the new
4157 stub entry are initialised. */
4158
4159 static struct ppc_stub_hash_entry *
4160 ppc_add_stub (const char *stub_name,
4161 asection *section,
4162 struct bfd_link_info *info)
4163 {
4164 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4165 asection *link_sec;
4166 asection *stub_sec;
4167 struct ppc_stub_hash_entry *stub_entry;
4168
4169 link_sec = htab->stub_group[section->id].link_sec;
4170 stub_sec = htab->stub_group[section->id].stub_sec;
4171 if (stub_sec == NULL)
4172 {
4173 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4174 if (stub_sec == NULL)
4175 {
4176 size_t namelen;
4177 bfd_size_type len;
4178 char *s_name;
4179
4180 namelen = strlen (link_sec->name);
4181 len = namelen + sizeof (STUB_SUFFIX);
4182 s_name = bfd_alloc (htab->stub_bfd, len);
4183 if (s_name == NULL)
4184 return NULL;
4185
4186 memcpy (s_name, link_sec->name, namelen);
4187 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4188 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
4189 if (stub_sec == NULL)
4190 return NULL;
4191 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4192 }
4193 htab->stub_group[section->id].stub_sec = stub_sec;
4194 }
4195
4196 /* Enter this entry into the linker stub hash table. */
4197 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4198 TRUE, FALSE);
4199 if (stub_entry == NULL)
4200 {
4201 info->callbacks->einfo (_("%P: %B: cannot create stub entry %s\n"),
4202 section->owner, stub_name);
4203 return NULL;
4204 }
4205
4206 stub_entry->stub_sec = stub_sec;
4207 stub_entry->stub_offset = 0;
4208 stub_entry->id_sec = link_sec;
4209 return stub_entry;
4210 }
4211
4212 /* Create sections for linker generated code. */
4213
4214 static bfd_boolean
4215 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
4216 {
4217 struct ppc_link_hash_table *htab;
4218 flagword flags;
4219
4220 htab = ppc_hash_table (info);
4221 if (htab == NULL)
4222 return FALSE;
4223
4224 /* Create .sfpr for code to save and restore fp regs. */
4225 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
4226 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4227 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
4228 flags);
4229 if (htab->sfpr == NULL
4230 || ! bfd_set_section_alignment (dynobj, htab->sfpr, 2))
4231 return FALSE;
4232
4233 /* Create .glink for lazy dynamic linking support. */
4234 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
4235 flags);
4236 if (htab->glink == NULL
4237 || ! bfd_set_section_alignment (dynobj, htab->glink, 3))
4238 return FALSE;
4239
4240 if (!info->no_ld_generated_unwind_info)
4241 {
4242 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
4243 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4244 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
4245 ".eh_frame",
4246 flags);
4247 if (htab->glink_eh_frame == NULL
4248 || !bfd_set_section_alignment (abfd, htab->glink_eh_frame, 2))
4249 return FALSE;
4250 }
4251
4252 flags = SEC_ALLOC | SEC_LINKER_CREATED;
4253 htab->iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
4254 if (htab->iplt == NULL
4255 || ! bfd_set_section_alignment (dynobj, htab->iplt, 3))
4256 return FALSE;
4257
4258 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4259 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4260 htab->reliplt = bfd_make_section_anyway_with_flags (dynobj,
4261 ".rela.iplt",
4262 flags);
4263 if (htab->reliplt == NULL
4264 || ! bfd_set_section_alignment (dynobj, htab->reliplt, 3))
4265 return FALSE;
4266
4267 /* Create branch lookup table for plt_branch stubs. */
4268 flags = (SEC_ALLOC | SEC_LOAD
4269 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4270 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
4271 flags);
4272 if (htab->brlt == NULL
4273 || ! bfd_set_section_alignment (dynobj, htab->brlt, 3))
4274 return FALSE;
4275
4276 if (!info->shared)
4277 return TRUE;
4278
4279 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
4280 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4281 htab->relbrlt = bfd_make_section_anyway_with_flags (dynobj,
4282 ".rela.branch_lt",
4283 flags);
4284 if (htab->relbrlt == NULL
4285 || ! bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
4286 return FALSE;
4287
4288 return TRUE;
4289 }
4290
4291 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
4292 not already done. */
4293
4294 static bfd_boolean
4295 create_got_section (bfd *abfd, struct bfd_link_info *info)
4296 {
4297 asection *got, *relgot;
4298 flagword flags;
4299 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4300
4301 if (!is_ppc64_elf (abfd))
4302 return FALSE;
4303 if (htab == NULL)
4304 return FALSE;
4305
4306 if (!htab->got)
4307 {
4308 if (! _bfd_elf_create_got_section (htab->elf.dynobj, info))
4309 return FALSE;
4310
4311 htab->got = bfd_get_section_by_name (htab->elf.dynobj, ".got");
4312 if (!htab->got)
4313 abort ();
4314 }
4315
4316 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4317 | SEC_LINKER_CREATED);
4318
4319 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
4320 if (!got
4321 || !bfd_set_section_alignment (abfd, got, 3))
4322 return FALSE;
4323
4324 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
4325 flags | SEC_READONLY);
4326 if (!relgot
4327 || ! bfd_set_section_alignment (abfd, relgot, 3))
4328 return FALSE;
4329
4330 ppc64_elf_tdata (abfd)->got = got;
4331 ppc64_elf_tdata (abfd)->relgot = relgot;
4332 return TRUE;
4333 }
4334
4335 /* Create the dynamic sections, and set up shortcuts. */
4336
4337 static bfd_boolean
4338 ppc64_elf_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
4339 {
4340 struct ppc_link_hash_table *htab;
4341
4342 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
4343 return FALSE;
4344
4345 htab = ppc_hash_table (info);
4346 if (htab == NULL)
4347 return FALSE;
4348
4349 if (!htab->got)
4350 htab->got = bfd_get_section_by_name (dynobj, ".got");
4351 htab->plt = bfd_get_section_by_name (dynobj, ".plt");
4352 htab->relplt = bfd_get_section_by_name (dynobj, ".rela.plt");
4353 htab->dynbss = bfd_get_section_by_name (dynobj, ".dynbss");
4354 if (!info->shared)
4355 htab->relbss = bfd_get_section_by_name (dynobj, ".rela.bss");
4356
4357 if (!htab->got || !htab->plt || !htab->relplt || !htab->dynbss
4358 || (!info->shared && !htab->relbss))
4359 abort ();
4360
4361 return TRUE;
4362 }
4363
4364 /* Follow indirect and warning symbol links. */
4365
4366 static inline struct bfd_link_hash_entry *
4367 follow_link (struct bfd_link_hash_entry *h)
4368 {
4369 while (h->type == bfd_link_hash_indirect
4370 || h->type == bfd_link_hash_warning)
4371 h = h->u.i.link;
4372 return h;
4373 }
4374
4375 static inline struct elf_link_hash_entry *
4376 elf_follow_link (struct elf_link_hash_entry *h)
4377 {
4378 return (struct elf_link_hash_entry *) follow_link (&h->root);
4379 }
4380
4381 static inline struct ppc_link_hash_entry *
4382 ppc_follow_link (struct ppc_link_hash_entry *h)
4383 {
4384 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
4385 }
4386
4387 /* Merge PLT info on FROM with that on TO. */
4388
4389 static void
4390 move_plt_plist (struct ppc_link_hash_entry *from,
4391 struct ppc_link_hash_entry *to)
4392 {
4393 if (from->elf.plt.plist != NULL)
4394 {
4395 if (to->elf.plt.plist != NULL)
4396 {
4397 struct plt_entry **entp;
4398 struct plt_entry *ent;
4399
4400 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
4401 {
4402 struct plt_entry *dent;
4403
4404 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
4405 if (dent->addend == ent->addend)
4406 {
4407 dent->plt.refcount += ent->plt.refcount;
4408 *entp = ent->next;
4409 break;
4410 }
4411 if (dent == NULL)
4412 entp = &ent->next;
4413 }
4414 *entp = to->elf.plt.plist;
4415 }
4416
4417 to->elf.plt.plist = from->elf.plt.plist;
4418 from->elf.plt.plist = NULL;
4419 }
4420 }
4421
4422 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4423
4424 static void
4425 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
4426 struct elf_link_hash_entry *dir,
4427 struct elf_link_hash_entry *ind)
4428 {
4429 struct ppc_link_hash_entry *edir, *eind;
4430
4431 edir = (struct ppc_link_hash_entry *) dir;
4432 eind = (struct ppc_link_hash_entry *) ind;
4433
4434 edir->is_func |= eind->is_func;
4435 edir->is_func_descriptor |= eind->is_func_descriptor;
4436 edir->tls_mask |= eind->tls_mask;
4437 if (eind->oh != NULL)
4438 edir->oh = ppc_follow_link (eind->oh);
4439
4440 /* If called to transfer flags for a weakdef during processing
4441 of elf_adjust_dynamic_symbol, don't copy NON_GOT_REF.
4442 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
4443 if (!(ELIMINATE_COPY_RELOCS
4444 && eind->elf.root.type != bfd_link_hash_indirect
4445 && edir->elf.dynamic_adjusted))
4446 edir->elf.non_got_ref |= eind->elf.non_got_ref;
4447
4448 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
4449 edir->elf.ref_regular |= eind->elf.ref_regular;
4450 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
4451 edir->elf.needs_plt |= eind->elf.needs_plt;
4452
4453 /* Copy over any dynamic relocs we may have on the indirect sym. */
4454 if (eind->dyn_relocs != NULL)
4455 {
4456 if (edir->dyn_relocs != NULL)
4457 {
4458 struct elf_dyn_relocs **pp;
4459 struct elf_dyn_relocs *p;
4460
4461 /* Add reloc counts against the indirect sym to the direct sym
4462 list. Merge any entries against the same section. */
4463 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4464 {
4465 struct elf_dyn_relocs *q;
4466
4467 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4468 if (q->sec == p->sec)
4469 {
4470 q->pc_count += p->pc_count;
4471 q->count += p->count;
4472 *pp = p->next;
4473 break;
4474 }
4475 if (q == NULL)
4476 pp = &p->next;
4477 }
4478 *pp = edir->dyn_relocs;
4479 }
4480
4481 edir->dyn_relocs = eind->dyn_relocs;
4482 eind->dyn_relocs = NULL;
4483 }
4484
4485 /* If we were called to copy over info for a weak sym, that's all.
4486 You might think dyn_relocs need not be copied over; After all,
4487 both syms will be dynamic or both non-dynamic so we're just
4488 moving reloc accounting around. However, ELIMINATE_COPY_RELOCS
4489 code in ppc64_elf_adjust_dynamic_symbol needs to check for
4490 dyn_relocs in read-only sections, and it does so on what is the
4491 DIR sym here. */
4492 if (eind->elf.root.type != bfd_link_hash_indirect)
4493 return;
4494
4495 /* Copy over got entries that we may have already seen to the
4496 symbol which just became indirect. */
4497 if (eind->elf.got.glist != NULL)
4498 {
4499 if (edir->elf.got.glist != NULL)
4500 {
4501 struct got_entry **entp;
4502 struct got_entry *ent;
4503
4504 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
4505 {
4506 struct got_entry *dent;
4507
4508 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
4509 if (dent->addend == ent->addend
4510 && dent->owner == ent->owner
4511 && dent->tls_type == ent->tls_type)
4512 {
4513 dent->got.refcount += ent->got.refcount;
4514 *entp = ent->next;
4515 break;
4516 }
4517 if (dent == NULL)
4518 entp = &ent->next;
4519 }
4520 *entp = edir->elf.got.glist;
4521 }
4522
4523 edir->elf.got.glist = eind->elf.got.glist;
4524 eind->elf.got.glist = NULL;
4525 }
4526
4527 /* And plt entries. */
4528 move_plt_plist (eind, edir);
4529
4530 if (eind->elf.dynindx != -1)
4531 {
4532 if (edir->elf.dynindx != -1)
4533 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
4534 edir->elf.dynstr_index);
4535 edir->elf.dynindx = eind->elf.dynindx;
4536 edir->elf.dynstr_index = eind->elf.dynstr_index;
4537 eind->elf.dynindx = -1;
4538 eind->elf.dynstr_index = 0;
4539 }
4540 }
4541
4542 /* Find the function descriptor hash entry from the given function code
4543 hash entry FH. Link the entries via their OH fields. */
4544
4545 static struct ppc_link_hash_entry *
4546 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
4547 {
4548 struct ppc_link_hash_entry *fdh = fh->oh;
4549
4550 if (fdh == NULL)
4551 {
4552 const char *fd_name = fh->elf.root.root.string + 1;
4553
4554 fdh = (struct ppc_link_hash_entry *)
4555 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
4556 if (fdh == NULL)
4557 return fdh;
4558
4559 fdh->is_func_descriptor = 1;
4560 fdh->oh = fh;
4561 fh->is_func = 1;
4562 fh->oh = fdh;
4563 }
4564
4565 return ppc_follow_link (fdh);
4566 }
4567
4568 /* Make a fake function descriptor sym for the code sym FH. */
4569
4570 static struct ppc_link_hash_entry *
4571 make_fdh (struct bfd_link_info *info,
4572 struct ppc_link_hash_entry *fh)
4573 {
4574 bfd *abfd;
4575 asymbol *newsym;
4576 struct bfd_link_hash_entry *bh;
4577 struct ppc_link_hash_entry *fdh;
4578
4579 abfd = fh->elf.root.u.undef.abfd;
4580 newsym = bfd_make_empty_symbol (abfd);
4581 newsym->name = fh->elf.root.root.string + 1;
4582 newsym->section = bfd_und_section_ptr;
4583 newsym->value = 0;
4584 newsym->flags = BSF_WEAK;
4585
4586 bh = NULL;
4587 if (!_bfd_generic_link_add_one_symbol (info, abfd, newsym->name,
4588 newsym->flags, newsym->section,
4589 newsym->value, NULL, FALSE, FALSE,
4590 &bh))
4591 return NULL;
4592
4593 fdh = (struct ppc_link_hash_entry *) bh;
4594 fdh->elf.non_elf = 0;
4595 fdh->fake = 1;
4596 fdh->is_func_descriptor = 1;
4597 fdh->oh = fh;
4598 fh->is_func = 1;
4599 fh->oh = fdh;
4600 return fdh;
4601 }
4602
4603 /* Fix function descriptor symbols defined in .opd sections to be
4604 function type. */
4605
4606 static bfd_boolean
4607 ppc64_elf_add_symbol_hook (bfd *ibfd,
4608 struct bfd_link_info *info,
4609 Elf_Internal_Sym *isym,
4610 const char **name ATTRIBUTE_UNUSED,
4611 flagword *flags ATTRIBUTE_UNUSED,
4612 asection **sec,
4613 bfd_vma *value ATTRIBUTE_UNUSED)
4614 {
4615 if ((ibfd->flags & DYNAMIC) == 0
4616 && ELF_ST_BIND (isym->st_info) == STB_GNU_UNIQUE)
4617 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4618
4619 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4620 {
4621 if ((ibfd->flags & DYNAMIC) == 0)
4622 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
4623 }
4624 else if (ELF_ST_TYPE (isym->st_info) == STT_FUNC)
4625 ;
4626 else if (*sec != NULL
4627 && strcmp ((*sec)->name, ".opd") == 0)
4628 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4629
4630 return TRUE;
4631 }
4632
4633 /* This function makes an old ABI object reference to ".bar" cause the
4634 inclusion of a new ABI object archive that defines "bar".
4635 NAME is a symbol defined in an archive. Return a symbol in the hash
4636 table that might be satisfied by the archive symbols. */
4637
4638 static struct elf_link_hash_entry *
4639 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4640 struct bfd_link_info *info,
4641 const char *name)
4642 {
4643 struct elf_link_hash_entry *h;
4644 char *dot_name;
4645 size_t len;
4646
4647 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4648 if (h != NULL
4649 /* Don't return this sym if it is a fake function descriptor
4650 created by add_symbol_adjust. */
4651 && !(h->root.type == bfd_link_hash_undefweak
4652 && ((struct ppc_link_hash_entry *) h)->fake))
4653 return h;
4654
4655 if (name[0] == '.')
4656 return h;
4657
4658 len = strlen (name);
4659 dot_name = bfd_alloc (abfd, len + 2);
4660 if (dot_name == NULL)
4661 return (struct elf_link_hash_entry *) 0 - 1;
4662 dot_name[0] = '.';
4663 memcpy (dot_name + 1, name, len + 1);
4664 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4665 bfd_release (abfd, dot_name);
4666 return h;
4667 }
4668
4669 /* This function satisfies all old ABI object references to ".bar" if a
4670 new ABI object defines "bar". Well, at least, undefined dot symbols
4671 are made weak. This stops later archive searches from including an
4672 object if we already have a function descriptor definition. It also
4673 prevents the linker complaining about undefined symbols.
4674 We also check and correct mismatched symbol visibility here. The
4675 most restrictive visibility of the function descriptor and the
4676 function entry symbol is used. */
4677
4678 static bfd_boolean
4679 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4680 {
4681 struct ppc_link_hash_table *htab;
4682 struct ppc_link_hash_entry *fdh;
4683
4684 if (eh->elf.root.type == bfd_link_hash_indirect)
4685 return TRUE;
4686
4687 if (eh->elf.root.type == bfd_link_hash_warning)
4688 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4689
4690 if (eh->elf.root.root.string[0] != '.')
4691 abort ();
4692
4693 htab = ppc_hash_table (info);
4694 if (htab == NULL)
4695 return FALSE;
4696
4697 fdh = lookup_fdh (eh, htab);
4698 if (fdh == NULL)
4699 {
4700 if (!info->relocatable
4701 && (eh->elf.root.type == bfd_link_hash_undefined
4702 || eh->elf.root.type == bfd_link_hash_undefweak)
4703 && eh->elf.ref_regular)
4704 {
4705 /* Make an undefweak function descriptor sym, which is enough to
4706 pull in an --as-needed shared lib, but won't cause link
4707 errors. Archives are handled elsewhere. */
4708 fdh = make_fdh (info, eh);
4709 if (fdh == NULL)
4710 return FALSE;
4711 fdh->elf.ref_regular = 1;
4712 }
4713 }
4714 else
4715 {
4716 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4717 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4718 if (entry_vis < descr_vis)
4719 fdh->elf.other += entry_vis - descr_vis;
4720 else if (entry_vis > descr_vis)
4721 eh->elf.other += descr_vis - entry_vis;
4722
4723 if ((fdh->elf.root.type == bfd_link_hash_defined
4724 || fdh->elf.root.type == bfd_link_hash_defweak)
4725 && eh->elf.root.type == bfd_link_hash_undefined)
4726 {
4727 eh->elf.root.type = bfd_link_hash_undefweak;
4728 eh->was_undefined = 1;
4729 htab->twiddled_syms = 1;
4730 }
4731 }
4732
4733 return TRUE;
4734 }
4735
4736 /* Process list of dot-symbols we made in link_hash_newfunc. */
4737
4738 static bfd_boolean
4739 ppc64_elf_process_dot_syms (bfd *ibfd, struct bfd_link_info *info)
4740 {
4741 struct ppc_link_hash_table *htab;
4742 struct ppc_link_hash_entry **p, *eh;
4743
4744 if (!is_ppc64_elf (info->output_bfd))
4745 return TRUE;
4746 htab = ppc_hash_table (info);
4747 if (htab == NULL)
4748 return FALSE;
4749
4750 if (is_ppc64_elf (ibfd))
4751 {
4752 p = &htab->dot_syms;
4753 while ((eh = *p) != NULL)
4754 {
4755 *p = NULL;
4756 if (!add_symbol_adjust (eh, info))
4757 return FALSE;
4758 p = &eh->u.next_dot_sym;
4759 }
4760 }
4761
4762 /* Clear the list for non-ppc64 input files. */
4763 p = &htab->dot_syms;
4764 while ((eh = *p) != NULL)
4765 {
4766 *p = NULL;
4767 p = &eh->u.next_dot_sym;
4768 }
4769
4770 /* We need to fix the undefs list for any syms we have twiddled to
4771 undef_weak. */
4772 if (htab->twiddled_syms)
4773 {
4774 bfd_link_repair_undef_list (&htab->elf.root);
4775 htab->twiddled_syms = 0;
4776 }
4777 return TRUE;
4778 }
4779
4780 /* Undo hash table changes when an --as-needed input file is determined
4781 not to be needed. */
4782
4783 static bfd_boolean
4784 ppc64_elf_as_needed_cleanup (bfd *ibfd ATTRIBUTE_UNUSED,
4785 struct bfd_link_info *info)
4786 {
4787 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4788
4789 if (htab == NULL)
4790 return FALSE;
4791
4792 htab->dot_syms = NULL;
4793 return TRUE;
4794 }
4795
4796 /* If --just-symbols against a final linked binary, then assume we need
4797 toc adjusting stubs when calling functions defined there. */
4798
4799 static void
4800 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4801 {
4802 if ((sec->flags & SEC_CODE) != 0
4803 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4804 && is_ppc64_elf (sec->owner))
4805 {
4806 asection *got = bfd_get_section_by_name (sec->owner, ".got");
4807 if (got != NULL
4808 && got->size >= elf_backend_got_header_size
4809 && bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4810 sec->has_toc_reloc = 1;
4811 }
4812 _bfd_elf_link_just_syms (sec, info);
4813 }
4814
4815 static struct plt_entry **
4816 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4817 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4818 {
4819 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4820 struct plt_entry **local_plt;
4821 unsigned char *local_got_tls_masks;
4822
4823 if (local_got_ents == NULL)
4824 {
4825 bfd_size_type size = symtab_hdr->sh_info;
4826
4827 size *= (sizeof (*local_got_ents)
4828 + sizeof (*local_plt)
4829 + sizeof (*local_got_tls_masks));
4830 local_got_ents = bfd_zalloc (abfd, size);
4831 if (local_got_ents == NULL)
4832 return NULL;
4833 elf_local_got_ents (abfd) = local_got_ents;
4834 }
4835
4836 if ((tls_type & (PLT_IFUNC | TLS_EXPLICIT)) == 0)
4837 {
4838 struct got_entry *ent;
4839
4840 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4841 if (ent->addend == r_addend
4842 && ent->owner == abfd
4843 && ent->tls_type == tls_type)
4844 break;
4845 if (ent == NULL)
4846 {
4847 bfd_size_type amt = sizeof (*ent);
4848 ent = bfd_alloc (abfd, amt);
4849 if (ent == NULL)
4850 return FALSE;
4851 ent->next = local_got_ents[r_symndx];
4852 ent->addend = r_addend;
4853 ent->owner = abfd;
4854 ent->tls_type = tls_type;
4855 ent->is_indirect = FALSE;
4856 ent->got.refcount = 0;
4857 local_got_ents[r_symndx] = ent;
4858 }
4859 ent->got.refcount += 1;
4860 }
4861
4862 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4863 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4864 local_got_tls_masks[r_symndx] |= tls_type;
4865
4866 return local_plt + r_symndx;
4867 }
4868
4869 static bfd_boolean
4870 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4871 {
4872 struct plt_entry *ent;
4873
4874 for (ent = *plist; ent != NULL; ent = ent->next)
4875 if (ent->addend == addend)
4876 break;
4877 if (ent == NULL)
4878 {
4879 bfd_size_type amt = sizeof (*ent);
4880 ent = bfd_alloc (abfd, amt);
4881 if (ent == NULL)
4882 return FALSE;
4883 ent->next = *plist;
4884 ent->addend = addend;
4885 ent->plt.refcount = 0;
4886 *plist = ent;
4887 }
4888 ent->plt.refcount += 1;
4889 return TRUE;
4890 }
4891
4892 static bfd_boolean
4893 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4894 {
4895 return (r_type == R_PPC64_REL24
4896 || r_type == R_PPC64_REL14
4897 || r_type == R_PPC64_REL14_BRTAKEN
4898 || r_type == R_PPC64_REL14_BRNTAKEN
4899 || r_type == R_PPC64_ADDR24
4900 || r_type == R_PPC64_ADDR14
4901 || r_type == R_PPC64_ADDR14_BRTAKEN
4902 || r_type == R_PPC64_ADDR14_BRNTAKEN);
4903 }
4904
4905 /* Look through the relocs for a section during the first phase, and
4906 calculate needed space in the global offset table, procedure
4907 linkage table, and dynamic reloc sections. */
4908
4909 static bfd_boolean
4910 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4911 asection *sec, const Elf_Internal_Rela *relocs)
4912 {
4913 struct ppc_link_hash_table *htab;
4914 Elf_Internal_Shdr *symtab_hdr;
4915 struct elf_link_hash_entry **sym_hashes;
4916 const Elf_Internal_Rela *rel;
4917 const Elf_Internal_Rela *rel_end;
4918 asection *sreloc;
4919 asection **opd_sym_map;
4920 struct elf_link_hash_entry *tga, *dottga;
4921
4922 if (info->relocatable)
4923 return TRUE;
4924
4925 /* Don't do anything special with non-loaded, non-alloced sections.
4926 In particular, any relocs in such sections should not affect GOT
4927 and PLT reference counting (ie. we don't allow them to create GOT
4928 or PLT entries), there's no possibility or desire to optimize TLS
4929 relocs, and there's not much point in propagating relocs to shared
4930 libs that the dynamic linker won't relocate. */
4931 if ((sec->flags & SEC_ALLOC) == 0)
4932 return TRUE;
4933
4934 BFD_ASSERT (is_ppc64_elf (abfd));
4935
4936 htab = ppc_hash_table (info);
4937 if (htab == NULL)
4938 return FALSE;
4939
4940 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4941 FALSE, FALSE, TRUE);
4942 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4943 FALSE, FALSE, TRUE);
4944 symtab_hdr = &elf_symtab_hdr (abfd);
4945 sym_hashes = elf_sym_hashes (abfd);
4946 sreloc = NULL;
4947 opd_sym_map = NULL;
4948 if (strcmp (sec->name, ".opd") == 0)
4949 {
4950 /* Garbage collection needs some extra help with .opd sections.
4951 We don't want to necessarily keep everything referenced by
4952 relocs in .opd, as that would keep all functions. Instead,
4953 if we reference an .opd symbol (a function descriptor), we
4954 want to keep the function code symbol's section. This is
4955 easy for global symbols, but for local syms we need to keep
4956 information about the associated function section. */
4957 bfd_size_type amt;
4958
4959 amt = sec->size * sizeof (*opd_sym_map) / 8;
4960 opd_sym_map = bfd_zalloc (abfd, amt);
4961 if (opd_sym_map == NULL)
4962 return FALSE;
4963 ppc64_elf_section_data (sec)->u.opd.func_sec = opd_sym_map;
4964 BFD_ASSERT (ppc64_elf_section_data (sec)->sec_type == sec_normal);
4965 ppc64_elf_section_data (sec)->sec_type = sec_opd;
4966 }
4967
4968 if (htab->sfpr == NULL
4969 && !create_linkage_sections (htab->elf.dynobj, info))
4970 return FALSE;
4971
4972 rel_end = relocs + sec->reloc_count;
4973 for (rel = relocs; rel < rel_end; rel++)
4974 {
4975 unsigned long r_symndx;
4976 struct elf_link_hash_entry *h;
4977 enum elf_ppc64_reloc_type r_type;
4978 int tls_type;
4979 struct _ppc64_elf_section_data *ppc64_sec;
4980 struct plt_entry **ifunc;
4981
4982 r_symndx = ELF64_R_SYM (rel->r_info);
4983 if (r_symndx < symtab_hdr->sh_info)
4984 h = NULL;
4985 else
4986 {
4987 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4988 h = elf_follow_link (h);
4989 }
4990
4991 tls_type = 0;
4992 ifunc = NULL;
4993 if (h != NULL)
4994 {
4995 if (h->type == STT_GNU_IFUNC)
4996 {
4997 h->needs_plt = 1;
4998 ifunc = &h->plt.plist;
4999 }
5000 }
5001 else
5002 {
5003 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5004 abfd, r_symndx);
5005 if (isym == NULL)
5006 return FALSE;
5007
5008 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
5009 {
5010 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
5011 rel->r_addend, PLT_IFUNC);
5012 if (ifunc == NULL)
5013 return FALSE;
5014 }
5015 }
5016 r_type = ELF64_R_TYPE (rel->r_info);
5017 if (is_branch_reloc (r_type))
5018 {
5019 if (h != NULL && (h == tga || h == dottga))
5020 {
5021 if (rel != relocs
5022 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
5023 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
5024 /* We have a new-style __tls_get_addr call with a marker
5025 reloc. */
5026 ;
5027 else
5028 /* Mark this section as having an old-style call. */
5029 sec->has_tls_get_addr_call = 1;
5030 }
5031
5032 /* STT_GNU_IFUNC symbols must have a PLT entry. */
5033 if (ifunc != NULL
5034 && !update_plt_info (abfd, ifunc, rel->r_addend))
5035 return FALSE;
5036 }
5037
5038 switch (r_type)
5039 {
5040 case R_PPC64_TLSGD:
5041 case R_PPC64_TLSLD:
5042 /* These special tls relocs tie a call to __tls_get_addr with
5043 its parameter symbol. */
5044 break;
5045
5046 case R_PPC64_GOT_TLSLD16:
5047 case R_PPC64_GOT_TLSLD16_LO:
5048 case R_PPC64_GOT_TLSLD16_HI:
5049 case R_PPC64_GOT_TLSLD16_HA:
5050 tls_type = TLS_TLS | TLS_LD;
5051 goto dogottls;
5052
5053 case R_PPC64_GOT_TLSGD16:
5054 case R_PPC64_GOT_TLSGD16_LO:
5055 case R_PPC64_GOT_TLSGD16_HI:
5056 case R_PPC64_GOT_TLSGD16_HA:
5057 tls_type = TLS_TLS | TLS_GD;
5058 goto dogottls;
5059
5060 case R_PPC64_GOT_TPREL16_DS:
5061 case R_PPC64_GOT_TPREL16_LO_DS:
5062 case R_PPC64_GOT_TPREL16_HI:
5063 case R_PPC64_GOT_TPREL16_HA:
5064 if (!info->executable)
5065 info->flags |= DF_STATIC_TLS;
5066 tls_type = TLS_TLS | TLS_TPREL;
5067 goto dogottls;
5068
5069 case R_PPC64_GOT_DTPREL16_DS:
5070 case R_PPC64_GOT_DTPREL16_LO_DS:
5071 case R_PPC64_GOT_DTPREL16_HI:
5072 case R_PPC64_GOT_DTPREL16_HA:
5073 tls_type = TLS_TLS | TLS_DTPREL;
5074 dogottls:
5075 sec->has_tls_reloc = 1;
5076 /* Fall thru */
5077
5078 case R_PPC64_GOT16:
5079 case R_PPC64_GOT16_DS:
5080 case R_PPC64_GOT16_HA:
5081 case R_PPC64_GOT16_HI:
5082 case R_PPC64_GOT16_LO:
5083 case R_PPC64_GOT16_LO_DS:
5084 /* This symbol requires a global offset table entry. */
5085 sec->has_toc_reloc = 1;
5086 if (r_type == R_PPC64_GOT_TLSLD16
5087 || r_type == R_PPC64_GOT_TLSGD16
5088 || r_type == R_PPC64_GOT_TPREL16_DS
5089 || r_type == R_PPC64_GOT_DTPREL16_DS
5090 || r_type == R_PPC64_GOT16
5091 || r_type == R_PPC64_GOT16_DS)
5092 {
5093 htab->do_multi_toc = 1;
5094 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5095 }
5096
5097 if (ppc64_elf_tdata (abfd)->got == NULL
5098 && !create_got_section (abfd, info))
5099 return FALSE;
5100
5101 if (h != NULL)
5102 {
5103 struct ppc_link_hash_entry *eh;
5104 struct got_entry *ent;
5105
5106 eh = (struct ppc_link_hash_entry *) h;
5107 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
5108 if (ent->addend == rel->r_addend
5109 && ent->owner == abfd
5110 && ent->tls_type == tls_type)
5111 break;
5112 if (ent == NULL)
5113 {
5114 bfd_size_type amt = sizeof (*ent);
5115 ent = bfd_alloc (abfd, amt);
5116 if (ent == NULL)
5117 return FALSE;
5118 ent->next = eh->elf.got.glist;
5119 ent->addend = rel->r_addend;
5120 ent->owner = abfd;
5121 ent->tls_type = tls_type;
5122 ent->is_indirect = FALSE;
5123 ent->got.refcount = 0;
5124 eh->elf.got.glist = ent;
5125 }
5126 ent->got.refcount += 1;
5127 eh->tls_mask |= tls_type;
5128 }
5129 else
5130 /* This is a global offset table entry for a local symbol. */
5131 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5132 rel->r_addend, tls_type))
5133 return FALSE;
5134 break;
5135
5136 case R_PPC64_PLT16_HA:
5137 case R_PPC64_PLT16_HI:
5138 case R_PPC64_PLT16_LO:
5139 case R_PPC64_PLT32:
5140 case R_PPC64_PLT64:
5141 /* This symbol requires a procedure linkage table entry. We
5142 actually build the entry in adjust_dynamic_symbol,
5143 because this might be a case of linking PIC code without
5144 linking in any dynamic objects, in which case we don't
5145 need to generate a procedure linkage table after all. */
5146 if (h == NULL)
5147 {
5148 /* It does not make sense to have a procedure linkage
5149 table entry for a local symbol. */
5150 bfd_set_error (bfd_error_bad_value);
5151 return FALSE;
5152 }
5153 else
5154 {
5155 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5156 return FALSE;
5157 h->needs_plt = 1;
5158 if (h->root.root.string[0] == '.'
5159 && h->root.root.string[1] != '\0')
5160 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5161 }
5162 break;
5163
5164 /* The following relocations don't need to propagate the
5165 relocation if linking a shared object since they are
5166 section relative. */
5167 case R_PPC64_SECTOFF:
5168 case R_PPC64_SECTOFF_LO:
5169 case R_PPC64_SECTOFF_HI:
5170 case R_PPC64_SECTOFF_HA:
5171 case R_PPC64_SECTOFF_DS:
5172 case R_PPC64_SECTOFF_LO_DS:
5173 case R_PPC64_DTPREL16:
5174 case R_PPC64_DTPREL16_LO:
5175 case R_PPC64_DTPREL16_HI:
5176 case R_PPC64_DTPREL16_HA:
5177 case R_PPC64_DTPREL16_DS:
5178 case R_PPC64_DTPREL16_LO_DS:
5179 case R_PPC64_DTPREL16_HIGHER:
5180 case R_PPC64_DTPREL16_HIGHERA:
5181 case R_PPC64_DTPREL16_HIGHEST:
5182 case R_PPC64_DTPREL16_HIGHESTA:
5183 break;
5184
5185 /* Nor do these. */
5186 case R_PPC64_REL16:
5187 case R_PPC64_REL16_LO:
5188 case R_PPC64_REL16_HI:
5189 case R_PPC64_REL16_HA:
5190 break;
5191
5192 case R_PPC64_TOC16:
5193 case R_PPC64_TOC16_DS:
5194 htab->do_multi_toc = 1;
5195 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
5196 case R_PPC64_TOC16_LO:
5197 case R_PPC64_TOC16_HI:
5198 case R_PPC64_TOC16_HA:
5199 case R_PPC64_TOC16_LO_DS:
5200 sec->has_toc_reloc = 1;
5201 break;
5202
5203 /* This relocation describes the C++ object vtable hierarchy.
5204 Reconstruct it for later use during GC. */
5205 case R_PPC64_GNU_VTINHERIT:
5206 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
5207 return FALSE;
5208 break;
5209
5210 /* This relocation describes which C++ vtable entries are actually
5211 used. Record for later use during GC. */
5212 case R_PPC64_GNU_VTENTRY:
5213 BFD_ASSERT (h != NULL);
5214 if (h != NULL
5215 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
5216 return FALSE;
5217 break;
5218
5219 case R_PPC64_REL14:
5220 case R_PPC64_REL14_BRTAKEN:
5221 case R_PPC64_REL14_BRNTAKEN:
5222 {
5223 asection *dest = NULL;
5224
5225 /* Heuristic: If jumping outside our section, chances are
5226 we are going to need a stub. */
5227 if (h != NULL)
5228 {
5229 /* If the sym is weak it may be overridden later, so
5230 don't assume we know where a weak sym lives. */
5231 if (h->root.type == bfd_link_hash_defined)
5232 dest = h->root.u.def.section;
5233 }
5234 else
5235 {
5236 Elf_Internal_Sym *isym;
5237
5238 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5239 abfd, r_symndx);
5240 if (isym == NULL)
5241 return FALSE;
5242
5243 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
5244 }
5245
5246 if (dest != sec)
5247 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
5248 }
5249 /* Fall through. */
5250
5251 case R_PPC64_REL24:
5252 if (h != NULL && ifunc == NULL)
5253 {
5254 /* We may need a .plt entry if the function this reloc
5255 refers to is in a shared lib. */
5256 if (!update_plt_info (abfd, &h->plt.plist, rel->r_addend))
5257 return FALSE;
5258 h->needs_plt = 1;
5259 if (h->root.root.string[0] == '.'
5260 && h->root.root.string[1] != '\0')
5261 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5262 if (h == tga || h == dottga)
5263 sec->has_tls_reloc = 1;
5264 }
5265 break;
5266
5267 case R_PPC64_TPREL64:
5268 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
5269 if (!info->executable)
5270 info->flags |= DF_STATIC_TLS;
5271 goto dotlstoc;
5272
5273 case R_PPC64_DTPMOD64:
5274 if (rel + 1 < rel_end
5275 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
5276 && rel[1].r_offset == rel->r_offset + 8)
5277 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
5278 else
5279 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
5280 goto dotlstoc;
5281
5282 case R_PPC64_DTPREL64:
5283 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
5284 if (rel != relocs
5285 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
5286 && rel[-1].r_offset == rel->r_offset - 8)
5287 /* This is the second reloc of a dtpmod, dtprel pair.
5288 Don't mark with TLS_DTPREL. */
5289 goto dodyn;
5290
5291 dotlstoc:
5292 sec->has_tls_reloc = 1;
5293 if (h != NULL)
5294 {
5295 struct ppc_link_hash_entry *eh;
5296 eh = (struct ppc_link_hash_entry *) h;
5297 eh->tls_mask |= tls_type;
5298 }
5299 else
5300 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
5301 rel->r_addend, tls_type))
5302 return FALSE;
5303
5304 ppc64_sec = ppc64_elf_section_data (sec);
5305 if (ppc64_sec->sec_type != sec_toc)
5306 {
5307 bfd_size_type amt;
5308
5309 /* One extra to simplify get_tls_mask. */
5310 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
5311 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
5312 if (ppc64_sec->u.toc.symndx == NULL)
5313 return FALSE;
5314 amt = sec->size * sizeof (bfd_vma) / 8;
5315 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
5316 if (ppc64_sec->u.toc.add == NULL)
5317 return FALSE;
5318 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
5319 ppc64_sec->sec_type = sec_toc;
5320 }
5321 BFD_ASSERT (rel->r_offset % 8 == 0);
5322 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
5323 ppc64_sec->u.toc.add[rel->r_offset / 8] = rel->r_addend;
5324
5325 /* Mark the second slot of a GD or LD entry.
5326 -1 to indicate GD and -2 to indicate LD. */
5327 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5328 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5329 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5330 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5331 goto dodyn;
5332
5333 case R_PPC64_TPREL16:
5334 case R_PPC64_TPREL16_LO:
5335 case R_PPC64_TPREL16_HI:
5336 case R_PPC64_TPREL16_HA:
5337 case R_PPC64_TPREL16_DS:
5338 case R_PPC64_TPREL16_LO_DS:
5339 case R_PPC64_TPREL16_HIGHER:
5340 case R_PPC64_TPREL16_HIGHERA:
5341 case R_PPC64_TPREL16_HIGHEST:
5342 case R_PPC64_TPREL16_HIGHESTA:
5343 if (info->shared)
5344 {
5345 if (!info->executable)
5346 info->flags |= DF_STATIC_TLS;
5347 goto dodyn;
5348 }
5349 break;
5350
5351 case R_PPC64_ADDR64:
5352 if (opd_sym_map != NULL
5353 && rel + 1 < rel_end
5354 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5355 {
5356 if (h != NULL)
5357 {
5358 if (h->root.root.string[0] == '.'
5359 && h->root.root.string[1] != 0
5360 && lookup_fdh ((struct ppc_link_hash_entry *) h, htab))
5361 ;
5362 else
5363 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5364 }
5365 else
5366 {
5367 asection *s;
5368 Elf_Internal_Sym *isym;
5369
5370 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5371 abfd, r_symndx);
5372 if (isym == NULL)
5373 return FALSE;
5374
5375 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5376 if (s != NULL && s != sec)
5377 opd_sym_map[rel->r_offset / 8] = s;
5378 }
5379 }
5380 /* Fall through. */
5381
5382 case R_PPC64_REL30:
5383 case R_PPC64_REL32:
5384 case R_PPC64_REL64:
5385 case R_PPC64_ADDR14:
5386 case R_PPC64_ADDR14_BRNTAKEN:
5387 case R_PPC64_ADDR14_BRTAKEN:
5388 case R_PPC64_ADDR16:
5389 case R_PPC64_ADDR16_DS:
5390 case R_PPC64_ADDR16_HA:
5391 case R_PPC64_ADDR16_HI:
5392 case R_PPC64_ADDR16_HIGHER:
5393 case R_PPC64_ADDR16_HIGHERA:
5394 case R_PPC64_ADDR16_HIGHEST:
5395 case R_PPC64_ADDR16_HIGHESTA:
5396 case R_PPC64_ADDR16_LO:
5397 case R_PPC64_ADDR16_LO_DS:
5398 case R_PPC64_ADDR24:
5399 case R_PPC64_ADDR32:
5400 case R_PPC64_UADDR16:
5401 case R_PPC64_UADDR32:
5402 case R_PPC64_UADDR64:
5403 case R_PPC64_TOC:
5404 if (h != NULL && !info->shared)
5405 /* We may need a copy reloc. */
5406 h->non_got_ref = 1;
5407
5408 /* Don't propagate .opd relocs. */
5409 if (NO_OPD_RELOCS && opd_sym_map != NULL)
5410 break;
5411
5412 /* If we are creating a shared library, and this is a reloc
5413 against a global symbol, or a non PC relative reloc
5414 against a local symbol, then we need to copy the reloc
5415 into the shared library. However, if we are linking with
5416 -Bsymbolic, we do not need to copy a reloc against a
5417 global symbol which is defined in an object we are
5418 including in the link (i.e., DEF_REGULAR is set). At
5419 this point we have not seen all the input files, so it is
5420 possible that DEF_REGULAR is not set now but will be set
5421 later (it is never cleared). In case of a weak definition,
5422 DEF_REGULAR may be cleared later by a strong definition in
5423 a shared library. We account for that possibility below by
5424 storing information in the dyn_relocs field of the hash
5425 table entry. A similar situation occurs when creating
5426 shared libraries and symbol visibility changes render the
5427 symbol local.
5428
5429 If on the other hand, we are creating an executable, we
5430 may need to keep relocations for symbols satisfied by a
5431 dynamic library if we manage to avoid copy relocs for the
5432 symbol. */
5433 dodyn:
5434 if ((info->shared
5435 && (must_be_dyn_reloc (info, r_type)
5436 || (h != NULL
5437 && (! info->symbolic
5438 || h->root.type == bfd_link_hash_defweak
5439 || !h->def_regular))))
5440 || (ELIMINATE_COPY_RELOCS
5441 && !info->shared
5442 && h != NULL
5443 && (h->root.type == bfd_link_hash_defweak
5444 || !h->def_regular))
5445 || (!info->shared
5446 && ifunc != NULL))
5447 {
5448 struct elf_dyn_relocs *p;
5449 struct elf_dyn_relocs **head;
5450
5451 /* We must copy these reloc types into the output file.
5452 Create a reloc section in dynobj and make room for
5453 this reloc. */
5454 if (sreloc == NULL)
5455 {
5456 sreloc = _bfd_elf_make_dynamic_reloc_section
5457 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5458
5459 if (sreloc == NULL)
5460 return FALSE;
5461 }
5462
5463 /* If this is a global symbol, we count the number of
5464 relocations we need for this symbol. */
5465 if (h != NULL)
5466 {
5467 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5468 }
5469 else
5470 {
5471 /* Track dynamic relocs needed for local syms too.
5472 We really need local syms available to do this
5473 easily. Oh well. */
5474 asection *s;
5475 void *vpp;
5476 Elf_Internal_Sym *isym;
5477
5478 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5479 abfd, r_symndx);
5480 if (isym == NULL)
5481 return FALSE;
5482
5483 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5484 if (s == NULL)
5485 s = sec;
5486
5487 vpp = &elf_section_data (s)->local_dynrel;
5488 head = (struct elf_dyn_relocs **) vpp;
5489 }
5490
5491 p = *head;
5492 if (p == NULL || p->sec != sec)
5493 {
5494 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5495 if (p == NULL)
5496 return FALSE;
5497 p->next = *head;
5498 *head = p;
5499 p->sec = sec;
5500 p->count = 0;
5501 p->pc_count = 0;
5502 }
5503
5504 p->count += 1;
5505 if (!must_be_dyn_reloc (info, r_type))
5506 p->pc_count += 1;
5507 }
5508 break;
5509
5510 default:
5511 break;
5512 }
5513 }
5514
5515 return TRUE;
5516 }
5517
5518 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5519 of the code entry point, and its section. */
5520
5521 static bfd_vma
5522 opd_entry_value (asection *opd_sec,
5523 bfd_vma offset,
5524 asection **code_sec,
5525 bfd_vma *code_off)
5526 {
5527 bfd *opd_bfd = opd_sec->owner;
5528 Elf_Internal_Rela *relocs;
5529 Elf_Internal_Rela *lo, *hi, *look;
5530 bfd_vma val;
5531
5532 /* No relocs implies we are linking a --just-symbols object, or looking
5533 at a final linked executable with addr2line or somesuch. */
5534 if (opd_sec->reloc_count == 0)
5535 {
5536 /* PR 13897: Cache the loaded section to speed up the search. */
5537 static asection * buf_sec = NULL;
5538 static char buf[8];
5539 static bfd_vma buf_val = 0;
5540 static asection * buf_likely = NULL;
5541
5542 if (buf_sec == opd_sec)
5543 {
5544 if (code_sec != NULL)
5545 * code_sec = buf_likely;
5546 if (code_off != NULL && buf_likely != NULL)
5547 * code_off = buf_val - buf_likely->vma;
5548 return buf_val;
5549 }
5550
5551 if (!bfd_get_section_contents (opd_bfd, opd_sec, buf, offset, 8))
5552 return (bfd_vma) -1;
5553 buf_sec = opd_sec;
5554
5555 buf_val = bfd_get_64 (opd_bfd, buf);
5556 if (code_sec != NULL)
5557 {
5558 asection *sec;
5559
5560 buf_likely = NULL;
5561 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5562 if (sec->vma <= buf_val
5563 && (sec->flags & SEC_LOAD) != 0
5564 && (sec->flags & SEC_ALLOC) != 0)
5565 buf_likely = sec;
5566 if (buf_likely != NULL)
5567 {
5568 *code_sec = buf_likely;
5569 if (code_off != NULL)
5570 *code_off = buf_val - buf_likely->vma;
5571 }
5572 }
5573 else
5574 buf_likely = NULL;
5575 return buf_val;
5576 }
5577
5578 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5579
5580 relocs = ppc64_elf_tdata (opd_bfd)->opd_relocs;
5581 if (relocs == NULL)
5582 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5583
5584 /* Go find the opd reloc at the sym address. */
5585 lo = relocs;
5586 BFD_ASSERT (lo != NULL);
5587 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5588 val = (bfd_vma) -1;
5589 while (lo < hi)
5590 {
5591 look = lo + (hi - lo) / 2;
5592 if (look->r_offset < offset)
5593 lo = look + 1;
5594 else if (look->r_offset > offset)
5595 hi = look;
5596 else
5597 {
5598 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5599
5600 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5601 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5602 {
5603 unsigned long symndx = ELF64_R_SYM (look->r_info);
5604 asection *sec;
5605
5606 if (symndx < symtab_hdr->sh_info
5607 || elf_sym_hashes (opd_bfd) == NULL)
5608 {
5609 Elf_Internal_Sym *sym;
5610
5611 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5612 if (sym == NULL)
5613 {
5614 size_t symcnt = symtab_hdr->sh_info;
5615 if (elf_sym_hashes (opd_bfd) == NULL)
5616 symcnt = symtab_hdr->sh_size / symtab_hdr->sh_entsize;
5617 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr, symcnt,
5618 0, NULL, NULL, NULL);
5619 if (sym == NULL)
5620 break;
5621 symtab_hdr->contents = (bfd_byte *) sym;
5622 }
5623
5624 sym += symndx;
5625 val = sym->st_value;
5626 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5627 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5628 }
5629 else
5630 {
5631 struct elf_link_hash_entry **sym_hashes;
5632 struct elf_link_hash_entry *rh;
5633
5634 sym_hashes = elf_sym_hashes (opd_bfd);
5635 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5636 rh = elf_follow_link (rh);
5637 BFD_ASSERT (rh->root.type == bfd_link_hash_defined
5638 || rh->root.type == bfd_link_hash_defweak);
5639 val = rh->root.u.def.value;
5640 sec = rh->root.u.def.section;
5641 }
5642 val += look->r_addend;
5643 if (code_off != NULL)
5644 *code_off = val;
5645 if (code_sec != NULL)
5646 *code_sec = sec;
5647 if (sec != NULL && sec->output_section != NULL)
5648 val += sec->output_section->vma + sec->output_offset;
5649 }
5650 break;
5651 }
5652 }
5653
5654 return val;
5655 }
5656
5657 /* Return TRUE iff the ELF symbol SYM might be a function. Set *CODE_SEC
5658 and *CODE_OFF to the function's entry point. */
5659
5660 static bfd_boolean
5661 ppc64_elf_maybe_function_sym (const asymbol *sym,
5662 asection **code_sec, bfd_vma *code_off)
5663 {
5664 if (_bfd_elf_maybe_function_sym (sym, code_sec, code_off))
5665 {
5666 if (strcmp (sym->section->name, ".opd") == 0)
5667 opd_entry_value (sym->section, sym->value, code_sec, code_off);
5668 return TRUE;
5669 }
5670 return FALSE;
5671 }
5672
5673 /* Return true if symbol is defined in a regular object file. */
5674
5675 static bfd_boolean
5676 is_static_defined (struct elf_link_hash_entry *h)
5677 {
5678 return ((h->root.type == bfd_link_hash_defined
5679 || h->root.type == bfd_link_hash_defweak)
5680 && h->root.u.def.section != NULL
5681 && h->root.u.def.section->output_section != NULL);
5682 }
5683
5684 /* If FDH is a function descriptor symbol, return the associated code
5685 entry symbol if it is defined. Return NULL otherwise. */
5686
5687 static struct ppc_link_hash_entry *
5688 defined_code_entry (struct ppc_link_hash_entry *fdh)
5689 {
5690 if (fdh->is_func_descriptor)
5691 {
5692 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5693 if (fh->elf.root.type == bfd_link_hash_defined
5694 || fh->elf.root.type == bfd_link_hash_defweak)
5695 return fh;
5696 }
5697 return NULL;
5698 }
5699
5700 /* If FH is a function code entry symbol, return the associated
5701 function descriptor symbol if it is defined. Return NULL otherwise. */
5702
5703 static struct ppc_link_hash_entry *
5704 defined_func_desc (struct ppc_link_hash_entry *fh)
5705 {
5706 if (fh->oh != NULL
5707 && fh->oh->is_func_descriptor)
5708 {
5709 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5710 if (fdh->elf.root.type == bfd_link_hash_defined
5711 || fdh->elf.root.type == bfd_link_hash_defweak)
5712 return fdh;
5713 }
5714 return NULL;
5715 }
5716
5717 /* Mark all our entry sym sections, both opd and code section. */
5718
5719 static void
5720 ppc64_elf_gc_keep (struct bfd_link_info *info)
5721 {
5722 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5723 struct bfd_sym_chain *sym;
5724
5725 if (htab == NULL)
5726 return;
5727
5728 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5729 {
5730 struct ppc_link_hash_entry *eh, *fh;
5731 asection *sec;
5732
5733 eh = (struct ppc_link_hash_entry *)
5734 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5735 if (eh == NULL)
5736 continue;
5737 if (eh->elf.root.type != bfd_link_hash_defined
5738 && eh->elf.root.type != bfd_link_hash_defweak)
5739 continue;
5740
5741 fh = defined_code_entry (eh);
5742 if (fh != NULL)
5743 {
5744 sec = fh->elf.root.u.def.section;
5745 sec->flags |= SEC_KEEP;
5746 }
5747 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5748 && opd_entry_value (eh->elf.root.u.def.section,
5749 eh->elf.root.u.def.value,
5750 &sec, NULL) != (bfd_vma) -1)
5751 sec->flags |= SEC_KEEP;
5752
5753 sec = eh->elf.root.u.def.section;
5754 sec->flags |= SEC_KEEP;
5755 }
5756 }
5757
5758 /* Mark sections containing dynamically referenced symbols. When
5759 building shared libraries, we must assume that any visible symbol is
5760 referenced. */
5761
5762 static bfd_boolean
5763 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5764 {
5765 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5766 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5767 struct ppc_link_hash_entry *fdh;
5768
5769 /* Dynamic linking info is on the func descriptor sym. */
5770 fdh = defined_func_desc (eh);
5771 if (fdh != NULL)
5772 eh = fdh;
5773
5774 if ((eh->elf.root.type == bfd_link_hash_defined
5775 || eh->elf.root.type == bfd_link_hash_defweak)
5776 && (eh->elf.ref_dynamic
5777 || (!info->executable
5778 && eh->elf.def_regular
5779 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5780 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5781 && (strchr (eh->elf.root.root.string, ELF_VER_CHR) != NULL
5782 || !bfd_hide_sym_by_version (info->version_info,
5783 eh->elf.root.root.string)))))
5784 {
5785 asection *code_sec;
5786 struct ppc_link_hash_entry *fh;
5787
5788 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5789
5790 /* Function descriptor syms cause the associated
5791 function code sym section to be marked. */
5792 fh = defined_code_entry (eh);
5793 if (fh != NULL)
5794 {
5795 code_sec = fh->elf.root.u.def.section;
5796 code_sec->flags |= SEC_KEEP;
5797 }
5798 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5799 && opd_entry_value (eh->elf.root.u.def.section,
5800 eh->elf.root.u.def.value,
5801 &code_sec, NULL) != (bfd_vma) -1)
5802 code_sec->flags |= SEC_KEEP;
5803 }
5804
5805 return TRUE;
5806 }
5807
5808 /* Return the section that should be marked against GC for a given
5809 relocation. */
5810
5811 static asection *
5812 ppc64_elf_gc_mark_hook (asection *sec,
5813 struct bfd_link_info *info,
5814 Elf_Internal_Rela *rel,
5815 struct elf_link_hash_entry *h,
5816 Elf_Internal_Sym *sym)
5817 {
5818 asection *rsec;
5819
5820 /* Syms return NULL if we're marking .opd, so we avoid marking all
5821 function sections, as all functions are referenced in .opd. */
5822 rsec = NULL;
5823 if (get_opd_info (sec) != NULL)
5824 return rsec;
5825
5826 if (h != NULL)
5827 {
5828 enum elf_ppc64_reloc_type r_type;
5829 struct ppc_link_hash_entry *eh, *fh, *fdh;
5830
5831 r_type = ELF64_R_TYPE (rel->r_info);
5832 switch (r_type)
5833 {
5834 case R_PPC64_GNU_VTINHERIT:
5835 case R_PPC64_GNU_VTENTRY:
5836 break;
5837
5838 default:
5839 switch (h->root.type)
5840 {
5841 case bfd_link_hash_defined:
5842 case bfd_link_hash_defweak:
5843 eh = (struct ppc_link_hash_entry *) h;
5844 fdh = defined_func_desc (eh);
5845 if (fdh != NULL)
5846 eh = fdh;
5847
5848 /* Function descriptor syms cause the associated
5849 function code sym section to be marked. */
5850 fh = defined_code_entry (eh);
5851 if (fh != NULL)
5852 {
5853 /* They also mark their opd section. */
5854 eh->elf.root.u.def.section->gc_mark = 1;
5855
5856 rsec = fh->elf.root.u.def.section;
5857 }
5858 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5859 && opd_entry_value (eh->elf.root.u.def.section,
5860 eh->elf.root.u.def.value,
5861 &rsec, NULL) != (bfd_vma) -1)
5862 eh->elf.root.u.def.section->gc_mark = 1;
5863 else
5864 rsec = h->root.u.def.section;
5865 break;
5866
5867 case bfd_link_hash_common:
5868 rsec = h->root.u.c.p->section;
5869 break;
5870
5871 default:
5872 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5873 }
5874 }
5875 }
5876 else
5877 {
5878 struct _opd_sec_data *opd;
5879
5880 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5881 opd = get_opd_info (rsec);
5882 if (opd != NULL && opd->func_sec != NULL)
5883 {
5884 rsec->gc_mark = 1;
5885
5886 rsec = opd->func_sec[(sym->st_value + rel->r_addend) / 8];
5887 }
5888 }
5889
5890 return rsec;
5891 }
5892
5893 /* Update the .got, .plt. and dynamic reloc reference counts for the
5894 section being removed. */
5895
5896 static bfd_boolean
5897 ppc64_elf_gc_sweep_hook (bfd *abfd, struct bfd_link_info *info,
5898 asection *sec, const Elf_Internal_Rela *relocs)
5899 {
5900 struct ppc_link_hash_table *htab;
5901 Elf_Internal_Shdr *symtab_hdr;
5902 struct elf_link_hash_entry **sym_hashes;
5903 struct got_entry **local_got_ents;
5904 const Elf_Internal_Rela *rel, *relend;
5905
5906 if (info->relocatable)
5907 return TRUE;
5908
5909 if ((sec->flags & SEC_ALLOC) == 0)
5910 return TRUE;
5911
5912 elf_section_data (sec)->local_dynrel = NULL;
5913
5914 htab = ppc_hash_table (info);
5915 if (htab == NULL)
5916 return FALSE;
5917
5918 symtab_hdr = &elf_symtab_hdr (abfd);
5919 sym_hashes = elf_sym_hashes (abfd);
5920 local_got_ents = elf_local_got_ents (abfd);
5921
5922 relend = relocs + sec->reloc_count;
5923 for (rel = relocs; rel < relend; rel++)
5924 {
5925 unsigned long r_symndx;
5926 enum elf_ppc64_reloc_type r_type;
5927 struct elf_link_hash_entry *h = NULL;
5928 unsigned char tls_type = 0;
5929
5930 r_symndx = ELF64_R_SYM (rel->r_info);
5931 r_type = ELF64_R_TYPE (rel->r_info);
5932 if (r_symndx >= symtab_hdr->sh_info)
5933 {
5934 struct ppc_link_hash_entry *eh;
5935 struct elf_dyn_relocs **pp;
5936 struct elf_dyn_relocs *p;
5937
5938 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
5939 h = elf_follow_link (h);
5940 eh = (struct ppc_link_hash_entry *) h;
5941
5942 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
5943 if (p->sec == sec)
5944 {
5945 /* Everything must go for SEC. */
5946 *pp = p->next;
5947 break;
5948 }
5949 }
5950
5951 if (is_branch_reloc (r_type))
5952 {
5953 struct plt_entry **ifunc = NULL;
5954 if (h != NULL)
5955 {
5956 if (h->type == STT_GNU_IFUNC)
5957 ifunc = &h->plt.plist;
5958 }
5959 else if (local_got_ents != NULL)
5960 {
5961 struct plt_entry **local_plt = (struct plt_entry **)
5962 (local_got_ents + symtab_hdr->sh_info);
5963 unsigned char *local_got_tls_masks = (unsigned char *)
5964 (local_plt + symtab_hdr->sh_info);
5965 if ((local_got_tls_masks[r_symndx] & PLT_IFUNC) != 0)
5966 ifunc = local_plt + r_symndx;
5967 }
5968 if (ifunc != NULL)
5969 {
5970 struct plt_entry *ent;
5971
5972 for (ent = *ifunc; ent != NULL; ent = ent->next)
5973 if (ent->addend == rel->r_addend)
5974 break;
5975 if (ent == NULL)
5976 abort ();
5977 if (ent->plt.refcount > 0)
5978 ent->plt.refcount -= 1;
5979 continue;
5980 }
5981 }
5982
5983 switch (r_type)
5984 {
5985 case R_PPC64_GOT_TLSLD16:
5986 case R_PPC64_GOT_TLSLD16_LO:
5987 case R_PPC64_GOT_TLSLD16_HI:
5988 case R_PPC64_GOT_TLSLD16_HA:
5989 tls_type = TLS_TLS | TLS_LD;
5990 goto dogot;
5991
5992 case R_PPC64_GOT_TLSGD16:
5993 case R_PPC64_GOT_TLSGD16_LO:
5994 case R_PPC64_GOT_TLSGD16_HI:
5995 case R_PPC64_GOT_TLSGD16_HA:
5996 tls_type = TLS_TLS | TLS_GD;
5997 goto dogot;
5998
5999 case R_PPC64_GOT_TPREL16_DS:
6000 case R_PPC64_GOT_TPREL16_LO_DS:
6001 case R_PPC64_GOT_TPREL16_HI:
6002 case R_PPC64_GOT_TPREL16_HA:
6003 tls_type = TLS_TLS | TLS_TPREL;
6004 goto dogot;
6005
6006 case R_PPC64_GOT_DTPREL16_DS:
6007 case R_PPC64_GOT_DTPREL16_LO_DS:
6008 case R_PPC64_GOT_DTPREL16_HI:
6009 case R_PPC64_GOT_DTPREL16_HA:
6010 tls_type = TLS_TLS | TLS_DTPREL;
6011 goto dogot;
6012
6013 case R_PPC64_GOT16:
6014 case R_PPC64_GOT16_DS:
6015 case R_PPC64_GOT16_HA:
6016 case R_PPC64_GOT16_HI:
6017 case R_PPC64_GOT16_LO:
6018 case R_PPC64_GOT16_LO_DS:
6019 dogot:
6020 {
6021 struct got_entry *ent;
6022
6023 if (h != NULL)
6024 ent = h->got.glist;
6025 else
6026 ent = local_got_ents[r_symndx];
6027
6028 for (; ent != NULL; ent = ent->next)
6029 if (ent->addend == rel->r_addend
6030 && ent->owner == abfd
6031 && ent->tls_type == tls_type)
6032 break;
6033 if (ent == NULL)
6034 abort ();
6035 if (ent->got.refcount > 0)
6036 ent->got.refcount -= 1;
6037 }
6038 break;
6039
6040 case R_PPC64_PLT16_HA:
6041 case R_PPC64_PLT16_HI:
6042 case R_PPC64_PLT16_LO:
6043 case R_PPC64_PLT32:
6044 case R_PPC64_PLT64:
6045 case R_PPC64_REL14:
6046 case R_PPC64_REL14_BRNTAKEN:
6047 case R_PPC64_REL14_BRTAKEN:
6048 case R_PPC64_REL24:
6049 if (h != NULL)
6050 {
6051 struct plt_entry *ent;
6052
6053 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6054 if (ent->addend == rel->r_addend)
6055 break;
6056 if (ent != NULL && ent->plt.refcount > 0)
6057 ent->plt.refcount -= 1;
6058 }
6059 break;
6060
6061 default:
6062 break;
6063 }
6064 }
6065 return TRUE;
6066 }
6067
6068 /* The maximum size of .sfpr. */
6069 #define SFPR_MAX (218*4)
6070
6071 struct sfpr_def_parms
6072 {
6073 const char name[12];
6074 unsigned char lo, hi;
6075 bfd_byte * (*write_ent) (bfd *, bfd_byte *, int);
6076 bfd_byte * (*write_tail) (bfd *, bfd_byte *, int);
6077 };
6078
6079 /* Auto-generate _save*, _rest* functions in .sfpr. */
6080
6081 static bfd_boolean
6082 sfpr_define (struct bfd_link_info *info, const struct sfpr_def_parms *parm)
6083 {
6084 struct ppc_link_hash_table *htab = ppc_hash_table (info);
6085 unsigned int i;
6086 size_t len = strlen (parm->name);
6087 bfd_boolean writing = FALSE;
6088 char sym[16];
6089
6090 if (htab == NULL)
6091 return FALSE;
6092
6093 memcpy (sym, parm->name, len);
6094 sym[len + 2] = 0;
6095
6096 for (i = parm->lo; i <= parm->hi; i++)
6097 {
6098 struct elf_link_hash_entry *h;
6099
6100 sym[len + 0] = i / 10 + '0';
6101 sym[len + 1] = i % 10 + '0';
6102 h = elf_link_hash_lookup (&htab->elf, sym, FALSE, FALSE, TRUE);
6103 if (h != NULL
6104 && !h->def_regular)
6105 {
6106 h->root.type = bfd_link_hash_defined;
6107 h->root.u.def.section = htab->sfpr;
6108 h->root.u.def.value = htab->sfpr->size;
6109 h->type = STT_FUNC;
6110 h->def_regular = 1;
6111 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
6112 writing = TRUE;
6113 if (htab->sfpr->contents == NULL)
6114 {
6115 htab->sfpr->contents = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
6116 if (htab->sfpr->contents == NULL)
6117 return FALSE;
6118 }
6119 }
6120 if (writing)
6121 {
6122 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
6123 if (i != parm->hi)
6124 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
6125 else
6126 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
6127 htab->sfpr->size = p - htab->sfpr->contents;
6128 }
6129 }
6130
6131 return TRUE;
6132 }
6133
6134 static bfd_byte *
6135 savegpr0 (bfd *abfd, bfd_byte *p, int r)
6136 {
6137 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6138 return p + 4;
6139 }
6140
6141 static bfd_byte *
6142 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
6143 {
6144 p = savegpr0 (abfd, p, r);
6145 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6146 p = p + 4;
6147 bfd_put_32 (abfd, BLR, p);
6148 return p + 4;
6149 }
6150
6151 static bfd_byte *
6152 restgpr0 (bfd *abfd, bfd_byte *p, int r)
6153 {
6154 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6155 return p + 4;
6156 }
6157
6158 static bfd_byte *
6159 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
6160 {
6161 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6162 p = p + 4;
6163 p = restgpr0 (abfd, p, r);
6164 bfd_put_32 (abfd, MTLR_R0, p);
6165 p = p + 4;
6166 if (r == 29)
6167 {
6168 p = restgpr0 (abfd, p, 30);
6169 p = restgpr0 (abfd, p, 31);
6170 }
6171 bfd_put_32 (abfd, BLR, p);
6172 return p + 4;
6173 }
6174
6175 static bfd_byte *
6176 savegpr1 (bfd *abfd, bfd_byte *p, int r)
6177 {
6178 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6179 return p + 4;
6180 }
6181
6182 static bfd_byte *
6183 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
6184 {
6185 p = savegpr1 (abfd, p, r);
6186 bfd_put_32 (abfd, BLR, p);
6187 return p + 4;
6188 }
6189
6190 static bfd_byte *
6191 restgpr1 (bfd *abfd, bfd_byte *p, int r)
6192 {
6193 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6194 return p + 4;
6195 }
6196
6197 static bfd_byte *
6198 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
6199 {
6200 p = restgpr1 (abfd, p, r);
6201 bfd_put_32 (abfd, BLR, p);
6202 return p + 4;
6203 }
6204
6205 static bfd_byte *
6206 savefpr (bfd *abfd, bfd_byte *p, int r)
6207 {
6208 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6209 return p + 4;
6210 }
6211
6212 static bfd_byte *
6213 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
6214 {
6215 p = savefpr (abfd, p, r);
6216 bfd_put_32 (abfd, STD_R0_0R1 + 16, p);
6217 p = p + 4;
6218 bfd_put_32 (abfd, BLR, p);
6219 return p + 4;
6220 }
6221
6222 static bfd_byte *
6223 restfpr (bfd *abfd, bfd_byte *p, int r)
6224 {
6225 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
6226 return p + 4;
6227 }
6228
6229 static bfd_byte *
6230 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
6231 {
6232 bfd_put_32 (abfd, LD_R0_0R1 + 16, p);
6233 p = p + 4;
6234 p = restfpr (abfd, p, r);
6235 bfd_put_32 (abfd, MTLR_R0, p);
6236 p = p + 4;
6237 if (r == 29)
6238 {
6239 p = restfpr (abfd, p, 30);
6240 p = restfpr (abfd, p, 31);
6241 }
6242 bfd_put_32 (abfd, BLR, p);
6243 return p + 4;
6244 }
6245
6246 static bfd_byte *
6247 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
6248 {
6249 p = savefpr (abfd, p, r);
6250 bfd_put_32 (abfd, BLR, p);
6251 return p + 4;
6252 }
6253
6254 static bfd_byte *
6255 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6256 {
6257 p = restfpr (abfd, p, r);
6258 bfd_put_32 (abfd, BLR, p);
6259 return p + 4;
6260 }
6261
6262 static bfd_byte *
6263 savevr (bfd *abfd, bfd_byte *p, int r)
6264 {
6265 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6266 p = p + 4;
6267 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6268 return p + 4;
6269 }
6270
6271 static bfd_byte *
6272 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6273 {
6274 p = savevr (abfd, p, r);
6275 bfd_put_32 (abfd, BLR, p);
6276 return p + 4;
6277 }
6278
6279 static bfd_byte *
6280 restvr (bfd *abfd, bfd_byte *p, int r)
6281 {
6282 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6283 p = p + 4;
6284 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6285 return p + 4;
6286 }
6287
6288 static bfd_byte *
6289 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6290 {
6291 p = restvr (abfd, p, r);
6292 bfd_put_32 (abfd, BLR, p);
6293 return p + 4;
6294 }
6295
6296 /* Called via elf_link_hash_traverse to transfer dynamic linking
6297 information on function code symbol entries to their corresponding
6298 function descriptor symbol entries. */
6299
6300 static bfd_boolean
6301 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6302 {
6303 struct bfd_link_info *info;
6304 struct ppc_link_hash_table *htab;
6305 struct plt_entry *ent;
6306 struct ppc_link_hash_entry *fh;
6307 struct ppc_link_hash_entry *fdh;
6308 bfd_boolean force_local;
6309
6310 fh = (struct ppc_link_hash_entry *) h;
6311 if (fh->elf.root.type == bfd_link_hash_indirect)
6312 return TRUE;
6313
6314 info = inf;
6315 htab = ppc_hash_table (info);
6316 if (htab == NULL)
6317 return FALSE;
6318
6319 /* Resolve undefined references to dot-symbols as the value
6320 in the function descriptor, if we have one in a regular object.
6321 This is to satisfy cases like ".quad .foo". Calls to functions
6322 in dynamic objects are handled elsewhere. */
6323 if (fh->elf.root.type == bfd_link_hash_undefweak
6324 && fh->was_undefined
6325 && (fdh = defined_func_desc (fh)) != NULL
6326 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6327 && opd_entry_value (fdh->elf.root.u.def.section,
6328 fdh->elf.root.u.def.value,
6329 &fh->elf.root.u.def.section,
6330 &fh->elf.root.u.def.value) != (bfd_vma) -1)
6331 {
6332 fh->elf.root.type = fdh->elf.root.type;
6333 fh->elf.forced_local = 1;
6334 fh->elf.def_regular = fdh->elf.def_regular;
6335 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6336 }
6337
6338 /* If this is a function code symbol, transfer dynamic linking
6339 information to the function descriptor symbol. */
6340 if (!fh->is_func)
6341 return TRUE;
6342
6343 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6344 if (ent->plt.refcount > 0)
6345 break;
6346 if (ent == NULL
6347 || fh->elf.root.root.string[0] != '.'
6348 || fh->elf.root.root.string[1] == '\0')
6349 return TRUE;
6350
6351 /* Find the corresponding function descriptor symbol. Create it
6352 as undefined if necessary. */
6353
6354 fdh = lookup_fdh (fh, htab);
6355 if (fdh == NULL
6356 && !info->executable
6357 && (fh->elf.root.type == bfd_link_hash_undefined
6358 || fh->elf.root.type == bfd_link_hash_undefweak))
6359 {
6360 fdh = make_fdh (info, fh);
6361 if (fdh == NULL)
6362 return FALSE;
6363 }
6364
6365 /* Fake function descriptors are made undefweak. If the function
6366 code symbol is strong undefined, make the fake sym the same.
6367 If the function code symbol is defined, then force the fake
6368 descriptor local; We can't support overriding of symbols in a
6369 shared library on a fake descriptor. */
6370
6371 if (fdh != NULL
6372 && fdh->fake
6373 && fdh->elf.root.type == bfd_link_hash_undefweak)
6374 {
6375 if (fh->elf.root.type == bfd_link_hash_undefined)
6376 {
6377 fdh->elf.root.type = bfd_link_hash_undefined;
6378 bfd_link_add_undef (&htab->elf.root, &fdh->elf.root);
6379 }
6380 else if (fh->elf.root.type == bfd_link_hash_defined
6381 || fh->elf.root.type == bfd_link_hash_defweak)
6382 {
6383 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6384 }
6385 }
6386
6387 if (fdh != NULL
6388 && !fdh->elf.forced_local
6389 && (!info->executable
6390 || fdh->elf.def_dynamic
6391 || fdh->elf.ref_dynamic
6392 || (fdh->elf.root.type == bfd_link_hash_undefweak
6393 && ELF_ST_VISIBILITY (fdh->elf.other) == STV_DEFAULT)))
6394 {
6395 if (fdh->elf.dynindx == -1)
6396 if (! bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6397 return FALSE;
6398 fdh->elf.ref_regular |= fh->elf.ref_regular;
6399 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6400 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6401 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6402 if (ELF_ST_VISIBILITY (fh->elf.other) == STV_DEFAULT)
6403 {
6404 move_plt_plist (fh, fdh);
6405 fdh->elf.needs_plt = 1;
6406 }
6407 fdh->is_func_descriptor = 1;
6408 fdh->oh = fh;
6409 fh->oh = fdh;
6410 }
6411
6412 /* Now that the info is on the function descriptor, clear the
6413 function code sym info. Any function code syms for which we
6414 don't have a definition in a regular file, we force local.
6415 This prevents a shared library from exporting syms that have
6416 been imported from another library. Function code syms that
6417 are really in the library we must leave global to prevent the
6418 linker dragging in a definition from a static library. */
6419 force_local = (!fh->elf.def_regular
6420 || fdh == NULL
6421 || !fdh->elf.def_regular
6422 || fdh->elf.forced_local);
6423 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6424
6425 return TRUE;
6426 }
6427
6428 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6429 this hook to a) provide some gcc support functions, and b) transfer
6430 dynamic linking information gathered so far on function code symbol
6431 entries, to their corresponding function descriptor symbol entries. */
6432
6433 static bfd_boolean
6434 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6435 struct bfd_link_info *info)
6436 {
6437 struct ppc_link_hash_table *htab;
6438 unsigned int i;
6439 const struct sfpr_def_parms funcs[] =
6440 {
6441 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6442 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6443 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6444 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6445 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6446 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6447 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6448 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6449 { "._savef", 14, 31, savefpr, savefpr1_tail },
6450 { "._restf", 14, 31, restfpr, restfpr1_tail },
6451 { "_savevr_", 20, 31, savevr, savevr_tail },
6452 { "_restvr_", 20, 31, restvr, restvr_tail }
6453 };
6454
6455 htab = ppc_hash_table (info);
6456 if (htab == NULL)
6457 return FALSE;
6458
6459 if (htab->sfpr == NULL)
6460 /* We don't have any relocs. */
6461 return TRUE;
6462
6463 /* Provide any missing _save* and _rest* functions. */
6464 htab->sfpr->size = 0;
6465 for (i = 0; i < sizeof (funcs) / sizeof (funcs[0]); i++)
6466 if (!sfpr_define (info, &funcs[i]))
6467 return FALSE;
6468
6469 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6470
6471 if (htab->sfpr->size == 0)
6472 htab->sfpr->flags |= SEC_EXCLUDE;
6473
6474 return TRUE;
6475 }
6476
6477 /* Adjust a symbol defined by a dynamic object and referenced by a
6478 regular object. The current definition is in some section of the
6479 dynamic object, but we're not including those sections. We have to
6480 change the definition to something the rest of the link can
6481 understand. */
6482
6483 static bfd_boolean
6484 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6485 struct elf_link_hash_entry *h)
6486 {
6487 struct ppc_link_hash_table *htab;
6488 asection *s;
6489
6490 htab = ppc_hash_table (info);
6491 if (htab == NULL)
6492 return FALSE;
6493
6494 /* Deal with function syms. */
6495 if (h->type == STT_FUNC
6496 || h->type == STT_GNU_IFUNC
6497 || h->needs_plt)
6498 {
6499 /* Clear procedure linkage table information for any symbol that
6500 won't need a .plt entry. */
6501 struct plt_entry *ent;
6502 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6503 if (ent->plt.refcount > 0)
6504 break;
6505 if (ent == NULL
6506 || (h->type != STT_GNU_IFUNC
6507 && (SYMBOL_CALLS_LOCAL (info, h)
6508 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
6509 && h->root.type == bfd_link_hash_undefweak))))
6510 {
6511 h->plt.plist = NULL;
6512 h->needs_plt = 0;
6513 }
6514 }
6515 else
6516 h->plt.plist = NULL;
6517
6518 /* If this is a weak symbol, and there is a real definition, the
6519 processor independent code will have arranged for us to see the
6520 real definition first, and we can just use the same value. */
6521 if (h->u.weakdef != NULL)
6522 {
6523 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
6524 || h->u.weakdef->root.type == bfd_link_hash_defweak);
6525 h->root.u.def.section = h->u.weakdef->root.u.def.section;
6526 h->root.u.def.value = h->u.weakdef->root.u.def.value;
6527 if (ELIMINATE_COPY_RELOCS)
6528 h->non_got_ref = h->u.weakdef->non_got_ref;
6529 return TRUE;
6530 }
6531
6532 /* If we are creating a shared library, we must presume that the
6533 only references to the symbol are via the global offset table.
6534 For such cases we need not do anything here; the relocations will
6535 be handled correctly by relocate_section. */
6536 if (info->shared)
6537 return TRUE;
6538
6539 /* If there are no references to this symbol that do not use the
6540 GOT, we don't need to generate a copy reloc. */
6541 if (!h->non_got_ref)
6542 return TRUE;
6543
6544 /* Don't generate a copy reloc for symbols defined in the executable. */
6545 if (!h->def_dynamic || !h->ref_regular || h->def_regular)
6546 return TRUE;
6547
6548 if (ELIMINATE_COPY_RELOCS)
6549 {
6550 struct ppc_link_hash_entry * eh;
6551 struct elf_dyn_relocs *p;
6552
6553 eh = (struct ppc_link_hash_entry *) h;
6554 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6555 {
6556 s = p->sec->output_section;
6557 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6558 break;
6559 }
6560
6561 /* If we didn't find any dynamic relocs in read-only sections, then
6562 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6563 if (p == NULL)
6564 {
6565 h->non_got_ref = 0;
6566 return TRUE;
6567 }
6568 }
6569
6570 if (h->plt.plist != NULL)
6571 {
6572 /* We should never get here, but unfortunately there are versions
6573 of gcc out there that improperly (for this ABI) put initialized
6574 function pointers, vtable refs and suchlike in read-only
6575 sections. Allow them to proceed, but warn that this might
6576 break at runtime. */
6577 info->callbacks->einfo
6578 (_("%P: copy reloc against `%s' requires lazy plt linking; "
6579 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6580 h->root.root.string);
6581 }
6582
6583 /* This is a reference to a symbol defined by a dynamic object which
6584 is not a function. */
6585
6586 /* We must allocate the symbol in our .dynbss section, which will
6587 become part of the .bss section of the executable. There will be
6588 an entry for this symbol in the .dynsym section. The dynamic
6589 object will contain position independent code, so all references
6590 from the dynamic object to this symbol will go through the global
6591 offset table. The dynamic linker will use the .dynsym entry to
6592 determine the address it must put in the global offset table, so
6593 both the dynamic object and the regular object will refer to the
6594 same memory location for the variable. */
6595
6596 /* We must generate a R_PPC64_COPY reloc to tell the dynamic linker
6597 to copy the initial value out of the dynamic object and into the
6598 runtime process image. We need to remember the offset into the
6599 .rela.bss section we are going to use. */
6600 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6601 {
6602 htab->relbss->size += sizeof (Elf64_External_Rela);
6603 h->needs_copy = 1;
6604 }
6605
6606 s = htab->dynbss;
6607
6608 return _bfd_elf_adjust_dynamic_copy (h, s);
6609 }
6610
6611 /* If given a function descriptor symbol, hide both the function code
6612 sym and the descriptor. */
6613 static void
6614 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6615 struct elf_link_hash_entry *h,
6616 bfd_boolean force_local)
6617 {
6618 struct ppc_link_hash_entry *eh;
6619 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6620
6621 eh = (struct ppc_link_hash_entry *) h;
6622 if (eh->is_func_descriptor)
6623 {
6624 struct ppc_link_hash_entry *fh = eh->oh;
6625
6626 if (fh == NULL)
6627 {
6628 const char *p, *q;
6629 struct ppc_link_hash_table *htab;
6630 char save;
6631
6632 /* We aren't supposed to use alloca in BFD because on
6633 systems which do not have alloca the version in libiberty
6634 calls xmalloc, which might cause the program to crash
6635 when it runs out of memory. This function doesn't have a
6636 return status, so there's no way to gracefully return an
6637 error. So cheat. We know that string[-1] can be safely
6638 accessed; It's either a string in an ELF string table,
6639 or allocated in an objalloc structure. */
6640
6641 p = eh->elf.root.root.string - 1;
6642 save = *p;
6643 *(char *) p = '.';
6644 htab = ppc_hash_table (info);
6645 if (htab == NULL)
6646 return;
6647
6648 fh = (struct ppc_link_hash_entry *)
6649 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6650 *(char *) p = save;
6651
6652 /* Unfortunately, if it so happens that the string we were
6653 looking for was allocated immediately before this string,
6654 then we overwrote the string terminator. That's the only
6655 reason the lookup should fail. */
6656 if (fh == NULL)
6657 {
6658 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6659 while (q >= eh->elf.root.root.string && *q == *p)
6660 --q, --p;
6661 if (q < eh->elf.root.root.string && *p == '.')
6662 fh = (struct ppc_link_hash_entry *)
6663 elf_link_hash_lookup (&htab->elf, p, FALSE, FALSE, FALSE);
6664 }
6665 if (fh != NULL)
6666 {
6667 eh->oh = fh;
6668 fh->oh = eh;
6669 }
6670 }
6671 if (fh != NULL)
6672 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6673 }
6674 }
6675
6676 static bfd_boolean
6677 get_sym_h (struct elf_link_hash_entry **hp,
6678 Elf_Internal_Sym **symp,
6679 asection **symsecp,
6680 unsigned char **tls_maskp,
6681 Elf_Internal_Sym **locsymsp,
6682 unsigned long r_symndx,
6683 bfd *ibfd)
6684 {
6685 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6686
6687 if (r_symndx >= symtab_hdr->sh_info)
6688 {
6689 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6690 struct elf_link_hash_entry *h;
6691
6692 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6693 h = elf_follow_link (h);
6694
6695 if (hp != NULL)
6696 *hp = h;
6697
6698 if (symp != NULL)
6699 *symp = NULL;
6700
6701 if (symsecp != NULL)
6702 {
6703 asection *symsec = NULL;
6704 if (h->root.type == bfd_link_hash_defined
6705 || h->root.type == bfd_link_hash_defweak)
6706 symsec = h->root.u.def.section;
6707 *symsecp = symsec;
6708 }
6709
6710 if (tls_maskp != NULL)
6711 {
6712 struct ppc_link_hash_entry *eh;
6713
6714 eh = (struct ppc_link_hash_entry *) h;
6715 *tls_maskp = &eh->tls_mask;
6716 }
6717 }
6718 else
6719 {
6720 Elf_Internal_Sym *sym;
6721 Elf_Internal_Sym *locsyms = *locsymsp;
6722
6723 if (locsyms == NULL)
6724 {
6725 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6726 if (locsyms == NULL)
6727 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6728 symtab_hdr->sh_info,
6729 0, NULL, NULL, NULL);
6730 if (locsyms == NULL)
6731 return FALSE;
6732 *locsymsp = locsyms;
6733 }
6734 sym = locsyms + r_symndx;
6735
6736 if (hp != NULL)
6737 *hp = NULL;
6738
6739 if (symp != NULL)
6740 *symp = sym;
6741
6742 if (symsecp != NULL)
6743 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6744
6745 if (tls_maskp != NULL)
6746 {
6747 struct got_entry **lgot_ents;
6748 unsigned char *tls_mask;
6749
6750 tls_mask = NULL;
6751 lgot_ents = elf_local_got_ents (ibfd);
6752 if (lgot_ents != NULL)
6753 {
6754 struct plt_entry **local_plt = (struct plt_entry **)
6755 (lgot_ents + symtab_hdr->sh_info);
6756 unsigned char *lgot_masks = (unsigned char *)
6757 (local_plt + symtab_hdr->sh_info);
6758 tls_mask = &lgot_masks[r_symndx];
6759 }
6760 *tls_maskp = tls_mask;
6761 }
6762 }
6763 return TRUE;
6764 }
6765
6766 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6767 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6768 type suitable for optimization, and 1 otherwise. */
6769
6770 static int
6771 get_tls_mask (unsigned char **tls_maskp,
6772 unsigned long *toc_symndx,
6773 bfd_vma *toc_addend,
6774 Elf_Internal_Sym **locsymsp,
6775 const Elf_Internal_Rela *rel,
6776 bfd *ibfd)
6777 {
6778 unsigned long r_symndx;
6779 int next_r;
6780 struct elf_link_hash_entry *h;
6781 Elf_Internal_Sym *sym;
6782 asection *sec;
6783 bfd_vma off;
6784
6785 r_symndx = ELF64_R_SYM (rel->r_info);
6786 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6787 return 0;
6788
6789 if ((*tls_maskp != NULL && **tls_maskp != 0)
6790 || sec == NULL
6791 || ppc64_elf_section_data (sec) == NULL
6792 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6793 return 1;
6794
6795 /* Look inside a TOC section too. */
6796 if (h != NULL)
6797 {
6798 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6799 off = h->root.u.def.value;
6800 }
6801 else
6802 off = sym->st_value;
6803 off += rel->r_addend;
6804 BFD_ASSERT (off % 8 == 0);
6805 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6806 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6807 if (toc_symndx != NULL)
6808 *toc_symndx = r_symndx;
6809 if (toc_addend != NULL)
6810 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6811 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6812 return 0;
6813 if ((h == NULL || is_static_defined (h))
6814 && (next_r == -1 || next_r == -2))
6815 return 1 - next_r;
6816 return 1;
6817 }
6818
6819 /* Find (or create) an entry in the tocsave hash table. */
6820
6821 static struct tocsave_entry *
6822 tocsave_find (struct ppc_link_hash_table *htab,
6823 enum insert_option insert,
6824 Elf_Internal_Sym **local_syms,
6825 const Elf_Internal_Rela *irela,
6826 bfd *ibfd)
6827 {
6828 unsigned long r_indx;
6829 struct elf_link_hash_entry *h;
6830 Elf_Internal_Sym *sym;
6831 struct tocsave_entry ent, *p;
6832 hashval_t hash;
6833 struct tocsave_entry **slot;
6834
6835 r_indx = ELF64_R_SYM (irela->r_info);
6836 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6837 return NULL;
6838 if (ent.sec == NULL || ent.sec->output_section == NULL)
6839 {
6840 (*_bfd_error_handler)
6841 (_("%B: undefined symbol on R_PPC64_TOCSAVE relocation"));
6842 return NULL;
6843 }
6844
6845 if (h != NULL)
6846 ent.offset = h->root.u.def.value;
6847 else
6848 ent.offset = sym->st_value;
6849 ent.offset += irela->r_addend;
6850
6851 hash = tocsave_htab_hash (&ent);
6852 slot = ((struct tocsave_entry **)
6853 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6854 if (slot == NULL)
6855 return NULL;
6856
6857 if (*slot == NULL)
6858 {
6859 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6860 if (p == NULL)
6861 return NULL;
6862 *p = ent;
6863 *slot = p;
6864 }
6865 return *slot;
6866 }
6867
6868 /* Adjust all global syms defined in opd sections. In gcc generated
6869 code for the old ABI, these will already have been done. */
6870
6871 static bfd_boolean
6872 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6873 {
6874 struct ppc_link_hash_entry *eh;
6875 asection *sym_sec;
6876 struct _opd_sec_data *opd;
6877
6878 if (h->root.type == bfd_link_hash_indirect)
6879 return TRUE;
6880
6881 if (h->root.type != bfd_link_hash_defined
6882 && h->root.type != bfd_link_hash_defweak)
6883 return TRUE;
6884
6885 eh = (struct ppc_link_hash_entry *) h;
6886 if (eh->adjust_done)
6887 return TRUE;
6888
6889 sym_sec = eh->elf.root.u.def.section;
6890 opd = get_opd_info (sym_sec);
6891 if (opd != NULL && opd->adjust != NULL)
6892 {
6893 long adjust = opd->adjust[eh->elf.root.u.def.value / 8];
6894 if (adjust == -1)
6895 {
6896 /* This entry has been deleted. */
6897 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6898 if (dsec == NULL)
6899 {
6900 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6901 if (elf_discarded_section (dsec))
6902 {
6903 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6904 break;
6905 }
6906 }
6907 eh->elf.root.u.def.value = 0;
6908 eh->elf.root.u.def.section = dsec;
6909 }
6910 else
6911 eh->elf.root.u.def.value += adjust;
6912 eh->adjust_done = 1;
6913 }
6914 return TRUE;
6915 }
6916
6917 /* Handles decrementing dynamic reloc counts for the reloc specified by
6918 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM_SEC
6919 have already been determined. */
6920
6921 static bfd_boolean
6922 dec_dynrel_count (bfd_vma r_info,
6923 asection *sec,
6924 struct bfd_link_info *info,
6925 Elf_Internal_Sym **local_syms,
6926 struct elf_link_hash_entry *h,
6927 asection *sym_sec)
6928 {
6929 enum elf_ppc64_reloc_type r_type;
6930 struct elf_dyn_relocs *p;
6931 struct elf_dyn_relocs **pp;
6932
6933 /* Can this reloc be dynamic? This switch, and later tests here
6934 should be kept in sync with the code in check_relocs. */
6935 r_type = ELF64_R_TYPE (r_info);
6936 switch (r_type)
6937 {
6938 default:
6939 return TRUE;
6940
6941 case R_PPC64_TPREL16:
6942 case R_PPC64_TPREL16_LO:
6943 case R_PPC64_TPREL16_HI:
6944 case R_PPC64_TPREL16_HA:
6945 case R_PPC64_TPREL16_DS:
6946 case R_PPC64_TPREL16_LO_DS:
6947 case R_PPC64_TPREL16_HIGHER:
6948 case R_PPC64_TPREL16_HIGHERA:
6949 case R_PPC64_TPREL16_HIGHEST:
6950 case R_PPC64_TPREL16_HIGHESTA:
6951 if (!info->shared)
6952 return TRUE;
6953
6954 case R_PPC64_TPREL64:
6955 case R_PPC64_DTPMOD64:
6956 case R_PPC64_DTPREL64:
6957 case R_PPC64_ADDR64:
6958 case R_PPC64_REL30:
6959 case R_PPC64_REL32:
6960 case R_PPC64_REL64:
6961 case R_PPC64_ADDR14:
6962 case R_PPC64_ADDR14_BRNTAKEN:
6963 case R_PPC64_ADDR14_BRTAKEN:
6964 case R_PPC64_ADDR16:
6965 case R_PPC64_ADDR16_DS:
6966 case R_PPC64_ADDR16_HA:
6967 case R_PPC64_ADDR16_HI:
6968 case R_PPC64_ADDR16_HIGHER:
6969 case R_PPC64_ADDR16_HIGHERA:
6970 case R_PPC64_ADDR16_HIGHEST:
6971 case R_PPC64_ADDR16_HIGHESTA:
6972 case R_PPC64_ADDR16_LO:
6973 case R_PPC64_ADDR16_LO_DS:
6974 case R_PPC64_ADDR24:
6975 case R_PPC64_ADDR32:
6976 case R_PPC64_UADDR16:
6977 case R_PPC64_UADDR32:
6978 case R_PPC64_UADDR64:
6979 case R_PPC64_TOC:
6980 break;
6981 }
6982
6983 if (local_syms != NULL)
6984 {
6985 unsigned long r_symndx;
6986 Elf_Internal_Sym *sym;
6987 bfd *ibfd = sec->owner;
6988
6989 r_symndx = ELF64_R_SYM (r_info);
6990 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6991 return FALSE;
6992 }
6993
6994 if ((info->shared
6995 && (must_be_dyn_reloc (info, r_type)
6996 || (h != NULL
6997 && (!info->symbolic
6998 || h->root.type == bfd_link_hash_defweak
6999 || !h->def_regular))))
7000 || (ELIMINATE_COPY_RELOCS
7001 && !info->shared
7002 && h != NULL
7003 && (h->root.type == bfd_link_hash_defweak
7004 || !h->def_regular)))
7005 ;
7006 else
7007 return TRUE;
7008
7009 if (h != NULL)
7010 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
7011 else
7012 {
7013 if (sym_sec != NULL)
7014 {
7015 void *vpp = &elf_section_data (sym_sec)->local_dynrel;
7016 pp = (struct elf_dyn_relocs **) vpp;
7017 }
7018 else
7019 {
7020 void *vpp = &elf_section_data (sec)->local_dynrel;
7021 pp = (struct elf_dyn_relocs **) vpp;
7022 }
7023
7024 /* elf_gc_sweep may have already removed all dyn relocs associated
7025 with local syms for a given section. Don't report a dynreloc
7026 miscount. */
7027 if (*pp == NULL)
7028 return TRUE;
7029 }
7030
7031 while ((p = *pp) != NULL)
7032 {
7033 if (p->sec == sec)
7034 {
7035 if (!must_be_dyn_reloc (info, r_type))
7036 p->pc_count -= 1;
7037 p->count -= 1;
7038 if (p->count == 0)
7039 *pp = p->next;
7040 return TRUE;
7041 }
7042 pp = &p->next;
7043 }
7044
7045 info->callbacks->einfo (_("%P: dynreloc miscount for %B, section %A\n"),
7046 sec->owner, sec);
7047 bfd_set_error (bfd_error_bad_value);
7048 return FALSE;
7049 }
7050
7051 /* Remove unused Official Procedure Descriptor entries. Currently we
7052 only remove those associated with functions in discarded link-once
7053 sections, or weakly defined functions that have been overridden. It
7054 would be possible to remove many more entries for statically linked
7055 applications. */
7056
7057 bfd_boolean
7058 ppc64_elf_edit_opd (struct bfd_link_info *info, bfd_boolean non_overlapping)
7059 {
7060 bfd *ibfd;
7061 bfd_boolean some_edited = FALSE;
7062 asection *need_pad = NULL;
7063
7064 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7065 {
7066 asection *sec;
7067 Elf_Internal_Rela *relstart, *rel, *relend;
7068 Elf_Internal_Shdr *symtab_hdr;
7069 Elf_Internal_Sym *local_syms;
7070 bfd_vma offset;
7071 struct _opd_sec_data *opd;
7072 bfd_boolean need_edit, add_aux_fields;
7073 bfd_size_type cnt_16b = 0;
7074
7075 if (!is_ppc64_elf (ibfd))
7076 continue;
7077
7078 sec = bfd_get_section_by_name (ibfd, ".opd");
7079 if (sec == NULL || sec->size == 0)
7080 continue;
7081
7082 if (sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
7083 continue;
7084
7085 if (sec->output_section == bfd_abs_section_ptr)
7086 continue;
7087
7088 /* Look through the section relocs. */
7089 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7090 continue;
7091
7092 local_syms = NULL;
7093 symtab_hdr = &elf_symtab_hdr (ibfd);
7094
7095 /* Read the relocations. */
7096 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7097 info->keep_memory);
7098 if (relstart == NULL)
7099 return FALSE;
7100
7101 /* First run through the relocs to check they are sane, and to
7102 determine whether we need to edit this opd section. */
7103 need_edit = FALSE;
7104 need_pad = sec;
7105 offset = 0;
7106 relend = relstart + sec->reloc_count;
7107 for (rel = relstart; rel < relend; )
7108 {
7109 enum elf_ppc64_reloc_type r_type;
7110 unsigned long r_symndx;
7111 asection *sym_sec;
7112 struct elf_link_hash_entry *h;
7113 Elf_Internal_Sym *sym;
7114
7115 /* .opd contains a regular array of 16 or 24 byte entries. We're
7116 only interested in the reloc pointing to a function entry
7117 point. */
7118 if (rel->r_offset != offset
7119 || rel + 1 >= relend
7120 || (rel + 1)->r_offset != offset + 8)
7121 {
7122 /* If someone messes with .opd alignment then after a
7123 "ld -r" we might have padding in the middle of .opd.
7124 Also, there's nothing to prevent someone putting
7125 something silly in .opd with the assembler. No .opd
7126 optimization for them! */
7127 broken_opd:
7128 (*_bfd_error_handler)
7129 (_("%B: .opd is not a regular array of opd entries"), ibfd);
7130 need_edit = FALSE;
7131 break;
7132 }
7133
7134 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7135 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7136 {
7137 (*_bfd_error_handler)
7138 (_("%B: unexpected reloc type %u in .opd section"),
7139 ibfd, r_type);
7140 need_edit = FALSE;
7141 break;
7142 }
7143
7144 r_symndx = ELF64_R_SYM (rel->r_info);
7145 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7146 r_symndx, ibfd))
7147 goto error_ret;
7148
7149 if (sym_sec == NULL || sym_sec->owner == NULL)
7150 {
7151 const char *sym_name;
7152 if (h != NULL)
7153 sym_name = h->root.root.string;
7154 else
7155 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7156 sym_sec);
7157
7158 (*_bfd_error_handler)
7159 (_("%B: undefined sym `%s' in .opd section"),
7160 ibfd, sym_name);
7161 need_edit = FALSE;
7162 break;
7163 }
7164
7165 /* opd entries are always for functions defined in the
7166 current input bfd. If the symbol isn't defined in the
7167 input bfd, then we won't be using the function in this
7168 bfd; It must be defined in a linkonce section in another
7169 bfd, or is weak. It's also possible that we are
7170 discarding the function due to a linker script /DISCARD/,
7171 which we test for via the output_section. */
7172 if (sym_sec->owner != ibfd
7173 || sym_sec->output_section == bfd_abs_section_ptr)
7174 need_edit = TRUE;
7175
7176 rel += 2;
7177 if (rel == relend
7178 || (rel + 1 == relend && rel->r_offset == offset + 16))
7179 {
7180 if (sec->size == offset + 24)
7181 {
7182 need_pad = NULL;
7183 break;
7184 }
7185 if (rel == relend && sec->size == offset + 16)
7186 {
7187 cnt_16b++;
7188 break;
7189 }
7190 goto broken_opd;
7191 }
7192
7193 if (rel->r_offset == offset + 24)
7194 offset += 24;
7195 else if (rel->r_offset != offset + 16)
7196 goto broken_opd;
7197 else if (rel + 1 < relend
7198 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7199 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7200 {
7201 offset += 16;
7202 cnt_16b++;
7203 }
7204 else if (rel + 2 < relend
7205 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_ADDR64
7206 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC)
7207 {
7208 offset += 24;
7209 rel += 1;
7210 }
7211 else
7212 goto broken_opd;
7213 }
7214
7215 add_aux_fields = non_overlapping && cnt_16b > 0;
7216
7217 if (need_edit || add_aux_fields)
7218 {
7219 Elf_Internal_Rela *write_rel;
7220 Elf_Internal_Shdr *rel_hdr;
7221 bfd_byte *rptr, *wptr;
7222 bfd_byte *new_contents;
7223 bfd_boolean skip;
7224 long opd_ent_size;
7225 bfd_size_type amt;
7226
7227 new_contents = NULL;
7228 amt = sec->size * sizeof (long) / 8;
7229 opd = &ppc64_elf_section_data (sec)->u.opd;
7230 opd->adjust = bfd_zalloc (sec->owner, amt);
7231 if (opd->adjust == NULL)
7232 return FALSE;
7233 ppc64_elf_section_data (sec)->sec_type = sec_opd;
7234
7235 /* This seems a waste of time as input .opd sections are all
7236 zeros as generated by gcc, but I suppose there's no reason
7237 this will always be so. We might start putting something in
7238 the third word of .opd entries. */
7239 if ((sec->flags & SEC_IN_MEMORY) == 0)
7240 {
7241 bfd_byte *loc;
7242 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7243 {
7244 if (loc != NULL)
7245 free (loc);
7246 error_ret:
7247 if (local_syms != NULL
7248 && symtab_hdr->contents != (unsigned char *) local_syms)
7249 free (local_syms);
7250 if (elf_section_data (sec)->relocs != relstart)
7251 free (relstart);
7252 return FALSE;
7253 }
7254 sec->contents = loc;
7255 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7256 }
7257
7258 elf_section_data (sec)->relocs = relstart;
7259
7260 new_contents = sec->contents;
7261 if (add_aux_fields)
7262 {
7263 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7264 if (new_contents == NULL)
7265 return FALSE;
7266 need_pad = FALSE;
7267 }
7268 wptr = new_contents;
7269 rptr = sec->contents;
7270
7271 write_rel = relstart;
7272 skip = FALSE;
7273 offset = 0;
7274 opd_ent_size = 0;
7275 for (rel = relstart; rel < relend; rel++)
7276 {
7277 unsigned long r_symndx;
7278 asection *sym_sec;
7279 struct elf_link_hash_entry *h;
7280 Elf_Internal_Sym *sym;
7281
7282 r_symndx = ELF64_R_SYM (rel->r_info);
7283 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7284 r_symndx, ibfd))
7285 goto error_ret;
7286
7287 if (rel->r_offset == offset)
7288 {
7289 struct ppc_link_hash_entry *fdh = NULL;
7290
7291 /* See if the .opd entry is full 24 byte or
7292 16 byte (with fd_aux entry overlapped with next
7293 fd_func). */
7294 opd_ent_size = 24;
7295 if ((rel + 2 == relend && sec->size == offset + 16)
7296 || (rel + 3 < relend
7297 && rel[2].r_offset == offset + 16
7298 && rel[3].r_offset == offset + 24
7299 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_ADDR64
7300 && ELF64_R_TYPE (rel[3].r_info) == R_PPC64_TOC))
7301 opd_ent_size = 16;
7302
7303 if (h != NULL
7304 && h->root.root.string[0] == '.')
7305 {
7306 struct ppc_link_hash_table *htab;
7307
7308 htab = ppc_hash_table (info);
7309 if (htab != NULL)
7310 fdh = lookup_fdh ((struct ppc_link_hash_entry *) h,
7311 htab);
7312 if (fdh != NULL
7313 && fdh->elf.root.type != bfd_link_hash_defined
7314 && fdh->elf.root.type != bfd_link_hash_defweak)
7315 fdh = NULL;
7316 }
7317
7318 skip = (sym_sec->owner != ibfd
7319 || sym_sec->output_section == bfd_abs_section_ptr);
7320 if (skip)
7321 {
7322 if (fdh != NULL && sym_sec->owner == ibfd)
7323 {
7324 /* Arrange for the function descriptor sym
7325 to be dropped. */
7326 fdh->elf.root.u.def.value = 0;
7327 fdh->elf.root.u.def.section = sym_sec;
7328 }
7329 opd->adjust[rel->r_offset / 8] = -1;
7330 }
7331 else
7332 {
7333 /* We'll be keeping this opd entry. */
7334
7335 if (fdh != NULL)
7336 {
7337 /* Redefine the function descriptor symbol to
7338 this location in the opd section. It is
7339 necessary to update the value here rather
7340 than using an array of adjustments as we do
7341 for local symbols, because various places
7342 in the generic ELF code use the value
7343 stored in u.def.value. */
7344 fdh->elf.root.u.def.value = wptr - new_contents;
7345 fdh->adjust_done = 1;
7346 }
7347
7348 /* Local syms are a bit tricky. We could
7349 tweak them as they can be cached, but
7350 we'd need to look through the local syms
7351 for the function descriptor sym which we
7352 don't have at the moment. So keep an
7353 array of adjustments. */
7354 opd->adjust[rel->r_offset / 8]
7355 = (wptr - new_contents) - (rptr - sec->contents);
7356
7357 if (wptr != rptr)
7358 memcpy (wptr, rptr, opd_ent_size);
7359 wptr += opd_ent_size;
7360 if (add_aux_fields && opd_ent_size == 16)
7361 {
7362 memset (wptr, '\0', 8);
7363 wptr += 8;
7364 }
7365 }
7366 rptr += opd_ent_size;
7367 offset += opd_ent_size;
7368 }
7369
7370 if (skip)
7371 {
7372 if (!NO_OPD_RELOCS
7373 && !info->relocatable
7374 && !dec_dynrel_count (rel->r_info, sec, info,
7375 NULL, h, sym_sec))
7376 goto error_ret;
7377 }
7378 else
7379 {
7380 /* We need to adjust any reloc offsets to point to the
7381 new opd entries. While we're at it, we may as well
7382 remove redundant relocs. */
7383 rel->r_offset += opd->adjust[(offset - opd_ent_size) / 8];
7384 if (write_rel != rel)
7385 memcpy (write_rel, rel, sizeof (*rel));
7386 ++write_rel;
7387 }
7388 }
7389
7390 sec->size = wptr - new_contents;
7391 sec->reloc_count = write_rel - relstart;
7392 if (add_aux_fields)
7393 {
7394 free (sec->contents);
7395 sec->contents = new_contents;
7396 }
7397
7398 /* Fudge the header size too, as this is used later in
7399 elf_bfd_final_link if we are emitting relocs. */
7400 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7401 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7402 some_edited = TRUE;
7403 }
7404 else if (elf_section_data (sec)->relocs != relstart)
7405 free (relstart);
7406
7407 if (local_syms != NULL
7408 && symtab_hdr->contents != (unsigned char *) local_syms)
7409 {
7410 if (!info->keep_memory)
7411 free (local_syms);
7412 else
7413 symtab_hdr->contents = (unsigned char *) local_syms;
7414 }
7415 }
7416
7417 if (some_edited)
7418 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7419
7420 /* If we are doing a final link and the last .opd entry is just 16 byte
7421 long, add a 8 byte padding after it. */
7422 if (need_pad != NULL && !info->relocatable)
7423 {
7424 bfd_byte *p;
7425
7426 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7427 {
7428 BFD_ASSERT (need_pad->size > 0);
7429
7430 p = bfd_malloc (need_pad->size + 8);
7431 if (p == NULL)
7432 return FALSE;
7433
7434 if (! bfd_get_section_contents (need_pad->owner, need_pad,
7435 p, 0, need_pad->size))
7436 return FALSE;
7437
7438 need_pad->contents = p;
7439 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7440 }
7441 else
7442 {
7443 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7444 if (p == NULL)
7445 return FALSE;
7446
7447 need_pad->contents = p;
7448 }
7449
7450 memset (need_pad->contents + need_pad->size, 0, 8);
7451 need_pad->size += 8;
7452 }
7453
7454 return TRUE;
7455 }
7456
7457 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7458
7459 asection *
7460 ppc64_elf_tls_setup (struct bfd_link_info *info,
7461 int no_tls_get_addr_opt,
7462 int *no_multi_toc)
7463 {
7464 struct ppc_link_hash_table *htab;
7465
7466 htab = ppc_hash_table (info);
7467 if (htab == NULL)
7468 return NULL;
7469
7470 if (*no_multi_toc)
7471 htab->do_multi_toc = 0;
7472 else if (!htab->do_multi_toc)
7473 *no_multi_toc = 1;
7474
7475 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7476 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7477 FALSE, FALSE, TRUE));
7478 /* Move dynamic linking info to the function descriptor sym. */
7479 if (htab->tls_get_addr != NULL)
7480 func_desc_adjust (&htab->tls_get_addr->elf, info);
7481 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7482 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7483 FALSE, FALSE, TRUE));
7484 if (!no_tls_get_addr_opt)
7485 {
7486 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7487
7488 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7489 FALSE, FALSE, TRUE);
7490 if (opt != NULL)
7491 func_desc_adjust (opt, info);
7492 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7493 FALSE, FALSE, TRUE);
7494 if (opt_fd != NULL
7495 && (opt_fd->root.type == bfd_link_hash_defined
7496 || opt_fd->root.type == bfd_link_hash_defweak))
7497 {
7498 /* If glibc supports an optimized __tls_get_addr call stub,
7499 signalled by the presence of __tls_get_addr_opt, and we'll
7500 be calling __tls_get_addr via a plt call stub, then
7501 make __tls_get_addr point to __tls_get_addr_opt. */
7502 tga_fd = &htab->tls_get_addr_fd->elf;
7503 if (htab->elf.dynamic_sections_created
7504 && tga_fd != NULL
7505 && (tga_fd->type == STT_FUNC
7506 || tga_fd->needs_plt)
7507 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7508 || (ELF_ST_VISIBILITY (tga_fd->other) != STV_DEFAULT
7509 && tga_fd->root.type == bfd_link_hash_undefweak)))
7510 {
7511 struct plt_entry *ent;
7512
7513 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7514 if (ent->plt.refcount > 0)
7515 break;
7516 if (ent != NULL)
7517 {
7518 tga_fd->root.type = bfd_link_hash_indirect;
7519 tga_fd->root.u.i.link = &opt_fd->root;
7520 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7521 if (opt_fd->dynindx != -1)
7522 {
7523 /* Use __tls_get_addr_opt in dynamic relocations. */
7524 opt_fd->dynindx = -1;
7525 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7526 opt_fd->dynstr_index);
7527 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7528 return NULL;
7529 }
7530 htab->tls_get_addr_fd = (struct ppc_link_hash_entry *) opt_fd;
7531 tga = &htab->tls_get_addr->elf;
7532 if (opt != NULL && tga != NULL)
7533 {
7534 tga->root.type = bfd_link_hash_indirect;
7535 tga->root.u.i.link = &opt->root;
7536 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7537 _bfd_elf_link_hash_hide_symbol (info, opt,
7538 tga->forced_local);
7539 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7540 }
7541 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7542 htab->tls_get_addr_fd->is_func_descriptor = 1;
7543 if (htab->tls_get_addr != NULL)
7544 {
7545 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7546 htab->tls_get_addr->is_func = 1;
7547 }
7548 }
7549 }
7550 }
7551 else
7552 no_tls_get_addr_opt = TRUE;
7553 }
7554 htab->no_tls_get_addr_opt = no_tls_get_addr_opt;
7555 return _bfd_elf_tls_setup (info->output_bfd, info);
7556 }
7557
7558 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7559 HASH1 or HASH2. */
7560
7561 static bfd_boolean
7562 branch_reloc_hash_match (const bfd *ibfd,
7563 const Elf_Internal_Rela *rel,
7564 const struct ppc_link_hash_entry *hash1,
7565 const struct ppc_link_hash_entry *hash2)
7566 {
7567 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7568 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7569 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7570
7571 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7572 {
7573 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7574 struct elf_link_hash_entry *h;
7575
7576 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7577 h = elf_follow_link (h);
7578 if (h == &hash1->elf || h == &hash2->elf)
7579 return TRUE;
7580 }
7581 return FALSE;
7582 }
7583
7584 /* Run through all the TLS relocs looking for optimization
7585 opportunities. The linker has been hacked (see ppc64elf.em) to do
7586 a preliminary section layout so that we know the TLS segment
7587 offsets. We can't optimize earlier because some optimizations need
7588 to know the tp offset, and we need to optimize before allocating
7589 dynamic relocations. */
7590
7591 bfd_boolean
7592 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7593 {
7594 bfd *ibfd;
7595 asection *sec;
7596 struct ppc_link_hash_table *htab;
7597 unsigned char *toc_ref;
7598 int pass;
7599
7600 if (info->relocatable || !info->executable)
7601 return TRUE;
7602
7603 htab = ppc_hash_table (info);
7604 if (htab == NULL)
7605 return FALSE;
7606
7607 /* Make two passes over the relocs. On the first pass, mark toc
7608 entries involved with tls relocs, and check that tls relocs
7609 involved in setting up a tls_get_addr call are indeed followed by
7610 such a call. If they are not, we can't do any tls optimization.
7611 On the second pass twiddle tls_mask flags to notify
7612 relocate_section that optimization can be done, and adjust got
7613 and plt refcounts. */
7614 toc_ref = NULL;
7615 for (pass = 0; pass < 2; ++pass)
7616 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
7617 {
7618 Elf_Internal_Sym *locsyms = NULL;
7619 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7620
7621 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7622 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7623 {
7624 Elf_Internal_Rela *relstart, *rel, *relend;
7625 bfd_boolean found_tls_get_addr_arg = 0;
7626
7627 /* Read the relocations. */
7628 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7629 info->keep_memory);
7630 if (relstart == NULL)
7631 return FALSE;
7632
7633 relend = relstart + sec->reloc_count;
7634 for (rel = relstart; rel < relend; rel++)
7635 {
7636 enum elf_ppc64_reloc_type r_type;
7637 unsigned long r_symndx;
7638 struct elf_link_hash_entry *h;
7639 Elf_Internal_Sym *sym;
7640 asection *sym_sec;
7641 unsigned char *tls_mask;
7642 unsigned char tls_set, tls_clear, tls_type = 0;
7643 bfd_vma value;
7644 bfd_boolean ok_tprel, is_local;
7645 long toc_ref_index = 0;
7646 int expecting_tls_get_addr = 0;
7647 bfd_boolean ret = FALSE;
7648
7649 r_symndx = ELF64_R_SYM (rel->r_info);
7650 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7651 r_symndx, ibfd))
7652 {
7653 err_free_rel:
7654 if (elf_section_data (sec)->relocs != relstart)
7655 free (relstart);
7656 if (toc_ref != NULL)
7657 free (toc_ref);
7658 if (locsyms != NULL
7659 && (elf_symtab_hdr (ibfd).contents
7660 != (unsigned char *) locsyms))
7661 free (locsyms);
7662 return ret;
7663 }
7664
7665 if (h != NULL)
7666 {
7667 if (h->root.type == bfd_link_hash_defined
7668 || h->root.type == bfd_link_hash_defweak)
7669 value = h->root.u.def.value;
7670 else if (h->root.type == bfd_link_hash_undefweak)
7671 value = 0;
7672 else
7673 {
7674 found_tls_get_addr_arg = 0;
7675 continue;
7676 }
7677 }
7678 else
7679 /* Symbols referenced by TLS relocs must be of type
7680 STT_TLS. So no need for .opd local sym adjust. */
7681 value = sym->st_value;
7682
7683 ok_tprel = FALSE;
7684 is_local = FALSE;
7685 if (h == NULL
7686 || !h->def_dynamic)
7687 {
7688 is_local = TRUE;
7689 if (h != NULL
7690 && h->root.type == bfd_link_hash_undefweak)
7691 ok_tprel = TRUE;
7692 else
7693 {
7694 value += sym_sec->output_offset;
7695 value += sym_sec->output_section->vma;
7696 value -= htab->elf.tls_sec->vma;
7697 ok_tprel = (value + TP_OFFSET + ((bfd_vma) 1 << 31)
7698 < (bfd_vma) 1 << 32);
7699 }
7700 }
7701
7702 r_type = ELF64_R_TYPE (rel->r_info);
7703 /* If this section has old-style __tls_get_addr calls
7704 without marker relocs, then check that each
7705 __tls_get_addr call reloc is preceded by a reloc
7706 that conceivably belongs to the __tls_get_addr arg
7707 setup insn. If we don't find matching arg setup
7708 relocs, don't do any tls optimization. */
7709 if (pass == 0
7710 && sec->has_tls_get_addr_call
7711 && h != NULL
7712 && (h == &htab->tls_get_addr->elf
7713 || h == &htab->tls_get_addr_fd->elf)
7714 && !found_tls_get_addr_arg
7715 && is_branch_reloc (r_type))
7716 {
7717 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7718 "TLS optimization disabled\n"),
7719 ibfd, sec, rel->r_offset);
7720 ret = TRUE;
7721 goto err_free_rel;
7722 }
7723
7724 found_tls_get_addr_arg = 0;
7725 switch (r_type)
7726 {
7727 case R_PPC64_GOT_TLSLD16:
7728 case R_PPC64_GOT_TLSLD16_LO:
7729 expecting_tls_get_addr = 1;
7730 found_tls_get_addr_arg = 1;
7731 /* Fall thru */
7732
7733 case R_PPC64_GOT_TLSLD16_HI:
7734 case R_PPC64_GOT_TLSLD16_HA:
7735 /* These relocs should never be against a symbol
7736 defined in a shared lib. Leave them alone if
7737 that turns out to be the case. */
7738 if (!is_local)
7739 continue;
7740
7741 /* LD -> LE */
7742 tls_set = 0;
7743 tls_clear = TLS_LD;
7744 tls_type = TLS_TLS | TLS_LD;
7745 break;
7746
7747 case R_PPC64_GOT_TLSGD16:
7748 case R_PPC64_GOT_TLSGD16_LO:
7749 expecting_tls_get_addr = 1;
7750 found_tls_get_addr_arg = 1;
7751 /* Fall thru */
7752
7753 case R_PPC64_GOT_TLSGD16_HI:
7754 case R_PPC64_GOT_TLSGD16_HA:
7755 if (ok_tprel)
7756 /* GD -> LE */
7757 tls_set = 0;
7758 else
7759 /* GD -> IE */
7760 tls_set = TLS_TLS | TLS_TPRELGD;
7761 tls_clear = TLS_GD;
7762 tls_type = TLS_TLS | TLS_GD;
7763 break;
7764
7765 case R_PPC64_GOT_TPREL16_DS:
7766 case R_PPC64_GOT_TPREL16_LO_DS:
7767 case R_PPC64_GOT_TPREL16_HI:
7768 case R_PPC64_GOT_TPREL16_HA:
7769 if (ok_tprel)
7770 {
7771 /* IE -> LE */
7772 tls_set = 0;
7773 tls_clear = TLS_TPREL;
7774 tls_type = TLS_TLS | TLS_TPREL;
7775 break;
7776 }
7777 continue;
7778
7779 case R_PPC64_TLSGD:
7780 case R_PPC64_TLSLD:
7781 found_tls_get_addr_arg = 1;
7782 /* Fall thru */
7783
7784 case R_PPC64_TLS:
7785 case R_PPC64_TOC16:
7786 case R_PPC64_TOC16_LO:
7787 if (sym_sec == NULL || sym_sec != toc)
7788 continue;
7789
7790 /* Mark this toc entry as referenced by a TLS
7791 code sequence. We can do that now in the
7792 case of R_PPC64_TLS, and after checking for
7793 tls_get_addr for the TOC16 relocs. */
7794 if (toc_ref == NULL)
7795 toc_ref = bfd_zmalloc (toc->output_section->rawsize / 8);
7796 if (toc_ref == NULL)
7797 goto err_free_rel;
7798
7799 if (h != NULL)
7800 value = h->root.u.def.value;
7801 else
7802 value = sym->st_value;
7803 value += rel->r_addend;
7804 BFD_ASSERT (value < toc->size && value % 8 == 0);
7805 toc_ref_index = (value + toc->output_offset) / 8;
7806 if (r_type == R_PPC64_TLS
7807 || r_type == R_PPC64_TLSGD
7808 || r_type == R_PPC64_TLSLD)
7809 {
7810 toc_ref[toc_ref_index] = 1;
7811 continue;
7812 }
7813
7814 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7815 continue;
7816
7817 tls_set = 0;
7818 tls_clear = 0;
7819 expecting_tls_get_addr = 2;
7820 break;
7821
7822 case R_PPC64_TPREL64:
7823 if (pass == 0
7824 || sec != toc
7825 || toc_ref == NULL
7826 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7827 continue;
7828 if (ok_tprel)
7829 {
7830 /* IE -> LE */
7831 tls_set = TLS_EXPLICIT;
7832 tls_clear = TLS_TPREL;
7833 break;
7834 }
7835 continue;
7836
7837 case R_PPC64_DTPMOD64:
7838 if (pass == 0
7839 || sec != toc
7840 || toc_ref == NULL
7841 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7842 continue;
7843 if (rel + 1 < relend
7844 && (rel[1].r_info
7845 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7846 && rel[1].r_offset == rel->r_offset + 8)
7847 {
7848 if (ok_tprel)
7849 /* GD -> LE */
7850 tls_set = TLS_EXPLICIT | TLS_GD;
7851 else
7852 /* GD -> IE */
7853 tls_set = TLS_EXPLICIT | TLS_GD | TLS_TPRELGD;
7854 tls_clear = TLS_GD;
7855 }
7856 else
7857 {
7858 if (!is_local)
7859 continue;
7860
7861 /* LD -> LE */
7862 tls_set = TLS_EXPLICIT;
7863 tls_clear = TLS_LD;
7864 }
7865 break;
7866
7867 default:
7868 continue;
7869 }
7870
7871 if (pass == 0)
7872 {
7873 if (!expecting_tls_get_addr
7874 || !sec->has_tls_get_addr_call)
7875 continue;
7876
7877 if (rel + 1 < relend
7878 && branch_reloc_hash_match (ibfd, rel + 1,
7879 htab->tls_get_addr,
7880 htab->tls_get_addr_fd))
7881 {
7882 if (expecting_tls_get_addr == 2)
7883 {
7884 /* Check for toc tls entries. */
7885 unsigned char *toc_tls;
7886 int retval;
7887
7888 retval = get_tls_mask (&toc_tls, NULL, NULL,
7889 &locsyms,
7890 rel, ibfd);
7891 if (retval == 0)
7892 goto err_free_rel;
7893 if (toc_tls != NULL)
7894 {
7895 if ((*toc_tls & (TLS_GD | TLS_LD)) != 0)
7896 found_tls_get_addr_arg = 1;
7897 if (retval > 1)
7898 toc_ref[toc_ref_index] = 1;
7899 }
7900 }
7901 continue;
7902 }
7903
7904 if (expecting_tls_get_addr != 1)
7905 continue;
7906
7907 /* Uh oh, we didn't find the expected call. We
7908 could just mark this symbol to exclude it
7909 from tls optimization but it's safer to skip
7910 the entire optimization. */
7911 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
7912 "TLS optimization disabled\n"),
7913 ibfd, sec, rel->r_offset);
7914 ret = TRUE;
7915 goto err_free_rel;
7916 }
7917
7918 if (expecting_tls_get_addr && htab->tls_get_addr != NULL)
7919 {
7920 struct plt_entry *ent;
7921 for (ent = htab->tls_get_addr->elf.plt.plist;
7922 ent != NULL;
7923 ent = ent->next)
7924 if (ent->addend == 0)
7925 {
7926 if (ent->plt.refcount > 0)
7927 {
7928 ent->plt.refcount -= 1;
7929 expecting_tls_get_addr = 0;
7930 }
7931 break;
7932 }
7933 }
7934
7935 if (expecting_tls_get_addr && htab->tls_get_addr_fd != NULL)
7936 {
7937 struct plt_entry *ent;
7938 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
7939 ent != NULL;
7940 ent = ent->next)
7941 if (ent->addend == 0)
7942 {
7943 if (ent->plt.refcount > 0)
7944 ent->plt.refcount -= 1;
7945 break;
7946 }
7947 }
7948
7949 if (tls_clear == 0)
7950 continue;
7951
7952 if ((tls_set & TLS_EXPLICIT) == 0)
7953 {
7954 struct got_entry *ent;
7955
7956 /* Adjust got entry for this reloc. */
7957 if (h != NULL)
7958 ent = h->got.glist;
7959 else
7960 ent = elf_local_got_ents (ibfd)[r_symndx];
7961
7962 for (; ent != NULL; ent = ent->next)
7963 if (ent->addend == rel->r_addend
7964 && ent->owner == ibfd
7965 && ent->tls_type == tls_type)
7966 break;
7967 if (ent == NULL)
7968 abort ();
7969
7970 if (tls_set == 0)
7971 {
7972 /* We managed to get rid of a got entry. */
7973 if (ent->got.refcount > 0)
7974 ent->got.refcount -= 1;
7975 }
7976 }
7977 else
7978 {
7979 /* If we got rid of a DTPMOD/DTPREL reloc pair then
7980 we'll lose one or two dyn relocs. */
7981 if (!dec_dynrel_count (rel->r_info, sec, info,
7982 NULL, h, sym_sec))
7983 return FALSE;
7984
7985 if (tls_set == (TLS_EXPLICIT | TLS_GD))
7986 {
7987 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
7988 NULL, h, sym_sec))
7989 return FALSE;
7990 }
7991 }
7992
7993 *tls_mask |= tls_set;
7994 *tls_mask &= ~tls_clear;
7995 }
7996
7997 if (elf_section_data (sec)->relocs != relstart)
7998 free (relstart);
7999 }
8000
8001 if (locsyms != NULL
8002 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8003 {
8004 if (!info->keep_memory)
8005 free (locsyms);
8006 else
8007 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8008 }
8009 }
8010
8011 if (toc_ref != NULL)
8012 free (toc_ref);
8013 return TRUE;
8014 }
8015
8016 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8017 the values of any global symbols in a toc section that has been
8018 edited. Globals in toc sections should be a rarity, so this function
8019 sets a flag if any are found in toc sections other than the one just
8020 edited, so that futher hash table traversals can be avoided. */
8021
8022 struct adjust_toc_info
8023 {
8024 asection *toc;
8025 unsigned long *skip;
8026 bfd_boolean global_toc_syms;
8027 };
8028
8029 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8030
8031 static bfd_boolean
8032 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8033 {
8034 struct ppc_link_hash_entry *eh;
8035 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8036 unsigned long i;
8037
8038 if (h->root.type != bfd_link_hash_defined
8039 && h->root.type != bfd_link_hash_defweak)
8040 return TRUE;
8041
8042 eh = (struct ppc_link_hash_entry *) h;
8043 if (eh->adjust_done)
8044 return TRUE;
8045
8046 if (eh->elf.root.u.def.section == toc_inf->toc)
8047 {
8048 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8049 i = toc_inf->toc->rawsize >> 3;
8050 else
8051 i = eh->elf.root.u.def.value >> 3;
8052
8053 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8054 {
8055 (*_bfd_error_handler)
8056 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8057 do
8058 ++i;
8059 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8060 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8061 }
8062
8063 eh->elf.root.u.def.value -= toc_inf->skip[i];
8064 eh->adjust_done = 1;
8065 }
8066 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8067 toc_inf->global_toc_syms = TRUE;
8068
8069 return TRUE;
8070 }
8071
8072 /* Return TRUE iff INSN is one we expect on a _LO variety toc/got reloc. */
8073
8074 static bfd_boolean
8075 ok_lo_toc_insn (unsigned int insn)
8076 {
8077 return ((insn & (0x3f << 26)) == 14u << 26 /* addi */
8078 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8079 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8080 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8081 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8082 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8083 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8084 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8085 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8086 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8087 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8088 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8089 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8090 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8091 || ((insn & (0x3f << 26)) == 58u << 26 /* lwa,ld,lmd */
8092 && (insn & 3) != 1)
8093 || ((insn & (0x3f << 26)) == 62u << 26 /* std, stmd */
8094 && ((insn & 3) == 0 || (insn & 3) == 3))
8095 || (insn & (0x3f << 26)) == 12u << 26 /* addic */);
8096 }
8097
8098 /* Examine all relocs referencing .toc sections in order to remove
8099 unused .toc entries. */
8100
8101 bfd_boolean
8102 ppc64_elf_edit_toc (struct bfd_link_info *info)
8103 {
8104 bfd *ibfd;
8105 struct adjust_toc_info toc_inf;
8106 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8107
8108 htab->do_toc_opt = 1;
8109 toc_inf.global_toc_syms = TRUE;
8110 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8111 {
8112 asection *toc, *sec;
8113 Elf_Internal_Shdr *symtab_hdr;
8114 Elf_Internal_Sym *local_syms;
8115 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8116 unsigned long *skip, *drop;
8117 unsigned char *used;
8118 unsigned char *keep, last, some_unused;
8119
8120 if (!is_ppc64_elf (ibfd))
8121 continue;
8122
8123 toc = bfd_get_section_by_name (ibfd, ".toc");
8124 if (toc == NULL
8125 || toc->size == 0
8126 || toc->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
8127 || elf_discarded_section (toc))
8128 continue;
8129
8130 toc_relocs = NULL;
8131 local_syms = NULL;
8132 symtab_hdr = &elf_symtab_hdr (ibfd);
8133
8134 /* Look at sections dropped from the final link. */
8135 skip = NULL;
8136 relstart = NULL;
8137 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8138 {
8139 if (sec->reloc_count == 0
8140 || !elf_discarded_section (sec)
8141 || get_opd_info (sec)
8142 || (sec->flags & SEC_ALLOC) == 0
8143 || (sec->flags & SEC_DEBUGGING) != 0)
8144 continue;
8145
8146 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8147 if (relstart == NULL)
8148 goto error_ret;
8149
8150 /* Run through the relocs to see which toc entries might be
8151 unused. */
8152 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8153 {
8154 enum elf_ppc64_reloc_type r_type;
8155 unsigned long r_symndx;
8156 asection *sym_sec;
8157 struct elf_link_hash_entry *h;
8158 Elf_Internal_Sym *sym;
8159 bfd_vma val;
8160
8161 r_type = ELF64_R_TYPE (rel->r_info);
8162 switch (r_type)
8163 {
8164 default:
8165 continue;
8166
8167 case R_PPC64_TOC16:
8168 case R_PPC64_TOC16_LO:
8169 case R_PPC64_TOC16_HI:
8170 case R_PPC64_TOC16_HA:
8171 case R_PPC64_TOC16_DS:
8172 case R_PPC64_TOC16_LO_DS:
8173 break;
8174 }
8175
8176 r_symndx = ELF64_R_SYM (rel->r_info);
8177 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8178 r_symndx, ibfd))
8179 goto error_ret;
8180
8181 if (sym_sec != toc)
8182 continue;
8183
8184 if (h != NULL)
8185 val = h->root.u.def.value;
8186 else
8187 val = sym->st_value;
8188 val += rel->r_addend;
8189
8190 if (val >= toc->size)
8191 continue;
8192
8193 /* Anything in the toc ought to be aligned to 8 bytes.
8194 If not, don't mark as unused. */
8195 if (val & 7)
8196 continue;
8197
8198 if (skip == NULL)
8199 {
8200 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8201 if (skip == NULL)
8202 goto error_ret;
8203 }
8204
8205 skip[val >> 3] = ref_from_discarded;
8206 }
8207
8208 if (elf_section_data (sec)->relocs != relstart)
8209 free (relstart);
8210 }
8211
8212 /* For largetoc loads of address constants, we can convert
8213 . addis rx,2,addr@got@ha
8214 . ld ry,addr@got@l(rx)
8215 to
8216 . addis rx,2,addr@toc@ha
8217 . addi ry,rx,addr@toc@l
8218 when addr is within 2G of the toc pointer. This then means
8219 that the word storing "addr" in the toc is no longer needed. */
8220
8221 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8222 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8223 && toc->reloc_count != 0)
8224 {
8225 /* Read toc relocs. */
8226 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8227 info->keep_memory);
8228 if (toc_relocs == NULL)
8229 goto error_ret;
8230
8231 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8232 {
8233 enum elf_ppc64_reloc_type r_type;
8234 unsigned long r_symndx;
8235 asection *sym_sec;
8236 struct elf_link_hash_entry *h;
8237 Elf_Internal_Sym *sym;
8238 bfd_vma val, addr;
8239
8240 r_type = ELF64_R_TYPE (rel->r_info);
8241 if (r_type != R_PPC64_ADDR64)
8242 continue;
8243
8244 r_symndx = ELF64_R_SYM (rel->r_info);
8245 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8246 r_symndx, ibfd))
8247 goto error_ret;
8248
8249 if (sym_sec == NULL
8250 || elf_discarded_section (sym_sec))
8251 continue;
8252
8253 if (!SYMBOL_CALLS_LOCAL (info, h))
8254 continue;
8255
8256 if (h != NULL)
8257 {
8258 if (h->type == STT_GNU_IFUNC)
8259 continue;
8260 val = h->root.u.def.value;
8261 }
8262 else
8263 {
8264 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8265 continue;
8266 val = sym->st_value;
8267 }
8268 val += rel->r_addend;
8269 val += sym_sec->output_section->vma + sym_sec->output_offset;
8270
8271 /* We don't yet know the exact toc pointer value, but we
8272 know it will be somewhere in the toc section. Don't
8273 optimize if the difference from any possible toc
8274 pointer is outside [ff..f80008000, 7fff7fff]. */
8275 addr = toc->output_section->vma + TOC_BASE_OFF;
8276 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8277 continue;
8278
8279 addr = toc->output_section->vma + toc->output_section->rawsize;
8280 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8281 continue;
8282
8283 if (skip == NULL)
8284 {
8285 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8286 if (skip == NULL)
8287 goto error_ret;
8288 }
8289
8290 skip[rel->r_offset >> 3]
8291 |= can_optimize | ((rel - toc_relocs) << 2);
8292 }
8293 }
8294
8295 if (skip == NULL)
8296 continue;
8297
8298 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8299 if (used == NULL)
8300 {
8301 error_ret:
8302 if (local_syms != NULL
8303 && symtab_hdr->contents != (unsigned char *) local_syms)
8304 free (local_syms);
8305 if (sec != NULL
8306 && relstart != NULL
8307 && elf_section_data (sec)->relocs != relstart)
8308 free (relstart);
8309 if (toc_relocs != NULL
8310 && elf_section_data (toc)->relocs != toc_relocs)
8311 free (toc_relocs);
8312 if (skip != NULL)
8313 free (skip);
8314 return FALSE;
8315 }
8316
8317 /* Now check all kept sections that might reference the toc.
8318 Check the toc itself last. */
8319 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8320 : ibfd->sections);
8321 sec != NULL;
8322 sec = (sec == toc ? NULL
8323 : sec->next == NULL ? toc
8324 : sec->next == toc && toc->next ? toc->next
8325 : sec->next))
8326 {
8327 int repeat;
8328
8329 if (sec->reloc_count == 0
8330 || elf_discarded_section (sec)
8331 || get_opd_info (sec)
8332 || (sec->flags & SEC_ALLOC) == 0
8333 || (sec->flags & SEC_DEBUGGING) != 0)
8334 continue;
8335
8336 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8337 info->keep_memory);
8338 if (relstart == NULL)
8339 goto error_ret;
8340
8341 /* Mark toc entries referenced as used. */
8342 repeat = 0;
8343 do
8344 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8345 {
8346 enum elf_ppc64_reloc_type r_type;
8347 unsigned long r_symndx;
8348 asection *sym_sec;
8349 struct elf_link_hash_entry *h;
8350 Elf_Internal_Sym *sym;
8351 bfd_vma val;
8352 enum {no_check, check_lo, check_ha} insn_check;
8353
8354 r_type = ELF64_R_TYPE (rel->r_info);
8355 switch (r_type)
8356 {
8357 default:
8358 insn_check = no_check;
8359 break;
8360
8361 case R_PPC64_GOT_TLSLD16_HA:
8362 case R_PPC64_GOT_TLSGD16_HA:
8363 case R_PPC64_GOT_TPREL16_HA:
8364 case R_PPC64_GOT_DTPREL16_HA:
8365 case R_PPC64_GOT16_HA:
8366 case R_PPC64_TOC16_HA:
8367 insn_check = check_ha;
8368 break;
8369
8370 case R_PPC64_GOT_TLSLD16_LO:
8371 case R_PPC64_GOT_TLSGD16_LO:
8372 case R_PPC64_GOT_TPREL16_LO_DS:
8373 case R_PPC64_GOT_DTPREL16_LO_DS:
8374 case R_PPC64_GOT16_LO:
8375 case R_PPC64_GOT16_LO_DS:
8376 case R_PPC64_TOC16_LO:
8377 case R_PPC64_TOC16_LO_DS:
8378 insn_check = check_lo;
8379 break;
8380 }
8381
8382 if (insn_check != no_check)
8383 {
8384 bfd_vma off = rel->r_offset & ~3;
8385 unsigned char buf[4];
8386 unsigned int insn;
8387
8388 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
8389 {
8390 free (used);
8391 goto error_ret;
8392 }
8393 insn = bfd_get_32 (ibfd, buf);
8394 if (insn_check == check_lo
8395 ? !ok_lo_toc_insn (insn)
8396 : ((insn & ((0x3f << 26) | 0x1f << 16))
8397 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
8398 {
8399 char str[12];
8400
8401 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
8402 sprintf (str, "%#08x", insn);
8403 info->callbacks->einfo
8404 (_("%P: %H: toc optimization is not supported for"
8405 " %s instruction.\n"),
8406 ibfd, sec, rel->r_offset & ~3, str);
8407 }
8408 }
8409
8410 switch (r_type)
8411 {
8412 case R_PPC64_TOC16:
8413 case R_PPC64_TOC16_LO:
8414 case R_PPC64_TOC16_HI:
8415 case R_PPC64_TOC16_HA:
8416 case R_PPC64_TOC16_DS:
8417 case R_PPC64_TOC16_LO_DS:
8418 /* In case we're taking addresses of toc entries. */
8419 case R_PPC64_ADDR64:
8420 break;
8421
8422 default:
8423 continue;
8424 }
8425
8426 r_symndx = ELF64_R_SYM (rel->r_info);
8427 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8428 r_symndx, ibfd))
8429 {
8430 free (used);
8431 goto error_ret;
8432 }
8433
8434 if (sym_sec != toc)
8435 continue;
8436
8437 if (h != NULL)
8438 val = h->root.u.def.value;
8439 else
8440 val = sym->st_value;
8441 val += rel->r_addend;
8442
8443 if (val >= toc->size)
8444 continue;
8445
8446 if ((skip[val >> 3] & can_optimize) != 0)
8447 {
8448 bfd_vma off;
8449 unsigned char opc;
8450
8451 switch (r_type)
8452 {
8453 case R_PPC64_TOC16_HA:
8454 break;
8455
8456 case R_PPC64_TOC16_LO_DS:
8457 off = rel->r_offset + (bfd_big_endian (ibfd) ? -2 : 3);
8458 if (!bfd_get_section_contents (ibfd, sec, &opc, off, 1))
8459 {
8460 free (used);
8461 goto error_ret;
8462 }
8463 if ((opc & (0x3f << 2)) == (58u << 2))
8464 break;
8465 /* Fall thru */
8466
8467 default:
8468 /* Wrong sort of reloc, or not a ld. We may
8469 as well clear ref_from_discarded too. */
8470 skip[val >> 3] = 0;
8471 }
8472 }
8473
8474 /* For the toc section, we only mark as used if
8475 this entry itself isn't unused. */
8476 if (sec == toc
8477 && !used[val >> 3]
8478 && (used[rel->r_offset >> 3]
8479 || !(skip[rel->r_offset >> 3] & ref_from_discarded)))
8480 /* Do all the relocs again, to catch reference
8481 chains. */
8482 repeat = 1;
8483
8484 used[val >> 3] = 1;
8485 }
8486 while (repeat);
8487
8488 if (elf_section_data (sec)->relocs != relstart)
8489 free (relstart);
8490 }
8491
8492 /* Merge the used and skip arrays. Assume that TOC
8493 doublewords not appearing as either used or unused belong
8494 to to an entry more than one doubleword in size. */
8495 for (drop = skip, keep = used, last = 0, some_unused = 0;
8496 drop < skip + (toc->size + 7) / 8;
8497 ++drop, ++keep)
8498 {
8499 if (*keep)
8500 {
8501 *drop &= ~ref_from_discarded;
8502 if ((*drop & can_optimize) != 0)
8503 some_unused = 1;
8504 last = 0;
8505 }
8506 else if ((*drop & ref_from_discarded) != 0)
8507 {
8508 some_unused = 1;
8509 last = ref_from_discarded;
8510 }
8511 else
8512 *drop = last;
8513 }
8514
8515 free (used);
8516
8517 if (some_unused)
8518 {
8519 bfd_byte *contents, *src;
8520 unsigned long off;
8521 Elf_Internal_Sym *sym;
8522 bfd_boolean local_toc_syms = FALSE;
8523
8524 /* Shuffle the toc contents, and at the same time convert the
8525 skip array from booleans into offsets. */
8526 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8527 goto error_ret;
8528
8529 elf_section_data (toc)->this_hdr.contents = contents;
8530
8531 for (src = contents, off = 0, drop = skip;
8532 src < contents + toc->size;
8533 src += 8, ++drop)
8534 {
8535 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8536 off += 8;
8537 else if (off != 0)
8538 {
8539 *drop = off;
8540 memcpy (src - off, src, 8);
8541 }
8542 }
8543 *drop = off;
8544 toc->rawsize = toc->size;
8545 toc->size = src - contents - off;
8546
8547 /* Adjust addends for relocs against the toc section sym,
8548 and optimize any accesses we can. */
8549 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8550 {
8551 if (sec->reloc_count == 0
8552 || elf_discarded_section (sec))
8553 continue;
8554
8555 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8556 info->keep_memory);
8557 if (relstart == NULL)
8558 goto error_ret;
8559
8560 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8561 {
8562 enum elf_ppc64_reloc_type r_type;
8563 unsigned long r_symndx;
8564 asection *sym_sec;
8565 struct elf_link_hash_entry *h;
8566 bfd_vma val;
8567
8568 r_type = ELF64_R_TYPE (rel->r_info);
8569 switch (r_type)
8570 {
8571 default:
8572 continue;
8573
8574 case R_PPC64_TOC16:
8575 case R_PPC64_TOC16_LO:
8576 case R_PPC64_TOC16_HI:
8577 case R_PPC64_TOC16_HA:
8578 case R_PPC64_TOC16_DS:
8579 case R_PPC64_TOC16_LO_DS:
8580 case R_PPC64_ADDR64:
8581 break;
8582 }
8583
8584 r_symndx = ELF64_R_SYM (rel->r_info);
8585 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8586 r_symndx, ibfd))
8587 goto error_ret;
8588
8589 if (sym_sec != toc)
8590 continue;
8591
8592 if (h != NULL)
8593 val = h->root.u.def.value;
8594 else
8595 {
8596 val = sym->st_value;
8597 if (val != 0)
8598 local_toc_syms = TRUE;
8599 }
8600
8601 val += rel->r_addend;
8602
8603 if (val > toc->rawsize)
8604 val = toc->rawsize;
8605 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8606 continue;
8607 else if ((skip[val >> 3] & can_optimize) != 0)
8608 {
8609 Elf_Internal_Rela *tocrel
8610 = toc_relocs + (skip[val >> 3] >> 2);
8611 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8612
8613 switch (r_type)
8614 {
8615 case R_PPC64_TOC16_HA:
8616 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8617 break;
8618
8619 case R_PPC64_TOC16_LO_DS:
8620 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8621 break;
8622
8623 default:
8624 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8625 ppc_howto_init ();
8626 info->callbacks->einfo
8627 (_("%P: %H: %s relocation references "
8628 "optimized away TOC entry\n"),
8629 ibfd, sec, rel->r_offset,
8630 ppc64_elf_howto_table[r_type]->name);
8631 bfd_set_error (bfd_error_bad_value);
8632 goto error_ret;
8633 }
8634 rel->r_addend = tocrel->r_addend;
8635 elf_section_data (sec)->relocs = relstart;
8636 continue;
8637 }
8638
8639 if (h != NULL || sym->st_value != 0)
8640 continue;
8641
8642 rel->r_addend -= skip[val >> 3];
8643 elf_section_data (sec)->relocs = relstart;
8644 }
8645
8646 if (elf_section_data (sec)->relocs != relstart)
8647 free (relstart);
8648 }
8649
8650 /* We shouldn't have local or global symbols defined in the TOC,
8651 but handle them anyway. */
8652 if (local_syms != NULL)
8653 for (sym = local_syms;
8654 sym < local_syms + symtab_hdr->sh_info;
8655 ++sym)
8656 if (sym->st_value != 0
8657 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8658 {
8659 unsigned long i;
8660
8661 if (sym->st_value > toc->rawsize)
8662 i = toc->rawsize >> 3;
8663 else
8664 i = sym->st_value >> 3;
8665
8666 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8667 {
8668 if (local_toc_syms)
8669 (*_bfd_error_handler)
8670 (_("%s defined on removed toc entry"),
8671 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8672 do
8673 ++i;
8674 while ((skip[i] & (ref_from_discarded | can_optimize)));
8675 sym->st_value = (bfd_vma) i << 3;
8676 }
8677
8678 sym->st_value -= skip[i];
8679 symtab_hdr->contents = (unsigned char *) local_syms;
8680 }
8681
8682 /* Adjust any global syms defined in this toc input section. */
8683 if (toc_inf.global_toc_syms)
8684 {
8685 toc_inf.toc = toc;
8686 toc_inf.skip = skip;
8687 toc_inf.global_toc_syms = FALSE;
8688 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8689 &toc_inf);
8690 }
8691
8692 if (toc->reloc_count != 0)
8693 {
8694 Elf_Internal_Shdr *rel_hdr;
8695 Elf_Internal_Rela *wrel;
8696 bfd_size_type sz;
8697
8698 /* Remove unused toc relocs, and adjust those we keep. */
8699 if (toc_relocs == NULL)
8700 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8701 info->keep_memory);
8702 if (toc_relocs == NULL)
8703 goto error_ret;
8704
8705 wrel = toc_relocs;
8706 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8707 if ((skip[rel->r_offset >> 3]
8708 & (ref_from_discarded | can_optimize)) == 0)
8709 {
8710 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8711 wrel->r_info = rel->r_info;
8712 wrel->r_addend = rel->r_addend;
8713 ++wrel;
8714 }
8715 else if (!dec_dynrel_count (rel->r_info, toc, info,
8716 &local_syms, NULL, NULL))
8717 goto error_ret;
8718
8719 elf_section_data (toc)->relocs = toc_relocs;
8720 toc->reloc_count = wrel - toc_relocs;
8721 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8722 sz = rel_hdr->sh_entsize;
8723 rel_hdr->sh_size = toc->reloc_count * sz;
8724 }
8725 }
8726 else if (toc_relocs != NULL
8727 && elf_section_data (toc)->relocs != toc_relocs)
8728 free (toc_relocs);
8729
8730 if (local_syms != NULL
8731 && symtab_hdr->contents != (unsigned char *) local_syms)
8732 {
8733 if (!info->keep_memory)
8734 free (local_syms);
8735 else
8736 symtab_hdr->contents = (unsigned char *) local_syms;
8737 }
8738 free (skip);
8739 }
8740
8741 return TRUE;
8742 }
8743
8744 /* Return true iff input section I references the TOC using
8745 instructions limited to +/-32k offsets. */
8746
8747 bfd_boolean
8748 ppc64_elf_has_small_toc_reloc (asection *i)
8749 {
8750 return (is_ppc64_elf (i->owner)
8751 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
8752 }
8753
8754 /* Allocate space for one GOT entry. */
8755
8756 static void
8757 allocate_got (struct elf_link_hash_entry *h,
8758 struct bfd_link_info *info,
8759 struct got_entry *gent)
8760 {
8761 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8762 bfd_boolean dyn;
8763 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
8764 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
8765 ? 16 : 8);
8766 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
8767 ? 2 : 1) * sizeof (Elf64_External_Rela);
8768 asection *got = ppc64_elf_tdata (gent->owner)->got;
8769
8770 gent->got.offset = got->size;
8771 got->size += entsize;
8772
8773 dyn = htab->elf.dynamic_sections_created;
8774 if ((info->shared
8775 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))
8776 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8777 || h->root.type != bfd_link_hash_undefweak))
8778 {
8779 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
8780 relgot->size += rentsize;
8781 }
8782 else if (h->type == STT_GNU_IFUNC)
8783 {
8784 asection *relgot = htab->reliplt;
8785 relgot->size += rentsize;
8786 htab->got_reli_size += rentsize;
8787 }
8788 }
8789
8790 /* This function merges got entries in the same toc group. */
8791
8792 static void
8793 merge_got_entries (struct got_entry **pent)
8794 {
8795 struct got_entry *ent, *ent2;
8796
8797 for (ent = *pent; ent != NULL; ent = ent->next)
8798 if (!ent->is_indirect)
8799 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
8800 if (!ent2->is_indirect
8801 && ent2->addend == ent->addend
8802 && ent2->tls_type == ent->tls_type
8803 && elf_gp (ent2->owner) == elf_gp (ent->owner))
8804 {
8805 ent2->is_indirect = TRUE;
8806 ent2->got.ent = ent;
8807 }
8808 }
8809
8810 /* Allocate space in .plt, .got and associated reloc sections for
8811 dynamic relocs. */
8812
8813 static bfd_boolean
8814 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8815 {
8816 struct bfd_link_info *info;
8817 struct ppc_link_hash_table *htab;
8818 asection *s;
8819 struct ppc_link_hash_entry *eh;
8820 struct elf_dyn_relocs *p;
8821 struct got_entry **pgent, *gent;
8822
8823 if (h->root.type == bfd_link_hash_indirect)
8824 return TRUE;
8825
8826 info = (struct bfd_link_info *) inf;
8827 htab = ppc_hash_table (info);
8828 if (htab == NULL)
8829 return FALSE;
8830
8831 if ((htab->elf.dynamic_sections_created
8832 && h->dynindx != -1
8833 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, h))
8834 || h->type == STT_GNU_IFUNC)
8835 {
8836 struct plt_entry *pent;
8837 bfd_boolean doneone = FALSE;
8838 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
8839 if (pent->plt.refcount > 0)
8840 {
8841 if (!htab->elf.dynamic_sections_created
8842 || h->dynindx == -1)
8843 {
8844 s = htab->iplt;
8845 pent->plt.offset = s->size;
8846 s->size += PLT_ENTRY_SIZE;
8847 s = htab->reliplt;
8848 }
8849 else
8850 {
8851 /* If this is the first .plt entry, make room for the special
8852 first entry. */
8853 s = htab->plt;
8854 if (s->size == 0)
8855 s->size += PLT_INITIAL_ENTRY_SIZE;
8856
8857 pent->plt.offset = s->size;
8858
8859 /* Make room for this entry. */
8860 s->size += PLT_ENTRY_SIZE;
8861
8862 /* Make room for the .glink code. */
8863 s = htab->glink;
8864 if (s->size == 0)
8865 s->size += GLINK_CALL_STUB_SIZE;
8866 /* We need bigger stubs past index 32767. */
8867 if (s->size >= GLINK_CALL_STUB_SIZE + 32768*2*4)
8868 s->size += 4;
8869 s->size += 2*4;
8870
8871 /* We also need to make an entry in the .rela.plt section. */
8872 s = htab->relplt;
8873 }
8874 s->size += sizeof (Elf64_External_Rela);
8875 doneone = TRUE;
8876 }
8877 else
8878 pent->plt.offset = (bfd_vma) -1;
8879 if (!doneone)
8880 {
8881 h->plt.plist = NULL;
8882 h->needs_plt = 0;
8883 }
8884 }
8885 else
8886 {
8887 h->plt.plist = NULL;
8888 h->needs_plt = 0;
8889 }
8890
8891 eh = (struct ppc_link_hash_entry *) h;
8892 /* Run through the TLS GD got entries first if we're changing them
8893 to TPREL. */
8894 if ((eh->tls_mask & TLS_TPRELGD) != 0)
8895 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8896 if (gent->got.refcount > 0
8897 && (gent->tls_type & TLS_GD) != 0)
8898 {
8899 /* This was a GD entry that has been converted to TPREL. If
8900 there happens to be a TPREL entry we can use that one. */
8901 struct got_entry *ent;
8902 for (ent = h->got.glist; ent != NULL; ent = ent->next)
8903 if (ent->got.refcount > 0
8904 && (ent->tls_type & TLS_TPREL) != 0
8905 && ent->addend == gent->addend
8906 && ent->owner == gent->owner)
8907 {
8908 gent->got.refcount = 0;
8909 break;
8910 }
8911
8912 /* If not, then we'll be using our own TPREL entry. */
8913 if (gent->got.refcount != 0)
8914 gent->tls_type = TLS_TLS | TLS_TPREL;
8915 }
8916
8917 /* Remove any list entry that won't generate a word in the GOT before
8918 we call merge_got_entries. Otherwise we risk merging to empty
8919 entries. */
8920 pgent = &h->got.glist;
8921 while ((gent = *pgent) != NULL)
8922 if (gent->got.refcount > 0)
8923 {
8924 if ((gent->tls_type & TLS_LD) != 0
8925 && !h->def_dynamic)
8926 {
8927 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
8928 *pgent = gent->next;
8929 }
8930 else
8931 pgent = &gent->next;
8932 }
8933 else
8934 *pgent = gent->next;
8935
8936 if (!htab->do_multi_toc)
8937 merge_got_entries (&h->got.glist);
8938
8939 for (gent = h->got.glist; gent != NULL; gent = gent->next)
8940 if (!gent->is_indirect)
8941 {
8942 /* Make sure this symbol is output as a dynamic symbol.
8943 Undefined weak syms won't yet be marked as dynamic,
8944 nor will all TLS symbols. */
8945 if (h->dynindx == -1
8946 && !h->forced_local
8947 && h->type != STT_GNU_IFUNC
8948 && htab->elf.dynamic_sections_created)
8949 {
8950 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8951 return FALSE;
8952 }
8953
8954 if (!is_ppc64_elf (gent->owner))
8955 abort ();
8956
8957 allocate_got (h, info, gent);
8958 }
8959
8960 if (eh->dyn_relocs == NULL
8961 || (!htab->elf.dynamic_sections_created
8962 && h->type != STT_GNU_IFUNC))
8963 return TRUE;
8964
8965 /* In the shared -Bsymbolic case, discard space allocated for
8966 dynamic pc-relative relocs against symbols which turn out to be
8967 defined in regular objects. For the normal shared case, discard
8968 space for relocs that have become local due to symbol visibility
8969 changes. */
8970
8971 if (info->shared)
8972 {
8973 /* Relocs that use pc_count are those that appear on a call insn,
8974 or certain REL relocs (see must_be_dyn_reloc) that can be
8975 generated via assembly. We want calls to protected symbols to
8976 resolve directly to the function rather than going via the plt.
8977 If people want function pointer comparisons to work as expected
8978 then they should avoid writing weird assembly. */
8979 if (SYMBOL_CALLS_LOCAL (info, h))
8980 {
8981 struct elf_dyn_relocs **pp;
8982
8983 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
8984 {
8985 p->count -= p->pc_count;
8986 p->pc_count = 0;
8987 if (p->count == 0)
8988 *pp = p->next;
8989 else
8990 pp = &p->next;
8991 }
8992 }
8993
8994 /* Also discard relocs on undefined weak syms with non-default
8995 visibility. */
8996 if (eh->dyn_relocs != NULL
8997 && h->root.type == bfd_link_hash_undefweak)
8998 {
8999 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9000 eh->dyn_relocs = NULL;
9001
9002 /* Make sure this symbol is output as a dynamic symbol.
9003 Undefined weak syms won't yet be marked as dynamic. */
9004 else if (h->dynindx == -1
9005 && !h->forced_local)
9006 {
9007 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9008 return FALSE;
9009 }
9010 }
9011 }
9012 else if (h->type == STT_GNU_IFUNC)
9013 {
9014 if (!h->non_got_ref)
9015 eh->dyn_relocs = NULL;
9016 }
9017 else if (ELIMINATE_COPY_RELOCS)
9018 {
9019 /* For the non-shared case, discard space for relocs against
9020 symbols which turn out to need copy relocs or are not
9021 dynamic. */
9022
9023 if (!h->non_got_ref
9024 && !h->def_regular)
9025 {
9026 /* Make sure this symbol is output as a dynamic symbol.
9027 Undefined weak syms won't yet be marked as dynamic. */
9028 if (h->dynindx == -1
9029 && !h->forced_local)
9030 {
9031 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9032 return FALSE;
9033 }
9034
9035 /* If that succeeded, we know we'll be keeping all the
9036 relocs. */
9037 if (h->dynindx != -1)
9038 goto keep;
9039 }
9040
9041 eh->dyn_relocs = NULL;
9042
9043 keep: ;
9044 }
9045
9046 /* Finally, allocate space. */
9047 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9048 {
9049 asection *sreloc = elf_section_data (p->sec)->sreloc;
9050 if (!htab->elf.dynamic_sections_created)
9051 sreloc = htab->reliplt;
9052 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9053 }
9054
9055 return TRUE;
9056 }
9057
9058 /* Find any dynamic relocs that apply to read-only sections. */
9059
9060 static bfd_boolean
9061 readonly_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9062 {
9063 struct ppc_link_hash_entry *eh;
9064 struct elf_dyn_relocs *p;
9065
9066 eh = (struct ppc_link_hash_entry *) h;
9067 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9068 {
9069 asection *s = p->sec->output_section;
9070
9071 if (s != NULL && (s->flags & SEC_READONLY) != 0)
9072 {
9073 struct bfd_link_info *info = inf;
9074
9075 info->flags |= DF_TEXTREL;
9076
9077 /* Not an error, just cut short the traversal. */
9078 return FALSE;
9079 }
9080 }
9081 return TRUE;
9082 }
9083
9084 /* Set the sizes of the dynamic sections. */
9085
9086 static bfd_boolean
9087 ppc64_elf_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
9088 struct bfd_link_info *info)
9089 {
9090 struct ppc_link_hash_table *htab;
9091 bfd *dynobj;
9092 asection *s;
9093 bfd_boolean relocs;
9094 bfd *ibfd;
9095 struct got_entry *first_tlsld;
9096
9097 htab = ppc_hash_table (info);
9098 if (htab == NULL)
9099 return FALSE;
9100
9101 dynobj = htab->elf.dynobj;
9102 if (dynobj == NULL)
9103 abort ();
9104
9105 if (htab->elf.dynamic_sections_created)
9106 {
9107 /* Set the contents of the .interp section to the interpreter. */
9108 if (info->executable)
9109 {
9110 s = bfd_get_section_by_name (dynobj, ".interp");
9111 if (s == NULL)
9112 abort ();
9113 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9114 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9115 }
9116 }
9117
9118 /* Set up .got offsets for local syms, and space for local dynamic
9119 relocs. */
9120 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9121 {
9122 struct got_entry **lgot_ents;
9123 struct got_entry **end_lgot_ents;
9124 struct plt_entry **local_plt;
9125 struct plt_entry **end_local_plt;
9126 unsigned char *lgot_masks;
9127 bfd_size_type locsymcount;
9128 Elf_Internal_Shdr *symtab_hdr;
9129 asection *srel;
9130
9131 if (!is_ppc64_elf (ibfd))
9132 continue;
9133
9134 for (s = ibfd->sections; s != NULL; s = s->next)
9135 {
9136 struct elf_dyn_relocs *p;
9137
9138 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9139 {
9140 if (!bfd_is_abs_section (p->sec)
9141 && bfd_is_abs_section (p->sec->output_section))
9142 {
9143 /* Input section has been discarded, either because
9144 it is a copy of a linkonce section or due to
9145 linker script /DISCARD/, so we'll be discarding
9146 the relocs too. */
9147 }
9148 else if (p->count != 0)
9149 {
9150 srel = elf_section_data (p->sec)->sreloc;
9151 if (!htab->elf.dynamic_sections_created)
9152 srel = htab->reliplt;
9153 srel->size += p->count * sizeof (Elf64_External_Rela);
9154 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9155 info->flags |= DF_TEXTREL;
9156 }
9157 }
9158 }
9159
9160 lgot_ents = elf_local_got_ents (ibfd);
9161 if (!lgot_ents)
9162 continue;
9163
9164 symtab_hdr = &elf_symtab_hdr (ibfd);
9165 locsymcount = symtab_hdr->sh_info;
9166 end_lgot_ents = lgot_ents + locsymcount;
9167 local_plt = (struct plt_entry **) end_lgot_ents;
9168 end_local_plt = local_plt + locsymcount;
9169 lgot_masks = (unsigned char *) end_local_plt;
9170 s = ppc64_elf_tdata (ibfd)->got;
9171 srel = ppc64_elf_tdata (ibfd)->relgot;
9172 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9173 {
9174 struct got_entry **pent, *ent;
9175
9176 pent = lgot_ents;
9177 while ((ent = *pent) != NULL)
9178 if (ent->got.refcount > 0)
9179 {
9180 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9181 {
9182 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9183 *pent = ent->next;
9184 }
9185 else
9186 {
9187 unsigned int num = 1;
9188 ent->got.offset = s->size;
9189 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9190 num = 2;
9191 s->size += num * 8;
9192 if (info->shared)
9193 srel->size += num * sizeof (Elf64_External_Rela);
9194 else if ((*lgot_masks & PLT_IFUNC) != 0)
9195 {
9196 htab->reliplt->size
9197 += num * sizeof (Elf64_External_Rela);
9198 htab->got_reli_size
9199 += num * sizeof (Elf64_External_Rela);
9200 }
9201 pent = &ent->next;
9202 }
9203 }
9204 else
9205 *pent = ent->next;
9206 }
9207
9208 /* Allocate space for calls to local STT_GNU_IFUNC syms in .iplt. */
9209 for (; local_plt < end_local_plt; ++local_plt)
9210 {
9211 struct plt_entry *ent;
9212
9213 for (ent = *local_plt; ent != NULL; ent = ent->next)
9214 if (ent->plt.refcount > 0)
9215 {
9216 s = htab->iplt;
9217 ent->plt.offset = s->size;
9218 s->size += PLT_ENTRY_SIZE;
9219
9220 htab->reliplt->size += sizeof (Elf64_External_Rela);
9221 }
9222 else
9223 ent->plt.offset = (bfd_vma) -1;
9224 }
9225 }
9226
9227 /* Allocate global sym .plt and .got entries, and space for global
9228 sym dynamic relocs. */
9229 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9230
9231 first_tlsld = NULL;
9232 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9233 {
9234 struct got_entry *ent;
9235
9236 if (!is_ppc64_elf (ibfd))
9237 continue;
9238
9239 ent = ppc64_tlsld_got (ibfd);
9240 if (ent->got.refcount > 0)
9241 {
9242 if (!htab->do_multi_toc && first_tlsld != NULL)
9243 {
9244 ent->is_indirect = TRUE;
9245 ent->got.ent = first_tlsld;
9246 }
9247 else
9248 {
9249 if (first_tlsld == NULL)
9250 first_tlsld = ent;
9251 s = ppc64_elf_tdata (ibfd)->got;
9252 ent->got.offset = s->size;
9253 ent->owner = ibfd;
9254 s->size += 16;
9255 if (info->shared)
9256 {
9257 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9258 srel->size += sizeof (Elf64_External_Rela);
9259 }
9260 }
9261 }
9262 else
9263 ent->got.offset = (bfd_vma) -1;
9264 }
9265
9266 /* We now have determined the sizes of the various dynamic sections.
9267 Allocate memory for them. */
9268 relocs = FALSE;
9269 for (s = dynobj->sections; s != NULL; s = s->next)
9270 {
9271 if ((s->flags & SEC_LINKER_CREATED) == 0)
9272 continue;
9273
9274 if (s == htab->brlt || s == htab->relbrlt)
9275 /* These haven't been allocated yet; don't strip. */
9276 continue;
9277 else if (s == htab->got
9278 || s == htab->plt
9279 || s == htab->iplt
9280 || s == htab->glink
9281 || s == htab->dynbss)
9282 {
9283 /* Strip this section if we don't need it; see the
9284 comment below. */
9285 }
9286 else if (s == htab->glink_eh_frame)
9287 {
9288 if (!bfd_is_abs_section (s->output_section))
9289 /* Not sized yet. */
9290 continue;
9291 }
9292 else if (CONST_STRNEQ (s->name, ".rela"))
9293 {
9294 if (s->size != 0)
9295 {
9296 if (s != htab->relplt)
9297 relocs = TRUE;
9298
9299 /* We use the reloc_count field as a counter if we need
9300 to copy relocs into the output file. */
9301 s->reloc_count = 0;
9302 }
9303 }
9304 else
9305 {
9306 /* It's not one of our sections, so don't allocate space. */
9307 continue;
9308 }
9309
9310 if (s->size == 0)
9311 {
9312 /* If we don't need this section, strip it from the
9313 output file. This is mostly to handle .rela.bss and
9314 .rela.plt. We must create both sections in
9315 create_dynamic_sections, because they must be created
9316 before the linker maps input sections to output
9317 sections. The linker does that before
9318 adjust_dynamic_symbol is called, and it is that
9319 function which decides whether anything needs to go
9320 into these sections. */
9321 s->flags |= SEC_EXCLUDE;
9322 continue;
9323 }
9324
9325 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9326 continue;
9327
9328 /* Allocate memory for the section contents. We use bfd_zalloc
9329 here in case unused entries are not reclaimed before the
9330 section's contents are written out. This should not happen,
9331 but this way if it does we get a R_PPC64_NONE reloc in .rela
9332 sections instead of garbage.
9333 We also rely on the section contents being zero when writing
9334 the GOT. */
9335 s->contents = bfd_zalloc (dynobj, s->size);
9336 if (s->contents == NULL)
9337 return FALSE;
9338 }
9339
9340 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9341 {
9342 if (!is_ppc64_elf (ibfd))
9343 continue;
9344
9345 s = ppc64_elf_tdata (ibfd)->got;
9346 if (s != NULL && s != htab->got)
9347 {
9348 if (s->size == 0)
9349 s->flags |= SEC_EXCLUDE;
9350 else
9351 {
9352 s->contents = bfd_zalloc (ibfd, s->size);
9353 if (s->contents == NULL)
9354 return FALSE;
9355 }
9356 }
9357 s = ppc64_elf_tdata (ibfd)->relgot;
9358 if (s != NULL)
9359 {
9360 if (s->size == 0)
9361 s->flags |= SEC_EXCLUDE;
9362 else
9363 {
9364 s->contents = bfd_zalloc (ibfd, s->size);
9365 if (s->contents == NULL)
9366 return FALSE;
9367 relocs = TRUE;
9368 s->reloc_count = 0;
9369 }
9370 }
9371 }
9372
9373 if (htab->elf.dynamic_sections_created)
9374 {
9375 /* Add some entries to the .dynamic section. We fill in the
9376 values later, in ppc64_elf_finish_dynamic_sections, but we
9377 must add the entries now so that we get the correct size for
9378 the .dynamic section. The DT_DEBUG entry is filled in by the
9379 dynamic linker and used by the debugger. */
9380 #define add_dynamic_entry(TAG, VAL) \
9381 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9382
9383 if (info->executable)
9384 {
9385 if (!add_dynamic_entry (DT_DEBUG, 0))
9386 return FALSE;
9387 }
9388
9389 if (htab->plt != NULL && htab->plt->size != 0)
9390 {
9391 if (!add_dynamic_entry (DT_PLTGOT, 0)
9392 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9393 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
9394 || !add_dynamic_entry (DT_JMPREL, 0)
9395 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
9396 return FALSE;
9397 }
9398
9399 if (NO_OPD_RELOCS)
9400 {
9401 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
9402 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
9403 return FALSE;
9404 }
9405
9406 if (!htab->no_tls_get_addr_opt
9407 && htab->tls_get_addr_fd != NULL
9408 && htab->tls_get_addr_fd->elf.plt.plist != NULL
9409 && !add_dynamic_entry (DT_PPC64_TLSOPT, 0))
9410 return FALSE;
9411
9412 if (relocs)
9413 {
9414 if (!add_dynamic_entry (DT_RELA, 0)
9415 || !add_dynamic_entry (DT_RELASZ, 0)
9416 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
9417 return FALSE;
9418
9419 /* If any dynamic relocs apply to a read-only section,
9420 then we need a DT_TEXTREL entry. */
9421 if ((info->flags & DF_TEXTREL) == 0)
9422 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs, info);
9423
9424 if ((info->flags & DF_TEXTREL) != 0)
9425 {
9426 if (!add_dynamic_entry (DT_TEXTREL, 0))
9427 return FALSE;
9428 }
9429 }
9430 }
9431 #undef add_dynamic_entry
9432
9433 return TRUE;
9434 }
9435
9436 /* Determine the type of stub needed, if any, for a call. */
9437
9438 static inline enum ppc_stub_type
9439 ppc_type_of_stub (asection *input_sec,
9440 const Elf_Internal_Rela *rel,
9441 struct ppc_link_hash_entry **hash,
9442 struct plt_entry **plt_ent,
9443 bfd_vma destination)
9444 {
9445 struct ppc_link_hash_entry *h = *hash;
9446 bfd_vma location;
9447 bfd_vma branch_offset;
9448 bfd_vma max_branch_offset;
9449 enum elf_ppc64_reloc_type r_type;
9450
9451 if (h != NULL)
9452 {
9453 struct plt_entry *ent;
9454 struct ppc_link_hash_entry *fdh = h;
9455 if (h->oh != NULL
9456 && h->oh->is_func_descriptor)
9457 {
9458 fdh = ppc_follow_link (h->oh);
9459 *hash = fdh;
9460 }
9461
9462 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
9463 if (ent->addend == rel->r_addend
9464 && ent->plt.offset != (bfd_vma) -1)
9465 {
9466 *plt_ent = ent;
9467 return ppc_stub_plt_call;
9468 }
9469
9470 /* Here, we know we don't have a plt entry. If we don't have a
9471 either a defined function descriptor or a defined entry symbol
9472 in a regular object file, then it is pointless trying to make
9473 any other type of stub. */
9474 if (!is_static_defined (&fdh->elf)
9475 && !is_static_defined (&h->elf))
9476 return ppc_stub_none;
9477 }
9478 else if (elf_local_got_ents (input_sec->owner) != NULL)
9479 {
9480 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
9481 struct plt_entry **local_plt = (struct plt_entry **)
9482 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
9483 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
9484
9485 if (local_plt[r_symndx] != NULL)
9486 {
9487 struct plt_entry *ent;
9488
9489 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
9490 if (ent->addend == rel->r_addend
9491 && ent->plt.offset != (bfd_vma) -1)
9492 {
9493 *plt_ent = ent;
9494 return ppc_stub_plt_call;
9495 }
9496 }
9497 }
9498
9499 /* Determine where the call point is. */
9500 location = (input_sec->output_offset
9501 + input_sec->output_section->vma
9502 + rel->r_offset);
9503
9504 branch_offset = destination - location;
9505 r_type = ELF64_R_TYPE (rel->r_info);
9506
9507 /* Determine if a long branch stub is needed. */
9508 max_branch_offset = 1 << 25;
9509 if (r_type != R_PPC64_REL24)
9510 max_branch_offset = 1 << 15;
9511
9512 if (branch_offset + max_branch_offset >= 2 * max_branch_offset)
9513 /* We need a stub. Figure out whether a long_branch or plt_branch
9514 is needed later. */
9515 return ppc_stub_long_branch;
9516
9517 return ppc_stub_none;
9518 }
9519
9520 /* With power7 weakly ordered memory model, it is possible for ld.so
9521 to update a plt entry in one thread and have another thread see a
9522 stale zero toc entry. To avoid this we need some sort of acquire
9523 barrier in the call stub. One solution is to make the load of the
9524 toc word seem to appear to depend on the load of the function entry
9525 word. Another solution is to test for r2 being zero, and branch to
9526 the appropriate glink entry if so.
9527
9528 . fake dep barrier compare
9529 . ld 11,xxx(2) ld 11,xxx(2)
9530 . mtctr 11 mtctr 11
9531 . xor 11,11,11 ld 2,xxx+8(2)
9532 . add 2,2,11 cmpldi 2,0
9533 . ld 2,xxx+8(2) bnectr+
9534 . bctr b <glink_entry>
9535
9536 The solution involving the compare turns out to be faster, so
9537 that's what we use unless the branch won't reach. */
9538
9539 #define ALWAYS_USE_FAKE_DEP 0
9540 #define ALWAYS_EMIT_R2SAVE 0
9541
9542 #define PPC_LO(v) ((v) & 0xffff)
9543 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9544 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9545
9546 static inline unsigned int
9547 plt_stub_size (struct ppc_link_hash_table *htab,
9548 struct ppc_stub_hash_entry *stub_entry,
9549 bfd_vma off)
9550 {
9551 unsigned size = PLT_CALL_STUB_SIZE;
9552
9553 if (!(ALWAYS_EMIT_R2SAVE
9554 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
9555 size -= 4;
9556 if (!htab->plt_static_chain)
9557 size -= 4;
9558 if (htab->plt_thread_safe)
9559 size += 8;
9560 if (PPC_HA (off) == 0)
9561 size -= 4;
9562 if (PPC_HA (off + 8 + 8 * htab->plt_static_chain) != PPC_HA (off))
9563 size += 4;
9564 if (stub_entry->h != NULL
9565 && (stub_entry->h == htab->tls_get_addr_fd
9566 || stub_entry->h == htab->tls_get_addr)
9567 && !htab->no_tls_get_addr_opt)
9568 size += 13 * 4;
9569 return size;
9570 }
9571
9572 /* If this stub would cross fewer 2**plt_stub_align boundaries if we align,
9573 then return the padding needed to do so. */
9574 static inline unsigned int
9575 plt_stub_pad (struct ppc_link_hash_table *htab,
9576 struct ppc_stub_hash_entry *stub_entry,
9577 bfd_vma plt_off)
9578 {
9579 int stub_align = 1 << htab->plt_stub_align;
9580 unsigned stub_size = plt_stub_size (htab, stub_entry, plt_off);
9581 bfd_vma stub_off = stub_entry->stub_sec->size;
9582
9583 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
9584 > (stub_size & -stub_align))
9585 return stub_align - (stub_off & (stub_align - 1));
9586 return 0;
9587 }
9588
9589 /* Build a .plt call stub. */
9590
9591 static inline bfd_byte *
9592 build_plt_stub (struct ppc_link_hash_table *htab,
9593 struct ppc_stub_hash_entry *stub_entry,
9594 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9595 {
9596 bfd *obfd = htab->stub_bfd;
9597 bfd_boolean plt_static_chain = htab->plt_static_chain;
9598 bfd_boolean plt_thread_safe = htab->plt_thread_safe;
9599 bfd_boolean use_fake_dep = plt_thread_safe;
9600 bfd_vma cmp_branch_off = 0;
9601
9602 if (!ALWAYS_USE_FAKE_DEP
9603 && plt_thread_safe
9604 && !(stub_entry->h != NULL
9605 && (stub_entry->h == htab->tls_get_addr_fd
9606 || stub_entry->h == htab->tls_get_addr)
9607 && !htab->no_tls_get_addr_opt))
9608 {
9609 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
9610 bfd_vma pltindex = (pltoff - PLT_INITIAL_ENTRY_SIZE) / PLT_ENTRY_SIZE;
9611 bfd_vma glinkoff = GLINK_CALL_STUB_SIZE + pltindex * 8;
9612 bfd_vma to, from;
9613
9614 if (pltindex > 32767)
9615 glinkoff += (pltindex - 32767) * 4;
9616 to = (glinkoff
9617 + htab->glink->output_offset
9618 + htab->glink->output_section->vma);
9619 from = (p - stub_entry->stub_sec->contents
9620 + 4 * (ALWAYS_EMIT_R2SAVE
9621 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9622 + 4 * (PPC_HA (offset) != 0)
9623 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
9624 != PPC_HA (offset))
9625 + 4 * (plt_static_chain != 0)
9626 + 20
9627 + stub_entry->stub_sec->output_offset
9628 + stub_entry->stub_sec->output_section->vma);
9629 cmp_branch_off = to - from;
9630 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
9631 }
9632
9633 if (PPC_HA (offset) != 0)
9634 {
9635 if (r != NULL)
9636 {
9637 if (ALWAYS_EMIT_R2SAVE
9638 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9639 r[0].r_offset += 4;
9640 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
9641 r[1].r_offset = r[0].r_offset + 4;
9642 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9643 r[1].r_addend = r[0].r_addend;
9644 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9645 {
9646 r[2].r_offset = r[1].r_offset + 4;
9647 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
9648 r[2].r_addend = r[0].r_addend;
9649 }
9650 else
9651 {
9652 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
9653 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9654 r[2].r_addend = r[0].r_addend + 8;
9655 if (plt_static_chain)
9656 {
9657 r[3].r_offset = r[2].r_offset + 4;
9658 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
9659 r[3].r_addend = r[0].r_addend + 16;
9660 }
9661 }
9662 }
9663 if (ALWAYS_EMIT_R2SAVE
9664 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9665 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9666 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
9667 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset), p), p += 4;
9668 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9669 {
9670 bfd_put_32 (obfd, ADDI_R12_R12 | PPC_LO (offset), p), p += 4;
9671 offset = 0;
9672 }
9673 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9674 if (use_fake_dep)
9675 {
9676 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9677 bfd_put_32 (obfd, ADD_R12_R12_R11, p), p += 4;
9678 }
9679 bfd_put_32 (obfd, LD_R2_0R12 | PPC_LO (offset + 8), p), p += 4;
9680 if (plt_static_chain)
9681 bfd_put_32 (obfd, LD_R11_0R12 | PPC_LO (offset + 16), p), p += 4;
9682 }
9683 else
9684 {
9685 if (r != NULL)
9686 {
9687 if (ALWAYS_EMIT_R2SAVE
9688 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9689 r[0].r_offset += 4;
9690 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9691 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9692 {
9693 r[1].r_offset = r[0].r_offset + 4;
9694 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
9695 r[1].r_addend = r[0].r_addend;
9696 }
9697 else
9698 {
9699 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
9700 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9701 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
9702 if (plt_static_chain)
9703 {
9704 r[2].r_offset = r[1].r_offset + 4;
9705 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
9706 r[2].r_addend = r[0].r_addend + 8;
9707 }
9708 }
9709 }
9710 if (ALWAYS_EMIT_R2SAVE
9711 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
9712 bfd_put_32 (obfd, STD_R2_40R1, p), p += 4;
9713 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset), p), p += 4;
9714 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
9715 {
9716 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
9717 offset = 0;
9718 }
9719 bfd_put_32 (obfd, MTCTR_R11, p), p += 4;
9720 if (use_fake_dep)
9721 {
9722 bfd_put_32 (obfd, XOR_R11_R11_R11, p), p += 4;
9723 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
9724 }
9725 if (plt_static_chain)
9726 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
9727 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
9728 }
9729 if (plt_thread_safe && !use_fake_dep)
9730 {
9731 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
9732 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
9733 bfd_put_32 (obfd, B_DOT + cmp_branch_off, p), p += 4;
9734 }
9735 else
9736 bfd_put_32 (obfd, BCTR, p), p += 4;
9737 return p;
9738 }
9739
9740 /* Build a special .plt call stub for __tls_get_addr. */
9741
9742 #define LD_R11_0R3 0xe9630000
9743 #define LD_R12_0R3 0xe9830000
9744 #define MR_R0_R3 0x7c601b78
9745 #define CMPDI_R11_0 0x2c2b0000
9746 #define ADD_R3_R12_R13 0x7c6c6a14
9747 #define BEQLR 0x4d820020
9748 #define MR_R3_R0 0x7c030378
9749 #define MFLR_R11 0x7d6802a6
9750 #define STD_R11_0R1 0xf9610000
9751 #define BCTRL 0x4e800421
9752 #define LD_R11_0R1 0xe9610000
9753 #define LD_R2_0R1 0xe8410000
9754 #define MTLR_R11 0x7d6803a6
9755
9756 static inline bfd_byte *
9757 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
9758 struct ppc_stub_hash_entry *stub_entry,
9759 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
9760 {
9761 bfd *obfd = htab->stub_bfd;
9762
9763 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
9764 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
9765 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
9766 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
9767 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
9768 bfd_put_32 (obfd, BEQLR, p), p += 4;
9769 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
9770 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
9771 bfd_put_32 (obfd, STD_R11_0R1 + 32, p), p += 4;
9772
9773 if (r != NULL)
9774 r[0].r_offset += 9 * 4;
9775 p = build_plt_stub (htab, stub_entry, p, offset, r);
9776 bfd_put_32 (obfd, BCTRL, p - 4);
9777
9778 bfd_put_32 (obfd, LD_R11_0R1 + 32, p), p += 4;
9779 bfd_put_32 (obfd, LD_R2_0R1 + 40, p), p += 4;
9780 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
9781 bfd_put_32 (obfd, BLR, p), p += 4;
9782
9783 return p;
9784 }
9785
9786 static Elf_Internal_Rela *
9787 get_relocs (asection *sec, int count)
9788 {
9789 Elf_Internal_Rela *relocs;
9790 struct bfd_elf_section_data *elfsec_data;
9791
9792 elfsec_data = elf_section_data (sec);
9793 relocs = elfsec_data->relocs;
9794 if (relocs == NULL)
9795 {
9796 bfd_size_type relsize;
9797 relsize = sec->reloc_count * sizeof (*relocs);
9798 relocs = bfd_alloc (sec->owner, relsize);
9799 if (relocs == NULL)
9800 return NULL;
9801 elfsec_data->relocs = relocs;
9802 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
9803 sizeof (Elf_Internal_Shdr));
9804 if (elfsec_data->rela.hdr == NULL)
9805 return NULL;
9806 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
9807 * sizeof (Elf64_External_Rela));
9808 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
9809 sec->reloc_count = 0;
9810 }
9811 relocs += sec->reloc_count;
9812 sec->reloc_count += count;
9813 return relocs;
9814 }
9815
9816 static bfd_vma
9817 get_r2off (struct bfd_link_info *info,
9818 struct ppc_stub_hash_entry *stub_entry)
9819 {
9820 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9821 bfd_vma r2off = htab->stub_group[stub_entry->target_section->id].toc_off;
9822
9823 if (r2off == 0)
9824 {
9825 /* Support linking -R objects. Get the toc pointer from the
9826 opd entry. */
9827 char buf[8];
9828 asection *opd = stub_entry->h->elf.root.u.def.section;
9829 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
9830
9831 if (strcmp (opd->name, ".opd") != 0
9832 || opd->reloc_count != 0)
9833 {
9834 info->callbacks->einfo (_("%P: cannot find opd entry toc for %s\n"),
9835 stub_entry->h->elf.root.root.string);
9836 bfd_set_error (bfd_error_bad_value);
9837 return 0;
9838 }
9839 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
9840 return 0;
9841 r2off = bfd_get_64 (opd->owner, buf);
9842 r2off -= elf_gp (info->output_bfd);
9843 }
9844 r2off -= htab->stub_group[stub_entry->id_sec->id].toc_off;
9845 return r2off;
9846 }
9847
9848 static bfd_boolean
9849 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
9850 {
9851 struct ppc_stub_hash_entry *stub_entry;
9852 struct ppc_branch_hash_entry *br_entry;
9853 struct bfd_link_info *info;
9854 struct ppc_link_hash_table *htab;
9855 bfd_byte *loc;
9856 bfd_byte *p;
9857 bfd_vma dest, off;
9858 int size;
9859 Elf_Internal_Rela *r;
9860 asection *plt;
9861
9862 /* Massage our args to the form they really have. */
9863 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
9864 info = in_arg;
9865
9866 htab = ppc_hash_table (info);
9867 if (htab == NULL)
9868 return FALSE;
9869
9870 /* Make a note of the offset within the stubs for this entry. */
9871 stub_entry->stub_offset = stub_entry->stub_sec->size;
9872 loc = stub_entry->stub_sec->contents + stub_entry->stub_offset;
9873
9874 htab->stub_count[stub_entry->stub_type - 1] += 1;
9875 switch (stub_entry->stub_type)
9876 {
9877 case ppc_stub_long_branch:
9878 case ppc_stub_long_branch_r2off:
9879 /* Branches are relative. This is where we are going to. */
9880 off = dest = (stub_entry->target_value
9881 + stub_entry->target_section->output_offset
9882 + stub_entry->target_section->output_section->vma);
9883
9884 /* And this is where we are coming from. */
9885 off -= (stub_entry->stub_offset
9886 + stub_entry->stub_sec->output_offset
9887 + stub_entry->stub_sec->output_section->vma);
9888
9889 size = 4;
9890 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
9891 {
9892 bfd_vma r2off = get_r2off (info, stub_entry);
9893
9894 if (r2off == 0)
9895 {
9896 htab->stub_error = TRUE;
9897 return FALSE;
9898 }
9899 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
9900 loc += 4;
9901 size = 12;
9902 if (PPC_HA (r2off) != 0)
9903 {
9904 size = 16;
9905 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
9906 loc += 4;
9907 }
9908 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
9909 loc += 4;
9910 off -= size - 4;
9911 }
9912 bfd_put_32 (htab->stub_bfd, B_DOT | (off & 0x3fffffc), loc);
9913
9914 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
9915 {
9916 info->callbacks->einfo (_("%P: long branch stub `%s' offset overflow\n"),
9917 stub_entry->root.string);
9918 htab->stub_error = TRUE;
9919 return FALSE;
9920 }
9921
9922 if (info->emitrelocations)
9923 {
9924 r = get_relocs (stub_entry->stub_sec, 1);
9925 if (r == NULL)
9926 return FALSE;
9927 r->r_offset = loc - stub_entry->stub_sec->contents;
9928 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
9929 r->r_addend = dest;
9930 if (stub_entry->h != NULL)
9931 {
9932 struct elf_link_hash_entry **hashes;
9933 unsigned long symndx;
9934 struct ppc_link_hash_entry *h;
9935
9936 hashes = elf_sym_hashes (htab->stub_bfd);
9937 if (hashes == NULL)
9938 {
9939 bfd_size_type hsize;
9940
9941 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
9942 hashes = bfd_zalloc (htab->stub_bfd, hsize);
9943 if (hashes == NULL)
9944 return FALSE;
9945 elf_sym_hashes (htab->stub_bfd) = hashes;
9946 htab->stub_globals = 1;
9947 }
9948 symndx = htab->stub_globals++;
9949 h = stub_entry->h;
9950 hashes[symndx] = &h->elf;
9951 r->r_info = ELF64_R_INFO (symndx, R_PPC64_REL24);
9952 if (h->oh != NULL && h->oh->is_func)
9953 h = ppc_follow_link (h->oh);
9954 if (h->elf.root.u.def.section != stub_entry->target_section)
9955 /* H is an opd symbol. The addend must be zero. */
9956 r->r_addend = 0;
9957 else
9958 {
9959 off = (h->elf.root.u.def.value
9960 + h->elf.root.u.def.section->output_offset
9961 + h->elf.root.u.def.section->output_section->vma);
9962 r->r_addend -= off;
9963 }
9964 }
9965 }
9966 break;
9967
9968 case ppc_stub_plt_branch:
9969 case ppc_stub_plt_branch_r2off:
9970 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
9971 stub_entry->root.string + 9,
9972 FALSE, FALSE);
9973 if (br_entry == NULL)
9974 {
9975 info->callbacks->einfo (_("%P: can't find branch stub `%s'\n"),
9976 stub_entry->root.string);
9977 htab->stub_error = TRUE;
9978 return FALSE;
9979 }
9980
9981 dest = (stub_entry->target_value
9982 + stub_entry->target_section->output_offset
9983 + stub_entry->target_section->output_section->vma);
9984
9985 bfd_put_64 (htab->brlt->owner, dest,
9986 htab->brlt->contents + br_entry->offset);
9987
9988 if (br_entry->iter == htab->stub_iteration)
9989 {
9990 br_entry->iter = 0;
9991
9992 if (htab->relbrlt != NULL)
9993 {
9994 /* Create a reloc for the branch lookup table entry. */
9995 Elf_Internal_Rela rela;
9996 bfd_byte *rl;
9997
9998 rela.r_offset = (br_entry->offset
9999 + htab->brlt->output_offset
10000 + htab->brlt->output_section->vma);
10001 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10002 rela.r_addend = dest;
10003
10004 rl = htab->relbrlt->contents;
10005 rl += (htab->relbrlt->reloc_count++
10006 * sizeof (Elf64_External_Rela));
10007 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
10008 }
10009 else if (info->emitrelocations)
10010 {
10011 r = get_relocs (htab->brlt, 1);
10012 if (r == NULL)
10013 return FALSE;
10014 /* brlt, being SEC_LINKER_CREATED does not go through the
10015 normal reloc processing. Symbols and offsets are not
10016 translated from input file to output file form, so
10017 set up the offset per the output file. */
10018 r->r_offset = (br_entry->offset
10019 + htab->brlt->output_offset
10020 + htab->brlt->output_section->vma);
10021 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
10022 r->r_addend = dest;
10023 }
10024 }
10025
10026 dest = (br_entry->offset
10027 + htab->brlt->output_offset
10028 + htab->brlt->output_section->vma);
10029
10030 off = (dest
10031 - elf_gp (htab->brlt->output_section->owner)
10032 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10033
10034 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10035 {
10036 info->callbacks->einfo
10037 (_("%P: linkage table error against `%s'\n"),
10038 stub_entry->root.string);
10039 bfd_set_error (bfd_error_bad_value);
10040 htab->stub_error = TRUE;
10041 return FALSE;
10042 }
10043
10044 if (info->emitrelocations)
10045 {
10046 r = get_relocs (stub_entry->stub_sec, 1 + (PPC_HA (off) != 0));
10047 if (r == NULL)
10048 return FALSE;
10049 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10050 if (bfd_big_endian (info->output_bfd))
10051 r[0].r_offset += 2;
10052 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
10053 r[0].r_offset += 4;
10054 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10055 r[0].r_addend = dest;
10056 if (PPC_HA (off) != 0)
10057 {
10058 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10059 r[1].r_offset = r[0].r_offset + 4;
10060 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10061 r[1].r_addend = r[0].r_addend;
10062 }
10063 }
10064
10065 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10066 {
10067 if (PPC_HA (off) != 0)
10068 {
10069 size = 16;
10070 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10071 loc += 4;
10072 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10073 }
10074 else
10075 {
10076 size = 12;
10077 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10078 }
10079 }
10080 else
10081 {
10082 bfd_vma r2off = get_r2off (info, stub_entry);
10083
10084 if (r2off == 0)
10085 {
10086 htab->stub_error = TRUE;
10087 return FALSE;
10088 }
10089
10090 bfd_put_32 (htab->stub_bfd, STD_R2_40R1, loc);
10091 loc += 4;
10092 size = 20;
10093 if (PPC_HA (off) != 0)
10094 {
10095 size += 4;
10096 bfd_put_32 (htab->stub_bfd, ADDIS_R12_R2 | PPC_HA (off), loc);
10097 loc += 4;
10098 bfd_put_32 (htab->stub_bfd, LD_R11_0R12 | PPC_LO (off), loc);
10099 loc += 4;
10100 }
10101 else
10102 {
10103 bfd_put_32 (htab->stub_bfd, LD_R11_0R2 | PPC_LO (off), loc);
10104 loc += 4;
10105 }
10106
10107 if (PPC_HA (r2off) != 0)
10108 {
10109 size += 4;
10110 bfd_put_32 (htab->stub_bfd, ADDIS_R2_R2 | PPC_HA (r2off), loc);
10111 loc += 4;
10112 }
10113 bfd_put_32 (htab->stub_bfd, ADDI_R2_R2 | PPC_LO (r2off), loc);
10114 }
10115 loc += 4;
10116 bfd_put_32 (htab->stub_bfd, MTCTR_R11, loc);
10117 loc += 4;
10118 bfd_put_32 (htab->stub_bfd, BCTR, loc);
10119 break;
10120
10121 case ppc_stub_plt_call:
10122 case ppc_stub_plt_call_r2save:
10123 if (stub_entry->h != NULL
10124 && stub_entry->h->is_func_descriptor
10125 && stub_entry->h->oh != NULL)
10126 {
10127 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
10128
10129 /* If the old-ABI "dot-symbol" is undefined make it weak so
10130 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL.
10131 FIXME: We used to define the symbol on one of the call
10132 stubs instead, which is why we test symbol section id
10133 against htab->top_id in various places. Likely all
10134 these checks could now disappear. */
10135 if (fh->elf.root.type == bfd_link_hash_undefined)
10136 fh->elf.root.type = bfd_link_hash_undefweak;
10137 /* Stop undo_symbol_twiddle changing it back to undefined. */
10138 fh->was_undefined = 0;
10139 }
10140
10141 /* Now build the stub. */
10142 dest = stub_entry->plt_ent->plt.offset & ~1;
10143 if (dest >= (bfd_vma) -2)
10144 abort ();
10145
10146 plt = htab->plt;
10147 if (!htab->elf.dynamic_sections_created
10148 || stub_entry->h == NULL
10149 || stub_entry->h->elf.dynindx == -1)
10150 plt = htab->iplt;
10151
10152 dest += plt->output_offset + plt->output_section->vma;
10153
10154 if (stub_entry->h == NULL
10155 && (stub_entry->plt_ent->plt.offset & 1) == 0)
10156 {
10157 Elf_Internal_Rela rela;
10158 bfd_byte *rl;
10159
10160 rela.r_offset = dest;
10161 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
10162 rela.r_addend = (stub_entry->target_value
10163 + stub_entry->target_section->output_offset
10164 + stub_entry->target_section->output_section->vma);
10165
10166 rl = (htab->reliplt->contents
10167 + (htab->reliplt->reloc_count++
10168 * sizeof (Elf64_External_Rela)));
10169 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, rl);
10170 stub_entry->plt_ent->plt.offset |= 1;
10171 }
10172
10173 off = (dest
10174 - elf_gp (plt->output_section->owner)
10175 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10176
10177 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
10178 {
10179 info->callbacks->einfo
10180 (_("%P: linkage table error against `%s'\n"),
10181 stub_entry->h != NULL
10182 ? stub_entry->h->elf.root.root.string
10183 : "<local sym>");
10184 bfd_set_error (bfd_error_bad_value);
10185 htab->stub_error = TRUE;
10186 return FALSE;
10187 }
10188
10189 if (htab->plt_stub_align != 0)
10190 {
10191 unsigned pad = plt_stub_pad (htab, stub_entry, off);
10192
10193 stub_entry->stub_sec->size += pad;
10194 stub_entry->stub_offset = stub_entry->stub_sec->size;
10195 loc += pad;
10196 }
10197
10198 r = NULL;
10199 if (info->emitrelocations)
10200 {
10201 r = get_relocs (stub_entry->stub_sec,
10202 (2
10203 + (PPC_HA (off) != 0)
10204 + (htab->plt_static_chain
10205 && PPC_HA (off + 16) == PPC_HA (off))));
10206 if (r == NULL)
10207 return FALSE;
10208 r[0].r_offset = loc - stub_entry->stub_sec->contents;
10209 if (bfd_big_endian (info->output_bfd))
10210 r[0].r_offset += 2;
10211 r[0].r_addend = dest;
10212 }
10213 if (stub_entry->h != NULL
10214 && (stub_entry->h == htab->tls_get_addr_fd
10215 || stub_entry->h == htab->tls_get_addr)
10216 && !htab->no_tls_get_addr_opt)
10217 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
10218 else
10219 p = build_plt_stub (htab, stub_entry, loc, off, r);
10220 size = p - loc;
10221 break;
10222
10223 default:
10224 BFD_FAIL ();
10225 return FALSE;
10226 }
10227
10228 stub_entry->stub_sec->size += size;
10229
10230 if (htab->emit_stub_syms)
10231 {
10232 struct elf_link_hash_entry *h;
10233 size_t len1, len2;
10234 char *name;
10235 const char *const stub_str[] = { "long_branch",
10236 "long_branch_r2off",
10237 "plt_branch",
10238 "plt_branch_r2off",
10239 "plt_call",
10240 "plt_call" };
10241
10242 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
10243 len2 = strlen (stub_entry->root.string);
10244 name = bfd_malloc (len1 + len2 + 2);
10245 if (name == NULL)
10246 return FALSE;
10247 memcpy (name, stub_entry->root.string, 9);
10248 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
10249 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
10250 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
10251 if (h == NULL)
10252 return FALSE;
10253 if (h->root.type == bfd_link_hash_new)
10254 {
10255 h->root.type = bfd_link_hash_defined;
10256 h->root.u.def.section = stub_entry->stub_sec;
10257 h->root.u.def.value = stub_entry->stub_offset;
10258 h->ref_regular = 1;
10259 h->def_regular = 1;
10260 h->ref_regular_nonweak = 1;
10261 h->forced_local = 1;
10262 h->non_elf = 0;
10263 }
10264 }
10265
10266 return TRUE;
10267 }
10268
10269 /* As above, but don't actually build the stub. Just bump offset so
10270 we know stub section sizes, and select plt_branch stubs where
10271 long_branch stubs won't do. */
10272
10273 static bfd_boolean
10274 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
10275 {
10276 struct ppc_stub_hash_entry *stub_entry;
10277 struct bfd_link_info *info;
10278 struct ppc_link_hash_table *htab;
10279 bfd_vma off;
10280 int size;
10281
10282 /* Massage our args to the form they really have. */
10283 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
10284 info = in_arg;
10285
10286 htab = ppc_hash_table (info);
10287 if (htab == NULL)
10288 return FALSE;
10289
10290 if (stub_entry->stub_type == ppc_stub_plt_call
10291 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10292 {
10293 asection *plt;
10294 off = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
10295 if (off >= (bfd_vma) -2)
10296 abort ();
10297 plt = htab->plt;
10298 if (!htab->elf.dynamic_sections_created
10299 || stub_entry->h == NULL
10300 || stub_entry->h->elf.dynindx == -1)
10301 plt = htab->iplt;
10302 off += (plt->output_offset
10303 + plt->output_section->vma
10304 - elf_gp (plt->output_section->owner)
10305 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10306
10307 size = plt_stub_size (htab, stub_entry, off);
10308 if (htab->plt_stub_align)
10309 size += plt_stub_pad (htab, stub_entry, off);
10310 if (info->emitrelocations)
10311 {
10312 stub_entry->stub_sec->reloc_count
10313 += (2
10314 + (PPC_HA (off) != 0)
10315 + (htab->plt_static_chain
10316 && PPC_HA (off + 16) == PPC_HA (off)));
10317 stub_entry->stub_sec->flags |= SEC_RELOC;
10318 }
10319 }
10320 else
10321 {
10322 /* ppc_stub_long_branch or ppc_stub_plt_branch, or their r2off
10323 variants. */
10324 bfd_vma r2off = 0;
10325
10326 off = (stub_entry->target_value
10327 + stub_entry->target_section->output_offset
10328 + stub_entry->target_section->output_section->vma);
10329 off -= (stub_entry->stub_sec->size
10330 + stub_entry->stub_sec->output_offset
10331 + stub_entry->stub_sec->output_section->vma);
10332
10333 /* Reset the stub type from the plt variant in case we now
10334 can reach with a shorter stub. */
10335 if (stub_entry->stub_type >= ppc_stub_plt_branch)
10336 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
10337
10338 size = 4;
10339 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
10340 {
10341 r2off = get_r2off (info, stub_entry);
10342 if (r2off == 0)
10343 {
10344 htab->stub_error = TRUE;
10345 return FALSE;
10346 }
10347 size = 12;
10348 if (PPC_HA (r2off) != 0)
10349 size = 16;
10350 off -= size - 4;
10351 }
10352
10353 /* If the branch offset if too big, use a ppc_stub_plt_branch. */
10354 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
10355 {
10356 struct ppc_branch_hash_entry *br_entry;
10357
10358 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
10359 stub_entry->root.string + 9,
10360 TRUE, FALSE);
10361 if (br_entry == NULL)
10362 {
10363 info->callbacks->einfo (_("%P: can't build branch stub `%s'\n"),
10364 stub_entry->root.string);
10365 htab->stub_error = TRUE;
10366 return FALSE;
10367 }
10368
10369 if (br_entry->iter != htab->stub_iteration)
10370 {
10371 br_entry->iter = htab->stub_iteration;
10372 br_entry->offset = htab->brlt->size;
10373 htab->brlt->size += 8;
10374
10375 if (htab->relbrlt != NULL)
10376 htab->relbrlt->size += sizeof (Elf64_External_Rela);
10377 else if (info->emitrelocations)
10378 {
10379 htab->brlt->reloc_count += 1;
10380 htab->brlt->flags |= SEC_RELOC;
10381 }
10382 }
10383
10384 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
10385 off = (br_entry->offset
10386 + htab->brlt->output_offset
10387 + htab->brlt->output_section->vma
10388 - elf_gp (htab->brlt->output_section->owner)
10389 - htab->stub_group[stub_entry->id_sec->id].toc_off);
10390
10391 if (info->emitrelocations)
10392 {
10393 stub_entry->stub_sec->reloc_count += 1 + (PPC_HA (off) != 0);
10394 stub_entry->stub_sec->flags |= SEC_RELOC;
10395 }
10396
10397 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
10398 {
10399 size = 12;
10400 if (PPC_HA (off) != 0)
10401 size = 16;
10402 }
10403 else
10404 {
10405 size = 20;
10406 if (PPC_HA (off) != 0)
10407 size += 4;
10408
10409 if (PPC_HA (r2off) != 0)
10410 size += 4;
10411 }
10412 }
10413 else if (info->emitrelocations)
10414 {
10415 stub_entry->stub_sec->reloc_count += 1;
10416 stub_entry->stub_sec->flags |= SEC_RELOC;
10417 }
10418 }
10419
10420 stub_entry->stub_sec->size += size;
10421 return TRUE;
10422 }
10423
10424 /* Set up various things so that we can make a list of input sections
10425 for each output section included in the link. Returns -1 on error,
10426 0 when no stubs will be needed, and 1 on success. */
10427
10428 int
10429 ppc64_elf_setup_section_lists
10430 (struct bfd_link_info *info,
10431 asection *(*add_stub_section) (const char *, asection *),
10432 void (*layout_sections_again) (void))
10433 {
10434 bfd *input_bfd;
10435 int top_id, top_index, id;
10436 asection *section;
10437 asection **input_list;
10438 bfd_size_type amt;
10439 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10440
10441 if (htab == NULL)
10442 return -1;
10443 /* Stash our params away. */
10444 htab->add_stub_section = add_stub_section;
10445 htab->layout_sections_again = layout_sections_again;
10446
10447 if (htab->brlt == NULL)
10448 return 0;
10449
10450 /* Find the top input section id. */
10451 for (input_bfd = info->input_bfds, top_id = 3;
10452 input_bfd != NULL;
10453 input_bfd = input_bfd->link_next)
10454 {
10455 for (section = input_bfd->sections;
10456 section != NULL;
10457 section = section->next)
10458 {
10459 if (top_id < section->id)
10460 top_id = section->id;
10461 }
10462 }
10463
10464 htab->top_id = top_id;
10465 amt = sizeof (struct map_stub) * (top_id + 1);
10466 htab->stub_group = bfd_zmalloc (amt);
10467 if (htab->stub_group == NULL)
10468 return -1;
10469
10470 /* Set toc_off for com, und, abs and ind sections. */
10471 for (id = 0; id < 3; id++)
10472 htab->stub_group[id].toc_off = TOC_BASE_OFF;
10473
10474 /* We can't use output_bfd->section_count here to find the top output
10475 section index as some sections may have been removed, and
10476 strip_excluded_output_sections doesn't renumber the indices. */
10477 for (section = info->output_bfd->sections, top_index = 0;
10478 section != NULL;
10479 section = section->next)
10480 {
10481 if (top_index < section->index)
10482 top_index = section->index;
10483 }
10484
10485 htab->top_index = top_index;
10486 amt = sizeof (asection *) * (top_index + 1);
10487 input_list = bfd_zmalloc (amt);
10488 htab->input_list = input_list;
10489 if (input_list == NULL)
10490 return -1;
10491
10492 return 1;
10493 }
10494
10495 /* Set up for first pass at multitoc partitioning. */
10496
10497 void
10498 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
10499 {
10500 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10501
10502 elf_gp (info->output_bfd) = ppc64_elf_toc (info->output_bfd);
10503 htab->toc_curr = elf_gp (info->output_bfd);
10504 htab->toc_bfd = NULL;
10505 htab->toc_first_sec = NULL;
10506 }
10507
10508 /* The linker repeatedly calls this function for each TOC input section
10509 and linker generated GOT section. Group input bfds such that the toc
10510 within a group is less than 64k in size. */
10511
10512 bfd_boolean
10513 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
10514 {
10515 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10516 bfd_vma addr, off, limit;
10517
10518 if (htab == NULL)
10519 return FALSE;
10520
10521 if (!htab->second_toc_pass)
10522 {
10523 /* Keep track of the first .toc or .got section for this input bfd. */
10524 if (htab->toc_bfd != isec->owner)
10525 {
10526 htab->toc_bfd = isec->owner;
10527 htab->toc_first_sec = isec;
10528 }
10529
10530 addr = isec->output_offset + isec->output_section->vma;
10531 off = addr - htab->toc_curr;
10532 limit = 0x80008000;
10533 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
10534 limit = 0x10000;
10535 if (off + isec->size > limit)
10536 {
10537 addr = (htab->toc_first_sec->output_offset
10538 + htab->toc_first_sec->output_section->vma);
10539 htab->toc_curr = addr;
10540 }
10541
10542 /* toc_curr is the base address of this toc group. Set elf_gp
10543 for the input section to be the offset relative to the
10544 output toc base plus 0x8000. Making the input elf_gp an
10545 offset allows us to move the toc as a whole without
10546 recalculating input elf_gp. */
10547 off = htab->toc_curr - elf_gp (isec->output_section->owner);
10548 off += TOC_BASE_OFF;
10549
10550 /* Die if someone uses a linker script that doesn't keep input
10551 file .toc and .got together. */
10552 if (elf_gp (isec->owner) != 0
10553 && elf_gp (isec->owner) != off)
10554 return FALSE;
10555
10556 elf_gp (isec->owner) = off;
10557 return TRUE;
10558 }
10559
10560 /* During the second pass toc_first_sec points to the start of
10561 a toc group, and toc_curr is used to track the old elf_gp.
10562 We use toc_bfd to ensure we only look at each bfd once. */
10563 if (htab->toc_bfd == isec->owner)
10564 return TRUE;
10565 htab->toc_bfd = isec->owner;
10566
10567 if (htab->toc_first_sec == NULL
10568 || htab->toc_curr != elf_gp (isec->owner))
10569 {
10570 htab->toc_curr = elf_gp (isec->owner);
10571 htab->toc_first_sec = isec;
10572 }
10573 addr = (htab->toc_first_sec->output_offset
10574 + htab->toc_first_sec->output_section->vma);
10575 off = addr - elf_gp (isec->output_section->owner) + TOC_BASE_OFF;
10576 elf_gp (isec->owner) = off;
10577
10578 return TRUE;
10579 }
10580
10581 /* Called via elf_link_hash_traverse to merge GOT entries for global
10582 symbol H. */
10583
10584 static bfd_boolean
10585 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
10586 {
10587 if (h->root.type == bfd_link_hash_indirect)
10588 return TRUE;
10589
10590 merge_got_entries (&h->got.glist);
10591
10592 return TRUE;
10593 }
10594
10595 /* Called via elf_link_hash_traverse to allocate GOT entries for global
10596 symbol H. */
10597
10598 static bfd_boolean
10599 reallocate_got (struct elf_link_hash_entry *h, void *inf)
10600 {
10601 struct got_entry *gent;
10602
10603 if (h->root.type == bfd_link_hash_indirect)
10604 return TRUE;
10605
10606 for (gent = h->got.glist; gent != NULL; gent = gent->next)
10607 if (!gent->is_indirect)
10608 allocate_got (h, (struct bfd_link_info *) inf, gent);
10609 return TRUE;
10610 }
10611
10612 /* Called on the first multitoc pass after the last call to
10613 ppc64_elf_next_toc_section. This function removes duplicate GOT
10614 entries. */
10615
10616 bfd_boolean
10617 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
10618 {
10619 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10620 struct bfd *ibfd, *ibfd2;
10621 bfd_boolean done_something;
10622
10623 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
10624
10625 if (!htab->do_multi_toc)
10626 return FALSE;
10627
10628 /* Merge global sym got entries within a toc group. */
10629 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
10630
10631 /* And tlsld_got. */
10632 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10633 {
10634 struct got_entry *ent, *ent2;
10635
10636 if (!is_ppc64_elf (ibfd))
10637 continue;
10638
10639 ent = ppc64_tlsld_got (ibfd);
10640 if (!ent->is_indirect
10641 && ent->got.offset != (bfd_vma) -1)
10642 {
10643 for (ibfd2 = ibfd->link_next; ibfd2 != NULL; ibfd2 = ibfd2->link_next)
10644 {
10645 if (!is_ppc64_elf (ibfd2))
10646 continue;
10647
10648 ent2 = ppc64_tlsld_got (ibfd2);
10649 if (!ent2->is_indirect
10650 && ent2->got.offset != (bfd_vma) -1
10651 && elf_gp (ibfd2) == elf_gp (ibfd))
10652 {
10653 ent2->is_indirect = TRUE;
10654 ent2->got.ent = ent;
10655 }
10656 }
10657 }
10658 }
10659
10660 /* Zap sizes of got sections. */
10661 htab->reliplt->rawsize = htab->reliplt->size;
10662 htab->reliplt->size -= htab->got_reli_size;
10663 htab->got_reli_size = 0;
10664
10665 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10666 {
10667 asection *got, *relgot;
10668
10669 if (!is_ppc64_elf (ibfd))
10670 continue;
10671
10672 got = ppc64_elf_tdata (ibfd)->got;
10673 if (got != NULL)
10674 {
10675 got->rawsize = got->size;
10676 got->size = 0;
10677 relgot = ppc64_elf_tdata (ibfd)->relgot;
10678 relgot->rawsize = relgot->size;
10679 relgot->size = 0;
10680 }
10681 }
10682
10683 /* Now reallocate the got, local syms first. We don't need to
10684 allocate section contents again since we never increase size. */
10685 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10686 {
10687 struct got_entry **lgot_ents;
10688 struct got_entry **end_lgot_ents;
10689 struct plt_entry **local_plt;
10690 struct plt_entry **end_local_plt;
10691 unsigned char *lgot_masks;
10692 bfd_size_type locsymcount;
10693 Elf_Internal_Shdr *symtab_hdr;
10694 asection *s, *srel;
10695
10696 if (!is_ppc64_elf (ibfd))
10697 continue;
10698
10699 lgot_ents = elf_local_got_ents (ibfd);
10700 if (!lgot_ents)
10701 continue;
10702
10703 symtab_hdr = &elf_symtab_hdr (ibfd);
10704 locsymcount = symtab_hdr->sh_info;
10705 end_lgot_ents = lgot_ents + locsymcount;
10706 local_plt = (struct plt_entry **) end_lgot_ents;
10707 end_local_plt = local_plt + locsymcount;
10708 lgot_masks = (unsigned char *) end_local_plt;
10709 s = ppc64_elf_tdata (ibfd)->got;
10710 srel = ppc64_elf_tdata (ibfd)->relgot;
10711 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
10712 {
10713 struct got_entry *ent;
10714
10715 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
10716 {
10717 unsigned int num = 1;
10718 ent->got.offset = s->size;
10719 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
10720 num = 2;
10721 s->size += num * 8;
10722 if (info->shared)
10723 srel->size += num * sizeof (Elf64_External_Rela);
10724 else if ((*lgot_masks & PLT_IFUNC) != 0)
10725 {
10726 htab->reliplt->size
10727 += num * sizeof (Elf64_External_Rela);
10728 htab->got_reli_size
10729 += num * sizeof (Elf64_External_Rela);
10730 }
10731 }
10732 }
10733 }
10734
10735 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
10736
10737 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10738 {
10739 struct got_entry *ent;
10740
10741 if (!is_ppc64_elf (ibfd))
10742 continue;
10743
10744 ent = ppc64_tlsld_got (ibfd);
10745 if (!ent->is_indirect
10746 && ent->got.offset != (bfd_vma) -1)
10747 {
10748 asection *s = ppc64_elf_tdata (ibfd)->got;
10749 ent->got.offset = s->size;
10750 s->size += 16;
10751 if (info->shared)
10752 {
10753 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
10754 srel->size += sizeof (Elf64_External_Rela);
10755 }
10756 }
10757 }
10758
10759 done_something = htab->reliplt->rawsize != htab->reliplt->size;
10760 if (!done_something)
10761 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10762 {
10763 asection *got;
10764
10765 if (!is_ppc64_elf (ibfd))
10766 continue;
10767
10768 got = ppc64_elf_tdata (ibfd)->got;
10769 if (got != NULL)
10770 {
10771 done_something = got->rawsize != got->size;
10772 if (done_something)
10773 break;
10774 }
10775 }
10776
10777 if (done_something)
10778 (*htab->layout_sections_again) ();
10779
10780 /* Set up for second pass over toc sections to recalculate elf_gp
10781 on input sections. */
10782 htab->toc_bfd = NULL;
10783 htab->toc_first_sec = NULL;
10784 htab->second_toc_pass = TRUE;
10785 return done_something;
10786 }
10787
10788 /* Called after second pass of multitoc partitioning. */
10789
10790 void
10791 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
10792 {
10793 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10794
10795 /* After the second pass, toc_curr tracks the TOC offset used
10796 for code sections below in ppc64_elf_next_input_section. */
10797 htab->toc_curr = TOC_BASE_OFF;
10798 }
10799
10800 /* No toc references were found in ISEC. If the code in ISEC makes no
10801 calls, then there's no need to use toc adjusting stubs when branching
10802 into ISEC. Actually, indirect calls from ISEC are OK as they will
10803 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
10804 needed, and 2 if a cyclical call-graph was found but no other reason
10805 for a stub was detected. If called from the top level, a return of
10806 2 means the same as a return of 0. */
10807
10808 static int
10809 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
10810 {
10811 int ret;
10812
10813 /* Mark this section as checked. */
10814 isec->call_check_done = 1;
10815
10816 /* We know none of our code bearing sections will need toc stubs. */
10817 if ((isec->flags & SEC_LINKER_CREATED) != 0)
10818 return 0;
10819
10820 if (isec->size == 0)
10821 return 0;
10822
10823 if (isec->output_section == NULL)
10824 return 0;
10825
10826 ret = 0;
10827 if (isec->reloc_count != 0)
10828 {
10829 Elf_Internal_Rela *relstart, *rel;
10830 Elf_Internal_Sym *local_syms;
10831 struct ppc_link_hash_table *htab;
10832
10833 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
10834 info->keep_memory);
10835 if (relstart == NULL)
10836 return -1;
10837
10838 /* Look for branches to outside of this section. */
10839 local_syms = NULL;
10840 htab = ppc_hash_table (info);
10841 if (htab == NULL)
10842 return -1;
10843
10844 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
10845 {
10846 enum elf_ppc64_reloc_type r_type;
10847 unsigned long r_symndx;
10848 struct elf_link_hash_entry *h;
10849 struct ppc_link_hash_entry *eh;
10850 Elf_Internal_Sym *sym;
10851 asection *sym_sec;
10852 struct _opd_sec_data *opd;
10853 bfd_vma sym_value;
10854 bfd_vma dest;
10855
10856 r_type = ELF64_R_TYPE (rel->r_info);
10857 if (r_type != R_PPC64_REL24
10858 && r_type != R_PPC64_REL14
10859 && r_type != R_PPC64_REL14_BRTAKEN
10860 && r_type != R_PPC64_REL14_BRNTAKEN)
10861 continue;
10862
10863 r_symndx = ELF64_R_SYM (rel->r_info);
10864 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
10865 isec->owner))
10866 {
10867 ret = -1;
10868 break;
10869 }
10870
10871 /* Calls to dynamic lib functions go through a plt call stub
10872 that uses r2. */
10873 eh = (struct ppc_link_hash_entry *) h;
10874 if (eh != NULL
10875 && (eh->elf.plt.plist != NULL
10876 || (eh->oh != NULL
10877 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
10878 {
10879 ret = 1;
10880 break;
10881 }
10882
10883 if (sym_sec == NULL)
10884 /* Ignore other undefined symbols. */
10885 continue;
10886
10887 /* Assume branches to other sections not included in the
10888 link need stubs too, to cover -R and absolute syms. */
10889 if (sym_sec->output_section == NULL)
10890 {
10891 ret = 1;
10892 break;
10893 }
10894
10895 if (h == NULL)
10896 sym_value = sym->st_value;
10897 else
10898 {
10899 if (h->root.type != bfd_link_hash_defined
10900 && h->root.type != bfd_link_hash_defweak)
10901 abort ();
10902 sym_value = h->root.u.def.value;
10903 }
10904 sym_value += rel->r_addend;
10905
10906 /* If this branch reloc uses an opd sym, find the code section. */
10907 opd = get_opd_info (sym_sec);
10908 if (opd != NULL)
10909 {
10910 if (h == NULL && opd->adjust != NULL)
10911 {
10912 long adjust;
10913
10914 adjust = opd->adjust[sym->st_value / 8];
10915 if (adjust == -1)
10916 /* Assume deleted functions won't ever be called. */
10917 continue;
10918 sym_value += adjust;
10919 }
10920
10921 dest = opd_entry_value (sym_sec, sym_value, &sym_sec, NULL);
10922 if (dest == (bfd_vma) -1)
10923 continue;
10924 }
10925 else
10926 dest = (sym_value
10927 + sym_sec->output_offset
10928 + sym_sec->output_section->vma);
10929
10930 /* Ignore branch to self. */
10931 if (sym_sec == isec)
10932 continue;
10933
10934 /* If the called function uses the toc, we need a stub. */
10935 if (sym_sec->has_toc_reloc
10936 || sym_sec->makes_toc_func_call)
10937 {
10938 ret = 1;
10939 break;
10940 }
10941
10942 /* Assume any branch that needs a long branch stub might in fact
10943 need a plt_branch stub. A plt_branch stub uses r2. */
10944 else if (dest - (isec->output_offset
10945 + isec->output_section->vma
10946 + rel->r_offset) + (1 << 25) >= (2 << 25))
10947 {
10948 ret = 1;
10949 break;
10950 }
10951
10952 /* If calling back to a section in the process of being
10953 tested, we can't say for sure that no toc adjusting stubs
10954 are needed, so don't return zero. */
10955 else if (sym_sec->call_check_in_progress)
10956 ret = 2;
10957
10958 /* Branches to another section that itself doesn't have any TOC
10959 references are OK. Recursively call ourselves to check. */
10960 else if (!sym_sec->call_check_done)
10961 {
10962 int recur;
10963
10964 /* Mark current section as indeterminate, so that other
10965 sections that call back to current won't be marked as
10966 known. */
10967 isec->call_check_in_progress = 1;
10968 recur = toc_adjusting_stub_needed (info, sym_sec);
10969 isec->call_check_in_progress = 0;
10970
10971 if (recur != 0)
10972 {
10973 ret = recur;
10974 if (recur != 2)
10975 break;
10976 }
10977 }
10978 }
10979
10980 if (local_syms != NULL
10981 && (elf_symtab_hdr (isec->owner).contents
10982 != (unsigned char *) local_syms))
10983 free (local_syms);
10984 if (elf_section_data (isec)->relocs != relstart)
10985 free (relstart);
10986 }
10987
10988 if ((ret & 1) == 0
10989 && isec->map_head.s != NULL
10990 && (strcmp (isec->output_section->name, ".init") == 0
10991 || strcmp (isec->output_section->name, ".fini") == 0))
10992 {
10993 if (isec->map_head.s->has_toc_reloc
10994 || isec->map_head.s->makes_toc_func_call)
10995 ret = 1;
10996 else if (!isec->map_head.s->call_check_done)
10997 {
10998 int recur;
10999 isec->call_check_in_progress = 1;
11000 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
11001 isec->call_check_in_progress = 0;
11002 if (recur != 0)
11003 ret = recur;
11004 }
11005 }
11006
11007 if (ret == 1)
11008 isec->makes_toc_func_call = 1;
11009
11010 return ret;
11011 }
11012
11013 /* The linker repeatedly calls this function for each input section,
11014 in the order that input sections are linked into output sections.
11015 Build lists of input sections to determine groupings between which
11016 we may insert linker stubs. */
11017
11018 bfd_boolean
11019 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
11020 {
11021 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11022
11023 if (htab == NULL)
11024 return FALSE;
11025
11026 if ((isec->output_section->flags & SEC_CODE) != 0
11027 && isec->output_section->index <= htab->top_index)
11028 {
11029 asection **list = htab->input_list + isec->output_section->index;
11030 /* Steal the link_sec pointer for our list. */
11031 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
11032 /* This happens to make the list in reverse order,
11033 which is what we want. */
11034 PREV_SEC (isec) = *list;
11035 *list = isec;
11036 }
11037
11038 if (htab->multi_toc_needed)
11039 {
11040 /* If a code section has a function that uses the TOC then we need
11041 to use the right TOC (obviously). Also, make sure that .opd gets
11042 the correct TOC value for R_PPC64_TOC relocs that don't have or
11043 can't find their function symbol (shouldn't ever happen now).
11044 Also specially treat .fixup for the linux kernel. .fixup
11045 contains branches, but only back to the function that hit an
11046 exception. */
11047 if (isec->has_toc_reloc
11048 || (isec->flags & SEC_CODE) == 0
11049 || strcmp (isec->name, ".fixup") == 0)
11050 {
11051 if (elf_gp (isec->owner) != 0)
11052 htab->toc_curr = elf_gp (isec->owner);
11053 }
11054 else
11055 {
11056 if (!isec->call_check_done
11057 && toc_adjusting_stub_needed (info, isec) < 0)
11058 return FALSE;
11059 /* If we make a local call from this section, ie. a branch
11060 without a following nop, then we have no place to put a
11061 toc restoring insn. We must use the same toc group as
11062 the callee.
11063 Testing makes_toc_func_call actually tests for *any*
11064 calls to functions that need a good toc pointer. A more
11065 precise test would be better, as this one will set
11066 incorrect values for pasted .init/.fini fragments.
11067 (Fixed later in check_pasted_section.) */
11068 if (isec->makes_toc_func_call
11069 && elf_gp (isec->owner) != 0)
11070 htab->toc_curr = elf_gp (isec->owner);
11071 }
11072 }
11073
11074 /* Functions that don't use the TOC can belong in any TOC group.
11075 Use the last TOC base. */
11076 htab->stub_group[isec->id].toc_off = htab->toc_curr;
11077 return TRUE;
11078 }
11079
11080 /* Check that all .init and .fini sections use the same toc, if they
11081 have toc relocs. */
11082
11083 static bfd_boolean
11084 check_pasted_section (struct bfd_link_info *info, const char *name)
11085 {
11086 asection *o = bfd_get_section_by_name (info->output_bfd, name);
11087
11088 if (o != NULL)
11089 {
11090 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11091 bfd_vma toc_off = 0;
11092 asection *i;
11093
11094 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11095 if (i->has_toc_reloc)
11096 {
11097 if (toc_off == 0)
11098 toc_off = htab->stub_group[i->id].toc_off;
11099 else if (toc_off != htab->stub_group[i->id].toc_off)
11100 return FALSE;
11101 }
11102
11103 if (toc_off == 0)
11104 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11105 if (i->makes_toc_func_call)
11106 {
11107 toc_off = htab->stub_group[i->id].toc_off;
11108 break;
11109 }
11110
11111 /* Make sure the whole pasted function uses the same toc offset. */
11112 if (toc_off != 0)
11113 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
11114 htab->stub_group[i->id].toc_off = toc_off;
11115 }
11116 return TRUE;
11117 }
11118
11119 bfd_boolean
11120 ppc64_elf_check_init_fini (struct bfd_link_info *info)
11121 {
11122 return (check_pasted_section (info, ".init")
11123 & check_pasted_section (info, ".fini"));
11124 }
11125
11126 /* See whether we can group stub sections together. Grouping stub
11127 sections may result in fewer stubs. More importantly, we need to
11128 put all .init* and .fini* stubs at the beginning of the .init or
11129 .fini output sections respectively, because glibc splits the
11130 _init and _fini functions into multiple parts. Putting a stub in
11131 the middle of a function is not a good idea. */
11132
11133 static void
11134 group_sections (struct ppc_link_hash_table *htab,
11135 bfd_size_type stub_group_size,
11136 bfd_boolean stubs_always_before_branch)
11137 {
11138 asection **list;
11139 bfd_size_type stub14_group_size;
11140 bfd_boolean suppress_size_errors;
11141
11142 suppress_size_errors = FALSE;
11143 stub14_group_size = stub_group_size;
11144 if (stub_group_size == 1)
11145 {
11146 /* Default values. */
11147 if (stubs_always_before_branch)
11148 {
11149 stub_group_size = 0x1e00000;
11150 stub14_group_size = 0x7800;
11151 }
11152 else
11153 {
11154 stub_group_size = 0x1c00000;
11155 stub14_group_size = 0x7000;
11156 }
11157 suppress_size_errors = TRUE;
11158 }
11159
11160 list = htab->input_list + htab->top_index;
11161 do
11162 {
11163 asection *tail = *list;
11164 while (tail != NULL)
11165 {
11166 asection *curr;
11167 asection *prev;
11168 bfd_size_type total;
11169 bfd_boolean big_sec;
11170 bfd_vma curr_toc;
11171
11172 curr = tail;
11173 total = tail->size;
11174 big_sec = total > (ppc64_elf_section_data (tail) != NULL
11175 && ppc64_elf_section_data (tail)->has_14bit_branch
11176 ? stub14_group_size : stub_group_size);
11177 if (big_sec && !suppress_size_errors)
11178 (*_bfd_error_handler) (_("%B section %A exceeds stub group size"),
11179 tail->owner, tail);
11180 curr_toc = htab->stub_group[tail->id].toc_off;
11181
11182 while ((prev = PREV_SEC (curr)) != NULL
11183 && ((total += curr->output_offset - prev->output_offset)
11184 < (ppc64_elf_section_data (prev) != NULL
11185 && ppc64_elf_section_data (prev)->has_14bit_branch
11186 ? stub14_group_size : stub_group_size))
11187 && htab->stub_group[prev->id].toc_off == curr_toc)
11188 curr = prev;
11189
11190 /* OK, the size from the start of CURR to the end is less
11191 than stub_group_size and thus can be handled by one stub
11192 section. (or the tail section is itself larger than
11193 stub_group_size, in which case we may be toast.) We
11194 should really be keeping track of the total size of stubs
11195 added here, as stubs contribute to the final output
11196 section size. That's a little tricky, and this way will
11197 only break if stubs added make the total size more than
11198 2^25, ie. for the default stub_group_size, if stubs total
11199 more than 2097152 bytes, or nearly 75000 plt call stubs. */
11200 do
11201 {
11202 prev = PREV_SEC (tail);
11203 /* Set up this stub group. */
11204 htab->stub_group[tail->id].link_sec = curr;
11205 }
11206 while (tail != curr && (tail = prev) != NULL);
11207
11208 /* But wait, there's more! Input sections up to stub_group_size
11209 bytes before the stub section can be handled by it too.
11210 Don't do this if we have a really large section after the
11211 stubs, as adding more stubs increases the chance that
11212 branches may not reach into the stub section. */
11213 if (!stubs_always_before_branch && !big_sec)
11214 {
11215 total = 0;
11216 while (prev != NULL
11217 && ((total += tail->output_offset - prev->output_offset)
11218 < (ppc64_elf_section_data (prev) != NULL
11219 && ppc64_elf_section_data (prev)->has_14bit_branch
11220 ? stub14_group_size : stub_group_size))
11221 && htab->stub_group[prev->id].toc_off == curr_toc)
11222 {
11223 tail = prev;
11224 prev = PREV_SEC (tail);
11225 htab->stub_group[tail->id].link_sec = curr;
11226 }
11227 }
11228 tail = prev;
11229 }
11230 }
11231 while (list-- != htab->input_list);
11232 free (htab->input_list);
11233 #undef PREV_SEC
11234 }
11235
11236 static const unsigned char glink_eh_frame_cie[] =
11237 {
11238 0, 0, 0, 16, /* length. */
11239 0, 0, 0, 0, /* id. */
11240 1, /* CIE version. */
11241 'z', 'R', 0, /* Augmentation string. */
11242 4, /* Code alignment. */
11243 0x78, /* Data alignment. */
11244 65, /* RA reg. */
11245 1, /* Augmentation size. */
11246 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
11247 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
11248 };
11249
11250 /* Stripping output sections is normally done before dynamic section
11251 symbols have been allocated. This function is called later, and
11252 handles cases like htab->brlt which is mapped to its own output
11253 section. */
11254
11255 static void
11256 maybe_strip_output (struct bfd_link_info *info, asection *isec)
11257 {
11258 if (isec->size == 0
11259 && isec->output_section->size == 0
11260 && !bfd_section_removed_from_list (info->output_bfd,
11261 isec->output_section)
11262 && elf_section_data (isec->output_section)->dynindx == 0)
11263 {
11264 isec->output_section->flags |= SEC_EXCLUDE;
11265 bfd_section_list_remove (info->output_bfd, isec->output_section);
11266 info->output_bfd->section_count--;
11267 }
11268 }
11269
11270 /* Determine and set the size of the stub section for a final link.
11271
11272 The basic idea here is to examine all the relocations looking for
11273 PC-relative calls to a target that is unreachable with a "bl"
11274 instruction. */
11275
11276 bfd_boolean
11277 ppc64_elf_size_stubs (struct bfd_link_info *info, bfd_signed_vma group_size,
11278 bfd_boolean plt_static_chain, int plt_thread_safe,
11279 int plt_stub_align)
11280 {
11281 bfd_size_type stub_group_size;
11282 bfd_boolean stubs_always_before_branch;
11283 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11284
11285 if (htab == NULL)
11286 return FALSE;
11287
11288 htab->plt_static_chain = plt_static_chain;
11289 htab->plt_stub_align = plt_stub_align;
11290 if (plt_thread_safe == -1)
11291 {
11292 const char *const thread_starter[] =
11293 {
11294 "pthread_create",
11295 /* libstdc++ */
11296 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
11297 /* librt */
11298 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
11299 "mq_notify", "create_timer",
11300 /* libanl */
11301 "getaddrinfo_a",
11302 /* libgomp */
11303 "GOMP_parallel_start",
11304 "GOMP_parallel_loop_static_start",
11305 "GOMP_parallel_loop_dynamic_start",
11306 "GOMP_parallel_loop_guided_start",
11307 "GOMP_parallel_loop_runtime_start",
11308 "GOMP_parallel_sections_start",
11309 };
11310 unsigned i;
11311
11312 for (i = 0; i < sizeof (thread_starter)/ sizeof (thread_starter[0]); i++)
11313 {
11314 struct elf_link_hash_entry *h;
11315 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
11316 FALSE, FALSE, TRUE);
11317 plt_thread_safe = h != NULL && h->ref_regular;
11318 if (plt_thread_safe)
11319 break;
11320 }
11321 }
11322 htab->plt_thread_safe = plt_thread_safe;
11323 stubs_always_before_branch = group_size < 0;
11324 if (group_size < 0)
11325 stub_group_size = -group_size;
11326 else
11327 stub_group_size = group_size;
11328
11329 group_sections (htab, stub_group_size, stubs_always_before_branch);
11330
11331 while (1)
11332 {
11333 bfd *input_bfd;
11334 unsigned int bfd_indx;
11335 asection *stub_sec;
11336
11337 htab->stub_iteration += 1;
11338
11339 for (input_bfd = info->input_bfds, bfd_indx = 0;
11340 input_bfd != NULL;
11341 input_bfd = input_bfd->link_next, bfd_indx++)
11342 {
11343 Elf_Internal_Shdr *symtab_hdr;
11344 asection *section;
11345 Elf_Internal_Sym *local_syms = NULL;
11346
11347 if (!is_ppc64_elf (input_bfd))
11348 continue;
11349
11350 /* We'll need the symbol table in a second. */
11351 symtab_hdr = &elf_symtab_hdr (input_bfd);
11352 if (symtab_hdr->sh_info == 0)
11353 continue;
11354
11355 /* Walk over each section attached to the input bfd. */
11356 for (section = input_bfd->sections;
11357 section != NULL;
11358 section = section->next)
11359 {
11360 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
11361
11362 /* If there aren't any relocs, then there's nothing more
11363 to do. */
11364 if ((section->flags & SEC_RELOC) == 0
11365 || (section->flags & SEC_ALLOC) == 0
11366 || (section->flags & SEC_LOAD) == 0
11367 || (section->flags & SEC_CODE) == 0
11368 || section->reloc_count == 0)
11369 continue;
11370
11371 /* If this section is a link-once section that will be
11372 discarded, then don't create any stubs. */
11373 if (section->output_section == NULL
11374 || section->output_section->owner != info->output_bfd)
11375 continue;
11376
11377 /* Get the relocs. */
11378 internal_relocs
11379 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
11380 info->keep_memory);
11381 if (internal_relocs == NULL)
11382 goto error_ret_free_local;
11383
11384 /* Now examine each relocation. */
11385 irela = internal_relocs;
11386 irelaend = irela + section->reloc_count;
11387 for (; irela < irelaend; irela++)
11388 {
11389 enum elf_ppc64_reloc_type r_type;
11390 unsigned int r_indx;
11391 enum ppc_stub_type stub_type;
11392 struct ppc_stub_hash_entry *stub_entry;
11393 asection *sym_sec, *code_sec;
11394 bfd_vma sym_value, code_value;
11395 bfd_vma destination;
11396 bfd_boolean ok_dest;
11397 struct ppc_link_hash_entry *hash;
11398 struct ppc_link_hash_entry *fdh;
11399 struct elf_link_hash_entry *h;
11400 Elf_Internal_Sym *sym;
11401 char *stub_name;
11402 const asection *id_sec;
11403 struct _opd_sec_data *opd;
11404 struct plt_entry *plt_ent;
11405
11406 r_type = ELF64_R_TYPE (irela->r_info);
11407 r_indx = ELF64_R_SYM (irela->r_info);
11408
11409 if (r_type >= R_PPC64_max)
11410 {
11411 bfd_set_error (bfd_error_bad_value);
11412 goto error_ret_free_internal;
11413 }
11414
11415 /* Only look for stubs on branch instructions. */
11416 if (r_type != R_PPC64_REL24
11417 && r_type != R_PPC64_REL14
11418 && r_type != R_PPC64_REL14_BRTAKEN
11419 && r_type != R_PPC64_REL14_BRNTAKEN)
11420 continue;
11421
11422 /* Now determine the call target, its name, value,
11423 section. */
11424 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
11425 r_indx, input_bfd))
11426 goto error_ret_free_internal;
11427 hash = (struct ppc_link_hash_entry *) h;
11428
11429 ok_dest = FALSE;
11430 fdh = NULL;
11431 sym_value = 0;
11432 if (hash == NULL)
11433 {
11434 sym_value = sym->st_value;
11435 ok_dest = TRUE;
11436 }
11437 else if (hash->elf.root.type == bfd_link_hash_defined
11438 || hash->elf.root.type == bfd_link_hash_defweak)
11439 {
11440 sym_value = hash->elf.root.u.def.value;
11441 if (sym_sec->output_section != NULL)
11442 ok_dest = TRUE;
11443 }
11444 else if (hash->elf.root.type == bfd_link_hash_undefweak
11445 || hash->elf.root.type == bfd_link_hash_undefined)
11446 {
11447 /* Recognise an old ABI func code entry sym, and
11448 use the func descriptor sym instead if it is
11449 defined. */
11450 if (hash->elf.root.root.string[0] == '.'
11451 && (fdh = lookup_fdh (hash, htab)) != NULL)
11452 {
11453 if (fdh->elf.root.type == bfd_link_hash_defined
11454 || fdh->elf.root.type == bfd_link_hash_defweak)
11455 {
11456 sym_sec = fdh->elf.root.u.def.section;
11457 sym_value = fdh->elf.root.u.def.value;
11458 if (sym_sec->output_section != NULL)
11459 ok_dest = TRUE;
11460 }
11461 else
11462 fdh = NULL;
11463 }
11464 }
11465 else
11466 {
11467 bfd_set_error (bfd_error_bad_value);
11468 goto error_ret_free_internal;
11469 }
11470
11471 destination = 0;
11472 if (ok_dest)
11473 {
11474 sym_value += irela->r_addend;
11475 destination = (sym_value
11476 + sym_sec->output_offset
11477 + sym_sec->output_section->vma);
11478 }
11479
11480 code_sec = sym_sec;
11481 code_value = sym_value;
11482 opd = get_opd_info (sym_sec);
11483 if (opd != NULL)
11484 {
11485 bfd_vma dest;
11486
11487 if (hash == NULL && opd->adjust != NULL)
11488 {
11489 long adjust = opd->adjust[sym_value / 8];
11490 if (adjust == -1)
11491 continue;
11492 code_value += adjust;
11493 sym_value += adjust;
11494 }
11495 dest = opd_entry_value (sym_sec, sym_value,
11496 &code_sec, &code_value);
11497 if (dest != (bfd_vma) -1)
11498 {
11499 destination = dest;
11500 if (fdh != NULL)
11501 {
11502 /* Fixup old ABI sym to point at code
11503 entry. */
11504 hash->elf.root.type = bfd_link_hash_defweak;
11505 hash->elf.root.u.def.section = code_sec;
11506 hash->elf.root.u.def.value = code_value;
11507 }
11508 }
11509 }
11510
11511 /* Determine what (if any) linker stub is needed. */
11512 plt_ent = NULL;
11513 stub_type = ppc_type_of_stub (section, irela, &hash,
11514 &plt_ent, destination);
11515
11516 if (stub_type != ppc_stub_plt_call)
11517 {
11518 /* Check whether we need a TOC adjusting stub.
11519 Since the linker pastes together pieces from
11520 different object files when creating the
11521 _init and _fini functions, it may be that a
11522 call to what looks like a local sym is in
11523 fact a call needing a TOC adjustment. */
11524 if (code_sec != NULL
11525 && code_sec->output_section != NULL
11526 && (htab->stub_group[code_sec->id].toc_off
11527 != htab->stub_group[section->id].toc_off)
11528 && (code_sec->has_toc_reloc
11529 || code_sec->makes_toc_func_call))
11530 stub_type = ppc_stub_long_branch_r2off;
11531 }
11532
11533 if (stub_type == ppc_stub_none)
11534 continue;
11535
11536 /* __tls_get_addr calls might be eliminated. */
11537 if (stub_type != ppc_stub_plt_call
11538 && hash != NULL
11539 && (hash == htab->tls_get_addr
11540 || hash == htab->tls_get_addr_fd)
11541 && section->has_tls_reloc
11542 && irela != internal_relocs)
11543 {
11544 /* Get tls info. */
11545 unsigned char *tls_mask;
11546
11547 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
11548 irela - 1, input_bfd))
11549 goto error_ret_free_internal;
11550 if (*tls_mask != 0)
11551 continue;
11552 }
11553
11554 if (stub_type == ppc_stub_plt_call
11555 && irela + 1 < irelaend
11556 && irela[1].r_offset == irela->r_offset + 4
11557 && ELF64_R_TYPE (irela[1].r_info) == R_PPC64_TOCSAVE)
11558 {
11559 if (!tocsave_find (htab, INSERT,
11560 &local_syms, irela + 1, input_bfd))
11561 goto error_ret_free_internal;
11562 }
11563 else if (stub_type == ppc_stub_plt_call)
11564 stub_type = ppc_stub_plt_call_r2save;
11565
11566 /* Support for grouping stub sections. */
11567 id_sec = htab->stub_group[section->id].link_sec;
11568
11569 /* Get the name of this stub. */
11570 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
11571 if (!stub_name)
11572 goto error_ret_free_internal;
11573
11574 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
11575 stub_name, FALSE, FALSE);
11576 if (stub_entry != NULL)
11577 {
11578 /* The proper stub has already been created. */
11579 free (stub_name);
11580 if (stub_type == ppc_stub_plt_call_r2save)
11581 stub_entry->stub_type = stub_type;
11582 continue;
11583 }
11584
11585 stub_entry = ppc_add_stub (stub_name, section, info);
11586 if (stub_entry == NULL)
11587 {
11588 free (stub_name);
11589 error_ret_free_internal:
11590 if (elf_section_data (section)->relocs == NULL)
11591 free (internal_relocs);
11592 error_ret_free_local:
11593 if (local_syms != NULL
11594 && (symtab_hdr->contents
11595 != (unsigned char *) local_syms))
11596 free (local_syms);
11597 return FALSE;
11598 }
11599
11600 stub_entry->stub_type = stub_type;
11601 if (stub_type != ppc_stub_plt_call
11602 && stub_type != ppc_stub_plt_call_r2save)
11603 {
11604 stub_entry->target_value = code_value;
11605 stub_entry->target_section = code_sec;
11606 }
11607 else
11608 {
11609 stub_entry->target_value = sym_value;
11610 stub_entry->target_section = sym_sec;
11611 }
11612 stub_entry->h = hash;
11613 stub_entry->plt_ent = plt_ent;
11614 stub_entry->addend = irela->r_addend;
11615
11616 if (stub_entry->h != NULL)
11617 htab->stub_globals += 1;
11618 }
11619
11620 /* We're done with the internal relocs, free them. */
11621 if (elf_section_data (section)->relocs != internal_relocs)
11622 free (internal_relocs);
11623 }
11624
11625 if (local_syms != NULL
11626 && symtab_hdr->contents != (unsigned char *) local_syms)
11627 {
11628 if (!info->keep_memory)
11629 free (local_syms);
11630 else
11631 symtab_hdr->contents = (unsigned char *) local_syms;
11632 }
11633 }
11634
11635 /* We may have added some stubs. Find out the new size of the
11636 stub sections. */
11637 for (stub_sec = htab->stub_bfd->sections;
11638 stub_sec != NULL;
11639 stub_sec = stub_sec->next)
11640 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11641 {
11642 stub_sec->rawsize = stub_sec->size;
11643 stub_sec->size = 0;
11644 stub_sec->reloc_count = 0;
11645 stub_sec->flags &= ~SEC_RELOC;
11646 }
11647
11648 htab->brlt->size = 0;
11649 htab->brlt->reloc_count = 0;
11650 htab->brlt->flags &= ~SEC_RELOC;
11651 if (htab->relbrlt != NULL)
11652 htab->relbrlt->size = 0;
11653
11654 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
11655
11656 if (info->emitrelocations
11657 && htab->glink != NULL && htab->glink->size != 0)
11658 {
11659 htab->glink->reloc_count = 1;
11660 htab->glink->flags |= SEC_RELOC;
11661 }
11662
11663 if (htab->glink_eh_frame != NULL
11664 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
11665 && (htab->glink_eh_frame->flags & SEC_EXCLUDE) == 0)
11666 {
11667 bfd_size_type size = 0;
11668
11669 for (stub_sec = htab->stub_bfd->sections;
11670 stub_sec != NULL;
11671 stub_sec = stub_sec->next)
11672 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11673 size += 20;
11674 if (htab->glink != NULL && htab->glink->size != 0)
11675 size += 24;
11676 if (size != 0)
11677 size += sizeof (glink_eh_frame_cie);
11678 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11679 htab->glink_eh_frame->size = size;
11680 }
11681
11682 if (htab->plt_stub_align != 0)
11683 for (stub_sec = htab->stub_bfd->sections;
11684 stub_sec != NULL;
11685 stub_sec = stub_sec->next)
11686 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11687 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
11688 & (-1 << htab->plt_stub_align));
11689
11690 for (stub_sec = htab->stub_bfd->sections;
11691 stub_sec != NULL;
11692 stub_sec = stub_sec->next)
11693 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11694 && stub_sec->rawsize != stub_sec->size)
11695 break;
11696
11697 /* Exit from this loop when no stubs have been added, and no stubs
11698 have changed size. */
11699 if (stub_sec == NULL
11700 && (htab->glink_eh_frame == NULL
11701 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
11702 break;
11703
11704 /* Ask the linker to do its stuff. */
11705 (*htab->layout_sections_again) ();
11706 }
11707
11708 maybe_strip_output (info, htab->brlt);
11709 if (htab->glink_eh_frame != NULL)
11710 maybe_strip_output (info, htab->glink_eh_frame);
11711
11712 return TRUE;
11713 }
11714
11715 /* Called after we have determined section placement. If sections
11716 move, we'll be called again. Provide a value for TOCstart. */
11717
11718 bfd_vma
11719 ppc64_elf_toc (bfd *obfd)
11720 {
11721 asection *s;
11722 bfd_vma TOCstart;
11723
11724 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
11725 order. The TOC starts where the first of these sections starts. */
11726 s = bfd_get_section_by_name (obfd, ".got");
11727 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11728 s = bfd_get_section_by_name (obfd, ".toc");
11729 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11730 s = bfd_get_section_by_name (obfd, ".tocbss");
11731 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11732 s = bfd_get_section_by_name (obfd, ".plt");
11733 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
11734 {
11735 /* This may happen for
11736 o references to TOC base (SYM@toc / TOC[tc0]) without a
11737 .toc directive
11738 o bad linker script
11739 o --gc-sections and empty TOC sections
11740
11741 FIXME: Warn user? */
11742
11743 /* Look for a likely section. We probably won't even be
11744 using TOCstart. */
11745 for (s = obfd->sections; s != NULL; s = s->next)
11746 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
11747 | SEC_EXCLUDE))
11748 == (SEC_ALLOC | SEC_SMALL_DATA))
11749 break;
11750 if (s == NULL)
11751 for (s = obfd->sections; s != NULL; s = s->next)
11752 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
11753 == (SEC_ALLOC | SEC_SMALL_DATA))
11754 break;
11755 if (s == NULL)
11756 for (s = obfd->sections; s != NULL; s = s->next)
11757 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
11758 == SEC_ALLOC)
11759 break;
11760 if (s == NULL)
11761 for (s = obfd->sections; s != NULL; s = s->next)
11762 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
11763 break;
11764 }
11765
11766 TOCstart = 0;
11767 if (s != NULL)
11768 TOCstart = s->output_section->vma + s->output_offset;
11769
11770 return TOCstart;
11771 }
11772
11773 /* Build all the stubs associated with the current output file.
11774 The stubs are kept in a hash table attached to the main linker
11775 hash table. This function is called via gldelf64ppc_finish. */
11776
11777 bfd_boolean
11778 ppc64_elf_build_stubs (bfd_boolean emit_stub_syms,
11779 struct bfd_link_info *info,
11780 char **stats)
11781 {
11782 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11783 asection *stub_sec;
11784 bfd_byte *p;
11785 int stub_sec_count = 0;
11786
11787 if (htab == NULL)
11788 return FALSE;
11789
11790 htab->emit_stub_syms = emit_stub_syms;
11791
11792 /* Allocate memory to hold the linker stubs. */
11793 for (stub_sec = htab->stub_bfd->sections;
11794 stub_sec != NULL;
11795 stub_sec = stub_sec->next)
11796 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0
11797 && stub_sec->size != 0)
11798 {
11799 stub_sec->contents = bfd_zalloc (htab->stub_bfd, stub_sec->size);
11800 if (stub_sec->contents == NULL)
11801 return FALSE;
11802 /* We want to check that built size is the same as calculated
11803 size. rawsize is a convenient location to use. */
11804 stub_sec->rawsize = stub_sec->size;
11805 stub_sec->size = 0;
11806 }
11807
11808 if (htab->glink != NULL && htab->glink->size != 0)
11809 {
11810 unsigned int indx;
11811 bfd_vma plt0;
11812
11813 /* Build the .glink plt call stub. */
11814 if (htab->emit_stub_syms)
11815 {
11816 struct elf_link_hash_entry *h;
11817 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
11818 TRUE, FALSE, FALSE);
11819 if (h == NULL)
11820 return FALSE;
11821 if (h->root.type == bfd_link_hash_new)
11822 {
11823 h->root.type = bfd_link_hash_defined;
11824 h->root.u.def.section = htab->glink;
11825 h->root.u.def.value = 8;
11826 h->ref_regular = 1;
11827 h->def_regular = 1;
11828 h->ref_regular_nonweak = 1;
11829 h->forced_local = 1;
11830 h->non_elf = 0;
11831 }
11832 }
11833 plt0 = htab->plt->output_section->vma + htab->plt->output_offset - 16;
11834 if (info->emitrelocations)
11835 {
11836 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
11837 if (r == NULL)
11838 return FALSE;
11839 r->r_offset = (htab->glink->output_offset
11840 + htab->glink->output_section->vma);
11841 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
11842 r->r_addend = plt0;
11843 }
11844 p = htab->glink->contents;
11845 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
11846 bfd_put_64 (htab->glink->owner, plt0, p);
11847 p += 8;
11848 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
11849 p += 4;
11850 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
11851 p += 4;
11852 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
11853 p += 4;
11854 bfd_put_32 (htab->glink->owner, LD_R2_M16R11, p);
11855 p += 4;
11856 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
11857 p += 4;
11858 bfd_put_32 (htab->glink->owner, ADD_R12_R2_R11, p);
11859 p += 4;
11860 bfd_put_32 (htab->glink->owner, LD_R11_0R12, p);
11861 p += 4;
11862 bfd_put_32 (htab->glink->owner, LD_R2_0R12 | 8, p);
11863 p += 4;
11864 bfd_put_32 (htab->glink->owner, MTCTR_R11, p);
11865 p += 4;
11866 bfd_put_32 (htab->glink->owner, LD_R11_0R12 | 16, p);
11867 p += 4;
11868 bfd_put_32 (htab->glink->owner, BCTR, p);
11869 p += 4;
11870 while (p - htab->glink->contents < GLINK_CALL_STUB_SIZE)
11871 {
11872 bfd_put_32 (htab->glink->owner, NOP, p);
11873 p += 4;
11874 }
11875
11876 /* Build the .glink lazy link call stubs. */
11877 indx = 0;
11878 while (p < htab->glink->contents + htab->glink->size)
11879 {
11880 if (indx < 0x8000)
11881 {
11882 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
11883 p += 4;
11884 }
11885 else
11886 {
11887 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
11888 p += 4;
11889 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx), p);
11890 p += 4;
11891 }
11892 bfd_put_32 (htab->glink->owner,
11893 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
11894 indx++;
11895 p += 4;
11896 }
11897 htab->glink->rawsize = p - htab->glink->contents;
11898 }
11899
11900 if (htab->brlt->size != 0)
11901 {
11902 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
11903 htab->brlt->size);
11904 if (htab->brlt->contents == NULL)
11905 return FALSE;
11906 }
11907 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
11908 {
11909 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
11910 htab->relbrlt->size);
11911 if (htab->relbrlt->contents == NULL)
11912 return FALSE;
11913 }
11914
11915 if (htab->glink_eh_frame != NULL
11916 && htab->glink_eh_frame->size != 0)
11917 {
11918 bfd_vma val;
11919
11920 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
11921 if (p == NULL)
11922 return FALSE;
11923 htab->glink_eh_frame->contents = p;
11924
11925 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
11926
11927 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
11928 /* CIE length (rewrite in case little-endian). */
11929 bfd_put_32 (htab->elf.dynobj, sizeof (glink_eh_frame_cie) - 4, p);
11930 p += sizeof (glink_eh_frame_cie);
11931
11932 for (stub_sec = htab->stub_bfd->sections;
11933 stub_sec != NULL;
11934 stub_sec = stub_sec->next)
11935 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
11936 {
11937 /* FDE length. */
11938 bfd_put_32 (htab->elf.dynobj, 16, p);
11939 p += 4;
11940 /* CIE pointer. */
11941 val = p - htab->glink_eh_frame->contents;
11942 bfd_put_32 (htab->elf.dynobj, val, p);
11943 p += 4;
11944 /* Offset to stub section. */
11945 val = (stub_sec->output_section->vma
11946 + stub_sec->output_offset);
11947 val -= (htab->glink_eh_frame->output_section->vma
11948 + htab->glink_eh_frame->output_offset);
11949 val -= p - htab->glink_eh_frame->contents;
11950 if (val + 0x80000000 > 0xffffffff)
11951 {
11952 info->callbacks->einfo
11953 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
11954 stub_sec->name);
11955 return FALSE;
11956 }
11957 bfd_put_32 (htab->elf.dynobj, val, p);
11958 p += 4;
11959 /* stub section size. */
11960 bfd_put_32 (htab->elf.dynobj, stub_sec->rawsize, p);
11961 p += 4;
11962 /* Augmentation. */
11963 p += 1;
11964 /* Pad. */
11965 p += 3;
11966 }
11967 if (htab->glink != NULL && htab->glink->size != 0)
11968 {
11969 /* FDE length. */
11970 bfd_put_32 (htab->elf.dynobj, 20, p);
11971 p += 4;
11972 /* CIE pointer. */
11973 val = p - htab->glink_eh_frame->contents;
11974 bfd_put_32 (htab->elf.dynobj, val, p);
11975 p += 4;
11976 /* Offset to .glink. */
11977 val = (htab->glink->output_section->vma
11978 + htab->glink->output_offset
11979 + 8);
11980 val -= (htab->glink_eh_frame->output_section->vma
11981 + htab->glink_eh_frame->output_offset);
11982 val -= p - htab->glink_eh_frame->contents;
11983 if (val + 0x80000000 > 0xffffffff)
11984 {
11985 info->callbacks->einfo
11986 (_("%P: %s offset too large for .eh_frame sdata4 encoding"),
11987 htab->glink->name);
11988 return FALSE;
11989 }
11990 bfd_put_32 (htab->elf.dynobj, val, p);
11991 p += 4;
11992 /* .glink size. */
11993 bfd_put_32 (htab->elf.dynobj, htab->glink->rawsize - 8, p);
11994 p += 4;
11995 /* Augmentation. */
11996 p += 1;
11997
11998 *p++ = DW_CFA_advance_loc + 1;
11999 *p++ = DW_CFA_register;
12000 *p++ = 65;
12001 *p++ = 12;
12002 *p++ = DW_CFA_advance_loc + 4;
12003 *p++ = DW_CFA_restore_extended;
12004 *p++ = 65;
12005 }
12006 htab->glink_eh_frame->size = p - htab->glink_eh_frame->contents;
12007 }
12008
12009 /* Build the stubs as directed by the stub hash table. */
12010 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
12011
12012 if (htab->relbrlt != NULL)
12013 htab->relbrlt->reloc_count = 0;
12014
12015 if (htab->plt_stub_align != 0)
12016 for (stub_sec = htab->stub_bfd->sections;
12017 stub_sec != NULL;
12018 stub_sec = stub_sec->next)
12019 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12020 stub_sec->size = ((stub_sec->size + (1 << htab->plt_stub_align) - 1)
12021 & (-1 << htab->plt_stub_align));
12022
12023 for (stub_sec = htab->stub_bfd->sections;
12024 stub_sec != NULL;
12025 stub_sec = stub_sec->next)
12026 if ((stub_sec->flags & SEC_LINKER_CREATED) == 0)
12027 {
12028 stub_sec_count += 1;
12029 if (stub_sec->rawsize != stub_sec->size)
12030 break;
12031 }
12032
12033 if (stub_sec != NULL
12034 || htab->glink->rawsize != htab->glink->size
12035 || (htab->glink_eh_frame != NULL
12036 && htab->glink_eh_frame->rawsize != htab->glink_eh_frame->size))
12037 {
12038 htab->stub_error = TRUE;
12039 info->callbacks->einfo (_("%P: stubs don't match calculated size\n"));
12040 }
12041
12042 if (htab->stub_error)
12043 return FALSE;
12044
12045 if (stats != NULL)
12046 {
12047 *stats = bfd_malloc (500);
12048 if (*stats == NULL)
12049 return FALSE;
12050
12051 sprintf (*stats, _("linker stubs in %u group%s\n"
12052 " branch %lu\n"
12053 " toc adjust %lu\n"
12054 " long branch %lu\n"
12055 " long toc adj %lu\n"
12056 " plt call %lu\n"
12057 " plt call toc %lu"),
12058 stub_sec_count,
12059 stub_sec_count == 1 ? "" : "s",
12060 htab->stub_count[ppc_stub_long_branch - 1],
12061 htab->stub_count[ppc_stub_long_branch_r2off - 1],
12062 htab->stub_count[ppc_stub_plt_branch - 1],
12063 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
12064 htab->stub_count[ppc_stub_plt_call - 1],
12065 htab->stub_count[ppc_stub_plt_call_r2save - 1]);
12066 }
12067 return TRUE;
12068 }
12069
12070 /* This function undoes the changes made by add_symbol_adjust. */
12071
12072 static bfd_boolean
12073 undo_symbol_twiddle (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12074 {
12075 struct ppc_link_hash_entry *eh;
12076
12077 if (h->root.type == bfd_link_hash_indirect)
12078 return TRUE;
12079
12080 eh = (struct ppc_link_hash_entry *) h;
12081 if (eh->elf.root.type != bfd_link_hash_undefweak || !eh->was_undefined)
12082 return TRUE;
12083
12084 eh->elf.root.type = bfd_link_hash_undefined;
12085 return TRUE;
12086 }
12087
12088 void
12089 ppc64_elf_restore_symbols (struct bfd_link_info *info)
12090 {
12091 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12092
12093 if (htab != NULL)
12094 elf_link_hash_traverse (&htab->elf, undo_symbol_twiddle, info);
12095 }
12096
12097 /* What to do when ld finds relocations against symbols defined in
12098 discarded sections. */
12099
12100 static unsigned int
12101 ppc64_elf_action_discarded (asection *sec)
12102 {
12103 if (strcmp (".opd", sec->name) == 0)
12104 return 0;
12105
12106 if (strcmp (".toc", sec->name) == 0)
12107 return 0;
12108
12109 if (strcmp (".toc1", sec->name) == 0)
12110 return 0;
12111
12112 return _bfd_elf_default_action_discarded (sec);
12113 }
12114
12115 /* The RELOCATE_SECTION function is called by the ELF backend linker
12116 to handle the relocations for a section.
12117
12118 The relocs are always passed as Rela structures; if the section
12119 actually uses Rel structures, the r_addend field will always be
12120 zero.
12121
12122 This function is responsible for adjust the section contents as
12123 necessary, and (if using Rela relocs and generating a
12124 relocatable output file) adjusting the reloc addend as
12125 necessary.
12126
12127 This function does not have to worry about setting the reloc
12128 address or the reloc symbol index.
12129
12130 LOCAL_SYMS is a pointer to the swapped in local symbols.
12131
12132 LOCAL_SECTIONS is an array giving the section in the input file
12133 corresponding to the st_shndx field of each local symbol.
12134
12135 The global hash table entry for the global symbols can be found
12136 via elf_sym_hashes (input_bfd).
12137
12138 When generating relocatable output, this function must handle
12139 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
12140 going to be the section symbol corresponding to the output
12141 section, which means that the addend must be adjusted
12142 accordingly. */
12143
12144 static bfd_boolean
12145 ppc64_elf_relocate_section (bfd *output_bfd,
12146 struct bfd_link_info *info,
12147 bfd *input_bfd,
12148 asection *input_section,
12149 bfd_byte *contents,
12150 Elf_Internal_Rela *relocs,
12151 Elf_Internal_Sym *local_syms,
12152 asection **local_sections)
12153 {
12154 struct ppc_link_hash_table *htab;
12155 Elf_Internal_Shdr *symtab_hdr;
12156 struct elf_link_hash_entry **sym_hashes;
12157 Elf_Internal_Rela *rel;
12158 Elf_Internal_Rela *relend;
12159 Elf_Internal_Rela outrel;
12160 bfd_byte *loc;
12161 struct got_entry **local_got_ents;
12162 bfd_vma TOCstart;
12163 bfd_boolean ret = TRUE;
12164 bfd_boolean is_opd;
12165 /* Assume 'at' branch hints. */
12166 bfd_boolean is_isa_v2 = TRUE;
12167 bfd_vma d_offset = (bfd_big_endian (output_bfd) ? 2 : 0);
12168
12169 /* Initialize howto table if needed. */
12170 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
12171 ppc_howto_init ();
12172
12173 htab = ppc_hash_table (info);
12174 if (htab == NULL)
12175 return FALSE;
12176
12177 /* Don't relocate stub sections. */
12178 if (input_section->owner == htab->stub_bfd)
12179 return TRUE;
12180
12181 BFD_ASSERT (is_ppc64_elf (input_bfd));
12182
12183 local_got_ents = elf_local_got_ents (input_bfd);
12184 TOCstart = elf_gp (output_bfd);
12185 symtab_hdr = &elf_symtab_hdr (input_bfd);
12186 sym_hashes = elf_sym_hashes (input_bfd);
12187 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
12188
12189 rel = relocs;
12190 relend = relocs + input_section->reloc_count;
12191 for (; rel < relend; rel++)
12192 {
12193 enum elf_ppc64_reloc_type r_type;
12194 bfd_vma addend, orig_addend;
12195 bfd_reloc_status_type r;
12196 Elf_Internal_Sym *sym;
12197 asection *sec;
12198 struct elf_link_hash_entry *h_elf;
12199 struct ppc_link_hash_entry *h;
12200 struct ppc_link_hash_entry *fdh;
12201 const char *sym_name;
12202 unsigned long r_symndx, toc_symndx;
12203 bfd_vma toc_addend;
12204 unsigned char tls_mask, tls_gd, tls_type;
12205 unsigned char sym_type;
12206 bfd_vma relocation;
12207 bfd_boolean unresolved_reloc;
12208 bfd_boolean warned;
12209 unsigned int insn;
12210 unsigned int mask;
12211 struct ppc_stub_hash_entry *stub_entry;
12212 bfd_vma max_br_offset;
12213 bfd_vma from;
12214
12215 r_type = ELF64_R_TYPE (rel->r_info);
12216 r_symndx = ELF64_R_SYM (rel->r_info);
12217
12218 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
12219 symbol of the previous ADDR64 reloc. The symbol gives us the
12220 proper TOC base to use. */
12221 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
12222 && rel != relocs
12223 && ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_ADDR64
12224 && is_opd)
12225 r_symndx = ELF64_R_SYM (rel[-1].r_info);
12226
12227 sym = NULL;
12228 sec = NULL;
12229 h_elf = NULL;
12230 sym_name = NULL;
12231 unresolved_reloc = FALSE;
12232 warned = FALSE;
12233 orig_addend = rel->r_addend;
12234
12235 if (r_symndx < symtab_hdr->sh_info)
12236 {
12237 /* It's a local symbol. */
12238 struct _opd_sec_data *opd;
12239
12240 sym = local_syms + r_symndx;
12241 sec = local_sections[r_symndx];
12242 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
12243 sym_type = ELF64_ST_TYPE (sym->st_info);
12244 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12245 opd = get_opd_info (sec);
12246 if (opd != NULL && opd->adjust != NULL)
12247 {
12248 long adjust = opd->adjust[(sym->st_value + rel->r_addend) / 8];
12249 if (adjust == -1)
12250 relocation = 0;
12251 else
12252 {
12253 /* If this is a relocation against the opd section sym
12254 and we have edited .opd, adjust the reloc addend so
12255 that ld -r and ld --emit-relocs output is correct.
12256 If it is a reloc against some other .opd symbol,
12257 then the symbol value will be adjusted later. */
12258 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12259 rel->r_addend += adjust;
12260 else
12261 relocation += adjust;
12262 }
12263 }
12264 }
12265 else
12266 {
12267 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12268 r_symndx, symtab_hdr, sym_hashes,
12269 h_elf, sec, relocation,
12270 unresolved_reloc, warned);
12271 sym_name = h_elf->root.root.string;
12272 sym_type = h_elf->type;
12273 }
12274 h = (struct ppc_link_hash_entry *) h_elf;
12275
12276 if (sec != NULL && elf_discarded_section (sec))
12277 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12278 rel, relend,
12279 ppc64_elf_howto_table[r_type],
12280 contents);
12281
12282 if (info->relocatable)
12283 continue;
12284
12285 /* TLS optimizations. Replace instruction sequences and relocs
12286 based on information we collected in tls_optimize. We edit
12287 RELOCS so that --emit-relocs will output something sensible
12288 for the final instruction stream. */
12289 tls_mask = 0;
12290 tls_gd = 0;
12291 toc_symndx = 0;
12292 if (h != NULL)
12293 tls_mask = h->tls_mask;
12294 else if (local_got_ents != NULL)
12295 {
12296 struct plt_entry **local_plt = (struct plt_entry **)
12297 (local_got_ents + symtab_hdr->sh_info);
12298 unsigned char *lgot_masks = (unsigned char *)
12299 (local_plt + symtab_hdr->sh_info);
12300 tls_mask = lgot_masks[r_symndx];
12301 }
12302 if (tls_mask == 0
12303 && (r_type == R_PPC64_TLS
12304 || r_type == R_PPC64_TLSGD
12305 || r_type == R_PPC64_TLSLD))
12306 {
12307 /* Check for toc tls entries. */
12308 unsigned char *toc_tls;
12309
12310 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12311 &local_syms, rel, input_bfd))
12312 return FALSE;
12313
12314 if (toc_tls)
12315 tls_mask = *toc_tls;
12316 }
12317
12318 /* Check that tls relocs are used with tls syms, and non-tls
12319 relocs are used with non-tls syms. */
12320 if (r_symndx != STN_UNDEF
12321 && r_type != R_PPC64_NONE
12322 && (h == NULL
12323 || h->elf.root.type == bfd_link_hash_defined
12324 || h->elf.root.type == bfd_link_hash_defweak)
12325 && (IS_PPC64_TLS_RELOC (r_type)
12326 != (sym_type == STT_TLS
12327 || (sym_type == STT_SECTION
12328 && (sec->flags & SEC_THREAD_LOCAL) != 0))))
12329 {
12330 if (tls_mask != 0
12331 && (r_type == R_PPC64_TLS
12332 || r_type == R_PPC64_TLSGD
12333 || r_type == R_PPC64_TLSLD))
12334 /* R_PPC64_TLS is OK against a symbol in the TOC. */
12335 ;
12336 else
12337 info->callbacks->einfo
12338 (!IS_PPC64_TLS_RELOC (r_type)
12339 ? _("%P: %H: %s used with TLS symbol %s\n")
12340 : _("%P: %H: %s used with non-TLS symbol %s\n"),
12341 input_bfd, input_section, rel->r_offset,
12342 ppc64_elf_howto_table[r_type]->name,
12343 sym_name);
12344 }
12345
12346 /* Ensure reloc mapping code below stays sane. */
12347 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
12348 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
12349 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
12350 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
12351 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
12352 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
12353 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
12354 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
12355 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
12356 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
12357 abort ();
12358
12359 switch (r_type)
12360 {
12361 default:
12362 break;
12363
12364 case R_PPC64_LO_DS_OPT:
12365 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12366 if ((insn & (0x3f << 26)) != 58u << 26)
12367 abort ();
12368 insn += (14u << 26) - (58u << 26);
12369 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12370 r_type = R_PPC64_TOC16_LO;
12371 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12372 break;
12373
12374 case R_PPC64_TOC16:
12375 case R_PPC64_TOC16_LO:
12376 case R_PPC64_TOC16_DS:
12377 case R_PPC64_TOC16_LO_DS:
12378 {
12379 /* Check for toc tls entries. */
12380 unsigned char *toc_tls;
12381 int retval;
12382
12383 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
12384 &local_syms, rel, input_bfd);
12385 if (retval == 0)
12386 return FALSE;
12387
12388 if (toc_tls)
12389 {
12390 tls_mask = *toc_tls;
12391 if (r_type == R_PPC64_TOC16_DS
12392 || r_type == R_PPC64_TOC16_LO_DS)
12393 {
12394 if (tls_mask != 0
12395 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
12396 goto toctprel;
12397 }
12398 else
12399 {
12400 /* If we found a GD reloc pair, then we might be
12401 doing a GD->IE transition. */
12402 if (retval == 2)
12403 {
12404 tls_gd = TLS_TPRELGD;
12405 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12406 goto tls_ldgd_opt;
12407 }
12408 else if (retval == 3)
12409 {
12410 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12411 goto tls_ldgd_opt;
12412 }
12413 }
12414 }
12415 }
12416 break;
12417
12418 case R_PPC64_GOT_TPREL16_HI:
12419 case R_PPC64_GOT_TPREL16_HA:
12420 if (tls_mask != 0
12421 && (tls_mask & TLS_TPREL) == 0)
12422 {
12423 rel->r_offset -= d_offset;
12424 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12425 r_type = R_PPC64_NONE;
12426 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12427 }
12428 break;
12429
12430 case R_PPC64_GOT_TPREL16_DS:
12431 case R_PPC64_GOT_TPREL16_LO_DS:
12432 if (tls_mask != 0
12433 && (tls_mask & TLS_TPREL) == 0)
12434 {
12435 toctprel:
12436 insn = bfd_get_32 (output_bfd, contents + rel->r_offset - d_offset);
12437 insn &= 31 << 21;
12438 insn |= 0x3c0d0000; /* addis 0,13,0 */
12439 bfd_put_32 (output_bfd, insn, contents + rel->r_offset - d_offset);
12440 r_type = R_PPC64_TPREL16_HA;
12441 if (toc_symndx != 0)
12442 {
12443 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12444 rel->r_addend = toc_addend;
12445 /* We changed the symbol. Start over in order to
12446 get h, sym, sec etc. right. */
12447 rel--;
12448 continue;
12449 }
12450 else
12451 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12452 }
12453 break;
12454
12455 case R_PPC64_TLS:
12456 if (tls_mask != 0
12457 && (tls_mask & TLS_TPREL) == 0)
12458 {
12459 insn = bfd_get_32 (output_bfd, contents + rel->r_offset);
12460 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
12461 if (insn == 0)
12462 abort ();
12463 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12464 /* Was PPC64_TLS which sits on insn boundary, now
12465 PPC64_TPREL16_LO which is at low-order half-word. */
12466 rel->r_offset += d_offset;
12467 r_type = R_PPC64_TPREL16_LO;
12468 if (toc_symndx != 0)
12469 {
12470 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
12471 rel->r_addend = toc_addend;
12472 /* We changed the symbol. Start over in order to
12473 get h, sym, sec etc. right. */
12474 rel--;
12475 continue;
12476 }
12477 else
12478 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12479 }
12480 break;
12481
12482 case R_PPC64_GOT_TLSGD16_HI:
12483 case R_PPC64_GOT_TLSGD16_HA:
12484 tls_gd = TLS_TPRELGD;
12485 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12486 goto tls_gdld_hi;
12487 break;
12488
12489 case R_PPC64_GOT_TLSLD16_HI:
12490 case R_PPC64_GOT_TLSLD16_HA:
12491 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12492 {
12493 tls_gdld_hi:
12494 if ((tls_mask & tls_gd) != 0)
12495 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12496 + R_PPC64_GOT_TPREL16_DS);
12497 else
12498 {
12499 rel->r_offset -= d_offset;
12500 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12501 r_type = R_PPC64_NONE;
12502 }
12503 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12504 }
12505 break;
12506
12507 case R_PPC64_GOT_TLSGD16:
12508 case R_PPC64_GOT_TLSGD16_LO:
12509 tls_gd = TLS_TPRELGD;
12510 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12511 goto tls_ldgd_opt;
12512 break;
12513
12514 case R_PPC64_GOT_TLSLD16:
12515 case R_PPC64_GOT_TLSLD16_LO:
12516 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12517 {
12518 unsigned int insn1, insn2, insn3;
12519 bfd_vma offset;
12520
12521 tls_ldgd_opt:
12522 offset = (bfd_vma) -1;
12523 /* If not using the newer R_PPC64_TLSGD/LD to mark
12524 __tls_get_addr calls, we must trust that the call
12525 stays with its arg setup insns, ie. that the next
12526 reloc is the __tls_get_addr call associated with
12527 the current reloc. Edit both insns. */
12528 if (input_section->has_tls_get_addr_call
12529 && rel + 1 < relend
12530 && branch_reloc_hash_match (input_bfd, rel + 1,
12531 htab->tls_get_addr,
12532 htab->tls_get_addr_fd))
12533 offset = rel[1].r_offset;
12534 if ((tls_mask & tls_gd) != 0)
12535 {
12536 /* IE */
12537 insn1 = bfd_get_32 (output_bfd,
12538 contents + rel->r_offset - d_offset);
12539 insn1 &= (1 << 26) - (1 << 2);
12540 insn1 |= 58 << 26; /* ld */
12541 insn2 = 0x7c636a14; /* add 3,3,13 */
12542 if (offset != (bfd_vma) -1)
12543 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12544 if ((tls_mask & TLS_EXPLICIT) == 0)
12545 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
12546 + R_PPC64_GOT_TPREL16_DS);
12547 else
12548 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
12549 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12550 }
12551 else
12552 {
12553 /* LE */
12554 insn1 = 0x3c6d0000; /* addis 3,13,0 */
12555 insn2 = 0x38630000; /* addi 3,3,0 */
12556 if (tls_gd == 0)
12557 {
12558 /* Was an LD reloc. */
12559 if (toc_symndx)
12560 sec = local_sections[toc_symndx];
12561 for (r_symndx = 0;
12562 r_symndx < symtab_hdr->sh_info;
12563 r_symndx++)
12564 if (local_sections[r_symndx] == sec)
12565 break;
12566 if (r_symndx >= symtab_hdr->sh_info)
12567 r_symndx = STN_UNDEF;
12568 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12569 if (r_symndx != STN_UNDEF)
12570 rel->r_addend -= (local_syms[r_symndx].st_value
12571 + sec->output_offset
12572 + sec->output_section->vma);
12573 }
12574 else if (toc_symndx != 0)
12575 {
12576 r_symndx = toc_symndx;
12577 rel->r_addend = toc_addend;
12578 }
12579 r_type = R_PPC64_TPREL16_HA;
12580 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12581 if (offset != (bfd_vma) -1)
12582 {
12583 rel[1].r_info = ELF64_R_INFO (r_symndx,
12584 R_PPC64_TPREL16_LO);
12585 rel[1].r_offset = offset + d_offset;
12586 rel[1].r_addend = rel->r_addend;
12587 }
12588 }
12589 bfd_put_32 (output_bfd, insn1,
12590 contents + rel->r_offset - d_offset);
12591 if (offset != (bfd_vma) -1)
12592 {
12593 insn3 = bfd_get_32 (output_bfd,
12594 contents + offset + 4);
12595 if (insn3 == NOP
12596 || insn3 == CROR_151515 || insn3 == CROR_313131)
12597 {
12598 rel[1].r_offset += 4;
12599 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12600 insn2 = NOP;
12601 }
12602 bfd_put_32 (output_bfd, insn2, contents + offset);
12603 }
12604 if ((tls_mask & tls_gd) == 0
12605 && (tls_gd == 0 || toc_symndx != 0))
12606 {
12607 /* We changed the symbol. Start over in order
12608 to get h, sym, sec etc. right. */
12609 rel--;
12610 continue;
12611 }
12612 }
12613 break;
12614
12615 case R_PPC64_TLSGD:
12616 if (tls_mask != 0 && (tls_mask & TLS_GD) == 0)
12617 {
12618 unsigned int insn2, insn3;
12619 bfd_vma offset = rel->r_offset;
12620
12621 if ((tls_mask & TLS_TPRELGD) != 0)
12622 {
12623 /* IE */
12624 r_type = R_PPC64_NONE;
12625 insn2 = 0x7c636a14; /* add 3,3,13 */
12626 }
12627 else
12628 {
12629 /* LE */
12630 if (toc_symndx != 0)
12631 {
12632 r_symndx = toc_symndx;
12633 rel->r_addend = toc_addend;
12634 }
12635 r_type = R_PPC64_TPREL16_LO;
12636 rel->r_offset = offset + d_offset;
12637 insn2 = 0x38630000; /* addi 3,3,0 */
12638 }
12639 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12640 /* Zap the reloc on the _tls_get_addr call too. */
12641 BFD_ASSERT (offset == rel[1].r_offset);
12642 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12643 insn3 = bfd_get_32 (output_bfd,
12644 contents + offset + 4);
12645 if (insn3 == NOP
12646 || insn3 == CROR_151515 || insn3 == CROR_313131)
12647 {
12648 rel->r_offset += 4;
12649 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12650 insn2 = NOP;
12651 }
12652 bfd_put_32 (output_bfd, insn2, contents + offset);
12653 if ((tls_mask & TLS_TPRELGD) == 0 && toc_symndx != 0)
12654 {
12655 rel--;
12656 continue;
12657 }
12658 }
12659 break;
12660
12661 case R_PPC64_TLSLD:
12662 if (tls_mask != 0 && (tls_mask & TLS_LD) == 0)
12663 {
12664 unsigned int insn2, insn3;
12665 bfd_vma offset = rel->r_offset;
12666
12667 if (toc_symndx)
12668 sec = local_sections[toc_symndx];
12669 for (r_symndx = 0;
12670 r_symndx < symtab_hdr->sh_info;
12671 r_symndx++)
12672 if (local_sections[r_symndx] == sec)
12673 break;
12674 if (r_symndx >= symtab_hdr->sh_info)
12675 r_symndx = STN_UNDEF;
12676 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
12677 if (r_symndx != STN_UNDEF)
12678 rel->r_addend -= (local_syms[r_symndx].st_value
12679 + sec->output_offset
12680 + sec->output_section->vma);
12681
12682 r_type = R_PPC64_TPREL16_LO;
12683 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12684 rel->r_offset = offset + d_offset;
12685 /* Zap the reloc on the _tls_get_addr call too. */
12686 BFD_ASSERT (offset == rel[1].r_offset);
12687 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
12688 insn2 = 0x38630000; /* addi 3,3,0 */
12689 insn3 = bfd_get_32 (output_bfd,
12690 contents + offset + 4);
12691 if (insn3 == NOP
12692 || insn3 == CROR_151515 || insn3 == CROR_313131)
12693 {
12694 rel->r_offset += 4;
12695 bfd_put_32 (output_bfd, insn2, contents + offset + 4);
12696 insn2 = NOP;
12697 }
12698 bfd_put_32 (output_bfd, insn2, contents + offset);
12699 rel--;
12700 continue;
12701 }
12702 break;
12703
12704 case R_PPC64_DTPMOD64:
12705 if (rel + 1 < relend
12706 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
12707 && rel[1].r_offset == rel->r_offset + 8)
12708 {
12709 if ((tls_mask & TLS_GD) == 0)
12710 {
12711 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
12712 if ((tls_mask & TLS_TPRELGD) != 0)
12713 r_type = R_PPC64_TPREL64;
12714 else
12715 {
12716 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12717 r_type = R_PPC64_NONE;
12718 }
12719 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12720 }
12721 }
12722 else
12723 {
12724 if ((tls_mask & TLS_LD) == 0)
12725 {
12726 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
12727 r_type = R_PPC64_NONE;
12728 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12729 }
12730 }
12731 break;
12732
12733 case R_PPC64_TPREL64:
12734 if ((tls_mask & TLS_TPREL) == 0)
12735 {
12736 r_type = R_PPC64_NONE;
12737 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
12738 }
12739 break;
12740 }
12741
12742 /* Handle other relocations that tweak non-addend part of insn. */
12743 insn = 0;
12744 max_br_offset = 1 << 25;
12745 addend = rel->r_addend;
12746 switch (r_type)
12747 {
12748 default:
12749 break;
12750
12751 case R_PPC64_TOCSAVE:
12752 if (relocation + addend == (rel->r_offset
12753 + input_section->output_offset
12754 + input_section->output_section->vma)
12755 && tocsave_find (htab, NO_INSERT,
12756 &local_syms, rel, input_bfd))
12757 {
12758 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
12759 if (insn == NOP
12760 || insn == CROR_151515 || insn == CROR_313131)
12761 bfd_put_32 (input_bfd, STD_R2_40R1,
12762 contents + rel->r_offset);
12763 }
12764 break;
12765
12766 /* Branch taken prediction relocations. */
12767 case R_PPC64_ADDR14_BRTAKEN:
12768 case R_PPC64_REL14_BRTAKEN:
12769 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
12770 /* Fall thru. */
12771
12772 /* Branch not taken prediction relocations. */
12773 case R_PPC64_ADDR14_BRNTAKEN:
12774 case R_PPC64_REL14_BRNTAKEN:
12775 insn |= bfd_get_32 (output_bfd,
12776 contents + rel->r_offset) & ~(0x01 << 21);
12777 /* Fall thru. */
12778
12779 case R_PPC64_REL14:
12780 max_br_offset = 1 << 15;
12781 /* Fall thru. */
12782
12783 case R_PPC64_REL24:
12784 /* Calls to functions with a different TOC, such as calls to
12785 shared objects, need to alter the TOC pointer. This is
12786 done using a linkage stub. A REL24 branching to these
12787 linkage stubs needs to be followed by a nop, as the nop
12788 will be replaced with an instruction to restore the TOC
12789 base pointer. */
12790 fdh = h;
12791 if (h != NULL
12792 && h->oh != NULL
12793 && h->oh->is_func_descriptor)
12794 fdh = ppc_follow_link (h->oh);
12795 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, rel, htab);
12796 if (stub_entry != NULL
12797 && (stub_entry->stub_type == ppc_stub_plt_call
12798 || stub_entry->stub_type == ppc_stub_plt_call_r2save
12799 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
12800 || stub_entry->stub_type == ppc_stub_long_branch_r2off))
12801 {
12802 bfd_boolean can_plt_call = FALSE;
12803
12804 if (rel->r_offset + 8 <= input_section->size)
12805 {
12806 unsigned long nop;
12807 nop = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
12808 if (nop == NOP
12809 || nop == CROR_151515 || nop == CROR_313131)
12810 {
12811 if (h != NULL
12812 && (h == htab->tls_get_addr_fd
12813 || h == htab->tls_get_addr)
12814 && !htab->no_tls_get_addr_opt)
12815 {
12816 /* Special stub used, leave nop alone. */
12817 }
12818 else
12819 bfd_put_32 (input_bfd, LD_R2_40R1,
12820 contents + rel->r_offset + 4);
12821 can_plt_call = TRUE;
12822 }
12823 }
12824
12825 if (!can_plt_call)
12826 {
12827 if (stub_entry->stub_type == ppc_stub_plt_call
12828 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12829 {
12830 /* If this is a plain branch rather than a branch
12831 and link, don't require a nop. However, don't
12832 allow tail calls in a shared library as they
12833 will result in r2 being corrupted. */
12834 unsigned long br;
12835 br = bfd_get_32 (input_bfd, contents + rel->r_offset);
12836 if (info->executable && (br & 1) == 0)
12837 can_plt_call = TRUE;
12838 else
12839 stub_entry = NULL;
12840 }
12841 else if (h != NULL
12842 && strcmp (h->elf.root.root.string,
12843 ".__libc_start_main") == 0)
12844 {
12845 /* Allow crt1 branch to go via a toc adjusting stub. */
12846 can_plt_call = TRUE;
12847 }
12848 else
12849 {
12850 if (strcmp (input_section->output_section->name,
12851 ".init") == 0
12852 || strcmp (input_section->output_section->name,
12853 ".fini") == 0)
12854 info->callbacks->einfo
12855 (_("%P: %H: automatic multiple TOCs "
12856 "not supported using your crt files; "
12857 "recompile with -mminimal-toc or upgrade gcc\n"),
12858 input_bfd, input_section, rel->r_offset);
12859 else
12860 info->callbacks->einfo
12861 (_("%P: %H: sibling call optimization to `%s' "
12862 "does not allow automatic multiple TOCs; "
12863 "recompile with -mminimal-toc or "
12864 "-fno-optimize-sibling-calls, "
12865 "or make `%s' extern\n"),
12866 input_bfd, input_section, rel->r_offset,
12867 sym_name,
12868 sym_name);
12869 bfd_set_error (bfd_error_bad_value);
12870 ret = FALSE;
12871 }
12872 }
12873
12874 if (can_plt_call
12875 && (stub_entry->stub_type == ppc_stub_plt_call
12876 || stub_entry->stub_type == ppc_stub_plt_call_r2save))
12877 unresolved_reloc = FALSE;
12878 }
12879
12880 if ((stub_entry == NULL
12881 || stub_entry->stub_type == ppc_stub_long_branch
12882 || stub_entry->stub_type == ppc_stub_plt_branch)
12883 && get_opd_info (sec) != NULL)
12884 {
12885 /* The branch destination is the value of the opd entry. */
12886 bfd_vma off = (relocation + addend
12887 - sec->output_section->vma
12888 - sec->output_offset);
12889 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL);
12890 if (dest != (bfd_vma) -1)
12891 {
12892 relocation = dest;
12893 addend = 0;
12894 }
12895 }
12896
12897 /* If the branch is out of reach we ought to have a long
12898 branch stub. */
12899 from = (rel->r_offset
12900 + input_section->output_offset
12901 + input_section->output_section->vma);
12902
12903 if (stub_entry != NULL
12904 && (stub_entry->stub_type == ppc_stub_long_branch
12905 || stub_entry->stub_type == ppc_stub_plt_branch)
12906 && (r_type == R_PPC64_ADDR14_BRTAKEN
12907 || r_type == R_PPC64_ADDR14_BRNTAKEN
12908 || (relocation + addend - from + max_br_offset
12909 < 2 * max_br_offset)))
12910 /* Don't use the stub if this branch is in range. */
12911 stub_entry = NULL;
12912
12913 if (stub_entry != NULL)
12914 {
12915 /* Munge up the value and addend so that we call the stub
12916 rather than the procedure directly. */
12917 relocation = (stub_entry->stub_offset
12918 + stub_entry->stub_sec->output_offset
12919 + stub_entry->stub_sec->output_section->vma);
12920 addend = 0;
12921
12922 if ((stub_entry->stub_type == ppc_stub_plt_call
12923 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12924 && (ALWAYS_EMIT_R2SAVE
12925 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
12926 && rel + 1 < relend
12927 && rel[1].r_offset == rel->r_offset + 4
12928 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
12929 relocation += 4;
12930 }
12931
12932 if (insn != 0)
12933 {
12934 if (is_isa_v2)
12935 {
12936 /* Set 'a' bit. This is 0b00010 in BO field for branch
12937 on CR(BI) insns (BO == 001at or 011at), and 0b01000
12938 for branch on CTR insns (BO == 1a00t or 1a01t). */
12939 if ((insn & (0x14 << 21)) == (0x04 << 21))
12940 insn |= 0x02 << 21;
12941 else if ((insn & (0x14 << 21)) == (0x10 << 21))
12942 insn |= 0x08 << 21;
12943 else
12944 break;
12945 }
12946 else
12947 {
12948 /* Invert 'y' bit if not the default. */
12949 if ((bfd_signed_vma) (relocation + addend - from) < 0)
12950 insn ^= 0x01 << 21;
12951 }
12952
12953 bfd_put_32 (output_bfd, insn, contents + rel->r_offset);
12954 }
12955
12956 /* NOP out calls to undefined weak functions.
12957 We can thus call a weak function without first
12958 checking whether the function is defined. */
12959 else if (h != NULL
12960 && h->elf.root.type == bfd_link_hash_undefweak
12961 && h->elf.dynindx == -1
12962 && r_type == R_PPC64_REL24
12963 && relocation == 0
12964 && addend == 0)
12965 {
12966 bfd_put_32 (output_bfd, NOP, contents + rel->r_offset);
12967 continue;
12968 }
12969 break;
12970 }
12971
12972 /* Set `addend'. */
12973 tls_type = 0;
12974 switch (r_type)
12975 {
12976 default:
12977 info->callbacks->einfo
12978 (_("%P: %B: unknown relocation type %d for symbol %s\n"),
12979 input_bfd, (int) r_type, sym_name);
12980
12981 bfd_set_error (bfd_error_bad_value);
12982 ret = FALSE;
12983 continue;
12984
12985 case R_PPC64_NONE:
12986 case R_PPC64_TLS:
12987 case R_PPC64_TLSGD:
12988 case R_PPC64_TLSLD:
12989 case R_PPC64_TOCSAVE:
12990 case R_PPC64_GNU_VTINHERIT:
12991 case R_PPC64_GNU_VTENTRY:
12992 continue;
12993
12994 /* GOT16 relocations. Like an ADDR16 using the symbol's
12995 address in the GOT as relocation value instead of the
12996 symbol's value itself. Also, create a GOT entry for the
12997 symbol and put the symbol value there. */
12998 case R_PPC64_GOT_TLSGD16:
12999 case R_PPC64_GOT_TLSGD16_LO:
13000 case R_PPC64_GOT_TLSGD16_HI:
13001 case R_PPC64_GOT_TLSGD16_HA:
13002 tls_type = TLS_TLS | TLS_GD;
13003 goto dogot;
13004
13005 case R_PPC64_GOT_TLSLD16:
13006 case R_PPC64_GOT_TLSLD16_LO:
13007 case R_PPC64_GOT_TLSLD16_HI:
13008 case R_PPC64_GOT_TLSLD16_HA:
13009 tls_type = TLS_TLS | TLS_LD;
13010 goto dogot;
13011
13012 case R_PPC64_GOT_TPREL16_DS:
13013 case R_PPC64_GOT_TPREL16_LO_DS:
13014 case R_PPC64_GOT_TPREL16_HI:
13015 case R_PPC64_GOT_TPREL16_HA:
13016 tls_type = TLS_TLS | TLS_TPREL;
13017 goto dogot;
13018
13019 case R_PPC64_GOT_DTPREL16_DS:
13020 case R_PPC64_GOT_DTPREL16_LO_DS:
13021 case R_PPC64_GOT_DTPREL16_HI:
13022 case R_PPC64_GOT_DTPREL16_HA:
13023 tls_type = TLS_TLS | TLS_DTPREL;
13024 goto dogot;
13025
13026 case R_PPC64_GOT16:
13027 case R_PPC64_GOT16_LO:
13028 case R_PPC64_GOT16_HI:
13029 case R_PPC64_GOT16_HA:
13030 case R_PPC64_GOT16_DS:
13031 case R_PPC64_GOT16_LO_DS:
13032 dogot:
13033 {
13034 /* Relocation is to the entry for this symbol in the global
13035 offset table. */
13036 asection *got;
13037 bfd_vma *offp;
13038 bfd_vma off;
13039 unsigned long indx = 0;
13040 struct got_entry *ent;
13041
13042 if (tls_type == (TLS_TLS | TLS_LD)
13043 && (h == NULL
13044 || !h->elf.def_dynamic))
13045 ent = ppc64_tlsld_got (input_bfd);
13046 else
13047 {
13048
13049 if (h != NULL)
13050 {
13051 bfd_boolean dyn = htab->elf.dynamic_sections_created;
13052 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
13053 &h->elf)
13054 || (info->shared
13055 && SYMBOL_CALLS_LOCAL (info, &h->elf)))
13056 /* This is actually a static link, or it is a
13057 -Bsymbolic link and the symbol is defined
13058 locally, or the symbol was forced to be local
13059 because of a version file. */
13060 ;
13061 else
13062 {
13063 indx = h->elf.dynindx;
13064 unresolved_reloc = FALSE;
13065 }
13066 ent = h->elf.got.glist;
13067 }
13068 else
13069 {
13070 if (local_got_ents == NULL)
13071 abort ();
13072 ent = local_got_ents[r_symndx];
13073 }
13074
13075 for (; ent != NULL; ent = ent->next)
13076 if (ent->addend == orig_addend
13077 && ent->owner == input_bfd
13078 && ent->tls_type == tls_type)
13079 break;
13080 }
13081
13082 if (ent == NULL)
13083 abort ();
13084 if (ent->is_indirect)
13085 ent = ent->got.ent;
13086 offp = &ent->got.offset;
13087 got = ppc64_elf_tdata (ent->owner)->got;
13088 if (got == NULL)
13089 abort ();
13090
13091 /* The offset must always be a multiple of 8. We use the
13092 least significant bit to record whether we have already
13093 processed this entry. */
13094 off = *offp;
13095 if ((off & 1) != 0)
13096 off &= ~1;
13097 else
13098 {
13099 /* Generate relocs for the dynamic linker, except in
13100 the case of TLSLD where we'll use one entry per
13101 module. */
13102 asection *relgot;
13103 bfd_boolean ifunc;
13104
13105 *offp = off | 1;
13106 relgot = NULL;
13107 ifunc = (h != NULL
13108 ? h->elf.type == STT_GNU_IFUNC
13109 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
13110 if ((info->shared || indx != 0)
13111 && (h == NULL
13112 || (tls_type == (TLS_TLS | TLS_LD)
13113 && !h->elf.def_dynamic)
13114 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13115 || h->elf.root.type != bfd_link_hash_undefweak))
13116 relgot = ppc64_elf_tdata (ent->owner)->relgot;
13117 else if (ifunc)
13118 relgot = htab->reliplt;
13119 if (relgot != NULL)
13120 {
13121 outrel.r_offset = (got->output_section->vma
13122 + got->output_offset
13123 + off);
13124 outrel.r_addend = addend;
13125 if (tls_type & (TLS_LD | TLS_GD))
13126 {
13127 outrel.r_addend = 0;
13128 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
13129 if (tls_type == (TLS_TLS | TLS_GD))
13130 {
13131 loc = relgot->contents;
13132 loc += (relgot->reloc_count++
13133 * sizeof (Elf64_External_Rela));
13134 bfd_elf64_swap_reloca_out (output_bfd,
13135 &outrel, loc);
13136 outrel.r_offset += 8;
13137 outrel.r_addend = addend;
13138 outrel.r_info
13139 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13140 }
13141 }
13142 else if (tls_type == (TLS_TLS | TLS_DTPREL))
13143 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
13144 else if (tls_type == (TLS_TLS | TLS_TPREL))
13145 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
13146 else if (indx != 0)
13147 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
13148 else
13149 {
13150 if (ifunc)
13151 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13152 else
13153 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13154
13155 /* Write the .got section contents for the sake
13156 of prelink. */
13157 loc = got->contents + off;
13158 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
13159 loc);
13160 }
13161
13162 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
13163 {
13164 outrel.r_addend += relocation;
13165 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
13166 outrel.r_addend -= htab->elf.tls_sec->vma;
13167 }
13168 loc = relgot->contents;
13169 loc += (relgot->reloc_count++
13170 * sizeof (Elf64_External_Rela));
13171 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13172 }
13173
13174 /* Init the .got section contents here if we're not
13175 emitting a reloc. */
13176 else
13177 {
13178 relocation += addend;
13179 if (tls_type == (TLS_TLS | TLS_LD))
13180 relocation = 1;
13181 else if (tls_type != 0)
13182 {
13183 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
13184 if (tls_type == (TLS_TLS | TLS_TPREL))
13185 relocation += DTP_OFFSET - TP_OFFSET;
13186
13187 if (tls_type == (TLS_TLS | TLS_GD))
13188 {
13189 bfd_put_64 (output_bfd, relocation,
13190 got->contents + off + 8);
13191 relocation = 1;
13192 }
13193 }
13194
13195 bfd_put_64 (output_bfd, relocation,
13196 got->contents + off);
13197 }
13198 }
13199
13200 if (off >= (bfd_vma) -2)
13201 abort ();
13202
13203 relocation = got->output_section->vma + got->output_offset + off;
13204 addend = -(TOCstart + htab->stub_group[input_section->id].toc_off);
13205 }
13206 break;
13207
13208 case R_PPC64_PLT16_HA:
13209 case R_PPC64_PLT16_HI:
13210 case R_PPC64_PLT16_LO:
13211 case R_PPC64_PLT32:
13212 case R_PPC64_PLT64:
13213 /* Relocation is to the entry for this symbol in the
13214 procedure linkage table. */
13215
13216 /* Resolve a PLT reloc against a local symbol directly,
13217 without using the procedure linkage table. */
13218 if (h == NULL)
13219 break;
13220
13221 /* It's possible that we didn't make a PLT entry for this
13222 symbol. This happens when statically linking PIC code,
13223 or when using -Bsymbolic. Go find a match if there is a
13224 PLT entry. */
13225 if (htab->plt != NULL)
13226 {
13227 struct plt_entry *ent;
13228 for (ent = h->elf.plt.plist; ent != NULL; ent = ent->next)
13229 if (ent->addend == orig_addend
13230 && ent->plt.offset != (bfd_vma) -1)
13231 {
13232 relocation = (htab->plt->output_section->vma
13233 + htab->plt->output_offset
13234 + ent->plt.offset);
13235 unresolved_reloc = FALSE;
13236 }
13237 }
13238 break;
13239
13240 case R_PPC64_TOC:
13241 /* Relocation value is TOC base. */
13242 relocation = TOCstart;
13243 if (r_symndx == STN_UNDEF)
13244 relocation += htab->stub_group[input_section->id].toc_off;
13245 else if (unresolved_reloc)
13246 ;
13247 else if (sec != NULL && sec->id <= htab->top_id)
13248 relocation += htab->stub_group[sec->id].toc_off;
13249 else
13250 unresolved_reloc = TRUE;
13251 goto dodyn;
13252
13253 /* TOC16 relocs. We want the offset relative to the TOC base,
13254 which is the address of the start of the TOC plus 0x8000.
13255 The TOC consists of sections .got, .toc, .tocbss, and .plt,
13256 in this order. */
13257 case R_PPC64_TOC16:
13258 case R_PPC64_TOC16_LO:
13259 case R_PPC64_TOC16_HI:
13260 case R_PPC64_TOC16_DS:
13261 case R_PPC64_TOC16_LO_DS:
13262 case R_PPC64_TOC16_HA:
13263 addend -= TOCstart + htab->stub_group[input_section->id].toc_off;
13264 break;
13265
13266 /* Relocate against the beginning of the section. */
13267 case R_PPC64_SECTOFF:
13268 case R_PPC64_SECTOFF_LO:
13269 case R_PPC64_SECTOFF_HI:
13270 case R_PPC64_SECTOFF_DS:
13271 case R_PPC64_SECTOFF_LO_DS:
13272 case R_PPC64_SECTOFF_HA:
13273 if (sec != NULL)
13274 addend -= sec->output_section->vma;
13275 break;
13276
13277 case R_PPC64_REL16:
13278 case R_PPC64_REL16_LO:
13279 case R_PPC64_REL16_HI:
13280 case R_PPC64_REL16_HA:
13281 break;
13282
13283 case R_PPC64_REL14:
13284 case R_PPC64_REL14_BRNTAKEN:
13285 case R_PPC64_REL14_BRTAKEN:
13286 case R_PPC64_REL24:
13287 break;
13288
13289 case R_PPC64_TPREL16:
13290 case R_PPC64_TPREL16_LO:
13291 case R_PPC64_TPREL16_HI:
13292 case R_PPC64_TPREL16_HA:
13293 case R_PPC64_TPREL16_DS:
13294 case R_PPC64_TPREL16_LO_DS:
13295 case R_PPC64_TPREL16_HIGHER:
13296 case R_PPC64_TPREL16_HIGHERA:
13297 case R_PPC64_TPREL16_HIGHEST:
13298 case R_PPC64_TPREL16_HIGHESTA:
13299 if (h != NULL
13300 && h->elf.root.type == bfd_link_hash_undefweak
13301 && h->elf.dynindx == -1)
13302 {
13303 /* Make this relocation against an undefined weak symbol
13304 resolve to zero. This is really just a tweak, since
13305 code using weak externs ought to check that they are
13306 defined before using them. */
13307 bfd_byte *p = contents + rel->r_offset - d_offset;
13308
13309 insn = bfd_get_32 (output_bfd, p);
13310 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
13311 if (insn != 0)
13312 bfd_put_32 (output_bfd, insn, p);
13313 break;
13314 }
13315 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13316 if (info->shared)
13317 /* The TPREL16 relocs shouldn't really be used in shared
13318 libs as they will result in DT_TEXTREL being set, but
13319 support them anyway. */
13320 goto dodyn;
13321 break;
13322
13323 case R_PPC64_DTPREL16:
13324 case R_PPC64_DTPREL16_LO:
13325 case R_PPC64_DTPREL16_HI:
13326 case R_PPC64_DTPREL16_HA:
13327 case R_PPC64_DTPREL16_DS:
13328 case R_PPC64_DTPREL16_LO_DS:
13329 case R_PPC64_DTPREL16_HIGHER:
13330 case R_PPC64_DTPREL16_HIGHERA:
13331 case R_PPC64_DTPREL16_HIGHEST:
13332 case R_PPC64_DTPREL16_HIGHESTA:
13333 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13334 break;
13335
13336 case R_PPC64_DTPMOD64:
13337 relocation = 1;
13338 addend = 0;
13339 goto dodyn;
13340
13341 case R_PPC64_TPREL64:
13342 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
13343 goto dodyn;
13344
13345 case R_PPC64_DTPREL64:
13346 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
13347 /* Fall thru */
13348
13349 /* Relocations that may need to be propagated if this is a
13350 dynamic object. */
13351 case R_PPC64_REL30:
13352 case R_PPC64_REL32:
13353 case R_PPC64_REL64:
13354 case R_PPC64_ADDR14:
13355 case R_PPC64_ADDR14_BRNTAKEN:
13356 case R_PPC64_ADDR14_BRTAKEN:
13357 case R_PPC64_ADDR16:
13358 case R_PPC64_ADDR16_DS:
13359 case R_PPC64_ADDR16_HA:
13360 case R_PPC64_ADDR16_HI:
13361 case R_PPC64_ADDR16_HIGHER:
13362 case R_PPC64_ADDR16_HIGHERA:
13363 case R_PPC64_ADDR16_HIGHEST:
13364 case R_PPC64_ADDR16_HIGHESTA:
13365 case R_PPC64_ADDR16_LO:
13366 case R_PPC64_ADDR16_LO_DS:
13367 case R_PPC64_ADDR24:
13368 case R_PPC64_ADDR32:
13369 case R_PPC64_ADDR64:
13370 case R_PPC64_UADDR16:
13371 case R_PPC64_UADDR32:
13372 case R_PPC64_UADDR64:
13373 dodyn:
13374 if ((input_section->flags & SEC_ALLOC) == 0)
13375 break;
13376
13377 if (NO_OPD_RELOCS && is_opd)
13378 break;
13379
13380 if ((info->shared
13381 && (h == NULL
13382 || ELF_ST_VISIBILITY (h->elf.other) == STV_DEFAULT
13383 || h->elf.root.type != bfd_link_hash_undefweak)
13384 && (must_be_dyn_reloc (info, r_type)
13385 || !SYMBOL_CALLS_LOCAL (info, &h->elf)))
13386 || (ELIMINATE_COPY_RELOCS
13387 && !info->shared
13388 && h != NULL
13389 && h->elf.dynindx != -1
13390 && !h->elf.non_got_ref
13391 && !h->elf.def_regular)
13392 || (!info->shared
13393 && (h != NULL
13394 ? h->elf.type == STT_GNU_IFUNC
13395 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)))
13396 {
13397 bfd_boolean skip, relocate;
13398 asection *sreloc;
13399 bfd_vma out_off;
13400
13401 /* When generating a dynamic object, these relocations
13402 are copied into the output file to be resolved at run
13403 time. */
13404
13405 skip = FALSE;
13406 relocate = FALSE;
13407
13408 out_off = _bfd_elf_section_offset (output_bfd, info,
13409 input_section, rel->r_offset);
13410 if (out_off == (bfd_vma) -1)
13411 skip = TRUE;
13412 else if (out_off == (bfd_vma) -2)
13413 skip = TRUE, relocate = TRUE;
13414 out_off += (input_section->output_section->vma
13415 + input_section->output_offset);
13416 outrel.r_offset = out_off;
13417 outrel.r_addend = rel->r_addend;
13418
13419 /* Optimize unaligned reloc use. */
13420 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
13421 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
13422 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
13423 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
13424 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
13425 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
13426 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
13427 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
13428 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
13429
13430 if (skip)
13431 memset (&outrel, 0, sizeof outrel);
13432 else if (!SYMBOL_CALLS_LOCAL (info, &h->elf)
13433 && !is_opd
13434 && r_type != R_PPC64_TOC)
13435 outrel.r_info = ELF64_R_INFO (h->elf.dynindx, r_type);
13436 else
13437 {
13438 /* This symbol is local, or marked to become local,
13439 or this is an opd section reloc which must point
13440 at a local function. */
13441 outrel.r_addend += relocation;
13442 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
13443 {
13444 if (is_opd && h != NULL)
13445 {
13446 /* Lie about opd entries. This case occurs
13447 when building shared libraries and we
13448 reference a function in another shared
13449 lib. The same thing happens for a weak
13450 definition in an application that's
13451 overridden by a strong definition in a
13452 shared lib. (I believe this is a generic
13453 bug in binutils handling of weak syms.)
13454 In these cases we won't use the opd
13455 entry in this lib. */
13456 unresolved_reloc = FALSE;
13457 }
13458 if (!is_opd
13459 && r_type == R_PPC64_ADDR64
13460 && (h != NULL
13461 ? h->elf.type == STT_GNU_IFUNC
13462 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
13463 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13464 else
13465 {
13466 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13467
13468 /* We need to relocate .opd contents for ld.so.
13469 Prelink also wants simple and consistent rules
13470 for relocs. This make all RELATIVE relocs have
13471 *r_offset equal to r_addend. */
13472 relocate = TRUE;
13473 }
13474 }
13475 else
13476 {
13477 long indx = 0;
13478
13479 if (h != NULL
13480 ? h->elf.type == STT_GNU_IFUNC
13481 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13482 {
13483 info->callbacks->einfo
13484 (_("%P: %H: relocation %s for indirect "
13485 "function %s unsupported\n"),
13486 input_bfd, input_section, rel->r_offset,
13487 ppc64_elf_howto_table[r_type]->name,
13488 sym_name);
13489 ret = FALSE;
13490 }
13491 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
13492 ;
13493 else if (sec == NULL || sec->owner == NULL)
13494 {
13495 bfd_set_error (bfd_error_bad_value);
13496 return FALSE;
13497 }
13498 else
13499 {
13500 asection *osec;
13501
13502 osec = sec->output_section;
13503 indx = elf_section_data (osec)->dynindx;
13504
13505 if (indx == 0)
13506 {
13507 if ((osec->flags & SEC_READONLY) == 0
13508 && htab->elf.data_index_section != NULL)
13509 osec = htab->elf.data_index_section;
13510 else
13511 osec = htab->elf.text_index_section;
13512 indx = elf_section_data (osec)->dynindx;
13513 }
13514 BFD_ASSERT (indx != 0);
13515
13516 /* We are turning this relocation into one
13517 against a section symbol, so subtract out
13518 the output section's address but not the
13519 offset of the input section in the output
13520 section. */
13521 outrel.r_addend -= osec->vma;
13522 }
13523
13524 outrel.r_info = ELF64_R_INFO (indx, r_type);
13525 }
13526 }
13527
13528 sreloc = elf_section_data (input_section)->sreloc;
13529 if (!htab->elf.dynamic_sections_created)
13530 sreloc = htab->reliplt;
13531 if (sreloc == NULL)
13532 abort ();
13533
13534 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
13535 >= sreloc->size)
13536 abort ();
13537 loc = sreloc->contents;
13538 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
13539 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
13540
13541 /* If this reloc is against an external symbol, it will
13542 be computed at runtime, so there's no need to do
13543 anything now. However, for the sake of prelink ensure
13544 that the section contents are a known value. */
13545 if (! relocate)
13546 {
13547 unresolved_reloc = FALSE;
13548 /* The value chosen here is quite arbitrary as ld.so
13549 ignores section contents except for the special
13550 case of .opd where the contents might be accessed
13551 before relocation. Choose zero, as that won't
13552 cause reloc overflow. */
13553 relocation = 0;
13554 addend = 0;
13555 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
13556 to improve backward compatibility with older
13557 versions of ld. */
13558 if (r_type == R_PPC64_ADDR64)
13559 addend = outrel.r_addend;
13560 /* Adjust pc_relative relocs to have zero in *r_offset. */
13561 else if (ppc64_elf_howto_table[r_type]->pc_relative)
13562 addend = (input_section->output_section->vma
13563 + input_section->output_offset
13564 + rel->r_offset);
13565 }
13566 }
13567 break;
13568
13569 case R_PPC64_COPY:
13570 case R_PPC64_GLOB_DAT:
13571 case R_PPC64_JMP_SLOT:
13572 case R_PPC64_JMP_IREL:
13573 case R_PPC64_RELATIVE:
13574 /* We shouldn't ever see these dynamic relocs in relocatable
13575 files. */
13576 /* Fall through. */
13577
13578 case R_PPC64_PLTGOT16:
13579 case R_PPC64_PLTGOT16_DS:
13580 case R_PPC64_PLTGOT16_HA:
13581 case R_PPC64_PLTGOT16_HI:
13582 case R_PPC64_PLTGOT16_LO:
13583 case R_PPC64_PLTGOT16_LO_DS:
13584 case R_PPC64_PLTREL32:
13585 case R_PPC64_PLTREL64:
13586 /* These ones haven't been implemented yet. */
13587
13588 info->callbacks->einfo
13589 (_("%P: %B: relocation %s is not supported for symbol %s\n"),
13590 input_bfd,
13591 ppc64_elf_howto_table[r_type]->name, sym_name);
13592
13593 bfd_set_error (bfd_error_invalid_operation);
13594 ret = FALSE;
13595 continue;
13596 }
13597
13598 /* Multi-instruction sequences that access the TOC can be
13599 optimized, eg. addis ra,r2,0; addi rb,ra,x;
13600 to nop; addi rb,r2,x; */
13601 switch (r_type)
13602 {
13603 default:
13604 break;
13605
13606 case R_PPC64_GOT_TLSLD16_HI:
13607 case R_PPC64_GOT_TLSGD16_HI:
13608 case R_PPC64_GOT_TPREL16_HI:
13609 case R_PPC64_GOT_DTPREL16_HI:
13610 case R_PPC64_GOT16_HI:
13611 case R_PPC64_TOC16_HI:
13612 /* These relocs would only be useful if building up an
13613 offset to later add to r2, perhaps in an indexed
13614 addressing mode instruction. Don't try to optimize.
13615 Unfortunately, the possibility of someone building up an
13616 offset like this or even with the HA relocs, means that
13617 we need to check the high insn when optimizing the low
13618 insn. */
13619 break;
13620
13621 case R_PPC64_GOT_TLSLD16_HA:
13622 case R_PPC64_GOT_TLSGD16_HA:
13623 case R_PPC64_GOT_TPREL16_HA:
13624 case R_PPC64_GOT_DTPREL16_HA:
13625 case R_PPC64_GOT16_HA:
13626 case R_PPC64_TOC16_HA:
13627 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13628 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13629 {
13630 bfd_byte *p = contents + (rel->r_offset & ~3);
13631 bfd_put_32 (input_bfd, NOP, p);
13632 }
13633 break;
13634
13635 case R_PPC64_GOT_TLSLD16_LO:
13636 case R_PPC64_GOT_TLSGD16_LO:
13637 case R_PPC64_GOT_TPREL16_LO_DS:
13638 case R_PPC64_GOT_DTPREL16_LO_DS:
13639 case R_PPC64_GOT16_LO:
13640 case R_PPC64_GOT16_LO_DS:
13641 case R_PPC64_TOC16_LO:
13642 case R_PPC64_TOC16_LO_DS:
13643 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
13644 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
13645 {
13646 bfd_byte *p = contents + (rel->r_offset & ~3);
13647 insn = bfd_get_32 (input_bfd, p);
13648 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
13649 {
13650 /* Transform addic to addi when we change reg. */
13651 insn &= ~((0x3f << 26) | (0x1f << 16));
13652 insn |= (14u << 26) | (2 << 16);
13653 }
13654 else
13655 {
13656 insn &= ~(0x1f << 16);
13657 insn |= 2 << 16;
13658 }
13659 bfd_put_32 (input_bfd, insn, p);
13660 }
13661 break;
13662 }
13663
13664 /* Do any further special processing. */
13665 switch (r_type)
13666 {
13667 default:
13668 break;
13669
13670 case R_PPC64_ADDR16_HA:
13671 case R_PPC64_REL16_HA:
13672 case R_PPC64_ADDR16_HIGHERA:
13673 case R_PPC64_ADDR16_HIGHESTA:
13674 case R_PPC64_TOC16_HA:
13675 case R_PPC64_SECTOFF_HA:
13676 case R_PPC64_TPREL16_HA:
13677 case R_PPC64_DTPREL16_HA:
13678 case R_PPC64_TPREL16_HIGHER:
13679 case R_PPC64_TPREL16_HIGHERA:
13680 case R_PPC64_TPREL16_HIGHEST:
13681 case R_PPC64_TPREL16_HIGHESTA:
13682 case R_PPC64_DTPREL16_HIGHER:
13683 case R_PPC64_DTPREL16_HIGHERA:
13684 case R_PPC64_DTPREL16_HIGHEST:
13685 case R_PPC64_DTPREL16_HIGHESTA:
13686 /* It's just possible that this symbol is a weak symbol
13687 that's not actually defined anywhere. In that case,
13688 'sec' would be NULL, and we should leave the symbol
13689 alone (it will be set to zero elsewhere in the link). */
13690 if (sec == NULL)
13691 break;
13692 /* Fall thru */
13693
13694 case R_PPC64_GOT16_HA:
13695 case R_PPC64_PLTGOT16_HA:
13696 case R_PPC64_PLT16_HA:
13697 case R_PPC64_GOT_TLSGD16_HA:
13698 case R_PPC64_GOT_TLSLD16_HA:
13699 case R_PPC64_GOT_TPREL16_HA:
13700 case R_PPC64_GOT_DTPREL16_HA:
13701 /* Add 0x10000 if sign bit in 0:15 is set.
13702 Bits 0:15 are not used. */
13703 addend += 0x8000;
13704 break;
13705
13706 case R_PPC64_ADDR16_DS:
13707 case R_PPC64_ADDR16_LO_DS:
13708 case R_PPC64_GOT16_DS:
13709 case R_PPC64_GOT16_LO_DS:
13710 case R_PPC64_PLT16_LO_DS:
13711 case R_PPC64_SECTOFF_DS:
13712 case R_PPC64_SECTOFF_LO_DS:
13713 case R_PPC64_TOC16_DS:
13714 case R_PPC64_TOC16_LO_DS:
13715 case R_PPC64_PLTGOT16_DS:
13716 case R_PPC64_PLTGOT16_LO_DS:
13717 case R_PPC64_GOT_TPREL16_DS:
13718 case R_PPC64_GOT_TPREL16_LO_DS:
13719 case R_PPC64_GOT_DTPREL16_DS:
13720 case R_PPC64_GOT_DTPREL16_LO_DS:
13721 case R_PPC64_TPREL16_DS:
13722 case R_PPC64_TPREL16_LO_DS:
13723 case R_PPC64_DTPREL16_DS:
13724 case R_PPC64_DTPREL16_LO_DS:
13725 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
13726 mask = 3;
13727 /* If this reloc is against an lq insn, then the value must be
13728 a multiple of 16. This is somewhat of a hack, but the
13729 "correct" way to do this by defining _DQ forms of all the
13730 _DS relocs bloats all reloc switches in this file. It
13731 doesn't seem to make much sense to use any of these relocs
13732 in data, so testing the insn should be safe. */
13733 if ((insn & (0x3f << 26)) == (56u << 26))
13734 mask = 15;
13735 if (((relocation + addend) & mask) != 0)
13736 {
13737 info->callbacks->einfo
13738 (_("%P: %H: error: %s not a multiple of %u\n"),
13739 input_bfd, input_section, rel->r_offset,
13740 ppc64_elf_howto_table[r_type]->name,
13741 mask + 1);
13742 bfd_set_error (bfd_error_bad_value);
13743 ret = FALSE;
13744 continue;
13745 }
13746 break;
13747 }
13748
13749 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13750 because such sections are not SEC_ALLOC and thus ld.so will
13751 not process them. */
13752 if (unresolved_reloc
13753 && !((input_section->flags & SEC_DEBUGGING) != 0
13754 && h->elf.def_dynamic)
13755 && _bfd_elf_section_offset (output_bfd, info, input_section,
13756 rel->r_offset) != (bfd_vma) -1)
13757 {
13758 info->callbacks->einfo
13759 (_("%P: %H: unresolvable %s relocation against symbol `%s'\n"),
13760 input_bfd, input_section, rel->r_offset,
13761 ppc64_elf_howto_table[(int) r_type]->name,
13762 h->elf.root.root.string);
13763 ret = FALSE;
13764 }
13765
13766 r = _bfd_final_link_relocate (ppc64_elf_howto_table[(int) r_type],
13767 input_bfd,
13768 input_section,
13769 contents,
13770 rel->r_offset,
13771 relocation,
13772 addend);
13773
13774 if (r != bfd_reloc_ok)
13775 {
13776 if (sym_name == NULL)
13777 sym_name = "(null)";
13778 if (r == bfd_reloc_overflow)
13779 {
13780 if (warned)
13781 continue;
13782 if (h != NULL
13783 && h->elf.root.type == bfd_link_hash_undefweak
13784 && ppc64_elf_howto_table[r_type]->pc_relative)
13785 {
13786 /* Assume this is a call protected by other code that
13787 detects the symbol is undefined. If this is the case,
13788 we can safely ignore the overflow. If not, the
13789 program is hosed anyway, and a little warning isn't
13790 going to help. */
13791
13792 continue;
13793 }
13794
13795 if (!((*info->callbacks->reloc_overflow)
13796 (info, (h ? &h->elf.root : NULL), sym_name,
13797 ppc64_elf_howto_table[r_type]->name,
13798 orig_addend, input_bfd, input_section, rel->r_offset)))
13799 return FALSE;
13800 }
13801 else
13802 {
13803 info->callbacks->einfo
13804 (_("%P: %H: %s reloc against `%s': error %d\n"),
13805 input_bfd, input_section, rel->r_offset,
13806 ppc64_elf_howto_table[r_type]->name,
13807 sym_name,
13808 (int) r);
13809 ret = FALSE;
13810 }
13811 }
13812 }
13813
13814 /* If we're emitting relocations, then shortly after this function
13815 returns, reloc offsets and addends for this section will be
13816 adjusted. Worse, reloc symbol indices will be for the output
13817 file rather than the input. Save a copy of the relocs for
13818 opd_entry_value. */
13819 if (is_opd && (info->emitrelocations || info->relocatable))
13820 {
13821 bfd_size_type amt;
13822 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
13823 rel = bfd_alloc (input_bfd, amt);
13824 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd_relocs == NULL);
13825 ppc64_elf_tdata (input_bfd)->opd_relocs = rel;
13826 if (rel == NULL)
13827 return FALSE;
13828 memcpy (rel, relocs, amt);
13829 }
13830 return ret;
13831 }
13832
13833 /* Adjust the value of any local symbols in opd sections. */
13834
13835 static int
13836 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
13837 const char *name ATTRIBUTE_UNUSED,
13838 Elf_Internal_Sym *elfsym,
13839 asection *input_sec,
13840 struct elf_link_hash_entry *h)
13841 {
13842 struct _opd_sec_data *opd;
13843 long adjust;
13844 bfd_vma value;
13845
13846 if (h != NULL)
13847 return 1;
13848
13849 opd = get_opd_info (input_sec);
13850 if (opd == NULL || opd->adjust == NULL)
13851 return 1;
13852
13853 value = elfsym->st_value - input_sec->output_offset;
13854 if (!info->relocatable)
13855 value -= input_sec->output_section->vma;
13856
13857 adjust = opd->adjust[value / 8];
13858 if (adjust == -1)
13859 return 2;
13860
13861 elfsym->st_value += adjust;
13862 return 1;
13863 }
13864
13865 /* Finish up dynamic symbol handling. We set the contents of various
13866 dynamic sections here. */
13867
13868 static bfd_boolean
13869 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
13870 struct bfd_link_info *info,
13871 struct elf_link_hash_entry *h,
13872 Elf_Internal_Sym *sym)
13873 {
13874 struct ppc_link_hash_table *htab;
13875 struct plt_entry *ent;
13876 Elf_Internal_Rela rela;
13877 bfd_byte *loc;
13878
13879 htab = ppc_hash_table (info);
13880 if (htab == NULL)
13881 return FALSE;
13882
13883 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13884 if (ent->plt.offset != (bfd_vma) -1)
13885 {
13886 /* This symbol has an entry in the procedure linkage
13887 table. Set it up. */
13888 if (!htab->elf.dynamic_sections_created
13889 || h->dynindx == -1)
13890 {
13891 BFD_ASSERT (h->type == STT_GNU_IFUNC
13892 && h->def_regular
13893 && (h->root.type == bfd_link_hash_defined
13894 || h->root.type == bfd_link_hash_defweak));
13895 rela.r_offset = (htab->iplt->output_section->vma
13896 + htab->iplt->output_offset
13897 + ent->plt.offset);
13898 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13899 rela.r_addend = (h->root.u.def.value
13900 + h->root.u.def.section->output_offset
13901 + h->root.u.def.section->output_section->vma
13902 + ent->addend);
13903 loc = (htab->reliplt->contents
13904 + (htab->reliplt->reloc_count++
13905 * sizeof (Elf64_External_Rela)));
13906 }
13907 else
13908 {
13909 rela.r_offset = (htab->plt->output_section->vma
13910 + htab->plt->output_offset
13911 + ent->plt.offset);
13912 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
13913 rela.r_addend = ent->addend;
13914 loc = (htab->relplt->contents
13915 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE)
13916 / (PLT_ENTRY_SIZE / sizeof (Elf64_External_Rela))));
13917 }
13918 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
13919 }
13920
13921 if (h->needs_copy)
13922 {
13923 /* This symbol needs a copy reloc. Set it up. */
13924
13925 if (h->dynindx == -1
13926 || (h->root.type != bfd_link_hash_defined
13927 && h->root.type != bfd_link_hash_defweak)
13928 || htab->relbss == NULL)
13929 abort ();
13930
13931 rela.r_offset = (h->root.u.def.value
13932 + h->root.u.def.section->output_section->vma
13933 + h->root.u.def.section->output_offset);
13934 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
13935 rela.r_addend = 0;
13936 loc = htab->relbss->contents;
13937 loc += htab->relbss->reloc_count++ * sizeof (Elf64_External_Rela);
13938 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
13939 }
13940
13941 /* Mark some specially defined symbols as absolute. */
13942 if (strcmp (h->root.root.string, "_DYNAMIC") == 0)
13943 sym->st_shndx = SHN_ABS;
13944
13945 return TRUE;
13946 }
13947
13948 /* Used to decide how to sort relocs in an optimal manner for the
13949 dynamic linker, before writing them out. */
13950
13951 static enum elf_reloc_type_class
13952 ppc64_elf_reloc_type_class (const Elf_Internal_Rela *rela)
13953 {
13954 enum elf_ppc64_reloc_type r_type;
13955
13956 r_type = ELF64_R_TYPE (rela->r_info);
13957 switch (r_type)
13958 {
13959 case R_PPC64_RELATIVE:
13960 return reloc_class_relative;
13961 case R_PPC64_JMP_SLOT:
13962 return reloc_class_plt;
13963 case R_PPC64_COPY:
13964 return reloc_class_copy;
13965 default:
13966 return reloc_class_normal;
13967 }
13968 }
13969
13970 /* Finish up the dynamic sections. */
13971
13972 static bfd_boolean
13973 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
13974 struct bfd_link_info *info)
13975 {
13976 struct ppc_link_hash_table *htab;
13977 bfd *dynobj;
13978 asection *sdyn;
13979
13980 htab = ppc_hash_table (info);
13981 if (htab == NULL)
13982 return FALSE;
13983
13984 dynobj = htab->elf.dynobj;
13985 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13986
13987 if (htab->elf.dynamic_sections_created)
13988 {
13989 Elf64_External_Dyn *dyncon, *dynconend;
13990
13991 if (sdyn == NULL || htab->got == NULL)
13992 abort ();
13993
13994 dyncon = (Elf64_External_Dyn *) sdyn->contents;
13995 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
13996 for (; dyncon < dynconend; dyncon++)
13997 {
13998 Elf_Internal_Dyn dyn;
13999 asection *s;
14000
14001 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
14002
14003 switch (dyn.d_tag)
14004 {
14005 default:
14006 continue;
14007
14008 case DT_PPC64_GLINK:
14009 s = htab->glink;
14010 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14011 /* We stupidly defined DT_PPC64_GLINK to be the start
14012 of glink rather than the first entry point, which is
14013 what ld.so needs, and now have a bigger stub to
14014 support automatic multiple TOCs. */
14015 dyn.d_un.d_ptr += GLINK_CALL_STUB_SIZE - 32;
14016 break;
14017
14018 case DT_PPC64_OPD:
14019 s = bfd_get_section_by_name (output_bfd, ".opd");
14020 if (s == NULL)
14021 continue;
14022 dyn.d_un.d_ptr = s->vma;
14023 break;
14024
14025 case DT_PPC64_OPDSZ:
14026 s = bfd_get_section_by_name (output_bfd, ".opd");
14027 if (s == NULL)
14028 continue;
14029 dyn.d_un.d_val = s->size;
14030 break;
14031
14032 case DT_PLTGOT:
14033 s = htab->plt;
14034 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14035 break;
14036
14037 case DT_JMPREL:
14038 s = htab->relplt;
14039 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
14040 break;
14041
14042 case DT_PLTRELSZ:
14043 dyn.d_un.d_val = htab->relplt->size;
14044 break;
14045
14046 case DT_RELASZ:
14047 /* Don't count procedure linkage table relocs in the
14048 overall reloc count. */
14049 s = htab->relplt;
14050 if (s == NULL)
14051 continue;
14052 dyn.d_un.d_val -= s->size;
14053 break;
14054
14055 case DT_RELA:
14056 /* We may not be using the standard ELF linker script.
14057 If .rela.plt is the first .rela section, we adjust
14058 DT_RELA to not include it. */
14059 s = htab->relplt;
14060 if (s == NULL)
14061 continue;
14062 if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
14063 continue;
14064 dyn.d_un.d_ptr += s->size;
14065 break;
14066 }
14067
14068 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
14069 }
14070 }
14071
14072 if (htab->got != NULL && htab->got->size != 0)
14073 {
14074 /* Fill in the first entry in the global offset table.
14075 We use it to hold the link-time TOCbase. */
14076 bfd_put_64 (output_bfd,
14077 elf_gp (output_bfd) + TOC_BASE_OFF,
14078 htab->got->contents);
14079
14080 /* Set .got entry size. */
14081 elf_section_data (htab->got->output_section)->this_hdr.sh_entsize = 8;
14082 }
14083
14084 if (htab->plt != NULL && htab->plt->size != 0)
14085 {
14086 /* Set .plt entry size. */
14087 elf_section_data (htab->plt->output_section)->this_hdr.sh_entsize
14088 = PLT_ENTRY_SIZE;
14089 }
14090
14091 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
14092 brlt ourselves if emitrelocations. */
14093 if (htab->brlt != NULL
14094 && htab->brlt->reloc_count != 0
14095 && !_bfd_elf_link_output_relocs (output_bfd,
14096 htab->brlt,
14097 elf_section_data (htab->brlt)->rela.hdr,
14098 elf_section_data (htab->brlt)->relocs,
14099 NULL))
14100 return FALSE;
14101
14102 if (htab->glink != NULL
14103 && htab->glink->reloc_count != 0
14104 && !_bfd_elf_link_output_relocs (output_bfd,
14105 htab->glink,
14106 elf_section_data (htab->glink)->rela.hdr,
14107 elf_section_data (htab->glink)->relocs,
14108 NULL))
14109 return FALSE;
14110
14111
14112 if (htab->glink_eh_frame != NULL
14113 && htab->glink_eh_frame->sec_info_type == ELF_INFO_TYPE_EH_FRAME
14114 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
14115 htab->glink_eh_frame,
14116 htab->glink_eh_frame->contents))
14117 return FALSE;
14118
14119 /* We need to handle writing out multiple GOT sections ourselves,
14120 since we didn't add them to DYNOBJ. We know dynobj is the first
14121 bfd. */
14122 while ((dynobj = dynobj->link_next) != NULL)
14123 {
14124 asection *s;
14125
14126 if (!is_ppc64_elf (dynobj))
14127 continue;
14128
14129 s = ppc64_elf_tdata (dynobj)->got;
14130 if (s != NULL
14131 && s->size != 0
14132 && s->output_section != bfd_abs_section_ptr
14133 && !bfd_set_section_contents (output_bfd, s->output_section,
14134 s->contents, s->output_offset,
14135 s->size))
14136 return FALSE;
14137 s = ppc64_elf_tdata (dynobj)->relgot;
14138 if (s != NULL
14139 && s->size != 0
14140 && s->output_section != bfd_abs_section_ptr
14141 && !bfd_set_section_contents (output_bfd, s->output_section,
14142 s->contents, s->output_offset,
14143 s->size))
14144 return FALSE;
14145 }
14146
14147 return TRUE;
14148 }
14149
14150 #include "elf64-target.h"
14151
14152 /* FreeBSD support */
14153
14154 #undef TARGET_LITTLE_SYM
14155 #undef TARGET_LITTLE_NAME
14156
14157 #undef TARGET_BIG_SYM
14158 #define TARGET_BIG_SYM bfd_elf64_powerpc_freebsd_vec
14159 #undef TARGET_BIG_NAME
14160 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
14161
14162 #undef ELF_OSABI
14163 #define ELF_OSABI ELFOSABI_FREEBSD
14164
14165 #undef elf64_bed
14166 #define elf64_bed elf64_powerpc_fbsd_bed
14167
14168 #include "elf64-target.h"
14169
This page took 0.350879 seconds and 5 git commands to generate.