PowerPC64 xlate_pcrel_opt
[deliverable/binutils-gdb.git] / bfd / elf64-ppc.c
1 /* PowerPC64-specific support for 64-bit ELF.
2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
3 Written by Linus Nordberg, Swox AB <info@swox.com>,
4 based on elf32-ppc.c by Ian Lance Taylor.
5 Largely rewritten by Alan Modra.
6
7 This file is part of BFD, the Binary File Descriptor library.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
21 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
22
23
24 /* The 64-bit PowerPC ELF ABI may be found at
25 http://www.linuxbase.org/spec/ELF/ppc64/PPC-elf64abi.txt, and
26 http://www.linuxbase.org/spec/ELF/ppc64/spec/book1.html */
27
28 #include "sysdep.h"
29 #include <stdarg.h>
30 #include "bfd.h"
31 #include "bfdlink.h"
32 #include "libbfd.h"
33 #include "elf-bfd.h"
34 #include "elf/ppc64.h"
35 #include "elf64-ppc.h"
36 #include "dwarf2.h"
37
38 static bfd_reloc_status_type ppc64_elf_ha_reloc
39 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
40 static bfd_reloc_status_type ppc64_elf_branch_reloc
41 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
42 static bfd_reloc_status_type ppc64_elf_brtaken_reloc
43 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
44 static bfd_reloc_status_type ppc64_elf_sectoff_reloc
45 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
46 static bfd_reloc_status_type ppc64_elf_sectoff_ha_reloc
47 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
48 static bfd_reloc_status_type ppc64_elf_toc_reloc
49 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
50 static bfd_reloc_status_type ppc64_elf_toc_ha_reloc
51 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
52 static bfd_reloc_status_type ppc64_elf_toc64_reloc
53 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
54 static bfd_reloc_status_type ppc64_elf_prefix_reloc
55 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
56 static bfd_reloc_status_type ppc64_elf_unhandled_reloc
57 (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
58 static bfd_vma opd_entry_value
59 (asection *, bfd_vma, asection **, bfd_vma *, bfd_boolean);
60
61 #define TARGET_LITTLE_SYM powerpc_elf64_le_vec
62 #define TARGET_LITTLE_NAME "elf64-powerpcle"
63 #define TARGET_BIG_SYM powerpc_elf64_vec
64 #define TARGET_BIG_NAME "elf64-powerpc"
65 #define ELF_ARCH bfd_arch_powerpc
66 #define ELF_TARGET_ID PPC64_ELF_DATA
67 #define ELF_MACHINE_CODE EM_PPC64
68 #define ELF_MAXPAGESIZE 0x10000
69 #define ELF_COMMONPAGESIZE 0x1000
70 #define ELF_RELROPAGESIZE ELF_MAXPAGESIZE
71 #define elf_info_to_howto ppc64_elf_info_to_howto
72
73 #define elf_backend_want_got_sym 0
74 #define elf_backend_want_plt_sym 0
75 #define elf_backend_plt_alignment 3
76 #define elf_backend_plt_not_loaded 1
77 #define elf_backend_got_header_size 8
78 #define elf_backend_want_dynrelro 1
79 #define elf_backend_can_gc_sections 1
80 #define elf_backend_can_refcount 1
81 #define elf_backend_rela_normal 1
82 #define elf_backend_dtrel_excludes_plt 1
83 #define elf_backend_default_execstack 0
84
85 #define bfd_elf64_mkobject ppc64_elf_mkobject
86 #define bfd_elf64_bfd_reloc_type_lookup ppc64_elf_reloc_type_lookup
87 #define bfd_elf64_bfd_reloc_name_lookup ppc64_elf_reloc_name_lookup
88 #define bfd_elf64_bfd_merge_private_bfd_data ppc64_elf_merge_private_bfd_data
89 #define bfd_elf64_bfd_print_private_bfd_data ppc64_elf_print_private_bfd_data
90 #define bfd_elf64_new_section_hook ppc64_elf_new_section_hook
91 #define bfd_elf64_bfd_link_hash_table_create ppc64_elf_link_hash_table_create
92 #define bfd_elf64_get_synthetic_symtab ppc64_elf_get_synthetic_symtab
93 #define bfd_elf64_bfd_link_just_syms ppc64_elf_link_just_syms
94 #define bfd_elf64_bfd_gc_sections ppc64_elf_gc_sections
95
96 #define elf_backend_object_p ppc64_elf_object_p
97 #define elf_backend_grok_prstatus ppc64_elf_grok_prstatus
98 #define elf_backend_grok_psinfo ppc64_elf_grok_psinfo
99 #define elf_backend_write_core_note ppc64_elf_write_core_note
100 #define elf_backend_create_dynamic_sections _bfd_elf_create_dynamic_sections
101 #define elf_backend_copy_indirect_symbol ppc64_elf_copy_indirect_symbol
102 #define elf_backend_add_symbol_hook ppc64_elf_add_symbol_hook
103 #define elf_backend_check_directives ppc64_elf_before_check_relocs
104 #define elf_backend_notice_as_needed ppc64_elf_notice_as_needed
105 #define elf_backend_archive_symbol_lookup ppc64_elf_archive_symbol_lookup
106 #define elf_backend_check_relocs ppc64_elf_check_relocs
107 #define elf_backend_relocs_compatible _bfd_elf_relocs_compatible
108 #define elf_backend_gc_keep ppc64_elf_gc_keep
109 #define elf_backend_gc_mark_dynamic_ref ppc64_elf_gc_mark_dynamic_ref
110 #define elf_backend_gc_mark_hook ppc64_elf_gc_mark_hook
111 #define elf_backend_adjust_dynamic_symbol ppc64_elf_adjust_dynamic_symbol
112 #define elf_backend_hide_symbol ppc64_elf_hide_symbol
113 #define elf_backend_maybe_function_sym ppc64_elf_maybe_function_sym
114 #define elf_backend_always_size_sections ppc64_elf_func_desc_adjust
115 #define elf_backend_size_dynamic_sections ppc64_elf_size_dynamic_sections
116 #define elf_backend_hash_symbol ppc64_elf_hash_symbol
117 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
118 #define elf_backend_action_discarded ppc64_elf_action_discarded
119 #define elf_backend_relocate_section ppc64_elf_relocate_section
120 #define elf_backend_finish_dynamic_symbol ppc64_elf_finish_dynamic_symbol
121 #define elf_backend_reloc_type_class ppc64_elf_reloc_type_class
122 #define elf_backend_finish_dynamic_sections ppc64_elf_finish_dynamic_sections
123 #define elf_backend_link_output_symbol_hook ppc64_elf_output_symbol_hook
124 #define elf_backend_special_sections ppc64_elf_special_sections
125 #define elf_backend_merge_symbol_attribute ppc64_elf_merge_symbol_attribute
126 #define elf_backend_merge_symbol ppc64_elf_merge_symbol
127 #define elf_backend_get_reloc_section bfd_get_section_by_name
128
129 /* The name of the dynamic interpreter. This is put in the .interp
130 section. */
131 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
132
133 /* The size in bytes of an entry in the procedure linkage table. */
134 #define PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 8)
135 #define LOCAL_PLT_ENTRY_SIZE(htab) (htab->opd_abi ? 16 : 8)
136
137 /* The initial size of the plt reserved for the dynamic linker. */
138 #define PLT_INITIAL_ENTRY_SIZE(htab) (htab->opd_abi ? 24 : 16)
139
140 /* Offsets to some stack save slots. */
141 #define STK_LR 16
142 #define STK_TOC(htab) (htab->opd_abi ? 40 : 24)
143 /* This one is dodgy. ELFv2 does not have a linker word, so use the
144 CR save slot. Used only by optimised __tls_get_addr call stub,
145 relying on __tls_get_addr_opt not saving CR.. */
146 #define STK_LINKER(htab) (htab->opd_abi ? 32 : 8)
147
148 /* TOC base pointers offset from start of TOC. */
149 #define TOC_BASE_OFF 0x8000
150 /* TOC base alignment. */
151 #define TOC_BASE_ALIGN 256
152
153 /* Offset of tp and dtp pointers from start of TLS block. */
154 #define TP_OFFSET 0x7000
155 #define DTP_OFFSET 0x8000
156
157 /* .plt call stub instructions. The normal stub is like this, but
158 sometimes the .plt entry crosses a 64k boundary and we need to
159 insert an addi to adjust r11. */
160 #define STD_R2_0R1 0xf8410000 /* std %r2,0+40(%r1) */
161 #define ADDIS_R11_R2 0x3d620000 /* addis %r11,%r2,xxx@ha */
162 #define LD_R12_0R11 0xe98b0000 /* ld %r12,xxx+0@l(%r11) */
163 #define MTCTR_R12 0x7d8903a6 /* mtctr %r12 */
164 #define LD_R2_0R11 0xe84b0000 /* ld %r2,xxx+8@l(%r11) */
165 #define LD_R11_0R11 0xe96b0000 /* ld %r11,xxx+16@l(%r11) */
166 #define BCTR 0x4e800420 /* bctr */
167
168 #define ADDI_R11_R11 0x396b0000 /* addi %r11,%r11,off@l */
169 #define ADDI_R12_R11 0x398b0000 /* addi %r12,%r11,off@l */
170 #define ADDI_R12_R12 0x398c0000 /* addi %r12,%r12,off@l */
171 #define ADDIS_R2_R2 0x3c420000 /* addis %r2,%r2,off@ha */
172 #define ADDI_R2_R2 0x38420000 /* addi %r2,%r2,off@l */
173
174 #define XOR_R2_R12_R12 0x7d826278 /* xor %r2,%r12,%r12 */
175 #define ADD_R11_R11_R2 0x7d6b1214 /* add %r11,%r11,%r2 */
176 #define XOR_R11_R12_R12 0x7d8b6278 /* xor %r11,%r12,%r12 */
177 #define ADD_R2_R2_R11 0x7c425a14 /* add %r2,%r2,%r11 */
178 #define CMPLDI_R2_0 0x28220000 /* cmpldi %r2,0 */
179 #define BNECTR 0x4ca20420 /* bnectr+ */
180 #define BNECTR_P4 0x4ce20420 /* bnectr+ */
181
182 #define LD_R12_0R2 0xe9820000 /* ld %r12,xxx+0(%r2) */
183 #define LD_R11_0R2 0xe9620000 /* ld %r11,xxx+0(%r2) */
184 #define LD_R2_0R2 0xe8420000 /* ld %r2,xxx+0(%r2) */
185
186 #define LD_R2_0R1 0xe8410000 /* ld %r2,0(%r1) */
187 #define LD_R2_0R12 0xe84c0000 /* ld %r2,0(%r12) */
188 #define ADD_R2_R2_R12 0x7c426214 /* add %r2,%r2,%r12 */
189
190 #define LI_R11_0 0x39600000 /* li %r11,0 */
191 #define LIS_R2 0x3c400000 /* lis %r2,xxx@ha */
192 #define LIS_R11 0x3d600000 /* lis %r11,xxx@ha */
193 #define LIS_R12 0x3d800000 /* lis %r12,xxx@ha */
194 #define ADDIS_R2_R12 0x3c4c0000 /* addis %r2,%r12,xxx@ha */
195 #define ADDIS_R12_R2 0x3d820000 /* addis %r12,%r2,xxx@ha */
196 #define ADDIS_R12_R11 0x3d8b0000 /* addis %r12,%r11,xxx@ha */
197 #define ADDIS_R12_R12 0x3d8c0000 /* addis %r12,%r12,xxx@ha */
198 #define ORIS_R12_R12_0 0x658c0000 /* oris %r12,%r12,xxx@hi */
199 #define ORI_R11_R11_0 0x616b0000 /* ori %r11,%r11,xxx@l */
200 #define ORI_R12_R12_0 0x618c0000 /* ori %r12,%r12,xxx@l */
201 #define LD_R12_0R12 0xe98c0000 /* ld %r12,xxx@l(%r12) */
202 #define SLDI_R11_R11_34 0x796b1746 /* sldi %r11,%r11,34 */
203 #define SLDI_R12_R12_32 0x799c07c6 /* sldi %r12,%r12,32 */
204 #define LDX_R12_R11_R12 0x7d8b602a /* ldx %r12,%r11,%r12 */
205 #define ADD_R12_R11_R12 0x7d8b6214 /* add %r12,%r11,%r12 */
206 #define PADDI_R12_PC 0x0610000039800000ULL
207 #define PLD_R12_PC 0x04100000e5800000ULL
208 #define PNOP 0x0700000000000000ULL
209
210 /* __glink_PLTresolve stub instructions. We enter with the index in R0. */
211 #define GLINK_PLTRESOLVE_SIZE(htab) \
212 (8u + (htab->opd_abi ? 11 * 4 : 14 * 4))
213 /* 0: */
214 /* .quad plt0-1f */
215 /* __glink: */
216 #define MFLR_R12 0x7d8802a6 /* mflr %12 */
217 #define BCL_20_31 0x429f0005 /* bcl 20,31,1f */
218 /* 1: */
219 #define MFLR_R11 0x7d6802a6 /* mflr %11 */
220 /* ld %2,(0b-1b)(%11) */
221 #define MTLR_R12 0x7d8803a6 /* mtlr %12 */
222 #define ADD_R11_R2_R11 0x7d625a14 /* add %11,%2,%11 */
223 /* ld %12,0(%11) */
224 /* ld %2,8(%11) */
225 /* mtctr %12 */
226 /* ld %11,16(%11) */
227 /* bctr */
228 #define MFLR_R0 0x7c0802a6 /* mflr %r0 */
229 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
230 #define SUB_R12_R12_R11 0x7d8b6050 /* subf %r12,%r11,%r12 */
231 #define ADDI_R0_R12 0x380c0000 /* addi %r0,%r12,0 */
232 #define SRDI_R0_R0_2 0x7800f082 /* rldicl %r0,%r0,62,2 */
233
234 /* Pad with this. */
235 #define NOP 0x60000000
236
237 /* Some other nops. */
238 #define CROR_151515 0x4def7b82
239 #define CROR_313131 0x4ffffb82
240
241 /* .glink entries for the first 32k functions are two instructions. */
242 #define LI_R0_0 0x38000000 /* li %r0,0 */
243 #define B_DOT 0x48000000 /* b . */
244
245 /* After that, we need two instructions to load the index, followed by
246 a branch. */
247 #define LIS_R0_0 0x3c000000 /* lis %r0,0 */
248 #define ORI_R0_R0_0 0x60000000 /* ori %r0,%r0,0 */
249
250 /* Instructions used by the save and restore reg functions. */
251 #define STD_R0_0R1 0xf8010000 /* std %r0,0(%r1) */
252 #define STD_R0_0R12 0xf80c0000 /* std %r0,0(%r12) */
253 #define LD_R0_0R1 0xe8010000 /* ld %r0,0(%r1) */
254 #define LD_R0_0R12 0xe80c0000 /* ld %r0,0(%r12) */
255 #define STFD_FR0_0R1 0xd8010000 /* stfd %fr0,0(%r1) */
256 #define LFD_FR0_0R1 0xc8010000 /* lfd %fr0,0(%r1) */
257 #define LI_R12_0 0x39800000 /* li %r12,0 */
258 #define STVX_VR0_R12_R0 0x7c0c01ce /* stvx %v0,%r12,%r0 */
259 #define LVX_VR0_R12_R0 0x7c0c00ce /* lvx %v0,%r12,%r0 */
260 #define MTLR_R0 0x7c0803a6 /* mtlr %r0 */
261 #define BLR 0x4e800020 /* blr */
262
263 /* Since .opd is an array of descriptors and each entry will end up
264 with identical R_PPC64_RELATIVE relocs, there is really no need to
265 propagate .opd relocs; The dynamic linker should be taught to
266 relocate .opd without reloc entries. */
267 #ifndef NO_OPD_RELOCS
268 #define NO_OPD_RELOCS 0
269 #endif
270
271 #ifndef ARRAY_SIZE
272 #define ARRAY_SIZE(a) (sizeof (a) / sizeof ((a)[0]))
273 #endif
274
275 static inline int
276 abiversion (bfd *abfd)
277 {
278 return elf_elfheader (abfd)->e_flags & EF_PPC64_ABI;
279 }
280
281 static inline void
282 set_abiversion (bfd *abfd, int ver)
283 {
284 elf_elfheader (abfd)->e_flags &= ~EF_PPC64_ABI;
285 elf_elfheader (abfd)->e_flags |= ver & EF_PPC64_ABI;
286 }
287 \f
288 /* Relocation HOWTO's. */
289 /* Like other ELF RELA targets that don't apply multiple
290 field-altering relocations to the same localation, src_mask is
291 always zero and pcrel_offset is the same as pc_relative.
292 PowerPC can always use a zero bitpos, even when the field is not at
293 the LSB. For example, a REL24 could use rightshift=2, bisize=24
294 and bitpos=2 which matches the ABI description, or as we do here,
295 rightshift=0, bitsize=26 and bitpos=0. */
296 #define HOW(type, size, bitsize, mask, rightshift, pc_relative, \
297 complain, special_func) \
298 HOWTO (type, rightshift, size, bitsize, pc_relative, 0, \
299 complain_overflow_ ## complain, special_func, \
300 #type, FALSE, 0, mask, pc_relative)
301
302 static reloc_howto_type *ppc64_elf_howto_table[(int) R_PPC64_max];
303
304 static reloc_howto_type ppc64_elf_howto_raw[] =
305 {
306 /* This reloc does nothing. */
307 HOW (R_PPC64_NONE, 3, 0, 0, 0, FALSE, dont,
308 bfd_elf_generic_reloc),
309
310 /* A standard 32 bit relocation. */
311 HOW (R_PPC64_ADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
312 bfd_elf_generic_reloc),
313
314 /* An absolute 26 bit branch; the lower two bits must be zero.
315 FIXME: we don't check that, we just clear them. */
316 HOW (R_PPC64_ADDR24, 2, 26, 0x03fffffc, 0, FALSE, bitfield,
317 bfd_elf_generic_reloc),
318
319 /* A standard 16 bit relocation. */
320 HOW (R_PPC64_ADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
321 bfd_elf_generic_reloc),
322
323 /* A 16 bit relocation without overflow. */
324 HOW (R_PPC64_ADDR16_LO, 1, 16, 0xffff, 0, FALSE, dont,
325 bfd_elf_generic_reloc),
326
327 /* Bits 16-31 of an address. */
328 HOW (R_PPC64_ADDR16_HI, 1, 16, 0xffff, 16, FALSE, signed,
329 bfd_elf_generic_reloc),
330
331 /* Bits 16-31 of an address, plus 1 if the contents of the low 16
332 bits, treated as a signed number, is negative. */
333 HOW (R_PPC64_ADDR16_HA, 1, 16, 0xffff, 16, FALSE, signed,
334 ppc64_elf_ha_reloc),
335
336 /* An absolute 16 bit branch; the lower two bits must be zero.
337 FIXME: we don't check that, we just clear them. */
338 HOW (R_PPC64_ADDR14, 2, 16, 0x0000fffc, 0, FALSE, signed,
339 ppc64_elf_branch_reloc),
340
341 /* An absolute 16 bit branch, for which bit 10 should be set to
342 indicate that the branch is expected to be taken. The lower two
343 bits must be zero. */
344 HOW (R_PPC64_ADDR14_BRTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
345 ppc64_elf_brtaken_reloc),
346
347 /* An absolute 16 bit branch, for which bit 10 should be set to
348 indicate that the branch is not expected to be taken. The lower
349 two bits must be zero. */
350 HOW (R_PPC64_ADDR14_BRNTAKEN, 2, 16, 0x0000fffc, 0, FALSE, signed,
351 ppc64_elf_brtaken_reloc),
352
353 /* A relative 26 bit branch; the lower two bits must be zero. */
354 HOW (R_PPC64_REL24, 2, 26, 0x03fffffc, 0, TRUE, signed,
355 ppc64_elf_branch_reloc),
356
357 /* A variant of R_PPC64_REL24, used when r2 is not the toc pointer. */
358 HOW (R_PPC64_REL24_NOTOC, 2, 26, 0x03fffffc, 0, TRUE, signed,
359 ppc64_elf_branch_reloc),
360
361 /* A relative 16 bit branch; the lower two bits must be zero. */
362 HOW (R_PPC64_REL14, 2, 16, 0x0000fffc, 0, TRUE, signed,
363 ppc64_elf_branch_reloc),
364
365 /* A relative 16 bit branch. Bit 10 should be set to indicate that
366 the branch is expected to be taken. The lower two bits must be
367 zero. */
368 HOW (R_PPC64_REL14_BRTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
369 ppc64_elf_brtaken_reloc),
370
371 /* A relative 16 bit branch. Bit 10 should be set to indicate that
372 the branch is not expected to be taken. The lower two bits must
373 be zero. */
374 HOW (R_PPC64_REL14_BRNTAKEN, 2, 16, 0x0000fffc, 0, TRUE, signed,
375 ppc64_elf_brtaken_reloc),
376
377 /* Like R_PPC64_ADDR16, but referring to the GOT table entry for the
378 symbol. */
379 HOW (R_PPC64_GOT16, 1, 16, 0xffff, 0, FALSE, signed,
380 ppc64_elf_unhandled_reloc),
381
382 /* Like R_PPC64_ADDR16_LO, but referring to the GOT table entry for
383 the symbol. */
384 HOW (R_PPC64_GOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
385 ppc64_elf_unhandled_reloc),
386
387 /* Like R_PPC64_ADDR16_HI, but referring to the GOT table entry for
388 the symbol. */
389 HOW (R_PPC64_GOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
390 ppc64_elf_unhandled_reloc),
391
392 /* Like R_PPC64_ADDR16_HA, but referring to the GOT table entry for
393 the symbol. */
394 HOW (R_PPC64_GOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
395 ppc64_elf_unhandled_reloc),
396
397 /* This is used only by the dynamic linker. The symbol should exist
398 both in the object being run and in some shared library. The
399 dynamic linker copies the data addressed by the symbol from the
400 shared library into the object, because the object being
401 run has to have the data at some particular address. */
402 HOW (R_PPC64_COPY, 0, 0, 0, 0, FALSE, dont,
403 ppc64_elf_unhandled_reloc),
404
405 /* Like R_PPC64_ADDR64, but used when setting global offset table
406 entries. */
407 HOW (R_PPC64_GLOB_DAT, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
408 ppc64_elf_unhandled_reloc),
409
410 /* Created by the link editor. Marks a procedure linkage table
411 entry for a symbol. */
412 HOW (R_PPC64_JMP_SLOT, 0, 0, 0, 0, FALSE, dont,
413 ppc64_elf_unhandled_reloc),
414
415 /* Used only by the dynamic linker. When the object is run, this
416 doubleword64 is set to the load address of the object, plus the
417 addend. */
418 HOW (R_PPC64_RELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
419 bfd_elf_generic_reloc),
420
421 /* Like R_PPC64_ADDR32, but may be unaligned. */
422 HOW (R_PPC64_UADDR32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
423 bfd_elf_generic_reloc),
424
425 /* Like R_PPC64_ADDR16, but may be unaligned. */
426 HOW (R_PPC64_UADDR16, 1, 16, 0xffff, 0, FALSE, bitfield,
427 bfd_elf_generic_reloc),
428
429 /* 32-bit PC relative. */
430 HOW (R_PPC64_REL32, 2, 32, 0xffffffff, 0, TRUE, signed,
431 bfd_elf_generic_reloc),
432
433 /* 32-bit relocation to the symbol's procedure linkage table. */
434 HOW (R_PPC64_PLT32, 2, 32, 0xffffffff, 0, FALSE, bitfield,
435 ppc64_elf_unhandled_reloc),
436
437 /* 32-bit PC relative relocation to the symbol's procedure linkage table.
438 FIXME: R_PPC64_PLTREL32 not supported. */
439 HOW (R_PPC64_PLTREL32, 2, 32, 0xffffffff, 0, TRUE, signed,
440 ppc64_elf_unhandled_reloc),
441
442 /* Like R_PPC64_ADDR16_LO, but referring to the PLT table entry for
443 the symbol. */
444 HOW (R_PPC64_PLT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
445 ppc64_elf_unhandled_reloc),
446
447 /* Like R_PPC64_ADDR16_HI, but referring to the PLT table entry for
448 the symbol. */
449 HOW (R_PPC64_PLT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
450 ppc64_elf_unhandled_reloc),
451
452 /* Like R_PPC64_ADDR16_HA, but referring to the PLT table entry for
453 the symbol. */
454 HOW (R_PPC64_PLT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
455 ppc64_elf_unhandled_reloc),
456
457 /* 16-bit section relative relocation. */
458 HOW (R_PPC64_SECTOFF, 1, 16, 0xffff, 0, FALSE, signed,
459 ppc64_elf_sectoff_reloc),
460
461 /* Like R_PPC64_SECTOFF, but no overflow warning. */
462 HOW (R_PPC64_SECTOFF_LO, 1, 16, 0xffff, 0, FALSE, dont,
463 ppc64_elf_sectoff_reloc),
464
465 /* 16-bit upper half section relative relocation. */
466 HOW (R_PPC64_SECTOFF_HI, 1, 16, 0xffff, 16, FALSE, signed,
467 ppc64_elf_sectoff_reloc),
468
469 /* 16-bit upper half adjusted section relative relocation. */
470 HOW (R_PPC64_SECTOFF_HA, 1, 16, 0xffff, 16, FALSE, signed,
471 ppc64_elf_sectoff_ha_reloc),
472
473 /* Like R_PPC64_REL24 without touching the two least significant bits. */
474 HOW (R_PPC64_REL30, 2, 30, 0xfffffffc, 2, TRUE, dont,
475 bfd_elf_generic_reloc),
476
477 /* Relocs in the 64-bit PowerPC ELF ABI, not in the 32-bit ABI. */
478
479 /* A standard 64-bit relocation. */
480 HOW (R_PPC64_ADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
481 bfd_elf_generic_reloc),
482
483 /* The bits 32-47 of an address. */
484 HOW (R_PPC64_ADDR16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
485 bfd_elf_generic_reloc),
486
487 /* The bits 32-47 of an address, plus 1 if the contents of the low
488 16 bits, treated as a signed number, is negative. */
489 HOW (R_PPC64_ADDR16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
490 ppc64_elf_ha_reloc),
491
492 /* The bits 48-63 of an address. */
493 HOW (R_PPC64_ADDR16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
494 bfd_elf_generic_reloc),
495
496 /* The bits 48-63 of an address, plus 1 if the contents of the low
497 16 bits, treated as a signed number, is negative. */
498 HOW (R_PPC64_ADDR16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
499 ppc64_elf_ha_reloc),
500
501 /* Like ADDR64, but may be unaligned. */
502 HOW (R_PPC64_UADDR64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
503 bfd_elf_generic_reloc),
504
505 /* 64-bit relative relocation. */
506 HOW (R_PPC64_REL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
507 bfd_elf_generic_reloc),
508
509 /* 64-bit relocation to the symbol's procedure linkage table. */
510 HOW (R_PPC64_PLT64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
511 ppc64_elf_unhandled_reloc),
512
513 /* 64-bit PC relative relocation to the symbol's procedure linkage
514 table. */
515 /* FIXME: R_PPC64_PLTREL64 not supported. */
516 HOW (R_PPC64_PLTREL64, 4, 64, 0xffffffffffffffffULL, 0, TRUE, dont,
517 ppc64_elf_unhandled_reloc),
518
519 /* 16 bit TOC-relative relocation. */
520 /* R_PPC64_TOC16 47 half16* S + A - .TOC. */
521 HOW (R_PPC64_TOC16, 1, 16, 0xffff, 0, FALSE, signed,
522 ppc64_elf_toc_reloc),
523
524 /* 16 bit TOC-relative relocation without overflow. */
525 /* R_PPC64_TOC16_LO 48 half16 #lo (S + A - .TOC.) */
526 HOW (R_PPC64_TOC16_LO, 1, 16, 0xffff, 0, FALSE, dont,
527 ppc64_elf_toc_reloc),
528
529 /* 16 bit TOC-relative relocation, high 16 bits. */
530 /* R_PPC64_TOC16_HI 49 half16 #hi (S + A - .TOC.) */
531 HOW (R_PPC64_TOC16_HI, 1, 16, 0xffff, 16, FALSE, signed,
532 ppc64_elf_toc_reloc),
533
534 /* 16 bit TOC-relative relocation, high 16 bits, plus 1 if the
535 contents of the low 16 bits, treated as a signed number, is
536 negative. */
537 /* R_PPC64_TOC16_HA 50 half16 #ha (S + A - .TOC.) */
538 HOW (R_PPC64_TOC16_HA, 1, 16, 0xffff, 16, FALSE, signed,
539 ppc64_elf_toc_ha_reloc),
540
541 /* 64-bit relocation; insert value of TOC base (.TOC.). */
542 /* R_PPC64_TOC 51 doubleword64 .TOC. */
543 HOW (R_PPC64_TOC, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
544 ppc64_elf_toc64_reloc),
545
546 /* Like R_PPC64_GOT16, but also informs the link editor that the
547 value to relocate may (!) refer to a PLT entry which the link
548 editor (a) may replace with the symbol value. If the link editor
549 is unable to fully resolve the symbol, it may (b) create a PLT
550 entry and store the address to the new PLT entry in the GOT.
551 This permits lazy resolution of function symbols at run time.
552 The link editor may also skip all of this and just (c) emit a
553 R_PPC64_GLOB_DAT to tie the symbol to the GOT entry. */
554 /* FIXME: R_PPC64_PLTGOT16 not implemented. */
555 HOW (R_PPC64_PLTGOT16, 1, 16, 0xffff, 0, FALSE,signed,
556 ppc64_elf_unhandled_reloc),
557
558 /* Like R_PPC64_PLTGOT16, but without overflow. */
559 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
560 HOW (R_PPC64_PLTGOT16_LO, 1, 16, 0xffff, 0, FALSE, dont,
561 ppc64_elf_unhandled_reloc),
562
563 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address. */
564 /* FIXME: R_PPC64_PLTGOT16_HI not implemented. */
565 HOW (R_PPC64_PLTGOT16_HI, 1, 16, 0xffff, 16, FALSE, signed,
566 ppc64_elf_unhandled_reloc),
567
568 /* Like R_PPC64_PLT_GOT16, but using bits 16-31 of the address, plus
569 1 if the contents of the low 16 bits, treated as a signed number,
570 is negative. */
571 /* FIXME: R_PPC64_PLTGOT16_HA not implemented. */
572 HOW (R_PPC64_PLTGOT16_HA, 1, 16, 0xffff, 16, FALSE, signed,
573 ppc64_elf_unhandled_reloc),
574
575 /* Like R_PPC64_ADDR16, but for instructions with a DS field. */
576 HOW (R_PPC64_ADDR16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
577 bfd_elf_generic_reloc),
578
579 /* Like R_PPC64_ADDR16_LO, but for instructions with a DS field. */
580 HOW (R_PPC64_ADDR16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
581 bfd_elf_generic_reloc),
582
583 /* Like R_PPC64_GOT16, but for instructions with a DS field. */
584 HOW (R_PPC64_GOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
585 ppc64_elf_unhandled_reloc),
586
587 /* Like R_PPC64_GOT16_LO, but for instructions with a DS field. */
588 HOW (R_PPC64_GOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
589 ppc64_elf_unhandled_reloc),
590
591 /* Like R_PPC64_PLT16_LO, but for instructions with a DS field. */
592 HOW (R_PPC64_PLT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
593 ppc64_elf_unhandled_reloc),
594
595 /* Like R_PPC64_SECTOFF, but for instructions with a DS field. */
596 HOW (R_PPC64_SECTOFF_DS, 1, 16, 0xfffc, 0, FALSE, signed,
597 ppc64_elf_sectoff_reloc),
598
599 /* Like R_PPC64_SECTOFF_LO, but for instructions with a DS field. */
600 HOW (R_PPC64_SECTOFF_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
601 ppc64_elf_sectoff_reloc),
602
603 /* Like R_PPC64_TOC16, but for instructions with a DS field. */
604 HOW (R_PPC64_TOC16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
605 ppc64_elf_toc_reloc),
606
607 /* Like R_PPC64_TOC16_LO, but for instructions with a DS field. */
608 HOW (R_PPC64_TOC16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
609 ppc64_elf_toc_reloc),
610
611 /* Like R_PPC64_PLTGOT16, but for instructions with a DS field. */
612 /* FIXME: R_PPC64_PLTGOT16_DS not implemented. */
613 HOW (R_PPC64_PLTGOT16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
614 ppc64_elf_unhandled_reloc),
615
616 /* Like R_PPC64_PLTGOT16_LO, but for instructions with a DS field. */
617 /* FIXME: R_PPC64_PLTGOT16_LO not implemented. */
618 HOW (R_PPC64_PLTGOT16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
619 ppc64_elf_unhandled_reloc),
620
621 /* Marker relocs for TLS. */
622 HOW (R_PPC64_TLS, 2, 32, 0, 0, FALSE, dont,
623 bfd_elf_generic_reloc),
624
625 HOW (R_PPC64_TLSGD, 2, 32, 0, 0, FALSE, dont,
626 bfd_elf_generic_reloc),
627
628 HOW (R_PPC64_TLSLD, 2, 32, 0, 0, FALSE, dont,
629 bfd_elf_generic_reloc),
630
631 /* Marker reloc for optimizing r2 save in prologue rather than on
632 each plt call stub. */
633 HOW (R_PPC64_TOCSAVE, 2, 32, 0, 0, FALSE, dont,
634 bfd_elf_generic_reloc),
635
636 /* Marker relocs on inline plt call instructions. */
637 HOW (R_PPC64_PLTSEQ, 2, 32, 0, 0, FALSE, dont,
638 bfd_elf_generic_reloc),
639
640 HOW (R_PPC64_PLTCALL, 2, 32, 0, 0, FALSE, dont,
641 bfd_elf_generic_reloc),
642
643 /* Computes the load module index of the load module that contains the
644 definition of its TLS sym. */
645 HOW (R_PPC64_DTPMOD64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
646 ppc64_elf_unhandled_reloc),
647
648 /* Computes a dtv-relative displacement, the difference between the value
649 of sym+add and the base address of the thread-local storage block that
650 contains the definition of sym, minus 0x8000. */
651 HOW (R_PPC64_DTPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
652 ppc64_elf_unhandled_reloc),
653
654 /* A 16 bit dtprel reloc. */
655 HOW (R_PPC64_DTPREL16, 1, 16, 0xffff, 0, FALSE, signed,
656 ppc64_elf_unhandled_reloc),
657
658 /* Like DTPREL16, but no overflow. */
659 HOW (R_PPC64_DTPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
660 ppc64_elf_unhandled_reloc),
661
662 /* Like DTPREL16_LO, but next higher group of 16 bits. */
663 HOW (R_PPC64_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
664 ppc64_elf_unhandled_reloc),
665
666 /* Like DTPREL16_HI, but adjust for low 16 bits. */
667 HOW (R_PPC64_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
668 ppc64_elf_unhandled_reloc),
669
670 /* Like DTPREL16_HI, but next higher group of 16 bits. */
671 HOW (R_PPC64_DTPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
672 ppc64_elf_unhandled_reloc),
673
674 /* Like DTPREL16_HIGHER, but adjust for low 16 bits. */
675 HOW (R_PPC64_DTPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
676 ppc64_elf_unhandled_reloc),
677
678 /* Like DTPREL16_HIGHER, but next higher group of 16 bits. */
679 HOW (R_PPC64_DTPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
680 ppc64_elf_unhandled_reloc),
681
682 /* Like DTPREL16_HIGHEST, but adjust for low 16 bits. */
683 HOW (R_PPC64_DTPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
684 ppc64_elf_unhandled_reloc),
685
686 /* Like DTPREL16, but for insns with a DS field. */
687 HOW (R_PPC64_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
688 ppc64_elf_unhandled_reloc),
689
690 /* Like DTPREL16_DS, but no overflow. */
691 HOW (R_PPC64_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
692 ppc64_elf_unhandled_reloc),
693
694 /* Computes a tp-relative displacement, the difference between the value of
695 sym+add and the value of the thread pointer (r13). */
696 HOW (R_PPC64_TPREL64, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
697 ppc64_elf_unhandled_reloc),
698
699 /* A 16 bit tprel reloc. */
700 HOW (R_PPC64_TPREL16, 1, 16, 0xffff, 0, FALSE, signed,
701 ppc64_elf_unhandled_reloc),
702
703 /* Like TPREL16, but no overflow. */
704 HOW (R_PPC64_TPREL16_LO, 1, 16, 0xffff, 0, FALSE, dont,
705 ppc64_elf_unhandled_reloc),
706
707 /* Like TPREL16_LO, but next higher group of 16 bits. */
708 HOW (R_PPC64_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
709 ppc64_elf_unhandled_reloc),
710
711 /* Like TPREL16_HI, but adjust for low 16 bits. */
712 HOW (R_PPC64_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
713 ppc64_elf_unhandled_reloc),
714
715 /* Like TPREL16_HI, but next higher group of 16 bits. */
716 HOW (R_PPC64_TPREL16_HIGHER, 1, 16, 0xffff, 32, FALSE, dont,
717 ppc64_elf_unhandled_reloc),
718
719 /* Like TPREL16_HIGHER, but adjust for low 16 bits. */
720 HOW (R_PPC64_TPREL16_HIGHERA, 1, 16, 0xffff, 32, FALSE, dont,
721 ppc64_elf_unhandled_reloc),
722
723 /* Like TPREL16_HIGHER, but next higher group of 16 bits. */
724 HOW (R_PPC64_TPREL16_HIGHEST, 1, 16, 0xffff, 48, FALSE, dont,
725 ppc64_elf_unhandled_reloc),
726
727 /* Like TPREL16_HIGHEST, but adjust for low 16 bits. */
728 HOW (R_PPC64_TPREL16_HIGHESTA, 1, 16, 0xffff, 48, FALSE, dont,
729 ppc64_elf_unhandled_reloc),
730
731 /* Like TPREL16, but for insns with a DS field. */
732 HOW (R_PPC64_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
733 ppc64_elf_unhandled_reloc),
734
735 /* Like TPREL16_DS, but no overflow. */
736 HOW (R_PPC64_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
737 ppc64_elf_unhandled_reloc),
738
739 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
740 with values (sym+add)@dtpmod and (sym+add)@dtprel, and computes the offset
741 to the first entry relative to the TOC base (r2). */
742 HOW (R_PPC64_GOT_TLSGD16, 1, 16, 0xffff, 0, FALSE, signed,
743 ppc64_elf_unhandled_reloc),
744
745 /* Like GOT_TLSGD16, but no overflow. */
746 HOW (R_PPC64_GOT_TLSGD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
747 ppc64_elf_unhandled_reloc),
748
749 /* Like GOT_TLSGD16_LO, but next higher group of 16 bits. */
750 HOW (R_PPC64_GOT_TLSGD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
751 ppc64_elf_unhandled_reloc),
752
753 /* Like GOT_TLSGD16_HI, but adjust for low 16 bits. */
754 HOW (R_PPC64_GOT_TLSGD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
755 ppc64_elf_unhandled_reloc),
756
757 /* Allocates two contiguous entries in the GOT to hold a tls_index structure,
758 with values (sym+add)@dtpmod and zero, and computes the offset to the
759 first entry relative to the TOC base (r2). */
760 HOW (R_PPC64_GOT_TLSLD16, 1, 16, 0xffff, 0, FALSE, signed,
761 ppc64_elf_unhandled_reloc),
762
763 /* Like GOT_TLSLD16, but no overflow. */
764 HOW (R_PPC64_GOT_TLSLD16_LO, 1, 16, 0xffff, 0, FALSE, dont,
765 ppc64_elf_unhandled_reloc),
766
767 /* Like GOT_TLSLD16_LO, but next higher group of 16 bits. */
768 HOW (R_PPC64_GOT_TLSLD16_HI, 1, 16, 0xffff, 16, FALSE, signed,
769 ppc64_elf_unhandled_reloc),
770
771 /* Like GOT_TLSLD16_HI, but adjust for low 16 bits. */
772 HOW (R_PPC64_GOT_TLSLD16_HA, 1, 16, 0xffff, 16, FALSE, signed,
773 ppc64_elf_unhandled_reloc),
774
775 /* Allocates an entry in the GOT with value (sym+add)@dtprel, and computes
776 the offset to the entry relative to the TOC base (r2). */
777 HOW (R_PPC64_GOT_DTPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
778 ppc64_elf_unhandled_reloc),
779
780 /* Like GOT_DTPREL16_DS, but no overflow. */
781 HOW (R_PPC64_GOT_DTPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
782 ppc64_elf_unhandled_reloc),
783
784 /* Like GOT_DTPREL16_LO_DS, but next higher group of 16 bits. */
785 HOW (R_PPC64_GOT_DTPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
786 ppc64_elf_unhandled_reloc),
787
788 /* Like GOT_DTPREL16_HI, but adjust for low 16 bits. */
789 HOW (R_PPC64_GOT_DTPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
790 ppc64_elf_unhandled_reloc),
791
792 /* Allocates an entry in the GOT with value (sym+add)@tprel, and computes the
793 offset to the entry relative to the TOC base (r2). */
794 HOW (R_PPC64_GOT_TPREL16_DS, 1, 16, 0xfffc, 0, FALSE, signed,
795 ppc64_elf_unhandled_reloc),
796
797 /* Like GOT_TPREL16_DS, but no overflow. */
798 HOW (R_PPC64_GOT_TPREL16_LO_DS, 1, 16, 0xfffc, 0, FALSE, dont,
799 ppc64_elf_unhandled_reloc),
800
801 /* Like GOT_TPREL16_LO_DS, but next higher group of 16 bits. */
802 HOW (R_PPC64_GOT_TPREL16_HI, 1, 16, 0xffff, 16, FALSE, signed,
803 ppc64_elf_unhandled_reloc),
804
805 /* Like GOT_TPREL16_HI, but adjust for low 16 bits. */
806 HOW (R_PPC64_GOT_TPREL16_HA, 1, 16, 0xffff, 16, FALSE, signed,
807 ppc64_elf_unhandled_reloc),
808
809 HOW (R_PPC64_JMP_IREL, 0, 0, 0, 0, FALSE, dont,
810 ppc64_elf_unhandled_reloc),
811
812 HOW (R_PPC64_IRELATIVE, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
813 bfd_elf_generic_reloc),
814
815 /* A 16 bit relative relocation. */
816 HOW (R_PPC64_REL16, 1, 16, 0xffff, 0, TRUE, signed,
817 bfd_elf_generic_reloc),
818
819 /* A 16 bit relative relocation without overflow. */
820 HOW (R_PPC64_REL16_LO, 1, 16, 0xffff, 0, TRUE, dont,
821 bfd_elf_generic_reloc),
822
823 /* The high order 16 bits of a relative address. */
824 HOW (R_PPC64_REL16_HI, 1, 16, 0xffff, 16, TRUE, signed,
825 bfd_elf_generic_reloc),
826
827 /* The high order 16 bits of a relative address, plus 1 if the contents of
828 the low 16 bits, treated as a signed number, is negative. */
829 HOW (R_PPC64_REL16_HA, 1, 16, 0xffff, 16, TRUE, signed,
830 ppc64_elf_ha_reloc),
831
832 HOW (R_PPC64_REL16_HIGH, 1, 16, 0xffff, 16, TRUE, dont,
833 bfd_elf_generic_reloc),
834
835 HOW (R_PPC64_REL16_HIGHA, 1, 16, 0xffff, 16, TRUE, dont,
836 ppc64_elf_ha_reloc),
837
838 HOW (R_PPC64_REL16_HIGHER, 1, 16, 0xffff, 32, TRUE, dont,
839 bfd_elf_generic_reloc),
840
841 HOW (R_PPC64_REL16_HIGHERA, 1, 16, 0xffff, 32, TRUE, dont,
842 ppc64_elf_ha_reloc),
843
844 HOW (R_PPC64_REL16_HIGHEST, 1, 16, 0xffff, 48, TRUE, dont,
845 bfd_elf_generic_reloc),
846
847 HOW (R_PPC64_REL16_HIGHESTA, 1, 16, 0xffff, 48, TRUE, dont,
848 ppc64_elf_ha_reloc),
849
850 /* Like R_PPC64_REL16_HA but for split field in addpcis. */
851 HOW (R_PPC64_REL16DX_HA, 2, 16, 0x1fffc1, 16, TRUE, signed,
852 ppc64_elf_ha_reloc),
853
854 /* A split-field reloc for addpcis, non-relative (gas internal use only). */
855 HOW (R_PPC64_16DX_HA, 2, 16, 0x1fffc1, 16, FALSE, signed,
856 ppc64_elf_ha_reloc),
857
858 /* Like R_PPC64_ADDR16_HI, but no overflow. */
859 HOW (R_PPC64_ADDR16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
860 bfd_elf_generic_reloc),
861
862 /* Like R_PPC64_ADDR16_HA, but no overflow. */
863 HOW (R_PPC64_ADDR16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
864 ppc64_elf_ha_reloc),
865
866 /* Like R_PPC64_DTPREL16_HI, but no overflow. */
867 HOW (R_PPC64_DTPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
868 ppc64_elf_unhandled_reloc),
869
870 /* Like R_PPC64_DTPREL16_HA, but no overflow. */
871 HOW (R_PPC64_DTPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
872 ppc64_elf_unhandled_reloc),
873
874 /* Like R_PPC64_TPREL16_HI, but no overflow. */
875 HOW (R_PPC64_TPREL16_HIGH, 1, 16, 0xffff, 16, FALSE, dont,
876 ppc64_elf_unhandled_reloc),
877
878 /* Like R_PPC64_TPREL16_HA, but no overflow. */
879 HOW (R_PPC64_TPREL16_HIGHA, 1, 16, 0xffff, 16, FALSE, dont,
880 ppc64_elf_unhandled_reloc),
881
882 /* Marker reloc on ELFv2 large-model function entry. */
883 HOW (R_PPC64_ENTRY, 2, 32, 0, 0, FALSE, dont,
884 bfd_elf_generic_reloc),
885
886 /* Like ADDR64, but use local entry point of function. */
887 HOW (R_PPC64_ADDR64_LOCAL, 4, 64, 0xffffffffffffffffULL, 0, FALSE, dont,
888 bfd_elf_generic_reloc),
889
890 HOW (R_PPC64_PLTSEQ_NOTOC, 2, 32, 0, 0, FALSE, dont,
891 bfd_elf_generic_reloc),
892
893 HOW (R_PPC64_PLTCALL_NOTOC, 2, 32, 0, 0, FALSE, dont,
894 bfd_elf_generic_reloc),
895
896 HOW (R_PPC64_PCREL_OPT, 2, 32, 0, 0, FALSE, dont,
897 bfd_elf_generic_reloc),
898
899 HOW (R_PPC64_D34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
900 ppc64_elf_prefix_reloc),
901
902 HOW (R_PPC64_D34_LO, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, dont,
903 ppc64_elf_prefix_reloc),
904
905 HOW (R_PPC64_D34_HI30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
906 ppc64_elf_prefix_reloc),
907
908 HOW (R_PPC64_D34_HA30, 4, 34, 0x3ffff0000ffffULL, 34, FALSE, dont,
909 ppc64_elf_prefix_reloc),
910
911 HOW (R_PPC64_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
912 ppc64_elf_prefix_reloc),
913
914 HOW (R_PPC64_GOT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
915 ppc64_elf_unhandled_reloc),
916
917 HOW (R_PPC64_PLT_PCREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
918 ppc64_elf_unhandled_reloc),
919
920 HOW (R_PPC64_PLT_PCREL34_NOTOC, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
921 ppc64_elf_unhandled_reloc),
922
923 HOW (R_PPC64_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
924 ppc64_elf_unhandled_reloc),
925
926 HOW (R_PPC64_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, FALSE, signed,
927 ppc64_elf_unhandled_reloc),
928
929 HOW (R_PPC64_GOT_TLSGD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
930 ppc64_elf_unhandled_reloc),
931
932 HOW (R_PPC64_GOT_TLSLD34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
933 ppc64_elf_unhandled_reloc),
934
935 HOW (R_PPC64_GOT_TPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
936 ppc64_elf_unhandled_reloc),
937
938 HOW (R_PPC64_GOT_DTPREL34, 4, 34, 0x3ffff0000ffffULL, 0, TRUE, signed,
939 ppc64_elf_unhandled_reloc),
940
941 HOW (R_PPC64_ADDR16_HIGHER34, 1, 16, 0xffff, 34, FALSE, dont,
942 bfd_elf_generic_reloc),
943
944 HOW (R_PPC64_ADDR16_HIGHERA34, 1, 16, 0xffff, 34, FALSE, dont,
945 ppc64_elf_ha_reloc),
946
947 HOW (R_PPC64_ADDR16_HIGHEST34, 1, 16, 0xffff, 50, FALSE, dont,
948 bfd_elf_generic_reloc),
949
950 HOW (R_PPC64_ADDR16_HIGHESTA34, 1, 16, 0xffff, 50, FALSE, dont,
951 ppc64_elf_ha_reloc),
952
953 HOW (R_PPC64_REL16_HIGHER34, 1, 16, 0xffff, 34, TRUE, dont,
954 bfd_elf_generic_reloc),
955
956 HOW (R_PPC64_REL16_HIGHERA34, 1, 16, 0xffff, 34, TRUE, dont,
957 ppc64_elf_ha_reloc),
958
959 HOW (R_PPC64_REL16_HIGHEST34, 1, 16, 0xffff, 50, TRUE, dont,
960 bfd_elf_generic_reloc),
961
962 HOW (R_PPC64_REL16_HIGHESTA34, 1, 16, 0xffff, 50, TRUE, dont,
963 ppc64_elf_ha_reloc),
964
965 HOW (R_PPC64_D28, 4, 28, 0xfff0000ffffULL, 0, FALSE, signed,
966 ppc64_elf_prefix_reloc),
967
968 HOW (R_PPC64_PCREL28, 4, 28, 0xfff0000ffffULL, 0, TRUE, signed,
969 ppc64_elf_prefix_reloc),
970
971 /* GNU extension to record C++ vtable hierarchy. */
972 HOW (R_PPC64_GNU_VTINHERIT, 0, 0, 0, 0, FALSE, dont,
973 NULL),
974
975 /* GNU extension to record C++ vtable member usage. */
976 HOW (R_PPC64_GNU_VTENTRY, 0, 0, 0, 0, FALSE, dont,
977 NULL),
978 };
979
980 \f
981 /* Initialize the ppc64_elf_howto_table, so that linear accesses can
982 be done. */
983
984 static void
985 ppc_howto_init (void)
986 {
987 unsigned int i, type;
988
989 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
990 {
991 type = ppc64_elf_howto_raw[i].type;
992 BFD_ASSERT (type < ARRAY_SIZE (ppc64_elf_howto_table));
993 ppc64_elf_howto_table[type] = &ppc64_elf_howto_raw[i];
994 }
995 }
996
997 static reloc_howto_type *
998 ppc64_elf_reloc_type_lookup (bfd *abfd,
999 bfd_reloc_code_real_type code)
1000 {
1001 enum elf_ppc64_reloc_type r = R_PPC64_NONE;
1002
1003 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1004 /* Initialize howto table if needed. */
1005 ppc_howto_init ();
1006
1007 switch (code)
1008 {
1009 default:
1010 /* xgettext:c-format */
1011 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), abfd,
1012 (int) code);
1013 bfd_set_error (bfd_error_bad_value);
1014 return NULL;
1015
1016 case BFD_RELOC_NONE: r = R_PPC64_NONE;
1017 break;
1018 case BFD_RELOC_32: r = R_PPC64_ADDR32;
1019 break;
1020 case BFD_RELOC_PPC_BA26: r = R_PPC64_ADDR24;
1021 break;
1022 case BFD_RELOC_16: r = R_PPC64_ADDR16;
1023 break;
1024 case BFD_RELOC_LO16: r = R_PPC64_ADDR16_LO;
1025 break;
1026 case BFD_RELOC_HI16: r = R_PPC64_ADDR16_HI;
1027 break;
1028 case BFD_RELOC_PPC64_ADDR16_HIGH: r = R_PPC64_ADDR16_HIGH;
1029 break;
1030 case BFD_RELOC_HI16_S: r = R_PPC64_ADDR16_HA;
1031 break;
1032 case BFD_RELOC_PPC64_ADDR16_HIGHA: r = R_PPC64_ADDR16_HIGHA;
1033 break;
1034 case BFD_RELOC_PPC_BA16: r = R_PPC64_ADDR14;
1035 break;
1036 case BFD_RELOC_PPC_BA16_BRTAKEN: r = R_PPC64_ADDR14_BRTAKEN;
1037 break;
1038 case BFD_RELOC_PPC_BA16_BRNTAKEN: r = R_PPC64_ADDR14_BRNTAKEN;
1039 break;
1040 case BFD_RELOC_PPC_B26: r = R_PPC64_REL24;
1041 break;
1042 case BFD_RELOC_PPC64_REL24_NOTOC: r = R_PPC64_REL24_NOTOC;
1043 break;
1044 case BFD_RELOC_PPC_B16: r = R_PPC64_REL14;
1045 break;
1046 case BFD_RELOC_PPC_B16_BRTAKEN: r = R_PPC64_REL14_BRTAKEN;
1047 break;
1048 case BFD_RELOC_PPC_B16_BRNTAKEN: r = R_PPC64_REL14_BRNTAKEN;
1049 break;
1050 case BFD_RELOC_16_GOTOFF: r = R_PPC64_GOT16;
1051 break;
1052 case BFD_RELOC_LO16_GOTOFF: r = R_PPC64_GOT16_LO;
1053 break;
1054 case BFD_RELOC_HI16_GOTOFF: r = R_PPC64_GOT16_HI;
1055 break;
1056 case BFD_RELOC_HI16_S_GOTOFF: r = R_PPC64_GOT16_HA;
1057 break;
1058 case BFD_RELOC_PPC_COPY: r = R_PPC64_COPY;
1059 break;
1060 case BFD_RELOC_PPC_GLOB_DAT: r = R_PPC64_GLOB_DAT;
1061 break;
1062 case BFD_RELOC_32_PCREL: r = R_PPC64_REL32;
1063 break;
1064 case BFD_RELOC_32_PLTOFF: r = R_PPC64_PLT32;
1065 break;
1066 case BFD_RELOC_32_PLT_PCREL: r = R_PPC64_PLTREL32;
1067 break;
1068 case BFD_RELOC_LO16_PLTOFF: r = R_PPC64_PLT16_LO;
1069 break;
1070 case BFD_RELOC_HI16_PLTOFF: r = R_PPC64_PLT16_HI;
1071 break;
1072 case BFD_RELOC_HI16_S_PLTOFF: r = R_PPC64_PLT16_HA;
1073 break;
1074 case BFD_RELOC_16_BASEREL: r = R_PPC64_SECTOFF;
1075 break;
1076 case BFD_RELOC_LO16_BASEREL: r = R_PPC64_SECTOFF_LO;
1077 break;
1078 case BFD_RELOC_HI16_BASEREL: r = R_PPC64_SECTOFF_HI;
1079 break;
1080 case BFD_RELOC_HI16_S_BASEREL: r = R_PPC64_SECTOFF_HA;
1081 break;
1082 case BFD_RELOC_CTOR: r = R_PPC64_ADDR64;
1083 break;
1084 case BFD_RELOC_64: r = R_PPC64_ADDR64;
1085 break;
1086 case BFD_RELOC_PPC64_HIGHER: r = R_PPC64_ADDR16_HIGHER;
1087 break;
1088 case BFD_RELOC_PPC64_HIGHER_S: r = R_PPC64_ADDR16_HIGHERA;
1089 break;
1090 case BFD_RELOC_PPC64_HIGHEST: r = R_PPC64_ADDR16_HIGHEST;
1091 break;
1092 case BFD_RELOC_PPC64_HIGHEST_S: r = R_PPC64_ADDR16_HIGHESTA;
1093 break;
1094 case BFD_RELOC_64_PCREL: r = R_PPC64_REL64;
1095 break;
1096 case BFD_RELOC_64_PLTOFF: r = R_PPC64_PLT64;
1097 break;
1098 case BFD_RELOC_64_PLT_PCREL: r = R_PPC64_PLTREL64;
1099 break;
1100 case BFD_RELOC_PPC_TOC16: r = R_PPC64_TOC16;
1101 break;
1102 case BFD_RELOC_PPC64_TOC16_LO: r = R_PPC64_TOC16_LO;
1103 break;
1104 case BFD_RELOC_PPC64_TOC16_HI: r = R_PPC64_TOC16_HI;
1105 break;
1106 case BFD_RELOC_PPC64_TOC16_HA: r = R_PPC64_TOC16_HA;
1107 break;
1108 case BFD_RELOC_PPC64_TOC: r = R_PPC64_TOC;
1109 break;
1110 case BFD_RELOC_PPC64_PLTGOT16: r = R_PPC64_PLTGOT16;
1111 break;
1112 case BFD_RELOC_PPC64_PLTGOT16_LO: r = R_PPC64_PLTGOT16_LO;
1113 break;
1114 case BFD_RELOC_PPC64_PLTGOT16_HI: r = R_PPC64_PLTGOT16_HI;
1115 break;
1116 case BFD_RELOC_PPC64_PLTGOT16_HA: r = R_PPC64_PLTGOT16_HA;
1117 break;
1118 case BFD_RELOC_PPC64_ADDR16_DS: r = R_PPC64_ADDR16_DS;
1119 break;
1120 case BFD_RELOC_PPC64_ADDR16_LO_DS: r = R_PPC64_ADDR16_LO_DS;
1121 break;
1122 case BFD_RELOC_PPC64_GOT16_DS: r = R_PPC64_GOT16_DS;
1123 break;
1124 case BFD_RELOC_PPC64_GOT16_LO_DS: r = R_PPC64_GOT16_LO_DS;
1125 break;
1126 case BFD_RELOC_PPC64_PLT16_LO_DS: r = R_PPC64_PLT16_LO_DS;
1127 break;
1128 case BFD_RELOC_PPC64_SECTOFF_DS: r = R_PPC64_SECTOFF_DS;
1129 break;
1130 case BFD_RELOC_PPC64_SECTOFF_LO_DS: r = R_PPC64_SECTOFF_LO_DS;
1131 break;
1132 case BFD_RELOC_PPC64_TOC16_DS: r = R_PPC64_TOC16_DS;
1133 break;
1134 case BFD_RELOC_PPC64_TOC16_LO_DS: r = R_PPC64_TOC16_LO_DS;
1135 break;
1136 case BFD_RELOC_PPC64_PLTGOT16_DS: r = R_PPC64_PLTGOT16_DS;
1137 break;
1138 case BFD_RELOC_PPC64_PLTGOT16_LO_DS: r = R_PPC64_PLTGOT16_LO_DS;
1139 break;
1140 case BFD_RELOC_PPC64_TLS_PCREL:
1141 case BFD_RELOC_PPC_TLS: r = R_PPC64_TLS;
1142 break;
1143 case BFD_RELOC_PPC_TLSGD: r = R_PPC64_TLSGD;
1144 break;
1145 case BFD_RELOC_PPC_TLSLD: r = R_PPC64_TLSLD;
1146 break;
1147 case BFD_RELOC_PPC_DTPMOD: r = R_PPC64_DTPMOD64;
1148 break;
1149 case BFD_RELOC_PPC_TPREL16: r = R_PPC64_TPREL16;
1150 break;
1151 case BFD_RELOC_PPC_TPREL16_LO: r = R_PPC64_TPREL16_LO;
1152 break;
1153 case BFD_RELOC_PPC_TPREL16_HI: r = R_PPC64_TPREL16_HI;
1154 break;
1155 case BFD_RELOC_PPC64_TPREL16_HIGH: r = R_PPC64_TPREL16_HIGH;
1156 break;
1157 case BFD_RELOC_PPC_TPREL16_HA: r = R_PPC64_TPREL16_HA;
1158 break;
1159 case BFD_RELOC_PPC64_TPREL16_HIGHA: r = R_PPC64_TPREL16_HIGHA;
1160 break;
1161 case BFD_RELOC_PPC_TPREL: r = R_PPC64_TPREL64;
1162 break;
1163 case BFD_RELOC_PPC_DTPREL16: r = R_PPC64_DTPREL16;
1164 break;
1165 case BFD_RELOC_PPC_DTPREL16_LO: r = R_PPC64_DTPREL16_LO;
1166 break;
1167 case BFD_RELOC_PPC_DTPREL16_HI: r = R_PPC64_DTPREL16_HI;
1168 break;
1169 case BFD_RELOC_PPC64_DTPREL16_HIGH: r = R_PPC64_DTPREL16_HIGH;
1170 break;
1171 case BFD_RELOC_PPC_DTPREL16_HA: r = R_PPC64_DTPREL16_HA;
1172 break;
1173 case BFD_RELOC_PPC64_DTPREL16_HIGHA: r = R_PPC64_DTPREL16_HIGHA;
1174 break;
1175 case BFD_RELOC_PPC_DTPREL: r = R_PPC64_DTPREL64;
1176 break;
1177 case BFD_RELOC_PPC_GOT_TLSGD16: r = R_PPC64_GOT_TLSGD16;
1178 break;
1179 case BFD_RELOC_PPC_GOT_TLSGD16_LO: r = R_PPC64_GOT_TLSGD16_LO;
1180 break;
1181 case BFD_RELOC_PPC_GOT_TLSGD16_HI: r = R_PPC64_GOT_TLSGD16_HI;
1182 break;
1183 case BFD_RELOC_PPC_GOT_TLSGD16_HA: r = R_PPC64_GOT_TLSGD16_HA;
1184 break;
1185 case BFD_RELOC_PPC_GOT_TLSLD16: r = R_PPC64_GOT_TLSLD16;
1186 break;
1187 case BFD_RELOC_PPC_GOT_TLSLD16_LO: r = R_PPC64_GOT_TLSLD16_LO;
1188 break;
1189 case BFD_RELOC_PPC_GOT_TLSLD16_HI: r = R_PPC64_GOT_TLSLD16_HI;
1190 break;
1191 case BFD_RELOC_PPC_GOT_TLSLD16_HA: r = R_PPC64_GOT_TLSLD16_HA;
1192 break;
1193 case BFD_RELOC_PPC_GOT_TPREL16: r = R_PPC64_GOT_TPREL16_DS;
1194 break;
1195 case BFD_RELOC_PPC_GOT_TPREL16_LO: r = R_PPC64_GOT_TPREL16_LO_DS;
1196 break;
1197 case BFD_RELOC_PPC_GOT_TPREL16_HI: r = R_PPC64_GOT_TPREL16_HI;
1198 break;
1199 case BFD_RELOC_PPC_GOT_TPREL16_HA: r = R_PPC64_GOT_TPREL16_HA;
1200 break;
1201 case BFD_RELOC_PPC_GOT_DTPREL16: r = R_PPC64_GOT_DTPREL16_DS;
1202 break;
1203 case BFD_RELOC_PPC_GOT_DTPREL16_LO: r = R_PPC64_GOT_DTPREL16_LO_DS;
1204 break;
1205 case BFD_RELOC_PPC_GOT_DTPREL16_HI: r = R_PPC64_GOT_DTPREL16_HI;
1206 break;
1207 case BFD_RELOC_PPC_GOT_DTPREL16_HA: r = R_PPC64_GOT_DTPREL16_HA;
1208 break;
1209 case BFD_RELOC_PPC64_TPREL16_DS: r = R_PPC64_TPREL16_DS;
1210 break;
1211 case BFD_RELOC_PPC64_TPREL16_LO_DS: r = R_PPC64_TPREL16_LO_DS;
1212 break;
1213 case BFD_RELOC_PPC64_TPREL16_HIGHER: r = R_PPC64_TPREL16_HIGHER;
1214 break;
1215 case BFD_RELOC_PPC64_TPREL16_HIGHERA: r = R_PPC64_TPREL16_HIGHERA;
1216 break;
1217 case BFD_RELOC_PPC64_TPREL16_HIGHEST: r = R_PPC64_TPREL16_HIGHEST;
1218 break;
1219 case BFD_RELOC_PPC64_TPREL16_HIGHESTA: r = R_PPC64_TPREL16_HIGHESTA;
1220 break;
1221 case BFD_RELOC_PPC64_DTPREL16_DS: r = R_PPC64_DTPREL16_DS;
1222 break;
1223 case BFD_RELOC_PPC64_DTPREL16_LO_DS: r = R_PPC64_DTPREL16_LO_DS;
1224 break;
1225 case BFD_RELOC_PPC64_DTPREL16_HIGHER: r = R_PPC64_DTPREL16_HIGHER;
1226 break;
1227 case BFD_RELOC_PPC64_DTPREL16_HIGHERA: r = R_PPC64_DTPREL16_HIGHERA;
1228 break;
1229 case BFD_RELOC_PPC64_DTPREL16_HIGHEST: r = R_PPC64_DTPREL16_HIGHEST;
1230 break;
1231 case BFD_RELOC_PPC64_DTPREL16_HIGHESTA: r = R_PPC64_DTPREL16_HIGHESTA;
1232 break;
1233 case BFD_RELOC_16_PCREL: r = R_PPC64_REL16;
1234 break;
1235 case BFD_RELOC_LO16_PCREL: r = R_PPC64_REL16_LO;
1236 break;
1237 case BFD_RELOC_HI16_PCREL: r = R_PPC64_REL16_HI;
1238 break;
1239 case BFD_RELOC_HI16_S_PCREL: r = R_PPC64_REL16_HA;
1240 break;
1241 case BFD_RELOC_PPC64_REL16_HIGH: r = R_PPC64_REL16_HIGH;
1242 break;
1243 case BFD_RELOC_PPC64_REL16_HIGHA: r = R_PPC64_REL16_HIGHA;
1244 break;
1245 case BFD_RELOC_PPC64_REL16_HIGHER: r = R_PPC64_REL16_HIGHER;
1246 break;
1247 case BFD_RELOC_PPC64_REL16_HIGHERA: r = R_PPC64_REL16_HIGHERA;
1248 break;
1249 case BFD_RELOC_PPC64_REL16_HIGHEST: r = R_PPC64_REL16_HIGHEST;
1250 break;
1251 case BFD_RELOC_PPC64_REL16_HIGHESTA: r = R_PPC64_REL16_HIGHESTA;
1252 break;
1253 case BFD_RELOC_PPC_16DX_HA: r = R_PPC64_16DX_HA;
1254 break;
1255 case BFD_RELOC_PPC_REL16DX_HA: r = R_PPC64_REL16DX_HA;
1256 break;
1257 case BFD_RELOC_PPC64_ENTRY: r = R_PPC64_ENTRY;
1258 break;
1259 case BFD_RELOC_PPC64_ADDR64_LOCAL: r = R_PPC64_ADDR64_LOCAL;
1260 break;
1261 case BFD_RELOC_PPC64_D34: r = R_PPC64_D34;
1262 break;
1263 case BFD_RELOC_PPC64_D34_LO: r = R_PPC64_D34_LO;
1264 break;
1265 case BFD_RELOC_PPC64_D34_HI30: r = R_PPC64_D34_HI30;
1266 break;
1267 case BFD_RELOC_PPC64_D34_HA30: r = R_PPC64_D34_HA30;
1268 break;
1269 case BFD_RELOC_PPC64_PCREL34: r = R_PPC64_PCREL34;
1270 break;
1271 case BFD_RELOC_PPC64_GOT_PCREL34: r = R_PPC64_GOT_PCREL34;
1272 break;
1273 case BFD_RELOC_PPC64_PLT_PCREL34: r = R_PPC64_PLT_PCREL34;
1274 break;
1275 case BFD_RELOC_PPC64_TPREL34: r = R_PPC64_TPREL34;
1276 break;
1277 case BFD_RELOC_PPC64_DTPREL34: r = R_PPC64_DTPREL34;
1278 break;
1279 case BFD_RELOC_PPC64_GOT_TLSGD34: r = R_PPC64_GOT_TLSGD34;
1280 break;
1281 case BFD_RELOC_PPC64_GOT_TLSLD34: r = R_PPC64_GOT_TLSLD34;
1282 break;
1283 case BFD_RELOC_PPC64_GOT_TPREL34: r = R_PPC64_GOT_TPREL34;
1284 break;
1285 case BFD_RELOC_PPC64_GOT_DTPREL34: r = R_PPC64_GOT_DTPREL34;
1286 break;
1287 case BFD_RELOC_PPC64_ADDR16_HIGHER34: r = R_PPC64_ADDR16_HIGHER34;
1288 break;
1289 case BFD_RELOC_PPC64_ADDR16_HIGHERA34: r = R_PPC64_ADDR16_HIGHERA34;
1290 break;
1291 case BFD_RELOC_PPC64_ADDR16_HIGHEST34: r = R_PPC64_ADDR16_HIGHEST34;
1292 break;
1293 case BFD_RELOC_PPC64_ADDR16_HIGHESTA34: r = R_PPC64_ADDR16_HIGHESTA34;
1294 break;
1295 case BFD_RELOC_PPC64_REL16_HIGHER34: r = R_PPC64_REL16_HIGHER34;
1296 break;
1297 case BFD_RELOC_PPC64_REL16_HIGHERA34: r = R_PPC64_REL16_HIGHERA34;
1298 break;
1299 case BFD_RELOC_PPC64_REL16_HIGHEST34: r = R_PPC64_REL16_HIGHEST34;
1300 break;
1301 case BFD_RELOC_PPC64_REL16_HIGHESTA34: r = R_PPC64_REL16_HIGHESTA34;
1302 break;
1303 case BFD_RELOC_PPC64_D28: r = R_PPC64_D28;
1304 break;
1305 case BFD_RELOC_PPC64_PCREL28: r = R_PPC64_PCREL28;
1306 break;
1307 case BFD_RELOC_VTABLE_INHERIT: r = R_PPC64_GNU_VTINHERIT;
1308 break;
1309 case BFD_RELOC_VTABLE_ENTRY: r = R_PPC64_GNU_VTENTRY;
1310 break;
1311 }
1312
1313 return ppc64_elf_howto_table[r];
1314 };
1315
1316 static reloc_howto_type *
1317 ppc64_elf_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1318 const char *r_name)
1319 {
1320 unsigned int i;
1321
1322 for (i = 0; i < ARRAY_SIZE (ppc64_elf_howto_raw); i++)
1323 if (ppc64_elf_howto_raw[i].name != NULL
1324 && strcasecmp (ppc64_elf_howto_raw[i].name, r_name) == 0)
1325 return &ppc64_elf_howto_raw[i];
1326
1327 return NULL;
1328 }
1329
1330 /* Set the howto pointer for a PowerPC ELF reloc. */
1331
1332 static bfd_boolean
1333 ppc64_elf_info_to_howto (bfd *abfd, arelent *cache_ptr,
1334 Elf_Internal_Rela *dst)
1335 {
1336 unsigned int type;
1337
1338 /* Initialize howto table if needed. */
1339 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
1340 ppc_howto_init ();
1341
1342 type = ELF64_R_TYPE (dst->r_info);
1343 if (type >= ARRAY_SIZE (ppc64_elf_howto_table))
1344 {
1345 /* xgettext:c-format */
1346 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1347 abfd, type);
1348 bfd_set_error (bfd_error_bad_value);
1349 return FALSE;
1350 }
1351 cache_ptr->howto = ppc64_elf_howto_table[type];
1352 if (cache_ptr->howto == NULL || cache_ptr->howto->name == NULL)
1353 {
1354 /* xgettext:c-format */
1355 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1356 abfd, type);
1357 bfd_set_error (bfd_error_bad_value);
1358 return FALSE;
1359 }
1360
1361 return TRUE;
1362 }
1363
1364 /* Handle the R_PPC64_ADDR16_HA and similar relocs. */
1365
1366 static bfd_reloc_status_type
1367 ppc64_elf_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1368 void *data, asection *input_section,
1369 bfd *output_bfd, char **error_message)
1370 {
1371 enum elf_ppc64_reloc_type r_type;
1372 long insn;
1373 bfd_size_type octets;
1374 bfd_vma value;
1375
1376 /* If this is a relocatable link (output_bfd test tells us), just
1377 call the generic function. Any adjustment will be done at final
1378 link time. */
1379 if (output_bfd != NULL)
1380 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1381 input_section, output_bfd, error_message);
1382
1383 /* Adjust the addend for sign extension of the low 16 (or 34) bits.
1384 We won't actually be using the low bits, so trashing them
1385 doesn't matter. */
1386 r_type = reloc_entry->howto->type;
1387 if (r_type == R_PPC64_ADDR16_HIGHERA34
1388 || r_type == R_PPC64_ADDR16_HIGHESTA34
1389 || r_type == R_PPC64_REL16_HIGHERA34
1390 || r_type == R_PPC64_REL16_HIGHESTA34)
1391 reloc_entry->addend += 1ULL << 33;
1392 else
1393 reloc_entry->addend += 1U << 15;
1394 if (r_type != R_PPC64_REL16DX_HA)
1395 return bfd_reloc_continue;
1396
1397 value = 0;
1398 if (!bfd_is_com_section (symbol->section))
1399 value = symbol->value;
1400 value += (reloc_entry->addend
1401 + symbol->section->output_offset
1402 + symbol->section->output_section->vma);
1403 value -= (reloc_entry->address
1404 + input_section->output_offset
1405 + input_section->output_section->vma);
1406 value = (bfd_signed_vma) value >> 16;
1407
1408 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1409 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1410 insn &= ~0x1fffc1;
1411 insn |= (value & 0xffc1) | ((value & 0x3e) << 15);
1412 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1413 if (value + 0x8000 > 0xffff)
1414 return bfd_reloc_overflow;
1415 return bfd_reloc_ok;
1416 }
1417
1418 static bfd_reloc_status_type
1419 ppc64_elf_branch_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1420 void *data, asection *input_section,
1421 bfd *output_bfd, char **error_message)
1422 {
1423 if (output_bfd != NULL)
1424 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1425 input_section, output_bfd, error_message);
1426
1427 if (strcmp (symbol->section->name, ".opd") == 0
1428 && (symbol->section->owner->flags & DYNAMIC) == 0)
1429 {
1430 bfd_vma dest = opd_entry_value (symbol->section,
1431 symbol->value + reloc_entry->addend,
1432 NULL, NULL, FALSE);
1433 if (dest != (bfd_vma) -1)
1434 reloc_entry->addend = dest - (symbol->value
1435 + symbol->section->output_section->vma
1436 + symbol->section->output_offset);
1437 }
1438 else
1439 {
1440 elf_symbol_type *elfsym = (elf_symbol_type *) symbol;
1441
1442 if (symbol->section->owner != abfd
1443 && symbol->section->owner != NULL
1444 && abiversion (symbol->section->owner) >= 2)
1445 {
1446 unsigned int i;
1447
1448 for (i = 0; i < symbol->section->owner->symcount; ++i)
1449 {
1450 asymbol *symdef = symbol->section->owner->outsymbols[i];
1451
1452 if (strcmp (symdef->name, symbol->name) == 0)
1453 {
1454 elfsym = (elf_symbol_type *) symdef;
1455 break;
1456 }
1457 }
1458 }
1459 reloc_entry->addend
1460 += PPC64_LOCAL_ENTRY_OFFSET (elfsym->internal_elf_sym.st_other);
1461 }
1462 return bfd_reloc_continue;
1463 }
1464
1465 static bfd_reloc_status_type
1466 ppc64_elf_brtaken_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1467 void *data, asection *input_section,
1468 bfd *output_bfd, char **error_message)
1469 {
1470 long insn;
1471 enum elf_ppc64_reloc_type r_type;
1472 bfd_size_type octets;
1473 /* Assume 'at' branch hints. */
1474 bfd_boolean is_isa_v2 = TRUE;
1475
1476 /* If this is a relocatable link (output_bfd test tells us), just
1477 call the generic function. Any adjustment will be done at final
1478 link time. */
1479 if (output_bfd != NULL)
1480 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1481 input_section, output_bfd, error_message);
1482
1483 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1484 insn = bfd_get_32 (abfd, (bfd_byte *) data + octets);
1485 insn &= ~(0x01 << 21);
1486 r_type = reloc_entry->howto->type;
1487 if (r_type == R_PPC64_ADDR14_BRTAKEN
1488 || r_type == R_PPC64_REL14_BRTAKEN)
1489 insn |= 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
1490
1491 if (is_isa_v2)
1492 {
1493 /* Set 'a' bit. This is 0b00010 in BO field for branch
1494 on CR(BI) insns (BO == 001at or 011at), and 0b01000
1495 for branch on CTR insns (BO == 1a00t or 1a01t). */
1496 if ((insn & (0x14 << 21)) == (0x04 << 21))
1497 insn |= 0x02 << 21;
1498 else if ((insn & (0x14 << 21)) == (0x10 << 21))
1499 insn |= 0x08 << 21;
1500 else
1501 goto out;
1502 }
1503 else
1504 {
1505 bfd_vma target = 0;
1506 bfd_vma from;
1507
1508 if (!bfd_is_com_section (symbol->section))
1509 target = symbol->value;
1510 target += symbol->section->output_section->vma;
1511 target += symbol->section->output_offset;
1512 target += reloc_entry->addend;
1513
1514 from = (reloc_entry->address
1515 + input_section->output_offset
1516 + input_section->output_section->vma);
1517
1518 /* Invert 'y' bit if not the default. */
1519 if ((bfd_signed_vma) (target - from) < 0)
1520 insn ^= 0x01 << 21;
1521 }
1522 bfd_put_32 (abfd, insn, (bfd_byte *) data + octets);
1523 out:
1524 return ppc64_elf_branch_reloc (abfd, reloc_entry, symbol, data,
1525 input_section, output_bfd, error_message);
1526 }
1527
1528 static bfd_reloc_status_type
1529 ppc64_elf_sectoff_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1530 void *data, asection *input_section,
1531 bfd *output_bfd, char **error_message)
1532 {
1533 /* If this is a relocatable link (output_bfd test tells us), just
1534 call the generic function. Any adjustment will be done at final
1535 link time. */
1536 if (output_bfd != NULL)
1537 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1538 input_section, output_bfd, error_message);
1539
1540 /* Subtract the symbol section base address. */
1541 reloc_entry->addend -= symbol->section->output_section->vma;
1542 return bfd_reloc_continue;
1543 }
1544
1545 static bfd_reloc_status_type
1546 ppc64_elf_sectoff_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1547 void *data, asection *input_section,
1548 bfd *output_bfd, char **error_message)
1549 {
1550 /* If this is a relocatable link (output_bfd test tells us), just
1551 call the generic function. Any adjustment will be done at final
1552 link time. */
1553 if (output_bfd != NULL)
1554 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1555 input_section, output_bfd, error_message);
1556
1557 /* Subtract the symbol section base address. */
1558 reloc_entry->addend -= symbol->section->output_section->vma;
1559
1560 /* Adjust the addend for sign extension of the low 16 bits. */
1561 reloc_entry->addend += 0x8000;
1562 return bfd_reloc_continue;
1563 }
1564
1565 static bfd_reloc_status_type
1566 ppc64_elf_toc_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1567 void *data, asection *input_section,
1568 bfd *output_bfd, char **error_message)
1569 {
1570 bfd_vma TOCstart;
1571
1572 /* If this is a relocatable link (output_bfd test tells us), just
1573 call the generic function. Any adjustment will be done at final
1574 link time. */
1575 if (output_bfd != NULL)
1576 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1577 input_section, output_bfd, error_message);
1578
1579 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1580 if (TOCstart == 0)
1581 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1582
1583 /* Subtract the TOC base address. */
1584 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1585 return bfd_reloc_continue;
1586 }
1587
1588 static bfd_reloc_status_type
1589 ppc64_elf_toc_ha_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1590 void *data, asection *input_section,
1591 bfd *output_bfd, char **error_message)
1592 {
1593 bfd_vma TOCstart;
1594
1595 /* If this is a relocatable link (output_bfd test tells us), just
1596 call the generic function. Any adjustment will be done at final
1597 link time. */
1598 if (output_bfd != NULL)
1599 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1600 input_section, output_bfd, error_message);
1601
1602 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1603 if (TOCstart == 0)
1604 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1605
1606 /* Subtract the TOC base address. */
1607 reloc_entry->addend -= TOCstart + TOC_BASE_OFF;
1608
1609 /* Adjust the addend for sign extension of the low 16 bits. */
1610 reloc_entry->addend += 0x8000;
1611 return bfd_reloc_continue;
1612 }
1613
1614 static bfd_reloc_status_type
1615 ppc64_elf_toc64_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1616 void *data, asection *input_section,
1617 bfd *output_bfd, char **error_message)
1618 {
1619 bfd_vma TOCstart;
1620 bfd_size_type octets;
1621
1622 /* If this is a relocatable link (output_bfd test tells us), just
1623 call the generic function. Any adjustment will be done at final
1624 link time. */
1625 if (output_bfd != NULL)
1626 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1627 input_section, output_bfd, error_message);
1628
1629 TOCstart = _bfd_get_gp_value (input_section->output_section->owner);
1630 if (TOCstart == 0)
1631 TOCstart = ppc64_elf_set_toc (NULL, input_section->output_section->owner);
1632
1633 octets = reloc_entry->address * bfd_octets_per_byte (abfd);
1634 bfd_put_64 (abfd, TOCstart + TOC_BASE_OFF, (bfd_byte *) data + octets);
1635 return bfd_reloc_ok;
1636 }
1637
1638 static bfd_reloc_status_type
1639 ppc64_elf_prefix_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1640 void *data, asection *input_section,
1641 bfd *output_bfd, char **error_message)
1642 {
1643 uint64_t insn;
1644 bfd_vma targ;
1645
1646 if (output_bfd != NULL)
1647 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1648 input_section, output_bfd, error_message);
1649
1650 insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
1651 insn <<= 32;
1652 insn |= bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address + 4);
1653
1654 targ = (symbol->section->output_section->vma
1655 + symbol->section->output_offset
1656 + reloc_entry->addend);
1657 if (!bfd_is_com_section (symbol->section))
1658 targ += symbol->value;
1659 if (reloc_entry->howto->type == R_PPC64_D34_HA30)
1660 targ += 1ULL << 33;
1661 if (reloc_entry->howto->pc_relative)
1662 {
1663 bfd_vma from = (reloc_entry->address
1664 + input_section->output_offset
1665 + input_section->output_section->vma);
1666 targ -=from;
1667 }
1668 targ >>= reloc_entry->howto->rightshift;
1669 insn &= ~reloc_entry->howto->dst_mask;
1670 insn |= ((targ << 16) | (targ & 0xffff)) & reloc_entry->howto->dst_mask;
1671 bfd_put_32 (abfd, insn >> 32, (bfd_byte *) data + reloc_entry->address);
1672 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address + 4);
1673 if (reloc_entry->howto->complain_on_overflow == complain_overflow_signed
1674 && (targ + (1ULL << (reloc_entry->howto->bitsize - 1))
1675 >= 1ULL << reloc_entry->howto->bitsize))
1676 return bfd_reloc_overflow;
1677 return bfd_reloc_ok;
1678 }
1679
1680 static bfd_reloc_status_type
1681 ppc64_elf_unhandled_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
1682 void *data, asection *input_section,
1683 bfd *output_bfd, char **error_message)
1684 {
1685 /* If this is a relocatable link (output_bfd test tells us), just
1686 call the generic function. Any adjustment will be done at final
1687 link time. */
1688 if (output_bfd != NULL)
1689 return bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1690 input_section, output_bfd, error_message);
1691
1692 if (error_message != NULL)
1693 {
1694 static char buf[60];
1695 sprintf (buf, "generic linker can't handle %s",
1696 reloc_entry->howto->name);
1697 *error_message = buf;
1698 }
1699 return bfd_reloc_dangerous;
1700 }
1701
1702 /* Track GOT entries needed for a given symbol. We might need more
1703 than one got entry per symbol. */
1704 struct got_entry
1705 {
1706 struct got_entry *next;
1707
1708 /* The symbol addend that we'll be placing in the GOT. */
1709 bfd_vma addend;
1710
1711 /* Unlike other ELF targets, we use separate GOT entries for the same
1712 symbol referenced from different input files. This is to support
1713 automatic multiple TOC/GOT sections, where the TOC base can vary
1714 from one input file to another. After partitioning into TOC groups
1715 we merge entries within the group.
1716
1717 Point to the BFD owning this GOT entry. */
1718 bfd *owner;
1719
1720 /* Zero for non-tls entries, or TLS_TLS and one of TLS_GD, TLS_LD,
1721 TLS_TPREL or TLS_DTPREL for tls entries. */
1722 unsigned char tls_type;
1723
1724 /* Non-zero if got.ent points to real entry. */
1725 unsigned char is_indirect;
1726
1727 /* Reference count until size_dynamic_sections, GOT offset thereafter. */
1728 union
1729 {
1730 bfd_signed_vma refcount;
1731 bfd_vma offset;
1732 struct got_entry *ent;
1733 } got;
1734 };
1735
1736 /* The same for PLT. */
1737 struct plt_entry
1738 {
1739 struct plt_entry *next;
1740
1741 bfd_vma addend;
1742
1743 union
1744 {
1745 bfd_signed_vma refcount;
1746 bfd_vma offset;
1747 } plt;
1748 };
1749
1750 struct ppc64_elf_obj_tdata
1751 {
1752 struct elf_obj_tdata elf;
1753
1754 /* Shortcuts to dynamic linker sections. */
1755 asection *got;
1756 asection *relgot;
1757
1758 /* Used during garbage collection. We attach global symbols defined
1759 on removed .opd entries to this section so that the sym is removed. */
1760 asection *deleted_section;
1761
1762 /* TLS local dynamic got entry handling. Support for multiple GOT
1763 sections means we potentially need one of these for each input bfd. */
1764 struct got_entry tlsld_got;
1765
1766 union
1767 {
1768 /* A copy of relocs before they are modified for --emit-relocs. */
1769 Elf_Internal_Rela *relocs;
1770
1771 /* Section contents. */
1772 bfd_byte *contents;
1773 } opd;
1774
1775 /* Nonzero if this bfd has small toc/got relocs, ie. that expect
1776 the reloc to be in the range -32768 to 32767. */
1777 unsigned int has_small_toc_reloc : 1;
1778
1779 /* Set if toc/got ha relocs detected not using r2, or lo reloc
1780 instruction not one we handle. */
1781 unsigned int unexpected_toc_insn : 1;
1782
1783 /* Set if PLT/GOT/TOC relocs that can be optimised are present in
1784 this file. */
1785 unsigned int has_optrel : 1;
1786 };
1787
1788 #define ppc64_elf_tdata(bfd) \
1789 ((struct ppc64_elf_obj_tdata *) (bfd)->tdata.any)
1790
1791 #define ppc64_tlsld_got(bfd) \
1792 (&ppc64_elf_tdata (bfd)->tlsld_got)
1793
1794 #define is_ppc64_elf(bfd) \
1795 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
1796 && elf_object_id (bfd) == PPC64_ELF_DATA)
1797
1798 /* Override the generic function because we store some extras. */
1799
1800 static bfd_boolean
1801 ppc64_elf_mkobject (bfd *abfd)
1802 {
1803 return bfd_elf_allocate_object (abfd, sizeof (struct ppc64_elf_obj_tdata),
1804 PPC64_ELF_DATA);
1805 }
1806
1807 /* Fix bad default arch selected for a 64 bit input bfd when the
1808 default is 32 bit. Also select arch based on apuinfo. */
1809
1810 static bfd_boolean
1811 ppc64_elf_object_p (bfd *abfd)
1812 {
1813 if (!abfd->arch_info->the_default)
1814 return TRUE;
1815
1816 if (abfd->arch_info->bits_per_word == 32)
1817 {
1818 Elf_Internal_Ehdr *i_ehdr = elf_elfheader (abfd);
1819
1820 if (i_ehdr->e_ident[EI_CLASS] == ELFCLASS64)
1821 {
1822 /* Relies on arch after 32 bit default being 64 bit default. */
1823 abfd->arch_info = abfd->arch_info->next;
1824 BFD_ASSERT (abfd->arch_info->bits_per_word == 64);
1825 }
1826 }
1827 return _bfd_elf_ppc_set_arch (abfd);
1828 }
1829
1830 /* Support for core dump NOTE sections. */
1831
1832 static bfd_boolean
1833 ppc64_elf_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1834 {
1835 size_t offset, size;
1836
1837 if (note->descsz != 504)
1838 return FALSE;
1839
1840 /* pr_cursig */
1841 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1842
1843 /* pr_pid */
1844 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
1845
1846 /* pr_reg */
1847 offset = 112;
1848 size = 384;
1849
1850 /* Make a ".reg/999" section. */
1851 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1852 size, note->descpos + offset);
1853 }
1854
1855 static bfd_boolean
1856 ppc64_elf_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1857 {
1858 if (note->descsz != 136)
1859 return FALSE;
1860
1861 elf_tdata (abfd)->core->pid
1862 = bfd_get_32 (abfd, note->descdata + 24);
1863 elf_tdata (abfd)->core->program
1864 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
1865 elf_tdata (abfd)->core->command
1866 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
1867
1868 return TRUE;
1869 }
1870
1871 static char *
1872 ppc64_elf_write_core_note (bfd *abfd, char *buf, int *bufsiz, int note_type,
1873 ...)
1874 {
1875 switch (note_type)
1876 {
1877 default:
1878 return NULL;
1879
1880 case NT_PRPSINFO:
1881 {
1882 char data[136] ATTRIBUTE_NONSTRING;
1883 va_list ap;
1884
1885 va_start (ap, note_type);
1886 memset (data, 0, sizeof (data));
1887 strncpy (data + 40, va_arg (ap, const char *), 16);
1888 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1889 DIAGNOSTIC_PUSH;
1890 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
1891 -Wstringop-truncation:
1892 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
1893 */
1894 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
1895 #endif
1896 strncpy (data + 56, va_arg (ap, const char *), 80);
1897 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
1898 DIAGNOSTIC_POP;
1899 #endif
1900 va_end (ap);
1901 return elfcore_write_note (abfd, buf, bufsiz,
1902 "CORE", note_type, data, sizeof (data));
1903 }
1904
1905 case NT_PRSTATUS:
1906 {
1907 char data[504];
1908 va_list ap;
1909 long pid;
1910 int cursig;
1911 const void *greg;
1912
1913 va_start (ap, note_type);
1914 memset (data, 0, 112);
1915 pid = va_arg (ap, long);
1916 bfd_put_32 (abfd, pid, data + 32);
1917 cursig = va_arg (ap, int);
1918 bfd_put_16 (abfd, cursig, data + 12);
1919 greg = va_arg (ap, const void *);
1920 memcpy (data + 112, greg, 384);
1921 memset (data + 496, 0, 8);
1922 va_end (ap);
1923 return elfcore_write_note (abfd, buf, bufsiz,
1924 "CORE", note_type, data, sizeof (data));
1925 }
1926 }
1927 }
1928
1929 /* Add extra PPC sections. */
1930
1931 static const struct bfd_elf_special_section ppc64_elf_special_sections[] =
1932 {
1933 { STRING_COMMA_LEN (".plt"), 0, SHT_NOBITS, 0 },
1934 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1935 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1936 { STRING_COMMA_LEN (".toc"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1937 { STRING_COMMA_LEN (".toc1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
1938 { STRING_COMMA_LEN (".tocbss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
1939 { NULL, 0, 0, 0, 0 }
1940 };
1941
1942 enum _ppc64_sec_type {
1943 sec_normal = 0,
1944 sec_opd = 1,
1945 sec_toc = 2
1946 };
1947
1948 struct _ppc64_elf_section_data
1949 {
1950 struct bfd_elf_section_data elf;
1951
1952 union
1953 {
1954 /* An array with one entry for each opd function descriptor,
1955 and some spares since opd entries may be either 16 or 24 bytes. */
1956 #define OPD_NDX(OFF) ((OFF) >> 4)
1957 struct _opd_sec_data
1958 {
1959 /* Points to the function code section for local opd entries. */
1960 asection **func_sec;
1961
1962 /* After editing .opd, adjust references to opd local syms. */
1963 long *adjust;
1964 } opd;
1965
1966 /* An array for toc sections, indexed by offset/8. */
1967 struct _toc_sec_data
1968 {
1969 /* Specifies the relocation symbol index used at a given toc offset. */
1970 unsigned *symndx;
1971
1972 /* And the relocation addend. */
1973 bfd_vma *add;
1974 } toc;
1975 } u;
1976
1977 enum _ppc64_sec_type sec_type:2;
1978
1979 /* Flag set when small branches are detected. Used to
1980 select suitable defaults for the stub group size. */
1981 unsigned int has_14bit_branch:1;
1982
1983 /* Flag set when PLTCALL relocs are detected. */
1984 unsigned int has_pltcall:1;
1985
1986 /* Flag set when section has PLT/GOT/TOC relocations that can be
1987 optimised. */
1988 unsigned int has_optrel:1;
1989 };
1990
1991 #define ppc64_elf_section_data(sec) \
1992 ((struct _ppc64_elf_section_data *) elf_section_data (sec))
1993
1994 static bfd_boolean
1995 ppc64_elf_new_section_hook (bfd *abfd, asection *sec)
1996 {
1997 if (!sec->used_by_bfd)
1998 {
1999 struct _ppc64_elf_section_data *sdata;
2000 bfd_size_type amt = sizeof (*sdata);
2001
2002 sdata = bfd_zalloc (abfd, amt);
2003 if (sdata == NULL)
2004 return FALSE;
2005 sec->used_by_bfd = sdata;
2006 }
2007
2008 return _bfd_elf_new_section_hook (abfd, sec);
2009 }
2010
2011 static struct _opd_sec_data *
2012 get_opd_info (asection * sec)
2013 {
2014 if (sec != NULL
2015 && ppc64_elf_section_data (sec) != NULL
2016 && ppc64_elf_section_data (sec)->sec_type == sec_opd)
2017 return &ppc64_elf_section_data (sec)->u.opd;
2018 return NULL;
2019 }
2020 \f
2021 /* Parameters for the qsort hook. */
2022 static bfd_boolean synthetic_relocatable;
2023 static asection *synthetic_opd;
2024
2025 /* qsort comparison function for ppc64_elf_get_synthetic_symtab. */
2026
2027 static int
2028 compare_symbols (const void *ap, const void *bp)
2029 {
2030 const asymbol *a = *(const asymbol **) ap;
2031 const asymbol *b = *(const asymbol **) bp;
2032
2033 /* Section symbols first. */
2034 if ((a->flags & BSF_SECTION_SYM) && !(b->flags & BSF_SECTION_SYM))
2035 return -1;
2036 if (!(a->flags & BSF_SECTION_SYM) && (b->flags & BSF_SECTION_SYM))
2037 return 1;
2038
2039 /* then .opd symbols. */
2040 if (synthetic_opd != NULL)
2041 {
2042 if (strcmp (a->section->name, ".opd") == 0
2043 && strcmp (b->section->name, ".opd") != 0)
2044 return -1;
2045 if (strcmp (a->section->name, ".opd") != 0
2046 && strcmp (b->section->name, ".opd") == 0)
2047 return 1;
2048 }
2049
2050 /* then other code symbols. */
2051 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2052 == (SEC_CODE | SEC_ALLOC))
2053 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2054 != (SEC_CODE | SEC_ALLOC)))
2055 return -1;
2056
2057 if (((a->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2058 != (SEC_CODE | SEC_ALLOC))
2059 && ((b->section->flags & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL))
2060 == (SEC_CODE | SEC_ALLOC)))
2061 return 1;
2062
2063 if (synthetic_relocatable)
2064 {
2065 if (a->section->id < b->section->id)
2066 return -1;
2067
2068 if (a->section->id > b->section->id)
2069 return 1;
2070 }
2071
2072 if (a->value + a->section->vma < b->value + b->section->vma)
2073 return -1;
2074
2075 if (a->value + a->section->vma > b->value + b->section->vma)
2076 return 1;
2077
2078 /* For syms with the same value, prefer strong dynamic global function
2079 syms over other syms. */
2080 if ((a->flags & BSF_GLOBAL) != 0 && (b->flags & BSF_GLOBAL) == 0)
2081 return -1;
2082
2083 if ((a->flags & BSF_GLOBAL) == 0 && (b->flags & BSF_GLOBAL) != 0)
2084 return 1;
2085
2086 if ((a->flags & BSF_FUNCTION) != 0 && (b->flags & BSF_FUNCTION) == 0)
2087 return -1;
2088
2089 if ((a->flags & BSF_FUNCTION) == 0 && (b->flags & BSF_FUNCTION) != 0)
2090 return 1;
2091
2092 if ((a->flags & BSF_WEAK) == 0 && (b->flags & BSF_WEAK) != 0)
2093 return -1;
2094
2095 if ((a->flags & BSF_WEAK) != 0 && (b->flags & BSF_WEAK) == 0)
2096 return 1;
2097
2098 if ((a->flags & BSF_DYNAMIC) != 0 && (b->flags & BSF_DYNAMIC) == 0)
2099 return -1;
2100
2101 if ((a->flags & BSF_DYNAMIC) == 0 && (b->flags & BSF_DYNAMIC) != 0)
2102 return 1;
2103
2104 return a > b;
2105 }
2106
2107 /* Search SYMS for a symbol of the given VALUE. */
2108
2109 static asymbol *
2110 sym_exists_at (asymbol **syms, long lo, long hi, unsigned int id, bfd_vma value)
2111 {
2112 long mid;
2113
2114 if (id == (unsigned) -1)
2115 {
2116 while (lo < hi)
2117 {
2118 mid = (lo + hi) >> 1;
2119 if (syms[mid]->value + syms[mid]->section->vma < value)
2120 lo = mid + 1;
2121 else if (syms[mid]->value + syms[mid]->section->vma > value)
2122 hi = mid;
2123 else
2124 return syms[mid];
2125 }
2126 }
2127 else
2128 {
2129 while (lo < hi)
2130 {
2131 mid = (lo + hi) >> 1;
2132 if (syms[mid]->section->id < id)
2133 lo = mid + 1;
2134 else if (syms[mid]->section->id > id)
2135 hi = mid;
2136 else if (syms[mid]->value < value)
2137 lo = mid + 1;
2138 else if (syms[mid]->value > value)
2139 hi = mid;
2140 else
2141 return syms[mid];
2142 }
2143 }
2144 return NULL;
2145 }
2146
2147 static bfd_boolean
2148 section_covers_vma (bfd *abfd ATTRIBUTE_UNUSED, asection *section, void *ptr)
2149 {
2150 bfd_vma vma = *(bfd_vma *) ptr;
2151 return ((section->flags & SEC_ALLOC) != 0
2152 && section->vma <= vma
2153 && vma < section->vma + section->size);
2154 }
2155
2156 /* Create synthetic symbols, effectively restoring "dot-symbol" function
2157 entry syms. Also generate @plt symbols for the glink branch table.
2158 Returns count of synthetic symbols in RET or -1 on error. */
2159
2160 static long
2161 ppc64_elf_get_synthetic_symtab (bfd *abfd,
2162 long static_count, asymbol **static_syms,
2163 long dyn_count, asymbol **dyn_syms,
2164 asymbol **ret)
2165 {
2166 asymbol *s;
2167 size_t i, j, count;
2168 char *names;
2169 size_t symcount, codesecsym, codesecsymend, secsymend, opdsymend;
2170 asection *opd = NULL;
2171 bfd_boolean relocatable = (abfd->flags & (EXEC_P | DYNAMIC)) == 0;
2172 asymbol **syms;
2173 int abi = abiversion (abfd);
2174
2175 *ret = NULL;
2176
2177 if (abi < 2)
2178 {
2179 opd = bfd_get_section_by_name (abfd, ".opd");
2180 if (opd == NULL && abi == 1)
2181 return 0;
2182 }
2183
2184 syms = NULL;
2185 codesecsym = 0;
2186 codesecsymend = 0;
2187 secsymend = 0;
2188 opdsymend = 0;
2189 symcount = 0;
2190 if (opd != NULL)
2191 {
2192 symcount = static_count;
2193 if (!relocatable)
2194 symcount += dyn_count;
2195 if (symcount == 0)
2196 return 0;
2197
2198 syms = bfd_malloc ((symcount + 1) * sizeof (*syms));
2199 if (syms == NULL)
2200 return -1;
2201
2202 if (!relocatable && static_count != 0 && dyn_count != 0)
2203 {
2204 /* Use both symbol tables. */
2205 memcpy (syms, static_syms, static_count * sizeof (*syms));
2206 memcpy (syms + static_count, dyn_syms,
2207 (dyn_count + 1) * sizeof (*syms));
2208 }
2209 else if (!relocatable && static_count == 0)
2210 memcpy (syms, dyn_syms, (symcount + 1) * sizeof (*syms));
2211 else
2212 memcpy (syms, static_syms, (symcount + 1) * sizeof (*syms));
2213
2214 /* Trim uninteresting symbols. Interesting symbols are section,
2215 function, and notype symbols. */
2216 for (i = 0, j = 0; i < symcount; ++i)
2217 if ((syms[i]->flags & (BSF_FILE | BSF_OBJECT | BSF_THREAD_LOCAL
2218 | BSF_RELC | BSF_SRELC)) == 0)
2219 syms[j++] = syms[i];
2220 symcount = j;
2221
2222 synthetic_relocatable = relocatable;
2223 synthetic_opd = opd;
2224 qsort (syms, symcount, sizeof (*syms), compare_symbols);
2225
2226 if (!relocatable && symcount > 1)
2227 {
2228 /* Trim duplicate syms, since we may have merged the normal
2229 and dynamic symbols. Actually, we only care about syms
2230 that have different values, so trim any with the same
2231 value. Don't consider ifunc and ifunc resolver symbols
2232 duplicates however, because GDB wants to know whether a
2233 text symbol is an ifunc resolver. */
2234 for (i = 1, j = 1; i < symcount; ++i)
2235 {
2236 const asymbol *s0 = syms[i - 1];
2237 const asymbol *s1 = syms[i];
2238
2239 if ((s0->value + s0->section->vma
2240 != s1->value + s1->section->vma)
2241 || ((s0->flags & BSF_GNU_INDIRECT_FUNCTION)
2242 != (s1->flags & BSF_GNU_INDIRECT_FUNCTION)))
2243 syms[j++] = syms[i];
2244 }
2245 symcount = j;
2246 }
2247
2248 i = 0;
2249 /* Note that here and in compare_symbols we can't compare opd and
2250 sym->section directly. With separate debug info files, the
2251 symbols will be extracted from the debug file while abfd passed
2252 to this function is the real binary. */
2253 if (strcmp (syms[i]->section->name, ".opd") == 0)
2254 ++i;
2255 codesecsym = i;
2256
2257 for (; i < symcount; ++i)
2258 if (((syms[i]->section->flags & (SEC_CODE | SEC_ALLOC
2259 | SEC_THREAD_LOCAL))
2260 != (SEC_CODE | SEC_ALLOC))
2261 || (syms[i]->flags & BSF_SECTION_SYM) == 0)
2262 break;
2263 codesecsymend = i;
2264
2265 for (; i < symcount; ++i)
2266 if ((syms[i]->flags & BSF_SECTION_SYM) == 0)
2267 break;
2268 secsymend = i;
2269
2270 for (; i < symcount; ++i)
2271 if (strcmp (syms[i]->section->name, ".opd") != 0)
2272 break;
2273 opdsymend = i;
2274
2275 for (; i < symcount; ++i)
2276 if (((syms[i]->section->flags
2277 & (SEC_CODE | SEC_ALLOC | SEC_THREAD_LOCAL)))
2278 != (SEC_CODE | SEC_ALLOC))
2279 break;
2280 symcount = i;
2281 }
2282 count = 0;
2283
2284 if (relocatable)
2285 {
2286 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2287 arelent *r;
2288 size_t size;
2289 size_t relcount;
2290
2291 if (opdsymend == secsymend)
2292 goto done;
2293
2294 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2295 relcount = (opd->flags & SEC_RELOC) ? opd->reloc_count : 0;
2296 if (relcount == 0)
2297 goto done;
2298
2299 if (!(*slurp_relocs) (abfd, opd, static_syms, FALSE))
2300 {
2301 count = -1;
2302 goto done;
2303 }
2304
2305 size = 0;
2306 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2307 {
2308 asymbol *sym;
2309
2310 while (r < opd->relocation + relcount
2311 && r->address < syms[i]->value + opd->vma)
2312 ++r;
2313
2314 if (r == opd->relocation + relcount)
2315 break;
2316
2317 if (r->address != syms[i]->value + opd->vma)
2318 continue;
2319
2320 if (r->howto->type != R_PPC64_ADDR64)
2321 continue;
2322
2323 sym = *r->sym_ptr_ptr;
2324 if (!sym_exists_at (syms, opdsymend, symcount,
2325 sym->section->id, sym->value + r->addend))
2326 {
2327 ++count;
2328 size += sizeof (asymbol);
2329 size += strlen (syms[i]->name) + 2;
2330 }
2331 }
2332
2333 if (size == 0)
2334 goto done;
2335 s = *ret = bfd_malloc (size);
2336 if (s == NULL)
2337 {
2338 count = -1;
2339 goto done;
2340 }
2341
2342 names = (char *) (s + count);
2343
2344 for (i = secsymend, r = opd->relocation; i < opdsymend; ++i)
2345 {
2346 asymbol *sym;
2347
2348 while (r < opd->relocation + relcount
2349 && r->address < syms[i]->value + opd->vma)
2350 ++r;
2351
2352 if (r == opd->relocation + relcount)
2353 break;
2354
2355 if (r->address != syms[i]->value + opd->vma)
2356 continue;
2357
2358 if (r->howto->type != R_PPC64_ADDR64)
2359 continue;
2360
2361 sym = *r->sym_ptr_ptr;
2362 if (!sym_exists_at (syms, opdsymend, symcount,
2363 sym->section->id, sym->value + r->addend))
2364 {
2365 size_t len;
2366
2367 *s = *syms[i];
2368 s->flags |= BSF_SYNTHETIC;
2369 s->section = sym->section;
2370 s->value = sym->value + r->addend;
2371 s->name = names;
2372 *names++ = '.';
2373 len = strlen (syms[i]->name);
2374 memcpy (names, syms[i]->name, len + 1);
2375 names += len + 1;
2376 /* Have udata.p point back to the original symbol this
2377 synthetic symbol was derived from. */
2378 s->udata.p = syms[i];
2379 s++;
2380 }
2381 }
2382 }
2383 else
2384 {
2385 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
2386 bfd_byte *contents = NULL;
2387 size_t size;
2388 size_t plt_count = 0;
2389 bfd_vma glink_vma = 0, resolv_vma = 0;
2390 asection *dynamic, *glink = NULL, *relplt = NULL;
2391 arelent *p;
2392
2393 if (opd != NULL && !bfd_malloc_and_get_section (abfd, opd, &contents))
2394 {
2395 free_contents_and_exit_err:
2396 count = -1;
2397 free_contents_and_exit:
2398 if (contents)
2399 free (contents);
2400 goto done;
2401 }
2402
2403 size = 0;
2404 for (i = secsymend; i < opdsymend; ++i)
2405 {
2406 bfd_vma ent;
2407
2408 /* Ignore bogus symbols. */
2409 if (syms[i]->value > opd->size - 8)
2410 continue;
2411
2412 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2413 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2414 {
2415 ++count;
2416 size += sizeof (asymbol);
2417 size += strlen (syms[i]->name) + 2;
2418 }
2419 }
2420
2421 /* Get start of .glink stubs from DT_PPC64_GLINK. */
2422 if (dyn_count != 0
2423 && (dynamic = bfd_get_section_by_name (abfd, ".dynamic")) != NULL)
2424 {
2425 bfd_byte *dynbuf, *extdyn, *extdynend;
2426 size_t extdynsize;
2427 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
2428
2429 if (!bfd_malloc_and_get_section (abfd, dynamic, &dynbuf))
2430 goto free_contents_and_exit_err;
2431
2432 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
2433 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
2434
2435 extdyn = dynbuf;
2436 extdynend = extdyn + dynamic->size;
2437 for (; extdyn < extdynend; extdyn += extdynsize)
2438 {
2439 Elf_Internal_Dyn dyn;
2440 (*swap_dyn_in) (abfd, extdyn, &dyn);
2441
2442 if (dyn.d_tag == DT_NULL)
2443 break;
2444
2445 if (dyn.d_tag == DT_PPC64_GLINK)
2446 {
2447 /* The first glink stub starts at DT_PPC64_GLINK plus 32.
2448 See comment in ppc64_elf_finish_dynamic_sections. */
2449 glink_vma = dyn.d_un.d_val + 8 * 4;
2450 /* The .glink section usually does not survive the final
2451 link; search for the section (usually .text) where the
2452 glink stubs now reside. */
2453 glink = bfd_sections_find_if (abfd, section_covers_vma,
2454 &glink_vma);
2455 break;
2456 }
2457 }
2458
2459 free (dynbuf);
2460 }
2461
2462 if (glink != NULL)
2463 {
2464 /* Determine __glink trampoline by reading the relative branch
2465 from the first glink stub. */
2466 bfd_byte buf[4];
2467 unsigned int off = 0;
2468
2469 while (bfd_get_section_contents (abfd, glink, buf,
2470 glink_vma + off - glink->vma, 4))
2471 {
2472 unsigned int insn = bfd_get_32 (abfd, buf);
2473 insn ^= B_DOT;
2474 if ((insn & ~0x3fffffc) == 0)
2475 {
2476 resolv_vma
2477 = glink_vma + off + (insn ^ 0x2000000) - 0x2000000;
2478 break;
2479 }
2480 off += 4;
2481 if (off > 4)
2482 break;
2483 }
2484
2485 if (resolv_vma)
2486 size += sizeof (asymbol) + sizeof ("__glink_PLTresolve");
2487
2488 relplt = bfd_get_section_by_name (abfd, ".rela.plt");
2489 if (relplt != NULL)
2490 {
2491 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
2492 if (!(*slurp_relocs) (abfd, relplt, dyn_syms, TRUE))
2493 goto free_contents_and_exit_err;
2494
2495 plt_count = relplt->size / sizeof (Elf64_External_Rela);
2496 size += plt_count * sizeof (asymbol);
2497
2498 p = relplt->relocation;
2499 for (i = 0; i < plt_count; i++, p++)
2500 {
2501 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
2502 if (p->addend != 0)
2503 size += sizeof ("+0x") - 1 + 16;
2504 }
2505 }
2506 }
2507
2508 if (size == 0)
2509 goto free_contents_and_exit;
2510 s = *ret = bfd_malloc (size);
2511 if (s == NULL)
2512 goto free_contents_and_exit_err;
2513
2514 names = (char *) (s + count + plt_count + (resolv_vma != 0));
2515
2516 for (i = secsymend; i < opdsymend; ++i)
2517 {
2518 bfd_vma ent;
2519
2520 if (syms[i]->value > opd->size - 8)
2521 continue;
2522
2523 ent = bfd_get_64 (abfd, contents + syms[i]->value);
2524 if (!sym_exists_at (syms, opdsymend, symcount, -1, ent))
2525 {
2526 size_t lo, hi;
2527 size_t len;
2528 asection *sec = abfd->sections;
2529
2530 *s = *syms[i];
2531 lo = codesecsym;
2532 hi = codesecsymend;
2533 while (lo < hi)
2534 {
2535 size_t mid = (lo + hi) >> 1;
2536 if (syms[mid]->section->vma < ent)
2537 lo = mid + 1;
2538 else if (syms[mid]->section->vma > ent)
2539 hi = mid;
2540 else
2541 {
2542 sec = syms[mid]->section;
2543 break;
2544 }
2545 }
2546
2547 if (lo >= hi && lo > codesecsym)
2548 sec = syms[lo - 1]->section;
2549
2550 for (; sec != NULL; sec = sec->next)
2551 {
2552 if (sec->vma > ent)
2553 break;
2554 /* SEC_LOAD may not be set if SEC is from a separate debug
2555 info file. */
2556 if ((sec->flags & SEC_ALLOC) == 0)
2557 break;
2558 if ((sec->flags & SEC_CODE) != 0)
2559 s->section = sec;
2560 }
2561 s->flags |= BSF_SYNTHETIC;
2562 s->value = ent - s->section->vma;
2563 s->name = names;
2564 *names++ = '.';
2565 len = strlen (syms[i]->name);
2566 memcpy (names, syms[i]->name, len + 1);
2567 names += len + 1;
2568 /* Have udata.p point back to the original symbol this
2569 synthetic symbol was derived from. */
2570 s->udata.p = syms[i];
2571 s++;
2572 }
2573 }
2574 free (contents);
2575
2576 if (glink != NULL && relplt != NULL)
2577 {
2578 if (resolv_vma)
2579 {
2580 /* Add a symbol for the main glink trampoline. */
2581 memset (s, 0, sizeof *s);
2582 s->the_bfd = abfd;
2583 s->flags = BSF_GLOBAL | BSF_SYNTHETIC;
2584 s->section = glink;
2585 s->value = resolv_vma - glink->vma;
2586 s->name = names;
2587 memcpy (names, "__glink_PLTresolve",
2588 sizeof ("__glink_PLTresolve"));
2589 names += sizeof ("__glink_PLTresolve");
2590 s++;
2591 count++;
2592 }
2593
2594 /* FIXME: It would be very much nicer to put sym@plt on the
2595 stub rather than on the glink branch table entry. The
2596 objdump disassembler would then use a sensible symbol
2597 name on plt calls. The difficulty in doing so is
2598 a) finding the stubs, and,
2599 b) matching stubs against plt entries, and,
2600 c) there can be multiple stubs for a given plt entry.
2601
2602 Solving (a) could be done by code scanning, but older
2603 ppc64 binaries used different stubs to current code.
2604 (b) is the tricky one since you need to known the toc
2605 pointer for at least one function that uses a pic stub to
2606 be able to calculate the plt address referenced.
2607 (c) means gdb would need to set multiple breakpoints (or
2608 find the glink branch itself) when setting breakpoints
2609 for pending shared library loads. */
2610 p = relplt->relocation;
2611 for (i = 0; i < plt_count; i++, p++)
2612 {
2613 size_t len;
2614
2615 *s = **p->sym_ptr_ptr;
2616 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
2617 we are defining a symbol, ensure one of them is set. */
2618 if ((s->flags & BSF_LOCAL) == 0)
2619 s->flags |= BSF_GLOBAL;
2620 s->flags |= BSF_SYNTHETIC;
2621 s->section = glink;
2622 s->value = glink_vma - glink->vma;
2623 s->name = names;
2624 s->udata.p = NULL;
2625 len = strlen ((*p->sym_ptr_ptr)->name);
2626 memcpy (names, (*p->sym_ptr_ptr)->name, len);
2627 names += len;
2628 if (p->addend != 0)
2629 {
2630 memcpy (names, "+0x", sizeof ("+0x") - 1);
2631 names += sizeof ("+0x") - 1;
2632 bfd_sprintf_vma (abfd, names, p->addend);
2633 names += strlen (names);
2634 }
2635 memcpy (names, "@plt", sizeof ("@plt"));
2636 names += sizeof ("@plt");
2637 s++;
2638 if (abi < 2)
2639 {
2640 glink_vma += 8;
2641 if (i >= 0x8000)
2642 glink_vma += 4;
2643 }
2644 else
2645 glink_vma += 4;
2646 }
2647 count += plt_count;
2648 }
2649 }
2650
2651 done:
2652 free (syms);
2653 return count;
2654 }
2655 \f
2656 /* The following functions are specific to the ELF linker, while
2657 functions above are used generally. Those named ppc64_elf_* are
2658 called by the main ELF linker code. They appear in this file more
2659 or less in the order in which they are called. eg.
2660 ppc64_elf_check_relocs is called early in the link process,
2661 ppc64_elf_finish_dynamic_sections is one of the last functions
2662 called.
2663
2664 PowerPC64-ELF uses a similar scheme to PowerPC64-XCOFF in that
2665 functions have both a function code symbol and a function descriptor
2666 symbol. A call to foo in a relocatable object file looks like:
2667
2668 . .text
2669 . x:
2670 . bl .foo
2671 . nop
2672
2673 The function definition in another object file might be:
2674
2675 . .section .opd
2676 . foo: .quad .foo
2677 . .quad .TOC.@tocbase
2678 . .quad 0
2679 .
2680 . .text
2681 . .foo: blr
2682
2683 When the linker resolves the call during a static link, the branch
2684 unsurprisingly just goes to .foo and the .opd information is unused.
2685 If the function definition is in a shared library, things are a little
2686 different: The call goes via a plt call stub, the opd information gets
2687 copied to the plt, and the linker patches the nop.
2688
2689 . x:
2690 . bl .foo_stub
2691 . ld 2,40(1)
2692 .
2693 .
2694 . .foo_stub:
2695 . std 2,40(1) # in practice, the call stub
2696 . addis 11,2,Lfoo@toc@ha # is slightly optimized, but
2697 . addi 11,11,Lfoo@toc@l # this is the general idea
2698 . ld 12,0(11)
2699 . ld 2,8(11)
2700 . mtctr 12
2701 . ld 11,16(11)
2702 . bctr
2703 .
2704 . .section .plt
2705 . Lfoo: reloc (R_PPC64_JMP_SLOT, foo)
2706
2707 The "reloc ()" notation is supposed to indicate that the linker emits
2708 an R_PPC64_JMP_SLOT reloc against foo. The dynamic linker does the opd
2709 copying.
2710
2711 What are the difficulties here? Well, firstly, the relocations
2712 examined by the linker in check_relocs are against the function code
2713 sym .foo, while the dynamic relocation in the plt is emitted against
2714 the function descriptor symbol, foo. Somewhere along the line, we need
2715 to carefully copy dynamic link information from one symbol to the other.
2716 Secondly, the generic part of the elf linker will make .foo a dynamic
2717 symbol as is normal for most other backends. We need foo dynamic
2718 instead, at least for an application final link. However, when
2719 creating a shared library containing foo, we need to have both symbols
2720 dynamic so that references to .foo are satisfied during the early
2721 stages of linking. Otherwise the linker might decide to pull in a
2722 definition from some other object, eg. a static library.
2723
2724 Update: As of August 2004, we support a new convention. Function
2725 calls may use the function descriptor symbol, ie. "bl foo". This
2726 behaves exactly as "bl .foo". */
2727
2728 /* Of those relocs that might be copied as dynamic relocs, this
2729 function selects those that must be copied when linking a shared
2730 library or PIE, even when the symbol is local. */
2731
2732 static int
2733 must_be_dyn_reloc (struct bfd_link_info *info,
2734 enum elf_ppc64_reloc_type r_type)
2735 {
2736 switch (r_type)
2737 {
2738 default:
2739 /* Only relative relocs can be resolved when the object load
2740 address isn't fixed. DTPREL64 is excluded because the
2741 dynamic linker needs to differentiate global dynamic from
2742 local dynamic __tls_index pairs when PPC64_OPT_TLS is set. */
2743 return 1;
2744
2745 case R_PPC64_REL32:
2746 case R_PPC64_REL64:
2747 case R_PPC64_REL30:
2748 return 0;
2749
2750 case R_PPC64_TPREL16:
2751 case R_PPC64_TPREL16_LO:
2752 case R_PPC64_TPREL16_HI:
2753 case R_PPC64_TPREL16_HA:
2754 case R_PPC64_TPREL16_DS:
2755 case R_PPC64_TPREL16_LO_DS:
2756 case R_PPC64_TPREL16_HIGH:
2757 case R_PPC64_TPREL16_HIGHA:
2758 case R_PPC64_TPREL16_HIGHER:
2759 case R_PPC64_TPREL16_HIGHERA:
2760 case R_PPC64_TPREL16_HIGHEST:
2761 case R_PPC64_TPREL16_HIGHESTA:
2762 case R_PPC64_TPREL64:
2763 case R_PPC64_TPREL34:
2764 /* These relocations are relative but in a shared library the
2765 linker doesn't know the thread pointer base. */
2766 return bfd_link_dll (info);
2767 }
2768 }
2769
2770 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
2771 copying dynamic variables from a shared lib into an app's dynbss
2772 section, and instead use a dynamic relocation to point into the
2773 shared lib. With code that gcc generates, it's vital that this be
2774 enabled; In the PowerPC64 ABI, the address of a function is actually
2775 the address of a function descriptor, which resides in the .opd
2776 section. gcc uses the descriptor directly rather than going via the
2777 GOT as some other ABI's do, which means that initialized function
2778 pointers must reference the descriptor. Thus, a function pointer
2779 initialized to the address of a function in a shared library will
2780 either require a copy reloc, or a dynamic reloc. Using a copy reloc
2781 redefines the function descriptor symbol to point to the copy. This
2782 presents a problem as a plt entry for that function is also
2783 initialized from the function descriptor symbol and the copy reloc
2784 may not be initialized first. */
2785 #define ELIMINATE_COPY_RELOCS 1
2786
2787 /* Section name for stubs is the associated section name plus this
2788 string. */
2789 #define STUB_SUFFIX ".stub"
2790
2791 /* Linker stubs.
2792 ppc_stub_long_branch:
2793 Used when a 14 bit branch (or even a 24 bit branch) can't reach its
2794 destination, but a 24 bit branch in a stub section will reach.
2795 . b dest
2796
2797 ppc_stub_plt_branch:
2798 Similar to the above, but a 24 bit branch in the stub section won't
2799 reach its destination.
2800 . addis %r11,%r2,xxx@toc@ha
2801 . ld %r12,xxx@toc@l(%r11)
2802 . mtctr %r12
2803 . bctr
2804
2805 ppc_stub_plt_call:
2806 Used to call a function in a shared library. If it so happens that
2807 the plt entry referenced crosses a 64k boundary, then an extra
2808 "addi %r11,%r11,xxx@toc@l" will be inserted before the "mtctr".
2809 ppc_stub_plt_call_r2save starts with "std %r2,40(%r1)".
2810 . addis %r11,%r2,xxx@toc@ha
2811 . ld %r12,xxx+0@toc@l(%r11)
2812 . mtctr %r12
2813 . ld %r2,xxx+8@toc@l(%r11)
2814 . ld %r11,xxx+16@toc@l(%r11)
2815 . bctr
2816
2817 ppc_stub_long_branch and ppc_stub_plt_branch may also have additional
2818 code to adjust the value and save r2 to support multiple toc sections.
2819 A ppc_stub_long_branch with an r2 offset looks like:
2820 . std %r2,40(%r1)
2821 . addis %r2,%r2,off@ha
2822 . addi %r2,%r2,off@l
2823 . b dest
2824
2825 A ppc_stub_plt_branch with an r2 offset looks like:
2826 . std %r2,40(%r1)
2827 . addis %r11,%r2,xxx@toc@ha
2828 . ld %r12,xxx@toc@l(%r11)
2829 . addis %r2,%r2,off@ha
2830 . addi %r2,%r2,off@l
2831 . mtctr %r12
2832 . bctr
2833
2834 All of the above stubs are shown as their ELFv1 variants. ELFv2
2835 variants exist too, simpler for plt calls since a new toc pointer
2836 and static chain are not loaded by the stub. In addition, ELFv2
2837 has some more complex stubs to handle calls marked with NOTOC
2838 relocs from functions where r2 is not a valid toc pointer. These
2839 come in two flavours, the ones shown below, and _both variants that
2840 start with "std %r2,24(%r1)" to save r2 in the unlikely event that
2841 one call is from a function where r2 is used as the toc pointer but
2842 needs a toc adjusting stub for small-model multi-toc, and another
2843 call is from a function where r2 is not valid.
2844 ppc_stub_long_branch_notoc:
2845 . mflr %r12
2846 . bcl 20,31,1f
2847 . 1:
2848 . mflr %r11
2849 . mtlr %r12
2850 . addis %r12,%r11,dest-1b@ha
2851 . addi %r12,%r12,dest-1b@l
2852 . b dest
2853
2854 ppc_stub_plt_branch_notoc:
2855 . mflr %r12
2856 . bcl 20,31,1f
2857 . 1:
2858 . mflr %r11
2859 . mtlr %r12
2860 . lis %r12,xxx-1b@highest
2861 . ori %r12,%r12,xxx-1b@higher
2862 . sldi %r12,%r12,32
2863 . oris %r12,%r12,xxx-1b@high
2864 . ori %r12,%r12,xxx-1b@l
2865 . add %r12,%r11,%r12
2866 . mtctr %r12
2867 . bctr
2868
2869 ppc_stub_plt_call_notoc:
2870 . mflr %r12
2871 . bcl 20,31,1f
2872 . 1:
2873 . mflr %r11
2874 . mtlr %r12
2875 . lis %r12,xxx-1b@highest
2876 . ori %r12,%r12,xxx-1b@higher
2877 . sldi %r12,%r12,32
2878 . oris %r12,%r12,xxx-1b@high
2879 . ori %r12,%r12,xxx-1b@l
2880 . ldx %r12,%r11,%r12
2881 . mtctr %r12
2882 . bctr
2883
2884 There are also ELFv1 powerxx variants of these stubs.
2885 ppc_stub_long_branch_notoc:
2886 . pla %r12,dest@pcrel
2887 . b dest
2888 ppc_stub_plt_branch_notoc:
2889 . lis %r11,(dest-1f)@highesta34
2890 . ori %r11,%r11,(dest-1f)@highera34
2891 . sldi %r11,%r11,34
2892 . 1: pla %r12,dest@pcrel
2893 . add %r12,%r11,%r12
2894 . mtctr %r12
2895 . bctr
2896 ppc_stub_plt_call_notoc:
2897 . lis %r11,(xxx-1f)@highesta34
2898 . ori %r11,%r11,(xxx-1f)@highera34
2899 . sldi %r11,%r11,34
2900 . 1: pla %r12,xxx@pcrel
2901 . ldx %r12,%r11,%r12
2902 . mtctr %r12
2903 . bctr
2904
2905 In cases where the high instructions would add zero, they are
2906 omitted and following instructions modified in some cases.
2907 For example, a powerxx ppc_stub_plt_call_notoc might simplify down
2908 to
2909 . pld %r12,xxx@pcrel
2910 . mtctr %r12
2911 . bctr
2912
2913 For a given stub group (a set of sections all using the same toc
2914 pointer value) there will be just one stub type used for any
2915 particular function symbol. For example, if printf is called from
2916 code with the tocsave optimization (ie. r2 saved in function
2917 prologue) and therefore calls use a ppc_stub_plt_call linkage stub,
2918 and from other code without the tocsave optimization requiring a
2919 ppc_stub_plt_call_r2save linkage stub, a single stub of the latter
2920 type will be created. Calls with the tocsave optimization will
2921 enter this stub after the instruction saving r2. A similar
2922 situation exists when calls are marked with R_PPC64_REL24_NOTOC
2923 relocations. These require a ppc_stub_plt_call_notoc linkage stub
2924 to call an external function like printf. If other calls to printf
2925 require a ppc_stub_plt_call linkage stub then a single
2926 ppc_stub_plt_call_notoc linkage stub will be used for both types of
2927 call. If other calls to printf require a ppc_stub_plt_call_r2save
2928 linkage stub then a single ppc_stub_plt_call_both linkage stub will
2929 be created and calls not requiring r2 to be saved will enter the
2930 stub after the r2 save instruction. There is an analogous
2931 hierarchy of long branch and plt branch stubs for local call
2932 linkage. */
2933
2934 enum ppc_stub_type
2935 {
2936 ppc_stub_none,
2937 ppc_stub_long_branch,
2938 ppc_stub_long_branch_r2off,
2939 ppc_stub_long_branch_notoc,
2940 ppc_stub_long_branch_both, /* r2off and notoc variants both needed. */
2941 ppc_stub_plt_branch,
2942 ppc_stub_plt_branch_r2off,
2943 ppc_stub_plt_branch_notoc,
2944 ppc_stub_plt_branch_both,
2945 ppc_stub_plt_call,
2946 ppc_stub_plt_call_r2save,
2947 ppc_stub_plt_call_notoc,
2948 ppc_stub_plt_call_both,
2949 ppc_stub_global_entry,
2950 ppc_stub_save_res
2951 };
2952
2953 /* Information on stub grouping. */
2954 struct map_stub
2955 {
2956 /* The stub section. */
2957 asection *stub_sec;
2958 /* This is the section to which stubs in the group will be attached. */
2959 asection *link_sec;
2960 /* Next group. */
2961 struct map_stub *next;
2962 /* Whether to emit a copy of register save/restore functions in this
2963 group. */
2964 int needs_save_res;
2965 /* Current offset within stubs after the insn restoring lr in a
2966 _notoc or _both stub using bcl for pc-relative addressing, or
2967 after the insn restoring lr in a __tls_get_addr_opt plt stub. */
2968 unsigned int lr_restore;
2969 /* Accumulated size of EH info emitted to describe return address
2970 if stubs modify lr. Does not include 17 byte FDE header. */
2971 unsigned int eh_size;
2972 /* Offset in glink_eh_frame to the start of EH info for this group. */
2973 unsigned int eh_base;
2974 };
2975
2976 struct ppc_stub_hash_entry
2977 {
2978 /* Base hash table entry structure. */
2979 struct bfd_hash_entry root;
2980
2981 enum ppc_stub_type stub_type;
2982
2983 /* Group information. */
2984 struct map_stub *group;
2985
2986 /* Offset within stub_sec of the beginning of this stub. */
2987 bfd_vma stub_offset;
2988
2989 /* Given the symbol's value and its section we can determine its final
2990 value when building the stubs (so the stub knows where to jump. */
2991 bfd_vma target_value;
2992 asection *target_section;
2993
2994 /* The symbol table entry, if any, that this was derived from. */
2995 struct ppc_link_hash_entry *h;
2996 struct plt_entry *plt_ent;
2997
2998 /* Symbol type. */
2999 unsigned char symtype;
3000
3001 /* Symbol st_other. */
3002 unsigned char other;
3003 };
3004
3005 struct ppc_branch_hash_entry
3006 {
3007 /* Base hash table entry structure. */
3008 struct bfd_hash_entry root;
3009
3010 /* Offset within branch lookup table. */
3011 unsigned int offset;
3012
3013 /* Generation marker. */
3014 unsigned int iter;
3015 };
3016
3017 /* Used to track dynamic relocations for local symbols. */
3018 struct ppc_dyn_relocs
3019 {
3020 struct ppc_dyn_relocs *next;
3021
3022 /* The input section of the reloc. */
3023 asection *sec;
3024
3025 /* Total number of relocs copied for the input section. */
3026 unsigned int count : 31;
3027
3028 /* Whether this entry is for STT_GNU_IFUNC symbols. */
3029 unsigned int ifunc : 1;
3030 };
3031
3032 struct ppc_link_hash_entry
3033 {
3034 struct elf_link_hash_entry elf;
3035
3036 union
3037 {
3038 /* A pointer to the most recently used stub hash entry against this
3039 symbol. */
3040 struct ppc_stub_hash_entry *stub_cache;
3041
3042 /* A pointer to the next symbol starting with a '.' */
3043 struct ppc_link_hash_entry *next_dot_sym;
3044 } u;
3045
3046 /* Track dynamic relocs copied for this symbol. */
3047 struct elf_dyn_relocs *dyn_relocs;
3048
3049 /* Link between function code and descriptor symbols. */
3050 struct ppc_link_hash_entry *oh;
3051
3052 /* Flag function code and descriptor symbols. */
3053 unsigned int is_func:1;
3054 unsigned int is_func_descriptor:1;
3055 unsigned int fake:1;
3056
3057 /* Whether global opd/toc sym has been adjusted or not.
3058 After ppc64_elf_edit_opd/ppc64_elf_edit_toc has run, this flag
3059 should be set for all globals defined in any opd/toc section. */
3060 unsigned int adjust_done:1;
3061
3062 /* Set if this is an out-of-line register save/restore function,
3063 with non-standard calling convention. */
3064 unsigned int save_res:1;
3065
3066 /* Set if a duplicate symbol with non-zero localentry is detected,
3067 even when the duplicate symbol does not provide a definition. */
3068 unsigned int non_zero_localentry:1;
3069
3070 /* Contexts in which symbol is used in the GOT (or TOC).
3071 Bits are or'd into the mask as the corresponding relocs are
3072 encountered during check_relocs, with TLS_TLS being set when any
3073 of the other TLS bits are set. tls_optimize clears bits when
3074 optimizing to indicate the corresponding GOT entry type is not
3075 needed. If set, TLS_TLS is never cleared. tls_optimize may also
3076 set TLS_GDIE when a GD reloc turns into an IE one.
3077 These flags are also kept for local symbols. */
3078 #define TLS_TLS 1 /* Any TLS reloc. */
3079 #define TLS_GD 2 /* GD reloc. */
3080 #define TLS_LD 4 /* LD reloc. */
3081 #define TLS_TPREL 8 /* TPREL reloc, => IE. */
3082 #define TLS_DTPREL 16 /* DTPREL reloc, => LD. */
3083 #define TLS_MARK 32 /* __tls_get_addr call marked. */
3084 #define TLS_GDIE 64 /* GOT TPREL reloc resulting from GD->IE. */
3085 #define TLS_EXPLICIT 256 /* TOC section TLS reloc, not stored. */
3086 unsigned char tls_mask;
3087
3088 /* The above field is also used to mark function symbols. In which
3089 case TLS_TLS will be 0. */
3090 #define PLT_IFUNC 2 /* STT_GNU_IFUNC. */
3091 #define PLT_KEEP 4 /* inline plt call requires plt entry. */
3092 #define NON_GOT 256 /* local symbol plt, not stored. */
3093 };
3094
3095 /* ppc64 ELF linker hash table. */
3096
3097 struct ppc_link_hash_table
3098 {
3099 struct elf_link_hash_table elf;
3100
3101 /* The stub hash table. */
3102 struct bfd_hash_table stub_hash_table;
3103
3104 /* Another hash table for plt_branch stubs. */
3105 struct bfd_hash_table branch_hash_table;
3106
3107 /* Hash table for function prologue tocsave. */
3108 htab_t tocsave_htab;
3109
3110 /* Various options and other info passed from the linker. */
3111 struct ppc64_elf_params *params;
3112
3113 /* The size of sec_info below. */
3114 unsigned int sec_info_arr_size;
3115
3116 /* Per-section array of extra section info. Done this way rather
3117 than as part of ppc64_elf_section_data so we have the info for
3118 non-ppc64 sections. */
3119 struct
3120 {
3121 /* Along with elf_gp, specifies the TOC pointer used by this section. */
3122 bfd_vma toc_off;
3123
3124 union
3125 {
3126 /* The section group that this section belongs to. */
3127 struct map_stub *group;
3128 /* A temp section list pointer. */
3129 asection *list;
3130 } u;
3131 } *sec_info;
3132
3133 /* Linked list of groups. */
3134 struct map_stub *group;
3135
3136 /* Temp used when calculating TOC pointers. */
3137 bfd_vma toc_curr;
3138 bfd *toc_bfd;
3139 asection *toc_first_sec;
3140
3141 /* Used when adding symbols. */
3142 struct ppc_link_hash_entry *dot_syms;
3143
3144 /* Shortcuts to get to dynamic linker sections. */
3145 asection *glink;
3146 asection *global_entry;
3147 asection *sfpr;
3148 asection *pltlocal;
3149 asection *relpltlocal;
3150 asection *brlt;
3151 asection *relbrlt;
3152 asection *glink_eh_frame;
3153
3154 /* Shortcut to .__tls_get_addr and __tls_get_addr. */
3155 struct ppc_link_hash_entry *tls_get_addr;
3156 struct ppc_link_hash_entry *tls_get_addr_fd;
3157
3158 /* The size of reliplt used by got entry relocs. */
3159 bfd_size_type got_reli_size;
3160
3161 /* Statistics. */
3162 unsigned long stub_count[ppc_stub_global_entry];
3163
3164 /* Number of stubs against global syms. */
3165 unsigned long stub_globals;
3166
3167 /* Set if we're linking code with function descriptors. */
3168 unsigned int opd_abi:1;
3169
3170 /* Support for multiple toc sections. */
3171 unsigned int do_multi_toc:1;
3172 unsigned int multi_toc_needed:1;
3173 unsigned int second_toc_pass:1;
3174 unsigned int do_toc_opt:1;
3175
3176 /* Set if tls optimization is enabled. */
3177 unsigned int do_tls_opt:1;
3178
3179 /* Set if inline plt calls should be converted to direct calls. */
3180 unsigned int can_convert_all_inline_plt:1;
3181
3182 /* Set on error. */
3183 unsigned int stub_error:1;
3184
3185 /* Whether func_desc_adjust needs to be run over symbols. */
3186 unsigned int need_func_desc_adj:1;
3187
3188 /* Whether there exist local gnu indirect function resolvers,
3189 referenced by dynamic relocations. */
3190 unsigned int local_ifunc_resolver:1;
3191 unsigned int maybe_local_ifunc_resolver:1;
3192
3193 /* Whether plt calls for ELFv2 localentry:0 funcs have been optimized. */
3194 unsigned int has_plt_localentry0:1;
3195
3196 /* Whether calls are made via the PLT from NOTOC functions. */
3197 unsigned int notoc_plt:1;
3198
3199 /* Whether to use powerxx instructions in linkage stubs. */
3200 unsigned int powerxx_stubs:1;
3201
3202 /* Incremented every time we size stubs. */
3203 unsigned int stub_iteration;
3204
3205 /* Small local sym cache. */
3206 struct sym_cache sym_cache;
3207 };
3208
3209 /* Rename some of the generic section flags to better document how they
3210 are used here. */
3211
3212 /* Nonzero if this section has TLS related relocations. */
3213 #define has_tls_reloc sec_flg0
3214
3215 /* Nonzero if this section has an old-style call to __tls_get_addr. */
3216 #define has_tls_get_addr_call sec_flg1
3217
3218 /* Nonzero if this section has any toc or got relocs. */
3219 #define has_toc_reloc sec_flg2
3220
3221 /* Nonzero if this section has a call to another section that uses
3222 the toc or got. */
3223 #define makes_toc_func_call sec_flg3
3224
3225 /* Recursion protection when determining above flag. */
3226 #define call_check_in_progress sec_flg4
3227 #define call_check_done sec_flg5
3228
3229 /* Get the ppc64 ELF linker hash table from a link_info structure. */
3230
3231 #define ppc_hash_table(p) \
3232 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
3233 == PPC64_ELF_DATA ? ((struct ppc_link_hash_table *) ((p)->hash)) : NULL)
3234
3235 #define ppc_stub_hash_lookup(table, string, create, copy) \
3236 ((struct ppc_stub_hash_entry *) \
3237 bfd_hash_lookup ((table), (string), (create), (copy)))
3238
3239 #define ppc_branch_hash_lookup(table, string, create, copy) \
3240 ((struct ppc_branch_hash_entry *) \
3241 bfd_hash_lookup ((table), (string), (create), (copy)))
3242
3243 /* Create an entry in the stub hash table. */
3244
3245 static struct bfd_hash_entry *
3246 stub_hash_newfunc (struct bfd_hash_entry *entry,
3247 struct bfd_hash_table *table,
3248 const char *string)
3249 {
3250 /* Allocate the structure if it has not already been allocated by a
3251 subclass. */
3252 if (entry == NULL)
3253 {
3254 entry = bfd_hash_allocate (table, sizeof (struct ppc_stub_hash_entry));
3255 if (entry == NULL)
3256 return entry;
3257 }
3258
3259 /* Call the allocation method of the superclass. */
3260 entry = bfd_hash_newfunc (entry, table, string);
3261 if (entry != NULL)
3262 {
3263 struct ppc_stub_hash_entry *eh;
3264
3265 /* Initialize the local fields. */
3266 eh = (struct ppc_stub_hash_entry *) entry;
3267 eh->stub_type = ppc_stub_none;
3268 eh->group = NULL;
3269 eh->stub_offset = 0;
3270 eh->target_value = 0;
3271 eh->target_section = NULL;
3272 eh->h = NULL;
3273 eh->plt_ent = NULL;
3274 eh->other = 0;
3275 }
3276
3277 return entry;
3278 }
3279
3280 /* Create an entry in the branch hash table. */
3281
3282 static struct bfd_hash_entry *
3283 branch_hash_newfunc (struct bfd_hash_entry *entry,
3284 struct bfd_hash_table *table,
3285 const char *string)
3286 {
3287 /* Allocate the structure if it has not already been allocated by a
3288 subclass. */
3289 if (entry == NULL)
3290 {
3291 entry = bfd_hash_allocate (table, sizeof (struct ppc_branch_hash_entry));
3292 if (entry == NULL)
3293 return entry;
3294 }
3295
3296 /* Call the allocation method of the superclass. */
3297 entry = bfd_hash_newfunc (entry, table, string);
3298 if (entry != NULL)
3299 {
3300 struct ppc_branch_hash_entry *eh;
3301
3302 /* Initialize the local fields. */
3303 eh = (struct ppc_branch_hash_entry *) entry;
3304 eh->offset = 0;
3305 eh->iter = 0;
3306 }
3307
3308 return entry;
3309 }
3310
3311 /* Create an entry in a ppc64 ELF linker hash table. */
3312
3313 static struct bfd_hash_entry *
3314 link_hash_newfunc (struct bfd_hash_entry *entry,
3315 struct bfd_hash_table *table,
3316 const char *string)
3317 {
3318 /* Allocate the structure if it has not already been allocated by a
3319 subclass. */
3320 if (entry == NULL)
3321 {
3322 entry = bfd_hash_allocate (table, sizeof (struct ppc_link_hash_entry));
3323 if (entry == NULL)
3324 return entry;
3325 }
3326
3327 /* Call the allocation method of the superclass. */
3328 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
3329 if (entry != NULL)
3330 {
3331 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) entry;
3332
3333 memset (&eh->u.stub_cache, 0,
3334 (sizeof (struct ppc_link_hash_entry)
3335 - offsetof (struct ppc_link_hash_entry, u.stub_cache)));
3336
3337 /* When making function calls, old ABI code references function entry
3338 points (dot symbols), while new ABI code references the function
3339 descriptor symbol. We need to make any combination of reference and
3340 definition work together, without breaking archive linking.
3341
3342 For a defined function "foo" and an undefined call to "bar":
3343 An old object defines "foo" and ".foo", references ".bar" (possibly
3344 "bar" too).
3345 A new object defines "foo" and references "bar".
3346
3347 A new object thus has no problem with its undefined symbols being
3348 satisfied by definitions in an old object. On the other hand, the
3349 old object won't have ".bar" satisfied by a new object.
3350
3351 Keep a list of newly added dot-symbols. */
3352
3353 if (string[0] == '.')
3354 {
3355 struct ppc_link_hash_table *htab;
3356
3357 htab = (struct ppc_link_hash_table *) table;
3358 eh->u.next_dot_sym = htab->dot_syms;
3359 htab->dot_syms = eh;
3360 }
3361 }
3362
3363 return entry;
3364 }
3365
3366 struct tocsave_entry
3367 {
3368 asection *sec;
3369 bfd_vma offset;
3370 };
3371
3372 static hashval_t
3373 tocsave_htab_hash (const void *p)
3374 {
3375 const struct tocsave_entry *e = (const struct tocsave_entry *) p;
3376 return ((bfd_vma) (intptr_t) e->sec ^ e->offset) >> 3;
3377 }
3378
3379 static int
3380 tocsave_htab_eq (const void *p1, const void *p2)
3381 {
3382 const struct tocsave_entry *e1 = (const struct tocsave_entry *) p1;
3383 const struct tocsave_entry *e2 = (const struct tocsave_entry *) p2;
3384 return e1->sec == e2->sec && e1->offset == e2->offset;
3385 }
3386
3387 /* Destroy a ppc64 ELF linker hash table. */
3388
3389 static void
3390 ppc64_elf_link_hash_table_free (bfd *obfd)
3391 {
3392 struct ppc_link_hash_table *htab;
3393
3394 htab = (struct ppc_link_hash_table *) obfd->link.hash;
3395 if (htab->tocsave_htab)
3396 htab_delete (htab->tocsave_htab);
3397 bfd_hash_table_free (&htab->branch_hash_table);
3398 bfd_hash_table_free (&htab->stub_hash_table);
3399 _bfd_elf_link_hash_table_free (obfd);
3400 }
3401
3402 /* Create a ppc64 ELF linker hash table. */
3403
3404 static struct bfd_link_hash_table *
3405 ppc64_elf_link_hash_table_create (bfd *abfd)
3406 {
3407 struct ppc_link_hash_table *htab;
3408 bfd_size_type amt = sizeof (struct ppc_link_hash_table);
3409
3410 htab = bfd_zmalloc (amt);
3411 if (htab == NULL)
3412 return NULL;
3413
3414 if (!_bfd_elf_link_hash_table_init (&htab->elf, abfd, link_hash_newfunc,
3415 sizeof (struct ppc_link_hash_entry),
3416 PPC64_ELF_DATA))
3417 {
3418 free (htab);
3419 return NULL;
3420 }
3421
3422 /* Init the stub hash table too. */
3423 if (!bfd_hash_table_init (&htab->stub_hash_table, stub_hash_newfunc,
3424 sizeof (struct ppc_stub_hash_entry)))
3425 {
3426 _bfd_elf_link_hash_table_free (abfd);
3427 return NULL;
3428 }
3429
3430 /* And the branch hash table. */
3431 if (!bfd_hash_table_init (&htab->branch_hash_table, branch_hash_newfunc,
3432 sizeof (struct ppc_branch_hash_entry)))
3433 {
3434 bfd_hash_table_free (&htab->stub_hash_table);
3435 _bfd_elf_link_hash_table_free (abfd);
3436 return NULL;
3437 }
3438
3439 htab->tocsave_htab = htab_try_create (1024,
3440 tocsave_htab_hash,
3441 tocsave_htab_eq,
3442 NULL);
3443 if (htab->tocsave_htab == NULL)
3444 {
3445 ppc64_elf_link_hash_table_free (abfd);
3446 return NULL;
3447 }
3448 htab->elf.root.hash_table_free = ppc64_elf_link_hash_table_free;
3449
3450 /* Initializing two fields of the union is just cosmetic. We really
3451 only care about glist, but when compiled on a 32-bit host the
3452 bfd_vma fields are larger. Setting the bfd_vma to zero makes
3453 debugger inspection of these fields look nicer. */
3454 htab->elf.init_got_refcount.refcount = 0;
3455 htab->elf.init_got_refcount.glist = NULL;
3456 htab->elf.init_plt_refcount.refcount = 0;
3457 htab->elf.init_plt_refcount.glist = NULL;
3458 htab->elf.init_got_offset.offset = 0;
3459 htab->elf.init_got_offset.glist = NULL;
3460 htab->elf.init_plt_offset.offset = 0;
3461 htab->elf.init_plt_offset.glist = NULL;
3462
3463 return &htab->elf.root;
3464 }
3465
3466 /* Create sections for linker generated code. */
3467
3468 static bfd_boolean
3469 create_linkage_sections (bfd *dynobj, struct bfd_link_info *info)
3470 {
3471 struct ppc_link_hash_table *htab;
3472 flagword flags;
3473
3474 htab = ppc_hash_table (info);
3475
3476 flags = (SEC_ALLOC | SEC_LOAD | SEC_CODE | SEC_READONLY
3477 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3478 if (htab->params->save_restore_funcs)
3479 {
3480 /* Create .sfpr for code to save and restore fp regs. */
3481 htab->sfpr = bfd_make_section_anyway_with_flags (dynobj, ".sfpr",
3482 flags);
3483 if (htab->sfpr == NULL
3484 || !bfd_set_section_alignment (dynobj, htab->sfpr, 2))
3485 return FALSE;
3486 }
3487
3488 if (bfd_link_relocatable (info))
3489 return TRUE;
3490
3491 /* Create .glink for lazy dynamic linking support. */
3492 htab->glink = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3493 flags);
3494 if (htab->glink == NULL
3495 || !bfd_set_section_alignment (dynobj, htab->glink, 3))
3496 return FALSE;
3497
3498 /* The part of .glink used by global entry stubs, separate so that
3499 it can be aligned appropriately without affecting htab->glink. */
3500 htab->global_entry = bfd_make_section_anyway_with_flags (dynobj, ".glink",
3501 flags);
3502 if (htab->global_entry == NULL
3503 || !bfd_set_section_alignment (dynobj, htab->global_entry, 2))
3504 return FALSE;
3505
3506 if (!info->no_ld_generated_unwind_info)
3507 {
3508 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_HAS_CONTENTS
3509 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3510 htab->glink_eh_frame = bfd_make_section_anyway_with_flags (dynobj,
3511 ".eh_frame",
3512 flags);
3513 if (htab->glink_eh_frame == NULL
3514 || !bfd_set_section_alignment (dynobj, htab->glink_eh_frame, 2))
3515 return FALSE;
3516 }
3517
3518 flags = SEC_ALLOC | SEC_LINKER_CREATED;
3519 htab->elf.iplt = bfd_make_section_anyway_with_flags (dynobj, ".iplt", flags);
3520 if (htab->elf.iplt == NULL
3521 || !bfd_set_section_alignment (dynobj, htab->elf.iplt, 3))
3522 return FALSE;
3523
3524 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3525 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3526 htab->elf.irelplt
3527 = bfd_make_section_anyway_with_flags (dynobj, ".rela.iplt", flags);
3528 if (htab->elf.irelplt == NULL
3529 || !bfd_set_section_alignment (dynobj, htab->elf.irelplt, 3))
3530 return FALSE;
3531
3532 /* Create branch lookup table for plt_branch stubs. */
3533 flags = (SEC_ALLOC | SEC_LOAD
3534 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3535 htab->brlt = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3536 flags);
3537 if (htab->brlt == NULL
3538 || !bfd_set_section_alignment (dynobj, htab->brlt, 3))
3539 return FALSE;
3540
3541 /* Local plt entries, put in .branch_lt but a separate section for
3542 convenience. */
3543 htab->pltlocal = bfd_make_section_anyway_with_flags (dynobj, ".branch_lt",
3544 flags);
3545 if (htab->pltlocal == NULL
3546 || !bfd_set_section_alignment (dynobj, htab->pltlocal, 3))
3547 return FALSE;
3548
3549 if (!bfd_link_pic (info))
3550 return TRUE;
3551
3552 flags = (SEC_ALLOC | SEC_LOAD | SEC_READONLY
3553 | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED);
3554 htab->relbrlt
3555 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3556 if (htab->relbrlt == NULL
3557 || !bfd_set_section_alignment (dynobj, htab->relbrlt, 3))
3558 return FALSE;
3559
3560 htab->relpltlocal
3561 = bfd_make_section_anyway_with_flags (dynobj, ".rela.branch_lt", flags);
3562 if (htab->relpltlocal == NULL
3563 || !bfd_set_section_alignment (dynobj, htab->relpltlocal, 3))
3564 return FALSE;
3565
3566 return TRUE;
3567 }
3568
3569 /* Satisfy the ELF linker by filling in some fields in our fake bfd. */
3570
3571 bfd_boolean
3572 ppc64_elf_init_stub_bfd (struct bfd_link_info *info,
3573 struct ppc64_elf_params *params)
3574 {
3575 struct ppc_link_hash_table *htab;
3576
3577 elf_elfheader (params->stub_bfd)->e_ident[EI_CLASS] = ELFCLASS64;
3578
3579 /* Always hook our dynamic sections into the first bfd, which is the
3580 linker created stub bfd. This ensures that the GOT header is at
3581 the start of the output TOC section. */
3582 htab = ppc_hash_table (info);
3583 htab->elf.dynobj = params->stub_bfd;
3584 htab->params = params;
3585
3586 return create_linkage_sections (htab->elf.dynobj, info);
3587 }
3588
3589 /* Build a name for an entry in the stub hash table. */
3590
3591 static char *
3592 ppc_stub_name (const asection *input_section,
3593 const asection *sym_sec,
3594 const struct ppc_link_hash_entry *h,
3595 const Elf_Internal_Rela *rel)
3596 {
3597 char *stub_name;
3598 ssize_t len;
3599
3600 /* rel->r_addend is actually 64 bit, but who uses more than +/- 2^31
3601 offsets from a sym as a branch target? In fact, we could
3602 probably assume the addend is always zero. */
3603 BFD_ASSERT (((int) rel->r_addend & 0xffffffff) == rel->r_addend);
3604
3605 if (h)
3606 {
3607 len = 8 + 1 + strlen (h->elf.root.root.string) + 1 + 8 + 1;
3608 stub_name = bfd_malloc (len);
3609 if (stub_name == NULL)
3610 return stub_name;
3611
3612 len = sprintf (stub_name, "%08x.%s+%x",
3613 input_section->id & 0xffffffff,
3614 h->elf.root.root.string,
3615 (int) rel->r_addend & 0xffffffff);
3616 }
3617 else
3618 {
3619 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3620 stub_name = bfd_malloc (len);
3621 if (stub_name == NULL)
3622 return stub_name;
3623
3624 len = sprintf (stub_name, "%08x.%x:%x+%x",
3625 input_section->id & 0xffffffff,
3626 sym_sec->id & 0xffffffff,
3627 (int) ELF64_R_SYM (rel->r_info) & 0xffffffff,
3628 (int) rel->r_addend & 0xffffffff);
3629 }
3630 if (len > 2 && stub_name[len - 2] == '+' && stub_name[len - 1] == '0')
3631 stub_name[len - 2] = 0;
3632 return stub_name;
3633 }
3634
3635 /* Look up an entry in the stub hash. Stub entries are cached because
3636 creating the stub name takes a bit of time. */
3637
3638 static struct ppc_stub_hash_entry *
3639 ppc_get_stub_entry (const asection *input_section,
3640 const asection *sym_sec,
3641 struct ppc_link_hash_entry *h,
3642 const Elf_Internal_Rela *rel,
3643 struct ppc_link_hash_table *htab)
3644 {
3645 struct ppc_stub_hash_entry *stub_entry;
3646 struct map_stub *group;
3647
3648 /* If this input section is part of a group of sections sharing one
3649 stub section, then use the id of the first section in the group.
3650 Stub names need to include a section id, as there may well be
3651 more than one stub used to reach say, printf, and we need to
3652 distinguish between them. */
3653 group = htab->sec_info[input_section->id].u.group;
3654 if (group == NULL)
3655 return NULL;
3656
3657 if (h != NULL && h->u.stub_cache != NULL
3658 && h->u.stub_cache->h == h
3659 && h->u.stub_cache->group == group)
3660 {
3661 stub_entry = h->u.stub_cache;
3662 }
3663 else
3664 {
3665 char *stub_name;
3666
3667 stub_name = ppc_stub_name (group->link_sec, sym_sec, h, rel);
3668 if (stub_name == NULL)
3669 return NULL;
3670
3671 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
3672 stub_name, FALSE, FALSE);
3673 if (h != NULL)
3674 h->u.stub_cache = stub_entry;
3675
3676 free (stub_name);
3677 }
3678
3679 return stub_entry;
3680 }
3681
3682 /* Add a new stub entry to the stub hash. Not all fields of the new
3683 stub entry are initialised. */
3684
3685 static struct ppc_stub_hash_entry *
3686 ppc_add_stub (const char *stub_name,
3687 asection *section,
3688 struct bfd_link_info *info)
3689 {
3690 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3691 struct map_stub *group;
3692 asection *link_sec;
3693 asection *stub_sec;
3694 struct ppc_stub_hash_entry *stub_entry;
3695
3696 group = htab->sec_info[section->id].u.group;
3697 link_sec = group->link_sec;
3698 stub_sec = group->stub_sec;
3699 if (stub_sec == NULL)
3700 {
3701 size_t namelen;
3702 bfd_size_type len;
3703 char *s_name;
3704
3705 namelen = strlen (link_sec->name);
3706 len = namelen + sizeof (STUB_SUFFIX);
3707 s_name = bfd_alloc (htab->params->stub_bfd, len);
3708 if (s_name == NULL)
3709 return NULL;
3710
3711 memcpy (s_name, link_sec->name, namelen);
3712 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3713 stub_sec = (*htab->params->add_stub_section) (s_name, link_sec);
3714 if (stub_sec == NULL)
3715 return NULL;
3716 group->stub_sec = stub_sec;
3717 }
3718
3719 /* Enter this entry into the linker stub hash table. */
3720 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3721 TRUE, FALSE);
3722 if (stub_entry == NULL)
3723 {
3724 /* xgettext:c-format */
3725 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
3726 section->owner, stub_name);
3727 return NULL;
3728 }
3729
3730 stub_entry->group = group;
3731 stub_entry->stub_offset = 0;
3732 return stub_entry;
3733 }
3734
3735 /* Create .got and .rela.got sections in ABFD, and .got in dynobj if
3736 not already done. */
3737
3738 static bfd_boolean
3739 create_got_section (bfd *abfd, struct bfd_link_info *info)
3740 {
3741 asection *got, *relgot;
3742 flagword flags;
3743 struct ppc_link_hash_table *htab = ppc_hash_table (info);
3744
3745 if (!is_ppc64_elf (abfd))
3746 return FALSE;
3747 if (htab == NULL)
3748 return FALSE;
3749
3750 if (!htab->elf.sgot
3751 && !_bfd_elf_create_got_section (htab->elf.dynobj, info))
3752 return FALSE;
3753
3754 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3755 | SEC_LINKER_CREATED);
3756
3757 got = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
3758 if (!got
3759 || !bfd_set_section_alignment (abfd, got, 3))
3760 return FALSE;
3761
3762 relgot = bfd_make_section_anyway_with_flags (abfd, ".rela.got",
3763 flags | SEC_READONLY);
3764 if (!relgot
3765 || !bfd_set_section_alignment (abfd, relgot, 3))
3766 return FALSE;
3767
3768 ppc64_elf_tdata (abfd)->got = got;
3769 ppc64_elf_tdata (abfd)->relgot = relgot;
3770 return TRUE;
3771 }
3772
3773 /* Follow indirect and warning symbol links. */
3774
3775 static inline struct bfd_link_hash_entry *
3776 follow_link (struct bfd_link_hash_entry *h)
3777 {
3778 while (h->type == bfd_link_hash_indirect
3779 || h->type == bfd_link_hash_warning)
3780 h = h->u.i.link;
3781 return h;
3782 }
3783
3784 static inline struct elf_link_hash_entry *
3785 elf_follow_link (struct elf_link_hash_entry *h)
3786 {
3787 return (struct elf_link_hash_entry *) follow_link (&h->root);
3788 }
3789
3790 static inline struct ppc_link_hash_entry *
3791 ppc_follow_link (struct ppc_link_hash_entry *h)
3792 {
3793 return (struct ppc_link_hash_entry *) follow_link (&h->elf.root);
3794 }
3795
3796 /* Merge PLT info on FROM with that on TO. */
3797
3798 static void
3799 move_plt_plist (struct ppc_link_hash_entry *from,
3800 struct ppc_link_hash_entry *to)
3801 {
3802 if (from->elf.plt.plist != NULL)
3803 {
3804 if (to->elf.plt.plist != NULL)
3805 {
3806 struct plt_entry **entp;
3807 struct plt_entry *ent;
3808
3809 for (entp = &from->elf.plt.plist; (ent = *entp) != NULL; )
3810 {
3811 struct plt_entry *dent;
3812
3813 for (dent = to->elf.plt.plist; dent != NULL; dent = dent->next)
3814 if (dent->addend == ent->addend)
3815 {
3816 dent->plt.refcount += ent->plt.refcount;
3817 *entp = ent->next;
3818 break;
3819 }
3820 if (dent == NULL)
3821 entp = &ent->next;
3822 }
3823 *entp = to->elf.plt.plist;
3824 }
3825
3826 to->elf.plt.plist = from->elf.plt.plist;
3827 from->elf.plt.plist = NULL;
3828 }
3829 }
3830
3831 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3832
3833 static void
3834 ppc64_elf_copy_indirect_symbol (struct bfd_link_info *info,
3835 struct elf_link_hash_entry *dir,
3836 struct elf_link_hash_entry *ind)
3837 {
3838 struct ppc_link_hash_entry *edir, *eind;
3839
3840 edir = (struct ppc_link_hash_entry *) dir;
3841 eind = (struct ppc_link_hash_entry *) ind;
3842
3843 edir->is_func |= eind->is_func;
3844 edir->is_func_descriptor |= eind->is_func_descriptor;
3845 edir->tls_mask |= eind->tls_mask;
3846 if (eind->oh != NULL)
3847 edir->oh = ppc_follow_link (eind->oh);
3848
3849 if (edir->elf.versioned != versioned_hidden)
3850 edir->elf.ref_dynamic |= eind->elf.ref_dynamic;
3851 edir->elf.ref_regular |= eind->elf.ref_regular;
3852 edir->elf.ref_regular_nonweak |= eind->elf.ref_regular_nonweak;
3853 edir->elf.non_got_ref |= eind->elf.non_got_ref;
3854 edir->elf.needs_plt |= eind->elf.needs_plt;
3855 edir->elf.pointer_equality_needed |= eind->elf.pointer_equality_needed;
3856
3857 /* If we were called to copy over info for a weak sym, don't copy
3858 dyn_relocs, plt/got info, or dynindx. We used to copy dyn_relocs
3859 in order to simplify readonly_dynrelocs and save a field in the
3860 symbol hash entry, but that means dyn_relocs can't be used in any
3861 tests about a specific symbol, or affect other symbol flags which
3862 are then tested. */
3863 if (eind->elf.root.type != bfd_link_hash_indirect)
3864 return;
3865
3866 /* Copy over any dynamic relocs we may have on the indirect sym. */
3867 if (eind->dyn_relocs != NULL)
3868 {
3869 if (edir->dyn_relocs != NULL)
3870 {
3871 struct elf_dyn_relocs **pp;
3872 struct elf_dyn_relocs *p;
3873
3874 /* Add reloc counts against the indirect sym to the direct sym
3875 list. Merge any entries against the same section. */
3876 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3877 {
3878 struct elf_dyn_relocs *q;
3879
3880 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3881 if (q->sec == p->sec)
3882 {
3883 q->pc_count += p->pc_count;
3884 q->count += p->count;
3885 *pp = p->next;
3886 break;
3887 }
3888 if (q == NULL)
3889 pp = &p->next;
3890 }
3891 *pp = edir->dyn_relocs;
3892 }
3893
3894 edir->dyn_relocs = eind->dyn_relocs;
3895 eind->dyn_relocs = NULL;
3896 }
3897
3898 /* Copy over got entries that we may have already seen to the
3899 symbol which just became indirect. */
3900 if (eind->elf.got.glist != NULL)
3901 {
3902 if (edir->elf.got.glist != NULL)
3903 {
3904 struct got_entry **entp;
3905 struct got_entry *ent;
3906
3907 for (entp = &eind->elf.got.glist; (ent = *entp) != NULL; )
3908 {
3909 struct got_entry *dent;
3910
3911 for (dent = edir->elf.got.glist; dent != NULL; dent = dent->next)
3912 if (dent->addend == ent->addend
3913 && dent->owner == ent->owner
3914 && dent->tls_type == ent->tls_type)
3915 {
3916 dent->got.refcount += ent->got.refcount;
3917 *entp = ent->next;
3918 break;
3919 }
3920 if (dent == NULL)
3921 entp = &ent->next;
3922 }
3923 *entp = edir->elf.got.glist;
3924 }
3925
3926 edir->elf.got.glist = eind->elf.got.glist;
3927 eind->elf.got.glist = NULL;
3928 }
3929
3930 /* And plt entries. */
3931 move_plt_plist (eind, edir);
3932
3933 if (eind->elf.dynindx != -1)
3934 {
3935 if (edir->elf.dynindx != -1)
3936 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
3937 edir->elf.dynstr_index);
3938 edir->elf.dynindx = eind->elf.dynindx;
3939 edir->elf.dynstr_index = eind->elf.dynstr_index;
3940 eind->elf.dynindx = -1;
3941 eind->elf.dynstr_index = 0;
3942 }
3943 }
3944
3945 /* Find the function descriptor hash entry from the given function code
3946 hash entry FH. Link the entries via their OH fields. */
3947
3948 static struct ppc_link_hash_entry *
3949 lookup_fdh (struct ppc_link_hash_entry *fh, struct ppc_link_hash_table *htab)
3950 {
3951 struct ppc_link_hash_entry *fdh = fh->oh;
3952
3953 if (fdh == NULL)
3954 {
3955 const char *fd_name = fh->elf.root.root.string + 1;
3956
3957 fdh = (struct ppc_link_hash_entry *)
3958 elf_link_hash_lookup (&htab->elf, fd_name, FALSE, FALSE, FALSE);
3959 if (fdh == NULL)
3960 return fdh;
3961
3962 fdh->is_func_descriptor = 1;
3963 fdh->oh = fh;
3964 fh->is_func = 1;
3965 fh->oh = fdh;
3966 }
3967
3968 fdh = ppc_follow_link (fdh);
3969 fdh->is_func_descriptor = 1;
3970 fdh->oh = fh;
3971 return fdh;
3972 }
3973
3974 /* Make a fake function descriptor sym for the undefined code sym FH. */
3975
3976 static struct ppc_link_hash_entry *
3977 make_fdh (struct bfd_link_info *info,
3978 struct ppc_link_hash_entry *fh)
3979 {
3980 bfd *abfd = fh->elf.root.u.undef.abfd;
3981 struct bfd_link_hash_entry *bh = NULL;
3982 struct ppc_link_hash_entry *fdh;
3983 flagword flags = (fh->elf.root.type == bfd_link_hash_undefweak
3984 ? BSF_WEAK
3985 : BSF_GLOBAL);
3986
3987 if (!_bfd_generic_link_add_one_symbol (info, abfd,
3988 fh->elf.root.root.string + 1,
3989 flags, bfd_und_section_ptr, 0,
3990 NULL, FALSE, FALSE, &bh))
3991 return NULL;
3992
3993 fdh = (struct ppc_link_hash_entry *) bh;
3994 fdh->elf.non_elf = 0;
3995 fdh->fake = 1;
3996 fdh->is_func_descriptor = 1;
3997 fdh->oh = fh;
3998 fh->is_func = 1;
3999 fh->oh = fdh;
4000 return fdh;
4001 }
4002
4003 /* Fix function descriptor symbols defined in .opd sections to be
4004 function type. */
4005
4006 static bfd_boolean
4007 ppc64_elf_add_symbol_hook (bfd *ibfd,
4008 struct bfd_link_info *info,
4009 Elf_Internal_Sym *isym,
4010 const char **name,
4011 flagword *flags ATTRIBUTE_UNUSED,
4012 asection **sec,
4013 bfd_vma *value)
4014 {
4015 if (*sec != NULL
4016 && strcmp ((*sec)->name, ".opd") == 0)
4017 {
4018 asection *code_sec;
4019
4020 if (!(ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
4021 || ELF_ST_TYPE (isym->st_info) == STT_FUNC))
4022 isym->st_info = ELF_ST_INFO (ELF_ST_BIND (isym->st_info), STT_FUNC);
4023
4024 /* If the symbol is a function defined in .opd, and the function
4025 code is in a discarded group, let it appear to be undefined. */
4026 if (!bfd_link_relocatable (info)
4027 && (*sec)->reloc_count != 0
4028 && opd_entry_value (*sec, *value, &code_sec, NULL,
4029 FALSE) != (bfd_vma) -1
4030 && discarded_section (code_sec))
4031 {
4032 *sec = bfd_und_section_ptr;
4033 isym->st_shndx = SHN_UNDEF;
4034 }
4035 }
4036 else if (*sec != NULL
4037 && strcmp ((*sec)->name, ".toc") == 0
4038 && ELF_ST_TYPE (isym->st_info) == STT_OBJECT)
4039 {
4040 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4041 if (htab != NULL)
4042 htab->params->object_in_toc = 1;
4043 }
4044
4045 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4046 {
4047 if (abiversion (ibfd) == 0)
4048 set_abiversion (ibfd, 2);
4049 else if (abiversion (ibfd) == 1)
4050 {
4051 _bfd_error_handler (_("symbol '%s' has invalid st_other"
4052 " for ABI version 1"), *name);
4053 bfd_set_error (bfd_error_bad_value);
4054 return FALSE;
4055 }
4056 }
4057
4058 return TRUE;
4059 }
4060
4061 /* Merge non-visibility st_other attributes: local entry point. */
4062
4063 static void
4064 ppc64_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
4065 const Elf_Internal_Sym *isym,
4066 bfd_boolean definition,
4067 bfd_boolean dynamic)
4068 {
4069 if (definition && (!dynamic || !h->def_regular))
4070 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1))
4071 | ELF_ST_VISIBILITY (h->other));
4072 }
4073
4074 /* Hook called on merging a symbol. We use this to clear "fake" since
4075 we now have a real symbol. */
4076
4077 static bfd_boolean
4078 ppc64_elf_merge_symbol (struct elf_link_hash_entry *h,
4079 const Elf_Internal_Sym *isym,
4080 asection **psec ATTRIBUTE_UNUSED,
4081 bfd_boolean newdef ATTRIBUTE_UNUSED,
4082 bfd_boolean olddef ATTRIBUTE_UNUSED,
4083 bfd *oldbfd ATTRIBUTE_UNUSED,
4084 const asection *oldsec ATTRIBUTE_UNUSED)
4085 {
4086 ((struct ppc_link_hash_entry *) h)->fake = 0;
4087 if ((STO_PPC64_LOCAL_MASK & isym->st_other) != 0)
4088 ((struct ppc_link_hash_entry *) h)->non_zero_localentry = 1;
4089 return TRUE;
4090 }
4091
4092 /* This function makes an old ABI object reference to ".bar" cause the
4093 inclusion of a new ABI object archive that defines "bar".
4094 NAME is a symbol defined in an archive. Return a symbol in the hash
4095 table that might be satisfied by the archive symbols. */
4096
4097 static struct elf_link_hash_entry *
4098 ppc64_elf_archive_symbol_lookup (bfd *abfd,
4099 struct bfd_link_info *info,
4100 const char *name)
4101 {
4102 struct elf_link_hash_entry *h;
4103 char *dot_name;
4104 size_t len;
4105
4106 h = _bfd_elf_archive_symbol_lookup (abfd, info, name);
4107 if (h != NULL
4108 /* Don't return this sym if it is a fake function descriptor
4109 created by add_symbol_adjust. */
4110 && !((struct ppc_link_hash_entry *) h)->fake)
4111 return h;
4112
4113 if (name[0] == '.')
4114 return h;
4115
4116 len = strlen (name);
4117 dot_name = bfd_alloc (abfd, len + 2);
4118 if (dot_name == NULL)
4119 return (struct elf_link_hash_entry *) -1;
4120 dot_name[0] = '.';
4121 memcpy (dot_name + 1, name, len + 1);
4122 h = _bfd_elf_archive_symbol_lookup (abfd, info, dot_name);
4123 bfd_release (abfd, dot_name);
4124 return h;
4125 }
4126
4127 /* This function satisfies all old ABI object references to ".bar" if a
4128 new ABI object defines "bar". Well, at least, undefined dot symbols
4129 are made weak. This stops later archive searches from including an
4130 object if we already have a function descriptor definition. It also
4131 prevents the linker complaining about undefined symbols.
4132 We also check and correct mismatched symbol visibility here. The
4133 most restrictive visibility of the function descriptor and the
4134 function entry symbol is used. */
4135
4136 static bfd_boolean
4137 add_symbol_adjust (struct ppc_link_hash_entry *eh, struct bfd_link_info *info)
4138 {
4139 struct ppc_link_hash_table *htab;
4140 struct ppc_link_hash_entry *fdh;
4141
4142 if (eh->elf.root.type == bfd_link_hash_warning)
4143 eh = (struct ppc_link_hash_entry *) eh->elf.root.u.i.link;
4144
4145 if (eh->elf.root.type == bfd_link_hash_indirect)
4146 return TRUE;
4147
4148 if (eh->elf.root.root.string[0] != '.')
4149 abort ();
4150
4151 htab = ppc_hash_table (info);
4152 if (htab == NULL)
4153 return FALSE;
4154
4155 fdh = lookup_fdh (eh, htab);
4156 if (fdh == NULL
4157 && !bfd_link_relocatable (info)
4158 && (eh->elf.root.type == bfd_link_hash_undefined
4159 || eh->elf.root.type == bfd_link_hash_undefweak)
4160 && eh->elf.ref_regular)
4161 {
4162 /* Make an undefined function descriptor sym, in order to
4163 pull in an --as-needed shared lib. Archives are handled
4164 elsewhere. */
4165 fdh = make_fdh (info, eh);
4166 if (fdh == NULL)
4167 return FALSE;
4168 }
4169
4170 if (fdh != NULL)
4171 {
4172 unsigned entry_vis = ELF_ST_VISIBILITY (eh->elf.other) - 1;
4173 unsigned descr_vis = ELF_ST_VISIBILITY (fdh->elf.other) - 1;
4174
4175 /* Make both descriptor and entry symbol have the most
4176 constraining visibility of either symbol. */
4177 if (entry_vis < descr_vis)
4178 fdh->elf.other += entry_vis - descr_vis;
4179 else if (entry_vis > descr_vis)
4180 eh->elf.other += descr_vis - entry_vis;
4181
4182 /* Propagate reference flags from entry symbol to function
4183 descriptor symbol. */
4184 fdh->elf.root.non_ir_ref_regular |= eh->elf.root.non_ir_ref_regular;
4185 fdh->elf.root.non_ir_ref_dynamic |= eh->elf.root.non_ir_ref_dynamic;
4186 fdh->elf.ref_regular |= eh->elf.ref_regular;
4187 fdh->elf.ref_regular_nonweak |= eh->elf.ref_regular_nonweak;
4188
4189 if (!fdh->elf.forced_local
4190 && fdh->elf.dynindx == -1
4191 && fdh->elf.versioned != versioned_hidden
4192 && (bfd_link_dll (info)
4193 || fdh->elf.def_dynamic
4194 || fdh->elf.ref_dynamic)
4195 && (eh->elf.ref_regular
4196 || eh->elf.def_regular))
4197 {
4198 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
4199 return FALSE;
4200 }
4201 }
4202
4203 return TRUE;
4204 }
4205
4206 /* Set up opd section info and abiversion for IBFD, and process list
4207 of dot-symbols we made in link_hash_newfunc. */
4208
4209 static bfd_boolean
4210 ppc64_elf_before_check_relocs (bfd *ibfd, struct bfd_link_info *info)
4211 {
4212 struct ppc_link_hash_table *htab;
4213 struct ppc_link_hash_entry **p, *eh;
4214 asection *opd = bfd_get_section_by_name (ibfd, ".opd");
4215
4216 if (opd != NULL && opd->size != 0)
4217 {
4218 BFD_ASSERT (ppc64_elf_section_data (opd)->sec_type == sec_normal);
4219 ppc64_elf_section_data (opd)->sec_type = sec_opd;
4220
4221 if (abiversion (ibfd) == 0)
4222 set_abiversion (ibfd, 1);
4223 else if (abiversion (ibfd) >= 2)
4224 {
4225 /* xgettext:c-format */
4226 _bfd_error_handler (_("%pB .opd not allowed in ABI version %d"),
4227 ibfd, abiversion (ibfd));
4228 bfd_set_error (bfd_error_bad_value);
4229 return FALSE;
4230 }
4231 }
4232
4233 if (is_ppc64_elf (info->output_bfd))
4234 {
4235 /* For input files without an explicit abiversion in e_flags
4236 we should have flagged any with symbol st_other bits set
4237 as ELFv1 and above flagged those with .opd as ELFv2.
4238 Set the output abiversion if not yet set, and for any input
4239 still ambiguous, take its abiversion from the output.
4240 Differences in ABI are reported later. */
4241 if (abiversion (info->output_bfd) == 0)
4242 set_abiversion (info->output_bfd, abiversion (ibfd));
4243 else if (abiversion (ibfd) == 0)
4244 set_abiversion (ibfd, abiversion (info->output_bfd));
4245 }
4246
4247 htab = ppc_hash_table (info);
4248 if (htab == NULL)
4249 return TRUE;
4250
4251 if (opd != NULL && opd->size != 0
4252 && (ibfd->flags & DYNAMIC) == 0
4253 && (opd->flags & SEC_RELOC) != 0
4254 && opd->reloc_count != 0
4255 && !bfd_is_abs_section (opd->output_section)
4256 && info->gc_sections)
4257 {
4258 /* Garbage collection needs some extra help with .opd sections.
4259 We don't want to necessarily keep everything referenced by
4260 relocs in .opd, as that would keep all functions. Instead,
4261 if we reference an .opd symbol (a function descriptor), we
4262 want to keep the function code symbol's section. This is
4263 easy for global symbols, but for local syms we need to keep
4264 information about the associated function section. */
4265 bfd_size_type amt;
4266 asection **opd_sym_map;
4267 Elf_Internal_Shdr *symtab_hdr;
4268 Elf_Internal_Rela *relocs, *rel_end, *rel;
4269
4270 amt = OPD_NDX (opd->size) * sizeof (*opd_sym_map);
4271 opd_sym_map = bfd_zalloc (ibfd, amt);
4272 if (opd_sym_map == NULL)
4273 return FALSE;
4274 ppc64_elf_section_data (opd)->u.opd.func_sec = opd_sym_map;
4275 relocs = _bfd_elf_link_read_relocs (ibfd, opd, NULL, NULL,
4276 info->keep_memory);
4277 if (relocs == NULL)
4278 return FALSE;
4279 symtab_hdr = &elf_symtab_hdr (ibfd);
4280 rel_end = relocs + opd->reloc_count - 1;
4281 for (rel = relocs; rel < rel_end; rel++)
4282 {
4283 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
4284 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
4285
4286 if (r_type == R_PPC64_ADDR64
4287 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC
4288 && r_symndx < symtab_hdr->sh_info)
4289 {
4290 Elf_Internal_Sym *isym;
4291 asection *s;
4292
4293 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, r_symndx);
4294 if (isym == NULL)
4295 {
4296 if (elf_section_data (opd)->relocs != relocs)
4297 free (relocs);
4298 return FALSE;
4299 }
4300
4301 s = bfd_section_from_elf_index (ibfd, isym->st_shndx);
4302 if (s != NULL && s != opd)
4303 opd_sym_map[OPD_NDX (rel->r_offset)] = s;
4304 }
4305 }
4306 if (elf_section_data (opd)->relocs != relocs)
4307 free (relocs);
4308 }
4309
4310 p = &htab->dot_syms;
4311 while ((eh = *p) != NULL)
4312 {
4313 *p = NULL;
4314 if (&eh->elf == htab->elf.hgot)
4315 ;
4316 else if (htab->elf.hgot == NULL
4317 && strcmp (eh->elf.root.root.string, ".TOC.") == 0)
4318 htab->elf.hgot = &eh->elf;
4319 else if (abiversion (ibfd) <= 1)
4320 {
4321 htab->need_func_desc_adj = 1;
4322 if (!add_symbol_adjust (eh, info))
4323 return FALSE;
4324 }
4325 p = &eh->u.next_dot_sym;
4326 }
4327 return TRUE;
4328 }
4329
4330 /* Undo hash table changes when an --as-needed input file is determined
4331 not to be needed. */
4332
4333 static bfd_boolean
4334 ppc64_elf_notice_as_needed (bfd *ibfd,
4335 struct bfd_link_info *info,
4336 enum notice_asneeded_action act)
4337 {
4338 if (act == notice_not_needed)
4339 {
4340 struct ppc_link_hash_table *htab = ppc_hash_table (info);
4341
4342 if (htab == NULL)
4343 return FALSE;
4344
4345 htab->dot_syms = NULL;
4346 }
4347 return _bfd_elf_notice_as_needed (ibfd, info, act);
4348 }
4349
4350 /* If --just-symbols against a final linked binary, then assume we need
4351 toc adjusting stubs when calling functions defined there. */
4352
4353 static void
4354 ppc64_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
4355 {
4356 if ((sec->flags & SEC_CODE) != 0
4357 && (sec->owner->flags & (EXEC_P | DYNAMIC)) != 0
4358 && is_ppc64_elf (sec->owner))
4359 {
4360 if (abiversion (sec->owner) >= 2
4361 || bfd_get_section_by_name (sec->owner, ".opd") != NULL)
4362 sec->has_toc_reloc = 1;
4363 }
4364 _bfd_elf_link_just_syms (sec, info);
4365 }
4366
4367 static struct plt_entry **
4368 update_local_sym_info (bfd *abfd, Elf_Internal_Shdr *symtab_hdr,
4369 unsigned long r_symndx, bfd_vma r_addend, int tls_type)
4370 {
4371 struct got_entry **local_got_ents = elf_local_got_ents (abfd);
4372 struct plt_entry **local_plt;
4373 unsigned char *local_got_tls_masks;
4374
4375 if (local_got_ents == NULL)
4376 {
4377 bfd_size_type size = symtab_hdr->sh_info;
4378
4379 size *= (sizeof (*local_got_ents)
4380 + sizeof (*local_plt)
4381 + sizeof (*local_got_tls_masks));
4382 local_got_ents = bfd_zalloc (abfd, size);
4383 if (local_got_ents == NULL)
4384 return NULL;
4385 elf_local_got_ents (abfd) = local_got_ents;
4386 }
4387
4388 if ((tls_type & (NON_GOT | TLS_EXPLICIT)) == 0)
4389 {
4390 struct got_entry *ent;
4391
4392 for (ent = local_got_ents[r_symndx]; ent != NULL; ent = ent->next)
4393 if (ent->addend == r_addend
4394 && ent->owner == abfd
4395 && ent->tls_type == tls_type)
4396 break;
4397 if (ent == NULL)
4398 {
4399 bfd_size_type amt = sizeof (*ent);
4400 ent = bfd_alloc (abfd, amt);
4401 if (ent == NULL)
4402 return FALSE;
4403 ent->next = local_got_ents[r_symndx];
4404 ent->addend = r_addend;
4405 ent->owner = abfd;
4406 ent->tls_type = tls_type;
4407 ent->is_indirect = FALSE;
4408 ent->got.refcount = 0;
4409 local_got_ents[r_symndx] = ent;
4410 }
4411 ent->got.refcount += 1;
4412 }
4413
4414 local_plt = (struct plt_entry **) (local_got_ents + symtab_hdr->sh_info);
4415 local_got_tls_masks = (unsigned char *) (local_plt + symtab_hdr->sh_info);
4416 local_got_tls_masks[r_symndx] |= tls_type & 0xff;
4417
4418 return local_plt + r_symndx;
4419 }
4420
4421 static bfd_boolean
4422 update_plt_info (bfd *abfd, struct plt_entry **plist, bfd_vma addend)
4423 {
4424 struct plt_entry *ent;
4425
4426 for (ent = *plist; ent != NULL; ent = ent->next)
4427 if (ent->addend == addend)
4428 break;
4429 if (ent == NULL)
4430 {
4431 bfd_size_type amt = sizeof (*ent);
4432 ent = bfd_alloc (abfd, amt);
4433 if (ent == NULL)
4434 return FALSE;
4435 ent->next = *plist;
4436 ent->addend = addend;
4437 ent->plt.refcount = 0;
4438 *plist = ent;
4439 }
4440 ent->plt.refcount += 1;
4441 return TRUE;
4442 }
4443
4444 static bfd_boolean
4445 is_branch_reloc (enum elf_ppc64_reloc_type r_type)
4446 {
4447 return (r_type == R_PPC64_REL24
4448 || r_type == R_PPC64_REL24_NOTOC
4449 || r_type == R_PPC64_REL14
4450 || r_type == R_PPC64_REL14_BRTAKEN
4451 || r_type == R_PPC64_REL14_BRNTAKEN
4452 || r_type == R_PPC64_ADDR24
4453 || r_type == R_PPC64_ADDR14
4454 || r_type == R_PPC64_ADDR14_BRTAKEN
4455 || r_type == R_PPC64_ADDR14_BRNTAKEN
4456 || r_type == R_PPC64_PLTCALL
4457 || r_type == R_PPC64_PLTCALL_NOTOC);
4458 }
4459
4460 /* Relocs on inline plt call sequence insns prior to the call. */
4461
4462 static bfd_boolean
4463 is_plt_seq_reloc (enum elf_ppc64_reloc_type r_type)
4464 {
4465 return (r_type == R_PPC64_PLT16_HA
4466 || r_type == R_PPC64_PLT16_HI
4467 || r_type == R_PPC64_PLT16_LO
4468 || r_type == R_PPC64_PLT16_LO_DS
4469 || r_type == R_PPC64_PLT_PCREL34
4470 || r_type == R_PPC64_PLT_PCREL34_NOTOC
4471 || r_type == R_PPC64_PLTSEQ
4472 || r_type == R_PPC64_PLTSEQ_NOTOC);
4473 }
4474
4475 /* Look through the relocs for a section during the first phase, and
4476 calculate needed space in the global offset table, procedure
4477 linkage table, and dynamic reloc sections. */
4478
4479 static bfd_boolean
4480 ppc64_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
4481 asection *sec, const Elf_Internal_Rela *relocs)
4482 {
4483 struct ppc_link_hash_table *htab;
4484 Elf_Internal_Shdr *symtab_hdr;
4485 struct elf_link_hash_entry **sym_hashes;
4486 const Elf_Internal_Rela *rel;
4487 const Elf_Internal_Rela *rel_end;
4488 asection *sreloc;
4489 struct elf_link_hash_entry *tga, *dottga;
4490 bfd_boolean is_opd;
4491
4492 if (bfd_link_relocatable (info))
4493 return TRUE;
4494
4495 /* Don't do anything special with non-loaded, non-alloced sections.
4496 In particular, any relocs in such sections should not affect GOT
4497 and PLT reference counting (ie. we don't allow them to create GOT
4498 or PLT entries), there's no possibility or desire to optimize TLS
4499 relocs, and there's not much point in propagating relocs to shared
4500 libs that the dynamic linker won't relocate. */
4501 if ((sec->flags & SEC_ALLOC) == 0)
4502 return TRUE;
4503
4504 BFD_ASSERT (is_ppc64_elf (abfd));
4505
4506 htab = ppc_hash_table (info);
4507 if (htab == NULL)
4508 return FALSE;
4509
4510 tga = elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
4511 FALSE, FALSE, TRUE);
4512 dottga = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
4513 FALSE, FALSE, TRUE);
4514 symtab_hdr = &elf_symtab_hdr (abfd);
4515 sym_hashes = elf_sym_hashes (abfd);
4516 sreloc = NULL;
4517 is_opd = ppc64_elf_section_data (sec)->sec_type == sec_opd;
4518 rel_end = relocs + sec->reloc_count;
4519 for (rel = relocs; rel < rel_end; rel++)
4520 {
4521 unsigned long r_symndx;
4522 struct elf_link_hash_entry *h;
4523 enum elf_ppc64_reloc_type r_type;
4524 int tls_type;
4525 struct _ppc64_elf_section_data *ppc64_sec;
4526 struct plt_entry **ifunc, **plt_list;
4527 bfd_vma sym_addend;
4528
4529 r_symndx = ELF64_R_SYM (rel->r_info);
4530 if (r_symndx < symtab_hdr->sh_info)
4531 h = NULL;
4532 else
4533 {
4534 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
4535 h = elf_follow_link (h);
4536
4537 if (h == htab->elf.hgot)
4538 sec->has_toc_reloc = 1;
4539 }
4540
4541 tls_type = 0;
4542 ifunc = NULL;
4543 r_type = ELF64_R_TYPE (rel->r_info);
4544 switch (r_type)
4545 {
4546 case R_PPC64_D34:
4547 case R_PPC64_D34_LO:
4548 case R_PPC64_D34_HI30:
4549 case R_PPC64_D34_HA30:
4550 case R_PPC64_D28:
4551 case R_PPC64_TPREL34:
4552 case R_PPC64_DTPREL34:
4553 htab->powerxx_stubs = 1;
4554 /* Fall through. */
4555 default:
4556 /* Somewhat foolishly, because the ABIs don't specifically
4557 allow it, ppc64 gas and ld support GOT and PLT relocs
4558 with non-zero addends where the addend results in
4559 sym+addend being stored in the GOT or PLT entry. This
4560 can't be supported for pcrel relocs because the addend is
4561 used to specify the pcrel offset. */
4562 sym_addend = rel->r_addend;
4563 break;
4564
4565 case R_PPC64_PCREL34:
4566 case R_PPC64_GOT_PCREL34:
4567 case R_PPC64_GOT_TLSGD34:
4568 case R_PPC64_GOT_TLSLD34:
4569 case R_PPC64_GOT_TPREL34:
4570 case R_PPC64_GOT_DTPREL34:
4571 case R_PPC64_PLT_PCREL34:
4572 case R_PPC64_PLT_PCREL34_NOTOC:
4573 case R_PPC64_PCREL28:
4574 htab->powerxx_stubs = 1;
4575 sym_addend = 0;
4576 break;
4577 }
4578
4579 switch (r_type)
4580 {
4581 case R_PPC64_PLT16_HA:
4582 case R_PPC64_GOT_TLSLD16_HA:
4583 case R_PPC64_GOT_TLSGD16_HA:
4584 case R_PPC64_GOT_TPREL16_HA:
4585 case R_PPC64_GOT_DTPREL16_HA:
4586 case R_PPC64_GOT16_HA:
4587 case R_PPC64_TOC16_HA:
4588 case R_PPC64_PLT16_LO:
4589 case R_PPC64_PLT16_LO_DS:
4590 case R_PPC64_GOT_TLSLD16_LO:
4591 case R_PPC64_GOT_TLSGD16_LO:
4592 case R_PPC64_GOT_TPREL16_LO_DS:
4593 case R_PPC64_GOT_DTPREL16_LO_DS:
4594 case R_PPC64_GOT16_LO:
4595 case R_PPC64_GOT16_LO_DS:
4596 case R_PPC64_TOC16_LO:
4597 case R_PPC64_TOC16_LO_DS:
4598 case R_PPC64_GOT_PCREL34:
4599 ppc64_elf_tdata (abfd)->has_optrel = 1;
4600 ppc64_elf_section_data (sec)->has_optrel = 1;
4601 break;
4602 default:
4603 break;
4604 }
4605
4606 if (h != NULL)
4607 {
4608 if (h->type == STT_GNU_IFUNC)
4609 {
4610 h->needs_plt = 1;
4611 ifunc = &h->plt.plist;
4612 }
4613 }
4614 else
4615 {
4616 Elf_Internal_Sym *isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4617 abfd, r_symndx);
4618 if (isym == NULL)
4619 return FALSE;
4620
4621 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4622 {
4623 ifunc = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4624 sym_addend,
4625 NON_GOT | PLT_IFUNC);
4626 if (ifunc == NULL)
4627 return FALSE;
4628 }
4629 }
4630
4631 switch (r_type)
4632 {
4633 case R_PPC64_TLSGD:
4634 case R_PPC64_TLSLD:
4635 /* These special tls relocs tie a call to __tls_get_addr with
4636 its parameter symbol. */
4637 if (h != NULL)
4638 ((struct ppc_link_hash_entry *) h)->tls_mask |= TLS_TLS | TLS_MARK;
4639 else
4640 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4641 sym_addend,
4642 NON_GOT | TLS_TLS | TLS_MARK))
4643 return FALSE;
4644 sec->has_tls_reloc = 1;
4645 break;
4646
4647 case R_PPC64_GOT_TLSLD16:
4648 case R_PPC64_GOT_TLSLD16_LO:
4649 case R_PPC64_GOT_TLSLD16_HI:
4650 case R_PPC64_GOT_TLSLD16_HA:
4651 case R_PPC64_GOT_TLSLD34:
4652 tls_type = TLS_TLS | TLS_LD;
4653 goto dogottls;
4654
4655 case R_PPC64_GOT_TLSGD16:
4656 case R_PPC64_GOT_TLSGD16_LO:
4657 case R_PPC64_GOT_TLSGD16_HI:
4658 case R_PPC64_GOT_TLSGD16_HA:
4659 case R_PPC64_GOT_TLSGD34:
4660 tls_type = TLS_TLS | TLS_GD;
4661 goto dogottls;
4662
4663 case R_PPC64_GOT_TPREL16_DS:
4664 case R_PPC64_GOT_TPREL16_LO_DS:
4665 case R_PPC64_GOT_TPREL16_HI:
4666 case R_PPC64_GOT_TPREL16_HA:
4667 case R_PPC64_GOT_TPREL34:
4668 if (bfd_link_dll (info))
4669 info->flags |= DF_STATIC_TLS;
4670 tls_type = TLS_TLS | TLS_TPREL;
4671 goto dogottls;
4672
4673 case R_PPC64_GOT_DTPREL16_DS:
4674 case R_PPC64_GOT_DTPREL16_LO_DS:
4675 case R_PPC64_GOT_DTPREL16_HI:
4676 case R_PPC64_GOT_DTPREL16_HA:
4677 case R_PPC64_GOT_DTPREL34:
4678 tls_type = TLS_TLS | TLS_DTPREL;
4679 dogottls:
4680 sec->has_tls_reloc = 1;
4681 goto dogot;
4682
4683 case R_PPC64_GOT16:
4684 case R_PPC64_GOT16_LO:
4685 case R_PPC64_GOT16_HI:
4686 case R_PPC64_GOT16_HA:
4687 case R_PPC64_GOT16_DS:
4688 case R_PPC64_GOT16_LO_DS:
4689 case R_PPC64_GOT_PCREL34:
4690 dogot:
4691 /* This symbol requires a global offset table entry. */
4692 sec->has_toc_reloc = 1;
4693 if (r_type == R_PPC64_GOT_TLSLD16
4694 || r_type == R_PPC64_GOT_TLSGD16
4695 || r_type == R_PPC64_GOT_TPREL16_DS
4696 || r_type == R_PPC64_GOT_DTPREL16_DS
4697 || r_type == R_PPC64_GOT16
4698 || r_type == R_PPC64_GOT16_DS)
4699 {
4700 htab->do_multi_toc = 1;
4701 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4702 }
4703
4704 if (ppc64_elf_tdata (abfd)->got == NULL
4705 && !create_got_section (abfd, info))
4706 return FALSE;
4707
4708 if (h != NULL)
4709 {
4710 struct ppc_link_hash_entry *eh;
4711 struct got_entry *ent;
4712
4713 eh = (struct ppc_link_hash_entry *) h;
4714 for (ent = eh->elf.got.glist; ent != NULL; ent = ent->next)
4715 if (ent->addend == sym_addend
4716 && ent->owner == abfd
4717 && ent->tls_type == tls_type)
4718 break;
4719 if (ent == NULL)
4720 {
4721 bfd_size_type amt = sizeof (*ent);
4722 ent = bfd_alloc (abfd, amt);
4723 if (ent == NULL)
4724 return FALSE;
4725 ent->next = eh->elf.got.glist;
4726 ent->addend = sym_addend;
4727 ent->owner = abfd;
4728 ent->tls_type = tls_type;
4729 ent->is_indirect = FALSE;
4730 ent->got.refcount = 0;
4731 eh->elf.got.glist = ent;
4732 }
4733 ent->got.refcount += 1;
4734 eh->tls_mask |= tls_type;
4735 }
4736 else
4737 /* This is a global offset table entry for a local symbol. */
4738 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4739 sym_addend, tls_type))
4740 return FALSE;
4741
4742 /* We may also need a plt entry if the symbol turns out to be
4743 an ifunc. */
4744 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1)
4745 {
4746 if (!update_plt_info (abfd, &h->plt.plist, sym_addend))
4747 return FALSE;
4748 }
4749 break;
4750
4751 case R_PPC64_PLT16_HA:
4752 case R_PPC64_PLT16_HI:
4753 case R_PPC64_PLT16_LO:
4754 case R_PPC64_PLT16_LO_DS:
4755 case R_PPC64_PLT_PCREL34:
4756 case R_PPC64_PLT_PCREL34_NOTOC:
4757 case R_PPC64_PLT32:
4758 case R_PPC64_PLT64:
4759 /* This symbol requires a procedure linkage table entry. */
4760 plt_list = ifunc;
4761 if (h != NULL)
4762 {
4763 h->needs_plt = 1;
4764 if (h->root.root.string[0] == '.'
4765 && h->root.root.string[1] != '\0')
4766 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4767 ((struct ppc_link_hash_entry *) h)->tls_mask |= PLT_KEEP;
4768 plt_list = &h->plt.plist;
4769 }
4770 if (plt_list == NULL)
4771 plt_list = update_local_sym_info (abfd, symtab_hdr, r_symndx,
4772 sym_addend,
4773 NON_GOT | PLT_KEEP);
4774 if (!update_plt_info (abfd, plt_list, sym_addend))
4775 return FALSE;
4776 break;
4777
4778 /* The following relocations don't need to propagate the
4779 relocation if linking a shared object since they are
4780 section relative. */
4781 case R_PPC64_SECTOFF:
4782 case R_PPC64_SECTOFF_LO:
4783 case R_PPC64_SECTOFF_HI:
4784 case R_PPC64_SECTOFF_HA:
4785 case R_PPC64_SECTOFF_DS:
4786 case R_PPC64_SECTOFF_LO_DS:
4787 case R_PPC64_DTPREL16:
4788 case R_PPC64_DTPREL16_LO:
4789 case R_PPC64_DTPREL16_HI:
4790 case R_PPC64_DTPREL16_HA:
4791 case R_PPC64_DTPREL16_DS:
4792 case R_PPC64_DTPREL16_LO_DS:
4793 case R_PPC64_DTPREL16_HIGH:
4794 case R_PPC64_DTPREL16_HIGHA:
4795 case R_PPC64_DTPREL16_HIGHER:
4796 case R_PPC64_DTPREL16_HIGHERA:
4797 case R_PPC64_DTPREL16_HIGHEST:
4798 case R_PPC64_DTPREL16_HIGHESTA:
4799 break;
4800
4801 /* Nor do these. */
4802 case R_PPC64_REL16:
4803 case R_PPC64_REL16_LO:
4804 case R_PPC64_REL16_HI:
4805 case R_PPC64_REL16_HA:
4806 case R_PPC64_REL16_HIGH:
4807 case R_PPC64_REL16_HIGHA:
4808 case R_PPC64_REL16_HIGHER:
4809 case R_PPC64_REL16_HIGHERA:
4810 case R_PPC64_REL16_HIGHEST:
4811 case R_PPC64_REL16_HIGHESTA:
4812 case R_PPC64_REL16_HIGHER34:
4813 case R_PPC64_REL16_HIGHERA34:
4814 case R_PPC64_REL16_HIGHEST34:
4815 case R_PPC64_REL16_HIGHESTA34:
4816 case R_PPC64_REL16DX_HA:
4817 break;
4818
4819 /* Not supported as a dynamic relocation. */
4820 case R_PPC64_ADDR64_LOCAL:
4821 if (bfd_link_pic (info))
4822 {
4823 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
4824 ppc_howto_init ();
4825 /* xgettext:c-format */
4826 info->callbacks->einfo (_("%H: %s reloc unsupported "
4827 "in shared libraries and PIEs\n"),
4828 abfd, sec, rel->r_offset,
4829 ppc64_elf_howto_table[r_type]->name);
4830 bfd_set_error (bfd_error_bad_value);
4831 return FALSE;
4832 }
4833 break;
4834
4835 case R_PPC64_TOC16:
4836 case R_PPC64_TOC16_DS:
4837 htab->do_multi_toc = 1;
4838 ppc64_elf_tdata (abfd)->has_small_toc_reloc = 1;
4839 /* Fall through. */
4840 case R_PPC64_TOC16_LO:
4841 case R_PPC64_TOC16_HI:
4842 case R_PPC64_TOC16_HA:
4843 case R_PPC64_TOC16_LO_DS:
4844 sec->has_toc_reloc = 1;
4845 break;
4846
4847 /* Marker reloc. */
4848 case R_PPC64_ENTRY:
4849 break;
4850
4851 /* This relocation describes the C++ object vtable hierarchy.
4852 Reconstruct it for later use during GC. */
4853 case R_PPC64_GNU_VTINHERIT:
4854 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
4855 return FALSE;
4856 break;
4857
4858 /* This relocation describes which C++ vtable entries are actually
4859 used. Record for later use during GC. */
4860 case R_PPC64_GNU_VTENTRY:
4861 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
4862 return FALSE;
4863 break;
4864
4865 case R_PPC64_REL14:
4866 case R_PPC64_REL14_BRTAKEN:
4867 case R_PPC64_REL14_BRNTAKEN:
4868 {
4869 asection *dest = NULL;
4870
4871 /* Heuristic: If jumping outside our section, chances are
4872 we are going to need a stub. */
4873 if (h != NULL)
4874 {
4875 /* If the sym is weak it may be overridden later, so
4876 don't assume we know where a weak sym lives. */
4877 if (h->root.type == bfd_link_hash_defined)
4878 dest = h->root.u.def.section;
4879 }
4880 else
4881 {
4882 Elf_Internal_Sym *isym;
4883
4884 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
4885 abfd, r_symndx);
4886 if (isym == NULL)
4887 return FALSE;
4888
4889 dest = bfd_section_from_elf_index (abfd, isym->st_shndx);
4890 }
4891
4892 if (dest != sec)
4893 ppc64_elf_section_data (sec)->has_14bit_branch = 1;
4894 }
4895 goto rel24;
4896
4897 case R_PPC64_PLTCALL:
4898 case R_PPC64_PLTCALL_NOTOC:
4899 ppc64_elf_section_data (sec)->has_pltcall = 1;
4900 /* Fall through. */
4901
4902 case R_PPC64_REL24:
4903 case R_PPC64_REL24_NOTOC:
4904 rel24:
4905 plt_list = ifunc;
4906 if (h != NULL)
4907 {
4908 h->needs_plt = 1;
4909 if (h->root.root.string[0] == '.'
4910 && h->root.root.string[1] != '\0')
4911 ((struct ppc_link_hash_entry *) h)->is_func = 1;
4912
4913 if (h == tga || h == dottga)
4914 {
4915 sec->has_tls_reloc = 1;
4916 if (rel != relocs
4917 && (ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSGD
4918 || ELF64_R_TYPE (rel[-1].r_info) == R_PPC64_TLSLD))
4919 /* We have a new-style __tls_get_addr call with
4920 a marker reloc. */
4921 ;
4922 else
4923 /* Mark this section as having an old-style call. */
4924 sec->has_tls_get_addr_call = 1;
4925 }
4926 plt_list = &h->plt.plist;
4927 }
4928
4929 /* We may need a .plt entry if the function this reloc
4930 refers to is in a shared lib. */
4931 if (plt_list
4932 && !update_plt_info (abfd, plt_list, sym_addend))
4933 return FALSE;
4934 break;
4935
4936 case R_PPC64_ADDR14:
4937 case R_PPC64_ADDR14_BRNTAKEN:
4938 case R_PPC64_ADDR14_BRTAKEN:
4939 case R_PPC64_ADDR24:
4940 goto dodyn;
4941
4942 case R_PPC64_TPREL64:
4943 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_TPREL;
4944 if (bfd_link_dll (info))
4945 info->flags |= DF_STATIC_TLS;
4946 goto dotlstoc;
4947
4948 case R_PPC64_DTPMOD64:
4949 if (rel + 1 < rel_end
4950 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
4951 && rel[1].r_offset == rel->r_offset + 8)
4952 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_GD;
4953 else
4954 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_LD;
4955 goto dotlstoc;
4956
4957 case R_PPC64_DTPREL64:
4958 tls_type = TLS_EXPLICIT | TLS_TLS | TLS_DTPREL;
4959 if (rel != relocs
4960 && rel[-1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPMOD64)
4961 && rel[-1].r_offset == rel->r_offset - 8)
4962 /* This is the second reloc of a dtpmod, dtprel pair.
4963 Don't mark with TLS_DTPREL. */
4964 goto dodyn;
4965
4966 dotlstoc:
4967 sec->has_tls_reloc = 1;
4968 if (h != NULL)
4969 {
4970 struct ppc_link_hash_entry *eh;
4971 eh = (struct ppc_link_hash_entry *) h;
4972 eh->tls_mask |= tls_type & 0xff;
4973 }
4974 else
4975 if (!update_local_sym_info (abfd, symtab_hdr, r_symndx,
4976 sym_addend, tls_type))
4977 return FALSE;
4978
4979 ppc64_sec = ppc64_elf_section_data (sec);
4980 if (ppc64_sec->sec_type != sec_toc)
4981 {
4982 bfd_size_type amt;
4983
4984 /* One extra to simplify get_tls_mask. */
4985 amt = sec->size * sizeof (unsigned) / 8 + sizeof (unsigned);
4986 ppc64_sec->u.toc.symndx = bfd_zalloc (abfd, amt);
4987 if (ppc64_sec->u.toc.symndx == NULL)
4988 return FALSE;
4989 amt = sec->size * sizeof (bfd_vma) / 8;
4990 ppc64_sec->u.toc.add = bfd_zalloc (abfd, amt);
4991 if (ppc64_sec->u.toc.add == NULL)
4992 return FALSE;
4993 BFD_ASSERT (ppc64_sec->sec_type == sec_normal);
4994 ppc64_sec->sec_type = sec_toc;
4995 }
4996 BFD_ASSERT (rel->r_offset % 8 == 0);
4997 ppc64_sec->u.toc.symndx[rel->r_offset / 8] = r_symndx;
4998 ppc64_sec->u.toc.add[rel->r_offset / 8] = sym_addend;
4999
5000 /* Mark the second slot of a GD or LD entry.
5001 -1 to indicate GD and -2 to indicate LD. */
5002 if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_GD))
5003 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -1;
5004 else if (tls_type == (TLS_EXPLICIT | TLS_TLS | TLS_LD))
5005 ppc64_sec->u.toc.symndx[rel->r_offset / 8 + 1] = -2;
5006 goto dodyn;
5007
5008 case R_PPC64_TPREL16:
5009 case R_PPC64_TPREL16_LO:
5010 case R_PPC64_TPREL16_HI:
5011 case R_PPC64_TPREL16_HA:
5012 case R_PPC64_TPREL16_DS:
5013 case R_PPC64_TPREL16_LO_DS:
5014 case R_PPC64_TPREL16_HIGH:
5015 case R_PPC64_TPREL16_HIGHA:
5016 case R_PPC64_TPREL16_HIGHER:
5017 case R_PPC64_TPREL16_HIGHERA:
5018 case R_PPC64_TPREL16_HIGHEST:
5019 case R_PPC64_TPREL16_HIGHESTA:
5020 case R_PPC64_TPREL34:
5021 if (bfd_link_dll (info))
5022 info->flags |= DF_STATIC_TLS;
5023 goto dodyn;
5024
5025 case R_PPC64_ADDR64:
5026 if (is_opd
5027 && rel + 1 < rel_end
5028 && ELF64_R_TYPE ((rel + 1)->r_info) == R_PPC64_TOC)
5029 {
5030 if (h != NULL)
5031 ((struct ppc_link_hash_entry *) h)->is_func = 1;
5032 }
5033 /* Fall through. */
5034
5035 case R_PPC64_ADDR16:
5036 case R_PPC64_ADDR16_DS:
5037 case R_PPC64_ADDR16_HA:
5038 case R_PPC64_ADDR16_HI:
5039 case R_PPC64_ADDR16_HIGH:
5040 case R_PPC64_ADDR16_HIGHA:
5041 case R_PPC64_ADDR16_HIGHER:
5042 case R_PPC64_ADDR16_HIGHERA:
5043 case R_PPC64_ADDR16_HIGHEST:
5044 case R_PPC64_ADDR16_HIGHESTA:
5045 case R_PPC64_ADDR16_LO:
5046 case R_PPC64_ADDR16_LO_DS:
5047 case R_PPC64_D34:
5048 case R_PPC64_D34_LO:
5049 case R_PPC64_D34_HI30:
5050 case R_PPC64_D34_HA30:
5051 case R_PPC64_ADDR16_HIGHER34:
5052 case R_PPC64_ADDR16_HIGHERA34:
5053 case R_PPC64_ADDR16_HIGHEST34:
5054 case R_PPC64_ADDR16_HIGHESTA34:
5055 case R_PPC64_D28:
5056 if (h != NULL && !bfd_link_pic (info) && abiversion (abfd) != 1
5057 && rel->r_addend == 0)
5058 {
5059 /* We may need a .plt entry if this reloc refers to a
5060 function in a shared lib. */
5061 if (!update_plt_info (abfd, &h->plt.plist, 0))
5062 return FALSE;
5063 h->pointer_equality_needed = 1;
5064 }
5065 /* Fall through. */
5066
5067 case R_PPC64_REL30:
5068 case R_PPC64_REL32:
5069 case R_PPC64_REL64:
5070 case R_PPC64_ADDR32:
5071 case R_PPC64_UADDR16:
5072 case R_PPC64_UADDR32:
5073 case R_PPC64_UADDR64:
5074 case R_PPC64_TOC:
5075 if (h != NULL && !bfd_link_pic (info))
5076 /* We may need a copy reloc. */
5077 h->non_got_ref = 1;
5078
5079 /* Don't propagate .opd relocs. */
5080 if (NO_OPD_RELOCS && is_opd)
5081 break;
5082
5083 /* If we are creating a shared library, and this is a reloc
5084 against a global symbol, or a non PC relative reloc
5085 against a local symbol, then we need to copy the reloc
5086 into the shared library. However, if we are linking with
5087 -Bsymbolic, we do not need to copy a reloc against a
5088 global symbol which is defined in an object we are
5089 including in the link (i.e., DEF_REGULAR is set). At
5090 this point we have not seen all the input files, so it is
5091 possible that DEF_REGULAR is not set now but will be set
5092 later (it is never cleared). In case of a weak definition,
5093 DEF_REGULAR may be cleared later by a strong definition in
5094 a shared library. We account for that possibility below by
5095 storing information in the dyn_relocs field of the hash
5096 table entry. A similar situation occurs when creating
5097 shared libraries and symbol visibility changes render the
5098 symbol local.
5099
5100 If on the other hand, we are creating an executable, we
5101 may need to keep relocations for symbols satisfied by a
5102 dynamic library if we manage to avoid copy relocs for the
5103 symbol. */
5104 dodyn:
5105 if ((bfd_link_pic (info)
5106 && (must_be_dyn_reloc (info, r_type)
5107 || (h != NULL
5108 && (!SYMBOLIC_BIND (info, h)
5109 || h->root.type == bfd_link_hash_defweak
5110 || !h->def_regular))))
5111 || (ELIMINATE_COPY_RELOCS
5112 && !bfd_link_pic (info)
5113 && h != NULL
5114 && (h->root.type == bfd_link_hash_defweak
5115 || !h->def_regular))
5116 || (!bfd_link_pic (info)
5117 && ifunc != NULL))
5118 {
5119 /* We must copy these reloc types into the output file.
5120 Create a reloc section in dynobj and make room for
5121 this reloc. */
5122 if (sreloc == NULL)
5123 {
5124 sreloc = _bfd_elf_make_dynamic_reloc_section
5125 (sec, htab->elf.dynobj, 3, abfd, /*rela?*/ TRUE);
5126
5127 if (sreloc == NULL)
5128 return FALSE;
5129 }
5130
5131 /* If this is a global symbol, we count the number of
5132 relocations we need for this symbol. */
5133 if (h != NULL)
5134 {
5135 struct elf_dyn_relocs *p;
5136 struct elf_dyn_relocs **head;
5137
5138 head = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
5139 p = *head;
5140 if (p == NULL || p->sec != sec)
5141 {
5142 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5143 if (p == NULL)
5144 return FALSE;
5145 p->next = *head;
5146 *head = p;
5147 p->sec = sec;
5148 p->count = 0;
5149 p->pc_count = 0;
5150 }
5151 p->count += 1;
5152 if (!must_be_dyn_reloc (info, r_type))
5153 p->pc_count += 1;
5154 }
5155 else
5156 {
5157 /* Track dynamic relocs needed for local syms too.
5158 We really need local syms available to do this
5159 easily. Oh well. */
5160 struct ppc_dyn_relocs *p;
5161 struct ppc_dyn_relocs **head;
5162 bfd_boolean is_ifunc;
5163 asection *s;
5164 void *vpp;
5165 Elf_Internal_Sym *isym;
5166
5167 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
5168 abfd, r_symndx);
5169 if (isym == NULL)
5170 return FALSE;
5171
5172 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
5173 if (s == NULL)
5174 s = sec;
5175
5176 vpp = &elf_section_data (s)->local_dynrel;
5177 head = (struct ppc_dyn_relocs **) vpp;
5178 is_ifunc = ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC;
5179 p = *head;
5180 if (p != NULL && p->sec == sec && p->ifunc != is_ifunc)
5181 p = p->next;
5182 if (p == NULL || p->sec != sec || p->ifunc != is_ifunc)
5183 {
5184 p = bfd_alloc (htab->elf.dynobj, sizeof *p);
5185 if (p == NULL)
5186 return FALSE;
5187 p->next = *head;
5188 *head = p;
5189 p->sec = sec;
5190 p->ifunc = is_ifunc;
5191 p->count = 0;
5192 }
5193 p->count += 1;
5194 }
5195 }
5196 break;
5197
5198 default:
5199 break;
5200 }
5201 }
5202
5203 return TRUE;
5204 }
5205
5206 /* Merge backend specific data from an object file to the output
5207 object file when linking. */
5208
5209 static bfd_boolean
5210 ppc64_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
5211 {
5212 bfd *obfd = info->output_bfd;
5213 unsigned long iflags, oflags;
5214
5215 if ((ibfd->flags & BFD_LINKER_CREATED) != 0)
5216 return TRUE;
5217
5218 if (!is_ppc64_elf (ibfd) || !is_ppc64_elf (obfd))
5219 return TRUE;
5220
5221 if (!_bfd_generic_verify_endian_match (ibfd, info))
5222 return FALSE;
5223
5224 iflags = elf_elfheader (ibfd)->e_flags;
5225 oflags = elf_elfheader (obfd)->e_flags;
5226
5227 if (iflags & ~EF_PPC64_ABI)
5228 {
5229 _bfd_error_handler
5230 /* xgettext:c-format */
5231 (_("%pB uses unknown e_flags 0x%lx"), ibfd, iflags);
5232 bfd_set_error (bfd_error_bad_value);
5233 return FALSE;
5234 }
5235 else if (iflags != oflags && iflags != 0)
5236 {
5237 _bfd_error_handler
5238 /* xgettext:c-format */
5239 (_("%pB: ABI version %ld is not compatible with ABI version %ld output"),
5240 ibfd, iflags, oflags);
5241 bfd_set_error (bfd_error_bad_value);
5242 return FALSE;
5243 }
5244
5245 if (!_bfd_elf_ppc_merge_fp_attributes (ibfd, info))
5246 return FALSE;
5247
5248 /* Merge Tag_compatibility attributes and any common GNU ones. */
5249 return _bfd_elf_merge_object_attributes (ibfd, info);
5250 }
5251
5252 static bfd_boolean
5253 ppc64_elf_print_private_bfd_data (bfd *abfd, void *ptr)
5254 {
5255 /* Print normal ELF private data. */
5256 _bfd_elf_print_private_bfd_data (abfd, ptr);
5257
5258 if (elf_elfheader (abfd)->e_flags != 0)
5259 {
5260 FILE *file = ptr;
5261
5262 fprintf (file, _("private flags = 0x%lx:"),
5263 elf_elfheader (abfd)->e_flags);
5264
5265 if ((elf_elfheader (abfd)->e_flags & EF_PPC64_ABI) != 0)
5266 fprintf (file, _(" [abiv%ld]"),
5267 elf_elfheader (abfd)->e_flags & EF_PPC64_ABI);
5268 fputc ('\n', file);
5269 }
5270
5271 return TRUE;
5272 }
5273
5274 /* OFFSET in OPD_SEC specifies a function descriptor. Return the address
5275 of the code entry point, and its section, which must be in the same
5276 object as OPD_SEC. Returns (bfd_vma) -1 on error. */
5277
5278 static bfd_vma
5279 opd_entry_value (asection *opd_sec,
5280 bfd_vma offset,
5281 asection **code_sec,
5282 bfd_vma *code_off,
5283 bfd_boolean in_code_sec)
5284 {
5285 bfd *opd_bfd = opd_sec->owner;
5286 Elf_Internal_Rela *relocs;
5287 Elf_Internal_Rela *lo, *hi, *look;
5288 bfd_vma val;
5289
5290 /* No relocs implies we are linking a --just-symbols object, or looking
5291 at a final linked executable with addr2line or somesuch. */
5292 if (opd_sec->reloc_count == 0)
5293 {
5294 bfd_byte *contents = ppc64_elf_tdata (opd_bfd)->opd.contents;
5295
5296 if (contents == NULL)
5297 {
5298 if (!bfd_malloc_and_get_section (opd_bfd, opd_sec, &contents))
5299 return (bfd_vma) -1;
5300 ppc64_elf_tdata (opd_bfd)->opd.contents = contents;
5301 }
5302
5303 /* PR 17512: file: 64b9dfbb. */
5304 if (offset + 7 >= opd_sec->size || offset + 7 < offset)
5305 return (bfd_vma) -1;
5306
5307 val = bfd_get_64 (opd_bfd, contents + offset);
5308 if (code_sec != NULL)
5309 {
5310 asection *sec, *likely = NULL;
5311
5312 if (in_code_sec)
5313 {
5314 sec = *code_sec;
5315 if (sec->vma <= val
5316 && val < sec->vma + sec->size)
5317 likely = sec;
5318 else
5319 val = -1;
5320 }
5321 else
5322 for (sec = opd_bfd->sections; sec != NULL; sec = sec->next)
5323 if (sec->vma <= val
5324 && (sec->flags & SEC_LOAD) != 0
5325 && (sec->flags & SEC_ALLOC) != 0)
5326 likely = sec;
5327 if (likely != NULL)
5328 {
5329 *code_sec = likely;
5330 if (code_off != NULL)
5331 *code_off = val - likely->vma;
5332 }
5333 }
5334 return val;
5335 }
5336
5337 BFD_ASSERT (is_ppc64_elf (opd_bfd));
5338
5339 relocs = ppc64_elf_tdata (opd_bfd)->opd.relocs;
5340 if (relocs == NULL)
5341 relocs = _bfd_elf_link_read_relocs (opd_bfd, opd_sec, NULL, NULL, TRUE);
5342 /* PR 17512: file: df8e1fd6. */
5343 if (relocs == NULL)
5344 return (bfd_vma) -1;
5345
5346 /* Go find the opd reloc at the sym address. */
5347 lo = relocs;
5348 hi = lo + opd_sec->reloc_count - 1; /* ignore last reloc */
5349 val = (bfd_vma) -1;
5350 while (lo < hi)
5351 {
5352 look = lo + (hi - lo) / 2;
5353 if (look->r_offset < offset)
5354 lo = look + 1;
5355 else if (look->r_offset > offset)
5356 hi = look;
5357 else
5358 {
5359 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (opd_bfd);
5360
5361 if (ELF64_R_TYPE (look->r_info) == R_PPC64_ADDR64
5362 && ELF64_R_TYPE ((look + 1)->r_info) == R_PPC64_TOC)
5363 {
5364 unsigned long symndx = ELF64_R_SYM (look->r_info);
5365 asection *sec = NULL;
5366
5367 if (symndx >= symtab_hdr->sh_info
5368 && elf_sym_hashes (opd_bfd) != NULL)
5369 {
5370 struct elf_link_hash_entry **sym_hashes;
5371 struct elf_link_hash_entry *rh;
5372
5373 sym_hashes = elf_sym_hashes (opd_bfd);
5374 rh = sym_hashes[symndx - symtab_hdr->sh_info];
5375 if (rh != NULL)
5376 {
5377 rh = elf_follow_link (rh);
5378 if (rh->root.type != bfd_link_hash_defined
5379 && rh->root.type != bfd_link_hash_defweak)
5380 break;
5381 if (rh->root.u.def.section->owner == opd_bfd)
5382 {
5383 val = rh->root.u.def.value;
5384 sec = rh->root.u.def.section;
5385 }
5386 }
5387 }
5388
5389 if (sec == NULL)
5390 {
5391 Elf_Internal_Sym *sym;
5392
5393 if (symndx < symtab_hdr->sh_info)
5394 {
5395 sym = (Elf_Internal_Sym *) symtab_hdr->contents;
5396 if (sym == NULL)
5397 {
5398 size_t symcnt = symtab_hdr->sh_info;
5399 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5400 symcnt, 0,
5401 NULL, NULL, NULL);
5402 if (sym == NULL)
5403 break;
5404 symtab_hdr->contents = (bfd_byte *) sym;
5405 }
5406 sym += symndx;
5407 }
5408 else
5409 {
5410 sym = bfd_elf_get_elf_syms (opd_bfd, symtab_hdr,
5411 1, symndx,
5412 NULL, NULL, NULL);
5413 if (sym == NULL)
5414 break;
5415 }
5416 sec = bfd_section_from_elf_index (opd_bfd, sym->st_shndx);
5417 if (sec == NULL)
5418 break;
5419 BFD_ASSERT ((sec->flags & SEC_MERGE) == 0);
5420 val = sym->st_value;
5421 }
5422
5423 val += look->r_addend;
5424 if (code_off != NULL)
5425 *code_off = val;
5426 if (code_sec != NULL)
5427 {
5428 if (in_code_sec && *code_sec != sec)
5429 return -1;
5430 else
5431 *code_sec = sec;
5432 }
5433 if (sec->output_section != NULL)
5434 val += sec->output_section->vma + sec->output_offset;
5435 }
5436 break;
5437 }
5438 }
5439
5440 return val;
5441 }
5442
5443 /* If the ELF symbol SYM might be a function in SEC, return the
5444 function size and set *CODE_OFF to the function's entry point,
5445 otherwise return zero. */
5446
5447 static bfd_size_type
5448 ppc64_elf_maybe_function_sym (const asymbol *sym, asection *sec,
5449 bfd_vma *code_off)
5450 {
5451 bfd_size_type size;
5452
5453 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
5454 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0)
5455 return 0;
5456
5457 size = 0;
5458 if (!(sym->flags & BSF_SYNTHETIC))
5459 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
5460
5461 if (strcmp (sym->section->name, ".opd") == 0)
5462 {
5463 struct _opd_sec_data *opd = get_opd_info (sym->section);
5464 bfd_vma symval = sym->value;
5465
5466 if (opd != NULL
5467 && opd->adjust != NULL
5468 && elf_section_data (sym->section)->relocs != NULL)
5469 {
5470 /* opd_entry_value will use cached relocs that have been
5471 adjusted, but with raw symbols. That means both local
5472 and global symbols need adjusting. */
5473 long adjust = opd->adjust[OPD_NDX (symval)];
5474 if (adjust == -1)
5475 return 0;
5476 symval += adjust;
5477 }
5478
5479 if (opd_entry_value (sym->section, symval,
5480 &sec, code_off, TRUE) == (bfd_vma) -1)
5481 return 0;
5482 /* An old ABI binary with dot-syms has a size of 24 on the .opd
5483 symbol. This size has nothing to do with the code size of the
5484 function, which is what we're supposed to return, but the
5485 code size isn't available without looking up the dot-sym.
5486 However, doing that would be a waste of time particularly
5487 since elf_find_function will look at the dot-sym anyway.
5488 Now, elf_find_function will keep the largest size of any
5489 function sym found at the code address of interest, so return
5490 1 here to avoid it incorrectly caching a larger function size
5491 for a small function. This does mean we return the wrong
5492 size for a new-ABI function of size 24, but all that does is
5493 disable caching for such functions. */
5494 if (size == 24)
5495 size = 1;
5496 }
5497 else
5498 {
5499 if (sym->section != sec)
5500 return 0;
5501 *code_off = sym->value;
5502 }
5503 if (size == 0)
5504 size = 1;
5505 return size;
5506 }
5507
5508 /* Return true if symbol is a strong function defined in an ELFv2
5509 object with st_other localentry bits of zero, ie. its local entry
5510 point coincides with its global entry point. */
5511
5512 static bfd_boolean
5513 is_elfv2_localentry0 (struct elf_link_hash_entry *h)
5514 {
5515 return (h != NULL
5516 && h->type == STT_FUNC
5517 && h->root.type == bfd_link_hash_defined
5518 && (STO_PPC64_LOCAL_MASK & h->other) == 0
5519 && !((struct ppc_link_hash_entry *) h)->non_zero_localentry
5520 && is_ppc64_elf (h->root.u.def.section->owner)
5521 && abiversion (h->root.u.def.section->owner) >= 2);
5522 }
5523
5524 /* Return true if symbol is defined in a regular object file. */
5525
5526 static bfd_boolean
5527 is_static_defined (struct elf_link_hash_entry *h)
5528 {
5529 return ((h->root.type == bfd_link_hash_defined
5530 || h->root.type == bfd_link_hash_defweak)
5531 && h->root.u.def.section != NULL
5532 && h->root.u.def.section->output_section != NULL);
5533 }
5534
5535 /* If FDH is a function descriptor symbol, return the associated code
5536 entry symbol if it is defined. Return NULL otherwise. */
5537
5538 static struct ppc_link_hash_entry *
5539 defined_code_entry (struct ppc_link_hash_entry *fdh)
5540 {
5541 if (fdh->is_func_descriptor)
5542 {
5543 struct ppc_link_hash_entry *fh = ppc_follow_link (fdh->oh);
5544 if (fh->elf.root.type == bfd_link_hash_defined
5545 || fh->elf.root.type == bfd_link_hash_defweak)
5546 return fh;
5547 }
5548 return NULL;
5549 }
5550
5551 /* If FH is a function code entry symbol, return the associated
5552 function descriptor symbol if it is defined. Return NULL otherwise. */
5553
5554 static struct ppc_link_hash_entry *
5555 defined_func_desc (struct ppc_link_hash_entry *fh)
5556 {
5557 if (fh->oh != NULL
5558 && fh->oh->is_func_descriptor)
5559 {
5560 struct ppc_link_hash_entry *fdh = ppc_follow_link (fh->oh);
5561 if (fdh->elf.root.type == bfd_link_hash_defined
5562 || fdh->elf.root.type == bfd_link_hash_defweak)
5563 return fdh;
5564 }
5565 return NULL;
5566 }
5567
5568 static bfd_boolean func_desc_adjust (struct elf_link_hash_entry *, void *);
5569
5570 /* Garbage collect sections, after first dealing with dot-symbols. */
5571
5572 static bfd_boolean
5573 ppc64_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
5574 {
5575 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5576
5577 if (htab != NULL && htab->need_func_desc_adj)
5578 {
5579 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
5580 htab->need_func_desc_adj = 0;
5581 }
5582 return bfd_elf_gc_sections (abfd, info);
5583 }
5584
5585 /* Mark all our entry sym sections, both opd and code section. */
5586
5587 static void
5588 ppc64_elf_gc_keep (struct bfd_link_info *info)
5589 {
5590 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5591 struct bfd_sym_chain *sym;
5592
5593 if (htab == NULL)
5594 return;
5595
5596 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
5597 {
5598 struct ppc_link_hash_entry *eh, *fh;
5599 asection *sec;
5600
5601 eh = (struct ppc_link_hash_entry *)
5602 elf_link_hash_lookup (&htab->elf, sym->name, FALSE, FALSE, TRUE);
5603 if (eh == NULL)
5604 continue;
5605 if (eh->elf.root.type != bfd_link_hash_defined
5606 && eh->elf.root.type != bfd_link_hash_defweak)
5607 continue;
5608
5609 fh = defined_code_entry (eh);
5610 if (fh != NULL)
5611 {
5612 sec = fh->elf.root.u.def.section;
5613 sec->flags |= SEC_KEEP;
5614 }
5615 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5616 && opd_entry_value (eh->elf.root.u.def.section,
5617 eh->elf.root.u.def.value,
5618 &sec, NULL, FALSE) != (bfd_vma) -1)
5619 sec->flags |= SEC_KEEP;
5620
5621 sec = eh->elf.root.u.def.section;
5622 sec->flags |= SEC_KEEP;
5623 }
5624 }
5625
5626 /* Mark sections containing dynamically referenced symbols. When
5627 building shared libraries, we must assume that any visible symbol is
5628 referenced. */
5629
5630 static bfd_boolean
5631 ppc64_elf_gc_mark_dynamic_ref (struct elf_link_hash_entry *h, void *inf)
5632 {
5633 struct bfd_link_info *info = (struct bfd_link_info *) inf;
5634 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
5635 struct ppc_link_hash_entry *fdh;
5636 struct bfd_elf_dynamic_list *d = info->dynamic_list;
5637
5638 /* Dynamic linking info is on the func descriptor sym. */
5639 fdh = defined_func_desc (eh);
5640 if (fdh != NULL)
5641 eh = fdh;
5642
5643 if ((eh->elf.root.type == bfd_link_hash_defined
5644 || eh->elf.root.type == bfd_link_hash_defweak)
5645 && ((eh->elf.ref_dynamic && !eh->elf.forced_local)
5646 || ((eh->elf.def_regular || ELF_COMMON_DEF_P (&eh->elf))
5647 && ELF_ST_VISIBILITY (eh->elf.other) != STV_INTERNAL
5648 && ELF_ST_VISIBILITY (eh->elf.other) != STV_HIDDEN
5649 && (!bfd_link_executable (info)
5650 || info->gc_keep_exported
5651 || info->export_dynamic
5652 || (eh->elf.dynamic
5653 && d != NULL
5654 && (*d->match) (&d->head, NULL,
5655 eh->elf.root.root.string)))
5656 && (eh->elf.versioned >= versioned
5657 || !bfd_hide_sym_by_version (info->version_info,
5658 eh->elf.root.root.string)))))
5659 {
5660 asection *code_sec;
5661 struct ppc_link_hash_entry *fh;
5662
5663 eh->elf.root.u.def.section->flags |= SEC_KEEP;
5664
5665 /* Function descriptor syms cause the associated
5666 function code sym section to be marked. */
5667 fh = defined_code_entry (eh);
5668 if (fh != NULL)
5669 {
5670 code_sec = fh->elf.root.u.def.section;
5671 code_sec->flags |= SEC_KEEP;
5672 }
5673 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5674 && opd_entry_value (eh->elf.root.u.def.section,
5675 eh->elf.root.u.def.value,
5676 &code_sec, NULL, FALSE) != (bfd_vma) -1)
5677 code_sec->flags |= SEC_KEEP;
5678 }
5679
5680 return TRUE;
5681 }
5682
5683 /* Return the section that should be marked against GC for a given
5684 relocation. */
5685
5686 static asection *
5687 ppc64_elf_gc_mark_hook (asection *sec,
5688 struct bfd_link_info *info,
5689 Elf_Internal_Rela *rel,
5690 struct elf_link_hash_entry *h,
5691 Elf_Internal_Sym *sym)
5692 {
5693 asection *rsec;
5694
5695 /* Syms return NULL if we're marking .opd, so we avoid marking all
5696 function sections, as all functions are referenced in .opd. */
5697 rsec = NULL;
5698 if (get_opd_info (sec) != NULL)
5699 return rsec;
5700
5701 if (h != NULL)
5702 {
5703 enum elf_ppc64_reloc_type r_type;
5704 struct ppc_link_hash_entry *eh, *fh, *fdh;
5705
5706 r_type = ELF64_R_TYPE (rel->r_info);
5707 switch (r_type)
5708 {
5709 case R_PPC64_GNU_VTINHERIT:
5710 case R_PPC64_GNU_VTENTRY:
5711 break;
5712
5713 default:
5714 switch (h->root.type)
5715 {
5716 case bfd_link_hash_defined:
5717 case bfd_link_hash_defweak:
5718 eh = (struct ppc_link_hash_entry *) h;
5719 fdh = defined_func_desc (eh);
5720 if (fdh != NULL)
5721 {
5722 /* -mcall-aixdesc code references the dot-symbol on
5723 a call reloc. Mark the function descriptor too
5724 against garbage collection. */
5725 fdh->elf.mark = 1;
5726 if (fdh->elf.is_weakalias)
5727 weakdef (&fdh->elf)->mark = 1;
5728 eh = fdh;
5729 }
5730
5731 /* Function descriptor syms cause the associated
5732 function code sym section to be marked. */
5733 fh = defined_code_entry (eh);
5734 if (fh != NULL)
5735 {
5736 /* They also mark their opd section. */
5737 eh->elf.root.u.def.section->gc_mark = 1;
5738
5739 rsec = fh->elf.root.u.def.section;
5740 }
5741 else if (get_opd_info (eh->elf.root.u.def.section) != NULL
5742 && opd_entry_value (eh->elf.root.u.def.section,
5743 eh->elf.root.u.def.value,
5744 &rsec, NULL, FALSE) != (bfd_vma) -1)
5745 eh->elf.root.u.def.section->gc_mark = 1;
5746 else
5747 rsec = h->root.u.def.section;
5748 break;
5749
5750 case bfd_link_hash_common:
5751 rsec = h->root.u.c.p->section;
5752 break;
5753
5754 default:
5755 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
5756 }
5757 }
5758 }
5759 else
5760 {
5761 struct _opd_sec_data *opd;
5762
5763 rsec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
5764 opd = get_opd_info (rsec);
5765 if (opd != NULL && opd->func_sec != NULL)
5766 {
5767 rsec->gc_mark = 1;
5768
5769 rsec = opd->func_sec[OPD_NDX (sym->st_value + rel->r_addend)];
5770 }
5771 }
5772
5773 return rsec;
5774 }
5775
5776 /* The maximum size of .sfpr. */
5777 #define SFPR_MAX (218*4)
5778
5779 struct sfpr_def_parms
5780 {
5781 const char name[12];
5782 unsigned char lo, hi;
5783 bfd_byte *(*write_ent) (bfd *, bfd_byte *, int);
5784 bfd_byte *(*write_tail) (bfd *, bfd_byte *, int);
5785 };
5786
5787 /* Auto-generate _save*, _rest* functions in .sfpr.
5788 If STUB_SEC is non-null, define alias symbols in STUB_SEC
5789 instead. */
5790
5791 static bfd_boolean
5792 sfpr_define (struct bfd_link_info *info,
5793 const struct sfpr_def_parms *parm,
5794 asection *stub_sec)
5795 {
5796 struct ppc_link_hash_table *htab = ppc_hash_table (info);
5797 unsigned int i;
5798 size_t len = strlen (parm->name);
5799 bfd_boolean writing = FALSE;
5800 char sym[16];
5801
5802 if (htab == NULL)
5803 return FALSE;
5804
5805 memcpy (sym, parm->name, len);
5806 sym[len + 2] = 0;
5807
5808 for (i = parm->lo; i <= parm->hi; i++)
5809 {
5810 struct ppc_link_hash_entry *h;
5811
5812 sym[len + 0] = i / 10 + '0';
5813 sym[len + 1] = i % 10 + '0';
5814 h = (struct ppc_link_hash_entry *)
5815 elf_link_hash_lookup (&htab->elf, sym, writing, TRUE, TRUE);
5816 if (stub_sec != NULL)
5817 {
5818 if (h != NULL
5819 && h->elf.root.type == bfd_link_hash_defined
5820 && h->elf.root.u.def.section == htab->sfpr)
5821 {
5822 struct elf_link_hash_entry *s;
5823 char buf[32];
5824 sprintf (buf, "%08x.%s", stub_sec->id & 0xffffffff, sym);
5825 s = elf_link_hash_lookup (&htab->elf, buf, TRUE, TRUE, FALSE);
5826 if (s == NULL)
5827 return FALSE;
5828 if (s->root.type == bfd_link_hash_new
5829 || (s->root.type = bfd_link_hash_defined
5830 && s->root.u.def.section == stub_sec))
5831 {
5832 s->root.type = bfd_link_hash_defined;
5833 s->root.u.def.section = stub_sec;
5834 s->root.u.def.value = (stub_sec->size - htab->sfpr->size
5835 + h->elf.root.u.def.value);
5836 s->ref_regular = 1;
5837 s->def_regular = 1;
5838 s->ref_regular_nonweak = 1;
5839 s->forced_local = 1;
5840 s->non_elf = 0;
5841 s->root.linker_def = 1;
5842 }
5843 }
5844 continue;
5845 }
5846 if (h != NULL)
5847 {
5848 h->save_res = 1;
5849 if (!h->elf.def_regular)
5850 {
5851 h->elf.root.type = bfd_link_hash_defined;
5852 h->elf.root.u.def.section = htab->sfpr;
5853 h->elf.root.u.def.value = htab->sfpr->size;
5854 h->elf.type = STT_FUNC;
5855 h->elf.def_regular = 1;
5856 h->elf.non_elf = 0;
5857 _bfd_elf_link_hash_hide_symbol (info, &h->elf, TRUE);
5858 writing = TRUE;
5859 if (htab->sfpr->contents == NULL)
5860 {
5861 htab->sfpr->contents
5862 = bfd_alloc (htab->elf.dynobj, SFPR_MAX);
5863 if (htab->sfpr->contents == NULL)
5864 return FALSE;
5865 }
5866 }
5867 }
5868 if (writing)
5869 {
5870 bfd_byte *p = htab->sfpr->contents + htab->sfpr->size;
5871 if (i != parm->hi)
5872 p = (*parm->write_ent) (htab->elf.dynobj, p, i);
5873 else
5874 p = (*parm->write_tail) (htab->elf.dynobj, p, i);
5875 htab->sfpr->size = p - htab->sfpr->contents;
5876 }
5877 }
5878
5879 return TRUE;
5880 }
5881
5882 static bfd_byte *
5883 savegpr0 (bfd *abfd, bfd_byte *p, int r)
5884 {
5885 bfd_put_32 (abfd, STD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5886 return p + 4;
5887 }
5888
5889 static bfd_byte *
5890 savegpr0_tail (bfd *abfd, bfd_byte *p, int r)
5891 {
5892 p = savegpr0 (abfd, p, r);
5893 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5894 p = p + 4;
5895 bfd_put_32 (abfd, BLR, p);
5896 return p + 4;
5897 }
5898
5899 static bfd_byte *
5900 restgpr0 (bfd *abfd, bfd_byte *p, int r)
5901 {
5902 bfd_put_32 (abfd, LD_R0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5903 return p + 4;
5904 }
5905
5906 static bfd_byte *
5907 restgpr0_tail (bfd *abfd, bfd_byte *p, int r)
5908 {
5909 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5910 p = p + 4;
5911 p = restgpr0 (abfd, p, r);
5912 bfd_put_32 (abfd, MTLR_R0, p);
5913 p = p + 4;
5914 if (r == 29)
5915 {
5916 p = restgpr0 (abfd, p, 30);
5917 p = restgpr0 (abfd, p, 31);
5918 }
5919 bfd_put_32 (abfd, BLR, p);
5920 return p + 4;
5921 }
5922
5923 static bfd_byte *
5924 savegpr1 (bfd *abfd, bfd_byte *p, int r)
5925 {
5926 bfd_put_32 (abfd, STD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5927 return p + 4;
5928 }
5929
5930 static bfd_byte *
5931 savegpr1_tail (bfd *abfd, bfd_byte *p, int r)
5932 {
5933 p = savegpr1 (abfd, p, r);
5934 bfd_put_32 (abfd, BLR, p);
5935 return p + 4;
5936 }
5937
5938 static bfd_byte *
5939 restgpr1 (bfd *abfd, bfd_byte *p, int r)
5940 {
5941 bfd_put_32 (abfd, LD_R0_0R12 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5942 return p + 4;
5943 }
5944
5945 static bfd_byte *
5946 restgpr1_tail (bfd *abfd, bfd_byte *p, int r)
5947 {
5948 p = restgpr1 (abfd, p, r);
5949 bfd_put_32 (abfd, BLR, p);
5950 return p + 4;
5951 }
5952
5953 static bfd_byte *
5954 savefpr (bfd *abfd, bfd_byte *p, int r)
5955 {
5956 bfd_put_32 (abfd, STFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5957 return p + 4;
5958 }
5959
5960 static bfd_byte *
5961 savefpr0_tail (bfd *abfd, bfd_byte *p, int r)
5962 {
5963 p = savefpr (abfd, p, r);
5964 bfd_put_32 (abfd, STD_R0_0R1 + STK_LR, p);
5965 p = p + 4;
5966 bfd_put_32 (abfd, BLR, p);
5967 return p + 4;
5968 }
5969
5970 static bfd_byte *
5971 restfpr (bfd *abfd, bfd_byte *p, int r)
5972 {
5973 bfd_put_32 (abfd, LFD_FR0_0R1 + (r << 21) + (1 << 16) - (32 - r) * 8, p);
5974 return p + 4;
5975 }
5976
5977 static bfd_byte *
5978 restfpr0_tail (bfd *abfd, bfd_byte *p, int r)
5979 {
5980 bfd_put_32 (abfd, LD_R0_0R1 + STK_LR, p);
5981 p = p + 4;
5982 p = restfpr (abfd, p, r);
5983 bfd_put_32 (abfd, MTLR_R0, p);
5984 p = p + 4;
5985 if (r == 29)
5986 {
5987 p = restfpr (abfd, p, 30);
5988 p = restfpr (abfd, p, 31);
5989 }
5990 bfd_put_32 (abfd, BLR, p);
5991 return p + 4;
5992 }
5993
5994 static bfd_byte *
5995 savefpr1_tail (bfd *abfd, bfd_byte *p, int r)
5996 {
5997 p = savefpr (abfd, p, r);
5998 bfd_put_32 (abfd, BLR, p);
5999 return p + 4;
6000 }
6001
6002 static bfd_byte *
6003 restfpr1_tail (bfd *abfd, bfd_byte *p, int r)
6004 {
6005 p = restfpr (abfd, p, r);
6006 bfd_put_32 (abfd, BLR, p);
6007 return p + 4;
6008 }
6009
6010 static bfd_byte *
6011 savevr (bfd *abfd, bfd_byte *p, int r)
6012 {
6013 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6014 p = p + 4;
6015 bfd_put_32 (abfd, STVX_VR0_R12_R0 + (r << 21), p);
6016 return p + 4;
6017 }
6018
6019 static bfd_byte *
6020 savevr_tail (bfd *abfd, bfd_byte *p, int r)
6021 {
6022 p = savevr (abfd, p, r);
6023 bfd_put_32 (abfd, BLR, p);
6024 return p + 4;
6025 }
6026
6027 static bfd_byte *
6028 restvr (bfd *abfd, bfd_byte *p, int r)
6029 {
6030 bfd_put_32 (abfd, LI_R12_0 + (1 << 16) - (32 - r) * 16, p);
6031 p = p + 4;
6032 bfd_put_32 (abfd, LVX_VR0_R12_R0 + (r << 21), p);
6033 return p + 4;
6034 }
6035
6036 static bfd_byte *
6037 restvr_tail (bfd *abfd, bfd_byte *p, int r)
6038 {
6039 p = restvr (abfd, p, r);
6040 bfd_put_32 (abfd, BLR, p);
6041 return p + 4;
6042 }
6043
6044 /* Called via elf_link_hash_traverse to transfer dynamic linking
6045 information on function code symbol entries to their corresponding
6046 function descriptor symbol entries. */
6047
6048 static bfd_boolean
6049 func_desc_adjust (struct elf_link_hash_entry *h, void *inf)
6050 {
6051 struct bfd_link_info *info;
6052 struct ppc_link_hash_table *htab;
6053 struct ppc_link_hash_entry *fh;
6054 struct ppc_link_hash_entry *fdh;
6055 bfd_boolean force_local;
6056
6057 fh = (struct ppc_link_hash_entry *) h;
6058 if (fh->elf.root.type == bfd_link_hash_indirect)
6059 return TRUE;
6060
6061 if (!fh->is_func)
6062 return TRUE;
6063
6064 if (fh->elf.root.root.string[0] != '.'
6065 || fh->elf.root.root.string[1] == '\0')
6066 return TRUE;
6067
6068 info = inf;
6069 htab = ppc_hash_table (info);
6070 if (htab == NULL)
6071 return FALSE;
6072
6073 /* Find the corresponding function descriptor symbol. */
6074 fdh = lookup_fdh (fh, htab);
6075
6076 /* Resolve undefined references to dot-symbols as the value
6077 in the function descriptor, if we have one in a regular object.
6078 This is to satisfy cases like ".quad .foo". Calls to functions
6079 in dynamic objects are handled elsewhere. */
6080 if ((fh->elf.root.type == bfd_link_hash_undefined
6081 || fh->elf.root.type == bfd_link_hash_undefweak)
6082 && (fdh->elf.root.type == bfd_link_hash_defined
6083 || fdh->elf.root.type == bfd_link_hash_defweak)
6084 && get_opd_info (fdh->elf.root.u.def.section) != NULL
6085 && opd_entry_value (fdh->elf.root.u.def.section,
6086 fdh->elf.root.u.def.value,
6087 &fh->elf.root.u.def.section,
6088 &fh->elf.root.u.def.value, FALSE) != (bfd_vma) -1)
6089 {
6090 fh->elf.root.type = fdh->elf.root.type;
6091 fh->elf.forced_local = 1;
6092 fh->elf.def_regular = fdh->elf.def_regular;
6093 fh->elf.def_dynamic = fdh->elf.def_dynamic;
6094 }
6095
6096 if (!fh->elf.dynamic)
6097 {
6098 struct plt_entry *ent;
6099
6100 for (ent = fh->elf.plt.plist; ent != NULL; ent = ent->next)
6101 if (ent->plt.refcount > 0)
6102 break;
6103 if (ent == NULL)
6104 return TRUE;
6105 }
6106
6107 /* Create a descriptor as undefined if necessary. */
6108 if (fdh == NULL
6109 && !bfd_link_executable (info)
6110 && (fh->elf.root.type == bfd_link_hash_undefined
6111 || fh->elf.root.type == bfd_link_hash_undefweak))
6112 {
6113 fdh = make_fdh (info, fh);
6114 if (fdh == NULL)
6115 return FALSE;
6116 }
6117
6118 /* We can't support overriding of symbols on a fake descriptor. */
6119 if (fdh != NULL
6120 && fdh->fake
6121 && (fh->elf.root.type == bfd_link_hash_defined
6122 || fh->elf.root.type == bfd_link_hash_defweak))
6123 _bfd_elf_link_hash_hide_symbol (info, &fdh->elf, TRUE);
6124
6125 /* Transfer dynamic linking information to the function descriptor. */
6126 if (fdh != NULL)
6127 {
6128 fdh->elf.ref_regular |= fh->elf.ref_regular;
6129 fdh->elf.ref_dynamic |= fh->elf.ref_dynamic;
6130 fdh->elf.ref_regular_nonweak |= fh->elf.ref_regular_nonweak;
6131 fdh->elf.non_got_ref |= fh->elf.non_got_ref;
6132 fdh->elf.dynamic |= fh->elf.dynamic;
6133 fdh->elf.needs_plt |= (fh->elf.needs_plt
6134 || fh->elf.type == STT_FUNC
6135 || fh->elf.type == STT_GNU_IFUNC);
6136 move_plt_plist (fh, fdh);
6137
6138 if (!fdh->elf.forced_local
6139 && fh->elf.dynindx != -1)
6140 if (!bfd_elf_link_record_dynamic_symbol (info, &fdh->elf))
6141 return FALSE;
6142 }
6143
6144 /* Now that the info is on the function descriptor, clear the
6145 function code sym info. Any function code syms for which we
6146 don't have a definition in a regular file, we force local.
6147 This prevents a shared library from exporting syms that have
6148 been imported from another library. Function code syms that
6149 are really in the library we must leave global to prevent the
6150 linker dragging in a definition from a static library. */
6151 force_local = (!fh->elf.def_regular
6152 || fdh == NULL
6153 || !fdh->elf.def_regular
6154 || fdh->elf.forced_local);
6155 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6156
6157 return TRUE;
6158 }
6159
6160 static const struct sfpr_def_parms save_res_funcs[] =
6161 {
6162 { "_savegpr0_", 14, 31, savegpr0, savegpr0_tail },
6163 { "_restgpr0_", 14, 29, restgpr0, restgpr0_tail },
6164 { "_restgpr0_", 30, 31, restgpr0, restgpr0_tail },
6165 { "_savegpr1_", 14, 31, savegpr1, savegpr1_tail },
6166 { "_restgpr1_", 14, 31, restgpr1, restgpr1_tail },
6167 { "_savefpr_", 14, 31, savefpr, savefpr0_tail },
6168 { "_restfpr_", 14, 29, restfpr, restfpr0_tail },
6169 { "_restfpr_", 30, 31, restfpr, restfpr0_tail },
6170 { "._savef", 14, 31, savefpr, savefpr1_tail },
6171 { "._restf", 14, 31, restfpr, restfpr1_tail },
6172 { "_savevr_", 20, 31, savevr, savevr_tail },
6173 { "_restvr_", 20, 31, restvr, restvr_tail }
6174 };
6175
6176 /* Called near the start of bfd_elf_size_dynamic_sections. We use
6177 this hook to a) provide some gcc support functions, and b) transfer
6178 dynamic linking information gathered so far on function code symbol
6179 entries, to their corresponding function descriptor symbol entries. */
6180
6181 static bfd_boolean
6182 ppc64_elf_func_desc_adjust (bfd *obfd ATTRIBUTE_UNUSED,
6183 struct bfd_link_info *info)
6184 {
6185 struct ppc_link_hash_table *htab;
6186
6187 htab = ppc_hash_table (info);
6188 if (htab == NULL)
6189 return FALSE;
6190
6191 /* Provide any missing _save* and _rest* functions. */
6192 if (htab->sfpr != NULL)
6193 {
6194 unsigned int i;
6195
6196 htab->sfpr->size = 0;
6197 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
6198 if (!sfpr_define (info, &save_res_funcs[i], NULL))
6199 return FALSE;
6200 if (htab->sfpr->size == 0)
6201 htab->sfpr->flags |= SEC_EXCLUDE;
6202 }
6203
6204 if (bfd_link_relocatable (info))
6205 return TRUE;
6206
6207 if (htab->elf.hgot != NULL)
6208 {
6209 _bfd_elf_link_hash_hide_symbol (info, htab->elf.hgot, TRUE);
6210 /* Make .TOC. defined so as to prevent it being made dynamic.
6211 The wrong value here is fixed later in ppc64_elf_set_toc. */
6212 if (!htab->elf.hgot->def_regular
6213 || htab->elf.hgot->root.type != bfd_link_hash_defined)
6214 {
6215 htab->elf.hgot->root.type = bfd_link_hash_defined;
6216 htab->elf.hgot->root.u.def.value = 0;
6217 htab->elf.hgot->root.u.def.section = bfd_abs_section_ptr;
6218 htab->elf.hgot->def_regular = 1;
6219 htab->elf.hgot->root.linker_def = 1;
6220 }
6221 htab->elf.hgot->type = STT_OBJECT;
6222 htab->elf.hgot->other
6223 = (htab->elf.hgot->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
6224 }
6225
6226 if (htab->need_func_desc_adj)
6227 {
6228 elf_link_hash_traverse (&htab->elf, func_desc_adjust, info);
6229 htab->need_func_desc_adj = 0;
6230 }
6231
6232 return TRUE;
6233 }
6234
6235 /* Find dynamic relocs for H that apply to read-only sections. */
6236
6237 static asection *
6238 readonly_dynrelocs (struct elf_link_hash_entry *h)
6239 {
6240 struct ppc_link_hash_entry *eh;
6241 struct elf_dyn_relocs *p;
6242
6243 eh = (struct ppc_link_hash_entry *) h;
6244 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6245 {
6246 asection *s = p->sec->output_section;
6247
6248 if (s != NULL && (s->flags & SEC_READONLY) != 0)
6249 return p->sec;
6250 }
6251 return NULL;
6252 }
6253
6254 /* Return true if we have dynamic relocs against H or any of its weak
6255 aliases, that apply to read-only sections. Cannot be used after
6256 size_dynamic_sections. */
6257
6258 static bfd_boolean
6259 alias_readonly_dynrelocs (struct elf_link_hash_entry *h)
6260 {
6261 struct ppc_link_hash_entry *eh;
6262
6263 eh = (struct ppc_link_hash_entry *) h;
6264 do
6265 {
6266 if (readonly_dynrelocs (&eh->elf))
6267 return TRUE;
6268 eh = (struct ppc_link_hash_entry *) eh->elf.u.alias;
6269 }
6270 while (eh != NULL && &eh->elf != h);
6271
6272 return FALSE;
6273 }
6274
6275 /* Return whether EH has pc-relative dynamic relocs. */
6276
6277 static bfd_boolean
6278 pc_dynrelocs (struct ppc_link_hash_entry *eh)
6279 {
6280 struct elf_dyn_relocs *p;
6281
6282 for (p = eh->dyn_relocs; p != NULL; p = p->next)
6283 if (p->pc_count != 0)
6284 return TRUE;
6285 return FALSE;
6286 }
6287
6288 /* Return true if a global entry stub will be created for H. Valid
6289 for ELFv2 before plt entries have been allocated. */
6290
6291 static bfd_boolean
6292 global_entry_stub (struct elf_link_hash_entry *h)
6293 {
6294 struct plt_entry *pent;
6295
6296 if (!h->pointer_equality_needed
6297 || h->def_regular)
6298 return FALSE;
6299
6300 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
6301 if (pent->plt.refcount > 0
6302 && pent->addend == 0)
6303 return TRUE;
6304
6305 return FALSE;
6306 }
6307
6308 /* Adjust a symbol defined by a dynamic object and referenced by a
6309 regular object. The current definition is in some section of the
6310 dynamic object, but we're not including those sections. We have to
6311 change the definition to something the rest of the link can
6312 understand. */
6313
6314 static bfd_boolean
6315 ppc64_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
6316 struct elf_link_hash_entry *h)
6317 {
6318 struct ppc_link_hash_table *htab;
6319 asection *s, *srel;
6320
6321 htab = ppc_hash_table (info);
6322 if (htab == NULL)
6323 return FALSE;
6324
6325 /* Deal with function syms. */
6326 if (h->type == STT_FUNC
6327 || h->type == STT_GNU_IFUNC
6328 || h->needs_plt)
6329 {
6330 bfd_boolean local = (((struct ppc_link_hash_entry *) h)->save_res
6331 || SYMBOL_CALLS_LOCAL (info, h)
6332 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
6333 /* Discard dyn_relocs when non-pic if we've decided that a
6334 function symbol is local and not an ifunc. We keep dynamic
6335 relocs for ifuncs when local rather than always emitting a
6336 plt call stub for them and defining the symbol on the call
6337 stub. We can't do that for ELFv1 anyway (a function symbol
6338 is defined on a descriptor, not code) and it can be faster at
6339 run-time due to not needing to bounce through a stub. The
6340 dyn_relocs for ifuncs will be applied even in a static
6341 executable. */
6342 if (!bfd_link_pic (info)
6343 && h->type != STT_GNU_IFUNC
6344 && local)
6345 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6346
6347 /* Clear procedure linkage table information for any symbol that
6348 won't need a .plt entry. */
6349 struct plt_entry *ent;
6350 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
6351 if (ent->plt.refcount > 0)
6352 break;
6353 if (ent == NULL
6354 || (h->type != STT_GNU_IFUNC
6355 && local
6356 && (htab->can_convert_all_inline_plt
6357 || (((struct ppc_link_hash_entry *) h)->tls_mask
6358 & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)))
6359 {
6360 h->plt.plist = NULL;
6361 h->needs_plt = 0;
6362 h->pointer_equality_needed = 0;
6363 }
6364 else if (abiversion (info->output_bfd) >= 2)
6365 {
6366 /* Taking a function's address in a read/write section
6367 doesn't require us to define the function symbol in the
6368 executable on a global entry stub. A dynamic reloc can
6369 be used instead. The reason we prefer a few more dynamic
6370 relocs is that calling via a global entry stub costs a
6371 few more instructions, and pointer_equality_needed causes
6372 extra work in ld.so when resolving these symbols. */
6373 if (global_entry_stub (h))
6374 {
6375 if (!readonly_dynrelocs (h))
6376 {
6377 h->pointer_equality_needed = 0;
6378 /* If we haven't seen a branch reloc and the symbol
6379 isn't an ifunc then we don't need a plt entry. */
6380 if (!h->needs_plt)
6381 h->plt.plist = NULL;
6382 }
6383 else if (!bfd_link_pic (info))
6384 /* We are going to be defining the function symbol on the
6385 plt stub, so no dyn_relocs needed when non-pic. */
6386 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6387 }
6388
6389 /* ELFv2 function symbols can't have copy relocs. */
6390 return TRUE;
6391 }
6392 else if (!h->needs_plt
6393 && !readonly_dynrelocs (h))
6394 {
6395 /* If we haven't seen a branch reloc and the symbol isn't an
6396 ifunc then we don't need a plt entry. */
6397 h->plt.plist = NULL;
6398 h->pointer_equality_needed = 0;
6399 return TRUE;
6400 }
6401 }
6402 else
6403 h->plt.plist = NULL;
6404
6405 /* If this is a weak symbol, and there is a real definition, the
6406 processor independent code will have arranged for us to see the
6407 real definition first, and we can just use the same value. */
6408 if (h->is_weakalias)
6409 {
6410 struct elf_link_hash_entry *def = weakdef (h);
6411 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
6412 h->root.u.def.section = def->root.u.def.section;
6413 h->root.u.def.value = def->root.u.def.value;
6414 if (def->root.u.def.section == htab->elf.sdynbss
6415 || def->root.u.def.section == htab->elf.sdynrelro)
6416 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6417 return TRUE;
6418 }
6419
6420 /* If we are creating a shared library, we must presume that the
6421 only references to the symbol are via the global offset table.
6422 For such cases we need not do anything here; the relocations will
6423 be handled correctly by relocate_section. */
6424 if (bfd_link_pic (info))
6425 return TRUE;
6426
6427 /* If there are no references to this symbol that do not use the
6428 GOT, we don't need to generate a copy reloc. */
6429 if (!h->non_got_ref)
6430 return TRUE;
6431
6432 /* Don't generate a copy reloc for symbols defined in the executable. */
6433 if (!h->def_dynamic || !h->ref_regular || h->def_regular
6434
6435 /* If -z nocopyreloc was given, don't generate them either. */
6436 || info->nocopyreloc
6437
6438 /* If we don't find any dynamic relocs in read-only sections, then
6439 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
6440 || (ELIMINATE_COPY_RELOCS && !alias_readonly_dynrelocs (h))
6441
6442 /* Protected variables do not work with .dynbss. The copy in
6443 .dynbss won't be used by the shared library with the protected
6444 definition for the variable. Text relocations are preferable
6445 to an incorrect program. */
6446 || h->protected_def)
6447 return TRUE;
6448
6449 if (h->plt.plist != NULL)
6450 {
6451 /* We should never get here, but unfortunately there are versions
6452 of gcc out there that improperly (for this ABI) put initialized
6453 function pointers, vtable refs and suchlike in read-only
6454 sections. Allow them to proceed, but warn that this might
6455 break at runtime. */
6456 info->callbacks->einfo
6457 (_("%P: copy reloc against `%pT' requires lazy plt linking; "
6458 "avoid setting LD_BIND_NOW=1 or upgrade gcc\n"),
6459 h->root.root.string);
6460 }
6461
6462 /* This is a reference to a symbol defined by a dynamic object which
6463 is not a function. */
6464
6465 /* We must allocate the symbol in our .dynbss section, which will
6466 become part of the .bss section of the executable. There will be
6467 an entry for this symbol in the .dynsym section. The dynamic
6468 object will contain position independent code, so all references
6469 from the dynamic object to this symbol will go through the global
6470 offset table. The dynamic linker will use the .dynsym entry to
6471 determine the address it must put in the global offset table, so
6472 both the dynamic object and the regular object will refer to the
6473 same memory location for the variable. */
6474 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
6475 {
6476 s = htab->elf.sdynrelro;
6477 srel = htab->elf.sreldynrelro;
6478 }
6479 else
6480 {
6481 s = htab->elf.sdynbss;
6482 srel = htab->elf.srelbss;
6483 }
6484 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
6485 {
6486 /* We must generate a R_PPC64_COPY reloc to tell the dynamic
6487 linker to copy the initial value out of the dynamic object
6488 and into the runtime process image. */
6489 srel->size += sizeof (Elf64_External_Rela);
6490 h->needs_copy = 1;
6491 }
6492
6493 /* We no longer want dyn_relocs. */
6494 ((struct ppc_link_hash_entry *) h)->dyn_relocs = NULL;
6495 return _bfd_elf_adjust_dynamic_copy (info, h, s);
6496 }
6497
6498 /* If given a function descriptor symbol, hide both the function code
6499 sym and the descriptor. */
6500 static void
6501 ppc64_elf_hide_symbol (struct bfd_link_info *info,
6502 struct elf_link_hash_entry *h,
6503 bfd_boolean force_local)
6504 {
6505 struct ppc_link_hash_entry *eh;
6506 _bfd_elf_link_hash_hide_symbol (info, h, force_local);
6507
6508 if (ppc_hash_table (info) == NULL)
6509 return;
6510
6511 eh = (struct ppc_link_hash_entry *) h;
6512 if (eh->is_func_descriptor)
6513 {
6514 struct ppc_link_hash_entry *fh = eh->oh;
6515
6516 if (fh == NULL)
6517 {
6518 const char *p, *q;
6519 struct elf_link_hash_table *htab = elf_hash_table (info);
6520 char save;
6521
6522 /* We aren't supposed to use alloca in BFD because on
6523 systems which do not have alloca the version in libiberty
6524 calls xmalloc, which might cause the program to crash
6525 when it runs out of memory. This function doesn't have a
6526 return status, so there's no way to gracefully return an
6527 error. So cheat. We know that string[-1] can be safely
6528 accessed; It's either a string in an ELF string table,
6529 or allocated in an objalloc structure. */
6530
6531 p = eh->elf.root.root.string - 1;
6532 save = *p;
6533 *(char *) p = '.';
6534 fh = (struct ppc_link_hash_entry *)
6535 elf_link_hash_lookup (htab, p, FALSE, FALSE, FALSE);
6536 *(char *) p = save;
6537
6538 /* Unfortunately, if it so happens that the string we were
6539 looking for was allocated immediately before this string,
6540 then we overwrote the string terminator. That's the only
6541 reason the lookup should fail. */
6542 if (fh == NULL)
6543 {
6544 q = eh->elf.root.root.string + strlen (eh->elf.root.root.string);
6545 while (q >= eh->elf.root.root.string && *q == *p)
6546 --q, --p;
6547 if (q < eh->elf.root.root.string && *p == '.')
6548 fh = (struct ppc_link_hash_entry *)
6549 elf_link_hash_lookup (htab, p, FALSE, FALSE, FALSE);
6550 }
6551 if (fh != NULL)
6552 {
6553 eh->oh = fh;
6554 fh->oh = eh;
6555 }
6556 }
6557 if (fh != NULL)
6558 _bfd_elf_link_hash_hide_symbol (info, &fh->elf, force_local);
6559 }
6560 }
6561
6562 static bfd_boolean
6563 get_sym_h (struct elf_link_hash_entry **hp,
6564 Elf_Internal_Sym **symp,
6565 asection **symsecp,
6566 unsigned char **tls_maskp,
6567 Elf_Internal_Sym **locsymsp,
6568 unsigned long r_symndx,
6569 bfd *ibfd)
6570 {
6571 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
6572
6573 if (r_symndx >= symtab_hdr->sh_info)
6574 {
6575 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
6576 struct elf_link_hash_entry *h;
6577
6578 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
6579 h = elf_follow_link (h);
6580
6581 if (hp != NULL)
6582 *hp = h;
6583
6584 if (symp != NULL)
6585 *symp = NULL;
6586
6587 if (symsecp != NULL)
6588 {
6589 asection *symsec = NULL;
6590 if (h->root.type == bfd_link_hash_defined
6591 || h->root.type == bfd_link_hash_defweak)
6592 symsec = h->root.u.def.section;
6593 *symsecp = symsec;
6594 }
6595
6596 if (tls_maskp != NULL)
6597 {
6598 struct ppc_link_hash_entry *eh;
6599
6600 eh = (struct ppc_link_hash_entry *) h;
6601 *tls_maskp = &eh->tls_mask;
6602 }
6603 }
6604 else
6605 {
6606 Elf_Internal_Sym *sym;
6607 Elf_Internal_Sym *locsyms = *locsymsp;
6608
6609 if (locsyms == NULL)
6610 {
6611 locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
6612 if (locsyms == NULL)
6613 locsyms = bfd_elf_get_elf_syms (ibfd, symtab_hdr,
6614 symtab_hdr->sh_info,
6615 0, NULL, NULL, NULL);
6616 if (locsyms == NULL)
6617 return FALSE;
6618 *locsymsp = locsyms;
6619 }
6620 sym = locsyms + r_symndx;
6621
6622 if (hp != NULL)
6623 *hp = NULL;
6624
6625 if (symp != NULL)
6626 *symp = sym;
6627
6628 if (symsecp != NULL)
6629 *symsecp = bfd_section_from_elf_index (ibfd, sym->st_shndx);
6630
6631 if (tls_maskp != NULL)
6632 {
6633 struct got_entry **lgot_ents;
6634 unsigned char *tls_mask;
6635
6636 tls_mask = NULL;
6637 lgot_ents = elf_local_got_ents (ibfd);
6638 if (lgot_ents != NULL)
6639 {
6640 struct plt_entry **local_plt = (struct plt_entry **)
6641 (lgot_ents + symtab_hdr->sh_info);
6642 unsigned char *lgot_masks = (unsigned char *)
6643 (local_plt + symtab_hdr->sh_info);
6644 tls_mask = &lgot_masks[r_symndx];
6645 }
6646 *tls_maskp = tls_mask;
6647 }
6648 }
6649 return TRUE;
6650 }
6651
6652 /* Returns TLS_MASKP for the given REL symbol. Function return is 0 on
6653 error, 2 on a toc GD type suitable for optimization, 3 on a toc LD
6654 type suitable for optimization, and 1 otherwise. */
6655
6656 static int
6657 get_tls_mask (unsigned char **tls_maskp,
6658 unsigned long *toc_symndx,
6659 bfd_vma *toc_addend,
6660 Elf_Internal_Sym **locsymsp,
6661 const Elf_Internal_Rela *rel,
6662 bfd *ibfd)
6663 {
6664 unsigned long r_symndx;
6665 int next_r;
6666 struct elf_link_hash_entry *h;
6667 Elf_Internal_Sym *sym;
6668 asection *sec;
6669 bfd_vma off;
6670
6671 r_symndx = ELF64_R_SYM (rel->r_info);
6672 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6673 return 0;
6674
6675 if ((*tls_maskp != NULL
6676 && (**tls_maskp & TLS_TLS) != 0
6677 && **tls_maskp != (TLS_TLS | TLS_MARK))
6678 || sec == NULL
6679 || ppc64_elf_section_data (sec) == NULL
6680 || ppc64_elf_section_data (sec)->sec_type != sec_toc)
6681 return 1;
6682
6683 /* Look inside a TOC section too. */
6684 if (h != NULL)
6685 {
6686 BFD_ASSERT (h->root.type == bfd_link_hash_defined);
6687 off = h->root.u.def.value;
6688 }
6689 else
6690 off = sym->st_value;
6691 off += rel->r_addend;
6692 BFD_ASSERT (off % 8 == 0);
6693 r_symndx = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8];
6694 next_r = ppc64_elf_section_data (sec)->u.toc.symndx[off / 8 + 1];
6695 if (toc_symndx != NULL)
6696 *toc_symndx = r_symndx;
6697 if (toc_addend != NULL)
6698 *toc_addend = ppc64_elf_section_data (sec)->u.toc.add[off / 8];
6699 if (!get_sym_h (&h, &sym, &sec, tls_maskp, locsymsp, r_symndx, ibfd))
6700 return 0;
6701 if ((h == NULL || is_static_defined (h))
6702 && (next_r == -1 || next_r == -2))
6703 return 1 - next_r;
6704 return 1;
6705 }
6706
6707 /* Find (or create) an entry in the tocsave hash table. */
6708
6709 static struct tocsave_entry *
6710 tocsave_find (struct ppc_link_hash_table *htab,
6711 enum insert_option insert,
6712 Elf_Internal_Sym **local_syms,
6713 const Elf_Internal_Rela *irela,
6714 bfd *ibfd)
6715 {
6716 unsigned long r_indx;
6717 struct elf_link_hash_entry *h;
6718 Elf_Internal_Sym *sym;
6719 struct tocsave_entry ent, *p;
6720 hashval_t hash;
6721 struct tocsave_entry **slot;
6722
6723 r_indx = ELF64_R_SYM (irela->r_info);
6724 if (!get_sym_h (&h, &sym, &ent.sec, NULL, local_syms, r_indx, ibfd))
6725 return NULL;
6726 if (ent.sec == NULL || ent.sec->output_section == NULL)
6727 {
6728 _bfd_error_handler
6729 (_("%pB: undefined symbol on R_PPC64_TOCSAVE relocation"), ibfd);
6730 return NULL;
6731 }
6732
6733 if (h != NULL)
6734 ent.offset = h->root.u.def.value;
6735 else
6736 ent.offset = sym->st_value;
6737 ent.offset += irela->r_addend;
6738
6739 hash = tocsave_htab_hash (&ent);
6740 slot = ((struct tocsave_entry **)
6741 htab_find_slot_with_hash (htab->tocsave_htab, &ent, hash, insert));
6742 if (slot == NULL)
6743 return NULL;
6744
6745 if (*slot == NULL)
6746 {
6747 p = (struct tocsave_entry *) bfd_alloc (ibfd, sizeof (*p));
6748 if (p == NULL)
6749 return NULL;
6750 *p = ent;
6751 *slot = p;
6752 }
6753 return *slot;
6754 }
6755
6756 /* Adjust all global syms defined in opd sections. In gcc generated
6757 code for the old ABI, these will already have been done. */
6758
6759 static bfd_boolean
6760 adjust_opd_syms (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
6761 {
6762 struct ppc_link_hash_entry *eh;
6763 asection *sym_sec;
6764 struct _opd_sec_data *opd;
6765
6766 if (h->root.type == bfd_link_hash_indirect)
6767 return TRUE;
6768
6769 if (h->root.type != bfd_link_hash_defined
6770 && h->root.type != bfd_link_hash_defweak)
6771 return TRUE;
6772
6773 eh = (struct ppc_link_hash_entry *) h;
6774 if (eh->adjust_done)
6775 return TRUE;
6776
6777 sym_sec = eh->elf.root.u.def.section;
6778 opd = get_opd_info (sym_sec);
6779 if (opd != NULL && opd->adjust != NULL)
6780 {
6781 long adjust = opd->adjust[OPD_NDX (eh->elf.root.u.def.value)];
6782 if (adjust == -1)
6783 {
6784 /* This entry has been deleted. */
6785 asection *dsec = ppc64_elf_tdata (sym_sec->owner)->deleted_section;
6786 if (dsec == NULL)
6787 {
6788 for (dsec = sym_sec->owner->sections; dsec; dsec = dsec->next)
6789 if (discarded_section (dsec))
6790 {
6791 ppc64_elf_tdata (sym_sec->owner)->deleted_section = dsec;
6792 break;
6793 }
6794 }
6795 eh->elf.root.u.def.value = 0;
6796 eh->elf.root.u.def.section = dsec;
6797 }
6798 else
6799 eh->elf.root.u.def.value += adjust;
6800 eh->adjust_done = 1;
6801 }
6802 return TRUE;
6803 }
6804
6805 /* Handles decrementing dynamic reloc counts for the reloc specified by
6806 R_INFO in section SEC. If LOCAL_SYMS is NULL, then H and SYM
6807 have already been determined. */
6808
6809 static bfd_boolean
6810 dec_dynrel_count (bfd_vma r_info,
6811 asection *sec,
6812 struct bfd_link_info *info,
6813 Elf_Internal_Sym **local_syms,
6814 struct elf_link_hash_entry *h,
6815 Elf_Internal_Sym *sym)
6816 {
6817 enum elf_ppc64_reloc_type r_type;
6818 asection *sym_sec = NULL;
6819
6820 /* Can this reloc be dynamic? This switch, and later tests here
6821 should be kept in sync with the code in check_relocs. */
6822 r_type = ELF64_R_TYPE (r_info);
6823 switch (r_type)
6824 {
6825 default:
6826 return TRUE;
6827
6828 case R_PPC64_TPREL16:
6829 case R_PPC64_TPREL16_LO:
6830 case R_PPC64_TPREL16_HI:
6831 case R_PPC64_TPREL16_HA:
6832 case R_PPC64_TPREL16_DS:
6833 case R_PPC64_TPREL16_LO_DS:
6834 case R_PPC64_TPREL16_HIGH:
6835 case R_PPC64_TPREL16_HIGHA:
6836 case R_PPC64_TPREL16_HIGHER:
6837 case R_PPC64_TPREL16_HIGHERA:
6838 case R_PPC64_TPREL16_HIGHEST:
6839 case R_PPC64_TPREL16_HIGHESTA:
6840 case R_PPC64_TPREL64:
6841 case R_PPC64_TPREL34:
6842 case R_PPC64_DTPMOD64:
6843 case R_PPC64_DTPREL64:
6844 case R_PPC64_ADDR64:
6845 case R_PPC64_REL30:
6846 case R_PPC64_REL32:
6847 case R_PPC64_REL64:
6848 case R_PPC64_ADDR14:
6849 case R_PPC64_ADDR14_BRNTAKEN:
6850 case R_PPC64_ADDR14_BRTAKEN:
6851 case R_PPC64_ADDR16:
6852 case R_PPC64_ADDR16_DS:
6853 case R_PPC64_ADDR16_HA:
6854 case R_PPC64_ADDR16_HI:
6855 case R_PPC64_ADDR16_HIGH:
6856 case R_PPC64_ADDR16_HIGHA:
6857 case R_PPC64_ADDR16_HIGHER:
6858 case R_PPC64_ADDR16_HIGHERA:
6859 case R_PPC64_ADDR16_HIGHEST:
6860 case R_PPC64_ADDR16_HIGHESTA:
6861 case R_PPC64_ADDR16_LO:
6862 case R_PPC64_ADDR16_LO_DS:
6863 case R_PPC64_ADDR24:
6864 case R_PPC64_ADDR32:
6865 case R_PPC64_UADDR16:
6866 case R_PPC64_UADDR32:
6867 case R_PPC64_UADDR64:
6868 case R_PPC64_TOC:
6869 case R_PPC64_D34:
6870 case R_PPC64_D34_LO:
6871 case R_PPC64_D34_HI30:
6872 case R_PPC64_D34_HA30:
6873 case R_PPC64_ADDR16_HIGHER34:
6874 case R_PPC64_ADDR16_HIGHERA34:
6875 case R_PPC64_ADDR16_HIGHEST34:
6876 case R_PPC64_ADDR16_HIGHESTA34:
6877 case R_PPC64_D28:
6878 break;
6879 }
6880
6881 if (local_syms != NULL)
6882 {
6883 unsigned long r_symndx;
6884 bfd *ibfd = sec->owner;
6885
6886 r_symndx = ELF64_R_SYM (r_info);
6887 if (!get_sym_h (&h, &sym, &sym_sec, NULL, local_syms, r_symndx, ibfd))
6888 return FALSE;
6889 }
6890
6891 if ((bfd_link_pic (info)
6892 && (must_be_dyn_reloc (info, r_type)
6893 || (h != NULL
6894 && (!SYMBOLIC_BIND (info, h)
6895 || h->root.type == bfd_link_hash_defweak
6896 || !h->def_regular))))
6897 || (ELIMINATE_COPY_RELOCS
6898 && !bfd_link_pic (info)
6899 && h != NULL
6900 && (h->root.type == bfd_link_hash_defweak
6901 || !h->def_regular)))
6902 ;
6903 else
6904 return TRUE;
6905
6906 if (h != NULL)
6907 {
6908 struct elf_dyn_relocs *p;
6909 struct elf_dyn_relocs **pp;
6910 pp = &((struct ppc_link_hash_entry *) h)->dyn_relocs;
6911
6912 /* elf_gc_sweep may have already removed all dyn relocs associated
6913 with local syms for a given section. Also, symbol flags are
6914 changed by elf_gc_sweep_symbol, confusing the test above. Don't
6915 report a dynreloc miscount. */
6916 if (*pp == NULL && info->gc_sections)
6917 return TRUE;
6918
6919 while ((p = *pp) != NULL)
6920 {
6921 if (p->sec == sec)
6922 {
6923 if (!must_be_dyn_reloc (info, r_type))
6924 p->pc_count -= 1;
6925 p->count -= 1;
6926 if (p->count == 0)
6927 *pp = p->next;
6928 return TRUE;
6929 }
6930 pp = &p->next;
6931 }
6932 }
6933 else
6934 {
6935 struct ppc_dyn_relocs *p;
6936 struct ppc_dyn_relocs **pp;
6937 void *vpp;
6938 bfd_boolean is_ifunc;
6939
6940 if (local_syms == NULL)
6941 sym_sec = bfd_section_from_elf_index (sec->owner, sym->st_shndx);
6942 if (sym_sec == NULL)
6943 sym_sec = sec;
6944
6945 vpp = &elf_section_data (sym_sec)->local_dynrel;
6946 pp = (struct ppc_dyn_relocs **) vpp;
6947
6948 if (*pp == NULL && info->gc_sections)
6949 return TRUE;
6950
6951 is_ifunc = ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC;
6952 while ((p = *pp) != NULL)
6953 {
6954 if (p->sec == sec && p->ifunc == is_ifunc)
6955 {
6956 p->count -= 1;
6957 if (p->count == 0)
6958 *pp = p->next;
6959 return TRUE;
6960 }
6961 pp = &p->next;
6962 }
6963 }
6964
6965 /* xgettext:c-format */
6966 _bfd_error_handler (_("dynreloc miscount for %pB, section %pA"),
6967 sec->owner, sec);
6968 bfd_set_error (bfd_error_bad_value);
6969 return FALSE;
6970 }
6971
6972 /* Remove unused Official Procedure Descriptor entries. Currently we
6973 only remove those associated with functions in discarded link-once
6974 sections, or weakly defined functions that have been overridden. It
6975 would be possible to remove many more entries for statically linked
6976 applications. */
6977
6978 bfd_boolean
6979 ppc64_elf_edit_opd (struct bfd_link_info *info)
6980 {
6981 bfd *ibfd;
6982 bfd_boolean some_edited = FALSE;
6983 asection *need_pad = NULL;
6984 struct ppc_link_hash_table *htab;
6985
6986 htab = ppc_hash_table (info);
6987 if (htab == NULL)
6988 return FALSE;
6989
6990 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6991 {
6992 asection *sec;
6993 Elf_Internal_Rela *relstart, *rel, *relend;
6994 Elf_Internal_Shdr *symtab_hdr;
6995 Elf_Internal_Sym *local_syms;
6996 struct _opd_sec_data *opd;
6997 bfd_boolean need_edit, add_aux_fields, broken;
6998 bfd_size_type cnt_16b = 0;
6999
7000 if (!is_ppc64_elf (ibfd))
7001 continue;
7002
7003 sec = bfd_get_section_by_name (ibfd, ".opd");
7004 if (sec == NULL || sec->size == 0)
7005 continue;
7006
7007 if (sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
7008 continue;
7009
7010 if (sec->output_section == bfd_abs_section_ptr)
7011 continue;
7012
7013 /* Look through the section relocs. */
7014 if ((sec->flags & SEC_RELOC) == 0 || sec->reloc_count == 0)
7015 continue;
7016
7017 local_syms = NULL;
7018 symtab_hdr = &elf_symtab_hdr (ibfd);
7019
7020 /* Read the relocations. */
7021 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7022 info->keep_memory);
7023 if (relstart == NULL)
7024 return FALSE;
7025
7026 /* First run through the relocs to check they are sane, and to
7027 determine whether we need to edit this opd section. */
7028 need_edit = FALSE;
7029 broken = FALSE;
7030 need_pad = sec;
7031 relend = relstart + sec->reloc_count;
7032 for (rel = relstart; rel < relend; )
7033 {
7034 enum elf_ppc64_reloc_type r_type;
7035 unsigned long r_symndx;
7036 asection *sym_sec;
7037 struct elf_link_hash_entry *h;
7038 Elf_Internal_Sym *sym;
7039 bfd_vma offset;
7040
7041 /* .opd contains an array of 16 or 24 byte entries. We're
7042 only interested in the reloc pointing to a function entry
7043 point. */
7044 offset = rel->r_offset;
7045 if (rel + 1 == relend
7046 || rel[1].r_offset != offset + 8)
7047 {
7048 /* If someone messes with .opd alignment then after a
7049 "ld -r" we might have padding in the middle of .opd.
7050 Also, there's nothing to prevent someone putting
7051 something silly in .opd with the assembler. No .opd
7052 optimization for them! */
7053 broken_opd:
7054 _bfd_error_handler
7055 (_("%pB: .opd is not a regular array of opd entries"), ibfd);
7056 broken = TRUE;
7057 break;
7058 }
7059
7060 if ((r_type = ELF64_R_TYPE (rel->r_info)) != R_PPC64_ADDR64
7061 || (r_type = ELF64_R_TYPE ((rel + 1)->r_info)) != R_PPC64_TOC)
7062 {
7063 _bfd_error_handler
7064 /* xgettext:c-format */
7065 (_("%pB: unexpected reloc type %u in .opd section"),
7066 ibfd, r_type);
7067 broken = TRUE;
7068 break;
7069 }
7070
7071 r_symndx = ELF64_R_SYM (rel->r_info);
7072 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7073 r_symndx, ibfd))
7074 goto error_ret;
7075
7076 if (sym_sec == NULL || sym_sec->owner == NULL)
7077 {
7078 const char *sym_name;
7079 if (h != NULL)
7080 sym_name = h->root.root.string;
7081 else
7082 sym_name = bfd_elf_sym_name (ibfd, symtab_hdr, sym,
7083 sym_sec);
7084
7085 _bfd_error_handler
7086 /* xgettext:c-format */
7087 (_("%pB: undefined sym `%s' in .opd section"),
7088 ibfd, sym_name);
7089 broken = TRUE;
7090 break;
7091 }
7092
7093 /* opd entries are always for functions defined in the
7094 current input bfd. If the symbol isn't defined in the
7095 input bfd, then we won't be using the function in this
7096 bfd; It must be defined in a linkonce section in another
7097 bfd, or is weak. It's also possible that we are
7098 discarding the function due to a linker script /DISCARD/,
7099 which we test for via the output_section. */
7100 if (sym_sec->owner != ibfd
7101 || sym_sec->output_section == bfd_abs_section_ptr)
7102 need_edit = TRUE;
7103
7104 rel += 2;
7105 if (rel + 1 == relend
7106 || (rel + 2 < relend
7107 && ELF64_R_TYPE (rel[2].r_info) == R_PPC64_TOC))
7108 ++rel;
7109
7110 if (rel == relend)
7111 {
7112 if (sec->size == offset + 24)
7113 {
7114 need_pad = NULL;
7115 break;
7116 }
7117 if (sec->size == offset + 16)
7118 {
7119 cnt_16b++;
7120 break;
7121 }
7122 goto broken_opd;
7123 }
7124 else if (rel + 1 < relend
7125 && ELF64_R_TYPE (rel[0].r_info) == R_PPC64_ADDR64
7126 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOC)
7127 {
7128 if (rel[0].r_offset == offset + 16)
7129 cnt_16b++;
7130 else if (rel[0].r_offset != offset + 24)
7131 goto broken_opd;
7132 }
7133 else
7134 goto broken_opd;
7135 }
7136
7137 add_aux_fields = htab->params->non_overlapping_opd && cnt_16b > 0;
7138
7139 if (!broken && (need_edit || add_aux_fields))
7140 {
7141 Elf_Internal_Rela *write_rel;
7142 Elf_Internal_Shdr *rel_hdr;
7143 bfd_byte *rptr, *wptr;
7144 bfd_byte *new_contents;
7145 bfd_size_type amt;
7146
7147 new_contents = NULL;
7148 amt = OPD_NDX (sec->size) * sizeof (long);
7149 opd = &ppc64_elf_section_data (sec)->u.opd;
7150 opd->adjust = bfd_zalloc (sec->owner, amt);
7151 if (opd->adjust == NULL)
7152 return FALSE;
7153
7154 /* This seems a waste of time as input .opd sections are all
7155 zeros as generated by gcc, but I suppose there's no reason
7156 this will always be so. We might start putting something in
7157 the third word of .opd entries. */
7158 if ((sec->flags & SEC_IN_MEMORY) == 0)
7159 {
7160 bfd_byte *loc;
7161 if (!bfd_malloc_and_get_section (ibfd, sec, &loc))
7162 {
7163 if (loc != NULL)
7164 free (loc);
7165 error_ret:
7166 if (local_syms != NULL
7167 && symtab_hdr->contents != (unsigned char *) local_syms)
7168 free (local_syms);
7169 if (elf_section_data (sec)->relocs != relstart)
7170 free (relstart);
7171 return FALSE;
7172 }
7173 sec->contents = loc;
7174 sec->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7175 }
7176
7177 elf_section_data (sec)->relocs = relstart;
7178
7179 new_contents = sec->contents;
7180 if (add_aux_fields)
7181 {
7182 new_contents = bfd_malloc (sec->size + cnt_16b * 8);
7183 if (new_contents == NULL)
7184 return FALSE;
7185 need_pad = NULL;
7186 }
7187 wptr = new_contents;
7188 rptr = sec->contents;
7189 write_rel = relstart;
7190 for (rel = relstart; rel < relend; )
7191 {
7192 unsigned long r_symndx;
7193 asection *sym_sec;
7194 struct elf_link_hash_entry *h;
7195 struct ppc_link_hash_entry *fdh = NULL;
7196 Elf_Internal_Sym *sym;
7197 long opd_ent_size;
7198 Elf_Internal_Rela *next_rel;
7199 bfd_boolean skip;
7200
7201 r_symndx = ELF64_R_SYM (rel->r_info);
7202 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7203 r_symndx, ibfd))
7204 goto error_ret;
7205
7206 next_rel = rel + 2;
7207 if (next_rel + 1 == relend
7208 || (next_rel + 2 < relend
7209 && ELF64_R_TYPE (next_rel[2].r_info) == R_PPC64_TOC))
7210 ++next_rel;
7211
7212 /* See if the .opd entry is full 24 byte or
7213 16 byte (with fd_aux entry overlapped with next
7214 fd_func). */
7215 opd_ent_size = 24;
7216 if (next_rel == relend)
7217 {
7218 if (sec->size == rel->r_offset + 16)
7219 opd_ent_size = 16;
7220 }
7221 else if (next_rel->r_offset == rel->r_offset + 16)
7222 opd_ent_size = 16;
7223
7224 if (h != NULL
7225 && h->root.root.string[0] == '.')
7226 {
7227 fdh = ((struct ppc_link_hash_entry *) h)->oh;
7228 if (fdh != NULL)
7229 {
7230 fdh = ppc_follow_link (fdh);
7231 if (fdh->elf.root.type != bfd_link_hash_defined
7232 && fdh->elf.root.type != bfd_link_hash_defweak)
7233 fdh = NULL;
7234 }
7235 }
7236
7237 skip = (sym_sec->owner != ibfd
7238 || sym_sec->output_section == bfd_abs_section_ptr);
7239 if (skip)
7240 {
7241 if (fdh != NULL && sym_sec->owner == ibfd)
7242 {
7243 /* Arrange for the function descriptor sym
7244 to be dropped. */
7245 fdh->elf.root.u.def.value = 0;
7246 fdh->elf.root.u.def.section = sym_sec;
7247 }
7248 opd->adjust[OPD_NDX (rel->r_offset)] = -1;
7249
7250 if (NO_OPD_RELOCS || bfd_link_relocatable (info))
7251 rel = next_rel;
7252 else
7253 while (1)
7254 {
7255 if (!dec_dynrel_count (rel->r_info, sec, info,
7256 NULL, h, sym))
7257 goto error_ret;
7258
7259 if (++rel == next_rel)
7260 break;
7261
7262 r_symndx = ELF64_R_SYM (rel->r_info);
7263 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
7264 r_symndx, ibfd))
7265 goto error_ret;
7266 }
7267 }
7268 else
7269 {
7270 /* We'll be keeping this opd entry. */
7271 long adjust;
7272
7273 if (fdh != NULL)
7274 {
7275 /* Redefine the function descriptor symbol to
7276 this location in the opd section. It is
7277 necessary to update the value here rather
7278 than using an array of adjustments as we do
7279 for local symbols, because various places
7280 in the generic ELF code use the value
7281 stored in u.def.value. */
7282 fdh->elf.root.u.def.value = wptr - new_contents;
7283 fdh->adjust_done = 1;
7284 }
7285
7286 /* Local syms are a bit tricky. We could
7287 tweak them as they can be cached, but
7288 we'd need to look through the local syms
7289 for the function descriptor sym which we
7290 don't have at the moment. So keep an
7291 array of adjustments. */
7292 adjust = (wptr - new_contents) - (rptr - sec->contents);
7293 opd->adjust[OPD_NDX (rel->r_offset)] = adjust;
7294
7295 if (wptr != rptr)
7296 memcpy (wptr, rptr, opd_ent_size);
7297 wptr += opd_ent_size;
7298 if (add_aux_fields && opd_ent_size == 16)
7299 {
7300 memset (wptr, '\0', 8);
7301 wptr += 8;
7302 }
7303
7304 /* We need to adjust any reloc offsets to point to the
7305 new opd entries. */
7306 for ( ; rel != next_rel; ++rel)
7307 {
7308 rel->r_offset += adjust;
7309 if (write_rel != rel)
7310 memcpy (write_rel, rel, sizeof (*rel));
7311 ++write_rel;
7312 }
7313 }
7314
7315 rptr += opd_ent_size;
7316 }
7317
7318 sec->size = wptr - new_contents;
7319 sec->reloc_count = write_rel - relstart;
7320 if (add_aux_fields)
7321 {
7322 free (sec->contents);
7323 sec->contents = new_contents;
7324 }
7325
7326 /* Fudge the header size too, as this is used later in
7327 elf_bfd_final_link if we are emitting relocs. */
7328 rel_hdr = _bfd_elf_single_rel_hdr (sec);
7329 rel_hdr->sh_size = sec->reloc_count * rel_hdr->sh_entsize;
7330 some_edited = TRUE;
7331 }
7332 else if (elf_section_data (sec)->relocs != relstart)
7333 free (relstart);
7334
7335 if (local_syms != NULL
7336 && symtab_hdr->contents != (unsigned char *) local_syms)
7337 {
7338 if (!info->keep_memory)
7339 free (local_syms);
7340 else
7341 symtab_hdr->contents = (unsigned char *) local_syms;
7342 }
7343 }
7344
7345 if (some_edited)
7346 elf_link_hash_traverse (elf_hash_table (info), adjust_opd_syms, NULL);
7347
7348 /* If we are doing a final link and the last .opd entry is just 16 byte
7349 long, add a 8 byte padding after it. */
7350 if (need_pad != NULL && !bfd_link_relocatable (info))
7351 {
7352 bfd_byte *p;
7353
7354 if ((need_pad->flags & SEC_IN_MEMORY) == 0)
7355 {
7356 BFD_ASSERT (need_pad->size > 0);
7357
7358 p = bfd_malloc (need_pad->size + 8);
7359 if (p == NULL)
7360 return FALSE;
7361
7362 if (!bfd_get_section_contents (need_pad->owner, need_pad,
7363 p, 0, need_pad->size))
7364 return FALSE;
7365
7366 need_pad->contents = p;
7367 need_pad->flags |= (SEC_IN_MEMORY | SEC_HAS_CONTENTS);
7368 }
7369 else
7370 {
7371 p = bfd_realloc (need_pad->contents, need_pad->size + 8);
7372 if (p == NULL)
7373 return FALSE;
7374
7375 need_pad->contents = p;
7376 }
7377
7378 memset (need_pad->contents + need_pad->size, 0, 8);
7379 need_pad->size += 8;
7380 }
7381
7382 return TRUE;
7383 }
7384
7385 /* Analyze inline PLT call relocations to see whether calls to locally
7386 defined functions can be converted to direct calls. */
7387
7388 bfd_boolean
7389 ppc64_elf_inline_plt (struct bfd_link_info *info)
7390 {
7391 struct ppc_link_hash_table *htab;
7392 bfd *ibfd;
7393 asection *sec;
7394 bfd_vma low_vma, high_vma, limit;
7395
7396 htab = ppc_hash_table (info);
7397 if (htab == NULL)
7398 return FALSE;
7399
7400 /* A bl insn can reach -0x2000000 to 0x1fffffc. The limit is
7401 reduced somewhat to cater for possible stubs that might be added
7402 between the call and its destination. */
7403 if (htab->params->group_size < 0)
7404 {
7405 limit = -htab->params->group_size;
7406 if (limit == 1)
7407 limit = 0x1e00000;
7408 }
7409 else
7410 {
7411 limit = htab->params->group_size;
7412 if (limit == 1)
7413 limit = 0x1c00000;
7414 }
7415
7416 low_vma = -1;
7417 high_vma = 0;
7418 for (sec = info->output_bfd->sections; sec != NULL; sec = sec->next)
7419 if ((sec->flags & (SEC_ALLOC | SEC_CODE)) == (SEC_ALLOC | SEC_CODE))
7420 {
7421 if (low_vma > sec->vma)
7422 low_vma = sec->vma;
7423 if (high_vma < sec->vma + sec->size)
7424 high_vma = sec->vma + sec->size;
7425 }
7426
7427 /* If a "bl" can reach anywhere in local code sections, then we can
7428 convert all inline PLT sequences to direct calls when the symbol
7429 is local. */
7430 if (high_vma - low_vma < limit)
7431 {
7432 htab->can_convert_all_inline_plt = 1;
7433 return TRUE;
7434 }
7435
7436 /* Otherwise, go looking through relocs for cases where a direct
7437 call won't reach. Mark the symbol on any such reloc to disable
7438 the optimization and keep the PLT entry as it seems likely that
7439 this will be better than creating trampolines. Note that this
7440 will disable the optimization for all inline PLT calls to a
7441 particular symbol, not just those that won't reach. The
7442 difficulty in doing a more precise optimization is that the
7443 linker needs to make a decision depending on whether a
7444 particular R_PPC64_PLTCALL insn can be turned into a direct
7445 call, for each of the R_PPC64_PLTSEQ and R_PPC64_PLT16* insns in
7446 the sequence, and there is nothing that ties those relocs
7447 together except their symbol. */
7448
7449 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7450 {
7451 Elf_Internal_Shdr *symtab_hdr;
7452 Elf_Internal_Sym *local_syms;
7453
7454 if (!is_ppc64_elf (ibfd))
7455 continue;
7456
7457 local_syms = NULL;
7458 symtab_hdr = &elf_symtab_hdr (ibfd);
7459
7460 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7461 if (ppc64_elf_section_data (sec)->has_pltcall
7462 && !bfd_is_abs_section (sec->output_section))
7463 {
7464 Elf_Internal_Rela *relstart, *rel, *relend;
7465
7466 /* Read the relocations. */
7467 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7468 info->keep_memory);
7469 if (relstart == NULL)
7470 return FALSE;
7471
7472 relend = relstart + sec->reloc_count;
7473 for (rel = relstart; rel < relend; )
7474 {
7475 enum elf_ppc64_reloc_type r_type;
7476 unsigned long r_symndx;
7477 asection *sym_sec;
7478 struct elf_link_hash_entry *h;
7479 Elf_Internal_Sym *sym;
7480 unsigned char *tls_maskp;
7481
7482 r_type = ELF64_R_TYPE (rel->r_info);
7483 if (r_type != R_PPC64_PLTCALL
7484 && r_type != R_PPC64_PLTCALL_NOTOC)
7485 continue;
7486
7487 r_symndx = ELF64_R_SYM (rel->r_info);
7488 if (!get_sym_h (&h, &sym, &sym_sec, &tls_maskp, &local_syms,
7489 r_symndx, ibfd))
7490 {
7491 if (elf_section_data (sec)->relocs != relstart)
7492 free (relstart);
7493 if (local_syms != NULL
7494 && symtab_hdr->contents != (bfd_byte *) local_syms)
7495 free (local_syms);
7496 return FALSE;
7497 }
7498
7499 if (sym_sec != NULL && sym_sec->output_section != NULL)
7500 {
7501 bfd_vma from, to;
7502 if (h != NULL)
7503 to = h->root.u.def.value;
7504 else
7505 to = sym->st_value;
7506 to += (rel->r_addend
7507 + sym_sec->output_offset
7508 + sym_sec->output_section->vma);
7509 from = (rel->r_offset
7510 + sec->output_offset
7511 + sec->output_section->vma);
7512 if (to - from + limit < 2 * limit
7513 && !(r_type == R_PPC64_PLTCALL_NOTOC
7514 && (((h ? h->other : sym->st_other)
7515 & STO_PPC64_LOCAL_MASK)
7516 > 1 << STO_PPC64_LOCAL_BIT)))
7517 *tls_maskp &= ~PLT_KEEP;
7518 }
7519 }
7520 if (elf_section_data (sec)->relocs != relstart)
7521 free (relstart);
7522 }
7523
7524 if (local_syms != NULL
7525 && symtab_hdr->contents != (unsigned char *) local_syms)
7526 {
7527 if (!info->keep_memory)
7528 free (local_syms);
7529 else
7530 symtab_hdr->contents = (unsigned char *) local_syms;
7531 }
7532 }
7533
7534 return TRUE;
7535 }
7536
7537 /* Set htab->tls_get_addr and call the generic ELF tls_setup function. */
7538
7539 asection *
7540 ppc64_elf_tls_setup (struct bfd_link_info *info)
7541 {
7542 struct ppc_link_hash_table *htab;
7543
7544 htab = ppc_hash_table (info);
7545 if (htab == NULL)
7546 return NULL;
7547
7548 if (abiversion (info->output_bfd) == 1)
7549 htab->opd_abi = 1;
7550
7551 if (htab->params->no_multi_toc)
7552 htab->do_multi_toc = 0;
7553 else if (!htab->do_multi_toc)
7554 htab->params->no_multi_toc = 1;
7555
7556 /* Default to --no-plt-localentry, as this option can cause problems
7557 with symbol interposition. For example, glibc libpthread.so and
7558 libc.so duplicate many pthread symbols, with a fallback
7559 implementation in libc.so. In some cases the fallback does more
7560 work than the pthread implementation. __pthread_condattr_destroy
7561 is one such symbol: the libpthread.so implementation is
7562 localentry:0 while the libc.so implementation is localentry:8.
7563 An app that "cleverly" uses dlopen to only load necessary
7564 libraries at runtime may omit loading libpthread.so when not
7565 running multi-threaded, which then results in the libc.so
7566 fallback symbols being used and ld.so complaining. Now there
7567 are workarounds in ld (see non_zero_localentry) to detect the
7568 pthread situation, but that may not be the only case where
7569 --plt-localentry can cause trouble. */
7570 if (htab->params->plt_localentry0 < 0)
7571 htab->params->plt_localentry0 = 0;
7572 if (htab->params->plt_localentry0
7573 && elf_link_hash_lookup (&htab->elf, "GLIBC_2.26",
7574 FALSE, FALSE, FALSE) == NULL)
7575 _bfd_error_handler
7576 (_("warning: --plt-localentry is especially dangerous without "
7577 "ld.so support to detect ABI violations"));
7578
7579 htab->tls_get_addr = ((struct ppc_link_hash_entry *)
7580 elf_link_hash_lookup (&htab->elf, ".__tls_get_addr",
7581 FALSE, FALSE, TRUE));
7582 /* Move dynamic linking info to the function descriptor sym. */
7583 if (htab->tls_get_addr != NULL)
7584 func_desc_adjust (&htab->tls_get_addr->elf, info);
7585 htab->tls_get_addr_fd = ((struct ppc_link_hash_entry *)
7586 elf_link_hash_lookup (&htab->elf, "__tls_get_addr",
7587 FALSE, FALSE, TRUE));
7588 if (htab->params->tls_get_addr_opt)
7589 {
7590 struct elf_link_hash_entry *opt, *opt_fd, *tga, *tga_fd;
7591
7592 opt = elf_link_hash_lookup (&htab->elf, ".__tls_get_addr_opt",
7593 FALSE, FALSE, TRUE);
7594 if (opt != NULL)
7595 func_desc_adjust (opt, info);
7596 opt_fd = elf_link_hash_lookup (&htab->elf, "__tls_get_addr_opt",
7597 FALSE, FALSE, TRUE);
7598 if (opt_fd != NULL
7599 && (opt_fd->root.type == bfd_link_hash_defined
7600 || opt_fd->root.type == bfd_link_hash_defweak))
7601 {
7602 /* If glibc supports an optimized __tls_get_addr call stub,
7603 signalled by the presence of __tls_get_addr_opt, and we'll
7604 be calling __tls_get_addr via a plt call stub, then
7605 make __tls_get_addr point to __tls_get_addr_opt. */
7606 tga_fd = &htab->tls_get_addr_fd->elf;
7607 if (htab->elf.dynamic_sections_created
7608 && tga_fd != NULL
7609 && (tga_fd->type == STT_FUNC
7610 || tga_fd->needs_plt)
7611 && !(SYMBOL_CALLS_LOCAL (info, tga_fd)
7612 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, tga_fd)))
7613 {
7614 struct plt_entry *ent;
7615
7616 for (ent = tga_fd->plt.plist; ent != NULL; ent = ent->next)
7617 if (ent->plt.refcount > 0)
7618 break;
7619 if (ent != NULL)
7620 {
7621 tga_fd->root.type = bfd_link_hash_indirect;
7622 tga_fd->root.u.i.link = &opt_fd->root;
7623 ppc64_elf_copy_indirect_symbol (info, opt_fd, tga_fd);
7624 opt_fd->mark = 1;
7625 if (opt_fd->dynindx != -1)
7626 {
7627 /* Use __tls_get_addr_opt in dynamic relocations. */
7628 opt_fd->dynindx = -1;
7629 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7630 opt_fd->dynstr_index);
7631 if (!bfd_elf_link_record_dynamic_symbol (info, opt_fd))
7632 return NULL;
7633 }
7634 htab->tls_get_addr_fd
7635 = (struct ppc_link_hash_entry *) opt_fd;
7636 tga = &htab->tls_get_addr->elf;
7637 if (opt != NULL && tga != NULL)
7638 {
7639 tga->root.type = bfd_link_hash_indirect;
7640 tga->root.u.i.link = &opt->root;
7641 ppc64_elf_copy_indirect_symbol (info, opt, tga);
7642 opt->mark = 1;
7643 _bfd_elf_link_hash_hide_symbol (info, opt,
7644 tga->forced_local);
7645 htab->tls_get_addr = (struct ppc_link_hash_entry *) opt;
7646 }
7647 htab->tls_get_addr_fd->oh = htab->tls_get_addr;
7648 htab->tls_get_addr_fd->is_func_descriptor = 1;
7649 if (htab->tls_get_addr != NULL)
7650 {
7651 htab->tls_get_addr->oh = htab->tls_get_addr_fd;
7652 htab->tls_get_addr->is_func = 1;
7653 }
7654 }
7655 }
7656 }
7657 else if (htab->params->tls_get_addr_opt < 0)
7658 htab->params->tls_get_addr_opt = 0;
7659 }
7660 return _bfd_elf_tls_setup (info->output_bfd, info);
7661 }
7662
7663 /* Return TRUE iff REL is a branch reloc with a global symbol matching
7664 HASH1 or HASH2. */
7665
7666 static bfd_boolean
7667 branch_reloc_hash_match (const bfd *ibfd,
7668 const Elf_Internal_Rela *rel,
7669 const struct ppc_link_hash_entry *hash1,
7670 const struct ppc_link_hash_entry *hash2)
7671 {
7672 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (ibfd);
7673 enum elf_ppc64_reloc_type r_type = ELF64_R_TYPE (rel->r_info);
7674 unsigned int r_symndx = ELF64_R_SYM (rel->r_info);
7675
7676 if (r_symndx >= symtab_hdr->sh_info && is_branch_reloc (r_type))
7677 {
7678 struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (ibfd);
7679 struct elf_link_hash_entry *h;
7680
7681 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7682 h = elf_follow_link (h);
7683 if (h == &hash1->elf || h == &hash2->elf)
7684 return TRUE;
7685 }
7686 return FALSE;
7687 }
7688
7689 /* Run through all the TLS relocs looking for optimization
7690 opportunities. The linker has been hacked (see ppc64elf.em) to do
7691 a preliminary section layout so that we know the TLS segment
7692 offsets. We can't optimize earlier because some optimizations need
7693 to know the tp offset, and we need to optimize before allocating
7694 dynamic relocations. */
7695
7696 bfd_boolean
7697 ppc64_elf_tls_optimize (struct bfd_link_info *info)
7698 {
7699 bfd *ibfd;
7700 asection *sec;
7701 struct ppc_link_hash_table *htab;
7702 unsigned char *toc_ref;
7703 int pass;
7704
7705 if (!bfd_link_executable (info))
7706 return TRUE;
7707
7708 htab = ppc_hash_table (info);
7709 if (htab == NULL)
7710 return FALSE;
7711
7712 /* Make two passes over the relocs. On the first pass, mark toc
7713 entries involved with tls relocs, and check that tls relocs
7714 involved in setting up a tls_get_addr call are indeed followed by
7715 such a call. If they are not, we can't do any tls optimization.
7716 On the second pass twiddle tls_mask flags to notify
7717 relocate_section that optimization can be done, and adjust got
7718 and plt refcounts. */
7719 toc_ref = NULL;
7720 for (pass = 0; pass < 2; ++pass)
7721 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7722 {
7723 Elf_Internal_Sym *locsyms = NULL;
7724 asection *toc = bfd_get_section_by_name (ibfd, ".toc");
7725
7726 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7727 if (sec->has_tls_reloc && !bfd_is_abs_section (sec->output_section))
7728 {
7729 Elf_Internal_Rela *relstart, *rel, *relend;
7730 bfd_boolean found_tls_get_addr_arg = 0;
7731
7732 /* Read the relocations. */
7733 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
7734 info->keep_memory);
7735 if (relstart == NULL)
7736 {
7737 free (toc_ref);
7738 return FALSE;
7739 }
7740
7741 relend = relstart + sec->reloc_count;
7742 for (rel = relstart; rel < relend; rel++)
7743 {
7744 enum elf_ppc64_reloc_type r_type;
7745 unsigned long r_symndx;
7746 struct elf_link_hash_entry *h;
7747 Elf_Internal_Sym *sym;
7748 asection *sym_sec;
7749 unsigned char *tls_mask;
7750 unsigned int tls_set, tls_clear, tls_type = 0;
7751 bfd_vma value;
7752 bfd_boolean ok_tprel, is_local;
7753 long toc_ref_index = 0;
7754 int expecting_tls_get_addr = 0;
7755 bfd_boolean ret = FALSE;
7756
7757 r_symndx = ELF64_R_SYM (rel->r_info);
7758 if (!get_sym_h (&h, &sym, &sym_sec, &tls_mask, &locsyms,
7759 r_symndx, ibfd))
7760 {
7761 err_free_rel:
7762 if (elf_section_data (sec)->relocs != relstart)
7763 free (relstart);
7764 if (toc_ref != NULL)
7765 free (toc_ref);
7766 if (locsyms != NULL
7767 && (elf_symtab_hdr (ibfd).contents
7768 != (unsigned char *) locsyms))
7769 free (locsyms);
7770 return ret;
7771 }
7772
7773 if (h != NULL)
7774 {
7775 if (h->root.type == bfd_link_hash_defined
7776 || h->root.type == bfd_link_hash_defweak)
7777 value = h->root.u.def.value;
7778 else if (h->root.type == bfd_link_hash_undefweak)
7779 value = 0;
7780 else
7781 {
7782 found_tls_get_addr_arg = 0;
7783 continue;
7784 }
7785 }
7786 else
7787 /* Symbols referenced by TLS relocs must be of type
7788 STT_TLS. So no need for .opd local sym adjust. */
7789 value = sym->st_value;
7790
7791 ok_tprel = FALSE;
7792 is_local = FALSE;
7793 if (h == NULL
7794 || !h->def_dynamic)
7795 {
7796 is_local = TRUE;
7797 if (h != NULL
7798 && h->root.type == bfd_link_hash_undefweak)
7799 ok_tprel = TRUE;
7800 else if (sym_sec != NULL
7801 && sym_sec->output_section != NULL)
7802 {
7803 value += sym_sec->output_offset;
7804 value += sym_sec->output_section->vma;
7805 value -= htab->elf.tls_sec->vma + TP_OFFSET;
7806 /* Note that even though the prefix insns
7807 allow a 1<<33 offset we use the same test
7808 as for addis;addi. There may be a mix of
7809 pcrel and non-pcrel code and the decision
7810 to optimise is per symbol, not per TLS
7811 sequence. */
7812 ok_tprel = value + 0x80008000ULL < 1ULL << 32;
7813 }
7814 }
7815
7816 r_type = ELF64_R_TYPE (rel->r_info);
7817 /* If this section has old-style __tls_get_addr calls
7818 without marker relocs, then check that each
7819 __tls_get_addr call reloc is preceded by a reloc
7820 that conceivably belongs to the __tls_get_addr arg
7821 setup insn. If we don't find matching arg setup
7822 relocs, don't do any tls optimization. */
7823 if (pass == 0
7824 && sec->has_tls_get_addr_call
7825 && h != NULL
7826 && (h == &htab->tls_get_addr->elf
7827 || h == &htab->tls_get_addr_fd->elf)
7828 && !found_tls_get_addr_arg
7829 && is_branch_reloc (r_type))
7830 {
7831 info->callbacks->minfo (_("%H __tls_get_addr lost arg, "
7832 "TLS optimization disabled\n"),
7833 ibfd, sec, rel->r_offset);
7834 ret = TRUE;
7835 goto err_free_rel;
7836 }
7837
7838 found_tls_get_addr_arg = 0;
7839 switch (r_type)
7840 {
7841 case R_PPC64_GOT_TLSLD16:
7842 case R_PPC64_GOT_TLSLD16_LO:
7843 case R_PPC64_GOT_TLSLD34:
7844 expecting_tls_get_addr = 1;
7845 found_tls_get_addr_arg = 1;
7846 /* Fall through. */
7847
7848 case R_PPC64_GOT_TLSLD16_HI:
7849 case R_PPC64_GOT_TLSLD16_HA:
7850 /* These relocs should never be against a symbol
7851 defined in a shared lib. Leave them alone if
7852 that turns out to be the case. */
7853 if (!is_local)
7854 continue;
7855
7856 /* LD -> LE */
7857 tls_set = 0;
7858 tls_clear = TLS_LD;
7859 tls_type = TLS_TLS | TLS_LD;
7860 break;
7861
7862 case R_PPC64_GOT_TLSGD16:
7863 case R_PPC64_GOT_TLSGD16_LO:
7864 case R_PPC64_GOT_TLSGD34:
7865 expecting_tls_get_addr = 1;
7866 found_tls_get_addr_arg = 1;
7867 /* Fall through. */
7868
7869 case R_PPC64_GOT_TLSGD16_HI:
7870 case R_PPC64_GOT_TLSGD16_HA:
7871 if (ok_tprel)
7872 /* GD -> LE */
7873 tls_set = 0;
7874 else
7875 /* GD -> IE */
7876 tls_set = TLS_TLS | TLS_GDIE;
7877 tls_clear = TLS_GD;
7878 tls_type = TLS_TLS | TLS_GD;
7879 break;
7880
7881 case R_PPC64_GOT_TPREL34:
7882 case R_PPC64_GOT_TPREL16_DS:
7883 case R_PPC64_GOT_TPREL16_LO_DS:
7884 case R_PPC64_GOT_TPREL16_HI:
7885 case R_PPC64_GOT_TPREL16_HA:
7886 if (ok_tprel)
7887 {
7888 /* IE -> LE */
7889 tls_set = 0;
7890 tls_clear = TLS_TPREL;
7891 tls_type = TLS_TLS | TLS_TPREL;
7892 break;
7893 }
7894 continue;
7895
7896 case R_PPC64_TLSGD:
7897 case R_PPC64_TLSLD:
7898 if (rel + 1 < relend
7899 && is_plt_seq_reloc (ELF64_R_TYPE (rel[1].r_info)))
7900 {
7901 if (pass != 0
7902 && (ELF64_R_TYPE (rel[1].r_info)
7903 != R_PPC64_PLTSEQ)
7904 && (ELF64_R_TYPE (rel[1].r_info)
7905 != R_PPC64_PLTSEQ_NOTOC))
7906 {
7907 r_symndx = ELF64_R_SYM (rel[1].r_info);
7908 if (!get_sym_h (&h, NULL, NULL, NULL, &locsyms,
7909 r_symndx, ibfd))
7910 goto err_free_rel;
7911 if (h != NULL)
7912 {
7913 struct plt_entry *ent = NULL;
7914
7915 for (ent = h->plt.plist;
7916 ent != NULL;
7917 ent = ent->next)
7918 if (ent->addend == rel[1].r_addend)
7919 break;
7920
7921 if (ent != NULL
7922 && ent->plt.refcount > 0)
7923 ent->plt.refcount -= 1;
7924 }
7925 }
7926 continue;
7927 }
7928 found_tls_get_addr_arg = 1;
7929 /* Fall through. */
7930
7931 case R_PPC64_TLS:
7932 case R_PPC64_TOC16:
7933 case R_PPC64_TOC16_LO:
7934 if (sym_sec == NULL || sym_sec != toc)
7935 continue;
7936
7937 /* Mark this toc entry as referenced by a TLS
7938 code sequence. We can do that now in the
7939 case of R_PPC64_TLS, and after checking for
7940 tls_get_addr for the TOC16 relocs. */
7941 if (toc_ref == NULL)
7942 toc_ref
7943 = bfd_zmalloc (toc->output_section->rawsize / 8);
7944 if (toc_ref == NULL)
7945 goto err_free_rel;
7946
7947 if (h != NULL)
7948 value = h->root.u.def.value;
7949 else
7950 value = sym->st_value;
7951 value += rel->r_addend;
7952 if (value % 8 != 0)
7953 continue;
7954 BFD_ASSERT (value < toc->size
7955 && toc->output_offset % 8 == 0);
7956 toc_ref_index = (value + toc->output_offset) / 8;
7957 if (r_type == R_PPC64_TLS
7958 || r_type == R_PPC64_TLSGD
7959 || r_type == R_PPC64_TLSLD)
7960 {
7961 toc_ref[toc_ref_index] = 1;
7962 continue;
7963 }
7964
7965 if (pass != 0 && toc_ref[toc_ref_index] == 0)
7966 continue;
7967
7968 tls_set = 0;
7969 tls_clear = 0;
7970 expecting_tls_get_addr = 2;
7971 break;
7972
7973 case R_PPC64_TPREL64:
7974 if (pass == 0
7975 || sec != toc
7976 || toc_ref == NULL
7977 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7978 continue;
7979 if (ok_tprel)
7980 {
7981 /* IE -> LE */
7982 tls_set = TLS_EXPLICIT;
7983 tls_clear = TLS_TPREL;
7984 break;
7985 }
7986 continue;
7987
7988 case R_PPC64_DTPMOD64:
7989 if (pass == 0
7990 || sec != toc
7991 || toc_ref == NULL
7992 || !toc_ref[(rel->r_offset + toc->output_offset) / 8])
7993 continue;
7994 if (rel + 1 < relend
7995 && (rel[1].r_info
7996 == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64))
7997 && rel[1].r_offset == rel->r_offset + 8)
7998 {
7999 if (ok_tprel)
8000 /* GD -> LE */
8001 tls_set = TLS_EXPLICIT | TLS_GD;
8002 else
8003 /* GD -> IE */
8004 tls_set = TLS_EXPLICIT | TLS_GD | TLS_GDIE;
8005 tls_clear = TLS_GD;
8006 }
8007 else
8008 {
8009 if (!is_local)
8010 continue;
8011
8012 /* LD -> LE */
8013 tls_set = TLS_EXPLICIT;
8014 tls_clear = TLS_LD;
8015 }
8016 break;
8017
8018 default:
8019 continue;
8020 }
8021
8022 if (pass == 0)
8023 {
8024 if (!expecting_tls_get_addr
8025 || !sec->has_tls_get_addr_call)
8026 continue;
8027
8028 if (rel + 1 < relend
8029 && branch_reloc_hash_match (ibfd, rel + 1,
8030 htab->tls_get_addr,
8031 htab->tls_get_addr_fd))
8032 {
8033 if (expecting_tls_get_addr == 2)
8034 {
8035 /* Check for toc tls entries. */
8036 unsigned char *toc_tls;
8037 int retval;
8038
8039 retval = get_tls_mask (&toc_tls, NULL, NULL,
8040 &locsyms,
8041 rel, ibfd);
8042 if (retval == 0)
8043 goto err_free_rel;
8044 if (toc_tls != NULL)
8045 {
8046 if ((*toc_tls & TLS_TLS) != 0
8047 && ((*toc_tls & (TLS_GD | TLS_LD)) != 0))
8048 found_tls_get_addr_arg = 1;
8049 if (retval > 1)
8050 toc_ref[toc_ref_index] = 1;
8051 }
8052 }
8053 continue;
8054 }
8055
8056 /* Uh oh, we didn't find the expected call. We
8057 could just mark this symbol to exclude it
8058 from tls optimization but it's safer to skip
8059 the entire optimization. */
8060 /* xgettext:c-format */
8061 info->callbacks->minfo (_("%H arg lost __tls_get_addr, "
8062 "TLS optimization disabled\n"),
8063 ibfd, sec, rel->r_offset);
8064 ret = TRUE;
8065 goto err_free_rel;
8066 }
8067
8068 /* If we don't have old-style __tls_get_addr calls
8069 without TLSGD/TLSLD marker relocs, and we haven't
8070 found a new-style __tls_get_addr call with a
8071 marker for this symbol, then we either have a
8072 broken object file or an -mlongcall style
8073 indirect call to __tls_get_addr without a marker.
8074 Disable optimization in this case. */
8075 if ((tls_clear & (TLS_GD | TLS_LD)) != 0
8076 && (tls_set & TLS_EXPLICIT) == 0
8077 && !sec->has_tls_get_addr_call
8078 && ((*tls_mask & (TLS_TLS | TLS_MARK))
8079 != (TLS_TLS | TLS_MARK)))
8080 continue;
8081
8082 if (expecting_tls_get_addr)
8083 {
8084 struct plt_entry *ent = NULL;
8085
8086 if (htab->tls_get_addr != NULL)
8087 for (ent = htab->tls_get_addr->elf.plt.plist;
8088 ent != NULL;
8089 ent = ent->next)
8090 if (ent->addend == 0)
8091 break;
8092
8093 if (ent == NULL && htab->tls_get_addr_fd != NULL)
8094 for (ent = htab->tls_get_addr_fd->elf.plt.plist;
8095 ent != NULL;
8096 ent = ent->next)
8097 if (ent->addend == 0)
8098 break;
8099
8100 if (ent != NULL
8101 && ent->plt.refcount > 0)
8102 ent->plt.refcount -= 1;
8103 }
8104
8105 if (tls_clear == 0)
8106 continue;
8107
8108 if ((tls_set & TLS_EXPLICIT) == 0)
8109 {
8110 struct got_entry *ent;
8111
8112 /* Adjust got entry for this reloc. */
8113 if (h != NULL)
8114 ent = h->got.glist;
8115 else
8116 ent = elf_local_got_ents (ibfd)[r_symndx];
8117
8118 for (; ent != NULL; ent = ent->next)
8119 if (ent->addend == rel->r_addend
8120 && ent->owner == ibfd
8121 && ent->tls_type == tls_type)
8122 break;
8123 if (ent == NULL)
8124 abort ();
8125
8126 if (tls_set == 0)
8127 {
8128 /* We managed to get rid of a got entry. */
8129 if (ent->got.refcount > 0)
8130 ent->got.refcount -= 1;
8131 }
8132 }
8133 else
8134 {
8135 /* If we got rid of a DTPMOD/DTPREL reloc pair then
8136 we'll lose one or two dyn relocs. */
8137 if (!dec_dynrel_count (rel->r_info, sec, info,
8138 NULL, h, sym))
8139 return FALSE;
8140
8141 if (tls_set == (TLS_EXPLICIT | TLS_GD))
8142 {
8143 if (!dec_dynrel_count ((rel + 1)->r_info, sec, info,
8144 NULL, h, sym))
8145 return FALSE;
8146 }
8147 }
8148
8149 *tls_mask |= tls_set & 0xff;
8150 *tls_mask &= ~tls_clear;
8151 }
8152
8153 if (elf_section_data (sec)->relocs != relstart)
8154 free (relstart);
8155 }
8156
8157 if (locsyms != NULL
8158 && (elf_symtab_hdr (ibfd).contents != (unsigned char *) locsyms))
8159 {
8160 if (!info->keep_memory)
8161 free (locsyms);
8162 else
8163 elf_symtab_hdr (ibfd).contents = (unsigned char *) locsyms;
8164 }
8165 }
8166
8167 if (toc_ref != NULL)
8168 free (toc_ref);
8169 htab->do_tls_opt = 1;
8170 return TRUE;
8171 }
8172
8173 /* Called via elf_link_hash_traverse from ppc64_elf_edit_toc to adjust
8174 the values of any global symbols in a toc section that has been
8175 edited. Globals in toc sections should be a rarity, so this function
8176 sets a flag if any are found in toc sections other than the one just
8177 edited, so that further hash table traversals can be avoided. */
8178
8179 struct adjust_toc_info
8180 {
8181 asection *toc;
8182 unsigned long *skip;
8183 bfd_boolean global_toc_syms;
8184 };
8185
8186 enum toc_skip_enum { ref_from_discarded = 1, can_optimize = 2 };
8187
8188 static bfd_boolean
8189 adjust_toc_syms (struct elf_link_hash_entry *h, void *inf)
8190 {
8191 struct ppc_link_hash_entry *eh;
8192 struct adjust_toc_info *toc_inf = (struct adjust_toc_info *) inf;
8193 unsigned long i;
8194
8195 if (h->root.type != bfd_link_hash_defined
8196 && h->root.type != bfd_link_hash_defweak)
8197 return TRUE;
8198
8199 eh = (struct ppc_link_hash_entry *) h;
8200 if (eh->adjust_done)
8201 return TRUE;
8202
8203 if (eh->elf.root.u.def.section == toc_inf->toc)
8204 {
8205 if (eh->elf.root.u.def.value > toc_inf->toc->rawsize)
8206 i = toc_inf->toc->rawsize >> 3;
8207 else
8208 i = eh->elf.root.u.def.value >> 3;
8209
8210 if ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0)
8211 {
8212 _bfd_error_handler
8213 (_("%s defined on removed toc entry"), eh->elf.root.root.string);
8214 do
8215 ++i;
8216 while ((toc_inf->skip[i] & (ref_from_discarded | can_optimize)) != 0);
8217 eh->elf.root.u.def.value = (bfd_vma) i << 3;
8218 }
8219
8220 eh->elf.root.u.def.value -= toc_inf->skip[i];
8221 eh->adjust_done = 1;
8222 }
8223 else if (strcmp (eh->elf.root.u.def.section->name, ".toc") == 0)
8224 toc_inf->global_toc_syms = TRUE;
8225
8226 return TRUE;
8227 }
8228
8229 /* Return TRUE iff INSN with a relocation of R_TYPE is one we expect
8230 on a _LO variety toc/got reloc. */
8231
8232 static bfd_boolean
8233 ok_lo_toc_insn (unsigned int insn, enum elf_ppc64_reloc_type r_type)
8234 {
8235 return ((insn & (0x3f << 26)) == 12u << 26 /* addic */
8236 || (insn & (0x3f << 26)) == 14u << 26 /* addi */
8237 || (insn & (0x3f << 26)) == 32u << 26 /* lwz */
8238 || (insn & (0x3f << 26)) == 34u << 26 /* lbz */
8239 || (insn & (0x3f << 26)) == 36u << 26 /* stw */
8240 || (insn & (0x3f << 26)) == 38u << 26 /* stb */
8241 || (insn & (0x3f << 26)) == 40u << 26 /* lhz */
8242 || (insn & (0x3f << 26)) == 42u << 26 /* lha */
8243 || (insn & (0x3f << 26)) == 44u << 26 /* sth */
8244 || (insn & (0x3f << 26)) == 46u << 26 /* lmw */
8245 || (insn & (0x3f << 26)) == 47u << 26 /* stmw */
8246 || (insn & (0x3f << 26)) == 48u << 26 /* lfs */
8247 || (insn & (0x3f << 26)) == 50u << 26 /* lfd */
8248 || (insn & (0x3f << 26)) == 52u << 26 /* stfs */
8249 || (insn & (0x3f << 26)) == 54u << 26 /* stfd */
8250 || (insn & (0x3f << 26)) == 56u << 26 /* lq,lfq */
8251 || ((insn & (0x3f << 26)) == 57u << 26 /* lxsd,lxssp,lfdp */
8252 /* Exclude lfqu by testing reloc. If relocs are ever
8253 defined for the reduced D field in psq_lu then those
8254 will need testing too. */
8255 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8256 || ((insn & (0x3f << 26)) == 58u << 26 /* ld,lwa */
8257 && (insn & 1) == 0)
8258 || (insn & (0x3f << 26)) == 60u << 26 /* stfq */
8259 || ((insn & (0x3f << 26)) == 61u << 26 /* lxv,stx{v,sd,ssp},stfdp */
8260 /* Exclude stfqu. psq_stu as above for psq_lu. */
8261 && r_type != R_PPC64_TOC16_LO && r_type != R_PPC64_GOT16_LO)
8262 || ((insn & (0x3f << 26)) == 62u << 26 /* std,stq */
8263 && (insn & 1) == 0));
8264 }
8265
8266 /* PCREL_OPT in one instance flags to the linker that a pair of insns:
8267 pld ra,symbol@got@pcrel
8268 load/store rt,off(ra)
8269 or
8270 pla ra,symbol@pcrel
8271 load/store rt,off(ra)
8272 may be translated to
8273 pload/pstore rt,symbol+off@pcrel
8274 nop.
8275 This function returns true if the optimization is possible, placing
8276 the prefix insn in *PINSN1, a NOP in *PINSN2 and the offset in *POFF.
8277
8278 On entry to this function, the linker has already determined that
8279 the pld can be replaced with pla: *PINSN1 is that pla insn,
8280 while *PINSN2 is the second instruction. */
8281
8282 static bfd_boolean
8283 xlate_pcrel_opt (uint64_t *pinsn1, uint64_t *pinsn2, bfd_signed_vma *poff)
8284 {
8285 uint32_t insn2 = *pinsn2 >> 32;
8286 uint64_t i1new;
8287 bfd_signed_vma off;
8288
8289 /* Check that regs match. */
8290 if (((insn2 >> 16) & 31) != ((*pinsn1 >> 21) & 31))
8291 return FALSE;
8292
8293 switch ((insn2 >> 26) & 63)
8294 {
8295 default:
8296 return FALSE;
8297
8298 case 32: /* lwz */
8299 case 34: /* lbz */
8300 case 36: /* stw */
8301 case 38: /* stb */
8302 case 40: /* lhz */
8303 case 42: /* lha */
8304 case 44: /* sth */
8305 case 48: /* lfs */
8306 case 50: /* lfd */
8307 case 52: /* stfs */
8308 case 54: /* stfd */
8309 /* These are the PMLS cases, where we just need to tack a prefix
8310 on the insn. */
8311 i1new = ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
8312 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8313 off = insn2 & 0xffff;
8314 break;
8315
8316 case 58: /* lwa, ld */
8317 if ((insn2 & 1) != 0)
8318 return FALSE;
8319 i1new = ((1ULL << 58) | (1ULL << 52)
8320 | (insn2 & 2 ? 41ULL << 26 : 57ULL << 26)
8321 | (insn2 & (31ULL << 21)));
8322 off = insn2 & 0xfffc;
8323 break;
8324
8325 case 57: /* lxsd, lxssp */
8326 if ((insn2 & 3) < 2)
8327 return FALSE;
8328 i1new = ((1ULL << 58) | (1ULL << 52)
8329 | ((40ULL | (insn2 & 3)) << 26)
8330 | (insn2 & (31ULL << 21)));
8331 off = insn2 & 0xfffc;
8332 break;
8333
8334 case 61: /* stxsd, stxssp, lxv, stxv */
8335 if ((insn2 & 3) == 0)
8336 return FALSE;
8337 else if ((insn2 & 3) >= 2)
8338 {
8339 i1new = ((1ULL << 58) | (1ULL << 52)
8340 | ((44ULL | (insn2 & 3)) << 26)
8341 | (insn2 & (31ULL << 21)));
8342 off = insn2 & 0xfffc;
8343 }
8344 else
8345 {
8346 i1new = ((1ULL << 58) | (1ULL << 52)
8347 | ((50ULL | (insn2 & 4) | ((insn2 & 8) >> 3)) << 26)
8348 | (insn2 & (31ULL << 21)));
8349 off = insn2 & 0xfff0;
8350 }
8351 break;
8352
8353 case 56: /* lq */
8354 i1new = ((1ULL << 58) | (1ULL << 52)
8355 | (insn2 & ((63ULL << 26) | (31ULL << 21))));
8356 off = insn2 & 0xffff;
8357 break;
8358
8359 case 62: /* std, stq */
8360 if ((insn2 & 1) != 0)
8361 return FALSE;
8362 i1new = ((1ULL << 58) | (1ULL << 52)
8363 | ((insn2 & 2) == 0 ? 61ULL << 26 : 60ULL << 26)
8364 | (insn2 & (31ULL << 21)));
8365 off = insn2 & 0xfffc;
8366 break;
8367 }
8368
8369 *pinsn1 = i1new;
8370 *pinsn2 = (uint64_t) NOP << 32;
8371 *poff = (off ^ 0x8000) - 0x8000;
8372 return TRUE;
8373 }
8374
8375 /* Examine all relocs referencing .toc sections in order to remove
8376 unused .toc entries. */
8377
8378 bfd_boolean
8379 ppc64_elf_edit_toc (struct bfd_link_info *info)
8380 {
8381 bfd *ibfd;
8382 struct adjust_toc_info toc_inf;
8383 struct ppc_link_hash_table *htab = ppc_hash_table (info);
8384
8385 htab->do_toc_opt = 1;
8386 toc_inf.global_toc_syms = TRUE;
8387 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8388 {
8389 asection *toc, *sec;
8390 Elf_Internal_Shdr *symtab_hdr;
8391 Elf_Internal_Sym *local_syms;
8392 Elf_Internal_Rela *relstart, *rel, *toc_relocs;
8393 unsigned long *skip, *drop;
8394 unsigned char *used;
8395 unsigned char *keep, last, some_unused;
8396
8397 if (!is_ppc64_elf (ibfd))
8398 continue;
8399
8400 toc = bfd_get_section_by_name (ibfd, ".toc");
8401 if (toc == NULL
8402 || toc->size == 0
8403 || toc->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8404 || discarded_section (toc))
8405 continue;
8406
8407 toc_relocs = NULL;
8408 local_syms = NULL;
8409 symtab_hdr = &elf_symtab_hdr (ibfd);
8410
8411 /* Look at sections dropped from the final link. */
8412 skip = NULL;
8413 relstart = NULL;
8414 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8415 {
8416 if (sec->reloc_count == 0
8417 || !discarded_section (sec)
8418 || get_opd_info (sec)
8419 || (sec->flags & SEC_ALLOC) == 0
8420 || (sec->flags & SEC_DEBUGGING) != 0)
8421 continue;
8422
8423 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL, FALSE);
8424 if (relstart == NULL)
8425 goto error_ret;
8426
8427 /* Run through the relocs to see which toc entries might be
8428 unused. */
8429 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8430 {
8431 enum elf_ppc64_reloc_type r_type;
8432 unsigned long r_symndx;
8433 asection *sym_sec;
8434 struct elf_link_hash_entry *h;
8435 Elf_Internal_Sym *sym;
8436 bfd_vma val;
8437
8438 r_type = ELF64_R_TYPE (rel->r_info);
8439 switch (r_type)
8440 {
8441 default:
8442 continue;
8443
8444 case R_PPC64_TOC16:
8445 case R_PPC64_TOC16_LO:
8446 case R_PPC64_TOC16_HI:
8447 case R_PPC64_TOC16_HA:
8448 case R_PPC64_TOC16_DS:
8449 case R_PPC64_TOC16_LO_DS:
8450 break;
8451 }
8452
8453 r_symndx = ELF64_R_SYM (rel->r_info);
8454 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8455 r_symndx, ibfd))
8456 goto error_ret;
8457
8458 if (sym_sec != toc)
8459 continue;
8460
8461 if (h != NULL)
8462 val = h->root.u.def.value;
8463 else
8464 val = sym->st_value;
8465 val += rel->r_addend;
8466
8467 if (val >= toc->size)
8468 continue;
8469
8470 /* Anything in the toc ought to be aligned to 8 bytes.
8471 If not, don't mark as unused. */
8472 if (val & 7)
8473 continue;
8474
8475 if (skip == NULL)
8476 {
8477 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8478 if (skip == NULL)
8479 goto error_ret;
8480 }
8481
8482 skip[val >> 3] = ref_from_discarded;
8483 }
8484
8485 if (elf_section_data (sec)->relocs != relstart)
8486 free (relstart);
8487 }
8488
8489 /* For largetoc loads of address constants, we can convert
8490 . addis rx,2,addr@got@ha
8491 . ld ry,addr@got@l(rx)
8492 to
8493 . addis rx,2,addr@toc@ha
8494 . addi ry,rx,addr@toc@l
8495 when addr is within 2G of the toc pointer. This then means
8496 that the word storing "addr" in the toc is no longer needed. */
8497
8498 if (!ppc64_elf_tdata (ibfd)->has_small_toc_reloc
8499 && toc->output_section->rawsize < (bfd_vma) 1 << 31
8500 && toc->reloc_count != 0)
8501 {
8502 /* Read toc relocs. */
8503 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8504 info->keep_memory);
8505 if (toc_relocs == NULL)
8506 goto error_ret;
8507
8508 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8509 {
8510 enum elf_ppc64_reloc_type r_type;
8511 unsigned long r_symndx;
8512 asection *sym_sec;
8513 struct elf_link_hash_entry *h;
8514 Elf_Internal_Sym *sym;
8515 bfd_vma val, addr;
8516
8517 r_type = ELF64_R_TYPE (rel->r_info);
8518 if (r_type != R_PPC64_ADDR64)
8519 continue;
8520
8521 r_symndx = ELF64_R_SYM (rel->r_info);
8522 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8523 r_symndx, ibfd))
8524 goto error_ret;
8525
8526 if (sym_sec == NULL
8527 || sym_sec->output_section == NULL
8528 || discarded_section (sym_sec))
8529 continue;
8530
8531 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8532 continue;
8533
8534 if (h != NULL)
8535 {
8536 if (h->type == STT_GNU_IFUNC)
8537 continue;
8538 val = h->root.u.def.value;
8539 }
8540 else
8541 {
8542 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
8543 continue;
8544 val = sym->st_value;
8545 }
8546 val += rel->r_addend;
8547 val += sym_sec->output_section->vma + sym_sec->output_offset;
8548
8549 /* We don't yet know the exact toc pointer value, but we
8550 know it will be somewhere in the toc section. Don't
8551 optimize if the difference from any possible toc
8552 pointer is outside [ff..f80008000, 7fff7fff]. */
8553 addr = toc->output_section->vma + TOC_BASE_OFF;
8554 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8555 continue;
8556
8557 addr = toc->output_section->vma + toc->output_section->rawsize;
8558 if (val - addr + (bfd_vma) 0x80008000 >= (bfd_vma) 1 << 32)
8559 continue;
8560
8561 if (skip == NULL)
8562 {
8563 skip = bfd_zmalloc (sizeof (*skip) * (toc->size + 15) / 8);
8564 if (skip == NULL)
8565 goto error_ret;
8566 }
8567
8568 skip[rel->r_offset >> 3]
8569 |= can_optimize | ((rel - toc_relocs) << 2);
8570 }
8571 }
8572
8573 if (skip == NULL)
8574 continue;
8575
8576 used = bfd_zmalloc (sizeof (*used) * (toc->size + 7) / 8);
8577 if (used == NULL)
8578 {
8579 error_ret:
8580 if (local_syms != NULL
8581 && symtab_hdr->contents != (unsigned char *) local_syms)
8582 free (local_syms);
8583 if (sec != NULL
8584 && relstart != NULL
8585 && elf_section_data (sec)->relocs != relstart)
8586 free (relstart);
8587 if (toc_relocs != NULL
8588 && elf_section_data (toc)->relocs != toc_relocs)
8589 free (toc_relocs);
8590 if (skip != NULL)
8591 free (skip);
8592 return FALSE;
8593 }
8594
8595 /* Now check all kept sections that might reference the toc.
8596 Check the toc itself last. */
8597 for (sec = (ibfd->sections == toc && toc->next ? toc->next
8598 : ibfd->sections);
8599 sec != NULL;
8600 sec = (sec == toc ? NULL
8601 : sec->next == NULL ? toc
8602 : sec->next == toc && toc->next ? toc->next
8603 : sec->next))
8604 {
8605 int repeat;
8606
8607 if (sec->reloc_count == 0
8608 || discarded_section (sec)
8609 || get_opd_info (sec)
8610 || (sec->flags & SEC_ALLOC) == 0
8611 || (sec->flags & SEC_DEBUGGING) != 0)
8612 continue;
8613
8614 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8615 info->keep_memory);
8616 if (relstart == NULL)
8617 {
8618 free (used);
8619 goto error_ret;
8620 }
8621
8622 /* Mark toc entries referenced as used. */
8623 do
8624 {
8625 repeat = 0;
8626 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8627 {
8628 enum elf_ppc64_reloc_type r_type;
8629 unsigned long r_symndx;
8630 asection *sym_sec;
8631 struct elf_link_hash_entry *h;
8632 Elf_Internal_Sym *sym;
8633 bfd_vma val;
8634
8635 r_type = ELF64_R_TYPE (rel->r_info);
8636 switch (r_type)
8637 {
8638 case R_PPC64_TOC16:
8639 case R_PPC64_TOC16_LO:
8640 case R_PPC64_TOC16_HI:
8641 case R_PPC64_TOC16_HA:
8642 case R_PPC64_TOC16_DS:
8643 case R_PPC64_TOC16_LO_DS:
8644 /* In case we're taking addresses of toc entries. */
8645 case R_PPC64_ADDR64:
8646 break;
8647
8648 default:
8649 continue;
8650 }
8651
8652 r_symndx = ELF64_R_SYM (rel->r_info);
8653 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8654 r_symndx, ibfd))
8655 {
8656 free (used);
8657 goto error_ret;
8658 }
8659
8660 if (sym_sec != toc)
8661 continue;
8662
8663 if (h != NULL)
8664 val = h->root.u.def.value;
8665 else
8666 val = sym->st_value;
8667 val += rel->r_addend;
8668
8669 if (val >= toc->size)
8670 continue;
8671
8672 if ((skip[val >> 3] & can_optimize) != 0)
8673 {
8674 bfd_vma off;
8675 unsigned char opc;
8676
8677 switch (r_type)
8678 {
8679 case R_PPC64_TOC16_HA:
8680 break;
8681
8682 case R_PPC64_TOC16_LO_DS:
8683 off = rel->r_offset;
8684 off += (bfd_big_endian (ibfd) ? -2 : 3);
8685 if (!bfd_get_section_contents (ibfd, sec, &opc,
8686 off, 1))
8687 {
8688 free (used);
8689 goto error_ret;
8690 }
8691 if ((opc & (0x3f << 2)) == (58u << 2))
8692 break;
8693 /* Fall through. */
8694
8695 default:
8696 /* Wrong sort of reloc, or not a ld. We may
8697 as well clear ref_from_discarded too. */
8698 skip[val >> 3] = 0;
8699 }
8700 }
8701
8702 if (sec != toc)
8703 used[val >> 3] = 1;
8704 /* For the toc section, we only mark as used if this
8705 entry itself isn't unused. */
8706 else if ((used[rel->r_offset >> 3]
8707 || !(skip[rel->r_offset >> 3] & ref_from_discarded))
8708 && !used[val >> 3])
8709 {
8710 /* Do all the relocs again, to catch reference
8711 chains. */
8712 repeat = 1;
8713 used[val >> 3] = 1;
8714 }
8715 }
8716 }
8717 while (repeat);
8718
8719 if (elf_section_data (sec)->relocs != relstart)
8720 free (relstart);
8721 }
8722
8723 /* Merge the used and skip arrays. Assume that TOC
8724 doublewords not appearing as either used or unused belong
8725 to an entry more than one doubleword in size. */
8726 for (drop = skip, keep = used, last = 0, some_unused = 0;
8727 drop < skip + (toc->size + 7) / 8;
8728 ++drop, ++keep)
8729 {
8730 if (*keep)
8731 {
8732 *drop &= ~ref_from_discarded;
8733 if ((*drop & can_optimize) != 0)
8734 some_unused = 1;
8735 last = 0;
8736 }
8737 else if ((*drop & ref_from_discarded) != 0)
8738 {
8739 some_unused = 1;
8740 last = ref_from_discarded;
8741 }
8742 else
8743 *drop = last;
8744 }
8745
8746 free (used);
8747
8748 if (some_unused)
8749 {
8750 bfd_byte *contents, *src;
8751 unsigned long off;
8752 Elf_Internal_Sym *sym;
8753 bfd_boolean local_toc_syms = FALSE;
8754
8755 /* Shuffle the toc contents, and at the same time convert the
8756 skip array from booleans into offsets. */
8757 if (!bfd_malloc_and_get_section (ibfd, toc, &contents))
8758 goto error_ret;
8759
8760 elf_section_data (toc)->this_hdr.contents = contents;
8761
8762 for (src = contents, off = 0, drop = skip;
8763 src < contents + toc->size;
8764 src += 8, ++drop)
8765 {
8766 if ((*drop & (can_optimize | ref_from_discarded)) != 0)
8767 off += 8;
8768 else if (off != 0)
8769 {
8770 *drop = off;
8771 memcpy (src - off, src, 8);
8772 }
8773 }
8774 *drop = off;
8775 toc->rawsize = toc->size;
8776 toc->size = src - contents - off;
8777
8778 /* Adjust addends for relocs against the toc section sym,
8779 and optimize any accesses we can. */
8780 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8781 {
8782 if (sec->reloc_count == 0
8783 || discarded_section (sec))
8784 continue;
8785
8786 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
8787 info->keep_memory);
8788 if (relstart == NULL)
8789 goto error_ret;
8790
8791 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
8792 {
8793 enum elf_ppc64_reloc_type r_type;
8794 unsigned long r_symndx;
8795 asection *sym_sec;
8796 struct elf_link_hash_entry *h;
8797 bfd_vma val;
8798
8799 r_type = ELF64_R_TYPE (rel->r_info);
8800 switch (r_type)
8801 {
8802 default:
8803 continue;
8804
8805 case R_PPC64_TOC16:
8806 case R_PPC64_TOC16_LO:
8807 case R_PPC64_TOC16_HI:
8808 case R_PPC64_TOC16_HA:
8809 case R_PPC64_TOC16_DS:
8810 case R_PPC64_TOC16_LO_DS:
8811 case R_PPC64_ADDR64:
8812 break;
8813 }
8814
8815 r_symndx = ELF64_R_SYM (rel->r_info);
8816 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
8817 r_symndx, ibfd))
8818 goto error_ret;
8819
8820 if (sym_sec != toc)
8821 continue;
8822
8823 if (h != NULL)
8824 val = h->root.u.def.value;
8825 else
8826 {
8827 val = sym->st_value;
8828 if (val != 0)
8829 local_toc_syms = TRUE;
8830 }
8831
8832 val += rel->r_addend;
8833
8834 if (val > toc->rawsize)
8835 val = toc->rawsize;
8836 else if ((skip[val >> 3] & ref_from_discarded) != 0)
8837 continue;
8838 else if ((skip[val >> 3] & can_optimize) != 0)
8839 {
8840 Elf_Internal_Rela *tocrel
8841 = toc_relocs + (skip[val >> 3] >> 2);
8842 unsigned long tsym = ELF64_R_SYM (tocrel->r_info);
8843
8844 switch (r_type)
8845 {
8846 case R_PPC64_TOC16_HA:
8847 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_TOC16_HA);
8848 break;
8849
8850 case R_PPC64_TOC16_LO_DS:
8851 rel->r_info = ELF64_R_INFO (tsym, R_PPC64_LO_DS_OPT);
8852 break;
8853
8854 default:
8855 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
8856 ppc_howto_init ();
8857 info->callbacks->einfo
8858 /* xgettext:c-format */
8859 (_("%H: %s references "
8860 "optimized away TOC entry\n"),
8861 ibfd, sec, rel->r_offset,
8862 ppc64_elf_howto_table[r_type]->name);
8863 bfd_set_error (bfd_error_bad_value);
8864 goto error_ret;
8865 }
8866 rel->r_addend = tocrel->r_addend;
8867 elf_section_data (sec)->relocs = relstart;
8868 continue;
8869 }
8870
8871 if (h != NULL || sym->st_value != 0)
8872 continue;
8873
8874 rel->r_addend -= skip[val >> 3];
8875 elf_section_data (sec)->relocs = relstart;
8876 }
8877
8878 if (elf_section_data (sec)->relocs != relstart)
8879 free (relstart);
8880 }
8881
8882 /* We shouldn't have local or global symbols defined in the TOC,
8883 but handle them anyway. */
8884 if (local_syms != NULL)
8885 for (sym = local_syms;
8886 sym < local_syms + symtab_hdr->sh_info;
8887 ++sym)
8888 if (sym->st_value != 0
8889 && bfd_section_from_elf_index (ibfd, sym->st_shndx) == toc)
8890 {
8891 unsigned long i;
8892
8893 if (sym->st_value > toc->rawsize)
8894 i = toc->rawsize >> 3;
8895 else
8896 i = sym->st_value >> 3;
8897
8898 if ((skip[i] & (ref_from_discarded | can_optimize)) != 0)
8899 {
8900 if (local_toc_syms)
8901 _bfd_error_handler
8902 (_("%s defined on removed toc entry"),
8903 bfd_elf_sym_name (ibfd, symtab_hdr, sym, NULL));
8904 do
8905 ++i;
8906 while ((skip[i] & (ref_from_discarded | can_optimize)));
8907 sym->st_value = (bfd_vma) i << 3;
8908 }
8909
8910 sym->st_value -= skip[i];
8911 symtab_hdr->contents = (unsigned char *) local_syms;
8912 }
8913
8914 /* Adjust any global syms defined in this toc input section. */
8915 if (toc_inf.global_toc_syms)
8916 {
8917 toc_inf.toc = toc;
8918 toc_inf.skip = skip;
8919 toc_inf.global_toc_syms = FALSE;
8920 elf_link_hash_traverse (elf_hash_table (info), adjust_toc_syms,
8921 &toc_inf);
8922 }
8923
8924 if (toc->reloc_count != 0)
8925 {
8926 Elf_Internal_Shdr *rel_hdr;
8927 Elf_Internal_Rela *wrel;
8928 bfd_size_type sz;
8929
8930 /* Remove unused toc relocs, and adjust those we keep. */
8931 if (toc_relocs == NULL)
8932 toc_relocs = _bfd_elf_link_read_relocs (ibfd, toc, NULL, NULL,
8933 info->keep_memory);
8934 if (toc_relocs == NULL)
8935 goto error_ret;
8936
8937 wrel = toc_relocs;
8938 for (rel = toc_relocs; rel < toc_relocs + toc->reloc_count; ++rel)
8939 if ((skip[rel->r_offset >> 3]
8940 & (ref_from_discarded | can_optimize)) == 0)
8941 {
8942 wrel->r_offset = rel->r_offset - skip[rel->r_offset >> 3];
8943 wrel->r_info = rel->r_info;
8944 wrel->r_addend = rel->r_addend;
8945 ++wrel;
8946 }
8947 else if (!dec_dynrel_count (rel->r_info, toc, info,
8948 &local_syms, NULL, NULL))
8949 goto error_ret;
8950
8951 elf_section_data (toc)->relocs = toc_relocs;
8952 toc->reloc_count = wrel - toc_relocs;
8953 rel_hdr = _bfd_elf_single_rel_hdr (toc);
8954 sz = rel_hdr->sh_entsize;
8955 rel_hdr->sh_size = toc->reloc_count * sz;
8956 }
8957 }
8958 else if (toc_relocs != NULL
8959 && elf_section_data (toc)->relocs != toc_relocs)
8960 free (toc_relocs);
8961
8962 if (local_syms != NULL
8963 && symtab_hdr->contents != (unsigned char *) local_syms)
8964 {
8965 if (!info->keep_memory)
8966 free (local_syms);
8967 else
8968 symtab_hdr->contents = (unsigned char *) local_syms;
8969 }
8970 free (skip);
8971 }
8972
8973 /* Look for cases where we can change an indirect GOT access to
8974 a GOT relative or PC relative access, possibly reducing the
8975 number of GOT entries. */
8976 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
8977 {
8978 asection *sec;
8979 Elf_Internal_Shdr *symtab_hdr;
8980 Elf_Internal_Sym *local_syms;
8981 Elf_Internal_Rela *relstart, *rel;
8982 bfd_vma got;
8983
8984 if (!is_ppc64_elf (ibfd))
8985 continue;
8986
8987 if (!ppc64_elf_tdata (ibfd)->has_optrel)
8988 continue;
8989
8990 sec = ppc64_elf_tdata (ibfd)->got;
8991 got = 0;
8992 if (sec != NULL)
8993 got = sec->output_section->vma + sec->output_offset + 0x8000;
8994
8995 local_syms = NULL;
8996 symtab_hdr = &elf_symtab_hdr (ibfd);
8997
8998 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8999 {
9000 if (sec->reloc_count == 0
9001 || !ppc64_elf_section_data (sec)->has_optrel
9002 || discarded_section (sec))
9003 continue;
9004
9005 relstart = _bfd_elf_link_read_relocs (ibfd, sec, NULL, NULL,
9006 info->keep_memory);
9007 if (relstart == NULL)
9008 {
9009 got_error_ret:
9010 if (local_syms != NULL
9011 && symtab_hdr->contents != (unsigned char *) local_syms)
9012 free (local_syms);
9013 if (sec != NULL
9014 && relstart != NULL
9015 && elf_section_data (sec)->relocs != relstart)
9016 free (relstart);
9017 return FALSE;
9018 }
9019
9020 for (rel = relstart; rel < relstart + sec->reloc_count; ++rel)
9021 {
9022 enum elf_ppc64_reloc_type r_type;
9023 unsigned long r_symndx;
9024 Elf_Internal_Sym *sym;
9025 asection *sym_sec;
9026 struct elf_link_hash_entry *h;
9027 struct got_entry *ent;
9028 bfd_vma sym_addend, val, pc;
9029 unsigned char buf[8];
9030 unsigned int insn;
9031 enum {no_check, check_lo, check_ha} insn_check;
9032
9033 r_type = ELF64_R_TYPE (rel->r_info);
9034 switch (r_type)
9035 {
9036 default:
9037 insn_check = no_check;
9038 break;
9039
9040 case R_PPC64_PLT16_HA:
9041 case R_PPC64_GOT_TLSLD16_HA:
9042 case R_PPC64_GOT_TLSGD16_HA:
9043 case R_PPC64_GOT_TPREL16_HA:
9044 case R_PPC64_GOT_DTPREL16_HA:
9045 case R_PPC64_GOT16_HA:
9046 case R_PPC64_TOC16_HA:
9047 insn_check = check_ha;
9048 break;
9049
9050 case R_PPC64_PLT16_LO:
9051 case R_PPC64_PLT16_LO_DS:
9052 case R_PPC64_GOT_TLSLD16_LO:
9053 case R_PPC64_GOT_TLSGD16_LO:
9054 case R_PPC64_GOT_TPREL16_LO_DS:
9055 case R_PPC64_GOT_DTPREL16_LO_DS:
9056 case R_PPC64_GOT16_LO:
9057 case R_PPC64_GOT16_LO_DS:
9058 case R_PPC64_TOC16_LO:
9059 case R_PPC64_TOC16_LO_DS:
9060 insn_check = check_lo;
9061 break;
9062 }
9063
9064 if (insn_check != no_check)
9065 {
9066 bfd_vma off = rel->r_offset & ~3;
9067
9068 if (!bfd_get_section_contents (ibfd, sec, buf, off, 4))
9069 goto got_error_ret;
9070
9071 insn = bfd_get_32 (ibfd, buf);
9072 if (insn_check == check_lo
9073 ? !ok_lo_toc_insn (insn, r_type)
9074 : ((insn & ((0x3f << 26) | 0x1f << 16))
9075 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9076 {
9077 char str[12];
9078
9079 ppc64_elf_tdata (ibfd)->unexpected_toc_insn = 1;
9080 sprintf (str, "%#08x", insn);
9081 info->callbacks->einfo
9082 /* xgettext:c-format */
9083 (_("%H: got/toc optimization is not supported for"
9084 " %s instruction\n"),
9085 ibfd, sec, rel->r_offset & ~3, str);
9086 continue;
9087 }
9088 }
9089
9090 switch (r_type)
9091 {
9092 /* Note that we don't delete GOT entries for
9093 R_PPC64_GOT16_DS since we'd need a lot more
9094 analysis. For starters, the preliminary layout is
9095 before the GOT, PLT, dynamic sections and stubs are
9096 laid out. Then we'd need to allow for changes in
9097 distance between sections caused by alignment. */
9098 default:
9099 continue;
9100
9101 case R_PPC64_GOT16_HA:
9102 case R_PPC64_GOT16_LO_DS:
9103 sym_addend = rel->r_addend;
9104 break;
9105
9106 case R_PPC64_GOT_PCREL34:
9107 sym_addend = 0;
9108 break;
9109 }
9110
9111 r_symndx = ELF64_R_SYM (rel->r_info);
9112 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
9113 r_symndx, ibfd))
9114 goto got_error_ret;
9115
9116 if (sym_sec == NULL
9117 || sym_sec->output_section == NULL
9118 || discarded_section (sym_sec))
9119 continue;
9120
9121 if (!SYMBOL_REFERENCES_LOCAL (info, h))
9122 continue;
9123
9124 if (h != NULL)
9125 val = h->root.u.def.value;
9126 else
9127 val = sym->st_value;
9128 val += sym_addend;
9129 val += sym_sec->output_section->vma + sym_sec->output_offset;
9130
9131 /* Fudge factor to allow for the fact that the preliminary layout
9132 isn't exact. Reduce limits by this factor. */
9133 #define LIMIT_ADJUST(LIMIT) ((LIMIT) - (LIMIT) / 16)
9134
9135 switch (r_type)
9136 {
9137 default:
9138 continue;
9139
9140 case R_PPC64_GOT16_HA:
9141 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9142 >= LIMIT_ADJUST (0x100000000ULL))
9143 continue;
9144
9145 if (!bfd_get_section_contents (ibfd, sec, buf,
9146 rel->r_offset & ~3, 4))
9147 goto got_error_ret;
9148 insn = bfd_get_32 (ibfd, buf);
9149 if (((insn & ((0x3f << 26) | 0x1f << 16))
9150 != ((15u << 26) | (2 << 16)) /* addis rt,2,imm */))
9151 continue;
9152 break;
9153
9154 case R_PPC64_GOT16_LO_DS:
9155 if (val - got + LIMIT_ADJUST (0x80008000ULL)
9156 >= LIMIT_ADJUST (0x100000000ULL))
9157 continue;
9158 if (!bfd_get_section_contents (ibfd, sec, buf,
9159 rel->r_offset & ~3, 4))
9160 goto got_error_ret;
9161 insn = bfd_get_32 (ibfd, buf);
9162 if ((insn & (0x3f << 26 | 0x3)) != 58u << 26 /* ld */)
9163 continue;
9164 break;
9165
9166 case R_PPC64_GOT_PCREL34:
9167 pc = rel->r_offset;
9168 pc += sec->output_section->vma + sec->output_offset;
9169 if (val - pc + LIMIT_ADJUST (1ULL << 33)
9170 >= LIMIT_ADJUST (1ULL << 34))
9171 continue;
9172 if (!bfd_get_section_contents (ibfd, sec, buf,
9173 rel->r_offset & ~3, 8))
9174 goto got_error_ret;
9175 insn = bfd_get_32 (ibfd, buf);
9176 if ((insn & (-1u << 18)) != ((1u << 26) | (1u << 20)))
9177 continue;
9178 insn = bfd_get_32 (ibfd, buf + 4);
9179 if ((insn & (0x3f << 26)) != 57u << 26)
9180 continue;
9181 break;
9182 }
9183 #undef LIMIT_ADJUST
9184
9185 if (h != NULL)
9186 ent = h->got.glist;
9187 else
9188 {
9189 struct got_entry **local_got_ents = elf_local_got_ents (ibfd);
9190 ent = local_got_ents[r_symndx];
9191 }
9192 for (; ent != NULL; ent = ent->next)
9193 if (ent->addend == sym_addend
9194 && ent->owner == ibfd
9195 && ent->tls_type == 0)
9196 break;
9197 BFD_ASSERT (ent && ent->got.refcount > 0);
9198 ent->got.refcount -= 1;
9199 }
9200
9201 if (elf_section_data (sec)->relocs != relstart)
9202 free (relstart);
9203 }
9204
9205 if (local_syms != NULL
9206 && symtab_hdr->contents != (unsigned char *) local_syms)
9207 {
9208 if (!info->keep_memory)
9209 free (local_syms);
9210 else
9211 symtab_hdr->contents = (unsigned char *) local_syms;
9212 }
9213 }
9214
9215 return TRUE;
9216 }
9217
9218 /* Return true iff input section I references the TOC using
9219 instructions limited to +/-32k offsets. */
9220
9221 bfd_boolean
9222 ppc64_elf_has_small_toc_reloc (asection *i)
9223 {
9224 return (is_ppc64_elf (i->owner)
9225 && ppc64_elf_tdata (i->owner)->has_small_toc_reloc);
9226 }
9227
9228 /* Allocate space for one GOT entry. */
9229
9230 static void
9231 allocate_got (struct elf_link_hash_entry *h,
9232 struct bfd_link_info *info,
9233 struct got_entry *gent)
9234 {
9235 struct ppc_link_hash_table *htab = ppc_hash_table (info);
9236 struct ppc_link_hash_entry *eh = (struct ppc_link_hash_entry *) h;
9237 int entsize = (gent->tls_type & eh->tls_mask & (TLS_GD | TLS_LD)
9238 ? 16 : 8);
9239 int rentsize = (gent->tls_type & eh->tls_mask & TLS_GD
9240 ? 2 : 1) * sizeof (Elf64_External_Rela);
9241 asection *got = ppc64_elf_tdata (gent->owner)->got;
9242
9243 gent->got.offset = got->size;
9244 got->size += entsize;
9245
9246 if (h->type == STT_GNU_IFUNC)
9247 {
9248 htab->elf.irelplt->size += rentsize;
9249 htab->got_reli_size += rentsize;
9250 }
9251 else if (((bfd_link_pic (info)
9252 && !((gent->tls_type & TLS_TPREL) != 0
9253 && bfd_link_executable (info)
9254 && SYMBOL_REFERENCES_LOCAL (info, h)))
9255 || (htab->elf.dynamic_sections_created
9256 && h->dynindx != -1
9257 && !SYMBOL_REFERENCES_LOCAL (info, h)))
9258 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9259 {
9260 asection *relgot = ppc64_elf_tdata (gent->owner)->relgot;
9261 relgot->size += rentsize;
9262 }
9263 }
9264
9265 /* This function merges got entries in the same toc group. */
9266
9267 static void
9268 merge_got_entries (struct got_entry **pent)
9269 {
9270 struct got_entry *ent, *ent2;
9271
9272 for (ent = *pent; ent != NULL; ent = ent->next)
9273 if (!ent->is_indirect)
9274 for (ent2 = ent->next; ent2 != NULL; ent2 = ent2->next)
9275 if (!ent2->is_indirect
9276 && ent2->addend == ent->addend
9277 && ent2->tls_type == ent->tls_type
9278 && elf_gp (ent2->owner) == elf_gp (ent->owner))
9279 {
9280 ent2->is_indirect = TRUE;
9281 ent2->got.ent = ent;
9282 }
9283 }
9284
9285 /* If H is undefined, make it dynamic if that makes sense. */
9286
9287 static bfd_boolean
9288 ensure_undef_dynamic (struct bfd_link_info *info,
9289 struct elf_link_hash_entry *h)
9290 {
9291 struct elf_link_hash_table *htab = elf_hash_table (info);
9292
9293 if (htab->dynamic_sections_created
9294 && ((info->dynamic_undefined_weak != 0
9295 && h->root.type == bfd_link_hash_undefweak)
9296 || h->root.type == bfd_link_hash_undefined)
9297 && h->dynindx == -1
9298 && !h->forced_local
9299 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9300 return bfd_elf_link_record_dynamic_symbol (info, h);
9301 return TRUE;
9302 }
9303
9304 /* Allocate space in .plt, .got and associated reloc sections for
9305 dynamic relocs. */
9306
9307 static bfd_boolean
9308 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9309 {
9310 struct bfd_link_info *info;
9311 struct ppc_link_hash_table *htab;
9312 asection *s;
9313 struct ppc_link_hash_entry *eh;
9314 struct got_entry **pgent, *gent;
9315
9316 if (h->root.type == bfd_link_hash_indirect)
9317 return TRUE;
9318
9319 info = (struct bfd_link_info *) inf;
9320 htab = ppc_hash_table (info);
9321 if (htab == NULL)
9322 return FALSE;
9323
9324 eh = (struct ppc_link_hash_entry *) h;
9325 /* Run through the TLS GD got entries first if we're changing them
9326 to TPREL. */
9327 if ((eh->tls_mask & (TLS_TLS | TLS_GDIE)) == (TLS_TLS | TLS_GDIE))
9328 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9329 if (gent->got.refcount > 0
9330 && (gent->tls_type & TLS_GD) != 0)
9331 {
9332 /* This was a GD entry that has been converted to TPREL. If
9333 there happens to be a TPREL entry we can use that one. */
9334 struct got_entry *ent;
9335 for (ent = h->got.glist; ent != NULL; ent = ent->next)
9336 if (ent->got.refcount > 0
9337 && (ent->tls_type & TLS_TPREL) != 0
9338 && ent->addend == gent->addend
9339 && ent->owner == gent->owner)
9340 {
9341 gent->got.refcount = 0;
9342 break;
9343 }
9344
9345 /* If not, then we'll be using our own TPREL entry. */
9346 if (gent->got.refcount != 0)
9347 gent->tls_type = TLS_TLS | TLS_TPREL;
9348 }
9349
9350 /* Remove any list entry that won't generate a word in the GOT before
9351 we call merge_got_entries. Otherwise we risk merging to empty
9352 entries. */
9353 pgent = &h->got.glist;
9354 while ((gent = *pgent) != NULL)
9355 if (gent->got.refcount > 0)
9356 {
9357 if ((gent->tls_type & TLS_LD) != 0
9358 && !h->def_dynamic)
9359 {
9360 ppc64_tlsld_got (gent->owner)->got.refcount += 1;
9361 *pgent = gent->next;
9362 }
9363 else
9364 pgent = &gent->next;
9365 }
9366 else
9367 *pgent = gent->next;
9368
9369 if (!htab->do_multi_toc)
9370 merge_got_entries (&h->got.glist);
9371
9372 for (gent = h->got.glist; gent != NULL; gent = gent->next)
9373 if (!gent->is_indirect)
9374 {
9375 /* Make sure this symbol is output as a dynamic symbol. */
9376 if (!ensure_undef_dynamic (info, h))
9377 return FALSE;
9378
9379 if (!is_ppc64_elf (gent->owner))
9380 abort ();
9381
9382 allocate_got (h, info, gent);
9383 }
9384
9385 /* If no dynamic sections we can't have dynamic relocs, except for
9386 IFUNCs which are handled even in static executables. */
9387 if (!htab->elf.dynamic_sections_created
9388 && h->type != STT_GNU_IFUNC)
9389 eh->dyn_relocs = NULL;
9390
9391 /* Discard relocs on undefined symbols that must be local. */
9392 else if (h->root.type == bfd_link_hash_undefined
9393 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9394 eh->dyn_relocs = NULL;
9395
9396 /* Also discard relocs on undefined weak syms with non-default
9397 visibility, or when dynamic_undefined_weak says so. */
9398 else if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9399 eh->dyn_relocs = NULL;
9400
9401 if (eh->dyn_relocs != NULL)
9402 {
9403 struct elf_dyn_relocs *p, **pp;
9404
9405 /* In the shared -Bsymbolic case, discard space allocated for
9406 dynamic pc-relative relocs against symbols which turn out to
9407 be defined in regular objects. For the normal shared case,
9408 discard space for relocs that have become local due to symbol
9409 visibility changes. */
9410
9411 if (bfd_link_pic (info))
9412 {
9413 /* Relocs that use pc_count are those that appear on a call
9414 insn, or certain REL relocs (see must_be_dyn_reloc) that
9415 can be generated via assembly. We want calls to
9416 protected symbols to resolve directly to the function
9417 rather than going via the plt. If people want function
9418 pointer comparisons to work as expected then they should
9419 avoid writing weird assembly. */
9420 if (SYMBOL_CALLS_LOCAL (info, h))
9421 {
9422 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
9423 {
9424 p->count -= p->pc_count;
9425 p->pc_count = 0;
9426 if (p->count == 0)
9427 *pp = p->next;
9428 else
9429 pp = &p->next;
9430 }
9431 }
9432
9433 if (eh->dyn_relocs != NULL)
9434 {
9435 /* Make sure this symbol is output as a dynamic symbol. */
9436 if (!ensure_undef_dynamic (info, h))
9437 return FALSE;
9438 }
9439 }
9440 else if (ELIMINATE_COPY_RELOCS && h->type != STT_GNU_IFUNC)
9441 {
9442 /* For the non-pic case, discard space for relocs against
9443 symbols which turn out to need copy relocs or are not
9444 dynamic. */
9445 if (h->dynamic_adjusted
9446 && !h->def_regular
9447 && !ELF_COMMON_DEF_P (h))
9448 {
9449 /* Make sure this symbol is output as a dynamic symbol. */
9450 if (!ensure_undef_dynamic (info, h))
9451 return FALSE;
9452
9453 if (h->dynindx == -1)
9454 eh->dyn_relocs = NULL;
9455 }
9456 else
9457 eh->dyn_relocs = NULL;
9458 }
9459
9460 /* Finally, allocate space. */
9461 for (p = eh->dyn_relocs; p != NULL; p = p->next)
9462 {
9463 asection *sreloc = elf_section_data (p->sec)->sreloc;
9464 if (eh->elf.type == STT_GNU_IFUNC)
9465 sreloc = htab->elf.irelplt;
9466 sreloc->size += p->count * sizeof (Elf64_External_Rela);
9467 }
9468 }
9469
9470 /* We might need a PLT entry when the symbol
9471 a) is dynamic, or
9472 b) is an ifunc, or
9473 c) has plt16 relocs and has been processed by adjust_dynamic_symbol, or
9474 d) has plt16 relocs and we are linking statically. */
9475 if ((htab->elf.dynamic_sections_created && h->dynindx != -1)
9476 || h->type == STT_GNU_IFUNC
9477 || (h->needs_plt && h->dynamic_adjusted)
9478 || (h->needs_plt
9479 && h->def_regular
9480 && !htab->elf.dynamic_sections_created
9481 && !htab->can_convert_all_inline_plt
9482 && (((struct ppc_link_hash_entry *) h)->tls_mask
9483 & (TLS_TLS | PLT_KEEP)) == PLT_KEEP))
9484 {
9485 struct plt_entry *pent;
9486 bfd_boolean doneone = FALSE;
9487 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9488 if (pent->plt.refcount > 0)
9489 {
9490 if (!htab->elf.dynamic_sections_created
9491 || h->dynindx == -1)
9492 {
9493 if (h->type == STT_GNU_IFUNC)
9494 {
9495 s = htab->elf.iplt;
9496 pent->plt.offset = s->size;
9497 s->size += PLT_ENTRY_SIZE (htab);
9498 s = htab->elf.irelplt;
9499 }
9500 else
9501 {
9502 s = htab->pltlocal;
9503 pent->plt.offset = s->size;
9504 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9505 s = bfd_link_pic (info) ? htab->relpltlocal : NULL;
9506 }
9507 }
9508 else
9509 {
9510 /* If this is the first .plt entry, make room for the special
9511 first entry. */
9512 s = htab->elf.splt;
9513 if (s->size == 0)
9514 s->size += PLT_INITIAL_ENTRY_SIZE (htab);
9515
9516 pent->plt.offset = s->size;
9517
9518 /* Make room for this entry. */
9519 s->size += PLT_ENTRY_SIZE (htab);
9520
9521 /* Make room for the .glink code. */
9522 s = htab->glink;
9523 if (s->size == 0)
9524 s->size += GLINK_PLTRESOLVE_SIZE (htab);
9525 if (htab->opd_abi)
9526 {
9527 /* We need bigger stubs past index 32767. */
9528 if (s->size >= GLINK_PLTRESOLVE_SIZE (htab) + 32768*2*4)
9529 s->size += 4;
9530 s->size += 2*4;
9531 }
9532 else
9533 s->size += 4;
9534
9535 /* We also need to make an entry in the .rela.plt section. */
9536 s = htab->elf.srelplt;
9537 }
9538 if (s != NULL)
9539 s->size += sizeof (Elf64_External_Rela);
9540 doneone = TRUE;
9541 }
9542 else
9543 pent->plt.offset = (bfd_vma) -1;
9544 if (!doneone)
9545 {
9546 h->plt.plist = NULL;
9547 h->needs_plt = 0;
9548 }
9549 }
9550 else
9551 {
9552 h->plt.plist = NULL;
9553 h->needs_plt = 0;
9554 }
9555
9556 return TRUE;
9557 }
9558
9559 #define PPC_LO(v) ((v) & 0xffff)
9560 #define PPC_HI(v) (((v) >> 16) & 0xffff)
9561 #define PPC_HA(v) PPC_HI ((v) + 0x8000)
9562 #define D34(v) \
9563 ((((v) & 0x3ffff0000ULL) << 16) | (v & 0xffff))
9564 #define HA34(v) ((v + (1ULL << 33)) >> 34)
9565
9566 /* Called via elf_link_hash_traverse from ppc64_elf_size_dynamic_sections
9567 to set up space for global entry stubs. These are put in glink,
9568 after the branch table. */
9569
9570 static bfd_boolean
9571 size_global_entry_stubs (struct elf_link_hash_entry *h, void *inf)
9572 {
9573 struct bfd_link_info *info;
9574 struct ppc_link_hash_table *htab;
9575 struct plt_entry *pent;
9576 asection *s, *plt;
9577
9578 if (h->root.type == bfd_link_hash_indirect)
9579 return TRUE;
9580
9581 if (!h->pointer_equality_needed)
9582 return TRUE;
9583
9584 if (h->def_regular)
9585 return TRUE;
9586
9587 info = inf;
9588 htab = ppc_hash_table (info);
9589 if (htab == NULL)
9590 return FALSE;
9591
9592 s = htab->global_entry;
9593 plt = htab->elf.splt;
9594 for (pent = h->plt.plist; pent != NULL; pent = pent->next)
9595 if (pent->plt.offset != (bfd_vma) -1
9596 && pent->addend == 0)
9597 {
9598 /* For ELFv2, if this symbol is not defined in a regular file
9599 and we are not generating a shared library or pie, then we
9600 need to define the symbol in the executable on a call stub.
9601 This is to avoid text relocations. */
9602 bfd_vma off, stub_align, stub_off, stub_size;
9603 unsigned int align_power;
9604
9605 stub_size = 16;
9606 stub_off = s->size;
9607 if (htab->params->plt_stub_align >= 0)
9608 align_power = htab->params->plt_stub_align;
9609 else
9610 align_power = -htab->params->plt_stub_align;
9611 /* Setting section alignment is delayed until we know it is
9612 non-empty. Otherwise the .text output section will be
9613 aligned at least to plt_stub_align even when no global
9614 entry stubs are needed. */
9615 if (s->alignment_power < align_power)
9616 s->alignment_power = align_power;
9617 stub_align = (bfd_vma) 1 << align_power;
9618 if (htab->params->plt_stub_align >= 0
9619 || ((((stub_off + stub_size - 1) & -stub_align)
9620 - (stub_off & -stub_align))
9621 > ((stub_size - 1) & -stub_align)))
9622 stub_off = (stub_off + stub_align - 1) & -stub_align;
9623 off = pent->plt.offset + plt->output_offset + plt->output_section->vma;
9624 off -= stub_off + s->output_offset + s->output_section->vma;
9625 /* Note that for --plt-stub-align negative we have a possible
9626 dependency between stub offset and size. Break that
9627 dependency by assuming the max stub size when calculating
9628 the stub offset. */
9629 if (PPC_HA (off) == 0)
9630 stub_size -= 4;
9631 h->root.type = bfd_link_hash_defined;
9632 h->root.u.def.section = s;
9633 h->root.u.def.value = stub_off;
9634 s->size = stub_off + stub_size;
9635 break;
9636 }
9637 return TRUE;
9638 }
9639
9640 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
9641 read-only sections. */
9642
9643 static bfd_boolean
9644 maybe_set_textrel (struct elf_link_hash_entry *h, void *inf)
9645 {
9646 asection *sec;
9647
9648 if (h->root.type == bfd_link_hash_indirect)
9649 return TRUE;
9650
9651 sec = readonly_dynrelocs (h);
9652 if (sec != NULL)
9653 {
9654 struct bfd_link_info *info = (struct bfd_link_info *) inf;
9655
9656 info->flags |= DF_TEXTREL;
9657 info->callbacks->minfo (_("%pB: dynamic relocation against `%pT'"
9658 " in read-only section `%pA'\n"),
9659 sec->owner, h->root.root.string, sec);
9660
9661 /* Not an error, just cut short the traversal. */
9662 return FALSE;
9663 }
9664 return TRUE;
9665 }
9666
9667 /* Set the sizes of the dynamic sections. */
9668
9669 static bfd_boolean
9670 ppc64_elf_size_dynamic_sections (bfd *output_bfd,
9671 struct bfd_link_info *info)
9672 {
9673 struct ppc_link_hash_table *htab;
9674 bfd *dynobj;
9675 asection *s;
9676 bfd_boolean relocs;
9677 bfd *ibfd;
9678 struct got_entry *first_tlsld;
9679
9680 htab = ppc_hash_table (info);
9681 if (htab == NULL)
9682 return FALSE;
9683
9684 dynobj = htab->elf.dynobj;
9685 if (dynobj == NULL)
9686 abort ();
9687
9688 if (htab->elf.dynamic_sections_created)
9689 {
9690 /* Set the contents of the .interp section to the interpreter. */
9691 if (bfd_link_executable (info) && !info->nointerp)
9692 {
9693 s = bfd_get_linker_section (dynobj, ".interp");
9694 if (s == NULL)
9695 abort ();
9696 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
9697 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
9698 }
9699 }
9700
9701 /* Set up .got offsets for local syms, and space for local dynamic
9702 relocs. */
9703 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9704 {
9705 struct got_entry **lgot_ents;
9706 struct got_entry **end_lgot_ents;
9707 struct plt_entry **local_plt;
9708 struct plt_entry **end_local_plt;
9709 unsigned char *lgot_masks;
9710 bfd_size_type locsymcount;
9711 Elf_Internal_Shdr *symtab_hdr;
9712
9713 if (!is_ppc64_elf (ibfd))
9714 continue;
9715
9716 for (s = ibfd->sections; s != NULL; s = s->next)
9717 {
9718 struct ppc_dyn_relocs *p;
9719
9720 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
9721 {
9722 if (!bfd_is_abs_section (p->sec)
9723 && bfd_is_abs_section (p->sec->output_section))
9724 {
9725 /* Input section has been discarded, either because
9726 it is a copy of a linkonce section or due to
9727 linker script /DISCARD/, so we'll be discarding
9728 the relocs too. */
9729 }
9730 else if (p->count != 0)
9731 {
9732 asection *srel = elf_section_data (p->sec)->sreloc;
9733 if (p->ifunc)
9734 srel = htab->elf.irelplt;
9735 srel->size += p->count * sizeof (Elf64_External_Rela);
9736 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
9737 info->flags |= DF_TEXTREL;
9738 }
9739 }
9740 }
9741
9742 lgot_ents = elf_local_got_ents (ibfd);
9743 if (!lgot_ents)
9744 continue;
9745
9746 symtab_hdr = &elf_symtab_hdr (ibfd);
9747 locsymcount = symtab_hdr->sh_info;
9748 end_lgot_ents = lgot_ents + locsymcount;
9749 local_plt = (struct plt_entry **) end_lgot_ents;
9750 end_local_plt = local_plt + locsymcount;
9751 lgot_masks = (unsigned char *) end_local_plt;
9752 s = ppc64_elf_tdata (ibfd)->got;
9753 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
9754 {
9755 struct got_entry **pent, *ent;
9756
9757 pent = lgot_ents;
9758 while ((ent = *pent) != NULL)
9759 if (ent->got.refcount > 0)
9760 {
9761 if ((ent->tls_type & *lgot_masks & TLS_LD) != 0)
9762 {
9763 ppc64_tlsld_got (ibfd)->got.refcount += 1;
9764 *pent = ent->next;
9765 }
9766 else
9767 {
9768 unsigned int ent_size = 8;
9769 unsigned int rel_size = sizeof (Elf64_External_Rela);
9770
9771 ent->got.offset = s->size;
9772 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
9773 {
9774 ent_size *= 2;
9775 rel_size *= 2;
9776 }
9777 s->size += ent_size;
9778 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
9779 {
9780 htab->elf.irelplt->size += rel_size;
9781 htab->got_reli_size += rel_size;
9782 }
9783 else if (bfd_link_pic (info)
9784 && !((ent->tls_type & TLS_TPREL) != 0
9785 && bfd_link_executable (info)))
9786 {
9787 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9788 srel->size += rel_size;
9789 }
9790 pent = &ent->next;
9791 }
9792 }
9793 else
9794 *pent = ent->next;
9795 }
9796
9797 /* Allocate space for plt calls to local syms. */
9798 lgot_masks = (unsigned char *) end_local_plt;
9799 for (; local_plt < end_local_plt; ++local_plt, ++lgot_masks)
9800 {
9801 struct plt_entry *ent;
9802
9803 for (ent = *local_plt; ent != NULL; ent = ent->next)
9804 if (ent->plt.refcount > 0)
9805 {
9806 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
9807 {
9808 s = htab->elf.iplt;
9809 ent->plt.offset = s->size;
9810 s->size += PLT_ENTRY_SIZE (htab);
9811 htab->elf.irelplt->size += sizeof (Elf64_External_Rela);
9812 }
9813 else if (htab->can_convert_all_inline_plt
9814 || (*lgot_masks & (TLS_TLS | PLT_KEEP)) != PLT_KEEP)
9815 ent->plt.offset = (bfd_vma) -1;
9816 else
9817 {
9818 s = htab->pltlocal;
9819 ent->plt.offset = s->size;
9820 s->size += LOCAL_PLT_ENTRY_SIZE (htab);
9821 if (bfd_link_pic (info))
9822 htab->relpltlocal->size += sizeof (Elf64_External_Rela);
9823 }
9824 }
9825 else
9826 ent->plt.offset = (bfd_vma) -1;
9827 }
9828 }
9829
9830 /* Allocate global sym .plt and .got entries, and space for global
9831 sym dynamic relocs. */
9832 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, info);
9833
9834 if (!htab->opd_abi && !bfd_link_pic (info))
9835 elf_link_hash_traverse (&htab->elf, size_global_entry_stubs, info);
9836
9837 first_tlsld = NULL;
9838 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9839 {
9840 struct got_entry *ent;
9841
9842 if (!is_ppc64_elf (ibfd))
9843 continue;
9844
9845 ent = ppc64_tlsld_got (ibfd);
9846 if (ent->got.refcount > 0)
9847 {
9848 if (!htab->do_multi_toc && first_tlsld != NULL)
9849 {
9850 ent->is_indirect = TRUE;
9851 ent->got.ent = first_tlsld;
9852 }
9853 else
9854 {
9855 if (first_tlsld == NULL)
9856 first_tlsld = ent;
9857 s = ppc64_elf_tdata (ibfd)->got;
9858 ent->got.offset = s->size;
9859 ent->owner = ibfd;
9860 s->size += 16;
9861 if (bfd_link_pic (info))
9862 {
9863 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
9864 srel->size += sizeof (Elf64_External_Rela);
9865 }
9866 }
9867 }
9868 else
9869 ent->got.offset = (bfd_vma) -1;
9870 }
9871
9872 /* We now have determined the sizes of the various dynamic sections.
9873 Allocate memory for them. */
9874 relocs = FALSE;
9875 for (s = dynobj->sections; s != NULL; s = s->next)
9876 {
9877 if ((s->flags & SEC_LINKER_CREATED) == 0)
9878 continue;
9879
9880 if (s == htab->brlt || s == htab->relbrlt)
9881 /* These haven't been allocated yet; don't strip. */
9882 continue;
9883 else if (s == htab->elf.sgot
9884 || s == htab->elf.splt
9885 || s == htab->elf.iplt
9886 || s == htab->pltlocal
9887 || s == htab->glink
9888 || s == htab->global_entry
9889 || s == htab->elf.sdynbss
9890 || s == htab->elf.sdynrelro)
9891 {
9892 /* Strip this section if we don't need it; see the
9893 comment below. */
9894 }
9895 else if (s == htab->glink_eh_frame)
9896 {
9897 if (!bfd_is_abs_section (s->output_section))
9898 /* Not sized yet. */
9899 continue;
9900 }
9901 else if (CONST_STRNEQ (s->name, ".rela"))
9902 {
9903 if (s->size != 0)
9904 {
9905 if (s != htab->elf.srelplt)
9906 relocs = TRUE;
9907
9908 /* We use the reloc_count field as a counter if we need
9909 to copy relocs into the output file. */
9910 s->reloc_count = 0;
9911 }
9912 }
9913 else
9914 {
9915 /* It's not one of our sections, so don't allocate space. */
9916 continue;
9917 }
9918
9919 if (s->size == 0)
9920 {
9921 /* If we don't need this section, strip it from the
9922 output file. This is mostly to handle .rela.bss and
9923 .rela.plt. We must create both sections in
9924 create_dynamic_sections, because they must be created
9925 before the linker maps input sections to output
9926 sections. The linker does that before
9927 adjust_dynamic_symbol is called, and it is that
9928 function which decides whether anything needs to go
9929 into these sections. */
9930 s->flags |= SEC_EXCLUDE;
9931 continue;
9932 }
9933
9934 if (bfd_is_abs_section (s->output_section))
9935 _bfd_error_handler (_("warning: discarding dynamic section %s"),
9936 s->name);
9937
9938 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9939 continue;
9940
9941 /* Allocate memory for the section contents. We use bfd_zalloc
9942 here in case unused entries are not reclaimed before the
9943 section's contents are written out. This should not happen,
9944 but this way if it does we get a R_PPC64_NONE reloc in .rela
9945 sections instead of garbage.
9946 We also rely on the section contents being zero when writing
9947 the GOT and .dynrelro. */
9948 s->contents = bfd_zalloc (dynobj, s->size);
9949 if (s->contents == NULL)
9950 return FALSE;
9951 }
9952
9953 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
9954 {
9955 if (!is_ppc64_elf (ibfd))
9956 continue;
9957
9958 s = ppc64_elf_tdata (ibfd)->got;
9959 if (s != NULL && s != htab->elf.sgot)
9960 {
9961 if (s->size == 0)
9962 s->flags |= SEC_EXCLUDE;
9963 else
9964 {
9965 s->contents = bfd_zalloc (ibfd, s->size);
9966 if (s->contents == NULL)
9967 return FALSE;
9968 }
9969 }
9970 s = ppc64_elf_tdata (ibfd)->relgot;
9971 if (s != NULL)
9972 {
9973 if (s->size == 0)
9974 s->flags |= SEC_EXCLUDE;
9975 else
9976 {
9977 s->contents = bfd_zalloc (ibfd, s->size);
9978 if (s->contents == NULL)
9979 return FALSE;
9980 relocs = TRUE;
9981 s->reloc_count = 0;
9982 }
9983 }
9984 }
9985
9986 if (htab->elf.dynamic_sections_created)
9987 {
9988 bfd_boolean tls_opt;
9989
9990 /* Add some entries to the .dynamic section. We fill in the
9991 values later, in ppc64_elf_finish_dynamic_sections, but we
9992 must add the entries now so that we get the correct size for
9993 the .dynamic section. The DT_DEBUG entry is filled in by the
9994 dynamic linker and used by the debugger. */
9995 #define add_dynamic_entry(TAG, VAL) \
9996 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9997
9998 if (bfd_link_executable (info))
9999 {
10000 if (!add_dynamic_entry (DT_DEBUG, 0))
10001 return FALSE;
10002 }
10003
10004 if (htab->elf.splt != NULL && htab->elf.splt->size != 0)
10005 {
10006 if (!add_dynamic_entry (DT_PLTGOT, 0)
10007 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10008 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
10009 || !add_dynamic_entry (DT_JMPREL, 0)
10010 || !add_dynamic_entry (DT_PPC64_GLINK, 0))
10011 return FALSE;
10012 }
10013
10014 if (NO_OPD_RELOCS && abiversion (output_bfd) <= 1)
10015 {
10016 if (!add_dynamic_entry (DT_PPC64_OPD, 0)
10017 || !add_dynamic_entry (DT_PPC64_OPDSZ, 0))
10018 return FALSE;
10019 }
10020
10021 tls_opt = (htab->params->tls_get_addr_opt
10022 && htab->tls_get_addr_fd != NULL
10023 && htab->tls_get_addr_fd->elf.plt.plist != NULL);
10024 if (tls_opt || !htab->opd_abi)
10025 {
10026 if (!add_dynamic_entry (DT_PPC64_OPT, tls_opt ? PPC64_OPT_TLS : 0))
10027 return FALSE;
10028 }
10029
10030 if (relocs)
10031 {
10032 if (!add_dynamic_entry (DT_RELA, 0)
10033 || !add_dynamic_entry (DT_RELASZ, 0)
10034 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
10035 return FALSE;
10036
10037 /* If any dynamic relocs apply to a read-only section,
10038 then we need a DT_TEXTREL entry. */
10039 if ((info->flags & DF_TEXTREL) == 0)
10040 elf_link_hash_traverse (&htab->elf, maybe_set_textrel, info);
10041
10042 if ((info->flags & DF_TEXTREL) != 0)
10043 {
10044 if (!add_dynamic_entry (DT_TEXTREL, 0))
10045 return FALSE;
10046 }
10047 }
10048 }
10049 #undef add_dynamic_entry
10050
10051 return TRUE;
10052 }
10053
10054 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
10055
10056 static bfd_boolean
10057 ppc64_elf_hash_symbol (struct elf_link_hash_entry *h)
10058 {
10059 if (h->plt.plist != NULL
10060 && !h->def_regular
10061 && !h->pointer_equality_needed)
10062 return FALSE;
10063
10064 return _bfd_elf_hash_symbol (h);
10065 }
10066
10067 /* Determine the type of stub needed, if any, for a call. */
10068
10069 static inline enum ppc_stub_type
10070 ppc_type_of_stub (asection *input_sec,
10071 const Elf_Internal_Rela *rel,
10072 struct ppc_link_hash_entry **hash,
10073 struct plt_entry **plt_ent,
10074 bfd_vma destination,
10075 unsigned long local_off)
10076 {
10077 struct ppc_link_hash_entry *h = *hash;
10078 bfd_vma location;
10079 bfd_vma branch_offset;
10080 bfd_vma max_branch_offset;
10081 enum elf_ppc64_reloc_type r_type;
10082
10083 if (h != NULL)
10084 {
10085 struct plt_entry *ent;
10086 struct ppc_link_hash_entry *fdh = h;
10087 if (h->oh != NULL
10088 && h->oh->is_func_descriptor)
10089 {
10090 fdh = ppc_follow_link (h->oh);
10091 *hash = fdh;
10092 }
10093
10094 for (ent = fdh->elf.plt.plist; ent != NULL; ent = ent->next)
10095 if (ent->addend == rel->r_addend
10096 && ent->plt.offset != (bfd_vma) -1)
10097 {
10098 *plt_ent = ent;
10099 return ppc_stub_plt_call;
10100 }
10101
10102 /* Here, we know we don't have a plt entry. If we don't have a
10103 either a defined function descriptor or a defined entry symbol
10104 in a regular object file, then it is pointless trying to make
10105 any other type of stub. */
10106 if (!is_static_defined (&fdh->elf)
10107 && !is_static_defined (&h->elf))
10108 return ppc_stub_none;
10109 }
10110 else if (elf_local_got_ents (input_sec->owner) != NULL)
10111 {
10112 Elf_Internal_Shdr *symtab_hdr = &elf_symtab_hdr (input_sec->owner);
10113 struct plt_entry **local_plt = (struct plt_entry **)
10114 elf_local_got_ents (input_sec->owner) + symtab_hdr->sh_info;
10115 unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
10116
10117 if (local_plt[r_symndx] != NULL)
10118 {
10119 struct plt_entry *ent;
10120
10121 for (ent = local_plt[r_symndx]; ent != NULL; ent = ent->next)
10122 if (ent->addend == rel->r_addend
10123 && ent->plt.offset != (bfd_vma) -1)
10124 {
10125 *plt_ent = ent;
10126 return ppc_stub_plt_call;
10127 }
10128 }
10129 }
10130
10131 /* Determine where the call point is. */
10132 location = (input_sec->output_offset
10133 + input_sec->output_section->vma
10134 + rel->r_offset);
10135
10136 branch_offset = destination - location;
10137 r_type = ELF64_R_TYPE (rel->r_info);
10138
10139 /* Determine if a long branch stub is needed. */
10140 max_branch_offset = 1 << 25;
10141 if (r_type == R_PPC64_REL14
10142 || r_type == R_PPC64_REL14_BRTAKEN
10143 || r_type == R_PPC64_REL14_BRNTAKEN)
10144 max_branch_offset = 1 << 15;
10145
10146 if (branch_offset + max_branch_offset >= 2 * max_branch_offset - local_off)
10147 /* We need a stub. Figure out whether a long_branch or plt_branch
10148 is needed later. */
10149 return ppc_stub_long_branch;
10150
10151 return ppc_stub_none;
10152 }
10153
10154 /* Gets the address of a label (1:) in r11 and builds an offset in r12,
10155 then adds it to r11 (LOAD false) or loads r12 from r11+r12 (LOAD true).
10156 . mflr %r12
10157 . bcl 20,31,1f
10158 .1: mflr %r11
10159 . mtlr %r12
10160 . lis %r12,xxx-1b@highest
10161 . ori %r12,%r12,xxx-1b@higher
10162 . sldi %r12,%r12,32
10163 . oris %r12,%r12,xxx-1b@high
10164 . ori %r12,%r12,xxx-1b@l
10165 . add/ldx %r12,%r11,%r12 */
10166
10167 static bfd_byte *
10168 build_offset (bfd *abfd, bfd_byte *p, bfd_vma off, bfd_boolean load)
10169 {
10170 bfd_put_32 (abfd, MFLR_R12, p);
10171 p += 4;
10172 bfd_put_32 (abfd, BCL_20_31, p);
10173 p += 4;
10174 bfd_put_32 (abfd, MFLR_R11, p);
10175 p += 4;
10176 bfd_put_32 (abfd, MTLR_R12, p);
10177 p += 4;
10178 if (off + 0x8000 < 0x10000)
10179 {
10180 if (load)
10181 bfd_put_32 (abfd, LD_R12_0R11 + PPC_LO (off), p);
10182 else
10183 bfd_put_32 (abfd, ADDI_R12_R11 + PPC_LO (off), p);
10184 p += 4;
10185 }
10186 else if (off + 0x80008000ULL < 0x100000000ULL)
10187 {
10188 bfd_put_32 (abfd, ADDIS_R12_R11 + PPC_HA (off), p);
10189 p += 4;
10190 if (load)
10191 bfd_put_32 (abfd, LD_R12_0R12 + PPC_LO (off), p);
10192 else
10193 bfd_put_32 (abfd, ADDI_R12_R12 + PPC_LO (off), p);
10194 p += 4;
10195 }
10196 else
10197 {
10198 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10199 {
10200 bfd_put_32 (abfd, LI_R12_0 + ((off >> 32) & 0xffff), p);
10201 p += 4;
10202 }
10203 else
10204 {
10205 bfd_put_32 (abfd, LIS_R12 + ((off >> 48) & 0xffff), p);
10206 p += 4;
10207 if (((off >> 32) & 0xffff) != 0)
10208 {
10209 bfd_put_32 (abfd, ORI_R12_R12_0 + ((off >> 32) & 0xffff), p);
10210 p += 4;
10211 }
10212 }
10213 if (((off >> 32) & 0xffffffffULL) != 0)
10214 {
10215 bfd_put_32 (abfd, SLDI_R12_R12_32, p);
10216 p += 4;
10217 }
10218 if (PPC_HI (off) != 0)
10219 {
10220 bfd_put_32 (abfd, ORIS_R12_R12_0 + PPC_HI (off), p);
10221 p += 4;
10222 }
10223 if (PPC_LO (off) != 0)
10224 {
10225 bfd_put_32 (abfd, ORI_R12_R12_0 + PPC_LO (off), p);
10226 p += 4;
10227 }
10228 if (load)
10229 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10230 else
10231 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10232 p += 4;
10233 }
10234 return p;
10235 }
10236
10237 static unsigned int
10238 size_offset (bfd_vma off)
10239 {
10240 unsigned int size;
10241 if (off + 0x8000 < 0x10000)
10242 size = 4;
10243 else if (off + 0x80008000ULL < 0x100000000ULL)
10244 size = 8;
10245 else
10246 {
10247 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10248 size = 4;
10249 else
10250 {
10251 size = 4;
10252 if (((off >> 32) & 0xffff) != 0)
10253 size += 4;
10254 }
10255 if (((off >> 32) & 0xffffffffULL) != 0)
10256 size += 4;
10257 if (PPC_HI (off) != 0)
10258 size += 4;
10259 if (PPC_LO (off) != 0)
10260 size += 4;
10261 size += 4;
10262 }
10263 return size + 16;
10264 }
10265
10266 static unsigned int
10267 num_relocs_for_offset (bfd_vma off)
10268 {
10269 unsigned int num_rel;
10270 if (off + 0x8000 < 0x10000)
10271 num_rel = 1;
10272 else if (off + 0x80008000ULL < 0x100000000ULL)
10273 num_rel = 2;
10274 else
10275 {
10276 num_rel = 1;
10277 if (off + 0x800000000000ULL >= 0x1000000000000ULL
10278 && ((off >> 32) & 0xffff) != 0)
10279 num_rel += 1;
10280 if (PPC_HI (off) != 0)
10281 num_rel += 1;
10282 if (PPC_LO (off) != 0)
10283 num_rel += 1;
10284 }
10285 return num_rel;
10286 }
10287
10288 static Elf_Internal_Rela *
10289 emit_relocs_for_offset (struct bfd_link_info *info, Elf_Internal_Rela *r,
10290 bfd_vma roff, bfd_vma targ, bfd_vma off)
10291 {
10292 bfd_vma relative_targ = targ - (roff - 8);
10293 if (bfd_big_endian (info->output_bfd))
10294 roff += 2;
10295 r->r_offset = roff;
10296 r->r_addend = relative_targ + roff;
10297 if (off + 0x8000 < 0x10000)
10298 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16);
10299 else if (off + 0x80008000ULL < 0x100000000ULL)
10300 {
10301 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HA);
10302 ++r;
10303 roff += 4;
10304 r->r_offset = roff;
10305 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10306 r->r_addend = relative_targ + roff;
10307 }
10308 else
10309 {
10310 if (off + 0x800000000000ULL < 0x1000000000000ULL)
10311 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10312 else
10313 {
10314 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHEST);
10315 if (((off >> 32) & 0xffff) != 0)
10316 {
10317 ++r;
10318 roff += 4;
10319 r->r_offset = roff;
10320 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHER);
10321 r->r_addend = relative_targ + roff;
10322 }
10323 }
10324 if (((off >> 32) & 0xffffffffULL) != 0)
10325 roff += 4;
10326 if (PPC_HI (off) != 0)
10327 {
10328 ++r;
10329 roff += 4;
10330 r->r_offset = roff;
10331 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGH);
10332 r->r_addend = relative_targ + roff;
10333 }
10334 if (PPC_LO (off) != 0)
10335 {
10336 ++r;
10337 roff += 4;
10338 r->r_offset = roff;
10339 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_LO);
10340 r->r_addend = relative_targ + roff;
10341 }
10342 }
10343 return r;
10344 }
10345
10346 static bfd_byte *
10347 build_powerxx_offset (bfd *abfd, bfd_byte *p, bfd_vma off, int odd,
10348 bfd_boolean load)
10349 {
10350 uint64_t insn;
10351 if (off - odd + (1ULL << 33) < 1ULL << 34)
10352 {
10353 off -= odd;
10354 if (odd)
10355 {
10356 bfd_put_32 (abfd, NOP, p);
10357 p += 4;
10358 }
10359 if (load)
10360 insn = PLD_R12_PC;
10361 else
10362 insn = PADDI_R12_PC;
10363 insn |= D34 (off);
10364 bfd_put_32 (abfd, insn >> 32, p);
10365 p += 4;
10366 bfd_put_32 (abfd, insn, p);
10367 }
10368 /* The minimum value for paddi is -0x200000000. The minimum value
10369 for li is -0x8000, which when shifted by 34 and added gives a
10370 minimum value of -0x2000200000000. The maximum value is
10371 0x1ffffffff+0x7fff<<34 which is 0x2000200000000-1. */
10372 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10373 {
10374 off -= 8 - odd;
10375 bfd_put_32 (abfd, LI_R11_0 | (HA34 (off) & 0xffff), p);
10376 p += 4;
10377 if (!odd)
10378 {
10379 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10380 p += 4;
10381 }
10382 insn = PADDI_R12_PC | D34 (off);
10383 bfd_put_32 (abfd, insn >> 32, p);
10384 p += 4;
10385 bfd_put_32 (abfd, insn, p);
10386 p += 4;
10387 if (odd)
10388 {
10389 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10390 p += 4;
10391 }
10392 if (load)
10393 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10394 else
10395 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10396 }
10397 else
10398 {
10399 off -= odd + 8;
10400 bfd_put_32 (abfd, LIS_R11 | ((HA34 (off) >> 16) & 0x3fff), p);
10401 p += 4;
10402 bfd_put_32 (abfd, ORI_R11_R11_0 | (HA34 (off) & 0xffff), p);
10403 p += 4;
10404 if (odd)
10405 {
10406 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10407 p += 4;
10408 }
10409 insn = PADDI_R12_PC | D34 (off);
10410 bfd_put_32 (abfd, insn >> 32, p);
10411 p += 4;
10412 bfd_put_32 (abfd, insn, p);
10413 p += 4;
10414 if (!odd)
10415 {
10416 bfd_put_32 (abfd, SLDI_R11_R11_34, p);
10417 p += 4;
10418 }
10419 if (load)
10420 bfd_put_32 (abfd, LDX_R12_R11_R12, p);
10421 else
10422 bfd_put_32 (abfd, ADD_R12_R11_R12, p);
10423 }
10424 p += 4;
10425 return p;
10426 }
10427
10428 static unsigned int
10429 size_powerxx_offset (bfd_vma off, int odd)
10430 {
10431 if (off - odd + (1ULL << 33) < 1ULL << 34)
10432 return odd + 8;
10433 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10434 return 20;
10435 else
10436 return 24;
10437 }
10438
10439 static unsigned int
10440 num_relocs_for_powerxx_offset (bfd_vma off, int odd)
10441 {
10442 if (off - odd + (1ULL << 33) < 1ULL << 34)
10443 return 1;
10444 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10445 return 2;
10446 else
10447 return 3;
10448 }
10449
10450 static Elf_Internal_Rela *
10451 emit_relocs_for_powerxx_offset (struct bfd_link_info *info,
10452 Elf_Internal_Rela *r, bfd_vma roff,
10453 bfd_vma targ, bfd_vma off, int odd)
10454 {
10455 if (off - odd + (1ULL << 33) < 1ULL << 34)
10456 roff += odd;
10457 else if (off - (8 - odd) + (0x20002ULL << 32) < 0x40004ULL << 32)
10458 {
10459 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10460 r->r_offset = roff + d_offset;
10461 r->r_addend = targ + 8 - odd - d_offset;
10462 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10463 ++r;
10464 roff += 8 - odd;
10465 }
10466 else
10467 {
10468 int d_offset = bfd_big_endian (info->output_bfd) ? 2 : 0;
10469 r->r_offset = roff + d_offset;
10470 r->r_addend = targ + 8 + odd - d_offset;
10471 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHESTA34);
10472 ++r;
10473 roff += 4;
10474 r->r_offset = roff + d_offset;
10475 r->r_addend = targ + 4 + odd - d_offset;
10476 r->r_info = ELF64_R_INFO (0, R_PPC64_REL16_HIGHERA34);
10477 ++r;
10478 roff += 4 + odd;
10479 }
10480 r->r_offset = roff;
10481 r->r_addend = targ;
10482 r->r_info = ELF64_R_INFO (0, R_PPC64_PCREL34);
10483 return r;
10484 }
10485
10486 /* Emit .eh_frame opcode to advance pc by DELTA. */
10487
10488 static bfd_byte *
10489 eh_advance (bfd *abfd, bfd_byte *eh, unsigned int delta)
10490 {
10491 delta /= 4;
10492 if (delta < 64)
10493 *eh++ = DW_CFA_advance_loc + delta;
10494 else if (delta < 256)
10495 {
10496 *eh++ = DW_CFA_advance_loc1;
10497 *eh++ = delta;
10498 }
10499 else if (delta < 65536)
10500 {
10501 *eh++ = DW_CFA_advance_loc2;
10502 bfd_put_16 (abfd, delta, eh);
10503 eh += 2;
10504 }
10505 else
10506 {
10507 *eh++ = DW_CFA_advance_loc4;
10508 bfd_put_32 (abfd, delta, eh);
10509 eh += 4;
10510 }
10511 return eh;
10512 }
10513
10514 /* Size of required .eh_frame opcode to advance pc by DELTA. */
10515
10516 static unsigned int
10517 eh_advance_size (unsigned int delta)
10518 {
10519 if (delta < 64 * 4)
10520 /* DW_CFA_advance_loc+[1..63]. */
10521 return 1;
10522 if (delta < 256 * 4)
10523 /* DW_CFA_advance_loc1, byte. */
10524 return 2;
10525 if (delta < 65536 * 4)
10526 /* DW_CFA_advance_loc2, 2 bytes. */
10527 return 3;
10528 /* DW_CFA_advance_loc4, 4 bytes. */
10529 return 5;
10530 }
10531
10532 /* With power7 weakly ordered memory model, it is possible for ld.so
10533 to update a plt entry in one thread and have another thread see a
10534 stale zero toc entry. To avoid this we need some sort of acquire
10535 barrier in the call stub. One solution is to make the load of the
10536 toc word seem to appear to depend on the load of the function entry
10537 word. Another solution is to test for r2 being zero, and branch to
10538 the appropriate glink entry if so.
10539
10540 . fake dep barrier compare
10541 . ld 12,xxx(2) ld 12,xxx(2)
10542 . mtctr 12 mtctr 12
10543 . xor 11,12,12 ld 2,xxx+8(2)
10544 . add 2,2,11 cmpldi 2,0
10545 . ld 2,xxx+8(2) bnectr+
10546 . bctr b <glink_entry>
10547
10548 The solution involving the compare turns out to be faster, so
10549 that's what we use unless the branch won't reach. */
10550
10551 #define ALWAYS_USE_FAKE_DEP 0
10552 #define ALWAYS_EMIT_R2SAVE 0
10553
10554 static inline unsigned int
10555 plt_stub_size (struct ppc_link_hash_table *htab,
10556 struct ppc_stub_hash_entry *stub_entry,
10557 bfd_vma off)
10558 {
10559 unsigned size;
10560
10561 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
10562 {
10563 if (htab->powerxx_stubs)
10564 {
10565 bfd_vma start = (stub_entry->stub_offset
10566 + stub_entry->group->stub_sec->output_offset
10567 + stub_entry->group->stub_sec->output_section->vma);
10568 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10569 start += 4;
10570 size = 8 + size_powerxx_offset (off, start & 4);
10571 }
10572 else
10573 size = 8 + size_offset (off - 8);
10574 if (stub_entry->stub_type > ppc_stub_plt_call_notoc)
10575 size += 4;
10576 return size;
10577 }
10578
10579 size = 12;
10580 if (ALWAYS_EMIT_R2SAVE
10581 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10582 size += 4;
10583 if (PPC_HA (off) != 0)
10584 size += 4;
10585 if (htab->opd_abi)
10586 {
10587 size += 4;
10588 if (htab->params->plt_static_chain)
10589 size += 4;
10590 if (htab->params->plt_thread_safe
10591 && htab->elf.dynamic_sections_created
10592 && stub_entry->h != NULL
10593 && stub_entry->h->elf.dynindx != -1)
10594 size += 8;
10595 if (PPC_HA (off + 8 + 8 * htab->params->plt_static_chain) != PPC_HA (off))
10596 size += 4;
10597 }
10598 if (stub_entry->h != NULL
10599 && (stub_entry->h == htab->tls_get_addr_fd
10600 || stub_entry->h == htab->tls_get_addr)
10601 && htab->params->tls_get_addr_opt)
10602 {
10603 size += 7 * 4;
10604 if (stub_entry->stub_type == ppc_stub_plt_call_r2save)
10605 size += 6 * 4;
10606 }
10607 return size;
10608 }
10609
10610 /* Depending on the sign of plt_stub_align:
10611 If positive, return the padding to align to a 2**plt_stub_align
10612 boundary.
10613 If negative, if this stub would cross fewer 2**plt_stub_align
10614 boundaries if we align, then return the padding needed to do so. */
10615
10616 static inline unsigned int
10617 plt_stub_pad (struct ppc_link_hash_table *htab,
10618 struct ppc_stub_hash_entry *stub_entry,
10619 bfd_vma plt_off)
10620 {
10621 int stub_align;
10622 unsigned stub_size;
10623 bfd_vma stub_off = stub_entry->group->stub_sec->size;
10624
10625 if (htab->params->plt_stub_align >= 0)
10626 {
10627 stub_align = 1 << htab->params->plt_stub_align;
10628 if ((stub_off & (stub_align - 1)) != 0)
10629 return stub_align - (stub_off & (stub_align - 1));
10630 return 0;
10631 }
10632
10633 stub_align = 1 << -htab->params->plt_stub_align;
10634 stub_size = plt_stub_size (htab, stub_entry, plt_off);
10635 if (((stub_off + stub_size - 1) & -stub_align) - (stub_off & -stub_align)
10636 > ((stub_size - 1) & -stub_align))
10637 return stub_align - (stub_off & (stub_align - 1));
10638 return 0;
10639 }
10640
10641 /* Build a .plt call stub. */
10642
10643 static inline bfd_byte *
10644 build_plt_stub (struct ppc_link_hash_table *htab,
10645 struct ppc_stub_hash_entry *stub_entry,
10646 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10647 {
10648 bfd *obfd = htab->params->stub_bfd;
10649 bfd_boolean plt_load_toc = htab->opd_abi;
10650 bfd_boolean plt_static_chain = htab->params->plt_static_chain;
10651 bfd_boolean plt_thread_safe = (htab->params->plt_thread_safe
10652 && htab->elf.dynamic_sections_created
10653 && stub_entry->h != NULL
10654 && stub_entry->h->elf.dynindx != -1);
10655 bfd_boolean use_fake_dep = plt_thread_safe;
10656 bfd_vma cmp_branch_off = 0;
10657
10658 if (!ALWAYS_USE_FAKE_DEP
10659 && plt_load_toc
10660 && plt_thread_safe
10661 && !((stub_entry->h == htab->tls_get_addr_fd
10662 || stub_entry->h == htab->tls_get_addr)
10663 && htab->params->tls_get_addr_opt))
10664 {
10665 bfd_vma pltoff = stub_entry->plt_ent->plt.offset & ~1;
10666 bfd_vma pltindex = ((pltoff - PLT_INITIAL_ENTRY_SIZE (htab))
10667 / PLT_ENTRY_SIZE (htab));
10668 bfd_vma glinkoff = GLINK_PLTRESOLVE_SIZE (htab) + pltindex * 8;
10669 bfd_vma to, from;
10670
10671 if (pltindex > 32768)
10672 glinkoff += (pltindex - 32768) * 4;
10673 to = (glinkoff
10674 + htab->glink->output_offset
10675 + htab->glink->output_section->vma);
10676 from = (p - stub_entry->group->stub_sec->contents
10677 + 4 * (ALWAYS_EMIT_R2SAVE
10678 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10679 + 4 * (PPC_HA (offset) != 0)
10680 + 4 * (PPC_HA (offset + 8 + 8 * plt_static_chain)
10681 != PPC_HA (offset))
10682 + 4 * (plt_static_chain != 0)
10683 + 20
10684 + stub_entry->group->stub_sec->output_offset
10685 + stub_entry->group->stub_sec->output_section->vma);
10686 cmp_branch_off = to - from;
10687 use_fake_dep = cmp_branch_off + (1 << 25) >= (1 << 26);
10688 }
10689
10690 if (PPC_HA (offset) != 0)
10691 {
10692 if (r != NULL)
10693 {
10694 if (ALWAYS_EMIT_R2SAVE
10695 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10696 r[0].r_offset += 4;
10697 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
10698 r[1].r_offset = r[0].r_offset + 4;
10699 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10700 r[1].r_addend = r[0].r_addend;
10701 if (plt_load_toc)
10702 {
10703 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10704 {
10705 r[2].r_offset = r[1].r_offset + 4;
10706 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO);
10707 r[2].r_addend = r[0].r_addend;
10708 }
10709 else
10710 {
10711 r[2].r_offset = r[1].r_offset + 8 + 8 * use_fake_dep;
10712 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10713 r[2].r_addend = r[0].r_addend + 8;
10714 if (plt_static_chain)
10715 {
10716 r[3].r_offset = r[2].r_offset + 4;
10717 r[3].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
10718 r[3].r_addend = r[0].r_addend + 16;
10719 }
10720 }
10721 }
10722 }
10723 if (ALWAYS_EMIT_R2SAVE
10724 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10725 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10726 if (plt_load_toc)
10727 {
10728 bfd_put_32 (obfd, ADDIS_R11_R2 | PPC_HA (offset), p), p += 4;
10729 bfd_put_32 (obfd, LD_R12_0R11 | PPC_LO (offset), p), p += 4;
10730 }
10731 else
10732 {
10733 bfd_put_32 (obfd, ADDIS_R12_R2 | PPC_HA (offset), p), p += 4;
10734 bfd_put_32 (obfd, LD_R12_0R12 | PPC_LO (offset), p), p += 4;
10735 }
10736 if (plt_load_toc
10737 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10738 {
10739 bfd_put_32 (obfd, ADDI_R11_R11 | PPC_LO (offset), p), p += 4;
10740 offset = 0;
10741 }
10742 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10743 if (plt_load_toc)
10744 {
10745 if (use_fake_dep)
10746 {
10747 bfd_put_32 (obfd, XOR_R2_R12_R12, p), p += 4;
10748 bfd_put_32 (obfd, ADD_R11_R11_R2, p), p += 4;
10749 }
10750 bfd_put_32 (obfd, LD_R2_0R11 | PPC_LO (offset + 8), p), p += 4;
10751 if (plt_static_chain)
10752 bfd_put_32 (obfd, LD_R11_0R11 | PPC_LO (offset + 16), p), p += 4;
10753 }
10754 }
10755 else
10756 {
10757 if (r != NULL)
10758 {
10759 if (ALWAYS_EMIT_R2SAVE
10760 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10761 r[0].r_offset += 4;
10762 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10763 if (plt_load_toc)
10764 {
10765 if (PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10766 {
10767 r[1].r_offset = r[0].r_offset + 4;
10768 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16);
10769 r[1].r_addend = r[0].r_addend;
10770 }
10771 else
10772 {
10773 r[1].r_offset = r[0].r_offset + 8 + 8 * use_fake_dep;
10774 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10775 r[1].r_addend = r[0].r_addend + 8 + 8 * plt_static_chain;
10776 if (plt_static_chain)
10777 {
10778 r[2].r_offset = r[1].r_offset + 4;
10779 r[2].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
10780 r[2].r_addend = r[0].r_addend + 8;
10781 }
10782 }
10783 }
10784 }
10785 if (ALWAYS_EMIT_R2SAVE
10786 || stub_entry->stub_type == ppc_stub_plt_call_r2save)
10787 bfd_put_32 (obfd, STD_R2_0R1 + STK_TOC (htab), p), p += 4;
10788 bfd_put_32 (obfd, LD_R12_0R2 | PPC_LO (offset), p), p += 4;
10789 if (plt_load_toc
10790 && PPC_HA (offset + 8 + 8 * plt_static_chain) != PPC_HA (offset))
10791 {
10792 bfd_put_32 (obfd, ADDI_R2_R2 | PPC_LO (offset), p), p += 4;
10793 offset = 0;
10794 }
10795 bfd_put_32 (obfd, MTCTR_R12, p), p += 4;
10796 if (plt_load_toc)
10797 {
10798 if (use_fake_dep)
10799 {
10800 bfd_put_32 (obfd, XOR_R11_R12_R12, p), p += 4;
10801 bfd_put_32 (obfd, ADD_R2_R2_R11, p), p += 4;
10802 }
10803 if (plt_static_chain)
10804 bfd_put_32 (obfd, LD_R11_0R2 | PPC_LO (offset + 16), p), p += 4;
10805 bfd_put_32 (obfd, LD_R2_0R2 | PPC_LO (offset + 8), p), p += 4;
10806 }
10807 }
10808 if (plt_load_toc && plt_thread_safe && !use_fake_dep)
10809 {
10810 bfd_put_32 (obfd, CMPLDI_R2_0, p), p += 4;
10811 bfd_put_32 (obfd, BNECTR_P4, p), p += 4;
10812 bfd_put_32 (obfd, B_DOT | (cmp_branch_off & 0x3fffffc), p), p += 4;
10813 }
10814 else
10815 bfd_put_32 (obfd, BCTR, p), p += 4;
10816 return p;
10817 }
10818
10819 /* Build a special .plt call stub for __tls_get_addr. */
10820
10821 #define LD_R11_0R3 0xe9630000
10822 #define LD_R12_0R3 0xe9830000
10823 #define MR_R0_R3 0x7c601b78
10824 #define CMPDI_R11_0 0x2c2b0000
10825 #define ADD_R3_R12_R13 0x7c6c6a14
10826 #define BEQLR 0x4d820020
10827 #define MR_R3_R0 0x7c030378
10828 #define STD_R11_0R1 0xf9610000
10829 #define BCTRL 0x4e800421
10830 #define LD_R11_0R1 0xe9610000
10831 #define MTLR_R11 0x7d6803a6
10832
10833 static inline bfd_byte *
10834 build_tls_get_addr_stub (struct ppc_link_hash_table *htab,
10835 struct ppc_stub_hash_entry *stub_entry,
10836 bfd_byte *p, bfd_vma offset, Elf_Internal_Rela *r)
10837 {
10838 bfd *obfd = htab->params->stub_bfd;
10839 bfd_byte *loc = p;
10840
10841 bfd_put_32 (obfd, LD_R11_0R3 + 0, p), p += 4;
10842 bfd_put_32 (obfd, LD_R12_0R3 + 8, p), p += 4;
10843 bfd_put_32 (obfd, MR_R0_R3, p), p += 4;
10844 bfd_put_32 (obfd, CMPDI_R11_0, p), p += 4;
10845 bfd_put_32 (obfd, ADD_R3_R12_R13, p), p += 4;
10846 bfd_put_32 (obfd, BEQLR, p), p += 4;
10847 bfd_put_32 (obfd, MR_R3_R0, p), p += 4;
10848 if (r != NULL)
10849 r[0].r_offset += 7 * 4;
10850 if (stub_entry->stub_type != ppc_stub_plt_call_r2save)
10851 return build_plt_stub (htab, stub_entry, p, offset, r);
10852
10853 bfd_put_32 (obfd, MFLR_R11, p), p += 4;
10854 bfd_put_32 (obfd, STD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10855
10856 if (r != NULL)
10857 r[0].r_offset += 2 * 4;
10858 p = build_plt_stub (htab, stub_entry, p, offset, r);
10859 bfd_put_32 (obfd, BCTRL, p - 4);
10860
10861 bfd_put_32 (obfd, LD_R2_0R1 + STK_TOC (htab), p), p += 4;
10862 bfd_put_32 (obfd, LD_R11_0R1 + STK_LINKER (htab), p), p += 4;
10863 bfd_put_32 (obfd, MTLR_R11, p), p += 4;
10864 bfd_put_32 (obfd, BLR, p), p += 4;
10865
10866 if (htab->glink_eh_frame != NULL
10867 && htab->glink_eh_frame->size != 0)
10868 {
10869 bfd_byte *base, *eh;
10870 unsigned int lr_used, delta;
10871
10872 base = htab->glink_eh_frame->contents + stub_entry->group->eh_base + 17;
10873 eh = base + stub_entry->group->eh_size;
10874 lr_used = stub_entry->stub_offset + (p - 20 - loc);
10875 delta = lr_used - stub_entry->group->lr_restore;
10876 stub_entry->group->lr_restore = lr_used + 16;
10877 eh = eh_advance (htab->elf.dynobj, eh, delta);
10878 *eh++ = DW_CFA_offset_extended_sf;
10879 *eh++ = 65;
10880 *eh++ = -(STK_LINKER (htab) / 8) & 0x7f;
10881 *eh++ = DW_CFA_advance_loc + 4;
10882 *eh++ = DW_CFA_restore_extended;
10883 *eh++ = 65;
10884 stub_entry->group->eh_size = eh - base;
10885 }
10886 return p;
10887 }
10888
10889 static Elf_Internal_Rela *
10890 get_relocs (asection *sec, int count)
10891 {
10892 Elf_Internal_Rela *relocs;
10893 struct bfd_elf_section_data *elfsec_data;
10894
10895 elfsec_data = elf_section_data (sec);
10896 relocs = elfsec_data->relocs;
10897 if (relocs == NULL)
10898 {
10899 bfd_size_type relsize;
10900 relsize = sec->reloc_count * sizeof (*relocs);
10901 relocs = bfd_alloc (sec->owner, relsize);
10902 if (relocs == NULL)
10903 return NULL;
10904 elfsec_data->relocs = relocs;
10905 elfsec_data->rela.hdr = bfd_zalloc (sec->owner,
10906 sizeof (Elf_Internal_Shdr));
10907 if (elfsec_data->rela.hdr == NULL)
10908 return NULL;
10909 elfsec_data->rela.hdr->sh_size = (sec->reloc_count
10910 * sizeof (Elf64_External_Rela));
10911 elfsec_data->rela.hdr->sh_entsize = sizeof (Elf64_External_Rela);
10912 sec->reloc_count = 0;
10913 }
10914 relocs += sec->reloc_count;
10915 sec->reloc_count += count;
10916 return relocs;
10917 }
10918
10919 /* Convert the relocs R[0] thru R[-NUM_REL+1], which are all no-symbol
10920 forms, to the equivalent relocs against the global symbol given by
10921 STUB_ENTRY->H. */
10922
10923 static bfd_boolean
10924 use_global_in_relocs (struct ppc_link_hash_table *htab,
10925 struct ppc_stub_hash_entry *stub_entry,
10926 Elf_Internal_Rela *r, unsigned int num_rel)
10927 {
10928 struct elf_link_hash_entry **hashes;
10929 unsigned long symndx;
10930 struct ppc_link_hash_entry *h;
10931 bfd_vma symval;
10932
10933 /* Relocs are always against symbols in their own object file. Fake
10934 up global sym hashes for the stub bfd (which has no symbols). */
10935 hashes = elf_sym_hashes (htab->params->stub_bfd);
10936 if (hashes == NULL)
10937 {
10938 bfd_size_type hsize;
10939
10940 /* When called the first time, stub_globals will contain the
10941 total number of symbols seen during stub sizing. After
10942 allocating, stub_globals is used as an index to fill the
10943 hashes array. */
10944 hsize = (htab->stub_globals + 1) * sizeof (*hashes);
10945 hashes = bfd_zalloc (htab->params->stub_bfd, hsize);
10946 if (hashes == NULL)
10947 return FALSE;
10948 elf_sym_hashes (htab->params->stub_bfd) = hashes;
10949 htab->stub_globals = 1;
10950 }
10951 symndx = htab->stub_globals++;
10952 h = stub_entry->h;
10953 hashes[symndx] = &h->elf;
10954 if (h->oh != NULL && h->oh->is_func)
10955 h = ppc_follow_link (h->oh);
10956 BFD_ASSERT (h->elf.root.type == bfd_link_hash_defined
10957 || h->elf.root.type == bfd_link_hash_defweak);
10958 symval = (h->elf.root.u.def.value
10959 + h->elf.root.u.def.section->output_offset
10960 + h->elf.root.u.def.section->output_section->vma);
10961 while (num_rel-- != 0)
10962 {
10963 r->r_info = ELF64_R_INFO (symndx, ELF64_R_TYPE (r->r_info));
10964 if (h->elf.root.u.def.section != stub_entry->target_section)
10965 {
10966 /* H is an opd symbol. The addend must be zero, and the
10967 branch reloc is the only one we can convert. */
10968 r->r_addend = 0;
10969 break;
10970 }
10971 else
10972 r->r_addend -= symval;
10973 --r;
10974 }
10975 return TRUE;
10976 }
10977
10978 static bfd_vma
10979 get_r2off (struct bfd_link_info *info,
10980 struct ppc_stub_hash_entry *stub_entry)
10981 {
10982 struct ppc_link_hash_table *htab = ppc_hash_table (info);
10983 bfd_vma r2off = htab->sec_info[stub_entry->target_section->id].toc_off;
10984
10985 if (r2off == 0)
10986 {
10987 /* Support linking -R objects. Get the toc pointer from the
10988 opd entry. */
10989 char buf[8];
10990 if (!htab->opd_abi)
10991 return r2off;
10992 asection *opd = stub_entry->h->elf.root.u.def.section;
10993 bfd_vma opd_off = stub_entry->h->elf.root.u.def.value;
10994
10995 if (strcmp (opd->name, ".opd") != 0
10996 || opd->reloc_count != 0)
10997 {
10998 info->callbacks->einfo
10999 (_("%P: cannot find opd entry toc for `%pT'\n"),
11000 stub_entry->h->elf.root.root.string);
11001 bfd_set_error (bfd_error_bad_value);
11002 return (bfd_vma) -1;
11003 }
11004 if (!bfd_get_section_contents (opd->owner, opd, buf, opd_off + 8, 8))
11005 return (bfd_vma) -1;
11006 r2off = bfd_get_64 (opd->owner, buf);
11007 r2off -= elf_gp (info->output_bfd);
11008 }
11009 r2off -= htab->sec_info[stub_entry->group->link_sec->id].toc_off;
11010 return r2off;
11011 }
11012
11013 static bfd_boolean
11014 ppc_build_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11015 {
11016 struct ppc_stub_hash_entry *stub_entry;
11017 struct ppc_branch_hash_entry *br_entry;
11018 struct bfd_link_info *info;
11019 struct ppc_link_hash_table *htab;
11020 bfd_byte *loc;
11021 bfd_byte *p, *relp;
11022 bfd_vma targ, off;
11023 Elf_Internal_Rela *r;
11024 asection *plt;
11025 int num_rel;
11026 int odd;
11027
11028 /* Massage our args to the form they really have. */
11029 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11030 info = in_arg;
11031
11032 htab = ppc_hash_table (info);
11033 if (htab == NULL)
11034 return FALSE;
11035
11036 BFD_ASSERT (stub_entry->stub_offset >= stub_entry->group->stub_sec->size);
11037 loc = stub_entry->group->stub_sec->contents + stub_entry->stub_offset;
11038
11039 htab->stub_count[stub_entry->stub_type - 1] += 1;
11040 switch (stub_entry->stub_type)
11041 {
11042 case ppc_stub_long_branch:
11043 case ppc_stub_long_branch_r2off:
11044 /* Branches are relative. This is where we are going to. */
11045 targ = (stub_entry->target_value
11046 + stub_entry->target_section->output_offset
11047 + stub_entry->target_section->output_section->vma);
11048 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11049
11050 /* And this is where we are coming from. */
11051 off = (stub_entry->stub_offset
11052 + stub_entry->group->stub_sec->output_offset
11053 + stub_entry->group->stub_sec->output_section->vma);
11054 off = targ - off;
11055
11056 p = loc;
11057 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11058 {
11059 bfd_vma r2off = get_r2off (info, stub_entry);
11060
11061 if (r2off == (bfd_vma) -1)
11062 {
11063 htab->stub_error = TRUE;
11064 return FALSE;
11065 }
11066 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11067 p += 4;
11068 if (PPC_HA (r2off) != 0)
11069 {
11070 bfd_put_32 (htab->params->stub_bfd,
11071 ADDIS_R2_R2 | PPC_HA (r2off), p);
11072 p += 4;
11073 }
11074 if (PPC_LO (r2off) != 0)
11075 {
11076 bfd_put_32 (htab->params->stub_bfd,
11077 ADDI_R2_R2 | PPC_LO (r2off), p);
11078 p += 4;
11079 }
11080 off -= p - loc;
11081 }
11082 bfd_put_32 (htab->params->stub_bfd, B_DOT | (off & 0x3fffffc), p);
11083 p += 4;
11084
11085 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11086 {
11087 _bfd_error_handler
11088 (_("long branch stub `%s' offset overflow"),
11089 stub_entry->root.string);
11090 htab->stub_error = TRUE;
11091 return FALSE;
11092 }
11093
11094 if (info->emitrelocations)
11095 {
11096 r = get_relocs (stub_entry->group->stub_sec, 1);
11097 if (r == NULL)
11098 return FALSE;
11099 r->r_offset = p - 4 - stub_entry->group->stub_sec->contents;
11100 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11101 r->r_addend = targ;
11102 if (stub_entry->h != NULL
11103 && !use_global_in_relocs (htab, stub_entry, r, 1))
11104 return FALSE;
11105 }
11106 break;
11107
11108 case ppc_stub_plt_branch:
11109 case ppc_stub_plt_branch_r2off:
11110 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11111 stub_entry->root.string + 9,
11112 FALSE, FALSE);
11113 if (br_entry == NULL)
11114 {
11115 _bfd_error_handler (_("can't find branch stub `%s'"),
11116 stub_entry->root.string);
11117 htab->stub_error = TRUE;
11118 return FALSE;
11119 }
11120
11121 targ = (stub_entry->target_value
11122 + stub_entry->target_section->output_offset
11123 + stub_entry->target_section->output_section->vma);
11124 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11125 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11126
11127 bfd_put_64 (htab->brlt->owner, targ,
11128 htab->brlt->contents + br_entry->offset);
11129
11130 if (br_entry->iter == htab->stub_iteration)
11131 {
11132 br_entry->iter = 0;
11133
11134 if (htab->relbrlt != NULL)
11135 {
11136 /* Create a reloc for the branch lookup table entry. */
11137 Elf_Internal_Rela rela;
11138 bfd_byte *rl;
11139
11140 rela.r_offset = (br_entry->offset
11141 + htab->brlt->output_offset
11142 + htab->brlt->output_section->vma);
11143 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11144 rela.r_addend = targ;
11145
11146 rl = htab->relbrlt->contents;
11147 rl += (htab->relbrlt->reloc_count++
11148 * sizeof (Elf64_External_Rela));
11149 bfd_elf64_swap_reloca_out (htab->relbrlt->owner, &rela, rl);
11150 }
11151 else if (info->emitrelocations)
11152 {
11153 r = get_relocs (htab->brlt, 1);
11154 if (r == NULL)
11155 return FALSE;
11156 /* brlt, being SEC_LINKER_CREATED does not go through the
11157 normal reloc processing. Symbols and offsets are not
11158 translated from input file to output file form, so
11159 set up the offset per the output file. */
11160 r->r_offset = (br_entry->offset
11161 + htab->brlt->output_offset
11162 + htab->brlt->output_section->vma);
11163 r->r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
11164 r->r_addend = targ;
11165 }
11166 }
11167
11168 targ = (br_entry->offset
11169 + htab->brlt->output_offset
11170 + htab->brlt->output_section->vma);
11171
11172 off = (elf_gp (info->output_bfd)
11173 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11174 off = targ - off;
11175
11176 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11177 {
11178 info->callbacks->einfo
11179 (_("%P: linkage table error against `%pT'\n"),
11180 stub_entry->root.string);
11181 bfd_set_error (bfd_error_bad_value);
11182 htab->stub_error = TRUE;
11183 return FALSE;
11184 }
11185
11186 if (info->emitrelocations)
11187 {
11188 r = get_relocs (stub_entry->group->stub_sec, 1 + (PPC_HA (off) != 0));
11189 if (r == NULL)
11190 return FALSE;
11191 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11192 if (bfd_big_endian (info->output_bfd))
11193 r[0].r_offset += 2;
11194 if (stub_entry->stub_type == ppc_stub_plt_branch_r2off)
11195 r[0].r_offset += 4;
11196 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_DS);
11197 r[0].r_addend = targ;
11198 if (PPC_HA (off) != 0)
11199 {
11200 r[0].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_HA);
11201 r[1].r_offset = r[0].r_offset + 4;
11202 r[1].r_info = ELF64_R_INFO (0, R_PPC64_TOC16_LO_DS);
11203 r[1].r_addend = r[0].r_addend;
11204 }
11205 }
11206
11207 p = loc;
11208 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11209 {
11210 if (PPC_HA (off) != 0)
11211 {
11212 bfd_put_32 (htab->params->stub_bfd,
11213 ADDIS_R12_R2 | PPC_HA (off), p);
11214 p += 4;
11215 bfd_put_32 (htab->params->stub_bfd,
11216 LD_R12_0R12 | PPC_LO (off), p);
11217 }
11218 else
11219 bfd_put_32 (htab->params->stub_bfd,
11220 LD_R12_0R2 | PPC_LO (off), p);
11221 }
11222 else
11223 {
11224 bfd_vma r2off = get_r2off (info, stub_entry);
11225
11226 if (r2off == (bfd_vma) -1)
11227 {
11228 htab->stub_error = TRUE;
11229 return FALSE;
11230 }
11231
11232 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11233 p += 4;
11234 if (PPC_HA (off) != 0)
11235 {
11236 bfd_put_32 (htab->params->stub_bfd,
11237 ADDIS_R12_R2 | PPC_HA (off), p);
11238 p += 4;
11239 bfd_put_32 (htab->params->stub_bfd,
11240 LD_R12_0R12 | PPC_LO (off), p);
11241 }
11242 else
11243 bfd_put_32 (htab->params->stub_bfd, LD_R12_0R2 | PPC_LO (off), p);
11244
11245 if (PPC_HA (r2off) != 0)
11246 {
11247 p += 4;
11248 bfd_put_32 (htab->params->stub_bfd,
11249 ADDIS_R2_R2 | PPC_HA (r2off), p);
11250 }
11251 if (PPC_LO (r2off) != 0)
11252 {
11253 p += 4;
11254 bfd_put_32 (htab->params->stub_bfd,
11255 ADDI_R2_R2 | PPC_LO (r2off), p);
11256 }
11257 }
11258 p += 4;
11259 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11260 p += 4;
11261 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11262 p += 4;
11263 break;
11264
11265 case ppc_stub_long_branch_notoc:
11266 case ppc_stub_long_branch_both:
11267 case ppc_stub_plt_branch_notoc:
11268 case ppc_stub_plt_branch_both:
11269 case ppc_stub_plt_call_notoc:
11270 case ppc_stub_plt_call_both:
11271 p = loc;
11272 off = (stub_entry->stub_offset
11273 + stub_entry->group->stub_sec->output_offset
11274 + stub_entry->group->stub_sec->output_section->vma);
11275 if (stub_entry->stub_type == ppc_stub_long_branch_both
11276 || stub_entry->stub_type == ppc_stub_plt_branch_both
11277 || stub_entry->stub_type == ppc_stub_plt_call_both)
11278 {
11279 off += 4;
11280 bfd_put_32 (htab->params->stub_bfd, STD_R2_0R1 + STK_TOC (htab), p);
11281 p += 4;
11282 }
11283 if (stub_entry->stub_type >= ppc_stub_plt_call_notoc)
11284 {
11285 targ = stub_entry->plt_ent->plt.offset & ~1;
11286 if (targ >= (bfd_vma) -2)
11287 abort ();
11288
11289 plt = htab->elf.splt;
11290 if (!htab->elf.dynamic_sections_created
11291 || stub_entry->h == NULL
11292 || stub_entry->h->elf.dynindx == -1)
11293 {
11294 if (stub_entry->symtype == STT_GNU_IFUNC)
11295 plt = htab->elf.iplt;
11296 else
11297 plt = htab->pltlocal;
11298 }
11299 targ += plt->output_offset + plt->output_section->vma;
11300 }
11301 else
11302 targ = (stub_entry->target_value
11303 + stub_entry->target_section->output_offset
11304 + stub_entry->target_section->output_section->vma);
11305 odd = off & 4;
11306 off = targ - off;
11307
11308 relp = p;
11309 num_rel = 0;
11310 if (htab->powerxx_stubs)
11311 {
11312 bfd_boolean load = stub_entry->stub_type >= ppc_stub_plt_call_notoc;
11313 p = build_powerxx_offset (htab->params->stub_bfd, p, off, odd, load);
11314 }
11315 else
11316 {
11317 /* The notoc stubs calculate their target (either a PLT entry or
11318 the global entry point of a function) relative to the PC
11319 returned by the "bcl" two instructions past the start of the
11320 sequence emitted by build_offset. The offset is therefore 8
11321 less than calculated from the start of the sequence. */
11322 off -= 8;
11323 p = build_offset (htab->params->stub_bfd, p, off,
11324 stub_entry->stub_type >= ppc_stub_plt_call_notoc);
11325 }
11326
11327 if (stub_entry->stub_type <= ppc_stub_long_branch_both)
11328 {
11329 bfd_vma from;
11330 num_rel = 1;
11331 from = (stub_entry->stub_offset
11332 + stub_entry->group->stub_sec->output_offset
11333 + stub_entry->group->stub_sec->output_section->vma
11334 + (p - loc));
11335 bfd_put_32 (htab->params->stub_bfd,
11336 B_DOT | ((targ - from) & 0x3fffffc), p);
11337 }
11338 else
11339 {
11340 bfd_put_32 (htab->params->stub_bfd, MTCTR_R12, p);
11341 p += 4;
11342 bfd_put_32 (htab->params->stub_bfd, BCTR, p);
11343 }
11344 p += 4;
11345
11346 if (info->emitrelocations)
11347 {
11348 bfd_vma roff = relp - stub_entry->group->stub_sec->contents;
11349 if (htab->powerxx_stubs)
11350 num_rel += num_relocs_for_powerxx_offset (off, odd);
11351 else
11352 {
11353 num_rel += num_relocs_for_offset (off);
11354 roff += 16;
11355 }
11356 r = get_relocs (stub_entry->group->stub_sec, num_rel);
11357 if (r == NULL)
11358 return FALSE;
11359 if (htab->powerxx_stubs)
11360 r = emit_relocs_for_powerxx_offset (info, r, roff, targ, off, odd);
11361 else
11362 r = emit_relocs_for_offset (info, r, roff, targ, off);
11363 if (stub_entry->stub_type == ppc_stub_long_branch_notoc
11364 || stub_entry->stub_type == ppc_stub_long_branch_both)
11365 {
11366 ++r;
11367 roff = p - 4 - stub_entry->group->stub_sec->contents;
11368 r->r_offset = roff;
11369 r->r_info = ELF64_R_INFO (0, R_PPC64_REL24);
11370 r->r_addend = targ;
11371 if (stub_entry->h != NULL
11372 && !use_global_in_relocs (htab, stub_entry, r, num_rel))
11373 return FALSE;
11374 }
11375 }
11376
11377 if (!htab->powerxx_stubs
11378 && htab->glink_eh_frame != NULL
11379 && htab->glink_eh_frame->size != 0)
11380 {
11381 bfd_byte *base, *eh;
11382 unsigned int lr_used, delta;
11383
11384 base = (htab->glink_eh_frame->contents
11385 + stub_entry->group->eh_base + 17);
11386 eh = base + stub_entry->group->eh_size;
11387 lr_used = stub_entry->stub_offset + 8;
11388 if (stub_entry->stub_type == ppc_stub_long_branch_both
11389 || stub_entry->stub_type == ppc_stub_plt_branch_both
11390 || stub_entry->stub_type == ppc_stub_plt_call_both)
11391 lr_used += 4;
11392 delta = lr_used - stub_entry->group->lr_restore;
11393 stub_entry->group->lr_restore = lr_used + 8;
11394 eh = eh_advance (htab->elf.dynobj, eh, delta);
11395 *eh++ = DW_CFA_register;
11396 *eh++ = 65;
11397 *eh++ = 12;
11398 *eh++ = DW_CFA_advance_loc + 2;
11399 *eh++ = DW_CFA_restore_extended;
11400 *eh++ = 65;
11401 stub_entry->group->eh_size = eh - base;
11402 }
11403 break;
11404
11405 case ppc_stub_plt_call:
11406 case ppc_stub_plt_call_r2save:
11407 if (stub_entry->h != NULL
11408 && stub_entry->h->is_func_descriptor
11409 && stub_entry->h->oh != NULL)
11410 {
11411 struct ppc_link_hash_entry *fh = ppc_follow_link (stub_entry->h->oh);
11412
11413 /* If the old-ABI "dot-symbol" is undefined make it weak so
11414 we don't get a link error from RELOC_FOR_GLOBAL_SYMBOL. */
11415 if (fh->elf.root.type == bfd_link_hash_undefined
11416 && (stub_entry->h->elf.root.type == bfd_link_hash_defined
11417 || stub_entry->h->elf.root.type == bfd_link_hash_defweak))
11418 fh->elf.root.type = bfd_link_hash_undefweak;
11419 }
11420
11421 /* Now build the stub. */
11422 targ = stub_entry->plt_ent->plt.offset & ~1;
11423 if (targ >= (bfd_vma) -2)
11424 abort ();
11425
11426 plt = htab->elf.splt;
11427 if (!htab->elf.dynamic_sections_created
11428 || stub_entry->h == NULL
11429 || stub_entry->h->elf.dynindx == -1)
11430 {
11431 if (stub_entry->symtype == STT_GNU_IFUNC)
11432 plt = htab->elf.iplt;
11433 else
11434 plt = htab->pltlocal;
11435 }
11436 targ += plt->output_offset + plt->output_section->vma;
11437
11438 off = (elf_gp (info->output_bfd)
11439 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11440 off = targ - off;
11441
11442 if (off + 0x80008000 > 0xffffffff || (off & 7) != 0)
11443 {
11444 info->callbacks->einfo
11445 /* xgettext:c-format */
11446 (_("%P: linkage table error against `%pT'\n"),
11447 stub_entry->h != NULL
11448 ? stub_entry->h->elf.root.root.string
11449 : "<local sym>");
11450 bfd_set_error (bfd_error_bad_value);
11451 htab->stub_error = TRUE;
11452 return FALSE;
11453 }
11454
11455 r = NULL;
11456 if (info->emitrelocations)
11457 {
11458 r = get_relocs (stub_entry->group->stub_sec,
11459 ((PPC_HA (off) != 0)
11460 + (htab->opd_abi
11461 ? 2 + (htab->params->plt_static_chain
11462 && PPC_HA (off + 16) == PPC_HA (off))
11463 : 1)));
11464 if (r == NULL)
11465 return FALSE;
11466 r[0].r_offset = loc - stub_entry->group->stub_sec->contents;
11467 if (bfd_big_endian (info->output_bfd))
11468 r[0].r_offset += 2;
11469 r[0].r_addend = targ;
11470 }
11471 if (stub_entry->h != NULL
11472 && (stub_entry->h == htab->tls_get_addr_fd
11473 || stub_entry->h == htab->tls_get_addr)
11474 && htab->params->tls_get_addr_opt)
11475 p = build_tls_get_addr_stub (htab, stub_entry, loc, off, r);
11476 else
11477 p = build_plt_stub (htab, stub_entry, loc, off, r);
11478 break;
11479
11480 case ppc_stub_save_res:
11481 return TRUE;
11482
11483 default:
11484 BFD_FAIL ();
11485 return FALSE;
11486 }
11487
11488 stub_entry->group->stub_sec->size = stub_entry->stub_offset + (p - loc);
11489
11490 if (htab->params->emit_stub_syms)
11491 {
11492 struct elf_link_hash_entry *h;
11493 size_t len1, len2;
11494 char *name;
11495 const char *const stub_str[] = { "long_branch",
11496 "long_branch",
11497 "long_branch",
11498 "long_branch",
11499 "plt_branch",
11500 "plt_branch",
11501 "plt_branch",
11502 "plt_branch",
11503 "plt_call",
11504 "plt_call",
11505 "plt_call",
11506 "plt_call" };
11507
11508 len1 = strlen (stub_str[stub_entry->stub_type - 1]);
11509 len2 = strlen (stub_entry->root.string);
11510 name = bfd_malloc (len1 + len2 + 2);
11511 if (name == NULL)
11512 return FALSE;
11513 memcpy (name, stub_entry->root.string, 9);
11514 memcpy (name + 9, stub_str[stub_entry->stub_type - 1], len1);
11515 memcpy (name + len1 + 9, stub_entry->root.string + 8, len2 - 8 + 1);
11516 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
11517 if (h == NULL)
11518 return FALSE;
11519 if (h->root.type == bfd_link_hash_new)
11520 {
11521 h->root.type = bfd_link_hash_defined;
11522 h->root.u.def.section = stub_entry->group->stub_sec;
11523 h->root.u.def.value = stub_entry->stub_offset;
11524 h->ref_regular = 1;
11525 h->def_regular = 1;
11526 h->ref_regular_nonweak = 1;
11527 h->forced_local = 1;
11528 h->non_elf = 0;
11529 h->root.linker_def = 1;
11530 }
11531 }
11532
11533 return TRUE;
11534 }
11535
11536 /* As above, but don't actually build the stub. Just bump offset so
11537 we know stub section sizes, and select plt_branch stubs where
11538 long_branch stubs won't do. */
11539
11540 static bfd_boolean
11541 ppc_size_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg)
11542 {
11543 struct ppc_stub_hash_entry *stub_entry;
11544 struct bfd_link_info *info;
11545 struct ppc_link_hash_table *htab;
11546 asection *plt;
11547 bfd_vma targ, off, r2off;
11548 unsigned int size, extra, lr_used, delta, odd;
11549
11550 /* Massage our args to the form they really have. */
11551 stub_entry = (struct ppc_stub_hash_entry *) gen_entry;
11552 info = in_arg;
11553
11554 htab = ppc_hash_table (info);
11555 if (htab == NULL)
11556 return FALSE;
11557
11558 /* Make a note of the offset within the stubs for this entry. */
11559 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11560
11561 if (stub_entry->h != NULL
11562 && stub_entry->h->save_res
11563 && stub_entry->h->elf.root.type == bfd_link_hash_defined
11564 && stub_entry->h->elf.root.u.def.section == htab->sfpr)
11565 {
11566 /* Don't make stubs to out-of-line register save/restore
11567 functions. Instead, emit copies of the functions. */
11568 stub_entry->group->needs_save_res = 1;
11569 stub_entry->stub_type = ppc_stub_save_res;
11570 return TRUE;
11571 }
11572
11573 switch (stub_entry->stub_type)
11574 {
11575 case ppc_stub_plt_branch:
11576 case ppc_stub_plt_branch_r2off:
11577 /* Reset the stub type from the plt branch variant in case we now
11578 can reach with a shorter stub. */
11579 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11580 /* Fall through. */
11581 case ppc_stub_long_branch:
11582 case ppc_stub_long_branch_r2off:
11583 targ = (stub_entry->target_value
11584 + stub_entry->target_section->output_offset
11585 + stub_entry->target_section->output_section->vma);
11586 targ += PPC64_LOCAL_ENTRY_OFFSET (stub_entry->other);
11587 off = (stub_entry->stub_offset
11588 + stub_entry->group->stub_sec->output_offset
11589 + stub_entry->group->stub_sec->output_section->vma);
11590
11591 size = 4;
11592 r2off = 0;
11593 if (stub_entry->stub_type == ppc_stub_long_branch_r2off)
11594 {
11595 r2off = get_r2off (info, stub_entry);
11596 if (r2off == (bfd_vma) -1)
11597 {
11598 htab->stub_error = TRUE;
11599 return FALSE;
11600 }
11601 size = 8;
11602 if (PPC_HA (r2off) != 0)
11603 size += 4;
11604 if (PPC_LO (r2off) != 0)
11605 size += 4;
11606 off += size - 4;
11607 }
11608 off = targ - off;
11609
11610 /* If the branch offset is too big, use a ppc_stub_plt_branch.
11611 Do the same for -R objects without function descriptors. */
11612 if ((stub_entry->stub_type == ppc_stub_long_branch_r2off
11613 && r2off == 0
11614 && htab->sec_info[stub_entry->target_section->id].toc_off == 0)
11615 || off + (1 << 25) >= (bfd_vma) (1 << 26))
11616 {
11617 struct ppc_branch_hash_entry *br_entry;
11618
11619 br_entry = ppc_branch_hash_lookup (&htab->branch_hash_table,
11620 stub_entry->root.string + 9,
11621 TRUE, FALSE);
11622 if (br_entry == NULL)
11623 {
11624 _bfd_error_handler (_("can't build branch stub `%s'"),
11625 stub_entry->root.string);
11626 htab->stub_error = TRUE;
11627 return FALSE;
11628 }
11629
11630 if (br_entry->iter != htab->stub_iteration)
11631 {
11632 br_entry->iter = htab->stub_iteration;
11633 br_entry->offset = htab->brlt->size;
11634 htab->brlt->size += 8;
11635
11636 if (htab->relbrlt != NULL)
11637 htab->relbrlt->size += sizeof (Elf64_External_Rela);
11638 else if (info->emitrelocations)
11639 {
11640 htab->brlt->reloc_count += 1;
11641 htab->brlt->flags |= SEC_RELOC;
11642 }
11643 }
11644
11645 targ = (br_entry->offset
11646 + htab->brlt->output_offset
11647 + htab->brlt->output_section->vma);
11648 off = (elf_gp (info->output_bfd)
11649 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11650 off = targ - off;
11651
11652 if (info->emitrelocations)
11653 {
11654 stub_entry->group->stub_sec->reloc_count
11655 += 1 + (PPC_HA (off) != 0);
11656 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11657 }
11658
11659 stub_entry->stub_type += ppc_stub_plt_branch - ppc_stub_long_branch;
11660 if (stub_entry->stub_type != ppc_stub_plt_branch_r2off)
11661 {
11662 size = 12;
11663 if (PPC_HA (off) != 0)
11664 size = 16;
11665 }
11666 else
11667 {
11668 size = 16;
11669 if (PPC_HA (off) != 0)
11670 size += 4;
11671
11672 if (PPC_HA (r2off) != 0)
11673 size += 4;
11674 if (PPC_LO (r2off) != 0)
11675 size += 4;
11676 }
11677 }
11678 else if (info->emitrelocations)
11679 {
11680 stub_entry->group->stub_sec->reloc_count += 1;
11681 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11682 }
11683 break;
11684
11685 case ppc_stub_plt_branch_notoc:
11686 case ppc_stub_plt_branch_both:
11687 stub_entry->stub_type += ppc_stub_long_branch - ppc_stub_plt_branch;
11688 /* Fall through. */
11689 case ppc_stub_long_branch_notoc:
11690 case ppc_stub_long_branch_both:
11691 off = (stub_entry->stub_offset
11692 + stub_entry->group->stub_sec->output_offset
11693 + stub_entry->group->stub_sec->output_section->vma);
11694 size = 0;
11695 if (stub_entry->stub_type == ppc_stub_long_branch_both)
11696 size = 4;
11697 off += size;
11698 targ = (stub_entry->target_value
11699 + stub_entry->target_section->output_offset
11700 + stub_entry->target_section->output_section->vma);
11701 odd = off & 4;
11702 off = targ - off;
11703
11704 if (info->emitrelocations)
11705 {
11706 unsigned int num_rel;
11707 if (htab->powerxx_stubs)
11708 num_rel = num_relocs_for_powerxx_offset (off, odd);
11709 else
11710 num_rel = num_relocs_for_offset (off - 8);
11711 stub_entry->group->stub_sec->reloc_count += num_rel;
11712 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11713 }
11714
11715 if (htab->powerxx_stubs)
11716 extra = size_powerxx_offset (off, odd);
11717 else
11718 extra = size_offset (off - 8);
11719 /* Include branch insn plus those in the offset sequence. */
11720 size += 4 + extra;
11721 /* The branch insn is at the end, or "extra" bytes along. So
11722 its offset will be "extra" bytes less that that already
11723 calculated. */
11724 off -= extra;
11725
11726 if (!htab->powerxx_stubs)
11727 {
11728 /* After the bcl, lr has been modified so we need to emit
11729 .eh_frame info saying the return address is in r12. */
11730 lr_used = stub_entry->stub_offset + 8;
11731 if (stub_entry->stub_type == ppc_stub_long_branch_both)
11732 lr_used += 4;
11733 /* The eh_frame info will consist of a DW_CFA_advance_loc or
11734 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
11735 DW_CFA_restore_extended 65. */
11736 delta = lr_used - stub_entry->group->lr_restore;
11737 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11738 stub_entry->group->lr_restore = lr_used + 8;
11739 }
11740
11741 /* If the branch can't reach, use a plt_branch. */
11742 if (off + (1 << 25) >= (bfd_vma) (1 << 26))
11743 {
11744 stub_entry->stub_type += (ppc_stub_plt_branch_notoc
11745 - ppc_stub_long_branch_notoc);
11746 size += 4;
11747 }
11748 else if (info->emitrelocations)
11749 stub_entry->group->stub_sec->reloc_count +=1;
11750 break;
11751
11752 case ppc_stub_plt_call_notoc:
11753 case ppc_stub_plt_call_both:
11754 off = (stub_entry->stub_offset
11755 + stub_entry->group->stub_sec->output_offset
11756 + stub_entry->group->stub_sec->output_section->vma);
11757 if (stub_entry->stub_type == ppc_stub_plt_call_both)
11758 off += 4;
11759 targ = stub_entry->plt_ent->plt.offset & ~1;
11760 if (targ >= (bfd_vma) -2)
11761 abort ();
11762
11763 plt = htab->elf.splt;
11764 if (!htab->elf.dynamic_sections_created
11765 || stub_entry->h == NULL
11766 || stub_entry->h->elf.dynindx == -1)
11767 {
11768 if (stub_entry->symtype == STT_GNU_IFUNC)
11769 plt = htab->elf.iplt;
11770 else
11771 plt = htab->pltlocal;
11772 }
11773 targ += plt->output_offset + plt->output_section->vma;
11774 odd = off & 4;
11775 off = targ - off;
11776
11777 if (htab->params->plt_stub_align != 0)
11778 {
11779 unsigned pad = plt_stub_pad (htab, stub_entry, off);
11780
11781 stub_entry->group->stub_sec->size += pad;
11782 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11783 off -= pad;
11784 }
11785
11786 if (info->emitrelocations)
11787 {
11788 unsigned int num_rel;
11789 if (htab->powerxx_stubs)
11790 num_rel = num_relocs_for_powerxx_offset (off, odd);
11791 else
11792 num_rel = num_relocs_for_offset (off - 8);
11793 stub_entry->group->stub_sec->reloc_count += num_rel;
11794 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11795 }
11796
11797 size = plt_stub_size (htab, stub_entry, off);
11798
11799 if (!htab->powerxx_stubs)
11800 {
11801 /* After the bcl, lr has been modified so we need to emit
11802 .eh_frame info saying the return address is in r12. */
11803 lr_used = stub_entry->stub_offset + 8;
11804 if (stub_entry->stub_type == ppc_stub_plt_call_both)
11805 lr_used += 4;
11806 /* The eh_frame info will consist of a DW_CFA_advance_loc or
11807 variant, DW_CFA_register, 65, 12, DW_CFA_advance_loc+2,
11808 DW_CFA_restore_extended 65. */
11809 delta = lr_used - stub_entry->group->lr_restore;
11810 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11811 stub_entry->group->lr_restore = lr_used + 8;
11812 }
11813 break;
11814
11815 case ppc_stub_plt_call:
11816 case ppc_stub_plt_call_r2save:
11817 targ = stub_entry->plt_ent->plt.offset & ~(bfd_vma) 1;
11818 if (targ >= (bfd_vma) -2)
11819 abort ();
11820 plt = htab->elf.splt;
11821 if (!htab->elf.dynamic_sections_created
11822 || stub_entry->h == NULL
11823 || stub_entry->h->elf.dynindx == -1)
11824 {
11825 if (stub_entry->symtype == STT_GNU_IFUNC)
11826 plt = htab->elf.iplt;
11827 else
11828 plt = htab->pltlocal;
11829 }
11830 targ += plt->output_offset + plt->output_section->vma;
11831
11832 off = (elf_gp (info->output_bfd)
11833 + htab->sec_info[stub_entry->group->link_sec->id].toc_off);
11834 off = targ - off;
11835
11836 if (htab->params->plt_stub_align != 0)
11837 {
11838 unsigned pad = plt_stub_pad (htab, stub_entry, off);
11839
11840 stub_entry->group->stub_sec->size += pad;
11841 stub_entry->stub_offset = stub_entry->group->stub_sec->size;
11842 }
11843
11844 if (info->emitrelocations)
11845 {
11846 stub_entry->group->stub_sec->reloc_count
11847 += ((PPC_HA (off) != 0)
11848 + (htab->opd_abi
11849 ? 2 + (htab->params->plt_static_chain
11850 && PPC_HA (off + 16) == PPC_HA (off))
11851 : 1));
11852 stub_entry->group->stub_sec->flags |= SEC_RELOC;
11853 }
11854
11855 size = plt_stub_size (htab, stub_entry, off);
11856
11857 if (stub_entry->h != NULL
11858 && (stub_entry->h == htab->tls_get_addr_fd
11859 || stub_entry->h == htab->tls_get_addr)
11860 && htab->params->tls_get_addr_opt
11861 && stub_entry->stub_type == ppc_stub_plt_call_r2save)
11862 {
11863 /* After the bctrl, lr has been modified so we need to
11864 emit .eh_frame info saying the return address is
11865 on the stack. In fact we put the EH info specifying
11866 that the return address is on the stack *at* the
11867 call rather than after it, because the EH info for a
11868 call needs to be specified by that point.
11869 See libgcc/unwind-dw2.c execute_cfa_program. */
11870 lr_used = stub_entry->stub_offset + size - 20;
11871 /* The eh_frame info will consist of a DW_CFA_advance_loc
11872 or variant, DW_CFA_offset_externed_sf, 65, -stackoff,
11873 DW_CFA_advance_loc+4, DW_CFA_restore_extended, 65. */
11874 delta = lr_used - stub_entry->group->lr_restore;
11875 stub_entry->group->eh_size += eh_advance_size (delta) + 6;
11876 stub_entry->group->lr_restore = size - 4;
11877 }
11878 break;
11879
11880 default:
11881 BFD_FAIL ();
11882 return FALSE;
11883 }
11884
11885 stub_entry->group->stub_sec->size += size;
11886 return TRUE;
11887 }
11888
11889 /* Set up various things so that we can make a list of input sections
11890 for each output section included in the link. Returns -1 on error,
11891 0 when no stubs will be needed, and 1 on success. */
11892
11893 int
11894 ppc64_elf_setup_section_lists (struct bfd_link_info *info)
11895 {
11896 unsigned int id;
11897 bfd_size_type amt;
11898 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11899
11900 if (htab == NULL)
11901 return -1;
11902
11903 htab->sec_info_arr_size = _bfd_section_id;
11904 amt = sizeof (*htab->sec_info) * (htab->sec_info_arr_size);
11905 htab->sec_info = bfd_zmalloc (amt);
11906 if (htab->sec_info == NULL)
11907 return -1;
11908
11909 /* Set toc_off for com, und, abs and ind sections. */
11910 for (id = 0; id < 3; id++)
11911 htab->sec_info[id].toc_off = TOC_BASE_OFF;
11912
11913 return 1;
11914 }
11915
11916 /* Set up for first pass at multitoc partitioning. */
11917
11918 void
11919 ppc64_elf_start_multitoc_partition (struct bfd_link_info *info)
11920 {
11921 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11922
11923 htab->toc_curr = ppc64_elf_set_toc (info, info->output_bfd);
11924 htab->toc_bfd = NULL;
11925 htab->toc_first_sec = NULL;
11926 }
11927
11928 /* The linker repeatedly calls this function for each TOC input section
11929 and linker generated GOT section. Group input bfds such that the toc
11930 within a group is less than 64k in size. */
11931
11932 bfd_boolean
11933 ppc64_elf_next_toc_section (struct bfd_link_info *info, asection *isec)
11934 {
11935 struct ppc_link_hash_table *htab = ppc_hash_table (info);
11936 bfd_vma addr, off, limit;
11937
11938 if (htab == NULL)
11939 return FALSE;
11940
11941 if (!htab->second_toc_pass)
11942 {
11943 /* Keep track of the first .toc or .got section for this input bfd. */
11944 bfd_boolean new_bfd = htab->toc_bfd != isec->owner;
11945
11946 if (new_bfd)
11947 {
11948 htab->toc_bfd = isec->owner;
11949 htab->toc_first_sec = isec;
11950 }
11951
11952 addr = isec->output_offset + isec->output_section->vma;
11953 off = addr - htab->toc_curr;
11954 limit = 0x80008000;
11955 if (ppc64_elf_tdata (isec->owner)->has_small_toc_reloc)
11956 limit = 0x10000;
11957 if (off + isec->size > limit)
11958 {
11959 addr = (htab->toc_first_sec->output_offset
11960 + htab->toc_first_sec->output_section->vma);
11961 htab->toc_curr = addr;
11962 htab->toc_curr &= -TOC_BASE_ALIGN;
11963 }
11964
11965 /* toc_curr is the base address of this toc group. Set elf_gp
11966 for the input section to be the offset relative to the
11967 output toc base plus 0x8000. Making the input elf_gp an
11968 offset allows us to move the toc as a whole without
11969 recalculating input elf_gp. */
11970 off = htab->toc_curr - elf_gp (info->output_bfd);
11971 off += TOC_BASE_OFF;
11972
11973 /* Die if someone uses a linker script that doesn't keep input
11974 file .toc and .got together. */
11975 if (new_bfd
11976 && elf_gp (isec->owner) != 0
11977 && elf_gp (isec->owner) != off)
11978 return FALSE;
11979
11980 elf_gp (isec->owner) = off;
11981 return TRUE;
11982 }
11983
11984 /* During the second pass toc_first_sec points to the start of
11985 a toc group, and toc_curr is used to track the old elf_gp.
11986 We use toc_bfd to ensure we only look at each bfd once. */
11987 if (htab->toc_bfd == isec->owner)
11988 return TRUE;
11989 htab->toc_bfd = isec->owner;
11990
11991 if (htab->toc_first_sec == NULL
11992 || htab->toc_curr != elf_gp (isec->owner))
11993 {
11994 htab->toc_curr = elf_gp (isec->owner);
11995 htab->toc_first_sec = isec;
11996 }
11997 addr = (htab->toc_first_sec->output_offset
11998 + htab->toc_first_sec->output_section->vma);
11999 off = addr - elf_gp (info->output_bfd) + TOC_BASE_OFF;
12000 elf_gp (isec->owner) = off;
12001
12002 return TRUE;
12003 }
12004
12005 /* Called via elf_link_hash_traverse to merge GOT entries for global
12006 symbol H. */
12007
12008 static bfd_boolean
12009 merge_global_got (struct elf_link_hash_entry *h, void *inf ATTRIBUTE_UNUSED)
12010 {
12011 if (h->root.type == bfd_link_hash_indirect)
12012 return TRUE;
12013
12014 merge_got_entries (&h->got.glist);
12015
12016 return TRUE;
12017 }
12018
12019 /* Called via elf_link_hash_traverse to allocate GOT entries for global
12020 symbol H. */
12021
12022 static bfd_boolean
12023 reallocate_got (struct elf_link_hash_entry *h, void *inf)
12024 {
12025 struct got_entry *gent;
12026
12027 if (h->root.type == bfd_link_hash_indirect)
12028 return TRUE;
12029
12030 for (gent = h->got.glist; gent != NULL; gent = gent->next)
12031 if (!gent->is_indirect)
12032 allocate_got (h, (struct bfd_link_info *) inf, gent);
12033 return TRUE;
12034 }
12035
12036 /* Called on the first multitoc pass after the last call to
12037 ppc64_elf_next_toc_section. This function removes duplicate GOT
12038 entries. */
12039
12040 bfd_boolean
12041 ppc64_elf_layout_multitoc (struct bfd_link_info *info)
12042 {
12043 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12044 struct bfd *ibfd, *ibfd2;
12045 bfd_boolean done_something;
12046
12047 htab->multi_toc_needed = htab->toc_curr != elf_gp (info->output_bfd);
12048
12049 if (!htab->do_multi_toc)
12050 return FALSE;
12051
12052 /* Merge global sym got entries within a toc group. */
12053 elf_link_hash_traverse (&htab->elf, merge_global_got, info);
12054
12055 /* And tlsld_got. */
12056 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12057 {
12058 struct got_entry *ent, *ent2;
12059
12060 if (!is_ppc64_elf (ibfd))
12061 continue;
12062
12063 ent = ppc64_tlsld_got (ibfd);
12064 if (!ent->is_indirect
12065 && ent->got.offset != (bfd_vma) -1)
12066 {
12067 for (ibfd2 = ibfd->link.next; ibfd2 != NULL; ibfd2 = ibfd2->link.next)
12068 {
12069 if (!is_ppc64_elf (ibfd2))
12070 continue;
12071
12072 ent2 = ppc64_tlsld_got (ibfd2);
12073 if (!ent2->is_indirect
12074 && ent2->got.offset != (bfd_vma) -1
12075 && elf_gp (ibfd2) == elf_gp (ibfd))
12076 {
12077 ent2->is_indirect = TRUE;
12078 ent2->got.ent = ent;
12079 }
12080 }
12081 }
12082 }
12083
12084 /* Zap sizes of got sections. */
12085 htab->elf.irelplt->rawsize = htab->elf.irelplt->size;
12086 htab->elf.irelplt->size -= htab->got_reli_size;
12087 htab->got_reli_size = 0;
12088
12089 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12090 {
12091 asection *got, *relgot;
12092
12093 if (!is_ppc64_elf (ibfd))
12094 continue;
12095
12096 got = ppc64_elf_tdata (ibfd)->got;
12097 if (got != NULL)
12098 {
12099 got->rawsize = got->size;
12100 got->size = 0;
12101 relgot = ppc64_elf_tdata (ibfd)->relgot;
12102 relgot->rawsize = relgot->size;
12103 relgot->size = 0;
12104 }
12105 }
12106
12107 /* Now reallocate the got, local syms first. We don't need to
12108 allocate section contents again since we never increase size. */
12109 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12110 {
12111 struct got_entry **lgot_ents;
12112 struct got_entry **end_lgot_ents;
12113 struct plt_entry **local_plt;
12114 struct plt_entry **end_local_plt;
12115 unsigned char *lgot_masks;
12116 bfd_size_type locsymcount;
12117 Elf_Internal_Shdr *symtab_hdr;
12118 asection *s;
12119
12120 if (!is_ppc64_elf (ibfd))
12121 continue;
12122
12123 lgot_ents = elf_local_got_ents (ibfd);
12124 if (!lgot_ents)
12125 continue;
12126
12127 symtab_hdr = &elf_symtab_hdr (ibfd);
12128 locsymcount = symtab_hdr->sh_info;
12129 end_lgot_ents = lgot_ents + locsymcount;
12130 local_plt = (struct plt_entry **) end_lgot_ents;
12131 end_local_plt = local_plt + locsymcount;
12132 lgot_masks = (unsigned char *) end_local_plt;
12133 s = ppc64_elf_tdata (ibfd)->got;
12134 for (; lgot_ents < end_lgot_ents; ++lgot_ents, ++lgot_masks)
12135 {
12136 struct got_entry *ent;
12137
12138 for (ent = *lgot_ents; ent != NULL; ent = ent->next)
12139 {
12140 unsigned int ent_size = 8;
12141 unsigned int rel_size = sizeof (Elf64_External_Rela);
12142
12143 ent->got.offset = s->size;
12144 if ((ent->tls_type & *lgot_masks & TLS_GD) != 0)
12145 {
12146 ent_size *= 2;
12147 rel_size *= 2;
12148 }
12149 s->size += ent_size;
12150 if ((*lgot_masks & (TLS_TLS | PLT_IFUNC)) == PLT_IFUNC)
12151 {
12152 htab->elf.irelplt->size += rel_size;
12153 htab->got_reli_size += rel_size;
12154 }
12155 else if (bfd_link_pic (info)
12156 && !((ent->tls_type & TLS_TPREL) != 0
12157 && bfd_link_executable (info)))
12158 {
12159 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12160 srel->size += rel_size;
12161 }
12162 }
12163 }
12164 }
12165
12166 elf_link_hash_traverse (&htab->elf, reallocate_got, info);
12167
12168 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12169 {
12170 struct got_entry *ent;
12171
12172 if (!is_ppc64_elf (ibfd))
12173 continue;
12174
12175 ent = ppc64_tlsld_got (ibfd);
12176 if (!ent->is_indirect
12177 && ent->got.offset != (bfd_vma) -1)
12178 {
12179 asection *s = ppc64_elf_tdata (ibfd)->got;
12180 ent->got.offset = s->size;
12181 s->size += 16;
12182 if (bfd_link_pic (info))
12183 {
12184 asection *srel = ppc64_elf_tdata (ibfd)->relgot;
12185 srel->size += sizeof (Elf64_External_Rela);
12186 }
12187 }
12188 }
12189
12190 done_something = htab->elf.irelplt->rawsize != htab->elf.irelplt->size;
12191 if (!done_something)
12192 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12193 {
12194 asection *got;
12195
12196 if (!is_ppc64_elf (ibfd))
12197 continue;
12198
12199 got = ppc64_elf_tdata (ibfd)->got;
12200 if (got != NULL)
12201 {
12202 done_something = got->rawsize != got->size;
12203 if (done_something)
12204 break;
12205 }
12206 }
12207
12208 if (done_something)
12209 (*htab->params->layout_sections_again) ();
12210
12211 /* Set up for second pass over toc sections to recalculate elf_gp
12212 on input sections. */
12213 htab->toc_bfd = NULL;
12214 htab->toc_first_sec = NULL;
12215 htab->second_toc_pass = TRUE;
12216 return done_something;
12217 }
12218
12219 /* Called after second pass of multitoc partitioning. */
12220
12221 void
12222 ppc64_elf_finish_multitoc_partition (struct bfd_link_info *info)
12223 {
12224 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12225
12226 /* After the second pass, toc_curr tracks the TOC offset used
12227 for code sections below in ppc64_elf_next_input_section. */
12228 htab->toc_curr = TOC_BASE_OFF;
12229 }
12230
12231 /* No toc references were found in ISEC. If the code in ISEC makes no
12232 calls, then there's no need to use toc adjusting stubs when branching
12233 into ISEC. Actually, indirect calls from ISEC are OK as they will
12234 load r2. Returns -1 on error, 0 for no stub needed, 1 for stub
12235 needed, and 2 if a cyclical call-graph was found but no other reason
12236 for a stub was detected. If called from the top level, a return of
12237 2 means the same as a return of 0. */
12238
12239 static int
12240 toc_adjusting_stub_needed (struct bfd_link_info *info, asection *isec)
12241 {
12242 int ret;
12243
12244 /* Mark this section as checked. */
12245 isec->call_check_done = 1;
12246
12247 /* We know none of our code bearing sections will need toc stubs. */
12248 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12249 return 0;
12250
12251 if (isec->size == 0)
12252 return 0;
12253
12254 if (isec->output_section == NULL)
12255 return 0;
12256
12257 ret = 0;
12258 if (isec->reloc_count != 0)
12259 {
12260 Elf_Internal_Rela *relstart, *rel;
12261 Elf_Internal_Sym *local_syms;
12262 struct ppc_link_hash_table *htab;
12263
12264 relstart = _bfd_elf_link_read_relocs (isec->owner, isec, NULL, NULL,
12265 info->keep_memory);
12266 if (relstart == NULL)
12267 return -1;
12268
12269 /* Look for branches to outside of this section. */
12270 local_syms = NULL;
12271 htab = ppc_hash_table (info);
12272 if (htab == NULL)
12273 return -1;
12274
12275 for (rel = relstart; rel < relstart + isec->reloc_count; ++rel)
12276 {
12277 enum elf_ppc64_reloc_type r_type;
12278 unsigned long r_symndx;
12279 struct elf_link_hash_entry *h;
12280 struct ppc_link_hash_entry *eh;
12281 Elf_Internal_Sym *sym;
12282 asection *sym_sec;
12283 struct _opd_sec_data *opd;
12284 bfd_vma sym_value;
12285 bfd_vma dest;
12286
12287 r_type = ELF64_R_TYPE (rel->r_info);
12288 if (r_type != R_PPC64_REL24
12289 && r_type != R_PPC64_REL24_NOTOC
12290 && r_type != R_PPC64_REL14
12291 && r_type != R_PPC64_REL14_BRTAKEN
12292 && r_type != R_PPC64_REL14_BRNTAKEN
12293 && r_type != R_PPC64_PLTCALL
12294 && r_type != R_PPC64_PLTCALL_NOTOC)
12295 continue;
12296
12297 r_symndx = ELF64_R_SYM (rel->r_info);
12298 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms, r_symndx,
12299 isec->owner))
12300 {
12301 ret = -1;
12302 break;
12303 }
12304
12305 /* Calls to dynamic lib functions go through a plt call stub
12306 that uses r2. */
12307 eh = (struct ppc_link_hash_entry *) h;
12308 if (eh != NULL
12309 && (eh->elf.plt.plist != NULL
12310 || (eh->oh != NULL
12311 && ppc_follow_link (eh->oh)->elf.plt.plist != NULL)))
12312 {
12313 ret = 1;
12314 break;
12315 }
12316
12317 if (sym_sec == NULL)
12318 /* Ignore other undefined symbols. */
12319 continue;
12320
12321 /* Assume branches to other sections not included in the
12322 link need stubs too, to cover -R and absolute syms. */
12323 if (sym_sec->output_section == NULL)
12324 {
12325 ret = 1;
12326 break;
12327 }
12328
12329 if (h == NULL)
12330 sym_value = sym->st_value;
12331 else
12332 {
12333 if (h->root.type != bfd_link_hash_defined
12334 && h->root.type != bfd_link_hash_defweak)
12335 abort ();
12336 sym_value = h->root.u.def.value;
12337 }
12338 sym_value += rel->r_addend;
12339
12340 /* If this branch reloc uses an opd sym, find the code section. */
12341 opd = get_opd_info (sym_sec);
12342 if (opd != NULL)
12343 {
12344 if (h == NULL && opd->adjust != NULL)
12345 {
12346 long adjust;
12347
12348 adjust = opd->adjust[OPD_NDX (sym_value)];
12349 if (adjust == -1)
12350 /* Assume deleted functions won't ever be called. */
12351 continue;
12352 sym_value += adjust;
12353 }
12354
12355 dest = opd_entry_value (sym_sec, sym_value,
12356 &sym_sec, NULL, FALSE);
12357 if (dest == (bfd_vma) -1)
12358 continue;
12359 }
12360 else
12361 dest = (sym_value
12362 + sym_sec->output_offset
12363 + sym_sec->output_section->vma);
12364
12365 /* Ignore branch to self. */
12366 if (sym_sec == isec)
12367 continue;
12368
12369 /* If the called function uses the toc, we need a stub. */
12370 if (sym_sec->has_toc_reloc
12371 || sym_sec->makes_toc_func_call)
12372 {
12373 ret = 1;
12374 break;
12375 }
12376
12377 /* Assume any branch that needs a long branch stub might in fact
12378 need a plt_branch stub. A plt_branch stub uses r2. */
12379 else if (dest - (isec->output_offset
12380 + isec->output_section->vma
12381 + rel->r_offset) + (1 << 25)
12382 >= (2u << 25) - PPC64_LOCAL_ENTRY_OFFSET (h
12383 ? h->other
12384 : sym->st_other))
12385 {
12386 ret = 1;
12387 break;
12388 }
12389
12390 /* If calling back to a section in the process of being
12391 tested, we can't say for sure that no toc adjusting stubs
12392 are needed, so don't return zero. */
12393 else if (sym_sec->call_check_in_progress)
12394 ret = 2;
12395
12396 /* Branches to another section that itself doesn't have any TOC
12397 references are OK. Recursively call ourselves to check. */
12398 else if (!sym_sec->call_check_done)
12399 {
12400 int recur;
12401
12402 /* Mark current section as indeterminate, so that other
12403 sections that call back to current won't be marked as
12404 known. */
12405 isec->call_check_in_progress = 1;
12406 recur = toc_adjusting_stub_needed (info, sym_sec);
12407 isec->call_check_in_progress = 0;
12408
12409 if (recur != 0)
12410 {
12411 ret = recur;
12412 if (recur != 2)
12413 break;
12414 }
12415 }
12416 }
12417
12418 if (local_syms != NULL
12419 && (elf_symtab_hdr (isec->owner).contents
12420 != (unsigned char *) local_syms))
12421 free (local_syms);
12422 if (elf_section_data (isec)->relocs != relstart)
12423 free (relstart);
12424 }
12425
12426 if ((ret & 1) == 0
12427 && isec->map_head.s != NULL
12428 && (strcmp (isec->output_section->name, ".init") == 0
12429 || strcmp (isec->output_section->name, ".fini") == 0))
12430 {
12431 if (isec->map_head.s->has_toc_reloc
12432 || isec->map_head.s->makes_toc_func_call)
12433 ret = 1;
12434 else if (!isec->map_head.s->call_check_done)
12435 {
12436 int recur;
12437 isec->call_check_in_progress = 1;
12438 recur = toc_adjusting_stub_needed (info, isec->map_head.s);
12439 isec->call_check_in_progress = 0;
12440 if (recur != 0)
12441 ret = recur;
12442 }
12443 }
12444
12445 if (ret == 1)
12446 isec->makes_toc_func_call = 1;
12447
12448 return ret;
12449 }
12450
12451 /* The linker repeatedly calls this function for each input section,
12452 in the order that input sections are linked into output sections.
12453 Build lists of input sections to determine groupings between which
12454 we may insert linker stubs. */
12455
12456 bfd_boolean
12457 ppc64_elf_next_input_section (struct bfd_link_info *info, asection *isec)
12458 {
12459 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12460
12461 if (htab == NULL)
12462 return FALSE;
12463
12464 if ((isec->output_section->flags & SEC_CODE) != 0
12465 && isec->output_section->id < htab->sec_info_arr_size)
12466 {
12467 /* This happens to make the list in reverse order,
12468 which is what we want. */
12469 htab->sec_info[isec->id].u.list
12470 = htab->sec_info[isec->output_section->id].u.list;
12471 htab->sec_info[isec->output_section->id].u.list = isec;
12472 }
12473
12474 if (htab->multi_toc_needed)
12475 {
12476 /* Analyse sections that aren't already flagged as needing a
12477 valid toc pointer. Exclude .fixup for the linux kernel.
12478 .fixup contains branches, but only back to the function that
12479 hit an exception. */
12480 if (!(isec->has_toc_reloc
12481 || (isec->flags & SEC_CODE) == 0
12482 || strcmp (isec->name, ".fixup") == 0
12483 || isec->call_check_done))
12484 {
12485 if (toc_adjusting_stub_needed (info, isec) < 0)
12486 return FALSE;
12487 }
12488 /* Make all sections use the TOC assigned for this object file.
12489 This will be wrong for pasted sections; We fix that in
12490 check_pasted_section(). */
12491 if (elf_gp (isec->owner) != 0)
12492 htab->toc_curr = elf_gp (isec->owner);
12493 }
12494
12495 htab->sec_info[isec->id].toc_off = htab->toc_curr;
12496 return TRUE;
12497 }
12498
12499 /* Check that all .init and .fini sections use the same toc, if they
12500 have toc relocs. */
12501
12502 static bfd_boolean
12503 check_pasted_section (struct bfd_link_info *info, const char *name)
12504 {
12505 asection *o = bfd_get_section_by_name (info->output_bfd, name);
12506
12507 if (o != NULL)
12508 {
12509 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12510 bfd_vma toc_off = 0;
12511 asection *i;
12512
12513 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12514 if (i->has_toc_reloc)
12515 {
12516 if (toc_off == 0)
12517 toc_off = htab->sec_info[i->id].toc_off;
12518 else if (toc_off != htab->sec_info[i->id].toc_off)
12519 return FALSE;
12520 }
12521
12522 if (toc_off == 0)
12523 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12524 if (i->makes_toc_func_call)
12525 {
12526 toc_off = htab->sec_info[i->id].toc_off;
12527 break;
12528 }
12529
12530 /* Make sure the whole pasted function uses the same toc offset. */
12531 if (toc_off != 0)
12532 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
12533 htab->sec_info[i->id].toc_off = toc_off;
12534 }
12535 return TRUE;
12536 }
12537
12538 bfd_boolean
12539 ppc64_elf_check_init_fini (struct bfd_link_info *info)
12540 {
12541 return (check_pasted_section (info, ".init")
12542 & check_pasted_section (info, ".fini"));
12543 }
12544
12545 /* See whether we can group stub sections together. Grouping stub
12546 sections may result in fewer stubs. More importantly, we need to
12547 put all .init* and .fini* stubs at the beginning of the .init or
12548 .fini output sections respectively, because glibc splits the
12549 _init and _fini functions into multiple parts. Putting a stub in
12550 the middle of a function is not a good idea. */
12551
12552 static bfd_boolean
12553 group_sections (struct bfd_link_info *info,
12554 bfd_size_type stub_group_size,
12555 bfd_boolean stubs_always_before_branch)
12556 {
12557 struct ppc_link_hash_table *htab;
12558 asection *osec;
12559 bfd_boolean suppress_size_errors;
12560
12561 htab = ppc_hash_table (info);
12562 if (htab == NULL)
12563 return FALSE;
12564
12565 suppress_size_errors = FALSE;
12566 if (stub_group_size == 1)
12567 {
12568 /* Default values. */
12569 if (stubs_always_before_branch)
12570 stub_group_size = 0x1e00000;
12571 else
12572 stub_group_size = 0x1c00000;
12573 suppress_size_errors = TRUE;
12574 }
12575
12576 for (osec = info->output_bfd->sections; osec != NULL; osec = osec->next)
12577 {
12578 asection *tail;
12579
12580 if (osec->id >= htab->sec_info_arr_size)
12581 continue;
12582
12583 tail = htab->sec_info[osec->id].u.list;
12584 while (tail != NULL)
12585 {
12586 asection *curr;
12587 asection *prev;
12588 bfd_size_type total;
12589 bfd_boolean big_sec;
12590 bfd_vma curr_toc;
12591 struct map_stub *group;
12592 bfd_size_type group_size;
12593
12594 curr = tail;
12595 total = tail->size;
12596 group_size = (ppc64_elf_section_data (tail) != NULL
12597 && ppc64_elf_section_data (tail)->has_14bit_branch
12598 ? stub_group_size >> 10 : stub_group_size);
12599
12600 big_sec = total > group_size;
12601 if (big_sec && !suppress_size_errors)
12602 /* xgettext:c-format */
12603 _bfd_error_handler (_("%pB section %pA exceeds stub group size"),
12604 tail->owner, tail);
12605 curr_toc = htab->sec_info[tail->id].toc_off;
12606
12607 while ((prev = htab->sec_info[curr->id].u.list) != NULL
12608 && ((total += curr->output_offset - prev->output_offset)
12609 < (ppc64_elf_section_data (prev) != NULL
12610 && ppc64_elf_section_data (prev)->has_14bit_branch
12611 ? (group_size = stub_group_size >> 10) : group_size))
12612 && htab->sec_info[prev->id].toc_off == curr_toc)
12613 curr = prev;
12614
12615 /* OK, the size from the start of CURR to the end is less
12616 than group_size and thus can be handled by one stub
12617 section. (or the tail section is itself larger than
12618 group_size, in which case we may be toast.) We should
12619 really be keeping track of the total size of stubs added
12620 here, as stubs contribute to the final output section
12621 size. That's a little tricky, and this way will only
12622 break if stubs added make the total size more than 2^25,
12623 ie. for the default stub_group_size, if stubs total more
12624 than 2097152 bytes, or nearly 75000 plt call stubs. */
12625 group = bfd_alloc (curr->owner, sizeof (*group));
12626 if (group == NULL)
12627 return FALSE;
12628 group->link_sec = curr;
12629 group->stub_sec = NULL;
12630 group->needs_save_res = 0;
12631 group->lr_restore = 0;
12632 group->eh_size = 0;
12633 group->eh_base = 0;
12634 group->next = htab->group;
12635 htab->group = group;
12636 do
12637 {
12638 prev = htab->sec_info[tail->id].u.list;
12639 /* Set up this stub group. */
12640 htab->sec_info[tail->id].u.group = group;
12641 }
12642 while (tail != curr && (tail = prev) != NULL);
12643
12644 /* But wait, there's more! Input sections up to group_size
12645 bytes before the stub section can be handled by it too.
12646 Don't do this if we have a really large section after the
12647 stubs, as adding more stubs increases the chance that
12648 branches may not reach into the stub section. */
12649 if (!stubs_always_before_branch && !big_sec)
12650 {
12651 total = 0;
12652 while (prev != NULL
12653 && ((total += tail->output_offset - prev->output_offset)
12654 < (ppc64_elf_section_data (prev) != NULL
12655 && ppc64_elf_section_data (prev)->has_14bit_branch
12656 ? (group_size = stub_group_size >> 10)
12657 : group_size))
12658 && htab->sec_info[prev->id].toc_off == curr_toc)
12659 {
12660 tail = prev;
12661 prev = htab->sec_info[tail->id].u.list;
12662 htab->sec_info[tail->id].u.group = group;
12663 }
12664 }
12665 tail = prev;
12666 }
12667 }
12668 return TRUE;
12669 }
12670
12671 static const unsigned char glink_eh_frame_cie[] =
12672 {
12673 0, 0, 0, 16, /* length. */
12674 0, 0, 0, 0, /* id. */
12675 1, /* CIE version. */
12676 'z', 'R', 0, /* Augmentation string. */
12677 4, /* Code alignment. */
12678 0x78, /* Data alignment. */
12679 65, /* RA reg. */
12680 1, /* Augmentation size. */
12681 DW_EH_PE_pcrel | DW_EH_PE_sdata4, /* FDE encoding. */
12682 DW_CFA_def_cfa, 1, 0 /* def_cfa: r1 offset 0. */
12683 };
12684
12685 /* Stripping output sections is normally done before dynamic section
12686 symbols have been allocated. This function is called later, and
12687 handles cases like htab->brlt which is mapped to its own output
12688 section. */
12689
12690 static void
12691 maybe_strip_output (struct bfd_link_info *info, asection *isec)
12692 {
12693 if (isec->size == 0
12694 && isec->output_section->size == 0
12695 && !(isec->output_section->flags & SEC_KEEP)
12696 && !bfd_section_removed_from_list (info->output_bfd,
12697 isec->output_section)
12698 && elf_section_data (isec->output_section)->dynindx == 0)
12699 {
12700 isec->output_section->flags |= SEC_EXCLUDE;
12701 bfd_section_list_remove (info->output_bfd, isec->output_section);
12702 info->output_bfd->section_count--;
12703 }
12704 }
12705
12706 /* Determine and set the size of the stub section for a final link.
12707
12708 The basic idea here is to examine all the relocations looking for
12709 PC-relative calls to a target that is unreachable with a "bl"
12710 instruction. */
12711
12712 bfd_boolean
12713 ppc64_elf_size_stubs (struct bfd_link_info *info)
12714 {
12715 bfd_size_type stub_group_size;
12716 bfd_boolean stubs_always_before_branch;
12717 struct ppc_link_hash_table *htab = ppc_hash_table (info);
12718
12719 if (htab == NULL)
12720 return FALSE;
12721
12722 if (htab->params->plt_thread_safe == -1 && !bfd_link_executable (info))
12723 htab->params->plt_thread_safe = 1;
12724 if (!htab->opd_abi)
12725 htab->params->plt_thread_safe = 0;
12726 else if (htab->params->plt_thread_safe == -1)
12727 {
12728 static const char *const thread_starter[] =
12729 {
12730 "pthread_create",
12731 /* libstdc++ */
12732 "_ZNSt6thread15_M_start_threadESt10shared_ptrINS_10_Impl_baseEE",
12733 /* librt */
12734 "aio_init", "aio_read", "aio_write", "aio_fsync", "lio_listio",
12735 "mq_notify", "create_timer",
12736 /* libanl */
12737 "getaddrinfo_a",
12738 /* libgomp */
12739 "GOMP_parallel",
12740 "GOMP_parallel_start",
12741 "GOMP_parallel_loop_static",
12742 "GOMP_parallel_loop_static_start",
12743 "GOMP_parallel_loop_dynamic",
12744 "GOMP_parallel_loop_dynamic_start",
12745 "GOMP_parallel_loop_guided",
12746 "GOMP_parallel_loop_guided_start",
12747 "GOMP_parallel_loop_runtime",
12748 "GOMP_parallel_loop_runtime_start",
12749 "GOMP_parallel_sections",
12750 "GOMP_parallel_sections_start",
12751 /* libgo */
12752 "__go_go",
12753 };
12754 unsigned i;
12755
12756 for (i = 0; i < ARRAY_SIZE (thread_starter); i++)
12757 {
12758 struct elf_link_hash_entry *h;
12759 h = elf_link_hash_lookup (&htab->elf, thread_starter[i],
12760 FALSE, FALSE, TRUE);
12761 htab->params->plt_thread_safe = h != NULL && h->ref_regular;
12762 if (htab->params->plt_thread_safe)
12763 break;
12764 }
12765 }
12766 stubs_always_before_branch = htab->params->group_size < 0;
12767 if (htab->params->group_size < 0)
12768 stub_group_size = -htab->params->group_size;
12769 else
12770 stub_group_size = htab->params->group_size;
12771
12772 if (!group_sections (info, stub_group_size, stubs_always_before_branch))
12773 return FALSE;
12774
12775 #define STUB_SHRINK_ITER 20
12776 /* Loop until no stubs added. After iteration 20 of this loop we may
12777 exit on a stub section shrinking. This is to break out of a
12778 pathological case where adding stubs on one iteration decreases
12779 section gaps (perhaps due to alignment), which then requires
12780 fewer or smaller stubs on the next iteration. */
12781
12782 while (1)
12783 {
12784 bfd *input_bfd;
12785 unsigned int bfd_indx;
12786 struct map_stub *group;
12787
12788 htab->stub_iteration += 1;
12789
12790 for (input_bfd = info->input_bfds, bfd_indx = 0;
12791 input_bfd != NULL;
12792 input_bfd = input_bfd->link.next, bfd_indx++)
12793 {
12794 Elf_Internal_Shdr *symtab_hdr;
12795 asection *section;
12796 Elf_Internal_Sym *local_syms = NULL;
12797
12798 if (!is_ppc64_elf (input_bfd))
12799 continue;
12800
12801 /* We'll need the symbol table in a second. */
12802 symtab_hdr = &elf_symtab_hdr (input_bfd);
12803 if (symtab_hdr->sh_info == 0)
12804 continue;
12805
12806 /* Walk over each section attached to the input bfd. */
12807 for (section = input_bfd->sections;
12808 section != NULL;
12809 section = section->next)
12810 {
12811 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
12812
12813 /* If there aren't any relocs, then there's nothing more
12814 to do. */
12815 if ((section->flags & SEC_RELOC) == 0
12816 || (section->flags & SEC_ALLOC) == 0
12817 || (section->flags & SEC_LOAD) == 0
12818 || (section->flags & SEC_CODE) == 0
12819 || section->reloc_count == 0)
12820 continue;
12821
12822 /* If this section is a link-once section that will be
12823 discarded, then don't create any stubs. */
12824 if (section->output_section == NULL
12825 || section->output_section->owner != info->output_bfd)
12826 continue;
12827
12828 /* Get the relocs. */
12829 internal_relocs
12830 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
12831 info->keep_memory);
12832 if (internal_relocs == NULL)
12833 goto error_ret_free_local;
12834
12835 /* Now examine each relocation. */
12836 irela = internal_relocs;
12837 irelaend = irela + section->reloc_count;
12838 for (; irela < irelaend; irela++)
12839 {
12840 enum elf_ppc64_reloc_type r_type;
12841 unsigned int r_indx;
12842 enum ppc_stub_type stub_type;
12843 struct ppc_stub_hash_entry *stub_entry;
12844 asection *sym_sec, *code_sec;
12845 bfd_vma sym_value, code_value;
12846 bfd_vma destination;
12847 unsigned long local_off;
12848 bfd_boolean ok_dest;
12849 struct ppc_link_hash_entry *hash;
12850 struct ppc_link_hash_entry *fdh;
12851 struct elf_link_hash_entry *h;
12852 Elf_Internal_Sym *sym;
12853 char *stub_name;
12854 const asection *id_sec;
12855 struct _opd_sec_data *opd;
12856 struct plt_entry *plt_ent;
12857
12858 r_type = ELF64_R_TYPE (irela->r_info);
12859 r_indx = ELF64_R_SYM (irela->r_info);
12860
12861 if (r_type >= R_PPC64_max)
12862 {
12863 bfd_set_error (bfd_error_bad_value);
12864 goto error_ret_free_internal;
12865 }
12866
12867 /* Only look for stubs on branch instructions. */
12868 if (r_type != R_PPC64_REL24
12869 && r_type != R_PPC64_REL24_NOTOC
12870 && r_type != R_PPC64_REL14
12871 && r_type != R_PPC64_REL14_BRTAKEN
12872 && r_type != R_PPC64_REL14_BRNTAKEN)
12873 continue;
12874
12875 /* Now determine the call target, its name, value,
12876 section. */
12877 if (!get_sym_h (&h, &sym, &sym_sec, NULL, &local_syms,
12878 r_indx, input_bfd))
12879 goto error_ret_free_internal;
12880 hash = (struct ppc_link_hash_entry *) h;
12881
12882 ok_dest = FALSE;
12883 fdh = NULL;
12884 sym_value = 0;
12885 if (hash == NULL)
12886 {
12887 sym_value = sym->st_value;
12888 if (sym_sec != NULL
12889 && sym_sec->output_section != NULL)
12890 ok_dest = TRUE;
12891 }
12892 else if (hash->elf.root.type == bfd_link_hash_defined
12893 || hash->elf.root.type == bfd_link_hash_defweak)
12894 {
12895 sym_value = hash->elf.root.u.def.value;
12896 if (sym_sec->output_section != NULL)
12897 ok_dest = TRUE;
12898 }
12899 else if (hash->elf.root.type == bfd_link_hash_undefweak
12900 || hash->elf.root.type == bfd_link_hash_undefined)
12901 {
12902 /* Recognise an old ABI func code entry sym, and
12903 use the func descriptor sym instead if it is
12904 defined. */
12905 if (hash->elf.root.root.string[0] == '.'
12906 && hash->oh != NULL)
12907 {
12908 fdh = ppc_follow_link (hash->oh);
12909 if (fdh->elf.root.type == bfd_link_hash_defined
12910 || fdh->elf.root.type == bfd_link_hash_defweak)
12911 {
12912 sym_sec = fdh->elf.root.u.def.section;
12913 sym_value = fdh->elf.root.u.def.value;
12914 if (sym_sec->output_section != NULL)
12915 ok_dest = TRUE;
12916 }
12917 else
12918 fdh = NULL;
12919 }
12920 }
12921 else
12922 {
12923 bfd_set_error (bfd_error_bad_value);
12924 goto error_ret_free_internal;
12925 }
12926
12927 destination = 0;
12928 local_off = 0;
12929 if (ok_dest)
12930 {
12931 sym_value += irela->r_addend;
12932 destination = (sym_value
12933 + sym_sec->output_offset
12934 + sym_sec->output_section->vma);
12935 local_off = PPC64_LOCAL_ENTRY_OFFSET (hash
12936 ? hash->elf.other
12937 : sym->st_other);
12938 }
12939
12940 code_sec = sym_sec;
12941 code_value = sym_value;
12942 opd = get_opd_info (sym_sec);
12943 if (opd != NULL)
12944 {
12945 bfd_vma dest;
12946
12947 if (hash == NULL && opd->adjust != NULL)
12948 {
12949 long adjust = opd->adjust[OPD_NDX (sym_value)];
12950 if (adjust == -1)
12951 continue;
12952 code_value += adjust;
12953 sym_value += adjust;
12954 }
12955 dest = opd_entry_value (sym_sec, sym_value,
12956 &code_sec, &code_value, FALSE);
12957 if (dest != (bfd_vma) -1)
12958 {
12959 destination = dest;
12960 if (fdh != NULL)
12961 {
12962 /* Fixup old ABI sym to point at code
12963 entry. */
12964 hash->elf.root.type = bfd_link_hash_defweak;
12965 hash->elf.root.u.def.section = code_sec;
12966 hash->elf.root.u.def.value = code_value;
12967 }
12968 }
12969 }
12970
12971 /* Determine what (if any) linker stub is needed. */
12972 plt_ent = NULL;
12973 stub_type = ppc_type_of_stub (section, irela, &hash,
12974 &plt_ent, destination,
12975 local_off);
12976
12977 if (r_type == R_PPC64_REL24_NOTOC)
12978 {
12979 if (stub_type == ppc_stub_plt_call)
12980 stub_type = ppc_stub_plt_call_notoc;
12981 else if (stub_type == ppc_stub_long_branch
12982 || (code_sec != NULL
12983 && code_sec->output_section != NULL
12984 && (((hash ? hash->elf.other : sym->st_other)
12985 & STO_PPC64_LOCAL_MASK)
12986 > 1 << STO_PPC64_LOCAL_BIT)))
12987 stub_type = ppc_stub_long_branch_notoc;
12988 }
12989 else if (stub_type != ppc_stub_plt_call)
12990 {
12991 /* Check whether we need a TOC adjusting stub.
12992 Since the linker pastes together pieces from
12993 different object files when creating the
12994 _init and _fini functions, it may be that a
12995 call to what looks like a local sym is in
12996 fact a call needing a TOC adjustment. */
12997 if ((code_sec != NULL
12998 && code_sec->output_section != NULL
12999 && (htab->sec_info[code_sec->id].toc_off
13000 != htab->sec_info[section->id].toc_off)
13001 && (code_sec->has_toc_reloc
13002 || code_sec->makes_toc_func_call))
13003 || (((hash ? hash->elf.other : sym->st_other)
13004 & STO_PPC64_LOCAL_MASK)
13005 == 1 << STO_PPC64_LOCAL_BIT))
13006 stub_type = ppc_stub_long_branch_r2off;
13007 }
13008
13009 if (stub_type == ppc_stub_none)
13010 continue;
13011
13012 /* __tls_get_addr calls might be eliminated. */
13013 if (stub_type != ppc_stub_plt_call
13014 && stub_type != ppc_stub_plt_call_notoc
13015 && hash != NULL
13016 && (hash == htab->tls_get_addr
13017 || hash == htab->tls_get_addr_fd)
13018 && section->has_tls_reloc
13019 && irela != internal_relocs)
13020 {
13021 /* Get tls info. */
13022 unsigned char *tls_mask;
13023
13024 if (!get_tls_mask (&tls_mask, NULL, NULL, &local_syms,
13025 irela - 1, input_bfd))
13026 goto error_ret_free_internal;
13027 if ((*tls_mask & TLS_TLS) != 0)
13028 continue;
13029 }
13030
13031 if (stub_type == ppc_stub_plt_call)
13032 {
13033 if (!htab->opd_abi
13034 && htab->params->plt_localentry0 != 0
13035 && is_elfv2_localentry0 (&hash->elf))
13036 htab->has_plt_localentry0 = 1;
13037 else if (irela + 1 < irelaend
13038 && irela[1].r_offset == irela->r_offset + 4
13039 && (ELF64_R_TYPE (irela[1].r_info)
13040 == R_PPC64_TOCSAVE))
13041 {
13042 if (!tocsave_find (htab, INSERT,
13043 &local_syms, irela + 1, input_bfd))
13044 goto error_ret_free_internal;
13045 }
13046 else
13047 stub_type = ppc_stub_plt_call_r2save;
13048 }
13049
13050 /* Support for grouping stub sections. */
13051 id_sec = htab->sec_info[section->id].u.group->link_sec;
13052
13053 /* Get the name of this stub. */
13054 stub_name = ppc_stub_name (id_sec, sym_sec, hash, irela);
13055 if (!stub_name)
13056 goto error_ret_free_internal;
13057
13058 stub_entry = ppc_stub_hash_lookup (&htab->stub_hash_table,
13059 stub_name, FALSE, FALSE);
13060 if (stub_entry != NULL)
13061 {
13062 enum ppc_stub_type old_type;
13063 /* A stub has already been created, but it may
13064 not be the required type. We shouldn't be
13065 transitioning from plt_call to long_branch
13066 stubs or vice versa, but we might be
13067 upgrading from plt_call to plt_call_r2save or
13068 from long_branch to long_branch_r2off. */
13069 free (stub_name);
13070 old_type = stub_entry->stub_type;
13071 switch (old_type)
13072 {
13073 default:
13074 abort ();
13075
13076 case ppc_stub_save_res:
13077 continue;
13078
13079 case ppc_stub_plt_call:
13080 case ppc_stub_plt_call_r2save:
13081 case ppc_stub_plt_call_notoc:
13082 case ppc_stub_plt_call_both:
13083 if (stub_type == ppc_stub_plt_call)
13084 continue;
13085 else if (stub_type == ppc_stub_plt_call_r2save)
13086 {
13087 if (old_type == ppc_stub_plt_call_notoc)
13088 stub_type = ppc_stub_plt_call_both;
13089 }
13090 else if (stub_type == ppc_stub_plt_call_notoc)
13091 {
13092 if (old_type == ppc_stub_plt_call_r2save)
13093 stub_type = ppc_stub_plt_call_both;
13094 }
13095 else
13096 abort ();
13097 break;
13098
13099 case ppc_stub_plt_branch:
13100 case ppc_stub_plt_branch_r2off:
13101 case ppc_stub_plt_branch_notoc:
13102 case ppc_stub_plt_branch_both:
13103 old_type += (ppc_stub_long_branch
13104 - ppc_stub_plt_branch);
13105 /* Fall through. */
13106 case ppc_stub_long_branch:
13107 case ppc_stub_long_branch_r2off:
13108 case ppc_stub_long_branch_notoc:
13109 case ppc_stub_long_branch_both:
13110 if (stub_type == ppc_stub_long_branch)
13111 continue;
13112 else if (stub_type == ppc_stub_long_branch_r2off)
13113 {
13114 if (old_type == ppc_stub_long_branch_notoc)
13115 stub_type = ppc_stub_long_branch_both;
13116 }
13117 else if (stub_type == ppc_stub_long_branch_notoc)
13118 {
13119 if (old_type == ppc_stub_long_branch_r2off)
13120 stub_type = ppc_stub_long_branch_both;
13121 }
13122 else
13123 abort ();
13124 break;
13125 }
13126 if (old_type < stub_type)
13127 stub_entry->stub_type = stub_type;
13128 continue;
13129 }
13130
13131 stub_entry = ppc_add_stub (stub_name, section, info);
13132 if (stub_entry == NULL)
13133 {
13134 free (stub_name);
13135 error_ret_free_internal:
13136 if (elf_section_data (section)->relocs == NULL)
13137 free (internal_relocs);
13138 error_ret_free_local:
13139 if (local_syms != NULL
13140 && (symtab_hdr->contents
13141 != (unsigned char *) local_syms))
13142 free (local_syms);
13143 return FALSE;
13144 }
13145
13146 stub_entry->stub_type = stub_type;
13147 if (stub_type >= ppc_stub_plt_call
13148 && stub_type <= ppc_stub_plt_call_both)
13149 {
13150 stub_entry->target_value = sym_value;
13151 stub_entry->target_section = sym_sec;
13152 }
13153 else
13154 {
13155 stub_entry->target_value = code_value;
13156 stub_entry->target_section = code_sec;
13157 }
13158 stub_entry->h = hash;
13159 stub_entry->plt_ent = plt_ent;
13160 stub_entry->symtype
13161 = hash ? hash->elf.type : ELF_ST_TYPE (sym->st_info);
13162 stub_entry->other = hash ? hash->elf.other : sym->st_other;
13163
13164 if (hash != NULL
13165 && (hash->elf.root.type == bfd_link_hash_defined
13166 || hash->elf.root.type == bfd_link_hash_defweak))
13167 htab->stub_globals += 1;
13168 }
13169
13170 /* We're done with the internal relocs, free them. */
13171 if (elf_section_data (section)->relocs != internal_relocs)
13172 free (internal_relocs);
13173 }
13174
13175 if (local_syms != NULL
13176 && symtab_hdr->contents != (unsigned char *) local_syms)
13177 {
13178 if (!info->keep_memory)
13179 free (local_syms);
13180 else
13181 symtab_hdr->contents = (unsigned char *) local_syms;
13182 }
13183 }
13184
13185 /* We may have added some stubs. Find out the new size of the
13186 stub sections. */
13187 for (group = htab->group; group != NULL; group = group->next)
13188 {
13189 group->lr_restore = 0;
13190 group->eh_size = 0;
13191 if (group->stub_sec != NULL)
13192 {
13193 asection *stub_sec = group->stub_sec;
13194
13195 if (htab->stub_iteration <= STUB_SHRINK_ITER
13196 || stub_sec->rawsize < stub_sec->size)
13197 /* Past STUB_SHRINK_ITER, rawsize is the max size seen. */
13198 stub_sec->rawsize = stub_sec->size;
13199 stub_sec->size = 0;
13200 stub_sec->reloc_count = 0;
13201 stub_sec->flags &= ~SEC_RELOC;
13202 }
13203 }
13204
13205 if (htab->stub_iteration <= STUB_SHRINK_ITER
13206 || htab->brlt->rawsize < htab->brlt->size)
13207 htab->brlt->rawsize = htab->brlt->size;
13208 htab->brlt->size = 0;
13209 htab->brlt->reloc_count = 0;
13210 htab->brlt->flags &= ~SEC_RELOC;
13211 if (htab->relbrlt != NULL)
13212 htab->relbrlt->size = 0;
13213
13214 bfd_hash_traverse (&htab->stub_hash_table, ppc_size_one_stub, info);
13215
13216 for (group = htab->group; group != NULL; group = group->next)
13217 if (group->needs_save_res)
13218 group->stub_sec->size += htab->sfpr->size;
13219
13220 if (info->emitrelocations
13221 && htab->glink != NULL && htab->glink->size != 0)
13222 {
13223 htab->glink->reloc_count = 1;
13224 htab->glink->flags |= SEC_RELOC;
13225 }
13226
13227 if (htab->glink_eh_frame != NULL
13228 && !bfd_is_abs_section (htab->glink_eh_frame->output_section)
13229 && htab->glink_eh_frame->output_section->size > 8)
13230 {
13231 size_t size = 0, align = 4;
13232
13233 for (group = htab->group; group != NULL; group = group->next)
13234 if (group->eh_size != 0)
13235 size += (group->eh_size + 17 + align - 1) & -align;
13236 if (htab->glink != NULL && htab->glink->size != 0)
13237 size += (24 + align - 1) & -align;
13238 if (size != 0)
13239 size += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
13240 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13241 size = (size + align - 1) & -align;
13242 htab->glink_eh_frame->rawsize = htab->glink_eh_frame->size;
13243 htab->glink_eh_frame->size = size;
13244 }
13245
13246 if (htab->params->plt_stub_align != 0)
13247 for (group = htab->group; group != NULL; group = group->next)
13248 if (group->stub_sec != NULL)
13249 {
13250 int align = abs (htab->params->plt_stub_align);
13251 group->stub_sec->size
13252 = (group->stub_sec->size + (1 << align) - 1) & -(1 << align);
13253 }
13254
13255 for (group = htab->group; group != NULL; group = group->next)
13256 if (group->stub_sec != NULL
13257 && group->stub_sec->rawsize != group->stub_sec->size
13258 && (htab->stub_iteration <= STUB_SHRINK_ITER
13259 || group->stub_sec->rawsize < group->stub_sec->size))
13260 break;
13261
13262 if (group == NULL
13263 && (htab->brlt->rawsize == htab->brlt->size
13264 || (htab->stub_iteration > STUB_SHRINK_ITER
13265 && htab->brlt->rawsize > htab->brlt->size))
13266 && (htab->glink_eh_frame == NULL
13267 || htab->glink_eh_frame->rawsize == htab->glink_eh_frame->size))
13268 break;
13269
13270 /* Ask the linker to do its stuff. */
13271 (*htab->params->layout_sections_again) ();
13272 }
13273
13274 if (htab->glink_eh_frame != NULL
13275 && htab->glink_eh_frame->size != 0)
13276 {
13277 bfd_vma val;
13278 bfd_byte *p, *last_fde;
13279 size_t last_fde_len, size, align, pad;
13280 struct map_stub *group;
13281
13282 /* It is necessary to at least have a rough outline of the
13283 linker generated CIEs and FDEs written before
13284 bfd_elf_discard_info is run, in order for these FDEs to be
13285 indexed in .eh_frame_hdr. */
13286 p = bfd_zalloc (htab->glink_eh_frame->owner, htab->glink_eh_frame->size);
13287 if (p == NULL)
13288 return FALSE;
13289 htab->glink_eh_frame->contents = p;
13290 last_fde = p;
13291 align = 4;
13292
13293 memcpy (p, glink_eh_frame_cie, sizeof (glink_eh_frame_cie));
13294 /* CIE length (rewrite in case little-endian). */
13295 last_fde_len = ((sizeof (glink_eh_frame_cie) + align - 1) & -align) - 4;
13296 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13297 p += last_fde_len + 4;
13298
13299 for (group = htab->group; group != NULL; group = group->next)
13300 if (group->eh_size != 0)
13301 {
13302 group->eh_base = p - htab->glink_eh_frame->contents;
13303 last_fde = p;
13304 last_fde_len = ((group->eh_size + 17 + align - 1) & -align) - 4;
13305 /* FDE length. */
13306 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13307 p += 4;
13308 /* CIE pointer. */
13309 val = p - htab->glink_eh_frame->contents;
13310 bfd_put_32 (htab->elf.dynobj, val, p);
13311 p += 4;
13312 /* Offset to stub section, written later. */
13313 p += 4;
13314 /* stub section size. */
13315 bfd_put_32 (htab->elf.dynobj, group->stub_sec->size, p);
13316 p += 4;
13317 /* Augmentation. */
13318 p += 1;
13319 /* Make sure we don't have all nops. This is enough for
13320 elf-eh-frame.c to detect the last non-nop opcode. */
13321 p[group->eh_size - 1] = DW_CFA_advance_loc + 1;
13322 p = last_fde + last_fde_len + 4;
13323 }
13324 if (htab->glink != NULL && htab->glink->size != 0)
13325 {
13326 last_fde = p;
13327 last_fde_len = ((24 + align - 1) & -align) - 4;
13328 /* FDE length. */
13329 bfd_put_32 (htab->elf.dynobj, last_fde_len, p);
13330 p += 4;
13331 /* CIE pointer. */
13332 val = p - htab->glink_eh_frame->contents;
13333 bfd_put_32 (htab->elf.dynobj, val, p);
13334 p += 4;
13335 /* Offset to .glink, written later. */
13336 p += 4;
13337 /* .glink size. */
13338 bfd_put_32 (htab->elf.dynobj, htab->glink->size - 8, p);
13339 p += 4;
13340 /* Augmentation. */
13341 p += 1;
13342
13343 *p++ = DW_CFA_advance_loc + 1;
13344 *p++ = DW_CFA_register;
13345 *p++ = 65;
13346 *p++ = htab->opd_abi ? 12 : 0;
13347 *p++ = DW_CFA_advance_loc + (htab->opd_abi ? 5 : 7);
13348 *p++ = DW_CFA_restore_extended;
13349 *p++ = 65;
13350 p += ((24 + align - 1) & -align) - 24;
13351 }
13352 /* Subsume any padding into the last FDE if user .eh_frame
13353 sections are aligned more than glink_eh_frame. Otherwise any
13354 zero padding will be seen as a terminator. */
13355 align = 1ul << htab->glink_eh_frame->output_section->alignment_power;
13356 size = p - htab->glink_eh_frame->contents;
13357 pad = ((size + align - 1) & -align) - size;
13358 htab->glink_eh_frame->size = size + pad;
13359 bfd_put_32 (htab->elf.dynobj, last_fde_len + pad, last_fde);
13360 }
13361
13362 maybe_strip_output (info, htab->brlt);
13363 if (htab->glink_eh_frame != NULL)
13364 maybe_strip_output (info, htab->glink_eh_frame);
13365
13366 return TRUE;
13367 }
13368
13369 /* Called after we have determined section placement. If sections
13370 move, we'll be called again. Provide a value for TOCstart. */
13371
13372 bfd_vma
13373 ppc64_elf_set_toc (struct bfd_link_info *info, bfd *obfd)
13374 {
13375 asection *s;
13376 bfd_vma TOCstart, adjust;
13377
13378 if (info != NULL)
13379 {
13380 struct elf_link_hash_entry *h;
13381 struct elf_link_hash_table *htab = elf_hash_table (info);
13382
13383 if (is_elf_hash_table (htab)
13384 && htab->hgot != NULL)
13385 h = htab->hgot;
13386 else
13387 {
13388 h = elf_link_hash_lookup (htab, ".TOC.", FALSE, FALSE, TRUE);
13389 if (is_elf_hash_table (htab))
13390 htab->hgot = h;
13391 }
13392 if (h != NULL
13393 && h->root.type == bfd_link_hash_defined
13394 && !h->root.linker_def
13395 && (!is_elf_hash_table (htab)
13396 || h->def_regular))
13397 {
13398 TOCstart = (h->root.u.def.value - TOC_BASE_OFF
13399 + h->root.u.def.section->output_offset
13400 + h->root.u.def.section->output_section->vma);
13401 _bfd_set_gp_value (obfd, TOCstart);
13402 return TOCstart;
13403 }
13404 }
13405
13406 /* The TOC consists of sections .got, .toc, .tocbss, .plt in that
13407 order. The TOC starts where the first of these sections starts. */
13408 s = bfd_get_section_by_name (obfd, ".got");
13409 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13410 s = bfd_get_section_by_name (obfd, ".toc");
13411 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13412 s = bfd_get_section_by_name (obfd, ".tocbss");
13413 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13414 s = bfd_get_section_by_name (obfd, ".plt");
13415 if (s == NULL || (s->flags & SEC_EXCLUDE) != 0)
13416 {
13417 /* This may happen for
13418 o references to TOC base (SYM@toc / TOC[tc0]) without a
13419 .toc directive
13420 o bad linker script
13421 o --gc-sections and empty TOC sections
13422
13423 FIXME: Warn user? */
13424
13425 /* Look for a likely section. We probably won't even be
13426 using TOCstart. */
13427 for (s = obfd->sections; s != NULL; s = s->next)
13428 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_READONLY
13429 | SEC_EXCLUDE))
13430 == (SEC_ALLOC | SEC_SMALL_DATA))
13431 break;
13432 if (s == NULL)
13433 for (s = obfd->sections; s != NULL; s = s->next)
13434 if ((s->flags & (SEC_ALLOC | SEC_SMALL_DATA | SEC_EXCLUDE))
13435 == (SEC_ALLOC | SEC_SMALL_DATA))
13436 break;
13437 if (s == NULL)
13438 for (s = obfd->sections; s != NULL; s = s->next)
13439 if ((s->flags & (SEC_ALLOC | SEC_READONLY | SEC_EXCLUDE))
13440 == SEC_ALLOC)
13441 break;
13442 if (s == NULL)
13443 for (s = obfd->sections; s != NULL; s = s->next)
13444 if ((s->flags & (SEC_ALLOC | SEC_EXCLUDE)) == SEC_ALLOC)
13445 break;
13446 }
13447
13448 TOCstart = 0;
13449 if (s != NULL)
13450 TOCstart = s->output_section->vma + s->output_offset;
13451
13452 /* Force alignment. */
13453 adjust = TOCstart & (TOC_BASE_ALIGN - 1);
13454 TOCstart -= adjust;
13455 _bfd_set_gp_value (obfd, TOCstart);
13456
13457 if (info != NULL && s != NULL)
13458 {
13459 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13460
13461 if (htab != NULL)
13462 {
13463 if (htab->elf.hgot != NULL)
13464 {
13465 htab->elf.hgot->root.u.def.value = TOC_BASE_OFF - adjust;
13466 htab->elf.hgot->root.u.def.section = s;
13467 }
13468 }
13469 else
13470 {
13471 struct bfd_link_hash_entry *bh = NULL;
13472 _bfd_generic_link_add_one_symbol (info, obfd, ".TOC.", BSF_GLOBAL,
13473 s, TOC_BASE_OFF - adjust,
13474 NULL, FALSE, FALSE, &bh);
13475 }
13476 }
13477 return TOCstart;
13478 }
13479
13480 /* Called via elf_link_hash_traverse from ppc64_elf_build_stubs to
13481 write out any global entry stubs, and PLT relocations. */
13482
13483 static bfd_boolean
13484 build_global_entry_stubs_and_plt (struct elf_link_hash_entry *h, void *inf)
13485 {
13486 struct bfd_link_info *info;
13487 struct ppc_link_hash_table *htab;
13488 struct plt_entry *ent;
13489 asection *s;
13490
13491 if (h->root.type == bfd_link_hash_indirect)
13492 return TRUE;
13493
13494 info = inf;
13495 htab = ppc_hash_table (info);
13496 if (htab == NULL)
13497 return FALSE;
13498
13499 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13500 if (ent->plt.offset != (bfd_vma) -1)
13501 {
13502 /* This symbol has an entry in the procedure linkage
13503 table. Set it up. */
13504 Elf_Internal_Rela rela;
13505 asection *plt, *relplt;
13506 bfd_byte *loc;
13507
13508 if (!htab->elf.dynamic_sections_created
13509 || h->dynindx == -1)
13510 {
13511 if (!(h->def_regular
13512 && (h->root.type == bfd_link_hash_defined
13513 || h->root.type == bfd_link_hash_defweak)))
13514 continue;
13515 if (h->type == STT_GNU_IFUNC)
13516 {
13517 plt = htab->elf.iplt;
13518 relplt = htab->elf.irelplt;
13519 htab->local_ifunc_resolver = 1;
13520 if (htab->opd_abi)
13521 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13522 else
13523 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13524 }
13525 else
13526 {
13527 plt = htab->pltlocal;
13528 if (bfd_link_pic (info))
13529 {
13530 relplt = htab->relpltlocal;
13531 if (htab->opd_abi)
13532 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13533 else
13534 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13535 }
13536 else
13537 relplt = NULL;
13538 }
13539 rela.r_addend = (h->root.u.def.value
13540 + h->root.u.def.section->output_offset
13541 + h->root.u.def.section->output_section->vma
13542 + ent->addend);
13543
13544 if (relplt == NULL)
13545 {
13546 loc = plt->contents + ent->plt.offset;
13547 bfd_put_64 (info->output_bfd, rela.r_addend, loc);
13548 if (htab->opd_abi)
13549 {
13550 bfd_vma toc = elf_gp (info->output_bfd);
13551 toc += htab->sec_info[h->root.u.def.section->id].toc_off;
13552 bfd_put_64 (info->output_bfd, toc, loc + 8);
13553 }
13554 }
13555 else
13556 {
13557 rela.r_offset = (plt->output_section->vma
13558 + plt->output_offset
13559 + ent->plt.offset);
13560 loc = relplt->contents + (relplt->reloc_count++
13561 * sizeof (Elf64_External_Rela));
13562 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13563 }
13564 }
13565 else
13566 {
13567 rela.r_offset = (htab->elf.splt->output_section->vma
13568 + htab->elf.splt->output_offset
13569 + ent->plt.offset);
13570 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_JMP_SLOT);
13571 rela.r_addend = ent->addend;
13572 loc = (htab->elf.srelplt->contents
13573 + ((ent->plt.offset - PLT_INITIAL_ENTRY_SIZE (htab))
13574 / PLT_ENTRY_SIZE (htab) * sizeof (Elf64_External_Rela)));
13575 if (h->type == STT_GNU_IFUNC && is_static_defined (h))
13576 htab->maybe_local_ifunc_resolver = 1;
13577 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13578 }
13579 }
13580
13581 if (!h->pointer_equality_needed)
13582 return TRUE;
13583
13584 if (h->def_regular)
13585 return TRUE;
13586
13587 s = htab->global_entry;
13588 if (s == NULL || s->size == 0)
13589 return TRUE;
13590
13591 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
13592 if (ent->plt.offset != (bfd_vma) -1
13593 && ent->addend == 0)
13594 {
13595 bfd_byte *p;
13596 asection *plt;
13597 bfd_vma off;
13598
13599 p = s->contents + h->root.u.def.value;
13600 plt = htab->elf.splt;
13601 if (!htab->elf.dynamic_sections_created
13602 || h->dynindx == -1)
13603 {
13604 if (h->type == STT_GNU_IFUNC)
13605 plt = htab->elf.iplt;
13606 else
13607 plt = htab->pltlocal;
13608 }
13609 off = ent->plt.offset + plt->output_offset + plt->output_section->vma;
13610 off -= h->root.u.def.value + s->output_offset + s->output_section->vma;
13611
13612 if (off + 0x80008000 > 0xffffffff || (off & 3) != 0)
13613 {
13614 info->callbacks->einfo
13615 (_("%P: linkage table error against `%pT'\n"),
13616 h->root.root.string);
13617 bfd_set_error (bfd_error_bad_value);
13618 htab->stub_error = TRUE;
13619 }
13620
13621 htab->stub_count[ppc_stub_global_entry - 1] += 1;
13622 if (htab->params->emit_stub_syms)
13623 {
13624 size_t len = strlen (h->root.root.string);
13625 char *name = bfd_malloc (sizeof "12345678.global_entry." + len);
13626
13627 if (name == NULL)
13628 return FALSE;
13629
13630 sprintf (name, "%08x.global_entry.%s", s->id, h->root.root.string);
13631 h = elf_link_hash_lookup (&htab->elf, name, TRUE, FALSE, FALSE);
13632 if (h == NULL)
13633 return FALSE;
13634 if (h->root.type == bfd_link_hash_new)
13635 {
13636 h->root.type = bfd_link_hash_defined;
13637 h->root.u.def.section = s;
13638 h->root.u.def.value = p - s->contents;
13639 h->ref_regular = 1;
13640 h->def_regular = 1;
13641 h->ref_regular_nonweak = 1;
13642 h->forced_local = 1;
13643 h->non_elf = 0;
13644 h->root.linker_def = 1;
13645 }
13646 }
13647
13648 if (PPC_HA (off) != 0)
13649 {
13650 bfd_put_32 (s->owner, ADDIS_R12_R12 | PPC_HA (off), p);
13651 p += 4;
13652 }
13653 bfd_put_32 (s->owner, LD_R12_0R12 | PPC_LO (off), p);
13654 p += 4;
13655 bfd_put_32 (s->owner, MTCTR_R12, p);
13656 p += 4;
13657 bfd_put_32 (s->owner, BCTR, p);
13658 break;
13659 }
13660 return TRUE;
13661 }
13662
13663 /* Write PLT relocs for locals. */
13664
13665 static bfd_boolean
13666 write_plt_relocs_for_local_syms (struct bfd_link_info *info)
13667 {
13668 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13669 bfd *ibfd;
13670
13671 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13672 {
13673 struct got_entry **lgot_ents, **end_lgot_ents;
13674 struct plt_entry **local_plt, **lplt, **end_local_plt;
13675 Elf_Internal_Shdr *symtab_hdr;
13676 bfd_size_type locsymcount;
13677 Elf_Internal_Sym *local_syms = NULL;
13678 struct plt_entry *ent;
13679
13680 if (!is_ppc64_elf (ibfd))
13681 continue;
13682
13683 lgot_ents = elf_local_got_ents (ibfd);
13684 if (!lgot_ents)
13685 continue;
13686
13687 symtab_hdr = &elf_symtab_hdr (ibfd);
13688 locsymcount = symtab_hdr->sh_info;
13689 end_lgot_ents = lgot_ents + locsymcount;
13690 local_plt = (struct plt_entry **) end_lgot_ents;
13691 end_local_plt = local_plt + locsymcount;
13692 for (lplt = local_plt; lplt < end_local_plt; ++lplt)
13693 for (ent = *lplt; ent != NULL; ent = ent->next)
13694 if (ent->plt.offset != (bfd_vma) -1)
13695 {
13696 Elf_Internal_Sym *sym;
13697 asection *sym_sec;
13698 asection *plt, *relplt;
13699 bfd_byte *loc;
13700 bfd_vma val;
13701
13702 if (!get_sym_h (NULL, &sym, &sym_sec, NULL, &local_syms,
13703 lplt - local_plt, ibfd))
13704 {
13705 if (local_syms != NULL
13706 && symtab_hdr->contents != (unsigned char *) local_syms)
13707 free (local_syms);
13708 return FALSE;
13709 }
13710
13711 val = sym->st_value + ent->addend;
13712 if (ELF_ST_TYPE (sym->st_info) != STT_GNU_IFUNC)
13713 val += PPC64_LOCAL_ENTRY_OFFSET (sym->st_other);
13714 if (sym_sec != NULL && sym_sec->output_section != NULL)
13715 val += sym_sec->output_offset + sym_sec->output_section->vma;
13716
13717 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13718 {
13719 htab->local_ifunc_resolver = 1;
13720 plt = htab->elf.iplt;
13721 relplt = htab->elf.irelplt;
13722 }
13723 else
13724 {
13725 plt = htab->pltlocal;
13726 relplt = bfd_link_pic (info) ? htab->relpltlocal : NULL;
13727 }
13728
13729 if (relplt == NULL)
13730 {
13731 loc = plt->contents + ent->plt.offset;
13732 bfd_put_64 (info->output_bfd, val, loc);
13733 if (htab->opd_abi)
13734 {
13735 bfd_vma toc = elf_gp (ibfd);
13736 bfd_put_64 (info->output_bfd, toc, loc + 8);
13737 }
13738 }
13739 else
13740 {
13741 Elf_Internal_Rela rela;
13742 rela.r_offset = (ent->plt.offset
13743 + plt->output_offset
13744 + plt->output_section->vma);
13745 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
13746 {
13747 if (htab->opd_abi)
13748 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_IREL);
13749 else
13750 rela.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
13751 }
13752 else
13753 {
13754 if (htab->opd_abi)
13755 rela.r_info = ELF64_R_INFO (0, R_PPC64_JMP_SLOT);
13756 else
13757 rela.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
13758 }
13759 rela.r_addend = val;
13760 loc = relplt->contents + (relplt->reloc_count++
13761 * sizeof (Elf64_External_Rela));
13762 bfd_elf64_swap_reloca_out (info->output_bfd, &rela, loc);
13763 }
13764 }
13765
13766 if (local_syms != NULL
13767 && symtab_hdr->contents != (unsigned char *) local_syms)
13768 {
13769 if (!info->keep_memory)
13770 free (local_syms);
13771 else
13772 symtab_hdr->contents = (unsigned char *) local_syms;
13773 }
13774 }
13775 return TRUE;
13776 }
13777
13778 /* Build all the stubs associated with the current output file.
13779 The stubs are kept in a hash table attached to the main linker
13780 hash table. This function is called via gldelf64ppc_finish. */
13781
13782 bfd_boolean
13783 ppc64_elf_build_stubs (struct bfd_link_info *info,
13784 char **stats)
13785 {
13786 struct ppc_link_hash_table *htab = ppc_hash_table (info);
13787 struct map_stub *group;
13788 asection *stub_sec;
13789 bfd_byte *p;
13790 int stub_sec_count = 0;
13791
13792 if (htab == NULL)
13793 return FALSE;
13794
13795 /* Allocate memory to hold the linker stubs. */
13796 for (group = htab->group; group != NULL; group = group->next)
13797 {
13798 group->eh_size = 0;
13799 group->lr_restore = 0;
13800 if ((stub_sec = group->stub_sec) != NULL
13801 && stub_sec->size != 0)
13802 {
13803 stub_sec->contents = bfd_zalloc (htab->params->stub_bfd,
13804 stub_sec->size);
13805 if (stub_sec->contents == NULL)
13806 return FALSE;
13807 stub_sec->size = 0;
13808 }
13809 }
13810
13811 if (htab->glink != NULL && htab->glink->size != 0)
13812 {
13813 unsigned int indx;
13814 bfd_vma plt0;
13815
13816 /* Build the .glink plt call stub. */
13817 if (htab->params->emit_stub_syms)
13818 {
13819 struct elf_link_hash_entry *h;
13820 h = elf_link_hash_lookup (&htab->elf, "__glink_PLTresolve",
13821 TRUE, FALSE, FALSE);
13822 if (h == NULL)
13823 return FALSE;
13824 if (h->root.type == bfd_link_hash_new)
13825 {
13826 h->root.type = bfd_link_hash_defined;
13827 h->root.u.def.section = htab->glink;
13828 h->root.u.def.value = 8;
13829 h->ref_regular = 1;
13830 h->def_regular = 1;
13831 h->ref_regular_nonweak = 1;
13832 h->forced_local = 1;
13833 h->non_elf = 0;
13834 h->root.linker_def = 1;
13835 }
13836 }
13837 plt0 = (htab->elf.splt->output_section->vma
13838 + htab->elf.splt->output_offset
13839 - 16);
13840 if (info->emitrelocations)
13841 {
13842 Elf_Internal_Rela *r = get_relocs (htab->glink, 1);
13843 if (r == NULL)
13844 return FALSE;
13845 r->r_offset = (htab->glink->output_offset
13846 + htab->glink->output_section->vma);
13847 r->r_info = ELF64_R_INFO (0, R_PPC64_REL64);
13848 r->r_addend = plt0;
13849 }
13850 p = htab->glink->contents;
13851 plt0 -= htab->glink->output_section->vma + htab->glink->output_offset;
13852 bfd_put_64 (htab->glink->owner, plt0, p);
13853 p += 8;
13854 if (htab->opd_abi)
13855 {
13856 bfd_put_32 (htab->glink->owner, MFLR_R12, p);
13857 p += 4;
13858 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
13859 p += 4;
13860 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
13861 p += 4;
13862 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
13863 p += 4;
13864 bfd_put_32 (htab->glink->owner, MTLR_R12, p);
13865 p += 4;
13866 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
13867 p += 4;
13868 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
13869 p += 4;
13870 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | 8, p);
13871 p += 4;
13872 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
13873 p += 4;
13874 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 16, p);
13875 p += 4;
13876 }
13877 else
13878 {
13879 bfd_put_32 (htab->glink->owner, MFLR_R0, p);
13880 p += 4;
13881 bfd_put_32 (htab->glink->owner, BCL_20_31, p);
13882 p += 4;
13883 bfd_put_32 (htab->glink->owner, MFLR_R11, p);
13884 p += 4;
13885 bfd_put_32 (htab->glink->owner, STD_R2_0R1 + 24, p);
13886 p += 4;
13887 bfd_put_32 (htab->glink->owner, LD_R2_0R11 | (-16 & 0xfffc), p);
13888 p += 4;
13889 bfd_put_32 (htab->glink->owner, MTLR_R0, p);
13890 p += 4;
13891 bfd_put_32 (htab->glink->owner, SUB_R12_R12_R11, p);
13892 p += 4;
13893 bfd_put_32 (htab->glink->owner, ADD_R11_R2_R11, p);
13894 p += 4;
13895 bfd_put_32 (htab->glink->owner, ADDI_R0_R12 | (-48 & 0xffff), p);
13896 p += 4;
13897 bfd_put_32 (htab->glink->owner, LD_R12_0R11, p);
13898 p += 4;
13899 bfd_put_32 (htab->glink->owner, SRDI_R0_R0_2, p);
13900 p += 4;
13901 bfd_put_32 (htab->glink->owner, MTCTR_R12, p);
13902 p += 4;
13903 bfd_put_32 (htab->glink->owner, LD_R11_0R11 | 8, p);
13904 p += 4;
13905 }
13906 bfd_put_32 (htab->glink->owner, BCTR, p);
13907 p += 4;
13908 BFD_ASSERT (p == htab->glink->contents + GLINK_PLTRESOLVE_SIZE (htab));
13909
13910 /* Build the .glink lazy link call stubs. */
13911 indx = 0;
13912 while (p < htab->glink->contents + htab->glink->size)
13913 {
13914 if (htab->opd_abi)
13915 {
13916 if (indx < 0x8000)
13917 {
13918 bfd_put_32 (htab->glink->owner, LI_R0_0 | indx, p);
13919 p += 4;
13920 }
13921 else
13922 {
13923 bfd_put_32 (htab->glink->owner, LIS_R0_0 | PPC_HI (indx), p);
13924 p += 4;
13925 bfd_put_32 (htab->glink->owner, ORI_R0_R0_0 | PPC_LO (indx),
13926 p);
13927 p += 4;
13928 }
13929 }
13930 bfd_put_32 (htab->glink->owner,
13931 B_DOT | ((htab->glink->contents - p + 8) & 0x3fffffc), p);
13932 indx++;
13933 p += 4;
13934 }
13935 }
13936
13937 /* Build .glink global entry stubs, and PLT relocs for globals. */
13938 elf_link_hash_traverse (&htab->elf, build_global_entry_stubs_and_plt, info);
13939
13940 if (!write_plt_relocs_for_local_syms (info))
13941 return FALSE;
13942
13943 if (htab->brlt != NULL && htab->brlt->size != 0)
13944 {
13945 htab->brlt->contents = bfd_zalloc (htab->brlt->owner,
13946 htab->brlt->size);
13947 if (htab->brlt->contents == NULL)
13948 return FALSE;
13949 }
13950 if (htab->relbrlt != NULL && htab->relbrlt->size != 0)
13951 {
13952 htab->relbrlt->contents = bfd_zalloc (htab->relbrlt->owner,
13953 htab->relbrlt->size);
13954 if (htab->relbrlt->contents == NULL)
13955 return FALSE;
13956 }
13957
13958 /* Build the stubs as directed by the stub hash table. */
13959 bfd_hash_traverse (&htab->stub_hash_table, ppc_build_one_stub, info);
13960
13961 for (group = htab->group; group != NULL; group = group->next)
13962 if (group->needs_save_res)
13963 group->stub_sec->size += htab->sfpr->size;
13964
13965 if (htab->relbrlt != NULL)
13966 htab->relbrlt->reloc_count = 0;
13967
13968 if (htab->params->plt_stub_align != 0)
13969 for (group = htab->group; group != NULL; group = group->next)
13970 if ((stub_sec = group->stub_sec) != NULL)
13971 {
13972 int align = abs (htab->params->plt_stub_align);
13973 stub_sec->size = (stub_sec->size + (1 << align) - 1) & -(1 << align);
13974 }
13975
13976 for (group = htab->group; group != NULL; group = group->next)
13977 if (group->needs_save_res)
13978 {
13979 stub_sec = group->stub_sec;
13980 memcpy (stub_sec->contents + stub_sec->size - htab->sfpr->size,
13981 htab->sfpr->contents, htab->sfpr->size);
13982 if (htab->params->emit_stub_syms)
13983 {
13984 unsigned int i;
13985
13986 for (i = 0; i < ARRAY_SIZE (save_res_funcs); i++)
13987 if (!sfpr_define (info, &save_res_funcs[i], stub_sec))
13988 return FALSE;
13989 }
13990 }
13991
13992 if (htab->glink_eh_frame != NULL
13993 && htab->glink_eh_frame->size != 0)
13994 {
13995 bfd_vma val;
13996 size_t align = 4;
13997
13998 p = htab->glink_eh_frame->contents;
13999 p += (sizeof (glink_eh_frame_cie) + align - 1) & -align;
14000
14001 for (group = htab->group; group != NULL; group = group->next)
14002 if (group->eh_size != 0)
14003 {
14004 /* Offset to stub section. */
14005 val = (group->stub_sec->output_section->vma
14006 + group->stub_sec->output_offset);
14007 val -= (htab->glink_eh_frame->output_section->vma
14008 + htab->glink_eh_frame->output_offset
14009 + (p + 8 - htab->glink_eh_frame->contents));
14010 if (val + 0x80000000 > 0xffffffff)
14011 {
14012 _bfd_error_handler
14013 (_("%s offset too large for .eh_frame sdata4 encoding"),
14014 group->stub_sec->name);
14015 return FALSE;
14016 }
14017 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14018 p += (group->eh_size + 17 + 3) & -4;
14019 }
14020 if (htab->glink != NULL && htab->glink->size != 0)
14021 {
14022 /* Offset to .glink. */
14023 val = (htab->glink->output_section->vma
14024 + htab->glink->output_offset
14025 + 8);
14026 val -= (htab->glink_eh_frame->output_section->vma
14027 + htab->glink_eh_frame->output_offset
14028 + (p + 8 - htab->glink_eh_frame->contents));
14029 if (val + 0x80000000 > 0xffffffff)
14030 {
14031 _bfd_error_handler
14032 (_("%s offset too large for .eh_frame sdata4 encoding"),
14033 htab->glink->name);
14034 return FALSE;
14035 }
14036 bfd_put_32 (htab->elf.dynobj, val, p + 8);
14037 p += (24 + align - 1) & -align;
14038 }
14039 }
14040
14041 for (group = htab->group; group != NULL; group = group->next)
14042 if ((stub_sec = group->stub_sec) != NULL)
14043 {
14044 stub_sec_count += 1;
14045 if (stub_sec->rawsize != stub_sec->size
14046 && (htab->stub_iteration <= STUB_SHRINK_ITER
14047 || stub_sec->rawsize < stub_sec->size))
14048 break;
14049 }
14050
14051 if (group != NULL)
14052 {
14053 htab->stub_error = TRUE;
14054 _bfd_error_handler (_("stubs don't match calculated size"));
14055 }
14056
14057 if (htab->stub_error)
14058 return FALSE;
14059
14060 if (stats != NULL)
14061 {
14062 size_t len;
14063 *stats = bfd_malloc (500);
14064 if (*stats == NULL)
14065 return FALSE;
14066
14067 len = sprintf (*stats,
14068 ngettext ("linker stubs in %u group\n",
14069 "linker stubs in %u groups\n",
14070 stub_sec_count),
14071 stub_sec_count);
14072 sprintf (*stats + len, _(" branch %lu\n"
14073 " branch toc adj %lu\n"
14074 " branch notoc %lu\n"
14075 " branch both %lu\n"
14076 " long branch %lu\n"
14077 " long toc adj %lu\n"
14078 " long notoc %lu\n"
14079 " long both %lu\n"
14080 " plt call %lu\n"
14081 " plt call save %lu\n"
14082 " plt call notoc %lu\n"
14083 " plt call both %lu\n"
14084 " global entry %lu"),
14085 htab->stub_count[ppc_stub_long_branch - 1],
14086 htab->stub_count[ppc_stub_long_branch_r2off - 1],
14087 htab->stub_count[ppc_stub_long_branch_notoc - 1],
14088 htab->stub_count[ppc_stub_long_branch_both - 1],
14089 htab->stub_count[ppc_stub_plt_branch - 1],
14090 htab->stub_count[ppc_stub_plt_branch_r2off - 1],
14091 htab->stub_count[ppc_stub_plt_branch_notoc - 1],
14092 htab->stub_count[ppc_stub_plt_branch_both - 1],
14093 htab->stub_count[ppc_stub_plt_call - 1],
14094 htab->stub_count[ppc_stub_plt_call_r2save - 1],
14095 htab->stub_count[ppc_stub_plt_call_notoc - 1],
14096 htab->stub_count[ppc_stub_plt_call_both - 1],
14097 htab->stub_count[ppc_stub_global_entry - 1]);
14098 }
14099 return TRUE;
14100 }
14101
14102 /* What to do when ld finds relocations against symbols defined in
14103 discarded sections. */
14104
14105 static unsigned int
14106 ppc64_elf_action_discarded (asection *sec)
14107 {
14108 if (strcmp (".opd", sec->name) == 0)
14109 return 0;
14110
14111 if (strcmp (".toc", sec->name) == 0)
14112 return 0;
14113
14114 if (strcmp (".toc1", sec->name) == 0)
14115 return 0;
14116
14117 return _bfd_elf_default_action_discarded (sec);
14118 }
14119
14120 /* The RELOCATE_SECTION function is called by the ELF backend linker
14121 to handle the relocations for a section.
14122
14123 The relocs are always passed as Rela structures; if the section
14124 actually uses Rel structures, the r_addend field will always be
14125 zero.
14126
14127 This function is responsible for adjust the section contents as
14128 necessary, and (if using Rela relocs and generating a
14129 relocatable output file) adjusting the reloc addend as
14130 necessary.
14131
14132 This function does not have to worry about setting the reloc
14133 address or the reloc symbol index.
14134
14135 LOCAL_SYMS is a pointer to the swapped in local symbols.
14136
14137 LOCAL_SECTIONS is an array giving the section in the input file
14138 corresponding to the st_shndx field of each local symbol.
14139
14140 The global hash table entry for the global symbols can be found
14141 via elf_sym_hashes (input_bfd).
14142
14143 When generating relocatable output, this function must handle
14144 STB_LOCAL/STT_SECTION symbols specially. The output symbol is
14145 going to be the section symbol corresponding to the output
14146 section, which means that the addend must be adjusted
14147 accordingly. */
14148
14149 static bfd_boolean
14150 ppc64_elf_relocate_section (bfd *output_bfd,
14151 struct bfd_link_info *info,
14152 bfd *input_bfd,
14153 asection *input_section,
14154 bfd_byte *contents,
14155 Elf_Internal_Rela *relocs,
14156 Elf_Internal_Sym *local_syms,
14157 asection **local_sections)
14158 {
14159 struct ppc_link_hash_table *htab;
14160 Elf_Internal_Shdr *symtab_hdr;
14161 struct elf_link_hash_entry **sym_hashes;
14162 Elf_Internal_Rela *rel;
14163 Elf_Internal_Rela *wrel;
14164 Elf_Internal_Rela *relend;
14165 Elf_Internal_Rela outrel;
14166 bfd_byte *loc;
14167 struct got_entry **local_got_ents;
14168 bfd_vma TOCstart;
14169 bfd_boolean ret = TRUE;
14170 bfd_boolean is_opd;
14171 /* Assume 'at' branch hints. */
14172 bfd_boolean is_isa_v2 = TRUE;
14173 bfd_vma d_offset = (bfd_big_endian (input_bfd) ? 2 : 0);
14174
14175 /* Initialize howto table if needed. */
14176 if (!ppc64_elf_howto_table[R_PPC64_ADDR32])
14177 ppc_howto_init ();
14178
14179 htab = ppc_hash_table (info);
14180 if (htab == NULL)
14181 return FALSE;
14182
14183 /* Don't relocate stub sections. */
14184 if (input_section->owner == htab->params->stub_bfd)
14185 return TRUE;
14186
14187 if (!is_ppc64_elf (input_bfd))
14188 {
14189 bfd_set_error (bfd_error_wrong_format);
14190 return FALSE;
14191 }
14192
14193 local_got_ents = elf_local_got_ents (input_bfd);
14194 TOCstart = elf_gp (output_bfd);
14195 symtab_hdr = &elf_symtab_hdr (input_bfd);
14196 sym_hashes = elf_sym_hashes (input_bfd);
14197 is_opd = ppc64_elf_section_data (input_section)->sec_type == sec_opd;
14198
14199 rel = wrel = relocs;
14200 relend = relocs + input_section->reloc_count;
14201 for (; rel < relend; wrel++, rel++)
14202 {
14203 enum elf_ppc64_reloc_type r_type;
14204 bfd_vma addend;
14205 bfd_reloc_status_type r;
14206 Elf_Internal_Sym *sym;
14207 asection *sec;
14208 struct elf_link_hash_entry *h_elf;
14209 struct ppc_link_hash_entry *h;
14210 struct ppc_link_hash_entry *fdh;
14211 const char *sym_name;
14212 unsigned long r_symndx, toc_symndx;
14213 bfd_vma toc_addend;
14214 unsigned char tls_mask, tls_gd, tls_type;
14215 unsigned char sym_type;
14216 bfd_vma relocation;
14217 bfd_boolean unresolved_reloc, save_unresolved_reloc;
14218 bfd_boolean warned;
14219 enum { DEST_NORMAL, DEST_OPD, DEST_STUB } reloc_dest;
14220 unsigned int insn;
14221 unsigned int mask;
14222 struct ppc_stub_hash_entry *stub_entry;
14223 bfd_vma max_br_offset;
14224 bfd_vma from;
14225 Elf_Internal_Rela orig_rel;
14226 reloc_howto_type *howto;
14227 struct reloc_howto_struct alt_howto;
14228 uint64_t pinsn;
14229 bfd_vma offset;
14230
14231 again:
14232 orig_rel = *rel;
14233
14234 r_type = ELF64_R_TYPE (rel->r_info);
14235 r_symndx = ELF64_R_SYM (rel->r_info);
14236
14237 /* For old style R_PPC64_TOC relocs with a zero symbol, use the
14238 symbol of the previous ADDR64 reloc. The symbol gives us the
14239 proper TOC base to use. */
14240 if (rel->r_info == ELF64_R_INFO (0, R_PPC64_TOC)
14241 && wrel != relocs
14242 && ELF64_R_TYPE (wrel[-1].r_info) == R_PPC64_ADDR64
14243 && is_opd)
14244 r_symndx = ELF64_R_SYM (wrel[-1].r_info);
14245
14246 sym = NULL;
14247 sec = NULL;
14248 h_elf = NULL;
14249 sym_name = NULL;
14250 unresolved_reloc = FALSE;
14251 warned = FALSE;
14252
14253 if (r_symndx < symtab_hdr->sh_info)
14254 {
14255 /* It's a local symbol. */
14256 struct _opd_sec_data *opd;
14257
14258 sym = local_syms + r_symndx;
14259 sec = local_sections[r_symndx];
14260 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, sec);
14261 sym_type = ELF64_ST_TYPE (sym->st_info);
14262 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
14263 opd = get_opd_info (sec);
14264 if (opd != NULL && opd->adjust != NULL)
14265 {
14266 long adjust = opd->adjust[OPD_NDX (sym->st_value
14267 + rel->r_addend)];
14268 if (adjust == -1)
14269 relocation = 0;
14270 else
14271 {
14272 /* If this is a relocation against the opd section sym
14273 and we have edited .opd, adjust the reloc addend so
14274 that ld -r and ld --emit-relocs output is correct.
14275 If it is a reloc against some other .opd symbol,
14276 then the symbol value will be adjusted later. */
14277 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
14278 rel->r_addend += adjust;
14279 else
14280 relocation += adjust;
14281 }
14282 }
14283 }
14284 else
14285 {
14286 bfd_boolean ignored;
14287
14288 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
14289 r_symndx, symtab_hdr, sym_hashes,
14290 h_elf, sec, relocation,
14291 unresolved_reloc, warned, ignored);
14292 sym_name = h_elf->root.root.string;
14293 sym_type = h_elf->type;
14294 if (sec != NULL
14295 && sec->owner == output_bfd
14296 && strcmp (sec->name, ".opd") == 0)
14297 {
14298 /* This is a symbol defined in a linker script. All
14299 such are defined in output sections, even those
14300 defined by simple assignment from a symbol defined in
14301 an input section. Transfer the symbol to an
14302 appropriate input .opd section, so that a branch to
14303 this symbol will be mapped to the location specified
14304 by the opd entry. */
14305 struct bfd_link_order *lo;
14306 for (lo = sec->map_head.link_order; lo != NULL; lo = lo->next)
14307 if (lo->type == bfd_indirect_link_order)
14308 {
14309 asection *isec = lo->u.indirect.section;
14310 if (h_elf->root.u.def.value >= isec->output_offset
14311 && h_elf->root.u.def.value < (isec->output_offset
14312 + isec->size))
14313 {
14314 h_elf->root.u.def.value -= isec->output_offset;
14315 h_elf->root.u.def.section = isec;
14316 sec = isec;
14317 break;
14318 }
14319 }
14320 }
14321 }
14322 h = (struct ppc_link_hash_entry *) h_elf;
14323
14324 if (sec != NULL && discarded_section (sec))
14325 {
14326 _bfd_clear_contents (ppc64_elf_howto_table[r_type],
14327 input_bfd, input_section,
14328 contents, rel->r_offset);
14329 wrel->r_offset = rel->r_offset;
14330 wrel->r_info = 0;
14331 wrel->r_addend = 0;
14332
14333 /* For ld -r, remove relocations in debug sections against
14334 symbols defined in discarded sections. Not done for
14335 non-debug to preserve relocs in .eh_frame which the
14336 eh_frame editing code expects to be present. */
14337 if (bfd_link_relocatable (info)
14338 && (input_section->flags & SEC_DEBUGGING))
14339 wrel--;
14340
14341 continue;
14342 }
14343
14344 if (bfd_link_relocatable (info))
14345 goto copy_reloc;
14346
14347 if (h != NULL && &h->elf == htab->elf.hgot)
14348 {
14349 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14350 sec = bfd_abs_section_ptr;
14351 unresolved_reloc = FALSE;
14352 }
14353
14354 /* TLS optimizations. Replace instruction sequences and relocs
14355 based on information we collected in tls_optimize. We edit
14356 RELOCS so that --emit-relocs will output something sensible
14357 for the final instruction stream. */
14358 tls_mask = 0;
14359 tls_gd = 0;
14360 toc_symndx = 0;
14361 if (h != NULL)
14362 tls_mask = h->tls_mask;
14363 else if (local_got_ents != NULL)
14364 {
14365 struct plt_entry **local_plt = (struct plt_entry **)
14366 (local_got_ents + symtab_hdr->sh_info);
14367 unsigned char *lgot_masks = (unsigned char *)
14368 (local_plt + symtab_hdr->sh_info);
14369 tls_mask = lgot_masks[r_symndx];
14370 }
14371 if (((tls_mask & TLS_TLS) == 0 || tls_mask == (TLS_TLS | TLS_MARK))
14372 && (r_type == R_PPC64_TLS
14373 || r_type == R_PPC64_TLSGD
14374 || r_type == R_PPC64_TLSLD))
14375 {
14376 /* Check for toc tls entries. */
14377 unsigned char *toc_tls;
14378
14379 if (!get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14380 &local_syms, rel, input_bfd))
14381 return FALSE;
14382
14383 if (toc_tls)
14384 tls_mask = *toc_tls;
14385 }
14386
14387 /* Check that tls relocs are used with tls syms, and non-tls
14388 relocs are used with non-tls syms. */
14389 if (r_symndx != STN_UNDEF
14390 && r_type != R_PPC64_NONE
14391 && (h == NULL
14392 || h->elf.root.type == bfd_link_hash_defined
14393 || h->elf.root.type == bfd_link_hash_defweak)
14394 && IS_PPC64_TLS_RELOC (r_type) != (sym_type == STT_TLS))
14395 {
14396 if ((tls_mask & TLS_TLS) != 0
14397 && (r_type == R_PPC64_TLS
14398 || r_type == R_PPC64_TLSGD
14399 || r_type == R_PPC64_TLSLD))
14400 /* R_PPC64_TLS is OK against a symbol in the TOC. */
14401 ;
14402 else
14403 info->callbacks->einfo
14404 (!IS_PPC64_TLS_RELOC (r_type)
14405 /* xgettext:c-format */
14406 ? _("%H: %s used with TLS symbol `%pT'\n")
14407 /* xgettext:c-format */
14408 : _("%H: %s used with non-TLS symbol `%pT'\n"),
14409 input_bfd, input_section, rel->r_offset,
14410 ppc64_elf_howto_table[r_type]->name,
14411 sym_name);
14412 }
14413
14414 /* Ensure reloc mapping code below stays sane. */
14415 if (R_PPC64_TOC16_LO_DS != R_PPC64_TOC16_DS + 1
14416 || R_PPC64_TOC16_LO != R_PPC64_TOC16 + 1
14417 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TLSGD16 & 3)
14418 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TLSGD16_LO & 3)
14419 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TLSGD16_HI & 3)
14420 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TLSGD16_HA & 3)
14421 || (R_PPC64_GOT_TLSLD16 & 3) != (R_PPC64_GOT_TPREL16_DS & 3)
14422 || (R_PPC64_GOT_TLSLD16_LO & 3) != (R_PPC64_GOT_TPREL16_LO_DS & 3)
14423 || (R_PPC64_GOT_TLSLD16_HI & 3) != (R_PPC64_GOT_TPREL16_HI & 3)
14424 || (R_PPC64_GOT_TLSLD16_HA & 3) != (R_PPC64_GOT_TPREL16_HA & 3))
14425 abort ();
14426
14427 switch (r_type)
14428 {
14429 default:
14430 break;
14431
14432 case R_PPC64_LO_DS_OPT:
14433 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - d_offset);
14434 if ((insn & (0x3f << 26)) != 58u << 26)
14435 abort ();
14436 insn += (14u << 26) - (58u << 26);
14437 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - d_offset);
14438 r_type = R_PPC64_TOC16_LO;
14439 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14440 break;
14441
14442 case R_PPC64_TOC16:
14443 case R_PPC64_TOC16_LO:
14444 case R_PPC64_TOC16_DS:
14445 case R_PPC64_TOC16_LO_DS:
14446 {
14447 /* Check for toc tls entries. */
14448 unsigned char *toc_tls;
14449 int retval;
14450
14451 retval = get_tls_mask (&toc_tls, &toc_symndx, &toc_addend,
14452 &local_syms, rel, input_bfd);
14453 if (retval == 0)
14454 return FALSE;
14455
14456 if (toc_tls)
14457 {
14458 tls_mask = *toc_tls;
14459 if (r_type == R_PPC64_TOC16_DS
14460 || r_type == R_PPC64_TOC16_LO_DS)
14461 {
14462 if ((tls_mask & TLS_TLS) != 0
14463 && (tls_mask & (TLS_DTPREL | TLS_TPREL)) == 0)
14464 goto toctprel;
14465 }
14466 else
14467 {
14468 /* If we found a GD reloc pair, then we might be
14469 doing a GD->IE transition. */
14470 if (retval == 2)
14471 {
14472 tls_gd = TLS_GDIE;
14473 if ((tls_mask & TLS_TLS) != 0
14474 && (tls_mask & TLS_GD) == 0)
14475 goto tls_ldgd_opt;
14476 }
14477 else if (retval == 3)
14478 {
14479 if ((tls_mask & TLS_TLS) != 0
14480 && (tls_mask & TLS_LD) == 0)
14481 goto tls_ldgd_opt;
14482 }
14483 }
14484 }
14485 }
14486 break;
14487
14488 case R_PPC64_GOT_TPREL16_HI:
14489 case R_PPC64_GOT_TPREL16_HA:
14490 if ((tls_mask & TLS_TLS) != 0
14491 && (tls_mask & TLS_TPREL) == 0)
14492 {
14493 rel->r_offset -= d_offset;
14494 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
14495 r_type = R_PPC64_NONE;
14496 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14497 }
14498 break;
14499
14500 case R_PPC64_GOT_TPREL16_DS:
14501 case R_PPC64_GOT_TPREL16_LO_DS:
14502 if ((tls_mask & TLS_TLS) != 0
14503 && (tls_mask & TLS_TPREL) == 0)
14504 {
14505 toctprel:
14506 insn = bfd_get_32 (input_bfd,
14507 contents + rel->r_offset - d_offset);
14508 insn &= 31 << 21;
14509 insn |= 0x3c0d0000; /* addis 0,13,0 */
14510 bfd_put_32 (input_bfd, insn,
14511 contents + rel->r_offset - d_offset);
14512 r_type = R_PPC64_TPREL16_HA;
14513 if (toc_symndx != 0)
14514 {
14515 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
14516 rel->r_addend = toc_addend;
14517 /* We changed the symbol. Start over in order to
14518 get h, sym, sec etc. right. */
14519 goto again;
14520 }
14521 else
14522 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14523 }
14524 break;
14525
14526 case R_PPC64_GOT_TPREL34:
14527 if ((tls_mask & TLS_TLS) != 0
14528 && (tls_mask & TLS_TPREL) == 0)
14529 {
14530 /* pld ra,sym@got@tprel@pcrel -> paddi ra,r13,sym@tprel */
14531 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14532 pinsn <<= 32;
14533 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14534 pinsn += ((2ULL << 56) + (-1ULL << 52)
14535 + (14ULL << 26) - (57ULL << 26) + (13ULL << 16));
14536 bfd_put_32 (input_bfd, pinsn >> 32,
14537 contents + rel->r_offset);
14538 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14539 contents + rel->r_offset + 4);
14540 r_type = R_PPC64_TPREL34;
14541 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14542 }
14543 break;
14544
14545 case R_PPC64_TLS:
14546 if ((tls_mask & TLS_TLS) != 0
14547 && (tls_mask & TLS_TPREL) == 0)
14548 {
14549 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
14550 insn = _bfd_elf_ppc_at_tls_transform (insn, 13);
14551 if (insn == 0)
14552 break;
14553 if ((rel->r_offset & 3) == 0)
14554 {
14555 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
14556 /* Was PPC64_TLS which sits on insn boundary, now
14557 PPC64_TPREL16_LO which is at low-order half-word. */
14558 rel->r_offset += d_offset;
14559 r_type = R_PPC64_TPREL16_LO;
14560 if (toc_symndx != 0)
14561 {
14562 rel->r_info = ELF64_R_INFO (toc_symndx, r_type);
14563 rel->r_addend = toc_addend;
14564 /* We changed the symbol. Start over in order to
14565 get h, sym, sec etc. right. */
14566 goto again;
14567 }
14568 else
14569 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14570 }
14571 else if ((rel->r_offset & 3) == 1)
14572 {
14573 /* For pcrel IE to LE we already have the full
14574 offset and thus don't need an addi here. A nop
14575 or mr will do. */
14576 if ((insn & (0x3f << 26)) == 14 << 26)
14577 {
14578 /* Extract regs from addi rt,ra,si. */
14579 unsigned int rt = (insn >> 21) & 0x1f;
14580 unsigned int ra = (insn >> 16) & 0x1f;
14581 if (rt == ra)
14582 insn = NOP;
14583 else
14584 {
14585 /* Build or ra,rs,rb with rb==rs, ie. mr ra,rs. */
14586 insn = (rt << 16) | (ra << 21) | (ra << 11);
14587 insn |= (31u << 26) | (444u << 1);
14588 }
14589 }
14590 bfd_put_32 (input_bfd, insn, contents + rel->r_offset - 1);
14591 }
14592 }
14593 break;
14594
14595 case R_PPC64_GOT_TLSGD16_HI:
14596 case R_PPC64_GOT_TLSGD16_HA:
14597 tls_gd = TLS_GDIE;
14598 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14599 goto tls_gdld_hi;
14600 break;
14601
14602 case R_PPC64_GOT_TLSLD16_HI:
14603 case R_PPC64_GOT_TLSLD16_HA:
14604 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14605 {
14606 tls_gdld_hi:
14607 if ((tls_mask & tls_gd) != 0)
14608 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 3)) & 3)
14609 + R_PPC64_GOT_TPREL16_DS);
14610 else
14611 {
14612 rel->r_offset -= d_offset;
14613 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
14614 r_type = R_PPC64_NONE;
14615 }
14616 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14617 }
14618 break;
14619
14620 case R_PPC64_GOT_TLSGD16:
14621 case R_PPC64_GOT_TLSGD16_LO:
14622 tls_gd = TLS_GDIE;
14623 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14624 goto tls_ldgd_opt;
14625 break;
14626
14627 case R_PPC64_GOT_TLSLD16:
14628 case R_PPC64_GOT_TLSLD16_LO:
14629 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14630 {
14631 unsigned int insn1, insn2;
14632
14633 tls_ldgd_opt:
14634 offset = (bfd_vma) -1;
14635 /* If not using the newer R_PPC64_TLSGD/LD to mark
14636 __tls_get_addr calls, we must trust that the call
14637 stays with its arg setup insns, ie. that the next
14638 reloc is the __tls_get_addr call associated with
14639 the current reloc. Edit both insns. */
14640 if (input_section->has_tls_get_addr_call
14641 && rel + 1 < relend
14642 && branch_reloc_hash_match (input_bfd, rel + 1,
14643 htab->tls_get_addr,
14644 htab->tls_get_addr_fd))
14645 offset = rel[1].r_offset;
14646 /* We read the low GOT_TLS (or TOC16) insn because we
14647 need to keep the destination reg. It may be
14648 something other than the usual r3, and moved to r3
14649 before the call by intervening code. */
14650 insn1 = bfd_get_32 (input_bfd,
14651 contents + rel->r_offset - d_offset);
14652 if ((tls_mask & tls_gd) != 0)
14653 {
14654 /* IE */
14655 insn1 &= (0x1f << 21) | (0x1f << 16);
14656 insn1 |= 58 << 26; /* ld */
14657 insn2 = 0x7c636a14; /* add 3,3,13 */
14658 if (offset != (bfd_vma) -1)
14659 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14660 if (r_type == R_PPC64_TOC16
14661 || r_type == R_PPC64_TOC16_LO)
14662 r_type += R_PPC64_TOC16_DS - R_PPC64_TOC16;
14663 else
14664 r_type = (((r_type - (R_PPC64_GOT_TLSGD16 & 1)) & 1)
14665 + R_PPC64_GOT_TPREL16_DS);
14666 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14667 }
14668 else
14669 {
14670 /* LE */
14671 insn1 &= 0x1f << 21;
14672 insn1 |= 0x3c0d0000; /* addis r,13,0 */
14673 insn2 = 0x38630000; /* addi 3,3,0 */
14674 if (tls_gd == 0)
14675 {
14676 /* Was an LD reloc. */
14677 r_symndx = STN_UNDEF;
14678 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14679 }
14680 else if (toc_symndx != 0)
14681 {
14682 r_symndx = toc_symndx;
14683 rel->r_addend = toc_addend;
14684 }
14685 r_type = R_PPC64_TPREL16_HA;
14686 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14687 if (offset != (bfd_vma) -1)
14688 {
14689 rel[1].r_info = ELF64_R_INFO (r_symndx,
14690 R_PPC64_TPREL16_LO);
14691 rel[1].r_offset = offset + d_offset;
14692 rel[1].r_addend = rel->r_addend;
14693 }
14694 }
14695 bfd_put_32 (input_bfd, insn1,
14696 contents + rel->r_offset - d_offset);
14697 if (offset != (bfd_vma) -1)
14698 {
14699 bfd_put_32 (input_bfd, insn2, contents + offset);
14700 if (offset + 8 <= input_section->size)
14701 {
14702 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
14703 if (insn2 == LD_R2_0R1 + STK_TOC (htab))
14704 bfd_put_32 (input_bfd, NOP, contents + offset + 4);
14705 }
14706 }
14707 if ((tls_mask & tls_gd) == 0
14708 && (tls_gd == 0 || toc_symndx != 0))
14709 {
14710 /* We changed the symbol. Start over in order
14711 to get h, sym, sec etc. right. */
14712 goto again;
14713 }
14714 }
14715 break;
14716
14717 case R_PPC64_GOT_TLSGD34:
14718 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0)
14719 {
14720 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14721 pinsn <<= 32;
14722 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14723 if ((tls_mask & TLS_GDIE) != 0)
14724 {
14725 /* IE, pla -> pld */
14726 pinsn += (-2ULL << 56) + (57ULL << 26) - (14ULL << 26);
14727 r_type = R_PPC64_GOT_TPREL34;
14728 }
14729 else
14730 {
14731 /* LE, pla pcrel -> paddi r13 */
14732 pinsn += (-1ULL << 52) + (13ULL << 16);
14733 r_type = R_PPC64_TPREL34;
14734 }
14735 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14736 bfd_put_32 (input_bfd, pinsn >> 32,
14737 contents + rel->r_offset);
14738 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14739 contents + rel->r_offset + 4);
14740 }
14741 break;
14742
14743 case R_PPC64_GOT_TLSLD34:
14744 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0)
14745 {
14746 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
14747 pinsn <<= 32;
14748 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14749 pinsn += (-1ULL << 52) + (13ULL << 16);
14750 bfd_put_32 (input_bfd, pinsn >> 32,
14751 contents + rel->r_offset);
14752 bfd_put_32 (input_bfd, pinsn & 0xffffffff,
14753 contents + rel->r_offset + 4);
14754 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14755 r_symndx = STN_UNDEF;
14756 r_type = R_PPC64_TPREL34;
14757 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14758 goto again;
14759 }
14760 break;
14761
14762 case R_PPC64_TLSGD:
14763 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_GD) == 0
14764 && rel + 1 < relend)
14765 {
14766 unsigned int insn2;
14767 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
14768
14769 offset = rel->r_offset;
14770 if (is_plt_seq_reloc (r_type1))
14771 {
14772 bfd_put_32 (output_bfd, NOP, contents + offset);
14773 if (r_type1 == R_PPC64_PLT_PCREL34
14774 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
14775 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14776 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14777 break;
14778 }
14779
14780 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
14781 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14782
14783 if ((tls_mask & TLS_GDIE) != 0)
14784 {
14785 /* IE */
14786 r_type = R_PPC64_NONE;
14787 insn2 = 0x7c636a14; /* add 3,3,13 */
14788 }
14789 else
14790 {
14791 /* LE */
14792 if (toc_symndx != 0)
14793 {
14794 r_symndx = toc_symndx;
14795 rel->r_addend = toc_addend;
14796 }
14797 if (r_type1 == R_PPC64_REL24_NOTOC
14798 || r_type1 == R_PPC64_PLTCALL_NOTOC)
14799 {
14800 r_type = R_PPC64_NONE;
14801 insn2 = NOP;
14802 }
14803 else
14804 {
14805 rel->r_offset = offset + d_offset;
14806 r_type = R_PPC64_TPREL16_LO;
14807 insn2 = 0x38630000; /* addi 3,3,0 */
14808 }
14809 }
14810 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14811 /* Zap the reloc on the _tls_get_addr call too. */
14812 BFD_ASSERT (offset == rel[1].r_offset);
14813 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14814 bfd_put_32 (input_bfd, insn2, contents + offset);
14815 if ((tls_mask & TLS_GDIE) == 0
14816 && toc_symndx != 0
14817 && r_type != R_PPC64_NONE)
14818 goto again;
14819 }
14820 break;
14821
14822 case R_PPC64_TLSLD:
14823 if ((tls_mask & TLS_TLS) != 0 && (tls_mask & TLS_LD) == 0
14824 && rel + 1 < relend)
14825 {
14826 unsigned int insn2;
14827 enum elf_ppc64_reloc_type r_type1 = ELF64_R_TYPE (rel[1].r_info);
14828
14829 offset = rel->r_offset;
14830 if (is_plt_seq_reloc (r_type1))
14831 {
14832 bfd_put_32 (output_bfd, NOP, contents + offset);
14833 if (r_type1 == R_PPC64_PLT_PCREL34
14834 || r_type1 == R_PPC64_PLT_PCREL34_NOTOC)
14835 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14836 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14837 break;
14838 }
14839
14840 if (ELF64_R_TYPE (rel[1].r_info) == R_PPC64_PLTCALL)
14841 bfd_put_32 (output_bfd, NOP, contents + offset + 4);
14842
14843 if (r_type1 == R_PPC64_REL24_NOTOC
14844 || r_type1 == R_PPC64_PLTCALL_NOTOC)
14845 {
14846 r_type = R_PPC64_NONE;
14847 insn2 = NOP;
14848 }
14849 else
14850 {
14851 rel->r_offset = offset + d_offset;
14852 r_symndx = STN_UNDEF;
14853 r_type = R_PPC64_TPREL16_LO;
14854 rel->r_addend = htab->elf.tls_sec->vma + DTP_OFFSET;
14855 insn2 = 0x38630000; /* addi 3,3,0 */
14856 }
14857 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14858 /* Zap the reloc on the _tls_get_addr call too. */
14859 BFD_ASSERT (offset == rel[1].r_offset);
14860 rel[1].r_info = ELF64_R_INFO (STN_UNDEF, R_PPC64_NONE);
14861 bfd_put_32 (input_bfd, insn2, contents + offset);
14862 if (r_type != R_PPC64_NONE)
14863 goto again;
14864 }
14865 break;
14866
14867 case R_PPC64_DTPMOD64:
14868 if (rel + 1 < relend
14869 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_DTPREL64)
14870 && rel[1].r_offset == rel->r_offset + 8)
14871 {
14872 if ((tls_mask & TLS_GD) == 0)
14873 {
14874 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_NONE);
14875 if ((tls_mask & TLS_GDIE) != 0)
14876 r_type = R_PPC64_TPREL64;
14877 else
14878 {
14879 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
14880 r_type = R_PPC64_NONE;
14881 }
14882 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14883 }
14884 }
14885 else
14886 {
14887 if ((tls_mask & TLS_LD) == 0)
14888 {
14889 bfd_put_64 (output_bfd, 1, contents + rel->r_offset);
14890 r_type = R_PPC64_NONE;
14891 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14892 }
14893 }
14894 break;
14895
14896 case R_PPC64_TPREL64:
14897 if ((tls_mask & TLS_TPREL) == 0)
14898 {
14899 r_type = R_PPC64_NONE;
14900 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14901 }
14902 break;
14903
14904 case R_PPC64_ENTRY:
14905 relocation = TOCstart + htab->sec_info[input_section->id].toc_off;
14906 if (!bfd_link_pic (info)
14907 && !info->traditional_format
14908 && relocation + 0x80008000 <= 0xffffffff)
14909 {
14910 unsigned int insn1, insn2;
14911
14912 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
14913 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14914 if ((insn1 & ~0xfffc) == LD_R2_0R12
14915 && insn2 == ADD_R2_R2_R12)
14916 {
14917 bfd_put_32 (input_bfd,
14918 LIS_R2 + PPC_HA (relocation),
14919 contents + rel->r_offset);
14920 bfd_put_32 (input_bfd,
14921 ADDI_R2_R2 + PPC_LO (relocation),
14922 contents + rel->r_offset + 4);
14923 }
14924 }
14925 else
14926 {
14927 relocation -= (rel->r_offset
14928 + input_section->output_offset
14929 + input_section->output_section->vma);
14930 if (relocation + 0x80008000 <= 0xffffffff)
14931 {
14932 unsigned int insn1, insn2;
14933
14934 insn1 = bfd_get_32 (input_bfd, contents + rel->r_offset);
14935 insn2 = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
14936 if ((insn1 & ~0xfffc) == LD_R2_0R12
14937 && insn2 == ADD_R2_R2_R12)
14938 {
14939 bfd_put_32 (input_bfd,
14940 ADDIS_R2_R12 + PPC_HA (relocation),
14941 contents + rel->r_offset);
14942 bfd_put_32 (input_bfd,
14943 ADDI_R2_R2 + PPC_LO (relocation),
14944 contents + rel->r_offset + 4);
14945 }
14946 }
14947 }
14948 break;
14949
14950 case R_PPC64_REL16_HA:
14951 /* If we are generating a non-PIC executable, edit
14952 . 0: addis 2,12,.TOC.-0b@ha
14953 . addi 2,2,.TOC.-0b@l
14954 used by ELFv2 global entry points to set up r2, to
14955 . lis 2,.TOC.@ha
14956 . addi 2,2,.TOC.@l
14957 if .TOC. is in range. */
14958 if (!bfd_link_pic (info)
14959 && !info->traditional_format
14960 && !htab->opd_abi
14961 && rel->r_addend == d_offset
14962 && h != NULL && &h->elf == htab->elf.hgot
14963 && rel + 1 < relend
14964 && rel[1].r_info == ELF64_R_INFO (r_symndx, R_PPC64_REL16_LO)
14965 && rel[1].r_offset == rel->r_offset + 4
14966 && rel[1].r_addend == rel->r_addend + 4
14967 && relocation + 0x80008000 <= 0xffffffff)
14968 {
14969 unsigned int insn1, insn2;
14970 offset = rel->r_offset - d_offset;
14971 insn1 = bfd_get_32 (input_bfd, contents + offset);
14972 insn2 = bfd_get_32 (input_bfd, contents + offset + 4);
14973 if ((insn1 & 0xffff0000) == ADDIS_R2_R12
14974 && (insn2 & 0xffff0000) == ADDI_R2_R2)
14975 {
14976 r_type = R_PPC64_ADDR16_HA;
14977 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
14978 rel->r_addend -= d_offset;
14979 rel[1].r_info = ELF64_R_INFO (r_symndx, R_PPC64_ADDR16_LO);
14980 rel[1].r_addend -= d_offset + 4;
14981 bfd_put_32 (input_bfd, LIS_R2, contents + offset);
14982 }
14983 }
14984 break;
14985 }
14986
14987 /* Handle other relocations that tweak non-addend part of insn. */
14988 insn = 0;
14989 max_br_offset = 1 << 25;
14990 addend = rel->r_addend;
14991 reloc_dest = DEST_NORMAL;
14992 switch (r_type)
14993 {
14994 default:
14995 break;
14996
14997 case R_PPC64_TOCSAVE:
14998 if (relocation + addend == (rel->r_offset
14999 + input_section->output_offset
15000 + input_section->output_section->vma)
15001 && tocsave_find (htab, NO_INSERT,
15002 &local_syms, rel, input_bfd))
15003 {
15004 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
15005 if (insn == NOP
15006 || insn == CROR_151515 || insn == CROR_313131)
15007 bfd_put_32 (input_bfd,
15008 STD_R2_0R1 + STK_TOC (htab),
15009 contents + rel->r_offset);
15010 }
15011 break;
15012
15013 /* Branch taken prediction relocations. */
15014 case R_PPC64_ADDR14_BRTAKEN:
15015 case R_PPC64_REL14_BRTAKEN:
15016 insn = 0x01 << 21; /* 'y' or 't' bit, lowest bit of BO field. */
15017 /* Fall through. */
15018
15019 /* Branch not taken prediction relocations. */
15020 case R_PPC64_ADDR14_BRNTAKEN:
15021 case R_PPC64_REL14_BRNTAKEN:
15022 insn |= bfd_get_32 (input_bfd,
15023 contents + rel->r_offset) & ~(0x01 << 21);
15024 /* Fall through. */
15025
15026 case R_PPC64_REL14:
15027 max_br_offset = 1 << 15;
15028 /* Fall through. */
15029
15030 case R_PPC64_REL24:
15031 case R_PPC64_REL24_NOTOC:
15032 case R_PPC64_PLTCALL:
15033 case R_PPC64_PLTCALL_NOTOC:
15034 /* Calls to functions with a different TOC, such as calls to
15035 shared objects, need to alter the TOC pointer. This is
15036 done using a linkage stub. A REL24 branching to these
15037 linkage stubs needs to be followed by a nop, as the nop
15038 will be replaced with an instruction to restore the TOC
15039 base pointer. */
15040 fdh = h;
15041 if (h != NULL
15042 && h->oh != NULL
15043 && h->oh->is_func_descriptor)
15044 fdh = ppc_follow_link (h->oh);
15045 stub_entry = ppc_get_stub_entry (input_section, sec, fdh, &orig_rel,
15046 htab);
15047 if ((r_type == R_PPC64_PLTCALL
15048 || r_type == R_PPC64_PLTCALL_NOTOC)
15049 && stub_entry != NULL
15050 && stub_entry->stub_type >= ppc_stub_plt_call
15051 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15052 stub_entry = NULL;
15053
15054 if (stub_entry != NULL
15055 && ((stub_entry->stub_type >= ppc_stub_plt_call
15056 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15057 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15058 || stub_entry->stub_type == ppc_stub_plt_branch_both
15059 || stub_entry->stub_type == ppc_stub_long_branch_r2off
15060 || stub_entry->stub_type == ppc_stub_long_branch_both))
15061 {
15062 bfd_boolean can_plt_call = FALSE;
15063
15064 if (stub_entry->stub_type == ppc_stub_plt_call
15065 && !htab->opd_abi
15066 && htab->params->plt_localentry0 != 0
15067 && is_elfv2_localentry0 (&h->elf))
15068 {
15069 /* The function doesn't use or change r2. */
15070 can_plt_call = TRUE;
15071 }
15072 else if (r_type == R_PPC64_REL24_NOTOC)
15073 {
15074 /* NOTOC calls don't need to restore r2. */
15075 can_plt_call = TRUE;
15076 }
15077
15078 /* All of these stubs may modify r2, so there must be a
15079 branch and link followed by a nop. The nop is
15080 replaced by an insn to restore r2. */
15081 else if (rel->r_offset + 8 <= input_section->size)
15082 {
15083 unsigned long br;
15084
15085 br = bfd_get_32 (input_bfd,
15086 contents + rel->r_offset);
15087 if ((br & 1) != 0)
15088 {
15089 unsigned long nop;
15090
15091 nop = bfd_get_32 (input_bfd,
15092 contents + rel->r_offset + 4);
15093 if (nop == LD_R2_0R1 + STK_TOC (htab))
15094 can_plt_call = TRUE;
15095 else if (nop == NOP
15096 || nop == CROR_151515
15097 || nop == CROR_313131)
15098 {
15099 if (h != NULL
15100 && (h == htab->tls_get_addr_fd
15101 || h == htab->tls_get_addr)
15102 && htab->params->tls_get_addr_opt)
15103 {
15104 /* Special stub used, leave nop alone. */
15105 }
15106 else
15107 bfd_put_32 (input_bfd,
15108 LD_R2_0R1 + STK_TOC (htab),
15109 contents + rel->r_offset + 4);
15110 can_plt_call = TRUE;
15111 }
15112 }
15113 }
15114
15115 if (!can_plt_call && h != NULL)
15116 {
15117 const char *name = h->elf.root.root.string;
15118
15119 if (*name == '.')
15120 ++name;
15121
15122 if (strncmp (name, "__libc_start_main", 17) == 0
15123 && (name[17] == 0 || name[17] == '@'))
15124 {
15125 /* Allow crt1 branch to go via a toc adjusting
15126 stub. Other calls that never return could do
15127 the same, if we could detect such. */
15128 can_plt_call = TRUE;
15129 }
15130 }
15131
15132 if (!can_plt_call)
15133 {
15134 /* g++ as of 20130507 emits self-calls without a
15135 following nop. This is arguably wrong since we
15136 have conflicting information. On the one hand a
15137 global symbol and on the other a local call
15138 sequence, but don't error for this special case.
15139 It isn't possible to cheaply verify we have
15140 exactly such a call. Allow all calls to the same
15141 section. */
15142 asection *code_sec = sec;
15143
15144 if (get_opd_info (sec) != NULL)
15145 {
15146 bfd_vma off = (relocation + addend
15147 - sec->output_section->vma
15148 - sec->output_offset);
15149
15150 opd_entry_value (sec, off, &code_sec, NULL, FALSE);
15151 }
15152 if (code_sec == input_section)
15153 can_plt_call = TRUE;
15154 }
15155
15156 if (!can_plt_call)
15157 {
15158 if (stub_entry->stub_type >= ppc_stub_plt_call
15159 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15160 info->callbacks->einfo
15161 /* xgettext:c-format */
15162 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15163 "(plt call stub)\n"),
15164 input_bfd, input_section, rel->r_offset, sym_name);
15165 else
15166 info->callbacks->einfo
15167 /* xgettext:c-format */
15168 (_("%H: call to `%pT' lacks nop, can't restore toc; "
15169 "(toc save/adjust stub)\n"),
15170 input_bfd, input_section, rel->r_offset, sym_name);
15171
15172 bfd_set_error (bfd_error_bad_value);
15173 ret = FALSE;
15174 }
15175
15176 if (can_plt_call
15177 && stub_entry->stub_type >= ppc_stub_plt_call
15178 && stub_entry->stub_type <= ppc_stub_plt_call_both)
15179 unresolved_reloc = FALSE;
15180 }
15181
15182 if ((stub_entry == NULL
15183 || stub_entry->stub_type == ppc_stub_long_branch
15184 || stub_entry->stub_type == ppc_stub_plt_branch)
15185 && get_opd_info (sec) != NULL)
15186 {
15187 /* The branch destination is the value of the opd entry. */
15188 bfd_vma off = (relocation + addend
15189 - sec->output_section->vma
15190 - sec->output_offset);
15191 bfd_vma dest = opd_entry_value (sec, off, NULL, NULL, FALSE);
15192 if (dest != (bfd_vma) -1)
15193 {
15194 relocation = dest;
15195 addend = 0;
15196 reloc_dest = DEST_OPD;
15197 }
15198 }
15199
15200 /* If the branch is out of reach we ought to have a long
15201 branch stub. */
15202 from = (rel->r_offset
15203 + input_section->output_offset
15204 + input_section->output_section->vma);
15205
15206 relocation += PPC64_LOCAL_ENTRY_OFFSET (fdh
15207 ? fdh->elf.other
15208 : sym->st_other);
15209
15210 if (stub_entry != NULL
15211 && (stub_entry->stub_type == ppc_stub_long_branch
15212 || stub_entry->stub_type == ppc_stub_plt_branch)
15213 && (r_type == R_PPC64_ADDR14_BRTAKEN
15214 || r_type == R_PPC64_ADDR14_BRNTAKEN
15215 || (relocation + addend - from + max_br_offset
15216 < 2 * max_br_offset)))
15217 /* Don't use the stub if this branch is in range. */
15218 stub_entry = NULL;
15219
15220 if (stub_entry != NULL
15221 && (stub_entry->stub_type == ppc_stub_long_branch_notoc
15222 || stub_entry->stub_type == ppc_stub_long_branch_both
15223 || stub_entry->stub_type == ppc_stub_plt_branch_notoc
15224 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15225 && (r_type != R_PPC64_REL24_NOTOC
15226 || ((fdh ? fdh->elf.other : sym->st_other)
15227 & STO_PPC64_LOCAL_MASK) <= 1 << STO_PPC64_LOCAL_BIT)
15228 && (relocation + addend - from + max_br_offset
15229 < 2 * max_br_offset))
15230 stub_entry = NULL;
15231
15232 if (stub_entry != NULL
15233 && (stub_entry->stub_type == ppc_stub_long_branch_r2off
15234 || stub_entry->stub_type == ppc_stub_long_branch_both
15235 || stub_entry->stub_type == ppc_stub_plt_branch_r2off
15236 || stub_entry->stub_type == ppc_stub_plt_branch_both)
15237 && r_type == R_PPC64_REL24_NOTOC
15238 && (relocation + addend - from + max_br_offset
15239 < 2 * max_br_offset))
15240 stub_entry = NULL;
15241
15242 if (stub_entry != NULL)
15243 {
15244 /* Munge up the value and addend so that we call the stub
15245 rather than the procedure directly. */
15246 asection *stub_sec = stub_entry->group->stub_sec;
15247
15248 if (stub_entry->stub_type == ppc_stub_save_res)
15249 relocation += (stub_sec->output_offset
15250 + stub_sec->output_section->vma
15251 + stub_sec->size - htab->sfpr->size
15252 - htab->sfpr->output_offset
15253 - htab->sfpr->output_section->vma);
15254 else
15255 relocation = (stub_entry->stub_offset
15256 + stub_sec->output_offset
15257 + stub_sec->output_section->vma);
15258 addend = 0;
15259 reloc_dest = DEST_STUB;
15260
15261 if (((stub_entry->stub_type == ppc_stub_plt_call
15262 && ALWAYS_EMIT_R2SAVE)
15263 || stub_entry->stub_type == ppc_stub_plt_call_r2save
15264 || stub_entry->stub_type == ppc_stub_plt_call_both)
15265 && !(h != NULL
15266 && (h == htab->tls_get_addr_fd
15267 || h == htab->tls_get_addr)
15268 && htab->params->tls_get_addr_opt)
15269 && rel + 1 < relend
15270 && rel[1].r_offset == rel->r_offset + 4
15271 && ELF64_R_TYPE (rel[1].r_info) == R_PPC64_TOCSAVE)
15272 relocation += 4;
15273 else if ((stub_entry->stub_type == ppc_stub_long_branch_both
15274 || stub_entry->stub_type == ppc_stub_plt_branch_both
15275 || stub_entry->stub_type == ppc_stub_plt_call_both)
15276 && r_type == R_PPC64_REL24_NOTOC)
15277 relocation += 4;
15278
15279 if (r_type == R_PPC64_REL24_NOTOC
15280 && (stub_entry->stub_type == ppc_stub_plt_call_notoc
15281 || stub_entry->stub_type == ppc_stub_plt_call_both))
15282 htab->notoc_plt = 1;
15283 }
15284
15285 if (insn != 0)
15286 {
15287 if (is_isa_v2)
15288 {
15289 /* Set 'a' bit. This is 0b00010 in BO field for branch
15290 on CR(BI) insns (BO == 001at or 011at), and 0b01000
15291 for branch on CTR insns (BO == 1a00t or 1a01t). */
15292 if ((insn & (0x14 << 21)) == (0x04 << 21))
15293 insn |= 0x02 << 21;
15294 else if ((insn & (0x14 << 21)) == (0x10 << 21))
15295 insn |= 0x08 << 21;
15296 else
15297 break;
15298 }
15299 else
15300 {
15301 /* Invert 'y' bit if not the default. */
15302 if ((bfd_signed_vma) (relocation + addend - from) < 0)
15303 insn ^= 0x01 << 21;
15304 }
15305
15306 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
15307 }
15308
15309 /* NOP out calls to undefined weak functions.
15310 We can thus call a weak function without first
15311 checking whether the function is defined. */
15312 else if (h != NULL
15313 && h->elf.root.type == bfd_link_hash_undefweak
15314 && h->elf.dynindx == -1
15315 && (r_type == R_PPC64_REL24
15316 || r_type == R_PPC64_REL24_NOTOC)
15317 && relocation == 0
15318 && addend == 0)
15319 {
15320 bfd_put_32 (input_bfd, NOP, contents + rel->r_offset);
15321 goto copy_reloc;
15322 }
15323 break;
15324
15325 case R_PPC64_GOT16_DS:
15326 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15327 if (relocation + addend - from + 0x8000 < 0x10000
15328 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15329 {
15330 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15331 if ((insn & (0x3f << 26 | 0x3)) == 58u << 26 /* ld */)
15332 {
15333 insn += (14u << 26) - (58u << 26);
15334 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15335 r_type = R_PPC64_TOC16;
15336 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15337 }
15338 }
15339 break;
15340
15341 case R_PPC64_GOT16_LO_DS:
15342 case R_PPC64_GOT16_HA:
15343 from = TOCstart + htab->sec_info[input_section->id].toc_off;
15344 if (relocation + addend - from + 0x80008000ULL < 0x100000000ULL
15345 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15346 {
15347 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
15348 if ((insn & (0x3f << 26 | 0x3)) == 58u << 26 /* ld */)
15349 {
15350 insn += (14u << 26) - (58u << 26);
15351 bfd_put_32 (input_bfd, insn, contents + (rel->r_offset & ~3));
15352 r_type = R_PPC64_TOC16_LO;
15353 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15354 }
15355 else if ((insn & (0x3f << 26)) == 15u << 26 /* addis */)
15356 {
15357 r_type = R_PPC64_TOC16_HA;
15358 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15359 }
15360 }
15361 break;
15362
15363 case R_PPC64_GOT_PCREL34:
15364 from = (rel->r_offset
15365 + input_section->output_section->vma
15366 + input_section->output_offset);
15367 if (relocation - from + (1ULL << 33) < 1ULL << 34
15368 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15369 {
15370 offset = rel->r_offset;
15371 pinsn = bfd_get_32 (input_bfd, contents + offset);
15372 pinsn <<= 32;
15373 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15374 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15375 == ((1ULL << 58) | (1ULL << 52) | (57ULL << 26) /* pld */))
15376 {
15377 /* Replace with paddi. */
15378 pinsn += (2ULL << 56) + (14ULL << 26) - (57ULL << 26);
15379 r_type = R_PPC64_PCREL34;
15380 rel->r_info = ELF64_R_INFO (r_symndx, r_type);
15381 bfd_put_32 (input_bfd, pinsn >> 32, contents + offset);
15382 bfd_put_32 (input_bfd, pinsn, contents + offset + 4);
15383 goto pcrelopt;
15384 }
15385 }
15386 break;
15387
15388 case R_PPC64_PCREL34:
15389 if (SYMBOL_REFERENCES_LOCAL (info, &h->elf))
15390 {
15391 offset = rel->r_offset;
15392 pinsn = bfd_get_32 (input_bfd, contents + offset);
15393 pinsn <<= 32;
15394 pinsn |= bfd_get_32 (input_bfd, contents + offset + 4);
15395 if ((pinsn & ((-1ULL << 50) | (63ULL << 26)))
15396 == ((1ULL << 58) | (2ULL << 56) | (1ULL << 52)
15397 | (14ULL << 26) /* paddi */))
15398 {
15399 pcrelopt:
15400 if (rel + 1 < relend
15401 && rel[1].r_offset == offset
15402 && rel[1].r_info == ELF64_R_INFO (0, R_PPC64_PCREL_OPT))
15403 {
15404 bfd_vma off2 = rel[1].r_addend;
15405 if (off2 == 0)
15406 /* zero means next insn. */
15407 off2 = 8;
15408 off2 += offset;
15409 if (off2 + 4 <= input_section->size)
15410 {
15411 uint64_t pinsn2;
15412 bfd_signed_vma addend_off;
15413 pinsn2 = bfd_get_32 (input_bfd, contents + off2);
15414 pinsn2 <<= 32;
15415 if ((pinsn2 & (63ULL << 58)) == 1ULL << 58)
15416 break;
15417 if (xlate_pcrel_opt (&pinsn, &pinsn2, &addend_off))
15418 {
15419 addend += addend_off;
15420 rel->r_addend = addend;
15421 bfd_put_32 (input_bfd, pinsn >> 32,
15422 contents + offset);
15423 bfd_put_32 (input_bfd, pinsn,
15424 contents + offset + 4);
15425 bfd_put_32 (input_bfd, pinsn2 >> 32,
15426 contents + off2);
15427 }
15428 }
15429 }
15430 }
15431 }
15432 break;
15433 }
15434
15435 tls_type = 0;
15436 save_unresolved_reloc = unresolved_reloc;
15437 switch (r_type)
15438 {
15439 default:
15440 /* xgettext:c-format */
15441 _bfd_error_handler (_("%pB: %s unsupported"),
15442 input_bfd, ppc64_elf_howto_table[r_type]->name);
15443
15444 bfd_set_error (bfd_error_bad_value);
15445 ret = FALSE;
15446 goto copy_reloc;
15447
15448 case R_PPC64_NONE:
15449 case R_PPC64_TLS:
15450 case R_PPC64_TLSGD:
15451 case R_PPC64_TLSLD:
15452 case R_PPC64_TOCSAVE:
15453 case R_PPC64_GNU_VTINHERIT:
15454 case R_PPC64_GNU_VTENTRY:
15455 case R_PPC64_ENTRY:
15456 case R_PPC64_PCREL_OPT:
15457 goto copy_reloc;
15458
15459 /* GOT16 relocations. Like an ADDR16 using the symbol's
15460 address in the GOT as relocation value instead of the
15461 symbol's value itself. Also, create a GOT entry for the
15462 symbol and put the symbol value there. */
15463 case R_PPC64_GOT_TLSGD16:
15464 case R_PPC64_GOT_TLSGD16_LO:
15465 case R_PPC64_GOT_TLSGD16_HI:
15466 case R_PPC64_GOT_TLSGD16_HA:
15467 case R_PPC64_GOT_TLSGD34:
15468 tls_type = TLS_TLS | TLS_GD;
15469 goto dogot;
15470
15471 case R_PPC64_GOT_TLSLD16:
15472 case R_PPC64_GOT_TLSLD16_LO:
15473 case R_PPC64_GOT_TLSLD16_HI:
15474 case R_PPC64_GOT_TLSLD16_HA:
15475 case R_PPC64_GOT_TLSLD34:
15476 tls_type = TLS_TLS | TLS_LD;
15477 goto dogot;
15478
15479 case R_PPC64_GOT_TPREL16_DS:
15480 case R_PPC64_GOT_TPREL16_LO_DS:
15481 case R_PPC64_GOT_TPREL16_HI:
15482 case R_PPC64_GOT_TPREL16_HA:
15483 case R_PPC64_GOT_TPREL34:
15484 tls_type = TLS_TLS | TLS_TPREL;
15485 goto dogot;
15486
15487 case R_PPC64_GOT_DTPREL16_DS:
15488 case R_PPC64_GOT_DTPREL16_LO_DS:
15489 case R_PPC64_GOT_DTPREL16_HI:
15490 case R_PPC64_GOT_DTPREL16_HA:
15491 case R_PPC64_GOT_DTPREL34:
15492 tls_type = TLS_TLS | TLS_DTPREL;
15493 goto dogot;
15494
15495 case R_PPC64_GOT16:
15496 case R_PPC64_GOT16_LO:
15497 case R_PPC64_GOT16_HI:
15498 case R_PPC64_GOT16_HA:
15499 case R_PPC64_GOT16_DS:
15500 case R_PPC64_GOT16_LO_DS:
15501 case R_PPC64_GOT_PCREL34:
15502 dogot:
15503 {
15504 /* Relocation is to the entry for this symbol in the global
15505 offset table. */
15506 asection *got;
15507 bfd_vma *offp;
15508 bfd_vma off;
15509 unsigned long indx = 0;
15510 struct got_entry *ent;
15511 bfd_vma sym_addend = orig_rel.r_addend;
15512
15513 if (r_type == R_PPC64_GOT_PCREL34
15514 || r_type == R_PPC64_GOT_TLSGD34
15515 || r_type == R_PPC64_GOT_TLSLD34
15516 || r_type == R_PPC64_GOT_TPREL34
15517 || r_type == R_PPC64_GOT_DTPREL34)
15518 sym_addend = 0;
15519
15520 if (tls_type == (TLS_TLS | TLS_LD)
15521 && (h == NULL
15522 || !h->elf.def_dynamic))
15523 ent = ppc64_tlsld_got (input_bfd);
15524 else
15525 {
15526 if (h != NULL)
15527 {
15528 if (!htab->elf.dynamic_sections_created
15529 || h->elf.dynindx == -1
15530 || SYMBOL_REFERENCES_LOCAL (info, &h->elf)
15531 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf))
15532 /* This is actually a static link, or it is a
15533 -Bsymbolic link and the symbol is defined
15534 locally, or the symbol was forced to be local
15535 because of a version file. */
15536 ;
15537 else
15538 {
15539 indx = h->elf.dynindx;
15540 unresolved_reloc = FALSE;
15541 }
15542 ent = h->elf.got.glist;
15543 }
15544 else
15545 {
15546 if (local_got_ents == NULL)
15547 abort ();
15548 ent = local_got_ents[r_symndx];
15549 }
15550
15551 for (; ent != NULL; ent = ent->next)
15552 if (ent->addend == sym_addend
15553 && ent->owner == input_bfd
15554 && ent->tls_type == tls_type)
15555 break;
15556 }
15557
15558 if (ent == NULL)
15559 abort ();
15560 if (ent->is_indirect)
15561 ent = ent->got.ent;
15562 offp = &ent->got.offset;
15563 got = ppc64_elf_tdata (ent->owner)->got;
15564 if (got == NULL)
15565 abort ();
15566
15567 /* The offset must always be a multiple of 8. We use the
15568 least significant bit to record whether we have already
15569 processed this entry. */
15570 off = *offp;
15571 if ((off & 1) != 0)
15572 off &= ~1;
15573 else
15574 {
15575 /* Generate relocs for the dynamic linker, except in
15576 the case of TLSLD where we'll use one entry per
15577 module. */
15578 asection *relgot;
15579 bfd_boolean ifunc;
15580
15581 *offp = off | 1;
15582 relgot = NULL;
15583 ifunc = (h != NULL
15584 ? h->elf.type == STT_GNU_IFUNC
15585 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC);
15586 if (ifunc)
15587 {
15588 relgot = htab->elf.irelplt;
15589 if (indx == 0)
15590 htab->local_ifunc_resolver = 1;
15591 else if (is_static_defined (&h->elf))
15592 htab->maybe_local_ifunc_resolver = 1;
15593 }
15594 else if (indx != 0
15595 || (bfd_link_pic (info)
15596 && (h == NULL
15597 || !UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->elf)
15598 || (tls_type == (TLS_TLS | TLS_LD)
15599 && !h->elf.def_dynamic))
15600 && !(tls_type == (TLS_TLS | TLS_TPREL)
15601 && bfd_link_executable (info)
15602 && SYMBOL_REFERENCES_LOCAL (info, &h->elf))))
15603 relgot = ppc64_elf_tdata (ent->owner)->relgot;
15604 if (relgot != NULL)
15605 {
15606 outrel.r_offset = (got->output_section->vma
15607 + got->output_offset
15608 + off);
15609 outrel.r_addend = sym_addend;
15610 if (tls_type & (TLS_LD | TLS_GD))
15611 {
15612 outrel.r_addend = 0;
15613 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPMOD64);
15614 if (tls_type == (TLS_TLS | TLS_GD))
15615 {
15616 loc = relgot->contents;
15617 loc += (relgot->reloc_count++
15618 * sizeof (Elf64_External_Rela));
15619 bfd_elf64_swap_reloca_out (output_bfd,
15620 &outrel, loc);
15621 outrel.r_offset += 8;
15622 outrel.r_addend = sym_addend;
15623 outrel.r_info
15624 = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
15625 }
15626 }
15627 else if (tls_type == (TLS_TLS | TLS_DTPREL))
15628 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_DTPREL64);
15629 else if (tls_type == (TLS_TLS | TLS_TPREL))
15630 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_TPREL64);
15631 else if (indx != 0)
15632 outrel.r_info = ELF64_R_INFO (indx, R_PPC64_GLOB_DAT);
15633 else
15634 {
15635 if (ifunc)
15636 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
15637 else
15638 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
15639
15640 /* Write the .got section contents for the sake
15641 of prelink. */
15642 loc = got->contents + off;
15643 bfd_put_64 (output_bfd, outrel.r_addend + relocation,
15644 loc);
15645 }
15646
15647 if (indx == 0 && tls_type != (TLS_TLS | TLS_LD))
15648 {
15649 outrel.r_addend += relocation;
15650 if (tls_type & (TLS_GD | TLS_DTPREL | TLS_TPREL))
15651 {
15652 if (htab->elf.tls_sec == NULL)
15653 outrel.r_addend = 0;
15654 else
15655 outrel.r_addend -= htab->elf.tls_sec->vma;
15656 }
15657 }
15658 loc = relgot->contents;
15659 loc += (relgot->reloc_count++
15660 * sizeof (Elf64_External_Rela));
15661 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
15662 }
15663
15664 /* Init the .got section contents here if we're not
15665 emitting a reloc. */
15666 else
15667 {
15668 relocation += sym_addend;
15669 if (tls_type != 0)
15670 {
15671 if (htab->elf.tls_sec == NULL)
15672 relocation = 0;
15673 else
15674 {
15675 if (tls_type & TLS_LD)
15676 relocation = 0;
15677 else
15678 relocation -= htab->elf.tls_sec->vma + DTP_OFFSET;
15679 if (tls_type & TLS_TPREL)
15680 relocation += DTP_OFFSET - TP_OFFSET;
15681 }
15682
15683 if (tls_type & (TLS_GD | TLS_LD))
15684 {
15685 bfd_put_64 (output_bfd, relocation,
15686 got->contents + off + 8);
15687 relocation = 1;
15688 }
15689 }
15690 bfd_put_64 (output_bfd, relocation,
15691 got->contents + off);
15692 }
15693 }
15694
15695 if (off >= (bfd_vma) -2)
15696 abort ();
15697
15698 relocation = got->output_section->vma + got->output_offset + off;
15699 if (!(r_type == R_PPC64_GOT_PCREL34
15700 || r_type == R_PPC64_GOT_TLSGD34
15701 || r_type == R_PPC64_GOT_TLSLD34
15702 || r_type == R_PPC64_GOT_TPREL34
15703 || r_type == R_PPC64_GOT_DTPREL34))
15704 addend = -(TOCstart + htab->sec_info[input_section->id].toc_off);
15705 }
15706 break;
15707
15708 case R_PPC64_PLT16_HA:
15709 case R_PPC64_PLT16_HI:
15710 case R_PPC64_PLT16_LO:
15711 case R_PPC64_PLT16_LO_DS:
15712 case R_PPC64_PLT_PCREL34:
15713 case R_PPC64_PLT_PCREL34_NOTOC:
15714 case R_PPC64_PLT32:
15715 case R_PPC64_PLT64:
15716 case R_PPC64_PLTSEQ:
15717 case R_PPC64_PLTSEQ_NOTOC:
15718 case R_PPC64_PLTCALL:
15719 case R_PPC64_PLTCALL_NOTOC:
15720 /* Relocation is to the entry for this symbol in the
15721 procedure linkage table. */
15722 unresolved_reloc = TRUE;
15723 {
15724 struct plt_entry **plt_list = NULL;
15725 if (h != NULL)
15726 plt_list = &h->elf.plt.plist;
15727 else if (local_got_ents != NULL)
15728 {
15729 struct plt_entry **local_plt = (struct plt_entry **)
15730 (local_got_ents + symtab_hdr->sh_info);
15731 plt_list = local_plt + r_symndx;
15732 }
15733 if (plt_list)
15734 {
15735 struct plt_entry *ent;
15736 bfd_vma sym_addend = orig_rel.r_addend;
15737
15738 if (r_type == R_PPC64_PLT_PCREL34
15739 || r_type == R_PPC64_PLT_PCREL34_NOTOC)
15740 sym_addend = 0;
15741
15742 for (ent = *plt_list; ent != NULL; ent = ent->next)
15743 if (ent->plt.offset != (bfd_vma) -1
15744 && ent->addend == sym_addend)
15745 {
15746 asection *plt;
15747 bfd_vma got;
15748
15749 plt = htab->elf.splt;
15750 if (!htab->elf.dynamic_sections_created
15751 || h == NULL
15752 || h->elf.dynindx == -1)
15753 {
15754 if (h != NULL
15755 ? h->elf.type == STT_GNU_IFUNC
15756 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
15757 plt = htab->elf.iplt;
15758 else
15759 plt = htab->pltlocal;
15760 }
15761 relocation = (plt->output_section->vma
15762 + plt->output_offset
15763 + ent->plt.offset);
15764 if (r_type == R_PPC64_PLT16_HA
15765 || r_type == R_PPC64_PLT16_HI
15766 || r_type == R_PPC64_PLT16_LO
15767 || r_type == R_PPC64_PLT16_LO_DS)
15768 {
15769 got = (elf_gp (output_bfd)
15770 + htab->sec_info[input_section->id].toc_off);
15771 relocation -= got;
15772 }
15773 if (r_type != R_PPC64_PLT_PCREL34
15774 && r_type != R_PPC64_PLT_PCREL34_NOTOC)
15775 addend = 0;
15776 unresolved_reloc = FALSE;
15777 break;
15778 }
15779 }
15780 }
15781 break;
15782
15783 case R_PPC64_TOC:
15784 /* Relocation value is TOC base. */
15785 relocation = TOCstart;
15786 if (r_symndx == STN_UNDEF)
15787 relocation += htab->sec_info[input_section->id].toc_off;
15788 else if (unresolved_reloc)
15789 ;
15790 else if (sec != NULL && sec->id < htab->sec_info_arr_size)
15791 relocation += htab->sec_info[sec->id].toc_off;
15792 else
15793 unresolved_reloc = TRUE;
15794 goto dodyn;
15795
15796 /* TOC16 relocs. We want the offset relative to the TOC base,
15797 which is the address of the start of the TOC plus 0x8000.
15798 The TOC consists of sections .got, .toc, .tocbss, and .plt,
15799 in this order. */
15800 case R_PPC64_TOC16:
15801 case R_PPC64_TOC16_LO:
15802 case R_PPC64_TOC16_HI:
15803 case R_PPC64_TOC16_DS:
15804 case R_PPC64_TOC16_LO_DS:
15805 case R_PPC64_TOC16_HA:
15806 addend -= TOCstart + htab->sec_info[input_section->id].toc_off;
15807 break;
15808
15809 /* Relocate against the beginning of the section. */
15810 case R_PPC64_SECTOFF:
15811 case R_PPC64_SECTOFF_LO:
15812 case R_PPC64_SECTOFF_HI:
15813 case R_PPC64_SECTOFF_DS:
15814 case R_PPC64_SECTOFF_LO_DS:
15815 case R_PPC64_SECTOFF_HA:
15816 if (sec != NULL)
15817 addend -= sec->output_section->vma;
15818 break;
15819
15820 case R_PPC64_REL16:
15821 case R_PPC64_REL16_LO:
15822 case R_PPC64_REL16_HI:
15823 case R_PPC64_REL16_HA:
15824 case R_PPC64_REL16_HIGH:
15825 case R_PPC64_REL16_HIGHA:
15826 case R_PPC64_REL16_HIGHER:
15827 case R_PPC64_REL16_HIGHERA:
15828 case R_PPC64_REL16_HIGHEST:
15829 case R_PPC64_REL16_HIGHESTA:
15830 case R_PPC64_REL16_HIGHER34:
15831 case R_PPC64_REL16_HIGHERA34:
15832 case R_PPC64_REL16_HIGHEST34:
15833 case R_PPC64_REL16_HIGHESTA34:
15834 case R_PPC64_REL16DX_HA:
15835 case R_PPC64_REL14:
15836 case R_PPC64_REL14_BRNTAKEN:
15837 case R_PPC64_REL14_BRTAKEN:
15838 case R_PPC64_REL24:
15839 case R_PPC64_REL24_NOTOC:
15840 case R_PPC64_PCREL34:
15841 case R_PPC64_PCREL28:
15842 break;
15843
15844 case R_PPC64_TPREL16:
15845 case R_PPC64_TPREL16_LO:
15846 case R_PPC64_TPREL16_HI:
15847 case R_PPC64_TPREL16_HA:
15848 case R_PPC64_TPREL16_DS:
15849 case R_PPC64_TPREL16_LO_DS:
15850 case R_PPC64_TPREL16_HIGH:
15851 case R_PPC64_TPREL16_HIGHA:
15852 case R_PPC64_TPREL16_HIGHER:
15853 case R_PPC64_TPREL16_HIGHERA:
15854 case R_PPC64_TPREL16_HIGHEST:
15855 case R_PPC64_TPREL16_HIGHESTA:
15856 case R_PPC64_TPREL34:
15857 if (h != NULL
15858 && h->elf.root.type == bfd_link_hash_undefweak
15859 && h->elf.dynindx == -1)
15860 {
15861 /* Make this relocation against an undefined weak symbol
15862 resolve to zero. This is really just a tweak, since
15863 code using weak externs ought to check that they are
15864 defined before using them. */
15865 bfd_byte *p = contents + rel->r_offset - d_offset;
15866
15867 insn = bfd_get_32 (input_bfd, p);
15868 insn = _bfd_elf_ppc_at_tprel_transform (insn, 13);
15869 if (insn != 0)
15870 bfd_put_32 (input_bfd, insn, p);
15871 break;
15872 }
15873 if (htab->elf.tls_sec != NULL)
15874 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
15875 /* The TPREL16 relocs shouldn't really be used in shared
15876 libs or with non-local symbols as that will result in
15877 DT_TEXTREL being set, but support them anyway. */
15878 goto dodyn;
15879
15880 case R_PPC64_DTPREL16:
15881 case R_PPC64_DTPREL16_LO:
15882 case R_PPC64_DTPREL16_HI:
15883 case R_PPC64_DTPREL16_HA:
15884 case R_PPC64_DTPREL16_DS:
15885 case R_PPC64_DTPREL16_LO_DS:
15886 case R_PPC64_DTPREL16_HIGH:
15887 case R_PPC64_DTPREL16_HIGHA:
15888 case R_PPC64_DTPREL16_HIGHER:
15889 case R_PPC64_DTPREL16_HIGHERA:
15890 case R_PPC64_DTPREL16_HIGHEST:
15891 case R_PPC64_DTPREL16_HIGHESTA:
15892 case R_PPC64_DTPREL34:
15893 if (htab->elf.tls_sec != NULL)
15894 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
15895 break;
15896
15897 case R_PPC64_ADDR64_LOCAL:
15898 addend += PPC64_LOCAL_ENTRY_OFFSET (h != NULL
15899 ? h->elf.other
15900 : sym->st_other);
15901 break;
15902
15903 case R_PPC64_DTPMOD64:
15904 relocation = 1;
15905 addend = 0;
15906 goto dodyn;
15907
15908 case R_PPC64_TPREL64:
15909 if (htab->elf.tls_sec != NULL)
15910 addend -= htab->elf.tls_sec->vma + TP_OFFSET;
15911 goto dodyn;
15912
15913 case R_PPC64_DTPREL64:
15914 if (htab->elf.tls_sec != NULL)
15915 addend -= htab->elf.tls_sec->vma + DTP_OFFSET;
15916 /* Fall through. */
15917
15918 /* Relocations that may need to be propagated if this is a
15919 dynamic object. */
15920 case R_PPC64_REL30:
15921 case R_PPC64_REL32:
15922 case R_PPC64_REL64:
15923 case R_PPC64_ADDR14:
15924 case R_PPC64_ADDR14_BRNTAKEN:
15925 case R_PPC64_ADDR14_BRTAKEN:
15926 case R_PPC64_ADDR16:
15927 case R_PPC64_ADDR16_DS:
15928 case R_PPC64_ADDR16_HA:
15929 case R_PPC64_ADDR16_HI:
15930 case R_PPC64_ADDR16_HIGH:
15931 case R_PPC64_ADDR16_HIGHA:
15932 case R_PPC64_ADDR16_HIGHER:
15933 case R_PPC64_ADDR16_HIGHERA:
15934 case R_PPC64_ADDR16_HIGHEST:
15935 case R_PPC64_ADDR16_HIGHESTA:
15936 case R_PPC64_ADDR16_LO:
15937 case R_PPC64_ADDR16_LO_DS:
15938 case R_PPC64_ADDR16_HIGHER34:
15939 case R_PPC64_ADDR16_HIGHERA34:
15940 case R_PPC64_ADDR16_HIGHEST34:
15941 case R_PPC64_ADDR16_HIGHESTA34:
15942 case R_PPC64_ADDR24:
15943 case R_PPC64_ADDR32:
15944 case R_PPC64_ADDR64:
15945 case R_PPC64_UADDR16:
15946 case R_PPC64_UADDR32:
15947 case R_PPC64_UADDR64:
15948 case R_PPC64_D34:
15949 case R_PPC64_D34_LO:
15950 case R_PPC64_D34_HI30:
15951 case R_PPC64_D34_HA30:
15952 case R_PPC64_D28:
15953 dodyn:
15954 if ((input_section->flags & SEC_ALLOC) == 0)
15955 break;
15956
15957 if (NO_OPD_RELOCS && is_opd)
15958 break;
15959
15960 if (bfd_link_pic (info)
15961 ? ((h == NULL
15962 || h->dyn_relocs != NULL)
15963 && ((h != NULL && pc_dynrelocs (h))
15964 || must_be_dyn_reloc (info, r_type)))
15965 : (h != NULL
15966 ? h->dyn_relocs != NULL
15967 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
15968 {
15969 bfd_boolean skip, relocate;
15970 asection *sreloc;
15971 bfd_vma out_off;
15972 long indx = 0;
15973
15974 /* When generating a dynamic object, these relocations
15975 are copied into the output file to be resolved at run
15976 time. */
15977
15978 skip = FALSE;
15979 relocate = FALSE;
15980
15981 out_off = _bfd_elf_section_offset (output_bfd, info,
15982 input_section, rel->r_offset);
15983 if (out_off == (bfd_vma) -1)
15984 skip = TRUE;
15985 else if (out_off == (bfd_vma) -2)
15986 skip = TRUE, relocate = TRUE;
15987 out_off += (input_section->output_section->vma
15988 + input_section->output_offset);
15989 outrel.r_offset = out_off;
15990 outrel.r_addend = rel->r_addend;
15991
15992 /* Optimize unaligned reloc use. */
15993 if ((r_type == R_PPC64_ADDR64 && (out_off & 7) != 0)
15994 || (r_type == R_PPC64_UADDR64 && (out_off & 7) == 0))
15995 r_type ^= R_PPC64_ADDR64 ^ R_PPC64_UADDR64;
15996 else if ((r_type == R_PPC64_ADDR32 && (out_off & 3) != 0)
15997 || (r_type == R_PPC64_UADDR32 && (out_off & 3) == 0))
15998 r_type ^= R_PPC64_ADDR32 ^ R_PPC64_UADDR32;
15999 else if ((r_type == R_PPC64_ADDR16 && (out_off & 1) != 0)
16000 || (r_type == R_PPC64_UADDR16 && (out_off & 1) == 0))
16001 r_type ^= R_PPC64_ADDR16 ^ R_PPC64_UADDR16;
16002
16003 if (skip)
16004 memset (&outrel, 0, sizeof outrel);
16005 else if (!SYMBOL_REFERENCES_LOCAL (info, &h->elf)
16006 && !is_opd
16007 && r_type != R_PPC64_TOC)
16008 {
16009 indx = h->elf.dynindx;
16010 BFD_ASSERT (indx != -1);
16011 outrel.r_info = ELF64_R_INFO (indx, r_type);
16012 }
16013 else
16014 {
16015 /* This symbol is local, or marked to become local,
16016 or this is an opd section reloc which must point
16017 at a local function. */
16018 outrel.r_addend += relocation;
16019 if (r_type == R_PPC64_ADDR64 || r_type == R_PPC64_TOC)
16020 {
16021 if (is_opd && h != NULL)
16022 {
16023 /* Lie about opd entries. This case occurs
16024 when building shared libraries and we
16025 reference a function in another shared
16026 lib. The same thing happens for a weak
16027 definition in an application that's
16028 overridden by a strong definition in a
16029 shared lib. (I believe this is a generic
16030 bug in binutils handling of weak syms.)
16031 In these cases we won't use the opd
16032 entry in this lib. */
16033 unresolved_reloc = FALSE;
16034 }
16035 if (!is_opd
16036 && r_type == R_PPC64_ADDR64
16037 && (h != NULL
16038 ? h->elf.type == STT_GNU_IFUNC
16039 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC))
16040 outrel.r_info = ELF64_R_INFO (0, R_PPC64_IRELATIVE);
16041 else
16042 {
16043 outrel.r_info = ELF64_R_INFO (0, R_PPC64_RELATIVE);
16044
16045 /* We need to relocate .opd contents for ld.so.
16046 Prelink also wants simple and consistent rules
16047 for relocs. This make all RELATIVE relocs have
16048 *r_offset equal to r_addend. */
16049 relocate = TRUE;
16050 }
16051 }
16052 else
16053 {
16054 if (h != NULL
16055 ? h->elf.type == STT_GNU_IFUNC
16056 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16057 {
16058 info->callbacks->einfo
16059 /* xgettext:c-format */
16060 (_("%H: %s for indirect "
16061 "function `%pT' unsupported\n"),
16062 input_bfd, input_section, rel->r_offset,
16063 ppc64_elf_howto_table[r_type]->name,
16064 sym_name);
16065 ret = FALSE;
16066 }
16067 else if (r_symndx == STN_UNDEF || bfd_is_abs_section (sec))
16068 ;
16069 else if (sec == NULL || sec->owner == NULL)
16070 {
16071 bfd_set_error (bfd_error_bad_value);
16072 return FALSE;
16073 }
16074 else
16075 {
16076 asection *osec = sec->output_section;
16077
16078 if ((osec->flags & SEC_THREAD_LOCAL) != 0)
16079 {
16080 /* TLS symbol values are relative to the
16081 TLS segment. Dynamic relocations for
16082 local TLS symbols therefore can't be
16083 reduced to a relocation against their
16084 section symbol because it holds the
16085 address of the section, not a value
16086 relative to the TLS segment. We could
16087 change the .tdata dynamic section symbol
16088 to be zero value but STN_UNDEF works
16089 and is used elsewhere, eg. for TPREL64
16090 GOT relocs against local TLS symbols. */
16091 osec = htab->elf.tls_sec;
16092 indx = 0;
16093 }
16094 else
16095 {
16096 indx = elf_section_data (osec)->dynindx;
16097 if (indx == 0)
16098 {
16099 if ((osec->flags & SEC_READONLY) == 0
16100 && htab->elf.data_index_section != NULL)
16101 osec = htab->elf.data_index_section;
16102 else
16103 osec = htab->elf.text_index_section;
16104 indx = elf_section_data (osec)->dynindx;
16105 }
16106 BFD_ASSERT (indx != 0);
16107 }
16108
16109 /* We are turning this relocation into one
16110 against a section symbol, so subtract out
16111 the output section's address but not the
16112 offset of the input section in the output
16113 section. */
16114 outrel.r_addend -= osec->vma;
16115 }
16116
16117 outrel.r_info = ELF64_R_INFO (indx, r_type);
16118 }
16119 }
16120
16121 sreloc = elf_section_data (input_section)->sreloc;
16122 if (h != NULL
16123 ? h->elf.type == STT_GNU_IFUNC
16124 : ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
16125 {
16126 sreloc = htab->elf.irelplt;
16127 if (indx == 0)
16128 htab->local_ifunc_resolver = 1;
16129 else if (is_static_defined (&h->elf))
16130 htab->maybe_local_ifunc_resolver = 1;
16131 }
16132 if (sreloc == NULL)
16133 abort ();
16134
16135 if (sreloc->reloc_count * sizeof (Elf64_External_Rela)
16136 >= sreloc->size)
16137 abort ();
16138 loc = sreloc->contents;
16139 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
16140 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
16141
16142 /* If this reloc is against an external symbol, it will
16143 be computed at runtime, so there's no need to do
16144 anything now. However, for the sake of prelink ensure
16145 that the section contents are a known value. */
16146 if (!relocate)
16147 {
16148 unresolved_reloc = FALSE;
16149 /* The value chosen here is quite arbitrary as ld.so
16150 ignores section contents except for the special
16151 case of .opd where the contents might be accessed
16152 before relocation. Choose zero, as that won't
16153 cause reloc overflow. */
16154 relocation = 0;
16155 addend = 0;
16156 /* Use *r_offset == r_addend for R_PPC64_ADDR64 relocs
16157 to improve backward compatibility with older
16158 versions of ld. */
16159 if (r_type == R_PPC64_ADDR64)
16160 addend = outrel.r_addend;
16161 /* Adjust pc_relative relocs to have zero in *r_offset. */
16162 else if (ppc64_elf_howto_table[r_type]->pc_relative)
16163 addend = outrel.r_offset;
16164 }
16165 }
16166 break;
16167
16168 case R_PPC64_COPY:
16169 case R_PPC64_GLOB_DAT:
16170 case R_PPC64_JMP_SLOT:
16171 case R_PPC64_JMP_IREL:
16172 case R_PPC64_RELATIVE:
16173 /* We shouldn't ever see these dynamic relocs in relocatable
16174 files. */
16175 /* Fall through. */
16176
16177 case R_PPC64_PLTGOT16:
16178 case R_PPC64_PLTGOT16_DS:
16179 case R_PPC64_PLTGOT16_HA:
16180 case R_PPC64_PLTGOT16_HI:
16181 case R_PPC64_PLTGOT16_LO:
16182 case R_PPC64_PLTGOT16_LO_DS:
16183 case R_PPC64_PLTREL32:
16184 case R_PPC64_PLTREL64:
16185 /* These ones haven't been implemented yet. */
16186
16187 info->callbacks->einfo
16188 /* xgettext:c-format */
16189 (_("%P: %pB: %s is not supported for `%pT'\n"),
16190 input_bfd,
16191 ppc64_elf_howto_table[r_type]->name, sym_name);
16192
16193 bfd_set_error (bfd_error_invalid_operation);
16194 ret = FALSE;
16195 goto copy_reloc;
16196 }
16197
16198 /* Multi-instruction sequences that access the TOC can be
16199 optimized, eg. addis ra,r2,0; addi rb,ra,x;
16200 to nop; addi rb,r2,x; */
16201 switch (r_type)
16202 {
16203 default:
16204 break;
16205
16206 case R_PPC64_GOT_TLSLD16_HI:
16207 case R_PPC64_GOT_TLSGD16_HI:
16208 case R_PPC64_GOT_TPREL16_HI:
16209 case R_PPC64_GOT_DTPREL16_HI:
16210 case R_PPC64_GOT16_HI:
16211 case R_PPC64_TOC16_HI:
16212 /* These relocs would only be useful if building up an
16213 offset to later add to r2, perhaps in an indexed
16214 addressing mode instruction. Don't try to optimize.
16215 Unfortunately, the possibility of someone building up an
16216 offset like this or even with the HA relocs, means that
16217 we need to check the high insn when optimizing the low
16218 insn. */
16219 break;
16220
16221 case R_PPC64_PLTCALL_NOTOC:
16222 if (!unresolved_reloc)
16223 htab->notoc_plt = 1;
16224 /* Fall through. */
16225 case R_PPC64_PLTCALL:
16226 if (unresolved_reloc)
16227 {
16228 /* No plt entry. Make this into a direct call. */
16229 bfd_byte *p = contents + rel->r_offset;
16230 insn = bfd_get_32 (input_bfd, p);
16231 insn &= 1;
16232 bfd_put_32 (input_bfd, B_DOT | insn, p);
16233 if (r_type == R_PPC64_PLTCALL)
16234 bfd_put_32 (input_bfd, NOP, p + 4);
16235 unresolved_reloc = save_unresolved_reloc;
16236 r_type = R_PPC64_REL24;
16237 }
16238 break;
16239
16240 case R_PPC64_PLTSEQ_NOTOC:
16241 case R_PPC64_PLTSEQ:
16242 if (unresolved_reloc)
16243 {
16244 unresolved_reloc = FALSE;
16245 goto nop_it;
16246 }
16247 break;
16248
16249 case R_PPC64_PLT_PCREL34_NOTOC:
16250 if (!unresolved_reloc)
16251 htab->notoc_plt = 1;
16252 /* Fall through. */
16253 case R_PPC64_PLT_PCREL34:
16254 if (unresolved_reloc)
16255 {
16256 bfd_byte *p = contents + rel->r_offset;
16257 bfd_put_32 (input_bfd, PNOP >> 32, p);
16258 bfd_put_32 (input_bfd, PNOP, p + 4);
16259 unresolved_reloc = FALSE;
16260 goto copy_reloc;
16261 }
16262 break;
16263
16264 case R_PPC64_PLT16_HA:
16265 if (unresolved_reloc)
16266 {
16267 unresolved_reloc = FALSE;
16268 goto nop_it;
16269 }
16270 /* Fall through. */
16271 case R_PPC64_GOT_TLSLD16_HA:
16272 case R_PPC64_GOT_TLSGD16_HA:
16273 case R_PPC64_GOT_TPREL16_HA:
16274 case R_PPC64_GOT_DTPREL16_HA:
16275 case R_PPC64_GOT16_HA:
16276 case R_PPC64_TOC16_HA:
16277 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16278 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16279 {
16280 bfd_byte *p;
16281 nop_it:
16282 p = contents + (rel->r_offset & ~3);
16283 bfd_put_32 (input_bfd, NOP, p);
16284 goto copy_reloc;
16285 }
16286 break;
16287
16288 case R_PPC64_PLT16_LO:
16289 case R_PPC64_PLT16_LO_DS:
16290 if (unresolved_reloc)
16291 {
16292 unresolved_reloc = FALSE;
16293 goto nop_it;
16294 }
16295 /* Fall through. */
16296 case R_PPC64_GOT_TLSLD16_LO:
16297 case R_PPC64_GOT_TLSGD16_LO:
16298 case R_PPC64_GOT_TPREL16_LO_DS:
16299 case R_PPC64_GOT_DTPREL16_LO_DS:
16300 case R_PPC64_GOT16_LO:
16301 case R_PPC64_GOT16_LO_DS:
16302 case R_PPC64_TOC16_LO:
16303 case R_PPC64_TOC16_LO_DS:
16304 if (htab->do_toc_opt && relocation + addend + 0x8000 < 0x10000
16305 && !ppc64_elf_tdata (input_bfd)->unexpected_toc_insn)
16306 {
16307 bfd_byte *p = contents + (rel->r_offset & ~3);
16308 insn = bfd_get_32 (input_bfd, p);
16309 if ((insn & (0x3f << 26)) == 12u << 26 /* addic */)
16310 {
16311 /* Transform addic to addi when we change reg. */
16312 insn &= ~((0x3f << 26) | (0x1f << 16));
16313 insn |= (14u << 26) | (2 << 16);
16314 }
16315 else
16316 {
16317 insn &= ~(0x1f << 16);
16318 insn |= 2 << 16;
16319 }
16320 bfd_put_32 (input_bfd, insn, p);
16321 }
16322 break;
16323
16324 case R_PPC64_TPREL16_HA:
16325 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16326 {
16327 bfd_byte *p = contents + (rel->r_offset & ~3);
16328 insn = bfd_get_32 (input_bfd, p);
16329 if ((insn & ((0x3f << 26) | 0x1f << 16))
16330 != ((15u << 26) | (13 << 16)) /* addis rt,13,imm */)
16331 /* xgettext:c-format */
16332 info->callbacks->minfo
16333 (_("%H: warning: %s unexpected insn %#x.\n"),
16334 input_bfd, input_section, rel->r_offset,
16335 ppc64_elf_howto_table[r_type]->name, insn);
16336 else
16337 {
16338 bfd_put_32 (input_bfd, NOP, p);
16339 goto copy_reloc;
16340 }
16341 }
16342 break;
16343
16344 case R_PPC64_TPREL16_LO:
16345 case R_PPC64_TPREL16_LO_DS:
16346 if (htab->do_tls_opt && relocation + addend + 0x8000 < 0x10000)
16347 {
16348 bfd_byte *p = contents + (rel->r_offset & ~3);
16349 insn = bfd_get_32 (input_bfd, p);
16350 insn &= ~(0x1f << 16);
16351 insn |= 13 << 16;
16352 bfd_put_32 (input_bfd, insn, p);
16353 }
16354 break;
16355 }
16356
16357 /* Do any further special processing. */
16358 switch (r_type)
16359 {
16360 default:
16361 break;
16362
16363 case R_PPC64_REL16_HA:
16364 case R_PPC64_REL16_HIGHA:
16365 case R_PPC64_REL16_HIGHERA:
16366 case R_PPC64_REL16_HIGHESTA:
16367 case R_PPC64_REL16DX_HA:
16368 case R_PPC64_ADDR16_HA:
16369 case R_PPC64_ADDR16_HIGHA:
16370 case R_PPC64_ADDR16_HIGHERA:
16371 case R_PPC64_ADDR16_HIGHESTA:
16372 case R_PPC64_TOC16_HA:
16373 case R_PPC64_SECTOFF_HA:
16374 case R_PPC64_TPREL16_HA:
16375 case R_PPC64_TPREL16_HIGHA:
16376 case R_PPC64_TPREL16_HIGHERA:
16377 case R_PPC64_TPREL16_HIGHESTA:
16378 case R_PPC64_DTPREL16_HA:
16379 case R_PPC64_DTPREL16_HIGHA:
16380 case R_PPC64_DTPREL16_HIGHERA:
16381 case R_PPC64_DTPREL16_HIGHESTA:
16382 /* It's just possible that this symbol is a weak symbol
16383 that's not actually defined anywhere. In that case,
16384 'sec' would be NULL, and we should leave the symbol
16385 alone (it will be set to zero elsewhere in the link). */
16386 if (sec == NULL)
16387 break;
16388 /* Fall through. */
16389
16390 case R_PPC64_GOT16_HA:
16391 case R_PPC64_PLTGOT16_HA:
16392 case R_PPC64_PLT16_HA:
16393 case R_PPC64_GOT_TLSGD16_HA:
16394 case R_PPC64_GOT_TLSLD16_HA:
16395 case R_PPC64_GOT_TPREL16_HA:
16396 case R_PPC64_GOT_DTPREL16_HA:
16397 /* Add 0x10000 if sign bit in 0:15 is set.
16398 Bits 0:15 are not used. */
16399 addend += 0x8000;
16400 break;
16401
16402 case R_PPC64_D34_HA30:
16403 case R_PPC64_ADDR16_HIGHERA34:
16404 case R_PPC64_ADDR16_HIGHESTA34:
16405 case R_PPC64_REL16_HIGHERA34:
16406 case R_PPC64_REL16_HIGHESTA34:
16407 if (sec != NULL)
16408 addend += 1ULL << 33;
16409 break;
16410
16411 case R_PPC64_ADDR16_DS:
16412 case R_PPC64_ADDR16_LO_DS:
16413 case R_PPC64_GOT16_DS:
16414 case R_PPC64_GOT16_LO_DS:
16415 case R_PPC64_PLT16_LO_DS:
16416 case R_PPC64_SECTOFF_DS:
16417 case R_PPC64_SECTOFF_LO_DS:
16418 case R_PPC64_TOC16_DS:
16419 case R_PPC64_TOC16_LO_DS:
16420 case R_PPC64_PLTGOT16_DS:
16421 case R_PPC64_PLTGOT16_LO_DS:
16422 case R_PPC64_GOT_TPREL16_DS:
16423 case R_PPC64_GOT_TPREL16_LO_DS:
16424 case R_PPC64_GOT_DTPREL16_DS:
16425 case R_PPC64_GOT_DTPREL16_LO_DS:
16426 case R_PPC64_TPREL16_DS:
16427 case R_PPC64_TPREL16_LO_DS:
16428 case R_PPC64_DTPREL16_DS:
16429 case R_PPC64_DTPREL16_LO_DS:
16430 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16431 mask = 3;
16432 /* If this reloc is against an lq, lxv, or stxv insn, then
16433 the value must be a multiple of 16. This is somewhat of
16434 a hack, but the "correct" way to do this by defining _DQ
16435 forms of all the _DS relocs bloats all reloc switches in
16436 this file. It doesn't make much sense to use these
16437 relocs in data, so testing the insn should be safe. */
16438 if ((insn & (0x3f << 26)) == (56u << 26)
16439 || ((insn & (0x3f << 26)) == (61u << 26) && (insn & 3) == 1))
16440 mask = 15;
16441 relocation += addend;
16442 addend = insn & (mask ^ 3);
16443 if ((relocation & mask) != 0)
16444 {
16445 relocation ^= relocation & mask;
16446 info->callbacks->einfo
16447 /* xgettext:c-format */
16448 (_("%H: error: %s not a multiple of %u\n"),
16449 input_bfd, input_section, rel->r_offset,
16450 ppc64_elf_howto_table[r_type]->name,
16451 mask + 1);
16452 bfd_set_error (bfd_error_bad_value);
16453 ret = FALSE;
16454 goto copy_reloc;
16455 }
16456 break;
16457 }
16458
16459 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
16460 because such sections are not SEC_ALLOC and thus ld.so will
16461 not process them. */
16462 howto = ppc64_elf_howto_table[(int) r_type];
16463 if (unresolved_reloc
16464 && !((input_section->flags & SEC_DEBUGGING) != 0
16465 && h->elf.def_dynamic)
16466 && _bfd_elf_section_offset (output_bfd, info, input_section,
16467 rel->r_offset) != (bfd_vma) -1)
16468 {
16469 info->callbacks->einfo
16470 /* xgettext:c-format */
16471 (_("%H: unresolvable %s against `%pT'\n"),
16472 input_bfd, input_section, rel->r_offset,
16473 howto->name,
16474 h->elf.root.root.string);
16475 ret = FALSE;
16476 }
16477
16478 /* 16-bit fields in insns mostly have signed values, but a
16479 few insns have 16-bit unsigned values. Really, we should
16480 have different reloc types. */
16481 if (howto->complain_on_overflow != complain_overflow_dont
16482 && howto->dst_mask == 0xffff
16483 && (input_section->flags & SEC_CODE) != 0)
16484 {
16485 enum complain_overflow complain = complain_overflow_signed;
16486
16487 insn = bfd_get_32 (input_bfd, contents + (rel->r_offset & ~3));
16488 if ((insn & (0x3f << 26)) == 10u << 26 /* cmpli */)
16489 complain = complain_overflow_bitfield;
16490 else if (howto->rightshift == 0
16491 ? ((insn & (0x3f << 26)) == 28u << 26 /* andi */
16492 || (insn & (0x3f << 26)) == 24u << 26 /* ori */
16493 || (insn & (0x3f << 26)) == 26u << 26 /* xori */)
16494 : ((insn & (0x3f << 26)) == 29u << 26 /* andis */
16495 || (insn & (0x3f << 26)) == 25u << 26 /* oris */
16496 || (insn & (0x3f << 26)) == 27u << 26 /* xoris */))
16497 complain = complain_overflow_unsigned;
16498 if (howto->complain_on_overflow != complain)
16499 {
16500 alt_howto = *howto;
16501 alt_howto.complain_on_overflow = complain;
16502 howto = &alt_howto;
16503 }
16504 }
16505
16506 switch (r_type)
16507 {
16508 /* Split field relocs aren't handled by _bfd_final_link_relocate. */
16509 case R_PPC64_D34:
16510 case R_PPC64_D34_LO:
16511 case R_PPC64_D34_HI30:
16512 case R_PPC64_D34_HA30:
16513 case R_PPC64_PCREL34:
16514 case R_PPC64_GOT_PCREL34:
16515 case R_PPC64_TPREL34:
16516 case R_PPC64_DTPREL34:
16517 case R_PPC64_GOT_TLSGD34:
16518 case R_PPC64_GOT_TLSLD34:
16519 case R_PPC64_GOT_TPREL34:
16520 case R_PPC64_GOT_DTPREL34:
16521 case R_PPC64_PLT_PCREL34:
16522 case R_PPC64_PLT_PCREL34_NOTOC:
16523 case R_PPC64_D28:
16524 case R_PPC64_PCREL28:
16525 if (rel->r_offset + 8 > input_section->size)
16526 r = bfd_reloc_outofrange;
16527 else
16528 {
16529 relocation += addend;
16530 if (howto->pc_relative)
16531 relocation -= (rel->r_offset
16532 + input_section->output_offset
16533 + input_section->output_section->vma);
16534 relocation >>= howto->rightshift;
16535
16536 pinsn = bfd_get_32 (input_bfd, contents + rel->r_offset);
16537 pinsn <<= 32;
16538 pinsn |= bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
16539
16540 pinsn &= ~howto->dst_mask;
16541 pinsn |= (((relocation << 16) | (relocation & 0xffff))
16542 & howto->dst_mask);
16543 bfd_put_32 (input_bfd, pinsn >> 32, contents + rel->r_offset);
16544 bfd_put_32 (input_bfd, pinsn, contents + rel->r_offset + 4);
16545 r = bfd_reloc_ok;
16546 if (howto->complain_on_overflow == complain_overflow_signed
16547 && (relocation + (1ULL << (howto->bitsize - 1))
16548 >= 1ULL << howto->bitsize))
16549 r = bfd_reloc_overflow;
16550 }
16551 break;
16552
16553 case R_PPC64_REL16DX_HA:
16554 if (rel->r_offset + 4 > input_section->size)
16555 r = bfd_reloc_outofrange;
16556 else
16557 {
16558 relocation += addend;
16559 relocation -= (rel->r_offset
16560 + input_section->output_offset
16561 + input_section->output_section->vma);
16562 relocation = (bfd_signed_vma) relocation >> 16;
16563 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
16564 insn &= ~0x1fffc1;
16565 insn |= (relocation & 0xffc1) | ((relocation & 0x3e) << 15);
16566 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
16567 r = bfd_reloc_ok;
16568 if (relocation + 0x8000 > 0xffff)
16569 r = bfd_reloc_overflow;
16570 }
16571 break;
16572
16573 default:
16574 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
16575 contents, rel->r_offset,
16576 relocation, addend);
16577 }
16578
16579 if (r != bfd_reloc_ok)
16580 {
16581 char *more_info = NULL;
16582 const char *reloc_name = howto->name;
16583
16584 if (reloc_dest != DEST_NORMAL)
16585 {
16586 more_info = bfd_malloc (strlen (reloc_name) + 8);
16587 if (more_info != NULL)
16588 {
16589 strcpy (more_info, reloc_name);
16590 strcat (more_info, (reloc_dest == DEST_OPD
16591 ? " (OPD)" : " (stub)"));
16592 reloc_name = more_info;
16593 }
16594 }
16595
16596 if (r == bfd_reloc_overflow)
16597 {
16598 /* On code like "if (foo) foo();" don't report overflow
16599 on a branch to zero when foo is undefined. */
16600 if (!warned
16601 && (reloc_dest == DEST_STUB
16602 || !(h != NULL
16603 && (h->elf.root.type == bfd_link_hash_undefweak
16604 || h->elf.root.type == bfd_link_hash_undefined)
16605 && is_branch_reloc (r_type))))
16606 info->callbacks->reloc_overflow (info, &h->elf.root,
16607 sym_name, reloc_name,
16608 orig_rel.r_addend,
16609 input_bfd, input_section,
16610 rel->r_offset);
16611 }
16612 else
16613 {
16614 info->callbacks->einfo
16615 /* xgettext:c-format */
16616 (_("%H: %s against `%pT': error %d\n"),
16617 input_bfd, input_section, rel->r_offset,
16618 reloc_name, sym_name, (int) r);
16619 ret = FALSE;
16620 }
16621 if (more_info != NULL)
16622 free (more_info);
16623 }
16624 copy_reloc:
16625 if (wrel != rel)
16626 *wrel = *rel;
16627 }
16628
16629 if (wrel != rel)
16630 {
16631 Elf_Internal_Shdr *rel_hdr;
16632 size_t deleted = rel - wrel;
16633
16634 rel_hdr = _bfd_elf_single_rel_hdr (input_section->output_section);
16635 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
16636 if (rel_hdr->sh_size == 0)
16637 {
16638 /* It is too late to remove an empty reloc section. Leave
16639 one NONE reloc.
16640 ??? What is wrong with an empty section??? */
16641 rel_hdr->sh_size = rel_hdr->sh_entsize;
16642 deleted -= 1;
16643 }
16644 rel_hdr = _bfd_elf_single_rel_hdr (input_section);
16645 rel_hdr->sh_size -= rel_hdr->sh_entsize * deleted;
16646 input_section->reloc_count -= deleted;
16647 }
16648
16649 /* If we're emitting relocations, then shortly after this function
16650 returns, reloc offsets and addends for this section will be
16651 adjusted. Worse, reloc symbol indices will be for the output
16652 file rather than the input. Save a copy of the relocs for
16653 opd_entry_value. */
16654 if (is_opd && (info->emitrelocations || bfd_link_relocatable (info)))
16655 {
16656 bfd_size_type amt;
16657 amt = input_section->reloc_count * sizeof (Elf_Internal_Rela);
16658 rel = bfd_alloc (input_bfd, amt);
16659 BFD_ASSERT (ppc64_elf_tdata (input_bfd)->opd.relocs == NULL);
16660 ppc64_elf_tdata (input_bfd)->opd.relocs = rel;
16661 if (rel == NULL)
16662 return FALSE;
16663 memcpy (rel, relocs, amt);
16664 }
16665 return ret;
16666 }
16667
16668 /* Adjust the value of any local symbols in opd sections. */
16669
16670 static int
16671 ppc64_elf_output_symbol_hook (struct bfd_link_info *info,
16672 const char *name ATTRIBUTE_UNUSED,
16673 Elf_Internal_Sym *elfsym,
16674 asection *input_sec,
16675 struct elf_link_hash_entry *h)
16676 {
16677 struct _opd_sec_data *opd;
16678 long adjust;
16679 bfd_vma value;
16680
16681 if (h != NULL)
16682 return 1;
16683
16684 opd = get_opd_info (input_sec);
16685 if (opd == NULL || opd->adjust == NULL)
16686 return 1;
16687
16688 value = elfsym->st_value - input_sec->output_offset;
16689 if (!bfd_link_relocatable (info))
16690 value -= input_sec->output_section->vma;
16691
16692 adjust = opd->adjust[OPD_NDX (value)];
16693 if (adjust == -1)
16694 return 2;
16695
16696 elfsym->st_value += adjust;
16697 return 1;
16698 }
16699
16700 /* Finish up dynamic symbol handling. We set the contents of various
16701 dynamic sections here. */
16702
16703 static bfd_boolean
16704 ppc64_elf_finish_dynamic_symbol (bfd *output_bfd,
16705 struct bfd_link_info *info,
16706 struct elf_link_hash_entry *h,
16707 Elf_Internal_Sym *sym)
16708 {
16709 struct ppc_link_hash_table *htab;
16710 struct plt_entry *ent;
16711
16712 htab = ppc_hash_table (info);
16713 if (htab == NULL)
16714 return FALSE;
16715
16716 if (!htab->opd_abi && !h->def_regular)
16717 for (ent = h->plt.plist; ent != NULL; ent = ent->next)
16718 if (ent->plt.offset != (bfd_vma) -1)
16719 {
16720 /* Mark the symbol as undefined, rather than as
16721 defined in glink. Leave the value if there were
16722 any relocations where pointer equality matters
16723 (this is a clue for the dynamic linker, to make
16724 function pointer comparisons work between an
16725 application and shared library), otherwise set it
16726 to zero. */
16727 sym->st_shndx = SHN_UNDEF;
16728 if (!h->pointer_equality_needed)
16729 sym->st_value = 0;
16730 else if (!h->ref_regular_nonweak)
16731 {
16732 /* This breaks function pointer comparisons, but
16733 that is better than breaking tests for a NULL
16734 function pointer. */
16735 sym->st_value = 0;
16736 }
16737 break;
16738 }
16739
16740 if (h->needs_copy)
16741 {
16742 /* This symbol needs a copy reloc. Set it up. */
16743 Elf_Internal_Rela rela;
16744 asection *srel;
16745 bfd_byte *loc;
16746
16747 if (h->dynindx == -1
16748 || (h->root.type != bfd_link_hash_defined
16749 && h->root.type != bfd_link_hash_defweak)
16750 || htab->elf.srelbss == NULL
16751 || htab->elf.sreldynrelro == NULL)
16752 abort ();
16753
16754 rela.r_offset = (h->root.u.def.value
16755 + h->root.u.def.section->output_section->vma
16756 + h->root.u.def.section->output_offset);
16757 rela.r_info = ELF64_R_INFO (h->dynindx, R_PPC64_COPY);
16758 rela.r_addend = 0;
16759 if (h->root.u.def.section == htab->elf.sdynrelro)
16760 srel = htab->elf.sreldynrelro;
16761 else
16762 srel = htab->elf.srelbss;
16763 loc = srel->contents;
16764 loc += srel->reloc_count++ * sizeof (Elf64_External_Rela);
16765 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
16766 }
16767
16768 return TRUE;
16769 }
16770
16771 /* Used to decide how to sort relocs in an optimal manner for the
16772 dynamic linker, before writing them out. */
16773
16774 static enum elf_reloc_type_class
16775 ppc64_elf_reloc_type_class (const struct bfd_link_info *info,
16776 const asection *rel_sec,
16777 const Elf_Internal_Rela *rela)
16778 {
16779 enum elf_ppc64_reloc_type r_type;
16780 struct ppc_link_hash_table *htab = ppc_hash_table (info);
16781
16782 if (rel_sec == htab->elf.irelplt)
16783 return reloc_class_ifunc;
16784
16785 r_type = ELF64_R_TYPE (rela->r_info);
16786 switch (r_type)
16787 {
16788 case R_PPC64_RELATIVE:
16789 return reloc_class_relative;
16790 case R_PPC64_JMP_SLOT:
16791 return reloc_class_plt;
16792 case R_PPC64_COPY:
16793 return reloc_class_copy;
16794 default:
16795 return reloc_class_normal;
16796 }
16797 }
16798
16799 /* Finish up the dynamic sections. */
16800
16801 static bfd_boolean
16802 ppc64_elf_finish_dynamic_sections (bfd *output_bfd,
16803 struct bfd_link_info *info)
16804 {
16805 struct ppc_link_hash_table *htab;
16806 bfd *dynobj;
16807 asection *sdyn;
16808
16809 htab = ppc_hash_table (info);
16810 if (htab == NULL)
16811 return FALSE;
16812
16813 dynobj = htab->elf.dynobj;
16814 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16815
16816 if (htab->elf.dynamic_sections_created)
16817 {
16818 Elf64_External_Dyn *dyncon, *dynconend;
16819
16820 if (sdyn == NULL || htab->elf.sgot == NULL)
16821 abort ();
16822
16823 dyncon = (Elf64_External_Dyn *) sdyn->contents;
16824 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
16825 for (; dyncon < dynconend; dyncon++)
16826 {
16827 Elf_Internal_Dyn dyn;
16828 asection *s;
16829
16830 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
16831
16832 switch (dyn.d_tag)
16833 {
16834 default:
16835 continue;
16836
16837 case DT_PPC64_GLINK:
16838 s = htab->glink;
16839 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16840 /* We stupidly defined DT_PPC64_GLINK to be the start
16841 of glink rather than the first entry point, which is
16842 what ld.so needs, and now have a bigger stub to
16843 support automatic multiple TOCs. */
16844 dyn.d_un.d_ptr += GLINK_PLTRESOLVE_SIZE (htab) - 8 * 4;
16845 break;
16846
16847 case DT_PPC64_OPD:
16848 s = bfd_get_section_by_name (output_bfd, ".opd");
16849 if (s == NULL)
16850 continue;
16851 dyn.d_un.d_ptr = s->vma;
16852 break;
16853
16854 case DT_PPC64_OPT:
16855 if ((htab->do_multi_toc && htab->multi_toc_needed)
16856 || htab->notoc_plt)
16857 dyn.d_un.d_val |= PPC64_OPT_MULTI_TOC;
16858 if (htab->has_plt_localentry0)
16859 dyn.d_un.d_val |= PPC64_OPT_LOCALENTRY;
16860 break;
16861
16862 case DT_PPC64_OPDSZ:
16863 s = bfd_get_section_by_name (output_bfd, ".opd");
16864 if (s == NULL)
16865 continue;
16866 dyn.d_un.d_val = s->size;
16867 break;
16868
16869 case DT_PLTGOT:
16870 s = htab->elf.splt;
16871 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16872 break;
16873
16874 case DT_JMPREL:
16875 s = htab->elf.srelplt;
16876 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16877 break;
16878
16879 case DT_PLTRELSZ:
16880 dyn.d_un.d_val = htab->elf.srelplt->size;
16881 break;
16882
16883 case DT_TEXTREL:
16884 if (htab->local_ifunc_resolver)
16885 info->callbacks->einfo
16886 (_("%X%P: text relocations and GNU indirect "
16887 "functions will result in a segfault at runtime\n"));
16888 else if (htab->maybe_local_ifunc_resolver)
16889 info->callbacks->einfo
16890 (_("%P: warning: text relocations and GNU indirect "
16891 "functions may result in a segfault at runtime\n"));
16892 continue;
16893 }
16894
16895 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
16896 }
16897 }
16898
16899 if (htab->elf.sgot != NULL && htab->elf.sgot->size != 0
16900 && htab->elf.sgot->output_section != bfd_abs_section_ptr)
16901 {
16902 /* Fill in the first entry in the global offset table.
16903 We use it to hold the link-time TOCbase. */
16904 bfd_put_64 (output_bfd,
16905 elf_gp (output_bfd) + TOC_BASE_OFF,
16906 htab->elf.sgot->contents);
16907
16908 /* Set .got entry size. */
16909 elf_section_data (htab->elf.sgot->output_section)->this_hdr.sh_entsize
16910 = 8;
16911 }
16912
16913 if (htab->elf.splt != NULL && htab->elf.splt->size != 0
16914 && htab->elf.splt->output_section != bfd_abs_section_ptr)
16915 {
16916 /* Set .plt entry size. */
16917 elf_section_data (htab->elf.splt->output_section)->this_hdr.sh_entsize
16918 = PLT_ENTRY_SIZE (htab);
16919 }
16920
16921 /* brlt is SEC_LINKER_CREATED, so we need to write out relocs for
16922 brlt ourselves if emitrelocations. */
16923 if (htab->brlt != NULL
16924 && htab->brlt->reloc_count != 0
16925 && !_bfd_elf_link_output_relocs (output_bfd,
16926 htab->brlt,
16927 elf_section_data (htab->brlt)->rela.hdr,
16928 elf_section_data (htab->brlt)->relocs,
16929 NULL))
16930 return FALSE;
16931
16932 if (htab->glink != NULL
16933 && htab->glink->reloc_count != 0
16934 && !_bfd_elf_link_output_relocs (output_bfd,
16935 htab->glink,
16936 elf_section_data (htab->glink)->rela.hdr,
16937 elf_section_data (htab->glink)->relocs,
16938 NULL))
16939 return FALSE;
16940
16941
16942 if (htab->glink_eh_frame != NULL
16943 && htab->glink_eh_frame->size != 0
16944 && htab->glink_eh_frame->sec_info_type == SEC_INFO_TYPE_EH_FRAME
16945 && !_bfd_elf_write_section_eh_frame (output_bfd, info,
16946 htab->glink_eh_frame,
16947 htab->glink_eh_frame->contents))
16948 return FALSE;
16949
16950 /* We need to handle writing out multiple GOT sections ourselves,
16951 since we didn't add them to DYNOBJ. We know dynobj is the first
16952 bfd. */
16953 while ((dynobj = dynobj->link.next) != NULL)
16954 {
16955 asection *s;
16956
16957 if (!is_ppc64_elf (dynobj))
16958 continue;
16959
16960 s = ppc64_elf_tdata (dynobj)->got;
16961 if (s != NULL
16962 && s->size != 0
16963 && s->output_section != bfd_abs_section_ptr
16964 && !bfd_set_section_contents (output_bfd, s->output_section,
16965 s->contents, s->output_offset,
16966 s->size))
16967 return FALSE;
16968 s = ppc64_elf_tdata (dynobj)->relgot;
16969 if (s != NULL
16970 && s->size != 0
16971 && s->output_section != bfd_abs_section_ptr
16972 && !bfd_set_section_contents (output_bfd, s->output_section,
16973 s->contents, s->output_offset,
16974 s->size))
16975 return FALSE;
16976 }
16977
16978 return TRUE;
16979 }
16980
16981 #include "elf64-target.h"
16982
16983 /* FreeBSD support */
16984
16985 #undef TARGET_LITTLE_SYM
16986 #undef TARGET_LITTLE_NAME
16987
16988 #undef TARGET_BIG_SYM
16989 #define TARGET_BIG_SYM powerpc_elf64_fbsd_vec
16990 #undef TARGET_BIG_NAME
16991 #define TARGET_BIG_NAME "elf64-powerpc-freebsd"
16992
16993 #undef ELF_OSABI
16994 #define ELF_OSABI ELFOSABI_FREEBSD
16995
16996 #undef elf64_bed
16997 #define elf64_bed elf64_powerpc_fbsd_bed
16998
16999 #include "elf64-target.h"
This page took 0.445508 seconds and 5 git commands to generate.