Fix the behaviour of --allow-shlib-undefined, so that it does what it claims
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "opcode/sparc.h"
26
27 /* This is defined if one wants to build upward compatible binaries
28 with the original sparc64-elf toolchain. The support is kept in for
29 now but is turned off by default. dje 970930 */
30 /*#define SPARC64_OLD_RELOCS*/
31
32 #include "elf/sparc.h"
33
34 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
35 #define MINUS_ONE (~ (bfd_vma) 0)
36
37 static struct bfd_link_hash_table * sparc64_elf_bfd_link_hash_table_create
38 PARAMS ((bfd *));
39 static bfd_reloc_status_type init_insn_reloc
40 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *,
41 bfd *, bfd_vma *, bfd_vma *));
42 static reloc_howto_type *sparc64_elf_reloc_type_lookup
43 PARAMS ((bfd *, bfd_reloc_code_real_type));
44 static void sparc64_elf_info_to_howto
45 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
46
47 static void sparc64_elf_build_plt
48 PARAMS ((bfd *, unsigned char *, int));
49 static bfd_vma sparc64_elf_plt_entry_offset
50 PARAMS ((bfd_vma));
51 static bfd_vma sparc64_elf_plt_ptr_offset
52 PARAMS ((bfd_vma, bfd_vma));
53
54 static bfd_boolean sparc64_elf_check_relocs
55 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
56 const Elf_Internal_Rela *));
57 static bfd_boolean sparc64_elf_adjust_dynamic_symbol
58 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
59 static bfd_boolean sparc64_elf_size_dynamic_sections
60 PARAMS ((bfd *, struct bfd_link_info *));
61 static int sparc64_elf_get_symbol_type
62 PARAMS (( Elf_Internal_Sym *, int));
63 static bfd_boolean sparc64_elf_add_symbol_hook
64 PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
65 const char **, flagword *, asection **, bfd_vma *));
66 static bfd_boolean sparc64_elf_output_arch_syms
67 PARAMS ((bfd *, struct bfd_link_info *, PTR,
68 bfd_boolean (*) (PTR, const char *, Elf_Internal_Sym *, asection *)));
69 static void sparc64_elf_symbol_processing
70 PARAMS ((bfd *, asymbol *));
71
72 static bfd_boolean sparc64_elf_merge_private_bfd_data
73 PARAMS ((bfd *, bfd *));
74
75 static bfd_boolean sparc64_elf_fake_sections
76 PARAMS ((bfd *, Elf_Internal_Shdr *, asection *));
77
78 static const char *sparc64_elf_print_symbol_all
79 PARAMS ((bfd *, PTR, asymbol *));
80 static bfd_boolean sparc64_elf_new_section_hook
81 PARAMS ((bfd *, asection *));
82 static bfd_boolean sparc64_elf_relax_section
83 PARAMS ((bfd *, asection *, struct bfd_link_info *, bfd_boolean *));
84 static bfd_boolean sparc64_elf_relocate_section
85 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
86 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
87 static bfd_boolean sparc64_elf_finish_dynamic_symbol
88 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
89 Elf_Internal_Sym *));
90 static bfd_boolean sparc64_elf_finish_dynamic_sections
91 PARAMS ((bfd *, struct bfd_link_info *));
92 static bfd_boolean sparc64_elf_object_p PARAMS ((bfd *));
93 static long sparc64_elf_get_reloc_upper_bound PARAMS ((bfd *, asection *));
94 static long sparc64_elf_get_dynamic_reloc_upper_bound PARAMS ((bfd *));
95 static bfd_boolean sparc64_elf_slurp_one_reloc_table
96 PARAMS ((bfd *, asection *, Elf_Internal_Shdr *, asymbol **, bfd_boolean));
97 static bfd_boolean sparc64_elf_slurp_reloc_table
98 PARAMS ((bfd *, asection *, asymbol **, bfd_boolean));
99 static long sparc64_elf_canonicalize_dynamic_reloc
100 PARAMS ((bfd *, arelent **, asymbol **));
101 static void sparc64_elf_write_relocs PARAMS ((bfd *, asection *, PTR));
102 static enum elf_reloc_type_class sparc64_elf_reloc_type_class
103 PARAMS ((const Elf_Internal_Rela *));
104 \f
105 /* The relocation "howto" table. */
106
107 static bfd_reloc_status_type sparc_elf_notsup_reloc
108 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
109 static bfd_reloc_status_type sparc_elf_wdisp16_reloc
110 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
111 static bfd_reloc_status_type sparc_elf_hix22_reloc
112 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
113 static bfd_reloc_status_type sparc_elf_lox10_reloc
114 PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));
115
116 static reloc_howto_type sparc64_elf_howto_table[] =
117 {
118 HOWTO(R_SPARC_NONE, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_NONE", FALSE,0,0x00000000,TRUE),
119 HOWTO(R_SPARC_8, 0,0, 8,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_8", FALSE,0,0x000000ff,TRUE),
120 HOWTO(R_SPARC_16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_16", FALSE,0,0x0000ffff,TRUE),
121 HOWTO(R_SPARC_32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_32", FALSE,0,0xffffffff,TRUE),
122 HOWTO(R_SPARC_DISP8, 0,0, 8,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP8", FALSE,0,0x000000ff,TRUE),
123 HOWTO(R_SPARC_DISP16, 0,1,16,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP16", FALSE,0,0x0000ffff,TRUE),
124 HOWTO(R_SPARC_DISP32, 0,2,32,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP32", FALSE,0,0xffffffff,TRUE),
125 HOWTO(R_SPARC_WDISP30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP30", FALSE,0,0x3fffffff,TRUE),
126 HOWTO(R_SPARC_WDISP22, 2,2,22,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP22", FALSE,0,0x003fffff,TRUE),
127 HOWTO(R_SPARC_HI22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HI22", FALSE,0,0x003fffff,TRUE),
128 HOWTO(R_SPARC_22, 0,2,22,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_22", FALSE,0,0x003fffff,TRUE),
129 HOWTO(R_SPARC_13, 0,2,13,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_13", FALSE,0,0x00001fff,TRUE),
130 HOWTO(R_SPARC_LO10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LO10", FALSE,0,0x000003ff,TRUE),
131 HOWTO(R_SPARC_GOT10, 0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT10", FALSE,0,0x000003ff,TRUE),
132 HOWTO(R_SPARC_GOT13, 0,2,13,FALSE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_GOT13", FALSE,0,0x00001fff,TRUE),
133 HOWTO(R_SPARC_GOT22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GOT22", FALSE,0,0x003fffff,TRUE),
134 HOWTO(R_SPARC_PC10, 0,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC10", FALSE,0,0x000003ff,TRUE),
135 HOWTO(R_SPARC_PC22, 10,2,22,TRUE, 0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PC22", FALSE,0,0x003fffff,TRUE),
136 HOWTO(R_SPARC_WPLT30, 2,2,30,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WPLT30", FALSE,0,0x3fffffff,TRUE),
137 HOWTO(R_SPARC_COPY, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_COPY", FALSE,0,0x00000000,TRUE),
138 HOWTO(R_SPARC_GLOB_DAT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_GLOB_DAT",FALSE,0,0x00000000,TRUE),
139 HOWTO(R_SPARC_JMP_SLOT, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_JMP_SLOT",FALSE,0,0x00000000,TRUE),
140 HOWTO(R_SPARC_RELATIVE, 0,0,00,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_RELATIVE",FALSE,0,0x00000000,TRUE),
141 HOWTO(R_SPARC_UA32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA32", FALSE,0,0xffffffff,TRUE),
142 #ifndef SPARC64_OLD_RELOCS
143 HOWTO(R_SPARC_PLT32, 0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT32", FALSE,0,0xffffffff,TRUE),
144 /* These aren't implemented yet. */
145 HOWTO(R_SPARC_HIPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_HIPLT22", FALSE,0,0x00000000,TRUE),
146 HOWTO(R_SPARC_LOPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_LOPLT10", FALSE,0,0x00000000,TRUE),
147 HOWTO(R_SPARC_PCPLT32, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT32", FALSE,0,0x00000000,TRUE),
148 HOWTO(R_SPARC_PCPLT22, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT22", FALSE,0,0x00000000,TRUE),
149 HOWTO(R_SPARC_PCPLT10, 0,0,00,FALSE,0,complain_overflow_dont, sparc_elf_notsup_reloc, "R_SPARC_PCPLT10", FALSE,0,0x00000000,TRUE),
150 #endif
151 HOWTO(R_SPARC_10, 0,2,10,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_10", FALSE,0,0x000003ff,TRUE),
152 HOWTO(R_SPARC_11, 0,2,11,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_11", FALSE,0,0x000007ff,TRUE),
153 HOWTO(R_SPARC_64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_64", FALSE,0,MINUS_ONE, TRUE),
154 HOWTO(R_SPARC_OLO10, 0,2,13,FALSE,0,complain_overflow_signed, sparc_elf_notsup_reloc, "R_SPARC_OLO10", FALSE,0,0x00001fff,TRUE),
155 HOWTO(R_SPARC_HH22, 42,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_HH22", FALSE,0,0x003fffff,TRUE),
156 HOWTO(R_SPARC_HM10, 32,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_HM10", FALSE,0,0x000003ff,TRUE),
157 HOWTO(R_SPARC_LM22, 10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_LM22", FALSE,0,0x003fffff,TRUE),
158 HOWTO(R_SPARC_PC_HH22, 42,2,22,TRUE, 0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_PC_HH22", FALSE,0,0x003fffff,TRUE),
159 HOWTO(R_SPARC_PC_HM10, 32,2,10,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_HM10", FALSE,0,0x000003ff,TRUE),
160 HOWTO(R_SPARC_PC_LM22, 10,2,22,TRUE, 0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_PC_LM22", FALSE,0,0x003fffff,TRUE),
161 HOWTO(R_SPARC_WDISP16, 2,2,16,TRUE, 0,complain_overflow_signed, sparc_elf_wdisp16_reloc,"R_SPARC_WDISP16", FALSE,0,0x00000000,TRUE),
162 HOWTO(R_SPARC_WDISP19, 2,2,19,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_WDISP19", FALSE,0,0x0007ffff,TRUE),
163 HOWTO(R_SPARC_UNUSED_42, 0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_UNUSED_42",FALSE,0,0x00000000,TRUE),
164 HOWTO(R_SPARC_7, 0,2, 7,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_7", FALSE,0,0x0000007f,TRUE),
165 HOWTO(R_SPARC_5, 0,2, 5,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_5", FALSE,0,0x0000001f,TRUE),
166 HOWTO(R_SPARC_6, 0,2, 6,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_6", FALSE,0,0x0000003f,TRUE),
167 HOWTO(R_SPARC_DISP64, 0,4,64,TRUE, 0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_DISP64", FALSE,0,MINUS_ONE, TRUE),
168 HOWTO(R_SPARC_PLT64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_PLT64", FALSE,0,MINUS_ONE, TRUE),
169 HOWTO(R_SPARC_HIX22, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_HIX22", FALSE,0,MINUS_ONE, FALSE),
170 HOWTO(R_SPARC_LOX10, 0,4, 0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_LOX10", FALSE,0,MINUS_ONE, FALSE),
171 HOWTO(R_SPARC_H44, 22,2,22,FALSE,0,complain_overflow_unsigned,bfd_elf_generic_reloc, "R_SPARC_H44", FALSE,0,0x003fffff,FALSE),
172 HOWTO(R_SPARC_M44, 12,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_M44", FALSE,0,0x000003ff,FALSE),
173 HOWTO(R_SPARC_L44, 0,2,13,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_L44", FALSE,0,0x00000fff,FALSE),
174 HOWTO(R_SPARC_REGISTER, 0,4, 0,FALSE,0,complain_overflow_bitfield,sparc_elf_notsup_reloc, "R_SPARC_REGISTER",FALSE,0,MINUS_ONE, FALSE),
175 HOWTO(R_SPARC_UA64, 0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA64", FALSE,0,MINUS_ONE, TRUE),
176 HOWTO(R_SPARC_UA16, 0,1,16,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc, "R_SPARC_UA16", FALSE,0,0x0000ffff,TRUE),
177 HOWTO(R_SPARC_TLS_GD_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_HI22",FALSE,0,0x003fffff,TRUE),
178 HOWTO(R_SPARC_TLS_GD_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_LO10",FALSE,0,0x000003ff,TRUE),
179 HOWTO(R_SPARC_TLS_GD_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_ADD",FALSE,0,0x00000000,TRUE),
180 HOWTO(R_SPARC_TLS_GD_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_GD_CALL",FALSE,0,0x3fffffff,TRUE),
181 HOWTO(R_SPARC_TLS_LDM_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_HI22",FALSE,0,0x003fffff,TRUE),
182 HOWTO(R_SPARC_TLS_LDM_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_LO10",FALSE,0,0x000003ff,TRUE),
183 HOWTO(R_SPARC_TLS_LDM_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_ADD",FALSE,0,0x00000000,TRUE),
184 HOWTO(R_SPARC_TLS_LDM_CALL,2,2,30,TRUE,0,complain_overflow_signed, bfd_elf_generic_reloc, "R_SPARC_TLS_LDM_CALL",FALSE,0,0x3fffffff,TRUE),
185 HOWTO(R_SPARC_TLS_LDO_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc,"R_SPARC_TLS_LDO_HIX22",FALSE,0,0x003fffff, FALSE),
186 HOWTO(R_SPARC_TLS_LDO_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LDO_LOX10",FALSE,0,0x000003ff, FALSE),
187 HOWTO(R_SPARC_TLS_LDO_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_LDO_ADD",FALSE,0,0x00000000,TRUE),
188 HOWTO(R_SPARC_TLS_IE_HI22,10,2,22,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_HI22",FALSE,0,0x003fffff,TRUE),
189 HOWTO(R_SPARC_TLS_IE_LO10,0,2,10,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LO10",FALSE,0,0x000003ff,TRUE),
190 HOWTO(R_SPARC_TLS_IE_LD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LD",FALSE,0,0x00000000,TRUE),
191 HOWTO(R_SPARC_TLS_IE_LDX,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_LDX",FALSE,0,0x00000000,TRUE),
192 HOWTO(R_SPARC_TLS_IE_ADD,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_IE_ADD",FALSE,0,0x00000000,TRUE),
193 HOWTO(R_SPARC_TLS_LE_HIX22,0,2,0,FALSE,0,complain_overflow_bitfield,sparc_elf_hix22_reloc, "R_SPARC_TLS_LE_HIX22",FALSE,0,0x003fffff, FALSE),
194 HOWTO(R_SPARC_TLS_LE_LOX10,0,2,0,FALSE,0,complain_overflow_dont, sparc_elf_lox10_reloc, "R_SPARC_TLS_LE_LOX10",FALSE,0,0x000003ff, FALSE),
195 HOWTO(R_SPARC_TLS_DTPMOD32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD32",FALSE,0,0x00000000,TRUE),
196 HOWTO(R_SPARC_TLS_DTPMOD64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_DTPMOD64",FALSE,0,0x00000000,TRUE),
197 HOWTO(R_SPARC_TLS_DTPOFF32,0,2,32,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF32",FALSE,0,0xffffffff,TRUE),
198 HOWTO(R_SPARC_TLS_DTPOFF64,0,4,64,FALSE,0,complain_overflow_bitfield,bfd_elf_generic_reloc,"R_SPARC_TLS_DTPOFF64",FALSE,0,MINUS_ONE,TRUE),
199 HOWTO(R_SPARC_TLS_TPOFF32,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF32",FALSE,0,0x00000000,TRUE),
200 HOWTO(R_SPARC_TLS_TPOFF64,0,0, 0,FALSE,0,complain_overflow_dont, bfd_elf_generic_reloc, "R_SPARC_TLS_TPOFF64",FALSE,0,0x00000000,TRUE)
201 };
202
203 struct elf_reloc_map {
204 bfd_reloc_code_real_type bfd_reloc_val;
205 unsigned char elf_reloc_val;
206 };
207
208 static const struct elf_reloc_map sparc_reloc_map[] =
209 {
210 { BFD_RELOC_NONE, R_SPARC_NONE, },
211 { BFD_RELOC_16, R_SPARC_16, },
212 { BFD_RELOC_16_PCREL, R_SPARC_DISP16 },
213 { BFD_RELOC_8, R_SPARC_8 },
214 { BFD_RELOC_8_PCREL, R_SPARC_DISP8 },
215 { BFD_RELOC_CTOR, R_SPARC_64 },
216 { BFD_RELOC_32, R_SPARC_32 },
217 { BFD_RELOC_32_PCREL, R_SPARC_DISP32 },
218 { BFD_RELOC_HI22, R_SPARC_HI22 },
219 { BFD_RELOC_LO10, R_SPARC_LO10, },
220 { BFD_RELOC_32_PCREL_S2, R_SPARC_WDISP30 },
221 { BFD_RELOC_64_PCREL, R_SPARC_DISP64 },
222 { BFD_RELOC_SPARC22, R_SPARC_22 },
223 { BFD_RELOC_SPARC13, R_SPARC_13 },
224 { BFD_RELOC_SPARC_GOT10, R_SPARC_GOT10 },
225 { BFD_RELOC_SPARC_GOT13, R_SPARC_GOT13 },
226 { BFD_RELOC_SPARC_GOT22, R_SPARC_GOT22 },
227 { BFD_RELOC_SPARC_PC10, R_SPARC_PC10 },
228 { BFD_RELOC_SPARC_PC22, R_SPARC_PC22 },
229 { BFD_RELOC_SPARC_WPLT30, R_SPARC_WPLT30 },
230 { BFD_RELOC_SPARC_COPY, R_SPARC_COPY },
231 { BFD_RELOC_SPARC_GLOB_DAT, R_SPARC_GLOB_DAT },
232 { BFD_RELOC_SPARC_JMP_SLOT, R_SPARC_JMP_SLOT },
233 { BFD_RELOC_SPARC_RELATIVE, R_SPARC_RELATIVE },
234 { BFD_RELOC_SPARC_WDISP22, R_SPARC_WDISP22 },
235 { BFD_RELOC_SPARC_UA16, R_SPARC_UA16 },
236 { BFD_RELOC_SPARC_UA32, R_SPARC_UA32 },
237 { BFD_RELOC_SPARC_UA64, R_SPARC_UA64 },
238 { BFD_RELOC_SPARC_10, R_SPARC_10 },
239 { BFD_RELOC_SPARC_11, R_SPARC_11 },
240 { BFD_RELOC_SPARC_64, R_SPARC_64 },
241 { BFD_RELOC_SPARC_OLO10, R_SPARC_OLO10 },
242 { BFD_RELOC_SPARC_HH22, R_SPARC_HH22 },
243 { BFD_RELOC_SPARC_HM10, R_SPARC_HM10 },
244 { BFD_RELOC_SPARC_LM22, R_SPARC_LM22 },
245 { BFD_RELOC_SPARC_PC_HH22, R_SPARC_PC_HH22 },
246 { BFD_RELOC_SPARC_PC_HM10, R_SPARC_PC_HM10 },
247 { BFD_RELOC_SPARC_PC_LM22, R_SPARC_PC_LM22 },
248 { BFD_RELOC_SPARC_WDISP16, R_SPARC_WDISP16 },
249 { BFD_RELOC_SPARC_WDISP19, R_SPARC_WDISP19 },
250 { BFD_RELOC_SPARC_7, R_SPARC_7 },
251 { BFD_RELOC_SPARC_5, R_SPARC_5 },
252 { BFD_RELOC_SPARC_6, R_SPARC_6 },
253 { BFD_RELOC_SPARC_DISP64, R_SPARC_DISP64 },
254 { BFD_RELOC_SPARC_TLS_GD_HI22, R_SPARC_TLS_GD_HI22 },
255 { BFD_RELOC_SPARC_TLS_GD_LO10, R_SPARC_TLS_GD_LO10 },
256 { BFD_RELOC_SPARC_TLS_GD_ADD, R_SPARC_TLS_GD_ADD },
257 { BFD_RELOC_SPARC_TLS_GD_CALL, R_SPARC_TLS_GD_CALL },
258 { BFD_RELOC_SPARC_TLS_LDM_HI22, R_SPARC_TLS_LDM_HI22 },
259 { BFD_RELOC_SPARC_TLS_LDM_LO10, R_SPARC_TLS_LDM_LO10 },
260 { BFD_RELOC_SPARC_TLS_LDM_ADD, R_SPARC_TLS_LDM_ADD },
261 { BFD_RELOC_SPARC_TLS_LDM_CALL, R_SPARC_TLS_LDM_CALL },
262 { BFD_RELOC_SPARC_TLS_LDO_HIX22, R_SPARC_TLS_LDO_HIX22 },
263 { BFD_RELOC_SPARC_TLS_LDO_LOX10, R_SPARC_TLS_LDO_LOX10 },
264 { BFD_RELOC_SPARC_TLS_LDO_ADD, R_SPARC_TLS_LDO_ADD },
265 { BFD_RELOC_SPARC_TLS_IE_HI22, R_SPARC_TLS_IE_HI22 },
266 { BFD_RELOC_SPARC_TLS_IE_LO10, R_SPARC_TLS_IE_LO10 },
267 { BFD_RELOC_SPARC_TLS_IE_LD, R_SPARC_TLS_IE_LD },
268 { BFD_RELOC_SPARC_TLS_IE_LDX, R_SPARC_TLS_IE_LDX },
269 { BFD_RELOC_SPARC_TLS_IE_ADD, R_SPARC_TLS_IE_ADD },
270 { BFD_RELOC_SPARC_TLS_LE_HIX22, R_SPARC_TLS_LE_HIX22 },
271 { BFD_RELOC_SPARC_TLS_LE_LOX10, R_SPARC_TLS_LE_LOX10 },
272 { BFD_RELOC_SPARC_TLS_DTPMOD32, R_SPARC_TLS_DTPMOD32 },
273 { BFD_RELOC_SPARC_TLS_DTPMOD64, R_SPARC_TLS_DTPMOD64 },
274 { BFD_RELOC_SPARC_TLS_DTPOFF32, R_SPARC_TLS_DTPOFF32 },
275 { BFD_RELOC_SPARC_TLS_DTPOFF64, R_SPARC_TLS_DTPOFF64 },
276 { BFD_RELOC_SPARC_TLS_TPOFF32, R_SPARC_TLS_TPOFF32 },
277 { BFD_RELOC_SPARC_TLS_TPOFF64, R_SPARC_TLS_TPOFF64 },
278 #ifndef SPARC64_OLD_RELOCS
279 { BFD_RELOC_SPARC_PLT32, R_SPARC_PLT32 },
280 #endif
281 { BFD_RELOC_SPARC_PLT64, R_SPARC_PLT64 },
282 { BFD_RELOC_SPARC_HIX22, R_SPARC_HIX22 },
283 { BFD_RELOC_SPARC_LOX10, R_SPARC_LOX10 },
284 { BFD_RELOC_SPARC_H44, R_SPARC_H44 },
285 { BFD_RELOC_SPARC_M44, R_SPARC_M44 },
286 { BFD_RELOC_SPARC_L44, R_SPARC_L44 },
287 { BFD_RELOC_SPARC_REGISTER, R_SPARC_REGISTER }
288 };
289
290 static reloc_howto_type *
291 sparc64_elf_reloc_type_lookup (abfd, code)
292 bfd *abfd ATTRIBUTE_UNUSED;
293 bfd_reloc_code_real_type code;
294 {
295 unsigned int i;
296 for (i = 0; i < sizeof (sparc_reloc_map) / sizeof (struct elf_reloc_map); i++)
297 {
298 if (sparc_reloc_map[i].bfd_reloc_val == code)
299 return &sparc64_elf_howto_table[(int) sparc_reloc_map[i].elf_reloc_val];
300 }
301 return 0;
302 }
303
304 static void
305 sparc64_elf_info_to_howto (abfd, cache_ptr, dst)
306 bfd *abfd ATTRIBUTE_UNUSED;
307 arelent *cache_ptr;
308 Elf_Internal_Rela *dst;
309 {
310 BFD_ASSERT (ELF64_R_TYPE_ID (dst->r_info) < (unsigned int) R_SPARC_max_std);
311 cache_ptr->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (dst->r_info)];
312 }
313 \f
314 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
315 section can represent up to two relocs, we must tell the user to allocate
316 more space. */
317
318 static long
319 sparc64_elf_get_reloc_upper_bound (abfd, sec)
320 bfd *abfd ATTRIBUTE_UNUSED;
321 asection *sec;
322 {
323 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
324 }
325
326 static long
327 sparc64_elf_get_dynamic_reloc_upper_bound (abfd)
328 bfd *abfd;
329 {
330 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
331 }
332
333 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
334 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
335 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
336 for the same location, R_SPARC_LO10 and R_SPARC_13. */
337
338 static bfd_boolean
339 sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, dynamic)
340 bfd *abfd;
341 asection *asect;
342 Elf_Internal_Shdr *rel_hdr;
343 asymbol **symbols;
344 bfd_boolean dynamic;
345 {
346 PTR allocated = NULL;
347 bfd_byte *native_relocs;
348 arelent *relent;
349 unsigned int i;
350 int entsize;
351 bfd_size_type count;
352 arelent *relents;
353
354 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
355 if (allocated == NULL)
356 goto error_return;
357
358 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
359 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
360 goto error_return;
361
362 native_relocs = (bfd_byte *) allocated;
363
364 relents = asect->relocation + asect->reloc_count;
365
366 entsize = rel_hdr->sh_entsize;
367 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
368
369 count = rel_hdr->sh_size / entsize;
370
371 for (i = 0, relent = relents; i < count;
372 i++, relent++, native_relocs += entsize)
373 {
374 Elf_Internal_Rela rela;
375
376 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
377
378 /* The address of an ELF reloc is section relative for an object
379 file, and absolute for an executable file or shared library.
380 The address of a normal BFD reloc is always section relative,
381 and the address of a dynamic reloc is absolute.. */
382 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
383 relent->address = rela.r_offset;
384 else
385 relent->address = rela.r_offset - asect->vma;
386
387 if (ELF64_R_SYM (rela.r_info) == 0)
388 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
389 else
390 {
391 asymbol **ps, *s;
392
393 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
394 s = *ps;
395
396 /* Canonicalize ELF section symbols. FIXME: Why? */
397 if ((s->flags & BSF_SECTION_SYM) == 0)
398 relent->sym_ptr_ptr = ps;
399 else
400 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
401 }
402
403 relent->addend = rela.r_addend;
404
405 BFD_ASSERT (ELF64_R_TYPE_ID (rela.r_info) < (unsigned int) R_SPARC_max_std);
406 if (ELF64_R_TYPE_ID (rela.r_info) == R_SPARC_OLO10)
407 {
408 relent->howto = &sparc64_elf_howto_table[R_SPARC_LO10];
409 relent[1].address = relent->address;
410 relent++;
411 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
412 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
413 relent->howto = &sparc64_elf_howto_table[R_SPARC_13];
414 }
415 else
416 relent->howto = &sparc64_elf_howto_table[ELF64_R_TYPE_ID (rela.r_info)];
417 }
418
419 asect->reloc_count += relent - relents;
420
421 if (allocated != NULL)
422 free (allocated);
423
424 return TRUE;
425
426 error_return:
427 if (allocated != NULL)
428 free (allocated);
429 return FALSE;
430 }
431
432 /* Read in and swap the external relocs. */
433
434 static bfd_boolean
435 sparc64_elf_slurp_reloc_table (abfd, asect, symbols, dynamic)
436 bfd *abfd;
437 asection *asect;
438 asymbol **symbols;
439 bfd_boolean dynamic;
440 {
441 struct bfd_elf_section_data * const d = elf_section_data (asect);
442 Elf_Internal_Shdr *rel_hdr;
443 Elf_Internal_Shdr *rel_hdr2;
444 bfd_size_type amt;
445
446 if (asect->relocation != NULL)
447 return TRUE;
448
449 if (! dynamic)
450 {
451 if ((asect->flags & SEC_RELOC) == 0
452 || asect->reloc_count == 0)
453 return TRUE;
454
455 rel_hdr = &d->rel_hdr;
456 rel_hdr2 = d->rel_hdr2;
457
458 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
459 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
460 }
461 else
462 {
463 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
464 case because relocations against this section may use the
465 dynamic symbol table, and in that case bfd_section_from_shdr
466 in elf.c does not update the RELOC_COUNT. */
467 if (asect->_raw_size == 0)
468 return TRUE;
469
470 rel_hdr = &d->this_hdr;
471 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
472 rel_hdr2 = NULL;
473 }
474
475 amt = asect->reloc_count;
476 amt *= 2 * sizeof (arelent);
477 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
478 if (asect->relocation == NULL)
479 return FALSE;
480
481 /* The sparc64_elf_slurp_one_reloc_table routine increments reloc_count. */
482 asect->reloc_count = 0;
483
484 if (!sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
485 dynamic))
486 return FALSE;
487
488 if (rel_hdr2
489 && !sparc64_elf_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
490 dynamic))
491 return FALSE;
492
493 return TRUE;
494 }
495
496 /* Canonicalize the dynamic relocation entries. Note that we return
497 the dynamic relocations as a single block, although they are
498 actually associated with particular sections; the interface, which
499 was designed for SunOS style shared libraries, expects that there
500 is only one set of dynamic relocs. Any section that was actually
501 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
502 the dynamic symbol table, is considered to be a dynamic reloc
503 section. */
504
505 static long
506 sparc64_elf_canonicalize_dynamic_reloc (abfd, storage, syms)
507 bfd *abfd;
508 arelent **storage;
509 asymbol **syms;
510 {
511 asection *s;
512 long ret;
513
514 if (elf_dynsymtab (abfd) == 0)
515 {
516 bfd_set_error (bfd_error_invalid_operation);
517 return -1;
518 }
519
520 ret = 0;
521 for (s = abfd->sections; s != NULL; s = s->next)
522 {
523 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
524 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
525 {
526 arelent *p;
527 long count, i;
528
529 if (! sparc64_elf_slurp_reloc_table (abfd, s, syms, TRUE))
530 return -1;
531 count = s->reloc_count;
532 p = s->relocation;
533 for (i = 0; i < count; i++)
534 *storage++ = p++;
535 ret += count;
536 }
537 }
538
539 *storage = NULL;
540
541 return ret;
542 }
543
544 /* Write out the relocs. */
545
546 static void
547 sparc64_elf_write_relocs (abfd, sec, data)
548 bfd *abfd;
549 asection *sec;
550 PTR data;
551 {
552 bfd_boolean *failedp = (bfd_boolean *) data;
553 Elf_Internal_Shdr *rela_hdr;
554 Elf64_External_Rela *outbound_relocas, *src_rela;
555 unsigned int idx, count;
556 asymbol *last_sym = 0;
557 int last_sym_idx = 0;
558
559 /* If we have already failed, don't do anything. */
560 if (*failedp)
561 return;
562
563 if ((sec->flags & SEC_RELOC) == 0)
564 return;
565
566 /* The linker backend writes the relocs out itself, and sets the
567 reloc_count field to zero to inhibit writing them here. Also,
568 sometimes the SEC_RELOC flag gets set even when there aren't any
569 relocs. */
570 if (sec->reloc_count == 0)
571 return;
572
573 /* We can combine two relocs that refer to the same address
574 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
575 latter is R_SPARC_13 with no associated symbol. */
576 count = 0;
577 for (idx = 0; idx < sec->reloc_count; idx++)
578 {
579 bfd_vma addr;
580
581 ++count;
582
583 addr = sec->orelocation[idx]->address;
584 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
585 && idx < sec->reloc_count - 1)
586 {
587 arelent *r = sec->orelocation[idx + 1];
588
589 if (r->howto->type == R_SPARC_13
590 && r->address == addr
591 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
592 && (*r->sym_ptr_ptr)->value == 0)
593 ++idx;
594 }
595 }
596
597 rela_hdr = &elf_section_data (sec)->rel_hdr;
598
599 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
600 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
601 if (rela_hdr->contents == NULL)
602 {
603 *failedp = TRUE;
604 return;
605 }
606
607 /* Figure out whether the relocations are RELA or REL relocations. */
608 if (rela_hdr->sh_type != SHT_RELA)
609 abort ();
610
611 /* orelocation has the data, reloc_count has the count... */
612 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
613 src_rela = outbound_relocas;
614
615 for (idx = 0; idx < sec->reloc_count; idx++)
616 {
617 Elf_Internal_Rela dst_rela;
618 arelent *ptr;
619 asymbol *sym;
620 int n;
621
622 ptr = sec->orelocation[idx];
623
624 /* The address of an ELF reloc is section relative for an object
625 file, and absolute for an executable file or shared library.
626 The address of a BFD reloc is always section relative. */
627 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
628 dst_rela.r_offset = ptr->address;
629 else
630 dst_rela.r_offset = ptr->address + sec->vma;
631
632 sym = *ptr->sym_ptr_ptr;
633 if (sym == last_sym)
634 n = last_sym_idx;
635 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
636 n = STN_UNDEF;
637 else
638 {
639 last_sym = sym;
640 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
641 if (n < 0)
642 {
643 *failedp = TRUE;
644 return;
645 }
646 last_sym_idx = n;
647 }
648
649 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
650 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
651 && ! _bfd_elf_validate_reloc (abfd, ptr))
652 {
653 *failedp = TRUE;
654 return;
655 }
656
657 if (ptr->howto->type == R_SPARC_LO10
658 && idx < sec->reloc_count - 1)
659 {
660 arelent *r = sec->orelocation[idx + 1];
661
662 if (r->howto->type == R_SPARC_13
663 && r->address == ptr->address
664 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
665 && (*r->sym_ptr_ptr)->value == 0)
666 {
667 idx++;
668 dst_rela.r_info
669 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
670 R_SPARC_OLO10));
671 }
672 else
673 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
674 }
675 else
676 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
677
678 dst_rela.r_addend = ptr->addend;
679 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
680 ++src_rela;
681 }
682 }
683 \f
684 /* Sparc64 ELF linker hash table. */
685
686 struct sparc64_elf_app_reg
687 {
688 unsigned char bind;
689 unsigned short shndx;
690 bfd *abfd;
691 char *name;
692 };
693
694 struct sparc64_elf_link_hash_table
695 {
696 struct elf_link_hash_table root;
697
698 struct sparc64_elf_app_reg app_regs [4];
699 };
700
701 /* Get the Sparc64 ELF linker hash table from a link_info structure. */
702
703 #define sparc64_elf_hash_table(p) \
704 ((struct sparc64_elf_link_hash_table *) ((p)->hash))
705
706 /* Create a Sparc64 ELF linker hash table. */
707
708 static struct bfd_link_hash_table *
709 sparc64_elf_bfd_link_hash_table_create (abfd)
710 bfd *abfd;
711 {
712 struct sparc64_elf_link_hash_table *ret;
713 bfd_size_type amt = sizeof (struct sparc64_elf_link_hash_table);
714
715 ret = (struct sparc64_elf_link_hash_table *) bfd_zmalloc (amt);
716 if (ret == (struct sparc64_elf_link_hash_table *) NULL)
717 return NULL;
718
719 if (! _bfd_elf_link_hash_table_init (&ret->root, abfd,
720 _bfd_elf_link_hash_newfunc))
721 {
722 free (ret);
723 return NULL;
724 }
725
726 return &ret->root.root;
727 }
728 \f
729 /* Utility for performing the standard initial work of an instruction
730 relocation.
731 *PRELOCATION will contain the relocated item.
732 *PINSN will contain the instruction from the input stream.
733 If the result is `bfd_reloc_other' the caller can continue with
734 performing the relocation. Otherwise it must stop and return the
735 value to its caller. */
736
737 static bfd_reloc_status_type
738 init_insn_reloc (abfd,
739 reloc_entry,
740 symbol,
741 data,
742 input_section,
743 output_bfd,
744 prelocation,
745 pinsn)
746 bfd *abfd;
747 arelent *reloc_entry;
748 asymbol *symbol;
749 PTR data;
750 asection *input_section;
751 bfd *output_bfd;
752 bfd_vma *prelocation;
753 bfd_vma *pinsn;
754 {
755 bfd_vma relocation;
756 reloc_howto_type *howto = reloc_entry->howto;
757
758 if (output_bfd != (bfd *) NULL
759 && (symbol->flags & BSF_SECTION_SYM) == 0
760 && (! howto->partial_inplace
761 || reloc_entry->addend == 0))
762 {
763 reloc_entry->address += input_section->output_offset;
764 return bfd_reloc_ok;
765 }
766
767 /* This works because partial_inplace is FALSE. */
768 if (output_bfd != NULL)
769 return bfd_reloc_continue;
770
771 if (reloc_entry->address > input_section->_cooked_size)
772 return bfd_reloc_outofrange;
773
774 relocation = (symbol->value
775 + symbol->section->output_section->vma
776 + symbol->section->output_offset);
777 relocation += reloc_entry->addend;
778 if (howto->pc_relative)
779 {
780 relocation -= (input_section->output_section->vma
781 + input_section->output_offset);
782 relocation -= reloc_entry->address;
783 }
784
785 *prelocation = relocation;
786 *pinsn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address);
787 return bfd_reloc_other;
788 }
789
790 /* For unsupported relocs. */
791
792 static bfd_reloc_status_type
793 sparc_elf_notsup_reloc (abfd,
794 reloc_entry,
795 symbol,
796 data,
797 input_section,
798 output_bfd,
799 error_message)
800 bfd *abfd ATTRIBUTE_UNUSED;
801 arelent *reloc_entry ATTRIBUTE_UNUSED;
802 asymbol *symbol ATTRIBUTE_UNUSED;
803 PTR data ATTRIBUTE_UNUSED;
804 asection *input_section ATTRIBUTE_UNUSED;
805 bfd *output_bfd ATTRIBUTE_UNUSED;
806 char **error_message ATTRIBUTE_UNUSED;
807 {
808 return bfd_reloc_notsupported;
809 }
810
811 /* Handle the WDISP16 reloc. */
812
813 static bfd_reloc_status_type
814 sparc_elf_wdisp16_reloc (abfd, reloc_entry, symbol, data, input_section,
815 output_bfd, error_message)
816 bfd *abfd;
817 arelent *reloc_entry;
818 asymbol *symbol;
819 PTR data;
820 asection *input_section;
821 bfd *output_bfd;
822 char **error_message ATTRIBUTE_UNUSED;
823 {
824 bfd_vma relocation;
825 bfd_vma insn;
826 bfd_reloc_status_type status;
827
828 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
829 input_section, output_bfd, &relocation, &insn);
830 if (status != bfd_reloc_other)
831 return status;
832
833 insn &= ~ (bfd_vma) 0x303fff;
834 insn |= (((relocation >> 2) & 0xc000) << 6) | ((relocation >> 2) & 0x3fff);
835 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
836
837 if ((bfd_signed_vma) relocation < - 0x40000
838 || (bfd_signed_vma) relocation > 0x3ffff)
839 return bfd_reloc_overflow;
840 else
841 return bfd_reloc_ok;
842 }
843
844 /* Handle the HIX22 reloc. */
845
846 static bfd_reloc_status_type
847 sparc_elf_hix22_reloc (abfd,
848 reloc_entry,
849 symbol,
850 data,
851 input_section,
852 output_bfd,
853 error_message)
854 bfd *abfd;
855 arelent *reloc_entry;
856 asymbol *symbol;
857 PTR data;
858 asection *input_section;
859 bfd *output_bfd;
860 char **error_message ATTRIBUTE_UNUSED;
861 {
862 bfd_vma relocation;
863 bfd_vma insn;
864 bfd_reloc_status_type status;
865
866 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
867 input_section, output_bfd, &relocation, &insn);
868 if (status != bfd_reloc_other)
869 return status;
870
871 relocation ^= MINUS_ONE;
872 insn = (insn &~ (bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
873 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
874
875 if ((relocation & ~ (bfd_vma) 0xffffffff) != 0)
876 return bfd_reloc_overflow;
877 else
878 return bfd_reloc_ok;
879 }
880
881 /* Handle the LOX10 reloc. */
882
883 static bfd_reloc_status_type
884 sparc_elf_lox10_reloc (abfd,
885 reloc_entry,
886 symbol,
887 data,
888 input_section,
889 output_bfd,
890 error_message)
891 bfd *abfd;
892 arelent *reloc_entry;
893 asymbol *symbol;
894 PTR data;
895 asection *input_section;
896 bfd *output_bfd;
897 char **error_message ATTRIBUTE_UNUSED;
898 {
899 bfd_vma relocation;
900 bfd_vma insn;
901 bfd_reloc_status_type status;
902
903 status = init_insn_reloc (abfd, reloc_entry, symbol, data,
904 input_section, output_bfd, &relocation, &insn);
905 if (status != bfd_reloc_other)
906 return status;
907
908 insn = (insn &~ (bfd_vma) 0x1fff) | 0x1c00 | (relocation & 0x3ff);
909 bfd_put_32 (abfd, insn, (bfd_byte *) data + reloc_entry->address);
910
911 return bfd_reloc_ok;
912 }
913 \f
914 /* PLT/GOT stuff */
915
916 /* Both the headers and the entries are icache aligned. */
917 #define PLT_ENTRY_SIZE 32
918 #define PLT_HEADER_SIZE (4 * PLT_ENTRY_SIZE)
919 #define LARGE_PLT_THRESHOLD 32768
920 #define GOT_RESERVED_ENTRIES 1
921
922 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/sparcv9/ld.so.1"
923
924 /* Fill in the .plt section. */
925
926 static void
927 sparc64_elf_build_plt (output_bfd, contents, nentries)
928 bfd *output_bfd;
929 unsigned char *contents;
930 int nentries;
931 {
932 const unsigned int nop = 0x01000000;
933 int i, j;
934
935 /* The first four entries are reserved, and are initially undefined.
936 We fill them with `illtrap 0' to force ld.so to do something. */
937
938 for (i = 0; i < PLT_HEADER_SIZE/4; ++i)
939 bfd_put_32 (output_bfd, (bfd_vma) 0, contents+i*4);
940
941 /* The first 32768 entries are close enough to plt1 to get there via
942 a straight branch. */
943
944 for (i = 4; i < LARGE_PLT_THRESHOLD && i < nentries; ++i)
945 {
946 unsigned char *entry = contents + i * PLT_ENTRY_SIZE;
947 unsigned int sethi, ba;
948
949 /* sethi (. - plt0), %g1 */
950 sethi = 0x03000000 | (i * PLT_ENTRY_SIZE);
951
952 /* ba,a,pt %xcc, plt1 */
953 ba = 0x30680000 | (((contents+PLT_ENTRY_SIZE) - (entry+4)) / 4 & 0x7ffff);
954
955 bfd_put_32 (output_bfd, (bfd_vma) sethi, entry);
956 bfd_put_32 (output_bfd, (bfd_vma) ba, entry + 4);
957 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
958 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 12);
959 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 16);
960 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 20);
961 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 24);
962 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 28);
963 }
964
965 /* Now the tricky bit. Entries 32768 and higher are grouped in blocks of
966 160: 160 entries and 160 pointers. This is to separate code from data,
967 which is much friendlier on the cache. */
968
969 for (; i < nentries; i += 160)
970 {
971 int block = (i + 160 <= nentries ? 160 : nentries - i);
972 for (j = 0; j < block; ++j)
973 {
974 unsigned char *entry, *ptr;
975 unsigned int ldx;
976
977 entry = contents + i*PLT_ENTRY_SIZE + j*4*6;
978 ptr = contents + i*PLT_ENTRY_SIZE + block*4*6 + j*8;
979
980 /* ldx [%o7 + ptr - (entry+4)], %g1 */
981 ldx = 0xc25be000 | ((ptr - (entry+4)) & 0x1fff);
982
983 /* mov %o7,%g5
984 call .+8
985 nop
986 ldx [%o7+P],%g1
987 jmpl %o7+%g1,%g1
988 mov %g5,%o7 */
989 bfd_put_32 (output_bfd, (bfd_vma) 0x8a10000f, entry);
990 bfd_put_32 (output_bfd, (bfd_vma) 0x40000002, entry + 4);
991 bfd_put_32 (output_bfd, (bfd_vma) nop, entry + 8);
992 bfd_put_32 (output_bfd, (bfd_vma) ldx, entry + 12);
993 bfd_put_32 (output_bfd, (bfd_vma) 0x83c3c001, entry + 16);
994 bfd_put_32 (output_bfd, (bfd_vma) 0x9e100005, entry + 20);
995
996 bfd_put_64 (output_bfd, (bfd_vma) (contents - (entry + 4)), ptr);
997 }
998 }
999 }
1000
1001 /* Return the offset of a particular plt entry within the .plt section. */
1002
1003 static bfd_vma
1004 sparc64_elf_plt_entry_offset (index)
1005 bfd_vma index;
1006 {
1007 bfd_vma block, ofs;
1008
1009 if (index < LARGE_PLT_THRESHOLD)
1010 return index * PLT_ENTRY_SIZE;
1011
1012 /* See above for details. */
1013
1014 block = (index - LARGE_PLT_THRESHOLD) / 160;
1015 ofs = (index - LARGE_PLT_THRESHOLD) % 160;
1016
1017 return (LARGE_PLT_THRESHOLD + block * 160) * PLT_ENTRY_SIZE + ofs * 6 * 4;
1018 }
1019
1020 static bfd_vma
1021 sparc64_elf_plt_ptr_offset (index, max)
1022 bfd_vma index;
1023 bfd_vma max;
1024 {
1025 bfd_vma block, ofs, last;
1026
1027 BFD_ASSERT(index >= LARGE_PLT_THRESHOLD);
1028
1029 /* See above for details. */
1030
1031 block = (((index - LARGE_PLT_THRESHOLD) / 160) * 160) + LARGE_PLT_THRESHOLD;
1032 ofs = index - block;
1033 if (block + 160 > max)
1034 last = (max - LARGE_PLT_THRESHOLD) % 160;
1035 else
1036 last = 160;
1037
1038 return (block * PLT_ENTRY_SIZE
1039 + last * 6*4
1040 + ofs * 8);
1041 }
1042 \f
1043 /* Look through the relocs for a section during the first phase, and
1044 allocate space in the global offset table or procedure linkage
1045 table. */
1046
1047 static bfd_boolean
1048 sparc64_elf_check_relocs (abfd, info, sec, relocs)
1049 bfd *abfd;
1050 struct bfd_link_info *info;
1051 asection *sec;
1052 const Elf_Internal_Rela *relocs;
1053 {
1054 bfd *dynobj;
1055 Elf_Internal_Shdr *symtab_hdr;
1056 struct elf_link_hash_entry **sym_hashes;
1057 bfd_vma *local_got_offsets;
1058 const Elf_Internal_Rela *rel;
1059 const Elf_Internal_Rela *rel_end;
1060 asection *sgot;
1061 asection *srelgot;
1062 asection *sreloc;
1063
1064 if (info->relocateable || !(sec->flags & SEC_ALLOC))
1065 return TRUE;
1066
1067 dynobj = elf_hash_table (info)->dynobj;
1068 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1069 sym_hashes = elf_sym_hashes (abfd);
1070 local_got_offsets = elf_local_got_offsets (abfd);
1071
1072 sgot = NULL;
1073 srelgot = NULL;
1074 sreloc = NULL;
1075
1076 rel_end = relocs + NUM_SHDR_ENTRIES (& elf_section_data (sec)->rel_hdr);
1077 for (rel = relocs; rel < rel_end; rel++)
1078 {
1079 unsigned long r_symndx;
1080 struct elf_link_hash_entry *h;
1081
1082 r_symndx = ELF64_R_SYM (rel->r_info);
1083 if (r_symndx < symtab_hdr->sh_info)
1084 h = NULL;
1085 else
1086 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1087
1088 switch (ELF64_R_TYPE_ID (rel->r_info))
1089 {
1090 case R_SPARC_GOT10:
1091 case R_SPARC_GOT13:
1092 case R_SPARC_GOT22:
1093 /* This symbol requires a global offset table entry. */
1094
1095 if (dynobj == NULL)
1096 {
1097 /* Create the .got section. */
1098 elf_hash_table (info)->dynobj = dynobj = abfd;
1099 if (! _bfd_elf_create_got_section (dynobj, info))
1100 return FALSE;
1101 }
1102
1103 if (sgot == NULL)
1104 {
1105 sgot = bfd_get_section_by_name (dynobj, ".got");
1106 BFD_ASSERT (sgot != NULL);
1107 }
1108
1109 if (srelgot == NULL && (h != NULL || info->shared))
1110 {
1111 srelgot = bfd_get_section_by_name (dynobj, ".rela.got");
1112 if (srelgot == NULL)
1113 {
1114 srelgot = bfd_make_section (dynobj, ".rela.got");
1115 if (srelgot == NULL
1116 || ! bfd_set_section_flags (dynobj, srelgot,
1117 (SEC_ALLOC
1118 | SEC_LOAD
1119 | SEC_HAS_CONTENTS
1120 | SEC_IN_MEMORY
1121 | SEC_LINKER_CREATED
1122 | SEC_READONLY))
1123 || ! bfd_set_section_alignment (dynobj, srelgot, 3))
1124 return FALSE;
1125 }
1126 }
1127
1128 if (h != NULL)
1129 {
1130 if (h->got.offset != (bfd_vma) -1)
1131 {
1132 /* We have already allocated space in the .got. */
1133 break;
1134 }
1135 h->got.offset = sgot->_raw_size;
1136
1137 /* Make sure this symbol is output as a dynamic symbol. */
1138 if (h->dynindx == -1)
1139 {
1140 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1141 return FALSE;
1142 }
1143
1144 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1145 }
1146 else
1147 {
1148 /* This is a global offset table entry for a local
1149 symbol. */
1150 if (local_got_offsets == NULL)
1151 {
1152 bfd_size_type size;
1153 register unsigned int i;
1154
1155 size = symtab_hdr->sh_info;
1156 size *= sizeof (bfd_vma);
1157 local_got_offsets = (bfd_vma *) bfd_alloc (abfd, size);
1158 if (local_got_offsets == NULL)
1159 return FALSE;
1160 elf_local_got_offsets (abfd) = local_got_offsets;
1161 for (i = 0; i < symtab_hdr->sh_info; i++)
1162 local_got_offsets[i] = (bfd_vma) -1;
1163 }
1164 if (local_got_offsets[r_symndx] != (bfd_vma) -1)
1165 {
1166 /* We have already allocated space in the .got. */
1167 break;
1168 }
1169 local_got_offsets[r_symndx] = sgot->_raw_size;
1170
1171 if (info->shared)
1172 {
1173 /* If we are generating a shared object, we need to
1174 output a R_SPARC_RELATIVE reloc so that the
1175 dynamic linker can adjust this GOT entry. */
1176 srelgot->_raw_size += sizeof (Elf64_External_Rela);
1177 }
1178 }
1179
1180 sgot->_raw_size += 8;
1181
1182 #if 0
1183 /* Doesn't work for 64-bit -fPIC, since sethi/or builds
1184 unsigned numbers. If we permit ourselves to modify
1185 code so we get sethi/xor, this could work.
1186 Question: do we consider conditionally re-enabling
1187 this for -fpic, once we know about object code models? */
1188 /* If the .got section is more than 0x1000 bytes, we add
1189 0x1000 to the value of _GLOBAL_OFFSET_TABLE_, so that 13
1190 bit relocations have a greater chance of working. */
1191 if (sgot->_raw_size >= 0x1000
1192 && elf_hash_table (info)->hgot->root.u.def.value == 0)
1193 elf_hash_table (info)->hgot->root.u.def.value = 0x1000;
1194 #endif
1195
1196 break;
1197
1198 case R_SPARC_WPLT30:
1199 case R_SPARC_PLT32:
1200 case R_SPARC_HIPLT22:
1201 case R_SPARC_LOPLT10:
1202 case R_SPARC_PCPLT32:
1203 case R_SPARC_PCPLT22:
1204 case R_SPARC_PCPLT10:
1205 case R_SPARC_PLT64:
1206 /* This symbol requires a procedure linkage table entry. We
1207 actually build the entry in adjust_dynamic_symbol,
1208 because this might be a case of linking PIC code without
1209 linking in any dynamic objects, in which case we don't
1210 need to generate a procedure linkage table after all. */
1211
1212 if (h == NULL)
1213 {
1214 /* It does not make sense to have a procedure linkage
1215 table entry for a local symbol. */
1216 bfd_set_error (bfd_error_bad_value);
1217 return FALSE;
1218 }
1219
1220 /* Make sure this symbol is output as a dynamic symbol. */
1221 if (h->dynindx == -1)
1222 {
1223 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1224 return FALSE;
1225 }
1226
1227 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
1228 if (ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT32
1229 && ELF64_R_TYPE_ID (rel->r_info) != R_SPARC_PLT64)
1230 break;
1231 /* Fall through. */
1232 case R_SPARC_PC10:
1233 case R_SPARC_PC22:
1234 case R_SPARC_PC_HH22:
1235 case R_SPARC_PC_HM10:
1236 case R_SPARC_PC_LM22:
1237 if (h != NULL
1238 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
1239 break;
1240 /* Fall through. */
1241 case R_SPARC_DISP8:
1242 case R_SPARC_DISP16:
1243 case R_SPARC_DISP32:
1244 case R_SPARC_DISP64:
1245 case R_SPARC_WDISP30:
1246 case R_SPARC_WDISP22:
1247 case R_SPARC_WDISP19:
1248 case R_SPARC_WDISP16:
1249 if (h == NULL)
1250 break;
1251 /* Fall through. */
1252 case R_SPARC_8:
1253 case R_SPARC_16:
1254 case R_SPARC_32:
1255 case R_SPARC_HI22:
1256 case R_SPARC_22:
1257 case R_SPARC_13:
1258 case R_SPARC_LO10:
1259 case R_SPARC_UA32:
1260 case R_SPARC_10:
1261 case R_SPARC_11:
1262 case R_SPARC_64:
1263 case R_SPARC_OLO10:
1264 case R_SPARC_HH22:
1265 case R_SPARC_HM10:
1266 case R_SPARC_LM22:
1267 case R_SPARC_7:
1268 case R_SPARC_5:
1269 case R_SPARC_6:
1270 case R_SPARC_HIX22:
1271 case R_SPARC_LOX10:
1272 case R_SPARC_H44:
1273 case R_SPARC_M44:
1274 case R_SPARC_L44:
1275 case R_SPARC_UA64:
1276 case R_SPARC_UA16:
1277 /* When creating a shared object, we must copy these relocs
1278 into the output file. We create a reloc section in
1279 dynobj and make room for the reloc.
1280
1281 But don't do this for debugging sections -- this shows up
1282 with DWARF2 -- first because they are not loaded, and
1283 second because DWARF sez the debug info is not to be
1284 biased by the load address. */
1285 if (info->shared && (sec->flags & SEC_ALLOC))
1286 {
1287 if (sreloc == NULL)
1288 {
1289 const char *name;
1290
1291 name = (bfd_elf_string_from_elf_section
1292 (abfd,
1293 elf_elfheader (abfd)->e_shstrndx,
1294 elf_section_data (sec)->rel_hdr.sh_name));
1295 if (name == NULL)
1296 return FALSE;
1297
1298 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
1299 && strcmp (bfd_get_section_name (abfd, sec),
1300 name + 5) == 0);
1301
1302 sreloc = bfd_get_section_by_name (dynobj, name);
1303 if (sreloc == NULL)
1304 {
1305 flagword flags;
1306
1307 sreloc = bfd_make_section (dynobj, name);
1308 flags = (SEC_HAS_CONTENTS | SEC_READONLY
1309 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
1310 if ((sec->flags & SEC_ALLOC) != 0)
1311 flags |= SEC_ALLOC | SEC_LOAD;
1312 if (sreloc == NULL
1313 || ! bfd_set_section_flags (dynobj, sreloc, flags)
1314 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
1315 return FALSE;
1316 }
1317 if (sec->flags & SEC_READONLY)
1318 info->flags |= DF_TEXTREL;
1319 }
1320
1321 sreloc->_raw_size += sizeof (Elf64_External_Rela);
1322 }
1323 break;
1324
1325 case R_SPARC_REGISTER:
1326 /* Nothing to do. */
1327 break;
1328
1329 default:
1330 (*_bfd_error_handler) (_("%s: check_relocs: unhandled reloc type %d"),
1331 bfd_archive_filename (abfd),
1332 ELF64_R_TYPE_ID (rel->r_info));
1333 return FALSE;
1334 }
1335 }
1336
1337 return TRUE;
1338 }
1339
1340 /* Hook called by the linker routine which adds symbols from an object
1341 file. We use it for STT_REGISTER symbols. */
1342
1343 static bfd_boolean
1344 sparc64_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
1345 bfd *abfd;
1346 struct bfd_link_info *info;
1347 const Elf_Internal_Sym *sym;
1348 const char **namep;
1349 flagword *flagsp ATTRIBUTE_UNUSED;
1350 asection **secp ATTRIBUTE_UNUSED;
1351 bfd_vma *valp ATTRIBUTE_UNUSED;
1352 {
1353 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
1354
1355 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
1356 {
1357 int reg;
1358 struct sparc64_elf_app_reg *p;
1359
1360 reg = (int)sym->st_value;
1361 switch (reg & ~1)
1362 {
1363 case 2: reg -= 2; break;
1364 case 6: reg -= 4; break;
1365 default:
1366 (*_bfd_error_handler)
1367 (_("%s: Only registers %%g[2367] can be declared using STT_REGISTER"),
1368 bfd_archive_filename (abfd));
1369 return FALSE;
1370 }
1371
1372 if (info->hash->creator != abfd->xvec
1373 || (abfd->flags & DYNAMIC) != 0)
1374 {
1375 /* STT_REGISTER only works when linking an elf64_sparc object.
1376 If STT_REGISTER comes from a dynamic object, don't put it into
1377 the output bfd. The dynamic linker will recheck it. */
1378 *namep = NULL;
1379 return TRUE;
1380 }
1381
1382 p = sparc64_elf_hash_table(info)->app_regs + reg;
1383
1384 if (p->name != NULL && strcmp (p->name, *namep))
1385 {
1386 (*_bfd_error_handler)
1387 (_("Register %%g%d used incompatibly: %s in %s, previously %s in %s"),
1388 (int) sym->st_value,
1389 **namep ? *namep : "#scratch", bfd_archive_filename (abfd),
1390 *p->name ? p->name : "#scratch", bfd_archive_filename (p->abfd));
1391 return FALSE;
1392 }
1393
1394 if (p->name == NULL)
1395 {
1396 if (**namep)
1397 {
1398 struct elf_link_hash_entry *h;
1399
1400 h = (struct elf_link_hash_entry *)
1401 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
1402
1403 if (h != NULL)
1404 {
1405 unsigned char type = h->type;
1406
1407 if (type > STT_FUNC)
1408 type = 0;
1409 (*_bfd_error_handler)
1410 (_("Symbol `%s' has differing types: REGISTER in %s, previously %s in %s"),
1411 *namep, bfd_archive_filename (abfd),
1412 stt_types[type], bfd_archive_filename (p->abfd));
1413 return FALSE;
1414 }
1415
1416 p->name = bfd_hash_allocate (&info->hash->table,
1417 strlen (*namep) + 1);
1418 if (!p->name)
1419 return FALSE;
1420
1421 strcpy (p->name, *namep);
1422 }
1423 else
1424 p->name = "";
1425 p->bind = ELF_ST_BIND (sym->st_info);
1426 p->abfd = abfd;
1427 p->shndx = sym->st_shndx;
1428 }
1429 else
1430 {
1431 if (p->bind == STB_WEAK
1432 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
1433 {
1434 p->bind = STB_GLOBAL;
1435 p->abfd = abfd;
1436 }
1437 }
1438 *namep = NULL;
1439 return TRUE;
1440 }
1441 else if (*namep && **namep
1442 && info->hash->creator == abfd->xvec)
1443 {
1444 int i;
1445 struct sparc64_elf_app_reg *p;
1446
1447 p = sparc64_elf_hash_table(info)->app_regs;
1448 for (i = 0; i < 4; i++, p++)
1449 if (p->name != NULL && ! strcmp (p->name, *namep))
1450 {
1451 unsigned char type = ELF_ST_TYPE (sym->st_info);
1452
1453 if (type > STT_FUNC)
1454 type = 0;
1455 (*_bfd_error_handler)
1456 (_("Symbol `%s' has differing types: %s in %s, previously REGISTER in %s"),
1457 *namep, stt_types[type], bfd_archive_filename (abfd),
1458 bfd_archive_filename (p->abfd));
1459 return FALSE;
1460 }
1461 }
1462 return TRUE;
1463 }
1464
1465 /* This function takes care of emiting STT_REGISTER symbols
1466 which we cannot easily keep in the symbol hash table. */
1467
1468 static bfd_boolean
1469 sparc64_elf_output_arch_syms (output_bfd, info, finfo, func)
1470 bfd *output_bfd ATTRIBUTE_UNUSED;
1471 struct bfd_link_info *info;
1472 PTR finfo;
1473 bfd_boolean (*func)
1474 PARAMS ((PTR, const char *, Elf_Internal_Sym *, asection *));
1475 {
1476 int reg;
1477 struct sparc64_elf_app_reg *app_regs =
1478 sparc64_elf_hash_table(info)->app_regs;
1479 Elf_Internal_Sym sym;
1480
1481 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
1482 at the end of the dynlocal list, so they came at the end of the local
1483 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
1484 to back up symtab->sh_info. */
1485 if (elf_hash_table (info)->dynlocal)
1486 {
1487 bfd * dynobj = elf_hash_table (info)->dynobj;
1488 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
1489 struct elf_link_local_dynamic_entry *e;
1490
1491 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
1492 if (e->input_indx == -1)
1493 break;
1494 if (e)
1495 {
1496 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
1497 = e->dynindx;
1498 }
1499 }
1500
1501 if (info->strip == strip_all)
1502 return TRUE;
1503
1504 for (reg = 0; reg < 4; reg++)
1505 if (app_regs [reg].name != NULL)
1506 {
1507 if (info->strip == strip_some
1508 && bfd_hash_lookup (info->keep_hash,
1509 app_regs [reg].name,
1510 FALSE, FALSE) == NULL)
1511 continue;
1512
1513 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
1514 sym.st_size = 0;
1515 sym.st_other = 0;
1516 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
1517 sym.st_shndx = app_regs [reg].shndx;
1518 if (! (*func) (finfo, app_regs [reg].name, &sym,
1519 sym.st_shndx == SHN_ABS
1520 ? bfd_abs_section_ptr : bfd_und_section_ptr))
1521 return FALSE;
1522 }
1523
1524 return TRUE;
1525 }
1526
1527 static int
1528 sparc64_elf_get_symbol_type (elf_sym, type)
1529 Elf_Internal_Sym * elf_sym;
1530 int type;
1531 {
1532 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
1533 return STT_REGISTER;
1534 else
1535 return type;
1536 }
1537
1538 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
1539 even in SHN_UNDEF section. */
1540
1541 static void
1542 sparc64_elf_symbol_processing (abfd, asym)
1543 bfd *abfd ATTRIBUTE_UNUSED;
1544 asymbol *asym;
1545 {
1546 elf_symbol_type *elfsym;
1547
1548 elfsym = (elf_symbol_type *) asym;
1549 if (elfsym->internal_elf_sym.st_info
1550 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
1551 {
1552 asym->flags |= BSF_GLOBAL;
1553 }
1554 }
1555
1556 /* Adjust a symbol defined by a dynamic object and referenced by a
1557 regular object. The current definition is in some section of the
1558 dynamic object, but we're not including those sections. We have to
1559 change the definition to something the rest of the link can
1560 understand. */
1561
1562 static bfd_boolean
1563 sparc64_elf_adjust_dynamic_symbol (info, h)
1564 struct bfd_link_info *info;
1565 struct elf_link_hash_entry *h;
1566 {
1567 bfd *dynobj;
1568 asection *s;
1569 unsigned int power_of_two;
1570
1571 dynobj = elf_hash_table (info)->dynobj;
1572
1573 /* Make sure we know what is going on here. */
1574 BFD_ASSERT (dynobj != NULL
1575 && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT)
1576 || h->weakdef != NULL
1577 || ((h->elf_link_hash_flags
1578 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1579 && (h->elf_link_hash_flags
1580 & ELF_LINK_HASH_REF_REGULAR) != 0
1581 && (h->elf_link_hash_flags
1582 & ELF_LINK_HASH_DEF_REGULAR) == 0)));
1583
1584 /* If this is a function, put it in the procedure linkage table. We
1585 will fill in the contents of the procedure linkage table later
1586 (although we could actually do it here). The STT_NOTYPE
1587 condition is a hack specifically for the Oracle libraries
1588 delivered for Solaris; for some inexplicable reason, they define
1589 some of their functions as STT_NOTYPE when they really should be
1590 STT_FUNC. */
1591 if (h->type == STT_FUNC
1592 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0
1593 || (h->type == STT_NOTYPE
1594 && (h->root.type == bfd_link_hash_defined
1595 || h->root.type == bfd_link_hash_defweak)
1596 && (h->root.u.def.section->flags & SEC_CODE) != 0))
1597 {
1598 if (! elf_hash_table (info)->dynamic_sections_created)
1599 {
1600 /* This case can occur if we saw a WPLT30 reloc in an input
1601 file, but none of the input files were dynamic objects.
1602 In such a case, we don't actually need to build a
1603 procedure linkage table, and we can just do a WDISP30
1604 reloc instead. */
1605 BFD_ASSERT ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0);
1606 return TRUE;
1607 }
1608
1609 s = bfd_get_section_by_name (dynobj, ".plt");
1610 BFD_ASSERT (s != NULL);
1611
1612 /* The first four bit in .plt is reserved. */
1613 if (s->_raw_size == 0)
1614 s->_raw_size = PLT_HEADER_SIZE;
1615
1616 /* To simplify matters later, just store the plt index here. */
1617 h->plt.offset = s->_raw_size / PLT_ENTRY_SIZE;
1618
1619 /* If this symbol is not defined in a regular file, and we are
1620 not generating a shared library, then set the symbol to this
1621 location in the .plt. This is required to make function
1622 pointers compare as equal between the normal executable and
1623 the shared library. */
1624 if (! info->shared
1625 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1626 {
1627 h->root.u.def.section = s;
1628 h->root.u.def.value = sparc64_elf_plt_entry_offset (h->plt.offset);
1629 }
1630
1631 /* Make room for this entry. */
1632 s->_raw_size += PLT_ENTRY_SIZE;
1633
1634 /* We also need to make an entry in the .rela.plt section. */
1635
1636 s = bfd_get_section_by_name (dynobj, ".rela.plt");
1637 BFD_ASSERT (s != NULL);
1638
1639 s->_raw_size += sizeof (Elf64_External_Rela);
1640
1641 /* The procedure linkage table size is bounded by the magnitude
1642 of the offset we can describe in the entry. */
1643 if (s->_raw_size >= (bfd_vma)1 << 32)
1644 {
1645 bfd_set_error (bfd_error_bad_value);
1646 return FALSE;
1647 }
1648
1649 return TRUE;
1650 }
1651
1652 /* If this is a weak symbol, and there is a real definition, the
1653 processor independent code will have arranged for us to see the
1654 real definition first, and we can just use the same value. */
1655 if (h->weakdef != NULL)
1656 {
1657 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1658 || h->weakdef->root.type == bfd_link_hash_defweak);
1659 h->root.u.def.section = h->weakdef->root.u.def.section;
1660 h->root.u.def.value = h->weakdef->root.u.def.value;
1661 return TRUE;
1662 }
1663
1664 /* This is a reference to a symbol defined by a dynamic object which
1665 is not a function. */
1666
1667 /* If we are creating a shared library, we must presume that the
1668 only references to the symbol are via the global offset table.
1669 For such cases we need not do anything here; the relocations will
1670 be handled correctly by relocate_section. */
1671 if (info->shared)
1672 return TRUE;
1673
1674 /* We must allocate the symbol in our .dynbss section, which will
1675 become part of the .bss section of the executable. There will be
1676 an entry for this symbol in the .dynsym section. The dynamic
1677 object will contain position independent code, so all references
1678 from the dynamic object to this symbol will go through the global
1679 offset table. The dynamic linker will use the .dynsym entry to
1680 determine the address it must put in the global offset table, so
1681 both the dynamic object and the regular object will refer to the
1682 same memory location for the variable. */
1683
1684 s = bfd_get_section_by_name (dynobj, ".dynbss");
1685 BFD_ASSERT (s != NULL);
1686
1687 /* We must generate a R_SPARC_COPY reloc to tell the dynamic linker
1688 to copy the initial value out of the dynamic object and into the
1689 runtime process image. We need to remember the offset into the
1690 .rel.bss section we are going to use. */
1691 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1692 {
1693 asection *srel;
1694
1695 srel = bfd_get_section_by_name (dynobj, ".rela.bss");
1696 BFD_ASSERT (srel != NULL);
1697 srel->_raw_size += sizeof (Elf64_External_Rela);
1698 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1699 }
1700
1701 /* We need to figure out the alignment required for this symbol. I
1702 have no idea how ELF linkers handle this. 16-bytes is the size
1703 of the largest type that requires hard alignment -- long double. */
1704 power_of_two = bfd_log2 (h->size);
1705 if (power_of_two > 4)
1706 power_of_two = 4;
1707
1708 /* Apply the required alignment. */
1709 s->_raw_size = BFD_ALIGN (s->_raw_size,
1710 (bfd_size_type) (1 << power_of_two));
1711 if (power_of_two > bfd_get_section_alignment (dynobj, s))
1712 {
1713 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
1714 return FALSE;
1715 }
1716
1717 /* Define the symbol as being at this point in the section. */
1718 h->root.u.def.section = s;
1719 h->root.u.def.value = s->_raw_size;
1720
1721 /* Increment the section size to make room for the symbol. */
1722 s->_raw_size += h->size;
1723
1724 return TRUE;
1725 }
1726
1727 /* Set the sizes of the dynamic sections. */
1728
1729 static bfd_boolean
1730 sparc64_elf_size_dynamic_sections (output_bfd, info)
1731 bfd *output_bfd;
1732 struct bfd_link_info *info;
1733 {
1734 bfd *dynobj;
1735 asection *s;
1736 bfd_boolean relplt;
1737
1738 dynobj = elf_hash_table (info)->dynobj;
1739 BFD_ASSERT (dynobj != NULL);
1740
1741 if (elf_hash_table (info)->dynamic_sections_created)
1742 {
1743 /* Set the contents of the .interp section to the interpreter. */
1744 if (! info->shared)
1745 {
1746 s = bfd_get_section_by_name (dynobj, ".interp");
1747 BFD_ASSERT (s != NULL);
1748 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1749 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1750 }
1751 }
1752 else
1753 {
1754 /* We may have created entries in the .rela.got section.
1755 However, if we are not creating the dynamic sections, we will
1756 not actually use these entries. Reset the size of .rela.got,
1757 which will cause it to get stripped from the output file
1758 below. */
1759 s = bfd_get_section_by_name (dynobj, ".rela.got");
1760 if (s != NULL)
1761 s->_raw_size = 0;
1762 }
1763
1764 /* The check_relocs and adjust_dynamic_symbol entry points have
1765 determined the sizes of the various dynamic sections. Allocate
1766 memory for them. */
1767 relplt = FALSE;
1768 for (s = dynobj->sections; s != NULL; s = s->next)
1769 {
1770 const char *name;
1771 bfd_boolean strip;
1772
1773 if ((s->flags & SEC_LINKER_CREATED) == 0)
1774 continue;
1775
1776 /* It's OK to base decisions on the section name, because none
1777 of the dynobj section names depend upon the input files. */
1778 name = bfd_get_section_name (dynobj, s);
1779
1780 strip = FALSE;
1781
1782 if (strncmp (name, ".rela", 5) == 0)
1783 {
1784 if (s->_raw_size == 0)
1785 {
1786 /* If we don't need this section, strip it from the
1787 output file. This is to handle .rela.bss and
1788 .rel.plt. We must create it in
1789 create_dynamic_sections, because it must be created
1790 before the linker maps input sections to output
1791 sections. The linker does that before
1792 adjust_dynamic_symbol is called, and it is that
1793 function which decides whether anything needs to go
1794 into these sections. */
1795 strip = TRUE;
1796 }
1797 else
1798 {
1799 if (strcmp (name, ".rela.plt") == 0)
1800 relplt = TRUE;
1801
1802 /* We use the reloc_count field as a counter if we need
1803 to copy relocs into the output file. */
1804 s->reloc_count = 0;
1805 }
1806 }
1807 else if (strcmp (name, ".plt") != 0
1808 && strncmp (name, ".got", 4) != 0)
1809 {
1810 /* It's not one of our sections, so don't allocate space. */
1811 continue;
1812 }
1813
1814 if (strip)
1815 {
1816 _bfd_strip_section_from_output (info, s);
1817 continue;
1818 }
1819
1820 /* Allocate memory for the section contents. Zero the memory
1821 for the benefit of .rela.plt, which has 4 unused entries
1822 at the beginning, and we don't want garbage. */
1823 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1824 if (s->contents == NULL && s->_raw_size != 0)
1825 return FALSE;
1826 }
1827
1828 if (elf_hash_table (info)->dynamic_sections_created)
1829 {
1830 /* Add some entries to the .dynamic section. We fill in the
1831 values later, in sparc64_elf_finish_dynamic_sections, but we
1832 must add the entries now so that we get the correct size for
1833 the .dynamic section. The DT_DEBUG entry is filled in by the
1834 dynamic linker and used by the debugger. */
1835 #define add_dynamic_entry(TAG, VAL) \
1836 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1837
1838 int reg;
1839 struct sparc64_elf_app_reg * app_regs;
1840 struct elf_strtab_hash *dynstr;
1841 struct elf_link_hash_table *eht = elf_hash_table (info);
1842
1843 if (!info->shared)
1844 {
1845 if (!add_dynamic_entry (DT_DEBUG, 0))
1846 return FALSE;
1847 }
1848
1849 if (relplt)
1850 {
1851 if (!add_dynamic_entry (DT_PLTGOT, 0)
1852 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1853 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1854 || !add_dynamic_entry (DT_JMPREL, 0))
1855 return FALSE;
1856 }
1857
1858 if (!add_dynamic_entry (DT_RELA, 0)
1859 || !add_dynamic_entry (DT_RELASZ, 0)
1860 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1861 return FALSE;
1862
1863 if (info->flags & DF_TEXTREL)
1864 {
1865 if (!add_dynamic_entry (DT_TEXTREL, 0))
1866 return FALSE;
1867 }
1868
1869 /* Add dynamic STT_REGISTER symbols and corresponding DT_SPARC_REGISTER
1870 entries if needed. */
1871 app_regs = sparc64_elf_hash_table (info)->app_regs;
1872 dynstr = eht->dynstr;
1873
1874 for (reg = 0; reg < 4; reg++)
1875 if (app_regs [reg].name != NULL)
1876 {
1877 struct elf_link_local_dynamic_entry *entry, *e;
1878
1879 if (!add_dynamic_entry (DT_SPARC_REGISTER, 0))
1880 return FALSE;
1881
1882 entry = (struct elf_link_local_dynamic_entry *)
1883 bfd_hash_allocate (&info->hash->table, sizeof (*entry));
1884 if (entry == NULL)
1885 return FALSE;
1886
1887 /* We cheat here a little bit: the symbol will not be local, so we
1888 put it at the end of the dynlocal linked list. We will fix it
1889 later on, as we have to fix other fields anyway. */
1890 entry->isym.st_value = reg < 2 ? reg + 2 : reg + 4;
1891 entry->isym.st_size = 0;
1892 if (*app_regs [reg].name != '\0')
1893 entry->isym.st_name
1894 = _bfd_elf_strtab_add (dynstr, app_regs[reg].name, FALSE);
1895 else
1896 entry->isym.st_name = 0;
1897 entry->isym.st_other = 0;
1898 entry->isym.st_info = ELF_ST_INFO (app_regs [reg].bind,
1899 STT_REGISTER);
1900 entry->isym.st_shndx = app_regs [reg].shndx;
1901 entry->next = NULL;
1902 entry->input_bfd = output_bfd;
1903 entry->input_indx = -1;
1904
1905 if (eht->dynlocal == NULL)
1906 eht->dynlocal = entry;
1907 else
1908 {
1909 for (e = eht->dynlocal; e->next; e = e->next)
1910 ;
1911 e->next = entry;
1912 }
1913 eht->dynsymcount++;
1914 }
1915 }
1916 #undef add_dynamic_entry
1917
1918 return TRUE;
1919 }
1920 \f
1921 struct sparc64_elf_section_data
1922 {
1923 struct bfd_elf_section_data elf;
1924 unsigned int do_relax;
1925 };
1926
1927 #define sec_do_relax(sec) \
1928 ((struct sparc64_elf_section_data *) elf_section_data (sec))->do_relax
1929
1930 static bfd_boolean
1931 sparc64_elf_new_section_hook (abfd, sec)
1932 bfd *abfd;
1933 asection *sec;
1934 {
1935 struct sparc64_elf_section_data *sdata;
1936 bfd_size_type amt = sizeof (*sdata);
1937
1938 sdata = (struct sparc64_elf_section_data *) bfd_zalloc (abfd, amt);
1939 if (sdata == NULL)
1940 return FALSE;
1941 sec->used_by_bfd = (PTR) sdata;
1942
1943 return _bfd_elf_new_section_hook (abfd, sec);
1944 }
1945
1946 static bfd_boolean
1947 sparc64_elf_relax_section (abfd, section, link_info, again)
1948 bfd *abfd ATTRIBUTE_UNUSED;
1949 asection *section ATTRIBUTE_UNUSED;
1950 struct bfd_link_info *link_info ATTRIBUTE_UNUSED;
1951 bfd_boolean *again;
1952 {
1953 *again = FALSE;
1954 sec_do_relax (section) = 1;
1955 return TRUE;
1956 }
1957 \f
1958 /* This is the condition under which finish_dynamic_symbol will be called
1959 from elflink.h. If elflink.h doesn't call our finish_dynamic_symbol
1960 routine, we'll need to do something about initializing any .plt and
1961 .got entries in relocate_section. */
1962 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1963 ((DYN) \
1964 && ((INFO)->shared \
1965 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1966 && ((H)->dynindx != -1 \
1967 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1968
1969 /* Relocate a SPARC64 ELF section. */
1970
1971 static bfd_boolean
1972 sparc64_elf_relocate_section (output_bfd, info, input_bfd, input_section,
1973 contents, relocs, local_syms, local_sections)
1974 bfd *output_bfd;
1975 struct bfd_link_info *info;
1976 bfd *input_bfd;
1977 asection *input_section;
1978 bfd_byte *contents;
1979 Elf_Internal_Rela *relocs;
1980 Elf_Internal_Sym *local_syms;
1981 asection **local_sections;
1982 {
1983 bfd *dynobj;
1984 Elf_Internal_Shdr *symtab_hdr;
1985 struct elf_link_hash_entry **sym_hashes;
1986 bfd_vma *local_got_offsets;
1987 bfd_vma got_base;
1988 asection *sgot;
1989 asection *splt;
1990 asection *sreloc;
1991 Elf_Internal_Rela *rel;
1992 Elf_Internal_Rela *relend;
1993
1994 if (info->relocateable)
1995 return TRUE;
1996
1997 dynobj = elf_hash_table (info)->dynobj;
1998 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1999 sym_hashes = elf_sym_hashes (input_bfd);
2000 local_got_offsets = elf_local_got_offsets (input_bfd);
2001
2002 if (elf_hash_table(info)->hgot == NULL)
2003 got_base = 0;
2004 else
2005 got_base = elf_hash_table (info)->hgot->root.u.def.value;
2006
2007 sgot = splt = sreloc = NULL;
2008
2009 rel = relocs;
2010 relend = relocs + NUM_SHDR_ENTRIES (& elf_section_data (input_section)->rel_hdr);
2011 for (; rel < relend; rel++)
2012 {
2013 int r_type;
2014 reloc_howto_type *howto;
2015 unsigned long r_symndx;
2016 struct elf_link_hash_entry *h;
2017 Elf_Internal_Sym *sym;
2018 asection *sec;
2019 bfd_vma relocation, off;
2020 bfd_reloc_status_type r;
2021 bfd_boolean is_plt = FALSE;
2022 bfd_boolean unresolved_reloc;
2023
2024 r_type = ELF64_R_TYPE_ID (rel->r_info);
2025 if (r_type < 0 || r_type >= (int) R_SPARC_max_std)
2026 {
2027 bfd_set_error (bfd_error_bad_value);
2028 return FALSE;
2029 }
2030 howto = sparc64_elf_howto_table + r_type;
2031
2032 /* This is a final link. */
2033 r_symndx = ELF64_R_SYM (rel->r_info);
2034 h = NULL;
2035 sym = NULL;
2036 sec = NULL;
2037 unresolved_reloc = FALSE;
2038 if (r_symndx < symtab_hdr->sh_info)
2039 {
2040 sym = local_syms + r_symndx;
2041 sec = local_sections[r_symndx];
2042 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
2043 }
2044 else
2045 {
2046 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2047 while (h->root.type == bfd_link_hash_indirect
2048 || h->root.type == bfd_link_hash_warning)
2049 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2050
2051 relocation = 0;
2052 if (h->root.type == bfd_link_hash_defined
2053 || h->root.type == bfd_link_hash_defweak)
2054 {
2055 sec = h->root.u.def.section;
2056 if (sec->output_section == NULL)
2057 /* Set a flag that will be cleared later if we find a
2058 relocation value for this symbol. output_section
2059 is typically NULL for symbols satisfied by a shared
2060 library. */
2061 unresolved_reloc = TRUE;
2062 else
2063 relocation = (h->root.u.def.value
2064 + sec->output_section->vma
2065 + sec->output_offset);
2066 }
2067 else if (h->root.type == bfd_link_hash_undefweak)
2068 ;
2069 else if (info->shared
2070 && !info->no_undefined
2071 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2072 ;
2073 else
2074 {
2075 if (! ((*info->callbacks->undefined_symbol)
2076 (info, h->root.root.string, input_bfd,
2077 input_section, rel->r_offset,
2078 (!info->shared || info->no_undefined
2079 || ELF_ST_VISIBILITY (h->other)))))
2080 return FALSE;
2081
2082 /* To avoid generating warning messages about truncated
2083 relocations, set the relocation's address to be the same as
2084 the start of this section. */
2085 if (input_section->output_section != NULL)
2086 relocation = input_section->output_section->vma;
2087 else
2088 relocation = 0;
2089 }
2090 }
2091
2092 do_dynreloc:
2093 /* When generating a shared object, these relocations are copied
2094 into the output file to be resolved at run time. */
2095 if (info->shared && r_symndx != 0 && (input_section->flags & SEC_ALLOC))
2096 {
2097 switch (r_type)
2098 {
2099 case R_SPARC_PC10:
2100 case R_SPARC_PC22:
2101 case R_SPARC_PC_HH22:
2102 case R_SPARC_PC_HM10:
2103 case R_SPARC_PC_LM22:
2104 if (h != NULL
2105 && !strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_"))
2106 break;
2107 /* Fall through. */
2108 case R_SPARC_DISP8:
2109 case R_SPARC_DISP16:
2110 case R_SPARC_DISP32:
2111 case R_SPARC_DISP64:
2112 case R_SPARC_WDISP30:
2113 case R_SPARC_WDISP22:
2114 case R_SPARC_WDISP19:
2115 case R_SPARC_WDISP16:
2116 if (h == NULL)
2117 break;
2118 /* Fall through. */
2119 case R_SPARC_8:
2120 case R_SPARC_16:
2121 case R_SPARC_32:
2122 case R_SPARC_HI22:
2123 case R_SPARC_22:
2124 case R_SPARC_13:
2125 case R_SPARC_LO10:
2126 case R_SPARC_UA32:
2127 case R_SPARC_10:
2128 case R_SPARC_11:
2129 case R_SPARC_64:
2130 case R_SPARC_OLO10:
2131 case R_SPARC_HH22:
2132 case R_SPARC_HM10:
2133 case R_SPARC_LM22:
2134 case R_SPARC_7:
2135 case R_SPARC_5:
2136 case R_SPARC_6:
2137 case R_SPARC_HIX22:
2138 case R_SPARC_LOX10:
2139 case R_SPARC_H44:
2140 case R_SPARC_M44:
2141 case R_SPARC_L44:
2142 case R_SPARC_UA64:
2143 case R_SPARC_UA16:
2144 {
2145 Elf_Internal_Rela outrel;
2146 bfd_byte *loc;
2147 bfd_boolean skip, relocate;
2148
2149 if (sreloc == NULL)
2150 {
2151 const char *name =
2152 (bfd_elf_string_from_elf_section
2153 (input_bfd,
2154 elf_elfheader (input_bfd)->e_shstrndx,
2155 elf_section_data (input_section)->rel_hdr.sh_name));
2156
2157 if (name == NULL)
2158 return FALSE;
2159
2160 BFD_ASSERT (strncmp (name, ".rela", 5) == 0
2161 && strcmp (bfd_get_section_name(input_bfd,
2162 input_section),
2163 name + 5) == 0);
2164
2165 sreloc = bfd_get_section_by_name (dynobj, name);
2166 BFD_ASSERT (sreloc != NULL);
2167 }
2168
2169 skip = FALSE;
2170 relocate = FALSE;
2171
2172 outrel.r_offset =
2173 _bfd_elf_section_offset (output_bfd, info, input_section,
2174 rel->r_offset);
2175 if (outrel.r_offset == (bfd_vma) -1)
2176 skip = TRUE;
2177 else if (outrel.r_offset == (bfd_vma) -2)
2178 skip = TRUE, relocate = TRUE;
2179
2180 outrel.r_offset += (input_section->output_section->vma
2181 + input_section->output_offset);
2182
2183 /* Optimize unaligned reloc usage now that we know where
2184 it finally resides. */
2185 switch (r_type)
2186 {
2187 case R_SPARC_16:
2188 if (outrel.r_offset & 1) r_type = R_SPARC_UA16;
2189 break;
2190 case R_SPARC_UA16:
2191 if (!(outrel.r_offset & 1)) r_type = R_SPARC_16;
2192 break;
2193 case R_SPARC_32:
2194 if (outrel.r_offset & 3) r_type = R_SPARC_UA32;
2195 break;
2196 case R_SPARC_UA32:
2197 if (!(outrel.r_offset & 3)) r_type = R_SPARC_32;
2198 break;
2199 case R_SPARC_64:
2200 if (outrel.r_offset & 7) r_type = R_SPARC_UA64;
2201 break;
2202 case R_SPARC_UA64:
2203 if (!(outrel.r_offset & 7)) r_type = R_SPARC_64;
2204 break;
2205 case R_SPARC_DISP8:
2206 case R_SPARC_DISP16:
2207 case R_SPARC_DISP32:
2208 case R_SPARC_DISP64:
2209 /* If the symbol is not dynamic, we should not keep
2210 a dynamic relocation. But an .rela.* slot has been
2211 allocated for it, output R_SPARC_NONE.
2212 FIXME: Add code tracking needed dynamic relocs as
2213 e.g. i386 has. */
2214 if (h->dynindx == -1)
2215 skip = TRUE, relocate = TRUE;
2216 break;
2217 }
2218
2219 if (skip)
2220 memset (&outrel, 0, sizeof outrel);
2221 /* h->dynindx may be -1 if the symbol was marked to
2222 become local. */
2223 else if (h != NULL && ! is_plt
2224 && ((! info->symbolic && h->dynindx != -1)
2225 || (h->elf_link_hash_flags
2226 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2227 {
2228 BFD_ASSERT (h->dynindx != -1);
2229 outrel.r_info
2230 = ELF64_R_INFO (h->dynindx,
2231 ELF64_R_TYPE_INFO (
2232 ELF64_R_TYPE_DATA (rel->r_info),
2233 r_type));
2234 outrel.r_addend = rel->r_addend;
2235 }
2236 else
2237 {
2238 outrel.r_addend = relocation + rel->r_addend;
2239 if (r_type == R_SPARC_64)
2240 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2241 else
2242 {
2243 long indx;
2244
2245 if (is_plt)
2246 sec = splt;
2247 else if (h == NULL)
2248 sec = local_sections[r_symndx];
2249 else
2250 {
2251 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2252 || (h->root.type
2253 == bfd_link_hash_defweak));
2254 sec = h->root.u.def.section;
2255 }
2256 if (sec != NULL && bfd_is_abs_section (sec))
2257 indx = 0;
2258 else if (sec == NULL || sec->owner == NULL)
2259 {
2260 bfd_set_error (bfd_error_bad_value);
2261 return FALSE;
2262 }
2263 else
2264 {
2265 asection *osec;
2266
2267 osec = sec->output_section;
2268 indx = elf_section_data (osec)->dynindx;
2269
2270 /* We are turning this relocation into one
2271 against a section symbol, so subtract out
2272 the output section's address but not the
2273 offset of the input section in the output
2274 section. */
2275 outrel.r_addend -= osec->vma;
2276
2277 /* FIXME: we really should be able to link non-pic
2278 shared libraries. */
2279 if (indx == 0)
2280 {
2281 BFD_FAIL ();
2282 (*_bfd_error_handler)
2283 (_("%s: probably compiled without -fPIC?"),
2284 bfd_archive_filename (input_bfd));
2285 bfd_set_error (bfd_error_bad_value);
2286 return FALSE;
2287 }
2288 }
2289
2290 outrel.r_info
2291 = ELF64_R_INFO (indx,
2292 ELF64_R_TYPE_INFO (
2293 ELF64_R_TYPE_DATA (rel->r_info),
2294 r_type));
2295 }
2296 }
2297
2298 loc = sreloc->contents;
2299 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2300 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2301
2302 /* This reloc will be computed at runtime, so there's no
2303 need to do anything now. */
2304 if (! relocate)
2305 continue;
2306 }
2307 break;
2308 }
2309 }
2310
2311 switch (r_type)
2312 {
2313 case R_SPARC_GOT10:
2314 case R_SPARC_GOT13:
2315 case R_SPARC_GOT22:
2316 /* Relocation is to the entry for this symbol in the global
2317 offset table. */
2318 if (sgot == NULL)
2319 {
2320 sgot = bfd_get_section_by_name (dynobj, ".got");
2321 BFD_ASSERT (sgot != NULL);
2322 }
2323
2324 if (h != NULL)
2325 {
2326 bfd_boolean dyn;
2327
2328 off = h->got.offset;
2329 BFD_ASSERT (off != (bfd_vma) -1);
2330 dyn = elf_hash_table (info)->dynamic_sections_created;
2331
2332 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
2333 || (info->shared
2334 && (info->symbolic
2335 || h->dynindx == -1
2336 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2337 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR)))
2338 {
2339 /* This is actually a static link, or it is a -Bsymbolic
2340 link and the symbol is defined locally, or the symbol
2341 was forced to be local because of a version file. We
2342 must initialize this entry in the global offset table.
2343 Since the offset must always be a multiple of 8, we
2344 use the least significant bit to record whether we
2345 have initialized it already.
2346
2347 When doing a dynamic link, we create a .rela.got
2348 relocation entry to initialize the value. This is
2349 done in the finish_dynamic_symbol routine. */
2350
2351 if ((off & 1) != 0)
2352 off &= ~1;
2353 else
2354 {
2355 bfd_put_64 (output_bfd, relocation,
2356 sgot->contents + off);
2357 h->got.offset |= 1;
2358 }
2359 }
2360 else
2361 unresolved_reloc = FALSE;
2362 }
2363 else
2364 {
2365 BFD_ASSERT (local_got_offsets != NULL);
2366 off = local_got_offsets[r_symndx];
2367 BFD_ASSERT (off != (bfd_vma) -1);
2368
2369 /* The offset must always be a multiple of 8. We use
2370 the least significant bit to record whether we have
2371 already processed this entry. */
2372 if ((off & 1) != 0)
2373 off &= ~1;
2374 else
2375 {
2376 local_got_offsets[r_symndx] |= 1;
2377
2378 if (info->shared)
2379 {
2380 asection *s;
2381 Elf_Internal_Rela outrel;
2382 bfd_byte *loc;
2383
2384 /* The Solaris 2.7 64-bit linker adds the contents
2385 of the location to the value of the reloc.
2386 Note this is different behaviour to the
2387 32-bit linker, which both adds the contents
2388 and ignores the addend. So clear the location. */
2389 bfd_put_64 (output_bfd, (bfd_vma) 0,
2390 sgot->contents + off);
2391
2392 /* We need to generate a R_SPARC_RELATIVE reloc
2393 for the dynamic linker. */
2394 s = bfd_get_section_by_name(dynobj, ".rela.got");
2395 BFD_ASSERT (s != NULL);
2396
2397 outrel.r_offset = (sgot->output_section->vma
2398 + sgot->output_offset
2399 + off);
2400 outrel.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2401 outrel.r_addend = relocation;
2402 loc = s->contents;
2403 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2404 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2405 }
2406 else
2407 bfd_put_64 (output_bfd, relocation, sgot->contents + off);
2408 }
2409 }
2410 relocation = sgot->output_offset + off - got_base;
2411 goto do_default;
2412
2413 case R_SPARC_WPLT30:
2414 case R_SPARC_PLT32:
2415 case R_SPARC_HIPLT22:
2416 case R_SPARC_LOPLT10:
2417 case R_SPARC_PCPLT32:
2418 case R_SPARC_PCPLT22:
2419 case R_SPARC_PCPLT10:
2420 case R_SPARC_PLT64:
2421 /* Relocation is to the entry for this symbol in the
2422 procedure linkage table. */
2423 BFD_ASSERT (h != NULL);
2424
2425 if (h->plt.offset == (bfd_vma) -1)
2426 {
2427 /* We didn't make a PLT entry for this symbol. This
2428 happens when statically linking PIC code, or when
2429 using -Bsymbolic. */
2430 goto do_default;
2431 }
2432
2433 if (splt == NULL)
2434 {
2435 splt = bfd_get_section_by_name (dynobj, ".plt");
2436 BFD_ASSERT (splt != NULL);
2437 }
2438
2439 relocation = (splt->output_section->vma
2440 + splt->output_offset
2441 + sparc64_elf_plt_entry_offset (h->plt.offset));
2442 unresolved_reloc = FALSE;
2443 if (r_type == R_SPARC_WPLT30)
2444 goto do_wplt30;
2445 if (r_type == R_SPARC_PLT32 || r_type == R_SPARC_PLT64)
2446 {
2447 r_type = r_type == R_SPARC_PLT32 ? R_SPARC_32 : R_SPARC_64;
2448 is_plt = TRUE;
2449 goto do_dynreloc;
2450 }
2451 goto do_default;
2452
2453 case R_SPARC_OLO10:
2454 {
2455 bfd_vma x;
2456
2457 relocation += rel->r_addend;
2458 relocation = (relocation & 0x3ff) + ELF64_R_TYPE_DATA (rel->r_info);
2459
2460 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2461 x = (x & ~(bfd_vma) 0x1fff) | (relocation & 0x1fff);
2462 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2463
2464 r = bfd_check_overflow (howto->complain_on_overflow,
2465 howto->bitsize, howto->rightshift,
2466 bfd_arch_bits_per_address (input_bfd),
2467 relocation);
2468 }
2469 break;
2470
2471 case R_SPARC_WDISP16:
2472 {
2473 bfd_vma x;
2474
2475 relocation += rel->r_addend;
2476 /* Adjust for pc-relative-ness. */
2477 relocation -= (input_section->output_section->vma
2478 + input_section->output_offset);
2479 relocation -= rel->r_offset;
2480
2481 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2482 x &= ~(bfd_vma) 0x303fff;
2483 x |= ((((relocation >> 2) & 0xc000) << 6)
2484 | ((relocation >> 2) & 0x3fff));
2485 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2486
2487 r = bfd_check_overflow (howto->complain_on_overflow,
2488 howto->bitsize, howto->rightshift,
2489 bfd_arch_bits_per_address (input_bfd),
2490 relocation);
2491 }
2492 break;
2493
2494 case R_SPARC_HIX22:
2495 {
2496 bfd_vma x;
2497
2498 relocation += rel->r_addend;
2499 relocation = relocation ^ MINUS_ONE;
2500
2501 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2502 x = (x & ~(bfd_vma) 0x3fffff) | ((relocation >> 10) & 0x3fffff);
2503 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2504
2505 r = bfd_check_overflow (howto->complain_on_overflow,
2506 howto->bitsize, howto->rightshift,
2507 bfd_arch_bits_per_address (input_bfd),
2508 relocation);
2509 }
2510 break;
2511
2512 case R_SPARC_LOX10:
2513 {
2514 bfd_vma x;
2515
2516 relocation += rel->r_addend;
2517 relocation = (relocation & 0x3ff) | 0x1c00;
2518
2519 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2520 x = (x & ~(bfd_vma) 0x1fff) | relocation;
2521 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2522
2523 r = bfd_reloc_ok;
2524 }
2525 break;
2526
2527 case R_SPARC_WDISP30:
2528 do_wplt30:
2529 if (sec_do_relax (input_section)
2530 && rel->r_offset + 4 < input_section->_raw_size)
2531 {
2532 #define G0 0
2533 #define O7 15
2534 #define XCC (2 << 20)
2535 #define COND(x) (((x)&0xf)<<25)
2536 #define CONDA COND(0x8)
2537 #define INSN_BPA (F2(0,1) | CONDA | BPRED | XCC)
2538 #define INSN_BA (F2(0,2) | CONDA)
2539 #define INSN_OR F3(2, 0x2, 0)
2540 #define INSN_NOP F2(0,4)
2541
2542 bfd_vma x, y;
2543
2544 /* If the instruction is a call with either:
2545 restore
2546 arithmetic instruction with rd == %o7
2547 where rs1 != %o7 and rs2 if it is register != %o7
2548 then we can optimize if the call destination is near
2549 by changing the call into a branch always. */
2550 x = bfd_get_32 (input_bfd, contents + rel->r_offset);
2551 y = bfd_get_32 (input_bfd, contents + rel->r_offset + 4);
2552 if ((x & OP(~0)) == OP(1) && (y & OP(~0)) == OP(2))
2553 {
2554 if (((y & OP3(~0)) == OP3(0x3d) /* restore */
2555 || ((y & OP3(0x28)) == 0 /* arithmetic */
2556 && (y & RD(~0)) == RD(O7)))
2557 && (y & RS1(~0)) != RS1(O7)
2558 && ((y & F3I(~0))
2559 || (y & RS2(~0)) != RS2(O7)))
2560 {
2561 bfd_vma reloc;
2562
2563 reloc = relocation + rel->r_addend - rel->r_offset;
2564 reloc -= (input_section->output_section->vma
2565 + input_section->output_offset);
2566 if (reloc & 3)
2567 goto do_default;
2568
2569 /* Ensure the branch fits into simm22. */
2570 if ((reloc & ~(bfd_vma)0x7fffff)
2571 && ((reloc | 0x7fffff) != MINUS_ONE))
2572 goto do_default;
2573 reloc >>= 2;
2574
2575 /* Check whether it fits into simm19. */
2576 if ((reloc & 0x3c0000) == 0
2577 || (reloc & 0x3c0000) == 0x3c0000)
2578 x = INSN_BPA | (reloc & 0x7ffff); /* ba,pt %xcc */
2579 else
2580 x = INSN_BA | (reloc & 0x3fffff); /* ba */
2581 bfd_put_32 (input_bfd, x, contents + rel->r_offset);
2582 r = bfd_reloc_ok;
2583 if (rel->r_offset >= 4
2584 && (y & (0xffffffff ^ RS1(~0)))
2585 == (INSN_OR | RD(O7) | RS2(G0)))
2586 {
2587 bfd_vma z;
2588 unsigned int reg;
2589
2590 z = bfd_get_32 (input_bfd,
2591 contents + rel->r_offset - 4);
2592 if ((z & (0xffffffff ^ RD(~0)))
2593 != (INSN_OR | RS1(O7) | RS2(G0)))
2594 break;
2595
2596 /* The sequence was
2597 or %o7, %g0, %rN
2598 call foo
2599 or %rN, %g0, %o7
2600
2601 If call foo was replaced with ba, replace
2602 or %rN, %g0, %o7 with nop. */
2603
2604 reg = (y & RS1(~0)) >> 14;
2605 if (reg != ((z & RD(~0)) >> 25)
2606 || reg == G0 || reg == O7)
2607 break;
2608
2609 bfd_put_32 (input_bfd, (bfd_vma) INSN_NOP,
2610 contents + rel->r_offset + 4);
2611 }
2612 break;
2613 }
2614 }
2615 }
2616 /* Fall through. */
2617
2618 default:
2619 do_default:
2620 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2621 contents, rel->r_offset,
2622 relocation, rel->r_addend);
2623 break;
2624 }
2625
2626 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2627 because such sections are not SEC_ALLOC and thus ld.so will
2628 not process them. */
2629 if (unresolved_reloc
2630 && !((input_section->flags & SEC_DEBUGGING) != 0
2631 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2632 (*_bfd_error_handler)
2633 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2634 bfd_archive_filename (input_bfd),
2635 bfd_get_section_name (input_bfd, input_section),
2636 (long) rel->r_offset,
2637 h->root.root.string);
2638
2639 switch (r)
2640 {
2641 case bfd_reloc_ok:
2642 break;
2643
2644 default:
2645 case bfd_reloc_outofrange:
2646 abort ();
2647
2648 case bfd_reloc_overflow:
2649 {
2650 const char *name;
2651
2652 /* The Solaris native linker silently disregards
2653 overflows. We don't, but this breaks stabs debugging
2654 info, whose relocations are only 32-bits wide. Ignore
2655 overflows for discarded entries. */
2656 if (r_type == R_SPARC_32
2657 && _bfd_elf_section_offset (output_bfd, info, input_section,
2658 rel->r_offset) == (bfd_vma) -1)
2659 break;
2660
2661 if (h != NULL)
2662 {
2663 if (h->root.type == bfd_link_hash_undefweak
2664 && howto->pc_relative)
2665 {
2666 /* Assume this is a call protected by other code that
2667 detect the symbol is undefined. If this is the case,
2668 we can safely ignore the overflow. If not, the
2669 program is hosed anyway, and a little warning isn't
2670 going to help. */
2671 break;
2672 }
2673
2674 name = h->root.root.string;
2675 }
2676 else
2677 {
2678 name = (bfd_elf_string_from_elf_section
2679 (input_bfd,
2680 symtab_hdr->sh_link,
2681 sym->st_name));
2682 if (name == NULL)
2683 return FALSE;
2684 if (*name == '\0')
2685 name = bfd_section_name (input_bfd, sec);
2686 }
2687 if (! ((*info->callbacks->reloc_overflow)
2688 (info, name, howto->name, (bfd_vma) 0,
2689 input_bfd, input_section, rel->r_offset)))
2690 return FALSE;
2691 }
2692 break;
2693 }
2694 }
2695
2696 return TRUE;
2697 }
2698
2699 /* Finish up dynamic symbol handling. We set the contents of various
2700 dynamic sections here. */
2701
2702 static bfd_boolean
2703 sparc64_elf_finish_dynamic_symbol (output_bfd, info, h, sym)
2704 bfd *output_bfd;
2705 struct bfd_link_info *info;
2706 struct elf_link_hash_entry *h;
2707 Elf_Internal_Sym *sym;
2708 {
2709 bfd *dynobj;
2710
2711 dynobj = elf_hash_table (info)->dynobj;
2712
2713 if (h->plt.offset != (bfd_vma) -1)
2714 {
2715 asection *splt;
2716 asection *srela;
2717 Elf_Internal_Rela rela;
2718 bfd_byte *loc;
2719
2720 /* This symbol has an entry in the PLT. Set it up. */
2721
2722 BFD_ASSERT (h->dynindx != -1);
2723
2724 splt = bfd_get_section_by_name (dynobj, ".plt");
2725 srela = bfd_get_section_by_name (dynobj, ".rela.plt");
2726 BFD_ASSERT (splt != NULL && srela != NULL);
2727
2728 /* Fill in the entry in the .rela.plt section. */
2729
2730 if (h->plt.offset < LARGE_PLT_THRESHOLD)
2731 {
2732 rela.r_offset = sparc64_elf_plt_entry_offset (h->plt.offset);
2733 rela.r_addend = 0;
2734 }
2735 else
2736 {
2737 bfd_vma max = splt->_raw_size / PLT_ENTRY_SIZE;
2738 rela.r_offset = sparc64_elf_plt_ptr_offset (h->plt.offset, max);
2739 rela.r_addend = -(sparc64_elf_plt_entry_offset (h->plt.offset) + 4)
2740 -(splt->output_section->vma + splt->output_offset);
2741 }
2742 rela.r_offset += (splt->output_section->vma + splt->output_offset);
2743 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_JMP_SLOT);
2744
2745 /* Adjust for the first 4 reserved elements in the .plt section
2746 when setting the offset in the .rela.plt section.
2747 Sun forgot to read their own ABI and copied elf32-sparc behaviour,
2748 thus .plt[4] has corresponding .rela.plt[0] and so on. */
2749
2750 loc = srela->contents;
2751 loc += (h->plt.offset - 4) * sizeof (Elf64_External_Rela);
2752 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2753
2754 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2755 {
2756 /* Mark the symbol as undefined, rather than as defined in
2757 the .plt section. Leave the value alone. */
2758 sym->st_shndx = SHN_UNDEF;
2759 /* If the symbol is weak, we do need to clear the value.
2760 Otherwise, the PLT entry would provide a definition for
2761 the symbol even if the symbol wasn't defined anywhere,
2762 and so the symbol would never be NULL. */
2763 if ((h->elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR_NONWEAK)
2764 == 0)
2765 sym->st_value = 0;
2766 }
2767 }
2768
2769 if (h->got.offset != (bfd_vma) -1)
2770 {
2771 asection *sgot;
2772 asection *srela;
2773 Elf_Internal_Rela rela;
2774 bfd_byte *loc;
2775
2776 /* This symbol has an entry in the GOT. Set it up. */
2777
2778 sgot = bfd_get_section_by_name (dynobj, ".got");
2779 srela = bfd_get_section_by_name (dynobj, ".rela.got");
2780 BFD_ASSERT (sgot != NULL && srela != NULL);
2781
2782 rela.r_offset = (sgot->output_section->vma
2783 + sgot->output_offset
2784 + (h->got.offset &~ (bfd_vma) 1));
2785
2786 /* If this is a -Bsymbolic link, and the symbol is defined
2787 locally, we just want to emit a RELATIVE reloc. Likewise if
2788 the symbol was forced to be local because of a version file.
2789 The entry in the global offset table will already have been
2790 initialized in the relocate_section function. */
2791 if (info->shared
2792 && (info->symbolic || h->dynindx == -1)
2793 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2794 {
2795 asection *sec = h->root.u.def.section;
2796 rela.r_info = ELF64_R_INFO (0, R_SPARC_RELATIVE);
2797 rela.r_addend = (h->root.u.def.value
2798 + sec->output_section->vma
2799 + sec->output_offset);
2800 }
2801 else
2802 {
2803 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_GLOB_DAT);
2804 rela.r_addend = 0;
2805 }
2806
2807 bfd_put_64 (output_bfd, (bfd_vma) 0,
2808 sgot->contents + (h->got.offset &~ (bfd_vma) 1));
2809 loc = srela->contents;
2810 loc += srela->reloc_count++ * sizeof (Elf64_External_Rela);
2811 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2812 }
2813
2814 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2815 {
2816 asection *s;
2817 Elf_Internal_Rela rela;
2818 bfd_byte *loc;
2819
2820 /* This symbols needs a copy reloc. Set it up. */
2821 BFD_ASSERT (h->dynindx != -1);
2822
2823 s = bfd_get_section_by_name (h->root.u.def.section->owner,
2824 ".rela.bss");
2825 BFD_ASSERT (s != NULL);
2826
2827 rela.r_offset = (h->root.u.def.value
2828 + h->root.u.def.section->output_section->vma
2829 + h->root.u.def.section->output_offset);
2830 rela.r_info = ELF64_R_INFO (h->dynindx, R_SPARC_COPY);
2831 rela.r_addend = 0;
2832 loc = s->contents + s->reloc_count++ * sizeof (Elf64_External_Rela);
2833 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2834 }
2835
2836 /* Mark some specially defined symbols as absolute. */
2837 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2838 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0
2839 || strcmp (h->root.root.string, "_PROCEDURE_LINKAGE_TABLE_") == 0)
2840 sym->st_shndx = SHN_ABS;
2841
2842 return TRUE;
2843 }
2844
2845 /* Finish up the dynamic sections. */
2846
2847 static bfd_boolean
2848 sparc64_elf_finish_dynamic_sections (output_bfd, info)
2849 bfd *output_bfd;
2850 struct bfd_link_info *info;
2851 {
2852 bfd *dynobj;
2853 int stt_regidx = -1;
2854 asection *sdyn;
2855 asection *sgot;
2856
2857 dynobj = elf_hash_table (info)->dynobj;
2858
2859 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2860
2861 if (elf_hash_table (info)->dynamic_sections_created)
2862 {
2863 asection *splt;
2864 Elf64_External_Dyn *dyncon, *dynconend;
2865
2866 splt = bfd_get_section_by_name (dynobj, ".plt");
2867 BFD_ASSERT (splt != NULL && sdyn != NULL);
2868
2869 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2870 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2871 for (; dyncon < dynconend; dyncon++)
2872 {
2873 Elf_Internal_Dyn dyn;
2874 const char *name;
2875 bfd_boolean size;
2876
2877 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2878
2879 switch (dyn.d_tag)
2880 {
2881 case DT_PLTGOT: name = ".plt"; size = FALSE; break;
2882 case DT_PLTRELSZ: name = ".rela.plt"; size = TRUE; break;
2883 case DT_JMPREL: name = ".rela.plt"; size = FALSE; break;
2884 case DT_SPARC_REGISTER:
2885 if (stt_regidx == -1)
2886 {
2887 stt_regidx =
2888 _bfd_elf_link_lookup_local_dynindx (info, output_bfd, -1);
2889 if (stt_regidx == -1)
2890 return FALSE;
2891 }
2892 dyn.d_un.d_val = stt_regidx++;
2893 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2894 /* fallthrough */
2895 default: name = NULL; size = FALSE; break;
2896 }
2897
2898 if (name != NULL)
2899 {
2900 asection *s;
2901
2902 s = bfd_get_section_by_name (output_bfd, name);
2903 if (s == NULL)
2904 dyn.d_un.d_val = 0;
2905 else
2906 {
2907 if (! size)
2908 dyn.d_un.d_ptr = s->vma;
2909 else
2910 {
2911 if (s->_cooked_size != 0)
2912 dyn.d_un.d_val = s->_cooked_size;
2913 else
2914 dyn.d_un.d_val = s->_raw_size;
2915 }
2916 }
2917 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2918 }
2919 }
2920
2921 /* Initialize the contents of the .plt section. */
2922 if (splt->_raw_size > 0)
2923 sparc64_elf_build_plt (output_bfd, splt->contents,
2924 (int) (splt->_raw_size / PLT_ENTRY_SIZE));
2925
2926 elf_section_data (splt->output_section)->this_hdr.sh_entsize =
2927 PLT_ENTRY_SIZE;
2928 }
2929
2930 /* Set the first entry in the global offset table to the address of
2931 the dynamic section. */
2932 sgot = bfd_get_section_by_name (dynobj, ".got");
2933 BFD_ASSERT (sgot != NULL);
2934 if (sgot->_raw_size > 0)
2935 {
2936 if (sdyn == NULL)
2937 bfd_put_64 (output_bfd, (bfd_vma) 0, sgot->contents);
2938 else
2939 bfd_put_64 (output_bfd,
2940 sdyn->output_section->vma + sdyn->output_offset,
2941 sgot->contents);
2942 }
2943
2944 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 8;
2945
2946 return TRUE;
2947 }
2948
2949 static enum elf_reloc_type_class
2950 sparc64_elf_reloc_type_class (rela)
2951 const Elf_Internal_Rela *rela;
2952 {
2953 switch ((int) ELF64_R_TYPE (rela->r_info))
2954 {
2955 case R_SPARC_RELATIVE:
2956 return reloc_class_relative;
2957 case R_SPARC_JMP_SLOT:
2958 return reloc_class_plt;
2959 case R_SPARC_COPY:
2960 return reloc_class_copy;
2961 default:
2962 return reloc_class_normal;
2963 }
2964 }
2965 \f
2966 /* Functions for dealing with the e_flags field. */
2967
2968 /* Merge backend specific data from an object file to the output
2969 object file when linking. */
2970
2971 static bfd_boolean
2972 sparc64_elf_merge_private_bfd_data (ibfd, obfd)
2973 bfd *ibfd;
2974 bfd *obfd;
2975 {
2976 bfd_boolean error;
2977 flagword new_flags, old_flags;
2978 int new_mm, old_mm;
2979
2980 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
2981 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
2982 return TRUE;
2983
2984 new_flags = elf_elfheader (ibfd)->e_flags;
2985 old_flags = elf_elfheader (obfd)->e_flags;
2986
2987 if (!elf_flags_init (obfd)) /* First call, no flags set */
2988 {
2989 elf_flags_init (obfd) = TRUE;
2990 elf_elfheader (obfd)->e_flags = new_flags;
2991 }
2992
2993 else if (new_flags == old_flags) /* Compatible flags are ok */
2994 ;
2995
2996 else /* Incompatible flags */
2997 {
2998 error = FALSE;
2999
3000 #define EF_SPARC_ISA_EXTENSIONS \
3001 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
3002
3003 if ((ibfd->flags & DYNAMIC) != 0)
3004 {
3005 /* We don't want dynamic objects memory ordering and
3006 architecture to have any role. That's what dynamic linker
3007 should do. */
3008 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
3009 new_flags |= (old_flags
3010 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
3011 }
3012 else
3013 {
3014 /* Choose the highest architecture requirements. */
3015 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
3016 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
3017 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
3018 && (old_flags & EF_SPARC_HAL_R1))
3019 {
3020 error = TRUE;
3021 (*_bfd_error_handler)
3022 (_("%s: linking UltraSPARC specific with HAL specific code"),
3023 bfd_archive_filename (ibfd));
3024 }
3025 /* Choose the most restrictive memory ordering. */
3026 old_mm = (old_flags & EF_SPARCV9_MM);
3027 new_mm = (new_flags & EF_SPARCV9_MM);
3028 old_flags &= ~EF_SPARCV9_MM;
3029 new_flags &= ~EF_SPARCV9_MM;
3030 if (new_mm < old_mm)
3031 old_mm = new_mm;
3032 old_flags |= old_mm;
3033 new_flags |= old_mm;
3034 }
3035
3036 /* Warn about any other mismatches */
3037 if (new_flags != old_flags)
3038 {
3039 error = TRUE;
3040 (*_bfd_error_handler)
3041 (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
3042 bfd_archive_filename (ibfd), (long) new_flags, (long) old_flags);
3043 }
3044
3045 elf_elfheader (obfd)->e_flags = old_flags;
3046
3047 if (error)
3048 {
3049 bfd_set_error (bfd_error_bad_value);
3050 return FALSE;
3051 }
3052 }
3053 return TRUE;
3054 }
3055
3056 /* MARCO: Set the correct entry size for the .stab section. */
3057
3058 static bfd_boolean
3059 sparc64_elf_fake_sections (abfd, hdr, sec)
3060 bfd *abfd ATTRIBUTE_UNUSED;
3061 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED;
3062 asection *sec;
3063 {
3064 const char *name;
3065
3066 name = bfd_get_section_name (abfd, sec);
3067
3068 if (strcmp (name, ".stab") == 0)
3069 {
3070 /* Even in the 64bit case the stab entries are only 12 bytes long. */
3071 elf_section_data (sec)->this_hdr.sh_entsize = 12;
3072 }
3073
3074 return TRUE;
3075 }
3076 \f
3077 /* Print a STT_REGISTER symbol to file FILE. */
3078
3079 static const char *
3080 sparc64_elf_print_symbol_all (abfd, filep, symbol)
3081 bfd *abfd ATTRIBUTE_UNUSED;
3082 PTR filep;
3083 asymbol *symbol;
3084 {
3085 FILE *file = (FILE *) filep;
3086 int reg, type;
3087
3088 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
3089 != STT_REGISTER)
3090 return NULL;
3091
3092 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
3093 type = symbol->flags;
3094 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
3095 ((type & BSF_LOCAL)
3096 ? (type & BSF_GLOBAL) ? '!' : 'l'
3097 : (type & BSF_GLOBAL) ? 'g' : ' '),
3098 (type & BSF_WEAK) ? 'w' : ' ');
3099 if (symbol->name == NULL || symbol->name [0] == '\0')
3100 return "#scratch";
3101 else
3102 return symbol->name;
3103 }
3104 \f
3105 /* Set the right machine number for a SPARC64 ELF file. */
3106
3107 static bfd_boolean
3108 sparc64_elf_object_p (abfd)
3109 bfd *abfd;
3110 {
3111 unsigned long mach = bfd_mach_sparc_v9;
3112
3113 if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US3)
3114 mach = bfd_mach_sparc_v9b;
3115 else if (elf_elfheader (abfd)->e_flags & EF_SPARC_SUN_US1)
3116 mach = bfd_mach_sparc_v9a;
3117 return bfd_default_set_arch_mach (abfd, bfd_arch_sparc, mach);
3118 }
3119
3120 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
3121 standard ELF, because R_SPARC_OLO10 has secondary addend in
3122 ELF64_R_TYPE_DATA field. This structure is used to redirect the
3123 relocation handling routines. */
3124
3125 const struct elf_size_info sparc64_elf_size_info =
3126 {
3127 sizeof (Elf64_External_Ehdr),
3128 sizeof (Elf64_External_Phdr),
3129 sizeof (Elf64_External_Shdr),
3130 sizeof (Elf64_External_Rel),
3131 sizeof (Elf64_External_Rela),
3132 sizeof (Elf64_External_Sym),
3133 sizeof (Elf64_External_Dyn),
3134 sizeof (Elf_External_Note),
3135 4, /* hash-table entry size. */
3136 /* Internal relocations per external relocations.
3137 For link purposes we use just 1 internal per
3138 1 external, for assembly and slurp symbol table
3139 we use 2. */
3140 1,
3141 64, /* arch_size. */
3142 8, /* file_align. */
3143 ELFCLASS64,
3144 EV_CURRENT,
3145 bfd_elf64_write_out_phdrs,
3146 bfd_elf64_write_shdrs_and_ehdr,
3147 sparc64_elf_write_relocs,
3148 bfd_elf64_swap_symbol_in,
3149 bfd_elf64_swap_symbol_out,
3150 sparc64_elf_slurp_reloc_table,
3151 bfd_elf64_slurp_symbol_table,
3152 bfd_elf64_swap_dyn_in,
3153 bfd_elf64_swap_dyn_out,
3154 bfd_elf64_swap_reloc_in,
3155 bfd_elf64_swap_reloc_out,
3156 bfd_elf64_swap_reloca_in,
3157 bfd_elf64_swap_reloca_out
3158 };
3159
3160 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
3161 #define TARGET_BIG_NAME "elf64-sparc"
3162 #define ELF_ARCH bfd_arch_sparc
3163 #define ELF_MAXPAGESIZE 0x100000
3164
3165 /* This is the official ABI value. */
3166 #define ELF_MACHINE_CODE EM_SPARCV9
3167
3168 /* This is the value that we used before the ABI was released. */
3169 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
3170
3171 #define bfd_elf64_bfd_link_hash_table_create \
3172 sparc64_elf_bfd_link_hash_table_create
3173
3174 #define elf_info_to_howto \
3175 sparc64_elf_info_to_howto
3176 #define bfd_elf64_get_reloc_upper_bound \
3177 sparc64_elf_get_reloc_upper_bound
3178 #define bfd_elf64_get_dynamic_reloc_upper_bound \
3179 sparc64_elf_get_dynamic_reloc_upper_bound
3180 #define bfd_elf64_canonicalize_dynamic_reloc \
3181 sparc64_elf_canonicalize_dynamic_reloc
3182 #define bfd_elf64_bfd_reloc_type_lookup \
3183 sparc64_elf_reloc_type_lookup
3184 #define bfd_elf64_bfd_relax_section \
3185 sparc64_elf_relax_section
3186 #define bfd_elf64_new_section_hook \
3187 sparc64_elf_new_section_hook
3188
3189 #define elf_backend_create_dynamic_sections \
3190 _bfd_elf_create_dynamic_sections
3191 #define elf_backend_add_symbol_hook \
3192 sparc64_elf_add_symbol_hook
3193 #define elf_backend_get_symbol_type \
3194 sparc64_elf_get_symbol_type
3195 #define elf_backend_symbol_processing \
3196 sparc64_elf_symbol_processing
3197 #define elf_backend_check_relocs \
3198 sparc64_elf_check_relocs
3199 #define elf_backend_adjust_dynamic_symbol \
3200 sparc64_elf_adjust_dynamic_symbol
3201 #define elf_backend_size_dynamic_sections \
3202 sparc64_elf_size_dynamic_sections
3203 #define elf_backend_relocate_section \
3204 sparc64_elf_relocate_section
3205 #define elf_backend_finish_dynamic_symbol \
3206 sparc64_elf_finish_dynamic_symbol
3207 #define elf_backend_finish_dynamic_sections \
3208 sparc64_elf_finish_dynamic_sections
3209 #define elf_backend_print_symbol_all \
3210 sparc64_elf_print_symbol_all
3211 #define elf_backend_output_arch_syms \
3212 sparc64_elf_output_arch_syms
3213 #define bfd_elf64_bfd_merge_private_bfd_data \
3214 sparc64_elf_merge_private_bfd_data
3215 #define elf_backend_fake_sections \
3216 sparc64_elf_fake_sections
3217
3218 #define elf_backend_size_info \
3219 sparc64_elf_size_info
3220 #define elf_backend_object_p \
3221 sparc64_elf_object_p
3222 #define elf_backend_reloc_type_class \
3223 sparc64_elf_reloc_type_class
3224
3225 #define elf_backend_want_got_plt 0
3226 #define elf_backend_plt_readonly 0
3227 #define elf_backend_want_plt_sym 1
3228 #define elf_backend_rela_normal 1
3229
3230 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
3231 #define elf_backend_plt_alignment 8
3232
3233 #define elf_backend_got_header_size 8
3234 #define elf_backend_plt_header_size PLT_HEADER_SIZE
3235
3236 #include "elf64-target.h"
This page took 0.110104 seconds and 4 git commands to generate.