bfd target vector rationalisation
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57 {
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
101 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
102 else
103 {
104 asymbol **ps, *s;
105
106 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
107 s = *ps;
108
109 /* Canonicalize ELF section symbols. FIXME: Why? */
110 if ((s->flags & BSF_SECTION_SYM) == 0)
111 relent->sym_ptr_ptr = ps;
112 else
113 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
114 }
115
116 relent->addend = rela.r_addend;
117
118 r_type = ELF64_R_TYPE_ID (rela.r_info);
119 if (r_type == R_SPARC_OLO10)
120 {
121 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
122 relent[1].address = relent->address;
123 relent++;
124 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
125 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
126 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
127 }
128 else
129 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
130 }
131
132 canon_reloc_count (asect) += relent - relents;
133
134 if (allocated != NULL)
135 free (allocated);
136
137 return TRUE;
138
139 error_return:
140 if (allocated != NULL)
141 free (allocated);
142 return FALSE;
143 }
144
145 /* Read in and swap the external relocs. */
146
147 static bfd_boolean
148 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
149 asymbol **symbols, bfd_boolean dynamic)
150 {
151 struct bfd_elf_section_data * const d = elf_section_data (asect);
152 Elf_Internal_Shdr *rel_hdr;
153 Elf_Internal_Shdr *rel_hdr2;
154 bfd_size_type amt;
155
156 if (asect->relocation != NULL)
157 return TRUE;
158
159 if (! dynamic)
160 {
161 if ((asect->flags & SEC_RELOC) == 0
162 || asect->reloc_count == 0)
163 return TRUE;
164
165 rel_hdr = d->rel.hdr;
166 rel_hdr2 = d->rela.hdr;
167
168 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
169 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
170 }
171 else
172 {
173 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
174 case because relocations against this section may use the
175 dynamic symbol table, and in that case bfd_section_from_shdr
176 in elf.c does not update the RELOC_COUNT. */
177 if (asect->size == 0)
178 return TRUE;
179
180 rel_hdr = &d->this_hdr;
181 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
182 rel_hdr2 = NULL;
183 }
184
185 amt = asect->reloc_count;
186 amt *= 2 * sizeof (arelent);
187 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
188 if (asect->relocation == NULL)
189 return FALSE;
190
191 /* The elf64_sparc_slurp_one_reloc_table routine increments
192 canon_reloc_count. */
193 canon_reloc_count (asect) = 0;
194
195 if (rel_hdr
196 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
197 dynamic))
198 return FALSE;
199
200 if (rel_hdr2
201 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
202 dynamic))
203 return FALSE;
204
205 return TRUE;
206 }
207
208 /* Canonicalize the relocs. */
209
210 static long
211 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
212 arelent **relptr, asymbol **symbols)
213 {
214 arelent *tblptr;
215 unsigned int i;
216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
217
218 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
219 return -1;
220
221 tblptr = section->relocation;
222 for (i = 0; i < canon_reloc_count (section); i++)
223 *relptr++ = tblptr++;
224
225 *relptr = NULL;
226
227 return canon_reloc_count (section);
228 }
229
230
231 /* Canonicalize the dynamic relocation entries. Note that we return
232 the dynamic relocations as a single block, although they are
233 actually associated with particular sections; the interface, which
234 was designed for SunOS style shared libraries, expects that there
235 is only one set of dynamic relocs. Any section that was actually
236 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
237 the dynamic symbol table, is considered to be a dynamic reloc
238 section. */
239
240 static long
241 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
242 asymbol **syms)
243 {
244 asection *s;
245 long ret;
246
247 if (elf_dynsymtab (abfd) == 0)
248 {
249 bfd_set_error (bfd_error_invalid_operation);
250 return -1;
251 }
252
253 ret = 0;
254 for (s = abfd->sections; s != NULL; s = s->next)
255 {
256 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
257 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
258 {
259 arelent *p;
260 long count, i;
261
262 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
263 return -1;
264 count = canon_reloc_count (s);
265 p = s->relocation;
266 for (i = 0; i < count; i++)
267 *storage++ = p++;
268 ret += count;
269 }
270 }
271
272 *storage = NULL;
273
274 return ret;
275 }
276
277 /* Write out the relocs. */
278
279 static void
280 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
281 {
282 bfd_boolean *failedp = (bfd_boolean *) data;
283 Elf_Internal_Shdr *rela_hdr;
284 bfd_vma addr_offset;
285 Elf64_External_Rela *outbound_relocas, *src_rela;
286 unsigned int idx, count;
287 asymbol *last_sym = 0;
288 int last_sym_idx = 0;
289
290 /* If we have already failed, don't do anything. */
291 if (*failedp)
292 return;
293
294 if ((sec->flags & SEC_RELOC) == 0)
295 return;
296
297 /* The linker backend writes the relocs out itself, and sets the
298 reloc_count field to zero to inhibit writing them here. Also,
299 sometimes the SEC_RELOC flag gets set even when there aren't any
300 relocs. */
301 if (sec->reloc_count == 0)
302 return;
303
304 /* We can combine two relocs that refer to the same address
305 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
306 latter is R_SPARC_13 with no associated symbol. */
307 count = 0;
308 for (idx = 0; idx < sec->reloc_count; idx++)
309 {
310 bfd_vma addr;
311
312 ++count;
313
314 addr = sec->orelocation[idx]->address;
315 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
316 && idx < sec->reloc_count - 1)
317 {
318 arelent *r = sec->orelocation[idx + 1];
319
320 if (r->howto->type == R_SPARC_13
321 && r->address == addr
322 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
323 && (*r->sym_ptr_ptr)->value == 0)
324 ++idx;
325 }
326 }
327
328 rela_hdr = elf_section_data (sec)->rela.hdr;
329
330 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
331 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
332 if (rela_hdr->contents == NULL)
333 {
334 *failedp = TRUE;
335 return;
336 }
337
338 /* Figure out whether the relocations are RELA or REL relocations. */
339 if (rela_hdr->sh_type != SHT_RELA)
340 abort ();
341
342 /* The address of an ELF reloc is section relative for an object
343 file, and absolute for an executable file or shared library.
344 The address of a BFD reloc is always section relative. */
345 addr_offset = 0;
346 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
347 addr_offset = sec->vma;
348
349 /* orelocation has the data, reloc_count has the count... */
350 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
351 src_rela = outbound_relocas;
352
353 for (idx = 0; idx < sec->reloc_count; idx++)
354 {
355 Elf_Internal_Rela dst_rela;
356 arelent *ptr;
357 asymbol *sym;
358 int n;
359
360 ptr = sec->orelocation[idx];
361 sym = *ptr->sym_ptr_ptr;
362 if (sym == last_sym)
363 n = last_sym_idx;
364 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
365 n = STN_UNDEF;
366 else
367 {
368 last_sym = sym;
369 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
370 if (n < 0)
371 {
372 *failedp = TRUE;
373 return;
374 }
375 last_sym_idx = n;
376 }
377
378 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
379 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
380 && ! _bfd_elf_validate_reloc (abfd, ptr))
381 {
382 *failedp = TRUE;
383 return;
384 }
385
386 if (ptr->howto->type == R_SPARC_LO10
387 && idx < sec->reloc_count - 1)
388 {
389 arelent *r = sec->orelocation[idx + 1];
390
391 if (r->howto->type == R_SPARC_13
392 && r->address == ptr->address
393 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
394 && (*r->sym_ptr_ptr)->value == 0)
395 {
396 idx++;
397 dst_rela.r_info
398 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
399 R_SPARC_OLO10));
400 }
401 else
402 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
403 }
404 else
405 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
406
407 dst_rela.r_offset = ptr->address + addr_offset;
408 dst_rela.r_addend = ptr->addend;
409
410 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
411 ++src_rela;
412 }
413 }
414 \f
415 /* Hook called by the linker routine which adds symbols from an object
416 file. We use it for STT_REGISTER symbols. */
417
418 static bfd_boolean
419 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
420 Elf_Internal_Sym *sym, const char **namep,
421 flagword *flagsp ATTRIBUTE_UNUSED,
422 asection **secp ATTRIBUTE_UNUSED,
423 bfd_vma *valp ATTRIBUTE_UNUSED)
424 {
425 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
426
427 if ((abfd->flags & DYNAMIC) == 0
428 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
429 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
430 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
431
432 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
433 {
434 int reg;
435 struct _bfd_sparc_elf_app_reg *p;
436
437 reg = (int)sym->st_value;
438 switch (reg & ~1)
439 {
440 case 2: reg -= 2; break;
441 case 6: reg -= 4; break;
442 default:
443 (*_bfd_error_handler)
444 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
445 abfd);
446 return FALSE;
447 }
448
449 if (info->output_bfd->xvec != abfd->xvec
450 || (abfd->flags & DYNAMIC) != 0)
451 {
452 /* STT_REGISTER only works when linking an elf64_sparc object.
453 If STT_REGISTER comes from a dynamic object, don't put it into
454 the output bfd. The dynamic linker will recheck it. */
455 *namep = NULL;
456 return TRUE;
457 }
458
459 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
460
461 if (p->name != NULL && strcmp (p->name, *namep))
462 {
463 (*_bfd_error_handler)
464 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
465 abfd, p->abfd, (int) sym->st_value,
466 **namep ? *namep : "#scratch",
467 *p->name ? p->name : "#scratch");
468 return FALSE;
469 }
470
471 if (p->name == NULL)
472 {
473 if (**namep)
474 {
475 struct elf_link_hash_entry *h;
476
477 h = (struct elf_link_hash_entry *)
478 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
479
480 if (h != NULL)
481 {
482 unsigned char type = h->type;
483
484 if (type > STT_FUNC)
485 type = 0;
486 (*_bfd_error_handler)
487 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
488 abfd, p->abfd, *namep, stt_types[type]);
489 return FALSE;
490 }
491
492 p->name = bfd_hash_allocate (&info->hash->table,
493 strlen (*namep) + 1);
494 if (!p->name)
495 return FALSE;
496
497 strcpy (p->name, *namep);
498 }
499 else
500 p->name = "";
501 p->bind = ELF_ST_BIND (sym->st_info);
502 p->abfd = abfd;
503 p->shndx = sym->st_shndx;
504 }
505 else
506 {
507 if (p->bind == STB_WEAK
508 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
509 {
510 p->bind = STB_GLOBAL;
511 p->abfd = abfd;
512 }
513 }
514 *namep = NULL;
515 return TRUE;
516 }
517 else if (*namep && **namep
518 && info->output_bfd->xvec == abfd->xvec)
519 {
520 int i;
521 struct _bfd_sparc_elf_app_reg *p;
522
523 p = _bfd_sparc_elf_hash_table(info)->app_regs;
524 for (i = 0; i < 4; i++, p++)
525 if (p->name != NULL && ! strcmp (p->name, *namep))
526 {
527 unsigned char type = ELF_ST_TYPE (sym->st_info);
528
529 if (type > STT_FUNC)
530 type = 0;
531 (*_bfd_error_handler)
532 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
533 abfd, p->abfd, *namep, stt_types[type]);
534 return FALSE;
535 }
536 }
537 return TRUE;
538 }
539
540 /* This function takes care of emitting STT_REGISTER symbols
541 which we cannot easily keep in the symbol hash table. */
542
543 static bfd_boolean
544 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
545 struct bfd_link_info *info,
546 void * flaginfo,
547 int (*func) (void *, const char *,
548 Elf_Internal_Sym *,
549 asection *,
550 struct elf_link_hash_entry *))
551 {
552 int reg;
553 struct _bfd_sparc_elf_app_reg *app_regs =
554 _bfd_sparc_elf_hash_table(info)->app_regs;
555 Elf_Internal_Sym sym;
556
557 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
558 at the end of the dynlocal list, so they came at the end of the local
559 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
560 to back up symtab->sh_info. */
561 if (elf_hash_table (info)->dynlocal)
562 {
563 bfd * dynobj = elf_hash_table (info)->dynobj;
564 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
565 struct elf_link_local_dynamic_entry *e;
566
567 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
568 if (e->input_indx == -1)
569 break;
570 if (e)
571 {
572 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
573 = e->dynindx;
574 }
575 }
576
577 if (info->strip == strip_all)
578 return TRUE;
579
580 for (reg = 0; reg < 4; reg++)
581 if (app_regs [reg].name != NULL)
582 {
583 if (info->strip == strip_some
584 && bfd_hash_lookup (info->keep_hash,
585 app_regs [reg].name,
586 FALSE, FALSE) == NULL)
587 continue;
588
589 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
590 sym.st_size = 0;
591 sym.st_other = 0;
592 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
593 sym.st_shndx = app_regs [reg].shndx;
594 sym.st_target_internal = 0;
595 if ((*func) (flaginfo, app_regs [reg].name, &sym,
596 sym.st_shndx == SHN_ABS
597 ? bfd_abs_section_ptr : bfd_und_section_ptr,
598 NULL) != 1)
599 return FALSE;
600 }
601
602 return TRUE;
603 }
604
605 static int
606 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
607 {
608 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
609 return STT_REGISTER;
610 else
611 return type;
612 }
613
614 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
615 even in SHN_UNDEF section. */
616
617 static void
618 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
619 {
620 elf_symbol_type *elfsym;
621
622 elfsym = (elf_symbol_type *) asym;
623 if (elfsym->internal_elf_sym.st_info
624 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
625 {
626 asym->flags |= BSF_GLOBAL;
627 }
628 }
629
630 \f
631 /* Functions for dealing with the e_flags field. */
632
633 /* Merge backend specific data from an object file to the output
634 object file when linking. */
635
636 static bfd_boolean
637 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
638 {
639 bfd_boolean error;
640 flagword new_flags, old_flags;
641 int new_mm, old_mm;
642
643 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
644 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
645 return TRUE;
646
647 new_flags = elf_elfheader (ibfd)->e_flags;
648 old_flags = elf_elfheader (obfd)->e_flags;
649
650 if (!elf_flags_init (obfd)) /* First call, no flags set */
651 {
652 elf_flags_init (obfd) = TRUE;
653 elf_elfheader (obfd)->e_flags = new_flags;
654 }
655
656 else if (new_flags == old_flags) /* Compatible flags are ok */
657 ;
658
659 else /* Incompatible flags */
660 {
661 error = FALSE;
662
663 #define EF_SPARC_ISA_EXTENSIONS \
664 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
665
666 if ((ibfd->flags & DYNAMIC) != 0)
667 {
668 /* We don't want dynamic objects memory ordering and
669 architecture to have any role. That's what dynamic linker
670 should do. */
671 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
672 new_flags |= (old_flags
673 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
674 }
675 else
676 {
677 /* Choose the highest architecture requirements. */
678 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
679 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
680 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
681 && (old_flags & EF_SPARC_HAL_R1))
682 {
683 error = TRUE;
684 (*_bfd_error_handler)
685 (_("%B: linking UltraSPARC specific with HAL specific code"),
686 ibfd);
687 }
688 /* Choose the most restrictive memory ordering. */
689 old_mm = (old_flags & EF_SPARCV9_MM);
690 new_mm = (new_flags & EF_SPARCV9_MM);
691 old_flags &= ~EF_SPARCV9_MM;
692 new_flags &= ~EF_SPARCV9_MM;
693 if (new_mm < old_mm)
694 old_mm = new_mm;
695 old_flags |= old_mm;
696 new_flags |= old_mm;
697 }
698
699 /* Warn about any other mismatches */
700 if (new_flags != old_flags)
701 {
702 error = TRUE;
703 (*_bfd_error_handler)
704 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
705 ibfd, (long) new_flags, (long) old_flags);
706 }
707
708 elf_elfheader (obfd)->e_flags = old_flags;
709
710 if (error)
711 {
712 bfd_set_error (bfd_error_bad_value);
713 return FALSE;
714 }
715 }
716 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, obfd);
717 }
718
719 /* MARCO: Set the correct entry size for the .stab section. */
720
721 static bfd_boolean
722 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
723 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
724 asection *sec)
725 {
726 const char *name;
727
728 name = bfd_get_section_name (abfd, sec);
729
730 if (strcmp (name, ".stab") == 0)
731 {
732 /* Even in the 64bit case the stab entries are only 12 bytes long. */
733 elf_section_data (sec)->this_hdr.sh_entsize = 12;
734 }
735
736 return TRUE;
737 }
738 \f
739 /* Print a STT_REGISTER symbol to file FILE. */
740
741 static const char *
742 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
743 asymbol *symbol)
744 {
745 FILE *file = (FILE *) filep;
746 int reg, type;
747
748 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
749 != STT_REGISTER)
750 return NULL;
751
752 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
753 type = symbol->flags;
754 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
755 ((type & BSF_LOCAL)
756 ? (type & BSF_GLOBAL) ? '!' : 'l'
757 : (type & BSF_GLOBAL) ? 'g' : ' '),
758 (type & BSF_WEAK) ? 'w' : ' ');
759 if (symbol->name == NULL || symbol->name [0] == '\0')
760 return "#scratch";
761 else
762 return symbol->name;
763 }
764 \f
765 static enum elf_reloc_type_class
766 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
767 const asection *rel_sec ATTRIBUTE_UNUSED,
768 const Elf_Internal_Rela *rela)
769 {
770 switch ((int) ELF64_R_TYPE (rela->r_info))
771 {
772 case R_SPARC_RELATIVE:
773 return reloc_class_relative;
774 case R_SPARC_JMP_SLOT:
775 return reloc_class_plt;
776 case R_SPARC_COPY:
777 return reloc_class_copy;
778 default:
779 return reloc_class_normal;
780 }
781 }
782
783 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
784 standard ELF, because R_SPARC_OLO10 has secondary addend in
785 ELF64_R_TYPE_DATA field. This structure is used to redirect the
786 relocation handling routines. */
787
788 const struct elf_size_info elf64_sparc_size_info =
789 {
790 sizeof (Elf64_External_Ehdr),
791 sizeof (Elf64_External_Phdr),
792 sizeof (Elf64_External_Shdr),
793 sizeof (Elf64_External_Rel),
794 sizeof (Elf64_External_Rela),
795 sizeof (Elf64_External_Sym),
796 sizeof (Elf64_External_Dyn),
797 sizeof (Elf_External_Note),
798 4, /* hash-table entry size. */
799 /* Internal relocations per external relocations.
800 For link purposes we use just 1 internal per
801 1 external, for assembly and slurp symbol table
802 we use 2. */
803 1,
804 64, /* arch_size. */
805 3, /* log_file_align. */
806 ELFCLASS64,
807 EV_CURRENT,
808 bfd_elf64_write_out_phdrs,
809 bfd_elf64_write_shdrs_and_ehdr,
810 bfd_elf64_checksum_contents,
811 elf64_sparc_write_relocs,
812 bfd_elf64_swap_symbol_in,
813 bfd_elf64_swap_symbol_out,
814 elf64_sparc_slurp_reloc_table,
815 bfd_elf64_slurp_symbol_table,
816 bfd_elf64_swap_dyn_in,
817 bfd_elf64_swap_dyn_out,
818 bfd_elf64_swap_reloc_in,
819 bfd_elf64_swap_reloc_out,
820 bfd_elf64_swap_reloca_in,
821 bfd_elf64_swap_reloca_out
822 };
823
824 #define TARGET_BIG_SYM sparc_elf64_vec
825 #define TARGET_BIG_NAME "elf64-sparc"
826 #define ELF_ARCH bfd_arch_sparc
827 #define ELF_MAXPAGESIZE 0x100000
828 #define ELF_COMMONPAGESIZE 0x2000
829
830 /* This is the official ABI value. */
831 #define ELF_MACHINE_CODE EM_SPARCV9
832
833 /* This is the value that we used before the ABI was released. */
834 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
835
836 #define elf_backend_reloc_type_class \
837 elf64_sparc_reloc_type_class
838 #define bfd_elf64_get_reloc_upper_bound \
839 elf64_sparc_get_reloc_upper_bound
840 #define bfd_elf64_get_dynamic_reloc_upper_bound \
841 elf64_sparc_get_dynamic_reloc_upper_bound
842 #define bfd_elf64_canonicalize_reloc \
843 elf64_sparc_canonicalize_reloc
844 #define bfd_elf64_canonicalize_dynamic_reloc \
845 elf64_sparc_canonicalize_dynamic_reloc
846 #define elf_backend_add_symbol_hook \
847 elf64_sparc_add_symbol_hook
848 #define elf_backend_get_symbol_type \
849 elf64_sparc_get_symbol_type
850 #define elf_backend_symbol_processing \
851 elf64_sparc_symbol_processing
852 #define elf_backend_print_symbol_all \
853 elf64_sparc_print_symbol_all
854 #define elf_backend_output_arch_syms \
855 elf64_sparc_output_arch_syms
856 #define bfd_elf64_bfd_merge_private_bfd_data \
857 elf64_sparc_merge_private_bfd_data
858 #define elf_backend_fake_sections \
859 elf64_sparc_fake_sections
860 #define elf_backend_size_info \
861 elf64_sparc_size_info
862
863 #define elf_backend_plt_sym_val \
864 _bfd_sparc_elf_plt_sym_val
865 #define bfd_elf64_bfd_link_hash_table_create \
866 _bfd_sparc_elf_link_hash_table_create
867 #define bfd_elf64_bfd_link_hash_table_free \
868 _bfd_sparc_elf_link_hash_table_free
869 #define elf_info_to_howto \
870 _bfd_sparc_elf_info_to_howto
871 #define elf_backend_copy_indirect_symbol \
872 _bfd_sparc_elf_copy_indirect_symbol
873 #define bfd_elf64_bfd_reloc_type_lookup \
874 _bfd_sparc_elf_reloc_type_lookup
875 #define bfd_elf64_bfd_reloc_name_lookup \
876 _bfd_sparc_elf_reloc_name_lookup
877 #define bfd_elf64_bfd_relax_section \
878 _bfd_sparc_elf_relax_section
879 #define bfd_elf64_new_section_hook \
880 _bfd_sparc_elf_new_section_hook
881
882 #define elf_backend_create_dynamic_sections \
883 _bfd_sparc_elf_create_dynamic_sections
884 #define elf_backend_relocs_compatible \
885 _bfd_elf_relocs_compatible
886 #define elf_backend_check_relocs \
887 _bfd_sparc_elf_check_relocs
888 #define elf_backend_adjust_dynamic_symbol \
889 _bfd_sparc_elf_adjust_dynamic_symbol
890 #define elf_backend_omit_section_dynsym \
891 _bfd_sparc_elf_omit_section_dynsym
892 #define elf_backend_size_dynamic_sections \
893 _bfd_sparc_elf_size_dynamic_sections
894 #define elf_backend_relocate_section \
895 _bfd_sparc_elf_relocate_section
896 #define elf_backend_finish_dynamic_symbol \
897 _bfd_sparc_elf_finish_dynamic_symbol
898 #define elf_backend_finish_dynamic_sections \
899 _bfd_sparc_elf_finish_dynamic_sections
900
901 #define bfd_elf64_mkobject \
902 _bfd_sparc_elf_mkobject
903 #define elf_backend_object_p \
904 _bfd_sparc_elf_object_p
905 #define elf_backend_gc_mark_hook \
906 _bfd_sparc_elf_gc_mark_hook
907 #define elf_backend_gc_sweep_hook \
908 _bfd_sparc_elf_gc_sweep_hook
909 #define elf_backend_init_index_section \
910 _bfd_elf_init_1_index_section
911
912 #define elf_backend_can_gc_sections 1
913 #define elf_backend_can_refcount 1
914 #define elf_backend_want_got_plt 0
915 #define elf_backend_plt_readonly 0
916 #define elf_backend_want_plt_sym 1
917 #define elf_backend_got_header_size 8
918 #define elf_backend_rela_normal 1
919
920 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
921 #define elf_backend_plt_alignment 8
922
923 #include "elf64-target.h"
924
925 /* FreeBSD support */
926 #undef TARGET_BIG_SYM
927 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
928 #undef TARGET_BIG_NAME
929 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
930 #undef ELF_OSABI
931 #define ELF_OSABI ELFOSABI_FREEBSD
932
933 #undef elf64_bed
934 #define elf64_bed elf64_sparc_fbsd_bed
935
936 #include "elf64-target.h"
937
938 /* Solaris 2. */
939
940 #undef TARGET_BIG_SYM
941 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
942 #undef TARGET_BIG_NAME
943 #define TARGET_BIG_NAME "elf64-sparc-sol2"
944
945 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
946 objects won't be recognized. */
947 #undef ELF_OSABI
948
949 #undef elf64_bed
950 #define elf64_bed elf64_sparc_sol2_bed
951
952 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
953 boundary. */
954 #undef elf_backend_static_tls_alignment
955 #define elf_backend_static_tls_alignment 16
956
957 #include "elf64-target.h"
This page took 0.049152 seconds and 5 git commands to generate.