* elf-bfd.h (struct elf_backend_data
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/sparc.h"
27 #include "opcode/sparc.h"
28 #include "elfxx-sparc.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
34 section can represent up to two relocs, we must tell the user to allocate
35 more space. */
36
37 static long
38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
39 {
40 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
41 }
42
43 static long
44 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
45 {
46 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
47 }
48
49 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
50 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
51 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
52 for the same location, R_SPARC_LO10 and R_SPARC_13. */
53
54 static bfd_boolean
55 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
56 Elf_Internal_Shdr *rel_hdr,
57 asymbol **symbols, bfd_boolean dynamic)
58 {
59 PTR allocated = NULL;
60 bfd_byte *native_relocs;
61 arelent *relent;
62 unsigned int i;
63 int entsize;
64 bfd_size_type count;
65 arelent *relents;
66
67 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
68 if (allocated == NULL)
69 goto error_return;
70
71 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
72 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
73 goto error_return;
74
75 native_relocs = (bfd_byte *) allocated;
76
77 relents = asect->relocation + canon_reloc_count (asect);
78
79 entsize = rel_hdr->sh_entsize;
80 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
81
82 count = rel_hdr->sh_size / entsize;
83
84 for (i = 0, relent = relents; i < count;
85 i++, relent++, native_relocs += entsize)
86 {
87 Elf_Internal_Rela rela;
88 unsigned int r_type;
89
90 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
91
92 /* The address of an ELF reloc is section relative for an object
93 file, and absolute for an executable file or shared library.
94 The address of a normal BFD reloc is always section relative,
95 and the address of a dynamic reloc is absolute.. */
96 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
97 relent->address = rela.r_offset;
98 else
99 relent->address = rela.r_offset - asect->vma;
100
101 if (ELF64_R_SYM (rela.r_info) == 0)
102 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
103 else
104 {
105 asymbol **ps, *s;
106
107 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
108 s = *ps;
109
110 /* Canonicalize ELF section symbols. FIXME: Why? */
111 if ((s->flags & BSF_SECTION_SYM) == 0)
112 relent->sym_ptr_ptr = ps;
113 else
114 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
115 }
116
117 relent->addend = rela.r_addend;
118
119 r_type = ELF64_R_TYPE_ID (rela.r_info);
120 if (r_type == R_SPARC_OLO10)
121 {
122 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
123 relent[1].address = relent->address;
124 relent++;
125 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
126 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
127 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
128 }
129 else
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
131 }
132
133 canon_reloc_count (asect) += relent - relents;
134
135 if (allocated != NULL)
136 free (allocated);
137
138 return TRUE;
139
140 error_return:
141 if (allocated != NULL)
142 free (allocated);
143 return FALSE;
144 }
145
146 /* Read in and swap the external relocs. */
147
148 static bfd_boolean
149 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
150 asymbol **symbols, bfd_boolean dynamic)
151 {
152 struct bfd_elf_section_data * const d = elf_section_data (asect);
153 Elf_Internal_Shdr *rel_hdr;
154 Elf_Internal_Shdr *rel_hdr2;
155 bfd_size_type amt;
156
157 if (asect->relocation != NULL)
158 return TRUE;
159
160 if (! dynamic)
161 {
162 if ((asect->flags & SEC_RELOC) == 0
163 || asect->reloc_count == 0)
164 return TRUE;
165
166 rel_hdr = &d->rel_hdr;
167 rel_hdr2 = d->rel_hdr2;
168
169 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
170 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
171 }
172 else
173 {
174 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
175 case because relocations against this section may use the
176 dynamic symbol table, and in that case bfd_section_from_shdr
177 in elf.c does not update the RELOC_COUNT. */
178 if (asect->size == 0)
179 return TRUE;
180
181 rel_hdr = &d->this_hdr;
182 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
183 rel_hdr2 = NULL;
184 }
185
186 amt = asect->reloc_count;
187 amt *= 2 * sizeof (arelent);
188 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
189 if (asect->relocation == NULL)
190 return FALSE;
191
192 /* The elf64_sparc_slurp_one_reloc_table routine increments
193 canon_reloc_count. */
194 canon_reloc_count (asect) = 0;
195
196 if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
197 dynamic))
198 return FALSE;
199
200 if (rel_hdr2
201 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
202 dynamic))
203 return FALSE;
204
205 return TRUE;
206 }
207
208 /* Canonicalize the relocs. */
209
210 static long
211 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
212 arelent **relptr, asymbol **symbols)
213 {
214 arelent *tblptr;
215 unsigned int i;
216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
217
218 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
219 return -1;
220
221 tblptr = section->relocation;
222 for (i = 0; i < canon_reloc_count (section); i++)
223 *relptr++ = tblptr++;
224
225 *relptr = NULL;
226
227 return canon_reloc_count (section);
228 }
229
230
231 /* Canonicalize the dynamic relocation entries. Note that we return
232 the dynamic relocations as a single block, although they are
233 actually associated with particular sections; the interface, which
234 was designed for SunOS style shared libraries, expects that there
235 is only one set of dynamic relocs. Any section that was actually
236 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
237 the dynamic symbol table, is considered to be a dynamic reloc
238 section. */
239
240 static long
241 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
242 asymbol **syms)
243 {
244 asection *s;
245 long ret;
246
247 if (elf_dynsymtab (abfd) == 0)
248 {
249 bfd_set_error (bfd_error_invalid_operation);
250 return -1;
251 }
252
253 ret = 0;
254 for (s = abfd->sections; s != NULL; s = s->next)
255 {
256 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
257 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
258 {
259 arelent *p;
260 long count, i;
261
262 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
263 return -1;
264 count = canon_reloc_count (s);
265 p = s->relocation;
266 for (i = 0; i < count; i++)
267 *storage++ = p++;
268 ret += count;
269 }
270 }
271
272 *storage = NULL;
273
274 return ret;
275 }
276
277 /* Write out the relocs. */
278
279 static void
280 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
281 {
282 bfd_boolean *failedp = (bfd_boolean *) data;
283 Elf_Internal_Shdr *rela_hdr;
284 bfd_vma addr_offset;
285 Elf64_External_Rela *outbound_relocas, *src_rela;
286 unsigned int idx, count;
287 asymbol *last_sym = 0;
288 int last_sym_idx = 0;
289
290 /* If we have already failed, don't do anything. */
291 if (*failedp)
292 return;
293
294 if ((sec->flags & SEC_RELOC) == 0)
295 return;
296
297 /* The linker backend writes the relocs out itself, and sets the
298 reloc_count field to zero to inhibit writing them here. Also,
299 sometimes the SEC_RELOC flag gets set even when there aren't any
300 relocs. */
301 if (sec->reloc_count == 0)
302 return;
303
304 /* We can combine two relocs that refer to the same address
305 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
306 latter is R_SPARC_13 with no associated symbol. */
307 count = 0;
308 for (idx = 0; idx < sec->reloc_count; idx++)
309 {
310 bfd_vma addr;
311
312 ++count;
313
314 addr = sec->orelocation[idx]->address;
315 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
316 && idx < sec->reloc_count - 1)
317 {
318 arelent *r = sec->orelocation[idx + 1];
319
320 if (r->howto->type == R_SPARC_13
321 && r->address == addr
322 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
323 && (*r->sym_ptr_ptr)->value == 0)
324 ++idx;
325 }
326 }
327
328 rela_hdr = &elf_section_data (sec)->rel_hdr;
329
330 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
331 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
332 if (rela_hdr->contents == NULL)
333 {
334 *failedp = TRUE;
335 return;
336 }
337
338 /* Figure out whether the relocations are RELA or REL relocations. */
339 if (rela_hdr->sh_type != SHT_RELA)
340 abort ();
341
342 /* The address of an ELF reloc is section relative for an object
343 file, and absolute for an executable file or shared library.
344 The address of a BFD reloc is always section relative. */
345 addr_offset = 0;
346 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
347 addr_offset = sec->vma;
348
349 /* orelocation has the data, reloc_count has the count... */
350 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
351 src_rela = outbound_relocas;
352
353 for (idx = 0; idx < sec->reloc_count; idx++)
354 {
355 Elf_Internal_Rela dst_rela;
356 arelent *ptr;
357 asymbol *sym;
358 int n;
359
360 ptr = sec->orelocation[idx];
361 sym = *ptr->sym_ptr_ptr;
362 if (sym == last_sym)
363 n = last_sym_idx;
364 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
365 n = STN_UNDEF;
366 else
367 {
368 last_sym = sym;
369 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
370 if (n < 0)
371 {
372 *failedp = TRUE;
373 return;
374 }
375 last_sym_idx = n;
376 }
377
378 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
379 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
380 && ! _bfd_elf_validate_reloc (abfd, ptr))
381 {
382 *failedp = TRUE;
383 return;
384 }
385
386 if (ptr->howto->type == R_SPARC_LO10
387 && idx < sec->reloc_count - 1)
388 {
389 arelent *r = sec->orelocation[idx + 1];
390
391 if (r->howto->type == R_SPARC_13
392 && r->address == ptr->address
393 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
394 && (*r->sym_ptr_ptr)->value == 0)
395 {
396 idx++;
397 dst_rela.r_info
398 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
399 R_SPARC_OLO10));
400 }
401 else
402 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
403 }
404 else
405 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
406
407 dst_rela.r_offset = ptr->address + addr_offset;
408 dst_rela.r_addend = ptr->addend;
409
410 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
411 ++src_rela;
412 }
413 }
414 \f
415 /* Hook called by the linker routine which adds symbols from an object
416 file. We use it for STT_REGISTER symbols. */
417
418 static bfd_boolean
419 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
420 Elf_Internal_Sym *sym, const char **namep,
421 flagword *flagsp ATTRIBUTE_UNUSED,
422 asection **secp ATTRIBUTE_UNUSED,
423 bfd_vma *valp ATTRIBUTE_UNUSED)
424 {
425 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
426
427 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
428 {
429 int reg;
430 struct _bfd_sparc_elf_app_reg *p;
431
432 reg = (int)sym->st_value;
433 switch (reg & ~1)
434 {
435 case 2: reg -= 2; break;
436 case 6: reg -= 4; break;
437 default:
438 (*_bfd_error_handler)
439 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
440 abfd);
441 return FALSE;
442 }
443
444 if (info->output_bfd->xvec != abfd->xvec
445 || (abfd->flags & DYNAMIC) != 0)
446 {
447 /* STT_REGISTER only works when linking an elf64_sparc object.
448 If STT_REGISTER comes from a dynamic object, don't put it into
449 the output bfd. The dynamic linker will recheck it. */
450 *namep = NULL;
451 return TRUE;
452 }
453
454 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
455
456 if (p->name != NULL && strcmp (p->name, *namep))
457 {
458 (*_bfd_error_handler)
459 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
460 abfd, p->abfd, (int) sym->st_value,
461 **namep ? *namep : "#scratch",
462 *p->name ? p->name : "#scratch");
463 return FALSE;
464 }
465
466 if (p->name == NULL)
467 {
468 if (**namep)
469 {
470 struct elf_link_hash_entry *h;
471
472 h = (struct elf_link_hash_entry *)
473 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
474
475 if (h != NULL)
476 {
477 unsigned char type = h->type;
478
479 if (type > STT_FUNC)
480 type = 0;
481 (*_bfd_error_handler)
482 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
483 abfd, p->abfd, *namep, stt_types[type]);
484 return FALSE;
485 }
486
487 p->name = bfd_hash_allocate (&info->hash->table,
488 strlen (*namep) + 1);
489 if (!p->name)
490 return FALSE;
491
492 strcpy (p->name, *namep);
493 }
494 else
495 p->name = "";
496 p->bind = ELF_ST_BIND (sym->st_info);
497 p->abfd = abfd;
498 p->shndx = sym->st_shndx;
499 }
500 else
501 {
502 if (p->bind == STB_WEAK
503 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
504 {
505 p->bind = STB_GLOBAL;
506 p->abfd = abfd;
507 }
508 }
509 *namep = NULL;
510 return TRUE;
511 }
512 else if (*namep && **namep
513 && info->output_bfd->xvec == abfd->xvec)
514 {
515 int i;
516 struct _bfd_sparc_elf_app_reg *p;
517
518 p = _bfd_sparc_elf_hash_table(info)->app_regs;
519 for (i = 0; i < 4; i++, p++)
520 if (p->name != NULL && ! strcmp (p->name, *namep))
521 {
522 unsigned char type = ELF_ST_TYPE (sym->st_info);
523
524 if (type > STT_FUNC)
525 type = 0;
526 (*_bfd_error_handler)
527 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
528 abfd, p->abfd, *namep, stt_types[type]);
529 return FALSE;
530 }
531 }
532 return TRUE;
533 }
534
535 /* This function takes care of emitting STT_REGISTER symbols
536 which we cannot easily keep in the symbol hash table. */
537
538 static bfd_boolean
539 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
540 struct bfd_link_info *info,
541 PTR finfo,
542 int (*func) (PTR, const char *,
543 Elf_Internal_Sym *,
544 asection *,
545 struct elf_link_hash_entry *))
546 {
547 int reg;
548 struct _bfd_sparc_elf_app_reg *app_regs =
549 _bfd_sparc_elf_hash_table(info)->app_regs;
550 Elf_Internal_Sym sym;
551
552 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
553 at the end of the dynlocal list, so they came at the end of the local
554 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
555 to back up symtab->sh_info. */
556 if (elf_hash_table (info)->dynlocal)
557 {
558 bfd * dynobj = elf_hash_table (info)->dynobj;
559 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
560 struct elf_link_local_dynamic_entry *e;
561
562 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
563 if (e->input_indx == -1)
564 break;
565 if (e)
566 {
567 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
568 = e->dynindx;
569 }
570 }
571
572 if (info->strip == strip_all)
573 return TRUE;
574
575 for (reg = 0; reg < 4; reg++)
576 if (app_regs [reg].name != NULL)
577 {
578 if (info->strip == strip_some
579 && bfd_hash_lookup (info->keep_hash,
580 app_regs [reg].name,
581 FALSE, FALSE) == NULL)
582 continue;
583
584 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
585 sym.st_size = 0;
586 sym.st_other = 0;
587 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
588 sym.st_shndx = app_regs [reg].shndx;
589 if ((*func) (finfo, app_regs [reg].name, &sym,
590 sym.st_shndx == SHN_ABS
591 ? bfd_abs_section_ptr : bfd_und_section_ptr,
592 NULL) != 1)
593 return FALSE;
594 }
595
596 return TRUE;
597 }
598
599 static int
600 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
601 {
602 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
603 return STT_REGISTER;
604 else
605 return type;
606 }
607
608 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
609 even in SHN_UNDEF section. */
610
611 static void
612 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
613 {
614 elf_symbol_type *elfsym;
615
616 elfsym = (elf_symbol_type *) asym;
617 if (elfsym->internal_elf_sym.st_info
618 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
619 {
620 asym->flags |= BSF_GLOBAL;
621 }
622 }
623
624 \f
625 /* Functions for dealing with the e_flags field. */
626
627 /* Merge backend specific data from an object file to the output
628 object file when linking. */
629
630 static bfd_boolean
631 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
632 {
633 bfd_boolean error;
634 flagword new_flags, old_flags;
635 int new_mm, old_mm;
636
637 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
638 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
639 return TRUE;
640
641 new_flags = elf_elfheader (ibfd)->e_flags;
642 old_flags = elf_elfheader (obfd)->e_flags;
643
644 if (!elf_flags_init (obfd)) /* First call, no flags set */
645 {
646 elf_flags_init (obfd) = TRUE;
647 elf_elfheader (obfd)->e_flags = new_flags;
648 }
649
650 else if (new_flags == old_flags) /* Compatible flags are ok */
651 ;
652
653 else /* Incompatible flags */
654 {
655 error = FALSE;
656
657 #define EF_SPARC_ISA_EXTENSIONS \
658 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
659
660 if ((ibfd->flags & DYNAMIC) != 0)
661 {
662 /* We don't want dynamic objects memory ordering and
663 architecture to have any role. That's what dynamic linker
664 should do. */
665 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
666 new_flags |= (old_flags
667 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
668 }
669 else
670 {
671 /* Choose the highest architecture requirements. */
672 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
673 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
674 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
675 && (old_flags & EF_SPARC_HAL_R1))
676 {
677 error = TRUE;
678 (*_bfd_error_handler)
679 (_("%B: linking UltraSPARC specific with HAL specific code"),
680 ibfd);
681 }
682 /* Choose the most restrictive memory ordering. */
683 old_mm = (old_flags & EF_SPARCV9_MM);
684 new_mm = (new_flags & EF_SPARCV9_MM);
685 old_flags &= ~EF_SPARCV9_MM;
686 new_flags &= ~EF_SPARCV9_MM;
687 if (new_mm < old_mm)
688 old_mm = new_mm;
689 old_flags |= old_mm;
690 new_flags |= old_mm;
691 }
692
693 /* Warn about any other mismatches */
694 if (new_flags != old_flags)
695 {
696 error = TRUE;
697 (*_bfd_error_handler)
698 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
699 ibfd, (long) new_flags, (long) old_flags);
700 }
701
702 elf_elfheader (obfd)->e_flags = old_flags;
703
704 if (error)
705 {
706 bfd_set_error (bfd_error_bad_value);
707 return FALSE;
708 }
709 }
710 return TRUE;
711 }
712
713 /* MARCO: Set the correct entry size for the .stab section. */
714
715 static bfd_boolean
716 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
717 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
718 asection *sec)
719 {
720 const char *name;
721
722 name = bfd_get_section_name (abfd, sec);
723
724 if (strcmp (name, ".stab") == 0)
725 {
726 /* Even in the 64bit case the stab entries are only 12 bytes long. */
727 elf_section_data (sec)->this_hdr.sh_entsize = 12;
728 }
729
730 return TRUE;
731 }
732 \f
733 /* Print a STT_REGISTER symbol to file FILE. */
734
735 static const char *
736 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
737 asymbol *symbol)
738 {
739 FILE *file = (FILE *) filep;
740 int reg, type;
741
742 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
743 != STT_REGISTER)
744 return NULL;
745
746 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
747 type = symbol->flags;
748 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
749 ((type & BSF_LOCAL)
750 ? (type & BSF_GLOBAL) ? '!' : 'l'
751 : (type & BSF_GLOBAL) ? 'g' : ' '),
752 (type & BSF_WEAK) ? 'w' : ' ');
753 if (symbol->name == NULL || symbol->name [0] == '\0')
754 return "#scratch";
755 else
756 return symbol->name;
757 }
758 \f
759 static enum elf_reloc_type_class
760 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
761 {
762 switch ((int) ELF64_R_TYPE (rela->r_info))
763 {
764 case R_SPARC_RELATIVE:
765 return reloc_class_relative;
766 case R_SPARC_JMP_SLOT:
767 return reloc_class_plt;
768 case R_SPARC_COPY:
769 return reloc_class_copy;
770 default:
771 return reloc_class_normal;
772 }
773 }
774
775 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
776 standard ELF, because R_SPARC_OLO10 has secondary addend in
777 ELF64_R_TYPE_DATA field. This structure is used to redirect the
778 relocation handling routines. */
779
780 const struct elf_size_info elf64_sparc_size_info =
781 {
782 sizeof (Elf64_External_Ehdr),
783 sizeof (Elf64_External_Phdr),
784 sizeof (Elf64_External_Shdr),
785 sizeof (Elf64_External_Rel),
786 sizeof (Elf64_External_Rela),
787 sizeof (Elf64_External_Sym),
788 sizeof (Elf64_External_Dyn),
789 sizeof (Elf_External_Note),
790 4, /* hash-table entry size. */
791 /* Internal relocations per external relocations.
792 For link purposes we use just 1 internal per
793 1 external, for assembly and slurp symbol table
794 we use 2. */
795 1,
796 64, /* arch_size. */
797 3, /* log_file_align. */
798 ELFCLASS64,
799 EV_CURRENT,
800 bfd_elf64_write_out_phdrs,
801 bfd_elf64_write_shdrs_and_ehdr,
802 bfd_elf64_checksum_contents,
803 elf64_sparc_write_relocs,
804 bfd_elf64_swap_symbol_in,
805 bfd_elf64_swap_symbol_out,
806 elf64_sparc_slurp_reloc_table,
807 bfd_elf64_slurp_symbol_table,
808 bfd_elf64_swap_dyn_in,
809 bfd_elf64_swap_dyn_out,
810 bfd_elf64_swap_reloc_in,
811 bfd_elf64_swap_reloc_out,
812 bfd_elf64_swap_reloca_in,
813 bfd_elf64_swap_reloca_out
814 };
815
816 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
817 #define TARGET_BIG_NAME "elf64-sparc"
818 #define ELF_ARCH bfd_arch_sparc
819 #define ELF_MAXPAGESIZE 0x100000
820 #define ELF_COMMONPAGESIZE 0x2000
821
822 /* This is the official ABI value. */
823 #define ELF_MACHINE_CODE EM_SPARCV9
824
825 /* This is the value that we used before the ABI was released. */
826 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
827
828 #define elf_backend_reloc_type_class \
829 elf64_sparc_reloc_type_class
830 #define bfd_elf64_get_reloc_upper_bound \
831 elf64_sparc_get_reloc_upper_bound
832 #define bfd_elf64_get_dynamic_reloc_upper_bound \
833 elf64_sparc_get_dynamic_reloc_upper_bound
834 #define bfd_elf64_canonicalize_reloc \
835 elf64_sparc_canonicalize_reloc
836 #define bfd_elf64_canonicalize_dynamic_reloc \
837 elf64_sparc_canonicalize_dynamic_reloc
838 #define elf_backend_add_symbol_hook \
839 elf64_sparc_add_symbol_hook
840 #define elf_backend_get_symbol_type \
841 elf64_sparc_get_symbol_type
842 #define elf_backend_symbol_processing \
843 elf64_sparc_symbol_processing
844 #define elf_backend_print_symbol_all \
845 elf64_sparc_print_symbol_all
846 #define elf_backend_output_arch_syms \
847 elf64_sparc_output_arch_syms
848 #define bfd_elf64_bfd_merge_private_bfd_data \
849 elf64_sparc_merge_private_bfd_data
850 #define elf_backend_fake_sections \
851 elf64_sparc_fake_sections
852 #define elf_backend_size_info \
853 elf64_sparc_size_info
854
855 #define elf_backend_plt_sym_val \
856 _bfd_sparc_elf_plt_sym_val
857 #define bfd_elf64_bfd_link_hash_table_create \
858 _bfd_sparc_elf_link_hash_table_create
859 #define elf_info_to_howto \
860 _bfd_sparc_elf_info_to_howto
861 #define elf_backend_copy_indirect_symbol \
862 _bfd_sparc_elf_copy_indirect_symbol
863 #define bfd_elf64_bfd_reloc_type_lookup \
864 _bfd_sparc_elf_reloc_type_lookup
865 #define bfd_elf64_bfd_reloc_name_lookup \
866 _bfd_sparc_elf_reloc_name_lookup
867 #define bfd_elf64_bfd_relax_section \
868 _bfd_sparc_elf_relax_section
869 #define bfd_elf64_new_section_hook \
870 _bfd_sparc_elf_new_section_hook
871
872 #define elf_backend_create_dynamic_sections \
873 _bfd_sparc_elf_create_dynamic_sections
874 #define elf_backend_relocs_compatible \
875 _bfd_elf_relocs_compatible
876 #define elf_backend_check_relocs \
877 _bfd_sparc_elf_check_relocs
878 #define elf_backend_adjust_dynamic_symbol \
879 _bfd_sparc_elf_adjust_dynamic_symbol
880 #define elf_backend_omit_section_dynsym \
881 _bfd_sparc_elf_omit_section_dynsym
882 #define elf_backend_size_dynamic_sections \
883 _bfd_sparc_elf_size_dynamic_sections
884 #define elf_backend_relocate_section \
885 _bfd_sparc_elf_relocate_section
886 #define elf_backend_finish_dynamic_symbol \
887 _bfd_sparc_elf_finish_dynamic_symbol
888 #define elf_backend_finish_dynamic_sections \
889 _bfd_sparc_elf_finish_dynamic_sections
890
891 #define bfd_elf64_mkobject \
892 _bfd_sparc_elf_mkobject
893 #define elf_backend_object_p \
894 _bfd_sparc_elf_object_p
895 #define elf_backend_gc_mark_hook \
896 _bfd_sparc_elf_gc_mark_hook
897 #define elf_backend_gc_sweep_hook \
898 _bfd_sparc_elf_gc_sweep_hook
899 #define elf_backend_init_index_section \
900 _bfd_elf_init_1_index_section
901
902 #define elf_backend_can_gc_sections 1
903 #define elf_backend_can_refcount 1
904 #define elf_backend_want_got_plt 0
905 #define elf_backend_plt_readonly 0
906 #define elf_backend_want_plt_sym 1
907 #define elf_backend_got_header_size 8
908 #define elf_backend_rela_normal 1
909
910 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
911 #define elf_backend_plt_alignment 8
912
913 #include "elf64-target.h"
914
915 /* FreeBSD support */
916 #undef TARGET_BIG_SYM
917 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
918 #undef TARGET_BIG_NAME
919 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
920 #undef ELF_OSABI
921 #define ELF_OSABI ELFOSABI_FREEBSD
922
923 #undef elf_backend_post_process_headers
924 #define elf_backend_post_process_headers _bfd_elf_set_osabi
925 #undef elf64_bed
926 #define elf64_bed elf64_sparc_fbsd_bed
927
928 #include "elf64-target.h"
929
This page took 0.047595 seconds and 5 git commands to generate.