2010-09-24 Thomas Schwinge <thomas@codesourcery.com>
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/sparc.h"
27 #include "opcode/sparc.h"
28 #include "elfxx-sparc.h"
29
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32
33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
34 section can represent up to two relocs, we must tell the user to allocate
35 more space. */
36
37 static long
38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
39 {
40 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
41 }
42
43 static long
44 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
45 {
46 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
47 }
48
49 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
50 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
51 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
52 for the same location, R_SPARC_LO10 and R_SPARC_13. */
53
54 static bfd_boolean
55 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
56 Elf_Internal_Shdr *rel_hdr,
57 asymbol **symbols, bfd_boolean dynamic)
58 {
59 PTR allocated = NULL;
60 bfd_byte *native_relocs;
61 arelent *relent;
62 unsigned int i;
63 int entsize;
64 bfd_size_type count;
65 arelent *relents;
66
67 allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
68 if (allocated == NULL)
69 goto error_return;
70
71 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
72 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
73 goto error_return;
74
75 native_relocs = (bfd_byte *) allocated;
76
77 relents = asect->relocation + canon_reloc_count (asect);
78
79 entsize = rel_hdr->sh_entsize;
80 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
81
82 count = rel_hdr->sh_size / entsize;
83
84 for (i = 0, relent = relents; i < count;
85 i++, relent++, native_relocs += entsize)
86 {
87 Elf_Internal_Rela rela;
88 unsigned int r_type;
89
90 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
91
92 /* The address of an ELF reloc is section relative for an object
93 file, and absolute for an executable file or shared library.
94 The address of a normal BFD reloc is always section relative,
95 and the address of a dynamic reloc is absolute.. */
96 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
97 relent->address = rela.r_offset;
98 else
99 relent->address = rela.r_offset - asect->vma;
100
101 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
102 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
103 else
104 {
105 asymbol **ps, *s;
106
107 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
108 s = *ps;
109
110 /* Canonicalize ELF section symbols. FIXME: Why? */
111 if ((s->flags & BSF_SECTION_SYM) == 0)
112 relent->sym_ptr_ptr = ps;
113 else
114 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
115 }
116
117 relent->addend = rela.r_addend;
118
119 r_type = ELF64_R_TYPE_ID (rela.r_info);
120 if (r_type == R_SPARC_OLO10)
121 {
122 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
123 relent[1].address = relent->address;
124 relent++;
125 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
126 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
127 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
128 }
129 else
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
131 }
132
133 canon_reloc_count (asect) += relent - relents;
134
135 if (allocated != NULL)
136 free (allocated);
137
138 return TRUE;
139
140 error_return:
141 if (allocated != NULL)
142 free (allocated);
143 return FALSE;
144 }
145
146 /* Read in and swap the external relocs. */
147
148 static bfd_boolean
149 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
150 asymbol **symbols, bfd_boolean dynamic)
151 {
152 struct bfd_elf_section_data * const d = elf_section_data (asect);
153 Elf_Internal_Shdr *rel_hdr;
154 Elf_Internal_Shdr *rel_hdr2;
155 bfd_size_type amt;
156
157 if (asect->relocation != NULL)
158 return TRUE;
159
160 if (! dynamic)
161 {
162 if ((asect->flags & SEC_RELOC) == 0
163 || asect->reloc_count == 0)
164 return TRUE;
165
166 rel_hdr = &d->rel_hdr;
167 rel_hdr2 = d->rel_hdr2;
168
169 BFD_ASSERT (asect->rel_filepos == rel_hdr->sh_offset
170 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
171 }
172 else
173 {
174 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
175 case because relocations against this section may use the
176 dynamic symbol table, and in that case bfd_section_from_shdr
177 in elf.c does not update the RELOC_COUNT. */
178 if (asect->size == 0)
179 return TRUE;
180
181 rel_hdr = &d->this_hdr;
182 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
183 rel_hdr2 = NULL;
184 }
185
186 amt = asect->reloc_count;
187 amt *= 2 * sizeof (arelent);
188 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
189 if (asect->relocation == NULL)
190 return FALSE;
191
192 /* The elf64_sparc_slurp_one_reloc_table routine increments
193 canon_reloc_count. */
194 canon_reloc_count (asect) = 0;
195
196 if (!elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
197 dynamic))
198 return FALSE;
199
200 if (rel_hdr2
201 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
202 dynamic))
203 return FALSE;
204
205 return TRUE;
206 }
207
208 /* Canonicalize the relocs. */
209
210 static long
211 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
212 arelent **relptr, asymbol **symbols)
213 {
214 arelent *tblptr;
215 unsigned int i;
216 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
217
218 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
219 return -1;
220
221 tblptr = section->relocation;
222 for (i = 0; i < canon_reloc_count (section); i++)
223 *relptr++ = tblptr++;
224
225 *relptr = NULL;
226
227 return canon_reloc_count (section);
228 }
229
230
231 /* Canonicalize the dynamic relocation entries. Note that we return
232 the dynamic relocations as a single block, although they are
233 actually associated with particular sections; the interface, which
234 was designed for SunOS style shared libraries, expects that there
235 is only one set of dynamic relocs. Any section that was actually
236 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
237 the dynamic symbol table, is considered to be a dynamic reloc
238 section. */
239
240 static long
241 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
242 asymbol **syms)
243 {
244 asection *s;
245 long ret;
246
247 if (elf_dynsymtab (abfd) == 0)
248 {
249 bfd_set_error (bfd_error_invalid_operation);
250 return -1;
251 }
252
253 ret = 0;
254 for (s = abfd->sections; s != NULL; s = s->next)
255 {
256 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
257 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
258 {
259 arelent *p;
260 long count, i;
261
262 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
263 return -1;
264 count = canon_reloc_count (s);
265 p = s->relocation;
266 for (i = 0; i < count; i++)
267 *storage++ = p++;
268 ret += count;
269 }
270 }
271
272 *storage = NULL;
273
274 return ret;
275 }
276
277 /* Write out the relocs. */
278
279 static void
280 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
281 {
282 bfd_boolean *failedp = (bfd_boolean *) data;
283 Elf_Internal_Shdr *rela_hdr;
284 bfd_vma addr_offset;
285 Elf64_External_Rela *outbound_relocas, *src_rela;
286 unsigned int idx, count;
287 asymbol *last_sym = 0;
288 int last_sym_idx = 0;
289
290 /* If we have already failed, don't do anything. */
291 if (*failedp)
292 return;
293
294 if ((sec->flags & SEC_RELOC) == 0)
295 return;
296
297 /* The linker backend writes the relocs out itself, and sets the
298 reloc_count field to zero to inhibit writing them here. Also,
299 sometimes the SEC_RELOC flag gets set even when there aren't any
300 relocs. */
301 if (sec->reloc_count == 0)
302 return;
303
304 /* We can combine two relocs that refer to the same address
305 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
306 latter is R_SPARC_13 with no associated symbol. */
307 count = 0;
308 for (idx = 0; idx < sec->reloc_count; idx++)
309 {
310 bfd_vma addr;
311
312 ++count;
313
314 addr = sec->orelocation[idx]->address;
315 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
316 && idx < sec->reloc_count - 1)
317 {
318 arelent *r = sec->orelocation[idx + 1];
319
320 if (r->howto->type == R_SPARC_13
321 && r->address == addr
322 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
323 && (*r->sym_ptr_ptr)->value == 0)
324 ++idx;
325 }
326 }
327
328 rela_hdr = &elf_section_data (sec)->rel_hdr;
329
330 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
331 rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
332 if (rela_hdr->contents == NULL)
333 {
334 *failedp = TRUE;
335 return;
336 }
337
338 /* Figure out whether the relocations are RELA or REL relocations. */
339 if (rela_hdr->sh_type != SHT_RELA)
340 abort ();
341
342 /* The address of an ELF reloc is section relative for an object
343 file, and absolute for an executable file or shared library.
344 The address of a BFD reloc is always section relative. */
345 addr_offset = 0;
346 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
347 addr_offset = sec->vma;
348
349 /* orelocation has the data, reloc_count has the count... */
350 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
351 src_rela = outbound_relocas;
352
353 for (idx = 0; idx < sec->reloc_count; idx++)
354 {
355 Elf_Internal_Rela dst_rela;
356 arelent *ptr;
357 asymbol *sym;
358 int n;
359
360 ptr = sec->orelocation[idx];
361 sym = *ptr->sym_ptr_ptr;
362 if (sym == last_sym)
363 n = last_sym_idx;
364 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
365 n = STN_UNDEF;
366 else
367 {
368 last_sym = sym;
369 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
370 if (n < 0)
371 {
372 *failedp = TRUE;
373 return;
374 }
375 last_sym_idx = n;
376 }
377
378 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
379 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
380 && ! _bfd_elf_validate_reloc (abfd, ptr))
381 {
382 *failedp = TRUE;
383 return;
384 }
385
386 if (ptr->howto->type == R_SPARC_LO10
387 && idx < sec->reloc_count - 1)
388 {
389 arelent *r = sec->orelocation[idx + 1];
390
391 if (r->howto->type == R_SPARC_13
392 && r->address == ptr->address
393 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
394 && (*r->sym_ptr_ptr)->value == 0)
395 {
396 idx++;
397 dst_rela.r_info
398 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
399 R_SPARC_OLO10));
400 }
401 else
402 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
403 }
404 else
405 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
406
407 dst_rela.r_offset = ptr->address + addr_offset;
408 dst_rela.r_addend = ptr->addend;
409
410 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
411 ++src_rela;
412 }
413 }
414 \f
415 /* Hook called by the linker routine which adds symbols from an object
416 file. We use it for STT_REGISTER symbols. */
417
418 static bfd_boolean
419 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
420 Elf_Internal_Sym *sym, const char **namep,
421 flagword *flagsp ATTRIBUTE_UNUSED,
422 asection **secp ATTRIBUTE_UNUSED,
423 bfd_vma *valp ATTRIBUTE_UNUSED)
424 {
425 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
426
427 if ((abfd->flags & DYNAMIC) == 0
428 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
429 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
430
431 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
432 {
433 int reg;
434 struct _bfd_sparc_elf_app_reg *p;
435
436 reg = (int)sym->st_value;
437 switch (reg & ~1)
438 {
439 case 2: reg -= 2; break;
440 case 6: reg -= 4; break;
441 default:
442 (*_bfd_error_handler)
443 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
444 abfd);
445 return FALSE;
446 }
447
448 if (info->output_bfd->xvec != abfd->xvec
449 || (abfd->flags & DYNAMIC) != 0)
450 {
451 /* STT_REGISTER only works when linking an elf64_sparc object.
452 If STT_REGISTER comes from a dynamic object, don't put it into
453 the output bfd. The dynamic linker will recheck it. */
454 *namep = NULL;
455 return TRUE;
456 }
457
458 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
459
460 if (p->name != NULL && strcmp (p->name, *namep))
461 {
462 (*_bfd_error_handler)
463 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
464 abfd, p->abfd, (int) sym->st_value,
465 **namep ? *namep : "#scratch",
466 *p->name ? p->name : "#scratch");
467 return FALSE;
468 }
469
470 if (p->name == NULL)
471 {
472 if (**namep)
473 {
474 struct elf_link_hash_entry *h;
475
476 h = (struct elf_link_hash_entry *)
477 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
478
479 if (h != NULL)
480 {
481 unsigned char type = h->type;
482
483 if (type > STT_FUNC)
484 type = 0;
485 (*_bfd_error_handler)
486 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
487 abfd, p->abfd, *namep, stt_types[type]);
488 return FALSE;
489 }
490
491 p->name = bfd_hash_allocate (&info->hash->table,
492 strlen (*namep) + 1);
493 if (!p->name)
494 return FALSE;
495
496 strcpy (p->name, *namep);
497 }
498 else
499 p->name = "";
500 p->bind = ELF_ST_BIND (sym->st_info);
501 p->abfd = abfd;
502 p->shndx = sym->st_shndx;
503 }
504 else
505 {
506 if (p->bind == STB_WEAK
507 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
508 {
509 p->bind = STB_GLOBAL;
510 p->abfd = abfd;
511 }
512 }
513 *namep = NULL;
514 return TRUE;
515 }
516 else if (*namep && **namep
517 && info->output_bfd->xvec == abfd->xvec)
518 {
519 int i;
520 struct _bfd_sparc_elf_app_reg *p;
521
522 p = _bfd_sparc_elf_hash_table(info)->app_regs;
523 for (i = 0; i < 4; i++, p++)
524 if (p->name != NULL && ! strcmp (p->name, *namep))
525 {
526 unsigned char type = ELF_ST_TYPE (sym->st_info);
527
528 if (type > STT_FUNC)
529 type = 0;
530 (*_bfd_error_handler)
531 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
532 abfd, p->abfd, *namep, stt_types[type]);
533 return FALSE;
534 }
535 }
536 return TRUE;
537 }
538
539 /* This function takes care of emitting STT_REGISTER symbols
540 which we cannot easily keep in the symbol hash table. */
541
542 static bfd_boolean
543 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
544 struct bfd_link_info *info,
545 PTR finfo,
546 int (*func) (PTR, const char *,
547 Elf_Internal_Sym *,
548 asection *,
549 struct elf_link_hash_entry *))
550 {
551 int reg;
552 struct _bfd_sparc_elf_app_reg *app_regs =
553 _bfd_sparc_elf_hash_table(info)->app_regs;
554 Elf_Internal_Sym sym;
555
556 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
557 at the end of the dynlocal list, so they came at the end of the local
558 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
559 to back up symtab->sh_info. */
560 if (elf_hash_table (info)->dynlocal)
561 {
562 bfd * dynobj = elf_hash_table (info)->dynobj;
563 asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
564 struct elf_link_local_dynamic_entry *e;
565
566 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
567 if (e->input_indx == -1)
568 break;
569 if (e)
570 {
571 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
572 = e->dynindx;
573 }
574 }
575
576 if (info->strip == strip_all)
577 return TRUE;
578
579 for (reg = 0; reg < 4; reg++)
580 if (app_regs [reg].name != NULL)
581 {
582 if (info->strip == strip_some
583 && bfd_hash_lookup (info->keep_hash,
584 app_regs [reg].name,
585 FALSE, FALSE) == NULL)
586 continue;
587
588 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
589 sym.st_size = 0;
590 sym.st_other = 0;
591 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
592 sym.st_shndx = app_regs [reg].shndx;
593 if ((*func) (finfo, app_regs [reg].name, &sym,
594 sym.st_shndx == SHN_ABS
595 ? bfd_abs_section_ptr : bfd_und_section_ptr,
596 NULL) != 1)
597 return FALSE;
598 }
599
600 return TRUE;
601 }
602
603 static int
604 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
605 {
606 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
607 return STT_REGISTER;
608 else
609 return type;
610 }
611
612 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
613 even in SHN_UNDEF section. */
614
615 static void
616 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
617 {
618 elf_symbol_type *elfsym;
619
620 elfsym = (elf_symbol_type *) asym;
621 if (elfsym->internal_elf_sym.st_info
622 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
623 {
624 asym->flags |= BSF_GLOBAL;
625 }
626 }
627
628 \f
629 /* Functions for dealing with the e_flags field. */
630
631 /* Merge backend specific data from an object file to the output
632 object file when linking. */
633
634 static bfd_boolean
635 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
636 {
637 bfd_boolean error;
638 flagword new_flags, old_flags;
639 int new_mm, old_mm;
640
641 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
642 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
643 return TRUE;
644
645 new_flags = elf_elfheader (ibfd)->e_flags;
646 old_flags = elf_elfheader (obfd)->e_flags;
647
648 if (!elf_flags_init (obfd)) /* First call, no flags set */
649 {
650 elf_flags_init (obfd) = TRUE;
651 elf_elfheader (obfd)->e_flags = new_flags;
652 }
653
654 else if (new_flags == old_flags) /* Compatible flags are ok */
655 ;
656
657 else /* Incompatible flags */
658 {
659 error = FALSE;
660
661 #define EF_SPARC_ISA_EXTENSIONS \
662 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
663
664 if ((ibfd->flags & DYNAMIC) != 0)
665 {
666 /* We don't want dynamic objects memory ordering and
667 architecture to have any role. That's what dynamic linker
668 should do. */
669 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
670 new_flags |= (old_flags
671 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
672 }
673 else
674 {
675 /* Choose the highest architecture requirements. */
676 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
677 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
678 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
679 && (old_flags & EF_SPARC_HAL_R1))
680 {
681 error = TRUE;
682 (*_bfd_error_handler)
683 (_("%B: linking UltraSPARC specific with HAL specific code"),
684 ibfd);
685 }
686 /* Choose the most restrictive memory ordering. */
687 old_mm = (old_flags & EF_SPARCV9_MM);
688 new_mm = (new_flags & EF_SPARCV9_MM);
689 old_flags &= ~EF_SPARCV9_MM;
690 new_flags &= ~EF_SPARCV9_MM;
691 if (new_mm < old_mm)
692 old_mm = new_mm;
693 old_flags |= old_mm;
694 new_flags |= old_mm;
695 }
696
697 /* Warn about any other mismatches */
698 if (new_flags != old_flags)
699 {
700 error = TRUE;
701 (*_bfd_error_handler)
702 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
703 ibfd, (long) new_flags, (long) old_flags);
704 }
705
706 elf_elfheader (obfd)->e_flags = old_flags;
707
708 if (error)
709 {
710 bfd_set_error (bfd_error_bad_value);
711 return FALSE;
712 }
713 }
714 return TRUE;
715 }
716
717 /* MARCO: Set the correct entry size for the .stab section. */
718
719 static bfd_boolean
720 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
721 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
722 asection *sec)
723 {
724 const char *name;
725
726 name = bfd_get_section_name (abfd, sec);
727
728 if (strcmp (name, ".stab") == 0)
729 {
730 /* Even in the 64bit case the stab entries are only 12 bytes long. */
731 elf_section_data (sec)->this_hdr.sh_entsize = 12;
732 }
733
734 return TRUE;
735 }
736 \f
737 /* Print a STT_REGISTER symbol to file FILE. */
738
739 static const char *
740 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
741 asymbol *symbol)
742 {
743 FILE *file = (FILE *) filep;
744 int reg, type;
745
746 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
747 != STT_REGISTER)
748 return NULL;
749
750 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
751 type = symbol->flags;
752 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
753 ((type & BSF_LOCAL)
754 ? (type & BSF_GLOBAL) ? '!' : 'l'
755 : (type & BSF_GLOBAL) ? 'g' : ' '),
756 (type & BSF_WEAK) ? 'w' : ' ');
757 if (symbol->name == NULL || symbol->name [0] == '\0')
758 return "#scratch";
759 else
760 return symbol->name;
761 }
762 \f
763 static enum elf_reloc_type_class
764 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
765 {
766 switch ((int) ELF64_R_TYPE (rela->r_info))
767 {
768 case R_SPARC_RELATIVE:
769 return reloc_class_relative;
770 case R_SPARC_JMP_SLOT:
771 return reloc_class_plt;
772 case R_SPARC_COPY:
773 return reloc_class_copy;
774 default:
775 return reloc_class_normal;
776 }
777 }
778
779 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
780 standard ELF, because R_SPARC_OLO10 has secondary addend in
781 ELF64_R_TYPE_DATA field. This structure is used to redirect the
782 relocation handling routines. */
783
784 const struct elf_size_info elf64_sparc_size_info =
785 {
786 sizeof (Elf64_External_Ehdr),
787 sizeof (Elf64_External_Phdr),
788 sizeof (Elf64_External_Shdr),
789 sizeof (Elf64_External_Rel),
790 sizeof (Elf64_External_Rela),
791 sizeof (Elf64_External_Sym),
792 sizeof (Elf64_External_Dyn),
793 sizeof (Elf_External_Note),
794 4, /* hash-table entry size. */
795 /* Internal relocations per external relocations.
796 For link purposes we use just 1 internal per
797 1 external, for assembly and slurp symbol table
798 we use 2. */
799 1,
800 64, /* arch_size. */
801 3, /* log_file_align. */
802 ELFCLASS64,
803 EV_CURRENT,
804 bfd_elf64_write_out_phdrs,
805 bfd_elf64_write_shdrs_and_ehdr,
806 bfd_elf64_checksum_contents,
807 elf64_sparc_write_relocs,
808 bfd_elf64_swap_symbol_in,
809 bfd_elf64_swap_symbol_out,
810 elf64_sparc_slurp_reloc_table,
811 bfd_elf64_slurp_symbol_table,
812 bfd_elf64_swap_dyn_in,
813 bfd_elf64_swap_dyn_out,
814 bfd_elf64_swap_reloc_in,
815 bfd_elf64_swap_reloc_out,
816 bfd_elf64_swap_reloca_in,
817 bfd_elf64_swap_reloca_out
818 };
819
820 #define TARGET_BIG_SYM bfd_elf64_sparc_vec
821 #define TARGET_BIG_NAME "elf64-sparc"
822 #define ELF_ARCH bfd_arch_sparc
823 #define ELF_MAXPAGESIZE 0x100000
824 #define ELF_COMMONPAGESIZE 0x2000
825
826 /* This is the official ABI value. */
827 #define ELF_MACHINE_CODE EM_SPARCV9
828
829 /* This is the value that we used before the ABI was released. */
830 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
831
832 #define elf_backend_reloc_type_class \
833 elf64_sparc_reloc_type_class
834 #define bfd_elf64_get_reloc_upper_bound \
835 elf64_sparc_get_reloc_upper_bound
836 #define bfd_elf64_get_dynamic_reloc_upper_bound \
837 elf64_sparc_get_dynamic_reloc_upper_bound
838 #define bfd_elf64_canonicalize_reloc \
839 elf64_sparc_canonicalize_reloc
840 #define bfd_elf64_canonicalize_dynamic_reloc \
841 elf64_sparc_canonicalize_dynamic_reloc
842 #define elf_backend_add_symbol_hook \
843 elf64_sparc_add_symbol_hook
844 #define elf_backend_get_symbol_type \
845 elf64_sparc_get_symbol_type
846 #define elf_backend_symbol_processing \
847 elf64_sparc_symbol_processing
848 #define elf_backend_print_symbol_all \
849 elf64_sparc_print_symbol_all
850 #define elf_backend_output_arch_syms \
851 elf64_sparc_output_arch_syms
852 #define bfd_elf64_bfd_merge_private_bfd_data \
853 elf64_sparc_merge_private_bfd_data
854 #define elf_backend_fake_sections \
855 elf64_sparc_fake_sections
856 #define elf_backend_size_info \
857 elf64_sparc_size_info
858
859 #define elf_backend_plt_sym_val \
860 _bfd_sparc_elf_plt_sym_val
861 #define bfd_elf64_bfd_link_hash_table_create \
862 _bfd_sparc_elf_link_hash_table_create
863 #define bfd_elf64_bfd_link_hash_table_free \
864 _bfd_sparc_elf_link_hash_table_free
865 #define elf_info_to_howto \
866 _bfd_sparc_elf_info_to_howto
867 #define elf_backend_copy_indirect_symbol \
868 _bfd_sparc_elf_copy_indirect_symbol
869 #define bfd_elf64_bfd_reloc_type_lookup \
870 _bfd_sparc_elf_reloc_type_lookup
871 #define bfd_elf64_bfd_reloc_name_lookup \
872 _bfd_sparc_elf_reloc_name_lookup
873 #define bfd_elf64_bfd_relax_section \
874 _bfd_sparc_elf_relax_section
875 #define bfd_elf64_new_section_hook \
876 _bfd_sparc_elf_new_section_hook
877
878 #define elf_backend_create_dynamic_sections \
879 _bfd_sparc_elf_create_dynamic_sections
880 #define elf_backend_relocs_compatible \
881 _bfd_elf_relocs_compatible
882 #define elf_backend_check_relocs \
883 _bfd_sparc_elf_check_relocs
884 #define elf_backend_adjust_dynamic_symbol \
885 _bfd_sparc_elf_adjust_dynamic_symbol
886 #define elf_backend_omit_section_dynsym \
887 _bfd_sparc_elf_omit_section_dynsym
888 #define elf_backend_size_dynamic_sections \
889 _bfd_sparc_elf_size_dynamic_sections
890 #define elf_backend_relocate_section \
891 _bfd_sparc_elf_relocate_section
892 #define elf_backend_finish_dynamic_symbol \
893 _bfd_sparc_elf_finish_dynamic_symbol
894 #define elf_backend_finish_dynamic_sections \
895 _bfd_sparc_elf_finish_dynamic_sections
896
897 #define bfd_elf64_mkobject \
898 _bfd_sparc_elf_mkobject
899 #define elf_backend_object_p \
900 _bfd_sparc_elf_object_p
901 #define elf_backend_gc_mark_hook \
902 _bfd_sparc_elf_gc_mark_hook
903 #define elf_backend_gc_sweep_hook \
904 _bfd_sparc_elf_gc_sweep_hook
905 #define elf_backend_init_index_section \
906 _bfd_elf_init_1_index_section
907
908 #define elf_backend_can_gc_sections 1
909 #define elf_backend_can_refcount 1
910 #define elf_backend_want_got_plt 0
911 #define elf_backend_plt_readonly 0
912 #define elf_backend_want_plt_sym 1
913 #define elf_backend_got_header_size 8
914 #define elf_backend_rela_normal 1
915
916 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
917 #define elf_backend_plt_alignment 8
918
919 #define elf_backend_post_process_headers _bfd_elf_set_osabi
920
921 #include "elf64-target.h"
922
923 /* FreeBSD support */
924 #undef TARGET_BIG_SYM
925 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
926 #undef TARGET_BIG_NAME
927 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
928 #undef ELF_OSABI
929 #define ELF_OSABI ELFOSABI_FREEBSD
930
931 #undef elf64_bed
932 #define elf64_bed elf64_sparc_fbsd_bed
933
934 #include "elf64-target.h"
935
This page took 0.096743 seconds and 5 git commands to generate.