bfd_error_handler bfd_vma and bfd_size_type args
[deliverable/binutils-gdb.git] / bfd / elf64-sparc.c
1 /* SPARC-specific support for 64-bit ELF
2 Copyright (C) 1993-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33 section can represent up to two relocs, we must tell the user to allocate
34 more space. */
35
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39 return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47
48 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of
49 them. We cannot use generic elf routines for this, because R_SPARC_OLO10
50 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations
51 for the same location, R_SPARC_LO10 and R_SPARC_13. */
52
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 Elf_Internal_Shdr *rel_hdr,
56 asymbol **symbols, bfd_boolean dynamic)
57 {
58 void * allocated = NULL;
59 bfd_byte *native_relocs;
60 arelent *relent;
61 unsigned int i;
62 int entsize;
63 bfd_size_type count;
64 arelent *relents;
65
66 allocated = bfd_malloc (rel_hdr->sh_size);
67 if (allocated == NULL)
68 goto error_return;
69
70 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72 goto error_return;
73
74 native_relocs = (bfd_byte *) allocated;
75
76 relents = asect->relocation + canon_reloc_count (asect);
77
78 entsize = rel_hdr->sh_entsize;
79 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80
81 count = rel_hdr->sh_size / entsize;
82
83 for (i = 0, relent = relents; i < count;
84 i++, relent++, native_relocs += entsize)
85 {
86 Elf_Internal_Rela rela;
87 unsigned int r_type;
88
89 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90
91 /* The address of an ELF reloc is section relative for an object
92 file, and absolute for an executable file or shared library.
93 The address of a normal BFD reloc is always section relative,
94 and the address of a dynamic reloc is absolute.. */
95 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 relent->address = rela.r_offset;
97 else
98 relent->address = rela.r_offset - asect->vma;
99
100 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101 /* PR 17512: file: 996185f8. */
102 || (!dynamic && ELF64_R_SYM(rela.r_info) > bfd_get_symcount(abfd))
103 || (dynamic
104 && ELF64_R_SYM(rela.r_info) > bfd_get_dynamic_symcount(abfd)))
105 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
106 else
107 {
108 asymbol **ps, *s;
109
110 ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
111 s = *ps;
112
113 /* Canonicalize ELF section symbols. FIXME: Why? */
114 if ((s->flags & BSF_SECTION_SYM) == 0)
115 relent->sym_ptr_ptr = ps;
116 else
117 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
118 }
119
120 relent->addend = rela.r_addend;
121
122 r_type = ELF64_R_TYPE_ID (rela.r_info);
123 if (r_type == R_SPARC_OLO10)
124 {
125 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
126 relent[1].address = relent->address;
127 relent++;
128 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
129 relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
130 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
131 }
132 else
133 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
134 }
135
136 canon_reloc_count (asect) += relent - relents;
137
138 if (allocated != NULL)
139 free (allocated);
140
141 return TRUE;
142
143 error_return:
144 if (allocated != NULL)
145 free (allocated);
146 return FALSE;
147 }
148
149 /* Read in and swap the external relocs. */
150
151 static bfd_boolean
152 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
153 asymbol **symbols, bfd_boolean dynamic)
154 {
155 struct bfd_elf_section_data * const d = elf_section_data (asect);
156 Elf_Internal_Shdr *rel_hdr;
157 Elf_Internal_Shdr *rel_hdr2;
158 bfd_size_type amt;
159
160 if (asect->relocation != NULL)
161 return TRUE;
162
163 if (! dynamic)
164 {
165 if ((asect->flags & SEC_RELOC) == 0
166 || asect->reloc_count == 0)
167 return TRUE;
168
169 rel_hdr = d->rel.hdr;
170 rel_hdr2 = d->rela.hdr;
171
172 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
173 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
174 }
175 else
176 {
177 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
178 case because relocations against this section may use the
179 dynamic symbol table, and in that case bfd_section_from_shdr
180 in elf.c does not update the RELOC_COUNT. */
181 if (asect->size == 0)
182 return TRUE;
183
184 rel_hdr = &d->this_hdr;
185 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
186 rel_hdr2 = NULL;
187 }
188
189 amt = asect->reloc_count;
190 amt *= 2 * sizeof (arelent);
191 asect->relocation = (arelent *) bfd_alloc (abfd, amt);
192 if (asect->relocation == NULL)
193 return FALSE;
194
195 /* The elf64_sparc_slurp_one_reloc_table routine increments
196 canon_reloc_count. */
197 canon_reloc_count (asect) = 0;
198
199 if (rel_hdr
200 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
201 dynamic))
202 return FALSE;
203
204 if (rel_hdr2
205 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
206 dynamic))
207 return FALSE;
208
209 return TRUE;
210 }
211
212 /* Canonicalize the relocs. */
213
214 static long
215 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
216 arelent **relptr, asymbol **symbols)
217 {
218 arelent *tblptr;
219 unsigned int i;
220 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
221
222 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
223 return -1;
224
225 tblptr = section->relocation;
226 for (i = 0; i < canon_reloc_count (section); i++)
227 *relptr++ = tblptr++;
228
229 *relptr = NULL;
230
231 return canon_reloc_count (section);
232 }
233
234
235 /* Canonicalize the dynamic relocation entries. Note that we return
236 the dynamic relocations as a single block, although they are
237 actually associated with particular sections; the interface, which
238 was designed for SunOS style shared libraries, expects that there
239 is only one set of dynamic relocs. Any section that was actually
240 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
241 the dynamic symbol table, is considered to be a dynamic reloc
242 section. */
243
244 static long
245 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
246 asymbol **syms)
247 {
248 asection *s;
249 long ret;
250
251 if (elf_dynsymtab (abfd) == 0)
252 {
253 bfd_set_error (bfd_error_invalid_operation);
254 return -1;
255 }
256
257 ret = 0;
258 for (s = abfd->sections; s != NULL; s = s->next)
259 {
260 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
261 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
262 {
263 arelent *p;
264 long count, i;
265
266 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
267 return -1;
268 count = canon_reloc_count (s);
269 p = s->relocation;
270 for (i = 0; i < count; i++)
271 *storage++ = p++;
272 ret += count;
273 }
274 }
275
276 *storage = NULL;
277
278 return ret;
279 }
280
281 /* Install a new set of internal relocs. */
282
283 static void
284 elf64_sparc_set_reloc (bfd *abfd ATTRIBUTE_UNUSED,
285 asection *asect,
286 arelent **location,
287 unsigned int count)
288 {
289 asect->orelocation = location;
290 canon_reloc_count (asect) = count;
291 }
292
293 /* Write out the relocs. */
294
295 static void
296 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
297 {
298 bfd_boolean *failedp = (bfd_boolean *) data;
299 Elf_Internal_Shdr *rela_hdr;
300 bfd_vma addr_offset;
301 Elf64_External_Rela *outbound_relocas, *src_rela;
302 unsigned int idx, count;
303 asymbol *last_sym = 0;
304 int last_sym_idx = 0;
305
306 /* If we have already failed, don't do anything. */
307 if (*failedp)
308 return;
309
310 if ((sec->flags & SEC_RELOC) == 0)
311 return;
312
313 /* The linker backend writes the relocs out itself, and sets the
314 reloc_count field to zero to inhibit writing them here. Also,
315 sometimes the SEC_RELOC flag gets set even when there aren't any
316 relocs. */
317 if (canon_reloc_count (sec) == 0)
318 return;
319
320 /* We can combine two relocs that refer to the same address
321 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
322 latter is R_SPARC_13 with no associated symbol. */
323 count = 0;
324 for (idx = 0; idx < canon_reloc_count (sec); idx++)
325 {
326 bfd_vma addr;
327
328 ++count;
329
330 addr = sec->orelocation[idx]->address;
331 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
332 && idx < canon_reloc_count (sec) - 1)
333 {
334 arelent *r = sec->orelocation[idx + 1];
335
336 if (r->howto->type == R_SPARC_13
337 && r->address == addr
338 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
339 && (*r->sym_ptr_ptr)->value == 0)
340 ++idx;
341 }
342 }
343
344 rela_hdr = elf_section_data (sec)->rela.hdr;
345
346 rela_hdr->sh_size = rela_hdr->sh_entsize * count;
347 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
348 if (rela_hdr->contents == NULL)
349 {
350 *failedp = TRUE;
351 return;
352 }
353
354 /* Figure out whether the relocations are RELA or REL relocations. */
355 if (rela_hdr->sh_type != SHT_RELA)
356 abort ();
357
358 /* The address of an ELF reloc is section relative for an object
359 file, and absolute for an executable file or shared library.
360 The address of a BFD reloc is always section relative. */
361 addr_offset = 0;
362 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
363 addr_offset = sec->vma;
364
365 /* orelocation has the data, reloc_count has the count... */
366 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
367 src_rela = outbound_relocas;
368
369 for (idx = 0; idx < canon_reloc_count (sec); idx++)
370 {
371 Elf_Internal_Rela dst_rela;
372 arelent *ptr;
373 asymbol *sym;
374 int n;
375
376 ptr = sec->orelocation[idx];
377 sym = *ptr->sym_ptr_ptr;
378 if (sym == last_sym)
379 n = last_sym_idx;
380 else if (bfd_is_abs_section (sym->section) && sym->value == 0)
381 n = STN_UNDEF;
382 else
383 {
384 last_sym = sym;
385 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
386 if (n < 0)
387 {
388 *failedp = TRUE;
389 return;
390 }
391 last_sym_idx = n;
392 }
393
394 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
395 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
396 && ! _bfd_elf_validate_reloc (abfd, ptr))
397 {
398 *failedp = TRUE;
399 return;
400 }
401
402 if (ptr->howto->type == R_SPARC_LO10
403 && idx < canon_reloc_count (sec) - 1)
404 {
405 arelent *r = sec->orelocation[idx + 1];
406
407 if (r->howto->type == R_SPARC_13
408 && r->address == ptr->address
409 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
410 && (*r->sym_ptr_ptr)->value == 0)
411 {
412 idx++;
413 dst_rela.r_info
414 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
415 R_SPARC_OLO10));
416 }
417 else
418 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
419 }
420 else
421 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
422
423 dst_rela.r_offset = ptr->address + addr_offset;
424 dst_rela.r_addend = ptr->addend;
425
426 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
427 ++src_rela;
428 }
429 }
430 \f
431 /* Hook called by the linker routine which adds symbols from an object
432 file. We use it for STT_REGISTER symbols. */
433
434 static bfd_boolean
435 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
436 Elf_Internal_Sym *sym, const char **namep,
437 flagword *flagsp ATTRIBUTE_UNUSED,
438 asection **secp ATTRIBUTE_UNUSED,
439 bfd_vma *valp ATTRIBUTE_UNUSED)
440 {
441 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
442
443 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
444 && (abfd->flags & DYNAMIC) == 0
445 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
446 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
447
448 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
449 {
450 int reg;
451 struct _bfd_sparc_elf_app_reg *p;
452
453 reg = (int)sym->st_value;
454 switch (reg & ~1)
455 {
456 case 2: reg -= 2; break;
457 case 6: reg -= 4; break;
458 default:
459 _bfd_error_handler
460 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
461 abfd);
462 return FALSE;
463 }
464
465 if (info->output_bfd->xvec != abfd->xvec
466 || (abfd->flags & DYNAMIC) != 0)
467 {
468 /* STT_REGISTER only works when linking an elf64_sparc object.
469 If STT_REGISTER comes from a dynamic object, don't put it into
470 the output bfd. The dynamic linker will recheck it. */
471 *namep = NULL;
472 return TRUE;
473 }
474
475 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
476
477 if (p->name != NULL && strcmp (p->name, *namep))
478 {
479 _bfd_error_handler
480 /* xgettext:c-format */
481 (_("Register %%g%d used incompatibly: %s in %B,"
482 " previously %s in %B"),
483 (int) sym->st_value, **namep ? *namep : "#scratch", abfd,
484 *p->name ? p->name : "#scratch", p->abfd);
485 return FALSE;
486 }
487
488 if (p->name == NULL)
489 {
490 if (**namep)
491 {
492 struct elf_link_hash_entry *h;
493
494 h = (struct elf_link_hash_entry *)
495 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
496
497 if (h != NULL)
498 {
499 unsigned char type = h->type;
500
501 if (type > STT_FUNC)
502 type = 0;
503 _bfd_error_handler
504 /* xgettext:c-format */
505 (_("Symbol `%s' has differing types: REGISTER in %B,"
506 " previously %s in %B"),
507 *namep, abfd, stt_types[type], p->abfd);
508 return FALSE;
509 }
510
511 p->name = bfd_hash_allocate (&info->hash->table,
512 strlen (*namep) + 1);
513 if (!p->name)
514 return FALSE;
515
516 strcpy (p->name, *namep);
517 }
518 else
519 p->name = "";
520 p->bind = ELF_ST_BIND (sym->st_info);
521 p->abfd = abfd;
522 p->shndx = sym->st_shndx;
523 }
524 else
525 {
526 if (p->bind == STB_WEAK
527 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
528 {
529 p->bind = STB_GLOBAL;
530 p->abfd = abfd;
531 }
532 }
533 *namep = NULL;
534 return TRUE;
535 }
536 else if (*namep && **namep
537 && info->output_bfd->xvec == abfd->xvec)
538 {
539 int i;
540 struct _bfd_sparc_elf_app_reg *p;
541
542 p = _bfd_sparc_elf_hash_table(info)->app_regs;
543 for (i = 0; i < 4; i++, p++)
544 if (p->name != NULL && ! strcmp (p->name, *namep))
545 {
546 unsigned char type = ELF_ST_TYPE (sym->st_info);
547
548 if (type > STT_FUNC)
549 type = 0;
550 _bfd_error_handler
551 /* xgettext:c-format */
552 (_("Symbol `%s' has differing types: %s in %B,"
553 " previously REGISTER in %B"),
554 *namep, stt_types[type], abfd, p->abfd);
555 return FALSE;
556 }
557 }
558 return TRUE;
559 }
560
561 /* This function takes care of emitting STT_REGISTER symbols
562 which we cannot easily keep in the symbol hash table. */
563
564 static bfd_boolean
565 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
566 struct bfd_link_info *info,
567 void * flaginfo,
568 int (*func) (void *, const char *,
569 Elf_Internal_Sym *,
570 asection *,
571 struct elf_link_hash_entry *))
572 {
573 int reg;
574 struct _bfd_sparc_elf_app_reg *app_regs =
575 _bfd_sparc_elf_hash_table(info)->app_regs;
576 Elf_Internal_Sym sym;
577
578 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
579 at the end of the dynlocal list, so they came at the end of the local
580 symbols in the symtab. Except that they aren't STB_LOCAL, so we need
581 to back up symtab->sh_info. */
582 if (elf_hash_table (info)->dynlocal)
583 {
584 bfd * dynobj = elf_hash_table (info)->dynobj;
585 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
586 struct elf_link_local_dynamic_entry *e;
587
588 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
589 if (e->input_indx == -1)
590 break;
591 if (e)
592 {
593 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
594 = e->dynindx;
595 }
596 }
597
598 if (info->strip == strip_all)
599 return TRUE;
600
601 for (reg = 0; reg < 4; reg++)
602 if (app_regs [reg].name != NULL)
603 {
604 if (info->strip == strip_some
605 && bfd_hash_lookup (info->keep_hash,
606 app_regs [reg].name,
607 FALSE, FALSE) == NULL)
608 continue;
609
610 sym.st_value = reg < 2 ? reg + 2 : reg + 4;
611 sym.st_size = 0;
612 sym.st_other = 0;
613 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
614 sym.st_shndx = app_regs [reg].shndx;
615 sym.st_target_internal = 0;
616 if ((*func) (flaginfo, app_regs [reg].name, &sym,
617 sym.st_shndx == SHN_ABS
618 ? bfd_abs_section_ptr : bfd_und_section_ptr,
619 NULL) != 1)
620 return FALSE;
621 }
622
623 return TRUE;
624 }
625
626 static int
627 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
628 {
629 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
630 return STT_REGISTER;
631 else
632 return type;
633 }
634
635 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
636 even in SHN_UNDEF section. */
637
638 static void
639 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
640 {
641 elf_symbol_type *elfsym;
642
643 elfsym = (elf_symbol_type *) asym;
644 if (elfsym->internal_elf_sym.st_info
645 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
646 {
647 asym->flags |= BSF_GLOBAL;
648 }
649 }
650
651 \f
652 /* Functions for dealing with the e_flags field. */
653
654 /* Merge backend specific data from an object file to the output
655 object file when linking. */
656
657 static bfd_boolean
658 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
659 {
660 bfd *obfd = info->output_bfd;
661 bfd_boolean error;
662 flagword new_flags, old_flags;
663 int new_mm, old_mm;
664
665 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
666 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
667 return TRUE;
668
669 new_flags = elf_elfheader (ibfd)->e_flags;
670 old_flags = elf_elfheader (obfd)->e_flags;
671
672 if (!elf_flags_init (obfd)) /* First call, no flags set */
673 {
674 elf_flags_init (obfd) = TRUE;
675 elf_elfheader (obfd)->e_flags = new_flags;
676 }
677
678 else if (new_flags == old_flags) /* Compatible flags are ok */
679 ;
680
681 else /* Incompatible flags */
682 {
683 error = FALSE;
684
685 #define EF_SPARC_ISA_EXTENSIONS \
686 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
687
688 if ((ibfd->flags & DYNAMIC) != 0)
689 {
690 /* We don't want dynamic objects memory ordering and
691 architecture to have any role. That's what dynamic linker
692 should do. */
693 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
694 new_flags |= (old_flags
695 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
696 }
697 else
698 {
699 /* Choose the highest architecture requirements. */
700 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
701 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
702 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
703 && (old_flags & EF_SPARC_HAL_R1))
704 {
705 error = TRUE;
706 _bfd_error_handler
707 (_("%B: linking UltraSPARC specific with HAL specific code"),
708 ibfd);
709 }
710 /* Choose the most restrictive memory ordering. */
711 old_mm = (old_flags & EF_SPARCV9_MM);
712 new_mm = (new_flags & EF_SPARCV9_MM);
713 old_flags &= ~EF_SPARCV9_MM;
714 new_flags &= ~EF_SPARCV9_MM;
715 if (new_mm < old_mm)
716 old_mm = new_mm;
717 old_flags |= old_mm;
718 new_flags |= old_mm;
719 }
720
721 /* Warn about any other mismatches */
722 if (new_flags != old_flags)
723 {
724 error = TRUE;
725 _bfd_error_handler
726 /* xgettext:c-format */
727 (_("%B: uses different e_flags (%#x) fields than previous modules (%#x)"),
728 ibfd, new_flags, old_flags);
729 }
730
731 elf_elfheader (obfd)->e_flags = old_flags;
732
733 if (error)
734 {
735 bfd_set_error (bfd_error_bad_value);
736 return FALSE;
737 }
738 }
739 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
740 }
741
742 /* MARCO: Set the correct entry size for the .stab section. */
743
744 static bfd_boolean
745 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
746 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
747 asection *sec)
748 {
749 const char *name;
750
751 name = bfd_get_section_name (abfd, sec);
752
753 if (strcmp (name, ".stab") == 0)
754 {
755 /* Even in the 64bit case the stab entries are only 12 bytes long. */
756 elf_section_data (sec)->this_hdr.sh_entsize = 12;
757 }
758
759 return TRUE;
760 }
761 \f
762 /* Print a STT_REGISTER symbol to file FILE. */
763
764 static const char *
765 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
766 asymbol *symbol)
767 {
768 FILE *file = (FILE *) filep;
769 int reg, type;
770
771 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
772 != STT_REGISTER)
773 return NULL;
774
775 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
776 type = symbol->flags;
777 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "",
778 ((type & BSF_LOCAL)
779 ? (type & BSF_GLOBAL) ? '!' : 'l'
780 : (type & BSF_GLOBAL) ? 'g' : ' '),
781 (type & BSF_WEAK) ? 'w' : ' ');
782 if (symbol->name == NULL || symbol->name [0] == '\0')
783 return "#scratch";
784 else
785 return symbol->name;
786 }
787 \f
788 static enum elf_reloc_type_class
789 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
790 const asection *rel_sec ATTRIBUTE_UNUSED,
791 const Elf_Internal_Rela *rela)
792 {
793 switch ((int) ELF64_R_TYPE (rela->r_info))
794 {
795 case R_SPARC_RELATIVE:
796 return reloc_class_relative;
797 case R_SPARC_JMP_SLOT:
798 return reloc_class_plt;
799 case R_SPARC_COPY:
800 return reloc_class_copy;
801 default:
802 return reloc_class_normal;
803 }
804 }
805
806 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
807 standard ELF, because R_SPARC_OLO10 has secondary addend in
808 ELF64_R_TYPE_DATA field. This structure is used to redirect the
809 relocation handling routines. */
810
811 const struct elf_size_info elf64_sparc_size_info =
812 {
813 sizeof (Elf64_External_Ehdr),
814 sizeof (Elf64_External_Phdr),
815 sizeof (Elf64_External_Shdr),
816 sizeof (Elf64_External_Rel),
817 sizeof (Elf64_External_Rela),
818 sizeof (Elf64_External_Sym),
819 sizeof (Elf64_External_Dyn),
820 sizeof (Elf_External_Note),
821 4, /* hash-table entry size. */
822 /* Internal relocations per external relocations.
823 For link purposes we use just 1 internal per
824 1 external, for assembly and slurp symbol table
825 we use 2. */
826 1,
827 64, /* arch_size. */
828 3, /* log_file_align. */
829 ELFCLASS64,
830 EV_CURRENT,
831 bfd_elf64_write_out_phdrs,
832 bfd_elf64_write_shdrs_and_ehdr,
833 bfd_elf64_checksum_contents,
834 elf64_sparc_write_relocs,
835 bfd_elf64_swap_symbol_in,
836 bfd_elf64_swap_symbol_out,
837 elf64_sparc_slurp_reloc_table,
838 bfd_elf64_slurp_symbol_table,
839 bfd_elf64_swap_dyn_in,
840 bfd_elf64_swap_dyn_out,
841 bfd_elf64_swap_reloc_in,
842 bfd_elf64_swap_reloc_out,
843 bfd_elf64_swap_reloca_in,
844 bfd_elf64_swap_reloca_out
845 };
846
847 #define TARGET_BIG_SYM sparc_elf64_vec
848 #define TARGET_BIG_NAME "elf64-sparc"
849 #define ELF_ARCH bfd_arch_sparc
850 #define ELF_MAXPAGESIZE 0x100000
851 #define ELF_COMMONPAGESIZE 0x2000
852
853 /* This is the official ABI value. */
854 #define ELF_MACHINE_CODE EM_SPARCV9
855
856 /* This is the value that we used before the ABI was released. */
857 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
858
859 #define elf_backend_reloc_type_class \
860 elf64_sparc_reloc_type_class
861 #define bfd_elf64_get_reloc_upper_bound \
862 elf64_sparc_get_reloc_upper_bound
863 #define bfd_elf64_get_dynamic_reloc_upper_bound \
864 elf64_sparc_get_dynamic_reloc_upper_bound
865 #define bfd_elf64_canonicalize_reloc \
866 elf64_sparc_canonicalize_reloc
867 #define bfd_elf64_canonicalize_dynamic_reloc \
868 elf64_sparc_canonicalize_dynamic_reloc
869 #define bfd_elf64_set_reloc \
870 elf64_sparc_set_reloc
871 #define elf_backend_add_symbol_hook \
872 elf64_sparc_add_symbol_hook
873 #define elf_backend_get_symbol_type \
874 elf64_sparc_get_symbol_type
875 #define elf_backend_symbol_processing \
876 elf64_sparc_symbol_processing
877 #define elf_backend_print_symbol_all \
878 elf64_sparc_print_symbol_all
879 #define elf_backend_output_arch_syms \
880 elf64_sparc_output_arch_syms
881 #define bfd_elf64_bfd_merge_private_bfd_data \
882 elf64_sparc_merge_private_bfd_data
883 #define elf_backend_fake_sections \
884 elf64_sparc_fake_sections
885 #define elf_backend_size_info \
886 elf64_sparc_size_info
887
888 #define elf_backend_plt_sym_val \
889 _bfd_sparc_elf_plt_sym_val
890 #define bfd_elf64_bfd_link_hash_table_create \
891 _bfd_sparc_elf_link_hash_table_create
892 #define elf_info_to_howto \
893 _bfd_sparc_elf_info_to_howto
894 #define elf_backend_copy_indirect_symbol \
895 _bfd_sparc_elf_copy_indirect_symbol
896 #define bfd_elf64_bfd_reloc_type_lookup \
897 _bfd_sparc_elf_reloc_type_lookup
898 #define bfd_elf64_bfd_reloc_name_lookup \
899 _bfd_sparc_elf_reloc_name_lookup
900 #define bfd_elf64_bfd_relax_section \
901 _bfd_sparc_elf_relax_section
902 #define bfd_elf64_new_section_hook \
903 _bfd_sparc_elf_new_section_hook
904
905 #define elf_backend_create_dynamic_sections \
906 _bfd_sparc_elf_create_dynamic_sections
907 #define elf_backend_relocs_compatible \
908 _bfd_elf_relocs_compatible
909 #define elf_backend_check_relocs \
910 _bfd_sparc_elf_check_relocs
911 #define elf_backend_adjust_dynamic_symbol \
912 _bfd_sparc_elf_adjust_dynamic_symbol
913 #define elf_backend_omit_section_dynsym \
914 _bfd_sparc_elf_omit_section_dynsym
915 #define elf_backend_size_dynamic_sections \
916 _bfd_sparc_elf_size_dynamic_sections
917 #define elf_backend_relocate_section \
918 _bfd_sparc_elf_relocate_section
919 #define elf_backend_finish_dynamic_symbol \
920 _bfd_sparc_elf_finish_dynamic_symbol
921 #define elf_backend_finish_dynamic_sections \
922 _bfd_sparc_elf_finish_dynamic_sections
923 #define elf_backend_fixup_symbol \
924 _bfd_sparc_elf_fixup_symbol
925
926 #define bfd_elf64_mkobject \
927 _bfd_sparc_elf_mkobject
928 #define elf_backend_object_p \
929 _bfd_sparc_elf_object_p
930 #define elf_backend_gc_mark_hook \
931 _bfd_sparc_elf_gc_mark_hook
932 #define elf_backend_gc_sweep_hook \
933 _bfd_sparc_elf_gc_sweep_hook
934 #define elf_backend_init_index_section \
935 _bfd_elf_init_1_index_section
936
937 #define elf_backend_can_gc_sections 1
938 #define elf_backend_can_refcount 1
939 #define elf_backend_want_got_plt 0
940 #define elf_backend_plt_readonly 0
941 #define elf_backend_want_plt_sym 1
942 #define elf_backend_got_header_size 8
943 #define elf_backend_want_dynrelro 1
944 #define elf_backend_rela_normal 1
945
946 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */
947 #define elf_backend_plt_alignment 8
948
949 #include "elf64-target.h"
950
951 /* FreeBSD support */
952 #undef TARGET_BIG_SYM
953 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
954 #undef TARGET_BIG_NAME
955 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
956 #undef ELF_OSABI
957 #define ELF_OSABI ELFOSABI_FREEBSD
958
959 #undef elf64_bed
960 #define elf64_bed elf64_sparc_fbsd_bed
961
962 #include "elf64-target.h"
963
964 /* Solaris 2. */
965
966 #undef TARGET_BIG_SYM
967 #define TARGET_BIG_SYM sparc_elf64_sol2_vec
968 #undef TARGET_BIG_NAME
969 #define TARGET_BIG_NAME "elf64-sparc-sol2"
970
971 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
972 objects won't be recognized. */
973 #undef ELF_OSABI
974
975 #undef elf64_bed
976 #define elf64_bed elf64_sparc_sol2_bed
977
978 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
979 boundary. */
980 #undef elf_backend_static_tls_alignment
981 #define elf_backend_static_tls_alignment 16
982
983 #include "elf64-target.h"
This page took 0.066212 seconds and 5 git commands to generate.