Correct spelling of "relocatable".
[deliverable/binutils-gdb.git] / bfd / elf64-x86-64.c
1 /* X86-64 specific support for 64-bit ELF
2 Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka <jh@suse.cz>.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "bfd.h"
22 #include "sysdep.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26
27 #include "elf/x86-64.h"
28
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31
32 /* The relocation "howto" table. Order of fields:
33 type, size, bitsize, pc_relative, complain_on_overflow,
34 special_function, name, partial_inplace, src_mask, dst_pack, pcrel_offset. */
35 static reloc_howto_type x86_64_elf_howto_table[] =
36 {
37 HOWTO(R_X86_64_NONE, 0, 0, 0, FALSE, 0, complain_overflow_dont,
38 bfd_elf_generic_reloc, "R_X86_64_NONE", FALSE, 0x00000000, 0x00000000,
39 FALSE),
40 HOWTO(R_X86_64_64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
41 bfd_elf_generic_reloc, "R_X86_64_64", FALSE, MINUS_ONE, MINUS_ONE,
42 FALSE),
43 HOWTO(R_X86_64_PC32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
44 bfd_elf_generic_reloc, "R_X86_64_PC32", FALSE, 0xffffffff, 0xffffffff,
45 TRUE),
46 HOWTO(R_X86_64_GOT32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
47 bfd_elf_generic_reloc, "R_X86_64_GOT32", FALSE, 0xffffffff, 0xffffffff,
48 FALSE),
49 HOWTO(R_X86_64_PLT32, 0, 2, 32, TRUE, 0, complain_overflow_signed,
50 bfd_elf_generic_reloc, "R_X86_64_PLT32", FALSE, 0xffffffff, 0xffffffff,
51 TRUE),
52 HOWTO(R_X86_64_COPY, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
53 bfd_elf_generic_reloc, "R_X86_64_COPY", FALSE, 0xffffffff, 0xffffffff,
54 FALSE),
55 HOWTO(R_X86_64_GLOB_DAT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
56 bfd_elf_generic_reloc, "R_X86_64_GLOB_DAT", FALSE, MINUS_ONE,
57 MINUS_ONE, FALSE),
58 HOWTO(R_X86_64_JUMP_SLOT, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
59 bfd_elf_generic_reloc, "R_X86_64_JUMP_SLOT", FALSE, MINUS_ONE,
60 MINUS_ONE, FALSE),
61 HOWTO(R_X86_64_RELATIVE, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
62 bfd_elf_generic_reloc, "R_X86_64_RELATIVE", FALSE, MINUS_ONE,
63 MINUS_ONE, FALSE),
64 HOWTO(R_X86_64_GOTPCREL, 0, 2, 32, TRUE, 0, complain_overflow_signed,
65 bfd_elf_generic_reloc, "R_X86_64_GOTPCREL", FALSE, 0xffffffff,
66 0xffffffff, TRUE),
67 HOWTO(R_X86_64_32, 0, 2, 32, FALSE, 0, complain_overflow_unsigned,
68 bfd_elf_generic_reloc, "R_X86_64_32", FALSE, 0xffffffff, 0xffffffff,
69 FALSE),
70 HOWTO(R_X86_64_32S, 0, 2, 32, FALSE, 0, complain_overflow_signed,
71 bfd_elf_generic_reloc, "R_X86_64_32S", FALSE, 0xffffffff, 0xffffffff,
72 FALSE),
73 HOWTO(R_X86_64_16, 0, 1, 16, FALSE, 0, complain_overflow_bitfield,
74 bfd_elf_generic_reloc, "R_X86_64_16", FALSE, 0xffff, 0xffff, FALSE),
75 HOWTO(R_X86_64_PC16,0, 1, 16, TRUE, 0, complain_overflow_bitfield,
76 bfd_elf_generic_reloc, "R_X86_64_PC16", FALSE, 0xffff, 0xffff, TRUE),
77 HOWTO(R_X86_64_8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
78 bfd_elf_generic_reloc, "R_X86_64_8", FALSE, 0xff, 0xff, FALSE),
79 HOWTO(R_X86_64_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed,
80 bfd_elf_generic_reloc, "R_X86_64_PC8", FALSE, 0xff, 0xff, TRUE),
81 HOWTO(R_X86_64_DTPMOD64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
82 bfd_elf_generic_reloc, "R_X86_64_DTPMOD64", FALSE, MINUS_ONE,
83 MINUS_ONE, FALSE),
84 HOWTO(R_X86_64_DTPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
85 bfd_elf_generic_reloc, "R_X86_64_DTPOFF64", FALSE, MINUS_ONE,
86 MINUS_ONE, FALSE),
87 HOWTO(R_X86_64_TPOFF64, 0, 4, 64, FALSE, 0, complain_overflow_bitfield,
88 bfd_elf_generic_reloc, "R_X86_64_TPOFF64", FALSE, MINUS_ONE,
89 MINUS_ONE, FALSE),
90 HOWTO(R_X86_64_TLSGD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
91 bfd_elf_generic_reloc, "R_X86_64_TLSGD", FALSE, 0xffffffff,
92 0xffffffff, TRUE),
93 HOWTO(R_X86_64_TLSLD, 0, 2, 32, TRUE, 0, complain_overflow_signed,
94 bfd_elf_generic_reloc, "R_X86_64_TLSLD", FALSE, 0xffffffff,
95 0xffffffff, TRUE),
96 HOWTO(R_X86_64_DTPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
97 bfd_elf_generic_reloc, "R_X86_64_DTPOFF32", FALSE, 0xffffffff,
98 0xffffffff, FALSE),
99 HOWTO(R_X86_64_GOTTPOFF, 0, 2, 32, TRUE, 0, complain_overflow_signed,
100 bfd_elf_generic_reloc, "R_X86_64_GOTTPOFF", FALSE, 0xffffffff,
101 0xffffffff, TRUE),
102 HOWTO(R_X86_64_TPOFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
103 bfd_elf_generic_reloc, "R_X86_64_TPOFF32", FALSE, 0xffffffff,
104 0xffffffff, FALSE),
105
106 /* GNU extension to record C++ vtable hierarchy. */
107 HOWTO (R_X86_64_GNU_VTINHERIT, 0, 4, 0, FALSE, 0, complain_overflow_dont,
108 NULL, "R_X86_64_GNU_VTINHERIT", FALSE, 0, 0, FALSE),
109
110 /* GNU extension to record C++ vtable member usage. */
111 HOWTO (R_X86_64_GNU_VTENTRY, 0, 4, 0, FALSE, 0, complain_overflow_dont,
112 _bfd_elf_rel_vtable_reloc_fn, "R_X86_64_GNU_VTENTRY", FALSE, 0, 0,
113 FALSE)
114 };
115
116 /* Map BFD relocs to the x86_64 elf relocs. */
117 struct elf_reloc_map
118 {
119 bfd_reloc_code_real_type bfd_reloc_val;
120 unsigned char elf_reloc_val;
121 };
122
123 static const struct elf_reloc_map x86_64_reloc_map[] =
124 {
125 { BFD_RELOC_NONE, R_X86_64_NONE, },
126 { BFD_RELOC_64, R_X86_64_64, },
127 { BFD_RELOC_32_PCREL, R_X86_64_PC32, },
128 { BFD_RELOC_X86_64_GOT32, R_X86_64_GOT32,},
129 { BFD_RELOC_X86_64_PLT32, R_X86_64_PLT32,},
130 { BFD_RELOC_X86_64_COPY, R_X86_64_COPY, },
131 { BFD_RELOC_X86_64_GLOB_DAT, R_X86_64_GLOB_DAT, },
132 { BFD_RELOC_X86_64_JUMP_SLOT, R_X86_64_JUMP_SLOT, },
133 { BFD_RELOC_X86_64_RELATIVE, R_X86_64_RELATIVE, },
134 { BFD_RELOC_X86_64_GOTPCREL, R_X86_64_GOTPCREL, },
135 { BFD_RELOC_32, R_X86_64_32, },
136 { BFD_RELOC_X86_64_32S, R_X86_64_32S, },
137 { BFD_RELOC_16, R_X86_64_16, },
138 { BFD_RELOC_16_PCREL, R_X86_64_PC16, },
139 { BFD_RELOC_8, R_X86_64_8, },
140 { BFD_RELOC_8_PCREL, R_X86_64_PC8, },
141 { BFD_RELOC_X86_64_DTPMOD64, R_X86_64_DTPMOD64, },
142 { BFD_RELOC_X86_64_DTPOFF64, R_X86_64_DTPOFF64, },
143 { BFD_RELOC_X86_64_TPOFF64, R_X86_64_TPOFF64, },
144 { BFD_RELOC_X86_64_TLSGD, R_X86_64_TLSGD, },
145 { BFD_RELOC_X86_64_TLSLD, R_X86_64_TLSLD, },
146 { BFD_RELOC_X86_64_DTPOFF32, R_X86_64_DTPOFF32, },
147 { BFD_RELOC_X86_64_GOTTPOFF, R_X86_64_GOTTPOFF, },
148 { BFD_RELOC_X86_64_TPOFF32, R_X86_64_TPOFF32, },
149 { BFD_RELOC_VTABLE_INHERIT, R_X86_64_GNU_VTINHERIT, },
150 { BFD_RELOC_VTABLE_ENTRY, R_X86_64_GNU_VTENTRY, },
151 };
152
153 static reloc_howto_type *elf64_x86_64_reloc_type_lookup
154 PARAMS ((bfd *, bfd_reloc_code_real_type));
155 static void elf64_x86_64_info_to_howto
156 PARAMS ((bfd *, arelent *, Elf_Internal_Rela *));
157 static bfd_boolean elf64_x86_64_grok_prstatus
158 PARAMS ((bfd *, Elf_Internal_Note *));
159 static bfd_boolean elf64_x86_64_grok_psinfo
160 PARAMS ((bfd *, Elf_Internal_Note *));
161 static struct bfd_link_hash_table *elf64_x86_64_link_hash_table_create
162 PARAMS ((bfd *));
163 static int elf64_x86_64_tls_transition
164 PARAMS ((struct bfd_link_info *, int, int));
165 static bfd_boolean elf64_x86_64_mkobject
166 PARAMS((bfd *));
167 static bfd_boolean elf64_x86_64_elf_object_p PARAMS ((bfd *abfd));
168 static bfd_boolean create_got_section
169 PARAMS((bfd *, struct bfd_link_info *));
170 static bfd_boolean elf64_x86_64_create_dynamic_sections
171 PARAMS((bfd *, struct bfd_link_info *));
172 static void elf64_x86_64_copy_indirect_symbol
173 PARAMS ((struct elf_backend_data *, struct elf_link_hash_entry *,
174 struct elf_link_hash_entry *));
175 static bfd_boolean elf64_x86_64_check_relocs
176 PARAMS ((bfd *, struct bfd_link_info *, asection *sec,
177 const Elf_Internal_Rela *));
178 static asection *elf64_x86_64_gc_mark_hook
179 PARAMS ((asection *, struct bfd_link_info *, Elf_Internal_Rela *,
180 struct elf_link_hash_entry *, Elf_Internal_Sym *));
181
182 static bfd_boolean elf64_x86_64_gc_sweep_hook
183 PARAMS ((bfd *, struct bfd_link_info *, asection *,
184 const Elf_Internal_Rela *));
185
186 static struct bfd_hash_entry *link_hash_newfunc
187 PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));
188 static bfd_boolean elf64_x86_64_adjust_dynamic_symbol
189 PARAMS ((struct bfd_link_info *, struct elf_link_hash_entry *));
190
191 static bfd_boolean allocate_dynrelocs
192 PARAMS ((struct elf_link_hash_entry *, PTR));
193 static bfd_boolean readonly_dynrelocs
194 PARAMS ((struct elf_link_hash_entry *, PTR));
195 static bfd_boolean elf64_x86_64_size_dynamic_sections
196 PARAMS ((bfd *, struct bfd_link_info *));
197 static bfd_vma dtpoff_base
198 PARAMS ((struct bfd_link_info *));
199 static bfd_vma tpoff
200 PARAMS ((struct bfd_link_info *, bfd_vma));
201 static bfd_boolean elf64_x86_64_relocate_section
202 PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
203 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));
204 static bfd_boolean elf64_x86_64_finish_dynamic_symbol
205 PARAMS ((bfd *, struct bfd_link_info *, struct elf_link_hash_entry *,
206 Elf_Internal_Sym *sym));
207 static bfd_boolean elf64_x86_64_finish_dynamic_sections
208 PARAMS ((bfd *, struct bfd_link_info *));
209 static enum elf_reloc_type_class elf64_x86_64_reloc_type_class
210 PARAMS ((const Elf_Internal_Rela *));
211
212 /* Given a BFD reloc type, return a HOWTO structure. */
213 static reloc_howto_type *
214 elf64_x86_64_reloc_type_lookup (abfd, code)
215 bfd *abfd ATTRIBUTE_UNUSED;
216 bfd_reloc_code_real_type code;
217 {
218 unsigned int i;
219 for (i = 0; i < sizeof (x86_64_reloc_map) / sizeof (struct elf_reloc_map);
220 i++)
221 {
222 if (x86_64_reloc_map[i].bfd_reloc_val == code)
223 return &x86_64_elf_howto_table[i];
224 }
225 return 0;
226 }
227
228 /* Given an x86_64 ELF reloc type, fill in an arelent structure. */
229
230 static void
231 elf64_x86_64_info_to_howto (abfd, cache_ptr, dst)
232 bfd *abfd ATTRIBUTE_UNUSED;
233 arelent *cache_ptr;
234 Elf_Internal_Rela *dst;
235 {
236 unsigned r_type, i;
237
238 r_type = ELF64_R_TYPE (dst->r_info);
239 if (r_type < (unsigned int) R_X86_64_GNU_VTINHERIT)
240 {
241 BFD_ASSERT (r_type <= (unsigned int) R_X86_64_TPOFF32);
242 i = r_type;
243 }
244 else
245 {
246 BFD_ASSERT (r_type < (unsigned int) R_X86_64_max);
247 i = r_type - ((unsigned int) R_X86_64_GNU_VTINHERIT - R_X86_64_TPOFF32 - 1);
248 }
249 cache_ptr->howto = &x86_64_elf_howto_table[i];
250 BFD_ASSERT (r_type == cache_ptr->howto->type);
251 }
252 \f
253 /* Support for core dump NOTE sections. */
254 static bfd_boolean
255 elf64_x86_64_grok_prstatus (abfd, note)
256 bfd *abfd;
257 Elf_Internal_Note *note;
258 {
259 int offset;
260 size_t raw_size;
261
262 switch (note->descsz)
263 {
264 default:
265 return FALSE;
266
267 case 336: /* sizeof(istruct elf_prstatus) on Linux/x86_64 */
268 /* pr_cursig */
269 elf_tdata (abfd)->core_signal
270 = bfd_get_16 (abfd, note->descdata + 12);
271
272 /* pr_pid */
273 elf_tdata (abfd)->core_pid
274 = bfd_get_32 (abfd, note->descdata + 32);
275
276 /* pr_reg */
277 offset = 112;
278 raw_size = 216;
279
280 break;
281 }
282
283 /* Make a ".reg/999" section. */
284 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
285 raw_size, note->descpos + offset);
286 }
287
288 static bfd_boolean
289 elf64_x86_64_grok_psinfo (abfd, note)
290 bfd *abfd;
291 Elf_Internal_Note *note;
292 {
293 switch (note->descsz)
294 {
295 default:
296 return FALSE;
297
298 case 136: /* sizeof(struct elf_prpsinfo) on Linux/x86_64 */
299 elf_tdata (abfd)->core_program
300 = _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
301 elf_tdata (abfd)->core_command
302 = _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
303 }
304
305 /* Note that for some reason, a spurious space is tacked
306 onto the end of the args in some (at least one anyway)
307 implementations, so strip it off if it exists. */
308
309 {
310 char *command = elf_tdata (abfd)->core_command;
311 int n = strlen (command);
312
313 if (0 < n && command[n - 1] == ' ')
314 command[n - 1] = '\0';
315 }
316
317 return TRUE;
318 }
319 \f
320 /* Functions for the x86-64 ELF linker. */
321
322 /* The name of the dynamic interpreter. This is put in the .interp
323 section. */
324
325 #define ELF_DYNAMIC_INTERPRETER "/lib/ld64.so.1"
326
327 /* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
328 copying dynamic variables from a shared lib into an app's dynbss
329 section, and instead use a dynamic relocation to point into the
330 shared lib. */
331 #define ELIMINATE_COPY_RELOCS 1
332
333 /* The size in bytes of an entry in the global offset table. */
334
335 #define GOT_ENTRY_SIZE 8
336
337 /* The size in bytes of an entry in the procedure linkage table. */
338
339 #define PLT_ENTRY_SIZE 16
340
341 /* The first entry in a procedure linkage table looks like this. See the
342 SVR4 ABI i386 supplement and the x86-64 ABI to see how this works. */
343
344 static const bfd_byte elf64_x86_64_plt0_entry[PLT_ENTRY_SIZE] =
345 {
346 0xff, 0x35, 8, 0, 0, 0, /* pushq GOT+8(%rip) */
347 0xff, 0x25, 16, 0, 0, 0, /* jmpq *GOT+16(%rip) */
348 0x90, 0x90, 0x90, 0x90 /* pad out to 16 bytes with nops. */
349 };
350
351 /* Subsequent entries in a procedure linkage table look like this. */
352
353 static const bfd_byte elf64_x86_64_plt_entry[PLT_ENTRY_SIZE] =
354 {
355 0xff, 0x25, /* jmpq *name@GOTPC(%rip) */
356 0, 0, 0, 0, /* replaced with offset to this symbol in .got. */
357 0x68, /* pushq immediate */
358 0, 0, 0, 0, /* replaced with index into relocation table. */
359 0xe9, /* jmp relative */
360 0, 0, 0, 0 /* replaced with offset to start of .plt0. */
361 };
362
363 /* The x86-64 linker needs to keep track of the number of relocs that
364 it decides to copy as dynamic relocs in check_relocs for each symbol.
365 This is so that it can later discard them if they are found to be
366 unnecessary. We store the information in a field extending the
367 regular ELF linker hash table. */
368
369 struct elf64_x86_64_dyn_relocs
370 {
371 /* Next section. */
372 struct elf64_x86_64_dyn_relocs *next;
373
374 /* The input section of the reloc. */
375 asection *sec;
376
377 /* Total number of relocs copied for the input section. */
378 bfd_size_type count;
379
380 /* Number of pc-relative relocs copied for the input section. */
381 bfd_size_type pc_count;
382 };
383
384 /* x86-64 ELF linker hash entry. */
385
386 struct elf64_x86_64_link_hash_entry
387 {
388 struct elf_link_hash_entry elf;
389
390 /* Track dynamic relocs copied for this symbol. */
391 struct elf64_x86_64_dyn_relocs *dyn_relocs;
392
393 #define GOT_UNKNOWN 0
394 #define GOT_NORMAL 1
395 #define GOT_TLS_GD 2
396 #define GOT_TLS_IE 3
397 unsigned char tls_type;
398 };
399
400 #define elf64_x86_64_hash_entry(ent) \
401 ((struct elf64_x86_64_link_hash_entry *)(ent))
402
403 struct elf64_x86_64_obj_tdata
404 {
405 struct elf_obj_tdata root;
406
407 /* tls_type for each local got entry. */
408 char *local_got_tls_type;
409 };
410
411 #define elf64_x86_64_tdata(abfd) \
412 ((struct elf64_x86_64_obj_tdata *) (abfd)->tdata.any)
413
414 #define elf64_x86_64_local_got_tls_type(abfd) \
415 (elf64_x86_64_tdata (abfd)->local_got_tls_type)
416
417
418 /* x86-64 ELF linker hash table. */
419
420 struct elf64_x86_64_link_hash_table
421 {
422 struct elf_link_hash_table elf;
423
424 /* Short-cuts to get to dynamic linker sections. */
425 asection *sgot;
426 asection *sgotplt;
427 asection *srelgot;
428 asection *splt;
429 asection *srelplt;
430 asection *sdynbss;
431 asection *srelbss;
432
433 union {
434 bfd_signed_vma refcount;
435 bfd_vma offset;
436 } tls_ld_got;
437
438 /* Small local sym to section mapping cache. */
439 struct sym_sec_cache sym_sec;
440 };
441
442 /* Get the x86-64 ELF linker hash table from a link_info structure. */
443
444 #define elf64_x86_64_hash_table(p) \
445 ((struct elf64_x86_64_link_hash_table *) ((p)->hash))
446
447 /* Create an entry in an x86-64 ELF linker hash table. */
448
449 static struct bfd_hash_entry *
450 link_hash_newfunc (entry, table, string)
451 struct bfd_hash_entry *entry;
452 struct bfd_hash_table *table;
453 const char *string;
454 {
455 /* Allocate the structure if it has not already been allocated by a
456 subclass. */
457 if (entry == NULL)
458 {
459 entry = bfd_hash_allocate (table,
460 sizeof (struct elf64_x86_64_link_hash_entry));
461 if (entry == NULL)
462 return entry;
463 }
464
465 /* Call the allocation method of the superclass. */
466 entry = _bfd_elf_link_hash_newfunc (entry, table, string);
467 if (entry != NULL)
468 {
469 struct elf64_x86_64_link_hash_entry *eh;
470
471 eh = (struct elf64_x86_64_link_hash_entry *) entry;
472 eh->dyn_relocs = NULL;
473 eh->tls_type = GOT_UNKNOWN;
474 }
475
476 return entry;
477 }
478
479 /* Create an X86-64 ELF linker hash table. */
480
481 static struct bfd_link_hash_table *
482 elf64_x86_64_link_hash_table_create (abfd)
483 bfd *abfd;
484 {
485 struct elf64_x86_64_link_hash_table *ret;
486 bfd_size_type amt = sizeof (struct elf64_x86_64_link_hash_table);
487
488 ret = (struct elf64_x86_64_link_hash_table *) bfd_malloc (amt);
489 if (ret == NULL)
490 return NULL;
491
492 if (! _bfd_elf_link_hash_table_init (&ret->elf, abfd, link_hash_newfunc))
493 {
494 free (ret);
495 return NULL;
496 }
497
498 ret->sgot = NULL;
499 ret->sgotplt = NULL;
500 ret->srelgot = NULL;
501 ret->splt = NULL;
502 ret->srelplt = NULL;
503 ret->sdynbss = NULL;
504 ret->srelbss = NULL;
505 ret->sym_sec.abfd = NULL;
506 ret->tls_ld_got.refcount = 0;
507
508 return &ret->elf.root;
509 }
510
511 /* Create .got, .gotplt, and .rela.got sections in DYNOBJ, and set up
512 shortcuts to them in our hash table. */
513
514 static bfd_boolean
515 create_got_section (dynobj, info)
516 bfd *dynobj;
517 struct bfd_link_info *info;
518 {
519 struct elf64_x86_64_link_hash_table *htab;
520
521 if (! _bfd_elf_create_got_section (dynobj, info))
522 return FALSE;
523
524 htab = elf64_x86_64_hash_table (info);
525 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
526 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
527 if (!htab->sgot || !htab->sgotplt)
528 abort ();
529
530 htab->srelgot = bfd_make_section (dynobj, ".rela.got");
531 if (htab->srelgot == NULL
532 || ! bfd_set_section_flags (dynobj, htab->srelgot,
533 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
534 | SEC_IN_MEMORY | SEC_LINKER_CREATED
535 | SEC_READONLY))
536 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 3))
537 return FALSE;
538 return TRUE;
539 }
540
541 /* Create .plt, .rela.plt, .got, .got.plt, .rela.got, .dynbss, and
542 .rela.bss sections in DYNOBJ, and set up shortcuts to them in our
543 hash table. */
544
545 static bfd_boolean
546 elf64_x86_64_create_dynamic_sections (dynobj, info)
547 bfd *dynobj;
548 struct bfd_link_info *info;
549 {
550 struct elf64_x86_64_link_hash_table *htab;
551
552 htab = elf64_x86_64_hash_table (info);
553 if (!htab->sgot && !create_got_section (dynobj, info))
554 return FALSE;
555
556 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
557 return FALSE;
558
559 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
560 htab->srelplt = bfd_get_section_by_name (dynobj, ".rela.plt");
561 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
562 if (!info->shared)
563 htab->srelbss = bfd_get_section_by_name (dynobj, ".rela.bss");
564
565 if (!htab->splt || !htab->srelplt || !htab->sdynbss
566 || (!info->shared && !htab->srelbss))
567 abort ();
568
569 return TRUE;
570 }
571
572 /* Copy the extra info we tack onto an elf_link_hash_entry. */
573
574 static void
575 elf64_x86_64_copy_indirect_symbol (bed, dir, ind)
576 struct elf_backend_data *bed;
577 struct elf_link_hash_entry *dir, *ind;
578 {
579 struct elf64_x86_64_link_hash_entry *edir, *eind;
580
581 edir = (struct elf64_x86_64_link_hash_entry *) dir;
582 eind = (struct elf64_x86_64_link_hash_entry *) ind;
583
584 if (eind->dyn_relocs != NULL)
585 {
586 if (edir->dyn_relocs != NULL)
587 {
588 struct elf64_x86_64_dyn_relocs **pp;
589 struct elf64_x86_64_dyn_relocs *p;
590
591 if (ind->root.type == bfd_link_hash_indirect)
592 abort ();
593
594 /* Add reloc counts against the weak sym to the strong sym
595 list. Merge any entries against the same section. */
596 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
597 {
598 struct elf64_x86_64_dyn_relocs *q;
599
600 for (q = edir->dyn_relocs; q != NULL; q = q->next)
601 if (q->sec == p->sec)
602 {
603 q->pc_count += p->pc_count;
604 q->count += p->count;
605 *pp = p->next;
606 break;
607 }
608 if (q == NULL)
609 pp = &p->next;
610 }
611 *pp = edir->dyn_relocs;
612 }
613
614 edir->dyn_relocs = eind->dyn_relocs;
615 eind->dyn_relocs = NULL;
616 }
617
618 if (ind->root.type == bfd_link_hash_indirect
619 && dir->got.refcount <= 0)
620 {
621 edir->tls_type = eind->tls_type;
622 eind->tls_type = GOT_UNKNOWN;
623 }
624
625 if (ELIMINATE_COPY_RELOCS
626 && ind->root.type != bfd_link_hash_indirect
627 && (dir->elf_link_hash_flags & ELF_LINK_HASH_DYNAMIC_ADJUSTED) != 0)
628 /* If called to transfer flags for a weakdef during processing
629 of elf_adjust_dynamic_symbol, don't copy ELF_LINK_NON_GOT_REF.
630 We clear it ourselves for ELIMINATE_COPY_RELOCS. */
631 dir->elf_link_hash_flags |=
632 (ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
633 | ELF_LINK_HASH_REF_REGULAR
634 | ELF_LINK_HASH_REF_REGULAR_NONWEAK));
635 else
636 _bfd_elf_link_hash_copy_indirect (bed, dir, ind);
637 }
638
639 static bfd_boolean
640 elf64_x86_64_mkobject (abfd)
641 bfd *abfd;
642 {
643 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
644 abfd->tdata.any = bfd_zalloc (abfd, amt);
645 if (abfd->tdata.any == NULL)
646 return FALSE;
647 return TRUE;
648 }
649
650 static bfd_boolean
651 elf64_x86_64_elf_object_p (abfd)
652 bfd *abfd;
653 {
654 /* Allocate our special target data. */
655 struct elf64_x86_64_obj_tdata *new_tdata;
656 bfd_size_type amt = sizeof (struct elf64_x86_64_obj_tdata);
657 new_tdata = bfd_zalloc (abfd, amt);
658 if (new_tdata == NULL)
659 return FALSE;
660 new_tdata->root = *abfd->tdata.elf_obj_data;
661 abfd->tdata.any = new_tdata;
662 /* Set the right machine number for an x86-64 elf64 file. */
663 bfd_default_set_arch_mach (abfd, bfd_arch_i386, bfd_mach_x86_64);
664 return TRUE;
665 }
666
667 static int
668 elf64_x86_64_tls_transition (info, r_type, is_local)
669 struct bfd_link_info *info;
670 int r_type;
671 int is_local;
672 {
673 if (info->shared)
674 return r_type;
675
676 switch (r_type)
677 {
678 case R_X86_64_TLSGD:
679 case R_X86_64_GOTTPOFF:
680 if (is_local)
681 return R_X86_64_TPOFF32;
682 return R_X86_64_GOTTPOFF;
683 case R_X86_64_TLSLD:
684 return R_X86_64_TPOFF32;
685 }
686
687 return r_type;
688 }
689
690 /* Look through the relocs for a section during the first phase, and
691 calculate needed space in the global offset table, procedure
692 linkage table, and dynamic reloc sections. */
693
694 static bfd_boolean
695 elf64_x86_64_check_relocs (abfd, info, sec, relocs)
696 bfd *abfd;
697 struct bfd_link_info *info;
698 asection *sec;
699 const Elf_Internal_Rela *relocs;
700 {
701 struct elf64_x86_64_link_hash_table *htab;
702 Elf_Internal_Shdr *symtab_hdr;
703 struct elf_link_hash_entry **sym_hashes;
704 const Elf_Internal_Rela *rel;
705 const Elf_Internal_Rela *rel_end;
706 asection *sreloc;
707
708 if (info->relocatable)
709 return TRUE;
710
711 htab = elf64_x86_64_hash_table (info);
712 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
713 sym_hashes = elf_sym_hashes (abfd);
714
715 sreloc = NULL;
716
717 rel_end = relocs + sec->reloc_count;
718 for (rel = relocs; rel < rel_end; rel++)
719 {
720 unsigned int r_type;
721 unsigned long r_symndx;
722 struct elf_link_hash_entry *h;
723
724 r_symndx = ELF64_R_SYM (rel->r_info);
725 r_type = ELF64_R_TYPE (rel->r_info);
726
727 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
728 {
729 (*_bfd_error_handler) (_("%s: bad symbol index: %d"),
730 bfd_archive_filename (abfd),
731 r_symndx);
732 return FALSE;
733 }
734
735 if (r_symndx < symtab_hdr->sh_info)
736 h = NULL;
737 else
738 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
739
740 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
741 switch (r_type)
742 {
743 case R_X86_64_TLSLD:
744 htab->tls_ld_got.refcount += 1;
745 goto create_got;
746
747 case R_X86_64_TPOFF32:
748 if (info->shared)
749 {
750 (*_bfd_error_handler)
751 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
752 bfd_archive_filename (abfd),
753 x86_64_elf_howto_table[r_type].name);
754 bfd_set_error (bfd_error_bad_value);
755 return FALSE;
756 }
757 break;
758
759 case R_X86_64_GOTTPOFF:
760 if (info->shared)
761 info->flags |= DF_STATIC_TLS;
762 /* Fall through */
763
764 case R_X86_64_GOT32:
765 case R_X86_64_GOTPCREL:
766 case R_X86_64_TLSGD:
767 /* This symbol requires a global offset table entry. */
768 {
769 int tls_type, old_tls_type;
770
771 switch (r_type)
772 {
773 default: tls_type = GOT_NORMAL; break;
774 case R_X86_64_TLSGD: tls_type = GOT_TLS_GD; break;
775 case R_X86_64_GOTTPOFF: tls_type = GOT_TLS_IE; break;
776 }
777
778 if (h != NULL)
779 {
780 h->got.refcount += 1;
781 old_tls_type = elf64_x86_64_hash_entry (h)->tls_type;
782 }
783 else
784 {
785 bfd_signed_vma *local_got_refcounts;
786
787 /* This is a global offset table entry for a local symbol. */
788 local_got_refcounts = elf_local_got_refcounts (abfd);
789 if (local_got_refcounts == NULL)
790 {
791 bfd_size_type size;
792
793 size = symtab_hdr->sh_info;
794 size *= sizeof (bfd_signed_vma) + sizeof (char);
795 local_got_refcounts = ((bfd_signed_vma *)
796 bfd_zalloc (abfd, size));
797 if (local_got_refcounts == NULL)
798 return FALSE;
799 elf_local_got_refcounts (abfd) = local_got_refcounts;
800 elf64_x86_64_local_got_tls_type (abfd)
801 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
802 }
803 local_got_refcounts[r_symndx] += 1;
804 old_tls_type
805 = elf64_x86_64_local_got_tls_type (abfd) [r_symndx];
806 }
807
808 /* If a TLS symbol is accessed using IE at least once,
809 there is no point to use dynamic model for it. */
810 if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
811 && (old_tls_type != GOT_TLS_GD || tls_type != GOT_TLS_IE))
812 {
813 if (old_tls_type == GOT_TLS_IE && tls_type == GOT_TLS_GD)
814 tls_type = old_tls_type;
815 else
816 {
817 (*_bfd_error_handler)
818 (_("%s: %s' accessed both as normal and thread local symbol"),
819 bfd_archive_filename (abfd),
820 h ? h->root.root.string : "<local>");
821 return FALSE;
822 }
823 }
824
825 if (old_tls_type != tls_type)
826 {
827 if (h != NULL)
828 elf64_x86_64_hash_entry (h)->tls_type = tls_type;
829 else
830 elf64_x86_64_local_got_tls_type (abfd) [r_symndx] = tls_type;
831 }
832 }
833 /* Fall through */
834
835 //case R_X86_64_GOTPCREL:
836 create_got:
837 if (htab->sgot == NULL)
838 {
839 if (htab->elf.dynobj == NULL)
840 htab->elf.dynobj = abfd;
841 if (!create_got_section (htab->elf.dynobj, info))
842 return FALSE;
843 }
844 break;
845
846 case R_X86_64_PLT32:
847 /* This symbol requires a procedure linkage table entry. We
848 actually build the entry in adjust_dynamic_symbol,
849 because this might be a case of linking PIC code which is
850 never referenced by a dynamic object, in which case we
851 don't need to generate a procedure linkage table entry
852 after all. */
853
854 /* If this is a local symbol, we resolve it directly without
855 creating a procedure linkage table entry. */
856 if (h == NULL)
857 continue;
858
859 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT;
860 h->plt.refcount += 1;
861 break;
862
863 case R_X86_64_8:
864 case R_X86_64_16:
865 case R_X86_64_32:
866 case R_X86_64_32S:
867 /* Let's help debug shared library creation. These relocs
868 cannot be used in shared libs. Don't error out for
869 sections we don't care about, such as debug sections or
870 non-constant sections. */
871 if (info->shared
872 && (sec->flags & SEC_ALLOC) != 0
873 && (sec->flags & SEC_READONLY) != 0)
874 {
875 (*_bfd_error_handler)
876 (_("%s: relocation %s can not be used when making a shared object; recompile with -fPIC"),
877 bfd_archive_filename (abfd),
878 x86_64_elf_howto_table[r_type].name);
879 bfd_set_error (bfd_error_bad_value);
880 return FALSE;
881 }
882 /* Fall through. */
883
884 case R_X86_64_PC8:
885 case R_X86_64_PC16:
886 case R_X86_64_PC32:
887 case R_X86_64_64:
888 if (h != NULL && !info->shared)
889 {
890 /* If this reloc is in a read-only section, we might
891 need a copy reloc. We can't check reliably at this
892 stage whether the section is read-only, as input
893 sections have not yet been mapped to output sections.
894 Tentatively set the flag for now, and correct in
895 adjust_dynamic_symbol. */
896 h->elf_link_hash_flags |= ELF_LINK_NON_GOT_REF;
897
898 /* We may need a .plt entry if the function this reloc
899 refers to is in a shared lib. */
900 h->plt.refcount += 1;
901 }
902
903 /* If we are creating a shared library, and this is a reloc
904 against a global symbol, or a non PC relative reloc
905 against a local symbol, then we need to copy the reloc
906 into the shared library. However, if we are linking with
907 -Bsymbolic, we do not need to copy a reloc against a
908 global symbol which is defined in an object we are
909 including in the link (i.e., DEF_REGULAR is set). At
910 this point we have not seen all the input files, so it is
911 possible that DEF_REGULAR is not set now but will be set
912 later (it is never cleared). In case of a weak definition,
913 DEF_REGULAR may be cleared later by a strong definition in
914 a shared library. We account for that possibility below by
915 storing information in the relocs_copied field of the hash
916 table entry. A similar situation occurs when creating
917 shared libraries and symbol visibility changes render the
918 symbol local.
919
920 If on the other hand, we are creating an executable, we
921 may need to keep relocations for symbols satisfied by a
922 dynamic library if we manage to avoid copy relocs for the
923 symbol. */
924 if ((info->shared
925 && (sec->flags & SEC_ALLOC) != 0
926 && (((r_type != R_X86_64_PC8)
927 && (r_type != R_X86_64_PC16)
928 && (r_type != R_X86_64_PC32))
929 || (h != NULL
930 && (! info->symbolic
931 || h->root.type == bfd_link_hash_defweak
932 || (h->elf_link_hash_flags
933 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
934 || (ELIMINATE_COPY_RELOCS
935 && !info->shared
936 && (sec->flags & SEC_ALLOC) != 0
937 && h != NULL
938 && (h->root.type == bfd_link_hash_defweak
939 || (h->elf_link_hash_flags
940 & ELF_LINK_HASH_DEF_REGULAR) == 0)))
941 {
942 struct elf64_x86_64_dyn_relocs *p;
943 struct elf64_x86_64_dyn_relocs **head;
944
945 /* We must copy these reloc types into the output file.
946 Create a reloc section in dynobj and make room for
947 this reloc. */
948 if (sreloc == NULL)
949 {
950 const char *name;
951 bfd *dynobj;
952
953 name = (bfd_elf_string_from_elf_section
954 (abfd,
955 elf_elfheader (abfd)->e_shstrndx,
956 elf_section_data (sec)->rel_hdr.sh_name));
957 if (name == NULL)
958 return FALSE;
959
960 if (strncmp (name, ".rela", 5) != 0
961 || strcmp (bfd_get_section_name (abfd, sec),
962 name + 5) != 0)
963 {
964 (*_bfd_error_handler)
965 (_("%s: bad relocation section name `%s\'"),
966 bfd_archive_filename (abfd), name);
967 }
968
969 if (htab->elf.dynobj == NULL)
970 htab->elf.dynobj = abfd;
971
972 dynobj = htab->elf.dynobj;
973
974 sreloc = bfd_get_section_by_name (dynobj, name);
975 if (sreloc == NULL)
976 {
977 flagword flags;
978
979 sreloc = bfd_make_section (dynobj, name);
980 flags = (SEC_HAS_CONTENTS | SEC_READONLY
981 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
982 if ((sec->flags & SEC_ALLOC) != 0)
983 flags |= SEC_ALLOC | SEC_LOAD;
984 if (sreloc == NULL
985 || ! bfd_set_section_flags (dynobj, sreloc, flags)
986 || ! bfd_set_section_alignment (dynobj, sreloc, 3))
987 return FALSE;
988 }
989 elf_section_data (sec)->sreloc = sreloc;
990 }
991
992 /* If this is a global symbol, we count the number of
993 relocations we need for this symbol. */
994 if (h != NULL)
995 {
996 head = &((struct elf64_x86_64_link_hash_entry *) h)->dyn_relocs;
997 }
998 else
999 {
1000 /* Track dynamic relocs needed for local syms too.
1001 We really need local syms available to do this
1002 easily. Oh well. */
1003
1004 asection *s;
1005 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
1006 sec, r_symndx);
1007 if (s == NULL)
1008 return FALSE;
1009
1010 head = ((struct elf64_x86_64_dyn_relocs **)
1011 &elf_section_data (s)->local_dynrel);
1012 }
1013
1014 p = *head;
1015 if (p == NULL || p->sec != sec)
1016 {
1017 bfd_size_type amt = sizeof *p;
1018 p = ((struct elf64_x86_64_dyn_relocs *)
1019 bfd_alloc (htab->elf.dynobj, amt));
1020 if (p == NULL)
1021 return FALSE;
1022 p->next = *head;
1023 *head = p;
1024 p->sec = sec;
1025 p->count = 0;
1026 p->pc_count = 0;
1027 }
1028
1029 p->count += 1;
1030 if (r_type == R_X86_64_PC8
1031 || r_type == R_X86_64_PC16
1032 || r_type == R_X86_64_PC32)
1033 p->pc_count += 1;
1034 }
1035 break;
1036
1037 /* This relocation describes the C++ object vtable hierarchy.
1038 Reconstruct it for later use during GC. */
1039 case R_X86_64_GNU_VTINHERIT:
1040 if (!_bfd_elf64_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1041 return FALSE;
1042 break;
1043
1044 /* This relocation describes which C++ vtable entries are actually
1045 used. Record for later use during GC. */
1046 case R_X86_64_GNU_VTENTRY:
1047 if (!_bfd_elf64_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1048 return FALSE;
1049 break;
1050
1051 default:
1052 break;
1053 }
1054 }
1055
1056 return TRUE;
1057 }
1058
1059 /* Return the section that should be marked against GC for a given
1060 relocation. */
1061
1062 static asection *
1063 elf64_x86_64_gc_mark_hook (sec, info, rel, h, sym)
1064 asection *sec;
1065 struct bfd_link_info *info ATTRIBUTE_UNUSED;
1066 Elf_Internal_Rela *rel;
1067 struct elf_link_hash_entry *h;
1068 Elf_Internal_Sym *sym;
1069 {
1070 if (h != NULL)
1071 {
1072 switch (ELF64_R_TYPE (rel->r_info))
1073 {
1074 case R_X86_64_GNU_VTINHERIT:
1075 case R_X86_64_GNU_VTENTRY:
1076 break;
1077
1078 default:
1079 switch (h->root.type)
1080 {
1081 case bfd_link_hash_defined:
1082 case bfd_link_hash_defweak:
1083 return h->root.u.def.section;
1084
1085 case bfd_link_hash_common:
1086 return h->root.u.c.p->section;
1087
1088 default:
1089 break;
1090 }
1091 }
1092 }
1093 else
1094 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
1095
1096 return NULL;
1097 }
1098
1099 /* Update the got entry reference counts for the section being removed. */
1100
1101 static bfd_boolean
1102 elf64_x86_64_gc_sweep_hook (abfd, info, sec, relocs)
1103 bfd *abfd;
1104 struct bfd_link_info *info;
1105 asection *sec;
1106 const Elf_Internal_Rela *relocs;
1107 {
1108 Elf_Internal_Shdr *symtab_hdr;
1109 struct elf_link_hash_entry **sym_hashes;
1110 bfd_signed_vma *local_got_refcounts;
1111 const Elf_Internal_Rela *rel, *relend;
1112
1113 elf_section_data (sec)->local_dynrel = NULL;
1114
1115 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1116 sym_hashes = elf_sym_hashes (abfd);
1117 local_got_refcounts = elf_local_got_refcounts (abfd);
1118
1119 relend = relocs + sec->reloc_count;
1120 for (rel = relocs; rel < relend; rel++)
1121 {
1122 unsigned long r_symndx;
1123 unsigned int r_type;
1124 struct elf_link_hash_entry *h = NULL;
1125
1126 r_symndx = ELF64_R_SYM (rel->r_info);
1127 if (r_symndx >= symtab_hdr->sh_info)
1128 {
1129 struct elf64_x86_64_link_hash_entry *eh;
1130 struct elf64_x86_64_dyn_relocs **pp;
1131 struct elf64_x86_64_dyn_relocs *p;
1132
1133 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1134 eh = (struct elf64_x86_64_link_hash_entry *) h;
1135
1136 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
1137 if (p->sec == sec)
1138 {
1139 /* Everything must go for SEC. */
1140 *pp = p->next;
1141 break;
1142 }
1143 }
1144
1145 r_type = ELF64_R_TYPE (rel->r_info);
1146 r_type = elf64_x86_64_tls_transition (info, r_type, h != NULL);
1147 switch (r_type)
1148 {
1149 case R_X86_64_TLSLD:
1150 if (elf64_x86_64_hash_table (info)->tls_ld_got.refcount > 0)
1151 elf64_x86_64_hash_table (info)->tls_ld_got.refcount -= 1;
1152 break;
1153
1154 case R_X86_64_TLSGD:
1155 case R_X86_64_GOTTPOFF:
1156 case R_X86_64_GOT32:
1157 case R_X86_64_GOTPCREL:
1158 if (h != NULL)
1159 {
1160 if (h->got.refcount > 0)
1161 h->got.refcount -= 1;
1162 }
1163 else if (local_got_refcounts != NULL)
1164 {
1165 if (local_got_refcounts[r_symndx] > 0)
1166 local_got_refcounts[r_symndx] -= 1;
1167 }
1168 break;
1169
1170 case R_X86_64_8:
1171 case R_X86_64_16:
1172 case R_X86_64_32:
1173 case R_X86_64_64:
1174 case R_X86_64_32S:
1175 case R_X86_64_PC8:
1176 case R_X86_64_PC16:
1177 case R_X86_64_PC32:
1178 if (info->shared)
1179 break;
1180 /* Fall thru */
1181
1182 case R_X86_64_PLT32:
1183 if (h != NULL)
1184 {
1185 if (h->plt.refcount > 0)
1186 h->plt.refcount -= 1;
1187 }
1188 break;
1189
1190 default:
1191 break;
1192 }
1193 }
1194
1195 return TRUE;
1196 }
1197
1198 /* Adjust a symbol defined by a dynamic object and referenced by a
1199 regular object. The current definition is in some section of the
1200 dynamic object, but we're not including those sections. We have to
1201 change the definition to something the rest of the link can
1202 understand. */
1203
1204 static bfd_boolean
1205 elf64_x86_64_adjust_dynamic_symbol (info, h)
1206 struct bfd_link_info *info;
1207 struct elf_link_hash_entry *h;
1208 {
1209 struct elf64_x86_64_link_hash_table *htab;
1210 asection *s;
1211 unsigned int power_of_two;
1212
1213 /* If this is a function, put it in the procedure linkage table. We
1214 will fill in the contents of the procedure linkage table later,
1215 when we know the address of the .got section. */
1216 if (h->type == STT_FUNC
1217 || (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0)
1218 {
1219 if (h->plt.refcount <= 0
1220 || (! info->shared
1221 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) == 0
1222 && (h->elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) == 0
1223 && h->root.type != bfd_link_hash_undefweak
1224 && h->root.type != bfd_link_hash_undefined))
1225 {
1226 /* This case can occur if we saw a PLT32 reloc in an input
1227 file, but the symbol was never referred to by a dynamic
1228 object, or if all references were garbage collected. In
1229 such a case, we don't actually need to build a procedure
1230 linkage table, and we can just do a PC32 reloc instead. */
1231 h->plt.offset = (bfd_vma) -1;
1232 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1233 }
1234
1235 return TRUE;
1236 }
1237 else
1238 /* It's possible that we incorrectly decided a .plt reloc was
1239 needed for an R_X86_64_PC32 reloc to a non-function sym in
1240 check_relocs. We can't decide accurately between function and
1241 non-function syms in check-relocs; Objects loaded later in
1242 the link may change h->type. So fix it now. */
1243 h->plt.offset = (bfd_vma) -1;
1244
1245 /* If this is a weak symbol, and there is a real definition, the
1246 processor independent code will have arranged for us to see the
1247 real definition first, and we can just use the same value. */
1248 if (h->weakdef != NULL)
1249 {
1250 BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined
1251 || h->weakdef->root.type == bfd_link_hash_defweak);
1252 h->root.u.def.section = h->weakdef->root.u.def.section;
1253 h->root.u.def.value = h->weakdef->root.u.def.value;
1254 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc)
1255 h->elf_link_hash_flags
1256 = ((h->elf_link_hash_flags & ~ELF_LINK_NON_GOT_REF)
1257 | (h->weakdef->elf_link_hash_flags & ELF_LINK_NON_GOT_REF));
1258 return TRUE;
1259 }
1260
1261 /* This is a reference to a symbol defined by a dynamic object which
1262 is not a function. */
1263
1264 /* If we are creating a shared library, we must presume that the
1265 only references to the symbol are via the global offset table.
1266 For such cases we need not do anything here; the relocations will
1267 be handled correctly by relocate_section. */
1268 if (info->shared)
1269 return TRUE;
1270
1271 /* If there are no references to this symbol that do not use the
1272 GOT, we don't need to generate a copy reloc. */
1273 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0)
1274 return TRUE;
1275
1276 /* If -z nocopyreloc was given, we won't generate them either. */
1277 if (info->nocopyreloc)
1278 {
1279 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1280 return TRUE;
1281 }
1282
1283 if (ELIMINATE_COPY_RELOCS)
1284 {
1285 struct elf64_x86_64_link_hash_entry * eh;
1286 struct elf64_x86_64_dyn_relocs *p;
1287
1288 eh = (struct elf64_x86_64_link_hash_entry *) h;
1289 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1290 {
1291 s = p->sec->output_section;
1292 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1293 break;
1294 }
1295
1296 /* If we didn't find any dynamic relocs in read-only sections, then
1297 we'll be keeping the dynamic relocs and avoiding the copy reloc. */
1298 if (p == NULL)
1299 {
1300 h->elf_link_hash_flags &= ~ELF_LINK_NON_GOT_REF;
1301 return TRUE;
1302 }
1303 }
1304
1305 /* We must allocate the symbol in our .dynbss section, which will
1306 become part of the .bss section of the executable. There will be
1307 an entry for this symbol in the .dynsym section. The dynamic
1308 object will contain position independent code, so all references
1309 from the dynamic object to this symbol will go through the global
1310 offset table. The dynamic linker will use the .dynsym entry to
1311 determine the address it must put in the global offset table, so
1312 both the dynamic object and the regular object will refer to the
1313 same memory location for the variable. */
1314
1315 htab = elf64_x86_64_hash_table (info);
1316
1317 /* We must generate a R_X86_64_COPY reloc to tell the dynamic linker
1318 to copy the initial value out of the dynamic object and into the
1319 runtime process image. */
1320 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
1321 {
1322 htab->srelbss->_raw_size += sizeof (Elf64_External_Rela);
1323 h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_COPY;
1324 }
1325
1326 /* We need to figure out the alignment required for this symbol. I
1327 have no idea how ELF linkers handle this. 16-bytes is the size
1328 of the largest type that requires hard alignment -- long double. */
1329 /* FIXME: This is VERY ugly. Should be fixed for all architectures using
1330 this construct. */
1331 power_of_two = bfd_log2 (h->size);
1332 if (power_of_two > 4)
1333 power_of_two = 4;
1334
1335 /* Apply the required alignment. */
1336 s = htab->sdynbss;
1337 s->_raw_size = BFD_ALIGN (s->_raw_size, (bfd_size_type) (1 << power_of_two));
1338 if (power_of_two > bfd_get_section_alignment (htab->elf.dynobj, s))
1339 {
1340 if (! bfd_set_section_alignment (htab->elf.dynobj, s, power_of_two))
1341 return FALSE;
1342 }
1343
1344 /* Define the symbol as being at this point in the section. */
1345 h->root.u.def.section = s;
1346 h->root.u.def.value = s->_raw_size;
1347
1348 /* Increment the section size to make room for the symbol. */
1349 s->_raw_size += h->size;
1350
1351 return TRUE;
1352 }
1353
1354 /* This is the condition under which elf64_x86_64_finish_dynamic_symbol
1355 will be called from elflink.h. If elflink.h doesn't call our
1356 finish_dynamic_symbol routine, we'll need to do something about
1357 initializing any .plt and .got entries in elf64_x86_64_relocate_section. */
1358 #define WILL_CALL_FINISH_DYNAMIC_SYMBOL(DYN, INFO, H) \
1359 ((DYN) \
1360 && ((INFO)->shared \
1361 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0) \
1362 && ((H)->dynindx != -1 \
1363 || ((H)->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0))
1364
1365 /* Allocate space in .plt, .got and associated reloc sections for
1366 dynamic relocs. */
1367
1368 static bfd_boolean
1369 allocate_dynrelocs (h, inf)
1370 struct elf_link_hash_entry *h;
1371 PTR inf;
1372 {
1373 struct bfd_link_info *info;
1374 struct elf64_x86_64_link_hash_table *htab;
1375 struct elf64_x86_64_link_hash_entry *eh;
1376 struct elf64_x86_64_dyn_relocs *p;
1377
1378 if (h->root.type == bfd_link_hash_indirect)
1379 return TRUE;
1380
1381 if (h->root.type == bfd_link_hash_warning)
1382 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1383
1384 info = (struct bfd_link_info *) inf;
1385 htab = elf64_x86_64_hash_table (info);
1386
1387 if (htab->elf.dynamic_sections_created
1388 && h->plt.refcount > 0
1389 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1390 || h->root.type != bfd_link_hash_undefweak))
1391 {
1392 /* Make sure this symbol is output as a dynamic symbol.
1393 Undefined weak syms won't yet be marked as dynamic. */
1394 if (h->dynindx == -1
1395 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1396 {
1397 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1398 return FALSE;
1399 }
1400
1401 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info, h))
1402 {
1403 asection *s = htab->splt;
1404
1405 /* If this is the first .plt entry, make room for the special
1406 first entry. */
1407 if (s->_raw_size == 0)
1408 s->_raw_size += PLT_ENTRY_SIZE;
1409
1410 h->plt.offset = s->_raw_size;
1411
1412 /* If this symbol is not defined in a regular file, and we are
1413 not generating a shared library, then set the symbol to this
1414 location in the .plt. This is required to make function
1415 pointers compare as equal between the normal executable and
1416 the shared library. */
1417 if (! info->shared
1418 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1419 {
1420 h->root.u.def.section = s;
1421 h->root.u.def.value = h->plt.offset;
1422 }
1423
1424 /* Make room for this entry. */
1425 s->_raw_size += PLT_ENTRY_SIZE;
1426
1427 /* We also need to make an entry in the .got.plt section, which
1428 will be placed in the .got section by the linker script. */
1429 htab->sgotplt->_raw_size += GOT_ENTRY_SIZE;
1430
1431 /* We also need to make an entry in the .rela.plt section. */
1432 htab->srelplt->_raw_size += sizeof (Elf64_External_Rela);
1433 }
1434 else
1435 {
1436 h->plt.offset = (bfd_vma) -1;
1437 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1438 }
1439 }
1440 else
1441 {
1442 h->plt.offset = (bfd_vma) -1;
1443 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1444 }
1445
1446 /* If R_X86_64_GOTTPOFF symbol is now local to the binary,
1447 make it a R_X86_64_TPOFF32 requiring no GOT entry. */
1448 if (h->got.refcount > 0
1449 && !info->shared
1450 && h->dynindx == -1
1451 && elf64_x86_64_hash_entry (h)->tls_type == GOT_TLS_IE)
1452 h->got.offset = (bfd_vma) -1;
1453 else if (h->got.refcount > 0)
1454 {
1455 asection *s;
1456 bfd_boolean dyn;
1457 int tls_type = elf64_x86_64_hash_entry (h)->tls_type;
1458
1459 /* Make sure this symbol is output as a dynamic symbol.
1460 Undefined weak syms won't yet be marked as dynamic. */
1461 if (h->dynindx == -1
1462 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1463 {
1464 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1465 return FALSE;
1466 }
1467
1468 s = htab->sgot;
1469 h->got.offset = s->_raw_size;
1470 s->_raw_size += GOT_ENTRY_SIZE;
1471 /* R_X86_64_TLSGD needs 2 consecutive GOT slots. */
1472 if (tls_type == GOT_TLS_GD)
1473 s->_raw_size += GOT_ENTRY_SIZE;
1474 dyn = htab->elf.dynamic_sections_created;
1475 /* R_X86_64_TLSGD needs one dynamic relocation if local symbol
1476 and two if global.
1477 R_X86_64_GOTTPOFF needs one dynamic relocation. */
1478 if ((tls_type == GOT_TLS_GD && h->dynindx == -1)
1479 || tls_type == GOT_TLS_IE)
1480 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1481 else if (tls_type == GOT_TLS_GD)
1482 htab->srelgot->_raw_size += 2 * sizeof (Elf64_External_Rela);
1483 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
1484 || h->root.type != bfd_link_hash_undefweak)
1485 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h))
1486 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1487 }
1488 else
1489 h->got.offset = (bfd_vma) -1;
1490
1491 eh = (struct elf64_x86_64_link_hash_entry *) h;
1492 if (eh->dyn_relocs == NULL)
1493 return TRUE;
1494
1495 /* In the shared -Bsymbolic case, discard space allocated for
1496 dynamic pc-relative relocs against symbols which turn out to be
1497 defined in regular objects. For the normal shared case, discard
1498 space for pc-relative relocs that have become local due to symbol
1499 visibility changes. */
1500
1501 if (info->shared)
1502 {
1503 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) != 0
1504 && ((h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0
1505 || info->symbolic))
1506 {
1507 struct elf64_x86_64_dyn_relocs **pp;
1508
1509 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
1510 {
1511 p->count -= p->pc_count;
1512 p->pc_count = 0;
1513 if (p->count == 0)
1514 *pp = p->next;
1515 else
1516 pp = &p->next;
1517 }
1518 }
1519
1520 /* Also discard relocs on undefined weak syms with non-default
1521 visibility. */
1522 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1523 && h->root.type == bfd_link_hash_undefweak)
1524 eh->dyn_relocs = NULL;
1525 }
1526 else if (ELIMINATE_COPY_RELOCS)
1527 {
1528 /* For the non-shared case, discard space for relocs against
1529 symbols which turn out to need copy relocs or are not
1530 dynamic. */
1531
1532 if ((h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
1533 && (((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0
1534 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
1535 || (htab->elf.dynamic_sections_created
1536 && (h->root.type == bfd_link_hash_undefweak
1537 || h->root.type == bfd_link_hash_undefined))))
1538 {
1539 /* Make sure this symbol is output as a dynamic symbol.
1540 Undefined weak syms won't yet be marked as dynamic. */
1541 if (h->dynindx == -1
1542 && (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) == 0)
1543 {
1544 if (! bfd_elf64_link_record_dynamic_symbol (info, h))
1545 return FALSE;
1546 }
1547
1548 /* If that succeeded, we know we'll be keeping all the
1549 relocs. */
1550 if (h->dynindx != -1)
1551 goto keep;
1552 }
1553
1554 eh->dyn_relocs = NULL;
1555
1556 keep: ;
1557 }
1558
1559 /* Finally, allocate space. */
1560 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1561 {
1562 asection *sreloc = elf_section_data (p->sec)->sreloc;
1563 sreloc->_raw_size += p->count * sizeof (Elf64_External_Rela);
1564 }
1565
1566 return TRUE;
1567 }
1568
1569 /* Find any dynamic relocs that apply to read-only sections. */
1570
1571 static bfd_boolean
1572 readonly_dynrelocs (h, inf)
1573 struct elf_link_hash_entry *h;
1574 PTR inf;
1575 {
1576 struct elf64_x86_64_link_hash_entry *eh;
1577 struct elf64_x86_64_dyn_relocs *p;
1578
1579 if (h->root.type == bfd_link_hash_warning)
1580 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1581
1582 eh = (struct elf64_x86_64_link_hash_entry *) h;
1583 for (p = eh->dyn_relocs; p != NULL; p = p->next)
1584 {
1585 asection *s = p->sec->output_section;
1586
1587 if (s != NULL && (s->flags & SEC_READONLY) != 0)
1588 {
1589 struct bfd_link_info *info = (struct bfd_link_info *) inf;
1590
1591 info->flags |= DF_TEXTREL;
1592
1593 /* Not an error, just cut short the traversal. */
1594 return FALSE;
1595 }
1596 }
1597 return TRUE;
1598 }
1599
1600 /* Set the sizes of the dynamic sections. */
1601
1602 static bfd_boolean
1603 elf64_x86_64_size_dynamic_sections (output_bfd, info)
1604 bfd *output_bfd ATTRIBUTE_UNUSED;
1605 struct bfd_link_info *info;
1606 {
1607 struct elf64_x86_64_link_hash_table *htab;
1608 bfd *dynobj;
1609 asection *s;
1610 bfd_boolean relocs;
1611 bfd *ibfd;
1612
1613 htab = elf64_x86_64_hash_table (info);
1614 dynobj = htab->elf.dynobj;
1615 if (dynobj == NULL)
1616 abort ();
1617
1618 if (htab->elf.dynamic_sections_created)
1619 {
1620 /* Set the contents of the .interp section to the interpreter. */
1621 if (info->executable)
1622 {
1623 s = bfd_get_section_by_name (dynobj, ".interp");
1624 if (s == NULL)
1625 abort ();
1626 s->_raw_size = sizeof ELF_DYNAMIC_INTERPRETER;
1627 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1628 }
1629 }
1630
1631 /* Set up .got offsets for local syms, and space for local dynamic
1632 relocs. */
1633 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1634 {
1635 bfd_signed_vma *local_got;
1636 bfd_signed_vma *end_local_got;
1637 char *local_tls_type;
1638 bfd_size_type locsymcount;
1639 Elf_Internal_Shdr *symtab_hdr;
1640 asection *srel;
1641
1642 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1643 continue;
1644
1645 for (s = ibfd->sections; s != NULL; s = s->next)
1646 {
1647 struct elf64_x86_64_dyn_relocs *p;
1648
1649 for (p = *((struct elf64_x86_64_dyn_relocs **)
1650 &elf_section_data (s)->local_dynrel);
1651 p != NULL;
1652 p = p->next)
1653 {
1654 if (!bfd_is_abs_section (p->sec)
1655 && bfd_is_abs_section (p->sec->output_section))
1656 {
1657 /* Input section has been discarded, either because
1658 it is a copy of a linkonce section or due to
1659 linker script /DISCARD/, so we'll be discarding
1660 the relocs too. */
1661 }
1662 else if (p->count != 0)
1663 {
1664 srel = elf_section_data (p->sec)->sreloc;
1665 srel->_raw_size += p->count * sizeof (Elf64_External_Rela);
1666 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
1667 info->flags |= DF_TEXTREL;
1668
1669 }
1670 }
1671 }
1672
1673 local_got = elf_local_got_refcounts (ibfd);
1674 if (!local_got)
1675 continue;
1676
1677 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1678 locsymcount = symtab_hdr->sh_info;
1679 end_local_got = local_got + locsymcount;
1680 local_tls_type = elf64_x86_64_local_got_tls_type (ibfd);
1681 s = htab->sgot;
1682 srel = htab->srelgot;
1683 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
1684 {
1685 if (*local_got > 0)
1686 {
1687 *local_got = s->_raw_size;
1688 s->_raw_size += GOT_ENTRY_SIZE;
1689 if (*local_tls_type == GOT_TLS_GD)
1690 s->_raw_size += GOT_ENTRY_SIZE;
1691 if (info->shared
1692 || *local_tls_type == GOT_TLS_GD
1693 || *local_tls_type == GOT_TLS_IE)
1694 srel->_raw_size += sizeof (Elf64_External_Rela);
1695 }
1696 else
1697 *local_got = (bfd_vma) -1;
1698 }
1699 }
1700
1701 if (htab->tls_ld_got.refcount > 0)
1702 {
1703 /* Allocate 2 got entries and 1 dynamic reloc for R_X86_64_TLSLD
1704 relocs. */
1705 htab->tls_ld_got.offset = htab->sgot->_raw_size;
1706 htab->sgot->_raw_size += 2 * GOT_ENTRY_SIZE;
1707 htab->srelgot->_raw_size += sizeof (Elf64_External_Rela);
1708 }
1709 else
1710 htab->tls_ld_got.offset = -1;
1711
1712 /* Allocate global sym .plt and .got entries, and space for global
1713 sym dynamic relocs. */
1714 elf_link_hash_traverse (&htab->elf, allocate_dynrelocs, (PTR) info);
1715
1716 /* We now have determined the sizes of the various dynamic sections.
1717 Allocate memory for them. */
1718 relocs = FALSE;
1719 for (s = dynobj->sections; s != NULL; s = s->next)
1720 {
1721 if ((s->flags & SEC_LINKER_CREATED) == 0)
1722 continue;
1723
1724 if (s == htab->splt
1725 || s == htab->sgot
1726 || s == htab->sgotplt)
1727 {
1728 /* Strip this section if we don't need it; see the
1729 comment below. */
1730 }
1731 else if (strncmp (bfd_get_section_name (dynobj, s), ".rela", 5) == 0)
1732 {
1733 if (s->_raw_size != 0 && s != htab->srelplt)
1734 relocs = TRUE;
1735
1736 /* We use the reloc_count field as a counter if we need
1737 to copy relocs into the output file. */
1738 s->reloc_count = 0;
1739 }
1740 else
1741 {
1742 /* It's not one of our sections, so don't allocate space. */
1743 continue;
1744 }
1745
1746 if (s->_raw_size == 0)
1747 {
1748 /* If we don't need this section, strip it from the
1749 output file. This is mostly to handle .rela.bss and
1750 .rela.plt. We must create both sections in
1751 create_dynamic_sections, because they must be created
1752 before the linker maps input sections to output
1753 sections. The linker does that before
1754 adjust_dynamic_symbol is called, and it is that
1755 function which decides whether anything needs to go
1756 into these sections. */
1757
1758 _bfd_strip_section_from_output (info, s);
1759 continue;
1760 }
1761
1762 /* Allocate memory for the section contents. We use bfd_zalloc
1763 here in case unused entries are not reclaimed before the
1764 section's contents are written out. This should not happen,
1765 but this way if it does, we get a R_X86_64_NONE reloc instead
1766 of garbage. */
1767 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size);
1768 if (s->contents == NULL)
1769 return FALSE;
1770 }
1771
1772 if (htab->elf.dynamic_sections_created)
1773 {
1774 /* Add some entries to the .dynamic section. We fill in the
1775 values later, in elf64_x86_64_finish_dynamic_sections, but we
1776 must add the entries now so that we get the correct size for
1777 the .dynamic section. The DT_DEBUG entry is filled in by the
1778 dynamic linker and used by the debugger. */
1779 #define add_dynamic_entry(TAG, VAL) \
1780 bfd_elf64_add_dynamic_entry (info, (bfd_vma) (TAG), (bfd_vma) (VAL))
1781
1782 if (info->executable)
1783 {
1784 if (!add_dynamic_entry (DT_DEBUG, 0))
1785 return FALSE;
1786 }
1787
1788 if (htab->splt->_raw_size != 0)
1789 {
1790 if (!add_dynamic_entry (DT_PLTGOT, 0)
1791 || !add_dynamic_entry (DT_PLTRELSZ, 0)
1792 || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1793 || !add_dynamic_entry (DT_JMPREL, 0))
1794 return FALSE;
1795 }
1796
1797 if (relocs)
1798 {
1799 if (!add_dynamic_entry (DT_RELA, 0)
1800 || !add_dynamic_entry (DT_RELASZ, 0)
1801 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1802 return FALSE;
1803
1804 /* If any dynamic relocs apply to a read-only section,
1805 then we need a DT_TEXTREL entry. */
1806 if ((info->flags & DF_TEXTREL) == 0)
1807 elf_link_hash_traverse (&htab->elf, readonly_dynrelocs,
1808 (PTR) info);
1809
1810 if ((info->flags & DF_TEXTREL) != 0)
1811 {
1812 if (!add_dynamic_entry (DT_TEXTREL, 0))
1813 return FALSE;
1814 }
1815 }
1816 }
1817 #undef add_dynamic_entry
1818
1819 return TRUE;
1820 }
1821
1822 /* Return the base VMA address which should be subtracted from real addresses
1823 when resolving @dtpoff relocation.
1824 This is PT_TLS segment p_vaddr. */
1825
1826 static bfd_vma
1827 dtpoff_base (info)
1828 struct bfd_link_info *info;
1829 {
1830 /* If tls_segment is NULL, we should have signalled an error already. */
1831 if (elf_hash_table (info)->tls_segment == NULL)
1832 return 0;
1833 return elf_hash_table (info)->tls_segment->start;
1834 }
1835
1836 /* Return the relocation value for @tpoff relocation
1837 if STT_TLS virtual address is ADDRESS. */
1838
1839 static bfd_vma
1840 tpoff (info, address)
1841 struct bfd_link_info *info;
1842 bfd_vma address;
1843 {
1844 struct elf_link_tls_segment *tls_segment
1845 = elf_hash_table (info)->tls_segment;
1846
1847 /* If tls_segment is NULL, we should have signalled an error already. */
1848 if (tls_segment == NULL)
1849 return 0;
1850 return address - align_power (tls_segment->size, tls_segment->align)
1851 - tls_segment->start;
1852 }
1853
1854 /* Relocate an x86_64 ELF section. */
1855
1856 static bfd_boolean
1857 elf64_x86_64_relocate_section (output_bfd, info, input_bfd, input_section,
1858 contents, relocs, local_syms, local_sections)
1859 bfd *output_bfd;
1860 struct bfd_link_info *info;
1861 bfd *input_bfd;
1862 asection *input_section;
1863 bfd_byte *contents;
1864 Elf_Internal_Rela *relocs;
1865 Elf_Internal_Sym *local_syms;
1866 asection **local_sections;
1867 {
1868 struct elf64_x86_64_link_hash_table *htab;
1869 Elf_Internal_Shdr *symtab_hdr;
1870 struct elf_link_hash_entry **sym_hashes;
1871 bfd_vma *local_got_offsets;
1872 Elf_Internal_Rela *rel;
1873 Elf_Internal_Rela *relend;
1874
1875 if (info->relocatable)
1876 return TRUE;
1877
1878 htab = elf64_x86_64_hash_table (info);
1879 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1880 sym_hashes = elf_sym_hashes (input_bfd);
1881 local_got_offsets = elf_local_got_offsets (input_bfd);
1882
1883 rel = relocs;
1884 relend = relocs + input_section->reloc_count;
1885 for (; rel < relend; rel++)
1886 {
1887 unsigned int r_type;
1888 reloc_howto_type *howto;
1889 unsigned long r_symndx;
1890 struct elf_link_hash_entry *h;
1891 Elf_Internal_Sym *sym;
1892 asection *sec;
1893 bfd_vma off;
1894 bfd_vma relocation;
1895 bfd_boolean unresolved_reloc;
1896 bfd_reloc_status_type r;
1897 int tls_type;
1898
1899 r_type = ELF64_R_TYPE (rel->r_info);
1900 if (r_type == (int) R_X86_64_GNU_VTINHERIT
1901 || r_type == (int) R_X86_64_GNU_VTENTRY)
1902 continue;
1903
1904 if (r_type >= R_X86_64_max)
1905 {
1906 bfd_set_error (bfd_error_bad_value);
1907 return FALSE;
1908 }
1909
1910 howto = x86_64_elf_howto_table + r_type;
1911 r_symndx = ELF64_R_SYM (rel->r_info);
1912 h = NULL;
1913 sym = NULL;
1914 sec = NULL;
1915 unresolved_reloc = FALSE;
1916 if (r_symndx < symtab_hdr->sh_info)
1917 {
1918 sym = local_syms + r_symndx;
1919 sec = local_sections[r_symndx];
1920
1921 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, sec, rel);
1922 }
1923 else
1924 {
1925 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1926 while (h->root.type == bfd_link_hash_indirect
1927 || h->root.type == bfd_link_hash_warning)
1928 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1929
1930 if (h->root.type == bfd_link_hash_defined
1931 || h->root.type == bfd_link_hash_defweak)
1932 {
1933 sec = h->root.u.def.section;
1934 if (sec->output_section == NULL)
1935 {
1936 /* Set a flag that will be cleared later if we find a
1937 relocation value for this symbol. output_section
1938 is typically NULL for symbols satisfied by a shared
1939 library. */
1940 unresolved_reloc = TRUE;
1941 relocation = 0;
1942 }
1943 else
1944 relocation = (h->root.u.def.value
1945 + sec->output_section->vma
1946 + sec->output_offset);
1947 }
1948 else if (h->root.type == bfd_link_hash_undefweak)
1949 relocation = 0;
1950 else if (info->shared
1951 && !info->no_undefined
1952 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
1953 relocation = 0;
1954 else
1955 {
1956 if (! ((*info->callbacks->undefined_symbol)
1957 (info, h->root.root.string, input_bfd,
1958 input_section, rel->r_offset,
1959 (!info->shared || info->no_undefined
1960 || ELF_ST_VISIBILITY (h->other)))))
1961 return FALSE;
1962 relocation = 0;
1963 }
1964 }
1965 /* When generating a shared object, the relocations handled here are
1966 copied into the output file to be resolved at run time. */
1967 switch (r_type)
1968 {
1969 case R_X86_64_GOT32:
1970 /* Relocation is to the entry for this symbol in the global
1971 offset table. */
1972 case R_X86_64_GOTPCREL:
1973 /* Use global offset table as symbol value. */
1974 if (htab->sgot == NULL)
1975 abort ();
1976
1977 if (h != NULL)
1978 {
1979 bfd_boolean dyn;
1980
1981 off = h->got.offset;
1982 dyn = htab->elf.dynamic_sections_created;
1983
1984 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info, h)
1985 || (info->shared
1986 && (info->symbolic
1987 || h->dynindx == -1
1988 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
1989 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
1990 || (ELF_ST_VISIBILITY (h->other)
1991 && h->root.type == bfd_link_hash_undefweak))
1992 {
1993 /* This is actually a static link, or it is a -Bsymbolic
1994 link and the symbol is defined locally, or the symbol
1995 was forced to be local because of a version file. We
1996 must initialize this entry in the global offset table.
1997 Since the offset must always be a multiple of 8, we
1998 use the least significant bit to record whether we
1999 have initialized it already.
2000
2001 When doing a dynamic link, we create a .rela.got
2002 relocation entry to initialize the value. This is
2003 done in the finish_dynamic_symbol routine. */
2004 if ((off & 1) != 0)
2005 off &= ~1;
2006 else
2007 {
2008 bfd_put_64 (output_bfd, relocation,
2009 htab->sgot->contents + off);
2010 h->got.offset |= 1;
2011 }
2012 }
2013 else
2014 unresolved_reloc = FALSE;
2015 }
2016 else
2017 {
2018 if (local_got_offsets == NULL)
2019 abort ();
2020
2021 off = local_got_offsets[r_symndx];
2022
2023 /* The offset must always be a multiple of 8. We use
2024 the least significant bit to record whether we have
2025 already generated the necessary reloc. */
2026 if ((off & 1) != 0)
2027 off &= ~1;
2028 else
2029 {
2030 bfd_put_64 (output_bfd, relocation,
2031 htab->sgot->contents + off);
2032
2033 if (info->shared)
2034 {
2035 asection *s;
2036 Elf_Internal_Rela outrel;
2037 bfd_byte *loc;
2038
2039 /* We need to generate a R_X86_64_RELATIVE reloc
2040 for the dynamic linker. */
2041 s = htab->srelgot;
2042 if (s == NULL)
2043 abort ();
2044
2045 outrel.r_offset = (htab->sgot->output_section->vma
2046 + htab->sgot->output_offset
2047 + off);
2048 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2049 outrel.r_addend = relocation;
2050 loc = s->contents;
2051 loc += s->reloc_count++ * sizeof (Elf64_External_Rela);
2052 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2053 }
2054
2055 local_got_offsets[r_symndx] |= 1;
2056 }
2057 }
2058
2059 if (off >= (bfd_vma) -2)
2060 abort ();
2061
2062 relocation = htab->sgot->output_offset + off;
2063 if (r_type == R_X86_64_GOTPCREL)
2064 relocation += htab->sgot->output_section->vma;
2065
2066 break;
2067
2068 case R_X86_64_PLT32:
2069 /* Relocation is to the entry for this symbol in the
2070 procedure linkage table. */
2071
2072 /* Resolve a PLT32 reloc against a local symbol directly,
2073 without using the procedure linkage table. */
2074 if (h == NULL)
2075 break;
2076
2077 if (h->plt.offset == (bfd_vma) -1
2078 || htab->splt == NULL)
2079 {
2080 /* We didn't make a PLT entry for this symbol. This
2081 happens when statically linking PIC code, or when
2082 using -Bsymbolic. */
2083 break;
2084 }
2085
2086 relocation = (htab->splt->output_section->vma
2087 + htab->splt->output_offset
2088 + h->plt.offset);
2089 unresolved_reloc = FALSE;
2090 break;
2091
2092 case R_X86_64_PC8:
2093 case R_X86_64_PC16:
2094 case R_X86_64_PC32:
2095 case R_X86_64_8:
2096 case R_X86_64_16:
2097 case R_X86_64_32:
2098 case R_X86_64_64:
2099 /* FIXME: The ABI says the linker should make sure the value is
2100 the same when it's zeroextended to 64 bit. */
2101
2102 /* r_symndx will be zero only for relocs against symbols
2103 from removed linkonce sections, or sections discarded by
2104 a linker script. */
2105 if (r_symndx == 0
2106 || (input_section->flags & SEC_ALLOC) == 0)
2107 break;
2108
2109 if ((info->shared
2110 && (h == NULL
2111 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2112 || h->root.type != bfd_link_hash_undefweak)
2113 && ((r_type != R_X86_64_PC8
2114 && r_type != R_X86_64_PC16
2115 && r_type != R_X86_64_PC32)
2116 || (h != NULL
2117 && h->dynindx != -1
2118 && (! info->symbolic
2119 || (h->elf_link_hash_flags
2120 & ELF_LINK_HASH_DEF_REGULAR) == 0))))
2121 || (ELIMINATE_COPY_RELOCS
2122 && !info->shared
2123 && h != NULL
2124 && h->dynindx != -1
2125 && (h->elf_link_hash_flags & ELF_LINK_NON_GOT_REF) == 0
2126 && (((h->elf_link_hash_flags
2127 & ELF_LINK_HASH_DEF_DYNAMIC) != 0
2128 && (h->elf_link_hash_flags
2129 & ELF_LINK_HASH_DEF_REGULAR) == 0)
2130 || h->root.type == bfd_link_hash_undefweak
2131 || h->root.type == bfd_link_hash_undefined)))
2132 {
2133 Elf_Internal_Rela outrel;
2134 bfd_byte *loc;
2135 bfd_boolean skip, relocate;
2136 asection *sreloc;
2137
2138 /* When generating a shared object, these relocations
2139 are copied into the output file to be resolved at run
2140 time. */
2141 skip = FALSE;
2142 relocate = FALSE;
2143
2144 outrel.r_offset =
2145 _bfd_elf_section_offset (output_bfd, info, input_section,
2146 rel->r_offset);
2147 if (outrel.r_offset == (bfd_vma) -1)
2148 skip = TRUE;
2149 else if (outrel.r_offset == (bfd_vma) -2)
2150 skip = TRUE, relocate = TRUE;
2151
2152 outrel.r_offset += (input_section->output_section->vma
2153 + input_section->output_offset);
2154
2155 if (skip)
2156 memset (&outrel, 0, sizeof outrel);
2157
2158 /* h->dynindx may be -1 if this symbol was marked to
2159 become local. */
2160 else if (h != NULL
2161 && h->dynindx != -1
2162 && (r_type == R_X86_64_PC8
2163 || r_type == R_X86_64_PC16
2164 || r_type == R_X86_64_PC32
2165 || !info->shared
2166 || !info->symbolic
2167 || (h->elf_link_hash_flags
2168 & ELF_LINK_HASH_DEF_REGULAR) == 0))
2169 {
2170 outrel.r_info = ELF64_R_INFO (h->dynindx, r_type);
2171 outrel.r_addend = rel->r_addend;
2172 }
2173 else
2174 {
2175 /* This symbol is local, or marked to become local. */
2176 if (r_type == R_X86_64_64)
2177 {
2178 relocate = TRUE;
2179 outrel.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2180 outrel.r_addend = relocation + rel->r_addend;
2181 }
2182 else
2183 {
2184 long sindx;
2185
2186 if (h == NULL)
2187 sec = local_sections[r_symndx];
2188 else
2189 {
2190 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2191 || (h->root.type
2192 == bfd_link_hash_defweak));
2193 sec = h->root.u.def.section;
2194 }
2195 if (sec != NULL && bfd_is_abs_section (sec))
2196 sindx = 0;
2197 else if (sec == NULL || sec->owner == NULL)
2198 {
2199 bfd_set_error (bfd_error_bad_value);
2200 return FALSE;
2201 }
2202 else
2203 {
2204 asection *osec;
2205
2206 osec = sec->output_section;
2207 sindx = elf_section_data (osec)->dynindx;
2208 BFD_ASSERT (sindx > 0);
2209 }
2210
2211 outrel.r_info = ELF64_R_INFO (sindx, r_type);
2212 outrel.r_addend = relocation + rel->r_addend;
2213 }
2214 }
2215
2216 sreloc = elf_section_data (input_section)->sreloc;
2217 if (sreloc == NULL)
2218 abort ();
2219
2220 loc = sreloc->contents;
2221 loc += sreloc->reloc_count++ * sizeof (Elf64_External_Rela);
2222 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2223
2224 /* If this reloc is against an external symbol, we do
2225 not want to fiddle with the addend. Otherwise, we
2226 need to include the symbol value so that it becomes
2227 an addend for the dynamic reloc. */
2228 if (! relocate)
2229 continue;
2230 }
2231
2232 break;
2233
2234 case R_X86_64_TLSGD:
2235 case R_X86_64_GOTTPOFF:
2236 r_type = elf64_x86_64_tls_transition (info, r_type, h == NULL);
2237 tls_type = GOT_UNKNOWN;
2238 if (h == NULL && local_got_offsets)
2239 tls_type = elf64_x86_64_local_got_tls_type (input_bfd) [r_symndx];
2240 else if (h != NULL)
2241 {
2242 tls_type = elf64_x86_64_hash_entry (h)->tls_type;
2243 if (!info->shared && h->dynindx == -1 && tls_type == GOT_TLS_IE)
2244 r_type = R_X86_64_TPOFF32;
2245 }
2246 if (r_type == R_X86_64_TLSGD)
2247 {
2248 if (tls_type == GOT_TLS_IE)
2249 r_type = R_X86_64_GOTTPOFF;
2250 }
2251
2252 if (r_type == R_X86_64_TPOFF32)
2253 {
2254 BFD_ASSERT (! unresolved_reloc);
2255 if (ELF64_R_TYPE (rel->r_info) == R_X86_64_TLSGD)
2256 {
2257 unsigned int i;
2258 static unsigned char tlsgd[8]
2259 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2260
2261 /* GD->LE transition.
2262 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2263 .word 0x6666; rex64; call __tls_get_addr@plt
2264 Change it into:
2265 movq %fs:0, %rax
2266 leaq foo@tpoff(%rax), %rax */
2267 BFD_ASSERT (rel->r_offset >= 4);
2268 for (i = 0; i < 4; i++)
2269 BFD_ASSERT (bfd_get_8 (input_bfd,
2270 contents + rel->r_offset - 4 + i)
2271 == tlsgd[i]);
2272 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2273 for (i = 0; i < 4; i++)
2274 BFD_ASSERT (bfd_get_8 (input_bfd,
2275 contents + rel->r_offset + 4 + i)
2276 == tlsgd[i+4]);
2277 BFD_ASSERT (rel + 1 < relend);
2278 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2279 memcpy (contents + rel->r_offset - 4,
2280 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x8d\x80\0\0\0",
2281 16);
2282 bfd_put_32 (output_bfd, tpoff (info, relocation),
2283 contents + rel->r_offset + 8);
2284 /* Skip R_X86_64_PLT32. */
2285 rel++;
2286 continue;
2287 }
2288 else
2289 {
2290 unsigned int val, type, reg;
2291
2292 /* IE->LE transition:
2293 Originally it can be one of:
2294 movq foo@gottpoff(%rip), %reg
2295 addq foo@gottpoff(%rip), %reg
2296 We change it into:
2297 movq $foo, %reg
2298 leaq foo(%reg), %reg
2299 addq $foo, %reg. */
2300 BFD_ASSERT (rel->r_offset >= 3);
2301 val = bfd_get_8 (input_bfd, contents + rel->r_offset - 3);
2302 BFD_ASSERT (val == 0x48 || val == 0x4c);
2303 type = bfd_get_8 (input_bfd, contents + rel->r_offset - 2);
2304 BFD_ASSERT (type == 0x8b || type == 0x03);
2305 reg = bfd_get_8 (input_bfd, contents + rel->r_offset - 1);
2306 BFD_ASSERT ((reg & 0xc7) == 5);
2307 reg >>= 3;
2308 BFD_ASSERT (rel->r_offset + 4 <= input_section->_raw_size);
2309 if (type == 0x8b)
2310 {
2311 /* movq */
2312 if (val == 0x4c)
2313 bfd_put_8 (output_bfd, 0x49,
2314 contents + rel->r_offset - 3);
2315 bfd_put_8 (output_bfd, 0xc7,
2316 contents + rel->r_offset - 2);
2317 bfd_put_8 (output_bfd, 0xc0 | reg,
2318 contents + rel->r_offset - 1);
2319 }
2320 else if (reg == 4)
2321 {
2322 /* addq -> addq - addressing with %rsp/%r12 is
2323 special */
2324 if (val == 0x4c)
2325 bfd_put_8 (output_bfd, 0x49,
2326 contents + rel->r_offset - 3);
2327 bfd_put_8 (output_bfd, 0x81,
2328 contents + rel->r_offset - 2);
2329 bfd_put_8 (output_bfd, 0xc0 | reg,
2330 contents + rel->r_offset - 1);
2331 }
2332 else
2333 {
2334 /* addq -> leaq */
2335 if (val == 0x4c)
2336 bfd_put_8 (output_bfd, 0x4d,
2337 contents + rel->r_offset - 3);
2338 bfd_put_8 (output_bfd, 0x8d,
2339 contents + rel->r_offset - 2);
2340 bfd_put_8 (output_bfd, 0x80 | reg | (reg << 3),
2341 contents + rel->r_offset - 1);
2342 }
2343 bfd_put_32 (output_bfd, tpoff (info, relocation),
2344 contents + rel->r_offset);
2345 continue;
2346 }
2347 }
2348
2349 if (htab->sgot == NULL)
2350 abort ();
2351
2352 if (h != NULL)
2353 off = h->got.offset;
2354 else
2355 {
2356 if (local_got_offsets == NULL)
2357 abort ();
2358
2359 off = local_got_offsets[r_symndx];
2360 }
2361
2362 if ((off & 1) != 0)
2363 off &= ~1;
2364 else
2365 {
2366 Elf_Internal_Rela outrel;
2367 bfd_byte *loc;
2368 int dr_type, indx;
2369
2370 if (htab->srelgot == NULL)
2371 abort ();
2372
2373 outrel.r_offset = (htab->sgot->output_section->vma
2374 + htab->sgot->output_offset + off);
2375
2376 indx = h && h->dynindx != -1 ? h->dynindx : 0;
2377 if (r_type == R_X86_64_TLSGD)
2378 dr_type = R_X86_64_DTPMOD64;
2379 else
2380 dr_type = R_X86_64_TPOFF64;
2381
2382 bfd_put_64 (output_bfd, 0, htab->sgot->contents + off);
2383 outrel.r_addend = 0;
2384 if (dr_type == R_X86_64_TPOFF64 && indx == 0)
2385 outrel.r_addend = relocation - dtpoff_base (info);
2386 outrel.r_info = ELF64_R_INFO (indx, dr_type);
2387
2388 loc = htab->srelgot->contents;
2389 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2390 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2391
2392 if (r_type == R_X86_64_TLSGD)
2393 {
2394 if (indx == 0)
2395 {
2396 BFD_ASSERT (! unresolved_reloc);
2397 bfd_put_64 (output_bfd,
2398 relocation - dtpoff_base (info),
2399 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2400 }
2401 else
2402 {
2403 bfd_put_64 (output_bfd, 0,
2404 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2405 outrel.r_info = ELF64_R_INFO (indx,
2406 R_X86_64_DTPOFF64);
2407 outrel.r_offset += GOT_ENTRY_SIZE;
2408 htab->srelgot->reloc_count++;
2409 loc += sizeof (Elf64_External_Rela);
2410 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2411 }
2412 }
2413
2414 if (h != NULL)
2415 h->got.offset |= 1;
2416 else
2417 local_got_offsets[r_symndx] |= 1;
2418 }
2419
2420 if (off >= (bfd_vma) -2)
2421 abort ();
2422 if (r_type == ELF64_R_TYPE (rel->r_info))
2423 {
2424 relocation = htab->sgot->output_section->vma
2425 + htab->sgot->output_offset + off;
2426 unresolved_reloc = FALSE;
2427 }
2428 else
2429 {
2430 unsigned int i;
2431 static unsigned char tlsgd[8]
2432 = { 0x66, 0x48, 0x8d, 0x3d, 0x66, 0x66, 0x48, 0xe8 };
2433
2434 /* GD->IE transition.
2435 .byte 0x66; leaq foo@tlsgd(%rip), %rdi
2436 .word 0x6666; rex64; call __tls_get_addr@plt
2437 Change it into:
2438 movq %fs:0, %rax
2439 addq foo@gottpoff(%rip), %rax */
2440 BFD_ASSERT (rel->r_offset >= 4);
2441 for (i = 0; i < 4; i++)
2442 BFD_ASSERT (bfd_get_8 (input_bfd,
2443 contents + rel->r_offset - 4 + i)
2444 == tlsgd[i]);
2445 BFD_ASSERT (rel->r_offset + 12 <= input_section->_raw_size);
2446 for (i = 0; i < 4; i++)
2447 BFD_ASSERT (bfd_get_8 (input_bfd,
2448 contents + rel->r_offset + 4 + i)
2449 == tlsgd[i+4]);
2450 BFD_ASSERT (rel + 1 < relend);
2451 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2452 memcpy (contents + rel->r_offset - 4,
2453 "\x64\x48\x8b\x04\x25\0\0\0\0\x48\x03\x05\0\0\0",
2454 16);
2455
2456 relocation = (htab->sgot->output_section->vma
2457 + htab->sgot->output_offset + off
2458 - rel->r_offset
2459 - input_section->output_section->vma
2460 - input_section->output_offset
2461 - 12);
2462 bfd_put_32 (output_bfd, relocation,
2463 contents + rel->r_offset + 8);
2464 /* Skip R_X86_64_PLT32. */
2465 rel++;
2466 continue;
2467 }
2468 break;
2469
2470 case R_X86_64_TLSLD:
2471 if (! info->shared)
2472 {
2473 /* LD->LE transition:
2474 Ensure it is:
2475 leaq foo@tlsld(%rip), %rdi; call __tls_get_addr@plt.
2476 We change it into:
2477 .word 0x6666; .byte 0x66; movl %fs:0, %rax. */
2478 BFD_ASSERT (rel->r_offset >= 3);
2479 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 3)
2480 == 0x48);
2481 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 2)
2482 == 0x8d);
2483 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset - 1)
2484 == 0x3d);
2485 BFD_ASSERT (rel->r_offset + 9 <= input_section->_raw_size);
2486 BFD_ASSERT (bfd_get_8 (input_bfd, contents + rel->r_offset + 4)
2487 == 0xe8);
2488 BFD_ASSERT (rel + 1 < relend);
2489 BFD_ASSERT (ELF64_R_TYPE (rel[1].r_info) == R_X86_64_PLT32);
2490 memcpy (contents + rel->r_offset - 3,
2491 "\x66\x66\x66\x64\x48\x8b\x04\x25\0\0\0", 12);
2492 /* Skip R_X86_64_PLT32. */
2493 rel++;
2494 continue;
2495 }
2496
2497 if (htab->sgot == NULL)
2498 abort ();
2499
2500 off = htab->tls_ld_got.offset;
2501 if (off & 1)
2502 off &= ~1;
2503 else
2504 {
2505 Elf_Internal_Rela outrel;
2506 bfd_byte *loc;
2507
2508 if (htab->srelgot == NULL)
2509 abort ();
2510
2511 outrel.r_offset = (htab->sgot->output_section->vma
2512 + htab->sgot->output_offset + off);
2513
2514 bfd_put_64 (output_bfd, 0,
2515 htab->sgot->contents + off);
2516 bfd_put_64 (output_bfd, 0,
2517 htab->sgot->contents + off + GOT_ENTRY_SIZE);
2518 outrel.r_info = ELF64_R_INFO (0, R_X86_64_DTPMOD64);
2519 outrel.r_addend = 0;
2520 loc = htab->srelgot->contents;
2521 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2522 bfd_elf64_swap_reloca_out (output_bfd, &outrel, loc);
2523 htab->tls_ld_got.offset |= 1;
2524 }
2525 relocation = htab->sgot->output_section->vma
2526 + htab->sgot->output_offset + off;
2527 unresolved_reloc = FALSE;
2528 break;
2529
2530 case R_X86_64_DTPOFF32:
2531 if (info->shared || (input_section->flags & SEC_CODE) == 0)
2532 relocation -= dtpoff_base (info);
2533 else
2534 relocation = tpoff (info, relocation);
2535 break;
2536
2537 case R_X86_64_TPOFF32:
2538 BFD_ASSERT (! info->shared);
2539 relocation = tpoff (info, relocation);
2540 break;
2541
2542 default:
2543 break;
2544 }
2545
2546 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
2547 because such sections are not SEC_ALLOC and thus ld.so will
2548 not process them. */
2549 if (unresolved_reloc
2550 && !((input_section->flags & SEC_DEBUGGING) != 0
2551 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0))
2552 (*_bfd_error_handler)
2553 (_("%s(%s+0x%lx): unresolvable relocation against symbol `%s'"),
2554 bfd_archive_filename (input_bfd),
2555 bfd_get_section_name (input_bfd, input_section),
2556 (long) rel->r_offset,
2557 h->root.root.string);
2558
2559 r = _bfd_final_link_relocate (howto, input_bfd, input_section,
2560 contents, rel->r_offset,
2561 relocation, rel->r_addend);
2562
2563 if (r != bfd_reloc_ok)
2564 {
2565 const char *name;
2566
2567 if (h != NULL)
2568 name = h->root.root.string;
2569 else
2570 {
2571 name = bfd_elf_string_from_elf_section (input_bfd,
2572 symtab_hdr->sh_link,
2573 sym->st_name);
2574 if (name == NULL)
2575 return FALSE;
2576 if (*name == '\0')
2577 name = bfd_section_name (input_bfd, sec);
2578 }
2579
2580 if (r == bfd_reloc_overflow)
2581 {
2582
2583 if (! ((*info->callbacks->reloc_overflow)
2584 (info, name, howto->name, (bfd_vma) 0,
2585 input_bfd, input_section, rel->r_offset)))
2586 return FALSE;
2587 }
2588 else
2589 {
2590 (*_bfd_error_handler)
2591 (_("%s(%s+0x%lx): reloc against `%s': error %d"),
2592 bfd_archive_filename (input_bfd),
2593 bfd_get_section_name (input_bfd, input_section),
2594 (long) rel->r_offset, name, (int) r);
2595 return FALSE;
2596 }
2597 }
2598 }
2599
2600 return TRUE;
2601 }
2602
2603 /* Finish up dynamic symbol handling. We set the contents of various
2604 dynamic sections here. */
2605
2606 static bfd_boolean
2607 elf64_x86_64_finish_dynamic_symbol (output_bfd, info, h, sym)
2608 bfd *output_bfd;
2609 struct bfd_link_info *info;
2610 struct elf_link_hash_entry *h;
2611 Elf_Internal_Sym *sym;
2612 {
2613 struct elf64_x86_64_link_hash_table *htab;
2614
2615 htab = elf64_x86_64_hash_table (info);
2616
2617 if (h->plt.offset != (bfd_vma) -1)
2618 {
2619 bfd_vma plt_index;
2620 bfd_vma got_offset;
2621 Elf_Internal_Rela rela;
2622 bfd_byte *loc;
2623
2624 /* This symbol has an entry in the procedure linkage table. Set
2625 it up. */
2626 if (h->dynindx == -1
2627 || htab->splt == NULL
2628 || htab->sgotplt == NULL
2629 || htab->srelplt == NULL)
2630 abort ();
2631
2632 /* Get the index in the procedure linkage table which
2633 corresponds to this symbol. This is the index of this symbol
2634 in all the symbols for which we are making plt entries. The
2635 first entry in the procedure linkage table is reserved. */
2636 plt_index = h->plt.offset / PLT_ENTRY_SIZE - 1;
2637
2638 /* Get the offset into the .got table of the entry that
2639 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE
2640 bytes. The first three are reserved for the dynamic linker. */
2641 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE;
2642
2643 /* Fill in the entry in the procedure linkage table. */
2644 memcpy (htab->splt->contents + h->plt.offset, elf64_x86_64_plt_entry,
2645 PLT_ENTRY_SIZE);
2646
2647 /* Insert the relocation positions of the plt section. The magic
2648 numbers at the end of the statements are the positions of the
2649 relocations in the plt section. */
2650 /* Put offset for jmp *name@GOTPCREL(%rip), since the
2651 instruction uses 6 bytes, subtract this value. */
2652 bfd_put_32 (output_bfd,
2653 (htab->sgotplt->output_section->vma
2654 + htab->sgotplt->output_offset
2655 + got_offset
2656 - htab->splt->output_section->vma
2657 - htab->splt->output_offset
2658 - h->plt.offset
2659 - 6),
2660 htab->splt->contents + h->plt.offset + 2);
2661 /* Put relocation index. */
2662 bfd_put_32 (output_bfd, plt_index,
2663 htab->splt->contents + h->plt.offset + 7);
2664 /* Put offset for jmp .PLT0. */
2665 bfd_put_32 (output_bfd, - (h->plt.offset + PLT_ENTRY_SIZE),
2666 htab->splt->contents + h->plt.offset + 12);
2667
2668 /* Fill in the entry in the global offset table, initially this
2669 points to the pushq instruction in the PLT which is at offset 6. */
2670 bfd_put_64 (output_bfd, (htab->splt->output_section->vma
2671 + htab->splt->output_offset
2672 + h->plt.offset + 6),
2673 htab->sgotplt->contents + got_offset);
2674
2675 /* Fill in the entry in the .rela.plt section. */
2676 rela.r_offset = (htab->sgotplt->output_section->vma
2677 + htab->sgotplt->output_offset
2678 + got_offset);
2679 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_JUMP_SLOT);
2680 rela.r_addend = 0;
2681 loc = htab->srelplt->contents + plt_index * sizeof (Elf64_External_Rela);
2682 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2683
2684 if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0)
2685 {
2686 /* Mark the symbol as undefined, rather than as defined in
2687 the .plt section. Leave the value alone. This is a clue
2688 for the dynamic linker, to make function pointer
2689 comparisons work between an application and shared
2690 library. */
2691 sym->st_shndx = SHN_UNDEF;
2692 }
2693 }
2694
2695 if (h->got.offset != (bfd_vma) -1
2696 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_GD
2697 && elf64_x86_64_hash_entry (h)->tls_type != GOT_TLS_IE)
2698 {
2699 Elf_Internal_Rela rela;
2700 bfd_byte *loc;
2701
2702 /* This symbol has an entry in the global offset table. Set it
2703 up. */
2704 if (htab->sgot == NULL || htab->srelgot == NULL)
2705 abort ();
2706
2707 rela.r_offset = (htab->sgot->output_section->vma
2708 + htab->sgot->output_offset
2709 + (h->got.offset &~ (bfd_vma) 1));
2710
2711 /* If this is a static link, or it is a -Bsymbolic link and the
2712 symbol is defined locally or was forced to be local because
2713 of a version file, we just want to emit a RELATIVE reloc.
2714 The entry in the global offset table will already have been
2715 initialized in the relocate_section function. */
2716 if (info->shared
2717 && (info->symbolic
2718 || h->dynindx == -1
2719 || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))
2720 && (h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))
2721 {
2722 BFD_ASSERT((h->got.offset & 1) != 0);
2723 rela.r_info = ELF64_R_INFO (0, R_X86_64_RELATIVE);
2724 rela.r_addend = (h->root.u.def.value
2725 + h->root.u.def.section->output_section->vma
2726 + h->root.u.def.section->output_offset);
2727 }
2728 else
2729 {
2730 BFD_ASSERT((h->got.offset & 1) == 0);
2731 bfd_put_64 (output_bfd, (bfd_vma) 0,
2732 htab->sgot->contents + h->got.offset);
2733 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_GLOB_DAT);
2734 rela.r_addend = 0;
2735 }
2736
2737 loc = htab->srelgot->contents;
2738 loc += htab->srelgot->reloc_count++ * sizeof (Elf64_External_Rela);
2739 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2740 }
2741
2742 if ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_COPY) != 0)
2743 {
2744 Elf_Internal_Rela rela;
2745 bfd_byte *loc;
2746
2747 /* This symbol needs a copy reloc. Set it up. */
2748
2749 if (h->dynindx == -1
2750 || (h->root.type != bfd_link_hash_defined
2751 && h->root.type != bfd_link_hash_defweak)
2752 || htab->srelbss == NULL)
2753 abort ();
2754
2755 rela.r_offset = (h->root.u.def.value
2756 + h->root.u.def.section->output_section->vma
2757 + h->root.u.def.section->output_offset);
2758 rela.r_info = ELF64_R_INFO (h->dynindx, R_X86_64_COPY);
2759 rela.r_addend = 0;
2760 loc = htab->srelbss->contents;
2761 loc += htab->srelbss->reloc_count++ * sizeof (Elf64_External_Rela);
2762 bfd_elf64_swap_reloca_out (output_bfd, &rela, loc);
2763 }
2764
2765 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
2766 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
2767 || strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2768 sym->st_shndx = SHN_ABS;
2769
2770 return TRUE;
2771 }
2772
2773 /* Used to decide how to sort relocs in an optimal manner for the
2774 dynamic linker, before writing them out. */
2775
2776 static enum elf_reloc_type_class
2777 elf64_x86_64_reloc_type_class (rela)
2778 const Elf_Internal_Rela *rela;
2779 {
2780 switch ((int) ELF64_R_TYPE (rela->r_info))
2781 {
2782 case R_X86_64_RELATIVE:
2783 return reloc_class_relative;
2784 case R_X86_64_JUMP_SLOT:
2785 return reloc_class_plt;
2786 case R_X86_64_COPY:
2787 return reloc_class_copy;
2788 default:
2789 return reloc_class_normal;
2790 }
2791 }
2792
2793 /* Finish up the dynamic sections. */
2794
2795 static bfd_boolean
2796 elf64_x86_64_finish_dynamic_sections (output_bfd, info)
2797 bfd *output_bfd;
2798 struct bfd_link_info *info;
2799 {
2800 struct elf64_x86_64_link_hash_table *htab;
2801 bfd *dynobj;
2802 asection *sdyn;
2803
2804 htab = elf64_x86_64_hash_table (info);
2805 dynobj = htab->elf.dynobj;
2806 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
2807
2808 if (htab->elf.dynamic_sections_created)
2809 {
2810 Elf64_External_Dyn *dyncon, *dynconend;
2811
2812 if (sdyn == NULL || htab->sgot == NULL)
2813 abort ();
2814
2815 dyncon = (Elf64_External_Dyn *) sdyn->contents;
2816 dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->_raw_size);
2817 for (; dyncon < dynconend; dyncon++)
2818 {
2819 Elf_Internal_Dyn dyn;
2820 asection *s;
2821
2822 bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2823
2824 switch (dyn.d_tag)
2825 {
2826 default:
2827 continue;
2828
2829 case DT_PLTGOT:
2830 dyn.d_un.d_ptr = htab->sgot->output_section->vma;
2831 break;
2832
2833 case DT_JMPREL:
2834 dyn.d_un.d_ptr = htab->srelplt->output_section->vma;
2835 break;
2836
2837 case DT_PLTRELSZ:
2838 s = htab->srelplt->output_section;
2839 if (s->_cooked_size != 0)
2840 dyn.d_un.d_val = s->_cooked_size;
2841 else
2842 dyn.d_un.d_val = s->_raw_size;
2843 break;
2844
2845 case DT_RELASZ:
2846 /* The procedure linkage table relocs (DT_JMPREL) should
2847 not be included in the overall relocs (DT_RELA).
2848 Therefore, we override the DT_RELASZ entry here to
2849 make it not include the JMPREL relocs. Since the
2850 linker script arranges for .rela.plt to follow all
2851 other relocation sections, we don't have to worry
2852 about changing the DT_RELA entry. */
2853 if (htab->srelplt != NULL)
2854 {
2855 s = htab->srelplt->output_section;
2856 if (s->_cooked_size != 0)
2857 dyn.d_un.d_val -= s->_cooked_size;
2858 else
2859 dyn.d_un.d_val -= s->_raw_size;
2860 }
2861 break;
2862 }
2863
2864 bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2865 }
2866
2867 /* Fill in the special first entry in the procedure linkage table. */
2868 if (htab->splt && htab->splt->_raw_size > 0)
2869 {
2870 /* Fill in the first entry in the procedure linkage table. */
2871 memcpy (htab->splt->contents, elf64_x86_64_plt0_entry,
2872 PLT_ENTRY_SIZE);
2873 /* Add offset for pushq GOT+8(%rip), since the instruction
2874 uses 6 bytes subtract this value. */
2875 bfd_put_32 (output_bfd,
2876 (htab->sgotplt->output_section->vma
2877 + htab->sgotplt->output_offset
2878 + 8
2879 - htab->splt->output_section->vma
2880 - htab->splt->output_offset
2881 - 6),
2882 htab->splt->contents + 2);
2883 /* Add offset for jmp *GOT+16(%rip). The 12 is the offset to
2884 the end of the instruction. */
2885 bfd_put_32 (output_bfd,
2886 (htab->sgotplt->output_section->vma
2887 + htab->sgotplt->output_offset
2888 + 16
2889 - htab->splt->output_section->vma
2890 - htab->splt->output_offset
2891 - 12),
2892 htab->splt->contents + 8);
2893
2894 elf_section_data (htab->splt->output_section)->this_hdr.sh_entsize =
2895 PLT_ENTRY_SIZE;
2896 }
2897 }
2898
2899 if (htab->sgotplt)
2900 {
2901 /* Fill in the first three entries in the global offset table. */
2902 if (htab->sgotplt->_raw_size > 0)
2903 {
2904 /* Set the first entry in the global offset table to the address of
2905 the dynamic section. */
2906 if (sdyn == NULL)
2907 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents);
2908 else
2909 bfd_put_64 (output_bfd,
2910 sdyn->output_section->vma + sdyn->output_offset,
2911 htab->sgotplt->contents);
2912 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */
2913 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE);
2914 bfd_put_64 (output_bfd, (bfd_vma) 0, htab->sgotplt->contents + GOT_ENTRY_SIZE*2);
2915 }
2916
2917 elf_section_data (htab->sgotplt->output_section)->this_hdr.sh_entsize =
2918 GOT_ENTRY_SIZE;
2919 }
2920
2921 return TRUE;
2922 }
2923
2924
2925 #define TARGET_LITTLE_SYM bfd_elf64_x86_64_vec
2926 #define TARGET_LITTLE_NAME "elf64-x86-64"
2927 #define ELF_ARCH bfd_arch_i386
2928 #define ELF_MACHINE_CODE EM_X86_64
2929 #define ELF_MAXPAGESIZE 0x100000
2930
2931 #define elf_backend_can_gc_sections 1
2932 #define elf_backend_can_refcount 1
2933 #define elf_backend_want_got_plt 1
2934 #define elf_backend_plt_readonly 1
2935 #define elf_backend_want_plt_sym 0
2936 #define elf_backend_got_header_size (GOT_ENTRY_SIZE*3)
2937 #define elf_backend_plt_header_size PLT_ENTRY_SIZE
2938 #define elf_backend_rela_normal 1
2939
2940 #define elf_info_to_howto elf64_x86_64_info_to_howto
2941
2942 #define bfd_elf64_bfd_link_hash_table_create \
2943 elf64_x86_64_link_hash_table_create
2944 #define bfd_elf64_bfd_reloc_type_lookup elf64_x86_64_reloc_type_lookup
2945
2946 #define elf_backend_adjust_dynamic_symbol elf64_x86_64_adjust_dynamic_symbol
2947 #define elf_backend_check_relocs elf64_x86_64_check_relocs
2948 #define elf_backend_copy_indirect_symbol elf64_x86_64_copy_indirect_symbol
2949 #define elf_backend_create_dynamic_sections elf64_x86_64_create_dynamic_sections
2950 #define elf_backend_finish_dynamic_sections elf64_x86_64_finish_dynamic_sections
2951 #define elf_backend_finish_dynamic_symbol elf64_x86_64_finish_dynamic_symbol
2952 #define elf_backend_gc_mark_hook elf64_x86_64_gc_mark_hook
2953 #define elf_backend_gc_sweep_hook elf64_x86_64_gc_sweep_hook
2954 #define elf_backend_grok_prstatus elf64_x86_64_grok_prstatus
2955 #define elf_backend_grok_psinfo elf64_x86_64_grok_psinfo
2956 #define elf_backend_reloc_type_class elf64_x86_64_reloc_type_class
2957 #define elf_backend_relocate_section elf64_x86_64_relocate_section
2958 #define elf_backend_size_dynamic_sections elf64_x86_64_size_dynamic_sections
2959 #define elf_backend_object_p elf64_x86_64_elf_object_p
2960 #define bfd_elf64_mkobject elf64_x86_64_mkobject
2961
2962 #include "elf64-target.h"
This page took 0.143481 seconds and 4 git commands to generate.