1591682bce824fda63d2bd59dfff5b37d967455d
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2016 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 }
123
124 bh = &h->root;
125 bed = get_elf_backend_data (abfd);
126 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
127 sec, 0, NULL, FALSE, bed->collect,
128 &bh))
129 return NULL;
130 h = (struct elf_link_hash_entry *) bh;
131 h->def_regular = 1;
132 h->non_elf = 0;
133 h->root.linker_def = 1;
134 h->type = STT_OBJECT;
135 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
136 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
137
138 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
139 return h;
140 }
141
142 bfd_boolean
143 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
144 {
145 flagword flags;
146 asection *s;
147 struct elf_link_hash_entry *h;
148 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
149 struct elf_link_hash_table *htab = elf_hash_table (info);
150
151 /* This function may be called more than once. */
152 s = bfd_get_linker_section (abfd, ".got");
153 if (s != NULL)
154 return TRUE;
155
156 flags = bed->dynamic_sec_flags;
157
158 s = bfd_make_section_anyway_with_flags (abfd,
159 (bed->rela_plts_and_copies_p
160 ? ".rela.got" : ".rel.got"),
161 (bed->dynamic_sec_flags
162 | SEC_READONLY));
163 if (s == NULL
164 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
165 return FALSE;
166 htab->srelgot = s;
167
168 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
169 if (s == NULL
170 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
171 return FALSE;
172 htab->sgot = s;
173
174 if (bed->want_got_plt)
175 {
176 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
177 if (s == NULL
178 || !bfd_set_section_alignment (abfd, s,
179 bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
220 if ((ibfd->flags
221 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
222 {
223 abfd = ibfd;
224 break;
225 }
226 }
227 hash_table->dynobj = abfd;
228 }
229
230 if (hash_table->dynstr == NULL)
231 {
232 hash_table->dynstr = _bfd_elf_strtab_init ();
233 if (hash_table->dynstr == NULL)
234 return FALSE;
235 }
236 return TRUE;
237 }
238
239 /* Create some sections which will be filled in with dynamic linking
240 information. ABFD is an input file which requires dynamic sections
241 to be created. The dynamic sections take up virtual memory space
242 when the final executable is run, so we need to create them before
243 addresses are assigned to the output sections. We work out the
244 actual contents and size of these sections later. */
245
246 bfd_boolean
247 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
248 {
249 flagword flags;
250 asection *s;
251 const struct elf_backend_data *bed;
252 struct elf_link_hash_entry *h;
253
254 if (! is_elf_hash_table (info->hash))
255 return FALSE;
256
257 if (elf_hash_table (info)->dynamic_sections_created)
258 return TRUE;
259
260 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
261 return FALSE;
262
263 abfd = elf_hash_table (info)->dynobj;
264 bed = get_elf_backend_data (abfd);
265
266 flags = bed->dynamic_sec_flags;
267
268 /* A dynamically linked executable has a .interp section, but a
269 shared library does not. */
270 if (bfd_link_executable (info) && !info->nointerp)
271 {
272 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
273 flags | SEC_READONLY);
274 if (s == NULL)
275 return FALSE;
276 }
277
278 /* Create sections to hold version informations. These are removed
279 if they are not needed. */
280 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
281 flags | SEC_READONLY);
282 if (s == NULL
283 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
284 return FALSE;
285
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, 1))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303 elf_hash_table (info)->dynsym = s;
304
305 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
306 flags | SEC_READONLY);
307 if (s == NULL)
308 return FALSE;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
311 if (s == NULL
312 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
313 return FALSE;
314
315 /* The special symbol _DYNAMIC is always set to the start of the
316 .dynamic section. We could set _DYNAMIC in a linker script, but we
317 only want to define it if we are, in fact, creating a .dynamic
318 section. We don't want to define it if there is no .dynamic
319 section, since on some ELF platforms the start up code examines it
320 to decide how to initialize the process. */
321 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
322 elf_hash_table (info)->hdynamic = h;
323 if (h == NULL)
324 return FALSE;
325
326 if (info->emit_hash)
327 {
328 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
329 flags | SEC_READONLY);
330 if (s == NULL
331 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
332 return FALSE;
333 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
334 }
335
336 if (info->emit_gnu_hash)
337 {
338 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
339 flags | SEC_READONLY);
340 if (s == NULL
341 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
342 return FALSE;
343 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
344 4 32-bit words followed by variable count of 64-bit words, then
345 variable count of 32-bit words. */
346 if (bed->s->arch_size == 64)
347 elf_section_data (s)->this_hdr.sh_entsize = 0;
348 else
349 elf_section_data (s)->this_hdr.sh_entsize = 4;
350 }
351
352 /* Let the backend create the rest of the sections. This lets the
353 backend set the right flags. The backend will normally create
354 the .got and .plt sections. */
355 if (bed->elf_backend_create_dynamic_sections == NULL
356 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
357 return FALSE;
358
359 elf_hash_table (info)->dynamic_sections_created = TRUE;
360
361 return TRUE;
362 }
363
364 /* Create dynamic sections when linking against a dynamic object. */
365
366 bfd_boolean
367 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
368 {
369 flagword flags, pltflags;
370 struct elf_link_hash_entry *h;
371 asection *s;
372 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
373 struct elf_link_hash_table *htab = elf_hash_table (info);
374
375 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
376 .rel[a].bss sections. */
377 flags = bed->dynamic_sec_flags;
378
379 pltflags = flags;
380 if (bed->plt_not_loaded)
381 /* We do not clear SEC_ALLOC here because we still want the OS to
382 allocate space for the section; it's just that there's nothing
383 to read in from the object file. */
384 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
385 else
386 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
387 if (bed->plt_readonly)
388 pltflags |= SEC_READONLY;
389
390 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
391 if (s == NULL
392 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
393 return FALSE;
394 htab->splt = s;
395
396 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
397 .plt section. */
398 if (bed->want_plt_sym)
399 {
400 h = _bfd_elf_define_linkage_sym (abfd, info, s,
401 "_PROCEDURE_LINKAGE_TABLE_");
402 elf_hash_table (info)->hplt = h;
403 if (h == NULL)
404 return FALSE;
405 }
406
407 s = bfd_make_section_anyway_with_flags (abfd,
408 (bed->rela_plts_and_copies_p
409 ? ".rela.plt" : ".rel.plt"),
410 flags | SEC_READONLY);
411 if (s == NULL
412 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
413 return FALSE;
414 htab->srelplt = s;
415
416 if (! _bfd_elf_create_got_section (abfd, info))
417 return FALSE;
418
419 if (bed->want_dynbss)
420 {
421 /* The .dynbss section is a place to put symbols which are defined
422 by dynamic objects, are referenced by regular objects, and are
423 not functions. We must allocate space for them in the process
424 image and use a R_*_COPY reloc to tell the dynamic linker to
425 initialize them at run time. The linker script puts the .dynbss
426 section into the .bss section of the final image. */
427 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
428 (SEC_ALLOC | SEC_LINKER_CREATED));
429 if (s == NULL)
430 return FALSE;
431
432 /* The .rel[a].bss section holds copy relocs. This section is not
433 normally needed. We need to create it here, though, so that the
434 linker will map it to an output section. We can't just create it
435 only if we need it, because we will not know whether we need it
436 until we have seen all the input files, and the first time the
437 main linker code calls BFD after examining all the input files
438 (size_dynamic_sections) the input sections have already been
439 mapped to the output sections. If the section turns out not to
440 be needed, we can discard it later. We will never need this
441 section when generating a shared object, since they do not use
442 copy relocs. */
443 if (! bfd_link_pic (info))
444 {
445 s = bfd_make_section_anyway_with_flags (abfd,
446 (bed->rela_plts_and_copies_p
447 ? ".rela.bss" : ".rel.bss"),
448 flags | SEC_READONLY);
449 if (s == NULL
450 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
451 return FALSE;
452 }
453 }
454
455 return TRUE;
456 }
457 \f
458 /* Record a new dynamic symbol. We record the dynamic symbols as we
459 read the input files, since we need to have a list of all of them
460 before we can determine the final sizes of the output sections.
461 Note that we may actually call this function even though we are not
462 going to output any dynamic symbols; in some cases we know that a
463 symbol should be in the dynamic symbol table, but only if there is
464 one. */
465
466 bfd_boolean
467 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
468 struct elf_link_hash_entry *h)
469 {
470 if (h->dynindx == -1)
471 {
472 struct elf_strtab_hash *dynstr;
473 char *p;
474 const char *name;
475 size_t indx;
476
477 /* XXX: The ABI draft says the linker must turn hidden and
478 internal symbols into STB_LOCAL symbols when producing the
479 DSO. However, if ld.so honors st_other in the dynamic table,
480 this would not be necessary. */
481 switch (ELF_ST_VISIBILITY (h->other))
482 {
483 case STV_INTERNAL:
484 case STV_HIDDEN:
485 if (h->root.type != bfd_link_hash_undefined
486 && h->root.type != bfd_link_hash_undefweak)
487 {
488 h->forced_local = 1;
489 if (!elf_hash_table (info)->is_relocatable_executable)
490 return TRUE;
491 }
492
493 default:
494 break;
495 }
496
497 h->dynindx = elf_hash_table (info)->dynsymcount;
498 ++elf_hash_table (info)->dynsymcount;
499
500 dynstr = elf_hash_table (info)->dynstr;
501 if (dynstr == NULL)
502 {
503 /* Create a strtab to hold the dynamic symbol names. */
504 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
505 if (dynstr == NULL)
506 return FALSE;
507 }
508
509 /* We don't put any version information in the dynamic string
510 table. */
511 name = h->root.root.string;
512 p = strchr (name, ELF_VER_CHR);
513 if (p != NULL)
514 /* We know that the p points into writable memory. In fact,
515 there are only a few symbols that have read-only names, being
516 those like _GLOBAL_OFFSET_TABLE_ that are created specially
517 by the backends. Most symbols will have names pointing into
518 an ELF string table read from a file, or to objalloc memory. */
519 *p = 0;
520
521 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
522
523 if (p != NULL)
524 *p = ELF_VER_CHR;
525
526 if (indx == (size_t) -1)
527 return FALSE;
528 h->dynstr_index = indx;
529 }
530
531 return TRUE;
532 }
533 \f
534 /* Mark a symbol dynamic. */
535
536 static void
537 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
538 struct elf_link_hash_entry *h,
539 Elf_Internal_Sym *sym)
540 {
541 struct bfd_elf_dynamic_list *d = info->dynamic_list;
542
543 /* It may be called more than once on the same H. */
544 if(h->dynamic || bfd_link_relocatable (info))
545 return;
546
547 if ((info->dynamic_data
548 && (h->type == STT_OBJECT
549 || h->type == STT_COMMON
550 || (sym != NULL
551 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
552 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
553 || (d != NULL
554 && h->root.type == bfd_link_hash_new
555 && (*d->match) (&d->head, NULL, h->root.root.string)))
556 h->dynamic = 1;
557 }
558
559 /* Record an assignment to a symbol made by a linker script. We need
560 this in case some dynamic object refers to this symbol. */
561
562 bfd_boolean
563 bfd_elf_record_link_assignment (bfd *output_bfd,
564 struct bfd_link_info *info,
565 const char *name,
566 bfd_boolean provide,
567 bfd_boolean hidden)
568 {
569 struct elf_link_hash_entry *h, *hv;
570 struct elf_link_hash_table *htab;
571 const struct elf_backend_data *bed;
572
573 if (!is_elf_hash_table (info->hash))
574 return TRUE;
575
576 htab = elf_hash_table (info);
577 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
578 if (h == NULL)
579 return provide;
580
581 if (h->versioned == unknown)
582 {
583 /* Set versioned if symbol version is unknown. */
584 char *version = strrchr (name, ELF_VER_CHR);
585 if (version)
586 {
587 if (version > name && version[-1] != ELF_VER_CHR)
588 h->versioned = versioned_hidden;
589 else
590 h->versioned = versioned;
591 }
592 }
593
594 switch (h->root.type)
595 {
596 case bfd_link_hash_defined:
597 case bfd_link_hash_defweak:
598 case bfd_link_hash_common:
599 break;
600 case bfd_link_hash_undefweak:
601 case bfd_link_hash_undefined:
602 /* Since we're defining the symbol, don't let it seem to have not
603 been defined. record_dynamic_symbol and size_dynamic_sections
604 may depend on this. */
605 h->root.type = bfd_link_hash_new;
606 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
607 bfd_link_repair_undef_list (&htab->root);
608 break;
609 case bfd_link_hash_new:
610 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
611 h->non_elf = 0;
612 break;
613 case bfd_link_hash_indirect:
614 /* We had a versioned symbol in a dynamic library. We make the
615 the versioned symbol point to this one. */
616 bed = get_elf_backend_data (output_bfd);
617 hv = h;
618 while (hv->root.type == bfd_link_hash_indirect
619 || hv->root.type == bfd_link_hash_warning)
620 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
621 /* We don't need to update h->root.u since linker will set them
622 later. */
623 h->root.type = bfd_link_hash_undefined;
624 hv->root.type = bfd_link_hash_indirect;
625 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
626 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
627 break;
628 case bfd_link_hash_warning:
629 abort ();
630 break;
631 }
632
633 /* If this symbol is being provided by the linker script, and it is
634 currently defined by a dynamic object, but not by a regular
635 object, then mark it as undefined so that the generic linker will
636 force the correct value. */
637 if (provide
638 && h->def_dynamic
639 && !h->def_regular)
640 h->root.type = bfd_link_hash_undefined;
641
642 /* If this symbol is not being provided by the linker script, and it is
643 currently defined by a dynamic object, but not by a regular object,
644 then clear out any version information because the symbol will not be
645 associated with the dynamic object any more. */
646 if (!provide
647 && h->def_dynamic
648 && !h->def_regular)
649 h->verinfo.verdef = NULL;
650
651 h->def_regular = 1;
652
653 if (hidden)
654 {
655 bed = get_elf_backend_data (output_bfd);
656 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
657 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
658 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
659 }
660
661 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
662 and executables. */
663 if (!bfd_link_relocatable (info)
664 && h->dynindx != -1
665 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
666 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
667 h->forced_local = 1;
668
669 if ((h->def_dynamic
670 || h->ref_dynamic
671 || bfd_link_dll (info)
672 || elf_hash_table (info)->is_relocatable_executable)
673 && h->dynindx == -1)
674 {
675 if (! bfd_elf_link_record_dynamic_symbol (info, h))
676 return FALSE;
677
678 /* If this is a weak defined symbol, and we know a corresponding
679 real symbol from the same dynamic object, make sure the real
680 symbol is also made into a dynamic symbol. */
681 if (h->u.weakdef != NULL
682 && h->u.weakdef->dynindx == -1)
683 {
684 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
685 return FALSE;
686 }
687 }
688
689 return TRUE;
690 }
691
692 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
693 success, and 2 on a failure caused by attempting to record a symbol
694 in a discarded section, eg. a discarded link-once section symbol. */
695
696 int
697 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
698 bfd *input_bfd,
699 long input_indx)
700 {
701 bfd_size_type amt;
702 struct elf_link_local_dynamic_entry *entry;
703 struct elf_link_hash_table *eht;
704 struct elf_strtab_hash *dynstr;
705 size_t dynstr_index;
706 char *name;
707 Elf_External_Sym_Shndx eshndx;
708 char esym[sizeof (Elf64_External_Sym)];
709
710 if (! is_elf_hash_table (info->hash))
711 return 0;
712
713 /* See if the entry exists already. */
714 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
715 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
716 return 1;
717
718 amt = sizeof (*entry);
719 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
720 if (entry == NULL)
721 return 0;
722
723 /* Go find the symbol, so that we can find it's name. */
724 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
725 1, input_indx, &entry->isym, esym, &eshndx))
726 {
727 bfd_release (input_bfd, entry);
728 return 0;
729 }
730
731 if (entry->isym.st_shndx != SHN_UNDEF
732 && entry->isym.st_shndx < SHN_LORESERVE)
733 {
734 asection *s;
735
736 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
737 if (s == NULL || bfd_is_abs_section (s->output_section))
738 {
739 /* We can still bfd_release here as nothing has done another
740 bfd_alloc. We can't do this later in this function. */
741 bfd_release (input_bfd, entry);
742 return 2;
743 }
744 }
745
746 name = (bfd_elf_string_from_elf_section
747 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
748 entry->isym.st_name));
749
750 dynstr = elf_hash_table (info)->dynstr;
751 if (dynstr == NULL)
752 {
753 /* Create a strtab to hold the dynamic symbol names. */
754 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
755 if (dynstr == NULL)
756 return 0;
757 }
758
759 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
760 if (dynstr_index == (size_t) -1)
761 return 0;
762 entry->isym.st_name = dynstr_index;
763
764 eht = elf_hash_table (info);
765
766 entry->next = eht->dynlocal;
767 eht->dynlocal = entry;
768 entry->input_bfd = input_bfd;
769 entry->input_indx = input_indx;
770 eht->dynsymcount++;
771
772 /* Whatever binding the symbol had before, it's now local. */
773 entry->isym.st_info
774 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
775
776 /* The dynindx will be set at the end of size_dynamic_sections. */
777
778 return 1;
779 }
780
781 /* Return the dynindex of a local dynamic symbol. */
782
783 long
784 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
785 bfd *input_bfd,
786 long input_indx)
787 {
788 struct elf_link_local_dynamic_entry *e;
789
790 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
791 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
792 return e->dynindx;
793 return -1;
794 }
795
796 /* This function is used to renumber the dynamic symbols, if some of
797 them are removed because they are marked as local. This is called
798 via elf_link_hash_traverse. */
799
800 static bfd_boolean
801 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
802 void *data)
803 {
804 size_t *count = (size_t *) data;
805
806 if (h->forced_local)
807 return TRUE;
808
809 if (h->dynindx != -1)
810 h->dynindx = ++(*count);
811
812 return TRUE;
813 }
814
815
816 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
817 STB_LOCAL binding. */
818
819 static bfd_boolean
820 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
821 void *data)
822 {
823 size_t *count = (size_t *) data;
824
825 if (!h->forced_local)
826 return TRUE;
827
828 if (h->dynindx != -1)
829 h->dynindx = ++(*count);
830
831 return TRUE;
832 }
833
834 /* Return true if the dynamic symbol for a given section should be
835 omitted when creating a shared library. */
836 bfd_boolean
837 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
838 struct bfd_link_info *info,
839 asection *p)
840 {
841 struct elf_link_hash_table *htab;
842 asection *ip;
843
844 switch (elf_section_data (p)->this_hdr.sh_type)
845 {
846 case SHT_PROGBITS:
847 case SHT_NOBITS:
848 /* If sh_type is yet undecided, assume it could be
849 SHT_PROGBITS/SHT_NOBITS. */
850 case SHT_NULL:
851 htab = elf_hash_table (info);
852 if (p == htab->tls_sec)
853 return FALSE;
854
855 if (htab->text_index_section != NULL)
856 return p != htab->text_index_section && p != htab->data_index_section;
857
858 return (htab->dynobj != NULL
859 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
860 && ip->output_section == p);
861
862 /* There shouldn't be section relative relocations
863 against any other section. */
864 default:
865 return TRUE;
866 }
867 }
868
869 /* Assign dynsym indices. In a shared library we generate a section
870 symbol for each output section, which come first. Next come symbols
871 which have been forced to local binding. Then all of the back-end
872 allocated local dynamic syms, followed by the rest of the global
873 symbols. */
874
875 static unsigned long
876 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
877 struct bfd_link_info *info,
878 unsigned long *section_sym_count)
879 {
880 unsigned long dynsymcount = 0;
881
882 if (bfd_link_pic (info)
883 || elf_hash_table (info)->is_relocatable_executable)
884 {
885 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
886 asection *p;
887 for (p = output_bfd->sections; p ; p = p->next)
888 if ((p->flags & SEC_EXCLUDE) == 0
889 && (p->flags & SEC_ALLOC) != 0
890 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
891 elf_section_data (p)->dynindx = ++dynsymcount;
892 else
893 elf_section_data (p)->dynindx = 0;
894 }
895 *section_sym_count = dynsymcount;
896
897 elf_link_hash_traverse (elf_hash_table (info),
898 elf_link_renumber_local_hash_table_dynsyms,
899 &dynsymcount);
900
901 if (elf_hash_table (info)->dynlocal)
902 {
903 struct elf_link_local_dynamic_entry *p;
904 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
905 p->dynindx = ++dynsymcount;
906 }
907 elf_hash_table (info)->local_dynsymcount = dynsymcount;
908
909 elf_link_hash_traverse (elf_hash_table (info),
910 elf_link_renumber_hash_table_dynsyms,
911 &dynsymcount);
912
913 /* There is an unused NULL entry at the head of the table which we
914 must account for in our count even if the table is empty since it
915 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
916 .dynamic section. */
917 dynsymcount++;
918
919 elf_hash_table (info)->dynsymcount = dynsymcount;
920 return dynsymcount;
921 }
922
923 /* Merge st_other field. */
924
925 static void
926 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
927 const Elf_Internal_Sym *isym, asection *sec,
928 bfd_boolean definition, bfd_boolean dynamic)
929 {
930 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
931
932 /* If st_other has a processor-specific meaning, specific
933 code might be needed here. */
934 if (bed->elf_backend_merge_symbol_attribute)
935 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
936 dynamic);
937
938 if (!dynamic)
939 {
940 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
941 unsigned hvis = ELF_ST_VISIBILITY (h->other);
942
943 /* Keep the most constraining visibility. Leave the remainder
944 of the st_other field to elf_backend_merge_symbol_attribute. */
945 if (symvis - 1 < hvis - 1)
946 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
947 }
948 else if (definition
949 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
950 && (sec->flags & SEC_READONLY) == 0)
951 h->protected_def = 1;
952 }
953
954 /* This function is called when we want to merge a new symbol with an
955 existing symbol. It handles the various cases which arise when we
956 find a definition in a dynamic object, or when there is already a
957 definition in a dynamic object. The new symbol is described by
958 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
959 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
960 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
961 of an old common symbol. We set OVERRIDE if the old symbol is
962 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
963 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
964 to change. By OK to change, we mean that we shouldn't warn if the
965 type or size does change. */
966
967 static bfd_boolean
968 _bfd_elf_merge_symbol (bfd *abfd,
969 struct bfd_link_info *info,
970 const char *name,
971 Elf_Internal_Sym *sym,
972 asection **psec,
973 bfd_vma *pvalue,
974 struct elf_link_hash_entry **sym_hash,
975 bfd **poldbfd,
976 bfd_boolean *pold_weak,
977 unsigned int *pold_alignment,
978 bfd_boolean *skip,
979 bfd_boolean *override,
980 bfd_boolean *type_change_ok,
981 bfd_boolean *size_change_ok,
982 bfd_boolean *matched)
983 {
984 asection *sec, *oldsec;
985 struct elf_link_hash_entry *h;
986 struct elf_link_hash_entry *hi;
987 struct elf_link_hash_entry *flip;
988 int bind;
989 bfd *oldbfd;
990 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
991 bfd_boolean newweak, oldweak, newfunc, oldfunc;
992 const struct elf_backend_data *bed;
993 char *new_version;
994
995 *skip = FALSE;
996 *override = FALSE;
997
998 sec = *psec;
999 bind = ELF_ST_BIND (sym->st_info);
1000
1001 if (! bfd_is_und_section (sec))
1002 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1003 else
1004 h = ((struct elf_link_hash_entry *)
1005 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1006 if (h == NULL)
1007 return FALSE;
1008 *sym_hash = h;
1009
1010 bed = get_elf_backend_data (abfd);
1011
1012 /* NEW_VERSION is the symbol version of the new symbol. */
1013 if (h->versioned != unversioned)
1014 {
1015 /* Symbol version is unknown or versioned. */
1016 new_version = strrchr (name, ELF_VER_CHR);
1017 if (new_version)
1018 {
1019 if (h->versioned == unknown)
1020 {
1021 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1022 h->versioned = versioned_hidden;
1023 else
1024 h->versioned = versioned;
1025 }
1026 new_version += 1;
1027 if (new_version[0] == '\0')
1028 new_version = NULL;
1029 }
1030 else
1031 h->versioned = unversioned;
1032 }
1033 else
1034 new_version = NULL;
1035
1036 /* For merging, we only care about real symbols. But we need to make
1037 sure that indirect symbol dynamic flags are updated. */
1038 hi = h;
1039 while (h->root.type == bfd_link_hash_indirect
1040 || h->root.type == bfd_link_hash_warning)
1041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1042
1043 if (!*matched)
1044 {
1045 if (hi == h || h->root.type == bfd_link_hash_new)
1046 *matched = TRUE;
1047 else
1048 {
1049 /* OLD_HIDDEN is true if the existing symbol is only visible
1050 to the symbol with the same symbol version. NEW_HIDDEN is
1051 true if the new symbol is only visible to the symbol with
1052 the same symbol version. */
1053 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1054 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1055 if (!old_hidden && !new_hidden)
1056 /* The new symbol matches the existing symbol if both
1057 aren't hidden. */
1058 *matched = TRUE;
1059 else
1060 {
1061 /* OLD_VERSION is the symbol version of the existing
1062 symbol. */
1063 char *old_version;
1064
1065 if (h->versioned >= versioned)
1066 old_version = strrchr (h->root.root.string,
1067 ELF_VER_CHR) + 1;
1068 else
1069 old_version = NULL;
1070
1071 /* The new symbol matches the existing symbol if they
1072 have the same symbol version. */
1073 *matched = (old_version == new_version
1074 || (old_version != NULL
1075 && new_version != NULL
1076 && strcmp (old_version, new_version) == 0));
1077 }
1078 }
1079 }
1080
1081 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1082 existing symbol. */
1083
1084 oldbfd = NULL;
1085 oldsec = NULL;
1086 switch (h->root.type)
1087 {
1088 default:
1089 break;
1090
1091 case bfd_link_hash_undefined:
1092 case bfd_link_hash_undefweak:
1093 oldbfd = h->root.u.undef.abfd;
1094 break;
1095
1096 case bfd_link_hash_defined:
1097 case bfd_link_hash_defweak:
1098 oldbfd = h->root.u.def.section->owner;
1099 oldsec = h->root.u.def.section;
1100 break;
1101
1102 case bfd_link_hash_common:
1103 oldbfd = h->root.u.c.p->section->owner;
1104 oldsec = h->root.u.c.p->section;
1105 if (pold_alignment)
1106 *pold_alignment = h->root.u.c.p->alignment_power;
1107 break;
1108 }
1109 if (poldbfd && *poldbfd == NULL)
1110 *poldbfd = oldbfd;
1111
1112 /* Differentiate strong and weak symbols. */
1113 newweak = bind == STB_WEAK;
1114 oldweak = (h->root.type == bfd_link_hash_defweak
1115 || h->root.type == bfd_link_hash_undefweak);
1116 if (pold_weak)
1117 *pold_weak = oldweak;
1118
1119 /* This code is for coping with dynamic objects, and is only useful
1120 if we are doing an ELF link. */
1121 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1122 return TRUE;
1123
1124 /* We have to check it for every instance since the first few may be
1125 references and not all compilers emit symbol type for undefined
1126 symbols. */
1127 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1128
1129 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1130 respectively, is from a dynamic object. */
1131
1132 newdyn = (abfd->flags & DYNAMIC) != 0;
1133
1134 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1135 syms and defined syms in dynamic libraries respectively.
1136 ref_dynamic on the other hand can be set for a symbol defined in
1137 a dynamic library, and def_dynamic may not be set; When the
1138 definition in a dynamic lib is overridden by a definition in the
1139 executable use of the symbol in the dynamic lib becomes a
1140 reference to the executable symbol. */
1141 if (newdyn)
1142 {
1143 if (bfd_is_und_section (sec))
1144 {
1145 if (bind != STB_WEAK)
1146 {
1147 h->ref_dynamic_nonweak = 1;
1148 hi->ref_dynamic_nonweak = 1;
1149 }
1150 }
1151 else
1152 {
1153 /* Update the existing symbol only if they match. */
1154 if (*matched)
1155 h->dynamic_def = 1;
1156 hi->dynamic_def = 1;
1157 }
1158 }
1159
1160 /* If we just created the symbol, mark it as being an ELF symbol.
1161 Other than that, there is nothing to do--there is no merge issue
1162 with a newly defined symbol--so we just return. */
1163
1164 if (h->root.type == bfd_link_hash_new)
1165 {
1166 h->non_elf = 0;
1167 return TRUE;
1168 }
1169
1170 /* In cases involving weak versioned symbols, we may wind up trying
1171 to merge a symbol with itself. Catch that here, to avoid the
1172 confusion that results if we try to override a symbol with
1173 itself. The additional tests catch cases like
1174 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1175 dynamic object, which we do want to handle here. */
1176 if (abfd == oldbfd
1177 && (newweak || oldweak)
1178 && ((abfd->flags & DYNAMIC) == 0
1179 || !h->def_regular))
1180 return TRUE;
1181
1182 olddyn = FALSE;
1183 if (oldbfd != NULL)
1184 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1185 else if (oldsec != NULL)
1186 {
1187 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1188 indices used by MIPS ELF. */
1189 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1190 }
1191
1192 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1193 respectively, appear to be a definition rather than reference. */
1194
1195 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1196
1197 olddef = (h->root.type != bfd_link_hash_undefined
1198 && h->root.type != bfd_link_hash_undefweak
1199 && h->root.type != bfd_link_hash_common);
1200
1201 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1202 respectively, appear to be a function. */
1203
1204 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1205 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1206
1207 oldfunc = (h->type != STT_NOTYPE
1208 && bed->is_function_type (h->type));
1209
1210 /* If creating a default indirect symbol ("foo" or "foo@") from a
1211 dynamic versioned definition ("foo@@") skip doing so if there is
1212 an existing regular definition with a different type. We don't
1213 want, for example, a "time" variable in the executable overriding
1214 a "time" function in a shared library. */
1215 if (pold_alignment == NULL
1216 && newdyn
1217 && newdef
1218 && !olddyn
1219 && (olddef || h->root.type == bfd_link_hash_common)
1220 && ELF_ST_TYPE (sym->st_info) != h->type
1221 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1222 && h->type != STT_NOTYPE
1223 && !(newfunc && oldfunc))
1224 {
1225 *skip = TRUE;
1226 return TRUE;
1227 }
1228
1229 /* Check TLS symbols. We don't check undefined symbols introduced
1230 by "ld -u" which have no type (and oldbfd NULL), and we don't
1231 check symbols from plugins because they also have no type. */
1232 if (oldbfd != NULL
1233 && (oldbfd->flags & BFD_PLUGIN) == 0
1234 && (abfd->flags & BFD_PLUGIN) == 0
1235 && ELF_ST_TYPE (sym->st_info) != h->type
1236 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1237 {
1238 bfd *ntbfd, *tbfd;
1239 bfd_boolean ntdef, tdef;
1240 asection *ntsec, *tsec;
1241
1242 if (h->type == STT_TLS)
1243 {
1244 ntbfd = abfd;
1245 ntsec = sec;
1246 ntdef = newdef;
1247 tbfd = oldbfd;
1248 tsec = oldsec;
1249 tdef = olddef;
1250 }
1251 else
1252 {
1253 ntbfd = oldbfd;
1254 ntsec = oldsec;
1255 ntdef = olddef;
1256 tbfd = abfd;
1257 tsec = sec;
1258 tdef = newdef;
1259 }
1260
1261 if (tdef && ntdef)
1262 _bfd_error_handler
1263 (_("%s: TLS definition in %B section %A "
1264 "mismatches non-TLS definition in %B section %A"),
1265 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1266 else if (!tdef && !ntdef)
1267 _bfd_error_handler
1268 (_("%s: TLS reference in %B "
1269 "mismatches non-TLS reference in %B"),
1270 tbfd, ntbfd, h->root.root.string);
1271 else if (tdef)
1272 _bfd_error_handler
1273 (_("%s: TLS definition in %B section %A "
1274 "mismatches non-TLS reference in %B"),
1275 tbfd, tsec, ntbfd, h->root.root.string);
1276 else
1277 _bfd_error_handler
1278 (_("%s: TLS reference in %B "
1279 "mismatches non-TLS definition in %B section %A"),
1280 tbfd, ntbfd, ntsec, h->root.root.string);
1281
1282 bfd_set_error (bfd_error_bad_value);
1283 return FALSE;
1284 }
1285
1286 /* If the old symbol has non-default visibility, we ignore the new
1287 definition from a dynamic object. */
1288 if (newdyn
1289 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1290 && !bfd_is_und_section (sec))
1291 {
1292 *skip = TRUE;
1293 /* Make sure this symbol is dynamic. */
1294 h->ref_dynamic = 1;
1295 hi->ref_dynamic = 1;
1296 /* A protected symbol has external availability. Make sure it is
1297 recorded as dynamic.
1298
1299 FIXME: Should we check type and size for protected symbol? */
1300 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1301 return bfd_elf_link_record_dynamic_symbol (info, h);
1302 else
1303 return TRUE;
1304 }
1305 else if (!newdyn
1306 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1307 && h->def_dynamic)
1308 {
1309 /* If the new symbol with non-default visibility comes from a
1310 relocatable file and the old definition comes from a dynamic
1311 object, we remove the old definition. */
1312 if (hi->root.type == bfd_link_hash_indirect)
1313 {
1314 /* Handle the case where the old dynamic definition is
1315 default versioned. We need to copy the symbol info from
1316 the symbol with default version to the normal one if it
1317 was referenced before. */
1318 if (h->ref_regular)
1319 {
1320 hi->root.type = h->root.type;
1321 h->root.type = bfd_link_hash_indirect;
1322 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1323
1324 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1325 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1326 {
1327 /* If the new symbol is hidden or internal, completely undo
1328 any dynamic link state. */
1329 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1330 h->forced_local = 0;
1331 h->ref_dynamic = 0;
1332 }
1333 else
1334 h->ref_dynamic = 1;
1335
1336 h->def_dynamic = 0;
1337 /* FIXME: Should we check type and size for protected symbol? */
1338 h->size = 0;
1339 h->type = 0;
1340
1341 h = hi;
1342 }
1343 else
1344 h = hi;
1345 }
1346
1347 /* If the old symbol was undefined before, then it will still be
1348 on the undefs list. If the new symbol is undefined or
1349 common, we can't make it bfd_link_hash_new here, because new
1350 undefined or common symbols will be added to the undefs list
1351 by _bfd_generic_link_add_one_symbol. Symbols may not be
1352 added twice to the undefs list. Also, if the new symbol is
1353 undefweak then we don't want to lose the strong undef. */
1354 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1355 {
1356 h->root.type = bfd_link_hash_undefined;
1357 h->root.u.undef.abfd = abfd;
1358 }
1359 else
1360 {
1361 h->root.type = bfd_link_hash_new;
1362 h->root.u.undef.abfd = NULL;
1363 }
1364
1365 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1366 {
1367 /* If the new symbol is hidden or internal, completely undo
1368 any dynamic link state. */
1369 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1370 h->forced_local = 0;
1371 h->ref_dynamic = 0;
1372 }
1373 else
1374 h->ref_dynamic = 1;
1375 h->def_dynamic = 0;
1376 /* FIXME: Should we check type and size for protected symbol? */
1377 h->size = 0;
1378 h->type = 0;
1379 return TRUE;
1380 }
1381
1382 /* If a new weak symbol definition comes from a regular file and the
1383 old symbol comes from a dynamic library, we treat the new one as
1384 strong. Similarly, an old weak symbol definition from a regular
1385 file is treated as strong when the new symbol comes from a dynamic
1386 library. Further, an old weak symbol from a dynamic library is
1387 treated as strong if the new symbol is from a dynamic library.
1388 This reflects the way glibc's ld.so works.
1389
1390 Do this before setting *type_change_ok or *size_change_ok so that
1391 we warn properly when dynamic library symbols are overridden. */
1392
1393 if (newdef && !newdyn && olddyn)
1394 newweak = FALSE;
1395 if (olddef && newdyn)
1396 oldweak = FALSE;
1397
1398 /* Allow changes between different types of function symbol. */
1399 if (newfunc && oldfunc)
1400 *type_change_ok = TRUE;
1401
1402 /* It's OK to change the type if either the existing symbol or the
1403 new symbol is weak. A type change is also OK if the old symbol
1404 is undefined and the new symbol is defined. */
1405
1406 if (oldweak
1407 || newweak
1408 || (newdef
1409 && h->root.type == bfd_link_hash_undefined))
1410 *type_change_ok = TRUE;
1411
1412 /* It's OK to change the size if either the existing symbol or the
1413 new symbol is weak, or if the old symbol is undefined. */
1414
1415 if (*type_change_ok
1416 || h->root.type == bfd_link_hash_undefined)
1417 *size_change_ok = TRUE;
1418
1419 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1420 symbol, respectively, appears to be a common symbol in a dynamic
1421 object. If a symbol appears in an uninitialized section, and is
1422 not weak, and is not a function, then it may be a common symbol
1423 which was resolved when the dynamic object was created. We want
1424 to treat such symbols specially, because they raise special
1425 considerations when setting the symbol size: if the symbol
1426 appears as a common symbol in a regular object, and the size in
1427 the regular object is larger, we must make sure that we use the
1428 larger size. This problematic case can always be avoided in C,
1429 but it must be handled correctly when using Fortran shared
1430 libraries.
1431
1432 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1433 likewise for OLDDYNCOMMON and OLDDEF.
1434
1435 Note that this test is just a heuristic, and that it is quite
1436 possible to have an uninitialized symbol in a shared object which
1437 is really a definition, rather than a common symbol. This could
1438 lead to some minor confusion when the symbol really is a common
1439 symbol in some regular object. However, I think it will be
1440 harmless. */
1441
1442 if (newdyn
1443 && newdef
1444 && !newweak
1445 && (sec->flags & SEC_ALLOC) != 0
1446 && (sec->flags & SEC_LOAD) == 0
1447 && sym->st_size > 0
1448 && !newfunc)
1449 newdyncommon = TRUE;
1450 else
1451 newdyncommon = FALSE;
1452
1453 if (olddyn
1454 && olddef
1455 && h->root.type == bfd_link_hash_defined
1456 && h->def_dynamic
1457 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1458 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1459 && h->size > 0
1460 && !oldfunc)
1461 olddyncommon = TRUE;
1462 else
1463 olddyncommon = FALSE;
1464
1465 /* We now know everything about the old and new symbols. We ask the
1466 backend to check if we can merge them. */
1467 if (bed->merge_symbol != NULL)
1468 {
1469 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1470 return FALSE;
1471 sec = *psec;
1472 }
1473
1474 /* If both the old and the new symbols look like common symbols in a
1475 dynamic object, set the size of the symbol to the larger of the
1476 two. */
1477
1478 if (olddyncommon
1479 && newdyncommon
1480 && sym->st_size != h->size)
1481 {
1482 /* Since we think we have two common symbols, issue a multiple
1483 common warning if desired. Note that we only warn if the
1484 size is different. If the size is the same, we simply let
1485 the old symbol override the new one as normally happens with
1486 symbols defined in dynamic objects. */
1487
1488 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1489 bfd_link_hash_common, sym->st_size);
1490 if (sym->st_size > h->size)
1491 h->size = sym->st_size;
1492
1493 *size_change_ok = TRUE;
1494 }
1495
1496 /* If we are looking at a dynamic object, and we have found a
1497 definition, we need to see if the symbol was already defined by
1498 some other object. If so, we want to use the existing
1499 definition, and we do not want to report a multiple symbol
1500 definition error; we do this by clobbering *PSEC to be
1501 bfd_und_section_ptr.
1502
1503 We treat a common symbol as a definition if the symbol in the
1504 shared library is a function, since common symbols always
1505 represent variables; this can cause confusion in principle, but
1506 any such confusion would seem to indicate an erroneous program or
1507 shared library. We also permit a common symbol in a regular
1508 object to override a weak symbol in a shared object. A common
1509 symbol in executable also overrides a symbol in a shared object. */
1510
1511 if (newdyn
1512 && newdef
1513 && (olddef
1514 || (h->root.type == bfd_link_hash_common
1515 && (newweak
1516 || newfunc
1517 || (!olddyn && bfd_link_executable (info))))))
1518 {
1519 *override = TRUE;
1520 newdef = FALSE;
1521 newdyncommon = FALSE;
1522
1523 *psec = sec = bfd_und_section_ptr;
1524 *size_change_ok = TRUE;
1525
1526 /* If we get here when the old symbol is a common symbol, then
1527 we are explicitly letting it override a weak symbol or
1528 function in a dynamic object, and we don't want to warn about
1529 a type change. If the old symbol is a defined symbol, a type
1530 change warning may still be appropriate. */
1531
1532 if (h->root.type == bfd_link_hash_common)
1533 *type_change_ok = TRUE;
1534 }
1535
1536 /* Handle the special case of an old common symbol merging with a
1537 new symbol which looks like a common symbol in a shared object.
1538 We change *PSEC and *PVALUE to make the new symbol look like a
1539 common symbol, and let _bfd_generic_link_add_one_symbol do the
1540 right thing. */
1541
1542 if (newdyncommon
1543 && h->root.type == bfd_link_hash_common)
1544 {
1545 *override = TRUE;
1546 newdef = FALSE;
1547 newdyncommon = FALSE;
1548 *pvalue = sym->st_size;
1549 *psec = sec = bed->common_section (oldsec);
1550 *size_change_ok = TRUE;
1551 }
1552
1553 /* Skip weak definitions of symbols that are already defined. */
1554 if (newdef && olddef && newweak)
1555 {
1556 /* Don't skip new non-IR weak syms. */
1557 if (!(oldbfd != NULL
1558 && (oldbfd->flags & BFD_PLUGIN) != 0
1559 && (abfd->flags & BFD_PLUGIN) == 0))
1560 {
1561 newdef = FALSE;
1562 *skip = TRUE;
1563 }
1564
1565 /* Merge st_other. If the symbol already has a dynamic index,
1566 but visibility says it should not be visible, turn it into a
1567 local symbol. */
1568 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1569 if (h->dynindx != -1)
1570 switch (ELF_ST_VISIBILITY (h->other))
1571 {
1572 case STV_INTERNAL:
1573 case STV_HIDDEN:
1574 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1575 break;
1576 }
1577 }
1578
1579 /* If the old symbol is from a dynamic object, and the new symbol is
1580 a definition which is not from a dynamic object, then the new
1581 symbol overrides the old symbol. Symbols from regular files
1582 always take precedence over symbols from dynamic objects, even if
1583 they are defined after the dynamic object in the link.
1584
1585 As above, we again permit a common symbol in a regular object to
1586 override a definition in a shared object if the shared object
1587 symbol is a function or is weak. */
1588
1589 flip = NULL;
1590 if (!newdyn
1591 && (newdef
1592 || (bfd_is_com_section (sec)
1593 && (oldweak || oldfunc)))
1594 && olddyn
1595 && olddef
1596 && h->def_dynamic)
1597 {
1598 /* Change the hash table entry to undefined, and let
1599 _bfd_generic_link_add_one_symbol do the right thing with the
1600 new definition. */
1601
1602 h->root.type = bfd_link_hash_undefined;
1603 h->root.u.undef.abfd = h->root.u.def.section->owner;
1604 *size_change_ok = TRUE;
1605
1606 olddef = FALSE;
1607 olddyncommon = FALSE;
1608
1609 /* We again permit a type change when a common symbol may be
1610 overriding a function. */
1611
1612 if (bfd_is_com_section (sec))
1613 {
1614 if (oldfunc)
1615 {
1616 /* If a common symbol overrides a function, make sure
1617 that it isn't defined dynamically nor has type
1618 function. */
1619 h->def_dynamic = 0;
1620 h->type = STT_NOTYPE;
1621 }
1622 *type_change_ok = TRUE;
1623 }
1624
1625 if (hi->root.type == bfd_link_hash_indirect)
1626 flip = hi;
1627 else
1628 /* This union may have been set to be non-NULL when this symbol
1629 was seen in a dynamic object. We must force the union to be
1630 NULL, so that it is correct for a regular symbol. */
1631 h->verinfo.vertree = NULL;
1632 }
1633
1634 /* Handle the special case of a new common symbol merging with an
1635 old symbol that looks like it might be a common symbol defined in
1636 a shared object. Note that we have already handled the case in
1637 which a new common symbol should simply override the definition
1638 in the shared library. */
1639
1640 if (! newdyn
1641 && bfd_is_com_section (sec)
1642 && olddyncommon)
1643 {
1644 /* It would be best if we could set the hash table entry to a
1645 common symbol, but we don't know what to use for the section
1646 or the alignment. */
1647 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1648 bfd_link_hash_common, sym->st_size);
1649
1650 /* If the presumed common symbol in the dynamic object is
1651 larger, pretend that the new symbol has its size. */
1652
1653 if (h->size > *pvalue)
1654 *pvalue = h->size;
1655
1656 /* We need to remember the alignment required by the symbol
1657 in the dynamic object. */
1658 BFD_ASSERT (pold_alignment);
1659 *pold_alignment = h->root.u.def.section->alignment_power;
1660
1661 olddef = FALSE;
1662 olddyncommon = FALSE;
1663
1664 h->root.type = bfd_link_hash_undefined;
1665 h->root.u.undef.abfd = h->root.u.def.section->owner;
1666
1667 *size_change_ok = TRUE;
1668 *type_change_ok = TRUE;
1669
1670 if (hi->root.type == bfd_link_hash_indirect)
1671 flip = hi;
1672 else
1673 h->verinfo.vertree = NULL;
1674 }
1675
1676 if (flip != NULL)
1677 {
1678 /* Handle the case where we had a versioned symbol in a dynamic
1679 library and now find a definition in a normal object. In this
1680 case, we make the versioned symbol point to the normal one. */
1681 flip->root.type = h->root.type;
1682 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1683 h->root.type = bfd_link_hash_indirect;
1684 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1685 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1686 if (h->def_dynamic)
1687 {
1688 h->def_dynamic = 0;
1689 flip->ref_dynamic = 1;
1690 }
1691 }
1692
1693 return TRUE;
1694 }
1695
1696 /* This function is called to create an indirect symbol from the
1697 default for the symbol with the default version if needed. The
1698 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1699 set DYNSYM if the new indirect symbol is dynamic. */
1700
1701 static bfd_boolean
1702 _bfd_elf_add_default_symbol (bfd *abfd,
1703 struct bfd_link_info *info,
1704 struct elf_link_hash_entry *h,
1705 const char *name,
1706 Elf_Internal_Sym *sym,
1707 asection *sec,
1708 bfd_vma value,
1709 bfd **poldbfd,
1710 bfd_boolean *dynsym)
1711 {
1712 bfd_boolean type_change_ok;
1713 bfd_boolean size_change_ok;
1714 bfd_boolean skip;
1715 char *shortname;
1716 struct elf_link_hash_entry *hi;
1717 struct bfd_link_hash_entry *bh;
1718 const struct elf_backend_data *bed;
1719 bfd_boolean collect;
1720 bfd_boolean dynamic;
1721 bfd_boolean override;
1722 char *p;
1723 size_t len, shortlen;
1724 asection *tmp_sec;
1725 bfd_boolean matched;
1726
1727 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1728 return TRUE;
1729
1730 /* If this symbol has a version, and it is the default version, we
1731 create an indirect symbol from the default name to the fully
1732 decorated name. This will cause external references which do not
1733 specify a version to be bound to this version of the symbol. */
1734 p = strchr (name, ELF_VER_CHR);
1735 if (h->versioned == unknown)
1736 {
1737 if (p == NULL)
1738 {
1739 h->versioned = unversioned;
1740 return TRUE;
1741 }
1742 else
1743 {
1744 if (p[1] != ELF_VER_CHR)
1745 {
1746 h->versioned = versioned_hidden;
1747 return TRUE;
1748 }
1749 else
1750 h->versioned = versioned;
1751 }
1752 }
1753 else
1754 {
1755 /* PR ld/19073: We may see an unversioned definition after the
1756 default version. */
1757 if (p == NULL)
1758 return TRUE;
1759 }
1760
1761 bed = get_elf_backend_data (abfd);
1762 collect = bed->collect;
1763 dynamic = (abfd->flags & DYNAMIC) != 0;
1764
1765 shortlen = p - name;
1766 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1767 if (shortname == NULL)
1768 return FALSE;
1769 memcpy (shortname, name, shortlen);
1770 shortname[shortlen] = '\0';
1771
1772 /* We are going to create a new symbol. Merge it with any existing
1773 symbol with this name. For the purposes of the merge, act as
1774 though we were defining the symbol we just defined, although we
1775 actually going to define an indirect symbol. */
1776 type_change_ok = FALSE;
1777 size_change_ok = FALSE;
1778 matched = TRUE;
1779 tmp_sec = sec;
1780 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1781 &hi, poldbfd, NULL, NULL, &skip, &override,
1782 &type_change_ok, &size_change_ok, &matched))
1783 return FALSE;
1784
1785 if (skip)
1786 goto nondefault;
1787
1788 if (hi->def_regular)
1789 {
1790 /* If the undecorated symbol will have a version added by a
1791 script different to H, then don't indirect to/from the
1792 undecorated symbol. This isn't ideal because we may not yet
1793 have seen symbol versions, if given by a script on the
1794 command line rather than via --version-script. */
1795 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1796 {
1797 bfd_boolean hide;
1798
1799 hi->verinfo.vertree
1800 = bfd_find_version_for_sym (info->version_info,
1801 hi->root.root.string, &hide);
1802 if (hi->verinfo.vertree != NULL && hide)
1803 {
1804 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1805 goto nondefault;
1806 }
1807 }
1808 if (hi->verinfo.vertree != NULL
1809 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1810 goto nondefault;
1811 }
1812
1813 if (! override)
1814 {
1815 /* Add the default symbol if not performing a relocatable link. */
1816 if (! bfd_link_relocatable (info))
1817 {
1818 bh = &hi->root;
1819 if (! (_bfd_generic_link_add_one_symbol
1820 (info, abfd, shortname, BSF_INDIRECT,
1821 bfd_ind_section_ptr,
1822 0, name, FALSE, collect, &bh)))
1823 return FALSE;
1824 hi = (struct elf_link_hash_entry *) bh;
1825 }
1826 }
1827 else
1828 {
1829 /* In this case the symbol named SHORTNAME is overriding the
1830 indirect symbol we want to add. We were planning on making
1831 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1832 is the name without a version. NAME is the fully versioned
1833 name, and it is the default version.
1834
1835 Overriding means that we already saw a definition for the
1836 symbol SHORTNAME in a regular object, and it is overriding
1837 the symbol defined in the dynamic object.
1838
1839 When this happens, we actually want to change NAME, the
1840 symbol we just added, to refer to SHORTNAME. This will cause
1841 references to NAME in the shared object to become references
1842 to SHORTNAME in the regular object. This is what we expect
1843 when we override a function in a shared object: that the
1844 references in the shared object will be mapped to the
1845 definition in the regular object. */
1846
1847 while (hi->root.type == bfd_link_hash_indirect
1848 || hi->root.type == bfd_link_hash_warning)
1849 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1850
1851 h->root.type = bfd_link_hash_indirect;
1852 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1853 if (h->def_dynamic)
1854 {
1855 h->def_dynamic = 0;
1856 hi->ref_dynamic = 1;
1857 if (hi->ref_regular
1858 || hi->def_regular)
1859 {
1860 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1861 return FALSE;
1862 }
1863 }
1864
1865 /* Now set HI to H, so that the following code will set the
1866 other fields correctly. */
1867 hi = h;
1868 }
1869
1870 /* Check if HI is a warning symbol. */
1871 if (hi->root.type == bfd_link_hash_warning)
1872 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1873
1874 /* If there is a duplicate definition somewhere, then HI may not
1875 point to an indirect symbol. We will have reported an error to
1876 the user in that case. */
1877
1878 if (hi->root.type == bfd_link_hash_indirect)
1879 {
1880 struct elf_link_hash_entry *ht;
1881
1882 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1883 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1884
1885 /* A reference to the SHORTNAME symbol from a dynamic library
1886 will be satisfied by the versioned symbol at runtime. In
1887 effect, we have a reference to the versioned symbol. */
1888 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1889 hi->dynamic_def |= ht->dynamic_def;
1890
1891 /* See if the new flags lead us to realize that the symbol must
1892 be dynamic. */
1893 if (! *dynsym)
1894 {
1895 if (! dynamic)
1896 {
1897 if (! bfd_link_executable (info)
1898 || hi->def_dynamic
1899 || hi->ref_dynamic)
1900 *dynsym = TRUE;
1901 }
1902 else
1903 {
1904 if (hi->ref_regular)
1905 *dynsym = TRUE;
1906 }
1907 }
1908 }
1909
1910 /* We also need to define an indirection from the nondefault version
1911 of the symbol. */
1912
1913 nondefault:
1914 len = strlen (name);
1915 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1916 if (shortname == NULL)
1917 return FALSE;
1918 memcpy (shortname, name, shortlen);
1919 memcpy (shortname + shortlen, p + 1, len - shortlen);
1920
1921 /* Once again, merge with any existing symbol. */
1922 type_change_ok = FALSE;
1923 size_change_ok = FALSE;
1924 tmp_sec = sec;
1925 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1926 &hi, poldbfd, NULL, NULL, &skip, &override,
1927 &type_change_ok, &size_change_ok, &matched))
1928 return FALSE;
1929
1930 if (skip)
1931 return TRUE;
1932
1933 if (override)
1934 {
1935 /* Here SHORTNAME is a versioned name, so we don't expect to see
1936 the type of override we do in the case above unless it is
1937 overridden by a versioned definition. */
1938 if (hi->root.type != bfd_link_hash_defined
1939 && hi->root.type != bfd_link_hash_defweak)
1940 _bfd_error_handler
1941 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1942 abfd, shortname);
1943 }
1944 else
1945 {
1946 bh = &hi->root;
1947 if (! (_bfd_generic_link_add_one_symbol
1948 (info, abfd, shortname, BSF_INDIRECT,
1949 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1950 return FALSE;
1951 hi = (struct elf_link_hash_entry *) bh;
1952
1953 /* If there is a duplicate definition somewhere, then HI may not
1954 point to an indirect symbol. We will have reported an error
1955 to the user in that case. */
1956
1957 if (hi->root.type == bfd_link_hash_indirect)
1958 {
1959 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1960 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1961 hi->dynamic_def |= h->dynamic_def;
1962
1963 /* See if the new flags lead us to realize that the symbol
1964 must be dynamic. */
1965 if (! *dynsym)
1966 {
1967 if (! dynamic)
1968 {
1969 if (! bfd_link_executable (info)
1970 || hi->ref_dynamic)
1971 *dynsym = TRUE;
1972 }
1973 else
1974 {
1975 if (hi->ref_regular)
1976 *dynsym = TRUE;
1977 }
1978 }
1979 }
1980 }
1981
1982 return TRUE;
1983 }
1984 \f
1985 /* This routine is used to export all defined symbols into the dynamic
1986 symbol table. It is called via elf_link_hash_traverse. */
1987
1988 static bfd_boolean
1989 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1990 {
1991 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1992
1993 /* Ignore indirect symbols. These are added by the versioning code. */
1994 if (h->root.type == bfd_link_hash_indirect)
1995 return TRUE;
1996
1997 /* Ignore this if we won't export it. */
1998 if (!eif->info->export_dynamic && !h->dynamic)
1999 return TRUE;
2000
2001 if (h->dynindx == -1
2002 && (h->def_regular || h->ref_regular)
2003 && ! bfd_hide_sym_by_version (eif->info->version_info,
2004 h->root.root.string))
2005 {
2006 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2007 {
2008 eif->failed = TRUE;
2009 return FALSE;
2010 }
2011 }
2012
2013 return TRUE;
2014 }
2015 \f
2016 /* Look through the symbols which are defined in other shared
2017 libraries and referenced here. Update the list of version
2018 dependencies. This will be put into the .gnu.version_r section.
2019 This function is called via elf_link_hash_traverse. */
2020
2021 static bfd_boolean
2022 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2023 void *data)
2024 {
2025 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2026 Elf_Internal_Verneed *t;
2027 Elf_Internal_Vernaux *a;
2028 bfd_size_type amt;
2029
2030 /* We only care about symbols defined in shared objects with version
2031 information. */
2032 if (!h->def_dynamic
2033 || h->def_regular
2034 || h->dynindx == -1
2035 || h->verinfo.verdef == NULL
2036 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2037 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2038 return TRUE;
2039
2040 /* See if we already know about this version. */
2041 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2042 t != NULL;
2043 t = t->vn_nextref)
2044 {
2045 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2046 continue;
2047
2048 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2049 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2050 return TRUE;
2051
2052 break;
2053 }
2054
2055 /* This is a new version. Add it to tree we are building. */
2056
2057 if (t == NULL)
2058 {
2059 amt = sizeof *t;
2060 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2061 if (t == NULL)
2062 {
2063 rinfo->failed = TRUE;
2064 return FALSE;
2065 }
2066
2067 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2068 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2069 elf_tdata (rinfo->info->output_bfd)->verref = t;
2070 }
2071
2072 amt = sizeof *a;
2073 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2074 if (a == NULL)
2075 {
2076 rinfo->failed = TRUE;
2077 return FALSE;
2078 }
2079
2080 /* Note that we are copying a string pointer here, and testing it
2081 above. If bfd_elf_string_from_elf_section is ever changed to
2082 discard the string data when low in memory, this will have to be
2083 fixed. */
2084 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2085
2086 a->vna_flags = h->verinfo.verdef->vd_flags;
2087 a->vna_nextptr = t->vn_auxptr;
2088
2089 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2090 ++rinfo->vers;
2091
2092 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2093
2094 t->vn_auxptr = a;
2095
2096 return TRUE;
2097 }
2098
2099 /* Figure out appropriate versions for all the symbols. We may not
2100 have the version number script until we have read all of the input
2101 files, so until that point we don't know which symbols should be
2102 local. This function is called via elf_link_hash_traverse. */
2103
2104 static bfd_boolean
2105 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2106 {
2107 struct elf_info_failed *sinfo;
2108 struct bfd_link_info *info;
2109 const struct elf_backend_data *bed;
2110 struct elf_info_failed eif;
2111 char *p;
2112
2113 sinfo = (struct elf_info_failed *) data;
2114 info = sinfo->info;
2115
2116 /* Fix the symbol flags. */
2117 eif.failed = FALSE;
2118 eif.info = info;
2119 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2120 {
2121 if (eif.failed)
2122 sinfo->failed = TRUE;
2123 return FALSE;
2124 }
2125
2126 /* We only need version numbers for symbols defined in regular
2127 objects. */
2128 if (!h->def_regular)
2129 return TRUE;
2130
2131 bed = get_elf_backend_data (info->output_bfd);
2132 p = strchr (h->root.root.string, ELF_VER_CHR);
2133 if (p != NULL && h->verinfo.vertree == NULL)
2134 {
2135 struct bfd_elf_version_tree *t;
2136
2137 ++p;
2138 if (*p == ELF_VER_CHR)
2139 ++p;
2140
2141 /* If there is no version string, we can just return out. */
2142 if (*p == '\0')
2143 return TRUE;
2144
2145 /* Look for the version. If we find it, it is no longer weak. */
2146 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2147 {
2148 if (strcmp (t->name, p) == 0)
2149 {
2150 size_t len;
2151 char *alc;
2152 struct bfd_elf_version_expr *d;
2153
2154 len = p - h->root.root.string;
2155 alc = (char *) bfd_malloc (len);
2156 if (alc == NULL)
2157 {
2158 sinfo->failed = TRUE;
2159 return FALSE;
2160 }
2161 memcpy (alc, h->root.root.string, len - 1);
2162 alc[len - 1] = '\0';
2163 if (alc[len - 2] == ELF_VER_CHR)
2164 alc[len - 2] = '\0';
2165
2166 h->verinfo.vertree = t;
2167 t->used = TRUE;
2168 d = NULL;
2169
2170 if (t->globals.list != NULL)
2171 d = (*t->match) (&t->globals, NULL, alc);
2172
2173 /* See if there is anything to force this symbol to
2174 local scope. */
2175 if (d == NULL && t->locals.list != NULL)
2176 {
2177 d = (*t->match) (&t->locals, NULL, alc);
2178 if (d != NULL
2179 && h->dynindx != -1
2180 && ! info->export_dynamic)
2181 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2182 }
2183
2184 free (alc);
2185 break;
2186 }
2187 }
2188
2189 /* If we are building an application, we need to create a
2190 version node for this version. */
2191 if (t == NULL && bfd_link_executable (info))
2192 {
2193 struct bfd_elf_version_tree **pp;
2194 int version_index;
2195
2196 /* If we aren't going to export this symbol, we don't need
2197 to worry about it. */
2198 if (h->dynindx == -1)
2199 return TRUE;
2200
2201 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2202 sizeof *t);
2203 if (t == NULL)
2204 {
2205 sinfo->failed = TRUE;
2206 return FALSE;
2207 }
2208
2209 t->name = p;
2210 t->name_indx = (unsigned int) -1;
2211 t->used = TRUE;
2212
2213 version_index = 1;
2214 /* Don't count anonymous version tag. */
2215 if (sinfo->info->version_info != NULL
2216 && sinfo->info->version_info->vernum == 0)
2217 version_index = 0;
2218 for (pp = &sinfo->info->version_info;
2219 *pp != NULL;
2220 pp = &(*pp)->next)
2221 ++version_index;
2222 t->vernum = version_index;
2223
2224 *pp = t;
2225
2226 h->verinfo.vertree = t;
2227 }
2228 else if (t == NULL)
2229 {
2230 /* We could not find the version for a symbol when
2231 generating a shared archive. Return an error. */
2232 _bfd_error_handler
2233 (_("%B: version node not found for symbol %s"),
2234 info->output_bfd, h->root.root.string);
2235 bfd_set_error (bfd_error_bad_value);
2236 sinfo->failed = TRUE;
2237 return FALSE;
2238 }
2239 }
2240
2241 /* If we don't have a version for this symbol, see if we can find
2242 something. */
2243 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2244 {
2245 bfd_boolean hide;
2246
2247 h->verinfo.vertree
2248 = bfd_find_version_for_sym (sinfo->info->version_info,
2249 h->root.root.string, &hide);
2250 if (h->verinfo.vertree != NULL && hide)
2251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2252 }
2253
2254 return TRUE;
2255 }
2256 \f
2257 /* Read and swap the relocs from the section indicated by SHDR. This
2258 may be either a REL or a RELA section. The relocations are
2259 translated into RELA relocations and stored in INTERNAL_RELOCS,
2260 which should have already been allocated to contain enough space.
2261 The EXTERNAL_RELOCS are a buffer where the external form of the
2262 relocations should be stored.
2263
2264 Returns FALSE if something goes wrong. */
2265
2266 static bfd_boolean
2267 elf_link_read_relocs_from_section (bfd *abfd,
2268 asection *sec,
2269 Elf_Internal_Shdr *shdr,
2270 void *external_relocs,
2271 Elf_Internal_Rela *internal_relocs)
2272 {
2273 const struct elf_backend_data *bed;
2274 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2275 const bfd_byte *erela;
2276 const bfd_byte *erelaend;
2277 Elf_Internal_Rela *irela;
2278 Elf_Internal_Shdr *symtab_hdr;
2279 size_t nsyms;
2280
2281 /* Position ourselves at the start of the section. */
2282 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2283 return FALSE;
2284
2285 /* Read the relocations. */
2286 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2287 return FALSE;
2288
2289 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2290 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2291
2292 bed = get_elf_backend_data (abfd);
2293
2294 /* Convert the external relocations to the internal format. */
2295 if (shdr->sh_entsize == bed->s->sizeof_rel)
2296 swap_in = bed->s->swap_reloc_in;
2297 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2298 swap_in = bed->s->swap_reloca_in;
2299 else
2300 {
2301 bfd_set_error (bfd_error_wrong_format);
2302 return FALSE;
2303 }
2304
2305 erela = (const bfd_byte *) external_relocs;
2306 erelaend = erela + shdr->sh_size;
2307 irela = internal_relocs;
2308 while (erela < erelaend)
2309 {
2310 bfd_vma r_symndx;
2311
2312 (*swap_in) (abfd, erela, irela);
2313 r_symndx = ELF32_R_SYM (irela->r_info);
2314 if (bed->s->arch_size == 64)
2315 r_symndx >>= 24;
2316 if (nsyms > 0)
2317 {
2318 if ((size_t) r_symndx >= nsyms)
2319 {
2320 _bfd_error_handler
2321 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2322 " for offset 0x%lx in section `%A'"),
2323 abfd, sec,
2324 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2325 bfd_set_error (bfd_error_bad_value);
2326 return FALSE;
2327 }
2328 }
2329 else if (r_symndx != STN_UNDEF)
2330 {
2331 _bfd_error_handler
2332 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2333 " when the object file has no symbol table"),
2334 abfd, sec,
2335 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2336 bfd_set_error (bfd_error_bad_value);
2337 return FALSE;
2338 }
2339 irela += bed->s->int_rels_per_ext_rel;
2340 erela += shdr->sh_entsize;
2341 }
2342
2343 return TRUE;
2344 }
2345
2346 /* Read and swap the relocs for a section O. They may have been
2347 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2348 not NULL, they are used as buffers to read into. They are known to
2349 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2350 the return value is allocated using either malloc or bfd_alloc,
2351 according to the KEEP_MEMORY argument. If O has two relocation
2352 sections (both REL and RELA relocations), then the REL_HDR
2353 relocations will appear first in INTERNAL_RELOCS, followed by the
2354 RELA_HDR relocations. */
2355
2356 Elf_Internal_Rela *
2357 _bfd_elf_link_read_relocs (bfd *abfd,
2358 asection *o,
2359 void *external_relocs,
2360 Elf_Internal_Rela *internal_relocs,
2361 bfd_boolean keep_memory)
2362 {
2363 void *alloc1 = NULL;
2364 Elf_Internal_Rela *alloc2 = NULL;
2365 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2366 struct bfd_elf_section_data *esdo = elf_section_data (o);
2367 Elf_Internal_Rela *internal_rela_relocs;
2368
2369 if (esdo->relocs != NULL)
2370 return esdo->relocs;
2371
2372 if (o->reloc_count == 0)
2373 return NULL;
2374
2375 if (internal_relocs == NULL)
2376 {
2377 bfd_size_type size;
2378
2379 size = o->reloc_count;
2380 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2381 if (keep_memory)
2382 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2383 else
2384 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2385 if (internal_relocs == NULL)
2386 goto error_return;
2387 }
2388
2389 if (external_relocs == NULL)
2390 {
2391 bfd_size_type size = 0;
2392
2393 if (esdo->rel.hdr)
2394 size += esdo->rel.hdr->sh_size;
2395 if (esdo->rela.hdr)
2396 size += esdo->rela.hdr->sh_size;
2397
2398 alloc1 = bfd_malloc (size);
2399 if (alloc1 == NULL)
2400 goto error_return;
2401 external_relocs = alloc1;
2402 }
2403
2404 internal_rela_relocs = internal_relocs;
2405 if (esdo->rel.hdr)
2406 {
2407 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2408 external_relocs,
2409 internal_relocs))
2410 goto error_return;
2411 external_relocs = (((bfd_byte *) external_relocs)
2412 + esdo->rel.hdr->sh_size);
2413 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2414 * bed->s->int_rels_per_ext_rel);
2415 }
2416
2417 if (esdo->rela.hdr
2418 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2419 external_relocs,
2420 internal_rela_relocs)))
2421 goto error_return;
2422
2423 /* Cache the results for next time, if we can. */
2424 if (keep_memory)
2425 esdo->relocs = internal_relocs;
2426
2427 if (alloc1 != NULL)
2428 free (alloc1);
2429
2430 /* Don't free alloc2, since if it was allocated we are passing it
2431 back (under the name of internal_relocs). */
2432
2433 return internal_relocs;
2434
2435 error_return:
2436 if (alloc1 != NULL)
2437 free (alloc1);
2438 if (alloc2 != NULL)
2439 {
2440 if (keep_memory)
2441 bfd_release (abfd, alloc2);
2442 else
2443 free (alloc2);
2444 }
2445 return NULL;
2446 }
2447
2448 /* Compute the size of, and allocate space for, REL_HDR which is the
2449 section header for a section containing relocations for O. */
2450
2451 static bfd_boolean
2452 _bfd_elf_link_size_reloc_section (bfd *abfd,
2453 struct bfd_elf_section_reloc_data *reldata)
2454 {
2455 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2456
2457 /* That allows us to calculate the size of the section. */
2458 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2459
2460 /* The contents field must last into write_object_contents, so we
2461 allocate it with bfd_alloc rather than malloc. Also since we
2462 cannot be sure that the contents will actually be filled in,
2463 we zero the allocated space. */
2464 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2465 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2466 return FALSE;
2467
2468 if (reldata->hashes == NULL && reldata->count)
2469 {
2470 struct elf_link_hash_entry **p;
2471
2472 p = ((struct elf_link_hash_entry **)
2473 bfd_zmalloc (reldata->count * sizeof (*p)));
2474 if (p == NULL)
2475 return FALSE;
2476
2477 reldata->hashes = p;
2478 }
2479
2480 return TRUE;
2481 }
2482
2483 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2484 originated from the section given by INPUT_REL_HDR) to the
2485 OUTPUT_BFD. */
2486
2487 bfd_boolean
2488 _bfd_elf_link_output_relocs (bfd *output_bfd,
2489 asection *input_section,
2490 Elf_Internal_Shdr *input_rel_hdr,
2491 Elf_Internal_Rela *internal_relocs,
2492 struct elf_link_hash_entry **rel_hash
2493 ATTRIBUTE_UNUSED)
2494 {
2495 Elf_Internal_Rela *irela;
2496 Elf_Internal_Rela *irelaend;
2497 bfd_byte *erel;
2498 struct bfd_elf_section_reloc_data *output_reldata;
2499 asection *output_section;
2500 const struct elf_backend_data *bed;
2501 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2502 struct bfd_elf_section_data *esdo;
2503
2504 output_section = input_section->output_section;
2505
2506 bed = get_elf_backend_data (output_bfd);
2507 esdo = elf_section_data (output_section);
2508 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2509 {
2510 output_reldata = &esdo->rel;
2511 swap_out = bed->s->swap_reloc_out;
2512 }
2513 else if (esdo->rela.hdr
2514 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2515 {
2516 output_reldata = &esdo->rela;
2517 swap_out = bed->s->swap_reloca_out;
2518 }
2519 else
2520 {
2521 _bfd_error_handler
2522 (_("%B: relocation size mismatch in %B section %A"),
2523 output_bfd, input_section->owner, input_section);
2524 bfd_set_error (bfd_error_wrong_format);
2525 return FALSE;
2526 }
2527
2528 erel = output_reldata->hdr->contents;
2529 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2530 irela = internal_relocs;
2531 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2532 * bed->s->int_rels_per_ext_rel);
2533 while (irela < irelaend)
2534 {
2535 (*swap_out) (output_bfd, irela, erel);
2536 irela += bed->s->int_rels_per_ext_rel;
2537 erel += input_rel_hdr->sh_entsize;
2538 }
2539
2540 /* Bump the counter, so that we know where to add the next set of
2541 relocations. */
2542 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2543
2544 return TRUE;
2545 }
2546 \f
2547 /* Make weak undefined symbols in PIE dynamic. */
2548
2549 bfd_boolean
2550 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2551 struct elf_link_hash_entry *h)
2552 {
2553 if (bfd_link_pie (info)
2554 && h->dynindx == -1
2555 && h->root.type == bfd_link_hash_undefweak)
2556 return bfd_elf_link_record_dynamic_symbol (info, h);
2557
2558 return TRUE;
2559 }
2560
2561 /* Fix up the flags for a symbol. This handles various cases which
2562 can only be fixed after all the input files are seen. This is
2563 currently called by both adjust_dynamic_symbol and
2564 assign_sym_version, which is unnecessary but perhaps more robust in
2565 the face of future changes. */
2566
2567 static bfd_boolean
2568 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2569 struct elf_info_failed *eif)
2570 {
2571 const struct elf_backend_data *bed;
2572
2573 /* If this symbol was mentioned in a non-ELF file, try to set
2574 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2575 permit a non-ELF file to correctly refer to a symbol defined in
2576 an ELF dynamic object. */
2577 if (h->non_elf)
2578 {
2579 while (h->root.type == bfd_link_hash_indirect)
2580 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2581
2582 if (h->root.type != bfd_link_hash_defined
2583 && h->root.type != bfd_link_hash_defweak)
2584 {
2585 h->ref_regular = 1;
2586 h->ref_regular_nonweak = 1;
2587 }
2588 else
2589 {
2590 if (h->root.u.def.section->owner != NULL
2591 && (bfd_get_flavour (h->root.u.def.section->owner)
2592 == bfd_target_elf_flavour))
2593 {
2594 h->ref_regular = 1;
2595 h->ref_regular_nonweak = 1;
2596 }
2597 else
2598 h->def_regular = 1;
2599 }
2600
2601 if (h->dynindx == -1
2602 && (h->def_dynamic
2603 || h->ref_dynamic))
2604 {
2605 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2606 {
2607 eif->failed = TRUE;
2608 return FALSE;
2609 }
2610 }
2611 }
2612 else
2613 {
2614 /* Unfortunately, NON_ELF is only correct if the symbol
2615 was first seen in a non-ELF file. Fortunately, if the symbol
2616 was first seen in an ELF file, we're probably OK unless the
2617 symbol was defined in a non-ELF file. Catch that case here.
2618 FIXME: We're still in trouble if the symbol was first seen in
2619 a dynamic object, and then later in a non-ELF regular object. */
2620 if ((h->root.type == bfd_link_hash_defined
2621 || h->root.type == bfd_link_hash_defweak)
2622 && !h->def_regular
2623 && (h->root.u.def.section->owner != NULL
2624 ? (bfd_get_flavour (h->root.u.def.section->owner)
2625 != bfd_target_elf_flavour)
2626 : (bfd_is_abs_section (h->root.u.def.section)
2627 && !h->def_dynamic)))
2628 h->def_regular = 1;
2629 }
2630
2631 /* Backend specific symbol fixup. */
2632 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2633 if (bed->elf_backend_fixup_symbol
2634 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2635 return FALSE;
2636
2637 /* If this is a final link, and the symbol was defined as a common
2638 symbol in a regular object file, and there was no definition in
2639 any dynamic object, then the linker will have allocated space for
2640 the symbol in a common section but the DEF_REGULAR
2641 flag will not have been set. */
2642 if (h->root.type == bfd_link_hash_defined
2643 && !h->def_regular
2644 && h->ref_regular
2645 && !h->def_dynamic
2646 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2647 h->def_regular = 1;
2648
2649 /* If -Bsymbolic was used (which means to bind references to global
2650 symbols to the definition within the shared object), and this
2651 symbol was defined in a regular object, then it actually doesn't
2652 need a PLT entry. Likewise, if the symbol has non-default
2653 visibility. If the symbol has hidden or internal visibility, we
2654 will force it local. */
2655 if (h->needs_plt
2656 && bfd_link_pic (eif->info)
2657 && is_elf_hash_table (eif->info->hash)
2658 && (SYMBOLIC_BIND (eif->info, h)
2659 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2660 && h->def_regular)
2661 {
2662 bfd_boolean force_local;
2663
2664 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2665 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2666 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2667 }
2668
2669 /* If a weak undefined symbol has non-default visibility, we also
2670 hide it from the dynamic linker. */
2671 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2672 && h->root.type == bfd_link_hash_undefweak)
2673 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2674
2675 /* If this is a weak defined symbol in a dynamic object, and we know
2676 the real definition in the dynamic object, copy interesting flags
2677 over to the real definition. */
2678 if (h->u.weakdef != NULL)
2679 {
2680 /* If the real definition is defined by a regular object file,
2681 don't do anything special. See the longer description in
2682 _bfd_elf_adjust_dynamic_symbol, below. */
2683 if (h->u.weakdef->def_regular)
2684 h->u.weakdef = NULL;
2685 else
2686 {
2687 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2688
2689 while (h->root.type == bfd_link_hash_indirect)
2690 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2691
2692 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2693 || h->root.type == bfd_link_hash_defweak);
2694 BFD_ASSERT (weakdef->def_dynamic);
2695 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2696 || weakdef->root.type == bfd_link_hash_defweak);
2697 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2698 }
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Make the backend pick a good value for a dynamic symbol. This is
2705 called via elf_link_hash_traverse, and also calls itself
2706 recursively. */
2707
2708 static bfd_boolean
2709 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2710 {
2711 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2712 bfd *dynobj;
2713 const struct elf_backend_data *bed;
2714
2715 if (! is_elf_hash_table (eif->info->hash))
2716 return FALSE;
2717
2718 /* Ignore indirect symbols. These are added by the versioning code. */
2719 if (h->root.type == bfd_link_hash_indirect)
2720 return TRUE;
2721
2722 /* Fix the symbol flags. */
2723 if (! _bfd_elf_fix_symbol_flags (h, eif))
2724 return FALSE;
2725
2726 /* If this symbol does not require a PLT entry, and it is not
2727 defined by a dynamic object, or is not referenced by a regular
2728 object, ignore it. We do have to handle a weak defined symbol,
2729 even if no regular object refers to it, if we decided to add it
2730 to the dynamic symbol table. FIXME: Do we normally need to worry
2731 about symbols which are defined by one dynamic object and
2732 referenced by another one? */
2733 if (!h->needs_plt
2734 && h->type != STT_GNU_IFUNC
2735 && (h->def_regular
2736 || !h->def_dynamic
2737 || (!h->ref_regular
2738 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2739 {
2740 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2741 return TRUE;
2742 }
2743
2744 /* If we've already adjusted this symbol, don't do it again. This
2745 can happen via a recursive call. */
2746 if (h->dynamic_adjusted)
2747 return TRUE;
2748
2749 /* Don't look at this symbol again. Note that we must set this
2750 after checking the above conditions, because we may look at a
2751 symbol once, decide not to do anything, and then get called
2752 recursively later after REF_REGULAR is set below. */
2753 h->dynamic_adjusted = 1;
2754
2755 /* If this is a weak definition, and we know a real definition, and
2756 the real symbol is not itself defined by a regular object file,
2757 then get a good value for the real definition. We handle the
2758 real symbol first, for the convenience of the backend routine.
2759
2760 Note that there is a confusing case here. If the real definition
2761 is defined by a regular object file, we don't get the real symbol
2762 from the dynamic object, but we do get the weak symbol. If the
2763 processor backend uses a COPY reloc, then if some routine in the
2764 dynamic object changes the real symbol, we will not see that
2765 change in the corresponding weak symbol. This is the way other
2766 ELF linkers work as well, and seems to be a result of the shared
2767 library model.
2768
2769 I will clarify this issue. Most SVR4 shared libraries define the
2770 variable _timezone and define timezone as a weak synonym. The
2771 tzset call changes _timezone. If you write
2772 extern int timezone;
2773 int _timezone = 5;
2774 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2775 you might expect that, since timezone is a synonym for _timezone,
2776 the same number will print both times. However, if the processor
2777 backend uses a COPY reloc, then actually timezone will be copied
2778 into your process image, and, since you define _timezone
2779 yourself, _timezone will not. Thus timezone and _timezone will
2780 wind up at different memory locations. The tzset call will set
2781 _timezone, leaving timezone unchanged. */
2782
2783 if (h->u.weakdef != NULL)
2784 {
2785 /* If we get to this point, there is an implicit reference to
2786 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2787 h->u.weakdef->ref_regular = 1;
2788
2789 /* Ensure that the backend adjust_dynamic_symbol function sees
2790 H->U.WEAKDEF before H by recursively calling ourselves. */
2791 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2792 return FALSE;
2793 }
2794
2795 /* If a symbol has no type and no size and does not require a PLT
2796 entry, then we are probably about to do the wrong thing here: we
2797 are probably going to create a COPY reloc for an empty object.
2798 This case can arise when a shared object is built with assembly
2799 code, and the assembly code fails to set the symbol type. */
2800 if (h->size == 0
2801 && h->type == STT_NOTYPE
2802 && !h->needs_plt)
2803 _bfd_error_handler
2804 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2805 h->root.root.string);
2806
2807 dynobj = elf_hash_table (eif->info)->dynobj;
2808 bed = get_elf_backend_data (dynobj);
2809
2810 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2811 {
2812 eif->failed = TRUE;
2813 return FALSE;
2814 }
2815
2816 return TRUE;
2817 }
2818
2819 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2820 DYNBSS. */
2821
2822 bfd_boolean
2823 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2824 struct elf_link_hash_entry *h,
2825 asection *dynbss)
2826 {
2827 unsigned int power_of_two;
2828 bfd_vma mask;
2829 asection *sec = h->root.u.def.section;
2830
2831 /* The section aligment of definition is the maximum alignment
2832 requirement of symbols defined in the section. Since we don't
2833 know the symbol alignment requirement, we start with the
2834 maximum alignment and check low bits of the symbol address
2835 for the minimum alignment. */
2836 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2837 mask = ((bfd_vma) 1 << power_of_two) - 1;
2838 while ((h->root.u.def.value & mask) != 0)
2839 {
2840 mask >>= 1;
2841 --power_of_two;
2842 }
2843
2844 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2845 dynbss))
2846 {
2847 /* Adjust the section alignment if needed. */
2848 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2849 power_of_two))
2850 return FALSE;
2851 }
2852
2853 /* We make sure that the symbol will be aligned properly. */
2854 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2855
2856 /* Define the symbol as being at this point in DYNBSS. */
2857 h->root.u.def.section = dynbss;
2858 h->root.u.def.value = dynbss->size;
2859
2860 /* Increment the size of DYNBSS to make room for the symbol. */
2861 dynbss->size += h->size;
2862
2863 /* No error if extern_protected_data is true. */
2864 if (h->protected_def
2865 && (!info->extern_protected_data
2866 || (info->extern_protected_data < 0
2867 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2868 info->callbacks->einfo
2869 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2870 h->root.root.string);
2871
2872 return TRUE;
2873 }
2874
2875 /* Adjust all external symbols pointing into SEC_MERGE sections
2876 to reflect the object merging within the sections. */
2877
2878 static bfd_boolean
2879 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2880 {
2881 asection *sec;
2882
2883 if ((h->root.type == bfd_link_hash_defined
2884 || h->root.type == bfd_link_hash_defweak)
2885 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2886 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2887 {
2888 bfd *output_bfd = (bfd *) data;
2889
2890 h->root.u.def.value =
2891 _bfd_merged_section_offset (output_bfd,
2892 &h->root.u.def.section,
2893 elf_section_data (sec)->sec_info,
2894 h->root.u.def.value);
2895 }
2896
2897 return TRUE;
2898 }
2899
2900 /* Returns false if the symbol referred to by H should be considered
2901 to resolve local to the current module, and true if it should be
2902 considered to bind dynamically. */
2903
2904 bfd_boolean
2905 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2906 struct bfd_link_info *info,
2907 bfd_boolean not_local_protected)
2908 {
2909 bfd_boolean binding_stays_local_p;
2910 const struct elf_backend_data *bed;
2911 struct elf_link_hash_table *hash_table;
2912
2913 if (h == NULL)
2914 return FALSE;
2915
2916 while (h->root.type == bfd_link_hash_indirect
2917 || h->root.type == bfd_link_hash_warning)
2918 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2919
2920 /* If it was forced local, then clearly it's not dynamic. */
2921 if (h->dynindx == -1)
2922 return FALSE;
2923 if (h->forced_local)
2924 return FALSE;
2925
2926 /* Identify the cases where name binding rules say that a
2927 visible symbol resolves locally. */
2928 binding_stays_local_p = (bfd_link_executable (info)
2929 || SYMBOLIC_BIND (info, h));
2930
2931 switch (ELF_ST_VISIBILITY (h->other))
2932 {
2933 case STV_INTERNAL:
2934 case STV_HIDDEN:
2935 return FALSE;
2936
2937 case STV_PROTECTED:
2938 hash_table = elf_hash_table (info);
2939 if (!is_elf_hash_table (hash_table))
2940 return FALSE;
2941
2942 bed = get_elf_backend_data (hash_table->dynobj);
2943
2944 /* Proper resolution for function pointer equality may require
2945 that these symbols perhaps be resolved dynamically, even though
2946 we should be resolving them to the current module. */
2947 if (!not_local_protected || !bed->is_function_type (h->type))
2948 binding_stays_local_p = TRUE;
2949 break;
2950
2951 default:
2952 break;
2953 }
2954
2955 /* If it isn't defined locally, then clearly it's dynamic. */
2956 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2957 return TRUE;
2958
2959 /* Otherwise, the symbol is dynamic if binding rules don't tell
2960 us that it remains local. */
2961 return !binding_stays_local_p;
2962 }
2963
2964 /* Return true if the symbol referred to by H should be considered
2965 to resolve local to the current module, and false otherwise. Differs
2966 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2967 undefined symbols. The two functions are virtually identical except
2968 for the place where forced_local and dynindx == -1 are tested. If
2969 either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2970 the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2971 the symbol is local only for defined symbols.
2972 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2973 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2974 treatment of undefined weak symbols. For those that do not make
2975 undefined weak symbols dynamic, both functions may return false. */
2976
2977 bfd_boolean
2978 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2979 struct bfd_link_info *info,
2980 bfd_boolean local_protected)
2981 {
2982 const struct elf_backend_data *bed;
2983 struct elf_link_hash_table *hash_table;
2984
2985 /* If it's a local sym, of course we resolve locally. */
2986 if (h == NULL)
2987 return TRUE;
2988
2989 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2990 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2991 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2992 return TRUE;
2993
2994 /* Common symbols that become definitions don't get the DEF_REGULAR
2995 flag set, so test it first, and don't bail out. */
2996 if (ELF_COMMON_DEF_P (h))
2997 /* Do nothing. */;
2998 /* If we don't have a definition in a regular file, then we can't
2999 resolve locally. The sym is either undefined or dynamic. */
3000 else if (!h->def_regular)
3001 return FALSE;
3002
3003 /* Forced local symbols resolve locally. */
3004 if (h->forced_local)
3005 return TRUE;
3006
3007 /* As do non-dynamic symbols. */
3008 if (h->dynindx == -1)
3009 return TRUE;
3010
3011 /* At this point, we know the symbol is defined and dynamic. In an
3012 executable it must resolve locally, likewise when building symbolic
3013 shared libraries. */
3014 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3015 return TRUE;
3016
3017 /* Now deal with defined dynamic symbols in shared libraries. Ones
3018 with default visibility might not resolve locally. */
3019 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3020 return FALSE;
3021
3022 hash_table = elf_hash_table (info);
3023 if (!is_elf_hash_table (hash_table))
3024 return TRUE;
3025
3026 bed = get_elf_backend_data (hash_table->dynobj);
3027
3028 /* If extern_protected_data is false, STV_PROTECTED non-function
3029 symbols are local. */
3030 if ((!info->extern_protected_data
3031 || (info->extern_protected_data < 0
3032 && !bed->extern_protected_data))
3033 && !bed->is_function_type (h->type))
3034 return TRUE;
3035
3036 /* Function pointer equality tests may require that STV_PROTECTED
3037 symbols be treated as dynamic symbols. If the address of a
3038 function not defined in an executable is set to that function's
3039 plt entry in the executable, then the address of the function in
3040 a shared library must also be the plt entry in the executable. */
3041 return local_protected;
3042 }
3043
3044 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3045 aligned. Returns the first TLS output section. */
3046
3047 struct bfd_section *
3048 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3049 {
3050 struct bfd_section *sec, *tls;
3051 unsigned int align = 0;
3052
3053 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3054 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3055 break;
3056 tls = sec;
3057
3058 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3059 if (sec->alignment_power > align)
3060 align = sec->alignment_power;
3061
3062 elf_hash_table (info)->tls_sec = tls;
3063
3064 /* Ensure the alignment of the first section is the largest alignment,
3065 so that the tls segment starts aligned. */
3066 if (tls != NULL)
3067 tls->alignment_power = align;
3068
3069 return tls;
3070 }
3071
3072 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3073 static bfd_boolean
3074 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3075 Elf_Internal_Sym *sym)
3076 {
3077 const struct elf_backend_data *bed;
3078
3079 /* Local symbols do not count, but target specific ones might. */
3080 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3081 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3082 return FALSE;
3083
3084 bed = get_elf_backend_data (abfd);
3085 /* Function symbols do not count. */
3086 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3087 return FALSE;
3088
3089 /* If the section is undefined, then so is the symbol. */
3090 if (sym->st_shndx == SHN_UNDEF)
3091 return FALSE;
3092
3093 /* If the symbol is defined in the common section, then
3094 it is a common definition and so does not count. */
3095 if (bed->common_definition (sym))
3096 return FALSE;
3097
3098 /* If the symbol is in a target specific section then we
3099 must rely upon the backend to tell us what it is. */
3100 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3101 /* FIXME - this function is not coded yet:
3102
3103 return _bfd_is_global_symbol_definition (abfd, sym);
3104
3105 Instead for now assume that the definition is not global,
3106 Even if this is wrong, at least the linker will behave
3107 in the same way that it used to do. */
3108 return FALSE;
3109
3110 return TRUE;
3111 }
3112
3113 /* Search the symbol table of the archive element of the archive ABFD
3114 whose archive map contains a mention of SYMDEF, and determine if
3115 the symbol is defined in this element. */
3116 static bfd_boolean
3117 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3118 {
3119 Elf_Internal_Shdr * hdr;
3120 size_t symcount;
3121 size_t extsymcount;
3122 size_t extsymoff;
3123 Elf_Internal_Sym *isymbuf;
3124 Elf_Internal_Sym *isym;
3125 Elf_Internal_Sym *isymend;
3126 bfd_boolean result;
3127
3128 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3129 if (abfd == NULL)
3130 return FALSE;
3131
3132 if (! bfd_check_format (abfd, bfd_object))
3133 return FALSE;
3134
3135 /* Select the appropriate symbol table. If we don't know if the
3136 object file is an IR object, give linker LTO plugin a chance to
3137 get the correct symbol table. */
3138 if (abfd->plugin_format == bfd_plugin_yes
3139 #if BFD_SUPPORTS_PLUGINS
3140 || (abfd->plugin_format == bfd_plugin_unknown
3141 && bfd_link_plugin_object_p (abfd))
3142 #endif
3143 )
3144 {
3145 /* Use the IR symbol table if the object has been claimed by
3146 plugin. */
3147 abfd = abfd->plugin_dummy_bfd;
3148 hdr = &elf_tdata (abfd)->symtab_hdr;
3149 }
3150 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3151 hdr = &elf_tdata (abfd)->symtab_hdr;
3152 else
3153 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3154
3155 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3156
3157 /* The sh_info field of the symtab header tells us where the
3158 external symbols start. We don't care about the local symbols. */
3159 if (elf_bad_symtab (abfd))
3160 {
3161 extsymcount = symcount;
3162 extsymoff = 0;
3163 }
3164 else
3165 {
3166 extsymcount = symcount - hdr->sh_info;
3167 extsymoff = hdr->sh_info;
3168 }
3169
3170 if (extsymcount == 0)
3171 return FALSE;
3172
3173 /* Read in the symbol table. */
3174 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3175 NULL, NULL, NULL);
3176 if (isymbuf == NULL)
3177 return FALSE;
3178
3179 /* Scan the symbol table looking for SYMDEF. */
3180 result = FALSE;
3181 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3182 {
3183 const char *name;
3184
3185 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3186 isym->st_name);
3187 if (name == NULL)
3188 break;
3189
3190 if (strcmp (name, symdef->name) == 0)
3191 {
3192 result = is_global_data_symbol_definition (abfd, isym);
3193 break;
3194 }
3195 }
3196
3197 free (isymbuf);
3198
3199 return result;
3200 }
3201 \f
3202 /* Add an entry to the .dynamic table. */
3203
3204 bfd_boolean
3205 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3206 bfd_vma tag,
3207 bfd_vma val)
3208 {
3209 struct elf_link_hash_table *hash_table;
3210 const struct elf_backend_data *bed;
3211 asection *s;
3212 bfd_size_type newsize;
3213 bfd_byte *newcontents;
3214 Elf_Internal_Dyn dyn;
3215
3216 hash_table = elf_hash_table (info);
3217 if (! is_elf_hash_table (hash_table))
3218 return FALSE;
3219
3220 bed = get_elf_backend_data (hash_table->dynobj);
3221 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3222 BFD_ASSERT (s != NULL);
3223
3224 newsize = s->size + bed->s->sizeof_dyn;
3225 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3226 if (newcontents == NULL)
3227 return FALSE;
3228
3229 dyn.d_tag = tag;
3230 dyn.d_un.d_val = val;
3231 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3232
3233 s->size = newsize;
3234 s->contents = newcontents;
3235
3236 return TRUE;
3237 }
3238
3239 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3240 otherwise just check whether one already exists. Returns -1 on error,
3241 1 if a DT_NEEDED tag already exists, and 0 on success. */
3242
3243 static int
3244 elf_add_dt_needed_tag (bfd *abfd,
3245 struct bfd_link_info *info,
3246 const char *soname,
3247 bfd_boolean do_it)
3248 {
3249 struct elf_link_hash_table *hash_table;
3250 size_t strindex;
3251
3252 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3253 return -1;
3254
3255 hash_table = elf_hash_table (info);
3256 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3257 if (strindex == (size_t) -1)
3258 return -1;
3259
3260 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3261 {
3262 asection *sdyn;
3263 const struct elf_backend_data *bed;
3264 bfd_byte *extdyn;
3265
3266 bed = get_elf_backend_data (hash_table->dynobj);
3267 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3268 if (sdyn != NULL)
3269 for (extdyn = sdyn->contents;
3270 extdyn < sdyn->contents + sdyn->size;
3271 extdyn += bed->s->sizeof_dyn)
3272 {
3273 Elf_Internal_Dyn dyn;
3274
3275 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3276 if (dyn.d_tag == DT_NEEDED
3277 && dyn.d_un.d_val == strindex)
3278 {
3279 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3280 return 1;
3281 }
3282 }
3283 }
3284
3285 if (do_it)
3286 {
3287 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3288 return -1;
3289
3290 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3291 return -1;
3292 }
3293 else
3294 /* We were just checking for existence of the tag. */
3295 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3296
3297 return 0;
3298 }
3299
3300 /* Return true if SONAME is on the needed list between NEEDED and STOP
3301 (or the end of list if STOP is NULL), and needed by a library that
3302 will be loaded. */
3303
3304 static bfd_boolean
3305 on_needed_list (const char *soname,
3306 struct bfd_link_needed_list *needed,
3307 struct bfd_link_needed_list *stop)
3308 {
3309 struct bfd_link_needed_list *look;
3310 for (look = needed; look != stop; look = look->next)
3311 if (strcmp (soname, look->name) == 0
3312 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3313 /* If needed by a library that itself is not directly
3314 needed, recursively check whether that library is
3315 indirectly needed. Since we add DT_NEEDED entries to
3316 the end of the list, library dependencies appear after
3317 the library. Therefore search prior to the current
3318 LOOK, preventing possible infinite recursion. */
3319 || on_needed_list (elf_dt_name (look->by), needed, look)))
3320 return TRUE;
3321
3322 return FALSE;
3323 }
3324
3325 /* Sort symbol by value, section, and size. */
3326 static int
3327 elf_sort_symbol (const void *arg1, const void *arg2)
3328 {
3329 const struct elf_link_hash_entry *h1;
3330 const struct elf_link_hash_entry *h2;
3331 bfd_signed_vma vdiff;
3332
3333 h1 = *(const struct elf_link_hash_entry **) arg1;
3334 h2 = *(const struct elf_link_hash_entry **) arg2;
3335 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3336 if (vdiff != 0)
3337 return vdiff > 0 ? 1 : -1;
3338 else
3339 {
3340 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3341 if (sdiff != 0)
3342 return sdiff > 0 ? 1 : -1;
3343 }
3344 vdiff = h1->size - h2->size;
3345 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3346 }
3347
3348 /* This function is used to adjust offsets into .dynstr for
3349 dynamic symbols. This is called via elf_link_hash_traverse. */
3350
3351 static bfd_boolean
3352 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3353 {
3354 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3355
3356 if (h->dynindx != -1)
3357 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3358 return TRUE;
3359 }
3360
3361 /* Assign string offsets in .dynstr, update all structures referencing
3362 them. */
3363
3364 static bfd_boolean
3365 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3366 {
3367 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3368 struct elf_link_local_dynamic_entry *entry;
3369 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3370 bfd *dynobj = hash_table->dynobj;
3371 asection *sdyn;
3372 bfd_size_type size;
3373 const struct elf_backend_data *bed;
3374 bfd_byte *extdyn;
3375
3376 _bfd_elf_strtab_finalize (dynstr);
3377 size = _bfd_elf_strtab_size (dynstr);
3378
3379 bed = get_elf_backend_data (dynobj);
3380 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3381 BFD_ASSERT (sdyn != NULL);
3382
3383 /* Update all .dynamic entries referencing .dynstr strings. */
3384 for (extdyn = sdyn->contents;
3385 extdyn < sdyn->contents + sdyn->size;
3386 extdyn += bed->s->sizeof_dyn)
3387 {
3388 Elf_Internal_Dyn dyn;
3389
3390 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3391 switch (dyn.d_tag)
3392 {
3393 case DT_STRSZ:
3394 dyn.d_un.d_val = size;
3395 break;
3396 case DT_NEEDED:
3397 case DT_SONAME:
3398 case DT_RPATH:
3399 case DT_RUNPATH:
3400 case DT_FILTER:
3401 case DT_AUXILIARY:
3402 case DT_AUDIT:
3403 case DT_DEPAUDIT:
3404 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3405 break;
3406 default:
3407 continue;
3408 }
3409 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3410 }
3411
3412 /* Now update local dynamic symbols. */
3413 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3414 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3415 entry->isym.st_name);
3416
3417 /* And the rest of dynamic symbols. */
3418 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3419
3420 /* Adjust version definitions. */
3421 if (elf_tdata (output_bfd)->cverdefs)
3422 {
3423 asection *s;
3424 bfd_byte *p;
3425 size_t i;
3426 Elf_Internal_Verdef def;
3427 Elf_Internal_Verdaux defaux;
3428
3429 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3430 p = s->contents;
3431 do
3432 {
3433 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3434 &def);
3435 p += sizeof (Elf_External_Verdef);
3436 if (def.vd_aux != sizeof (Elf_External_Verdef))
3437 continue;
3438 for (i = 0; i < def.vd_cnt; ++i)
3439 {
3440 _bfd_elf_swap_verdaux_in (output_bfd,
3441 (Elf_External_Verdaux *) p, &defaux);
3442 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3443 defaux.vda_name);
3444 _bfd_elf_swap_verdaux_out (output_bfd,
3445 &defaux, (Elf_External_Verdaux *) p);
3446 p += sizeof (Elf_External_Verdaux);
3447 }
3448 }
3449 while (def.vd_next);
3450 }
3451
3452 /* Adjust version references. */
3453 if (elf_tdata (output_bfd)->verref)
3454 {
3455 asection *s;
3456 bfd_byte *p;
3457 size_t i;
3458 Elf_Internal_Verneed need;
3459 Elf_Internal_Vernaux needaux;
3460
3461 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3462 p = s->contents;
3463 do
3464 {
3465 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3466 &need);
3467 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3468 _bfd_elf_swap_verneed_out (output_bfd, &need,
3469 (Elf_External_Verneed *) p);
3470 p += sizeof (Elf_External_Verneed);
3471 for (i = 0; i < need.vn_cnt; ++i)
3472 {
3473 _bfd_elf_swap_vernaux_in (output_bfd,
3474 (Elf_External_Vernaux *) p, &needaux);
3475 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3476 needaux.vna_name);
3477 _bfd_elf_swap_vernaux_out (output_bfd,
3478 &needaux,
3479 (Elf_External_Vernaux *) p);
3480 p += sizeof (Elf_External_Vernaux);
3481 }
3482 }
3483 while (need.vn_next);
3484 }
3485
3486 return TRUE;
3487 }
3488 \f
3489 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3490 The default is to only match when the INPUT and OUTPUT are exactly
3491 the same target. */
3492
3493 bfd_boolean
3494 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3495 const bfd_target *output)
3496 {
3497 return input == output;
3498 }
3499
3500 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3501 This version is used when different targets for the same architecture
3502 are virtually identical. */
3503
3504 bfd_boolean
3505 _bfd_elf_relocs_compatible (const bfd_target *input,
3506 const bfd_target *output)
3507 {
3508 const struct elf_backend_data *obed, *ibed;
3509
3510 if (input == output)
3511 return TRUE;
3512
3513 ibed = xvec_get_elf_backend_data (input);
3514 obed = xvec_get_elf_backend_data (output);
3515
3516 if (ibed->arch != obed->arch)
3517 return FALSE;
3518
3519 /* If both backends are using this function, deem them compatible. */
3520 return ibed->relocs_compatible == obed->relocs_compatible;
3521 }
3522
3523 /* Make a special call to the linker "notice" function to tell it that
3524 we are about to handle an as-needed lib, or have finished
3525 processing the lib. */
3526
3527 bfd_boolean
3528 _bfd_elf_notice_as_needed (bfd *ibfd,
3529 struct bfd_link_info *info,
3530 enum notice_asneeded_action act)
3531 {
3532 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3533 }
3534
3535 /* Check relocations an ELF object file. */
3536
3537 bfd_boolean
3538 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3539 {
3540 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3541 struct elf_link_hash_table *htab = elf_hash_table (info);
3542
3543 /* If this object is the same format as the output object, and it is
3544 not a shared library, then let the backend look through the
3545 relocs.
3546
3547 This is required to build global offset table entries and to
3548 arrange for dynamic relocs. It is not required for the
3549 particular common case of linking non PIC code, even when linking
3550 against shared libraries, but unfortunately there is no way of
3551 knowing whether an object file has been compiled PIC or not.
3552 Looking through the relocs is not particularly time consuming.
3553 The problem is that we must either (1) keep the relocs in memory,
3554 which causes the linker to require additional runtime memory or
3555 (2) read the relocs twice from the input file, which wastes time.
3556 This would be a good case for using mmap.
3557
3558 I have no idea how to handle linking PIC code into a file of a
3559 different format. It probably can't be done. */
3560 if ((abfd->flags & DYNAMIC) == 0
3561 && is_elf_hash_table (htab)
3562 && bed->check_relocs != NULL
3563 && elf_object_id (abfd) == elf_hash_table_id (htab)
3564 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3565 {
3566 asection *o;
3567
3568 for (o = abfd->sections; o != NULL; o = o->next)
3569 {
3570 Elf_Internal_Rela *internal_relocs;
3571 bfd_boolean ok;
3572
3573 /* Don't check relocations in excluded sections. */
3574 if ((o->flags & SEC_RELOC) == 0
3575 || (o->flags & SEC_EXCLUDE) != 0
3576 || o->reloc_count == 0
3577 || ((info->strip == strip_all || info->strip == strip_debugger)
3578 && (o->flags & SEC_DEBUGGING) != 0)
3579 || bfd_is_abs_section (o->output_section))
3580 continue;
3581
3582 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3583 info->keep_memory);
3584 if (internal_relocs == NULL)
3585 return FALSE;
3586
3587 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3588
3589 if (elf_section_data (o)->relocs != internal_relocs)
3590 free (internal_relocs);
3591
3592 if (! ok)
3593 return FALSE;
3594 }
3595 }
3596
3597 return TRUE;
3598 }
3599
3600 /* Add symbols from an ELF object file to the linker hash table. */
3601
3602 static bfd_boolean
3603 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3604 {
3605 Elf_Internal_Ehdr *ehdr;
3606 Elf_Internal_Shdr *hdr;
3607 size_t symcount;
3608 size_t extsymcount;
3609 size_t extsymoff;
3610 struct elf_link_hash_entry **sym_hash;
3611 bfd_boolean dynamic;
3612 Elf_External_Versym *extversym = NULL;
3613 Elf_External_Versym *ever;
3614 struct elf_link_hash_entry *weaks;
3615 struct elf_link_hash_entry **nondeflt_vers = NULL;
3616 size_t nondeflt_vers_cnt = 0;
3617 Elf_Internal_Sym *isymbuf = NULL;
3618 Elf_Internal_Sym *isym;
3619 Elf_Internal_Sym *isymend;
3620 const struct elf_backend_data *bed;
3621 bfd_boolean add_needed;
3622 struct elf_link_hash_table *htab;
3623 bfd_size_type amt;
3624 void *alloc_mark = NULL;
3625 struct bfd_hash_entry **old_table = NULL;
3626 unsigned int old_size = 0;
3627 unsigned int old_count = 0;
3628 void *old_tab = NULL;
3629 void *old_ent;
3630 struct bfd_link_hash_entry *old_undefs = NULL;
3631 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3632 void *old_strtab = NULL;
3633 size_t tabsize = 0;
3634 asection *s;
3635 bfd_boolean just_syms;
3636
3637 htab = elf_hash_table (info);
3638 bed = get_elf_backend_data (abfd);
3639
3640 if ((abfd->flags & DYNAMIC) == 0)
3641 dynamic = FALSE;
3642 else
3643 {
3644 dynamic = TRUE;
3645
3646 /* You can't use -r against a dynamic object. Also, there's no
3647 hope of using a dynamic object which does not exactly match
3648 the format of the output file. */
3649 if (bfd_link_relocatable (info)
3650 || !is_elf_hash_table (htab)
3651 || info->output_bfd->xvec != abfd->xvec)
3652 {
3653 if (bfd_link_relocatable (info))
3654 bfd_set_error (bfd_error_invalid_operation);
3655 else
3656 bfd_set_error (bfd_error_wrong_format);
3657 goto error_return;
3658 }
3659 }
3660
3661 ehdr = elf_elfheader (abfd);
3662 if (info->warn_alternate_em
3663 && bed->elf_machine_code != ehdr->e_machine
3664 && ((bed->elf_machine_alt1 != 0
3665 && ehdr->e_machine == bed->elf_machine_alt1)
3666 || (bed->elf_machine_alt2 != 0
3667 && ehdr->e_machine == bed->elf_machine_alt2)))
3668 info->callbacks->einfo
3669 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3670 ehdr->e_machine, abfd, bed->elf_machine_code);
3671
3672 /* As a GNU extension, any input sections which are named
3673 .gnu.warning.SYMBOL are treated as warning symbols for the given
3674 symbol. This differs from .gnu.warning sections, which generate
3675 warnings when they are included in an output file. */
3676 /* PR 12761: Also generate this warning when building shared libraries. */
3677 for (s = abfd->sections; s != NULL; s = s->next)
3678 {
3679 const char *name;
3680
3681 name = bfd_get_section_name (abfd, s);
3682 if (CONST_STRNEQ (name, ".gnu.warning."))
3683 {
3684 char *msg;
3685 bfd_size_type sz;
3686
3687 name += sizeof ".gnu.warning." - 1;
3688
3689 /* If this is a shared object, then look up the symbol
3690 in the hash table. If it is there, and it is already
3691 been defined, then we will not be using the entry
3692 from this shared object, so we don't need to warn.
3693 FIXME: If we see the definition in a regular object
3694 later on, we will warn, but we shouldn't. The only
3695 fix is to keep track of what warnings we are supposed
3696 to emit, and then handle them all at the end of the
3697 link. */
3698 if (dynamic)
3699 {
3700 struct elf_link_hash_entry *h;
3701
3702 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3703
3704 /* FIXME: What about bfd_link_hash_common? */
3705 if (h != NULL
3706 && (h->root.type == bfd_link_hash_defined
3707 || h->root.type == bfd_link_hash_defweak))
3708 continue;
3709 }
3710
3711 sz = s->size;
3712 msg = (char *) bfd_alloc (abfd, sz + 1);
3713 if (msg == NULL)
3714 goto error_return;
3715
3716 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3717 goto error_return;
3718
3719 msg[sz] = '\0';
3720
3721 if (! (_bfd_generic_link_add_one_symbol
3722 (info, abfd, name, BSF_WARNING, s, 0, msg,
3723 FALSE, bed->collect, NULL)))
3724 goto error_return;
3725
3726 if (bfd_link_executable (info))
3727 {
3728 /* Clobber the section size so that the warning does
3729 not get copied into the output file. */
3730 s->size = 0;
3731
3732 /* Also set SEC_EXCLUDE, so that symbols defined in
3733 the warning section don't get copied to the output. */
3734 s->flags |= SEC_EXCLUDE;
3735 }
3736 }
3737 }
3738
3739 just_syms = ((s = abfd->sections) != NULL
3740 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3741
3742 add_needed = TRUE;
3743 if (! dynamic)
3744 {
3745 /* If we are creating a shared library, create all the dynamic
3746 sections immediately. We need to attach them to something,
3747 so we attach them to this BFD, provided it is the right
3748 format and is not from ld --just-symbols. Always create the
3749 dynamic sections for -E/--dynamic-list. FIXME: If there
3750 are no input BFD's of the same format as the output, we can't
3751 make a shared library. */
3752 if (!just_syms
3753 && (bfd_link_pic (info)
3754 || (!bfd_link_relocatable (info)
3755 && (info->export_dynamic || info->dynamic)))
3756 && is_elf_hash_table (htab)
3757 && info->output_bfd->xvec == abfd->xvec
3758 && !htab->dynamic_sections_created)
3759 {
3760 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3761 goto error_return;
3762 }
3763 }
3764 else if (!is_elf_hash_table (htab))
3765 goto error_return;
3766 else
3767 {
3768 const char *soname = NULL;
3769 char *audit = NULL;
3770 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3771 int ret;
3772
3773 /* ld --just-symbols and dynamic objects don't mix very well.
3774 ld shouldn't allow it. */
3775 if (just_syms)
3776 abort ();
3777
3778 /* If this dynamic lib was specified on the command line with
3779 --as-needed in effect, then we don't want to add a DT_NEEDED
3780 tag unless the lib is actually used. Similary for libs brought
3781 in by another lib's DT_NEEDED. When --no-add-needed is used
3782 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3783 any dynamic library in DT_NEEDED tags in the dynamic lib at
3784 all. */
3785 add_needed = (elf_dyn_lib_class (abfd)
3786 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3787 | DYN_NO_NEEDED)) == 0;
3788
3789 s = bfd_get_section_by_name (abfd, ".dynamic");
3790 if (s != NULL)
3791 {
3792 bfd_byte *dynbuf;
3793 bfd_byte *extdyn;
3794 unsigned int elfsec;
3795 unsigned long shlink;
3796
3797 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3798 {
3799 error_free_dyn:
3800 free (dynbuf);
3801 goto error_return;
3802 }
3803
3804 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3805 if (elfsec == SHN_BAD)
3806 goto error_free_dyn;
3807 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3808
3809 for (extdyn = dynbuf;
3810 extdyn < dynbuf + s->size;
3811 extdyn += bed->s->sizeof_dyn)
3812 {
3813 Elf_Internal_Dyn dyn;
3814
3815 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3816 if (dyn.d_tag == DT_SONAME)
3817 {
3818 unsigned int tagv = dyn.d_un.d_val;
3819 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3820 if (soname == NULL)
3821 goto error_free_dyn;
3822 }
3823 if (dyn.d_tag == DT_NEEDED)
3824 {
3825 struct bfd_link_needed_list *n, **pn;
3826 char *fnm, *anm;
3827 unsigned int tagv = dyn.d_un.d_val;
3828
3829 amt = sizeof (struct bfd_link_needed_list);
3830 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3831 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3832 if (n == NULL || fnm == NULL)
3833 goto error_free_dyn;
3834 amt = strlen (fnm) + 1;
3835 anm = (char *) bfd_alloc (abfd, amt);
3836 if (anm == NULL)
3837 goto error_free_dyn;
3838 memcpy (anm, fnm, amt);
3839 n->name = anm;
3840 n->by = abfd;
3841 n->next = NULL;
3842 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3843 ;
3844 *pn = n;
3845 }
3846 if (dyn.d_tag == DT_RUNPATH)
3847 {
3848 struct bfd_link_needed_list *n, **pn;
3849 char *fnm, *anm;
3850 unsigned int tagv = dyn.d_un.d_val;
3851
3852 amt = sizeof (struct bfd_link_needed_list);
3853 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3854 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3855 if (n == NULL || fnm == NULL)
3856 goto error_free_dyn;
3857 amt = strlen (fnm) + 1;
3858 anm = (char *) bfd_alloc (abfd, amt);
3859 if (anm == NULL)
3860 goto error_free_dyn;
3861 memcpy (anm, fnm, amt);
3862 n->name = anm;
3863 n->by = abfd;
3864 n->next = NULL;
3865 for (pn = & runpath;
3866 *pn != NULL;
3867 pn = &(*pn)->next)
3868 ;
3869 *pn = n;
3870 }
3871 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3872 if (!runpath && dyn.d_tag == DT_RPATH)
3873 {
3874 struct bfd_link_needed_list *n, **pn;
3875 char *fnm, *anm;
3876 unsigned int tagv = dyn.d_un.d_val;
3877
3878 amt = sizeof (struct bfd_link_needed_list);
3879 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3880 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3881 if (n == NULL || fnm == NULL)
3882 goto error_free_dyn;
3883 amt = strlen (fnm) + 1;
3884 anm = (char *) bfd_alloc (abfd, amt);
3885 if (anm == NULL)
3886 goto error_free_dyn;
3887 memcpy (anm, fnm, amt);
3888 n->name = anm;
3889 n->by = abfd;
3890 n->next = NULL;
3891 for (pn = & rpath;
3892 *pn != NULL;
3893 pn = &(*pn)->next)
3894 ;
3895 *pn = n;
3896 }
3897 if (dyn.d_tag == DT_AUDIT)
3898 {
3899 unsigned int tagv = dyn.d_un.d_val;
3900 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3901 }
3902 }
3903
3904 free (dynbuf);
3905 }
3906
3907 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3908 frees all more recently bfd_alloc'd blocks as well. */
3909 if (runpath)
3910 rpath = runpath;
3911
3912 if (rpath)
3913 {
3914 struct bfd_link_needed_list **pn;
3915 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3916 ;
3917 *pn = rpath;
3918 }
3919
3920 /* We do not want to include any of the sections in a dynamic
3921 object in the output file. We hack by simply clobbering the
3922 list of sections in the BFD. This could be handled more
3923 cleanly by, say, a new section flag; the existing
3924 SEC_NEVER_LOAD flag is not the one we want, because that one
3925 still implies that the section takes up space in the output
3926 file. */
3927 bfd_section_list_clear (abfd);
3928
3929 /* Find the name to use in a DT_NEEDED entry that refers to this
3930 object. If the object has a DT_SONAME entry, we use it.
3931 Otherwise, if the generic linker stuck something in
3932 elf_dt_name, we use that. Otherwise, we just use the file
3933 name. */
3934 if (soname == NULL || *soname == '\0')
3935 {
3936 soname = elf_dt_name (abfd);
3937 if (soname == NULL || *soname == '\0')
3938 soname = bfd_get_filename (abfd);
3939 }
3940
3941 /* Save the SONAME because sometimes the linker emulation code
3942 will need to know it. */
3943 elf_dt_name (abfd) = soname;
3944
3945 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3946 if (ret < 0)
3947 goto error_return;
3948
3949 /* If we have already included this dynamic object in the
3950 link, just ignore it. There is no reason to include a
3951 particular dynamic object more than once. */
3952 if (ret > 0)
3953 return TRUE;
3954
3955 /* Save the DT_AUDIT entry for the linker emulation code. */
3956 elf_dt_audit (abfd) = audit;
3957 }
3958
3959 /* If this is a dynamic object, we always link against the .dynsym
3960 symbol table, not the .symtab symbol table. The dynamic linker
3961 will only see the .dynsym symbol table, so there is no reason to
3962 look at .symtab for a dynamic object. */
3963
3964 if (! dynamic || elf_dynsymtab (abfd) == 0)
3965 hdr = &elf_tdata (abfd)->symtab_hdr;
3966 else
3967 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3968
3969 symcount = hdr->sh_size / bed->s->sizeof_sym;
3970
3971 /* The sh_info field of the symtab header tells us where the
3972 external symbols start. We don't care about the local symbols at
3973 this point. */
3974 if (elf_bad_symtab (abfd))
3975 {
3976 extsymcount = symcount;
3977 extsymoff = 0;
3978 }
3979 else
3980 {
3981 extsymcount = symcount - hdr->sh_info;
3982 extsymoff = hdr->sh_info;
3983 }
3984
3985 sym_hash = elf_sym_hashes (abfd);
3986 if (extsymcount != 0)
3987 {
3988 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3989 NULL, NULL, NULL);
3990 if (isymbuf == NULL)
3991 goto error_return;
3992
3993 if (sym_hash == NULL)
3994 {
3995 /* We store a pointer to the hash table entry for each
3996 external symbol. */
3997 amt = extsymcount;
3998 amt *= sizeof (struct elf_link_hash_entry *);
3999 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4000 if (sym_hash == NULL)
4001 goto error_free_sym;
4002 elf_sym_hashes (abfd) = sym_hash;
4003 }
4004 }
4005
4006 if (dynamic)
4007 {
4008 /* Read in any version definitions. */
4009 if (!_bfd_elf_slurp_version_tables (abfd,
4010 info->default_imported_symver))
4011 goto error_free_sym;
4012
4013 /* Read in the symbol versions, but don't bother to convert them
4014 to internal format. */
4015 if (elf_dynversym (abfd) != 0)
4016 {
4017 Elf_Internal_Shdr *versymhdr;
4018
4019 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4020 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4021 if (extversym == NULL)
4022 goto error_free_sym;
4023 amt = versymhdr->sh_size;
4024 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4025 || bfd_bread (extversym, amt, abfd) != amt)
4026 goto error_free_vers;
4027 }
4028 }
4029
4030 /* If we are loading an as-needed shared lib, save the symbol table
4031 state before we start adding symbols. If the lib turns out
4032 to be unneeded, restore the state. */
4033 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4034 {
4035 unsigned int i;
4036 size_t entsize;
4037
4038 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4039 {
4040 struct bfd_hash_entry *p;
4041 struct elf_link_hash_entry *h;
4042
4043 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4044 {
4045 h = (struct elf_link_hash_entry *) p;
4046 entsize += htab->root.table.entsize;
4047 if (h->root.type == bfd_link_hash_warning)
4048 entsize += htab->root.table.entsize;
4049 }
4050 }
4051
4052 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4053 old_tab = bfd_malloc (tabsize + entsize);
4054 if (old_tab == NULL)
4055 goto error_free_vers;
4056
4057 /* Remember the current objalloc pointer, so that all mem for
4058 symbols added can later be reclaimed. */
4059 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4060 if (alloc_mark == NULL)
4061 goto error_free_vers;
4062
4063 /* Make a special call to the linker "notice" function to
4064 tell it that we are about to handle an as-needed lib. */
4065 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4066 goto error_free_vers;
4067
4068 /* Clone the symbol table. Remember some pointers into the
4069 symbol table, and dynamic symbol count. */
4070 old_ent = (char *) old_tab + tabsize;
4071 memcpy (old_tab, htab->root.table.table, tabsize);
4072 old_undefs = htab->root.undefs;
4073 old_undefs_tail = htab->root.undefs_tail;
4074 old_table = htab->root.table.table;
4075 old_size = htab->root.table.size;
4076 old_count = htab->root.table.count;
4077 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4078 if (old_strtab == NULL)
4079 goto error_free_vers;
4080
4081 for (i = 0; i < htab->root.table.size; i++)
4082 {
4083 struct bfd_hash_entry *p;
4084 struct elf_link_hash_entry *h;
4085
4086 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4087 {
4088 memcpy (old_ent, p, htab->root.table.entsize);
4089 old_ent = (char *) old_ent + htab->root.table.entsize;
4090 h = (struct elf_link_hash_entry *) p;
4091 if (h->root.type == bfd_link_hash_warning)
4092 {
4093 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4094 old_ent = (char *) old_ent + htab->root.table.entsize;
4095 }
4096 }
4097 }
4098 }
4099
4100 weaks = NULL;
4101 ever = extversym != NULL ? extversym + extsymoff : NULL;
4102 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4103 isym < isymend;
4104 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4105 {
4106 int bind;
4107 bfd_vma value;
4108 asection *sec, *new_sec;
4109 flagword flags;
4110 const char *name;
4111 struct elf_link_hash_entry *h;
4112 struct elf_link_hash_entry *hi;
4113 bfd_boolean definition;
4114 bfd_boolean size_change_ok;
4115 bfd_boolean type_change_ok;
4116 bfd_boolean new_weakdef;
4117 bfd_boolean new_weak;
4118 bfd_boolean old_weak;
4119 bfd_boolean override;
4120 bfd_boolean common;
4121 bfd_boolean discarded;
4122 unsigned int old_alignment;
4123 bfd *old_bfd;
4124 bfd_boolean matched;
4125
4126 override = FALSE;
4127
4128 flags = BSF_NO_FLAGS;
4129 sec = NULL;
4130 value = isym->st_value;
4131 common = bed->common_definition (isym);
4132 discarded = FALSE;
4133
4134 bind = ELF_ST_BIND (isym->st_info);
4135 switch (bind)
4136 {
4137 case STB_LOCAL:
4138 /* This should be impossible, since ELF requires that all
4139 global symbols follow all local symbols, and that sh_info
4140 point to the first global symbol. Unfortunately, Irix 5
4141 screws this up. */
4142 continue;
4143
4144 case STB_GLOBAL:
4145 if (isym->st_shndx != SHN_UNDEF && !common)
4146 flags = BSF_GLOBAL;
4147 break;
4148
4149 case STB_WEAK:
4150 flags = BSF_WEAK;
4151 break;
4152
4153 case STB_GNU_UNIQUE:
4154 flags = BSF_GNU_UNIQUE;
4155 break;
4156
4157 default:
4158 /* Leave it up to the processor backend. */
4159 break;
4160 }
4161
4162 if (isym->st_shndx == SHN_UNDEF)
4163 sec = bfd_und_section_ptr;
4164 else if (isym->st_shndx == SHN_ABS)
4165 sec = bfd_abs_section_ptr;
4166 else if (isym->st_shndx == SHN_COMMON)
4167 {
4168 sec = bfd_com_section_ptr;
4169 /* What ELF calls the size we call the value. What ELF
4170 calls the value we call the alignment. */
4171 value = isym->st_size;
4172 }
4173 else
4174 {
4175 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4176 if (sec == NULL)
4177 sec = bfd_abs_section_ptr;
4178 else if (discarded_section (sec))
4179 {
4180 /* Symbols from discarded section are undefined. We keep
4181 its visibility. */
4182 sec = bfd_und_section_ptr;
4183 discarded = TRUE;
4184 isym->st_shndx = SHN_UNDEF;
4185 }
4186 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4187 value -= sec->vma;
4188 }
4189
4190 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4191 isym->st_name);
4192 if (name == NULL)
4193 goto error_free_vers;
4194
4195 if (isym->st_shndx == SHN_COMMON
4196 && (abfd->flags & BFD_PLUGIN) != 0)
4197 {
4198 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4199
4200 if (xc == NULL)
4201 {
4202 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4203 | SEC_EXCLUDE);
4204 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4205 if (xc == NULL)
4206 goto error_free_vers;
4207 }
4208 sec = xc;
4209 }
4210 else if (isym->st_shndx == SHN_COMMON
4211 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4212 && !bfd_link_relocatable (info))
4213 {
4214 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4215
4216 if (tcomm == NULL)
4217 {
4218 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4219 | SEC_LINKER_CREATED);
4220 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4221 if (tcomm == NULL)
4222 goto error_free_vers;
4223 }
4224 sec = tcomm;
4225 }
4226 else if (bed->elf_add_symbol_hook)
4227 {
4228 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4229 &sec, &value))
4230 goto error_free_vers;
4231
4232 /* The hook function sets the name to NULL if this symbol
4233 should be skipped for some reason. */
4234 if (name == NULL)
4235 continue;
4236 }
4237
4238 /* Sanity check that all possibilities were handled. */
4239 if (sec == NULL)
4240 {
4241 bfd_set_error (bfd_error_bad_value);
4242 goto error_free_vers;
4243 }
4244
4245 /* Silently discard TLS symbols from --just-syms. There's
4246 no way to combine a static TLS block with a new TLS block
4247 for this executable. */
4248 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4249 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4250 continue;
4251
4252 if (bfd_is_und_section (sec)
4253 || bfd_is_com_section (sec))
4254 definition = FALSE;
4255 else
4256 definition = TRUE;
4257
4258 size_change_ok = FALSE;
4259 type_change_ok = bed->type_change_ok;
4260 old_weak = FALSE;
4261 matched = FALSE;
4262 old_alignment = 0;
4263 old_bfd = NULL;
4264 new_sec = sec;
4265
4266 if (is_elf_hash_table (htab))
4267 {
4268 Elf_Internal_Versym iver;
4269 unsigned int vernum = 0;
4270 bfd_boolean skip;
4271
4272 if (ever == NULL)
4273 {
4274 if (info->default_imported_symver)
4275 /* Use the default symbol version created earlier. */
4276 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4277 else
4278 iver.vs_vers = 0;
4279 }
4280 else
4281 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4282
4283 vernum = iver.vs_vers & VERSYM_VERSION;
4284
4285 /* If this is a hidden symbol, or if it is not version
4286 1, we append the version name to the symbol name.
4287 However, we do not modify a non-hidden absolute symbol
4288 if it is not a function, because it might be the version
4289 symbol itself. FIXME: What if it isn't? */
4290 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4291 || (vernum > 1
4292 && (!bfd_is_abs_section (sec)
4293 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4294 {
4295 const char *verstr;
4296 size_t namelen, verlen, newlen;
4297 char *newname, *p;
4298
4299 if (isym->st_shndx != SHN_UNDEF)
4300 {
4301 if (vernum > elf_tdata (abfd)->cverdefs)
4302 verstr = NULL;
4303 else if (vernum > 1)
4304 verstr =
4305 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4306 else
4307 verstr = "";
4308
4309 if (verstr == NULL)
4310 {
4311 _bfd_error_handler
4312 (_("%B: %s: invalid version %u (max %d)"),
4313 abfd, name, vernum,
4314 elf_tdata (abfd)->cverdefs);
4315 bfd_set_error (bfd_error_bad_value);
4316 goto error_free_vers;
4317 }
4318 }
4319 else
4320 {
4321 /* We cannot simply test for the number of
4322 entries in the VERNEED section since the
4323 numbers for the needed versions do not start
4324 at 0. */
4325 Elf_Internal_Verneed *t;
4326
4327 verstr = NULL;
4328 for (t = elf_tdata (abfd)->verref;
4329 t != NULL;
4330 t = t->vn_nextref)
4331 {
4332 Elf_Internal_Vernaux *a;
4333
4334 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4335 {
4336 if (a->vna_other == vernum)
4337 {
4338 verstr = a->vna_nodename;
4339 break;
4340 }
4341 }
4342 if (a != NULL)
4343 break;
4344 }
4345 if (verstr == NULL)
4346 {
4347 _bfd_error_handler
4348 (_("%B: %s: invalid needed version %d"),
4349 abfd, name, vernum);
4350 bfd_set_error (bfd_error_bad_value);
4351 goto error_free_vers;
4352 }
4353 }
4354
4355 namelen = strlen (name);
4356 verlen = strlen (verstr);
4357 newlen = namelen + verlen + 2;
4358 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4359 && isym->st_shndx != SHN_UNDEF)
4360 ++newlen;
4361
4362 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4363 if (newname == NULL)
4364 goto error_free_vers;
4365 memcpy (newname, name, namelen);
4366 p = newname + namelen;
4367 *p++ = ELF_VER_CHR;
4368 /* If this is a defined non-hidden version symbol,
4369 we add another @ to the name. This indicates the
4370 default version of the symbol. */
4371 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4372 && isym->st_shndx != SHN_UNDEF)
4373 *p++ = ELF_VER_CHR;
4374 memcpy (p, verstr, verlen + 1);
4375
4376 name = newname;
4377 }
4378
4379 /* If this symbol has default visibility and the user has
4380 requested we not re-export it, then mark it as hidden. */
4381 if (!bfd_is_und_section (sec)
4382 && !dynamic
4383 && abfd->no_export
4384 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4385 isym->st_other = (STV_HIDDEN
4386 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4387
4388 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4389 sym_hash, &old_bfd, &old_weak,
4390 &old_alignment, &skip, &override,
4391 &type_change_ok, &size_change_ok,
4392 &matched))
4393 goto error_free_vers;
4394
4395 if (skip)
4396 continue;
4397
4398 /* Override a definition only if the new symbol matches the
4399 existing one. */
4400 if (override && matched)
4401 definition = FALSE;
4402
4403 h = *sym_hash;
4404 while (h->root.type == bfd_link_hash_indirect
4405 || h->root.type == bfd_link_hash_warning)
4406 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4407
4408 if (elf_tdata (abfd)->verdef != NULL
4409 && vernum > 1
4410 && definition)
4411 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4412 }
4413
4414 if (! (_bfd_generic_link_add_one_symbol
4415 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4416 (struct bfd_link_hash_entry **) sym_hash)))
4417 goto error_free_vers;
4418
4419 if ((flags & BSF_GNU_UNIQUE)
4420 && (abfd->flags & DYNAMIC) == 0
4421 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4422 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4423
4424 h = *sym_hash;
4425 /* We need to make sure that indirect symbol dynamic flags are
4426 updated. */
4427 hi = h;
4428 while (h->root.type == bfd_link_hash_indirect
4429 || h->root.type == bfd_link_hash_warning)
4430 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4431
4432 /* Setting the index to -3 tells elf_link_output_extsym that
4433 this symbol is defined in a discarded section. */
4434 if (discarded)
4435 h->indx = -3;
4436
4437 *sym_hash = h;
4438
4439 new_weak = (flags & BSF_WEAK) != 0;
4440 new_weakdef = FALSE;
4441 if (dynamic
4442 && definition
4443 && new_weak
4444 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4445 && is_elf_hash_table (htab)
4446 && h->u.weakdef == NULL)
4447 {
4448 /* Keep a list of all weak defined non function symbols from
4449 a dynamic object, using the weakdef field. Later in this
4450 function we will set the weakdef field to the correct
4451 value. We only put non-function symbols from dynamic
4452 objects on this list, because that happens to be the only
4453 time we need to know the normal symbol corresponding to a
4454 weak symbol, and the information is time consuming to
4455 figure out. If the weakdef field is not already NULL,
4456 then this symbol was already defined by some previous
4457 dynamic object, and we will be using that previous
4458 definition anyhow. */
4459
4460 h->u.weakdef = weaks;
4461 weaks = h;
4462 new_weakdef = TRUE;
4463 }
4464
4465 /* Set the alignment of a common symbol. */
4466 if ((common || bfd_is_com_section (sec))
4467 && h->root.type == bfd_link_hash_common)
4468 {
4469 unsigned int align;
4470
4471 if (common)
4472 align = bfd_log2 (isym->st_value);
4473 else
4474 {
4475 /* The new symbol is a common symbol in a shared object.
4476 We need to get the alignment from the section. */
4477 align = new_sec->alignment_power;
4478 }
4479 if (align > old_alignment)
4480 h->root.u.c.p->alignment_power = align;
4481 else
4482 h->root.u.c.p->alignment_power = old_alignment;
4483 }
4484
4485 if (is_elf_hash_table (htab))
4486 {
4487 /* Set a flag in the hash table entry indicating the type of
4488 reference or definition we just found. A dynamic symbol
4489 is one which is referenced or defined by both a regular
4490 object and a shared object. */
4491 bfd_boolean dynsym = FALSE;
4492
4493 /* Plugin symbols aren't normal. Don't set def_regular or
4494 ref_regular for them, or make them dynamic. */
4495 if ((abfd->flags & BFD_PLUGIN) != 0)
4496 ;
4497 else if (! dynamic)
4498 {
4499 if (! definition)
4500 {
4501 h->ref_regular = 1;
4502 if (bind != STB_WEAK)
4503 h->ref_regular_nonweak = 1;
4504 }
4505 else
4506 {
4507 h->def_regular = 1;
4508 if (h->def_dynamic)
4509 {
4510 h->def_dynamic = 0;
4511 h->ref_dynamic = 1;
4512 }
4513 }
4514
4515 /* If the indirect symbol has been forced local, don't
4516 make the real symbol dynamic. */
4517 if ((h == hi || !hi->forced_local)
4518 && (bfd_link_dll (info)
4519 || h->def_dynamic
4520 || h->ref_dynamic))
4521 dynsym = TRUE;
4522 }
4523 else
4524 {
4525 if (! definition)
4526 {
4527 h->ref_dynamic = 1;
4528 hi->ref_dynamic = 1;
4529 }
4530 else
4531 {
4532 h->def_dynamic = 1;
4533 hi->def_dynamic = 1;
4534 }
4535
4536 /* If the indirect symbol has been forced local, don't
4537 make the real symbol dynamic. */
4538 if ((h == hi || !hi->forced_local)
4539 && (h->def_regular
4540 || h->ref_regular
4541 || (h->u.weakdef != NULL
4542 && ! new_weakdef
4543 && h->u.weakdef->dynindx != -1)))
4544 dynsym = TRUE;
4545 }
4546
4547 /* Check to see if we need to add an indirect symbol for
4548 the default name. */
4549 if (definition
4550 || (!override && h->root.type == bfd_link_hash_common))
4551 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4552 sec, value, &old_bfd, &dynsym))
4553 goto error_free_vers;
4554
4555 /* Check the alignment when a common symbol is involved. This
4556 can change when a common symbol is overridden by a normal
4557 definition or a common symbol is ignored due to the old
4558 normal definition. We need to make sure the maximum
4559 alignment is maintained. */
4560 if ((old_alignment || common)
4561 && h->root.type != bfd_link_hash_common)
4562 {
4563 unsigned int common_align;
4564 unsigned int normal_align;
4565 unsigned int symbol_align;
4566 bfd *normal_bfd;
4567 bfd *common_bfd;
4568
4569 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4570 || h->root.type == bfd_link_hash_defweak);
4571
4572 symbol_align = ffs (h->root.u.def.value) - 1;
4573 if (h->root.u.def.section->owner != NULL
4574 && (h->root.u.def.section->owner->flags
4575 & (DYNAMIC | BFD_PLUGIN)) == 0)
4576 {
4577 normal_align = h->root.u.def.section->alignment_power;
4578 if (normal_align > symbol_align)
4579 normal_align = symbol_align;
4580 }
4581 else
4582 normal_align = symbol_align;
4583
4584 if (old_alignment)
4585 {
4586 common_align = old_alignment;
4587 common_bfd = old_bfd;
4588 normal_bfd = abfd;
4589 }
4590 else
4591 {
4592 common_align = bfd_log2 (isym->st_value);
4593 common_bfd = abfd;
4594 normal_bfd = old_bfd;
4595 }
4596
4597 if (normal_align < common_align)
4598 {
4599 /* PR binutils/2735 */
4600 if (normal_bfd == NULL)
4601 _bfd_error_handler
4602 (_("Warning: alignment %u of common symbol `%s' in %B is"
4603 " greater than the alignment (%u) of its section %A"),
4604 common_bfd, h->root.u.def.section,
4605 1 << common_align, name, 1 << normal_align);
4606 else
4607 _bfd_error_handler
4608 (_("Warning: alignment %u of symbol `%s' in %B"
4609 " is smaller than %u in %B"),
4610 normal_bfd, common_bfd,
4611 1 << normal_align, name, 1 << common_align);
4612 }
4613 }
4614
4615 /* Remember the symbol size if it isn't undefined. */
4616 if (isym->st_size != 0
4617 && isym->st_shndx != SHN_UNDEF
4618 && (definition || h->size == 0))
4619 {
4620 if (h->size != 0
4621 && h->size != isym->st_size
4622 && ! size_change_ok)
4623 _bfd_error_handler
4624 (_("Warning: size of symbol `%s' changed"
4625 " from %lu in %B to %lu in %B"),
4626 old_bfd, abfd,
4627 name, (unsigned long) h->size,
4628 (unsigned long) isym->st_size);
4629
4630 h->size = isym->st_size;
4631 }
4632
4633 /* If this is a common symbol, then we always want H->SIZE
4634 to be the size of the common symbol. The code just above
4635 won't fix the size if a common symbol becomes larger. We
4636 don't warn about a size change here, because that is
4637 covered by --warn-common. Allow changes between different
4638 function types. */
4639 if (h->root.type == bfd_link_hash_common)
4640 h->size = h->root.u.c.size;
4641
4642 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4643 && ((definition && !new_weak)
4644 || (old_weak && h->root.type == bfd_link_hash_common)
4645 || h->type == STT_NOTYPE))
4646 {
4647 unsigned int type = ELF_ST_TYPE (isym->st_info);
4648
4649 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4650 symbol. */
4651 if (type == STT_GNU_IFUNC
4652 && (abfd->flags & DYNAMIC) != 0)
4653 type = STT_FUNC;
4654
4655 if (h->type != type)
4656 {
4657 if (h->type != STT_NOTYPE && ! type_change_ok)
4658 _bfd_error_handler
4659 (_("Warning: type of symbol `%s' changed"
4660 " from %d to %d in %B"),
4661 abfd, name, h->type, type);
4662
4663 h->type = type;
4664 }
4665 }
4666
4667 /* Merge st_other field. */
4668 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4669
4670 /* We don't want to make debug symbol dynamic. */
4671 if (definition
4672 && (sec->flags & SEC_DEBUGGING)
4673 && !bfd_link_relocatable (info))
4674 dynsym = FALSE;
4675
4676 /* Nor should we make plugin symbols dynamic. */
4677 if ((abfd->flags & BFD_PLUGIN) != 0)
4678 dynsym = FALSE;
4679
4680 if (definition)
4681 {
4682 h->target_internal = isym->st_target_internal;
4683 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4684 }
4685
4686 if (definition && !dynamic)
4687 {
4688 char *p = strchr (name, ELF_VER_CHR);
4689 if (p != NULL && p[1] != ELF_VER_CHR)
4690 {
4691 /* Queue non-default versions so that .symver x, x@FOO
4692 aliases can be checked. */
4693 if (!nondeflt_vers)
4694 {
4695 amt = ((isymend - isym + 1)
4696 * sizeof (struct elf_link_hash_entry *));
4697 nondeflt_vers
4698 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4699 if (!nondeflt_vers)
4700 goto error_free_vers;
4701 }
4702 nondeflt_vers[nondeflt_vers_cnt++] = h;
4703 }
4704 }
4705
4706 if (dynsym && h->dynindx == -1)
4707 {
4708 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4709 goto error_free_vers;
4710 if (h->u.weakdef != NULL
4711 && ! new_weakdef
4712 && h->u.weakdef->dynindx == -1)
4713 {
4714 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4715 goto error_free_vers;
4716 }
4717 }
4718 else if (h->dynindx != -1)
4719 /* If the symbol already has a dynamic index, but
4720 visibility says it should not be visible, turn it into
4721 a local symbol. */
4722 switch (ELF_ST_VISIBILITY (h->other))
4723 {
4724 case STV_INTERNAL:
4725 case STV_HIDDEN:
4726 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4727 dynsym = FALSE;
4728 break;
4729 }
4730
4731 /* Don't add DT_NEEDED for references from the dummy bfd nor
4732 for unmatched symbol. */
4733 if (!add_needed
4734 && matched
4735 && definition
4736 && ((dynsym
4737 && h->ref_regular_nonweak
4738 && (old_bfd == NULL
4739 || (old_bfd->flags & BFD_PLUGIN) == 0))
4740 || (h->ref_dynamic_nonweak
4741 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4742 && !on_needed_list (elf_dt_name (abfd),
4743 htab->needed, NULL))))
4744 {
4745 int ret;
4746 const char *soname = elf_dt_name (abfd);
4747
4748 info->callbacks->minfo ("%!", soname, old_bfd,
4749 h->root.root.string);
4750
4751 /* A symbol from a library loaded via DT_NEEDED of some
4752 other library is referenced by a regular object.
4753 Add a DT_NEEDED entry for it. Issue an error if
4754 --no-add-needed is used and the reference was not
4755 a weak one. */
4756 if (old_bfd != NULL
4757 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4758 {
4759 _bfd_error_handler
4760 (_("%B: undefined reference to symbol '%s'"),
4761 old_bfd, name);
4762 bfd_set_error (bfd_error_missing_dso);
4763 goto error_free_vers;
4764 }
4765
4766 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4767 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4768
4769 add_needed = TRUE;
4770 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4771 if (ret < 0)
4772 goto error_free_vers;
4773
4774 BFD_ASSERT (ret == 0);
4775 }
4776 }
4777 }
4778
4779 if (extversym != NULL)
4780 {
4781 free (extversym);
4782 extversym = NULL;
4783 }
4784
4785 if (isymbuf != NULL)
4786 {
4787 free (isymbuf);
4788 isymbuf = NULL;
4789 }
4790
4791 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4792 {
4793 unsigned int i;
4794
4795 /* Restore the symbol table. */
4796 old_ent = (char *) old_tab + tabsize;
4797 memset (elf_sym_hashes (abfd), 0,
4798 extsymcount * sizeof (struct elf_link_hash_entry *));
4799 htab->root.table.table = old_table;
4800 htab->root.table.size = old_size;
4801 htab->root.table.count = old_count;
4802 memcpy (htab->root.table.table, old_tab, tabsize);
4803 htab->root.undefs = old_undefs;
4804 htab->root.undefs_tail = old_undefs_tail;
4805 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4806 free (old_strtab);
4807 old_strtab = NULL;
4808 for (i = 0; i < htab->root.table.size; i++)
4809 {
4810 struct bfd_hash_entry *p;
4811 struct elf_link_hash_entry *h;
4812 bfd_size_type size;
4813 unsigned int alignment_power;
4814
4815 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4816 {
4817 h = (struct elf_link_hash_entry *) p;
4818 if (h->root.type == bfd_link_hash_warning)
4819 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4820
4821 /* Preserve the maximum alignment and size for common
4822 symbols even if this dynamic lib isn't on DT_NEEDED
4823 since it can still be loaded at run time by another
4824 dynamic lib. */
4825 if (h->root.type == bfd_link_hash_common)
4826 {
4827 size = h->root.u.c.size;
4828 alignment_power = h->root.u.c.p->alignment_power;
4829 }
4830 else
4831 {
4832 size = 0;
4833 alignment_power = 0;
4834 }
4835 memcpy (p, old_ent, htab->root.table.entsize);
4836 old_ent = (char *) old_ent + htab->root.table.entsize;
4837 h = (struct elf_link_hash_entry *) p;
4838 if (h->root.type == bfd_link_hash_warning)
4839 {
4840 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4841 old_ent = (char *) old_ent + htab->root.table.entsize;
4842 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4843 }
4844 if (h->root.type == bfd_link_hash_common)
4845 {
4846 if (size > h->root.u.c.size)
4847 h->root.u.c.size = size;
4848 if (alignment_power > h->root.u.c.p->alignment_power)
4849 h->root.u.c.p->alignment_power = alignment_power;
4850 }
4851 }
4852 }
4853
4854 /* Make a special call to the linker "notice" function to
4855 tell it that symbols added for crefs may need to be removed. */
4856 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4857 goto error_free_vers;
4858
4859 free (old_tab);
4860 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4861 alloc_mark);
4862 if (nondeflt_vers != NULL)
4863 free (nondeflt_vers);
4864 return TRUE;
4865 }
4866
4867 if (old_tab != NULL)
4868 {
4869 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4870 goto error_free_vers;
4871 free (old_tab);
4872 old_tab = NULL;
4873 }
4874
4875 /* Now that all the symbols from this input file are created, if
4876 not performing a relocatable link, handle .symver foo, foo@BAR
4877 such that any relocs against foo become foo@BAR. */
4878 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4879 {
4880 size_t cnt, symidx;
4881
4882 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4883 {
4884 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4885 char *shortname, *p;
4886
4887 p = strchr (h->root.root.string, ELF_VER_CHR);
4888 if (p == NULL
4889 || (h->root.type != bfd_link_hash_defined
4890 && h->root.type != bfd_link_hash_defweak))
4891 continue;
4892
4893 amt = p - h->root.root.string;
4894 shortname = (char *) bfd_malloc (amt + 1);
4895 if (!shortname)
4896 goto error_free_vers;
4897 memcpy (shortname, h->root.root.string, amt);
4898 shortname[amt] = '\0';
4899
4900 hi = (struct elf_link_hash_entry *)
4901 bfd_link_hash_lookup (&htab->root, shortname,
4902 FALSE, FALSE, FALSE);
4903 if (hi != NULL
4904 && hi->root.type == h->root.type
4905 && hi->root.u.def.value == h->root.u.def.value
4906 && hi->root.u.def.section == h->root.u.def.section)
4907 {
4908 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4909 hi->root.type = bfd_link_hash_indirect;
4910 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4911 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4912 sym_hash = elf_sym_hashes (abfd);
4913 if (sym_hash)
4914 for (symidx = 0; symidx < extsymcount; ++symidx)
4915 if (sym_hash[symidx] == hi)
4916 {
4917 sym_hash[symidx] = h;
4918 break;
4919 }
4920 }
4921 free (shortname);
4922 }
4923 free (nondeflt_vers);
4924 nondeflt_vers = NULL;
4925 }
4926
4927 /* Now set the weakdefs field correctly for all the weak defined
4928 symbols we found. The only way to do this is to search all the
4929 symbols. Since we only need the information for non functions in
4930 dynamic objects, that's the only time we actually put anything on
4931 the list WEAKS. We need this information so that if a regular
4932 object refers to a symbol defined weakly in a dynamic object, the
4933 real symbol in the dynamic object is also put in the dynamic
4934 symbols; we also must arrange for both symbols to point to the
4935 same memory location. We could handle the general case of symbol
4936 aliasing, but a general symbol alias can only be generated in
4937 assembler code, handling it correctly would be very time
4938 consuming, and other ELF linkers don't handle general aliasing
4939 either. */
4940 if (weaks != NULL)
4941 {
4942 struct elf_link_hash_entry **hpp;
4943 struct elf_link_hash_entry **hppend;
4944 struct elf_link_hash_entry **sorted_sym_hash;
4945 struct elf_link_hash_entry *h;
4946 size_t sym_count;
4947
4948 /* Since we have to search the whole symbol list for each weak
4949 defined symbol, search time for N weak defined symbols will be
4950 O(N^2). Binary search will cut it down to O(NlogN). */
4951 amt = extsymcount;
4952 amt *= sizeof (struct elf_link_hash_entry *);
4953 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4954 if (sorted_sym_hash == NULL)
4955 goto error_return;
4956 sym_hash = sorted_sym_hash;
4957 hpp = elf_sym_hashes (abfd);
4958 hppend = hpp + extsymcount;
4959 sym_count = 0;
4960 for (; hpp < hppend; hpp++)
4961 {
4962 h = *hpp;
4963 if (h != NULL
4964 && h->root.type == bfd_link_hash_defined
4965 && !bed->is_function_type (h->type))
4966 {
4967 *sym_hash = h;
4968 sym_hash++;
4969 sym_count++;
4970 }
4971 }
4972
4973 qsort (sorted_sym_hash, sym_count,
4974 sizeof (struct elf_link_hash_entry *),
4975 elf_sort_symbol);
4976
4977 while (weaks != NULL)
4978 {
4979 struct elf_link_hash_entry *hlook;
4980 asection *slook;
4981 bfd_vma vlook;
4982 size_t i, j, idx = 0;
4983
4984 hlook = weaks;
4985 weaks = hlook->u.weakdef;
4986 hlook->u.weakdef = NULL;
4987
4988 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4989 || hlook->root.type == bfd_link_hash_defweak
4990 || hlook->root.type == bfd_link_hash_common
4991 || hlook->root.type == bfd_link_hash_indirect);
4992 slook = hlook->root.u.def.section;
4993 vlook = hlook->root.u.def.value;
4994
4995 i = 0;
4996 j = sym_count;
4997 while (i != j)
4998 {
4999 bfd_signed_vma vdiff;
5000 idx = (i + j) / 2;
5001 h = sorted_sym_hash[idx];
5002 vdiff = vlook - h->root.u.def.value;
5003 if (vdiff < 0)
5004 j = idx;
5005 else if (vdiff > 0)
5006 i = idx + 1;
5007 else
5008 {
5009 int sdiff = slook->id - h->root.u.def.section->id;
5010 if (sdiff < 0)
5011 j = idx;
5012 else if (sdiff > 0)
5013 i = idx + 1;
5014 else
5015 break;
5016 }
5017 }
5018
5019 /* We didn't find a value/section match. */
5020 if (i == j)
5021 continue;
5022
5023 /* With multiple aliases, or when the weak symbol is already
5024 strongly defined, we have multiple matching symbols and
5025 the binary search above may land on any of them. Step
5026 one past the matching symbol(s). */
5027 while (++idx != j)
5028 {
5029 h = sorted_sym_hash[idx];
5030 if (h->root.u.def.section != slook
5031 || h->root.u.def.value != vlook)
5032 break;
5033 }
5034
5035 /* Now look back over the aliases. Since we sorted by size
5036 as well as value and section, we'll choose the one with
5037 the largest size. */
5038 while (idx-- != i)
5039 {
5040 h = sorted_sym_hash[idx];
5041
5042 /* Stop if value or section doesn't match. */
5043 if (h->root.u.def.section != slook
5044 || h->root.u.def.value != vlook)
5045 break;
5046 else if (h != hlook)
5047 {
5048 hlook->u.weakdef = h;
5049
5050 /* If the weak definition is in the list of dynamic
5051 symbols, make sure the real definition is put
5052 there as well. */
5053 if (hlook->dynindx != -1 && h->dynindx == -1)
5054 {
5055 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5056 {
5057 err_free_sym_hash:
5058 free (sorted_sym_hash);
5059 goto error_return;
5060 }
5061 }
5062
5063 /* If the real definition is in the list of dynamic
5064 symbols, make sure the weak definition is put
5065 there as well. If we don't do this, then the
5066 dynamic loader might not merge the entries for the
5067 real definition and the weak definition. */
5068 if (h->dynindx != -1 && hlook->dynindx == -1)
5069 {
5070 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5071 goto err_free_sym_hash;
5072 }
5073 break;
5074 }
5075 }
5076 }
5077
5078 free (sorted_sym_hash);
5079 }
5080
5081 if (bed->check_directives
5082 && !(*bed->check_directives) (abfd, info))
5083 return FALSE;
5084
5085 if (!info->check_relocs_after_open_input
5086 && !_bfd_elf_link_check_relocs (abfd, info))
5087 return FALSE;
5088
5089 /* If this is a non-traditional link, try to optimize the handling
5090 of the .stab/.stabstr sections. */
5091 if (! dynamic
5092 && ! info->traditional_format
5093 && is_elf_hash_table (htab)
5094 && (info->strip != strip_all && info->strip != strip_debugger))
5095 {
5096 asection *stabstr;
5097
5098 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5099 if (stabstr != NULL)
5100 {
5101 bfd_size_type string_offset = 0;
5102 asection *stab;
5103
5104 for (stab = abfd->sections; stab; stab = stab->next)
5105 if (CONST_STRNEQ (stab->name, ".stab")
5106 && (!stab->name[5] ||
5107 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5108 && (stab->flags & SEC_MERGE) == 0
5109 && !bfd_is_abs_section (stab->output_section))
5110 {
5111 struct bfd_elf_section_data *secdata;
5112
5113 secdata = elf_section_data (stab);
5114 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5115 stabstr, &secdata->sec_info,
5116 &string_offset))
5117 goto error_return;
5118 if (secdata->sec_info)
5119 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5120 }
5121 }
5122 }
5123
5124 if (is_elf_hash_table (htab) && add_needed)
5125 {
5126 /* Add this bfd to the loaded list. */
5127 struct elf_link_loaded_list *n;
5128
5129 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5130 if (n == NULL)
5131 goto error_return;
5132 n->abfd = abfd;
5133 n->next = htab->loaded;
5134 htab->loaded = n;
5135 }
5136
5137 return TRUE;
5138
5139 error_free_vers:
5140 if (old_tab != NULL)
5141 free (old_tab);
5142 if (old_strtab != NULL)
5143 free (old_strtab);
5144 if (nondeflt_vers != NULL)
5145 free (nondeflt_vers);
5146 if (extversym != NULL)
5147 free (extversym);
5148 error_free_sym:
5149 if (isymbuf != NULL)
5150 free (isymbuf);
5151 error_return:
5152 return FALSE;
5153 }
5154
5155 /* Return the linker hash table entry of a symbol that might be
5156 satisfied by an archive symbol. Return -1 on error. */
5157
5158 struct elf_link_hash_entry *
5159 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5160 struct bfd_link_info *info,
5161 const char *name)
5162 {
5163 struct elf_link_hash_entry *h;
5164 char *p, *copy;
5165 size_t len, first;
5166
5167 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5168 if (h != NULL)
5169 return h;
5170
5171 /* If this is a default version (the name contains @@), look up the
5172 symbol again with only one `@' as well as without the version.
5173 The effect is that references to the symbol with and without the
5174 version will be matched by the default symbol in the archive. */
5175
5176 p = strchr (name, ELF_VER_CHR);
5177 if (p == NULL || p[1] != ELF_VER_CHR)
5178 return h;
5179
5180 /* First check with only one `@'. */
5181 len = strlen (name);
5182 copy = (char *) bfd_alloc (abfd, len);
5183 if (copy == NULL)
5184 return (struct elf_link_hash_entry *) 0 - 1;
5185
5186 first = p - name + 1;
5187 memcpy (copy, name, first);
5188 memcpy (copy + first, name + first + 1, len - first);
5189
5190 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5191 if (h == NULL)
5192 {
5193 /* We also need to check references to the symbol without the
5194 version. */
5195 copy[first - 1] = '\0';
5196 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5197 FALSE, FALSE, TRUE);
5198 }
5199
5200 bfd_release (abfd, copy);
5201 return h;
5202 }
5203
5204 /* Add symbols from an ELF archive file to the linker hash table. We
5205 don't use _bfd_generic_link_add_archive_symbols because we need to
5206 handle versioned symbols.
5207
5208 Fortunately, ELF archive handling is simpler than that done by
5209 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5210 oddities. In ELF, if we find a symbol in the archive map, and the
5211 symbol is currently undefined, we know that we must pull in that
5212 object file.
5213
5214 Unfortunately, we do have to make multiple passes over the symbol
5215 table until nothing further is resolved. */
5216
5217 static bfd_boolean
5218 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5219 {
5220 symindex c;
5221 unsigned char *included = NULL;
5222 carsym *symdefs;
5223 bfd_boolean loop;
5224 bfd_size_type amt;
5225 const struct elf_backend_data *bed;
5226 struct elf_link_hash_entry * (*archive_symbol_lookup)
5227 (bfd *, struct bfd_link_info *, const char *);
5228
5229 if (! bfd_has_map (abfd))
5230 {
5231 /* An empty archive is a special case. */
5232 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5233 return TRUE;
5234 bfd_set_error (bfd_error_no_armap);
5235 return FALSE;
5236 }
5237
5238 /* Keep track of all symbols we know to be already defined, and all
5239 files we know to be already included. This is to speed up the
5240 second and subsequent passes. */
5241 c = bfd_ardata (abfd)->symdef_count;
5242 if (c == 0)
5243 return TRUE;
5244 amt = c;
5245 amt *= sizeof (*included);
5246 included = (unsigned char *) bfd_zmalloc (amt);
5247 if (included == NULL)
5248 return FALSE;
5249
5250 symdefs = bfd_ardata (abfd)->symdefs;
5251 bed = get_elf_backend_data (abfd);
5252 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5253
5254 do
5255 {
5256 file_ptr last;
5257 symindex i;
5258 carsym *symdef;
5259 carsym *symdefend;
5260
5261 loop = FALSE;
5262 last = -1;
5263
5264 symdef = symdefs;
5265 symdefend = symdef + c;
5266 for (i = 0; symdef < symdefend; symdef++, i++)
5267 {
5268 struct elf_link_hash_entry *h;
5269 bfd *element;
5270 struct bfd_link_hash_entry *undefs_tail;
5271 symindex mark;
5272
5273 if (included[i])
5274 continue;
5275 if (symdef->file_offset == last)
5276 {
5277 included[i] = TRUE;
5278 continue;
5279 }
5280
5281 h = archive_symbol_lookup (abfd, info, symdef->name);
5282 if (h == (struct elf_link_hash_entry *) 0 - 1)
5283 goto error_return;
5284
5285 if (h == NULL)
5286 continue;
5287
5288 if (h->root.type == bfd_link_hash_common)
5289 {
5290 /* We currently have a common symbol. The archive map contains
5291 a reference to this symbol, so we may want to include it. We
5292 only want to include it however, if this archive element
5293 contains a definition of the symbol, not just another common
5294 declaration of it.
5295
5296 Unfortunately some archivers (including GNU ar) will put
5297 declarations of common symbols into their archive maps, as
5298 well as real definitions, so we cannot just go by the archive
5299 map alone. Instead we must read in the element's symbol
5300 table and check that to see what kind of symbol definition
5301 this is. */
5302 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5303 continue;
5304 }
5305 else if (h->root.type != bfd_link_hash_undefined)
5306 {
5307 if (h->root.type != bfd_link_hash_undefweak)
5308 /* Symbol must be defined. Don't check it again. */
5309 included[i] = TRUE;
5310 continue;
5311 }
5312
5313 /* We need to include this archive member. */
5314 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5315 if (element == NULL)
5316 goto error_return;
5317
5318 if (! bfd_check_format (element, bfd_object))
5319 goto error_return;
5320
5321 undefs_tail = info->hash->undefs_tail;
5322
5323 if (!(*info->callbacks
5324 ->add_archive_element) (info, element, symdef->name, &element))
5325 continue;
5326 if (!bfd_link_add_symbols (element, info))
5327 goto error_return;
5328
5329 /* If there are any new undefined symbols, we need to make
5330 another pass through the archive in order to see whether
5331 they can be defined. FIXME: This isn't perfect, because
5332 common symbols wind up on undefs_tail and because an
5333 undefined symbol which is defined later on in this pass
5334 does not require another pass. This isn't a bug, but it
5335 does make the code less efficient than it could be. */
5336 if (undefs_tail != info->hash->undefs_tail)
5337 loop = TRUE;
5338
5339 /* Look backward to mark all symbols from this object file
5340 which we have already seen in this pass. */
5341 mark = i;
5342 do
5343 {
5344 included[mark] = TRUE;
5345 if (mark == 0)
5346 break;
5347 --mark;
5348 }
5349 while (symdefs[mark].file_offset == symdef->file_offset);
5350
5351 /* We mark subsequent symbols from this object file as we go
5352 on through the loop. */
5353 last = symdef->file_offset;
5354 }
5355 }
5356 while (loop);
5357
5358 free (included);
5359
5360 return TRUE;
5361
5362 error_return:
5363 if (included != NULL)
5364 free (included);
5365 return FALSE;
5366 }
5367
5368 /* Given an ELF BFD, add symbols to the global hash table as
5369 appropriate. */
5370
5371 bfd_boolean
5372 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5373 {
5374 switch (bfd_get_format (abfd))
5375 {
5376 case bfd_object:
5377 return elf_link_add_object_symbols (abfd, info);
5378 case bfd_archive:
5379 return elf_link_add_archive_symbols (abfd, info);
5380 default:
5381 bfd_set_error (bfd_error_wrong_format);
5382 return FALSE;
5383 }
5384 }
5385 \f
5386 struct hash_codes_info
5387 {
5388 unsigned long *hashcodes;
5389 bfd_boolean error;
5390 };
5391
5392 /* This function will be called though elf_link_hash_traverse to store
5393 all hash value of the exported symbols in an array. */
5394
5395 static bfd_boolean
5396 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5397 {
5398 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5399 const char *name;
5400 unsigned long ha;
5401 char *alc = NULL;
5402
5403 /* Ignore indirect symbols. These are added by the versioning code. */
5404 if (h->dynindx == -1)
5405 return TRUE;
5406
5407 name = h->root.root.string;
5408 if (h->versioned >= versioned)
5409 {
5410 char *p = strchr (name, ELF_VER_CHR);
5411 if (p != NULL)
5412 {
5413 alc = (char *) bfd_malloc (p - name + 1);
5414 if (alc == NULL)
5415 {
5416 inf->error = TRUE;
5417 return FALSE;
5418 }
5419 memcpy (alc, name, p - name);
5420 alc[p - name] = '\0';
5421 name = alc;
5422 }
5423 }
5424
5425 /* Compute the hash value. */
5426 ha = bfd_elf_hash (name);
5427
5428 /* Store the found hash value in the array given as the argument. */
5429 *(inf->hashcodes)++ = ha;
5430
5431 /* And store it in the struct so that we can put it in the hash table
5432 later. */
5433 h->u.elf_hash_value = ha;
5434
5435 if (alc != NULL)
5436 free (alc);
5437
5438 return TRUE;
5439 }
5440
5441 struct collect_gnu_hash_codes
5442 {
5443 bfd *output_bfd;
5444 const struct elf_backend_data *bed;
5445 unsigned long int nsyms;
5446 unsigned long int maskbits;
5447 unsigned long int *hashcodes;
5448 unsigned long int *hashval;
5449 unsigned long int *indx;
5450 unsigned long int *counts;
5451 bfd_vma *bitmask;
5452 bfd_byte *contents;
5453 long int min_dynindx;
5454 unsigned long int bucketcount;
5455 unsigned long int symindx;
5456 long int local_indx;
5457 long int shift1, shift2;
5458 unsigned long int mask;
5459 bfd_boolean error;
5460 };
5461
5462 /* This function will be called though elf_link_hash_traverse to store
5463 all hash value of the exported symbols in an array. */
5464
5465 static bfd_boolean
5466 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5467 {
5468 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5469 const char *name;
5470 unsigned long ha;
5471 char *alc = NULL;
5472
5473 /* Ignore indirect symbols. These are added by the versioning code. */
5474 if (h->dynindx == -1)
5475 return TRUE;
5476
5477 /* Ignore also local symbols and undefined symbols. */
5478 if (! (*s->bed->elf_hash_symbol) (h))
5479 return TRUE;
5480
5481 name = h->root.root.string;
5482 if (h->versioned >= versioned)
5483 {
5484 char *p = strchr (name, ELF_VER_CHR);
5485 if (p != NULL)
5486 {
5487 alc = (char *) bfd_malloc (p - name + 1);
5488 if (alc == NULL)
5489 {
5490 s->error = TRUE;
5491 return FALSE;
5492 }
5493 memcpy (alc, name, p - name);
5494 alc[p - name] = '\0';
5495 name = alc;
5496 }
5497 }
5498
5499 /* Compute the hash value. */
5500 ha = bfd_elf_gnu_hash (name);
5501
5502 /* Store the found hash value in the array for compute_bucket_count,
5503 and also for .dynsym reordering purposes. */
5504 s->hashcodes[s->nsyms] = ha;
5505 s->hashval[h->dynindx] = ha;
5506 ++s->nsyms;
5507 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5508 s->min_dynindx = h->dynindx;
5509
5510 if (alc != NULL)
5511 free (alc);
5512
5513 return TRUE;
5514 }
5515
5516 /* This function will be called though elf_link_hash_traverse to do
5517 final dynaminc symbol renumbering. */
5518
5519 static bfd_boolean
5520 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5521 {
5522 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5523 unsigned long int bucket;
5524 unsigned long int val;
5525
5526 /* Ignore indirect symbols. */
5527 if (h->dynindx == -1)
5528 return TRUE;
5529
5530 /* Ignore also local symbols and undefined symbols. */
5531 if (! (*s->bed->elf_hash_symbol) (h))
5532 {
5533 if (h->dynindx >= s->min_dynindx)
5534 h->dynindx = s->local_indx++;
5535 return TRUE;
5536 }
5537
5538 bucket = s->hashval[h->dynindx] % s->bucketcount;
5539 val = (s->hashval[h->dynindx] >> s->shift1)
5540 & ((s->maskbits >> s->shift1) - 1);
5541 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5542 s->bitmask[val]
5543 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5544 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5545 if (s->counts[bucket] == 1)
5546 /* Last element terminates the chain. */
5547 val |= 1;
5548 bfd_put_32 (s->output_bfd, val,
5549 s->contents + (s->indx[bucket] - s->symindx) * 4);
5550 --s->counts[bucket];
5551 h->dynindx = s->indx[bucket]++;
5552 return TRUE;
5553 }
5554
5555 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5556
5557 bfd_boolean
5558 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5559 {
5560 return !(h->forced_local
5561 || h->root.type == bfd_link_hash_undefined
5562 || h->root.type == bfd_link_hash_undefweak
5563 || ((h->root.type == bfd_link_hash_defined
5564 || h->root.type == bfd_link_hash_defweak)
5565 && h->root.u.def.section->output_section == NULL));
5566 }
5567
5568 /* Array used to determine the number of hash table buckets to use
5569 based on the number of symbols there are. If there are fewer than
5570 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5571 fewer than 37 we use 17 buckets, and so forth. We never use more
5572 than 32771 buckets. */
5573
5574 static const size_t elf_buckets[] =
5575 {
5576 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5577 16411, 32771, 0
5578 };
5579
5580 /* Compute bucket count for hashing table. We do not use a static set
5581 of possible tables sizes anymore. Instead we determine for all
5582 possible reasonable sizes of the table the outcome (i.e., the
5583 number of collisions etc) and choose the best solution. The
5584 weighting functions are not too simple to allow the table to grow
5585 without bounds. Instead one of the weighting factors is the size.
5586 Therefore the result is always a good payoff between few collisions
5587 (= short chain lengths) and table size. */
5588 static size_t
5589 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5590 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5591 unsigned long int nsyms,
5592 int gnu_hash)
5593 {
5594 size_t best_size = 0;
5595 unsigned long int i;
5596
5597 /* We have a problem here. The following code to optimize the table
5598 size requires an integer type with more the 32 bits. If
5599 BFD_HOST_U_64_BIT is set we know about such a type. */
5600 #ifdef BFD_HOST_U_64_BIT
5601 if (info->optimize)
5602 {
5603 size_t minsize;
5604 size_t maxsize;
5605 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5606 bfd *dynobj = elf_hash_table (info)->dynobj;
5607 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5608 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5609 unsigned long int *counts;
5610 bfd_size_type amt;
5611 unsigned int no_improvement_count = 0;
5612
5613 /* Possible optimization parameters: if we have NSYMS symbols we say
5614 that the hashing table must at least have NSYMS/4 and at most
5615 2*NSYMS buckets. */
5616 minsize = nsyms / 4;
5617 if (minsize == 0)
5618 minsize = 1;
5619 best_size = maxsize = nsyms * 2;
5620 if (gnu_hash)
5621 {
5622 if (minsize < 2)
5623 minsize = 2;
5624 if ((best_size & 31) == 0)
5625 ++best_size;
5626 }
5627
5628 /* Create array where we count the collisions in. We must use bfd_malloc
5629 since the size could be large. */
5630 amt = maxsize;
5631 amt *= sizeof (unsigned long int);
5632 counts = (unsigned long int *) bfd_malloc (amt);
5633 if (counts == NULL)
5634 return 0;
5635
5636 /* Compute the "optimal" size for the hash table. The criteria is a
5637 minimal chain length. The minor criteria is (of course) the size
5638 of the table. */
5639 for (i = minsize; i < maxsize; ++i)
5640 {
5641 /* Walk through the array of hashcodes and count the collisions. */
5642 BFD_HOST_U_64_BIT max;
5643 unsigned long int j;
5644 unsigned long int fact;
5645
5646 if (gnu_hash && (i & 31) == 0)
5647 continue;
5648
5649 memset (counts, '\0', i * sizeof (unsigned long int));
5650
5651 /* Determine how often each hash bucket is used. */
5652 for (j = 0; j < nsyms; ++j)
5653 ++counts[hashcodes[j] % i];
5654
5655 /* For the weight function we need some information about the
5656 pagesize on the target. This is information need not be 100%
5657 accurate. Since this information is not available (so far) we
5658 define it here to a reasonable default value. If it is crucial
5659 to have a better value some day simply define this value. */
5660 # ifndef BFD_TARGET_PAGESIZE
5661 # define BFD_TARGET_PAGESIZE (4096)
5662 # endif
5663
5664 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5665 and the chains. */
5666 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5667
5668 # if 1
5669 /* Variant 1: optimize for short chains. We add the squares
5670 of all the chain lengths (which favors many small chain
5671 over a few long chains). */
5672 for (j = 0; j < i; ++j)
5673 max += counts[j] * counts[j];
5674
5675 /* This adds penalties for the overall size of the table. */
5676 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5677 max *= fact * fact;
5678 # else
5679 /* Variant 2: Optimize a lot more for small table. Here we
5680 also add squares of the size but we also add penalties for
5681 empty slots (the +1 term). */
5682 for (j = 0; j < i; ++j)
5683 max += (1 + counts[j]) * (1 + counts[j]);
5684
5685 /* The overall size of the table is considered, but not as
5686 strong as in variant 1, where it is squared. */
5687 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5688 max *= fact;
5689 # endif
5690
5691 /* Compare with current best results. */
5692 if (max < best_chlen)
5693 {
5694 best_chlen = max;
5695 best_size = i;
5696 no_improvement_count = 0;
5697 }
5698 /* PR 11843: Avoid futile long searches for the best bucket size
5699 when there are a large number of symbols. */
5700 else if (++no_improvement_count == 100)
5701 break;
5702 }
5703
5704 free (counts);
5705 }
5706 else
5707 #endif /* defined (BFD_HOST_U_64_BIT) */
5708 {
5709 /* This is the fallback solution if no 64bit type is available or if we
5710 are not supposed to spend much time on optimizations. We select the
5711 bucket count using a fixed set of numbers. */
5712 for (i = 0; elf_buckets[i] != 0; i++)
5713 {
5714 best_size = elf_buckets[i];
5715 if (nsyms < elf_buckets[i + 1])
5716 break;
5717 }
5718 if (gnu_hash && best_size < 2)
5719 best_size = 2;
5720 }
5721
5722 return best_size;
5723 }
5724
5725 /* Size any SHT_GROUP section for ld -r. */
5726
5727 bfd_boolean
5728 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5729 {
5730 bfd *ibfd;
5731
5732 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5733 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5734 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5735 return FALSE;
5736 return TRUE;
5737 }
5738
5739 /* Set a default stack segment size. The value in INFO wins. If it
5740 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5741 undefined it is initialized. */
5742
5743 bfd_boolean
5744 bfd_elf_stack_segment_size (bfd *output_bfd,
5745 struct bfd_link_info *info,
5746 const char *legacy_symbol,
5747 bfd_vma default_size)
5748 {
5749 struct elf_link_hash_entry *h = NULL;
5750
5751 /* Look for legacy symbol. */
5752 if (legacy_symbol)
5753 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5754 FALSE, FALSE, FALSE);
5755 if (h && (h->root.type == bfd_link_hash_defined
5756 || h->root.type == bfd_link_hash_defweak)
5757 && h->def_regular
5758 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5759 {
5760 /* The symbol has no type if specified on the command line. */
5761 h->type = STT_OBJECT;
5762 if (info->stacksize)
5763 _bfd_error_handler (_("%B: stack size specified and %s set"),
5764 output_bfd, legacy_symbol);
5765 else if (h->root.u.def.section != bfd_abs_section_ptr)
5766 _bfd_error_handler (_("%B: %s not absolute"),
5767 output_bfd, legacy_symbol);
5768 else
5769 info->stacksize = h->root.u.def.value;
5770 }
5771
5772 if (!info->stacksize)
5773 /* If the user didn't set a size, or explicitly inhibit the
5774 size, set it now. */
5775 info->stacksize = default_size;
5776
5777 /* Provide the legacy symbol, if it is referenced. */
5778 if (h && (h->root.type == bfd_link_hash_undefined
5779 || h->root.type == bfd_link_hash_undefweak))
5780 {
5781 struct bfd_link_hash_entry *bh = NULL;
5782
5783 if (!(_bfd_generic_link_add_one_symbol
5784 (info, output_bfd, legacy_symbol,
5785 BSF_GLOBAL, bfd_abs_section_ptr,
5786 info->stacksize >= 0 ? info->stacksize : 0,
5787 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5788 return FALSE;
5789
5790 h = (struct elf_link_hash_entry *) bh;
5791 h->def_regular = 1;
5792 h->type = STT_OBJECT;
5793 }
5794
5795 return TRUE;
5796 }
5797
5798 /* Set up the sizes and contents of the ELF dynamic sections. This is
5799 called by the ELF linker emulation before_allocation routine. We
5800 must set the sizes of the sections before the linker sets the
5801 addresses of the various sections. */
5802
5803 bfd_boolean
5804 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5805 const char *soname,
5806 const char *rpath,
5807 const char *filter_shlib,
5808 const char *audit,
5809 const char *depaudit,
5810 const char * const *auxiliary_filters,
5811 struct bfd_link_info *info,
5812 asection **sinterpptr)
5813 {
5814 size_t soname_indx;
5815 bfd *dynobj;
5816 const struct elf_backend_data *bed;
5817 struct elf_info_failed asvinfo;
5818
5819 *sinterpptr = NULL;
5820
5821 soname_indx = (size_t) -1;
5822
5823 if (!is_elf_hash_table (info->hash))
5824 return TRUE;
5825
5826 bed = get_elf_backend_data (output_bfd);
5827
5828 /* Any syms created from now on start with -1 in
5829 got.refcount/offset and plt.refcount/offset. */
5830 elf_hash_table (info)->init_got_refcount
5831 = elf_hash_table (info)->init_got_offset;
5832 elf_hash_table (info)->init_plt_refcount
5833 = elf_hash_table (info)->init_plt_offset;
5834
5835 if (bfd_link_relocatable (info)
5836 && !_bfd_elf_size_group_sections (info))
5837 return FALSE;
5838
5839 /* The backend may have to create some sections regardless of whether
5840 we're dynamic or not. */
5841 if (bed->elf_backend_always_size_sections
5842 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5843 return FALSE;
5844
5845 /* Determine any GNU_STACK segment requirements, after the backend
5846 has had a chance to set a default segment size. */
5847 if (info->execstack)
5848 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5849 else if (info->noexecstack)
5850 elf_stack_flags (output_bfd) = PF_R | PF_W;
5851 else
5852 {
5853 bfd *inputobj;
5854 asection *notesec = NULL;
5855 int exec = 0;
5856
5857 for (inputobj = info->input_bfds;
5858 inputobj;
5859 inputobj = inputobj->link.next)
5860 {
5861 asection *s;
5862
5863 if (inputobj->flags
5864 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5865 continue;
5866 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5867 if (s)
5868 {
5869 if (s->flags & SEC_CODE)
5870 exec = PF_X;
5871 notesec = s;
5872 }
5873 else if (bed->default_execstack)
5874 exec = PF_X;
5875 }
5876 if (notesec || info->stacksize > 0)
5877 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5878 if (notesec && exec && bfd_link_relocatable (info)
5879 && notesec->output_section != bfd_abs_section_ptr)
5880 notesec->output_section->flags |= SEC_CODE;
5881 }
5882
5883 dynobj = elf_hash_table (info)->dynobj;
5884
5885 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5886 {
5887 struct elf_info_failed eif;
5888 struct elf_link_hash_entry *h;
5889 asection *dynstr;
5890 struct bfd_elf_version_tree *t;
5891 struct bfd_elf_version_expr *d;
5892 asection *s;
5893 bfd_boolean all_defined;
5894
5895 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5896 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
5897
5898 if (soname != NULL)
5899 {
5900 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5901 soname, TRUE);
5902 if (soname_indx == (size_t) -1
5903 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5904 return FALSE;
5905 }
5906
5907 if (info->symbolic)
5908 {
5909 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5910 return FALSE;
5911 info->flags |= DF_SYMBOLIC;
5912 }
5913
5914 if (rpath != NULL)
5915 {
5916 size_t indx;
5917 bfd_vma tag;
5918
5919 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5920 TRUE);
5921 if (indx == (size_t) -1)
5922 return FALSE;
5923
5924 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5925 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5926 return FALSE;
5927 }
5928
5929 if (filter_shlib != NULL)
5930 {
5931 size_t indx;
5932
5933 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5934 filter_shlib, TRUE);
5935 if (indx == (size_t) -1
5936 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5937 return FALSE;
5938 }
5939
5940 if (auxiliary_filters != NULL)
5941 {
5942 const char * const *p;
5943
5944 for (p = auxiliary_filters; *p != NULL; p++)
5945 {
5946 size_t indx;
5947
5948 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5949 *p, TRUE);
5950 if (indx == (size_t) -1
5951 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5952 return FALSE;
5953 }
5954 }
5955
5956 if (audit != NULL)
5957 {
5958 size_t indx;
5959
5960 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5961 TRUE);
5962 if (indx == (size_t) -1
5963 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5964 return FALSE;
5965 }
5966
5967 if (depaudit != NULL)
5968 {
5969 size_t indx;
5970
5971 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5972 TRUE);
5973 if (indx == (size_t) -1
5974 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5975 return FALSE;
5976 }
5977
5978 eif.info = info;
5979 eif.failed = FALSE;
5980
5981 /* If we are supposed to export all symbols into the dynamic symbol
5982 table (this is not the normal case), then do so. */
5983 if (info->export_dynamic
5984 || (bfd_link_executable (info) && info->dynamic))
5985 {
5986 elf_link_hash_traverse (elf_hash_table (info),
5987 _bfd_elf_export_symbol,
5988 &eif);
5989 if (eif.failed)
5990 return FALSE;
5991 }
5992
5993 /* Make all global versions with definition. */
5994 for (t = info->version_info; t != NULL; t = t->next)
5995 for (d = t->globals.list; d != NULL; d = d->next)
5996 if (!d->symver && d->literal)
5997 {
5998 const char *verstr, *name;
5999 size_t namelen, verlen, newlen;
6000 char *newname, *p, leading_char;
6001 struct elf_link_hash_entry *newh;
6002
6003 leading_char = bfd_get_symbol_leading_char (output_bfd);
6004 name = d->pattern;
6005 namelen = strlen (name) + (leading_char != '\0');
6006 verstr = t->name;
6007 verlen = strlen (verstr);
6008 newlen = namelen + verlen + 3;
6009
6010 newname = (char *) bfd_malloc (newlen);
6011 if (newname == NULL)
6012 return FALSE;
6013 newname[0] = leading_char;
6014 memcpy (newname + (leading_char != '\0'), name, namelen);
6015
6016 /* Check the hidden versioned definition. */
6017 p = newname + namelen;
6018 *p++ = ELF_VER_CHR;
6019 memcpy (p, verstr, verlen + 1);
6020 newh = elf_link_hash_lookup (elf_hash_table (info),
6021 newname, FALSE, FALSE,
6022 FALSE);
6023 if (newh == NULL
6024 || (newh->root.type != bfd_link_hash_defined
6025 && newh->root.type != bfd_link_hash_defweak))
6026 {
6027 /* Check the default versioned definition. */
6028 *p++ = ELF_VER_CHR;
6029 memcpy (p, verstr, verlen + 1);
6030 newh = elf_link_hash_lookup (elf_hash_table (info),
6031 newname, FALSE, FALSE,
6032 FALSE);
6033 }
6034 free (newname);
6035
6036 /* Mark this version if there is a definition and it is
6037 not defined in a shared object. */
6038 if (newh != NULL
6039 && !newh->def_dynamic
6040 && (newh->root.type == bfd_link_hash_defined
6041 || newh->root.type == bfd_link_hash_defweak))
6042 d->symver = 1;
6043 }
6044
6045 /* Attach all the symbols to their version information. */
6046 asvinfo.info = info;
6047 asvinfo.failed = FALSE;
6048
6049 elf_link_hash_traverse (elf_hash_table (info),
6050 _bfd_elf_link_assign_sym_version,
6051 &asvinfo);
6052 if (asvinfo.failed)
6053 return FALSE;
6054
6055 if (!info->allow_undefined_version)
6056 {
6057 /* Check if all global versions have a definition. */
6058 all_defined = TRUE;
6059 for (t = info->version_info; t != NULL; t = t->next)
6060 for (d = t->globals.list; d != NULL; d = d->next)
6061 if (d->literal && !d->symver && !d->script)
6062 {
6063 _bfd_error_handler
6064 (_("%s: undefined version: %s"),
6065 d->pattern, t->name);
6066 all_defined = FALSE;
6067 }
6068
6069 if (!all_defined)
6070 {
6071 bfd_set_error (bfd_error_bad_value);
6072 return FALSE;
6073 }
6074 }
6075
6076 /* Find all symbols which were defined in a dynamic object and make
6077 the backend pick a reasonable value for them. */
6078 elf_link_hash_traverse (elf_hash_table (info),
6079 _bfd_elf_adjust_dynamic_symbol,
6080 &eif);
6081 if (eif.failed)
6082 return FALSE;
6083
6084 /* Add some entries to the .dynamic section. We fill in some of the
6085 values later, in bfd_elf_final_link, but we must add the entries
6086 now so that we know the final size of the .dynamic section. */
6087
6088 /* If there are initialization and/or finalization functions to
6089 call then add the corresponding DT_INIT/DT_FINI entries. */
6090 h = (info->init_function
6091 ? elf_link_hash_lookup (elf_hash_table (info),
6092 info->init_function, FALSE,
6093 FALSE, FALSE)
6094 : NULL);
6095 if (h != NULL
6096 && (h->ref_regular
6097 || h->def_regular))
6098 {
6099 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6100 return FALSE;
6101 }
6102 h = (info->fini_function
6103 ? elf_link_hash_lookup (elf_hash_table (info),
6104 info->fini_function, FALSE,
6105 FALSE, FALSE)
6106 : NULL);
6107 if (h != NULL
6108 && (h->ref_regular
6109 || h->def_regular))
6110 {
6111 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6112 return FALSE;
6113 }
6114
6115 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6116 if (s != NULL && s->linker_has_input)
6117 {
6118 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6119 if (! bfd_link_executable (info))
6120 {
6121 bfd *sub;
6122 asection *o;
6123
6124 for (sub = info->input_bfds; sub != NULL;
6125 sub = sub->link.next)
6126 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6127 for (o = sub->sections; o != NULL; o = o->next)
6128 if (elf_section_data (o)->this_hdr.sh_type
6129 == SHT_PREINIT_ARRAY)
6130 {
6131 _bfd_error_handler
6132 (_("%B: .preinit_array section is not allowed in DSO"),
6133 sub);
6134 break;
6135 }
6136
6137 bfd_set_error (bfd_error_nonrepresentable_section);
6138 return FALSE;
6139 }
6140
6141 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6142 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6143 return FALSE;
6144 }
6145 s = bfd_get_section_by_name (output_bfd, ".init_array");
6146 if (s != NULL && s->linker_has_input)
6147 {
6148 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6149 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6150 return FALSE;
6151 }
6152 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6153 if (s != NULL && s->linker_has_input)
6154 {
6155 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6156 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6157 return FALSE;
6158 }
6159
6160 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6161 /* If .dynstr is excluded from the link, we don't want any of
6162 these tags. Strictly, we should be checking each section
6163 individually; This quick check covers for the case where
6164 someone does a /DISCARD/ : { *(*) }. */
6165 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6166 {
6167 bfd_size_type strsize;
6168
6169 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6170 if ((info->emit_hash
6171 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6172 || (info->emit_gnu_hash
6173 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6174 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6175 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6176 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6177 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6178 bed->s->sizeof_sym))
6179 return FALSE;
6180 }
6181 }
6182
6183 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6184 return FALSE;
6185
6186 /* The backend must work out the sizes of all the other dynamic
6187 sections. */
6188 if (dynobj != NULL
6189 && bed->elf_backend_size_dynamic_sections != NULL
6190 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6191 return FALSE;
6192
6193 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6194 {
6195 unsigned long section_sym_count;
6196 struct bfd_elf_version_tree *verdefs;
6197 asection *s;
6198
6199 /* Set up the version definition section. */
6200 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6201 BFD_ASSERT (s != NULL);
6202
6203 /* We may have created additional version definitions if we are
6204 just linking a regular application. */
6205 verdefs = info->version_info;
6206
6207 /* Skip anonymous version tag. */
6208 if (verdefs != NULL && verdefs->vernum == 0)
6209 verdefs = verdefs->next;
6210
6211 if (verdefs == NULL && !info->create_default_symver)
6212 s->flags |= SEC_EXCLUDE;
6213 else
6214 {
6215 unsigned int cdefs;
6216 bfd_size_type size;
6217 struct bfd_elf_version_tree *t;
6218 bfd_byte *p;
6219 Elf_Internal_Verdef def;
6220 Elf_Internal_Verdaux defaux;
6221 struct bfd_link_hash_entry *bh;
6222 struct elf_link_hash_entry *h;
6223 const char *name;
6224
6225 cdefs = 0;
6226 size = 0;
6227
6228 /* Make space for the base version. */
6229 size += sizeof (Elf_External_Verdef);
6230 size += sizeof (Elf_External_Verdaux);
6231 ++cdefs;
6232
6233 /* Make space for the default version. */
6234 if (info->create_default_symver)
6235 {
6236 size += sizeof (Elf_External_Verdef);
6237 ++cdefs;
6238 }
6239
6240 for (t = verdefs; t != NULL; t = t->next)
6241 {
6242 struct bfd_elf_version_deps *n;
6243
6244 /* Don't emit base version twice. */
6245 if (t->vernum == 0)
6246 continue;
6247
6248 size += sizeof (Elf_External_Verdef);
6249 size += sizeof (Elf_External_Verdaux);
6250 ++cdefs;
6251
6252 for (n = t->deps; n != NULL; n = n->next)
6253 size += sizeof (Elf_External_Verdaux);
6254 }
6255
6256 s->size = size;
6257 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6258 if (s->contents == NULL && s->size != 0)
6259 return FALSE;
6260
6261 /* Fill in the version definition section. */
6262
6263 p = s->contents;
6264
6265 def.vd_version = VER_DEF_CURRENT;
6266 def.vd_flags = VER_FLG_BASE;
6267 def.vd_ndx = 1;
6268 def.vd_cnt = 1;
6269 if (info->create_default_symver)
6270 {
6271 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6272 def.vd_next = sizeof (Elf_External_Verdef);
6273 }
6274 else
6275 {
6276 def.vd_aux = sizeof (Elf_External_Verdef);
6277 def.vd_next = (sizeof (Elf_External_Verdef)
6278 + sizeof (Elf_External_Verdaux));
6279 }
6280
6281 if (soname_indx != (size_t) -1)
6282 {
6283 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6284 soname_indx);
6285 def.vd_hash = bfd_elf_hash (soname);
6286 defaux.vda_name = soname_indx;
6287 name = soname;
6288 }
6289 else
6290 {
6291 size_t indx;
6292
6293 name = lbasename (output_bfd->filename);
6294 def.vd_hash = bfd_elf_hash (name);
6295 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6296 name, FALSE);
6297 if (indx == (size_t) -1)
6298 return FALSE;
6299 defaux.vda_name = indx;
6300 }
6301 defaux.vda_next = 0;
6302
6303 _bfd_elf_swap_verdef_out (output_bfd, &def,
6304 (Elf_External_Verdef *) p);
6305 p += sizeof (Elf_External_Verdef);
6306 if (info->create_default_symver)
6307 {
6308 /* Add a symbol representing this version. */
6309 bh = NULL;
6310 if (! (_bfd_generic_link_add_one_symbol
6311 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6312 0, NULL, FALSE,
6313 get_elf_backend_data (dynobj)->collect, &bh)))
6314 return FALSE;
6315 h = (struct elf_link_hash_entry *) bh;
6316 h->non_elf = 0;
6317 h->def_regular = 1;
6318 h->type = STT_OBJECT;
6319 h->verinfo.vertree = NULL;
6320
6321 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6322 return FALSE;
6323
6324 /* Create a duplicate of the base version with the same
6325 aux block, but different flags. */
6326 def.vd_flags = 0;
6327 def.vd_ndx = 2;
6328 def.vd_aux = sizeof (Elf_External_Verdef);
6329 if (verdefs)
6330 def.vd_next = (sizeof (Elf_External_Verdef)
6331 + sizeof (Elf_External_Verdaux));
6332 else
6333 def.vd_next = 0;
6334 _bfd_elf_swap_verdef_out (output_bfd, &def,
6335 (Elf_External_Verdef *) p);
6336 p += sizeof (Elf_External_Verdef);
6337 }
6338 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6339 (Elf_External_Verdaux *) p);
6340 p += sizeof (Elf_External_Verdaux);
6341
6342 for (t = verdefs; t != NULL; t = t->next)
6343 {
6344 unsigned int cdeps;
6345 struct bfd_elf_version_deps *n;
6346
6347 /* Don't emit the base version twice. */
6348 if (t->vernum == 0)
6349 continue;
6350
6351 cdeps = 0;
6352 for (n = t->deps; n != NULL; n = n->next)
6353 ++cdeps;
6354
6355 /* Add a symbol representing this version. */
6356 bh = NULL;
6357 if (! (_bfd_generic_link_add_one_symbol
6358 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6359 0, NULL, FALSE,
6360 get_elf_backend_data (dynobj)->collect, &bh)))
6361 return FALSE;
6362 h = (struct elf_link_hash_entry *) bh;
6363 h->non_elf = 0;
6364 h->def_regular = 1;
6365 h->type = STT_OBJECT;
6366 h->verinfo.vertree = t;
6367
6368 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6369 return FALSE;
6370
6371 def.vd_version = VER_DEF_CURRENT;
6372 def.vd_flags = 0;
6373 if (t->globals.list == NULL
6374 && t->locals.list == NULL
6375 && ! t->used)
6376 def.vd_flags |= VER_FLG_WEAK;
6377 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6378 def.vd_cnt = cdeps + 1;
6379 def.vd_hash = bfd_elf_hash (t->name);
6380 def.vd_aux = sizeof (Elf_External_Verdef);
6381 def.vd_next = 0;
6382
6383 /* If a basever node is next, it *must* be the last node in
6384 the chain, otherwise Verdef construction breaks. */
6385 if (t->next != NULL && t->next->vernum == 0)
6386 BFD_ASSERT (t->next->next == NULL);
6387
6388 if (t->next != NULL && t->next->vernum != 0)
6389 def.vd_next = (sizeof (Elf_External_Verdef)
6390 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6391
6392 _bfd_elf_swap_verdef_out (output_bfd, &def,
6393 (Elf_External_Verdef *) p);
6394 p += sizeof (Elf_External_Verdef);
6395
6396 defaux.vda_name = h->dynstr_index;
6397 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6398 h->dynstr_index);
6399 defaux.vda_next = 0;
6400 if (t->deps != NULL)
6401 defaux.vda_next = sizeof (Elf_External_Verdaux);
6402 t->name_indx = defaux.vda_name;
6403
6404 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6405 (Elf_External_Verdaux *) p);
6406 p += sizeof (Elf_External_Verdaux);
6407
6408 for (n = t->deps; n != NULL; n = n->next)
6409 {
6410 if (n->version_needed == NULL)
6411 {
6412 /* This can happen if there was an error in the
6413 version script. */
6414 defaux.vda_name = 0;
6415 }
6416 else
6417 {
6418 defaux.vda_name = n->version_needed->name_indx;
6419 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6420 defaux.vda_name);
6421 }
6422 if (n->next == NULL)
6423 defaux.vda_next = 0;
6424 else
6425 defaux.vda_next = sizeof (Elf_External_Verdaux);
6426
6427 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6428 (Elf_External_Verdaux *) p);
6429 p += sizeof (Elf_External_Verdaux);
6430 }
6431 }
6432
6433 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6434 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6435 return FALSE;
6436
6437 elf_tdata (output_bfd)->cverdefs = cdefs;
6438 }
6439
6440 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6441 {
6442 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6443 return FALSE;
6444 }
6445 else if (info->flags & DF_BIND_NOW)
6446 {
6447 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6448 return FALSE;
6449 }
6450
6451 if (info->flags_1)
6452 {
6453 if (bfd_link_executable (info))
6454 info->flags_1 &= ~ (DF_1_INITFIRST
6455 | DF_1_NODELETE
6456 | DF_1_NOOPEN);
6457 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6458 return FALSE;
6459 }
6460
6461 /* Work out the size of the version reference section. */
6462
6463 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6464 BFD_ASSERT (s != NULL);
6465 {
6466 struct elf_find_verdep_info sinfo;
6467
6468 sinfo.info = info;
6469 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6470 if (sinfo.vers == 0)
6471 sinfo.vers = 1;
6472 sinfo.failed = FALSE;
6473
6474 elf_link_hash_traverse (elf_hash_table (info),
6475 _bfd_elf_link_find_version_dependencies,
6476 &sinfo);
6477 if (sinfo.failed)
6478 return FALSE;
6479
6480 if (elf_tdata (output_bfd)->verref == NULL)
6481 s->flags |= SEC_EXCLUDE;
6482 else
6483 {
6484 Elf_Internal_Verneed *t;
6485 unsigned int size;
6486 unsigned int crefs;
6487 bfd_byte *p;
6488
6489 /* Build the version dependency section. */
6490 size = 0;
6491 crefs = 0;
6492 for (t = elf_tdata (output_bfd)->verref;
6493 t != NULL;
6494 t = t->vn_nextref)
6495 {
6496 Elf_Internal_Vernaux *a;
6497
6498 size += sizeof (Elf_External_Verneed);
6499 ++crefs;
6500 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6501 size += sizeof (Elf_External_Vernaux);
6502 }
6503
6504 s->size = size;
6505 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6506 if (s->contents == NULL)
6507 return FALSE;
6508
6509 p = s->contents;
6510 for (t = elf_tdata (output_bfd)->verref;
6511 t != NULL;
6512 t = t->vn_nextref)
6513 {
6514 unsigned int caux;
6515 Elf_Internal_Vernaux *a;
6516 size_t indx;
6517
6518 caux = 0;
6519 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6520 ++caux;
6521
6522 t->vn_version = VER_NEED_CURRENT;
6523 t->vn_cnt = caux;
6524 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6525 elf_dt_name (t->vn_bfd) != NULL
6526 ? elf_dt_name (t->vn_bfd)
6527 : lbasename (t->vn_bfd->filename),
6528 FALSE);
6529 if (indx == (size_t) -1)
6530 return FALSE;
6531 t->vn_file = indx;
6532 t->vn_aux = sizeof (Elf_External_Verneed);
6533 if (t->vn_nextref == NULL)
6534 t->vn_next = 0;
6535 else
6536 t->vn_next = (sizeof (Elf_External_Verneed)
6537 + caux * sizeof (Elf_External_Vernaux));
6538
6539 _bfd_elf_swap_verneed_out (output_bfd, t,
6540 (Elf_External_Verneed *) p);
6541 p += sizeof (Elf_External_Verneed);
6542
6543 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6544 {
6545 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6546 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6547 a->vna_nodename, FALSE);
6548 if (indx == (size_t) -1)
6549 return FALSE;
6550 a->vna_name = indx;
6551 if (a->vna_nextptr == NULL)
6552 a->vna_next = 0;
6553 else
6554 a->vna_next = sizeof (Elf_External_Vernaux);
6555
6556 _bfd_elf_swap_vernaux_out (output_bfd, a,
6557 (Elf_External_Vernaux *) p);
6558 p += sizeof (Elf_External_Vernaux);
6559 }
6560 }
6561
6562 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6563 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6564 return FALSE;
6565
6566 elf_tdata (output_bfd)->cverrefs = crefs;
6567 }
6568 }
6569
6570 if ((elf_tdata (output_bfd)->cverrefs == 0
6571 && elf_tdata (output_bfd)->cverdefs == 0)
6572 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6573 &section_sym_count) == 0)
6574 {
6575 s = bfd_get_linker_section (dynobj, ".gnu.version");
6576 s->flags |= SEC_EXCLUDE;
6577 }
6578 }
6579 return TRUE;
6580 }
6581
6582 /* Find the first non-excluded output section. We'll use its
6583 section symbol for some emitted relocs. */
6584 void
6585 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6586 {
6587 asection *s;
6588
6589 for (s = output_bfd->sections; s != NULL; s = s->next)
6590 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6591 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6592 {
6593 elf_hash_table (info)->text_index_section = s;
6594 break;
6595 }
6596 }
6597
6598 /* Find two non-excluded output sections, one for code, one for data.
6599 We'll use their section symbols for some emitted relocs. */
6600 void
6601 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6602 {
6603 asection *s;
6604
6605 /* Data first, since setting text_index_section changes
6606 _bfd_elf_link_omit_section_dynsym. */
6607 for (s = output_bfd->sections; s != NULL; s = s->next)
6608 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6609 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6610 {
6611 elf_hash_table (info)->data_index_section = s;
6612 break;
6613 }
6614
6615 for (s = output_bfd->sections; s != NULL; s = s->next)
6616 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6617 == (SEC_ALLOC | SEC_READONLY))
6618 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6619 {
6620 elf_hash_table (info)->text_index_section = s;
6621 break;
6622 }
6623
6624 if (elf_hash_table (info)->text_index_section == NULL)
6625 elf_hash_table (info)->text_index_section
6626 = elf_hash_table (info)->data_index_section;
6627 }
6628
6629 bfd_boolean
6630 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6631 {
6632 const struct elf_backend_data *bed;
6633
6634 if (!is_elf_hash_table (info->hash))
6635 return TRUE;
6636
6637 bed = get_elf_backend_data (output_bfd);
6638 (*bed->elf_backend_init_index_section) (output_bfd, info);
6639
6640 if (elf_hash_table (info)->dynamic_sections_created)
6641 {
6642 bfd *dynobj;
6643 asection *s;
6644 bfd_size_type dynsymcount;
6645 unsigned long section_sym_count;
6646 unsigned int dtagcount;
6647
6648 dynobj = elf_hash_table (info)->dynobj;
6649
6650 /* Assign dynsym indicies. In a shared library we generate a
6651 section symbol for each output section, which come first.
6652 Next come all of the back-end allocated local dynamic syms,
6653 followed by the rest of the global symbols. */
6654
6655 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6656 &section_sym_count);
6657
6658 /* Work out the size of the symbol version section. */
6659 s = bfd_get_linker_section (dynobj, ".gnu.version");
6660 BFD_ASSERT (s != NULL);
6661 if ((s->flags & SEC_EXCLUDE) == 0)
6662 {
6663 s->size = dynsymcount * sizeof (Elf_External_Versym);
6664 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6665 if (s->contents == NULL)
6666 return FALSE;
6667
6668 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6669 return FALSE;
6670 }
6671
6672 /* Set the size of the .dynsym and .hash sections. We counted
6673 the number of dynamic symbols in elf_link_add_object_symbols.
6674 We will build the contents of .dynsym and .hash when we build
6675 the final symbol table, because until then we do not know the
6676 correct value to give the symbols. We built the .dynstr
6677 section as we went along in elf_link_add_object_symbols. */
6678 s = elf_hash_table (info)->dynsym;
6679 BFD_ASSERT (s != NULL);
6680 s->size = dynsymcount * bed->s->sizeof_sym;
6681
6682 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6683 if (s->contents == NULL)
6684 return FALSE;
6685
6686 /* The first entry in .dynsym is a dummy symbol. Clear all the
6687 section syms, in case we don't output them all. */
6688 ++section_sym_count;
6689 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6690
6691 elf_hash_table (info)->bucketcount = 0;
6692
6693 /* Compute the size of the hashing table. As a side effect this
6694 computes the hash values for all the names we export. */
6695 if (info->emit_hash)
6696 {
6697 unsigned long int *hashcodes;
6698 struct hash_codes_info hashinf;
6699 bfd_size_type amt;
6700 unsigned long int nsyms;
6701 size_t bucketcount;
6702 size_t hash_entry_size;
6703
6704 /* Compute the hash values for all exported symbols. At the same
6705 time store the values in an array so that we could use them for
6706 optimizations. */
6707 amt = dynsymcount * sizeof (unsigned long int);
6708 hashcodes = (unsigned long int *) bfd_malloc (amt);
6709 if (hashcodes == NULL)
6710 return FALSE;
6711 hashinf.hashcodes = hashcodes;
6712 hashinf.error = FALSE;
6713
6714 /* Put all hash values in HASHCODES. */
6715 elf_link_hash_traverse (elf_hash_table (info),
6716 elf_collect_hash_codes, &hashinf);
6717 if (hashinf.error)
6718 {
6719 free (hashcodes);
6720 return FALSE;
6721 }
6722
6723 nsyms = hashinf.hashcodes - hashcodes;
6724 bucketcount
6725 = compute_bucket_count (info, hashcodes, nsyms, 0);
6726 free (hashcodes);
6727
6728 if (bucketcount == 0)
6729 return FALSE;
6730
6731 elf_hash_table (info)->bucketcount = bucketcount;
6732
6733 s = bfd_get_linker_section (dynobj, ".hash");
6734 BFD_ASSERT (s != NULL);
6735 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6736 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6737 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6738 if (s->contents == NULL)
6739 return FALSE;
6740
6741 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6742 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6743 s->contents + hash_entry_size);
6744 }
6745
6746 if (info->emit_gnu_hash)
6747 {
6748 size_t i, cnt;
6749 unsigned char *contents;
6750 struct collect_gnu_hash_codes cinfo;
6751 bfd_size_type amt;
6752 size_t bucketcount;
6753
6754 memset (&cinfo, 0, sizeof (cinfo));
6755
6756 /* Compute the hash values for all exported symbols. At the same
6757 time store the values in an array so that we could use them for
6758 optimizations. */
6759 amt = dynsymcount * 2 * sizeof (unsigned long int);
6760 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6761 if (cinfo.hashcodes == NULL)
6762 return FALSE;
6763
6764 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6765 cinfo.min_dynindx = -1;
6766 cinfo.output_bfd = output_bfd;
6767 cinfo.bed = bed;
6768
6769 /* Put all hash values in HASHCODES. */
6770 elf_link_hash_traverse (elf_hash_table (info),
6771 elf_collect_gnu_hash_codes, &cinfo);
6772 if (cinfo.error)
6773 {
6774 free (cinfo.hashcodes);
6775 return FALSE;
6776 }
6777
6778 bucketcount
6779 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6780
6781 if (bucketcount == 0)
6782 {
6783 free (cinfo.hashcodes);
6784 return FALSE;
6785 }
6786
6787 s = bfd_get_linker_section (dynobj, ".gnu.hash");
6788 BFD_ASSERT (s != NULL);
6789
6790 if (cinfo.nsyms == 0)
6791 {
6792 /* Empty .gnu.hash section is special. */
6793 BFD_ASSERT (cinfo.min_dynindx == -1);
6794 free (cinfo.hashcodes);
6795 s->size = 5 * 4 + bed->s->arch_size / 8;
6796 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6797 if (contents == NULL)
6798 return FALSE;
6799 s->contents = contents;
6800 /* 1 empty bucket. */
6801 bfd_put_32 (output_bfd, 1, contents);
6802 /* SYMIDX above the special symbol 0. */
6803 bfd_put_32 (output_bfd, 1, contents + 4);
6804 /* Just one word for bitmask. */
6805 bfd_put_32 (output_bfd, 1, contents + 8);
6806 /* Only hash fn bloom filter. */
6807 bfd_put_32 (output_bfd, 0, contents + 12);
6808 /* No hashes are valid - empty bitmask. */
6809 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6810 /* No hashes in the only bucket. */
6811 bfd_put_32 (output_bfd, 0,
6812 contents + 16 + bed->s->arch_size / 8);
6813 }
6814 else
6815 {
6816 unsigned long int maskwords, maskbitslog2, x;
6817 BFD_ASSERT (cinfo.min_dynindx != -1);
6818
6819 x = cinfo.nsyms;
6820 maskbitslog2 = 1;
6821 while ((x >>= 1) != 0)
6822 ++maskbitslog2;
6823 if (maskbitslog2 < 3)
6824 maskbitslog2 = 5;
6825 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6826 maskbitslog2 = maskbitslog2 + 3;
6827 else
6828 maskbitslog2 = maskbitslog2 + 2;
6829 if (bed->s->arch_size == 64)
6830 {
6831 if (maskbitslog2 == 5)
6832 maskbitslog2 = 6;
6833 cinfo.shift1 = 6;
6834 }
6835 else
6836 cinfo.shift1 = 5;
6837 cinfo.mask = (1 << cinfo.shift1) - 1;
6838 cinfo.shift2 = maskbitslog2;
6839 cinfo.maskbits = 1 << maskbitslog2;
6840 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6841 amt = bucketcount * sizeof (unsigned long int) * 2;
6842 amt += maskwords * sizeof (bfd_vma);
6843 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6844 if (cinfo.bitmask == NULL)
6845 {
6846 free (cinfo.hashcodes);
6847 return FALSE;
6848 }
6849
6850 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6851 cinfo.indx = cinfo.counts + bucketcount;
6852 cinfo.symindx = dynsymcount - cinfo.nsyms;
6853 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6854
6855 /* Determine how often each hash bucket is used. */
6856 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6857 for (i = 0; i < cinfo.nsyms; ++i)
6858 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6859
6860 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6861 if (cinfo.counts[i] != 0)
6862 {
6863 cinfo.indx[i] = cnt;
6864 cnt += cinfo.counts[i];
6865 }
6866 BFD_ASSERT (cnt == dynsymcount);
6867 cinfo.bucketcount = bucketcount;
6868 cinfo.local_indx = cinfo.min_dynindx;
6869
6870 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6871 s->size += cinfo.maskbits / 8;
6872 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6873 if (contents == NULL)
6874 {
6875 free (cinfo.bitmask);
6876 free (cinfo.hashcodes);
6877 return FALSE;
6878 }
6879
6880 s->contents = contents;
6881 bfd_put_32 (output_bfd, bucketcount, contents);
6882 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6883 bfd_put_32 (output_bfd, maskwords, contents + 8);
6884 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6885 contents += 16 + cinfo.maskbits / 8;
6886
6887 for (i = 0; i < bucketcount; ++i)
6888 {
6889 if (cinfo.counts[i] == 0)
6890 bfd_put_32 (output_bfd, 0, contents);
6891 else
6892 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6893 contents += 4;
6894 }
6895
6896 cinfo.contents = contents;
6897
6898 /* Renumber dynamic symbols, populate .gnu.hash section. */
6899 elf_link_hash_traverse (elf_hash_table (info),
6900 elf_renumber_gnu_hash_syms, &cinfo);
6901
6902 contents = s->contents + 16;
6903 for (i = 0; i < maskwords; ++i)
6904 {
6905 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6906 contents);
6907 contents += bed->s->arch_size / 8;
6908 }
6909
6910 free (cinfo.bitmask);
6911 free (cinfo.hashcodes);
6912 }
6913 }
6914
6915 s = bfd_get_linker_section (dynobj, ".dynstr");
6916 BFD_ASSERT (s != NULL);
6917
6918 elf_finalize_dynstr (output_bfd, info);
6919
6920 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6921
6922 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6923 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6924 return FALSE;
6925 }
6926
6927 return TRUE;
6928 }
6929 \f
6930 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6931
6932 static void
6933 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6934 asection *sec)
6935 {
6936 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6937 sec->sec_info_type = SEC_INFO_TYPE_NONE;
6938 }
6939
6940 /* Finish SHF_MERGE section merging. */
6941
6942 bfd_boolean
6943 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
6944 {
6945 bfd *ibfd;
6946 asection *sec;
6947
6948 if (!is_elf_hash_table (info->hash))
6949 return FALSE;
6950
6951 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6952 if ((ibfd->flags & DYNAMIC) == 0
6953 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6954 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
6955 == get_elf_backend_data (obfd)->s->elfclass))
6956 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6957 if ((sec->flags & SEC_MERGE) != 0
6958 && !bfd_is_abs_section (sec->output_section))
6959 {
6960 struct bfd_elf_section_data *secdata;
6961
6962 secdata = elf_section_data (sec);
6963 if (! _bfd_add_merge_section (obfd,
6964 &elf_hash_table (info)->merge_info,
6965 sec, &secdata->sec_info))
6966 return FALSE;
6967 else if (secdata->sec_info)
6968 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6969 }
6970
6971 if (elf_hash_table (info)->merge_info != NULL)
6972 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
6973 merge_sections_remove_hook);
6974 return TRUE;
6975 }
6976
6977 /* Create an entry in an ELF linker hash table. */
6978
6979 struct bfd_hash_entry *
6980 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6981 struct bfd_hash_table *table,
6982 const char *string)
6983 {
6984 /* Allocate the structure if it has not already been allocated by a
6985 subclass. */
6986 if (entry == NULL)
6987 {
6988 entry = (struct bfd_hash_entry *)
6989 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6990 if (entry == NULL)
6991 return entry;
6992 }
6993
6994 /* Call the allocation method of the superclass. */
6995 entry = _bfd_link_hash_newfunc (entry, table, string);
6996 if (entry != NULL)
6997 {
6998 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6999 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7000
7001 /* Set local fields. */
7002 ret->indx = -1;
7003 ret->dynindx = -1;
7004 ret->got = htab->init_got_refcount;
7005 ret->plt = htab->init_plt_refcount;
7006 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7007 - offsetof (struct elf_link_hash_entry, size)));
7008 /* Assume that we have been called by a non-ELF symbol reader.
7009 This flag is then reset by the code which reads an ELF input
7010 file. This ensures that a symbol created by a non-ELF symbol
7011 reader will have the flag set correctly. */
7012 ret->non_elf = 1;
7013 }
7014
7015 return entry;
7016 }
7017
7018 /* Copy data from an indirect symbol to its direct symbol, hiding the
7019 old indirect symbol. Also used for copying flags to a weakdef. */
7020
7021 void
7022 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7023 struct elf_link_hash_entry *dir,
7024 struct elf_link_hash_entry *ind)
7025 {
7026 struct elf_link_hash_table *htab;
7027
7028 /* Copy down any references that we may have already seen to the
7029 symbol which just became indirect if DIR isn't a hidden versioned
7030 symbol. */
7031
7032 if (dir->versioned != versioned_hidden)
7033 {
7034 dir->ref_dynamic |= ind->ref_dynamic;
7035 dir->ref_regular |= ind->ref_regular;
7036 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7037 dir->non_got_ref |= ind->non_got_ref;
7038 dir->needs_plt |= ind->needs_plt;
7039 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7040 }
7041
7042 if (ind->root.type != bfd_link_hash_indirect)
7043 return;
7044
7045 /* Copy over the global and procedure linkage table refcount entries.
7046 These may have been already set up by a check_relocs routine. */
7047 htab = elf_hash_table (info);
7048 if (ind->got.refcount > htab->init_got_refcount.refcount)
7049 {
7050 if (dir->got.refcount < 0)
7051 dir->got.refcount = 0;
7052 dir->got.refcount += ind->got.refcount;
7053 ind->got.refcount = htab->init_got_refcount.refcount;
7054 }
7055
7056 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7057 {
7058 if (dir->plt.refcount < 0)
7059 dir->plt.refcount = 0;
7060 dir->plt.refcount += ind->plt.refcount;
7061 ind->plt.refcount = htab->init_plt_refcount.refcount;
7062 }
7063
7064 if (ind->dynindx != -1)
7065 {
7066 if (dir->dynindx != -1)
7067 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7068 dir->dynindx = ind->dynindx;
7069 dir->dynstr_index = ind->dynstr_index;
7070 ind->dynindx = -1;
7071 ind->dynstr_index = 0;
7072 }
7073 }
7074
7075 void
7076 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7077 struct elf_link_hash_entry *h,
7078 bfd_boolean force_local)
7079 {
7080 /* STT_GNU_IFUNC symbol must go through PLT. */
7081 if (h->type != STT_GNU_IFUNC)
7082 {
7083 h->plt = elf_hash_table (info)->init_plt_offset;
7084 h->needs_plt = 0;
7085 }
7086 if (force_local)
7087 {
7088 h->forced_local = 1;
7089 if (h->dynindx != -1)
7090 {
7091 h->dynindx = -1;
7092 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7093 h->dynstr_index);
7094 }
7095 }
7096 }
7097
7098 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7099 caller. */
7100
7101 bfd_boolean
7102 _bfd_elf_link_hash_table_init
7103 (struct elf_link_hash_table *table,
7104 bfd *abfd,
7105 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7106 struct bfd_hash_table *,
7107 const char *),
7108 unsigned int entsize,
7109 enum elf_target_id target_id)
7110 {
7111 bfd_boolean ret;
7112 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7113
7114 table->init_got_refcount.refcount = can_refcount - 1;
7115 table->init_plt_refcount.refcount = can_refcount - 1;
7116 table->init_got_offset.offset = -(bfd_vma) 1;
7117 table->init_plt_offset.offset = -(bfd_vma) 1;
7118 /* The first dynamic symbol is a dummy. */
7119 table->dynsymcount = 1;
7120
7121 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7122
7123 table->root.type = bfd_link_elf_hash_table;
7124 table->hash_table_id = target_id;
7125
7126 return ret;
7127 }
7128
7129 /* Create an ELF linker hash table. */
7130
7131 struct bfd_link_hash_table *
7132 _bfd_elf_link_hash_table_create (bfd *abfd)
7133 {
7134 struct elf_link_hash_table *ret;
7135 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7136
7137 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7138 if (ret == NULL)
7139 return NULL;
7140
7141 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7142 sizeof (struct elf_link_hash_entry),
7143 GENERIC_ELF_DATA))
7144 {
7145 free (ret);
7146 return NULL;
7147 }
7148 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7149
7150 return &ret->root;
7151 }
7152
7153 /* Destroy an ELF linker hash table. */
7154
7155 void
7156 _bfd_elf_link_hash_table_free (bfd *obfd)
7157 {
7158 struct elf_link_hash_table *htab;
7159
7160 htab = (struct elf_link_hash_table *) obfd->link.hash;
7161 if (htab->dynstr != NULL)
7162 _bfd_elf_strtab_free (htab->dynstr);
7163 _bfd_merge_sections_free (htab->merge_info);
7164 _bfd_generic_link_hash_table_free (obfd);
7165 }
7166
7167 /* This is a hook for the ELF emulation code in the generic linker to
7168 tell the backend linker what file name to use for the DT_NEEDED
7169 entry for a dynamic object. */
7170
7171 void
7172 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7173 {
7174 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7175 && bfd_get_format (abfd) == bfd_object)
7176 elf_dt_name (abfd) = name;
7177 }
7178
7179 int
7180 bfd_elf_get_dyn_lib_class (bfd *abfd)
7181 {
7182 int lib_class;
7183 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7184 && bfd_get_format (abfd) == bfd_object)
7185 lib_class = elf_dyn_lib_class (abfd);
7186 else
7187 lib_class = 0;
7188 return lib_class;
7189 }
7190
7191 void
7192 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7193 {
7194 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7195 && bfd_get_format (abfd) == bfd_object)
7196 elf_dyn_lib_class (abfd) = lib_class;
7197 }
7198
7199 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7200 the linker ELF emulation code. */
7201
7202 struct bfd_link_needed_list *
7203 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7204 struct bfd_link_info *info)
7205 {
7206 if (! is_elf_hash_table (info->hash))
7207 return NULL;
7208 return elf_hash_table (info)->needed;
7209 }
7210
7211 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7212 hook for the linker ELF emulation code. */
7213
7214 struct bfd_link_needed_list *
7215 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7216 struct bfd_link_info *info)
7217 {
7218 if (! is_elf_hash_table (info->hash))
7219 return NULL;
7220 return elf_hash_table (info)->runpath;
7221 }
7222
7223 /* Get the name actually used for a dynamic object for a link. This
7224 is the SONAME entry if there is one. Otherwise, it is the string
7225 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7226
7227 const char *
7228 bfd_elf_get_dt_soname (bfd *abfd)
7229 {
7230 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7231 && bfd_get_format (abfd) == bfd_object)
7232 return elf_dt_name (abfd);
7233 return NULL;
7234 }
7235
7236 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7237 the ELF linker emulation code. */
7238
7239 bfd_boolean
7240 bfd_elf_get_bfd_needed_list (bfd *abfd,
7241 struct bfd_link_needed_list **pneeded)
7242 {
7243 asection *s;
7244 bfd_byte *dynbuf = NULL;
7245 unsigned int elfsec;
7246 unsigned long shlink;
7247 bfd_byte *extdyn, *extdynend;
7248 size_t extdynsize;
7249 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7250
7251 *pneeded = NULL;
7252
7253 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7254 || bfd_get_format (abfd) != bfd_object)
7255 return TRUE;
7256
7257 s = bfd_get_section_by_name (abfd, ".dynamic");
7258 if (s == NULL || s->size == 0)
7259 return TRUE;
7260
7261 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7262 goto error_return;
7263
7264 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7265 if (elfsec == SHN_BAD)
7266 goto error_return;
7267
7268 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7269
7270 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7271 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7272
7273 extdyn = dynbuf;
7274 extdynend = extdyn + s->size;
7275 for (; extdyn < extdynend; extdyn += extdynsize)
7276 {
7277 Elf_Internal_Dyn dyn;
7278
7279 (*swap_dyn_in) (abfd, extdyn, &dyn);
7280
7281 if (dyn.d_tag == DT_NULL)
7282 break;
7283
7284 if (dyn.d_tag == DT_NEEDED)
7285 {
7286 const char *string;
7287 struct bfd_link_needed_list *l;
7288 unsigned int tagv = dyn.d_un.d_val;
7289 bfd_size_type amt;
7290
7291 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7292 if (string == NULL)
7293 goto error_return;
7294
7295 amt = sizeof *l;
7296 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7297 if (l == NULL)
7298 goto error_return;
7299
7300 l->by = abfd;
7301 l->name = string;
7302 l->next = *pneeded;
7303 *pneeded = l;
7304 }
7305 }
7306
7307 free (dynbuf);
7308
7309 return TRUE;
7310
7311 error_return:
7312 if (dynbuf != NULL)
7313 free (dynbuf);
7314 return FALSE;
7315 }
7316
7317 struct elf_symbuf_symbol
7318 {
7319 unsigned long st_name; /* Symbol name, index in string tbl */
7320 unsigned char st_info; /* Type and binding attributes */
7321 unsigned char st_other; /* Visibilty, and target specific */
7322 };
7323
7324 struct elf_symbuf_head
7325 {
7326 struct elf_symbuf_symbol *ssym;
7327 size_t count;
7328 unsigned int st_shndx;
7329 };
7330
7331 struct elf_symbol
7332 {
7333 union
7334 {
7335 Elf_Internal_Sym *isym;
7336 struct elf_symbuf_symbol *ssym;
7337 } u;
7338 const char *name;
7339 };
7340
7341 /* Sort references to symbols by ascending section number. */
7342
7343 static int
7344 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7345 {
7346 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7347 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7348
7349 return s1->st_shndx - s2->st_shndx;
7350 }
7351
7352 static int
7353 elf_sym_name_compare (const void *arg1, const void *arg2)
7354 {
7355 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7356 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7357 return strcmp (s1->name, s2->name);
7358 }
7359
7360 static struct elf_symbuf_head *
7361 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7362 {
7363 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7364 struct elf_symbuf_symbol *ssym;
7365 struct elf_symbuf_head *ssymbuf, *ssymhead;
7366 size_t i, shndx_count, total_size;
7367
7368 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7369 if (indbuf == NULL)
7370 return NULL;
7371
7372 for (ind = indbuf, i = 0; i < symcount; i++)
7373 if (isymbuf[i].st_shndx != SHN_UNDEF)
7374 *ind++ = &isymbuf[i];
7375 indbufend = ind;
7376
7377 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7378 elf_sort_elf_symbol);
7379
7380 shndx_count = 0;
7381 if (indbufend > indbuf)
7382 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7383 if (ind[0]->st_shndx != ind[1]->st_shndx)
7384 shndx_count++;
7385
7386 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7387 + (indbufend - indbuf) * sizeof (*ssym));
7388 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7389 if (ssymbuf == NULL)
7390 {
7391 free (indbuf);
7392 return NULL;
7393 }
7394
7395 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7396 ssymbuf->ssym = NULL;
7397 ssymbuf->count = shndx_count;
7398 ssymbuf->st_shndx = 0;
7399 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7400 {
7401 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7402 {
7403 ssymhead++;
7404 ssymhead->ssym = ssym;
7405 ssymhead->count = 0;
7406 ssymhead->st_shndx = (*ind)->st_shndx;
7407 }
7408 ssym->st_name = (*ind)->st_name;
7409 ssym->st_info = (*ind)->st_info;
7410 ssym->st_other = (*ind)->st_other;
7411 ssymhead->count++;
7412 }
7413 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7414 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7415 == total_size));
7416
7417 free (indbuf);
7418 return ssymbuf;
7419 }
7420
7421 /* Check if 2 sections define the same set of local and global
7422 symbols. */
7423
7424 static bfd_boolean
7425 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7426 struct bfd_link_info *info)
7427 {
7428 bfd *bfd1, *bfd2;
7429 const struct elf_backend_data *bed1, *bed2;
7430 Elf_Internal_Shdr *hdr1, *hdr2;
7431 size_t symcount1, symcount2;
7432 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7433 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7434 Elf_Internal_Sym *isym, *isymend;
7435 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7436 size_t count1, count2, i;
7437 unsigned int shndx1, shndx2;
7438 bfd_boolean result;
7439
7440 bfd1 = sec1->owner;
7441 bfd2 = sec2->owner;
7442
7443 /* Both sections have to be in ELF. */
7444 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7445 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7446 return FALSE;
7447
7448 if (elf_section_type (sec1) != elf_section_type (sec2))
7449 return FALSE;
7450
7451 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7452 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7453 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7454 return FALSE;
7455
7456 bed1 = get_elf_backend_data (bfd1);
7457 bed2 = get_elf_backend_data (bfd2);
7458 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7459 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7460 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7461 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7462
7463 if (symcount1 == 0 || symcount2 == 0)
7464 return FALSE;
7465
7466 result = FALSE;
7467 isymbuf1 = NULL;
7468 isymbuf2 = NULL;
7469 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7470 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7471
7472 if (ssymbuf1 == NULL)
7473 {
7474 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7475 NULL, NULL, NULL);
7476 if (isymbuf1 == NULL)
7477 goto done;
7478
7479 if (!info->reduce_memory_overheads)
7480 elf_tdata (bfd1)->symbuf = ssymbuf1
7481 = elf_create_symbuf (symcount1, isymbuf1);
7482 }
7483
7484 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7485 {
7486 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7487 NULL, NULL, NULL);
7488 if (isymbuf2 == NULL)
7489 goto done;
7490
7491 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7492 elf_tdata (bfd2)->symbuf = ssymbuf2
7493 = elf_create_symbuf (symcount2, isymbuf2);
7494 }
7495
7496 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7497 {
7498 /* Optimized faster version. */
7499 size_t lo, hi, mid;
7500 struct elf_symbol *symp;
7501 struct elf_symbuf_symbol *ssym, *ssymend;
7502
7503 lo = 0;
7504 hi = ssymbuf1->count;
7505 ssymbuf1++;
7506 count1 = 0;
7507 while (lo < hi)
7508 {
7509 mid = (lo + hi) / 2;
7510 if (shndx1 < ssymbuf1[mid].st_shndx)
7511 hi = mid;
7512 else if (shndx1 > ssymbuf1[mid].st_shndx)
7513 lo = mid + 1;
7514 else
7515 {
7516 count1 = ssymbuf1[mid].count;
7517 ssymbuf1 += mid;
7518 break;
7519 }
7520 }
7521
7522 lo = 0;
7523 hi = ssymbuf2->count;
7524 ssymbuf2++;
7525 count2 = 0;
7526 while (lo < hi)
7527 {
7528 mid = (lo + hi) / 2;
7529 if (shndx2 < ssymbuf2[mid].st_shndx)
7530 hi = mid;
7531 else if (shndx2 > ssymbuf2[mid].st_shndx)
7532 lo = mid + 1;
7533 else
7534 {
7535 count2 = ssymbuf2[mid].count;
7536 ssymbuf2 += mid;
7537 break;
7538 }
7539 }
7540
7541 if (count1 == 0 || count2 == 0 || count1 != count2)
7542 goto done;
7543
7544 symtable1
7545 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7546 symtable2
7547 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7548 if (symtable1 == NULL || symtable2 == NULL)
7549 goto done;
7550
7551 symp = symtable1;
7552 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7553 ssym < ssymend; ssym++, symp++)
7554 {
7555 symp->u.ssym = ssym;
7556 symp->name = bfd_elf_string_from_elf_section (bfd1,
7557 hdr1->sh_link,
7558 ssym->st_name);
7559 }
7560
7561 symp = symtable2;
7562 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7563 ssym < ssymend; ssym++, symp++)
7564 {
7565 symp->u.ssym = ssym;
7566 symp->name = bfd_elf_string_from_elf_section (bfd2,
7567 hdr2->sh_link,
7568 ssym->st_name);
7569 }
7570
7571 /* Sort symbol by name. */
7572 qsort (symtable1, count1, sizeof (struct elf_symbol),
7573 elf_sym_name_compare);
7574 qsort (symtable2, count1, sizeof (struct elf_symbol),
7575 elf_sym_name_compare);
7576
7577 for (i = 0; i < count1; i++)
7578 /* Two symbols must have the same binding, type and name. */
7579 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7580 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7581 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7582 goto done;
7583
7584 result = TRUE;
7585 goto done;
7586 }
7587
7588 symtable1 = (struct elf_symbol *)
7589 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7590 symtable2 = (struct elf_symbol *)
7591 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7592 if (symtable1 == NULL || symtable2 == NULL)
7593 goto done;
7594
7595 /* Count definitions in the section. */
7596 count1 = 0;
7597 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7598 if (isym->st_shndx == shndx1)
7599 symtable1[count1++].u.isym = isym;
7600
7601 count2 = 0;
7602 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7603 if (isym->st_shndx == shndx2)
7604 symtable2[count2++].u.isym = isym;
7605
7606 if (count1 == 0 || count2 == 0 || count1 != count2)
7607 goto done;
7608
7609 for (i = 0; i < count1; i++)
7610 symtable1[i].name
7611 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7612 symtable1[i].u.isym->st_name);
7613
7614 for (i = 0; i < count2; i++)
7615 symtable2[i].name
7616 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7617 symtable2[i].u.isym->st_name);
7618
7619 /* Sort symbol by name. */
7620 qsort (symtable1, count1, sizeof (struct elf_symbol),
7621 elf_sym_name_compare);
7622 qsort (symtable2, count1, sizeof (struct elf_symbol),
7623 elf_sym_name_compare);
7624
7625 for (i = 0; i < count1; i++)
7626 /* Two symbols must have the same binding, type and name. */
7627 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7628 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7629 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7630 goto done;
7631
7632 result = TRUE;
7633
7634 done:
7635 if (symtable1)
7636 free (symtable1);
7637 if (symtable2)
7638 free (symtable2);
7639 if (isymbuf1)
7640 free (isymbuf1);
7641 if (isymbuf2)
7642 free (isymbuf2);
7643
7644 return result;
7645 }
7646
7647 /* Return TRUE if 2 section types are compatible. */
7648
7649 bfd_boolean
7650 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7651 bfd *bbfd, const asection *bsec)
7652 {
7653 if (asec == NULL
7654 || bsec == NULL
7655 || abfd->xvec->flavour != bfd_target_elf_flavour
7656 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7657 return TRUE;
7658
7659 return elf_section_type (asec) == elf_section_type (bsec);
7660 }
7661 \f
7662 /* Final phase of ELF linker. */
7663
7664 /* A structure we use to avoid passing large numbers of arguments. */
7665
7666 struct elf_final_link_info
7667 {
7668 /* General link information. */
7669 struct bfd_link_info *info;
7670 /* Output BFD. */
7671 bfd *output_bfd;
7672 /* Symbol string table. */
7673 struct elf_strtab_hash *symstrtab;
7674 /* .hash section. */
7675 asection *hash_sec;
7676 /* symbol version section (.gnu.version). */
7677 asection *symver_sec;
7678 /* Buffer large enough to hold contents of any section. */
7679 bfd_byte *contents;
7680 /* Buffer large enough to hold external relocs of any section. */
7681 void *external_relocs;
7682 /* Buffer large enough to hold internal relocs of any section. */
7683 Elf_Internal_Rela *internal_relocs;
7684 /* Buffer large enough to hold external local symbols of any input
7685 BFD. */
7686 bfd_byte *external_syms;
7687 /* And a buffer for symbol section indices. */
7688 Elf_External_Sym_Shndx *locsym_shndx;
7689 /* Buffer large enough to hold internal local symbols of any input
7690 BFD. */
7691 Elf_Internal_Sym *internal_syms;
7692 /* Array large enough to hold a symbol index for each local symbol
7693 of any input BFD. */
7694 long *indices;
7695 /* Array large enough to hold a section pointer for each local
7696 symbol of any input BFD. */
7697 asection **sections;
7698 /* Buffer for SHT_SYMTAB_SHNDX section. */
7699 Elf_External_Sym_Shndx *symshndxbuf;
7700 /* Number of STT_FILE syms seen. */
7701 size_t filesym_count;
7702 };
7703
7704 /* This struct is used to pass information to elf_link_output_extsym. */
7705
7706 struct elf_outext_info
7707 {
7708 bfd_boolean failed;
7709 bfd_boolean localsyms;
7710 bfd_boolean file_sym_done;
7711 struct elf_final_link_info *flinfo;
7712 };
7713
7714
7715 /* Support for evaluating a complex relocation.
7716
7717 Complex relocations are generalized, self-describing relocations. The
7718 implementation of them consists of two parts: complex symbols, and the
7719 relocations themselves.
7720
7721 The relocations are use a reserved elf-wide relocation type code (R_RELC
7722 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7723 information (start bit, end bit, word width, etc) into the addend. This
7724 information is extracted from CGEN-generated operand tables within gas.
7725
7726 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7727 internal) representing prefix-notation expressions, including but not
7728 limited to those sorts of expressions normally encoded as addends in the
7729 addend field. The symbol mangling format is:
7730
7731 <node> := <literal>
7732 | <unary-operator> ':' <node>
7733 | <binary-operator> ':' <node> ':' <node>
7734 ;
7735
7736 <literal> := 's' <digits=N> ':' <N character symbol name>
7737 | 'S' <digits=N> ':' <N character section name>
7738 | '#' <hexdigits>
7739 ;
7740
7741 <binary-operator> := as in C
7742 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7743
7744 static void
7745 set_symbol_value (bfd *bfd_with_globals,
7746 Elf_Internal_Sym *isymbuf,
7747 size_t locsymcount,
7748 size_t symidx,
7749 bfd_vma val)
7750 {
7751 struct elf_link_hash_entry **sym_hashes;
7752 struct elf_link_hash_entry *h;
7753 size_t extsymoff = locsymcount;
7754
7755 if (symidx < locsymcount)
7756 {
7757 Elf_Internal_Sym *sym;
7758
7759 sym = isymbuf + symidx;
7760 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7761 {
7762 /* It is a local symbol: move it to the
7763 "absolute" section and give it a value. */
7764 sym->st_shndx = SHN_ABS;
7765 sym->st_value = val;
7766 return;
7767 }
7768 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7769 extsymoff = 0;
7770 }
7771
7772 /* It is a global symbol: set its link type
7773 to "defined" and give it a value. */
7774
7775 sym_hashes = elf_sym_hashes (bfd_with_globals);
7776 h = sym_hashes [symidx - extsymoff];
7777 while (h->root.type == bfd_link_hash_indirect
7778 || h->root.type == bfd_link_hash_warning)
7779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7780 h->root.type = bfd_link_hash_defined;
7781 h->root.u.def.value = val;
7782 h->root.u.def.section = bfd_abs_section_ptr;
7783 }
7784
7785 static bfd_boolean
7786 resolve_symbol (const char *name,
7787 bfd *input_bfd,
7788 struct elf_final_link_info *flinfo,
7789 bfd_vma *result,
7790 Elf_Internal_Sym *isymbuf,
7791 size_t locsymcount)
7792 {
7793 Elf_Internal_Sym *sym;
7794 struct bfd_link_hash_entry *global_entry;
7795 const char *candidate = NULL;
7796 Elf_Internal_Shdr *symtab_hdr;
7797 size_t i;
7798
7799 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7800
7801 for (i = 0; i < locsymcount; ++ i)
7802 {
7803 sym = isymbuf + i;
7804
7805 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7806 continue;
7807
7808 candidate = bfd_elf_string_from_elf_section (input_bfd,
7809 symtab_hdr->sh_link,
7810 sym->st_name);
7811 #ifdef DEBUG
7812 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7813 name, candidate, (unsigned long) sym->st_value);
7814 #endif
7815 if (candidate && strcmp (candidate, name) == 0)
7816 {
7817 asection *sec = flinfo->sections [i];
7818
7819 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7820 *result += sec->output_offset + sec->output_section->vma;
7821 #ifdef DEBUG
7822 printf ("Found symbol with value %8.8lx\n",
7823 (unsigned long) *result);
7824 #endif
7825 return TRUE;
7826 }
7827 }
7828
7829 /* Hmm, haven't found it yet. perhaps it is a global. */
7830 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7831 FALSE, FALSE, TRUE);
7832 if (!global_entry)
7833 return FALSE;
7834
7835 if (global_entry->type == bfd_link_hash_defined
7836 || global_entry->type == bfd_link_hash_defweak)
7837 {
7838 *result = (global_entry->u.def.value
7839 + global_entry->u.def.section->output_section->vma
7840 + global_entry->u.def.section->output_offset);
7841 #ifdef DEBUG
7842 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7843 global_entry->root.string, (unsigned long) *result);
7844 #endif
7845 return TRUE;
7846 }
7847
7848 return FALSE;
7849 }
7850
7851 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
7852 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
7853 names like "foo.end" which is the end address of section "foo". */
7854
7855 static bfd_boolean
7856 resolve_section (const char *name,
7857 asection *sections,
7858 bfd_vma *result,
7859 bfd * abfd)
7860 {
7861 asection *curr;
7862 unsigned int len;
7863
7864 for (curr = sections; curr; curr = curr->next)
7865 if (strcmp (curr->name, name) == 0)
7866 {
7867 *result = curr->vma;
7868 return TRUE;
7869 }
7870
7871 /* Hmm. still haven't found it. try pseudo-section names. */
7872 /* FIXME: This could be coded more efficiently... */
7873 for (curr = sections; curr; curr = curr->next)
7874 {
7875 len = strlen (curr->name);
7876 if (len > strlen (name))
7877 continue;
7878
7879 if (strncmp (curr->name, name, len) == 0)
7880 {
7881 if (strncmp (".end", name + len, 4) == 0)
7882 {
7883 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
7884 return TRUE;
7885 }
7886
7887 /* Insert more pseudo-section names here, if you like. */
7888 }
7889 }
7890
7891 return FALSE;
7892 }
7893
7894 static void
7895 undefined_reference (const char *reftype, const char *name)
7896 {
7897 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7898 reftype, name);
7899 }
7900
7901 static bfd_boolean
7902 eval_symbol (bfd_vma *result,
7903 const char **symp,
7904 bfd *input_bfd,
7905 struct elf_final_link_info *flinfo,
7906 bfd_vma dot,
7907 Elf_Internal_Sym *isymbuf,
7908 size_t locsymcount,
7909 int signed_p)
7910 {
7911 size_t len;
7912 size_t symlen;
7913 bfd_vma a;
7914 bfd_vma b;
7915 char symbuf[4096];
7916 const char *sym = *symp;
7917 const char *symend;
7918 bfd_boolean symbol_is_section = FALSE;
7919
7920 len = strlen (sym);
7921 symend = sym + len;
7922
7923 if (len < 1 || len > sizeof (symbuf))
7924 {
7925 bfd_set_error (bfd_error_invalid_operation);
7926 return FALSE;
7927 }
7928
7929 switch (* sym)
7930 {
7931 case '.':
7932 *result = dot;
7933 *symp = sym + 1;
7934 return TRUE;
7935
7936 case '#':
7937 ++sym;
7938 *result = strtoul (sym, (char **) symp, 16);
7939 return TRUE;
7940
7941 case 'S':
7942 symbol_is_section = TRUE;
7943 /* Fall through. */
7944 case 's':
7945 ++sym;
7946 symlen = strtol (sym, (char **) symp, 10);
7947 sym = *symp + 1; /* Skip the trailing ':'. */
7948
7949 if (symend < sym || symlen + 1 > sizeof (symbuf))
7950 {
7951 bfd_set_error (bfd_error_invalid_operation);
7952 return FALSE;
7953 }
7954
7955 memcpy (symbuf, sym, symlen);
7956 symbuf[symlen] = '\0';
7957 *symp = sym + symlen;
7958
7959 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7960 the symbol as a section, or vice-versa. so we're pretty liberal in our
7961 interpretation here; section means "try section first", not "must be a
7962 section", and likewise with symbol. */
7963
7964 if (symbol_is_section)
7965 {
7966 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
7967 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7968 isymbuf, locsymcount))
7969 {
7970 undefined_reference ("section", symbuf);
7971 return FALSE;
7972 }
7973 }
7974 else
7975 {
7976 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7977 isymbuf, locsymcount)
7978 && !resolve_section (symbuf, flinfo->output_bfd->sections,
7979 result, input_bfd))
7980 {
7981 undefined_reference ("symbol", symbuf);
7982 return FALSE;
7983 }
7984 }
7985
7986 return TRUE;
7987
7988 /* All that remains are operators. */
7989
7990 #define UNARY_OP(op) \
7991 if (strncmp (sym, #op, strlen (#op)) == 0) \
7992 { \
7993 sym += strlen (#op); \
7994 if (*sym == ':') \
7995 ++sym; \
7996 *symp = sym; \
7997 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
7998 isymbuf, locsymcount, signed_p)) \
7999 return FALSE; \
8000 if (signed_p) \
8001 *result = op ((bfd_signed_vma) a); \
8002 else \
8003 *result = op a; \
8004 return TRUE; \
8005 }
8006
8007 #define BINARY_OP(op) \
8008 if (strncmp (sym, #op, strlen (#op)) == 0) \
8009 { \
8010 sym += strlen (#op); \
8011 if (*sym == ':') \
8012 ++sym; \
8013 *symp = sym; \
8014 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8015 isymbuf, locsymcount, signed_p)) \
8016 return FALSE; \
8017 ++*symp; \
8018 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8019 isymbuf, locsymcount, signed_p)) \
8020 return FALSE; \
8021 if (signed_p) \
8022 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8023 else \
8024 *result = a op b; \
8025 return TRUE; \
8026 }
8027
8028 default:
8029 UNARY_OP (0-);
8030 BINARY_OP (<<);
8031 BINARY_OP (>>);
8032 BINARY_OP (==);
8033 BINARY_OP (!=);
8034 BINARY_OP (<=);
8035 BINARY_OP (>=);
8036 BINARY_OP (&&);
8037 BINARY_OP (||);
8038 UNARY_OP (~);
8039 UNARY_OP (!);
8040 BINARY_OP (*);
8041 BINARY_OP (/);
8042 BINARY_OP (%);
8043 BINARY_OP (^);
8044 BINARY_OP (|);
8045 BINARY_OP (&);
8046 BINARY_OP (+);
8047 BINARY_OP (-);
8048 BINARY_OP (<);
8049 BINARY_OP (>);
8050 #undef UNARY_OP
8051 #undef BINARY_OP
8052 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8053 bfd_set_error (bfd_error_invalid_operation);
8054 return FALSE;
8055 }
8056 }
8057
8058 static void
8059 put_value (bfd_vma size,
8060 unsigned long chunksz,
8061 bfd *input_bfd,
8062 bfd_vma x,
8063 bfd_byte *location)
8064 {
8065 location += (size - chunksz);
8066
8067 for (; size; size -= chunksz, location -= chunksz)
8068 {
8069 switch (chunksz)
8070 {
8071 case 1:
8072 bfd_put_8 (input_bfd, x, location);
8073 x >>= 8;
8074 break;
8075 case 2:
8076 bfd_put_16 (input_bfd, x, location);
8077 x >>= 16;
8078 break;
8079 case 4:
8080 bfd_put_32 (input_bfd, x, location);
8081 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8082 x >>= 16;
8083 x >>= 16;
8084 break;
8085 #ifdef BFD64
8086 case 8:
8087 bfd_put_64 (input_bfd, x, location);
8088 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8089 x >>= 32;
8090 x >>= 32;
8091 break;
8092 #endif
8093 default:
8094 abort ();
8095 break;
8096 }
8097 }
8098 }
8099
8100 static bfd_vma
8101 get_value (bfd_vma size,
8102 unsigned long chunksz,
8103 bfd *input_bfd,
8104 bfd_byte *location)
8105 {
8106 int shift;
8107 bfd_vma x = 0;
8108
8109 /* Sanity checks. */
8110 BFD_ASSERT (chunksz <= sizeof (x)
8111 && size >= chunksz
8112 && chunksz != 0
8113 && (size % chunksz) == 0
8114 && input_bfd != NULL
8115 && location != NULL);
8116
8117 if (chunksz == sizeof (x))
8118 {
8119 BFD_ASSERT (size == chunksz);
8120
8121 /* Make sure that we do not perform an undefined shift operation.
8122 We know that size == chunksz so there will only be one iteration
8123 of the loop below. */
8124 shift = 0;
8125 }
8126 else
8127 shift = 8 * chunksz;
8128
8129 for (; size; size -= chunksz, location += chunksz)
8130 {
8131 switch (chunksz)
8132 {
8133 case 1:
8134 x = (x << shift) | bfd_get_8 (input_bfd, location);
8135 break;
8136 case 2:
8137 x = (x << shift) | bfd_get_16 (input_bfd, location);
8138 break;
8139 case 4:
8140 x = (x << shift) | bfd_get_32 (input_bfd, location);
8141 break;
8142 #ifdef BFD64
8143 case 8:
8144 x = (x << shift) | bfd_get_64 (input_bfd, location);
8145 break;
8146 #endif
8147 default:
8148 abort ();
8149 }
8150 }
8151 return x;
8152 }
8153
8154 static void
8155 decode_complex_addend (unsigned long *start, /* in bits */
8156 unsigned long *oplen, /* in bits */
8157 unsigned long *len, /* in bits */
8158 unsigned long *wordsz, /* in bytes */
8159 unsigned long *chunksz, /* in bytes */
8160 unsigned long *lsb0_p,
8161 unsigned long *signed_p,
8162 unsigned long *trunc_p,
8163 unsigned long encoded)
8164 {
8165 * start = encoded & 0x3F;
8166 * len = (encoded >> 6) & 0x3F;
8167 * oplen = (encoded >> 12) & 0x3F;
8168 * wordsz = (encoded >> 18) & 0xF;
8169 * chunksz = (encoded >> 22) & 0xF;
8170 * lsb0_p = (encoded >> 27) & 1;
8171 * signed_p = (encoded >> 28) & 1;
8172 * trunc_p = (encoded >> 29) & 1;
8173 }
8174
8175 bfd_reloc_status_type
8176 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8177 asection *input_section ATTRIBUTE_UNUSED,
8178 bfd_byte *contents,
8179 Elf_Internal_Rela *rel,
8180 bfd_vma relocation)
8181 {
8182 bfd_vma shift, x, mask;
8183 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8184 bfd_reloc_status_type r;
8185
8186 /* Perform this reloc, since it is complex.
8187 (this is not to say that it necessarily refers to a complex
8188 symbol; merely that it is a self-describing CGEN based reloc.
8189 i.e. the addend has the complete reloc information (bit start, end,
8190 word size, etc) encoded within it.). */
8191
8192 decode_complex_addend (&start, &oplen, &len, &wordsz,
8193 &chunksz, &lsb0_p, &signed_p,
8194 &trunc_p, rel->r_addend);
8195
8196 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8197
8198 if (lsb0_p)
8199 shift = (start + 1) - len;
8200 else
8201 shift = (8 * wordsz) - (start + len);
8202
8203 x = get_value (wordsz, chunksz, input_bfd,
8204 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8205
8206 #ifdef DEBUG
8207 printf ("Doing complex reloc: "
8208 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8209 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8210 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8211 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8212 oplen, (unsigned long) x, (unsigned long) mask,
8213 (unsigned long) relocation);
8214 #endif
8215
8216 r = bfd_reloc_ok;
8217 if (! trunc_p)
8218 /* Now do an overflow check. */
8219 r = bfd_check_overflow ((signed_p
8220 ? complain_overflow_signed
8221 : complain_overflow_unsigned),
8222 len, 0, (8 * wordsz),
8223 relocation);
8224
8225 /* Do the deed. */
8226 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8227
8228 #ifdef DEBUG
8229 printf (" relocation: %8.8lx\n"
8230 " shifted mask: %8.8lx\n"
8231 " shifted/masked reloc: %8.8lx\n"
8232 " result: %8.8lx\n",
8233 (unsigned long) relocation, (unsigned long) (mask << shift),
8234 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8235 #endif
8236 put_value (wordsz, chunksz, input_bfd, x,
8237 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8238 return r;
8239 }
8240
8241 /* Functions to read r_offset from external (target order) reloc
8242 entry. Faster than bfd_getl32 et al, because we let the compiler
8243 know the value is aligned. */
8244
8245 static bfd_vma
8246 ext32l_r_offset (const void *p)
8247 {
8248 union aligned32
8249 {
8250 uint32_t v;
8251 unsigned char c[4];
8252 };
8253 const union aligned32 *a
8254 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8255
8256 uint32_t aval = ( (uint32_t) a->c[0]
8257 | (uint32_t) a->c[1] << 8
8258 | (uint32_t) a->c[2] << 16
8259 | (uint32_t) a->c[3] << 24);
8260 return aval;
8261 }
8262
8263 static bfd_vma
8264 ext32b_r_offset (const void *p)
8265 {
8266 union aligned32
8267 {
8268 uint32_t v;
8269 unsigned char c[4];
8270 };
8271 const union aligned32 *a
8272 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8273
8274 uint32_t aval = ( (uint32_t) a->c[0] << 24
8275 | (uint32_t) a->c[1] << 16
8276 | (uint32_t) a->c[2] << 8
8277 | (uint32_t) a->c[3]);
8278 return aval;
8279 }
8280
8281 #ifdef BFD_HOST_64_BIT
8282 static bfd_vma
8283 ext64l_r_offset (const void *p)
8284 {
8285 union aligned64
8286 {
8287 uint64_t v;
8288 unsigned char c[8];
8289 };
8290 const union aligned64 *a
8291 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8292
8293 uint64_t aval = ( (uint64_t) a->c[0]
8294 | (uint64_t) a->c[1] << 8
8295 | (uint64_t) a->c[2] << 16
8296 | (uint64_t) a->c[3] << 24
8297 | (uint64_t) a->c[4] << 32
8298 | (uint64_t) a->c[5] << 40
8299 | (uint64_t) a->c[6] << 48
8300 | (uint64_t) a->c[7] << 56);
8301 return aval;
8302 }
8303
8304 static bfd_vma
8305 ext64b_r_offset (const void *p)
8306 {
8307 union aligned64
8308 {
8309 uint64_t v;
8310 unsigned char c[8];
8311 };
8312 const union aligned64 *a
8313 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8314
8315 uint64_t aval = ( (uint64_t) a->c[0] << 56
8316 | (uint64_t) a->c[1] << 48
8317 | (uint64_t) a->c[2] << 40
8318 | (uint64_t) a->c[3] << 32
8319 | (uint64_t) a->c[4] << 24
8320 | (uint64_t) a->c[5] << 16
8321 | (uint64_t) a->c[6] << 8
8322 | (uint64_t) a->c[7]);
8323 return aval;
8324 }
8325 #endif
8326
8327 /* When performing a relocatable link, the input relocations are
8328 preserved. But, if they reference global symbols, the indices
8329 referenced must be updated. Update all the relocations found in
8330 RELDATA. */
8331
8332 static bfd_boolean
8333 elf_link_adjust_relocs (bfd *abfd,
8334 asection *sec,
8335 struct bfd_elf_section_reloc_data *reldata,
8336 bfd_boolean sort)
8337 {
8338 unsigned int i;
8339 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8340 bfd_byte *erela;
8341 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8342 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8343 bfd_vma r_type_mask;
8344 int r_sym_shift;
8345 unsigned int count = reldata->count;
8346 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8347
8348 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8349 {
8350 swap_in = bed->s->swap_reloc_in;
8351 swap_out = bed->s->swap_reloc_out;
8352 }
8353 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8354 {
8355 swap_in = bed->s->swap_reloca_in;
8356 swap_out = bed->s->swap_reloca_out;
8357 }
8358 else
8359 abort ();
8360
8361 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8362 abort ();
8363
8364 if (bed->s->arch_size == 32)
8365 {
8366 r_type_mask = 0xff;
8367 r_sym_shift = 8;
8368 }
8369 else
8370 {
8371 r_type_mask = 0xffffffff;
8372 r_sym_shift = 32;
8373 }
8374
8375 erela = reldata->hdr->contents;
8376 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8377 {
8378 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8379 unsigned int j;
8380
8381 if (*rel_hash == NULL)
8382 continue;
8383
8384 BFD_ASSERT ((*rel_hash)->indx >= 0);
8385
8386 (*swap_in) (abfd, erela, irela);
8387 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8388 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8389 | (irela[j].r_info & r_type_mask));
8390 (*swap_out) (abfd, irela, erela);
8391 }
8392
8393 if (bed->elf_backend_update_relocs)
8394 (*bed->elf_backend_update_relocs) (sec, reldata);
8395
8396 if (sort && count != 0)
8397 {
8398 bfd_vma (*ext_r_off) (const void *);
8399 bfd_vma r_off;
8400 size_t elt_size;
8401 bfd_byte *base, *end, *p, *loc;
8402 bfd_byte *buf = NULL;
8403
8404 if (bed->s->arch_size == 32)
8405 {
8406 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8407 ext_r_off = ext32l_r_offset;
8408 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8409 ext_r_off = ext32b_r_offset;
8410 else
8411 abort ();
8412 }
8413 else
8414 {
8415 #ifdef BFD_HOST_64_BIT
8416 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8417 ext_r_off = ext64l_r_offset;
8418 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8419 ext_r_off = ext64b_r_offset;
8420 else
8421 #endif
8422 abort ();
8423 }
8424
8425 /* Must use a stable sort here. A modified insertion sort,
8426 since the relocs are mostly sorted already. */
8427 elt_size = reldata->hdr->sh_entsize;
8428 base = reldata->hdr->contents;
8429 end = base + count * elt_size;
8430 if (elt_size > sizeof (Elf64_External_Rela))
8431 abort ();
8432
8433 /* Ensure the first element is lowest. This acts as a sentinel,
8434 speeding the main loop below. */
8435 r_off = (*ext_r_off) (base);
8436 for (p = loc = base; (p += elt_size) < end; )
8437 {
8438 bfd_vma r_off2 = (*ext_r_off) (p);
8439 if (r_off > r_off2)
8440 {
8441 r_off = r_off2;
8442 loc = p;
8443 }
8444 }
8445 if (loc != base)
8446 {
8447 /* Don't just swap *base and *loc as that changes the order
8448 of the original base[0] and base[1] if they happen to
8449 have the same r_offset. */
8450 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8451 memcpy (onebuf, loc, elt_size);
8452 memmove (base + elt_size, base, loc - base);
8453 memcpy (base, onebuf, elt_size);
8454 }
8455
8456 for (p = base + elt_size; (p += elt_size) < end; )
8457 {
8458 /* base to p is sorted, *p is next to insert. */
8459 r_off = (*ext_r_off) (p);
8460 /* Search the sorted region for location to insert. */
8461 loc = p - elt_size;
8462 while (r_off < (*ext_r_off) (loc))
8463 loc -= elt_size;
8464 loc += elt_size;
8465 if (loc != p)
8466 {
8467 /* Chances are there is a run of relocs to insert here,
8468 from one of more input files. Files are not always
8469 linked in order due to the way elf_link_input_bfd is
8470 called. See pr17666. */
8471 size_t sortlen = p - loc;
8472 bfd_vma r_off2 = (*ext_r_off) (loc);
8473 size_t runlen = elt_size;
8474 size_t buf_size = 96 * 1024;
8475 while (p + runlen < end
8476 && (sortlen <= buf_size
8477 || runlen + elt_size <= buf_size)
8478 && r_off2 > (*ext_r_off) (p + runlen))
8479 runlen += elt_size;
8480 if (buf == NULL)
8481 {
8482 buf = bfd_malloc (buf_size);
8483 if (buf == NULL)
8484 return FALSE;
8485 }
8486 if (runlen < sortlen)
8487 {
8488 memcpy (buf, p, runlen);
8489 memmove (loc + runlen, loc, sortlen);
8490 memcpy (loc, buf, runlen);
8491 }
8492 else
8493 {
8494 memcpy (buf, loc, sortlen);
8495 memmove (loc, p, runlen);
8496 memcpy (loc + runlen, buf, sortlen);
8497 }
8498 p += runlen - elt_size;
8499 }
8500 }
8501 /* Hashes are no longer valid. */
8502 free (reldata->hashes);
8503 reldata->hashes = NULL;
8504 free (buf);
8505 }
8506 return TRUE;
8507 }
8508
8509 struct elf_link_sort_rela
8510 {
8511 union {
8512 bfd_vma offset;
8513 bfd_vma sym_mask;
8514 } u;
8515 enum elf_reloc_type_class type;
8516 /* We use this as an array of size int_rels_per_ext_rel. */
8517 Elf_Internal_Rela rela[1];
8518 };
8519
8520 static int
8521 elf_link_sort_cmp1 (const void *A, const void *B)
8522 {
8523 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8524 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8525 int relativea, relativeb;
8526
8527 relativea = a->type == reloc_class_relative;
8528 relativeb = b->type == reloc_class_relative;
8529
8530 if (relativea < relativeb)
8531 return 1;
8532 if (relativea > relativeb)
8533 return -1;
8534 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8535 return -1;
8536 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8537 return 1;
8538 if (a->rela->r_offset < b->rela->r_offset)
8539 return -1;
8540 if (a->rela->r_offset > b->rela->r_offset)
8541 return 1;
8542 return 0;
8543 }
8544
8545 static int
8546 elf_link_sort_cmp2 (const void *A, const void *B)
8547 {
8548 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8549 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8550
8551 if (a->type < b->type)
8552 return -1;
8553 if (a->type > b->type)
8554 return 1;
8555 if (a->u.offset < b->u.offset)
8556 return -1;
8557 if (a->u.offset > b->u.offset)
8558 return 1;
8559 if (a->rela->r_offset < b->rela->r_offset)
8560 return -1;
8561 if (a->rela->r_offset > b->rela->r_offset)
8562 return 1;
8563 return 0;
8564 }
8565
8566 static size_t
8567 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8568 {
8569 asection *dynamic_relocs;
8570 asection *rela_dyn;
8571 asection *rel_dyn;
8572 bfd_size_type count, size;
8573 size_t i, ret, sort_elt, ext_size;
8574 bfd_byte *sort, *s_non_relative, *p;
8575 struct elf_link_sort_rela *sq;
8576 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8577 int i2e = bed->s->int_rels_per_ext_rel;
8578 unsigned int opb = bfd_octets_per_byte (abfd);
8579 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8580 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8581 struct bfd_link_order *lo;
8582 bfd_vma r_sym_mask;
8583 bfd_boolean use_rela;
8584
8585 /* Find a dynamic reloc section. */
8586 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8587 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8588 if (rela_dyn != NULL && rela_dyn->size > 0
8589 && rel_dyn != NULL && rel_dyn->size > 0)
8590 {
8591 bfd_boolean use_rela_initialised = FALSE;
8592
8593 /* This is just here to stop gcc from complaining.
8594 Its initialization checking code is not perfect. */
8595 use_rela = TRUE;
8596
8597 /* Both sections are present. Examine the sizes
8598 of the indirect sections to help us choose. */
8599 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8600 if (lo->type == bfd_indirect_link_order)
8601 {
8602 asection *o = lo->u.indirect.section;
8603
8604 if ((o->size % bed->s->sizeof_rela) == 0)
8605 {
8606 if ((o->size % bed->s->sizeof_rel) == 0)
8607 /* Section size is divisible by both rel and rela sizes.
8608 It is of no help to us. */
8609 ;
8610 else
8611 {
8612 /* Section size is only divisible by rela. */
8613 if (use_rela_initialised && (use_rela == FALSE))
8614 {
8615 _bfd_error_handler (_("%B: Unable to sort relocs - "
8616 "they are in more than one size"),
8617 abfd);
8618 bfd_set_error (bfd_error_invalid_operation);
8619 return 0;
8620 }
8621 else
8622 {
8623 use_rela = TRUE;
8624 use_rela_initialised = TRUE;
8625 }
8626 }
8627 }
8628 else if ((o->size % bed->s->sizeof_rel) == 0)
8629 {
8630 /* Section size is only divisible by rel. */
8631 if (use_rela_initialised && (use_rela == TRUE))
8632 {
8633 _bfd_error_handler (_("%B: Unable to sort relocs - "
8634 "they are in more than one size"),
8635 abfd);
8636 bfd_set_error (bfd_error_invalid_operation);
8637 return 0;
8638 }
8639 else
8640 {
8641 use_rela = FALSE;
8642 use_rela_initialised = TRUE;
8643 }
8644 }
8645 else
8646 {
8647 /* The section size is not divisible by either -
8648 something is wrong. */
8649 _bfd_error_handler (_("%B: Unable to sort relocs - "
8650 "they are of an unknown size"), abfd);
8651 bfd_set_error (bfd_error_invalid_operation);
8652 return 0;
8653 }
8654 }
8655
8656 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8657 if (lo->type == bfd_indirect_link_order)
8658 {
8659 asection *o = lo->u.indirect.section;
8660
8661 if ((o->size % bed->s->sizeof_rela) == 0)
8662 {
8663 if ((o->size % bed->s->sizeof_rel) == 0)
8664 /* Section size is divisible by both rel and rela sizes.
8665 It is of no help to us. */
8666 ;
8667 else
8668 {
8669 /* Section size is only divisible by rela. */
8670 if (use_rela_initialised && (use_rela == FALSE))
8671 {
8672 _bfd_error_handler (_("%B: Unable to sort relocs - "
8673 "they are in more than one size"),
8674 abfd);
8675 bfd_set_error (bfd_error_invalid_operation);
8676 return 0;
8677 }
8678 else
8679 {
8680 use_rela = TRUE;
8681 use_rela_initialised = TRUE;
8682 }
8683 }
8684 }
8685 else if ((o->size % bed->s->sizeof_rel) == 0)
8686 {
8687 /* Section size is only divisible by rel. */
8688 if (use_rela_initialised && (use_rela == TRUE))
8689 {
8690 _bfd_error_handler (_("%B: Unable to sort relocs - "
8691 "they are in more than one size"),
8692 abfd);
8693 bfd_set_error (bfd_error_invalid_operation);
8694 return 0;
8695 }
8696 else
8697 {
8698 use_rela = FALSE;
8699 use_rela_initialised = TRUE;
8700 }
8701 }
8702 else
8703 {
8704 /* The section size is not divisible by either -
8705 something is wrong. */
8706 _bfd_error_handler (_("%B: Unable to sort relocs - "
8707 "they are of an unknown size"), abfd);
8708 bfd_set_error (bfd_error_invalid_operation);
8709 return 0;
8710 }
8711 }
8712
8713 if (! use_rela_initialised)
8714 /* Make a guess. */
8715 use_rela = TRUE;
8716 }
8717 else if (rela_dyn != NULL && rela_dyn->size > 0)
8718 use_rela = TRUE;
8719 else if (rel_dyn != NULL && rel_dyn->size > 0)
8720 use_rela = FALSE;
8721 else
8722 return 0;
8723
8724 if (use_rela)
8725 {
8726 dynamic_relocs = rela_dyn;
8727 ext_size = bed->s->sizeof_rela;
8728 swap_in = bed->s->swap_reloca_in;
8729 swap_out = bed->s->swap_reloca_out;
8730 }
8731 else
8732 {
8733 dynamic_relocs = rel_dyn;
8734 ext_size = bed->s->sizeof_rel;
8735 swap_in = bed->s->swap_reloc_in;
8736 swap_out = bed->s->swap_reloc_out;
8737 }
8738
8739 size = 0;
8740 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8741 if (lo->type == bfd_indirect_link_order)
8742 size += lo->u.indirect.section->size;
8743
8744 if (size != dynamic_relocs->size)
8745 return 0;
8746
8747 sort_elt = (sizeof (struct elf_link_sort_rela)
8748 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8749
8750 count = dynamic_relocs->size / ext_size;
8751 if (count == 0)
8752 return 0;
8753 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8754
8755 if (sort == NULL)
8756 {
8757 (*info->callbacks->warning)
8758 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8759 return 0;
8760 }
8761
8762 if (bed->s->arch_size == 32)
8763 r_sym_mask = ~(bfd_vma) 0xff;
8764 else
8765 r_sym_mask = ~(bfd_vma) 0xffffffff;
8766
8767 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8768 if (lo->type == bfd_indirect_link_order)
8769 {
8770 bfd_byte *erel, *erelend;
8771 asection *o = lo->u.indirect.section;
8772
8773 if (o->contents == NULL && o->size != 0)
8774 {
8775 /* This is a reloc section that is being handled as a normal
8776 section. See bfd_section_from_shdr. We can't combine
8777 relocs in this case. */
8778 free (sort);
8779 return 0;
8780 }
8781 erel = o->contents;
8782 erelend = o->contents + o->size;
8783 p = sort + o->output_offset * opb / ext_size * sort_elt;
8784
8785 while (erel < erelend)
8786 {
8787 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8788
8789 (*swap_in) (abfd, erel, s->rela);
8790 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8791 s->u.sym_mask = r_sym_mask;
8792 p += sort_elt;
8793 erel += ext_size;
8794 }
8795 }
8796
8797 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8798
8799 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8800 {
8801 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8802 if (s->type != reloc_class_relative)
8803 break;
8804 }
8805 ret = i;
8806 s_non_relative = p;
8807
8808 sq = (struct elf_link_sort_rela *) s_non_relative;
8809 for (; i < count; i++, p += sort_elt)
8810 {
8811 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8812 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8813 sq = sp;
8814 sp->u.offset = sq->rela->r_offset;
8815 }
8816
8817 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8818
8819 struct elf_link_hash_table *htab = elf_hash_table (info);
8820 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8821 {
8822 /* We have plt relocs in .rela.dyn. */
8823 sq = (struct elf_link_sort_rela *) sort;
8824 for (i = 0; i < count; i++)
8825 if (sq[count - i - 1].type != reloc_class_plt)
8826 break;
8827 if (i != 0 && htab->srelplt->size == i * ext_size)
8828 {
8829 struct bfd_link_order **plo;
8830 /* Put srelplt link_order last. This is so the output_offset
8831 set in the next loop is correct for DT_JMPREL. */
8832 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8833 if ((*plo)->type == bfd_indirect_link_order
8834 && (*plo)->u.indirect.section == htab->srelplt)
8835 {
8836 lo = *plo;
8837 *plo = lo->next;
8838 }
8839 else
8840 plo = &(*plo)->next;
8841 *plo = lo;
8842 lo->next = NULL;
8843 dynamic_relocs->map_tail.link_order = lo;
8844 }
8845 }
8846
8847 p = sort;
8848 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8849 if (lo->type == bfd_indirect_link_order)
8850 {
8851 bfd_byte *erel, *erelend;
8852 asection *o = lo->u.indirect.section;
8853
8854 erel = o->contents;
8855 erelend = o->contents + o->size;
8856 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
8857 while (erel < erelend)
8858 {
8859 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8860 (*swap_out) (abfd, s->rela, erel);
8861 p += sort_elt;
8862 erel += ext_size;
8863 }
8864 }
8865
8866 free (sort);
8867 *psec = dynamic_relocs;
8868 return ret;
8869 }
8870
8871 /* Add a symbol to the output symbol string table. */
8872
8873 static int
8874 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
8875 const char *name,
8876 Elf_Internal_Sym *elfsym,
8877 asection *input_sec,
8878 struct elf_link_hash_entry *h)
8879 {
8880 int (*output_symbol_hook)
8881 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8882 struct elf_link_hash_entry *);
8883 struct elf_link_hash_table *hash_table;
8884 const struct elf_backend_data *bed;
8885 bfd_size_type strtabsize;
8886
8887 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8888
8889 bed = get_elf_backend_data (flinfo->output_bfd);
8890 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8891 if (output_symbol_hook != NULL)
8892 {
8893 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8894 if (ret != 1)
8895 return ret;
8896 }
8897
8898 if (name == NULL
8899 || *name == '\0'
8900 || (input_sec->flags & SEC_EXCLUDE))
8901 elfsym->st_name = (unsigned long) -1;
8902 else
8903 {
8904 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8905 to get the final offset for st_name. */
8906 elfsym->st_name
8907 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
8908 name, FALSE);
8909 if (elfsym->st_name == (unsigned long) -1)
8910 return 0;
8911 }
8912
8913 hash_table = elf_hash_table (flinfo->info);
8914 strtabsize = hash_table->strtabsize;
8915 if (strtabsize <= hash_table->strtabcount)
8916 {
8917 strtabsize += strtabsize;
8918 hash_table->strtabsize = strtabsize;
8919 strtabsize *= sizeof (*hash_table->strtab);
8920 hash_table->strtab
8921 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
8922 strtabsize);
8923 if (hash_table->strtab == NULL)
8924 return 0;
8925 }
8926 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
8927 hash_table->strtab[hash_table->strtabcount].dest_index
8928 = hash_table->strtabcount;
8929 hash_table->strtab[hash_table->strtabcount].destshndx_index
8930 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
8931
8932 bfd_get_symcount (flinfo->output_bfd) += 1;
8933 hash_table->strtabcount += 1;
8934
8935 return 1;
8936 }
8937
8938 /* Swap symbols out to the symbol table and flush the output symbols to
8939 the file. */
8940
8941 static bfd_boolean
8942 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
8943 {
8944 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
8945 bfd_size_type amt;
8946 size_t i;
8947 const struct elf_backend_data *bed;
8948 bfd_byte *symbuf;
8949 Elf_Internal_Shdr *hdr;
8950 file_ptr pos;
8951 bfd_boolean ret;
8952
8953 if (!hash_table->strtabcount)
8954 return TRUE;
8955
8956 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
8957
8958 bed = get_elf_backend_data (flinfo->output_bfd);
8959
8960 amt = bed->s->sizeof_sym * hash_table->strtabcount;
8961 symbuf = (bfd_byte *) bfd_malloc (amt);
8962 if (symbuf == NULL)
8963 return FALSE;
8964
8965 if (flinfo->symshndxbuf)
8966 {
8967 amt = sizeof (Elf_External_Sym_Shndx);
8968 amt *= bfd_get_symcount (flinfo->output_bfd);
8969 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
8970 if (flinfo->symshndxbuf == NULL)
8971 {
8972 free (symbuf);
8973 return FALSE;
8974 }
8975 }
8976
8977 for (i = 0; i < hash_table->strtabcount; i++)
8978 {
8979 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
8980 if (elfsym->sym.st_name == (unsigned long) -1)
8981 elfsym->sym.st_name = 0;
8982 else
8983 elfsym->sym.st_name
8984 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
8985 elfsym->sym.st_name);
8986 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
8987 ((bfd_byte *) symbuf
8988 + (elfsym->dest_index
8989 * bed->s->sizeof_sym)),
8990 (flinfo->symshndxbuf
8991 + elfsym->destshndx_index));
8992 }
8993
8994 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8995 pos = hdr->sh_offset + hdr->sh_size;
8996 amt = hash_table->strtabcount * bed->s->sizeof_sym;
8997 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
8998 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
8999 {
9000 hdr->sh_size += amt;
9001 ret = TRUE;
9002 }
9003 else
9004 ret = FALSE;
9005
9006 free (symbuf);
9007
9008 free (hash_table->strtab);
9009 hash_table->strtab = NULL;
9010
9011 return ret;
9012 }
9013
9014 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9015
9016 static bfd_boolean
9017 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9018 {
9019 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9020 && sym->st_shndx < SHN_LORESERVE)
9021 {
9022 /* The gABI doesn't support dynamic symbols in output sections
9023 beyond 64k. */
9024 _bfd_error_handler
9025 (_("%B: Too many sections: %d (>= %d)"),
9026 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9027 bfd_set_error (bfd_error_nonrepresentable_section);
9028 return FALSE;
9029 }
9030 return TRUE;
9031 }
9032
9033 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9034 allowing an unsatisfied unversioned symbol in the DSO to match a
9035 versioned symbol that would normally require an explicit version.
9036 We also handle the case that a DSO references a hidden symbol
9037 which may be satisfied by a versioned symbol in another DSO. */
9038
9039 static bfd_boolean
9040 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9041 const struct elf_backend_data *bed,
9042 struct elf_link_hash_entry *h)
9043 {
9044 bfd *abfd;
9045 struct elf_link_loaded_list *loaded;
9046
9047 if (!is_elf_hash_table (info->hash))
9048 return FALSE;
9049
9050 /* Check indirect symbol. */
9051 while (h->root.type == bfd_link_hash_indirect)
9052 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9053
9054 switch (h->root.type)
9055 {
9056 default:
9057 abfd = NULL;
9058 break;
9059
9060 case bfd_link_hash_undefined:
9061 case bfd_link_hash_undefweak:
9062 abfd = h->root.u.undef.abfd;
9063 if (abfd == NULL
9064 || (abfd->flags & DYNAMIC) == 0
9065 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9066 return FALSE;
9067 break;
9068
9069 case bfd_link_hash_defined:
9070 case bfd_link_hash_defweak:
9071 abfd = h->root.u.def.section->owner;
9072 break;
9073
9074 case bfd_link_hash_common:
9075 abfd = h->root.u.c.p->section->owner;
9076 break;
9077 }
9078 BFD_ASSERT (abfd != NULL);
9079
9080 for (loaded = elf_hash_table (info)->loaded;
9081 loaded != NULL;
9082 loaded = loaded->next)
9083 {
9084 bfd *input;
9085 Elf_Internal_Shdr *hdr;
9086 size_t symcount;
9087 size_t extsymcount;
9088 size_t extsymoff;
9089 Elf_Internal_Shdr *versymhdr;
9090 Elf_Internal_Sym *isym;
9091 Elf_Internal_Sym *isymend;
9092 Elf_Internal_Sym *isymbuf;
9093 Elf_External_Versym *ever;
9094 Elf_External_Versym *extversym;
9095
9096 input = loaded->abfd;
9097
9098 /* We check each DSO for a possible hidden versioned definition. */
9099 if (input == abfd
9100 || (input->flags & DYNAMIC) == 0
9101 || elf_dynversym (input) == 0)
9102 continue;
9103
9104 hdr = &elf_tdata (input)->dynsymtab_hdr;
9105
9106 symcount = hdr->sh_size / bed->s->sizeof_sym;
9107 if (elf_bad_symtab (input))
9108 {
9109 extsymcount = symcount;
9110 extsymoff = 0;
9111 }
9112 else
9113 {
9114 extsymcount = symcount - hdr->sh_info;
9115 extsymoff = hdr->sh_info;
9116 }
9117
9118 if (extsymcount == 0)
9119 continue;
9120
9121 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9122 NULL, NULL, NULL);
9123 if (isymbuf == NULL)
9124 return FALSE;
9125
9126 /* Read in any version definitions. */
9127 versymhdr = &elf_tdata (input)->dynversym_hdr;
9128 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9129 if (extversym == NULL)
9130 goto error_ret;
9131
9132 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9133 || (bfd_bread (extversym, versymhdr->sh_size, input)
9134 != versymhdr->sh_size))
9135 {
9136 free (extversym);
9137 error_ret:
9138 free (isymbuf);
9139 return FALSE;
9140 }
9141
9142 ever = extversym + extsymoff;
9143 isymend = isymbuf + extsymcount;
9144 for (isym = isymbuf; isym < isymend; isym++, ever++)
9145 {
9146 const char *name;
9147 Elf_Internal_Versym iver;
9148 unsigned short version_index;
9149
9150 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9151 || isym->st_shndx == SHN_UNDEF)
9152 continue;
9153
9154 name = bfd_elf_string_from_elf_section (input,
9155 hdr->sh_link,
9156 isym->st_name);
9157 if (strcmp (name, h->root.root.string) != 0)
9158 continue;
9159
9160 _bfd_elf_swap_versym_in (input, ever, &iver);
9161
9162 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9163 && !(h->def_regular
9164 && h->forced_local))
9165 {
9166 /* If we have a non-hidden versioned sym, then it should
9167 have provided a definition for the undefined sym unless
9168 it is defined in a non-shared object and forced local.
9169 */
9170 abort ();
9171 }
9172
9173 version_index = iver.vs_vers & VERSYM_VERSION;
9174 if (version_index == 1 || version_index == 2)
9175 {
9176 /* This is the base or first version. We can use it. */
9177 free (extversym);
9178 free (isymbuf);
9179 return TRUE;
9180 }
9181 }
9182
9183 free (extversym);
9184 free (isymbuf);
9185 }
9186
9187 return FALSE;
9188 }
9189
9190 /* Convert ELF common symbol TYPE. */
9191
9192 static int
9193 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9194 {
9195 /* Commom symbol can only appear in relocatable link. */
9196 if (!bfd_link_relocatable (info))
9197 abort ();
9198 switch (info->elf_stt_common)
9199 {
9200 case unchanged:
9201 break;
9202 case elf_stt_common:
9203 type = STT_COMMON;
9204 break;
9205 case no_elf_stt_common:
9206 type = STT_OBJECT;
9207 break;
9208 }
9209 return type;
9210 }
9211
9212 /* Add an external symbol to the symbol table. This is called from
9213 the hash table traversal routine. When generating a shared object,
9214 we go through the symbol table twice. The first time we output
9215 anything that might have been forced to local scope in a version
9216 script. The second time we output the symbols that are still
9217 global symbols. */
9218
9219 static bfd_boolean
9220 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9221 {
9222 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9223 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9224 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9225 bfd_boolean strip;
9226 Elf_Internal_Sym sym;
9227 asection *input_sec;
9228 const struct elf_backend_data *bed;
9229 long indx;
9230 int ret;
9231 unsigned int type;
9232 /* A symbol is bound locally if it is forced local or it is locally
9233 defined, hidden versioned, not referenced by shared library and
9234 not exported when linking executable. */
9235 bfd_boolean local_bind = (h->forced_local
9236 || (bfd_link_executable (flinfo->info)
9237 && !flinfo->info->export_dynamic
9238 && !h->dynamic
9239 && !h->ref_dynamic
9240 && h->def_regular
9241 && h->versioned == versioned_hidden));
9242
9243 if (h->root.type == bfd_link_hash_warning)
9244 {
9245 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9246 if (h->root.type == bfd_link_hash_new)
9247 return TRUE;
9248 }
9249
9250 /* Decide whether to output this symbol in this pass. */
9251 if (eoinfo->localsyms)
9252 {
9253 if (!local_bind)
9254 return TRUE;
9255 }
9256 else
9257 {
9258 if (local_bind)
9259 return TRUE;
9260 }
9261
9262 bed = get_elf_backend_data (flinfo->output_bfd);
9263
9264 if (h->root.type == bfd_link_hash_undefined)
9265 {
9266 /* If we have an undefined symbol reference here then it must have
9267 come from a shared library that is being linked in. (Undefined
9268 references in regular files have already been handled unless
9269 they are in unreferenced sections which are removed by garbage
9270 collection). */
9271 bfd_boolean ignore_undef = FALSE;
9272
9273 /* Some symbols may be special in that the fact that they're
9274 undefined can be safely ignored - let backend determine that. */
9275 if (bed->elf_backend_ignore_undef_symbol)
9276 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9277
9278 /* If we are reporting errors for this situation then do so now. */
9279 if (!ignore_undef
9280 && h->ref_dynamic
9281 && (!h->ref_regular || flinfo->info->gc_sections)
9282 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9283 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9284 (*flinfo->info->callbacks->undefined_symbol)
9285 (flinfo->info, h->root.root.string,
9286 h->ref_regular ? NULL : h->root.u.undef.abfd,
9287 NULL, 0,
9288 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9289
9290 /* Strip a global symbol defined in a discarded section. */
9291 if (h->indx == -3)
9292 return TRUE;
9293 }
9294
9295 /* We should also warn if a forced local symbol is referenced from
9296 shared libraries. */
9297 if (bfd_link_executable (flinfo->info)
9298 && h->forced_local
9299 && h->ref_dynamic
9300 && h->def_regular
9301 && !h->dynamic_def
9302 && h->ref_dynamic_nonweak
9303 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9304 {
9305 bfd *def_bfd;
9306 const char *msg;
9307 struct elf_link_hash_entry *hi = h;
9308
9309 /* Check indirect symbol. */
9310 while (hi->root.type == bfd_link_hash_indirect)
9311 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9312
9313 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9314 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9315 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9316 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9317 else
9318 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9319 def_bfd = flinfo->output_bfd;
9320 if (hi->root.u.def.section != bfd_abs_section_ptr)
9321 def_bfd = hi->root.u.def.section->owner;
9322 _bfd_error_handler (msg, flinfo->output_bfd, def_bfd,
9323 h->root.root.string);
9324 bfd_set_error (bfd_error_bad_value);
9325 eoinfo->failed = TRUE;
9326 return FALSE;
9327 }
9328
9329 /* We don't want to output symbols that have never been mentioned by
9330 a regular file, or that we have been told to strip. However, if
9331 h->indx is set to -2, the symbol is used by a reloc and we must
9332 output it. */
9333 strip = FALSE;
9334 if (h->indx == -2)
9335 ;
9336 else if ((h->def_dynamic
9337 || h->ref_dynamic
9338 || h->root.type == bfd_link_hash_new)
9339 && !h->def_regular
9340 && !h->ref_regular)
9341 strip = TRUE;
9342 else if (flinfo->info->strip == strip_all)
9343 strip = TRUE;
9344 else if (flinfo->info->strip == strip_some
9345 && bfd_hash_lookup (flinfo->info->keep_hash,
9346 h->root.root.string, FALSE, FALSE) == NULL)
9347 strip = TRUE;
9348 else if ((h->root.type == bfd_link_hash_defined
9349 || h->root.type == bfd_link_hash_defweak)
9350 && ((flinfo->info->strip_discarded
9351 && discarded_section (h->root.u.def.section))
9352 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9353 && h->root.u.def.section->owner != NULL
9354 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9355 strip = TRUE;
9356 else if ((h->root.type == bfd_link_hash_undefined
9357 || h->root.type == bfd_link_hash_undefweak)
9358 && h->root.u.undef.abfd != NULL
9359 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9360 strip = TRUE;
9361
9362 type = h->type;
9363
9364 /* If we're stripping it, and it's not a dynamic symbol, there's
9365 nothing else to do. However, if it is a forced local symbol or
9366 an ifunc symbol we need to give the backend finish_dynamic_symbol
9367 function a chance to make it dynamic. */
9368 if (strip
9369 && h->dynindx == -1
9370 && type != STT_GNU_IFUNC
9371 && !h->forced_local)
9372 return TRUE;
9373
9374 sym.st_value = 0;
9375 sym.st_size = h->size;
9376 sym.st_other = h->other;
9377 switch (h->root.type)
9378 {
9379 default:
9380 case bfd_link_hash_new:
9381 case bfd_link_hash_warning:
9382 abort ();
9383 return FALSE;
9384
9385 case bfd_link_hash_undefined:
9386 case bfd_link_hash_undefweak:
9387 input_sec = bfd_und_section_ptr;
9388 sym.st_shndx = SHN_UNDEF;
9389 break;
9390
9391 case bfd_link_hash_defined:
9392 case bfd_link_hash_defweak:
9393 {
9394 input_sec = h->root.u.def.section;
9395 if (input_sec->output_section != NULL)
9396 {
9397 sym.st_shndx =
9398 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9399 input_sec->output_section);
9400 if (sym.st_shndx == SHN_BAD)
9401 {
9402 _bfd_error_handler
9403 (_("%B: could not find output section %A for input section %A"),
9404 flinfo->output_bfd, input_sec->output_section, input_sec);
9405 bfd_set_error (bfd_error_nonrepresentable_section);
9406 eoinfo->failed = TRUE;
9407 return FALSE;
9408 }
9409
9410 /* ELF symbols in relocatable files are section relative,
9411 but in nonrelocatable files they are virtual
9412 addresses. */
9413 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9414 if (!bfd_link_relocatable (flinfo->info))
9415 {
9416 sym.st_value += input_sec->output_section->vma;
9417 if (h->type == STT_TLS)
9418 {
9419 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9420 if (tls_sec != NULL)
9421 sym.st_value -= tls_sec->vma;
9422 }
9423 }
9424 }
9425 else
9426 {
9427 BFD_ASSERT (input_sec->owner == NULL
9428 || (input_sec->owner->flags & DYNAMIC) != 0);
9429 sym.st_shndx = SHN_UNDEF;
9430 input_sec = bfd_und_section_ptr;
9431 }
9432 }
9433 break;
9434
9435 case bfd_link_hash_common:
9436 input_sec = h->root.u.c.p->section;
9437 sym.st_shndx = bed->common_section_index (input_sec);
9438 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9439 break;
9440
9441 case bfd_link_hash_indirect:
9442 /* These symbols are created by symbol versioning. They point
9443 to the decorated version of the name. For example, if the
9444 symbol foo@@GNU_1.2 is the default, which should be used when
9445 foo is used with no version, then we add an indirect symbol
9446 foo which points to foo@@GNU_1.2. We ignore these symbols,
9447 since the indirected symbol is already in the hash table. */
9448 return TRUE;
9449 }
9450
9451 if (type == STT_COMMON || type == STT_OBJECT)
9452 switch (h->root.type)
9453 {
9454 case bfd_link_hash_common:
9455 type = elf_link_convert_common_type (flinfo->info, type);
9456 break;
9457 case bfd_link_hash_defined:
9458 case bfd_link_hash_defweak:
9459 if (bed->common_definition (&sym))
9460 type = elf_link_convert_common_type (flinfo->info, type);
9461 else
9462 type = STT_OBJECT;
9463 break;
9464 case bfd_link_hash_undefined:
9465 case bfd_link_hash_undefweak:
9466 break;
9467 default:
9468 abort ();
9469 }
9470
9471 if (local_bind)
9472 {
9473 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9474 /* Turn off visibility on local symbol. */
9475 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9476 }
9477 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9478 else if (h->unique_global && h->def_regular)
9479 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9480 else if (h->root.type == bfd_link_hash_undefweak
9481 || h->root.type == bfd_link_hash_defweak)
9482 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9483 else
9484 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9485 sym.st_target_internal = h->target_internal;
9486
9487 /* Give the processor backend a chance to tweak the symbol value,
9488 and also to finish up anything that needs to be done for this
9489 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9490 forced local syms when non-shared is due to a historical quirk.
9491 STT_GNU_IFUNC symbol must go through PLT. */
9492 if ((h->type == STT_GNU_IFUNC
9493 && h->def_regular
9494 && !bfd_link_relocatable (flinfo->info))
9495 || ((h->dynindx != -1
9496 || h->forced_local)
9497 && ((bfd_link_pic (flinfo->info)
9498 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9499 || h->root.type != bfd_link_hash_undefweak))
9500 || !h->forced_local)
9501 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9502 {
9503 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9504 (flinfo->output_bfd, flinfo->info, h, &sym)))
9505 {
9506 eoinfo->failed = TRUE;
9507 return FALSE;
9508 }
9509 }
9510
9511 /* If we are marking the symbol as undefined, and there are no
9512 non-weak references to this symbol from a regular object, then
9513 mark the symbol as weak undefined; if there are non-weak
9514 references, mark the symbol as strong. We can't do this earlier,
9515 because it might not be marked as undefined until the
9516 finish_dynamic_symbol routine gets through with it. */
9517 if (sym.st_shndx == SHN_UNDEF
9518 && h->ref_regular
9519 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9520 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9521 {
9522 int bindtype;
9523 type = ELF_ST_TYPE (sym.st_info);
9524
9525 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9526 if (type == STT_GNU_IFUNC)
9527 type = STT_FUNC;
9528
9529 if (h->ref_regular_nonweak)
9530 bindtype = STB_GLOBAL;
9531 else
9532 bindtype = STB_WEAK;
9533 sym.st_info = ELF_ST_INFO (bindtype, type);
9534 }
9535
9536 /* If this is a symbol defined in a dynamic library, don't use the
9537 symbol size from the dynamic library. Relinking an executable
9538 against a new library may introduce gratuitous changes in the
9539 executable's symbols if we keep the size. */
9540 if (sym.st_shndx == SHN_UNDEF
9541 && !h->def_regular
9542 && h->def_dynamic)
9543 sym.st_size = 0;
9544
9545 /* If a non-weak symbol with non-default visibility is not defined
9546 locally, it is a fatal error. */
9547 if (!bfd_link_relocatable (flinfo->info)
9548 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9549 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9550 && h->root.type == bfd_link_hash_undefined
9551 && !h->def_regular)
9552 {
9553 const char *msg;
9554
9555 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9556 msg = _("%B: protected symbol `%s' isn't defined");
9557 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9558 msg = _("%B: internal symbol `%s' isn't defined");
9559 else
9560 msg = _("%B: hidden symbol `%s' isn't defined");
9561 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9562 bfd_set_error (bfd_error_bad_value);
9563 eoinfo->failed = TRUE;
9564 return FALSE;
9565 }
9566
9567 /* If this symbol should be put in the .dynsym section, then put it
9568 there now. We already know the symbol index. We also fill in
9569 the entry in the .hash section. */
9570 if (elf_hash_table (flinfo->info)->dynsym != NULL
9571 && h->dynindx != -1
9572 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9573 {
9574 bfd_byte *esym;
9575
9576 /* Since there is no version information in the dynamic string,
9577 if there is no version info in symbol version section, we will
9578 have a run-time problem if not linking executable, referenced
9579 by shared library, not locally defined, or not bound locally.
9580 */
9581 if (h->verinfo.verdef == NULL
9582 && !local_bind
9583 && (!bfd_link_executable (flinfo->info)
9584 || h->ref_dynamic
9585 || !h->def_regular))
9586 {
9587 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9588
9589 if (p && p [1] != '\0')
9590 {
9591 _bfd_error_handler
9592 (_("%B: No symbol version section for versioned symbol `%s'"),
9593 flinfo->output_bfd, h->root.root.string);
9594 eoinfo->failed = TRUE;
9595 return FALSE;
9596 }
9597 }
9598
9599 sym.st_name = h->dynstr_index;
9600 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9601 + h->dynindx * bed->s->sizeof_sym);
9602 if (!check_dynsym (flinfo->output_bfd, &sym))
9603 {
9604 eoinfo->failed = TRUE;
9605 return FALSE;
9606 }
9607 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9608
9609 if (flinfo->hash_sec != NULL)
9610 {
9611 size_t hash_entry_size;
9612 bfd_byte *bucketpos;
9613 bfd_vma chain;
9614 size_t bucketcount;
9615 size_t bucket;
9616
9617 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9618 bucket = h->u.elf_hash_value % bucketcount;
9619
9620 hash_entry_size
9621 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9622 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9623 + (bucket + 2) * hash_entry_size);
9624 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9625 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9626 bucketpos);
9627 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9628 ((bfd_byte *) flinfo->hash_sec->contents
9629 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9630 }
9631
9632 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9633 {
9634 Elf_Internal_Versym iversym;
9635 Elf_External_Versym *eversym;
9636
9637 if (!h->def_regular)
9638 {
9639 if (h->verinfo.verdef == NULL
9640 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9641 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9642 iversym.vs_vers = 0;
9643 else
9644 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9645 }
9646 else
9647 {
9648 if (h->verinfo.vertree == NULL)
9649 iversym.vs_vers = 1;
9650 else
9651 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9652 if (flinfo->info->create_default_symver)
9653 iversym.vs_vers++;
9654 }
9655
9656 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9657 defined locally. */
9658 if (h->versioned == versioned_hidden && h->def_regular)
9659 iversym.vs_vers |= VERSYM_HIDDEN;
9660
9661 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9662 eversym += h->dynindx;
9663 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9664 }
9665 }
9666
9667 /* If the symbol is undefined, and we didn't output it to .dynsym,
9668 strip it from .symtab too. Obviously we can't do this for
9669 relocatable output or when needed for --emit-relocs. */
9670 else if (input_sec == bfd_und_section_ptr
9671 && h->indx != -2
9672 && !bfd_link_relocatable (flinfo->info))
9673 return TRUE;
9674 /* Also strip others that we couldn't earlier due to dynamic symbol
9675 processing. */
9676 if (strip)
9677 return TRUE;
9678 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9679 return TRUE;
9680
9681 /* Output a FILE symbol so that following locals are not associated
9682 with the wrong input file. We need one for forced local symbols
9683 if we've seen more than one FILE symbol or when we have exactly
9684 one FILE symbol but global symbols are present in a file other
9685 than the one with the FILE symbol. We also need one if linker
9686 defined symbols are present. In practice these conditions are
9687 always met, so just emit the FILE symbol unconditionally. */
9688 if (eoinfo->localsyms
9689 && !eoinfo->file_sym_done
9690 && eoinfo->flinfo->filesym_count != 0)
9691 {
9692 Elf_Internal_Sym fsym;
9693
9694 memset (&fsym, 0, sizeof (fsym));
9695 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9696 fsym.st_shndx = SHN_ABS;
9697 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9698 bfd_und_section_ptr, NULL))
9699 return FALSE;
9700
9701 eoinfo->file_sym_done = TRUE;
9702 }
9703
9704 indx = bfd_get_symcount (flinfo->output_bfd);
9705 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9706 input_sec, h);
9707 if (ret == 0)
9708 {
9709 eoinfo->failed = TRUE;
9710 return FALSE;
9711 }
9712 else if (ret == 1)
9713 h->indx = indx;
9714 else if (h->indx == -2)
9715 abort();
9716
9717 return TRUE;
9718 }
9719
9720 /* Return TRUE if special handling is done for relocs in SEC against
9721 symbols defined in discarded sections. */
9722
9723 static bfd_boolean
9724 elf_section_ignore_discarded_relocs (asection *sec)
9725 {
9726 const struct elf_backend_data *bed;
9727
9728 switch (sec->sec_info_type)
9729 {
9730 case SEC_INFO_TYPE_STABS:
9731 case SEC_INFO_TYPE_EH_FRAME:
9732 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9733 return TRUE;
9734 default:
9735 break;
9736 }
9737
9738 bed = get_elf_backend_data (sec->owner);
9739 if (bed->elf_backend_ignore_discarded_relocs != NULL
9740 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9741 return TRUE;
9742
9743 return FALSE;
9744 }
9745
9746 /* Return a mask saying how ld should treat relocations in SEC against
9747 symbols defined in discarded sections. If this function returns
9748 COMPLAIN set, ld will issue a warning message. If this function
9749 returns PRETEND set, and the discarded section was link-once and the
9750 same size as the kept link-once section, ld will pretend that the
9751 symbol was actually defined in the kept section. Otherwise ld will
9752 zero the reloc (at least that is the intent, but some cooperation by
9753 the target dependent code is needed, particularly for REL targets). */
9754
9755 unsigned int
9756 _bfd_elf_default_action_discarded (asection *sec)
9757 {
9758 if (sec->flags & SEC_DEBUGGING)
9759 return PRETEND;
9760
9761 if (strcmp (".eh_frame", sec->name) == 0)
9762 return 0;
9763
9764 if (strcmp (".gcc_except_table", sec->name) == 0)
9765 return 0;
9766
9767 return COMPLAIN | PRETEND;
9768 }
9769
9770 /* Find a match between a section and a member of a section group. */
9771
9772 static asection *
9773 match_group_member (asection *sec, asection *group,
9774 struct bfd_link_info *info)
9775 {
9776 asection *first = elf_next_in_group (group);
9777 asection *s = first;
9778
9779 while (s != NULL)
9780 {
9781 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9782 return s;
9783
9784 s = elf_next_in_group (s);
9785 if (s == first)
9786 break;
9787 }
9788
9789 return NULL;
9790 }
9791
9792 /* Check if the kept section of a discarded section SEC can be used
9793 to replace it. Return the replacement if it is OK. Otherwise return
9794 NULL. */
9795
9796 asection *
9797 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9798 {
9799 asection *kept;
9800
9801 kept = sec->kept_section;
9802 if (kept != NULL)
9803 {
9804 if ((kept->flags & SEC_GROUP) != 0)
9805 kept = match_group_member (sec, kept, info);
9806 if (kept != NULL
9807 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9808 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9809 kept = NULL;
9810 sec->kept_section = kept;
9811 }
9812 return kept;
9813 }
9814
9815 /* Link an input file into the linker output file. This function
9816 handles all the sections and relocations of the input file at once.
9817 This is so that we only have to read the local symbols once, and
9818 don't have to keep them in memory. */
9819
9820 static bfd_boolean
9821 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9822 {
9823 int (*relocate_section)
9824 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9825 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9826 bfd *output_bfd;
9827 Elf_Internal_Shdr *symtab_hdr;
9828 size_t locsymcount;
9829 size_t extsymoff;
9830 Elf_Internal_Sym *isymbuf;
9831 Elf_Internal_Sym *isym;
9832 Elf_Internal_Sym *isymend;
9833 long *pindex;
9834 asection **ppsection;
9835 asection *o;
9836 const struct elf_backend_data *bed;
9837 struct elf_link_hash_entry **sym_hashes;
9838 bfd_size_type address_size;
9839 bfd_vma r_type_mask;
9840 int r_sym_shift;
9841 bfd_boolean have_file_sym = FALSE;
9842
9843 output_bfd = flinfo->output_bfd;
9844 bed = get_elf_backend_data (output_bfd);
9845 relocate_section = bed->elf_backend_relocate_section;
9846
9847 /* If this is a dynamic object, we don't want to do anything here:
9848 we don't want the local symbols, and we don't want the section
9849 contents. */
9850 if ((input_bfd->flags & DYNAMIC) != 0)
9851 return TRUE;
9852
9853 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9854 if (elf_bad_symtab (input_bfd))
9855 {
9856 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9857 extsymoff = 0;
9858 }
9859 else
9860 {
9861 locsymcount = symtab_hdr->sh_info;
9862 extsymoff = symtab_hdr->sh_info;
9863 }
9864
9865 /* Read the local symbols. */
9866 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9867 if (isymbuf == NULL && locsymcount != 0)
9868 {
9869 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9870 flinfo->internal_syms,
9871 flinfo->external_syms,
9872 flinfo->locsym_shndx);
9873 if (isymbuf == NULL)
9874 return FALSE;
9875 }
9876
9877 /* Find local symbol sections and adjust values of symbols in
9878 SEC_MERGE sections. Write out those local symbols we know are
9879 going into the output file. */
9880 isymend = isymbuf + locsymcount;
9881 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9882 isym < isymend;
9883 isym++, pindex++, ppsection++)
9884 {
9885 asection *isec;
9886 const char *name;
9887 Elf_Internal_Sym osym;
9888 long indx;
9889 int ret;
9890
9891 *pindex = -1;
9892
9893 if (elf_bad_symtab (input_bfd))
9894 {
9895 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9896 {
9897 *ppsection = NULL;
9898 continue;
9899 }
9900 }
9901
9902 if (isym->st_shndx == SHN_UNDEF)
9903 isec = bfd_und_section_ptr;
9904 else if (isym->st_shndx == SHN_ABS)
9905 isec = bfd_abs_section_ptr;
9906 else if (isym->st_shndx == SHN_COMMON)
9907 isec = bfd_com_section_ptr;
9908 else
9909 {
9910 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9911 if (isec == NULL)
9912 {
9913 /* Don't attempt to output symbols with st_shnx in the
9914 reserved range other than SHN_ABS and SHN_COMMON. */
9915 *ppsection = NULL;
9916 continue;
9917 }
9918 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9919 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9920 isym->st_value =
9921 _bfd_merged_section_offset (output_bfd, &isec,
9922 elf_section_data (isec)->sec_info,
9923 isym->st_value);
9924 }
9925
9926 *ppsection = isec;
9927
9928 /* Don't output the first, undefined, symbol. In fact, don't
9929 output any undefined local symbol. */
9930 if (isec == bfd_und_section_ptr)
9931 continue;
9932
9933 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9934 {
9935 /* We never output section symbols. Instead, we use the
9936 section symbol of the corresponding section in the output
9937 file. */
9938 continue;
9939 }
9940
9941 /* If we are stripping all symbols, we don't want to output this
9942 one. */
9943 if (flinfo->info->strip == strip_all)
9944 continue;
9945
9946 /* If we are discarding all local symbols, we don't want to
9947 output this one. If we are generating a relocatable output
9948 file, then some of the local symbols may be required by
9949 relocs; we output them below as we discover that they are
9950 needed. */
9951 if (flinfo->info->discard == discard_all)
9952 continue;
9953
9954 /* If this symbol is defined in a section which we are
9955 discarding, we don't need to keep it. */
9956 if (isym->st_shndx != SHN_UNDEF
9957 && isym->st_shndx < SHN_LORESERVE
9958 && bfd_section_removed_from_list (output_bfd,
9959 isec->output_section))
9960 continue;
9961
9962 /* Get the name of the symbol. */
9963 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9964 isym->st_name);
9965 if (name == NULL)
9966 return FALSE;
9967
9968 /* See if we are discarding symbols with this name. */
9969 if ((flinfo->info->strip == strip_some
9970 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9971 == NULL))
9972 || (((flinfo->info->discard == discard_sec_merge
9973 && (isec->flags & SEC_MERGE)
9974 && !bfd_link_relocatable (flinfo->info))
9975 || flinfo->info->discard == discard_l)
9976 && bfd_is_local_label_name (input_bfd, name)))
9977 continue;
9978
9979 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9980 {
9981 if (input_bfd->lto_output)
9982 /* -flto puts a temp file name here. This means builds
9983 are not reproducible. Discard the symbol. */
9984 continue;
9985 have_file_sym = TRUE;
9986 flinfo->filesym_count += 1;
9987 }
9988 if (!have_file_sym)
9989 {
9990 /* In the absence of debug info, bfd_find_nearest_line uses
9991 FILE symbols to determine the source file for local
9992 function symbols. Provide a FILE symbol here if input
9993 files lack such, so that their symbols won't be
9994 associated with a previous input file. It's not the
9995 source file, but the best we can do. */
9996 have_file_sym = TRUE;
9997 flinfo->filesym_count += 1;
9998 memset (&osym, 0, sizeof (osym));
9999 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10000 osym.st_shndx = SHN_ABS;
10001 if (!elf_link_output_symstrtab (flinfo,
10002 (input_bfd->lto_output ? NULL
10003 : input_bfd->filename),
10004 &osym, bfd_abs_section_ptr,
10005 NULL))
10006 return FALSE;
10007 }
10008
10009 osym = *isym;
10010
10011 /* Adjust the section index for the output file. */
10012 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10013 isec->output_section);
10014 if (osym.st_shndx == SHN_BAD)
10015 return FALSE;
10016
10017 /* ELF symbols in relocatable files are section relative, but
10018 in executable files they are virtual addresses. Note that
10019 this code assumes that all ELF sections have an associated
10020 BFD section with a reasonable value for output_offset; below
10021 we assume that they also have a reasonable value for
10022 output_section. Any special sections must be set up to meet
10023 these requirements. */
10024 osym.st_value += isec->output_offset;
10025 if (!bfd_link_relocatable (flinfo->info))
10026 {
10027 osym.st_value += isec->output_section->vma;
10028 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10029 {
10030 /* STT_TLS symbols are relative to PT_TLS segment base. */
10031 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10032 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10033 }
10034 }
10035
10036 indx = bfd_get_symcount (output_bfd);
10037 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10038 if (ret == 0)
10039 return FALSE;
10040 else if (ret == 1)
10041 *pindex = indx;
10042 }
10043
10044 if (bed->s->arch_size == 32)
10045 {
10046 r_type_mask = 0xff;
10047 r_sym_shift = 8;
10048 address_size = 4;
10049 }
10050 else
10051 {
10052 r_type_mask = 0xffffffff;
10053 r_sym_shift = 32;
10054 address_size = 8;
10055 }
10056
10057 /* Relocate the contents of each section. */
10058 sym_hashes = elf_sym_hashes (input_bfd);
10059 for (o = input_bfd->sections; o != NULL; o = o->next)
10060 {
10061 bfd_byte *contents;
10062
10063 if (! o->linker_mark)
10064 {
10065 /* This section was omitted from the link. */
10066 continue;
10067 }
10068
10069 if (bfd_link_relocatable (flinfo->info)
10070 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10071 {
10072 /* Deal with the group signature symbol. */
10073 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10074 unsigned long symndx = sec_data->this_hdr.sh_info;
10075 asection *osec = o->output_section;
10076
10077 if (symndx >= locsymcount
10078 || (elf_bad_symtab (input_bfd)
10079 && flinfo->sections[symndx] == NULL))
10080 {
10081 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10082 while (h->root.type == bfd_link_hash_indirect
10083 || h->root.type == bfd_link_hash_warning)
10084 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10085 /* Arrange for symbol to be output. */
10086 h->indx = -2;
10087 elf_section_data (osec)->this_hdr.sh_info = -2;
10088 }
10089 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10090 {
10091 /* We'll use the output section target_index. */
10092 asection *sec = flinfo->sections[symndx]->output_section;
10093 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10094 }
10095 else
10096 {
10097 if (flinfo->indices[symndx] == -1)
10098 {
10099 /* Otherwise output the local symbol now. */
10100 Elf_Internal_Sym sym = isymbuf[symndx];
10101 asection *sec = flinfo->sections[symndx]->output_section;
10102 const char *name;
10103 long indx;
10104 int ret;
10105
10106 name = bfd_elf_string_from_elf_section (input_bfd,
10107 symtab_hdr->sh_link,
10108 sym.st_name);
10109 if (name == NULL)
10110 return FALSE;
10111
10112 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10113 sec);
10114 if (sym.st_shndx == SHN_BAD)
10115 return FALSE;
10116
10117 sym.st_value += o->output_offset;
10118
10119 indx = bfd_get_symcount (output_bfd);
10120 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10121 NULL);
10122 if (ret == 0)
10123 return FALSE;
10124 else if (ret == 1)
10125 flinfo->indices[symndx] = indx;
10126 else
10127 abort ();
10128 }
10129 elf_section_data (osec)->this_hdr.sh_info
10130 = flinfo->indices[symndx];
10131 }
10132 }
10133
10134 if ((o->flags & SEC_HAS_CONTENTS) == 0
10135 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10136 continue;
10137
10138 if ((o->flags & SEC_LINKER_CREATED) != 0)
10139 {
10140 /* Section was created by _bfd_elf_link_create_dynamic_sections
10141 or somesuch. */
10142 continue;
10143 }
10144
10145 /* Get the contents of the section. They have been cached by a
10146 relaxation routine. Note that o is a section in an input
10147 file, so the contents field will not have been set by any of
10148 the routines which work on output files. */
10149 if (elf_section_data (o)->this_hdr.contents != NULL)
10150 {
10151 contents = elf_section_data (o)->this_hdr.contents;
10152 if (bed->caches_rawsize
10153 && o->rawsize != 0
10154 && o->rawsize < o->size)
10155 {
10156 memcpy (flinfo->contents, contents, o->rawsize);
10157 contents = flinfo->contents;
10158 }
10159 }
10160 else
10161 {
10162 contents = flinfo->contents;
10163 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10164 return FALSE;
10165 }
10166
10167 if ((o->flags & SEC_RELOC) != 0)
10168 {
10169 Elf_Internal_Rela *internal_relocs;
10170 Elf_Internal_Rela *rel, *relend;
10171 int action_discarded;
10172 int ret;
10173
10174 /* Get the swapped relocs. */
10175 internal_relocs
10176 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10177 flinfo->internal_relocs, FALSE);
10178 if (internal_relocs == NULL
10179 && o->reloc_count > 0)
10180 return FALSE;
10181
10182 /* We need to reverse-copy input .ctors/.dtors sections if
10183 they are placed in .init_array/.finit_array for output. */
10184 if (o->size > address_size
10185 && ((strncmp (o->name, ".ctors", 6) == 0
10186 && strcmp (o->output_section->name,
10187 ".init_array") == 0)
10188 || (strncmp (o->name, ".dtors", 6) == 0
10189 && strcmp (o->output_section->name,
10190 ".fini_array") == 0))
10191 && (o->name[6] == 0 || o->name[6] == '.'))
10192 {
10193 if (o->size != o->reloc_count * address_size)
10194 {
10195 _bfd_error_handler
10196 (_("error: %B: size of section %A is not "
10197 "multiple of address size"),
10198 input_bfd, o);
10199 bfd_set_error (bfd_error_on_input);
10200 return FALSE;
10201 }
10202 o->flags |= SEC_ELF_REVERSE_COPY;
10203 }
10204
10205 action_discarded = -1;
10206 if (!elf_section_ignore_discarded_relocs (o))
10207 action_discarded = (*bed->action_discarded) (o);
10208
10209 /* Run through the relocs evaluating complex reloc symbols and
10210 looking for relocs against symbols from discarded sections
10211 or section symbols from removed link-once sections.
10212 Complain about relocs against discarded sections. Zero
10213 relocs against removed link-once sections. */
10214
10215 rel = internal_relocs;
10216 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10217 for ( ; rel < relend; rel++)
10218 {
10219 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10220 unsigned int s_type;
10221 asection **ps, *sec;
10222 struct elf_link_hash_entry *h = NULL;
10223 const char *sym_name;
10224
10225 if (r_symndx == STN_UNDEF)
10226 continue;
10227
10228 if (r_symndx >= locsymcount
10229 || (elf_bad_symtab (input_bfd)
10230 && flinfo->sections[r_symndx] == NULL))
10231 {
10232 h = sym_hashes[r_symndx - extsymoff];
10233
10234 /* Badly formatted input files can contain relocs that
10235 reference non-existant symbols. Check here so that
10236 we do not seg fault. */
10237 if (h == NULL)
10238 {
10239 char buffer [32];
10240
10241 sprintf_vma (buffer, rel->r_info);
10242 _bfd_error_handler
10243 (_("error: %B contains a reloc (0x%s) for section %A "
10244 "that references a non-existent global symbol"),
10245 input_bfd, o, buffer);
10246 bfd_set_error (bfd_error_bad_value);
10247 return FALSE;
10248 }
10249
10250 while (h->root.type == bfd_link_hash_indirect
10251 || h->root.type == bfd_link_hash_warning)
10252 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10253
10254 s_type = h->type;
10255
10256 /* If a plugin symbol is referenced from a non-IR file,
10257 mark the symbol as undefined. Note that the
10258 linker may attach linker created dynamic sections
10259 to the plugin bfd. Symbols defined in linker
10260 created sections are not plugin symbols. */
10261 if (h->root.non_ir_ref
10262 && (h->root.type == bfd_link_hash_defined
10263 || h->root.type == bfd_link_hash_defweak)
10264 && (h->root.u.def.section->flags
10265 & SEC_LINKER_CREATED) == 0
10266 && h->root.u.def.section->owner != NULL
10267 && (h->root.u.def.section->owner->flags
10268 & BFD_PLUGIN) != 0)
10269 {
10270 h->root.type = bfd_link_hash_undefined;
10271 h->root.u.undef.abfd = h->root.u.def.section->owner;
10272 }
10273
10274 ps = NULL;
10275 if (h->root.type == bfd_link_hash_defined
10276 || h->root.type == bfd_link_hash_defweak)
10277 ps = &h->root.u.def.section;
10278
10279 sym_name = h->root.root.string;
10280 }
10281 else
10282 {
10283 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10284
10285 s_type = ELF_ST_TYPE (sym->st_info);
10286 ps = &flinfo->sections[r_symndx];
10287 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10288 sym, *ps);
10289 }
10290
10291 if ((s_type == STT_RELC || s_type == STT_SRELC)
10292 && !bfd_link_relocatable (flinfo->info))
10293 {
10294 bfd_vma val;
10295 bfd_vma dot = (rel->r_offset
10296 + o->output_offset + o->output_section->vma);
10297 #ifdef DEBUG
10298 printf ("Encountered a complex symbol!");
10299 printf (" (input_bfd %s, section %s, reloc %ld\n",
10300 input_bfd->filename, o->name,
10301 (long) (rel - internal_relocs));
10302 printf (" symbol: idx %8.8lx, name %s\n",
10303 r_symndx, sym_name);
10304 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10305 (unsigned long) rel->r_info,
10306 (unsigned long) rel->r_offset);
10307 #endif
10308 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10309 isymbuf, locsymcount, s_type == STT_SRELC))
10310 return FALSE;
10311
10312 /* Symbol evaluated OK. Update to absolute value. */
10313 set_symbol_value (input_bfd, isymbuf, locsymcount,
10314 r_symndx, val);
10315 continue;
10316 }
10317
10318 if (action_discarded != -1 && ps != NULL)
10319 {
10320 /* Complain if the definition comes from a
10321 discarded section. */
10322 if ((sec = *ps) != NULL && discarded_section (sec))
10323 {
10324 BFD_ASSERT (r_symndx != STN_UNDEF);
10325 if (action_discarded & COMPLAIN)
10326 (*flinfo->info->callbacks->einfo)
10327 (_("%X`%s' referenced in section `%A' of %B: "
10328 "defined in discarded section `%A' of %B\n"),
10329 sym_name, o, input_bfd, sec, sec->owner);
10330
10331 /* Try to do the best we can to support buggy old
10332 versions of gcc. Pretend that the symbol is
10333 really defined in the kept linkonce section.
10334 FIXME: This is quite broken. Modifying the
10335 symbol here means we will be changing all later
10336 uses of the symbol, not just in this section. */
10337 if (action_discarded & PRETEND)
10338 {
10339 asection *kept;
10340
10341 kept = _bfd_elf_check_kept_section (sec,
10342 flinfo->info);
10343 if (kept != NULL)
10344 {
10345 *ps = kept;
10346 continue;
10347 }
10348 }
10349 }
10350 }
10351 }
10352
10353 /* Relocate the section by invoking a back end routine.
10354
10355 The back end routine is responsible for adjusting the
10356 section contents as necessary, and (if using Rela relocs
10357 and generating a relocatable output file) adjusting the
10358 reloc addend as necessary.
10359
10360 The back end routine does not have to worry about setting
10361 the reloc address or the reloc symbol index.
10362
10363 The back end routine is given a pointer to the swapped in
10364 internal symbols, and can access the hash table entries
10365 for the external symbols via elf_sym_hashes (input_bfd).
10366
10367 When generating relocatable output, the back end routine
10368 must handle STB_LOCAL/STT_SECTION symbols specially. The
10369 output symbol is going to be a section symbol
10370 corresponding to the output section, which will require
10371 the addend to be adjusted. */
10372
10373 ret = (*relocate_section) (output_bfd, flinfo->info,
10374 input_bfd, o, contents,
10375 internal_relocs,
10376 isymbuf,
10377 flinfo->sections);
10378 if (!ret)
10379 return FALSE;
10380
10381 if (ret == 2
10382 || bfd_link_relocatable (flinfo->info)
10383 || flinfo->info->emitrelocations)
10384 {
10385 Elf_Internal_Rela *irela;
10386 Elf_Internal_Rela *irelaend, *irelamid;
10387 bfd_vma last_offset;
10388 struct elf_link_hash_entry **rel_hash;
10389 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10390 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10391 unsigned int next_erel;
10392 bfd_boolean rela_normal;
10393 struct bfd_elf_section_data *esdi, *esdo;
10394
10395 esdi = elf_section_data (o);
10396 esdo = elf_section_data (o->output_section);
10397 rela_normal = FALSE;
10398
10399 /* Adjust the reloc addresses and symbol indices. */
10400
10401 irela = internal_relocs;
10402 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10403 rel_hash = esdo->rel.hashes + esdo->rel.count;
10404 /* We start processing the REL relocs, if any. When we reach
10405 IRELAMID in the loop, we switch to the RELA relocs. */
10406 irelamid = irela;
10407 if (esdi->rel.hdr != NULL)
10408 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10409 * bed->s->int_rels_per_ext_rel);
10410 rel_hash_list = rel_hash;
10411 rela_hash_list = NULL;
10412 last_offset = o->output_offset;
10413 if (!bfd_link_relocatable (flinfo->info))
10414 last_offset += o->output_section->vma;
10415 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10416 {
10417 unsigned long r_symndx;
10418 asection *sec;
10419 Elf_Internal_Sym sym;
10420
10421 if (next_erel == bed->s->int_rels_per_ext_rel)
10422 {
10423 rel_hash++;
10424 next_erel = 0;
10425 }
10426
10427 if (irela == irelamid)
10428 {
10429 rel_hash = esdo->rela.hashes + esdo->rela.count;
10430 rela_hash_list = rel_hash;
10431 rela_normal = bed->rela_normal;
10432 }
10433
10434 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10435 flinfo->info, o,
10436 irela->r_offset);
10437 if (irela->r_offset >= (bfd_vma) -2)
10438 {
10439 /* This is a reloc for a deleted entry or somesuch.
10440 Turn it into an R_*_NONE reloc, at the same
10441 offset as the last reloc. elf_eh_frame.c and
10442 bfd_elf_discard_info rely on reloc offsets
10443 being ordered. */
10444 irela->r_offset = last_offset;
10445 irela->r_info = 0;
10446 irela->r_addend = 0;
10447 continue;
10448 }
10449
10450 irela->r_offset += o->output_offset;
10451
10452 /* Relocs in an executable have to be virtual addresses. */
10453 if (!bfd_link_relocatable (flinfo->info))
10454 irela->r_offset += o->output_section->vma;
10455
10456 last_offset = irela->r_offset;
10457
10458 r_symndx = irela->r_info >> r_sym_shift;
10459 if (r_symndx == STN_UNDEF)
10460 continue;
10461
10462 if (r_symndx >= locsymcount
10463 || (elf_bad_symtab (input_bfd)
10464 && flinfo->sections[r_symndx] == NULL))
10465 {
10466 struct elf_link_hash_entry *rh;
10467 unsigned long indx;
10468
10469 /* This is a reloc against a global symbol. We
10470 have not yet output all the local symbols, so
10471 we do not know the symbol index of any global
10472 symbol. We set the rel_hash entry for this
10473 reloc to point to the global hash table entry
10474 for this symbol. The symbol index is then
10475 set at the end of bfd_elf_final_link. */
10476 indx = r_symndx - extsymoff;
10477 rh = elf_sym_hashes (input_bfd)[indx];
10478 while (rh->root.type == bfd_link_hash_indirect
10479 || rh->root.type == bfd_link_hash_warning)
10480 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10481
10482 /* Setting the index to -2 tells
10483 elf_link_output_extsym that this symbol is
10484 used by a reloc. */
10485 BFD_ASSERT (rh->indx < 0);
10486 rh->indx = -2;
10487
10488 *rel_hash = rh;
10489
10490 continue;
10491 }
10492
10493 /* This is a reloc against a local symbol. */
10494
10495 *rel_hash = NULL;
10496 sym = isymbuf[r_symndx];
10497 sec = flinfo->sections[r_symndx];
10498 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10499 {
10500 /* I suppose the backend ought to fill in the
10501 section of any STT_SECTION symbol against a
10502 processor specific section. */
10503 r_symndx = STN_UNDEF;
10504 if (bfd_is_abs_section (sec))
10505 ;
10506 else if (sec == NULL || sec->owner == NULL)
10507 {
10508 bfd_set_error (bfd_error_bad_value);
10509 return FALSE;
10510 }
10511 else
10512 {
10513 asection *osec = sec->output_section;
10514
10515 /* If we have discarded a section, the output
10516 section will be the absolute section. In
10517 case of discarded SEC_MERGE sections, use
10518 the kept section. relocate_section should
10519 have already handled discarded linkonce
10520 sections. */
10521 if (bfd_is_abs_section (osec)
10522 && sec->kept_section != NULL
10523 && sec->kept_section->output_section != NULL)
10524 {
10525 osec = sec->kept_section->output_section;
10526 irela->r_addend -= osec->vma;
10527 }
10528
10529 if (!bfd_is_abs_section (osec))
10530 {
10531 r_symndx = osec->target_index;
10532 if (r_symndx == STN_UNDEF)
10533 {
10534 irela->r_addend += osec->vma;
10535 osec = _bfd_nearby_section (output_bfd, osec,
10536 osec->vma);
10537 irela->r_addend -= osec->vma;
10538 r_symndx = osec->target_index;
10539 }
10540 }
10541 }
10542
10543 /* Adjust the addend according to where the
10544 section winds up in the output section. */
10545 if (rela_normal)
10546 irela->r_addend += sec->output_offset;
10547 }
10548 else
10549 {
10550 if (flinfo->indices[r_symndx] == -1)
10551 {
10552 unsigned long shlink;
10553 const char *name;
10554 asection *osec;
10555 long indx;
10556
10557 if (flinfo->info->strip == strip_all)
10558 {
10559 /* You can't do ld -r -s. */
10560 bfd_set_error (bfd_error_invalid_operation);
10561 return FALSE;
10562 }
10563
10564 /* This symbol was skipped earlier, but
10565 since it is needed by a reloc, we
10566 must output it now. */
10567 shlink = symtab_hdr->sh_link;
10568 name = (bfd_elf_string_from_elf_section
10569 (input_bfd, shlink, sym.st_name));
10570 if (name == NULL)
10571 return FALSE;
10572
10573 osec = sec->output_section;
10574 sym.st_shndx =
10575 _bfd_elf_section_from_bfd_section (output_bfd,
10576 osec);
10577 if (sym.st_shndx == SHN_BAD)
10578 return FALSE;
10579
10580 sym.st_value += sec->output_offset;
10581 if (!bfd_link_relocatable (flinfo->info))
10582 {
10583 sym.st_value += osec->vma;
10584 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10585 {
10586 /* STT_TLS symbols are relative to PT_TLS
10587 segment base. */
10588 BFD_ASSERT (elf_hash_table (flinfo->info)
10589 ->tls_sec != NULL);
10590 sym.st_value -= (elf_hash_table (flinfo->info)
10591 ->tls_sec->vma);
10592 }
10593 }
10594
10595 indx = bfd_get_symcount (output_bfd);
10596 ret = elf_link_output_symstrtab (flinfo, name,
10597 &sym, sec,
10598 NULL);
10599 if (ret == 0)
10600 return FALSE;
10601 else if (ret == 1)
10602 flinfo->indices[r_symndx] = indx;
10603 else
10604 abort ();
10605 }
10606
10607 r_symndx = flinfo->indices[r_symndx];
10608 }
10609
10610 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10611 | (irela->r_info & r_type_mask));
10612 }
10613
10614 /* Swap out the relocs. */
10615 input_rel_hdr = esdi->rel.hdr;
10616 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10617 {
10618 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10619 input_rel_hdr,
10620 internal_relocs,
10621 rel_hash_list))
10622 return FALSE;
10623 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10624 * bed->s->int_rels_per_ext_rel);
10625 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10626 }
10627
10628 input_rela_hdr = esdi->rela.hdr;
10629 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10630 {
10631 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10632 input_rela_hdr,
10633 internal_relocs,
10634 rela_hash_list))
10635 return FALSE;
10636 }
10637 }
10638 }
10639
10640 /* Write out the modified section contents. */
10641 if (bed->elf_backend_write_section
10642 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10643 contents))
10644 {
10645 /* Section written out. */
10646 }
10647 else switch (o->sec_info_type)
10648 {
10649 case SEC_INFO_TYPE_STABS:
10650 if (! (_bfd_write_section_stabs
10651 (output_bfd,
10652 &elf_hash_table (flinfo->info)->stab_info,
10653 o, &elf_section_data (o)->sec_info, contents)))
10654 return FALSE;
10655 break;
10656 case SEC_INFO_TYPE_MERGE:
10657 if (! _bfd_write_merged_section (output_bfd, o,
10658 elf_section_data (o)->sec_info))
10659 return FALSE;
10660 break;
10661 case SEC_INFO_TYPE_EH_FRAME:
10662 {
10663 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10664 o, contents))
10665 return FALSE;
10666 }
10667 break;
10668 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10669 {
10670 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10671 flinfo->info,
10672 o, contents))
10673 return FALSE;
10674 }
10675 break;
10676 default:
10677 {
10678 if (! (o->flags & SEC_EXCLUDE))
10679 {
10680 file_ptr offset = (file_ptr) o->output_offset;
10681 bfd_size_type todo = o->size;
10682
10683 offset *= bfd_octets_per_byte (output_bfd);
10684
10685 if ((o->flags & SEC_ELF_REVERSE_COPY))
10686 {
10687 /* Reverse-copy input section to output. */
10688 do
10689 {
10690 todo -= address_size;
10691 if (! bfd_set_section_contents (output_bfd,
10692 o->output_section,
10693 contents + todo,
10694 offset,
10695 address_size))
10696 return FALSE;
10697 if (todo == 0)
10698 break;
10699 offset += address_size;
10700 }
10701 while (1);
10702 }
10703 else if (! bfd_set_section_contents (output_bfd,
10704 o->output_section,
10705 contents,
10706 offset, todo))
10707 return FALSE;
10708 }
10709 }
10710 break;
10711 }
10712 }
10713
10714 return TRUE;
10715 }
10716
10717 /* Generate a reloc when linking an ELF file. This is a reloc
10718 requested by the linker, and does not come from any input file. This
10719 is used to build constructor and destructor tables when linking
10720 with -Ur. */
10721
10722 static bfd_boolean
10723 elf_reloc_link_order (bfd *output_bfd,
10724 struct bfd_link_info *info,
10725 asection *output_section,
10726 struct bfd_link_order *link_order)
10727 {
10728 reloc_howto_type *howto;
10729 long indx;
10730 bfd_vma offset;
10731 bfd_vma addend;
10732 struct bfd_elf_section_reloc_data *reldata;
10733 struct elf_link_hash_entry **rel_hash_ptr;
10734 Elf_Internal_Shdr *rel_hdr;
10735 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10736 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10737 bfd_byte *erel;
10738 unsigned int i;
10739 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10740
10741 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10742 if (howto == NULL)
10743 {
10744 bfd_set_error (bfd_error_bad_value);
10745 return FALSE;
10746 }
10747
10748 addend = link_order->u.reloc.p->addend;
10749
10750 if (esdo->rel.hdr)
10751 reldata = &esdo->rel;
10752 else if (esdo->rela.hdr)
10753 reldata = &esdo->rela;
10754 else
10755 {
10756 reldata = NULL;
10757 BFD_ASSERT (0);
10758 }
10759
10760 /* Figure out the symbol index. */
10761 rel_hash_ptr = reldata->hashes + reldata->count;
10762 if (link_order->type == bfd_section_reloc_link_order)
10763 {
10764 indx = link_order->u.reloc.p->u.section->target_index;
10765 BFD_ASSERT (indx != 0);
10766 *rel_hash_ptr = NULL;
10767 }
10768 else
10769 {
10770 struct elf_link_hash_entry *h;
10771
10772 /* Treat a reloc against a defined symbol as though it were
10773 actually against the section. */
10774 h = ((struct elf_link_hash_entry *)
10775 bfd_wrapped_link_hash_lookup (output_bfd, info,
10776 link_order->u.reloc.p->u.name,
10777 FALSE, FALSE, TRUE));
10778 if (h != NULL
10779 && (h->root.type == bfd_link_hash_defined
10780 || h->root.type == bfd_link_hash_defweak))
10781 {
10782 asection *section;
10783
10784 section = h->root.u.def.section;
10785 indx = section->output_section->target_index;
10786 *rel_hash_ptr = NULL;
10787 /* It seems that we ought to add the symbol value to the
10788 addend here, but in practice it has already been added
10789 because it was passed to constructor_callback. */
10790 addend += section->output_section->vma + section->output_offset;
10791 }
10792 else if (h != NULL)
10793 {
10794 /* Setting the index to -2 tells elf_link_output_extsym that
10795 this symbol is used by a reloc. */
10796 h->indx = -2;
10797 *rel_hash_ptr = h;
10798 indx = 0;
10799 }
10800 else
10801 {
10802 (*info->callbacks->unattached_reloc)
10803 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10804 indx = 0;
10805 }
10806 }
10807
10808 /* If this is an inplace reloc, we must write the addend into the
10809 object file. */
10810 if (howto->partial_inplace && addend != 0)
10811 {
10812 bfd_size_type size;
10813 bfd_reloc_status_type rstat;
10814 bfd_byte *buf;
10815 bfd_boolean ok;
10816 const char *sym_name;
10817
10818 size = (bfd_size_type) bfd_get_reloc_size (howto);
10819 buf = (bfd_byte *) bfd_zmalloc (size);
10820 if (buf == NULL && size != 0)
10821 return FALSE;
10822 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10823 switch (rstat)
10824 {
10825 case bfd_reloc_ok:
10826 break;
10827
10828 default:
10829 case bfd_reloc_outofrange:
10830 abort ();
10831
10832 case bfd_reloc_overflow:
10833 if (link_order->type == bfd_section_reloc_link_order)
10834 sym_name = bfd_section_name (output_bfd,
10835 link_order->u.reloc.p->u.section);
10836 else
10837 sym_name = link_order->u.reloc.p->u.name;
10838 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10839 howto->name, addend, NULL, NULL,
10840 (bfd_vma) 0);
10841 break;
10842 }
10843
10844 ok = bfd_set_section_contents (output_bfd, output_section, buf,
10845 link_order->offset
10846 * bfd_octets_per_byte (output_bfd),
10847 size);
10848 free (buf);
10849 if (! ok)
10850 return FALSE;
10851 }
10852
10853 /* The address of a reloc is relative to the section in a
10854 relocatable file, and is a virtual address in an executable
10855 file. */
10856 offset = link_order->offset;
10857 if (! bfd_link_relocatable (info))
10858 offset += output_section->vma;
10859
10860 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10861 {
10862 irel[i].r_offset = offset;
10863 irel[i].r_info = 0;
10864 irel[i].r_addend = 0;
10865 }
10866 if (bed->s->arch_size == 32)
10867 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10868 else
10869 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10870
10871 rel_hdr = reldata->hdr;
10872 erel = rel_hdr->contents;
10873 if (rel_hdr->sh_type == SHT_REL)
10874 {
10875 erel += reldata->count * bed->s->sizeof_rel;
10876 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10877 }
10878 else
10879 {
10880 irel[0].r_addend = addend;
10881 erel += reldata->count * bed->s->sizeof_rela;
10882 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10883 }
10884
10885 ++reldata->count;
10886
10887 return TRUE;
10888 }
10889
10890
10891 /* Get the output vma of the section pointed to by the sh_link field. */
10892
10893 static bfd_vma
10894 elf_get_linked_section_vma (struct bfd_link_order *p)
10895 {
10896 Elf_Internal_Shdr **elf_shdrp;
10897 asection *s;
10898 int elfsec;
10899
10900 s = p->u.indirect.section;
10901 elf_shdrp = elf_elfsections (s->owner);
10902 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10903 elfsec = elf_shdrp[elfsec]->sh_link;
10904 /* PR 290:
10905 The Intel C compiler generates SHT_IA_64_UNWIND with
10906 SHF_LINK_ORDER. But it doesn't set the sh_link or
10907 sh_info fields. Hence we could get the situation
10908 where elfsec is 0. */
10909 if (elfsec == 0)
10910 {
10911 const struct elf_backend_data *bed
10912 = get_elf_backend_data (s->owner);
10913 if (bed->link_order_error_handler)
10914 bed->link_order_error_handler
10915 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10916 return 0;
10917 }
10918 else
10919 {
10920 s = elf_shdrp[elfsec]->bfd_section;
10921 return s->output_section->vma + s->output_offset;
10922 }
10923 }
10924
10925
10926 /* Compare two sections based on the locations of the sections they are
10927 linked to. Used by elf_fixup_link_order. */
10928
10929 static int
10930 compare_link_order (const void * a, const void * b)
10931 {
10932 bfd_vma apos;
10933 bfd_vma bpos;
10934
10935 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10936 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10937 if (apos < bpos)
10938 return -1;
10939 return apos > bpos;
10940 }
10941
10942
10943 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10944 order as their linked sections. Returns false if this could not be done
10945 because an output section includes both ordered and unordered
10946 sections. Ideally we'd do this in the linker proper. */
10947
10948 static bfd_boolean
10949 elf_fixup_link_order (bfd *abfd, asection *o)
10950 {
10951 int seen_linkorder;
10952 int seen_other;
10953 int n;
10954 struct bfd_link_order *p;
10955 bfd *sub;
10956 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10957 unsigned elfsec;
10958 struct bfd_link_order **sections;
10959 asection *s, *other_sec, *linkorder_sec;
10960 bfd_vma offset;
10961
10962 other_sec = NULL;
10963 linkorder_sec = NULL;
10964 seen_other = 0;
10965 seen_linkorder = 0;
10966 for (p = o->map_head.link_order; p != NULL; p = p->next)
10967 {
10968 if (p->type == bfd_indirect_link_order)
10969 {
10970 s = p->u.indirect.section;
10971 sub = s->owner;
10972 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10973 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10974 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10975 && elfsec < elf_numsections (sub)
10976 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10977 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10978 {
10979 seen_linkorder++;
10980 linkorder_sec = s;
10981 }
10982 else
10983 {
10984 seen_other++;
10985 other_sec = s;
10986 }
10987 }
10988 else
10989 seen_other++;
10990
10991 if (seen_other && seen_linkorder)
10992 {
10993 if (other_sec && linkorder_sec)
10994 _bfd_error_handler
10995 (_("%A has both ordered [`%A' in %B] "
10996 "and unordered [`%A' in %B] sections"),
10997 o, linkorder_sec,
10998 linkorder_sec->owner, other_sec,
10999 other_sec->owner);
11000 else
11001 _bfd_error_handler
11002 (_("%A has both ordered and unordered sections"), o);
11003 bfd_set_error (bfd_error_bad_value);
11004 return FALSE;
11005 }
11006 }
11007
11008 if (!seen_linkorder)
11009 return TRUE;
11010
11011 sections = (struct bfd_link_order **)
11012 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11013 if (sections == NULL)
11014 return FALSE;
11015 seen_linkorder = 0;
11016
11017 for (p = o->map_head.link_order; p != NULL; p = p->next)
11018 {
11019 sections[seen_linkorder++] = p;
11020 }
11021 /* Sort the input sections in the order of their linked section. */
11022 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11023 compare_link_order);
11024
11025 /* Change the offsets of the sections. */
11026 offset = 0;
11027 for (n = 0; n < seen_linkorder; n++)
11028 {
11029 s = sections[n]->u.indirect.section;
11030 offset &= ~(bfd_vma) 0 << s->alignment_power;
11031 s->output_offset = offset / bfd_octets_per_byte (abfd);
11032 sections[n]->offset = offset;
11033 offset += sections[n]->size;
11034 }
11035
11036 free (sections);
11037 return TRUE;
11038 }
11039
11040 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11041 Returns TRUE upon success, FALSE otherwise. */
11042
11043 static bfd_boolean
11044 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11045 {
11046 bfd_boolean ret = FALSE;
11047 bfd *implib_bfd;
11048 const struct elf_backend_data *bed;
11049 flagword flags;
11050 enum bfd_architecture arch;
11051 unsigned int mach;
11052 asymbol **sympp = NULL;
11053 long symsize;
11054 long symcount;
11055 long src_count;
11056 elf_symbol_type *osymbuf;
11057
11058 implib_bfd = info->out_implib_bfd;
11059 bed = get_elf_backend_data (abfd);
11060
11061 if (!bfd_set_format (implib_bfd, bfd_object))
11062 return FALSE;
11063
11064 flags = bfd_get_file_flags (abfd);
11065 flags &= ~HAS_RELOC;
11066 if (!bfd_set_start_address (implib_bfd, 0)
11067 || !bfd_set_file_flags (implib_bfd, flags))
11068 return FALSE;
11069
11070 /* Copy architecture of output file to import library file. */
11071 arch = bfd_get_arch (abfd);
11072 mach = bfd_get_mach (abfd);
11073 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11074 && (abfd->target_defaulted
11075 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11076 return FALSE;
11077
11078 /* Get symbol table size. */
11079 symsize = bfd_get_symtab_upper_bound (abfd);
11080 if (symsize < 0)
11081 return FALSE;
11082
11083 /* Read in the symbol table. */
11084 sympp = (asymbol **) xmalloc (symsize);
11085 symcount = bfd_canonicalize_symtab (abfd, sympp);
11086 if (symcount < 0)
11087 goto free_sym_buf;
11088
11089 /* Allow the BFD backend to copy any private header data it
11090 understands from the output BFD to the import library BFD. */
11091 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11092 goto free_sym_buf;
11093
11094 /* Filter symbols to appear in the import library. */
11095 if (bed->elf_backend_filter_implib_symbols)
11096 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11097 symcount);
11098 else
11099 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11100 if (symcount == 0)
11101 {
11102 bfd_set_error (bfd_error_no_symbols);
11103 _bfd_error_handler (_("%B: no symbol found for import library"),
11104 implib_bfd);
11105 goto free_sym_buf;
11106 }
11107
11108
11109 /* Make symbols absolute. */
11110 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11111 sizeof (*osymbuf));
11112 for (src_count = 0; src_count < symcount; src_count++)
11113 {
11114 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11115 sizeof (*osymbuf));
11116 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11117 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11118 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11119 osymbuf[src_count].internal_elf_sym.st_value =
11120 osymbuf[src_count].symbol.value;
11121 sympp[src_count] = &osymbuf[src_count].symbol;
11122 }
11123
11124 bfd_set_symtab (implib_bfd, sympp, symcount);
11125
11126 /* Allow the BFD backend to copy any private data it understands
11127 from the output BFD to the import library BFD. This is done last
11128 to permit the routine to look at the filtered symbol table. */
11129 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11130 goto free_sym_buf;
11131
11132 if (!bfd_close (implib_bfd))
11133 goto free_sym_buf;
11134
11135 ret = TRUE;
11136
11137 free_sym_buf:
11138 free (sympp);
11139 return ret;
11140 }
11141
11142 static void
11143 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11144 {
11145 asection *o;
11146
11147 if (flinfo->symstrtab != NULL)
11148 _bfd_elf_strtab_free (flinfo->symstrtab);
11149 if (flinfo->contents != NULL)
11150 free (flinfo->contents);
11151 if (flinfo->external_relocs != NULL)
11152 free (flinfo->external_relocs);
11153 if (flinfo->internal_relocs != NULL)
11154 free (flinfo->internal_relocs);
11155 if (flinfo->external_syms != NULL)
11156 free (flinfo->external_syms);
11157 if (flinfo->locsym_shndx != NULL)
11158 free (flinfo->locsym_shndx);
11159 if (flinfo->internal_syms != NULL)
11160 free (flinfo->internal_syms);
11161 if (flinfo->indices != NULL)
11162 free (flinfo->indices);
11163 if (flinfo->sections != NULL)
11164 free (flinfo->sections);
11165 if (flinfo->symshndxbuf != NULL)
11166 free (flinfo->symshndxbuf);
11167 for (o = obfd->sections; o != NULL; o = o->next)
11168 {
11169 struct bfd_elf_section_data *esdo = elf_section_data (o);
11170 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11171 free (esdo->rel.hashes);
11172 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11173 free (esdo->rela.hashes);
11174 }
11175 }
11176
11177 /* Do the final step of an ELF link. */
11178
11179 bfd_boolean
11180 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11181 {
11182 bfd_boolean dynamic;
11183 bfd_boolean emit_relocs;
11184 bfd *dynobj;
11185 struct elf_final_link_info flinfo;
11186 asection *o;
11187 struct bfd_link_order *p;
11188 bfd *sub;
11189 bfd_size_type max_contents_size;
11190 bfd_size_type max_external_reloc_size;
11191 bfd_size_type max_internal_reloc_count;
11192 bfd_size_type max_sym_count;
11193 bfd_size_type max_sym_shndx_count;
11194 Elf_Internal_Sym elfsym;
11195 unsigned int i;
11196 Elf_Internal_Shdr *symtab_hdr;
11197 Elf_Internal_Shdr *symtab_shndx_hdr;
11198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11199 struct elf_outext_info eoinfo;
11200 bfd_boolean merged;
11201 size_t relativecount = 0;
11202 asection *reldyn = 0;
11203 bfd_size_type amt;
11204 asection *attr_section = NULL;
11205 bfd_vma attr_size = 0;
11206 const char *std_attrs_section;
11207
11208 if (! is_elf_hash_table (info->hash))
11209 return FALSE;
11210
11211 if (bfd_link_pic (info))
11212 abfd->flags |= DYNAMIC;
11213
11214 dynamic = elf_hash_table (info)->dynamic_sections_created;
11215 dynobj = elf_hash_table (info)->dynobj;
11216
11217 emit_relocs = (bfd_link_relocatable (info)
11218 || info->emitrelocations);
11219
11220 flinfo.info = info;
11221 flinfo.output_bfd = abfd;
11222 flinfo.symstrtab = _bfd_elf_strtab_init ();
11223 if (flinfo.symstrtab == NULL)
11224 return FALSE;
11225
11226 if (! dynamic)
11227 {
11228 flinfo.hash_sec = NULL;
11229 flinfo.symver_sec = NULL;
11230 }
11231 else
11232 {
11233 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11234 /* Note that dynsym_sec can be NULL (on VMS). */
11235 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11236 /* Note that it is OK if symver_sec is NULL. */
11237 }
11238
11239 flinfo.contents = NULL;
11240 flinfo.external_relocs = NULL;
11241 flinfo.internal_relocs = NULL;
11242 flinfo.external_syms = NULL;
11243 flinfo.locsym_shndx = NULL;
11244 flinfo.internal_syms = NULL;
11245 flinfo.indices = NULL;
11246 flinfo.sections = NULL;
11247 flinfo.symshndxbuf = NULL;
11248 flinfo.filesym_count = 0;
11249
11250 /* The object attributes have been merged. Remove the input
11251 sections from the link, and set the contents of the output
11252 secton. */
11253 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11254 for (o = abfd->sections; o != NULL; o = o->next)
11255 {
11256 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11257 || strcmp (o->name, ".gnu.attributes") == 0)
11258 {
11259 for (p = o->map_head.link_order; p != NULL; p = p->next)
11260 {
11261 asection *input_section;
11262
11263 if (p->type != bfd_indirect_link_order)
11264 continue;
11265 input_section = p->u.indirect.section;
11266 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11267 elf_link_input_bfd ignores this section. */
11268 input_section->flags &= ~SEC_HAS_CONTENTS;
11269 }
11270
11271 attr_size = bfd_elf_obj_attr_size (abfd);
11272 if (attr_size)
11273 {
11274 bfd_set_section_size (abfd, o, attr_size);
11275 attr_section = o;
11276 /* Skip this section later on. */
11277 o->map_head.link_order = NULL;
11278 }
11279 else
11280 o->flags |= SEC_EXCLUDE;
11281 }
11282 }
11283
11284 /* Count up the number of relocations we will output for each output
11285 section, so that we know the sizes of the reloc sections. We
11286 also figure out some maximum sizes. */
11287 max_contents_size = 0;
11288 max_external_reloc_size = 0;
11289 max_internal_reloc_count = 0;
11290 max_sym_count = 0;
11291 max_sym_shndx_count = 0;
11292 merged = FALSE;
11293 for (o = abfd->sections; o != NULL; o = o->next)
11294 {
11295 struct bfd_elf_section_data *esdo = elf_section_data (o);
11296 o->reloc_count = 0;
11297
11298 for (p = o->map_head.link_order; p != NULL; p = p->next)
11299 {
11300 unsigned int reloc_count = 0;
11301 unsigned int additional_reloc_count = 0;
11302 struct bfd_elf_section_data *esdi = NULL;
11303
11304 if (p->type == bfd_section_reloc_link_order
11305 || p->type == bfd_symbol_reloc_link_order)
11306 reloc_count = 1;
11307 else if (p->type == bfd_indirect_link_order)
11308 {
11309 asection *sec;
11310
11311 sec = p->u.indirect.section;
11312 esdi = elf_section_data (sec);
11313
11314 /* Mark all sections which are to be included in the
11315 link. This will normally be every section. We need
11316 to do this so that we can identify any sections which
11317 the linker has decided to not include. */
11318 sec->linker_mark = TRUE;
11319
11320 if (sec->flags & SEC_MERGE)
11321 merged = TRUE;
11322
11323 if (esdo->this_hdr.sh_type == SHT_REL
11324 || esdo->this_hdr.sh_type == SHT_RELA)
11325 /* Some backends use reloc_count in relocation sections
11326 to count particular types of relocs. Of course,
11327 reloc sections themselves can't have relocations. */
11328 reloc_count = 0;
11329 else if (emit_relocs)
11330 {
11331 reloc_count = sec->reloc_count;
11332 if (bed->elf_backend_count_additional_relocs)
11333 {
11334 int c;
11335 c = (*bed->elf_backend_count_additional_relocs) (sec);
11336 additional_reloc_count += c;
11337 }
11338 }
11339 else if (bed->elf_backend_count_relocs)
11340 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11341
11342 if (sec->rawsize > max_contents_size)
11343 max_contents_size = sec->rawsize;
11344 if (sec->size > max_contents_size)
11345 max_contents_size = sec->size;
11346
11347 /* We are interested in just local symbols, not all
11348 symbols. */
11349 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11350 && (sec->owner->flags & DYNAMIC) == 0)
11351 {
11352 size_t sym_count;
11353
11354 if (elf_bad_symtab (sec->owner))
11355 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11356 / bed->s->sizeof_sym);
11357 else
11358 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11359
11360 if (sym_count > max_sym_count)
11361 max_sym_count = sym_count;
11362
11363 if (sym_count > max_sym_shndx_count
11364 && elf_symtab_shndx_list (sec->owner) != NULL)
11365 max_sym_shndx_count = sym_count;
11366
11367 if ((sec->flags & SEC_RELOC) != 0)
11368 {
11369 size_t ext_size = 0;
11370
11371 if (esdi->rel.hdr != NULL)
11372 ext_size = esdi->rel.hdr->sh_size;
11373 if (esdi->rela.hdr != NULL)
11374 ext_size += esdi->rela.hdr->sh_size;
11375
11376 if (ext_size > max_external_reloc_size)
11377 max_external_reloc_size = ext_size;
11378 if (sec->reloc_count > max_internal_reloc_count)
11379 max_internal_reloc_count = sec->reloc_count;
11380 }
11381 }
11382 }
11383
11384 if (reloc_count == 0)
11385 continue;
11386
11387 reloc_count += additional_reloc_count;
11388 o->reloc_count += reloc_count;
11389
11390 if (p->type == bfd_indirect_link_order && emit_relocs)
11391 {
11392 if (esdi->rel.hdr)
11393 {
11394 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11395 esdo->rel.count += additional_reloc_count;
11396 }
11397 if (esdi->rela.hdr)
11398 {
11399 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11400 esdo->rela.count += additional_reloc_count;
11401 }
11402 }
11403 else
11404 {
11405 if (o->use_rela_p)
11406 esdo->rela.count += reloc_count;
11407 else
11408 esdo->rel.count += reloc_count;
11409 }
11410 }
11411
11412 if (o->reloc_count > 0)
11413 o->flags |= SEC_RELOC;
11414 else
11415 {
11416 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11417 set it (this is probably a bug) and if it is set
11418 assign_section_numbers will create a reloc section. */
11419 o->flags &=~ SEC_RELOC;
11420 }
11421
11422 /* If the SEC_ALLOC flag is not set, force the section VMA to
11423 zero. This is done in elf_fake_sections as well, but forcing
11424 the VMA to 0 here will ensure that relocs against these
11425 sections are handled correctly. */
11426 if ((o->flags & SEC_ALLOC) == 0
11427 && ! o->user_set_vma)
11428 o->vma = 0;
11429 }
11430
11431 if (! bfd_link_relocatable (info) && merged)
11432 elf_link_hash_traverse (elf_hash_table (info),
11433 _bfd_elf_link_sec_merge_syms, abfd);
11434
11435 /* Figure out the file positions for everything but the symbol table
11436 and the relocs. We set symcount to force assign_section_numbers
11437 to create a symbol table. */
11438 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11439 BFD_ASSERT (! abfd->output_has_begun);
11440 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11441 goto error_return;
11442
11443 /* Set sizes, and assign file positions for reloc sections. */
11444 for (o = abfd->sections; o != NULL; o = o->next)
11445 {
11446 struct bfd_elf_section_data *esdo = elf_section_data (o);
11447 if ((o->flags & SEC_RELOC) != 0)
11448 {
11449 if (esdo->rel.hdr
11450 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11451 goto error_return;
11452
11453 if (esdo->rela.hdr
11454 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11455 goto error_return;
11456 }
11457
11458 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11459 to count upwards while actually outputting the relocations. */
11460 esdo->rel.count = 0;
11461 esdo->rela.count = 0;
11462
11463 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11464 {
11465 /* Cache the section contents so that they can be compressed
11466 later. Use bfd_malloc since it will be freed by
11467 bfd_compress_section_contents. */
11468 unsigned char *contents = esdo->this_hdr.contents;
11469 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11470 abort ();
11471 contents
11472 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11473 if (contents == NULL)
11474 goto error_return;
11475 esdo->this_hdr.contents = contents;
11476 }
11477 }
11478
11479 /* We have now assigned file positions for all the sections except
11480 .symtab, .strtab, and non-loaded reloc sections. We start the
11481 .symtab section at the current file position, and write directly
11482 to it. We build the .strtab section in memory. */
11483 bfd_get_symcount (abfd) = 0;
11484 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11485 /* sh_name is set in prep_headers. */
11486 symtab_hdr->sh_type = SHT_SYMTAB;
11487 /* sh_flags, sh_addr and sh_size all start off zero. */
11488 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11489 /* sh_link is set in assign_section_numbers. */
11490 /* sh_info is set below. */
11491 /* sh_offset is set just below. */
11492 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11493
11494 if (max_sym_count < 20)
11495 max_sym_count = 20;
11496 elf_hash_table (info)->strtabsize = max_sym_count;
11497 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11498 elf_hash_table (info)->strtab
11499 = (struct elf_sym_strtab *) bfd_malloc (amt);
11500 if (elf_hash_table (info)->strtab == NULL)
11501 goto error_return;
11502 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11503 flinfo.symshndxbuf
11504 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11505 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11506
11507 if (info->strip != strip_all || emit_relocs)
11508 {
11509 file_ptr off = elf_next_file_pos (abfd);
11510
11511 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11512
11513 /* Note that at this point elf_next_file_pos (abfd) is
11514 incorrect. We do not yet know the size of the .symtab section.
11515 We correct next_file_pos below, after we do know the size. */
11516
11517 /* Start writing out the symbol table. The first symbol is always a
11518 dummy symbol. */
11519 elfsym.st_value = 0;
11520 elfsym.st_size = 0;
11521 elfsym.st_info = 0;
11522 elfsym.st_other = 0;
11523 elfsym.st_shndx = SHN_UNDEF;
11524 elfsym.st_target_internal = 0;
11525 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11526 bfd_und_section_ptr, NULL) != 1)
11527 goto error_return;
11528
11529 /* Output a symbol for each section. We output these even if we are
11530 discarding local symbols, since they are used for relocs. These
11531 symbols have no names. We store the index of each one in the
11532 index field of the section, so that we can find it again when
11533 outputting relocs. */
11534
11535 elfsym.st_size = 0;
11536 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11537 elfsym.st_other = 0;
11538 elfsym.st_value = 0;
11539 elfsym.st_target_internal = 0;
11540 for (i = 1; i < elf_numsections (abfd); i++)
11541 {
11542 o = bfd_section_from_elf_index (abfd, i);
11543 if (o != NULL)
11544 {
11545 o->target_index = bfd_get_symcount (abfd);
11546 elfsym.st_shndx = i;
11547 if (!bfd_link_relocatable (info))
11548 elfsym.st_value = o->vma;
11549 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11550 NULL) != 1)
11551 goto error_return;
11552 }
11553 }
11554 }
11555
11556 /* Allocate some memory to hold information read in from the input
11557 files. */
11558 if (max_contents_size != 0)
11559 {
11560 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11561 if (flinfo.contents == NULL)
11562 goto error_return;
11563 }
11564
11565 if (max_external_reloc_size != 0)
11566 {
11567 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11568 if (flinfo.external_relocs == NULL)
11569 goto error_return;
11570 }
11571
11572 if (max_internal_reloc_count != 0)
11573 {
11574 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11575 amt *= sizeof (Elf_Internal_Rela);
11576 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11577 if (flinfo.internal_relocs == NULL)
11578 goto error_return;
11579 }
11580
11581 if (max_sym_count != 0)
11582 {
11583 amt = max_sym_count * bed->s->sizeof_sym;
11584 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11585 if (flinfo.external_syms == NULL)
11586 goto error_return;
11587
11588 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11589 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11590 if (flinfo.internal_syms == NULL)
11591 goto error_return;
11592
11593 amt = max_sym_count * sizeof (long);
11594 flinfo.indices = (long int *) bfd_malloc (amt);
11595 if (flinfo.indices == NULL)
11596 goto error_return;
11597
11598 amt = max_sym_count * sizeof (asection *);
11599 flinfo.sections = (asection **) bfd_malloc (amt);
11600 if (flinfo.sections == NULL)
11601 goto error_return;
11602 }
11603
11604 if (max_sym_shndx_count != 0)
11605 {
11606 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11607 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11608 if (flinfo.locsym_shndx == NULL)
11609 goto error_return;
11610 }
11611
11612 if (elf_hash_table (info)->tls_sec)
11613 {
11614 bfd_vma base, end = 0;
11615 asection *sec;
11616
11617 for (sec = elf_hash_table (info)->tls_sec;
11618 sec && (sec->flags & SEC_THREAD_LOCAL);
11619 sec = sec->next)
11620 {
11621 bfd_size_type size = sec->size;
11622
11623 if (size == 0
11624 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11625 {
11626 struct bfd_link_order *ord = sec->map_tail.link_order;
11627
11628 if (ord != NULL)
11629 size = ord->offset + ord->size;
11630 }
11631 end = sec->vma + size;
11632 }
11633 base = elf_hash_table (info)->tls_sec->vma;
11634 /* Only align end of TLS section if static TLS doesn't have special
11635 alignment requirements. */
11636 if (bed->static_tls_alignment == 1)
11637 end = align_power (end,
11638 elf_hash_table (info)->tls_sec->alignment_power);
11639 elf_hash_table (info)->tls_size = end - base;
11640 }
11641
11642 /* Reorder SHF_LINK_ORDER sections. */
11643 for (o = abfd->sections; o != NULL; o = o->next)
11644 {
11645 if (!elf_fixup_link_order (abfd, o))
11646 return FALSE;
11647 }
11648
11649 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11650 return FALSE;
11651
11652 /* Since ELF permits relocations to be against local symbols, we
11653 must have the local symbols available when we do the relocations.
11654 Since we would rather only read the local symbols once, and we
11655 would rather not keep them in memory, we handle all the
11656 relocations for a single input file at the same time.
11657
11658 Unfortunately, there is no way to know the total number of local
11659 symbols until we have seen all of them, and the local symbol
11660 indices precede the global symbol indices. This means that when
11661 we are generating relocatable output, and we see a reloc against
11662 a global symbol, we can not know the symbol index until we have
11663 finished examining all the local symbols to see which ones we are
11664 going to output. To deal with this, we keep the relocations in
11665 memory, and don't output them until the end of the link. This is
11666 an unfortunate waste of memory, but I don't see a good way around
11667 it. Fortunately, it only happens when performing a relocatable
11668 link, which is not the common case. FIXME: If keep_memory is set
11669 we could write the relocs out and then read them again; I don't
11670 know how bad the memory loss will be. */
11671
11672 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11673 sub->output_has_begun = FALSE;
11674 for (o = abfd->sections; o != NULL; o = o->next)
11675 {
11676 for (p = o->map_head.link_order; p != NULL; p = p->next)
11677 {
11678 if (p->type == bfd_indirect_link_order
11679 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11680 == bfd_target_elf_flavour)
11681 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11682 {
11683 if (! sub->output_has_begun)
11684 {
11685 if (! elf_link_input_bfd (&flinfo, sub))
11686 goto error_return;
11687 sub->output_has_begun = TRUE;
11688 }
11689 }
11690 else if (p->type == bfd_section_reloc_link_order
11691 || p->type == bfd_symbol_reloc_link_order)
11692 {
11693 if (! elf_reloc_link_order (abfd, info, o, p))
11694 goto error_return;
11695 }
11696 else
11697 {
11698 if (! _bfd_default_link_order (abfd, info, o, p))
11699 {
11700 if (p->type == bfd_indirect_link_order
11701 && (bfd_get_flavour (sub)
11702 == bfd_target_elf_flavour)
11703 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11704 != bed->s->elfclass))
11705 {
11706 const char *iclass, *oclass;
11707
11708 switch (bed->s->elfclass)
11709 {
11710 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11711 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11712 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11713 default: abort ();
11714 }
11715
11716 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11717 {
11718 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11719 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11720 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11721 default: abort ();
11722 }
11723
11724 bfd_set_error (bfd_error_wrong_format);
11725 _bfd_error_handler
11726 (_("%B: file class %s incompatible with %s"),
11727 sub, iclass, oclass);
11728 }
11729
11730 goto error_return;
11731 }
11732 }
11733 }
11734 }
11735
11736 /* Free symbol buffer if needed. */
11737 if (!info->reduce_memory_overheads)
11738 {
11739 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11740 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11741 && elf_tdata (sub)->symbuf)
11742 {
11743 free (elf_tdata (sub)->symbuf);
11744 elf_tdata (sub)->symbuf = NULL;
11745 }
11746 }
11747
11748 /* Output any global symbols that got converted to local in a
11749 version script or due to symbol visibility. We do this in a
11750 separate step since ELF requires all local symbols to appear
11751 prior to any global symbols. FIXME: We should only do this if
11752 some global symbols were, in fact, converted to become local.
11753 FIXME: Will this work correctly with the Irix 5 linker? */
11754 eoinfo.failed = FALSE;
11755 eoinfo.flinfo = &flinfo;
11756 eoinfo.localsyms = TRUE;
11757 eoinfo.file_sym_done = FALSE;
11758 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11759 if (eoinfo.failed)
11760 return FALSE;
11761
11762 /* If backend needs to output some local symbols not present in the hash
11763 table, do it now. */
11764 if (bed->elf_backend_output_arch_local_syms
11765 && (info->strip != strip_all || emit_relocs))
11766 {
11767 typedef int (*out_sym_func)
11768 (void *, const char *, Elf_Internal_Sym *, asection *,
11769 struct elf_link_hash_entry *);
11770
11771 if (! ((*bed->elf_backend_output_arch_local_syms)
11772 (abfd, info, &flinfo,
11773 (out_sym_func) elf_link_output_symstrtab)))
11774 return FALSE;
11775 }
11776
11777 /* That wrote out all the local symbols. Finish up the symbol table
11778 with the global symbols. Even if we want to strip everything we
11779 can, we still need to deal with those global symbols that got
11780 converted to local in a version script. */
11781
11782 /* The sh_info field records the index of the first non local symbol. */
11783 symtab_hdr->sh_info = bfd_get_symcount (abfd);
11784
11785 if (dynamic
11786 && elf_hash_table (info)->dynsym != NULL
11787 && (elf_hash_table (info)->dynsym->output_section
11788 != bfd_abs_section_ptr))
11789 {
11790 Elf_Internal_Sym sym;
11791 bfd_byte *dynsym = elf_hash_table (info)->dynsym->contents;
11792
11793 o = elf_hash_table (info)->dynsym->output_section;
11794 elf_section_data (o)->this_hdr.sh_info
11795 = elf_hash_table (info)->local_dynsymcount + 1;
11796
11797 /* Write out the section symbols for the output sections. */
11798 if (bfd_link_pic (info)
11799 || elf_hash_table (info)->is_relocatable_executable)
11800 {
11801 asection *s;
11802
11803 sym.st_size = 0;
11804 sym.st_name = 0;
11805 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11806 sym.st_other = 0;
11807 sym.st_target_internal = 0;
11808
11809 for (s = abfd->sections; s != NULL; s = s->next)
11810 {
11811 int indx;
11812 bfd_byte *dest;
11813 long dynindx;
11814
11815 dynindx = elf_section_data (s)->dynindx;
11816 if (dynindx <= 0)
11817 continue;
11818 indx = elf_section_data (s)->this_idx;
11819 BFD_ASSERT (indx > 0);
11820 sym.st_shndx = indx;
11821 if (! check_dynsym (abfd, &sym))
11822 return FALSE;
11823 sym.st_value = s->vma;
11824 dest = dynsym + dynindx * bed->s->sizeof_sym;
11825 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11826 }
11827 }
11828
11829 /* Write out the local dynsyms. */
11830 if (elf_hash_table (info)->dynlocal)
11831 {
11832 struct elf_link_local_dynamic_entry *e;
11833 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11834 {
11835 asection *s;
11836 bfd_byte *dest;
11837
11838 /* Copy the internal symbol and turn off visibility.
11839 Note that we saved a word of storage and overwrote
11840 the original st_name with the dynstr_index. */
11841 sym = e->isym;
11842 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11843
11844 s = bfd_section_from_elf_index (e->input_bfd,
11845 e->isym.st_shndx);
11846 if (s != NULL)
11847 {
11848 sym.st_shndx =
11849 elf_section_data (s->output_section)->this_idx;
11850 if (! check_dynsym (abfd, &sym))
11851 return FALSE;
11852 sym.st_value = (s->output_section->vma
11853 + s->output_offset
11854 + e->isym.st_value);
11855 }
11856
11857 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11858 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11859 }
11860 }
11861 }
11862
11863 /* We get the global symbols from the hash table. */
11864 eoinfo.failed = FALSE;
11865 eoinfo.localsyms = FALSE;
11866 eoinfo.flinfo = &flinfo;
11867 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11868 if (eoinfo.failed)
11869 return FALSE;
11870
11871 /* If backend needs to output some symbols not present in the hash
11872 table, do it now. */
11873 if (bed->elf_backend_output_arch_syms
11874 && (info->strip != strip_all || emit_relocs))
11875 {
11876 typedef int (*out_sym_func)
11877 (void *, const char *, Elf_Internal_Sym *, asection *,
11878 struct elf_link_hash_entry *);
11879
11880 if (! ((*bed->elf_backend_output_arch_syms)
11881 (abfd, info, &flinfo,
11882 (out_sym_func) elf_link_output_symstrtab)))
11883 return FALSE;
11884 }
11885
11886 /* Finalize the .strtab section. */
11887 _bfd_elf_strtab_finalize (flinfo.symstrtab);
11888
11889 /* Swap out the .strtab section. */
11890 if (!elf_link_swap_symbols_out (&flinfo))
11891 return FALSE;
11892
11893 /* Now we know the size of the symtab section. */
11894 if (bfd_get_symcount (abfd) > 0)
11895 {
11896 /* Finish up and write out the symbol string table (.strtab)
11897 section. */
11898 Elf_Internal_Shdr *symstrtab_hdr;
11899 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
11900
11901 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
11902 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
11903 {
11904 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11905 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11906 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11907 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11908 symtab_shndx_hdr->sh_size = amt;
11909
11910 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11911 off, TRUE);
11912
11913 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11914 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11915 return FALSE;
11916 }
11917
11918 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11919 /* sh_name was set in prep_headers. */
11920 symstrtab_hdr->sh_type = SHT_STRTAB;
11921 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
11922 symstrtab_hdr->sh_addr = 0;
11923 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
11924 symstrtab_hdr->sh_entsize = 0;
11925 symstrtab_hdr->sh_link = 0;
11926 symstrtab_hdr->sh_info = 0;
11927 /* sh_offset is set just below. */
11928 symstrtab_hdr->sh_addralign = 1;
11929
11930 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
11931 off, TRUE);
11932 elf_next_file_pos (abfd) = off;
11933
11934 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11935 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
11936 return FALSE;
11937 }
11938
11939 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
11940 {
11941 _bfd_error_handler (_("%B: failed to generate import library"),
11942 info->out_implib_bfd);
11943 return FALSE;
11944 }
11945
11946 /* Adjust the relocs to have the correct symbol indices. */
11947 for (o = abfd->sections; o != NULL; o = o->next)
11948 {
11949 struct bfd_elf_section_data *esdo = elf_section_data (o);
11950 bfd_boolean sort;
11951 if ((o->flags & SEC_RELOC) == 0)
11952 continue;
11953
11954 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
11955 if (esdo->rel.hdr != NULL
11956 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
11957 return FALSE;
11958 if (esdo->rela.hdr != NULL
11959 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
11960 return FALSE;
11961
11962 /* Set the reloc_count field to 0 to prevent write_relocs from
11963 trying to swap the relocs out itself. */
11964 o->reloc_count = 0;
11965 }
11966
11967 if (dynamic && info->combreloc && dynobj != NULL)
11968 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11969
11970 /* If we are linking against a dynamic object, or generating a
11971 shared library, finish up the dynamic linking information. */
11972 if (dynamic)
11973 {
11974 bfd_byte *dyncon, *dynconend;
11975
11976 /* Fix up .dynamic entries. */
11977 o = bfd_get_linker_section (dynobj, ".dynamic");
11978 BFD_ASSERT (o != NULL);
11979
11980 dyncon = o->contents;
11981 dynconend = o->contents + o->size;
11982 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11983 {
11984 Elf_Internal_Dyn dyn;
11985 const char *name;
11986 unsigned int type;
11987
11988 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11989
11990 switch (dyn.d_tag)
11991 {
11992 default:
11993 continue;
11994 case DT_NULL:
11995 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11996 {
11997 switch (elf_section_data (reldyn)->this_hdr.sh_type)
11998 {
11999 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12000 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12001 default: continue;
12002 }
12003 dyn.d_un.d_val = relativecount;
12004 relativecount = 0;
12005 break;
12006 }
12007 continue;
12008
12009 case DT_INIT:
12010 name = info->init_function;
12011 goto get_sym;
12012 case DT_FINI:
12013 name = info->fini_function;
12014 get_sym:
12015 {
12016 struct elf_link_hash_entry *h;
12017
12018 h = elf_link_hash_lookup (elf_hash_table (info), name,
12019 FALSE, FALSE, TRUE);
12020 if (h != NULL
12021 && (h->root.type == bfd_link_hash_defined
12022 || h->root.type == bfd_link_hash_defweak))
12023 {
12024 dyn.d_un.d_ptr = h->root.u.def.value;
12025 o = h->root.u.def.section;
12026 if (o->output_section != NULL)
12027 dyn.d_un.d_ptr += (o->output_section->vma
12028 + o->output_offset);
12029 else
12030 {
12031 /* The symbol is imported from another shared
12032 library and does not apply to this one. */
12033 dyn.d_un.d_ptr = 0;
12034 }
12035 break;
12036 }
12037 }
12038 continue;
12039
12040 case DT_PREINIT_ARRAYSZ:
12041 name = ".preinit_array";
12042 goto get_out_size;
12043 case DT_INIT_ARRAYSZ:
12044 name = ".init_array";
12045 goto get_out_size;
12046 case DT_FINI_ARRAYSZ:
12047 name = ".fini_array";
12048 get_out_size:
12049 o = bfd_get_section_by_name (abfd, name);
12050 if (o == NULL)
12051 {
12052 _bfd_error_handler
12053 (_("could not find section %s"), name);
12054 goto error_return;
12055 }
12056 if (o->size == 0)
12057 _bfd_error_handler
12058 (_("warning: %s section has zero size"), name);
12059 dyn.d_un.d_val = o->size;
12060 break;
12061
12062 case DT_PREINIT_ARRAY:
12063 name = ".preinit_array";
12064 goto get_out_vma;
12065 case DT_INIT_ARRAY:
12066 name = ".init_array";
12067 goto get_out_vma;
12068 case DT_FINI_ARRAY:
12069 name = ".fini_array";
12070 get_out_vma:
12071 o = bfd_get_section_by_name (abfd, name);
12072 goto do_vma;
12073
12074 case DT_HASH:
12075 name = ".hash";
12076 goto get_vma;
12077 case DT_GNU_HASH:
12078 name = ".gnu.hash";
12079 goto get_vma;
12080 case DT_STRTAB:
12081 name = ".dynstr";
12082 goto get_vma;
12083 case DT_SYMTAB:
12084 name = ".dynsym";
12085 goto get_vma;
12086 case DT_VERDEF:
12087 name = ".gnu.version_d";
12088 goto get_vma;
12089 case DT_VERNEED:
12090 name = ".gnu.version_r";
12091 goto get_vma;
12092 case DT_VERSYM:
12093 name = ".gnu.version";
12094 get_vma:
12095 o = bfd_get_linker_section (dynobj, name);
12096 do_vma:
12097 if (o == NULL)
12098 {
12099 _bfd_error_handler
12100 (_("could not find section %s"), name);
12101 goto error_return;
12102 }
12103 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12104 {
12105 _bfd_error_handler
12106 (_("warning: section '%s' is being made into a note"), name);
12107 bfd_set_error (bfd_error_nonrepresentable_section);
12108 goto error_return;
12109 }
12110 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12111 break;
12112
12113 case DT_REL:
12114 case DT_RELA:
12115 case DT_RELSZ:
12116 case DT_RELASZ:
12117 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12118 type = SHT_REL;
12119 else
12120 type = SHT_RELA;
12121 dyn.d_un.d_val = 0;
12122 dyn.d_un.d_ptr = 0;
12123 for (i = 1; i < elf_numsections (abfd); i++)
12124 {
12125 Elf_Internal_Shdr *hdr;
12126
12127 hdr = elf_elfsections (abfd)[i];
12128 if (hdr->sh_type == type
12129 && (hdr->sh_flags & SHF_ALLOC) != 0)
12130 {
12131 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12132 dyn.d_un.d_val += hdr->sh_size;
12133 else
12134 {
12135 if (dyn.d_un.d_ptr == 0
12136 || hdr->sh_addr < dyn.d_un.d_ptr)
12137 dyn.d_un.d_ptr = hdr->sh_addr;
12138 }
12139 }
12140 }
12141 break;
12142 }
12143 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12144 }
12145 }
12146
12147 /* If we have created any dynamic sections, then output them. */
12148 if (dynobj != NULL)
12149 {
12150 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12151 goto error_return;
12152
12153 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12154 if (((info->warn_shared_textrel && bfd_link_pic (info))
12155 || info->error_textrel)
12156 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12157 {
12158 bfd_byte *dyncon, *dynconend;
12159
12160 dyncon = o->contents;
12161 dynconend = o->contents + o->size;
12162 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12163 {
12164 Elf_Internal_Dyn dyn;
12165
12166 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12167
12168 if (dyn.d_tag == DT_TEXTREL)
12169 {
12170 if (info->error_textrel)
12171 info->callbacks->einfo
12172 (_("%P%X: read-only segment has dynamic relocations.\n"));
12173 else
12174 info->callbacks->einfo
12175 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12176 break;
12177 }
12178 }
12179 }
12180
12181 for (o = dynobj->sections; o != NULL; o = o->next)
12182 {
12183 if ((o->flags & SEC_HAS_CONTENTS) == 0
12184 || o->size == 0
12185 || o->output_section == bfd_abs_section_ptr)
12186 continue;
12187 if ((o->flags & SEC_LINKER_CREATED) == 0)
12188 {
12189 /* At this point, we are only interested in sections
12190 created by _bfd_elf_link_create_dynamic_sections. */
12191 continue;
12192 }
12193 if (elf_hash_table (info)->stab_info.stabstr == o)
12194 continue;
12195 if (elf_hash_table (info)->eh_info.hdr_sec == o)
12196 continue;
12197 if (strcmp (o->name, ".dynstr") != 0)
12198 {
12199 if (! bfd_set_section_contents (abfd, o->output_section,
12200 o->contents,
12201 (file_ptr) o->output_offset
12202 * bfd_octets_per_byte (abfd),
12203 o->size))
12204 goto error_return;
12205 }
12206 else
12207 {
12208 /* The contents of the .dynstr section are actually in a
12209 stringtab. */
12210 file_ptr off;
12211
12212 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12213 if (bfd_seek (abfd, off, SEEK_SET) != 0
12214 || ! _bfd_elf_strtab_emit (abfd,
12215 elf_hash_table (info)->dynstr))
12216 goto error_return;
12217 }
12218 }
12219 }
12220
12221 if (bfd_link_relocatable (info))
12222 {
12223 bfd_boolean failed = FALSE;
12224
12225 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12226 if (failed)
12227 goto error_return;
12228 }
12229
12230 /* If we have optimized stabs strings, output them. */
12231 if (elf_hash_table (info)->stab_info.stabstr != NULL)
12232 {
12233 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
12234 goto error_return;
12235 }
12236
12237 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12238 goto error_return;
12239
12240 elf_final_link_free (abfd, &flinfo);
12241
12242 elf_linker (abfd) = TRUE;
12243
12244 if (attr_section)
12245 {
12246 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12247 if (contents == NULL)
12248 return FALSE; /* Bail out and fail. */
12249 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12250 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12251 free (contents);
12252 }
12253
12254 return TRUE;
12255
12256 error_return:
12257 elf_final_link_free (abfd, &flinfo);
12258 return FALSE;
12259 }
12260 \f
12261 /* Initialize COOKIE for input bfd ABFD. */
12262
12263 static bfd_boolean
12264 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12265 struct bfd_link_info *info, bfd *abfd)
12266 {
12267 Elf_Internal_Shdr *symtab_hdr;
12268 const struct elf_backend_data *bed;
12269
12270 bed = get_elf_backend_data (abfd);
12271 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12272
12273 cookie->abfd = abfd;
12274 cookie->sym_hashes = elf_sym_hashes (abfd);
12275 cookie->bad_symtab = elf_bad_symtab (abfd);
12276 if (cookie->bad_symtab)
12277 {
12278 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12279 cookie->extsymoff = 0;
12280 }
12281 else
12282 {
12283 cookie->locsymcount = symtab_hdr->sh_info;
12284 cookie->extsymoff = symtab_hdr->sh_info;
12285 }
12286
12287 if (bed->s->arch_size == 32)
12288 cookie->r_sym_shift = 8;
12289 else
12290 cookie->r_sym_shift = 32;
12291
12292 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12293 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12294 {
12295 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12296 cookie->locsymcount, 0,
12297 NULL, NULL, NULL);
12298 if (cookie->locsyms == NULL)
12299 {
12300 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12301 return FALSE;
12302 }
12303 if (info->keep_memory)
12304 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12305 }
12306 return TRUE;
12307 }
12308
12309 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12310
12311 static void
12312 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12313 {
12314 Elf_Internal_Shdr *symtab_hdr;
12315
12316 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12317 if (cookie->locsyms != NULL
12318 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12319 free (cookie->locsyms);
12320 }
12321
12322 /* Initialize the relocation information in COOKIE for input section SEC
12323 of input bfd ABFD. */
12324
12325 static bfd_boolean
12326 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12327 struct bfd_link_info *info, bfd *abfd,
12328 asection *sec)
12329 {
12330 const struct elf_backend_data *bed;
12331
12332 if (sec->reloc_count == 0)
12333 {
12334 cookie->rels = NULL;
12335 cookie->relend = NULL;
12336 }
12337 else
12338 {
12339 bed = get_elf_backend_data (abfd);
12340
12341 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12342 info->keep_memory);
12343 if (cookie->rels == NULL)
12344 return FALSE;
12345 cookie->rel = cookie->rels;
12346 cookie->relend = (cookie->rels
12347 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12348 }
12349 cookie->rel = cookie->rels;
12350 return TRUE;
12351 }
12352
12353 /* Free the memory allocated by init_reloc_cookie_rels,
12354 if appropriate. */
12355
12356 static void
12357 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12358 asection *sec)
12359 {
12360 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12361 free (cookie->rels);
12362 }
12363
12364 /* Initialize the whole of COOKIE for input section SEC. */
12365
12366 static bfd_boolean
12367 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12368 struct bfd_link_info *info,
12369 asection *sec)
12370 {
12371 if (!init_reloc_cookie (cookie, info, sec->owner))
12372 goto error1;
12373 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12374 goto error2;
12375 return TRUE;
12376
12377 error2:
12378 fini_reloc_cookie (cookie, sec->owner);
12379 error1:
12380 return FALSE;
12381 }
12382
12383 /* Free the memory allocated by init_reloc_cookie_for_section,
12384 if appropriate. */
12385
12386 static void
12387 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12388 asection *sec)
12389 {
12390 fini_reloc_cookie_rels (cookie, sec);
12391 fini_reloc_cookie (cookie, sec->owner);
12392 }
12393 \f
12394 /* Garbage collect unused sections. */
12395
12396 /* Default gc_mark_hook. */
12397
12398 asection *
12399 _bfd_elf_gc_mark_hook (asection *sec,
12400 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12401 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12402 struct elf_link_hash_entry *h,
12403 Elf_Internal_Sym *sym)
12404 {
12405 if (h != NULL)
12406 {
12407 switch (h->root.type)
12408 {
12409 case bfd_link_hash_defined:
12410 case bfd_link_hash_defweak:
12411 return h->root.u.def.section;
12412
12413 case bfd_link_hash_common:
12414 return h->root.u.c.p->section;
12415
12416 default:
12417 break;
12418 }
12419 }
12420 else
12421 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12422
12423 return NULL;
12424 }
12425
12426 /* For undefined __start_<name> and __stop_<name> symbols, return the
12427 first input section matching <name>. Return NULL otherwise. */
12428
12429 asection *
12430 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12431 struct elf_link_hash_entry *h)
12432 {
12433 asection *s;
12434 const char *sec_name;
12435
12436 if (h->root.type != bfd_link_hash_undefined
12437 && h->root.type != bfd_link_hash_undefweak)
12438 return NULL;
12439
12440 s = h->root.u.undef.section;
12441 if (s != NULL)
12442 {
12443 if (s == (asection *) 0 - 1)
12444 return NULL;
12445 return s;
12446 }
12447
12448 sec_name = NULL;
12449 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12450 sec_name = h->root.root.string + 8;
12451 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12452 sec_name = h->root.root.string + 7;
12453
12454 if (sec_name != NULL && *sec_name != '\0')
12455 {
12456 bfd *i;
12457
12458 for (i = info->input_bfds; i != NULL; i = i->link.next)
12459 {
12460 s = bfd_get_section_by_name (i, sec_name);
12461 if (s != NULL)
12462 {
12463 h->root.u.undef.section = s;
12464 break;
12465 }
12466 }
12467 }
12468
12469 if (s == NULL)
12470 h->root.u.undef.section = (asection *) 0 - 1;
12471
12472 return s;
12473 }
12474
12475 /* COOKIE->rel describes a relocation against section SEC, which is
12476 a section we've decided to keep. Return the section that contains
12477 the relocation symbol, or NULL if no section contains it. */
12478
12479 asection *
12480 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12481 elf_gc_mark_hook_fn gc_mark_hook,
12482 struct elf_reloc_cookie *cookie,
12483 bfd_boolean *start_stop)
12484 {
12485 unsigned long r_symndx;
12486 struct elf_link_hash_entry *h;
12487
12488 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12489 if (r_symndx == STN_UNDEF)
12490 return NULL;
12491
12492 if (r_symndx >= cookie->locsymcount
12493 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12494 {
12495 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12496 if (h == NULL)
12497 {
12498 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12499 sec->owner);
12500 return NULL;
12501 }
12502 while (h->root.type == bfd_link_hash_indirect
12503 || h->root.type == bfd_link_hash_warning)
12504 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12505 h->mark = 1;
12506 /* If this symbol is weak and there is a non-weak definition, we
12507 keep the non-weak definition because many backends put
12508 dynamic reloc info on the non-weak definition for code
12509 handling copy relocs. */
12510 if (h->u.weakdef != NULL)
12511 h->u.weakdef->mark = 1;
12512
12513 if (start_stop != NULL)
12514 {
12515 /* To work around a glibc bug, mark all XXX input sections
12516 when there is an as yet undefined reference to __start_XXX
12517 or __stop_XXX symbols. The linker will later define such
12518 symbols for orphan input sections that have a name
12519 representable as a C identifier. */
12520 asection *s = _bfd_elf_is_start_stop (info, h);
12521
12522 if (s != NULL)
12523 {
12524 *start_stop = !s->gc_mark;
12525 return s;
12526 }
12527 }
12528
12529 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12530 }
12531
12532 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12533 &cookie->locsyms[r_symndx]);
12534 }
12535
12536 /* COOKIE->rel describes a relocation against section SEC, which is
12537 a section we've decided to keep. Mark the section that contains
12538 the relocation symbol. */
12539
12540 bfd_boolean
12541 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12542 asection *sec,
12543 elf_gc_mark_hook_fn gc_mark_hook,
12544 struct elf_reloc_cookie *cookie)
12545 {
12546 asection *rsec;
12547 bfd_boolean start_stop = FALSE;
12548
12549 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12550 while (rsec != NULL)
12551 {
12552 if (!rsec->gc_mark)
12553 {
12554 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12555 || (rsec->owner->flags & DYNAMIC) != 0)
12556 rsec->gc_mark = 1;
12557 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12558 return FALSE;
12559 }
12560 if (!start_stop)
12561 break;
12562 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12563 }
12564 return TRUE;
12565 }
12566
12567 /* The mark phase of garbage collection. For a given section, mark
12568 it and any sections in this section's group, and all the sections
12569 which define symbols to which it refers. */
12570
12571 bfd_boolean
12572 _bfd_elf_gc_mark (struct bfd_link_info *info,
12573 asection *sec,
12574 elf_gc_mark_hook_fn gc_mark_hook)
12575 {
12576 bfd_boolean ret;
12577 asection *group_sec, *eh_frame;
12578
12579 sec->gc_mark = 1;
12580
12581 /* Mark all the sections in the group. */
12582 group_sec = elf_section_data (sec)->next_in_group;
12583 if (group_sec && !group_sec->gc_mark)
12584 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12585 return FALSE;
12586
12587 /* Look through the section relocs. */
12588 ret = TRUE;
12589 eh_frame = elf_eh_frame_section (sec->owner);
12590 if ((sec->flags & SEC_RELOC) != 0
12591 && sec->reloc_count > 0
12592 && sec != eh_frame)
12593 {
12594 struct elf_reloc_cookie cookie;
12595
12596 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12597 ret = FALSE;
12598 else
12599 {
12600 for (; cookie.rel < cookie.relend; cookie.rel++)
12601 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12602 {
12603 ret = FALSE;
12604 break;
12605 }
12606 fini_reloc_cookie_for_section (&cookie, sec);
12607 }
12608 }
12609
12610 if (ret && eh_frame && elf_fde_list (sec))
12611 {
12612 struct elf_reloc_cookie cookie;
12613
12614 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12615 ret = FALSE;
12616 else
12617 {
12618 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12619 gc_mark_hook, &cookie))
12620 ret = FALSE;
12621 fini_reloc_cookie_for_section (&cookie, eh_frame);
12622 }
12623 }
12624
12625 eh_frame = elf_section_eh_frame_entry (sec);
12626 if (ret && eh_frame && !eh_frame->gc_mark)
12627 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12628 ret = FALSE;
12629
12630 return ret;
12631 }
12632
12633 /* Scan and mark sections in a special or debug section group. */
12634
12635 static void
12636 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12637 {
12638 /* Point to first section of section group. */
12639 asection *ssec;
12640 /* Used to iterate the section group. */
12641 asection *msec;
12642
12643 bfd_boolean is_special_grp = TRUE;
12644 bfd_boolean is_debug_grp = TRUE;
12645
12646 /* First scan to see if group contains any section other than debug
12647 and special section. */
12648 ssec = msec = elf_next_in_group (grp);
12649 do
12650 {
12651 if ((msec->flags & SEC_DEBUGGING) == 0)
12652 is_debug_grp = FALSE;
12653
12654 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12655 is_special_grp = FALSE;
12656
12657 msec = elf_next_in_group (msec);
12658 }
12659 while (msec != ssec);
12660
12661 /* If this is a pure debug section group or pure special section group,
12662 keep all sections in this group. */
12663 if (is_debug_grp || is_special_grp)
12664 {
12665 do
12666 {
12667 msec->gc_mark = 1;
12668 msec = elf_next_in_group (msec);
12669 }
12670 while (msec != ssec);
12671 }
12672 }
12673
12674 /* Keep debug and special sections. */
12675
12676 bfd_boolean
12677 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12678 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12679 {
12680 bfd *ibfd;
12681
12682 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12683 {
12684 asection *isec;
12685 bfd_boolean some_kept;
12686 bfd_boolean debug_frag_seen;
12687
12688 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12689 continue;
12690
12691 /* Ensure all linker created sections are kept,
12692 see if any other section is already marked,
12693 and note if we have any fragmented debug sections. */
12694 debug_frag_seen = some_kept = FALSE;
12695 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12696 {
12697 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12698 isec->gc_mark = 1;
12699 else if (isec->gc_mark)
12700 some_kept = TRUE;
12701
12702 if (debug_frag_seen == FALSE
12703 && (isec->flags & SEC_DEBUGGING)
12704 && CONST_STRNEQ (isec->name, ".debug_line."))
12705 debug_frag_seen = TRUE;
12706 }
12707
12708 /* If no section in this file will be kept, then we can
12709 toss out the debug and special sections. */
12710 if (!some_kept)
12711 continue;
12712
12713 /* Keep debug and special sections like .comment when they are
12714 not part of a group. Also keep section groups that contain
12715 just debug sections or special sections. */
12716 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12717 {
12718 if ((isec->flags & SEC_GROUP) != 0)
12719 _bfd_elf_gc_mark_debug_special_section_group (isec);
12720 else if (((isec->flags & SEC_DEBUGGING) != 0
12721 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12722 && elf_next_in_group (isec) == NULL)
12723 isec->gc_mark = 1;
12724 }
12725
12726 if (! debug_frag_seen)
12727 continue;
12728
12729 /* Look for CODE sections which are going to be discarded,
12730 and find and discard any fragmented debug sections which
12731 are associated with that code section. */
12732 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12733 if ((isec->flags & SEC_CODE) != 0
12734 && isec->gc_mark == 0)
12735 {
12736 unsigned int ilen;
12737 asection *dsec;
12738
12739 ilen = strlen (isec->name);
12740
12741 /* Association is determined by the name of the debug section
12742 containing the name of the code section as a suffix. For
12743 example .debug_line.text.foo is a debug section associated
12744 with .text.foo. */
12745 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12746 {
12747 unsigned int dlen;
12748
12749 if (dsec->gc_mark == 0
12750 || (dsec->flags & SEC_DEBUGGING) == 0)
12751 continue;
12752
12753 dlen = strlen (dsec->name);
12754
12755 if (dlen > ilen
12756 && strncmp (dsec->name + (dlen - ilen),
12757 isec->name, ilen) == 0)
12758 {
12759 dsec->gc_mark = 0;
12760 }
12761 }
12762 }
12763 }
12764 return TRUE;
12765 }
12766
12767 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
12768
12769 struct elf_gc_sweep_symbol_info
12770 {
12771 struct bfd_link_info *info;
12772 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
12773 bfd_boolean);
12774 };
12775
12776 static bfd_boolean
12777 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
12778 {
12779 if (!h->mark
12780 && (((h->root.type == bfd_link_hash_defined
12781 || h->root.type == bfd_link_hash_defweak)
12782 && !((h->def_regular || ELF_COMMON_DEF_P (h))
12783 && h->root.u.def.section->gc_mark))
12784 || h->root.type == bfd_link_hash_undefined
12785 || h->root.type == bfd_link_hash_undefweak))
12786 {
12787 struct elf_gc_sweep_symbol_info *inf;
12788
12789 inf = (struct elf_gc_sweep_symbol_info *) data;
12790 (*inf->hide_symbol) (inf->info, h, TRUE);
12791 h->def_regular = 0;
12792 h->ref_regular = 0;
12793 h->ref_regular_nonweak = 0;
12794 }
12795
12796 return TRUE;
12797 }
12798
12799 /* The sweep phase of garbage collection. Remove all garbage sections. */
12800
12801 typedef bfd_boolean (*gc_sweep_hook_fn)
12802 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12803
12804 static bfd_boolean
12805 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12806 {
12807 bfd *sub;
12808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12809 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12810 unsigned long section_sym_count;
12811 struct elf_gc_sweep_symbol_info sweep_info;
12812
12813 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12814 {
12815 asection *o;
12816
12817 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12818 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12819 continue;
12820
12821 for (o = sub->sections; o != NULL; o = o->next)
12822 {
12823 /* When any section in a section group is kept, we keep all
12824 sections in the section group. If the first member of
12825 the section group is excluded, we will also exclude the
12826 group section. */
12827 if (o->flags & SEC_GROUP)
12828 {
12829 asection *first = elf_next_in_group (o);
12830 o->gc_mark = first->gc_mark;
12831 }
12832
12833 if (o->gc_mark)
12834 continue;
12835
12836 /* Skip sweeping sections already excluded. */
12837 if (o->flags & SEC_EXCLUDE)
12838 continue;
12839
12840 /* Since this is early in the link process, it is simple
12841 to remove a section from the output. */
12842 o->flags |= SEC_EXCLUDE;
12843
12844 if (info->print_gc_sections && o->size != 0)
12845 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
12846
12847 /* But we also have to update some of the relocation
12848 info we collected before. */
12849 if (gc_sweep_hook
12850 && (o->flags & SEC_RELOC) != 0
12851 && o->reloc_count != 0
12852 && !((info->strip == strip_all || info->strip == strip_debugger)
12853 && (o->flags & SEC_DEBUGGING) != 0)
12854 && !bfd_is_abs_section (o->output_section))
12855 {
12856 Elf_Internal_Rela *internal_relocs;
12857 bfd_boolean r;
12858
12859 internal_relocs
12860 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
12861 info->keep_memory);
12862 if (internal_relocs == NULL)
12863 return FALSE;
12864
12865 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
12866
12867 if (elf_section_data (o)->relocs != internal_relocs)
12868 free (internal_relocs);
12869
12870 if (!r)
12871 return FALSE;
12872 }
12873 }
12874 }
12875
12876 /* Remove the symbols that were in the swept sections from the dynamic
12877 symbol table. GCFIXME: Anyone know how to get them out of the
12878 static symbol table as well? */
12879 sweep_info.info = info;
12880 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12881 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12882 &sweep_info);
12883
12884 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12885 return TRUE;
12886 }
12887
12888 /* Propagate collected vtable information. This is called through
12889 elf_link_hash_traverse. */
12890
12891 static bfd_boolean
12892 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12893 {
12894 /* Those that are not vtables. */
12895 if (h->vtable == NULL || h->vtable->parent == NULL)
12896 return TRUE;
12897
12898 /* Those vtables that do not have parents, we cannot merge. */
12899 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12900 return TRUE;
12901
12902 /* If we've already been done, exit. */
12903 if (h->vtable->used && h->vtable->used[-1])
12904 return TRUE;
12905
12906 /* Make sure the parent's table is up to date. */
12907 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12908
12909 if (h->vtable->used == NULL)
12910 {
12911 /* None of this table's entries were referenced. Re-use the
12912 parent's table. */
12913 h->vtable->used = h->vtable->parent->vtable->used;
12914 h->vtable->size = h->vtable->parent->vtable->size;
12915 }
12916 else
12917 {
12918 size_t n;
12919 bfd_boolean *cu, *pu;
12920
12921 /* Or the parent's entries into ours. */
12922 cu = h->vtable->used;
12923 cu[-1] = TRUE;
12924 pu = h->vtable->parent->vtable->used;
12925 if (pu != NULL)
12926 {
12927 const struct elf_backend_data *bed;
12928 unsigned int log_file_align;
12929
12930 bed = get_elf_backend_data (h->root.u.def.section->owner);
12931 log_file_align = bed->s->log_file_align;
12932 n = h->vtable->parent->vtable->size >> log_file_align;
12933 while (n--)
12934 {
12935 if (*pu)
12936 *cu = TRUE;
12937 pu++;
12938 cu++;
12939 }
12940 }
12941 }
12942
12943 return TRUE;
12944 }
12945
12946 static bfd_boolean
12947 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12948 {
12949 asection *sec;
12950 bfd_vma hstart, hend;
12951 Elf_Internal_Rela *relstart, *relend, *rel;
12952 const struct elf_backend_data *bed;
12953 unsigned int log_file_align;
12954
12955 /* Take care of both those symbols that do not describe vtables as
12956 well as those that are not loaded. */
12957 if (h->vtable == NULL || h->vtable->parent == NULL)
12958 return TRUE;
12959
12960 BFD_ASSERT (h->root.type == bfd_link_hash_defined
12961 || h->root.type == bfd_link_hash_defweak);
12962
12963 sec = h->root.u.def.section;
12964 hstart = h->root.u.def.value;
12965 hend = hstart + h->size;
12966
12967 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12968 if (!relstart)
12969 return *(bfd_boolean *) okp = FALSE;
12970 bed = get_elf_backend_data (sec->owner);
12971 log_file_align = bed->s->log_file_align;
12972
12973 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12974
12975 for (rel = relstart; rel < relend; ++rel)
12976 if (rel->r_offset >= hstart && rel->r_offset < hend)
12977 {
12978 /* If the entry is in use, do nothing. */
12979 if (h->vtable->used
12980 && (rel->r_offset - hstart) < h->vtable->size)
12981 {
12982 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12983 if (h->vtable->used[entry])
12984 continue;
12985 }
12986 /* Otherwise, kill it. */
12987 rel->r_offset = rel->r_info = rel->r_addend = 0;
12988 }
12989
12990 return TRUE;
12991 }
12992
12993 /* Mark sections containing dynamically referenced symbols. When
12994 building shared libraries, we must assume that any visible symbol is
12995 referenced. */
12996
12997 bfd_boolean
12998 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12999 {
13000 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13001 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13002
13003 if ((h->root.type == bfd_link_hash_defined
13004 || h->root.type == bfd_link_hash_defweak)
13005 && (h->ref_dynamic
13006 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13007 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13008 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13009 && (!bfd_link_executable (info)
13010 || info->export_dynamic
13011 || (h->dynamic
13012 && d != NULL
13013 && (*d->match) (&d->head, NULL, h->root.root.string)))
13014 && (h->versioned >= versioned
13015 || !bfd_hide_sym_by_version (info->version_info,
13016 h->root.root.string)))))
13017 h->root.u.def.section->flags |= SEC_KEEP;
13018
13019 return TRUE;
13020 }
13021
13022 /* Keep all sections containing symbols undefined on the command-line,
13023 and the section containing the entry symbol. */
13024
13025 void
13026 _bfd_elf_gc_keep (struct bfd_link_info *info)
13027 {
13028 struct bfd_sym_chain *sym;
13029
13030 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13031 {
13032 struct elf_link_hash_entry *h;
13033
13034 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13035 FALSE, FALSE, FALSE);
13036
13037 if (h != NULL
13038 && (h->root.type == bfd_link_hash_defined
13039 || h->root.type == bfd_link_hash_defweak)
13040 && !bfd_is_abs_section (h->root.u.def.section))
13041 h->root.u.def.section->flags |= SEC_KEEP;
13042 }
13043 }
13044
13045 bfd_boolean
13046 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13047 struct bfd_link_info *info)
13048 {
13049 bfd *ibfd = info->input_bfds;
13050
13051 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13052 {
13053 asection *sec;
13054 struct elf_reloc_cookie cookie;
13055
13056 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13057 continue;
13058
13059 if (!init_reloc_cookie (&cookie, info, ibfd))
13060 return FALSE;
13061
13062 for (sec = ibfd->sections; sec; sec = sec->next)
13063 {
13064 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13065 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13066 {
13067 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13068 fini_reloc_cookie_rels (&cookie, sec);
13069 }
13070 }
13071 }
13072 return TRUE;
13073 }
13074
13075 /* Do mark and sweep of unused sections. */
13076
13077 bfd_boolean
13078 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13079 {
13080 bfd_boolean ok = TRUE;
13081 bfd *sub;
13082 elf_gc_mark_hook_fn gc_mark_hook;
13083 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13084 struct elf_link_hash_table *htab;
13085
13086 if (!bed->can_gc_sections
13087 || !is_elf_hash_table (info->hash))
13088 {
13089 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13090 return TRUE;
13091 }
13092
13093 bed->gc_keep (info);
13094 htab = elf_hash_table (info);
13095
13096 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13097 at the .eh_frame section if we can mark the FDEs individually. */
13098 for (sub = info->input_bfds;
13099 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13100 sub = sub->link.next)
13101 {
13102 asection *sec;
13103 struct elf_reloc_cookie cookie;
13104
13105 sec = bfd_get_section_by_name (sub, ".eh_frame");
13106 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13107 {
13108 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13109 if (elf_section_data (sec)->sec_info
13110 && (sec->flags & SEC_LINKER_CREATED) == 0)
13111 elf_eh_frame_section (sub) = sec;
13112 fini_reloc_cookie_for_section (&cookie, sec);
13113 sec = bfd_get_next_section_by_name (NULL, sec);
13114 }
13115 }
13116
13117 /* Apply transitive closure to the vtable entry usage info. */
13118 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13119 if (!ok)
13120 return FALSE;
13121
13122 /* Kill the vtable relocations that were not used. */
13123 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13124 if (!ok)
13125 return FALSE;
13126
13127 /* Mark dynamically referenced symbols. */
13128 if (htab->dynamic_sections_created)
13129 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13130
13131 /* Grovel through relocs to find out who stays ... */
13132 gc_mark_hook = bed->gc_mark_hook;
13133 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13134 {
13135 asection *o;
13136
13137 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13138 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13139 continue;
13140
13141 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13142 Also treat note sections as a root, if the section is not part
13143 of a group. */
13144 for (o = sub->sections; o != NULL; o = o->next)
13145 if (!o->gc_mark
13146 && (o->flags & SEC_EXCLUDE) == 0
13147 && ((o->flags & SEC_KEEP) != 0
13148 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13149 && elf_next_in_group (o) == NULL )))
13150 {
13151 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13152 return FALSE;
13153 }
13154 }
13155
13156 /* Allow the backend to mark additional target specific sections. */
13157 bed->gc_mark_extra_sections (info, gc_mark_hook);
13158
13159 /* ... and mark SEC_EXCLUDE for those that go. */
13160 return elf_gc_sweep (abfd, info);
13161 }
13162 \f
13163 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13164
13165 bfd_boolean
13166 bfd_elf_gc_record_vtinherit (bfd *abfd,
13167 asection *sec,
13168 struct elf_link_hash_entry *h,
13169 bfd_vma offset)
13170 {
13171 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13172 struct elf_link_hash_entry **search, *child;
13173 size_t extsymcount;
13174 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13175
13176 /* The sh_info field of the symtab header tells us where the
13177 external symbols start. We don't care about the local symbols at
13178 this point. */
13179 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13180 if (!elf_bad_symtab (abfd))
13181 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13182
13183 sym_hashes = elf_sym_hashes (abfd);
13184 sym_hashes_end = sym_hashes + extsymcount;
13185
13186 /* Hunt down the child symbol, which is in this section at the same
13187 offset as the relocation. */
13188 for (search = sym_hashes; search != sym_hashes_end; ++search)
13189 {
13190 if ((child = *search) != NULL
13191 && (child->root.type == bfd_link_hash_defined
13192 || child->root.type == bfd_link_hash_defweak)
13193 && child->root.u.def.section == sec
13194 && child->root.u.def.value == offset)
13195 goto win;
13196 }
13197
13198 _bfd_error_handler ("%B: %A+%lu: No symbol found for INHERIT",
13199 abfd, sec, (unsigned long) offset);
13200 bfd_set_error (bfd_error_invalid_operation);
13201 return FALSE;
13202
13203 win:
13204 if (!child->vtable)
13205 {
13206 child->vtable = ((struct elf_link_virtual_table_entry *)
13207 bfd_zalloc (abfd, sizeof (*child->vtable)));
13208 if (!child->vtable)
13209 return FALSE;
13210 }
13211 if (!h)
13212 {
13213 /* This *should* only be the absolute section. It could potentially
13214 be that someone has defined a non-global vtable though, which
13215 would be bad. It isn't worth paging in the local symbols to be
13216 sure though; that case should simply be handled by the assembler. */
13217
13218 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13219 }
13220 else
13221 child->vtable->parent = h;
13222
13223 return TRUE;
13224 }
13225
13226 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13227
13228 bfd_boolean
13229 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13230 asection *sec ATTRIBUTE_UNUSED,
13231 struct elf_link_hash_entry *h,
13232 bfd_vma addend)
13233 {
13234 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13235 unsigned int log_file_align = bed->s->log_file_align;
13236
13237 if (!h->vtable)
13238 {
13239 h->vtable = ((struct elf_link_virtual_table_entry *)
13240 bfd_zalloc (abfd, sizeof (*h->vtable)));
13241 if (!h->vtable)
13242 return FALSE;
13243 }
13244
13245 if (addend >= h->vtable->size)
13246 {
13247 size_t size, bytes, file_align;
13248 bfd_boolean *ptr = h->vtable->used;
13249
13250 /* While the symbol is undefined, we have to be prepared to handle
13251 a zero size. */
13252 file_align = 1 << log_file_align;
13253 if (h->root.type == bfd_link_hash_undefined)
13254 size = addend + file_align;
13255 else
13256 {
13257 size = h->size;
13258 if (addend >= size)
13259 {
13260 /* Oops! We've got a reference past the defined end of
13261 the table. This is probably a bug -- shall we warn? */
13262 size = addend + file_align;
13263 }
13264 }
13265 size = (size + file_align - 1) & -file_align;
13266
13267 /* Allocate one extra entry for use as a "done" flag for the
13268 consolidation pass. */
13269 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13270
13271 if (ptr)
13272 {
13273 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13274
13275 if (ptr != NULL)
13276 {
13277 size_t oldbytes;
13278
13279 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13280 * sizeof (bfd_boolean));
13281 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13282 }
13283 }
13284 else
13285 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13286
13287 if (ptr == NULL)
13288 return FALSE;
13289
13290 /* And arrange for that done flag to be at index -1. */
13291 h->vtable->used = ptr + 1;
13292 h->vtable->size = size;
13293 }
13294
13295 h->vtable->used[addend >> log_file_align] = TRUE;
13296
13297 return TRUE;
13298 }
13299
13300 /* Map an ELF section header flag to its corresponding string. */
13301 typedef struct
13302 {
13303 char *flag_name;
13304 flagword flag_value;
13305 } elf_flags_to_name_table;
13306
13307 static elf_flags_to_name_table elf_flags_to_names [] =
13308 {
13309 { "SHF_WRITE", SHF_WRITE },
13310 { "SHF_ALLOC", SHF_ALLOC },
13311 { "SHF_EXECINSTR", SHF_EXECINSTR },
13312 { "SHF_MERGE", SHF_MERGE },
13313 { "SHF_STRINGS", SHF_STRINGS },
13314 { "SHF_INFO_LINK", SHF_INFO_LINK},
13315 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13316 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13317 { "SHF_GROUP", SHF_GROUP },
13318 { "SHF_TLS", SHF_TLS },
13319 { "SHF_MASKOS", SHF_MASKOS },
13320 { "SHF_EXCLUDE", SHF_EXCLUDE },
13321 };
13322
13323 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13324 bfd_boolean
13325 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13326 struct flag_info *flaginfo,
13327 asection *section)
13328 {
13329 const bfd_vma sh_flags = elf_section_flags (section);
13330
13331 if (!flaginfo->flags_initialized)
13332 {
13333 bfd *obfd = info->output_bfd;
13334 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13335 struct flag_info_list *tf = flaginfo->flag_list;
13336 int with_hex = 0;
13337 int without_hex = 0;
13338
13339 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13340 {
13341 unsigned i;
13342 flagword (*lookup) (char *);
13343
13344 lookup = bed->elf_backend_lookup_section_flags_hook;
13345 if (lookup != NULL)
13346 {
13347 flagword hexval = (*lookup) ((char *) tf->name);
13348
13349 if (hexval != 0)
13350 {
13351 if (tf->with == with_flags)
13352 with_hex |= hexval;
13353 else if (tf->with == without_flags)
13354 without_hex |= hexval;
13355 tf->valid = TRUE;
13356 continue;
13357 }
13358 }
13359 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13360 {
13361 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13362 {
13363 if (tf->with == with_flags)
13364 with_hex |= elf_flags_to_names[i].flag_value;
13365 else if (tf->with == without_flags)
13366 without_hex |= elf_flags_to_names[i].flag_value;
13367 tf->valid = TRUE;
13368 break;
13369 }
13370 }
13371 if (!tf->valid)
13372 {
13373 info->callbacks->einfo
13374 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13375 return FALSE;
13376 }
13377 }
13378 flaginfo->flags_initialized = TRUE;
13379 flaginfo->only_with_flags |= with_hex;
13380 flaginfo->not_with_flags |= without_hex;
13381 }
13382
13383 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13384 return FALSE;
13385
13386 if ((flaginfo->not_with_flags & sh_flags) != 0)
13387 return FALSE;
13388
13389 return TRUE;
13390 }
13391
13392 struct alloc_got_off_arg {
13393 bfd_vma gotoff;
13394 struct bfd_link_info *info;
13395 };
13396
13397 /* We need a special top-level link routine to convert got reference counts
13398 to real got offsets. */
13399
13400 static bfd_boolean
13401 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13402 {
13403 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13404 bfd *obfd = gofarg->info->output_bfd;
13405 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13406
13407 if (h->got.refcount > 0)
13408 {
13409 h->got.offset = gofarg->gotoff;
13410 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13411 }
13412 else
13413 h->got.offset = (bfd_vma) -1;
13414
13415 return TRUE;
13416 }
13417
13418 /* And an accompanying bit to work out final got entry offsets once
13419 we're done. Should be called from final_link. */
13420
13421 bfd_boolean
13422 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13423 struct bfd_link_info *info)
13424 {
13425 bfd *i;
13426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13427 bfd_vma gotoff;
13428 struct alloc_got_off_arg gofarg;
13429
13430 BFD_ASSERT (abfd == info->output_bfd);
13431
13432 if (! is_elf_hash_table (info->hash))
13433 return FALSE;
13434
13435 /* The GOT offset is relative to the .got section, but the GOT header is
13436 put into the .got.plt section, if the backend uses it. */
13437 if (bed->want_got_plt)
13438 gotoff = 0;
13439 else
13440 gotoff = bed->got_header_size;
13441
13442 /* Do the local .got entries first. */
13443 for (i = info->input_bfds; i; i = i->link.next)
13444 {
13445 bfd_signed_vma *local_got;
13446 size_t j, locsymcount;
13447 Elf_Internal_Shdr *symtab_hdr;
13448
13449 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13450 continue;
13451
13452 local_got = elf_local_got_refcounts (i);
13453 if (!local_got)
13454 continue;
13455
13456 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13457 if (elf_bad_symtab (i))
13458 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13459 else
13460 locsymcount = symtab_hdr->sh_info;
13461
13462 for (j = 0; j < locsymcount; ++j)
13463 {
13464 if (local_got[j] > 0)
13465 {
13466 local_got[j] = gotoff;
13467 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13468 }
13469 else
13470 local_got[j] = (bfd_vma) -1;
13471 }
13472 }
13473
13474 /* Then the global .got entries. .plt refcounts are handled by
13475 adjust_dynamic_symbol */
13476 gofarg.gotoff = gotoff;
13477 gofarg.info = info;
13478 elf_link_hash_traverse (elf_hash_table (info),
13479 elf_gc_allocate_got_offsets,
13480 &gofarg);
13481 return TRUE;
13482 }
13483
13484 /* Many folk need no more in the way of final link than this, once
13485 got entry reference counting is enabled. */
13486
13487 bfd_boolean
13488 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13489 {
13490 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13491 return FALSE;
13492
13493 /* Invoke the regular ELF backend linker to do all the work. */
13494 return bfd_elf_final_link (abfd, info);
13495 }
13496
13497 bfd_boolean
13498 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13499 {
13500 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13501
13502 if (rcookie->bad_symtab)
13503 rcookie->rel = rcookie->rels;
13504
13505 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13506 {
13507 unsigned long r_symndx;
13508
13509 if (! rcookie->bad_symtab)
13510 if (rcookie->rel->r_offset > offset)
13511 return FALSE;
13512 if (rcookie->rel->r_offset != offset)
13513 continue;
13514
13515 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13516 if (r_symndx == STN_UNDEF)
13517 return TRUE;
13518
13519 if (r_symndx >= rcookie->locsymcount
13520 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13521 {
13522 struct elf_link_hash_entry *h;
13523
13524 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13525
13526 while (h->root.type == bfd_link_hash_indirect
13527 || h->root.type == bfd_link_hash_warning)
13528 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13529
13530 if ((h->root.type == bfd_link_hash_defined
13531 || h->root.type == bfd_link_hash_defweak)
13532 && (h->root.u.def.section->owner != rcookie->abfd
13533 || h->root.u.def.section->kept_section != NULL
13534 || discarded_section (h->root.u.def.section)))
13535 return TRUE;
13536 }
13537 else
13538 {
13539 /* It's not a relocation against a global symbol,
13540 but it could be a relocation against a local
13541 symbol for a discarded section. */
13542 asection *isec;
13543 Elf_Internal_Sym *isym;
13544
13545 /* Need to: get the symbol; get the section. */
13546 isym = &rcookie->locsyms[r_symndx];
13547 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13548 if (isec != NULL
13549 && (isec->kept_section != NULL
13550 || discarded_section (isec)))
13551 return TRUE;
13552 }
13553 return FALSE;
13554 }
13555 return FALSE;
13556 }
13557
13558 /* Discard unneeded references to discarded sections.
13559 Returns -1 on error, 1 if any section's size was changed, 0 if
13560 nothing changed. This function assumes that the relocations are in
13561 sorted order, which is true for all known assemblers. */
13562
13563 int
13564 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13565 {
13566 struct elf_reloc_cookie cookie;
13567 asection *o;
13568 bfd *abfd;
13569 int changed = 0;
13570
13571 if (info->traditional_format
13572 || !is_elf_hash_table (info->hash))
13573 return 0;
13574
13575 o = bfd_get_section_by_name (output_bfd, ".stab");
13576 if (o != NULL)
13577 {
13578 asection *i;
13579
13580 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13581 {
13582 if (i->size == 0
13583 || i->reloc_count == 0
13584 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13585 continue;
13586
13587 abfd = i->owner;
13588 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13589 continue;
13590
13591 if (!init_reloc_cookie_for_section (&cookie, info, i))
13592 return -1;
13593
13594 if (_bfd_discard_section_stabs (abfd, i,
13595 elf_section_data (i)->sec_info,
13596 bfd_elf_reloc_symbol_deleted_p,
13597 &cookie))
13598 changed = 1;
13599
13600 fini_reloc_cookie_for_section (&cookie, i);
13601 }
13602 }
13603
13604 o = NULL;
13605 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13606 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13607 if (o != NULL)
13608 {
13609 asection *i;
13610
13611 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13612 {
13613 if (i->size == 0)
13614 continue;
13615
13616 abfd = i->owner;
13617 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13618 continue;
13619
13620 if (!init_reloc_cookie_for_section (&cookie, info, i))
13621 return -1;
13622
13623 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13624 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13625 bfd_elf_reloc_symbol_deleted_p,
13626 &cookie))
13627 changed = 1;
13628
13629 fini_reloc_cookie_for_section (&cookie, i);
13630 }
13631 }
13632
13633 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13634 {
13635 const struct elf_backend_data *bed;
13636
13637 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13638 continue;
13639
13640 bed = get_elf_backend_data (abfd);
13641
13642 if (bed->elf_backend_discard_info != NULL)
13643 {
13644 if (!init_reloc_cookie (&cookie, info, abfd))
13645 return -1;
13646
13647 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13648 changed = 1;
13649
13650 fini_reloc_cookie (&cookie, abfd);
13651 }
13652 }
13653
13654 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13655 _bfd_elf_end_eh_frame_parsing (info);
13656
13657 if (info->eh_frame_hdr_type
13658 && !bfd_link_relocatable (info)
13659 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13660 changed = 1;
13661
13662 return changed;
13663 }
13664
13665 bfd_boolean
13666 _bfd_elf_section_already_linked (bfd *abfd,
13667 asection *sec,
13668 struct bfd_link_info *info)
13669 {
13670 flagword flags;
13671 const char *name, *key;
13672 struct bfd_section_already_linked *l;
13673 struct bfd_section_already_linked_hash_entry *already_linked_list;
13674
13675 if (sec->output_section == bfd_abs_section_ptr)
13676 return FALSE;
13677
13678 flags = sec->flags;
13679
13680 /* Return if it isn't a linkonce section. A comdat group section
13681 also has SEC_LINK_ONCE set. */
13682 if ((flags & SEC_LINK_ONCE) == 0)
13683 return FALSE;
13684
13685 /* Don't put group member sections on our list of already linked
13686 sections. They are handled as a group via their group section. */
13687 if (elf_sec_group (sec) != NULL)
13688 return FALSE;
13689
13690 /* For a SHT_GROUP section, use the group signature as the key. */
13691 name = sec->name;
13692 if ((flags & SEC_GROUP) != 0
13693 && elf_next_in_group (sec) != NULL
13694 && elf_group_name (elf_next_in_group (sec)) != NULL)
13695 key = elf_group_name (elf_next_in_group (sec));
13696 else
13697 {
13698 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13699 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13700 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13701 key++;
13702 else
13703 /* Must be a user linkonce section that doesn't follow gcc's
13704 naming convention. In this case we won't be matching
13705 single member groups. */
13706 key = name;
13707 }
13708
13709 already_linked_list = bfd_section_already_linked_table_lookup (key);
13710
13711 for (l = already_linked_list->entry; l != NULL; l = l->next)
13712 {
13713 /* We may have 2 different types of sections on the list: group
13714 sections with a signature of <key> (<key> is some string),
13715 and linkonce sections named .gnu.linkonce.<type>.<key>.
13716 Match like sections. LTO plugin sections are an exception.
13717 They are always named .gnu.linkonce.t.<key> and match either
13718 type of section. */
13719 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13720 && ((flags & SEC_GROUP) != 0
13721 || strcmp (name, l->sec->name) == 0))
13722 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13723 {
13724 /* The section has already been linked. See if we should
13725 issue a warning. */
13726 if (!_bfd_handle_already_linked (sec, l, info))
13727 return FALSE;
13728
13729 if (flags & SEC_GROUP)
13730 {
13731 asection *first = elf_next_in_group (sec);
13732 asection *s = first;
13733
13734 while (s != NULL)
13735 {
13736 s->output_section = bfd_abs_section_ptr;
13737 /* Record which group discards it. */
13738 s->kept_section = l->sec;
13739 s = elf_next_in_group (s);
13740 /* These lists are circular. */
13741 if (s == first)
13742 break;
13743 }
13744 }
13745
13746 return TRUE;
13747 }
13748 }
13749
13750 /* A single member comdat group section may be discarded by a
13751 linkonce section and vice versa. */
13752 if ((flags & SEC_GROUP) != 0)
13753 {
13754 asection *first = elf_next_in_group (sec);
13755
13756 if (first != NULL && elf_next_in_group (first) == first)
13757 /* Check this single member group against linkonce sections. */
13758 for (l = already_linked_list->entry; l != NULL; l = l->next)
13759 if ((l->sec->flags & SEC_GROUP) == 0
13760 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13761 {
13762 first->output_section = bfd_abs_section_ptr;
13763 first->kept_section = l->sec;
13764 sec->output_section = bfd_abs_section_ptr;
13765 break;
13766 }
13767 }
13768 else
13769 /* Check this linkonce section against single member groups. */
13770 for (l = already_linked_list->entry; l != NULL; l = l->next)
13771 if (l->sec->flags & SEC_GROUP)
13772 {
13773 asection *first = elf_next_in_group (l->sec);
13774
13775 if (first != NULL
13776 && elf_next_in_group (first) == first
13777 && bfd_elf_match_symbols_in_sections (first, sec, info))
13778 {
13779 sec->output_section = bfd_abs_section_ptr;
13780 sec->kept_section = first;
13781 break;
13782 }
13783 }
13784
13785 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13786 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13787 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13788 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
13789 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
13790 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13791 `.gnu.linkonce.t.F' section from a different bfd not requiring any
13792 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
13793 The reverse order cannot happen as there is never a bfd with only the
13794 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
13795 matter as here were are looking only for cross-bfd sections. */
13796
13797 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13798 for (l = already_linked_list->entry; l != NULL; l = l->next)
13799 if ((l->sec->flags & SEC_GROUP) == 0
13800 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13801 {
13802 if (abfd != l->sec->owner)
13803 sec->output_section = bfd_abs_section_ptr;
13804 break;
13805 }
13806
13807 /* This is the first section with this name. Record it. */
13808 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13809 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13810 return sec->output_section == bfd_abs_section_ptr;
13811 }
13812
13813 bfd_boolean
13814 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13815 {
13816 return sym->st_shndx == SHN_COMMON;
13817 }
13818
13819 unsigned int
13820 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13821 {
13822 return SHN_COMMON;
13823 }
13824
13825 asection *
13826 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13827 {
13828 return bfd_com_section_ptr;
13829 }
13830
13831 bfd_vma
13832 _bfd_elf_default_got_elt_size (bfd *abfd,
13833 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13834 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13835 bfd *ibfd ATTRIBUTE_UNUSED,
13836 unsigned long symndx ATTRIBUTE_UNUSED)
13837 {
13838 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13839 return bed->s->arch_size / 8;
13840 }
13841
13842 /* Routines to support the creation of dynamic relocs. */
13843
13844 /* Returns the name of the dynamic reloc section associated with SEC. */
13845
13846 static const char *
13847 get_dynamic_reloc_section_name (bfd * abfd,
13848 asection * sec,
13849 bfd_boolean is_rela)
13850 {
13851 char *name;
13852 const char *old_name = bfd_get_section_name (NULL, sec);
13853 const char *prefix = is_rela ? ".rela" : ".rel";
13854
13855 if (old_name == NULL)
13856 return NULL;
13857
13858 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13859 sprintf (name, "%s%s", prefix, old_name);
13860
13861 return name;
13862 }
13863
13864 /* Returns the dynamic reloc section associated with SEC.
13865 If necessary compute the name of the dynamic reloc section based
13866 on SEC's name (looked up in ABFD's string table) and the setting
13867 of IS_RELA. */
13868
13869 asection *
13870 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
13871 asection * sec,
13872 bfd_boolean is_rela)
13873 {
13874 asection * reloc_sec = elf_section_data (sec)->sreloc;
13875
13876 if (reloc_sec == NULL)
13877 {
13878 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13879
13880 if (name != NULL)
13881 {
13882 reloc_sec = bfd_get_linker_section (abfd, name);
13883
13884 if (reloc_sec != NULL)
13885 elf_section_data (sec)->sreloc = reloc_sec;
13886 }
13887 }
13888
13889 return reloc_sec;
13890 }
13891
13892 /* Returns the dynamic reloc section associated with SEC. If the
13893 section does not exist it is created and attached to the DYNOBJ
13894 bfd and stored in the SRELOC field of SEC's elf_section_data
13895 structure.
13896
13897 ALIGNMENT is the alignment for the newly created section and
13898 IS_RELA defines whether the name should be .rela.<SEC's name>
13899 or .rel.<SEC's name>. The section name is looked up in the
13900 string table associated with ABFD. */
13901
13902 asection *
13903 _bfd_elf_make_dynamic_reloc_section (asection *sec,
13904 bfd *dynobj,
13905 unsigned int alignment,
13906 bfd *abfd,
13907 bfd_boolean is_rela)
13908 {
13909 asection * reloc_sec = elf_section_data (sec)->sreloc;
13910
13911 if (reloc_sec == NULL)
13912 {
13913 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
13914
13915 if (name == NULL)
13916 return NULL;
13917
13918 reloc_sec = bfd_get_linker_section (dynobj, name);
13919
13920 if (reloc_sec == NULL)
13921 {
13922 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13923 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13924 if ((sec->flags & SEC_ALLOC) != 0)
13925 flags |= SEC_ALLOC | SEC_LOAD;
13926
13927 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13928 if (reloc_sec != NULL)
13929 {
13930 /* _bfd_elf_get_sec_type_attr chooses a section type by
13931 name. Override as it may be wrong, eg. for a user
13932 section named "auto" we'll get ".relauto" which is
13933 seen to be a .rela section. */
13934 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13935 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13936 reloc_sec = NULL;
13937 }
13938 }
13939
13940 elf_section_data (sec)->sreloc = reloc_sec;
13941 }
13942
13943 return reloc_sec;
13944 }
13945
13946 /* Copy the ELF symbol type and other attributes for a linker script
13947 assignment from HSRC to HDEST. Generally this should be treated as
13948 if we found a strong non-dynamic definition for HDEST (except that
13949 ld ignores multiple definition errors). */
13950 void
13951 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
13952 struct bfd_link_hash_entry *hdest,
13953 struct bfd_link_hash_entry *hsrc)
13954 {
13955 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
13956 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
13957 Elf_Internal_Sym isym;
13958
13959 ehdest->type = ehsrc->type;
13960 ehdest->target_internal = ehsrc->target_internal;
13961
13962 isym.st_other = ehsrc->other;
13963 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
13964 }
13965
13966 /* Append a RELA relocation REL to section S in BFD. */
13967
13968 void
13969 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13970 {
13971 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13972 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13973 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13974 bed->s->swap_reloca_out (abfd, rel, loc);
13975 }
13976
13977 /* Append a REL relocation REL to section S in BFD. */
13978
13979 void
13980 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13981 {
13982 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13983 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13984 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13985 bed->s->swap_reloc_out (abfd, rel, loc);
13986 }
This page took 0.564932 seconds and 4 git commands to generate.