369f3cb3e7bef6baa0e5e23d4bb2bfe2a7b20db0
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 size_t amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 size_t amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 if (alloc1 != NULL)
2647 free (alloc1);
2648
2649 /* Don't free alloc2, since if it was allocated we are passing it
2650 back (under the name of internal_relocs). */
2651
2652 return internal_relocs;
2653
2654 error_return:
2655 if (alloc1 != NULL)
2656 free (alloc1);
2657 if (alloc2 != NULL)
2658 {
2659 if (keep_memory)
2660 bfd_release (abfd, alloc2);
2661 else
2662 free (alloc2);
2663 }
2664 return NULL;
2665 }
2666
2667 /* Compute the size of, and allocate space for, REL_HDR which is the
2668 section header for a section containing relocations for O. */
2669
2670 static bfd_boolean
2671 _bfd_elf_link_size_reloc_section (bfd *abfd,
2672 struct bfd_elf_section_reloc_data *reldata)
2673 {
2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2675
2676 /* That allows us to calculate the size of the section. */
2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2678
2679 /* The contents field must last into write_object_contents, so we
2680 allocate it with bfd_alloc rather than malloc. Also since we
2681 cannot be sure that the contents will actually be filled in,
2682 we zero the allocated space. */
2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2685 return FALSE;
2686
2687 if (reldata->hashes == NULL && reldata->count)
2688 {
2689 struct elf_link_hash_entry **p;
2690
2691 p = ((struct elf_link_hash_entry **)
2692 bfd_zmalloc (reldata->count * sizeof (*p)));
2693 if (p == NULL)
2694 return FALSE;
2695
2696 reldata->hashes = p;
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2703 originated from the section given by INPUT_REL_HDR) to the
2704 OUTPUT_BFD. */
2705
2706 bfd_boolean
2707 _bfd_elf_link_output_relocs (bfd *output_bfd,
2708 asection *input_section,
2709 Elf_Internal_Shdr *input_rel_hdr,
2710 Elf_Internal_Rela *internal_relocs,
2711 struct elf_link_hash_entry **rel_hash
2712 ATTRIBUTE_UNUSED)
2713 {
2714 Elf_Internal_Rela *irela;
2715 Elf_Internal_Rela *irelaend;
2716 bfd_byte *erel;
2717 struct bfd_elf_section_reloc_data *output_reldata;
2718 asection *output_section;
2719 const struct elf_backend_data *bed;
2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2721 struct bfd_elf_section_data *esdo;
2722
2723 output_section = input_section->output_section;
2724
2725 bed = get_elf_backend_data (output_bfd);
2726 esdo = elf_section_data (output_section);
2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2728 {
2729 output_reldata = &esdo->rel;
2730 swap_out = bed->s->swap_reloc_out;
2731 }
2732 else if (esdo->rela.hdr
2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2734 {
2735 output_reldata = &esdo->rela;
2736 swap_out = bed->s->swap_reloca_out;
2737 }
2738 else
2739 {
2740 _bfd_error_handler
2741 /* xgettext:c-format */
2742 (_("%pB: relocation size mismatch in %pB section %pA"),
2743 output_bfd, input_section->owner, input_section);
2744 bfd_set_error (bfd_error_wrong_format);
2745 return FALSE;
2746 }
2747
2748 erel = output_reldata->hdr->contents;
2749 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2750 irela = internal_relocs;
2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2752 * bed->s->int_rels_per_ext_rel);
2753 while (irela < irelaend)
2754 {
2755 (*swap_out) (output_bfd, irela, erel);
2756 irela += bed->s->int_rels_per_ext_rel;
2757 erel += input_rel_hdr->sh_entsize;
2758 }
2759
2760 /* Bump the counter, so that we know where to add the next set of
2761 relocations. */
2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2763
2764 return TRUE;
2765 }
2766 \f
2767 /* Make weak undefined symbols in PIE dynamic. */
2768
2769 bfd_boolean
2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2771 struct elf_link_hash_entry *h)
2772 {
2773 if (bfd_link_pie (info)
2774 && h->dynindx == -1
2775 && h->root.type == bfd_link_hash_undefweak)
2776 return bfd_elf_link_record_dynamic_symbol (info, h);
2777
2778 return TRUE;
2779 }
2780
2781 /* Fix up the flags for a symbol. This handles various cases which
2782 can only be fixed after all the input files are seen. This is
2783 currently called by both adjust_dynamic_symbol and
2784 assign_sym_version, which is unnecessary but perhaps more robust in
2785 the face of future changes. */
2786
2787 static bfd_boolean
2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2789 struct elf_info_failed *eif)
2790 {
2791 const struct elf_backend_data *bed;
2792
2793 /* If this symbol was mentioned in a non-ELF file, try to set
2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2795 permit a non-ELF file to correctly refer to a symbol defined in
2796 an ELF dynamic object. */
2797 if (h->non_elf)
2798 {
2799 while (h->root.type == bfd_link_hash_indirect)
2800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2801
2802 if (h->root.type != bfd_link_hash_defined
2803 && h->root.type != bfd_link_hash_defweak)
2804 {
2805 h->ref_regular = 1;
2806 h->ref_regular_nonweak = 1;
2807 }
2808 else
2809 {
2810 if (h->root.u.def.section->owner != NULL
2811 && (bfd_get_flavour (h->root.u.def.section->owner)
2812 == bfd_target_elf_flavour))
2813 {
2814 h->ref_regular = 1;
2815 h->ref_regular_nonweak = 1;
2816 }
2817 else
2818 h->def_regular = 1;
2819 }
2820
2821 if (h->dynindx == -1
2822 && (h->def_dynamic
2823 || h->ref_dynamic))
2824 {
2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832 else
2833 {
2834 /* Unfortunately, NON_ELF is only correct if the symbol
2835 was first seen in a non-ELF file. Fortunately, if the symbol
2836 was first seen in an ELF file, we're probably OK unless the
2837 symbol was defined in a non-ELF file. Catch that case here.
2838 FIXME: We're still in trouble if the symbol was first seen in
2839 a dynamic object, and then later in a non-ELF regular object. */
2840 if ((h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2842 && !h->def_regular
2843 && (h->root.u.def.section->owner != NULL
2844 ? (bfd_get_flavour (h->root.u.def.section->owner)
2845 != bfd_target_elf_flavour)
2846 : (bfd_is_abs_section (h->root.u.def.section)
2847 && !h->def_dynamic)))
2848 h->def_regular = 1;
2849 }
2850
2851 /* Backend specific symbol fixup. */
2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2853 if (bed->elf_backend_fixup_symbol
2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2855 return FALSE;
2856
2857 /* If this is a final link, and the symbol was defined as a common
2858 symbol in a regular object file, and there was no definition in
2859 any dynamic object, then the linker will have allocated space for
2860 the symbol in a common section but the DEF_REGULAR
2861 flag will not have been set. */
2862 if (h->root.type == bfd_link_hash_defined
2863 && !h->def_regular
2864 && h->ref_regular
2865 && !h->def_dynamic
2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2867 h->def_regular = 1;
2868
2869 /* Symbols defined in discarded sections shouldn't be dynamic. */
2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2872
2873 /* If a weak undefined symbol has non-default visibility, we also
2874 hide it from the dynamic linker. */
2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2876 && h->root.type == bfd_link_hash_undefweak)
2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2878
2879 /* A hidden versioned symbol in executable should be forced local if
2880 it is is locally defined, not referenced by shared library and not
2881 exported. */
2882 else if (bfd_link_executable (eif->info)
2883 && h->versioned == versioned_hidden
2884 && !eif->info->export_dynamic
2885 && !h->dynamic
2886 && !h->ref_dynamic
2887 && h->def_regular)
2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2889
2890 /* If -Bsymbolic was used (which means to bind references to global
2891 symbols to the definition within the shared object), and this
2892 symbol was defined in a regular object, then it actually doesn't
2893 need a PLT entry. Likewise, if the symbol has non-default
2894 visibility. If the symbol has hidden or internal visibility, we
2895 will force it local. */
2896 else if (h->needs_plt
2897 && bfd_link_pic (eif->info)
2898 && is_elf_hash_table (eif->info->hash)
2899 && (SYMBOLIC_BIND (eif->info, h)
2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2901 && h->def_regular)
2902 {
2903 bfd_boolean force_local;
2904
2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2908 }
2909
2910 /* If this is a weak defined symbol in a dynamic object, and we know
2911 the real definition in the dynamic object, copy interesting flags
2912 over to the real definition. */
2913 if (h->is_weakalias)
2914 {
2915 struct elf_link_hash_entry *def = weakdef (h);
2916
2917 /* If the real definition is defined by a regular object file,
2918 don't do anything special. See the longer description in
2919 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2920 bfd_link_hash_defined as it was when put on the alias list
2921 then it must have originally been a versioned symbol (for
2922 which a non-versioned indirect symbol is created) and later
2923 a definition for the non-versioned symbol is found. In that
2924 case the indirection is flipped with the versioned symbol
2925 becoming an indirect pointing at the non-versioned symbol.
2926 Thus, not an alias any more. */
2927 if (def->def_regular
2928 || def->root.type != bfd_link_hash_defined)
2929 {
2930 h = def;
2931 while ((h = h->u.alias) != def)
2932 h->is_weakalias = 0;
2933 }
2934 else
2935 {
2936 while (h->root.type == bfd_link_hash_indirect)
2937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2938 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2939 || h->root.type == bfd_link_hash_defweak);
2940 BFD_ASSERT (def->def_dynamic);
2941 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2942 }
2943 }
2944
2945 return TRUE;
2946 }
2947
2948 /* Make the backend pick a good value for a dynamic symbol. This is
2949 called via elf_link_hash_traverse, and also calls itself
2950 recursively. */
2951
2952 static bfd_boolean
2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2954 {
2955 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2956 struct elf_link_hash_table *htab;
2957 const struct elf_backend_data *bed;
2958
2959 if (! is_elf_hash_table (eif->info->hash))
2960 return FALSE;
2961
2962 /* Ignore indirect symbols. These are added by the versioning code. */
2963 if (h->root.type == bfd_link_hash_indirect)
2964 return TRUE;
2965
2966 /* Fix the symbol flags. */
2967 if (! _bfd_elf_fix_symbol_flags (h, eif))
2968 return FALSE;
2969
2970 htab = elf_hash_table (eif->info);
2971 bed = get_elf_backend_data (htab->dynobj);
2972
2973 if (h->root.type == bfd_link_hash_undefweak)
2974 {
2975 if (eif->info->dynamic_undefined_weak == 0)
2976 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2977 else if (eif->info->dynamic_undefined_weak > 0
2978 && h->ref_regular
2979 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 && !bfd_hide_sym_by_version (eif->info->version_info,
2981 h->root.root.string))
2982 {
2983 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2984 {
2985 eif->failed = TRUE;
2986 return FALSE;
2987 }
2988 }
2989 }
2990
2991 /* If this symbol does not require a PLT entry, and it is not
2992 defined by a dynamic object, or is not referenced by a regular
2993 object, ignore it. We do have to handle a weak defined symbol,
2994 even if no regular object refers to it, if we decided to add it
2995 to the dynamic symbol table. FIXME: Do we normally need to worry
2996 about symbols which are defined by one dynamic object and
2997 referenced by another one? */
2998 if (!h->needs_plt
2999 && h->type != STT_GNU_IFUNC
3000 && (h->def_regular
3001 || !h->def_dynamic
3002 || (!h->ref_regular
3003 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3004 {
3005 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3006 return TRUE;
3007 }
3008
3009 /* If we've already adjusted this symbol, don't do it again. This
3010 can happen via a recursive call. */
3011 if (h->dynamic_adjusted)
3012 return TRUE;
3013
3014 /* Don't look at this symbol again. Note that we must set this
3015 after checking the above conditions, because we may look at a
3016 symbol once, decide not to do anything, and then get called
3017 recursively later after REF_REGULAR is set below. */
3018 h->dynamic_adjusted = 1;
3019
3020 /* If this is a weak definition, and we know a real definition, and
3021 the real symbol is not itself defined by a regular object file,
3022 then get a good value for the real definition. We handle the
3023 real symbol first, for the convenience of the backend routine.
3024
3025 Note that there is a confusing case here. If the real definition
3026 is defined by a regular object file, we don't get the real symbol
3027 from the dynamic object, but we do get the weak symbol. If the
3028 processor backend uses a COPY reloc, then if some routine in the
3029 dynamic object changes the real symbol, we will not see that
3030 change in the corresponding weak symbol. This is the way other
3031 ELF linkers work as well, and seems to be a result of the shared
3032 library model.
3033
3034 I will clarify this issue. Most SVR4 shared libraries define the
3035 variable _timezone and define timezone as a weak synonym. The
3036 tzset call changes _timezone. If you write
3037 extern int timezone;
3038 int _timezone = 5;
3039 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3040 you might expect that, since timezone is a synonym for _timezone,
3041 the same number will print both times. However, if the processor
3042 backend uses a COPY reloc, then actually timezone will be copied
3043 into your process image, and, since you define _timezone
3044 yourself, _timezone will not. Thus timezone and _timezone will
3045 wind up at different memory locations. The tzset call will set
3046 _timezone, leaving timezone unchanged. */
3047
3048 if (h->is_weakalias)
3049 {
3050 struct elf_link_hash_entry *def = weakdef (h);
3051
3052 /* If we get to this point, there is an implicit reference to
3053 the alias by a regular object file via the weak symbol H. */
3054 def->ref_regular = 1;
3055
3056 /* Ensure that the backend adjust_dynamic_symbol function sees
3057 the strong alias before H by recursively calling ourselves. */
3058 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3059 return FALSE;
3060 }
3061
3062 /* If a symbol has no type and no size and does not require a PLT
3063 entry, then we are probably about to do the wrong thing here: we
3064 are probably going to create a COPY reloc for an empty object.
3065 This case can arise when a shared object is built with assembly
3066 code, and the assembly code fails to set the symbol type. */
3067 if (h->size == 0
3068 && h->type == STT_NOTYPE
3069 && !h->needs_plt)
3070 _bfd_error_handler
3071 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3072 h->root.root.string);
3073
3074 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3075 {
3076 eif->failed = TRUE;
3077 return FALSE;
3078 }
3079
3080 return TRUE;
3081 }
3082
3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3084 DYNBSS. */
3085
3086 bfd_boolean
3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3088 struct elf_link_hash_entry *h,
3089 asection *dynbss)
3090 {
3091 unsigned int power_of_two;
3092 bfd_vma mask;
3093 asection *sec = h->root.u.def.section;
3094
3095 /* The section alignment of the definition is the maximum alignment
3096 requirement of symbols defined in the section. Since we don't
3097 know the symbol alignment requirement, we start with the
3098 maximum alignment and check low bits of the symbol address
3099 for the minimum alignment. */
3100 power_of_two = bfd_section_alignment (sec);
3101 mask = ((bfd_vma) 1 << power_of_two) - 1;
3102 while ((h->root.u.def.value & mask) != 0)
3103 {
3104 mask >>= 1;
3105 --power_of_two;
3106 }
3107
3108 if (power_of_two > bfd_section_alignment (dynbss))
3109 {
3110 /* Adjust the section alignment if needed. */
3111 if (!bfd_set_section_alignment (dynbss, power_of_two))
3112 return FALSE;
3113 }
3114
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h->root.u.def.section = dynbss;
3120 h->root.u.def.value = dynbss->size;
3121
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss->size += h->size;
3124
3125 /* No error if extern_protected_data is true. */
3126 if (h->protected_def
3127 && (!info->extern_protected_data
3128 || (info->extern_protected_data < 0
3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130 info->callbacks->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h->root.root.string);
3133
3134 return TRUE;
3135 }
3136
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3139
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143 asection *sec;
3144
3145 if ((h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak)
3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149 {
3150 bfd *output_bfd = (bfd *) data;
3151
3152 h->root.u.def.value =
3153 _bfd_merged_section_offset (output_bfd,
3154 &h->root.u.def.section,
3155 elf_section_data (sec)->sec_info,
3156 h->root.u.def.value);
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3165
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 struct bfd_link_info *info,
3169 bfd_boolean not_local_protected)
3170 {
3171 bfd_boolean binding_stays_local_p;
3172 const struct elf_backend_data *bed;
3173 struct elf_link_hash_table *hash_table;
3174
3175 if (h == NULL)
3176 return FALSE;
3177
3178 while (h->root.type == bfd_link_hash_indirect
3179 || h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h->dynindx == -1)
3184 return FALSE;
3185 if (h->forced_local)
3186 return FALSE;
3187
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p = (bfd_link_executable (info)
3191 || SYMBOLIC_BIND (info, h));
3192
3193 switch (ELF_ST_VISIBILITY (h->other))
3194 {
3195 case STV_INTERNAL:
3196 case STV_HIDDEN:
3197 return FALSE;
3198
3199 case STV_PROTECTED:
3200 hash_table = elf_hash_table (info);
3201 if (!is_elf_hash_table (hash_table))
3202 return FALSE;
3203
3204 bed = get_elf_backend_data (hash_table->dynobj);
3205
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected || !bed->is_function_type (h->type))
3210 binding_stays_local_p = TRUE;
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219 return TRUE;
3220
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p;
3224 }
3225
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233 defined symbols.
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3238
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 struct bfd_link_info *info,
3242 bfd_boolean local_protected)
3243 {
3244 const struct elf_backend_data *bed;
3245 struct elf_link_hash_table *hash_table;
3246
3247 /* If it's a local sym, of course we resolve locally. */
3248 if (h == NULL)
3249 return TRUE;
3250
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254 return TRUE;
3255
3256 /* Forced local symbols resolve locally. */
3257 if (h->forced_local)
3258 return TRUE;
3259
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h))
3263 /* Do nothing. */;
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h->def_regular)
3267 return FALSE;
3268
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h->dynindx == -1)
3271 return TRUE;
3272
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277 return TRUE;
3278
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282 return FALSE;
3283
3284 hash_table = elf_hash_table (info);
3285 if (!is_elf_hash_table (hash_table))
3286 return TRUE;
3287
3288 bed = get_elf_backend_data (hash_table->dynobj);
3289
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info->extern_protected_data
3293 || (info->extern_protected_data < 0
3294 && !bed->extern_protected_data))
3295 && !bed->is_function_type (h->type))
3296 return TRUE;
3297
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected;
3304 }
3305
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3308
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312 struct bfd_section *sec, *tls;
3313 unsigned int align = 0;
3314
3315 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 break;
3318 tls = sec;
3319
3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321 if (sec->alignment_power > align)
3322 align = sec->alignment_power;
3323
3324 elf_hash_table (info)->tls_sec = tls;
3325
3326 /* Ensure the alignment of the first section is the largest alignment,
3327 so that the tls segment starts aligned. */
3328 if (tls != NULL)
3329 tls->alignment_power = align;
3330
3331 return tls;
3332 }
3333
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 Elf_Internal_Sym *sym)
3338 {
3339 const struct elf_backend_data *bed;
3340
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344 return FALSE;
3345
3346 bed = get_elf_backend_data (abfd);
3347 /* Function symbols do not count. */
3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349 return FALSE;
3350
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym->st_shndx == SHN_UNDEF)
3353 return FALSE;
3354
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed->common_definition (sym))
3358 return FALSE;
3359
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363 /* FIXME - this function is not coded yet:
3364
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3366
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3370 return FALSE;
3371
3372 return TRUE;
3373 }
3374
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381 Elf_Internal_Shdr * hdr;
3382 size_t symcount;
3383 size_t extsymcount;
3384 size_t extsymoff;
3385 Elf_Internal_Sym *isymbuf;
3386 Elf_Internal_Sym *isym;
3387 Elf_Internal_Sym *isymend;
3388 bfd_boolean result;
3389
3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (abfd == NULL)
3392 return FALSE;
3393
3394 if (! bfd_check_format (abfd, bfd_object))
3395 return FALSE;
3396
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd->plugin_format == bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd))
3404 #endif
3405 )
3406 {
3407 /* Use the IR symbol table if the object has been claimed by
3408 plugin. */
3409 abfd = abfd->plugin_dummy_bfd;
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 }
3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413 hdr = &elf_tdata (abfd)->symtab_hdr;
3414 else
3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416
3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd))
3422 {
3423 extsymcount = symcount;
3424 extsymoff = 0;
3425 }
3426 else
3427 {
3428 extsymcount = symcount - hdr->sh_info;
3429 extsymoff = hdr->sh_info;
3430 }
3431
3432 if (extsymcount == 0)
3433 return FALSE;
3434
3435 /* Read in the symbol table. */
3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 NULL, NULL, NULL);
3438 if (isymbuf == NULL)
3439 return FALSE;
3440
3441 /* Scan the symbol table looking for SYMDEF. */
3442 result = FALSE;
3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 {
3445 const char *name;
3446
3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 isym->st_name);
3449 if (name == NULL)
3450 break;
3451
3452 if (strcmp (name, symdef->name) == 0)
3453 {
3454 result = is_global_data_symbol_definition (abfd, isym);
3455 break;
3456 }
3457 }
3458
3459 free (isymbuf);
3460
3461 return result;
3462 }
3463 \f
3464 /* Add an entry to the .dynamic table. */
3465
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 bfd_vma tag,
3469 bfd_vma val)
3470 {
3471 struct elf_link_hash_table *hash_table;
3472 const struct elf_backend_data *bed;
3473 asection *s;
3474 bfd_size_type newsize;
3475 bfd_byte *newcontents;
3476 Elf_Internal_Dyn dyn;
3477
3478 hash_table = elf_hash_table (info);
3479 if (! is_elf_hash_table (hash_table))
3480 return FALSE;
3481
3482 if (tag == DT_RELA || tag == DT_REL)
3483 hash_table->dynamic_relocs = TRUE;
3484
3485 bed = get_elf_backend_data (hash_table->dynobj);
3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487 BFD_ASSERT (s != NULL);
3488
3489 newsize = s->size + bed->s->sizeof_dyn;
3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491 if (newcontents == NULL)
3492 return FALSE;
3493
3494 dyn.d_tag = tag;
3495 dyn.d_un.d_val = val;
3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497
3498 s->size = newsize;
3499 s->contents = newcontents;
3500
3501 return TRUE;
3502 }
3503
3504 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3505 1 if a DT_NEEDED tag already exists, and 0 on success. */
3506
3507 int
3508 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3509 {
3510 struct elf_link_hash_table *hash_table;
3511 size_t strindex;
3512 const char *soname;
3513
3514 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3515 return -1;
3516
3517 hash_table = elf_hash_table (info);
3518 soname = elf_dt_name (abfd);
3519 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3520 if (strindex == (size_t) -1)
3521 return -1;
3522
3523 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3524 {
3525 asection *sdyn;
3526 const struct elf_backend_data *bed;
3527 bfd_byte *extdyn;
3528
3529 bed = get_elf_backend_data (hash_table->dynobj);
3530 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3531 if (sdyn != NULL)
3532 for (extdyn = sdyn->contents;
3533 extdyn < sdyn->contents + sdyn->size;
3534 extdyn += bed->s->sizeof_dyn)
3535 {
3536 Elf_Internal_Dyn dyn;
3537
3538 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3539 if (dyn.d_tag == DT_NEEDED
3540 && dyn.d_un.d_val == strindex)
3541 {
3542 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3543 return 1;
3544 }
3545 }
3546 }
3547
3548 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3549 return -1;
3550
3551 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3552 return -1;
3553
3554 return 0;
3555 }
3556
3557 /* Return true if SONAME is on the needed list between NEEDED and STOP
3558 (or the end of list if STOP is NULL), and needed by a library that
3559 will be loaded. */
3560
3561 static bfd_boolean
3562 on_needed_list (const char *soname,
3563 struct bfd_link_needed_list *needed,
3564 struct bfd_link_needed_list *stop)
3565 {
3566 struct bfd_link_needed_list *look;
3567 for (look = needed; look != stop; look = look->next)
3568 if (strcmp (soname, look->name) == 0
3569 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3570 /* If needed by a library that itself is not directly
3571 needed, recursively check whether that library is
3572 indirectly needed. Since we add DT_NEEDED entries to
3573 the end of the list, library dependencies appear after
3574 the library. Therefore search prior to the current
3575 LOOK, preventing possible infinite recursion. */
3576 || on_needed_list (elf_dt_name (look->by), needed, look)))
3577 return TRUE;
3578
3579 return FALSE;
3580 }
3581
3582 /* Sort symbol by value, section, size, and type. */
3583 static int
3584 elf_sort_symbol (const void *arg1, const void *arg2)
3585 {
3586 const struct elf_link_hash_entry *h1;
3587 const struct elf_link_hash_entry *h2;
3588 bfd_signed_vma vdiff;
3589 int sdiff;
3590 const char *n1;
3591 const char *n2;
3592
3593 h1 = *(const struct elf_link_hash_entry **) arg1;
3594 h2 = *(const struct elf_link_hash_entry **) arg2;
3595 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3596 if (vdiff != 0)
3597 return vdiff > 0 ? 1 : -1;
3598
3599 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3600 if (sdiff != 0)
3601 return sdiff;
3602
3603 /* Sort so that sized symbols are selected over zero size symbols. */
3604 vdiff = h1->size - h2->size;
3605 if (vdiff != 0)
3606 return vdiff > 0 ? 1 : -1;
3607
3608 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3609 if (h1->type != h2->type)
3610 return h1->type - h2->type;
3611
3612 /* If symbols are properly sized and typed, and multiple strong
3613 aliases are not defined in a shared library by the user we
3614 shouldn't get here. Unfortunately linker script symbols like
3615 __bss_start sometimes match a user symbol defined at the start of
3616 .bss without proper size and type. We'd like to preference the
3617 user symbol over reserved system symbols. Sort on leading
3618 underscores. */
3619 n1 = h1->root.root.string;
3620 n2 = h2->root.root.string;
3621 while (*n1 == *n2)
3622 {
3623 if (*n1 == 0)
3624 break;
3625 ++n1;
3626 ++n2;
3627 }
3628 if (*n1 == '_')
3629 return -1;
3630 if (*n2 == '_')
3631 return 1;
3632
3633 /* Final sort on name selects user symbols like '_u' over reserved
3634 system symbols like '_Z' and also will avoid qsort instability. */
3635 return *n1 - *n2;
3636 }
3637
3638 /* This function is used to adjust offsets into .dynstr for
3639 dynamic symbols. This is called via elf_link_hash_traverse. */
3640
3641 static bfd_boolean
3642 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3643 {
3644 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3645
3646 if (h->dynindx != -1)
3647 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3648 return TRUE;
3649 }
3650
3651 /* Assign string offsets in .dynstr, update all structures referencing
3652 them. */
3653
3654 static bfd_boolean
3655 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3656 {
3657 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3658 struct elf_link_local_dynamic_entry *entry;
3659 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3660 bfd *dynobj = hash_table->dynobj;
3661 asection *sdyn;
3662 bfd_size_type size;
3663 const struct elf_backend_data *bed;
3664 bfd_byte *extdyn;
3665
3666 _bfd_elf_strtab_finalize (dynstr);
3667 size = _bfd_elf_strtab_size (dynstr);
3668
3669 bed = get_elf_backend_data (dynobj);
3670 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3671 BFD_ASSERT (sdyn != NULL);
3672
3673 /* Update all .dynamic entries referencing .dynstr strings. */
3674 for (extdyn = sdyn->contents;
3675 extdyn < sdyn->contents + sdyn->size;
3676 extdyn += bed->s->sizeof_dyn)
3677 {
3678 Elf_Internal_Dyn dyn;
3679
3680 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3681 switch (dyn.d_tag)
3682 {
3683 case DT_STRSZ:
3684 dyn.d_un.d_val = size;
3685 break;
3686 case DT_NEEDED:
3687 case DT_SONAME:
3688 case DT_RPATH:
3689 case DT_RUNPATH:
3690 case DT_FILTER:
3691 case DT_AUXILIARY:
3692 case DT_AUDIT:
3693 case DT_DEPAUDIT:
3694 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3695 break;
3696 default:
3697 continue;
3698 }
3699 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3700 }
3701
3702 /* Now update local dynamic symbols. */
3703 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3704 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3705 entry->isym.st_name);
3706
3707 /* And the rest of dynamic symbols. */
3708 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3709
3710 /* Adjust version definitions. */
3711 if (elf_tdata (output_bfd)->cverdefs)
3712 {
3713 asection *s;
3714 bfd_byte *p;
3715 size_t i;
3716 Elf_Internal_Verdef def;
3717 Elf_Internal_Verdaux defaux;
3718
3719 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3720 p = s->contents;
3721 do
3722 {
3723 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3724 &def);
3725 p += sizeof (Elf_External_Verdef);
3726 if (def.vd_aux != sizeof (Elf_External_Verdef))
3727 continue;
3728 for (i = 0; i < def.vd_cnt; ++i)
3729 {
3730 _bfd_elf_swap_verdaux_in (output_bfd,
3731 (Elf_External_Verdaux *) p, &defaux);
3732 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3733 defaux.vda_name);
3734 _bfd_elf_swap_verdaux_out (output_bfd,
3735 &defaux, (Elf_External_Verdaux *) p);
3736 p += sizeof (Elf_External_Verdaux);
3737 }
3738 }
3739 while (def.vd_next);
3740 }
3741
3742 /* Adjust version references. */
3743 if (elf_tdata (output_bfd)->verref)
3744 {
3745 asection *s;
3746 bfd_byte *p;
3747 size_t i;
3748 Elf_Internal_Verneed need;
3749 Elf_Internal_Vernaux needaux;
3750
3751 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3752 p = s->contents;
3753 do
3754 {
3755 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3756 &need);
3757 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3758 _bfd_elf_swap_verneed_out (output_bfd, &need,
3759 (Elf_External_Verneed *) p);
3760 p += sizeof (Elf_External_Verneed);
3761 for (i = 0; i < need.vn_cnt; ++i)
3762 {
3763 _bfd_elf_swap_vernaux_in (output_bfd,
3764 (Elf_External_Vernaux *) p, &needaux);
3765 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3766 needaux.vna_name);
3767 _bfd_elf_swap_vernaux_out (output_bfd,
3768 &needaux,
3769 (Elf_External_Vernaux *) p);
3770 p += sizeof (Elf_External_Vernaux);
3771 }
3772 }
3773 while (need.vn_next);
3774 }
3775
3776 return TRUE;
3777 }
3778 \f
3779 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3780 The default is to only match when the INPUT and OUTPUT are exactly
3781 the same target. */
3782
3783 bfd_boolean
3784 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3785 const bfd_target *output)
3786 {
3787 return input == output;
3788 }
3789
3790 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3791 This version is used when different targets for the same architecture
3792 are virtually identical. */
3793
3794 bfd_boolean
3795 _bfd_elf_relocs_compatible (const bfd_target *input,
3796 const bfd_target *output)
3797 {
3798 const struct elf_backend_data *obed, *ibed;
3799
3800 if (input == output)
3801 return TRUE;
3802
3803 ibed = xvec_get_elf_backend_data (input);
3804 obed = xvec_get_elf_backend_data (output);
3805
3806 if (ibed->arch != obed->arch)
3807 return FALSE;
3808
3809 /* If both backends are using this function, deem them compatible. */
3810 return ibed->relocs_compatible == obed->relocs_compatible;
3811 }
3812
3813 /* Make a special call to the linker "notice" function to tell it that
3814 we are about to handle an as-needed lib, or have finished
3815 processing the lib. */
3816
3817 bfd_boolean
3818 _bfd_elf_notice_as_needed (bfd *ibfd,
3819 struct bfd_link_info *info,
3820 enum notice_asneeded_action act)
3821 {
3822 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3823 }
3824
3825 /* Check relocations an ELF object file. */
3826
3827 bfd_boolean
3828 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3829 {
3830 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3831 struct elf_link_hash_table *htab = elf_hash_table (info);
3832
3833 /* If this object is the same format as the output object, and it is
3834 not a shared library, then let the backend look through the
3835 relocs.
3836
3837 This is required to build global offset table entries and to
3838 arrange for dynamic relocs. It is not required for the
3839 particular common case of linking non PIC code, even when linking
3840 against shared libraries, but unfortunately there is no way of
3841 knowing whether an object file has been compiled PIC or not.
3842 Looking through the relocs is not particularly time consuming.
3843 The problem is that we must either (1) keep the relocs in memory,
3844 which causes the linker to require additional runtime memory or
3845 (2) read the relocs twice from the input file, which wastes time.
3846 This would be a good case for using mmap.
3847
3848 I have no idea how to handle linking PIC code into a file of a
3849 different format. It probably can't be done. */
3850 if ((abfd->flags & DYNAMIC) == 0
3851 && is_elf_hash_table (htab)
3852 && bed->check_relocs != NULL
3853 && elf_object_id (abfd) == elf_hash_table_id (htab)
3854 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3855 {
3856 asection *o;
3857
3858 for (o = abfd->sections; o != NULL; o = o->next)
3859 {
3860 Elf_Internal_Rela *internal_relocs;
3861 bfd_boolean ok;
3862
3863 /* Don't check relocations in excluded sections. */
3864 if ((o->flags & SEC_RELOC) == 0
3865 || (o->flags & SEC_EXCLUDE) != 0
3866 || o->reloc_count == 0
3867 || ((info->strip == strip_all || info->strip == strip_debugger)
3868 && (o->flags & SEC_DEBUGGING) != 0)
3869 || bfd_is_abs_section (o->output_section))
3870 continue;
3871
3872 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3873 info->keep_memory);
3874 if (internal_relocs == NULL)
3875 return FALSE;
3876
3877 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3878
3879 if (elf_section_data (o)->relocs != internal_relocs)
3880 free (internal_relocs);
3881
3882 if (! ok)
3883 return FALSE;
3884 }
3885 }
3886
3887 return TRUE;
3888 }
3889
3890 /* Add symbols from an ELF object file to the linker hash table. */
3891
3892 static bfd_boolean
3893 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3894 {
3895 Elf_Internal_Ehdr *ehdr;
3896 Elf_Internal_Shdr *hdr;
3897 size_t symcount;
3898 size_t extsymcount;
3899 size_t extsymoff;
3900 struct elf_link_hash_entry **sym_hash;
3901 bfd_boolean dynamic;
3902 Elf_External_Versym *extversym = NULL;
3903 Elf_External_Versym *extversym_end = NULL;
3904 Elf_External_Versym *ever;
3905 struct elf_link_hash_entry *weaks;
3906 struct elf_link_hash_entry **nondeflt_vers = NULL;
3907 size_t nondeflt_vers_cnt = 0;
3908 Elf_Internal_Sym *isymbuf = NULL;
3909 Elf_Internal_Sym *isym;
3910 Elf_Internal_Sym *isymend;
3911 const struct elf_backend_data *bed;
3912 bfd_boolean add_needed;
3913 struct elf_link_hash_table *htab;
3914 void *alloc_mark = NULL;
3915 struct bfd_hash_entry **old_table = NULL;
3916 unsigned int old_size = 0;
3917 unsigned int old_count = 0;
3918 void *old_tab = NULL;
3919 void *old_ent;
3920 struct bfd_link_hash_entry *old_undefs = NULL;
3921 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3922 void *old_strtab = NULL;
3923 size_t tabsize = 0;
3924 asection *s;
3925 bfd_boolean just_syms;
3926
3927 htab = elf_hash_table (info);
3928 bed = get_elf_backend_data (abfd);
3929
3930 if ((abfd->flags & DYNAMIC) == 0)
3931 dynamic = FALSE;
3932 else
3933 {
3934 dynamic = TRUE;
3935
3936 /* You can't use -r against a dynamic object. Also, there's no
3937 hope of using a dynamic object which does not exactly match
3938 the format of the output file. */
3939 if (bfd_link_relocatable (info)
3940 || !is_elf_hash_table (htab)
3941 || info->output_bfd->xvec != abfd->xvec)
3942 {
3943 if (bfd_link_relocatable (info))
3944 bfd_set_error (bfd_error_invalid_operation);
3945 else
3946 bfd_set_error (bfd_error_wrong_format);
3947 goto error_return;
3948 }
3949 }
3950
3951 ehdr = elf_elfheader (abfd);
3952 if (info->warn_alternate_em
3953 && bed->elf_machine_code != ehdr->e_machine
3954 && ((bed->elf_machine_alt1 != 0
3955 && ehdr->e_machine == bed->elf_machine_alt1)
3956 || (bed->elf_machine_alt2 != 0
3957 && ehdr->e_machine == bed->elf_machine_alt2)))
3958 _bfd_error_handler
3959 /* xgettext:c-format */
3960 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3961 ehdr->e_machine, abfd, bed->elf_machine_code);
3962
3963 /* As a GNU extension, any input sections which are named
3964 .gnu.warning.SYMBOL are treated as warning symbols for the given
3965 symbol. This differs from .gnu.warning sections, which generate
3966 warnings when they are included in an output file. */
3967 /* PR 12761: Also generate this warning when building shared libraries. */
3968 for (s = abfd->sections; s != NULL; s = s->next)
3969 {
3970 const char *name;
3971
3972 name = bfd_section_name (s);
3973 if (CONST_STRNEQ (name, ".gnu.warning."))
3974 {
3975 char *msg;
3976 bfd_size_type sz;
3977
3978 name += sizeof ".gnu.warning." - 1;
3979
3980 /* If this is a shared object, then look up the symbol
3981 in the hash table. If it is there, and it is already
3982 been defined, then we will not be using the entry
3983 from this shared object, so we don't need to warn.
3984 FIXME: If we see the definition in a regular object
3985 later on, we will warn, but we shouldn't. The only
3986 fix is to keep track of what warnings we are supposed
3987 to emit, and then handle them all at the end of the
3988 link. */
3989 if (dynamic)
3990 {
3991 struct elf_link_hash_entry *h;
3992
3993 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3994
3995 /* FIXME: What about bfd_link_hash_common? */
3996 if (h != NULL
3997 && (h->root.type == bfd_link_hash_defined
3998 || h->root.type == bfd_link_hash_defweak))
3999 continue;
4000 }
4001
4002 sz = s->size;
4003 msg = (char *) bfd_alloc (abfd, sz + 1);
4004 if (msg == NULL)
4005 goto error_return;
4006
4007 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4008 goto error_return;
4009
4010 msg[sz] = '\0';
4011
4012 if (! (_bfd_generic_link_add_one_symbol
4013 (info, abfd, name, BSF_WARNING, s, 0, msg,
4014 FALSE, bed->collect, NULL)))
4015 goto error_return;
4016
4017 if (bfd_link_executable (info))
4018 {
4019 /* Clobber the section size so that the warning does
4020 not get copied into the output file. */
4021 s->size = 0;
4022
4023 /* Also set SEC_EXCLUDE, so that symbols defined in
4024 the warning section don't get copied to the output. */
4025 s->flags |= SEC_EXCLUDE;
4026 }
4027 }
4028 }
4029
4030 just_syms = ((s = abfd->sections) != NULL
4031 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4032
4033 add_needed = TRUE;
4034 if (! dynamic)
4035 {
4036 /* If we are creating a shared library, create all the dynamic
4037 sections immediately. We need to attach them to something,
4038 so we attach them to this BFD, provided it is the right
4039 format and is not from ld --just-symbols. Always create the
4040 dynamic sections for -E/--dynamic-list. FIXME: If there
4041 are no input BFD's of the same format as the output, we can't
4042 make a shared library. */
4043 if (!just_syms
4044 && (bfd_link_pic (info)
4045 || (!bfd_link_relocatable (info)
4046 && info->nointerp
4047 && (info->export_dynamic || info->dynamic)))
4048 && is_elf_hash_table (htab)
4049 && info->output_bfd->xvec == abfd->xvec
4050 && !htab->dynamic_sections_created)
4051 {
4052 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4053 goto error_return;
4054 }
4055 }
4056 else if (!is_elf_hash_table (htab))
4057 goto error_return;
4058 else
4059 {
4060 const char *soname = NULL;
4061 char *audit = NULL;
4062 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4063 const Elf_Internal_Phdr *phdr;
4064 struct elf_link_loaded_list *loaded_lib;
4065
4066 /* ld --just-symbols and dynamic objects don't mix very well.
4067 ld shouldn't allow it. */
4068 if (just_syms)
4069 abort ();
4070
4071 /* If this dynamic lib was specified on the command line with
4072 --as-needed in effect, then we don't want to add a DT_NEEDED
4073 tag unless the lib is actually used. Similary for libs brought
4074 in by another lib's DT_NEEDED. When --no-add-needed is used
4075 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4076 any dynamic library in DT_NEEDED tags in the dynamic lib at
4077 all. */
4078 add_needed = (elf_dyn_lib_class (abfd)
4079 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4080 | DYN_NO_NEEDED)) == 0;
4081
4082 s = bfd_get_section_by_name (abfd, ".dynamic");
4083 if (s != NULL)
4084 {
4085 bfd_byte *dynbuf;
4086 bfd_byte *extdyn;
4087 unsigned int elfsec;
4088 unsigned long shlink;
4089
4090 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4091 {
4092 error_free_dyn:
4093 free (dynbuf);
4094 goto error_return;
4095 }
4096
4097 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4098 if (elfsec == SHN_BAD)
4099 goto error_free_dyn;
4100 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4101
4102 for (extdyn = dynbuf;
4103 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4104 extdyn += bed->s->sizeof_dyn)
4105 {
4106 Elf_Internal_Dyn dyn;
4107
4108 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4109 if (dyn.d_tag == DT_SONAME)
4110 {
4111 unsigned int tagv = dyn.d_un.d_val;
4112 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4113 if (soname == NULL)
4114 goto error_free_dyn;
4115 }
4116 if (dyn.d_tag == DT_NEEDED)
4117 {
4118 struct bfd_link_needed_list *n, **pn;
4119 char *fnm, *anm;
4120 unsigned int tagv = dyn.d_un.d_val;
4121 size_t amt = sizeof (struct bfd_link_needed_list);
4122
4123 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4124 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4125 if (n == NULL || fnm == NULL)
4126 goto error_free_dyn;
4127 amt = strlen (fnm) + 1;
4128 anm = (char *) bfd_alloc (abfd, amt);
4129 if (anm == NULL)
4130 goto error_free_dyn;
4131 memcpy (anm, fnm, amt);
4132 n->name = anm;
4133 n->by = abfd;
4134 n->next = NULL;
4135 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4136 ;
4137 *pn = n;
4138 }
4139 if (dyn.d_tag == DT_RUNPATH)
4140 {
4141 struct bfd_link_needed_list *n, **pn;
4142 char *fnm, *anm;
4143 unsigned int tagv = dyn.d_un.d_val;
4144 size_t amt = sizeof (struct bfd_link_needed_list);
4145
4146 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4147 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4148 if (n == NULL || fnm == NULL)
4149 goto error_free_dyn;
4150 amt = strlen (fnm) + 1;
4151 anm = (char *) bfd_alloc (abfd, amt);
4152 if (anm == NULL)
4153 goto error_free_dyn;
4154 memcpy (anm, fnm, amt);
4155 n->name = anm;
4156 n->by = abfd;
4157 n->next = NULL;
4158 for (pn = & runpath;
4159 *pn != NULL;
4160 pn = &(*pn)->next)
4161 ;
4162 *pn = n;
4163 }
4164 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4165 if (!runpath && dyn.d_tag == DT_RPATH)
4166 {
4167 struct bfd_link_needed_list *n, **pn;
4168 char *fnm, *anm;
4169 unsigned int tagv = dyn.d_un.d_val;
4170 size_t amt = sizeof (struct bfd_link_needed_list);
4171
4172 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4173 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4174 if (n == NULL || fnm == NULL)
4175 goto error_free_dyn;
4176 amt = strlen (fnm) + 1;
4177 anm = (char *) bfd_alloc (abfd, amt);
4178 if (anm == NULL)
4179 goto error_free_dyn;
4180 memcpy (anm, fnm, amt);
4181 n->name = anm;
4182 n->by = abfd;
4183 n->next = NULL;
4184 for (pn = & rpath;
4185 *pn != NULL;
4186 pn = &(*pn)->next)
4187 ;
4188 *pn = n;
4189 }
4190 if (dyn.d_tag == DT_AUDIT)
4191 {
4192 unsigned int tagv = dyn.d_un.d_val;
4193 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4194 }
4195 }
4196
4197 free (dynbuf);
4198 }
4199
4200 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4201 frees all more recently bfd_alloc'd blocks as well. */
4202 if (runpath)
4203 rpath = runpath;
4204
4205 if (rpath)
4206 {
4207 struct bfd_link_needed_list **pn;
4208 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4209 ;
4210 *pn = rpath;
4211 }
4212
4213 /* If we have a PT_GNU_RELRO program header, mark as read-only
4214 all sections contained fully therein. This makes relro
4215 shared library sections appear as they will at run-time. */
4216 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4217 while (phdr-- > elf_tdata (abfd)->phdr)
4218 if (phdr->p_type == PT_GNU_RELRO)
4219 {
4220 for (s = abfd->sections; s != NULL; s = s->next)
4221 {
4222 unsigned int opb = bfd_octets_per_byte (abfd, s);
4223
4224 if ((s->flags & SEC_ALLOC) != 0
4225 && s->vma * opb >= phdr->p_vaddr
4226 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4227 s->flags |= SEC_READONLY;
4228 }
4229 break;
4230 }
4231
4232 /* We do not want to include any of the sections in a dynamic
4233 object in the output file. We hack by simply clobbering the
4234 list of sections in the BFD. This could be handled more
4235 cleanly by, say, a new section flag; the existing
4236 SEC_NEVER_LOAD flag is not the one we want, because that one
4237 still implies that the section takes up space in the output
4238 file. */
4239 bfd_section_list_clear (abfd);
4240
4241 /* Find the name to use in a DT_NEEDED entry that refers to this
4242 object. If the object has a DT_SONAME entry, we use it.
4243 Otherwise, if the generic linker stuck something in
4244 elf_dt_name, we use that. Otherwise, we just use the file
4245 name. */
4246 if (soname == NULL || *soname == '\0')
4247 {
4248 soname = elf_dt_name (abfd);
4249 if (soname == NULL || *soname == '\0')
4250 soname = bfd_get_filename (abfd);
4251 }
4252
4253 /* Save the SONAME because sometimes the linker emulation code
4254 will need to know it. */
4255 elf_dt_name (abfd) = soname;
4256
4257 /* If we have already included this dynamic object in the
4258 link, just ignore it. There is no reason to include a
4259 particular dynamic object more than once. */
4260 for (loaded_lib = htab->dyn_loaded;
4261 loaded_lib != NULL;
4262 loaded_lib = loaded_lib->next)
4263 {
4264 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4265 return TRUE;
4266 }
4267
4268 /* Create dynamic sections for backends that require that be done
4269 before setup_gnu_properties. */
4270 if (add_needed
4271 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4272 return FALSE;
4273
4274 /* Save the DT_AUDIT entry for the linker emulation code. */
4275 elf_dt_audit (abfd) = audit;
4276 }
4277
4278 /* If this is a dynamic object, we always link against the .dynsym
4279 symbol table, not the .symtab symbol table. The dynamic linker
4280 will only see the .dynsym symbol table, so there is no reason to
4281 look at .symtab for a dynamic object. */
4282
4283 if (! dynamic || elf_dynsymtab (abfd) == 0)
4284 hdr = &elf_tdata (abfd)->symtab_hdr;
4285 else
4286 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4287
4288 symcount = hdr->sh_size / bed->s->sizeof_sym;
4289
4290 /* The sh_info field of the symtab header tells us where the
4291 external symbols start. We don't care about the local symbols at
4292 this point. */
4293 if (elf_bad_symtab (abfd))
4294 {
4295 extsymcount = symcount;
4296 extsymoff = 0;
4297 }
4298 else
4299 {
4300 extsymcount = symcount - hdr->sh_info;
4301 extsymoff = hdr->sh_info;
4302 }
4303
4304 sym_hash = elf_sym_hashes (abfd);
4305 if (extsymcount != 0)
4306 {
4307 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4308 NULL, NULL, NULL);
4309 if (isymbuf == NULL)
4310 goto error_return;
4311
4312 if (sym_hash == NULL)
4313 {
4314 /* We store a pointer to the hash table entry for each
4315 external symbol. */
4316 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4317 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4318 if (sym_hash == NULL)
4319 goto error_free_sym;
4320 elf_sym_hashes (abfd) = sym_hash;
4321 }
4322 }
4323
4324 if (dynamic)
4325 {
4326 /* Read in any version definitions. */
4327 if (!_bfd_elf_slurp_version_tables (abfd,
4328 info->default_imported_symver))
4329 goto error_free_sym;
4330
4331 /* Read in the symbol versions, but don't bother to convert them
4332 to internal format. */
4333 if (elf_dynversym (abfd) != 0)
4334 {
4335 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4336 bfd_size_type amt = versymhdr->sh_size;
4337
4338 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4339 goto error_free_sym;
4340 extversym = (Elf_External_Versym *)
4341 _bfd_malloc_and_read (abfd, amt, amt);
4342 if (extversym == NULL)
4343 goto error_free_sym;
4344 extversym_end = extversym + amt / sizeof (*extversym);
4345 }
4346 }
4347
4348 /* If we are loading an as-needed shared lib, save the symbol table
4349 state before we start adding symbols. If the lib turns out
4350 to be unneeded, restore the state. */
4351 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4352 {
4353 unsigned int i;
4354 size_t entsize;
4355
4356 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4357 {
4358 struct bfd_hash_entry *p;
4359 struct elf_link_hash_entry *h;
4360
4361 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4362 {
4363 h = (struct elf_link_hash_entry *) p;
4364 entsize += htab->root.table.entsize;
4365 if (h->root.type == bfd_link_hash_warning)
4366 entsize += htab->root.table.entsize;
4367 }
4368 }
4369
4370 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4371 old_tab = bfd_malloc (tabsize + entsize);
4372 if (old_tab == NULL)
4373 goto error_free_vers;
4374
4375 /* Remember the current objalloc pointer, so that all mem for
4376 symbols added can later be reclaimed. */
4377 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4378 if (alloc_mark == NULL)
4379 goto error_free_vers;
4380
4381 /* Make a special call to the linker "notice" function to
4382 tell it that we are about to handle an as-needed lib. */
4383 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4384 goto error_free_vers;
4385
4386 /* Clone the symbol table. Remember some pointers into the
4387 symbol table, and dynamic symbol count. */
4388 old_ent = (char *) old_tab + tabsize;
4389 memcpy (old_tab, htab->root.table.table, tabsize);
4390 old_undefs = htab->root.undefs;
4391 old_undefs_tail = htab->root.undefs_tail;
4392 old_table = htab->root.table.table;
4393 old_size = htab->root.table.size;
4394 old_count = htab->root.table.count;
4395 old_strtab = NULL;
4396 if (htab->dynstr != NULL)
4397 {
4398 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4399 if (old_strtab == NULL)
4400 goto error_free_vers;
4401 }
4402
4403 for (i = 0; i < htab->root.table.size; i++)
4404 {
4405 struct bfd_hash_entry *p;
4406 struct elf_link_hash_entry *h;
4407
4408 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4409 {
4410 memcpy (old_ent, p, htab->root.table.entsize);
4411 old_ent = (char *) old_ent + htab->root.table.entsize;
4412 h = (struct elf_link_hash_entry *) p;
4413 if (h->root.type == bfd_link_hash_warning)
4414 {
4415 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4416 old_ent = (char *) old_ent + htab->root.table.entsize;
4417 }
4418 }
4419 }
4420 }
4421
4422 weaks = NULL;
4423 if (extversym == NULL)
4424 ever = NULL;
4425 else if (extversym + extsymoff < extversym_end)
4426 ever = extversym + extsymoff;
4427 else
4428 {
4429 /* xgettext:c-format */
4430 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4431 abfd, (long) extsymoff,
4432 (long) (extversym_end - extversym) / sizeof (* extversym));
4433 bfd_set_error (bfd_error_bad_value);
4434 goto error_free_vers;
4435 }
4436
4437 if (!bfd_link_relocatable (info)
4438 && abfd->lto_slim_object)
4439 {
4440 _bfd_error_handler
4441 (_("%pB: plugin needed to handle lto object"), abfd);
4442 }
4443
4444 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4445 isym < isymend;
4446 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4447 {
4448 int bind;
4449 bfd_vma value;
4450 asection *sec, *new_sec;
4451 flagword flags;
4452 const char *name;
4453 struct elf_link_hash_entry *h;
4454 struct elf_link_hash_entry *hi;
4455 bfd_boolean definition;
4456 bfd_boolean size_change_ok;
4457 bfd_boolean type_change_ok;
4458 bfd_boolean new_weak;
4459 bfd_boolean old_weak;
4460 bfd_boolean override;
4461 bfd_boolean common;
4462 bfd_boolean discarded;
4463 unsigned int old_alignment;
4464 unsigned int shindex;
4465 bfd *old_bfd;
4466 bfd_boolean matched;
4467
4468 override = FALSE;
4469
4470 flags = BSF_NO_FLAGS;
4471 sec = NULL;
4472 value = isym->st_value;
4473 common = bed->common_definition (isym);
4474 if (common && info->inhibit_common_definition)
4475 {
4476 /* Treat common symbol as undefined for --no-define-common. */
4477 isym->st_shndx = SHN_UNDEF;
4478 common = FALSE;
4479 }
4480 discarded = FALSE;
4481
4482 bind = ELF_ST_BIND (isym->st_info);
4483 switch (bind)
4484 {
4485 case STB_LOCAL:
4486 /* This should be impossible, since ELF requires that all
4487 global symbols follow all local symbols, and that sh_info
4488 point to the first global symbol. Unfortunately, Irix 5
4489 screws this up. */
4490 if (elf_bad_symtab (abfd))
4491 continue;
4492
4493 /* If we aren't prepared to handle locals within the globals
4494 then we'll likely segfault on a NULL symbol hash if the
4495 symbol is ever referenced in relocations. */
4496 shindex = elf_elfheader (abfd)->e_shstrndx;
4497 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4498 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4499 " (>= sh_info of %lu)"),
4500 abfd, name, (long) (isym - isymbuf + extsymoff),
4501 (long) extsymoff);
4502
4503 /* Dynamic object relocations are not processed by ld, so
4504 ld won't run into the problem mentioned above. */
4505 if (dynamic)
4506 continue;
4507 bfd_set_error (bfd_error_bad_value);
4508 goto error_free_vers;
4509
4510 case STB_GLOBAL:
4511 if (isym->st_shndx != SHN_UNDEF && !common)
4512 flags = BSF_GLOBAL;
4513 break;
4514
4515 case STB_WEAK:
4516 flags = BSF_WEAK;
4517 break;
4518
4519 case STB_GNU_UNIQUE:
4520 flags = BSF_GNU_UNIQUE;
4521 break;
4522
4523 default:
4524 /* Leave it up to the processor backend. */
4525 break;
4526 }
4527
4528 if (isym->st_shndx == SHN_UNDEF)
4529 sec = bfd_und_section_ptr;
4530 else if (isym->st_shndx == SHN_ABS)
4531 sec = bfd_abs_section_ptr;
4532 else if (isym->st_shndx == SHN_COMMON)
4533 {
4534 sec = bfd_com_section_ptr;
4535 /* What ELF calls the size we call the value. What ELF
4536 calls the value we call the alignment. */
4537 value = isym->st_size;
4538 }
4539 else
4540 {
4541 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4542 if (sec == NULL)
4543 sec = bfd_abs_section_ptr;
4544 else if (discarded_section (sec))
4545 {
4546 /* Symbols from discarded section are undefined. We keep
4547 its visibility. */
4548 sec = bfd_und_section_ptr;
4549 discarded = TRUE;
4550 isym->st_shndx = SHN_UNDEF;
4551 }
4552 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4553 value -= sec->vma;
4554 }
4555
4556 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4557 isym->st_name);
4558 if (name == NULL)
4559 goto error_free_vers;
4560
4561 if (isym->st_shndx == SHN_COMMON
4562 && (abfd->flags & BFD_PLUGIN) != 0)
4563 {
4564 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4565
4566 if (xc == NULL)
4567 {
4568 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4569 | SEC_EXCLUDE);
4570 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4571 if (xc == NULL)
4572 goto error_free_vers;
4573 }
4574 sec = xc;
4575 }
4576 else if (isym->st_shndx == SHN_COMMON
4577 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4578 && !bfd_link_relocatable (info))
4579 {
4580 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4581
4582 if (tcomm == NULL)
4583 {
4584 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4585 | SEC_LINKER_CREATED);
4586 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4587 if (tcomm == NULL)
4588 goto error_free_vers;
4589 }
4590 sec = tcomm;
4591 }
4592 else if (bed->elf_add_symbol_hook)
4593 {
4594 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4595 &sec, &value))
4596 goto error_free_vers;
4597
4598 /* The hook function sets the name to NULL if this symbol
4599 should be skipped for some reason. */
4600 if (name == NULL)
4601 continue;
4602 }
4603
4604 /* Sanity check that all possibilities were handled. */
4605 if (sec == NULL)
4606 abort ();
4607
4608 /* Silently discard TLS symbols from --just-syms. There's
4609 no way to combine a static TLS block with a new TLS block
4610 for this executable. */
4611 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4612 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4613 continue;
4614
4615 if (bfd_is_und_section (sec)
4616 || bfd_is_com_section (sec))
4617 definition = FALSE;
4618 else
4619 definition = TRUE;
4620
4621 size_change_ok = FALSE;
4622 type_change_ok = bed->type_change_ok;
4623 old_weak = FALSE;
4624 matched = FALSE;
4625 old_alignment = 0;
4626 old_bfd = NULL;
4627 new_sec = sec;
4628
4629 if (is_elf_hash_table (htab))
4630 {
4631 Elf_Internal_Versym iver;
4632 unsigned int vernum = 0;
4633 bfd_boolean skip;
4634
4635 if (ever == NULL)
4636 {
4637 if (info->default_imported_symver)
4638 /* Use the default symbol version created earlier. */
4639 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4640 else
4641 iver.vs_vers = 0;
4642 }
4643 else if (ever >= extversym_end)
4644 {
4645 /* xgettext:c-format */
4646 _bfd_error_handler (_("%pB: not enough version information"),
4647 abfd);
4648 bfd_set_error (bfd_error_bad_value);
4649 goto error_free_vers;
4650 }
4651 else
4652 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4653
4654 vernum = iver.vs_vers & VERSYM_VERSION;
4655
4656 /* If this is a hidden symbol, or if it is not version
4657 1, we append the version name to the symbol name.
4658 However, we do not modify a non-hidden absolute symbol
4659 if it is not a function, because it might be the version
4660 symbol itself. FIXME: What if it isn't? */
4661 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4662 || (vernum > 1
4663 && (!bfd_is_abs_section (sec)
4664 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4665 {
4666 const char *verstr;
4667 size_t namelen, verlen, newlen;
4668 char *newname, *p;
4669
4670 if (isym->st_shndx != SHN_UNDEF)
4671 {
4672 if (vernum > elf_tdata (abfd)->cverdefs)
4673 verstr = NULL;
4674 else if (vernum > 1)
4675 verstr =
4676 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4677 else
4678 verstr = "";
4679
4680 if (verstr == NULL)
4681 {
4682 _bfd_error_handler
4683 /* xgettext:c-format */
4684 (_("%pB: %s: invalid version %u (max %d)"),
4685 abfd, name, vernum,
4686 elf_tdata (abfd)->cverdefs);
4687 bfd_set_error (bfd_error_bad_value);
4688 goto error_free_vers;
4689 }
4690 }
4691 else
4692 {
4693 /* We cannot simply test for the number of
4694 entries in the VERNEED section since the
4695 numbers for the needed versions do not start
4696 at 0. */
4697 Elf_Internal_Verneed *t;
4698
4699 verstr = NULL;
4700 for (t = elf_tdata (abfd)->verref;
4701 t != NULL;
4702 t = t->vn_nextref)
4703 {
4704 Elf_Internal_Vernaux *a;
4705
4706 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4707 {
4708 if (a->vna_other == vernum)
4709 {
4710 verstr = a->vna_nodename;
4711 break;
4712 }
4713 }
4714 if (a != NULL)
4715 break;
4716 }
4717 if (verstr == NULL)
4718 {
4719 _bfd_error_handler
4720 /* xgettext:c-format */
4721 (_("%pB: %s: invalid needed version %d"),
4722 abfd, name, vernum);
4723 bfd_set_error (bfd_error_bad_value);
4724 goto error_free_vers;
4725 }
4726 }
4727
4728 namelen = strlen (name);
4729 verlen = strlen (verstr);
4730 newlen = namelen + verlen + 2;
4731 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4732 && isym->st_shndx != SHN_UNDEF)
4733 ++newlen;
4734
4735 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4736 if (newname == NULL)
4737 goto error_free_vers;
4738 memcpy (newname, name, namelen);
4739 p = newname + namelen;
4740 *p++ = ELF_VER_CHR;
4741 /* If this is a defined non-hidden version symbol,
4742 we add another @ to the name. This indicates the
4743 default version of the symbol. */
4744 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4745 && isym->st_shndx != SHN_UNDEF)
4746 *p++ = ELF_VER_CHR;
4747 memcpy (p, verstr, verlen + 1);
4748
4749 name = newname;
4750 }
4751
4752 /* If this symbol has default visibility and the user has
4753 requested we not re-export it, then mark it as hidden. */
4754 if (!bfd_is_und_section (sec)
4755 && !dynamic
4756 && abfd->no_export
4757 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4758 isym->st_other = (STV_HIDDEN
4759 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4760
4761 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4762 sym_hash, &old_bfd, &old_weak,
4763 &old_alignment, &skip, &override,
4764 &type_change_ok, &size_change_ok,
4765 &matched))
4766 goto error_free_vers;
4767
4768 if (skip)
4769 continue;
4770
4771 /* Override a definition only if the new symbol matches the
4772 existing one. */
4773 if (override && matched)
4774 definition = FALSE;
4775
4776 h = *sym_hash;
4777 while (h->root.type == bfd_link_hash_indirect
4778 || h->root.type == bfd_link_hash_warning)
4779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4780
4781 if (elf_tdata (abfd)->verdef != NULL
4782 && vernum > 1
4783 && definition)
4784 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4785 }
4786
4787 if (! (_bfd_generic_link_add_one_symbol
4788 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4789 (struct bfd_link_hash_entry **) sym_hash)))
4790 goto error_free_vers;
4791
4792 h = *sym_hash;
4793 /* We need to make sure that indirect symbol dynamic flags are
4794 updated. */
4795 hi = h;
4796 while (h->root.type == bfd_link_hash_indirect
4797 || h->root.type == bfd_link_hash_warning)
4798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4799
4800 /* Setting the index to -3 tells elf_link_output_extsym that
4801 this symbol is defined in a discarded section. */
4802 if (discarded)
4803 h->indx = -3;
4804
4805 *sym_hash = h;
4806
4807 new_weak = (flags & BSF_WEAK) != 0;
4808 if (dynamic
4809 && definition
4810 && new_weak
4811 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4812 && is_elf_hash_table (htab)
4813 && h->u.alias == NULL)
4814 {
4815 /* Keep a list of all weak defined non function symbols from
4816 a dynamic object, using the alias field. Later in this
4817 function we will set the alias field to the correct
4818 value. We only put non-function symbols from dynamic
4819 objects on this list, because that happens to be the only
4820 time we need to know the normal symbol corresponding to a
4821 weak symbol, and the information is time consuming to
4822 figure out. If the alias field is not already NULL,
4823 then this symbol was already defined by some previous
4824 dynamic object, and we will be using that previous
4825 definition anyhow. */
4826
4827 h->u.alias = weaks;
4828 weaks = h;
4829 }
4830
4831 /* Set the alignment of a common symbol. */
4832 if ((common || bfd_is_com_section (sec))
4833 && h->root.type == bfd_link_hash_common)
4834 {
4835 unsigned int align;
4836
4837 if (common)
4838 align = bfd_log2 (isym->st_value);
4839 else
4840 {
4841 /* The new symbol is a common symbol in a shared object.
4842 We need to get the alignment from the section. */
4843 align = new_sec->alignment_power;
4844 }
4845 if (align > old_alignment)
4846 h->root.u.c.p->alignment_power = align;
4847 else
4848 h->root.u.c.p->alignment_power = old_alignment;
4849 }
4850
4851 if (is_elf_hash_table (htab))
4852 {
4853 /* Set a flag in the hash table entry indicating the type of
4854 reference or definition we just found. A dynamic symbol
4855 is one which is referenced or defined by both a regular
4856 object and a shared object. */
4857 bfd_boolean dynsym = FALSE;
4858
4859 /* Plugin symbols aren't normal. Don't set def_regular or
4860 ref_regular for them, or make them dynamic. */
4861 if ((abfd->flags & BFD_PLUGIN) != 0)
4862 ;
4863 else if (! dynamic)
4864 {
4865 if (! definition)
4866 {
4867 h->ref_regular = 1;
4868 if (bind != STB_WEAK)
4869 h->ref_regular_nonweak = 1;
4870 }
4871 else
4872 {
4873 h->def_regular = 1;
4874 if (h->def_dynamic)
4875 {
4876 h->def_dynamic = 0;
4877 h->ref_dynamic = 1;
4878 }
4879 }
4880
4881 /* If the indirect symbol has been forced local, don't
4882 make the real symbol dynamic. */
4883 if ((h == hi || !hi->forced_local)
4884 && (bfd_link_dll (info)
4885 || h->def_dynamic
4886 || h->ref_dynamic))
4887 dynsym = TRUE;
4888 }
4889 else
4890 {
4891 if (! definition)
4892 {
4893 h->ref_dynamic = 1;
4894 hi->ref_dynamic = 1;
4895 }
4896 else
4897 {
4898 h->def_dynamic = 1;
4899 hi->def_dynamic = 1;
4900 }
4901
4902 /* If the indirect symbol has been forced local, don't
4903 make the real symbol dynamic. */
4904 if ((h == hi || !hi->forced_local)
4905 && (h->def_regular
4906 || h->ref_regular
4907 || (h->is_weakalias
4908 && weakdef (h)->dynindx != -1)))
4909 dynsym = TRUE;
4910 }
4911
4912 /* Check to see if we need to add an indirect symbol for
4913 the default name. */
4914 if (definition
4915 || (!override && h->root.type == bfd_link_hash_common))
4916 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4917 sec, value, &old_bfd, &dynsym))
4918 goto error_free_vers;
4919
4920 /* Check the alignment when a common symbol is involved. This
4921 can change when a common symbol is overridden by a normal
4922 definition or a common symbol is ignored due to the old
4923 normal definition. We need to make sure the maximum
4924 alignment is maintained. */
4925 if ((old_alignment || common)
4926 && h->root.type != bfd_link_hash_common)
4927 {
4928 unsigned int common_align;
4929 unsigned int normal_align;
4930 unsigned int symbol_align;
4931 bfd *normal_bfd;
4932 bfd *common_bfd;
4933
4934 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4935 || h->root.type == bfd_link_hash_defweak);
4936
4937 symbol_align = ffs (h->root.u.def.value) - 1;
4938 if (h->root.u.def.section->owner != NULL
4939 && (h->root.u.def.section->owner->flags
4940 & (DYNAMIC | BFD_PLUGIN)) == 0)
4941 {
4942 normal_align = h->root.u.def.section->alignment_power;
4943 if (normal_align > symbol_align)
4944 normal_align = symbol_align;
4945 }
4946 else
4947 normal_align = symbol_align;
4948
4949 if (old_alignment)
4950 {
4951 common_align = old_alignment;
4952 common_bfd = old_bfd;
4953 normal_bfd = abfd;
4954 }
4955 else
4956 {
4957 common_align = bfd_log2 (isym->st_value);
4958 common_bfd = abfd;
4959 normal_bfd = old_bfd;
4960 }
4961
4962 if (normal_align < common_align)
4963 {
4964 /* PR binutils/2735 */
4965 if (normal_bfd == NULL)
4966 _bfd_error_handler
4967 /* xgettext:c-format */
4968 (_("warning: alignment %u of common symbol `%s' in %pB is"
4969 " greater than the alignment (%u) of its section %pA"),
4970 1 << common_align, name, common_bfd,
4971 1 << normal_align, h->root.u.def.section);
4972 else
4973 _bfd_error_handler
4974 /* xgettext:c-format */
4975 (_("warning: alignment %u of symbol `%s' in %pB"
4976 " is smaller than %u in %pB"),
4977 1 << normal_align, name, normal_bfd,
4978 1 << common_align, common_bfd);
4979 }
4980 }
4981
4982 /* Remember the symbol size if it isn't undefined. */
4983 if (isym->st_size != 0
4984 && isym->st_shndx != SHN_UNDEF
4985 && (definition || h->size == 0))
4986 {
4987 if (h->size != 0
4988 && h->size != isym->st_size
4989 && ! size_change_ok)
4990 _bfd_error_handler
4991 /* xgettext:c-format */
4992 (_("warning: size of symbol `%s' changed"
4993 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4994 name, (uint64_t) h->size, old_bfd,
4995 (uint64_t) isym->st_size, abfd);
4996
4997 h->size = isym->st_size;
4998 }
4999
5000 /* If this is a common symbol, then we always want H->SIZE
5001 to be the size of the common symbol. The code just above
5002 won't fix the size if a common symbol becomes larger. We
5003 don't warn about a size change here, because that is
5004 covered by --warn-common. Allow changes between different
5005 function types. */
5006 if (h->root.type == bfd_link_hash_common)
5007 h->size = h->root.u.c.size;
5008
5009 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5010 && ((definition && !new_weak)
5011 || (old_weak && h->root.type == bfd_link_hash_common)
5012 || h->type == STT_NOTYPE))
5013 {
5014 unsigned int type = ELF_ST_TYPE (isym->st_info);
5015
5016 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5017 symbol. */
5018 if (type == STT_GNU_IFUNC
5019 && (abfd->flags & DYNAMIC) != 0)
5020 type = STT_FUNC;
5021
5022 if (h->type != type)
5023 {
5024 if (h->type != STT_NOTYPE && ! type_change_ok)
5025 /* xgettext:c-format */
5026 _bfd_error_handler
5027 (_("warning: type of symbol `%s' changed"
5028 " from %d to %d in %pB"),
5029 name, h->type, type, abfd);
5030
5031 h->type = type;
5032 }
5033 }
5034
5035 /* Merge st_other field. */
5036 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5037
5038 /* We don't want to make debug symbol dynamic. */
5039 if (definition
5040 && (sec->flags & SEC_DEBUGGING)
5041 && !bfd_link_relocatable (info))
5042 dynsym = FALSE;
5043
5044 /* Nor should we make plugin symbols dynamic. */
5045 if ((abfd->flags & BFD_PLUGIN) != 0)
5046 dynsym = FALSE;
5047
5048 if (definition)
5049 {
5050 h->target_internal = isym->st_target_internal;
5051 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5052 }
5053
5054 if (definition && !dynamic)
5055 {
5056 char *p = strchr (name, ELF_VER_CHR);
5057 if (p != NULL && p[1] != ELF_VER_CHR)
5058 {
5059 /* Queue non-default versions so that .symver x, x@FOO
5060 aliases can be checked. */
5061 if (!nondeflt_vers)
5062 {
5063 size_t amt = ((isymend - isym + 1)
5064 * sizeof (struct elf_link_hash_entry *));
5065 nondeflt_vers
5066 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5067 if (!nondeflt_vers)
5068 goto error_free_vers;
5069 }
5070 nondeflt_vers[nondeflt_vers_cnt++] = h;
5071 }
5072 }
5073
5074 if (dynsym && h->dynindx == -1)
5075 {
5076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5077 goto error_free_vers;
5078 if (h->is_weakalias
5079 && weakdef (h)->dynindx == -1)
5080 {
5081 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5082 goto error_free_vers;
5083 }
5084 }
5085 else if (h->dynindx != -1)
5086 /* If the symbol already has a dynamic index, but
5087 visibility says it should not be visible, turn it into
5088 a local symbol. */
5089 switch (ELF_ST_VISIBILITY (h->other))
5090 {
5091 case STV_INTERNAL:
5092 case STV_HIDDEN:
5093 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5094 dynsym = FALSE;
5095 break;
5096 }
5097
5098 /* Don't add DT_NEEDED for references from the dummy bfd nor
5099 for unmatched symbol. */
5100 if (!add_needed
5101 && matched
5102 && definition
5103 && ((dynsym
5104 && h->ref_regular_nonweak
5105 && (old_bfd == NULL
5106 || (old_bfd->flags & BFD_PLUGIN) == 0))
5107 || (h->ref_dynamic_nonweak
5108 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5109 && !on_needed_list (elf_dt_name (abfd),
5110 htab->needed, NULL))))
5111 {
5112 const char *soname = elf_dt_name (abfd);
5113
5114 info->callbacks->minfo ("%!", soname, old_bfd,
5115 h->root.root.string);
5116
5117 /* A symbol from a library loaded via DT_NEEDED of some
5118 other library is referenced by a regular object.
5119 Add a DT_NEEDED entry for it. Issue an error if
5120 --no-add-needed is used and the reference was not
5121 a weak one. */
5122 if (old_bfd != NULL
5123 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5124 {
5125 _bfd_error_handler
5126 /* xgettext:c-format */
5127 (_("%pB: undefined reference to symbol '%s'"),
5128 old_bfd, name);
5129 bfd_set_error (bfd_error_missing_dso);
5130 goto error_free_vers;
5131 }
5132
5133 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5134 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5135
5136 /* Create dynamic sections for backends that require
5137 that be done before setup_gnu_properties. */
5138 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5139 return FALSE;
5140 add_needed = TRUE;
5141 }
5142 }
5143 }
5144
5145 if (info->lto_plugin_active
5146 && !bfd_link_relocatable (info)
5147 && (abfd->flags & BFD_PLUGIN) == 0
5148 && !just_syms
5149 && extsymcount)
5150 {
5151 int r_sym_shift;
5152
5153 if (bed->s->arch_size == 32)
5154 r_sym_shift = 8;
5155 else
5156 r_sym_shift = 32;
5157
5158 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5159 referenced in regular objects so that linker plugin will get
5160 the correct symbol resolution. */
5161
5162 sym_hash = elf_sym_hashes (abfd);
5163 for (s = abfd->sections; s != NULL; s = s->next)
5164 {
5165 Elf_Internal_Rela *internal_relocs;
5166 Elf_Internal_Rela *rel, *relend;
5167
5168 /* Don't check relocations in excluded sections. */
5169 if ((s->flags & SEC_RELOC) == 0
5170 || s->reloc_count == 0
5171 || (s->flags & SEC_EXCLUDE) != 0
5172 || ((info->strip == strip_all
5173 || info->strip == strip_debugger)
5174 && (s->flags & SEC_DEBUGGING) != 0))
5175 continue;
5176
5177 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5178 NULL,
5179 info->keep_memory);
5180 if (internal_relocs == NULL)
5181 goto error_free_vers;
5182
5183 rel = internal_relocs;
5184 relend = rel + s->reloc_count;
5185 for ( ; rel < relend; rel++)
5186 {
5187 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5188 struct elf_link_hash_entry *h;
5189
5190 /* Skip local symbols. */
5191 if (r_symndx < extsymoff)
5192 continue;
5193
5194 h = sym_hash[r_symndx - extsymoff];
5195 if (h != NULL)
5196 h->root.non_ir_ref_regular = 1;
5197 }
5198
5199 if (elf_section_data (s)->relocs != internal_relocs)
5200 free (internal_relocs);
5201 }
5202 }
5203
5204 if (extversym != NULL)
5205 {
5206 free (extversym);
5207 extversym = NULL;
5208 }
5209
5210 if (isymbuf != NULL)
5211 {
5212 free (isymbuf);
5213 isymbuf = NULL;
5214 }
5215
5216 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5217 {
5218 unsigned int i;
5219
5220 /* Restore the symbol table. */
5221 old_ent = (char *) old_tab + tabsize;
5222 memset (elf_sym_hashes (abfd), 0,
5223 extsymcount * sizeof (struct elf_link_hash_entry *));
5224 htab->root.table.table = old_table;
5225 htab->root.table.size = old_size;
5226 htab->root.table.count = old_count;
5227 memcpy (htab->root.table.table, old_tab, tabsize);
5228 htab->root.undefs = old_undefs;
5229 htab->root.undefs_tail = old_undefs_tail;
5230 if (htab->dynstr != NULL)
5231 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5232 free (old_strtab);
5233 old_strtab = NULL;
5234 for (i = 0; i < htab->root.table.size; i++)
5235 {
5236 struct bfd_hash_entry *p;
5237 struct elf_link_hash_entry *h;
5238 bfd_size_type size;
5239 unsigned int alignment_power;
5240 unsigned int non_ir_ref_dynamic;
5241
5242 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5243 {
5244 h = (struct elf_link_hash_entry *) p;
5245 if (h->root.type == bfd_link_hash_warning)
5246 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5247
5248 /* Preserve the maximum alignment and size for common
5249 symbols even if this dynamic lib isn't on DT_NEEDED
5250 since it can still be loaded at run time by another
5251 dynamic lib. */
5252 if (h->root.type == bfd_link_hash_common)
5253 {
5254 size = h->root.u.c.size;
5255 alignment_power = h->root.u.c.p->alignment_power;
5256 }
5257 else
5258 {
5259 size = 0;
5260 alignment_power = 0;
5261 }
5262 /* Preserve non_ir_ref_dynamic so that this symbol
5263 will be exported when the dynamic lib becomes needed
5264 in the second pass. */
5265 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5266 memcpy (p, old_ent, htab->root.table.entsize);
5267 old_ent = (char *) old_ent + htab->root.table.entsize;
5268 h = (struct elf_link_hash_entry *) p;
5269 if (h->root.type == bfd_link_hash_warning)
5270 {
5271 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5272 old_ent = (char *) old_ent + htab->root.table.entsize;
5273 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5274 }
5275 if (h->root.type == bfd_link_hash_common)
5276 {
5277 if (size > h->root.u.c.size)
5278 h->root.u.c.size = size;
5279 if (alignment_power > h->root.u.c.p->alignment_power)
5280 h->root.u.c.p->alignment_power = alignment_power;
5281 }
5282 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5283 }
5284 }
5285
5286 /* Make a special call to the linker "notice" function to
5287 tell it that symbols added for crefs may need to be removed. */
5288 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5289 goto error_free_vers;
5290
5291 free (old_tab);
5292 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5293 alloc_mark);
5294 if (nondeflt_vers != NULL)
5295 free (nondeflt_vers);
5296 return TRUE;
5297 }
5298
5299 if (old_tab != NULL)
5300 {
5301 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5302 goto error_free_vers;
5303 free (old_tab);
5304 old_tab = NULL;
5305 }
5306
5307 /* Now that all the symbols from this input file are created, if
5308 not performing a relocatable link, handle .symver foo, foo@BAR
5309 such that any relocs against foo become foo@BAR. */
5310 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5311 {
5312 size_t cnt, symidx;
5313
5314 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5315 {
5316 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5317 char *shortname, *p;
5318 size_t amt;
5319
5320 p = strchr (h->root.root.string, ELF_VER_CHR);
5321 if (p == NULL
5322 || (h->root.type != bfd_link_hash_defined
5323 && h->root.type != bfd_link_hash_defweak))
5324 continue;
5325
5326 amt = p - h->root.root.string;
5327 shortname = (char *) bfd_malloc (amt + 1);
5328 if (!shortname)
5329 goto error_free_vers;
5330 memcpy (shortname, h->root.root.string, amt);
5331 shortname[amt] = '\0';
5332
5333 hi = (struct elf_link_hash_entry *)
5334 bfd_link_hash_lookup (&htab->root, shortname,
5335 FALSE, FALSE, FALSE);
5336 if (hi != NULL
5337 && hi->root.type == h->root.type
5338 && hi->root.u.def.value == h->root.u.def.value
5339 && hi->root.u.def.section == h->root.u.def.section)
5340 {
5341 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5342 hi->root.type = bfd_link_hash_indirect;
5343 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5344 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5345 sym_hash = elf_sym_hashes (abfd);
5346 if (sym_hash)
5347 for (symidx = 0; symidx < extsymcount; ++symidx)
5348 if (sym_hash[symidx] == hi)
5349 {
5350 sym_hash[symidx] = h;
5351 break;
5352 }
5353 }
5354 free (shortname);
5355 }
5356 free (nondeflt_vers);
5357 nondeflt_vers = NULL;
5358 }
5359
5360 /* Now set the alias field correctly for all the weak defined
5361 symbols we found. The only way to do this is to search all the
5362 symbols. Since we only need the information for non functions in
5363 dynamic objects, that's the only time we actually put anything on
5364 the list WEAKS. We need this information so that if a regular
5365 object refers to a symbol defined weakly in a dynamic object, the
5366 real symbol in the dynamic object is also put in the dynamic
5367 symbols; we also must arrange for both symbols to point to the
5368 same memory location. We could handle the general case of symbol
5369 aliasing, but a general symbol alias can only be generated in
5370 assembler code, handling it correctly would be very time
5371 consuming, and other ELF linkers don't handle general aliasing
5372 either. */
5373 if (weaks != NULL)
5374 {
5375 struct elf_link_hash_entry **hpp;
5376 struct elf_link_hash_entry **hppend;
5377 struct elf_link_hash_entry **sorted_sym_hash;
5378 struct elf_link_hash_entry *h;
5379 size_t sym_count, amt;
5380
5381 /* Since we have to search the whole symbol list for each weak
5382 defined symbol, search time for N weak defined symbols will be
5383 O(N^2). Binary search will cut it down to O(NlogN). */
5384 amt = extsymcount * sizeof (*sorted_sym_hash);
5385 sorted_sym_hash = bfd_malloc (amt);
5386 if (sorted_sym_hash == NULL)
5387 goto error_return;
5388 sym_hash = sorted_sym_hash;
5389 hpp = elf_sym_hashes (abfd);
5390 hppend = hpp + extsymcount;
5391 sym_count = 0;
5392 for (; hpp < hppend; hpp++)
5393 {
5394 h = *hpp;
5395 if (h != NULL
5396 && h->root.type == bfd_link_hash_defined
5397 && !bed->is_function_type (h->type))
5398 {
5399 *sym_hash = h;
5400 sym_hash++;
5401 sym_count++;
5402 }
5403 }
5404
5405 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5406 elf_sort_symbol);
5407
5408 while (weaks != NULL)
5409 {
5410 struct elf_link_hash_entry *hlook;
5411 asection *slook;
5412 bfd_vma vlook;
5413 size_t i, j, idx = 0;
5414
5415 hlook = weaks;
5416 weaks = hlook->u.alias;
5417 hlook->u.alias = NULL;
5418
5419 if (hlook->root.type != bfd_link_hash_defined
5420 && hlook->root.type != bfd_link_hash_defweak)
5421 continue;
5422
5423 slook = hlook->root.u.def.section;
5424 vlook = hlook->root.u.def.value;
5425
5426 i = 0;
5427 j = sym_count;
5428 while (i != j)
5429 {
5430 bfd_signed_vma vdiff;
5431 idx = (i + j) / 2;
5432 h = sorted_sym_hash[idx];
5433 vdiff = vlook - h->root.u.def.value;
5434 if (vdiff < 0)
5435 j = idx;
5436 else if (vdiff > 0)
5437 i = idx + 1;
5438 else
5439 {
5440 int sdiff = slook->id - h->root.u.def.section->id;
5441 if (sdiff < 0)
5442 j = idx;
5443 else if (sdiff > 0)
5444 i = idx + 1;
5445 else
5446 break;
5447 }
5448 }
5449
5450 /* We didn't find a value/section match. */
5451 if (i == j)
5452 continue;
5453
5454 /* With multiple aliases, or when the weak symbol is already
5455 strongly defined, we have multiple matching symbols and
5456 the binary search above may land on any of them. Step
5457 one past the matching symbol(s). */
5458 while (++idx != j)
5459 {
5460 h = sorted_sym_hash[idx];
5461 if (h->root.u.def.section != slook
5462 || h->root.u.def.value != vlook)
5463 break;
5464 }
5465
5466 /* Now look back over the aliases. Since we sorted by size
5467 as well as value and section, we'll choose the one with
5468 the largest size. */
5469 while (idx-- != i)
5470 {
5471 h = sorted_sym_hash[idx];
5472
5473 /* Stop if value or section doesn't match. */
5474 if (h->root.u.def.section != slook
5475 || h->root.u.def.value != vlook)
5476 break;
5477 else if (h != hlook)
5478 {
5479 struct elf_link_hash_entry *t;
5480
5481 hlook->u.alias = h;
5482 hlook->is_weakalias = 1;
5483 t = h;
5484 if (t->u.alias != NULL)
5485 while (t->u.alias != h)
5486 t = t->u.alias;
5487 t->u.alias = hlook;
5488
5489 /* If the weak definition is in the list of dynamic
5490 symbols, make sure the real definition is put
5491 there as well. */
5492 if (hlook->dynindx != -1 && h->dynindx == -1)
5493 {
5494 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5495 {
5496 err_free_sym_hash:
5497 free (sorted_sym_hash);
5498 goto error_return;
5499 }
5500 }
5501
5502 /* If the real definition is in the list of dynamic
5503 symbols, make sure the weak definition is put
5504 there as well. If we don't do this, then the
5505 dynamic loader might not merge the entries for the
5506 real definition and the weak definition. */
5507 if (h->dynindx != -1 && hlook->dynindx == -1)
5508 {
5509 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5510 goto err_free_sym_hash;
5511 }
5512 break;
5513 }
5514 }
5515 }
5516
5517 free (sorted_sym_hash);
5518 }
5519
5520 if (bed->check_directives
5521 && !(*bed->check_directives) (abfd, info))
5522 return FALSE;
5523
5524 /* If this is a non-traditional link, try to optimize the handling
5525 of the .stab/.stabstr sections. */
5526 if (! dynamic
5527 && ! info->traditional_format
5528 && is_elf_hash_table (htab)
5529 && (info->strip != strip_all && info->strip != strip_debugger))
5530 {
5531 asection *stabstr;
5532
5533 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5534 if (stabstr != NULL)
5535 {
5536 bfd_size_type string_offset = 0;
5537 asection *stab;
5538
5539 for (stab = abfd->sections; stab; stab = stab->next)
5540 if (CONST_STRNEQ (stab->name, ".stab")
5541 && (!stab->name[5] ||
5542 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5543 && (stab->flags & SEC_MERGE) == 0
5544 && !bfd_is_abs_section (stab->output_section))
5545 {
5546 struct bfd_elf_section_data *secdata;
5547
5548 secdata = elf_section_data (stab);
5549 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5550 stabstr, &secdata->sec_info,
5551 &string_offset))
5552 goto error_return;
5553 if (secdata->sec_info)
5554 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5555 }
5556 }
5557 }
5558
5559 if (dynamic && add_needed)
5560 {
5561 /* Add this bfd to the loaded list. */
5562 struct elf_link_loaded_list *n;
5563
5564 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5565 if (n == NULL)
5566 goto error_return;
5567 n->abfd = abfd;
5568 n->next = htab->dyn_loaded;
5569 htab->dyn_loaded = n;
5570 }
5571 if (dynamic && !add_needed
5572 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5573 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5574
5575 return TRUE;
5576
5577 error_free_vers:
5578 if (old_tab != NULL)
5579 free (old_tab);
5580 if (old_strtab != NULL)
5581 free (old_strtab);
5582 if (nondeflt_vers != NULL)
5583 free (nondeflt_vers);
5584 if (extversym != NULL)
5585 free (extversym);
5586 error_free_sym:
5587 if (isymbuf != NULL)
5588 free (isymbuf);
5589 error_return:
5590 return FALSE;
5591 }
5592
5593 /* Return the linker hash table entry of a symbol that might be
5594 satisfied by an archive symbol. Return -1 on error. */
5595
5596 struct elf_link_hash_entry *
5597 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5598 struct bfd_link_info *info,
5599 const char *name)
5600 {
5601 struct elf_link_hash_entry *h;
5602 char *p, *copy;
5603 size_t len, first;
5604
5605 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5606 if (h != NULL)
5607 return h;
5608
5609 /* If this is a default version (the name contains @@), look up the
5610 symbol again with only one `@' as well as without the version.
5611 The effect is that references to the symbol with and without the
5612 version will be matched by the default symbol in the archive. */
5613
5614 p = strchr (name, ELF_VER_CHR);
5615 if (p == NULL || p[1] != ELF_VER_CHR)
5616 return h;
5617
5618 /* First check with only one `@'. */
5619 len = strlen (name);
5620 copy = (char *) bfd_alloc (abfd, len);
5621 if (copy == NULL)
5622 return (struct elf_link_hash_entry *) -1;
5623
5624 first = p - name + 1;
5625 memcpy (copy, name, first);
5626 memcpy (copy + first, name + first + 1, len - first);
5627
5628 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5629 if (h == NULL)
5630 {
5631 /* We also need to check references to the symbol without the
5632 version. */
5633 copy[first - 1] = '\0';
5634 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5635 FALSE, FALSE, TRUE);
5636 }
5637
5638 bfd_release (abfd, copy);
5639 return h;
5640 }
5641
5642 /* Add symbols from an ELF archive file to the linker hash table. We
5643 don't use _bfd_generic_link_add_archive_symbols because we need to
5644 handle versioned symbols.
5645
5646 Fortunately, ELF archive handling is simpler than that done by
5647 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5648 oddities. In ELF, if we find a symbol in the archive map, and the
5649 symbol is currently undefined, we know that we must pull in that
5650 object file.
5651
5652 Unfortunately, we do have to make multiple passes over the symbol
5653 table until nothing further is resolved. */
5654
5655 static bfd_boolean
5656 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5657 {
5658 symindex c;
5659 unsigned char *included = NULL;
5660 carsym *symdefs;
5661 bfd_boolean loop;
5662 size_t amt;
5663 const struct elf_backend_data *bed;
5664 struct elf_link_hash_entry * (*archive_symbol_lookup)
5665 (bfd *, struct bfd_link_info *, const char *);
5666
5667 if (! bfd_has_map (abfd))
5668 {
5669 /* An empty archive is a special case. */
5670 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5671 return TRUE;
5672 bfd_set_error (bfd_error_no_armap);
5673 return FALSE;
5674 }
5675
5676 /* Keep track of all symbols we know to be already defined, and all
5677 files we know to be already included. This is to speed up the
5678 second and subsequent passes. */
5679 c = bfd_ardata (abfd)->symdef_count;
5680 if (c == 0)
5681 return TRUE;
5682 amt = c * sizeof (*included);
5683 included = (unsigned char *) bfd_zmalloc (amt);
5684 if (included == NULL)
5685 return FALSE;
5686
5687 symdefs = bfd_ardata (abfd)->symdefs;
5688 bed = get_elf_backend_data (abfd);
5689 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5690
5691 do
5692 {
5693 file_ptr last;
5694 symindex i;
5695 carsym *symdef;
5696 carsym *symdefend;
5697
5698 loop = FALSE;
5699 last = -1;
5700
5701 symdef = symdefs;
5702 symdefend = symdef + c;
5703 for (i = 0; symdef < symdefend; symdef++, i++)
5704 {
5705 struct elf_link_hash_entry *h;
5706 bfd *element;
5707 struct bfd_link_hash_entry *undefs_tail;
5708 symindex mark;
5709
5710 if (included[i])
5711 continue;
5712 if (symdef->file_offset == last)
5713 {
5714 included[i] = TRUE;
5715 continue;
5716 }
5717
5718 h = archive_symbol_lookup (abfd, info, symdef->name);
5719 if (h == (struct elf_link_hash_entry *) -1)
5720 goto error_return;
5721
5722 if (h == NULL)
5723 continue;
5724
5725 if (h->root.type == bfd_link_hash_common)
5726 {
5727 /* We currently have a common symbol. The archive map contains
5728 a reference to this symbol, so we may want to include it. We
5729 only want to include it however, if this archive element
5730 contains a definition of the symbol, not just another common
5731 declaration of it.
5732
5733 Unfortunately some archivers (including GNU ar) will put
5734 declarations of common symbols into their archive maps, as
5735 well as real definitions, so we cannot just go by the archive
5736 map alone. Instead we must read in the element's symbol
5737 table and check that to see what kind of symbol definition
5738 this is. */
5739 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5740 continue;
5741 }
5742 else if (h->root.type != bfd_link_hash_undefined)
5743 {
5744 if (h->root.type != bfd_link_hash_undefweak)
5745 /* Symbol must be defined. Don't check it again. */
5746 included[i] = TRUE;
5747 continue;
5748 }
5749
5750 /* We need to include this archive member. */
5751 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5752 if (element == NULL)
5753 goto error_return;
5754
5755 if (! bfd_check_format (element, bfd_object))
5756 goto error_return;
5757
5758 undefs_tail = info->hash->undefs_tail;
5759
5760 if (!(*info->callbacks
5761 ->add_archive_element) (info, element, symdef->name, &element))
5762 continue;
5763 if (!bfd_link_add_symbols (element, info))
5764 goto error_return;
5765
5766 /* If there are any new undefined symbols, we need to make
5767 another pass through the archive in order to see whether
5768 they can be defined. FIXME: This isn't perfect, because
5769 common symbols wind up on undefs_tail and because an
5770 undefined symbol which is defined later on in this pass
5771 does not require another pass. This isn't a bug, but it
5772 does make the code less efficient than it could be. */
5773 if (undefs_tail != info->hash->undefs_tail)
5774 loop = TRUE;
5775
5776 /* Look backward to mark all symbols from this object file
5777 which we have already seen in this pass. */
5778 mark = i;
5779 do
5780 {
5781 included[mark] = TRUE;
5782 if (mark == 0)
5783 break;
5784 --mark;
5785 }
5786 while (symdefs[mark].file_offset == symdef->file_offset);
5787
5788 /* We mark subsequent symbols from this object file as we go
5789 on through the loop. */
5790 last = symdef->file_offset;
5791 }
5792 }
5793 while (loop);
5794
5795 free (included);
5796
5797 return TRUE;
5798
5799 error_return:
5800 if (included != NULL)
5801 free (included);
5802 return FALSE;
5803 }
5804
5805 /* Given an ELF BFD, add symbols to the global hash table as
5806 appropriate. */
5807
5808 bfd_boolean
5809 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5810 {
5811 switch (bfd_get_format (abfd))
5812 {
5813 case bfd_object:
5814 return elf_link_add_object_symbols (abfd, info);
5815 case bfd_archive:
5816 return elf_link_add_archive_symbols (abfd, info);
5817 default:
5818 bfd_set_error (bfd_error_wrong_format);
5819 return FALSE;
5820 }
5821 }
5822 \f
5823 struct hash_codes_info
5824 {
5825 unsigned long *hashcodes;
5826 bfd_boolean error;
5827 };
5828
5829 /* This function will be called though elf_link_hash_traverse to store
5830 all hash value of the exported symbols in an array. */
5831
5832 static bfd_boolean
5833 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5834 {
5835 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5836 const char *name;
5837 unsigned long ha;
5838 char *alc = NULL;
5839
5840 /* Ignore indirect symbols. These are added by the versioning code. */
5841 if (h->dynindx == -1)
5842 return TRUE;
5843
5844 name = h->root.root.string;
5845 if (h->versioned >= versioned)
5846 {
5847 char *p = strchr (name, ELF_VER_CHR);
5848 if (p != NULL)
5849 {
5850 alc = (char *) bfd_malloc (p - name + 1);
5851 if (alc == NULL)
5852 {
5853 inf->error = TRUE;
5854 return FALSE;
5855 }
5856 memcpy (alc, name, p - name);
5857 alc[p - name] = '\0';
5858 name = alc;
5859 }
5860 }
5861
5862 /* Compute the hash value. */
5863 ha = bfd_elf_hash (name);
5864
5865 /* Store the found hash value in the array given as the argument. */
5866 *(inf->hashcodes)++ = ha;
5867
5868 /* And store it in the struct so that we can put it in the hash table
5869 later. */
5870 h->u.elf_hash_value = ha;
5871
5872 if (alc != NULL)
5873 free (alc);
5874
5875 return TRUE;
5876 }
5877
5878 struct collect_gnu_hash_codes
5879 {
5880 bfd *output_bfd;
5881 const struct elf_backend_data *bed;
5882 unsigned long int nsyms;
5883 unsigned long int maskbits;
5884 unsigned long int *hashcodes;
5885 unsigned long int *hashval;
5886 unsigned long int *indx;
5887 unsigned long int *counts;
5888 bfd_vma *bitmask;
5889 bfd_byte *contents;
5890 bfd_size_type xlat;
5891 long int min_dynindx;
5892 unsigned long int bucketcount;
5893 unsigned long int symindx;
5894 long int local_indx;
5895 long int shift1, shift2;
5896 unsigned long int mask;
5897 bfd_boolean error;
5898 };
5899
5900 /* This function will be called though elf_link_hash_traverse to store
5901 all hash value of the exported symbols in an array. */
5902
5903 static bfd_boolean
5904 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5905 {
5906 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5907 const char *name;
5908 unsigned long ha;
5909 char *alc = NULL;
5910
5911 /* Ignore indirect symbols. These are added by the versioning code. */
5912 if (h->dynindx == -1)
5913 return TRUE;
5914
5915 /* Ignore also local symbols and undefined symbols. */
5916 if (! (*s->bed->elf_hash_symbol) (h))
5917 return TRUE;
5918
5919 name = h->root.root.string;
5920 if (h->versioned >= versioned)
5921 {
5922 char *p = strchr (name, ELF_VER_CHR);
5923 if (p != NULL)
5924 {
5925 alc = (char *) bfd_malloc (p - name + 1);
5926 if (alc == NULL)
5927 {
5928 s->error = TRUE;
5929 return FALSE;
5930 }
5931 memcpy (alc, name, p - name);
5932 alc[p - name] = '\0';
5933 name = alc;
5934 }
5935 }
5936
5937 /* Compute the hash value. */
5938 ha = bfd_elf_gnu_hash (name);
5939
5940 /* Store the found hash value in the array for compute_bucket_count,
5941 and also for .dynsym reordering purposes. */
5942 s->hashcodes[s->nsyms] = ha;
5943 s->hashval[h->dynindx] = ha;
5944 ++s->nsyms;
5945 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5946 s->min_dynindx = h->dynindx;
5947
5948 if (alc != NULL)
5949 free (alc);
5950
5951 return TRUE;
5952 }
5953
5954 /* This function will be called though elf_link_hash_traverse to do
5955 final dynamic symbol renumbering in case of .gnu.hash.
5956 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
5957 to the translation table. */
5958
5959 static bfd_boolean
5960 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
5961 {
5962 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5963 unsigned long int bucket;
5964 unsigned long int val;
5965
5966 /* Ignore indirect symbols. */
5967 if (h->dynindx == -1)
5968 return TRUE;
5969
5970 /* Ignore also local symbols and undefined symbols. */
5971 if (! (*s->bed->elf_hash_symbol) (h))
5972 {
5973 if (h->dynindx >= s->min_dynindx)
5974 {
5975 if (s->bed->record_xhash_symbol != NULL)
5976 {
5977 (*s->bed->record_xhash_symbol) (h, 0);
5978 s->local_indx++;
5979 }
5980 else
5981 h->dynindx = s->local_indx++;
5982 }
5983 return TRUE;
5984 }
5985
5986 bucket = s->hashval[h->dynindx] % s->bucketcount;
5987 val = (s->hashval[h->dynindx] >> s->shift1)
5988 & ((s->maskbits >> s->shift1) - 1);
5989 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5990 s->bitmask[val]
5991 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5992 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5993 if (s->counts[bucket] == 1)
5994 /* Last element terminates the chain. */
5995 val |= 1;
5996 bfd_put_32 (s->output_bfd, val,
5997 s->contents + (s->indx[bucket] - s->symindx) * 4);
5998 --s->counts[bucket];
5999 if (s->bed->record_xhash_symbol != NULL)
6000 {
6001 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6002
6003 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6004 }
6005 else
6006 h->dynindx = s->indx[bucket]++;
6007 return TRUE;
6008 }
6009
6010 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6011
6012 bfd_boolean
6013 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6014 {
6015 return !(h->forced_local
6016 || h->root.type == bfd_link_hash_undefined
6017 || h->root.type == bfd_link_hash_undefweak
6018 || ((h->root.type == bfd_link_hash_defined
6019 || h->root.type == bfd_link_hash_defweak)
6020 && h->root.u.def.section->output_section == NULL));
6021 }
6022
6023 /* Array used to determine the number of hash table buckets to use
6024 based on the number of symbols there are. If there are fewer than
6025 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6026 fewer than 37 we use 17 buckets, and so forth. We never use more
6027 than 32771 buckets. */
6028
6029 static const size_t elf_buckets[] =
6030 {
6031 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6032 16411, 32771, 0
6033 };
6034
6035 /* Compute bucket count for hashing table. We do not use a static set
6036 of possible tables sizes anymore. Instead we determine for all
6037 possible reasonable sizes of the table the outcome (i.e., the
6038 number of collisions etc) and choose the best solution. The
6039 weighting functions are not too simple to allow the table to grow
6040 without bounds. Instead one of the weighting factors is the size.
6041 Therefore the result is always a good payoff between few collisions
6042 (= short chain lengths) and table size. */
6043 static size_t
6044 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6045 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6046 unsigned long int nsyms,
6047 int gnu_hash)
6048 {
6049 size_t best_size = 0;
6050 unsigned long int i;
6051
6052 /* We have a problem here. The following code to optimize the table
6053 size requires an integer type with more the 32 bits. If
6054 BFD_HOST_U_64_BIT is set we know about such a type. */
6055 #ifdef BFD_HOST_U_64_BIT
6056 if (info->optimize)
6057 {
6058 size_t minsize;
6059 size_t maxsize;
6060 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6061 bfd *dynobj = elf_hash_table (info)->dynobj;
6062 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6063 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6064 unsigned long int *counts;
6065 bfd_size_type amt;
6066 unsigned int no_improvement_count = 0;
6067
6068 /* Possible optimization parameters: if we have NSYMS symbols we say
6069 that the hashing table must at least have NSYMS/4 and at most
6070 2*NSYMS buckets. */
6071 minsize = nsyms / 4;
6072 if (minsize == 0)
6073 minsize = 1;
6074 best_size = maxsize = nsyms * 2;
6075 if (gnu_hash)
6076 {
6077 if (minsize < 2)
6078 minsize = 2;
6079 if ((best_size & 31) == 0)
6080 ++best_size;
6081 }
6082
6083 /* Create array where we count the collisions in. We must use bfd_malloc
6084 since the size could be large. */
6085 amt = maxsize;
6086 amt *= sizeof (unsigned long int);
6087 counts = (unsigned long int *) bfd_malloc (amt);
6088 if (counts == NULL)
6089 return 0;
6090
6091 /* Compute the "optimal" size for the hash table. The criteria is a
6092 minimal chain length. The minor criteria is (of course) the size
6093 of the table. */
6094 for (i = minsize; i < maxsize; ++i)
6095 {
6096 /* Walk through the array of hashcodes and count the collisions. */
6097 BFD_HOST_U_64_BIT max;
6098 unsigned long int j;
6099 unsigned long int fact;
6100
6101 if (gnu_hash && (i & 31) == 0)
6102 continue;
6103
6104 memset (counts, '\0', i * sizeof (unsigned long int));
6105
6106 /* Determine how often each hash bucket is used. */
6107 for (j = 0; j < nsyms; ++j)
6108 ++counts[hashcodes[j] % i];
6109
6110 /* For the weight function we need some information about the
6111 pagesize on the target. This is information need not be 100%
6112 accurate. Since this information is not available (so far) we
6113 define it here to a reasonable default value. If it is crucial
6114 to have a better value some day simply define this value. */
6115 # ifndef BFD_TARGET_PAGESIZE
6116 # define BFD_TARGET_PAGESIZE (4096)
6117 # endif
6118
6119 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6120 and the chains. */
6121 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6122
6123 # if 1
6124 /* Variant 1: optimize for short chains. We add the squares
6125 of all the chain lengths (which favors many small chain
6126 over a few long chains). */
6127 for (j = 0; j < i; ++j)
6128 max += counts[j] * counts[j];
6129
6130 /* This adds penalties for the overall size of the table. */
6131 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6132 max *= fact * fact;
6133 # else
6134 /* Variant 2: Optimize a lot more for small table. Here we
6135 also add squares of the size but we also add penalties for
6136 empty slots (the +1 term). */
6137 for (j = 0; j < i; ++j)
6138 max += (1 + counts[j]) * (1 + counts[j]);
6139
6140 /* The overall size of the table is considered, but not as
6141 strong as in variant 1, where it is squared. */
6142 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6143 max *= fact;
6144 # endif
6145
6146 /* Compare with current best results. */
6147 if (max < best_chlen)
6148 {
6149 best_chlen = max;
6150 best_size = i;
6151 no_improvement_count = 0;
6152 }
6153 /* PR 11843: Avoid futile long searches for the best bucket size
6154 when there are a large number of symbols. */
6155 else if (++no_improvement_count == 100)
6156 break;
6157 }
6158
6159 free (counts);
6160 }
6161 else
6162 #endif /* defined (BFD_HOST_U_64_BIT) */
6163 {
6164 /* This is the fallback solution if no 64bit type is available or if we
6165 are not supposed to spend much time on optimizations. We select the
6166 bucket count using a fixed set of numbers. */
6167 for (i = 0; elf_buckets[i] != 0; i++)
6168 {
6169 best_size = elf_buckets[i];
6170 if (nsyms < elf_buckets[i + 1])
6171 break;
6172 }
6173 if (gnu_hash && best_size < 2)
6174 best_size = 2;
6175 }
6176
6177 return best_size;
6178 }
6179
6180 /* Size any SHT_GROUP section for ld -r. */
6181
6182 bfd_boolean
6183 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6184 {
6185 bfd *ibfd;
6186 asection *s;
6187
6188 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6189 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6190 && (s = ibfd->sections) != NULL
6191 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6192 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6193 return FALSE;
6194 return TRUE;
6195 }
6196
6197 /* Set a default stack segment size. The value in INFO wins. If it
6198 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6199 undefined it is initialized. */
6200
6201 bfd_boolean
6202 bfd_elf_stack_segment_size (bfd *output_bfd,
6203 struct bfd_link_info *info,
6204 const char *legacy_symbol,
6205 bfd_vma default_size)
6206 {
6207 struct elf_link_hash_entry *h = NULL;
6208
6209 /* Look for legacy symbol. */
6210 if (legacy_symbol)
6211 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6212 FALSE, FALSE, FALSE);
6213 if (h && (h->root.type == bfd_link_hash_defined
6214 || h->root.type == bfd_link_hash_defweak)
6215 && h->def_regular
6216 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6217 {
6218 /* The symbol has no type if specified on the command line. */
6219 h->type = STT_OBJECT;
6220 if (info->stacksize)
6221 /* xgettext:c-format */
6222 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6223 output_bfd, legacy_symbol);
6224 else if (h->root.u.def.section != bfd_abs_section_ptr)
6225 /* xgettext:c-format */
6226 _bfd_error_handler (_("%pB: %s not absolute"),
6227 output_bfd, legacy_symbol);
6228 else
6229 info->stacksize = h->root.u.def.value;
6230 }
6231
6232 if (!info->stacksize)
6233 /* If the user didn't set a size, or explicitly inhibit the
6234 size, set it now. */
6235 info->stacksize = default_size;
6236
6237 /* Provide the legacy symbol, if it is referenced. */
6238 if (h && (h->root.type == bfd_link_hash_undefined
6239 || h->root.type == bfd_link_hash_undefweak))
6240 {
6241 struct bfd_link_hash_entry *bh = NULL;
6242
6243 if (!(_bfd_generic_link_add_one_symbol
6244 (info, output_bfd, legacy_symbol,
6245 BSF_GLOBAL, bfd_abs_section_ptr,
6246 info->stacksize >= 0 ? info->stacksize : 0,
6247 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6248 return FALSE;
6249
6250 h = (struct elf_link_hash_entry *) bh;
6251 h->def_regular = 1;
6252 h->type = STT_OBJECT;
6253 }
6254
6255 return TRUE;
6256 }
6257
6258 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6259
6260 struct elf_gc_sweep_symbol_info
6261 {
6262 struct bfd_link_info *info;
6263 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6264 bfd_boolean);
6265 };
6266
6267 static bfd_boolean
6268 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6269 {
6270 if (!h->mark
6271 && (((h->root.type == bfd_link_hash_defined
6272 || h->root.type == bfd_link_hash_defweak)
6273 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6274 && h->root.u.def.section->gc_mark))
6275 || h->root.type == bfd_link_hash_undefined
6276 || h->root.type == bfd_link_hash_undefweak))
6277 {
6278 struct elf_gc_sweep_symbol_info *inf;
6279
6280 inf = (struct elf_gc_sweep_symbol_info *) data;
6281 (*inf->hide_symbol) (inf->info, h, TRUE);
6282 h->def_regular = 0;
6283 h->ref_regular = 0;
6284 h->ref_regular_nonweak = 0;
6285 }
6286
6287 return TRUE;
6288 }
6289
6290 /* Set up the sizes and contents of the ELF dynamic sections. This is
6291 called by the ELF linker emulation before_allocation routine. We
6292 must set the sizes of the sections before the linker sets the
6293 addresses of the various sections. */
6294
6295 bfd_boolean
6296 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6297 const char *soname,
6298 const char *rpath,
6299 const char *filter_shlib,
6300 const char *audit,
6301 const char *depaudit,
6302 const char * const *auxiliary_filters,
6303 struct bfd_link_info *info,
6304 asection **sinterpptr)
6305 {
6306 bfd *dynobj;
6307 const struct elf_backend_data *bed;
6308
6309 *sinterpptr = NULL;
6310
6311 if (!is_elf_hash_table (info->hash))
6312 return TRUE;
6313
6314 dynobj = elf_hash_table (info)->dynobj;
6315
6316 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6317 {
6318 struct bfd_elf_version_tree *verdefs;
6319 struct elf_info_failed asvinfo;
6320 struct bfd_elf_version_tree *t;
6321 struct bfd_elf_version_expr *d;
6322 asection *s;
6323 size_t soname_indx;
6324
6325 /* If we are supposed to export all symbols into the dynamic symbol
6326 table (this is not the normal case), then do so. */
6327 if (info->export_dynamic
6328 || (bfd_link_executable (info) && info->dynamic))
6329 {
6330 struct elf_info_failed eif;
6331
6332 eif.info = info;
6333 eif.failed = FALSE;
6334 elf_link_hash_traverse (elf_hash_table (info),
6335 _bfd_elf_export_symbol,
6336 &eif);
6337 if (eif.failed)
6338 return FALSE;
6339 }
6340
6341 if (soname != NULL)
6342 {
6343 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6344 soname, TRUE);
6345 if (soname_indx == (size_t) -1
6346 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6347 return FALSE;
6348 }
6349 else
6350 soname_indx = (size_t) -1;
6351
6352 /* Make all global versions with definition. */
6353 for (t = info->version_info; t != NULL; t = t->next)
6354 for (d = t->globals.list; d != NULL; d = d->next)
6355 if (!d->symver && d->literal)
6356 {
6357 const char *verstr, *name;
6358 size_t namelen, verlen, newlen;
6359 char *newname, *p, leading_char;
6360 struct elf_link_hash_entry *newh;
6361
6362 leading_char = bfd_get_symbol_leading_char (output_bfd);
6363 name = d->pattern;
6364 namelen = strlen (name) + (leading_char != '\0');
6365 verstr = t->name;
6366 verlen = strlen (verstr);
6367 newlen = namelen + verlen + 3;
6368
6369 newname = (char *) bfd_malloc (newlen);
6370 if (newname == NULL)
6371 return FALSE;
6372 newname[0] = leading_char;
6373 memcpy (newname + (leading_char != '\0'), name, namelen);
6374
6375 /* Check the hidden versioned definition. */
6376 p = newname + namelen;
6377 *p++ = ELF_VER_CHR;
6378 memcpy (p, verstr, verlen + 1);
6379 newh = elf_link_hash_lookup (elf_hash_table (info),
6380 newname, FALSE, FALSE,
6381 FALSE);
6382 if (newh == NULL
6383 || (newh->root.type != bfd_link_hash_defined
6384 && newh->root.type != bfd_link_hash_defweak))
6385 {
6386 /* Check the default versioned definition. */
6387 *p++ = ELF_VER_CHR;
6388 memcpy (p, verstr, verlen + 1);
6389 newh = elf_link_hash_lookup (elf_hash_table (info),
6390 newname, FALSE, FALSE,
6391 FALSE);
6392 }
6393 free (newname);
6394
6395 /* Mark this version if there is a definition and it is
6396 not defined in a shared object. */
6397 if (newh != NULL
6398 && !newh->def_dynamic
6399 && (newh->root.type == bfd_link_hash_defined
6400 || newh->root.type == bfd_link_hash_defweak))
6401 d->symver = 1;
6402 }
6403
6404 /* Attach all the symbols to their version information. */
6405 asvinfo.info = info;
6406 asvinfo.failed = FALSE;
6407
6408 elf_link_hash_traverse (elf_hash_table (info),
6409 _bfd_elf_link_assign_sym_version,
6410 &asvinfo);
6411 if (asvinfo.failed)
6412 return FALSE;
6413
6414 if (!info->allow_undefined_version)
6415 {
6416 /* Check if all global versions have a definition. */
6417 bfd_boolean all_defined = TRUE;
6418 for (t = info->version_info; t != NULL; t = t->next)
6419 for (d = t->globals.list; d != NULL; d = d->next)
6420 if (d->literal && !d->symver && !d->script)
6421 {
6422 _bfd_error_handler
6423 (_("%s: undefined version: %s"),
6424 d->pattern, t->name);
6425 all_defined = FALSE;
6426 }
6427
6428 if (!all_defined)
6429 {
6430 bfd_set_error (bfd_error_bad_value);
6431 return FALSE;
6432 }
6433 }
6434
6435 /* Set up the version definition section. */
6436 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6437 BFD_ASSERT (s != NULL);
6438
6439 /* We may have created additional version definitions if we are
6440 just linking a regular application. */
6441 verdefs = info->version_info;
6442
6443 /* Skip anonymous version tag. */
6444 if (verdefs != NULL && verdefs->vernum == 0)
6445 verdefs = verdefs->next;
6446
6447 if (verdefs == NULL && !info->create_default_symver)
6448 s->flags |= SEC_EXCLUDE;
6449 else
6450 {
6451 unsigned int cdefs;
6452 bfd_size_type size;
6453 bfd_byte *p;
6454 Elf_Internal_Verdef def;
6455 Elf_Internal_Verdaux defaux;
6456 struct bfd_link_hash_entry *bh;
6457 struct elf_link_hash_entry *h;
6458 const char *name;
6459
6460 cdefs = 0;
6461 size = 0;
6462
6463 /* Make space for the base version. */
6464 size += sizeof (Elf_External_Verdef);
6465 size += sizeof (Elf_External_Verdaux);
6466 ++cdefs;
6467
6468 /* Make space for the default version. */
6469 if (info->create_default_symver)
6470 {
6471 size += sizeof (Elf_External_Verdef);
6472 ++cdefs;
6473 }
6474
6475 for (t = verdefs; t != NULL; t = t->next)
6476 {
6477 struct bfd_elf_version_deps *n;
6478
6479 /* Don't emit base version twice. */
6480 if (t->vernum == 0)
6481 continue;
6482
6483 size += sizeof (Elf_External_Verdef);
6484 size += sizeof (Elf_External_Verdaux);
6485 ++cdefs;
6486
6487 for (n = t->deps; n != NULL; n = n->next)
6488 size += sizeof (Elf_External_Verdaux);
6489 }
6490
6491 s->size = size;
6492 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6493 if (s->contents == NULL && s->size != 0)
6494 return FALSE;
6495
6496 /* Fill in the version definition section. */
6497
6498 p = s->contents;
6499
6500 def.vd_version = VER_DEF_CURRENT;
6501 def.vd_flags = VER_FLG_BASE;
6502 def.vd_ndx = 1;
6503 def.vd_cnt = 1;
6504 if (info->create_default_symver)
6505 {
6506 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6507 def.vd_next = sizeof (Elf_External_Verdef);
6508 }
6509 else
6510 {
6511 def.vd_aux = sizeof (Elf_External_Verdef);
6512 def.vd_next = (sizeof (Elf_External_Verdef)
6513 + sizeof (Elf_External_Verdaux));
6514 }
6515
6516 if (soname_indx != (size_t) -1)
6517 {
6518 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6519 soname_indx);
6520 def.vd_hash = bfd_elf_hash (soname);
6521 defaux.vda_name = soname_indx;
6522 name = soname;
6523 }
6524 else
6525 {
6526 size_t indx;
6527
6528 name = lbasename (output_bfd->filename);
6529 def.vd_hash = bfd_elf_hash (name);
6530 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6531 name, FALSE);
6532 if (indx == (size_t) -1)
6533 return FALSE;
6534 defaux.vda_name = indx;
6535 }
6536 defaux.vda_next = 0;
6537
6538 _bfd_elf_swap_verdef_out (output_bfd, &def,
6539 (Elf_External_Verdef *) p);
6540 p += sizeof (Elf_External_Verdef);
6541 if (info->create_default_symver)
6542 {
6543 /* Add a symbol representing this version. */
6544 bh = NULL;
6545 if (! (_bfd_generic_link_add_one_symbol
6546 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6547 0, NULL, FALSE,
6548 get_elf_backend_data (dynobj)->collect, &bh)))
6549 return FALSE;
6550 h = (struct elf_link_hash_entry *) bh;
6551 h->non_elf = 0;
6552 h->def_regular = 1;
6553 h->type = STT_OBJECT;
6554 h->verinfo.vertree = NULL;
6555
6556 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6557 return FALSE;
6558
6559 /* Create a duplicate of the base version with the same
6560 aux block, but different flags. */
6561 def.vd_flags = 0;
6562 def.vd_ndx = 2;
6563 def.vd_aux = sizeof (Elf_External_Verdef);
6564 if (verdefs)
6565 def.vd_next = (sizeof (Elf_External_Verdef)
6566 + sizeof (Elf_External_Verdaux));
6567 else
6568 def.vd_next = 0;
6569 _bfd_elf_swap_verdef_out (output_bfd, &def,
6570 (Elf_External_Verdef *) p);
6571 p += sizeof (Elf_External_Verdef);
6572 }
6573 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6574 (Elf_External_Verdaux *) p);
6575 p += sizeof (Elf_External_Verdaux);
6576
6577 for (t = verdefs; t != NULL; t = t->next)
6578 {
6579 unsigned int cdeps;
6580 struct bfd_elf_version_deps *n;
6581
6582 /* Don't emit the base version twice. */
6583 if (t->vernum == 0)
6584 continue;
6585
6586 cdeps = 0;
6587 for (n = t->deps; n != NULL; n = n->next)
6588 ++cdeps;
6589
6590 /* Add a symbol representing this version. */
6591 bh = NULL;
6592 if (! (_bfd_generic_link_add_one_symbol
6593 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6594 0, NULL, FALSE,
6595 get_elf_backend_data (dynobj)->collect, &bh)))
6596 return FALSE;
6597 h = (struct elf_link_hash_entry *) bh;
6598 h->non_elf = 0;
6599 h->def_regular = 1;
6600 h->type = STT_OBJECT;
6601 h->verinfo.vertree = t;
6602
6603 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6604 return FALSE;
6605
6606 def.vd_version = VER_DEF_CURRENT;
6607 def.vd_flags = 0;
6608 if (t->globals.list == NULL
6609 && t->locals.list == NULL
6610 && ! t->used)
6611 def.vd_flags |= VER_FLG_WEAK;
6612 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6613 def.vd_cnt = cdeps + 1;
6614 def.vd_hash = bfd_elf_hash (t->name);
6615 def.vd_aux = sizeof (Elf_External_Verdef);
6616 def.vd_next = 0;
6617
6618 /* If a basever node is next, it *must* be the last node in
6619 the chain, otherwise Verdef construction breaks. */
6620 if (t->next != NULL && t->next->vernum == 0)
6621 BFD_ASSERT (t->next->next == NULL);
6622
6623 if (t->next != NULL && t->next->vernum != 0)
6624 def.vd_next = (sizeof (Elf_External_Verdef)
6625 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6626
6627 _bfd_elf_swap_verdef_out (output_bfd, &def,
6628 (Elf_External_Verdef *) p);
6629 p += sizeof (Elf_External_Verdef);
6630
6631 defaux.vda_name = h->dynstr_index;
6632 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6633 h->dynstr_index);
6634 defaux.vda_next = 0;
6635 if (t->deps != NULL)
6636 defaux.vda_next = sizeof (Elf_External_Verdaux);
6637 t->name_indx = defaux.vda_name;
6638
6639 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6640 (Elf_External_Verdaux *) p);
6641 p += sizeof (Elf_External_Verdaux);
6642
6643 for (n = t->deps; n != NULL; n = n->next)
6644 {
6645 if (n->version_needed == NULL)
6646 {
6647 /* This can happen if there was an error in the
6648 version script. */
6649 defaux.vda_name = 0;
6650 }
6651 else
6652 {
6653 defaux.vda_name = n->version_needed->name_indx;
6654 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6655 defaux.vda_name);
6656 }
6657 if (n->next == NULL)
6658 defaux.vda_next = 0;
6659 else
6660 defaux.vda_next = sizeof (Elf_External_Verdaux);
6661
6662 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6663 (Elf_External_Verdaux *) p);
6664 p += sizeof (Elf_External_Verdaux);
6665 }
6666 }
6667
6668 elf_tdata (output_bfd)->cverdefs = cdefs;
6669 }
6670 }
6671
6672 bed = get_elf_backend_data (output_bfd);
6673
6674 if (info->gc_sections && bed->can_gc_sections)
6675 {
6676 struct elf_gc_sweep_symbol_info sweep_info;
6677
6678 /* Remove the symbols that were in the swept sections from the
6679 dynamic symbol table. */
6680 sweep_info.info = info;
6681 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6682 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6683 &sweep_info);
6684 }
6685
6686 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6687 {
6688 asection *s;
6689 struct elf_find_verdep_info sinfo;
6690
6691 /* Work out the size of the version reference section. */
6692
6693 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6694 BFD_ASSERT (s != NULL);
6695
6696 sinfo.info = info;
6697 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6698 if (sinfo.vers == 0)
6699 sinfo.vers = 1;
6700 sinfo.failed = FALSE;
6701
6702 elf_link_hash_traverse (elf_hash_table (info),
6703 _bfd_elf_link_find_version_dependencies,
6704 &sinfo);
6705 if (sinfo.failed)
6706 return FALSE;
6707
6708 if (elf_tdata (output_bfd)->verref == NULL)
6709 s->flags |= SEC_EXCLUDE;
6710 else
6711 {
6712 Elf_Internal_Verneed *vn;
6713 unsigned int size;
6714 unsigned int crefs;
6715 bfd_byte *p;
6716
6717 /* Build the version dependency section. */
6718 size = 0;
6719 crefs = 0;
6720 for (vn = elf_tdata (output_bfd)->verref;
6721 vn != NULL;
6722 vn = vn->vn_nextref)
6723 {
6724 Elf_Internal_Vernaux *a;
6725
6726 size += sizeof (Elf_External_Verneed);
6727 ++crefs;
6728 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6729 size += sizeof (Elf_External_Vernaux);
6730 }
6731
6732 s->size = size;
6733 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6734 if (s->contents == NULL)
6735 return FALSE;
6736
6737 p = s->contents;
6738 for (vn = elf_tdata (output_bfd)->verref;
6739 vn != NULL;
6740 vn = vn->vn_nextref)
6741 {
6742 unsigned int caux;
6743 Elf_Internal_Vernaux *a;
6744 size_t indx;
6745
6746 caux = 0;
6747 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6748 ++caux;
6749
6750 vn->vn_version = VER_NEED_CURRENT;
6751 vn->vn_cnt = caux;
6752 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6753 elf_dt_name (vn->vn_bfd) != NULL
6754 ? elf_dt_name (vn->vn_bfd)
6755 : lbasename (vn->vn_bfd->filename),
6756 FALSE);
6757 if (indx == (size_t) -1)
6758 return FALSE;
6759 vn->vn_file = indx;
6760 vn->vn_aux = sizeof (Elf_External_Verneed);
6761 if (vn->vn_nextref == NULL)
6762 vn->vn_next = 0;
6763 else
6764 vn->vn_next = (sizeof (Elf_External_Verneed)
6765 + caux * sizeof (Elf_External_Vernaux));
6766
6767 _bfd_elf_swap_verneed_out (output_bfd, vn,
6768 (Elf_External_Verneed *) p);
6769 p += sizeof (Elf_External_Verneed);
6770
6771 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6772 {
6773 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6774 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6775 a->vna_nodename, FALSE);
6776 if (indx == (size_t) -1)
6777 return FALSE;
6778 a->vna_name = indx;
6779 if (a->vna_nextptr == NULL)
6780 a->vna_next = 0;
6781 else
6782 a->vna_next = sizeof (Elf_External_Vernaux);
6783
6784 _bfd_elf_swap_vernaux_out (output_bfd, a,
6785 (Elf_External_Vernaux *) p);
6786 p += sizeof (Elf_External_Vernaux);
6787 }
6788 }
6789
6790 elf_tdata (output_bfd)->cverrefs = crefs;
6791 }
6792 }
6793
6794 /* Any syms created from now on start with -1 in
6795 got.refcount/offset and plt.refcount/offset. */
6796 elf_hash_table (info)->init_got_refcount
6797 = elf_hash_table (info)->init_got_offset;
6798 elf_hash_table (info)->init_plt_refcount
6799 = elf_hash_table (info)->init_plt_offset;
6800
6801 if (bfd_link_relocatable (info)
6802 && !_bfd_elf_size_group_sections (info))
6803 return FALSE;
6804
6805 /* The backend may have to create some sections regardless of whether
6806 we're dynamic or not. */
6807 if (bed->elf_backend_always_size_sections
6808 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6809 return FALSE;
6810
6811 /* Determine any GNU_STACK segment requirements, after the backend
6812 has had a chance to set a default segment size. */
6813 if (info->execstack)
6814 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6815 else if (info->noexecstack)
6816 elf_stack_flags (output_bfd) = PF_R | PF_W;
6817 else
6818 {
6819 bfd *inputobj;
6820 asection *notesec = NULL;
6821 int exec = 0;
6822
6823 for (inputobj = info->input_bfds;
6824 inputobj;
6825 inputobj = inputobj->link.next)
6826 {
6827 asection *s;
6828
6829 if (inputobj->flags
6830 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6831 continue;
6832 s = inputobj->sections;
6833 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6834 continue;
6835
6836 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6837 if (s)
6838 {
6839 if (s->flags & SEC_CODE)
6840 exec = PF_X;
6841 notesec = s;
6842 }
6843 else if (bed->default_execstack)
6844 exec = PF_X;
6845 }
6846 if (notesec || info->stacksize > 0)
6847 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6848 if (notesec && exec && bfd_link_relocatable (info)
6849 && notesec->output_section != bfd_abs_section_ptr)
6850 notesec->output_section->flags |= SEC_CODE;
6851 }
6852
6853 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6854 {
6855 struct elf_info_failed eif;
6856 struct elf_link_hash_entry *h;
6857 asection *dynstr;
6858 asection *s;
6859
6860 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6861 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6862
6863 if (info->symbolic)
6864 {
6865 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6866 return FALSE;
6867 info->flags |= DF_SYMBOLIC;
6868 }
6869
6870 if (rpath != NULL)
6871 {
6872 size_t indx;
6873 bfd_vma tag;
6874
6875 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6876 TRUE);
6877 if (indx == (size_t) -1)
6878 return FALSE;
6879
6880 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6881 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6882 return FALSE;
6883 }
6884
6885 if (filter_shlib != NULL)
6886 {
6887 size_t indx;
6888
6889 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6890 filter_shlib, TRUE);
6891 if (indx == (size_t) -1
6892 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6893 return FALSE;
6894 }
6895
6896 if (auxiliary_filters != NULL)
6897 {
6898 const char * const *p;
6899
6900 for (p = auxiliary_filters; *p != NULL; p++)
6901 {
6902 size_t indx;
6903
6904 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6905 *p, TRUE);
6906 if (indx == (size_t) -1
6907 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6908 return FALSE;
6909 }
6910 }
6911
6912 if (audit != NULL)
6913 {
6914 size_t indx;
6915
6916 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6917 TRUE);
6918 if (indx == (size_t) -1
6919 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6920 return FALSE;
6921 }
6922
6923 if (depaudit != NULL)
6924 {
6925 size_t indx;
6926
6927 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6928 TRUE);
6929 if (indx == (size_t) -1
6930 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6931 return FALSE;
6932 }
6933
6934 eif.info = info;
6935 eif.failed = FALSE;
6936
6937 /* Find all symbols which were defined in a dynamic object and make
6938 the backend pick a reasonable value for them. */
6939 elf_link_hash_traverse (elf_hash_table (info),
6940 _bfd_elf_adjust_dynamic_symbol,
6941 &eif);
6942 if (eif.failed)
6943 return FALSE;
6944
6945 /* Add some entries to the .dynamic section. We fill in some of the
6946 values later, in bfd_elf_final_link, but we must add the entries
6947 now so that we know the final size of the .dynamic section. */
6948
6949 /* If there are initialization and/or finalization functions to
6950 call then add the corresponding DT_INIT/DT_FINI entries. */
6951 h = (info->init_function
6952 ? elf_link_hash_lookup (elf_hash_table (info),
6953 info->init_function, FALSE,
6954 FALSE, FALSE)
6955 : NULL);
6956 if (h != NULL
6957 && (h->ref_regular
6958 || h->def_regular))
6959 {
6960 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6961 return FALSE;
6962 }
6963 h = (info->fini_function
6964 ? elf_link_hash_lookup (elf_hash_table (info),
6965 info->fini_function, FALSE,
6966 FALSE, FALSE)
6967 : NULL);
6968 if (h != NULL
6969 && (h->ref_regular
6970 || h->def_regular))
6971 {
6972 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6973 return FALSE;
6974 }
6975
6976 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6977 if (s != NULL && s->linker_has_input)
6978 {
6979 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6980 if (! bfd_link_executable (info))
6981 {
6982 bfd *sub;
6983 asection *o;
6984
6985 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6986 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6987 && (o = sub->sections) != NULL
6988 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6989 for (o = sub->sections; o != NULL; o = o->next)
6990 if (elf_section_data (o)->this_hdr.sh_type
6991 == SHT_PREINIT_ARRAY)
6992 {
6993 _bfd_error_handler
6994 (_("%pB: .preinit_array section is not allowed in DSO"),
6995 sub);
6996 break;
6997 }
6998
6999 bfd_set_error (bfd_error_nonrepresentable_section);
7000 return FALSE;
7001 }
7002
7003 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7004 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7005 return FALSE;
7006 }
7007 s = bfd_get_section_by_name (output_bfd, ".init_array");
7008 if (s != NULL && s->linker_has_input)
7009 {
7010 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7011 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7012 return FALSE;
7013 }
7014 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7015 if (s != NULL && s->linker_has_input)
7016 {
7017 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7018 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7019 return FALSE;
7020 }
7021
7022 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7023 /* If .dynstr is excluded from the link, we don't want any of
7024 these tags. Strictly, we should be checking each section
7025 individually; This quick check covers for the case where
7026 someone does a /DISCARD/ : { *(*) }. */
7027 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7028 {
7029 bfd_size_type strsize;
7030
7031 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7032 if ((info->emit_hash
7033 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7034 || (info->emit_gnu_hash
7035 && (bed->record_xhash_symbol == NULL
7036 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7037 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7038 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7039 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7040 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7041 bed->s->sizeof_sym))
7042 return FALSE;
7043 }
7044 }
7045
7046 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7047 return FALSE;
7048
7049 /* The backend must work out the sizes of all the other dynamic
7050 sections. */
7051 if (dynobj != NULL
7052 && bed->elf_backend_size_dynamic_sections != NULL
7053 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7054 return FALSE;
7055
7056 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7057 {
7058 if (elf_tdata (output_bfd)->cverdefs)
7059 {
7060 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7061
7062 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7063 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7064 return FALSE;
7065 }
7066
7067 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7068 {
7069 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7070 return FALSE;
7071 }
7072 else if (info->flags & DF_BIND_NOW)
7073 {
7074 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7075 return FALSE;
7076 }
7077
7078 if (info->flags_1)
7079 {
7080 if (bfd_link_executable (info))
7081 info->flags_1 &= ~ (DF_1_INITFIRST
7082 | DF_1_NODELETE
7083 | DF_1_NOOPEN);
7084 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7085 return FALSE;
7086 }
7087
7088 if (elf_tdata (output_bfd)->cverrefs)
7089 {
7090 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7091
7092 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7093 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7094 return FALSE;
7095 }
7096
7097 if ((elf_tdata (output_bfd)->cverrefs == 0
7098 && elf_tdata (output_bfd)->cverdefs == 0)
7099 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7100 {
7101 asection *s;
7102
7103 s = bfd_get_linker_section (dynobj, ".gnu.version");
7104 s->flags |= SEC_EXCLUDE;
7105 }
7106 }
7107 return TRUE;
7108 }
7109
7110 /* Find the first non-excluded output section. We'll use its
7111 section symbol for some emitted relocs. */
7112 void
7113 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7114 {
7115 asection *s;
7116 asection *found = NULL;
7117
7118 for (s = output_bfd->sections; s != NULL; s = s->next)
7119 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7120 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7121 {
7122 found = s;
7123 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7124 break;
7125 }
7126 elf_hash_table (info)->text_index_section = found;
7127 }
7128
7129 /* Find two non-excluded output sections, one for code, one for data.
7130 We'll use their section symbols for some emitted relocs. */
7131 void
7132 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7133 {
7134 asection *s;
7135 asection *found = NULL;
7136
7137 /* Data first, since setting text_index_section changes
7138 _bfd_elf_omit_section_dynsym_default. */
7139 for (s = output_bfd->sections; s != NULL; s = s->next)
7140 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7141 && !(s->flags & SEC_READONLY)
7142 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7143 {
7144 found = s;
7145 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7146 break;
7147 }
7148 elf_hash_table (info)->data_index_section = found;
7149
7150 for (s = output_bfd->sections; s != NULL; s = s->next)
7151 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7152 && (s->flags & SEC_READONLY)
7153 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7154 {
7155 found = s;
7156 break;
7157 }
7158 elf_hash_table (info)->text_index_section = found;
7159 }
7160
7161 #define GNU_HASH_SECTION_NAME(bed) \
7162 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7163
7164 bfd_boolean
7165 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7166 {
7167 const struct elf_backend_data *bed;
7168 unsigned long section_sym_count;
7169 bfd_size_type dynsymcount = 0;
7170
7171 if (!is_elf_hash_table (info->hash))
7172 return TRUE;
7173
7174 bed = get_elf_backend_data (output_bfd);
7175 (*bed->elf_backend_init_index_section) (output_bfd, info);
7176
7177 /* Assign dynsym indices. In a shared library we generate a section
7178 symbol for each output section, which come first. Next come all
7179 of the back-end allocated local dynamic syms, followed by the rest
7180 of the global symbols.
7181
7182 This is usually not needed for static binaries, however backends
7183 can request to always do it, e.g. the MIPS backend uses dynamic
7184 symbol counts to lay out GOT, which will be produced in the
7185 presence of GOT relocations even in static binaries (holding fixed
7186 data in that case, to satisfy those relocations). */
7187
7188 if (elf_hash_table (info)->dynamic_sections_created
7189 || bed->always_renumber_dynsyms)
7190 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7191 &section_sym_count);
7192
7193 if (elf_hash_table (info)->dynamic_sections_created)
7194 {
7195 bfd *dynobj;
7196 asection *s;
7197 unsigned int dtagcount;
7198
7199 dynobj = elf_hash_table (info)->dynobj;
7200
7201 /* Work out the size of the symbol version section. */
7202 s = bfd_get_linker_section (dynobj, ".gnu.version");
7203 BFD_ASSERT (s != NULL);
7204 if ((s->flags & SEC_EXCLUDE) == 0)
7205 {
7206 s->size = dynsymcount * sizeof (Elf_External_Versym);
7207 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7208 if (s->contents == NULL)
7209 return FALSE;
7210
7211 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7212 return FALSE;
7213 }
7214
7215 /* Set the size of the .dynsym and .hash sections. We counted
7216 the number of dynamic symbols in elf_link_add_object_symbols.
7217 We will build the contents of .dynsym and .hash when we build
7218 the final symbol table, because until then we do not know the
7219 correct value to give the symbols. We built the .dynstr
7220 section as we went along in elf_link_add_object_symbols. */
7221 s = elf_hash_table (info)->dynsym;
7222 BFD_ASSERT (s != NULL);
7223 s->size = dynsymcount * bed->s->sizeof_sym;
7224
7225 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7226 if (s->contents == NULL)
7227 return FALSE;
7228
7229 /* The first entry in .dynsym is a dummy symbol. Clear all the
7230 section syms, in case we don't output them all. */
7231 ++section_sym_count;
7232 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7233
7234 elf_hash_table (info)->bucketcount = 0;
7235
7236 /* Compute the size of the hashing table. As a side effect this
7237 computes the hash values for all the names we export. */
7238 if (info->emit_hash)
7239 {
7240 unsigned long int *hashcodes;
7241 struct hash_codes_info hashinf;
7242 bfd_size_type amt;
7243 unsigned long int nsyms;
7244 size_t bucketcount;
7245 size_t hash_entry_size;
7246
7247 /* Compute the hash values for all exported symbols. At the same
7248 time store the values in an array so that we could use them for
7249 optimizations. */
7250 amt = dynsymcount * sizeof (unsigned long int);
7251 hashcodes = (unsigned long int *) bfd_malloc (amt);
7252 if (hashcodes == NULL)
7253 return FALSE;
7254 hashinf.hashcodes = hashcodes;
7255 hashinf.error = FALSE;
7256
7257 /* Put all hash values in HASHCODES. */
7258 elf_link_hash_traverse (elf_hash_table (info),
7259 elf_collect_hash_codes, &hashinf);
7260 if (hashinf.error)
7261 {
7262 free (hashcodes);
7263 return FALSE;
7264 }
7265
7266 nsyms = hashinf.hashcodes - hashcodes;
7267 bucketcount
7268 = compute_bucket_count (info, hashcodes, nsyms, 0);
7269 free (hashcodes);
7270
7271 if (bucketcount == 0 && nsyms > 0)
7272 return FALSE;
7273
7274 elf_hash_table (info)->bucketcount = bucketcount;
7275
7276 s = bfd_get_linker_section (dynobj, ".hash");
7277 BFD_ASSERT (s != NULL);
7278 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7279 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7280 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7281 if (s->contents == NULL)
7282 return FALSE;
7283
7284 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7285 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7286 s->contents + hash_entry_size);
7287 }
7288
7289 if (info->emit_gnu_hash)
7290 {
7291 size_t i, cnt;
7292 unsigned char *contents;
7293 struct collect_gnu_hash_codes cinfo;
7294 bfd_size_type amt;
7295 size_t bucketcount;
7296
7297 memset (&cinfo, 0, sizeof (cinfo));
7298
7299 /* Compute the hash values for all exported symbols. At the same
7300 time store the values in an array so that we could use them for
7301 optimizations. */
7302 amt = dynsymcount * 2 * sizeof (unsigned long int);
7303 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7304 if (cinfo.hashcodes == NULL)
7305 return FALSE;
7306
7307 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7308 cinfo.min_dynindx = -1;
7309 cinfo.output_bfd = output_bfd;
7310 cinfo.bed = bed;
7311
7312 /* Put all hash values in HASHCODES. */
7313 elf_link_hash_traverse (elf_hash_table (info),
7314 elf_collect_gnu_hash_codes, &cinfo);
7315 if (cinfo.error)
7316 {
7317 free (cinfo.hashcodes);
7318 return FALSE;
7319 }
7320
7321 bucketcount
7322 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7323
7324 if (bucketcount == 0)
7325 {
7326 free (cinfo.hashcodes);
7327 return FALSE;
7328 }
7329
7330 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7331 BFD_ASSERT (s != NULL);
7332
7333 if (cinfo.nsyms == 0)
7334 {
7335 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7336 BFD_ASSERT (cinfo.min_dynindx == -1);
7337 free (cinfo.hashcodes);
7338 s->size = 5 * 4 + bed->s->arch_size / 8;
7339 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7340 if (contents == NULL)
7341 return FALSE;
7342 s->contents = contents;
7343 /* 1 empty bucket. */
7344 bfd_put_32 (output_bfd, 1, contents);
7345 /* SYMIDX above the special symbol 0. */
7346 bfd_put_32 (output_bfd, 1, contents + 4);
7347 /* Just one word for bitmask. */
7348 bfd_put_32 (output_bfd, 1, contents + 8);
7349 /* Only hash fn bloom filter. */
7350 bfd_put_32 (output_bfd, 0, contents + 12);
7351 /* No hashes are valid - empty bitmask. */
7352 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7353 /* No hashes in the only bucket. */
7354 bfd_put_32 (output_bfd, 0,
7355 contents + 16 + bed->s->arch_size / 8);
7356 }
7357 else
7358 {
7359 unsigned long int maskwords, maskbitslog2, x;
7360 BFD_ASSERT (cinfo.min_dynindx != -1);
7361
7362 x = cinfo.nsyms;
7363 maskbitslog2 = 1;
7364 while ((x >>= 1) != 0)
7365 ++maskbitslog2;
7366 if (maskbitslog2 < 3)
7367 maskbitslog2 = 5;
7368 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7369 maskbitslog2 = maskbitslog2 + 3;
7370 else
7371 maskbitslog2 = maskbitslog2 + 2;
7372 if (bed->s->arch_size == 64)
7373 {
7374 if (maskbitslog2 == 5)
7375 maskbitslog2 = 6;
7376 cinfo.shift1 = 6;
7377 }
7378 else
7379 cinfo.shift1 = 5;
7380 cinfo.mask = (1 << cinfo.shift1) - 1;
7381 cinfo.shift2 = maskbitslog2;
7382 cinfo.maskbits = 1 << maskbitslog2;
7383 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7384 amt = bucketcount * sizeof (unsigned long int) * 2;
7385 amt += maskwords * sizeof (bfd_vma);
7386 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7387 if (cinfo.bitmask == NULL)
7388 {
7389 free (cinfo.hashcodes);
7390 return FALSE;
7391 }
7392
7393 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7394 cinfo.indx = cinfo.counts + bucketcount;
7395 cinfo.symindx = dynsymcount - cinfo.nsyms;
7396 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7397
7398 /* Determine how often each hash bucket is used. */
7399 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7400 for (i = 0; i < cinfo.nsyms; ++i)
7401 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7402
7403 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7404 if (cinfo.counts[i] != 0)
7405 {
7406 cinfo.indx[i] = cnt;
7407 cnt += cinfo.counts[i];
7408 }
7409 BFD_ASSERT (cnt == dynsymcount);
7410 cinfo.bucketcount = bucketcount;
7411 cinfo.local_indx = cinfo.min_dynindx;
7412
7413 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7414 s->size += cinfo.maskbits / 8;
7415 if (bed->record_xhash_symbol != NULL)
7416 s->size += cinfo.nsyms * 4;
7417 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7418 if (contents == NULL)
7419 {
7420 free (cinfo.bitmask);
7421 free (cinfo.hashcodes);
7422 return FALSE;
7423 }
7424
7425 s->contents = contents;
7426 bfd_put_32 (output_bfd, bucketcount, contents);
7427 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7428 bfd_put_32 (output_bfd, maskwords, contents + 8);
7429 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7430 contents += 16 + cinfo.maskbits / 8;
7431
7432 for (i = 0; i < bucketcount; ++i)
7433 {
7434 if (cinfo.counts[i] == 0)
7435 bfd_put_32 (output_bfd, 0, contents);
7436 else
7437 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7438 contents += 4;
7439 }
7440
7441 cinfo.contents = contents;
7442
7443 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7444 /* Renumber dynamic symbols, if populating .gnu.hash section.
7445 If using .MIPS.xhash, populate the translation table. */
7446 elf_link_hash_traverse (elf_hash_table (info),
7447 elf_gnu_hash_process_symidx, &cinfo);
7448
7449 contents = s->contents + 16;
7450 for (i = 0; i < maskwords; ++i)
7451 {
7452 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7453 contents);
7454 contents += bed->s->arch_size / 8;
7455 }
7456
7457 free (cinfo.bitmask);
7458 free (cinfo.hashcodes);
7459 }
7460 }
7461
7462 s = bfd_get_linker_section (dynobj, ".dynstr");
7463 BFD_ASSERT (s != NULL);
7464
7465 elf_finalize_dynstr (output_bfd, info);
7466
7467 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7468
7469 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7470 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7471 return FALSE;
7472 }
7473
7474 return TRUE;
7475 }
7476 \f
7477 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7478
7479 static void
7480 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7481 asection *sec)
7482 {
7483 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7484 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7485 }
7486
7487 /* Finish SHF_MERGE section merging. */
7488
7489 bfd_boolean
7490 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7491 {
7492 bfd *ibfd;
7493 asection *sec;
7494
7495 if (!is_elf_hash_table (info->hash))
7496 return FALSE;
7497
7498 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7499 if ((ibfd->flags & DYNAMIC) == 0
7500 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7501 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7502 == get_elf_backend_data (obfd)->s->elfclass))
7503 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7504 if ((sec->flags & SEC_MERGE) != 0
7505 && !bfd_is_abs_section (sec->output_section))
7506 {
7507 struct bfd_elf_section_data *secdata;
7508
7509 secdata = elf_section_data (sec);
7510 if (! _bfd_add_merge_section (obfd,
7511 &elf_hash_table (info)->merge_info,
7512 sec, &secdata->sec_info))
7513 return FALSE;
7514 else if (secdata->sec_info)
7515 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7516 }
7517
7518 if (elf_hash_table (info)->merge_info != NULL)
7519 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7520 merge_sections_remove_hook);
7521 return TRUE;
7522 }
7523
7524 /* Create an entry in an ELF linker hash table. */
7525
7526 struct bfd_hash_entry *
7527 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7528 struct bfd_hash_table *table,
7529 const char *string)
7530 {
7531 /* Allocate the structure if it has not already been allocated by a
7532 subclass. */
7533 if (entry == NULL)
7534 {
7535 entry = (struct bfd_hash_entry *)
7536 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7537 if (entry == NULL)
7538 return entry;
7539 }
7540
7541 /* Call the allocation method of the superclass. */
7542 entry = _bfd_link_hash_newfunc (entry, table, string);
7543 if (entry != NULL)
7544 {
7545 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7546 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7547
7548 /* Set local fields. */
7549 ret->indx = -1;
7550 ret->dynindx = -1;
7551 ret->got = htab->init_got_refcount;
7552 ret->plt = htab->init_plt_refcount;
7553 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7554 - offsetof (struct elf_link_hash_entry, size)));
7555 /* Assume that we have been called by a non-ELF symbol reader.
7556 This flag is then reset by the code which reads an ELF input
7557 file. This ensures that a symbol created by a non-ELF symbol
7558 reader will have the flag set correctly. */
7559 ret->non_elf = 1;
7560 }
7561
7562 return entry;
7563 }
7564
7565 /* Copy data from an indirect symbol to its direct symbol, hiding the
7566 old indirect symbol. Also used for copying flags to a weakdef. */
7567
7568 void
7569 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7570 struct elf_link_hash_entry *dir,
7571 struct elf_link_hash_entry *ind)
7572 {
7573 struct elf_link_hash_table *htab;
7574
7575 /* Copy down any references that we may have already seen to the
7576 symbol which just became indirect. */
7577
7578 if (dir->versioned != versioned_hidden)
7579 dir->ref_dynamic |= ind->ref_dynamic;
7580 dir->ref_regular |= ind->ref_regular;
7581 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7582 dir->non_got_ref |= ind->non_got_ref;
7583 dir->needs_plt |= ind->needs_plt;
7584 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7585
7586 if (ind->root.type != bfd_link_hash_indirect)
7587 return;
7588
7589 /* Copy over the global and procedure linkage table refcount entries.
7590 These may have been already set up by a check_relocs routine. */
7591 htab = elf_hash_table (info);
7592 if (ind->got.refcount > htab->init_got_refcount.refcount)
7593 {
7594 if (dir->got.refcount < 0)
7595 dir->got.refcount = 0;
7596 dir->got.refcount += ind->got.refcount;
7597 ind->got.refcount = htab->init_got_refcount.refcount;
7598 }
7599
7600 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7601 {
7602 if (dir->plt.refcount < 0)
7603 dir->plt.refcount = 0;
7604 dir->plt.refcount += ind->plt.refcount;
7605 ind->plt.refcount = htab->init_plt_refcount.refcount;
7606 }
7607
7608 if (ind->dynindx != -1)
7609 {
7610 if (dir->dynindx != -1)
7611 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7612 dir->dynindx = ind->dynindx;
7613 dir->dynstr_index = ind->dynstr_index;
7614 ind->dynindx = -1;
7615 ind->dynstr_index = 0;
7616 }
7617 }
7618
7619 void
7620 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7621 struct elf_link_hash_entry *h,
7622 bfd_boolean force_local)
7623 {
7624 /* STT_GNU_IFUNC symbol must go through PLT. */
7625 if (h->type != STT_GNU_IFUNC)
7626 {
7627 h->plt = elf_hash_table (info)->init_plt_offset;
7628 h->needs_plt = 0;
7629 }
7630 if (force_local)
7631 {
7632 h->forced_local = 1;
7633 if (h->dynindx != -1)
7634 {
7635 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7636 h->dynstr_index);
7637 h->dynindx = -1;
7638 h->dynstr_index = 0;
7639 }
7640 }
7641 }
7642
7643 /* Hide a symbol. */
7644
7645 void
7646 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7647 struct bfd_link_info *info,
7648 struct bfd_link_hash_entry *h)
7649 {
7650 if (is_elf_hash_table (info->hash))
7651 {
7652 const struct elf_backend_data *bed
7653 = get_elf_backend_data (output_bfd);
7654 struct elf_link_hash_entry *eh
7655 = (struct elf_link_hash_entry *) h;
7656 bed->elf_backend_hide_symbol (info, eh, TRUE);
7657 eh->def_dynamic = 0;
7658 eh->ref_dynamic = 0;
7659 eh->dynamic_def = 0;
7660 }
7661 }
7662
7663 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7664 caller. */
7665
7666 bfd_boolean
7667 _bfd_elf_link_hash_table_init
7668 (struct elf_link_hash_table *table,
7669 bfd *abfd,
7670 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7671 struct bfd_hash_table *,
7672 const char *),
7673 unsigned int entsize,
7674 enum elf_target_id target_id)
7675 {
7676 bfd_boolean ret;
7677 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7678
7679 table->init_got_refcount.refcount = can_refcount - 1;
7680 table->init_plt_refcount.refcount = can_refcount - 1;
7681 table->init_got_offset.offset = -(bfd_vma) 1;
7682 table->init_plt_offset.offset = -(bfd_vma) 1;
7683 /* The first dynamic symbol is a dummy. */
7684 table->dynsymcount = 1;
7685
7686 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7687
7688 table->root.type = bfd_link_elf_hash_table;
7689 table->hash_table_id = target_id;
7690
7691 return ret;
7692 }
7693
7694 /* Create an ELF linker hash table. */
7695
7696 struct bfd_link_hash_table *
7697 _bfd_elf_link_hash_table_create (bfd *abfd)
7698 {
7699 struct elf_link_hash_table *ret;
7700 size_t amt = sizeof (struct elf_link_hash_table);
7701
7702 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7703 if (ret == NULL)
7704 return NULL;
7705
7706 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7707 sizeof (struct elf_link_hash_entry),
7708 GENERIC_ELF_DATA))
7709 {
7710 free (ret);
7711 return NULL;
7712 }
7713 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7714
7715 return &ret->root;
7716 }
7717
7718 /* Destroy an ELF linker hash table. */
7719
7720 void
7721 _bfd_elf_link_hash_table_free (bfd *obfd)
7722 {
7723 struct elf_link_hash_table *htab;
7724
7725 htab = (struct elf_link_hash_table *) obfd->link.hash;
7726 if (htab->dynstr != NULL)
7727 _bfd_elf_strtab_free (htab->dynstr);
7728 _bfd_merge_sections_free (htab->merge_info);
7729 _bfd_generic_link_hash_table_free (obfd);
7730 }
7731
7732 /* This is a hook for the ELF emulation code in the generic linker to
7733 tell the backend linker what file name to use for the DT_NEEDED
7734 entry for a dynamic object. */
7735
7736 void
7737 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7738 {
7739 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7740 && bfd_get_format (abfd) == bfd_object)
7741 elf_dt_name (abfd) = name;
7742 }
7743
7744 int
7745 bfd_elf_get_dyn_lib_class (bfd *abfd)
7746 {
7747 int lib_class;
7748 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7749 && bfd_get_format (abfd) == bfd_object)
7750 lib_class = elf_dyn_lib_class (abfd);
7751 else
7752 lib_class = 0;
7753 return lib_class;
7754 }
7755
7756 void
7757 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7758 {
7759 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7760 && bfd_get_format (abfd) == bfd_object)
7761 elf_dyn_lib_class (abfd) = lib_class;
7762 }
7763
7764 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7765 the linker ELF emulation code. */
7766
7767 struct bfd_link_needed_list *
7768 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7769 struct bfd_link_info *info)
7770 {
7771 if (! is_elf_hash_table (info->hash))
7772 return NULL;
7773 return elf_hash_table (info)->needed;
7774 }
7775
7776 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7777 hook for the linker ELF emulation code. */
7778
7779 struct bfd_link_needed_list *
7780 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7781 struct bfd_link_info *info)
7782 {
7783 if (! is_elf_hash_table (info->hash))
7784 return NULL;
7785 return elf_hash_table (info)->runpath;
7786 }
7787
7788 /* Get the name actually used for a dynamic object for a link. This
7789 is the SONAME entry if there is one. Otherwise, it is the string
7790 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7791
7792 const char *
7793 bfd_elf_get_dt_soname (bfd *abfd)
7794 {
7795 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7796 && bfd_get_format (abfd) == bfd_object)
7797 return elf_dt_name (abfd);
7798 return NULL;
7799 }
7800
7801 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7802 the ELF linker emulation code. */
7803
7804 bfd_boolean
7805 bfd_elf_get_bfd_needed_list (bfd *abfd,
7806 struct bfd_link_needed_list **pneeded)
7807 {
7808 asection *s;
7809 bfd_byte *dynbuf = NULL;
7810 unsigned int elfsec;
7811 unsigned long shlink;
7812 bfd_byte *extdyn, *extdynend;
7813 size_t extdynsize;
7814 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7815
7816 *pneeded = NULL;
7817
7818 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7819 || bfd_get_format (abfd) != bfd_object)
7820 return TRUE;
7821
7822 s = bfd_get_section_by_name (abfd, ".dynamic");
7823 if (s == NULL || s->size == 0)
7824 return TRUE;
7825
7826 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7827 goto error_return;
7828
7829 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7830 if (elfsec == SHN_BAD)
7831 goto error_return;
7832
7833 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7834
7835 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7836 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7837
7838 extdyn = dynbuf;
7839 extdynend = extdyn + s->size;
7840 for (; extdyn < extdynend; extdyn += extdynsize)
7841 {
7842 Elf_Internal_Dyn dyn;
7843
7844 (*swap_dyn_in) (abfd, extdyn, &dyn);
7845
7846 if (dyn.d_tag == DT_NULL)
7847 break;
7848
7849 if (dyn.d_tag == DT_NEEDED)
7850 {
7851 const char *string;
7852 struct bfd_link_needed_list *l;
7853 unsigned int tagv = dyn.d_un.d_val;
7854 size_t amt;
7855
7856 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7857 if (string == NULL)
7858 goto error_return;
7859
7860 amt = sizeof *l;
7861 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7862 if (l == NULL)
7863 goto error_return;
7864
7865 l->by = abfd;
7866 l->name = string;
7867 l->next = *pneeded;
7868 *pneeded = l;
7869 }
7870 }
7871
7872 free (dynbuf);
7873
7874 return TRUE;
7875
7876 error_return:
7877 if (dynbuf != NULL)
7878 free (dynbuf);
7879 return FALSE;
7880 }
7881
7882 struct elf_symbuf_symbol
7883 {
7884 unsigned long st_name; /* Symbol name, index in string tbl */
7885 unsigned char st_info; /* Type and binding attributes */
7886 unsigned char st_other; /* Visibilty, and target specific */
7887 };
7888
7889 struct elf_symbuf_head
7890 {
7891 struct elf_symbuf_symbol *ssym;
7892 size_t count;
7893 unsigned int st_shndx;
7894 };
7895
7896 struct elf_symbol
7897 {
7898 union
7899 {
7900 Elf_Internal_Sym *isym;
7901 struct elf_symbuf_symbol *ssym;
7902 void *p;
7903 } u;
7904 const char *name;
7905 };
7906
7907 /* Sort references to symbols by ascending section number. */
7908
7909 static int
7910 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7911 {
7912 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7913 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7914
7915 if (s1->st_shndx != s2->st_shndx)
7916 return s1->st_shndx > s2->st_shndx ? 1 : -1;
7917 /* Final sort by the address of the sym in the symbuf ensures
7918 a stable sort. */
7919 if (s1 != s2)
7920 return s1 > s2 ? 1 : -1;
7921 return 0;
7922 }
7923
7924 static int
7925 elf_sym_name_compare (const void *arg1, const void *arg2)
7926 {
7927 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7928 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7929 int ret = strcmp (s1->name, s2->name);
7930 if (ret != 0)
7931 return ret;
7932 if (s1->u.p != s2->u.p)
7933 return s1->u.p > s2->u.p ? 1 : -1;
7934 return 0;
7935 }
7936
7937 static struct elf_symbuf_head *
7938 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7939 {
7940 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7941 struct elf_symbuf_symbol *ssym;
7942 struct elf_symbuf_head *ssymbuf, *ssymhead;
7943 size_t i, shndx_count, total_size, amt;
7944
7945 amt = symcount * sizeof (*indbuf);
7946 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
7947 if (indbuf == NULL)
7948 return NULL;
7949
7950 for (ind = indbuf, i = 0; i < symcount; i++)
7951 if (isymbuf[i].st_shndx != SHN_UNDEF)
7952 *ind++ = &isymbuf[i];
7953 indbufend = ind;
7954
7955 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7956 elf_sort_elf_symbol);
7957
7958 shndx_count = 0;
7959 if (indbufend > indbuf)
7960 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7961 if (ind[0]->st_shndx != ind[1]->st_shndx)
7962 shndx_count++;
7963
7964 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7965 + (indbufend - indbuf) * sizeof (*ssym));
7966 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7967 if (ssymbuf == NULL)
7968 {
7969 free (indbuf);
7970 return NULL;
7971 }
7972
7973 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7974 ssymbuf->ssym = NULL;
7975 ssymbuf->count = shndx_count;
7976 ssymbuf->st_shndx = 0;
7977 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7978 {
7979 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7980 {
7981 ssymhead++;
7982 ssymhead->ssym = ssym;
7983 ssymhead->count = 0;
7984 ssymhead->st_shndx = (*ind)->st_shndx;
7985 }
7986 ssym->st_name = (*ind)->st_name;
7987 ssym->st_info = (*ind)->st_info;
7988 ssym->st_other = (*ind)->st_other;
7989 ssymhead->count++;
7990 }
7991 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7992 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7993 == total_size));
7994
7995 free (indbuf);
7996 return ssymbuf;
7997 }
7998
7999 /* Check if 2 sections define the same set of local and global
8000 symbols. */
8001
8002 static bfd_boolean
8003 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8004 struct bfd_link_info *info)
8005 {
8006 bfd *bfd1, *bfd2;
8007 const struct elf_backend_data *bed1, *bed2;
8008 Elf_Internal_Shdr *hdr1, *hdr2;
8009 size_t symcount1, symcount2;
8010 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8011 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8012 Elf_Internal_Sym *isym, *isymend;
8013 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8014 size_t count1, count2, i;
8015 unsigned int shndx1, shndx2;
8016 bfd_boolean result;
8017
8018 bfd1 = sec1->owner;
8019 bfd2 = sec2->owner;
8020
8021 /* Both sections have to be in ELF. */
8022 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8023 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8024 return FALSE;
8025
8026 if (elf_section_type (sec1) != elf_section_type (sec2))
8027 return FALSE;
8028
8029 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8030 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8031 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8032 return FALSE;
8033
8034 bed1 = get_elf_backend_data (bfd1);
8035 bed2 = get_elf_backend_data (bfd2);
8036 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8037 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8038 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8039 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8040
8041 if (symcount1 == 0 || symcount2 == 0)
8042 return FALSE;
8043
8044 result = FALSE;
8045 isymbuf1 = NULL;
8046 isymbuf2 = NULL;
8047 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8048 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8049
8050 if (ssymbuf1 == NULL)
8051 {
8052 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8053 NULL, NULL, NULL);
8054 if (isymbuf1 == NULL)
8055 goto done;
8056
8057 if (!info->reduce_memory_overheads)
8058 {
8059 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8060 elf_tdata (bfd1)->symbuf = ssymbuf1;
8061 }
8062 }
8063
8064 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8065 {
8066 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8067 NULL, NULL, NULL);
8068 if (isymbuf2 == NULL)
8069 goto done;
8070
8071 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8072 {
8073 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8074 elf_tdata (bfd2)->symbuf = ssymbuf2;
8075 }
8076 }
8077
8078 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8079 {
8080 /* Optimized faster version. */
8081 size_t lo, hi, mid;
8082 struct elf_symbol *symp;
8083 struct elf_symbuf_symbol *ssym, *ssymend;
8084
8085 lo = 0;
8086 hi = ssymbuf1->count;
8087 ssymbuf1++;
8088 count1 = 0;
8089 while (lo < hi)
8090 {
8091 mid = (lo + hi) / 2;
8092 if (shndx1 < ssymbuf1[mid].st_shndx)
8093 hi = mid;
8094 else if (shndx1 > ssymbuf1[mid].st_shndx)
8095 lo = mid + 1;
8096 else
8097 {
8098 count1 = ssymbuf1[mid].count;
8099 ssymbuf1 += mid;
8100 break;
8101 }
8102 }
8103
8104 lo = 0;
8105 hi = ssymbuf2->count;
8106 ssymbuf2++;
8107 count2 = 0;
8108 while (lo < hi)
8109 {
8110 mid = (lo + hi) / 2;
8111 if (shndx2 < ssymbuf2[mid].st_shndx)
8112 hi = mid;
8113 else if (shndx2 > ssymbuf2[mid].st_shndx)
8114 lo = mid + 1;
8115 else
8116 {
8117 count2 = ssymbuf2[mid].count;
8118 ssymbuf2 += mid;
8119 break;
8120 }
8121 }
8122
8123 if (count1 == 0 || count2 == 0 || count1 != count2)
8124 goto done;
8125
8126 symtable1
8127 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8128 symtable2
8129 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8130 if (symtable1 == NULL || symtable2 == NULL)
8131 goto done;
8132
8133 symp = symtable1;
8134 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8135 ssym < ssymend; ssym++, symp++)
8136 {
8137 symp->u.ssym = ssym;
8138 symp->name = bfd_elf_string_from_elf_section (bfd1,
8139 hdr1->sh_link,
8140 ssym->st_name);
8141 }
8142
8143 symp = symtable2;
8144 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8145 ssym < ssymend; ssym++, symp++)
8146 {
8147 symp->u.ssym = ssym;
8148 symp->name = bfd_elf_string_from_elf_section (bfd2,
8149 hdr2->sh_link,
8150 ssym->st_name);
8151 }
8152
8153 /* Sort symbol by name. */
8154 qsort (symtable1, count1, sizeof (struct elf_symbol),
8155 elf_sym_name_compare);
8156 qsort (symtable2, count1, sizeof (struct elf_symbol),
8157 elf_sym_name_compare);
8158
8159 for (i = 0; i < count1; i++)
8160 /* Two symbols must have the same binding, type and name. */
8161 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8162 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8163 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8164 goto done;
8165
8166 result = TRUE;
8167 goto done;
8168 }
8169
8170 symtable1 = (struct elf_symbol *)
8171 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8172 symtable2 = (struct elf_symbol *)
8173 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8174 if (symtable1 == NULL || symtable2 == NULL)
8175 goto done;
8176
8177 /* Count definitions in the section. */
8178 count1 = 0;
8179 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8180 if (isym->st_shndx == shndx1)
8181 symtable1[count1++].u.isym = isym;
8182
8183 count2 = 0;
8184 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8185 if (isym->st_shndx == shndx2)
8186 symtable2[count2++].u.isym = isym;
8187
8188 if (count1 == 0 || count2 == 0 || count1 != count2)
8189 goto done;
8190
8191 for (i = 0; i < count1; i++)
8192 symtable1[i].name
8193 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8194 symtable1[i].u.isym->st_name);
8195
8196 for (i = 0; i < count2; i++)
8197 symtable2[i].name
8198 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8199 symtable2[i].u.isym->st_name);
8200
8201 /* Sort symbol by name. */
8202 qsort (symtable1, count1, sizeof (struct elf_symbol),
8203 elf_sym_name_compare);
8204 qsort (symtable2, count1, sizeof (struct elf_symbol),
8205 elf_sym_name_compare);
8206
8207 for (i = 0; i < count1; i++)
8208 /* Two symbols must have the same binding, type and name. */
8209 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8210 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8211 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8212 goto done;
8213
8214 result = TRUE;
8215
8216 done:
8217 if (symtable1)
8218 free (symtable1);
8219 if (symtable2)
8220 free (symtable2);
8221 if (isymbuf1)
8222 free (isymbuf1);
8223 if (isymbuf2)
8224 free (isymbuf2);
8225
8226 return result;
8227 }
8228
8229 /* Return TRUE if 2 section types are compatible. */
8230
8231 bfd_boolean
8232 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8233 bfd *bbfd, const asection *bsec)
8234 {
8235 if (asec == NULL
8236 || bsec == NULL
8237 || abfd->xvec->flavour != bfd_target_elf_flavour
8238 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8239 return TRUE;
8240
8241 return elf_section_type (asec) == elf_section_type (bsec);
8242 }
8243 \f
8244 /* Final phase of ELF linker. */
8245
8246 /* A structure we use to avoid passing large numbers of arguments. */
8247
8248 struct elf_final_link_info
8249 {
8250 /* General link information. */
8251 struct bfd_link_info *info;
8252 /* Output BFD. */
8253 bfd *output_bfd;
8254 /* Symbol string table. */
8255 struct elf_strtab_hash *symstrtab;
8256 /* .hash section. */
8257 asection *hash_sec;
8258 /* symbol version section (.gnu.version). */
8259 asection *symver_sec;
8260 /* Buffer large enough to hold contents of any section. */
8261 bfd_byte *contents;
8262 /* Buffer large enough to hold external relocs of any section. */
8263 void *external_relocs;
8264 /* Buffer large enough to hold internal relocs of any section. */
8265 Elf_Internal_Rela *internal_relocs;
8266 /* Buffer large enough to hold external local symbols of any input
8267 BFD. */
8268 bfd_byte *external_syms;
8269 /* And a buffer for symbol section indices. */
8270 Elf_External_Sym_Shndx *locsym_shndx;
8271 /* Buffer large enough to hold internal local symbols of any input
8272 BFD. */
8273 Elf_Internal_Sym *internal_syms;
8274 /* Array large enough to hold a symbol index for each local symbol
8275 of any input BFD. */
8276 long *indices;
8277 /* Array large enough to hold a section pointer for each local
8278 symbol of any input BFD. */
8279 asection **sections;
8280 /* Buffer for SHT_SYMTAB_SHNDX section. */
8281 Elf_External_Sym_Shndx *symshndxbuf;
8282 /* Number of STT_FILE syms seen. */
8283 size_t filesym_count;
8284 };
8285
8286 /* This struct is used to pass information to elf_link_output_extsym. */
8287
8288 struct elf_outext_info
8289 {
8290 bfd_boolean failed;
8291 bfd_boolean localsyms;
8292 bfd_boolean file_sym_done;
8293 struct elf_final_link_info *flinfo;
8294 };
8295
8296
8297 /* Support for evaluating a complex relocation.
8298
8299 Complex relocations are generalized, self-describing relocations. The
8300 implementation of them consists of two parts: complex symbols, and the
8301 relocations themselves.
8302
8303 The relocations are use a reserved elf-wide relocation type code (R_RELC
8304 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8305 information (start bit, end bit, word width, etc) into the addend. This
8306 information is extracted from CGEN-generated operand tables within gas.
8307
8308 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8309 internal) representing prefix-notation expressions, including but not
8310 limited to those sorts of expressions normally encoded as addends in the
8311 addend field. The symbol mangling format is:
8312
8313 <node> := <literal>
8314 | <unary-operator> ':' <node>
8315 | <binary-operator> ':' <node> ':' <node>
8316 ;
8317
8318 <literal> := 's' <digits=N> ':' <N character symbol name>
8319 | 'S' <digits=N> ':' <N character section name>
8320 | '#' <hexdigits>
8321 ;
8322
8323 <binary-operator> := as in C
8324 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8325
8326 static void
8327 set_symbol_value (bfd *bfd_with_globals,
8328 Elf_Internal_Sym *isymbuf,
8329 size_t locsymcount,
8330 size_t symidx,
8331 bfd_vma val)
8332 {
8333 struct elf_link_hash_entry **sym_hashes;
8334 struct elf_link_hash_entry *h;
8335 size_t extsymoff = locsymcount;
8336
8337 if (symidx < locsymcount)
8338 {
8339 Elf_Internal_Sym *sym;
8340
8341 sym = isymbuf + symidx;
8342 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8343 {
8344 /* It is a local symbol: move it to the
8345 "absolute" section and give it a value. */
8346 sym->st_shndx = SHN_ABS;
8347 sym->st_value = val;
8348 return;
8349 }
8350 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8351 extsymoff = 0;
8352 }
8353
8354 /* It is a global symbol: set its link type
8355 to "defined" and give it a value. */
8356
8357 sym_hashes = elf_sym_hashes (bfd_with_globals);
8358 h = sym_hashes [symidx - extsymoff];
8359 while (h->root.type == bfd_link_hash_indirect
8360 || h->root.type == bfd_link_hash_warning)
8361 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8362 h->root.type = bfd_link_hash_defined;
8363 h->root.u.def.value = val;
8364 h->root.u.def.section = bfd_abs_section_ptr;
8365 }
8366
8367 static bfd_boolean
8368 resolve_symbol (const char *name,
8369 bfd *input_bfd,
8370 struct elf_final_link_info *flinfo,
8371 bfd_vma *result,
8372 Elf_Internal_Sym *isymbuf,
8373 size_t locsymcount)
8374 {
8375 Elf_Internal_Sym *sym;
8376 struct bfd_link_hash_entry *global_entry;
8377 const char *candidate = NULL;
8378 Elf_Internal_Shdr *symtab_hdr;
8379 size_t i;
8380
8381 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8382
8383 for (i = 0; i < locsymcount; ++ i)
8384 {
8385 sym = isymbuf + i;
8386
8387 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8388 continue;
8389
8390 candidate = bfd_elf_string_from_elf_section (input_bfd,
8391 symtab_hdr->sh_link,
8392 sym->st_name);
8393 #ifdef DEBUG
8394 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8395 name, candidate, (unsigned long) sym->st_value);
8396 #endif
8397 if (candidate && strcmp (candidate, name) == 0)
8398 {
8399 asection *sec = flinfo->sections [i];
8400
8401 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8402 *result += sec->output_offset + sec->output_section->vma;
8403 #ifdef DEBUG
8404 printf ("Found symbol with value %8.8lx\n",
8405 (unsigned long) *result);
8406 #endif
8407 return TRUE;
8408 }
8409 }
8410
8411 /* Hmm, haven't found it yet. perhaps it is a global. */
8412 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8413 FALSE, FALSE, TRUE);
8414 if (!global_entry)
8415 return FALSE;
8416
8417 if (global_entry->type == bfd_link_hash_defined
8418 || global_entry->type == bfd_link_hash_defweak)
8419 {
8420 *result = (global_entry->u.def.value
8421 + global_entry->u.def.section->output_section->vma
8422 + global_entry->u.def.section->output_offset);
8423 #ifdef DEBUG
8424 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8425 global_entry->root.string, (unsigned long) *result);
8426 #endif
8427 return TRUE;
8428 }
8429
8430 return FALSE;
8431 }
8432
8433 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8434 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8435 names like "foo.end" which is the end address of section "foo". */
8436
8437 static bfd_boolean
8438 resolve_section (const char *name,
8439 asection *sections,
8440 bfd_vma *result,
8441 bfd * abfd)
8442 {
8443 asection *curr;
8444 unsigned int len;
8445
8446 for (curr = sections; curr; curr = curr->next)
8447 if (strcmp (curr->name, name) == 0)
8448 {
8449 *result = curr->vma;
8450 return TRUE;
8451 }
8452
8453 /* Hmm. still haven't found it. try pseudo-section names. */
8454 /* FIXME: This could be coded more efficiently... */
8455 for (curr = sections; curr; curr = curr->next)
8456 {
8457 len = strlen (curr->name);
8458 if (len > strlen (name))
8459 continue;
8460
8461 if (strncmp (curr->name, name, len) == 0)
8462 {
8463 if (strncmp (".end", name + len, 4) == 0)
8464 {
8465 *result = (curr->vma
8466 + curr->size / bfd_octets_per_byte (abfd, curr));
8467 return TRUE;
8468 }
8469
8470 /* Insert more pseudo-section names here, if you like. */
8471 }
8472 }
8473
8474 return FALSE;
8475 }
8476
8477 static void
8478 undefined_reference (const char *reftype, const char *name)
8479 {
8480 /* xgettext:c-format */
8481 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8482 reftype, name);
8483 }
8484
8485 static bfd_boolean
8486 eval_symbol (bfd_vma *result,
8487 const char **symp,
8488 bfd *input_bfd,
8489 struct elf_final_link_info *flinfo,
8490 bfd_vma dot,
8491 Elf_Internal_Sym *isymbuf,
8492 size_t locsymcount,
8493 int signed_p)
8494 {
8495 size_t len;
8496 size_t symlen;
8497 bfd_vma a;
8498 bfd_vma b;
8499 char symbuf[4096];
8500 const char *sym = *symp;
8501 const char *symend;
8502 bfd_boolean symbol_is_section = FALSE;
8503
8504 len = strlen (sym);
8505 symend = sym + len;
8506
8507 if (len < 1 || len > sizeof (symbuf))
8508 {
8509 bfd_set_error (bfd_error_invalid_operation);
8510 return FALSE;
8511 }
8512
8513 switch (* sym)
8514 {
8515 case '.':
8516 *result = dot;
8517 *symp = sym + 1;
8518 return TRUE;
8519
8520 case '#':
8521 ++sym;
8522 *result = strtoul (sym, (char **) symp, 16);
8523 return TRUE;
8524
8525 case 'S':
8526 symbol_is_section = TRUE;
8527 /* Fall through. */
8528 case 's':
8529 ++sym;
8530 symlen = strtol (sym, (char **) symp, 10);
8531 sym = *symp + 1; /* Skip the trailing ':'. */
8532
8533 if (symend < sym || symlen + 1 > sizeof (symbuf))
8534 {
8535 bfd_set_error (bfd_error_invalid_operation);
8536 return FALSE;
8537 }
8538
8539 memcpy (symbuf, sym, symlen);
8540 symbuf[symlen] = '\0';
8541 *symp = sym + symlen;
8542
8543 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8544 the symbol as a section, or vice-versa. so we're pretty liberal in our
8545 interpretation here; section means "try section first", not "must be a
8546 section", and likewise with symbol. */
8547
8548 if (symbol_is_section)
8549 {
8550 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8551 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8552 isymbuf, locsymcount))
8553 {
8554 undefined_reference ("section", symbuf);
8555 return FALSE;
8556 }
8557 }
8558 else
8559 {
8560 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8561 isymbuf, locsymcount)
8562 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8563 result, input_bfd))
8564 {
8565 undefined_reference ("symbol", symbuf);
8566 return FALSE;
8567 }
8568 }
8569
8570 return TRUE;
8571
8572 /* All that remains are operators. */
8573
8574 #define UNARY_OP(op) \
8575 if (strncmp (sym, #op, strlen (#op)) == 0) \
8576 { \
8577 sym += strlen (#op); \
8578 if (*sym == ':') \
8579 ++sym; \
8580 *symp = sym; \
8581 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8582 isymbuf, locsymcount, signed_p)) \
8583 return FALSE; \
8584 if (signed_p) \
8585 *result = op ((bfd_signed_vma) a); \
8586 else \
8587 *result = op a; \
8588 return TRUE; \
8589 }
8590
8591 #define BINARY_OP(op) \
8592 if (strncmp (sym, #op, strlen (#op)) == 0) \
8593 { \
8594 sym += strlen (#op); \
8595 if (*sym == ':') \
8596 ++sym; \
8597 *symp = sym; \
8598 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8599 isymbuf, locsymcount, signed_p)) \
8600 return FALSE; \
8601 ++*symp; \
8602 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8603 isymbuf, locsymcount, signed_p)) \
8604 return FALSE; \
8605 if (signed_p) \
8606 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8607 else \
8608 *result = a op b; \
8609 return TRUE; \
8610 }
8611
8612 default:
8613 UNARY_OP (0-);
8614 BINARY_OP (<<);
8615 BINARY_OP (>>);
8616 BINARY_OP (==);
8617 BINARY_OP (!=);
8618 BINARY_OP (<=);
8619 BINARY_OP (>=);
8620 BINARY_OP (&&);
8621 BINARY_OP (||);
8622 UNARY_OP (~);
8623 UNARY_OP (!);
8624 BINARY_OP (*);
8625 BINARY_OP (/);
8626 BINARY_OP (%);
8627 BINARY_OP (^);
8628 BINARY_OP (|);
8629 BINARY_OP (&);
8630 BINARY_OP (+);
8631 BINARY_OP (-);
8632 BINARY_OP (<);
8633 BINARY_OP (>);
8634 #undef UNARY_OP
8635 #undef BINARY_OP
8636 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8637 bfd_set_error (bfd_error_invalid_operation);
8638 return FALSE;
8639 }
8640 }
8641
8642 static void
8643 put_value (bfd_vma size,
8644 unsigned long chunksz,
8645 bfd *input_bfd,
8646 bfd_vma x,
8647 bfd_byte *location)
8648 {
8649 location += (size - chunksz);
8650
8651 for (; size; size -= chunksz, location -= chunksz)
8652 {
8653 switch (chunksz)
8654 {
8655 case 1:
8656 bfd_put_8 (input_bfd, x, location);
8657 x >>= 8;
8658 break;
8659 case 2:
8660 bfd_put_16 (input_bfd, x, location);
8661 x >>= 16;
8662 break;
8663 case 4:
8664 bfd_put_32 (input_bfd, x, location);
8665 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8666 x >>= 16;
8667 x >>= 16;
8668 break;
8669 #ifdef BFD64
8670 case 8:
8671 bfd_put_64 (input_bfd, x, location);
8672 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8673 x >>= 32;
8674 x >>= 32;
8675 break;
8676 #endif
8677 default:
8678 abort ();
8679 break;
8680 }
8681 }
8682 }
8683
8684 static bfd_vma
8685 get_value (bfd_vma size,
8686 unsigned long chunksz,
8687 bfd *input_bfd,
8688 bfd_byte *location)
8689 {
8690 int shift;
8691 bfd_vma x = 0;
8692
8693 /* Sanity checks. */
8694 BFD_ASSERT (chunksz <= sizeof (x)
8695 && size >= chunksz
8696 && chunksz != 0
8697 && (size % chunksz) == 0
8698 && input_bfd != NULL
8699 && location != NULL);
8700
8701 if (chunksz == sizeof (x))
8702 {
8703 BFD_ASSERT (size == chunksz);
8704
8705 /* Make sure that we do not perform an undefined shift operation.
8706 We know that size == chunksz so there will only be one iteration
8707 of the loop below. */
8708 shift = 0;
8709 }
8710 else
8711 shift = 8 * chunksz;
8712
8713 for (; size; size -= chunksz, location += chunksz)
8714 {
8715 switch (chunksz)
8716 {
8717 case 1:
8718 x = (x << shift) | bfd_get_8 (input_bfd, location);
8719 break;
8720 case 2:
8721 x = (x << shift) | bfd_get_16 (input_bfd, location);
8722 break;
8723 case 4:
8724 x = (x << shift) | bfd_get_32 (input_bfd, location);
8725 break;
8726 #ifdef BFD64
8727 case 8:
8728 x = (x << shift) | bfd_get_64 (input_bfd, location);
8729 break;
8730 #endif
8731 default:
8732 abort ();
8733 }
8734 }
8735 return x;
8736 }
8737
8738 static void
8739 decode_complex_addend (unsigned long *start, /* in bits */
8740 unsigned long *oplen, /* in bits */
8741 unsigned long *len, /* in bits */
8742 unsigned long *wordsz, /* in bytes */
8743 unsigned long *chunksz, /* in bytes */
8744 unsigned long *lsb0_p,
8745 unsigned long *signed_p,
8746 unsigned long *trunc_p,
8747 unsigned long encoded)
8748 {
8749 * start = encoded & 0x3F;
8750 * len = (encoded >> 6) & 0x3F;
8751 * oplen = (encoded >> 12) & 0x3F;
8752 * wordsz = (encoded >> 18) & 0xF;
8753 * chunksz = (encoded >> 22) & 0xF;
8754 * lsb0_p = (encoded >> 27) & 1;
8755 * signed_p = (encoded >> 28) & 1;
8756 * trunc_p = (encoded >> 29) & 1;
8757 }
8758
8759 bfd_reloc_status_type
8760 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8761 asection *input_section,
8762 bfd_byte *contents,
8763 Elf_Internal_Rela *rel,
8764 bfd_vma relocation)
8765 {
8766 bfd_vma shift, x, mask;
8767 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8768 bfd_reloc_status_type r;
8769 bfd_size_type octets;
8770
8771 /* Perform this reloc, since it is complex.
8772 (this is not to say that it necessarily refers to a complex
8773 symbol; merely that it is a self-describing CGEN based reloc.
8774 i.e. the addend has the complete reloc information (bit start, end,
8775 word size, etc) encoded within it.). */
8776
8777 decode_complex_addend (&start, &oplen, &len, &wordsz,
8778 &chunksz, &lsb0_p, &signed_p,
8779 &trunc_p, rel->r_addend);
8780
8781 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8782
8783 if (lsb0_p)
8784 shift = (start + 1) - len;
8785 else
8786 shift = (8 * wordsz) - (start + len);
8787
8788 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8789 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8790
8791 #ifdef DEBUG
8792 printf ("Doing complex reloc: "
8793 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8794 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8795 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8796 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8797 oplen, (unsigned long) x, (unsigned long) mask,
8798 (unsigned long) relocation);
8799 #endif
8800
8801 r = bfd_reloc_ok;
8802 if (! trunc_p)
8803 /* Now do an overflow check. */
8804 r = bfd_check_overflow ((signed_p
8805 ? complain_overflow_signed
8806 : complain_overflow_unsigned),
8807 len, 0, (8 * wordsz),
8808 relocation);
8809
8810 /* Do the deed. */
8811 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8812
8813 #ifdef DEBUG
8814 printf (" relocation: %8.8lx\n"
8815 " shifted mask: %8.8lx\n"
8816 " shifted/masked reloc: %8.8lx\n"
8817 " result: %8.8lx\n",
8818 (unsigned long) relocation, (unsigned long) (mask << shift),
8819 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8820 #endif
8821 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8822 return r;
8823 }
8824
8825 /* Functions to read r_offset from external (target order) reloc
8826 entry. Faster than bfd_getl32 et al, because we let the compiler
8827 know the value is aligned. */
8828
8829 static bfd_vma
8830 ext32l_r_offset (const void *p)
8831 {
8832 union aligned32
8833 {
8834 uint32_t v;
8835 unsigned char c[4];
8836 };
8837 const union aligned32 *a
8838 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8839
8840 uint32_t aval = ( (uint32_t) a->c[0]
8841 | (uint32_t) a->c[1] << 8
8842 | (uint32_t) a->c[2] << 16
8843 | (uint32_t) a->c[3] << 24);
8844 return aval;
8845 }
8846
8847 static bfd_vma
8848 ext32b_r_offset (const void *p)
8849 {
8850 union aligned32
8851 {
8852 uint32_t v;
8853 unsigned char c[4];
8854 };
8855 const union aligned32 *a
8856 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8857
8858 uint32_t aval = ( (uint32_t) a->c[0] << 24
8859 | (uint32_t) a->c[1] << 16
8860 | (uint32_t) a->c[2] << 8
8861 | (uint32_t) a->c[3]);
8862 return aval;
8863 }
8864
8865 #ifdef BFD_HOST_64_BIT
8866 static bfd_vma
8867 ext64l_r_offset (const void *p)
8868 {
8869 union aligned64
8870 {
8871 uint64_t v;
8872 unsigned char c[8];
8873 };
8874 const union aligned64 *a
8875 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8876
8877 uint64_t aval = ( (uint64_t) a->c[0]
8878 | (uint64_t) a->c[1] << 8
8879 | (uint64_t) a->c[2] << 16
8880 | (uint64_t) a->c[3] << 24
8881 | (uint64_t) a->c[4] << 32
8882 | (uint64_t) a->c[5] << 40
8883 | (uint64_t) a->c[6] << 48
8884 | (uint64_t) a->c[7] << 56);
8885 return aval;
8886 }
8887
8888 static bfd_vma
8889 ext64b_r_offset (const void *p)
8890 {
8891 union aligned64
8892 {
8893 uint64_t v;
8894 unsigned char c[8];
8895 };
8896 const union aligned64 *a
8897 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8898
8899 uint64_t aval = ( (uint64_t) a->c[0] << 56
8900 | (uint64_t) a->c[1] << 48
8901 | (uint64_t) a->c[2] << 40
8902 | (uint64_t) a->c[3] << 32
8903 | (uint64_t) a->c[4] << 24
8904 | (uint64_t) a->c[5] << 16
8905 | (uint64_t) a->c[6] << 8
8906 | (uint64_t) a->c[7]);
8907 return aval;
8908 }
8909 #endif
8910
8911 /* When performing a relocatable link, the input relocations are
8912 preserved. But, if they reference global symbols, the indices
8913 referenced must be updated. Update all the relocations found in
8914 RELDATA. */
8915
8916 static bfd_boolean
8917 elf_link_adjust_relocs (bfd *abfd,
8918 asection *sec,
8919 struct bfd_elf_section_reloc_data *reldata,
8920 bfd_boolean sort,
8921 struct bfd_link_info *info)
8922 {
8923 unsigned int i;
8924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8925 bfd_byte *erela;
8926 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8927 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8928 bfd_vma r_type_mask;
8929 int r_sym_shift;
8930 unsigned int count = reldata->count;
8931 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8932
8933 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8934 {
8935 swap_in = bed->s->swap_reloc_in;
8936 swap_out = bed->s->swap_reloc_out;
8937 }
8938 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8939 {
8940 swap_in = bed->s->swap_reloca_in;
8941 swap_out = bed->s->swap_reloca_out;
8942 }
8943 else
8944 abort ();
8945
8946 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8947 abort ();
8948
8949 if (bed->s->arch_size == 32)
8950 {
8951 r_type_mask = 0xff;
8952 r_sym_shift = 8;
8953 }
8954 else
8955 {
8956 r_type_mask = 0xffffffff;
8957 r_sym_shift = 32;
8958 }
8959
8960 erela = reldata->hdr->contents;
8961 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8962 {
8963 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8964 unsigned int j;
8965
8966 if (*rel_hash == NULL)
8967 continue;
8968
8969 if ((*rel_hash)->indx == -2
8970 && info->gc_sections
8971 && ! info->gc_keep_exported)
8972 {
8973 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8974 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8975 abfd, sec,
8976 (*rel_hash)->root.root.string);
8977 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8978 abfd, sec);
8979 bfd_set_error (bfd_error_invalid_operation);
8980 return FALSE;
8981 }
8982 BFD_ASSERT ((*rel_hash)->indx >= 0);
8983
8984 (*swap_in) (abfd, erela, irela);
8985 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8986 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8987 | (irela[j].r_info & r_type_mask));
8988 (*swap_out) (abfd, irela, erela);
8989 }
8990
8991 if (bed->elf_backend_update_relocs)
8992 (*bed->elf_backend_update_relocs) (sec, reldata);
8993
8994 if (sort && count != 0)
8995 {
8996 bfd_vma (*ext_r_off) (const void *);
8997 bfd_vma r_off;
8998 size_t elt_size;
8999 bfd_byte *base, *end, *p, *loc;
9000 bfd_byte *buf = NULL;
9001
9002 if (bed->s->arch_size == 32)
9003 {
9004 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9005 ext_r_off = ext32l_r_offset;
9006 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9007 ext_r_off = ext32b_r_offset;
9008 else
9009 abort ();
9010 }
9011 else
9012 {
9013 #ifdef BFD_HOST_64_BIT
9014 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9015 ext_r_off = ext64l_r_offset;
9016 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9017 ext_r_off = ext64b_r_offset;
9018 else
9019 #endif
9020 abort ();
9021 }
9022
9023 /* Must use a stable sort here. A modified insertion sort,
9024 since the relocs are mostly sorted already. */
9025 elt_size = reldata->hdr->sh_entsize;
9026 base = reldata->hdr->contents;
9027 end = base + count * elt_size;
9028 if (elt_size > sizeof (Elf64_External_Rela))
9029 abort ();
9030
9031 /* Ensure the first element is lowest. This acts as a sentinel,
9032 speeding the main loop below. */
9033 r_off = (*ext_r_off) (base);
9034 for (p = loc = base; (p += elt_size) < end; )
9035 {
9036 bfd_vma r_off2 = (*ext_r_off) (p);
9037 if (r_off > r_off2)
9038 {
9039 r_off = r_off2;
9040 loc = p;
9041 }
9042 }
9043 if (loc != base)
9044 {
9045 /* Don't just swap *base and *loc as that changes the order
9046 of the original base[0] and base[1] if they happen to
9047 have the same r_offset. */
9048 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9049 memcpy (onebuf, loc, elt_size);
9050 memmove (base + elt_size, base, loc - base);
9051 memcpy (base, onebuf, elt_size);
9052 }
9053
9054 for (p = base + elt_size; (p += elt_size) < end; )
9055 {
9056 /* base to p is sorted, *p is next to insert. */
9057 r_off = (*ext_r_off) (p);
9058 /* Search the sorted region for location to insert. */
9059 loc = p - elt_size;
9060 while (r_off < (*ext_r_off) (loc))
9061 loc -= elt_size;
9062 loc += elt_size;
9063 if (loc != p)
9064 {
9065 /* Chances are there is a run of relocs to insert here,
9066 from one of more input files. Files are not always
9067 linked in order due to the way elf_link_input_bfd is
9068 called. See pr17666. */
9069 size_t sortlen = p - loc;
9070 bfd_vma r_off2 = (*ext_r_off) (loc);
9071 size_t runlen = elt_size;
9072 size_t buf_size = 96 * 1024;
9073 while (p + runlen < end
9074 && (sortlen <= buf_size
9075 || runlen + elt_size <= buf_size)
9076 && r_off2 > (*ext_r_off) (p + runlen))
9077 runlen += elt_size;
9078 if (buf == NULL)
9079 {
9080 buf = bfd_malloc (buf_size);
9081 if (buf == NULL)
9082 return FALSE;
9083 }
9084 if (runlen < sortlen)
9085 {
9086 memcpy (buf, p, runlen);
9087 memmove (loc + runlen, loc, sortlen);
9088 memcpy (loc, buf, runlen);
9089 }
9090 else
9091 {
9092 memcpy (buf, loc, sortlen);
9093 memmove (loc, p, runlen);
9094 memcpy (loc + runlen, buf, sortlen);
9095 }
9096 p += runlen - elt_size;
9097 }
9098 }
9099 /* Hashes are no longer valid. */
9100 free (reldata->hashes);
9101 reldata->hashes = NULL;
9102 free (buf);
9103 }
9104 return TRUE;
9105 }
9106
9107 struct elf_link_sort_rela
9108 {
9109 union {
9110 bfd_vma offset;
9111 bfd_vma sym_mask;
9112 } u;
9113 enum elf_reloc_type_class type;
9114 /* We use this as an array of size int_rels_per_ext_rel. */
9115 Elf_Internal_Rela rela[1];
9116 };
9117
9118 /* qsort stability here and for cmp2 is only an issue if multiple
9119 dynamic relocations are emitted at the same address. But targets
9120 that apply a series of dynamic relocations each operating on the
9121 result of the prior relocation can't use -z combreloc as
9122 implemented anyway. Such schemes tend to be broken by sorting on
9123 symbol index. That leaves dynamic NONE relocs as the only other
9124 case where ld might emit multiple relocs at the same address, and
9125 those are only emitted due to target bugs. */
9126
9127 static int
9128 elf_link_sort_cmp1 (const void *A, const void *B)
9129 {
9130 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9131 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9132 int relativea, relativeb;
9133
9134 relativea = a->type == reloc_class_relative;
9135 relativeb = b->type == reloc_class_relative;
9136
9137 if (relativea < relativeb)
9138 return 1;
9139 if (relativea > relativeb)
9140 return -1;
9141 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9142 return -1;
9143 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9144 return 1;
9145 if (a->rela->r_offset < b->rela->r_offset)
9146 return -1;
9147 if (a->rela->r_offset > b->rela->r_offset)
9148 return 1;
9149 return 0;
9150 }
9151
9152 static int
9153 elf_link_sort_cmp2 (const void *A, const void *B)
9154 {
9155 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9156 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9157
9158 if (a->type < b->type)
9159 return -1;
9160 if (a->type > b->type)
9161 return 1;
9162 if (a->u.offset < b->u.offset)
9163 return -1;
9164 if (a->u.offset > b->u.offset)
9165 return 1;
9166 if (a->rela->r_offset < b->rela->r_offset)
9167 return -1;
9168 if (a->rela->r_offset > b->rela->r_offset)
9169 return 1;
9170 return 0;
9171 }
9172
9173 static size_t
9174 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9175 {
9176 asection *dynamic_relocs;
9177 asection *rela_dyn;
9178 asection *rel_dyn;
9179 bfd_size_type count, size;
9180 size_t i, ret, sort_elt, ext_size;
9181 bfd_byte *sort, *s_non_relative, *p;
9182 struct elf_link_sort_rela *sq;
9183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9184 int i2e = bed->s->int_rels_per_ext_rel;
9185 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9186 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9187 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9188 struct bfd_link_order *lo;
9189 bfd_vma r_sym_mask;
9190 bfd_boolean use_rela;
9191
9192 /* Find a dynamic reloc section. */
9193 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9194 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9195 if (rela_dyn != NULL && rela_dyn->size > 0
9196 && rel_dyn != NULL && rel_dyn->size > 0)
9197 {
9198 bfd_boolean use_rela_initialised = FALSE;
9199
9200 /* This is just here to stop gcc from complaining.
9201 Its initialization checking code is not perfect. */
9202 use_rela = TRUE;
9203
9204 /* Both sections are present. Examine the sizes
9205 of the indirect sections to help us choose. */
9206 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9207 if (lo->type == bfd_indirect_link_order)
9208 {
9209 asection *o = lo->u.indirect.section;
9210
9211 if ((o->size % bed->s->sizeof_rela) == 0)
9212 {
9213 if ((o->size % bed->s->sizeof_rel) == 0)
9214 /* Section size is divisible by both rel and rela sizes.
9215 It is of no help to us. */
9216 ;
9217 else
9218 {
9219 /* Section size is only divisible by rela. */
9220 if (use_rela_initialised && !use_rela)
9221 {
9222 _bfd_error_handler (_("%pB: unable to sort relocs - "
9223 "they are in more than one size"),
9224 abfd);
9225 bfd_set_error (bfd_error_invalid_operation);
9226 return 0;
9227 }
9228 else
9229 {
9230 use_rela = TRUE;
9231 use_rela_initialised = TRUE;
9232 }
9233 }
9234 }
9235 else if ((o->size % bed->s->sizeof_rel) == 0)
9236 {
9237 /* Section size is only divisible by rel. */
9238 if (use_rela_initialised && use_rela)
9239 {
9240 _bfd_error_handler (_("%pB: unable to sort relocs - "
9241 "they are in more than one size"),
9242 abfd);
9243 bfd_set_error (bfd_error_invalid_operation);
9244 return 0;
9245 }
9246 else
9247 {
9248 use_rela = FALSE;
9249 use_rela_initialised = TRUE;
9250 }
9251 }
9252 else
9253 {
9254 /* The section size is not divisible by either -
9255 something is wrong. */
9256 _bfd_error_handler (_("%pB: unable to sort relocs - "
9257 "they are of an unknown size"), abfd);
9258 bfd_set_error (bfd_error_invalid_operation);
9259 return 0;
9260 }
9261 }
9262
9263 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9264 if (lo->type == bfd_indirect_link_order)
9265 {
9266 asection *o = lo->u.indirect.section;
9267
9268 if ((o->size % bed->s->sizeof_rela) == 0)
9269 {
9270 if ((o->size % bed->s->sizeof_rel) == 0)
9271 /* Section size is divisible by both rel and rela sizes.
9272 It is of no help to us. */
9273 ;
9274 else
9275 {
9276 /* Section size is only divisible by rela. */
9277 if (use_rela_initialised && !use_rela)
9278 {
9279 _bfd_error_handler (_("%pB: unable to sort relocs - "
9280 "they are in more than one size"),
9281 abfd);
9282 bfd_set_error (bfd_error_invalid_operation);
9283 return 0;
9284 }
9285 else
9286 {
9287 use_rela = TRUE;
9288 use_rela_initialised = TRUE;
9289 }
9290 }
9291 }
9292 else if ((o->size % bed->s->sizeof_rel) == 0)
9293 {
9294 /* Section size is only divisible by rel. */
9295 if (use_rela_initialised && use_rela)
9296 {
9297 _bfd_error_handler (_("%pB: unable to sort relocs - "
9298 "they are in more than one size"),
9299 abfd);
9300 bfd_set_error (bfd_error_invalid_operation);
9301 return 0;
9302 }
9303 else
9304 {
9305 use_rela = FALSE;
9306 use_rela_initialised = TRUE;
9307 }
9308 }
9309 else
9310 {
9311 /* The section size is not divisible by either -
9312 something is wrong. */
9313 _bfd_error_handler (_("%pB: unable to sort relocs - "
9314 "they are of an unknown size"), abfd);
9315 bfd_set_error (bfd_error_invalid_operation);
9316 return 0;
9317 }
9318 }
9319
9320 if (! use_rela_initialised)
9321 /* Make a guess. */
9322 use_rela = TRUE;
9323 }
9324 else if (rela_dyn != NULL && rela_dyn->size > 0)
9325 use_rela = TRUE;
9326 else if (rel_dyn != NULL && rel_dyn->size > 0)
9327 use_rela = FALSE;
9328 else
9329 return 0;
9330
9331 if (use_rela)
9332 {
9333 dynamic_relocs = rela_dyn;
9334 ext_size = bed->s->sizeof_rela;
9335 swap_in = bed->s->swap_reloca_in;
9336 swap_out = bed->s->swap_reloca_out;
9337 }
9338 else
9339 {
9340 dynamic_relocs = rel_dyn;
9341 ext_size = bed->s->sizeof_rel;
9342 swap_in = bed->s->swap_reloc_in;
9343 swap_out = bed->s->swap_reloc_out;
9344 }
9345
9346 size = 0;
9347 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9348 if (lo->type == bfd_indirect_link_order)
9349 size += lo->u.indirect.section->size;
9350
9351 if (size != dynamic_relocs->size)
9352 return 0;
9353
9354 sort_elt = (sizeof (struct elf_link_sort_rela)
9355 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9356
9357 count = dynamic_relocs->size / ext_size;
9358 if (count == 0)
9359 return 0;
9360 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9361
9362 if (sort == NULL)
9363 {
9364 (*info->callbacks->warning)
9365 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9366 return 0;
9367 }
9368
9369 if (bed->s->arch_size == 32)
9370 r_sym_mask = ~(bfd_vma) 0xff;
9371 else
9372 r_sym_mask = ~(bfd_vma) 0xffffffff;
9373
9374 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9375 if (lo->type == bfd_indirect_link_order)
9376 {
9377 bfd_byte *erel, *erelend;
9378 asection *o = lo->u.indirect.section;
9379
9380 if (o->contents == NULL && o->size != 0)
9381 {
9382 /* This is a reloc section that is being handled as a normal
9383 section. See bfd_section_from_shdr. We can't combine
9384 relocs in this case. */
9385 free (sort);
9386 return 0;
9387 }
9388 erel = o->contents;
9389 erelend = o->contents + o->size;
9390 p = sort + o->output_offset * opb / ext_size * sort_elt;
9391
9392 while (erel < erelend)
9393 {
9394 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9395
9396 (*swap_in) (abfd, erel, s->rela);
9397 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9398 s->u.sym_mask = r_sym_mask;
9399 p += sort_elt;
9400 erel += ext_size;
9401 }
9402 }
9403
9404 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9405
9406 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9407 {
9408 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9409 if (s->type != reloc_class_relative)
9410 break;
9411 }
9412 ret = i;
9413 s_non_relative = p;
9414
9415 sq = (struct elf_link_sort_rela *) s_non_relative;
9416 for (; i < count; i++, p += sort_elt)
9417 {
9418 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9419 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9420 sq = sp;
9421 sp->u.offset = sq->rela->r_offset;
9422 }
9423
9424 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9425
9426 struct elf_link_hash_table *htab = elf_hash_table (info);
9427 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9428 {
9429 /* We have plt relocs in .rela.dyn. */
9430 sq = (struct elf_link_sort_rela *) sort;
9431 for (i = 0; i < count; i++)
9432 if (sq[count - i - 1].type != reloc_class_plt)
9433 break;
9434 if (i != 0 && htab->srelplt->size == i * ext_size)
9435 {
9436 struct bfd_link_order **plo;
9437 /* Put srelplt link_order last. This is so the output_offset
9438 set in the next loop is correct for DT_JMPREL. */
9439 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9440 if ((*plo)->type == bfd_indirect_link_order
9441 && (*plo)->u.indirect.section == htab->srelplt)
9442 {
9443 lo = *plo;
9444 *plo = lo->next;
9445 }
9446 else
9447 plo = &(*plo)->next;
9448 *plo = lo;
9449 lo->next = NULL;
9450 dynamic_relocs->map_tail.link_order = lo;
9451 }
9452 }
9453
9454 p = sort;
9455 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9456 if (lo->type == bfd_indirect_link_order)
9457 {
9458 bfd_byte *erel, *erelend;
9459 asection *o = lo->u.indirect.section;
9460
9461 erel = o->contents;
9462 erelend = o->contents + o->size;
9463 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9464 while (erel < erelend)
9465 {
9466 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9467 (*swap_out) (abfd, s->rela, erel);
9468 p += sort_elt;
9469 erel += ext_size;
9470 }
9471 }
9472
9473 free (sort);
9474 *psec = dynamic_relocs;
9475 return ret;
9476 }
9477
9478 /* Add a symbol to the output symbol string table. */
9479
9480 static int
9481 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9482 const char *name,
9483 Elf_Internal_Sym *elfsym,
9484 asection *input_sec,
9485 struct elf_link_hash_entry *h)
9486 {
9487 int (*output_symbol_hook)
9488 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9489 struct elf_link_hash_entry *);
9490 struct elf_link_hash_table *hash_table;
9491 const struct elf_backend_data *bed;
9492 bfd_size_type strtabsize;
9493
9494 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9495
9496 bed = get_elf_backend_data (flinfo->output_bfd);
9497 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9498 if (output_symbol_hook != NULL)
9499 {
9500 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9501 if (ret != 1)
9502 return ret;
9503 }
9504
9505 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9506 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9507 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9508 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9509
9510 if (name == NULL
9511 || *name == '\0'
9512 || (input_sec->flags & SEC_EXCLUDE))
9513 elfsym->st_name = (unsigned long) -1;
9514 else
9515 {
9516 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9517 to get the final offset for st_name. */
9518 elfsym->st_name
9519 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9520 name, FALSE);
9521 if (elfsym->st_name == (unsigned long) -1)
9522 return 0;
9523 }
9524
9525 hash_table = elf_hash_table (flinfo->info);
9526 strtabsize = hash_table->strtabsize;
9527 if (strtabsize <= hash_table->strtabcount)
9528 {
9529 strtabsize += strtabsize;
9530 hash_table->strtabsize = strtabsize;
9531 strtabsize *= sizeof (*hash_table->strtab);
9532 hash_table->strtab
9533 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9534 strtabsize);
9535 if (hash_table->strtab == NULL)
9536 return 0;
9537 }
9538 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9539 hash_table->strtab[hash_table->strtabcount].dest_index
9540 = hash_table->strtabcount;
9541 hash_table->strtab[hash_table->strtabcount].destshndx_index
9542 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9543
9544 flinfo->output_bfd->symcount += 1;
9545 hash_table->strtabcount += 1;
9546
9547 return 1;
9548 }
9549
9550 /* Swap symbols out to the symbol table and flush the output symbols to
9551 the file. */
9552
9553 static bfd_boolean
9554 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9555 {
9556 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9557 size_t amt;
9558 size_t i;
9559 const struct elf_backend_data *bed;
9560 bfd_byte *symbuf;
9561 Elf_Internal_Shdr *hdr;
9562 file_ptr pos;
9563 bfd_boolean ret;
9564
9565 if (!hash_table->strtabcount)
9566 return TRUE;
9567
9568 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9569
9570 bed = get_elf_backend_data (flinfo->output_bfd);
9571
9572 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9573 symbuf = (bfd_byte *) bfd_malloc (amt);
9574 if (symbuf == NULL)
9575 return FALSE;
9576
9577 if (flinfo->symshndxbuf)
9578 {
9579 amt = sizeof (Elf_External_Sym_Shndx);
9580 amt *= bfd_get_symcount (flinfo->output_bfd);
9581 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9582 if (flinfo->symshndxbuf == NULL)
9583 {
9584 free (symbuf);
9585 return FALSE;
9586 }
9587 }
9588
9589 for (i = 0; i < hash_table->strtabcount; i++)
9590 {
9591 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9592 if (elfsym->sym.st_name == (unsigned long) -1)
9593 elfsym->sym.st_name = 0;
9594 else
9595 elfsym->sym.st_name
9596 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9597 elfsym->sym.st_name);
9598 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9599 ((bfd_byte *) symbuf
9600 + (elfsym->dest_index
9601 * bed->s->sizeof_sym)),
9602 (flinfo->symshndxbuf
9603 + elfsym->destshndx_index));
9604 }
9605
9606 /* Allow the linker to examine the strtab and symtab now they are
9607 populated. */
9608
9609 if (flinfo->info->callbacks->examine_strtab)
9610 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9611 hash_table->strtabcount,
9612 flinfo->symstrtab);
9613
9614 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9615 pos = hdr->sh_offset + hdr->sh_size;
9616 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9617 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9618 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9619 {
9620 hdr->sh_size += amt;
9621 ret = TRUE;
9622 }
9623 else
9624 ret = FALSE;
9625
9626 free (symbuf);
9627
9628 free (hash_table->strtab);
9629 hash_table->strtab = NULL;
9630
9631 return ret;
9632 }
9633
9634 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9635
9636 static bfd_boolean
9637 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9638 {
9639 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9640 && sym->st_shndx < SHN_LORESERVE)
9641 {
9642 /* The gABI doesn't support dynamic symbols in output sections
9643 beyond 64k. */
9644 _bfd_error_handler
9645 /* xgettext:c-format */
9646 (_("%pB: too many sections: %d (>= %d)"),
9647 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9648 bfd_set_error (bfd_error_nonrepresentable_section);
9649 return FALSE;
9650 }
9651 return TRUE;
9652 }
9653
9654 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9655 allowing an unsatisfied unversioned symbol in the DSO to match a
9656 versioned symbol that would normally require an explicit version.
9657 We also handle the case that a DSO references a hidden symbol
9658 which may be satisfied by a versioned symbol in another DSO. */
9659
9660 static bfd_boolean
9661 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9662 const struct elf_backend_data *bed,
9663 struct elf_link_hash_entry *h)
9664 {
9665 bfd *abfd;
9666 struct elf_link_loaded_list *loaded;
9667
9668 if (!is_elf_hash_table (info->hash))
9669 return FALSE;
9670
9671 /* Check indirect symbol. */
9672 while (h->root.type == bfd_link_hash_indirect)
9673 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9674
9675 switch (h->root.type)
9676 {
9677 default:
9678 abfd = NULL;
9679 break;
9680
9681 case bfd_link_hash_undefined:
9682 case bfd_link_hash_undefweak:
9683 abfd = h->root.u.undef.abfd;
9684 if (abfd == NULL
9685 || (abfd->flags & DYNAMIC) == 0
9686 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9687 return FALSE;
9688 break;
9689
9690 case bfd_link_hash_defined:
9691 case bfd_link_hash_defweak:
9692 abfd = h->root.u.def.section->owner;
9693 break;
9694
9695 case bfd_link_hash_common:
9696 abfd = h->root.u.c.p->section->owner;
9697 break;
9698 }
9699 BFD_ASSERT (abfd != NULL);
9700
9701 for (loaded = elf_hash_table (info)->dyn_loaded;
9702 loaded != NULL;
9703 loaded = loaded->next)
9704 {
9705 bfd *input;
9706 Elf_Internal_Shdr *hdr;
9707 size_t symcount;
9708 size_t extsymcount;
9709 size_t extsymoff;
9710 Elf_Internal_Shdr *versymhdr;
9711 Elf_Internal_Sym *isym;
9712 Elf_Internal_Sym *isymend;
9713 Elf_Internal_Sym *isymbuf;
9714 Elf_External_Versym *ever;
9715 Elf_External_Versym *extversym;
9716
9717 input = loaded->abfd;
9718
9719 /* We check each DSO for a possible hidden versioned definition. */
9720 if (input == abfd
9721 || elf_dynversym (input) == 0)
9722 continue;
9723
9724 hdr = &elf_tdata (input)->dynsymtab_hdr;
9725
9726 symcount = hdr->sh_size / bed->s->sizeof_sym;
9727 if (elf_bad_symtab (input))
9728 {
9729 extsymcount = symcount;
9730 extsymoff = 0;
9731 }
9732 else
9733 {
9734 extsymcount = symcount - hdr->sh_info;
9735 extsymoff = hdr->sh_info;
9736 }
9737
9738 if (extsymcount == 0)
9739 continue;
9740
9741 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9742 NULL, NULL, NULL);
9743 if (isymbuf == NULL)
9744 return FALSE;
9745
9746 /* Read in any version definitions. */
9747 versymhdr = &elf_tdata (input)->dynversym_hdr;
9748 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9749 || (extversym = (Elf_External_Versym *)
9750 _bfd_malloc_and_read (input, versymhdr->sh_size,
9751 versymhdr->sh_size)) == NULL)
9752 {
9753 free (isymbuf);
9754 return FALSE;
9755 }
9756
9757 ever = extversym + extsymoff;
9758 isymend = isymbuf + extsymcount;
9759 for (isym = isymbuf; isym < isymend; isym++, ever++)
9760 {
9761 const char *name;
9762 Elf_Internal_Versym iver;
9763 unsigned short version_index;
9764
9765 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9766 || isym->st_shndx == SHN_UNDEF)
9767 continue;
9768
9769 name = bfd_elf_string_from_elf_section (input,
9770 hdr->sh_link,
9771 isym->st_name);
9772 if (strcmp (name, h->root.root.string) != 0)
9773 continue;
9774
9775 _bfd_elf_swap_versym_in (input, ever, &iver);
9776
9777 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9778 && !(h->def_regular
9779 && h->forced_local))
9780 {
9781 /* If we have a non-hidden versioned sym, then it should
9782 have provided a definition for the undefined sym unless
9783 it is defined in a non-shared object and forced local.
9784 */
9785 abort ();
9786 }
9787
9788 version_index = iver.vs_vers & VERSYM_VERSION;
9789 if (version_index == 1 || version_index == 2)
9790 {
9791 /* This is the base or first version. We can use it. */
9792 free (extversym);
9793 free (isymbuf);
9794 return TRUE;
9795 }
9796 }
9797
9798 free (extversym);
9799 free (isymbuf);
9800 }
9801
9802 return FALSE;
9803 }
9804
9805 /* Convert ELF common symbol TYPE. */
9806
9807 static int
9808 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9809 {
9810 /* Commom symbol can only appear in relocatable link. */
9811 if (!bfd_link_relocatable (info))
9812 abort ();
9813 switch (info->elf_stt_common)
9814 {
9815 case unchanged:
9816 break;
9817 case elf_stt_common:
9818 type = STT_COMMON;
9819 break;
9820 case no_elf_stt_common:
9821 type = STT_OBJECT;
9822 break;
9823 }
9824 return type;
9825 }
9826
9827 /* Add an external symbol to the symbol table. This is called from
9828 the hash table traversal routine. When generating a shared object,
9829 we go through the symbol table twice. The first time we output
9830 anything that might have been forced to local scope in a version
9831 script. The second time we output the symbols that are still
9832 global symbols. */
9833
9834 static bfd_boolean
9835 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9836 {
9837 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9838 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9839 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9840 bfd_boolean strip;
9841 Elf_Internal_Sym sym;
9842 asection *input_sec;
9843 const struct elf_backend_data *bed;
9844 long indx;
9845 int ret;
9846 unsigned int type;
9847
9848 if (h->root.type == bfd_link_hash_warning)
9849 {
9850 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9851 if (h->root.type == bfd_link_hash_new)
9852 return TRUE;
9853 }
9854
9855 /* Decide whether to output this symbol in this pass. */
9856 if (eoinfo->localsyms)
9857 {
9858 if (!h->forced_local)
9859 return TRUE;
9860 }
9861 else
9862 {
9863 if (h->forced_local)
9864 return TRUE;
9865 }
9866
9867 bed = get_elf_backend_data (flinfo->output_bfd);
9868
9869 if (h->root.type == bfd_link_hash_undefined)
9870 {
9871 /* If we have an undefined symbol reference here then it must have
9872 come from a shared library that is being linked in. (Undefined
9873 references in regular files have already been handled unless
9874 they are in unreferenced sections which are removed by garbage
9875 collection). */
9876 bfd_boolean ignore_undef = FALSE;
9877
9878 /* Some symbols may be special in that the fact that they're
9879 undefined can be safely ignored - let backend determine that. */
9880 if (bed->elf_backend_ignore_undef_symbol)
9881 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9882
9883 /* If we are reporting errors for this situation then do so now. */
9884 if (!ignore_undef
9885 && h->ref_dynamic_nonweak
9886 && (!h->ref_regular || flinfo->info->gc_sections)
9887 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9888 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9889 (*flinfo->info->callbacks->undefined_symbol)
9890 (flinfo->info, h->root.root.string,
9891 h->ref_regular ? NULL : h->root.u.undef.abfd,
9892 NULL, 0,
9893 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9894
9895 /* Strip a global symbol defined in a discarded section. */
9896 if (h->indx == -3)
9897 return TRUE;
9898 }
9899
9900 /* We should also warn if a forced local symbol is referenced from
9901 shared libraries. */
9902 if (bfd_link_executable (flinfo->info)
9903 && h->forced_local
9904 && h->ref_dynamic
9905 && h->def_regular
9906 && !h->dynamic_def
9907 && h->ref_dynamic_nonweak
9908 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9909 {
9910 bfd *def_bfd;
9911 const char *msg;
9912 struct elf_link_hash_entry *hi = h;
9913
9914 /* Check indirect symbol. */
9915 while (hi->root.type == bfd_link_hash_indirect)
9916 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9917
9918 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9919 /* xgettext:c-format */
9920 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9921 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9922 /* xgettext:c-format */
9923 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9924 else
9925 /* xgettext:c-format */
9926 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9927 def_bfd = flinfo->output_bfd;
9928 if (hi->root.u.def.section != bfd_abs_section_ptr)
9929 def_bfd = hi->root.u.def.section->owner;
9930 _bfd_error_handler (msg, flinfo->output_bfd,
9931 h->root.root.string, def_bfd);
9932 bfd_set_error (bfd_error_bad_value);
9933 eoinfo->failed = TRUE;
9934 return FALSE;
9935 }
9936
9937 /* We don't want to output symbols that have never been mentioned by
9938 a regular file, or that we have been told to strip. However, if
9939 h->indx is set to -2, the symbol is used by a reloc and we must
9940 output it. */
9941 strip = FALSE;
9942 if (h->indx == -2)
9943 ;
9944 else if ((h->def_dynamic
9945 || h->ref_dynamic
9946 || h->root.type == bfd_link_hash_new)
9947 && !h->def_regular
9948 && !h->ref_regular)
9949 strip = TRUE;
9950 else if (flinfo->info->strip == strip_all)
9951 strip = TRUE;
9952 else if (flinfo->info->strip == strip_some
9953 && bfd_hash_lookup (flinfo->info->keep_hash,
9954 h->root.root.string, FALSE, FALSE) == NULL)
9955 strip = TRUE;
9956 else if ((h->root.type == bfd_link_hash_defined
9957 || h->root.type == bfd_link_hash_defweak)
9958 && ((flinfo->info->strip_discarded
9959 && discarded_section (h->root.u.def.section))
9960 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9961 && h->root.u.def.section->owner != NULL
9962 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9963 strip = TRUE;
9964 else if ((h->root.type == bfd_link_hash_undefined
9965 || h->root.type == bfd_link_hash_undefweak)
9966 && h->root.u.undef.abfd != NULL
9967 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9968 strip = TRUE;
9969
9970 type = h->type;
9971
9972 /* If we're stripping it, and it's not a dynamic symbol, there's
9973 nothing else to do. However, if it is a forced local symbol or
9974 an ifunc symbol we need to give the backend finish_dynamic_symbol
9975 function a chance to make it dynamic. */
9976 if (strip
9977 && h->dynindx == -1
9978 && type != STT_GNU_IFUNC
9979 && !h->forced_local)
9980 return TRUE;
9981
9982 sym.st_value = 0;
9983 sym.st_size = h->size;
9984 sym.st_other = h->other;
9985 switch (h->root.type)
9986 {
9987 default:
9988 case bfd_link_hash_new:
9989 case bfd_link_hash_warning:
9990 abort ();
9991 return FALSE;
9992
9993 case bfd_link_hash_undefined:
9994 case bfd_link_hash_undefweak:
9995 input_sec = bfd_und_section_ptr;
9996 sym.st_shndx = SHN_UNDEF;
9997 break;
9998
9999 case bfd_link_hash_defined:
10000 case bfd_link_hash_defweak:
10001 {
10002 input_sec = h->root.u.def.section;
10003 if (input_sec->output_section != NULL)
10004 {
10005 sym.st_shndx =
10006 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10007 input_sec->output_section);
10008 if (sym.st_shndx == SHN_BAD)
10009 {
10010 _bfd_error_handler
10011 /* xgettext:c-format */
10012 (_("%pB: could not find output section %pA for input section %pA"),
10013 flinfo->output_bfd, input_sec->output_section, input_sec);
10014 bfd_set_error (bfd_error_nonrepresentable_section);
10015 eoinfo->failed = TRUE;
10016 return FALSE;
10017 }
10018
10019 /* ELF symbols in relocatable files are section relative,
10020 but in nonrelocatable files they are virtual
10021 addresses. */
10022 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10023 if (!bfd_link_relocatable (flinfo->info))
10024 {
10025 sym.st_value += input_sec->output_section->vma;
10026 if (h->type == STT_TLS)
10027 {
10028 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10029 if (tls_sec != NULL)
10030 sym.st_value -= tls_sec->vma;
10031 }
10032 }
10033 }
10034 else
10035 {
10036 BFD_ASSERT (input_sec->owner == NULL
10037 || (input_sec->owner->flags & DYNAMIC) != 0);
10038 sym.st_shndx = SHN_UNDEF;
10039 input_sec = bfd_und_section_ptr;
10040 }
10041 }
10042 break;
10043
10044 case bfd_link_hash_common:
10045 input_sec = h->root.u.c.p->section;
10046 sym.st_shndx = bed->common_section_index (input_sec);
10047 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10048 break;
10049
10050 case bfd_link_hash_indirect:
10051 /* These symbols are created by symbol versioning. They point
10052 to the decorated version of the name. For example, if the
10053 symbol foo@@GNU_1.2 is the default, which should be used when
10054 foo is used with no version, then we add an indirect symbol
10055 foo which points to foo@@GNU_1.2. We ignore these symbols,
10056 since the indirected symbol is already in the hash table. */
10057 return TRUE;
10058 }
10059
10060 if (type == STT_COMMON || type == STT_OBJECT)
10061 switch (h->root.type)
10062 {
10063 case bfd_link_hash_common:
10064 type = elf_link_convert_common_type (flinfo->info, type);
10065 break;
10066 case bfd_link_hash_defined:
10067 case bfd_link_hash_defweak:
10068 if (bed->common_definition (&sym))
10069 type = elf_link_convert_common_type (flinfo->info, type);
10070 else
10071 type = STT_OBJECT;
10072 break;
10073 case bfd_link_hash_undefined:
10074 case bfd_link_hash_undefweak:
10075 break;
10076 default:
10077 abort ();
10078 }
10079
10080 if (h->forced_local)
10081 {
10082 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10083 /* Turn off visibility on local symbol. */
10084 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10085 }
10086 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10087 else if (h->unique_global && h->def_regular)
10088 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10089 else if (h->root.type == bfd_link_hash_undefweak
10090 || h->root.type == bfd_link_hash_defweak)
10091 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10092 else
10093 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10094 sym.st_target_internal = h->target_internal;
10095
10096 /* Give the processor backend a chance to tweak the symbol value,
10097 and also to finish up anything that needs to be done for this
10098 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10099 forced local syms when non-shared is due to a historical quirk.
10100 STT_GNU_IFUNC symbol must go through PLT. */
10101 if ((h->type == STT_GNU_IFUNC
10102 && h->def_regular
10103 && !bfd_link_relocatable (flinfo->info))
10104 || ((h->dynindx != -1
10105 || h->forced_local)
10106 && ((bfd_link_pic (flinfo->info)
10107 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10108 || h->root.type != bfd_link_hash_undefweak))
10109 || !h->forced_local)
10110 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10111 {
10112 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10113 (flinfo->output_bfd, flinfo->info, h, &sym)))
10114 {
10115 eoinfo->failed = TRUE;
10116 return FALSE;
10117 }
10118 }
10119
10120 /* If we are marking the symbol as undefined, and there are no
10121 non-weak references to this symbol from a regular object, then
10122 mark the symbol as weak undefined; if there are non-weak
10123 references, mark the symbol as strong. We can't do this earlier,
10124 because it might not be marked as undefined until the
10125 finish_dynamic_symbol routine gets through with it. */
10126 if (sym.st_shndx == SHN_UNDEF
10127 && h->ref_regular
10128 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10129 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10130 {
10131 int bindtype;
10132 type = ELF_ST_TYPE (sym.st_info);
10133
10134 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10135 if (type == STT_GNU_IFUNC)
10136 type = STT_FUNC;
10137
10138 if (h->ref_regular_nonweak)
10139 bindtype = STB_GLOBAL;
10140 else
10141 bindtype = STB_WEAK;
10142 sym.st_info = ELF_ST_INFO (bindtype, type);
10143 }
10144
10145 /* If this is a symbol defined in a dynamic library, don't use the
10146 symbol size from the dynamic library. Relinking an executable
10147 against a new library may introduce gratuitous changes in the
10148 executable's symbols if we keep the size. */
10149 if (sym.st_shndx == SHN_UNDEF
10150 && !h->def_regular
10151 && h->def_dynamic)
10152 sym.st_size = 0;
10153
10154 /* If a non-weak symbol with non-default visibility is not defined
10155 locally, it is a fatal error. */
10156 if (!bfd_link_relocatable (flinfo->info)
10157 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10158 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10159 && h->root.type == bfd_link_hash_undefined
10160 && !h->def_regular)
10161 {
10162 const char *msg;
10163
10164 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10165 /* xgettext:c-format */
10166 msg = _("%pB: protected symbol `%s' isn't defined");
10167 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10168 /* xgettext:c-format */
10169 msg = _("%pB: internal symbol `%s' isn't defined");
10170 else
10171 /* xgettext:c-format */
10172 msg = _("%pB: hidden symbol `%s' isn't defined");
10173 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10174 bfd_set_error (bfd_error_bad_value);
10175 eoinfo->failed = TRUE;
10176 return FALSE;
10177 }
10178
10179 /* If this symbol should be put in the .dynsym section, then put it
10180 there now. We already know the symbol index. We also fill in
10181 the entry in the .hash section. */
10182 if (h->dynindx != -1
10183 && elf_hash_table (flinfo->info)->dynamic_sections_created
10184 && elf_hash_table (flinfo->info)->dynsym != NULL
10185 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10186 {
10187 bfd_byte *esym;
10188
10189 /* Since there is no version information in the dynamic string,
10190 if there is no version info in symbol version section, we will
10191 have a run-time problem if not linking executable, referenced
10192 by shared library, or not bound locally. */
10193 if (h->verinfo.verdef == NULL
10194 && (!bfd_link_executable (flinfo->info)
10195 || h->ref_dynamic
10196 || !h->def_regular))
10197 {
10198 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10199
10200 if (p && p [1] != '\0')
10201 {
10202 _bfd_error_handler
10203 /* xgettext:c-format */
10204 (_("%pB: no symbol version section for versioned symbol `%s'"),
10205 flinfo->output_bfd, h->root.root.string);
10206 eoinfo->failed = TRUE;
10207 return FALSE;
10208 }
10209 }
10210
10211 sym.st_name = h->dynstr_index;
10212 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10213 + h->dynindx * bed->s->sizeof_sym);
10214 if (!check_dynsym (flinfo->output_bfd, &sym))
10215 {
10216 eoinfo->failed = TRUE;
10217 return FALSE;
10218 }
10219 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10220
10221 if (flinfo->hash_sec != NULL)
10222 {
10223 size_t hash_entry_size;
10224 bfd_byte *bucketpos;
10225 bfd_vma chain;
10226 size_t bucketcount;
10227 size_t bucket;
10228
10229 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10230 bucket = h->u.elf_hash_value % bucketcount;
10231
10232 hash_entry_size
10233 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10234 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10235 + (bucket + 2) * hash_entry_size);
10236 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10237 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10238 bucketpos);
10239 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10240 ((bfd_byte *) flinfo->hash_sec->contents
10241 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10242 }
10243
10244 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10245 {
10246 Elf_Internal_Versym iversym;
10247 Elf_External_Versym *eversym;
10248
10249 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10250 {
10251 if (h->verinfo.verdef == NULL
10252 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10253 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10254 iversym.vs_vers = 0;
10255 else
10256 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10257 }
10258 else
10259 {
10260 if (h->verinfo.vertree == NULL)
10261 iversym.vs_vers = 1;
10262 else
10263 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10264 if (flinfo->info->create_default_symver)
10265 iversym.vs_vers++;
10266 }
10267
10268 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10269 defined locally. */
10270 if (h->versioned == versioned_hidden && h->def_regular)
10271 iversym.vs_vers |= VERSYM_HIDDEN;
10272
10273 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10274 eversym += h->dynindx;
10275 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10276 }
10277 }
10278
10279 /* If the symbol is undefined, and we didn't output it to .dynsym,
10280 strip it from .symtab too. Obviously we can't do this for
10281 relocatable output or when needed for --emit-relocs. */
10282 else if (input_sec == bfd_und_section_ptr
10283 && h->indx != -2
10284 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10285 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10286 && !bfd_link_relocatable (flinfo->info))
10287 return TRUE;
10288
10289 /* Also strip others that we couldn't earlier due to dynamic symbol
10290 processing. */
10291 if (strip)
10292 return TRUE;
10293 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10294 return TRUE;
10295
10296 /* Output a FILE symbol so that following locals are not associated
10297 with the wrong input file. We need one for forced local symbols
10298 if we've seen more than one FILE symbol or when we have exactly
10299 one FILE symbol but global symbols are present in a file other
10300 than the one with the FILE symbol. We also need one if linker
10301 defined symbols are present. In practice these conditions are
10302 always met, so just emit the FILE symbol unconditionally. */
10303 if (eoinfo->localsyms
10304 && !eoinfo->file_sym_done
10305 && eoinfo->flinfo->filesym_count != 0)
10306 {
10307 Elf_Internal_Sym fsym;
10308
10309 memset (&fsym, 0, sizeof (fsym));
10310 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10311 fsym.st_shndx = SHN_ABS;
10312 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10313 bfd_und_section_ptr, NULL))
10314 return FALSE;
10315
10316 eoinfo->file_sym_done = TRUE;
10317 }
10318
10319 indx = bfd_get_symcount (flinfo->output_bfd);
10320 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10321 input_sec, h);
10322 if (ret == 0)
10323 {
10324 eoinfo->failed = TRUE;
10325 return FALSE;
10326 }
10327 else if (ret == 1)
10328 h->indx = indx;
10329 else if (h->indx == -2)
10330 abort();
10331
10332 return TRUE;
10333 }
10334
10335 /* Return TRUE if special handling is done for relocs in SEC against
10336 symbols defined in discarded sections. */
10337
10338 static bfd_boolean
10339 elf_section_ignore_discarded_relocs (asection *sec)
10340 {
10341 const struct elf_backend_data *bed;
10342
10343 switch (sec->sec_info_type)
10344 {
10345 case SEC_INFO_TYPE_STABS:
10346 case SEC_INFO_TYPE_EH_FRAME:
10347 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10348 return TRUE;
10349 default:
10350 break;
10351 }
10352
10353 bed = get_elf_backend_data (sec->owner);
10354 if (bed->elf_backend_ignore_discarded_relocs != NULL
10355 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10356 return TRUE;
10357
10358 return FALSE;
10359 }
10360
10361 /* Return a mask saying how ld should treat relocations in SEC against
10362 symbols defined in discarded sections. If this function returns
10363 COMPLAIN set, ld will issue a warning message. If this function
10364 returns PRETEND set, and the discarded section was link-once and the
10365 same size as the kept link-once section, ld will pretend that the
10366 symbol was actually defined in the kept section. Otherwise ld will
10367 zero the reloc (at least that is the intent, but some cooperation by
10368 the target dependent code is needed, particularly for REL targets). */
10369
10370 unsigned int
10371 _bfd_elf_default_action_discarded (asection *sec)
10372 {
10373 if (sec->flags & SEC_DEBUGGING)
10374 return PRETEND;
10375
10376 if (strcmp (".eh_frame", sec->name) == 0)
10377 return 0;
10378
10379 if (strcmp (".gcc_except_table", sec->name) == 0)
10380 return 0;
10381
10382 return COMPLAIN | PRETEND;
10383 }
10384
10385 /* Find a match between a section and a member of a section group. */
10386
10387 static asection *
10388 match_group_member (asection *sec, asection *group,
10389 struct bfd_link_info *info)
10390 {
10391 asection *first = elf_next_in_group (group);
10392 asection *s = first;
10393
10394 while (s != NULL)
10395 {
10396 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10397 return s;
10398
10399 s = elf_next_in_group (s);
10400 if (s == first)
10401 break;
10402 }
10403
10404 return NULL;
10405 }
10406
10407 /* Check if the kept section of a discarded section SEC can be used
10408 to replace it. Return the replacement if it is OK. Otherwise return
10409 NULL. */
10410
10411 asection *
10412 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10413 {
10414 asection *kept;
10415
10416 kept = sec->kept_section;
10417 if (kept != NULL)
10418 {
10419 if ((kept->flags & SEC_GROUP) != 0)
10420 kept = match_group_member (sec, kept, info);
10421 if (kept != NULL
10422 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10423 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10424 kept = NULL;
10425 sec->kept_section = kept;
10426 }
10427 return kept;
10428 }
10429
10430 /* Link an input file into the linker output file. This function
10431 handles all the sections and relocations of the input file at once.
10432 This is so that we only have to read the local symbols once, and
10433 don't have to keep them in memory. */
10434
10435 static bfd_boolean
10436 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10437 {
10438 int (*relocate_section)
10439 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10440 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10441 bfd *output_bfd;
10442 Elf_Internal_Shdr *symtab_hdr;
10443 size_t locsymcount;
10444 size_t extsymoff;
10445 Elf_Internal_Sym *isymbuf;
10446 Elf_Internal_Sym *isym;
10447 Elf_Internal_Sym *isymend;
10448 long *pindex;
10449 asection **ppsection;
10450 asection *o;
10451 const struct elf_backend_data *bed;
10452 struct elf_link_hash_entry **sym_hashes;
10453 bfd_size_type address_size;
10454 bfd_vma r_type_mask;
10455 int r_sym_shift;
10456 bfd_boolean have_file_sym = FALSE;
10457
10458 output_bfd = flinfo->output_bfd;
10459 bed = get_elf_backend_data (output_bfd);
10460 relocate_section = bed->elf_backend_relocate_section;
10461
10462 /* If this is a dynamic object, we don't want to do anything here:
10463 we don't want the local symbols, and we don't want the section
10464 contents. */
10465 if ((input_bfd->flags & DYNAMIC) != 0)
10466 return TRUE;
10467
10468 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10469 if (elf_bad_symtab (input_bfd))
10470 {
10471 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10472 extsymoff = 0;
10473 }
10474 else
10475 {
10476 locsymcount = symtab_hdr->sh_info;
10477 extsymoff = symtab_hdr->sh_info;
10478 }
10479
10480 /* Read the local symbols. */
10481 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10482 if (isymbuf == NULL && locsymcount != 0)
10483 {
10484 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10485 flinfo->internal_syms,
10486 flinfo->external_syms,
10487 flinfo->locsym_shndx);
10488 if (isymbuf == NULL)
10489 return FALSE;
10490 }
10491
10492 /* Find local symbol sections and adjust values of symbols in
10493 SEC_MERGE sections. Write out those local symbols we know are
10494 going into the output file. */
10495 isymend = isymbuf + locsymcount;
10496 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10497 isym < isymend;
10498 isym++, pindex++, ppsection++)
10499 {
10500 asection *isec;
10501 const char *name;
10502 Elf_Internal_Sym osym;
10503 long indx;
10504 int ret;
10505
10506 *pindex = -1;
10507
10508 if (elf_bad_symtab (input_bfd))
10509 {
10510 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10511 {
10512 *ppsection = NULL;
10513 continue;
10514 }
10515 }
10516
10517 if (isym->st_shndx == SHN_UNDEF)
10518 isec = bfd_und_section_ptr;
10519 else if (isym->st_shndx == SHN_ABS)
10520 isec = bfd_abs_section_ptr;
10521 else if (isym->st_shndx == SHN_COMMON)
10522 isec = bfd_com_section_ptr;
10523 else
10524 {
10525 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10526 if (isec == NULL)
10527 {
10528 /* Don't attempt to output symbols with st_shnx in the
10529 reserved range other than SHN_ABS and SHN_COMMON. */
10530 isec = bfd_und_section_ptr;
10531 }
10532 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10533 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10534 isym->st_value =
10535 _bfd_merged_section_offset (output_bfd, &isec,
10536 elf_section_data (isec)->sec_info,
10537 isym->st_value);
10538 }
10539
10540 *ppsection = isec;
10541
10542 /* Don't output the first, undefined, symbol. In fact, don't
10543 output any undefined local symbol. */
10544 if (isec == bfd_und_section_ptr)
10545 continue;
10546
10547 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10548 {
10549 /* We never output section symbols. Instead, we use the
10550 section symbol of the corresponding section in the output
10551 file. */
10552 continue;
10553 }
10554
10555 /* If we are stripping all symbols, we don't want to output this
10556 one. */
10557 if (flinfo->info->strip == strip_all)
10558 continue;
10559
10560 /* If we are discarding all local symbols, we don't want to
10561 output this one. If we are generating a relocatable output
10562 file, then some of the local symbols may be required by
10563 relocs; we output them below as we discover that they are
10564 needed. */
10565 if (flinfo->info->discard == discard_all)
10566 continue;
10567
10568 /* If this symbol is defined in a section which we are
10569 discarding, we don't need to keep it. */
10570 if (isym->st_shndx != SHN_UNDEF
10571 && isym->st_shndx < SHN_LORESERVE
10572 && bfd_section_removed_from_list (output_bfd,
10573 isec->output_section))
10574 continue;
10575
10576 /* Get the name of the symbol. */
10577 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10578 isym->st_name);
10579 if (name == NULL)
10580 return FALSE;
10581
10582 /* See if we are discarding symbols with this name. */
10583 if ((flinfo->info->strip == strip_some
10584 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10585 == NULL))
10586 || (((flinfo->info->discard == discard_sec_merge
10587 && (isec->flags & SEC_MERGE)
10588 && !bfd_link_relocatable (flinfo->info))
10589 || flinfo->info->discard == discard_l)
10590 && bfd_is_local_label_name (input_bfd, name)))
10591 continue;
10592
10593 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10594 {
10595 if (input_bfd->lto_output)
10596 /* -flto puts a temp file name here. This means builds
10597 are not reproducible. Discard the symbol. */
10598 continue;
10599 have_file_sym = TRUE;
10600 flinfo->filesym_count += 1;
10601 }
10602 if (!have_file_sym)
10603 {
10604 /* In the absence of debug info, bfd_find_nearest_line uses
10605 FILE symbols to determine the source file for local
10606 function symbols. Provide a FILE symbol here if input
10607 files lack such, so that their symbols won't be
10608 associated with a previous input file. It's not the
10609 source file, but the best we can do. */
10610 have_file_sym = TRUE;
10611 flinfo->filesym_count += 1;
10612 memset (&osym, 0, sizeof (osym));
10613 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10614 osym.st_shndx = SHN_ABS;
10615 if (!elf_link_output_symstrtab (flinfo,
10616 (input_bfd->lto_output ? NULL
10617 : input_bfd->filename),
10618 &osym, bfd_abs_section_ptr,
10619 NULL))
10620 return FALSE;
10621 }
10622
10623 osym = *isym;
10624
10625 /* Adjust the section index for the output file. */
10626 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10627 isec->output_section);
10628 if (osym.st_shndx == SHN_BAD)
10629 return FALSE;
10630
10631 /* ELF symbols in relocatable files are section relative, but
10632 in executable files they are virtual addresses. Note that
10633 this code assumes that all ELF sections have an associated
10634 BFD section with a reasonable value for output_offset; below
10635 we assume that they also have a reasonable value for
10636 output_section. Any special sections must be set up to meet
10637 these requirements. */
10638 osym.st_value += isec->output_offset;
10639 if (!bfd_link_relocatable (flinfo->info))
10640 {
10641 osym.st_value += isec->output_section->vma;
10642 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10643 {
10644 /* STT_TLS symbols are relative to PT_TLS segment base. */
10645 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10646 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10647 else
10648 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10649 STT_NOTYPE);
10650 }
10651 }
10652
10653 indx = bfd_get_symcount (output_bfd);
10654 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10655 if (ret == 0)
10656 return FALSE;
10657 else if (ret == 1)
10658 *pindex = indx;
10659 }
10660
10661 if (bed->s->arch_size == 32)
10662 {
10663 r_type_mask = 0xff;
10664 r_sym_shift = 8;
10665 address_size = 4;
10666 }
10667 else
10668 {
10669 r_type_mask = 0xffffffff;
10670 r_sym_shift = 32;
10671 address_size = 8;
10672 }
10673
10674 /* Relocate the contents of each section. */
10675 sym_hashes = elf_sym_hashes (input_bfd);
10676 for (o = input_bfd->sections; o != NULL; o = o->next)
10677 {
10678 bfd_byte *contents;
10679
10680 if (! o->linker_mark)
10681 {
10682 /* This section was omitted from the link. */
10683 continue;
10684 }
10685
10686 if (!flinfo->info->resolve_section_groups
10687 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10688 {
10689 /* Deal with the group signature symbol. */
10690 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10691 unsigned long symndx = sec_data->this_hdr.sh_info;
10692 asection *osec = o->output_section;
10693
10694 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10695 if (symndx >= locsymcount
10696 || (elf_bad_symtab (input_bfd)
10697 && flinfo->sections[symndx] == NULL))
10698 {
10699 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10700 while (h->root.type == bfd_link_hash_indirect
10701 || h->root.type == bfd_link_hash_warning)
10702 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10703 /* Arrange for symbol to be output. */
10704 h->indx = -2;
10705 elf_section_data (osec)->this_hdr.sh_info = -2;
10706 }
10707 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10708 {
10709 /* We'll use the output section target_index. */
10710 asection *sec = flinfo->sections[symndx]->output_section;
10711 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10712 }
10713 else
10714 {
10715 if (flinfo->indices[symndx] == -1)
10716 {
10717 /* Otherwise output the local symbol now. */
10718 Elf_Internal_Sym sym = isymbuf[symndx];
10719 asection *sec = flinfo->sections[symndx]->output_section;
10720 const char *name;
10721 long indx;
10722 int ret;
10723
10724 name = bfd_elf_string_from_elf_section (input_bfd,
10725 symtab_hdr->sh_link,
10726 sym.st_name);
10727 if (name == NULL)
10728 return FALSE;
10729
10730 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10731 sec);
10732 if (sym.st_shndx == SHN_BAD)
10733 return FALSE;
10734
10735 sym.st_value += o->output_offset;
10736
10737 indx = bfd_get_symcount (output_bfd);
10738 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10739 NULL);
10740 if (ret == 0)
10741 return FALSE;
10742 else if (ret == 1)
10743 flinfo->indices[symndx] = indx;
10744 else
10745 abort ();
10746 }
10747 elf_section_data (osec)->this_hdr.sh_info
10748 = flinfo->indices[symndx];
10749 }
10750 }
10751
10752 if ((o->flags & SEC_HAS_CONTENTS) == 0
10753 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10754 continue;
10755
10756 if ((o->flags & SEC_LINKER_CREATED) != 0)
10757 {
10758 /* Section was created by _bfd_elf_link_create_dynamic_sections
10759 or somesuch. */
10760 continue;
10761 }
10762
10763 /* Get the contents of the section. They have been cached by a
10764 relaxation routine. Note that o is a section in an input
10765 file, so the contents field will not have been set by any of
10766 the routines which work on output files. */
10767 if (elf_section_data (o)->this_hdr.contents != NULL)
10768 {
10769 contents = elf_section_data (o)->this_hdr.contents;
10770 if (bed->caches_rawsize
10771 && o->rawsize != 0
10772 && o->rawsize < o->size)
10773 {
10774 memcpy (flinfo->contents, contents, o->rawsize);
10775 contents = flinfo->contents;
10776 }
10777 }
10778 else
10779 {
10780 contents = flinfo->contents;
10781 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10782 return FALSE;
10783 }
10784
10785 if ((o->flags & SEC_RELOC) != 0)
10786 {
10787 Elf_Internal_Rela *internal_relocs;
10788 Elf_Internal_Rela *rel, *relend;
10789 int action_discarded;
10790 int ret;
10791
10792 /* Get the swapped relocs. */
10793 internal_relocs
10794 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10795 flinfo->internal_relocs, FALSE);
10796 if (internal_relocs == NULL
10797 && o->reloc_count > 0)
10798 return FALSE;
10799
10800 /* We need to reverse-copy input .ctors/.dtors sections if
10801 they are placed in .init_array/.finit_array for output. */
10802 if (o->size > address_size
10803 && ((strncmp (o->name, ".ctors", 6) == 0
10804 && strcmp (o->output_section->name,
10805 ".init_array") == 0)
10806 || (strncmp (o->name, ".dtors", 6) == 0
10807 && strcmp (o->output_section->name,
10808 ".fini_array") == 0))
10809 && (o->name[6] == 0 || o->name[6] == '.'))
10810 {
10811 if (o->size * bed->s->int_rels_per_ext_rel
10812 != o->reloc_count * address_size)
10813 {
10814 _bfd_error_handler
10815 /* xgettext:c-format */
10816 (_("error: %pB: size of section %pA is not "
10817 "multiple of address size"),
10818 input_bfd, o);
10819 bfd_set_error (bfd_error_bad_value);
10820 return FALSE;
10821 }
10822 o->flags |= SEC_ELF_REVERSE_COPY;
10823 }
10824
10825 action_discarded = -1;
10826 if (!elf_section_ignore_discarded_relocs (o))
10827 action_discarded = (*bed->action_discarded) (o);
10828
10829 /* Run through the relocs evaluating complex reloc symbols and
10830 looking for relocs against symbols from discarded sections
10831 or section symbols from removed link-once sections.
10832 Complain about relocs against discarded sections. Zero
10833 relocs against removed link-once sections. */
10834
10835 rel = internal_relocs;
10836 relend = rel + o->reloc_count;
10837 for ( ; rel < relend; rel++)
10838 {
10839 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10840 unsigned int s_type;
10841 asection **ps, *sec;
10842 struct elf_link_hash_entry *h = NULL;
10843 const char *sym_name;
10844
10845 if (r_symndx == STN_UNDEF)
10846 continue;
10847
10848 if (r_symndx >= locsymcount
10849 || (elf_bad_symtab (input_bfd)
10850 && flinfo->sections[r_symndx] == NULL))
10851 {
10852 h = sym_hashes[r_symndx - extsymoff];
10853
10854 /* Badly formatted input files can contain relocs that
10855 reference non-existant symbols. Check here so that
10856 we do not seg fault. */
10857 if (h == NULL)
10858 {
10859 _bfd_error_handler
10860 /* xgettext:c-format */
10861 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10862 "that references a non-existent global symbol"),
10863 input_bfd, (uint64_t) rel->r_info, o);
10864 bfd_set_error (bfd_error_bad_value);
10865 return FALSE;
10866 }
10867
10868 while (h->root.type == bfd_link_hash_indirect
10869 || h->root.type == bfd_link_hash_warning)
10870 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10871
10872 s_type = h->type;
10873
10874 /* If a plugin symbol is referenced from a non-IR file,
10875 mark the symbol as undefined. Note that the
10876 linker may attach linker created dynamic sections
10877 to the plugin bfd. Symbols defined in linker
10878 created sections are not plugin symbols. */
10879 if ((h->root.non_ir_ref_regular
10880 || h->root.non_ir_ref_dynamic)
10881 && (h->root.type == bfd_link_hash_defined
10882 || h->root.type == bfd_link_hash_defweak)
10883 && (h->root.u.def.section->flags
10884 & SEC_LINKER_CREATED) == 0
10885 && h->root.u.def.section->owner != NULL
10886 && (h->root.u.def.section->owner->flags
10887 & BFD_PLUGIN) != 0)
10888 {
10889 h->root.type = bfd_link_hash_undefined;
10890 h->root.u.undef.abfd = h->root.u.def.section->owner;
10891 }
10892
10893 ps = NULL;
10894 if (h->root.type == bfd_link_hash_defined
10895 || h->root.type == bfd_link_hash_defweak)
10896 ps = &h->root.u.def.section;
10897
10898 sym_name = h->root.root.string;
10899 }
10900 else
10901 {
10902 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10903
10904 s_type = ELF_ST_TYPE (sym->st_info);
10905 ps = &flinfo->sections[r_symndx];
10906 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10907 sym, *ps);
10908 }
10909
10910 if ((s_type == STT_RELC || s_type == STT_SRELC)
10911 && !bfd_link_relocatable (flinfo->info))
10912 {
10913 bfd_vma val;
10914 bfd_vma dot = (rel->r_offset
10915 + o->output_offset + o->output_section->vma);
10916 #ifdef DEBUG
10917 printf ("Encountered a complex symbol!");
10918 printf (" (input_bfd %s, section %s, reloc %ld\n",
10919 input_bfd->filename, o->name,
10920 (long) (rel - internal_relocs));
10921 printf (" symbol: idx %8.8lx, name %s\n",
10922 r_symndx, sym_name);
10923 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10924 (unsigned long) rel->r_info,
10925 (unsigned long) rel->r_offset);
10926 #endif
10927 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10928 isymbuf, locsymcount, s_type == STT_SRELC))
10929 return FALSE;
10930
10931 /* Symbol evaluated OK. Update to absolute value. */
10932 set_symbol_value (input_bfd, isymbuf, locsymcount,
10933 r_symndx, val);
10934 continue;
10935 }
10936
10937 if (action_discarded != -1 && ps != NULL)
10938 {
10939 /* Complain if the definition comes from a
10940 discarded section. */
10941 if ((sec = *ps) != NULL && discarded_section (sec))
10942 {
10943 BFD_ASSERT (r_symndx != STN_UNDEF);
10944 if (action_discarded & COMPLAIN)
10945 (*flinfo->info->callbacks->einfo)
10946 /* xgettext:c-format */
10947 (_("%X`%s' referenced in section `%pA' of %pB: "
10948 "defined in discarded section `%pA' of %pB\n"),
10949 sym_name, o, input_bfd, sec, sec->owner);
10950
10951 /* Try to do the best we can to support buggy old
10952 versions of gcc. Pretend that the symbol is
10953 really defined in the kept linkonce section.
10954 FIXME: This is quite broken. Modifying the
10955 symbol here means we will be changing all later
10956 uses of the symbol, not just in this section. */
10957 if (action_discarded & PRETEND)
10958 {
10959 asection *kept;
10960
10961 kept = _bfd_elf_check_kept_section (sec,
10962 flinfo->info);
10963 if (kept != NULL)
10964 {
10965 *ps = kept;
10966 continue;
10967 }
10968 }
10969 }
10970 }
10971 }
10972
10973 /* Relocate the section by invoking a back end routine.
10974
10975 The back end routine is responsible for adjusting the
10976 section contents as necessary, and (if using Rela relocs
10977 and generating a relocatable output file) adjusting the
10978 reloc addend as necessary.
10979
10980 The back end routine does not have to worry about setting
10981 the reloc address or the reloc symbol index.
10982
10983 The back end routine is given a pointer to the swapped in
10984 internal symbols, and can access the hash table entries
10985 for the external symbols via elf_sym_hashes (input_bfd).
10986
10987 When generating relocatable output, the back end routine
10988 must handle STB_LOCAL/STT_SECTION symbols specially. The
10989 output symbol is going to be a section symbol
10990 corresponding to the output section, which will require
10991 the addend to be adjusted. */
10992
10993 ret = (*relocate_section) (output_bfd, flinfo->info,
10994 input_bfd, o, contents,
10995 internal_relocs,
10996 isymbuf,
10997 flinfo->sections);
10998 if (!ret)
10999 return FALSE;
11000
11001 if (ret == 2
11002 || bfd_link_relocatable (flinfo->info)
11003 || flinfo->info->emitrelocations)
11004 {
11005 Elf_Internal_Rela *irela;
11006 Elf_Internal_Rela *irelaend, *irelamid;
11007 bfd_vma last_offset;
11008 struct elf_link_hash_entry **rel_hash;
11009 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11010 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11011 unsigned int next_erel;
11012 bfd_boolean rela_normal;
11013 struct bfd_elf_section_data *esdi, *esdo;
11014
11015 esdi = elf_section_data (o);
11016 esdo = elf_section_data (o->output_section);
11017 rela_normal = FALSE;
11018
11019 /* Adjust the reloc addresses and symbol indices. */
11020
11021 irela = internal_relocs;
11022 irelaend = irela + o->reloc_count;
11023 rel_hash = esdo->rel.hashes + esdo->rel.count;
11024 /* We start processing the REL relocs, if any. When we reach
11025 IRELAMID in the loop, we switch to the RELA relocs. */
11026 irelamid = irela;
11027 if (esdi->rel.hdr != NULL)
11028 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11029 * bed->s->int_rels_per_ext_rel);
11030 rel_hash_list = rel_hash;
11031 rela_hash_list = NULL;
11032 last_offset = o->output_offset;
11033 if (!bfd_link_relocatable (flinfo->info))
11034 last_offset += o->output_section->vma;
11035 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11036 {
11037 unsigned long r_symndx;
11038 asection *sec;
11039 Elf_Internal_Sym sym;
11040
11041 if (next_erel == bed->s->int_rels_per_ext_rel)
11042 {
11043 rel_hash++;
11044 next_erel = 0;
11045 }
11046
11047 if (irela == irelamid)
11048 {
11049 rel_hash = esdo->rela.hashes + esdo->rela.count;
11050 rela_hash_list = rel_hash;
11051 rela_normal = bed->rela_normal;
11052 }
11053
11054 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11055 flinfo->info, o,
11056 irela->r_offset);
11057 if (irela->r_offset >= (bfd_vma) -2)
11058 {
11059 /* This is a reloc for a deleted entry or somesuch.
11060 Turn it into an R_*_NONE reloc, at the same
11061 offset as the last reloc. elf_eh_frame.c and
11062 bfd_elf_discard_info rely on reloc offsets
11063 being ordered. */
11064 irela->r_offset = last_offset;
11065 irela->r_info = 0;
11066 irela->r_addend = 0;
11067 continue;
11068 }
11069
11070 irela->r_offset += o->output_offset;
11071
11072 /* Relocs in an executable have to be virtual addresses. */
11073 if (!bfd_link_relocatable (flinfo->info))
11074 irela->r_offset += o->output_section->vma;
11075
11076 last_offset = irela->r_offset;
11077
11078 r_symndx = irela->r_info >> r_sym_shift;
11079 if (r_symndx == STN_UNDEF)
11080 continue;
11081
11082 if (r_symndx >= locsymcount
11083 || (elf_bad_symtab (input_bfd)
11084 && flinfo->sections[r_symndx] == NULL))
11085 {
11086 struct elf_link_hash_entry *rh;
11087 unsigned long indx;
11088
11089 /* This is a reloc against a global symbol. We
11090 have not yet output all the local symbols, so
11091 we do not know the symbol index of any global
11092 symbol. We set the rel_hash entry for this
11093 reloc to point to the global hash table entry
11094 for this symbol. The symbol index is then
11095 set at the end of bfd_elf_final_link. */
11096 indx = r_symndx - extsymoff;
11097 rh = elf_sym_hashes (input_bfd)[indx];
11098 while (rh->root.type == bfd_link_hash_indirect
11099 || rh->root.type == bfd_link_hash_warning)
11100 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11101
11102 /* Setting the index to -2 tells
11103 elf_link_output_extsym that this symbol is
11104 used by a reloc. */
11105 BFD_ASSERT (rh->indx < 0);
11106 rh->indx = -2;
11107 *rel_hash = rh;
11108
11109 continue;
11110 }
11111
11112 /* This is a reloc against a local symbol. */
11113
11114 *rel_hash = NULL;
11115 sym = isymbuf[r_symndx];
11116 sec = flinfo->sections[r_symndx];
11117 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11118 {
11119 /* I suppose the backend ought to fill in the
11120 section of any STT_SECTION symbol against a
11121 processor specific section. */
11122 r_symndx = STN_UNDEF;
11123 if (bfd_is_abs_section (sec))
11124 ;
11125 else if (sec == NULL || sec->owner == NULL)
11126 {
11127 bfd_set_error (bfd_error_bad_value);
11128 return FALSE;
11129 }
11130 else
11131 {
11132 asection *osec = sec->output_section;
11133
11134 /* If we have discarded a section, the output
11135 section will be the absolute section. In
11136 case of discarded SEC_MERGE sections, use
11137 the kept section. relocate_section should
11138 have already handled discarded linkonce
11139 sections. */
11140 if (bfd_is_abs_section (osec)
11141 && sec->kept_section != NULL
11142 && sec->kept_section->output_section != NULL)
11143 {
11144 osec = sec->kept_section->output_section;
11145 irela->r_addend -= osec->vma;
11146 }
11147
11148 if (!bfd_is_abs_section (osec))
11149 {
11150 r_symndx = osec->target_index;
11151 if (r_symndx == STN_UNDEF)
11152 {
11153 irela->r_addend += osec->vma;
11154 osec = _bfd_nearby_section (output_bfd, osec,
11155 osec->vma);
11156 irela->r_addend -= osec->vma;
11157 r_symndx = osec->target_index;
11158 }
11159 }
11160 }
11161
11162 /* Adjust the addend according to where the
11163 section winds up in the output section. */
11164 if (rela_normal)
11165 irela->r_addend += sec->output_offset;
11166 }
11167 else
11168 {
11169 if (flinfo->indices[r_symndx] == -1)
11170 {
11171 unsigned long shlink;
11172 const char *name;
11173 asection *osec;
11174 long indx;
11175
11176 if (flinfo->info->strip == strip_all)
11177 {
11178 /* You can't do ld -r -s. */
11179 bfd_set_error (bfd_error_invalid_operation);
11180 return FALSE;
11181 }
11182
11183 /* This symbol was skipped earlier, but
11184 since it is needed by a reloc, we
11185 must output it now. */
11186 shlink = symtab_hdr->sh_link;
11187 name = (bfd_elf_string_from_elf_section
11188 (input_bfd, shlink, sym.st_name));
11189 if (name == NULL)
11190 return FALSE;
11191
11192 osec = sec->output_section;
11193 sym.st_shndx =
11194 _bfd_elf_section_from_bfd_section (output_bfd,
11195 osec);
11196 if (sym.st_shndx == SHN_BAD)
11197 return FALSE;
11198
11199 sym.st_value += sec->output_offset;
11200 if (!bfd_link_relocatable (flinfo->info))
11201 {
11202 sym.st_value += osec->vma;
11203 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11204 {
11205 struct elf_link_hash_table *htab
11206 = elf_hash_table (flinfo->info);
11207
11208 /* STT_TLS symbols are relative to PT_TLS
11209 segment base. */
11210 if (htab->tls_sec != NULL)
11211 sym.st_value -= htab->tls_sec->vma;
11212 else
11213 sym.st_info
11214 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11215 STT_NOTYPE);
11216 }
11217 }
11218
11219 indx = bfd_get_symcount (output_bfd);
11220 ret = elf_link_output_symstrtab (flinfo, name,
11221 &sym, sec,
11222 NULL);
11223 if (ret == 0)
11224 return FALSE;
11225 else if (ret == 1)
11226 flinfo->indices[r_symndx] = indx;
11227 else
11228 abort ();
11229 }
11230
11231 r_symndx = flinfo->indices[r_symndx];
11232 }
11233
11234 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11235 | (irela->r_info & r_type_mask));
11236 }
11237
11238 /* Swap out the relocs. */
11239 input_rel_hdr = esdi->rel.hdr;
11240 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11241 {
11242 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11243 input_rel_hdr,
11244 internal_relocs,
11245 rel_hash_list))
11246 return FALSE;
11247 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11248 * bed->s->int_rels_per_ext_rel);
11249 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11250 }
11251
11252 input_rela_hdr = esdi->rela.hdr;
11253 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11254 {
11255 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11256 input_rela_hdr,
11257 internal_relocs,
11258 rela_hash_list))
11259 return FALSE;
11260 }
11261 }
11262 }
11263
11264 /* Write out the modified section contents. */
11265 if (bed->elf_backend_write_section
11266 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11267 contents))
11268 {
11269 /* Section written out. */
11270 }
11271 else switch (o->sec_info_type)
11272 {
11273 case SEC_INFO_TYPE_STABS:
11274 if (! (_bfd_write_section_stabs
11275 (output_bfd,
11276 &elf_hash_table (flinfo->info)->stab_info,
11277 o, &elf_section_data (o)->sec_info, contents)))
11278 return FALSE;
11279 break;
11280 case SEC_INFO_TYPE_MERGE:
11281 if (! _bfd_write_merged_section (output_bfd, o,
11282 elf_section_data (o)->sec_info))
11283 return FALSE;
11284 break;
11285 case SEC_INFO_TYPE_EH_FRAME:
11286 {
11287 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11288 o, contents))
11289 return FALSE;
11290 }
11291 break;
11292 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11293 {
11294 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11295 flinfo->info,
11296 o, contents))
11297 return FALSE;
11298 }
11299 break;
11300 default:
11301 {
11302 if (! (o->flags & SEC_EXCLUDE))
11303 {
11304 file_ptr offset = (file_ptr) o->output_offset;
11305 bfd_size_type todo = o->size;
11306
11307 offset *= bfd_octets_per_byte (output_bfd, o);
11308
11309 if ((o->flags & SEC_ELF_REVERSE_COPY))
11310 {
11311 /* Reverse-copy input section to output. */
11312 do
11313 {
11314 todo -= address_size;
11315 if (! bfd_set_section_contents (output_bfd,
11316 o->output_section,
11317 contents + todo,
11318 offset,
11319 address_size))
11320 return FALSE;
11321 if (todo == 0)
11322 break;
11323 offset += address_size;
11324 }
11325 while (1);
11326 }
11327 else if (! bfd_set_section_contents (output_bfd,
11328 o->output_section,
11329 contents,
11330 offset, todo))
11331 return FALSE;
11332 }
11333 }
11334 break;
11335 }
11336 }
11337
11338 return TRUE;
11339 }
11340
11341 /* Generate a reloc when linking an ELF file. This is a reloc
11342 requested by the linker, and does not come from any input file. This
11343 is used to build constructor and destructor tables when linking
11344 with -Ur. */
11345
11346 static bfd_boolean
11347 elf_reloc_link_order (bfd *output_bfd,
11348 struct bfd_link_info *info,
11349 asection *output_section,
11350 struct bfd_link_order *link_order)
11351 {
11352 reloc_howto_type *howto;
11353 long indx;
11354 bfd_vma offset;
11355 bfd_vma addend;
11356 struct bfd_elf_section_reloc_data *reldata;
11357 struct elf_link_hash_entry **rel_hash_ptr;
11358 Elf_Internal_Shdr *rel_hdr;
11359 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11360 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11361 bfd_byte *erel;
11362 unsigned int i;
11363 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11364
11365 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11366 if (howto == NULL)
11367 {
11368 bfd_set_error (bfd_error_bad_value);
11369 return FALSE;
11370 }
11371
11372 addend = link_order->u.reloc.p->addend;
11373
11374 if (esdo->rel.hdr)
11375 reldata = &esdo->rel;
11376 else if (esdo->rela.hdr)
11377 reldata = &esdo->rela;
11378 else
11379 {
11380 reldata = NULL;
11381 BFD_ASSERT (0);
11382 }
11383
11384 /* Figure out the symbol index. */
11385 rel_hash_ptr = reldata->hashes + reldata->count;
11386 if (link_order->type == bfd_section_reloc_link_order)
11387 {
11388 indx = link_order->u.reloc.p->u.section->target_index;
11389 BFD_ASSERT (indx != 0);
11390 *rel_hash_ptr = NULL;
11391 }
11392 else
11393 {
11394 struct elf_link_hash_entry *h;
11395
11396 /* Treat a reloc against a defined symbol as though it were
11397 actually against the section. */
11398 h = ((struct elf_link_hash_entry *)
11399 bfd_wrapped_link_hash_lookup (output_bfd, info,
11400 link_order->u.reloc.p->u.name,
11401 FALSE, FALSE, TRUE));
11402 if (h != NULL
11403 && (h->root.type == bfd_link_hash_defined
11404 || h->root.type == bfd_link_hash_defweak))
11405 {
11406 asection *section;
11407
11408 section = h->root.u.def.section;
11409 indx = section->output_section->target_index;
11410 *rel_hash_ptr = NULL;
11411 /* It seems that we ought to add the symbol value to the
11412 addend here, but in practice it has already been added
11413 because it was passed to constructor_callback. */
11414 addend += section->output_section->vma + section->output_offset;
11415 }
11416 else if (h != NULL)
11417 {
11418 /* Setting the index to -2 tells elf_link_output_extsym that
11419 this symbol is used by a reloc. */
11420 h->indx = -2;
11421 *rel_hash_ptr = h;
11422 indx = 0;
11423 }
11424 else
11425 {
11426 (*info->callbacks->unattached_reloc)
11427 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11428 indx = 0;
11429 }
11430 }
11431
11432 /* If this is an inplace reloc, we must write the addend into the
11433 object file. */
11434 if (howto->partial_inplace && addend != 0)
11435 {
11436 bfd_size_type size;
11437 bfd_reloc_status_type rstat;
11438 bfd_byte *buf;
11439 bfd_boolean ok;
11440 const char *sym_name;
11441 bfd_size_type octets;
11442
11443 size = (bfd_size_type) bfd_get_reloc_size (howto);
11444 buf = (bfd_byte *) bfd_zmalloc (size);
11445 if (buf == NULL && size != 0)
11446 return FALSE;
11447 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11448 switch (rstat)
11449 {
11450 case bfd_reloc_ok:
11451 break;
11452
11453 default:
11454 case bfd_reloc_outofrange:
11455 abort ();
11456
11457 case bfd_reloc_overflow:
11458 if (link_order->type == bfd_section_reloc_link_order)
11459 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11460 else
11461 sym_name = link_order->u.reloc.p->u.name;
11462 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11463 howto->name, addend, NULL, NULL,
11464 (bfd_vma) 0);
11465 break;
11466 }
11467
11468 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11469 output_section);
11470 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11471 octets, size);
11472 free (buf);
11473 if (! ok)
11474 return FALSE;
11475 }
11476
11477 /* The address of a reloc is relative to the section in a
11478 relocatable file, and is a virtual address in an executable
11479 file. */
11480 offset = link_order->offset;
11481 if (! bfd_link_relocatable (info))
11482 offset += output_section->vma;
11483
11484 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11485 {
11486 irel[i].r_offset = offset;
11487 irel[i].r_info = 0;
11488 irel[i].r_addend = 0;
11489 }
11490 if (bed->s->arch_size == 32)
11491 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11492 else
11493 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11494
11495 rel_hdr = reldata->hdr;
11496 erel = rel_hdr->contents;
11497 if (rel_hdr->sh_type == SHT_REL)
11498 {
11499 erel += reldata->count * bed->s->sizeof_rel;
11500 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11501 }
11502 else
11503 {
11504 irel[0].r_addend = addend;
11505 erel += reldata->count * bed->s->sizeof_rela;
11506 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11507 }
11508
11509 ++reldata->count;
11510
11511 return TRUE;
11512 }
11513
11514
11515 /* Compare two sections based on the locations of the sections they are
11516 linked to. Used by elf_fixup_link_order. */
11517
11518 static int
11519 compare_link_order (const void *a, const void *b)
11520 {
11521 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11522 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11523 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11524 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11525 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11526 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11527
11528 if (apos < bpos)
11529 return -1;
11530 if (apos > bpos)
11531 return 1;
11532
11533 /* The only way we should get matching LMAs is when the first of two
11534 sections has zero size. */
11535 if (asec->size < bsec->size)
11536 return -1;
11537 if (asec->size > bsec->size)
11538 return 1;
11539
11540 /* If they are both zero size then they almost certainly have the same
11541 VMA and thus are not ordered with respect to each other. Test VMA
11542 anyway, and fall back to id to make the result reproducible across
11543 qsort implementations. */
11544 apos = asec->output_section->vma + asec->output_offset;
11545 bpos = bsec->output_section->vma + bsec->output_offset;
11546 if (apos < bpos)
11547 return -1;
11548 if (apos > bpos)
11549 return 1;
11550
11551 return asec->id - bsec->id;
11552 }
11553
11554
11555 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11556 order as their linked sections. Returns false if this could not be done
11557 because an output section includes both ordered and unordered
11558 sections. Ideally we'd do this in the linker proper. */
11559
11560 static bfd_boolean
11561 elf_fixup_link_order (bfd *abfd, asection *o)
11562 {
11563 size_t seen_linkorder;
11564 size_t seen_other;
11565 size_t n;
11566 struct bfd_link_order *p;
11567 bfd *sub;
11568 struct bfd_link_order **sections;
11569 asection *s, *other_sec, *linkorder_sec;
11570 bfd_vma offset;
11571
11572 other_sec = NULL;
11573 linkorder_sec = NULL;
11574 seen_other = 0;
11575 seen_linkorder = 0;
11576 for (p = o->map_head.link_order; p != NULL; p = p->next)
11577 {
11578 if (p->type == bfd_indirect_link_order)
11579 {
11580 s = p->u.indirect.section;
11581 sub = s->owner;
11582 if ((s->flags & SEC_LINKER_CREATED) == 0
11583 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11584 && elf_section_data (s) != NULL
11585 && elf_linked_to_section (s) != NULL)
11586 {
11587 seen_linkorder++;
11588 linkorder_sec = s;
11589 }
11590 else
11591 {
11592 seen_other++;
11593 other_sec = s;
11594 }
11595 }
11596 else
11597 seen_other++;
11598
11599 if (seen_other && seen_linkorder)
11600 {
11601 if (other_sec && linkorder_sec)
11602 _bfd_error_handler
11603 /* xgettext:c-format */
11604 (_("%pA has both ordered [`%pA' in %pB] "
11605 "and unordered [`%pA' in %pB] sections"),
11606 o, linkorder_sec, linkorder_sec->owner,
11607 other_sec, other_sec->owner);
11608 else
11609 _bfd_error_handler
11610 (_("%pA has both ordered and unordered sections"), o);
11611 bfd_set_error (bfd_error_bad_value);
11612 return FALSE;
11613 }
11614 }
11615
11616 if (!seen_linkorder)
11617 return TRUE;
11618
11619 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11620 if (sections == NULL)
11621 return FALSE;
11622
11623 seen_linkorder = 0;
11624 for (p = o->map_head.link_order; p != NULL; p = p->next)
11625 sections[seen_linkorder++] = p;
11626
11627 /* Sort the input sections in the order of their linked section. */
11628 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11629
11630 /* Change the offsets of the sections. */
11631 offset = 0;
11632 for (n = 0; n < seen_linkorder; n++)
11633 {
11634 bfd_vma mask;
11635 s = sections[n]->u.indirect.section;
11636 mask = ~(bfd_vma) 0 << s->alignment_power;
11637 offset = (offset + ~mask) & mask;
11638 s->output_offset = offset / bfd_octets_per_byte (abfd, s);
11639 sections[n]->offset = offset;
11640 offset += sections[n]->size;
11641 }
11642
11643 free (sections);
11644 return TRUE;
11645 }
11646
11647 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11648 Returns TRUE upon success, FALSE otherwise. */
11649
11650 static bfd_boolean
11651 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11652 {
11653 bfd_boolean ret = FALSE;
11654 bfd *implib_bfd;
11655 const struct elf_backend_data *bed;
11656 flagword flags;
11657 enum bfd_architecture arch;
11658 unsigned int mach;
11659 asymbol **sympp = NULL;
11660 long symsize;
11661 long symcount;
11662 long src_count;
11663 elf_symbol_type *osymbuf;
11664 size_t amt;
11665
11666 implib_bfd = info->out_implib_bfd;
11667 bed = get_elf_backend_data (abfd);
11668
11669 if (!bfd_set_format (implib_bfd, bfd_object))
11670 return FALSE;
11671
11672 /* Use flag from executable but make it a relocatable object. */
11673 flags = bfd_get_file_flags (abfd);
11674 flags &= ~HAS_RELOC;
11675 if (!bfd_set_start_address (implib_bfd, 0)
11676 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11677 return FALSE;
11678
11679 /* Copy architecture of output file to import library file. */
11680 arch = bfd_get_arch (abfd);
11681 mach = bfd_get_mach (abfd);
11682 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11683 && (abfd->target_defaulted
11684 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11685 return FALSE;
11686
11687 /* Get symbol table size. */
11688 symsize = bfd_get_symtab_upper_bound (abfd);
11689 if (symsize < 0)
11690 return FALSE;
11691
11692 /* Read in the symbol table. */
11693 sympp = (asymbol **) bfd_malloc (symsize);
11694 if (sympp == NULL)
11695 return FALSE;
11696
11697 symcount = bfd_canonicalize_symtab (abfd, sympp);
11698 if (symcount < 0)
11699 goto free_sym_buf;
11700
11701 /* Allow the BFD backend to copy any private header data it
11702 understands from the output BFD to the import library BFD. */
11703 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11704 goto free_sym_buf;
11705
11706 /* Filter symbols to appear in the import library. */
11707 if (bed->elf_backend_filter_implib_symbols)
11708 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11709 symcount);
11710 else
11711 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11712 if (symcount == 0)
11713 {
11714 bfd_set_error (bfd_error_no_symbols);
11715 _bfd_error_handler (_("%pB: no symbol found for import library"),
11716 implib_bfd);
11717 goto free_sym_buf;
11718 }
11719
11720
11721 /* Make symbols absolute. */
11722 amt = symcount * sizeof (*osymbuf);
11723 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11724 if (osymbuf == NULL)
11725 goto free_sym_buf;
11726
11727 for (src_count = 0; src_count < symcount; src_count++)
11728 {
11729 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11730 sizeof (*osymbuf));
11731 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11732 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11733 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11734 osymbuf[src_count].internal_elf_sym.st_value =
11735 osymbuf[src_count].symbol.value;
11736 sympp[src_count] = &osymbuf[src_count].symbol;
11737 }
11738
11739 bfd_set_symtab (implib_bfd, sympp, symcount);
11740
11741 /* Allow the BFD backend to copy any private data it understands
11742 from the output BFD to the import library BFD. This is done last
11743 to permit the routine to look at the filtered symbol table. */
11744 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11745 goto free_sym_buf;
11746
11747 if (!bfd_close (implib_bfd))
11748 goto free_sym_buf;
11749
11750 ret = TRUE;
11751
11752 free_sym_buf:
11753 free (sympp);
11754 return ret;
11755 }
11756
11757 static void
11758 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11759 {
11760 asection *o;
11761
11762 if (flinfo->symstrtab != NULL)
11763 _bfd_elf_strtab_free (flinfo->symstrtab);
11764 if (flinfo->contents != NULL)
11765 free (flinfo->contents);
11766 if (flinfo->external_relocs != NULL)
11767 free (flinfo->external_relocs);
11768 if (flinfo->internal_relocs != NULL)
11769 free (flinfo->internal_relocs);
11770 if (flinfo->external_syms != NULL)
11771 free (flinfo->external_syms);
11772 if (flinfo->locsym_shndx != NULL)
11773 free (flinfo->locsym_shndx);
11774 if (flinfo->internal_syms != NULL)
11775 free (flinfo->internal_syms);
11776 if (flinfo->indices != NULL)
11777 free (flinfo->indices);
11778 if (flinfo->sections != NULL)
11779 free (flinfo->sections);
11780 if (flinfo->symshndxbuf != NULL
11781 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11782 free (flinfo->symshndxbuf);
11783 for (o = obfd->sections; o != NULL; o = o->next)
11784 {
11785 struct bfd_elf_section_data *esdo = elf_section_data (o);
11786 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11787 free (esdo->rel.hashes);
11788 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11789 free (esdo->rela.hashes);
11790 }
11791 }
11792
11793 /* Do the final step of an ELF link. */
11794
11795 bfd_boolean
11796 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11797 {
11798 bfd_boolean dynamic;
11799 bfd_boolean emit_relocs;
11800 bfd *dynobj;
11801 struct elf_final_link_info flinfo;
11802 asection *o;
11803 struct bfd_link_order *p;
11804 bfd *sub;
11805 bfd_size_type max_contents_size;
11806 bfd_size_type max_external_reloc_size;
11807 bfd_size_type max_internal_reloc_count;
11808 bfd_size_type max_sym_count;
11809 bfd_size_type max_sym_shndx_count;
11810 Elf_Internal_Sym elfsym;
11811 unsigned int i;
11812 Elf_Internal_Shdr *symtab_hdr;
11813 Elf_Internal_Shdr *symtab_shndx_hdr;
11814 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11815 struct elf_outext_info eoinfo;
11816 bfd_boolean merged;
11817 size_t relativecount = 0;
11818 asection *reldyn = 0;
11819 bfd_size_type amt;
11820 asection *attr_section = NULL;
11821 bfd_vma attr_size = 0;
11822 const char *std_attrs_section;
11823 struct elf_link_hash_table *htab = elf_hash_table (info);
11824 bfd_boolean sections_removed;
11825
11826 if (!is_elf_hash_table (htab))
11827 return FALSE;
11828
11829 if (bfd_link_pic (info))
11830 abfd->flags |= DYNAMIC;
11831
11832 dynamic = htab->dynamic_sections_created;
11833 dynobj = htab->dynobj;
11834
11835 emit_relocs = (bfd_link_relocatable (info)
11836 || info->emitrelocations);
11837
11838 flinfo.info = info;
11839 flinfo.output_bfd = abfd;
11840 flinfo.symstrtab = _bfd_elf_strtab_init ();
11841 if (flinfo.symstrtab == NULL)
11842 return FALSE;
11843
11844 if (! dynamic)
11845 {
11846 flinfo.hash_sec = NULL;
11847 flinfo.symver_sec = NULL;
11848 }
11849 else
11850 {
11851 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11852 /* Note that dynsym_sec can be NULL (on VMS). */
11853 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11854 /* Note that it is OK if symver_sec is NULL. */
11855 }
11856
11857 flinfo.contents = NULL;
11858 flinfo.external_relocs = NULL;
11859 flinfo.internal_relocs = NULL;
11860 flinfo.external_syms = NULL;
11861 flinfo.locsym_shndx = NULL;
11862 flinfo.internal_syms = NULL;
11863 flinfo.indices = NULL;
11864 flinfo.sections = NULL;
11865 flinfo.symshndxbuf = NULL;
11866 flinfo.filesym_count = 0;
11867
11868 /* The object attributes have been merged. Remove the input
11869 sections from the link, and set the contents of the output
11870 section. */
11871 sections_removed = FALSE;
11872 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11873 for (o = abfd->sections; o != NULL; o = o->next)
11874 {
11875 bfd_boolean remove_section = FALSE;
11876
11877 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11878 || strcmp (o->name, ".gnu.attributes") == 0)
11879 {
11880 for (p = o->map_head.link_order; p != NULL; p = p->next)
11881 {
11882 asection *input_section;
11883
11884 if (p->type != bfd_indirect_link_order)
11885 continue;
11886 input_section = p->u.indirect.section;
11887 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11888 elf_link_input_bfd ignores this section. */
11889 input_section->flags &= ~SEC_HAS_CONTENTS;
11890 }
11891
11892 attr_size = bfd_elf_obj_attr_size (abfd);
11893 bfd_set_section_size (o, attr_size);
11894 /* Skip this section later on. */
11895 o->map_head.link_order = NULL;
11896 if (attr_size)
11897 attr_section = o;
11898 else
11899 remove_section = TRUE;
11900 }
11901 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11902 {
11903 /* Remove empty group section from linker output. */
11904 remove_section = TRUE;
11905 }
11906 if (remove_section)
11907 {
11908 o->flags |= SEC_EXCLUDE;
11909 bfd_section_list_remove (abfd, o);
11910 abfd->section_count--;
11911 sections_removed = TRUE;
11912 }
11913 }
11914 if (sections_removed)
11915 _bfd_fix_excluded_sec_syms (abfd, info);
11916
11917 /* Count up the number of relocations we will output for each output
11918 section, so that we know the sizes of the reloc sections. We
11919 also figure out some maximum sizes. */
11920 max_contents_size = 0;
11921 max_external_reloc_size = 0;
11922 max_internal_reloc_count = 0;
11923 max_sym_count = 0;
11924 max_sym_shndx_count = 0;
11925 merged = FALSE;
11926 for (o = abfd->sections; o != NULL; o = o->next)
11927 {
11928 struct bfd_elf_section_data *esdo = elf_section_data (o);
11929 o->reloc_count = 0;
11930
11931 for (p = o->map_head.link_order; p != NULL; p = p->next)
11932 {
11933 unsigned int reloc_count = 0;
11934 unsigned int additional_reloc_count = 0;
11935 struct bfd_elf_section_data *esdi = NULL;
11936
11937 if (p->type == bfd_section_reloc_link_order
11938 || p->type == bfd_symbol_reloc_link_order)
11939 reloc_count = 1;
11940 else if (p->type == bfd_indirect_link_order)
11941 {
11942 asection *sec;
11943
11944 sec = p->u.indirect.section;
11945
11946 /* Mark all sections which are to be included in the
11947 link. This will normally be every section. We need
11948 to do this so that we can identify any sections which
11949 the linker has decided to not include. */
11950 sec->linker_mark = TRUE;
11951
11952 if (sec->flags & SEC_MERGE)
11953 merged = TRUE;
11954
11955 if (sec->rawsize > max_contents_size)
11956 max_contents_size = sec->rawsize;
11957 if (sec->size > max_contents_size)
11958 max_contents_size = sec->size;
11959
11960 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11961 && (sec->owner->flags & DYNAMIC) == 0)
11962 {
11963 size_t sym_count;
11964
11965 /* We are interested in just local symbols, not all
11966 symbols. */
11967 if (elf_bad_symtab (sec->owner))
11968 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11969 / bed->s->sizeof_sym);
11970 else
11971 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11972
11973 if (sym_count > max_sym_count)
11974 max_sym_count = sym_count;
11975
11976 if (sym_count > max_sym_shndx_count
11977 && elf_symtab_shndx_list (sec->owner) != NULL)
11978 max_sym_shndx_count = sym_count;
11979
11980 if (esdo->this_hdr.sh_type == SHT_REL
11981 || esdo->this_hdr.sh_type == SHT_RELA)
11982 /* Some backends use reloc_count in relocation sections
11983 to count particular types of relocs. Of course,
11984 reloc sections themselves can't have relocations. */
11985 ;
11986 else if (emit_relocs)
11987 {
11988 reloc_count = sec->reloc_count;
11989 if (bed->elf_backend_count_additional_relocs)
11990 {
11991 int c;
11992 c = (*bed->elf_backend_count_additional_relocs) (sec);
11993 additional_reloc_count += c;
11994 }
11995 }
11996 else if (bed->elf_backend_count_relocs)
11997 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11998
11999 esdi = elf_section_data (sec);
12000
12001 if ((sec->flags & SEC_RELOC) != 0)
12002 {
12003 size_t ext_size = 0;
12004
12005 if (esdi->rel.hdr != NULL)
12006 ext_size = esdi->rel.hdr->sh_size;
12007 if (esdi->rela.hdr != NULL)
12008 ext_size += esdi->rela.hdr->sh_size;
12009
12010 if (ext_size > max_external_reloc_size)
12011 max_external_reloc_size = ext_size;
12012 if (sec->reloc_count > max_internal_reloc_count)
12013 max_internal_reloc_count = sec->reloc_count;
12014 }
12015 }
12016 }
12017
12018 if (reloc_count == 0)
12019 continue;
12020
12021 reloc_count += additional_reloc_count;
12022 o->reloc_count += reloc_count;
12023
12024 if (p->type == bfd_indirect_link_order && emit_relocs)
12025 {
12026 if (esdi->rel.hdr)
12027 {
12028 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12029 esdo->rel.count += additional_reloc_count;
12030 }
12031 if (esdi->rela.hdr)
12032 {
12033 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12034 esdo->rela.count += additional_reloc_count;
12035 }
12036 }
12037 else
12038 {
12039 if (o->use_rela_p)
12040 esdo->rela.count += reloc_count;
12041 else
12042 esdo->rel.count += reloc_count;
12043 }
12044 }
12045
12046 if (o->reloc_count > 0)
12047 o->flags |= SEC_RELOC;
12048 else
12049 {
12050 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12051 set it (this is probably a bug) and if it is set
12052 assign_section_numbers will create a reloc section. */
12053 o->flags &=~ SEC_RELOC;
12054 }
12055
12056 /* If the SEC_ALLOC flag is not set, force the section VMA to
12057 zero. This is done in elf_fake_sections as well, but forcing
12058 the VMA to 0 here will ensure that relocs against these
12059 sections are handled correctly. */
12060 if ((o->flags & SEC_ALLOC) == 0
12061 && ! o->user_set_vma)
12062 o->vma = 0;
12063 }
12064
12065 if (! bfd_link_relocatable (info) && merged)
12066 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12067
12068 /* Figure out the file positions for everything but the symbol table
12069 and the relocs. We set symcount to force assign_section_numbers
12070 to create a symbol table. */
12071 abfd->symcount = info->strip != strip_all || emit_relocs;
12072 BFD_ASSERT (! abfd->output_has_begun);
12073 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12074 goto error_return;
12075
12076 /* Set sizes, and assign file positions for reloc sections. */
12077 for (o = abfd->sections; o != NULL; o = o->next)
12078 {
12079 struct bfd_elf_section_data *esdo = elf_section_data (o);
12080 if ((o->flags & SEC_RELOC) != 0)
12081 {
12082 if (esdo->rel.hdr
12083 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12084 goto error_return;
12085
12086 if (esdo->rela.hdr
12087 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12088 goto error_return;
12089 }
12090
12091 /* _bfd_elf_compute_section_file_positions makes temporary use
12092 of target_index. Reset it. */
12093 o->target_index = 0;
12094
12095 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12096 to count upwards while actually outputting the relocations. */
12097 esdo->rel.count = 0;
12098 esdo->rela.count = 0;
12099
12100 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12101 && !bfd_section_is_ctf (o))
12102 {
12103 /* Cache the section contents so that they can be compressed
12104 later. Use bfd_malloc since it will be freed by
12105 bfd_compress_section_contents. */
12106 unsigned char *contents = esdo->this_hdr.contents;
12107 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12108 abort ();
12109 contents
12110 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12111 if (contents == NULL)
12112 goto error_return;
12113 esdo->this_hdr.contents = contents;
12114 }
12115 }
12116
12117 /* We have now assigned file positions for all the sections except .symtab,
12118 .strtab, and non-loaded reloc and compressed debugging sections. We start
12119 the .symtab section at the current file position, and write directly to it.
12120 We build the .strtab section in memory. */
12121 abfd->symcount = 0;
12122 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12123 /* sh_name is set in prep_headers. */
12124 symtab_hdr->sh_type = SHT_SYMTAB;
12125 /* sh_flags, sh_addr and sh_size all start off zero. */
12126 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12127 /* sh_link is set in assign_section_numbers. */
12128 /* sh_info is set below. */
12129 /* sh_offset is set just below. */
12130 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12131
12132 if (max_sym_count < 20)
12133 max_sym_count = 20;
12134 htab->strtabsize = max_sym_count;
12135 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12136 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12137 if (htab->strtab == NULL)
12138 goto error_return;
12139 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12140 flinfo.symshndxbuf
12141 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12142 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12143
12144 if (info->strip != strip_all || emit_relocs)
12145 {
12146 file_ptr off = elf_next_file_pos (abfd);
12147
12148 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12149
12150 /* Note that at this point elf_next_file_pos (abfd) is
12151 incorrect. We do not yet know the size of the .symtab section.
12152 We correct next_file_pos below, after we do know the size. */
12153
12154 /* Start writing out the symbol table. The first symbol is always a
12155 dummy symbol. */
12156 elfsym.st_value = 0;
12157 elfsym.st_size = 0;
12158 elfsym.st_info = 0;
12159 elfsym.st_other = 0;
12160 elfsym.st_shndx = SHN_UNDEF;
12161 elfsym.st_target_internal = 0;
12162 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12163 bfd_und_section_ptr, NULL) != 1)
12164 goto error_return;
12165
12166 /* Output a symbol for each section. We output these even if we are
12167 discarding local symbols, since they are used for relocs. These
12168 symbols have no names. We store the index of each one in the
12169 index field of the section, so that we can find it again when
12170 outputting relocs. */
12171
12172 elfsym.st_size = 0;
12173 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12174 elfsym.st_other = 0;
12175 elfsym.st_value = 0;
12176 elfsym.st_target_internal = 0;
12177 for (i = 1; i < elf_numsections (abfd); i++)
12178 {
12179 o = bfd_section_from_elf_index (abfd, i);
12180 if (o != NULL)
12181 {
12182 o->target_index = bfd_get_symcount (abfd);
12183 elfsym.st_shndx = i;
12184 if (!bfd_link_relocatable (info))
12185 elfsym.st_value = o->vma;
12186 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12187 NULL) != 1)
12188 goto error_return;
12189 }
12190 }
12191 }
12192
12193 /* Allocate some memory to hold information read in from the input
12194 files. */
12195 if (max_contents_size != 0)
12196 {
12197 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12198 if (flinfo.contents == NULL)
12199 goto error_return;
12200 }
12201
12202 if (max_external_reloc_size != 0)
12203 {
12204 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12205 if (flinfo.external_relocs == NULL)
12206 goto error_return;
12207 }
12208
12209 if (max_internal_reloc_count != 0)
12210 {
12211 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12212 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12213 if (flinfo.internal_relocs == NULL)
12214 goto error_return;
12215 }
12216
12217 if (max_sym_count != 0)
12218 {
12219 amt = max_sym_count * bed->s->sizeof_sym;
12220 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12221 if (flinfo.external_syms == NULL)
12222 goto error_return;
12223
12224 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12225 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12226 if (flinfo.internal_syms == NULL)
12227 goto error_return;
12228
12229 amt = max_sym_count * sizeof (long);
12230 flinfo.indices = (long int *) bfd_malloc (amt);
12231 if (flinfo.indices == NULL)
12232 goto error_return;
12233
12234 amt = max_sym_count * sizeof (asection *);
12235 flinfo.sections = (asection **) bfd_malloc (amt);
12236 if (flinfo.sections == NULL)
12237 goto error_return;
12238 }
12239
12240 if (max_sym_shndx_count != 0)
12241 {
12242 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12243 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12244 if (flinfo.locsym_shndx == NULL)
12245 goto error_return;
12246 }
12247
12248 if (htab->tls_sec)
12249 {
12250 bfd_vma base, end = 0;
12251 asection *sec;
12252
12253 for (sec = htab->tls_sec;
12254 sec && (sec->flags & SEC_THREAD_LOCAL);
12255 sec = sec->next)
12256 {
12257 bfd_size_type size = sec->size;
12258
12259 if (size == 0
12260 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12261 {
12262 struct bfd_link_order *ord = sec->map_tail.link_order;
12263
12264 if (ord != NULL)
12265 size = ord->offset + ord->size;
12266 }
12267 end = sec->vma + size;
12268 }
12269 base = htab->tls_sec->vma;
12270 /* Only align end of TLS section if static TLS doesn't have special
12271 alignment requirements. */
12272 if (bed->static_tls_alignment == 1)
12273 end = align_power (end, htab->tls_sec->alignment_power);
12274 htab->tls_size = end - base;
12275 }
12276
12277 /* Reorder SHF_LINK_ORDER sections. */
12278 for (o = abfd->sections; o != NULL; o = o->next)
12279 {
12280 if (!elf_fixup_link_order (abfd, o))
12281 return FALSE;
12282 }
12283
12284 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12285 return FALSE;
12286
12287 /* Since ELF permits relocations to be against local symbols, we
12288 must have the local symbols available when we do the relocations.
12289 Since we would rather only read the local symbols once, and we
12290 would rather not keep them in memory, we handle all the
12291 relocations for a single input file at the same time.
12292
12293 Unfortunately, there is no way to know the total number of local
12294 symbols until we have seen all of them, and the local symbol
12295 indices precede the global symbol indices. This means that when
12296 we are generating relocatable output, and we see a reloc against
12297 a global symbol, we can not know the symbol index until we have
12298 finished examining all the local symbols to see which ones we are
12299 going to output. To deal with this, we keep the relocations in
12300 memory, and don't output them until the end of the link. This is
12301 an unfortunate waste of memory, but I don't see a good way around
12302 it. Fortunately, it only happens when performing a relocatable
12303 link, which is not the common case. FIXME: If keep_memory is set
12304 we could write the relocs out and then read them again; I don't
12305 know how bad the memory loss will be. */
12306
12307 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12308 sub->output_has_begun = FALSE;
12309 for (o = abfd->sections; o != NULL; o = o->next)
12310 {
12311 for (p = o->map_head.link_order; p != NULL; p = p->next)
12312 {
12313 if (p->type == bfd_indirect_link_order
12314 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12315 == bfd_target_elf_flavour)
12316 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12317 {
12318 if (! sub->output_has_begun)
12319 {
12320 if (! elf_link_input_bfd (&flinfo, sub))
12321 goto error_return;
12322 sub->output_has_begun = TRUE;
12323 }
12324 }
12325 else if (p->type == bfd_section_reloc_link_order
12326 || p->type == bfd_symbol_reloc_link_order)
12327 {
12328 if (! elf_reloc_link_order (abfd, info, o, p))
12329 goto error_return;
12330 }
12331 else
12332 {
12333 if (! _bfd_default_link_order (abfd, info, o, p))
12334 {
12335 if (p->type == bfd_indirect_link_order
12336 && (bfd_get_flavour (sub)
12337 == bfd_target_elf_flavour)
12338 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12339 != bed->s->elfclass))
12340 {
12341 const char *iclass, *oclass;
12342
12343 switch (bed->s->elfclass)
12344 {
12345 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12346 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12347 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12348 default: abort ();
12349 }
12350
12351 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12352 {
12353 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12354 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12355 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12356 default: abort ();
12357 }
12358
12359 bfd_set_error (bfd_error_wrong_format);
12360 _bfd_error_handler
12361 /* xgettext:c-format */
12362 (_("%pB: file class %s incompatible with %s"),
12363 sub, iclass, oclass);
12364 }
12365
12366 goto error_return;
12367 }
12368 }
12369 }
12370 }
12371
12372 /* Free symbol buffer if needed. */
12373 if (!info->reduce_memory_overheads)
12374 {
12375 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12376 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12377 && elf_tdata (sub)->symbuf)
12378 {
12379 free (elf_tdata (sub)->symbuf);
12380 elf_tdata (sub)->symbuf = NULL;
12381 }
12382 }
12383
12384 /* Output any global symbols that got converted to local in a
12385 version script or due to symbol visibility. We do this in a
12386 separate step since ELF requires all local symbols to appear
12387 prior to any global symbols. FIXME: We should only do this if
12388 some global symbols were, in fact, converted to become local.
12389 FIXME: Will this work correctly with the Irix 5 linker? */
12390 eoinfo.failed = FALSE;
12391 eoinfo.flinfo = &flinfo;
12392 eoinfo.localsyms = TRUE;
12393 eoinfo.file_sym_done = FALSE;
12394 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12395 if (eoinfo.failed)
12396 return FALSE;
12397
12398 /* If backend needs to output some local symbols not present in the hash
12399 table, do it now. */
12400 if (bed->elf_backend_output_arch_local_syms
12401 && (info->strip != strip_all || emit_relocs))
12402 {
12403 typedef int (*out_sym_func)
12404 (void *, const char *, Elf_Internal_Sym *, asection *,
12405 struct elf_link_hash_entry *);
12406
12407 if (! ((*bed->elf_backend_output_arch_local_syms)
12408 (abfd, info, &flinfo,
12409 (out_sym_func) elf_link_output_symstrtab)))
12410 return FALSE;
12411 }
12412
12413 /* That wrote out all the local symbols. Finish up the symbol table
12414 with the global symbols. Even if we want to strip everything we
12415 can, we still need to deal with those global symbols that got
12416 converted to local in a version script. */
12417
12418 /* The sh_info field records the index of the first non local symbol. */
12419 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12420
12421 if (dynamic
12422 && htab->dynsym != NULL
12423 && htab->dynsym->output_section != bfd_abs_section_ptr)
12424 {
12425 Elf_Internal_Sym sym;
12426 bfd_byte *dynsym = htab->dynsym->contents;
12427
12428 o = htab->dynsym->output_section;
12429 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12430
12431 /* Write out the section symbols for the output sections. */
12432 if (bfd_link_pic (info)
12433 || htab->is_relocatable_executable)
12434 {
12435 asection *s;
12436
12437 sym.st_size = 0;
12438 sym.st_name = 0;
12439 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12440 sym.st_other = 0;
12441 sym.st_target_internal = 0;
12442
12443 for (s = abfd->sections; s != NULL; s = s->next)
12444 {
12445 int indx;
12446 bfd_byte *dest;
12447 long dynindx;
12448
12449 dynindx = elf_section_data (s)->dynindx;
12450 if (dynindx <= 0)
12451 continue;
12452 indx = elf_section_data (s)->this_idx;
12453 BFD_ASSERT (indx > 0);
12454 sym.st_shndx = indx;
12455 if (! check_dynsym (abfd, &sym))
12456 return FALSE;
12457 sym.st_value = s->vma;
12458 dest = dynsym + dynindx * bed->s->sizeof_sym;
12459 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12460 }
12461 }
12462
12463 /* Write out the local dynsyms. */
12464 if (htab->dynlocal)
12465 {
12466 struct elf_link_local_dynamic_entry *e;
12467 for (e = htab->dynlocal; e ; e = e->next)
12468 {
12469 asection *s;
12470 bfd_byte *dest;
12471
12472 /* Copy the internal symbol and turn off visibility.
12473 Note that we saved a word of storage and overwrote
12474 the original st_name with the dynstr_index. */
12475 sym = e->isym;
12476 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12477
12478 s = bfd_section_from_elf_index (e->input_bfd,
12479 e->isym.st_shndx);
12480 if (s != NULL)
12481 {
12482 sym.st_shndx =
12483 elf_section_data (s->output_section)->this_idx;
12484 if (! check_dynsym (abfd, &sym))
12485 return FALSE;
12486 sym.st_value = (s->output_section->vma
12487 + s->output_offset
12488 + e->isym.st_value);
12489 }
12490
12491 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12492 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12493 }
12494 }
12495 }
12496
12497 /* We get the global symbols from the hash table. */
12498 eoinfo.failed = FALSE;
12499 eoinfo.localsyms = FALSE;
12500 eoinfo.flinfo = &flinfo;
12501 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12502 if (eoinfo.failed)
12503 return FALSE;
12504
12505 /* If backend needs to output some symbols not present in the hash
12506 table, do it now. */
12507 if (bed->elf_backend_output_arch_syms
12508 && (info->strip != strip_all || emit_relocs))
12509 {
12510 typedef int (*out_sym_func)
12511 (void *, const char *, Elf_Internal_Sym *, asection *,
12512 struct elf_link_hash_entry *);
12513
12514 if (! ((*bed->elf_backend_output_arch_syms)
12515 (abfd, info, &flinfo,
12516 (out_sym_func) elf_link_output_symstrtab)))
12517 return FALSE;
12518 }
12519
12520 /* Finalize the .strtab section. */
12521 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12522
12523 /* Swap out the .strtab section. */
12524 if (!elf_link_swap_symbols_out (&flinfo))
12525 return FALSE;
12526
12527 /* Now we know the size of the symtab section. */
12528 if (bfd_get_symcount (abfd) > 0)
12529 {
12530 /* Finish up and write out the symbol string table (.strtab)
12531 section. */
12532 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12533 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12534
12535 if (elf_symtab_shndx_list (abfd))
12536 {
12537 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12538
12539 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12540 {
12541 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12542 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12543 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12544 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12545 symtab_shndx_hdr->sh_size = amt;
12546
12547 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12548 off, TRUE);
12549
12550 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12551 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12552 return FALSE;
12553 }
12554 }
12555
12556 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12557 /* sh_name was set in prep_headers. */
12558 symstrtab_hdr->sh_type = SHT_STRTAB;
12559 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12560 symstrtab_hdr->sh_addr = 0;
12561 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12562 symstrtab_hdr->sh_entsize = 0;
12563 symstrtab_hdr->sh_link = 0;
12564 symstrtab_hdr->sh_info = 0;
12565 /* sh_offset is set just below. */
12566 symstrtab_hdr->sh_addralign = 1;
12567
12568 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12569 off, TRUE);
12570 elf_next_file_pos (abfd) = off;
12571
12572 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12573 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12574 return FALSE;
12575 }
12576
12577 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12578 {
12579 _bfd_error_handler (_("%pB: failed to generate import library"),
12580 info->out_implib_bfd);
12581 return FALSE;
12582 }
12583
12584 /* Adjust the relocs to have the correct symbol indices. */
12585 for (o = abfd->sections; o != NULL; o = o->next)
12586 {
12587 struct bfd_elf_section_data *esdo = elf_section_data (o);
12588 bfd_boolean sort;
12589
12590 if ((o->flags & SEC_RELOC) == 0)
12591 continue;
12592
12593 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12594 if (esdo->rel.hdr != NULL
12595 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12596 return FALSE;
12597 if (esdo->rela.hdr != NULL
12598 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12599 return FALSE;
12600
12601 /* Set the reloc_count field to 0 to prevent write_relocs from
12602 trying to swap the relocs out itself. */
12603 o->reloc_count = 0;
12604 }
12605
12606 if (dynamic && info->combreloc && dynobj != NULL)
12607 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12608
12609 /* If we are linking against a dynamic object, or generating a
12610 shared library, finish up the dynamic linking information. */
12611 if (dynamic)
12612 {
12613 bfd_byte *dyncon, *dynconend;
12614
12615 /* Fix up .dynamic entries. */
12616 o = bfd_get_linker_section (dynobj, ".dynamic");
12617 BFD_ASSERT (o != NULL);
12618
12619 dyncon = o->contents;
12620 dynconend = o->contents + o->size;
12621 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12622 {
12623 Elf_Internal_Dyn dyn;
12624 const char *name;
12625 unsigned int type;
12626 bfd_size_type sh_size;
12627 bfd_vma sh_addr;
12628
12629 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12630
12631 switch (dyn.d_tag)
12632 {
12633 default:
12634 continue;
12635 case DT_NULL:
12636 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12637 {
12638 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12639 {
12640 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12641 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12642 default: continue;
12643 }
12644 dyn.d_un.d_val = relativecount;
12645 relativecount = 0;
12646 break;
12647 }
12648 continue;
12649
12650 case DT_INIT:
12651 name = info->init_function;
12652 goto get_sym;
12653 case DT_FINI:
12654 name = info->fini_function;
12655 get_sym:
12656 {
12657 struct elf_link_hash_entry *h;
12658
12659 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12660 if (h != NULL
12661 && (h->root.type == bfd_link_hash_defined
12662 || h->root.type == bfd_link_hash_defweak))
12663 {
12664 dyn.d_un.d_ptr = h->root.u.def.value;
12665 o = h->root.u.def.section;
12666 if (o->output_section != NULL)
12667 dyn.d_un.d_ptr += (o->output_section->vma
12668 + o->output_offset);
12669 else
12670 {
12671 /* The symbol is imported from another shared
12672 library and does not apply to this one. */
12673 dyn.d_un.d_ptr = 0;
12674 }
12675 break;
12676 }
12677 }
12678 continue;
12679
12680 case DT_PREINIT_ARRAYSZ:
12681 name = ".preinit_array";
12682 goto get_out_size;
12683 case DT_INIT_ARRAYSZ:
12684 name = ".init_array";
12685 goto get_out_size;
12686 case DT_FINI_ARRAYSZ:
12687 name = ".fini_array";
12688 get_out_size:
12689 o = bfd_get_section_by_name (abfd, name);
12690 if (o == NULL)
12691 {
12692 _bfd_error_handler
12693 (_("could not find section %s"), name);
12694 goto error_return;
12695 }
12696 if (o->size == 0)
12697 _bfd_error_handler
12698 (_("warning: %s section has zero size"), name);
12699 dyn.d_un.d_val = o->size;
12700 break;
12701
12702 case DT_PREINIT_ARRAY:
12703 name = ".preinit_array";
12704 goto get_out_vma;
12705 case DT_INIT_ARRAY:
12706 name = ".init_array";
12707 goto get_out_vma;
12708 case DT_FINI_ARRAY:
12709 name = ".fini_array";
12710 get_out_vma:
12711 o = bfd_get_section_by_name (abfd, name);
12712 goto do_vma;
12713
12714 case DT_HASH:
12715 name = ".hash";
12716 goto get_vma;
12717 case DT_GNU_HASH:
12718 name = ".gnu.hash";
12719 goto get_vma;
12720 case DT_STRTAB:
12721 name = ".dynstr";
12722 goto get_vma;
12723 case DT_SYMTAB:
12724 name = ".dynsym";
12725 goto get_vma;
12726 case DT_VERDEF:
12727 name = ".gnu.version_d";
12728 goto get_vma;
12729 case DT_VERNEED:
12730 name = ".gnu.version_r";
12731 goto get_vma;
12732 case DT_VERSYM:
12733 name = ".gnu.version";
12734 get_vma:
12735 o = bfd_get_linker_section (dynobj, name);
12736 do_vma:
12737 if (o == NULL || bfd_is_abs_section (o->output_section))
12738 {
12739 _bfd_error_handler
12740 (_("could not find section %s"), name);
12741 goto error_return;
12742 }
12743 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12744 {
12745 _bfd_error_handler
12746 (_("warning: section '%s' is being made into a note"), name);
12747 bfd_set_error (bfd_error_nonrepresentable_section);
12748 goto error_return;
12749 }
12750 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12751 break;
12752
12753 case DT_REL:
12754 case DT_RELA:
12755 case DT_RELSZ:
12756 case DT_RELASZ:
12757 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12758 type = SHT_REL;
12759 else
12760 type = SHT_RELA;
12761 sh_size = 0;
12762 sh_addr = 0;
12763 for (i = 1; i < elf_numsections (abfd); i++)
12764 {
12765 Elf_Internal_Shdr *hdr;
12766
12767 hdr = elf_elfsections (abfd)[i];
12768 if (hdr->sh_type == type
12769 && (hdr->sh_flags & SHF_ALLOC) != 0)
12770 {
12771 sh_size += hdr->sh_size;
12772 if (sh_addr == 0
12773 || sh_addr > hdr->sh_addr)
12774 sh_addr = hdr->sh_addr;
12775 }
12776 }
12777
12778 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12779 {
12780 /* Don't count procedure linkage table relocs in the
12781 overall reloc count. */
12782 sh_size -= htab->srelplt->size;
12783 if (sh_size == 0)
12784 /* If the size is zero, make the address zero too.
12785 This is to avoid a glibc bug. If the backend
12786 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12787 zero, then we'll put DT_RELA at the end of
12788 DT_JMPREL. glibc will interpret the end of
12789 DT_RELA matching the end of DT_JMPREL as the
12790 case where DT_RELA includes DT_JMPREL, and for
12791 LD_BIND_NOW will decide that processing DT_RELA
12792 will process the PLT relocs too. Net result:
12793 No PLT relocs applied. */
12794 sh_addr = 0;
12795
12796 /* If .rela.plt is the first .rela section, exclude
12797 it from DT_RELA. */
12798 else if (sh_addr == (htab->srelplt->output_section->vma
12799 + htab->srelplt->output_offset))
12800 sh_addr += htab->srelplt->size;
12801 }
12802
12803 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12804 dyn.d_un.d_val = sh_size;
12805 else
12806 dyn.d_un.d_ptr = sh_addr;
12807 break;
12808 }
12809 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12810 }
12811 }
12812
12813 /* If we have created any dynamic sections, then output them. */
12814 if (dynobj != NULL)
12815 {
12816 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12817 goto error_return;
12818
12819 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12820 if (((info->warn_shared_textrel && bfd_link_pic (info))
12821 || info->error_textrel)
12822 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12823 {
12824 bfd_byte *dyncon, *dynconend;
12825
12826 dyncon = o->contents;
12827 dynconend = o->contents + o->size;
12828 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12829 {
12830 Elf_Internal_Dyn dyn;
12831
12832 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12833
12834 if (dyn.d_tag == DT_TEXTREL)
12835 {
12836 if (info->error_textrel)
12837 info->callbacks->einfo
12838 (_("%P%X: read-only segment has dynamic relocations\n"));
12839 else
12840 info->callbacks->einfo
12841 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12842 break;
12843 }
12844 }
12845 }
12846
12847 for (o = dynobj->sections; o != NULL; o = o->next)
12848 {
12849 if ((o->flags & SEC_HAS_CONTENTS) == 0
12850 || o->size == 0
12851 || o->output_section == bfd_abs_section_ptr)
12852 continue;
12853 if ((o->flags & SEC_LINKER_CREATED) == 0)
12854 {
12855 /* At this point, we are only interested in sections
12856 created by _bfd_elf_link_create_dynamic_sections. */
12857 continue;
12858 }
12859 if (htab->stab_info.stabstr == o)
12860 continue;
12861 if (htab->eh_info.hdr_sec == o)
12862 continue;
12863 if (strcmp (o->name, ".dynstr") != 0)
12864 {
12865 bfd_size_type octets = ((file_ptr) o->output_offset
12866 * bfd_octets_per_byte (abfd, o));
12867 if (!bfd_set_section_contents (abfd, o->output_section,
12868 o->contents, octets, o->size))
12869 goto error_return;
12870 }
12871 else
12872 {
12873 /* The contents of the .dynstr section are actually in a
12874 stringtab. */
12875 file_ptr off;
12876
12877 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12878 if (bfd_seek (abfd, off, SEEK_SET) != 0
12879 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12880 goto error_return;
12881 }
12882 }
12883 }
12884
12885 if (!info->resolve_section_groups)
12886 {
12887 bfd_boolean failed = FALSE;
12888
12889 BFD_ASSERT (bfd_link_relocatable (info));
12890 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12891 if (failed)
12892 goto error_return;
12893 }
12894
12895 /* If we have optimized stabs strings, output them. */
12896 if (htab->stab_info.stabstr != NULL)
12897 {
12898 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12899 goto error_return;
12900 }
12901
12902 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12903 goto error_return;
12904
12905 if (info->callbacks->emit_ctf)
12906 info->callbacks->emit_ctf ();
12907
12908 elf_final_link_free (abfd, &flinfo);
12909
12910 if (attr_section)
12911 {
12912 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12913 if (contents == NULL)
12914 return FALSE; /* Bail out and fail. */
12915 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12916 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12917 free (contents);
12918 }
12919
12920 return TRUE;
12921
12922 error_return:
12923 elf_final_link_free (abfd, &flinfo);
12924 return FALSE;
12925 }
12926 \f
12927 /* Initialize COOKIE for input bfd ABFD. */
12928
12929 static bfd_boolean
12930 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12931 struct bfd_link_info *info, bfd *abfd)
12932 {
12933 Elf_Internal_Shdr *symtab_hdr;
12934 const struct elf_backend_data *bed;
12935
12936 bed = get_elf_backend_data (abfd);
12937 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12938
12939 cookie->abfd = abfd;
12940 cookie->sym_hashes = elf_sym_hashes (abfd);
12941 cookie->bad_symtab = elf_bad_symtab (abfd);
12942 if (cookie->bad_symtab)
12943 {
12944 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12945 cookie->extsymoff = 0;
12946 }
12947 else
12948 {
12949 cookie->locsymcount = symtab_hdr->sh_info;
12950 cookie->extsymoff = symtab_hdr->sh_info;
12951 }
12952
12953 if (bed->s->arch_size == 32)
12954 cookie->r_sym_shift = 8;
12955 else
12956 cookie->r_sym_shift = 32;
12957
12958 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12959 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12960 {
12961 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12962 cookie->locsymcount, 0,
12963 NULL, NULL, NULL);
12964 if (cookie->locsyms == NULL)
12965 {
12966 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12967 return FALSE;
12968 }
12969 if (info->keep_memory)
12970 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12971 }
12972 return TRUE;
12973 }
12974
12975 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12976
12977 static void
12978 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12979 {
12980 Elf_Internal_Shdr *symtab_hdr;
12981
12982 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12983 if (cookie->locsyms != NULL
12984 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12985 free (cookie->locsyms);
12986 }
12987
12988 /* Initialize the relocation information in COOKIE for input section SEC
12989 of input bfd ABFD. */
12990
12991 static bfd_boolean
12992 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12993 struct bfd_link_info *info, bfd *abfd,
12994 asection *sec)
12995 {
12996 if (sec->reloc_count == 0)
12997 {
12998 cookie->rels = NULL;
12999 cookie->relend = NULL;
13000 }
13001 else
13002 {
13003 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13004 info->keep_memory);
13005 if (cookie->rels == NULL)
13006 return FALSE;
13007 cookie->rel = cookie->rels;
13008 cookie->relend = cookie->rels + sec->reloc_count;
13009 }
13010 cookie->rel = cookie->rels;
13011 return TRUE;
13012 }
13013
13014 /* Free the memory allocated by init_reloc_cookie_rels,
13015 if appropriate. */
13016
13017 static void
13018 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13019 asection *sec)
13020 {
13021 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
13022 free (cookie->rels);
13023 }
13024
13025 /* Initialize the whole of COOKIE for input section SEC. */
13026
13027 static bfd_boolean
13028 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13029 struct bfd_link_info *info,
13030 asection *sec)
13031 {
13032 if (!init_reloc_cookie (cookie, info, sec->owner))
13033 goto error1;
13034 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13035 goto error2;
13036 return TRUE;
13037
13038 error2:
13039 fini_reloc_cookie (cookie, sec->owner);
13040 error1:
13041 return FALSE;
13042 }
13043
13044 /* Free the memory allocated by init_reloc_cookie_for_section,
13045 if appropriate. */
13046
13047 static void
13048 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13049 asection *sec)
13050 {
13051 fini_reloc_cookie_rels (cookie, sec);
13052 fini_reloc_cookie (cookie, sec->owner);
13053 }
13054 \f
13055 /* Garbage collect unused sections. */
13056
13057 /* Default gc_mark_hook. */
13058
13059 asection *
13060 _bfd_elf_gc_mark_hook (asection *sec,
13061 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13062 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13063 struct elf_link_hash_entry *h,
13064 Elf_Internal_Sym *sym)
13065 {
13066 if (h != NULL)
13067 {
13068 switch (h->root.type)
13069 {
13070 case bfd_link_hash_defined:
13071 case bfd_link_hash_defweak:
13072 return h->root.u.def.section;
13073
13074 case bfd_link_hash_common:
13075 return h->root.u.c.p->section;
13076
13077 default:
13078 break;
13079 }
13080 }
13081 else
13082 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13083
13084 return NULL;
13085 }
13086
13087 /* Return the debug definition section. */
13088
13089 static asection *
13090 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13091 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13092 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13093 struct elf_link_hash_entry *h,
13094 Elf_Internal_Sym *sym)
13095 {
13096 if (h != NULL)
13097 {
13098 /* Return the global debug definition section. */
13099 if ((h->root.type == bfd_link_hash_defined
13100 || h->root.type == bfd_link_hash_defweak)
13101 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13102 return h->root.u.def.section;
13103 }
13104 else
13105 {
13106 /* Return the local debug definition section. */
13107 asection *isec = bfd_section_from_elf_index (sec->owner,
13108 sym->st_shndx);
13109 if ((isec->flags & SEC_DEBUGGING) != 0)
13110 return isec;
13111 }
13112
13113 return NULL;
13114 }
13115
13116 /* COOKIE->rel describes a relocation against section SEC, which is
13117 a section we've decided to keep. Return the section that contains
13118 the relocation symbol, or NULL if no section contains it. */
13119
13120 asection *
13121 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13122 elf_gc_mark_hook_fn gc_mark_hook,
13123 struct elf_reloc_cookie *cookie,
13124 bfd_boolean *start_stop)
13125 {
13126 unsigned long r_symndx;
13127 struct elf_link_hash_entry *h, *hw;
13128
13129 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13130 if (r_symndx == STN_UNDEF)
13131 return NULL;
13132
13133 if (r_symndx >= cookie->locsymcount
13134 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13135 {
13136 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13137 if (h == NULL)
13138 {
13139 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13140 sec->owner);
13141 return NULL;
13142 }
13143 while (h->root.type == bfd_link_hash_indirect
13144 || h->root.type == bfd_link_hash_warning)
13145 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13146 h->mark = 1;
13147 /* Keep all aliases of the symbol too. If an object symbol
13148 needs to be copied into .dynbss then all of its aliases
13149 should be present as dynamic symbols, not just the one used
13150 on the copy relocation. */
13151 hw = h;
13152 while (hw->is_weakalias)
13153 {
13154 hw = hw->u.alias;
13155 hw->mark = 1;
13156 }
13157
13158 if (start_stop != NULL)
13159 {
13160 /* To work around a glibc bug, mark XXX input sections
13161 when there is a reference to __start_XXX or __stop_XXX
13162 symbols. */
13163 if (h->start_stop)
13164 {
13165 asection *s = h->u2.start_stop_section;
13166 *start_stop = !s->gc_mark;
13167 return s;
13168 }
13169 }
13170
13171 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13172 }
13173
13174 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13175 &cookie->locsyms[r_symndx]);
13176 }
13177
13178 /* COOKIE->rel describes a relocation against section SEC, which is
13179 a section we've decided to keep. Mark the section that contains
13180 the relocation symbol. */
13181
13182 bfd_boolean
13183 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13184 asection *sec,
13185 elf_gc_mark_hook_fn gc_mark_hook,
13186 struct elf_reloc_cookie *cookie)
13187 {
13188 asection *rsec;
13189 bfd_boolean start_stop = FALSE;
13190
13191 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13192 while (rsec != NULL)
13193 {
13194 if (!rsec->gc_mark)
13195 {
13196 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13197 || (rsec->owner->flags & DYNAMIC) != 0)
13198 rsec->gc_mark = 1;
13199 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13200 return FALSE;
13201 }
13202 if (!start_stop)
13203 break;
13204 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13205 }
13206 return TRUE;
13207 }
13208
13209 /* The mark phase of garbage collection. For a given section, mark
13210 it and any sections in this section's group, and all the sections
13211 which define symbols to which it refers. */
13212
13213 bfd_boolean
13214 _bfd_elf_gc_mark (struct bfd_link_info *info,
13215 asection *sec,
13216 elf_gc_mark_hook_fn gc_mark_hook)
13217 {
13218 bfd_boolean ret;
13219 asection *group_sec, *eh_frame;
13220
13221 sec->gc_mark = 1;
13222
13223 /* Mark all the sections in the group. */
13224 group_sec = elf_section_data (sec)->next_in_group;
13225 if (group_sec && !group_sec->gc_mark)
13226 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13227 return FALSE;
13228
13229 /* Look through the section relocs. */
13230 ret = TRUE;
13231 eh_frame = elf_eh_frame_section (sec->owner);
13232 if ((sec->flags & SEC_RELOC) != 0
13233 && sec->reloc_count > 0
13234 && sec != eh_frame)
13235 {
13236 struct elf_reloc_cookie cookie;
13237
13238 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13239 ret = FALSE;
13240 else
13241 {
13242 for (; cookie.rel < cookie.relend; cookie.rel++)
13243 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13244 {
13245 ret = FALSE;
13246 break;
13247 }
13248 fini_reloc_cookie_for_section (&cookie, sec);
13249 }
13250 }
13251
13252 if (ret && eh_frame && elf_fde_list (sec))
13253 {
13254 struct elf_reloc_cookie cookie;
13255
13256 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13257 ret = FALSE;
13258 else
13259 {
13260 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13261 gc_mark_hook, &cookie))
13262 ret = FALSE;
13263 fini_reloc_cookie_for_section (&cookie, eh_frame);
13264 }
13265 }
13266
13267 eh_frame = elf_section_eh_frame_entry (sec);
13268 if (ret && eh_frame && !eh_frame->gc_mark)
13269 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13270 ret = FALSE;
13271
13272 return ret;
13273 }
13274
13275 /* Scan and mark sections in a special or debug section group. */
13276
13277 static void
13278 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13279 {
13280 /* Point to first section of section group. */
13281 asection *ssec;
13282 /* Used to iterate the section group. */
13283 asection *msec;
13284
13285 bfd_boolean is_special_grp = TRUE;
13286 bfd_boolean is_debug_grp = TRUE;
13287
13288 /* First scan to see if group contains any section other than debug
13289 and special section. */
13290 ssec = msec = elf_next_in_group (grp);
13291 do
13292 {
13293 if ((msec->flags & SEC_DEBUGGING) == 0)
13294 is_debug_grp = FALSE;
13295
13296 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13297 is_special_grp = FALSE;
13298
13299 msec = elf_next_in_group (msec);
13300 }
13301 while (msec != ssec);
13302
13303 /* If this is a pure debug section group or pure special section group,
13304 keep all sections in this group. */
13305 if (is_debug_grp || is_special_grp)
13306 {
13307 do
13308 {
13309 msec->gc_mark = 1;
13310 msec = elf_next_in_group (msec);
13311 }
13312 while (msec != ssec);
13313 }
13314 }
13315
13316 /* Keep debug and special sections. */
13317
13318 bfd_boolean
13319 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13320 elf_gc_mark_hook_fn mark_hook)
13321 {
13322 bfd *ibfd;
13323
13324 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13325 {
13326 asection *isec;
13327 bfd_boolean some_kept;
13328 bfd_boolean debug_frag_seen;
13329 bfd_boolean has_kept_debug_info;
13330
13331 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13332 continue;
13333 isec = ibfd->sections;
13334 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13335 continue;
13336
13337 /* Ensure all linker created sections are kept,
13338 see if any other section is already marked,
13339 and note if we have any fragmented debug sections. */
13340 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13341 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13342 {
13343 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13344 isec->gc_mark = 1;
13345 else if (isec->gc_mark
13346 && (isec->flags & SEC_ALLOC) != 0
13347 && elf_section_type (isec) != SHT_NOTE)
13348 some_kept = TRUE;
13349 else
13350 {
13351 /* Since all sections, except for backend specific ones,
13352 have been garbage collected, call mark_hook on this
13353 section if any of its linked-to sections is marked. */
13354 asection *linked_to_sec = elf_linked_to_section (isec);
13355 for (; linked_to_sec != NULL;
13356 linked_to_sec = elf_linked_to_section (linked_to_sec))
13357 if (linked_to_sec->gc_mark)
13358 {
13359 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13360 return FALSE;
13361 break;
13362 }
13363 }
13364
13365 if (!debug_frag_seen
13366 && (isec->flags & SEC_DEBUGGING)
13367 && CONST_STRNEQ (isec->name, ".debug_line."))
13368 debug_frag_seen = TRUE;
13369 else if (strcmp (bfd_section_name (isec),
13370 "__patchable_function_entries") == 0
13371 && elf_linked_to_section (isec) == NULL)
13372 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13373 "need linked-to section "
13374 "for --gc-sections\n"),
13375 isec->owner, isec);
13376 }
13377
13378 /* If no non-note alloc section in this file will be kept, then
13379 we can toss out the debug and special sections. */
13380 if (!some_kept)
13381 continue;
13382
13383 /* Keep debug and special sections like .comment when they are
13384 not part of a group. Also keep section groups that contain
13385 just debug sections or special sections. NB: Sections with
13386 linked-to section has been handled above. */
13387 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13388 {
13389 if ((isec->flags & SEC_GROUP) != 0)
13390 _bfd_elf_gc_mark_debug_special_section_group (isec);
13391 else if (((isec->flags & SEC_DEBUGGING) != 0
13392 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13393 && elf_next_in_group (isec) == NULL
13394 && elf_linked_to_section (isec) == NULL)
13395 isec->gc_mark = 1;
13396 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13397 has_kept_debug_info = TRUE;
13398 }
13399
13400 /* Look for CODE sections which are going to be discarded,
13401 and find and discard any fragmented debug sections which
13402 are associated with that code section. */
13403 if (debug_frag_seen)
13404 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13405 if ((isec->flags & SEC_CODE) != 0
13406 && isec->gc_mark == 0)
13407 {
13408 unsigned int ilen;
13409 asection *dsec;
13410
13411 ilen = strlen (isec->name);
13412
13413 /* Association is determined by the name of the debug
13414 section containing the name of the code section as
13415 a suffix. For example .debug_line.text.foo is a
13416 debug section associated with .text.foo. */
13417 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13418 {
13419 unsigned int dlen;
13420
13421 if (dsec->gc_mark == 0
13422 || (dsec->flags & SEC_DEBUGGING) == 0)
13423 continue;
13424
13425 dlen = strlen (dsec->name);
13426
13427 if (dlen > ilen
13428 && strncmp (dsec->name + (dlen - ilen),
13429 isec->name, ilen) == 0)
13430 dsec->gc_mark = 0;
13431 }
13432 }
13433
13434 /* Mark debug sections referenced by kept debug sections. */
13435 if (has_kept_debug_info)
13436 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13437 if (isec->gc_mark
13438 && (isec->flags & SEC_DEBUGGING) != 0)
13439 if (!_bfd_elf_gc_mark (info, isec,
13440 elf_gc_mark_debug_section))
13441 return FALSE;
13442 }
13443 return TRUE;
13444 }
13445
13446 static bfd_boolean
13447 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13448 {
13449 bfd *sub;
13450 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13451
13452 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13453 {
13454 asection *o;
13455
13456 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13457 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13458 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13459 continue;
13460 o = sub->sections;
13461 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13462 continue;
13463
13464 for (o = sub->sections; o != NULL; o = o->next)
13465 {
13466 /* When any section in a section group is kept, we keep all
13467 sections in the section group. If the first member of
13468 the section group is excluded, we will also exclude the
13469 group section. */
13470 if (o->flags & SEC_GROUP)
13471 {
13472 asection *first = elf_next_in_group (o);
13473 o->gc_mark = first->gc_mark;
13474 }
13475
13476 if (o->gc_mark)
13477 continue;
13478
13479 /* Skip sweeping sections already excluded. */
13480 if (o->flags & SEC_EXCLUDE)
13481 continue;
13482
13483 /* Since this is early in the link process, it is simple
13484 to remove a section from the output. */
13485 o->flags |= SEC_EXCLUDE;
13486
13487 if (info->print_gc_sections && o->size != 0)
13488 /* xgettext:c-format */
13489 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13490 o, sub);
13491 }
13492 }
13493
13494 return TRUE;
13495 }
13496
13497 /* Propagate collected vtable information. This is called through
13498 elf_link_hash_traverse. */
13499
13500 static bfd_boolean
13501 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13502 {
13503 /* Those that are not vtables. */
13504 if (h->start_stop
13505 || h->u2.vtable == NULL
13506 || h->u2.vtable->parent == NULL)
13507 return TRUE;
13508
13509 /* Those vtables that do not have parents, we cannot merge. */
13510 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13511 return TRUE;
13512
13513 /* If we've already been done, exit. */
13514 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13515 return TRUE;
13516
13517 /* Make sure the parent's table is up to date. */
13518 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13519
13520 if (h->u2.vtable->used == NULL)
13521 {
13522 /* None of this table's entries were referenced. Re-use the
13523 parent's table. */
13524 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13525 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13526 }
13527 else
13528 {
13529 size_t n;
13530 bfd_boolean *cu, *pu;
13531
13532 /* Or the parent's entries into ours. */
13533 cu = h->u2.vtable->used;
13534 cu[-1] = TRUE;
13535 pu = h->u2.vtable->parent->u2.vtable->used;
13536 if (pu != NULL)
13537 {
13538 const struct elf_backend_data *bed;
13539 unsigned int log_file_align;
13540
13541 bed = get_elf_backend_data (h->root.u.def.section->owner);
13542 log_file_align = bed->s->log_file_align;
13543 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13544 while (n--)
13545 {
13546 if (*pu)
13547 *cu = TRUE;
13548 pu++;
13549 cu++;
13550 }
13551 }
13552 }
13553
13554 return TRUE;
13555 }
13556
13557 static bfd_boolean
13558 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13559 {
13560 asection *sec;
13561 bfd_vma hstart, hend;
13562 Elf_Internal_Rela *relstart, *relend, *rel;
13563 const struct elf_backend_data *bed;
13564 unsigned int log_file_align;
13565
13566 /* Take care of both those symbols that do not describe vtables as
13567 well as those that are not loaded. */
13568 if (h->start_stop
13569 || h->u2.vtable == NULL
13570 || h->u2.vtable->parent == NULL)
13571 return TRUE;
13572
13573 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13574 || h->root.type == bfd_link_hash_defweak);
13575
13576 sec = h->root.u.def.section;
13577 hstart = h->root.u.def.value;
13578 hend = hstart + h->size;
13579
13580 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13581 if (!relstart)
13582 return *(bfd_boolean *) okp = FALSE;
13583 bed = get_elf_backend_data (sec->owner);
13584 log_file_align = bed->s->log_file_align;
13585
13586 relend = relstart + sec->reloc_count;
13587
13588 for (rel = relstart; rel < relend; ++rel)
13589 if (rel->r_offset >= hstart && rel->r_offset < hend)
13590 {
13591 /* If the entry is in use, do nothing. */
13592 if (h->u2.vtable->used
13593 && (rel->r_offset - hstart) < h->u2.vtable->size)
13594 {
13595 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13596 if (h->u2.vtable->used[entry])
13597 continue;
13598 }
13599 /* Otherwise, kill it. */
13600 rel->r_offset = rel->r_info = rel->r_addend = 0;
13601 }
13602
13603 return TRUE;
13604 }
13605
13606 /* Mark sections containing dynamically referenced symbols. When
13607 building shared libraries, we must assume that any visible symbol is
13608 referenced. */
13609
13610 bfd_boolean
13611 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13612 {
13613 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13614 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13615
13616 if ((h->root.type == bfd_link_hash_defined
13617 || h->root.type == bfd_link_hash_defweak)
13618 && ((h->ref_dynamic && !h->forced_local)
13619 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13620 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13621 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13622 && (!bfd_link_executable (info)
13623 || info->gc_keep_exported
13624 || info->export_dynamic
13625 || (h->dynamic
13626 && d != NULL
13627 && (*d->match) (&d->head, NULL, h->root.root.string)))
13628 && (h->versioned >= versioned
13629 || !bfd_hide_sym_by_version (info->version_info,
13630 h->root.root.string)))))
13631 h->root.u.def.section->flags |= SEC_KEEP;
13632
13633 return TRUE;
13634 }
13635
13636 /* Keep all sections containing symbols undefined on the command-line,
13637 and the section containing the entry symbol. */
13638
13639 void
13640 _bfd_elf_gc_keep (struct bfd_link_info *info)
13641 {
13642 struct bfd_sym_chain *sym;
13643
13644 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13645 {
13646 struct elf_link_hash_entry *h;
13647
13648 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13649 FALSE, FALSE, FALSE);
13650
13651 if (h != NULL
13652 && (h->root.type == bfd_link_hash_defined
13653 || h->root.type == bfd_link_hash_defweak)
13654 && !bfd_is_abs_section (h->root.u.def.section)
13655 && !bfd_is_und_section (h->root.u.def.section))
13656 h->root.u.def.section->flags |= SEC_KEEP;
13657 }
13658 }
13659
13660 bfd_boolean
13661 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13662 struct bfd_link_info *info)
13663 {
13664 bfd *ibfd = info->input_bfds;
13665
13666 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13667 {
13668 asection *sec;
13669 struct elf_reloc_cookie cookie;
13670
13671 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13672 continue;
13673 sec = ibfd->sections;
13674 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13675 continue;
13676
13677 if (!init_reloc_cookie (&cookie, info, ibfd))
13678 return FALSE;
13679
13680 for (sec = ibfd->sections; sec; sec = sec->next)
13681 {
13682 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13683 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13684 {
13685 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13686 fini_reloc_cookie_rels (&cookie, sec);
13687 }
13688 }
13689 }
13690 return TRUE;
13691 }
13692
13693 /* Do mark and sweep of unused sections. */
13694
13695 bfd_boolean
13696 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13697 {
13698 bfd_boolean ok = TRUE;
13699 bfd *sub;
13700 elf_gc_mark_hook_fn gc_mark_hook;
13701 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13702 struct elf_link_hash_table *htab;
13703
13704 if (!bed->can_gc_sections
13705 || !is_elf_hash_table (info->hash))
13706 {
13707 _bfd_error_handler(_("warning: gc-sections option ignored"));
13708 return TRUE;
13709 }
13710
13711 bed->gc_keep (info);
13712 htab = elf_hash_table (info);
13713
13714 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13715 at the .eh_frame section if we can mark the FDEs individually. */
13716 for (sub = info->input_bfds;
13717 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13718 sub = sub->link.next)
13719 {
13720 asection *sec;
13721 struct elf_reloc_cookie cookie;
13722
13723 sec = sub->sections;
13724 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13725 continue;
13726 sec = bfd_get_section_by_name (sub, ".eh_frame");
13727 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13728 {
13729 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13730 if (elf_section_data (sec)->sec_info
13731 && (sec->flags & SEC_LINKER_CREATED) == 0)
13732 elf_eh_frame_section (sub) = sec;
13733 fini_reloc_cookie_for_section (&cookie, sec);
13734 sec = bfd_get_next_section_by_name (NULL, sec);
13735 }
13736 }
13737
13738 /* Apply transitive closure to the vtable entry usage info. */
13739 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13740 if (!ok)
13741 return FALSE;
13742
13743 /* Kill the vtable relocations that were not used. */
13744 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13745 if (!ok)
13746 return FALSE;
13747
13748 /* Mark dynamically referenced symbols. */
13749 if (htab->dynamic_sections_created || info->gc_keep_exported)
13750 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13751
13752 /* Grovel through relocs to find out who stays ... */
13753 gc_mark_hook = bed->gc_mark_hook;
13754 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13755 {
13756 asection *o;
13757
13758 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13759 || elf_object_id (sub) != elf_hash_table_id (htab)
13760 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13761 continue;
13762
13763 o = sub->sections;
13764 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13765 continue;
13766
13767 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13768 Also treat note sections as a root, if the section is not part
13769 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13770 well as FINI_ARRAY sections for ld -r. */
13771 for (o = sub->sections; o != NULL; o = o->next)
13772 if (!o->gc_mark
13773 && (o->flags & SEC_EXCLUDE) == 0
13774 && ((o->flags & SEC_KEEP) != 0
13775 || (bfd_link_relocatable (info)
13776 && ((elf_section_data (o)->this_hdr.sh_type
13777 == SHT_PREINIT_ARRAY)
13778 || (elf_section_data (o)->this_hdr.sh_type
13779 == SHT_INIT_ARRAY)
13780 || (elf_section_data (o)->this_hdr.sh_type
13781 == SHT_FINI_ARRAY)))
13782 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13783 && elf_next_in_group (o) == NULL )))
13784 {
13785 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13786 return FALSE;
13787 }
13788 }
13789
13790 /* Allow the backend to mark additional target specific sections. */
13791 bed->gc_mark_extra_sections (info, gc_mark_hook);
13792
13793 /* ... and mark SEC_EXCLUDE for those that go. */
13794 return elf_gc_sweep (abfd, info);
13795 }
13796 \f
13797 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13798
13799 bfd_boolean
13800 bfd_elf_gc_record_vtinherit (bfd *abfd,
13801 asection *sec,
13802 struct elf_link_hash_entry *h,
13803 bfd_vma offset)
13804 {
13805 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13806 struct elf_link_hash_entry **search, *child;
13807 size_t extsymcount;
13808 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13809
13810 /* The sh_info field of the symtab header tells us where the
13811 external symbols start. We don't care about the local symbols at
13812 this point. */
13813 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13814 if (!elf_bad_symtab (abfd))
13815 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13816
13817 sym_hashes = elf_sym_hashes (abfd);
13818 sym_hashes_end = sym_hashes + extsymcount;
13819
13820 /* Hunt down the child symbol, which is in this section at the same
13821 offset as the relocation. */
13822 for (search = sym_hashes; search != sym_hashes_end; ++search)
13823 {
13824 if ((child = *search) != NULL
13825 && (child->root.type == bfd_link_hash_defined
13826 || child->root.type == bfd_link_hash_defweak)
13827 && child->root.u.def.section == sec
13828 && child->root.u.def.value == offset)
13829 goto win;
13830 }
13831
13832 /* xgettext:c-format */
13833 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13834 abfd, sec, (uint64_t) offset);
13835 bfd_set_error (bfd_error_invalid_operation);
13836 return FALSE;
13837
13838 win:
13839 if (!child->u2.vtable)
13840 {
13841 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13842 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13843 if (!child->u2.vtable)
13844 return FALSE;
13845 }
13846 if (!h)
13847 {
13848 /* This *should* only be the absolute section. It could potentially
13849 be that someone has defined a non-global vtable though, which
13850 would be bad. It isn't worth paging in the local symbols to be
13851 sure though; that case should simply be handled by the assembler. */
13852
13853 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13854 }
13855 else
13856 child->u2.vtable->parent = h;
13857
13858 return TRUE;
13859 }
13860
13861 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13862
13863 bfd_boolean
13864 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13865 struct elf_link_hash_entry *h,
13866 bfd_vma addend)
13867 {
13868 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13869 unsigned int log_file_align = bed->s->log_file_align;
13870
13871 if (!h)
13872 {
13873 /* xgettext:c-format */
13874 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13875 abfd, sec);
13876 bfd_set_error (bfd_error_bad_value);
13877 return FALSE;
13878 }
13879
13880 if (!h->u2.vtable)
13881 {
13882 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13883 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13884 if (!h->u2.vtable)
13885 return FALSE;
13886 }
13887
13888 if (addend >= h->u2.vtable->size)
13889 {
13890 size_t size, bytes, file_align;
13891 bfd_boolean *ptr = h->u2.vtable->used;
13892
13893 /* While the symbol is undefined, we have to be prepared to handle
13894 a zero size. */
13895 file_align = 1 << log_file_align;
13896 if (h->root.type == bfd_link_hash_undefined)
13897 size = addend + file_align;
13898 else
13899 {
13900 size = h->size;
13901 if (addend >= size)
13902 {
13903 /* Oops! We've got a reference past the defined end of
13904 the table. This is probably a bug -- shall we warn? */
13905 size = addend + file_align;
13906 }
13907 }
13908 size = (size + file_align - 1) & -file_align;
13909
13910 /* Allocate one extra entry for use as a "done" flag for the
13911 consolidation pass. */
13912 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13913
13914 if (ptr)
13915 {
13916 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13917
13918 if (ptr != NULL)
13919 {
13920 size_t oldbytes;
13921
13922 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13923 * sizeof (bfd_boolean));
13924 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13925 }
13926 }
13927 else
13928 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13929
13930 if (ptr == NULL)
13931 return FALSE;
13932
13933 /* And arrange for that done flag to be at index -1. */
13934 h->u2.vtable->used = ptr + 1;
13935 h->u2.vtable->size = size;
13936 }
13937
13938 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13939
13940 return TRUE;
13941 }
13942
13943 /* Map an ELF section header flag to its corresponding string. */
13944 typedef struct
13945 {
13946 char *flag_name;
13947 flagword flag_value;
13948 } elf_flags_to_name_table;
13949
13950 static elf_flags_to_name_table elf_flags_to_names [] =
13951 {
13952 { "SHF_WRITE", SHF_WRITE },
13953 { "SHF_ALLOC", SHF_ALLOC },
13954 { "SHF_EXECINSTR", SHF_EXECINSTR },
13955 { "SHF_MERGE", SHF_MERGE },
13956 { "SHF_STRINGS", SHF_STRINGS },
13957 { "SHF_INFO_LINK", SHF_INFO_LINK},
13958 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13959 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13960 { "SHF_GROUP", SHF_GROUP },
13961 { "SHF_TLS", SHF_TLS },
13962 { "SHF_MASKOS", SHF_MASKOS },
13963 { "SHF_EXCLUDE", SHF_EXCLUDE },
13964 };
13965
13966 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13967 bfd_boolean
13968 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13969 struct flag_info *flaginfo,
13970 asection *section)
13971 {
13972 const bfd_vma sh_flags = elf_section_flags (section);
13973
13974 if (!flaginfo->flags_initialized)
13975 {
13976 bfd *obfd = info->output_bfd;
13977 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13978 struct flag_info_list *tf = flaginfo->flag_list;
13979 int with_hex = 0;
13980 int without_hex = 0;
13981
13982 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13983 {
13984 unsigned i;
13985 flagword (*lookup) (char *);
13986
13987 lookup = bed->elf_backend_lookup_section_flags_hook;
13988 if (lookup != NULL)
13989 {
13990 flagword hexval = (*lookup) ((char *) tf->name);
13991
13992 if (hexval != 0)
13993 {
13994 if (tf->with == with_flags)
13995 with_hex |= hexval;
13996 else if (tf->with == without_flags)
13997 without_hex |= hexval;
13998 tf->valid = TRUE;
13999 continue;
14000 }
14001 }
14002 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14003 {
14004 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14005 {
14006 if (tf->with == with_flags)
14007 with_hex |= elf_flags_to_names[i].flag_value;
14008 else if (tf->with == without_flags)
14009 without_hex |= elf_flags_to_names[i].flag_value;
14010 tf->valid = TRUE;
14011 break;
14012 }
14013 }
14014 if (!tf->valid)
14015 {
14016 info->callbacks->einfo
14017 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14018 return FALSE;
14019 }
14020 }
14021 flaginfo->flags_initialized = TRUE;
14022 flaginfo->only_with_flags |= with_hex;
14023 flaginfo->not_with_flags |= without_hex;
14024 }
14025
14026 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14027 return FALSE;
14028
14029 if ((flaginfo->not_with_flags & sh_flags) != 0)
14030 return FALSE;
14031
14032 return TRUE;
14033 }
14034
14035 struct alloc_got_off_arg {
14036 bfd_vma gotoff;
14037 struct bfd_link_info *info;
14038 };
14039
14040 /* We need a special top-level link routine to convert got reference counts
14041 to real got offsets. */
14042
14043 static bfd_boolean
14044 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14045 {
14046 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14047 bfd *obfd = gofarg->info->output_bfd;
14048 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14049
14050 if (h->got.refcount > 0)
14051 {
14052 h->got.offset = gofarg->gotoff;
14053 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14054 }
14055 else
14056 h->got.offset = (bfd_vma) -1;
14057
14058 return TRUE;
14059 }
14060
14061 /* And an accompanying bit to work out final got entry offsets once
14062 we're done. Should be called from final_link. */
14063
14064 bfd_boolean
14065 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14066 struct bfd_link_info *info)
14067 {
14068 bfd *i;
14069 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14070 bfd_vma gotoff;
14071 struct alloc_got_off_arg gofarg;
14072
14073 BFD_ASSERT (abfd == info->output_bfd);
14074
14075 if (! is_elf_hash_table (info->hash))
14076 return FALSE;
14077
14078 /* The GOT offset is relative to the .got section, but the GOT header is
14079 put into the .got.plt section, if the backend uses it. */
14080 if (bed->want_got_plt)
14081 gotoff = 0;
14082 else
14083 gotoff = bed->got_header_size;
14084
14085 /* Do the local .got entries first. */
14086 for (i = info->input_bfds; i; i = i->link.next)
14087 {
14088 bfd_signed_vma *local_got;
14089 size_t j, locsymcount;
14090 Elf_Internal_Shdr *symtab_hdr;
14091
14092 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14093 continue;
14094
14095 local_got = elf_local_got_refcounts (i);
14096 if (!local_got)
14097 continue;
14098
14099 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14100 if (elf_bad_symtab (i))
14101 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14102 else
14103 locsymcount = symtab_hdr->sh_info;
14104
14105 for (j = 0; j < locsymcount; ++j)
14106 {
14107 if (local_got[j] > 0)
14108 {
14109 local_got[j] = gotoff;
14110 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14111 }
14112 else
14113 local_got[j] = (bfd_vma) -1;
14114 }
14115 }
14116
14117 /* Then the global .got entries. .plt refcounts are handled by
14118 adjust_dynamic_symbol */
14119 gofarg.gotoff = gotoff;
14120 gofarg.info = info;
14121 elf_link_hash_traverse (elf_hash_table (info),
14122 elf_gc_allocate_got_offsets,
14123 &gofarg);
14124 return TRUE;
14125 }
14126
14127 /* Many folk need no more in the way of final link than this, once
14128 got entry reference counting is enabled. */
14129
14130 bfd_boolean
14131 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14132 {
14133 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14134 return FALSE;
14135
14136 /* Invoke the regular ELF backend linker to do all the work. */
14137 return bfd_elf_final_link (abfd, info);
14138 }
14139
14140 bfd_boolean
14141 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14142 {
14143 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14144
14145 if (rcookie->bad_symtab)
14146 rcookie->rel = rcookie->rels;
14147
14148 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14149 {
14150 unsigned long r_symndx;
14151
14152 if (! rcookie->bad_symtab)
14153 if (rcookie->rel->r_offset > offset)
14154 return FALSE;
14155 if (rcookie->rel->r_offset != offset)
14156 continue;
14157
14158 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14159 if (r_symndx == STN_UNDEF)
14160 return TRUE;
14161
14162 if (r_symndx >= rcookie->locsymcount
14163 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14164 {
14165 struct elf_link_hash_entry *h;
14166
14167 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14168
14169 while (h->root.type == bfd_link_hash_indirect
14170 || h->root.type == bfd_link_hash_warning)
14171 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14172
14173 if ((h->root.type == bfd_link_hash_defined
14174 || h->root.type == bfd_link_hash_defweak)
14175 && (h->root.u.def.section->owner != rcookie->abfd
14176 || h->root.u.def.section->kept_section != NULL
14177 || discarded_section (h->root.u.def.section)))
14178 return TRUE;
14179 }
14180 else
14181 {
14182 /* It's not a relocation against a global symbol,
14183 but it could be a relocation against a local
14184 symbol for a discarded section. */
14185 asection *isec;
14186 Elf_Internal_Sym *isym;
14187
14188 /* Need to: get the symbol; get the section. */
14189 isym = &rcookie->locsyms[r_symndx];
14190 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14191 if (isec != NULL
14192 && (isec->kept_section != NULL
14193 || discarded_section (isec)))
14194 return TRUE;
14195 }
14196 return FALSE;
14197 }
14198 return FALSE;
14199 }
14200
14201 /* Discard unneeded references to discarded sections.
14202 Returns -1 on error, 1 if any section's size was changed, 0 if
14203 nothing changed. This function assumes that the relocations are in
14204 sorted order, which is true for all known assemblers. */
14205
14206 int
14207 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14208 {
14209 struct elf_reloc_cookie cookie;
14210 asection *o;
14211 bfd *abfd;
14212 int changed = 0;
14213
14214 if (info->traditional_format
14215 || !is_elf_hash_table (info->hash))
14216 return 0;
14217
14218 o = bfd_get_section_by_name (output_bfd, ".stab");
14219 if (o != NULL)
14220 {
14221 asection *i;
14222
14223 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14224 {
14225 if (i->size == 0
14226 || i->reloc_count == 0
14227 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14228 continue;
14229
14230 abfd = i->owner;
14231 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14232 continue;
14233
14234 if (!init_reloc_cookie_for_section (&cookie, info, i))
14235 return -1;
14236
14237 if (_bfd_discard_section_stabs (abfd, i,
14238 elf_section_data (i)->sec_info,
14239 bfd_elf_reloc_symbol_deleted_p,
14240 &cookie))
14241 changed = 1;
14242
14243 fini_reloc_cookie_for_section (&cookie, i);
14244 }
14245 }
14246
14247 o = NULL;
14248 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14249 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14250 if (o != NULL)
14251 {
14252 asection *i;
14253 int eh_changed = 0;
14254 unsigned int eh_alignment;
14255
14256 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14257 {
14258 if (i->size == 0)
14259 continue;
14260
14261 abfd = i->owner;
14262 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14263 continue;
14264
14265 if (!init_reloc_cookie_for_section (&cookie, info, i))
14266 return -1;
14267
14268 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14269 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14270 bfd_elf_reloc_symbol_deleted_p,
14271 &cookie))
14272 {
14273 eh_changed = 1;
14274 if (i->size != i->rawsize)
14275 changed = 1;
14276 }
14277
14278 fini_reloc_cookie_for_section (&cookie, i);
14279 }
14280
14281 eh_alignment = 1 << o->alignment_power;
14282 /* Skip over zero terminator, and prevent empty sections from
14283 adding alignment padding at the end. */
14284 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14285 if (i->size == 0)
14286 i->flags |= SEC_EXCLUDE;
14287 else if (i->size > 4)
14288 break;
14289 /* The last non-empty eh_frame section doesn't need padding. */
14290 if (i != NULL)
14291 i = i->map_tail.s;
14292 /* Any prior sections must pad the last FDE out to the output
14293 section alignment. Otherwise we might have zero padding
14294 between sections, which would be seen as a terminator. */
14295 for (; i != NULL; i = i->map_tail.s)
14296 if (i->size == 4)
14297 /* All but the last zero terminator should have been removed. */
14298 BFD_FAIL ();
14299 else
14300 {
14301 bfd_size_type size
14302 = (i->size + eh_alignment - 1) & -eh_alignment;
14303 if (i->size != size)
14304 {
14305 i->size = size;
14306 changed = 1;
14307 eh_changed = 1;
14308 }
14309 }
14310 if (eh_changed)
14311 elf_link_hash_traverse (elf_hash_table (info),
14312 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14313 }
14314
14315 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14316 {
14317 const struct elf_backend_data *bed;
14318 asection *s;
14319
14320 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14321 continue;
14322 s = abfd->sections;
14323 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14324 continue;
14325
14326 bed = get_elf_backend_data (abfd);
14327
14328 if (bed->elf_backend_discard_info != NULL)
14329 {
14330 if (!init_reloc_cookie (&cookie, info, abfd))
14331 return -1;
14332
14333 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14334 changed = 1;
14335
14336 fini_reloc_cookie (&cookie, abfd);
14337 }
14338 }
14339
14340 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14341 _bfd_elf_end_eh_frame_parsing (info);
14342
14343 if (info->eh_frame_hdr_type
14344 && !bfd_link_relocatable (info)
14345 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14346 changed = 1;
14347
14348 return changed;
14349 }
14350
14351 bfd_boolean
14352 _bfd_elf_section_already_linked (bfd *abfd,
14353 asection *sec,
14354 struct bfd_link_info *info)
14355 {
14356 flagword flags;
14357 const char *name, *key;
14358 struct bfd_section_already_linked *l;
14359 struct bfd_section_already_linked_hash_entry *already_linked_list;
14360
14361 if (sec->output_section == bfd_abs_section_ptr)
14362 return FALSE;
14363
14364 flags = sec->flags;
14365
14366 /* Return if it isn't a linkonce section. A comdat group section
14367 also has SEC_LINK_ONCE set. */
14368 if ((flags & SEC_LINK_ONCE) == 0)
14369 return FALSE;
14370
14371 /* Don't put group member sections on our list of already linked
14372 sections. They are handled as a group via their group section. */
14373 if (elf_sec_group (sec) != NULL)
14374 return FALSE;
14375
14376 /* For a SHT_GROUP section, use the group signature as the key. */
14377 name = sec->name;
14378 if ((flags & SEC_GROUP) != 0
14379 && elf_next_in_group (sec) != NULL
14380 && elf_group_name (elf_next_in_group (sec)) != NULL)
14381 key = elf_group_name (elf_next_in_group (sec));
14382 else
14383 {
14384 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14385 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14386 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14387 key++;
14388 else
14389 /* Must be a user linkonce section that doesn't follow gcc's
14390 naming convention. In this case we won't be matching
14391 single member groups. */
14392 key = name;
14393 }
14394
14395 already_linked_list = bfd_section_already_linked_table_lookup (key);
14396
14397 for (l = already_linked_list->entry; l != NULL; l = l->next)
14398 {
14399 /* We may have 2 different types of sections on the list: group
14400 sections with a signature of <key> (<key> is some string),
14401 and linkonce sections named .gnu.linkonce.<type>.<key>.
14402 Match like sections. LTO plugin sections are an exception.
14403 They are always named .gnu.linkonce.t.<key> and match either
14404 type of section. */
14405 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14406 && ((flags & SEC_GROUP) != 0
14407 || strcmp (name, l->sec->name) == 0))
14408 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14409 {
14410 /* The section has already been linked. See if we should
14411 issue a warning. */
14412 if (!_bfd_handle_already_linked (sec, l, info))
14413 return FALSE;
14414
14415 if (flags & SEC_GROUP)
14416 {
14417 asection *first = elf_next_in_group (sec);
14418 asection *s = first;
14419
14420 while (s != NULL)
14421 {
14422 s->output_section = bfd_abs_section_ptr;
14423 /* Record which group discards it. */
14424 s->kept_section = l->sec;
14425 s = elf_next_in_group (s);
14426 /* These lists are circular. */
14427 if (s == first)
14428 break;
14429 }
14430 }
14431
14432 return TRUE;
14433 }
14434 }
14435
14436 /* A single member comdat group section may be discarded by a
14437 linkonce section and vice versa. */
14438 if ((flags & SEC_GROUP) != 0)
14439 {
14440 asection *first = elf_next_in_group (sec);
14441
14442 if (first != NULL && elf_next_in_group (first) == first)
14443 /* Check this single member group against linkonce sections. */
14444 for (l = already_linked_list->entry; l != NULL; l = l->next)
14445 if ((l->sec->flags & SEC_GROUP) == 0
14446 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14447 {
14448 first->output_section = bfd_abs_section_ptr;
14449 first->kept_section = l->sec;
14450 sec->output_section = bfd_abs_section_ptr;
14451 break;
14452 }
14453 }
14454 else
14455 /* Check this linkonce section against single member groups. */
14456 for (l = already_linked_list->entry; l != NULL; l = l->next)
14457 if (l->sec->flags & SEC_GROUP)
14458 {
14459 asection *first = elf_next_in_group (l->sec);
14460
14461 if (first != NULL
14462 && elf_next_in_group (first) == first
14463 && bfd_elf_match_symbols_in_sections (first, sec, info))
14464 {
14465 sec->output_section = bfd_abs_section_ptr;
14466 sec->kept_section = first;
14467 break;
14468 }
14469 }
14470
14471 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14472 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14473 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14474 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14475 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14476 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14477 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14478 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14479 The reverse order cannot happen as there is never a bfd with only the
14480 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14481 matter as here were are looking only for cross-bfd sections. */
14482
14483 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14484 for (l = already_linked_list->entry; l != NULL; l = l->next)
14485 if ((l->sec->flags & SEC_GROUP) == 0
14486 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14487 {
14488 if (abfd != l->sec->owner)
14489 sec->output_section = bfd_abs_section_ptr;
14490 break;
14491 }
14492
14493 /* This is the first section with this name. Record it. */
14494 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14495 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14496 return sec->output_section == bfd_abs_section_ptr;
14497 }
14498
14499 bfd_boolean
14500 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14501 {
14502 return sym->st_shndx == SHN_COMMON;
14503 }
14504
14505 unsigned int
14506 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14507 {
14508 return SHN_COMMON;
14509 }
14510
14511 asection *
14512 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14513 {
14514 return bfd_com_section_ptr;
14515 }
14516
14517 bfd_vma
14518 _bfd_elf_default_got_elt_size (bfd *abfd,
14519 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14520 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14521 bfd *ibfd ATTRIBUTE_UNUSED,
14522 unsigned long symndx ATTRIBUTE_UNUSED)
14523 {
14524 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14525 return bed->s->arch_size / 8;
14526 }
14527
14528 /* Routines to support the creation of dynamic relocs. */
14529
14530 /* Returns the name of the dynamic reloc section associated with SEC. */
14531
14532 static const char *
14533 get_dynamic_reloc_section_name (bfd * abfd,
14534 asection * sec,
14535 bfd_boolean is_rela)
14536 {
14537 char *name;
14538 const char *old_name = bfd_section_name (sec);
14539 const char *prefix = is_rela ? ".rela" : ".rel";
14540
14541 if (old_name == NULL)
14542 return NULL;
14543
14544 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14545 sprintf (name, "%s%s", prefix, old_name);
14546
14547 return name;
14548 }
14549
14550 /* Returns the dynamic reloc section associated with SEC.
14551 If necessary compute the name of the dynamic reloc section based
14552 on SEC's name (looked up in ABFD's string table) and the setting
14553 of IS_RELA. */
14554
14555 asection *
14556 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14557 asection * sec,
14558 bfd_boolean is_rela)
14559 {
14560 asection * reloc_sec = elf_section_data (sec)->sreloc;
14561
14562 if (reloc_sec == NULL)
14563 {
14564 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14565
14566 if (name != NULL)
14567 {
14568 reloc_sec = bfd_get_linker_section (abfd, name);
14569
14570 if (reloc_sec != NULL)
14571 elf_section_data (sec)->sreloc = reloc_sec;
14572 }
14573 }
14574
14575 return reloc_sec;
14576 }
14577
14578 /* Returns the dynamic reloc section associated with SEC. If the
14579 section does not exist it is created and attached to the DYNOBJ
14580 bfd and stored in the SRELOC field of SEC's elf_section_data
14581 structure.
14582
14583 ALIGNMENT is the alignment for the newly created section and
14584 IS_RELA defines whether the name should be .rela.<SEC's name>
14585 or .rel.<SEC's name>. The section name is looked up in the
14586 string table associated with ABFD. */
14587
14588 asection *
14589 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14590 bfd *dynobj,
14591 unsigned int alignment,
14592 bfd *abfd,
14593 bfd_boolean is_rela)
14594 {
14595 asection * reloc_sec = elf_section_data (sec)->sreloc;
14596
14597 if (reloc_sec == NULL)
14598 {
14599 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14600
14601 if (name == NULL)
14602 return NULL;
14603
14604 reloc_sec = bfd_get_linker_section (dynobj, name);
14605
14606 if (reloc_sec == NULL)
14607 {
14608 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14609 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14610 if ((sec->flags & SEC_ALLOC) != 0)
14611 flags |= SEC_ALLOC | SEC_LOAD;
14612
14613 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14614 if (reloc_sec != NULL)
14615 {
14616 /* _bfd_elf_get_sec_type_attr chooses a section type by
14617 name. Override as it may be wrong, eg. for a user
14618 section named "auto" we'll get ".relauto" which is
14619 seen to be a .rela section. */
14620 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14621 if (!bfd_set_section_alignment (reloc_sec, alignment))
14622 reloc_sec = NULL;
14623 }
14624 }
14625
14626 elf_section_data (sec)->sreloc = reloc_sec;
14627 }
14628
14629 return reloc_sec;
14630 }
14631
14632 /* Copy the ELF symbol type and other attributes for a linker script
14633 assignment from HSRC to HDEST. Generally this should be treated as
14634 if we found a strong non-dynamic definition for HDEST (except that
14635 ld ignores multiple definition errors). */
14636 void
14637 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14638 struct bfd_link_hash_entry *hdest,
14639 struct bfd_link_hash_entry *hsrc)
14640 {
14641 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14642 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14643 Elf_Internal_Sym isym;
14644
14645 ehdest->type = ehsrc->type;
14646 ehdest->target_internal = ehsrc->target_internal;
14647
14648 isym.st_other = ehsrc->other;
14649 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14650 }
14651
14652 /* Append a RELA relocation REL to section S in BFD. */
14653
14654 void
14655 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14656 {
14657 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14658 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14659 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14660 bed->s->swap_reloca_out (abfd, rel, loc);
14661 }
14662
14663 /* Append a REL relocation REL to section S in BFD. */
14664
14665 void
14666 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14667 {
14668 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14669 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14670 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14671 bed->s->swap_reloc_out (abfd, rel, loc);
14672 }
14673
14674 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14675
14676 struct bfd_link_hash_entry *
14677 bfd_elf_define_start_stop (struct bfd_link_info *info,
14678 const char *symbol, asection *sec)
14679 {
14680 struct elf_link_hash_entry *h;
14681
14682 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14683 FALSE, FALSE, TRUE);
14684 if (h != NULL
14685 && (h->root.type == bfd_link_hash_undefined
14686 || h->root.type == bfd_link_hash_undefweak
14687 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14688 {
14689 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14690 h->root.type = bfd_link_hash_defined;
14691 h->root.u.def.section = sec;
14692 h->root.u.def.value = 0;
14693 h->def_regular = 1;
14694 h->def_dynamic = 0;
14695 h->start_stop = 1;
14696 h->u2.start_stop_section = sec;
14697 if (symbol[0] == '.')
14698 {
14699 /* .startof. and .sizeof. symbols are local. */
14700 const struct elf_backend_data *bed;
14701 bed = get_elf_backend_data (info->output_bfd);
14702 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14703 }
14704 else
14705 {
14706 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14707 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14708 if (was_dynamic)
14709 bfd_elf_link_record_dynamic_symbol (info, h);
14710 }
14711 return &h->root;
14712 }
14713 return NULL;
14714 }
This page took 0.362363 seconds and 3 git commands to generate.