597184582f345c554e123e19ae7e2778f3da7c5a
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (abfd, s,
180 bed->s->log_file_align))
181 return FALSE;
182 htab->sgotplt = s;
183 }
184
185 /* The first bit of the global offset table is the header. */
186 s->size += bed->got_header_size;
187
188 if (bed->want_got_sym)
189 {
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h = _bfd_elf_define_linkage_sym (abfd, info, s,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info)->hgot = h;
197 if (h == NULL)
198 return FALSE;
199 }
200
201 return TRUE;
202 }
203 \f
204 /* Create a strtab to hold the dynamic symbol names. */
205 static bfd_boolean
206 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
207 {
208 struct elf_link_hash_table *hash_table;
209
210 hash_table = elf_hash_table (info);
211 if (hash_table->dynobj == NULL)
212 {
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
218 {
219 bfd *ibfd;
220 asection *s;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
224 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
225 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
692 more. */
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
695
696 /* Make sure this symbol is not garbage collected. */
697 h->mark = 1;
698
699 h->def_regular = 1;
700
701 if (hidden)
702 {
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
707 }
708
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
710 and executables. */
711 if (!bfd_link_relocatable (info)
712 && h->dynindx != -1
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
715 h->forced_local = 1;
716
717 if ((h->def_dynamic
718 || h->ref_dynamic
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
721 && !h->forced_local
722 && h->dynindx == -1)
723 {
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
725 return FALSE;
726
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
730 if (h->is_weakalias)
731 {
732 struct elf_link_hash_entry *def = weakdef (h);
733
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
736 return FALSE;
737 }
738 }
739
740 return TRUE;
741 }
742
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
746
747 int
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
749 bfd *input_bfd,
750 long input_indx)
751 {
752 bfd_size_type amt;
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
756 size_t dynstr_index;
757 char *name;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
760
761 if (! is_elf_hash_table (info->hash))
762 return 0;
763
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
767 return 1;
768
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
771 if (entry == NULL)
772 return 0;
773
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
777 {
778 bfd_release (input_bfd, entry);
779 return 0;
780 }
781
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
784 {
785 asection *s;
786
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
789 {
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
793 return 2;
794 }
795 }
796
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
800
801 dynstr = elf_hash_table (info)->dynstr;
802 if (dynstr == NULL)
803 {
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
806 if (dynstr == NULL)
807 return 0;
808 }
809
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
812 return 0;
813 entry->isym.st_name = dynstr_index;
814
815 eht = elf_hash_table (info);
816
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
821 eht->dynsymcount++;
822
823 /* Whatever binding the symbol had before, it's now local. */
824 entry->isym.st_info
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
826
827 /* The dynindx will be set at the end of size_dynamic_sections. */
828
829 return 1;
830 }
831
832 /* Return the dynindex of a local dynamic symbol. */
833
834 long
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
836 bfd *input_bfd,
837 long input_indx)
838 {
839 struct elf_link_local_dynamic_entry *e;
840
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
843 return e->dynindx;
844 return -1;
845 }
846
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
850
851 static bfd_boolean
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
853 void *data)
854 {
855 size_t *count = (size_t *) data;
856
857 if (h->forced_local)
858 return TRUE;
859
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
862
863 return TRUE;
864 }
865
866
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
869
870 static bfd_boolean
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
872 void *data)
873 {
874 size_t *count = (size_t *) data;
875
876 if (!h->forced_local)
877 return TRUE;
878
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
881
882 return TRUE;
883 }
884
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
887 bfd_boolean
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
890 asection *p)
891 {
892 struct elf_link_hash_table *htab;
893 asection *ip;
894
895 switch (elf_section_data (p)->this_hdr.sh_type)
896 {
897 case SHT_PROGBITS:
898 case SHT_NOBITS:
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
901 case SHT_NULL:
902 htab = elf_hash_table (info);
903 if (htab->text_index_section != NULL)
904 return p != htab->text_index_section && p != htab->data_index_section;
905
906 return (htab->dynobj != NULL
907 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
908 && ip->output_section == p);
909
910 /* There shouldn't be section relative relocations
911 against any other section. */
912 default:
913 return TRUE;
914 }
915 }
916
917 bfd_boolean
918 _bfd_elf_omit_section_dynsym_all
919 (bfd *output_bfd ATTRIBUTE_UNUSED,
920 struct bfd_link_info *info ATTRIBUTE_UNUSED,
921 asection *p ATTRIBUTE_UNUSED)
922 {
923 return TRUE;
924 }
925
926 /* Assign dynsym indices. In a shared library we generate a section
927 symbol for each output section, which come first. Next come symbols
928 which have been forced to local binding. Then all of the back-end
929 allocated local dynamic syms, followed by the rest of the global
930 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
931 (This prevents the early call before elf_backend_init_index_section
932 and strip_excluded_output_sections setting dynindx for sections
933 that are stripped.) */
934
935 static unsigned long
936 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
937 struct bfd_link_info *info,
938 unsigned long *section_sym_count)
939 {
940 unsigned long dynsymcount = 0;
941 bfd_boolean do_sec = section_sym_count != NULL;
942
943 if (bfd_link_pic (info)
944 || elf_hash_table (info)->is_relocatable_executable)
945 {
946 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
947 asection *p;
948 for (p = output_bfd->sections; p ; p = p->next)
949 if ((p->flags & SEC_EXCLUDE) == 0
950 && (p->flags & SEC_ALLOC) != 0
951 && elf_hash_table (info)->dynamic_relocs
952 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
953 {
954 ++dynsymcount;
955 if (do_sec)
956 elf_section_data (p)->dynindx = dynsymcount;
957 }
958 else if (do_sec)
959 elf_section_data (p)->dynindx = 0;
960 }
961 if (do_sec)
962 *section_sym_count = dynsymcount;
963
964 elf_link_hash_traverse (elf_hash_table (info),
965 elf_link_renumber_local_hash_table_dynsyms,
966 &dynsymcount);
967
968 if (elf_hash_table (info)->dynlocal)
969 {
970 struct elf_link_local_dynamic_entry *p;
971 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
972 p->dynindx = ++dynsymcount;
973 }
974 elf_hash_table (info)->local_dynsymcount = dynsymcount;
975
976 elf_link_hash_traverse (elf_hash_table (info),
977 elf_link_renumber_hash_table_dynsyms,
978 &dynsymcount);
979
980 /* There is an unused NULL entry at the head of the table which we
981 must account for in our count even if the table is empty since it
982 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
983 .dynamic section. */
984 dynsymcount++;
985
986 elf_hash_table (info)->dynsymcount = dynsymcount;
987 return dynsymcount;
988 }
989
990 /* Merge st_other field. */
991
992 static void
993 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
994 const Elf_Internal_Sym *isym, asection *sec,
995 bfd_boolean definition, bfd_boolean dynamic)
996 {
997 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
998
999 /* If st_other has a processor-specific meaning, specific
1000 code might be needed here. */
1001 if (bed->elf_backend_merge_symbol_attribute)
1002 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1003 dynamic);
1004
1005 if (!dynamic)
1006 {
1007 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1008 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1009
1010 /* Keep the most constraining visibility. Leave the remainder
1011 of the st_other field to elf_backend_merge_symbol_attribute. */
1012 if (symvis - 1 < hvis - 1)
1013 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1014 }
1015 else if (definition
1016 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1017 && (sec->flags & SEC_READONLY) == 0)
1018 h->protected_def = 1;
1019 }
1020
1021 /* This function is called when we want to merge a new symbol with an
1022 existing symbol. It handles the various cases which arise when we
1023 find a definition in a dynamic object, or when there is already a
1024 definition in a dynamic object. The new symbol is described by
1025 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1026 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1027 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1028 of an old common symbol. We set OVERRIDE if the old symbol is
1029 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1030 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1031 to change. By OK to change, we mean that we shouldn't warn if the
1032 type or size does change. */
1033
1034 static bfd_boolean
1035 _bfd_elf_merge_symbol (bfd *abfd,
1036 struct bfd_link_info *info,
1037 const char *name,
1038 Elf_Internal_Sym *sym,
1039 asection **psec,
1040 bfd_vma *pvalue,
1041 struct elf_link_hash_entry **sym_hash,
1042 bfd **poldbfd,
1043 bfd_boolean *pold_weak,
1044 unsigned int *pold_alignment,
1045 bfd_boolean *skip,
1046 bfd_boolean *override,
1047 bfd_boolean *type_change_ok,
1048 bfd_boolean *size_change_ok,
1049 bfd_boolean *matched)
1050 {
1051 asection *sec, *oldsec;
1052 struct elf_link_hash_entry *h;
1053 struct elf_link_hash_entry *hi;
1054 struct elf_link_hash_entry *flip;
1055 int bind;
1056 bfd *oldbfd;
1057 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1058 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1059 const struct elf_backend_data *bed;
1060 char *new_version;
1061 bfd_boolean default_sym = *matched;
1062
1063 *skip = FALSE;
1064 *override = FALSE;
1065
1066 sec = *psec;
1067 bind = ELF_ST_BIND (sym->st_info);
1068
1069 if (! bfd_is_und_section (sec))
1070 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1071 else
1072 h = ((struct elf_link_hash_entry *)
1073 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1074 if (h == NULL)
1075 return FALSE;
1076 *sym_hash = h;
1077
1078 bed = get_elf_backend_data (abfd);
1079
1080 /* NEW_VERSION is the symbol version of the new symbol. */
1081 if (h->versioned != unversioned)
1082 {
1083 /* Symbol version is unknown or versioned. */
1084 new_version = strrchr (name, ELF_VER_CHR);
1085 if (new_version)
1086 {
1087 if (h->versioned == unknown)
1088 {
1089 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1090 h->versioned = versioned_hidden;
1091 else
1092 h->versioned = versioned;
1093 }
1094 new_version += 1;
1095 if (new_version[0] == '\0')
1096 new_version = NULL;
1097 }
1098 else
1099 h->versioned = unversioned;
1100 }
1101 else
1102 new_version = NULL;
1103
1104 /* For merging, we only care about real symbols. But we need to make
1105 sure that indirect symbol dynamic flags are updated. */
1106 hi = h;
1107 while (h->root.type == bfd_link_hash_indirect
1108 || h->root.type == bfd_link_hash_warning)
1109 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1110
1111 if (!*matched)
1112 {
1113 if (hi == h || h->root.type == bfd_link_hash_new)
1114 *matched = TRUE;
1115 else
1116 {
1117 /* OLD_HIDDEN is true if the existing symbol is only visible
1118 to the symbol with the same symbol version. NEW_HIDDEN is
1119 true if the new symbol is only visible to the symbol with
1120 the same symbol version. */
1121 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1122 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1123 if (!old_hidden && !new_hidden)
1124 /* The new symbol matches the existing symbol if both
1125 aren't hidden. */
1126 *matched = TRUE;
1127 else
1128 {
1129 /* OLD_VERSION is the symbol version of the existing
1130 symbol. */
1131 char *old_version;
1132
1133 if (h->versioned >= versioned)
1134 old_version = strrchr (h->root.root.string,
1135 ELF_VER_CHR) + 1;
1136 else
1137 old_version = NULL;
1138
1139 /* The new symbol matches the existing symbol if they
1140 have the same symbol version. */
1141 *matched = (old_version == new_version
1142 || (old_version != NULL
1143 && new_version != NULL
1144 && strcmp (old_version, new_version) == 0));
1145 }
1146 }
1147 }
1148
1149 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1150 existing symbol. */
1151
1152 oldbfd = NULL;
1153 oldsec = NULL;
1154 switch (h->root.type)
1155 {
1156 default:
1157 break;
1158
1159 case bfd_link_hash_undefined:
1160 case bfd_link_hash_undefweak:
1161 oldbfd = h->root.u.undef.abfd;
1162 break;
1163
1164 case bfd_link_hash_defined:
1165 case bfd_link_hash_defweak:
1166 oldbfd = h->root.u.def.section->owner;
1167 oldsec = h->root.u.def.section;
1168 break;
1169
1170 case bfd_link_hash_common:
1171 oldbfd = h->root.u.c.p->section->owner;
1172 oldsec = h->root.u.c.p->section;
1173 if (pold_alignment)
1174 *pold_alignment = h->root.u.c.p->alignment_power;
1175 break;
1176 }
1177 if (poldbfd && *poldbfd == NULL)
1178 *poldbfd = oldbfd;
1179
1180 /* Differentiate strong and weak symbols. */
1181 newweak = bind == STB_WEAK;
1182 oldweak = (h->root.type == bfd_link_hash_defweak
1183 || h->root.type == bfd_link_hash_undefweak);
1184 if (pold_weak)
1185 *pold_weak = oldweak;
1186
1187 /* We have to check it for every instance since the first few may be
1188 references and not all compilers emit symbol type for undefined
1189 symbols. */
1190 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1191
1192 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1193 respectively, is from a dynamic object. */
1194
1195 newdyn = (abfd->flags & DYNAMIC) != 0;
1196
1197 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1198 syms and defined syms in dynamic libraries respectively.
1199 ref_dynamic on the other hand can be set for a symbol defined in
1200 a dynamic library, and def_dynamic may not be set; When the
1201 definition in a dynamic lib is overridden by a definition in the
1202 executable use of the symbol in the dynamic lib becomes a
1203 reference to the executable symbol. */
1204 if (newdyn)
1205 {
1206 if (bfd_is_und_section (sec))
1207 {
1208 if (bind != STB_WEAK)
1209 {
1210 h->ref_dynamic_nonweak = 1;
1211 hi->ref_dynamic_nonweak = 1;
1212 }
1213 }
1214 else
1215 {
1216 /* Update the existing symbol only if they match. */
1217 if (*matched)
1218 h->dynamic_def = 1;
1219 hi->dynamic_def = 1;
1220 }
1221 }
1222
1223 /* If we just created the symbol, mark it as being an ELF symbol.
1224 Other than that, there is nothing to do--there is no merge issue
1225 with a newly defined symbol--so we just return. */
1226
1227 if (h->root.type == bfd_link_hash_new)
1228 {
1229 h->non_elf = 0;
1230 return TRUE;
1231 }
1232
1233 /* In cases involving weak versioned symbols, we may wind up trying
1234 to merge a symbol with itself. Catch that here, to avoid the
1235 confusion that results if we try to override a symbol with
1236 itself. The additional tests catch cases like
1237 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1238 dynamic object, which we do want to handle here. */
1239 if (abfd == oldbfd
1240 && (newweak || oldweak)
1241 && ((abfd->flags & DYNAMIC) == 0
1242 || !h->def_regular))
1243 return TRUE;
1244
1245 olddyn = FALSE;
1246 if (oldbfd != NULL)
1247 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1248 else if (oldsec != NULL)
1249 {
1250 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1251 indices used by MIPS ELF. */
1252 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1253 }
1254
1255 /* Handle a case where plugin_notice won't be called and thus won't
1256 set the non_ir_ref flags on the first pass over symbols. */
1257 if (oldbfd != NULL
1258 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1259 && newdyn != olddyn)
1260 {
1261 h->root.non_ir_ref_dynamic = TRUE;
1262 hi->root.non_ir_ref_dynamic = TRUE;
1263 }
1264
1265 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1266 respectively, appear to be a definition rather than reference. */
1267
1268 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1269
1270 olddef = (h->root.type != bfd_link_hash_undefined
1271 && h->root.type != bfd_link_hash_undefweak
1272 && h->root.type != bfd_link_hash_common);
1273
1274 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1275 respectively, appear to be a function. */
1276
1277 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1278 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1279
1280 oldfunc = (h->type != STT_NOTYPE
1281 && bed->is_function_type (h->type));
1282
1283 if (!(newfunc && oldfunc)
1284 && ELF_ST_TYPE (sym->st_info) != h->type
1285 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1286 && h->type != STT_NOTYPE
1287 && (newdef || bfd_is_com_section (sec))
1288 && (olddef || h->root.type == bfd_link_hash_common))
1289 {
1290 /* If creating a default indirect symbol ("foo" or "foo@") from
1291 a dynamic versioned definition ("foo@@") skip doing so if
1292 there is an existing regular definition with a different
1293 type. We don't want, for example, a "time" variable in the
1294 executable overriding a "time" function in a shared library. */
1295 if (newdyn
1296 && !olddyn)
1297 {
1298 *skip = TRUE;
1299 return TRUE;
1300 }
1301
1302 /* When adding a symbol from a regular object file after we have
1303 created indirect symbols, undo the indirection and any
1304 dynamic state. */
1305 if (hi != h
1306 && !newdyn
1307 && olddyn)
1308 {
1309 h = hi;
1310 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1311 h->forced_local = 0;
1312 h->ref_dynamic = 0;
1313 h->def_dynamic = 0;
1314 h->dynamic_def = 0;
1315 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1316 {
1317 h->root.type = bfd_link_hash_undefined;
1318 h->root.u.undef.abfd = abfd;
1319 }
1320 else
1321 {
1322 h->root.type = bfd_link_hash_new;
1323 h->root.u.undef.abfd = NULL;
1324 }
1325 return TRUE;
1326 }
1327 }
1328
1329 /* Check TLS symbols. We don't check undefined symbols introduced
1330 by "ld -u" which have no type (and oldbfd NULL), and we don't
1331 check symbols from plugins because they also have no type. */
1332 if (oldbfd != NULL
1333 && (oldbfd->flags & BFD_PLUGIN) == 0
1334 && (abfd->flags & BFD_PLUGIN) == 0
1335 && ELF_ST_TYPE (sym->st_info) != h->type
1336 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1337 {
1338 bfd *ntbfd, *tbfd;
1339 bfd_boolean ntdef, tdef;
1340 asection *ntsec, *tsec;
1341
1342 if (h->type == STT_TLS)
1343 {
1344 ntbfd = abfd;
1345 ntsec = sec;
1346 ntdef = newdef;
1347 tbfd = oldbfd;
1348 tsec = oldsec;
1349 tdef = olddef;
1350 }
1351 else
1352 {
1353 ntbfd = oldbfd;
1354 ntsec = oldsec;
1355 ntdef = olddef;
1356 tbfd = abfd;
1357 tsec = sec;
1358 tdef = newdef;
1359 }
1360
1361 if (tdef && ntdef)
1362 _bfd_error_handler
1363 /* xgettext:c-format */
1364 (_("%s: TLS definition in %pB section %pA "
1365 "mismatches non-TLS definition in %pB section %pA"),
1366 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1367 else if (!tdef && !ntdef)
1368 _bfd_error_handler
1369 /* xgettext:c-format */
1370 (_("%s: TLS reference in %pB "
1371 "mismatches non-TLS reference in %pB"),
1372 h->root.root.string, tbfd, ntbfd);
1373 else if (tdef)
1374 _bfd_error_handler
1375 /* xgettext:c-format */
1376 (_("%s: TLS definition in %pB section %pA "
1377 "mismatches non-TLS reference in %pB"),
1378 h->root.root.string, tbfd, tsec, ntbfd);
1379 else
1380 _bfd_error_handler
1381 /* xgettext:c-format */
1382 (_("%s: TLS reference in %pB "
1383 "mismatches non-TLS definition in %pB section %pA"),
1384 h->root.root.string, tbfd, ntbfd, ntsec);
1385
1386 bfd_set_error (bfd_error_bad_value);
1387 return FALSE;
1388 }
1389
1390 /* If the old symbol has non-default visibility, we ignore the new
1391 definition from a dynamic object. */
1392 if (newdyn
1393 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1394 && !bfd_is_und_section (sec))
1395 {
1396 *skip = TRUE;
1397 /* Make sure this symbol is dynamic. */
1398 h->ref_dynamic = 1;
1399 hi->ref_dynamic = 1;
1400 /* A protected symbol has external availability. Make sure it is
1401 recorded as dynamic.
1402
1403 FIXME: Should we check type and size for protected symbol? */
1404 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1405 return bfd_elf_link_record_dynamic_symbol (info, h);
1406 else
1407 return TRUE;
1408 }
1409 else if (!newdyn
1410 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1411 && h->def_dynamic)
1412 {
1413 /* If the new symbol with non-default visibility comes from a
1414 relocatable file and the old definition comes from a dynamic
1415 object, we remove the old definition. */
1416 if (hi->root.type == bfd_link_hash_indirect)
1417 {
1418 /* Handle the case where the old dynamic definition is
1419 default versioned. We need to copy the symbol info from
1420 the symbol with default version to the normal one if it
1421 was referenced before. */
1422 if (h->ref_regular)
1423 {
1424 hi->root.type = h->root.type;
1425 h->root.type = bfd_link_hash_indirect;
1426 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1427
1428 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1429 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1430 {
1431 /* If the new symbol is hidden or internal, completely undo
1432 any dynamic link state. */
1433 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1434 h->forced_local = 0;
1435 h->ref_dynamic = 0;
1436 }
1437 else
1438 h->ref_dynamic = 1;
1439
1440 h->def_dynamic = 0;
1441 /* FIXME: Should we check type and size for protected symbol? */
1442 h->size = 0;
1443 h->type = 0;
1444
1445 h = hi;
1446 }
1447 else
1448 h = hi;
1449 }
1450
1451 /* If the old symbol was undefined before, then it will still be
1452 on the undefs list. If the new symbol is undefined or
1453 common, we can't make it bfd_link_hash_new here, because new
1454 undefined or common symbols will be added to the undefs list
1455 by _bfd_generic_link_add_one_symbol. Symbols may not be
1456 added twice to the undefs list. Also, if the new symbol is
1457 undefweak then we don't want to lose the strong undef. */
1458 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1459 {
1460 h->root.type = bfd_link_hash_undefined;
1461 h->root.u.undef.abfd = abfd;
1462 }
1463 else
1464 {
1465 h->root.type = bfd_link_hash_new;
1466 h->root.u.undef.abfd = NULL;
1467 }
1468
1469 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1470 {
1471 /* If the new symbol is hidden or internal, completely undo
1472 any dynamic link state. */
1473 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1474 h->forced_local = 0;
1475 h->ref_dynamic = 0;
1476 }
1477 else
1478 h->ref_dynamic = 1;
1479 h->def_dynamic = 0;
1480 /* FIXME: Should we check type and size for protected symbol? */
1481 h->size = 0;
1482 h->type = 0;
1483 return TRUE;
1484 }
1485
1486 /* If a new weak symbol definition comes from a regular file and the
1487 old symbol comes from a dynamic library, we treat the new one as
1488 strong. Similarly, an old weak symbol definition from a regular
1489 file is treated as strong when the new symbol comes from a dynamic
1490 library. Further, an old weak symbol from a dynamic library is
1491 treated as strong if the new symbol is from a dynamic library.
1492 This reflects the way glibc's ld.so works.
1493
1494 Also allow a weak symbol to override a linker script symbol
1495 defined by an early pass over the script. This is done so the
1496 linker knows the symbol is defined in an object file, for the
1497 DEFINED script function.
1498
1499 Do this before setting *type_change_ok or *size_change_ok so that
1500 we warn properly when dynamic library symbols are overridden. */
1501
1502 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1503 newweak = FALSE;
1504 if (olddef && newdyn)
1505 oldweak = FALSE;
1506
1507 /* Allow changes between different types of function symbol. */
1508 if (newfunc && oldfunc)
1509 *type_change_ok = TRUE;
1510
1511 /* It's OK to change the type if either the existing symbol or the
1512 new symbol is weak. A type change is also OK if the old symbol
1513 is undefined and the new symbol is defined. */
1514
1515 if (oldweak
1516 || newweak
1517 || (newdef
1518 && h->root.type == bfd_link_hash_undefined))
1519 *type_change_ok = TRUE;
1520
1521 /* It's OK to change the size if either the existing symbol or the
1522 new symbol is weak, or if the old symbol is undefined. */
1523
1524 if (*type_change_ok
1525 || h->root.type == bfd_link_hash_undefined)
1526 *size_change_ok = TRUE;
1527
1528 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1529 symbol, respectively, appears to be a common symbol in a dynamic
1530 object. If a symbol appears in an uninitialized section, and is
1531 not weak, and is not a function, then it may be a common symbol
1532 which was resolved when the dynamic object was created. We want
1533 to treat such symbols specially, because they raise special
1534 considerations when setting the symbol size: if the symbol
1535 appears as a common symbol in a regular object, and the size in
1536 the regular object is larger, we must make sure that we use the
1537 larger size. This problematic case can always be avoided in C,
1538 but it must be handled correctly when using Fortran shared
1539 libraries.
1540
1541 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1542 likewise for OLDDYNCOMMON and OLDDEF.
1543
1544 Note that this test is just a heuristic, and that it is quite
1545 possible to have an uninitialized symbol in a shared object which
1546 is really a definition, rather than a common symbol. This could
1547 lead to some minor confusion when the symbol really is a common
1548 symbol in some regular object. However, I think it will be
1549 harmless. */
1550
1551 if (newdyn
1552 && newdef
1553 && !newweak
1554 && (sec->flags & SEC_ALLOC) != 0
1555 && (sec->flags & SEC_LOAD) == 0
1556 && sym->st_size > 0
1557 && !newfunc)
1558 newdyncommon = TRUE;
1559 else
1560 newdyncommon = FALSE;
1561
1562 if (olddyn
1563 && olddef
1564 && h->root.type == bfd_link_hash_defined
1565 && h->def_dynamic
1566 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1567 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1568 && h->size > 0
1569 && !oldfunc)
1570 olddyncommon = TRUE;
1571 else
1572 olddyncommon = FALSE;
1573
1574 /* We now know everything about the old and new symbols. We ask the
1575 backend to check if we can merge them. */
1576 if (bed->merge_symbol != NULL)
1577 {
1578 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1579 return FALSE;
1580 sec = *psec;
1581 }
1582
1583 /* There are multiple definitions of a normal symbol. Skip the
1584 default symbol as well as definition from an IR object. */
1585 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1586 && !default_sym && h->def_regular
1587 && !(oldbfd != NULL
1588 && (oldbfd->flags & BFD_PLUGIN) != 0
1589 && (abfd->flags & BFD_PLUGIN) == 0))
1590 {
1591 /* Handle a multiple definition. */
1592 (*info->callbacks->multiple_definition) (info, &h->root,
1593 abfd, sec, *pvalue);
1594 *skip = TRUE;
1595 return TRUE;
1596 }
1597
1598 /* If both the old and the new symbols look like common symbols in a
1599 dynamic object, set the size of the symbol to the larger of the
1600 two. */
1601
1602 if (olddyncommon
1603 && newdyncommon
1604 && sym->st_size != h->size)
1605 {
1606 /* Since we think we have two common symbols, issue a multiple
1607 common warning if desired. Note that we only warn if the
1608 size is different. If the size is the same, we simply let
1609 the old symbol override the new one as normally happens with
1610 symbols defined in dynamic objects. */
1611
1612 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1613 bfd_link_hash_common, sym->st_size);
1614 if (sym->st_size > h->size)
1615 h->size = sym->st_size;
1616
1617 *size_change_ok = TRUE;
1618 }
1619
1620 /* If we are looking at a dynamic object, and we have found a
1621 definition, we need to see if the symbol was already defined by
1622 some other object. If so, we want to use the existing
1623 definition, and we do not want to report a multiple symbol
1624 definition error; we do this by clobbering *PSEC to be
1625 bfd_und_section_ptr.
1626
1627 We treat a common symbol as a definition if the symbol in the
1628 shared library is a function, since common symbols always
1629 represent variables; this can cause confusion in principle, but
1630 any such confusion would seem to indicate an erroneous program or
1631 shared library. We also permit a common symbol in a regular
1632 object to override a weak symbol in a shared object. */
1633
1634 if (newdyn
1635 && newdef
1636 && (olddef
1637 || (h->root.type == bfd_link_hash_common
1638 && (newweak || newfunc))))
1639 {
1640 *override = TRUE;
1641 newdef = FALSE;
1642 newdyncommon = FALSE;
1643
1644 *psec = sec = bfd_und_section_ptr;
1645 *size_change_ok = TRUE;
1646
1647 /* If we get here when the old symbol is a common symbol, then
1648 we are explicitly letting it override a weak symbol or
1649 function in a dynamic object, and we don't want to warn about
1650 a type change. If the old symbol is a defined symbol, a type
1651 change warning may still be appropriate. */
1652
1653 if (h->root.type == bfd_link_hash_common)
1654 *type_change_ok = TRUE;
1655 }
1656
1657 /* Handle the special case of an old common symbol merging with a
1658 new symbol which looks like a common symbol in a shared object.
1659 We change *PSEC and *PVALUE to make the new symbol look like a
1660 common symbol, and let _bfd_generic_link_add_one_symbol do the
1661 right thing. */
1662
1663 if (newdyncommon
1664 && h->root.type == bfd_link_hash_common)
1665 {
1666 *override = TRUE;
1667 newdef = FALSE;
1668 newdyncommon = FALSE;
1669 *pvalue = sym->st_size;
1670 *psec = sec = bed->common_section (oldsec);
1671 *size_change_ok = TRUE;
1672 }
1673
1674 /* Skip weak definitions of symbols that are already defined. */
1675 if (newdef && olddef && newweak)
1676 {
1677 /* Don't skip new non-IR weak syms. */
1678 if (!(oldbfd != NULL
1679 && (oldbfd->flags & BFD_PLUGIN) != 0
1680 && (abfd->flags & BFD_PLUGIN) == 0))
1681 {
1682 newdef = FALSE;
1683 *skip = TRUE;
1684 }
1685
1686 /* Merge st_other. If the symbol already has a dynamic index,
1687 but visibility says it should not be visible, turn it into a
1688 local symbol. */
1689 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1690 if (h->dynindx != -1)
1691 switch (ELF_ST_VISIBILITY (h->other))
1692 {
1693 case STV_INTERNAL:
1694 case STV_HIDDEN:
1695 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1696 break;
1697 }
1698 }
1699
1700 /* If the old symbol is from a dynamic object, and the new symbol is
1701 a definition which is not from a dynamic object, then the new
1702 symbol overrides the old symbol. Symbols from regular files
1703 always take precedence over symbols from dynamic objects, even if
1704 they are defined after the dynamic object in the link.
1705
1706 As above, we again permit a common symbol in a regular object to
1707 override a definition in a shared object if the shared object
1708 symbol is a function or is weak. */
1709
1710 flip = NULL;
1711 if (!newdyn
1712 && (newdef
1713 || (bfd_is_com_section (sec)
1714 && (oldweak || oldfunc)))
1715 && olddyn
1716 && olddef
1717 && h->def_dynamic)
1718 {
1719 /* Change the hash table entry to undefined, and let
1720 _bfd_generic_link_add_one_symbol do the right thing with the
1721 new definition. */
1722
1723 h->root.type = bfd_link_hash_undefined;
1724 h->root.u.undef.abfd = h->root.u.def.section->owner;
1725 *size_change_ok = TRUE;
1726
1727 olddef = FALSE;
1728 olddyncommon = FALSE;
1729
1730 /* We again permit a type change when a common symbol may be
1731 overriding a function. */
1732
1733 if (bfd_is_com_section (sec))
1734 {
1735 if (oldfunc)
1736 {
1737 /* If a common symbol overrides a function, make sure
1738 that it isn't defined dynamically nor has type
1739 function. */
1740 h->def_dynamic = 0;
1741 h->type = STT_NOTYPE;
1742 }
1743 *type_change_ok = TRUE;
1744 }
1745
1746 if (hi->root.type == bfd_link_hash_indirect)
1747 flip = hi;
1748 else
1749 /* This union may have been set to be non-NULL when this symbol
1750 was seen in a dynamic object. We must force the union to be
1751 NULL, so that it is correct for a regular symbol. */
1752 h->verinfo.vertree = NULL;
1753 }
1754
1755 /* Handle the special case of a new common symbol merging with an
1756 old symbol that looks like it might be a common symbol defined in
1757 a shared object. Note that we have already handled the case in
1758 which a new common symbol should simply override the definition
1759 in the shared library. */
1760
1761 if (! newdyn
1762 && bfd_is_com_section (sec)
1763 && olddyncommon)
1764 {
1765 /* It would be best if we could set the hash table entry to a
1766 common symbol, but we don't know what to use for the section
1767 or the alignment. */
1768 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1769 bfd_link_hash_common, sym->st_size);
1770
1771 /* If the presumed common symbol in the dynamic object is
1772 larger, pretend that the new symbol has its size. */
1773
1774 if (h->size > *pvalue)
1775 *pvalue = h->size;
1776
1777 /* We need to remember the alignment required by the symbol
1778 in the dynamic object. */
1779 BFD_ASSERT (pold_alignment);
1780 *pold_alignment = h->root.u.def.section->alignment_power;
1781
1782 olddef = FALSE;
1783 olddyncommon = FALSE;
1784
1785 h->root.type = bfd_link_hash_undefined;
1786 h->root.u.undef.abfd = h->root.u.def.section->owner;
1787
1788 *size_change_ok = TRUE;
1789 *type_change_ok = TRUE;
1790
1791 if (hi->root.type == bfd_link_hash_indirect)
1792 flip = hi;
1793 else
1794 h->verinfo.vertree = NULL;
1795 }
1796
1797 if (flip != NULL)
1798 {
1799 /* Handle the case where we had a versioned symbol in a dynamic
1800 library and now find a definition in a normal object. In this
1801 case, we make the versioned symbol point to the normal one. */
1802 flip->root.type = h->root.type;
1803 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1804 h->root.type = bfd_link_hash_indirect;
1805 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1806 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1807 if (h->def_dynamic)
1808 {
1809 h->def_dynamic = 0;
1810 flip->ref_dynamic = 1;
1811 }
1812 }
1813
1814 return TRUE;
1815 }
1816
1817 /* This function is called to create an indirect symbol from the
1818 default for the symbol with the default version if needed. The
1819 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1820 set DYNSYM if the new indirect symbol is dynamic. */
1821
1822 static bfd_boolean
1823 _bfd_elf_add_default_symbol (bfd *abfd,
1824 struct bfd_link_info *info,
1825 struct elf_link_hash_entry *h,
1826 const char *name,
1827 Elf_Internal_Sym *sym,
1828 asection *sec,
1829 bfd_vma value,
1830 bfd **poldbfd,
1831 bfd_boolean *dynsym)
1832 {
1833 bfd_boolean type_change_ok;
1834 bfd_boolean size_change_ok;
1835 bfd_boolean skip;
1836 char *shortname;
1837 struct elf_link_hash_entry *hi;
1838 struct bfd_link_hash_entry *bh;
1839 const struct elf_backend_data *bed;
1840 bfd_boolean collect;
1841 bfd_boolean dynamic;
1842 bfd_boolean override;
1843 char *p;
1844 size_t len, shortlen;
1845 asection *tmp_sec;
1846 bfd_boolean matched;
1847
1848 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1849 return TRUE;
1850
1851 /* If this symbol has a version, and it is the default version, we
1852 create an indirect symbol from the default name to the fully
1853 decorated name. This will cause external references which do not
1854 specify a version to be bound to this version of the symbol. */
1855 p = strchr (name, ELF_VER_CHR);
1856 if (h->versioned == unknown)
1857 {
1858 if (p == NULL)
1859 {
1860 h->versioned = unversioned;
1861 return TRUE;
1862 }
1863 else
1864 {
1865 if (p[1] != ELF_VER_CHR)
1866 {
1867 h->versioned = versioned_hidden;
1868 return TRUE;
1869 }
1870 else
1871 h->versioned = versioned;
1872 }
1873 }
1874 else
1875 {
1876 /* PR ld/19073: We may see an unversioned definition after the
1877 default version. */
1878 if (p == NULL)
1879 return TRUE;
1880 }
1881
1882 bed = get_elf_backend_data (abfd);
1883 collect = bed->collect;
1884 dynamic = (abfd->flags & DYNAMIC) != 0;
1885
1886 shortlen = p - name;
1887 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1888 if (shortname == NULL)
1889 return FALSE;
1890 memcpy (shortname, name, shortlen);
1891 shortname[shortlen] = '\0';
1892
1893 /* We are going to create a new symbol. Merge it with any existing
1894 symbol with this name. For the purposes of the merge, act as
1895 though we were defining the symbol we just defined, although we
1896 actually going to define an indirect symbol. */
1897 type_change_ok = FALSE;
1898 size_change_ok = FALSE;
1899 matched = TRUE;
1900 tmp_sec = sec;
1901 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1902 &hi, poldbfd, NULL, NULL, &skip, &override,
1903 &type_change_ok, &size_change_ok, &matched))
1904 return FALSE;
1905
1906 if (skip)
1907 goto nondefault;
1908
1909 if (hi->def_regular)
1910 {
1911 /* If the undecorated symbol will have a version added by a
1912 script different to H, then don't indirect to/from the
1913 undecorated symbol. This isn't ideal because we may not yet
1914 have seen symbol versions, if given by a script on the
1915 command line rather than via --version-script. */
1916 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1917 {
1918 bfd_boolean hide;
1919
1920 hi->verinfo.vertree
1921 = bfd_find_version_for_sym (info->version_info,
1922 hi->root.root.string, &hide);
1923 if (hi->verinfo.vertree != NULL && hide)
1924 {
1925 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1926 goto nondefault;
1927 }
1928 }
1929 if (hi->verinfo.vertree != NULL
1930 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1931 goto nondefault;
1932 }
1933
1934 if (! override)
1935 {
1936 /* Add the default symbol if not performing a relocatable link. */
1937 if (! bfd_link_relocatable (info))
1938 {
1939 bh = &hi->root;
1940 if (bh->type == bfd_link_hash_defined
1941 && bh->u.def.section->owner != NULL
1942 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1943 {
1944 /* Mark the previous definition from IR object as
1945 undefined so that the generic linker will override
1946 it. */
1947 bh->type = bfd_link_hash_undefined;
1948 bh->u.undef.abfd = bh->u.def.section->owner;
1949 }
1950 if (! (_bfd_generic_link_add_one_symbol
1951 (info, abfd, shortname, BSF_INDIRECT,
1952 bfd_ind_section_ptr,
1953 0, name, FALSE, collect, &bh)))
1954 return FALSE;
1955 hi = (struct elf_link_hash_entry *) bh;
1956 }
1957 }
1958 else
1959 {
1960 /* In this case the symbol named SHORTNAME is overriding the
1961 indirect symbol we want to add. We were planning on making
1962 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1963 is the name without a version. NAME is the fully versioned
1964 name, and it is the default version.
1965
1966 Overriding means that we already saw a definition for the
1967 symbol SHORTNAME in a regular object, and it is overriding
1968 the symbol defined in the dynamic object.
1969
1970 When this happens, we actually want to change NAME, the
1971 symbol we just added, to refer to SHORTNAME. This will cause
1972 references to NAME in the shared object to become references
1973 to SHORTNAME in the regular object. This is what we expect
1974 when we override a function in a shared object: that the
1975 references in the shared object will be mapped to the
1976 definition in the regular object. */
1977
1978 while (hi->root.type == bfd_link_hash_indirect
1979 || hi->root.type == bfd_link_hash_warning)
1980 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1981
1982 h->root.type = bfd_link_hash_indirect;
1983 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1984 if (h->def_dynamic)
1985 {
1986 h->def_dynamic = 0;
1987 hi->ref_dynamic = 1;
1988 if (hi->ref_regular
1989 || hi->def_regular)
1990 {
1991 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1992 return FALSE;
1993 }
1994 }
1995
1996 /* Now set HI to H, so that the following code will set the
1997 other fields correctly. */
1998 hi = h;
1999 }
2000
2001 /* Check if HI is a warning symbol. */
2002 if (hi->root.type == bfd_link_hash_warning)
2003 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2004
2005 /* If there is a duplicate definition somewhere, then HI may not
2006 point to an indirect symbol. We will have reported an error to
2007 the user in that case. */
2008
2009 if (hi->root.type == bfd_link_hash_indirect)
2010 {
2011 struct elf_link_hash_entry *ht;
2012
2013 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2014 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2015
2016 /* A reference to the SHORTNAME symbol from a dynamic library
2017 will be satisfied by the versioned symbol at runtime. In
2018 effect, we have a reference to the versioned symbol. */
2019 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2020 hi->dynamic_def |= ht->dynamic_def;
2021
2022 /* See if the new flags lead us to realize that the symbol must
2023 be dynamic. */
2024 if (! *dynsym)
2025 {
2026 if (! dynamic)
2027 {
2028 if (! bfd_link_executable (info)
2029 || hi->def_dynamic
2030 || hi->ref_dynamic)
2031 *dynsym = TRUE;
2032 }
2033 else
2034 {
2035 if (hi->ref_regular)
2036 *dynsym = TRUE;
2037 }
2038 }
2039 }
2040
2041 /* We also need to define an indirection from the nondefault version
2042 of the symbol. */
2043
2044 nondefault:
2045 len = strlen (name);
2046 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2047 if (shortname == NULL)
2048 return FALSE;
2049 memcpy (shortname, name, shortlen);
2050 memcpy (shortname + shortlen, p + 1, len - shortlen);
2051
2052 /* Once again, merge with any existing symbol. */
2053 type_change_ok = FALSE;
2054 size_change_ok = FALSE;
2055 tmp_sec = sec;
2056 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2057 &hi, poldbfd, NULL, NULL, &skip, &override,
2058 &type_change_ok, &size_change_ok, &matched))
2059 return FALSE;
2060
2061 if (skip)
2062 return TRUE;
2063
2064 if (override)
2065 {
2066 /* Here SHORTNAME is a versioned name, so we don't expect to see
2067 the type of override we do in the case above unless it is
2068 overridden by a versioned definition. */
2069 if (hi->root.type != bfd_link_hash_defined
2070 && hi->root.type != bfd_link_hash_defweak)
2071 _bfd_error_handler
2072 /* xgettext:c-format */
2073 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2074 abfd, shortname);
2075 }
2076 else
2077 {
2078 bh = &hi->root;
2079 if (! (_bfd_generic_link_add_one_symbol
2080 (info, abfd, shortname, BSF_INDIRECT,
2081 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2082 return FALSE;
2083 hi = (struct elf_link_hash_entry *) bh;
2084
2085 /* If there is a duplicate definition somewhere, then HI may not
2086 point to an indirect symbol. We will have reported an error
2087 to the user in that case. */
2088
2089 if (hi->root.type == bfd_link_hash_indirect)
2090 {
2091 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2092 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2093 hi->dynamic_def |= h->dynamic_def;
2094
2095 /* See if the new flags lead us to realize that the symbol
2096 must be dynamic. */
2097 if (! *dynsym)
2098 {
2099 if (! dynamic)
2100 {
2101 if (! bfd_link_executable (info)
2102 || hi->ref_dynamic)
2103 *dynsym = TRUE;
2104 }
2105 else
2106 {
2107 if (hi->ref_regular)
2108 *dynsym = TRUE;
2109 }
2110 }
2111 }
2112 }
2113
2114 return TRUE;
2115 }
2116 \f
2117 /* This routine is used to export all defined symbols into the dynamic
2118 symbol table. It is called via elf_link_hash_traverse. */
2119
2120 static bfd_boolean
2121 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2122 {
2123 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2124
2125 /* Ignore indirect symbols. These are added by the versioning code. */
2126 if (h->root.type == bfd_link_hash_indirect)
2127 return TRUE;
2128
2129 /* Ignore this if we won't export it. */
2130 if (!eif->info->export_dynamic && !h->dynamic)
2131 return TRUE;
2132
2133 if (h->dynindx == -1
2134 && (h->def_regular || h->ref_regular)
2135 && ! bfd_hide_sym_by_version (eif->info->version_info,
2136 h->root.root.string))
2137 {
2138 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2139 {
2140 eif->failed = TRUE;
2141 return FALSE;
2142 }
2143 }
2144
2145 return TRUE;
2146 }
2147 \f
2148 /* Look through the symbols which are defined in other shared
2149 libraries and referenced here. Update the list of version
2150 dependencies. This will be put into the .gnu.version_r section.
2151 This function is called via elf_link_hash_traverse. */
2152
2153 static bfd_boolean
2154 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2155 void *data)
2156 {
2157 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2158 Elf_Internal_Verneed *t;
2159 Elf_Internal_Vernaux *a;
2160 bfd_size_type amt;
2161
2162 /* We only care about symbols defined in shared objects with version
2163 information. */
2164 if (!h->def_dynamic
2165 || h->def_regular
2166 || h->dynindx == -1
2167 || h->verinfo.verdef == NULL
2168 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2169 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2170 return TRUE;
2171
2172 /* See if we already know about this version. */
2173 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2174 t != NULL;
2175 t = t->vn_nextref)
2176 {
2177 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2178 continue;
2179
2180 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2181 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2182 return TRUE;
2183
2184 break;
2185 }
2186
2187 /* This is a new version. Add it to tree we are building. */
2188
2189 if (t == NULL)
2190 {
2191 amt = sizeof *t;
2192 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2193 if (t == NULL)
2194 {
2195 rinfo->failed = TRUE;
2196 return FALSE;
2197 }
2198
2199 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2200 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2201 elf_tdata (rinfo->info->output_bfd)->verref = t;
2202 }
2203
2204 amt = sizeof *a;
2205 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2206 if (a == NULL)
2207 {
2208 rinfo->failed = TRUE;
2209 return FALSE;
2210 }
2211
2212 /* Note that we are copying a string pointer here, and testing it
2213 above. If bfd_elf_string_from_elf_section is ever changed to
2214 discard the string data when low in memory, this will have to be
2215 fixed. */
2216 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2217
2218 a->vna_flags = h->verinfo.verdef->vd_flags;
2219 a->vna_nextptr = t->vn_auxptr;
2220
2221 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2222 ++rinfo->vers;
2223
2224 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2225
2226 t->vn_auxptr = a;
2227
2228 return TRUE;
2229 }
2230
2231 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2232 hidden. Set *T_P to NULL if there is no match. */
2233
2234 static bfd_boolean
2235 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2236 struct elf_link_hash_entry *h,
2237 const char *version_p,
2238 struct bfd_elf_version_tree **t_p,
2239 bfd_boolean *hide)
2240 {
2241 struct bfd_elf_version_tree *t;
2242
2243 /* Look for the version. If we find it, it is no longer weak. */
2244 for (t = info->version_info; t != NULL; t = t->next)
2245 {
2246 if (strcmp (t->name, version_p) == 0)
2247 {
2248 size_t len;
2249 char *alc;
2250 struct bfd_elf_version_expr *d;
2251
2252 len = version_p - h->root.root.string;
2253 alc = (char *) bfd_malloc (len);
2254 if (alc == NULL)
2255 return FALSE;
2256 memcpy (alc, h->root.root.string, len - 1);
2257 alc[len - 1] = '\0';
2258 if (alc[len - 2] == ELF_VER_CHR)
2259 alc[len - 2] = '\0';
2260
2261 h->verinfo.vertree = t;
2262 t->used = TRUE;
2263 d = NULL;
2264
2265 if (t->globals.list != NULL)
2266 d = (*t->match) (&t->globals, NULL, alc);
2267
2268 /* See if there is anything to force this symbol to
2269 local scope. */
2270 if (d == NULL && t->locals.list != NULL)
2271 {
2272 d = (*t->match) (&t->locals, NULL, alc);
2273 if (d != NULL
2274 && h->dynindx != -1
2275 && ! info->export_dynamic)
2276 *hide = TRUE;
2277 }
2278
2279 free (alc);
2280 break;
2281 }
2282 }
2283
2284 *t_p = t;
2285
2286 return TRUE;
2287 }
2288
2289 /* Return TRUE if the symbol H is hidden by version script. */
2290
2291 bfd_boolean
2292 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2293 struct elf_link_hash_entry *h)
2294 {
2295 const char *p;
2296 bfd_boolean hide = FALSE;
2297 const struct elf_backend_data *bed
2298 = get_elf_backend_data (info->output_bfd);
2299
2300 /* Version script only hides symbols defined in regular objects. */
2301 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2302 return TRUE;
2303
2304 p = strchr (h->root.root.string, ELF_VER_CHR);
2305 if (p != NULL && h->verinfo.vertree == NULL)
2306 {
2307 struct bfd_elf_version_tree *t;
2308
2309 ++p;
2310 if (*p == ELF_VER_CHR)
2311 ++p;
2312
2313 if (*p != '\0'
2314 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2315 && hide)
2316 {
2317 if (hide)
2318 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2319 return TRUE;
2320 }
2321 }
2322
2323 /* If we don't have a version for this symbol, see if we can find
2324 something. */
2325 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2326 {
2327 h->verinfo.vertree
2328 = bfd_find_version_for_sym (info->version_info,
2329 h->root.root.string, &hide);
2330 if (h->verinfo.vertree != NULL && hide)
2331 {
2332 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2333 return TRUE;
2334 }
2335 }
2336
2337 return FALSE;
2338 }
2339
2340 /* Figure out appropriate versions for all the symbols. We may not
2341 have the version number script until we have read all of the input
2342 files, so until that point we don't know which symbols should be
2343 local. This function is called via elf_link_hash_traverse. */
2344
2345 static bfd_boolean
2346 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2347 {
2348 struct elf_info_failed *sinfo;
2349 struct bfd_link_info *info;
2350 const struct elf_backend_data *bed;
2351 struct elf_info_failed eif;
2352 char *p;
2353 bfd_boolean hide;
2354
2355 sinfo = (struct elf_info_failed *) data;
2356 info = sinfo->info;
2357
2358 /* Fix the symbol flags. */
2359 eif.failed = FALSE;
2360 eif.info = info;
2361 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2362 {
2363 if (eif.failed)
2364 sinfo->failed = TRUE;
2365 return FALSE;
2366 }
2367
2368 bed = get_elf_backend_data (info->output_bfd);
2369
2370 /* We only need version numbers for symbols defined in regular
2371 objects. */
2372 if (!h->def_regular)
2373 {
2374 /* Hide symbols defined in discarded input sections. */
2375 if ((h->root.type == bfd_link_hash_defined
2376 || h->root.type == bfd_link_hash_defweak)
2377 && discarded_section (h->root.u.def.section))
2378 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2379 return TRUE;
2380 }
2381
2382 hide = FALSE;
2383 p = strchr (h->root.root.string, ELF_VER_CHR);
2384 if (p != NULL && h->verinfo.vertree == NULL)
2385 {
2386 struct bfd_elf_version_tree *t;
2387
2388 ++p;
2389 if (*p == ELF_VER_CHR)
2390 ++p;
2391
2392 /* If there is no version string, we can just return out. */
2393 if (*p == '\0')
2394 return TRUE;
2395
2396 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2397 {
2398 sinfo->failed = TRUE;
2399 return FALSE;
2400 }
2401
2402 if (hide)
2403 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2404
2405 /* If we are building an application, we need to create a
2406 version node for this version. */
2407 if (t == NULL && bfd_link_executable (info))
2408 {
2409 struct bfd_elf_version_tree **pp;
2410 int version_index;
2411
2412 /* If we aren't going to export this symbol, we don't need
2413 to worry about it. */
2414 if (h->dynindx == -1)
2415 return TRUE;
2416
2417 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2418 sizeof *t);
2419 if (t == NULL)
2420 {
2421 sinfo->failed = TRUE;
2422 return FALSE;
2423 }
2424
2425 t->name = p;
2426 t->name_indx = (unsigned int) -1;
2427 t->used = TRUE;
2428
2429 version_index = 1;
2430 /* Don't count anonymous version tag. */
2431 if (sinfo->info->version_info != NULL
2432 && sinfo->info->version_info->vernum == 0)
2433 version_index = 0;
2434 for (pp = &sinfo->info->version_info;
2435 *pp != NULL;
2436 pp = &(*pp)->next)
2437 ++version_index;
2438 t->vernum = version_index;
2439
2440 *pp = t;
2441
2442 h->verinfo.vertree = t;
2443 }
2444 else if (t == NULL)
2445 {
2446 /* We could not find the version for a symbol when
2447 generating a shared archive. Return an error. */
2448 _bfd_error_handler
2449 /* xgettext:c-format */
2450 (_("%pB: version node not found for symbol %s"),
2451 info->output_bfd, h->root.root.string);
2452 bfd_set_error (bfd_error_bad_value);
2453 sinfo->failed = TRUE;
2454 return FALSE;
2455 }
2456 }
2457
2458 /* If we don't have a version for this symbol, see if we can find
2459 something. */
2460 if (!hide
2461 && h->verinfo.vertree == NULL
2462 && sinfo->info->version_info != NULL)
2463 {
2464 h->verinfo.vertree
2465 = bfd_find_version_for_sym (sinfo->info->version_info,
2466 h->root.root.string, &hide);
2467 if (h->verinfo.vertree != NULL && hide)
2468 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2469 }
2470
2471 return TRUE;
2472 }
2473 \f
2474 /* Read and swap the relocs from the section indicated by SHDR. This
2475 may be either a REL or a RELA section. The relocations are
2476 translated into RELA relocations and stored in INTERNAL_RELOCS,
2477 which should have already been allocated to contain enough space.
2478 The EXTERNAL_RELOCS are a buffer where the external form of the
2479 relocations should be stored.
2480
2481 Returns FALSE if something goes wrong. */
2482
2483 static bfd_boolean
2484 elf_link_read_relocs_from_section (bfd *abfd,
2485 asection *sec,
2486 Elf_Internal_Shdr *shdr,
2487 void *external_relocs,
2488 Elf_Internal_Rela *internal_relocs)
2489 {
2490 const struct elf_backend_data *bed;
2491 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2492 const bfd_byte *erela;
2493 const bfd_byte *erelaend;
2494 Elf_Internal_Rela *irela;
2495 Elf_Internal_Shdr *symtab_hdr;
2496 size_t nsyms;
2497
2498 /* Position ourselves at the start of the section. */
2499 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2500 return FALSE;
2501
2502 /* Read the relocations. */
2503 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2504 return FALSE;
2505
2506 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2507 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2508
2509 bed = get_elf_backend_data (abfd);
2510
2511 /* Convert the external relocations to the internal format. */
2512 if (shdr->sh_entsize == bed->s->sizeof_rel)
2513 swap_in = bed->s->swap_reloc_in;
2514 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2515 swap_in = bed->s->swap_reloca_in;
2516 else
2517 {
2518 bfd_set_error (bfd_error_wrong_format);
2519 return FALSE;
2520 }
2521
2522 erela = (const bfd_byte *) external_relocs;
2523 /* Setting erelaend like this and comparing with <= handles case of
2524 a fuzzed object with sh_size not a multiple of sh_entsize. */
2525 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2526 irela = internal_relocs;
2527 while (erela <= erelaend)
2528 {
2529 bfd_vma r_symndx;
2530
2531 (*swap_in) (abfd, erela, irela);
2532 r_symndx = ELF32_R_SYM (irela->r_info);
2533 if (bed->s->arch_size == 64)
2534 r_symndx >>= 24;
2535 if (nsyms > 0)
2536 {
2537 if ((size_t) r_symndx >= nsyms)
2538 {
2539 _bfd_error_handler
2540 /* xgettext:c-format */
2541 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2542 " for offset %#" PRIx64 " in section `%pA'"),
2543 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2544 (uint64_t) irela->r_offset, sec);
2545 bfd_set_error (bfd_error_bad_value);
2546 return FALSE;
2547 }
2548 }
2549 else if (r_symndx != STN_UNDEF)
2550 {
2551 _bfd_error_handler
2552 /* xgettext:c-format */
2553 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2554 " for offset %#" PRIx64 " in section `%pA'"
2555 " when the object file has no symbol table"),
2556 abfd, (uint64_t) r_symndx,
2557 (uint64_t) irela->r_offset, sec);
2558 bfd_set_error (bfd_error_bad_value);
2559 return FALSE;
2560 }
2561 irela += bed->s->int_rels_per_ext_rel;
2562 erela += shdr->sh_entsize;
2563 }
2564
2565 return TRUE;
2566 }
2567
2568 /* Read and swap the relocs for a section O. They may have been
2569 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2570 not NULL, they are used as buffers to read into. They are known to
2571 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2572 the return value is allocated using either malloc or bfd_alloc,
2573 according to the KEEP_MEMORY argument. If O has two relocation
2574 sections (both REL and RELA relocations), then the REL_HDR
2575 relocations will appear first in INTERNAL_RELOCS, followed by the
2576 RELA_HDR relocations. */
2577
2578 Elf_Internal_Rela *
2579 _bfd_elf_link_read_relocs (bfd *abfd,
2580 asection *o,
2581 void *external_relocs,
2582 Elf_Internal_Rela *internal_relocs,
2583 bfd_boolean keep_memory)
2584 {
2585 void *alloc1 = NULL;
2586 Elf_Internal_Rela *alloc2 = NULL;
2587 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2588 struct bfd_elf_section_data *esdo = elf_section_data (o);
2589 Elf_Internal_Rela *internal_rela_relocs;
2590
2591 if (esdo->relocs != NULL)
2592 return esdo->relocs;
2593
2594 if (o->reloc_count == 0)
2595 return NULL;
2596
2597 if (internal_relocs == NULL)
2598 {
2599 bfd_size_type size;
2600
2601 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2602 if (keep_memory)
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2604 else
2605 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2606 if (internal_relocs == NULL)
2607 goto error_return;
2608 }
2609
2610 if (external_relocs == NULL)
2611 {
2612 bfd_size_type size = 0;
2613
2614 if (esdo->rel.hdr)
2615 size += esdo->rel.hdr->sh_size;
2616 if (esdo->rela.hdr)
2617 size += esdo->rela.hdr->sh_size;
2618
2619 alloc1 = bfd_malloc (size);
2620 if (alloc1 == NULL)
2621 goto error_return;
2622 external_relocs = alloc1;
2623 }
2624
2625 internal_rela_relocs = internal_relocs;
2626 if (esdo->rel.hdr)
2627 {
2628 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2629 external_relocs,
2630 internal_relocs))
2631 goto error_return;
2632 external_relocs = (((bfd_byte *) external_relocs)
2633 + esdo->rel.hdr->sh_size);
2634 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2635 * bed->s->int_rels_per_ext_rel);
2636 }
2637
2638 if (esdo->rela.hdr
2639 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2640 external_relocs,
2641 internal_rela_relocs)))
2642 goto error_return;
2643
2644 /* Cache the results for next time, if we can. */
2645 if (keep_memory)
2646 esdo->relocs = internal_relocs;
2647
2648 if (alloc1 != NULL)
2649 free (alloc1);
2650
2651 /* Don't free alloc2, since if it was allocated we are passing it
2652 back (under the name of internal_relocs). */
2653
2654 return internal_relocs;
2655
2656 error_return:
2657 if (alloc1 != NULL)
2658 free (alloc1);
2659 if (alloc2 != NULL)
2660 {
2661 if (keep_memory)
2662 bfd_release (abfd, alloc2);
2663 else
2664 free (alloc2);
2665 }
2666 return NULL;
2667 }
2668
2669 /* Compute the size of, and allocate space for, REL_HDR which is the
2670 section header for a section containing relocations for O. */
2671
2672 static bfd_boolean
2673 _bfd_elf_link_size_reloc_section (bfd *abfd,
2674 struct bfd_elf_section_reloc_data *reldata)
2675 {
2676 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2677
2678 /* That allows us to calculate the size of the section. */
2679 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2680
2681 /* The contents field must last into write_object_contents, so we
2682 allocate it with bfd_alloc rather than malloc. Also since we
2683 cannot be sure that the contents will actually be filled in,
2684 we zero the allocated space. */
2685 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2686 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2687 return FALSE;
2688
2689 if (reldata->hashes == NULL && reldata->count)
2690 {
2691 struct elf_link_hash_entry **p;
2692
2693 p = ((struct elf_link_hash_entry **)
2694 bfd_zmalloc (reldata->count * sizeof (*p)));
2695 if (p == NULL)
2696 return FALSE;
2697
2698 reldata->hashes = p;
2699 }
2700
2701 return TRUE;
2702 }
2703
2704 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2705 originated from the section given by INPUT_REL_HDR) to the
2706 OUTPUT_BFD. */
2707
2708 bfd_boolean
2709 _bfd_elf_link_output_relocs (bfd *output_bfd,
2710 asection *input_section,
2711 Elf_Internal_Shdr *input_rel_hdr,
2712 Elf_Internal_Rela *internal_relocs,
2713 struct elf_link_hash_entry **rel_hash
2714 ATTRIBUTE_UNUSED)
2715 {
2716 Elf_Internal_Rela *irela;
2717 Elf_Internal_Rela *irelaend;
2718 bfd_byte *erel;
2719 struct bfd_elf_section_reloc_data *output_reldata;
2720 asection *output_section;
2721 const struct elf_backend_data *bed;
2722 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2723 struct bfd_elf_section_data *esdo;
2724
2725 output_section = input_section->output_section;
2726
2727 bed = get_elf_backend_data (output_bfd);
2728 esdo = elf_section_data (output_section);
2729 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2730 {
2731 output_reldata = &esdo->rel;
2732 swap_out = bed->s->swap_reloc_out;
2733 }
2734 else if (esdo->rela.hdr
2735 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2736 {
2737 output_reldata = &esdo->rela;
2738 swap_out = bed->s->swap_reloca_out;
2739 }
2740 else
2741 {
2742 _bfd_error_handler
2743 /* xgettext:c-format */
2744 (_("%pB: relocation size mismatch in %pB section %pA"),
2745 output_bfd, input_section->owner, input_section);
2746 bfd_set_error (bfd_error_wrong_format);
2747 return FALSE;
2748 }
2749
2750 erel = output_reldata->hdr->contents;
2751 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2752 irela = internal_relocs;
2753 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2754 * bed->s->int_rels_per_ext_rel);
2755 while (irela < irelaend)
2756 {
2757 (*swap_out) (output_bfd, irela, erel);
2758 irela += bed->s->int_rels_per_ext_rel;
2759 erel += input_rel_hdr->sh_entsize;
2760 }
2761
2762 /* Bump the counter, so that we know where to add the next set of
2763 relocations. */
2764 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2765
2766 return TRUE;
2767 }
2768 \f
2769 /* Make weak undefined symbols in PIE dynamic. */
2770
2771 bfd_boolean
2772 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2773 struct elf_link_hash_entry *h)
2774 {
2775 if (bfd_link_pie (info)
2776 && h->dynindx == -1
2777 && h->root.type == bfd_link_hash_undefweak)
2778 return bfd_elf_link_record_dynamic_symbol (info, h);
2779
2780 return TRUE;
2781 }
2782
2783 /* Fix up the flags for a symbol. This handles various cases which
2784 can only be fixed after all the input files are seen. This is
2785 currently called by both adjust_dynamic_symbol and
2786 assign_sym_version, which is unnecessary but perhaps more robust in
2787 the face of future changes. */
2788
2789 static bfd_boolean
2790 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2791 struct elf_info_failed *eif)
2792 {
2793 const struct elf_backend_data *bed;
2794
2795 /* If this symbol was mentioned in a non-ELF file, try to set
2796 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2797 permit a non-ELF file to correctly refer to a symbol defined in
2798 an ELF dynamic object. */
2799 if (h->non_elf)
2800 {
2801 while (h->root.type == bfd_link_hash_indirect)
2802 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2803
2804 if (h->root.type != bfd_link_hash_defined
2805 && h->root.type != bfd_link_hash_defweak)
2806 {
2807 h->ref_regular = 1;
2808 h->ref_regular_nonweak = 1;
2809 }
2810 else
2811 {
2812 if (h->root.u.def.section->owner != NULL
2813 && (bfd_get_flavour (h->root.u.def.section->owner)
2814 == bfd_target_elf_flavour))
2815 {
2816 h->ref_regular = 1;
2817 h->ref_regular_nonweak = 1;
2818 }
2819 else
2820 h->def_regular = 1;
2821 }
2822
2823 if (h->dynindx == -1
2824 && (h->def_dynamic
2825 || h->ref_dynamic))
2826 {
2827 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2828 {
2829 eif->failed = TRUE;
2830 return FALSE;
2831 }
2832 }
2833 }
2834 else
2835 {
2836 /* Unfortunately, NON_ELF is only correct if the symbol
2837 was first seen in a non-ELF file. Fortunately, if the symbol
2838 was first seen in an ELF file, we're probably OK unless the
2839 symbol was defined in a non-ELF file. Catch that case here.
2840 FIXME: We're still in trouble if the symbol was first seen in
2841 a dynamic object, and then later in a non-ELF regular object. */
2842 if ((h->root.type == bfd_link_hash_defined
2843 || h->root.type == bfd_link_hash_defweak)
2844 && !h->def_regular
2845 && (h->root.u.def.section->owner != NULL
2846 ? (bfd_get_flavour (h->root.u.def.section->owner)
2847 != bfd_target_elf_flavour)
2848 : (bfd_is_abs_section (h->root.u.def.section)
2849 && !h->def_dynamic)))
2850 h->def_regular = 1;
2851 }
2852
2853 /* Backend specific symbol fixup. */
2854 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2855 if (bed->elf_backend_fixup_symbol
2856 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2857 return FALSE;
2858
2859 /* If this is a final link, and the symbol was defined as a common
2860 symbol in a regular object file, and there was no definition in
2861 any dynamic object, then the linker will have allocated space for
2862 the symbol in a common section but the DEF_REGULAR
2863 flag will not have been set. */
2864 if (h->root.type == bfd_link_hash_defined
2865 && !h->def_regular
2866 && h->ref_regular
2867 && !h->def_dynamic
2868 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2869 h->def_regular = 1;
2870
2871 /* Symbols defined in discarded sections shouldn't be dynamic. */
2872 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2873 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2874
2875 /* If a weak undefined symbol has non-default visibility, we also
2876 hide it from the dynamic linker. */
2877 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2878 && h->root.type == bfd_link_hash_undefweak)
2879 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2880
2881 /* A hidden versioned symbol in executable should be forced local if
2882 it is is locally defined, not referenced by shared library and not
2883 exported. */
2884 else if (bfd_link_executable (eif->info)
2885 && h->versioned == versioned_hidden
2886 && !eif->info->export_dynamic
2887 && !h->dynamic
2888 && !h->ref_dynamic
2889 && h->def_regular)
2890 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2891
2892 /* If -Bsymbolic was used (which means to bind references to global
2893 symbols to the definition within the shared object), and this
2894 symbol was defined in a regular object, then it actually doesn't
2895 need a PLT entry. Likewise, if the symbol has non-default
2896 visibility. If the symbol has hidden or internal visibility, we
2897 will force it local. */
2898 else if (h->needs_plt
2899 && bfd_link_pic (eif->info)
2900 && is_elf_hash_table (eif->info->hash)
2901 && (SYMBOLIC_BIND (eif->info, h)
2902 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2903 && h->def_regular)
2904 {
2905 bfd_boolean force_local;
2906
2907 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2908 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2909 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2910 }
2911
2912 /* If this is a weak defined symbol in a dynamic object, and we know
2913 the real definition in the dynamic object, copy interesting flags
2914 over to the real definition. */
2915 if (h->is_weakalias)
2916 {
2917 struct elf_link_hash_entry *def = weakdef (h);
2918
2919 /* If the real definition is defined by a regular object file,
2920 don't do anything special. See the longer description in
2921 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2922 bfd_link_hash_defined as it was when put on the alias list
2923 then it must have originally been a versioned symbol (for
2924 which a non-versioned indirect symbol is created) and later
2925 a definition for the non-versioned symbol is found. In that
2926 case the indirection is flipped with the versioned symbol
2927 becoming an indirect pointing at the non-versioned symbol.
2928 Thus, not an alias any more. */
2929 if (def->def_regular
2930 || def->root.type != bfd_link_hash_defined)
2931 {
2932 h = def;
2933 while ((h = h->u.alias) != def)
2934 h->is_weakalias = 0;
2935 }
2936 else
2937 {
2938 while (h->root.type == bfd_link_hash_indirect)
2939 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2940 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2941 || h->root.type == bfd_link_hash_defweak);
2942 BFD_ASSERT (def->def_dynamic);
2943 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2944 }
2945 }
2946
2947 return TRUE;
2948 }
2949
2950 /* Make the backend pick a good value for a dynamic symbol. This is
2951 called via elf_link_hash_traverse, and also calls itself
2952 recursively. */
2953
2954 static bfd_boolean
2955 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2956 {
2957 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2958 struct elf_link_hash_table *htab;
2959 const struct elf_backend_data *bed;
2960
2961 if (! is_elf_hash_table (eif->info->hash))
2962 return FALSE;
2963
2964 /* Ignore indirect symbols. These are added by the versioning code. */
2965 if (h->root.type == bfd_link_hash_indirect)
2966 return TRUE;
2967
2968 /* Fix the symbol flags. */
2969 if (! _bfd_elf_fix_symbol_flags (h, eif))
2970 return FALSE;
2971
2972 htab = elf_hash_table (eif->info);
2973 bed = get_elf_backend_data (htab->dynobj);
2974
2975 if (h->root.type == bfd_link_hash_undefweak)
2976 {
2977 if (eif->info->dynamic_undefined_weak == 0)
2978 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2979 else if (eif->info->dynamic_undefined_weak > 0
2980 && h->ref_regular
2981 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2982 && !bfd_hide_sym_by_version (eif->info->version_info,
2983 h->root.root.string))
2984 {
2985 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2986 {
2987 eif->failed = TRUE;
2988 return FALSE;
2989 }
2990 }
2991 }
2992
2993 /* If this symbol does not require a PLT entry, and it is not
2994 defined by a dynamic object, or is not referenced by a regular
2995 object, ignore it. We do have to handle a weak defined symbol,
2996 even if no regular object refers to it, if we decided to add it
2997 to the dynamic symbol table. FIXME: Do we normally need to worry
2998 about symbols which are defined by one dynamic object and
2999 referenced by another one? */
3000 if (!h->needs_plt
3001 && h->type != STT_GNU_IFUNC
3002 && (h->def_regular
3003 || !h->def_dynamic
3004 || (!h->ref_regular
3005 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3006 {
3007 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3008 return TRUE;
3009 }
3010
3011 /* If we've already adjusted this symbol, don't do it again. This
3012 can happen via a recursive call. */
3013 if (h->dynamic_adjusted)
3014 return TRUE;
3015
3016 /* Don't look at this symbol again. Note that we must set this
3017 after checking the above conditions, because we may look at a
3018 symbol once, decide not to do anything, and then get called
3019 recursively later after REF_REGULAR is set below. */
3020 h->dynamic_adjusted = 1;
3021
3022 /* If this is a weak definition, and we know a real definition, and
3023 the real symbol is not itself defined by a regular object file,
3024 then get a good value for the real definition. We handle the
3025 real symbol first, for the convenience of the backend routine.
3026
3027 Note that there is a confusing case here. If the real definition
3028 is defined by a regular object file, we don't get the real symbol
3029 from the dynamic object, but we do get the weak symbol. If the
3030 processor backend uses a COPY reloc, then if some routine in the
3031 dynamic object changes the real symbol, we will not see that
3032 change in the corresponding weak symbol. This is the way other
3033 ELF linkers work as well, and seems to be a result of the shared
3034 library model.
3035
3036 I will clarify this issue. Most SVR4 shared libraries define the
3037 variable _timezone and define timezone as a weak synonym. The
3038 tzset call changes _timezone. If you write
3039 extern int timezone;
3040 int _timezone = 5;
3041 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3042 you might expect that, since timezone is a synonym for _timezone,
3043 the same number will print both times. However, if the processor
3044 backend uses a COPY reloc, then actually timezone will be copied
3045 into your process image, and, since you define _timezone
3046 yourself, _timezone will not. Thus timezone and _timezone will
3047 wind up at different memory locations. The tzset call will set
3048 _timezone, leaving timezone unchanged. */
3049
3050 if (h->is_weakalias)
3051 {
3052 struct elf_link_hash_entry *def = weakdef (h);
3053
3054 /* If we get to this point, there is an implicit reference to
3055 the alias by a regular object file via the weak symbol H. */
3056 def->ref_regular = 1;
3057
3058 /* Ensure that the backend adjust_dynamic_symbol function sees
3059 the strong alias before H by recursively calling ourselves. */
3060 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3061 return FALSE;
3062 }
3063
3064 /* If a symbol has no type and no size and does not require a PLT
3065 entry, then we are probably about to do the wrong thing here: we
3066 are probably going to create a COPY reloc for an empty object.
3067 This case can arise when a shared object is built with assembly
3068 code, and the assembly code fails to set the symbol type. */
3069 if (h->size == 0
3070 && h->type == STT_NOTYPE
3071 && !h->needs_plt)
3072 _bfd_error_handler
3073 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3074 h->root.root.string);
3075
3076 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3077 {
3078 eif->failed = TRUE;
3079 return FALSE;
3080 }
3081
3082 return TRUE;
3083 }
3084
3085 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3086 DYNBSS. */
3087
3088 bfd_boolean
3089 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3090 struct elf_link_hash_entry *h,
3091 asection *dynbss)
3092 {
3093 unsigned int power_of_two;
3094 bfd_vma mask;
3095 asection *sec = h->root.u.def.section;
3096
3097 /* The section alignment of the definition is the maximum alignment
3098 requirement of symbols defined in the section. Since we don't
3099 know the symbol alignment requirement, we start with the
3100 maximum alignment and check low bits of the symbol address
3101 for the minimum alignment. */
3102 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3103 mask = ((bfd_vma) 1 << power_of_two) - 1;
3104 while ((h->root.u.def.value & mask) != 0)
3105 {
3106 mask >>= 1;
3107 --power_of_two;
3108 }
3109
3110 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3111 dynbss))
3112 {
3113 /* Adjust the section alignment if needed. */
3114 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3115 power_of_two))
3116 return FALSE;
3117 }
3118
3119 /* We make sure that the symbol will be aligned properly. */
3120 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3121
3122 /* Define the symbol as being at this point in DYNBSS. */
3123 h->root.u.def.section = dynbss;
3124 h->root.u.def.value = dynbss->size;
3125
3126 /* Increment the size of DYNBSS to make room for the symbol. */
3127 dynbss->size += h->size;
3128
3129 /* No error if extern_protected_data is true. */
3130 if (h->protected_def
3131 && (!info->extern_protected_data
3132 || (info->extern_protected_data < 0
3133 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3134 info->callbacks->einfo
3135 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3136 h->root.root.string);
3137
3138 return TRUE;
3139 }
3140
3141 /* Adjust all external symbols pointing into SEC_MERGE sections
3142 to reflect the object merging within the sections. */
3143
3144 static bfd_boolean
3145 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3146 {
3147 asection *sec;
3148
3149 if ((h->root.type == bfd_link_hash_defined
3150 || h->root.type == bfd_link_hash_defweak)
3151 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3152 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3153 {
3154 bfd *output_bfd = (bfd *) data;
3155
3156 h->root.u.def.value =
3157 _bfd_merged_section_offset (output_bfd,
3158 &h->root.u.def.section,
3159 elf_section_data (sec)->sec_info,
3160 h->root.u.def.value);
3161 }
3162
3163 return TRUE;
3164 }
3165
3166 /* Returns false if the symbol referred to by H should be considered
3167 to resolve local to the current module, and true if it should be
3168 considered to bind dynamically. */
3169
3170 bfd_boolean
3171 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3172 struct bfd_link_info *info,
3173 bfd_boolean not_local_protected)
3174 {
3175 bfd_boolean binding_stays_local_p;
3176 const struct elf_backend_data *bed;
3177 struct elf_link_hash_table *hash_table;
3178
3179 if (h == NULL)
3180 return FALSE;
3181
3182 while (h->root.type == bfd_link_hash_indirect
3183 || h->root.type == bfd_link_hash_warning)
3184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3185
3186 /* If it was forced local, then clearly it's not dynamic. */
3187 if (h->dynindx == -1)
3188 return FALSE;
3189 if (h->forced_local)
3190 return FALSE;
3191
3192 /* Identify the cases where name binding rules say that a
3193 visible symbol resolves locally. */
3194 binding_stays_local_p = (bfd_link_executable (info)
3195 || SYMBOLIC_BIND (info, h));
3196
3197 switch (ELF_ST_VISIBILITY (h->other))
3198 {
3199 case STV_INTERNAL:
3200 case STV_HIDDEN:
3201 return FALSE;
3202
3203 case STV_PROTECTED:
3204 hash_table = elf_hash_table (info);
3205 if (!is_elf_hash_table (hash_table))
3206 return FALSE;
3207
3208 bed = get_elf_backend_data (hash_table->dynobj);
3209
3210 /* Proper resolution for function pointer equality may require
3211 that these symbols perhaps be resolved dynamically, even though
3212 we should be resolving them to the current module. */
3213 if (!not_local_protected || !bed->is_function_type (h->type))
3214 binding_stays_local_p = TRUE;
3215 break;
3216
3217 default:
3218 break;
3219 }
3220
3221 /* If it isn't defined locally, then clearly it's dynamic. */
3222 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3223 return TRUE;
3224
3225 /* Otherwise, the symbol is dynamic if binding rules don't tell
3226 us that it remains local. */
3227 return !binding_stays_local_p;
3228 }
3229
3230 /* Return true if the symbol referred to by H should be considered
3231 to resolve local to the current module, and false otherwise. Differs
3232 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3233 undefined symbols. The two functions are virtually identical except
3234 for the place where dynindx == -1 is tested. If that test is true,
3235 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3236 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3237 defined symbols.
3238 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3239 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3240 treatment of undefined weak symbols. For those that do not make
3241 undefined weak symbols dynamic, both functions may return false. */
3242
3243 bfd_boolean
3244 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3245 struct bfd_link_info *info,
3246 bfd_boolean local_protected)
3247 {
3248 const struct elf_backend_data *bed;
3249 struct elf_link_hash_table *hash_table;
3250
3251 /* If it's a local sym, of course we resolve locally. */
3252 if (h == NULL)
3253 return TRUE;
3254
3255 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3256 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3257 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3258 return TRUE;
3259
3260 /* Forced local symbols resolve locally. */
3261 if (h->forced_local)
3262 return TRUE;
3263
3264 /* Common symbols that become definitions don't get the DEF_REGULAR
3265 flag set, so test it first, and don't bail out. */
3266 if (ELF_COMMON_DEF_P (h))
3267 /* Do nothing. */;
3268 /* If we don't have a definition in a regular file, then we can't
3269 resolve locally. The sym is either undefined or dynamic. */
3270 else if (!h->def_regular)
3271 return FALSE;
3272
3273 /* Non-dynamic symbols resolve locally. */
3274 if (h->dynindx == -1)
3275 return TRUE;
3276
3277 /* At this point, we know the symbol is defined and dynamic. In an
3278 executable it must resolve locally, likewise when building symbolic
3279 shared libraries. */
3280 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3281 return TRUE;
3282
3283 /* Now deal with defined dynamic symbols in shared libraries. Ones
3284 with default visibility might not resolve locally. */
3285 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3286 return FALSE;
3287
3288 hash_table = elf_hash_table (info);
3289 if (!is_elf_hash_table (hash_table))
3290 return TRUE;
3291
3292 bed = get_elf_backend_data (hash_table->dynobj);
3293
3294 /* If extern_protected_data is false, STV_PROTECTED non-function
3295 symbols are local. */
3296 if ((!info->extern_protected_data
3297 || (info->extern_protected_data < 0
3298 && !bed->extern_protected_data))
3299 && !bed->is_function_type (h->type))
3300 return TRUE;
3301
3302 /* Function pointer equality tests may require that STV_PROTECTED
3303 symbols be treated as dynamic symbols. If the address of a
3304 function not defined in an executable is set to that function's
3305 plt entry in the executable, then the address of the function in
3306 a shared library must also be the plt entry in the executable. */
3307 return local_protected;
3308 }
3309
3310 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3311 aligned. Returns the first TLS output section. */
3312
3313 struct bfd_section *
3314 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3315 {
3316 struct bfd_section *sec, *tls;
3317 unsigned int align = 0;
3318
3319 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3320 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3321 break;
3322 tls = sec;
3323
3324 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3325 if (sec->alignment_power > align)
3326 align = sec->alignment_power;
3327
3328 elf_hash_table (info)->tls_sec = tls;
3329
3330 /* Ensure the alignment of the first section is the largest alignment,
3331 so that the tls segment starts aligned. */
3332 if (tls != NULL)
3333 tls->alignment_power = align;
3334
3335 return tls;
3336 }
3337
3338 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3339 static bfd_boolean
3340 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3341 Elf_Internal_Sym *sym)
3342 {
3343 const struct elf_backend_data *bed;
3344
3345 /* Local symbols do not count, but target specific ones might. */
3346 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3347 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3348 return FALSE;
3349
3350 bed = get_elf_backend_data (abfd);
3351 /* Function symbols do not count. */
3352 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3353 return FALSE;
3354
3355 /* If the section is undefined, then so is the symbol. */
3356 if (sym->st_shndx == SHN_UNDEF)
3357 return FALSE;
3358
3359 /* If the symbol is defined in the common section, then
3360 it is a common definition and so does not count. */
3361 if (bed->common_definition (sym))
3362 return FALSE;
3363
3364 /* If the symbol is in a target specific section then we
3365 must rely upon the backend to tell us what it is. */
3366 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3367 /* FIXME - this function is not coded yet:
3368
3369 return _bfd_is_global_symbol_definition (abfd, sym);
3370
3371 Instead for now assume that the definition is not global,
3372 Even if this is wrong, at least the linker will behave
3373 in the same way that it used to do. */
3374 return FALSE;
3375
3376 return TRUE;
3377 }
3378
3379 /* Search the symbol table of the archive element of the archive ABFD
3380 whose archive map contains a mention of SYMDEF, and determine if
3381 the symbol is defined in this element. */
3382 static bfd_boolean
3383 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3384 {
3385 Elf_Internal_Shdr * hdr;
3386 size_t symcount;
3387 size_t extsymcount;
3388 size_t extsymoff;
3389 Elf_Internal_Sym *isymbuf;
3390 Elf_Internal_Sym *isym;
3391 Elf_Internal_Sym *isymend;
3392 bfd_boolean result;
3393
3394 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3395 if (abfd == NULL)
3396 return FALSE;
3397
3398 if (! bfd_check_format (abfd, bfd_object))
3399 return FALSE;
3400
3401 /* Select the appropriate symbol table. If we don't know if the
3402 object file is an IR object, give linker LTO plugin a chance to
3403 get the correct symbol table. */
3404 if (abfd->plugin_format == bfd_plugin_yes
3405 #if BFD_SUPPORTS_PLUGINS
3406 || (abfd->plugin_format == bfd_plugin_unknown
3407 && bfd_link_plugin_object_p (abfd))
3408 #endif
3409 )
3410 {
3411 /* Use the IR symbol table if the object has been claimed by
3412 plugin. */
3413 abfd = abfd->plugin_dummy_bfd;
3414 hdr = &elf_tdata (abfd)->symtab_hdr;
3415 }
3416 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3417 hdr = &elf_tdata (abfd)->symtab_hdr;
3418 else
3419 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3420
3421 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3422
3423 /* The sh_info field of the symtab header tells us where the
3424 external symbols start. We don't care about the local symbols. */
3425 if (elf_bad_symtab (abfd))
3426 {
3427 extsymcount = symcount;
3428 extsymoff = 0;
3429 }
3430 else
3431 {
3432 extsymcount = symcount - hdr->sh_info;
3433 extsymoff = hdr->sh_info;
3434 }
3435
3436 if (extsymcount == 0)
3437 return FALSE;
3438
3439 /* Read in the symbol table. */
3440 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3441 NULL, NULL, NULL);
3442 if (isymbuf == NULL)
3443 return FALSE;
3444
3445 /* Scan the symbol table looking for SYMDEF. */
3446 result = FALSE;
3447 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3448 {
3449 const char *name;
3450
3451 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3452 isym->st_name);
3453 if (name == NULL)
3454 break;
3455
3456 if (strcmp (name, symdef->name) == 0)
3457 {
3458 result = is_global_data_symbol_definition (abfd, isym);
3459 break;
3460 }
3461 }
3462
3463 free (isymbuf);
3464
3465 return result;
3466 }
3467 \f
3468 /* Add an entry to the .dynamic table. */
3469
3470 bfd_boolean
3471 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3472 bfd_vma tag,
3473 bfd_vma val)
3474 {
3475 struct elf_link_hash_table *hash_table;
3476 const struct elf_backend_data *bed;
3477 asection *s;
3478 bfd_size_type newsize;
3479 bfd_byte *newcontents;
3480 Elf_Internal_Dyn dyn;
3481
3482 hash_table = elf_hash_table (info);
3483 if (! is_elf_hash_table (hash_table))
3484 return FALSE;
3485
3486 if (tag == DT_RELA || tag == DT_REL)
3487 hash_table->dynamic_relocs = TRUE;
3488
3489 bed = get_elf_backend_data (hash_table->dynobj);
3490 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3491 BFD_ASSERT (s != NULL);
3492
3493 newsize = s->size + bed->s->sizeof_dyn;
3494 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3495 if (newcontents == NULL)
3496 return FALSE;
3497
3498 dyn.d_tag = tag;
3499 dyn.d_un.d_val = val;
3500 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3501
3502 s->size = newsize;
3503 s->contents = newcontents;
3504
3505 return TRUE;
3506 }
3507
3508 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3509 otherwise just check whether one already exists. Returns -1 on error,
3510 1 if a DT_NEEDED tag already exists, and 0 on success. */
3511
3512 static int
3513 elf_add_dt_needed_tag (bfd *abfd,
3514 struct bfd_link_info *info,
3515 const char *soname,
3516 bfd_boolean do_it)
3517 {
3518 struct elf_link_hash_table *hash_table;
3519 size_t strindex;
3520
3521 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3522 return -1;
3523
3524 hash_table = elf_hash_table (info);
3525 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3526 if (strindex == (size_t) -1)
3527 return -1;
3528
3529 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3530 {
3531 asection *sdyn;
3532 const struct elf_backend_data *bed;
3533 bfd_byte *extdyn;
3534
3535 bed = get_elf_backend_data (hash_table->dynobj);
3536 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3537 if (sdyn != NULL)
3538 for (extdyn = sdyn->contents;
3539 extdyn < sdyn->contents + sdyn->size;
3540 extdyn += bed->s->sizeof_dyn)
3541 {
3542 Elf_Internal_Dyn dyn;
3543
3544 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3545 if (dyn.d_tag == DT_NEEDED
3546 && dyn.d_un.d_val == strindex)
3547 {
3548 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3549 return 1;
3550 }
3551 }
3552 }
3553
3554 if (do_it)
3555 {
3556 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3557 return -1;
3558
3559 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3560 return -1;
3561 }
3562 else
3563 /* We were just checking for existence of the tag. */
3564 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3565
3566 return 0;
3567 }
3568
3569 /* Return true if SONAME is on the needed list between NEEDED and STOP
3570 (or the end of list if STOP is NULL), and needed by a library that
3571 will be loaded. */
3572
3573 static bfd_boolean
3574 on_needed_list (const char *soname,
3575 struct bfd_link_needed_list *needed,
3576 struct bfd_link_needed_list *stop)
3577 {
3578 struct bfd_link_needed_list *look;
3579 for (look = needed; look != stop; look = look->next)
3580 if (strcmp (soname, look->name) == 0
3581 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3582 /* If needed by a library that itself is not directly
3583 needed, recursively check whether that library is
3584 indirectly needed. Since we add DT_NEEDED entries to
3585 the end of the list, library dependencies appear after
3586 the library. Therefore search prior to the current
3587 LOOK, preventing possible infinite recursion. */
3588 || on_needed_list (elf_dt_name (look->by), needed, look)))
3589 return TRUE;
3590
3591 return FALSE;
3592 }
3593
3594 /* Sort symbol by value, section, and size. */
3595 static int
3596 elf_sort_symbol (const void *arg1, const void *arg2)
3597 {
3598 const struct elf_link_hash_entry *h1;
3599 const struct elf_link_hash_entry *h2;
3600 bfd_signed_vma vdiff;
3601
3602 h1 = *(const struct elf_link_hash_entry **) arg1;
3603 h2 = *(const struct elf_link_hash_entry **) arg2;
3604 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3605 if (vdiff != 0)
3606 return vdiff > 0 ? 1 : -1;
3607 else
3608 {
3609 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3610 if (sdiff != 0)
3611 return sdiff > 0 ? 1 : -1;
3612 }
3613 vdiff = h1->size - h2->size;
3614 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3615 }
3616
3617 /* This function is used to adjust offsets into .dynstr for
3618 dynamic symbols. This is called via elf_link_hash_traverse. */
3619
3620 static bfd_boolean
3621 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3622 {
3623 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3624
3625 if (h->dynindx != -1)
3626 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3627 return TRUE;
3628 }
3629
3630 /* Assign string offsets in .dynstr, update all structures referencing
3631 them. */
3632
3633 static bfd_boolean
3634 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3635 {
3636 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3637 struct elf_link_local_dynamic_entry *entry;
3638 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3639 bfd *dynobj = hash_table->dynobj;
3640 asection *sdyn;
3641 bfd_size_type size;
3642 const struct elf_backend_data *bed;
3643 bfd_byte *extdyn;
3644
3645 _bfd_elf_strtab_finalize (dynstr);
3646 size = _bfd_elf_strtab_size (dynstr);
3647
3648 bed = get_elf_backend_data (dynobj);
3649 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3650 BFD_ASSERT (sdyn != NULL);
3651
3652 /* Update all .dynamic entries referencing .dynstr strings. */
3653 for (extdyn = sdyn->contents;
3654 extdyn < sdyn->contents + sdyn->size;
3655 extdyn += bed->s->sizeof_dyn)
3656 {
3657 Elf_Internal_Dyn dyn;
3658
3659 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3660 switch (dyn.d_tag)
3661 {
3662 case DT_STRSZ:
3663 dyn.d_un.d_val = size;
3664 break;
3665 case DT_NEEDED:
3666 case DT_SONAME:
3667 case DT_RPATH:
3668 case DT_RUNPATH:
3669 case DT_FILTER:
3670 case DT_AUXILIARY:
3671 case DT_AUDIT:
3672 case DT_DEPAUDIT:
3673 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3674 break;
3675 default:
3676 continue;
3677 }
3678 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3679 }
3680
3681 /* Now update local dynamic symbols. */
3682 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3683 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3684 entry->isym.st_name);
3685
3686 /* And the rest of dynamic symbols. */
3687 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3688
3689 /* Adjust version definitions. */
3690 if (elf_tdata (output_bfd)->cverdefs)
3691 {
3692 asection *s;
3693 bfd_byte *p;
3694 size_t i;
3695 Elf_Internal_Verdef def;
3696 Elf_Internal_Verdaux defaux;
3697
3698 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3699 p = s->contents;
3700 do
3701 {
3702 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3703 &def);
3704 p += sizeof (Elf_External_Verdef);
3705 if (def.vd_aux != sizeof (Elf_External_Verdef))
3706 continue;
3707 for (i = 0; i < def.vd_cnt; ++i)
3708 {
3709 _bfd_elf_swap_verdaux_in (output_bfd,
3710 (Elf_External_Verdaux *) p, &defaux);
3711 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3712 defaux.vda_name);
3713 _bfd_elf_swap_verdaux_out (output_bfd,
3714 &defaux, (Elf_External_Verdaux *) p);
3715 p += sizeof (Elf_External_Verdaux);
3716 }
3717 }
3718 while (def.vd_next);
3719 }
3720
3721 /* Adjust version references. */
3722 if (elf_tdata (output_bfd)->verref)
3723 {
3724 asection *s;
3725 bfd_byte *p;
3726 size_t i;
3727 Elf_Internal_Verneed need;
3728 Elf_Internal_Vernaux needaux;
3729
3730 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3731 p = s->contents;
3732 do
3733 {
3734 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3735 &need);
3736 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3737 _bfd_elf_swap_verneed_out (output_bfd, &need,
3738 (Elf_External_Verneed *) p);
3739 p += sizeof (Elf_External_Verneed);
3740 for (i = 0; i < need.vn_cnt; ++i)
3741 {
3742 _bfd_elf_swap_vernaux_in (output_bfd,
3743 (Elf_External_Vernaux *) p, &needaux);
3744 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3745 needaux.vna_name);
3746 _bfd_elf_swap_vernaux_out (output_bfd,
3747 &needaux,
3748 (Elf_External_Vernaux *) p);
3749 p += sizeof (Elf_External_Vernaux);
3750 }
3751 }
3752 while (need.vn_next);
3753 }
3754
3755 return TRUE;
3756 }
3757 \f
3758 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3759 The default is to only match when the INPUT and OUTPUT are exactly
3760 the same target. */
3761
3762 bfd_boolean
3763 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3764 const bfd_target *output)
3765 {
3766 return input == output;
3767 }
3768
3769 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3770 This version is used when different targets for the same architecture
3771 are virtually identical. */
3772
3773 bfd_boolean
3774 _bfd_elf_relocs_compatible (const bfd_target *input,
3775 const bfd_target *output)
3776 {
3777 const struct elf_backend_data *obed, *ibed;
3778
3779 if (input == output)
3780 return TRUE;
3781
3782 ibed = xvec_get_elf_backend_data (input);
3783 obed = xvec_get_elf_backend_data (output);
3784
3785 if (ibed->arch != obed->arch)
3786 return FALSE;
3787
3788 /* If both backends are using this function, deem them compatible. */
3789 return ibed->relocs_compatible == obed->relocs_compatible;
3790 }
3791
3792 /* Make a special call to the linker "notice" function to tell it that
3793 we are about to handle an as-needed lib, or have finished
3794 processing the lib. */
3795
3796 bfd_boolean
3797 _bfd_elf_notice_as_needed (bfd *ibfd,
3798 struct bfd_link_info *info,
3799 enum notice_asneeded_action act)
3800 {
3801 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3802 }
3803
3804 /* Check relocations an ELF object file. */
3805
3806 bfd_boolean
3807 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3808 {
3809 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3810 struct elf_link_hash_table *htab = elf_hash_table (info);
3811
3812 /* If this object is the same format as the output object, and it is
3813 not a shared library, then let the backend look through the
3814 relocs.
3815
3816 This is required to build global offset table entries and to
3817 arrange for dynamic relocs. It is not required for the
3818 particular common case of linking non PIC code, even when linking
3819 against shared libraries, but unfortunately there is no way of
3820 knowing whether an object file has been compiled PIC or not.
3821 Looking through the relocs is not particularly time consuming.
3822 The problem is that we must either (1) keep the relocs in memory,
3823 which causes the linker to require additional runtime memory or
3824 (2) read the relocs twice from the input file, which wastes time.
3825 This would be a good case for using mmap.
3826
3827 I have no idea how to handle linking PIC code into a file of a
3828 different format. It probably can't be done. */
3829 if ((abfd->flags & DYNAMIC) == 0
3830 && is_elf_hash_table (htab)
3831 && bed->check_relocs != NULL
3832 && elf_object_id (abfd) == elf_hash_table_id (htab)
3833 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3834 {
3835 asection *o;
3836
3837 for (o = abfd->sections; o != NULL; o = o->next)
3838 {
3839 Elf_Internal_Rela *internal_relocs;
3840 bfd_boolean ok;
3841
3842 /* Don't check relocations in excluded sections. */
3843 if ((o->flags & SEC_RELOC) == 0
3844 || (o->flags & SEC_EXCLUDE) != 0
3845 || o->reloc_count == 0
3846 || ((info->strip == strip_all || info->strip == strip_debugger)
3847 && (o->flags & SEC_DEBUGGING) != 0)
3848 || bfd_is_abs_section (o->output_section))
3849 continue;
3850
3851 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3852 info->keep_memory);
3853 if (internal_relocs == NULL)
3854 return FALSE;
3855
3856 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3857
3858 if (elf_section_data (o)->relocs != internal_relocs)
3859 free (internal_relocs);
3860
3861 if (! ok)
3862 return FALSE;
3863 }
3864 }
3865
3866 return TRUE;
3867 }
3868
3869 /* Add symbols from an ELF object file to the linker hash table. */
3870
3871 static bfd_boolean
3872 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3873 {
3874 Elf_Internal_Ehdr *ehdr;
3875 Elf_Internal_Shdr *hdr;
3876 size_t symcount;
3877 size_t extsymcount;
3878 size_t extsymoff;
3879 struct elf_link_hash_entry **sym_hash;
3880 bfd_boolean dynamic;
3881 Elf_External_Versym *extversym = NULL;
3882 Elf_External_Versym *extversym_end = NULL;
3883 Elf_External_Versym *ever;
3884 struct elf_link_hash_entry *weaks;
3885 struct elf_link_hash_entry **nondeflt_vers = NULL;
3886 size_t nondeflt_vers_cnt = 0;
3887 Elf_Internal_Sym *isymbuf = NULL;
3888 Elf_Internal_Sym *isym;
3889 Elf_Internal_Sym *isymend;
3890 const struct elf_backend_data *bed;
3891 bfd_boolean add_needed;
3892 struct elf_link_hash_table *htab;
3893 bfd_size_type amt;
3894 void *alloc_mark = NULL;
3895 struct bfd_hash_entry **old_table = NULL;
3896 unsigned int old_size = 0;
3897 unsigned int old_count = 0;
3898 void *old_tab = NULL;
3899 void *old_ent;
3900 struct bfd_link_hash_entry *old_undefs = NULL;
3901 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3902 void *old_strtab = NULL;
3903 size_t tabsize = 0;
3904 asection *s;
3905 bfd_boolean just_syms;
3906
3907 htab = elf_hash_table (info);
3908 bed = get_elf_backend_data (abfd);
3909
3910 if ((abfd->flags & DYNAMIC) == 0)
3911 dynamic = FALSE;
3912 else
3913 {
3914 dynamic = TRUE;
3915
3916 /* You can't use -r against a dynamic object. Also, there's no
3917 hope of using a dynamic object which does not exactly match
3918 the format of the output file. */
3919 if (bfd_link_relocatable (info)
3920 || !is_elf_hash_table (htab)
3921 || info->output_bfd->xvec != abfd->xvec)
3922 {
3923 if (bfd_link_relocatable (info))
3924 bfd_set_error (bfd_error_invalid_operation);
3925 else
3926 bfd_set_error (bfd_error_wrong_format);
3927 goto error_return;
3928 }
3929 }
3930
3931 ehdr = elf_elfheader (abfd);
3932 if (info->warn_alternate_em
3933 && bed->elf_machine_code != ehdr->e_machine
3934 && ((bed->elf_machine_alt1 != 0
3935 && ehdr->e_machine == bed->elf_machine_alt1)
3936 || (bed->elf_machine_alt2 != 0
3937 && ehdr->e_machine == bed->elf_machine_alt2)))
3938 _bfd_error_handler
3939 /* xgettext:c-format */
3940 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3941 ehdr->e_machine, abfd, bed->elf_machine_code);
3942
3943 /* As a GNU extension, any input sections which are named
3944 .gnu.warning.SYMBOL are treated as warning symbols for the given
3945 symbol. This differs from .gnu.warning sections, which generate
3946 warnings when they are included in an output file. */
3947 /* PR 12761: Also generate this warning when building shared libraries. */
3948 for (s = abfd->sections; s != NULL; s = s->next)
3949 {
3950 const char *name;
3951
3952 name = bfd_get_section_name (abfd, s);
3953 if (CONST_STRNEQ (name, ".gnu.warning."))
3954 {
3955 char *msg;
3956 bfd_size_type sz;
3957
3958 name += sizeof ".gnu.warning." - 1;
3959
3960 /* If this is a shared object, then look up the symbol
3961 in the hash table. If it is there, and it is already
3962 been defined, then we will not be using the entry
3963 from this shared object, so we don't need to warn.
3964 FIXME: If we see the definition in a regular object
3965 later on, we will warn, but we shouldn't. The only
3966 fix is to keep track of what warnings we are supposed
3967 to emit, and then handle them all at the end of the
3968 link. */
3969 if (dynamic)
3970 {
3971 struct elf_link_hash_entry *h;
3972
3973 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3974
3975 /* FIXME: What about bfd_link_hash_common? */
3976 if (h != NULL
3977 && (h->root.type == bfd_link_hash_defined
3978 || h->root.type == bfd_link_hash_defweak))
3979 continue;
3980 }
3981
3982 sz = s->size;
3983 msg = (char *) bfd_alloc (abfd, sz + 1);
3984 if (msg == NULL)
3985 goto error_return;
3986
3987 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3988 goto error_return;
3989
3990 msg[sz] = '\0';
3991
3992 if (! (_bfd_generic_link_add_one_symbol
3993 (info, abfd, name, BSF_WARNING, s, 0, msg,
3994 FALSE, bed->collect, NULL)))
3995 goto error_return;
3996
3997 if (bfd_link_executable (info))
3998 {
3999 /* Clobber the section size so that the warning does
4000 not get copied into the output file. */
4001 s->size = 0;
4002
4003 /* Also set SEC_EXCLUDE, so that symbols defined in
4004 the warning section don't get copied to the output. */
4005 s->flags |= SEC_EXCLUDE;
4006 }
4007 }
4008 }
4009
4010 just_syms = ((s = abfd->sections) != NULL
4011 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4012
4013 add_needed = TRUE;
4014 if (! dynamic)
4015 {
4016 /* If we are creating a shared library, create all the dynamic
4017 sections immediately. We need to attach them to something,
4018 so we attach them to this BFD, provided it is the right
4019 format and is not from ld --just-symbols. Always create the
4020 dynamic sections for -E/--dynamic-list. FIXME: If there
4021 are no input BFD's of the same format as the output, we can't
4022 make a shared library. */
4023 if (!just_syms
4024 && (bfd_link_pic (info)
4025 || (!bfd_link_relocatable (info)
4026 && info->nointerp
4027 && (info->export_dynamic || info->dynamic)))
4028 && is_elf_hash_table (htab)
4029 && info->output_bfd->xvec == abfd->xvec
4030 && !htab->dynamic_sections_created)
4031 {
4032 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4033 goto error_return;
4034 }
4035 }
4036 else if (!is_elf_hash_table (htab))
4037 goto error_return;
4038 else
4039 {
4040 const char *soname = NULL;
4041 char *audit = NULL;
4042 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4043 const Elf_Internal_Phdr *phdr;
4044 int ret;
4045
4046 /* ld --just-symbols and dynamic objects don't mix very well.
4047 ld shouldn't allow it. */
4048 if (just_syms)
4049 abort ();
4050
4051 /* If this dynamic lib was specified on the command line with
4052 --as-needed in effect, then we don't want to add a DT_NEEDED
4053 tag unless the lib is actually used. Similary for libs brought
4054 in by another lib's DT_NEEDED. When --no-add-needed is used
4055 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4056 any dynamic library in DT_NEEDED tags in the dynamic lib at
4057 all. */
4058 add_needed = (elf_dyn_lib_class (abfd)
4059 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4060 | DYN_NO_NEEDED)) == 0;
4061
4062 s = bfd_get_section_by_name (abfd, ".dynamic");
4063 if (s != NULL)
4064 {
4065 bfd_byte *dynbuf;
4066 bfd_byte *extdyn;
4067 unsigned int elfsec;
4068 unsigned long shlink;
4069
4070 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4071 {
4072 error_free_dyn:
4073 free (dynbuf);
4074 goto error_return;
4075 }
4076
4077 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4078 if (elfsec == SHN_BAD)
4079 goto error_free_dyn;
4080 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4081
4082 for (extdyn = dynbuf;
4083 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4084 extdyn += bed->s->sizeof_dyn)
4085 {
4086 Elf_Internal_Dyn dyn;
4087
4088 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4089 if (dyn.d_tag == DT_SONAME)
4090 {
4091 unsigned int tagv = dyn.d_un.d_val;
4092 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4093 if (soname == NULL)
4094 goto error_free_dyn;
4095 }
4096 if (dyn.d_tag == DT_NEEDED)
4097 {
4098 struct bfd_link_needed_list *n, **pn;
4099 char *fnm, *anm;
4100 unsigned int tagv = dyn.d_un.d_val;
4101
4102 amt = sizeof (struct bfd_link_needed_list);
4103 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4104 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4105 if (n == NULL || fnm == NULL)
4106 goto error_free_dyn;
4107 amt = strlen (fnm) + 1;
4108 anm = (char *) bfd_alloc (abfd, amt);
4109 if (anm == NULL)
4110 goto error_free_dyn;
4111 memcpy (anm, fnm, amt);
4112 n->name = anm;
4113 n->by = abfd;
4114 n->next = NULL;
4115 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4116 ;
4117 *pn = n;
4118 }
4119 if (dyn.d_tag == DT_RUNPATH)
4120 {
4121 struct bfd_link_needed_list *n, **pn;
4122 char *fnm, *anm;
4123 unsigned int tagv = dyn.d_un.d_val;
4124
4125 amt = sizeof (struct bfd_link_needed_list);
4126 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4127 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4128 if (n == NULL || fnm == NULL)
4129 goto error_free_dyn;
4130 amt = strlen (fnm) + 1;
4131 anm = (char *) bfd_alloc (abfd, amt);
4132 if (anm == NULL)
4133 goto error_free_dyn;
4134 memcpy (anm, fnm, amt);
4135 n->name = anm;
4136 n->by = abfd;
4137 n->next = NULL;
4138 for (pn = & runpath;
4139 *pn != NULL;
4140 pn = &(*pn)->next)
4141 ;
4142 *pn = n;
4143 }
4144 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4145 if (!runpath && dyn.d_tag == DT_RPATH)
4146 {
4147 struct bfd_link_needed_list *n, **pn;
4148 char *fnm, *anm;
4149 unsigned int tagv = dyn.d_un.d_val;
4150
4151 amt = sizeof (struct bfd_link_needed_list);
4152 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4153 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4154 if (n == NULL || fnm == NULL)
4155 goto error_free_dyn;
4156 amt = strlen (fnm) + 1;
4157 anm = (char *) bfd_alloc (abfd, amt);
4158 if (anm == NULL)
4159 goto error_free_dyn;
4160 memcpy (anm, fnm, amt);
4161 n->name = anm;
4162 n->by = abfd;
4163 n->next = NULL;
4164 for (pn = & rpath;
4165 *pn != NULL;
4166 pn = &(*pn)->next)
4167 ;
4168 *pn = n;
4169 }
4170 if (dyn.d_tag == DT_AUDIT)
4171 {
4172 unsigned int tagv = dyn.d_un.d_val;
4173 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4174 }
4175 }
4176
4177 free (dynbuf);
4178 }
4179
4180 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4181 frees all more recently bfd_alloc'd blocks as well. */
4182 if (runpath)
4183 rpath = runpath;
4184
4185 if (rpath)
4186 {
4187 struct bfd_link_needed_list **pn;
4188 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4189 ;
4190 *pn = rpath;
4191 }
4192
4193 /* If we have a PT_GNU_RELRO program header, mark as read-only
4194 all sections contained fully therein. This makes relro
4195 shared library sections appear as they will at run-time. */
4196 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4197 while (phdr-- > elf_tdata (abfd)->phdr)
4198 if (phdr->p_type == PT_GNU_RELRO)
4199 {
4200 for (s = abfd->sections; s != NULL; s = s->next)
4201 if ((s->flags & SEC_ALLOC) != 0
4202 && s->vma >= phdr->p_vaddr
4203 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4204 s->flags |= SEC_READONLY;
4205 break;
4206 }
4207
4208 /* We do not want to include any of the sections in a dynamic
4209 object in the output file. We hack by simply clobbering the
4210 list of sections in the BFD. This could be handled more
4211 cleanly by, say, a new section flag; the existing
4212 SEC_NEVER_LOAD flag is not the one we want, because that one
4213 still implies that the section takes up space in the output
4214 file. */
4215 bfd_section_list_clear (abfd);
4216
4217 /* Find the name to use in a DT_NEEDED entry that refers to this
4218 object. If the object has a DT_SONAME entry, we use it.
4219 Otherwise, if the generic linker stuck something in
4220 elf_dt_name, we use that. Otherwise, we just use the file
4221 name. */
4222 if (soname == NULL || *soname == '\0')
4223 {
4224 soname = elf_dt_name (abfd);
4225 if (soname == NULL || *soname == '\0')
4226 soname = bfd_get_filename (abfd);
4227 }
4228
4229 /* Save the SONAME because sometimes the linker emulation code
4230 will need to know it. */
4231 elf_dt_name (abfd) = soname;
4232
4233 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4234 if (ret < 0)
4235 goto error_return;
4236
4237 /* If we have already included this dynamic object in the
4238 link, just ignore it. There is no reason to include a
4239 particular dynamic object more than once. */
4240 if (ret > 0)
4241 return TRUE;
4242
4243 /* Save the DT_AUDIT entry for the linker emulation code. */
4244 elf_dt_audit (abfd) = audit;
4245 }
4246
4247 /* If this is a dynamic object, we always link against the .dynsym
4248 symbol table, not the .symtab symbol table. The dynamic linker
4249 will only see the .dynsym symbol table, so there is no reason to
4250 look at .symtab for a dynamic object. */
4251
4252 if (! dynamic || elf_dynsymtab (abfd) == 0)
4253 hdr = &elf_tdata (abfd)->symtab_hdr;
4254 else
4255 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4256
4257 symcount = hdr->sh_size / bed->s->sizeof_sym;
4258
4259 /* The sh_info field of the symtab header tells us where the
4260 external symbols start. We don't care about the local symbols at
4261 this point. */
4262 if (elf_bad_symtab (abfd))
4263 {
4264 extsymcount = symcount;
4265 extsymoff = 0;
4266 }
4267 else
4268 {
4269 extsymcount = symcount - hdr->sh_info;
4270 extsymoff = hdr->sh_info;
4271 }
4272
4273 sym_hash = elf_sym_hashes (abfd);
4274 if (extsymcount != 0)
4275 {
4276 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4277 NULL, NULL, NULL);
4278 if (isymbuf == NULL)
4279 goto error_return;
4280
4281 if (sym_hash == NULL)
4282 {
4283 /* We store a pointer to the hash table entry for each
4284 external symbol. */
4285 amt = extsymcount;
4286 amt *= sizeof (struct elf_link_hash_entry *);
4287 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4288 if (sym_hash == NULL)
4289 goto error_free_sym;
4290 elf_sym_hashes (abfd) = sym_hash;
4291 }
4292 }
4293
4294 if (dynamic)
4295 {
4296 /* Read in any version definitions. */
4297 if (!_bfd_elf_slurp_version_tables (abfd,
4298 info->default_imported_symver))
4299 goto error_free_sym;
4300
4301 /* Read in the symbol versions, but don't bother to convert them
4302 to internal format. */
4303 if (elf_dynversym (abfd) != 0)
4304 {
4305 Elf_Internal_Shdr *versymhdr;
4306
4307 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4308 amt = versymhdr->sh_size;
4309 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4310 if (extversym == NULL)
4311 goto error_free_sym;
4312 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4313 || bfd_bread (extversym, amt, abfd) != amt)
4314 goto error_free_vers;
4315 extversym_end = extversym + (amt / sizeof (* extversym));
4316 }
4317 }
4318
4319 /* If we are loading an as-needed shared lib, save the symbol table
4320 state before we start adding symbols. If the lib turns out
4321 to be unneeded, restore the state. */
4322 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4323 {
4324 unsigned int i;
4325 size_t entsize;
4326
4327 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4328 {
4329 struct bfd_hash_entry *p;
4330 struct elf_link_hash_entry *h;
4331
4332 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4333 {
4334 h = (struct elf_link_hash_entry *) p;
4335 entsize += htab->root.table.entsize;
4336 if (h->root.type == bfd_link_hash_warning)
4337 entsize += htab->root.table.entsize;
4338 }
4339 }
4340
4341 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4342 old_tab = bfd_malloc (tabsize + entsize);
4343 if (old_tab == NULL)
4344 goto error_free_vers;
4345
4346 /* Remember the current objalloc pointer, so that all mem for
4347 symbols added can later be reclaimed. */
4348 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4349 if (alloc_mark == NULL)
4350 goto error_free_vers;
4351
4352 /* Make a special call to the linker "notice" function to
4353 tell it that we are about to handle an as-needed lib. */
4354 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4355 goto error_free_vers;
4356
4357 /* Clone the symbol table. Remember some pointers into the
4358 symbol table, and dynamic symbol count. */
4359 old_ent = (char *) old_tab + tabsize;
4360 memcpy (old_tab, htab->root.table.table, tabsize);
4361 old_undefs = htab->root.undefs;
4362 old_undefs_tail = htab->root.undefs_tail;
4363 old_table = htab->root.table.table;
4364 old_size = htab->root.table.size;
4365 old_count = htab->root.table.count;
4366 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4367 if (old_strtab == NULL)
4368 goto error_free_vers;
4369
4370 for (i = 0; i < htab->root.table.size; i++)
4371 {
4372 struct bfd_hash_entry *p;
4373 struct elf_link_hash_entry *h;
4374
4375 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4376 {
4377 memcpy (old_ent, p, htab->root.table.entsize);
4378 old_ent = (char *) old_ent + htab->root.table.entsize;
4379 h = (struct elf_link_hash_entry *) p;
4380 if (h->root.type == bfd_link_hash_warning)
4381 {
4382 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4383 old_ent = (char *) old_ent + htab->root.table.entsize;
4384 }
4385 }
4386 }
4387 }
4388
4389 weaks = NULL;
4390 if (extversym == NULL)
4391 ever = NULL;
4392 else if (extversym + extsymoff < extversym_end)
4393 ever = extversym + extsymoff;
4394 else
4395 {
4396 /* xgettext:c-format */
4397 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4398 abfd, (long) extsymoff,
4399 (long) (extversym_end - extversym) / sizeof (* extversym));
4400 bfd_set_error (bfd_error_bad_value);
4401 goto error_free_vers;
4402 }
4403
4404 if (abfd->lto_slim_object)
4405 {
4406 _bfd_error_handler
4407 (_("%pB: plugin needed to handle lto object"), abfd);
4408 }
4409
4410 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4411 isym < isymend;
4412 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4413 {
4414 int bind;
4415 bfd_vma value;
4416 asection *sec, *new_sec;
4417 flagword flags;
4418 const char *name;
4419 struct elf_link_hash_entry *h;
4420 struct elf_link_hash_entry *hi;
4421 bfd_boolean definition;
4422 bfd_boolean size_change_ok;
4423 bfd_boolean type_change_ok;
4424 bfd_boolean new_weak;
4425 bfd_boolean old_weak;
4426 bfd_boolean override;
4427 bfd_boolean common;
4428 bfd_boolean discarded;
4429 unsigned int old_alignment;
4430 unsigned int shindex;
4431 bfd *old_bfd;
4432 bfd_boolean matched;
4433
4434 override = FALSE;
4435
4436 flags = BSF_NO_FLAGS;
4437 sec = NULL;
4438 value = isym->st_value;
4439 common = bed->common_definition (isym);
4440 if (common && info->inhibit_common_definition)
4441 {
4442 /* Treat common symbol as undefined for --no-define-common. */
4443 isym->st_shndx = SHN_UNDEF;
4444 common = FALSE;
4445 }
4446 discarded = FALSE;
4447
4448 bind = ELF_ST_BIND (isym->st_info);
4449 switch (bind)
4450 {
4451 case STB_LOCAL:
4452 /* This should be impossible, since ELF requires that all
4453 global symbols follow all local symbols, and that sh_info
4454 point to the first global symbol. Unfortunately, Irix 5
4455 screws this up. */
4456 if (elf_bad_symtab (abfd))
4457 continue;
4458
4459 /* If we aren't prepared to handle locals within the globals
4460 then we'll likely segfault on a NULL symbol hash if the
4461 symbol is ever referenced in relocations. */
4462 shindex = elf_elfheader (abfd)->e_shstrndx;
4463 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4464 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4465 " (>= sh_info of %lu)"),
4466 abfd, name, (long) (isym - isymbuf + extsymoff),
4467 (long) extsymoff);
4468
4469 /* Dynamic object relocations are not processed by ld, so
4470 ld won't run into the problem mentioned above. */
4471 if (dynamic)
4472 continue;
4473 bfd_set_error (bfd_error_bad_value);
4474 goto error_free_vers;
4475
4476 case STB_GLOBAL:
4477 if (isym->st_shndx != SHN_UNDEF && !common)
4478 flags = BSF_GLOBAL;
4479 break;
4480
4481 case STB_WEAK:
4482 flags = BSF_WEAK;
4483 break;
4484
4485 case STB_GNU_UNIQUE:
4486 flags = BSF_GNU_UNIQUE;
4487 break;
4488
4489 default:
4490 /* Leave it up to the processor backend. */
4491 break;
4492 }
4493
4494 if (isym->st_shndx == SHN_UNDEF)
4495 sec = bfd_und_section_ptr;
4496 else if (isym->st_shndx == SHN_ABS)
4497 sec = bfd_abs_section_ptr;
4498 else if (isym->st_shndx == SHN_COMMON)
4499 {
4500 sec = bfd_com_section_ptr;
4501 /* What ELF calls the size we call the value. What ELF
4502 calls the value we call the alignment. */
4503 value = isym->st_size;
4504 }
4505 else
4506 {
4507 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4508 if (sec == NULL)
4509 sec = bfd_abs_section_ptr;
4510 else if (discarded_section (sec))
4511 {
4512 /* Symbols from discarded section are undefined. We keep
4513 its visibility. */
4514 sec = bfd_und_section_ptr;
4515 discarded = TRUE;
4516 isym->st_shndx = SHN_UNDEF;
4517 }
4518 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4519 value -= sec->vma;
4520 }
4521
4522 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4523 isym->st_name);
4524 if (name == NULL)
4525 goto error_free_vers;
4526
4527 if (isym->st_shndx == SHN_COMMON
4528 && (abfd->flags & BFD_PLUGIN) != 0)
4529 {
4530 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4531
4532 if (xc == NULL)
4533 {
4534 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4535 | SEC_EXCLUDE);
4536 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4537 if (xc == NULL)
4538 goto error_free_vers;
4539 }
4540 sec = xc;
4541 }
4542 else if (isym->st_shndx == SHN_COMMON
4543 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4544 && !bfd_link_relocatable (info))
4545 {
4546 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4547
4548 if (tcomm == NULL)
4549 {
4550 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4551 | SEC_LINKER_CREATED);
4552 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4553 if (tcomm == NULL)
4554 goto error_free_vers;
4555 }
4556 sec = tcomm;
4557 }
4558 else if (bed->elf_add_symbol_hook)
4559 {
4560 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4561 &sec, &value))
4562 goto error_free_vers;
4563
4564 /* The hook function sets the name to NULL if this symbol
4565 should be skipped for some reason. */
4566 if (name == NULL)
4567 continue;
4568 }
4569
4570 /* Sanity check that all possibilities were handled. */
4571 if (sec == NULL)
4572 abort ();
4573
4574 /* Silently discard TLS symbols from --just-syms. There's
4575 no way to combine a static TLS block with a new TLS block
4576 for this executable. */
4577 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4578 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4579 continue;
4580
4581 if (bfd_is_und_section (sec)
4582 || bfd_is_com_section (sec))
4583 definition = FALSE;
4584 else
4585 definition = TRUE;
4586
4587 size_change_ok = FALSE;
4588 type_change_ok = bed->type_change_ok;
4589 old_weak = FALSE;
4590 matched = FALSE;
4591 old_alignment = 0;
4592 old_bfd = NULL;
4593 new_sec = sec;
4594
4595 if (is_elf_hash_table (htab))
4596 {
4597 Elf_Internal_Versym iver;
4598 unsigned int vernum = 0;
4599 bfd_boolean skip;
4600
4601 if (ever == NULL)
4602 {
4603 if (info->default_imported_symver)
4604 /* Use the default symbol version created earlier. */
4605 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4606 else
4607 iver.vs_vers = 0;
4608 }
4609 else if (ever >= extversym_end)
4610 {
4611 /* xgettext:c-format */
4612 _bfd_error_handler (_("%pB: not enough version information"),
4613 abfd);
4614 bfd_set_error (bfd_error_bad_value);
4615 goto error_free_vers;
4616 }
4617 else
4618 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4619
4620 vernum = iver.vs_vers & VERSYM_VERSION;
4621
4622 /* If this is a hidden symbol, or if it is not version
4623 1, we append the version name to the symbol name.
4624 However, we do not modify a non-hidden absolute symbol
4625 if it is not a function, because it might be the version
4626 symbol itself. FIXME: What if it isn't? */
4627 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4628 || (vernum > 1
4629 && (!bfd_is_abs_section (sec)
4630 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4631 {
4632 const char *verstr;
4633 size_t namelen, verlen, newlen;
4634 char *newname, *p;
4635
4636 if (isym->st_shndx != SHN_UNDEF)
4637 {
4638 if (vernum > elf_tdata (abfd)->cverdefs)
4639 verstr = NULL;
4640 else if (vernum > 1)
4641 verstr =
4642 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4643 else
4644 verstr = "";
4645
4646 if (verstr == NULL)
4647 {
4648 _bfd_error_handler
4649 /* xgettext:c-format */
4650 (_("%pB: %s: invalid version %u (max %d)"),
4651 abfd, name, vernum,
4652 elf_tdata (abfd)->cverdefs);
4653 bfd_set_error (bfd_error_bad_value);
4654 goto error_free_vers;
4655 }
4656 }
4657 else
4658 {
4659 /* We cannot simply test for the number of
4660 entries in the VERNEED section since the
4661 numbers for the needed versions do not start
4662 at 0. */
4663 Elf_Internal_Verneed *t;
4664
4665 verstr = NULL;
4666 for (t = elf_tdata (abfd)->verref;
4667 t != NULL;
4668 t = t->vn_nextref)
4669 {
4670 Elf_Internal_Vernaux *a;
4671
4672 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4673 {
4674 if (a->vna_other == vernum)
4675 {
4676 verstr = a->vna_nodename;
4677 break;
4678 }
4679 }
4680 if (a != NULL)
4681 break;
4682 }
4683 if (verstr == NULL)
4684 {
4685 _bfd_error_handler
4686 /* xgettext:c-format */
4687 (_("%pB: %s: invalid needed version %d"),
4688 abfd, name, vernum);
4689 bfd_set_error (bfd_error_bad_value);
4690 goto error_free_vers;
4691 }
4692 }
4693
4694 namelen = strlen (name);
4695 verlen = strlen (verstr);
4696 newlen = namelen + verlen + 2;
4697 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4698 && isym->st_shndx != SHN_UNDEF)
4699 ++newlen;
4700
4701 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4702 if (newname == NULL)
4703 goto error_free_vers;
4704 memcpy (newname, name, namelen);
4705 p = newname + namelen;
4706 *p++ = ELF_VER_CHR;
4707 /* If this is a defined non-hidden version symbol,
4708 we add another @ to the name. This indicates the
4709 default version of the symbol. */
4710 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4711 && isym->st_shndx != SHN_UNDEF)
4712 *p++ = ELF_VER_CHR;
4713 memcpy (p, verstr, verlen + 1);
4714
4715 name = newname;
4716 }
4717
4718 /* If this symbol has default visibility and the user has
4719 requested we not re-export it, then mark it as hidden. */
4720 if (!bfd_is_und_section (sec)
4721 && !dynamic
4722 && abfd->no_export
4723 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4724 isym->st_other = (STV_HIDDEN
4725 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4726
4727 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4728 sym_hash, &old_bfd, &old_weak,
4729 &old_alignment, &skip, &override,
4730 &type_change_ok, &size_change_ok,
4731 &matched))
4732 goto error_free_vers;
4733
4734 if (skip)
4735 continue;
4736
4737 /* Override a definition only if the new symbol matches the
4738 existing one. */
4739 if (override && matched)
4740 definition = FALSE;
4741
4742 h = *sym_hash;
4743 while (h->root.type == bfd_link_hash_indirect
4744 || h->root.type == bfd_link_hash_warning)
4745 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4746
4747 if (elf_tdata (abfd)->verdef != NULL
4748 && vernum > 1
4749 && definition)
4750 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4751 }
4752
4753 if (! (_bfd_generic_link_add_one_symbol
4754 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4755 (struct bfd_link_hash_entry **) sym_hash)))
4756 goto error_free_vers;
4757
4758 h = *sym_hash;
4759 /* We need to make sure that indirect symbol dynamic flags are
4760 updated. */
4761 hi = h;
4762 while (h->root.type == bfd_link_hash_indirect
4763 || h->root.type == bfd_link_hash_warning)
4764 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4765
4766 /* Setting the index to -3 tells elf_link_output_extsym that
4767 this symbol is defined in a discarded section. */
4768 if (discarded)
4769 h->indx = -3;
4770
4771 *sym_hash = h;
4772
4773 new_weak = (flags & BSF_WEAK) != 0;
4774 if (dynamic
4775 && definition
4776 && new_weak
4777 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4778 && is_elf_hash_table (htab)
4779 && h->u.alias == NULL)
4780 {
4781 /* Keep a list of all weak defined non function symbols from
4782 a dynamic object, using the alias field. Later in this
4783 function we will set the alias field to the correct
4784 value. We only put non-function symbols from dynamic
4785 objects on this list, because that happens to be the only
4786 time we need to know the normal symbol corresponding to a
4787 weak symbol, and the information is time consuming to
4788 figure out. If the alias field is not already NULL,
4789 then this symbol was already defined by some previous
4790 dynamic object, and we will be using that previous
4791 definition anyhow. */
4792
4793 h->u.alias = weaks;
4794 weaks = h;
4795 }
4796
4797 /* Set the alignment of a common symbol. */
4798 if ((common || bfd_is_com_section (sec))
4799 && h->root.type == bfd_link_hash_common)
4800 {
4801 unsigned int align;
4802
4803 if (common)
4804 align = bfd_log2 (isym->st_value);
4805 else
4806 {
4807 /* The new symbol is a common symbol in a shared object.
4808 We need to get the alignment from the section. */
4809 align = new_sec->alignment_power;
4810 }
4811 if (align > old_alignment)
4812 h->root.u.c.p->alignment_power = align;
4813 else
4814 h->root.u.c.p->alignment_power = old_alignment;
4815 }
4816
4817 if (is_elf_hash_table (htab))
4818 {
4819 /* Set a flag in the hash table entry indicating the type of
4820 reference or definition we just found. A dynamic symbol
4821 is one which is referenced or defined by both a regular
4822 object and a shared object. */
4823 bfd_boolean dynsym = FALSE;
4824
4825 /* Plugin symbols aren't normal. Don't set def_regular or
4826 ref_regular for them, or make them dynamic. */
4827 if ((abfd->flags & BFD_PLUGIN) != 0)
4828 ;
4829 else if (! dynamic)
4830 {
4831 if (! definition)
4832 {
4833 h->ref_regular = 1;
4834 if (bind != STB_WEAK)
4835 h->ref_regular_nonweak = 1;
4836 }
4837 else
4838 {
4839 h->def_regular = 1;
4840 if (h->def_dynamic)
4841 {
4842 h->def_dynamic = 0;
4843 h->ref_dynamic = 1;
4844 }
4845 }
4846
4847 /* If the indirect symbol has been forced local, don't
4848 make the real symbol dynamic. */
4849 if ((h == hi || !hi->forced_local)
4850 && (bfd_link_dll (info)
4851 || h->def_dynamic
4852 || h->ref_dynamic))
4853 dynsym = TRUE;
4854 }
4855 else
4856 {
4857 if (! definition)
4858 {
4859 h->ref_dynamic = 1;
4860 hi->ref_dynamic = 1;
4861 }
4862 else
4863 {
4864 h->def_dynamic = 1;
4865 hi->def_dynamic = 1;
4866 }
4867
4868 /* If the indirect symbol has been forced local, don't
4869 make the real symbol dynamic. */
4870 if ((h == hi || !hi->forced_local)
4871 && (h->def_regular
4872 || h->ref_regular
4873 || (h->is_weakalias
4874 && weakdef (h)->dynindx != -1)))
4875 dynsym = TRUE;
4876 }
4877
4878 /* Check to see if we need to add an indirect symbol for
4879 the default name. */
4880 if (definition
4881 || (!override && h->root.type == bfd_link_hash_common))
4882 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4883 sec, value, &old_bfd, &dynsym))
4884 goto error_free_vers;
4885
4886 /* Check the alignment when a common symbol is involved. This
4887 can change when a common symbol is overridden by a normal
4888 definition or a common symbol is ignored due to the old
4889 normal definition. We need to make sure the maximum
4890 alignment is maintained. */
4891 if ((old_alignment || common)
4892 && h->root.type != bfd_link_hash_common)
4893 {
4894 unsigned int common_align;
4895 unsigned int normal_align;
4896 unsigned int symbol_align;
4897 bfd *normal_bfd;
4898 bfd *common_bfd;
4899
4900 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4901 || h->root.type == bfd_link_hash_defweak);
4902
4903 symbol_align = ffs (h->root.u.def.value) - 1;
4904 if (h->root.u.def.section->owner != NULL
4905 && (h->root.u.def.section->owner->flags
4906 & (DYNAMIC | BFD_PLUGIN)) == 0)
4907 {
4908 normal_align = h->root.u.def.section->alignment_power;
4909 if (normal_align > symbol_align)
4910 normal_align = symbol_align;
4911 }
4912 else
4913 normal_align = symbol_align;
4914
4915 if (old_alignment)
4916 {
4917 common_align = old_alignment;
4918 common_bfd = old_bfd;
4919 normal_bfd = abfd;
4920 }
4921 else
4922 {
4923 common_align = bfd_log2 (isym->st_value);
4924 common_bfd = abfd;
4925 normal_bfd = old_bfd;
4926 }
4927
4928 if (normal_align < common_align)
4929 {
4930 /* PR binutils/2735 */
4931 if (normal_bfd == NULL)
4932 _bfd_error_handler
4933 /* xgettext:c-format */
4934 (_("warning: alignment %u of common symbol `%s' in %pB is"
4935 " greater than the alignment (%u) of its section %pA"),
4936 1 << common_align, name, common_bfd,
4937 1 << normal_align, h->root.u.def.section);
4938 else
4939 _bfd_error_handler
4940 /* xgettext:c-format */
4941 (_("warning: alignment %u of symbol `%s' in %pB"
4942 " is smaller than %u in %pB"),
4943 1 << normal_align, name, normal_bfd,
4944 1 << common_align, common_bfd);
4945 }
4946 }
4947
4948 /* Remember the symbol size if it isn't undefined. */
4949 if (isym->st_size != 0
4950 && isym->st_shndx != SHN_UNDEF
4951 && (definition || h->size == 0))
4952 {
4953 if (h->size != 0
4954 && h->size != isym->st_size
4955 && ! size_change_ok)
4956 _bfd_error_handler
4957 /* xgettext:c-format */
4958 (_("warning: size of symbol `%s' changed"
4959 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4960 name, (uint64_t) h->size, old_bfd,
4961 (uint64_t) isym->st_size, abfd);
4962
4963 h->size = isym->st_size;
4964 }
4965
4966 /* If this is a common symbol, then we always want H->SIZE
4967 to be the size of the common symbol. The code just above
4968 won't fix the size if a common symbol becomes larger. We
4969 don't warn about a size change here, because that is
4970 covered by --warn-common. Allow changes between different
4971 function types. */
4972 if (h->root.type == bfd_link_hash_common)
4973 h->size = h->root.u.c.size;
4974
4975 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4976 && ((definition && !new_weak)
4977 || (old_weak && h->root.type == bfd_link_hash_common)
4978 || h->type == STT_NOTYPE))
4979 {
4980 unsigned int type = ELF_ST_TYPE (isym->st_info);
4981
4982 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4983 symbol. */
4984 if (type == STT_GNU_IFUNC
4985 && (abfd->flags & DYNAMIC) != 0)
4986 type = STT_FUNC;
4987
4988 if (h->type != type)
4989 {
4990 if (h->type != STT_NOTYPE && ! type_change_ok)
4991 /* xgettext:c-format */
4992 _bfd_error_handler
4993 (_("warning: type of symbol `%s' changed"
4994 " from %d to %d in %pB"),
4995 name, h->type, type, abfd);
4996
4997 h->type = type;
4998 }
4999 }
5000
5001 /* Merge st_other field. */
5002 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5003
5004 /* We don't want to make debug symbol dynamic. */
5005 if (definition
5006 && (sec->flags & SEC_DEBUGGING)
5007 && !bfd_link_relocatable (info))
5008 dynsym = FALSE;
5009
5010 /* Nor should we make plugin symbols dynamic. */
5011 if ((abfd->flags & BFD_PLUGIN) != 0)
5012 dynsym = FALSE;
5013
5014 if (definition)
5015 {
5016 h->target_internal = isym->st_target_internal;
5017 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5018 }
5019
5020 if (definition && !dynamic)
5021 {
5022 char *p = strchr (name, ELF_VER_CHR);
5023 if (p != NULL && p[1] != ELF_VER_CHR)
5024 {
5025 /* Queue non-default versions so that .symver x, x@FOO
5026 aliases can be checked. */
5027 if (!nondeflt_vers)
5028 {
5029 amt = ((isymend - isym + 1)
5030 * sizeof (struct elf_link_hash_entry *));
5031 nondeflt_vers
5032 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5033 if (!nondeflt_vers)
5034 goto error_free_vers;
5035 }
5036 nondeflt_vers[nondeflt_vers_cnt++] = h;
5037 }
5038 }
5039
5040 if (dynsym && h->dynindx == -1)
5041 {
5042 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5043 goto error_free_vers;
5044 if (h->is_weakalias
5045 && weakdef (h)->dynindx == -1)
5046 {
5047 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5048 goto error_free_vers;
5049 }
5050 }
5051 else if (h->dynindx != -1)
5052 /* If the symbol already has a dynamic index, but
5053 visibility says it should not be visible, turn it into
5054 a local symbol. */
5055 switch (ELF_ST_VISIBILITY (h->other))
5056 {
5057 case STV_INTERNAL:
5058 case STV_HIDDEN:
5059 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5060 dynsym = FALSE;
5061 break;
5062 }
5063
5064 /* Don't add DT_NEEDED for references from the dummy bfd nor
5065 for unmatched symbol. */
5066 if (!add_needed
5067 && matched
5068 && definition
5069 && ((dynsym
5070 && h->ref_regular_nonweak
5071 && (old_bfd == NULL
5072 || (old_bfd->flags & BFD_PLUGIN) == 0))
5073 || (h->ref_dynamic_nonweak
5074 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5075 && !on_needed_list (elf_dt_name (abfd),
5076 htab->needed, NULL))))
5077 {
5078 int ret;
5079 const char *soname = elf_dt_name (abfd);
5080
5081 info->callbacks->minfo ("%!", soname, old_bfd,
5082 h->root.root.string);
5083
5084 /* A symbol from a library loaded via DT_NEEDED of some
5085 other library is referenced by a regular object.
5086 Add a DT_NEEDED entry for it. Issue an error if
5087 --no-add-needed is used and the reference was not
5088 a weak one. */
5089 if (old_bfd != NULL
5090 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5091 {
5092 _bfd_error_handler
5093 /* xgettext:c-format */
5094 (_("%pB: undefined reference to symbol '%s'"),
5095 old_bfd, name);
5096 bfd_set_error (bfd_error_missing_dso);
5097 goto error_free_vers;
5098 }
5099
5100 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5101 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5102
5103 add_needed = TRUE;
5104 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5105 if (ret < 0)
5106 goto error_free_vers;
5107
5108 BFD_ASSERT (ret == 0);
5109 }
5110 }
5111 }
5112
5113 if (info->lto_plugin_active
5114 && !bfd_link_relocatable (info)
5115 && (abfd->flags & BFD_PLUGIN) == 0
5116 && !just_syms
5117 && extsymcount)
5118 {
5119 int r_sym_shift;
5120
5121 if (bed->s->arch_size == 32)
5122 r_sym_shift = 8;
5123 else
5124 r_sym_shift = 32;
5125
5126 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5127 referenced in regular objects so that linker plugin will get
5128 the correct symbol resolution. */
5129
5130 sym_hash = elf_sym_hashes (abfd);
5131 for (s = abfd->sections; s != NULL; s = s->next)
5132 {
5133 Elf_Internal_Rela *internal_relocs;
5134 Elf_Internal_Rela *rel, *relend;
5135
5136 /* Don't check relocations in excluded sections. */
5137 if ((s->flags & SEC_RELOC) == 0
5138 || s->reloc_count == 0
5139 || (s->flags & SEC_EXCLUDE) != 0
5140 || ((info->strip == strip_all
5141 || info->strip == strip_debugger)
5142 && (s->flags & SEC_DEBUGGING) != 0))
5143 continue;
5144
5145 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5146 NULL,
5147 info->keep_memory);
5148 if (internal_relocs == NULL)
5149 goto error_free_vers;
5150
5151 rel = internal_relocs;
5152 relend = rel + s->reloc_count;
5153 for ( ; rel < relend; rel++)
5154 {
5155 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5156 struct elf_link_hash_entry *h;
5157
5158 /* Skip local symbols. */
5159 if (r_symndx < extsymoff)
5160 continue;
5161
5162 h = sym_hash[r_symndx - extsymoff];
5163 if (h != NULL)
5164 h->root.non_ir_ref_regular = 1;
5165 }
5166
5167 if (elf_section_data (s)->relocs != internal_relocs)
5168 free (internal_relocs);
5169 }
5170 }
5171
5172 if (extversym != NULL)
5173 {
5174 free (extversym);
5175 extversym = NULL;
5176 }
5177
5178 if (isymbuf != NULL)
5179 {
5180 free (isymbuf);
5181 isymbuf = NULL;
5182 }
5183
5184 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5185 {
5186 unsigned int i;
5187
5188 /* Restore the symbol table. */
5189 old_ent = (char *) old_tab + tabsize;
5190 memset (elf_sym_hashes (abfd), 0,
5191 extsymcount * sizeof (struct elf_link_hash_entry *));
5192 htab->root.table.table = old_table;
5193 htab->root.table.size = old_size;
5194 htab->root.table.count = old_count;
5195 memcpy (htab->root.table.table, old_tab, tabsize);
5196 htab->root.undefs = old_undefs;
5197 htab->root.undefs_tail = old_undefs_tail;
5198 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5199 free (old_strtab);
5200 old_strtab = NULL;
5201 for (i = 0; i < htab->root.table.size; i++)
5202 {
5203 struct bfd_hash_entry *p;
5204 struct elf_link_hash_entry *h;
5205 bfd_size_type size;
5206 unsigned int alignment_power;
5207 unsigned int non_ir_ref_dynamic;
5208
5209 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5210 {
5211 h = (struct elf_link_hash_entry *) p;
5212 if (h->root.type == bfd_link_hash_warning)
5213 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5214
5215 /* Preserve the maximum alignment and size for common
5216 symbols even if this dynamic lib isn't on DT_NEEDED
5217 since it can still be loaded at run time by another
5218 dynamic lib. */
5219 if (h->root.type == bfd_link_hash_common)
5220 {
5221 size = h->root.u.c.size;
5222 alignment_power = h->root.u.c.p->alignment_power;
5223 }
5224 else
5225 {
5226 size = 0;
5227 alignment_power = 0;
5228 }
5229 /* Preserve non_ir_ref_dynamic so that this symbol
5230 will be exported when the dynamic lib becomes needed
5231 in the second pass. */
5232 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5233 memcpy (p, old_ent, htab->root.table.entsize);
5234 old_ent = (char *) old_ent + htab->root.table.entsize;
5235 h = (struct elf_link_hash_entry *) p;
5236 if (h->root.type == bfd_link_hash_warning)
5237 {
5238 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5239 old_ent = (char *) old_ent + htab->root.table.entsize;
5240 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5241 }
5242 if (h->root.type == bfd_link_hash_common)
5243 {
5244 if (size > h->root.u.c.size)
5245 h->root.u.c.size = size;
5246 if (alignment_power > h->root.u.c.p->alignment_power)
5247 h->root.u.c.p->alignment_power = alignment_power;
5248 }
5249 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5250 }
5251 }
5252
5253 /* Make a special call to the linker "notice" function to
5254 tell it that symbols added for crefs may need to be removed. */
5255 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5256 goto error_free_vers;
5257
5258 free (old_tab);
5259 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5260 alloc_mark);
5261 if (nondeflt_vers != NULL)
5262 free (nondeflt_vers);
5263 return TRUE;
5264 }
5265
5266 if (old_tab != NULL)
5267 {
5268 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5269 goto error_free_vers;
5270 free (old_tab);
5271 old_tab = NULL;
5272 }
5273
5274 /* Now that all the symbols from this input file are created, if
5275 not performing a relocatable link, handle .symver foo, foo@BAR
5276 such that any relocs against foo become foo@BAR. */
5277 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5278 {
5279 size_t cnt, symidx;
5280
5281 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5282 {
5283 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5284 char *shortname, *p;
5285
5286 p = strchr (h->root.root.string, ELF_VER_CHR);
5287 if (p == NULL
5288 || (h->root.type != bfd_link_hash_defined
5289 && h->root.type != bfd_link_hash_defweak))
5290 continue;
5291
5292 amt = p - h->root.root.string;
5293 shortname = (char *) bfd_malloc (amt + 1);
5294 if (!shortname)
5295 goto error_free_vers;
5296 memcpy (shortname, h->root.root.string, amt);
5297 shortname[amt] = '\0';
5298
5299 hi = (struct elf_link_hash_entry *)
5300 bfd_link_hash_lookup (&htab->root, shortname,
5301 FALSE, FALSE, FALSE);
5302 if (hi != NULL
5303 && hi->root.type == h->root.type
5304 && hi->root.u.def.value == h->root.u.def.value
5305 && hi->root.u.def.section == h->root.u.def.section)
5306 {
5307 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5308 hi->root.type = bfd_link_hash_indirect;
5309 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5310 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5311 sym_hash = elf_sym_hashes (abfd);
5312 if (sym_hash)
5313 for (symidx = 0; symidx < extsymcount; ++symidx)
5314 if (sym_hash[symidx] == hi)
5315 {
5316 sym_hash[symidx] = h;
5317 break;
5318 }
5319 }
5320 free (shortname);
5321 }
5322 free (nondeflt_vers);
5323 nondeflt_vers = NULL;
5324 }
5325
5326 /* Now set the alias field correctly for all the weak defined
5327 symbols we found. The only way to do this is to search all the
5328 symbols. Since we only need the information for non functions in
5329 dynamic objects, that's the only time we actually put anything on
5330 the list WEAKS. We need this information so that if a regular
5331 object refers to a symbol defined weakly in a dynamic object, the
5332 real symbol in the dynamic object is also put in the dynamic
5333 symbols; we also must arrange for both symbols to point to the
5334 same memory location. We could handle the general case of symbol
5335 aliasing, but a general symbol alias can only be generated in
5336 assembler code, handling it correctly would be very time
5337 consuming, and other ELF linkers don't handle general aliasing
5338 either. */
5339 if (weaks != NULL)
5340 {
5341 struct elf_link_hash_entry **hpp;
5342 struct elf_link_hash_entry **hppend;
5343 struct elf_link_hash_entry **sorted_sym_hash;
5344 struct elf_link_hash_entry *h;
5345 size_t sym_count;
5346
5347 /* Since we have to search the whole symbol list for each weak
5348 defined symbol, search time for N weak defined symbols will be
5349 O(N^2). Binary search will cut it down to O(NlogN). */
5350 amt = extsymcount;
5351 amt *= sizeof (struct elf_link_hash_entry *);
5352 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5353 if (sorted_sym_hash == NULL)
5354 goto error_return;
5355 sym_hash = sorted_sym_hash;
5356 hpp = elf_sym_hashes (abfd);
5357 hppend = hpp + extsymcount;
5358 sym_count = 0;
5359 for (; hpp < hppend; hpp++)
5360 {
5361 h = *hpp;
5362 if (h != NULL
5363 && h->root.type == bfd_link_hash_defined
5364 && !bed->is_function_type (h->type))
5365 {
5366 *sym_hash = h;
5367 sym_hash++;
5368 sym_count++;
5369 }
5370 }
5371
5372 qsort (sorted_sym_hash, sym_count,
5373 sizeof (struct elf_link_hash_entry *),
5374 elf_sort_symbol);
5375
5376 while (weaks != NULL)
5377 {
5378 struct elf_link_hash_entry *hlook;
5379 asection *slook;
5380 bfd_vma vlook;
5381 size_t i, j, idx = 0;
5382
5383 hlook = weaks;
5384 weaks = hlook->u.alias;
5385 hlook->u.alias = NULL;
5386
5387 if (hlook->root.type != bfd_link_hash_defined
5388 && hlook->root.type != bfd_link_hash_defweak)
5389 continue;
5390
5391 slook = hlook->root.u.def.section;
5392 vlook = hlook->root.u.def.value;
5393
5394 i = 0;
5395 j = sym_count;
5396 while (i != j)
5397 {
5398 bfd_signed_vma vdiff;
5399 idx = (i + j) / 2;
5400 h = sorted_sym_hash[idx];
5401 vdiff = vlook - h->root.u.def.value;
5402 if (vdiff < 0)
5403 j = idx;
5404 else if (vdiff > 0)
5405 i = idx + 1;
5406 else
5407 {
5408 int sdiff = slook->id - h->root.u.def.section->id;
5409 if (sdiff < 0)
5410 j = idx;
5411 else if (sdiff > 0)
5412 i = idx + 1;
5413 else
5414 break;
5415 }
5416 }
5417
5418 /* We didn't find a value/section match. */
5419 if (i == j)
5420 continue;
5421
5422 /* With multiple aliases, or when the weak symbol is already
5423 strongly defined, we have multiple matching symbols and
5424 the binary search above may land on any of them. Step
5425 one past the matching symbol(s). */
5426 while (++idx != j)
5427 {
5428 h = sorted_sym_hash[idx];
5429 if (h->root.u.def.section != slook
5430 || h->root.u.def.value != vlook)
5431 break;
5432 }
5433
5434 /* Now look back over the aliases. Since we sorted by size
5435 as well as value and section, we'll choose the one with
5436 the largest size. */
5437 while (idx-- != i)
5438 {
5439 h = sorted_sym_hash[idx];
5440
5441 /* Stop if value or section doesn't match. */
5442 if (h->root.u.def.section != slook
5443 || h->root.u.def.value != vlook)
5444 break;
5445 else if (h != hlook)
5446 {
5447 struct elf_link_hash_entry *t;
5448
5449 hlook->u.alias = h;
5450 hlook->is_weakalias = 1;
5451 t = h;
5452 if (t->u.alias != NULL)
5453 while (t->u.alias != h)
5454 t = t->u.alias;
5455 t->u.alias = hlook;
5456
5457 /* If the weak definition is in the list of dynamic
5458 symbols, make sure the real definition is put
5459 there as well. */
5460 if (hlook->dynindx != -1 && h->dynindx == -1)
5461 {
5462 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5463 {
5464 err_free_sym_hash:
5465 free (sorted_sym_hash);
5466 goto error_return;
5467 }
5468 }
5469
5470 /* If the real definition is in the list of dynamic
5471 symbols, make sure the weak definition is put
5472 there as well. If we don't do this, then the
5473 dynamic loader might not merge the entries for the
5474 real definition and the weak definition. */
5475 if (h->dynindx != -1 && hlook->dynindx == -1)
5476 {
5477 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5478 goto err_free_sym_hash;
5479 }
5480 break;
5481 }
5482 }
5483 }
5484
5485 free (sorted_sym_hash);
5486 }
5487
5488 if (bed->check_directives
5489 && !(*bed->check_directives) (abfd, info))
5490 return FALSE;
5491
5492 /* If this is a non-traditional link, try to optimize the handling
5493 of the .stab/.stabstr sections. */
5494 if (! dynamic
5495 && ! info->traditional_format
5496 && is_elf_hash_table (htab)
5497 && (info->strip != strip_all && info->strip != strip_debugger))
5498 {
5499 asection *stabstr;
5500
5501 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5502 if (stabstr != NULL)
5503 {
5504 bfd_size_type string_offset = 0;
5505 asection *stab;
5506
5507 for (stab = abfd->sections; stab; stab = stab->next)
5508 if (CONST_STRNEQ (stab->name, ".stab")
5509 && (!stab->name[5] ||
5510 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5511 && (stab->flags & SEC_MERGE) == 0
5512 && !bfd_is_abs_section (stab->output_section))
5513 {
5514 struct bfd_elf_section_data *secdata;
5515
5516 secdata = elf_section_data (stab);
5517 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5518 stabstr, &secdata->sec_info,
5519 &string_offset))
5520 goto error_return;
5521 if (secdata->sec_info)
5522 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5523 }
5524 }
5525 }
5526
5527 if (is_elf_hash_table (htab) && add_needed)
5528 {
5529 /* Add this bfd to the loaded list. */
5530 struct elf_link_loaded_list *n;
5531
5532 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5533 if (n == NULL)
5534 goto error_return;
5535 n->abfd = abfd;
5536 n->next = htab->loaded;
5537 htab->loaded = n;
5538 }
5539
5540 return TRUE;
5541
5542 error_free_vers:
5543 if (old_tab != NULL)
5544 free (old_tab);
5545 if (old_strtab != NULL)
5546 free (old_strtab);
5547 if (nondeflt_vers != NULL)
5548 free (nondeflt_vers);
5549 if (extversym != NULL)
5550 free (extversym);
5551 error_free_sym:
5552 if (isymbuf != NULL)
5553 free (isymbuf);
5554 error_return:
5555 return FALSE;
5556 }
5557
5558 /* Return the linker hash table entry of a symbol that might be
5559 satisfied by an archive symbol. Return -1 on error. */
5560
5561 struct elf_link_hash_entry *
5562 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5563 struct bfd_link_info *info,
5564 const char *name)
5565 {
5566 struct elf_link_hash_entry *h;
5567 char *p, *copy;
5568 size_t len, first;
5569
5570 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5571 if (h != NULL)
5572 return h;
5573
5574 /* If this is a default version (the name contains @@), look up the
5575 symbol again with only one `@' as well as without the version.
5576 The effect is that references to the symbol with and without the
5577 version will be matched by the default symbol in the archive. */
5578
5579 p = strchr (name, ELF_VER_CHR);
5580 if (p == NULL || p[1] != ELF_VER_CHR)
5581 return h;
5582
5583 /* First check with only one `@'. */
5584 len = strlen (name);
5585 copy = (char *) bfd_alloc (abfd, len);
5586 if (copy == NULL)
5587 return (struct elf_link_hash_entry *) -1;
5588
5589 first = p - name + 1;
5590 memcpy (copy, name, first);
5591 memcpy (copy + first, name + first + 1, len - first);
5592
5593 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5594 if (h == NULL)
5595 {
5596 /* We also need to check references to the symbol without the
5597 version. */
5598 copy[first - 1] = '\0';
5599 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5600 FALSE, FALSE, TRUE);
5601 }
5602
5603 bfd_release (abfd, copy);
5604 return h;
5605 }
5606
5607 /* Add symbols from an ELF archive file to the linker hash table. We
5608 don't use _bfd_generic_link_add_archive_symbols because we need to
5609 handle versioned symbols.
5610
5611 Fortunately, ELF archive handling is simpler than that done by
5612 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5613 oddities. In ELF, if we find a symbol in the archive map, and the
5614 symbol is currently undefined, we know that we must pull in that
5615 object file.
5616
5617 Unfortunately, we do have to make multiple passes over the symbol
5618 table until nothing further is resolved. */
5619
5620 static bfd_boolean
5621 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5622 {
5623 symindex c;
5624 unsigned char *included = NULL;
5625 carsym *symdefs;
5626 bfd_boolean loop;
5627 bfd_size_type amt;
5628 const struct elf_backend_data *bed;
5629 struct elf_link_hash_entry * (*archive_symbol_lookup)
5630 (bfd *, struct bfd_link_info *, const char *);
5631
5632 if (! bfd_has_map (abfd))
5633 {
5634 /* An empty archive is a special case. */
5635 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5636 return TRUE;
5637 bfd_set_error (bfd_error_no_armap);
5638 return FALSE;
5639 }
5640
5641 /* Keep track of all symbols we know to be already defined, and all
5642 files we know to be already included. This is to speed up the
5643 second and subsequent passes. */
5644 c = bfd_ardata (abfd)->symdef_count;
5645 if (c == 0)
5646 return TRUE;
5647 amt = c;
5648 amt *= sizeof (*included);
5649 included = (unsigned char *) bfd_zmalloc (amt);
5650 if (included == NULL)
5651 return FALSE;
5652
5653 symdefs = bfd_ardata (abfd)->symdefs;
5654 bed = get_elf_backend_data (abfd);
5655 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5656
5657 do
5658 {
5659 file_ptr last;
5660 symindex i;
5661 carsym *symdef;
5662 carsym *symdefend;
5663
5664 loop = FALSE;
5665 last = -1;
5666
5667 symdef = symdefs;
5668 symdefend = symdef + c;
5669 for (i = 0; symdef < symdefend; symdef++, i++)
5670 {
5671 struct elf_link_hash_entry *h;
5672 bfd *element;
5673 struct bfd_link_hash_entry *undefs_tail;
5674 symindex mark;
5675
5676 if (included[i])
5677 continue;
5678 if (symdef->file_offset == last)
5679 {
5680 included[i] = TRUE;
5681 continue;
5682 }
5683
5684 h = archive_symbol_lookup (abfd, info, symdef->name);
5685 if (h == (struct elf_link_hash_entry *) -1)
5686 goto error_return;
5687
5688 if (h == NULL)
5689 continue;
5690
5691 if (h->root.type == bfd_link_hash_common)
5692 {
5693 /* We currently have a common symbol. The archive map contains
5694 a reference to this symbol, so we may want to include it. We
5695 only want to include it however, if this archive element
5696 contains a definition of the symbol, not just another common
5697 declaration of it.
5698
5699 Unfortunately some archivers (including GNU ar) will put
5700 declarations of common symbols into their archive maps, as
5701 well as real definitions, so we cannot just go by the archive
5702 map alone. Instead we must read in the element's symbol
5703 table and check that to see what kind of symbol definition
5704 this is. */
5705 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5706 continue;
5707 }
5708 else if (h->root.type != bfd_link_hash_undefined)
5709 {
5710 if (h->root.type != bfd_link_hash_undefweak)
5711 /* Symbol must be defined. Don't check it again. */
5712 included[i] = TRUE;
5713 continue;
5714 }
5715
5716 /* We need to include this archive member. */
5717 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5718 if (element == NULL)
5719 goto error_return;
5720
5721 if (! bfd_check_format (element, bfd_object))
5722 goto error_return;
5723
5724 undefs_tail = info->hash->undefs_tail;
5725
5726 if (!(*info->callbacks
5727 ->add_archive_element) (info, element, symdef->name, &element))
5728 continue;
5729 if (!bfd_link_add_symbols (element, info))
5730 goto error_return;
5731
5732 /* If there are any new undefined symbols, we need to make
5733 another pass through the archive in order to see whether
5734 they can be defined. FIXME: This isn't perfect, because
5735 common symbols wind up on undefs_tail and because an
5736 undefined symbol which is defined later on in this pass
5737 does not require another pass. This isn't a bug, but it
5738 does make the code less efficient than it could be. */
5739 if (undefs_tail != info->hash->undefs_tail)
5740 loop = TRUE;
5741
5742 /* Look backward to mark all symbols from this object file
5743 which we have already seen in this pass. */
5744 mark = i;
5745 do
5746 {
5747 included[mark] = TRUE;
5748 if (mark == 0)
5749 break;
5750 --mark;
5751 }
5752 while (symdefs[mark].file_offset == symdef->file_offset);
5753
5754 /* We mark subsequent symbols from this object file as we go
5755 on through the loop. */
5756 last = symdef->file_offset;
5757 }
5758 }
5759 while (loop);
5760
5761 free (included);
5762
5763 return TRUE;
5764
5765 error_return:
5766 if (included != NULL)
5767 free (included);
5768 return FALSE;
5769 }
5770
5771 /* Given an ELF BFD, add symbols to the global hash table as
5772 appropriate. */
5773
5774 bfd_boolean
5775 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5776 {
5777 switch (bfd_get_format (abfd))
5778 {
5779 case bfd_object:
5780 return elf_link_add_object_symbols (abfd, info);
5781 case bfd_archive:
5782 return elf_link_add_archive_symbols (abfd, info);
5783 default:
5784 bfd_set_error (bfd_error_wrong_format);
5785 return FALSE;
5786 }
5787 }
5788 \f
5789 struct hash_codes_info
5790 {
5791 unsigned long *hashcodes;
5792 bfd_boolean error;
5793 };
5794
5795 /* This function will be called though elf_link_hash_traverse to store
5796 all hash value of the exported symbols in an array. */
5797
5798 static bfd_boolean
5799 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5800 {
5801 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5802 const char *name;
5803 unsigned long ha;
5804 char *alc = NULL;
5805
5806 /* Ignore indirect symbols. These are added by the versioning code. */
5807 if (h->dynindx == -1)
5808 return TRUE;
5809
5810 name = h->root.root.string;
5811 if (h->versioned >= versioned)
5812 {
5813 char *p = strchr (name, ELF_VER_CHR);
5814 if (p != NULL)
5815 {
5816 alc = (char *) bfd_malloc (p - name + 1);
5817 if (alc == NULL)
5818 {
5819 inf->error = TRUE;
5820 return FALSE;
5821 }
5822 memcpy (alc, name, p - name);
5823 alc[p - name] = '\0';
5824 name = alc;
5825 }
5826 }
5827
5828 /* Compute the hash value. */
5829 ha = bfd_elf_hash (name);
5830
5831 /* Store the found hash value in the array given as the argument. */
5832 *(inf->hashcodes)++ = ha;
5833
5834 /* And store it in the struct so that we can put it in the hash table
5835 later. */
5836 h->u.elf_hash_value = ha;
5837
5838 if (alc != NULL)
5839 free (alc);
5840
5841 return TRUE;
5842 }
5843
5844 struct collect_gnu_hash_codes
5845 {
5846 bfd *output_bfd;
5847 const struct elf_backend_data *bed;
5848 unsigned long int nsyms;
5849 unsigned long int maskbits;
5850 unsigned long int *hashcodes;
5851 unsigned long int *hashval;
5852 unsigned long int *indx;
5853 unsigned long int *counts;
5854 bfd_vma *bitmask;
5855 bfd_byte *contents;
5856 long int min_dynindx;
5857 unsigned long int bucketcount;
5858 unsigned long int symindx;
5859 long int local_indx;
5860 long int shift1, shift2;
5861 unsigned long int mask;
5862 bfd_boolean error;
5863 };
5864
5865 /* This function will be called though elf_link_hash_traverse to store
5866 all hash value of the exported symbols in an array. */
5867
5868 static bfd_boolean
5869 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5870 {
5871 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5872 const char *name;
5873 unsigned long ha;
5874 char *alc = NULL;
5875
5876 /* Ignore indirect symbols. These are added by the versioning code. */
5877 if (h->dynindx == -1)
5878 return TRUE;
5879
5880 /* Ignore also local symbols and undefined symbols. */
5881 if (! (*s->bed->elf_hash_symbol) (h))
5882 return TRUE;
5883
5884 name = h->root.root.string;
5885 if (h->versioned >= versioned)
5886 {
5887 char *p = strchr (name, ELF_VER_CHR);
5888 if (p != NULL)
5889 {
5890 alc = (char *) bfd_malloc (p - name + 1);
5891 if (alc == NULL)
5892 {
5893 s->error = TRUE;
5894 return FALSE;
5895 }
5896 memcpy (alc, name, p - name);
5897 alc[p - name] = '\0';
5898 name = alc;
5899 }
5900 }
5901
5902 /* Compute the hash value. */
5903 ha = bfd_elf_gnu_hash (name);
5904
5905 /* Store the found hash value in the array for compute_bucket_count,
5906 and also for .dynsym reordering purposes. */
5907 s->hashcodes[s->nsyms] = ha;
5908 s->hashval[h->dynindx] = ha;
5909 ++s->nsyms;
5910 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5911 s->min_dynindx = h->dynindx;
5912
5913 if (alc != NULL)
5914 free (alc);
5915
5916 return TRUE;
5917 }
5918
5919 /* This function will be called though elf_link_hash_traverse to do
5920 final dynaminc symbol renumbering. */
5921
5922 static bfd_boolean
5923 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5924 {
5925 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5926 unsigned long int bucket;
5927 unsigned long int val;
5928
5929 /* Ignore indirect symbols. */
5930 if (h->dynindx == -1)
5931 return TRUE;
5932
5933 /* Ignore also local symbols and undefined symbols. */
5934 if (! (*s->bed->elf_hash_symbol) (h))
5935 {
5936 if (h->dynindx >= s->min_dynindx)
5937 h->dynindx = s->local_indx++;
5938 return TRUE;
5939 }
5940
5941 bucket = s->hashval[h->dynindx] % s->bucketcount;
5942 val = (s->hashval[h->dynindx] >> s->shift1)
5943 & ((s->maskbits >> s->shift1) - 1);
5944 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5945 s->bitmask[val]
5946 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5947 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5948 if (s->counts[bucket] == 1)
5949 /* Last element terminates the chain. */
5950 val |= 1;
5951 bfd_put_32 (s->output_bfd, val,
5952 s->contents + (s->indx[bucket] - s->symindx) * 4);
5953 --s->counts[bucket];
5954 h->dynindx = s->indx[bucket]++;
5955 return TRUE;
5956 }
5957
5958 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5959
5960 bfd_boolean
5961 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5962 {
5963 return !(h->forced_local
5964 || h->root.type == bfd_link_hash_undefined
5965 || h->root.type == bfd_link_hash_undefweak
5966 || ((h->root.type == bfd_link_hash_defined
5967 || h->root.type == bfd_link_hash_defweak)
5968 && h->root.u.def.section->output_section == NULL));
5969 }
5970
5971 /* Array used to determine the number of hash table buckets to use
5972 based on the number of symbols there are. If there are fewer than
5973 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5974 fewer than 37 we use 17 buckets, and so forth. We never use more
5975 than 32771 buckets. */
5976
5977 static const size_t elf_buckets[] =
5978 {
5979 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5980 16411, 32771, 0
5981 };
5982
5983 /* Compute bucket count for hashing table. We do not use a static set
5984 of possible tables sizes anymore. Instead we determine for all
5985 possible reasonable sizes of the table the outcome (i.e., the
5986 number of collisions etc) and choose the best solution. The
5987 weighting functions are not too simple to allow the table to grow
5988 without bounds. Instead one of the weighting factors is the size.
5989 Therefore the result is always a good payoff between few collisions
5990 (= short chain lengths) and table size. */
5991 static size_t
5992 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5993 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5994 unsigned long int nsyms,
5995 int gnu_hash)
5996 {
5997 size_t best_size = 0;
5998 unsigned long int i;
5999
6000 /* We have a problem here. The following code to optimize the table
6001 size requires an integer type with more the 32 bits. If
6002 BFD_HOST_U_64_BIT is set we know about such a type. */
6003 #ifdef BFD_HOST_U_64_BIT
6004 if (info->optimize)
6005 {
6006 size_t minsize;
6007 size_t maxsize;
6008 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6009 bfd *dynobj = elf_hash_table (info)->dynobj;
6010 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6011 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6012 unsigned long int *counts;
6013 bfd_size_type amt;
6014 unsigned int no_improvement_count = 0;
6015
6016 /* Possible optimization parameters: if we have NSYMS symbols we say
6017 that the hashing table must at least have NSYMS/4 and at most
6018 2*NSYMS buckets. */
6019 minsize = nsyms / 4;
6020 if (minsize == 0)
6021 minsize = 1;
6022 best_size = maxsize = nsyms * 2;
6023 if (gnu_hash)
6024 {
6025 if (minsize < 2)
6026 minsize = 2;
6027 if ((best_size & 31) == 0)
6028 ++best_size;
6029 }
6030
6031 /* Create array where we count the collisions in. We must use bfd_malloc
6032 since the size could be large. */
6033 amt = maxsize;
6034 amt *= sizeof (unsigned long int);
6035 counts = (unsigned long int *) bfd_malloc (amt);
6036 if (counts == NULL)
6037 return 0;
6038
6039 /* Compute the "optimal" size for the hash table. The criteria is a
6040 minimal chain length. The minor criteria is (of course) the size
6041 of the table. */
6042 for (i = minsize; i < maxsize; ++i)
6043 {
6044 /* Walk through the array of hashcodes and count the collisions. */
6045 BFD_HOST_U_64_BIT max;
6046 unsigned long int j;
6047 unsigned long int fact;
6048
6049 if (gnu_hash && (i & 31) == 0)
6050 continue;
6051
6052 memset (counts, '\0', i * sizeof (unsigned long int));
6053
6054 /* Determine how often each hash bucket is used. */
6055 for (j = 0; j < nsyms; ++j)
6056 ++counts[hashcodes[j] % i];
6057
6058 /* For the weight function we need some information about the
6059 pagesize on the target. This is information need not be 100%
6060 accurate. Since this information is not available (so far) we
6061 define it here to a reasonable default value. If it is crucial
6062 to have a better value some day simply define this value. */
6063 # ifndef BFD_TARGET_PAGESIZE
6064 # define BFD_TARGET_PAGESIZE (4096)
6065 # endif
6066
6067 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6068 and the chains. */
6069 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6070
6071 # if 1
6072 /* Variant 1: optimize for short chains. We add the squares
6073 of all the chain lengths (which favors many small chain
6074 over a few long chains). */
6075 for (j = 0; j < i; ++j)
6076 max += counts[j] * counts[j];
6077
6078 /* This adds penalties for the overall size of the table. */
6079 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6080 max *= fact * fact;
6081 # else
6082 /* Variant 2: Optimize a lot more for small table. Here we
6083 also add squares of the size but we also add penalties for
6084 empty slots (the +1 term). */
6085 for (j = 0; j < i; ++j)
6086 max += (1 + counts[j]) * (1 + counts[j]);
6087
6088 /* The overall size of the table is considered, but not as
6089 strong as in variant 1, where it is squared. */
6090 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6091 max *= fact;
6092 # endif
6093
6094 /* Compare with current best results. */
6095 if (max < best_chlen)
6096 {
6097 best_chlen = max;
6098 best_size = i;
6099 no_improvement_count = 0;
6100 }
6101 /* PR 11843: Avoid futile long searches for the best bucket size
6102 when there are a large number of symbols. */
6103 else if (++no_improvement_count == 100)
6104 break;
6105 }
6106
6107 free (counts);
6108 }
6109 else
6110 #endif /* defined (BFD_HOST_U_64_BIT) */
6111 {
6112 /* This is the fallback solution if no 64bit type is available or if we
6113 are not supposed to spend much time on optimizations. We select the
6114 bucket count using a fixed set of numbers. */
6115 for (i = 0; elf_buckets[i] != 0; i++)
6116 {
6117 best_size = elf_buckets[i];
6118 if (nsyms < elf_buckets[i + 1])
6119 break;
6120 }
6121 if (gnu_hash && best_size < 2)
6122 best_size = 2;
6123 }
6124
6125 return best_size;
6126 }
6127
6128 /* Size any SHT_GROUP section for ld -r. */
6129
6130 bfd_boolean
6131 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6132 {
6133 bfd *ibfd;
6134 asection *s;
6135
6136 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6137 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6138 && (s = ibfd->sections) != NULL
6139 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6140 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6141 return FALSE;
6142 return TRUE;
6143 }
6144
6145 /* Set a default stack segment size. The value in INFO wins. If it
6146 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6147 undefined it is initialized. */
6148
6149 bfd_boolean
6150 bfd_elf_stack_segment_size (bfd *output_bfd,
6151 struct bfd_link_info *info,
6152 const char *legacy_symbol,
6153 bfd_vma default_size)
6154 {
6155 struct elf_link_hash_entry *h = NULL;
6156
6157 /* Look for legacy symbol. */
6158 if (legacy_symbol)
6159 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6160 FALSE, FALSE, FALSE);
6161 if (h && (h->root.type == bfd_link_hash_defined
6162 || h->root.type == bfd_link_hash_defweak)
6163 && h->def_regular
6164 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6165 {
6166 /* The symbol has no type if specified on the command line. */
6167 h->type = STT_OBJECT;
6168 if (info->stacksize)
6169 /* xgettext:c-format */
6170 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6171 output_bfd, legacy_symbol);
6172 else if (h->root.u.def.section != bfd_abs_section_ptr)
6173 /* xgettext:c-format */
6174 _bfd_error_handler (_("%pB: %s not absolute"),
6175 output_bfd, legacy_symbol);
6176 else
6177 info->stacksize = h->root.u.def.value;
6178 }
6179
6180 if (!info->stacksize)
6181 /* If the user didn't set a size, or explicitly inhibit the
6182 size, set it now. */
6183 info->stacksize = default_size;
6184
6185 /* Provide the legacy symbol, if it is referenced. */
6186 if (h && (h->root.type == bfd_link_hash_undefined
6187 || h->root.type == bfd_link_hash_undefweak))
6188 {
6189 struct bfd_link_hash_entry *bh = NULL;
6190
6191 if (!(_bfd_generic_link_add_one_symbol
6192 (info, output_bfd, legacy_symbol,
6193 BSF_GLOBAL, bfd_abs_section_ptr,
6194 info->stacksize >= 0 ? info->stacksize : 0,
6195 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6196 return FALSE;
6197
6198 h = (struct elf_link_hash_entry *) bh;
6199 h->def_regular = 1;
6200 h->type = STT_OBJECT;
6201 }
6202
6203 return TRUE;
6204 }
6205
6206 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6207
6208 struct elf_gc_sweep_symbol_info
6209 {
6210 struct bfd_link_info *info;
6211 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6212 bfd_boolean);
6213 };
6214
6215 static bfd_boolean
6216 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6217 {
6218 if (!h->mark
6219 && (((h->root.type == bfd_link_hash_defined
6220 || h->root.type == bfd_link_hash_defweak)
6221 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6222 && h->root.u.def.section->gc_mark))
6223 || h->root.type == bfd_link_hash_undefined
6224 || h->root.type == bfd_link_hash_undefweak))
6225 {
6226 struct elf_gc_sweep_symbol_info *inf;
6227
6228 inf = (struct elf_gc_sweep_symbol_info *) data;
6229 (*inf->hide_symbol) (inf->info, h, TRUE);
6230 h->def_regular = 0;
6231 h->ref_regular = 0;
6232 h->ref_regular_nonweak = 0;
6233 }
6234
6235 return TRUE;
6236 }
6237
6238 /* Set up the sizes and contents of the ELF dynamic sections. This is
6239 called by the ELF linker emulation before_allocation routine. We
6240 must set the sizes of the sections before the linker sets the
6241 addresses of the various sections. */
6242
6243 bfd_boolean
6244 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6245 const char *soname,
6246 const char *rpath,
6247 const char *filter_shlib,
6248 const char *audit,
6249 const char *depaudit,
6250 const char * const *auxiliary_filters,
6251 struct bfd_link_info *info,
6252 asection **sinterpptr)
6253 {
6254 bfd *dynobj;
6255 const struct elf_backend_data *bed;
6256
6257 *sinterpptr = NULL;
6258
6259 if (!is_elf_hash_table (info->hash))
6260 return TRUE;
6261
6262 dynobj = elf_hash_table (info)->dynobj;
6263
6264 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6265 {
6266 struct bfd_elf_version_tree *verdefs;
6267 struct elf_info_failed asvinfo;
6268 struct bfd_elf_version_tree *t;
6269 struct bfd_elf_version_expr *d;
6270 asection *s;
6271 size_t soname_indx;
6272
6273 /* If we are supposed to export all symbols into the dynamic symbol
6274 table (this is not the normal case), then do so. */
6275 if (info->export_dynamic
6276 || (bfd_link_executable (info) && info->dynamic))
6277 {
6278 struct elf_info_failed eif;
6279
6280 eif.info = info;
6281 eif.failed = FALSE;
6282 elf_link_hash_traverse (elf_hash_table (info),
6283 _bfd_elf_export_symbol,
6284 &eif);
6285 if (eif.failed)
6286 return FALSE;
6287 }
6288
6289 if (soname != NULL)
6290 {
6291 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6292 soname, TRUE);
6293 if (soname_indx == (size_t) -1
6294 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6295 return FALSE;
6296 }
6297 else
6298 soname_indx = (size_t) -1;
6299
6300 /* Make all global versions with definition. */
6301 for (t = info->version_info; t != NULL; t = t->next)
6302 for (d = t->globals.list; d != NULL; d = d->next)
6303 if (!d->symver && d->literal)
6304 {
6305 const char *verstr, *name;
6306 size_t namelen, verlen, newlen;
6307 char *newname, *p, leading_char;
6308 struct elf_link_hash_entry *newh;
6309
6310 leading_char = bfd_get_symbol_leading_char (output_bfd);
6311 name = d->pattern;
6312 namelen = strlen (name) + (leading_char != '\0');
6313 verstr = t->name;
6314 verlen = strlen (verstr);
6315 newlen = namelen + verlen + 3;
6316
6317 newname = (char *) bfd_malloc (newlen);
6318 if (newname == NULL)
6319 return FALSE;
6320 newname[0] = leading_char;
6321 memcpy (newname + (leading_char != '\0'), name, namelen);
6322
6323 /* Check the hidden versioned definition. */
6324 p = newname + namelen;
6325 *p++ = ELF_VER_CHR;
6326 memcpy (p, verstr, verlen + 1);
6327 newh = elf_link_hash_lookup (elf_hash_table (info),
6328 newname, FALSE, FALSE,
6329 FALSE);
6330 if (newh == NULL
6331 || (newh->root.type != bfd_link_hash_defined
6332 && newh->root.type != bfd_link_hash_defweak))
6333 {
6334 /* Check the default versioned definition. */
6335 *p++ = ELF_VER_CHR;
6336 memcpy (p, verstr, verlen + 1);
6337 newh = elf_link_hash_lookup (elf_hash_table (info),
6338 newname, FALSE, FALSE,
6339 FALSE);
6340 }
6341 free (newname);
6342
6343 /* Mark this version if there is a definition and it is
6344 not defined in a shared object. */
6345 if (newh != NULL
6346 && !newh->def_dynamic
6347 && (newh->root.type == bfd_link_hash_defined
6348 || newh->root.type == bfd_link_hash_defweak))
6349 d->symver = 1;
6350 }
6351
6352 /* Attach all the symbols to their version information. */
6353 asvinfo.info = info;
6354 asvinfo.failed = FALSE;
6355
6356 elf_link_hash_traverse (elf_hash_table (info),
6357 _bfd_elf_link_assign_sym_version,
6358 &asvinfo);
6359 if (asvinfo.failed)
6360 return FALSE;
6361
6362 if (!info->allow_undefined_version)
6363 {
6364 /* Check if all global versions have a definition. */
6365 bfd_boolean all_defined = TRUE;
6366 for (t = info->version_info; t != NULL; t = t->next)
6367 for (d = t->globals.list; d != NULL; d = d->next)
6368 if (d->literal && !d->symver && !d->script)
6369 {
6370 _bfd_error_handler
6371 (_("%s: undefined version: %s"),
6372 d->pattern, t->name);
6373 all_defined = FALSE;
6374 }
6375
6376 if (!all_defined)
6377 {
6378 bfd_set_error (bfd_error_bad_value);
6379 return FALSE;
6380 }
6381 }
6382
6383 /* Set up the version definition section. */
6384 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6385 BFD_ASSERT (s != NULL);
6386
6387 /* We may have created additional version definitions if we are
6388 just linking a regular application. */
6389 verdefs = info->version_info;
6390
6391 /* Skip anonymous version tag. */
6392 if (verdefs != NULL && verdefs->vernum == 0)
6393 verdefs = verdefs->next;
6394
6395 if (verdefs == NULL && !info->create_default_symver)
6396 s->flags |= SEC_EXCLUDE;
6397 else
6398 {
6399 unsigned int cdefs;
6400 bfd_size_type size;
6401 bfd_byte *p;
6402 Elf_Internal_Verdef def;
6403 Elf_Internal_Verdaux defaux;
6404 struct bfd_link_hash_entry *bh;
6405 struct elf_link_hash_entry *h;
6406 const char *name;
6407
6408 cdefs = 0;
6409 size = 0;
6410
6411 /* Make space for the base version. */
6412 size += sizeof (Elf_External_Verdef);
6413 size += sizeof (Elf_External_Verdaux);
6414 ++cdefs;
6415
6416 /* Make space for the default version. */
6417 if (info->create_default_symver)
6418 {
6419 size += sizeof (Elf_External_Verdef);
6420 ++cdefs;
6421 }
6422
6423 for (t = verdefs; t != NULL; t = t->next)
6424 {
6425 struct bfd_elf_version_deps *n;
6426
6427 /* Don't emit base version twice. */
6428 if (t->vernum == 0)
6429 continue;
6430
6431 size += sizeof (Elf_External_Verdef);
6432 size += sizeof (Elf_External_Verdaux);
6433 ++cdefs;
6434
6435 for (n = t->deps; n != NULL; n = n->next)
6436 size += sizeof (Elf_External_Verdaux);
6437 }
6438
6439 s->size = size;
6440 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6441 if (s->contents == NULL && s->size != 0)
6442 return FALSE;
6443
6444 /* Fill in the version definition section. */
6445
6446 p = s->contents;
6447
6448 def.vd_version = VER_DEF_CURRENT;
6449 def.vd_flags = VER_FLG_BASE;
6450 def.vd_ndx = 1;
6451 def.vd_cnt = 1;
6452 if (info->create_default_symver)
6453 {
6454 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6455 def.vd_next = sizeof (Elf_External_Verdef);
6456 }
6457 else
6458 {
6459 def.vd_aux = sizeof (Elf_External_Verdef);
6460 def.vd_next = (sizeof (Elf_External_Verdef)
6461 + sizeof (Elf_External_Verdaux));
6462 }
6463
6464 if (soname_indx != (size_t) -1)
6465 {
6466 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6467 soname_indx);
6468 def.vd_hash = bfd_elf_hash (soname);
6469 defaux.vda_name = soname_indx;
6470 name = soname;
6471 }
6472 else
6473 {
6474 size_t indx;
6475
6476 name = lbasename (output_bfd->filename);
6477 def.vd_hash = bfd_elf_hash (name);
6478 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6479 name, FALSE);
6480 if (indx == (size_t) -1)
6481 return FALSE;
6482 defaux.vda_name = indx;
6483 }
6484 defaux.vda_next = 0;
6485
6486 _bfd_elf_swap_verdef_out (output_bfd, &def,
6487 (Elf_External_Verdef *) p);
6488 p += sizeof (Elf_External_Verdef);
6489 if (info->create_default_symver)
6490 {
6491 /* Add a symbol representing this version. */
6492 bh = NULL;
6493 if (! (_bfd_generic_link_add_one_symbol
6494 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6495 0, NULL, FALSE,
6496 get_elf_backend_data (dynobj)->collect, &bh)))
6497 return FALSE;
6498 h = (struct elf_link_hash_entry *) bh;
6499 h->non_elf = 0;
6500 h->def_regular = 1;
6501 h->type = STT_OBJECT;
6502 h->verinfo.vertree = NULL;
6503
6504 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6505 return FALSE;
6506
6507 /* Create a duplicate of the base version with the same
6508 aux block, but different flags. */
6509 def.vd_flags = 0;
6510 def.vd_ndx = 2;
6511 def.vd_aux = sizeof (Elf_External_Verdef);
6512 if (verdefs)
6513 def.vd_next = (sizeof (Elf_External_Verdef)
6514 + sizeof (Elf_External_Verdaux));
6515 else
6516 def.vd_next = 0;
6517 _bfd_elf_swap_verdef_out (output_bfd, &def,
6518 (Elf_External_Verdef *) p);
6519 p += sizeof (Elf_External_Verdef);
6520 }
6521 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6522 (Elf_External_Verdaux *) p);
6523 p += sizeof (Elf_External_Verdaux);
6524
6525 for (t = verdefs; t != NULL; t = t->next)
6526 {
6527 unsigned int cdeps;
6528 struct bfd_elf_version_deps *n;
6529
6530 /* Don't emit the base version twice. */
6531 if (t->vernum == 0)
6532 continue;
6533
6534 cdeps = 0;
6535 for (n = t->deps; n != NULL; n = n->next)
6536 ++cdeps;
6537
6538 /* Add a symbol representing this version. */
6539 bh = NULL;
6540 if (! (_bfd_generic_link_add_one_symbol
6541 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6542 0, NULL, FALSE,
6543 get_elf_backend_data (dynobj)->collect, &bh)))
6544 return FALSE;
6545 h = (struct elf_link_hash_entry *) bh;
6546 h->non_elf = 0;
6547 h->def_regular = 1;
6548 h->type = STT_OBJECT;
6549 h->verinfo.vertree = t;
6550
6551 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6552 return FALSE;
6553
6554 def.vd_version = VER_DEF_CURRENT;
6555 def.vd_flags = 0;
6556 if (t->globals.list == NULL
6557 && t->locals.list == NULL
6558 && ! t->used)
6559 def.vd_flags |= VER_FLG_WEAK;
6560 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6561 def.vd_cnt = cdeps + 1;
6562 def.vd_hash = bfd_elf_hash (t->name);
6563 def.vd_aux = sizeof (Elf_External_Verdef);
6564 def.vd_next = 0;
6565
6566 /* If a basever node is next, it *must* be the last node in
6567 the chain, otherwise Verdef construction breaks. */
6568 if (t->next != NULL && t->next->vernum == 0)
6569 BFD_ASSERT (t->next->next == NULL);
6570
6571 if (t->next != NULL && t->next->vernum != 0)
6572 def.vd_next = (sizeof (Elf_External_Verdef)
6573 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6574
6575 _bfd_elf_swap_verdef_out (output_bfd, &def,
6576 (Elf_External_Verdef *) p);
6577 p += sizeof (Elf_External_Verdef);
6578
6579 defaux.vda_name = h->dynstr_index;
6580 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6581 h->dynstr_index);
6582 defaux.vda_next = 0;
6583 if (t->deps != NULL)
6584 defaux.vda_next = sizeof (Elf_External_Verdaux);
6585 t->name_indx = defaux.vda_name;
6586
6587 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6588 (Elf_External_Verdaux *) p);
6589 p += sizeof (Elf_External_Verdaux);
6590
6591 for (n = t->deps; n != NULL; n = n->next)
6592 {
6593 if (n->version_needed == NULL)
6594 {
6595 /* This can happen if there was an error in the
6596 version script. */
6597 defaux.vda_name = 0;
6598 }
6599 else
6600 {
6601 defaux.vda_name = n->version_needed->name_indx;
6602 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6603 defaux.vda_name);
6604 }
6605 if (n->next == NULL)
6606 defaux.vda_next = 0;
6607 else
6608 defaux.vda_next = sizeof (Elf_External_Verdaux);
6609
6610 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6611 (Elf_External_Verdaux *) p);
6612 p += sizeof (Elf_External_Verdaux);
6613 }
6614 }
6615
6616 elf_tdata (output_bfd)->cverdefs = cdefs;
6617 }
6618 }
6619
6620 bed = get_elf_backend_data (output_bfd);
6621
6622 if (info->gc_sections && bed->can_gc_sections)
6623 {
6624 struct elf_gc_sweep_symbol_info sweep_info;
6625
6626 /* Remove the symbols that were in the swept sections from the
6627 dynamic symbol table. */
6628 sweep_info.info = info;
6629 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6630 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6631 &sweep_info);
6632 }
6633
6634 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6635 {
6636 asection *s;
6637 struct elf_find_verdep_info sinfo;
6638
6639 /* Work out the size of the version reference section. */
6640
6641 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6642 BFD_ASSERT (s != NULL);
6643
6644 sinfo.info = info;
6645 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6646 if (sinfo.vers == 0)
6647 sinfo.vers = 1;
6648 sinfo.failed = FALSE;
6649
6650 elf_link_hash_traverse (elf_hash_table (info),
6651 _bfd_elf_link_find_version_dependencies,
6652 &sinfo);
6653 if (sinfo.failed)
6654 return FALSE;
6655
6656 if (elf_tdata (output_bfd)->verref == NULL)
6657 s->flags |= SEC_EXCLUDE;
6658 else
6659 {
6660 Elf_Internal_Verneed *vn;
6661 unsigned int size;
6662 unsigned int crefs;
6663 bfd_byte *p;
6664
6665 /* Build the version dependency section. */
6666 size = 0;
6667 crefs = 0;
6668 for (vn = elf_tdata (output_bfd)->verref;
6669 vn != NULL;
6670 vn = vn->vn_nextref)
6671 {
6672 Elf_Internal_Vernaux *a;
6673
6674 size += sizeof (Elf_External_Verneed);
6675 ++crefs;
6676 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6677 size += sizeof (Elf_External_Vernaux);
6678 }
6679
6680 s->size = size;
6681 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6682 if (s->contents == NULL)
6683 return FALSE;
6684
6685 p = s->contents;
6686 for (vn = elf_tdata (output_bfd)->verref;
6687 vn != NULL;
6688 vn = vn->vn_nextref)
6689 {
6690 unsigned int caux;
6691 Elf_Internal_Vernaux *a;
6692 size_t indx;
6693
6694 caux = 0;
6695 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6696 ++caux;
6697
6698 vn->vn_version = VER_NEED_CURRENT;
6699 vn->vn_cnt = caux;
6700 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6701 elf_dt_name (vn->vn_bfd) != NULL
6702 ? elf_dt_name (vn->vn_bfd)
6703 : lbasename (vn->vn_bfd->filename),
6704 FALSE);
6705 if (indx == (size_t) -1)
6706 return FALSE;
6707 vn->vn_file = indx;
6708 vn->vn_aux = sizeof (Elf_External_Verneed);
6709 if (vn->vn_nextref == NULL)
6710 vn->vn_next = 0;
6711 else
6712 vn->vn_next = (sizeof (Elf_External_Verneed)
6713 + caux * sizeof (Elf_External_Vernaux));
6714
6715 _bfd_elf_swap_verneed_out (output_bfd, vn,
6716 (Elf_External_Verneed *) p);
6717 p += sizeof (Elf_External_Verneed);
6718
6719 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6720 {
6721 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6722 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6723 a->vna_nodename, FALSE);
6724 if (indx == (size_t) -1)
6725 return FALSE;
6726 a->vna_name = indx;
6727 if (a->vna_nextptr == NULL)
6728 a->vna_next = 0;
6729 else
6730 a->vna_next = sizeof (Elf_External_Vernaux);
6731
6732 _bfd_elf_swap_vernaux_out (output_bfd, a,
6733 (Elf_External_Vernaux *) p);
6734 p += sizeof (Elf_External_Vernaux);
6735 }
6736 }
6737
6738 elf_tdata (output_bfd)->cverrefs = crefs;
6739 }
6740 }
6741
6742 /* Any syms created from now on start with -1 in
6743 got.refcount/offset and plt.refcount/offset. */
6744 elf_hash_table (info)->init_got_refcount
6745 = elf_hash_table (info)->init_got_offset;
6746 elf_hash_table (info)->init_plt_refcount
6747 = elf_hash_table (info)->init_plt_offset;
6748
6749 if (bfd_link_relocatable (info)
6750 && !_bfd_elf_size_group_sections (info))
6751 return FALSE;
6752
6753 /* The backend may have to create some sections regardless of whether
6754 we're dynamic or not. */
6755 if (bed->elf_backend_always_size_sections
6756 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6757 return FALSE;
6758
6759 /* Determine any GNU_STACK segment requirements, after the backend
6760 has had a chance to set a default segment size. */
6761 if (info->execstack)
6762 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6763 else if (info->noexecstack)
6764 elf_stack_flags (output_bfd) = PF_R | PF_W;
6765 else
6766 {
6767 bfd *inputobj;
6768 asection *notesec = NULL;
6769 int exec = 0;
6770
6771 for (inputobj = info->input_bfds;
6772 inputobj;
6773 inputobj = inputobj->link.next)
6774 {
6775 asection *s;
6776
6777 if (inputobj->flags
6778 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6779 continue;
6780 s = inputobj->sections;
6781 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6782 continue;
6783
6784 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6785 if (s)
6786 {
6787 if (s->flags & SEC_CODE)
6788 exec = PF_X;
6789 notesec = s;
6790 }
6791 else if (bed->default_execstack)
6792 exec = PF_X;
6793 }
6794 if (notesec || info->stacksize > 0)
6795 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6796 if (notesec && exec && bfd_link_relocatable (info)
6797 && notesec->output_section != bfd_abs_section_ptr)
6798 notesec->output_section->flags |= SEC_CODE;
6799 }
6800
6801 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6802 {
6803 struct elf_info_failed eif;
6804 struct elf_link_hash_entry *h;
6805 asection *dynstr;
6806 asection *s;
6807
6808 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6809 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6810
6811 if (info->symbolic)
6812 {
6813 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6814 return FALSE;
6815 info->flags |= DF_SYMBOLIC;
6816 }
6817
6818 if (rpath != NULL)
6819 {
6820 size_t indx;
6821 bfd_vma tag;
6822
6823 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6824 TRUE);
6825 if (indx == (size_t) -1)
6826 return FALSE;
6827
6828 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6829 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6830 return FALSE;
6831 }
6832
6833 if (filter_shlib != NULL)
6834 {
6835 size_t indx;
6836
6837 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6838 filter_shlib, TRUE);
6839 if (indx == (size_t) -1
6840 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6841 return FALSE;
6842 }
6843
6844 if (auxiliary_filters != NULL)
6845 {
6846 const char * const *p;
6847
6848 for (p = auxiliary_filters; *p != NULL; p++)
6849 {
6850 size_t indx;
6851
6852 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6853 *p, TRUE);
6854 if (indx == (size_t) -1
6855 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6856 return FALSE;
6857 }
6858 }
6859
6860 if (audit != NULL)
6861 {
6862 size_t indx;
6863
6864 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6865 TRUE);
6866 if (indx == (size_t) -1
6867 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6868 return FALSE;
6869 }
6870
6871 if (depaudit != NULL)
6872 {
6873 size_t indx;
6874
6875 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6876 TRUE);
6877 if (indx == (size_t) -1
6878 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6879 return FALSE;
6880 }
6881
6882 eif.info = info;
6883 eif.failed = FALSE;
6884
6885 /* Find all symbols which were defined in a dynamic object and make
6886 the backend pick a reasonable value for them. */
6887 elf_link_hash_traverse (elf_hash_table (info),
6888 _bfd_elf_adjust_dynamic_symbol,
6889 &eif);
6890 if (eif.failed)
6891 return FALSE;
6892
6893 /* Add some entries to the .dynamic section. We fill in some of the
6894 values later, in bfd_elf_final_link, but we must add the entries
6895 now so that we know the final size of the .dynamic section. */
6896
6897 /* If there are initialization and/or finalization functions to
6898 call then add the corresponding DT_INIT/DT_FINI entries. */
6899 h = (info->init_function
6900 ? elf_link_hash_lookup (elf_hash_table (info),
6901 info->init_function, FALSE,
6902 FALSE, FALSE)
6903 : NULL);
6904 if (h != NULL
6905 && (h->ref_regular
6906 || h->def_regular))
6907 {
6908 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6909 return FALSE;
6910 }
6911 h = (info->fini_function
6912 ? elf_link_hash_lookup (elf_hash_table (info),
6913 info->fini_function, FALSE,
6914 FALSE, FALSE)
6915 : NULL);
6916 if (h != NULL
6917 && (h->ref_regular
6918 || h->def_regular))
6919 {
6920 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6921 return FALSE;
6922 }
6923
6924 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6925 if (s != NULL && s->linker_has_input)
6926 {
6927 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6928 if (! bfd_link_executable (info))
6929 {
6930 bfd *sub;
6931 asection *o;
6932
6933 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6934 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6935 && (o = sub->sections) != NULL
6936 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6937 for (o = sub->sections; o != NULL; o = o->next)
6938 if (elf_section_data (o)->this_hdr.sh_type
6939 == SHT_PREINIT_ARRAY)
6940 {
6941 _bfd_error_handler
6942 (_("%pB: .preinit_array section is not allowed in DSO"),
6943 sub);
6944 break;
6945 }
6946
6947 bfd_set_error (bfd_error_nonrepresentable_section);
6948 return FALSE;
6949 }
6950
6951 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6952 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6953 return FALSE;
6954 }
6955 s = bfd_get_section_by_name (output_bfd, ".init_array");
6956 if (s != NULL && s->linker_has_input)
6957 {
6958 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6959 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6960 return FALSE;
6961 }
6962 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6963 if (s != NULL && s->linker_has_input)
6964 {
6965 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6966 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6967 return FALSE;
6968 }
6969
6970 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6971 /* If .dynstr is excluded from the link, we don't want any of
6972 these tags. Strictly, we should be checking each section
6973 individually; This quick check covers for the case where
6974 someone does a /DISCARD/ : { *(*) }. */
6975 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6976 {
6977 bfd_size_type strsize;
6978
6979 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6980 if ((info->emit_hash
6981 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6982 || (info->emit_gnu_hash
6983 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6984 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6985 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6986 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6987 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6988 bed->s->sizeof_sym))
6989 return FALSE;
6990 }
6991 }
6992
6993 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6994 return FALSE;
6995
6996 /* The backend must work out the sizes of all the other dynamic
6997 sections. */
6998 if (dynobj != NULL
6999 && bed->elf_backend_size_dynamic_sections != NULL
7000 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7001 return FALSE;
7002
7003 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7004 {
7005 if (elf_tdata (output_bfd)->cverdefs)
7006 {
7007 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7008
7009 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7010 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7011 return FALSE;
7012 }
7013
7014 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7015 {
7016 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7017 return FALSE;
7018 }
7019 else if (info->flags & DF_BIND_NOW)
7020 {
7021 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7022 return FALSE;
7023 }
7024
7025 if (info->flags_1)
7026 {
7027 if (bfd_link_executable (info))
7028 info->flags_1 &= ~ (DF_1_INITFIRST
7029 | DF_1_NODELETE
7030 | DF_1_NOOPEN);
7031 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7032 return FALSE;
7033 }
7034
7035 if (elf_tdata (output_bfd)->cverrefs)
7036 {
7037 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7038
7039 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7040 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7041 return FALSE;
7042 }
7043
7044 if ((elf_tdata (output_bfd)->cverrefs == 0
7045 && elf_tdata (output_bfd)->cverdefs == 0)
7046 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7047 {
7048 asection *s;
7049
7050 s = bfd_get_linker_section (dynobj, ".gnu.version");
7051 s->flags |= SEC_EXCLUDE;
7052 }
7053 }
7054 return TRUE;
7055 }
7056
7057 /* Find the first non-excluded output section. We'll use its
7058 section symbol for some emitted relocs. */
7059 void
7060 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7061 {
7062 asection *s;
7063 asection *found = NULL;
7064
7065 for (s = output_bfd->sections; s != NULL; s = s->next)
7066 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7067 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7068 {
7069 found = s;
7070 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7071 break;
7072 }
7073 elf_hash_table (info)->text_index_section = found;
7074 }
7075
7076 /* Find two non-excluded output sections, one for code, one for data.
7077 We'll use their section symbols for some emitted relocs. */
7078 void
7079 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7080 {
7081 asection *s;
7082 asection *found = NULL;
7083
7084 /* Data first, since setting text_index_section changes
7085 _bfd_elf_omit_section_dynsym_default. */
7086 for (s = output_bfd->sections; s != NULL; s = s->next)
7087 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7088 && !(s->flags & SEC_READONLY)
7089 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7090 {
7091 found = s;
7092 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7093 break;
7094 }
7095 elf_hash_table (info)->data_index_section = found;
7096
7097 for (s = output_bfd->sections; s != NULL; s = s->next)
7098 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7099 && (s->flags & SEC_READONLY)
7100 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7101 {
7102 found = s;
7103 break;
7104 }
7105 elf_hash_table (info)->text_index_section = found;
7106 }
7107
7108 bfd_boolean
7109 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7110 {
7111 const struct elf_backend_data *bed;
7112 unsigned long section_sym_count;
7113 bfd_size_type dynsymcount = 0;
7114
7115 if (!is_elf_hash_table (info->hash))
7116 return TRUE;
7117
7118 bed = get_elf_backend_data (output_bfd);
7119 (*bed->elf_backend_init_index_section) (output_bfd, info);
7120
7121 /* Assign dynsym indices. In a shared library we generate a section
7122 symbol for each output section, which come first. Next come all
7123 of the back-end allocated local dynamic syms, followed by the rest
7124 of the global symbols.
7125
7126 This is usually not needed for static binaries, however backends
7127 can request to always do it, e.g. the MIPS backend uses dynamic
7128 symbol counts to lay out GOT, which will be produced in the
7129 presence of GOT relocations even in static binaries (holding fixed
7130 data in that case, to satisfy those relocations). */
7131
7132 if (elf_hash_table (info)->dynamic_sections_created
7133 || bed->always_renumber_dynsyms)
7134 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7135 &section_sym_count);
7136
7137 if (elf_hash_table (info)->dynamic_sections_created)
7138 {
7139 bfd *dynobj;
7140 asection *s;
7141 unsigned int dtagcount;
7142
7143 dynobj = elf_hash_table (info)->dynobj;
7144
7145 /* Work out the size of the symbol version section. */
7146 s = bfd_get_linker_section (dynobj, ".gnu.version");
7147 BFD_ASSERT (s != NULL);
7148 if ((s->flags & SEC_EXCLUDE) == 0)
7149 {
7150 s->size = dynsymcount * sizeof (Elf_External_Versym);
7151 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7152 if (s->contents == NULL)
7153 return FALSE;
7154
7155 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7156 return FALSE;
7157 }
7158
7159 /* Set the size of the .dynsym and .hash sections. We counted
7160 the number of dynamic symbols in elf_link_add_object_symbols.
7161 We will build the contents of .dynsym and .hash when we build
7162 the final symbol table, because until then we do not know the
7163 correct value to give the symbols. We built the .dynstr
7164 section as we went along in elf_link_add_object_symbols. */
7165 s = elf_hash_table (info)->dynsym;
7166 BFD_ASSERT (s != NULL);
7167 s->size = dynsymcount * bed->s->sizeof_sym;
7168
7169 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7170 if (s->contents == NULL)
7171 return FALSE;
7172
7173 /* The first entry in .dynsym is a dummy symbol. Clear all the
7174 section syms, in case we don't output them all. */
7175 ++section_sym_count;
7176 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7177
7178 elf_hash_table (info)->bucketcount = 0;
7179
7180 /* Compute the size of the hashing table. As a side effect this
7181 computes the hash values for all the names we export. */
7182 if (info->emit_hash)
7183 {
7184 unsigned long int *hashcodes;
7185 struct hash_codes_info hashinf;
7186 bfd_size_type amt;
7187 unsigned long int nsyms;
7188 size_t bucketcount;
7189 size_t hash_entry_size;
7190
7191 /* Compute the hash values for all exported symbols. At the same
7192 time store the values in an array so that we could use them for
7193 optimizations. */
7194 amt = dynsymcount * sizeof (unsigned long int);
7195 hashcodes = (unsigned long int *) bfd_malloc (amt);
7196 if (hashcodes == NULL)
7197 return FALSE;
7198 hashinf.hashcodes = hashcodes;
7199 hashinf.error = FALSE;
7200
7201 /* Put all hash values in HASHCODES. */
7202 elf_link_hash_traverse (elf_hash_table (info),
7203 elf_collect_hash_codes, &hashinf);
7204 if (hashinf.error)
7205 {
7206 free (hashcodes);
7207 return FALSE;
7208 }
7209
7210 nsyms = hashinf.hashcodes - hashcodes;
7211 bucketcount
7212 = compute_bucket_count (info, hashcodes, nsyms, 0);
7213 free (hashcodes);
7214
7215 if (bucketcount == 0 && nsyms > 0)
7216 return FALSE;
7217
7218 elf_hash_table (info)->bucketcount = bucketcount;
7219
7220 s = bfd_get_linker_section (dynobj, ".hash");
7221 BFD_ASSERT (s != NULL);
7222 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7223 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7224 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7225 if (s->contents == NULL)
7226 return FALSE;
7227
7228 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7229 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7230 s->contents + hash_entry_size);
7231 }
7232
7233 if (info->emit_gnu_hash)
7234 {
7235 size_t i, cnt;
7236 unsigned char *contents;
7237 struct collect_gnu_hash_codes cinfo;
7238 bfd_size_type amt;
7239 size_t bucketcount;
7240
7241 memset (&cinfo, 0, sizeof (cinfo));
7242
7243 /* Compute the hash values for all exported symbols. At the same
7244 time store the values in an array so that we could use them for
7245 optimizations. */
7246 amt = dynsymcount * 2 * sizeof (unsigned long int);
7247 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7248 if (cinfo.hashcodes == NULL)
7249 return FALSE;
7250
7251 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7252 cinfo.min_dynindx = -1;
7253 cinfo.output_bfd = output_bfd;
7254 cinfo.bed = bed;
7255
7256 /* Put all hash values in HASHCODES. */
7257 elf_link_hash_traverse (elf_hash_table (info),
7258 elf_collect_gnu_hash_codes, &cinfo);
7259 if (cinfo.error)
7260 {
7261 free (cinfo.hashcodes);
7262 return FALSE;
7263 }
7264
7265 bucketcount
7266 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7267
7268 if (bucketcount == 0)
7269 {
7270 free (cinfo.hashcodes);
7271 return FALSE;
7272 }
7273
7274 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7275 BFD_ASSERT (s != NULL);
7276
7277 if (cinfo.nsyms == 0)
7278 {
7279 /* Empty .gnu.hash section is special. */
7280 BFD_ASSERT (cinfo.min_dynindx == -1);
7281 free (cinfo.hashcodes);
7282 s->size = 5 * 4 + bed->s->arch_size / 8;
7283 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7284 if (contents == NULL)
7285 return FALSE;
7286 s->contents = contents;
7287 /* 1 empty bucket. */
7288 bfd_put_32 (output_bfd, 1, contents);
7289 /* SYMIDX above the special symbol 0. */
7290 bfd_put_32 (output_bfd, 1, contents + 4);
7291 /* Just one word for bitmask. */
7292 bfd_put_32 (output_bfd, 1, contents + 8);
7293 /* Only hash fn bloom filter. */
7294 bfd_put_32 (output_bfd, 0, contents + 12);
7295 /* No hashes are valid - empty bitmask. */
7296 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7297 /* No hashes in the only bucket. */
7298 bfd_put_32 (output_bfd, 0,
7299 contents + 16 + bed->s->arch_size / 8);
7300 }
7301 else
7302 {
7303 unsigned long int maskwords, maskbitslog2, x;
7304 BFD_ASSERT (cinfo.min_dynindx != -1);
7305
7306 x = cinfo.nsyms;
7307 maskbitslog2 = 1;
7308 while ((x >>= 1) != 0)
7309 ++maskbitslog2;
7310 if (maskbitslog2 < 3)
7311 maskbitslog2 = 5;
7312 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7313 maskbitslog2 = maskbitslog2 + 3;
7314 else
7315 maskbitslog2 = maskbitslog2 + 2;
7316 if (bed->s->arch_size == 64)
7317 {
7318 if (maskbitslog2 == 5)
7319 maskbitslog2 = 6;
7320 cinfo.shift1 = 6;
7321 }
7322 else
7323 cinfo.shift1 = 5;
7324 cinfo.mask = (1 << cinfo.shift1) - 1;
7325 cinfo.shift2 = maskbitslog2;
7326 cinfo.maskbits = 1 << maskbitslog2;
7327 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7328 amt = bucketcount * sizeof (unsigned long int) * 2;
7329 amt += maskwords * sizeof (bfd_vma);
7330 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7331 if (cinfo.bitmask == NULL)
7332 {
7333 free (cinfo.hashcodes);
7334 return FALSE;
7335 }
7336
7337 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7338 cinfo.indx = cinfo.counts + bucketcount;
7339 cinfo.symindx = dynsymcount - cinfo.nsyms;
7340 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7341
7342 /* Determine how often each hash bucket is used. */
7343 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7344 for (i = 0; i < cinfo.nsyms; ++i)
7345 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7346
7347 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7348 if (cinfo.counts[i] != 0)
7349 {
7350 cinfo.indx[i] = cnt;
7351 cnt += cinfo.counts[i];
7352 }
7353 BFD_ASSERT (cnt == dynsymcount);
7354 cinfo.bucketcount = bucketcount;
7355 cinfo.local_indx = cinfo.min_dynindx;
7356
7357 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7358 s->size += cinfo.maskbits / 8;
7359 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7360 if (contents == NULL)
7361 {
7362 free (cinfo.bitmask);
7363 free (cinfo.hashcodes);
7364 return FALSE;
7365 }
7366
7367 s->contents = contents;
7368 bfd_put_32 (output_bfd, bucketcount, contents);
7369 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7370 bfd_put_32 (output_bfd, maskwords, contents + 8);
7371 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7372 contents += 16 + cinfo.maskbits / 8;
7373
7374 for (i = 0; i < bucketcount; ++i)
7375 {
7376 if (cinfo.counts[i] == 0)
7377 bfd_put_32 (output_bfd, 0, contents);
7378 else
7379 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7380 contents += 4;
7381 }
7382
7383 cinfo.contents = contents;
7384
7385 /* Renumber dynamic symbols, populate .gnu.hash section. */
7386 elf_link_hash_traverse (elf_hash_table (info),
7387 elf_renumber_gnu_hash_syms, &cinfo);
7388
7389 contents = s->contents + 16;
7390 for (i = 0; i < maskwords; ++i)
7391 {
7392 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7393 contents);
7394 contents += bed->s->arch_size / 8;
7395 }
7396
7397 free (cinfo.bitmask);
7398 free (cinfo.hashcodes);
7399 }
7400 }
7401
7402 s = bfd_get_linker_section (dynobj, ".dynstr");
7403 BFD_ASSERT (s != NULL);
7404
7405 elf_finalize_dynstr (output_bfd, info);
7406
7407 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7408
7409 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7410 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7411 return FALSE;
7412 }
7413
7414 return TRUE;
7415 }
7416 \f
7417 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7418
7419 static void
7420 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7421 asection *sec)
7422 {
7423 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7424 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7425 }
7426
7427 /* Finish SHF_MERGE section merging. */
7428
7429 bfd_boolean
7430 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7431 {
7432 bfd *ibfd;
7433 asection *sec;
7434
7435 if (!is_elf_hash_table (info->hash))
7436 return FALSE;
7437
7438 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7439 if ((ibfd->flags & DYNAMIC) == 0
7440 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7441 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7442 == get_elf_backend_data (obfd)->s->elfclass))
7443 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7444 if ((sec->flags & SEC_MERGE) != 0
7445 && !bfd_is_abs_section (sec->output_section))
7446 {
7447 struct bfd_elf_section_data *secdata;
7448
7449 secdata = elf_section_data (sec);
7450 if (! _bfd_add_merge_section (obfd,
7451 &elf_hash_table (info)->merge_info,
7452 sec, &secdata->sec_info))
7453 return FALSE;
7454 else if (secdata->sec_info)
7455 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7456 }
7457
7458 if (elf_hash_table (info)->merge_info != NULL)
7459 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7460 merge_sections_remove_hook);
7461 return TRUE;
7462 }
7463
7464 /* Create an entry in an ELF linker hash table. */
7465
7466 struct bfd_hash_entry *
7467 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7468 struct bfd_hash_table *table,
7469 const char *string)
7470 {
7471 /* Allocate the structure if it has not already been allocated by a
7472 subclass. */
7473 if (entry == NULL)
7474 {
7475 entry = (struct bfd_hash_entry *)
7476 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7477 if (entry == NULL)
7478 return entry;
7479 }
7480
7481 /* Call the allocation method of the superclass. */
7482 entry = _bfd_link_hash_newfunc (entry, table, string);
7483 if (entry != NULL)
7484 {
7485 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7486 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7487
7488 /* Set local fields. */
7489 ret->indx = -1;
7490 ret->dynindx = -1;
7491 ret->got = htab->init_got_refcount;
7492 ret->plt = htab->init_plt_refcount;
7493 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7494 - offsetof (struct elf_link_hash_entry, size)));
7495 /* Assume that we have been called by a non-ELF symbol reader.
7496 This flag is then reset by the code which reads an ELF input
7497 file. This ensures that a symbol created by a non-ELF symbol
7498 reader will have the flag set correctly. */
7499 ret->non_elf = 1;
7500 }
7501
7502 return entry;
7503 }
7504
7505 /* Copy data from an indirect symbol to its direct symbol, hiding the
7506 old indirect symbol. Also used for copying flags to a weakdef. */
7507
7508 void
7509 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7510 struct elf_link_hash_entry *dir,
7511 struct elf_link_hash_entry *ind)
7512 {
7513 struct elf_link_hash_table *htab;
7514
7515 /* Copy down any references that we may have already seen to the
7516 symbol which just became indirect. */
7517
7518 if (dir->versioned != versioned_hidden)
7519 dir->ref_dynamic |= ind->ref_dynamic;
7520 dir->ref_regular |= ind->ref_regular;
7521 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7522 dir->non_got_ref |= ind->non_got_ref;
7523 dir->needs_plt |= ind->needs_plt;
7524 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7525
7526 if (ind->root.type != bfd_link_hash_indirect)
7527 return;
7528
7529 /* Copy over the global and procedure linkage table refcount entries.
7530 These may have been already set up by a check_relocs routine. */
7531 htab = elf_hash_table (info);
7532 if (ind->got.refcount > htab->init_got_refcount.refcount)
7533 {
7534 if (dir->got.refcount < 0)
7535 dir->got.refcount = 0;
7536 dir->got.refcount += ind->got.refcount;
7537 ind->got.refcount = htab->init_got_refcount.refcount;
7538 }
7539
7540 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7541 {
7542 if (dir->plt.refcount < 0)
7543 dir->plt.refcount = 0;
7544 dir->plt.refcount += ind->plt.refcount;
7545 ind->plt.refcount = htab->init_plt_refcount.refcount;
7546 }
7547
7548 if (ind->dynindx != -1)
7549 {
7550 if (dir->dynindx != -1)
7551 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7552 dir->dynindx = ind->dynindx;
7553 dir->dynstr_index = ind->dynstr_index;
7554 ind->dynindx = -1;
7555 ind->dynstr_index = 0;
7556 }
7557 }
7558
7559 void
7560 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7561 struct elf_link_hash_entry *h,
7562 bfd_boolean force_local)
7563 {
7564 /* STT_GNU_IFUNC symbol must go through PLT. */
7565 if (h->type != STT_GNU_IFUNC)
7566 {
7567 h->plt = elf_hash_table (info)->init_plt_offset;
7568 h->needs_plt = 0;
7569 }
7570 if (force_local)
7571 {
7572 h->forced_local = 1;
7573 if (h->dynindx != -1)
7574 {
7575 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7576 h->dynstr_index);
7577 h->dynindx = -1;
7578 h->dynstr_index = 0;
7579 }
7580 }
7581 }
7582
7583 /* Hide a symbol. */
7584
7585 void
7586 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7587 struct bfd_link_info *info,
7588 struct bfd_link_hash_entry *h)
7589 {
7590 if (is_elf_hash_table (info->hash))
7591 {
7592 const struct elf_backend_data *bed
7593 = get_elf_backend_data (output_bfd);
7594 struct elf_link_hash_entry *eh
7595 = (struct elf_link_hash_entry *) h;
7596 bed->elf_backend_hide_symbol (info, eh, TRUE);
7597 eh->def_dynamic = 0;
7598 eh->ref_dynamic = 0;
7599 eh->dynamic_def = 0;
7600 }
7601 }
7602
7603 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7604 caller. */
7605
7606 bfd_boolean
7607 _bfd_elf_link_hash_table_init
7608 (struct elf_link_hash_table *table,
7609 bfd *abfd,
7610 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7611 struct bfd_hash_table *,
7612 const char *),
7613 unsigned int entsize,
7614 enum elf_target_id target_id)
7615 {
7616 bfd_boolean ret;
7617 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7618
7619 table->init_got_refcount.refcount = can_refcount - 1;
7620 table->init_plt_refcount.refcount = can_refcount - 1;
7621 table->init_got_offset.offset = -(bfd_vma) 1;
7622 table->init_plt_offset.offset = -(bfd_vma) 1;
7623 /* The first dynamic symbol is a dummy. */
7624 table->dynsymcount = 1;
7625
7626 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7627
7628 table->root.type = bfd_link_elf_hash_table;
7629 table->hash_table_id = target_id;
7630
7631 return ret;
7632 }
7633
7634 /* Create an ELF linker hash table. */
7635
7636 struct bfd_link_hash_table *
7637 _bfd_elf_link_hash_table_create (bfd *abfd)
7638 {
7639 struct elf_link_hash_table *ret;
7640 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7641
7642 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7643 if (ret == NULL)
7644 return NULL;
7645
7646 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7647 sizeof (struct elf_link_hash_entry),
7648 GENERIC_ELF_DATA))
7649 {
7650 free (ret);
7651 return NULL;
7652 }
7653 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7654
7655 return &ret->root;
7656 }
7657
7658 /* Destroy an ELF linker hash table. */
7659
7660 void
7661 _bfd_elf_link_hash_table_free (bfd *obfd)
7662 {
7663 struct elf_link_hash_table *htab;
7664
7665 htab = (struct elf_link_hash_table *) obfd->link.hash;
7666 if (htab->dynstr != NULL)
7667 _bfd_elf_strtab_free (htab->dynstr);
7668 _bfd_merge_sections_free (htab->merge_info);
7669 _bfd_generic_link_hash_table_free (obfd);
7670 }
7671
7672 /* This is a hook for the ELF emulation code in the generic linker to
7673 tell the backend linker what file name to use for the DT_NEEDED
7674 entry for a dynamic object. */
7675
7676 void
7677 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7678 {
7679 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7680 && bfd_get_format (abfd) == bfd_object)
7681 elf_dt_name (abfd) = name;
7682 }
7683
7684 int
7685 bfd_elf_get_dyn_lib_class (bfd *abfd)
7686 {
7687 int lib_class;
7688 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7689 && bfd_get_format (abfd) == bfd_object)
7690 lib_class = elf_dyn_lib_class (abfd);
7691 else
7692 lib_class = 0;
7693 return lib_class;
7694 }
7695
7696 void
7697 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7698 {
7699 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7700 && bfd_get_format (abfd) == bfd_object)
7701 elf_dyn_lib_class (abfd) = lib_class;
7702 }
7703
7704 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7705 the linker ELF emulation code. */
7706
7707 struct bfd_link_needed_list *
7708 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7709 struct bfd_link_info *info)
7710 {
7711 if (! is_elf_hash_table (info->hash))
7712 return NULL;
7713 return elf_hash_table (info)->needed;
7714 }
7715
7716 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7717 hook for the linker ELF emulation code. */
7718
7719 struct bfd_link_needed_list *
7720 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7721 struct bfd_link_info *info)
7722 {
7723 if (! is_elf_hash_table (info->hash))
7724 return NULL;
7725 return elf_hash_table (info)->runpath;
7726 }
7727
7728 /* Get the name actually used for a dynamic object for a link. This
7729 is the SONAME entry if there is one. Otherwise, it is the string
7730 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7731
7732 const char *
7733 bfd_elf_get_dt_soname (bfd *abfd)
7734 {
7735 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7736 && bfd_get_format (abfd) == bfd_object)
7737 return elf_dt_name (abfd);
7738 return NULL;
7739 }
7740
7741 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7742 the ELF linker emulation code. */
7743
7744 bfd_boolean
7745 bfd_elf_get_bfd_needed_list (bfd *abfd,
7746 struct bfd_link_needed_list **pneeded)
7747 {
7748 asection *s;
7749 bfd_byte *dynbuf = NULL;
7750 unsigned int elfsec;
7751 unsigned long shlink;
7752 bfd_byte *extdyn, *extdynend;
7753 size_t extdynsize;
7754 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7755
7756 *pneeded = NULL;
7757
7758 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7759 || bfd_get_format (abfd) != bfd_object)
7760 return TRUE;
7761
7762 s = bfd_get_section_by_name (abfd, ".dynamic");
7763 if (s == NULL || s->size == 0)
7764 return TRUE;
7765
7766 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7767 goto error_return;
7768
7769 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7770 if (elfsec == SHN_BAD)
7771 goto error_return;
7772
7773 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7774
7775 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7776 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7777
7778 extdyn = dynbuf;
7779 extdynend = extdyn + s->size;
7780 for (; extdyn < extdynend; extdyn += extdynsize)
7781 {
7782 Elf_Internal_Dyn dyn;
7783
7784 (*swap_dyn_in) (abfd, extdyn, &dyn);
7785
7786 if (dyn.d_tag == DT_NULL)
7787 break;
7788
7789 if (dyn.d_tag == DT_NEEDED)
7790 {
7791 const char *string;
7792 struct bfd_link_needed_list *l;
7793 unsigned int tagv = dyn.d_un.d_val;
7794 bfd_size_type amt;
7795
7796 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7797 if (string == NULL)
7798 goto error_return;
7799
7800 amt = sizeof *l;
7801 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7802 if (l == NULL)
7803 goto error_return;
7804
7805 l->by = abfd;
7806 l->name = string;
7807 l->next = *pneeded;
7808 *pneeded = l;
7809 }
7810 }
7811
7812 free (dynbuf);
7813
7814 return TRUE;
7815
7816 error_return:
7817 if (dynbuf != NULL)
7818 free (dynbuf);
7819 return FALSE;
7820 }
7821
7822 struct elf_symbuf_symbol
7823 {
7824 unsigned long st_name; /* Symbol name, index in string tbl */
7825 unsigned char st_info; /* Type and binding attributes */
7826 unsigned char st_other; /* Visibilty, and target specific */
7827 };
7828
7829 struct elf_symbuf_head
7830 {
7831 struct elf_symbuf_symbol *ssym;
7832 size_t count;
7833 unsigned int st_shndx;
7834 };
7835
7836 struct elf_symbol
7837 {
7838 union
7839 {
7840 Elf_Internal_Sym *isym;
7841 struct elf_symbuf_symbol *ssym;
7842 } u;
7843 const char *name;
7844 };
7845
7846 /* Sort references to symbols by ascending section number. */
7847
7848 static int
7849 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7850 {
7851 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7852 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7853
7854 return s1->st_shndx - s2->st_shndx;
7855 }
7856
7857 static int
7858 elf_sym_name_compare (const void *arg1, const void *arg2)
7859 {
7860 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7861 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7862 return strcmp (s1->name, s2->name);
7863 }
7864
7865 static struct elf_symbuf_head *
7866 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7867 {
7868 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7869 struct elf_symbuf_symbol *ssym;
7870 struct elf_symbuf_head *ssymbuf, *ssymhead;
7871 size_t i, shndx_count, total_size;
7872
7873 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7874 if (indbuf == NULL)
7875 return NULL;
7876
7877 for (ind = indbuf, i = 0; i < symcount; i++)
7878 if (isymbuf[i].st_shndx != SHN_UNDEF)
7879 *ind++ = &isymbuf[i];
7880 indbufend = ind;
7881
7882 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7883 elf_sort_elf_symbol);
7884
7885 shndx_count = 0;
7886 if (indbufend > indbuf)
7887 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7888 if (ind[0]->st_shndx != ind[1]->st_shndx)
7889 shndx_count++;
7890
7891 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7892 + (indbufend - indbuf) * sizeof (*ssym));
7893 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7894 if (ssymbuf == NULL)
7895 {
7896 free (indbuf);
7897 return NULL;
7898 }
7899
7900 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7901 ssymbuf->ssym = NULL;
7902 ssymbuf->count = shndx_count;
7903 ssymbuf->st_shndx = 0;
7904 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7905 {
7906 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7907 {
7908 ssymhead++;
7909 ssymhead->ssym = ssym;
7910 ssymhead->count = 0;
7911 ssymhead->st_shndx = (*ind)->st_shndx;
7912 }
7913 ssym->st_name = (*ind)->st_name;
7914 ssym->st_info = (*ind)->st_info;
7915 ssym->st_other = (*ind)->st_other;
7916 ssymhead->count++;
7917 }
7918 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7919 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7920 == total_size));
7921
7922 free (indbuf);
7923 return ssymbuf;
7924 }
7925
7926 /* Check if 2 sections define the same set of local and global
7927 symbols. */
7928
7929 static bfd_boolean
7930 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7931 struct bfd_link_info *info)
7932 {
7933 bfd *bfd1, *bfd2;
7934 const struct elf_backend_data *bed1, *bed2;
7935 Elf_Internal_Shdr *hdr1, *hdr2;
7936 size_t symcount1, symcount2;
7937 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7938 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7939 Elf_Internal_Sym *isym, *isymend;
7940 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7941 size_t count1, count2, i;
7942 unsigned int shndx1, shndx2;
7943 bfd_boolean result;
7944
7945 bfd1 = sec1->owner;
7946 bfd2 = sec2->owner;
7947
7948 /* Both sections have to be in ELF. */
7949 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7950 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7951 return FALSE;
7952
7953 if (elf_section_type (sec1) != elf_section_type (sec2))
7954 return FALSE;
7955
7956 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7957 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7958 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7959 return FALSE;
7960
7961 bed1 = get_elf_backend_data (bfd1);
7962 bed2 = get_elf_backend_data (bfd2);
7963 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7964 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7965 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7966 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7967
7968 if (symcount1 == 0 || symcount2 == 0)
7969 return FALSE;
7970
7971 result = FALSE;
7972 isymbuf1 = NULL;
7973 isymbuf2 = NULL;
7974 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7975 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7976
7977 if (ssymbuf1 == NULL)
7978 {
7979 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7980 NULL, NULL, NULL);
7981 if (isymbuf1 == NULL)
7982 goto done;
7983
7984 if (!info->reduce_memory_overheads)
7985 elf_tdata (bfd1)->symbuf = ssymbuf1
7986 = elf_create_symbuf (symcount1, isymbuf1);
7987 }
7988
7989 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7990 {
7991 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7992 NULL, NULL, NULL);
7993 if (isymbuf2 == NULL)
7994 goto done;
7995
7996 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7997 elf_tdata (bfd2)->symbuf = ssymbuf2
7998 = elf_create_symbuf (symcount2, isymbuf2);
7999 }
8000
8001 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8002 {
8003 /* Optimized faster version. */
8004 size_t lo, hi, mid;
8005 struct elf_symbol *symp;
8006 struct elf_symbuf_symbol *ssym, *ssymend;
8007
8008 lo = 0;
8009 hi = ssymbuf1->count;
8010 ssymbuf1++;
8011 count1 = 0;
8012 while (lo < hi)
8013 {
8014 mid = (lo + hi) / 2;
8015 if (shndx1 < ssymbuf1[mid].st_shndx)
8016 hi = mid;
8017 else if (shndx1 > ssymbuf1[mid].st_shndx)
8018 lo = mid + 1;
8019 else
8020 {
8021 count1 = ssymbuf1[mid].count;
8022 ssymbuf1 += mid;
8023 break;
8024 }
8025 }
8026
8027 lo = 0;
8028 hi = ssymbuf2->count;
8029 ssymbuf2++;
8030 count2 = 0;
8031 while (lo < hi)
8032 {
8033 mid = (lo + hi) / 2;
8034 if (shndx2 < ssymbuf2[mid].st_shndx)
8035 hi = mid;
8036 else if (shndx2 > ssymbuf2[mid].st_shndx)
8037 lo = mid + 1;
8038 else
8039 {
8040 count2 = ssymbuf2[mid].count;
8041 ssymbuf2 += mid;
8042 break;
8043 }
8044 }
8045
8046 if (count1 == 0 || count2 == 0 || count1 != count2)
8047 goto done;
8048
8049 symtable1
8050 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8051 symtable2
8052 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8053 if (symtable1 == NULL || symtable2 == NULL)
8054 goto done;
8055
8056 symp = symtable1;
8057 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8058 ssym < ssymend; ssym++, symp++)
8059 {
8060 symp->u.ssym = ssym;
8061 symp->name = bfd_elf_string_from_elf_section (bfd1,
8062 hdr1->sh_link,
8063 ssym->st_name);
8064 }
8065
8066 symp = symtable2;
8067 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8068 ssym < ssymend; ssym++, symp++)
8069 {
8070 symp->u.ssym = ssym;
8071 symp->name = bfd_elf_string_from_elf_section (bfd2,
8072 hdr2->sh_link,
8073 ssym->st_name);
8074 }
8075
8076 /* Sort symbol by name. */
8077 qsort (symtable1, count1, sizeof (struct elf_symbol),
8078 elf_sym_name_compare);
8079 qsort (symtable2, count1, sizeof (struct elf_symbol),
8080 elf_sym_name_compare);
8081
8082 for (i = 0; i < count1; i++)
8083 /* Two symbols must have the same binding, type and name. */
8084 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8085 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8086 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8087 goto done;
8088
8089 result = TRUE;
8090 goto done;
8091 }
8092
8093 symtable1 = (struct elf_symbol *)
8094 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8095 symtable2 = (struct elf_symbol *)
8096 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8097 if (symtable1 == NULL || symtable2 == NULL)
8098 goto done;
8099
8100 /* Count definitions in the section. */
8101 count1 = 0;
8102 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8103 if (isym->st_shndx == shndx1)
8104 symtable1[count1++].u.isym = isym;
8105
8106 count2 = 0;
8107 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8108 if (isym->st_shndx == shndx2)
8109 symtable2[count2++].u.isym = isym;
8110
8111 if (count1 == 0 || count2 == 0 || count1 != count2)
8112 goto done;
8113
8114 for (i = 0; i < count1; i++)
8115 symtable1[i].name
8116 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8117 symtable1[i].u.isym->st_name);
8118
8119 for (i = 0; i < count2; i++)
8120 symtable2[i].name
8121 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8122 symtable2[i].u.isym->st_name);
8123
8124 /* Sort symbol by name. */
8125 qsort (symtable1, count1, sizeof (struct elf_symbol),
8126 elf_sym_name_compare);
8127 qsort (symtable2, count1, sizeof (struct elf_symbol),
8128 elf_sym_name_compare);
8129
8130 for (i = 0; i < count1; i++)
8131 /* Two symbols must have the same binding, type and name. */
8132 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8133 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8134 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8135 goto done;
8136
8137 result = TRUE;
8138
8139 done:
8140 if (symtable1)
8141 free (symtable1);
8142 if (symtable2)
8143 free (symtable2);
8144 if (isymbuf1)
8145 free (isymbuf1);
8146 if (isymbuf2)
8147 free (isymbuf2);
8148
8149 return result;
8150 }
8151
8152 /* Return TRUE if 2 section types are compatible. */
8153
8154 bfd_boolean
8155 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8156 bfd *bbfd, const asection *bsec)
8157 {
8158 if (asec == NULL
8159 || bsec == NULL
8160 || abfd->xvec->flavour != bfd_target_elf_flavour
8161 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8162 return TRUE;
8163
8164 return elf_section_type (asec) == elf_section_type (bsec);
8165 }
8166 \f
8167 /* Final phase of ELF linker. */
8168
8169 /* A structure we use to avoid passing large numbers of arguments. */
8170
8171 struct elf_final_link_info
8172 {
8173 /* General link information. */
8174 struct bfd_link_info *info;
8175 /* Output BFD. */
8176 bfd *output_bfd;
8177 /* Symbol string table. */
8178 struct elf_strtab_hash *symstrtab;
8179 /* .hash section. */
8180 asection *hash_sec;
8181 /* symbol version section (.gnu.version). */
8182 asection *symver_sec;
8183 /* Buffer large enough to hold contents of any section. */
8184 bfd_byte *contents;
8185 /* Buffer large enough to hold external relocs of any section. */
8186 void *external_relocs;
8187 /* Buffer large enough to hold internal relocs of any section. */
8188 Elf_Internal_Rela *internal_relocs;
8189 /* Buffer large enough to hold external local symbols of any input
8190 BFD. */
8191 bfd_byte *external_syms;
8192 /* And a buffer for symbol section indices. */
8193 Elf_External_Sym_Shndx *locsym_shndx;
8194 /* Buffer large enough to hold internal local symbols of any input
8195 BFD. */
8196 Elf_Internal_Sym *internal_syms;
8197 /* Array large enough to hold a symbol index for each local symbol
8198 of any input BFD. */
8199 long *indices;
8200 /* Array large enough to hold a section pointer for each local
8201 symbol of any input BFD. */
8202 asection **sections;
8203 /* Buffer for SHT_SYMTAB_SHNDX section. */
8204 Elf_External_Sym_Shndx *symshndxbuf;
8205 /* Number of STT_FILE syms seen. */
8206 size_t filesym_count;
8207 };
8208
8209 /* This struct is used to pass information to elf_link_output_extsym. */
8210
8211 struct elf_outext_info
8212 {
8213 bfd_boolean failed;
8214 bfd_boolean localsyms;
8215 bfd_boolean file_sym_done;
8216 struct elf_final_link_info *flinfo;
8217 };
8218
8219
8220 /* Support for evaluating a complex relocation.
8221
8222 Complex relocations are generalized, self-describing relocations. The
8223 implementation of them consists of two parts: complex symbols, and the
8224 relocations themselves.
8225
8226 The relocations are use a reserved elf-wide relocation type code (R_RELC
8227 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8228 information (start bit, end bit, word width, etc) into the addend. This
8229 information is extracted from CGEN-generated operand tables within gas.
8230
8231 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8232 internal) representing prefix-notation expressions, including but not
8233 limited to those sorts of expressions normally encoded as addends in the
8234 addend field. The symbol mangling format is:
8235
8236 <node> := <literal>
8237 | <unary-operator> ':' <node>
8238 | <binary-operator> ':' <node> ':' <node>
8239 ;
8240
8241 <literal> := 's' <digits=N> ':' <N character symbol name>
8242 | 'S' <digits=N> ':' <N character section name>
8243 | '#' <hexdigits>
8244 ;
8245
8246 <binary-operator> := as in C
8247 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8248
8249 static void
8250 set_symbol_value (bfd *bfd_with_globals,
8251 Elf_Internal_Sym *isymbuf,
8252 size_t locsymcount,
8253 size_t symidx,
8254 bfd_vma val)
8255 {
8256 struct elf_link_hash_entry **sym_hashes;
8257 struct elf_link_hash_entry *h;
8258 size_t extsymoff = locsymcount;
8259
8260 if (symidx < locsymcount)
8261 {
8262 Elf_Internal_Sym *sym;
8263
8264 sym = isymbuf + symidx;
8265 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8266 {
8267 /* It is a local symbol: move it to the
8268 "absolute" section and give it a value. */
8269 sym->st_shndx = SHN_ABS;
8270 sym->st_value = val;
8271 return;
8272 }
8273 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8274 extsymoff = 0;
8275 }
8276
8277 /* It is a global symbol: set its link type
8278 to "defined" and give it a value. */
8279
8280 sym_hashes = elf_sym_hashes (bfd_with_globals);
8281 h = sym_hashes [symidx - extsymoff];
8282 while (h->root.type == bfd_link_hash_indirect
8283 || h->root.type == bfd_link_hash_warning)
8284 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8285 h->root.type = bfd_link_hash_defined;
8286 h->root.u.def.value = val;
8287 h->root.u.def.section = bfd_abs_section_ptr;
8288 }
8289
8290 static bfd_boolean
8291 resolve_symbol (const char *name,
8292 bfd *input_bfd,
8293 struct elf_final_link_info *flinfo,
8294 bfd_vma *result,
8295 Elf_Internal_Sym *isymbuf,
8296 size_t locsymcount)
8297 {
8298 Elf_Internal_Sym *sym;
8299 struct bfd_link_hash_entry *global_entry;
8300 const char *candidate = NULL;
8301 Elf_Internal_Shdr *symtab_hdr;
8302 size_t i;
8303
8304 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8305
8306 for (i = 0; i < locsymcount; ++ i)
8307 {
8308 sym = isymbuf + i;
8309
8310 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8311 continue;
8312
8313 candidate = bfd_elf_string_from_elf_section (input_bfd,
8314 symtab_hdr->sh_link,
8315 sym->st_name);
8316 #ifdef DEBUG
8317 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8318 name, candidate, (unsigned long) sym->st_value);
8319 #endif
8320 if (candidate && strcmp (candidate, name) == 0)
8321 {
8322 asection *sec = flinfo->sections [i];
8323
8324 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8325 *result += sec->output_offset + sec->output_section->vma;
8326 #ifdef DEBUG
8327 printf ("Found symbol with value %8.8lx\n",
8328 (unsigned long) *result);
8329 #endif
8330 return TRUE;
8331 }
8332 }
8333
8334 /* Hmm, haven't found it yet. perhaps it is a global. */
8335 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8336 FALSE, FALSE, TRUE);
8337 if (!global_entry)
8338 return FALSE;
8339
8340 if (global_entry->type == bfd_link_hash_defined
8341 || global_entry->type == bfd_link_hash_defweak)
8342 {
8343 *result = (global_entry->u.def.value
8344 + global_entry->u.def.section->output_section->vma
8345 + global_entry->u.def.section->output_offset);
8346 #ifdef DEBUG
8347 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8348 global_entry->root.string, (unsigned long) *result);
8349 #endif
8350 return TRUE;
8351 }
8352
8353 return FALSE;
8354 }
8355
8356 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8357 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8358 names like "foo.end" which is the end address of section "foo". */
8359
8360 static bfd_boolean
8361 resolve_section (const char *name,
8362 asection *sections,
8363 bfd_vma *result,
8364 bfd * abfd)
8365 {
8366 asection *curr;
8367 unsigned int len;
8368
8369 for (curr = sections; curr; curr = curr->next)
8370 if (strcmp (curr->name, name) == 0)
8371 {
8372 *result = curr->vma;
8373 return TRUE;
8374 }
8375
8376 /* Hmm. still haven't found it. try pseudo-section names. */
8377 /* FIXME: This could be coded more efficiently... */
8378 for (curr = sections; curr; curr = curr->next)
8379 {
8380 len = strlen (curr->name);
8381 if (len > strlen (name))
8382 continue;
8383
8384 if (strncmp (curr->name, name, len) == 0)
8385 {
8386 if (strncmp (".end", name + len, 4) == 0)
8387 {
8388 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8389 return TRUE;
8390 }
8391
8392 /* Insert more pseudo-section names here, if you like. */
8393 }
8394 }
8395
8396 return FALSE;
8397 }
8398
8399 static void
8400 undefined_reference (const char *reftype, const char *name)
8401 {
8402 /* xgettext:c-format */
8403 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8404 reftype, name);
8405 }
8406
8407 static bfd_boolean
8408 eval_symbol (bfd_vma *result,
8409 const char **symp,
8410 bfd *input_bfd,
8411 struct elf_final_link_info *flinfo,
8412 bfd_vma dot,
8413 Elf_Internal_Sym *isymbuf,
8414 size_t locsymcount,
8415 int signed_p)
8416 {
8417 size_t len;
8418 size_t symlen;
8419 bfd_vma a;
8420 bfd_vma b;
8421 char symbuf[4096];
8422 const char *sym = *symp;
8423 const char *symend;
8424 bfd_boolean symbol_is_section = FALSE;
8425
8426 len = strlen (sym);
8427 symend = sym + len;
8428
8429 if (len < 1 || len > sizeof (symbuf))
8430 {
8431 bfd_set_error (bfd_error_invalid_operation);
8432 return FALSE;
8433 }
8434
8435 switch (* sym)
8436 {
8437 case '.':
8438 *result = dot;
8439 *symp = sym + 1;
8440 return TRUE;
8441
8442 case '#':
8443 ++sym;
8444 *result = strtoul (sym, (char **) symp, 16);
8445 return TRUE;
8446
8447 case 'S':
8448 symbol_is_section = TRUE;
8449 /* Fall through. */
8450 case 's':
8451 ++sym;
8452 symlen = strtol (sym, (char **) symp, 10);
8453 sym = *symp + 1; /* Skip the trailing ':'. */
8454
8455 if (symend < sym || symlen + 1 > sizeof (symbuf))
8456 {
8457 bfd_set_error (bfd_error_invalid_operation);
8458 return FALSE;
8459 }
8460
8461 memcpy (symbuf, sym, symlen);
8462 symbuf[symlen] = '\0';
8463 *symp = sym + symlen;
8464
8465 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8466 the symbol as a section, or vice-versa. so we're pretty liberal in our
8467 interpretation here; section means "try section first", not "must be a
8468 section", and likewise with symbol. */
8469
8470 if (symbol_is_section)
8471 {
8472 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8473 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8474 isymbuf, locsymcount))
8475 {
8476 undefined_reference ("section", symbuf);
8477 return FALSE;
8478 }
8479 }
8480 else
8481 {
8482 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8483 isymbuf, locsymcount)
8484 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8485 result, input_bfd))
8486 {
8487 undefined_reference ("symbol", symbuf);
8488 return FALSE;
8489 }
8490 }
8491
8492 return TRUE;
8493
8494 /* All that remains are operators. */
8495
8496 #define UNARY_OP(op) \
8497 if (strncmp (sym, #op, strlen (#op)) == 0) \
8498 { \
8499 sym += strlen (#op); \
8500 if (*sym == ':') \
8501 ++sym; \
8502 *symp = sym; \
8503 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8504 isymbuf, locsymcount, signed_p)) \
8505 return FALSE; \
8506 if (signed_p) \
8507 *result = op ((bfd_signed_vma) a); \
8508 else \
8509 *result = op a; \
8510 return TRUE; \
8511 }
8512
8513 #define BINARY_OP(op) \
8514 if (strncmp (sym, #op, strlen (#op)) == 0) \
8515 { \
8516 sym += strlen (#op); \
8517 if (*sym == ':') \
8518 ++sym; \
8519 *symp = sym; \
8520 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8521 isymbuf, locsymcount, signed_p)) \
8522 return FALSE; \
8523 ++*symp; \
8524 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8525 isymbuf, locsymcount, signed_p)) \
8526 return FALSE; \
8527 if (signed_p) \
8528 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8529 else \
8530 *result = a op b; \
8531 return TRUE; \
8532 }
8533
8534 default:
8535 UNARY_OP (0-);
8536 BINARY_OP (<<);
8537 BINARY_OP (>>);
8538 BINARY_OP (==);
8539 BINARY_OP (!=);
8540 BINARY_OP (<=);
8541 BINARY_OP (>=);
8542 BINARY_OP (&&);
8543 BINARY_OP (||);
8544 UNARY_OP (~);
8545 UNARY_OP (!);
8546 BINARY_OP (*);
8547 BINARY_OP (/);
8548 BINARY_OP (%);
8549 BINARY_OP (^);
8550 BINARY_OP (|);
8551 BINARY_OP (&);
8552 BINARY_OP (+);
8553 BINARY_OP (-);
8554 BINARY_OP (<);
8555 BINARY_OP (>);
8556 #undef UNARY_OP
8557 #undef BINARY_OP
8558 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8559 bfd_set_error (bfd_error_invalid_operation);
8560 return FALSE;
8561 }
8562 }
8563
8564 static void
8565 put_value (bfd_vma size,
8566 unsigned long chunksz,
8567 bfd *input_bfd,
8568 bfd_vma x,
8569 bfd_byte *location)
8570 {
8571 location += (size - chunksz);
8572
8573 for (; size; size -= chunksz, location -= chunksz)
8574 {
8575 switch (chunksz)
8576 {
8577 case 1:
8578 bfd_put_8 (input_bfd, x, location);
8579 x >>= 8;
8580 break;
8581 case 2:
8582 bfd_put_16 (input_bfd, x, location);
8583 x >>= 16;
8584 break;
8585 case 4:
8586 bfd_put_32 (input_bfd, x, location);
8587 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8588 x >>= 16;
8589 x >>= 16;
8590 break;
8591 #ifdef BFD64
8592 case 8:
8593 bfd_put_64 (input_bfd, x, location);
8594 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8595 x >>= 32;
8596 x >>= 32;
8597 break;
8598 #endif
8599 default:
8600 abort ();
8601 break;
8602 }
8603 }
8604 }
8605
8606 static bfd_vma
8607 get_value (bfd_vma size,
8608 unsigned long chunksz,
8609 bfd *input_bfd,
8610 bfd_byte *location)
8611 {
8612 int shift;
8613 bfd_vma x = 0;
8614
8615 /* Sanity checks. */
8616 BFD_ASSERT (chunksz <= sizeof (x)
8617 && size >= chunksz
8618 && chunksz != 0
8619 && (size % chunksz) == 0
8620 && input_bfd != NULL
8621 && location != NULL);
8622
8623 if (chunksz == sizeof (x))
8624 {
8625 BFD_ASSERT (size == chunksz);
8626
8627 /* Make sure that we do not perform an undefined shift operation.
8628 We know that size == chunksz so there will only be one iteration
8629 of the loop below. */
8630 shift = 0;
8631 }
8632 else
8633 shift = 8 * chunksz;
8634
8635 for (; size; size -= chunksz, location += chunksz)
8636 {
8637 switch (chunksz)
8638 {
8639 case 1:
8640 x = (x << shift) | bfd_get_8 (input_bfd, location);
8641 break;
8642 case 2:
8643 x = (x << shift) | bfd_get_16 (input_bfd, location);
8644 break;
8645 case 4:
8646 x = (x << shift) | bfd_get_32 (input_bfd, location);
8647 break;
8648 #ifdef BFD64
8649 case 8:
8650 x = (x << shift) | bfd_get_64 (input_bfd, location);
8651 break;
8652 #endif
8653 default:
8654 abort ();
8655 }
8656 }
8657 return x;
8658 }
8659
8660 static void
8661 decode_complex_addend (unsigned long *start, /* in bits */
8662 unsigned long *oplen, /* in bits */
8663 unsigned long *len, /* in bits */
8664 unsigned long *wordsz, /* in bytes */
8665 unsigned long *chunksz, /* in bytes */
8666 unsigned long *lsb0_p,
8667 unsigned long *signed_p,
8668 unsigned long *trunc_p,
8669 unsigned long encoded)
8670 {
8671 * start = encoded & 0x3F;
8672 * len = (encoded >> 6) & 0x3F;
8673 * oplen = (encoded >> 12) & 0x3F;
8674 * wordsz = (encoded >> 18) & 0xF;
8675 * chunksz = (encoded >> 22) & 0xF;
8676 * lsb0_p = (encoded >> 27) & 1;
8677 * signed_p = (encoded >> 28) & 1;
8678 * trunc_p = (encoded >> 29) & 1;
8679 }
8680
8681 bfd_reloc_status_type
8682 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8683 asection *input_section ATTRIBUTE_UNUSED,
8684 bfd_byte *contents,
8685 Elf_Internal_Rela *rel,
8686 bfd_vma relocation)
8687 {
8688 bfd_vma shift, x, mask;
8689 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8690 bfd_reloc_status_type r;
8691
8692 /* Perform this reloc, since it is complex.
8693 (this is not to say that it necessarily refers to a complex
8694 symbol; merely that it is a self-describing CGEN based reloc.
8695 i.e. the addend has the complete reloc information (bit start, end,
8696 word size, etc) encoded within it.). */
8697
8698 decode_complex_addend (&start, &oplen, &len, &wordsz,
8699 &chunksz, &lsb0_p, &signed_p,
8700 &trunc_p, rel->r_addend);
8701
8702 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8703
8704 if (lsb0_p)
8705 shift = (start + 1) - len;
8706 else
8707 shift = (8 * wordsz) - (start + len);
8708
8709 x = get_value (wordsz, chunksz, input_bfd,
8710 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8711
8712 #ifdef DEBUG
8713 printf ("Doing complex reloc: "
8714 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8715 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8716 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8717 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8718 oplen, (unsigned long) x, (unsigned long) mask,
8719 (unsigned long) relocation);
8720 #endif
8721
8722 r = bfd_reloc_ok;
8723 if (! trunc_p)
8724 /* Now do an overflow check. */
8725 r = bfd_check_overflow ((signed_p
8726 ? complain_overflow_signed
8727 : complain_overflow_unsigned),
8728 len, 0, (8 * wordsz),
8729 relocation);
8730
8731 /* Do the deed. */
8732 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8733
8734 #ifdef DEBUG
8735 printf (" relocation: %8.8lx\n"
8736 " shifted mask: %8.8lx\n"
8737 " shifted/masked reloc: %8.8lx\n"
8738 " result: %8.8lx\n",
8739 (unsigned long) relocation, (unsigned long) (mask << shift),
8740 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8741 #endif
8742 put_value (wordsz, chunksz, input_bfd, x,
8743 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8744 return r;
8745 }
8746
8747 /* Functions to read r_offset from external (target order) reloc
8748 entry. Faster than bfd_getl32 et al, because we let the compiler
8749 know the value is aligned. */
8750
8751 static bfd_vma
8752 ext32l_r_offset (const void *p)
8753 {
8754 union aligned32
8755 {
8756 uint32_t v;
8757 unsigned char c[4];
8758 };
8759 const union aligned32 *a
8760 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8761
8762 uint32_t aval = ( (uint32_t) a->c[0]
8763 | (uint32_t) a->c[1] << 8
8764 | (uint32_t) a->c[2] << 16
8765 | (uint32_t) a->c[3] << 24);
8766 return aval;
8767 }
8768
8769 static bfd_vma
8770 ext32b_r_offset (const void *p)
8771 {
8772 union aligned32
8773 {
8774 uint32_t v;
8775 unsigned char c[4];
8776 };
8777 const union aligned32 *a
8778 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8779
8780 uint32_t aval = ( (uint32_t) a->c[0] << 24
8781 | (uint32_t) a->c[1] << 16
8782 | (uint32_t) a->c[2] << 8
8783 | (uint32_t) a->c[3]);
8784 return aval;
8785 }
8786
8787 #ifdef BFD_HOST_64_BIT
8788 static bfd_vma
8789 ext64l_r_offset (const void *p)
8790 {
8791 union aligned64
8792 {
8793 uint64_t v;
8794 unsigned char c[8];
8795 };
8796 const union aligned64 *a
8797 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8798
8799 uint64_t aval = ( (uint64_t) a->c[0]
8800 | (uint64_t) a->c[1] << 8
8801 | (uint64_t) a->c[2] << 16
8802 | (uint64_t) a->c[3] << 24
8803 | (uint64_t) a->c[4] << 32
8804 | (uint64_t) a->c[5] << 40
8805 | (uint64_t) a->c[6] << 48
8806 | (uint64_t) a->c[7] << 56);
8807 return aval;
8808 }
8809
8810 static bfd_vma
8811 ext64b_r_offset (const void *p)
8812 {
8813 union aligned64
8814 {
8815 uint64_t v;
8816 unsigned char c[8];
8817 };
8818 const union aligned64 *a
8819 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8820
8821 uint64_t aval = ( (uint64_t) a->c[0] << 56
8822 | (uint64_t) a->c[1] << 48
8823 | (uint64_t) a->c[2] << 40
8824 | (uint64_t) a->c[3] << 32
8825 | (uint64_t) a->c[4] << 24
8826 | (uint64_t) a->c[5] << 16
8827 | (uint64_t) a->c[6] << 8
8828 | (uint64_t) a->c[7]);
8829 return aval;
8830 }
8831 #endif
8832
8833 /* When performing a relocatable link, the input relocations are
8834 preserved. But, if they reference global symbols, the indices
8835 referenced must be updated. Update all the relocations found in
8836 RELDATA. */
8837
8838 static bfd_boolean
8839 elf_link_adjust_relocs (bfd *abfd,
8840 asection *sec,
8841 struct bfd_elf_section_reloc_data *reldata,
8842 bfd_boolean sort,
8843 struct bfd_link_info *info)
8844 {
8845 unsigned int i;
8846 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8847 bfd_byte *erela;
8848 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8849 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8850 bfd_vma r_type_mask;
8851 int r_sym_shift;
8852 unsigned int count = reldata->count;
8853 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8854
8855 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8856 {
8857 swap_in = bed->s->swap_reloc_in;
8858 swap_out = bed->s->swap_reloc_out;
8859 }
8860 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8861 {
8862 swap_in = bed->s->swap_reloca_in;
8863 swap_out = bed->s->swap_reloca_out;
8864 }
8865 else
8866 abort ();
8867
8868 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8869 abort ();
8870
8871 if (bed->s->arch_size == 32)
8872 {
8873 r_type_mask = 0xff;
8874 r_sym_shift = 8;
8875 }
8876 else
8877 {
8878 r_type_mask = 0xffffffff;
8879 r_sym_shift = 32;
8880 }
8881
8882 erela = reldata->hdr->contents;
8883 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8884 {
8885 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8886 unsigned int j;
8887
8888 if (*rel_hash == NULL)
8889 continue;
8890
8891 if ((*rel_hash)->indx == -2
8892 && info->gc_sections
8893 && ! info->gc_keep_exported)
8894 {
8895 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8896 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8897 abfd, sec,
8898 (*rel_hash)->root.root.string);
8899 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8900 abfd, sec);
8901 bfd_set_error (bfd_error_invalid_operation);
8902 return FALSE;
8903 }
8904 BFD_ASSERT ((*rel_hash)->indx >= 0);
8905
8906 (*swap_in) (abfd, erela, irela);
8907 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8908 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8909 | (irela[j].r_info & r_type_mask));
8910 (*swap_out) (abfd, irela, erela);
8911 }
8912
8913 if (bed->elf_backend_update_relocs)
8914 (*bed->elf_backend_update_relocs) (sec, reldata);
8915
8916 if (sort && count != 0)
8917 {
8918 bfd_vma (*ext_r_off) (const void *);
8919 bfd_vma r_off;
8920 size_t elt_size;
8921 bfd_byte *base, *end, *p, *loc;
8922 bfd_byte *buf = NULL;
8923
8924 if (bed->s->arch_size == 32)
8925 {
8926 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8927 ext_r_off = ext32l_r_offset;
8928 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8929 ext_r_off = ext32b_r_offset;
8930 else
8931 abort ();
8932 }
8933 else
8934 {
8935 #ifdef BFD_HOST_64_BIT
8936 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8937 ext_r_off = ext64l_r_offset;
8938 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8939 ext_r_off = ext64b_r_offset;
8940 else
8941 #endif
8942 abort ();
8943 }
8944
8945 /* Must use a stable sort here. A modified insertion sort,
8946 since the relocs are mostly sorted already. */
8947 elt_size = reldata->hdr->sh_entsize;
8948 base = reldata->hdr->contents;
8949 end = base + count * elt_size;
8950 if (elt_size > sizeof (Elf64_External_Rela))
8951 abort ();
8952
8953 /* Ensure the first element is lowest. This acts as a sentinel,
8954 speeding the main loop below. */
8955 r_off = (*ext_r_off) (base);
8956 for (p = loc = base; (p += elt_size) < end; )
8957 {
8958 bfd_vma r_off2 = (*ext_r_off) (p);
8959 if (r_off > r_off2)
8960 {
8961 r_off = r_off2;
8962 loc = p;
8963 }
8964 }
8965 if (loc != base)
8966 {
8967 /* Don't just swap *base and *loc as that changes the order
8968 of the original base[0] and base[1] if they happen to
8969 have the same r_offset. */
8970 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8971 memcpy (onebuf, loc, elt_size);
8972 memmove (base + elt_size, base, loc - base);
8973 memcpy (base, onebuf, elt_size);
8974 }
8975
8976 for (p = base + elt_size; (p += elt_size) < end; )
8977 {
8978 /* base to p is sorted, *p is next to insert. */
8979 r_off = (*ext_r_off) (p);
8980 /* Search the sorted region for location to insert. */
8981 loc = p - elt_size;
8982 while (r_off < (*ext_r_off) (loc))
8983 loc -= elt_size;
8984 loc += elt_size;
8985 if (loc != p)
8986 {
8987 /* Chances are there is a run of relocs to insert here,
8988 from one of more input files. Files are not always
8989 linked in order due to the way elf_link_input_bfd is
8990 called. See pr17666. */
8991 size_t sortlen = p - loc;
8992 bfd_vma r_off2 = (*ext_r_off) (loc);
8993 size_t runlen = elt_size;
8994 size_t buf_size = 96 * 1024;
8995 while (p + runlen < end
8996 && (sortlen <= buf_size
8997 || runlen + elt_size <= buf_size)
8998 && r_off2 > (*ext_r_off) (p + runlen))
8999 runlen += elt_size;
9000 if (buf == NULL)
9001 {
9002 buf = bfd_malloc (buf_size);
9003 if (buf == NULL)
9004 return FALSE;
9005 }
9006 if (runlen < sortlen)
9007 {
9008 memcpy (buf, p, runlen);
9009 memmove (loc + runlen, loc, sortlen);
9010 memcpy (loc, buf, runlen);
9011 }
9012 else
9013 {
9014 memcpy (buf, loc, sortlen);
9015 memmove (loc, p, runlen);
9016 memcpy (loc + runlen, buf, sortlen);
9017 }
9018 p += runlen - elt_size;
9019 }
9020 }
9021 /* Hashes are no longer valid. */
9022 free (reldata->hashes);
9023 reldata->hashes = NULL;
9024 free (buf);
9025 }
9026 return TRUE;
9027 }
9028
9029 struct elf_link_sort_rela
9030 {
9031 union {
9032 bfd_vma offset;
9033 bfd_vma sym_mask;
9034 } u;
9035 enum elf_reloc_type_class type;
9036 /* We use this as an array of size int_rels_per_ext_rel. */
9037 Elf_Internal_Rela rela[1];
9038 };
9039
9040 static int
9041 elf_link_sort_cmp1 (const void *A, const void *B)
9042 {
9043 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9044 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9045 int relativea, relativeb;
9046
9047 relativea = a->type == reloc_class_relative;
9048 relativeb = b->type == reloc_class_relative;
9049
9050 if (relativea < relativeb)
9051 return 1;
9052 if (relativea > relativeb)
9053 return -1;
9054 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9055 return -1;
9056 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9057 return 1;
9058 if (a->rela->r_offset < b->rela->r_offset)
9059 return -1;
9060 if (a->rela->r_offset > b->rela->r_offset)
9061 return 1;
9062 return 0;
9063 }
9064
9065 static int
9066 elf_link_sort_cmp2 (const void *A, const void *B)
9067 {
9068 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9069 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9070
9071 if (a->type < b->type)
9072 return -1;
9073 if (a->type > b->type)
9074 return 1;
9075 if (a->u.offset < b->u.offset)
9076 return -1;
9077 if (a->u.offset > b->u.offset)
9078 return 1;
9079 if (a->rela->r_offset < b->rela->r_offset)
9080 return -1;
9081 if (a->rela->r_offset > b->rela->r_offset)
9082 return 1;
9083 return 0;
9084 }
9085
9086 static size_t
9087 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9088 {
9089 asection *dynamic_relocs;
9090 asection *rela_dyn;
9091 asection *rel_dyn;
9092 bfd_size_type count, size;
9093 size_t i, ret, sort_elt, ext_size;
9094 bfd_byte *sort, *s_non_relative, *p;
9095 struct elf_link_sort_rela *sq;
9096 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9097 int i2e = bed->s->int_rels_per_ext_rel;
9098 unsigned int opb = bfd_octets_per_byte (abfd);
9099 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9100 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9101 struct bfd_link_order *lo;
9102 bfd_vma r_sym_mask;
9103 bfd_boolean use_rela;
9104
9105 /* Find a dynamic reloc section. */
9106 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9107 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9108 if (rela_dyn != NULL && rela_dyn->size > 0
9109 && rel_dyn != NULL && rel_dyn->size > 0)
9110 {
9111 bfd_boolean use_rela_initialised = FALSE;
9112
9113 /* This is just here to stop gcc from complaining.
9114 Its initialization checking code is not perfect. */
9115 use_rela = TRUE;
9116
9117 /* Both sections are present. Examine the sizes
9118 of the indirect sections to help us choose. */
9119 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9120 if (lo->type == bfd_indirect_link_order)
9121 {
9122 asection *o = lo->u.indirect.section;
9123
9124 if ((o->size % bed->s->sizeof_rela) == 0)
9125 {
9126 if ((o->size % bed->s->sizeof_rel) == 0)
9127 /* Section size is divisible by both rel and rela sizes.
9128 It is of no help to us. */
9129 ;
9130 else
9131 {
9132 /* Section size is only divisible by rela. */
9133 if (use_rela_initialised && !use_rela)
9134 {
9135 _bfd_error_handler (_("%pB: unable to sort relocs - "
9136 "they are in more than one size"),
9137 abfd);
9138 bfd_set_error (bfd_error_invalid_operation);
9139 return 0;
9140 }
9141 else
9142 {
9143 use_rela = TRUE;
9144 use_rela_initialised = TRUE;
9145 }
9146 }
9147 }
9148 else if ((o->size % bed->s->sizeof_rel) == 0)
9149 {
9150 /* Section size is only divisible by rel. */
9151 if (use_rela_initialised && use_rela)
9152 {
9153 _bfd_error_handler (_("%pB: unable to sort relocs - "
9154 "they are in more than one size"),
9155 abfd);
9156 bfd_set_error (bfd_error_invalid_operation);
9157 return 0;
9158 }
9159 else
9160 {
9161 use_rela = FALSE;
9162 use_rela_initialised = TRUE;
9163 }
9164 }
9165 else
9166 {
9167 /* The section size is not divisible by either -
9168 something is wrong. */
9169 _bfd_error_handler (_("%pB: unable to sort relocs - "
9170 "they are of an unknown size"), abfd);
9171 bfd_set_error (bfd_error_invalid_operation);
9172 return 0;
9173 }
9174 }
9175
9176 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9177 if (lo->type == bfd_indirect_link_order)
9178 {
9179 asection *o = lo->u.indirect.section;
9180
9181 if ((o->size % bed->s->sizeof_rela) == 0)
9182 {
9183 if ((o->size % bed->s->sizeof_rel) == 0)
9184 /* Section size is divisible by both rel and rela sizes.
9185 It is of no help to us. */
9186 ;
9187 else
9188 {
9189 /* Section size is only divisible by rela. */
9190 if (use_rela_initialised && !use_rela)
9191 {
9192 _bfd_error_handler (_("%pB: unable to sort relocs - "
9193 "they are in more than one size"),
9194 abfd);
9195 bfd_set_error (bfd_error_invalid_operation);
9196 return 0;
9197 }
9198 else
9199 {
9200 use_rela = TRUE;
9201 use_rela_initialised = TRUE;
9202 }
9203 }
9204 }
9205 else if ((o->size % bed->s->sizeof_rel) == 0)
9206 {
9207 /* Section size is only divisible by rel. */
9208 if (use_rela_initialised && use_rela)
9209 {
9210 _bfd_error_handler (_("%pB: unable to sort relocs - "
9211 "they are in more than one size"),
9212 abfd);
9213 bfd_set_error (bfd_error_invalid_operation);
9214 return 0;
9215 }
9216 else
9217 {
9218 use_rela = FALSE;
9219 use_rela_initialised = TRUE;
9220 }
9221 }
9222 else
9223 {
9224 /* The section size is not divisible by either -
9225 something is wrong. */
9226 _bfd_error_handler (_("%pB: unable to sort relocs - "
9227 "they are of an unknown size"), abfd);
9228 bfd_set_error (bfd_error_invalid_operation);
9229 return 0;
9230 }
9231 }
9232
9233 if (! use_rela_initialised)
9234 /* Make a guess. */
9235 use_rela = TRUE;
9236 }
9237 else if (rela_dyn != NULL && rela_dyn->size > 0)
9238 use_rela = TRUE;
9239 else if (rel_dyn != NULL && rel_dyn->size > 0)
9240 use_rela = FALSE;
9241 else
9242 return 0;
9243
9244 if (use_rela)
9245 {
9246 dynamic_relocs = rela_dyn;
9247 ext_size = bed->s->sizeof_rela;
9248 swap_in = bed->s->swap_reloca_in;
9249 swap_out = bed->s->swap_reloca_out;
9250 }
9251 else
9252 {
9253 dynamic_relocs = rel_dyn;
9254 ext_size = bed->s->sizeof_rel;
9255 swap_in = bed->s->swap_reloc_in;
9256 swap_out = bed->s->swap_reloc_out;
9257 }
9258
9259 size = 0;
9260 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9261 if (lo->type == bfd_indirect_link_order)
9262 size += lo->u.indirect.section->size;
9263
9264 if (size != dynamic_relocs->size)
9265 return 0;
9266
9267 sort_elt = (sizeof (struct elf_link_sort_rela)
9268 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9269
9270 count = dynamic_relocs->size / ext_size;
9271 if (count == 0)
9272 return 0;
9273 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9274
9275 if (sort == NULL)
9276 {
9277 (*info->callbacks->warning)
9278 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9279 return 0;
9280 }
9281
9282 if (bed->s->arch_size == 32)
9283 r_sym_mask = ~(bfd_vma) 0xff;
9284 else
9285 r_sym_mask = ~(bfd_vma) 0xffffffff;
9286
9287 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9288 if (lo->type == bfd_indirect_link_order)
9289 {
9290 bfd_byte *erel, *erelend;
9291 asection *o = lo->u.indirect.section;
9292
9293 if (o->contents == NULL && o->size != 0)
9294 {
9295 /* This is a reloc section that is being handled as a normal
9296 section. See bfd_section_from_shdr. We can't combine
9297 relocs in this case. */
9298 free (sort);
9299 return 0;
9300 }
9301 erel = o->contents;
9302 erelend = o->contents + o->size;
9303 p = sort + o->output_offset * opb / ext_size * sort_elt;
9304
9305 while (erel < erelend)
9306 {
9307 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9308
9309 (*swap_in) (abfd, erel, s->rela);
9310 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9311 s->u.sym_mask = r_sym_mask;
9312 p += sort_elt;
9313 erel += ext_size;
9314 }
9315 }
9316
9317 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9318
9319 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9320 {
9321 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9322 if (s->type != reloc_class_relative)
9323 break;
9324 }
9325 ret = i;
9326 s_non_relative = p;
9327
9328 sq = (struct elf_link_sort_rela *) s_non_relative;
9329 for (; i < count; i++, p += sort_elt)
9330 {
9331 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9332 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9333 sq = sp;
9334 sp->u.offset = sq->rela->r_offset;
9335 }
9336
9337 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9338
9339 struct elf_link_hash_table *htab = elf_hash_table (info);
9340 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9341 {
9342 /* We have plt relocs in .rela.dyn. */
9343 sq = (struct elf_link_sort_rela *) sort;
9344 for (i = 0; i < count; i++)
9345 if (sq[count - i - 1].type != reloc_class_plt)
9346 break;
9347 if (i != 0 && htab->srelplt->size == i * ext_size)
9348 {
9349 struct bfd_link_order **plo;
9350 /* Put srelplt link_order last. This is so the output_offset
9351 set in the next loop is correct for DT_JMPREL. */
9352 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9353 if ((*plo)->type == bfd_indirect_link_order
9354 && (*plo)->u.indirect.section == htab->srelplt)
9355 {
9356 lo = *plo;
9357 *plo = lo->next;
9358 }
9359 else
9360 plo = &(*plo)->next;
9361 *plo = lo;
9362 lo->next = NULL;
9363 dynamic_relocs->map_tail.link_order = lo;
9364 }
9365 }
9366
9367 p = sort;
9368 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9369 if (lo->type == bfd_indirect_link_order)
9370 {
9371 bfd_byte *erel, *erelend;
9372 asection *o = lo->u.indirect.section;
9373
9374 erel = o->contents;
9375 erelend = o->contents + o->size;
9376 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9377 while (erel < erelend)
9378 {
9379 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9380 (*swap_out) (abfd, s->rela, erel);
9381 p += sort_elt;
9382 erel += ext_size;
9383 }
9384 }
9385
9386 free (sort);
9387 *psec = dynamic_relocs;
9388 return ret;
9389 }
9390
9391 /* Add a symbol to the output symbol string table. */
9392
9393 static int
9394 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9395 const char *name,
9396 Elf_Internal_Sym *elfsym,
9397 asection *input_sec,
9398 struct elf_link_hash_entry *h)
9399 {
9400 int (*output_symbol_hook)
9401 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9402 struct elf_link_hash_entry *);
9403 struct elf_link_hash_table *hash_table;
9404 const struct elf_backend_data *bed;
9405 bfd_size_type strtabsize;
9406
9407 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9408
9409 bed = get_elf_backend_data (flinfo->output_bfd);
9410 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9411 if (output_symbol_hook != NULL)
9412 {
9413 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9414 if (ret != 1)
9415 return ret;
9416 }
9417
9418 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9419 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9420 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9421 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9422
9423 if (name == NULL
9424 || *name == '\0'
9425 || (input_sec->flags & SEC_EXCLUDE))
9426 elfsym->st_name = (unsigned long) -1;
9427 else
9428 {
9429 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9430 to get the final offset for st_name. */
9431 elfsym->st_name
9432 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9433 name, FALSE);
9434 if (elfsym->st_name == (unsigned long) -1)
9435 return 0;
9436 }
9437
9438 hash_table = elf_hash_table (flinfo->info);
9439 strtabsize = hash_table->strtabsize;
9440 if (strtabsize <= hash_table->strtabcount)
9441 {
9442 strtabsize += strtabsize;
9443 hash_table->strtabsize = strtabsize;
9444 strtabsize *= sizeof (*hash_table->strtab);
9445 hash_table->strtab
9446 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9447 strtabsize);
9448 if (hash_table->strtab == NULL)
9449 return 0;
9450 }
9451 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9452 hash_table->strtab[hash_table->strtabcount].dest_index
9453 = hash_table->strtabcount;
9454 hash_table->strtab[hash_table->strtabcount].destshndx_index
9455 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9456
9457 bfd_get_symcount (flinfo->output_bfd) += 1;
9458 hash_table->strtabcount += 1;
9459
9460 return 1;
9461 }
9462
9463 /* Swap symbols out to the symbol table and flush the output symbols to
9464 the file. */
9465
9466 static bfd_boolean
9467 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9468 {
9469 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9470 bfd_size_type amt;
9471 size_t i;
9472 const struct elf_backend_data *bed;
9473 bfd_byte *symbuf;
9474 Elf_Internal_Shdr *hdr;
9475 file_ptr pos;
9476 bfd_boolean ret;
9477
9478 if (!hash_table->strtabcount)
9479 return TRUE;
9480
9481 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9482
9483 bed = get_elf_backend_data (flinfo->output_bfd);
9484
9485 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9486 symbuf = (bfd_byte *) bfd_malloc (amt);
9487 if (symbuf == NULL)
9488 return FALSE;
9489
9490 if (flinfo->symshndxbuf)
9491 {
9492 amt = sizeof (Elf_External_Sym_Shndx);
9493 amt *= bfd_get_symcount (flinfo->output_bfd);
9494 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9495 if (flinfo->symshndxbuf == NULL)
9496 {
9497 free (symbuf);
9498 return FALSE;
9499 }
9500 }
9501
9502 for (i = 0; i < hash_table->strtabcount; i++)
9503 {
9504 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9505 if (elfsym->sym.st_name == (unsigned long) -1)
9506 elfsym->sym.st_name = 0;
9507 else
9508 elfsym->sym.st_name
9509 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9510 elfsym->sym.st_name);
9511 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9512 ((bfd_byte *) symbuf
9513 + (elfsym->dest_index
9514 * bed->s->sizeof_sym)),
9515 (flinfo->symshndxbuf
9516 + elfsym->destshndx_index));
9517 }
9518
9519 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9520 pos = hdr->sh_offset + hdr->sh_size;
9521 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9522 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9523 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9524 {
9525 hdr->sh_size += amt;
9526 ret = TRUE;
9527 }
9528 else
9529 ret = FALSE;
9530
9531 free (symbuf);
9532
9533 free (hash_table->strtab);
9534 hash_table->strtab = NULL;
9535
9536 return ret;
9537 }
9538
9539 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9540
9541 static bfd_boolean
9542 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9543 {
9544 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9545 && sym->st_shndx < SHN_LORESERVE)
9546 {
9547 /* The gABI doesn't support dynamic symbols in output sections
9548 beyond 64k. */
9549 _bfd_error_handler
9550 /* xgettext:c-format */
9551 (_("%pB: too many sections: %d (>= %d)"),
9552 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9553 bfd_set_error (bfd_error_nonrepresentable_section);
9554 return FALSE;
9555 }
9556 return TRUE;
9557 }
9558
9559 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9560 allowing an unsatisfied unversioned symbol in the DSO to match a
9561 versioned symbol that would normally require an explicit version.
9562 We also handle the case that a DSO references a hidden symbol
9563 which may be satisfied by a versioned symbol in another DSO. */
9564
9565 static bfd_boolean
9566 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9567 const struct elf_backend_data *bed,
9568 struct elf_link_hash_entry *h)
9569 {
9570 bfd *abfd;
9571 struct elf_link_loaded_list *loaded;
9572
9573 if (!is_elf_hash_table (info->hash))
9574 return FALSE;
9575
9576 /* Check indirect symbol. */
9577 while (h->root.type == bfd_link_hash_indirect)
9578 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9579
9580 switch (h->root.type)
9581 {
9582 default:
9583 abfd = NULL;
9584 break;
9585
9586 case bfd_link_hash_undefined:
9587 case bfd_link_hash_undefweak:
9588 abfd = h->root.u.undef.abfd;
9589 if (abfd == NULL
9590 || (abfd->flags & DYNAMIC) == 0
9591 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9592 return FALSE;
9593 break;
9594
9595 case bfd_link_hash_defined:
9596 case bfd_link_hash_defweak:
9597 abfd = h->root.u.def.section->owner;
9598 break;
9599
9600 case bfd_link_hash_common:
9601 abfd = h->root.u.c.p->section->owner;
9602 break;
9603 }
9604 BFD_ASSERT (abfd != NULL);
9605
9606 for (loaded = elf_hash_table (info)->loaded;
9607 loaded != NULL;
9608 loaded = loaded->next)
9609 {
9610 bfd *input;
9611 Elf_Internal_Shdr *hdr;
9612 size_t symcount;
9613 size_t extsymcount;
9614 size_t extsymoff;
9615 Elf_Internal_Shdr *versymhdr;
9616 Elf_Internal_Sym *isym;
9617 Elf_Internal_Sym *isymend;
9618 Elf_Internal_Sym *isymbuf;
9619 Elf_External_Versym *ever;
9620 Elf_External_Versym *extversym;
9621
9622 input = loaded->abfd;
9623
9624 /* We check each DSO for a possible hidden versioned definition. */
9625 if (input == abfd
9626 || (input->flags & DYNAMIC) == 0
9627 || elf_dynversym (input) == 0)
9628 continue;
9629
9630 hdr = &elf_tdata (input)->dynsymtab_hdr;
9631
9632 symcount = hdr->sh_size / bed->s->sizeof_sym;
9633 if (elf_bad_symtab (input))
9634 {
9635 extsymcount = symcount;
9636 extsymoff = 0;
9637 }
9638 else
9639 {
9640 extsymcount = symcount - hdr->sh_info;
9641 extsymoff = hdr->sh_info;
9642 }
9643
9644 if (extsymcount == 0)
9645 continue;
9646
9647 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9648 NULL, NULL, NULL);
9649 if (isymbuf == NULL)
9650 return FALSE;
9651
9652 /* Read in any version definitions. */
9653 versymhdr = &elf_tdata (input)->dynversym_hdr;
9654 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9655 if (extversym == NULL)
9656 goto error_ret;
9657
9658 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9659 || (bfd_bread (extversym, versymhdr->sh_size, input)
9660 != versymhdr->sh_size))
9661 {
9662 free (extversym);
9663 error_ret:
9664 free (isymbuf);
9665 return FALSE;
9666 }
9667
9668 ever = extversym + extsymoff;
9669 isymend = isymbuf + extsymcount;
9670 for (isym = isymbuf; isym < isymend; isym++, ever++)
9671 {
9672 const char *name;
9673 Elf_Internal_Versym iver;
9674 unsigned short version_index;
9675
9676 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9677 || isym->st_shndx == SHN_UNDEF)
9678 continue;
9679
9680 name = bfd_elf_string_from_elf_section (input,
9681 hdr->sh_link,
9682 isym->st_name);
9683 if (strcmp (name, h->root.root.string) != 0)
9684 continue;
9685
9686 _bfd_elf_swap_versym_in (input, ever, &iver);
9687
9688 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9689 && !(h->def_regular
9690 && h->forced_local))
9691 {
9692 /* If we have a non-hidden versioned sym, then it should
9693 have provided a definition for the undefined sym unless
9694 it is defined in a non-shared object and forced local.
9695 */
9696 abort ();
9697 }
9698
9699 version_index = iver.vs_vers & VERSYM_VERSION;
9700 if (version_index == 1 || version_index == 2)
9701 {
9702 /* This is the base or first version. We can use it. */
9703 free (extversym);
9704 free (isymbuf);
9705 return TRUE;
9706 }
9707 }
9708
9709 free (extversym);
9710 free (isymbuf);
9711 }
9712
9713 return FALSE;
9714 }
9715
9716 /* Convert ELF common symbol TYPE. */
9717
9718 static int
9719 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9720 {
9721 /* Commom symbol can only appear in relocatable link. */
9722 if (!bfd_link_relocatable (info))
9723 abort ();
9724 switch (info->elf_stt_common)
9725 {
9726 case unchanged:
9727 break;
9728 case elf_stt_common:
9729 type = STT_COMMON;
9730 break;
9731 case no_elf_stt_common:
9732 type = STT_OBJECT;
9733 break;
9734 }
9735 return type;
9736 }
9737
9738 /* Add an external symbol to the symbol table. This is called from
9739 the hash table traversal routine. When generating a shared object,
9740 we go through the symbol table twice. The first time we output
9741 anything that might have been forced to local scope in a version
9742 script. The second time we output the symbols that are still
9743 global symbols. */
9744
9745 static bfd_boolean
9746 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9747 {
9748 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9749 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9750 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9751 bfd_boolean strip;
9752 Elf_Internal_Sym sym;
9753 asection *input_sec;
9754 const struct elf_backend_data *bed;
9755 long indx;
9756 int ret;
9757 unsigned int type;
9758
9759 if (h->root.type == bfd_link_hash_warning)
9760 {
9761 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9762 if (h->root.type == bfd_link_hash_new)
9763 return TRUE;
9764 }
9765
9766 /* Decide whether to output this symbol in this pass. */
9767 if (eoinfo->localsyms)
9768 {
9769 if (!h->forced_local)
9770 return TRUE;
9771 }
9772 else
9773 {
9774 if (h->forced_local)
9775 return TRUE;
9776 }
9777
9778 bed = get_elf_backend_data (flinfo->output_bfd);
9779
9780 if (h->root.type == bfd_link_hash_undefined)
9781 {
9782 /* If we have an undefined symbol reference here then it must have
9783 come from a shared library that is being linked in. (Undefined
9784 references in regular files have already been handled unless
9785 they are in unreferenced sections which are removed by garbage
9786 collection). */
9787 bfd_boolean ignore_undef = FALSE;
9788
9789 /* Some symbols may be special in that the fact that they're
9790 undefined can be safely ignored - let backend determine that. */
9791 if (bed->elf_backend_ignore_undef_symbol)
9792 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9793
9794 /* If we are reporting errors for this situation then do so now. */
9795 if (!ignore_undef
9796 && h->ref_dynamic_nonweak
9797 && (!h->ref_regular || flinfo->info->gc_sections)
9798 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9799 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9800 (*flinfo->info->callbacks->undefined_symbol)
9801 (flinfo->info, h->root.root.string,
9802 h->ref_regular ? NULL : h->root.u.undef.abfd,
9803 NULL, 0,
9804 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9805
9806 /* Strip a global symbol defined in a discarded section. */
9807 if (h->indx == -3)
9808 return TRUE;
9809 }
9810
9811 /* We should also warn if a forced local symbol is referenced from
9812 shared libraries. */
9813 if (bfd_link_executable (flinfo->info)
9814 && h->forced_local
9815 && h->ref_dynamic
9816 && h->def_regular
9817 && !h->dynamic_def
9818 && h->ref_dynamic_nonweak
9819 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9820 {
9821 bfd *def_bfd;
9822 const char *msg;
9823 struct elf_link_hash_entry *hi = h;
9824
9825 /* Check indirect symbol. */
9826 while (hi->root.type == bfd_link_hash_indirect)
9827 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9828
9829 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9830 /* xgettext:c-format */
9831 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9832 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9833 /* xgettext:c-format */
9834 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9835 else
9836 /* xgettext:c-format */
9837 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9838 def_bfd = flinfo->output_bfd;
9839 if (hi->root.u.def.section != bfd_abs_section_ptr)
9840 def_bfd = hi->root.u.def.section->owner;
9841 _bfd_error_handler (msg, flinfo->output_bfd,
9842 h->root.root.string, def_bfd);
9843 bfd_set_error (bfd_error_bad_value);
9844 eoinfo->failed = TRUE;
9845 return FALSE;
9846 }
9847
9848 /* We don't want to output symbols that have never been mentioned by
9849 a regular file, or that we have been told to strip. However, if
9850 h->indx is set to -2, the symbol is used by a reloc and we must
9851 output it. */
9852 strip = FALSE;
9853 if (h->indx == -2)
9854 ;
9855 else if ((h->def_dynamic
9856 || h->ref_dynamic
9857 || h->root.type == bfd_link_hash_new)
9858 && !h->def_regular
9859 && !h->ref_regular)
9860 strip = TRUE;
9861 else if (flinfo->info->strip == strip_all)
9862 strip = TRUE;
9863 else if (flinfo->info->strip == strip_some
9864 && bfd_hash_lookup (flinfo->info->keep_hash,
9865 h->root.root.string, FALSE, FALSE) == NULL)
9866 strip = TRUE;
9867 else if ((h->root.type == bfd_link_hash_defined
9868 || h->root.type == bfd_link_hash_defweak)
9869 && ((flinfo->info->strip_discarded
9870 && discarded_section (h->root.u.def.section))
9871 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9872 && h->root.u.def.section->owner != NULL
9873 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9874 strip = TRUE;
9875 else if ((h->root.type == bfd_link_hash_undefined
9876 || h->root.type == bfd_link_hash_undefweak)
9877 && h->root.u.undef.abfd != NULL
9878 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9879 strip = TRUE;
9880
9881 type = h->type;
9882
9883 /* If we're stripping it, and it's not a dynamic symbol, there's
9884 nothing else to do. However, if it is a forced local symbol or
9885 an ifunc symbol we need to give the backend finish_dynamic_symbol
9886 function a chance to make it dynamic. */
9887 if (strip
9888 && h->dynindx == -1
9889 && type != STT_GNU_IFUNC
9890 && !h->forced_local)
9891 return TRUE;
9892
9893 sym.st_value = 0;
9894 sym.st_size = h->size;
9895 sym.st_other = h->other;
9896 switch (h->root.type)
9897 {
9898 default:
9899 case bfd_link_hash_new:
9900 case bfd_link_hash_warning:
9901 abort ();
9902 return FALSE;
9903
9904 case bfd_link_hash_undefined:
9905 case bfd_link_hash_undefweak:
9906 input_sec = bfd_und_section_ptr;
9907 sym.st_shndx = SHN_UNDEF;
9908 break;
9909
9910 case bfd_link_hash_defined:
9911 case bfd_link_hash_defweak:
9912 {
9913 input_sec = h->root.u.def.section;
9914 if (input_sec->output_section != NULL)
9915 {
9916 sym.st_shndx =
9917 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9918 input_sec->output_section);
9919 if (sym.st_shndx == SHN_BAD)
9920 {
9921 _bfd_error_handler
9922 /* xgettext:c-format */
9923 (_("%pB: could not find output section %pA for input section %pA"),
9924 flinfo->output_bfd, input_sec->output_section, input_sec);
9925 bfd_set_error (bfd_error_nonrepresentable_section);
9926 eoinfo->failed = TRUE;
9927 return FALSE;
9928 }
9929
9930 /* ELF symbols in relocatable files are section relative,
9931 but in nonrelocatable files they are virtual
9932 addresses. */
9933 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9934 if (!bfd_link_relocatable (flinfo->info))
9935 {
9936 sym.st_value += input_sec->output_section->vma;
9937 if (h->type == STT_TLS)
9938 {
9939 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9940 if (tls_sec != NULL)
9941 sym.st_value -= tls_sec->vma;
9942 }
9943 }
9944 }
9945 else
9946 {
9947 BFD_ASSERT (input_sec->owner == NULL
9948 || (input_sec->owner->flags & DYNAMIC) != 0);
9949 sym.st_shndx = SHN_UNDEF;
9950 input_sec = bfd_und_section_ptr;
9951 }
9952 }
9953 break;
9954
9955 case bfd_link_hash_common:
9956 input_sec = h->root.u.c.p->section;
9957 sym.st_shndx = bed->common_section_index (input_sec);
9958 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9959 break;
9960
9961 case bfd_link_hash_indirect:
9962 /* These symbols are created by symbol versioning. They point
9963 to the decorated version of the name. For example, if the
9964 symbol foo@@GNU_1.2 is the default, which should be used when
9965 foo is used with no version, then we add an indirect symbol
9966 foo which points to foo@@GNU_1.2. We ignore these symbols,
9967 since the indirected symbol is already in the hash table. */
9968 return TRUE;
9969 }
9970
9971 if (type == STT_COMMON || type == STT_OBJECT)
9972 switch (h->root.type)
9973 {
9974 case bfd_link_hash_common:
9975 type = elf_link_convert_common_type (flinfo->info, type);
9976 break;
9977 case bfd_link_hash_defined:
9978 case bfd_link_hash_defweak:
9979 if (bed->common_definition (&sym))
9980 type = elf_link_convert_common_type (flinfo->info, type);
9981 else
9982 type = STT_OBJECT;
9983 break;
9984 case bfd_link_hash_undefined:
9985 case bfd_link_hash_undefweak:
9986 break;
9987 default:
9988 abort ();
9989 }
9990
9991 if (h->forced_local)
9992 {
9993 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9994 /* Turn off visibility on local symbol. */
9995 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9996 }
9997 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9998 else if (h->unique_global && h->def_regular)
9999 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10000 else if (h->root.type == bfd_link_hash_undefweak
10001 || h->root.type == bfd_link_hash_defweak)
10002 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10003 else
10004 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10005 sym.st_target_internal = h->target_internal;
10006
10007 /* Give the processor backend a chance to tweak the symbol value,
10008 and also to finish up anything that needs to be done for this
10009 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10010 forced local syms when non-shared is due to a historical quirk.
10011 STT_GNU_IFUNC symbol must go through PLT. */
10012 if ((h->type == STT_GNU_IFUNC
10013 && h->def_regular
10014 && !bfd_link_relocatable (flinfo->info))
10015 || ((h->dynindx != -1
10016 || h->forced_local)
10017 && ((bfd_link_pic (flinfo->info)
10018 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10019 || h->root.type != bfd_link_hash_undefweak))
10020 || !h->forced_local)
10021 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10022 {
10023 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10024 (flinfo->output_bfd, flinfo->info, h, &sym)))
10025 {
10026 eoinfo->failed = TRUE;
10027 return FALSE;
10028 }
10029 }
10030
10031 /* If we are marking the symbol as undefined, and there are no
10032 non-weak references to this symbol from a regular object, then
10033 mark the symbol as weak undefined; if there are non-weak
10034 references, mark the symbol as strong. We can't do this earlier,
10035 because it might not be marked as undefined until the
10036 finish_dynamic_symbol routine gets through with it. */
10037 if (sym.st_shndx == SHN_UNDEF
10038 && h->ref_regular
10039 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10040 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10041 {
10042 int bindtype;
10043 type = ELF_ST_TYPE (sym.st_info);
10044
10045 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10046 if (type == STT_GNU_IFUNC)
10047 type = STT_FUNC;
10048
10049 if (h->ref_regular_nonweak)
10050 bindtype = STB_GLOBAL;
10051 else
10052 bindtype = STB_WEAK;
10053 sym.st_info = ELF_ST_INFO (bindtype, type);
10054 }
10055
10056 /* If this is a symbol defined in a dynamic library, don't use the
10057 symbol size from the dynamic library. Relinking an executable
10058 against a new library may introduce gratuitous changes in the
10059 executable's symbols if we keep the size. */
10060 if (sym.st_shndx == SHN_UNDEF
10061 && !h->def_regular
10062 && h->def_dynamic)
10063 sym.st_size = 0;
10064
10065 /* If a non-weak symbol with non-default visibility is not defined
10066 locally, it is a fatal error. */
10067 if (!bfd_link_relocatable (flinfo->info)
10068 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10069 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10070 && h->root.type == bfd_link_hash_undefined
10071 && !h->def_regular)
10072 {
10073 const char *msg;
10074
10075 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10076 /* xgettext:c-format */
10077 msg = _("%pB: protected symbol `%s' isn't defined");
10078 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10079 /* xgettext:c-format */
10080 msg = _("%pB: internal symbol `%s' isn't defined");
10081 else
10082 /* xgettext:c-format */
10083 msg = _("%pB: hidden symbol `%s' isn't defined");
10084 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10085 bfd_set_error (bfd_error_bad_value);
10086 eoinfo->failed = TRUE;
10087 return FALSE;
10088 }
10089
10090 /* If this symbol should be put in the .dynsym section, then put it
10091 there now. We already know the symbol index. We also fill in
10092 the entry in the .hash section. */
10093 if (h->dynindx != -1
10094 && elf_hash_table (flinfo->info)->dynamic_sections_created
10095 && elf_hash_table (flinfo->info)->dynsym != NULL
10096 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10097 {
10098 bfd_byte *esym;
10099
10100 /* Since there is no version information in the dynamic string,
10101 if there is no version info in symbol version section, we will
10102 have a run-time problem if not linking executable, referenced
10103 by shared library, or not bound locally. */
10104 if (h->verinfo.verdef == NULL
10105 && (!bfd_link_executable (flinfo->info)
10106 || h->ref_dynamic
10107 || !h->def_regular))
10108 {
10109 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10110
10111 if (p && p [1] != '\0')
10112 {
10113 _bfd_error_handler
10114 /* xgettext:c-format */
10115 (_("%pB: no symbol version section for versioned symbol `%s'"),
10116 flinfo->output_bfd, h->root.root.string);
10117 eoinfo->failed = TRUE;
10118 return FALSE;
10119 }
10120 }
10121
10122 sym.st_name = h->dynstr_index;
10123 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10124 + h->dynindx * bed->s->sizeof_sym);
10125 if (!check_dynsym (flinfo->output_bfd, &sym))
10126 {
10127 eoinfo->failed = TRUE;
10128 return FALSE;
10129 }
10130 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10131
10132 if (flinfo->hash_sec != NULL)
10133 {
10134 size_t hash_entry_size;
10135 bfd_byte *bucketpos;
10136 bfd_vma chain;
10137 size_t bucketcount;
10138 size_t bucket;
10139
10140 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10141 bucket = h->u.elf_hash_value % bucketcount;
10142
10143 hash_entry_size
10144 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10145 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10146 + (bucket + 2) * hash_entry_size);
10147 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10148 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10149 bucketpos);
10150 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10151 ((bfd_byte *) flinfo->hash_sec->contents
10152 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10153 }
10154
10155 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10156 {
10157 Elf_Internal_Versym iversym;
10158 Elf_External_Versym *eversym;
10159
10160 if (!h->def_regular)
10161 {
10162 if (h->verinfo.verdef == NULL
10163 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10164 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10165 iversym.vs_vers = 0;
10166 else
10167 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10168 }
10169 else
10170 {
10171 if (h->verinfo.vertree == NULL)
10172 iversym.vs_vers = 1;
10173 else
10174 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10175 if (flinfo->info->create_default_symver)
10176 iversym.vs_vers++;
10177 }
10178
10179 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10180 defined locally. */
10181 if (h->versioned == versioned_hidden && h->def_regular)
10182 iversym.vs_vers |= VERSYM_HIDDEN;
10183
10184 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10185 eversym += h->dynindx;
10186 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10187 }
10188 }
10189
10190 /* If the symbol is undefined, and we didn't output it to .dynsym,
10191 strip it from .symtab too. Obviously we can't do this for
10192 relocatable output or when needed for --emit-relocs. */
10193 else if (input_sec == bfd_und_section_ptr
10194 && h->indx != -2
10195 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10196 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10197 && !bfd_link_relocatable (flinfo->info))
10198 return TRUE;
10199
10200 /* Also strip others that we couldn't earlier due to dynamic symbol
10201 processing. */
10202 if (strip)
10203 return TRUE;
10204 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10205 return TRUE;
10206
10207 /* Output a FILE symbol so that following locals are not associated
10208 with the wrong input file. We need one for forced local symbols
10209 if we've seen more than one FILE symbol or when we have exactly
10210 one FILE symbol but global symbols are present in a file other
10211 than the one with the FILE symbol. We also need one if linker
10212 defined symbols are present. In practice these conditions are
10213 always met, so just emit the FILE symbol unconditionally. */
10214 if (eoinfo->localsyms
10215 && !eoinfo->file_sym_done
10216 && eoinfo->flinfo->filesym_count != 0)
10217 {
10218 Elf_Internal_Sym fsym;
10219
10220 memset (&fsym, 0, sizeof (fsym));
10221 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10222 fsym.st_shndx = SHN_ABS;
10223 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10224 bfd_und_section_ptr, NULL))
10225 return FALSE;
10226
10227 eoinfo->file_sym_done = TRUE;
10228 }
10229
10230 indx = bfd_get_symcount (flinfo->output_bfd);
10231 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10232 input_sec, h);
10233 if (ret == 0)
10234 {
10235 eoinfo->failed = TRUE;
10236 return FALSE;
10237 }
10238 else if (ret == 1)
10239 h->indx = indx;
10240 else if (h->indx == -2)
10241 abort();
10242
10243 return TRUE;
10244 }
10245
10246 /* Return TRUE if special handling is done for relocs in SEC against
10247 symbols defined in discarded sections. */
10248
10249 static bfd_boolean
10250 elf_section_ignore_discarded_relocs (asection *sec)
10251 {
10252 const struct elf_backend_data *bed;
10253
10254 switch (sec->sec_info_type)
10255 {
10256 case SEC_INFO_TYPE_STABS:
10257 case SEC_INFO_TYPE_EH_FRAME:
10258 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10259 return TRUE;
10260 default:
10261 break;
10262 }
10263
10264 bed = get_elf_backend_data (sec->owner);
10265 if (bed->elf_backend_ignore_discarded_relocs != NULL
10266 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10267 return TRUE;
10268
10269 return FALSE;
10270 }
10271
10272 /* Return a mask saying how ld should treat relocations in SEC against
10273 symbols defined in discarded sections. If this function returns
10274 COMPLAIN set, ld will issue a warning message. If this function
10275 returns PRETEND set, and the discarded section was link-once and the
10276 same size as the kept link-once section, ld will pretend that the
10277 symbol was actually defined in the kept section. Otherwise ld will
10278 zero the reloc (at least that is the intent, but some cooperation by
10279 the target dependent code is needed, particularly for REL targets). */
10280
10281 unsigned int
10282 _bfd_elf_default_action_discarded (asection *sec)
10283 {
10284 if (sec->flags & SEC_DEBUGGING)
10285 return PRETEND;
10286
10287 if (strcmp (".eh_frame", sec->name) == 0)
10288 return 0;
10289
10290 if (strcmp (".gcc_except_table", sec->name) == 0)
10291 return 0;
10292
10293 return COMPLAIN | PRETEND;
10294 }
10295
10296 /* Find a match between a section and a member of a section group. */
10297
10298 static asection *
10299 match_group_member (asection *sec, asection *group,
10300 struct bfd_link_info *info)
10301 {
10302 asection *first = elf_next_in_group (group);
10303 asection *s = first;
10304
10305 while (s != NULL)
10306 {
10307 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10308 return s;
10309
10310 s = elf_next_in_group (s);
10311 if (s == first)
10312 break;
10313 }
10314
10315 return NULL;
10316 }
10317
10318 /* Check if the kept section of a discarded section SEC can be used
10319 to replace it. Return the replacement if it is OK. Otherwise return
10320 NULL. */
10321
10322 asection *
10323 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10324 {
10325 asection *kept;
10326
10327 kept = sec->kept_section;
10328 if (kept != NULL)
10329 {
10330 if ((kept->flags & SEC_GROUP) != 0)
10331 kept = match_group_member (sec, kept, info);
10332 if (kept != NULL
10333 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10334 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10335 kept = NULL;
10336 sec->kept_section = kept;
10337 }
10338 return kept;
10339 }
10340
10341 /* Link an input file into the linker output file. This function
10342 handles all the sections and relocations of the input file at once.
10343 This is so that we only have to read the local symbols once, and
10344 don't have to keep them in memory. */
10345
10346 static bfd_boolean
10347 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10348 {
10349 int (*relocate_section)
10350 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10351 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10352 bfd *output_bfd;
10353 Elf_Internal_Shdr *symtab_hdr;
10354 size_t locsymcount;
10355 size_t extsymoff;
10356 Elf_Internal_Sym *isymbuf;
10357 Elf_Internal_Sym *isym;
10358 Elf_Internal_Sym *isymend;
10359 long *pindex;
10360 asection **ppsection;
10361 asection *o;
10362 const struct elf_backend_data *bed;
10363 struct elf_link_hash_entry **sym_hashes;
10364 bfd_size_type address_size;
10365 bfd_vma r_type_mask;
10366 int r_sym_shift;
10367 bfd_boolean have_file_sym = FALSE;
10368
10369 output_bfd = flinfo->output_bfd;
10370 bed = get_elf_backend_data (output_bfd);
10371 relocate_section = bed->elf_backend_relocate_section;
10372
10373 /* If this is a dynamic object, we don't want to do anything here:
10374 we don't want the local symbols, and we don't want the section
10375 contents. */
10376 if ((input_bfd->flags & DYNAMIC) != 0)
10377 return TRUE;
10378
10379 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10380 if (elf_bad_symtab (input_bfd))
10381 {
10382 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10383 extsymoff = 0;
10384 }
10385 else
10386 {
10387 locsymcount = symtab_hdr->sh_info;
10388 extsymoff = symtab_hdr->sh_info;
10389 }
10390
10391 /* Read the local symbols. */
10392 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10393 if (isymbuf == NULL && locsymcount != 0)
10394 {
10395 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10396 flinfo->internal_syms,
10397 flinfo->external_syms,
10398 flinfo->locsym_shndx);
10399 if (isymbuf == NULL)
10400 return FALSE;
10401 }
10402
10403 /* Find local symbol sections and adjust values of symbols in
10404 SEC_MERGE sections. Write out those local symbols we know are
10405 going into the output file. */
10406 isymend = isymbuf + locsymcount;
10407 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10408 isym < isymend;
10409 isym++, pindex++, ppsection++)
10410 {
10411 asection *isec;
10412 const char *name;
10413 Elf_Internal_Sym osym;
10414 long indx;
10415 int ret;
10416
10417 *pindex = -1;
10418
10419 if (elf_bad_symtab (input_bfd))
10420 {
10421 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10422 {
10423 *ppsection = NULL;
10424 continue;
10425 }
10426 }
10427
10428 if (isym->st_shndx == SHN_UNDEF)
10429 isec = bfd_und_section_ptr;
10430 else if (isym->st_shndx == SHN_ABS)
10431 isec = bfd_abs_section_ptr;
10432 else if (isym->st_shndx == SHN_COMMON)
10433 isec = bfd_com_section_ptr;
10434 else
10435 {
10436 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10437 if (isec == NULL)
10438 {
10439 /* Don't attempt to output symbols with st_shnx in the
10440 reserved range other than SHN_ABS and SHN_COMMON. */
10441 isec = bfd_und_section_ptr;
10442 }
10443 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10444 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10445 isym->st_value =
10446 _bfd_merged_section_offset (output_bfd, &isec,
10447 elf_section_data (isec)->sec_info,
10448 isym->st_value);
10449 }
10450
10451 *ppsection = isec;
10452
10453 /* Don't output the first, undefined, symbol. In fact, don't
10454 output any undefined local symbol. */
10455 if (isec == bfd_und_section_ptr)
10456 continue;
10457
10458 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10459 {
10460 /* We never output section symbols. Instead, we use the
10461 section symbol of the corresponding section in the output
10462 file. */
10463 continue;
10464 }
10465
10466 /* If we are stripping all symbols, we don't want to output this
10467 one. */
10468 if (flinfo->info->strip == strip_all)
10469 continue;
10470
10471 /* If we are discarding all local symbols, we don't want to
10472 output this one. If we are generating a relocatable output
10473 file, then some of the local symbols may be required by
10474 relocs; we output them below as we discover that they are
10475 needed. */
10476 if (flinfo->info->discard == discard_all)
10477 continue;
10478
10479 /* If this symbol is defined in a section which we are
10480 discarding, we don't need to keep it. */
10481 if (isym->st_shndx != SHN_UNDEF
10482 && isym->st_shndx < SHN_LORESERVE
10483 && bfd_section_removed_from_list (output_bfd,
10484 isec->output_section))
10485 continue;
10486
10487 /* Get the name of the symbol. */
10488 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10489 isym->st_name);
10490 if (name == NULL)
10491 return FALSE;
10492
10493 /* See if we are discarding symbols with this name. */
10494 if ((flinfo->info->strip == strip_some
10495 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10496 == NULL))
10497 || (((flinfo->info->discard == discard_sec_merge
10498 && (isec->flags & SEC_MERGE)
10499 && !bfd_link_relocatable (flinfo->info))
10500 || flinfo->info->discard == discard_l)
10501 && bfd_is_local_label_name (input_bfd, name)))
10502 continue;
10503
10504 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10505 {
10506 if (input_bfd->lto_output)
10507 /* -flto puts a temp file name here. This means builds
10508 are not reproducible. Discard the symbol. */
10509 continue;
10510 have_file_sym = TRUE;
10511 flinfo->filesym_count += 1;
10512 }
10513 if (!have_file_sym)
10514 {
10515 /* In the absence of debug info, bfd_find_nearest_line uses
10516 FILE symbols to determine the source file for local
10517 function symbols. Provide a FILE symbol here if input
10518 files lack such, so that their symbols won't be
10519 associated with a previous input file. It's not the
10520 source file, but the best we can do. */
10521 have_file_sym = TRUE;
10522 flinfo->filesym_count += 1;
10523 memset (&osym, 0, sizeof (osym));
10524 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10525 osym.st_shndx = SHN_ABS;
10526 if (!elf_link_output_symstrtab (flinfo,
10527 (input_bfd->lto_output ? NULL
10528 : input_bfd->filename),
10529 &osym, bfd_abs_section_ptr,
10530 NULL))
10531 return FALSE;
10532 }
10533
10534 osym = *isym;
10535
10536 /* Adjust the section index for the output file. */
10537 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10538 isec->output_section);
10539 if (osym.st_shndx == SHN_BAD)
10540 return FALSE;
10541
10542 /* ELF symbols in relocatable files are section relative, but
10543 in executable files they are virtual addresses. Note that
10544 this code assumes that all ELF sections have an associated
10545 BFD section with a reasonable value for output_offset; below
10546 we assume that they also have a reasonable value for
10547 output_section. Any special sections must be set up to meet
10548 these requirements. */
10549 osym.st_value += isec->output_offset;
10550 if (!bfd_link_relocatable (flinfo->info))
10551 {
10552 osym.st_value += isec->output_section->vma;
10553 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10554 {
10555 /* STT_TLS symbols are relative to PT_TLS segment base. */
10556 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10557 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10558 else
10559 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10560 STT_NOTYPE);
10561 }
10562 }
10563
10564 indx = bfd_get_symcount (output_bfd);
10565 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10566 if (ret == 0)
10567 return FALSE;
10568 else if (ret == 1)
10569 *pindex = indx;
10570 }
10571
10572 if (bed->s->arch_size == 32)
10573 {
10574 r_type_mask = 0xff;
10575 r_sym_shift = 8;
10576 address_size = 4;
10577 }
10578 else
10579 {
10580 r_type_mask = 0xffffffff;
10581 r_sym_shift = 32;
10582 address_size = 8;
10583 }
10584
10585 /* Relocate the contents of each section. */
10586 sym_hashes = elf_sym_hashes (input_bfd);
10587 for (o = input_bfd->sections; o != NULL; o = o->next)
10588 {
10589 bfd_byte *contents;
10590
10591 if (! o->linker_mark)
10592 {
10593 /* This section was omitted from the link. */
10594 continue;
10595 }
10596
10597 if (!flinfo->info->resolve_section_groups
10598 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10599 {
10600 /* Deal with the group signature symbol. */
10601 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10602 unsigned long symndx = sec_data->this_hdr.sh_info;
10603 asection *osec = o->output_section;
10604
10605 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10606 if (symndx >= locsymcount
10607 || (elf_bad_symtab (input_bfd)
10608 && flinfo->sections[symndx] == NULL))
10609 {
10610 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10611 while (h->root.type == bfd_link_hash_indirect
10612 || h->root.type == bfd_link_hash_warning)
10613 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10614 /* Arrange for symbol to be output. */
10615 h->indx = -2;
10616 elf_section_data (osec)->this_hdr.sh_info = -2;
10617 }
10618 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10619 {
10620 /* We'll use the output section target_index. */
10621 asection *sec = flinfo->sections[symndx]->output_section;
10622 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10623 }
10624 else
10625 {
10626 if (flinfo->indices[symndx] == -1)
10627 {
10628 /* Otherwise output the local symbol now. */
10629 Elf_Internal_Sym sym = isymbuf[symndx];
10630 asection *sec = flinfo->sections[symndx]->output_section;
10631 const char *name;
10632 long indx;
10633 int ret;
10634
10635 name = bfd_elf_string_from_elf_section (input_bfd,
10636 symtab_hdr->sh_link,
10637 sym.st_name);
10638 if (name == NULL)
10639 return FALSE;
10640
10641 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10642 sec);
10643 if (sym.st_shndx == SHN_BAD)
10644 return FALSE;
10645
10646 sym.st_value += o->output_offset;
10647
10648 indx = bfd_get_symcount (output_bfd);
10649 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10650 NULL);
10651 if (ret == 0)
10652 return FALSE;
10653 else if (ret == 1)
10654 flinfo->indices[symndx] = indx;
10655 else
10656 abort ();
10657 }
10658 elf_section_data (osec)->this_hdr.sh_info
10659 = flinfo->indices[symndx];
10660 }
10661 }
10662
10663 if ((o->flags & SEC_HAS_CONTENTS) == 0
10664 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10665 continue;
10666
10667 if ((o->flags & SEC_LINKER_CREATED) != 0)
10668 {
10669 /* Section was created by _bfd_elf_link_create_dynamic_sections
10670 or somesuch. */
10671 continue;
10672 }
10673
10674 /* Get the contents of the section. They have been cached by a
10675 relaxation routine. Note that o is a section in an input
10676 file, so the contents field will not have been set by any of
10677 the routines which work on output files. */
10678 if (elf_section_data (o)->this_hdr.contents != NULL)
10679 {
10680 contents = elf_section_data (o)->this_hdr.contents;
10681 if (bed->caches_rawsize
10682 && o->rawsize != 0
10683 && o->rawsize < o->size)
10684 {
10685 memcpy (flinfo->contents, contents, o->rawsize);
10686 contents = flinfo->contents;
10687 }
10688 }
10689 else
10690 {
10691 contents = flinfo->contents;
10692 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10693 return FALSE;
10694 }
10695
10696 if ((o->flags & SEC_RELOC) != 0)
10697 {
10698 Elf_Internal_Rela *internal_relocs;
10699 Elf_Internal_Rela *rel, *relend;
10700 int action_discarded;
10701 int ret;
10702
10703 /* Get the swapped relocs. */
10704 internal_relocs
10705 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10706 flinfo->internal_relocs, FALSE);
10707 if (internal_relocs == NULL
10708 && o->reloc_count > 0)
10709 return FALSE;
10710
10711 /* We need to reverse-copy input .ctors/.dtors sections if
10712 they are placed in .init_array/.finit_array for output. */
10713 if (o->size > address_size
10714 && ((strncmp (o->name, ".ctors", 6) == 0
10715 && strcmp (o->output_section->name,
10716 ".init_array") == 0)
10717 || (strncmp (o->name, ".dtors", 6) == 0
10718 && strcmp (o->output_section->name,
10719 ".fini_array") == 0))
10720 && (o->name[6] == 0 || o->name[6] == '.'))
10721 {
10722 if (o->size * bed->s->int_rels_per_ext_rel
10723 != o->reloc_count * address_size)
10724 {
10725 _bfd_error_handler
10726 /* xgettext:c-format */
10727 (_("error: %pB: size of section %pA is not "
10728 "multiple of address size"),
10729 input_bfd, o);
10730 bfd_set_error (bfd_error_bad_value);
10731 return FALSE;
10732 }
10733 o->flags |= SEC_ELF_REVERSE_COPY;
10734 }
10735
10736 action_discarded = -1;
10737 if (!elf_section_ignore_discarded_relocs (o))
10738 action_discarded = (*bed->action_discarded) (o);
10739
10740 /* Run through the relocs evaluating complex reloc symbols and
10741 looking for relocs against symbols from discarded sections
10742 or section symbols from removed link-once sections.
10743 Complain about relocs against discarded sections. Zero
10744 relocs against removed link-once sections. */
10745
10746 rel = internal_relocs;
10747 relend = rel + o->reloc_count;
10748 for ( ; rel < relend; rel++)
10749 {
10750 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10751 unsigned int s_type;
10752 asection **ps, *sec;
10753 struct elf_link_hash_entry *h = NULL;
10754 const char *sym_name;
10755
10756 if (r_symndx == STN_UNDEF)
10757 continue;
10758
10759 if (r_symndx >= locsymcount
10760 || (elf_bad_symtab (input_bfd)
10761 && flinfo->sections[r_symndx] == NULL))
10762 {
10763 h = sym_hashes[r_symndx - extsymoff];
10764
10765 /* Badly formatted input files can contain relocs that
10766 reference non-existant symbols. Check here so that
10767 we do not seg fault. */
10768 if (h == NULL)
10769 {
10770 _bfd_error_handler
10771 /* xgettext:c-format */
10772 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10773 "that references a non-existent global symbol"),
10774 input_bfd, (uint64_t) rel->r_info, o);
10775 bfd_set_error (bfd_error_bad_value);
10776 return FALSE;
10777 }
10778
10779 while (h->root.type == bfd_link_hash_indirect
10780 || h->root.type == bfd_link_hash_warning)
10781 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10782
10783 s_type = h->type;
10784
10785 /* If a plugin symbol is referenced from a non-IR file,
10786 mark the symbol as undefined. Note that the
10787 linker may attach linker created dynamic sections
10788 to the plugin bfd. Symbols defined in linker
10789 created sections are not plugin symbols. */
10790 if ((h->root.non_ir_ref_regular
10791 || h->root.non_ir_ref_dynamic)
10792 && (h->root.type == bfd_link_hash_defined
10793 || h->root.type == bfd_link_hash_defweak)
10794 && (h->root.u.def.section->flags
10795 & SEC_LINKER_CREATED) == 0
10796 && h->root.u.def.section->owner != NULL
10797 && (h->root.u.def.section->owner->flags
10798 & BFD_PLUGIN) != 0)
10799 {
10800 h->root.type = bfd_link_hash_undefined;
10801 h->root.u.undef.abfd = h->root.u.def.section->owner;
10802 }
10803
10804 ps = NULL;
10805 if (h->root.type == bfd_link_hash_defined
10806 || h->root.type == bfd_link_hash_defweak)
10807 ps = &h->root.u.def.section;
10808
10809 sym_name = h->root.root.string;
10810 }
10811 else
10812 {
10813 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10814
10815 s_type = ELF_ST_TYPE (sym->st_info);
10816 ps = &flinfo->sections[r_symndx];
10817 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10818 sym, *ps);
10819 }
10820
10821 if ((s_type == STT_RELC || s_type == STT_SRELC)
10822 && !bfd_link_relocatable (flinfo->info))
10823 {
10824 bfd_vma val;
10825 bfd_vma dot = (rel->r_offset
10826 + o->output_offset + o->output_section->vma);
10827 #ifdef DEBUG
10828 printf ("Encountered a complex symbol!");
10829 printf (" (input_bfd %s, section %s, reloc %ld\n",
10830 input_bfd->filename, o->name,
10831 (long) (rel - internal_relocs));
10832 printf (" symbol: idx %8.8lx, name %s\n",
10833 r_symndx, sym_name);
10834 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10835 (unsigned long) rel->r_info,
10836 (unsigned long) rel->r_offset);
10837 #endif
10838 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10839 isymbuf, locsymcount, s_type == STT_SRELC))
10840 return FALSE;
10841
10842 /* Symbol evaluated OK. Update to absolute value. */
10843 set_symbol_value (input_bfd, isymbuf, locsymcount,
10844 r_symndx, val);
10845 continue;
10846 }
10847
10848 if (action_discarded != -1 && ps != NULL)
10849 {
10850 /* Complain if the definition comes from a
10851 discarded section. */
10852 if ((sec = *ps) != NULL && discarded_section (sec))
10853 {
10854 BFD_ASSERT (r_symndx != STN_UNDEF);
10855 if (action_discarded & COMPLAIN)
10856 (*flinfo->info->callbacks->einfo)
10857 /* xgettext:c-format */
10858 (_("%X`%s' referenced in section `%pA' of %pB: "
10859 "defined in discarded section `%pA' of %pB\n"),
10860 sym_name, o, input_bfd, sec, sec->owner);
10861
10862 /* Try to do the best we can to support buggy old
10863 versions of gcc. Pretend that the symbol is
10864 really defined in the kept linkonce section.
10865 FIXME: This is quite broken. Modifying the
10866 symbol here means we will be changing all later
10867 uses of the symbol, not just in this section. */
10868 if (action_discarded & PRETEND)
10869 {
10870 asection *kept;
10871
10872 kept = _bfd_elf_check_kept_section (sec,
10873 flinfo->info);
10874 if (kept != NULL)
10875 {
10876 *ps = kept;
10877 continue;
10878 }
10879 }
10880 }
10881 }
10882 }
10883
10884 /* Relocate the section by invoking a back end routine.
10885
10886 The back end routine is responsible for adjusting the
10887 section contents as necessary, and (if using Rela relocs
10888 and generating a relocatable output file) adjusting the
10889 reloc addend as necessary.
10890
10891 The back end routine does not have to worry about setting
10892 the reloc address or the reloc symbol index.
10893
10894 The back end routine is given a pointer to the swapped in
10895 internal symbols, and can access the hash table entries
10896 for the external symbols via elf_sym_hashes (input_bfd).
10897
10898 When generating relocatable output, the back end routine
10899 must handle STB_LOCAL/STT_SECTION symbols specially. The
10900 output symbol is going to be a section symbol
10901 corresponding to the output section, which will require
10902 the addend to be adjusted. */
10903
10904 ret = (*relocate_section) (output_bfd, flinfo->info,
10905 input_bfd, o, contents,
10906 internal_relocs,
10907 isymbuf,
10908 flinfo->sections);
10909 if (!ret)
10910 return FALSE;
10911
10912 if (ret == 2
10913 || bfd_link_relocatable (flinfo->info)
10914 || flinfo->info->emitrelocations)
10915 {
10916 Elf_Internal_Rela *irela;
10917 Elf_Internal_Rela *irelaend, *irelamid;
10918 bfd_vma last_offset;
10919 struct elf_link_hash_entry **rel_hash;
10920 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10921 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10922 unsigned int next_erel;
10923 bfd_boolean rela_normal;
10924 struct bfd_elf_section_data *esdi, *esdo;
10925
10926 esdi = elf_section_data (o);
10927 esdo = elf_section_data (o->output_section);
10928 rela_normal = FALSE;
10929
10930 /* Adjust the reloc addresses and symbol indices. */
10931
10932 irela = internal_relocs;
10933 irelaend = irela + o->reloc_count;
10934 rel_hash = esdo->rel.hashes + esdo->rel.count;
10935 /* We start processing the REL relocs, if any. When we reach
10936 IRELAMID in the loop, we switch to the RELA relocs. */
10937 irelamid = irela;
10938 if (esdi->rel.hdr != NULL)
10939 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10940 * bed->s->int_rels_per_ext_rel);
10941 rel_hash_list = rel_hash;
10942 rela_hash_list = NULL;
10943 last_offset = o->output_offset;
10944 if (!bfd_link_relocatable (flinfo->info))
10945 last_offset += o->output_section->vma;
10946 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10947 {
10948 unsigned long r_symndx;
10949 asection *sec;
10950 Elf_Internal_Sym sym;
10951
10952 if (next_erel == bed->s->int_rels_per_ext_rel)
10953 {
10954 rel_hash++;
10955 next_erel = 0;
10956 }
10957
10958 if (irela == irelamid)
10959 {
10960 rel_hash = esdo->rela.hashes + esdo->rela.count;
10961 rela_hash_list = rel_hash;
10962 rela_normal = bed->rela_normal;
10963 }
10964
10965 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10966 flinfo->info, o,
10967 irela->r_offset);
10968 if (irela->r_offset >= (bfd_vma) -2)
10969 {
10970 /* This is a reloc for a deleted entry or somesuch.
10971 Turn it into an R_*_NONE reloc, at the same
10972 offset as the last reloc. elf_eh_frame.c and
10973 bfd_elf_discard_info rely on reloc offsets
10974 being ordered. */
10975 irela->r_offset = last_offset;
10976 irela->r_info = 0;
10977 irela->r_addend = 0;
10978 continue;
10979 }
10980
10981 irela->r_offset += o->output_offset;
10982
10983 /* Relocs in an executable have to be virtual addresses. */
10984 if (!bfd_link_relocatable (flinfo->info))
10985 irela->r_offset += o->output_section->vma;
10986
10987 last_offset = irela->r_offset;
10988
10989 r_symndx = irela->r_info >> r_sym_shift;
10990 if (r_symndx == STN_UNDEF)
10991 continue;
10992
10993 if (r_symndx >= locsymcount
10994 || (elf_bad_symtab (input_bfd)
10995 && flinfo->sections[r_symndx] == NULL))
10996 {
10997 struct elf_link_hash_entry *rh;
10998 unsigned long indx;
10999
11000 /* This is a reloc against a global symbol. We
11001 have not yet output all the local symbols, so
11002 we do not know the symbol index of any global
11003 symbol. We set the rel_hash entry for this
11004 reloc to point to the global hash table entry
11005 for this symbol. The symbol index is then
11006 set at the end of bfd_elf_final_link. */
11007 indx = r_symndx - extsymoff;
11008 rh = elf_sym_hashes (input_bfd)[indx];
11009 while (rh->root.type == bfd_link_hash_indirect
11010 || rh->root.type == bfd_link_hash_warning)
11011 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11012
11013 /* Setting the index to -2 tells
11014 elf_link_output_extsym that this symbol is
11015 used by a reloc. */
11016 BFD_ASSERT (rh->indx < 0);
11017 rh->indx = -2;
11018 *rel_hash = rh;
11019
11020 continue;
11021 }
11022
11023 /* This is a reloc against a local symbol. */
11024
11025 *rel_hash = NULL;
11026 sym = isymbuf[r_symndx];
11027 sec = flinfo->sections[r_symndx];
11028 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11029 {
11030 /* I suppose the backend ought to fill in the
11031 section of any STT_SECTION symbol against a
11032 processor specific section. */
11033 r_symndx = STN_UNDEF;
11034 if (bfd_is_abs_section (sec))
11035 ;
11036 else if (sec == NULL || sec->owner == NULL)
11037 {
11038 bfd_set_error (bfd_error_bad_value);
11039 return FALSE;
11040 }
11041 else
11042 {
11043 asection *osec = sec->output_section;
11044
11045 /* If we have discarded a section, the output
11046 section will be the absolute section. In
11047 case of discarded SEC_MERGE sections, use
11048 the kept section. relocate_section should
11049 have already handled discarded linkonce
11050 sections. */
11051 if (bfd_is_abs_section (osec)
11052 && sec->kept_section != NULL
11053 && sec->kept_section->output_section != NULL)
11054 {
11055 osec = sec->kept_section->output_section;
11056 irela->r_addend -= osec->vma;
11057 }
11058
11059 if (!bfd_is_abs_section (osec))
11060 {
11061 r_symndx = osec->target_index;
11062 if (r_symndx == STN_UNDEF)
11063 {
11064 irela->r_addend += osec->vma;
11065 osec = _bfd_nearby_section (output_bfd, osec,
11066 osec->vma);
11067 irela->r_addend -= osec->vma;
11068 r_symndx = osec->target_index;
11069 }
11070 }
11071 }
11072
11073 /* Adjust the addend according to where the
11074 section winds up in the output section. */
11075 if (rela_normal)
11076 irela->r_addend += sec->output_offset;
11077 }
11078 else
11079 {
11080 if (flinfo->indices[r_symndx] == -1)
11081 {
11082 unsigned long shlink;
11083 const char *name;
11084 asection *osec;
11085 long indx;
11086
11087 if (flinfo->info->strip == strip_all)
11088 {
11089 /* You can't do ld -r -s. */
11090 bfd_set_error (bfd_error_invalid_operation);
11091 return FALSE;
11092 }
11093
11094 /* This symbol was skipped earlier, but
11095 since it is needed by a reloc, we
11096 must output it now. */
11097 shlink = symtab_hdr->sh_link;
11098 name = (bfd_elf_string_from_elf_section
11099 (input_bfd, shlink, sym.st_name));
11100 if (name == NULL)
11101 return FALSE;
11102
11103 osec = sec->output_section;
11104 sym.st_shndx =
11105 _bfd_elf_section_from_bfd_section (output_bfd,
11106 osec);
11107 if (sym.st_shndx == SHN_BAD)
11108 return FALSE;
11109
11110 sym.st_value += sec->output_offset;
11111 if (!bfd_link_relocatable (flinfo->info))
11112 {
11113 sym.st_value += osec->vma;
11114 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11115 {
11116 struct elf_link_hash_table *htab
11117 = elf_hash_table (flinfo->info);
11118
11119 /* STT_TLS symbols are relative to PT_TLS
11120 segment base. */
11121 if (htab->tls_sec != NULL)
11122 sym.st_value -= htab->tls_sec->vma;
11123 else
11124 sym.st_info
11125 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11126 STT_NOTYPE);
11127 }
11128 }
11129
11130 indx = bfd_get_symcount (output_bfd);
11131 ret = elf_link_output_symstrtab (flinfo, name,
11132 &sym, sec,
11133 NULL);
11134 if (ret == 0)
11135 return FALSE;
11136 else if (ret == 1)
11137 flinfo->indices[r_symndx] = indx;
11138 else
11139 abort ();
11140 }
11141
11142 r_symndx = flinfo->indices[r_symndx];
11143 }
11144
11145 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11146 | (irela->r_info & r_type_mask));
11147 }
11148
11149 /* Swap out the relocs. */
11150 input_rel_hdr = esdi->rel.hdr;
11151 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11152 {
11153 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11154 input_rel_hdr,
11155 internal_relocs,
11156 rel_hash_list))
11157 return FALSE;
11158 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11159 * bed->s->int_rels_per_ext_rel);
11160 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11161 }
11162
11163 input_rela_hdr = esdi->rela.hdr;
11164 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11165 {
11166 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11167 input_rela_hdr,
11168 internal_relocs,
11169 rela_hash_list))
11170 return FALSE;
11171 }
11172 }
11173 }
11174
11175 /* Write out the modified section contents. */
11176 if (bed->elf_backend_write_section
11177 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11178 contents))
11179 {
11180 /* Section written out. */
11181 }
11182 else switch (o->sec_info_type)
11183 {
11184 case SEC_INFO_TYPE_STABS:
11185 if (! (_bfd_write_section_stabs
11186 (output_bfd,
11187 &elf_hash_table (flinfo->info)->stab_info,
11188 o, &elf_section_data (o)->sec_info, contents)))
11189 return FALSE;
11190 break;
11191 case SEC_INFO_TYPE_MERGE:
11192 if (! _bfd_write_merged_section (output_bfd, o,
11193 elf_section_data (o)->sec_info))
11194 return FALSE;
11195 break;
11196 case SEC_INFO_TYPE_EH_FRAME:
11197 {
11198 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11199 o, contents))
11200 return FALSE;
11201 }
11202 break;
11203 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11204 {
11205 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11206 flinfo->info,
11207 o, contents))
11208 return FALSE;
11209 }
11210 break;
11211 default:
11212 {
11213 if (! (o->flags & SEC_EXCLUDE))
11214 {
11215 file_ptr offset = (file_ptr) o->output_offset;
11216 bfd_size_type todo = o->size;
11217
11218 offset *= bfd_octets_per_byte (output_bfd);
11219
11220 if ((o->flags & SEC_ELF_REVERSE_COPY))
11221 {
11222 /* Reverse-copy input section to output. */
11223 do
11224 {
11225 todo -= address_size;
11226 if (! bfd_set_section_contents (output_bfd,
11227 o->output_section,
11228 contents + todo,
11229 offset,
11230 address_size))
11231 return FALSE;
11232 if (todo == 0)
11233 break;
11234 offset += address_size;
11235 }
11236 while (1);
11237 }
11238 else if (! bfd_set_section_contents (output_bfd,
11239 o->output_section,
11240 contents,
11241 offset, todo))
11242 return FALSE;
11243 }
11244 }
11245 break;
11246 }
11247 }
11248
11249 return TRUE;
11250 }
11251
11252 /* Generate a reloc when linking an ELF file. This is a reloc
11253 requested by the linker, and does not come from any input file. This
11254 is used to build constructor and destructor tables when linking
11255 with -Ur. */
11256
11257 static bfd_boolean
11258 elf_reloc_link_order (bfd *output_bfd,
11259 struct bfd_link_info *info,
11260 asection *output_section,
11261 struct bfd_link_order *link_order)
11262 {
11263 reloc_howto_type *howto;
11264 long indx;
11265 bfd_vma offset;
11266 bfd_vma addend;
11267 struct bfd_elf_section_reloc_data *reldata;
11268 struct elf_link_hash_entry **rel_hash_ptr;
11269 Elf_Internal_Shdr *rel_hdr;
11270 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11271 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11272 bfd_byte *erel;
11273 unsigned int i;
11274 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11275
11276 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11277 if (howto == NULL)
11278 {
11279 bfd_set_error (bfd_error_bad_value);
11280 return FALSE;
11281 }
11282
11283 addend = link_order->u.reloc.p->addend;
11284
11285 if (esdo->rel.hdr)
11286 reldata = &esdo->rel;
11287 else if (esdo->rela.hdr)
11288 reldata = &esdo->rela;
11289 else
11290 {
11291 reldata = NULL;
11292 BFD_ASSERT (0);
11293 }
11294
11295 /* Figure out the symbol index. */
11296 rel_hash_ptr = reldata->hashes + reldata->count;
11297 if (link_order->type == bfd_section_reloc_link_order)
11298 {
11299 indx = link_order->u.reloc.p->u.section->target_index;
11300 BFD_ASSERT (indx != 0);
11301 *rel_hash_ptr = NULL;
11302 }
11303 else
11304 {
11305 struct elf_link_hash_entry *h;
11306
11307 /* Treat a reloc against a defined symbol as though it were
11308 actually against the section. */
11309 h = ((struct elf_link_hash_entry *)
11310 bfd_wrapped_link_hash_lookup (output_bfd, info,
11311 link_order->u.reloc.p->u.name,
11312 FALSE, FALSE, TRUE));
11313 if (h != NULL
11314 && (h->root.type == bfd_link_hash_defined
11315 || h->root.type == bfd_link_hash_defweak))
11316 {
11317 asection *section;
11318
11319 section = h->root.u.def.section;
11320 indx = section->output_section->target_index;
11321 *rel_hash_ptr = NULL;
11322 /* It seems that we ought to add the symbol value to the
11323 addend here, but in practice it has already been added
11324 because it was passed to constructor_callback. */
11325 addend += section->output_section->vma + section->output_offset;
11326 }
11327 else if (h != NULL)
11328 {
11329 /* Setting the index to -2 tells elf_link_output_extsym that
11330 this symbol is used by a reloc. */
11331 h->indx = -2;
11332 *rel_hash_ptr = h;
11333 indx = 0;
11334 }
11335 else
11336 {
11337 (*info->callbacks->unattached_reloc)
11338 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11339 indx = 0;
11340 }
11341 }
11342
11343 /* If this is an inplace reloc, we must write the addend into the
11344 object file. */
11345 if (howto->partial_inplace && addend != 0)
11346 {
11347 bfd_size_type size;
11348 bfd_reloc_status_type rstat;
11349 bfd_byte *buf;
11350 bfd_boolean ok;
11351 const char *sym_name;
11352
11353 size = (bfd_size_type) bfd_get_reloc_size (howto);
11354 buf = (bfd_byte *) bfd_zmalloc (size);
11355 if (buf == NULL && size != 0)
11356 return FALSE;
11357 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11358 switch (rstat)
11359 {
11360 case bfd_reloc_ok:
11361 break;
11362
11363 default:
11364 case bfd_reloc_outofrange:
11365 abort ();
11366
11367 case bfd_reloc_overflow:
11368 if (link_order->type == bfd_section_reloc_link_order)
11369 sym_name = bfd_section_name (output_bfd,
11370 link_order->u.reloc.p->u.section);
11371 else
11372 sym_name = link_order->u.reloc.p->u.name;
11373 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11374 howto->name, addend, NULL, NULL,
11375 (bfd_vma) 0);
11376 break;
11377 }
11378
11379 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11380 link_order->offset
11381 * bfd_octets_per_byte (output_bfd),
11382 size);
11383 free (buf);
11384 if (! ok)
11385 return FALSE;
11386 }
11387
11388 /* The address of a reloc is relative to the section in a
11389 relocatable file, and is a virtual address in an executable
11390 file. */
11391 offset = link_order->offset;
11392 if (! bfd_link_relocatable (info))
11393 offset += output_section->vma;
11394
11395 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11396 {
11397 irel[i].r_offset = offset;
11398 irel[i].r_info = 0;
11399 irel[i].r_addend = 0;
11400 }
11401 if (bed->s->arch_size == 32)
11402 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11403 else
11404 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11405
11406 rel_hdr = reldata->hdr;
11407 erel = rel_hdr->contents;
11408 if (rel_hdr->sh_type == SHT_REL)
11409 {
11410 erel += reldata->count * bed->s->sizeof_rel;
11411 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11412 }
11413 else
11414 {
11415 irel[0].r_addend = addend;
11416 erel += reldata->count * bed->s->sizeof_rela;
11417 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11418 }
11419
11420 ++reldata->count;
11421
11422 return TRUE;
11423 }
11424
11425
11426 /* Get the output vma of the section pointed to by the sh_link field. */
11427
11428 static bfd_vma
11429 elf_get_linked_section_vma (struct bfd_link_order *p)
11430 {
11431 Elf_Internal_Shdr **elf_shdrp;
11432 asection *s;
11433 int elfsec;
11434
11435 s = p->u.indirect.section;
11436 elf_shdrp = elf_elfsections (s->owner);
11437 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11438 elfsec = elf_shdrp[elfsec]->sh_link;
11439 /* PR 290:
11440 The Intel C compiler generates SHT_IA_64_UNWIND with
11441 SHF_LINK_ORDER. But it doesn't set the sh_link or
11442 sh_info fields. Hence we could get the situation
11443 where elfsec is 0. */
11444 if (elfsec == 0)
11445 {
11446 const struct elf_backend_data *bed
11447 = get_elf_backend_data (s->owner);
11448 if (bed->link_order_error_handler)
11449 bed->link_order_error_handler
11450 /* xgettext:c-format */
11451 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11452 return 0;
11453 }
11454 else
11455 {
11456 s = elf_shdrp[elfsec]->bfd_section;
11457 return s->output_section->vma + s->output_offset;
11458 }
11459 }
11460
11461
11462 /* Compare two sections based on the locations of the sections they are
11463 linked to. Used by elf_fixup_link_order. */
11464
11465 static int
11466 compare_link_order (const void * a, const void * b)
11467 {
11468 bfd_vma apos;
11469 bfd_vma bpos;
11470
11471 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11472 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11473 if (apos < bpos)
11474 return -1;
11475 return apos > bpos;
11476 }
11477
11478
11479 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11480 order as their linked sections. Returns false if this could not be done
11481 because an output section includes both ordered and unordered
11482 sections. Ideally we'd do this in the linker proper. */
11483
11484 static bfd_boolean
11485 elf_fixup_link_order (bfd *abfd, asection *o)
11486 {
11487 int seen_linkorder;
11488 int seen_other;
11489 int n;
11490 struct bfd_link_order *p;
11491 bfd *sub;
11492 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11493 unsigned elfsec;
11494 struct bfd_link_order **sections;
11495 asection *s, *other_sec, *linkorder_sec;
11496 bfd_vma offset;
11497
11498 other_sec = NULL;
11499 linkorder_sec = NULL;
11500 seen_other = 0;
11501 seen_linkorder = 0;
11502 for (p = o->map_head.link_order; p != NULL; p = p->next)
11503 {
11504 if (p->type == bfd_indirect_link_order)
11505 {
11506 s = p->u.indirect.section;
11507 sub = s->owner;
11508 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11509 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11510 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11511 && elfsec < elf_numsections (sub)
11512 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11513 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11514 {
11515 seen_linkorder++;
11516 linkorder_sec = s;
11517 }
11518 else
11519 {
11520 seen_other++;
11521 other_sec = s;
11522 }
11523 }
11524 else
11525 seen_other++;
11526
11527 if (seen_other && seen_linkorder)
11528 {
11529 if (other_sec && linkorder_sec)
11530 _bfd_error_handler
11531 /* xgettext:c-format */
11532 (_("%pA has both ordered [`%pA' in %pB] "
11533 "and unordered [`%pA' in %pB] sections"),
11534 o, linkorder_sec, linkorder_sec->owner,
11535 other_sec, other_sec->owner);
11536 else
11537 _bfd_error_handler
11538 (_("%pA has both ordered and unordered sections"), o);
11539 bfd_set_error (bfd_error_bad_value);
11540 return FALSE;
11541 }
11542 }
11543
11544 if (!seen_linkorder)
11545 return TRUE;
11546
11547 sections = (struct bfd_link_order **)
11548 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11549 if (sections == NULL)
11550 return FALSE;
11551 seen_linkorder = 0;
11552
11553 for (p = o->map_head.link_order; p != NULL; p = p->next)
11554 {
11555 sections[seen_linkorder++] = p;
11556 }
11557 /* Sort the input sections in the order of their linked section. */
11558 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11559 compare_link_order);
11560
11561 /* Change the offsets of the sections. */
11562 offset = 0;
11563 for (n = 0; n < seen_linkorder; n++)
11564 {
11565 s = sections[n]->u.indirect.section;
11566 offset &= ~(bfd_vma) 0 << s->alignment_power;
11567 s->output_offset = offset / bfd_octets_per_byte (abfd);
11568 sections[n]->offset = offset;
11569 offset += sections[n]->size;
11570 }
11571
11572 free (sections);
11573 return TRUE;
11574 }
11575
11576 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11577 Returns TRUE upon success, FALSE otherwise. */
11578
11579 static bfd_boolean
11580 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11581 {
11582 bfd_boolean ret = FALSE;
11583 bfd *implib_bfd;
11584 const struct elf_backend_data *bed;
11585 flagword flags;
11586 enum bfd_architecture arch;
11587 unsigned int mach;
11588 asymbol **sympp = NULL;
11589 long symsize;
11590 long symcount;
11591 long src_count;
11592 elf_symbol_type *osymbuf;
11593
11594 implib_bfd = info->out_implib_bfd;
11595 bed = get_elf_backend_data (abfd);
11596
11597 if (!bfd_set_format (implib_bfd, bfd_object))
11598 return FALSE;
11599
11600 /* Use flag from executable but make it a relocatable object. */
11601 flags = bfd_get_file_flags (abfd);
11602 flags &= ~HAS_RELOC;
11603 if (!bfd_set_start_address (implib_bfd, 0)
11604 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11605 return FALSE;
11606
11607 /* Copy architecture of output file to import library file. */
11608 arch = bfd_get_arch (abfd);
11609 mach = bfd_get_mach (abfd);
11610 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11611 && (abfd->target_defaulted
11612 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11613 return FALSE;
11614
11615 /* Get symbol table size. */
11616 symsize = bfd_get_symtab_upper_bound (abfd);
11617 if (symsize < 0)
11618 return FALSE;
11619
11620 /* Read in the symbol table. */
11621 sympp = (asymbol **) xmalloc (symsize);
11622 symcount = bfd_canonicalize_symtab (abfd, sympp);
11623 if (symcount < 0)
11624 goto free_sym_buf;
11625
11626 /* Allow the BFD backend to copy any private header data it
11627 understands from the output BFD to the import library BFD. */
11628 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11629 goto free_sym_buf;
11630
11631 /* Filter symbols to appear in the import library. */
11632 if (bed->elf_backend_filter_implib_symbols)
11633 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11634 symcount);
11635 else
11636 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11637 if (symcount == 0)
11638 {
11639 bfd_set_error (bfd_error_no_symbols);
11640 _bfd_error_handler (_("%pB: no symbol found for import library"),
11641 implib_bfd);
11642 goto free_sym_buf;
11643 }
11644
11645
11646 /* Make symbols absolute. */
11647 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11648 sizeof (*osymbuf));
11649 for (src_count = 0; src_count < symcount; src_count++)
11650 {
11651 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11652 sizeof (*osymbuf));
11653 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11654 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11655 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11656 osymbuf[src_count].internal_elf_sym.st_value =
11657 osymbuf[src_count].symbol.value;
11658 sympp[src_count] = &osymbuf[src_count].symbol;
11659 }
11660
11661 bfd_set_symtab (implib_bfd, sympp, symcount);
11662
11663 /* Allow the BFD backend to copy any private data it understands
11664 from the output BFD to the import library BFD. This is done last
11665 to permit the routine to look at the filtered symbol table. */
11666 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11667 goto free_sym_buf;
11668
11669 if (!bfd_close (implib_bfd))
11670 goto free_sym_buf;
11671
11672 ret = TRUE;
11673
11674 free_sym_buf:
11675 free (sympp);
11676 return ret;
11677 }
11678
11679 static void
11680 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11681 {
11682 asection *o;
11683
11684 if (flinfo->symstrtab != NULL)
11685 _bfd_elf_strtab_free (flinfo->symstrtab);
11686 if (flinfo->contents != NULL)
11687 free (flinfo->contents);
11688 if (flinfo->external_relocs != NULL)
11689 free (flinfo->external_relocs);
11690 if (flinfo->internal_relocs != NULL)
11691 free (flinfo->internal_relocs);
11692 if (flinfo->external_syms != NULL)
11693 free (flinfo->external_syms);
11694 if (flinfo->locsym_shndx != NULL)
11695 free (flinfo->locsym_shndx);
11696 if (flinfo->internal_syms != NULL)
11697 free (flinfo->internal_syms);
11698 if (flinfo->indices != NULL)
11699 free (flinfo->indices);
11700 if (flinfo->sections != NULL)
11701 free (flinfo->sections);
11702 if (flinfo->symshndxbuf != NULL
11703 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11704 free (flinfo->symshndxbuf);
11705 for (o = obfd->sections; o != NULL; o = o->next)
11706 {
11707 struct bfd_elf_section_data *esdo = elf_section_data (o);
11708 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11709 free (esdo->rel.hashes);
11710 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11711 free (esdo->rela.hashes);
11712 }
11713 }
11714
11715 /* Do the final step of an ELF link. */
11716
11717 bfd_boolean
11718 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11719 {
11720 bfd_boolean dynamic;
11721 bfd_boolean emit_relocs;
11722 bfd *dynobj;
11723 struct elf_final_link_info flinfo;
11724 asection *o;
11725 struct bfd_link_order *p;
11726 bfd *sub;
11727 bfd_size_type max_contents_size;
11728 bfd_size_type max_external_reloc_size;
11729 bfd_size_type max_internal_reloc_count;
11730 bfd_size_type max_sym_count;
11731 bfd_size_type max_sym_shndx_count;
11732 Elf_Internal_Sym elfsym;
11733 unsigned int i;
11734 Elf_Internal_Shdr *symtab_hdr;
11735 Elf_Internal_Shdr *symtab_shndx_hdr;
11736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11737 struct elf_outext_info eoinfo;
11738 bfd_boolean merged;
11739 size_t relativecount = 0;
11740 asection *reldyn = 0;
11741 bfd_size_type amt;
11742 asection *attr_section = NULL;
11743 bfd_vma attr_size = 0;
11744 const char *std_attrs_section;
11745 struct elf_link_hash_table *htab = elf_hash_table (info);
11746
11747 if (!is_elf_hash_table (htab))
11748 return FALSE;
11749
11750 if (bfd_link_pic (info))
11751 abfd->flags |= DYNAMIC;
11752
11753 dynamic = htab->dynamic_sections_created;
11754 dynobj = htab->dynobj;
11755
11756 emit_relocs = (bfd_link_relocatable (info)
11757 || info->emitrelocations);
11758
11759 flinfo.info = info;
11760 flinfo.output_bfd = abfd;
11761 flinfo.symstrtab = _bfd_elf_strtab_init ();
11762 if (flinfo.symstrtab == NULL)
11763 return FALSE;
11764
11765 if (! dynamic)
11766 {
11767 flinfo.hash_sec = NULL;
11768 flinfo.symver_sec = NULL;
11769 }
11770 else
11771 {
11772 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11773 /* Note that dynsym_sec can be NULL (on VMS). */
11774 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11775 /* Note that it is OK if symver_sec is NULL. */
11776 }
11777
11778 flinfo.contents = NULL;
11779 flinfo.external_relocs = NULL;
11780 flinfo.internal_relocs = NULL;
11781 flinfo.external_syms = NULL;
11782 flinfo.locsym_shndx = NULL;
11783 flinfo.internal_syms = NULL;
11784 flinfo.indices = NULL;
11785 flinfo.sections = NULL;
11786 flinfo.symshndxbuf = NULL;
11787 flinfo.filesym_count = 0;
11788
11789 /* The object attributes have been merged. Remove the input
11790 sections from the link, and set the contents of the output
11791 secton. */
11792 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11793 for (o = abfd->sections; o != NULL; o = o->next)
11794 {
11795 bfd_boolean remove_section = FALSE;
11796
11797 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11798 || strcmp (o->name, ".gnu.attributes") == 0)
11799 {
11800 for (p = o->map_head.link_order; p != NULL; p = p->next)
11801 {
11802 asection *input_section;
11803
11804 if (p->type != bfd_indirect_link_order)
11805 continue;
11806 input_section = p->u.indirect.section;
11807 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11808 elf_link_input_bfd ignores this section. */
11809 input_section->flags &= ~SEC_HAS_CONTENTS;
11810 }
11811
11812 attr_size = bfd_elf_obj_attr_size (abfd);
11813 bfd_set_section_size (abfd, o, attr_size);
11814 /* Skip this section later on. */
11815 o->map_head.link_order = NULL;
11816 if (attr_size)
11817 attr_section = o;
11818 else
11819 remove_section = TRUE;
11820 }
11821 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11822 {
11823 /* Remove empty group section from linker output. */
11824 remove_section = TRUE;
11825 }
11826 if (remove_section)
11827 {
11828 o->flags |= SEC_EXCLUDE;
11829 bfd_section_list_remove (abfd, o);
11830 abfd->section_count--;
11831 }
11832 }
11833
11834 /* Count up the number of relocations we will output for each output
11835 section, so that we know the sizes of the reloc sections. We
11836 also figure out some maximum sizes. */
11837 max_contents_size = 0;
11838 max_external_reloc_size = 0;
11839 max_internal_reloc_count = 0;
11840 max_sym_count = 0;
11841 max_sym_shndx_count = 0;
11842 merged = FALSE;
11843 for (o = abfd->sections; o != NULL; o = o->next)
11844 {
11845 struct bfd_elf_section_data *esdo = elf_section_data (o);
11846 o->reloc_count = 0;
11847
11848 for (p = o->map_head.link_order; p != NULL; p = p->next)
11849 {
11850 unsigned int reloc_count = 0;
11851 unsigned int additional_reloc_count = 0;
11852 struct bfd_elf_section_data *esdi = NULL;
11853
11854 if (p->type == bfd_section_reloc_link_order
11855 || p->type == bfd_symbol_reloc_link_order)
11856 reloc_count = 1;
11857 else if (p->type == bfd_indirect_link_order)
11858 {
11859 asection *sec;
11860
11861 sec = p->u.indirect.section;
11862
11863 /* Mark all sections which are to be included in the
11864 link. This will normally be every section. We need
11865 to do this so that we can identify any sections which
11866 the linker has decided to not include. */
11867 sec->linker_mark = TRUE;
11868
11869 if (sec->flags & SEC_MERGE)
11870 merged = TRUE;
11871
11872 if (sec->rawsize > max_contents_size)
11873 max_contents_size = sec->rawsize;
11874 if (sec->size > max_contents_size)
11875 max_contents_size = sec->size;
11876
11877 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11878 && (sec->owner->flags & DYNAMIC) == 0)
11879 {
11880 size_t sym_count;
11881
11882 /* We are interested in just local symbols, not all
11883 symbols. */
11884 if (elf_bad_symtab (sec->owner))
11885 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11886 / bed->s->sizeof_sym);
11887 else
11888 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11889
11890 if (sym_count > max_sym_count)
11891 max_sym_count = sym_count;
11892
11893 if (sym_count > max_sym_shndx_count
11894 && elf_symtab_shndx_list (sec->owner) != NULL)
11895 max_sym_shndx_count = sym_count;
11896
11897 if (esdo->this_hdr.sh_type == SHT_REL
11898 || esdo->this_hdr.sh_type == SHT_RELA)
11899 /* Some backends use reloc_count in relocation sections
11900 to count particular types of relocs. Of course,
11901 reloc sections themselves can't have relocations. */
11902 ;
11903 else if (emit_relocs)
11904 {
11905 reloc_count = sec->reloc_count;
11906 if (bed->elf_backend_count_additional_relocs)
11907 {
11908 int c;
11909 c = (*bed->elf_backend_count_additional_relocs) (sec);
11910 additional_reloc_count += c;
11911 }
11912 }
11913 else if (bed->elf_backend_count_relocs)
11914 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11915
11916 esdi = elf_section_data (sec);
11917
11918 if ((sec->flags & SEC_RELOC) != 0)
11919 {
11920 size_t ext_size = 0;
11921
11922 if (esdi->rel.hdr != NULL)
11923 ext_size = esdi->rel.hdr->sh_size;
11924 if (esdi->rela.hdr != NULL)
11925 ext_size += esdi->rela.hdr->sh_size;
11926
11927 if (ext_size > max_external_reloc_size)
11928 max_external_reloc_size = ext_size;
11929 if (sec->reloc_count > max_internal_reloc_count)
11930 max_internal_reloc_count = sec->reloc_count;
11931 }
11932 }
11933 }
11934
11935 if (reloc_count == 0)
11936 continue;
11937
11938 reloc_count += additional_reloc_count;
11939 o->reloc_count += reloc_count;
11940
11941 if (p->type == bfd_indirect_link_order && emit_relocs)
11942 {
11943 if (esdi->rel.hdr)
11944 {
11945 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11946 esdo->rel.count += additional_reloc_count;
11947 }
11948 if (esdi->rela.hdr)
11949 {
11950 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11951 esdo->rela.count += additional_reloc_count;
11952 }
11953 }
11954 else
11955 {
11956 if (o->use_rela_p)
11957 esdo->rela.count += reloc_count;
11958 else
11959 esdo->rel.count += reloc_count;
11960 }
11961 }
11962
11963 if (o->reloc_count > 0)
11964 o->flags |= SEC_RELOC;
11965 else
11966 {
11967 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11968 set it (this is probably a bug) and if it is set
11969 assign_section_numbers will create a reloc section. */
11970 o->flags &=~ SEC_RELOC;
11971 }
11972
11973 /* If the SEC_ALLOC flag is not set, force the section VMA to
11974 zero. This is done in elf_fake_sections as well, but forcing
11975 the VMA to 0 here will ensure that relocs against these
11976 sections are handled correctly. */
11977 if ((o->flags & SEC_ALLOC) == 0
11978 && ! o->user_set_vma)
11979 o->vma = 0;
11980 }
11981
11982 if (! bfd_link_relocatable (info) && merged)
11983 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11984
11985 /* Figure out the file positions for everything but the symbol table
11986 and the relocs. We set symcount to force assign_section_numbers
11987 to create a symbol table. */
11988 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11989 BFD_ASSERT (! abfd->output_has_begun);
11990 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11991 goto error_return;
11992
11993 /* Set sizes, and assign file positions for reloc sections. */
11994 for (o = abfd->sections; o != NULL; o = o->next)
11995 {
11996 struct bfd_elf_section_data *esdo = elf_section_data (o);
11997 if ((o->flags & SEC_RELOC) != 0)
11998 {
11999 if (esdo->rel.hdr
12000 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12001 goto error_return;
12002
12003 if (esdo->rela.hdr
12004 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12005 goto error_return;
12006 }
12007
12008 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12009 to count upwards while actually outputting the relocations. */
12010 esdo->rel.count = 0;
12011 esdo->rela.count = 0;
12012
12013 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
12014 {
12015 /* Cache the section contents so that they can be compressed
12016 later. Use bfd_malloc since it will be freed by
12017 bfd_compress_section_contents. */
12018 unsigned char *contents = esdo->this_hdr.contents;
12019 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12020 abort ();
12021 contents
12022 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12023 if (contents == NULL)
12024 goto error_return;
12025 esdo->this_hdr.contents = contents;
12026 }
12027 }
12028
12029 /* We have now assigned file positions for all the sections except
12030 .symtab, .strtab, and non-loaded reloc sections. We start the
12031 .symtab section at the current file position, and write directly
12032 to it. We build the .strtab section in memory. */
12033 bfd_get_symcount (abfd) = 0;
12034 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12035 /* sh_name is set in prep_headers. */
12036 symtab_hdr->sh_type = SHT_SYMTAB;
12037 /* sh_flags, sh_addr and sh_size all start off zero. */
12038 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12039 /* sh_link is set in assign_section_numbers. */
12040 /* sh_info is set below. */
12041 /* sh_offset is set just below. */
12042 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12043
12044 if (max_sym_count < 20)
12045 max_sym_count = 20;
12046 htab->strtabsize = max_sym_count;
12047 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12048 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12049 if (htab->strtab == NULL)
12050 goto error_return;
12051 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12052 flinfo.symshndxbuf
12053 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12054 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12055
12056 if (info->strip != strip_all || emit_relocs)
12057 {
12058 file_ptr off = elf_next_file_pos (abfd);
12059
12060 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12061
12062 /* Note that at this point elf_next_file_pos (abfd) is
12063 incorrect. We do not yet know the size of the .symtab section.
12064 We correct next_file_pos below, after we do know the size. */
12065
12066 /* Start writing out the symbol table. The first symbol is always a
12067 dummy symbol. */
12068 elfsym.st_value = 0;
12069 elfsym.st_size = 0;
12070 elfsym.st_info = 0;
12071 elfsym.st_other = 0;
12072 elfsym.st_shndx = SHN_UNDEF;
12073 elfsym.st_target_internal = 0;
12074 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12075 bfd_und_section_ptr, NULL) != 1)
12076 goto error_return;
12077
12078 /* Output a symbol for each section. We output these even if we are
12079 discarding local symbols, since they are used for relocs. These
12080 symbols have no names. We store the index of each one in the
12081 index field of the section, so that we can find it again when
12082 outputting relocs. */
12083
12084 elfsym.st_size = 0;
12085 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12086 elfsym.st_other = 0;
12087 elfsym.st_value = 0;
12088 elfsym.st_target_internal = 0;
12089 for (i = 1; i < elf_numsections (abfd); i++)
12090 {
12091 o = bfd_section_from_elf_index (abfd, i);
12092 if (o != NULL)
12093 {
12094 o->target_index = bfd_get_symcount (abfd);
12095 elfsym.st_shndx = i;
12096 if (!bfd_link_relocatable (info))
12097 elfsym.st_value = o->vma;
12098 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12099 NULL) != 1)
12100 goto error_return;
12101 }
12102 }
12103 }
12104
12105 /* Allocate some memory to hold information read in from the input
12106 files. */
12107 if (max_contents_size != 0)
12108 {
12109 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12110 if (flinfo.contents == NULL)
12111 goto error_return;
12112 }
12113
12114 if (max_external_reloc_size != 0)
12115 {
12116 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12117 if (flinfo.external_relocs == NULL)
12118 goto error_return;
12119 }
12120
12121 if (max_internal_reloc_count != 0)
12122 {
12123 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12124 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12125 if (flinfo.internal_relocs == NULL)
12126 goto error_return;
12127 }
12128
12129 if (max_sym_count != 0)
12130 {
12131 amt = max_sym_count * bed->s->sizeof_sym;
12132 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12133 if (flinfo.external_syms == NULL)
12134 goto error_return;
12135
12136 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12137 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12138 if (flinfo.internal_syms == NULL)
12139 goto error_return;
12140
12141 amt = max_sym_count * sizeof (long);
12142 flinfo.indices = (long int *) bfd_malloc (amt);
12143 if (flinfo.indices == NULL)
12144 goto error_return;
12145
12146 amt = max_sym_count * sizeof (asection *);
12147 flinfo.sections = (asection **) bfd_malloc (amt);
12148 if (flinfo.sections == NULL)
12149 goto error_return;
12150 }
12151
12152 if (max_sym_shndx_count != 0)
12153 {
12154 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12155 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12156 if (flinfo.locsym_shndx == NULL)
12157 goto error_return;
12158 }
12159
12160 if (htab->tls_sec)
12161 {
12162 bfd_vma base, end = 0;
12163 asection *sec;
12164
12165 for (sec = htab->tls_sec;
12166 sec && (sec->flags & SEC_THREAD_LOCAL);
12167 sec = sec->next)
12168 {
12169 bfd_size_type size = sec->size;
12170
12171 if (size == 0
12172 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12173 {
12174 struct bfd_link_order *ord = sec->map_tail.link_order;
12175
12176 if (ord != NULL)
12177 size = ord->offset + ord->size;
12178 }
12179 end = sec->vma + size;
12180 }
12181 base = htab->tls_sec->vma;
12182 /* Only align end of TLS section if static TLS doesn't have special
12183 alignment requirements. */
12184 if (bed->static_tls_alignment == 1)
12185 end = align_power (end, htab->tls_sec->alignment_power);
12186 htab->tls_size = end - base;
12187 }
12188
12189 /* Reorder SHF_LINK_ORDER sections. */
12190 for (o = abfd->sections; o != NULL; o = o->next)
12191 {
12192 if (!elf_fixup_link_order (abfd, o))
12193 return FALSE;
12194 }
12195
12196 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12197 return FALSE;
12198
12199 /* Since ELF permits relocations to be against local symbols, we
12200 must have the local symbols available when we do the relocations.
12201 Since we would rather only read the local symbols once, and we
12202 would rather not keep them in memory, we handle all the
12203 relocations for a single input file at the same time.
12204
12205 Unfortunately, there is no way to know the total number of local
12206 symbols until we have seen all of them, and the local symbol
12207 indices precede the global symbol indices. This means that when
12208 we are generating relocatable output, and we see a reloc against
12209 a global symbol, we can not know the symbol index until we have
12210 finished examining all the local symbols to see which ones we are
12211 going to output. To deal with this, we keep the relocations in
12212 memory, and don't output them until the end of the link. This is
12213 an unfortunate waste of memory, but I don't see a good way around
12214 it. Fortunately, it only happens when performing a relocatable
12215 link, which is not the common case. FIXME: If keep_memory is set
12216 we could write the relocs out and then read them again; I don't
12217 know how bad the memory loss will be. */
12218
12219 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12220 sub->output_has_begun = FALSE;
12221 for (o = abfd->sections; o != NULL; o = o->next)
12222 {
12223 for (p = o->map_head.link_order; p != NULL; p = p->next)
12224 {
12225 if (p->type == bfd_indirect_link_order
12226 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12227 == bfd_target_elf_flavour)
12228 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12229 {
12230 if (! sub->output_has_begun)
12231 {
12232 if (! elf_link_input_bfd (&flinfo, sub))
12233 goto error_return;
12234 sub->output_has_begun = TRUE;
12235 }
12236 }
12237 else if (p->type == bfd_section_reloc_link_order
12238 || p->type == bfd_symbol_reloc_link_order)
12239 {
12240 if (! elf_reloc_link_order (abfd, info, o, p))
12241 goto error_return;
12242 }
12243 else
12244 {
12245 if (! _bfd_default_link_order (abfd, info, o, p))
12246 {
12247 if (p->type == bfd_indirect_link_order
12248 && (bfd_get_flavour (sub)
12249 == bfd_target_elf_flavour)
12250 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12251 != bed->s->elfclass))
12252 {
12253 const char *iclass, *oclass;
12254
12255 switch (bed->s->elfclass)
12256 {
12257 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12258 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12259 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12260 default: abort ();
12261 }
12262
12263 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12264 {
12265 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12266 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12267 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12268 default: abort ();
12269 }
12270
12271 bfd_set_error (bfd_error_wrong_format);
12272 _bfd_error_handler
12273 /* xgettext:c-format */
12274 (_("%pB: file class %s incompatible with %s"),
12275 sub, iclass, oclass);
12276 }
12277
12278 goto error_return;
12279 }
12280 }
12281 }
12282 }
12283
12284 /* Free symbol buffer if needed. */
12285 if (!info->reduce_memory_overheads)
12286 {
12287 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12288 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12289 && elf_tdata (sub)->symbuf)
12290 {
12291 free (elf_tdata (sub)->symbuf);
12292 elf_tdata (sub)->symbuf = NULL;
12293 }
12294 }
12295
12296 /* Output any global symbols that got converted to local in a
12297 version script or due to symbol visibility. We do this in a
12298 separate step since ELF requires all local symbols to appear
12299 prior to any global symbols. FIXME: We should only do this if
12300 some global symbols were, in fact, converted to become local.
12301 FIXME: Will this work correctly with the Irix 5 linker? */
12302 eoinfo.failed = FALSE;
12303 eoinfo.flinfo = &flinfo;
12304 eoinfo.localsyms = TRUE;
12305 eoinfo.file_sym_done = FALSE;
12306 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12307 if (eoinfo.failed)
12308 return FALSE;
12309
12310 /* If backend needs to output some local symbols not present in the hash
12311 table, do it now. */
12312 if (bed->elf_backend_output_arch_local_syms
12313 && (info->strip != strip_all || emit_relocs))
12314 {
12315 typedef int (*out_sym_func)
12316 (void *, const char *, Elf_Internal_Sym *, asection *,
12317 struct elf_link_hash_entry *);
12318
12319 if (! ((*bed->elf_backend_output_arch_local_syms)
12320 (abfd, info, &flinfo,
12321 (out_sym_func) elf_link_output_symstrtab)))
12322 return FALSE;
12323 }
12324
12325 /* That wrote out all the local symbols. Finish up the symbol table
12326 with the global symbols. Even if we want to strip everything we
12327 can, we still need to deal with those global symbols that got
12328 converted to local in a version script. */
12329
12330 /* The sh_info field records the index of the first non local symbol. */
12331 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12332
12333 if (dynamic
12334 && htab->dynsym != NULL
12335 && htab->dynsym->output_section != bfd_abs_section_ptr)
12336 {
12337 Elf_Internal_Sym sym;
12338 bfd_byte *dynsym = htab->dynsym->contents;
12339
12340 o = htab->dynsym->output_section;
12341 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12342
12343 /* Write out the section symbols for the output sections. */
12344 if (bfd_link_pic (info)
12345 || htab->is_relocatable_executable)
12346 {
12347 asection *s;
12348
12349 sym.st_size = 0;
12350 sym.st_name = 0;
12351 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12352 sym.st_other = 0;
12353 sym.st_target_internal = 0;
12354
12355 for (s = abfd->sections; s != NULL; s = s->next)
12356 {
12357 int indx;
12358 bfd_byte *dest;
12359 long dynindx;
12360
12361 dynindx = elf_section_data (s)->dynindx;
12362 if (dynindx <= 0)
12363 continue;
12364 indx = elf_section_data (s)->this_idx;
12365 BFD_ASSERT (indx > 0);
12366 sym.st_shndx = indx;
12367 if (! check_dynsym (abfd, &sym))
12368 return FALSE;
12369 sym.st_value = s->vma;
12370 dest = dynsym + dynindx * bed->s->sizeof_sym;
12371 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12372 }
12373 }
12374
12375 /* Write out the local dynsyms. */
12376 if (htab->dynlocal)
12377 {
12378 struct elf_link_local_dynamic_entry *e;
12379 for (e = htab->dynlocal; e ; e = e->next)
12380 {
12381 asection *s;
12382 bfd_byte *dest;
12383
12384 /* Copy the internal symbol and turn off visibility.
12385 Note that we saved a word of storage and overwrote
12386 the original st_name with the dynstr_index. */
12387 sym = e->isym;
12388 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12389
12390 s = bfd_section_from_elf_index (e->input_bfd,
12391 e->isym.st_shndx);
12392 if (s != NULL)
12393 {
12394 sym.st_shndx =
12395 elf_section_data (s->output_section)->this_idx;
12396 if (! check_dynsym (abfd, &sym))
12397 return FALSE;
12398 sym.st_value = (s->output_section->vma
12399 + s->output_offset
12400 + e->isym.st_value);
12401 }
12402
12403 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12404 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12405 }
12406 }
12407 }
12408
12409 /* We get the global symbols from the hash table. */
12410 eoinfo.failed = FALSE;
12411 eoinfo.localsyms = FALSE;
12412 eoinfo.flinfo = &flinfo;
12413 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12414 if (eoinfo.failed)
12415 return FALSE;
12416
12417 /* If backend needs to output some symbols not present in the hash
12418 table, do it now. */
12419 if (bed->elf_backend_output_arch_syms
12420 && (info->strip != strip_all || emit_relocs))
12421 {
12422 typedef int (*out_sym_func)
12423 (void *, const char *, Elf_Internal_Sym *, asection *,
12424 struct elf_link_hash_entry *);
12425
12426 if (! ((*bed->elf_backend_output_arch_syms)
12427 (abfd, info, &flinfo,
12428 (out_sym_func) elf_link_output_symstrtab)))
12429 return FALSE;
12430 }
12431
12432 /* Finalize the .strtab section. */
12433 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12434
12435 /* Swap out the .strtab section. */
12436 if (!elf_link_swap_symbols_out (&flinfo))
12437 return FALSE;
12438
12439 /* Now we know the size of the symtab section. */
12440 if (bfd_get_symcount (abfd) > 0)
12441 {
12442 /* Finish up and write out the symbol string table (.strtab)
12443 section. */
12444 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12445 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12446
12447 if (elf_symtab_shndx_list (abfd))
12448 {
12449 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12450
12451 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12452 {
12453 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12454 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12455 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12456 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12457 symtab_shndx_hdr->sh_size = amt;
12458
12459 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12460 off, TRUE);
12461
12462 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12463 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12464 return FALSE;
12465 }
12466 }
12467
12468 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12469 /* sh_name was set in prep_headers. */
12470 symstrtab_hdr->sh_type = SHT_STRTAB;
12471 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12472 symstrtab_hdr->sh_addr = 0;
12473 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12474 symstrtab_hdr->sh_entsize = 0;
12475 symstrtab_hdr->sh_link = 0;
12476 symstrtab_hdr->sh_info = 0;
12477 /* sh_offset is set just below. */
12478 symstrtab_hdr->sh_addralign = 1;
12479
12480 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12481 off, TRUE);
12482 elf_next_file_pos (abfd) = off;
12483
12484 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12485 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12486 return FALSE;
12487 }
12488
12489 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12490 {
12491 _bfd_error_handler (_("%pB: failed to generate import library"),
12492 info->out_implib_bfd);
12493 return FALSE;
12494 }
12495
12496 /* Adjust the relocs to have the correct symbol indices. */
12497 for (o = abfd->sections; o != NULL; o = o->next)
12498 {
12499 struct bfd_elf_section_data *esdo = elf_section_data (o);
12500 bfd_boolean sort;
12501
12502 if ((o->flags & SEC_RELOC) == 0)
12503 continue;
12504
12505 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12506 if (esdo->rel.hdr != NULL
12507 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12508 return FALSE;
12509 if (esdo->rela.hdr != NULL
12510 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12511 return FALSE;
12512
12513 /* Set the reloc_count field to 0 to prevent write_relocs from
12514 trying to swap the relocs out itself. */
12515 o->reloc_count = 0;
12516 }
12517
12518 if (dynamic && info->combreloc && dynobj != NULL)
12519 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12520
12521 /* If we are linking against a dynamic object, or generating a
12522 shared library, finish up the dynamic linking information. */
12523 if (dynamic)
12524 {
12525 bfd_byte *dyncon, *dynconend;
12526
12527 /* Fix up .dynamic entries. */
12528 o = bfd_get_linker_section (dynobj, ".dynamic");
12529 BFD_ASSERT (o != NULL);
12530
12531 dyncon = o->contents;
12532 dynconend = o->contents + o->size;
12533 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12534 {
12535 Elf_Internal_Dyn dyn;
12536 const char *name;
12537 unsigned int type;
12538 bfd_size_type sh_size;
12539 bfd_vma sh_addr;
12540
12541 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12542
12543 switch (dyn.d_tag)
12544 {
12545 default:
12546 continue;
12547 case DT_NULL:
12548 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12549 {
12550 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12551 {
12552 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12553 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12554 default: continue;
12555 }
12556 dyn.d_un.d_val = relativecount;
12557 relativecount = 0;
12558 break;
12559 }
12560 continue;
12561
12562 case DT_INIT:
12563 name = info->init_function;
12564 goto get_sym;
12565 case DT_FINI:
12566 name = info->fini_function;
12567 get_sym:
12568 {
12569 struct elf_link_hash_entry *h;
12570
12571 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12572 if (h != NULL
12573 && (h->root.type == bfd_link_hash_defined
12574 || h->root.type == bfd_link_hash_defweak))
12575 {
12576 dyn.d_un.d_ptr = h->root.u.def.value;
12577 o = h->root.u.def.section;
12578 if (o->output_section != NULL)
12579 dyn.d_un.d_ptr += (o->output_section->vma
12580 + o->output_offset);
12581 else
12582 {
12583 /* The symbol is imported from another shared
12584 library and does not apply to this one. */
12585 dyn.d_un.d_ptr = 0;
12586 }
12587 break;
12588 }
12589 }
12590 continue;
12591
12592 case DT_PREINIT_ARRAYSZ:
12593 name = ".preinit_array";
12594 goto get_out_size;
12595 case DT_INIT_ARRAYSZ:
12596 name = ".init_array";
12597 goto get_out_size;
12598 case DT_FINI_ARRAYSZ:
12599 name = ".fini_array";
12600 get_out_size:
12601 o = bfd_get_section_by_name (abfd, name);
12602 if (o == NULL)
12603 {
12604 _bfd_error_handler
12605 (_("could not find section %s"), name);
12606 goto error_return;
12607 }
12608 if (o->size == 0)
12609 _bfd_error_handler
12610 (_("warning: %s section has zero size"), name);
12611 dyn.d_un.d_val = o->size;
12612 break;
12613
12614 case DT_PREINIT_ARRAY:
12615 name = ".preinit_array";
12616 goto get_out_vma;
12617 case DT_INIT_ARRAY:
12618 name = ".init_array";
12619 goto get_out_vma;
12620 case DT_FINI_ARRAY:
12621 name = ".fini_array";
12622 get_out_vma:
12623 o = bfd_get_section_by_name (abfd, name);
12624 goto do_vma;
12625
12626 case DT_HASH:
12627 name = ".hash";
12628 goto get_vma;
12629 case DT_GNU_HASH:
12630 name = ".gnu.hash";
12631 goto get_vma;
12632 case DT_STRTAB:
12633 name = ".dynstr";
12634 goto get_vma;
12635 case DT_SYMTAB:
12636 name = ".dynsym";
12637 goto get_vma;
12638 case DT_VERDEF:
12639 name = ".gnu.version_d";
12640 goto get_vma;
12641 case DT_VERNEED:
12642 name = ".gnu.version_r";
12643 goto get_vma;
12644 case DT_VERSYM:
12645 name = ".gnu.version";
12646 get_vma:
12647 o = bfd_get_linker_section (dynobj, name);
12648 do_vma:
12649 if (o == NULL || bfd_is_abs_section (o->output_section))
12650 {
12651 _bfd_error_handler
12652 (_("could not find section %s"), name);
12653 goto error_return;
12654 }
12655 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12656 {
12657 _bfd_error_handler
12658 (_("warning: section '%s' is being made into a note"), name);
12659 bfd_set_error (bfd_error_nonrepresentable_section);
12660 goto error_return;
12661 }
12662 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12663 break;
12664
12665 case DT_REL:
12666 case DT_RELA:
12667 case DT_RELSZ:
12668 case DT_RELASZ:
12669 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12670 type = SHT_REL;
12671 else
12672 type = SHT_RELA;
12673 sh_size = 0;
12674 sh_addr = 0;
12675 for (i = 1; i < elf_numsections (abfd); i++)
12676 {
12677 Elf_Internal_Shdr *hdr;
12678
12679 hdr = elf_elfsections (abfd)[i];
12680 if (hdr->sh_type == type
12681 && (hdr->sh_flags & SHF_ALLOC) != 0)
12682 {
12683 sh_size += hdr->sh_size;
12684 if (sh_addr == 0
12685 || sh_addr > hdr->sh_addr)
12686 sh_addr = hdr->sh_addr;
12687 }
12688 }
12689
12690 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12691 {
12692 /* Don't count procedure linkage table relocs in the
12693 overall reloc count. */
12694 sh_size -= htab->srelplt->size;
12695 if (sh_size == 0)
12696 /* If the size is zero, make the address zero too.
12697 This is to avoid a glibc bug. If the backend
12698 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12699 zero, then we'll put DT_RELA at the end of
12700 DT_JMPREL. glibc will interpret the end of
12701 DT_RELA matching the end of DT_JMPREL as the
12702 case where DT_RELA includes DT_JMPREL, and for
12703 LD_BIND_NOW will decide that processing DT_RELA
12704 will process the PLT relocs too. Net result:
12705 No PLT relocs applied. */
12706 sh_addr = 0;
12707
12708 /* If .rela.plt is the first .rela section, exclude
12709 it from DT_RELA. */
12710 else if (sh_addr == (htab->srelplt->output_section->vma
12711 + htab->srelplt->output_offset))
12712 sh_addr += htab->srelplt->size;
12713 }
12714
12715 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12716 dyn.d_un.d_val = sh_size;
12717 else
12718 dyn.d_un.d_ptr = sh_addr;
12719 break;
12720 }
12721 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12722 }
12723 }
12724
12725 /* If we have created any dynamic sections, then output them. */
12726 if (dynobj != NULL)
12727 {
12728 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12729 goto error_return;
12730
12731 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12732 if (((info->warn_shared_textrel && bfd_link_pic (info))
12733 || info->error_textrel)
12734 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12735 {
12736 bfd_byte *dyncon, *dynconend;
12737
12738 dyncon = o->contents;
12739 dynconend = o->contents + o->size;
12740 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12741 {
12742 Elf_Internal_Dyn dyn;
12743
12744 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12745
12746 if (dyn.d_tag == DT_TEXTREL)
12747 {
12748 if (info->error_textrel)
12749 info->callbacks->einfo
12750 (_("%P%X: read-only segment has dynamic relocations\n"));
12751 else
12752 info->callbacks->einfo
12753 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12754 break;
12755 }
12756 }
12757 }
12758
12759 for (o = dynobj->sections; o != NULL; o = o->next)
12760 {
12761 if ((o->flags & SEC_HAS_CONTENTS) == 0
12762 || o->size == 0
12763 || o->output_section == bfd_abs_section_ptr)
12764 continue;
12765 if ((o->flags & SEC_LINKER_CREATED) == 0)
12766 {
12767 /* At this point, we are only interested in sections
12768 created by _bfd_elf_link_create_dynamic_sections. */
12769 continue;
12770 }
12771 if (htab->stab_info.stabstr == o)
12772 continue;
12773 if (htab->eh_info.hdr_sec == o)
12774 continue;
12775 if (strcmp (o->name, ".dynstr") != 0)
12776 {
12777 if (! bfd_set_section_contents (abfd, o->output_section,
12778 o->contents,
12779 (file_ptr) o->output_offset
12780 * bfd_octets_per_byte (abfd),
12781 o->size))
12782 goto error_return;
12783 }
12784 else
12785 {
12786 /* The contents of the .dynstr section are actually in a
12787 stringtab. */
12788 file_ptr off;
12789
12790 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12791 if (bfd_seek (abfd, off, SEEK_SET) != 0
12792 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12793 goto error_return;
12794 }
12795 }
12796 }
12797
12798 if (!info->resolve_section_groups)
12799 {
12800 bfd_boolean failed = FALSE;
12801
12802 BFD_ASSERT (bfd_link_relocatable (info));
12803 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12804 if (failed)
12805 goto error_return;
12806 }
12807
12808 /* If we have optimized stabs strings, output them. */
12809 if (htab->stab_info.stabstr != NULL)
12810 {
12811 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12812 goto error_return;
12813 }
12814
12815 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12816 goto error_return;
12817
12818 elf_final_link_free (abfd, &flinfo);
12819
12820 if (attr_section)
12821 {
12822 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12823 if (contents == NULL)
12824 return FALSE; /* Bail out and fail. */
12825 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12826 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12827 free (contents);
12828 }
12829
12830 return TRUE;
12831
12832 error_return:
12833 elf_final_link_free (abfd, &flinfo);
12834 return FALSE;
12835 }
12836 \f
12837 /* Initialize COOKIE for input bfd ABFD. */
12838
12839 static bfd_boolean
12840 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12841 struct bfd_link_info *info, bfd *abfd)
12842 {
12843 Elf_Internal_Shdr *symtab_hdr;
12844 const struct elf_backend_data *bed;
12845
12846 bed = get_elf_backend_data (abfd);
12847 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12848
12849 cookie->abfd = abfd;
12850 cookie->sym_hashes = elf_sym_hashes (abfd);
12851 cookie->bad_symtab = elf_bad_symtab (abfd);
12852 if (cookie->bad_symtab)
12853 {
12854 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12855 cookie->extsymoff = 0;
12856 }
12857 else
12858 {
12859 cookie->locsymcount = symtab_hdr->sh_info;
12860 cookie->extsymoff = symtab_hdr->sh_info;
12861 }
12862
12863 if (bed->s->arch_size == 32)
12864 cookie->r_sym_shift = 8;
12865 else
12866 cookie->r_sym_shift = 32;
12867
12868 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12869 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12870 {
12871 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12872 cookie->locsymcount, 0,
12873 NULL, NULL, NULL);
12874 if (cookie->locsyms == NULL)
12875 {
12876 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12877 return FALSE;
12878 }
12879 if (info->keep_memory)
12880 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12881 }
12882 return TRUE;
12883 }
12884
12885 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12886
12887 static void
12888 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12889 {
12890 Elf_Internal_Shdr *symtab_hdr;
12891
12892 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12893 if (cookie->locsyms != NULL
12894 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12895 free (cookie->locsyms);
12896 }
12897
12898 /* Initialize the relocation information in COOKIE for input section SEC
12899 of input bfd ABFD. */
12900
12901 static bfd_boolean
12902 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12903 struct bfd_link_info *info, bfd *abfd,
12904 asection *sec)
12905 {
12906 if (sec->reloc_count == 0)
12907 {
12908 cookie->rels = NULL;
12909 cookie->relend = NULL;
12910 }
12911 else
12912 {
12913 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12914 info->keep_memory);
12915 if (cookie->rels == NULL)
12916 return FALSE;
12917 cookie->rel = cookie->rels;
12918 cookie->relend = cookie->rels + sec->reloc_count;
12919 }
12920 cookie->rel = cookie->rels;
12921 return TRUE;
12922 }
12923
12924 /* Free the memory allocated by init_reloc_cookie_rels,
12925 if appropriate. */
12926
12927 static void
12928 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12929 asection *sec)
12930 {
12931 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12932 free (cookie->rels);
12933 }
12934
12935 /* Initialize the whole of COOKIE for input section SEC. */
12936
12937 static bfd_boolean
12938 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12939 struct bfd_link_info *info,
12940 asection *sec)
12941 {
12942 if (!init_reloc_cookie (cookie, info, sec->owner))
12943 goto error1;
12944 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12945 goto error2;
12946 return TRUE;
12947
12948 error2:
12949 fini_reloc_cookie (cookie, sec->owner);
12950 error1:
12951 return FALSE;
12952 }
12953
12954 /* Free the memory allocated by init_reloc_cookie_for_section,
12955 if appropriate. */
12956
12957 static void
12958 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12959 asection *sec)
12960 {
12961 fini_reloc_cookie_rels (cookie, sec);
12962 fini_reloc_cookie (cookie, sec->owner);
12963 }
12964 \f
12965 /* Garbage collect unused sections. */
12966
12967 /* Default gc_mark_hook. */
12968
12969 asection *
12970 _bfd_elf_gc_mark_hook (asection *sec,
12971 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12972 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12973 struct elf_link_hash_entry *h,
12974 Elf_Internal_Sym *sym)
12975 {
12976 if (h != NULL)
12977 {
12978 switch (h->root.type)
12979 {
12980 case bfd_link_hash_defined:
12981 case bfd_link_hash_defweak:
12982 return h->root.u.def.section;
12983
12984 case bfd_link_hash_common:
12985 return h->root.u.c.p->section;
12986
12987 default:
12988 break;
12989 }
12990 }
12991 else
12992 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12993
12994 return NULL;
12995 }
12996
12997 /* Return the debug definition section. */
12998
12999 static asection *
13000 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13001 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13002 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13003 struct elf_link_hash_entry *h,
13004 Elf_Internal_Sym *sym)
13005 {
13006 if (h != NULL)
13007 {
13008 /* Return the global debug definition section. */
13009 if ((h->root.type == bfd_link_hash_defined
13010 || h->root.type == bfd_link_hash_defweak)
13011 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13012 return h->root.u.def.section;
13013 }
13014 else
13015 {
13016 /* Return the local debug definition section. */
13017 asection *isec = bfd_section_from_elf_index (sec->owner,
13018 sym->st_shndx);
13019 if ((isec->flags & SEC_DEBUGGING) != 0)
13020 return isec;
13021 }
13022
13023 return NULL;
13024 }
13025
13026 /* COOKIE->rel describes a relocation against section SEC, which is
13027 a section we've decided to keep. Return the section that contains
13028 the relocation symbol, or NULL if no section contains it. */
13029
13030 asection *
13031 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13032 elf_gc_mark_hook_fn gc_mark_hook,
13033 struct elf_reloc_cookie *cookie,
13034 bfd_boolean *start_stop)
13035 {
13036 unsigned long r_symndx;
13037 struct elf_link_hash_entry *h;
13038
13039 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13040 if (r_symndx == STN_UNDEF)
13041 return NULL;
13042
13043 if (r_symndx >= cookie->locsymcount
13044 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13045 {
13046 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13047 if (h == NULL)
13048 {
13049 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13050 sec->owner);
13051 return NULL;
13052 }
13053 while (h->root.type == bfd_link_hash_indirect
13054 || h->root.type == bfd_link_hash_warning)
13055 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13056 h->mark = 1;
13057 /* If this symbol is weak and there is a non-weak definition, we
13058 keep the non-weak definition because many backends put
13059 dynamic reloc info on the non-weak definition for code
13060 handling copy relocs. */
13061 if (h->is_weakalias)
13062 weakdef (h)->mark = 1;
13063
13064 if (start_stop != NULL)
13065 {
13066 /* To work around a glibc bug, mark XXX input sections
13067 when there is a reference to __start_XXX or __stop_XXX
13068 symbols. */
13069 if (h->start_stop)
13070 {
13071 asection *s = h->u2.start_stop_section;
13072 *start_stop = !s->gc_mark;
13073 return s;
13074 }
13075 }
13076
13077 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13078 }
13079
13080 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13081 &cookie->locsyms[r_symndx]);
13082 }
13083
13084 /* COOKIE->rel describes a relocation against section SEC, which is
13085 a section we've decided to keep. Mark the section that contains
13086 the relocation symbol. */
13087
13088 bfd_boolean
13089 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13090 asection *sec,
13091 elf_gc_mark_hook_fn gc_mark_hook,
13092 struct elf_reloc_cookie *cookie)
13093 {
13094 asection *rsec;
13095 bfd_boolean start_stop = FALSE;
13096
13097 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13098 while (rsec != NULL)
13099 {
13100 if (!rsec->gc_mark)
13101 {
13102 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13103 || (rsec->owner->flags & DYNAMIC) != 0)
13104 rsec->gc_mark = 1;
13105 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13106 return FALSE;
13107 }
13108 if (!start_stop)
13109 break;
13110 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13111 }
13112 return TRUE;
13113 }
13114
13115 /* The mark phase of garbage collection. For a given section, mark
13116 it and any sections in this section's group, and all the sections
13117 which define symbols to which it refers. */
13118
13119 bfd_boolean
13120 _bfd_elf_gc_mark (struct bfd_link_info *info,
13121 asection *sec,
13122 elf_gc_mark_hook_fn gc_mark_hook)
13123 {
13124 bfd_boolean ret;
13125 asection *group_sec, *eh_frame;
13126
13127 sec->gc_mark = 1;
13128
13129 /* Mark all the sections in the group. */
13130 group_sec = elf_section_data (sec)->next_in_group;
13131 if (group_sec && !group_sec->gc_mark)
13132 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13133 return FALSE;
13134
13135 /* Look through the section relocs. */
13136 ret = TRUE;
13137 eh_frame = elf_eh_frame_section (sec->owner);
13138 if ((sec->flags & SEC_RELOC) != 0
13139 && sec->reloc_count > 0
13140 && sec != eh_frame)
13141 {
13142 struct elf_reloc_cookie cookie;
13143
13144 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13145 ret = FALSE;
13146 else
13147 {
13148 for (; cookie.rel < cookie.relend; cookie.rel++)
13149 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13150 {
13151 ret = FALSE;
13152 break;
13153 }
13154 fini_reloc_cookie_for_section (&cookie, sec);
13155 }
13156 }
13157
13158 if (ret && eh_frame && elf_fde_list (sec))
13159 {
13160 struct elf_reloc_cookie cookie;
13161
13162 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13163 ret = FALSE;
13164 else
13165 {
13166 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13167 gc_mark_hook, &cookie))
13168 ret = FALSE;
13169 fini_reloc_cookie_for_section (&cookie, eh_frame);
13170 }
13171 }
13172
13173 eh_frame = elf_section_eh_frame_entry (sec);
13174 if (ret && eh_frame && !eh_frame->gc_mark)
13175 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13176 ret = FALSE;
13177
13178 return ret;
13179 }
13180
13181 /* Scan and mark sections in a special or debug section group. */
13182
13183 static void
13184 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13185 {
13186 /* Point to first section of section group. */
13187 asection *ssec;
13188 /* Used to iterate the section group. */
13189 asection *msec;
13190
13191 bfd_boolean is_special_grp = TRUE;
13192 bfd_boolean is_debug_grp = TRUE;
13193
13194 /* First scan to see if group contains any section other than debug
13195 and special section. */
13196 ssec = msec = elf_next_in_group (grp);
13197 do
13198 {
13199 if ((msec->flags & SEC_DEBUGGING) == 0)
13200 is_debug_grp = FALSE;
13201
13202 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13203 is_special_grp = FALSE;
13204
13205 msec = elf_next_in_group (msec);
13206 }
13207 while (msec != ssec);
13208
13209 /* If this is a pure debug section group or pure special section group,
13210 keep all sections in this group. */
13211 if (is_debug_grp || is_special_grp)
13212 {
13213 do
13214 {
13215 msec->gc_mark = 1;
13216 msec = elf_next_in_group (msec);
13217 }
13218 while (msec != ssec);
13219 }
13220 }
13221
13222 /* Keep debug and special sections. */
13223
13224 bfd_boolean
13225 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13226 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13227 {
13228 bfd *ibfd;
13229
13230 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13231 {
13232 asection *isec;
13233 bfd_boolean some_kept;
13234 bfd_boolean debug_frag_seen;
13235 bfd_boolean has_kept_debug_info;
13236
13237 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13238 continue;
13239 isec = ibfd->sections;
13240 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13241 continue;
13242
13243 /* Ensure all linker created sections are kept,
13244 see if any other section is already marked,
13245 and note if we have any fragmented debug sections. */
13246 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13247 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13248 {
13249 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13250 isec->gc_mark = 1;
13251 else if (isec->gc_mark
13252 && (isec->flags & SEC_ALLOC) != 0
13253 && elf_section_type (isec) != SHT_NOTE)
13254 some_kept = TRUE;
13255
13256 if (!debug_frag_seen
13257 && (isec->flags & SEC_DEBUGGING)
13258 && CONST_STRNEQ (isec->name, ".debug_line."))
13259 debug_frag_seen = TRUE;
13260 }
13261
13262 /* If no non-note alloc section in this file will be kept, then
13263 we can toss out the debug and special sections. */
13264 if (!some_kept)
13265 continue;
13266
13267 /* Keep debug and special sections like .comment when they are
13268 not part of a group. Also keep section groups that contain
13269 just debug sections or special sections. */
13270 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13271 {
13272 if ((isec->flags & SEC_GROUP) != 0)
13273 _bfd_elf_gc_mark_debug_special_section_group (isec);
13274 else if (((isec->flags & SEC_DEBUGGING) != 0
13275 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13276 && elf_next_in_group (isec) == NULL)
13277 isec->gc_mark = 1;
13278 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13279 has_kept_debug_info = TRUE;
13280 }
13281
13282 /* Look for CODE sections which are going to be discarded,
13283 and find and discard any fragmented debug sections which
13284 are associated with that code section. */
13285 if (debug_frag_seen)
13286 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13287 if ((isec->flags & SEC_CODE) != 0
13288 && isec->gc_mark == 0)
13289 {
13290 unsigned int ilen;
13291 asection *dsec;
13292
13293 ilen = strlen (isec->name);
13294
13295 /* Association is determined by the name of the debug
13296 section containing the name of the code section as
13297 a suffix. For example .debug_line.text.foo is a
13298 debug section associated with .text.foo. */
13299 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13300 {
13301 unsigned int dlen;
13302
13303 if (dsec->gc_mark == 0
13304 || (dsec->flags & SEC_DEBUGGING) == 0)
13305 continue;
13306
13307 dlen = strlen (dsec->name);
13308
13309 if (dlen > ilen
13310 && strncmp (dsec->name + (dlen - ilen),
13311 isec->name, ilen) == 0)
13312 dsec->gc_mark = 0;
13313 }
13314 }
13315
13316 /* Mark debug sections referenced by kept debug sections. */
13317 if (has_kept_debug_info)
13318 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13319 if (isec->gc_mark
13320 && (isec->flags & SEC_DEBUGGING) != 0)
13321 if (!_bfd_elf_gc_mark (info, isec,
13322 elf_gc_mark_debug_section))
13323 return FALSE;
13324 }
13325 return TRUE;
13326 }
13327
13328 static bfd_boolean
13329 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13330 {
13331 bfd *sub;
13332 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13333
13334 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13335 {
13336 asection *o;
13337
13338 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13339 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13340 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13341 continue;
13342 o = sub->sections;
13343 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13344 continue;
13345
13346 for (o = sub->sections; o != NULL; o = o->next)
13347 {
13348 /* When any section in a section group is kept, we keep all
13349 sections in the section group. If the first member of
13350 the section group is excluded, we will also exclude the
13351 group section. */
13352 if (o->flags & SEC_GROUP)
13353 {
13354 asection *first = elf_next_in_group (o);
13355 o->gc_mark = first->gc_mark;
13356 }
13357
13358 if (o->gc_mark)
13359 continue;
13360
13361 /* Skip sweeping sections already excluded. */
13362 if (o->flags & SEC_EXCLUDE)
13363 continue;
13364
13365 /* Since this is early in the link process, it is simple
13366 to remove a section from the output. */
13367 o->flags |= SEC_EXCLUDE;
13368
13369 if (info->print_gc_sections && o->size != 0)
13370 /* xgettext:c-format */
13371 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13372 o, sub);
13373 }
13374 }
13375
13376 return TRUE;
13377 }
13378
13379 /* Propagate collected vtable information. This is called through
13380 elf_link_hash_traverse. */
13381
13382 static bfd_boolean
13383 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13384 {
13385 /* Those that are not vtables. */
13386 if (h->start_stop
13387 || h->u2.vtable == NULL
13388 || h->u2.vtable->parent == NULL)
13389 return TRUE;
13390
13391 /* Those vtables that do not have parents, we cannot merge. */
13392 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13393 return TRUE;
13394
13395 /* If we've already been done, exit. */
13396 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13397 return TRUE;
13398
13399 /* Make sure the parent's table is up to date. */
13400 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13401
13402 if (h->u2.vtable->used == NULL)
13403 {
13404 /* None of this table's entries were referenced. Re-use the
13405 parent's table. */
13406 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13407 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13408 }
13409 else
13410 {
13411 size_t n;
13412 bfd_boolean *cu, *pu;
13413
13414 /* Or the parent's entries into ours. */
13415 cu = h->u2.vtable->used;
13416 cu[-1] = TRUE;
13417 pu = h->u2.vtable->parent->u2.vtable->used;
13418 if (pu != NULL)
13419 {
13420 const struct elf_backend_data *bed;
13421 unsigned int log_file_align;
13422
13423 bed = get_elf_backend_data (h->root.u.def.section->owner);
13424 log_file_align = bed->s->log_file_align;
13425 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13426 while (n--)
13427 {
13428 if (*pu)
13429 *cu = TRUE;
13430 pu++;
13431 cu++;
13432 }
13433 }
13434 }
13435
13436 return TRUE;
13437 }
13438
13439 static bfd_boolean
13440 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13441 {
13442 asection *sec;
13443 bfd_vma hstart, hend;
13444 Elf_Internal_Rela *relstart, *relend, *rel;
13445 const struct elf_backend_data *bed;
13446 unsigned int log_file_align;
13447
13448 /* Take care of both those symbols that do not describe vtables as
13449 well as those that are not loaded. */
13450 if (h->start_stop
13451 || h->u2.vtable == NULL
13452 || h->u2.vtable->parent == NULL)
13453 return TRUE;
13454
13455 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13456 || h->root.type == bfd_link_hash_defweak);
13457
13458 sec = h->root.u.def.section;
13459 hstart = h->root.u.def.value;
13460 hend = hstart + h->size;
13461
13462 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13463 if (!relstart)
13464 return *(bfd_boolean *) okp = FALSE;
13465 bed = get_elf_backend_data (sec->owner);
13466 log_file_align = bed->s->log_file_align;
13467
13468 relend = relstart + sec->reloc_count;
13469
13470 for (rel = relstart; rel < relend; ++rel)
13471 if (rel->r_offset >= hstart && rel->r_offset < hend)
13472 {
13473 /* If the entry is in use, do nothing. */
13474 if (h->u2.vtable->used
13475 && (rel->r_offset - hstart) < h->u2.vtable->size)
13476 {
13477 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13478 if (h->u2.vtable->used[entry])
13479 continue;
13480 }
13481 /* Otherwise, kill it. */
13482 rel->r_offset = rel->r_info = rel->r_addend = 0;
13483 }
13484
13485 return TRUE;
13486 }
13487
13488 /* Mark sections containing dynamically referenced symbols. When
13489 building shared libraries, we must assume that any visible symbol is
13490 referenced. */
13491
13492 bfd_boolean
13493 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13494 {
13495 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13496 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13497
13498 if ((h->root.type == bfd_link_hash_defined
13499 || h->root.type == bfd_link_hash_defweak)
13500 && ((h->ref_dynamic && !h->forced_local)
13501 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13502 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13503 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13504 && (!bfd_link_executable (info)
13505 || info->gc_keep_exported
13506 || info->export_dynamic
13507 || (h->dynamic
13508 && d != NULL
13509 && (*d->match) (&d->head, NULL, h->root.root.string)))
13510 && (h->versioned >= versioned
13511 || !bfd_hide_sym_by_version (info->version_info,
13512 h->root.root.string)))))
13513 h->root.u.def.section->flags |= SEC_KEEP;
13514
13515 return TRUE;
13516 }
13517
13518 /* Keep all sections containing symbols undefined on the command-line,
13519 and the section containing the entry symbol. */
13520
13521 void
13522 _bfd_elf_gc_keep (struct bfd_link_info *info)
13523 {
13524 struct bfd_sym_chain *sym;
13525
13526 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13527 {
13528 struct elf_link_hash_entry *h;
13529
13530 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13531 FALSE, FALSE, FALSE);
13532
13533 if (h != NULL
13534 && (h->root.type == bfd_link_hash_defined
13535 || h->root.type == bfd_link_hash_defweak)
13536 && !bfd_is_abs_section (h->root.u.def.section)
13537 && !bfd_is_und_section (h->root.u.def.section))
13538 h->root.u.def.section->flags |= SEC_KEEP;
13539 }
13540 }
13541
13542 bfd_boolean
13543 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13544 struct bfd_link_info *info)
13545 {
13546 bfd *ibfd = info->input_bfds;
13547
13548 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13549 {
13550 asection *sec;
13551 struct elf_reloc_cookie cookie;
13552
13553 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13554 continue;
13555 sec = ibfd->sections;
13556 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13557 continue;
13558
13559 if (!init_reloc_cookie (&cookie, info, ibfd))
13560 return FALSE;
13561
13562 for (sec = ibfd->sections; sec; sec = sec->next)
13563 {
13564 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13565 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13566 {
13567 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13568 fini_reloc_cookie_rels (&cookie, sec);
13569 }
13570 }
13571 }
13572 return TRUE;
13573 }
13574
13575 /* Do mark and sweep of unused sections. */
13576
13577 bfd_boolean
13578 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13579 {
13580 bfd_boolean ok = TRUE;
13581 bfd *sub;
13582 elf_gc_mark_hook_fn gc_mark_hook;
13583 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13584 struct elf_link_hash_table *htab;
13585
13586 if (!bed->can_gc_sections
13587 || !is_elf_hash_table (info->hash))
13588 {
13589 _bfd_error_handler(_("warning: gc-sections option ignored"));
13590 return TRUE;
13591 }
13592
13593 bed->gc_keep (info);
13594 htab = elf_hash_table (info);
13595
13596 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13597 at the .eh_frame section if we can mark the FDEs individually. */
13598 for (sub = info->input_bfds;
13599 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13600 sub = sub->link.next)
13601 {
13602 asection *sec;
13603 struct elf_reloc_cookie cookie;
13604
13605 sec = sub->sections;
13606 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13607 continue;
13608 sec = bfd_get_section_by_name (sub, ".eh_frame");
13609 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13610 {
13611 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13612 if (elf_section_data (sec)->sec_info
13613 && (sec->flags & SEC_LINKER_CREATED) == 0)
13614 elf_eh_frame_section (sub) = sec;
13615 fini_reloc_cookie_for_section (&cookie, sec);
13616 sec = bfd_get_next_section_by_name (NULL, sec);
13617 }
13618 }
13619
13620 /* Apply transitive closure to the vtable entry usage info. */
13621 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13622 if (!ok)
13623 return FALSE;
13624
13625 /* Kill the vtable relocations that were not used. */
13626 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13627 if (!ok)
13628 return FALSE;
13629
13630 /* Mark dynamically referenced symbols. */
13631 if (htab->dynamic_sections_created || info->gc_keep_exported)
13632 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13633
13634 /* Grovel through relocs to find out who stays ... */
13635 gc_mark_hook = bed->gc_mark_hook;
13636 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13637 {
13638 asection *o;
13639
13640 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13641 || elf_object_id (sub) != elf_hash_table_id (htab)
13642 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13643 continue;
13644
13645 o = sub->sections;
13646 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13647 continue;
13648
13649 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13650 Also treat note sections as a root, if the section is not part
13651 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13652 well as FINI_ARRAY sections for ld -r. */
13653 for (o = sub->sections; o != NULL; o = o->next)
13654 if (!o->gc_mark
13655 && (o->flags & SEC_EXCLUDE) == 0
13656 && ((o->flags & SEC_KEEP) != 0
13657 || (bfd_link_relocatable (info)
13658 && ((elf_section_data (o)->this_hdr.sh_type
13659 == SHT_PREINIT_ARRAY)
13660 || (elf_section_data (o)->this_hdr.sh_type
13661 == SHT_INIT_ARRAY)
13662 || (elf_section_data (o)->this_hdr.sh_type
13663 == SHT_FINI_ARRAY)))
13664 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13665 && elf_next_in_group (o) == NULL )))
13666 {
13667 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13668 return FALSE;
13669 }
13670 }
13671
13672 /* Allow the backend to mark additional target specific sections. */
13673 bed->gc_mark_extra_sections (info, gc_mark_hook);
13674
13675 /* ... and mark SEC_EXCLUDE for those that go. */
13676 return elf_gc_sweep (abfd, info);
13677 }
13678 \f
13679 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13680
13681 bfd_boolean
13682 bfd_elf_gc_record_vtinherit (bfd *abfd,
13683 asection *sec,
13684 struct elf_link_hash_entry *h,
13685 bfd_vma offset)
13686 {
13687 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13688 struct elf_link_hash_entry **search, *child;
13689 size_t extsymcount;
13690 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13691
13692 /* The sh_info field of the symtab header tells us where the
13693 external symbols start. We don't care about the local symbols at
13694 this point. */
13695 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13696 if (!elf_bad_symtab (abfd))
13697 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13698
13699 sym_hashes = elf_sym_hashes (abfd);
13700 sym_hashes_end = sym_hashes + extsymcount;
13701
13702 /* Hunt down the child symbol, which is in this section at the same
13703 offset as the relocation. */
13704 for (search = sym_hashes; search != sym_hashes_end; ++search)
13705 {
13706 if ((child = *search) != NULL
13707 && (child->root.type == bfd_link_hash_defined
13708 || child->root.type == bfd_link_hash_defweak)
13709 && child->root.u.def.section == sec
13710 && child->root.u.def.value == offset)
13711 goto win;
13712 }
13713
13714 /* xgettext:c-format */
13715 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13716 abfd, sec, (uint64_t) offset);
13717 bfd_set_error (bfd_error_invalid_operation);
13718 return FALSE;
13719
13720 win:
13721 if (!child->u2.vtable)
13722 {
13723 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13724 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13725 if (!child->u2.vtable)
13726 return FALSE;
13727 }
13728 if (!h)
13729 {
13730 /* This *should* only be the absolute section. It could potentially
13731 be that someone has defined a non-global vtable though, which
13732 would be bad. It isn't worth paging in the local symbols to be
13733 sure though; that case should simply be handled by the assembler. */
13734
13735 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13736 }
13737 else
13738 child->u2.vtable->parent = h;
13739
13740 return TRUE;
13741 }
13742
13743 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13744
13745 bfd_boolean
13746 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13747 struct elf_link_hash_entry *h,
13748 bfd_vma addend)
13749 {
13750 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13751 unsigned int log_file_align = bed->s->log_file_align;
13752
13753 if (!h)
13754 {
13755 /* xgettext:c-format */
13756 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13757 abfd, sec);
13758 bfd_set_error (bfd_error_bad_value);
13759 return FALSE;
13760 }
13761
13762 if (!h->u2.vtable)
13763 {
13764 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13765 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13766 if (!h->u2.vtable)
13767 return FALSE;
13768 }
13769
13770 if (addend >= h->u2.vtable->size)
13771 {
13772 size_t size, bytes, file_align;
13773 bfd_boolean *ptr = h->u2.vtable->used;
13774
13775 /* While the symbol is undefined, we have to be prepared to handle
13776 a zero size. */
13777 file_align = 1 << log_file_align;
13778 if (h->root.type == bfd_link_hash_undefined)
13779 size = addend + file_align;
13780 else
13781 {
13782 size = h->size;
13783 if (addend >= size)
13784 {
13785 /* Oops! We've got a reference past the defined end of
13786 the table. This is probably a bug -- shall we warn? */
13787 size = addend + file_align;
13788 }
13789 }
13790 size = (size + file_align - 1) & -file_align;
13791
13792 /* Allocate one extra entry for use as a "done" flag for the
13793 consolidation pass. */
13794 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13795
13796 if (ptr)
13797 {
13798 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13799
13800 if (ptr != NULL)
13801 {
13802 size_t oldbytes;
13803
13804 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13805 * sizeof (bfd_boolean));
13806 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13807 }
13808 }
13809 else
13810 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13811
13812 if (ptr == NULL)
13813 return FALSE;
13814
13815 /* And arrange for that done flag to be at index -1. */
13816 h->u2.vtable->used = ptr + 1;
13817 h->u2.vtable->size = size;
13818 }
13819
13820 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13821
13822 return TRUE;
13823 }
13824
13825 /* Map an ELF section header flag to its corresponding string. */
13826 typedef struct
13827 {
13828 char *flag_name;
13829 flagword flag_value;
13830 } elf_flags_to_name_table;
13831
13832 static elf_flags_to_name_table elf_flags_to_names [] =
13833 {
13834 { "SHF_WRITE", SHF_WRITE },
13835 { "SHF_ALLOC", SHF_ALLOC },
13836 { "SHF_EXECINSTR", SHF_EXECINSTR },
13837 { "SHF_MERGE", SHF_MERGE },
13838 { "SHF_STRINGS", SHF_STRINGS },
13839 { "SHF_INFO_LINK", SHF_INFO_LINK},
13840 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13841 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13842 { "SHF_GROUP", SHF_GROUP },
13843 { "SHF_TLS", SHF_TLS },
13844 { "SHF_MASKOS", SHF_MASKOS },
13845 { "SHF_EXCLUDE", SHF_EXCLUDE },
13846 };
13847
13848 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13849 bfd_boolean
13850 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13851 struct flag_info *flaginfo,
13852 asection *section)
13853 {
13854 const bfd_vma sh_flags = elf_section_flags (section);
13855
13856 if (!flaginfo->flags_initialized)
13857 {
13858 bfd *obfd = info->output_bfd;
13859 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13860 struct flag_info_list *tf = flaginfo->flag_list;
13861 int with_hex = 0;
13862 int without_hex = 0;
13863
13864 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13865 {
13866 unsigned i;
13867 flagword (*lookup) (char *);
13868
13869 lookup = bed->elf_backend_lookup_section_flags_hook;
13870 if (lookup != NULL)
13871 {
13872 flagword hexval = (*lookup) ((char *) tf->name);
13873
13874 if (hexval != 0)
13875 {
13876 if (tf->with == with_flags)
13877 with_hex |= hexval;
13878 else if (tf->with == without_flags)
13879 without_hex |= hexval;
13880 tf->valid = TRUE;
13881 continue;
13882 }
13883 }
13884 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13885 {
13886 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13887 {
13888 if (tf->with == with_flags)
13889 with_hex |= elf_flags_to_names[i].flag_value;
13890 else if (tf->with == without_flags)
13891 without_hex |= elf_flags_to_names[i].flag_value;
13892 tf->valid = TRUE;
13893 break;
13894 }
13895 }
13896 if (!tf->valid)
13897 {
13898 info->callbacks->einfo
13899 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13900 return FALSE;
13901 }
13902 }
13903 flaginfo->flags_initialized = TRUE;
13904 flaginfo->only_with_flags |= with_hex;
13905 flaginfo->not_with_flags |= without_hex;
13906 }
13907
13908 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13909 return FALSE;
13910
13911 if ((flaginfo->not_with_flags & sh_flags) != 0)
13912 return FALSE;
13913
13914 return TRUE;
13915 }
13916
13917 struct alloc_got_off_arg {
13918 bfd_vma gotoff;
13919 struct bfd_link_info *info;
13920 };
13921
13922 /* We need a special top-level link routine to convert got reference counts
13923 to real got offsets. */
13924
13925 static bfd_boolean
13926 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13927 {
13928 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13929 bfd *obfd = gofarg->info->output_bfd;
13930 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13931
13932 if (h->got.refcount > 0)
13933 {
13934 h->got.offset = gofarg->gotoff;
13935 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13936 }
13937 else
13938 h->got.offset = (bfd_vma) -1;
13939
13940 return TRUE;
13941 }
13942
13943 /* And an accompanying bit to work out final got entry offsets once
13944 we're done. Should be called from final_link. */
13945
13946 bfd_boolean
13947 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13948 struct bfd_link_info *info)
13949 {
13950 bfd *i;
13951 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13952 bfd_vma gotoff;
13953 struct alloc_got_off_arg gofarg;
13954
13955 BFD_ASSERT (abfd == info->output_bfd);
13956
13957 if (! is_elf_hash_table (info->hash))
13958 return FALSE;
13959
13960 /* The GOT offset is relative to the .got section, but the GOT header is
13961 put into the .got.plt section, if the backend uses it. */
13962 if (bed->want_got_plt)
13963 gotoff = 0;
13964 else
13965 gotoff = bed->got_header_size;
13966
13967 /* Do the local .got entries first. */
13968 for (i = info->input_bfds; i; i = i->link.next)
13969 {
13970 bfd_signed_vma *local_got;
13971 size_t j, locsymcount;
13972 Elf_Internal_Shdr *symtab_hdr;
13973
13974 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13975 continue;
13976
13977 local_got = elf_local_got_refcounts (i);
13978 if (!local_got)
13979 continue;
13980
13981 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13982 if (elf_bad_symtab (i))
13983 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13984 else
13985 locsymcount = symtab_hdr->sh_info;
13986
13987 for (j = 0; j < locsymcount; ++j)
13988 {
13989 if (local_got[j] > 0)
13990 {
13991 local_got[j] = gotoff;
13992 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13993 }
13994 else
13995 local_got[j] = (bfd_vma) -1;
13996 }
13997 }
13998
13999 /* Then the global .got entries. .plt refcounts are handled by
14000 adjust_dynamic_symbol */
14001 gofarg.gotoff = gotoff;
14002 gofarg.info = info;
14003 elf_link_hash_traverse (elf_hash_table (info),
14004 elf_gc_allocate_got_offsets,
14005 &gofarg);
14006 return TRUE;
14007 }
14008
14009 /* Many folk need no more in the way of final link than this, once
14010 got entry reference counting is enabled. */
14011
14012 bfd_boolean
14013 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14014 {
14015 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14016 return FALSE;
14017
14018 /* Invoke the regular ELF backend linker to do all the work. */
14019 return bfd_elf_final_link (abfd, info);
14020 }
14021
14022 bfd_boolean
14023 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14024 {
14025 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14026
14027 if (rcookie->bad_symtab)
14028 rcookie->rel = rcookie->rels;
14029
14030 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14031 {
14032 unsigned long r_symndx;
14033
14034 if (! rcookie->bad_symtab)
14035 if (rcookie->rel->r_offset > offset)
14036 return FALSE;
14037 if (rcookie->rel->r_offset != offset)
14038 continue;
14039
14040 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14041 if (r_symndx == STN_UNDEF)
14042 return TRUE;
14043
14044 if (r_symndx >= rcookie->locsymcount
14045 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14046 {
14047 struct elf_link_hash_entry *h;
14048
14049 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14050
14051 while (h->root.type == bfd_link_hash_indirect
14052 || h->root.type == bfd_link_hash_warning)
14053 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14054
14055 if ((h->root.type == bfd_link_hash_defined
14056 || h->root.type == bfd_link_hash_defweak)
14057 && (h->root.u.def.section->owner != rcookie->abfd
14058 || h->root.u.def.section->kept_section != NULL
14059 || discarded_section (h->root.u.def.section)))
14060 return TRUE;
14061 }
14062 else
14063 {
14064 /* It's not a relocation against a global symbol,
14065 but it could be a relocation against a local
14066 symbol for a discarded section. */
14067 asection *isec;
14068 Elf_Internal_Sym *isym;
14069
14070 /* Need to: get the symbol; get the section. */
14071 isym = &rcookie->locsyms[r_symndx];
14072 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14073 if (isec != NULL
14074 && (isec->kept_section != NULL
14075 || discarded_section (isec)))
14076 return TRUE;
14077 }
14078 return FALSE;
14079 }
14080 return FALSE;
14081 }
14082
14083 /* Discard unneeded references to discarded sections.
14084 Returns -1 on error, 1 if any section's size was changed, 0 if
14085 nothing changed. This function assumes that the relocations are in
14086 sorted order, which is true for all known assemblers. */
14087
14088 int
14089 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14090 {
14091 struct elf_reloc_cookie cookie;
14092 asection *o;
14093 bfd *abfd;
14094 int changed = 0;
14095
14096 if (info->traditional_format
14097 || !is_elf_hash_table (info->hash))
14098 return 0;
14099
14100 o = bfd_get_section_by_name (output_bfd, ".stab");
14101 if (o != NULL)
14102 {
14103 asection *i;
14104
14105 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14106 {
14107 if (i->size == 0
14108 || i->reloc_count == 0
14109 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14110 continue;
14111
14112 abfd = i->owner;
14113 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14114 continue;
14115
14116 if (!init_reloc_cookie_for_section (&cookie, info, i))
14117 return -1;
14118
14119 if (_bfd_discard_section_stabs (abfd, i,
14120 elf_section_data (i)->sec_info,
14121 bfd_elf_reloc_symbol_deleted_p,
14122 &cookie))
14123 changed = 1;
14124
14125 fini_reloc_cookie_for_section (&cookie, i);
14126 }
14127 }
14128
14129 o = NULL;
14130 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14131 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14132 if (o != NULL)
14133 {
14134 asection *i;
14135 int eh_changed = 0;
14136 unsigned int eh_alignment;
14137
14138 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14139 {
14140 if (i->size == 0)
14141 continue;
14142
14143 abfd = i->owner;
14144 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14145 continue;
14146
14147 if (!init_reloc_cookie_for_section (&cookie, info, i))
14148 return -1;
14149
14150 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14151 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14152 bfd_elf_reloc_symbol_deleted_p,
14153 &cookie))
14154 {
14155 eh_changed = 1;
14156 if (i->size != i->rawsize)
14157 changed = 1;
14158 }
14159
14160 fini_reloc_cookie_for_section (&cookie, i);
14161 }
14162
14163 eh_alignment = 1 << o->alignment_power;
14164 /* Skip over zero terminator, and prevent empty sections from
14165 adding alignment padding at the end. */
14166 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14167 if (i->size == 0)
14168 i->flags |= SEC_EXCLUDE;
14169 else if (i->size > 4)
14170 break;
14171 /* The last non-empty eh_frame section doesn't need padding. */
14172 if (i != NULL)
14173 i = i->map_tail.s;
14174 /* Any prior sections must pad the last FDE out to the output
14175 section alignment. Otherwise we might have zero padding
14176 between sections, which would be seen as a terminator. */
14177 for (; i != NULL; i = i->map_tail.s)
14178 if (i->size == 4)
14179 /* All but the last zero terminator should have been removed. */
14180 BFD_FAIL ();
14181 else
14182 {
14183 bfd_size_type size
14184 = (i->size + eh_alignment - 1) & -eh_alignment;
14185 if (i->size != size)
14186 {
14187 i->size = size;
14188 changed = 1;
14189 eh_changed = 1;
14190 }
14191 }
14192 if (eh_changed)
14193 elf_link_hash_traverse (elf_hash_table (info),
14194 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14195 }
14196
14197 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14198 {
14199 const struct elf_backend_data *bed;
14200 asection *s;
14201
14202 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14203 continue;
14204 s = abfd->sections;
14205 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14206 continue;
14207
14208 bed = get_elf_backend_data (abfd);
14209
14210 if (bed->elf_backend_discard_info != NULL)
14211 {
14212 if (!init_reloc_cookie (&cookie, info, abfd))
14213 return -1;
14214
14215 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14216 changed = 1;
14217
14218 fini_reloc_cookie (&cookie, abfd);
14219 }
14220 }
14221
14222 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14223 _bfd_elf_end_eh_frame_parsing (info);
14224
14225 if (info->eh_frame_hdr_type
14226 && !bfd_link_relocatable (info)
14227 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14228 changed = 1;
14229
14230 return changed;
14231 }
14232
14233 bfd_boolean
14234 _bfd_elf_section_already_linked (bfd *abfd,
14235 asection *sec,
14236 struct bfd_link_info *info)
14237 {
14238 flagword flags;
14239 const char *name, *key;
14240 struct bfd_section_already_linked *l;
14241 struct bfd_section_already_linked_hash_entry *already_linked_list;
14242
14243 if (sec->output_section == bfd_abs_section_ptr)
14244 return FALSE;
14245
14246 flags = sec->flags;
14247
14248 /* Return if it isn't a linkonce section. A comdat group section
14249 also has SEC_LINK_ONCE set. */
14250 if ((flags & SEC_LINK_ONCE) == 0)
14251 return FALSE;
14252
14253 /* Don't put group member sections on our list of already linked
14254 sections. They are handled as a group via their group section. */
14255 if (elf_sec_group (sec) != NULL)
14256 return FALSE;
14257
14258 /* For a SHT_GROUP section, use the group signature as the key. */
14259 name = sec->name;
14260 if ((flags & SEC_GROUP) != 0
14261 && elf_next_in_group (sec) != NULL
14262 && elf_group_name (elf_next_in_group (sec)) != NULL)
14263 key = elf_group_name (elf_next_in_group (sec));
14264 else
14265 {
14266 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14267 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14268 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14269 key++;
14270 else
14271 /* Must be a user linkonce section that doesn't follow gcc's
14272 naming convention. In this case we won't be matching
14273 single member groups. */
14274 key = name;
14275 }
14276
14277 already_linked_list = bfd_section_already_linked_table_lookup (key);
14278
14279 for (l = already_linked_list->entry; l != NULL; l = l->next)
14280 {
14281 /* We may have 2 different types of sections on the list: group
14282 sections with a signature of <key> (<key> is some string),
14283 and linkonce sections named .gnu.linkonce.<type>.<key>.
14284 Match like sections. LTO plugin sections are an exception.
14285 They are always named .gnu.linkonce.t.<key> and match either
14286 type of section. */
14287 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14288 && ((flags & SEC_GROUP) != 0
14289 || strcmp (name, l->sec->name) == 0))
14290 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14291 {
14292 /* The section has already been linked. See if we should
14293 issue a warning. */
14294 if (!_bfd_handle_already_linked (sec, l, info))
14295 return FALSE;
14296
14297 if (flags & SEC_GROUP)
14298 {
14299 asection *first = elf_next_in_group (sec);
14300 asection *s = first;
14301
14302 while (s != NULL)
14303 {
14304 s->output_section = bfd_abs_section_ptr;
14305 /* Record which group discards it. */
14306 s->kept_section = l->sec;
14307 s = elf_next_in_group (s);
14308 /* These lists are circular. */
14309 if (s == first)
14310 break;
14311 }
14312 }
14313
14314 return TRUE;
14315 }
14316 }
14317
14318 /* A single member comdat group section may be discarded by a
14319 linkonce section and vice versa. */
14320 if ((flags & SEC_GROUP) != 0)
14321 {
14322 asection *first = elf_next_in_group (sec);
14323
14324 if (first != NULL && elf_next_in_group (first) == first)
14325 /* Check this single member group against linkonce sections. */
14326 for (l = already_linked_list->entry; l != NULL; l = l->next)
14327 if ((l->sec->flags & SEC_GROUP) == 0
14328 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14329 {
14330 first->output_section = bfd_abs_section_ptr;
14331 first->kept_section = l->sec;
14332 sec->output_section = bfd_abs_section_ptr;
14333 break;
14334 }
14335 }
14336 else
14337 /* Check this linkonce section against single member groups. */
14338 for (l = already_linked_list->entry; l != NULL; l = l->next)
14339 if (l->sec->flags & SEC_GROUP)
14340 {
14341 asection *first = elf_next_in_group (l->sec);
14342
14343 if (first != NULL
14344 && elf_next_in_group (first) == first
14345 && bfd_elf_match_symbols_in_sections (first, sec, info))
14346 {
14347 sec->output_section = bfd_abs_section_ptr;
14348 sec->kept_section = first;
14349 break;
14350 }
14351 }
14352
14353 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14354 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14355 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14356 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14357 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14358 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14359 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14360 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14361 The reverse order cannot happen as there is never a bfd with only the
14362 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14363 matter as here were are looking only for cross-bfd sections. */
14364
14365 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14366 for (l = already_linked_list->entry; l != NULL; l = l->next)
14367 if ((l->sec->flags & SEC_GROUP) == 0
14368 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14369 {
14370 if (abfd != l->sec->owner)
14371 sec->output_section = bfd_abs_section_ptr;
14372 break;
14373 }
14374
14375 /* This is the first section with this name. Record it. */
14376 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14377 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14378 return sec->output_section == bfd_abs_section_ptr;
14379 }
14380
14381 bfd_boolean
14382 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14383 {
14384 return sym->st_shndx == SHN_COMMON;
14385 }
14386
14387 unsigned int
14388 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14389 {
14390 return SHN_COMMON;
14391 }
14392
14393 asection *
14394 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14395 {
14396 return bfd_com_section_ptr;
14397 }
14398
14399 bfd_vma
14400 _bfd_elf_default_got_elt_size (bfd *abfd,
14401 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14402 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14403 bfd *ibfd ATTRIBUTE_UNUSED,
14404 unsigned long symndx ATTRIBUTE_UNUSED)
14405 {
14406 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14407 return bed->s->arch_size / 8;
14408 }
14409
14410 /* Routines to support the creation of dynamic relocs. */
14411
14412 /* Returns the name of the dynamic reloc section associated with SEC. */
14413
14414 static const char *
14415 get_dynamic_reloc_section_name (bfd * abfd,
14416 asection * sec,
14417 bfd_boolean is_rela)
14418 {
14419 char *name;
14420 const char *old_name = bfd_get_section_name (NULL, sec);
14421 const char *prefix = is_rela ? ".rela" : ".rel";
14422
14423 if (old_name == NULL)
14424 return NULL;
14425
14426 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14427 sprintf (name, "%s%s", prefix, old_name);
14428
14429 return name;
14430 }
14431
14432 /* Returns the dynamic reloc section associated with SEC.
14433 If necessary compute the name of the dynamic reloc section based
14434 on SEC's name (looked up in ABFD's string table) and the setting
14435 of IS_RELA. */
14436
14437 asection *
14438 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14439 asection * sec,
14440 bfd_boolean is_rela)
14441 {
14442 asection * reloc_sec = elf_section_data (sec)->sreloc;
14443
14444 if (reloc_sec == NULL)
14445 {
14446 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14447
14448 if (name != NULL)
14449 {
14450 reloc_sec = bfd_get_linker_section (abfd, name);
14451
14452 if (reloc_sec != NULL)
14453 elf_section_data (sec)->sreloc = reloc_sec;
14454 }
14455 }
14456
14457 return reloc_sec;
14458 }
14459
14460 /* Returns the dynamic reloc section associated with SEC. If the
14461 section does not exist it is created and attached to the DYNOBJ
14462 bfd and stored in the SRELOC field of SEC's elf_section_data
14463 structure.
14464
14465 ALIGNMENT is the alignment for the newly created section and
14466 IS_RELA defines whether the name should be .rela.<SEC's name>
14467 or .rel.<SEC's name>. The section name is looked up in the
14468 string table associated with ABFD. */
14469
14470 asection *
14471 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14472 bfd *dynobj,
14473 unsigned int alignment,
14474 bfd *abfd,
14475 bfd_boolean is_rela)
14476 {
14477 asection * reloc_sec = elf_section_data (sec)->sreloc;
14478
14479 if (reloc_sec == NULL)
14480 {
14481 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14482
14483 if (name == NULL)
14484 return NULL;
14485
14486 reloc_sec = bfd_get_linker_section (dynobj, name);
14487
14488 if (reloc_sec == NULL)
14489 {
14490 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14491 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14492 if ((sec->flags & SEC_ALLOC) != 0)
14493 flags |= SEC_ALLOC | SEC_LOAD;
14494
14495 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14496 if (reloc_sec != NULL)
14497 {
14498 /* _bfd_elf_get_sec_type_attr chooses a section type by
14499 name. Override as it may be wrong, eg. for a user
14500 section named "auto" we'll get ".relauto" which is
14501 seen to be a .rela section. */
14502 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14503 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14504 reloc_sec = NULL;
14505 }
14506 }
14507
14508 elf_section_data (sec)->sreloc = reloc_sec;
14509 }
14510
14511 return reloc_sec;
14512 }
14513
14514 /* Copy the ELF symbol type and other attributes for a linker script
14515 assignment from HSRC to HDEST. Generally this should be treated as
14516 if we found a strong non-dynamic definition for HDEST (except that
14517 ld ignores multiple definition errors). */
14518 void
14519 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14520 struct bfd_link_hash_entry *hdest,
14521 struct bfd_link_hash_entry *hsrc)
14522 {
14523 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14524 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14525 Elf_Internal_Sym isym;
14526
14527 ehdest->type = ehsrc->type;
14528 ehdest->target_internal = ehsrc->target_internal;
14529
14530 isym.st_other = ehsrc->other;
14531 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14532 }
14533
14534 /* Append a RELA relocation REL to section S in BFD. */
14535
14536 void
14537 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14538 {
14539 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14540 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14541 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14542 bed->s->swap_reloca_out (abfd, rel, loc);
14543 }
14544
14545 /* Append a REL relocation REL to section S in BFD. */
14546
14547 void
14548 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14549 {
14550 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14551 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14552 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14553 bed->s->swap_reloc_out (abfd, rel, loc);
14554 }
14555
14556 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14557
14558 struct bfd_link_hash_entry *
14559 bfd_elf_define_start_stop (struct bfd_link_info *info,
14560 const char *symbol, asection *sec)
14561 {
14562 struct elf_link_hash_entry *h;
14563
14564 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14565 FALSE, FALSE, TRUE);
14566 if (h != NULL
14567 && (h->root.type == bfd_link_hash_undefined
14568 || h->root.type == bfd_link_hash_undefweak
14569 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14570 {
14571 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14572 h->root.type = bfd_link_hash_defined;
14573 h->root.u.def.section = sec;
14574 h->root.u.def.value = 0;
14575 h->def_regular = 1;
14576 h->def_dynamic = 0;
14577 h->start_stop = 1;
14578 h->u2.start_stop_section = sec;
14579 if (symbol[0] == '.')
14580 {
14581 /* .startof. and .sizeof. symbols are local. */
14582 const struct elf_backend_data *bed;
14583 bed = get_elf_backend_data (info->output_bfd);
14584 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14585 }
14586 else
14587 {
14588 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14589 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14590 if (was_dynamic)
14591 bfd_elf_link_record_dynamic_symbol (info, h);
14592 }
14593 return &h->root;
14594 }
14595 return NULL;
14596 }
This page took 0.329381 seconds and 3 git commands to generate.