8e29154e6e35a9cfd93d4d212c1bcd19de024d5e
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #define ARCH_SIZE 0
28 #include "elf-bfd.h"
29 #include "safe-ctype.h"
30 #include "libiberty.h"
31 #include "objalloc.h"
32
33 /* This struct is used to pass information to routines called via
34 elf_link_hash_traverse which must return failure. */
35
36 struct elf_info_failed
37 {
38 struct bfd_link_info *info;
39 struct bfd_elf_version_tree *verdefs;
40 bfd_boolean failed;
41 };
42
43 /* This structure is used to pass information to
44 _bfd_elf_link_find_version_dependencies. */
45
46 struct elf_find_verdep_info
47 {
48 /* General link information. */
49 struct bfd_link_info *info;
50 /* The number of dependencies. */
51 unsigned int vers;
52 /* Whether we had a failure. */
53 bfd_boolean failed;
54 };
55
56 static bfd_boolean _bfd_elf_fix_symbol_flags
57 (struct elf_link_hash_entry *, struct elf_info_failed *);
58
59 /* Define a symbol in a dynamic linkage section. */
60
61 struct elf_link_hash_entry *
62 _bfd_elf_define_linkage_sym (bfd *abfd,
63 struct bfd_link_info *info,
64 asection *sec,
65 const char *name)
66 {
67 struct elf_link_hash_entry *h;
68 struct bfd_link_hash_entry *bh;
69 const struct elf_backend_data *bed;
70
71 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
72 if (h != NULL)
73 {
74 /* Zap symbol defined in an as-needed lib that wasn't linked.
75 This is a symptom of a larger problem: Absolute symbols
76 defined in shared libraries can't be overridden, because we
77 lose the link to the bfd which is via the symbol section. */
78 h->root.type = bfd_link_hash_new;
79 }
80
81 bh = &h->root;
82 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
83 sec, 0, NULL, FALSE,
84 get_elf_backend_data (abfd)->collect,
85 &bh))
86 return NULL;
87 h = (struct elf_link_hash_entry *) bh;
88 h->def_regular = 1;
89 h->type = STT_OBJECT;
90 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
91
92 bed = get_elf_backend_data (abfd);
93 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
94 return h;
95 }
96
97 bfd_boolean
98 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
99 {
100 flagword flags;
101 asection *s;
102 struct elf_link_hash_entry *h;
103 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
104 struct elf_link_hash_table *htab = elf_hash_table (info);
105
106 /* This function may be called more than once. */
107 s = bfd_get_section_by_name (abfd, ".got");
108 if (s != NULL && (s->flags & SEC_LINKER_CREATED) != 0)
109 return TRUE;
110
111 flags = bed->dynamic_sec_flags;
112
113 s = bfd_make_section_with_flags (abfd,
114 (bed->rela_plts_and_copies_p
115 ? ".rela.got" : ".rel.got"),
116 (bed->dynamic_sec_flags
117 | SEC_READONLY));
118 if (s == NULL
119 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
120 return FALSE;
121 htab->srelgot = s;
122
123 s = bfd_make_section_with_flags (abfd, ".got", flags);
124 if (s == NULL
125 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
126 return FALSE;
127 htab->sgot = s;
128
129 if (bed->want_got_plt)
130 {
131 s = bfd_make_section_with_flags (abfd, ".got.plt", flags);
132 if (s == NULL
133 || !bfd_set_section_alignment (abfd, s,
134 bed->s->log_file_align))
135 return FALSE;
136 htab->sgotplt = s;
137 }
138
139 /* The first bit of the global offset table is the header. */
140 s->size += bed->got_header_size;
141
142 if (bed->want_got_sym)
143 {
144 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
145 (or .got.plt) section. We don't do this in the linker script
146 because we don't want to define the symbol if we are not creating
147 a global offset table. */
148 h = _bfd_elf_define_linkage_sym (abfd, info, s,
149 "_GLOBAL_OFFSET_TABLE_");
150 elf_hash_table (info)->hgot = h;
151 if (h == NULL)
152 return FALSE;
153 }
154
155 return TRUE;
156 }
157 \f
158 /* Create a strtab to hold the dynamic symbol names. */
159 static bfd_boolean
160 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
161 {
162 struct elf_link_hash_table *hash_table;
163
164 hash_table = elf_hash_table (info);
165 if (hash_table->dynobj == NULL)
166 hash_table->dynobj = abfd;
167
168 if (hash_table->dynstr == NULL)
169 {
170 hash_table->dynstr = _bfd_elf_strtab_init ();
171 if (hash_table->dynstr == NULL)
172 return FALSE;
173 }
174 return TRUE;
175 }
176
177 /* Create some sections which will be filled in with dynamic linking
178 information. ABFD is an input file which requires dynamic sections
179 to be created. The dynamic sections take up virtual memory space
180 when the final executable is run, so we need to create them before
181 addresses are assigned to the output sections. We work out the
182 actual contents and size of these sections later. */
183
184 bfd_boolean
185 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
186 {
187 flagword flags;
188 register asection *s;
189 const struct elf_backend_data *bed;
190
191 if (! is_elf_hash_table (info->hash))
192 return FALSE;
193
194 if (elf_hash_table (info)->dynamic_sections_created)
195 return TRUE;
196
197 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198 return FALSE;
199
200 abfd = elf_hash_table (info)->dynobj;
201 bed = get_elf_backend_data (abfd);
202
203 flags = bed->dynamic_sec_flags;
204
205 /* A dynamically linked executable has a .interp section, but a
206 shared library does not. */
207 if (info->executable)
208 {
209 s = bfd_make_section_with_flags (abfd, ".interp",
210 flags | SEC_READONLY);
211 if (s == NULL)
212 return FALSE;
213 }
214
215 /* Create sections to hold version informations. These are removed
216 if they are not needed. */
217 s = bfd_make_section_with_flags (abfd, ".gnu.version_d",
218 flags | SEC_READONLY);
219 if (s == NULL
220 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221 return FALSE;
222
223 s = bfd_make_section_with_flags (abfd, ".gnu.version",
224 flags | SEC_READONLY);
225 if (s == NULL
226 || ! bfd_set_section_alignment (abfd, s, 1))
227 return FALSE;
228
229 s = bfd_make_section_with_flags (abfd, ".gnu.version_r",
230 flags | SEC_READONLY);
231 if (s == NULL
232 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233 return FALSE;
234
235 s = bfd_make_section_with_flags (abfd, ".dynsym",
236 flags | SEC_READONLY);
237 if (s == NULL
238 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239 return FALSE;
240
241 s = bfd_make_section_with_flags (abfd, ".dynstr",
242 flags | SEC_READONLY);
243 if (s == NULL)
244 return FALSE;
245
246 s = bfd_make_section_with_flags (abfd, ".dynamic", flags);
247 if (s == NULL
248 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249 return FALSE;
250
251 /* The special symbol _DYNAMIC is always set to the start of the
252 .dynamic section. We could set _DYNAMIC in a linker script, but we
253 only want to define it if we are, in fact, creating a .dynamic
254 section. We don't want to define it if there is no .dynamic
255 section, since on some ELF platforms the start up code examines it
256 to decide how to initialize the process. */
257 if (!_bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"))
258 return FALSE;
259
260 if (info->emit_hash)
261 {
262 s = bfd_make_section_with_flags (abfd, ".hash", flags | SEC_READONLY);
263 if (s == NULL
264 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
265 return FALSE;
266 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
267 }
268
269 if (info->emit_gnu_hash)
270 {
271 s = bfd_make_section_with_flags (abfd, ".gnu.hash",
272 flags | SEC_READONLY);
273 if (s == NULL
274 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
275 return FALSE;
276 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
277 4 32-bit words followed by variable count of 64-bit words, then
278 variable count of 32-bit words. */
279 if (bed->s->arch_size == 64)
280 elf_section_data (s)->this_hdr.sh_entsize = 0;
281 else
282 elf_section_data (s)->this_hdr.sh_entsize = 4;
283 }
284
285 /* Let the backend create the rest of the sections. This lets the
286 backend set the right flags. The backend will normally create
287 the .got and .plt sections. */
288 if (! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
289 return FALSE;
290
291 elf_hash_table (info)->dynamic_sections_created = TRUE;
292
293 return TRUE;
294 }
295
296 /* Create dynamic sections when linking against a dynamic object. */
297
298 bfd_boolean
299 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
300 {
301 flagword flags, pltflags;
302 struct elf_link_hash_entry *h;
303 asection *s;
304 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
305 struct elf_link_hash_table *htab = elf_hash_table (info);
306
307 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
308 .rel[a].bss sections. */
309 flags = bed->dynamic_sec_flags;
310
311 pltflags = flags;
312 if (bed->plt_not_loaded)
313 /* We do not clear SEC_ALLOC here because we still want the OS to
314 allocate space for the section; it's just that there's nothing
315 to read in from the object file. */
316 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
317 else
318 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
319 if (bed->plt_readonly)
320 pltflags |= SEC_READONLY;
321
322 s = bfd_make_section_with_flags (abfd, ".plt", pltflags);
323 if (s == NULL
324 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
325 return FALSE;
326 htab->splt = s;
327
328 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
329 .plt section. */
330 if (bed->want_plt_sym)
331 {
332 h = _bfd_elf_define_linkage_sym (abfd, info, s,
333 "_PROCEDURE_LINKAGE_TABLE_");
334 elf_hash_table (info)->hplt = h;
335 if (h == NULL)
336 return FALSE;
337 }
338
339 s = bfd_make_section_with_flags (abfd,
340 (bed->rela_plts_and_copies_p
341 ? ".rela.plt" : ".rel.plt"),
342 flags | SEC_READONLY);
343 if (s == NULL
344 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
345 return FALSE;
346 htab->srelplt = s;
347
348 if (! _bfd_elf_create_got_section (abfd, info))
349 return FALSE;
350
351 if (bed->want_dynbss)
352 {
353 /* The .dynbss section is a place to put symbols which are defined
354 by dynamic objects, are referenced by regular objects, and are
355 not functions. We must allocate space for them in the process
356 image and use a R_*_COPY reloc to tell the dynamic linker to
357 initialize them at run time. The linker script puts the .dynbss
358 section into the .bss section of the final image. */
359 s = bfd_make_section_with_flags (abfd, ".dynbss",
360 (SEC_ALLOC
361 | SEC_LINKER_CREATED));
362 if (s == NULL)
363 return FALSE;
364
365 /* The .rel[a].bss section holds copy relocs. This section is not
366 normally needed. We need to create it here, though, so that the
367 linker will map it to an output section. We can't just create it
368 only if we need it, because we will not know whether we need it
369 until we have seen all the input files, and the first time the
370 main linker code calls BFD after examining all the input files
371 (size_dynamic_sections) the input sections have already been
372 mapped to the output sections. If the section turns out not to
373 be needed, we can discard it later. We will never need this
374 section when generating a shared object, since they do not use
375 copy relocs. */
376 if (! info->shared)
377 {
378 s = bfd_make_section_with_flags (abfd,
379 (bed->rela_plts_and_copies_p
380 ? ".rela.bss" : ".rel.bss"),
381 flags | SEC_READONLY);
382 if (s == NULL
383 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
384 return FALSE;
385 }
386 }
387
388 return TRUE;
389 }
390 \f
391 /* Record a new dynamic symbol. We record the dynamic symbols as we
392 read the input files, since we need to have a list of all of them
393 before we can determine the final sizes of the output sections.
394 Note that we may actually call this function even though we are not
395 going to output any dynamic symbols; in some cases we know that a
396 symbol should be in the dynamic symbol table, but only if there is
397 one. */
398
399 bfd_boolean
400 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
401 struct elf_link_hash_entry *h)
402 {
403 if (h->dynindx == -1)
404 {
405 struct elf_strtab_hash *dynstr;
406 char *p;
407 const char *name;
408 bfd_size_type indx;
409
410 /* XXX: The ABI draft says the linker must turn hidden and
411 internal symbols into STB_LOCAL symbols when producing the
412 DSO. However, if ld.so honors st_other in the dynamic table,
413 this would not be necessary. */
414 switch (ELF_ST_VISIBILITY (h->other))
415 {
416 case STV_INTERNAL:
417 case STV_HIDDEN:
418 if (h->root.type != bfd_link_hash_undefined
419 && h->root.type != bfd_link_hash_undefweak)
420 {
421 h->forced_local = 1;
422 if (!elf_hash_table (info)->is_relocatable_executable)
423 return TRUE;
424 }
425
426 default:
427 break;
428 }
429
430 h->dynindx = elf_hash_table (info)->dynsymcount;
431 ++elf_hash_table (info)->dynsymcount;
432
433 dynstr = elf_hash_table (info)->dynstr;
434 if (dynstr == NULL)
435 {
436 /* Create a strtab to hold the dynamic symbol names. */
437 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
438 if (dynstr == NULL)
439 return FALSE;
440 }
441
442 /* We don't put any version information in the dynamic string
443 table. */
444 name = h->root.root.string;
445 p = strchr (name, ELF_VER_CHR);
446 if (p != NULL)
447 /* We know that the p points into writable memory. In fact,
448 there are only a few symbols that have read-only names, being
449 those like _GLOBAL_OFFSET_TABLE_ that are created specially
450 by the backends. Most symbols will have names pointing into
451 an ELF string table read from a file, or to objalloc memory. */
452 *p = 0;
453
454 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
455
456 if (p != NULL)
457 *p = ELF_VER_CHR;
458
459 if (indx == (bfd_size_type) -1)
460 return FALSE;
461 h->dynstr_index = indx;
462 }
463
464 return TRUE;
465 }
466 \f
467 /* Mark a symbol dynamic. */
468
469 static void
470 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
471 struct elf_link_hash_entry *h,
472 Elf_Internal_Sym *sym)
473 {
474 struct bfd_elf_dynamic_list *d = info->dynamic_list;
475
476 /* It may be called more than once on the same H. */
477 if(h->dynamic || info->relocatable)
478 return;
479
480 if ((info->dynamic_data
481 && (h->type == STT_OBJECT
482 || (sym != NULL
483 && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
484 || (d != NULL
485 && h->root.type == bfd_link_hash_new
486 && (*d->match) (&d->head, NULL, h->root.root.string)))
487 h->dynamic = 1;
488 }
489
490 /* Record an assignment to a symbol made by a linker script. We need
491 this in case some dynamic object refers to this symbol. */
492
493 bfd_boolean
494 bfd_elf_record_link_assignment (bfd *output_bfd,
495 struct bfd_link_info *info,
496 const char *name,
497 bfd_boolean provide,
498 bfd_boolean hidden)
499 {
500 struct elf_link_hash_entry *h, *hv;
501 struct elf_link_hash_table *htab;
502 const struct elf_backend_data *bed;
503
504 if (!is_elf_hash_table (info->hash))
505 return TRUE;
506
507 htab = elf_hash_table (info);
508 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
509 if (h == NULL)
510 return provide;
511
512 switch (h->root.type)
513 {
514 case bfd_link_hash_defined:
515 case bfd_link_hash_defweak:
516 case bfd_link_hash_common:
517 break;
518 case bfd_link_hash_undefweak:
519 case bfd_link_hash_undefined:
520 /* Since we're defining the symbol, don't let it seem to have not
521 been defined. record_dynamic_symbol and size_dynamic_sections
522 may depend on this. */
523 h->root.type = bfd_link_hash_new;
524 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
525 bfd_link_repair_undef_list (&htab->root);
526 break;
527 case bfd_link_hash_new:
528 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
529 h->non_elf = 0;
530 break;
531 case bfd_link_hash_indirect:
532 /* We had a versioned symbol in a dynamic library. We make the
533 the versioned symbol point to this one. */
534 bed = get_elf_backend_data (output_bfd);
535 hv = h;
536 while (hv->root.type == bfd_link_hash_indirect
537 || hv->root.type == bfd_link_hash_warning)
538 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
539 /* We don't need to update h->root.u since linker will set them
540 later. */
541 h->root.type = bfd_link_hash_undefined;
542 hv->root.type = bfd_link_hash_indirect;
543 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
544 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
545 break;
546 case bfd_link_hash_warning:
547 abort ();
548 break;
549 }
550
551 /* If this symbol is being provided by the linker script, and it is
552 currently defined by a dynamic object, but not by a regular
553 object, then mark it as undefined so that the generic linker will
554 force the correct value. */
555 if (provide
556 && h->def_dynamic
557 && !h->def_regular)
558 h->root.type = bfd_link_hash_undefined;
559
560 /* If this symbol is not being provided by the linker script, and it is
561 currently defined by a dynamic object, but not by a regular object,
562 then clear out any version information because the symbol will not be
563 associated with the dynamic object any more. */
564 if (!provide
565 && h->def_dynamic
566 && !h->def_regular)
567 h->verinfo.verdef = NULL;
568
569 h->def_regular = 1;
570
571 if (provide && hidden)
572 {
573 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
574
575 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
576 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
577 }
578
579 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
580 and executables. */
581 if (!info->relocatable
582 && h->dynindx != -1
583 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
584 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
585 h->forced_local = 1;
586
587 if ((h->def_dynamic
588 || h->ref_dynamic
589 || info->shared
590 || (info->executable && elf_hash_table (info)->is_relocatable_executable))
591 && h->dynindx == -1)
592 {
593 if (! bfd_elf_link_record_dynamic_symbol (info, h))
594 return FALSE;
595
596 /* If this is a weak defined symbol, and we know a corresponding
597 real symbol from the same dynamic object, make sure the real
598 symbol is also made into a dynamic symbol. */
599 if (h->u.weakdef != NULL
600 && h->u.weakdef->dynindx == -1)
601 {
602 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
603 return FALSE;
604 }
605 }
606
607 return TRUE;
608 }
609
610 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
611 success, and 2 on a failure caused by attempting to record a symbol
612 in a discarded section, eg. a discarded link-once section symbol. */
613
614 int
615 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
616 bfd *input_bfd,
617 long input_indx)
618 {
619 bfd_size_type amt;
620 struct elf_link_local_dynamic_entry *entry;
621 struct elf_link_hash_table *eht;
622 struct elf_strtab_hash *dynstr;
623 unsigned long dynstr_index;
624 char *name;
625 Elf_External_Sym_Shndx eshndx;
626 char esym[sizeof (Elf64_External_Sym)];
627
628 if (! is_elf_hash_table (info->hash))
629 return 0;
630
631 /* See if the entry exists already. */
632 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
633 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
634 return 1;
635
636 amt = sizeof (*entry);
637 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
638 if (entry == NULL)
639 return 0;
640
641 /* Go find the symbol, so that we can find it's name. */
642 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
643 1, input_indx, &entry->isym, esym, &eshndx))
644 {
645 bfd_release (input_bfd, entry);
646 return 0;
647 }
648
649 if (entry->isym.st_shndx != SHN_UNDEF
650 && entry->isym.st_shndx < SHN_LORESERVE)
651 {
652 asection *s;
653
654 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
655 if (s == NULL || bfd_is_abs_section (s->output_section))
656 {
657 /* We can still bfd_release here as nothing has done another
658 bfd_alloc. We can't do this later in this function. */
659 bfd_release (input_bfd, entry);
660 return 2;
661 }
662 }
663
664 name = (bfd_elf_string_from_elf_section
665 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
666 entry->isym.st_name));
667
668 dynstr = elf_hash_table (info)->dynstr;
669 if (dynstr == NULL)
670 {
671 /* Create a strtab to hold the dynamic symbol names. */
672 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
673 if (dynstr == NULL)
674 return 0;
675 }
676
677 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
678 if (dynstr_index == (unsigned long) -1)
679 return 0;
680 entry->isym.st_name = dynstr_index;
681
682 eht = elf_hash_table (info);
683
684 entry->next = eht->dynlocal;
685 eht->dynlocal = entry;
686 entry->input_bfd = input_bfd;
687 entry->input_indx = input_indx;
688 eht->dynsymcount++;
689
690 /* Whatever binding the symbol had before, it's now local. */
691 entry->isym.st_info
692 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
693
694 /* The dynindx will be set at the end of size_dynamic_sections. */
695
696 return 1;
697 }
698
699 /* Return the dynindex of a local dynamic symbol. */
700
701 long
702 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
703 bfd *input_bfd,
704 long input_indx)
705 {
706 struct elf_link_local_dynamic_entry *e;
707
708 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
709 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
710 return e->dynindx;
711 return -1;
712 }
713
714 /* This function is used to renumber the dynamic symbols, if some of
715 them are removed because they are marked as local. This is called
716 via elf_link_hash_traverse. */
717
718 static bfd_boolean
719 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
720 void *data)
721 {
722 size_t *count = (size_t *) data;
723
724 if (h->root.type == bfd_link_hash_warning)
725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
726
727 if (h->forced_local)
728 return TRUE;
729
730 if (h->dynindx != -1)
731 h->dynindx = ++(*count);
732
733 return TRUE;
734 }
735
736
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738 STB_LOCAL binding. */
739
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 void *data)
743 {
744 size_t *count = (size_t *) data;
745
746 if (h->root.type == bfd_link_hash_warning)
747 h = (struct elf_link_hash_entry *) h->root.u.i.link;
748
749 if (!h->forced_local)
750 return TRUE;
751
752 if (h->dynindx != -1)
753 h->dynindx = ++(*count);
754
755 return TRUE;
756 }
757
758 /* Return true if the dynamic symbol for a given section should be
759 omitted when creating a shared library. */
760 bfd_boolean
761 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
762 struct bfd_link_info *info,
763 asection *p)
764 {
765 struct elf_link_hash_table *htab;
766
767 switch (elf_section_data (p)->this_hdr.sh_type)
768 {
769 case SHT_PROGBITS:
770 case SHT_NOBITS:
771 /* If sh_type is yet undecided, assume it could be
772 SHT_PROGBITS/SHT_NOBITS. */
773 case SHT_NULL:
774 htab = elf_hash_table (info);
775 if (p == htab->tls_sec)
776 return FALSE;
777
778 if (htab->text_index_section != NULL)
779 return p != htab->text_index_section && p != htab->data_index_section;
780
781 if (strcmp (p->name, ".got") == 0
782 || strcmp (p->name, ".got.plt") == 0
783 || strcmp (p->name, ".plt") == 0)
784 {
785 asection *ip;
786
787 if (htab->dynobj != NULL
788 && (ip = bfd_get_section_by_name (htab->dynobj, p->name)) != NULL
789 && (ip->flags & SEC_LINKER_CREATED)
790 && ip->output_section == p)
791 return TRUE;
792 }
793 return FALSE;
794
795 /* There shouldn't be section relative relocations
796 against any other section. */
797 default:
798 return TRUE;
799 }
800 }
801
802 /* Assign dynsym indices. In a shared library we generate a section
803 symbol for each output section, which come first. Next come symbols
804 which have been forced to local binding. Then all of the back-end
805 allocated local dynamic syms, followed by the rest of the global
806 symbols. */
807
808 static unsigned long
809 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
810 struct bfd_link_info *info,
811 unsigned long *section_sym_count)
812 {
813 unsigned long dynsymcount = 0;
814
815 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
816 {
817 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
818 asection *p;
819 for (p = output_bfd->sections; p ; p = p->next)
820 if ((p->flags & SEC_EXCLUDE) == 0
821 && (p->flags & SEC_ALLOC) != 0
822 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
823 elf_section_data (p)->dynindx = ++dynsymcount;
824 else
825 elf_section_data (p)->dynindx = 0;
826 }
827 *section_sym_count = dynsymcount;
828
829 elf_link_hash_traverse (elf_hash_table (info),
830 elf_link_renumber_local_hash_table_dynsyms,
831 &dynsymcount);
832
833 if (elf_hash_table (info)->dynlocal)
834 {
835 struct elf_link_local_dynamic_entry *p;
836 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
837 p->dynindx = ++dynsymcount;
838 }
839
840 elf_link_hash_traverse (elf_hash_table (info),
841 elf_link_renumber_hash_table_dynsyms,
842 &dynsymcount);
843
844 /* There is an unused NULL entry at the head of the table which
845 we must account for in our count. Unless there weren't any
846 symbols, which means we'll have no table at all. */
847 if (dynsymcount != 0)
848 ++dynsymcount;
849
850 elf_hash_table (info)->dynsymcount = dynsymcount;
851 return dynsymcount;
852 }
853
854 /* Merge st_other field. */
855
856 static void
857 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
858 Elf_Internal_Sym *isym, bfd_boolean definition,
859 bfd_boolean dynamic)
860 {
861 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
862
863 /* If st_other has a processor-specific meaning, specific
864 code might be needed here. We never merge the visibility
865 attribute with the one from a dynamic object. */
866 if (bed->elf_backend_merge_symbol_attribute)
867 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
868 dynamic);
869
870 /* If this symbol has default visibility and the user has requested
871 we not re-export it, then mark it as hidden. */
872 if (definition
873 && !dynamic
874 && (abfd->no_export
875 || (abfd->my_archive && abfd->my_archive->no_export))
876 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
877 isym->st_other = (STV_HIDDEN
878 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
879
880 if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
881 {
882 unsigned char hvis, symvis, other, nvis;
883
884 /* Only merge the visibility. Leave the remainder of the
885 st_other field to elf_backend_merge_symbol_attribute. */
886 other = h->other & ~ELF_ST_VISIBILITY (-1);
887
888 /* Combine visibilities, using the most constraining one. */
889 hvis = ELF_ST_VISIBILITY (h->other);
890 symvis = ELF_ST_VISIBILITY (isym->st_other);
891 if (! hvis)
892 nvis = symvis;
893 else if (! symvis)
894 nvis = hvis;
895 else
896 nvis = hvis < symvis ? hvis : symvis;
897
898 h->other = other | nvis;
899 }
900 }
901
902 /* This function is called when we want to define a new symbol. It
903 handles the various cases which arise when we find a definition in
904 a dynamic object, or when there is already a definition in a
905 dynamic object. The new symbol is described by NAME, SYM, PSEC,
906 and PVALUE. We set SYM_HASH to the hash table entry. We set
907 OVERRIDE if the old symbol is overriding a new definition. We set
908 TYPE_CHANGE_OK if it is OK for the type to change. We set
909 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
910 change, we mean that we shouldn't warn if the type or size does
911 change. We set POLD_ALIGNMENT if an old common symbol in a dynamic
912 object is overridden by a regular object. */
913
914 bfd_boolean
915 _bfd_elf_merge_symbol (bfd *abfd,
916 struct bfd_link_info *info,
917 const char *name,
918 Elf_Internal_Sym *sym,
919 asection **psec,
920 bfd_vma *pvalue,
921 unsigned int *pold_alignment,
922 struct elf_link_hash_entry **sym_hash,
923 bfd_boolean *skip,
924 bfd_boolean *override,
925 bfd_boolean *type_change_ok,
926 bfd_boolean *size_change_ok)
927 {
928 asection *sec, *oldsec;
929 struct elf_link_hash_entry *h;
930 struct elf_link_hash_entry *flip;
931 int bind;
932 bfd *oldbfd;
933 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934 bfd_boolean newweak, oldweak, newfunc, oldfunc;
935 const struct elf_backend_data *bed;
936
937 *skip = FALSE;
938 *override = FALSE;
939
940 sec = *psec;
941 bind = ELF_ST_BIND (sym->st_info);
942
943 /* Silently discard TLS symbols from --just-syms. There's no way to
944 combine a static TLS block with a new TLS block for this executable. */
945 if (ELF_ST_TYPE (sym->st_info) == STT_TLS
946 && sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
947 {
948 *skip = TRUE;
949 return TRUE;
950 }
951
952 if (! bfd_is_und_section (sec))
953 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
954 else
955 h = ((struct elf_link_hash_entry *)
956 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
957 if (h == NULL)
958 return FALSE;
959 *sym_hash = h;
960
961 bed = get_elf_backend_data (abfd);
962
963 /* This code is for coping with dynamic objects, and is only useful
964 if we are doing an ELF link. */
965 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
966 return TRUE;
967
968 /* For merging, we only care about real symbols. */
969
970 while (h->root.type == bfd_link_hash_indirect
971 || h->root.type == bfd_link_hash_warning)
972 h = (struct elf_link_hash_entry *) h->root.u.i.link;
973
974 /* We have to check it for every instance since the first few may be
975 refereences and not all compilers emit symbol type for undefined
976 symbols. */
977 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
978
979 /* If we just created the symbol, mark it as being an ELF symbol.
980 Other than that, there is nothing to do--there is no merge issue
981 with a newly defined symbol--so we just return. */
982
983 if (h->root.type == bfd_link_hash_new)
984 {
985 h->non_elf = 0;
986 return TRUE;
987 }
988
989 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
990 existing symbol. */
991
992 switch (h->root.type)
993 {
994 default:
995 oldbfd = NULL;
996 oldsec = NULL;
997 break;
998
999 case bfd_link_hash_undefined:
1000 case bfd_link_hash_undefweak:
1001 oldbfd = h->root.u.undef.abfd;
1002 oldsec = NULL;
1003 break;
1004
1005 case bfd_link_hash_defined:
1006 case bfd_link_hash_defweak:
1007 oldbfd = h->root.u.def.section->owner;
1008 oldsec = h->root.u.def.section;
1009 break;
1010
1011 case bfd_link_hash_common:
1012 oldbfd = h->root.u.c.p->section->owner;
1013 oldsec = h->root.u.c.p->section;
1014 break;
1015 }
1016
1017 /* In cases involving weak versioned symbols, we may wind up trying
1018 to merge a symbol with itself. Catch that here, to avoid the
1019 confusion that results if we try to override a symbol with
1020 itself. The additional tests catch cases like
1021 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1022 dynamic object, which we do want to handle here. */
1023 if (abfd == oldbfd
1024 && ((abfd->flags & DYNAMIC) == 0
1025 || !h->def_regular))
1026 return TRUE;
1027
1028 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1029 respectively, is from a dynamic object. */
1030
1031 newdyn = (abfd->flags & DYNAMIC) != 0;
1032
1033 olddyn = FALSE;
1034 if (oldbfd != NULL)
1035 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1036 else if (oldsec != NULL)
1037 {
1038 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1039 indices used by MIPS ELF. */
1040 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1041 }
1042
1043 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1044 respectively, appear to be a definition rather than reference. */
1045
1046 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1047
1048 olddef = (h->root.type != bfd_link_hash_undefined
1049 && h->root.type != bfd_link_hash_undefweak
1050 && h->root.type != bfd_link_hash_common);
1051
1052 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1053 respectively, appear to be a function. */
1054
1055 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1056 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1057
1058 oldfunc = (h->type != STT_NOTYPE
1059 && bed->is_function_type (h->type));
1060
1061 /* When we try to create a default indirect symbol from the dynamic
1062 definition with the default version, we skip it if its type and
1063 the type of existing regular definition mismatch. We only do it
1064 if the existing regular definition won't be dynamic. */
1065 if (pold_alignment == NULL
1066 && !info->shared
1067 && !info->export_dynamic
1068 && !h->ref_dynamic
1069 && newdyn
1070 && newdef
1071 && !olddyn
1072 && (olddef || h->root.type == bfd_link_hash_common)
1073 && ELF_ST_TYPE (sym->st_info) != h->type
1074 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1075 && h->type != STT_NOTYPE
1076 && !(newfunc && oldfunc))
1077 {
1078 *skip = TRUE;
1079 return TRUE;
1080 }
1081
1082 /* Check TLS symbol. We don't check undefined symbol introduced by
1083 "ld -u". */
1084 if ((ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)
1085 && ELF_ST_TYPE (sym->st_info) != h->type
1086 && oldbfd != NULL)
1087 {
1088 bfd *ntbfd, *tbfd;
1089 bfd_boolean ntdef, tdef;
1090 asection *ntsec, *tsec;
1091
1092 if (h->type == STT_TLS)
1093 {
1094 ntbfd = abfd;
1095 ntsec = sec;
1096 ntdef = newdef;
1097 tbfd = oldbfd;
1098 tsec = oldsec;
1099 tdef = olddef;
1100 }
1101 else
1102 {
1103 ntbfd = oldbfd;
1104 ntsec = oldsec;
1105 ntdef = olddef;
1106 tbfd = abfd;
1107 tsec = sec;
1108 tdef = newdef;
1109 }
1110
1111 if (tdef && ntdef)
1112 (*_bfd_error_handler)
1113 (_("%s: TLS definition in %B section %A mismatches non-TLS definition in %B section %A"),
1114 tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1115 else if (!tdef && !ntdef)
1116 (*_bfd_error_handler)
1117 (_("%s: TLS reference in %B mismatches non-TLS reference in %B"),
1118 tbfd, ntbfd, h->root.root.string);
1119 else if (tdef)
1120 (*_bfd_error_handler)
1121 (_("%s: TLS definition in %B section %A mismatches non-TLS reference in %B"),
1122 tbfd, tsec, ntbfd, h->root.root.string);
1123 else
1124 (*_bfd_error_handler)
1125 (_("%s: TLS reference in %B mismatches non-TLS definition in %B section %A"),
1126 tbfd, ntbfd, ntsec, h->root.root.string);
1127
1128 bfd_set_error (bfd_error_bad_value);
1129 return FALSE;
1130 }
1131
1132 /* We need to remember if a symbol has a definition in a dynamic
1133 object or is weak in all dynamic objects. Internal and hidden
1134 visibility will make it unavailable to dynamic objects. */
1135 if (newdyn && !h->dynamic_def)
1136 {
1137 if (!bfd_is_und_section (sec))
1138 h->dynamic_def = 1;
1139 else
1140 {
1141 /* Check if this symbol is weak in all dynamic objects. If it
1142 is the first time we see it in a dynamic object, we mark
1143 if it is weak. Otherwise, we clear it. */
1144 if (!h->ref_dynamic)
1145 {
1146 if (bind == STB_WEAK)
1147 h->dynamic_weak = 1;
1148 }
1149 else if (bind != STB_WEAK)
1150 h->dynamic_weak = 0;
1151 }
1152 }
1153
1154 /* If the old symbol has non-default visibility, we ignore the new
1155 definition from a dynamic object. */
1156 if (newdyn
1157 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1158 && !bfd_is_und_section (sec))
1159 {
1160 *skip = TRUE;
1161 /* Make sure this symbol is dynamic. */
1162 h->ref_dynamic = 1;
1163 /* A protected symbol has external availability. Make sure it is
1164 recorded as dynamic.
1165
1166 FIXME: Should we check type and size for protected symbol? */
1167 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1168 return bfd_elf_link_record_dynamic_symbol (info, h);
1169 else
1170 return TRUE;
1171 }
1172 else if (!newdyn
1173 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1174 && h->def_dynamic)
1175 {
1176 /* If the new symbol with non-default visibility comes from a
1177 relocatable file and the old definition comes from a dynamic
1178 object, we remove the old definition. */
1179 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1180 {
1181 /* Handle the case where the old dynamic definition is
1182 default versioned. We need to copy the symbol info from
1183 the symbol with default version to the normal one if it
1184 was referenced before. */
1185 if (h->ref_regular)
1186 {
1187 const struct elf_backend_data *bed
1188 = get_elf_backend_data (abfd);
1189 struct elf_link_hash_entry *vh = *sym_hash;
1190 vh->root.type = h->root.type;
1191 h->root.type = bfd_link_hash_indirect;
1192 (*bed->elf_backend_copy_indirect_symbol) (info, vh, h);
1193 /* Protected symbols will override the dynamic definition
1194 with default version. */
1195 if (ELF_ST_VISIBILITY (sym->st_other) == STV_PROTECTED)
1196 {
1197 h->root.u.i.link = (struct bfd_link_hash_entry *) vh;
1198 vh->dynamic_def = 1;
1199 vh->ref_dynamic = 1;
1200 }
1201 else
1202 {
1203 h->root.type = vh->root.type;
1204 vh->ref_dynamic = 0;
1205 /* We have to hide it here since it was made dynamic
1206 global with extra bits when the symbol info was
1207 copied from the old dynamic definition. */
1208 (*bed->elf_backend_hide_symbol) (info, vh, TRUE);
1209 }
1210 h = vh;
1211 }
1212 else
1213 h = *sym_hash;
1214 }
1215
1216 if ((h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1217 && bfd_is_und_section (sec))
1218 {
1219 /* If the new symbol is undefined and the old symbol was
1220 also undefined before, we need to make sure
1221 _bfd_generic_link_add_one_symbol doesn't mess
1222 up the linker hash table undefs list. Since the old
1223 definition came from a dynamic object, it is still on the
1224 undefs list. */
1225 h->root.type = bfd_link_hash_undefined;
1226 h->root.u.undef.abfd = abfd;
1227 }
1228 else
1229 {
1230 h->root.type = bfd_link_hash_new;
1231 h->root.u.undef.abfd = NULL;
1232 }
1233
1234 if (h->def_dynamic)
1235 {
1236 h->def_dynamic = 0;
1237 h->ref_dynamic = 1;
1238 h->dynamic_def = 1;
1239 }
1240 /* FIXME: Should we check type and size for protected symbol? */
1241 h->size = 0;
1242 h->type = 0;
1243 return TRUE;
1244 }
1245
1246 /* Differentiate strong and weak symbols. */
1247 newweak = bind == STB_WEAK;
1248 oldweak = (h->root.type == bfd_link_hash_defweak
1249 || h->root.type == bfd_link_hash_undefweak);
1250
1251 if (bind == STB_GNU_UNIQUE)
1252 h->unique_global = 1;
1253
1254 /* If a new weak symbol definition comes from a regular file and the
1255 old symbol comes from a dynamic library, we treat the new one as
1256 strong. Similarly, an old weak symbol definition from a regular
1257 file is treated as strong when the new symbol comes from a dynamic
1258 library. Further, an old weak symbol from a dynamic library is
1259 treated as strong if the new symbol is from a dynamic library.
1260 This reflects the way glibc's ld.so works.
1261
1262 Do this before setting *type_change_ok or *size_change_ok so that
1263 we warn properly when dynamic library symbols are overridden. */
1264
1265 if (newdef && !newdyn && olddyn)
1266 newweak = FALSE;
1267 if (olddef && newdyn)
1268 oldweak = FALSE;
1269
1270 /* Allow changes between different types of function symbol. */
1271 if (newfunc && oldfunc)
1272 *type_change_ok = TRUE;
1273
1274 /* It's OK to change the type if either the existing symbol or the
1275 new symbol is weak. A type change is also OK if the old symbol
1276 is undefined and the new symbol is defined. */
1277
1278 if (oldweak
1279 || newweak
1280 || (newdef
1281 && h->root.type == bfd_link_hash_undefined))
1282 *type_change_ok = TRUE;
1283
1284 /* It's OK to change the size if either the existing symbol or the
1285 new symbol is weak, or if the old symbol is undefined. */
1286
1287 if (*type_change_ok
1288 || h->root.type == bfd_link_hash_undefined)
1289 *size_change_ok = TRUE;
1290
1291 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1292 symbol, respectively, appears to be a common symbol in a dynamic
1293 object. If a symbol appears in an uninitialized section, and is
1294 not weak, and is not a function, then it may be a common symbol
1295 which was resolved when the dynamic object was created. We want
1296 to treat such symbols specially, because they raise special
1297 considerations when setting the symbol size: if the symbol
1298 appears as a common symbol in a regular object, and the size in
1299 the regular object is larger, we must make sure that we use the
1300 larger size. This problematic case can always be avoided in C,
1301 but it must be handled correctly when using Fortran shared
1302 libraries.
1303
1304 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1305 likewise for OLDDYNCOMMON and OLDDEF.
1306
1307 Note that this test is just a heuristic, and that it is quite
1308 possible to have an uninitialized symbol in a shared object which
1309 is really a definition, rather than a common symbol. This could
1310 lead to some minor confusion when the symbol really is a common
1311 symbol in some regular object. However, I think it will be
1312 harmless. */
1313
1314 if (newdyn
1315 && newdef
1316 && !newweak
1317 && (sec->flags & SEC_ALLOC) != 0
1318 && (sec->flags & SEC_LOAD) == 0
1319 && sym->st_size > 0
1320 && !newfunc)
1321 newdyncommon = TRUE;
1322 else
1323 newdyncommon = FALSE;
1324
1325 if (olddyn
1326 && olddef
1327 && h->root.type == bfd_link_hash_defined
1328 && h->def_dynamic
1329 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1330 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1331 && h->size > 0
1332 && !oldfunc)
1333 olddyncommon = TRUE;
1334 else
1335 olddyncommon = FALSE;
1336
1337 /* We now know everything about the old and new symbols. We ask the
1338 backend to check if we can merge them. */
1339 if (bed->merge_symbol
1340 && !bed->merge_symbol (info, sym_hash, h, sym, psec, pvalue,
1341 pold_alignment, skip, override,
1342 type_change_ok, size_change_ok,
1343 &newdyn, &newdef, &newdyncommon, &newweak,
1344 abfd, &sec,
1345 &olddyn, &olddef, &olddyncommon, &oldweak,
1346 oldbfd, &oldsec))
1347 return FALSE;
1348
1349 /* If both the old and the new symbols look like common symbols in a
1350 dynamic object, set the size of the symbol to the larger of the
1351 two. */
1352
1353 if (olddyncommon
1354 && newdyncommon
1355 && sym->st_size != h->size)
1356 {
1357 /* Since we think we have two common symbols, issue a multiple
1358 common warning if desired. Note that we only warn if the
1359 size is different. If the size is the same, we simply let
1360 the old symbol override the new one as normally happens with
1361 symbols defined in dynamic objects. */
1362
1363 if (! ((*info->callbacks->multiple_common)
1364 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1365 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1366 return FALSE;
1367
1368 if (sym->st_size > h->size)
1369 h->size = sym->st_size;
1370
1371 *size_change_ok = TRUE;
1372 }
1373
1374 /* If we are looking at a dynamic object, and we have found a
1375 definition, we need to see if the symbol was already defined by
1376 some other object. If so, we want to use the existing
1377 definition, and we do not want to report a multiple symbol
1378 definition error; we do this by clobbering *PSEC to be
1379 bfd_und_section_ptr.
1380
1381 We treat a common symbol as a definition if the symbol in the
1382 shared library is a function, since common symbols always
1383 represent variables; this can cause confusion in principle, but
1384 any such confusion would seem to indicate an erroneous program or
1385 shared library. We also permit a common symbol in a regular
1386 object to override a weak symbol in a shared object. */
1387
1388 if (newdyn
1389 && newdef
1390 && (olddef
1391 || (h->root.type == bfd_link_hash_common
1392 && (newweak || newfunc))))
1393 {
1394 *override = TRUE;
1395 newdef = FALSE;
1396 newdyncommon = FALSE;
1397
1398 *psec = sec = bfd_und_section_ptr;
1399 *size_change_ok = TRUE;
1400
1401 /* If we get here when the old symbol is a common symbol, then
1402 we are explicitly letting it override a weak symbol or
1403 function in a dynamic object, and we don't want to warn about
1404 a type change. If the old symbol is a defined symbol, a type
1405 change warning may still be appropriate. */
1406
1407 if (h->root.type == bfd_link_hash_common)
1408 *type_change_ok = TRUE;
1409 }
1410
1411 /* Handle the special case of an old common symbol merging with a
1412 new symbol which looks like a common symbol in a shared object.
1413 We change *PSEC and *PVALUE to make the new symbol look like a
1414 common symbol, and let _bfd_generic_link_add_one_symbol do the
1415 right thing. */
1416
1417 if (newdyncommon
1418 && h->root.type == bfd_link_hash_common)
1419 {
1420 *override = TRUE;
1421 newdef = FALSE;
1422 newdyncommon = FALSE;
1423 *pvalue = sym->st_size;
1424 *psec = sec = bed->common_section (oldsec);
1425 *size_change_ok = TRUE;
1426 }
1427
1428 /* Skip weak definitions of symbols that are already defined. */
1429 if (newdef && olddef && newweak)
1430 {
1431 *skip = TRUE;
1432
1433 /* Merge st_other. If the symbol already has a dynamic index,
1434 but visibility says it should not be visible, turn it into a
1435 local symbol. */
1436 elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1437 if (h->dynindx != -1)
1438 switch (ELF_ST_VISIBILITY (h->other))
1439 {
1440 case STV_INTERNAL:
1441 case STV_HIDDEN:
1442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1443 break;
1444 }
1445 }
1446
1447 /* If the old symbol is from a dynamic object, and the new symbol is
1448 a definition which is not from a dynamic object, then the new
1449 symbol overrides the old symbol. Symbols from regular files
1450 always take precedence over symbols from dynamic objects, even if
1451 they are defined after the dynamic object in the link.
1452
1453 As above, we again permit a common symbol in a regular object to
1454 override a definition in a shared object if the shared object
1455 symbol is a function or is weak. */
1456
1457 flip = NULL;
1458 if (!newdyn
1459 && (newdef
1460 || (bfd_is_com_section (sec)
1461 && (oldweak || oldfunc)))
1462 && olddyn
1463 && olddef
1464 && h->def_dynamic)
1465 {
1466 /* Change the hash table entry to undefined, and let
1467 _bfd_generic_link_add_one_symbol do the right thing with the
1468 new definition. */
1469
1470 h->root.type = bfd_link_hash_undefined;
1471 h->root.u.undef.abfd = h->root.u.def.section->owner;
1472 *size_change_ok = TRUE;
1473
1474 olddef = FALSE;
1475 olddyncommon = FALSE;
1476
1477 /* We again permit a type change when a common symbol may be
1478 overriding a function. */
1479
1480 if (bfd_is_com_section (sec))
1481 {
1482 if (oldfunc)
1483 {
1484 /* If a common symbol overrides a function, make sure
1485 that it isn't defined dynamically nor has type
1486 function. */
1487 h->def_dynamic = 0;
1488 h->type = STT_NOTYPE;
1489 }
1490 *type_change_ok = TRUE;
1491 }
1492
1493 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1494 flip = *sym_hash;
1495 else
1496 /* This union may have been set to be non-NULL when this symbol
1497 was seen in a dynamic object. We must force the union to be
1498 NULL, so that it is correct for a regular symbol. */
1499 h->verinfo.vertree = NULL;
1500 }
1501
1502 /* Handle the special case of a new common symbol merging with an
1503 old symbol that looks like it might be a common symbol defined in
1504 a shared object. Note that we have already handled the case in
1505 which a new common symbol should simply override the definition
1506 in the shared library. */
1507
1508 if (! newdyn
1509 && bfd_is_com_section (sec)
1510 && olddyncommon)
1511 {
1512 /* It would be best if we could set the hash table entry to a
1513 common symbol, but we don't know what to use for the section
1514 or the alignment. */
1515 if (! ((*info->callbacks->multiple_common)
1516 (info, h->root.root.string, oldbfd, bfd_link_hash_common,
1517 h->size, abfd, bfd_link_hash_common, sym->st_size)))
1518 return FALSE;
1519
1520 /* If the presumed common symbol in the dynamic object is
1521 larger, pretend that the new symbol has its size. */
1522
1523 if (h->size > *pvalue)
1524 *pvalue = h->size;
1525
1526 /* We need to remember the alignment required by the symbol
1527 in the dynamic object. */
1528 BFD_ASSERT (pold_alignment);
1529 *pold_alignment = h->root.u.def.section->alignment_power;
1530
1531 olddef = FALSE;
1532 olddyncommon = FALSE;
1533
1534 h->root.type = bfd_link_hash_undefined;
1535 h->root.u.undef.abfd = h->root.u.def.section->owner;
1536
1537 *size_change_ok = TRUE;
1538 *type_change_ok = TRUE;
1539
1540 if ((*sym_hash)->root.type == bfd_link_hash_indirect)
1541 flip = *sym_hash;
1542 else
1543 h->verinfo.vertree = NULL;
1544 }
1545
1546 if (flip != NULL)
1547 {
1548 /* Handle the case where we had a versioned symbol in a dynamic
1549 library and now find a definition in a normal object. In this
1550 case, we make the versioned symbol point to the normal one. */
1551 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1552 flip->root.type = h->root.type;
1553 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1554 h->root.type = bfd_link_hash_indirect;
1555 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1556 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1557 if (h->def_dynamic)
1558 {
1559 h->def_dynamic = 0;
1560 flip->ref_dynamic = 1;
1561 }
1562 }
1563
1564 return TRUE;
1565 }
1566
1567 /* This function is called to create an indirect symbol from the
1568 default for the symbol with the default version if needed. The
1569 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1570 set DYNSYM if the new indirect symbol is dynamic. */
1571
1572 static bfd_boolean
1573 _bfd_elf_add_default_symbol (bfd *abfd,
1574 struct bfd_link_info *info,
1575 struct elf_link_hash_entry *h,
1576 const char *name,
1577 Elf_Internal_Sym *sym,
1578 asection **psec,
1579 bfd_vma *value,
1580 bfd_boolean *dynsym,
1581 bfd_boolean override)
1582 {
1583 bfd_boolean type_change_ok;
1584 bfd_boolean size_change_ok;
1585 bfd_boolean skip;
1586 char *shortname;
1587 struct elf_link_hash_entry *hi;
1588 struct bfd_link_hash_entry *bh;
1589 const struct elf_backend_data *bed;
1590 bfd_boolean collect;
1591 bfd_boolean dynamic;
1592 char *p;
1593 size_t len, shortlen;
1594 asection *sec;
1595
1596 /* If this symbol has a version, and it is the default version, we
1597 create an indirect symbol from the default name to the fully
1598 decorated name. This will cause external references which do not
1599 specify a version to be bound to this version of the symbol. */
1600 p = strchr (name, ELF_VER_CHR);
1601 if (p == NULL || p[1] != ELF_VER_CHR)
1602 return TRUE;
1603
1604 if (override)
1605 {
1606 /* We are overridden by an old definition. We need to check if we
1607 need to create the indirect symbol from the default name. */
1608 hi = elf_link_hash_lookup (elf_hash_table (info), name, TRUE,
1609 FALSE, FALSE);
1610 BFD_ASSERT (hi != NULL);
1611 if (hi == h)
1612 return TRUE;
1613 while (hi->root.type == bfd_link_hash_indirect
1614 || hi->root.type == bfd_link_hash_warning)
1615 {
1616 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1617 if (hi == h)
1618 return TRUE;
1619 }
1620 }
1621
1622 bed = get_elf_backend_data (abfd);
1623 collect = bed->collect;
1624 dynamic = (abfd->flags & DYNAMIC) != 0;
1625
1626 shortlen = p - name;
1627 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1628 if (shortname == NULL)
1629 return FALSE;
1630 memcpy (shortname, name, shortlen);
1631 shortname[shortlen] = '\0';
1632
1633 /* We are going to create a new symbol. Merge it with any existing
1634 symbol with this name. For the purposes of the merge, act as
1635 though we were defining the symbol we just defined, although we
1636 actually going to define an indirect symbol. */
1637 type_change_ok = FALSE;
1638 size_change_ok = FALSE;
1639 sec = *psec;
1640 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1641 NULL, &hi, &skip, &override,
1642 &type_change_ok, &size_change_ok))
1643 return FALSE;
1644
1645 if (skip)
1646 goto nondefault;
1647
1648 if (! override)
1649 {
1650 bh = &hi->root;
1651 if (! (_bfd_generic_link_add_one_symbol
1652 (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1653 0, name, FALSE, collect, &bh)))
1654 return FALSE;
1655 hi = (struct elf_link_hash_entry *) bh;
1656 }
1657 else
1658 {
1659 /* In this case the symbol named SHORTNAME is overriding the
1660 indirect symbol we want to add. We were planning on making
1661 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1662 is the name without a version. NAME is the fully versioned
1663 name, and it is the default version.
1664
1665 Overriding means that we already saw a definition for the
1666 symbol SHORTNAME in a regular object, and it is overriding
1667 the symbol defined in the dynamic object.
1668
1669 When this happens, we actually want to change NAME, the
1670 symbol we just added, to refer to SHORTNAME. This will cause
1671 references to NAME in the shared object to become references
1672 to SHORTNAME in the regular object. This is what we expect
1673 when we override a function in a shared object: that the
1674 references in the shared object will be mapped to the
1675 definition in the regular object. */
1676
1677 while (hi->root.type == bfd_link_hash_indirect
1678 || hi->root.type == bfd_link_hash_warning)
1679 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1680
1681 h->root.type = bfd_link_hash_indirect;
1682 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1683 if (h->def_dynamic)
1684 {
1685 h->def_dynamic = 0;
1686 hi->ref_dynamic = 1;
1687 if (hi->ref_regular
1688 || hi->def_regular)
1689 {
1690 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1691 return FALSE;
1692 }
1693 }
1694
1695 /* Now set HI to H, so that the following code will set the
1696 other fields correctly. */
1697 hi = h;
1698 }
1699
1700 /* Check if HI is a warning symbol. */
1701 if (hi->root.type == bfd_link_hash_warning)
1702 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1703
1704 /* If there is a duplicate definition somewhere, then HI may not
1705 point to an indirect symbol. We will have reported an error to
1706 the user in that case. */
1707
1708 if (hi->root.type == bfd_link_hash_indirect)
1709 {
1710 struct elf_link_hash_entry *ht;
1711
1712 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1713 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1714
1715 /* See if the new flags lead us to realize that the symbol must
1716 be dynamic. */
1717 if (! *dynsym)
1718 {
1719 if (! dynamic)
1720 {
1721 if (info->shared
1722 || hi->ref_dynamic)
1723 *dynsym = TRUE;
1724 }
1725 else
1726 {
1727 if (hi->ref_regular)
1728 *dynsym = TRUE;
1729 }
1730 }
1731 }
1732
1733 /* We also need to define an indirection from the nondefault version
1734 of the symbol. */
1735
1736 nondefault:
1737 len = strlen (name);
1738 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739 if (shortname == NULL)
1740 return FALSE;
1741 memcpy (shortname, name, shortlen);
1742 memcpy (shortname + shortlen, p + 1, len - shortlen);
1743
1744 /* Once again, merge with any existing symbol. */
1745 type_change_ok = FALSE;
1746 size_change_ok = FALSE;
1747 sec = *psec;
1748 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &sec, value,
1749 NULL, &hi, &skip, &override,
1750 &type_change_ok, &size_change_ok))
1751 return FALSE;
1752
1753 if (skip)
1754 return TRUE;
1755
1756 if (override)
1757 {
1758 /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 the type of override we do in the case above unless it is
1760 overridden by a versioned definition. */
1761 if (hi->root.type != bfd_link_hash_defined
1762 && hi->root.type != bfd_link_hash_defweak)
1763 (*_bfd_error_handler)
1764 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 abfd, shortname);
1766 }
1767 else
1768 {
1769 bh = &hi->root;
1770 if (! (_bfd_generic_link_add_one_symbol
1771 (info, abfd, shortname, BSF_INDIRECT,
1772 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 return FALSE;
1774 hi = (struct elf_link_hash_entry *) bh;
1775
1776 /* If there is a duplicate definition somewhere, then HI may not
1777 point to an indirect symbol. We will have reported an error
1778 to the user in that case. */
1779
1780 if (hi->root.type == bfd_link_hash_indirect)
1781 {
1782 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783
1784 /* See if the new flags lead us to realize that the symbol
1785 must be dynamic. */
1786 if (! *dynsym)
1787 {
1788 if (! dynamic)
1789 {
1790 if (info->shared
1791 || hi->ref_dynamic)
1792 *dynsym = TRUE;
1793 }
1794 else
1795 {
1796 if (hi->ref_regular)
1797 *dynsym = TRUE;
1798 }
1799 }
1800 }
1801 }
1802
1803 return TRUE;
1804 }
1805 \f
1806 /* This routine is used to export all defined symbols into the dynamic
1807 symbol table. It is called via elf_link_hash_traverse. */
1808
1809 static bfd_boolean
1810 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1811 {
1812 struct elf_info_failed *eif = (struct elf_info_failed *) data;
1813
1814 /* Ignore this if we won't export it. */
1815 if (!eif->info->export_dynamic && !h->dynamic)
1816 return TRUE;
1817
1818 /* Ignore indirect symbols. These are added by the versioning code. */
1819 if (h->root.type == bfd_link_hash_indirect)
1820 return TRUE;
1821
1822 if (h->root.type == bfd_link_hash_warning)
1823 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1824
1825 if (h->dynindx == -1
1826 && (h->def_regular
1827 || h->ref_regular))
1828 {
1829 bfd_boolean hide;
1830
1831 if (eif->verdefs == NULL
1832 || (bfd_find_version_for_sym (eif->verdefs, h->root.root.string, &hide)
1833 && !hide))
1834 {
1835 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1836 {
1837 eif->failed = TRUE;
1838 return FALSE;
1839 }
1840 }
1841 }
1842
1843 return TRUE;
1844 }
1845 \f
1846 /* Look through the symbols which are defined in other shared
1847 libraries and referenced here. Update the list of version
1848 dependencies. This will be put into the .gnu.version_r section.
1849 This function is called via elf_link_hash_traverse. */
1850
1851 static bfd_boolean
1852 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1853 void *data)
1854 {
1855 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1856 Elf_Internal_Verneed *t;
1857 Elf_Internal_Vernaux *a;
1858 bfd_size_type amt;
1859
1860 if (h->root.type == bfd_link_hash_warning)
1861 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1862
1863 /* We only care about symbols defined in shared objects with version
1864 information. */
1865 if (!h->def_dynamic
1866 || h->def_regular
1867 || h->dynindx == -1
1868 || h->verinfo.verdef == NULL)
1869 return TRUE;
1870
1871 /* See if we already know about this version. */
1872 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1873 t != NULL;
1874 t = t->vn_nextref)
1875 {
1876 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1877 continue;
1878
1879 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1880 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1881 return TRUE;
1882
1883 break;
1884 }
1885
1886 /* This is a new version. Add it to tree we are building. */
1887
1888 if (t == NULL)
1889 {
1890 amt = sizeof *t;
1891 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1892 if (t == NULL)
1893 {
1894 rinfo->failed = TRUE;
1895 return FALSE;
1896 }
1897
1898 t->vn_bfd = h->verinfo.verdef->vd_bfd;
1899 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1900 elf_tdata (rinfo->info->output_bfd)->verref = t;
1901 }
1902
1903 amt = sizeof *a;
1904 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1905 if (a == NULL)
1906 {
1907 rinfo->failed = TRUE;
1908 return FALSE;
1909 }
1910
1911 /* Note that we are copying a string pointer here, and testing it
1912 above. If bfd_elf_string_from_elf_section is ever changed to
1913 discard the string data when low in memory, this will have to be
1914 fixed. */
1915 a->vna_nodename = h->verinfo.verdef->vd_nodename;
1916
1917 a->vna_flags = h->verinfo.verdef->vd_flags;
1918 a->vna_nextptr = t->vn_auxptr;
1919
1920 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1921 ++rinfo->vers;
1922
1923 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1924
1925 t->vn_auxptr = a;
1926
1927 return TRUE;
1928 }
1929
1930 /* Figure out appropriate versions for all the symbols. We may not
1931 have the version number script until we have read all of the input
1932 files, so until that point we don't know which symbols should be
1933 local. This function is called via elf_link_hash_traverse. */
1934
1935 static bfd_boolean
1936 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1937 {
1938 struct elf_info_failed *sinfo;
1939 struct bfd_link_info *info;
1940 const struct elf_backend_data *bed;
1941 struct elf_info_failed eif;
1942 char *p;
1943 bfd_size_type amt;
1944
1945 sinfo = (struct elf_info_failed *) data;
1946 info = sinfo->info;
1947
1948 if (h->root.type == bfd_link_hash_warning)
1949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1950
1951 /* Fix the symbol flags. */
1952 eif.failed = FALSE;
1953 eif.info = info;
1954 if (! _bfd_elf_fix_symbol_flags (h, &eif))
1955 {
1956 if (eif.failed)
1957 sinfo->failed = TRUE;
1958 return FALSE;
1959 }
1960
1961 /* We only need version numbers for symbols defined in regular
1962 objects. */
1963 if (!h->def_regular)
1964 return TRUE;
1965
1966 bed = get_elf_backend_data (info->output_bfd);
1967 p = strchr (h->root.root.string, ELF_VER_CHR);
1968 if (p != NULL && h->verinfo.vertree == NULL)
1969 {
1970 struct bfd_elf_version_tree *t;
1971 bfd_boolean hidden;
1972
1973 hidden = TRUE;
1974
1975 /* There are two consecutive ELF_VER_CHR characters if this is
1976 not a hidden symbol. */
1977 ++p;
1978 if (*p == ELF_VER_CHR)
1979 {
1980 hidden = FALSE;
1981 ++p;
1982 }
1983
1984 /* If there is no version string, we can just return out. */
1985 if (*p == '\0')
1986 {
1987 if (hidden)
1988 h->hidden = 1;
1989 return TRUE;
1990 }
1991
1992 /* Look for the version. If we find it, it is no longer weak. */
1993 for (t = sinfo->verdefs; t != NULL; t = t->next)
1994 {
1995 if (strcmp (t->name, p) == 0)
1996 {
1997 size_t len;
1998 char *alc;
1999 struct bfd_elf_version_expr *d;
2000
2001 len = p - h->root.root.string;
2002 alc = (char *) bfd_malloc (len);
2003 if (alc == NULL)
2004 {
2005 sinfo->failed = TRUE;
2006 return FALSE;
2007 }
2008 memcpy (alc, h->root.root.string, len - 1);
2009 alc[len - 1] = '\0';
2010 if (alc[len - 2] == ELF_VER_CHR)
2011 alc[len - 2] = '\0';
2012
2013 h->verinfo.vertree = t;
2014 t->used = TRUE;
2015 d = NULL;
2016
2017 if (t->globals.list != NULL)
2018 d = (*t->match) (&t->globals, NULL, alc);
2019
2020 /* See if there is anything to force this symbol to
2021 local scope. */
2022 if (d == NULL && t->locals.list != NULL)
2023 {
2024 d = (*t->match) (&t->locals, NULL, alc);
2025 if (d != NULL
2026 && h->dynindx != -1
2027 && ! info->export_dynamic)
2028 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2029 }
2030
2031 free (alc);
2032 break;
2033 }
2034 }
2035
2036 /* If we are building an application, we need to create a
2037 version node for this version. */
2038 if (t == NULL && info->executable)
2039 {
2040 struct bfd_elf_version_tree **pp;
2041 int version_index;
2042
2043 /* If we aren't going to export this symbol, we don't need
2044 to worry about it. */
2045 if (h->dynindx == -1)
2046 return TRUE;
2047
2048 amt = sizeof *t;
2049 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2050 if (t == NULL)
2051 {
2052 sinfo->failed = TRUE;
2053 return FALSE;
2054 }
2055
2056 t->name = p;
2057 t->name_indx = (unsigned int) -1;
2058 t->used = TRUE;
2059
2060 version_index = 1;
2061 /* Don't count anonymous version tag. */
2062 if (sinfo->verdefs != NULL && sinfo->verdefs->vernum == 0)
2063 version_index = 0;
2064 for (pp = &sinfo->verdefs; *pp != NULL; pp = &(*pp)->next)
2065 ++version_index;
2066 t->vernum = version_index;
2067
2068 *pp = t;
2069
2070 h->verinfo.vertree = t;
2071 }
2072 else if (t == NULL)
2073 {
2074 /* We could not find the version for a symbol when
2075 generating a shared archive. Return an error. */
2076 (*_bfd_error_handler)
2077 (_("%B: version node not found for symbol %s"),
2078 info->output_bfd, h->root.root.string);
2079 bfd_set_error (bfd_error_bad_value);
2080 sinfo->failed = TRUE;
2081 return FALSE;
2082 }
2083
2084 if (hidden)
2085 h->hidden = 1;
2086 }
2087
2088 /* If we don't have a version for this symbol, see if we can find
2089 something. */
2090 if (h->verinfo.vertree == NULL && sinfo->verdefs != NULL)
2091 {
2092 bfd_boolean hide;
2093
2094 h->verinfo.vertree = bfd_find_version_for_sym (sinfo->verdefs,
2095 h->root.root.string, &hide);
2096 if (h->verinfo.vertree != NULL && hide)
2097 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2098 }
2099
2100 return TRUE;
2101 }
2102 \f
2103 /* Read and swap the relocs from the section indicated by SHDR. This
2104 may be either a REL or a RELA section. The relocations are
2105 translated into RELA relocations and stored in INTERNAL_RELOCS,
2106 which should have already been allocated to contain enough space.
2107 The EXTERNAL_RELOCS are a buffer where the external form of the
2108 relocations should be stored.
2109
2110 Returns FALSE if something goes wrong. */
2111
2112 static bfd_boolean
2113 elf_link_read_relocs_from_section (bfd *abfd,
2114 asection *sec,
2115 Elf_Internal_Shdr *shdr,
2116 void *external_relocs,
2117 Elf_Internal_Rela *internal_relocs)
2118 {
2119 const struct elf_backend_data *bed;
2120 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2121 const bfd_byte *erela;
2122 const bfd_byte *erelaend;
2123 Elf_Internal_Rela *irela;
2124 Elf_Internal_Shdr *symtab_hdr;
2125 size_t nsyms;
2126
2127 /* Position ourselves at the start of the section. */
2128 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2129 return FALSE;
2130
2131 /* Read the relocations. */
2132 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2133 return FALSE;
2134
2135 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2136 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2137
2138 bed = get_elf_backend_data (abfd);
2139
2140 /* Convert the external relocations to the internal format. */
2141 if (shdr->sh_entsize == bed->s->sizeof_rel)
2142 swap_in = bed->s->swap_reloc_in;
2143 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2144 swap_in = bed->s->swap_reloca_in;
2145 else
2146 {
2147 bfd_set_error (bfd_error_wrong_format);
2148 return FALSE;
2149 }
2150
2151 erela = (const bfd_byte *) external_relocs;
2152 erelaend = erela + shdr->sh_size;
2153 irela = internal_relocs;
2154 while (erela < erelaend)
2155 {
2156 bfd_vma r_symndx;
2157
2158 (*swap_in) (abfd, erela, irela);
2159 r_symndx = ELF32_R_SYM (irela->r_info);
2160 if (bed->s->arch_size == 64)
2161 r_symndx >>= 24;
2162 if (nsyms > 0)
2163 {
2164 if ((size_t) r_symndx >= nsyms)
2165 {
2166 (*_bfd_error_handler)
2167 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2168 " for offset 0x%lx in section `%A'"),
2169 abfd, sec,
2170 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2171 bfd_set_error (bfd_error_bad_value);
2172 return FALSE;
2173 }
2174 }
2175 else if (r_symndx != 0)
2176 {
2177 (*_bfd_error_handler)
2178 (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2179 " when the object file has no symbol table"),
2180 abfd, sec,
2181 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2182 bfd_set_error (bfd_error_bad_value);
2183 return FALSE;
2184 }
2185 irela += bed->s->int_rels_per_ext_rel;
2186 erela += shdr->sh_entsize;
2187 }
2188
2189 return TRUE;
2190 }
2191
2192 /* Read and swap the relocs for a section O. They may have been
2193 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2194 not NULL, they are used as buffers to read into. They are known to
2195 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2196 the return value is allocated using either malloc or bfd_alloc,
2197 according to the KEEP_MEMORY argument. If O has two relocation
2198 sections (both REL and RELA relocations), then the REL_HDR
2199 relocations will appear first in INTERNAL_RELOCS, followed by the
2200 REL_HDR2 relocations. */
2201
2202 Elf_Internal_Rela *
2203 _bfd_elf_link_read_relocs (bfd *abfd,
2204 asection *o,
2205 void *external_relocs,
2206 Elf_Internal_Rela *internal_relocs,
2207 bfd_boolean keep_memory)
2208 {
2209 Elf_Internal_Shdr *rel_hdr;
2210 void *alloc1 = NULL;
2211 Elf_Internal_Rela *alloc2 = NULL;
2212 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2213
2214 if (elf_section_data (o)->relocs != NULL)
2215 return elf_section_data (o)->relocs;
2216
2217 if (o->reloc_count == 0)
2218 return NULL;
2219
2220 rel_hdr = &elf_section_data (o)->rel_hdr;
2221
2222 if (internal_relocs == NULL)
2223 {
2224 bfd_size_type size;
2225
2226 size = o->reloc_count;
2227 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2228 if (keep_memory)
2229 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2230 else
2231 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2232 if (internal_relocs == NULL)
2233 goto error_return;
2234 }
2235
2236 if (external_relocs == NULL)
2237 {
2238 bfd_size_type size = rel_hdr->sh_size;
2239
2240 if (elf_section_data (o)->rel_hdr2)
2241 size += elf_section_data (o)->rel_hdr2->sh_size;
2242 alloc1 = bfd_malloc (size);
2243 if (alloc1 == NULL)
2244 goto error_return;
2245 external_relocs = alloc1;
2246 }
2247
2248 if (!elf_link_read_relocs_from_section (abfd, o, rel_hdr,
2249 external_relocs,
2250 internal_relocs))
2251 goto error_return;
2252 if (elf_section_data (o)->rel_hdr2
2253 && (!elf_link_read_relocs_from_section
2254 (abfd, o,
2255 elf_section_data (o)->rel_hdr2,
2256 ((bfd_byte *) external_relocs) + rel_hdr->sh_size,
2257 internal_relocs + (NUM_SHDR_ENTRIES (rel_hdr)
2258 * bed->s->int_rels_per_ext_rel))))
2259 goto error_return;
2260
2261 /* Cache the results for next time, if we can. */
2262 if (keep_memory)
2263 elf_section_data (o)->relocs = internal_relocs;
2264
2265 if (alloc1 != NULL)
2266 free (alloc1);
2267
2268 /* Don't free alloc2, since if it was allocated we are passing it
2269 back (under the name of internal_relocs). */
2270
2271 return internal_relocs;
2272
2273 error_return:
2274 if (alloc1 != NULL)
2275 free (alloc1);
2276 if (alloc2 != NULL)
2277 {
2278 if (keep_memory)
2279 bfd_release (abfd, alloc2);
2280 else
2281 free (alloc2);
2282 }
2283 return NULL;
2284 }
2285
2286 /* Compute the size of, and allocate space for, REL_HDR which is the
2287 section header for a section containing relocations for O. */
2288
2289 static bfd_boolean
2290 _bfd_elf_link_size_reloc_section (bfd *abfd,
2291 Elf_Internal_Shdr *rel_hdr,
2292 asection *o)
2293 {
2294 bfd_size_type reloc_count;
2295 bfd_size_type num_rel_hashes;
2296
2297 /* Figure out how many relocations there will be. */
2298 if (rel_hdr == &elf_section_data (o)->rel_hdr)
2299 reloc_count = elf_section_data (o)->rel_count;
2300 else
2301 reloc_count = elf_section_data (o)->rel_count2;
2302
2303 num_rel_hashes = o->reloc_count;
2304 if (num_rel_hashes < reloc_count)
2305 num_rel_hashes = reloc_count;
2306
2307 /* That allows us to calculate the size of the section. */
2308 rel_hdr->sh_size = rel_hdr->sh_entsize * reloc_count;
2309
2310 /* The contents field must last into write_object_contents, so we
2311 allocate it with bfd_alloc rather than malloc. Also since we
2312 cannot be sure that the contents will actually be filled in,
2313 we zero the allocated space. */
2314 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2315 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2316 return FALSE;
2317
2318 /* We only allocate one set of hash entries, so we only do it the
2319 first time we are called. */
2320 if (elf_section_data (o)->rel_hashes == NULL
2321 && num_rel_hashes)
2322 {
2323 struct elf_link_hash_entry **p;
2324
2325 p = (struct elf_link_hash_entry **)
2326 bfd_zmalloc (num_rel_hashes * sizeof (struct elf_link_hash_entry *));
2327 if (p == NULL)
2328 return FALSE;
2329
2330 elf_section_data (o)->rel_hashes = p;
2331 }
2332
2333 return TRUE;
2334 }
2335
2336 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2337 originated from the section given by INPUT_REL_HDR) to the
2338 OUTPUT_BFD. */
2339
2340 bfd_boolean
2341 _bfd_elf_link_output_relocs (bfd *output_bfd,
2342 asection *input_section,
2343 Elf_Internal_Shdr *input_rel_hdr,
2344 Elf_Internal_Rela *internal_relocs,
2345 struct elf_link_hash_entry **rel_hash
2346 ATTRIBUTE_UNUSED)
2347 {
2348 Elf_Internal_Rela *irela;
2349 Elf_Internal_Rela *irelaend;
2350 bfd_byte *erel;
2351 Elf_Internal_Shdr *output_rel_hdr;
2352 asection *output_section;
2353 unsigned int *rel_countp = NULL;
2354 const struct elf_backend_data *bed;
2355 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2356
2357 output_section = input_section->output_section;
2358 output_rel_hdr = NULL;
2359
2360 if (elf_section_data (output_section)->rel_hdr.sh_entsize
2361 == input_rel_hdr->sh_entsize)
2362 {
2363 output_rel_hdr = &elf_section_data (output_section)->rel_hdr;
2364 rel_countp = &elf_section_data (output_section)->rel_count;
2365 }
2366 else if (elf_section_data (output_section)->rel_hdr2
2367 && (elf_section_data (output_section)->rel_hdr2->sh_entsize
2368 == input_rel_hdr->sh_entsize))
2369 {
2370 output_rel_hdr = elf_section_data (output_section)->rel_hdr2;
2371 rel_countp = &elf_section_data (output_section)->rel_count2;
2372 }
2373 else
2374 {
2375 (*_bfd_error_handler)
2376 (_("%B: relocation size mismatch in %B section %A"),
2377 output_bfd, input_section->owner, input_section);
2378 bfd_set_error (bfd_error_wrong_format);
2379 return FALSE;
2380 }
2381
2382 bed = get_elf_backend_data (output_bfd);
2383 if (input_rel_hdr->sh_entsize == bed->s->sizeof_rel)
2384 swap_out = bed->s->swap_reloc_out;
2385 else if (input_rel_hdr->sh_entsize == bed->s->sizeof_rela)
2386 swap_out = bed->s->swap_reloca_out;
2387 else
2388 abort ();
2389
2390 erel = output_rel_hdr->contents;
2391 erel += *rel_countp * input_rel_hdr->sh_entsize;
2392 irela = internal_relocs;
2393 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2394 * bed->s->int_rels_per_ext_rel);
2395 while (irela < irelaend)
2396 {
2397 (*swap_out) (output_bfd, irela, erel);
2398 irela += bed->s->int_rels_per_ext_rel;
2399 erel += input_rel_hdr->sh_entsize;
2400 }
2401
2402 /* Bump the counter, so that we know where to add the next set of
2403 relocations. */
2404 *rel_countp += NUM_SHDR_ENTRIES (input_rel_hdr);
2405
2406 return TRUE;
2407 }
2408 \f
2409 /* Make weak undefined symbols in PIE dynamic. */
2410
2411 bfd_boolean
2412 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2413 struct elf_link_hash_entry *h)
2414 {
2415 if (info->pie
2416 && h->dynindx == -1
2417 && h->root.type == bfd_link_hash_undefweak)
2418 return bfd_elf_link_record_dynamic_symbol (info, h);
2419
2420 return TRUE;
2421 }
2422
2423 /* Fix up the flags for a symbol. This handles various cases which
2424 can only be fixed after all the input files are seen. This is
2425 currently called by both adjust_dynamic_symbol and
2426 assign_sym_version, which is unnecessary but perhaps more robust in
2427 the face of future changes. */
2428
2429 static bfd_boolean
2430 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2431 struct elf_info_failed *eif)
2432 {
2433 const struct elf_backend_data *bed;
2434
2435 /* If this symbol was mentioned in a non-ELF file, try to set
2436 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2437 permit a non-ELF file to correctly refer to a symbol defined in
2438 an ELF dynamic object. */
2439 if (h->non_elf)
2440 {
2441 while (h->root.type == bfd_link_hash_indirect)
2442 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2443
2444 if (h->root.type != bfd_link_hash_defined
2445 && h->root.type != bfd_link_hash_defweak)
2446 {
2447 h->ref_regular = 1;
2448 h->ref_regular_nonweak = 1;
2449 }
2450 else
2451 {
2452 if (h->root.u.def.section->owner != NULL
2453 && (bfd_get_flavour (h->root.u.def.section->owner)
2454 == bfd_target_elf_flavour))
2455 {
2456 h->ref_regular = 1;
2457 h->ref_regular_nonweak = 1;
2458 }
2459 else
2460 h->def_regular = 1;
2461 }
2462
2463 if (h->dynindx == -1
2464 && (h->def_dynamic
2465 || h->ref_dynamic))
2466 {
2467 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2468 {
2469 eif->failed = TRUE;
2470 return FALSE;
2471 }
2472 }
2473 }
2474 else
2475 {
2476 /* Unfortunately, NON_ELF is only correct if the symbol
2477 was first seen in a non-ELF file. Fortunately, if the symbol
2478 was first seen in an ELF file, we're probably OK unless the
2479 symbol was defined in a non-ELF file. Catch that case here.
2480 FIXME: We're still in trouble if the symbol was first seen in
2481 a dynamic object, and then later in a non-ELF regular object. */
2482 if ((h->root.type == bfd_link_hash_defined
2483 || h->root.type == bfd_link_hash_defweak)
2484 && !h->def_regular
2485 && (h->root.u.def.section->owner != NULL
2486 ? (bfd_get_flavour (h->root.u.def.section->owner)
2487 != bfd_target_elf_flavour)
2488 : (bfd_is_abs_section (h->root.u.def.section)
2489 && !h->def_dynamic)))
2490 h->def_regular = 1;
2491 }
2492
2493 /* Backend specific symbol fixup. */
2494 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2495 if (bed->elf_backend_fixup_symbol
2496 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2497 return FALSE;
2498
2499 /* If this is a final link, and the symbol was defined as a common
2500 symbol in a regular object file, and there was no definition in
2501 any dynamic object, then the linker will have allocated space for
2502 the symbol in a common section but the DEF_REGULAR
2503 flag will not have been set. */
2504 if (h->root.type == bfd_link_hash_defined
2505 && !h->def_regular
2506 && h->ref_regular
2507 && !h->def_dynamic
2508 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
2509 h->def_regular = 1;
2510
2511 /* If -Bsymbolic was used (which means to bind references to global
2512 symbols to the definition within the shared object), and this
2513 symbol was defined in a regular object, then it actually doesn't
2514 need a PLT entry. Likewise, if the symbol has non-default
2515 visibility. If the symbol has hidden or internal visibility, we
2516 will force it local. */
2517 if (h->needs_plt
2518 && eif->info->shared
2519 && is_elf_hash_table (eif->info->hash)
2520 && (SYMBOLIC_BIND (eif->info, h)
2521 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2522 && h->def_regular)
2523 {
2524 bfd_boolean force_local;
2525
2526 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2527 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2528 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2529 }
2530
2531 /* If a weak undefined symbol has non-default visibility, we also
2532 hide it from the dynamic linker. */
2533 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2534 && h->root.type == bfd_link_hash_undefweak)
2535 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2536
2537 /* If this is a weak defined symbol in a dynamic object, and we know
2538 the real definition in the dynamic object, copy interesting flags
2539 over to the real definition. */
2540 if (h->u.weakdef != NULL)
2541 {
2542 struct elf_link_hash_entry *weakdef;
2543
2544 weakdef = h->u.weakdef;
2545 if (h->root.type == bfd_link_hash_indirect)
2546 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2547
2548 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2549 || h->root.type == bfd_link_hash_defweak);
2550 BFD_ASSERT (weakdef->def_dynamic);
2551
2552 /* If the real definition is defined by a regular object file,
2553 don't do anything special. See the longer description in
2554 _bfd_elf_adjust_dynamic_symbol, below. */
2555 if (weakdef->def_regular)
2556 h->u.weakdef = NULL;
2557 else
2558 {
2559 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2560 || weakdef->root.type == bfd_link_hash_defweak);
2561 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2562 }
2563 }
2564
2565 return TRUE;
2566 }
2567
2568 /* Make the backend pick a good value for a dynamic symbol. This is
2569 called via elf_link_hash_traverse, and also calls itself
2570 recursively. */
2571
2572 static bfd_boolean
2573 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2574 {
2575 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2576 bfd *dynobj;
2577 const struct elf_backend_data *bed;
2578
2579 if (! is_elf_hash_table (eif->info->hash))
2580 return FALSE;
2581
2582 if (h->root.type == bfd_link_hash_warning)
2583 {
2584 h->got = elf_hash_table (eif->info)->init_got_offset;
2585 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2586
2587 /* When warning symbols are created, they **replace** the "real"
2588 entry in the hash table, thus we never get to see the real
2589 symbol in a hash traversal. So look at it now. */
2590 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2591 }
2592
2593 /* Ignore indirect symbols. These are added by the versioning code. */
2594 if (h->root.type == bfd_link_hash_indirect)
2595 return TRUE;
2596
2597 /* Fix the symbol flags. */
2598 if (! _bfd_elf_fix_symbol_flags (h, eif))
2599 return FALSE;
2600
2601 /* If this symbol does not require a PLT entry, and it is not
2602 defined by a dynamic object, or is not referenced by a regular
2603 object, ignore it. We do have to handle a weak defined symbol,
2604 even if no regular object refers to it, if we decided to add it
2605 to the dynamic symbol table. FIXME: Do we normally need to worry
2606 about symbols which are defined by one dynamic object and
2607 referenced by another one? */
2608 if (!h->needs_plt
2609 && h->type != STT_GNU_IFUNC
2610 && (h->def_regular
2611 || !h->def_dynamic
2612 || (!h->ref_regular
2613 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2614 {
2615 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2616 return TRUE;
2617 }
2618
2619 /* If we've already adjusted this symbol, don't do it again. This
2620 can happen via a recursive call. */
2621 if (h->dynamic_adjusted)
2622 return TRUE;
2623
2624 /* Don't look at this symbol again. Note that we must set this
2625 after checking the above conditions, because we may look at a
2626 symbol once, decide not to do anything, and then get called
2627 recursively later after REF_REGULAR is set below. */
2628 h->dynamic_adjusted = 1;
2629
2630 /* If this is a weak definition, and we know a real definition, and
2631 the real symbol is not itself defined by a regular object file,
2632 then get a good value for the real definition. We handle the
2633 real symbol first, for the convenience of the backend routine.
2634
2635 Note that there is a confusing case here. If the real definition
2636 is defined by a regular object file, we don't get the real symbol
2637 from the dynamic object, but we do get the weak symbol. If the
2638 processor backend uses a COPY reloc, then if some routine in the
2639 dynamic object changes the real symbol, we will not see that
2640 change in the corresponding weak symbol. This is the way other
2641 ELF linkers work as well, and seems to be a result of the shared
2642 library model.
2643
2644 I will clarify this issue. Most SVR4 shared libraries define the
2645 variable _timezone and define timezone as a weak synonym. The
2646 tzset call changes _timezone. If you write
2647 extern int timezone;
2648 int _timezone = 5;
2649 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2650 you might expect that, since timezone is a synonym for _timezone,
2651 the same number will print both times. However, if the processor
2652 backend uses a COPY reloc, then actually timezone will be copied
2653 into your process image, and, since you define _timezone
2654 yourself, _timezone will not. Thus timezone and _timezone will
2655 wind up at different memory locations. The tzset call will set
2656 _timezone, leaving timezone unchanged. */
2657
2658 if (h->u.weakdef != NULL)
2659 {
2660 /* If we get to this point, we know there is an implicit
2661 reference by a regular object file via the weak symbol H.
2662 FIXME: Is this really true? What if the traversal finds
2663 H->U.WEAKDEF before it finds H? */
2664 h->u.weakdef->ref_regular = 1;
2665
2666 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2667 return FALSE;
2668 }
2669
2670 /* If a symbol has no type and no size and does not require a PLT
2671 entry, then we are probably about to do the wrong thing here: we
2672 are probably going to create a COPY reloc for an empty object.
2673 This case can arise when a shared object is built with assembly
2674 code, and the assembly code fails to set the symbol type. */
2675 if (h->size == 0
2676 && h->type == STT_NOTYPE
2677 && !h->needs_plt)
2678 (*_bfd_error_handler)
2679 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2680 h->root.root.string);
2681
2682 dynobj = elf_hash_table (eif->info)->dynobj;
2683 bed = get_elf_backend_data (dynobj);
2684
2685 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2686 {
2687 eif->failed = TRUE;
2688 return FALSE;
2689 }
2690
2691 return TRUE;
2692 }
2693
2694 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2695 DYNBSS. */
2696
2697 bfd_boolean
2698 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2699 asection *dynbss)
2700 {
2701 unsigned int power_of_two;
2702 bfd_vma mask;
2703 asection *sec = h->root.u.def.section;
2704
2705 /* The section aligment of definition is the maximum alignment
2706 requirement of symbols defined in the section. Since we don't
2707 know the symbol alignment requirement, we start with the
2708 maximum alignment and check low bits of the symbol address
2709 for the minimum alignment. */
2710 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2711 mask = ((bfd_vma) 1 << power_of_two) - 1;
2712 while ((h->root.u.def.value & mask) != 0)
2713 {
2714 mask >>= 1;
2715 --power_of_two;
2716 }
2717
2718 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2719 dynbss))
2720 {
2721 /* Adjust the section alignment if needed. */
2722 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2723 power_of_two))
2724 return FALSE;
2725 }
2726
2727 /* We make sure that the symbol will be aligned properly. */
2728 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2729
2730 /* Define the symbol as being at this point in DYNBSS. */
2731 h->root.u.def.section = dynbss;
2732 h->root.u.def.value = dynbss->size;
2733
2734 /* Increment the size of DYNBSS to make room for the symbol. */
2735 dynbss->size += h->size;
2736
2737 return TRUE;
2738 }
2739
2740 /* Adjust all external symbols pointing into SEC_MERGE sections
2741 to reflect the object merging within the sections. */
2742
2743 static bfd_boolean
2744 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2745 {
2746 asection *sec;
2747
2748 if (h->root.type == bfd_link_hash_warning)
2749 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2750
2751 if ((h->root.type == bfd_link_hash_defined
2752 || h->root.type == bfd_link_hash_defweak)
2753 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2754 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
2755 {
2756 bfd *output_bfd = (bfd *) data;
2757
2758 h->root.u.def.value =
2759 _bfd_merged_section_offset (output_bfd,
2760 &h->root.u.def.section,
2761 elf_section_data (sec)->sec_info,
2762 h->root.u.def.value);
2763 }
2764
2765 return TRUE;
2766 }
2767
2768 /* Returns false if the symbol referred to by H should be considered
2769 to resolve local to the current module, and true if it should be
2770 considered to bind dynamically. */
2771
2772 bfd_boolean
2773 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2774 struct bfd_link_info *info,
2775 bfd_boolean ignore_protected)
2776 {
2777 bfd_boolean binding_stays_local_p;
2778 const struct elf_backend_data *bed;
2779 struct elf_link_hash_table *hash_table;
2780
2781 if (h == NULL)
2782 return FALSE;
2783
2784 while (h->root.type == bfd_link_hash_indirect
2785 || h->root.type == bfd_link_hash_warning)
2786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2787
2788 /* If it was forced local, then clearly it's not dynamic. */
2789 if (h->dynindx == -1)
2790 return FALSE;
2791 if (h->forced_local)
2792 return FALSE;
2793
2794 /* Identify the cases where name binding rules say that a
2795 visible symbol resolves locally. */
2796 binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2797
2798 switch (ELF_ST_VISIBILITY (h->other))
2799 {
2800 case STV_INTERNAL:
2801 case STV_HIDDEN:
2802 return FALSE;
2803
2804 case STV_PROTECTED:
2805 hash_table = elf_hash_table (info);
2806 if (!is_elf_hash_table (hash_table))
2807 return FALSE;
2808
2809 bed = get_elf_backend_data (hash_table->dynobj);
2810
2811 /* Proper resolution for function pointer equality may require
2812 that these symbols perhaps be resolved dynamically, even though
2813 we should be resolving them to the current module. */
2814 if (!ignore_protected || !bed->is_function_type (h->type))
2815 binding_stays_local_p = TRUE;
2816 break;
2817
2818 default:
2819 break;
2820 }
2821
2822 /* If it isn't defined locally, then clearly it's dynamic. */
2823 if (!h->def_regular)
2824 return TRUE;
2825
2826 /* Otherwise, the symbol is dynamic if binding rules don't tell
2827 us that it remains local. */
2828 return !binding_stays_local_p;
2829 }
2830
2831 /* Return true if the symbol referred to by H should be considered
2832 to resolve local to the current module, and false otherwise. Differs
2833 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2834 undefined symbols and weak symbols. */
2835
2836 bfd_boolean
2837 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2838 struct bfd_link_info *info,
2839 bfd_boolean local_protected)
2840 {
2841 const struct elf_backend_data *bed;
2842 struct elf_link_hash_table *hash_table;
2843
2844 /* If it's a local sym, of course we resolve locally. */
2845 if (h == NULL)
2846 return TRUE;
2847
2848 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
2849 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2850 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2851 return TRUE;
2852
2853 /* Common symbols that become definitions don't get the DEF_REGULAR
2854 flag set, so test it first, and don't bail out. */
2855 if (ELF_COMMON_DEF_P (h))
2856 /* Do nothing. */;
2857 /* If we don't have a definition in a regular file, then we can't
2858 resolve locally. The sym is either undefined or dynamic. */
2859 else if (!h->def_regular)
2860 return FALSE;
2861
2862 /* Forced local symbols resolve locally. */
2863 if (h->forced_local)
2864 return TRUE;
2865
2866 /* As do non-dynamic symbols. */
2867 if (h->dynindx == -1)
2868 return TRUE;
2869
2870 /* At this point, we know the symbol is defined and dynamic. In an
2871 executable it must resolve locally, likewise when building symbolic
2872 shared libraries. */
2873 if (info->executable || SYMBOLIC_BIND (info, h))
2874 return TRUE;
2875
2876 /* Now deal with defined dynamic symbols in shared libraries. Ones
2877 with default visibility might not resolve locally. */
2878 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2879 return FALSE;
2880
2881 hash_table = elf_hash_table (info);
2882 if (!is_elf_hash_table (hash_table))
2883 return TRUE;
2884
2885 bed = get_elf_backend_data (hash_table->dynobj);
2886
2887 /* STV_PROTECTED non-function symbols are local. */
2888 if (!bed->is_function_type (h->type))
2889 return TRUE;
2890
2891 /* Function pointer equality tests may require that STV_PROTECTED
2892 symbols be treated as dynamic symbols, even when we know that the
2893 dynamic linker will resolve them locally. */
2894 return local_protected;
2895 }
2896
2897 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2898 aligned. Returns the first TLS output section. */
2899
2900 struct bfd_section *
2901 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2902 {
2903 struct bfd_section *sec, *tls;
2904 unsigned int align = 0;
2905
2906 for (sec = obfd->sections; sec != NULL; sec = sec->next)
2907 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2908 break;
2909 tls = sec;
2910
2911 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2912 if (sec->alignment_power > align)
2913 align = sec->alignment_power;
2914
2915 elf_hash_table (info)->tls_sec = tls;
2916
2917 /* Ensure the alignment of the first section is the largest alignment,
2918 so that the tls segment starts aligned. */
2919 if (tls != NULL)
2920 tls->alignment_power = align;
2921
2922 return tls;
2923 }
2924
2925 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2926 static bfd_boolean
2927 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2928 Elf_Internal_Sym *sym)
2929 {
2930 const struct elf_backend_data *bed;
2931
2932 /* Local symbols do not count, but target specific ones might. */
2933 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2934 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2935 return FALSE;
2936
2937 bed = get_elf_backend_data (abfd);
2938 /* Function symbols do not count. */
2939 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2940 return FALSE;
2941
2942 /* If the section is undefined, then so is the symbol. */
2943 if (sym->st_shndx == SHN_UNDEF)
2944 return FALSE;
2945
2946 /* If the symbol is defined in the common section, then
2947 it is a common definition and so does not count. */
2948 if (bed->common_definition (sym))
2949 return FALSE;
2950
2951 /* If the symbol is in a target specific section then we
2952 must rely upon the backend to tell us what it is. */
2953 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2954 /* FIXME - this function is not coded yet:
2955
2956 return _bfd_is_global_symbol_definition (abfd, sym);
2957
2958 Instead for now assume that the definition is not global,
2959 Even if this is wrong, at least the linker will behave
2960 in the same way that it used to do. */
2961 return FALSE;
2962
2963 return TRUE;
2964 }
2965
2966 /* Search the symbol table of the archive element of the archive ABFD
2967 whose archive map contains a mention of SYMDEF, and determine if
2968 the symbol is defined in this element. */
2969 static bfd_boolean
2970 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2971 {
2972 Elf_Internal_Shdr * hdr;
2973 bfd_size_type symcount;
2974 bfd_size_type extsymcount;
2975 bfd_size_type extsymoff;
2976 Elf_Internal_Sym *isymbuf;
2977 Elf_Internal_Sym *isym;
2978 Elf_Internal_Sym *isymend;
2979 bfd_boolean result;
2980
2981 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2982 if (abfd == NULL)
2983 return FALSE;
2984
2985 if (! bfd_check_format (abfd, bfd_object))
2986 return FALSE;
2987
2988 /* If we have already included the element containing this symbol in the
2989 link then we do not need to include it again. Just claim that any symbol
2990 it contains is not a definition, so that our caller will not decide to
2991 (re)include this element. */
2992 if (abfd->archive_pass)
2993 return FALSE;
2994
2995 /* Select the appropriate symbol table. */
2996 if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2997 hdr = &elf_tdata (abfd)->symtab_hdr;
2998 else
2999 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3000
3001 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3002
3003 /* The sh_info field of the symtab header tells us where the
3004 external symbols start. We don't care about the local symbols. */
3005 if (elf_bad_symtab (abfd))
3006 {
3007 extsymcount = symcount;
3008 extsymoff = 0;
3009 }
3010 else
3011 {
3012 extsymcount = symcount - hdr->sh_info;
3013 extsymoff = hdr->sh_info;
3014 }
3015
3016 if (extsymcount == 0)
3017 return FALSE;
3018
3019 /* Read in the symbol table. */
3020 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3021 NULL, NULL, NULL);
3022 if (isymbuf == NULL)
3023 return FALSE;
3024
3025 /* Scan the symbol table looking for SYMDEF. */
3026 result = FALSE;
3027 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3028 {
3029 const char *name;
3030
3031 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3032 isym->st_name);
3033 if (name == NULL)
3034 break;
3035
3036 if (strcmp (name, symdef->name) == 0)
3037 {
3038 result = is_global_data_symbol_definition (abfd, isym);
3039 break;
3040 }
3041 }
3042
3043 free (isymbuf);
3044
3045 return result;
3046 }
3047 \f
3048 /* Add an entry to the .dynamic table. */
3049
3050 bfd_boolean
3051 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3052 bfd_vma tag,
3053 bfd_vma val)
3054 {
3055 struct elf_link_hash_table *hash_table;
3056 const struct elf_backend_data *bed;
3057 asection *s;
3058 bfd_size_type newsize;
3059 bfd_byte *newcontents;
3060 Elf_Internal_Dyn dyn;
3061
3062 hash_table = elf_hash_table (info);
3063 if (! is_elf_hash_table (hash_table))
3064 return FALSE;
3065
3066 bed = get_elf_backend_data (hash_table->dynobj);
3067 s = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3068 BFD_ASSERT (s != NULL);
3069
3070 newsize = s->size + bed->s->sizeof_dyn;
3071 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3072 if (newcontents == NULL)
3073 return FALSE;
3074
3075 dyn.d_tag = tag;
3076 dyn.d_un.d_val = val;
3077 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3078
3079 s->size = newsize;
3080 s->contents = newcontents;
3081
3082 return TRUE;
3083 }
3084
3085 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3086 otherwise just check whether one already exists. Returns -1 on error,
3087 1 if a DT_NEEDED tag already exists, and 0 on success. */
3088
3089 static int
3090 elf_add_dt_needed_tag (bfd *abfd,
3091 struct bfd_link_info *info,
3092 const char *soname,
3093 bfd_boolean do_it)
3094 {
3095 struct elf_link_hash_table *hash_table;
3096 bfd_size_type oldsize;
3097 bfd_size_type strindex;
3098
3099 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3100 return -1;
3101
3102 hash_table = elf_hash_table (info);
3103 oldsize = _bfd_elf_strtab_size (hash_table->dynstr);
3104 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3105 if (strindex == (bfd_size_type) -1)
3106 return -1;
3107
3108 if (oldsize == _bfd_elf_strtab_size (hash_table->dynstr))
3109 {
3110 asection *sdyn;
3111 const struct elf_backend_data *bed;
3112 bfd_byte *extdyn;
3113
3114 bed = get_elf_backend_data (hash_table->dynobj);
3115 sdyn = bfd_get_section_by_name (hash_table->dynobj, ".dynamic");
3116 if (sdyn != NULL)
3117 for (extdyn = sdyn->contents;
3118 extdyn < sdyn->contents + sdyn->size;
3119 extdyn += bed->s->sizeof_dyn)
3120 {
3121 Elf_Internal_Dyn dyn;
3122
3123 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3124 if (dyn.d_tag == DT_NEEDED
3125 && dyn.d_un.d_val == strindex)
3126 {
3127 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3128 return 1;
3129 }
3130 }
3131 }
3132
3133 if (do_it)
3134 {
3135 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3136 return -1;
3137
3138 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3139 return -1;
3140 }
3141 else
3142 /* We were just checking for existence of the tag. */
3143 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3144
3145 return 0;
3146 }
3147
3148 static bfd_boolean
3149 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3150 {
3151 for (; needed != NULL; needed = needed->next)
3152 if (strcmp (soname, needed->name) == 0)
3153 return TRUE;
3154
3155 return FALSE;
3156 }
3157
3158 /* Sort symbol by value and section. */
3159 static int
3160 elf_sort_symbol (const void *arg1, const void *arg2)
3161 {
3162 const struct elf_link_hash_entry *h1;
3163 const struct elf_link_hash_entry *h2;
3164 bfd_signed_vma vdiff;
3165
3166 h1 = *(const struct elf_link_hash_entry **) arg1;
3167 h2 = *(const struct elf_link_hash_entry **) arg2;
3168 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3169 if (vdiff != 0)
3170 return vdiff > 0 ? 1 : -1;
3171 else
3172 {
3173 long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3174 if (sdiff != 0)
3175 return sdiff > 0 ? 1 : -1;
3176 }
3177 return 0;
3178 }
3179
3180 /* This function is used to adjust offsets into .dynstr for
3181 dynamic symbols. This is called via elf_link_hash_traverse. */
3182
3183 static bfd_boolean
3184 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3185 {
3186 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3187
3188 if (h->root.type == bfd_link_hash_warning)
3189 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3190
3191 if (h->dynindx != -1)
3192 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3193 return TRUE;
3194 }
3195
3196 /* Assign string offsets in .dynstr, update all structures referencing
3197 them. */
3198
3199 static bfd_boolean
3200 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3201 {
3202 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3203 struct elf_link_local_dynamic_entry *entry;
3204 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3205 bfd *dynobj = hash_table->dynobj;
3206 asection *sdyn;
3207 bfd_size_type size;
3208 const struct elf_backend_data *bed;
3209 bfd_byte *extdyn;
3210
3211 _bfd_elf_strtab_finalize (dynstr);
3212 size = _bfd_elf_strtab_size (dynstr);
3213
3214 bed = get_elf_backend_data (dynobj);
3215 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
3216 BFD_ASSERT (sdyn != NULL);
3217
3218 /* Update all .dynamic entries referencing .dynstr strings. */
3219 for (extdyn = sdyn->contents;
3220 extdyn < sdyn->contents + sdyn->size;
3221 extdyn += bed->s->sizeof_dyn)
3222 {
3223 Elf_Internal_Dyn dyn;
3224
3225 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3226 switch (dyn.d_tag)
3227 {
3228 case DT_STRSZ:
3229 dyn.d_un.d_val = size;
3230 break;
3231 case DT_NEEDED:
3232 case DT_SONAME:
3233 case DT_RPATH:
3234 case DT_RUNPATH:
3235 case DT_FILTER:
3236 case DT_AUXILIARY:
3237 case DT_AUDIT:
3238 case DT_DEPAUDIT:
3239 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3240 break;
3241 default:
3242 continue;
3243 }
3244 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3245 }
3246
3247 /* Now update local dynamic symbols. */
3248 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3249 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3250 entry->isym.st_name);
3251
3252 /* And the rest of dynamic symbols. */
3253 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3254
3255 /* Adjust version definitions. */
3256 if (elf_tdata (output_bfd)->cverdefs)
3257 {
3258 asection *s;
3259 bfd_byte *p;
3260 bfd_size_type i;
3261 Elf_Internal_Verdef def;
3262 Elf_Internal_Verdaux defaux;
3263
3264 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
3265 p = s->contents;
3266 do
3267 {
3268 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3269 &def);
3270 p += sizeof (Elf_External_Verdef);
3271 if (def.vd_aux != sizeof (Elf_External_Verdef))
3272 continue;
3273 for (i = 0; i < def.vd_cnt; ++i)
3274 {
3275 _bfd_elf_swap_verdaux_in (output_bfd,
3276 (Elf_External_Verdaux *) p, &defaux);
3277 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3278 defaux.vda_name);
3279 _bfd_elf_swap_verdaux_out (output_bfd,
3280 &defaux, (Elf_External_Verdaux *) p);
3281 p += sizeof (Elf_External_Verdaux);
3282 }
3283 }
3284 while (def.vd_next);
3285 }
3286
3287 /* Adjust version references. */
3288 if (elf_tdata (output_bfd)->verref)
3289 {
3290 asection *s;
3291 bfd_byte *p;
3292 bfd_size_type i;
3293 Elf_Internal_Verneed need;
3294 Elf_Internal_Vernaux needaux;
3295
3296 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
3297 p = s->contents;
3298 do
3299 {
3300 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3301 &need);
3302 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3303 _bfd_elf_swap_verneed_out (output_bfd, &need,
3304 (Elf_External_Verneed *) p);
3305 p += sizeof (Elf_External_Verneed);
3306 for (i = 0; i < need.vn_cnt; ++i)
3307 {
3308 _bfd_elf_swap_vernaux_in (output_bfd,
3309 (Elf_External_Vernaux *) p, &needaux);
3310 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3311 needaux.vna_name);
3312 _bfd_elf_swap_vernaux_out (output_bfd,
3313 &needaux,
3314 (Elf_External_Vernaux *) p);
3315 p += sizeof (Elf_External_Vernaux);
3316 }
3317 }
3318 while (need.vn_next);
3319 }
3320
3321 return TRUE;
3322 }
3323 \f
3324 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3325 The default is to only match when the INPUT and OUTPUT are exactly
3326 the same target. */
3327
3328 bfd_boolean
3329 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3330 const bfd_target *output)
3331 {
3332 return input == output;
3333 }
3334
3335 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3336 This version is used when different targets for the same architecture
3337 are virtually identical. */
3338
3339 bfd_boolean
3340 _bfd_elf_relocs_compatible (const bfd_target *input,
3341 const bfd_target *output)
3342 {
3343 const struct elf_backend_data *obed, *ibed;
3344
3345 if (input == output)
3346 return TRUE;
3347
3348 ibed = xvec_get_elf_backend_data (input);
3349 obed = xvec_get_elf_backend_data (output);
3350
3351 if (ibed->arch != obed->arch)
3352 return FALSE;
3353
3354 /* If both backends are using this function, deem them compatible. */
3355 return ibed->relocs_compatible == obed->relocs_compatible;
3356 }
3357
3358 /* Add symbols from an ELF object file to the linker hash table. */
3359
3360 static bfd_boolean
3361 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3362 {
3363 Elf_Internal_Ehdr *ehdr;
3364 Elf_Internal_Shdr *hdr;
3365 bfd_size_type symcount;
3366 bfd_size_type extsymcount;
3367 bfd_size_type extsymoff;
3368 struct elf_link_hash_entry **sym_hash;
3369 bfd_boolean dynamic;
3370 Elf_External_Versym *extversym = NULL;
3371 Elf_External_Versym *ever;
3372 struct elf_link_hash_entry *weaks;
3373 struct elf_link_hash_entry **nondeflt_vers = NULL;
3374 bfd_size_type nondeflt_vers_cnt = 0;
3375 Elf_Internal_Sym *isymbuf = NULL;
3376 Elf_Internal_Sym *isym;
3377 Elf_Internal_Sym *isymend;
3378 const struct elf_backend_data *bed;
3379 bfd_boolean add_needed;
3380 struct elf_link_hash_table *htab;
3381 bfd_size_type amt;
3382 void *alloc_mark = NULL;
3383 struct bfd_hash_entry **old_table = NULL;
3384 unsigned int old_size = 0;
3385 unsigned int old_count = 0;
3386 void *old_tab = NULL;
3387 void *old_hash;
3388 void *old_ent;
3389 struct bfd_link_hash_entry *old_undefs = NULL;
3390 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3391 long old_dynsymcount = 0;
3392 size_t tabsize = 0;
3393 size_t hashsize = 0;
3394
3395 htab = elf_hash_table (info);
3396 bed = get_elf_backend_data (abfd);
3397
3398 if ((abfd->flags & DYNAMIC) == 0)
3399 dynamic = FALSE;
3400 else
3401 {
3402 dynamic = TRUE;
3403
3404 /* You can't use -r against a dynamic object. Also, there's no
3405 hope of using a dynamic object which does not exactly match
3406 the format of the output file. */
3407 if (info->relocatable
3408 || !is_elf_hash_table (htab)
3409 || info->output_bfd->xvec != abfd->xvec)
3410 {
3411 if (info->relocatable)
3412 bfd_set_error (bfd_error_invalid_operation);
3413 else
3414 bfd_set_error (bfd_error_wrong_format);
3415 goto error_return;
3416 }
3417 }
3418
3419 ehdr = elf_elfheader (abfd);
3420 if (info->warn_alternate_em
3421 && bed->elf_machine_code != ehdr->e_machine
3422 && ((bed->elf_machine_alt1 != 0
3423 && ehdr->e_machine == bed->elf_machine_alt1)
3424 || (bed->elf_machine_alt2 != 0
3425 && ehdr->e_machine == bed->elf_machine_alt2)))
3426 info->callbacks->einfo
3427 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3428 ehdr->e_machine, abfd, bed->elf_machine_code);
3429
3430 /* As a GNU extension, any input sections which are named
3431 .gnu.warning.SYMBOL are treated as warning symbols for the given
3432 symbol. This differs from .gnu.warning sections, which generate
3433 warnings when they are included in an output file. */
3434 if (info->executable)
3435 {
3436 asection *s;
3437
3438 for (s = abfd->sections; s != NULL; s = s->next)
3439 {
3440 const char *name;
3441
3442 name = bfd_get_section_name (abfd, s);
3443 if (CONST_STRNEQ (name, ".gnu.warning."))
3444 {
3445 char *msg;
3446 bfd_size_type sz;
3447
3448 name += sizeof ".gnu.warning." - 1;
3449
3450 /* If this is a shared object, then look up the symbol
3451 in the hash table. If it is there, and it is already
3452 been defined, then we will not be using the entry
3453 from this shared object, so we don't need to warn.
3454 FIXME: If we see the definition in a regular object
3455 later on, we will warn, but we shouldn't. The only
3456 fix is to keep track of what warnings we are supposed
3457 to emit, and then handle them all at the end of the
3458 link. */
3459 if (dynamic)
3460 {
3461 struct elf_link_hash_entry *h;
3462
3463 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3464
3465 /* FIXME: What about bfd_link_hash_common? */
3466 if (h != NULL
3467 && (h->root.type == bfd_link_hash_defined
3468 || h->root.type == bfd_link_hash_defweak))
3469 {
3470 /* We don't want to issue this warning. Clobber
3471 the section size so that the warning does not
3472 get copied into the output file. */
3473 s->size = 0;
3474 continue;
3475 }
3476 }
3477
3478 sz = s->size;
3479 msg = (char *) bfd_alloc (abfd, sz + 1);
3480 if (msg == NULL)
3481 goto error_return;
3482
3483 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3484 goto error_return;
3485
3486 msg[sz] = '\0';
3487
3488 if (! (_bfd_generic_link_add_one_symbol
3489 (info, abfd, name, BSF_WARNING, s, 0, msg,
3490 FALSE, bed->collect, NULL)))
3491 goto error_return;
3492
3493 if (! info->relocatable)
3494 {
3495 /* Clobber the section size so that the warning does
3496 not get copied into the output file. */
3497 s->size = 0;
3498
3499 /* Also set SEC_EXCLUDE, so that symbols defined in
3500 the warning section don't get copied to the output. */
3501 s->flags |= SEC_EXCLUDE;
3502 }
3503 }
3504 }
3505 }
3506
3507 add_needed = TRUE;
3508 if (! dynamic)
3509 {
3510 /* If we are creating a shared library, create all the dynamic
3511 sections immediately. We need to attach them to something,
3512 so we attach them to this BFD, provided it is the right
3513 format. FIXME: If there are no input BFD's of the same
3514 format as the output, we can't make a shared library. */
3515 if (info->shared
3516 && is_elf_hash_table (htab)
3517 && info->output_bfd->xvec == abfd->xvec
3518 && !htab->dynamic_sections_created)
3519 {
3520 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3521 goto error_return;
3522 }
3523 }
3524 else if (!is_elf_hash_table (htab))
3525 goto error_return;
3526 else
3527 {
3528 asection *s;
3529 const char *soname = NULL;
3530 char *audit = NULL;
3531 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3532 int ret;
3533
3534 /* ld --just-symbols and dynamic objects don't mix very well.
3535 ld shouldn't allow it. */
3536 if ((s = abfd->sections) != NULL
3537 && s->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3538 abort ();
3539
3540 /* If this dynamic lib was specified on the command line with
3541 --as-needed in effect, then we don't want to add a DT_NEEDED
3542 tag unless the lib is actually used. Similary for libs brought
3543 in by another lib's DT_NEEDED. When --no-add-needed is used
3544 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3545 any dynamic library in DT_NEEDED tags in the dynamic lib at
3546 all. */
3547 add_needed = (elf_dyn_lib_class (abfd)
3548 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3549 | DYN_NO_NEEDED)) == 0;
3550
3551 s = bfd_get_section_by_name (abfd, ".dynamic");
3552 if (s != NULL)
3553 {
3554 bfd_byte *dynbuf;
3555 bfd_byte *extdyn;
3556 unsigned int elfsec;
3557 unsigned long shlink;
3558
3559 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3560 {
3561 error_free_dyn:
3562 free (dynbuf);
3563 goto error_return;
3564 }
3565
3566 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3567 if (elfsec == SHN_BAD)
3568 goto error_free_dyn;
3569 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3570
3571 for (extdyn = dynbuf;
3572 extdyn < dynbuf + s->size;
3573 extdyn += bed->s->sizeof_dyn)
3574 {
3575 Elf_Internal_Dyn dyn;
3576
3577 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3578 if (dyn.d_tag == DT_SONAME)
3579 {
3580 unsigned int tagv = dyn.d_un.d_val;
3581 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3582 if (soname == NULL)
3583 goto error_free_dyn;
3584 }
3585 if (dyn.d_tag == DT_NEEDED)
3586 {
3587 struct bfd_link_needed_list *n, **pn;
3588 char *fnm, *anm;
3589 unsigned int tagv = dyn.d_un.d_val;
3590
3591 amt = sizeof (struct bfd_link_needed_list);
3592 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3593 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3594 if (n == NULL || fnm == NULL)
3595 goto error_free_dyn;
3596 amt = strlen (fnm) + 1;
3597 anm = (char *) bfd_alloc (abfd, amt);
3598 if (anm == NULL)
3599 goto error_free_dyn;
3600 memcpy (anm, fnm, amt);
3601 n->name = anm;
3602 n->by = abfd;
3603 n->next = NULL;
3604 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3605 ;
3606 *pn = n;
3607 }
3608 if (dyn.d_tag == DT_RUNPATH)
3609 {
3610 struct bfd_link_needed_list *n, **pn;
3611 char *fnm, *anm;
3612 unsigned int tagv = dyn.d_un.d_val;
3613
3614 amt = sizeof (struct bfd_link_needed_list);
3615 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3616 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3617 if (n == NULL || fnm == NULL)
3618 goto error_free_dyn;
3619 amt = strlen (fnm) + 1;
3620 anm = (char *) bfd_alloc (abfd, amt);
3621 if (anm == NULL)
3622 goto error_free_dyn;
3623 memcpy (anm, fnm, amt);
3624 n->name = anm;
3625 n->by = abfd;
3626 n->next = NULL;
3627 for (pn = & runpath;
3628 *pn != NULL;
3629 pn = &(*pn)->next)
3630 ;
3631 *pn = n;
3632 }
3633 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3634 if (!runpath && dyn.d_tag == DT_RPATH)
3635 {
3636 struct bfd_link_needed_list *n, **pn;
3637 char *fnm, *anm;
3638 unsigned int tagv = dyn.d_un.d_val;
3639
3640 amt = sizeof (struct bfd_link_needed_list);
3641 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3642 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3643 if (n == NULL || fnm == NULL)
3644 goto error_free_dyn;
3645 amt = strlen (fnm) + 1;
3646 anm = (char *) bfd_alloc (abfd, amt);
3647 if (anm == NULL)
3648 goto error_free_dyn;
3649 memcpy (anm, fnm, amt);
3650 n->name = anm;
3651 n->by = abfd;
3652 n->next = NULL;
3653 for (pn = & rpath;
3654 *pn != NULL;
3655 pn = &(*pn)->next)
3656 ;
3657 *pn = n;
3658 }
3659 if (dyn.d_tag == DT_AUDIT)
3660 {
3661 unsigned int tagv = dyn.d_un.d_val;
3662 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3663 }
3664 }
3665
3666 free (dynbuf);
3667 }
3668
3669 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3670 frees all more recently bfd_alloc'd blocks as well. */
3671 if (runpath)
3672 rpath = runpath;
3673
3674 if (rpath)
3675 {
3676 struct bfd_link_needed_list **pn;
3677 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3678 ;
3679 *pn = rpath;
3680 }
3681
3682 /* We do not want to include any of the sections in a dynamic
3683 object in the output file. We hack by simply clobbering the
3684 list of sections in the BFD. This could be handled more
3685 cleanly by, say, a new section flag; the existing
3686 SEC_NEVER_LOAD flag is not the one we want, because that one
3687 still implies that the section takes up space in the output
3688 file. */
3689 bfd_section_list_clear (abfd);
3690
3691 /* Find the name to use in a DT_NEEDED entry that refers to this
3692 object. If the object has a DT_SONAME entry, we use it.
3693 Otherwise, if the generic linker stuck something in
3694 elf_dt_name, we use that. Otherwise, we just use the file
3695 name. */
3696 if (soname == NULL || *soname == '\0')
3697 {
3698 soname = elf_dt_name (abfd);
3699 if (soname == NULL || *soname == '\0')
3700 soname = bfd_get_filename (abfd);
3701 }
3702
3703 /* Save the SONAME because sometimes the linker emulation code
3704 will need to know it. */
3705 elf_dt_name (abfd) = soname;
3706
3707 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3708 if (ret < 0)
3709 goto error_return;
3710
3711 /* If we have already included this dynamic object in the
3712 link, just ignore it. There is no reason to include a
3713 particular dynamic object more than once. */
3714 if (ret > 0)
3715 return TRUE;
3716
3717 /* Save the DT_AUDIT entry for the linker emulation code. */
3718 elf_dt_audit (abfd) = audit;
3719 }
3720
3721 /* If this is a dynamic object, we always link against the .dynsym
3722 symbol table, not the .symtab symbol table. The dynamic linker
3723 will only see the .dynsym symbol table, so there is no reason to
3724 look at .symtab for a dynamic object. */
3725
3726 if (! dynamic || elf_dynsymtab (abfd) == 0)
3727 hdr = &elf_tdata (abfd)->symtab_hdr;
3728 else
3729 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3730
3731 symcount = hdr->sh_size / bed->s->sizeof_sym;
3732
3733 /* The sh_info field of the symtab header tells us where the
3734 external symbols start. We don't care about the local symbols at
3735 this point. */
3736 if (elf_bad_symtab (abfd))
3737 {
3738 extsymcount = symcount;
3739 extsymoff = 0;
3740 }
3741 else
3742 {
3743 extsymcount = symcount - hdr->sh_info;
3744 extsymoff = hdr->sh_info;
3745 }
3746
3747 sym_hash = NULL;
3748 if (extsymcount != 0)
3749 {
3750 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3751 NULL, NULL, NULL);
3752 if (isymbuf == NULL)
3753 goto error_return;
3754
3755 /* We store a pointer to the hash table entry for each external
3756 symbol. */
3757 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3758 sym_hash = (struct elf_link_hash_entry **) bfd_alloc (abfd, amt);
3759 if (sym_hash == NULL)
3760 goto error_free_sym;
3761 elf_sym_hashes (abfd) = sym_hash;
3762 }
3763
3764 if (dynamic)
3765 {
3766 /* Read in any version definitions. */
3767 if (!_bfd_elf_slurp_version_tables (abfd,
3768 info->default_imported_symver))
3769 goto error_free_sym;
3770
3771 /* Read in the symbol versions, but don't bother to convert them
3772 to internal format. */
3773 if (elf_dynversym (abfd) != 0)
3774 {
3775 Elf_Internal_Shdr *versymhdr;
3776
3777 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3778 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3779 if (extversym == NULL)
3780 goto error_free_sym;
3781 amt = versymhdr->sh_size;
3782 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3783 || bfd_bread (extversym, amt, abfd) != amt)
3784 goto error_free_vers;
3785 }
3786 }
3787
3788 /* If we are loading an as-needed shared lib, save the symbol table
3789 state before we start adding symbols. If the lib turns out
3790 to be unneeded, restore the state. */
3791 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3792 {
3793 unsigned int i;
3794 size_t entsize;
3795
3796 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3797 {
3798 struct bfd_hash_entry *p;
3799 struct elf_link_hash_entry *h;
3800
3801 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3802 {
3803 h = (struct elf_link_hash_entry *) p;
3804 entsize += htab->root.table.entsize;
3805 if (h->root.type == bfd_link_hash_warning)
3806 entsize += htab->root.table.entsize;
3807 }
3808 }
3809
3810 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3811 hashsize = extsymcount * sizeof (struct elf_link_hash_entry *);
3812 old_tab = bfd_malloc (tabsize + entsize + hashsize);
3813 if (old_tab == NULL)
3814 goto error_free_vers;
3815
3816 /* Remember the current objalloc pointer, so that all mem for
3817 symbols added can later be reclaimed. */
3818 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3819 if (alloc_mark == NULL)
3820 goto error_free_vers;
3821
3822 /* Make a special call to the linker "notice" function to
3823 tell it that we are about to handle an as-needed lib. */
3824 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
3825 notice_as_needed))
3826 goto error_free_vers;
3827
3828 /* Clone the symbol table and sym hashes. Remember some
3829 pointers into the symbol table, and dynamic symbol count. */
3830 old_hash = (char *) old_tab + tabsize;
3831 old_ent = (char *) old_hash + hashsize;
3832 memcpy (old_tab, htab->root.table.table, tabsize);
3833 memcpy (old_hash, sym_hash, hashsize);
3834 old_undefs = htab->root.undefs;
3835 old_undefs_tail = htab->root.undefs_tail;
3836 old_table = htab->root.table.table;
3837 old_size = htab->root.table.size;
3838 old_count = htab->root.table.count;
3839 old_dynsymcount = htab->dynsymcount;
3840
3841 for (i = 0; i < htab->root.table.size; i++)
3842 {
3843 struct bfd_hash_entry *p;
3844 struct elf_link_hash_entry *h;
3845
3846 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3847 {
3848 memcpy (old_ent, p, htab->root.table.entsize);
3849 old_ent = (char *) old_ent + htab->root.table.entsize;
3850 h = (struct elf_link_hash_entry *) p;
3851 if (h->root.type == bfd_link_hash_warning)
3852 {
3853 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3854 old_ent = (char *) old_ent + htab->root.table.entsize;
3855 }
3856 }
3857 }
3858 }
3859
3860 weaks = NULL;
3861 ever = extversym != NULL ? extversym + extsymoff : NULL;
3862 for (isym = isymbuf, isymend = isymbuf + extsymcount;
3863 isym < isymend;
3864 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3865 {
3866 int bind;
3867 bfd_vma value;
3868 asection *sec, *new_sec;
3869 flagword flags;
3870 const char *name;
3871 struct elf_link_hash_entry *h;
3872 bfd_boolean definition;
3873 bfd_boolean size_change_ok;
3874 bfd_boolean type_change_ok;
3875 bfd_boolean new_weakdef;
3876 bfd_boolean override;
3877 bfd_boolean common;
3878 unsigned int old_alignment;
3879 bfd *old_bfd;
3880 bfd * undef_bfd = NULL;
3881
3882 override = FALSE;
3883
3884 flags = BSF_NO_FLAGS;
3885 sec = NULL;
3886 value = isym->st_value;
3887 *sym_hash = NULL;
3888 common = bed->common_definition (isym);
3889
3890 bind = ELF_ST_BIND (isym->st_info);
3891 switch (bind)
3892 {
3893 case STB_LOCAL:
3894 /* This should be impossible, since ELF requires that all
3895 global symbols follow all local symbols, and that sh_info
3896 point to the first global symbol. Unfortunately, Irix 5
3897 screws this up. */
3898 continue;
3899
3900 case STB_GLOBAL:
3901 if (isym->st_shndx != SHN_UNDEF && !common)
3902 flags = BSF_GLOBAL;
3903 break;
3904
3905 case STB_WEAK:
3906 flags = BSF_WEAK;
3907 break;
3908
3909 case STB_GNU_UNIQUE:
3910 flags = BSF_GNU_UNIQUE;
3911 break;
3912
3913 default:
3914 /* Leave it up to the processor backend. */
3915 break;
3916 }
3917
3918 if (isym->st_shndx == SHN_UNDEF)
3919 sec = bfd_und_section_ptr;
3920 else if (isym->st_shndx == SHN_ABS)
3921 sec = bfd_abs_section_ptr;
3922 else if (isym->st_shndx == SHN_COMMON)
3923 {
3924 sec = bfd_com_section_ptr;
3925 /* What ELF calls the size we call the value. What ELF
3926 calls the value we call the alignment. */
3927 value = isym->st_size;
3928 }
3929 else
3930 {
3931 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3932 if (sec == NULL)
3933 sec = bfd_abs_section_ptr;
3934 else if (sec->kept_section)
3935 {
3936 /* Symbols from discarded section are undefined. We keep
3937 its visibility. */
3938 sec = bfd_und_section_ptr;
3939 isym->st_shndx = SHN_UNDEF;
3940 }
3941 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3942 value -= sec->vma;
3943 }
3944
3945 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3946 isym->st_name);
3947 if (name == NULL)
3948 goto error_free_vers;
3949
3950 if (isym->st_shndx == SHN_COMMON
3951 && ELF_ST_TYPE (isym->st_info) == STT_TLS
3952 && !info->relocatable)
3953 {
3954 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3955
3956 if (tcomm == NULL)
3957 {
3958 tcomm = bfd_make_section_with_flags (abfd, ".tcommon",
3959 (SEC_ALLOC
3960 | SEC_IS_COMMON
3961 | SEC_LINKER_CREATED
3962 | SEC_THREAD_LOCAL));
3963 if (tcomm == NULL)
3964 goto error_free_vers;
3965 }
3966 sec = tcomm;
3967 }
3968 else if (bed->elf_add_symbol_hook)
3969 {
3970 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3971 &sec, &value))
3972 goto error_free_vers;
3973
3974 /* The hook function sets the name to NULL if this symbol
3975 should be skipped for some reason. */
3976 if (name == NULL)
3977 continue;
3978 }
3979
3980 /* Sanity check that all possibilities were handled. */
3981 if (sec == NULL)
3982 {
3983 bfd_set_error (bfd_error_bad_value);
3984 goto error_free_vers;
3985 }
3986
3987 if (bfd_is_und_section (sec)
3988 || bfd_is_com_section (sec))
3989 definition = FALSE;
3990 else
3991 definition = TRUE;
3992
3993 size_change_ok = FALSE;
3994 type_change_ok = bed->type_change_ok;
3995 old_alignment = 0;
3996 old_bfd = NULL;
3997 new_sec = sec;
3998
3999 if (is_elf_hash_table (htab))
4000 {
4001 Elf_Internal_Versym iver;
4002 unsigned int vernum = 0;
4003 bfd_boolean skip;
4004
4005 if (ever == NULL)
4006 {
4007 if (info->default_imported_symver)
4008 /* Use the default symbol version created earlier. */
4009 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4010 else
4011 iver.vs_vers = 0;
4012 }
4013 else
4014 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4015
4016 vernum = iver.vs_vers & VERSYM_VERSION;
4017
4018 /* If this is a hidden symbol, or if it is not version
4019 1, we append the version name to the symbol name.
4020 However, we do not modify a non-hidden absolute symbol
4021 if it is not a function, because it might be the version
4022 symbol itself. FIXME: What if it isn't? */
4023 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4024 || (vernum > 1
4025 && (!bfd_is_abs_section (sec)
4026 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4027 {
4028 const char *verstr;
4029 size_t namelen, verlen, newlen;
4030 char *newname, *p;
4031
4032 if (isym->st_shndx != SHN_UNDEF)
4033 {
4034 if (vernum > elf_tdata (abfd)->cverdefs)
4035 verstr = NULL;
4036 else if (vernum > 1)
4037 verstr =
4038 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4039 else
4040 verstr = "";
4041
4042 if (verstr == NULL)
4043 {
4044 (*_bfd_error_handler)
4045 (_("%B: %s: invalid version %u (max %d)"),
4046 abfd, name, vernum,
4047 elf_tdata (abfd)->cverdefs);
4048 bfd_set_error (bfd_error_bad_value);
4049 goto error_free_vers;
4050 }
4051 }
4052 else
4053 {
4054 /* We cannot simply test for the number of
4055 entries in the VERNEED section since the
4056 numbers for the needed versions do not start
4057 at 0. */
4058 Elf_Internal_Verneed *t;
4059
4060 verstr = NULL;
4061 for (t = elf_tdata (abfd)->verref;
4062 t != NULL;
4063 t = t->vn_nextref)
4064 {
4065 Elf_Internal_Vernaux *a;
4066
4067 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4068 {
4069 if (a->vna_other == vernum)
4070 {
4071 verstr = a->vna_nodename;
4072 break;
4073 }
4074 }
4075 if (a != NULL)
4076 break;
4077 }
4078 if (verstr == NULL)
4079 {
4080 (*_bfd_error_handler)
4081 (_("%B: %s: invalid needed version %d"),
4082 abfd, name, vernum);
4083 bfd_set_error (bfd_error_bad_value);
4084 goto error_free_vers;
4085 }
4086 }
4087
4088 namelen = strlen (name);
4089 verlen = strlen (verstr);
4090 newlen = namelen + verlen + 2;
4091 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4092 && isym->st_shndx != SHN_UNDEF)
4093 ++newlen;
4094
4095 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4096 if (newname == NULL)
4097 goto error_free_vers;
4098 memcpy (newname, name, namelen);
4099 p = newname + namelen;
4100 *p++ = ELF_VER_CHR;
4101 /* If this is a defined non-hidden version symbol,
4102 we add another @ to the name. This indicates the
4103 default version of the symbol. */
4104 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4105 && isym->st_shndx != SHN_UNDEF)
4106 *p++ = ELF_VER_CHR;
4107 memcpy (p, verstr, verlen + 1);
4108
4109 name = newname;
4110 }
4111
4112 /* If this is a definition of a previously undefined symbol
4113 make a note of the bfd that contained the reference in
4114 case we need to refer to it later on in error messages. */
4115 if (! bfd_is_und_section (sec))
4116 {
4117 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4118
4119 if (h != NULL
4120 && (h->root.type == bfd_link_hash_undefined
4121 || h->root.type == bfd_link_hash_undefweak)
4122 && h->root.u.undef.abfd)
4123 undef_bfd = h->root.u.undef.abfd;
4124 }
4125
4126 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec,
4127 &value, &old_alignment,
4128 sym_hash, &skip, &override,
4129 &type_change_ok, &size_change_ok))
4130 goto error_free_vers;
4131
4132 if (skip)
4133 continue;
4134
4135 if (override)
4136 definition = FALSE;
4137
4138 h = *sym_hash;
4139 while (h->root.type == bfd_link_hash_indirect
4140 || h->root.type == bfd_link_hash_warning)
4141 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4142
4143 /* Remember the old alignment if this is a common symbol, so
4144 that we don't reduce the alignment later on. We can't
4145 check later, because _bfd_generic_link_add_one_symbol
4146 will set a default for the alignment which we want to
4147 override. We also remember the old bfd where the existing
4148 definition comes from. */
4149 switch (h->root.type)
4150 {
4151 default:
4152 break;
4153
4154 case bfd_link_hash_defined:
4155 case bfd_link_hash_defweak:
4156 old_bfd = h->root.u.def.section->owner;
4157 break;
4158
4159 case bfd_link_hash_common:
4160 old_bfd = h->root.u.c.p->section->owner;
4161 old_alignment = h->root.u.c.p->alignment_power;
4162 break;
4163 }
4164
4165 if (elf_tdata (abfd)->verdef != NULL
4166 && ! override
4167 && vernum > 1
4168 && definition)
4169 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4170 }
4171
4172 if (! (_bfd_generic_link_add_one_symbol
4173 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4174 (struct bfd_link_hash_entry **) sym_hash)))
4175 goto error_free_vers;
4176
4177 h = *sym_hash;
4178 while (h->root.type == bfd_link_hash_indirect
4179 || h->root.type == bfd_link_hash_warning)
4180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4181
4182 *sym_hash = h;
4183 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4184
4185 new_weakdef = FALSE;
4186 if (dynamic
4187 && definition
4188 && (flags & BSF_WEAK) != 0
4189 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4190 && is_elf_hash_table (htab)
4191 && h->u.weakdef == NULL)
4192 {
4193 /* Keep a list of all weak defined non function symbols from
4194 a dynamic object, using the weakdef field. Later in this
4195 function we will set the weakdef field to the correct
4196 value. We only put non-function symbols from dynamic
4197 objects on this list, because that happens to be the only
4198 time we need to know the normal symbol corresponding to a
4199 weak symbol, and the information is time consuming to
4200 figure out. If the weakdef field is not already NULL,
4201 then this symbol was already defined by some previous
4202 dynamic object, and we will be using that previous
4203 definition anyhow. */
4204
4205 h->u.weakdef = weaks;
4206 weaks = h;
4207 new_weakdef = TRUE;
4208 }
4209
4210 /* Set the alignment of a common symbol. */
4211 if ((common || bfd_is_com_section (sec))
4212 && h->root.type == bfd_link_hash_common)
4213 {
4214 unsigned int align;
4215
4216 if (common)
4217 align = bfd_log2 (isym->st_value);
4218 else
4219 {
4220 /* The new symbol is a common symbol in a shared object.
4221 We need to get the alignment from the section. */
4222 align = new_sec->alignment_power;
4223 }
4224 if (align > old_alignment
4225 /* Permit an alignment power of zero if an alignment of one
4226 is specified and no other alignments have been specified. */
4227 || (isym->st_value == 1 && old_alignment == 0))
4228 h->root.u.c.p->alignment_power = align;
4229 else
4230 h->root.u.c.p->alignment_power = old_alignment;
4231 }
4232
4233 if (is_elf_hash_table (htab))
4234 {
4235 bfd_boolean dynsym;
4236
4237 /* Check the alignment when a common symbol is involved. This
4238 can change when a common symbol is overridden by a normal
4239 definition or a common symbol is ignored due to the old
4240 normal definition. We need to make sure the maximum
4241 alignment is maintained. */
4242 if ((old_alignment || common)
4243 && h->root.type != bfd_link_hash_common)
4244 {
4245 unsigned int common_align;
4246 unsigned int normal_align;
4247 unsigned int symbol_align;
4248 bfd *normal_bfd;
4249 bfd *common_bfd;
4250
4251 symbol_align = ffs (h->root.u.def.value) - 1;
4252 if (h->root.u.def.section->owner != NULL
4253 && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4254 {
4255 normal_align = h->root.u.def.section->alignment_power;
4256 if (normal_align > symbol_align)
4257 normal_align = symbol_align;
4258 }
4259 else
4260 normal_align = symbol_align;
4261
4262 if (old_alignment)
4263 {
4264 common_align = old_alignment;
4265 common_bfd = old_bfd;
4266 normal_bfd = abfd;
4267 }
4268 else
4269 {
4270 common_align = bfd_log2 (isym->st_value);
4271 common_bfd = abfd;
4272 normal_bfd = old_bfd;
4273 }
4274
4275 if (normal_align < common_align)
4276 {
4277 /* PR binutils/2735 */
4278 if (normal_bfd == NULL)
4279 (*_bfd_error_handler)
4280 (_("Warning: alignment %u of common symbol `%s' in %B"
4281 " is greater than the alignment (%u) of its section %A"),
4282 common_bfd, h->root.u.def.section,
4283 1 << common_align, name, 1 << normal_align);
4284 else
4285 (*_bfd_error_handler)
4286 (_("Warning: alignment %u of symbol `%s' in %B"
4287 " is smaller than %u in %B"),
4288 normal_bfd, common_bfd,
4289 1 << normal_align, name, 1 << common_align);
4290 }
4291 }
4292
4293 /* Remember the symbol size if it isn't undefined. */
4294 if ((isym->st_size != 0 && isym->st_shndx != SHN_UNDEF)
4295 && (definition || h->size == 0))
4296 {
4297 if (h->size != 0
4298 && h->size != isym->st_size
4299 && ! size_change_ok)
4300 (*_bfd_error_handler)
4301 (_("Warning: size of symbol `%s' changed"
4302 " from %lu in %B to %lu in %B"),
4303 old_bfd, abfd,
4304 name, (unsigned long) h->size,
4305 (unsigned long) isym->st_size);
4306
4307 h->size = isym->st_size;
4308 }
4309
4310 /* If this is a common symbol, then we always want H->SIZE
4311 to be the size of the common symbol. The code just above
4312 won't fix the size if a common symbol becomes larger. We
4313 don't warn about a size change here, because that is
4314 covered by --warn-common. Allow changed between different
4315 function types. */
4316 if (h->root.type == bfd_link_hash_common)
4317 h->size = h->root.u.c.size;
4318
4319 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4320 && (definition || h->type == STT_NOTYPE))
4321 {
4322 unsigned int type = ELF_ST_TYPE (isym->st_info);
4323
4324 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4325 symbol. */
4326 if (type == STT_GNU_IFUNC
4327 && (abfd->flags & DYNAMIC) != 0)
4328 type = STT_FUNC;
4329
4330 if (h->type != type)
4331 {
4332 if (h->type != STT_NOTYPE && ! type_change_ok)
4333 (*_bfd_error_handler)
4334 (_("Warning: type of symbol `%s' changed"
4335 " from %d to %d in %B"),
4336 abfd, name, h->type, type);
4337
4338 h->type = type;
4339 }
4340 }
4341
4342 /* Merge st_other field. */
4343 elf_merge_st_other (abfd, h, isym, definition, dynamic);
4344
4345 /* Set a flag in the hash table entry indicating the type of
4346 reference or definition we just found. Keep a count of
4347 the number of dynamic symbols we find. A dynamic symbol
4348 is one which is referenced or defined by both a regular
4349 object and a shared object. */
4350 dynsym = FALSE;
4351 if (! dynamic)
4352 {
4353 if (! definition)
4354 {
4355 h->ref_regular = 1;
4356 if (bind != STB_WEAK)
4357 h->ref_regular_nonweak = 1;
4358 }
4359 else
4360 {
4361 h->def_regular = 1;
4362 if (h->def_dynamic)
4363 {
4364 h->def_dynamic = 0;
4365 h->ref_dynamic = 1;
4366 h->dynamic_def = 1;
4367 }
4368 }
4369 if (! info->executable
4370 || h->def_dynamic
4371 || h->ref_dynamic)
4372 dynsym = TRUE;
4373 }
4374 else
4375 {
4376 if (! definition)
4377 h->ref_dynamic = 1;
4378 else
4379 h->def_dynamic = 1;
4380 if (h->def_regular
4381 || h->ref_regular
4382 || (h->u.weakdef != NULL
4383 && ! new_weakdef
4384 && h->u.weakdef->dynindx != -1))
4385 dynsym = TRUE;
4386 }
4387
4388 if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4389 {
4390 /* We don't want to make debug symbol dynamic. */
4391 dynsym = FALSE;
4392 }
4393
4394 /* Check to see if we need to add an indirect symbol for
4395 the default name. */
4396 if (definition || h->root.type == bfd_link_hash_common)
4397 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4398 &sec, &value, &dynsym,
4399 override))
4400 goto error_free_vers;
4401
4402 if (definition && !dynamic)
4403 {
4404 char *p = strchr (name, ELF_VER_CHR);
4405 if (p != NULL && p[1] != ELF_VER_CHR)
4406 {
4407 /* Queue non-default versions so that .symver x, x@FOO
4408 aliases can be checked. */
4409 if (!nondeflt_vers)
4410 {
4411 amt = ((isymend - isym + 1)
4412 * sizeof (struct elf_link_hash_entry *));
4413 nondeflt_vers =
4414 (struct elf_link_hash_entry **) bfd_malloc (amt);
4415 if (!nondeflt_vers)
4416 goto error_free_vers;
4417 }
4418 nondeflt_vers[nondeflt_vers_cnt++] = h;
4419 }
4420 }
4421
4422 if (dynsym && h->dynindx == -1)
4423 {
4424 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4425 goto error_free_vers;
4426 if (h->u.weakdef != NULL
4427 && ! new_weakdef
4428 && h->u.weakdef->dynindx == -1)
4429 {
4430 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4431 goto error_free_vers;
4432 }
4433 }
4434 else if (dynsym && h->dynindx != -1)
4435 /* If the symbol already has a dynamic index, but
4436 visibility says it should not be visible, turn it into
4437 a local symbol. */
4438 switch (ELF_ST_VISIBILITY (h->other))
4439 {
4440 case STV_INTERNAL:
4441 case STV_HIDDEN:
4442 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4443 dynsym = FALSE;
4444 break;
4445 }
4446
4447 if (!add_needed
4448 && definition
4449 && ((dynsym
4450 && h->ref_regular)
4451 || (h->ref_dynamic
4452 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4453 && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4454 {
4455 int ret;
4456 const char *soname = elf_dt_name (abfd);
4457
4458 /* A symbol from a library loaded via DT_NEEDED of some
4459 other library is referenced by a regular object.
4460 Add a DT_NEEDED entry for it. Issue an error if
4461 --no-add-needed is used. */
4462 if ((elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4463 {
4464 (*_bfd_error_handler)
4465 (_("%B: undefined reference to symbol '%s'"),
4466 undef_bfd == NULL ? info->output_bfd : undef_bfd, name);
4467 (*_bfd_error_handler)
4468 (_("note: '%s' is defined in DSO %B so try adding it to the linker command line"),
4469 abfd, name);
4470 bfd_set_error (bfd_error_invalid_operation);
4471 goto error_free_vers;
4472 }
4473
4474 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4475 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4476
4477 add_needed = TRUE;
4478 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4479 if (ret < 0)
4480 goto error_free_vers;
4481
4482 BFD_ASSERT (ret == 0);
4483 }
4484 }
4485 }
4486
4487 if (extversym != NULL)
4488 {
4489 free (extversym);
4490 extversym = NULL;
4491 }
4492
4493 if (isymbuf != NULL)
4494 {
4495 free (isymbuf);
4496 isymbuf = NULL;
4497 }
4498
4499 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4500 {
4501 unsigned int i;
4502
4503 /* Restore the symbol table. */
4504 if (bed->as_needed_cleanup)
4505 (*bed->as_needed_cleanup) (abfd, info);
4506 old_hash = (char *) old_tab + tabsize;
4507 old_ent = (char *) old_hash + hashsize;
4508 sym_hash = elf_sym_hashes (abfd);
4509 htab->root.table.table = old_table;
4510 htab->root.table.size = old_size;
4511 htab->root.table.count = old_count;
4512 memcpy (htab->root.table.table, old_tab, tabsize);
4513 memcpy (sym_hash, old_hash, hashsize);
4514 htab->root.undefs = old_undefs;
4515 htab->root.undefs_tail = old_undefs_tail;
4516 for (i = 0; i < htab->root.table.size; i++)
4517 {
4518 struct bfd_hash_entry *p;
4519 struct elf_link_hash_entry *h;
4520
4521 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4522 {
4523 h = (struct elf_link_hash_entry *) p;
4524 if (h->root.type == bfd_link_hash_warning)
4525 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4526 if (h->dynindx >= old_dynsymcount)
4527 _bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4528
4529 memcpy (p, old_ent, htab->root.table.entsize);
4530 old_ent = (char *) old_ent + htab->root.table.entsize;
4531 h = (struct elf_link_hash_entry *) p;
4532 if (h->root.type == bfd_link_hash_warning)
4533 {
4534 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4535 old_ent = (char *) old_ent + htab->root.table.entsize;
4536 }
4537 }
4538 }
4539
4540 /* Make a special call to the linker "notice" function to
4541 tell it that symbols added for crefs may need to be removed. */
4542 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4543 notice_not_needed))
4544 goto error_free_vers;
4545
4546 free (old_tab);
4547 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4548 alloc_mark);
4549 if (nondeflt_vers != NULL)
4550 free (nondeflt_vers);
4551 return TRUE;
4552 }
4553
4554 if (old_tab != NULL)
4555 {
4556 if (!(*info->callbacks->notice) (info, NULL, abfd, NULL,
4557 notice_needed))
4558 goto error_free_vers;
4559 free (old_tab);
4560 old_tab = NULL;
4561 }
4562
4563 /* Now that all the symbols from this input file are created, handle
4564 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
4565 if (nondeflt_vers != NULL)
4566 {
4567 bfd_size_type cnt, symidx;
4568
4569 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4570 {
4571 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4572 char *shortname, *p;
4573
4574 p = strchr (h->root.root.string, ELF_VER_CHR);
4575 if (p == NULL
4576 || (h->root.type != bfd_link_hash_defined
4577 && h->root.type != bfd_link_hash_defweak))
4578 continue;
4579
4580 amt = p - h->root.root.string;
4581 shortname = (char *) bfd_malloc (amt + 1);
4582 if (!shortname)
4583 goto error_free_vers;
4584 memcpy (shortname, h->root.root.string, amt);
4585 shortname[amt] = '\0';
4586
4587 hi = (struct elf_link_hash_entry *)
4588 bfd_link_hash_lookup (&htab->root, shortname,
4589 FALSE, FALSE, FALSE);
4590 if (hi != NULL
4591 && hi->root.type == h->root.type
4592 && hi->root.u.def.value == h->root.u.def.value
4593 && hi->root.u.def.section == h->root.u.def.section)
4594 {
4595 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4596 hi->root.type = bfd_link_hash_indirect;
4597 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4598 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4599 sym_hash = elf_sym_hashes (abfd);
4600 if (sym_hash)
4601 for (symidx = 0; symidx < extsymcount; ++symidx)
4602 if (sym_hash[symidx] == hi)
4603 {
4604 sym_hash[symidx] = h;
4605 break;
4606 }
4607 }
4608 free (shortname);
4609 }
4610 free (nondeflt_vers);
4611 nondeflt_vers = NULL;
4612 }
4613
4614 /* Now set the weakdefs field correctly for all the weak defined
4615 symbols we found. The only way to do this is to search all the
4616 symbols. Since we only need the information for non functions in
4617 dynamic objects, that's the only time we actually put anything on
4618 the list WEAKS. We need this information so that if a regular
4619 object refers to a symbol defined weakly in a dynamic object, the
4620 real symbol in the dynamic object is also put in the dynamic
4621 symbols; we also must arrange for both symbols to point to the
4622 same memory location. We could handle the general case of symbol
4623 aliasing, but a general symbol alias can only be generated in
4624 assembler code, handling it correctly would be very time
4625 consuming, and other ELF linkers don't handle general aliasing
4626 either. */
4627 if (weaks != NULL)
4628 {
4629 struct elf_link_hash_entry **hpp;
4630 struct elf_link_hash_entry **hppend;
4631 struct elf_link_hash_entry **sorted_sym_hash;
4632 struct elf_link_hash_entry *h;
4633 size_t sym_count;
4634
4635 /* Since we have to search the whole symbol list for each weak
4636 defined symbol, search time for N weak defined symbols will be
4637 O(N^2). Binary search will cut it down to O(NlogN). */
4638 amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4639 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4640 if (sorted_sym_hash == NULL)
4641 goto error_return;
4642 sym_hash = sorted_sym_hash;
4643 hpp = elf_sym_hashes (abfd);
4644 hppend = hpp + extsymcount;
4645 sym_count = 0;
4646 for (; hpp < hppend; hpp++)
4647 {
4648 h = *hpp;
4649 if (h != NULL
4650 && h->root.type == bfd_link_hash_defined
4651 && !bed->is_function_type (h->type))
4652 {
4653 *sym_hash = h;
4654 sym_hash++;
4655 sym_count++;
4656 }
4657 }
4658
4659 qsort (sorted_sym_hash, sym_count,
4660 sizeof (struct elf_link_hash_entry *),
4661 elf_sort_symbol);
4662
4663 while (weaks != NULL)
4664 {
4665 struct elf_link_hash_entry *hlook;
4666 asection *slook;
4667 bfd_vma vlook;
4668 long ilook;
4669 size_t i, j, idx;
4670
4671 hlook = weaks;
4672 weaks = hlook->u.weakdef;
4673 hlook->u.weakdef = NULL;
4674
4675 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4676 || hlook->root.type == bfd_link_hash_defweak
4677 || hlook->root.type == bfd_link_hash_common
4678 || hlook->root.type == bfd_link_hash_indirect);
4679 slook = hlook->root.u.def.section;
4680 vlook = hlook->root.u.def.value;
4681
4682 ilook = -1;
4683 i = 0;
4684 j = sym_count;
4685 while (i < j)
4686 {
4687 bfd_signed_vma vdiff;
4688 idx = (i + j) / 2;
4689 h = sorted_sym_hash [idx];
4690 vdiff = vlook - h->root.u.def.value;
4691 if (vdiff < 0)
4692 j = idx;
4693 else if (vdiff > 0)
4694 i = idx + 1;
4695 else
4696 {
4697 long sdiff = slook->id - h->root.u.def.section->id;
4698 if (sdiff < 0)
4699 j = idx;
4700 else if (sdiff > 0)
4701 i = idx + 1;
4702 else
4703 {
4704 ilook = idx;
4705 break;
4706 }
4707 }
4708 }
4709
4710 /* We didn't find a value/section match. */
4711 if (ilook == -1)
4712 continue;
4713
4714 for (i = ilook; i < sym_count; i++)
4715 {
4716 h = sorted_sym_hash [i];
4717
4718 /* Stop if value or section doesn't match. */
4719 if (h->root.u.def.value != vlook
4720 || h->root.u.def.section != slook)
4721 break;
4722 else if (h != hlook)
4723 {
4724 hlook->u.weakdef = h;
4725
4726 /* If the weak definition is in the list of dynamic
4727 symbols, make sure the real definition is put
4728 there as well. */
4729 if (hlook->dynindx != -1 && h->dynindx == -1)
4730 {
4731 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4732 {
4733 err_free_sym_hash:
4734 free (sorted_sym_hash);
4735 goto error_return;
4736 }
4737 }
4738
4739 /* If the real definition is in the list of dynamic
4740 symbols, make sure the weak definition is put
4741 there as well. If we don't do this, then the
4742 dynamic loader might not merge the entries for the
4743 real definition and the weak definition. */
4744 if (h->dynindx != -1 && hlook->dynindx == -1)
4745 {
4746 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4747 goto err_free_sym_hash;
4748 }
4749 break;
4750 }
4751 }
4752 }
4753
4754 free (sorted_sym_hash);
4755 }
4756
4757 if (bed->check_directives
4758 && !(*bed->check_directives) (abfd, info))
4759 return FALSE;
4760
4761 /* If this object is the same format as the output object, and it is
4762 not a shared library, then let the backend look through the
4763 relocs.
4764
4765 This is required to build global offset table entries and to
4766 arrange for dynamic relocs. It is not required for the
4767 particular common case of linking non PIC code, even when linking
4768 against shared libraries, but unfortunately there is no way of
4769 knowing whether an object file has been compiled PIC or not.
4770 Looking through the relocs is not particularly time consuming.
4771 The problem is that we must either (1) keep the relocs in memory,
4772 which causes the linker to require additional runtime memory or
4773 (2) read the relocs twice from the input file, which wastes time.
4774 This would be a good case for using mmap.
4775
4776 I have no idea how to handle linking PIC code into a file of a
4777 different format. It probably can't be done. */
4778 if (! dynamic
4779 && is_elf_hash_table (htab)
4780 && bed->check_relocs != NULL
4781 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4782 {
4783 asection *o;
4784
4785 for (o = abfd->sections; o != NULL; o = o->next)
4786 {
4787 Elf_Internal_Rela *internal_relocs;
4788 bfd_boolean ok;
4789
4790 if ((o->flags & SEC_RELOC) == 0
4791 || o->reloc_count == 0
4792 || ((info->strip == strip_all || info->strip == strip_debugger)
4793 && (o->flags & SEC_DEBUGGING) != 0)
4794 || bfd_is_abs_section (o->output_section))
4795 continue;
4796
4797 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4798 info->keep_memory);
4799 if (internal_relocs == NULL)
4800 goto error_return;
4801
4802 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4803
4804 if (elf_section_data (o)->relocs != internal_relocs)
4805 free (internal_relocs);
4806
4807 if (! ok)
4808 goto error_return;
4809 }
4810 }
4811
4812 /* If this is a non-traditional link, try to optimize the handling
4813 of the .stab/.stabstr sections. */
4814 if (! dynamic
4815 && ! info->traditional_format
4816 && is_elf_hash_table (htab)
4817 && (info->strip != strip_all && info->strip != strip_debugger))
4818 {
4819 asection *stabstr;
4820
4821 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4822 if (stabstr != NULL)
4823 {
4824 bfd_size_type string_offset = 0;
4825 asection *stab;
4826
4827 for (stab = abfd->sections; stab; stab = stab->next)
4828 if (CONST_STRNEQ (stab->name, ".stab")
4829 && (!stab->name[5] ||
4830 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4831 && (stab->flags & SEC_MERGE) == 0
4832 && !bfd_is_abs_section (stab->output_section))
4833 {
4834 struct bfd_elf_section_data *secdata;
4835
4836 secdata = elf_section_data (stab);
4837 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4838 stabstr, &secdata->sec_info,
4839 &string_offset))
4840 goto error_return;
4841 if (secdata->sec_info)
4842 stab->sec_info_type = ELF_INFO_TYPE_STABS;
4843 }
4844 }
4845 }
4846
4847 if (is_elf_hash_table (htab) && add_needed)
4848 {
4849 /* Add this bfd to the loaded list. */
4850 struct elf_link_loaded_list *n;
4851
4852 n = (struct elf_link_loaded_list *)
4853 bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4854 if (n == NULL)
4855 goto error_return;
4856 n->abfd = abfd;
4857 n->next = htab->loaded;
4858 htab->loaded = n;
4859 }
4860
4861 return TRUE;
4862
4863 error_free_vers:
4864 if (old_tab != NULL)
4865 free (old_tab);
4866 if (nondeflt_vers != NULL)
4867 free (nondeflt_vers);
4868 if (extversym != NULL)
4869 free (extversym);
4870 error_free_sym:
4871 if (isymbuf != NULL)
4872 free (isymbuf);
4873 error_return:
4874 return FALSE;
4875 }
4876
4877 /* Return the linker hash table entry of a symbol that might be
4878 satisfied by an archive symbol. Return -1 on error. */
4879
4880 struct elf_link_hash_entry *
4881 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4882 struct bfd_link_info *info,
4883 const char *name)
4884 {
4885 struct elf_link_hash_entry *h;
4886 char *p, *copy;
4887 size_t len, first;
4888
4889 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
4890 if (h != NULL)
4891 return h;
4892
4893 /* If this is a default version (the name contains @@), look up the
4894 symbol again with only one `@' as well as without the version.
4895 The effect is that references to the symbol with and without the
4896 version will be matched by the default symbol in the archive. */
4897
4898 p = strchr (name, ELF_VER_CHR);
4899 if (p == NULL || p[1] != ELF_VER_CHR)
4900 return h;
4901
4902 /* First check with only one `@'. */
4903 len = strlen (name);
4904 copy = (char *) bfd_alloc (abfd, len);
4905 if (copy == NULL)
4906 return (struct elf_link_hash_entry *) 0 - 1;
4907
4908 first = p - name + 1;
4909 memcpy (copy, name, first);
4910 memcpy (copy + first, name + first + 1, len - first);
4911
4912 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, FALSE);
4913 if (h == NULL)
4914 {
4915 /* We also need to check references to the symbol without the
4916 version. */
4917 copy[first - 1] = '\0';
4918 h = elf_link_hash_lookup (elf_hash_table (info), copy,
4919 FALSE, FALSE, FALSE);
4920 }
4921
4922 bfd_release (abfd, copy);
4923 return h;
4924 }
4925
4926 /* Add symbols from an ELF archive file to the linker hash table. We
4927 don't use _bfd_generic_link_add_archive_symbols because of a
4928 problem which arises on UnixWare. The UnixWare libc.so is an
4929 archive which includes an entry libc.so.1 which defines a bunch of
4930 symbols. The libc.so archive also includes a number of other
4931 object files, which also define symbols, some of which are the same
4932 as those defined in libc.so.1. Correct linking requires that we
4933 consider each object file in turn, and include it if it defines any
4934 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4935 this; it looks through the list of undefined symbols, and includes
4936 any object file which defines them. When this algorithm is used on
4937 UnixWare, it winds up pulling in libc.so.1 early and defining a
4938 bunch of symbols. This means that some of the other objects in the
4939 archive are not included in the link, which is incorrect since they
4940 precede libc.so.1 in the archive.
4941
4942 Fortunately, ELF archive handling is simpler than that done by
4943 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4944 oddities. In ELF, if we find a symbol in the archive map, and the
4945 symbol is currently undefined, we know that we must pull in that
4946 object file.
4947
4948 Unfortunately, we do have to make multiple passes over the symbol
4949 table until nothing further is resolved. */
4950
4951 static bfd_boolean
4952 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4953 {
4954 symindex c;
4955 bfd_boolean *defined = NULL;
4956 bfd_boolean *included = NULL;
4957 carsym *symdefs;
4958 bfd_boolean loop;
4959 bfd_size_type amt;
4960 const struct elf_backend_data *bed;
4961 struct elf_link_hash_entry * (*archive_symbol_lookup)
4962 (bfd *, struct bfd_link_info *, const char *);
4963
4964 if (! bfd_has_map (abfd))
4965 {
4966 /* An empty archive is a special case. */
4967 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4968 return TRUE;
4969 bfd_set_error (bfd_error_no_armap);
4970 return FALSE;
4971 }
4972
4973 /* Keep track of all symbols we know to be already defined, and all
4974 files we know to be already included. This is to speed up the
4975 second and subsequent passes. */
4976 c = bfd_ardata (abfd)->symdef_count;
4977 if (c == 0)
4978 return TRUE;
4979 amt = c;
4980 amt *= sizeof (bfd_boolean);
4981 defined = (bfd_boolean *) bfd_zmalloc (amt);
4982 included = (bfd_boolean *) bfd_zmalloc (amt);
4983 if (defined == NULL || included == NULL)
4984 goto error_return;
4985
4986 symdefs = bfd_ardata (abfd)->symdefs;
4987 bed = get_elf_backend_data (abfd);
4988 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
4989
4990 do
4991 {
4992 file_ptr last;
4993 symindex i;
4994 carsym *symdef;
4995 carsym *symdefend;
4996
4997 loop = FALSE;
4998 last = -1;
4999
5000 symdef = symdefs;
5001 symdefend = symdef + c;
5002 for (i = 0; symdef < symdefend; symdef++, i++)
5003 {
5004 struct elf_link_hash_entry *h;
5005 bfd *element;
5006 struct bfd_link_hash_entry *undefs_tail;
5007 symindex mark;
5008
5009 if (defined[i] || included[i])
5010 continue;
5011 if (symdef->file_offset == last)
5012 {
5013 included[i] = TRUE;
5014 continue;
5015 }
5016
5017 h = archive_symbol_lookup (abfd, info, symdef->name);
5018 if (h == (struct elf_link_hash_entry *) 0 - 1)
5019 goto error_return;
5020
5021 if (h == NULL)
5022 continue;
5023
5024 if (h->root.type == bfd_link_hash_common)
5025 {
5026 /* We currently have a common symbol. The archive map contains
5027 a reference to this symbol, so we may want to include it. We
5028 only want to include it however, if this archive element
5029 contains a definition of the symbol, not just another common
5030 declaration of it.
5031
5032 Unfortunately some archivers (including GNU ar) will put
5033 declarations of common symbols into their archive maps, as
5034 well as real definitions, so we cannot just go by the archive
5035 map alone. Instead we must read in the element's symbol
5036 table and check that to see what kind of symbol definition
5037 this is. */
5038 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5039 continue;
5040 }
5041 else if (h->root.type != bfd_link_hash_undefined)
5042 {
5043 if (h->root.type != bfd_link_hash_undefweak)
5044 defined[i] = TRUE;
5045 continue;
5046 }
5047
5048 /* We need to include this archive member. */
5049 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5050 if (element == NULL)
5051 goto error_return;
5052
5053 if (! bfd_check_format (element, bfd_object))
5054 goto error_return;
5055
5056 /* Doublecheck that we have not included this object
5057 already--it should be impossible, but there may be
5058 something wrong with the archive. */
5059 if (element->archive_pass != 0)
5060 {
5061 bfd_set_error (bfd_error_bad_value);
5062 goto error_return;
5063 }
5064 element->archive_pass = 1;
5065
5066 undefs_tail = info->hash->undefs_tail;
5067
5068 if (! (*info->callbacks->add_archive_element) (info, element,
5069 symdef->name))
5070 goto error_return;
5071 if (! bfd_link_add_symbols (element, info))
5072 goto error_return;
5073
5074 /* If there are any new undefined symbols, we need to make
5075 another pass through the archive in order to see whether
5076 they can be defined. FIXME: This isn't perfect, because
5077 common symbols wind up on undefs_tail and because an
5078 undefined symbol which is defined later on in this pass
5079 does not require another pass. This isn't a bug, but it
5080 does make the code less efficient than it could be. */
5081 if (undefs_tail != info->hash->undefs_tail)
5082 loop = TRUE;
5083
5084 /* Look backward to mark all symbols from this object file
5085 which we have already seen in this pass. */
5086 mark = i;
5087 do
5088 {
5089 included[mark] = TRUE;
5090 if (mark == 0)
5091 break;
5092 --mark;
5093 }
5094 while (symdefs[mark].file_offset == symdef->file_offset);
5095
5096 /* We mark subsequent symbols from this object file as we go
5097 on through the loop. */
5098 last = symdef->file_offset;
5099 }
5100 }
5101 while (loop);
5102
5103 free (defined);
5104 free (included);
5105
5106 return TRUE;
5107
5108 error_return:
5109 if (defined != NULL)
5110 free (defined);
5111 if (included != NULL)
5112 free (included);
5113 return FALSE;
5114 }
5115
5116 /* Given an ELF BFD, add symbols to the global hash table as
5117 appropriate. */
5118
5119 bfd_boolean
5120 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5121 {
5122 switch (bfd_get_format (abfd))
5123 {
5124 case bfd_object:
5125 return elf_link_add_object_symbols (abfd, info);
5126 case bfd_archive:
5127 return elf_link_add_archive_symbols (abfd, info);
5128 default:
5129 bfd_set_error (bfd_error_wrong_format);
5130 return FALSE;
5131 }
5132 }
5133 \f
5134 struct hash_codes_info
5135 {
5136 unsigned long *hashcodes;
5137 bfd_boolean error;
5138 };
5139
5140 /* This function will be called though elf_link_hash_traverse to store
5141 all hash value of the exported symbols in an array. */
5142
5143 static bfd_boolean
5144 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5145 {
5146 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5147 const char *name;
5148 char *p;
5149 unsigned long ha;
5150 char *alc = NULL;
5151
5152 if (h->root.type == bfd_link_hash_warning)
5153 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5154
5155 /* Ignore indirect symbols. These are added by the versioning code. */
5156 if (h->dynindx == -1)
5157 return TRUE;
5158
5159 name = h->root.root.string;
5160 p = strchr (name, ELF_VER_CHR);
5161 if (p != NULL)
5162 {
5163 alc = (char *) bfd_malloc (p - name + 1);
5164 if (alc == NULL)
5165 {
5166 inf->error = TRUE;
5167 return FALSE;
5168 }
5169 memcpy (alc, name, p - name);
5170 alc[p - name] = '\0';
5171 name = alc;
5172 }
5173
5174 /* Compute the hash value. */
5175 ha = bfd_elf_hash (name);
5176
5177 /* Store the found hash value in the array given as the argument. */
5178 *(inf->hashcodes)++ = ha;
5179
5180 /* And store it in the struct so that we can put it in the hash table
5181 later. */
5182 h->u.elf_hash_value = ha;
5183
5184 if (alc != NULL)
5185 free (alc);
5186
5187 return TRUE;
5188 }
5189
5190 struct collect_gnu_hash_codes
5191 {
5192 bfd *output_bfd;
5193 const struct elf_backend_data *bed;
5194 unsigned long int nsyms;
5195 unsigned long int maskbits;
5196 unsigned long int *hashcodes;
5197 unsigned long int *hashval;
5198 unsigned long int *indx;
5199 unsigned long int *counts;
5200 bfd_vma *bitmask;
5201 bfd_byte *contents;
5202 long int min_dynindx;
5203 unsigned long int bucketcount;
5204 unsigned long int symindx;
5205 long int local_indx;
5206 long int shift1, shift2;
5207 unsigned long int mask;
5208 bfd_boolean error;
5209 };
5210
5211 /* This function will be called though elf_link_hash_traverse to store
5212 all hash value of the exported symbols in an array. */
5213
5214 static bfd_boolean
5215 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5216 {
5217 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5218 const char *name;
5219 char *p;
5220 unsigned long ha;
5221 char *alc = NULL;
5222
5223 if (h->root.type == bfd_link_hash_warning)
5224 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5225
5226 /* Ignore indirect symbols. These are added by the versioning code. */
5227 if (h->dynindx == -1)
5228 return TRUE;
5229
5230 /* Ignore also local symbols and undefined symbols. */
5231 if (! (*s->bed->elf_hash_symbol) (h))
5232 return TRUE;
5233
5234 name = h->root.root.string;
5235 p = strchr (name, ELF_VER_CHR);
5236 if (p != NULL)
5237 {
5238 alc = (char *) bfd_malloc (p - name + 1);
5239 if (alc == NULL)
5240 {
5241 s->error = TRUE;
5242 return FALSE;
5243 }
5244 memcpy (alc, name, p - name);
5245 alc[p - name] = '\0';
5246 name = alc;
5247 }
5248
5249 /* Compute the hash value. */
5250 ha = bfd_elf_gnu_hash (name);
5251
5252 /* Store the found hash value in the array for compute_bucket_count,
5253 and also for .dynsym reordering purposes. */
5254 s->hashcodes[s->nsyms] = ha;
5255 s->hashval[h->dynindx] = ha;
5256 ++s->nsyms;
5257 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5258 s->min_dynindx = h->dynindx;
5259
5260 if (alc != NULL)
5261 free (alc);
5262
5263 return TRUE;
5264 }
5265
5266 /* This function will be called though elf_link_hash_traverse to do
5267 final dynaminc symbol renumbering. */
5268
5269 static bfd_boolean
5270 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5271 {
5272 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5273 unsigned long int bucket;
5274 unsigned long int val;
5275
5276 if (h->root.type == bfd_link_hash_warning)
5277 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5278
5279 /* Ignore indirect symbols. */
5280 if (h->dynindx == -1)
5281 return TRUE;
5282
5283 /* Ignore also local symbols and undefined symbols. */
5284 if (! (*s->bed->elf_hash_symbol) (h))
5285 {
5286 if (h->dynindx >= s->min_dynindx)
5287 h->dynindx = s->local_indx++;
5288 return TRUE;
5289 }
5290
5291 bucket = s->hashval[h->dynindx] % s->bucketcount;
5292 val = (s->hashval[h->dynindx] >> s->shift1)
5293 & ((s->maskbits >> s->shift1) - 1);
5294 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5295 s->bitmask[val]
5296 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5297 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5298 if (s->counts[bucket] == 1)
5299 /* Last element terminates the chain. */
5300 val |= 1;
5301 bfd_put_32 (s->output_bfd, val,
5302 s->contents + (s->indx[bucket] - s->symindx) * 4);
5303 --s->counts[bucket];
5304 h->dynindx = s->indx[bucket]++;
5305 return TRUE;
5306 }
5307
5308 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5309
5310 bfd_boolean
5311 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5312 {
5313 return !(h->forced_local
5314 || h->root.type == bfd_link_hash_undefined
5315 || h->root.type == bfd_link_hash_undefweak
5316 || ((h->root.type == bfd_link_hash_defined
5317 || h->root.type == bfd_link_hash_defweak)
5318 && h->root.u.def.section->output_section == NULL));
5319 }
5320
5321 /* Array used to determine the number of hash table buckets to use
5322 based on the number of symbols there are. If there are fewer than
5323 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5324 fewer than 37 we use 17 buckets, and so forth. We never use more
5325 than 32771 buckets. */
5326
5327 static const size_t elf_buckets[] =
5328 {
5329 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5330 16411, 32771, 0
5331 };
5332
5333 /* Compute bucket count for hashing table. We do not use a static set
5334 of possible tables sizes anymore. Instead we determine for all
5335 possible reasonable sizes of the table the outcome (i.e., the
5336 number of collisions etc) and choose the best solution. The
5337 weighting functions are not too simple to allow the table to grow
5338 without bounds. Instead one of the weighting factors is the size.
5339 Therefore the result is always a good payoff between few collisions
5340 (= short chain lengths) and table size. */
5341 static size_t
5342 compute_bucket_count (struct bfd_link_info *info,
5343 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5344 unsigned long int nsyms,
5345 int gnu_hash)
5346 {
5347 size_t best_size = 0;
5348 unsigned long int i;
5349
5350 /* We have a problem here. The following code to optimize the table
5351 size requires an integer type with more the 32 bits. If
5352 BFD_HOST_U_64_BIT is set we know about such a type. */
5353 #ifdef BFD_HOST_U_64_BIT
5354 if (info->optimize)
5355 {
5356 size_t minsize;
5357 size_t maxsize;
5358 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5359 bfd *dynobj = elf_hash_table (info)->dynobj;
5360 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5361 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5362 unsigned long int *counts;
5363 bfd_size_type amt;
5364
5365 /* Possible optimization parameters: if we have NSYMS symbols we say
5366 that the hashing table must at least have NSYMS/4 and at most
5367 2*NSYMS buckets. */
5368 minsize = nsyms / 4;
5369 if (minsize == 0)
5370 minsize = 1;
5371 best_size = maxsize = nsyms * 2;
5372 if (gnu_hash)
5373 {
5374 if (minsize < 2)
5375 minsize = 2;
5376 if ((best_size & 31) == 0)
5377 ++best_size;
5378 }
5379
5380 /* Create array where we count the collisions in. We must use bfd_malloc
5381 since the size could be large. */
5382 amt = maxsize;
5383 amt *= sizeof (unsigned long int);
5384 counts = (unsigned long int *) bfd_malloc (amt);
5385 if (counts == NULL)
5386 return 0;
5387
5388 /* Compute the "optimal" size for the hash table. The criteria is a
5389 minimal chain length. The minor criteria is (of course) the size
5390 of the table. */
5391 for (i = minsize; i < maxsize; ++i)
5392 {
5393 /* Walk through the array of hashcodes and count the collisions. */
5394 BFD_HOST_U_64_BIT max;
5395 unsigned long int j;
5396 unsigned long int fact;
5397
5398 if (gnu_hash && (i & 31) == 0)
5399 continue;
5400
5401 memset (counts, '\0', i * sizeof (unsigned long int));
5402
5403 /* Determine how often each hash bucket is used. */
5404 for (j = 0; j < nsyms; ++j)
5405 ++counts[hashcodes[j] % i];
5406
5407 /* For the weight function we need some information about the
5408 pagesize on the target. This is information need not be 100%
5409 accurate. Since this information is not available (so far) we
5410 define it here to a reasonable default value. If it is crucial
5411 to have a better value some day simply define this value. */
5412 # ifndef BFD_TARGET_PAGESIZE
5413 # define BFD_TARGET_PAGESIZE (4096)
5414 # endif
5415
5416 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5417 and the chains. */
5418 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5419
5420 # if 1
5421 /* Variant 1: optimize for short chains. We add the squares
5422 of all the chain lengths (which favors many small chain
5423 over a few long chains). */
5424 for (j = 0; j < i; ++j)
5425 max += counts[j] * counts[j];
5426
5427 /* This adds penalties for the overall size of the table. */
5428 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5429 max *= fact * fact;
5430 # else
5431 /* Variant 2: Optimize a lot more for small table. Here we
5432 also add squares of the size but we also add penalties for
5433 empty slots (the +1 term). */
5434 for (j = 0; j < i; ++j)
5435 max += (1 + counts[j]) * (1 + counts[j]);
5436
5437 /* The overall size of the table is considered, but not as
5438 strong as in variant 1, where it is squared. */
5439 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5440 max *= fact;
5441 # endif
5442
5443 /* Compare with current best results. */
5444 if (max < best_chlen)
5445 {
5446 best_chlen = max;
5447 best_size = i;
5448 }
5449 }
5450
5451 free (counts);
5452 }
5453 else
5454 #endif /* defined (BFD_HOST_U_64_BIT) */
5455 {
5456 /* This is the fallback solution if no 64bit type is available or if we
5457 are not supposed to spend much time on optimizations. We select the
5458 bucket count using a fixed set of numbers. */
5459 for (i = 0; elf_buckets[i] != 0; i++)
5460 {
5461 best_size = elf_buckets[i];
5462 if (nsyms < elf_buckets[i + 1])
5463 break;
5464 }
5465 if (gnu_hash && best_size < 2)
5466 best_size = 2;
5467 }
5468
5469 return best_size;
5470 }
5471
5472 /* Set up the sizes and contents of the ELF dynamic sections. This is
5473 called by the ELF linker emulation before_allocation routine. We
5474 must set the sizes of the sections before the linker sets the
5475 addresses of the various sections. */
5476
5477 bfd_boolean
5478 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5479 const char *soname,
5480 const char *rpath,
5481 const char *filter_shlib,
5482 const char *audit,
5483 const char *depaudit,
5484 const char * const *auxiliary_filters,
5485 struct bfd_link_info *info,
5486 asection **sinterpptr,
5487 struct bfd_elf_version_tree *verdefs)
5488 {
5489 bfd_size_type soname_indx;
5490 bfd *dynobj;
5491 const struct elf_backend_data *bed;
5492 struct elf_info_failed asvinfo;
5493
5494 *sinterpptr = NULL;
5495
5496 soname_indx = (bfd_size_type) -1;
5497
5498 if (!is_elf_hash_table (info->hash))
5499 return TRUE;
5500
5501 bed = get_elf_backend_data (output_bfd);
5502 if (info->execstack)
5503 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | PF_X;
5504 else if (info->noexecstack)
5505 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W;
5506 else
5507 {
5508 bfd *inputobj;
5509 asection *notesec = NULL;
5510 int exec = 0;
5511
5512 for (inputobj = info->input_bfds;
5513 inputobj;
5514 inputobj = inputobj->link_next)
5515 {
5516 asection *s;
5517
5518 if (inputobj->flags & (DYNAMIC | EXEC_P | BFD_LINKER_CREATED))
5519 continue;
5520 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5521 if (s)
5522 {
5523 if (s->flags & SEC_CODE)
5524 exec = PF_X;
5525 notesec = s;
5526 }
5527 else if (bed->default_execstack)
5528 exec = PF_X;
5529 }
5530 if (notesec)
5531 {
5532 elf_tdata (output_bfd)->stack_flags = PF_R | PF_W | exec;
5533 if (exec && info->relocatable
5534 && notesec->output_section != bfd_abs_section_ptr)
5535 notesec->output_section->flags |= SEC_CODE;
5536 }
5537 }
5538
5539 /* Any syms created from now on start with -1 in
5540 got.refcount/offset and plt.refcount/offset. */
5541 elf_hash_table (info)->init_got_refcount
5542 = elf_hash_table (info)->init_got_offset;
5543 elf_hash_table (info)->init_plt_refcount
5544 = elf_hash_table (info)->init_plt_offset;
5545
5546 /* The backend may have to create some sections regardless of whether
5547 we're dynamic or not. */
5548 if (bed->elf_backend_always_size_sections
5549 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5550 return FALSE;
5551
5552 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5553 return FALSE;
5554
5555 dynobj = elf_hash_table (info)->dynobj;
5556
5557 /* If there were no dynamic objects in the link, there is nothing to
5558 do here. */
5559 if (dynobj == NULL)
5560 return TRUE;
5561
5562 if (elf_hash_table (info)->dynamic_sections_created)
5563 {
5564 struct elf_info_failed eif;
5565 struct elf_link_hash_entry *h;
5566 asection *dynstr;
5567 struct bfd_elf_version_tree *t;
5568 struct bfd_elf_version_expr *d;
5569 asection *s;
5570 bfd_boolean all_defined;
5571
5572 *sinterpptr = bfd_get_section_by_name (dynobj, ".interp");
5573 BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5574
5575 if (soname != NULL)
5576 {
5577 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5578 soname, TRUE);
5579 if (soname_indx == (bfd_size_type) -1
5580 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5581 return FALSE;
5582 }
5583
5584 if (info->symbolic)
5585 {
5586 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5587 return FALSE;
5588 info->flags |= DF_SYMBOLIC;
5589 }
5590
5591 if (rpath != NULL)
5592 {
5593 bfd_size_type indx;
5594
5595 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5596 TRUE);
5597 if (indx == (bfd_size_type) -1
5598 || !_bfd_elf_add_dynamic_entry (info, DT_RPATH, indx))
5599 return FALSE;
5600
5601 if (info->new_dtags)
5602 {
5603 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, indx);
5604 if (!_bfd_elf_add_dynamic_entry (info, DT_RUNPATH, indx))
5605 return FALSE;
5606 }
5607 }
5608
5609 if (filter_shlib != NULL)
5610 {
5611 bfd_size_type indx;
5612
5613 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5614 filter_shlib, TRUE);
5615 if (indx == (bfd_size_type) -1
5616 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5617 return FALSE;
5618 }
5619
5620 if (auxiliary_filters != NULL)
5621 {
5622 const char * const *p;
5623
5624 for (p = auxiliary_filters; *p != NULL; p++)
5625 {
5626 bfd_size_type indx;
5627
5628 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5629 *p, TRUE);
5630 if (indx == (bfd_size_type) -1
5631 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5632 return FALSE;
5633 }
5634 }
5635
5636 if (audit != NULL)
5637 {
5638 bfd_size_type indx;
5639
5640 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5641 TRUE);
5642 if (indx == (bfd_size_type) -1
5643 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5644 return FALSE;
5645 }
5646
5647 if (depaudit != NULL)
5648 {
5649 bfd_size_type indx;
5650
5651 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5652 TRUE);
5653 if (indx == (bfd_size_type) -1
5654 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5655 return FALSE;
5656 }
5657
5658 eif.info = info;
5659 eif.verdefs = verdefs;
5660 eif.failed = FALSE;
5661
5662 /* If we are supposed to export all symbols into the dynamic symbol
5663 table (this is not the normal case), then do so. */
5664 if (info->export_dynamic
5665 || (info->executable && info->dynamic))
5666 {
5667 elf_link_hash_traverse (elf_hash_table (info),
5668 _bfd_elf_export_symbol,
5669 &eif);
5670 if (eif.failed)
5671 return FALSE;
5672 }
5673
5674 /* Make all global versions with definition. */
5675 for (t = verdefs; t != NULL; t = t->next)
5676 for (d = t->globals.list; d != NULL; d = d->next)
5677 if (!d->symver && d->literal)
5678 {
5679 const char *verstr, *name;
5680 size_t namelen, verlen, newlen;
5681 char *newname, *p;
5682 struct elf_link_hash_entry *newh;
5683
5684 name = d->pattern;
5685 namelen = strlen (name);
5686 verstr = t->name;
5687 verlen = strlen (verstr);
5688 newlen = namelen + verlen + 3;
5689
5690 newname = (char *) bfd_malloc (newlen);
5691 if (newname == NULL)
5692 return FALSE;
5693 memcpy (newname, name, namelen);
5694
5695 /* Check the hidden versioned definition. */
5696 p = newname + namelen;
5697 *p++ = ELF_VER_CHR;
5698 memcpy (p, verstr, verlen + 1);
5699 newh = elf_link_hash_lookup (elf_hash_table (info),
5700 newname, FALSE, FALSE,
5701 FALSE);
5702 if (newh == NULL
5703 || (newh->root.type != bfd_link_hash_defined
5704 && newh->root.type != bfd_link_hash_defweak))
5705 {
5706 /* Check the default versioned definition. */
5707 *p++ = ELF_VER_CHR;
5708 memcpy (p, verstr, verlen + 1);
5709 newh = elf_link_hash_lookup (elf_hash_table (info),
5710 newname, FALSE, FALSE,
5711 FALSE);
5712 }
5713 free (newname);
5714
5715 /* Mark this version if there is a definition and it is
5716 not defined in a shared object. */
5717 if (newh != NULL
5718 && !newh->def_dynamic
5719 && (newh->root.type == bfd_link_hash_defined
5720 || newh->root.type == bfd_link_hash_defweak))
5721 d->symver = 1;
5722 }
5723
5724 /* Attach all the symbols to their version information. */
5725 asvinfo.info = info;
5726 asvinfo.verdefs = verdefs;
5727 asvinfo.failed = FALSE;
5728
5729 elf_link_hash_traverse (elf_hash_table (info),
5730 _bfd_elf_link_assign_sym_version,
5731 &asvinfo);
5732 if (asvinfo.failed)
5733 return FALSE;
5734
5735 if (!info->allow_undefined_version)
5736 {
5737 /* Check if all global versions have a definition. */
5738 all_defined = TRUE;
5739 for (t = verdefs; t != NULL; t = t->next)
5740 for (d = t->globals.list; d != NULL; d = d->next)
5741 if (d->literal && !d->symver && !d->script)
5742 {
5743 (*_bfd_error_handler)
5744 (_("%s: undefined version: %s"),
5745 d->pattern, t->name);
5746 all_defined = FALSE;
5747 }
5748
5749 if (!all_defined)
5750 {
5751 bfd_set_error (bfd_error_bad_value);
5752 return FALSE;
5753 }
5754 }
5755
5756 /* Find all symbols which were defined in a dynamic object and make
5757 the backend pick a reasonable value for them. */
5758 elf_link_hash_traverse (elf_hash_table (info),
5759 _bfd_elf_adjust_dynamic_symbol,
5760 &eif);
5761 if (eif.failed)
5762 return FALSE;
5763
5764 /* Add some entries to the .dynamic section. We fill in some of the
5765 values later, in bfd_elf_final_link, but we must add the entries
5766 now so that we know the final size of the .dynamic section. */
5767
5768 /* If there are initialization and/or finalization functions to
5769 call then add the corresponding DT_INIT/DT_FINI entries. */
5770 h = (info->init_function
5771 ? elf_link_hash_lookup (elf_hash_table (info),
5772 info->init_function, FALSE,
5773 FALSE, FALSE)
5774 : NULL);
5775 if (h != NULL
5776 && (h->ref_regular
5777 || h->def_regular))
5778 {
5779 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5780 return FALSE;
5781 }
5782 h = (info->fini_function
5783 ? elf_link_hash_lookup (elf_hash_table (info),
5784 info->fini_function, FALSE,
5785 FALSE, FALSE)
5786 : NULL);
5787 if (h != NULL
5788 && (h->ref_regular
5789 || h->def_regular))
5790 {
5791 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5792 return FALSE;
5793 }
5794
5795 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5796 if (s != NULL && s->linker_has_input)
5797 {
5798 /* DT_PREINIT_ARRAY is not allowed in shared library. */
5799 if (! info->executable)
5800 {
5801 bfd *sub;
5802 asection *o;
5803
5804 for (sub = info->input_bfds; sub != NULL;
5805 sub = sub->link_next)
5806 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5807 for (o = sub->sections; o != NULL; o = o->next)
5808 if (elf_section_data (o)->this_hdr.sh_type
5809 == SHT_PREINIT_ARRAY)
5810 {
5811 (*_bfd_error_handler)
5812 (_("%B: .preinit_array section is not allowed in DSO"),
5813 sub);
5814 break;
5815 }
5816
5817 bfd_set_error (bfd_error_nonrepresentable_section);
5818 return FALSE;
5819 }
5820
5821 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5822 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5823 return FALSE;
5824 }
5825 s = bfd_get_section_by_name (output_bfd, ".init_array");
5826 if (s != NULL && s->linker_has_input)
5827 {
5828 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5829 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5830 return FALSE;
5831 }
5832 s = bfd_get_section_by_name (output_bfd, ".fini_array");
5833 if (s != NULL && s->linker_has_input)
5834 {
5835 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5836 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5837 return FALSE;
5838 }
5839
5840 dynstr = bfd_get_section_by_name (dynobj, ".dynstr");
5841 /* If .dynstr is excluded from the link, we don't want any of
5842 these tags. Strictly, we should be checking each section
5843 individually; This quick check covers for the case where
5844 someone does a /DISCARD/ : { *(*) }. */
5845 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5846 {
5847 bfd_size_type strsize;
5848
5849 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5850 if ((info->emit_hash
5851 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5852 || (info->emit_gnu_hash
5853 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5854 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5855 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5856 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5857 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5858 bed->s->sizeof_sym))
5859 return FALSE;
5860 }
5861 }
5862
5863 /* The backend must work out the sizes of all the other dynamic
5864 sections. */
5865 if (bed->elf_backend_size_dynamic_sections
5866 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5867 return FALSE;
5868
5869 if (elf_hash_table (info)->dynamic_sections_created)
5870 {
5871 unsigned long section_sym_count;
5872 asection *s;
5873
5874 /* Set up the version definition section. */
5875 s = bfd_get_section_by_name (dynobj, ".gnu.version_d");
5876 BFD_ASSERT (s != NULL);
5877
5878 /* We may have created additional version definitions if we are
5879 just linking a regular application. */
5880 verdefs = asvinfo.verdefs;
5881
5882 /* Skip anonymous version tag. */
5883 if (verdefs != NULL && verdefs->vernum == 0)
5884 verdefs = verdefs->next;
5885
5886 if (verdefs == NULL && !info->create_default_symver)
5887 s->flags |= SEC_EXCLUDE;
5888 else
5889 {
5890 unsigned int cdefs;
5891 bfd_size_type size;
5892 struct bfd_elf_version_tree *t;
5893 bfd_byte *p;
5894 Elf_Internal_Verdef def;
5895 Elf_Internal_Verdaux defaux;
5896 struct bfd_link_hash_entry *bh;
5897 struct elf_link_hash_entry *h;
5898 const char *name;
5899
5900 cdefs = 0;
5901 size = 0;
5902
5903 /* Make space for the base version. */
5904 size += sizeof (Elf_External_Verdef);
5905 size += sizeof (Elf_External_Verdaux);
5906 ++cdefs;
5907
5908 /* Make space for the default version. */
5909 if (info->create_default_symver)
5910 {
5911 size += sizeof (Elf_External_Verdef);
5912 ++cdefs;
5913 }
5914
5915 for (t = verdefs; t != NULL; t = t->next)
5916 {
5917 struct bfd_elf_version_deps *n;
5918
5919 size += sizeof (Elf_External_Verdef);
5920 size += sizeof (Elf_External_Verdaux);
5921 ++cdefs;
5922
5923 for (n = t->deps; n != NULL; n = n->next)
5924 size += sizeof (Elf_External_Verdaux);
5925 }
5926
5927 s->size = size;
5928 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
5929 if (s->contents == NULL && s->size != 0)
5930 return FALSE;
5931
5932 /* Fill in the version definition section. */
5933
5934 p = s->contents;
5935
5936 def.vd_version = VER_DEF_CURRENT;
5937 def.vd_flags = VER_FLG_BASE;
5938 def.vd_ndx = 1;
5939 def.vd_cnt = 1;
5940 if (info->create_default_symver)
5941 {
5942 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
5943 def.vd_next = sizeof (Elf_External_Verdef);
5944 }
5945 else
5946 {
5947 def.vd_aux = sizeof (Elf_External_Verdef);
5948 def.vd_next = (sizeof (Elf_External_Verdef)
5949 + sizeof (Elf_External_Verdaux));
5950 }
5951
5952 if (soname_indx != (bfd_size_type) -1)
5953 {
5954 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
5955 soname_indx);
5956 def.vd_hash = bfd_elf_hash (soname);
5957 defaux.vda_name = soname_indx;
5958 name = soname;
5959 }
5960 else
5961 {
5962 bfd_size_type indx;
5963
5964 name = lbasename (output_bfd->filename);
5965 def.vd_hash = bfd_elf_hash (name);
5966 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5967 name, FALSE);
5968 if (indx == (bfd_size_type) -1)
5969 return FALSE;
5970 defaux.vda_name = indx;
5971 }
5972 defaux.vda_next = 0;
5973
5974 _bfd_elf_swap_verdef_out (output_bfd, &def,
5975 (Elf_External_Verdef *) p);
5976 p += sizeof (Elf_External_Verdef);
5977 if (info->create_default_symver)
5978 {
5979 /* Add a symbol representing this version. */
5980 bh = NULL;
5981 if (! (_bfd_generic_link_add_one_symbol
5982 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
5983 0, NULL, FALSE,
5984 get_elf_backend_data (dynobj)->collect, &bh)))
5985 return FALSE;
5986 h = (struct elf_link_hash_entry *) bh;
5987 h->non_elf = 0;
5988 h->def_regular = 1;
5989 h->type = STT_OBJECT;
5990 h->verinfo.vertree = NULL;
5991
5992 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5993 return FALSE;
5994
5995 /* Create a duplicate of the base version with the same
5996 aux block, but different flags. */
5997 def.vd_flags = 0;
5998 def.vd_ndx = 2;
5999 def.vd_aux = sizeof (Elf_External_Verdef);
6000 if (verdefs)
6001 def.vd_next = (sizeof (Elf_External_Verdef)
6002 + sizeof (Elf_External_Verdaux));
6003 else
6004 def.vd_next = 0;
6005 _bfd_elf_swap_verdef_out (output_bfd, &def,
6006 (Elf_External_Verdef *) p);
6007 p += sizeof (Elf_External_Verdef);
6008 }
6009 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6010 (Elf_External_Verdaux *) p);
6011 p += sizeof (Elf_External_Verdaux);
6012
6013 for (t = verdefs; t != NULL; t = t->next)
6014 {
6015 unsigned int cdeps;
6016 struct bfd_elf_version_deps *n;
6017
6018 cdeps = 0;
6019 for (n = t->deps; n != NULL; n = n->next)
6020 ++cdeps;
6021
6022 /* Add a symbol representing this version. */
6023 bh = NULL;
6024 if (! (_bfd_generic_link_add_one_symbol
6025 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6026 0, NULL, FALSE,
6027 get_elf_backend_data (dynobj)->collect, &bh)))
6028 return FALSE;
6029 h = (struct elf_link_hash_entry *) bh;
6030 h->non_elf = 0;
6031 h->def_regular = 1;
6032 h->type = STT_OBJECT;
6033 h->verinfo.vertree = t;
6034
6035 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6036 return FALSE;
6037
6038 def.vd_version = VER_DEF_CURRENT;
6039 def.vd_flags = 0;
6040 if (t->globals.list == NULL
6041 && t->locals.list == NULL
6042 && ! t->used)
6043 def.vd_flags |= VER_FLG_WEAK;
6044 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6045 def.vd_cnt = cdeps + 1;
6046 def.vd_hash = bfd_elf_hash (t->name);
6047 def.vd_aux = sizeof (Elf_External_Verdef);
6048 def.vd_next = 0;
6049 if (t->next != NULL)
6050 def.vd_next = (sizeof (Elf_External_Verdef)
6051 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6052
6053 _bfd_elf_swap_verdef_out (output_bfd, &def,
6054 (Elf_External_Verdef *) p);
6055 p += sizeof (Elf_External_Verdef);
6056
6057 defaux.vda_name = h->dynstr_index;
6058 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6059 h->dynstr_index);
6060 defaux.vda_next = 0;
6061 if (t->deps != NULL)
6062 defaux.vda_next = sizeof (Elf_External_Verdaux);
6063 t->name_indx = defaux.vda_name;
6064
6065 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6066 (Elf_External_Verdaux *) p);
6067 p += sizeof (Elf_External_Verdaux);
6068
6069 for (n = t->deps; n != NULL; n = n->next)
6070 {
6071 if (n->version_needed == NULL)
6072 {
6073 /* This can happen if there was an error in the
6074 version script. */
6075 defaux.vda_name = 0;
6076 }
6077 else
6078 {
6079 defaux.vda_name = n->version_needed->name_indx;
6080 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6081 defaux.vda_name);
6082 }
6083 if (n->next == NULL)
6084 defaux.vda_next = 0;
6085 else
6086 defaux.vda_next = sizeof (Elf_External_Verdaux);
6087
6088 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6089 (Elf_External_Verdaux *) p);
6090 p += sizeof (Elf_External_Verdaux);
6091 }
6092 }
6093
6094 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6095 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6096 return FALSE;
6097
6098 elf_tdata (output_bfd)->cverdefs = cdefs;
6099 }
6100
6101 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6102 {
6103 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6104 return FALSE;
6105 }
6106 else if (info->flags & DF_BIND_NOW)
6107 {
6108 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6109 return FALSE;
6110 }
6111
6112 if (info->flags_1)
6113 {
6114 if (info->executable)
6115 info->flags_1 &= ~ (DF_1_INITFIRST
6116 | DF_1_NODELETE
6117 | DF_1_NOOPEN);
6118 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6119 return FALSE;
6120 }
6121
6122 /* Work out the size of the version reference section. */
6123
6124 s = bfd_get_section_by_name (dynobj, ".gnu.version_r");
6125 BFD_ASSERT (s != NULL);
6126 {
6127 struct elf_find_verdep_info sinfo;
6128
6129 sinfo.info = info;
6130 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6131 if (sinfo.vers == 0)
6132 sinfo.vers = 1;
6133 sinfo.failed = FALSE;
6134
6135 elf_link_hash_traverse (elf_hash_table (info),
6136 _bfd_elf_link_find_version_dependencies,
6137 &sinfo);
6138 if (sinfo.failed)
6139 return FALSE;
6140
6141 if (elf_tdata (output_bfd)->verref == NULL)
6142 s->flags |= SEC_EXCLUDE;
6143 else
6144 {
6145 Elf_Internal_Verneed *t;
6146 unsigned int size;
6147 unsigned int crefs;
6148 bfd_byte *p;
6149
6150 /* Build the version definition section. */
6151 size = 0;
6152 crefs = 0;
6153 for (t = elf_tdata (output_bfd)->verref;
6154 t != NULL;
6155 t = t->vn_nextref)
6156 {
6157 Elf_Internal_Vernaux *a;
6158
6159 size += sizeof (Elf_External_Verneed);
6160 ++crefs;
6161 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6162 size += sizeof (Elf_External_Vernaux);
6163 }
6164
6165 s->size = size;
6166 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6167 if (s->contents == NULL)
6168 return FALSE;
6169
6170 p = s->contents;
6171 for (t = elf_tdata (output_bfd)->verref;
6172 t != NULL;
6173 t = t->vn_nextref)
6174 {
6175 unsigned int caux;
6176 Elf_Internal_Vernaux *a;
6177 bfd_size_type indx;
6178
6179 caux = 0;
6180 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6181 ++caux;
6182
6183 t->vn_version = VER_NEED_CURRENT;
6184 t->vn_cnt = caux;
6185 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6186 elf_dt_name (t->vn_bfd) != NULL
6187 ? elf_dt_name (t->vn_bfd)
6188 : lbasename (t->vn_bfd->filename),
6189 FALSE);
6190 if (indx == (bfd_size_type) -1)
6191 return FALSE;
6192 t->vn_file = indx;
6193 t->vn_aux = sizeof (Elf_External_Verneed);
6194 if (t->vn_nextref == NULL)
6195 t->vn_next = 0;
6196 else
6197 t->vn_next = (sizeof (Elf_External_Verneed)
6198 + caux * sizeof (Elf_External_Vernaux));
6199
6200 _bfd_elf_swap_verneed_out (output_bfd, t,
6201 (Elf_External_Verneed *) p);
6202 p += sizeof (Elf_External_Verneed);
6203
6204 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6205 {
6206 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6207 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6208 a->vna_nodename, FALSE);
6209 if (indx == (bfd_size_type) -1)
6210 return FALSE;
6211 a->vna_name = indx;
6212 if (a->vna_nextptr == NULL)
6213 a->vna_next = 0;
6214 else
6215 a->vna_next = sizeof (Elf_External_Vernaux);
6216
6217 _bfd_elf_swap_vernaux_out (output_bfd, a,
6218 (Elf_External_Vernaux *) p);
6219 p += sizeof (Elf_External_Vernaux);
6220 }
6221 }
6222
6223 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6224 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6225 return FALSE;
6226
6227 elf_tdata (output_bfd)->cverrefs = crefs;
6228 }
6229 }
6230
6231 if ((elf_tdata (output_bfd)->cverrefs == 0
6232 && elf_tdata (output_bfd)->cverdefs == 0)
6233 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6234 &section_sym_count) == 0)
6235 {
6236 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6237 s->flags |= SEC_EXCLUDE;
6238 }
6239 }
6240 return TRUE;
6241 }
6242
6243 /* Find the first non-excluded output section. We'll use its
6244 section symbol for some emitted relocs. */
6245 void
6246 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6247 {
6248 asection *s;
6249
6250 for (s = output_bfd->sections; s != NULL; s = s->next)
6251 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6252 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6253 {
6254 elf_hash_table (info)->text_index_section = s;
6255 break;
6256 }
6257 }
6258
6259 /* Find two non-excluded output sections, one for code, one for data.
6260 We'll use their section symbols for some emitted relocs. */
6261 void
6262 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6263 {
6264 asection *s;
6265
6266 /* Data first, since setting text_index_section changes
6267 _bfd_elf_link_omit_section_dynsym. */
6268 for (s = output_bfd->sections; s != NULL; s = s->next)
6269 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6270 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6271 {
6272 elf_hash_table (info)->data_index_section = s;
6273 break;
6274 }
6275
6276 for (s = output_bfd->sections; s != NULL; s = s->next)
6277 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6278 == (SEC_ALLOC | SEC_READONLY))
6279 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6280 {
6281 elf_hash_table (info)->text_index_section = s;
6282 break;
6283 }
6284
6285 if (elf_hash_table (info)->text_index_section == NULL)
6286 elf_hash_table (info)->text_index_section
6287 = elf_hash_table (info)->data_index_section;
6288 }
6289
6290 bfd_boolean
6291 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6292 {
6293 const struct elf_backend_data *bed;
6294
6295 if (!is_elf_hash_table (info->hash))
6296 return TRUE;
6297
6298 bed = get_elf_backend_data (output_bfd);
6299 (*bed->elf_backend_init_index_section) (output_bfd, info);
6300
6301 if (elf_hash_table (info)->dynamic_sections_created)
6302 {
6303 bfd *dynobj;
6304 asection *s;
6305 bfd_size_type dynsymcount;
6306 unsigned long section_sym_count;
6307 unsigned int dtagcount;
6308
6309 dynobj = elf_hash_table (info)->dynobj;
6310
6311 /* Assign dynsym indicies. In a shared library we generate a
6312 section symbol for each output section, which come first.
6313 Next come all of the back-end allocated local dynamic syms,
6314 followed by the rest of the global symbols. */
6315
6316 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6317 &section_sym_count);
6318
6319 /* Work out the size of the symbol version section. */
6320 s = bfd_get_section_by_name (dynobj, ".gnu.version");
6321 BFD_ASSERT (s != NULL);
6322 if (dynsymcount != 0
6323 && (s->flags & SEC_EXCLUDE) == 0)
6324 {
6325 s->size = dynsymcount * sizeof (Elf_External_Versym);
6326 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6327 if (s->contents == NULL)
6328 return FALSE;
6329
6330 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6331 return FALSE;
6332 }
6333
6334 /* Set the size of the .dynsym and .hash sections. We counted
6335 the number of dynamic symbols in elf_link_add_object_symbols.
6336 We will build the contents of .dynsym and .hash when we build
6337 the final symbol table, because until then we do not know the
6338 correct value to give the symbols. We built the .dynstr
6339 section as we went along in elf_link_add_object_symbols. */
6340 s = bfd_get_section_by_name (dynobj, ".dynsym");
6341 BFD_ASSERT (s != NULL);
6342 s->size = dynsymcount * bed->s->sizeof_sym;
6343
6344 if (dynsymcount != 0)
6345 {
6346 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6347 if (s->contents == NULL)
6348 return FALSE;
6349
6350 /* The first entry in .dynsym is a dummy symbol.
6351 Clear all the section syms, in case we don't output them all. */
6352 ++section_sym_count;
6353 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6354 }
6355
6356 elf_hash_table (info)->bucketcount = 0;
6357
6358 /* Compute the size of the hashing table. As a side effect this
6359 computes the hash values for all the names we export. */
6360 if (info->emit_hash)
6361 {
6362 unsigned long int *hashcodes;
6363 struct hash_codes_info hashinf;
6364 bfd_size_type amt;
6365 unsigned long int nsyms;
6366 size_t bucketcount;
6367 size_t hash_entry_size;
6368
6369 /* Compute the hash values for all exported symbols. At the same
6370 time store the values in an array so that we could use them for
6371 optimizations. */
6372 amt = dynsymcount * sizeof (unsigned long int);
6373 hashcodes = (unsigned long int *) bfd_malloc (amt);
6374 if (hashcodes == NULL)
6375 return FALSE;
6376 hashinf.hashcodes = hashcodes;
6377 hashinf.error = FALSE;
6378
6379 /* Put all hash values in HASHCODES. */
6380 elf_link_hash_traverse (elf_hash_table (info),
6381 elf_collect_hash_codes, &hashinf);
6382 if (hashinf.error)
6383 {
6384 free (hashcodes);
6385 return FALSE;
6386 }
6387
6388 nsyms = hashinf.hashcodes - hashcodes;
6389 bucketcount
6390 = compute_bucket_count (info, hashcodes, nsyms, 0);
6391 free (hashcodes);
6392
6393 if (bucketcount == 0)
6394 return FALSE;
6395
6396 elf_hash_table (info)->bucketcount = bucketcount;
6397
6398 s = bfd_get_section_by_name (dynobj, ".hash");
6399 BFD_ASSERT (s != NULL);
6400 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6401 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6402 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6403 if (s->contents == NULL)
6404 return FALSE;
6405
6406 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6407 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6408 s->contents + hash_entry_size);
6409 }
6410
6411 if (info->emit_gnu_hash)
6412 {
6413 size_t i, cnt;
6414 unsigned char *contents;
6415 struct collect_gnu_hash_codes cinfo;
6416 bfd_size_type amt;
6417 size_t bucketcount;
6418
6419 memset (&cinfo, 0, sizeof (cinfo));
6420
6421 /* Compute the hash values for all exported symbols. At the same
6422 time store the values in an array so that we could use them for
6423 optimizations. */
6424 amt = dynsymcount * 2 * sizeof (unsigned long int);
6425 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6426 if (cinfo.hashcodes == NULL)
6427 return FALSE;
6428
6429 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6430 cinfo.min_dynindx = -1;
6431 cinfo.output_bfd = output_bfd;
6432 cinfo.bed = bed;
6433
6434 /* Put all hash values in HASHCODES. */
6435 elf_link_hash_traverse (elf_hash_table (info),
6436 elf_collect_gnu_hash_codes, &cinfo);
6437 if (cinfo.error)
6438 {
6439 free (cinfo.hashcodes);
6440 return FALSE;
6441 }
6442
6443 bucketcount
6444 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6445
6446 if (bucketcount == 0)
6447 {
6448 free (cinfo.hashcodes);
6449 return FALSE;
6450 }
6451
6452 s = bfd_get_section_by_name (dynobj, ".gnu.hash");
6453 BFD_ASSERT (s != NULL);
6454
6455 if (cinfo.nsyms == 0)
6456 {
6457 /* Empty .gnu.hash section is special. */
6458 BFD_ASSERT (cinfo.min_dynindx == -1);
6459 free (cinfo.hashcodes);
6460 s->size = 5 * 4 + bed->s->arch_size / 8;
6461 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6462 if (contents == NULL)
6463 return FALSE;
6464 s->contents = contents;
6465 /* 1 empty bucket. */
6466 bfd_put_32 (output_bfd, 1, contents);
6467 /* SYMIDX above the special symbol 0. */
6468 bfd_put_32 (output_bfd, 1, contents + 4);
6469 /* Just one word for bitmask. */
6470 bfd_put_32 (output_bfd, 1, contents + 8);
6471 /* Only hash fn bloom filter. */
6472 bfd_put_32 (output_bfd, 0, contents + 12);
6473 /* No hashes are valid - empty bitmask. */
6474 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6475 /* No hashes in the only bucket. */
6476 bfd_put_32 (output_bfd, 0,
6477 contents + 16 + bed->s->arch_size / 8);
6478 }
6479 else
6480 {
6481 unsigned long int maskwords, maskbitslog2;
6482 BFD_ASSERT (cinfo.min_dynindx != -1);
6483
6484 maskbitslog2 = bfd_log2 (cinfo.nsyms) + 1;
6485 if (maskbitslog2 < 3)
6486 maskbitslog2 = 5;
6487 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6488 maskbitslog2 = maskbitslog2 + 3;
6489 else
6490 maskbitslog2 = maskbitslog2 + 2;
6491 if (bed->s->arch_size == 64)
6492 {
6493 if (maskbitslog2 == 5)
6494 maskbitslog2 = 6;
6495 cinfo.shift1 = 6;
6496 }
6497 else
6498 cinfo.shift1 = 5;
6499 cinfo.mask = (1 << cinfo.shift1) - 1;
6500 cinfo.shift2 = maskbitslog2;
6501 cinfo.maskbits = 1 << maskbitslog2;
6502 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6503 amt = bucketcount * sizeof (unsigned long int) * 2;
6504 amt += maskwords * sizeof (bfd_vma);
6505 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6506 if (cinfo.bitmask == NULL)
6507 {
6508 free (cinfo.hashcodes);
6509 return FALSE;
6510 }
6511
6512 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6513 cinfo.indx = cinfo.counts + bucketcount;
6514 cinfo.symindx = dynsymcount - cinfo.nsyms;
6515 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6516
6517 /* Determine how often each hash bucket is used. */
6518 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6519 for (i = 0; i < cinfo.nsyms; ++i)
6520 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6521
6522 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6523 if (cinfo.counts[i] != 0)
6524 {
6525 cinfo.indx[i] = cnt;
6526 cnt += cinfo.counts[i];
6527 }
6528 BFD_ASSERT (cnt == dynsymcount);
6529 cinfo.bucketcount = bucketcount;
6530 cinfo.local_indx = cinfo.min_dynindx;
6531
6532 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6533 s->size += cinfo.maskbits / 8;
6534 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6535 if (contents == NULL)
6536 {
6537 free (cinfo.bitmask);
6538 free (cinfo.hashcodes);
6539 return FALSE;
6540 }
6541
6542 s->contents = contents;
6543 bfd_put_32 (output_bfd, bucketcount, contents);
6544 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6545 bfd_put_32 (output_bfd, maskwords, contents + 8);
6546 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6547 contents += 16 + cinfo.maskbits / 8;
6548
6549 for (i = 0; i < bucketcount; ++i)
6550 {
6551 if (cinfo.counts[i] == 0)
6552 bfd_put_32 (output_bfd, 0, contents);
6553 else
6554 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6555 contents += 4;
6556 }
6557
6558 cinfo.contents = contents;
6559
6560 /* Renumber dynamic symbols, populate .gnu.hash section. */
6561 elf_link_hash_traverse (elf_hash_table (info),
6562 elf_renumber_gnu_hash_syms, &cinfo);
6563
6564 contents = s->contents + 16;
6565 for (i = 0; i < maskwords; ++i)
6566 {
6567 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6568 contents);
6569 contents += bed->s->arch_size / 8;
6570 }
6571
6572 free (cinfo.bitmask);
6573 free (cinfo.hashcodes);
6574 }
6575 }
6576
6577 s = bfd_get_section_by_name (dynobj, ".dynstr");
6578 BFD_ASSERT (s != NULL);
6579
6580 elf_finalize_dynstr (output_bfd, info);
6581
6582 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6583
6584 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6585 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6586 return FALSE;
6587 }
6588
6589 return TRUE;
6590 }
6591 \f
6592 /* Indicate that we are only retrieving symbol values from this
6593 section. */
6594
6595 void
6596 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
6597 {
6598 if (is_elf_hash_table (info->hash))
6599 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
6600 _bfd_generic_link_just_syms (sec, info);
6601 }
6602
6603 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
6604
6605 static void
6606 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6607 asection *sec)
6608 {
6609 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
6610 sec->sec_info_type = ELF_INFO_TYPE_NONE;
6611 }
6612
6613 /* Finish SHF_MERGE section merging. */
6614
6615 bfd_boolean
6616 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6617 {
6618 bfd *ibfd;
6619 asection *sec;
6620
6621 if (!is_elf_hash_table (info->hash))
6622 return FALSE;
6623
6624 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6625 if ((ibfd->flags & DYNAMIC) == 0)
6626 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6627 if ((sec->flags & SEC_MERGE) != 0
6628 && !bfd_is_abs_section (sec->output_section))
6629 {
6630 struct bfd_elf_section_data *secdata;
6631
6632 secdata = elf_section_data (sec);
6633 if (! _bfd_add_merge_section (abfd,
6634 &elf_hash_table (info)->merge_info,
6635 sec, &secdata->sec_info))
6636 return FALSE;
6637 else if (secdata->sec_info)
6638 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
6639 }
6640
6641 if (elf_hash_table (info)->merge_info != NULL)
6642 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6643 merge_sections_remove_hook);
6644 return TRUE;
6645 }
6646
6647 /* Create an entry in an ELF linker hash table. */
6648
6649 struct bfd_hash_entry *
6650 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6651 struct bfd_hash_table *table,
6652 const char *string)
6653 {
6654 /* Allocate the structure if it has not already been allocated by a
6655 subclass. */
6656 if (entry == NULL)
6657 {
6658 entry = (struct bfd_hash_entry *)
6659 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6660 if (entry == NULL)
6661 return entry;
6662 }
6663
6664 /* Call the allocation method of the superclass. */
6665 entry = _bfd_link_hash_newfunc (entry, table, string);
6666 if (entry != NULL)
6667 {
6668 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6669 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6670
6671 /* Set local fields. */
6672 ret->indx = -1;
6673 ret->dynindx = -1;
6674 ret->got = htab->init_got_refcount;
6675 ret->plt = htab->init_plt_refcount;
6676 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6677 - offsetof (struct elf_link_hash_entry, size)));
6678 /* Assume that we have been called by a non-ELF symbol reader.
6679 This flag is then reset by the code which reads an ELF input
6680 file. This ensures that a symbol created by a non-ELF symbol
6681 reader will have the flag set correctly. */
6682 ret->non_elf = 1;
6683 }
6684
6685 return entry;
6686 }
6687
6688 /* Copy data from an indirect symbol to its direct symbol, hiding the
6689 old indirect symbol. Also used for copying flags to a weakdef. */
6690
6691 void
6692 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6693 struct elf_link_hash_entry *dir,
6694 struct elf_link_hash_entry *ind)
6695 {
6696 struct elf_link_hash_table *htab;
6697
6698 /* Copy down any references that we may have already seen to the
6699 symbol which just became indirect. */
6700
6701 dir->ref_dynamic |= ind->ref_dynamic;
6702 dir->ref_regular |= ind->ref_regular;
6703 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6704 dir->non_got_ref |= ind->non_got_ref;
6705 dir->needs_plt |= ind->needs_plt;
6706 dir->pointer_equality_needed |= ind->pointer_equality_needed;
6707
6708 if (ind->root.type != bfd_link_hash_indirect)
6709 return;
6710
6711 /* Copy over the global and procedure linkage table refcount entries.
6712 These may have been already set up by a check_relocs routine. */
6713 htab = elf_hash_table (info);
6714 if (ind->got.refcount > htab->init_got_refcount.refcount)
6715 {
6716 if (dir->got.refcount < 0)
6717 dir->got.refcount = 0;
6718 dir->got.refcount += ind->got.refcount;
6719 ind->got.refcount = htab->init_got_refcount.refcount;
6720 }
6721
6722 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6723 {
6724 if (dir->plt.refcount < 0)
6725 dir->plt.refcount = 0;
6726 dir->plt.refcount += ind->plt.refcount;
6727 ind->plt.refcount = htab->init_plt_refcount.refcount;
6728 }
6729
6730 if (ind->dynindx != -1)
6731 {
6732 if (dir->dynindx != -1)
6733 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6734 dir->dynindx = ind->dynindx;
6735 dir->dynstr_index = ind->dynstr_index;
6736 ind->dynindx = -1;
6737 ind->dynstr_index = 0;
6738 }
6739 }
6740
6741 void
6742 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6743 struct elf_link_hash_entry *h,
6744 bfd_boolean force_local)
6745 {
6746 /* STT_GNU_IFUNC symbol must go through PLT. */
6747 if (h->type != STT_GNU_IFUNC)
6748 {
6749 h->plt = elf_hash_table (info)->init_plt_offset;
6750 h->needs_plt = 0;
6751 }
6752 if (force_local)
6753 {
6754 h->forced_local = 1;
6755 if (h->dynindx != -1)
6756 {
6757 h->dynindx = -1;
6758 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6759 h->dynstr_index);
6760 }
6761 }
6762 }
6763
6764 /* Initialize an ELF linker hash table. */
6765
6766 bfd_boolean
6767 _bfd_elf_link_hash_table_init
6768 (struct elf_link_hash_table *table,
6769 bfd *abfd,
6770 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6771 struct bfd_hash_table *,
6772 const char *),
6773 unsigned int entsize)
6774 {
6775 bfd_boolean ret;
6776 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6777
6778 memset (table, 0, sizeof * table);
6779 table->init_got_refcount.refcount = can_refcount - 1;
6780 table->init_plt_refcount.refcount = can_refcount - 1;
6781 table->init_got_offset.offset = -(bfd_vma) 1;
6782 table->init_plt_offset.offset = -(bfd_vma) 1;
6783 /* The first dynamic symbol is a dummy. */
6784 table->dynsymcount = 1;
6785
6786 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6787 table->root.type = bfd_link_elf_hash_table;
6788
6789 return ret;
6790 }
6791
6792 /* Create an ELF linker hash table. */
6793
6794 struct bfd_link_hash_table *
6795 _bfd_elf_link_hash_table_create (bfd *abfd)
6796 {
6797 struct elf_link_hash_table *ret;
6798 bfd_size_type amt = sizeof (struct elf_link_hash_table);
6799
6800 ret = (struct elf_link_hash_table *) bfd_malloc (amt);
6801 if (ret == NULL)
6802 return NULL;
6803
6804 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6805 sizeof (struct elf_link_hash_entry)))
6806 {
6807 free (ret);
6808 return NULL;
6809 }
6810
6811 return &ret->root;
6812 }
6813
6814 /* This is a hook for the ELF emulation code in the generic linker to
6815 tell the backend linker what file name to use for the DT_NEEDED
6816 entry for a dynamic object. */
6817
6818 void
6819 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6820 {
6821 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6822 && bfd_get_format (abfd) == bfd_object)
6823 elf_dt_name (abfd) = name;
6824 }
6825
6826 int
6827 bfd_elf_get_dyn_lib_class (bfd *abfd)
6828 {
6829 int lib_class;
6830 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6831 && bfd_get_format (abfd) == bfd_object)
6832 lib_class = elf_dyn_lib_class (abfd);
6833 else
6834 lib_class = 0;
6835 return lib_class;
6836 }
6837
6838 void
6839 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6840 {
6841 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6842 && bfd_get_format (abfd) == bfd_object)
6843 elf_dyn_lib_class (abfd) = lib_class;
6844 }
6845
6846 /* Get the list of DT_NEEDED entries for a link. This is a hook for
6847 the linker ELF emulation code. */
6848
6849 struct bfd_link_needed_list *
6850 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6851 struct bfd_link_info *info)
6852 {
6853 if (! is_elf_hash_table (info->hash))
6854 return NULL;
6855 return elf_hash_table (info)->needed;
6856 }
6857
6858 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
6859 hook for the linker ELF emulation code. */
6860
6861 struct bfd_link_needed_list *
6862 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6863 struct bfd_link_info *info)
6864 {
6865 if (! is_elf_hash_table (info->hash))
6866 return NULL;
6867 return elf_hash_table (info)->runpath;
6868 }
6869
6870 /* Get the name actually used for a dynamic object for a link. This
6871 is the SONAME entry if there is one. Otherwise, it is the string
6872 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
6873
6874 const char *
6875 bfd_elf_get_dt_soname (bfd *abfd)
6876 {
6877 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6878 && bfd_get_format (abfd) == bfd_object)
6879 return elf_dt_name (abfd);
6880 return NULL;
6881 }
6882
6883 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
6884 the ELF linker emulation code. */
6885
6886 bfd_boolean
6887 bfd_elf_get_bfd_needed_list (bfd *abfd,
6888 struct bfd_link_needed_list **pneeded)
6889 {
6890 asection *s;
6891 bfd_byte *dynbuf = NULL;
6892 unsigned int elfsec;
6893 unsigned long shlink;
6894 bfd_byte *extdyn, *extdynend;
6895 size_t extdynsize;
6896 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
6897
6898 *pneeded = NULL;
6899
6900 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
6901 || bfd_get_format (abfd) != bfd_object)
6902 return TRUE;
6903
6904 s = bfd_get_section_by_name (abfd, ".dynamic");
6905 if (s == NULL || s->size == 0)
6906 return TRUE;
6907
6908 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
6909 goto error_return;
6910
6911 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
6912 if (elfsec == SHN_BAD)
6913 goto error_return;
6914
6915 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
6916
6917 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
6918 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
6919
6920 extdyn = dynbuf;
6921 extdynend = extdyn + s->size;
6922 for (; extdyn < extdynend; extdyn += extdynsize)
6923 {
6924 Elf_Internal_Dyn dyn;
6925
6926 (*swap_dyn_in) (abfd, extdyn, &dyn);
6927
6928 if (dyn.d_tag == DT_NULL)
6929 break;
6930
6931 if (dyn.d_tag == DT_NEEDED)
6932 {
6933 const char *string;
6934 struct bfd_link_needed_list *l;
6935 unsigned int tagv = dyn.d_un.d_val;
6936 bfd_size_type amt;
6937
6938 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
6939 if (string == NULL)
6940 goto error_return;
6941
6942 amt = sizeof *l;
6943 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
6944 if (l == NULL)
6945 goto error_return;
6946
6947 l->by = abfd;
6948 l->name = string;
6949 l->next = *pneeded;
6950 *pneeded = l;
6951 }
6952 }
6953
6954 free (dynbuf);
6955
6956 return TRUE;
6957
6958 error_return:
6959 if (dynbuf != NULL)
6960 free (dynbuf);
6961 return FALSE;
6962 }
6963
6964 struct elf_symbuf_symbol
6965 {
6966 unsigned long st_name; /* Symbol name, index in string tbl */
6967 unsigned char st_info; /* Type and binding attributes */
6968 unsigned char st_other; /* Visibilty, and target specific */
6969 };
6970
6971 struct elf_symbuf_head
6972 {
6973 struct elf_symbuf_symbol *ssym;
6974 bfd_size_type count;
6975 unsigned int st_shndx;
6976 };
6977
6978 struct elf_symbol
6979 {
6980 union
6981 {
6982 Elf_Internal_Sym *isym;
6983 struct elf_symbuf_symbol *ssym;
6984 } u;
6985 const char *name;
6986 };
6987
6988 /* Sort references to symbols by ascending section number. */
6989
6990 static int
6991 elf_sort_elf_symbol (const void *arg1, const void *arg2)
6992 {
6993 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
6994 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
6995
6996 return s1->st_shndx - s2->st_shndx;
6997 }
6998
6999 static int
7000 elf_sym_name_compare (const void *arg1, const void *arg2)
7001 {
7002 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7003 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7004 return strcmp (s1->name, s2->name);
7005 }
7006
7007 static struct elf_symbuf_head *
7008 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7009 {
7010 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7011 struct elf_symbuf_symbol *ssym;
7012 struct elf_symbuf_head *ssymbuf, *ssymhead;
7013 bfd_size_type i, shndx_count, total_size;
7014
7015 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7016 if (indbuf == NULL)
7017 return NULL;
7018
7019 for (ind = indbuf, i = 0; i < symcount; i++)
7020 if (isymbuf[i].st_shndx != SHN_UNDEF)
7021 *ind++ = &isymbuf[i];
7022 indbufend = ind;
7023
7024 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7025 elf_sort_elf_symbol);
7026
7027 shndx_count = 0;
7028 if (indbufend > indbuf)
7029 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7030 if (ind[0]->st_shndx != ind[1]->st_shndx)
7031 shndx_count++;
7032
7033 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7034 + (indbufend - indbuf) * sizeof (*ssym));
7035 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7036 if (ssymbuf == NULL)
7037 {
7038 free (indbuf);
7039 return NULL;
7040 }
7041
7042 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7043 ssymbuf->ssym = NULL;
7044 ssymbuf->count = shndx_count;
7045 ssymbuf->st_shndx = 0;
7046 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7047 {
7048 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7049 {
7050 ssymhead++;
7051 ssymhead->ssym = ssym;
7052 ssymhead->count = 0;
7053 ssymhead->st_shndx = (*ind)->st_shndx;
7054 }
7055 ssym->st_name = (*ind)->st_name;
7056 ssym->st_info = (*ind)->st_info;
7057 ssym->st_other = (*ind)->st_other;
7058 ssymhead->count++;
7059 }
7060 BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7061 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7062 == total_size));
7063
7064 free (indbuf);
7065 return ssymbuf;
7066 }
7067
7068 /* Check if 2 sections define the same set of local and global
7069 symbols. */
7070
7071 static bfd_boolean
7072 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7073 struct bfd_link_info *info)
7074 {
7075 bfd *bfd1, *bfd2;
7076 const struct elf_backend_data *bed1, *bed2;
7077 Elf_Internal_Shdr *hdr1, *hdr2;
7078 bfd_size_type symcount1, symcount2;
7079 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7080 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7081 Elf_Internal_Sym *isym, *isymend;
7082 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7083 bfd_size_type count1, count2, i;
7084 unsigned int shndx1, shndx2;
7085 bfd_boolean result;
7086
7087 bfd1 = sec1->owner;
7088 bfd2 = sec2->owner;
7089
7090 /* Both sections have to be in ELF. */
7091 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7092 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7093 return FALSE;
7094
7095 if (elf_section_type (sec1) != elf_section_type (sec2))
7096 return FALSE;
7097
7098 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7099 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7100 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7101 return FALSE;
7102
7103 bed1 = get_elf_backend_data (bfd1);
7104 bed2 = get_elf_backend_data (bfd2);
7105 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7106 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7107 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7108 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7109
7110 if (symcount1 == 0 || symcount2 == 0)
7111 return FALSE;
7112
7113 result = FALSE;
7114 isymbuf1 = NULL;
7115 isymbuf2 = NULL;
7116 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7117 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7118
7119 if (ssymbuf1 == NULL)
7120 {
7121 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7122 NULL, NULL, NULL);
7123 if (isymbuf1 == NULL)
7124 goto done;
7125
7126 if (!info->reduce_memory_overheads)
7127 elf_tdata (bfd1)->symbuf = ssymbuf1
7128 = elf_create_symbuf (symcount1, isymbuf1);
7129 }
7130
7131 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7132 {
7133 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7134 NULL, NULL, NULL);
7135 if (isymbuf2 == NULL)
7136 goto done;
7137
7138 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7139 elf_tdata (bfd2)->symbuf = ssymbuf2
7140 = elf_create_symbuf (symcount2, isymbuf2);
7141 }
7142
7143 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7144 {
7145 /* Optimized faster version. */
7146 bfd_size_type lo, hi, mid;
7147 struct elf_symbol *symp;
7148 struct elf_symbuf_symbol *ssym, *ssymend;
7149
7150 lo = 0;
7151 hi = ssymbuf1->count;
7152 ssymbuf1++;
7153 count1 = 0;
7154 while (lo < hi)
7155 {
7156 mid = (lo + hi) / 2;
7157 if (shndx1 < ssymbuf1[mid].st_shndx)
7158 hi = mid;
7159 else if (shndx1 > ssymbuf1[mid].st_shndx)
7160 lo = mid + 1;
7161 else
7162 {
7163 count1 = ssymbuf1[mid].count;
7164 ssymbuf1 += mid;
7165 break;
7166 }
7167 }
7168
7169 lo = 0;
7170 hi = ssymbuf2->count;
7171 ssymbuf2++;
7172 count2 = 0;
7173 while (lo < hi)
7174 {
7175 mid = (lo + hi) / 2;
7176 if (shndx2 < ssymbuf2[mid].st_shndx)
7177 hi = mid;
7178 else if (shndx2 > ssymbuf2[mid].st_shndx)
7179 lo = mid + 1;
7180 else
7181 {
7182 count2 = ssymbuf2[mid].count;
7183 ssymbuf2 += mid;
7184 break;
7185 }
7186 }
7187
7188 if (count1 == 0 || count2 == 0 || count1 != count2)
7189 goto done;
7190
7191 symtable1 = (struct elf_symbol *)
7192 bfd_malloc (count1 * sizeof (struct elf_symbol));
7193 symtable2 = (struct elf_symbol *)
7194 bfd_malloc (count2 * sizeof (struct elf_symbol));
7195 if (symtable1 == NULL || symtable2 == NULL)
7196 goto done;
7197
7198 symp = symtable1;
7199 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7200 ssym < ssymend; ssym++, symp++)
7201 {
7202 symp->u.ssym = ssym;
7203 symp->name = bfd_elf_string_from_elf_section (bfd1,
7204 hdr1->sh_link,
7205 ssym->st_name);
7206 }
7207
7208 symp = symtable2;
7209 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7210 ssym < ssymend; ssym++, symp++)
7211 {
7212 symp->u.ssym = ssym;
7213 symp->name = bfd_elf_string_from_elf_section (bfd2,
7214 hdr2->sh_link,
7215 ssym->st_name);
7216 }
7217
7218 /* Sort symbol by name. */
7219 qsort (symtable1, count1, sizeof (struct elf_symbol),
7220 elf_sym_name_compare);
7221 qsort (symtable2, count1, sizeof (struct elf_symbol),
7222 elf_sym_name_compare);
7223
7224 for (i = 0; i < count1; i++)
7225 /* Two symbols must have the same binding, type and name. */
7226 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7227 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7228 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7229 goto done;
7230
7231 result = TRUE;
7232 goto done;
7233 }
7234
7235 symtable1 = (struct elf_symbol *)
7236 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7237 symtable2 = (struct elf_symbol *)
7238 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7239 if (symtable1 == NULL || symtable2 == NULL)
7240 goto done;
7241
7242 /* Count definitions in the section. */
7243 count1 = 0;
7244 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7245 if (isym->st_shndx == shndx1)
7246 symtable1[count1++].u.isym = isym;
7247
7248 count2 = 0;
7249 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7250 if (isym->st_shndx == shndx2)
7251 symtable2[count2++].u.isym = isym;
7252
7253 if (count1 == 0 || count2 == 0 || count1 != count2)
7254 goto done;
7255
7256 for (i = 0; i < count1; i++)
7257 symtable1[i].name
7258 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7259 symtable1[i].u.isym->st_name);
7260
7261 for (i = 0; i < count2; i++)
7262 symtable2[i].name
7263 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7264 symtable2[i].u.isym->st_name);
7265
7266 /* Sort symbol by name. */
7267 qsort (symtable1, count1, sizeof (struct elf_symbol),
7268 elf_sym_name_compare);
7269 qsort (symtable2, count1, sizeof (struct elf_symbol),
7270 elf_sym_name_compare);
7271
7272 for (i = 0; i < count1; i++)
7273 /* Two symbols must have the same binding, type and name. */
7274 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7275 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7276 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7277 goto done;
7278
7279 result = TRUE;
7280
7281 done:
7282 if (symtable1)
7283 free (symtable1);
7284 if (symtable2)
7285 free (symtable2);
7286 if (isymbuf1)
7287 free (isymbuf1);
7288 if (isymbuf2)
7289 free (isymbuf2);
7290
7291 return result;
7292 }
7293
7294 /* Return TRUE if 2 section types are compatible. */
7295
7296 bfd_boolean
7297 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7298 bfd *bbfd, const asection *bsec)
7299 {
7300 if (asec == NULL
7301 || bsec == NULL
7302 || abfd->xvec->flavour != bfd_target_elf_flavour
7303 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7304 return TRUE;
7305
7306 return elf_section_type (asec) == elf_section_type (bsec);
7307 }
7308 \f
7309 /* Final phase of ELF linker. */
7310
7311 /* A structure we use to avoid passing large numbers of arguments. */
7312
7313 struct elf_final_link_info
7314 {
7315 /* General link information. */
7316 struct bfd_link_info *info;
7317 /* Output BFD. */
7318 bfd *output_bfd;
7319 /* Symbol string table. */
7320 struct bfd_strtab_hash *symstrtab;
7321 /* .dynsym section. */
7322 asection *dynsym_sec;
7323 /* .hash section. */
7324 asection *hash_sec;
7325 /* symbol version section (.gnu.version). */
7326 asection *symver_sec;
7327 /* Buffer large enough to hold contents of any section. */
7328 bfd_byte *contents;
7329 /* Buffer large enough to hold external relocs of any section. */
7330 void *external_relocs;
7331 /* Buffer large enough to hold internal relocs of any section. */
7332 Elf_Internal_Rela *internal_relocs;
7333 /* Buffer large enough to hold external local symbols of any input
7334 BFD. */
7335 bfd_byte *external_syms;
7336 /* And a buffer for symbol section indices. */
7337 Elf_External_Sym_Shndx *locsym_shndx;
7338 /* Buffer large enough to hold internal local symbols of any input
7339 BFD. */
7340 Elf_Internal_Sym *internal_syms;
7341 /* Array large enough to hold a symbol index for each local symbol
7342 of any input BFD. */
7343 long *indices;
7344 /* Array large enough to hold a section pointer for each local
7345 symbol of any input BFD. */
7346 asection **sections;
7347 /* Buffer to hold swapped out symbols. */
7348 bfd_byte *symbuf;
7349 /* And one for symbol section indices. */
7350 Elf_External_Sym_Shndx *symshndxbuf;
7351 /* Number of swapped out symbols in buffer. */
7352 size_t symbuf_count;
7353 /* Number of symbols which fit in symbuf. */
7354 size_t symbuf_size;
7355 /* And same for symshndxbuf. */
7356 size_t shndxbuf_size;
7357 };
7358
7359 /* This struct is used to pass information to elf_link_output_extsym. */
7360
7361 struct elf_outext_info
7362 {
7363 bfd_boolean failed;
7364 bfd_boolean localsyms;
7365 struct elf_final_link_info *finfo;
7366 };
7367
7368
7369 /* Support for evaluating a complex relocation.
7370
7371 Complex relocations are generalized, self-describing relocations. The
7372 implementation of them consists of two parts: complex symbols, and the
7373 relocations themselves.
7374
7375 The relocations are use a reserved elf-wide relocation type code (R_RELC
7376 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7377 information (start bit, end bit, word width, etc) into the addend. This
7378 information is extracted from CGEN-generated operand tables within gas.
7379
7380 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7381 internal) representing prefix-notation expressions, including but not
7382 limited to those sorts of expressions normally encoded as addends in the
7383 addend field. The symbol mangling format is:
7384
7385 <node> := <literal>
7386 | <unary-operator> ':' <node>
7387 | <binary-operator> ':' <node> ':' <node>
7388 ;
7389
7390 <literal> := 's' <digits=N> ':' <N character symbol name>
7391 | 'S' <digits=N> ':' <N character section name>
7392 | '#' <hexdigits>
7393 ;
7394
7395 <binary-operator> := as in C
7396 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7397
7398 static void
7399 set_symbol_value (bfd *bfd_with_globals,
7400 Elf_Internal_Sym *isymbuf,
7401 size_t locsymcount,
7402 size_t symidx,
7403 bfd_vma val)
7404 {
7405 struct elf_link_hash_entry **sym_hashes;
7406 struct elf_link_hash_entry *h;
7407 size_t extsymoff = locsymcount;
7408
7409 if (symidx < locsymcount)
7410 {
7411 Elf_Internal_Sym *sym;
7412
7413 sym = isymbuf + symidx;
7414 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7415 {
7416 /* It is a local symbol: move it to the
7417 "absolute" section and give it a value. */
7418 sym->st_shndx = SHN_ABS;
7419 sym->st_value = val;
7420 return;
7421 }
7422 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7423 extsymoff = 0;
7424 }
7425
7426 /* It is a global symbol: set its link type
7427 to "defined" and give it a value. */
7428
7429 sym_hashes = elf_sym_hashes (bfd_with_globals);
7430 h = sym_hashes [symidx - extsymoff];
7431 while (h->root.type == bfd_link_hash_indirect
7432 || h->root.type == bfd_link_hash_warning)
7433 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7434 h->root.type = bfd_link_hash_defined;
7435 h->root.u.def.value = val;
7436 h->root.u.def.section = bfd_abs_section_ptr;
7437 }
7438
7439 static bfd_boolean
7440 resolve_symbol (const char *name,
7441 bfd *input_bfd,
7442 struct elf_final_link_info *finfo,
7443 bfd_vma *result,
7444 Elf_Internal_Sym *isymbuf,
7445 size_t locsymcount)
7446 {
7447 Elf_Internal_Sym *sym;
7448 struct bfd_link_hash_entry *global_entry;
7449 const char *candidate = NULL;
7450 Elf_Internal_Shdr *symtab_hdr;
7451 size_t i;
7452
7453 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7454
7455 for (i = 0; i < locsymcount; ++ i)
7456 {
7457 sym = isymbuf + i;
7458
7459 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7460 continue;
7461
7462 candidate = bfd_elf_string_from_elf_section (input_bfd,
7463 symtab_hdr->sh_link,
7464 sym->st_name);
7465 #ifdef DEBUG
7466 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7467 name, candidate, (unsigned long) sym->st_value);
7468 #endif
7469 if (candidate && strcmp (candidate, name) == 0)
7470 {
7471 asection *sec = finfo->sections [i];
7472
7473 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7474 *result += sec->output_offset + sec->output_section->vma;
7475 #ifdef DEBUG
7476 printf ("Found symbol with value %8.8lx\n",
7477 (unsigned long) *result);
7478 #endif
7479 return TRUE;
7480 }
7481 }
7482
7483 /* Hmm, haven't found it yet. perhaps it is a global. */
7484 global_entry = bfd_link_hash_lookup (finfo->info->hash, name,
7485 FALSE, FALSE, TRUE);
7486 if (!global_entry)
7487 return FALSE;
7488
7489 if (global_entry->type == bfd_link_hash_defined
7490 || global_entry->type == bfd_link_hash_defweak)
7491 {
7492 *result = (global_entry->u.def.value
7493 + global_entry->u.def.section->output_section->vma
7494 + global_entry->u.def.section->output_offset);
7495 #ifdef DEBUG
7496 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7497 global_entry->root.string, (unsigned long) *result);
7498 #endif
7499 return TRUE;
7500 }
7501
7502 return FALSE;
7503 }
7504
7505 static bfd_boolean
7506 resolve_section (const char *name,
7507 asection *sections,
7508 bfd_vma *result)
7509 {
7510 asection *curr;
7511 unsigned int len;
7512
7513 for (curr = sections; curr; curr = curr->next)
7514 if (strcmp (curr->name, name) == 0)
7515 {
7516 *result = curr->vma;
7517 return TRUE;
7518 }
7519
7520 /* Hmm. still haven't found it. try pseudo-section names. */
7521 for (curr = sections; curr; curr = curr->next)
7522 {
7523 len = strlen (curr->name);
7524 if (len > strlen (name))
7525 continue;
7526
7527 if (strncmp (curr->name, name, len) == 0)
7528 {
7529 if (strncmp (".end", name + len, 4) == 0)
7530 {
7531 *result = curr->vma + curr->size;
7532 return TRUE;
7533 }
7534
7535 /* Insert more pseudo-section names here, if you like. */
7536 }
7537 }
7538
7539 return FALSE;
7540 }
7541
7542 static void
7543 undefined_reference (const char *reftype, const char *name)
7544 {
7545 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7546 reftype, name);
7547 }
7548
7549 static bfd_boolean
7550 eval_symbol (bfd_vma *result,
7551 const char **symp,
7552 bfd *input_bfd,
7553 struct elf_final_link_info *finfo,
7554 bfd_vma dot,
7555 Elf_Internal_Sym *isymbuf,
7556 size_t locsymcount,
7557 int signed_p)
7558 {
7559 size_t len;
7560 size_t symlen;
7561 bfd_vma a;
7562 bfd_vma b;
7563 char symbuf[4096];
7564 const char *sym = *symp;
7565 const char *symend;
7566 bfd_boolean symbol_is_section = FALSE;
7567
7568 len = strlen (sym);
7569 symend = sym + len;
7570
7571 if (len < 1 || len > sizeof (symbuf))
7572 {
7573 bfd_set_error (bfd_error_invalid_operation);
7574 return FALSE;
7575 }
7576
7577 switch (* sym)
7578 {
7579 case '.':
7580 *result = dot;
7581 *symp = sym + 1;
7582 return TRUE;
7583
7584 case '#':
7585 ++sym;
7586 *result = strtoul (sym, (char **) symp, 16);
7587 return TRUE;
7588
7589 case 'S':
7590 symbol_is_section = TRUE;
7591 case 's':
7592 ++sym;
7593 symlen = strtol (sym, (char **) symp, 10);
7594 sym = *symp + 1; /* Skip the trailing ':'. */
7595
7596 if (symend < sym || symlen + 1 > sizeof (symbuf))
7597 {
7598 bfd_set_error (bfd_error_invalid_operation);
7599 return FALSE;
7600 }
7601
7602 memcpy (symbuf, sym, symlen);
7603 symbuf[symlen] = '\0';
7604 *symp = sym + symlen;
7605
7606 /* Is it always possible, with complex symbols, that gas "mis-guessed"
7607 the symbol as a section, or vice-versa. so we're pretty liberal in our
7608 interpretation here; section means "try section first", not "must be a
7609 section", and likewise with symbol. */
7610
7611 if (symbol_is_section)
7612 {
7613 if (!resolve_section (symbuf, finfo->output_bfd->sections, result)
7614 && !resolve_symbol (symbuf, input_bfd, finfo, result,
7615 isymbuf, locsymcount))
7616 {
7617 undefined_reference ("section", symbuf);
7618 return FALSE;
7619 }
7620 }
7621 else
7622 {
7623 if (!resolve_symbol (symbuf, input_bfd, finfo, result,
7624 isymbuf, locsymcount)
7625 && !resolve_section (symbuf, finfo->output_bfd->sections,
7626 result))
7627 {
7628 undefined_reference ("symbol", symbuf);
7629 return FALSE;
7630 }
7631 }
7632
7633 return TRUE;
7634
7635 /* All that remains are operators. */
7636
7637 #define UNARY_OP(op) \
7638 if (strncmp (sym, #op, strlen (#op)) == 0) \
7639 { \
7640 sym += strlen (#op); \
7641 if (*sym == ':') \
7642 ++sym; \
7643 *symp = sym; \
7644 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7645 isymbuf, locsymcount, signed_p)) \
7646 return FALSE; \
7647 if (signed_p) \
7648 *result = op ((bfd_signed_vma) a); \
7649 else \
7650 *result = op a; \
7651 return TRUE; \
7652 }
7653
7654 #define BINARY_OP(op) \
7655 if (strncmp (sym, #op, strlen (#op)) == 0) \
7656 { \
7657 sym += strlen (#op); \
7658 if (*sym == ':') \
7659 ++sym; \
7660 *symp = sym; \
7661 if (!eval_symbol (&a, symp, input_bfd, finfo, dot, \
7662 isymbuf, locsymcount, signed_p)) \
7663 return FALSE; \
7664 ++*symp; \
7665 if (!eval_symbol (&b, symp, input_bfd, finfo, dot, \
7666 isymbuf, locsymcount, signed_p)) \
7667 return FALSE; \
7668 if (signed_p) \
7669 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
7670 else \
7671 *result = a op b; \
7672 return TRUE; \
7673 }
7674
7675 default:
7676 UNARY_OP (0-);
7677 BINARY_OP (<<);
7678 BINARY_OP (>>);
7679 BINARY_OP (==);
7680 BINARY_OP (!=);
7681 BINARY_OP (<=);
7682 BINARY_OP (>=);
7683 BINARY_OP (&&);
7684 BINARY_OP (||);
7685 UNARY_OP (~);
7686 UNARY_OP (!);
7687 BINARY_OP (*);
7688 BINARY_OP (/);
7689 BINARY_OP (%);
7690 BINARY_OP (^);
7691 BINARY_OP (|);
7692 BINARY_OP (&);
7693 BINARY_OP (+);
7694 BINARY_OP (-);
7695 BINARY_OP (<);
7696 BINARY_OP (>);
7697 #undef UNARY_OP
7698 #undef BINARY_OP
7699 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7700 bfd_set_error (bfd_error_invalid_operation);
7701 return FALSE;
7702 }
7703 }
7704
7705 static void
7706 put_value (bfd_vma size,
7707 unsigned long chunksz,
7708 bfd *input_bfd,
7709 bfd_vma x,
7710 bfd_byte *location)
7711 {
7712 location += (size - chunksz);
7713
7714 for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7715 {
7716 switch (chunksz)
7717 {
7718 default:
7719 case 0:
7720 abort ();
7721 case 1:
7722 bfd_put_8 (input_bfd, x, location);
7723 break;
7724 case 2:
7725 bfd_put_16 (input_bfd, x, location);
7726 break;
7727 case 4:
7728 bfd_put_32 (input_bfd, x, location);
7729 break;
7730 case 8:
7731 #ifdef BFD64
7732 bfd_put_64 (input_bfd, x, location);
7733 #else
7734 abort ();
7735 #endif
7736 break;
7737 }
7738 }
7739 }
7740
7741 static bfd_vma
7742 get_value (bfd_vma size,
7743 unsigned long chunksz,
7744 bfd *input_bfd,
7745 bfd_byte *location)
7746 {
7747 bfd_vma x = 0;
7748
7749 for (; size; size -= chunksz, location += chunksz)
7750 {
7751 switch (chunksz)
7752 {
7753 default:
7754 case 0:
7755 abort ();
7756 case 1:
7757 x = (x << (8 * chunksz)) | bfd_get_8 (input_bfd, location);
7758 break;
7759 case 2:
7760 x = (x << (8 * chunksz)) | bfd_get_16 (input_bfd, location);
7761 break;
7762 case 4:
7763 x = (x << (8 * chunksz)) | bfd_get_32 (input_bfd, location);
7764 break;
7765 case 8:
7766 #ifdef BFD64
7767 x = (x << (8 * chunksz)) | bfd_get_64 (input_bfd, location);
7768 #else
7769 abort ();
7770 #endif
7771 break;
7772 }
7773 }
7774 return x;
7775 }
7776
7777 static void
7778 decode_complex_addend (unsigned long *start, /* in bits */
7779 unsigned long *oplen, /* in bits */
7780 unsigned long *len, /* in bits */
7781 unsigned long *wordsz, /* in bytes */
7782 unsigned long *chunksz, /* in bytes */
7783 unsigned long *lsb0_p,
7784 unsigned long *signed_p,
7785 unsigned long *trunc_p,
7786 unsigned long encoded)
7787 {
7788 * start = encoded & 0x3F;
7789 * len = (encoded >> 6) & 0x3F;
7790 * oplen = (encoded >> 12) & 0x3F;
7791 * wordsz = (encoded >> 18) & 0xF;
7792 * chunksz = (encoded >> 22) & 0xF;
7793 * lsb0_p = (encoded >> 27) & 1;
7794 * signed_p = (encoded >> 28) & 1;
7795 * trunc_p = (encoded >> 29) & 1;
7796 }
7797
7798 bfd_reloc_status_type
7799 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7800 asection *input_section ATTRIBUTE_UNUSED,
7801 bfd_byte *contents,
7802 Elf_Internal_Rela *rel,
7803 bfd_vma relocation)
7804 {
7805 bfd_vma shift, x, mask;
7806 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7807 bfd_reloc_status_type r;
7808
7809 /* Perform this reloc, since it is complex.
7810 (this is not to say that it necessarily refers to a complex
7811 symbol; merely that it is a self-describing CGEN based reloc.
7812 i.e. the addend has the complete reloc information (bit start, end,
7813 word size, etc) encoded within it.). */
7814
7815 decode_complex_addend (&start, &oplen, &len, &wordsz,
7816 &chunksz, &lsb0_p, &signed_p,
7817 &trunc_p, rel->r_addend);
7818
7819 mask = (((1L << (len - 1)) - 1) << 1) | 1;
7820
7821 if (lsb0_p)
7822 shift = (start + 1) - len;
7823 else
7824 shift = (8 * wordsz) - (start + len);
7825
7826 /* FIXME: octets_per_byte. */
7827 x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7828
7829 #ifdef DEBUG
7830 printf ("Doing complex reloc: "
7831 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7832 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7833 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7834 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7835 oplen, x, mask, relocation);
7836 #endif
7837
7838 r = bfd_reloc_ok;
7839 if (! trunc_p)
7840 /* Now do an overflow check. */
7841 r = bfd_check_overflow ((signed_p
7842 ? complain_overflow_signed
7843 : complain_overflow_unsigned),
7844 len, 0, (8 * wordsz),
7845 relocation);
7846
7847 /* Do the deed. */
7848 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7849
7850 #ifdef DEBUG
7851 printf (" relocation: %8.8lx\n"
7852 " shifted mask: %8.8lx\n"
7853 " shifted/masked reloc: %8.8lx\n"
7854 " result: %8.8lx\n",
7855 relocation, (mask << shift),
7856 ((relocation & mask) << shift), x);
7857 #endif
7858 /* FIXME: octets_per_byte. */
7859 put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7860 return r;
7861 }
7862
7863 /* When performing a relocatable link, the input relocations are
7864 preserved. But, if they reference global symbols, the indices
7865 referenced must be updated. Update all the relocations in
7866 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
7867
7868 static void
7869 elf_link_adjust_relocs (bfd *abfd,
7870 Elf_Internal_Shdr *rel_hdr,
7871 unsigned int count,
7872 struct elf_link_hash_entry **rel_hash)
7873 {
7874 unsigned int i;
7875 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7876 bfd_byte *erela;
7877 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
7878 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
7879 bfd_vma r_type_mask;
7880 int r_sym_shift;
7881
7882 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
7883 {
7884 swap_in = bed->s->swap_reloc_in;
7885 swap_out = bed->s->swap_reloc_out;
7886 }
7887 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
7888 {
7889 swap_in = bed->s->swap_reloca_in;
7890 swap_out = bed->s->swap_reloca_out;
7891 }
7892 else
7893 abort ();
7894
7895 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
7896 abort ();
7897
7898 if (bed->s->arch_size == 32)
7899 {
7900 r_type_mask = 0xff;
7901 r_sym_shift = 8;
7902 }
7903 else
7904 {
7905 r_type_mask = 0xffffffff;
7906 r_sym_shift = 32;
7907 }
7908
7909 erela = rel_hdr->contents;
7910 for (i = 0; i < count; i++, rel_hash++, erela += rel_hdr->sh_entsize)
7911 {
7912 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
7913 unsigned int j;
7914
7915 if (*rel_hash == NULL)
7916 continue;
7917
7918 BFD_ASSERT ((*rel_hash)->indx >= 0);
7919
7920 (*swap_in) (abfd, erela, irela);
7921 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
7922 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
7923 | (irela[j].r_info & r_type_mask));
7924 (*swap_out) (abfd, irela, erela);
7925 }
7926 }
7927
7928 struct elf_link_sort_rela
7929 {
7930 union {
7931 bfd_vma offset;
7932 bfd_vma sym_mask;
7933 } u;
7934 enum elf_reloc_type_class type;
7935 /* We use this as an array of size int_rels_per_ext_rel. */
7936 Elf_Internal_Rela rela[1];
7937 };
7938
7939 static int
7940 elf_link_sort_cmp1 (const void *A, const void *B)
7941 {
7942 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7943 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7944 int relativea, relativeb;
7945
7946 relativea = a->type == reloc_class_relative;
7947 relativeb = b->type == reloc_class_relative;
7948
7949 if (relativea < relativeb)
7950 return 1;
7951 if (relativea > relativeb)
7952 return -1;
7953 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
7954 return -1;
7955 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
7956 return 1;
7957 if (a->rela->r_offset < b->rela->r_offset)
7958 return -1;
7959 if (a->rela->r_offset > b->rela->r_offset)
7960 return 1;
7961 return 0;
7962 }
7963
7964 static int
7965 elf_link_sort_cmp2 (const void *A, const void *B)
7966 {
7967 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
7968 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
7969 int copya, copyb;
7970
7971 if (a->u.offset < b->u.offset)
7972 return -1;
7973 if (a->u.offset > b->u.offset)
7974 return 1;
7975 copya = (a->type == reloc_class_copy) * 2 + (a->type == reloc_class_plt);
7976 copyb = (b->type == reloc_class_copy) * 2 + (b->type == reloc_class_plt);
7977 if (copya < copyb)
7978 return -1;
7979 if (copya > copyb)
7980 return 1;
7981 if (a->rela->r_offset < b->rela->r_offset)
7982 return -1;
7983 if (a->rela->r_offset > b->rela->r_offset)
7984 return 1;
7985 return 0;
7986 }
7987
7988 static size_t
7989 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
7990 {
7991 asection *dynamic_relocs;
7992 asection *rela_dyn;
7993 asection *rel_dyn;
7994 bfd_size_type count, size;
7995 size_t i, ret, sort_elt, ext_size;
7996 bfd_byte *sort, *s_non_relative, *p;
7997 struct elf_link_sort_rela *sq;
7998 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7999 int i2e = bed->s->int_rels_per_ext_rel;
8000 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8001 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8002 struct bfd_link_order *lo;
8003 bfd_vma r_sym_mask;
8004 bfd_boolean use_rela;
8005
8006 /* Find a dynamic reloc section. */
8007 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8008 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8009 if (rela_dyn != NULL && rela_dyn->size > 0
8010 && rel_dyn != NULL && rel_dyn->size > 0)
8011 {
8012 bfd_boolean use_rela_initialised = FALSE;
8013
8014 /* This is just here to stop gcc from complaining.
8015 It's initialization checking code is not perfect. */
8016 use_rela = TRUE;
8017
8018 /* Both sections are present. Examine the sizes
8019 of the indirect sections to help us choose. */
8020 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8021 if (lo->type == bfd_indirect_link_order)
8022 {
8023 asection *o = lo->u.indirect.section;
8024
8025 if ((o->size % bed->s->sizeof_rela) == 0)
8026 {
8027 if ((o->size % bed->s->sizeof_rel) == 0)
8028 /* Section size is divisible by both rel and rela sizes.
8029 It is of no help to us. */
8030 ;
8031 else
8032 {
8033 /* Section size is only divisible by rela. */
8034 if (use_rela_initialised && (use_rela == FALSE))
8035 {
8036 _bfd_error_handler
8037 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8038 bfd_set_error (bfd_error_invalid_operation);
8039 return 0;
8040 }
8041 else
8042 {
8043 use_rela = TRUE;
8044 use_rela_initialised = TRUE;
8045 }
8046 }
8047 }
8048 else if ((o->size % bed->s->sizeof_rel) == 0)
8049 {
8050 /* Section size is only divisible by rel. */
8051 if (use_rela_initialised && (use_rela == TRUE))
8052 {
8053 _bfd_error_handler
8054 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8055 bfd_set_error (bfd_error_invalid_operation);
8056 return 0;
8057 }
8058 else
8059 {
8060 use_rela = FALSE;
8061 use_rela_initialised = TRUE;
8062 }
8063 }
8064 else
8065 {
8066 /* The section size is not divisible by either - something is wrong. */
8067 _bfd_error_handler
8068 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8069 bfd_set_error (bfd_error_invalid_operation);
8070 return 0;
8071 }
8072 }
8073
8074 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8075 if (lo->type == bfd_indirect_link_order)
8076 {
8077 asection *o = lo->u.indirect.section;
8078
8079 if ((o->size % bed->s->sizeof_rela) == 0)
8080 {
8081 if ((o->size % bed->s->sizeof_rel) == 0)
8082 /* Section size is divisible by both rel and rela sizes.
8083 It is of no help to us. */
8084 ;
8085 else
8086 {
8087 /* Section size is only divisible by rela. */
8088 if (use_rela_initialised && (use_rela == FALSE))
8089 {
8090 _bfd_error_handler
8091 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8092 bfd_set_error (bfd_error_invalid_operation);
8093 return 0;
8094 }
8095 else
8096 {
8097 use_rela = TRUE;
8098 use_rela_initialised = TRUE;
8099 }
8100 }
8101 }
8102 else if ((o->size % bed->s->sizeof_rel) == 0)
8103 {
8104 /* Section size is only divisible by rel. */
8105 if (use_rela_initialised && (use_rela == TRUE))
8106 {
8107 _bfd_error_handler
8108 (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8109 bfd_set_error (bfd_error_invalid_operation);
8110 return 0;
8111 }
8112 else
8113 {
8114 use_rela = FALSE;
8115 use_rela_initialised = TRUE;
8116 }
8117 }
8118 else
8119 {
8120 /* The section size is not divisible by either - something is wrong. */
8121 _bfd_error_handler
8122 (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8123 bfd_set_error (bfd_error_invalid_operation);
8124 return 0;
8125 }
8126 }
8127
8128 if (! use_rela_initialised)
8129 /* Make a guess. */
8130 use_rela = TRUE;
8131 }
8132 else if (rela_dyn != NULL && rela_dyn->size > 0)
8133 use_rela = TRUE;
8134 else if (rel_dyn != NULL && rel_dyn->size > 0)
8135 use_rela = FALSE;
8136 else
8137 return 0;
8138
8139 if (use_rela)
8140 {
8141 dynamic_relocs = rela_dyn;
8142 ext_size = bed->s->sizeof_rela;
8143 swap_in = bed->s->swap_reloca_in;
8144 swap_out = bed->s->swap_reloca_out;
8145 }
8146 else
8147 {
8148 dynamic_relocs = rel_dyn;
8149 ext_size = bed->s->sizeof_rel;
8150 swap_in = bed->s->swap_reloc_in;
8151 swap_out = bed->s->swap_reloc_out;
8152 }
8153
8154 size = 0;
8155 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8156 if (lo->type == bfd_indirect_link_order)
8157 size += lo->u.indirect.section->size;
8158
8159 if (size != dynamic_relocs->size)
8160 return 0;
8161
8162 sort_elt = (sizeof (struct elf_link_sort_rela)
8163 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8164
8165 count = dynamic_relocs->size / ext_size;
8166 if (count == 0)
8167 return 0;
8168 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8169
8170 if (sort == NULL)
8171 {
8172 (*info->callbacks->warning)
8173 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8174 return 0;
8175 }
8176
8177 if (bed->s->arch_size == 32)
8178 r_sym_mask = ~(bfd_vma) 0xff;
8179 else
8180 r_sym_mask = ~(bfd_vma) 0xffffffff;
8181
8182 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8183 if (lo->type == bfd_indirect_link_order)
8184 {
8185 bfd_byte *erel, *erelend;
8186 asection *o = lo->u.indirect.section;
8187
8188 if (o->contents == NULL && o->size != 0)
8189 {
8190 /* This is a reloc section that is being handled as a normal
8191 section. See bfd_section_from_shdr. We can't combine
8192 relocs in this case. */
8193 free (sort);
8194 return 0;
8195 }
8196 erel = o->contents;
8197 erelend = o->contents + o->size;
8198 /* FIXME: octets_per_byte. */
8199 p = sort + o->output_offset / ext_size * sort_elt;
8200
8201 while (erel < erelend)
8202 {
8203 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8204
8205 (*swap_in) (abfd, erel, s->rela);
8206 s->type = (*bed->elf_backend_reloc_type_class) (s->rela);
8207 s->u.sym_mask = r_sym_mask;
8208 p += sort_elt;
8209 erel += ext_size;
8210 }
8211 }
8212
8213 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8214
8215 for (i = 0, p = sort; i < count; i++, p += sort_elt)
8216 {
8217 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8218 if (s->type != reloc_class_relative)
8219 break;
8220 }
8221 ret = i;
8222 s_non_relative = p;
8223
8224 sq = (struct elf_link_sort_rela *) s_non_relative;
8225 for (; i < count; i++, p += sort_elt)
8226 {
8227 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8228 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8229 sq = sp;
8230 sp->u.offset = sq->rela->r_offset;
8231 }
8232
8233 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8234
8235 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8236 if (lo->type == bfd_indirect_link_order)
8237 {
8238 bfd_byte *erel, *erelend;
8239 asection *o = lo->u.indirect.section;
8240
8241 erel = o->contents;
8242 erelend = o->contents + o->size;
8243 /* FIXME: octets_per_byte. */
8244 p = sort + o->output_offset / ext_size * sort_elt;
8245 while (erel < erelend)
8246 {
8247 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8248 (*swap_out) (abfd, s->rela, erel);
8249 p += sort_elt;
8250 erel += ext_size;
8251 }
8252 }
8253
8254 free (sort);
8255 *psec = dynamic_relocs;
8256 return ret;
8257 }
8258
8259 /* Flush the output symbols to the file. */
8260
8261 static bfd_boolean
8262 elf_link_flush_output_syms (struct elf_final_link_info *finfo,
8263 const struct elf_backend_data *bed)
8264 {
8265 if (finfo->symbuf_count > 0)
8266 {
8267 Elf_Internal_Shdr *hdr;
8268 file_ptr pos;
8269 bfd_size_type amt;
8270
8271 hdr = &elf_tdata (finfo->output_bfd)->symtab_hdr;
8272 pos = hdr->sh_offset + hdr->sh_size;
8273 amt = finfo->symbuf_count * bed->s->sizeof_sym;
8274 if (bfd_seek (finfo->output_bfd, pos, SEEK_SET) != 0
8275 || bfd_bwrite (finfo->symbuf, amt, finfo->output_bfd) != amt)
8276 return FALSE;
8277
8278 hdr->sh_size += amt;
8279 finfo->symbuf_count = 0;
8280 }
8281
8282 return TRUE;
8283 }
8284
8285 /* Add a symbol to the output symbol table. */
8286
8287 static int
8288 elf_link_output_sym (struct elf_final_link_info *finfo,
8289 const char *name,
8290 Elf_Internal_Sym *elfsym,
8291 asection *input_sec,
8292 struct elf_link_hash_entry *h)
8293 {
8294 bfd_byte *dest;
8295 Elf_External_Sym_Shndx *destshndx;
8296 int (*output_symbol_hook)
8297 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8298 struct elf_link_hash_entry *);
8299 const struct elf_backend_data *bed;
8300
8301 bed = get_elf_backend_data (finfo->output_bfd);
8302 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8303 if (output_symbol_hook != NULL)
8304 {
8305 int ret = (*output_symbol_hook) (finfo->info, name, elfsym, input_sec, h);
8306 if (ret != 1)
8307 return ret;
8308 }
8309
8310 if (name == NULL || *name == '\0')
8311 elfsym->st_name = 0;
8312 else if (input_sec->flags & SEC_EXCLUDE)
8313 elfsym->st_name = 0;
8314 else
8315 {
8316 elfsym->st_name = (unsigned long) _bfd_stringtab_add (finfo->symstrtab,
8317 name, TRUE, FALSE);
8318 if (elfsym->st_name == (unsigned long) -1)
8319 return 0;
8320 }
8321
8322 if (finfo->symbuf_count >= finfo->symbuf_size)
8323 {
8324 if (! elf_link_flush_output_syms (finfo, bed))
8325 return 0;
8326 }
8327
8328 dest = finfo->symbuf + finfo->symbuf_count * bed->s->sizeof_sym;
8329 destshndx = finfo->symshndxbuf;
8330 if (destshndx != NULL)
8331 {
8332 if (bfd_get_symcount (finfo->output_bfd) >= finfo->shndxbuf_size)
8333 {
8334 bfd_size_type amt;
8335
8336 amt = finfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8337 destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8338 amt * 2);
8339 if (destshndx == NULL)
8340 return 0;
8341 finfo->symshndxbuf = destshndx;
8342 memset ((char *) destshndx + amt, 0, amt);
8343 finfo->shndxbuf_size *= 2;
8344 }
8345 destshndx += bfd_get_symcount (finfo->output_bfd);
8346 }
8347
8348 bed->s->swap_symbol_out (finfo->output_bfd, elfsym, dest, destshndx);
8349 finfo->symbuf_count += 1;
8350 bfd_get_symcount (finfo->output_bfd) += 1;
8351
8352 return 1;
8353 }
8354
8355 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
8356
8357 static bfd_boolean
8358 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8359 {
8360 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8361 && sym->st_shndx < SHN_LORESERVE)
8362 {
8363 /* The gABI doesn't support dynamic symbols in output sections
8364 beyond 64k. */
8365 (*_bfd_error_handler)
8366 (_("%B: Too many sections: %d (>= %d)"),
8367 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8368 bfd_set_error (bfd_error_nonrepresentable_section);
8369 return FALSE;
8370 }
8371 return TRUE;
8372 }
8373
8374 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8375 allowing an unsatisfied unversioned symbol in the DSO to match a
8376 versioned symbol that would normally require an explicit version.
8377 We also handle the case that a DSO references a hidden symbol
8378 which may be satisfied by a versioned symbol in another DSO. */
8379
8380 static bfd_boolean
8381 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8382 const struct elf_backend_data *bed,
8383 struct elf_link_hash_entry *h)
8384 {
8385 bfd *abfd;
8386 struct elf_link_loaded_list *loaded;
8387
8388 if (!is_elf_hash_table (info->hash))
8389 return FALSE;
8390
8391 switch (h->root.type)
8392 {
8393 default:
8394 abfd = NULL;
8395 break;
8396
8397 case bfd_link_hash_undefined:
8398 case bfd_link_hash_undefweak:
8399 abfd = h->root.u.undef.abfd;
8400 if ((abfd->flags & DYNAMIC) == 0
8401 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8402 return FALSE;
8403 break;
8404
8405 case bfd_link_hash_defined:
8406 case bfd_link_hash_defweak:
8407 abfd = h->root.u.def.section->owner;
8408 break;
8409
8410 case bfd_link_hash_common:
8411 abfd = h->root.u.c.p->section->owner;
8412 break;
8413 }
8414 BFD_ASSERT (abfd != NULL);
8415
8416 for (loaded = elf_hash_table (info)->loaded;
8417 loaded != NULL;
8418 loaded = loaded->next)
8419 {
8420 bfd *input;
8421 Elf_Internal_Shdr *hdr;
8422 bfd_size_type symcount;
8423 bfd_size_type extsymcount;
8424 bfd_size_type extsymoff;
8425 Elf_Internal_Shdr *versymhdr;
8426 Elf_Internal_Sym *isym;
8427 Elf_Internal_Sym *isymend;
8428 Elf_Internal_Sym *isymbuf;
8429 Elf_External_Versym *ever;
8430 Elf_External_Versym *extversym;
8431
8432 input = loaded->abfd;
8433
8434 /* We check each DSO for a possible hidden versioned definition. */
8435 if (input == abfd
8436 || (input->flags & DYNAMIC) == 0
8437 || elf_dynversym (input) == 0)
8438 continue;
8439
8440 hdr = &elf_tdata (input)->dynsymtab_hdr;
8441
8442 symcount = hdr->sh_size / bed->s->sizeof_sym;
8443 if (elf_bad_symtab (input))
8444 {
8445 extsymcount = symcount;
8446 extsymoff = 0;
8447 }
8448 else
8449 {
8450 extsymcount = symcount - hdr->sh_info;
8451 extsymoff = hdr->sh_info;
8452 }
8453
8454 if (extsymcount == 0)
8455 continue;
8456
8457 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8458 NULL, NULL, NULL);
8459 if (isymbuf == NULL)
8460 return FALSE;
8461
8462 /* Read in any version definitions. */
8463 versymhdr = &elf_tdata (input)->dynversym_hdr;
8464 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8465 if (extversym == NULL)
8466 goto error_ret;
8467
8468 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8469 || (bfd_bread (extversym, versymhdr->sh_size, input)
8470 != versymhdr->sh_size))
8471 {
8472 free (extversym);
8473 error_ret:
8474 free (isymbuf);
8475 return FALSE;
8476 }
8477
8478 ever = extversym + extsymoff;
8479 isymend = isymbuf + extsymcount;
8480 for (isym = isymbuf; isym < isymend; isym++, ever++)
8481 {
8482 const char *name;
8483 Elf_Internal_Versym iver;
8484 unsigned short version_index;
8485
8486 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8487 || isym->st_shndx == SHN_UNDEF)
8488 continue;
8489
8490 name = bfd_elf_string_from_elf_section (input,
8491 hdr->sh_link,
8492 isym->st_name);
8493 if (strcmp (name, h->root.root.string) != 0)
8494 continue;
8495
8496 _bfd_elf_swap_versym_in (input, ever, &iver);
8497
8498 if ((iver.vs_vers & VERSYM_HIDDEN) == 0)
8499 {
8500 /* If we have a non-hidden versioned sym, then it should
8501 have provided a definition for the undefined sym. */
8502 abort ();
8503 }
8504
8505 version_index = iver.vs_vers & VERSYM_VERSION;
8506 if (version_index == 1 || version_index == 2)
8507 {
8508 /* This is the base or first version. We can use it. */
8509 free (extversym);
8510 free (isymbuf);
8511 return TRUE;
8512 }
8513 }
8514
8515 free (extversym);
8516 free (isymbuf);
8517 }
8518
8519 return FALSE;
8520 }
8521
8522 /* Add an external symbol to the symbol table. This is called from
8523 the hash table traversal routine. When generating a shared object,
8524 we go through the symbol table twice. The first time we output
8525 anything that might have been forced to local scope in a version
8526 script. The second time we output the symbols that are still
8527 global symbols. */
8528
8529 static bfd_boolean
8530 elf_link_output_extsym (struct elf_link_hash_entry *h, void *data)
8531 {
8532 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8533 struct elf_final_link_info *finfo = eoinfo->finfo;
8534 bfd_boolean strip;
8535 Elf_Internal_Sym sym;
8536 asection *input_sec;
8537 const struct elf_backend_data *bed;
8538 long indx;
8539 int ret;
8540
8541 if (h->root.type == bfd_link_hash_warning)
8542 {
8543 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8544 if (h->root.type == bfd_link_hash_new)
8545 return TRUE;
8546 }
8547
8548 /* Decide whether to output this symbol in this pass. */
8549 if (eoinfo->localsyms)
8550 {
8551 if (!h->forced_local)
8552 return TRUE;
8553 }
8554 else
8555 {
8556 if (h->forced_local)
8557 return TRUE;
8558 }
8559
8560 bed = get_elf_backend_data (finfo->output_bfd);
8561
8562 if (h->root.type == bfd_link_hash_undefined)
8563 {
8564 /* If we have an undefined symbol reference here then it must have
8565 come from a shared library that is being linked in. (Undefined
8566 references in regular files have already been handled). */
8567 bfd_boolean ignore_undef = FALSE;
8568
8569 /* Some symbols may be special in that the fact that they're
8570 undefined can be safely ignored - let backend determine that. */
8571 if (bed->elf_backend_ignore_undef_symbol)
8572 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8573
8574 /* If we are reporting errors for this situation then do so now. */
8575 if (ignore_undef == FALSE
8576 && h->ref_dynamic
8577 && ! h->ref_regular
8578 && ! elf_link_check_versioned_symbol (finfo->info, bed, h)
8579 && finfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8580 {
8581 if (! (finfo->info->callbacks->undefined_symbol
8582 (finfo->info, h->root.root.string, h->root.u.undef.abfd,
8583 NULL, 0, finfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR)))
8584 {
8585 eoinfo->failed = TRUE;
8586 return FALSE;
8587 }
8588 }
8589 }
8590
8591 /* We should also warn if a forced local symbol is referenced from
8592 shared libraries. */
8593 if (! finfo->info->relocatable
8594 && (! finfo->info->shared)
8595 && h->forced_local
8596 && h->ref_dynamic
8597 && !h->dynamic_def
8598 && !h->dynamic_weak
8599 && ! elf_link_check_versioned_symbol (finfo->info, bed, h))
8600 {
8601 (*_bfd_error_handler)
8602 (_("%B: %s symbol `%s' in %B is referenced by DSO"),
8603 finfo->output_bfd,
8604 h->root.u.def.section == bfd_abs_section_ptr
8605 ? finfo->output_bfd : h->root.u.def.section->owner,
8606 ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
8607 ? "internal"
8608 : ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
8609 ? "hidden" : "local",
8610 h->root.root.string);
8611 eoinfo->failed = TRUE;
8612 return FALSE;
8613 }
8614
8615 /* We don't want to output symbols that have never been mentioned by
8616 a regular file, or that we have been told to strip. However, if
8617 h->indx is set to -2, the symbol is used by a reloc and we must
8618 output it. */
8619 if (h->indx == -2)
8620 strip = FALSE;
8621 else if ((h->def_dynamic
8622 || h->ref_dynamic
8623 || h->root.type == bfd_link_hash_new)
8624 && !h->def_regular
8625 && !h->ref_regular)
8626 strip = TRUE;
8627 else if (finfo->info->strip == strip_all)
8628 strip = TRUE;
8629 else if (finfo->info->strip == strip_some
8630 && bfd_hash_lookup (finfo->info->keep_hash,
8631 h->root.root.string, FALSE, FALSE) == NULL)
8632 strip = TRUE;
8633 else if (finfo->info->strip_discarded
8634 && (h->root.type == bfd_link_hash_defined
8635 || h->root.type == bfd_link_hash_defweak)
8636 && elf_discarded_section (h->root.u.def.section))
8637 strip = TRUE;
8638 else
8639 strip = FALSE;
8640
8641 /* If we're stripping it, and it's not a dynamic symbol, there's
8642 nothing else to do unless it is a forced local symbol or a
8643 STT_GNU_IFUNC symbol. */
8644 if (strip
8645 && h->dynindx == -1
8646 && h->type != STT_GNU_IFUNC
8647 && !h->forced_local)
8648 return TRUE;
8649
8650 sym.st_value = 0;
8651 sym.st_size = h->size;
8652 sym.st_other = h->other;
8653 if (h->forced_local)
8654 {
8655 sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8656 /* Turn off visibility on local symbol. */
8657 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8658 }
8659 else if (h->unique_global)
8660 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8661 else if (h->root.type == bfd_link_hash_undefweak
8662 || h->root.type == bfd_link_hash_defweak)
8663 sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8664 else
8665 sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8666
8667 switch (h->root.type)
8668 {
8669 default:
8670 case bfd_link_hash_new:
8671 case bfd_link_hash_warning:
8672 abort ();
8673 return FALSE;
8674
8675 case bfd_link_hash_undefined:
8676 case bfd_link_hash_undefweak:
8677 input_sec = bfd_und_section_ptr;
8678 sym.st_shndx = SHN_UNDEF;
8679 break;
8680
8681 case bfd_link_hash_defined:
8682 case bfd_link_hash_defweak:
8683 {
8684 input_sec = h->root.u.def.section;
8685 if (input_sec->output_section != NULL)
8686 {
8687 sym.st_shndx =
8688 _bfd_elf_section_from_bfd_section (finfo->output_bfd,
8689 input_sec->output_section);
8690 if (sym.st_shndx == SHN_BAD)
8691 {
8692 (*_bfd_error_handler)
8693 (_("%B: could not find output section %A for input section %A"),
8694 finfo->output_bfd, input_sec->output_section, input_sec);
8695 eoinfo->failed = TRUE;
8696 return FALSE;
8697 }
8698
8699 /* ELF symbols in relocatable files are section relative,
8700 but in nonrelocatable files they are virtual
8701 addresses. */
8702 sym.st_value = h->root.u.def.value + input_sec->output_offset;
8703 if (! finfo->info->relocatable)
8704 {
8705 sym.st_value += input_sec->output_section->vma;
8706 if (h->type == STT_TLS)
8707 {
8708 asection *tls_sec = elf_hash_table (finfo->info)->tls_sec;
8709 if (tls_sec != NULL)
8710 sym.st_value -= tls_sec->vma;
8711 else
8712 {
8713 /* The TLS section may have been garbage collected. */
8714 BFD_ASSERT (finfo->info->gc_sections
8715 && !input_sec->gc_mark);
8716 }
8717 }
8718 }
8719 }
8720 else
8721 {
8722 BFD_ASSERT (input_sec->owner == NULL
8723 || (input_sec->owner->flags & DYNAMIC) != 0);
8724 sym.st_shndx = SHN_UNDEF;
8725 input_sec = bfd_und_section_ptr;
8726 }
8727 }
8728 break;
8729
8730 case bfd_link_hash_common:
8731 input_sec = h->root.u.c.p->section;
8732 sym.st_shndx = bed->common_section_index (input_sec);
8733 sym.st_value = 1 << h->root.u.c.p->alignment_power;
8734 break;
8735
8736 case bfd_link_hash_indirect:
8737 /* These symbols are created by symbol versioning. They point
8738 to the decorated version of the name. For example, if the
8739 symbol foo@@GNU_1.2 is the default, which should be used when
8740 foo is used with no version, then we add an indirect symbol
8741 foo which points to foo@@GNU_1.2. We ignore these symbols,
8742 since the indirected symbol is already in the hash table. */
8743 return TRUE;
8744 }
8745
8746 /* Give the processor backend a chance to tweak the symbol value,
8747 and also to finish up anything that needs to be done for this
8748 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
8749 forced local syms when non-shared is due to a historical quirk.
8750 STT_GNU_IFUNC symbol must go through PLT. */
8751 if ((h->type == STT_GNU_IFUNC
8752 && h->def_regular
8753 && !finfo->info->relocatable)
8754 || ((h->dynindx != -1
8755 || h->forced_local)
8756 && ((finfo->info->shared
8757 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8758 || h->root.type != bfd_link_hash_undefweak))
8759 || !h->forced_local)
8760 && elf_hash_table (finfo->info)->dynamic_sections_created))
8761 {
8762 if (! ((*bed->elf_backend_finish_dynamic_symbol)
8763 (finfo->output_bfd, finfo->info, h, &sym)))
8764 {
8765 eoinfo->failed = TRUE;
8766 return FALSE;
8767 }
8768 }
8769
8770 /* If we are marking the symbol as undefined, and there are no
8771 non-weak references to this symbol from a regular object, then
8772 mark the symbol as weak undefined; if there are non-weak
8773 references, mark the symbol as strong. We can't do this earlier,
8774 because it might not be marked as undefined until the
8775 finish_dynamic_symbol routine gets through with it. */
8776 if (sym.st_shndx == SHN_UNDEF
8777 && h->ref_regular
8778 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8779 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8780 {
8781 int bindtype;
8782 unsigned int type = ELF_ST_TYPE (sym.st_info);
8783
8784 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8785 if (type == STT_GNU_IFUNC)
8786 type = STT_FUNC;
8787
8788 if (h->ref_regular_nonweak)
8789 bindtype = STB_GLOBAL;
8790 else
8791 bindtype = STB_WEAK;
8792 sym.st_info = ELF_ST_INFO (bindtype, type);
8793 }
8794
8795 /* If this is a symbol defined in a dynamic library, don't use the
8796 symbol size from the dynamic library. Relinking an executable
8797 against a new library may introduce gratuitous changes in the
8798 executable's symbols if we keep the size. */
8799 if (sym.st_shndx == SHN_UNDEF
8800 && !h->def_regular
8801 && h->def_dynamic)
8802 sym.st_size = 0;
8803
8804 /* If a non-weak symbol with non-default visibility is not defined
8805 locally, it is a fatal error. */
8806 if (! finfo->info->relocatable
8807 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
8808 && ELF_ST_BIND (sym.st_info) != STB_WEAK
8809 && h->root.type == bfd_link_hash_undefined
8810 && !h->def_regular)
8811 {
8812 (*_bfd_error_handler)
8813 (_("%B: %s symbol `%s' isn't defined"),
8814 finfo->output_bfd,
8815 ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED
8816 ? "protected"
8817 : ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL
8818 ? "internal" : "hidden",
8819 h->root.root.string);
8820 eoinfo->failed = TRUE;
8821 return FALSE;
8822 }
8823
8824 /* If this symbol should be put in the .dynsym section, then put it
8825 there now. We already know the symbol index. We also fill in
8826 the entry in the .hash section. */
8827 if (h->dynindx != -1
8828 && elf_hash_table (finfo->info)->dynamic_sections_created)
8829 {
8830 bfd_byte *esym;
8831
8832 sym.st_name = h->dynstr_index;
8833 esym = finfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
8834 if (! check_dynsym (finfo->output_bfd, &sym))
8835 {
8836 eoinfo->failed = TRUE;
8837 return FALSE;
8838 }
8839 bed->s->swap_symbol_out (finfo->output_bfd, &sym, esym, 0);
8840
8841 if (finfo->hash_sec != NULL)
8842 {
8843 size_t hash_entry_size;
8844 bfd_byte *bucketpos;
8845 bfd_vma chain;
8846 size_t bucketcount;
8847 size_t bucket;
8848
8849 bucketcount = elf_hash_table (finfo->info)->bucketcount;
8850 bucket = h->u.elf_hash_value % bucketcount;
8851
8852 hash_entry_size
8853 = elf_section_data (finfo->hash_sec)->this_hdr.sh_entsize;
8854 bucketpos = ((bfd_byte *) finfo->hash_sec->contents
8855 + (bucket + 2) * hash_entry_size);
8856 chain = bfd_get (8 * hash_entry_size, finfo->output_bfd, bucketpos);
8857 bfd_put (8 * hash_entry_size, finfo->output_bfd, h->dynindx, bucketpos);
8858 bfd_put (8 * hash_entry_size, finfo->output_bfd, chain,
8859 ((bfd_byte *) finfo->hash_sec->contents
8860 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
8861 }
8862
8863 if (finfo->symver_sec != NULL && finfo->symver_sec->contents != NULL)
8864 {
8865 Elf_Internal_Versym iversym;
8866 Elf_External_Versym *eversym;
8867
8868 if (!h->def_regular)
8869 {
8870 if (h->verinfo.verdef == NULL)
8871 iversym.vs_vers = 0;
8872 else
8873 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
8874 }
8875 else
8876 {
8877 if (h->verinfo.vertree == NULL)
8878 iversym.vs_vers = 1;
8879 else
8880 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
8881 if (finfo->info->create_default_symver)
8882 iversym.vs_vers++;
8883 }
8884
8885 if (h->hidden)
8886 iversym.vs_vers |= VERSYM_HIDDEN;
8887
8888 eversym = (Elf_External_Versym *) finfo->symver_sec->contents;
8889 eversym += h->dynindx;
8890 _bfd_elf_swap_versym_out (finfo->output_bfd, &iversym, eversym);
8891 }
8892 }
8893
8894 /* If we're stripping it, then it was just a dynamic symbol, and
8895 there's nothing else to do. */
8896 if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
8897 return TRUE;
8898
8899 indx = bfd_get_symcount (finfo->output_bfd);
8900 ret = elf_link_output_sym (finfo, h->root.root.string, &sym, input_sec, h);
8901 if (ret == 0)
8902 {
8903 eoinfo->failed = TRUE;
8904 return FALSE;
8905 }
8906 else if (ret == 1)
8907 h->indx = indx;
8908 else if (h->indx == -2)
8909 abort();
8910
8911 return TRUE;
8912 }
8913
8914 /* Return TRUE if special handling is done for relocs in SEC against
8915 symbols defined in discarded sections. */
8916
8917 static bfd_boolean
8918 elf_section_ignore_discarded_relocs (asection *sec)
8919 {
8920 const struct elf_backend_data *bed;
8921
8922 switch (sec->sec_info_type)
8923 {
8924 case ELF_INFO_TYPE_STABS:
8925 case ELF_INFO_TYPE_EH_FRAME:
8926 return TRUE;
8927 default:
8928 break;
8929 }
8930
8931 bed = get_elf_backend_data (sec->owner);
8932 if (bed->elf_backend_ignore_discarded_relocs != NULL
8933 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
8934 return TRUE;
8935
8936 return FALSE;
8937 }
8938
8939 /* Return a mask saying how ld should treat relocations in SEC against
8940 symbols defined in discarded sections. If this function returns
8941 COMPLAIN set, ld will issue a warning message. If this function
8942 returns PRETEND set, and the discarded section was link-once and the
8943 same size as the kept link-once section, ld will pretend that the
8944 symbol was actually defined in the kept section. Otherwise ld will
8945 zero the reloc (at least that is the intent, but some cooperation by
8946 the target dependent code is needed, particularly for REL targets). */
8947
8948 unsigned int
8949 _bfd_elf_default_action_discarded (asection *sec)
8950 {
8951 if (sec->flags & SEC_DEBUGGING)
8952 return PRETEND;
8953
8954 if (strcmp (".eh_frame", sec->name) == 0)
8955 return 0;
8956
8957 if (strcmp (".gcc_except_table", sec->name) == 0)
8958 return 0;
8959
8960 return COMPLAIN | PRETEND;
8961 }
8962
8963 /* Find a match between a section and a member of a section group. */
8964
8965 static asection *
8966 match_group_member (asection *sec, asection *group,
8967 struct bfd_link_info *info)
8968 {
8969 asection *first = elf_next_in_group (group);
8970 asection *s = first;
8971
8972 while (s != NULL)
8973 {
8974 if (bfd_elf_match_symbols_in_sections (s, sec, info))
8975 return s;
8976
8977 s = elf_next_in_group (s);
8978 if (s == first)
8979 break;
8980 }
8981
8982 return NULL;
8983 }
8984
8985 /* Check if the kept section of a discarded section SEC can be used
8986 to replace it. Return the replacement if it is OK. Otherwise return
8987 NULL. */
8988
8989 asection *
8990 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
8991 {
8992 asection *kept;
8993
8994 kept = sec->kept_section;
8995 if (kept != NULL)
8996 {
8997 if ((kept->flags & SEC_GROUP) != 0)
8998 kept = match_group_member (sec, kept, info);
8999 if (kept != NULL
9000 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9001 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9002 kept = NULL;
9003 sec->kept_section = kept;
9004 }
9005 return kept;
9006 }
9007
9008 /* Link an input file into the linker output file. This function
9009 handles all the sections and relocations of the input file at once.
9010 This is so that we only have to read the local symbols once, and
9011 don't have to keep them in memory. */
9012
9013 static bfd_boolean
9014 elf_link_input_bfd (struct elf_final_link_info *finfo, bfd *input_bfd)
9015 {
9016 int (*relocate_section)
9017 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9018 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9019 bfd *output_bfd;
9020 Elf_Internal_Shdr *symtab_hdr;
9021 size_t locsymcount;
9022 size_t extsymoff;
9023 Elf_Internal_Sym *isymbuf;
9024 Elf_Internal_Sym *isym;
9025 Elf_Internal_Sym *isymend;
9026 long *pindex;
9027 asection **ppsection;
9028 asection *o;
9029 const struct elf_backend_data *bed;
9030 struct elf_link_hash_entry **sym_hashes;
9031
9032 output_bfd = finfo->output_bfd;
9033 bed = get_elf_backend_data (output_bfd);
9034 relocate_section = bed->elf_backend_relocate_section;
9035
9036 /* If this is a dynamic object, we don't want to do anything here:
9037 we don't want the local symbols, and we don't want the section
9038 contents. */
9039 if ((input_bfd->flags & DYNAMIC) != 0)
9040 return TRUE;
9041
9042 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9043 if (elf_bad_symtab (input_bfd))
9044 {
9045 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9046 extsymoff = 0;
9047 }
9048 else
9049 {
9050 locsymcount = symtab_hdr->sh_info;
9051 extsymoff = symtab_hdr->sh_info;
9052 }
9053
9054 /* Read the local symbols. */
9055 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9056 if (isymbuf == NULL && locsymcount != 0)
9057 {
9058 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9059 finfo->internal_syms,
9060 finfo->external_syms,
9061 finfo->locsym_shndx);
9062 if (isymbuf == NULL)
9063 return FALSE;
9064 }
9065
9066 /* Find local symbol sections and adjust values of symbols in
9067 SEC_MERGE sections. Write out those local symbols we know are
9068 going into the output file. */
9069 isymend = isymbuf + locsymcount;
9070 for (isym = isymbuf, pindex = finfo->indices, ppsection = finfo->sections;
9071 isym < isymend;
9072 isym++, pindex++, ppsection++)
9073 {
9074 asection *isec;
9075 const char *name;
9076 Elf_Internal_Sym osym;
9077 long indx;
9078 int ret;
9079
9080 *pindex = -1;
9081
9082 if (elf_bad_symtab (input_bfd))
9083 {
9084 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9085 {
9086 *ppsection = NULL;
9087 continue;
9088 }
9089 }
9090
9091 if (isym->st_shndx == SHN_UNDEF)
9092 isec = bfd_und_section_ptr;
9093 else if (isym->st_shndx == SHN_ABS)
9094 isec = bfd_abs_section_ptr;
9095 else if (isym->st_shndx == SHN_COMMON)
9096 isec = bfd_com_section_ptr;
9097 else
9098 {
9099 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9100 if (isec == NULL)
9101 {
9102 /* Don't attempt to output symbols with st_shnx in the
9103 reserved range other than SHN_ABS and SHN_COMMON. */
9104 *ppsection = NULL;
9105 continue;
9106 }
9107 else if (isec->sec_info_type == ELF_INFO_TYPE_MERGE
9108 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9109 isym->st_value =
9110 _bfd_merged_section_offset (output_bfd, &isec,
9111 elf_section_data (isec)->sec_info,
9112 isym->st_value);
9113 }
9114
9115 *ppsection = isec;
9116
9117 /* Don't output the first, undefined, symbol. */
9118 if (ppsection == finfo->sections)
9119 continue;
9120
9121 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9122 {
9123 /* We never output section symbols. Instead, we use the
9124 section symbol of the corresponding section in the output
9125 file. */
9126 continue;
9127 }
9128
9129 /* If we are stripping all symbols, we don't want to output this
9130 one. */
9131 if (finfo->info->strip == strip_all)
9132 continue;
9133
9134 /* If we are discarding all local symbols, we don't want to
9135 output this one. If we are generating a relocatable output
9136 file, then some of the local symbols may be required by
9137 relocs; we output them below as we discover that they are
9138 needed. */
9139 if (finfo->info->discard == discard_all)
9140 continue;
9141
9142 /* If this symbol is defined in a section which we are
9143 discarding, we don't need to keep it. */
9144 if (isym->st_shndx != SHN_UNDEF
9145 && isym->st_shndx < SHN_LORESERVE
9146 && bfd_section_removed_from_list (output_bfd,
9147 isec->output_section))
9148 continue;
9149
9150 /* Get the name of the symbol. */
9151 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9152 isym->st_name);
9153 if (name == NULL)
9154 return FALSE;
9155
9156 /* See if we are discarding symbols with this name. */
9157 if ((finfo->info->strip == strip_some
9158 && (bfd_hash_lookup (finfo->info->keep_hash, name, FALSE, FALSE)
9159 == NULL))
9160 || (((finfo->info->discard == discard_sec_merge
9161 && (isec->flags & SEC_MERGE) && ! finfo->info->relocatable)
9162 || finfo->info->discard == discard_l)
9163 && bfd_is_local_label_name (input_bfd, name)))
9164 continue;
9165
9166 osym = *isym;
9167
9168 /* Adjust the section index for the output file. */
9169 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9170 isec->output_section);
9171 if (osym.st_shndx == SHN_BAD)
9172 return FALSE;
9173
9174 /* ELF symbols in relocatable files are section relative, but
9175 in executable files they are virtual addresses. Note that
9176 this code assumes that all ELF sections have an associated
9177 BFD section with a reasonable value for output_offset; below
9178 we assume that they also have a reasonable value for
9179 output_section. Any special sections must be set up to meet
9180 these requirements. */
9181 osym.st_value += isec->output_offset;
9182 if (! finfo->info->relocatable)
9183 {
9184 osym.st_value += isec->output_section->vma;
9185 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9186 {
9187 /* STT_TLS symbols are relative to PT_TLS segment base. */
9188 BFD_ASSERT (elf_hash_table (finfo->info)->tls_sec != NULL);
9189 osym.st_value -= elf_hash_table (finfo->info)->tls_sec->vma;
9190 }
9191 }
9192
9193 indx = bfd_get_symcount (output_bfd);
9194 ret = elf_link_output_sym (finfo, name, &osym, isec, NULL);
9195 if (ret == 0)
9196 return FALSE;
9197 else if (ret == 1)
9198 *pindex = indx;
9199 }
9200
9201 /* Relocate the contents of each section. */
9202 sym_hashes = elf_sym_hashes (input_bfd);
9203 for (o = input_bfd->sections; o != NULL; o = o->next)
9204 {
9205 bfd_byte *contents;
9206
9207 if (! o->linker_mark)
9208 {
9209 /* This section was omitted from the link. */
9210 continue;
9211 }
9212
9213 if (finfo->info->relocatable
9214 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9215 {
9216 /* Deal with the group signature symbol. */
9217 struct bfd_elf_section_data *sec_data = elf_section_data (o);
9218 unsigned long symndx = sec_data->this_hdr.sh_info;
9219 asection *osec = o->output_section;
9220
9221 if (symndx >= locsymcount
9222 || (elf_bad_symtab (input_bfd)
9223 && finfo->sections[symndx] == NULL))
9224 {
9225 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9226 while (h->root.type == bfd_link_hash_indirect
9227 || h->root.type == bfd_link_hash_warning)
9228 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9229 /* Arrange for symbol to be output. */
9230 h->indx = -2;
9231 elf_section_data (osec)->this_hdr.sh_info = -2;
9232 }
9233 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9234 {
9235 /* We'll use the output section target_index. */
9236 asection *sec = finfo->sections[symndx]->output_section;
9237 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9238 }
9239 else
9240 {
9241 if (finfo->indices[symndx] == -1)
9242 {
9243 /* Otherwise output the local symbol now. */
9244 Elf_Internal_Sym sym = isymbuf[symndx];
9245 asection *sec = finfo->sections[symndx]->output_section;
9246 const char *name;
9247 long indx;
9248 int ret;
9249
9250 name = bfd_elf_string_from_elf_section (input_bfd,
9251 symtab_hdr->sh_link,
9252 sym.st_name);
9253 if (name == NULL)
9254 return FALSE;
9255
9256 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9257 sec);
9258 if (sym.st_shndx == SHN_BAD)
9259 return FALSE;
9260
9261 sym.st_value += o->output_offset;
9262
9263 indx = bfd_get_symcount (output_bfd);
9264 ret = elf_link_output_sym (finfo, name, &sym, o, NULL);
9265 if (ret == 0)
9266 return FALSE;
9267 else if (ret == 1)
9268 finfo->indices[symndx] = indx;
9269 else
9270 abort ();
9271 }
9272 elf_section_data (osec)->this_hdr.sh_info
9273 = finfo->indices[symndx];
9274 }
9275 }
9276
9277 if ((o->flags & SEC_HAS_CONTENTS) == 0
9278 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9279 continue;
9280
9281 if ((o->flags & SEC_LINKER_CREATED) != 0)
9282 {
9283 /* Section was created by _bfd_elf_link_create_dynamic_sections
9284 or somesuch. */
9285 continue;
9286 }
9287
9288 /* Get the contents of the section. They have been cached by a
9289 relaxation routine. Note that o is a section in an input
9290 file, so the contents field will not have been set by any of
9291 the routines which work on output files. */
9292 if (elf_section_data (o)->this_hdr.contents != NULL)
9293 contents = elf_section_data (o)->this_hdr.contents;
9294 else
9295 {
9296 bfd_size_type amt = o->rawsize ? o->rawsize : o->size;
9297
9298 contents = finfo->contents;
9299 if (! bfd_get_section_contents (input_bfd, o, contents, 0, amt))
9300 return FALSE;
9301 }
9302
9303 if ((o->flags & SEC_RELOC) != 0)
9304 {
9305 Elf_Internal_Rela *internal_relocs;
9306 Elf_Internal_Rela *rel, *relend;
9307 bfd_vma r_type_mask;
9308 int r_sym_shift;
9309 int action_discarded;
9310 int ret;
9311
9312 /* Get the swapped relocs. */
9313 internal_relocs
9314 = _bfd_elf_link_read_relocs (input_bfd, o, finfo->external_relocs,
9315 finfo->internal_relocs, FALSE);
9316 if (internal_relocs == NULL
9317 && o->reloc_count > 0)
9318 return FALSE;
9319
9320 if (bed->s->arch_size == 32)
9321 {
9322 r_type_mask = 0xff;
9323 r_sym_shift = 8;
9324 }
9325 else
9326 {
9327 r_type_mask = 0xffffffff;
9328 r_sym_shift = 32;
9329 }
9330
9331 action_discarded = -1;
9332 if (!elf_section_ignore_discarded_relocs (o))
9333 action_discarded = (*bed->action_discarded) (o);
9334
9335 /* Run through the relocs evaluating complex reloc symbols and
9336 looking for relocs against symbols from discarded sections
9337 or section symbols from removed link-once sections.
9338 Complain about relocs against discarded sections. Zero
9339 relocs against removed link-once sections. */
9340
9341 rel = internal_relocs;
9342 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9343 for ( ; rel < relend; rel++)
9344 {
9345 unsigned long r_symndx = rel->r_info >> r_sym_shift;
9346 unsigned int s_type;
9347 asection **ps, *sec;
9348 struct elf_link_hash_entry *h = NULL;
9349 const char *sym_name;
9350
9351 if (r_symndx == STN_UNDEF)
9352 continue;
9353
9354 if (r_symndx >= locsymcount
9355 || (elf_bad_symtab (input_bfd)
9356 && finfo->sections[r_symndx] == NULL))
9357 {
9358 h = sym_hashes[r_symndx - extsymoff];
9359
9360 /* Badly formatted input files can contain relocs that
9361 reference non-existant symbols. Check here so that
9362 we do not seg fault. */
9363 if (h == NULL)
9364 {
9365 char buffer [32];
9366
9367 sprintf_vma (buffer, rel->r_info);
9368 (*_bfd_error_handler)
9369 (_("error: %B contains a reloc (0x%s) for section %A "
9370 "that references a non-existent global symbol"),
9371 input_bfd, o, buffer);
9372 bfd_set_error (bfd_error_bad_value);
9373 return FALSE;
9374 }
9375
9376 while (h->root.type == bfd_link_hash_indirect
9377 || h->root.type == bfd_link_hash_warning)
9378 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9379
9380 s_type = h->type;
9381
9382 ps = NULL;
9383 if (h->root.type == bfd_link_hash_defined
9384 || h->root.type == bfd_link_hash_defweak)
9385 ps = &h->root.u.def.section;
9386
9387 sym_name = h->root.root.string;
9388 }
9389 else
9390 {
9391 Elf_Internal_Sym *sym = isymbuf + r_symndx;
9392
9393 s_type = ELF_ST_TYPE (sym->st_info);
9394 ps = &finfo->sections[r_symndx];
9395 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9396 sym, *ps);
9397 }
9398
9399 if ((s_type == STT_RELC || s_type == STT_SRELC)
9400 && !finfo->info->relocatable)
9401 {
9402 bfd_vma val;
9403 bfd_vma dot = (rel->r_offset
9404 + o->output_offset + o->output_section->vma);
9405 #ifdef DEBUG
9406 printf ("Encountered a complex symbol!");
9407 printf (" (input_bfd %s, section %s, reloc %ld\n",
9408 input_bfd->filename, o->name, rel - internal_relocs);
9409 printf (" symbol: idx %8.8lx, name %s\n",
9410 r_symndx, sym_name);
9411 printf (" reloc : info %8.8lx, addr %8.8lx\n",
9412 (unsigned long) rel->r_info,
9413 (unsigned long) rel->r_offset);
9414 #endif
9415 if (!eval_symbol (&val, &sym_name, input_bfd, finfo, dot,
9416 isymbuf, locsymcount, s_type == STT_SRELC))
9417 return FALSE;
9418
9419 /* Symbol evaluated OK. Update to absolute value. */
9420 set_symbol_value (input_bfd, isymbuf, locsymcount,
9421 r_symndx, val);
9422 continue;
9423 }
9424
9425 if (action_discarded != -1 && ps != NULL)
9426 {
9427 /* Complain if the definition comes from a
9428 discarded section. */
9429 if ((sec = *ps) != NULL && elf_discarded_section (sec))
9430 {
9431 BFD_ASSERT (r_symndx != 0);
9432 if (action_discarded & COMPLAIN)
9433 (*finfo->info->callbacks->einfo)
9434 (_("%X`%s' referenced in section `%A' of %B: "
9435 "defined in discarded section `%A' of %B\n"),
9436 sym_name, o, input_bfd, sec, sec->owner);
9437
9438 /* Try to do the best we can to support buggy old
9439 versions of gcc. Pretend that the symbol is
9440 really defined in the kept linkonce section.
9441 FIXME: This is quite broken. Modifying the
9442 symbol here means we will be changing all later
9443 uses of the symbol, not just in this section. */
9444 if (action_discarded & PRETEND)
9445 {
9446 asection *kept;
9447
9448 kept = _bfd_elf_check_kept_section (sec,
9449 finfo->info);
9450 if (kept != NULL)
9451 {
9452 *ps = kept;
9453 continue;
9454 }
9455 }
9456 }
9457 }
9458 }
9459
9460 /* Relocate the section by invoking a back end routine.
9461
9462 The back end routine is responsible for adjusting the
9463 section contents as necessary, and (if using Rela relocs
9464 and generating a relocatable output file) adjusting the
9465 reloc addend as necessary.
9466
9467 The back end routine does not have to worry about setting
9468 the reloc address or the reloc symbol index.
9469
9470 The back end routine is given a pointer to the swapped in
9471 internal symbols, and can access the hash table entries
9472 for the external symbols via elf_sym_hashes (input_bfd).
9473
9474 When generating relocatable output, the back end routine
9475 must handle STB_LOCAL/STT_SECTION symbols specially. The
9476 output symbol is going to be a section symbol
9477 corresponding to the output section, which will require
9478 the addend to be adjusted. */
9479
9480 ret = (*relocate_section) (output_bfd, finfo->info,
9481 input_bfd, o, contents,
9482 internal_relocs,
9483 isymbuf,
9484 finfo->sections);
9485 if (!ret)
9486 return FALSE;
9487
9488 if (ret == 2
9489 || finfo->info->relocatable
9490 || finfo->info->emitrelocations)
9491 {
9492 Elf_Internal_Rela *irela;
9493 Elf_Internal_Rela *irelaend;
9494 bfd_vma last_offset;
9495 struct elf_link_hash_entry **rel_hash;
9496 struct elf_link_hash_entry **rel_hash_list;
9497 Elf_Internal_Shdr *input_rel_hdr, *input_rel_hdr2;
9498 unsigned int next_erel;
9499 bfd_boolean rela_normal;
9500
9501 input_rel_hdr = &elf_section_data (o)->rel_hdr;
9502 rela_normal = (bed->rela_normal
9503 && (input_rel_hdr->sh_entsize
9504 == bed->s->sizeof_rela));
9505
9506 /* Adjust the reloc addresses and symbol indices. */
9507
9508 irela = internal_relocs;
9509 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9510 rel_hash = (elf_section_data (o->output_section)->rel_hashes
9511 + elf_section_data (o->output_section)->rel_count
9512 + elf_section_data (o->output_section)->rel_count2);
9513 rel_hash_list = rel_hash;
9514 last_offset = o->output_offset;
9515 if (!finfo->info->relocatable)
9516 last_offset += o->output_section->vma;
9517 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9518 {
9519 unsigned long r_symndx;
9520 asection *sec;
9521 Elf_Internal_Sym sym;
9522
9523 if (next_erel == bed->s->int_rels_per_ext_rel)
9524 {
9525 rel_hash++;
9526 next_erel = 0;
9527 }
9528
9529 irela->r_offset = _bfd_elf_section_offset (output_bfd,
9530 finfo->info, o,
9531 irela->r_offset);
9532 if (irela->r_offset >= (bfd_vma) -2)
9533 {
9534 /* This is a reloc for a deleted entry or somesuch.
9535 Turn it into an R_*_NONE reloc, at the same
9536 offset as the last reloc. elf_eh_frame.c and
9537 bfd_elf_discard_info rely on reloc offsets
9538 being ordered. */
9539 irela->r_offset = last_offset;
9540 irela->r_info = 0;
9541 irela->r_addend = 0;
9542 continue;
9543 }
9544
9545 irela->r_offset += o->output_offset;
9546
9547 /* Relocs in an executable have to be virtual addresses. */
9548 if (!finfo->info->relocatable)
9549 irela->r_offset += o->output_section->vma;
9550
9551 last_offset = irela->r_offset;
9552
9553 r_symndx = irela->r_info >> r_sym_shift;
9554 if (r_symndx == STN_UNDEF)
9555 continue;
9556
9557 if (r_symndx >= locsymcount
9558 || (elf_bad_symtab (input_bfd)
9559 && finfo->sections[r_symndx] == NULL))
9560 {
9561 struct elf_link_hash_entry *rh;
9562 unsigned long indx;
9563
9564 /* This is a reloc against a global symbol. We
9565 have not yet output all the local symbols, so
9566 we do not know the symbol index of any global
9567 symbol. We set the rel_hash entry for this
9568 reloc to point to the global hash table entry
9569 for this symbol. The symbol index is then
9570 set at the end of bfd_elf_final_link. */
9571 indx = r_symndx - extsymoff;
9572 rh = elf_sym_hashes (input_bfd)[indx];
9573 while (rh->root.type == bfd_link_hash_indirect
9574 || rh->root.type == bfd_link_hash_warning)
9575 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9576
9577 /* Setting the index to -2 tells
9578 elf_link_output_extsym that this symbol is
9579 used by a reloc. */
9580 BFD_ASSERT (rh->indx < 0);
9581 rh->indx = -2;
9582
9583 *rel_hash = rh;
9584
9585 continue;
9586 }
9587
9588 /* This is a reloc against a local symbol. */
9589
9590 *rel_hash = NULL;
9591 sym = isymbuf[r_symndx];
9592 sec = finfo->sections[r_symndx];
9593 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9594 {
9595 /* I suppose the backend ought to fill in the
9596 section of any STT_SECTION symbol against a
9597 processor specific section. */
9598 r_symndx = 0;
9599 if (bfd_is_abs_section (sec))
9600 ;
9601 else if (sec == NULL || sec->owner == NULL)
9602 {
9603 bfd_set_error (bfd_error_bad_value);
9604 return FALSE;
9605 }
9606 else
9607 {
9608 asection *osec = sec->output_section;
9609
9610 /* If we have discarded a section, the output
9611 section will be the absolute section. In
9612 case of discarded SEC_MERGE sections, use
9613 the kept section. relocate_section should
9614 have already handled discarded linkonce
9615 sections. */
9616 if (bfd_is_abs_section (osec)
9617 && sec->kept_section != NULL
9618 && sec->kept_section->output_section != NULL)
9619 {
9620 osec = sec->kept_section->output_section;
9621 irela->r_addend -= osec->vma;
9622 }
9623
9624 if (!bfd_is_abs_section (osec))
9625 {
9626 r_symndx = osec->target_index;
9627 if (r_symndx == 0)
9628 {
9629 struct elf_link_hash_table *htab;
9630 asection *oi;
9631
9632 htab = elf_hash_table (finfo->info);
9633 oi = htab->text_index_section;
9634 if ((osec->flags & SEC_READONLY) == 0
9635 && htab->data_index_section != NULL)
9636 oi = htab->data_index_section;
9637
9638 if (oi != NULL)
9639 {
9640 irela->r_addend += osec->vma - oi->vma;
9641 r_symndx = oi->target_index;
9642 }
9643 }
9644
9645 BFD_ASSERT (r_symndx != 0);
9646 }
9647 }
9648
9649 /* Adjust the addend according to where the
9650 section winds up in the output section. */
9651 if (rela_normal)
9652 irela->r_addend += sec->output_offset;
9653 }
9654 else
9655 {
9656 if (finfo->indices[r_symndx] == -1)
9657 {
9658 unsigned long shlink;
9659 const char *name;
9660 asection *osec;
9661 long indx;
9662
9663 if (finfo->info->strip == strip_all)
9664 {
9665 /* You can't do ld -r -s. */
9666 bfd_set_error (bfd_error_invalid_operation);
9667 return FALSE;
9668 }
9669
9670 /* This symbol was skipped earlier, but
9671 since it is needed by a reloc, we
9672 must output it now. */
9673 shlink = symtab_hdr->sh_link;
9674 name = (bfd_elf_string_from_elf_section
9675 (input_bfd, shlink, sym.st_name));
9676 if (name == NULL)
9677 return FALSE;
9678
9679 osec = sec->output_section;
9680 sym.st_shndx =
9681 _bfd_elf_section_from_bfd_section (output_bfd,
9682 osec);
9683 if (sym.st_shndx == SHN_BAD)
9684 return FALSE;
9685
9686 sym.st_value += sec->output_offset;
9687 if (! finfo->info->relocatable)
9688 {
9689 sym.st_value += osec->vma;
9690 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9691 {
9692 /* STT_TLS symbols are relative to PT_TLS
9693 segment base. */
9694 BFD_ASSERT (elf_hash_table (finfo->info)
9695 ->tls_sec != NULL);
9696 sym.st_value -= (elf_hash_table (finfo->info)
9697 ->tls_sec->vma);
9698 }
9699 }
9700
9701 indx = bfd_get_symcount (output_bfd);
9702 ret = elf_link_output_sym (finfo, name, &sym, sec,
9703 NULL);
9704 if (ret == 0)
9705 return FALSE;
9706 else if (ret == 1)
9707 finfo->indices[r_symndx] = indx;
9708 else
9709 abort ();
9710 }
9711
9712 r_symndx = finfo->indices[r_symndx];
9713 }
9714
9715 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9716 | (irela->r_info & r_type_mask));
9717 }
9718
9719 /* Swap out the relocs. */
9720 if (input_rel_hdr->sh_size != 0
9721 && !bed->elf_backend_emit_relocs (output_bfd, o,
9722 input_rel_hdr,
9723 internal_relocs,
9724 rel_hash_list))
9725 return FALSE;
9726
9727 input_rel_hdr2 = elf_section_data (o)->rel_hdr2;
9728 if (input_rel_hdr2 && input_rel_hdr2->sh_size != 0)
9729 {
9730 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9731 * bed->s->int_rels_per_ext_rel);
9732 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9733 if (!bed->elf_backend_emit_relocs (output_bfd, o,
9734 input_rel_hdr2,
9735 internal_relocs,
9736 rel_hash_list))
9737 return FALSE;
9738 }
9739 }
9740 }
9741
9742 /* Write out the modified section contents. */
9743 if (bed->elf_backend_write_section
9744 && (*bed->elf_backend_write_section) (output_bfd, finfo->info, o,
9745 contents))
9746 {
9747 /* Section written out. */
9748 }
9749 else switch (o->sec_info_type)
9750 {
9751 case ELF_INFO_TYPE_STABS:
9752 if (! (_bfd_write_section_stabs
9753 (output_bfd,
9754 &elf_hash_table (finfo->info)->stab_info,
9755 o, &elf_section_data (o)->sec_info, contents)))
9756 return FALSE;
9757 break;
9758 case ELF_INFO_TYPE_MERGE:
9759 if (! _bfd_write_merged_section (output_bfd, o,
9760 elf_section_data (o)->sec_info))
9761 return FALSE;
9762 break;
9763 case ELF_INFO_TYPE_EH_FRAME:
9764 {
9765 if (! _bfd_elf_write_section_eh_frame (output_bfd, finfo->info,
9766 o, contents))
9767 return FALSE;
9768 }
9769 break;
9770 default:
9771 {
9772 /* FIXME: octets_per_byte. */
9773 if (! (o->flags & SEC_EXCLUDE)
9774 && ! (o->output_section->flags & SEC_NEVER_LOAD)
9775 && ! bfd_set_section_contents (output_bfd, o->output_section,
9776 contents,
9777 (file_ptr) o->output_offset,
9778 o->size))
9779 return FALSE;
9780 }
9781 break;
9782 }
9783 }
9784
9785 return TRUE;
9786 }
9787
9788 /* Generate a reloc when linking an ELF file. This is a reloc
9789 requested by the linker, and does not come from any input file. This
9790 is used to build constructor and destructor tables when linking
9791 with -Ur. */
9792
9793 static bfd_boolean
9794 elf_reloc_link_order (bfd *output_bfd,
9795 struct bfd_link_info *info,
9796 asection *output_section,
9797 struct bfd_link_order *link_order)
9798 {
9799 reloc_howto_type *howto;
9800 long indx;
9801 bfd_vma offset;
9802 bfd_vma addend;
9803 struct elf_link_hash_entry **rel_hash_ptr;
9804 Elf_Internal_Shdr *rel_hdr;
9805 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9806 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
9807 bfd_byte *erel;
9808 unsigned int i;
9809
9810 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
9811 if (howto == NULL)
9812 {
9813 bfd_set_error (bfd_error_bad_value);
9814 return FALSE;
9815 }
9816
9817 addend = link_order->u.reloc.p->addend;
9818
9819 /* Figure out the symbol index. */
9820 rel_hash_ptr = (elf_section_data (output_section)->rel_hashes
9821 + elf_section_data (output_section)->rel_count
9822 + elf_section_data (output_section)->rel_count2);
9823 if (link_order->type == bfd_section_reloc_link_order)
9824 {
9825 indx = link_order->u.reloc.p->u.section->target_index;
9826 BFD_ASSERT (indx != 0);
9827 *rel_hash_ptr = NULL;
9828 }
9829 else
9830 {
9831 struct elf_link_hash_entry *h;
9832
9833 /* Treat a reloc against a defined symbol as though it were
9834 actually against the section. */
9835 h = ((struct elf_link_hash_entry *)
9836 bfd_wrapped_link_hash_lookup (output_bfd, info,
9837 link_order->u.reloc.p->u.name,
9838 FALSE, FALSE, TRUE));
9839 if (h != NULL
9840 && (h->root.type == bfd_link_hash_defined
9841 || h->root.type == bfd_link_hash_defweak))
9842 {
9843 asection *section;
9844
9845 section = h->root.u.def.section;
9846 indx = section->output_section->target_index;
9847 *rel_hash_ptr = NULL;
9848 /* It seems that we ought to add the symbol value to the
9849 addend here, but in practice it has already been added
9850 because it was passed to constructor_callback. */
9851 addend += section->output_section->vma + section->output_offset;
9852 }
9853 else if (h != NULL)
9854 {
9855 /* Setting the index to -2 tells elf_link_output_extsym that
9856 this symbol is used by a reloc. */
9857 h->indx = -2;
9858 *rel_hash_ptr = h;
9859 indx = 0;
9860 }
9861 else
9862 {
9863 if (! ((*info->callbacks->unattached_reloc)
9864 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
9865 return FALSE;
9866 indx = 0;
9867 }
9868 }
9869
9870 /* If this is an inplace reloc, we must write the addend into the
9871 object file. */
9872 if (howto->partial_inplace && addend != 0)
9873 {
9874 bfd_size_type size;
9875 bfd_reloc_status_type rstat;
9876 bfd_byte *buf;
9877 bfd_boolean ok;
9878 const char *sym_name;
9879
9880 size = (bfd_size_type) bfd_get_reloc_size (howto);
9881 buf = (bfd_byte *) bfd_zmalloc (size);
9882 if (buf == NULL)
9883 return FALSE;
9884 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
9885 switch (rstat)
9886 {
9887 case bfd_reloc_ok:
9888 break;
9889
9890 default:
9891 case bfd_reloc_outofrange:
9892 abort ();
9893
9894 case bfd_reloc_overflow:
9895 if (link_order->type == bfd_section_reloc_link_order)
9896 sym_name = bfd_section_name (output_bfd,
9897 link_order->u.reloc.p->u.section);
9898 else
9899 sym_name = link_order->u.reloc.p->u.name;
9900 if (! ((*info->callbacks->reloc_overflow)
9901 (info, NULL, sym_name, howto->name, addend, NULL,
9902 NULL, (bfd_vma) 0)))
9903 {
9904 free (buf);
9905 return FALSE;
9906 }
9907 break;
9908 }
9909 ok = bfd_set_section_contents (output_bfd, output_section, buf,
9910 link_order->offset, size);
9911 free (buf);
9912 if (! ok)
9913 return FALSE;
9914 }
9915
9916 /* The address of a reloc is relative to the section in a
9917 relocatable file, and is a virtual address in an executable
9918 file. */
9919 offset = link_order->offset;
9920 if (! info->relocatable)
9921 offset += output_section->vma;
9922
9923 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
9924 {
9925 irel[i].r_offset = offset;
9926 irel[i].r_info = 0;
9927 irel[i].r_addend = 0;
9928 }
9929 if (bed->s->arch_size == 32)
9930 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
9931 else
9932 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
9933
9934 rel_hdr = &elf_section_data (output_section)->rel_hdr;
9935 erel = rel_hdr->contents;
9936 if (rel_hdr->sh_type == SHT_REL)
9937 {
9938 erel += (elf_section_data (output_section)->rel_count
9939 * bed->s->sizeof_rel);
9940 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
9941 }
9942 else
9943 {
9944 irel[0].r_addend = addend;
9945 erel += (elf_section_data (output_section)->rel_count
9946 * bed->s->sizeof_rela);
9947 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
9948 }
9949
9950 ++elf_section_data (output_section)->rel_count;
9951
9952 return TRUE;
9953 }
9954
9955
9956 /* Get the output vma of the section pointed to by the sh_link field. */
9957
9958 static bfd_vma
9959 elf_get_linked_section_vma (struct bfd_link_order *p)
9960 {
9961 Elf_Internal_Shdr **elf_shdrp;
9962 asection *s;
9963 int elfsec;
9964
9965 s = p->u.indirect.section;
9966 elf_shdrp = elf_elfsections (s->owner);
9967 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
9968 elfsec = elf_shdrp[elfsec]->sh_link;
9969 /* PR 290:
9970 The Intel C compiler generates SHT_IA_64_UNWIND with
9971 SHF_LINK_ORDER. But it doesn't set the sh_link or
9972 sh_info fields. Hence we could get the situation
9973 where elfsec is 0. */
9974 if (elfsec == 0)
9975 {
9976 const struct elf_backend_data *bed
9977 = get_elf_backend_data (s->owner);
9978 if (bed->link_order_error_handler)
9979 bed->link_order_error_handler
9980 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
9981 return 0;
9982 }
9983 else
9984 {
9985 s = elf_shdrp[elfsec]->bfd_section;
9986 return s->output_section->vma + s->output_offset;
9987 }
9988 }
9989
9990
9991 /* Compare two sections based on the locations of the sections they are
9992 linked to. Used by elf_fixup_link_order. */
9993
9994 static int
9995 compare_link_order (const void * a, const void * b)
9996 {
9997 bfd_vma apos;
9998 bfd_vma bpos;
9999
10000 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10001 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10002 if (apos < bpos)
10003 return -1;
10004 return apos > bpos;
10005 }
10006
10007
10008 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
10009 order as their linked sections. Returns false if this could not be done
10010 because an output section includes both ordered and unordered
10011 sections. Ideally we'd do this in the linker proper. */
10012
10013 static bfd_boolean
10014 elf_fixup_link_order (bfd *abfd, asection *o)
10015 {
10016 int seen_linkorder;
10017 int seen_other;
10018 int n;
10019 struct bfd_link_order *p;
10020 bfd *sub;
10021 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10022 unsigned elfsec;
10023 struct bfd_link_order **sections;
10024 asection *s, *other_sec, *linkorder_sec;
10025 bfd_vma offset;
10026
10027 other_sec = NULL;
10028 linkorder_sec = NULL;
10029 seen_other = 0;
10030 seen_linkorder = 0;
10031 for (p = o->map_head.link_order; p != NULL; p = p->next)
10032 {
10033 if (p->type == bfd_indirect_link_order)
10034 {
10035 s = p->u.indirect.section;
10036 sub = s->owner;
10037 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10038 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10039 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10040 && elfsec < elf_numsections (sub)
10041 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10042 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10043 {
10044 seen_linkorder++;
10045 linkorder_sec = s;
10046 }
10047 else
10048 {
10049 seen_other++;
10050 other_sec = s;
10051 }
10052 }
10053 else
10054 seen_other++;
10055
10056 if (seen_other && seen_linkorder)
10057 {
10058 if (other_sec && linkorder_sec)
10059 (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10060 o, linkorder_sec,
10061 linkorder_sec->owner, other_sec,
10062 other_sec->owner);
10063 else
10064 (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10065 o);
10066 bfd_set_error (bfd_error_bad_value);
10067 return FALSE;
10068 }
10069 }
10070
10071 if (!seen_linkorder)
10072 return TRUE;
10073
10074 sections = (struct bfd_link_order **)
10075 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10076 if (sections == NULL)
10077 return FALSE;
10078 seen_linkorder = 0;
10079
10080 for (p = o->map_head.link_order; p != NULL; p = p->next)
10081 {
10082 sections[seen_linkorder++] = p;
10083 }
10084 /* Sort the input sections in the order of their linked section. */
10085 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10086 compare_link_order);
10087
10088 /* Change the offsets of the sections. */
10089 offset = 0;
10090 for (n = 0; n < seen_linkorder; n++)
10091 {
10092 s = sections[n]->u.indirect.section;
10093 offset &= ~(bfd_vma) 0 << s->alignment_power;
10094 s->output_offset = offset;
10095 sections[n]->offset = offset;
10096 /* FIXME: octets_per_byte. */
10097 offset += sections[n]->size;
10098 }
10099
10100 free (sections);
10101 return TRUE;
10102 }
10103
10104
10105 /* Do the final step of an ELF link. */
10106
10107 bfd_boolean
10108 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10109 {
10110 bfd_boolean dynamic;
10111 bfd_boolean emit_relocs;
10112 bfd *dynobj;
10113 struct elf_final_link_info finfo;
10114 register asection *o;
10115 register struct bfd_link_order *p;
10116 register bfd *sub;
10117 bfd_size_type max_contents_size;
10118 bfd_size_type max_external_reloc_size;
10119 bfd_size_type max_internal_reloc_count;
10120 bfd_size_type max_sym_count;
10121 bfd_size_type max_sym_shndx_count;
10122 file_ptr off;
10123 Elf_Internal_Sym elfsym;
10124 unsigned int i;
10125 Elf_Internal_Shdr *symtab_hdr;
10126 Elf_Internal_Shdr *symtab_shndx_hdr;
10127 Elf_Internal_Shdr *symstrtab_hdr;
10128 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10129 struct elf_outext_info eoinfo;
10130 bfd_boolean merged;
10131 size_t relativecount = 0;
10132 asection *reldyn = 0;
10133 bfd_size_type amt;
10134 asection *attr_section = NULL;
10135 bfd_vma attr_size = 0;
10136 const char *std_attrs_section;
10137
10138 if (! is_elf_hash_table (info->hash))
10139 return FALSE;
10140
10141 if (info->shared)
10142 abfd->flags |= DYNAMIC;
10143
10144 dynamic = elf_hash_table (info)->dynamic_sections_created;
10145 dynobj = elf_hash_table (info)->dynobj;
10146
10147 emit_relocs = (info->relocatable
10148 || info->emitrelocations);
10149
10150 finfo.info = info;
10151 finfo.output_bfd = abfd;
10152 finfo.symstrtab = _bfd_elf_stringtab_init ();
10153 if (finfo.symstrtab == NULL)
10154 return FALSE;
10155
10156 if (! dynamic)
10157 {
10158 finfo.dynsym_sec = NULL;
10159 finfo.hash_sec = NULL;
10160 finfo.symver_sec = NULL;
10161 }
10162 else
10163 {
10164 finfo.dynsym_sec = bfd_get_section_by_name (dynobj, ".dynsym");
10165 finfo.hash_sec = bfd_get_section_by_name (dynobj, ".hash");
10166 BFD_ASSERT (finfo.dynsym_sec != NULL);
10167 finfo.symver_sec = bfd_get_section_by_name (dynobj, ".gnu.version");
10168 /* Note that it is OK if symver_sec is NULL. */
10169 }
10170
10171 finfo.contents = NULL;
10172 finfo.external_relocs = NULL;
10173 finfo.internal_relocs = NULL;
10174 finfo.external_syms = NULL;
10175 finfo.locsym_shndx = NULL;
10176 finfo.internal_syms = NULL;
10177 finfo.indices = NULL;
10178 finfo.sections = NULL;
10179 finfo.symbuf = NULL;
10180 finfo.symshndxbuf = NULL;
10181 finfo.symbuf_count = 0;
10182 finfo.shndxbuf_size = 0;
10183
10184 /* The object attributes have been merged. Remove the input
10185 sections from the link, and set the contents of the output
10186 secton. */
10187 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10188 for (o = abfd->sections; o != NULL; o = o->next)
10189 {
10190 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10191 || strcmp (o->name, ".gnu.attributes") == 0)
10192 {
10193 for (p = o->map_head.link_order; p != NULL; p = p->next)
10194 {
10195 asection *input_section;
10196
10197 if (p->type != bfd_indirect_link_order)
10198 continue;
10199 input_section = p->u.indirect.section;
10200 /* Hack: reset the SEC_HAS_CONTENTS flag so that
10201 elf_link_input_bfd ignores this section. */
10202 input_section->flags &= ~SEC_HAS_CONTENTS;
10203 }
10204
10205 attr_size = bfd_elf_obj_attr_size (abfd);
10206 if (attr_size)
10207 {
10208 bfd_set_section_size (abfd, o, attr_size);
10209 attr_section = o;
10210 /* Skip this section later on. */
10211 o->map_head.link_order = NULL;
10212 }
10213 else
10214 o->flags |= SEC_EXCLUDE;
10215 }
10216 }
10217
10218 /* Count up the number of relocations we will output for each output
10219 section, so that we know the sizes of the reloc sections. We
10220 also figure out some maximum sizes. */
10221 max_contents_size = 0;
10222 max_external_reloc_size = 0;
10223 max_internal_reloc_count = 0;
10224 max_sym_count = 0;
10225 max_sym_shndx_count = 0;
10226 merged = FALSE;
10227 for (o = abfd->sections; o != NULL; o = o->next)
10228 {
10229 struct bfd_elf_section_data *esdo = elf_section_data (o);
10230 o->reloc_count = 0;
10231
10232 for (p = o->map_head.link_order; p != NULL; p = p->next)
10233 {
10234 unsigned int reloc_count = 0;
10235 struct bfd_elf_section_data *esdi = NULL;
10236 unsigned int *rel_count1;
10237
10238 if (p->type == bfd_section_reloc_link_order
10239 || p->type == bfd_symbol_reloc_link_order)
10240 reloc_count = 1;
10241 else if (p->type == bfd_indirect_link_order)
10242 {
10243 asection *sec;
10244
10245 sec = p->u.indirect.section;
10246 esdi = elf_section_data (sec);
10247
10248 /* Mark all sections which are to be included in the
10249 link. This will normally be every section. We need
10250 to do this so that we can identify any sections which
10251 the linker has decided to not include. */
10252 sec->linker_mark = TRUE;
10253
10254 if (sec->flags & SEC_MERGE)
10255 merged = TRUE;
10256
10257 if (info->relocatable || info->emitrelocations)
10258 reloc_count = sec->reloc_count;
10259 else if (bed->elf_backend_count_relocs)
10260 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10261
10262 if (sec->rawsize > max_contents_size)
10263 max_contents_size = sec->rawsize;
10264 if (sec->size > max_contents_size)
10265 max_contents_size = sec->size;
10266
10267 /* We are interested in just local symbols, not all
10268 symbols. */
10269 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10270 && (sec->owner->flags & DYNAMIC) == 0)
10271 {
10272 size_t sym_count;
10273
10274 if (elf_bad_symtab (sec->owner))
10275 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10276 / bed->s->sizeof_sym);
10277 else
10278 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10279
10280 if (sym_count > max_sym_count)
10281 max_sym_count = sym_count;
10282
10283 if (sym_count > max_sym_shndx_count
10284 && elf_symtab_shndx (sec->owner) != 0)
10285 max_sym_shndx_count = sym_count;
10286
10287 if ((sec->flags & SEC_RELOC) != 0)
10288 {
10289 size_t ext_size;
10290
10291 ext_size = elf_section_data (sec)->rel_hdr.sh_size;
10292 if (ext_size > max_external_reloc_size)
10293 max_external_reloc_size = ext_size;
10294 if (sec->reloc_count > max_internal_reloc_count)
10295 max_internal_reloc_count = sec->reloc_count;
10296 }
10297 }
10298 }
10299
10300 if (reloc_count == 0)
10301 continue;
10302
10303 o->reloc_count += reloc_count;
10304
10305 /* MIPS may have a mix of REL and RELA relocs on sections.
10306 To support this curious ABI we keep reloc counts in
10307 elf_section_data too. We must be careful to add the
10308 relocations from the input section to the right output
10309 count. FIXME: Get rid of one count. We have
10310 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
10311 rel_count1 = &esdo->rel_count;
10312 if (esdi != NULL)
10313 {
10314 bfd_boolean same_size;
10315 bfd_size_type entsize1;
10316
10317 entsize1 = esdi->rel_hdr.sh_entsize;
10318 /* PR 9827: If the header size has not been set yet then
10319 assume that it will match the output section's reloc type. */
10320 if (entsize1 == 0)
10321 entsize1 = o->use_rela_p ? bed->s->sizeof_rela : bed->s->sizeof_rel;
10322 else
10323 BFD_ASSERT (entsize1 == bed->s->sizeof_rel
10324 || entsize1 == bed->s->sizeof_rela);
10325 same_size = !o->use_rela_p == (entsize1 == bed->s->sizeof_rel);
10326
10327 if (!same_size)
10328 rel_count1 = &esdo->rel_count2;
10329
10330 if (esdi->rel_hdr2 != NULL)
10331 {
10332 bfd_size_type entsize2 = esdi->rel_hdr2->sh_entsize;
10333 unsigned int alt_count;
10334 unsigned int *rel_count2;
10335
10336 BFD_ASSERT (entsize2 != entsize1
10337 && (entsize2 == bed->s->sizeof_rel
10338 || entsize2 == bed->s->sizeof_rela));
10339
10340 rel_count2 = &esdo->rel_count2;
10341 if (!same_size)
10342 rel_count2 = &esdo->rel_count;
10343
10344 /* The following is probably too simplistic if the
10345 backend counts output relocs unusually. */
10346 BFD_ASSERT (bed->elf_backend_count_relocs == NULL);
10347 alt_count = NUM_SHDR_ENTRIES (esdi->rel_hdr2);
10348 *rel_count2 += alt_count;
10349 reloc_count -= alt_count;
10350 }
10351 }
10352 *rel_count1 += reloc_count;
10353 }
10354
10355 if (o->reloc_count > 0)
10356 o->flags |= SEC_RELOC;
10357 else
10358 {
10359 /* Explicitly clear the SEC_RELOC flag. The linker tends to
10360 set it (this is probably a bug) and if it is set
10361 assign_section_numbers will create a reloc section. */
10362 o->flags &=~ SEC_RELOC;
10363 }
10364
10365 /* If the SEC_ALLOC flag is not set, force the section VMA to
10366 zero. This is done in elf_fake_sections as well, but forcing
10367 the VMA to 0 here will ensure that relocs against these
10368 sections are handled correctly. */
10369 if ((o->flags & SEC_ALLOC) == 0
10370 && ! o->user_set_vma)
10371 o->vma = 0;
10372 }
10373
10374 if (! info->relocatable && merged)
10375 elf_link_hash_traverse (elf_hash_table (info),
10376 _bfd_elf_link_sec_merge_syms, abfd);
10377
10378 /* Figure out the file positions for everything but the symbol table
10379 and the relocs. We set symcount to force assign_section_numbers
10380 to create a symbol table. */
10381 bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10382 BFD_ASSERT (! abfd->output_has_begun);
10383 if (! _bfd_elf_compute_section_file_positions (abfd, info))
10384 goto error_return;
10385
10386 /* Set sizes, and assign file positions for reloc sections. */
10387 for (o = abfd->sections; o != NULL; o = o->next)
10388 {
10389 if ((o->flags & SEC_RELOC) != 0)
10390 {
10391 if (!(_bfd_elf_link_size_reloc_section
10392 (abfd, &elf_section_data (o)->rel_hdr, o)))
10393 goto error_return;
10394
10395 if (elf_section_data (o)->rel_hdr2
10396 && !(_bfd_elf_link_size_reloc_section
10397 (abfd, elf_section_data (o)->rel_hdr2, o)))
10398 goto error_return;
10399 }
10400
10401 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10402 to count upwards while actually outputting the relocations. */
10403 elf_section_data (o)->rel_count = 0;
10404 elf_section_data (o)->rel_count2 = 0;
10405 }
10406
10407 _bfd_elf_assign_file_positions_for_relocs (abfd);
10408
10409 /* We have now assigned file positions for all the sections except
10410 .symtab and .strtab. We start the .symtab section at the current
10411 file position, and write directly to it. We build the .strtab
10412 section in memory. */
10413 bfd_get_symcount (abfd) = 0;
10414 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10415 /* sh_name is set in prep_headers. */
10416 symtab_hdr->sh_type = SHT_SYMTAB;
10417 /* sh_flags, sh_addr and sh_size all start off zero. */
10418 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10419 /* sh_link is set in assign_section_numbers. */
10420 /* sh_info is set below. */
10421 /* sh_offset is set just below. */
10422 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10423
10424 off = elf_tdata (abfd)->next_file_pos;
10425 off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10426
10427 /* Note that at this point elf_tdata (abfd)->next_file_pos is
10428 incorrect. We do not yet know the size of the .symtab section.
10429 We correct next_file_pos below, after we do know the size. */
10430
10431 /* Allocate a buffer to hold swapped out symbols. This is to avoid
10432 continuously seeking to the right position in the file. */
10433 if (! info->keep_memory || max_sym_count < 20)
10434 finfo.symbuf_size = 20;
10435 else
10436 finfo.symbuf_size = max_sym_count;
10437 amt = finfo.symbuf_size;
10438 amt *= bed->s->sizeof_sym;
10439 finfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10440 if (finfo.symbuf == NULL)
10441 goto error_return;
10442 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10443 {
10444 /* Wild guess at number of output symbols. realloc'd as needed. */
10445 amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10446 finfo.shndxbuf_size = amt;
10447 amt *= sizeof (Elf_External_Sym_Shndx);
10448 finfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10449 if (finfo.symshndxbuf == NULL)
10450 goto error_return;
10451 }
10452
10453 /* Start writing out the symbol table. The first symbol is always a
10454 dummy symbol. */
10455 if (info->strip != strip_all
10456 || emit_relocs)
10457 {
10458 elfsym.st_value = 0;
10459 elfsym.st_size = 0;
10460 elfsym.st_info = 0;
10461 elfsym.st_other = 0;
10462 elfsym.st_shndx = SHN_UNDEF;
10463 if (elf_link_output_sym (&finfo, NULL, &elfsym, bfd_und_section_ptr,
10464 NULL) != 1)
10465 goto error_return;
10466 }
10467
10468 /* Output a symbol for each section. We output these even if we are
10469 discarding local symbols, since they are used for relocs. These
10470 symbols have no names. We store the index of each one in the
10471 index field of the section, so that we can find it again when
10472 outputting relocs. */
10473 if (info->strip != strip_all
10474 || emit_relocs)
10475 {
10476 elfsym.st_size = 0;
10477 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10478 elfsym.st_other = 0;
10479 elfsym.st_value = 0;
10480 for (i = 1; i < elf_numsections (abfd); i++)
10481 {
10482 o = bfd_section_from_elf_index (abfd, i);
10483 if (o != NULL)
10484 {
10485 o->target_index = bfd_get_symcount (abfd);
10486 elfsym.st_shndx = i;
10487 if (!info->relocatable)
10488 elfsym.st_value = o->vma;
10489 if (elf_link_output_sym (&finfo, NULL, &elfsym, o, NULL) != 1)
10490 goto error_return;
10491 }
10492 }
10493 }
10494
10495 /* Allocate some memory to hold information read in from the input
10496 files. */
10497 if (max_contents_size != 0)
10498 {
10499 finfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10500 if (finfo.contents == NULL)
10501 goto error_return;
10502 }
10503
10504 if (max_external_reloc_size != 0)
10505 {
10506 finfo.external_relocs = bfd_malloc (max_external_reloc_size);
10507 if (finfo.external_relocs == NULL)
10508 goto error_return;
10509 }
10510
10511 if (max_internal_reloc_count != 0)
10512 {
10513 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10514 amt *= sizeof (Elf_Internal_Rela);
10515 finfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10516 if (finfo.internal_relocs == NULL)
10517 goto error_return;
10518 }
10519
10520 if (max_sym_count != 0)
10521 {
10522 amt = max_sym_count * bed->s->sizeof_sym;
10523 finfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10524 if (finfo.external_syms == NULL)
10525 goto error_return;
10526
10527 amt = max_sym_count * sizeof (Elf_Internal_Sym);
10528 finfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10529 if (finfo.internal_syms == NULL)
10530 goto error_return;
10531
10532 amt = max_sym_count * sizeof (long);
10533 finfo.indices = (long int *) bfd_malloc (amt);
10534 if (finfo.indices == NULL)
10535 goto error_return;
10536
10537 amt = max_sym_count * sizeof (asection *);
10538 finfo.sections = (asection **) bfd_malloc (amt);
10539 if (finfo.sections == NULL)
10540 goto error_return;
10541 }
10542
10543 if (max_sym_shndx_count != 0)
10544 {
10545 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10546 finfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10547 if (finfo.locsym_shndx == NULL)
10548 goto error_return;
10549 }
10550
10551 if (elf_hash_table (info)->tls_sec)
10552 {
10553 bfd_vma base, end = 0;
10554 asection *sec;
10555
10556 for (sec = elf_hash_table (info)->tls_sec;
10557 sec && (sec->flags & SEC_THREAD_LOCAL);
10558 sec = sec->next)
10559 {
10560 bfd_size_type size = sec->size;
10561
10562 if (size == 0
10563 && (sec->flags & SEC_HAS_CONTENTS) == 0)
10564 {
10565 struct bfd_link_order *o = sec->map_tail.link_order;
10566 if (o != NULL)
10567 size = o->offset + o->size;
10568 }
10569 end = sec->vma + size;
10570 }
10571 base = elf_hash_table (info)->tls_sec->vma;
10572 end = align_power (end, elf_hash_table (info)->tls_sec->alignment_power);
10573 elf_hash_table (info)->tls_size = end - base;
10574 }
10575
10576 /* Reorder SHF_LINK_ORDER sections. */
10577 for (o = abfd->sections; o != NULL; o = o->next)
10578 {
10579 if (!elf_fixup_link_order (abfd, o))
10580 return FALSE;
10581 }
10582
10583 /* Since ELF permits relocations to be against local symbols, we
10584 must have the local symbols available when we do the relocations.
10585 Since we would rather only read the local symbols once, and we
10586 would rather not keep them in memory, we handle all the
10587 relocations for a single input file at the same time.
10588
10589 Unfortunately, there is no way to know the total number of local
10590 symbols until we have seen all of them, and the local symbol
10591 indices precede the global symbol indices. This means that when
10592 we are generating relocatable output, and we see a reloc against
10593 a global symbol, we can not know the symbol index until we have
10594 finished examining all the local symbols to see which ones we are
10595 going to output. To deal with this, we keep the relocations in
10596 memory, and don't output them until the end of the link. This is
10597 an unfortunate waste of memory, but I don't see a good way around
10598 it. Fortunately, it only happens when performing a relocatable
10599 link, which is not the common case. FIXME: If keep_memory is set
10600 we could write the relocs out and then read them again; I don't
10601 know how bad the memory loss will be. */
10602
10603 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10604 sub->output_has_begun = FALSE;
10605 for (o = abfd->sections; o != NULL; o = o->next)
10606 {
10607 for (p = o->map_head.link_order; p != NULL; p = p->next)
10608 {
10609 if (p->type == bfd_indirect_link_order
10610 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10611 == bfd_target_elf_flavour)
10612 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10613 {
10614 if (! sub->output_has_begun)
10615 {
10616 if (! elf_link_input_bfd (&finfo, sub))
10617 goto error_return;
10618 sub->output_has_begun = TRUE;
10619 }
10620 }
10621 else if (p->type == bfd_section_reloc_link_order
10622 || p->type == bfd_symbol_reloc_link_order)
10623 {
10624 if (! elf_reloc_link_order (abfd, info, o, p))
10625 goto error_return;
10626 }
10627 else
10628 {
10629 if (! _bfd_default_link_order (abfd, info, o, p))
10630 goto error_return;
10631 }
10632 }
10633 }
10634
10635 /* Free symbol buffer if needed. */
10636 if (!info->reduce_memory_overheads)
10637 {
10638 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10639 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10640 && elf_tdata (sub)->symbuf)
10641 {
10642 free (elf_tdata (sub)->symbuf);
10643 elf_tdata (sub)->symbuf = NULL;
10644 }
10645 }
10646
10647 /* Output any global symbols that got converted to local in a
10648 version script or due to symbol visibility. We do this in a
10649 separate step since ELF requires all local symbols to appear
10650 prior to any global symbols. FIXME: We should only do this if
10651 some global symbols were, in fact, converted to become local.
10652 FIXME: Will this work correctly with the Irix 5 linker? */
10653 eoinfo.failed = FALSE;
10654 eoinfo.finfo = &finfo;
10655 eoinfo.localsyms = TRUE;
10656 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10657 &eoinfo);
10658 if (eoinfo.failed)
10659 return FALSE;
10660
10661 /* If backend needs to output some local symbols not present in the hash
10662 table, do it now. */
10663 if (bed->elf_backend_output_arch_local_syms)
10664 {
10665 typedef int (*out_sym_func)
10666 (void *, const char *, Elf_Internal_Sym *, asection *,
10667 struct elf_link_hash_entry *);
10668
10669 if (! ((*bed->elf_backend_output_arch_local_syms)
10670 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10671 return FALSE;
10672 }
10673
10674 /* That wrote out all the local symbols. Finish up the symbol table
10675 with the global symbols. Even if we want to strip everything we
10676 can, we still need to deal with those global symbols that got
10677 converted to local in a version script. */
10678
10679 /* The sh_info field records the index of the first non local symbol. */
10680 symtab_hdr->sh_info = bfd_get_symcount (abfd);
10681
10682 if (dynamic
10683 && finfo.dynsym_sec->output_section != bfd_abs_section_ptr)
10684 {
10685 Elf_Internal_Sym sym;
10686 bfd_byte *dynsym = finfo.dynsym_sec->contents;
10687 long last_local = 0;
10688
10689 /* Write out the section symbols for the output sections. */
10690 if (info->shared || elf_hash_table (info)->is_relocatable_executable)
10691 {
10692 asection *s;
10693
10694 sym.st_size = 0;
10695 sym.st_name = 0;
10696 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10697 sym.st_other = 0;
10698
10699 for (s = abfd->sections; s != NULL; s = s->next)
10700 {
10701 int indx;
10702 bfd_byte *dest;
10703 long dynindx;
10704
10705 dynindx = elf_section_data (s)->dynindx;
10706 if (dynindx <= 0)
10707 continue;
10708 indx = elf_section_data (s)->this_idx;
10709 BFD_ASSERT (indx > 0);
10710 sym.st_shndx = indx;
10711 if (! check_dynsym (abfd, &sym))
10712 return FALSE;
10713 sym.st_value = s->vma;
10714 dest = dynsym + dynindx * bed->s->sizeof_sym;
10715 if (last_local < dynindx)
10716 last_local = dynindx;
10717 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10718 }
10719 }
10720
10721 /* Write out the local dynsyms. */
10722 if (elf_hash_table (info)->dynlocal)
10723 {
10724 struct elf_link_local_dynamic_entry *e;
10725 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
10726 {
10727 asection *s;
10728 bfd_byte *dest;
10729
10730 /* Copy the internal symbol and turn off visibility.
10731 Note that we saved a word of storage and overwrote
10732 the original st_name with the dynstr_index. */
10733 sym = e->isym;
10734 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10735
10736 s = bfd_section_from_elf_index (e->input_bfd,
10737 e->isym.st_shndx);
10738 if (s != NULL)
10739 {
10740 sym.st_shndx =
10741 elf_section_data (s->output_section)->this_idx;
10742 if (! check_dynsym (abfd, &sym))
10743 return FALSE;
10744 sym.st_value = (s->output_section->vma
10745 + s->output_offset
10746 + e->isym.st_value);
10747 }
10748
10749 if (last_local < e->dynindx)
10750 last_local = e->dynindx;
10751
10752 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
10753 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
10754 }
10755 }
10756
10757 elf_section_data (finfo.dynsym_sec->output_section)->this_hdr.sh_info =
10758 last_local + 1;
10759 }
10760
10761 /* We get the global symbols from the hash table. */
10762 eoinfo.failed = FALSE;
10763 eoinfo.localsyms = FALSE;
10764 eoinfo.finfo = &finfo;
10765 elf_link_hash_traverse (elf_hash_table (info), elf_link_output_extsym,
10766 &eoinfo);
10767 if (eoinfo.failed)
10768 return FALSE;
10769
10770 /* If backend needs to output some symbols not present in the hash
10771 table, do it now. */
10772 if (bed->elf_backend_output_arch_syms)
10773 {
10774 typedef int (*out_sym_func)
10775 (void *, const char *, Elf_Internal_Sym *, asection *,
10776 struct elf_link_hash_entry *);
10777
10778 if (! ((*bed->elf_backend_output_arch_syms)
10779 (abfd, info, &finfo, (out_sym_func) elf_link_output_sym)))
10780 return FALSE;
10781 }
10782
10783 /* Flush all symbols to the file. */
10784 if (! elf_link_flush_output_syms (&finfo, bed))
10785 return FALSE;
10786
10787 /* Now we know the size of the symtab section. */
10788 off += symtab_hdr->sh_size;
10789
10790 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
10791 if (symtab_shndx_hdr->sh_name != 0)
10792 {
10793 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
10794 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
10795 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
10796 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
10797 symtab_shndx_hdr->sh_size = amt;
10798
10799 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
10800 off, TRUE);
10801
10802 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
10803 || (bfd_bwrite (finfo.symshndxbuf, amt, abfd) != amt))
10804 return FALSE;
10805 }
10806
10807
10808 /* Finish up and write out the symbol string table (.strtab)
10809 section. */
10810 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
10811 /* sh_name was set in prep_headers. */
10812 symstrtab_hdr->sh_type = SHT_STRTAB;
10813 symstrtab_hdr->sh_flags = 0;
10814 symstrtab_hdr->sh_addr = 0;
10815 symstrtab_hdr->sh_size = _bfd_stringtab_size (finfo.symstrtab);
10816 symstrtab_hdr->sh_entsize = 0;
10817 symstrtab_hdr->sh_link = 0;
10818 symstrtab_hdr->sh_info = 0;
10819 /* sh_offset is set just below. */
10820 symstrtab_hdr->sh_addralign = 1;
10821
10822 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
10823 elf_tdata (abfd)->next_file_pos = off;
10824
10825 if (bfd_get_symcount (abfd) > 0)
10826 {
10827 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
10828 || ! _bfd_stringtab_emit (abfd, finfo.symstrtab))
10829 return FALSE;
10830 }
10831
10832 /* Adjust the relocs to have the correct symbol indices. */
10833 for (o = abfd->sections; o != NULL; o = o->next)
10834 {
10835 if ((o->flags & SEC_RELOC) == 0)
10836 continue;
10837
10838 elf_link_adjust_relocs (abfd, &elf_section_data (o)->rel_hdr,
10839 elf_section_data (o)->rel_count,
10840 elf_section_data (o)->rel_hashes);
10841 if (elf_section_data (o)->rel_hdr2 != NULL)
10842 elf_link_adjust_relocs (abfd, elf_section_data (o)->rel_hdr2,
10843 elf_section_data (o)->rel_count2,
10844 (elf_section_data (o)->rel_hashes
10845 + elf_section_data (o)->rel_count));
10846
10847 /* Set the reloc_count field to 0 to prevent write_relocs from
10848 trying to swap the relocs out itself. */
10849 o->reloc_count = 0;
10850 }
10851
10852 if (dynamic && info->combreloc && dynobj != NULL)
10853 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
10854
10855 /* If we are linking against a dynamic object, or generating a
10856 shared library, finish up the dynamic linking information. */
10857 if (dynamic)
10858 {
10859 bfd_byte *dyncon, *dynconend;
10860
10861 /* Fix up .dynamic entries. */
10862 o = bfd_get_section_by_name (dynobj, ".dynamic");
10863 BFD_ASSERT (o != NULL);
10864
10865 dyncon = o->contents;
10866 dynconend = o->contents + o->size;
10867 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
10868 {
10869 Elf_Internal_Dyn dyn;
10870 const char *name;
10871 unsigned int type;
10872
10873 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
10874
10875 switch (dyn.d_tag)
10876 {
10877 default:
10878 continue;
10879 case DT_NULL:
10880 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
10881 {
10882 switch (elf_section_data (reldyn)->this_hdr.sh_type)
10883 {
10884 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
10885 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
10886 default: continue;
10887 }
10888 dyn.d_un.d_val = relativecount;
10889 relativecount = 0;
10890 break;
10891 }
10892 continue;
10893
10894 case DT_INIT:
10895 name = info->init_function;
10896 goto get_sym;
10897 case DT_FINI:
10898 name = info->fini_function;
10899 get_sym:
10900 {
10901 struct elf_link_hash_entry *h;
10902
10903 h = elf_link_hash_lookup (elf_hash_table (info), name,
10904 FALSE, FALSE, TRUE);
10905 if (h != NULL
10906 && (h->root.type == bfd_link_hash_defined
10907 || h->root.type == bfd_link_hash_defweak))
10908 {
10909 dyn.d_un.d_ptr = h->root.u.def.value;
10910 o = h->root.u.def.section;
10911 if (o->output_section != NULL)
10912 dyn.d_un.d_ptr += (o->output_section->vma
10913 + o->output_offset);
10914 else
10915 {
10916 /* The symbol is imported from another shared
10917 library and does not apply to this one. */
10918 dyn.d_un.d_ptr = 0;
10919 }
10920 break;
10921 }
10922 }
10923 continue;
10924
10925 case DT_PREINIT_ARRAYSZ:
10926 name = ".preinit_array";
10927 goto get_size;
10928 case DT_INIT_ARRAYSZ:
10929 name = ".init_array";
10930 goto get_size;
10931 case DT_FINI_ARRAYSZ:
10932 name = ".fini_array";
10933 get_size:
10934 o = bfd_get_section_by_name (abfd, name);
10935 if (o == NULL)
10936 {
10937 (*_bfd_error_handler)
10938 (_("%B: could not find output section %s"), abfd, name);
10939 goto error_return;
10940 }
10941 if (o->size == 0)
10942 (*_bfd_error_handler)
10943 (_("warning: %s section has zero size"), name);
10944 dyn.d_un.d_val = o->size;
10945 break;
10946
10947 case DT_PREINIT_ARRAY:
10948 name = ".preinit_array";
10949 goto get_vma;
10950 case DT_INIT_ARRAY:
10951 name = ".init_array";
10952 goto get_vma;
10953 case DT_FINI_ARRAY:
10954 name = ".fini_array";
10955 goto get_vma;
10956
10957 case DT_HASH:
10958 name = ".hash";
10959 goto get_vma;
10960 case DT_GNU_HASH:
10961 name = ".gnu.hash";
10962 goto get_vma;
10963 case DT_STRTAB:
10964 name = ".dynstr";
10965 goto get_vma;
10966 case DT_SYMTAB:
10967 name = ".dynsym";
10968 goto get_vma;
10969 case DT_VERDEF:
10970 name = ".gnu.version_d";
10971 goto get_vma;
10972 case DT_VERNEED:
10973 name = ".gnu.version_r";
10974 goto get_vma;
10975 case DT_VERSYM:
10976 name = ".gnu.version";
10977 get_vma:
10978 o = bfd_get_section_by_name (abfd, name);
10979 if (o == NULL)
10980 {
10981 (*_bfd_error_handler)
10982 (_("%B: could not find output section %s"), abfd, name);
10983 goto error_return;
10984 }
10985 dyn.d_un.d_ptr = o->vma;
10986 break;
10987
10988 case DT_REL:
10989 case DT_RELA:
10990 case DT_RELSZ:
10991 case DT_RELASZ:
10992 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10993 type = SHT_REL;
10994 else
10995 type = SHT_RELA;
10996 dyn.d_un.d_val = 0;
10997 dyn.d_un.d_ptr = 0;
10998 for (i = 1; i < elf_numsections (abfd); i++)
10999 {
11000 Elf_Internal_Shdr *hdr;
11001
11002 hdr = elf_elfsections (abfd)[i];
11003 if (hdr->sh_type == type
11004 && (hdr->sh_flags & SHF_ALLOC) != 0)
11005 {
11006 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11007 dyn.d_un.d_val += hdr->sh_size;
11008 else
11009 {
11010 if (dyn.d_un.d_ptr == 0
11011 || hdr->sh_addr < dyn.d_un.d_ptr)
11012 dyn.d_un.d_ptr = hdr->sh_addr;
11013 }
11014 }
11015 }
11016 break;
11017 }
11018 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11019 }
11020 }
11021
11022 /* If we have created any dynamic sections, then output them. */
11023 if (dynobj != NULL)
11024 {
11025 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11026 goto error_return;
11027
11028 /* Check for DT_TEXTREL (late, in case the backend removes it). */
11029 if (info->warn_shared_textrel && info->shared)
11030 {
11031 bfd_byte *dyncon, *dynconend;
11032
11033 /* Fix up .dynamic entries. */
11034 o = bfd_get_section_by_name (dynobj, ".dynamic");
11035 BFD_ASSERT (o != NULL);
11036
11037 dyncon = o->contents;
11038 dynconend = o->contents + o->size;
11039 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11040 {
11041 Elf_Internal_Dyn dyn;
11042
11043 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11044
11045 if (dyn.d_tag == DT_TEXTREL)
11046 {
11047 info->callbacks->einfo
11048 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11049 break;
11050 }
11051 }
11052 }
11053
11054 for (o = dynobj->sections; o != NULL; o = o->next)
11055 {
11056 if ((o->flags & SEC_HAS_CONTENTS) == 0
11057 || o->size == 0
11058 || o->output_section == bfd_abs_section_ptr)
11059 continue;
11060 if ((o->flags & SEC_LINKER_CREATED) == 0)
11061 {
11062 /* At this point, we are only interested in sections
11063 created by _bfd_elf_link_create_dynamic_sections. */
11064 continue;
11065 }
11066 if (elf_hash_table (info)->stab_info.stabstr == o)
11067 continue;
11068 if (elf_hash_table (info)->eh_info.hdr_sec == o)
11069 continue;
11070 if ((elf_section_data (o->output_section)->this_hdr.sh_type
11071 != SHT_STRTAB)
11072 || strcmp (bfd_get_section_name (abfd, o), ".dynstr") != 0)
11073 {
11074 /* FIXME: octets_per_byte. */
11075 if (! bfd_set_section_contents (abfd, o->output_section,
11076 o->contents,
11077 (file_ptr) o->output_offset,
11078 o->size))
11079 goto error_return;
11080 }
11081 else
11082 {
11083 /* The contents of the .dynstr section are actually in a
11084 stringtab. */
11085 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11086 if (bfd_seek (abfd, off, SEEK_SET) != 0
11087 || ! _bfd_elf_strtab_emit (abfd,
11088 elf_hash_table (info)->dynstr))
11089 goto error_return;
11090 }
11091 }
11092 }
11093
11094 if (info->relocatable)
11095 {
11096 bfd_boolean failed = FALSE;
11097
11098 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11099 if (failed)
11100 goto error_return;
11101 }
11102
11103 /* If we have optimized stabs strings, output them. */
11104 if (elf_hash_table (info)->stab_info.stabstr != NULL)
11105 {
11106 if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11107 goto error_return;
11108 }
11109
11110 if (info->eh_frame_hdr)
11111 {
11112 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11113 goto error_return;
11114 }
11115
11116 if (finfo.symstrtab != NULL)
11117 _bfd_stringtab_free (finfo.symstrtab);
11118 if (finfo.contents != NULL)
11119 free (finfo.contents);
11120 if (finfo.external_relocs != NULL)
11121 free (finfo.external_relocs);
11122 if (finfo.internal_relocs != NULL)
11123 free (finfo.internal_relocs);
11124 if (finfo.external_syms != NULL)
11125 free (finfo.external_syms);
11126 if (finfo.locsym_shndx != NULL)
11127 free (finfo.locsym_shndx);
11128 if (finfo.internal_syms != NULL)
11129 free (finfo.internal_syms);
11130 if (finfo.indices != NULL)
11131 free (finfo.indices);
11132 if (finfo.sections != NULL)
11133 free (finfo.sections);
11134 if (finfo.symbuf != NULL)
11135 free (finfo.symbuf);
11136 if (finfo.symshndxbuf != NULL)
11137 free (finfo.symshndxbuf);
11138 for (o = abfd->sections; o != NULL; o = o->next)
11139 {
11140 if ((o->flags & SEC_RELOC) != 0
11141 && elf_section_data (o)->rel_hashes != NULL)
11142 free (elf_section_data (o)->rel_hashes);
11143 }
11144
11145 elf_tdata (abfd)->linker = TRUE;
11146
11147 if (attr_section)
11148 {
11149 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11150 if (contents == NULL)
11151 return FALSE; /* Bail out and fail. */
11152 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11153 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11154 free (contents);
11155 }
11156
11157 return TRUE;
11158
11159 error_return:
11160 if (finfo.symstrtab != NULL)
11161 _bfd_stringtab_free (finfo.symstrtab);
11162 if (finfo.contents != NULL)
11163 free (finfo.contents);
11164 if (finfo.external_relocs != NULL)
11165 free (finfo.external_relocs);
11166 if (finfo.internal_relocs != NULL)
11167 free (finfo.internal_relocs);
11168 if (finfo.external_syms != NULL)
11169 free (finfo.external_syms);
11170 if (finfo.locsym_shndx != NULL)
11171 free (finfo.locsym_shndx);
11172 if (finfo.internal_syms != NULL)
11173 free (finfo.internal_syms);
11174 if (finfo.indices != NULL)
11175 free (finfo.indices);
11176 if (finfo.sections != NULL)
11177 free (finfo.sections);
11178 if (finfo.symbuf != NULL)
11179 free (finfo.symbuf);
11180 if (finfo.symshndxbuf != NULL)
11181 free (finfo.symshndxbuf);
11182 for (o = abfd->sections; o != NULL; o = o->next)
11183 {
11184 if ((o->flags & SEC_RELOC) != 0
11185 && elf_section_data (o)->rel_hashes != NULL)
11186 free (elf_section_data (o)->rel_hashes);
11187 }
11188
11189 return FALSE;
11190 }
11191 \f
11192 /* Initialize COOKIE for input bfd ABFD. */
11193
11194 static bfd_boolean
11195 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11196 struct bfd_link_info *info, bfd *abfd)
11197 {
11198 Elf_Internal_Shdr *symtab_hdr;
11199 const struct elf_backend_data *bed;
11200
11201 bed = get_elf_backend_data (abfd);
11202 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11203
11204 cookie->abfd = abfd;
11205 cookie->sym_hashes = elf_sym_hashes (abfd);
11206 cookie->bad_symtab = elf_bad_symtab (abfd);
11207 if (cookie->bad_symtab)
11208 {
11209 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11210 cookie->extsymoff = 0;
11211 }
11212 else
11213 {
11214 cookie->locsymcount = symtab_hdr->sh_info;
11215 cookie->extsymoff = symtab_hdr->sh_info;
11216 }
11217
11218 if (bed->s->arch_size == 32)
11219 cookie->r_sym_shift = 8;
11220 else
11221 cookie->r_sym_shift = 32;
11222
11223 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11224 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11225 {
11226 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11227 cookie->locsymcount, 0,
11228 NULL, NULL, NULL);
11229 if (cookie->locsyms == NULL)
11230 {
11231 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11232 return FALSE;
11233 }
11234 if (info->keep_memory)
11235 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11236 }
11237 return TRUE;
11238 }
11239
11240 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
11241
11242 static void
11243 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11244 {
11245 Elf_Internal_Shdr *symtab_hdr;
11246
11247 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11248 if (cookie->locsyms != NULL
11249 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11250 free (cookie->locsyms);
11251 }
11252
11253 /* Initialize the relocation information in COOKIE for input section SEC
11254 of input bfd ABFD. */
11255
11256 static bfd_boolean
11257 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11258 struct bfd_link_info *info, bfd *abfd,
11259 asection *sec)
11260 {
11261 const struct elf_backend_data *bed;
11262
11263 if (sec->reloc_count == 0)
11264 {
11265 cookie->rels = NULL;
11266 cookie->relend = NULL;
11267 }
11268 else
11269 {
11270 bed = get_elf_backend_data (abfd);
11271
11272 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11273 info->keep_memory);
11274 if (cookie->rels == NULL)
11275 return FALSE;
11276 cookie->rel = cookie->rels;
11277 cookie->relend = (cookie->rels
11278 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
11279 }
11280 cookie->rel = cookie->rels;
11281 return TRUE;
11282 }
11283
11284 /* Free the memory allocated by init_reloc_cookie_rels,
11285 if appropriate. */
11286
11287 static void
11288 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11289 asection *sec)
11290 {
11291 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11292 free (cookie->rels);
11293 }
11294
11295 /* Initialize the whole of COOKIE for input section SEC. */
11296
11297 static bfd_boolean
11298 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11299 struct bfd_link_info *info,
11300 asection *sec)
11301 {
11302 if (!init_reloc_cookie (cookie, info, sec->owner))
11303 goto error1;
11304 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11305 goto error2;
11306 return TRUE;
11307
11308 error2:
11309 fini_reloc_cookie (cookie, sec->owner);
11310 error1:
11311 return FALSE;
11312 }
11313
11314 /* Free the memory allocated by init_reloc_cookie_for_section,
11315 if appropriate. */
11316
11317 static void
11318 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11319 asection *sec)
11320 {
11321 fini_reloc_cookie_rels (cookie, sec);
11322 fini_reloc_cookie (cookie, sec->owner);
11323 }
11324 \f
11325 /* Garbage collect unused sections. */
11326
11327 /* Default gc_mark_hook. */
11328
11329 asection *
11330 _bfd_elf_gc_mark_hook (asection *sec,
11331 struct bfd_link_info *info ATTRIBUTE_UNUSED,
11332 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11333 struct elf_link_hash_entry *h,
11334 Elf_Internal_Sym *sym)
11335 {
11336 if (h != NULL)
11337 {
11338 switch (h->root.type)
11339 {
11340 case bfd_link_hash_defined:
11341 case bfd_link_hash_defweak:
11342 return h->root.u.def.section;
11343
11344 case bfd_link_hash_common:
11345 return h->root.u.c.p->section;
11346
11347 default:
11348 break;
11349 }
11350 }
11351 else
11352 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11353
11354 return NULL;
11355 }
11356
11357 /* COOKIE->rel describes a relocation against section SEC, which is
11358 a section we've decided to keep. Return the section that contains
11359 the relocation symbol, or NULL if no section contains it. */
11360
11361 asection *
11362 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11363 elf_gc_mark_hook_fn gc_mark_hook,
11364 struct elf_reloc_cookie *cookie)
11365 {
11366 unsigned long r_symndx;
11367 struct elf_link_hash_entry *h;
11368
11369 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11370 if (r_symndx == 0)
11371 return NULL;
11372
11373 if (r_symndx >= cookie->locsymcount
11374 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11375 {
11376 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11377 while (h->root.type == bfd_link_hash_indirect
11378 || h->root.type == bfd_link_hash_warning)
11379 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11380 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11381 }
11382
11383 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11384 &cookie->locsyms[r_symndx]);
11385 }
11386
11387 /* COOKIE->rel describes a relocation against section SEC, which is
11388 a section we've decided to keep. Mark the section that contains
11389 the relocation symbol. */
11390
11391 bfd_boolean
11392 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11393 asection *sec,
11394 elf_gc_mark_hook_fn gc_mark_hook,
11395 struct elf_reloc_cookie *cookie)
11396 {
11397 asection *rsec;
11398
11399 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11400 if (rsec && !rsec->gc_mark)
11401 {
11402 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour)
11403 rsec->gc_mark = 1;
11404 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11405 return FALSE;
11406 }
11407 return TRUE;
11408 }
11409
11410 /* The mark phase of garbage collection. For a given section, mark
11411 it and any sections in this section's group, and all the sections
11412 which define symbols to which it refers. */
11413
11414 bfd_boolean
11415 _bfd_elf_gc_mark (struct bfd_link_info *info,
11416 asection *sec,
11417 elf_gc_mark_hook_fn gc_mark_hook)
11418 {
11419 bfd_boolean ret;
11420 asection *group_sec, *eh_frame;
11421
11422 sec->gc_mark = 1;
11423
11424 /* Mark all the sections in the group. */
11425 group_sec = elf_section_data (sec)->next_in_group;
11426 if (group_sec && !group_sec->gc_mark)
11427 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11428 return FALSE;
11429
11430 /* Look through the section relocs. */
11431 ret = TRUE;
11432 eh_frame = elf_eh_frame_section (sec->owner);
11433 if ((sec->flags & SEC_RELOC) != 0
11434 && sec->reloc_count > 0
11435 && sec != eh_frame)
11436 {
11437 struct elf_reloc_cookie cookie;
11438
11439 if (!init_reloc_cookie_for_section (&cookie, info, sec))
11440 ret = FALSE;
11441 else
11442 {
11443 for (; cookie.rel < cookie.relend; cookie.rel++)
11444 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11445 {
11446 ret = FALSE;
11447 break;
11448 }
11449 fini_reloc_cookie_for_section (&cookie, sec);
11450 }
11451 }
11452
11453 if (ret && eh_frame && elf_fde_list (sec))
11454 {
11455 struct elf_reloc_cookie cookie;
11456
11457 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11458 ret = FALSE;
11459 else
11460 {
11461 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11462 gc_mark_hook, &cookie))
11463 ret = FALSE;
11464 fini_reloc_cookie_for_section (&cookie, eh_frame);
11465 }
11466 }
11467
11468 return ret;
11469 }
11470
11471 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
11472
11473 struct elf_gc_sweep_symbol_info
11474 {
11475 struct bfd_link_info *info;
11476 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11477 bfd_boolean);
11478 };
11479
11480 static bfd_boolean
11481 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11482 {
11483 if (h->root.type == bfd_link_hash_warning)
11484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11485
11486 if ((h->root.type == bfd_link_hash_defined
11487 || h->root.type == bfd_link_hash_defweak)
11488 && !h->root.u.def.section->gc_mark
11489 && !(h->root.u.def.section->owner->flags & DYNAMIC))
11490 {
11491 struct elf_gc_sweep_symbol_info *inf =
11492 (struct elf_gc_sweep_symbol_info *) data;
11493 (*inf->hide_symbol) (inf->info, h, TRUE);
11494 }
11495
11496 return TRUE;
11497 }
11498
11499 /* The sweep phase of garbage collection. Remove all garbage sections. */
11500
11501 typedef bfd_boolean (*gc_sweep_hook_fn)
11502 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11503
11504 static bfd_boolean
11505 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11506 {
11507 bfd *sub;
11508 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11509 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11510 unsigned long section_sym_count;
11511 struct elf_gc_sweep_symbol_info sweep_info;
11512
11513 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11514 {
11515 asection *o;
11516
11517 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11518 continue;
11519
11520 for (o = sub->sections; o != NULL; o = o->next)
11521 {
11522 /* When any section in a section group is kept, we keep all
11523 sections in the section group. If the first member of
11524 the section group is excluded, we will also exclude the
11525 group section. */
11526 if (o->flags & SEC_GROUP)
11527 {
11528 asection *first = elf_next_in_group (o);
11529 o->gc_mark = first->gc_mark;
11530 }
11531 else if ((o->flags & (SEC_DEBUGGING | SEC_LINKER_CREATED)) != 0
11532 || (o->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
11533 {
11534 /* Keep debug and special sections. */
11535 o->gc_mark = 1;
11536 }
11537
11538 if (o->gc_mark)
11539 continue;
11540
11541 /* Skip sweeping sections already excluded. */
11542 if (o->flags & SEC_EXCLUDE)
11543 continue;
11544
11545 /* Since this is early in the link process, it is simple
11546 to remove a section from the output. */
11547 o->flags |= SEC_EXCLUDE;
11548
11549 if (info->print_gc_sections && o->size != 0)
11550 _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11551
11552 /* But we also have to update some of the relocation
11553 info we collected before. */
11554 if (gc_sweep_hook
11555 && (o->flags & SEC_RELOC) != 0
11556 && o->reloc_count > 0
11557 && !bfd_is_abs_section (o->output_section))
11558 {
11559 Elf_Internal_Rela *internal_relocs;
11560 bfd_boolean r;
11561
11562 internal_relocs
11563 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11564 info->keep_memory);
11565 if (internal_relocs == NULL)
11566 return FALSE;
11567
11568 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11569
11570 if (elf_section_data (o)->relocs != internal_relocs)
11571 free (internal_relocs);
11572
11573 if (!r)
11574 return FALSE;
11575 }
11576 }
11577 }
11578
11579 /* Remove the symbols that were in the swept sections from the dynamic
11580 symbol table. GCFIXME: Anyone know how to get them out of the
11581 static symbol table as well? */
11582 sweep_info.info = info;
11583 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
11584 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
11585 &sweep_info);
11586
11587 _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
11588 return TRUE;
11589 }
11590
11591 /* Propagate collected vtable information. This is called through
11592 elf_link_hash_traverse. */
11593
11594 static bfd_boolean
11595 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
11596 {
11597 if (h->root.type == bfd_link_hash_warning)
11598 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11599
11600 /* Those that are not vtables. */
11601 if (h->vtable == NULL || h->vtable->parent == NULL)
11602 return TRUE;
11603
11604 /* Those vtables that do not have parents, we cannot merge. */
11605 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
11606 return TRUE;
11607
11608 /* If we've already been done, exit. */
11609 if (h->vtable->used && h->vtable->used[-1])
11610 return TRUE;
11611
11612 /* Make sure the parent's table is up to date. */
11613 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
11614
11615 if (h->vtable->used == NULL)
11616 {
11617 /* None of this table's entries were referenced. Re-use the
11618 parent's table. */
11619 h->vtable->used = h->vtable->parent->vtable->used;
11620 h->vtable->size = h->vtable->parent->vtable->size;
11621 }
11622 else
11623 {
11624 size_t n;
11625 bfd_boolean *cu, *pu;
11626
11627 /* Or the parent's entries into ours. */
11628 cu = h->vtable->used;
11629 cu[-1] = TRUE;
11630 pu = h->vtable->parent->vtable->used;
11631 if (pu != NULL)
11632 {
11633 const struct elf_backend_data *bed;
11634 unsigned int log_file_align;
11635
11636 bed = get_elf_backend_data (h->root.u.def.section->owner);
11637 log_file_align = bed->s->log_file_align;
11638 n = h->vtable->parent->vtable->size >> log_file_align;
11639 while (n--)
11640 {
11641 if (*pu)
11642 *cu = TRUE;
11643 pu++;
11644 cu++;
11645 }
11646 }
11647 }
11648
11649 return TRUE;
11650 }
11651
11652 static bfd_boolean
11653 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
11654 {
11655 asection *sec;
11656 bfd_vma hstart, hend;
11657 Elf_Internal_Rela *relstart, *relend, *rel;
11658 const struct elf_backend_data *bed;
11659 unsigned int log_file_align;
11660
11661 if (h->root.type == bfd_link_hash_warning)
11662 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11663
11664 /* Take care of both those symbols that do not describe vtables as
11665 well as those that are not loaded. */
11666 if (h->vtable == NULL || h->vtable->parent == NULL)
11667 return TRUE;
11668
11669 BFD_ASSERT (h->root.type == bfd_link_hash_defined
11670 || h->root.type == bfd_link_hash_defweak);
11671
11672 sec = h->root.u.def.section;
11673 hstart = h->root.u.def.value;
11674 hend = hstart + h->size;
11675
11676 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
11677 if (!relstart)
11678 return *(bfd_boolean *) okp = FALSE;
11679 bed = get_elf_backend_data (sec->owner);
11680 log_file_align = bed->s->log_file_align;
11681
11682 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
11683
11684 for (rel = relstart; rel < relend; ++rel)
11685 if (rel->r_offset >= hstart && rel->r_offset < hend)
11686 {
11687 /* If the entry is in use, do nothing. */
11688 if (h->vtable->used
11689 && (rel->r_offset - hstart) < h->vtable->size)
11690 {
11691 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
11692 if (h->vtable->used[entry])
11693 continue;
11694 }
11695 /* Otherwise, kill it. */
11696 rel->r_offset = rel->r_info = rel->r_addend = 0;
11697 }
11698
11699 return TRUE;
11700 }
11701
11702 /* Mark sections containing dynamically referenced symbols. When
11703 building shared libraries, we must assume that any visible symbol is
11704 referenced. */
11705
11706 bfd_boolean
11707 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
11708 {
11709 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11710
11711 if (h->root.type == bfd_link_hash_warning)
11712 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11713
11714 if ((h->root.type == bfd_link_hash_defined
11715 || h->root.type == bfd_link_hash_defweak)
11716 && (h->ref_dynamic
11717 || (!info->executable
11718 && h->def_regular
11719 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
11720 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN)))
11721 h->root.u.def.section->flags |= SEC_KEEP;
11722
11723 return TRUE;
11724 }
11725
11726 /* Keep all sections containing symbols undefined on the command-line,
11727 and the section containing the entry symbol. */
11728
11729 void
11730 _bfd_elf_gc_keep (struct bfd_link_info *info)
11731 {
11732 struct bfd_sym_chain *sym;
11733
11734 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
11735 {
11736 struct elf_link_hash_entry *h;
11737
11738 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
11739 FALSE, FALSE, FALSE);
11740
11741 if (h != NULL
11742 && (h->root.type == bfd_link_hash_defined
11743 || h->root.type == bfd_link_hash_defweak)
11744 && !bfd_is_abs_section (h->root.u.def.section))
11745 h->root.u.def.section->flags |= SEC_KEEP;
11746 }
11747 }
11748
11749 /* Do mark and sweep of unused sections. */
11750
11751 bfd_boolean
11752 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
11753 {
11754 bfd_boolean ok = TRUE;
11755 bfd *sub;
11756 elf_gc_mark_hook_fn gc_mark_hook;
11757 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11758
11759 if (!bed->can_gc_sections
11760 || !is_elf_hash_table (info->hash))
11761 {
11762 (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
11763 return TRUE;
11764 }
11765
11766 bed->gc_keep (info);
11767
11768 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
11769 at the .eh_frame section if we can mark the FDEs individually. */
11770 _bfd_elf_begin_eh_frame_parsing (info);
11771 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11772 {
11773 asection *sec;
11774 struct elf_reloc_cookie cookie;
11775
11776 sec = bfd_get_section_by_name (sub, ".eh_frame");
11777 if (sec && init_reloc_cookie_for_section (&cookie, info, sec))
11778 {
11779 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
11780 if (elf_section_data (sec)->sec_info)
11781 elf_eh_frame_section (sub) = sec;
11782 fini_reloc_cookie_for_section (&cookie, sec);
11783 }
11784 }
11785 _bfd_elf_end_eh_frame_parsing (info);
11786
11787 /* Apply transitive closure to the vtable entry usage info. */
11788 elf_link_hash_traverse (elf_hash_table (info),
11789 elf_gc_propagate_vtable_entries_used,
11790 &ok);
11791 if (!ok)
11792 return FALSE;
11793
11794 /* Kill the vtable relocations that were not used. */
11795 elf_link_hash_traverse (elf_hash_table (info),
11796 elf_gc_smash_unused_vtentry_relocs,
11797 &ok);
11798 if (!ok)
11799 return FALSE;
11800
11801 /* Mark dynamically referenced symbols. */
11802 if (elf_hash_table (info)->dynamic_sections_created)
11803 elf_link_hash_traverse (elf_hash_table (info),
11804 bed->gc_mark_dynamic_ref,
11805 info);
11806
11807 /* Grovel through relocs to find out who stays ... */
11808 gc_mark_hook = bed->gc_mark_hook;
11809 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11810 {
11811 asection *o;
11812
11813 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11814 continue;
11815
11816 for (o = sub->sections; o != NULL; o = o->next)
11817 if ((o->flags & (SEC_EXCLUDE | SEC_KEEP)) == SEC_KEEP && !o->gc_mark)
11818 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
11819 return FALSE;
11820 }
11821
11822 /* Allow the backend to mark additional target specific sections. */
11823 if (bed->gc_mark_extra_sections)
11824 bed->gc_mark_extra_sections (info, gc_mark_hook);
11825
11826 /* ... and mark SEC_EXCLUDE for those that go. */
11827 return elf_gc_sweep (abfd, info);
11828 }
11829 \f
11830 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
11831
11832 bfd_boolean
11833 bfd_elf_gc_record_vtinherit (bfd *abfd,
11834 asection *sec,
11835 struct elf_link_hash_entry *h,
11836 bfd_vma offset)
11837 {
11838 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
11839 struct elf_link_hash_entry **search, *child;
11840 bfd_size_type extsymcount;
11841 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11842
11843 /* The sh_info field of the symtab header tells us where the
11844 external symbols start. We don't care about the local symbols at
11845 this point. */
11846 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
11847 if (!elf_bad_symtab (abfd))
11848 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
11849
11850 sym_hashes = elf_sym_hashes (abfd);
11851 sym_hashes_end = sym_hashes + extsymcount;
11852
11853 /* Hunt down the child symbol, which is in this section at the same
11854 offset as the relocation. */
11855 for (search = sym_hashes; search != sym_hashes_end; ++search)
11856 {
11857 if ((child = *search) != NULL
11858 && (child->root.type == bfd_link_hash_defined
11859 || child->root.type == bfd_link_hash_defweak)
11860 && child->root.u.def.section == sec
11861 && child->root.u.def.value == offset)
11862 goto win;
11863 }
11864
11865 (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
11866 abfd, sec, (unsigned long) offset);
11867 bfd_set_error (bfd_error_invalid_operation);
11868 return FALSE;
11869
11870 win:
11871 if (!child->vtable)
11872 {
11873 child->vtable = (struct elf_link_virtual_table_entry *)
11874 bfd_zalloc (abfd, sizeof (*child->vtable));
11875 if (!child->vtable)
11876 return FALSE;
11877 }
11878 if (!h)
11879 {
11880 /* This *should* only be the absolute section. It could potentially
11881 be that someone has defined a non-global vtable though, which
11882 would be bad. It isn't worth paging in the local symbols to be
11883 sure though; that case should simply be handled by the assembler. */
11884
11885 child->vtable->parent = (struct elf_link_hash_entry *) -1;
11886 }
11887 else
11888 child->vtable->parent = h;
11889
11890 return TRUE;
11891 }
11892
11893 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
11894
11895 bfd_boolean
11896 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
11897 asection *sec ATTRIBUTE_UNUSED,
11898 struct elf_link_hash_entry *h,
11899 bfd_vma addend)
11900 {
11901 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11902 unsigned int log_file_align = bed->s->log_file_align;
11903
11904 if (!h->vtable)
11905 {
11906 h->vtable = (struct elf_link_virtual_table_entry *)
11907 bfd_zalloc (abfd, sizeof (*h->vtable));
11908 if (!h->vtable)
11909 return FALSE;
11910 }
11911
11912 if (addend >= h->vtable->size)
11913 {
11914 size_t size, bytes, file_align;
11915 bfd_boolean *ptr = h->vtable->used;
11916
11917 /* While the symbol is undefined, we have to be prepared to handle
11918 a zero size. */
11919 file_align = 1 << log_file_align;
11920 if (h->root.type == bfd_link_hash_undefined)
11921 size = addend + file_align;
11922 else
11923 {
11924 size = h->size;
11925 if (addend >= size)
11926 {
11927 /* Oops! We've got a reference past the defined end of
11928 the table. This is probably a bug -- shall we warn? */
11929 size = addend + file_align;
11930 }
11931 }
11932 size = (size + file_align - 1) & -file_align;
11933
11934 /* Allocate one extra entry for use as a "done" flag for the
11935 consolidation pass. */
11936 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
11937
11938 if (ptr)
11939 {
11940 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
11941
11942 if (ptr != NULL)
11943 {
11944 size_t oldbytes;
11945
11946 oldbytes = (((h->vtable->size >> log_file_align) + 1)
11947 * sizeof (bfd_boolean));
11948 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
11949 }
11950 }
11951 else
11952 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
11953
11954 if (ptr == NULL)
11955 return FALSE;
11956
11957 /* And arrange for that done flag to be at index -1. */
11958 h->vtable->used = ptr + 1;
11959 h->vtable->size = size;
11960 }
11961
11962 h->vtable->used[addend >> log_file_align] = TRUE;
11963
11964 return TRUE;
11965 }
11966
11967 struct alloc_got_off_arg {
11968 bfd_vma gotoff;
11969 struct bfd_link_info *info;
11970 };
11971
11972 /* We need a special top-level link routine to convert got reference counts
11973 to real got offsets. */
11974
11975 static bfd_boolean
11976 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
11977 {
11978 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
11979 bfd *obfd = gofarg->info->output_bfd;
11980 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
11981
11982 if (h->root.type == bfd_link_hash_warning)
11983 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11984
11985 if (h->got.refcount > 0)
11986 {
11987 h->got.offset = gofarg->gotoff;
11988 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
11989 }
11990 else
11991 h->got.offset = (bfd_vma) -1;
11992
11993 return TRUE;
11994 }
11995
11996 /* And an accompanying bit to work out final got entry offsets once
11997 we're done. Should be called from final_link. */
11998
11999 bfd_boolean
12000 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12001 struct bfd_link_info *info)
12002 {
12003 bfd *i;
12004 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12005 bfd_vma gotoff;
12006 struct alloc_got_off_arg gofarg;
12007
12008 BFD_ASSERT (abfd == info->output_bfd);
12009
12010 if (! is_elf_hash_table (info->hash))
12011 return FALSE;
12012
12013 /* The GOT offset is relative to the .got section, but the GOT header is
12014 put into the .got.plt section, if the backend uses it. */
12015 if (bed->want_got_plt)
12016 gotoff = 0;
12017 else
12018 gotoff = bed->got_header_size;
12019
12020 /* Do the local .got entries first. */
12021 for (i = info->input_bfds; i; i = i->link_next)
12022 {
12023 bfd_signed_vma *local_got;
12024 bfd_size_type j, locsymcount;
12025 Elf_Internal_Shdr *symtab_hdr;
12026
12027 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12028 continue;
12029
12030 local_got = elf_local_got_refcounts (i);
12031 if (!local_got)
12032 continue;
12033
12034 symtab_hdr = &elf_tdata (i)->symtab_hdr;
12035 if (elf_bad_symtab (i))
12036 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12037 else
12038 locsymcount = symtab_hdr->sh_info;
12039
12040 for (j = 0; j < locsymcount; ++j)
12041 {
12042 if (local_got[j] > 0)
12043 {
12044 local_got[j] = gotoff;
12045 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12046 }
12047 else
12048 local_got[j] = (bfd_vma) -1;
12049 }
12050 }
12051
12052 /* Then the global .got entries. .plt refcounts are handled by
12053 adjust_dynamic_symbol */
12054 gofarg.gotoff = gotoff;
12055 gofarg.info = info;
12056 elf_link_hash_traverse (elf_hash_table (info),
12057 elf_gc_allocate_got_offsets,
12058 &gofarg);
12059 return TRUE;
12060 }
12061
12062 /* Many folk need no more in the way of final link than this, once
12063 got entry reference counting is enabled. */
12064
12065 bfd_boolean
12066 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12067 {
12068 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12069 return FALSE;
12070
12071 /* Invoke the regular ELF backend linker to do all the work. */
12072 return bfd_elf_final_link (abfd, info);
12073 }
12074
12075 bfd_boolean
12076 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12077 {
12078 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12079
12080 if (rcookie->bad_symtab)
12081 rcookie->rel = rcookie->rels;
12082
12083 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12084 {
12085 unsigned long r_symndx;
12086
12087 if (! rcookie->bad_symtab)
12088 if (rcookie->rel->r_offset > offset)
12089 return FALSE;
12090 if (rcookie->rel->r_offset != offset)
12091 continue;
12092
12093 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12094 if (r_symndx == SHN_UNDEF)
12095 return TRUE;
12096
12097 if (r_symndx >= rcookie->locsymcount
12098 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12099 {
12100 struct elf_link_hash_entry *h;
12101
12102 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12103
12104 while (h->root.type == bfd_link_hash_indirect
12105 || h->root.type == bfd_link_hash_warning)
12106 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12107
12108 if ((h->root.type == bfd_link_hash_defined
12109 || h->root.type == bfd_link_hash_defweak)
12110 && elf_discarded_section (h->root.u.def.section))
12111 return TRUE;
12112 else
12113 return FALSE;
12114 }
12115 else
12116 {
12117 /* It's not a relocation against a global symbol,
12118 but it could be a relocation against a local
12119 symbol for a discarded section. */
12120 asection *isec;
12121 Elf_Internal_Sym *isym;
12122
12123 /* Need to: get the symbol; get the section. */
12124 isym = &rcookie->locsyms[r_symndx];
12125 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12126 if (isec != NULL && elf_discarded_section (isec))
12127 return TRUE;
12128 }
12129 return FALSE;
12130 }
12131 return FALSE;
12132 }
12133
12134 /* Discard unneeded references to discarded sections.
12135 Returns TRUE if any section's size was changed. */
12136 /* This function assumes that the relocations are in sorted order,
12137 which is true for all known assemblers. */
12138
12139 bfd_boolean
12140 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12141 {
12142 struct elf_reloc_cookie cookie;
12143 asection *stab, *eh;
12144 const struct elf_backend_data *bed;
12145 bfd *abfd;
12146 bfd_boolean ret = FALSE;
12147
12148 if (info->traditional_format
12149 || !is_elf_hash_table (info->hash))
12150 return FALSE;
12151
12152 _bfd_elf_begin_eh_frame_parsing (info);
12153 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12154 {
12155 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12156 continue;
12157
12158 bed = get_elf_backend_data (abfd);
12159
12160 if ((abfd->flags & DYNAMIC) != 0)
12161 continue;
12162
12163 eh = NULL;
12164 if (!info->relocatable)
12165 {
12166 eh = bfd_get_section_by_name (abfd, ".eh_frame");
12167 if (eh != NULL
12168 && (eh->size == 0
12169 || bfd_is_abs_section (eh->output_section)))
12170 eh = NULL;
12171 }
12172
12173 stab = bfd_get_section_by_name (abfd, ".stab");
12174 if (stab != NULL
12175 && (stab->size == 0
12176 || bfd_is_abs_section (stab->output_section)
12177 || stab->sec_info_type != ELF_INFO_TYPE_STABS))
12178 stab = NULL;
12179
12180 if (stab == NULL
12181 && eh == NULL
12182 && bed->elf_backend_discard_info == NULL)
12183 continue;
12184
12185 if (!init_reloc_cookie (&cookie, info, abfd))
12186 return FALSE;
12187
12188 if (stab != NULL
12189 && stab->reloc_count > 0
12190 && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12191 {
12192 if (_bfd_discard_section_stabs (abfd, stab,
12193 elf_section_data (stab)->sec_info,
12194 bfd_elf_reloc_symbol_deleted_p,
12195 &cookie))
12196 ret = TRUE;
12197 fini_reloc_cookie_rels (&cookie, stab);
12198 }
12199
12200 if (eh != NULL
12201 && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12202 {
12203 _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12204 if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12205 bfd_elf_reloc_symbol_deleted_p,
12206 &cookie))
12207 ret = TRUE;
12208 fini_reloc_cookie_rels (&cookie, eh);
12209 }
12210
12211 if (bed->elf_backend_discard_info != NULL
12212 && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12213 ret = TRUE;
12214
12215 fini_reloc_cookie (&cookie, abfd);
12216 }
12217 _bfd_elf_end_eh_frame_parsing (info);
12218
12219 if (info->eh_frame_hdr
12220 && !info->relocatable
12221 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12222 ret = TRUE;
12223
12224 return ret;
12225 }
12226
12227 /* For a SHT_GROUP section, return the group signature. For other
12228 sections, return the normal section name. */
12229
12230 static const char *
12231 section_signature (asection *sec)
12232 {
12233 if ((sec->flags & SEC_GROUP) != 0
12234 && elf_next_in_group (sec) != NULL
12235 && elf_group_name (elf_next_in_group (sec)) != NULL)
12236 return elf_group_name (elf_next_in_group (sec));
12237 return sec->name;
12238 }
12239
12240 void
12241 _bfd_elf_section_already_linked (bfd *abfd, asection *sec,
12242 struct bfd_link_info *info)
12243 {
12244 flagword flags;
12245 const char *name, *p;
12246 struct bfd_section_already_linked *l;
12247 struct bfd_section_already_linked_hash_entry *already_linked_list;
12248
12249 if (sec->output_section == bfd_abs_section_ptr)
12250 return;
12251
12252 flags = sec->flags;
12253
12254 /* Return if it isn't a linkonce section. A comdat group section
12255 also has SEC_LINK_ONCE set. */
12256 if ((flags & SEC_LINK_ONCE) == 0)
12257 return;
12258
12259 /* Don't put group member sections on our list of already linked
12260 sections. They are handled as a group via their group section. */
12261 if (elf_sec_group (sec) != NULL)
12262 return;
12263
12264 /* FIXME: When doing a relocatable link, we may have trouble
12265 copying relocations in other sections that refer to local symbols
12266 in the section being discarded. Those relocations will have to
12267 be converted somehow; as of this writing I'm not sure that any of
12268 the backends handle that correctly.
12269
12270 It is tempting to instead not discard link once sections when
12271 doing a relocatable link (technically, they should be discarded
12272 whenever we are building constructors). However, that fails,
12273 because the linker winds up combining all the link once sections
12274 into a single large link once section, which defeats the purpose
12275 of having link once sections in the first place.
12276
12277 Also, not merging link once sections in a relocatable link
12278 causes trouble for MIPS ELF, which relies on link once semantics
12279 to handle the .reginfo section correctly. */
12280
12281 name = section_signature (sec);
12282
12283 if (CONST_STRNEQ (name, ".gnu.linkonce.")
12284 && (p = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12285 p++;
12286 else
12287 p = name;
12288
12289 already_linked_list = bfd_section_already_linked_table_lookup (p);
12290
12291 for (l = already_linked_list->entry; l != NULL; l = l->next)
12292 {
12293 /* We may have 2 different types of sections on the list: group
12294 sections and linkonce sections. Match like sections. */
12295 if ((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12296 && strcmp (name, section_signature (l->sec)) == 0
12297 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL)
12298 {
12299 /* The section has already been linked. See if we should
12300 issue a warning. */
12301 switch (flags & SEC_LINK_DUPLICATES)
12302 {
12303 default:
12304 abort ();
12305
12306 case SEC_LINK_DUPLICATES_DISCARD:
12307 break;
12308
12309 case SEC_LINK_DUPLICATES_ONE_ONLY:
12310 (*_bfd_error_handler)
12311 (_("%B: ignoring duplicate section `%A'"),
12312 abfd, sec);
12313 break;
12314
12315 case SEC_LINK_DUPLICATES_SAME_SIZE:
12316 if (sec->size != l->sec->size)
12317 (*_bfd_error_handler)
12318 (_("%B: duplicate section `%A' has different size"),
12319 abfd, sec);
12320 break;
12321
12322 case SEC_LINK_DUPLICATES_SAME_CONTENTS:
12323 if (sec->size != l->sec->size)
12324 (*_bfd_error_handler)
12325 (_("%B: duplicate section `%A' has different size"),
12326 abfd, sec);
12327 else if (sec->size != 0)
12328 {
12329 bfd_byte *sec_contents, *l_sec_contents;
12330
12331 if (!bfd_malloc_and_get_section (abfd, sec, &sec_contents))
12332 (*_bfd_error_handler)
12333 (_("%B: warning: could not read contents of section `%A'"),
12334 abfd, sec);
12335 else if (!bfd_malloc_and_get_section (l->sec->owner, l->sec,
12336 &l_sec_contents))
12337 (*_bfd_error_handler)
12338 (_("%B: warning: could not read contents of section `%A'"),
12339 l->sec->owner, l->sec);
12340 else if (memcmp (sec_contents, l_sec_contents, sec->size) != 0)
12341 (*_bfd_error_handler)
12342 (_("%B: warning: duplicate section `%A' has different contents"),
12343 abfd, sec);
12344
12345 if (sec_contents)
12346 free (sec_contents);
12347 if (l_sec_contents)
12348 free (l_sec_contents);
12349 }
12350 break;
12351 }
12352
12353 /* Set the output_section field so that lang_add_section
12354 does not create a lang_input_section structure for this
12355 section. Since there might be a symbol in the section
12356 being discarded, we must retain a pointer to the section
12357 which we are really going to use. */
12358 sec->output_section = bfd_abs_section_ptr;
12359 sec->kept_section = l->sec;
12360
12361 if (flags & SEC_GROUP)
12362 {
12363 asection *first = elf_next_in_group (sec);
12364 asection *s = first;
12365
12366 while (s != NULL)
12367 {
12368 s->output_section = bfd_abs_section_ptr;
12369 /* Record which group discards it. */
12370 s->kept_section = l->sec;
12371 s = elf_next_in_group (s);
12372 /* These lists are circular. */
12373 if (s == first)
12374 break;
12375 }
12376 }
12377
12378 return;
12379 }
12380 }
12381
12382 /* A single member comdat group section may be discarded by a
12383 linkonce section and vice versa. */
12384
12385 if ((flags & SEC_GROUP) != 0)
12386 {
12387 asection *first = elf_next_in_group (sec);
12388
12389 if (first != NULL && elf_next_in_group (first) == first)
12390 /* Check this single member group against linkonce sections. */
12391 for (l = already_linked_list->entry; l != NULL; l = l->next)
12392 if ((l->sec->flags & SEC_GROUP) == 0
12393 && bfd_coff_get_comdat_section (l->sec->owner, l->sec) == NULL
12394 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12395 {
12396 first->output_section = bfd_abs_section_ptr;
12397 first->kept_section = l->sec;
12398 sec->output_section = bfd_abs_section_ptr;
12399 break;
12400 }
12401 }
12402 else
12403 /* Check this linkonce section against single member groups. */
12404 for (l = already_linked_list->entry; l != NULL; l = l->next)
12405 if (l->sec->flags & SEC_GROUP)
12406 {
12407 asection *first = elf_next_in_group (l->sec);
12408
12409 if (first != NULL
12410 && elf_next_in_group (first) == first
12411 && bfd_elf_match_symbols_in_sections (first, sec, info))
12412 {
12413 sec->output_section = bfd_abs_section_ptr;
12414 sec->kept_section = first;
12415 break;
12416 }
12417 }
12418
12419 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12420 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12421 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12422 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
12423 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
12424 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12425 `.gnu.linkonce.t.F' section from a different bfd not requiring any
12426 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
12427 The reverse order cannot happen as there is never a bfd with only the
12428 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
12429 matter as here were are looking only for cross-bfd sections. */
12430
12431 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12432 for (l = already_linked_list->entry; l != NULL; l = l->next)
12433 if ((l->sec->flags & SEC_GROUP) == 0
12434 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12435 {
12436 if (abfd != l->sec->owner)
12437 sec->output_section = bfd_abs_section_ptr;
12438 break;
12439 }
12440
12441 /* This is the first section with this name. Record it. */
12442 if (! bfd_section_already_linked_table_insert (already_linked_list, sec))
12443 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12444 }
12445
12446 bfd_boolean
12447 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12448 {
12449 return sym->st_shndx == SHN_COMMON;
12450 }
12451
12452 unsigned int
12453 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12454 {
12455 return SHN_COMMON;
12456 }
12457
12458 asection *
12459 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12460 {
12461 return bfd_com_section_ptr;
12462 }
12463
12464 bfd_vma
12465 _bfd_elf_default_got_elt_size (bfd *abfd,
12466 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12467 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12468 bfd *ibfd ATTRIBUTE_UNUSED,
12469 unsigned long symndx ATTRIBUTE_UNUSED)
12470 {
12471 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12472 return bed->s->arch_size / 8;
12473 }
12474
12475 /* Routines to support the creation of dynamic relocs. */
12476
12477 /* Return true if NAME is a name of a relocation
12478 section associated with section S. */
12479
12480 static bfd_boolean
12481 is_reloc_section (bfd_boolean rela, const char * name, asection * s)
12482 {
12483 if (rela)
12484 return CONST_STRNEQ (name, ".rela")
12485 && strcmp (bfd_get_section_name (NULL, s), name + 5) == 0;
12486
12487 return CONST_STRNEQ (name, ".rel")
12488 && strcmp (bfd_get_section_name (NULL, s), name + 4) == 0;
12489 }
12490
12491 /* Returns the name of the dynamic reloc section associated with SEC. */
12492
12493 static const char *
12494 get_dynamic_reloc_section_name (bfd * abfd,
12495 asection * sec,
12496 bfd_boolean is_rela)
12497 {
12498 const char * name;
12499 unsigned int strndx = elf_elfheader (abfd)->e_shstrndx;
12500 unsigned int shnam = elf_section_data (sec)->rel_hdr.sh_name;
12501
12502 name = bfd_elf_string_from_elf_section (abfd, strndx, shnam);
12503 if (name == NULL)
12504 return NULL;
12505
12506 if (! is_reloc_section (is_rela, name, sec))
12507 {
12508 static bfd_boolean complained = FALSE;
12509
12510 if (! complained)
12511 {
12512 (*_bfd_error_handler)
12513 (_("%B: bad relocation section name `%s\'"), abfd, name);
12514 complained = TRUE;
12515 }
12516 name = NULL;
12517 }
12518
12519 return name;
12520 }
12521
12522 /* Returns the dynamic reloc section associated with SEC.
12523 If necessary compute the name of the dynamic reloc section based
12524 on SEC's name (looked up in ABFD's string table) and the setting
12525 of IS_RELA. */
12526
12527 asection *
12528 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
12529 asection * sec,
12530 bfd_boolean is_rela)
12531 {
12532 asection * reloc_sec = elf_section_data (sec)->sreloc;
12533
12534 if (reloc_sec == NULL)
12535 {
12536 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12537
12538 if (name != NULL)
12539 {
12540 reloc_sec = bfd_get_section_by_name (abfd, name);
12541
12542 if (reloc_sec != NULL)
12543 elf_section_data (sec)->sreloc = reloc_sec;
12544 }
12545 }
12546
12547 return reloc_sec;
12548 }
12549
12550 /* Returns the dynamic reloc section associated with SEC. If the
12551 section does not exist it is created and attached to the DYNOBJ
12552 bfd and stored in the SRELOC field of SEC's elf_section_data
12553 structure.
12554
12555 ALIGNMENT is the alignment for the newly created section and
12556 IS_RELA defines whether the name should be .rela.<SEC's name>
12557 or .rel.<SEC's name>. The section name is looked up in the
12558 string table associated with ABFD. */
12559
12560 asection *
12561 _bfd_elf_make_dynamic_reloc_section (asection * sec,
12562 bfd * dynobj,
12563 unsigned int alignment,
12564 bfd * abfd,
12565 bfd_boolean is_rela)
12566 {
12567 asection * reloc_sec = elf_section_data (sec)->sreloc;
12568
12569 if (reloc_sec == NULL)
12570 {
12571 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12572
12573 if (name == NULL)
12574 return NULL;
12575
12576 reloc_sec = bfd_get_section_by_name (dynobj, name);
12577
12578 if (reloc_sec == NULL)
12579 {
12580 flagword flags;
12581
12582 flags = (SEC_HAS_CONTENTS | SEC_READONLY | SEC_IN_MEMORY | SEC_LINKER_CREATED);
12583 if ((sec->flags & SEC_ALLOC) != 0)
12584 flags |= SEC_ALLOC | SEC_LOAD;
12585
12586 reloc_sec = bfd_make_section_with_flags (dynobj, name, flags);
12587 if (reloc_sec != NULL)
12588 {
12589 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
12590 reloc_sec = NULL;
12591 }
12592 }
12593
12594 elf_section_data (sec)->sreloc = reloc_sec;
12595 }
12596
12597 return reloc_sec;
12598 }
12599
12600 /* Copy the ELF symbol type associated with a linker hash entry. */
12601 void
12602 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
12603 struct bfd_link_hash_entry * hdest,
12604 struct bfd_link_hash_entry * hsrc)
12605 {
12606 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
12607 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
12608
12609 ehdest->type = ehsrc->type;
12610 }
This page took 0.410999 seconds and 3 git commands to generate.