Automatic date update in version.in
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 size_t amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 size_t amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 if (alloc1 != NULL)
2647 free (alloc1);
2648
2649 /* Don't free alloc2, since if it was allocated we are passing it
2650 back (under the name of internal_relocs). */
2651
2652 return internal_relocs;
2653
2654 error_return:
2655 if (alloc1 != NULL)
2656 free (alloc1);
2657 if (alloc2 != NULL)
2658 {
2659 if (keep_memory)
2660 bfd_release (abfd, alloc2);
2661 else
2662 free (alloc2);
2663 }
2664 return NULL;
2665 }
2666
2667 /* Compute the size of, and allocate space for, REL_HDR which is the
2668 section header for a section containing relocations for O. */
2669
2670 static bfd_boolean
2671 _bfd_elf_link_size_reloc_section (bfd *abfd,
2672 struct bfd_elf_section_reloc_data *reldata)
2673 {
2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2675
2676 /* That allows us to calculate the size of the section. */
2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2678
2679 /* The contents field must last into write_object_contents, so we
2680 allocate it with bfd_alloc rather than malloc. Also since we
2681 cannot be sure that the contents will actually be filled in,
2682 we zero the allocated space. */
2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2685 return FALSE;
2686
2687 if (reldata->hashes == NULL && reldata->count)
2688 {
2689 struct elf_link_hash_entry **p;
2690
2691 p = ((struct elf_link_hash_entry **)
2692 bfd_zmalloc (reldata->count * sizeof (*p)));
2693 if (p == NULL)
2694 return FALSE;
2695
2696 reldata->hashes = p;
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2703 originated from the section given by INPUT_REL_HDR) to the
2704 OUTPUT_BFD. */
2705
2706 bfd_boolean
2707 _bfd_elf_link_output_relocs (bfd *output_bfd,
2708 asection *input_section,
2709 Elf_Internal_Shdr *input_rel_hdr,
2710 Elf_Internal_Rela *internal_relocs,
2711 struct elf_link_hash_entry **rel_hash
2712 ATTRIBUTE_UNUSED)
2713 {
2714 Elf_Internal_Rela *irela;
2715 Elf_Internal_Rela *irelaend;
2716 bfd_byte *erel;
2717 struct bfd_elf_section_reloc_data *output_reldata;
2718 asection *output_section;
2719 const struct elf_backend_data *bed;
2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2721 struct bfd_elf_section_data *esdo;
2722
2723 output_section = input_section->output_section;
2724
2725 bed = get_elf_backend_data (output_bfd);
2726 esdo = elf_section_data (output_section);
2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2728 {
2729 output_reldata = &esdo->rel;
2730 swap_out = bed->s->swap_reloc_out;
2731 }
2732 else if (esdo->rela.hdr
2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2734 {
2735 output_reldata = &esdo->rela;
2736 swap_out = bed->s->swap_reloca_out;
2737 }
2738 else
2739 {
2740 _bfd_error_handler
2741 /* xgettext:c-format */
2742 (_("%pB: relocation size mismatch in %pB section %pA"),
2743 output_bfd, input_section->owner, input_section);
2744 bfd_set_error (bfd_error_wrong_format);
2745 return FALSE;
2746 }
2747
2748 erel = output_reldata->hdr->contents;
2749 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2750 irela = internal_relocs;
2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2752 * bed->s->int_rels_per_ext_rel);
2753 while (irela < irelaend)
2754 {
2755 (*swap_out) (output_bfd, irela, erel);
2756 irela += bed->s->int_rels_per_ext_rel;
2757 erel += input_rel_hdr->sh_entsize;
2758 }
2759
2760 /* Bump the counter, so that we know where to add the next set of
2761 relocations. */
2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2763
2764 return TRUE;
2765 }
2766 \f
2767 /* Make weak undefined symbols in PIE dynamic. */
2768
2769 bfd_boolean
2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2771 struct elf_link_hash_entry *h)
2772 {
2773 if (bfd_link_pie (info)
2774 && h->dynindx == -1
2775 && h->root.type == bfd_link_hash_undefweak)
2776 return bfd_elf_link_record_dynamic_symbol (info, h);
2777
2778 return TRUE;
2779 }
2780
2781 /* Fix up the flags for a symbol. This handles various cases which
2782 can only be fixed after all the input files are seen. This is
2783 currently called by both adjust_dynamic_symbol and
2784 assign_sym_version, which is unnecessary but perhaps more robust in
2785 the face of future changes. */
2786
2787 static bfd_boolean
2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2789 struct elf_info_failed *eif)
2790 {
2791 const struct elf_backend_data *bed;
2792
2793 /* If this symbol was mentioned in a non-ELF file, try to set
2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2795 permit a non-ELF file to correctly refer to a symbol defined in
2796 an ELF dynamic object. */
2797 if (h->non_elf)
2798 {
2799 while (h->root.type == bfd_link_hash_indirect)
2800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2801
2802 if (h->root.type != bfd_link_hash_defined
2803 && h->root.type != bfd_link_hash_defweak)
2804 {
2805 h->ref_regular = 1;
2806 h->ref_regular_nonweak = 1;
2807 }
2808 else
2809 {
2810 if (h->root.u.def.section->owner != NULL
2811 && (bfd_get_flavour (h->root.u.def.section->owner)
2812 == bfd_target_elf_flavour))
2813 {
2814 h->ref_regular = 1;
2815 h->ref_regular_nonweak = 1;
2816 }
2817 else
2818 h->def_regular = 1;
2819 }
2820
2821 if (h->dynindx == -1
2822 && (h->def_dynamic
2823 || h->ref_dynamic))
2824 {
2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832 else
2833 {
2834 /* Unfortunately, NON_ELF is only correct if the symbol
2835 was first seen in a non-ELF file. Fortunately, if the symbol
2836 was first seen in an ELF file, we're probably OK unless the
2837 symbol was defined in a non-ELF file. Catch that case here.
2838 FIXME: We're still in trouble if the symbol was first seen in
2839 a dynamic object, and then later in a non-ELF regular object. */
2840 if ((h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2842 && !h->def_regular
2843 && (h->root.u.def.section->owner != NULL
2844 ? (bfd_get_flavour (h->root.u.def.section->owner)
2845 != bfd_target_elf_flavour)
2846 : (bfd_is_abs_section (h->root.u.def.section)
2847 && !h->def_dynamic)))
2848 h->def_regular = 1;
2849 }
2850
2851 /* Backend specific symbol fixup. */
2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2853 if (bed->elf_backend_fixup_symbol
2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2855 return FALSE;
2856
2857 /* If this is a final link, and the symbol was defined as a common
2858 symbol in a regular object file, and there was no definition in
2859 any dynamic object, then the linker will have allocated space for
2860 the symbol in a common section but the DEF_REGULAR
2861 flag will not have been set. */
2862 if (h->root.type == bfd_link_hash_defined
2863 && !h->def_regular
2864 && h->ref_regular
2865 && !h->def_dynamic
2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2867 h->def_regular = 1;
2868
2869 /* Symbols defined in discarded sections shouldn't be dynamic. */
2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2872
2873 /* If a weak undefined symbol has non-default visibility, we also
2874 hide it from the dynamic linker. */
2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2876 && h->root.type == bfd_link_hash_undefweak)
2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2878
2879 /* A hidden versioned symbol in executable should be forced local if
2880 it is is locally defined, not referenced by shared library and not
2881 exported. */
2882 else if (bfd_link_executable (eif->info)
2883 && h->versioned == versioned_hidden
2884 && !eif->info->export_dynamic
2885 && !h->dynamic
2886 && !h->ref_dynamic
2887 && h->def_regular)
2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2889
2890 /* If -Bsymbolic was used (which means to bind references to global
2891 symbols to the definition within the shared object), and this
2892 symbol was defined in a regular object, then it actually doesn't
2893 need a PLT entry. Likewise, if the symbol has non-default
2894 visibility. If the symbol has hidden or internal visibility, we
2895 will force it local. */
2896 else if (h->needs_plt
2897 && bfd_link_pic (eif->info)
2898 && is_elf_hash_table (eif->info->hash)
2899 && (SYMBOLIC_BIND (eif->info, h)
2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2901 && h->def_regular)
2902 {
2903 bfd_boolean force_local;
2904
2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2908 }
2909
2910 /* If this is a weak defined symbol in a dynamic object, and we know
2911 the real definition in the dynamic object, copy interesting flags
2912 over to the real definition. */
2913 if (h->is_weakalias)
2914 {
2915 struct elf_link_hash_entry *def = weakdef (h);
2916
2917 /* If the real definition is defined by a regular object file,
2918 don't do anything special. See the longer description in
2919 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2920 bfd_link_hash_defined as it was when put on the alias list
2921 then it must have originally been a versioned symbol (for
2922 which a non-versioned indirect symbol is created) and later
2923 a definition for the non-versioned symbol is found. In that
2924 case the indirection is flipped with the versioned symbol
2925 becoming an indirect pointing at the non-versioned symbol.
2926 Thus, not an alias any more. */
2927 if (def->def_regular
2928 || def->root.type != bfd_link_hash_defined)
2929 {
2930 h = def;
2931 while ((h = h->u.alias) != def)
2932 h->is_weakalias = 0;
2933 }
2934 else
2935 {
2936 while (h->root.type == bfd_link_hash_indirect)
2937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2938 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2939 || h->root.type == bfd_link_hash_defweak);
2940 BFD_ASSERT (def->def_dynamic);
2941 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2942 }
2943 }
2944
2945 return TRUE;
2946 }
2947
2948 /* Make the backend pick a good value for a dynamic symbol. This is
2949 called via elf_link_hash_traverse, and also calls itself
2950 recursively. */
2951
2952 static bfd_boolean
2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2954 {
2955 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2956 struct elf_link_hash_table *htab;
2957 const struct elf_backend_data *bed;
2958
2959 if (! is_elf_hash_table (eif->info->hash))
2960 return FALSE;
2961
2962 /* Ignore indirect symbols. These are added by the versioning code. */
2963 if (h->root.type == bfd_link_hash_indirect)
2964 return TRUE;
2965
2966 /* Fix the symbol flags. */
2967 if (! _bfd_elf_fix_symbol_flags (h, eif))
2968 return FALSE;
2969
2970 htab = elf_hash_table (eif->info);
2971 bed = get_elf_backend_data (htab->dynobj);
2972
2973 if (h->root.type == bfd_link_hash_undefweak)
2974 {
2975 if (eif->info->dynamic_undefined_weak == 0)
2976 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2977 else if (eif->info->dynamic_undefined_weak > 0
2978 && h->ref_regular
2979 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 && !bfd_hide_sym_by_version (eif->info->version_info,
2981 h->root.root.string))
2982 {
2983 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2984 {
2985 eif->failed = TRUE;
2986 return FALSE;
2987 }
2988 }
2989 }
2990
2991 /* If this symbol does not require a PLT entry, and it is not
2992 defined by a dynamic object, or is not referenced by a regular
2993 object, ignore it. We do have to handle a weak defined symbol,
2994 even if no regular object refers to it, if we decided to add it
2995 to the dynamic symbol table. FIXME: Do we normally need to worry
2996 about symbols which are defined by one dynamic object and
2997 referenced by another one? */
2998 if (!h->needs_plt
2999 && h->type != STT_GNU_IFUNC
3000 && (h->def_regular
3001 || !h->def_dynamic
3002 || (!h->ref_regular
3003 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3004 {
3005 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3006 return TRUE;
3007 }
3008
3009 /* If we've already adjusted this symbol, don't do it again. This
3010 can happen via a recursive call. */
3011 if (h->dynamic_adjusted)
3012 return TRUE;
3013
3014 /* Don't look at this symbol again. Note that we must set this
3015 after checking the above conditions, because we may look at a
3016 symbol once, decide not to do anything, and then get called
3017 recursively later after REF_REGULAR is set below. */
3018 h->dynamic_adjusted = 1;
3019
3020 /* If this is a weak definition, and we know a real definition, and
3021 the real symbol is not itself defined by a regular object file,
3022 then get a good value for the real definition. We handle the
3023 real symbol first, for the convenience of the backend routine.
3024
3025 Note that there is a confusing case here. If the real definition
3026 is defined by a regular object file, we don't get the real symbol
3027 from the dynamic object, but we do get the weak symbol. If the
3028 processor backend uses a COPY reloc, then if some routine in the
3029 dynamic object changes the real symbol, we will not see that
3030 change in the corresponding weak symbol. This is the way other
3031 ELF linkers work as well, and seems to be a result of the shared
3032 library model.
3033
3034 I will clarify this issue. Most SVR4 shared libraries define the
3035 variable _timezone and define timezone as a weak synonym. The
3036 tzset call changes _timezone. If you write
3037 extern int timezone;
3038 int _timezone = 5;
3039 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3040 you might expect that, since timezone is a synonym for _timezone,
3041 the same number will print both times. However, if the processor
3042 backend uses a COPY reloc, then actually timezone will be copied
3043 into your process image, and, since you define _timezone
3044 yourself, _timezone will not. Thus timezone and _timezone will
3045 wind up at different memory locations. The tzset call will set
3046 _timezone, leaving timezone unchanged. */
3047
3048 if (h->is_weakalias)
3049 {
3050 struct elf_link_hash_entry *def = weakdef (h);
3051
3052 /* If we get to this point, there is an implicit reference to
3053 the alias by a regular object file via the weak symbol H. */
3054 def->ref_regular = 1;
3055
3056 /* Ensure that the backend adjust_dynamic_symbol function sees
3057 the strong alias before H by recursively calling ourselves. */
3058 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3059 return FALSE;
3060 }
3061
3062 /* If a symbol has no type and no size and does not require a PLT
3063 entry, then we are probably about to do the wrong thing here: we
3064 are probably going to create a COPY reloc for an empty object.
3065 This case can arise when a shared object is built with assembly
3066 code, and the assembly code fails to set the symbol type. */
3067 if (h->size == 0
3068 && h->type == STT_NOTYPE
3069 && !h->needs_plt)
3070 _bfd_error_handler
3071 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3072 h->root.root.string);
3073
3074 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3075 {
3076 eif->failed = TRUE;
3077 return FALSE;
3078 }
3079
3080 return TRUE;
3081 }
3082
3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3084 DYNBSS. */
3085
3086 bfd_boolean
3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3088 struct elf_link_hash_entry *h,
3089 asection *dynbss)
3090 {
3091 unsigned int power_of_two;
3092 bfd_vma mask;
3093 asection *sec = h->root.u.def.section;
3094
3095 /* The section alignment of the definition is the maximum alignment
3096 requirement of symbols defined in the section. Since we don't
3097 know the symbol alignment requirement, we start with the
3098 maximum alignment and check low bits of the symbol address
3099 for the minimum alignment. */
3100 power_of_two = bfd_section_alignment (sec);
3101 mask = ((bfd_vma) 1 << power_of_two) - 1;
3102 while ((h->root.u.def.value & mask) != 0)
3103 {
3104 mask >>= 1;
3105 --power_of_two;
3106 }
3107
3108 if (power_of_two > bfd_section_alignment (dynbss))
3109 {
3110 /* Adjust the section alignment if needed. */
3111 if (!bfd_set_section_alignment (dynbss, power_of_two))
3112 return FALSE;
3113 }
3114
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h->root.u.def.section = dynbss;
3120 h->root.u.def.value = dynbss->size;
3121
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss->size += h->size;
3124
3125 /* No error if extern_protected_data is true. */
3126 if (h->protected_def
3127 && (!info->extern_protected_data
3128 || (info->extern_protected_data < 0
3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130 info->callbacks->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h->root.root.string);
3133
3134 return TRUE;
3135 }
3136
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3139
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143 asection *sec;
3144
3145 if ((h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak)
3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149 {
3150 bfd *output_bfd = (bfd *) data;
3151
3152 h->root.u.def.value =
3153 _bfd_merged_section_offset (output_bfd,
3154 &h->root.u.def.section,
3155 elf_section_data (sec)->sec_info,
3156 h->root.u.def.value);
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3165
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 struct bfd_link_info *info,
3169 bfd_boolean not_local_protected)
3170 {
3171 bfd_boolean binding_stays_local_p;
3172 const struct elf_backend_data *bed;
3173 struct elf_link_hash_table *hash_table;
3174
3175 if (h == NULL)
3176 return FALSE;
3177
3178 while (h->root.type == bfd_link_hash_indirect
3179 || h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h->dynindx == -1)
3184 return FALSE;
3185 if (h->forced_local)
3186 return FALSE;
3187
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p = (bfd_link_executable (info)
3191 || SYMBOLIC_BIND (info, h));
3192
3193 switch (ELF_ST_VISIBILITY (h->other))
3194 {
3195 case STV_INTERNAL:
3196 case STV_HIDDEN:
3197 return FALSE;
3198
3199 case STV_PROTECTED:
3200 hash_table = elf_hash_table (info);
3201 if (!is_elf_hash_table (hash_table))
3202 return FALSE;
3203
3204 bed = get_elf_backend_data (hash_table->dynobj);
3205
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected || !bed->is_function_type (h->type))
3210 binding_stays_local_p = TRUE;
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219 return TRUE;
3220
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p;
3224 }
3225
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233 defined symbols.
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3238
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 struct bfd_link_info *info,
3242 bfd_boolean local_protected)
3243 {
3244 const struct elf_backend_data *bed;
3245 struct elf_link_hash_table *hash_table;
3246
3247 /* If it's a local sym, of course we resolve locally. */
3248 if (h == NULL)
3249 return TRUE;
3250
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254 return TRUE;
3255
3256 /* Forced local symbols resolve locally. */
3257 if (h->forced_local)
3258 return TRUE;
3259
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h))
3263 /* Do nothing. */;
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h->def_regular)
3267 return FALSE;
3268
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h->dynindx == -1)
3271 return TRUE;
3272
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277 return TRUE;
3278
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282 return FALSE;
3283
3284 hash_table = elf_hash_table (info);
3285 if (!is_elf_hash_table (hash_table))
3286 return TRUE;
3287
3288 bed = get_elf_backend_data (hash_table->dynobj);
3289
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info->extern_protected_data
3293 || (info->extern_protected_data < 0
3294 && !bed->extern_protected_data))
3295 && !bed->is_function_type (h->type))
3296 return TRUE;
3297
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected;
3304 }
3305
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3308
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312 struct bfd_section *sec, *tls;
3313 unsigned int align = 0;
3314
3315 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 break;
3318 tls = sec;
3319
3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321 if (sec->alignment_power > align)
3322 align = sec->alignment_power;
3323
3324 elf_hash_table (info)->tls_sec = tls;
3325
3326 /* Ensure the alignment of the first section (usually .tdata) is the largest
3327 alignment, so that the tls segment starts aligned. */
3328 if (tls != NULL)
3329 tls->alignment_power = align;
3330
3331 return tls;
3332 }
3333
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 Elf_Internal_Sym *sym)
3338 {
3339 const struct elf_backend_data *bed;
3340
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344 return FALSE;
3345
3346 bed = get_elf_backend_data (abfd);
3347 /* Function symbols do not count. */
3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349 return FALSE;
3350
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym->st_shndx == SHN_UNDEF)
3353 return FALSE;
3354
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed->common_definition (sym))
3358 return FALSE;
3359
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363 /* FIXME - this function is not coded yet:
3364
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3366
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3370 return FALSE;
3371
3372 return TRUE;
3373 }
3374
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381 Elf_Internal_Shdr * hdr;
3382 size_t symcount;
3383 size_t extsymcount;
3384 size_t extsymoff;
3385 Elf_Internal_Sym *isymbuf;
3386 Elf_Internal_Sym *isym;
3387 Elf_Internal_Sym *isymend;
3388 bfd_boolean result;
3389
3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (abfd == NULL)
3392 return FALSE;
3393
3394 if (! bfd_check_format (abfd, bfd_object))
3395 return FALSE;
3396
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd->plugin_format == bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd))
3404 #endif
3405 )
3406 {
3407 /* Use the IR symbol table if the object has been claimed by
3408 plugin. */
3409 abfd = abfd->plugin_dummy_bfd;
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 }
3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413 hdr = &elf_tdata (abfd)->symtab_hdr;
3414 else
3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416
3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd))
3422 {
3423 extsymcount = symcount;
3424 extsymoff = 0;
3425 }
3426 else
3427 {
3428 extsymcount = symcount - hdr->sh_info;
3429 extsymoff = hdr->sh_info;
3430 }
3431
3432 if (extsymcount == 0)
3433 return FALSE;
3434
3435 /* Read in the symbol table. */
3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 NULL, NULL, NULL);
3438 if (isymbuf == NULL)
3439 return FALSE;
3440
3441 /* Scan the symbol table looking for SYMDEF. */
3442 result = FALSE;
3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 {
3445 const char *name;
3446
3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 isym->st_name);
3449 if (name == NULL)
3450 break;
3451
3452 if (strcmp (name, symdef->name) == 0)
3453 {
3454 result = is_global_data_symbol_definition (abfd, isym);
3455 break;
3456 }
3457 }
3458
3459 free (isymbuf);
3460
3461 return result;
3462 }
3463 \f
3464 /* Add an entry to the .dynamic table. */
3465
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 bfd_vma tag,
3469 bfd_vma val)
3470 {
3471 struct elf_link_hash_table *hash_table;
3472 const struct elf_backend_data *bed;
3473 asection *s;
3474 bfd_size_type newsize;
3475 bfd_byte *newcontents;
3476 Elf_Internal_Dyn dyn;
3477
3478 hash_table = elf_hash_table (info);
3479 if (! is_elf_hash_table (hash_table))
3480 return FALSE;
3481
3482 if (tag == DT_RELA || tag == DT_REL)
3483 hash_table->dynamic_relocs = TRUE;
3484
3485 bed = get_elf_backend_data (hash_table->dynobj);
3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487 BFD_ASSERT (s != NULL);
3488
3489 newsize = s->size + bed->s->sizeof_dyn;
3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491 if (newcontents == NULL)
3492 return FALSE;
3493
3494 dyn.d_tag = tag;
3495 dyn.d_un.d_val = val;
3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497
3498 s->size = newsize;
3499 s->contents = newcontents;
3500
3501 return TRUE;
3502 }
3503
3504 /* Strip zero-sized dynamic sections. */
3505
3506 bfd_boolean
3507 _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info)
3508 {
3509 struct elf_link_hash_table *hash_table;
3510 const struct elf_backend_data *bed;
3511 asection *s, *sdynamic, **pp;
3512 asection *rela_dyn, *rel_dyn;
3513 Elf_Internal_Dyn dyn;
3514 bfd_byte *extdyn, *next;
3515 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
3516 bfd_boolean strip_zero_sized;
3517 bfd_boolean strip_zero_sized_plt;
3518
3519 if (bfd_link_relocatable (info))
3520 return TRUE;
3521
3522 hash_table = elf_hash_table (info);
3523 if (!is_elf_hash_table (hash_table))
3524 return FALSE;
3525
3526 if (!hash_table->dynobj)
3527 return TRUE;
3528
3529 sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3530 if (!sdynamic)
3531 return TRUE;
3532
3533 bed = get_elf_backend_data (hash_table->dynobj);
3534 swap_dyn_in = bed->s->swap_dyn_in;
3535
3536 strip_zero_sized = FALSE;
3537 strip_zero_sized_plt = FALSE;
3538
3539 /* Strip zero-sized dynamic sections. */
3540 rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn");
3541 rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn");
3542 for (pp = &info->output_bfd->sections; (s = *pp) != NULL;)
3543 if (s->size == 0
3544 && (s == rela_dyn
3545 || s == rel_dyn
3546 || s == hash_table->srelplt->output_section
3547 || s == hash_table->splt->output_section))
3548 {
3549 *pp = s->next;
3550 info->output_bfd->section_count--;
3551 strip_zero_sized = TRUE;
3552 if (s == rela_dyn)
3553 s = rela_dyn;
3554 if (s == rel_dyn)
3555 s = rel_dyn;
3556 else if (s == hash_table->splt->output_section)
3557 {
3558 s = hash_table->splt;
3559 strip_zero_sized_plt = TRUE;
3560 }
3561 else
3562 s = hash_table->srelplt;
3563 s->flags |= SEC_EXCLUDE;
3564 s->output_section = bfd_abs_section_ptr;
3565 }
3566 else
3567 pp = &s->next;
3568
3569 if (strip_zero_sized_plt)
3570 for (extdyn = sdynamic->contents;
3571 extdyn < sdynamic->contents + sdynamic->size;
3572 extdyn = next)
3573 {
3574 next = extdyn + bed->s->sizeof_dyn;
3575 swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3576 switch (dyn.d_tag)
3577 {
3578 default:
3579 break;
3580 case DT_JMPREL:
3581 case DT_PLTRELSZ:
3582 case DT_PLTREL:
3583 /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if
3584 the procedure linkage table (the .plt section) has been
3585 removed. */
3586 memmove (extdyn, next,
3587 sdynamic->size - (next - sdynamic->contents));
3588 next = extdyn;
3589 }
3590 }
3591
3592 if (strip_zero_sized)
3593 {
3594 /* Regenerate program headers. */
3595 elf_seg_map (info->output_bfd) = NULL;
3596 return _bfd_elf_map_sections_to_segments (info->output_bfd, info);
3597 }
3598
3599 return TRUE;
3600 }
3601
3602 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3603 1 if a DT_NEEDED tag already exists, and 0 on success. */
3604
3605 int
3606 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3607 {
3608 struct elf_link_hash_table *hash_table;
3609 size_t strindex;
3610 const char *soname;
3611
3612 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3613 return -1;
3614
3615 hash_table = elf_hash_table (info);
3616 soname = elf_dt_name (abfd);
3617 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3618 if (strindex == (size_t) -1)
3619 return -1;
3620
3621 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3622 {
3623 asection *sdyn;
3624 const struct elf_backend_data *bed;
3625 bfd_byte *extdyn;
3626
3627 bed = get_elf_backend_data (hash_table->dynobj);
3628 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3629 if (sdyn != NULL)
3630 for (extdyn = sdyn->contents;
3631 extdyn < sdyn->contents + sdyn->size;
3632 extdyn += bed->s->sizeof_dyn)
3633 {
3634 Elf_Internal_Dyn dyn;
3635
3636 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3637 if (dyn.d_tag == DT_NEEDED
3638 && dyn.d_un.d_val == strindex)
3639 {
3640 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3641 return 1;
3642 }
3643 }
3644 }
3645
3646 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3647 return -1;
3648
3649 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3650 return -1;
3651
3652 return 0;
3653 }
3654
3655 /* Return true if SONAME is on the needed list between NEEDED and STOP
3656 (or the end of list if STOP is NULL), and needed by a library that
3657 will be loaded. */
3658
3659 static bfd_boolean
3660 on_needed_list (const char *soname,
3661 struct bfd_link_needed_list *needed,
3662 struct bfd_link_needed_list *stop)
3663 {
3664 struct bfd_link_needed_list *look;
3665 for (look = needed; look != stop; look = look->next)
3666 if (strcmp (soname, look->name) == 0
3667 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3668 /* If needed by a library that itself is not directly
3669 needed, recursively check whether that library is
3670 indirectly needed. Since we add DT_NEEDED entries to
3671 the end of the list, library dependencies appear after
3672 the library. Therefore search prior to the current
3673 LOOK, preventing possible infinite recursion. */
3674 || on_needed_list (elf_dt_name (look->by), needed, look)))
3675 return TRUE;
3676
3677 return FALSE;
3678 }
3679
3680 /* Sort symbol by value, section, size, and type. */
3681 static int
3682 elf_sort_symbol (const void *arg1, const void *arg2)
3683 {
3684 const struct elf_link_hash_entry *h1;
3685 const struct elf_link_hash_entry *h2;
3686 bfd_signed_vma vdiff;
3687 int sdiff;
3688 const char *n1;
3689 const char *n2;
3690
3691 h1 = *(const struct elf_link_hash_entry **) arg1;
3692 h2 = *(const struct elf_link_hash_entry **) arg2;
3693 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3694 if (vdiff != 0)
3695 return vdiff > 0 ? 1 : -1;
3696
3697 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3698 if (sdiff != 0)
3699 return sdiff;
3700
3701 /* Sort so that sized symbols are selected over zero size symbols. */
3702 vdiff = h1->size - h2->size;
3703 if (vdiff != 0)
3704 return vdiff > 0 ? 1 : -1;
3705
3706 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3707 if (h1->type != h2->type)
3708 return h1->type - h2->type;
3709
3710 /* If symbols are properly sized and typed, and multiple strong
3711 aliases are not defined in a shared library by the user we
3712 shouldn't get here. Unfortunately linker script symbols like
3713 __bss_start sometimes match a user symbol defined at the start of
3714 .bss without proper size and type. We'd like to preference the
3715 user symbol over reserved system symbols. Sort on leading
3716 underscores. */
3717 n1 = h1->root.root.string;
3718 n2 = h2->root.root.string;
3719 while (*n1 == *n2)
3720 {
3721 if (*n1 == 0)
3722 break;
3723 ++n1;
3724 ++n2;
3725 }
3726 if (*n1 == '_')
3727 return -1;
3728 if (*n2 == '_')
3729 return 1;
3730
3731 /* Final sort on name selects user symbols like '_u' over reserved
3732 system symbols like '_Z' and also will avoid qsort instability. */
3733 return *n1 - *n2;
3734 }
3735
3736 /* This function is used to adjust offsets into .dynstr for
3737 dynamic symbols. This is called via elf_link_hash_traverse. */
3738
3739 static bfd_boolean
3740 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3741 {
3742 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3743
3744 if (h->dynindx != -1)
3745 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3746 return TRUE;
3747 }
3748
3749 /* Assign string offsets in .dynstr, update all structures referencing
3750 them. */
3751
3752 static bfd_boolean
3753 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3754 {
3755 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3756 struct elf_link_local_dynamic_entry *entry;
3757 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3758 bfd *dynobj = hash_table->dynobj;
3759 asection *sdyn;
3760 bfd_size_type size;
3761 const struct elf_backend_data *bed;
3762 bfd_byte *extdyn;
3763
3764 _bfd_elf_strtab_finalize (dynstr);
3765 size = _bfd_elf_strtab_size (dynstr);
3766
3767 bed = get_elf_backend_data (dynobj);
3768 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3769 BFD_ASSERT (sdyn != NULL);
3770
3771 /* Update all .dynamic entries referencing .dynstr strings. */
3772 for (extdyn = sdyn->contents;
3773 extdyn < sdyn->contents + sdyn->size;
3774 extdyn += bed->s->sizeof_dyn)
3775 {
3776 Elf_Internal_Dyn dyn;
3777
3778 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3779 switch (dyn.d_tag)
3780 {
3781 case DT_STRSZ:
3782 dyn.d_un.d_val = size;
3783 break;
3784 case DT_NEEDED:
3785 case DT_SONAME:
3786 case DT_RPATH:
3787 case DT_RUNPATH:
3788 case DT_FILTER:
3789 case DT_AUXILIARY:
3790 case DT_AUDIT:
3791 case DT_DEPAUDIT:
3792 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3793 break;
3794 default:
3795 continue;
3796 }
3797 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3798 }
3799
3800 /* Now update local dynamic symbols. */
3801 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3802 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3803 entry->isym.st_name);
3804
3805 /* And the rest of dynamic symbols. */
3806 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3807
3808 /* Adjust version definitions. */
3809 if (elf_tdata (output_bfd)->cverdefs)
3810 {
3811 asection *s;
3812 bfd_byte *p;
3813 size_t i;
3814 Elf_Internal_Verdef def;
3815 Elf_Internal_Verdaux defaux;
3816
3817 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3818 p = s->contents;
3819 do
3820 {
3821 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3822 &def);
3823 p += sizeof (Elf_External_Verdef);
3824 if (def.vd_aux != sizeof (Elf_External_Verdef))
3825 continue;
3826 for (i = 0; i < def.vd_cnt; ++i)
3827 {
3828 _bfd_elf_swap_verdaux_in (output_bfd,
3829 (Elf_External_Verdaux *) p, &defaux);
3830 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3831 defaux.vda_name);
3832 _bfd_elf_swap_verdaux_out (output_bfd,
3833 &defaux, (Elf_External_Verdaux *) p);
3834 p += sizeof (Elf_External_Verdaux);
3835 }
3836 }
3837 while (def.vd_next);
3838 }
3839
3840 /* Adjust version references. */
3841 if (elf_tdata (output_bfd)->verref)
3842 {
3843 asection *s;
3844 bfd_byte *p;
3845 size_t i;
3846 Elf_Internal_Verneed need;
3847 Elf_Internal_Vernaux needaux;
3848
3849 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3850 p = s->contents;
3851 do
3852 {
3853 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3854 &need);
3855 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3856 _bfd_elf_swap_verneed_out (output_bfd, &need,
3857 (Elf_External_Verneed *) p);
3858 p += sizeof (Elf_External_Verneed);
3859 for (i = 0; i < need.vn_cnt; ++i)
3860 {
3861 _bfd_elf_swap_vernaux_in (output_bfd,
3862 (Elf_External_Vernaux *) p, &needaux);
3863 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3864 needaux.vna_name);
3865 _bfd_elf_swap_vernaux_out (output_bfd,
3866 &needaux,
3867 (Elf_External_Vernaux *) p);
3868 p += sizeof (Elf_External_Vernaux);
3869 }
3870 }
3871 while (need.vn_next);
3872 }
3873
3874 return TRUE;
3875 }
3876 \f
3877 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3878 The default is to only match when the INPUT and OUTPUT are exactly
3879 the same target. */
3880
3881 bfd_boolean
3882 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3883 const bfd_target *output)
3884 {
3885 return input == output;
3886 }
3887
3888 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3889 This version is used when different targets for the same architecture
3890 are virtually identical. */
3891
3892 bfd_boolean
3893 _bfd_elf_relocs_compatible (const bfd_target *input,
3894 const bfd_target *output)
3895 {
3896 const struct elf_backend_data *obed, *ibed;
3897
3898 if (input == output)
3899 return TRUE;
3900
3901 ibed = xvec_get_elf_backend_data (input);
3902 obed = xvec_get_elf_backend_data (output);
3903
3904 if (ibed->arch != obed->arch)
3905 return FALSE;
3906
3907 /* If both backends are using this function, deem them compatible. */
3908 return ibed->relocs_compatible == obed->relocs_compatible;
3909 }
3910
3911 /* Make a special call to the linker "notice" function to tell it that
3912 we are about to handle an as-needed lib, or have finished
3913 processing the lib. */
3914
3915 bfd_boolean
3916 _bfd_elf_notice_as_needed (bfd *ibfd,
3917 struct bfd_link_info *info,
3918 enum notice_asneeded_action act)
3919 {
3920 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3921 }
3922
3923 /* Check relocations an ELF object file. */
3924
3925 bfd_boolean
3926 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3927 {
3928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3929 struct elf_link_hash_table *htab = elf_hash_table (info);
3930
3931 /* If this object is the same format as the output object, and it is
3932 not a shared library, then let the backend look through the
3933 relocs.
3934
3935 This is required to build global offset table entries and to
3936 arrange for dynamic relocs. It is not required for the
3937 particular common case of linking non PIC code, even when linking
3938 against shared libraries, but unfortunately there is no way of
3939 knowing whether an object file has been compiled PIC or not.
3940 Looking through the relocs is not particularly time consuming.
3941 The problem is that we must either (1) keep the relocs in memory,
3942 which causes the linker to require additional runtime memory or
3943 (2) read the relocs twice from the input file, which wastes time.
3944 This would be a good case for using mmap.
3945
3946 I have no idea how to handle linking PIC code into a file of a
3947 different format. It probably can't be done. */
3948 if ((abfd->flags & DYNAMIC) == 0
3949 && is_elf_hash_table (htab)
3950 && bed->check_relocs != NULL
3951 && elf_object_id (abfd) == elf_hash_table_id (htab)
3952 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3953 {
3954 asection *o;
3955
3956 for (o = abfd->sections; o != NULL; o = o->next)
3957 {
3958 Elf_Internal_Rela *internal_relocs;
3959 bfd_boolean ok;
3960
3961 /* Don't check relocations in excluded sections. */
3962 if ((o->flags & SEC_RELOC) == 0
3963 || (o->flags & SEC_EXCLUDE) != 0
3964 || o->reloc_count == 0
3965 || ((info->strip == strip_all || info->strip == strip_debugger)
3966 && (o->flags & SEC_DEBUGGING) != 0)
3967 || bfd_is_abs_section (o->output_section))
3968 continue;
3969
3970 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3971 info->keep_memory);
3972 if (internal_relocs == NULL)
3973 return FALSE;
3974
3975 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3976
3977 if (elf_section_data (o)->relocs != internal_relocs)
3978 free (internal_relocs);
3979
3980 if (! ok)
3981 return FALSE;
3982 }
3983 }
3984
3985 return TRUE;
3986 }
3987
3988 /* Add symbols from an ELF object file to the linker hash table. */
3989
3990 static bfd_boolean
3991 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3992 {
3993 Elf_Internal_Ehdr *ehdr;
3994 Elf_Internal_Shdr *hdr;
3995 size_t symcount;
3996 size_t extsymcount;
3997 size_t extsymoff;
3998 struct elf_link_hash_entry **sym_hash;
3999 bfd_boolean dynamic;
4000 Elf_External_Versym *extversym = NULL;
4001 Elf_External_Versym *extversym_end = NULL;
4002 Elf_External_Versym *ever;
4003 struct elf_link_hash_entry *weaks;
4004 struct elf_link_hash_entry **nondeflt_vers = NULL;
4005 size_t nondeflt_vers_cnt = 0;
4006 Elf_Internal_Sym *isymbuf = NULL;
4007 Elf_Internal_Sym *isym;
4008 Elf_Internal_Sym *isymend;
4009 const struct elf_backend_data *bed;
4010 bfd_boolean add_needed;
4011 struct elf_link_hash_table *htab;
4012 void *alloc_mark = NULL;
4013 struct bfd_hash_entry **old_table = NULL;
4014 unsigned int old_size = 0;
4015 unsigned int old_count = 0;
4016 void *old_tab = NULL;
4017 void *old_ent;
4018 struct bfd_link_hash_entry *old_undefs = NULL;
4019 struct bfd_link_hash_entry *old_undefs_tail = NULL;
4020 void *old_strtab = NULL;
4021 size_t tabsize = 0;
4022 asection *s;
4023 bfd_boolean just_syms;
4024
4025 htab = elf_hash_table (info);
4026 bed = get_elf_backend_data (abfd);
4027
4028 if ((abfd->flags & DYNAMIC) == 0)
4029 dynamic = FALSE;
4030 else
4031 {
4032 dynamic = TRUE;
4033
4034 /* You can't use -r against a dynamic object. Also, there's no
4035 hope of using a dynamic object which does not exactly match
4036 the format of the output file. */
4037 if (bfd_link_relocatable (info)
4038 || !is_elf_hash_table (htab)
4039 || info->output_bfd->xvec != abfd->xvec)
4040 {
4041 if (bfd_link_relocatable (info))
4042 bfd_set_error (bfd_error_invalid_operation);
4043 else
4044 bfd_set_error (bfd_error_wrong_format);
4045 goto error_return;
4046 }
4047 }
4048
4049 ehdr = elf_elfheader (abfd);
4050 if (info->warn_alternate_em
4051 && bed->elf_machine_code != ehdr->e_machine
4052 && ((bed->elf_machine_alt1 != 0
4053 && ehdr->e_machine == bed->elf_machine_alt1)
4054 || (bed->elf_machine_alt2 != 0
4055 && ehdr->e_machine == bed->elf_machine_alt2)))
4056 _bfd_error_handler
4057 /* xgettext:c-format */
4058 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
4059 ehdr->e_machine, abfd, bed->elf_machine_code);
4060
4061 /* As a GNU extension, any input sections which are named
4062 .gnu.warning.SYMBOL are treated as warning symbols for the given
4063 symbol. This differs from .gnu.warning sections, which generate
4064 warnings when they are included in an output file. */
4065 /* PR 12761: Also generate this warning when building shared libraries. */
4066 for (s = abfd->sections; s != NULL; s = s->next)
4067 {
4068 const char *name;
4069
4070 name = bfd_section_name (s);
4071 if (CONST_STRNEQ (name, ".gnu.warning."))
4072 {
4073 char *msg;
4074 bfd_size_type sz;
4075
4076 name += sizeof ".gnu.warning." - 1;
4077
4078 /* If this is a shared object, then look up the symbol
4079 in the hash table. If it is there, and it is already
4080 been defined, then we will not be using the entry
4081 from this shared object, so we don't need to warn.
4082 FIXME: If we see the definition in a regular object
4083 later on, we will warn, but we shouldn't. The only
4084 fix is to keep track of what warnings we are supposed
4085 to emit, and then handle them all at the end of the
4086 link. */
4087 if (dynamic)
4088 {
4089 struct elf_link_hash_entry *h;
4090
4091 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4092
4093 /* FIXME: What about bfd_link_hash_common? */
4094 if (h != NULL
4095 && (h->root.type == bfd_link_hash_defined
4096 || h->root.type == bfd_link_hash_defweak))
4097 continue;
4098 }
4099
4100 sz = s->size;
4101 msg = (char *) bfd_alloc (abfd, sz + 1);
4102 if (msg == NULL)
4103 goto error_return;
4104
4105 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4106 goto error_return;
4107
4108 msg[sz] = '\0';
4109
4110 if (! (_bfd_generic_link_add_one_symbol
4111 (info, abfd, name, BSF_WARNING, s, 0, msg,
4112 FALSE, bed->collect, NULL)))
4113 goto error_return;
4114
4115 if (bfd_link_executable (info))
4116 {
4117 /* Clobber the section size so that the warning does
4118 not get copied into the output file. */
4119 s->size = 0;
4120
4121 /* Also set SEC_EXCLUDE, so that symbols defined in
4122 the warning section don't get copied to the output. */
4123 s->flags |= SEC_EXCLUDE;
4124 }
4125 }
4126 }
4127
4128 just_syms = ((s = abfd->sections) != NULL
4129 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4130
4131 add_needed = TRUE;
4132 if (! dynamic)
4133 {
4134 /* If we are creating a shared library, create all the dynamic
4135 sections immediately. We need to attach them to something,
4136 so we attach them to this BFD, provided it is the right
4137 format and is not from ld --just-symbols. Always create the
4138 dynamic sections for -E/--dynamic-list. FIXME: If there
4139 are no input BFD's of the same format as the output, we can't
4140 make a shared library. */
4141 if (!just_syms
4142 && (bfd_link_pic (info)
4143 || (!bfd_link_relocatable (info)
4144 && info->nointerp
4145 && (info->export_dynamic || info->dynamic)))
4146 && is_elf_hash_table (htab)
4147 && info->output_bfd->xvec == abfd->xvec
4148 && !htab->dynamic_sections_created)
4149 {
4150 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4151 goto error_return;
4152 }
4153 }
4154 else if (!is_elf_hash_table (htab))
4155 goto error_return;
4156 else
4157 {
4158 const char *soname = NULL;
4159 char *audit = NULL;
4160 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4161 const Elf_Internal_Phdr *phdr;
4162 struct elf_link_loaded_list *loaded_lib;
4163
4164 /* ld --just-symbols and dynamic objects don't mix very well.
4165 ld shouldn't allow it. */
4166 if (just_syms)
4167 abort ();
4168
4169 /* If this dynamic lib was specified on the command line with
4170 --as-needed in effect, then we don't want to add a DT_NEEDED
4171 tag unless the lib is actually used. Similary for libs brought
4172 in by another lib's DT_NEEDED. When --no-add-needed is used
4173 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4174 any dynamic library in DT_NEEDED tags in the dynamic lib at
4175 all. */
4176 add_needed = (elf_dyn_lib_class (abfd)
4177 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4178 | DYN_NO_NEEDED)) == 0;
4179
4180 s = bfd_get_section_by_name (abfd, ".dynamic");
4181 if (s != NULL)
4182 {
4183 bfd_byte *dynbuf;
4184 bfd_byte *extdyn;
4185 unsigned int elfsec;
4186 unsigned long shlink;
4187
4188 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4189 {
4190 error_free_dyn:
4191 free (dynbuf);
4192 goto error_return;
4193 }
4194
4195 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4196 if (elfsec == SHN_BAD)
4197 goto error_free_dyn;
4198 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4199
4200 for (extdyn = dynbuf;
4201 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4202 extdyn += bed->s->sizeof_dyn)
4203 {
4204 Elf_Internal_Dyn dyn;
4205
4206 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4207 if (dyn.d_tag == DT_SONAME)
4208 {
4209 unsigned int tagv = dyn.d_un.d_val;
4210 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4211 if (soname == NULL)
4212 goto error_free_dyn;
4213 }
4214 if (dyn.d_tag == DT_NEEDED)
4215 {
4216 struct bfd_link_needed_list *n, **pn;
4217 char *fnm, *anm;
4218 unsigned int tagv = dyn.d_un.d_val;
4219 size_t amt = sizeof (struct bfd_link_needed_list);
4220
4221 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4222 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4223 if (n == NULL || fnm == NULL)
4224 goto error_free_dyn;
4225 amt = strlen (fnm) + 1;
4226 anm = (char *) bfd_alloc (abfd, amt);
4227 if (anm == NULL)
4228 goto error_free_dyn;
4229 memcpy (anm, fnm, amt);
4230 n->name = anm;
4231 n->by = abfd;
4232 n->next = NULL;
4233 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4234 ;
4235 *pn = n;
4236 }
4237 if (dyn.d_tag == DT_RUNPATH)
4238 {
4239 struct bfd_link_needed_list *n, **pn;
4240 char *fnm, *anm;
4241 unsigned int tagv = dyn.d_un.d_val;
4242 size_t amt = sizeof (struct bfd_link_needed_list);
4243
4244 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4245 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4246 if (n == NULL || fnm == NULL)
4247 goto error_free_dyn;
4248 amt = strlen (fnm) + 1;
4249 anm = (char *) bfd_alloc (abfd, amt);
4250 if (anm == NULL)
4251 goto error_free_dyn;
4252 memcpy (anm, fnm, amt);
4253 n->name = anm;
4254 n->by = abfd;
4255 n->next = NULL;
4256 for (pn = & runpath;
4257 *pn != NULL;
4258 pn = &(*pn)->next)
4259 ;
4260 *pn = n;
4261 }
4262 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4263 if (!runpath && dyn.d_tag == DT_RPATH)
4264 {
4265 struct bfd_link_needed_list *n, **pn;
4266 char *fnm, *anm;
4267 unsigned int tagv = dyn.d_un.d_val;
4268 size_t amt = sizeof (struct bfd_link_needed_list);
4269
4270 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4271 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4272 if (n == NULL || fnm == NULL)
4273 goto error_free_dyn;
4274 amt = strlen (fnm) + 1;
4275 anm = (char *) bfd_alloc (abfd, amt);
4276 if (anm == NULL)
4277 goto error_free_dyn;
4278 memcpy (anm, fnm, amt);
4279 n->name = anm;
4280 n->by = abfd;
4281 n->next = NULL;
4282 for (pn = & rpath;
4283 *pn != NULL;
4284 pn = &(*pn)->next)
4285 ;
4286 *pn = n;
4287 }
4288 if (dyn.d_tag == DT_AUDIT)
4289 {
4290 unsigned int tagv = dyn.d_un.d_val;
4291 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4292 }
4293 }
4294
4295 free (dynbuf);
4296 }
4297
4298 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4299 frees all more recently bfd_alloc'd blocks as well. */
4300 if (runpath)
4301 rpath = runpath;
4302
4303 if (rpath)
4304 {
4305 struct bfd_link_needed_list **pn;
4306 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4307 ;
4308 *pn = rpath;
4309 }
4310
4311 /* If we have a PT_GNU_RELRO program header, mark as read-only
4312 all sections contained fully therein. This makes relro
4313 shared library sections appear as they will at run-time. */
4314 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4315 while (phdr-- > elf_tdata (abfd)->phdr)
4316 if (phdr->p_type == PT_GNU_RELRO)
4317 {
4318 for (s = abfd->sections; s != NULL; s = s->next)
4319 {
4320 unsigned int opb = bfd_octets_per_byte (abfd, s);
4321
4322 if ((s->flags & SEC_ALLOC) != 0
4323 && s->vma * opb >= phdr->p_vaddr
4324 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4325 s->flags |= SEC_READONLY;
4326 }
4327 break;
4328 }
4329
4330 /* We do not want to include any of the sections in a dynamic
4331 object in the output file. We hack by simply clobbering the
4332 list of sections in the BFD. This could be handled more
4333 cleanly by, say, a new section flag; the existing
4334 SEC_NEVER_LOAD flag is not the one we want, because that one
4335 still implies that the section takes up space in the output
4336 file. */
4337 bfd_section_list_clear (abfd);
4338
4339 /* Find the name to use in a DT_NEEDED entry that refers to this
4340 object. If the object has a DT_SONAME entry, we use it.
4341 Otherwise, if the generic linker stuck something in
4342 elf_dt_name, we use that. Otherwise, we just use the file
4343 name. */
4344 if (soname == NULL || *soname == '\0')
4345 {
4346 soname = elf_dt_name (abfd);
4347 if (soname == NULL || *soname == '\0')
4348 soname = bfd_get_filename (abfd);
4349 }
4350
4351 /* Save the SONAME because sometimes the linker emulation code
4352 will need to know it. */
4353 elf_dt_name (abfd) = soname;
4354
4355 /* If we have already included this dynamic object in the
4356 link, just ignore it. There is no reason to include a
4357 particular dynamic object more than once. */
4358 for (loaded_lib = htab->dyn_loaded;
4359 loaded_lib != NULL;
4360 loaded_lib = loaded_lib->next)
4361 {
4362 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4363 return TRUE;
4364 }
4365
4366 /* Create dynamic sections for backends that require that be done
4367 before setup_gnu_properties. */
4368 if (add_needed
4369 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4370 return FALSE;
4371
4372 /* Save the DT_AUDIT entry for the linker emulation code. */
4373 elf_dt_audit (abfd) = audit;
4374 }
4375
4376 /* If this is a dynamic object, we always link against the .dynsym
4377 symbol table, not the .symtab symbol table. The dynamic linker
4378 will only see the .dynsym symbol table, so there is no reason to
4379 look at .symtab for a dynamic object. */
4380
4381 if (! dynamic || elf_dynsymtab (abfd) == 0)
4382 hdr = &elf_tdata (abfd)->symtab_hdr;
4383 else
4384 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4385
4386 symcount = hdr->sh_size / bed->s->sizeof_sym;
4387
4388 /* The sh_info field of the symtab header tells us where the
4389 external symbols start. We don't care about the local symbols at
4390 this point. */
4391 if (elf_bad_symtab (abfd))
4392 {
4393 extsymcount = symcount;
4394 extsymoff = 0;
4395 }
4396 else
4397 {
4398 extsymcount = symcount - hdr->sh_info;
4399 extsymoff = hdr->sh_info;
4400 }
4401
4402 sym_hash = elf_sym_hashes (abfd);
4403 if (extsymcount != 0)
4404 {
4405 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4406 NULL, NULL, NULL);
4407 if (isymbuf == NULL)
4408 goto error_return;
4409
4410 if (sym_hash == NULL)
4411 {
4412 /* We store a pointer to the hash table entry for each
4413 external symbol. */
4414 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4415 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4416 if (sym_hash == NULL)
4417 goto error_free_sym;
4418 elf_sym_hashes (abfd) = sym_hash;
4419 }
4420 }
4421
4422 if (dynamic)
4423 {
4424 /* Read in any version definitions. */
4425 if (!_bfd_elf_slurp_version_tables (abfd,
4426 info->default_imported_symver))
4427 goto error_free_sym;
4428
4429 /* Read in the symbol versions, but don't bother to convert them
4430 to internal format. */
4431 if (elf_dynversym (abfd) != 0)
4432 {
4433 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4434 bfd_size_type amt = versymhdr->sh_size;
4435
4436 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4437 goto error_free_sym;
4438 extversym = (Elf_External_Versym *)
4439 _bfd_malloc_and_read (abfd, amt, amt);
4440 if (extversym == NULL)
4441 goto error_free_sym;
4442 extversym_end = extversym + amt / sizeof (*extversym);
4443 }
4444 }
4445
4446 /* If we are loading an as-needed shared lib, save the symbol table
4447 state before we start adding symbols. If the lib turns out
4448 to be unneeded, restore the state. */
4449 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4450 {
4451 unsigned int i;
4452 size_t entsize;
4453
4454 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4455 {
4456 struct bfd_hash_entry *p;
4457 struct elf_link_hash_entry *h;
4458
4459 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4460 {
4461 h = (struct elf_link_hash_entry *) p;
4462 entsize += htab->root.table.entsize;
4463 if (h->root.type == bfd_link_hash_warning)
4464 entsize += htab->root.table.entsize;
4465 }
4466 }
4467
4468 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4469 old_tab = bfd_malloc (tabsize + entsize);
4470 if (old_tab == NULL)
4471 goto error_free_vers;
4472
4473 /* Remember the current objalloc pointer, so that all mem for
4474 symbols added can later be reclaimed. */
4475 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4476 if (alloc_mark == NULL)
4477 goto error_free_vers;
4478
4479 /* Make a special call to the linker "notice" function to
4480 tell it that we are about to handle an as-needed lib. */
4481 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4482 goto error_free_vers;
4483
4484 /* Clone the symbol table. Remember some pointers into the
4485 symbol table, and dynamic symbol count. */
4486 old_ent = (char *) old_tab + tabsize;
4487 memcpy (old_tab, htab->root.table.table, tabsize);
4488 old_undefs = htab->root.undefs;
4489 old_undefs_tail = htab->root.undefs_tail;
4490 old_table = htab->root.table.table;
4491 old_size = htab->root.table.size;
4492 old_count = htab->root.table.count;
4493 old_strtab = NULL;
4494 if (htab->dynstr != NULL)
4495 {
4496 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4497 if (old_strtab == NULL)
4498 goto error_free_vers;
4499 }
4500
4501 for (i = 0; i < htab->root.table.size; i++)
4502 {
4503 struct bfd_hash_entry *p;
4504 struct elf_link_hash_entry *h;
4505
4506 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4507 {
4508 memcpy (old_ent, p, htab->root.table.entsize);
4509 old_ent = (char *) old_ent + htab->root.table.entsize;
4510 h = (struct elf_link_hash_entry *) p;
4511 if (h->root.type == bfd_link_hash_warning)
4512 {
4513 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4514 old_ent = (char *) old_ent + htab->root.table.entsize;
4515 }
4516 }
4517 }
4518 }
4519
4520 weaks = NULL;
4521 if (extversym == NULL)
4522 ever = NULL;
4523 else if (extversym + extsymoff < extversym_end)
4524 ever = extversym + extsymoff;
4525 else
4526 {
4527 /* xgettext:c-format */
4528 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4529 abfd, (long) extsymoff,
4530 (long) (extversym_end - extversym) / sizeof (* extversym));
4531 bfd_set_error (bfd_error_bad_value);
4532 goto error_free_vers;
4533 }
4534
4535 if (!bfd_link_relocatable (info)
4536 && abfd->lto_slim_object)
4537 {
4538 _bfd_error_handler
4539 (_("%pB: plugin needed to handle lto object"), abfd);
4540 }
4541
4542 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4543 isym < isymend;
4544 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4545 {
4546 int bind;
4547 bfd_vma value;
4548 asection *sec, *new_sec;
4549 flagword flags;
4550 const char *name;
4551 struct elf_link_hash_entry *h;
4552 struct elf_link_hash_entry *hi;
4553 bfd_boolean definition;
4554 bfd_boolean size_change_ok;
4555 bfd_boolean type_change_ok;
4556 bfd_boolean new_weak;
4557 bfd_boolean old_weak;
4558 bfd_boolean override;
4559 bfd_boolean common;
4560 bfd_boolean discarded;
4561 unsigned int old_alignment;
4562 unsigned int shindex;
4563 bfd *old_bfd;
4564 bfd_boolean matched;
4565
4566 override = FALSE;
4567
4568 flags = BSF_NO_FLAGS;
4569 sec = NULL;
4570 value = isym->st_value;
4571 common = bed->common_definition (isym);
4572 if (common && info->inhibit_common_definition)
4573 {
4574 /* Treat common symbol as undefined for --no-define-common. */
4575 isym->st_shndx = SHN_UNDEF;
4576 common = FALSE;
4577 }
4578 discarded = FALSE;
4579
4580 bind = ELF_ST_BIND (isym->st_info);
4581 switch (bind)
4582 {
4583 case STB_LOCAL:
4584 /* This should be impossible, since ELF requires that all
4585 global symbols follow all local symbols, and that sh_info
4586 point to the first global symbol. Unfortunately, Irix 5
4587 screws this up. */
4588 if (elf_bad_symtab (abfd))
4589 continue;
4590
4591 /* If we aren't prepared to handle locals within the globals
4592 then we'll likely segfault on a NULL symbol hash if the
4593 symbol is ever referenced in relocations. */
4594 shindex = elf_elfheader (abfd)->e_shstrndx;
4595 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4596 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4597 " (>= sh_info of %lu)"),
4598 abfd, name, (long) (isym - isymbuf + extsymoff),
4599 (long) extsymoff);
4600
4601 /* Dynamic object relocations are not processed by ld, so
4602 ld won't run into the problem mentioned above. */
4603 if (dynamic)
4604 continue;
4605 bfd_set_error (bfd_error_bad_value);
4606 goto error_free_vers;
4607
4608 case STB_GLOBAL:
4609 if (isym->st_shndx != SHN_UNDEF && !common)
4610 flags = BSF_GLOBAL;
4611 break;
4612
4613 case STB_WEAK:
4614 flags = BSF_WEAK;
4615 break;
4616
4617 case STB_GNU_UNIQUE:
4618 flags = BSF_GNU_UNIQUE;
4619 break;
4620
4621 default:
4622 /* Leave it up to the processor backend. */
4623 break;
4624 }
4625
4626 if (isym->st_shndx == SHN_UNDEF)
4627 sec = bfd_und_section_ptr;
4628 else if (isym->st_shndx == SHN_ABS)
4629 sec = bfd_abs_section_ptr;
4630 else if (isym->st_shndx == SHN_COMMON)
4631 {
4632 sec = bfd_com_section_ptr;
4633 /* What ELF calls the size we call the value. What ELF
4634 calls the value we call the alignment. */
4635 value = isym->st_size;
4636 }
4637 else
4638 {
4639 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4640 if (sec == NULL)
4641 sec = bfd_abs_section_ptr;
4642 else if (discarded_section (sec))
4643 {
4644 /* Symbols from discarded section are undefined. We keep
4645 its visibility. */
4646 sec = bfd_und_section_ptr;
4647 discarded = TRUE;
4648 isym->st_shndx = SHN_UNDEF;
4649 }
4650 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4651 value -= sec->vma;
4652 }
4653
4654 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4655 isym->st_name);
4656 if (name == NULL)
4657 goto error_free_vers;
4658
4659 if (isym->st_shndx == SHN_COMMON
4660 && (abfd->flags & BFD_PLUGIN) != 0)
4661 {
4662 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4663
4664 if (xc == NULL)
4665 {
4666 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4667 | SEC_EXCLUDE);
4668 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4669 if (xc == NULL)
4670 goto error_free_vers;
4671 }
4672 sec = xc;
4673 }
4674 else if (isym->st_shndx == SHN_COMMON
4675 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4676 && !bfd_link_relocatable (info))
4677 {
4678 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4679
4680 if (tcomm == NULL)
4681 {
4682 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4683 | SEC_LINKER_CREATED);
4684 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4685 if (tcomm == NULL)
4686 goto error_free_vers;
4687 }
4688 sec = tcomm;
4689 }
4690 else if (bed->elf_add_symbol_hook)
4691 {
4692 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4693 &sec, &value))
4694 goto error_free_vers;
4695
4696 /* The hook function sets the name to NULL if this symbol
4697 should be skipped for some reason. */
4698 if (name == NULL)
4699 continue;
4700 }
4701
4702 /* Sanity check that all possibilities were handled. */
4703 if (sec == NULL)
4704 abort ();
4705
4706 /* Silently discard TLS symbols from --just-syms. There's
4707 no way to combine a static TLS block with a new TLS block
4708 for this executable. */
4709 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4710 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4711 continue;
4712
4713 if (bfd_is_und_section (sec)
4714 || bfd_is_com_section (sec))
4715 definition = FALSE;
4716 else
4717 definition = TRUE;
4718
4719 size_change_ok = FALSE;
4720 type_change_ok = bed->type_change_ok;
4721 old_weak = FALSE;
4722 matched = FALSE;
4723 old_alignment = 0;
4724 old_bfd = NULL;
4725 new_sec = sec;
4726
4727 if (is_elf_hash_table (htab))
4728 {
4729 Elf_Internal_Versym iver;
4730 unsigned int vernum = 0;
4731 bfd_boolean skip;
4732
4733 if (ever == NULL)
4734 {
4735 if (info->default_imported_symver)
4736 /* Use the default symbol version created earlier. */
4737 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4738 else
4739 iver.vs_vers = 0;
4740 }
4741 else if (ever >= extversym_end)
4742 {
4743 /* xgettext:c-format */
4744 _bfd_error_handler (_("%pB: not enough version information"),
4745 abfd);
4746 bfd_set_error (bfd_error_bad_value);
4747 goto error_free_vers;
4748 }
4749 else
4750 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4751
4752 vernum = iver.vs_vers & VERSYM_VERSION;
4753
4754 /* If this is a hidden symbol, or if it is not version
4755 1, we append the version name to the symbol name.
4756 However, we do not modify a non-hidden absolute symbol
4757 if it is not a function, because it might be the version
4758 symbol itself. FIXME: What if it isn't? */
4759 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4760 || (vernum > 1
4761 && (!bfd_is_abs_section (sec)
4762 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4763 {
4764 const char *verstr;
4765 size_t namelen, verlen, newlen;
4766 char *newname, *p;
4767
4768 if (isym->st_shndx != SHN_UNDEF)
4769 {
4770 if (vernum > elf_tdata (abfd)->cverdefs)
4771 verstr = NULL;
4772 else if (vernum > 1)
4773 verstr =
4774 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4775 else
4776 verstr = "";
4777
4778 if (verstr == NULL)
4779 {
4780 _bfd_error_handler
4781 /* xgettext:c-format */
4782 (_("%pB: %s: invalid version %u (max %d)"),
4783 abfd, name, vernum,
4784 elf_tdata (abfd)->cverdefs);
4785 bfd_set_error (bfd_error_bad_value);
4786 goto error_free_vers;
4787 }
4788 }
4789 else
4790 {
4791 /* We cannot simply test for the number of
4792 entries in the VERNEED section since the
4793 numbers for the needed versions do not start
4794 at 0. */
4795 Elf_Internal_Verneed *t;
4796
4797 verstr = NULL;
4798 for (t = elf_tdata (abfd)->verref;
4799 t != NULL;
4800 t = t->vn_nextref)
4801 {
4802 Elf_Internal_Vernaux *a;
4803
4804 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4805 {
4806 if (a->vna_other == vernum)
4807 {
4808 verstr = a->vna_nodename;
4809 break;
4810 }
4811 }
4812 if (a != NULL)
4813 break;
4814 }
4815 if (verstr == NULL)
4816 {
4817 _bfd_error_handler
4818 /* xgettext:c-format */
4819 (_("%pB: %s: invalid needed version %d"),
4820 abfd, name, vernum);
4821 bfd_set_error (bfd_error_bad_value);
4822 goto error_free_vers;
4823 }
4824 }
4825
4826 namelen = strlen (name);
4827 verlen = strlen (verstr);
4828 newlen = namelen + verlen + 2;
4829 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4830 && isym->st_shndx != SHN_UNDEF)
4831 ++newlen;
4832
4833 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4834 if (newname == NULL)
4835 goto error_free_vers;
4836 memcpy (newname, name, namelen);
4837 p = newname + namelen;
4838 *p++ = ELF_VER_CHR;
4839 /* If this is a defined non-hidden version symbol,
4840 we add another @ to the name. This indicates the
4841 default version of the symbol. */
4842 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4843 && isym->st_shndx != SHN_UNDEF)
4844 *p++ = ELF_VER_CHR;
4845 memcpy (p, verstr, verlen + 1);
4846
4847 name = newname;
4848 }
4849
4850 /* If this symbol has default visibility and the user has
4851 requested we not re-export it, then mark it as hidden. */
4852 if (!bfd_is_und_section (sec)
4853 && !dynamic
4854 && abfd->no_export
4855 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4856 isym->st_other = (STV_HIDDEN
4857 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4858
4859 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4860 sym_hash, &old_bfd, &old_weak,
4861 &old_alignment, &skip, &override,
4862 &type_change_ok, &size_change_ok,
4863 &matched))
4864 goto error_free_vers;
4865
4866 if (skip)
4867 continue;
4868
4869 /* Override a definition only if the new symbol matches the
4870 existing one. */
4871 if (override && matched)
4872 definition = FALSE;
4873
4874 h = *sym_hash;
4875 while (h->root.type == bfd_link_hash_indirect
4876 || h->root.type == bfd_link_hash_warning)
4877 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4878
4879 if (elf_tdata (abfd)->verdef != NULL
4880 && vernum > 1
4881 && definition)
4882 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4883 }
4884
4885 if (! (_bfd_generic_link_add_one_symbol
4886 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4887 (struct bfd_link_hash_entry **) sym_hash)))
4888 goto error_free_vers;
4889
4890 h = *sym_hash;
4891 /* We need to make sure that indirect symbol dynamic flags are
4892 updated. */
4893 hi = h;
4894 while (h->root.type == bfd_link_hash_indirect
4895 || h->root.type == bfd_link_hash_warning)
4896 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4897
4898 /* Setting the index to -3 tells elf_link_output_extsym that
4899 this symbol is defined in a discarded section. */
4900 if (discarded)
4901 h->indx = -3;
4902
4903 *sym_hash = h;
4904
4905 new_weak = (flags & BSF_WEAK) != 0;
4906 if (dynamic
4907 && definition
4908 && new_weak
4909 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4910 && is_elf_hash_table (htab)
4911 && h->u.alias == NULL)
4912 {
4913 /* Keep a list of all weak defined non function symbols from
4914 a dynamic object, using the alias field. Later in this
4915 function we will set the alias field to the correct
4916 value. We only put non-function symbols from dynamic
4917 objects on this list, because that happens to be the only
4918 time we need to know the normal symbol corresponding to a
4919 weak symbol, and the information is time consuming to
4920 figure out. If the alias field is not already NULL,
4921 then this symbol was already defined by some previous
4922 dynamic object, and we will be using that previous
4923 definition anyhow. */
4924
4925 h->u.alias = weaks;
4926 weaks = h;
4927 }
4928
4929 /* Set the alignment of a common symbol. */
4930 if ((common || bfd_is_com_section (sec))
4931 && h->root.type == bfd_link_hash_common)
4932 {
4933 unsigned int align;
4934
4935 if (common)
4936 align = bfd_log2 (isym->st_value);
4937 else
4938 {
4939 /* The new symbol is a common symbol in a shared object.
4940 We need to get the alignment from the section. */
4941 align = new_sec->alignment_power;
4942 }
4943 if (align > old_alignment)
4944 h->root.u.c.p->alignment_power = align;
4945 else
4946 h->root.u.c.p->alignment_power = old_alignment;
4947 }
4948
4949 if (is_elf_hash_table (htab))
4950 {
4951 /* Set a flag in the hash table entry indicating the type of
4952 reference or definition we just found. A dynamic symbol
4953 is one which is referenced or defined by both a regular
4954 object and a shared object. */
4955 bfd_boolean dynsym = FALSE;
4956
4957 /* Plugin symbols aren't normal. Don't set def_regular or
4958 ref_regular for them, or make them dynamic. */
4959 if ((abfd->flags & BFD_PLUGIN) != 0)
4960 ;
4961 else if (! dynamic)
4962 {
4963 if (! definition)
4964 {
4965 h->ref_regular = 1;
4966 if (bind != STB_WEAK)
4967 h->ref_regular_nonweak = 1;
4968 }
4969 else
4970 {
4971 h->def_regular = 1;
4972 if (h->def_dynamic)
4973 {
4974 h->def_dynamic = 0;
4975 h->ref_dynamic = 1;
4976 }
4977 }
4978
4979 /* If the indirect symbol has been forced local, don't
4980 make the real symbol dynamic. */
4981 if ((h == hi || !hi->forced_local)
4982 && (bfd_link_dll (info)
4983 || h->def_dynamic
4984 || h->ref_dynamic))
4985 dynsym = TRUE;
4986 }
4987 else
4988 {
4989 if (! definition)
4990 {
4991 h->ref_dynamic = 1;
4992 hi->ref_dynamic = 1;
4993 }
4994 else
4995 {
4996 h->def_dynamic = 1;
4997 hi->def_dynamic = 1;
4998 }
4999
5000 /* If the indirect symbol has been forced local, don't
5001 make the real symbol dynamic. */
5002 if ((h == hi || !hi->forced_local)
5003 && (h->def_regular
5004 || h->ref_regular
5005 || (h->is_weakalias
5006 && weakdef (h)->dynindx != -1)))
5007 dynsym = TRUE;
5008 }
5009
5010 /* Check to see if we need to add an indirect symbol for
5011 the default name. */
5012 if (definition
5013 || (!override && h->root.type == bfd_link_hash_common))
5014 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
5015 sec, value, &old_bfd, &dynsym))
5016 goto error_free_vers;
5017
5018 /* Check the alignment when a common symbol is involved. This
5019 can change when a common symbol is overridden by a normal
5020 definition or a common symbol is ignored due to the old
5021 normal definition. We need to make sure the maximum
5022 alignment is maintained. */
5023 if ((old_alignment || common)
5024 && h->root.type != bfd_link_hash_common)
5025 {
5026 unsigned int common_align;
5027 unsigned int normal_align;
5028 unsigned int symbol_align;
5029 bfd *normal_bfd;
5030 bfd *common_bfd;
5031
5032 BFD_ASSERT (h->root.type == bfd_link_hash_defined
5033 || h->root.type == bfd_link_hash_defweak);
5034
5035 symbol_align = ffs (h->root.u.def.value) - 1;
5036 if (h->root.u.def.section->owner != NULL
5037 && (h->root.u.def.section->owner->flags
5038 & (DYNAMIC | BFD_PLUGIN)) == 0)
5039 {
5040 normal_align = h->root.u.def.section->alignment_power;
5041 if (normal_align > symbol_align)
5042 normal_align = symbol_align;
5043 }
5044 else
5045 normal_align = symbol_align;
5046
5047 if (old_alignment)
5048 {
5049 common_align = old_alignment;
5050 common_bfd = old_bfd;
5051 normal_bfd = abfd;
5052 }
5053 else
5054 {
5055 common_align = bfd_log2 (isym->st_value);
5056 common_bfd = abfd;
5057 normal_bfd = old_bfd;
5058 }
5059
5060 if (normal_align < common_align)
5061 {
5062 /* PR binutils/2735 */
5063 if (normal_bfd == NULL)
5064 _bfd_error_handler
5065 /* xgettext:c-format */
5066 (_("warning: alignment %u of common symbol `%s' in %pB is"
5067 " greater than the alignment (%u) of its section %pA"),
5068 1 << common_align, name, common_bfd,
5069 1 << normal_align, h->root.u.def.section);
5070 else
5071 _bfd_error_handler
5072 /* xgettext:c-format */
5073 (_("warning: alignment %u of symbol `%s' in %pB"
5074 " is smaller than %u in %pB"),
5075 1 << normal_align, name, normal_bfd,
5076 1 << common_align, common_bfd);
5077 }
5078 }
5079
5080 /* Remember the symbol size if it isn't undefined. */
5081 if (isym->st_size != 0
5082 && isym->st_shndx != SHN_UNDEF
5083 && (definition || h->size == 0))
5084 {
5085 if (h->size != 0
5086 && h->size != isym->st_size
5087 && ! size_change_ok)
5088 _bfd_error_handler
5089 /* xgettext:c-format */
5090 (_("warning: size of symbol `%s' changed"
5091 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
5092 name, (uint64_t) h->size, old_bfd,
5093 (uint64_t) isym->st_size, abfd);
5094
5095 h->size = isym->st_size;
5096 }
5097
5098 /* If this is a common symbol, then we always want H->SIZE
5099 to be the size of the common symbol. The code just above
5100 won't fix the size if a common symbol becomes larger. We
5101 don't warn about a size change here, because that is
5102 covered by --warn-common. Allow changes between different
5103 function types. */
5104 if (h->root.type == bfd_link_hash_common)
5105 h->size = h->root.u.c.size;
5106
5107 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5108 && ((definition && !new_weak)
5109 || (old_weak && h->root.type == bfd_link_hash_common)
5110 || h->type == STT_NOTYPE))
5111 {
5112 unsigned int type = ELF_ST_TYPE (isym->st_info);
5113
5114 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5115 symbol. */
5116 if (type == STT_GNU_IFUNC
5117 && (abfd->flags & DYNAMIC) != 0)
5118 type = STT_FUNC;
5119
5120 if (h->type != type)
5121 {
5122 if (h->type != STT_NOTYPE && ! type_change_ok)
5123 /* xgettext:c-format */
5124 _bfd_error_handler
5125 (_("warning: type of symbol `%s' changed"
5126 " from %d to %d in %pB"),
5127 name, h->type, type, abfd);
5128
5129 h->type = type;
5130 }
5131 }
5132
5133 /* Merge st_other field. */
5134 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5135
5136 /* We don't want to make debug symbol dynamic. */
5137 if (definition
5138 && (sec->flags & SEC_DEBUGGING)
5139 && !bfd_link_relocatable (info))
5140 dynsym = FALSE;
5141
5142 /* Nor should we make plugin symbols dynamic. */
5143 if ((abfd->flags & BFD_PLUGIN) != 0)
5144 dynsym = FALSE;
5145
5146 if (definition)
5147 {
5148 h->target_internal = isym->st_target_internal;
5149 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5150 }
5151
5152 if (definition && !dynamic)
5153 {
5154 char *p = strchr (name, ELF_VER_CHR);
5155 if (p != NULL && p[1] != ELF_VER_CHR)
5156 {
5157 /* Queue non-default versions so that .symver x, x@FOO
5158 aliases can be checked. */
5159 if (!nondeflt_vers)
5160 {
5161 size_t amt = ((isymend - isym + 1)
5162 * sizeof (struct elf_link_hash_entry *));
5163 nondeflt_vers
5164 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5165 if (!nondeflt_vers)
5166 goto error_free_vers;
5167 }
5168 nondeflt_vers[nondeflt_vers_cnt++] = h;
5169 }
5170 }
5171
5172 if (dynsym && h->dynindx == -1)
5173 {
5174 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5175 goto error_free_vers;
5176 if (h->is_weakalias
5177 && weakdef (h)->dynindx == -1)
5178 {
5179 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5180 goto error_free_vers;
5181 }
5182 }
5183 else if (h->dynindx != -1)
5184 /* If the symbol already has a dynamic index, but
5185 visibility says it should not be visible, turn it into
5186 a local symbol. */
5187 switch (ELF_ST_VISIBILITY (h->other))
5188 {
5189 case STV_INTERNAL:
5190 case STV_HIDDEN:
5191 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5192 dynsym = FALSE;
5193 break;
5194 }
5195
5196 /* Don't add DT_NEEDED for references from the dummy bfd nor
5197 for unmatched symbol. */
5198 if (!add_needed
5199 && matched
5200 && definition
5201 && ((dynsym
5202 && h->ref_regular_nonweak
5203 && (old_bfd == NULL
5204 || (old_bfd->flags & BFD_PLUGIN) == 0))
5205 || (h->ref_dynamic_nonweak
5206 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5207 && !on_needed_list (elf_dt_name (abfd),
5208 htab->needed, NULL))))
5209 {
5210 const char *soname = elf_dt_name (abfd);
5211
5212 info->callbacks->minfo ("%!", soname, old_bfd,
5213 h->root.root.string);
5214
5215 /* A symbol from a library loaded via DT_NEEDED of some
5216 other library is referenced by a regular object.
5217 Add a DT_NEEDED entry for it. Issue an error if
5218 --no-add-needed is used and the reference was not
5219 a weak one. */
5220 if (old_bfd != NULL
5221 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5222 {
5223 _bfd_error_handler
5224 /* xgettext:c-format */
5225 (_("%pB: undefined reference to symbol '%s'"),
5226 old_bfd, name);
5227 bfd_set_error (bfd_error_missing_dso);
5228 goto error_free_vers;
5229 }
5230
5231 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5232 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5233
5234 /* Create dynamic sections for backends that require
5235 that be done before setup_gnu_properties. */
5236 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5237 return FALSE;
5238 add_needed = TRUE;
5239 }
5240 }
5241 }
5242
5243 if (info->lto_plugin_active
5244 && !bfd_link_relocatable (info)
5245 && (abfd->flags & BFD_PLUGIN) == 0
5246 && !just_syms
5247 && extsymcount)
5248 {
5249 int r_sym_shift;
5250
5251 if (bed->s->arch_size == 32)
5252 r_sym_shift = 8;
5253 else
5254 r_sym_shift = 32;
5255
5256 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5257 referenced in regular objects so that linker plugin will get
5258 the correct symbol resolution. */
5259
5260 sym_hash = elf_sym_hashes (abfd);
5261 for (s = abfd->sections; s != NULL; s = s->next)
5262 {
5263 Elf_Internal_Rela *internal_relocs;
5264 Elf_Internal_Rela *rel, *relend;
5265
5266 /* Don't check relocations in excluded sections. */
5267 if ((s->flags & SEC_RELOC) == 0
5268 || s->reloc_count == 0
5269 || (s->flags & SEC_EXCLUDE) != 0
5270 || ((info->strip == strip_all
5271 || info->strip == strip_debugger)
5272 && (s->flags & SEC_DEBUGGING) != 0))
5273 continue;
5274
5275 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5276 NULL,
5277 info->keep_memory);
5278 if (internal_relocs == NULL)
5279 goto error_free_vers;
5280
5281 rel = internal_relocs;
5282 relend = rel + s->reloc_count;
5283 for ( ; rel < relend; rel++)
5284 {
5285 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5286 struct elf_link_hash_entry *h;
5287
5288 /* Skip local symbols. */
5289 if (r_symndx < extsymoff)
5290 continue;
5291
5292 h = sym_hash[r_symndx - extsymoff];
5293 if (h != NULL)
5294 h->root.non_ir_ref_regular = 1;
5295 }
5296
5297 if (elf_section_data (s)->relocs != internal_relocs)
5298 free (internal_relocs);
5299 }
5300 }
5301
5302 if (extversym != NULL)
5303 {
5304 free (extversym);
5305 extversym = NULL;
5306 }
5307
5308 if (isymbuf != NULL)
5309 {
5310 free (isymbuf);
5311 isymbuf = NULL;
5312 }
5313
5314 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5315 {
5316 unsigned int i;
5317
5318 /* Restore the symbol table. */
5319 old_ent = (char *) old_tab + tabsize;
5320 memset (elf_sym_hashes (abfd), 0,
5321 extsymcount * sizeof (struct elf_link_hash_entry *));
5322 htab->root.table.table = old_table;
5323 htab->root.table.size = old_size;
5324 htab->root.table.count = old_count;
5325 memcpy (htab->root.table.table, old_tab, tabsize);
5326 htab->root.undefs = old_undefs;
5327 htab->root.undefs_tail = old_undefs_tail;
5328 if (htab->dynstr != NULL)
5329 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5330 free (old_strtab);
5331 old_strtab = NULL;
5332 for (i = 0; i < htab->root.table.size; i++)
5333 {
5334 struct bfd_hash_entry *p;
5335 struct elf_link_hash_entry *h;
5336 bfd_size_type size;
5337 unsigned int alignment_power;
5338 unsigned int non_ir_ref_dynamic;
5339
5340 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5341 {
5342 h = (struct elf_link_hash_entry *) p;
5343 if (h->root.type == bfd_link_hash_warning)
5344 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5345
5346 /* Preserve the maximum alignment and size for common
5347 symbols even if this dynamic lib isn't on DT_NEEDED
5348 since it can still be loaded at run time by another
5349 dynamic lib. */
5350 if (h->root.type == bfd_link_hash_common)
5351 {
5352 size = h->root.u.c.size;
5353 alignment_power = h->root.u.c.p->alignment_power;
5354 }
5355 else
5356 {
5357 size = 0;
5358 alignment_power = 0;
5359 }
5360 /* Preserve non_ir_ref_dynamic so that this symbol
5361 will be exported when the dynamic lib becomes needed
5362 in the second pass. */
5363 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5364 memcpy (p, old_ent, htab->root.table.entsize);
5365 old_ent = (char *) old_ent + htab->root.table.entsize;
5366 h = (struct elf_link_hash_entry *) p;
5367 if (h->root.type == bfd_link_hash_warning)
5368 {
5369 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5370 old_ent = (char *) old_ent + htab->root.table.entsize;
5371 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5372 }
5373 if (h->root.type == bfd_link_hash_common)
5374 {
5375 if (size > h->root.u.c.size)
5376 h->root.u.c.size = size;
5377 if (alignment_power > h->root.u.c.p->alignment_power)
5378 h->root.u.c.p->alignment_power = alignment_power;
5379 }
5380 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5381 }
5382 }
5383
5384 /* Make a special call to the linker "notice" function to
5385 tell it that symbols added for crefs may need to be removed. */
5386 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5387 goto error_free_vers;
5388
5389 free (old_tab);
5390 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5391 alloc_mark);
5392 if (nondeflt_vers != NULL)
5393 free (nondeflt_vers);
5394 return TRUE;
5395 }
5396
5397 if (old_tab != NULL)
5398 {
5399 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5400 goto error_free_vers;
5401 free (old_tab);
5402 old_tab = NULL;
5403 }
5404
5405 /* Now that all the symbols from this input file are created, if
5406 not performing a relocatable link, handle .symver foo, foo@BAR
5407 such that any relocs against foo become foo@BAR. */
5408 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5409 {
5410 size_t cnt, symidx;
5411
5412 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5413 {
5414 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5415 char *shortname, *p;
5416 size_t amt;
5417
5418 p = strchr (h->root.root.string, ELF_VER_CHR);
5419 if (p == NULL
5420 || (h->root.type != bfd_link_hash_defined
5421 && h->root.type != bfd_link_hash_defweak))
5422 continue;
5423
5424 amt = p - h->root.root.string;
5425 shortname = (char *) bfd_malloc (amt + 1);
5426 if (!shortname)
5427 goto error_free_vers;
5428 memcpy (shortname, h->root.root.string, amt);
5429 shortname[amt] = '\0';
5430
5431 hi = (struct elf_link_hash_entry *)
5432 bfd_link_hash_lookup (&htab->root, shortname,
5433 FALSE, FALSE, FALSE);
5434 if (hi != NULL
5435 && hi->root.type == h->root.type
5436 && hi->root.u.def.value == h->root.u.def.value
5437 && hi->root.u.def.section == h->root.u.def.section)
5438 {
5439 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5440 hi->root.type = bfd_link_hash_indirect;
5441 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5442 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5443 sym_hash = elf_sym_hashes (abfd);
5444 if (sym_hash)
5445 for (symidx = 0; symidx < extsymcount; ++symidx)
5446 if (sym_hash[symidx] == hi)
5447 {
5448 sym_hash[symidx] = h;
5449 break;
5450 }
5451 }
5452 free (shortname);
5453 }
5454 free (nondeflt_vers);
5455 nondeflt_vers = NULL;
5456 }
5457
5458 /* Now set the alias field correctly for all the weak defined
5459 symbols we found. The only way to do this is to search all the
5460 symbols. Since we only need the information for non functions in
5461 dynamic objects, that's the only time we actually put anything on
5462 the list WEAKS. We need this information so that if a regular
5463 object refers to a symbol defined weakly in a dynamic object, the
5464 real symbol in the dynamic object is also put in the dynamic
5465 symbols; we also must arrange for both symbols to point to the
5466 same memory location. We could handle the general case of symbol
5467 aliasing, but a general symbol alias can only be generated in
5468 assembler code, handling it correctly would be very time
5469 consuming, and other ELF linkers don't handle general aliasing
5470 either. */
5471 if (weaks != NULL)
5472 {
5473 struct elf_link_hash_entry **hpp;
5474 struct elf_link_hash_entry **hppend;
5475 struct elf_link_hash_entry **sorted_sym_hash;
5476 struct elf_link_hash_entry *h;
5477 size_t sym_count, amt;
5478
5479 /* Since we have to search the whole symbol list for each weak
5480 defined symbol, search time for N weak defined symbols will be
5481 O(N^2). Binary search will cut it down to O(NlogN). */
5482 amt = extsymcount * sizeof (*sorted_sym_hash);
5483 sorted_sym_hash = bfd_malloc (amt);
5484 if (sorted_sym_hash == NULL)
5485 goto error_return;
5486 sym_hash = sorted_sym_hash;
5487 hpp = elf_sym_hashes (abfd);
5488 hppend = hpp + extsymcount;
5489 sym_count = 0;
5490 for (; hpp < hppend; hpp++)
5491 {
5492 h = *hpp;
5493 if (h != NULL
5494 && h->root.type == bfd_link_hash_defined
5495 && !bed->is_function_type (h->type))
5496 {
5497 *sym_hash = h;
5498 sym_hash++;
5499 sym_count++;
5500 }
5501 }
5502
5503 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5504 elf_sort_symbol);
5505
5506 while (weaks != NULL)
5507 {
5508 struct elf_link_hash_entry *hlook;
5509 asection *slook;
5510 bfd_vma vlook;
5511 size_t i, j, idx = 0;
5512
5513 hlook = weaks;
5514 weaks = hlook->u.alias;
5515 hlook->u.alias = NULL;
5516
5517 if (hlook->root.type != bfd_link_hash_defined
5518 && hlook->root.type != bfd_link_hash_defweak)
5519 continue;
5520
5521 slook = hlook->root.u.def.section;
5522 vlook = hlook->root.u.def.value;
5523
5524 i = 0;
5525 j = sym_count;
5526 while (i != j)
5527 {
5528 bfd_signed_vma vdiff;
5529 idx = (i + j) / 2;
5530 h = sorted_sym_hash[idx];
5531 vdiff = vlook - h->root.u.def.value;
5532 if (vdiff < 0)
5533 j = idx;
5534 else if (vdiff > 0)
5535 i = idx + 1;
5536 else
5537 {
5538 int sdiff = slook->id - h->root.u.def.section->id;
5539 if (sdiff < 0)
5540 j = idx;
5541 else if (sdiff > 0)
5542 i = idx + 1;
5543 else
5544 break;
5545 }
5546 }
5547
5548 /* We didn't find a value/section match. */
5549 if (i == j)
5550 continue;
5551
5552 /* With multiple aliases, or when the weak symbol is already
5553 strongly defined, we have multiple matching symbols and
5554 the binary search above may land on any of them. Step
5555 one past the matching symbol(s). */
5556 while (++idx != j)
5557 {
5558 h = sorted_sym_hash[idx];
5559 if (h->root.u.def.section != slook
5560 || h->root.u.def.value != vlook)
5561 break;
5562 }
5563
5564 /* Now look back over the aliases. Since we sorted by size
5565 as well as value and section, we'll choose the one with
5566 the largest size. */
5567 while (idx-- != i)
5568 {
5569 h = sorted_sym_hash[idx];
5570
5571 /* Stop if value or section doesn't match. */
5572 if (h->root.u.def.section != slook
5573 || h->root.u.def.value != vlook)
5574 break;
5575 else if (h != hlook)
5576 {
5577 struct elf_link_hash_entry *t;
5578
5579 hlook->u.alias = h;
5580 hlook->is_weakalias = 1;
5581 t = h;
5582 if (t->u.alias != NULL)
5583 while (t->u.alias != h)
5584 t = t->u.alias;
5585 t->u.alias = hlook;
5586
5587 /* If the weak definition is in the list of dynamic
5588 symbols, make sure the real definition is put
5589 there as well. */
5590 if (hlook->dynindx != -1 && h->dynindx == -1)
5591 {
5592 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5593 {
5594 err_free_sym_hash:
5595 free (sorted_sym_hash);
5596 goto error_return;
5597 }
5598 }
5599
5600 /* If the real definition is in the list of dynamic
5601 symbols, make sure the weak definition is put
5602 there as well. If we don't do this, then the
5603 dynamic loader might not merge the entries for the
5604 real definition and the weak definition. */
5605 if (h->dynindx != -1 && hlook->dynindx == -1)
5606 {
5607 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5608 goto err_free_sym_hash;
5609 }
5610 break;
5611 }
5612 }
5613 }
5614
5615 free (sorted_sym_hash);
5616 }
5617
5618 if (bed->check_directives
5619 && !(*bed->check_directives) (abfd, info))
5620 return FALSE;
5621
5622 /* If this is a non-traditional link, try to optimize the handling
5623 of the .stab/.stabstr sections. */
5624 if (! dynamic
5625 && ! info->traditional_format
5626 && is_elf_hash_table (htab)
5627 && (info->strip != strip_all && info->strip != strip_debugger))
5628 {
5629 asection *stabstr;
5630
5631 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5632 if (stabstr != NULL)
5633 {
5634 bfd_size_type string_offset = 0;
5635 asection *stab;
5636
5637 for (stab = abfd->sections; stab; stab = stab->next)
5638 if (CONST_STRNEQ (stab->name, ".stab")
5639 && (!stab->name[5] ||
5640 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5641 && (stab->flags & SEC_MERGE) == 0
5642 && !bfd_is_abs_section (stab->output_section))
5643 {
5644 struct bfd_elf_section_data *secdata;
5645
5646 secdata = elf_section_data (stab);
5647 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5648 stabstr, &secdata->sec_info,
5649 &string_offset))
5650 goto error_return;
5651 if (secdata->sec_info)
5652 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5653 }
5654 }
5655 }
5656
5657 if (dynamic && add_needed)
5658 {
5659 /* Add this bfd to the loaded list. */
5660 struct elf_link_loaded_list *n;
5661
5662 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5663 if (n == NULL)
5664 goto error_return;
5665 n->abfd = abfd;
5666 n->next = htab->dyn_loaded;
5667 htab->dyn_loaded = n;
5668 }
5669 if (dynamic && !add_needed
5670 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5671 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5672
5673 return TRUE;
5674
5675 error_free_vers:
5676 if (old_tab != NULL)
5677 free (old_tab);
5678 if (old_strtab != NULL)
5679 free (old_strtab);
5680 if (nondeflt_vers != NULL)
5681 free (nondeflt_vers);
5682 if (extversym != NULL)
5683 free (extversym);
5684 error_free_sym:
5685 if (isymbuf != NULL)
5686 free (isymbuf);
5687 error_return:
5688 return FALSE;
5689 }
5690
5691 /* Return the linker hash table entry of a symbol that might be
5692 satisfied by an archive symbol. Return -1 on error. */
5693
5694 struct elf_link_hash_entry *
5695 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5696 struct bfd_link_info *info,
5697 const char *name)
5698 {
5699 struct elf_link_hash_entry *h;
5700 char *p, *copy;
5701 size_t len, first;
5702
5703 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5704 if (h != NULL)
5705 return h;
5706
5707 /* If this is a default version (the name contains @@), look up the
5708 symbol again with only one `@' as well as without the version.
5709 The effect is that references to the symbol with and without the
5710 version will be matched by the default symbol in the archive. */
5711
5712 p = strchr (name, ELF_VER_CHR);
5713 if (p == NULL || p[1] != ELF_VER_CHR)
5714 return h;
5715
5716 /* First check with only one `@'. */
5717 len = strlen (name);
5718 copy = (char *) bfd_alloc (abfd, len);
5719 if (copy == NULL)
5720 return (struct elf_link_hash_entry *) -1;
5721
5722 first = p - name + 1;
5723 memcpy (copy, name, first);
5724 memcpy (copy + first, name + first + 1, len - first);
5725
5726 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5727 if (h == NULL)
5728 {
5729 /* We also need to check references to the symbol without the
5730 version. */
5731 copy[first - 1] = '\0';
5732 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5733 FALSE, FALSE, TRUE);
5734 }
5735
5736 bfd_release (abfd, copy);
5737 return h;
5738 }
5739
5740 /* Add symbols from an ELF archive file to the linker hash table. We
5741 don't use _bfd_generic_link_add_archive_symbols because we need to
5742 handle versioned symbols.
5743
5744 Fortunately, ELF archive handling is simpler than that done by
5745 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5746 oddities. In ELF, if we find a symbol in the archive map, and the
5747 symbol is currently undefined, we know that we must pull in that
5748 object file.
5749
5750 Unfortunately, we do have to make multiple passes over the symbol
5751 table until nothing further is resolved. */
5752
5753 static bfd_boolean
5754 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5755 {
5756 symindex c;
5757 unsigned char *included = NULL;
5758 carsym *symdefs;
5759 bfd_boolean loop;
5760 size_t amt;
5761 const struct elf_backend_data *bed;
5762 struct elf_link_hash_entry * (*archive_symbol_lookup)
5763 (bfd *, struct bfd_link_info *, const char *);
5764
5765 if (! bfd_has_map (abfd))
5766 {
5767 /* An empty archive is a special case. */
5768 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5769 return TRUE;
5770 bfd_set_error (bfd_error_no_armap);
5771 return FALSE;
5772 }
5773
5774 /* Keep track of all symbols we know to be already defined, and all
5775 files we know to be already included. This is to speed up the
5776 second and subsequent passes. */
5777 c = bfd_ardata (abfd)->symdef_count;
5778 if (c == 0)
5779 return TRUE;
5780 amt = c * sizeof (*included);
5781 included = (unsigned char *) bfd_zmalloc (amt);
5782 if (included == NULL)
5783 return FALSE;
5784
5785 symdefs = bfd_ardata (abfd)->symdefs;
5786 bed = get_elf_backend_data (abfd);
5787 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5788
5789 do
5790 {
5791 file_ptr last;
5792 symindex i;
5793 carsym *symdef;
5794 carsym *symdefend;
5795
5796 loop = FALSE;
5797 last = -1;
5798
5799 symdef = symdefs;
5800 symdefend = symdef + c;
5801 for (i = 0; symdef < symdefend; symdef++, i++)
5802 {
5803 struct elf_link_hash_entry *h;
5804 bfd *element;
5805 struct bfd_link_hash_entry *undefs_tail;
5806 symindex mark;
5807
5808 if (included[i])
5809 continue;
5810 if (symdef->file_offset == last)
5811 {
5812 included[i] = TRUE;
5813 continue;
5814 }
5815
5816 h = archive_symbol_lookup (abfd, info, symdef->name);
5817 if (h == (struct elf_link_hash_entry *) -1)
5818 goto error_return;
5819
5820 if (h == NULL)
5821 continue;
5822
5823 if (h->root.type == bfd_link_hash_common)
5824 {
5825 /* We currently have a common symbol. The archive map contains
5826 a reference to this symbol, so we may want to include it. We
5827 only want to include it however, if this archive element
5828 contains a definition of the symbol, not just another common
5829 declaration of it.
5830
5831 Unfortunately some archivers (including GNU ar) will put
5832 declarations of common symbols into their archive maps, as
5833 well as real definitions, so we cannot just go by the archive
5834 map alone. Instead we must read in the element's symbol
5835 table and check that to see what kind of symbol definition
5836 this is. */
5837 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5838 continue;
5839 }
5840 else if (h->root.type != bfd_link_hash_undefined)
5841 {
5842 if (h->root.type != bfd_link_hash_undefweak)
5843 /* Symbol must be defined. Don't check it again. */
5844 included[i] = TRUE;
5845 continue;
5846 }
5847
5848 /* We need to include this archive member. */
5849 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5850 if (element == NULL)
5851 goto error_return;
5852
5853 if (! bfd_check_format (element, bfd_object))
5854 goto error_return;
5855
5856 undefs_tail = info->hash->undefs_tail;
5857
5858 if (!(*info->callbacks
5859 ->add_archive_element) (info, element, symdef->name, &element))
5860 continue;
5861 if (!bfd_link_add_symbols (element, info))
5862 goto error_return;
5863
5864 /* If there are any new undefined symbols, we need to make
5865 another pass through the archive in order to see whether
5866 they can be defined. FIXME: This isn't perfect, because
5867 common symbols wind up on undefs_tail and because an
5868 undefined symbol which is defined later on in this pass
5869 does not require another pass. This isn't a bug, but it
5870 does make the code less efficient than it could be. */
5871 if (undefs_tail != info->hash->undefs_tail)
5872 loop = TRUE;
5873
5874 /* Look backward to mark all symbols from this object file
5875 which we have already seen in this pass. */
5876 mark = i;
5877 do
5878 {
5879 included[mark] = TRUE;
5880 if (mark == 0)
5881 break;
5882 --mark;
5883 }
5884 while (symdefs[mark].file_offset == symdef->file_offset);
5885
5886 /* We mark subsequent symbols from this object file as we go
5887 on through the loop. */
5888 last = symdef->file_offset;
5889 }
5890 }
5891 while (loop);
5892
5893 free (included);
5894
5895 return TRUE;
5896
5897 error_return:
5898 if (included != NULL)
5899 free (included);
5900 return FALSE;
5901 }
5902
5903 /* Given an ELF BFD, add symbols to the global hash table as
5904 appropriate. */
5905
5906 bfd_boolean
5907 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5908 {
5909 switch (bfd_get_format (abfd))
5910 {
5911 case bfd_object:
5912 return elf_link_add_object_symbols (abfd, info);
5913 case bfd_archive:
5914 return elf_link_add_archive_symbols (abfd, info);
5915 default:
5916 bfd_set_error (bfd_error_wrong_format);
5917 return FALSE;
5918 }
5919 }
5920 \f
5921 struct hash_codes_info
5922 {
5923 unsigned long *hashcodes;
5924 bfd_boolean error;
5925 };
5926
5927 /* This function will be called though elf_link_hash_traverse to store
5928 all hash value of the exported symbols in an array. */
5929
5930 static bfd_boolean
5931 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5932 {
5933 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5934 const char *name;
5935 unsigned long ha;
5936 char *alc = NULL;
5937
5938 /* Ignore indirect symbols. These are added by the versioning code. */
5939 if (h->dynindx == -1)
5940 return TRUE;
5941
5942 name = h->root.root.string;
5943 if (h->versioned >= versioned)
5944 {
5945 char *p = strchr (name, ELF_VER_CHR);
5946 if (p != NULL)
5947 {
5948 alc = (char *) bfd_malloc (p - name + 1);
5949 if (alc == NULL)
5950 {
5951 inf->error = TRUE;
5952 return FALSE;
5953 }
5954 memcpy (alc, name, p - name);
5955 alc[p - name] = '\0';
5956 name = alc;
5957 }
5958 }
5959
5960 /* Compute the hash value. */
5961 ha = bfd_elf_hash (name);
5962
5963 /* Store the found hash value in the array given as the argument. */
5964 *(inf->hashcodes)++ = ha;
5965
5966 /* And store it in the struct so that we can put it in the hash table
5967 later. */
5968 h->u.elf_hash_value = ha;
5969
5970 if (alc != NULL)
5971 free (alc);
5972
5973 return TRUE;
5974 }
5975
5976 struct collect_gnu_hash_codes
5977 {
5978 bfd *output_bfd;
5979 const struct elf_backend_data *bed;
5980 unsigned long int nsyms;
5981 unsigned long int maskbits;
5982 unsigned long int *hashcodes;
5983 unsigned long int *hashval;
5984 unsigned long int *indx;
5985 unsigned long int *counts;
5986 bfd_vma *bitmask;
5987 bfd_byte *contents;
5988 bfd_size_type xlat;
5989 long int min_dynindx;
5990 unsigned long int bucketcount;
5991 unsigned long int symindx;
5992 long int local_indx;
5993 long int shift1, shift2;
5994 unsigned long int mask;
5995 bfd_boolean error;
5996 };
5997
5998 /* This function will be called though elf_link_hash_traverse to store
5999 all hash value of the exported symbols in an array. */
6000
6001 static bfd_boolean
6002 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
6003 {
6004 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6005 const char *name;
6006 unsigned long ha;
6007 char *alc = NULL;
6008
6009 /* Ignore indirect symbols. These are added by the versioning code. */
6010 if (h->dynindx == -1)
6011 return TRUE;
6012
6013 /* Ignore also local symbols and undefined symbols. */
6014 if (! (*s->bed->elf_hash_symbol) (h))
6015 return TRUE;
6016
6017 name = h->root.root.string;
6018 if (h->versioned >= versioned)
6019 {
6020 char *p = strchr (name, ELF_VER_CHR);
6021 if (p != NULL)
6022 {
6023 alc = (char *) bfd_malloc (p - name + 1);
6024 if (alc == NULL)
6025 {
6026 s->error = TRUE;
6027 return FALSE;
6028 }
6029 memcpy (alc, name, p - name);
6030 alc[p - name] = '\0';
6031 name = alc;
6032 }
6033 }
6034
6035 /* Compute the hash value. */
6036 ha = bfd_elf_gnu_hash (name);
6037
6038 /* Store the found hash value in the array for compute_bucket_count,
6039 and also for .dynsym reordering purposes. */
6040 s->hashcodes[s->nsyms] = ha;
6041 s->hashval[h->dynindx] = ha;
6042 ++s->nsyms;
6043 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
6044 s->min_dynindx = h->dynindx;
6045
6046 if (alc != NULL)
6047 free (alc);
6048
6049 return TRUE;
6050 }
6051
6052 /* This function will be called though elf_link_hash_traverse to do
6053 final dynamic symbol renumbering in case of .gnu.hash.
6054 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
6055 to the translation table. */
6056
6057 static bfd_boolean
6058 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
6059 {
6060 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
6061 unsigned long int bucket;
6062 unsigned long int val;
6063
6064 /* Ignore indirect symbols. */
6065 if (h->dynindx == -1)
6066 return TRUE;
6067
6068 /* Ignore also local symbols and undefined symbols. */
6069 if (! (*s->bed->elf_hash_symbol) (h))
6070 {
6071 if (h->dynindx >= s->min_dynindx)
6072 {
6073 if (s->bed->record_xhash_symbol != NULL)
6074 {
6075 (*s->bed->record_xhash_symbol) (h, 0);
6076 s->local_indx++;
6077 }
6078 else
6079 h->dynindx = s->local_indx++;
6080 }
6081 return TRUE;
6082 }
6083
6084 bucket = s->hashval[h->dynindx] % s->bucketcount;
6085 val = (s->hashval[h->dynindx] >> s->shift1)
6086 & ((s->maskbits >> s->shift1) - 1);
6087 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
6088 s->bitmask[val]
6089 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
6090 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
6091 if (s->counts[bucket] == 1)
6092 /* Last element terminates the chain. */
6093 val |= 1;
6094 bfd_put_32 (s->output_bfd, val,
6095 s->contents + (s->indx[bucket] - s->symindx) * 4);
6096 --s->counts[bucket];
6097 if (s->bed->record_xhash_symbol != NULL)
6098 {
6099 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6100
6101 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6102 }
6103 else
6104 h->dynindx = s->indx[bucket]++;
6105 return TRUE;
6106 }
6107
6108 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6109
6110 bfd_boolean
6111 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6112 {
6113 return !(h->forced_local
6114 || h->root.type == bfd_link_hash_undefined
6115 || h->root.type == bfd_link_hash_undefweak
6116 || ((h->root.type == bfd_link_hash_defined
6117 || h->root.type == bfd_link_hash_defweak)
6118 && h->root.u.def.section->output_section == NULL));
6119 }
6120
6121 /* Array used to determine the number of hash table buckets to use
6122 based on the number of symbols there are. If there are fewer than
6123 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6124 fewer than 37 we use 17 buckets, and so forth. We never use more
6125 than 32771 buckets. */
6126
6127 static const size_t elf_buckets[] =
6128 {
6129 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6130 16411, 32771, 0
6131 };
6132
6133 /* Compute bucket count for hashing table. We do not use a static set
6134 of possible tables sizes anymore. Instead we determine for all
6135 possible reasonable sizes of the table the outcome (i.e., the
6136 number of collisions etc) and choose the best solution. The
6137 weighting functions are not too simple to allow the table to grow
6138 without bounds. Instead one of the weighting factors is the size.
6139 Therefore the result is always a good payoff between few collisions
6140 (= short chain lengths) and table size. */
6141 static size_t
6142 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6143 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6144 unsigned long int nsyms,
6145 int gnu_hash)
6146 {
6147 size_t best_size = 0;
6148 unsigned long int i;
6149
6150 /* We have a problem here. The following code to optimize the table
6151 size requires an integer type with more the 32 bits. If
6152 BFD_HOST_U_64_BIT is set we know about such a type. */
6153 #ifdef BFD_HOST_U_64_BIT
6154 if (info->optimize)
6155 {
6156 size_t minsize;
6157 size_t maxsize;
6158 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6159 bfd *dynobj = elf_hash_table (info)->dynobj;
6160 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6161 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6162 unsigned long int *counts;
6163 bfd_size_type amt;
6164 unsigned int no_improvement_count = 0;
6165
6166 /* Possible optimization parameters: if we have NSYMS symbols we say
6167 that the hashing table must at least have NSYMS/4 and at most
6168 2*NSYMS buckets. */
6169 minsize = nsyms / 4;
6170 if (minsize == 0)
6171 minsize = 1;
6172 best_size = maxsize = nsyms * 2;
6173 if (gnu_hash)
6174 {
6175 if (minsize < 2)
6176 minsize = 2;
6177 if ((best_size & 31) == 0)
6178 ++best_size;
6179 }
6180
6181 /* Create array where we count the collisions in. We must use bfd_malloc
6182 since the size could be large. */
6183 amt = maxsize;
6184 amt *= sizeof (unsigned long int);
6185 counts = (unsigned long int *) bfd_malloc (amt);
6186 if (counts == NULL)
6187 return 0;
6188
6189 /* Compute the "optimal" size for the hash table. The criteria is a
6190 minimal chain length. The minor criteria is (of course) the size
6191 of the table. */
6192 for (i = minsize; i < maxsize; ++i)
6193 {
6194 /* Walk through the array of hashcodes and count the collisions. */
6195 BFD_HOST_U_64_BIT max;
6196 unsigned long int j;
6197 unsigned long int fact;
6198
6199 if (gnu_hash && (i & 31) == 0)
6200 continue;
6201
6202 memset (counts, '\0', i * sizeof (unsigned long int));
6203
6204 /* Determine how often each hash bucket is used. */
6205 for (j = 0; j < nsyms; ++j)
6206 ++counts[hashcodes[j] % i];
6207
6208 /* For the weight function we need some information about the
6209 pagesize on the target. This is information need not be 100%
6210 accurate. Since this information is not available (so far) we
6211 define it here to a reasonable default value. If it is crucial
6212 to have a better value some day simply define this value. */
6213 # ifndef BFD_TARGET_PAGESIZE
6214 # define BFD_TARGET_PAGESIZE (4096)
6215 # endif
6216
6217 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6218 and the chains. */
6219 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6220
6221 # if 1
6222 /* Variant 1: optimize for short chains. We add the squares
6223 of all the chain lengths (which favors many small chain
6224 over a few long chains). */
6225 for (j = 0; j < i; ++j)
6226 max += counts[j] * counts[j];
6227
6228 /* This adds penalties for the overall size of the table. */
6229 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6230 max *= fact * fact;
6231 # else
6232 /* Variant 2: Optimize a lot more for small table. Here we
6233 also add squares of the size but we also add penalties for
6234 empty slots (the +1 term). */
6235 for (j = 0; j < i; ++j)
6236 max += (1 + counts[j]) * (1 + counts[j]);
6237
6238 /* The overall size of the table is considered, but not as
6239 strong as in variant 1, where it is squared. */
6240 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6241 max *= fact;
6242 # endif
6243
6244 /* Compare with current best results. */
6245 if (max < best_chlen)
6246 {
6247 best_chlen = max;
6248 best_size = i;
6249 no_improvement_count = 0;
6250 }
6251 /* PR 11843: Avoid futile long searches for the best bucket size
6252 when there are a large number of symbols. */
6253 else if (++no_improvement_count == 100)
6254 break;
6255 }
6256
6257 free (counts);
6258 }
6259 else
6260 #endif /* defined (BFD_HOST_U_64_BIT) */
6261 {
6262 /* This is the fallback solution if no 64bit type is available or if we
6263 are not supposed to spend much time on optimizations. We select the
6264 bucket count using a fixed set of numbers. */
6265 for (i = 0; elf_buckets[i] != 0; i++)
6266 {
6267 best_size = elf_buckets[i];
6268 if (nsyms < elf_buckets[i + 1])
6269 break;
6270 }
6271 if (gnu_hash && best_size < 2)
6272 best_size = 2;
6273 }
6274
6275 return best_size;
6276 }
6277
6278 /* Size any SHT_GROUP section for ld -r. */
6279
6280 bfd_boolean
6281 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6282 {
6283 bfd *ibfd;
6284 asection *s;
6285
6286 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6287 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6288 && (s = ibfd->sections) != NULL
6289 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6290 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6291 return FALSE;
6292 return TRUE;
6293 }
6294
6295 /* Set a default stack segment size. The value in INFO wins. If it
6296 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6297 undefined it is initialized. */
6298
6299 bfd_boolean
6300 bfd_elf_stack_segment_size (bfd *output_bfd,
6301 struct bfd_link_info *info,
6302 const char *legacy_symbol,
6303 bfd_vma default_size)
6304 {
6305 struct elf_link_hash_entry *h = NULL;
6306
6307 /* Look for legacy symbol. */
6308 if (legacy_symbol)
6309 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6310 FALSE, FALSE, FALSE);
6311 if (h && (h->root.type == bfd_link_hash_defined
6312 || h->root.type == bfd_link_hash_defweak)
6313 && h->def_regular
6314 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6315 {
6316 /* The symbol has no type if specified on the command line. */
6317 h->type = STT_OBJECT;
6318 if (info->stacksize)
6319 /* xgettext:c-format */
6320 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6321 output_bfd, legacy_symbol);
6322 else if (h->root.u.def.section != bfd_abs_section_ptr)
6323 /* xgettext:c-format */
6324 _bfd_error_handler (_("%pB: %s not absolute"),
6325 output_bfd, legacy_symbol);
6326 else
6327 info->stacksize = h->root.u.def.value;
6328 }
6329
6330 if (!info->stacksize)
6331 /* If the user didn't set a size, or explicitly inhibit the
6332 size, set it now. */
6333 info->stacksize = default_size;
6334
6335 /* Provide the legacy symbol, if it is referenced. */
6336 if (h && (h->root.type == bfd_link_hash_undefined
6337 || h->root.type == bfd_link_hash_undefweak))
6338 {
6339 struct bfd_link_hash_entry *bh = NULL;
6340
6341 if (!(_bfd_generic_link_add_one_symbol
6342 (info, output_bfd, legacy_symbol,
6343 BSF_GLOBAL, bfd_abs_section_ptr,
6344 info->stacksize >= 0 ? info->stacksize : 0,
6345 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6346 return FALSE;
6347
6348 h = (struct elf_link_hash_entry *) bh;
6349 h->def_regular = 1;
6350 h->type = STT_OBJECT;
6351 }
6352
6353 return TRUE;
6354 }
6355
6356 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6357
6358 struct elf_gc_sweep_symbol_info
6359 {
6360 struct bfd_link_info *info;
6361 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6362 bfd_boolean);
6363 };
6364
6365 static bfd_boolean
6366 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6367 {
6368 if (!h->mark
6369 && (((h->root.type == bfd_link_hash_defined
6370 || h->root.type == bfd_link_hash_defweak)
6371 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6372 && h->root.u.def.section->gc_mark))
6373 || h->root.type == bfd_link_hash_undefined
6374 || h->root.type == bfd_link_hash_undefweak))
6375 {
6376 struct elf_gc_sweep_symbol_info *inf;
6377
6378 inf = (struct elf_gc_sweep_symbol_info *) data;
6379 (*inf->hide_symbol) (inf->info, h, TRUE);
6380 h->def_regular = 0;
6381 h->ref_regular = 0;
6382 h->ref_regular_nonweak = 0;
6383 }
6384
6385 return TRUE;
6386 }
6387
6388 /* Set up the sizes and contents of the ELF dynamic sections. This is
6389 called by the ELF linker emulation before_allocation routine. We
6390 must set the sizes of the sections before the linker sets the
6391 addresses of the various sections. */
6392
6393 bfd_boolean
6394 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6395 const char *soname,
6396 const char *rpath,
6397 const char *filter_shlib,
6398 const char *audit,
6399 const char *depaudit,
6400 const char * const *auxiliary_filters,
6401 struct bfd_link_info *info,
6402 asection **sinterpptr)
6403 {
6404 bfd *dynobj;
6405 const struct elf_backend_data *bed;
6406
6407 *sinterpptr = NULL;
6408
6409 if (!is_elf_hash_table (info->hash))
6410 return TRUE;
6411
6412 dynobj = elf_hash_table (info)->dynobj;
6413
6414 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6415 {
6416 struct bfd_elf_version_tree *verdefs;
6417 struct elf_info_failed asvinfo;
6418 struct bfd_elf_version_tree *t;
6419 struct bfd_elf_version_expr *d;
6420 asection *s;
6421 size_t soname_indx;
6422
6423 /* If we are supposed to export all symbols into the dynamic symbol
6424 table (this is not the normal case), then do so. */
6425 if (info->export_dynamic
6426 || (bfd_link_executable (info) && info->dynamic))
6427 {
6428 struct elf_info_failed eif;
6429
6430 eif.info = info;
6431 eif.failed = FALSE;
6432 elf_link_hash_traverse (elf_hash_table (info),
6433 _bfd_elf_export_symbol,
6434 &eif);
6435 if (eif.failed)
6436 return FALSE;
6437 }
6438
6439 if (soname != NULL)
6440 {
6441 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6442 soname, TRUE);
6443 if (soname_indx == (size_t) -1
6444 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6445 return FALSE;
6446 }
6447 else
6448 soname_indx = (size_t) -1;
6449
6450 /* Make all global versions with definition. */
6451 for (t = info->version_info; t != NULL; t = t->next)
6452 for (d = t->globals.list; d != NULL; d = d->next)
6453 if (!d->symver && d->literal)
6454 {
6455 const char *verstr, *name;
6456 size_t namelen, verlen, newlen;
6457 char *newname, *p, leading_char;
6458 struct elf_link_hash_entry *newh;
6459
6460 leading_char = bfd_get_symbol_leading_char (output_bfd);
6461 name = d->pattern;
6462 namelen = strlen (name) + (leading_char != '\0');
6463 verstr = t->name;
6464 verlen = strlen (verstr);
6465 newlen = namelen + verlen + 3;
6466
6467 newname = (char *) bfd_malloc (newlen);
6468 if (newname == NULL)
6469 return FALSE;
6470 newname[0] = leading_char;
6471 memcpy (newname + (leading_char != '\0'), name, namelen);
6472
6473 /* Check the hidden versioned definition. */
6474 p = newname + namelen;
6475 *p++ = ELF_VER_CHR;
6476 memcpy (p, verstr, verlen + 1);
6477 newh = elf_link_hash_lookup (elf_hash_table (info),
6478 newname, FALSE, FALSE,
6479 FALSE);
6480 if (newh == NULL
6481 || (newh->root.type != bfd_link_hash_defined
6482 && newh->root.type != bfd_link_hash_defweak))
6483 {
6484 /* Check the default versioned definition. */
6485 *p++ = ELF_VER_CHR;
6486 memcpy (p, verstr, verlen + 1);
6487 newh = elf_link_hash_lookup (elf_hash_table (info),
6488 newname, FALSE, FALSE,
6489 FALSE);
6490 }
6491 free (newname);
6492
6493 /* Mark this version if there is a definition and it is
6494 not defined in a shared object. */
6495 if (newh != NULL
6496 && !newh->def_dynamic
6497 && (newh->root.type == bfd_link_hash_defined
6498 || newh->root.type == bfd_link_hash_defweak))
6499 d->symver = 1;
6500 }
6501
6502 /* Attach all the symbols to their version information. */
6503 asvinfo.info = info;
6504 asvinfo.failed = FALSE;
6505
6506 elf_link_hash_traverse (elf_hash_table (info),
6507 _bfd_elf_link_assign_sym_version,
6508 &asvinfo);
6509 if (asvinfo.failed)
6510 return FALSE;
6511
6512 if (!info->allow_undefined_version)
6513 {
6514 /* Check if all global versions have a definition. */
6515 bfd_boolean all_defined = TRUE;
6516 for (t = info->version_info; t != NULL; t = t->next)
6517 for (d = t->globals.list; d != NULL; d = d->next)
6518 if (d->literal && !d->symver && !d->script)
6519 {
6520 _bfd_error_handler
6521 (_("%s: undefined version: %s"),
6522 d->pattern, t->name);
6523 all_defined = FALSE;
6524 }
6525
6526 if (!all_defined)
6527 {
6528 bfd_set_error (bfd_error_bad_value);
6529 return FALSE;
6530 }
6531 }
6532
6533 /* Set up the version definition section. */
6534 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6535 BFD_ASSERT (s != NULL);
6536
6537 /* We may have created additional version definitions if we are
6538 just linking a regular application. */
6539 verdefs = info->version_info;
6540
6541 /* Skip anonymous version tag. */
6542 if (verdefs != NULL && verdefs->vernum == 0)
6543 verdefs = verdefs->next;
6544
6545 if (verdefs == NULL && !info->create_default_symver)
6546 s->flags |= SEC_EXCLUDE;
6547 else
6548 {
6549 unsigned int cdefs;
6550 bfd_size_type size;
6551 bfd_byte *p;
6552 Elf_Internal_Verdef def;
6553 Elf_Internal_Verdaux defaux;
6554 struct bfd_link_hash_entry *bh;
6555 struct elf_link_hash_entry *h;
6556 const char *name;
6557
6558 cdefs = 0;
6559 size = 0;
6560
6561 /* Make space for the base version. */
6562 size += sizeof (Elf_External_Verdef);
6563 size += sizeof (Elf_External_Verdaux);
6564 ++cdefs;
6565
6566 /* Make space for the default version. */
6567 if (info->create_default_symver)
6568 {
6569 size += sizeof (Elf_External_Verdef);
6570 ++cdefs;
6571 }
6572
6573 for (t = verdefs; t != NULL; t = t->next)
6574 {
6575 struct bfd_elf_version_deps *n;
6576
6577 /* Don't emit base version twice. */
6578 if (t->vernum == 0)
6579 continue;
6580
6581 size += sizeof (Elf_External_Verdef);
6582 size += sizeof (Elf_External_Verdaux);
6583 ++cdefs;
6584
6585 for (n = t->deps; n != NULL; n = n->next)
6586 size += sizeof (Elf_External_Verdaux);
6587 }
6588
6589 s->size = size;
6590 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6591 if (s->contents == NULL && s->size != 0)
6592 return FALSE;
6593
6594 /* Fill in the version definition section. */
6595
6596 p = s->contents;
6597
6598 def.vd_version = VER_DEF_CURRENT;
6599 def.vd_flags = VER_FLG_BASE;
6600 def.vd_ndx = 1;
6601 def.vd_cnt = 1;
6602 if (info->create_default_symver)
6603 {
6604 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6605 def.vd_next = sizeof (Elf_External_Verdef);
6606 }
6607 else
6608 {
6609 def.vd_aux = sizeof (Elf_External_Verdef);
6610 def.vd_next = (sizeof (Elf_External_Verdef)
6611 + sizeof (Elf_External_Verdaux));
6612 }
6613
6614 if (soname_indx != (size_t) -1)
6615 {
6616 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6617 soname_indx);
6618 def.vd_hash = bfd_elf_hash (soname);
6619 defaux.vda_name = soname_indx;
6620 name = soname;
6621 }
6622 else
6623 {
6624 size_t indx;
6625
6626 name = lbasename (bfd_get_filename (output_bfd));
6627 def.vd_hash = bfd_elf_hash (name);
6628 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6629 name, FALSE);
6630 if (indx == (size_t) -1)
6631 return FALSE;
6632 defaux.vda_name = indx;
6633 }
6634 defaux.vda_next = 0;
6635
6636 _bfd_elf_swap_verdef_out (output_bfd, &def,
6637 (Elf_External_Verdef *) p);
6638 p += sizeof (Elf_External_Verdef);
6639 if (info->create_default_symver)
6640 {
6641 /* Add a symbol representing this version. */
6642 bh = NULL;
6643 if (! (_bfd_generic_link_add_one_symbol
6644 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6645 0, NULL, FALSE,
6646 get_elf_backend_data (dynobj)->collect, &bh)))
6647 return FALSE;
6648 h = (struct elf_link_hash_entry *) bh;
6649 h->non_elf = 0;
6650 h->def_regular = 1;
6651 h->type = STT_OBJECT;
6652 h->verinfo.vertree = NULL;
6653
6654 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6655 return FALSE;
6656
6657 /* Create a duplicate of the base version with the same
6658 aux block, but different flags. */
6659 def.vd_flags = 0;
6660 def.vd_ndx = 2;
6661 def.vd_aux = sizeof (Elf_External_Verdef);
6662 if (verdefs)
6663 def.vd_next = (sizeof (Elf_External_Verdef)
6664 + sizeof (Elf_External_Verdaux));
6665 else
6666 def.vd_next = 0;
6667 _bfd_elf_swap_verdef_out (output_bfd, &def,
6668 (Elf_External_Verdef *) p);
6669 p += sizeof (Elf_External_Verdef);
6670 }
6671 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6672 (Elf_External_Verdaux *) p);
6673 p += sizeof (Elf_External_Verdaux);
6674
6675 for (t = verdefs; t != NULL; t = t->next)
6676 {
6677 unsigned int cdeps;
6678 struct bfd_elf_version_deps *n;
6679
6680 /* Don't emit the base version twice. */
6681 if (t->vernum == 0)
6682 continue;
6683
6684 cdeps = 0;
6685 for (n = t->deps; n != NULL; n = n->next)
6686 ++cdeps;
6687
6688 /* Add a symbol representing this version. */
6689 bh = NULL;
6690 if (! (_bfd_generic_link_add_one_symbol
6691 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6692 0, NULL, FALSE,
6693 get_elf_backend_data (dynobj)->collect, &bh)))
6694 return FALSE;
6695 h = (struct elf_link_hash_entry *) bh;
6696 h->non_elf = 0;
6697 h->def_regular = 1;
6698 h->type = STT_OBJECT;
6699 h->verinfo.vertree = t;
6700
6701 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6702 return FALSE;
6703
6704 def.vd_version = VER_DEF_CURRENT;
6705 def.vd_flags = 0;
6706 if (t->globals.list == NULL
6707 && t->locals.list == NULL
6708 && ! t->used)
6709 def.vd_flags |= VER_FLG_WEAK;
6710 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6711 def.vd_cnt = cdeps + 1;
6712 def.vd_hash = bfd_elf_hash (t->name);
6713 def.vd_aux = sizeof (Elf_External_Verdef);
6714 def.vd_next = 0;
6715
6716 /* If a basever node is next, it *must* be the last node in
6717 the chain, otherwise Verdef construction breaks. */
6718 if (t->next != NULL && t->next->vernum == 0)
6719 BFD_ASSERT (t->next->next == NULL);
6720
6721 if (t->next != NULL && t->next->vernum != 0)
6722 def.vd_next = (sizeof (Elf_External_Verdef)
6723 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6724
6725 _bfd_elf_swap_verdef_out (output_bfd, &def,
6726 (Elf_External_Verdef *) p);
6727 p += sizeof (Elf_External_Verdef);
6728
6729 defaux.vda_name = h->dynstr_index;
6730 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6731 h->dynstr_index);
6732 defaux.vda_next = 0;
6733 if (t->deps != NULL)
6734 defaux.vda_next = sizeof (Elf_External_Verdaux);
6735 t->name_indx = defaux.vda_name;
6736
6737 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6738 (Elf_External_Verdaux *) p);
6739 p += sizeof (Elf_External_Verdaux);
6740
6741 for (n = t->deps; n != NULL; n = n->next)
6742 {
6743 if (n->version_needed == NULL)
6744 {
6745 /* This can happen if there was an error in the
6746 version script. */
6747 defaux.vda_name = 0;
6748 }
6749 else
6750 {
6751 defaux.vda_name = n->version_needed->name_indx;
6752 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6753 defaux.vda_name);
6754 }
6755 if (n->next == NULL)
6756 defaux.vda_next = 0;
6757 else
6758 defaux.vda_next = sizeof (Elf_External_Verdaux);
6759
6760 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6761 (Elf_External_Verdaux *) p);
6762 p += sizeof (Elf_External_Verdaux);
6763 }
6764 }
6765
6766 elf_tdata (output_bfd)->cverdefs = cdefs;
6767 }
6768 }
6769
6770 bed = get_elf_backend_data (output_bfd);
6771
6772 if (info->gc_sections && bed->can_gc_sections)
6773 {
6774 struct elf_gc_sweep_symbol_info sweep_info;
6775
6776 /* Remove the symbols that were in the swept sections from the
6777 dynamic symbol table. */
6778 sweep_info.info = info;
6779 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6780 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6781 &sweep_info);
6782 }
6783
6784 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6785 {
6786 asection *s;
6787 struct elf_find_verdep_info sinfo;
6788
6789 /* Work out the size of the version reference section. */
6790
6791 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6792 BFD_ASSERT (s != NULL);
6793
6794 sinfo.info = info;
6795 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6796 if (sinfo.vers == 0)
6797 sinfo.vers = 1;
6798 sinfo.failed = FALSE;
6799
6800 elf_link_hash_traverse (elf_hash_table (info),
6801 _bfd_elf_link_find_version_dependencies,
6802 &sinfo);
6803 if (sinfo.failed)
6804 return FALSE;
6805
6806 if (elf_tdata (output_bfd)->verref == NULL)
6807 s->flags |= SEC_EXCLUDE;
6808 else
6809 {
6810 Elf_Internal_Verneed *vn;
6811 unsigned int size;
6812 unsigned int crefs;
6813 bfd_byte *p;
6814
6815 /* Build the version dependency section. */
6816 size = 0;
6817 crefs = 0;
6818 for (vn = elf_tdata (output_bfd)->verref;
6819 vn != NULL;
6820 vn = vn->vn_nextref)
6821 {
6822 Elf_Internal_Vernaux *a;
6823
6824 size += sizeof (Elf_External_Verneed);
6825 ++crefs;
6826 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6827 size += sizeof (Elf_External_Vernaux);
6828 }
6829
6830 s->size = size;
6831 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6832 if (s->contents == NULL)
6833 return FALSE;
6834
6835 p = s->contents;
6836 for (vn = elf_tdata (output_bfd)->verref;
6837 vn != NULL;
6838 vn = vn->vn_nextref)
6839 {
6840 unsigned int caux;
6841 Elf_Internal_Vernaux *a;
6842 size_t indx;
6843
6844 caux = 0;
6845 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6846 ++caux;
6847
6848 vn->vn_version = VER_NEED_CURRENT;
6849 vn->vn_cnt = caux;
6850 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6851 elf_dt_name (vn->vn_bfd) != NULL
6852 ? elf_dt_name (vn->vn_bfd)
6853 : lbasename (bfd_get_filename
6854 (vn->vn_bfd)),
6855 FALSE);
6856 if (indx == (size_t) -1)
6857 return FALSE;
6858 vn->vn_file = indx;
6859 vn->vn_aux = sizeof (Elf_External_Verneed);
6860 if (vn->vn_nextref == NULL)
6861 vn->vn_next = 0;
6862 else
6863 vn->vn_next = (sizeof (Elf_External_Verneed)
6864 + caux * sizeof (Elf_External_Vernaux));
6865
6866 _bfd_elf_swap_verneed_out (output_bfd, vn,
6867 (Elf_External_Verneed *) p);
6868 p += sizeof (Elf_External_Verneed);
6869
6870 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6871 {
6872 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6873 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6874 a->vna_nodename, FALSE);
6875 if (indx == (size_t) -1)
6876 return FALSE;
6877 a->vna_name = indx;
6878 if (a->vna_nextptr == NULL)
6879 a->vna_next = 0;
6880 else
6881 a->vna_next = sizeof (Elf_External_Vernaux);
6882
6883 _bfd_elf_swap_vernaux_out (output_bfd, a,
6884 (Elf_External_Vernaux *) p);
6885 p += sizeof (Elf_External_Vernaux);
6886 }
6887 }
6888
6889 elf_tdata (output_bfd)->cverrefs = crefs;
6890 }
6891 }
6892
6893 /* Any syms created from now on start with -1 in
6894 got.refcount/offset and plt.refcount/offset. */
6895 elf_hash_table (info)->init_got_refcount
6896 = elf_hash_table (info)->init_got_offset;
6897 elf_hash_table (info)->init_plt_refcount
6898 = elf_hash_table (info)->init_plt_offset;
6899
6900 if (bfd_link_relocatable (info)
6901 && !_bfd_elf_size_group_sections (info))
6902 return FALSE;
6903
6904 /* The backend may have to create some sections regardless of whether
6905 we're dynamic or not. */
6906 if (bed->elf_backend_always_size_sections
6907 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6908 return FALSE;
6909
6910 /* Determine any GNU_STACK segment requirements, after the backend
6911 has had a chance to set a default segment size. */
6912 if (info->execstack)
6913 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6914 else if (info->noexecstack)
6915 elf_stack_flags (output_bfd) = PF_R | PF_W;
6916 else
6917 {
6918 bfd *inputobj;
6919 asection *notesec = NULL;
6920 int exec = 0;
6921
6922 for (inputobj = info->input_bfds;
6923 inputobj;
6924 inputobj = inputobj->link.next)
6925 {
6926 asection *s;
6927
6928 if (inputobj->flags
6929 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6930 continue;
6931 s = inputobj->sections;
6932 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6933 continue;
6934
6935 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6936 if (s)
6937 {
6938 if (s->flags & SEC_CODE)
6939 exec = PF_X;
6940 notesec = s;
6941 }
6942 else if (bed->default_execstack)
6943 exec = PF_X;
6944 }
6945 if (notesec || info->stacksize > 0)
6946 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6947 if (notesec && exec && bfd_link_relocatable (info)
6948 && notesec->output_section != bfd_abs_section_ptr)
6949 notesec->output_section->flags |= SEC_CODE;
6950 }
6951
6952 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6953 {
6954 struct elf_info_failed eif;
6955 struct elf_link_hash_entry *h;
6956 asection *dynstr;
6957 asection *s;
6958
6959 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6960 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6961
6962 if (info->symbolic)
6963 {
6964 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6965 return FALSE;
6966 info->flags |= DF_SYMBOLIC;
6967 }
6968
6969 if (rpath != NULL)
6970 {
6971 size_t indx;
6972 bfd_vma tag;
6973
6974 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6975 TRUE);
6976 if (indx == (size_t) -1)
6977 return FALSE;
6978
6979 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6980 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6981 return FALSE;
6982 }
6983
6984 if (filter_shlib != NULL)
6985 {
6986 size_t indx;
6987
6988 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6989 filter_shlib, TRUE);
6990 if (indx == (size_t) -1
6991 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6992 return FALSE;
6993 }
6994
6995 if (auxiliary_filters != NULL)
6996 {
6997 const char * const *p;
6998
6999 for (p = auxiliary_filters; *p != NULL; p++)
7000 {
7001 size_t indx;
7002
7003 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
7004 *p, TRUE);
7005 if (indx == (size_t) -1
7006 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
7007 return FALSE;
7008 }
7009 }
7010
7011 if (audit != NULL)
7012 {
7013 size_t indx;
7014
7015 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
7016 TRUE);
7017 if (indx == (size_t) -1
7018 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
7019 return FALSE;
7020 }
7021
7022 if (depaudit != NULL)
7023 {
7024 size_t indx;
7025
7026 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
7027 TRUE);
7028 if (indx == (size_t) -1
7029 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
7030 return FALSE;
7031 }
7032
7033 eif.info = info;
7034 eif.failed = FALSE;
7035
7036 /* Find all symbols which were defined in a dynamic object and make
7037 the backend pick a reasonable value for them. */
7038 elf_link_hash_traverse (elf_hash_table (info),
7039 _bfd_elf_adjust_dynamic_symbol,
7040 &eif);
7041 if (eif.failed)
7042 return FALSE;
7043
7044 /* Add some entries to the .dynamic section. We fill in some of the
7045 values later, in bfd_elf_final_link, but we must add the entries
7046 now so that we know the final size of the .dynamic section. */
7047
7048 /* If there are initialization and/or finalization functions to
7049 call then add the corresponding DT_INIT/DT_FINI entries. */
7050 h = (info->init_function
7051 ? elf_link_hash_lookup (elf_hash_table (info),
7052 info->init_function, FALSE,
7053 FALSE, FALSE)
7054 : NULL);
7055 if (h != NULL
7056 && (h->ref_regular
7057 || h->def_regular))
7058 {
7059 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
7060 return FALSE;
7061 }
7062 h = (info->fini_function
7063 ? elf_link_hash_lookup (elf_hash_table (info),
7064 info->fini_function, FALSE,
7065 FALSE, FALSE)
7066 : NULL);
7067 if (h != NULL
7068 && (h->ref_regular
7069 || h->def_regular))
7070 {
7071 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
7072 return FALSE;
7073 }
7074
7075 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
7076 if (s != NULL && s->linker_has_input)
7077 {
7078 /* DT_PREINIT_ARRAY is not allowed in shared library. */
7079 if (! bfd_link_executable (info))
7080 {
7081 bfd *sub;
7082 asection *o;
7083
7084 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
7085 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
7086 && (o = sub->sections) != NULL
7087 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
7088 for (o = sub->sections; o != NULL; o = o->next)
7089 if (elf_section_data (o)->this_hdr.sh_type
7090 == SHT_PREINIT_ARRAY)
7091 {
7092 _bfd_error_handler
7093 (_("%pB: .preinit_array section is not allowed in DSO"),
7094 sub);
7095 break;
7096 }
7097
7098 bfd_set_error (bfd_error_nonrepresentable_section);
7099 return FALSE;
7100 }
7101
7102 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7103 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7104 return FALSE;
7105 }
7106 s = bfd_get_section_by_name (output_bfd, ".init_array");
7107 if (s != NULL && s->linker_has_input)
7108 {
7109 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7110 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7111 return FALSE;
7112 }
7113 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7114 if (s != NULL && s->linker_has_input)
7115 {
7116 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7117 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7118 return FALSE;
7119 }
7120
7121 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7122 /* If .dynstr is excluded from the link, we don't want any of
7123 these tags. Strictly, we should be checking each section
7124 individually; This quick check covers for the case where
7125 someone does a /DISCARD/ : { *(*) }. */
7126 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7127 {
7128 bfd_size_type strsize;
7129
7130 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7131 if ((info->emit_hash
7132 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7133 || (info->emit_gnu_hash
7134 && (bed->record_xhash_symbol == NULL
7135 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7136 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7137 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7138 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7139 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7140 bed->s->sizeof_sym))
7141 return FALSE;
7142 }
7143 }
7144
7145 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7146 return FALSE;
7147
7148 /* The backend must work out the sizes of all the other dynamic
7149 sections. */
7150 if (dynobj != NULL
7151 && bed->elf_backend_size_dynamic_sections != NULL
7152 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7153 return FALSE;
7154
7155 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7156 {
7157 if (elf_tdata (output_bfd)->cverdefs)
7158 {
7159 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7160
7161 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7162 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7163 return FALSE;
7164 }
7165
7166 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7167 {
7168 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7169 return FALSE;
7170 }
7171 else if (info->flags & DF_BIND_NOW)
7172 {
7173 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7174 return FALSE;
7175 }
7176
7177 if (info->flags_1)
7178 {
7179 if (bfd_link_executable (info))
7180 info->flags_1 &= ~ (DF_1_INITFIRST
7181 | DF_1_NODELETE
7182 | DF_1_NOOPEN);
7183 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7184 return FALSE;
7185 }
7186
7187 if (elf_tdata (output_bfd)->cverrefs)
7188 {
7189 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7190
7191 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7192 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7193 return FALSE;
7194 }
7195
7196 if ((elf_tdata (output_bfd)->cverrefs == 0
7197 && elf_tdata (output_bfd)->cverdefs == 0)
7198 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7199 {
7200 asection *s;
7201
7202 s = bfd_get_linker_section (dynobj, ".gnu.version");
7203 s->flags |= SEC_EXCLUDE;
7204 }
7205 }
7206 return TRUE;
7207 }
7208
7209 /* Find the first non-excluded output section. We'll use its
7210 section symbol for some emitted relocs. */
7211 void
7212 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7213 {
7214 asection *s;
7215 asection *found = NULL;
7216
7217 for (s = output_bfd->sections; s != NULL; s = s->next)
7218 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7219 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7220 {
7221 found = s;
7222 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7223 break;
7224 }
7225 elf_hash_table (info)->text_index_section = found;
7226 }
7227
7228 /* Find two non-excluded output sections, one for code, one for data.
7229 We'll use their section symbols for some emitted relocs. */
7230 void
7231 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7232 {
7233 asection *s;
7234 asection *found = NULL;
7235
7236 /* Data first, since setting text_index_section changes
7237 _bfd_elf_omit_section_dynsym_default. */
7238 for (s = output_bfd->sections; s != NULL; s = s->next)
7239 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7240 && !(s->flags & SEC_READONLY)
7241 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7242 {
7243 found = s;
7244 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7245 break;
7246 }
7247 elf_hash_table (info)->data_index_section = found;
7248
7249 for (s = output_bfd->sections; s != NULL; s = s->next)
7250 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7251 && (s->flags & SEC_READONLY)
7252 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7253 {
7254 found = s;
7255 break;
7256 }
7257 elf_hash_table (info)->text_index_section = found;
7258 }
7259
7260 #define GNU_HASH_SECTION_NAME(bed) \
7261 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7262
7263 bfd_boolean
7264 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7265 {
7266 const struct elf_backend_data *bed;
7267 unsigned long section_sym_count;
7268 bfd_size_type dynsymcount = 0;
7269
7270 if (!is_elf_hash_table (info->hash))
7271 return TRUE;
7272
7273 bed = get_elf_backend_data (output_bfd);
7274 (*bed->elf_backend_init_index_section) (output_bfd, info);
7275
7276 /* Assign dynsym indices. In a shared library we generate a section
7277 symbol for each output section, which come first. Next come all
7278 of the back-end allocated local dynamic syms, followed by the rest
7279 of the global symbols.
7280
7281 This is usually not needed for static binaries, however backends
7282 can request to always do it, e.g. the MIPS backend uses dynamic
7283 symbol counts to lay out GOT, which will be produced in the
7284 presence of GOT relocations even in static binaries (holding fixed
7285 data in that case, to satisfy those relocations). */
7286
7287 if (elf_hash_table (info)->dynamic_sections_created
7288 || bed->always_renumber_dynsyms)
7289 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7290 &section_sym_count);
7291
7292 if (elf_hash_table (info)->dynamic_sections_created)
7293 {
7294 bfd *dynobj;
7295 asection *s;
7296 unsigned int dtagcount;
7297
7298 dynobj = elf_hash_table (info)->dynobj;
7299
7300 /* Work out the size of the symbol version section. */
7301 s = bfd_get_linker_section (dynobj, ".gnu.version");
7302 BFD_ASSERT (s != NULL);
7303 if ((s->flags & SEC_EXCLUDE) == 0)
7304 {
7305 s->size = dynsymcount * sizeof (Elf_External_Versym);
7306 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7307 if (s->contents == NULL)
7308 return FALSE;
7309
7310 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7311 return FALSE;
7312 }
7313
7314 /* Set the size of the .dynsym and .hash sections. We counted
7315 the number of dynamic symbols in elf_link_add_object_symbols.
7316 We will build the contents of .dynsym and .hash when we build
7317 the final symbol table, because until then we do not know the
7318 correct value to give the symbols. We built the .dynstr
7319 section as we went along in elf_link_add_object_symbols. */
7320 s = elf_hash_table (info)->dynsym;
7321 BFD_ASSERT (s != NULL);
7322 s->size = dynsymcount * bed->s->sizeof_sym;
7323
7324 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7325 if (s->contents == NULL)
7326 return FALSE;
7327
7328 /* The first entry in .dynsym is a dummy symbol. Clear all the
7329 section syms, in case we don't output them all. */
7330 ++section_sym_count;
7331 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7332
7333 elf_hash_table (info)->bucketcount = 0;
7334
7335 /* Compute the size of the hashing table. As a side effect this
7336 computes the hash values for all the names we export. */
7337 if (info->emit_hash)
7338 {
7339 unsigned long int *hashcodes;
7340 struct hash_codes_info hashinf;
7341 bfd_size_type amt;
7342 unsigned long int nsyms;
7343 size_t bucketcount;
7344 size_t hash_entry_size;
7345
7346 /* Compute the hash values for all exported symbols. At the same
7347 time store the values in an array so that we could use them for
7348 optimizations. */
7349 amt = dynsymcount * sizeof (unsigned long int);
7350 hashcodes = (unsigned long int *) bfd_malloc (amt);
7351 if (hashcodes == NULL)
7352 return FALSE;
7353 hashinf.hashcodes = hashcodes;
7354 hashinf.error = FALSE;
7355
7356 /* Put all hash values in HASHCODES. */
7357 elf_link_hash_traverse (elf_hash_table (info),
7358 elf_collect_hash_codes, &hashinf);
7359 if (hashinf.error)
7360 {
7361 free (hashcodes);
7362 return FALSE;
7363 }
7364
7365 nsyms = hashinf.hashcodes - hashcodes;
7366 bucketcount
7367 = compute_bucket_count (info, hashcodes, nsyms, 0);
7368 free (hashcodes);
7369
7370 if (bucketcount == 0 && nsyms > 0)
7371 return FALSE;
7372
7373 elf_hash_table (info)->bucketcount = bucketcount;
7374
7375 s = bfd_get_linker_section (dynobj, ".hash");
7376 BFD_ASSERT (s != NULL);
7377 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7378 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7379 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7380 if (s->contents == NULL)
7381 return FALSE;
7382
7383 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7384 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7385 s->contents + hash_entry_size);
7386 }
7387
7388 if (info->emit_gnu_hash)
7389 {
7390 size_t i, cnt;
7391 unsigned char *contents;
7392 struct collect_gnu_hash_codes cinfo;
7393 bfd_size_type amt;
7394 size_t bucketcount;
7395
7396 memset (&cinfo, 0, sizeof (cinfo));
7397
7398 /* Compute the hash values for all exported symbols. At the same
7399 time store the values in an array so that we could use them for
7400 optimizations. */
7401 amt = dynsymcount * 2 * sizeof (unsigned long int);
7402 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7403 if (cinfo.hashcodes == NULL)
7404 return FALSE;
7405
7406 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7407 cinfo.min_dynindx = -1;
7408 cinfo.output_bfd = output_bfd;
7409 cinfo.bed = bed;
7410
7411 /* Put all hash values in HASHCODES. */
7412 elf_link_hash_traverse (elf_hash_table (info),
7413 elf_collect_gnu_hash_codes, &cinfo);
7414 if (cinfo.error)
7415 {
7416 free (cinfo.hashcodes);
7417 return FALSE;
7418 }
7419
7420 bucketcount
7421 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7422
7423 if (bucketcount == 0)
7424 {
7425 free (cinfo.hashcodes);
7426 return FALSE;
7427 }
7428
7429 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7430 BFD_ASSERT (s != NULL);
7431
7432 if (cinfo.nsyms == 0)
7433 {
7434 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7435 BFD_ASSERT (cinfo.min_dynindx == -1);
7436 free (cinfo.hashcodes);
7437 s->size = 5 * 4 + bed->s->arch_size / 8;
7438 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7439 if (contents == NULL)
7440 return FALSE;
7441 s->contents = contents;
7442 /* 1 empty bucket. */
7443 bfd_put_32 (output_bfd, 1, contents);
7444 /* SYMIDX above the special symbol 0. */
7445 bfd_put_32 (output_bfd, 1, contents + 4);
7446 /* Just one word for bitmask. */
7447 bfd_put_32 (output_bfd, 1, contents + 8);
7448 /* Only hash fn bloom filter. */
7449 bfd_put_32 (output_bfd, 0, contents + 12);
7450 /* No hashes are valid - empty bitmask. */
7451 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7452 /* No hashes in the only bucket. */
7453 bfd_put_32 (output_bfd, 0,
7454 contents + 16 + bed->s->arch_size / 8);
7455 }
7456 else
7457 {
7458 unsigned long int maskwords, maskbitslog2, x;
7459 BFD_ASSERT (cinfo.min_dynindx != -1);
7460
7461 x = cinfo.nsyms;
7462 maskbitslog2 = 1;
7463 while ((x >>= 1) != 0)
7464 ++maskbitslog2;
7465 if (maskbitslog2 < 3)
7466 maskbitslog2 = 5;
7467 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7468 maskbitslog2 = maskbitslog2 + 3;
7469 else
7470 maskbitslog2 = maskbitslog2 + 2;
7471 if (bed->s->arch_size == 64)
7472 {
7473 if (maskbitslog2 == 5)
7474 maskbitslog2 = 6;
7475 cinfo.shift1 = 6;
7476 }
7477 else
7478 cinfo.shift1 = 5;
7479 cinfo.mask = (1 << cinfo.shift1) - 1;
7480 cinfo.shift2 = maskbitslog2;
7481 cinfo.maskbits = 1 << maskbitslog2;
7482 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7483 amt = bucketcount * sizeof (unsigned long int) * 2;
7484 amt += maskwords * sizeof (bfd_vma);
7485 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7486 if (cinfo.bitmask == NULL)
7487 {
7488 free (cinfo.hashcodes);
7489 return FALSE;
7490 }
7491
7492 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7493 cinfo.indx = cinfo.counts + bucketcount;
7494 cinfo.symindx = dynsymcount - cinfo.nsyms;
7495 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7496
7497 /* Determine how often each hash bucket is used. */
7498 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7499 for (i = 0; i < cinfo.nsyms; ++i)
7500 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7501
7502 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7503 if (cinfo.counts[i] != 0)
7504 {
7505 cinfo.indx[i] = cnt;
7506 cnt += cinfo.counts[i];
7507 }
7508 BFD_ASSERT (cnt == dynsymcount);
7509 cinfo.bucketcount = bucketcount;
7510 cinfo.local_indx = cinfo.min_dynindx;
7511
7512 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7513 s->size += cinfo.maskbits / 8;
7514 if (bed->record_xhash_symbol != NULL)
7515 s->size += cinfo.nsyms * 4;
7516 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7517 if (contents == NULL)
7518 {
7519 free (cinfo.bitmask);
7520 free (cinfo.hashcodes);
7521 return FALSE;
7522 }
7523
7524 s->contents = contents;
7525 bfd_put_32 (output_bfd, bucketcount, contents);
7526 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7527 bfd_put_32 (output_bfd, maskwords, contents + 8);
7528 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7529 contents += 16 + cinfo.maskbits / 8;
7530
7531 for (i = 0; i < bucketcount; ++i)
7532 {
7533 if (cinfo.counts[i] == 0)
7534 bfd_put_32 (output_bfd, 0, contents);
7535 else
7536 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7537 contents += 4;
7538 }
7539
7540 cinfo.contents = contents;
7541
7542 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7543 /* Renumber dynamic symbols, if populating .gnu.hash section.
7544 If using .MIPS.xhash, populate the translation table. */
7545 elf_link_hash_traverse (elf_hash_table (info),
7546 elf_gnu_hash_process_symidx, &cinfo);
7547
7548 contents = s->contents + 16;
7549 for (i = 0; i < maskwords; ++i)
7550 {
7551 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7552 contents);
7553 contents += bed->s->arch_size / 8;
7554 }
7555
7556 free (cinfo.bitmask);
7557 free (cinfo.hashcodes);
7558 }
7559 }
7560
7561 s = bfd_get_linker_section (dynobj, ".dynstr");
7562 BFD_ASSERT (s != NULL);
7563
7564 elf_finalize_dynstr (output_bfd, info);
7565
7566 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7567
7568 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7569 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7570 return FALSE;
7571 }
7572
7573 return TRUE;
7574 }
7575 \f
7576 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7577
7578 static void
7579 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7580 asection *sec)
7581 {
7582 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7583 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7584 }
7585
7586 /* Finish SHF_MERGE section merging. */
7587
7588 bfd_boolean
7589 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7590 {
7591 bfd *ibfd;
7592 asection *sec;
7593
7594 if (!is_elf_hash_table (info->hash))
7595 return FALSE;
7596
7597 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7598 if ((ibfd->flags & DYNAMIC) == 0
7599 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7600 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7601 == get_elf_backend_data (obfd)->s->elfclass))
7602 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7603 if ((sec->flags & SEC_MERGE) != 0
7604 && !bfd_is_abs_section (sec->output_section))
7605 {
7606 struct bfd_elf_section_data *secdata;
7607
7608 secdata = elf_section_data (sec);
7609 if (! _bfd_add_merge_section (obfd,
7610 &elf_hash_table (info)->merge_info,
7611 sec, &secdata->sec_info))
7612 return FALSE;
7613 else if (secdata->sec_info)
7614 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7615 }
7616
7617 if (elf_hash_table (info)->merge_info != NULL)
7618 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7619 merge_sections_remove_hook);
7620 return TRUE;
7621 }
7622
7623 /* Create an entry in an ELF linker hash table. */
7624
7625 struct bfd_hash_entry *
7626 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7627 struct bfd_hash_table *table,
7628 const char *string)
7629 {
7630 /* Allocate the structure if it has not already been allocated by a
7631 subclass. */
7632 if (entry == NULL)
7633 {
7634 entry = (struct bfd_hash_entry *)
7635 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7636 if (entry == NULL)
7637 return entry;
7638 }
7639
7640 /* Call the allocation method of the superclass. */
7641 entry = _bfd_link_hash_newfunc (entry, table, string);
7642 if (entry != NULL)
7643 {
7644 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7645 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7646
7647 /* Set local fields. */
7648 ret->indx = -1;
7649 ret->dynindx = -1;
7650 ret->got = htab->init_got_refcount;
7651 ret->plt = htab->init_plt_refcount;
7652 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7653 - offsetof (struct elf_link_hash_entry, size)));
7654 /* Assume that we have been called by a non-ELF symbol reader.
7655 This flag is then reset by the code which reads an ELF input
7656 file. This ensures that a symbol created by a non-ELF symbol
7657 reader will have the flag set correctly. */
7658 ret->non_elf = 1;
7659 }
7660
7661 return entry;
7662 }
7663
7664 /* Copy data from an indirect symbol to its direct symbol, hiding the
7665 old indirect symbol. Also used for copying flags to a weakdef. */
7666
7667 void
7668 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7669 struct elf_link_hash_entry *dir,
7670 struct elf_link_hash_entry *ind)
7671 {
7672 struct elf_link_hash_table *htab;
7673
7674 /* Copy down any references that we may have already seen to the
7675 symbol which just became indirect. */
7676
7677 if (dir->versioned != versioned_hidden)
7678 dir->ref_dynamic |= ind->ref_dynamic;
7679 dir->ref_regular |= ind->ref_regular;
7680 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7681 dir->non_got_ref |= ind->non_got_ref;
7682 dir->needs_plt |= ind->needs_plt;
7683 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7684
7685 if (ind->root.type != bfd_link_hash_indirect)
7686 return;
7687
7688 /* Copy over the global and procedure linkage table refcount entries.
7689 These may have been already set up by a check_relocs routine. */
7690 htab = elf_hash_table (info);
7691 if (ind->got.refcount > htab->init_got_refcount.refcount)
7692 {
7693 if (dir->got.refcount < 0)
7694 dir->got.refcount = 0;
7695 dir->got.refcount += ind->got.refcount;
7696 ind->got.refcount = htab->init_got_refcount.refcount;
7697 }
7698
7699 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7700 {
7701 if (dir->plt.refcount < 0)
7702 dir->plt.refcount = 0;
7703 dir->plt.refcount += ind->plt.refcount;
7704 ind->plt.refcount = htab->init_plt_refcount.refcount;
7705 }
7706
7707 if (ind->dynindx != -1)
7708 {
7709 if (dir->dynindx != -1)
7710 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7711 dir->dynindx = ind->dynindx;
7712 dir->dynstr_index = ind->dynstr_index;
7713 ind->dynindx = -1;
7714 ind->dynstr_index = 0;
7715 }
7716 }
7717
7718 void
7719 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7720 struct elf_link_hash_entry *h,
7721 bfd_boolean force_local)
7722 {
7723 /* STT_GNU_IFUNC symbol must go through PLT. */
7724 if (h->type != STT_GNU_IFUNC)
7725 {
7726 h->plt = elf_hash_table (info)->init_plt_offset;
7727 h->needs_plt = 0;
7728 }
7729 if (force_local)
7730 {
7731 h->forced_local = 1;
7732 if (h->dynindx != -1)
7733 {
7734 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7735 h->dynstr_index);
7736 h->dynindx = -1;
7737 h->dynstr_index = 0;
7738 }
7739 }
7740 }
7741
7742 /* Hide a symbol. */
7743
7744 void
7745 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7746 struct bfd_link_info *info,
7747 struct bfd_link_hash_entry *h)
7748 {
7749 if (is_elf_hash_table (info->hash))
7750 {
7751 const struct elf_backend_data *bed
7752 = get_elf_backend_data (output_bfd);
7753 struct elf_link_hash_entry *eh
7754 = (struct elf_link_hash_entry *) h;
7755 bed->elf_backend_hide_symbol (info, eh, TRUE);
7756 eh->def_dynamic = 0;
7757 eh->ref_dynamic = 0;
7758 eh->dynamic_def = 0;
7759 }
7760 }
7761
7762 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7763 caller. */
7764
7765 bfd_boolean
7766 _bfd_elf_link_hash_table_init
7767 (struct elf_link_hash_table *table,
7768 bfd *abfd,
7769 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7770 struct bfd_hash_table *,
7771 const char *),
7772 unsigned int entsize,
7773 enum elf_target_id target_id)
7774 {
7775 bfd_boolean ret;
7776 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7777
7778 table->init_got_refcount.refcount = can_refcount - 1;
7779 table->init_plt_refcount.refcount = can_refcount - 1;
7780 table->init_got_offset.offset = -(bfd_vma) 1;
7781 table->init_plt_offset.offset = -(bfd_vma) 1;
7782 /* The first dynamic symbol is a dummy. */
7783 table->dynsymcount = 1;
7784
7785 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7786
7787 table->root.type = bfd_link_elf_hash_table;
7788 table->hash_table_id = target_id;
7789
7790 return ret;
7791 }
7792
7793 /* Create an ELF linker hash table. */
7794
7795 struct bfd_link_hash_table *
7796 _bfd_elf_link_hash_table_create (bfd *abfd)
7797 {
7798 struct elf_link_hash_table *ret;
7799 size_t amt = sizeof (struct elf_link_hash_table);
7800
7801 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7802 if (ret == NULL)
7803 return NULL;
7804
7805 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7806 sizeof (struct elf_link_hash_entry),
7807 GENERIC_ELF_DATA))
7808 {
7809 free (ret);
7810 return NULL;
7811 }
7812 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7813
7814 return &ret->root;
7815 }
7816
7817 /* Destroy an ELF linker hash table. */
7818
7819 void
7820 _bfd_elf_link_hash_table_free (bfd *obfd)
7821 {
7822 struct elf_link_hash_table *htab;
7823
7824 htab = (struct elf_link_hash_table *) obfd->link.hash;
7825 if (htab->dynstr != NULL)
7826 _bfd_elf_strtab_free (htab->dynstr);
7827 _bfd_merge_sections_free (htab->merge_info);
7828 _bfd_generic_link_hash_table_free (obfd);
7829 }
7830
7831 /* This is a hook for the ELF emulation code in the generic linker to
7832 tell the backend linker what file name to use for the DT_NEEDED
7833 entry for a dynamic object. */
7834
7835 void
7836 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7837 {
7838 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7839 && bfd_get_format (abfd) == bfd_object)
7840 elf_dt_name (abfd) = name;
7841 }
7842
7843 int
7844 bfd_elf_get_dyn_lib_class (bfd *abfd)
7845 {
7846 int lib_class;
7847 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7848 && bfd_get_format (abfd) == bfd_object)
7849 lib_class = elf_dyn_lib_class (abfd);
7850 else
7851 lib_class = 0;
7852 return lib_class;
7853 }
7854
7855 void
7856 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7857 {
7858 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7859 && bfd_get_format (abfd) == bfd_object)
7860 elf_dyn_lib_class (abfd) = lib_class;
7861 }
7862
7863 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7864 the linker ELF emulation code. */
7865
7866 struct bfd_link_needed_list *
7867 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7868 struct bfd_link_info *info)
7869 {
7870 if (! is_elf_hash_table (info->hash))
7871 return NULL;
7872 return elf_hash_table (info)->needed;
7873 }
7874
7875 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7876 hook for the linker ELF emulation code. */
7877
7878 struct bfd_link_needed_list *
7879 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7880 struct bfd_link_info *info)
7881 {
7882 if (! is_elf_hash_table (info->hash))
7883 return NULL;
7884 return elf_hash_table (info)->runpath;
7885 }
7886
7887 /* Get the name actually used for a dynamic object for a link. This
7888 is the SONAME entry if there is one. Otherwise, it is the string
7889 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7890
7891 const char *
7892 bfd_elf_get_dt_soname (bfd *abfd)
7893 {
7894 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7895 && bfd_get_format (abfd) == bfd_object)
7896 return elf_dt_name (abfd);
7897 return NULL;
7898 }
7899
7900 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7901 the ELF linker emulation code. */
7902
7903 bfd_boolean
7904 bfd_elf_get_bfd_needed_list (bfd *abfd,
7905 struct bfd_link_needed_list **pneeded)
7906 {
7907 asection *s;
7908 bfd_byte *dynbuf = NULL;
7909 unsigned int elfsec;
7910 unsigned long shlink;
7911 bfd_byte *extdyn, *extdynend;
7912 size_t extdynsize;
7913 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7914
7915 *pneeded = NULL;
7916
7917 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7918 || bfd_get_format (abfd) != bfd_object)
7919 return TRUE;
7920
7921 s = bfd_get_section_by_name (abfd, ".dynamic");
7922 if (s == NULL || s->size == 0)
7923 return TRUE;
7924
7925 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7926 goto error_return;
7927
7928 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7929 if (elfsec == SHN_BAD)
7930 goto error_return;
7931
7932 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7933
7934 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7935 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7936
7937 extdyn = dynbuf;
7938 extdynend = extdyn + s->size;
7939 for (; extdyn < extdynend; extdyn += extdynsize)
7940 {
7941 Elf_Internal_Dyn dyn;
7942
7943 (*swap_dyn_in) (abfd, extdyn, &dyn);
7944
7945 if (dyn.d_tag == DT_NULL)
7946 break;
7947
7948 if (dyn.d_tag == DT_NEEDED)
7949 {
7950 const char *string;
7951 struct bfd_link_needed_list *l;
7952 unsigned int tagv = dyn.d_un.d_val;
7953 size_t amt;
7954
7955 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7956 if (string == NULL)
7957 goto error_return;
7958
7959 amt = sizeof *l;
7960 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7961 if (l == NULL)
7962 goto error_return;
7963
7964 l->by = abfd;
7965 l->name = string;
7966 l->next = *pneeded;
7967 *pneeded = l;
7968 }
7969 }
7970
7971 free (dynbuf);
7972
7973 return TRUE;
7974
7975 error_return:
7976 if (dynbuf != NULL)
7977 free (dynbuf);
7978 return FALSE;
7979 }
7980
7981 struct elf_symbuf_symbol
7982 {
7983 unsigned long st_name; /* Symbol name, index in string tbl */
7984 unsigned char st_info; /* Type and binding attributes */
7985 unsigned char st_other; /* Visibilty, and target specific */
7986 };
7987
7988 struct elf_symbuf_head
7989 {
7990 struct elf_symbuf_symbol *ssym;
7991 size_t count;
7992 unsigned int st_shndx;
7993 };
7994
7995 struct elf_symbol
7996 {
7997 union
7998 {
7999 Elf_Internal_Sym *isym;
8000 struct elf_symbuf_symbol *ssym;
8001 void *p;
8002 } u;
8003 const char *name;
8004 };
8005
8006 /* Sort references to symbols by ascending section number. */
8007
8008 static int
8009 elf_sort_elf_symbol (const void *arg1, const void *arg2)
8010 {
8011 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
8012 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
8013
8014 if (s1->st_shndx != s2->st_shndx)
8015 return s1->st_shndx > s2->st_shndx ? 1 : -1;
8016 /* Final sort by the address of the sym in the symbuf ensures
8017 a stable sort. */
8018 if (s1 != s2)
8019 return s1 > s2 ? 1 : -1;
8020 return 0;
8021 }
8022
8023 static int
8024 elf_sym_name_compare (const void *arg1, const void *arg2)
8025 {
8026 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
8027 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
8028 int ret = strcmp (s1->name, s2->name);
8029 if (ret != 0)
8030 return ret;
8031 if (s1->u.p != s2->u.p)
8032 return s1->u.p > s2->u.p ? 1 : -1;
8033 return 0;
8034 }
8035
8036 static struct elf_symbuf_head *
8037 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
8038 {
8039 Elf_Internal_Sym **ind, **indbufend, **indbuf;
8040 struct elf_symbuf_symbol *ssym;
8041 struct elf_symbuf_head *ssymbuf, *ssymhead;
8042 size_t i, shndx_count, total_size, amt;
8043
8044 amt = symcount * sizeof (*indbuf);
8045 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
8046 if (indbuf == NULL)
8047 return NULL;
8048
8049 for (ind = indbuf, i = 0; i < symcount; i++)
8050 if (isymbuf[i].st_shndx != SHN_UNDEF)
8051 *ind++ = &isymbuf[i];
8052 indbufend = ind;
8053
8054 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
8055 elf_sort_elf_symbol);
8056
8057 shndx_count = 0;
8058 if (indbufend > indbuf)
8059 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
8060 if (ind[0]->st_shndx != ind[1]->st_shndx)
8061 shndx_count++;
8062
8063 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
8064 + (indbufend - indbuf) * sizeof (*ssym));
8065 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
8066 if (ssymbuf == NULL)
8067 {
8068 free (indbuf);
8069 return NULL;
8070 }
8071
8072 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
8073 ssymbuf->ssym = NULL;
8074 ssymbuf->count = shndx_count;
8075 ssymbuf->st_shndx = 0;
8076 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
8077 {
8078 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
8079 {
8080 ssymhead++;
8081 ssymhead->ssym = ssym;
8082 ssymhead->count = 0;
8083 ssymhead->st_shndx = (*ind)->st_shndx;
8084 }
8085 ssym->st_name = (*ind)->st_name;
8086 ssym->st_info = (*ind)->st_info;
8087 ssym->st_other = (*ind)->st_other;
8088 ssymhead->count++;
8089 }
8090 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
8091 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
8092 == total_size));
8093
8094 free (indbuf);
8095 return ssymbuf;
8096 }
8097
8098 /* Check if 2 sections define the same set of local and global
8099 symbols. */
8100
8101 static bfd_boolean
8102 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8103 struct bfd_link_info *info)
8104 {
8105 bfd *bfd1, *bfd2;
8106 const struct elf_backend_data *bed1, *bed2;
8107 Elf_Internal_Shdr *hdr1, *hdr2;
8108 size_t symcount1, symcount2;
8109 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8110 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8111 Elf_Internal_Sym *isym, *isymend;
8112 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8113 size_t count1, count2, i;
8114 unsigned int shndx1, shndx2;
8115 bfd_boolean result;
8116
8117 bfd1 = sec1->owner;
8118 bfd2 = sec2->owner;
8119
8120 /* Both sections have to be in ELF. */
8121 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8122 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8123 return FALSE;
8124
8125 if (elf_section_type (sec1) != elf_section_type (sec2))
8126 return FALSE;
8127
8128 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8129 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8130 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8131 return FALSE;
8132
8133 bed1 = get_elf_backend_data (bfd1);
8134 bed2 = get_elf_backend_data (bfd2);
8135 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8136 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8137 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8138 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8139
8140 if (symcount1 == 0 || symcount2 == 0)
8141 return FALSE;
8142
8143 result = FALSE;
8144 isymbuf1 = NULL;
8145 isymbuf2 = NULL;
8146 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8147 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8148
8149 if (ssymbuf1 == NULL)
8150 {
8151 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8152 NULL, NULL, NULL);
8153 if (isymbuf1 == NULL)
8154 goto done;
8155
8156 if (!info->reduce_memory_overheads)
8157 {
8158 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8159 elf_tdata (bfd1)->symbuf = ssymbuf1;
8160 }
8161 }
8162
8163 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8164 {
8165 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8166 NULL, NULL, NULL);
8167 if (isymbuf2 == NULL)
8168 goto done;
8169
8170 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8171 {
8172 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8173 elf_tdata (bfd2)->symbuf = ssymbuf2;
8174 }
8175 }
8176
8177 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8178 {
8179 /* Optimized faster version. */
8180 size_t lo, hi, mid;
8181 struct elf_symbol *symp;
8182 struct elf_symbuf_symbol *ssym, *ssymend;
8183
8184 lo = 0;
8185 hi = ssymbuf1->count;
8186 ssymbuf1++;
8187 count1 = 0;
8188 while (lo < hi)
8189 {
8190 mid = (lo + hi) / 2;
8191 if (shndx1 < ssymbuf1[mid].st_shndx)
8192 hi = mid;
8193 else if (shndx1 > ssymbuf1[mid].st_shndx)
8194 lo = mid + 1;
8195 else
8196 {
8197 count1 = ssymbuf1[mid].count;
8198 ssymbuf1 += mid;
8199 break;
8200 }
8201 }
8202
8203 lo = 0;
8204 hi = ssymbuf2->count;
8205 ssymbuf2++;
8206 count2 = 0;
8207 while (lo < hi)
8208 {
8209 mid = (lo + hi) / 2;
8210 if (shndx2 < ssymbuf2[mid].st_shndx)
8211 hi = mid;
8212 else if (shndx2 > ssymbuf2[mid].st_shndx)
8213 lo = mid + 1;
8214 else
8215 {
8216 count2 = ssymbuf2[mid].count;
8217 ssymbuf2 += mid;
8218 break;
8219 }
8220 }
8221
8222 if (count1 == 0 || count2 == 0 || count1 != count2)
8223 goto done;
8224
8225 symtable1
8226 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8227 symtable2
8228 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8229 if (symtable1 == NULL || symtable2 == NULL)
8230 goto done;
8231
8232 symp = symtable1;
8233 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8234 ssym < ssymend; ssym++, symp++)
8235 {
8236 symp->u.ssym = ssym;
8237 symp->name = bfd_elf_string_from_elf_section (bfd1,
8238 hdr1->sh_link,
8239 ssym->st_name);
8240 }
8241
8242 symp = symtable2;
8243 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8244 ssym < ssymend; ssym++, symp++)
8245 {
8246 symp->u.ssym = ssym;
8247 symp->name = bfd_elf_string_from_elf_section (bfd2,
8248 hdr2->sh_link,
8249 ssym->st_name);
8250 }
8251
8252 /* Sort symbol by name. */
8253 qsort (symtable1, count1, sizeof (struct elf_symbol),
8254 elf_sym_name_compare);
8255 qsort (symtable2, count1, sizeof (struct elf_symbol),
8256 elf_sym_name_compare);
8257
8258 for (i = 0; i < count1; i++)
8259 /* Two symbols must have the same binding, type and name. */
8260 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8261 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8262 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8263 goto done;
8264
8265 result = TRUE;
8266 goto done;
8267 }
8268
8269 symtable1 = (struct elf_symbol *)
8270 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8271 symtable2 = (struct elf_symbol *)
8272 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8273 if (symtable1 == NULL || symtable2 == NULL)
8274 goto done;
8275
8276 /* Count definitions in the section. */
8277 count1 = 0;
8278 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8279 if (isym->st_shndx == shndx1)
8280 symtable1[count1++].u.isym = isym;
8281
8282 count2 = 0;
8283 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8284 if (isym->st_shndx == shndx2)
8285 symtable2[count2++].u.isym = isym;
8286
8287 if (count1 == 0 || count2 == 0 || count1 != count2)
8288 goto done;
8289
8290 for (i = 0; i < count1; i++)
8291 symtable1[i].name
8292 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8293 symtable1[i].u.isym->st_name);
8294
8295 for (i = 0; i < count2; i++)
8296 symtable2[i].name
8297 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8298 symtable2[i].u.isym->st_name);
8299
8300 /* Sort symbol by name. */
8301 qsort (symtable1, count1, sizeof (struct elf_symbol),
8302 elf_sym_name_compare);
8303 qsort (symtable2, count1, sizeof (struct elf_symbol),
8304 elf_sym_name_compare);
8305
8306 for (i = 0; i < count1; i++)
8307 /* Two symbols must have the same binding, type and name. */
8308 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8309 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8310 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8311 goto done;
8312
8313 result = TRUE;
8314
8315 done:
8316 if (symtable1)
8317 free (symtable1);
8318 if (symtable2)
8319 free (symtable2);
8320 if (isymbuf1)
8321 free (isymbuf1);
8322 if (isymbuf2)
8323 free (isymbuf2);
8324
8325 return result;
8326 }
8327
8328 /* Return TRUE if 2 section types are compatible. */
8329
8330 bfd_boolean
8331 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8332 bfd *bbfd, const asection *bsec)
8333 {
8334 if (asec == NULL
8335 || bsec == NULL
8336 || abfd->xvec->flavour != bfd_target_elf_flavour
8337 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8338 return TRUE;
8339
8340 return elf_section_type (asec) == elf_section_type (bsec);
8341 }
8342 \f
8343 /* Final phase of ELF linker. */
8344
8345 /* A structure we use to avoid passing large numbers of arguments. */
8346
8347 struct elf_final_link_info
8348 {
8349 /* General link information. */
8350 struct bfd_link_info *info;
8351 /* Output BFD. */
8352 bfd *output_bfd;
8353 /* Symbol string table. */
8354 struct elf_strtab_hash *symstrtab;
8355 /* .hash section. */
8356 asection *hash_sec;
8357 /* symbol version section (.gnu.version). */
8358 asection *symver_sec;
8359 /* Buffer large enough to hold contents of any section. */
8360 bfd_byte *contents;
8361 /* Buffer large enough to hold external relocs of any section. */
8362 void *external_relocs;
8363 /* Buffer large enough to hold internal relocs of any section. */
8364 Elf_Internal_Rela *internal_relocs;
8365 /* Buffer large enough to hold external local symbols of any input
8366 BFD. */
8367 bfd_byte *external_syms;
8368 /* And a buffer for symbol section indices. */
8369 Elf_External_Sym_Shndx *locsym_shndx;
8370 /* Buffer large enough to hold internal local symbols of any input
8371 BFD. */
8372 Elf_Internal_Sym *internal_syms;
8373 /* Array large enough to hold a symbol index for each local symbol
8374 of any input BFD. */
8375 long *indices;
8376 /* Array large enough to hold a section pointer for each local
8377 symbol of any input BFD. */
8378 asection **sections;
8379 /* Buffer for SHT_SYMTAB_SHNDX section. */
8380 Elf_External_Sym_Shndx *symshndxbuf;
8381 /* Number of STT_FILE syms seen. */
8382 size_t filesym_count;
8383 };
8384
8385 /* This struct is used to pass information to elf_link_output_extsym. */
8386
8387 struct elf_outext_info
8388 {
8389 bfd_boolean failed;
8390 bfd_boolean localsyms;
8391 bfd_boolean file_sym_done;
8392 struct elf_final_link_info *flinfo;
8393 };
8394
8395
8396 /* Support for evaluating a complex relocation.
8397
8398 Complex relocations are generalized, self-describing relocations. The
8399 implementation of them consists of two parts: complex symbols, and the
8400 relocations themselves.
8401
8402 The relocations are use a reserved elf-wide relocation type code (R_RELC
8403 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8404 information (start bit, end bit, word width, etc) into the addend. This
8405 information is extracted from CGEN-generated operand tables within gas.
8406
8407 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8408 internal) representing prefix-notation expressions, including but not
8409 limited to those sorts of expressions normally encoded as addends in the
8410 addend field. The symbol mangling format is:
8411
8412 <node> := <literal>
8413 | <unary-operator> ':' <node>
8414 | <binary-operator> ':' <node> ':' <node>
8415 ;
8416
8417 <literal> := 's' <digits=N> ':' <N character symbol name>
8418 | 'S' <digits=N> ':' <N character section name>
8419 | '#' <hexdigits>
8420 ;
8421
8422 <binary-operator> := as in C
8423 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8424
8425 static void
8426 set_symbol_value (bfd *bfd_with_globals,
8427 Elf_Internal_Sym *isymbuf,
8428 size_t locsymcount,
8429 size_t symidx,
8430 bfd_vma val)
8431 {
8432 struct elf_link_hash_entry **sym_hashes;
8433 struct elf_link_hash_entry *h;
8434 size_t extsymoff = locsymcount;
8435
8436 if (symidx < locsymcount)
8437 {
8438 Elf_Internal_Sym *sym;
8439
8440 sym = isymbuf + symidx;
8441 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8442 {
8443 /* It is a local symbol: move it to the
8444 "absolute" section and give it a value. */
8445 sym->st_shndx = SHN_ABS;
8446 sym->st_value = val;
8447 return;
8448 }
8449 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8450 extsymoff = 0;
8451 }
8452
8453 /* It is a global symbol: set its link type
8454 to "defined" and give it a value. */
8455
8456 sym_hashes = elf_sym_hashes (bfd_with_globals);
8457 h = sym_hashes [symidx - extsymoff];
8458 while (h->root.type == bfd_link_hash_indirect
8459 || h->root.type == bfd_link_hash_warning)
8460 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8461 h->root.type = bfd_link_hash_defined;
8462 h->root.u.def.value = val;
8463 h->root.u.def.section = bfd_abs_section_ptr;
8464 }
8465
8466 static bfd_boolean
8467 resolve_symbol (const char *name,
8468 bfd *input_bfd,
8469 struct elf_final_link_info *flinfo,
8470 bfd_vma *result,
8471 Elf_Internal_Sym *isymbuf,
8472 size_t locsymcount)
8473 {
8474 Elf_Internal_Sym *sym;
8475 struct bfd_link_hash_entry *global_entry;
8476 const char *candidate = NULL;
8477 Elf_Internal_Shdr *symtab_hdr;
8478 size_t i;
8479
8480 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8481
8482 for (i = 0; i < locsymcount; ++ i)
8483 {
8484 sym = isymbuf + i;
8485
8486 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8487 continue;
8488
8489 candidate = bfd_elf_string_from_elf_section (input_bfd,
8490 symtab_hdr->sh_link,
8491 sym->st_name);
8492 #ifdef DEBUG
8493 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8494 name, candidate, (unsigned long) sym->st_value);
8495 #endif
8496 if (candidate && strcmp (candidate, name) == 0)
8497 {
8498 asection *sec = flinfo->sections [i];
8499
8500 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8501 *result += sec->output_offset + sec->output_section->vma;
8502 #ifdef DEBUG
8503 printf ("Found symbol with value %8.8lx\n",
8504 (unsigned long) *result);
8505 #endif
8506 return TRUE;
8507 }
8508 }
8509
8510 /* Hmm, haven't found it yet. perhaps it is a global. */
8511 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8512 FALSE, FALSE, TRUE);
8513 if (!global_entry)
8514 return FALSE;
8515
8516 if (global_entry->type == bfd_link_hash_defined
8517 || global_entry->type == bfd_link_hash_defweak)
8518 {
8519 *result = (global_entry->u.def.value
8520 + global_entry->u.def.section->output_section->vma
8521 + global_entry->u.def.section->output_offset);
8522 #ifdef DEBUG
8523 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8524 global_entry->root.string, (unsigned long) *result);
8525 #endif
8526 return TRUE;
8527 }
8528
8529 return FALSE;
8530 }
8531
8532 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8533 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8534 names like "foo.end" which is the end address of section "foo". */
8535
8536 static bfd_boolean
8537 resolve_section (const char *name,
8538 asection *sections,
8539 bfd_vma *result,
8540 bfd * abfd)
8541 {
8542 asection *curr;
8543 unsigned int len;
8544
8545 for (curr = sections; curr; curr = curr->next)
8546 if (strcmp (curr->name, name) == 0)
8547 {
8548 *result = curr->vma;
8549 return TRUE;
8550 }
8551
8552 /* Hmm. still haven't found it. try pseudo-section names. */
8553 /* FIXME: This could be coded more efficiently... */
8554 for (curr = sections; curr; curr = curr->next)
8555 {
8556 len = strlen (curr->name);
8557 if (len > strlen (name))
8558 continue;
8559
8560 if (strncmp (curr->name, name, len) == 0)
8561 {
8562 if (strncmp (".end", name + len, 4) == 0)
8563 {
8564 *result = (curr->vma
8565 + curr->size / bfd_octets_per_byte (abfd, curr));
8566 return TRUE;
8567 }
8568
8569 /* Insert more pseudo-section names here, if you like. */
8570 }
8571 }
8572
8573 return FALSE;
8574 }
8575
8576 static void
8577 undefined_reference (const char *reftype, const char *name)
8578 {
8579 /* xgettext:c-format */
8580 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8581 reftype, name);
8582 }
8583
8584 static bfd_boolean
8585 eval_symbol (bfd_vma *result,
8586 const char **symp,
8587 bfd *input_bfd,
8588 struct elf_final_link_info *flinfo,
8589 bfd_vma dot,
8590 Elf_Internal_Sym *isymbuf,
8591 size_t locsymcount,
8592 int signed_p)
8593 {
8594 size_t len;
8595 size_t symlen;
8596 bfd_vma a;
8597 bfd_vma b;
8598 char symbuf[4096];
8599 const char *sym = *symp;
8600 const char *symend;
8601 bfd_boolean symbol_is_section = FALSE;
8602
8603 len = strlen (sym);
8604 symend = sym + len;
8605
8606 if (len < 1 || len > sizeof (symbuf))
8607 {
8608 bfd_set_error (bfd_error_invalid_operation);
8609 return FALSE;
8610 }
8611
8612 switch (* sym)
8613 {
8614 case '.':
8615 *result = dot;
8616 *symp = sym + 1;
8617 return TRUE;
8618
8619 case '#':
8620 ++sym;
8621 *result = strtoul (sym, (char **) symp, 16);
8622 return TRUE;
8623
8624 case 'S':
8625 symbol_is_section = TRUE;
8626 /* Fall through. */
8627 case 's':
8628 ++sym;
8629 symlen = strtol (sym, (char **) symp, 10);
8630 sym = *symp + 1; /* Skip the trailing ':'. */
8631
8632 if (symend < sym || symlen + 1 > sizeof (symbuf))
8633 {
8634 bfd_set_error (bfd_error_invalid_operation);
8635 return FALSE;
8636 }
8637
8638 memcpy (symbuf, sym, symlen);
8639 symbuf[symlen] = '\0';
8640 *symp = sym + symlen;
8641
8642 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8643 the symbol as a section, or vice-versa. so we're pretty liberal in our
8644 interpretation here; section means "try section first", not "must be a
8645 section", and likewise with symbol. */
8646
8647 if (symbol_is_section)
8648 {
8649 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8650 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8651 isymbuf, locsymcount))
8652 {
8653 undefined_reference ("section", symbuf);
8654 return FALSE;
8655 }
8656 }
8657 else
8658 {
8659 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8660 isymbuf, locsymcount)
8661 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8662 result, input_bfd))
8663 {
8664 undefined_reference ("symbol", symbuf);
8665 return FALSE;
8666 }
8667 }
8668
8669 return TRUE;
8670
8671 /* All that remains are operators. */
8672
8673 #define UNARY_OP(op) \
8674 if (strncmp (sym, #op, strlen (#op)) == 0) \
8675 { \
8676 sym += strlen (#op); \
8677 if (*sym == ':') \
8678 ++sym; \
8679 *symp = sym; \
8680 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8681 isymbuf, locsymcount, signed_p)) \
8682 return FALSE; \
8683 if (signed_p) \
8684 *result = op ((bfd_signed_vma) a); \
8685 else \
8686 *result = op a; \
8687 return TRUE; \
8688 }
8689
8690 #define BINARY_OP(op) \
8691 if (strncmp (sym, #op, strlen (#op)) == 0) \
8692 { \
8693 sym += strlen (#op); \
8694 if (*sym == ':') \
8695 ++sym; \
8696 *symp = sym; \
8697 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8698 isymbuf, locsymcount, signed_p)) \
8699 return FALSE; \
8700 ++*symp; \
8701 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8702 isymbuf, locsymcount, signed_p)) \
8703 return FALSE; \
8704 if (signed_p) \
8705 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8706 else \
8707 *result = a op b; \
8708 return TRUE; \
8709 }
8710
8711 default:
8712 UNARY_OP (0-);
8713 BINARY_OP (<<);
8714 BINARY_OP (>>);
8715 BINARY_OP (==);
8716 BINARY_OP (!=);
8717 BINARY_OP (<=);
8718 BINARY_OP (>=);
8719 BINARY_OP (&&);
8720 BINARY_OP (||);
8721 UNARY_OP (~);
8722 UNARY_OP (!);
8723 BINARY_OP (*);
8724 BINARY_OP (/);
8725 BINARY_OP (%);
8726 BINARY_OP (^);
8727 BINARY_OP (|);
8728 BINARY_OP (&);
8729 BINARY_OP (+);
8730 BINARY_OP (-);
8731 BINARY_OP (<);
8732 BINARY_OP (>);
8733 #undef UNARY_OP
8734 #undef BINARY_OP
8735 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8736 bfd_set_error (bfd_error_invalid_operation);
8737 return FALSE;
8738 }
8739 }
8740
8741 static void
8742 put_value (bfd_vma size,
8743 unsigned long chunksz,
8744 bfd *input_bfd,
8745 bfd_vma x,
8746 bfd_byte *location)
8747 {
8748 location += (size - chunksz);
8749
8750 for (; size; size -= chunksz, location -= chunksz)
8751 {
8752 switch (chunksz)
8753 {
8754 case 1:
8755 bfd_put_8 (input_bfd, x, location);
8756 x >>= 8;
8757 break;
8758 case 2:
8759 bfd_put_16 (input_bfd, x, location);
8760 x >>= 16;
8761 break;
8762 case 4:
8763 bfd_put_32 (input_bfd, x, location);
8764 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8765 x >>= 16;
8766 x >>= 16;
8767 break;
8768 #ifdef BFD64
8769 case 8:
8770 bfd_put_64 (input_bfd, x, location);
8771 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8772 x >>= 32;
8773 x >>= 32;
8774 break;
8775 #endif
8776 default:
8777 abort ();
8778 break;
8779 }
8780 }
8781 }
8782
8783 static bfd_vma
8784 get_value (bfd_vma size,
8785 unsigned long chunksz,
8786 bfd *input_bfd,
8787 bfd_byte *location)
8788 {
8789 int shift;
8790 bfd_vma x = 0;
8791
8792 /* Sanity checks. */
8793 BFD_ASSERT (chunksz <= sizeof (x)
8794 && size >= chunksz
8795 && chunksz != 0
8796 && (size % chunksz) == 0
8797 && input_bfd != NULL
8798 && location != NULL);
8799
8800 if (chunksz == sizeof (x))
8801 {
8802 BFD_ASSERT (size == chunksz);
8803
8804 /* Make sure that we do not perform an undefined shift operation.
8805 We know that size == chunksz so there will only be one iteration
8806 of the loop below. */
8807 shift = 0;
8808 }
8809 else
8810 shift = 8 * chunksz;
8811
8812 for (; size; size -= chunksz, location += chunksz)
8813 {
8814 switch (chunksz)
8815 {
8816 case 1:
8817 x = (x << shift) | bfd_get_8 (input_bfd, location);
8818 break;
8819 case 2:
8820 x = (x << shift) | bfd_get_16 (input_bfd, location);
8821 break;
8822 case 4:
8823 x = (x << shift) | bfd_get_32 (input_bfd, location);
8824 break;
8825 #ifdef BFD64
8826 case 8:
8827 x = (x << shift) | bfd_get_64 (input_bfd, location);
8828 break;
8829 #endif
8830 default:
8831 abort ();
8832 }
8833 }
8834 return x;
8835 }
8836
8837 static void
8838 decode_complex_addend (unsigned long *start, /* in bits */
8839 unsigned long *oplen, /* in bits */
8840 unsigned long *len, /* in bits */
8841 unsigned long *wordsz, /* in bytes */
8842 unsigned long *chunksz, /* in bytes */
8843 unsigned long *lsb0_p,
8844 unsigned long *signed_p,
8845 unsigned long *trunc_p,
8846 unsigned long encoded)
8847 {
8848 * start = encoded & 0x3F;
8849 * len = (encoded >> 6) & 0x3F;
8850 * oplen = (encoded >> 12) & 0x3F;
8851 * wordsz = (encoded >> 18) & 0xF;
8852 * chunksz = (encoded >> 22) & 0xF;
8853 * lsb0_p = (encoded >> 27) & 1;
8854 * signed_p = (encoded >> 28) & 1;
8855 * trunc_p = (encoded >> 29) & 1;
8856 }
8857
8858 bfd_reloc_status_type
8859 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8860 asection *input_section,
8861 bfd_byte *contents,
8862 Elf_Internal_Rela *rel,
8863 bfd_vma relocation)
8864 {
8865 bfd_vma shift, x, mask;
8866 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8867 bfd_reloc_status_type r;
8868 bfd_size_type octets;
8869
8870 /* Perform this reloc, since it is complex.
8871 (this is not to say that it necessarily refers to a complex
8872 symbol; merely that it is a self-describing CGEN based reloc.
8873 i.e. the addend has the complete reloc information (bit start, end,
8874 word size, etc) encoded within it.). */
8875
8876 decode_complex_addend (&start, &oplen, &len, &wordsz,
8877 &chunksz, &lsb0_p, &signed_p,
8878 &trunc_p, rel->r_addend);
8879
8880 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8881
8882 if (lsb0_p)
8883 shift = (start + 1) - len;
8884 else
8885 shift = (8 * wordsz) - (start + len);
8886
8887 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8888 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8889
8890 #ifdef DEBUG
8891 printf ("Doing complex reloc: "
8892 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8893 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8894 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8895 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8896 oplen, (unsigned long) x, (unsigned long) mask,
8897 (unsigned long) relocation);
8898 #endif
8899
8900 r = bfd_reloc_ok;
8901 if (! trunc_p)
8902 /* Now do an overflow check. */
8903 r = bfd_check_overflow ((signed_p
8904 ? complain_overflow_signed
8905 : complain_overflow_unsigned),
8906 len, 0, (8 * wordsz),
8907 relocation);
8908
8909 /* Do the deed. */
8910 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8911
8912 #ifdef DEBUG
8913 printf (" relocation: %8.8lx\n"
8914 " shifted mask: %8.8lx\n"
8915 " shifted/masked reloc: %8.8lx\n"
8916 " result: %8.8lx\n",
8917 (unsigned long) relocation, (unsigned long) (mask << shift),
8918 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8919 #endif
8920 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8921 return r;
8922 }
8923
8924 /* Functions to read r_offset from external (target order) reloc
8925 entry. Faster than bfd_getl32 et al, because we let the compiler
8926 know the value is aligned. */
8927
8928 static bfd_vma
8929 ext32l_r_offset (const void *p)
8930 {
8931 union aligned32
8932 {
8933 uint32_t v;
8934 unsigned char c[4];
8935 };
8936 const union aligned32 *a
8937 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8938
8939 uint32_t aval = ( (uint32_t) a->c[0]
8940 | (uint32_t) a->c[1] << 8
8941 | (uint32_t) a->c[2] << 16
8942 | (uint32_t) a->c[3] << 24);
8943 return aval;
8944 }
8945
8946 static bfd_vma
8947 ext32b_r_offset (const void *p)
8948 {
8949 union aligned32
8950 {
8951 uint32_t v;
8952 unsigned char c[4];
8953 };
8954 const union aligned32 *a
8955 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8956
8957 uint32_t aval = ( (uint32_t) a->c[0] << 24
8958 | (uint32_t) a->c[1] << 16
8959 | (uint32_t) a->c[2] << 8
8960 | (uint32_t) a->c[3]);
8961 return aval;
8962 }
8963
8964 #ifdef BFD_HOST_64_BIT
8965 static bfd_vma
8966 ext64l_r_offset (const void *p)
8967 {
8968 union aligned64
8969 {
8970 uint64_t v;
8971 unsigned char c[8];
8972 };
8973 const union aligned64 *a
8974 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8975
8976 uint64_t aval = ( (uint64_t) a->c[0]
8977 | (uint64_t) a->c[1] << 8
8978 | (uint64_t) a->c[2] << 16
8979 | (uint64_t) a->c[3] << 24
8980 | (uint64_t) a->c[4] << 32
8981 | (uint64_t) a->c[5] << 40
8982 | (uint64_t) a->c[6] << 48
8983 | (uint64_t) a->c[7] << 56);
8984 return aval;
8985 }
8986
8987 static bfd_vma
8988 ext64b_r_offset (const void *p)
8989 {
8990 union aligned64
8991 {
8992 uint64_t v;
8993 unsigned char c[8];
8994 };
8995 const union aligned64 *a
8996 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8997
8998 uint64_t aval = ( (uint64_t) a->c[0] << 56
8999 | (uint64_t) a->c[1] << 48
9000 | (uint64_t) a->c[2] << 40
9001 | (uint64_t) a->c[3] << 32
9002 | (uint64_t) a->c[4] << 24
9003 | (uint64_t) a->c[5] << 16
9004 | (uint64_t) a->c[6] << 8
9005 | (uint64_t) a->c[7]);
9006 return aval;
9007 }
9008 #endif
9009
9010 /* When performing a relocatable link, the input relocations are
9011 preserved. But, if they reference global symbols, the indices
9012 referenced must be updated. Update all the relocations found in
9013 RELDATA. */
9014
9015 static bfd_boolean
9016 elf_link_adjust_relocs (bfd *abfd,
9017 asection *sec,
9018 struct bfd_elf_section_reloc_data *reldata,
9019 bfd_boolean sort,
9020 struct bfd_link_info *info)
9021 {
9022 unsigned int i;
9023 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9024 bfd_byte *erela;
9025 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9026 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9027 bfd_vma r_type_mask;
9028 int r_sym_shift;
9029 unsigned int count = reldata->count;
9030 struct elf_link_hash_entry **rel_hash = reldata->hashes;
9031
9032 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
9033 {
9034 swap_in = bed->s->swap_reloc_in;
9035 swap_out = bed->s->swap_reloc_out;
9036 }
9037 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
9038 {
9039 swap_in = bed->s->swap_reloca_in;
9040 swap_out = bed->s->swap_reloca_out;
9041 }
9042 else
9043 abort ();
9044
9045 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
9046 abort ();
9047
9048 if (bed->s->arch_size == 32)
9049 {
9050 r_type_mask = 0xff;
9051 r_sym_shift = 8;
9052 }
9053 else
9054 {
9055 r_type_mask = 0xffffffff;
9056 r_sym_shift = 32;
9057 }
9058
9059 erela = reldata->hdr->contents;
9060 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
9061 {
9062 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
9063 unsigned int j;
9064
9065 if (*rel_hash == NULL)
9066 continue;
9067
9068 if ((*rel_hash)->indx == -2
9069 && info->gc_sections
9070 && ! info->gc_keep_exported)
9071 {
9072 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
9073 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
9074 abfd, sec,
9075 (*rel_hash)->root.root.string);
9076 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
9077 abfd, sec);
9078 bfd_set_error (bfd_error_invalid_operation);
9079 return FALSE;
9080 }
9081 BFD_ASSERT ((*rel_hash)->indx >= 0);
9082
9083 (*swap_in) (abfd, erela, irela);
9084 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
9085 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
9086 | (irela[j].r_info & r_type_mask));
9087 (*swap_out) (abfd, irela, erela);
9088 }
9089
9090 if (bed->elf_backend_update_relocs)
9091 (*bed->elf_backend_update_relocs) (sec, reldata);
9092
9093 if (sort && count != 0)
9094 {
9095 bfd_vma (*ext_r_off) (const void *);
9096 bfd_vma r_off;
9097 size_t elt_size;
9098 bfd_byte *base, *end, *p, *loc;
9099 bfd_byte *buf = NULL;
9100
9101 if (bed->s->arch_size == 32)
9102 {
9103 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9104 ext_r_off = ext32l_r_offset;
9105 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9106 ext_r_off = ext32b_r_offset;
9107 else
9108 abort ();
9109 }
9110 else
9111 {
9112 #ifdef BFD_HOST_64_BIT
9113 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9114 ext_r_off = ext64l_r_offset;
9115 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9116 ext_r_off = ext64b_r_offset;
9117 else
9118 #endif
9119 abort ();
9120 }
9121
9122 /* Must use a stable sort here. A modified insertion sort,
9123 since the relocs are mostly sorted already. */
9124 elt_size = reldata->hdr->sh_entsize;
9125 base = reldata->hdr->contents;
9126 end = base + count * elt_size;
9127 if (elt_size > sizeof (Elf64_External_Rela))
9128 abort ();
9129
9130 /* Ensure the first element is lowest. This acts as a sentinel,
9131 speeding the main loop below. */
9132 r_off = (*ext_r_off) (base);
9133 for (p = loc = base; (p += elt_size) < end; )
9134 {
9135 bfd_vma r_off2 = (*ext_r_off) (p);
9136 if (r_off > r_off2)
9137 {
9138 r_off = r_off2;
9139 loc = p;
9140 }
9141 }
9142 if (loc != base)
9143 {
9144 /* Don't just swap *base and *loc as that changes the order
9145 of the original base[0] and base[1] if they happen to
9146 have the same r_offset. */
9147 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9148 memcpy (onebuf, loc, elt_size);
9149 memmove (base + elt_size, base, loc - base);
9150 memcpy (base, onebuf, elt_size);
9151 }
9152
9153 for (p = base + elt_size; (p += elt_size) < end; )
9154 {
9155 /* base to p is sorted, *p is next to insert. */
9156 r_off = (*ext_r_off) (p);
9157 /* Search the sorted region for location to insert. */
9158 loc = p - elt_size;
9159 while (r_off < (*ext_r_off) (loc))
9160 loc -= elt_size;
9161 loc += elt_size;
9162 if (loc != p)
9163 {
9164 /* Chances are there is a run of relocs to insert here,
9165 from one of more input files. Files are not always
9166 linked in order due to the way elf_link_input_bfd is
9167 called. See pr17666. */
9168 size_t sortlen = p - loc;
9169 bfd_vma r_off2 = (*ext_r_off) (loc);
9170 size_t runlen = elt_size;
9171 size_t buf_size = 96 * 1024;
9172 while (p + runlen < end
9173 && (sortlen <= buf_size
9174 || runlen + elt_size <= buf_size)
9175 && r_off2 > (*ext_r_off) (p + runlen))
9176 runlen += elt_size;
9177 if (buf == NULL)
9178 {
9179 buf = bfd_malloc (buf_size);
9180 if (buf == NULL)
9181 return FALSE;
9182 }
9183 if (runlen < sortlen)
9184 {
9185 memcpy (buf, p, runlen);
9186 memmove (loc + runlen, loc, sortlen);
9187 memcpy (loc, buf, runlen);
9188 }
9189 else
9190 {
9191 memcpy (buf, loc, sortlen);
9192 memmove (loc, p, runlen);
9193 memcpy (loc + runlen, buf, sortlen);
9194 }
9195 p += runlen - elt_size;
9196 }
9197 }
9198 /* Hashes are no longer valid. */
9199 free (reldata->hashes);
9200 reldata->hashes = NULL;
9201 free (buf);
9202 }
9203 return TRUE;
9204 }
9205
9206 struct elf_link_sort_rela
9207 {
9208 union {
9209 bfd_vma offset;
9210 bfd_vma sym_mask;
9211 } u;
9212 enum elf_reloc_type_class type;
9213 /* We use this as an array of size int_rels_per_ext_rel. */
9214 Elf_Internal_Rela rela[1];
9215 };
9216
9217 /* qsort stability here and for cmp2 is only an issue if multiple
9218 dynamic relocations are emitted at the same address. But targets
9219 that apply a series of dynamic relocations each operating on the
9220 result of the prior relocation can't use -z combreloc as
9221 implemented anyway. Such schemes tend to be broken by sorting on
9222 symbol index. That leaves dynamic NONE relocs as the only other
9223 case where ld might emit multiple relocs at the same address, and
9224 those are only emitted due to target bugs. */
9225
9226 static int
9227 elf_link_sort_cmp1 (const void *A, const void *B)
9228 {
9229 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9230 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9231 int relativea, relativeb;
9232
9233 relativea = a->type == reloc_class_relative;
9234 relativeb = b->type == reloc_class_relative;
9235
9236 if (relativea < relativeb)
9237 return 1;
9238 if (relativea > relativeb)
9239 return -1;
9240 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9241 return -1;
9242 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9243 return 1;
9244 if (a->rela->r_offset < b->rela->r_offset)
9245 return -1;
9246 if (a->rela->r_offset > b->rela->r_offset)
9247 return 1;
9248 return 0;
9249 }
9250
9251 static int
9252 elf_link_sort_cmp2 (const void *A, const void *B)
9253 {
9254 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9255 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9256
9257 if (a->type < b->type)
9258 return -1;
9259 if (a->type > b->type)
9260 return 1;
9261 if (a->u.offset < b->u.offset)
9262 return -1;
9263 if (a->u.offset > b->u.offset)
9264 return 1;
9265 if (a->rela->r_offset < b->rela->r_offset)
9266 return -1;
9267 if (a->rela->r_offset > b->rela->r_offset)
9268 return 1;
9269 return 0;
9270 }
9271
9272 static size_t
9273 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9274 {
9275 asection *dynamic_relocs;
9276 asection *rela_dyn;
9277 asection *rel_dyn;
9278 bfd_size_type count, size;
9279 size_t i, ret, sort_elt, ext_size;
9280 bfd_byte *sort, *s_non_relative, *p;
9281 struct elf_link_sort_rela *sq;
9282 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9283 int i2e = bed->s->int_rels_per_ext_rel;
9284 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9285 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9286 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9287 struct bfd_link_order *lo;
9288 bfd_vma r_sym_mask;
9289 bfd_boolean use_rela;
9290
9291 /* Find a dynamic reloc section. */
9292 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9293 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9294 if (rela_dyn != NULL && rela_dyn->size > 0
9295 && rel_dyn != NULL && rel_dyn->size > 0)
9296 {
9297 bfd_boolean use_rela_initialised = FALSE;
9298
9299 /* This is just here to stop gcc from complaining.
9300 Its initialization checking code is not perfect. */
9301 use_rela = TRUE;
9302
9303 /* Both sections are present. Examine the sizes
9304 of the indirect sections to help us choose. */
9305 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9306 if (lo->type == bfd_indirect_link_order)
9307 {
9308 asection *o = lo->u.indirect.section;
9309
9310 if ((o->size % bed->s->sizeof_rela) == 0)
9311 {
9312 if ((o->size % bed->s->sizeof_rel) == 0)
9313 /* Section size is divisible by both rel and rela sizes.
9314 It is of no help to us. */
9315 ;
9316 else
9317 {
9318 /* Section size is only divisible by rela. */
9319 if (use_rela_initialised && !use_rela)
9320 {
9321 _bfd_error_handler (_("%pB: unable to sort relocs - "
9322 "they are in more than one size"),
9323 abfd);
9324 bfd_set_error (bfd_error_invalid_operation);
9325 return 0;
9326 }
9327 else
9328 {
9329 use_rela = TRUE;
9330 use_rela_initialised = TRUE;
9331 }
9332 }
9333 }
9334 else if ((o->size % bed->s->sizeof_rel) == 0)
9335 {
9336 /* Section size is only divisible by rel. */
9337 if (use_rela_initialised && use_rela)
9338 {
9339 _bfd_error_handler (_("%pB: unable to sort relocs - "
9340 "they are in more than one size"),
9341 abfd);
9342 bfd_set_error (bfd_error_invalid_operation);
9343 return 0;
9344 }
9345 else
9346 {
9347 use_rela = FALSE;
9348 use_rela_initialised = TRUE;
9349 }
9350 }
9351 else
9352 {
9353 /* The section size is not divisible by either -
9354 something is wrong. */
9355 _bfd_error_handler (_("%pB: unable to sort relocs - "
9356 "they are of an unknown size"), abfd);
9357 bfd_set_error (bfd_error_invalid_operation);
9358 return 0;
9359 }
9360 }
9361
9362 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9363 if (lo->type == bfd_indirect_link_order)
9364 {
9365 asection *o = lo->u.indirect.section;
9366
9367 if ((o->size % bed->s->sizeof_rela) == 0)
9368 {
9369 if ((o->size % bed->s->sizeof_rel) == 0)
9370 /* Section size is divisible by both rel and rela sizes.
9371 It is of no help to us. */
9372 ;
9373 else
9374 {
9375 /* Section size is only divisible by rela. */
9376 if (use_rela_initialised && !use_rela)
9377 {
9378 _bfd_error_handler (_("%pB: unable to sort relocs - "
9379 "they are in more than one size"),
9380 abfd);
9381 bfd_set_error (bfd_error_invalid_operation);
9382 return 0;
9383 }
9384 else
9385 {
9386 use_rela = TRUE;
9387 use_rela_initialised = TRUE;
9388 }
9389 }
9390 }
9391 else if ((o->size % bed->s->sizeof_rel) == 0)
9392 {
9393 /* Section size is only divisible by rel. */
9394 if (use_rela_initialised && use_rela)
9395 {
9396 _bfd_error_handler (_("%pB: unable to sort relocs - "
9397 "they are in more than one size"),
9398 abfd);
9399 bfd_set_error (bfd_error_invalid_operation);
9400 return 0;
9401 }
9402 else
9403 {
9404 use_rela = FALSE;
9405 use_rela_initialised = TRUE;
9406 }
9407 }
9408 else
9409 {
9410 /* The section size is not divisible by either -
9411 something is wrong. */
9412 _bfd_error_handler (_("%pB: unable to sort relocs - "
9413 "they are of an unknown size"), abfd);
9414 bfd_set_error (bfd_error_invalid_operation);
9415 return 0;
9416 }
9417 }
9418
9419 if (! use_rela_initialised)
9420 /* Make a guess. */
9421 use_rela = TRUE;
9422 }
9423 else if (rela_dyn != NULL && rela_dyn->size > 0)
9424 use_rela = TRUE;
9425 else if (rel_dyn != NULL && rel_dyn->size > 0)
9426 use_rela = FALSE;
9427 else
9428 return 0;
9429
9430 if (use_rela)
9431 {
9432 dynamic_relocs = rela_dyn;
9433 ext_size = bed->s->sizeof_rela;
9434 swap_in = bed->s->swap_reloca_in;
9435 swap_out = bed->s->swap_reloca_out;
9436 }
9437 else
9438 {
9439 dynamic_relocs = rel_dyn;
9440 ext_size = bed->s->sizeof_rel;
9441 swap_in = bed->s->swap_reloc_in;
9442 swap_out = bed->s->swap_reloc_out;
9443 }
9444
9445 size = 0;
9446 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9447 if (lo->type == bfd_indirect_link_order)
9448 size += lo->u.indirect.section->size;
9449
9450 if (size != dynamic_relocs->size)
9451 return 0;
9452
9453 sort_elt = (sizeof (struct elf_link_sort_rela)
9454 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9455
9456 count = dynamic_relocs->size / ext_size;
9457 if (count == 0)
9458 return 0;
9459 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9460
9461 if (sort == NULL)
9462 {
9463 (*info->callbacks->warning)
9464 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9465 return 0;
9466 }
9467
9468 if (bed->s->arch_size == 32)
9469 r_sym_mask = ~(bfd_vma) 0xff;
9470 else
9471 r_sym_mask = ~(bfd_vma) 0xffffffff;
9472
9473 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9474 if (lo->type == bfd_indirect_link_order)
9475 {
9476 bfd_byte *erel, *erelend;
9477 asection *o = lo->u.indirect.section;
9478
9479 if (o->contents == NULL && o->size != 0)
9480 {
9481 /* This is a reloc section that is being handled as a normal
9482 section. See bfd_section_from_shdr. We can't combine
9483 relocs in this case. */
9484 free (sort);
9485 return 0;
9486 }
9487 erel = o->contents;
9488 erelend = o->contents + o->size;
9489 p = sort + o->output_offset * opb / ext_size * sort_elt;
9490
9491 while (erel < erelend)
9492 {
9493 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9494
9495 (*swap_in) (abfd, erel, s->rela);
9496 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9497 s->u.sym_mask = r_sym_mask;
9498 p += sort_elt;
9499 erel += ext_size;
9500 }
9501 }
9502
9503 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9504
9505 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9506 {
9507 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9508 if (s->type != reloc_class_relative)
9509 break;
9510 }
9511 ret = i;
9512 s_non_relative = p;
9513
9514 sq = (struct elf_link_sort_rela *) s_non_relative;
9515 for (; i < count; i++, p += sort_elt)
9516 {
9517 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9518 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9519 sq = sp;
9520 sp->u.offset = sq->rela->r_offset;
9521 }
9522
9523 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9524
9525 struct elf_link_hash_table *htab = elf_hash_table (info);
9526 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9527 {
9528 /* We have plt relocs in .rela.dyn. */
9529 sq = (struct elf_link_sort_rela *) sort;
9530 for (i = 0; i < count; i++)
9531 if (sq[count - i - 1].type != reloc_class_plt)
9532 break;
9533 if (i != 0 && htab->srelplt->size == i * ext_size)
9534 {
9535 struct bfd_link_order **plo;
9536 /* Put srelplt link_order last. This is so the output_offset
9537 set in the next loop is correct for DT_JMPREL. */
9538 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9539 if ((*plo)->type == bfd_indirect_link_order
9540 && (*plo)->u.indirect.section == htab->srelplt)
9541 {
9542 lo = *plo;
9543 *plo = lo->next;
9544 }
9545 else
9546 plo = &(*plo)->next;
9547 *plo = lo;
9548 lo->next = NULL;
9549 dynamic_relocs->map_tail.link_order = lo;
9550 }
9551 }
9552
9553 p = sort;
9554 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9555 if (lo->type == bfd_indirect_link_order)
9556 {
9557 bfd_byte *erel, *erelend;
9558 asection *o = lo->u.indirect.section;
9559
9560 erel = o->contents;
9561 erelend = o->contents + o->size;
9562 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9563 while (erel < erelend)
9564 {
9565 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9566 (*swap_out) (abfd, s->rela, erel);
9567 p += sort_elt;
9568 erel += ext_size;
9569 }
9570 }
9571
9572 free (sort);
9573 *psec = dynamic_relocs;
9574 return ret;
9575 }
9576
9577 /* Add a symbol to the output symbol string table. */
9578
9579 static int
9580 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9581 const char *name,
9582 Elf_Internal_Sym *elfsym,
9583 asection *input_sec,
9584 struct elf_link_hash_entry *h)
9585 {
9586 int (*output_symbol_hook)
9587 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9588 struct elf_link_hash_entry *);
9589 struct elf_link_hash_table *hash_table;
9590 const struct elf_backend_data *bed;
9591 bfd_size_type strtabsize;
9592
9593 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9594
9595 bed = get_elf_backend_data (flinfo->output_bfd);
9596 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9597 if (output_symbol_hook != NULL)
9598 {
9599 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9600 if (ret != 1)
9601 return ret;
9602 }
9603
9604 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9605 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9606 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9607 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9608
9609 if (name == NULL
9610 || *name == '\0'
9611 || (input_sec->flags & SEC_EXCLUDE))
9612 elfsym->st_name = (unsigned long) -1;
9613 else
9614 {
9615 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9616 to get the final offset for st_name. */
9617 elfsym->st_name
9618 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9619 name, FALSE);
9620 if (elfsym->st_name == (unsigned long) -1)
9621 return 0;
9622 }
9623
9624 hash_table = elf_hash_table (flinfo->info);
9625 strtabsize = hash_table->strtabsize;
9626 if (strtabsize <= hash_table->strtabcount)
9627 {
9628 strtabsize += strtabsize;
9629 hash_table->strtabsize = strtabsize;
9630 strtabsize *= sizeof (*hash_table->strtab);
9631 hash_table->strtab
9632 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9633 strtabsize);
9634 if (hash_table->strtab == NULL)
9635 return 0;
9636 }
9637 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9638 hash_table->strtab[hash_table->strtabcount].dest_index
9639 = hash_table->strtabcount;
9640 hash_table->strtab[hash_table->strtabcount].destshndx_index
9641 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9642
9643 flinfo->output_bfd->symcount += 1;
9644 hash_table->strtabcount += 1;
9645
9646 return 1;
9647 }
9648
9649 /* Swap symbols out to the symbol table and flush the output symbols to
9650 the file. */
9651
9652 static bfd_boolean
9653 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9654 {
9655 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9656 size_t amt;
9657 size_t i;
9658 const struct elf_backend_data *bed;
9659 bfd_byte *symbuf;
9660 Elf_Internal_Shdr *hdr;
9661 file_ptr pos;
9662 bfd_boolean ret;
9663
9664 if (!hash_table->strtabcount)
9665 return TRUE;
9666
9667 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9668
9669 bed = get_elf_backend_data (flinfo->output_bfd);
9670
9671 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9672 symbuf = (bfd_byte *) bfd_malloc (amt);
9673 if (symbuf == NULL)
9674 return FALSE;
9675
9676 if (flinfo->symshndxbuf)
9677 {
9678 amt = sizeof (Elf_External_Sym_Shndx);
9679 amt *= bfd_get_symcount (flinfo->output_bfd);
9680 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9681 if (flinfo->symshndxbuf == NULL)
9682 {
9683 free (symbuf);
9684 return FALSE;
9685 }
9686 }
9687
9688 for (i = 0; i < hash_table->strtabcount; i++)
9689 {
9690 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9691 if (elfsym->sym.st_name == (unsigned long) -1)
9692 elfsym->sym.st_name = 0;
9693 else
9694 elfsym->sym.st_name
9695 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9696 elfsym->sym.st_name);
9697 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9698 ((bfd_byte *) symbuf
9699 + (elfsym->dest_index
9700 * bed->s->sizeof_sym)),
9701 (flinfo->symshndxbuf
9702 + elfsym->destshndx_index));
9703 }
9704
9705 /* Allow the linker to examine the strtab and symtab now they are
9706 populated. */
9707
9708 if (flinfo->info->callbacks->examine_strtab)
9709 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9710 hash_table->strtabcount,
9711 flinfo->symstrtab);
9712
9713 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9714 pos = hdr->sh_offset + hdr->sh_size;
9715 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9716 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9717 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9718 {
9719 hdr->sh_size += amt;
9720 ret = TRUE;
9721 }
9722 else
9723 ret = FALSE;
9724
9725 free (symbuf);
9726
9727 free (hash_table->strtab);
9728 hash_table->strtab = NULL;
9729
9730 return ret;
9731 }
9732
9733 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9734
9735 static bfd_boolean
9736 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9737 {
9738 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9739 && sym->st_shndx < SHN_LORESERVE)
9740 {
9741 /* The gABI doesn't support dynamic symbols in output sections
9742 beyond 64k. */
9743 _bfd_error_handler
9744 /* xgettext:c-format */
9745 (_("%pB: too many sections: %d (>= %d)"),
9746 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9747 bfd_set_error (bfd_error_nonrepresentable_section);
9748 return FALSE;
9749 }
9750 return TRUE;
9751 }
9752
9753 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9754 allowing an unsatisfied unversioned symbol in the DSO to match a
9755 versioned symbol that would normally require an explicit version.
9756 We also handle the case that a DSO references a hidden symbol
9757 which may be satisfied by a versioned symbol in another DSO. */
9758
9759 static bfd_boolean
9760 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9761 const struct elf_backend_data *bed,
9762 struct elf_link_hash_entry *h)
9763 {
9764 bfd *abfd;
9765 struct elf_link_loaded_list *loaded;
9766
9767 if (!is_elf_hash_table (info->hash))
9768 return FALSE;
9769
9770 /* Check indirect symbol. */
9771 while (h->root.type == bfd_link_hash_indirect)
9772 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9773
9774 switch (h->root.type)
9775 {
9776 default:
9777 abfd = NULL;
9778 break;
9779
9780 case bfd_link_hash_undefined:
9781 case bfd_link_hash_undefweak:
9782 abfd = h->root.u.undef.abfd;
9783 if (abfd == NULL
9784 || (abfd->flags & DYNAMIC) == 0
9785 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9786 return FALSE;
9787 break;
9788
9789 case bfd_link_hash_defined:
9790 case bfd_link_hash_defweak:
9791 abfd = h->root.u.def.section->owner;
9792 break;
9793
9794 case bfd_link_hash_common:
9795 abfd = h->root.u.c.p->section->owner;
9796 break;
9797 }
9798 BFD_ASSERT (abfd != NULL);
9799
9800 for (loaded = elf_hash_table (info)->dyn_loaded;
9801 loaded != NULL;
9802 loaded = loaded->next)
9803 {
9804 bfd *input;
9805 Elf_Internal_Shdr *hdr;
9806 size_t symcount;
9807 size_t extsymcount;
9808 size_t extsymoff;
9809 Elf_Internal_Shdr *versymhdr;
9810 Elf_Internal_Sym *isym;
9811 Elf_Internal_Sym *isymend;
9812 Elf_Internal_Sym *isymbuf;
9813 Elf_External_Versym *ever;
9814 Elf_External_Versym *extversym;
9815
9816 input = loaded->abfd;
9817
9818 /* We check each DSO for a possible hidden versioned definition. */
9819 if (input == abfd
9820 || elf_dynversym (input) == 0)
9821 continue;
9822
9823 hdr = &elf_tdata (input)->dynsymtab_hdr;
9824
9825 symcount = hdr->sh_size / bed->s->sizeof_sym;
9826 if (elf_bad_symtab (input))
9827 {
9828 extsymcount = symcount;
9829 extsymoff = 0;
9830 }
9831 else
9832 {
9833 extsymcount = symcount - hdr->sh_info;
9834 extsymoff = hdr->sh_info;
9835 }
9836
9837 if (extsymcount == 0)
9838 continue;
9839
9840 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9841 NULL, NULL, NULL);
9842 if (isymbuf == NULL)
9843 return FALSE;
9844
9845 /* Read in any version definitions. */
9846 versymhdr = &elf_tdata (input)->dynversym_hdr;
9847 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9848 || (extversym = (Elf_External_Versym *)
9849 _bfd_malloc_and_read (input, versymhdr->sh_size,
9850 versymhdr->sh_size)) == NULL)
9851 {
9852 free (isymbuf);
9853 return FALSE;
9854 }
9855
9856 ever = extversym + extsymoff;
9857 isymend = isymbuf + extsymcount;
9858 for (isym = isymbuf; isym < isymend; isym++, ever++)
9859 {
9860 const char *name;
9861 Elf_Internal_Versym iver;
9862 unsigned short version_index;
9863
9864 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9865 || isym->st_shndx == SHN_UNDEF)
9866 continue;
9867
9868 name = bfd_elf_string_from_elf_section (input,
9869 hdr->sh_link,
9870 isym->st_name);
9871 if (strcmp (name, h->root.root.string) != 0)
9872 continue;
9873
9874 _bfd_elf_swap_versym_in (input, ever, &iver);
9875
9876 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9877 && !(h->def_regular
9878 && h->forced_local))
9879 {
9880 /* If we have a non-hidden versioned sym, then it should
9881 have provided a definition for the undefined sym unless
9882 it is defined in a non-shared object and forced local.
9883 */
9884 abort ();
9885 }
9886
9887 version_index = iver.vs_vers & VERSYM_VERSION;
9888 if (version_index == 1 || version_index == 2)
9889 {
9890 /* This is the base or first version. We can use it. */
9891 free (extversym);
9892 free (isymbuf);
9893 return TRUE;
9894 }
9895 }
9896
9897 free (extversym);
9898 free (isymbuf);
9899 }
9900
9901 return FALSE;
9902 }
9903
9904 /* Convert ELF common symbol TYPE. */
9905
9906 static int
9907 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9908 {
9909 /* Commom symbol can only appear in relocatable link. */
9910 if (!bfd_link_relocatable (info))
9911 abort ();
9912 switch (info->elf_stt_common)
9913 {
9914 case unchanged:
9915 break;
9916 case elf_stt_common:
9917 type = STT_COMMON;
9918 break;
9919 case no_elf_stt_common:
9920 type = STT_OBJECT;
9921 break;
9922 }
9923 return type;
9924 }
9925
9926 /* Add an external symbol to the symbol table. This is called from
9927 the hash table traversal routine. When generating a shared object,
9928 we go through the symbol table twice. The first time we output
9929 anything that might have been forced to local scope in a version
9930 script. The second time we output the symbols that are still
9931 global symbols. */
9932
9933 static bfd_boolean
9934 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9935 {
9936 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9937 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9938 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9939 bfd_boolean strip;
9940 Elf_Internal_Sym sym;
9941 asection *input_sec;
9942 const struct elf_backend_data *bed;
9943 long indx;
9944 int ret;
9945 unsigned int type;
9946
9947 if (h->root.type == bfd_link_hash_warning)
9948 {
9949 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9950 if (h->root.type == bfd_link_hash_new)
9951 return TRUE;
9952 }
9953
9954 /* Decide whether to output this symbol in this pass. */
9955 if (eoinfo->localsyms)
9956 {
9957 if (!h->forced_local)
9958 return TRUE;
9959 }
9960 else
9961 {
9962 if (h->forced_local)
9963 return TRUE;
9964 }
9965
9966 bed = get_elf_backend_data (flinfo->output_bfd);
9967
9968 if (h->root.type == bfd_link_hash_undefined)
9969 {
9970 /* If we have an undefined symbol reference here then it must have
9971 come from a shared library that is being linked in. (Undefined
9972 references in regular files have already been handled unless
9973 they are in unreferenced sections which are removed by garbage
9974 collection). */
9975 bfd_boolean ignore_undef = FALSE;
9976
9977 /* Some symbols may be special in that the fact that they're
9978 undefined can be safely ignored - let backend determine that. */
9979 if (bed->elf_backend_ignore_undef_symbol)
9980 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9981
9982 /* If we are reporting errors for this situation then do so now. */
9983 if (!ignore_undef
9984 && h->ref_dynamic_nonweak
9985 && (!h->ref_regular || flinfo->info->gc_sections)
9986 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9987 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9988 {
9989 flinfo->info->callbacks->undefined_symbol
9990 (flinfo->info, h->root.root.string,
9991 h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0,
9992 flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE
9993 && !flinfo->info->warn_unresolved_syms);
9994 }
9995
9996 /* Strip a global symbol defined in a discarded section. */
9997 if (h->indx == -3)
9998 return TRUE;
9999 }
10000
10001 /* We should also warn if a forced local symbol is referenced from
10002 shared libraries. */
10003 if (bfd_link_executable (flinfo->info)
10004 && h->forced_local
10005 && h->ref_dynamic
10006 && h->def_regular
10007 && !h->dynamic_def
10008 && h->ref_dynamic_nonweak
10009 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
10010 {
10011 bfd *def_bfd;
10012 const char *msg;
10013 struct elf_link_hash_entry *hi = h;
10014
10015 /* Check indirect symbol. */
10016 while (hi->root.type == bfd_link_hash_indirect)
10017 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
10018
10019 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
10020 /* xgettext:c-format */
10021 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
10022 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
10023 /* xgettext:c-format */
10024 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
10025 else
10026 /* xgettext:c-format */
10027 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
10028 def_bfd = flinfo->output_bfd;
10029 if (hi->root.u.def.section != bfd_abs_section_ptr)
10030 def_bfd = hi->root.u.def.section->owner;
10031 _bfd_error_handler (msg, flinfo->output_bfd,
10032 h->root.root.string, def_bfd);
10033 bfd_set_error (bfd_error_bad_value);
10034 eoinfo->failed = TRUE;
10035 return FALSE;
10036 }
10037
10038 /* We don't want to output symbols that have never been mentioned by
10039 a regular file, or that we have been told to strip. However, if
10040 h->indx is set to -2, the symbol is used by a reloc and we must
10041 output it. */
10042 strip = FALSE;
10043 if (h->indx == -2)
10044 ;
10045 else if ((h->def_dynamic
10046 || h->ref_dynamic
10047 || h->root.type == bfd_link_hash_new)
10048 && !h->def_regular
10049 && !h->ref_regular)
10050 strip = TRUE;
10051 else if (flinfo->info->strip == strip_all)
10052 strip = TRUE;
10053 else if (flinfo->info->strip == strip_some
10054 && bfd_hash_lookup (flinfo->info->keep_hash,
10055 h->root.root.string, FALSE, FALSE) == NULL)
10056 strip = TRUE;
10057 else if ((h->root.type == bfd_link_hash_defined
10058 || h->root.type == bfd_link_hash_defweak)
10059 && ((flinfo->info->strip_discarded
10060 && discarded_section (h->root.u.def.section))
10061 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
10062 && h->root.u.def.section->owner != NULL
10063 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
10064 strip = TRUE;
10065 else if ((h->root.type == bfd_link_hash_undefined
10066 || h->root.type == bfd_link_hash_undefweak)
10067 && h->root.u.undef.abfd != NULL
10068 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
10069 strip = TRUE;
10070
10071 type = h->type;
10072
10073 /* If we're stripping it, and it's not a dynamic symbol, there's
10074 nothing else to do. However, if it is a forced local symbol or
10075 an ifunc symbol we need to give the backend finish_dynamic_symbol
10076 function a chance to make it dynamic. */
10077 if (strip
10078 && h->dynindx == -1
10079 && type != STT_GNU_IFUNC
10080 && !h->forced_local)
10081 return TRUE;
10082
10083 sym.st_value = 0;
10084 sym.st_size = h->size;
10085 sym.st_other = h->other;
10086 switch (h->root.type)
10087 {
10088 default:
10089 case bfd_link_hash_new:
10090 case bfd_link_hash_warning:
10091 abort ();
10092 return FALSE;
10093
10094 case bfd_link_hash_undefined:
10095 case bfd_link_hash_undefweak:
10096 input_sec = bfd_und_section_ptr;
10097 sym.st_shndx = SHN_UNDEF;
10098 break;
10099
10100 case bfd_link_hash_defined:
10101 case bfd_link_hash_defweak:
10102 {
10103 input_sec = h->root.u.def.section;
10104 if (input_sec->output_section != NULL)
10105 {
10106 sym.st_shndx =
10107 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10108 input_sec->output_section);
10109 if (sym.st_shndx == SHN_BAD)
10110 {
10111 _bfd_error_handler
10112 /* xgettext:c-format */
10113 (_("%pB: could not find output section %pA for input section %pA"),
10114 flinfo->output_bfd, input_sec->output_section, input_sec);
10115 bfd_set_error (bfd_error_nonrepresentable_section);
10116 eoinfo->failed = TRUE;
10117 return FALSE;
10118 }
10119
10120 /* ELF symbols in relocatable files are section relative,
10121 but in nonrelocatable files they are virtual
10122 addresses. */
10123 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10124 if (!bfd_link_relocatable (flinfo->info))
10125 {
10126 sym.st_value += input_sec->output_section->vma;
10127 if (h->type == STT_TLS)
10128 {
10129 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10130 if (tls_sec != NULL)
10131 sym.st_value -= tls_sec->vma;
10132 }
10133 }
10134 }
10135 else
10136 {
10137 BFD_ASSERT (input_sec->owner == NULL
10138 || (input_sec->owner->flags & DYNAMIC) != 0);
10139 sym.st_shndx = SHN_UNDEF;
10140 input_sec = bfd_und_section_ptr;
10141 }
10142 }
10143 break;
10144
10145 case bfd_link_hash_common:
10146 input_sec = h->root.u.c.p->section;
10147 sym.st_shndx = bed->common_section_index (input_sec);
10148 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10149 break;
10150
10151 case bfd_link_hash_indirect:
10152 /* These symbols are created by symbol versioning. They point
10153 to the decorated version of the name. For example, if the
10154 symbol foo@@GNU_1.2 is the default, which should be used when
10155 foo is used with no version, then we add an indirect symbol
10156 foo which points to foo@@GNU_1.2. We ignore these symbols,
10157 since the indirected symbol is already in the hash table. */
10158 return TRUE;
10159 }
10160
10161 if (type == STT_COMMON || type == STT_OBJECT)
10162 switch (h->root.type)
10163 {
10164 case bfd_link_hash_common:
10165 type = elf_link_convert_common_type (flinfo->info, type);
10166 break;
10167 case bfd_link_hash_defined:
10168 case bfd_link_hash_defweak:
10169 if (bed->common_definition (&sym))
10170 type = elf_link_convert_common_type (flinfo->info, type);
10171 else
10172 type = STT_OBJECT;
10173 break;
10174 case bfd_link_hash_undefined:
10175 case bfd_link_hash_undefweak:
10176 break;
10177 default:
10178 abort ();
10179 }
10180
10181 if (h->forced_local)
10182 {
10183 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10184 /* Turn off visibility on local symbol. */
10185 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10186 }
10187 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10188 else if (h->unique_global && h->def_regular)
10189 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10190 else if (h->root.type == bfd_link_hash_undefweak
10191 || h->root.type == bfd_link_hash_defweak)
10192 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10193 else
10194 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10195 sym.st_target_internal = h->target_internal;
10196
10197 /* Give the processor backend a chance to tweak the symbol value,
10198 and also to finish up anything that needs to be done for this
10199 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10200 forced local syms when non-shared is due to a historical quirk.
10201 STT_GNU_IFUNC symbol must go through PLT. */
10202 if ((h->type == STT_GNU_IFUNC
10203 && h->def_regular
10204 && !bfd_link_relocatable (flinfo->info))
10205 || ((h->dynindx != -1
10206 || h->forced_local)
10207 && ((bfd_link_pic (flinfo->info)
10208 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10209 || h->root.type != bfd_link_hash_undefweak))
10210 || !h->forced_local)
10211 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10212 {
10213 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10214 (flinfo->output_bfd, flinfo->info, h, &sym)))
10215 {
10216 eoinfo->failed = TRUE;
10217 return FALSE;
10218 }
10219 }
10220
10221 /* If we are marking the symbol as undefined, and there are no
10222 non-weak references to this symbol from a regular object, then
10223 mark the symbol as weak undefined; if there are non-weak
10224 references, mark the symbol as strong. We can't do this earlier,
10225 because it might not be marked as undefined until the
10226 finish_dynamic_symbol routine gets through with it. */
10227 if (sym.st_shndx == SHN_UNDEF
10228 && h->ref_regular
10229 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10230 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10231 {
10232 int bindtype;
10233 type = ELF_ST_TYPE (sym.st_info);
10234
10235 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10236 if (type == STT_GNU_IFUNC)
10237 type = STT_FUNC;
10238
10239 if (h->ref_regular_nonweak)
10240 bindtype = STB_GLOBAL;
10241 else
10242 bindtype = STB_WEAK;
10243 sym.st_info = ELF_ST_INFO (bindtype, type);
10244 }
10245
10246 /* If this is a symbol defined in a dynamic library, don't use the
10247 symbol size from the dynamic library. Relinking an executable
10248 against a new library may introduce gratuitous changes in the
10249 executable's symbols if we keep the size. */
10250 if (sym.st_shndx == SHN_UNDEF
10251 && !h->def_regular
10252 && h->def_dynamic)
10253 sym.st_size = 0;
10254
10255 /* If a non-weak symbol with non-default visibility is not defined
10256 locally, it is a fatal error. */
10257 if (!bfd_link_relocatable (flinfo->info)
10258 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10259 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10260 && h->root.type == bfd_link_hash_undefined
10261 && !h->def_regular)
10262 {
10263 const char *msg;
10264
10265 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10266 /* xgettext:c-format */
10267 msg = _("%pB: protected symbol `%s' isn't defined");
10268 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10269 /* xgettext:c-format */
10270 msg = _("%pB: internal symbol `%s' isn't defined");
10271 else
10272 /* xgettext:c-format */
10273 msg = _("%pB: hidden symbol `%s' isn't defined");
10274 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10275 bfd_set_error (bfd_error_bad_value);
10276 eoinfo->failed = TRUE;
10277 return FALSE;
10278 }
10279
10280 /* If this symbol should be put in the .dynsym section, then put it
10281 there now. We already know the symbol index. We also fill in
10282 the entry in the .hash section. */
10283 if (h->dynindx != -1
10284 && elf_hash_table (flinfo->info)->dynamic_sections_created
10285 && elf_hash_table (flinfo->info)->dynsym != NULL
10286 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10287 {
10288 bfd_byte *esym;
10289
10290 /* Since there is no version information in the dynamic string,
10291 if there is no version info in symbol version section, we will
10292 have a run-time problem if not linking executable, referenced
10293 by shared library, or not bound locally. */
10294 if (h->verinfo.verdef == NULL
10295 && (!bfd_link_executable (flinfo->info)
10296 || h->ref_dynamic
10297 || !h->def_regular))
10298 {
10299 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10300
10301 if (p && p [1] != '\0')
10302 {
10303 _bfd_error_handler
10304 /* xgettext:c-format */
10305 (_("%pB: no symbol version section for versioned symbol `%s'"),
10306 flinfo->output_bfd, h->root.root.string);
10307 eoinfo->failed = TRUE;
10308 return FALSE;
10309 }
10310 }
10311
10312 sym.st_name = h->dynstr_index;
10313 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10314 + h->dynindx * bed->s->sizeof_sym);
10315 if (!check_dynsym (flinfo->output_bfd, &sym))
10316 {
10317 eoinfo->failed = TRUE;
10318 return FALSE;
10319 }
10320 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10321
10322 if (flinfo->hash_sec != NULL)
10323 {
10324 size_t hash_entry_size;
10325 bfd_byte *bucketpos;
10326 bfd_vma chain;
10327 size_t bucketcount;
10328 size_t bucket;
10329
10330 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10331 bucket = h->u.elf_hash_value % bucketcount;
10332
10333 hash_entry_size
10334 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10335 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10336 + (bucket + 2) * hash_entry_size);
10337 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10338 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10339 bucketpos);
10340 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10341 ((bfd_byte *) flinfo->hash_sec->contents
10342 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10343 }
10344
10345 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10346 {
10347 Elf_Internal_Versym iversym;
10348 Elf_External_Versym *eversym;
10349
10350 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10351 {
10352 if (h->verinfo.verdef == NULL
10353 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10354 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10355 iversym.vs_vers = 0;
10356 else
10357 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10358 }
10359 else
10360 {
10361 if (h->verinfo.vertree == NULL)
10362 iversym.vs_vers = 1;
10363 else
10364 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10365 if (flinfo->info->create_default_symver)
10366 iversym.vs_vers++;
10367 }
10368
10369 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10370 defined locally. */
10371 if (h->versioned == versioned_hidden && h->def_regular)
10372 iversym.vs_vers |= VERSYM_HIDDEN;
10373
10374 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10375 eversym += h->dynindx;
10376 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10377 }
10378 }
10379
10380 /* If the symbol is undefined, and we didn't output it to .dynsym,
10381 strip it from .symtab too. Obviously we can't do this for
10382 relocatable output or when needed for --emit-relocs. */
10383 else if (input_sec == bfd_und_section_ptr
10384 && h->indx != -2
10385 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10386 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10387 && !bfd_link_relocatable (flinfo->info))
10388 return TRUE;
10389
10390 /* Also strip others that we couldn't earlier due to dynamic symbol
10391 processing. */
10392 if (strip)
10393 return TRUE;
10394 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10395 return TRUE;
10396
10397 /* Output a FILE symbol so that following locals are not associated
10398 with the wrong input file. We need one for forced local symbols
10399 if we've seen more than one FILE symbol or when we have exactly
10400 one FILE symbol but global symbols are present in a file other
10401 than the one with the FILE symbol. We also need one if linker
10402 defined symbols are present. In practice these conditions are
10403 always met, so just emit the FILE symbol unconditionally. */
10404 if (eoinfo->localsyms
10405 && !eoinfo->file_sym_done
10406 && eoinfo->flinfo->filesym_count != 0)
10407 {
10408 Elf_Internal_Sym fsym;
10409
10410 memset (&fsym, 0, sizeof (fsym));
10411 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10412 fsym.st_shndx = SHN_ABS;
10413 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10414 bfd_und_section_ptr, NULL))
10415 return FALSE;
10416
10417 eoinfo->file_sym_done = TRUE;
10418 }
10419
10420 indx = bfd_get_symcount (flinfo->output_bfd);
10421 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10422 input_sec, h);
10423 if (ret == 0)
10424 {
10425 eoinfo->failed = TRUE;
10426 return FALSE;
10427 }
10428 else if (ret == 1)
10429 h->indx = indx;
10430 else if (h->indx == -2)
10431 abort();
10432
10433 return TRUE;
10434 }
10435
10436 /* Return TRUE if special handling is done for relocs in SEC against
10437 symbols defined in discarded sections. */
10438
10439 static bfd_boolean
10440 elf_section_ignore_discarded_relocs (asection *sec)
10441 {
10442 const struct elf_backend_data *bed;
10443
10444 switch (sec->sec_info_type)
10445 {
10446 case SEC_INFO_TYPE_STABS:
10447 case SEC_INFO_TYPE_EH_FRAME:
10448 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10449 return TRUE;
10450 default:
10451 break;
10452 }
10453
10454 bed = get_elf_backend_data (sec->owner);
10455 if (bed->elf_backend_ignore_discarded_relocs != NULL
10456 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10457 return TRUE;
10458
10459 return FALSE;
10460 }
10461
10462 /* Return a mask saying how ld should treat relocations in SEC against
10463 symbols defined in discarded sections. If this function returns
10464 COMPLAIN set, ld will issue a warning message. If this function
10465 returns PRETEND set, and the discarded section was link-once and the
10466 same size as the kept link-once section, ld will pretend that the
10467 symbol was actually defined in the kept section. Otherwise ld will
10468 zero the reloc (at least that is the intent, but some cooperation by
10469 the target dependent code is needed, particularly for REL targets). */
10470
10471 unsigned int
10472 _bfd_elf_default_action_discarded (asection *sec)
10473 {
10474 if (sec->flags & SEC_DEBUGGING)
10475 return PRETEND;
10476
10477 if (strcmp (".eh_frame", sec->name) == 0)
10478 return 0;
10479
10480 if (strcmp (".gcc_except_table", sec->name) == 0)
10481 return 0;
10482
10483 return COMPLAIN | PRETEND;
10484 }
10485
10486 /* Find a match between a section and a member of a section group. */
10487
10488 static asection *
10489 match_group_member (asection *sec, asection *group,
10490 struct bfd_link_info *info)
10491 {
10492 asection *first = elf_next_in_group (group);
10493 asection *s = first;
10494
10495 while (s != NULL)
10496 {
10497 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10498 return s;
10499
10500 s = elf_next_in_group (s);
10501 if (s == first)
10502 break;
10503 }
10504
10505 return NULL;
10506 }
10507
10508 /* Check if the kept section of a discarded section SEC can be used
10509 to replace it. Return the replacement if it is OK. Otherwise return
10510 NULL. */
10511
10512 asection *
10513 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10514 {
10515 asection *kept;
10516
10517 kept = sec->kept_section;
10518 if (kept != NULL)
10519 {
10520 if ((kept->flags & SEC_GROUP) != 0)
10521 kept = match_group_member (sec, kept, info);
10522 if (kept != NULL
10523 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10524 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10525 kept = NULL;
10526 sec->kept_section = kept;
10527 }
10528 return kept;
10529 }
10530
10531 /* Link an input file into the linker output file. This function
10532 handles all the sections and relocations of the input file at once.
10533 This is so that we only have to read the local symbols once, and
10534 don't have to keep them in memory. */
10535
10536 static bfd_boolean
10537 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10538 {
10539 int (*relocate_section)
10540 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10541 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10542 bfd *output_bfd;
10543 Elf_Internal_Shdr *symtab_hdr;
10544 size_t locsymcount;
10545 size_t extsymoff;
10546 Elf_Internal_Sym *isymbuf;
10547 Elf_Internal_Sym *isym;
10548 Elf_Internal_Sym *isymend;
10549 long *pindex;
10550 asection **ppsection;
10551 asection *o;
10552 const struct elf_backend_data *bed;
10553 struct elf_link_hash_entry **sym_hashes;
10554 bfd_size_type address_size;
10555 bfd_vma r_type_mask;
10556 int r_sym_shift;
10557 bfd_boolean have_file_sym = FALSE;
10558
10559 output_bfd = flinfo->output_bfd;
10560 bed = get_elf_backend_data (output_bfd);
10561 relocate_section = bed->elf_backend_relocate_section;
10562
10563 /* If this is a dynamic object, we don't want to do anything here:
10564 we don't want the local symbols, and we don't want the section
10565 contents. */
10566 if ((input_bfd->flags & DYNAMIC) != 0)
10567 return TRUE;
10568
10569 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10570 if (elf_bad_symtab (input_bfd))
10571 {
10572 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10573 extsymoff = 0;
10574 }
10575 else
10576 {
10577 locsymcount = symtab_hdr->sh_info;
10578 extsymoff = symtab_hdr->sh_info;
10579 }
10580
10581 /* Read the local symbols. */
10582 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10583 if (isymbuf == NULL && locsymcount != 0)
10584 {
10585 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10586 flinfo->internal_syms,
10587 flinfo->external_syms,
10588 flinfo->locsym_shndx);
10589 if (isymbuf == NULL)
10590 return FALSE;
10591 }
10592
10593 /* Find local symbol sections and adjust values of symbols in
10594 SEC_MERGE sections. Write out those local symbols we know are
10595 going into the output file. */
10596 isymend = isymbuf + locsymcount;
10597 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10598 isym < isymend;
10599 isym++, pindex++, ppsection++)
10600 {
10601 asection *isec;
10602 const char *name;
10603 Elf_Internal_Sym osym;
10604 long indx;
10605 int ret;
10606
10607 *pindex = -1;
10608
10609 if (elf_bad_symtab (input_bfd))
10610 {
10611 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10612 {
10613 *ppsection = NULL;
10614 continue;
10615 }
10616 }
10617
10618 if (isym->st_shndx == SHN_UNDEF)
10619 isec = bfd_und_section_ptr;
10620 else if (isym->st_shndx == SHN_ABS)
10621 isec = bfd_abs_section_ptr;
10622 else if (isym->st_shndx == SHN_COMMON)
10623 isec = bfd_com_section_ptr;
10624 else
10625 {
10626 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10627 if (isec == NULL)
10628 {
10629 /* Don't attempt to output symbols with st_shnx in the
10630 reserved range other than SHN_ABS and SHN_COMMON. */
10631 isec = bfd_und_section_ptr;
10632 }
10633 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10634 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10635 isym->st_value =
10636 _bfd_merged_section_offset (output_bfd, &isec,
10637 elf_section_data (isec)->sec_info,
10638 isym->st_value);
10639 }
10640
10641 *ppsection = isec;
10642
10643 /* Don't output the first, undefined, symbol. In fact, don't
10644 output any undefined local symbol. */
10645 if (isec == bfd_und_section_ptr)
10646 continue;
10647
10648 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10649 {
10650 /* We never output section symbols. Instead, we use the
10651 section symbol of the corresponding section in the output
10652 file. */
10653 continue;
10654 }
10655
10656 /* If we are stripping all symbols, we don't want to output this
10657 one. */
10658 if (flinfo->info->strip == strip_all)
10659 continue;
10660
10661 /* If we are discarding all local symbols, we don't want to
10662 output this one. If we are generating a relocatable output
10663 file, then some of the local symbols may be required by
10664 relocs; we output them below as we discover that they are
10665 needed. */
10666 if (flinfo->info->discard == discard_all)
10667 continue;
10668
10669 /* If this symbol is defined in a section which we are
10670 discarding, we don't need to keep it. */
10671 if (isym->st_shndx != SHN_UNDEF
10672 && isym->st_shndx < SHN_LORESERVE
10673 && isec->output_section == NULL
10674 && flinfo->info->non_contiguous_regions
10675 && flinfo->info->non_contiguous_regions_warnings)
10676 {
10677 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10678 "discards section `%s' from '%s'\n"),
10679 isec->name, bfd_get_filename (isec->owner));
10680 continue;
10681 }
10682
10683 if (isym->st_shndx != SHN_UNDEF
10684 && isym->st_shndx < SHN_LORESERVE
10685 && bfd_section_removed_from_list (output_bfd,
10686 isec->output_section))
10687 continue;
10688
10689 /* Get the name of the symbol. */
10690 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10691 isym->st_name);
10692 if (name == NULL)
10693 return FALSE;
10694
10695 /* See if we are discarding symbols with this name. */
10696 if ((flinfo->info->strip == strip_some
10697 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10698 == NULL))
10699 || (((flinfo->info->discard == discard_sec_merge
10700 && (isec->flags & SEC_MERGE)
10701 && !bfd_link_relocatable (flinfo->info))
10702 || flinfo->info->discard == discard_l)
10703 && bfd_is_local_label_name (input_bfd, name)))
10704 continue;
10705
10706 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10707 {
10708 if (input_bfd->lto_output)
10709 /* -flto puts a temp file name here. This means builds
10710 are not reproducible. Discard the symbol. */
10711 continue;
10712 have_file_sym = TRUE;
10713 flinfo->filesym_count += 1;
10714 }
10715 if (!have_file_sym)
10716 {
10717 /* In the absence of debug info, bfd_find_nearest_line uses
10718 FILE symbols to determine the source file for local
10719 function symbols. Provide a FILE symbol here if input
10720 files lack such, so that their symbols won't be
10721 associated with a previous input file. It's not the
10722 source file, but the best we can do. */
10723 have_file_sym = TRUE;
10724 flinfo->filesym_count += 1;
10725 memset (&osym, 0, sizeof (osym));
10726 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10727 osym.st_shndx = SHN_ABS;
10728 if (!elf_link_output_symstrtab (flinfo,
10729 (input_bfd->lto_output ? NULL
10730 : bfd_get_filename (input_bfd)),
10731 &osym, bfd_abs_section_ptr,
10732 NULL))
10733 return FALSE;
10734 }
10735
10736 osym = *isym;
10737
10738 /* Adjust the section index for the output file. */
10739 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10740 isec->output_section);
10741 if (osym.st_shndx == SHN_BAD)
10742 return FALSE;
10743
10744 /* ELF symbols in relocatable files are section relative, but
10745 in executable files they are virtual addresses. Note that
10746 this code assumes that all ELF sections have an associated
10747 BFD section with a reasonable value for output_offset; below
10748 we assume that they also have a reasonable value for
10749 output_section. Any special sections must be set up to meet
10750 these requirements. */
10751 osym.st_value += isec->output_offset;
10752 if (!bfd_link_relocatable (flinfo->info))
10753 {
10754 osym.st_value += isec->output_section->vma;
10755 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10756 {
10757 /* STT_TLS symbols are relative to PT_TLS segment base. */
10758 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10759 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10760 else
10761 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10762 STT_NOTYPE);
10763 }
10764 }
10765
10766 indx = bfd_get_symcount (output_bfd);
10767 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10768 if (ret == 0)
10769 return FALSE;
10770 else if (ret == 1)
10771 *pindex = indx;
10772 }
10773
10774 if (bed->s->arch_size == 32)
10775 {
10776 r_type_mask = 0xff;
10777 r_sym_shift = 8;
10778 address_size = 4;
10779 }
10780 else
10781 {
10782 r_type_mask = 0xffffffff;
10783 r_sym_shift = 32;
10784 address_size = 8;
10785 }
10786
10787 /* Relocate the contents of each section. */
10788 sym_hashes = elf_sym_hashes (input_bfd);
10789 for (o = input_bfd->sections; o != NULL; o = o->next)
10790 {
10791 bfd_byte *contents;
10792
10793 if (! o->linker_mark)
10794 {
10795 /* This section was omitted from the link. */
10796 continue;
10797 }
10798
10799 if (!flinfo->info->resolve_section_groups
10800 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10801 {
10802 /* Deal with the group signature symbol. */
10803 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10804 unsigned long symndx = sec_data->this_hdr.sh_info;
10805 asection *osec = o->output_section;
10806
10807 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10808 if (symndx >= locsymcount
10809 || (elf_bad_symtab (input_bfd)
10810 && flinfo->sections[symndx] == NULL))
10811 {
10812 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10813 while (h->root.type == bfd_link_hash_indirect
10814 || h->root.type == bfd_link_hash_warning)
10815 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10816 /* Arrange for symbol to be output. */
10817 h->indx = -2;
10818 elf_section_data (osec)->this_hdr.sh_info = -2;
10819 }
10820 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10821 {
10822 /* We'll use the output section target_index. */
10823 asection *sec = flinfo->sections[symndx]->output_section;
10824 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10825 }
10826 else
10827 {
10828 if (flinfo->indices[symndx] == -1)
10829 {
10830 /* Otherwise output the local symbol now. */
10831 Elf_Internal_Sym sym = isymbuf[symndx];
10832 asection *sec = flinfo->sections[symndx]->output_section;
10833 const char *name;
10834 long indx;
10835 int ret;
10836
10837 name = bfd_elf_string_from_elf_section (input_bfd,
10838 symtab_hdr->sh_link,
10839 sym.st_name);
10840 if (name == NULL)
10841 return FALSE;
10842
10843 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10844 sec);
10845 if (sym.st_shndx == SHN_BAD)
10846 return FALSE;
10847
10848 sym.st_value += o->output_offset;
10849
10850 indx = bfd_get_symcount (output_bfd);
10851 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10852 NULL);
10853 if (ret == 0)
10854 return FALSE;
10855 else if (ret == 1)
10856 flinfo->indices[symndx] = indx;
10857 else
10858 abort ();
10859 }
10860 elf_section_data (osec)->this_hdr.sh_info
10861 = flinfo->indices[symndx];
10862 }
10863 }
10864
10865 if ((o->flags & SEC_HAS_CONTENTS) == 0
10866 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10867 continue;
10868
10869 if ((o->flags & SEC_LINKER_CREATED) != 0)
10870 {
10871 /* Section was created by _bfd_elf_link_create_dynamic_sections
10872 or somesuch. */
10873 continue;
10874 }
10875
10876 /* Get the contents of the section. They have been cached by a
10877 relaxation routine. Note that o is a section in an input
10878 file, so the contents field will not have been set by any of
10879 the routines which work on output files. */
10880 if (elf_section_data (o)->this_hdr.contents != NULL)
10881 {
10882 contents = elf_section_data (o)->this_hdr.contents;
10883 if (bed->caches_rawsize
10884 && o->rawsize != 0
10885 && o->rawsize < o->size)
10886 {
10887 memcpy (flinfo->contents, contents, o->rawsize);
10888 contents = flinfo->contents;
10889 }
10890 }
10891 else
10892 {
10893 contents = flinfo->contents;
10894 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10895 return FALSE;
10896 }
10897
10898 if ((o->flags & SEC_RELOC) != 0)
10899 {
10900 Elf_Internal_Rela *internal_relocs;
10901 Elf_Internal_Rela *rel, *relend;
10902 int action_discarded;
10903 int ret;
10904
10905 /* Get the swapped relocs. */
10906 internal_relocs
10907 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10908 flinfo->internal_relocs, FALSE);
10909 if (internal_relocs == NULL
10910 && o->reloc_count > 0)
10911 return FALSE;
10912
10913 /* We need to reverse-copy input .ctors/.dtors sections if
10914 they are placed in .init_array/.finit_array for output. */
10915 if (o->size > address_size
10916 && ((strncmp (o->name, ".ctors", 6) == 0
10917 && strcmp (o->output_section->name,
10918 ".init_array") == 0)
10919 || (strncmp (o->name, ".dtors", 6) == 0
10920 && strcmp (o->output_section->name,
10921 ".fini_array") == 0))
10922 && (o->name[6] == 0 || o->name[6] == '.'))
10923 {
10924 if (o->size * bed->s->int_rels_per_ext_rel
10925 != o->reloc_count * address_size)
10926 {
10927 _bfd_error_handler
10928 /* xgettext:c-format */
10929 (_("error: %pB: size of section %pA is not "
10930 "multiple of address size"),
10931 input_bfd, o);
10932 bfd_set_error (bfd_error_bad_value);
10933 return FALSE;
10934 }
10935 o->flags |= SEC_ELF_REVERSE_COPY;
10936 }
10937
10938 action_discarded = -1;
10939 if (!elf_section_ignore_discarded_relocs (o))
10940 action_discarded = (*bed->action_discarded) (o);
10941
10942 /* Run through the relocs evaluating complex reloc symbols and
10943 looking for relocs against symbols from discarded sections
10944 or section symbols from removed link-once sections.
10945 Complain about relocs against discarded sections. Zero
10946 relocs against removed link-once sections. */
10947
10948 rel = internal_relocs;
10949 relend = rel + o->reloc_count;
10950 for ( ; rel < relend; rel++)
10951 {
10952 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10953 unsigned int s_type;
10954 asection **ps, *sec;
10955 struct elf_link_hash_entry *h = NULL;
10956 const char *sym_name;
10957
10958 if (r_symndx == STN_UNDEF)
10959 continue;
10960
10961 if (r_symndx >= locsymcount
10962 || (elf_bad_symtab (input_bfd)
10963 && flinfo->sections[r_symndx] == NULL))
10964 {
10965 h = sym_hashes[r_symndx - extsymoff];
10966
10967 /* Badly formatted input files can contain relocs that
10968 reference non-existant symbols. Check here so that
10969 we do not seg fault. */
10970 if (h == NULL)
10971 {
10972 _bfd_error_handler
10973 /* xgettext:c-format */
10974 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10975 "that references a non-existent global symbol"),
10976 input_bfd, (uint64_t) rel->r_info, o);
10977 bfd_set_error (bfd_error_bad_value);
10978 return FALSE;
10979 }
10980
10981 while (h->root.type == bfd_link_hash_indirect
10982 || h->root.type == bfd_link_hash_warning)
10983 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10984
10985 s_type = h->type;
10986
10987 /* If a plugin symbol is referenced from a non-IR file,
10988 mark the symbol as undefined. Note that the
10989 linker may attach linker created dynamic sections
10990 to the plugin bfd. Symbols defined in linker
10991 created sections are not plugin symbols. */
10992 if ((h->root.non_ir_ref_regular
10993 || h->root.non_ir_ref_dynamic)
10994 && (h->root.type == bfd_link_hash_defined
10995 || h->root.type == bfd_link_hash_defweak)
10996 && (h->root.u.def.section->flags
10997 & SEC_LINKER_CREATED) == 0
10998 && h->root.u.def.section->owner != NULL
10999 && (h->root.u.def.section->owner->flags
11000 & BFD_PLUGIN) != 0)
11001 {
11002 h->root.type = bfd_link_hash_undefined;
11003 h->root.u.undef.abfd = h->root.u.def.section->owner;
11004 }
11005
11006 ps = NULL;
11007 if (h->root.type == bfd_link_hash_defined
11008 || h->root.type == bfd_link_hash_defweak)
11009 ps = &h->root.u.def.section;
11010
11011 sym_name = h->root.root.string;
11012 }
11013 else
11014 {
11015 Elf_Internal_Sym *sym = isymbuf + r_symndx;
11016
11017 s_type = ELF_ST_TYPE (sym->st_info);
11018 ps = &flinfo->sections[r_symndx];
11019 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
11020 sym, *ps);
11021 }
11022
11023 if ((s_type == STT_RELC || s_type == STT_SRELC)
11024 && !bfd_link_relocatable (flinfo->info))
11025 {
11026 bfd_vma val;
11027 bfd_vma dot = (rel->r_offset
11028 + o->output_offset + o->output_section->vma);
11029 #ifdef DEBUG
11030 printf ("Encountered a complex symbol!");
11031 printf (" (input_bfd %s, section %s, reloc %ld\n",
11032 bfd_get_filename (input_bfd), o->name,
11033 (long) (rel - internal_relocs));
11034 printf (" symbol: idx %8.8lx, name %s\n",
11035 r_symndx, sym_name);
11036 printf (" reloc : info %8.8lx, addr %8.8lx\n",
11037 (unsigned long) rel->r_info,
11038 (unsigned long) rel->r_offset);
11039 #endif
11040 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
11041 isymbuf, locsymcount, s_type == STT_SRELC))
11042 return FALSE;
11043
11044 /* Symbol evaluated OK. Update to absolute value. */
11045 set_symbol_value (input_bfd, isymbuf, locsymcount,
11046 r_symndx, val);
11047 continue;
11048 }
11049
11050 if (action_discarded != -1 && ps != NULL)
11051 {
11052 /* Complain if the definition comes from a
11053 discarded section. */
11054 if ((sec = *ps) != NULL && discarded_section (sec))
11055 {
11056 BFD_ASSERT (r_symndx != STN_UNDEF);
11057 if (action_discarded & COMPLAIN)
11058 (*flinfo->info->callbacks->einfo)
11059 /* xgettext:c-format */
11060 (_("%X`%s' referenced in section `%pA' of %pB: "
11061 "defined in discarded section `%pA' of %pB\n"),
11062 sym_name, o, input_bfd, sec, sec->owner);
11063
11064 /* Try to do the best we can to support buggy old
11065 versions of gcc. Pretend that the symbol is
11066 really defined in the kept linkonce section.
11067 FIXME: This is quite broken. Modifying the
11068 symbol here means we will be changing all later
11069 uses of the symbol, not just in this section. */
11070 if (action_discarded & PRETEND)
11071 {
11072 asection *kept;
11073
11074 kept = _bfd_elf_check_kept_section (sec,
11075 flinfo->info);
11076 if (kept != NULL)
11077 {
11078 *ps = kept;
11079 continue;
11080 }
11081 }
11082 }
11083 }
11084 }
11085
11086 /* Relocate the section by invoking a back end routine.
11087
11088 The back end routine is responsible for adjusting the
11089 section contents as necessary, and (if using Rela relocs
11090 and generating a relocatable output file) adjusting the
11091 reloc addend as necessary.
11092
11093 The back end routine does not have to worry about setting
11094 the reloc address or the reloc symbol index.
11095
11096 The back end routine is given a pointer to the swapped in
11097 internal symbols, and can access the hash table entries
11098 for the external symbols via elf_sym_hashes (input_bfd).
11099
11100 When generating relocatable output, the back end routine
11101 must handle STB_LOCAL/STT_SECTION symbols specially. The
11102 output symbol is going to be a section symbol
11103 corresponding to the output section, which will require
11104 the addend to be adjusted. */
11105
11106 ret = (*relocate_section) (output_bfd, flinfo->info,
11107 input_bfd, o, contents,
11108 internal_relocs,
11109 isymbuf,
11110 flinfo->sections);
11111 if (!ret)
11112 return FALSE;
11113
11114 if (ret == 2
11115 || bfd_link_relocatable (flinfo->info)
11116 || flinfo->info->emitrelocations)
11117 {
11118 Elf_Internal_Rela *irela;
11119 Elf_Internal_Rela *irelaend, *irelamid;
11120 bfd_vma last_offset;
11121 struct elf_link_hash_entry **rel_hash;
11122 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11123 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11124 unsigned int next_erel;
11125 bfd_boolean rela_normal;
11126 struct bfd_elf_section_data *esdi, *esdo;
11127
11128 esdi = elf_section_data (o);
11129 esdo = elf_section_data (o->output_section);
11130 rela_normal = FALSE;
11131
11132 /* Adjust the reloc addresses and symbol indices. */
11133
11134 irela = internal_relocs;
11135 irelaend = irela + o->reloc_count;
11136 rel_hash = esdo->rel.hashes + esdo->rel.count;
11137 /* We start processing the REL relocs, if any. When we reach
11138 IRELAMID in the loop, we switch to the RELA relocs. */
11139 irelamid = irela;
11140 if (esdi->rel.hdr != NULL)
11141 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11142 * bed->s->int_rels_per_ext_rel);
11143 rel_hash_list = rel_hash;
11144 rela_hash_list = NULL;
11145 last_offset = o->output_offset;
11146 if (!bfd_link_relocatable (flinfo->info))
11147 last_offset += o->output_section->vma;
11148 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11149 {
11150 unsigned long r_symndx;
11151 asection *sec;
11152 Elf_Internal_Sym sym;
11153
11154 if (next_erel == bed->s->int_rels_per_ext_rel)
11155 {
11156 rel_hash++;
11157 next_erel = 0;
11158 }
11159
11160 if (irela == irelamid)
11161 {
11162 rel_hash = esdo->rela.hashes + esdo->rela.count;
11163 rela_hash_list = rel_hash;
11164 rela_normal = bed->rela_normal;
11165 }
11166
11167 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11168 flinfo->info, o,
11169 irela->r_offset);
11170 if (irela->r_offset >= (bfd_vma) -2)
11171 {
11172 /* This is a reloc for a deleted entry or somesuch.
11173 Turn it into an R_*_NONE reloc, at the same
11174 offset as the last reloc. elf_eh_frame.c and
11175 bfd_elf_discard_info rely on reloc offsets
11176 being ordered. */
11177 irela->r_offset = last_offset;
11178 irela->r_info = 0;
11179 irela->r_addend = 0;
11180 continue;
11181 }
11182
11183 irela->r_offset += o->output_offset;
11184
11185 /* Relocs in an executable have to be virtual addresses. */
11186 if (!bfd_link_relocatable (flinfo->info))
11187 irela->r_offset += o->output_section->vma;
11188
11189 last_offset = irela->r_offset;
11190
11191 r_symndx = irela->r_info >> r_sym_shift;
11192 if (r_symndx == STN_UNDEF)
11193 continue;
11194
11195 if (r_symndx >= locsymcount
11196 || (elf_bad_symtab (input_bfd)
11197 && flinfo->sections[r_symndx] == NULL))
11198 {
11199 struct elf_link_hash_entry *rh;
11200 unsigned long indx;
11201
11202 /* This is a reloc against a global symbol. We
11203 have not yet output all the local symbols, so
11204 we do not know the symbol index of any global
11205 symbol. We set the rel_hash entry for this
11206 reloc to point to the global hash table entry
11207 for this symbol. The symbol index is then
11208 set at the end of bfd_elf_final_link. */
11209 indx = r_symndx - extsymoff;
11210 rh = elf_sym_hashes (input_bfd)[indx];
11211 while (rh->root.type == bfd_link_hash_indirect
11212 || rh->root.type == bfd_link_hash_warning)
11213 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11214
11215 /* Setting the index to -2 tells
11216 elf_link_output_extsym that this symbol is
11217 used by a reloc. */
11218 BFD_ASSERT (rh->indx < 0);
11219 rh->indx = -2;
11220 *rel_hash = rh;
11221
11222 continue;
11223 }
11224
11225 /* This is a reloc against a local symbol. */
11226
11227 *rel_hash = NULL;
11228 sym = isymbuf[r_symndx];
11229 sec = flinfo->sections[r_symndx];
11230 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11231 {
11232 /* I suppose the backend ought to fill in the
11233 section of any STT_SECTION symbol against a
11234 processor specific section. */
11235 r_symndx = STN_UNDEF;
11236 if (bfd_is_abs_section (sec))
11237 ;
11238 else if (sec == NULL || sec->owner == NULL)
11239 {
11240 bfd_set_error (bfd_error_bad_value);
11241 return FALSE;
11242 }
11243 else
11244 {
11245 asection *osec = sec->output_section;
11246
11247 /* If we have discarded a section, the output
11248 section will be the absolute section. In
11249 case of discarded SEC_MERGE sections, use
11250 the kept section. relocate_section should
11251 have already handled discarded linkonce
11252 sections. */
11253 if (bfd_is_abs_section (osec)
11254 && sec->kept_section != NULL
11255 && sec->kept_section->output_section != NULL)
11256 {
11257 osec = sec->kept_section->output_section;
11258 irela->r_addend -= osec->vma;
11259 }
11260
11261 if (!bfd_is_abs_section (osec))
11262 {
11263 r_symndx = osec->target_index;
11264 if (r_symndx == STN_UNDEF)
11265 {
11266 irela->r_addend += osec->vma;
11267 osec = _bfd_nearby_section (output_bfd, osec,
11268 osec->vma);
11269 irela->r_addend -= osec->vma;
11270 r_symndx = osec->target_index;
11271 }
11272 }
11273 }
11274
11275 /* Adjust the addend according to where the
11276 section winds up in the output section. */
11277 if (rela_normal)
11278 irela->r_addend += sec->output_offset;
11279 }
11280 else
11281 {
11282 if (flinfo->indices[r_symndx] == -1)
11283 {
11284 unsigned long shlink;
11285 const char *name;
11286 asection *osec;
11287 long indx;
11288
11289 if (flinfo->info->strip == strip_all)
11290 {
11291 /* You can't do ld -r -s. */
11292 bfd_set_error (bfd_error_invalid_operation);
11293 return FALSE;
11294 }
11295
11296 /* This symbol was skipped earlier, but
11297 since it is needed by a reloc, we
11298 must output it now. */
11299 shlink = symtab_hdr->sh_link;
11300 name = (bfd_elf_string_from_elf_section
11301 (input_bfd, shlink, sym.st_name));
11302 if (name == NULL)
11303 return FALSE;
11304
11305 osec = sec->output_section;
11306 sym.st_shndx =
11307 _bfd_elf_section_from_bfd_section (output_bfd,
11308 osec);
11309 if (sym.st_shndx == SHN_BAD)
11310 return FALSE;
11311
11312 sym.st_value += sec->output_offset;
11313 if (!bfd_link_relocatable (flinfo->info))
11314 {
11315 sym.st_value += osec->vma;
11316 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11317 {
11318 struct elf_link_hash_table *htab
11319 = elf_hash_table (flinfo->info);
11320
11321 /* STT_TLS symbols are relative to PT_TLS
11322 segment base. */
11323 if (htab->tls_sec != NULL)
11324 sym.st_value -= htab->tls_sec->vma;
11325 else
11326 sym.st_info
11327 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11328 STT_NOTYPE);
11329 }
11330 }
11331
11332 indx = bfd_get_symcount (output_bfd);
11333 ret = elf_link_output_symstrtab (flinfo, name,
11334 &sym, sec,
11335 NULL);
11336 if (ret == 0)
11337 return FALSE;
11338 else if (ret == 1)
11339 flinfo->indices[r_symndx] = indx;
11340 else
11341 abort ();
11342 }
11343
11344 r_symndx = flinfo->indices[r_symndx];
11345 }
11346
11347 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11348 | (irela->r_info & r_type_mask));
11349 }
11350
11351 /* Swap out the relocs. */
11352 input_rel_hdr = esdi->rel.hdr;
11353 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11354 {
11355 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11356 input_rel_hdr,
11357 internal_relocs,
11358 rel_hash_list))
11359 return FALSE;
11360 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11361 * bed->s->int_rels_per_ext_rel);
11362 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11363 }
11364
11365 input_rela_hdr = esdi->rela.hdr;
11366 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11367 {
11368 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11369 input_rela_hdr,
11370 internal_relocs,
11371 rela_hash_list))
11372 return FALSE;
11373 }
11374 }
11375 }
11376
11377 /* Write out the modified section contents. */
11378 if (bed->elf_backend_write_section
11379 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11380 contents))
11381 {
11382 /* Section written out. */
11383 }
11384 else switch (o->sec_info_type)
11385 {
11386 case SEC_INFO_TYPE_STABS:
11387 if (! (_bfd_write_section_stabs
11388 (output_bfd,
11389 &elf_hash_table (flinfo->info)->stab_info,
11390 o, &elf_section_data (o)->sec_info, contents)))
11391 return FALSE;
11392 break;
11393 case SEC_INFO_TYPE_MERGE:
11394 if (! _bfd_write_merged_section (output_bfd, o,
11395 elf_section_data (o)->sec_info))
11396 return FALSE;
11397 break;
11398 case SEC_INFO_TYPE_EH_FRAME:
11399 {
11400 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11401 o, contents))
11402 return FALSE;
11403 }
11404 break;
11405 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11406 {
11407 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11408 flinfo->info,
11409 o, contents))
11410 return FALSE;
11411 }
11412 break;
11413 default:
11414 {
11415 if (! (o->flags & SEC_EXCLUDE))
11416 {
11417 file_ptr offset = (file_ptr) o->output_offset;
11418 bfd_size_type todo = o->size;
11419
11420 offset *= bfd_octets_per_byte (output_bfd, o);
11421
11422 if ((o->flags & SEC_ELF_REVERSE_COPY))
11423 {
11424 /* Reverse-copy input section to output. */
11425 do
11426 {
11427 todo -= address_size;
11428 if (! bfd_set_section_contents (output_bfd,
11429 o->output_section,
11430 contents + todo,
11431 offset,
11432 address_size))
11433 return FALSE;
11434 if (todo == 0)
11435 break;
11436 offset += address_size;
11437 }
11438 while (1);
11439 }
11440 else if (! bfd_set_section_contents (output_bfd,
11441 o->output_section,
11442 contents,
11443 offset, todo))
11444 return FALSE;
11445 }
11446 }
11447 break;
11448 }
11449 }
11450
11451 return TRUE;
11452 }
11453
11454 /* Generate a reloc when linking an ELF file. This is a reloc
11455 requested by the linker, and does not come from any input file. This
11456 is used to build constructor and destructor tables when linking
11457 with -Ur. */
11458
11459 static bfd_boolean
11460 elf_reloc_link_order (bfd *output_bfd,
11461 struct bfd_link_info *info,
11462 asection *output_section,
11463 struct bfd_link_order *link_order)
11464 {
11465 reloc_howto_type *howto;
11466 long indx;
11467 bfd_vma offset;
11468 bfd_vma addend;
11469 struct bfd_elf_section_reloc_data *reldata;
11470 struct elf_link_hash_entry **rel_hash_ptr;
11471 Elf_Internal_Shdr *rel_hdr;
11472 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11473 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11474 bfd_byte *erel;
11475 unsigned int i;
11476 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11477
11478 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11479 if (howto == NULL)
11480 {
11481 bfd_set_error (bfd_error_bad_value);
11482 return FALSE;
11483 }
11484
11485 addend = link_order->u.reloc.p->addend;
11486
11487 if (esdo->rel.hdr)
11488 reldata = &esdo->rel;
11489 else if (esdo->rela.hdr)
11490 reldata = &esdo->rela;
11491 else
11492 {
11493 reldata = NULL;
11494 BFD_ASSERT (0);
11495 }
11496
11497 /* Figure out the symbol index. */
11498 rel_hash_ptr = reldata->hashes + reldata->count;
11499 if (link_order->type == bfd_section_reloc_link_order)
11500 {
11501 indx = link_order->u.reloc.p->u.section->target_index;
11502 BFD_ASSERT (indx != 0);
11503 *rel_hash_ptr = NULL;
11504 }
11505 else
11506 {
11507 struct elf_link_hash_entry *h;
11508
11509 /* Treat a reloc against a defined symbol as though it were
11510 actually against the section. */
11511 h = ((struct elf_link_hash_entry *)
11512 bfd_wrapped_link_hash_lookup (output_bfd, info,
11513 link_order->u.reloc.p->u.name,
11514 FALSE, FALSE, TRUE));
11515 if (h != NULL
11516 && (h->root.type == bfd_link_hash_defined
11517 || h->root.type == bfd_link_hash_defweak))
11518 {
11519 asection *section;
11520
11521 section = h->root.u.def.section;
11522 indx = section->output_section->target_index;
11523 *rel_hash_ptr = NULL;
11524 /* It seems that we ought to add the symbol value to the
11525 addend here, but in practice it has already been added
11526 because it was passed to constructor_callback. */
11527 addend += section->output_section->vma + section->output_offset;
11528 }
11529 else if (h != NULL)
11530 {
11531 /* Setting the index to -2 tells elf_link_output_extsym that
11532 this symbol is used by a reloc. */
11533 h->indx = -2;
11534 *rel_hash_ptr = h;
11535 indx = 0;
11536 }
11537 else
11538 {
11539 (*info->callbacks->unattached_reloc)
11540 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11541 indx = 0;
11542 }
11543 }
11544
11545 /* If this is an inplace reloc, we must write the addend into the
11546 object file. */
11547 if (howto->partial_inplace && addend != 0)
11548 {
11549 bfd_size_type size;
11550 bfd_reloc_status_type rstat;
11551 bfd_byte *buf;
11552 bfd_boolean ok;
11553 const char *sym_name;
11554 bfd_size_type octets;
11555
11556 size = (bfd_size_type) bfd_get_reloc_size (howto);
11557 buf = (bfd_byte *) bfd_zmalloc (size);
11558 if (buf == NULL && size != 0)
11559 return FALSE;
11560 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11561 switch (rstat)
11562 {
11563 case bfd_reloc_ok:
11564 break;
11565
11566 default:
11567 case bfd_reloc_outofrange:
11568 abort ();
11569
11570 case bfd_reloc_overflow:
11571 if (link_order->type == bfd_section_reloc_link_order)
11572 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11573 else
11574 sym_name = link_order->u.reloc.p->u.name;
11575 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11576 howto->name, addend, NULL, NULL,
11577 (bfd_vma) 0);
11578 break;
11579 }
11580
11581 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11582 output_section);
11583 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11584 octets, size);
11585 free (buf);
11586 if (! ok)
11587 return FALSE;
11588 }
11589
11590 /* The address of a reloc is relative to the section in a
11591 relocatable file, and is a virtual address in an executable
11592 file. */
11593 offset = link_order->offset;
11594 if (! bfd_link_relocatable (info))
11595 offset += output_section->vma;
11596
11597 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11598 {
11599 irel[i].r_offset = offset;
11600 irel[i].r_info = 0;
11601 irel[i].r_addend = 0;
11602 }
11603 if (bed->s->arch_size == 32)
11604 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11605 else
11606 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11607
11608 rel_hdr = reldata->hdr;
11609 erel = rel_hdr->contents;
11610 if (rel_hdr->sh_type == SHT_REL)
11611 {
11612 erel += reldata->count * bed->s->sizeof_rel;
11613 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11614 }
11615 else
11616 {
11617 irel[0].r_addend = addend;
11618 erel += reldata->count * bed->s->sizeof_rela;
11619 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11620 }
11621
11622 ++reldata->count;
11623
11624 return TRUE;
11625 }
11626
11627
11628 /* Compare two sections based on the locations of the sections they are
11629 linked to. Used by elf_fixup_link_order. */
11630
11631 static int
11632 compare_link_order (const void *a, const void *b)
11633 {
11634 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11635 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11636 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11637 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11638 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11639 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11640
11641 if (apos < bpos)
11642 return -1;
11643 if (apos > bpos)
11644 return 1;
11645
11646 /* The only way we should get matching LMAs is when the first of two
11647 sections has zero size. */
11648 if (asec->size < bsec->size)
11649 return -1;
11650 if (asec->size > bsec->size)
11651 return 1;
11652
11653 /* If they are both zero size then they almost certainly have the same
11654 VMA and thus are not ordered with respect to each other. Test VMA
11655 anyway, and fall back to id to make the result reproducible across
11656 qsort implementations. */
11657 apos = asec->output_section->vma + asec->output_offset;
11658 bpos = bsec->output_section->vma + bsec->output_offset;
11659 if (apos < bpos)
11660 return -1;
11661 if (apos > bpos)
11662 return 1;
11663
11664 return asec->id - bsec->id;
11665 }
11666
11667
11668 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11669 order as their linked sections. Returns false if this could not be done
11670 because an output section includes both ordered and unordered
11671 sections. Ideally we'd do this in the linker proper. */
11672
11673 static bfd_boolean
11674 elf_fixup_link_order (bfd *abfd, asection *o)
11675 {
11676 size_t seen_linkorder;
11677 size_t seen_other;
11678 size_t n;
11679 struct bfd_link_order *p;
11680 bfd *sub;
11681 struct bfd_link_order **sections;
11682 asection *other_sec, *linkorder_sec;
11683 bfd_vma offset; /* Octets. */
11684
11685 other_sec = NULL;
11686 linkorder_sec = NULL;
11687 seen_other = 0;
11688 seen_linkorder = 0;
11689 for (p = o->map_head.link_order; p != NULL; p = p->next)
11690 {
11691 if (p->type == bfd_indirect_link_order)
11692 {
11693 asection *s = p->u.indirect.section;
11694 sub = s->owner;
11695 if ((s->flags & SEC_LINKER_CREATED) == 0
11696 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11697 && elf_section_data (s) != NULL
11698 && elf_linked_to_section (s) != NULL)
11699 {
11700 seen_linkorder++;
11701 linkorder_sec = s;
11702 }
11703 else
11704 {
11705 seen_other++;
11706 other_sec = s;
11707 }
11708 }
11709 else
11710 seen_other++;
11711
11712 if (seen_other && seen_linkorder)
11713 {
11714 if (other_sec && linkorder_sec)
11715 _bfd_error_handler
11716 /* xgettext:c-format */
11717 (_("%pA has both ordered [`%pA' in %pB] "
11718 "and unordered [`%pA' in %pB] sections"),
11719 o, linkorder_sec, linkorder_sec->owner,
11720 other_sec, other_sec->owner);
11721 else
11722 _bfd_error_handler
11723 (_("%pA has both ordered and unordered sections"), o);
11724 bfd_set_error (bfd_error_bad_value);
11725 return FALSE;
11726 }
11727 }
11728
11729 if (!seen_linkorder)
11730 return TRUE;
11731
11732 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11733 if (sections == NULL)
11734 return FALSE;
11735
11736 seen_linkorder = 0;
11737 for (p = o->map_head.link_order; p != NULL; p = p->next)
11738 sections[seen_linkorder++] = p;
11739
11740 /* Sort the input sections in the order of their linked section. */
11741 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11742
11743 /* Change the offsets of the sections. */
11744 offset = 0;
11745 for (n = 0; n < seen_linkorder; n++)
11746 {
11747 bfd_vma mask;
11748 asection *s = sections[n]->u.indirect.section;
11749 unsigned int opb = bfd_octets_per_byte (abfd, s);
11750
11751 mask = ~(bfd_vma) 0 << s->alignment_power * opb;
11752 offset = (offset + ~mask) & mask;
11753 sections[n]->offset = s->output_offset = offset / opb;
11754 offset += sections[n]->size;
11755 }
11756
11757 free (sections);
11758 return TRUE;
11759 }
11760
11761 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11762 Returns TRUE upon success, FALSE otherwise. */
11763
11764 static bfd_boolean
11765 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11766 {
11767 bfd_boolean ret = FALSE;
11768 bfd *implib_bfd;
11769 const struct elf_backend_data *bed;
11770 flagword flags;
11771 enum bfd_architecture arch;
11772 unsigned int mach;
11773 asymbol **sympp = NULL;
11774 long symsize;
11775 long symcount;
11776 long src_count;
11777 elf_symbol_type *osymbuf;
11778 size_t amt;
11779
11780 implib_bfd = info->out_implib_bfd;
11781 bed = get_elf_backend_data (abfd);
11782
11783 if (!bfd_set_format (implib_bfd, bfd_object))
11784 return FALSE;
11785
11786 /* Use flag from executable but make it a relocatable object. */
11787 flags = bfd_get_file_flags (abfd);
11788 flags &= ~HAS_RELOC;
11789 if (!bfd_set_start_address (implib_bfd, 0)
11790 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11791 return FALSE;
11792
11793 /* Copy architecture of output file to import library file. */
11794 arch = bfd_get_arch (abfd);
11795 mach = bfd_get_mach (abfd);
11796 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11797 && (abfd->target_defaulted
11798 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11799 return FALSE;
11800
11801 /* Get symbol table size. */
11802 symsize = bfd_get_symtab_upper_bound (abfd);
11803 if (symsize < 0)
11804 return FALSE;
11805
11806 /* Read in the symbol table. */
11807 sympp = (asymbol **) bfd_malloc (symsize);
11808 if (sympp == NULL)
11809 return FALSE;
11810
11811 symcount = bfd_canonicalize_symtab (abfd, sympp);
11812 if (symcount < 0)
11813 goto free_sym_buf;
11814
11815 /* Allow the BFD backend to copy any private header data it
11816 understands from the output BFD to the import library BFD. */
11817 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11818 goto free_sym_buf;
11819
11820 /* Filter symbols to appear in the import library. */
11821 if (bed->elf_backend_filter_implib_symbols)
11822 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11823 symcount);
11824 else
11825 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11826 if (symcount == 0)
11827 {
11828 bfd_set_error (bfd_error_no_symbols);
11829 _bfd_error_handler (_("%pB: no symbol found for import library"),
11830 implib_bfd);
11831 goto free_sym_buf;
11832 }
11833
11834
11835 /* Make symbols absolute. */
11836 amt = symcount * sizeof (*osymbuf);
11837 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11838 if (osymbuf == NULL)
11839 goto free_sym_buf;
11840
11841 for (src_count = 0; src_count < symcount; src_count++)
11842 {
11843 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11844 sizeof (*osymbuf));
11845 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11846 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11847 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11848 osymbuf[src_count].internal_elf_sym.st_value =
11849 osymbuf[src_count].symbol.value;
11850 sympp[src_count] = &osymbuf[src_count].symbol;
11851 }
11852
11853 bfd_set_symtab (implib_bfd, sympp, symcount);
11854
11855 /* Allow the BFD backend to copy any private data it understands
11856 from the output BFD to the import library BFD. This is done last
11857 to permit the routine to look at the filtered symbol table. */
11858 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11859 goto free_sym_buf;
11860
11861 if (!bfd_close (implib_bfd))
11862 goto free_sym_buf;
11863
11864 ret = TRUE;
11865
11866 free_sym_buf:
11867 free (sympp);
11868 return ret;
11869 }
11870
11871 static void
11872 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11873 {
11874 asection *o;
11875
11876 if (flinfo->symstrtab != NULL)
11877 _bfd_elf_strtab_free (flinfo->symstrtab);
11878 if (flinfo->contents != NULL)
11879 free (flinfo->contents);
11880 if (flinfo->external_relocs != NULL)
11881 free (flinfo->external_relocs);
11882 if (flinfo->internal_relocs != NULL)
11883 free (flinfo->internal_relocs);
11884 if (flinfo->external_syms != NULL)
11885 free (flinfo->external_syms);
11886 if (flinfo->locsym_shndx != NULL)
11887 free (flinfo->locsym_shndx);
11888 if (flinfo->internal_syms != NULL)
11889 free (flinfo->internal_syms);
11890 if (flinfo->indices != NULL)
11891 free (flinfo->indices);
11892 if (flinfo->sections != NULL)
11893 free (flinfo->sections);
11894 if (flinfo->symshndxbuf != NULL
11895 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11896 free (flinfo->symshndxbuf);
11897 for (o = obfd->sections; o != NULL; o = o->next)
11898 {
11899 struct bfd_elf_section_data *esdo = elf_section_data (o);
11900 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11901 free (esdo->rel.hashes);
11902 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11903 free (esdo->rela.hashes);
11904 }
11905 }
11906
11907 /* Do the final step of an ELF link. */
11908
11909 bfd_boolean
11910 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11911 {
11912 bfd_boolean dynamic;
11913 bfd_boolean emit_relocs;
11914 bfd *dynobj;
11915 struct elf_final_link_info flinfo;
11916 asection *o;
11917 struct bfd_link_order *p;
11918 bfd *sub;
11919 bfd_size_type max_contents_size;
11920 bfd_size_type max_external_reloc_size;
11921 bfd_size_type max_internal_reloc_count;
11922 bfd_size_type max_sym_count;
11923 bfd_size_type max_sym_shndx_count;
11924 Elf_Internal_Sym elfsym;
11925 unsigned int i;
11926 Elf_Internal_Shdr *symtab_hdr;
11927 Elf_Internal_Shdr *symtab_shndx_hdr;
11928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11929 struct elf_outext_info eoinfo;
11930 bfd_boolean merged;
11931 size_t relativecount = 0;
11932 asection *reldyn = 0;
11933 bfd_size_type amt;
11934 asection *attr_section = NULL;
11935 bfd_vma attr_size = 0;
11936 const char *std_attrs_section;
11937 struct elf_link_hash_table *htab = elf_hash_table (info);
11938 bfd_boolean sections_removed;
11939
11940 if (!is_elf_hash_table (htab))
11941 return FALSE;
11942
11943 if (bfd_link_pic (info))
11944 abfd->flags |= DYNAMIC;
11945
11946 dynamic = htab->dynamic_sections_created;
11947 dynobj = htab->dynobj;
11948
11949 emit_relocs = (bfd_link_relocatable (info)
11950 || info->emitrelocations);
11951
11952 flinfo.info = info;
11953 flinfo.output_bfd = abfd;
11954 flinfo.symstrtab = _bfd_elf_strtab_init ();
11955 if (flinfo.symstrtab == NULL)
11956 return FALSE;
11957
11958 if (! dynamic)
11959 {
11960 flinfo.hash_sec = NULL;
11961 flinfo.symver_sec = NULL;
11962 }
11963 else
11964 {
11965 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11966 /* Note that dynsym_sec can be NULL (on VMS). */
11967 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11968 /* Note that it is OK if symver_sec is NULL. */
11969 }
11970
11971 flinfo.contents = NULL;
11972 flinfo.external_relocs = NULL;
11973 flinfo.internal_relocs = NULL;
11974 flinfo.external_syms = NULL;
11975 flinfo.locsym_shndx = NULL;
11976 flinfo.internal_syms = NULL;
11977 flinfo.indices = NULL;
11978 flinfo.sections = NULL;
11979 flinfo.symshndxbuf = NULL;
11980 flinfo.filesym_count = 0;
11981
11982 /* The object attributes have been merged. Remove the input
11983 sections from the link, and set the contents of the output
11984 section. */
11985 sections_removed = FALSE;
11986 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11987 for (o = abfd->sections; o != NULL; o = o->next)
11988 {
11989 bfd_boolean remove_section = FALSE;
11990
11991 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11992 || strcmp (o->name, ".gnu.attributes") == 0)
11993 {
11994 for (p = o->map_head.link_order; p != NULL; p = p->next)
11995 {
11996 asection *input_section;
11997
11998 if (p->type != bfd_indirect_link_order)
11999 continue;
12000 input_section = p->u.indirect.section;
12001 /* Hack: reset the SEC_HAS_CONTENTS flag so that
12002 elf_link_input_bfd ignores this section. */
12003 input_section->flags &= ~SEC_HAS_CONTENTS;
12004 }
12005
12006 attr_size = bfd_elf_obj_attr_size (abfd);
12007 bfd_set_section_size (o, attr_size);
12008 /* Skip this section later on. */
12009 o->map_head.link_order = NULL;
12010 if (attr_size)
12011 attr_section = o;
12012 else
12013 remove_section = TRUE;
12014 }
12015 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
12016 {
12017 /* Remove empty group section from linker output. */
12018 remove_section = TRUE;
12019 }
12020 if (remove_section)
12021 {
12022 o->flags |= SEC_EXCLUDE;
12023 bfd_section_list_remove (abfd, o);
12024 abfd->section_count--;
12025 sections_removed = TRUE;
12026 }
12027 }
12028 if (sections_removed)
12029 _bfd_fix_excluded_sec_syms (abfd, info);
12030
12031 /* Count up the number of relocations we will output for each output
12032 section, so that we know the sizes of the reloc sections. We
12033 also figure out some maximum sizes. */
12034 max_contents_size = 0;
12035 max_external_reloc_size = 0;
12036 max_internal_reloc_count = 0;
12037 max_sym_count = 0;
12038 max_sym_shndx_count = 0;
12039 merged = FALSE;
12040 for (o = abfd->sections; o != NULL; o = o->next)
12041 {
12042 struct bfd_elf_section_data *esdo = elf_section_data (o);
12043 o->reloc_count = 0;
12044
12045 for (p = o->map_head.link_order; p != NULL; p = p->next)
12046 {
12047 unsigned int reloc_count = 0;
12048 unsigned int additional_reloc_count = 0;
12049 struct bfd_elf_section_data *esdi = NULL;
12050
12051 if (p->type == bfd_section_reloc_link_order
12052 || p->type == bfd_symbol_reloc_link_order)
12053 reloc_count = 1;
12054 else if (p->type == bfd_indirect_link_order)
12055 {
12056 asection *sec;
12057
12058 sec = p->u.indirect.section;
12059
12060 /* Mark all sections which are to be included in the
12061 link. This will normally be every section. We need
12062 to do this so that we can identify any sections which
12063 the linker has decided to not include. */
12064 sec->linker_mark = TRUE;
12065
12066 if (sec->flags & SEC_MERGE)
12067 merged = TRUE;
12068
12069 if (sec->rawsize > max_contents_size)
12070 max_contents_size = sec->rawsize;
12071 if (sec->size > max_contents_size)
12072 max_contents_size = sec->size;
12073
12074 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
12075 && (sec->owner->flags & DYNAMIC) == 0)
12076 {
12077 size_t sym_count;
12078
12079 /* We are interested in just local symbols, not all
12080 symbols. */
12081 if (elf_bad_symtab (sec->owner))
12082 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
12083 / bed->s->sizeof_sym);
12084 else
12085 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
12086
12087 if (sym_count > max_sym_count)
12088 max_sym_count = sym_count;
12089
12090 if (sym_count > max_sym_shndx_count
12091 && elf_symtab_shndx_list (sec->owner) != NULL)
12092 max_sym_shndx_count = sym_count;
12093
12094 if (esdo->this_hdr.sh_type == SHT_REL
12095 || esdo->this_hdr.sh_type == SHT_RELA)
12096 /* Some backends use reloc_count in relocation sections
12097 to count particular types of relocs. Of course,
12098 reloc sections themselves can't have relocations. */
12099 ;
12100 else if (emit_relocs)
12101 {
12102 reloc_count = sec->reloc_count;
12103 if (bed->elf_backend_count_additional_relocs)
12104 {
12105 int c;
12106 c = (*bed->elf_backend_count_additional_relocs) (sec);
12107 additional_reloc_count += c;
12108 }
12109 }
12110 else if (bed->elf_backend_count_relocs)
12111 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12112
12113 esdi = elf_section_data (sec);
12114
12115 if ((sec->flags & SEC_RELOC) != 0)
12116 {
12117 size_t ext_size = 0;
12118
12119 if (esdi->rel.hdr != NULL)
12120 ext_size = esdi->rel.hdr->sh_size;
12121 if (esdi->rela.hdr != NULL)
12122 ext_size += esdi->rela.hdr->sh_size;
12123
12124 if (ext_size > max_external_reloc_size)
12125 max_external_reloc_size = ext_size;
12126 if (sec->reloc_count > max_internal_reloc_count)
12127 max_internal_reloc_count = sec->reloc_count;
12128 }
12129 }
12130 }
12131
12132 if (reloc_count == 0)
12133 continue;
12134
12135 reloc_count += additional_reloc_count;
12136 o->reloc_count += reloc_count;
12137
12138 if (p->type == bfd_indirect_link_order && emit_relocs)
12139 {
12140 if (esdi->rel.hdr)
12141 {
12142 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12143 esdo->rel.count += additional_reloc_count;
12144 }
12145 if (esdi->rela.hdr)
12146 {
12147 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12148 esdo->rela.count += additional_reloc_count;
12149 }
12150 }
12151 else
12152 {
12153 if (o->use_rela_p)
12154 esdo->rela.count += reloc_count;
12155 else
12156 esdo->rel.count += reloc_count;
12157 }
12158 }
12159
12160 if (o->reloc_count > 0)
12161 o->flags |= SEC_RELOC;
12162 else
12163 {
12164 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12165 set it (this is probably a bug) and if it is set
12166 assign_section_numbers will create a reloc section. */
12167 o->flags &=~ SEC_RELOC;
12168 }
12169
12170 /* If the SEC_ALLOC flag is not set, force the section VMA to
12171 zero. This is done in elf_fake_sections as well, but forcing
12172 the VMA to 0 here will ensure that relocs against these
12173 sections are handled correctly. */
12174 if ((o->flags & SEC_ALLOC) == 0
12175 && ! o->user_set_vma)
12176 o->vma = 0;
12177 }
12178
12179 if (! bfd_link_relocatable (info) && merged)
12180 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12181
12182 /* Figure out the file positions for everything but the symbol table
12183 and the relocs. We set symcount to force assign_section_numbers
12184 to create a symbol table. */
12185 abfd->symcount = info->strip != strip_all || emit_relocs;
12186 BFD_ASSERT (! abfd->output_has_begun);
12187 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12188 goto error_return;
12189
12190 /* Set sizes, and assign file positions for reloc sections. */
12191 for (o = abfd->sections; o != NULL; o = o->next)
12192 {
12193 struct bfd_elf_section_data *esdo = elf_section_data (o);
12194 if ((o->flags & SEC_RELOC) != 0)
12195 {
12196 if (esdo->rel.hdr
12197 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12198 goto error_return;
12199
12200 if (esdo->rela.hdr
12201 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12202 goto error_return;
12203 }
12204
12205 /* _bfd_elf_compute_section_file_positions makes temporary use
12206 of target_index. Reset it. */
12207 o->target_index = 0;
12208
12209 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12210 to count upwards while actually outputting the relocations. */
12211 esdo->rel.count = 0;
12212 esdo->rela.count = 0;
12213
12214 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12215 && !bfd_section_is_ctf (o))
12216 {
12217 /* Cache the section contents so that they can be compressed
12218 later. Use bfd_malloc since it will be freed by
12219 bfd_compress_section_contents. */
12220 unsigned char *contents = esdo->this_hdr.contents;
12221 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12222 abort ();
12223 contents
12224 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12225 if (contents == NULL)
12226 goto error_return;
12227 esdo->this_hdr.contents = contents;
12228 }
12229 }
12230
12231 /* We have now assigned file positions for all the sections except .symtab,
12232 .strtab, and non-loaded reloc and compressed debugging sections. We start
12233 the .symtab section at the current file position, and write directly to it.
12234 We build the .strtab section in memory. */
12235 abfd->symcount = 0;
12236 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12237 /* sh_name is set in prep_headers. */
12238 symtab_hdr->sh_type = SHT_SYMTAB;
12239 /* sh_flags, sh_addr and sh_size all start off zero. */
12240 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12241 /* sh_link is set in assign_section_numbers. */
12242 /* sh_info is set below. */
12243 /* sh_offset is set just below. */
12244 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12245
12246 if (max_sym_count < 20)
12247 max_sym_count = 20;
12248 htab->strtabsize = max_sym_count;
12249 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12250 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12251 if (htab->strtab == NULL)
12252 goto error_return;
12253 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12254 flinfo.symshndxbuf
12255 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12256 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12257
12258 if (info->strip != strip_all || emit_relocs)
12259 {
12260 file_ptr off = elf_next_file_pos (abfd);
12261
12262 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12263
12264 /* Note that at this point elf_next_file_pos (abfd) is
12265 incorrect. We do not yet know the size of the .symtab section.
12266 We correct next_file_pos below, after we do know the size. */
12267
12268 /* Start writing out the symbol table. The first symbol is always a
12269 dummy symbol. */
12270 elfsym.st_value = 0;
12271 elfsym.st_size = 0;
12272 elfsym.st_info = 0;
12273 elfsym.st_other = 0;
12274 elfsym.st_shndx = SHN_UNDEF;
12275 elfsym.st_target_internal = 0;
12276 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12277 bfd_und_section_ptr, NULL) != 1)
12278 goto error_return;
12279
12280 /* Output a symbol for each section. We output these even if we are
12281 discarding local symbols, since they are used for relocs. These
12282 symbols have no names. We store the index of each one in the
12283 index field of the section, so that we can find it again when
12284 outputting relocs. */
12285
12286 elfsym.st_size = 0;
12287 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12288 elfsym.st_other = 0;
12289 elfsym.st_value = 0;
12290 elfsym.st_target_internal = 0;
12291 for (i = 1; i < elf_numsections (abfd); i++)
12292 {
12293 o = bfd_section_from_elf_index (abfd, i);
12294 if (o != NULL)
12295 {
12296 o->target_index = bfd_get_symcount (abfd);
12297 elfsym.st_shndx = i;
12298 if (!bfd_link_relocatable (info))
12299 elfsym.st_value = o->vma;
12300 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12301 NULL) != 1)
12302 goto error_return;
12303 }
12304 }
12305 }
12306
12307 /* Allocate some memory to hold information read in from the input
12308 files. */
12309 if (max_contents_size != 0)
12310 {
12311 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12312 if (flinfo.contents == NULL)
12313 goto error_return;
12314 }
12315
12316 if (max_external_reloc_size != 0)
12317 {
12318 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12319 if (flinfo.external_relocs == NULL)
12320 goto error_return;
12321 }
12322
12323 if (max_internal_reloc_count != 0)
12324 {
12325 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12326 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12327 if (flinfo.internal_relocs == NULL)
12328 goto error_return;
12329 }
12330
12331 if (max_sym_count != 0)
12332 {
12333 amt = max_sym_count * bed->s->sizeof_sym;
12334 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12335 if (flinfo.external_syms == NULL)
12336 goto error_return;
12337
12338 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12339 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12340 if (flinfo.internal_syms == NULL)
12341 goto error_return;
12342
12343 amt = max_sym_count * sizeof (long);
12344 flinfo.indices = (long int *) bfd_malloc (amt);
12345 if (flinfo.indices == NULL)
12346 goto error_return;
12347
12348 amt = max_sym_count * sizeof (asection *);
12349 flinfo.sections = (asection **) bfd_malloc (amt);
12350 if (flinfo.sections == NULL)
12351 goto error_return;
12352 }
12353
12354 if (max_sym_shndx_count != 0)
12355 {
12356 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12357 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12358 if (flinfo.locsym_shndx == NULL)
12359 goto error_return;
12360 }
12361
12362 if (htab->tls_sec)
12363 {
12364 bfd_vma base, end = 0; /* Both bytes. */
12365 asection *sec;
12366
12367 for (sec = htab->tls_sec;
12368 sec && (sec->flags & SEC_THREAD_LOCAL);
12369 sec = sec->next)
12370 {
12371 bfd_size_type size = sec->size;
12372 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12373
12374 if (size == 0
12375 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12376 {
12377 struct bfd_link_order *ord = sec->map_tail.link_order;
12378
12379 if (ord != NULL)
12380 size = ord->offset * opb + ord->size;
12381 }
12382 end = sec->vma + size / opb;
12383 }
12384 base = htab->tls_sec->vma;
12385 /* Only align end of TLS section if static TLS doesn't have special
12386 alignment requirements. */
12387 if (bed->static_tls_alignment == 1)
12388 end = align_power (end, htab->tls_sec->alignment_power);
12389 htab->tls_size = end - base;
12390 }
12391
12392 /* Reorder SHF_LINK_ORDER sections. */
12393 for (o = abfd->sections; o != NULL; o = o->next)
12394 {
12395 if (!elf_fixup_link_order (abfd, o))
12396 return FALSE;
12397 }
12398
12399 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12400 return FALSE;
12401
12402 /* Since ELF permits relocations to be against local symbols, we
12403 must have the local symbols available when we do the relocations.
12404 Since we would rather only read the local symbols once, and we
12405 would rather not keep them in memory, we handle all the
12406 relocations for a single input file at the same time.
12407
12408 Unfortunately, there is no way to know the total number of local
12409 symbols until we have seen all of them, and the local symbol
12410 indices precede the global symbol indices. This means that when
12411 we are generating relocatable output, and we see a reloc against
12412 a global symbol, we can not know the symbol index until we have
12413 finished examining all the local symbols to see which ones we are
12414 going to output. To deal with this, we keep the relocations in
12415 memory, and don't output them until the end of the link. This is
12416 an unfortunate waste of memory, but I don't see a good way around
12417 it. Fortunately, it only happens when performing a relocatable
12418 link, which is not the common case. FIXME: If keep_memory is set
12419 we could write the relocs out and then read them again; I don't
12420 know how bad the memory loss will be. */
12421
12422 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12423 sub->output_has_begun = FALSE;
12424 for (o = abfd->sections; o != NULL; o = o->next)
12425 {
12426 for (p = o->map_head.link_order; p != NULL; p = p->next)
12427 {
12428 if (p->type == bfd_indirect_link_order
12429 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12430 == bfd_target_elf_flavour)
12431 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12432 {
12433 if (! sub->output_has_begun)
12434 {
12435 if (! elf_link_input_bfd (&flinfo, sub))
12436 goto error_return;
12437 sub->output_has_begun = TRUE;
12438 }
12439 }
12440 else if (p->type == bfd_section_reloc_link_order
12441 || p->type == bfd_symbol_reloc_link_order)
12442 {
12443 if (! elf_reloc_link_order (abfd, info, o, p))
12444 goto error_return;
12445 }
12446 else
12447 {
12448 if (! _bfd_default_link_order (abfd, info, o, p))
12449 {
12450 if (p->type == bfd_indirect_link_order
12451 && (bfd_get_flavour (sub)
12452 == bfd_target_elf_flavour)
12453 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12454 != bed->s->elfclass))
12455 {
12456 const char *iclass, *oclass;
12457
12458 switch (bed->s->elfclass)
12459 {
12460 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12461 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12462 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12463 default: abort ();
12464 }
12465
12466 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12467 {
12468 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12469 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12470 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12471 default: abort ();
12472 }
12473
12474 bfd_set_error (bfd_error_wrong_format);
12475 _bfd_error_handler
12476 /* xgettext:c-format */
12477 (_("%pB: file class %s incompatible with %s"),
12478 sub, iclass, oclass);
12479 }
12480
12481 goto error_return;
12482 }
12483 }
12484 }
12485 }
12486
12487 /* Free symbol buffer if needed. */
12488 if (!info->reduce_memory_overheads)
12489 {
12490 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12491 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12492 && elf_tdata (sub)->symbuf)
12493 {
12494 free (elf_tdata (sub)->symbuf);
12495 elf_tdata (sub)->symbuf = NULL;
12496 }
12497 }
12498
12499 /* Output any global symbols that got converted to local in a
12500 version script or due to symbol visibility. We do this in a
12501 separate step since ELF requires all local symbols to appear
12502 prior to any global symbols. FIXME: We should only do this if
12503 some global symbols were, in fact, converted to become local.
12504 FIXME: Will this work correctly with the Irix 5 linker? */
12505 eoinfo.failed = FALSE;
12506 eoinfo.flinfo = &flinfo;
12507 eoinfo.localsyms = TRUE;
12508 eoinfo.file_sym_done = FALSE;
12509 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12510 if (eoinfo.failed)
12511 return FALSE;
12512
12513 /* If backend needs to output some local symbols not present in the hash
12514 table, do it now. */
12515 if (bed->elf_backend_output_arch_local_syms
12516 && (info->strip != strip_all || emit_relocs))
12517 {
12518 typedef int (*out_sym_func)
12519 (void *, const char *, Elf_Internal_Sym *, asection *,
12520 struct elf_link_hash_entry *);
12521
12522 if (! ((*bed->elf_backend_output_arch_local_syms)
12523 (abfd, info, &flinfo,
12524 (out_sym_func) elf_link_output_symstrtab)))
12525 return FALSE;
12526 }
12527
12528 /* That wrote out all the local symbols. Finish up the symbol table
12529 with the global symbols. Even if we want to strip everything we
12530 can, we still need to deal with those global symbols that got
12531 converted to local in a version script. */
12532
12533 /* The sh_info field records the index of the first non local symbol. */
12534 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12535
12536 if (dynamic
12537 && htab->dynsym != NULL
12538 && htab->dynsym->output_section != bfd_abs_section_ptr)
12539 {
12540 Elf_Internal_Sym sym;
12541 bfd_byte *dynsym = htab->dynsym->contents;
12542
12543 o = htab->dynsym->output_section;
12544 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12545
12546 /* Write out the section symbols for the output sections. */
12547 if (bfd_link_pic (info)
12548 || htab->is_relocatable_executable)
12549 {
12550 asection *s;
12551
12552 sym.st_size = 0;
12553 sym.st_name = 0;
12554 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12555 sym.st_other = 0;
12556 sym.st_target_internal = 0;
12557
12558 for (s = abfd->sections; s != NULL; s = s->next)
12559 {
12560 int indx;
12561 bfd_byte *dest;
12562 long dynindx;
12563
12564 dynindx = elf_section_data (s)->dynindx;
12565 if (dynindx <= 0)
12566 continue;
12567 indx = elf_section_data (s)->this_idx;
12568 BFD_ASSERT (indx > 0);
12569 sym.st_shndx = indx;
12570 if (! check_dynsym (abfd, &sym))
12571 return FALSE;
12572 sym.st_value = s->vma;
12573 dest = dynsym + dynindx * bed->s->sizeof_sym;
12574 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12575 }
12576 }
12577
12578 /* Write out the local dynsyms. */
12579 if (htab->dynlocal)
12580 {
12581 struct elf_link_local_dynamic_entry *e;
12582 for (e = htab->dynlocal; e ; e = e->next)
12583 {
12584 asection *s;
12585 bfd_byte *dest;
12586
12587 /* Copy the internal symbol and turn off visibility.
12588 Note that we saved a word of storage and overwrote
12589 the original st_name with the dynstr_index. */
12590 sym = e->isym;
12591 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12592
12593 s = bfd_section_from_elf_index (e->input_bfd,
12594 e->isym.st_shndx);
12595 if (s != NULL)
12596 {
12597 sym.st_shndx =
12598 elf_section_data (s->output_section)->this_idx;
12599 if (! check_dynsym (abfd, &sym))
12600 return FALSE;
12601 sym.st_value = (s->output_section->vma
12602 + s->output_offset
12603 + e->isym.st_value);
12604 }
12605
12606 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12607 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12608 }
12609 }
12610 }
12611
12612 /* We get the global symbols from the hash table. */
12613 eoinfo.failed = FALSE;
12614 eoinfo.localsyms = FALSE;
12615 eoinfo.flinfo = &flinfo;
12616 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12617 if (eoinfo.failed)
12618 return FALSE;
12619
12620 /* If backend needs to output some symbols not present in the hash
12621 table, do it now. */
12622 if (bed->elf_backend_output_arch_syms
12623 && (info->strip != strip_all || emit_relocs))
12624 {
12625 typedef int (*out_sym_func)
12626 (void *, const char *, Elf_Internal_Sym *, asection *,
12627 struct elf_link_hash_entry *);
12628
12629 if (! ((*bed->elf_backend_output_arch_syms)
12630 (abfd, info, &flinfo,
12631 (out_sym_func) elf_link_output_symstrtab)))
12632 return FALSE;
12633 }
12634
12635 /* Finalize the .strtab section. */
12636 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12637
12638 /* Swap out the .strtab section. */
12639 if (!elf_link_swap_symbols_out (&flinfo))
12640 return FALSE;
12641
12642 /* Now we know the size of the symtab section. */
12643 if (bfd_get_symcount (abfd) > 0)
12644 {
12645 /* Finish up and write out the symbol string table (.strtab)
12646 section. */
12647 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12648 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12649
12650 if (elf_symtab_shndx_list (abfd))
12651 {
12652 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12653
12654 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12655 {
12656 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12657 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12658 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12659 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12660 symtab_shndx_hdr->sh_size = amt;
12661
12662 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12663 off, TRUE);
12664
12665 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12666 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12667 return FALSE;
12668 }
12669 }
12670
12671 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12672 /* sh_name was set in prep_headers. */
12673 symstrtab_hdr->sh_type = SHT_STRTAB;
12674 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12675 symstrtab_hdr->sh_addr = 0;
12676 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12677 symstrtab_hdr->sh_entsize = 0;
12678 symstrtab_hdr->sh_link = 0;
12679 symstrtab_hdr->sh_info = 0;
12680 /* sh_offset is set just below. */
12681 symstrtab_hdr->sh_addralign = 1;
12682
12683 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12684 off, TRUE);
12685 elf_next_file_pos (abfd) = off;
12686
12687 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12688 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12689 return FALSE;
12690 }
12691
12692 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12693 {
12694 _bfd_error_handler (_("%pB: failed to generate import library"),
12695 info->out_implib_bfd);
12696 return FALSE;
12697 }
12698
12699 /* Adjust the relocs to have the correct symbol indices. */
12700 for (o = abfd->sections; o != NULL; o = o->next)
12701 {
12702 struct bfd_elf_section_data *esdo = elf_section_data (o);
12703 bfd_boolean sort;
12704
12705 if ((o->flags & SEC_RELOC) == 0)
12706 continue;
12707
12708 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12709 if (esdo->rel.hdr != NULL
12710 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12711 return FALSE;
12712 if (esdo->rela.hdr != NULL
12713 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12714 return FALSE;
12715
12716 /* Set the reloc_count field to 0 to prevent write_relocs from
12717 trying to swap the relocs out itself. */
12718 o->reloc_count = 0;
12719 }
12720
12721 if (dynamic && info->combreloc && dynobj != NULL)
12722 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12723
12724 /* If we are linking against a dynamic object, or generating a
12725 shared library, finish up the dynamic linking information. */
12726 if (dynamic)
12727 {
12728 bfd_byte *dyncon, *dynconend;
12729
12730 /* Fix up .dynamic entries. */
12731 o = bfd_get_linker_section (dynobj, ".dynamic");
12732 BFD_ASSERT (o != NULL);
12733
12734 dyncon = o->contents;
12735 dynconend = o->contents + o->size;
12736 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12737 {
12738 Elf_Internal_Dyn dyn;
12739 const char *name;
12740 unsigned int type;
12741 bfd_size_type sh_size;
12742 bfd_vma sh_addr;
12743
12744 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12745
12746 switch (dyn.d_tag)
12747 {
12748 default:
12749 continue;
12750 case DT_NULL:
12751 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12752 {
12753 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12754 {
12755 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12756 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12757 default: continue;
12758 }
12759 dyn.d_un.d_val = relativecount;
12760 relativecount = 0;
12761 break;
12762 }
12763 continue;
12764
12765 case DT_INIT:
12766 name = info->init_function;
12767 goto get_sym;
12768 case DT_FINI:
12769 name = info->fini_function;
12770 get_sym:
12771 {
12772 struct elf_link_hash_entry *h;
12773
12774 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12775 if (h != NULL
12776 && (h->root.type == bfd_link_hash_defined
12777 || h->root.type == bfd_link_hash_defweak))
12778 {
12779 dyn.d_un.d_ptr = h->root.u.def.value;
12780 o = h->root.u.def.section;
12781 if (o->output_section != NULL)
12782 dyn.d_un.d_ptr += (o->output_section->vma
12783 + o->output_offset);
12784 else
12785 {
12786 /* The symbol is imported from another shared
12787 library and does not apply to this one. */
12788 dyn.d_un.d_ptr = 0;
12789 }
12790 break;
12791 }
12792 }
12793 continue;
12794
12795 case DT_PREINIT_ARRAYSZ:
12796 name = ".preinit_array";
12797 goto get_out_size;
12798 case DT_INIT_ARRAYSZ:
12799 name = ".init_array";
12800 goto get_out_size;
12801 case DT_FINI_ARRAYSZ:
12802 name = ".fini_array";
12803 get_out_size:
12804 o = bfd_get_section_by_name (abfd, name);
12805 if (o == NULL)
12806 {
12807 _bfd_error_handler
12808 (_("could not find section %s"), name);
12809 goto error_return;
12810 }
12811 if (o->size == 0)
12812 _bfd_error_handler
12813 (_("warning: %s section has zero size"), name);
12814 dyn.d_un.d_val = o->size;
12815 break;
12816
12817 case DT_PREINIT_ARRAY:
12818 name = ".preinit_array";
12819 goto get_out_vma;
12820 case DT_INIT_ARRAY:
12821 name = ".init_array";
12822 goto get_out_vma;
12823 case DT_FINI_ARRAY:
12824 name = ".fini_array";
12825 get_out_vma:
12826 o = bfd_get_section_by_name (abfd, name);
12827 goto do_vma;
12828
12829 case DT_HASH:
12830 name = ".hash";
12831 goto get_vma;
12832 case DT_GNU_HASH:
12833 name = ".gnu.hash";
12834 goto get_vma;
12835 case DT_STRTAB:
12836 name = ".dynstr";
12837 goto get_vma;
12838 case DT_SYMTAB:
12839 name = ".dynsym";
12840 goto get_vma;
12841 case DT_VERDEF:
12842 name = ".gnu.version_d";
12843 goto get_vma;
12844 case DT_VERNEED:
12845 name = ".gnu.version_r";
12846 goto get_vma;
12847 case DT_VERSYM:
12848 name = ".gnu.version";
12849 get_vma:
12850 o = bfd_get_linker_section (dynobj, name);
12851 do_vma:
12852 if (o == NULL || bfd_is_abs_section (o->output_section))
12853 {
12854 _bfd_error_handler
12855 (_("could not find section %s"), name);
12856 goto error_return;
12857 }
12858 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12859 {
12860 _bfd_error_handler
12861 (_("warning: section '%s' is being made into a note"), name);
12862 bfd_set_error (bfd_error_nonrepresentable_section);
12863 goto error_return;
12864 }
12865 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12866 break;
12867
12868 case DT_REL:
12869 case DT_RELA:
12870 case DT_RELSZ:
12871 case DT_RELASZ:
12872 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12873 type = SHT_REL;
12874 else
12875 type = SHT_RELA;
12876 sh_size = 0;
12877 sh_addr = 0;
12878 for (i = 1; i < elf_numsections (abfd); i++)
12879 {
12880 Elf_Internal_Shdr *hdr;
12881
12882 hdr = elf_elfsections (abfd)[i];
12883 if (hdr->sh_type == type
12884 && (hdr->sh_flags & SHF_ALLOC) != 0)
12885 {
12886 sh_size += hdr->sh_size;
12887 if (sh_addr == 0
12888 || sh_addr > hdr->sh_addr)
12889 sh_addr = hdr->sh_addr;
12890 }
12891 }
12892
12893 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12894 {
12895 unsigned int opb = bfd_octets_per_byte (abfd, o);
12896
12897 /* Don't count procedure linkage table relocs in the
12898 overall reloc count. */
12899 sh_size -= htab->srelplt->size;
12900 if (sh_size == 0)
12901 /* If the size is zero, make the address zero too.
12902 This is to avoid a glibc bug. If the backend
12903 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12904 zero, then we'll put DT_RELA at the end of
12905 DT_JMPREL. glibc will interpret the end of
12906 DT_RELA matching the end of DT_JMPREL as the
12907 case where DT_RELA includes DT_JMPREL, and for
12908 LD_BIND_NOW will decide that processing DT_RELA
12909 will process the PLT relocs too. Net result:
12910 No PLT relocs applied. */
12911 sh_addr = 0;
12912
12913 /* If .rela.plt is the first .rela section, exclude
12914 it from DT_RELA. */
12915 else if (sh_addr == (htab->srelplt->output_section->vma
12916 + htab->srelplt->output_offset) * opb)
12917 sh_addr += htab->srelplt->size;
12918 }
12919
12920 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12921 dyn.d_un.d_val = sh_size;
12922 else
12923 dyn.d_un.d_ptr = sh_addr;
12924 break;
12925 }
12926 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12927 }
12928 }
12929
12930 /* If we have created any dynamic sections, then output them. */
12931 if (dynobj != NULL)
12932 {
12933 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12934 goto error_return;
12935
12936 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12937 if (((info->warn_shared_textrel && bfd_link_pic (info))
12938 || info->error_textrel)
12939 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12940 {
12941 bfd_byte *dyncon, *dynconend;
12942
12943 dyncon = o->contents;
12944 dynconend = o->contents + o->size;
12945 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12946 {
12947 Elf_Internal_Dyn dyn;
12948
12949 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12950
12951 if (dyn.d_tag == DT_TEXTREL)
12952 {
12953 if (info->error_textrel)
12954 info->callbacks->einfo
12955 (_("%P%X: read-only segment has dynamic relocations\n"));
12956 else
12957 info->callbacks->einfo
12958 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12959 break;
12960 }
12961 }
12962 }
12963
12964 for (o = dynobj->sections; o != NULL; o = o->next)
12965 {
12966 if ((o->flags & SEC_HAS_CONTENTS) == 0
12967 || o->size == 0
12968 || o->output_section == bfd_abs_section_ptr)
12969 continue;
12970 if ((o->flags & SEC_LINKER_CREATED) == 0)
12971 {
12972 /* At this point, we are only interested in sections
12973 created by _bfd_elf_link_create_dynamic_sections. */
12974 continue;
12975 }
12976 if (htab->stab_info.stabstr == o)
12977 continue;
12978 if (htab->eh_info.hdr_sec == o)
12979 continue;
12980 if (strcmp (o->name, ".dynstr") != 0)
12981 {
12982 bfd_size_type octets = ((file_ptr) o->output_offset
12983 * bfd_octets_per_byte (abfd, o));
12984 if (!bfd_set_section_contents (abfd, o->output_section,
12985 o->contents, octets, o->size))
12986 goto error_return;
12987 }
12988 else
12989 {
12990 /* The contents of the .dynstr section are actually in a
12991 stringtab. */
12992 file_ptr off;
12993
12994 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12995 if (bfd_seek (abfd, off, SEEK_SET) != 0
12996 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12997 goto error_return;
12998 }
12999 }
13000 }
13001
13002 if (!info->resolve_section_groups)
13003 {
13004 bfd_boolean failed = FALSE;
13005
13006 BFD_ASSERT (bfd_link_relocatable (info));
13007 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
13008 if (failed)
13009 goto error_return;
13010 }
13011
13012 /* If we have optimized stabs strings, output them. */
13013 if (htab->stab_info.stabstr != NULL)
13014 {
13015 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
13016 goto error_return;
13017 }
13018
13019 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
13020 goto error_return;
13021
13022 if (info->callbacks->emit_ctf)
13023 info->callbacks->emit_ctf ();
13024
13025 elf_final_link_free (abfd, &flinfo);
13026
13027 if (attr_section)
13028 {
13029 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
13030 if (contents == NULL)
13031 return FALSE; /* Bail out and fail. */
13032 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
13033 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
13034 free (contents);
13035 }
13036
13037 return TRUE;
13038
13039 error_return:
13040 elf_final_link_free (abfd, &flinfo);
13041 return FALSE;
13042 }
13043 \f
13044 /* Initialize COOKIE for input bfd ABFD. */
13045
13046 static bfd_boolean
13047 init_reloc_cookie (struct elf_reloc_cookie *cookie,
13048 struct bfd_link_info *info, bfd *abfd)
13049 {
13050 Elf_Internal_Shdr *symtab_hdr;
13051 const struct elf_backend_data *bed;
13052
13053 bed = get_elf_backend_data (abfd);
13054 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13055
13056 cookie->abfd = abfd;
13057 cookie->sym_hashes = elf_sym_hashes (abfd);
13058 cookie->bad_symtab = elf_bad_symtab (abfd);
13059 if (cookie->bad_symtab)
13060 {
13061 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13062 cookie->extsymoff = 0;
13063 }
13064 else
13065 {
13066 cookie->locsymcount = symtab_hdr->sh_info;
13067 cookie->extsymoff = symtab_hdr->sh_info;
13068 }
13069
13070 if (bed->s->arch_size == 32)
13071 cookie->r_sym_shift = 8;
13072 else
13073 cookie->r_sym_shift = 32;
13074
13075 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
13076 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
13077 {
13078 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13079 cookie->locsymcount, 0,
13080 NULL, NULL, NULL);
13081 if (cookie->locsyms == NULL)
13082 {
13083 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
13084 return FALSE;
13085 }
13086 if (info->keep_memory)
13087 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
13088 }
13089 return TRUE;
13090 }
13091
13092 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
13093
13094 static void
13095 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
13096 {
13097 Elf_Internal_Shdr *symtab_hdr;
13098
13099 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13100 if (cookie->locsyms != NULL
13101 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13102 free (cookie->locsyms);
13103 }
13104
13105 /* Initialize the relocation information in COOKIE for input section SEC
13106 of input bfd ABFD. */
13107
13108 static bfd_boolean
13109 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13110 struct bfd_link_info *info, bfd *abfd,
13111 asection *sec)
13112 {
13113 if (sec->reloc_count == 0)
13114 {
13115 cookie->rels = NULL;
13116 cookie->relend = NULL;
13117 }
13118 else
13119 {
13120 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13121 info->keep_memory);
13122 if (cookie->rels == NULL)
13123 return FALSE;
13124 cookie->rel = cookie->rels;
13125 cookie->relend = cookie->rels + sec->reloc_count;
13126 }
13127 cookie->rel = cookie->rels;
13128 return TRUE;
13129 }
13130
13131 /* Free the memory allocated by init_reloc_cookie_rels,
13132 if appropriate. */
13133
13134 static void
13135 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13136 asection *sec)
13137 {
13138 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
13139 free (cookie->rels);
13140 }
13141
13142 /* Initialize the whole of COOKIE for input section SEC. */
13143
13144 static bfd_boolean
13145 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13146 struct bfd_link_info *info,
13147 asection *sec)
13148 {
13149 if (!init_reloc_cookie (cookie, info, sec->owner))
13150 goto error1;
13151 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13152 goto error2;
13153 return TRUE;
13154
13155 error2:
13156 fini_reloc_cookie (cookie, sec->owner);
13157 error1:
13158 return FALSE;
13159 }
13160
13161 /* Free the memory allocated by init_reloc_cookie_for_section,
13162 if appropriate. */
13163
13164 static void
13165 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13166 asection *sec)
13167 {
13168 fini_reloc_cookie_rels (cookie, sec);
13169 fini_reloc_cookie (cookie, sec->owner);
13170 }
13171 \f
13172 /* Garbage collect unused sections. */
13173
13174 /* Default gc_mark_hook. */
13175
13176 asection *
13177 _bfd_elf_gc_mark_hook (asection *sec,
13178 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13179 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13180 struct elf_link_hash_entry *h,
13181 Elf_Internal_Sym *sym)
13182 {
13183 if (h != NULL)
13184 {
13185 switch (h->root.type)
13186 {
13187 case bfd_link_hash_defined:
13188 case bfd_link_hash_defweak:
13189 return h->root.u.def.section;
13190
13191 case bfd_link_hash_common:
13192 return h->root.u.c.p->section;
13193
13194 default:
13195 break;
13196 }
13197 }
13198 else
13199 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13200
13201 return NULL;
13202 }
13203
13204 /* Return the debug definition section. */
13205
13206 static asection *
13207 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13208 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13209 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13210 struct elf_link_hash_entry *h,
13211 Elf_Internal_Sym *sym)
13212 {
13213 if (h != NULL)
13214 {
13215 /* Return the global debug definition section. */
13216 if ((h->root.type == bfd_link_hash_defined
13217 || h->root.type == bfd_link_hash_defweak)
13218 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13219 return h->root.u.def.section;
13220 }
13221 else
13222 {
13223 /* Return the local debug definition section. */
13224 asection *isec = bfd_section_from_elf_index (sec->owner,
13225 sym->st_shndx);
13226 if ((isec->flags & SEC_DEBUGGING) != 0)
13227 return isec;
13228 }
13229
13230 return NULL;
13231 }
13232
13233 /* COOKIE->rel describes a relocation against section SEC, which is
13234 a section we've decided to keep. Return the section that contains
13235 the relocation symbol, or NULL if no section contains it. */
13236
13237 asection *
13238 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13239 elf_gc_mark_hook_fn gc_mark_hook,
13240 struct elf_reloc_cookie *cookie,
13241 bfd_boolean *start_stop)
13242 {
13243 unsigned long r_symndx;
13244 struct elf_link_hash_entry *h, *hw;
13245
13246 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13247 if (r_symndx == STN_UNDEF)
13248 return NULL;
13249
13250 if (r_symndx >= cookie->locsymcount
13251 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13252 {
13253 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13254 if (h == NULL)
13255 {
13256 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13257 sec->owner);
13258 return NULL;
13259 }
13260 while (h->root.type == bfd_link_hash_indirect
13261 || h->root.type == bfd_link_hash_warning)
13262 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13263 h->mark = 1;
13264 /* Keep all aliases of the symbol too. If an object symbol
13265 needs to be copied into .dynbss then all of its aliases
13266 should be present as dynamic symbols, not just the one used
13267 on the copy relocation. */
13268 hw = h;
13269 while (hw->is_weakalias)
13270 {
13271 hw = hw->u.alias;
13272 hw->mark = 1;
13273 }
13274
13275 if (start_stop != NULL)
13276 {
13277 /* To work around a glibc bug, mark XXX input sections
13278 when there is a reference to __start_XXX or __stop_XXX
13279 symbols. */
13280 if (h->start_stop)
13281 {
13282 asection *s = h->u2.start_stop_section;
13283 *start_stop = !s->gc_mark;
13284 return s;
13285 }
13286 }
13287
13288 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13289 }
13290
13291 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13292 &cookie->locsyms[r_symndx]);
13293 }
13294
13295 /* COOKIE->rel describes a relocation against section SEC, which is
13296 a section we've decided to keep. Mark the section that contains
13297 the relocation symbol. */
13298
13299 bfd_boolean
13300 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13301 asection *sec,
13302 elf_gc_mark_hook_fn gc_mark_hook,
13303 struct elf_reloc_cookie *cookie)
13304 {
13305 asection *rsec;
13306 bfd_boolean start_stop = FALSE;
13307
13308 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13309 while (rsec != NULL)
13310 {
13311 if (!rsec->gc_mark)
13312 {
13313 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13314 || (rsec->owner->flags & DYNAMIC) != 0)
13315 rsec->gc_mark = 1;
13316 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13317 return FALSE;
13318 }
13319 if (!start_stop)
13320 break;
13321 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13322 }
13323 return TRUE;
13324 }
13325
13326 /* The mark phase of garbage collection. For a given section, mark
13327 it and any sections in this section's group, and all the sections
13328 which define symbols to which it refers. */
13329
13330 bfd_boolean
13331 _bfd_elf_gc_mark (struct bfd_link_info *info,
13332 asection *sec,
13333 elf_gc_mark_hook_fn gc_mark_hook)
13334 {
13335 bfd_boolean ret;
13336 asection *group_sec, *eh_frame;
13337
13338 sec->gc_mark = 1;
13339
13340 /* Mark all the sections in the group. */
13341 group_sec = elf_section_data (sec)->next_in_group;
13342 if (group_sec && !group_sec->gc_mark)
13343 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13344 return FALSE;
13345
13346 /* Look through the section relocs. */
13347 ret = TRUE;
13348 eh_frame = elf_eh_frame_section (sec->owner);
13349 if ((sec->flags & SEC_RELOC) != 0
13350 && sec->reloc_count > 0
13351 && sec != eh_frame)
13352 {
13353 struct elf_reloc_cookie cookie;
13354
13355 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13356 ret = FALSE;
13357 else
13358 {
13359 for (; cookie.rel < cookie.relend; cookie.rel++)
13360 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13361 {
13362 ret = FALSE;
13363 break;
13364 }
13365 fini_reloc_cookie_for_section (&cookie, sec);
13366 }
13367 }
13368
13369 if (ret && eh_frame && elf_fde_list (sec))
13370 {
13371 struct elf_reloc_cookie cookie;
13372
13373 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13374 ret = FALSE;
13375 else
13376 {
13377 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13378 gc_mark_hook, &cookie))
13379 ret = FALSE;
13380 fini_reloc_cookie_for_section (&cookie, eh_frame);
13381 }
13382 }
13383
13384 eh_frame = elf_section_eh_frame_entry (sec);
13385 if (ret && eh_frame && !eh_frame->gc_mark)
13386 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13387 ret = FALSE;
13388
13389 return ret;
13390 }
13391
13392 /* Scan and mark sections in a special or debug section group. */
13393
13394 static void
13395 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13396 {
13397 /* Point to first section of section group. */
13398 asection *ssec;
13399 /* Used to iterate the section group. */
13400 asection *msec;
13401
13402 bfd_boolean is_special_grp = TRUE;
13403 bfd_boolean is_debug_grp = TRUE;
13404
13405 /* First scan to see if group contains any section other than debug
13406 and special section. */
13407 ssec = msec = elf_next_in_group (grp);
13408 do
13409 {
13410 if ((msec->flags & SEC_DEBUGGING) == 0)
13411 is_debug_grp = FALSE;
13412
13413 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13414 is_special_grp = FALSE;
13415
13416 msec = elf_next_in_group (msec);
13417 }
13418 while (msec != ssec);
13419
13420 /* If this is a pure debug section group or pure special section group,
13421 keep all sections in this group. */
13422 if (is_debug_grp || is_special_grp)
13423 {
13424 do
13425 {
13426 msec->gc_mark = 1;
13427 msec = elf_next_in_group (msec);
13428 }
13429 while (msec != ssec);
13430 }
13431 }
13432
13433 /* Keep debug and special sections. */
13434
13435 bfd_boolean
13436 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13437 elf_gc_mark_hook_fn mark_hook)
13438 {
13439 bfd *ibfd;
13440
13441 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13442 {
13443 asection *isec;
13444 bfd_boolean some_kept;
13445 bfd_boolean debug_frag_seen;
13446 bfd_boolean has_kept_debug_info;
13447
13448 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13449 continue;
13450 isec = ibfd->sections;
13451 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13452 continue;
13453
13454 /* Ensure all linker created sections are kept,
13455 see if any other section is already marked,
13456 and note if we have any fragmented debug sections. */
13457 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13458 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13459 {
13460 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13461 isec->gc_mark = 1;
13462 else if (isec->gc_mark
13463 && (isec->flags & SEC_ALLOC) != 0
13464 && elf_section_type (isec) != SHT_NOTE)
13465 some_kept = TRUE;
13466 else
13467 {
13468 /* Since all sections, except for backend specific ones,
13469 have been garbage collected, call mark_hook on this
13470 section if any of its linked-to sections is marked. */
13471 asection *linked_to_sec = elf_linked_to_section (isec);
13472 for (; linked_to_sec != NULL;
13473 linked_to_sec = elf_linked_to_section (linked_to_sec))
13474 if (linked_to_sec->gc_mark)
13475 {
13476 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13477 return FALSE;
13478 break;
13479 }
13480 }
13481
13482 if (!debug_frag_seen
13483 && (isec->flags & SEC_DEBUGGING)
13484 && CONST_STRNEQ (isec->name, ".debug_line."))
13485 debug_frag_seen = TRUE;
13486 else if (strcmp (bfd_section_name (isec),
13487 "__patchable_function_entries") == 0
13488 && elf_linked_to_section (isec) == NULL)
13489 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13490 "need linked-to section "
13491 "for --gc-sections\n"),
13492 isec->owner, isec);
13493 }
13494
13495 /* If no non-note alloc section in this file will be kept, then
13496 we can toss out the debug and special sections. */
13497 if (!some_kept)
13498 continue;
13499
13500 /* Keep debug and special sections like .comment when they are
13501 not part of a group. Also keep section groups that contain
13502 just debug sections or special sections. NB: Sections with
13503 linked-to section has been handled above. */
13504 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13505 {
13506 if ((isec->flags & SEC_GROUP) != 0)
13507 _bfd_elf_gc_mark_debug_special_section_group (isec);
13508 else if (((isec->flags & SEC_DEBUGGING) != 0
13509 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13510 && elf_next_in_group (isec) == NULL
13511 && elf_linked_to_section (isec) == NULL)
13512 isec->gc_mark = 1;
13513 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13514 has_kept_debug_info = TRUE;
13515 }
13516
13517 /* Look for CODE sections which are going to be discarded,
13518 and find and discard any fragmented debug sections which
13519 are associated with that code section. */
13520 if (debug_frag_seen)
13521 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13522 if ((isec->flags & SEC_CODE) != 0
13523 && isec->gc_mark == 0)
13524 {
13525 unsigned int ilen;
13526 asection *dsec;
13527
13528 ilen = strlen (isec->name);
13529
13530 /* Association is determined by the name of the debug
13531 section containing the name of the code section as
13532 a suffix. For example .debug_line.text.foo is a
13533 debug section associated with .text.foo. */
13534 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13535 {
13536 unsigned int dlen;
13537
13538 if (dsec->gc_mark == 0
13539 || (dsec->flags & SEC_DEBUGGING) == 0)
13540 continue;
13541
13542 dlen = strlen (dsec->name);
13543
13544 if (dlen > ilen
13545 && strncmp (dsec->name + (dlen - ilen),
13546 isec->name, ilen) == 0)
13547 dsec->gc_mark = 0;
13548 }
13549 }
13550
13551 /* Mark debug sections referenced by kept debug sections. */
13552 if (has_kept_debug_info)
13553 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13554 if (isec->gc_mark
13555 && (isec->flags & SEC_DEBUGGING) != 0)
13556 if (!_bfd_elf_gc_mark (info, isec,
13557 elf_gc_mark_debug_section))
13558 return FALSE;
13559 }
13560 return TRUE;
13561 }
13562
13563 static bfd_boolean
13564 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13565 {
13566 bfd *sub;
13567 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13568
13569 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13570 {
13571 asection *o;
13572
13573 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13574 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13575 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13576 continue;
13577 o = sub->sections;
13578 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13579 continue;
13580
13581 for (o = sub->sections; o != NULL; o = o->next)
13582 {
13583 /* When any section in a section group is kept, we keep all
13584 sections in the section group. If the first member of
13585 the section group is excluded, we will also exclude the
13586 group section. */
13587 if (o->flags & SEC_GROUP)
13588 {
13589 asection *first = elf_next_in_group (o);
13590 o->gc_mark = first->gc_mark;
13591 }
13592
13593 if (o->gc_mark)
13594 continue;
13595
13596 /* Skip sweeping sections already excluded. */
13597 if (o->flags & SEC_EXCLUDE)
13598 continue;
13599
13600 /* Since this is early in the link process, it is simple
13601 to remove a section from the output. */
13602 o->flags |= SEC_EXCLUDE;
13603
13604 if (info->print_gc_sections && o->size != 0)
13605 /* xgettext:c-format */
13606 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13607 o, sub);
13608 }
13609 }
13610
13611 return TRUE;
13612 }
13613
13614 /* Propagate collected vtable information. This is called through
13615 elf_link_hash_traverse. */
13616
13617 static bfd_boolean
13618 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13619 {
13620 /* Those that are not vtables. */
13621 if (h->start_stop
13622 || h->u2.vtable == NULL
13623 || h->u2.vtable->parent == NULL)
13624 return TRUE;
13625
13626 /* Those vtables that do not have parents, we cannot merge. */
13627 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13628 return TRUE;
13629
13630 /* If we've already been done, exit. */
13631 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13632 return TRUE;
13633
13634 /* Make sure the parent's table is up to date. */
13635 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13636
13637 if (h->u2.vtable->used == NULL)
13638 {
13639 /* None of this table's entries were referenced. Re-use the
13640 parent's table. */
13641 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13642 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13643 }
13644 else
13645 {
13646 size_t n;
13647 bfd_boolean *cu, *pu;
13648
13649 /* Or the parent's entries into ours. */
13650 cu = h->u2.vtable->used;
13651 cu[-1] = TRUE;
13652 pu = h->u2.vtable->parent->u2.vtable->used;
13653 if (pu != NULL)
13654 {
13655 const struct elf_backend_data *bed;
13656 unsigned int log_file_align;
13657
13658 bed = get_elf_backend_data (h->root.u.def.section->owner);
13659 log_file_align = bed->s->log_file_align;
13660 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13661 while (n--)
13662 {
13663 if (*pu)
13664 *cu = TRUE;
13665 pu++;
13666 cu++;
13667 }
13668 }
13669 }
13670
13671 return TRUE;
13672 }
13673
13674 static bfd_boolean
13675 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13676 {
13677 asection *sec;
13678 bfd_vma hstart, hend;
13679 Elf_Internal_Rela *relstart, *relend, *rel;
13680 const struct elf_backend_data *bed;
13681 unsigned int log_file_align;
13682
13683 /* Take care of both those symbols that do not describe vtables as
13684 well as those that are not loaded. */
13685 if (h->start_stop
13686 || h->u2.vtable == NULL
13687 || h->u2.vtable->parent == NULL)
13688 return TRUE;
13689
13690 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13691 || h->root.type == bfd_link_hash_defweak);
13692
13693 sec = h->root.u.def.section;
13694 hstart = h->root.u.def.value;
13695 hend = hstart + h->size;
13696
13697 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13698 if (!relstart)
13699 return *(bfd_boolean *) okp = FALSE;
13700 bed = get_elf_backend_data (sec->owner);
13701 log_file_align = bed->s->log_file_align;
13702
13703 relend = relstart + sec->reloc_count;
13704
13705 for (rel = relstart; rel < relend; ++rel)
13706 if (rel->r_offset >= hstart && rel->r_offset < hend)
13707 {
13708 /* If the entry is in use, do nothing. */
13709 if (h->u2.vtable->used
13710 && (rel->r_offset - hstart) < h->u2.vtable->size)
13711 {
13712 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13713 if (h->u2.vtable->used[entry])
13714 continue;
13715 }
13716 /* Otherwise, kill it. */
13717 rel->r_offset = rel->r_info = rel->r_addend = 0;
13718 }
13719
13720 return TRUE;
13721 }
13722
13723 /* Mark sections containing dynamically referenced symbols. When
13724 building shared libraries, we must assume that any visible symbol is
13725 referenced. */
13726
13727 bfd_boolean
13728 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13729 {
13730 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13731 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13732
13733 if ((h->root.type == bfd_link_hash_defined
13734 || h->root.type == bfd_link_hash_defweak)
13735 && ((h->ref_dynamic && !h->forced_local)
13736 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13737 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13738 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13739 && (!bfd_link_executable (info)
13740 || info->gc_keep_exported
13741 || info->export_dynamic
13742 || (h->dynamic
13743 && d != NULL
13744 && (*d->match) (&d->head, NULL, h->root.root.string)))
13745 && (h->versioned >= versioned
13746 || !bfd_hide_sym_by_version (info->version_info,
13747 h->root.root.string)))))
13748 h->root.u.def.section->flags |= SEC_KEEP;
13749
13750 return TRUE;
13751 }
13752
13753 /* Keep all sections containing symbols undefined on the command-line,
13754 and the section containing the entry symbol. */
13755
13756 void
13757 _bfd_elf_gc_keep (struct bfd_link_info *info)
13758 {
13759 struct bfd_sym_chain *sym;
13760
13761 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13762 {
13763 struct elf_link_hash_entry *h;
13764
13765 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13766 FALSE, FALSE, FALSE);
13767
13768 if (h != NULL
13769 && (h->root.type == bfd_link_hash_defined
13770 || h->root.type == bfd_link_hash_defweak)
13771 && !bfd_is_abs_section (h->root.u.def.section)
13772 && !bfd_is_und_section (h->root.u.def.section))
13773 h->root.u.def.section->flags |= SEC_KEEP;
13774 }
13775 }
13776
13777 bfd_boolean
13778 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13779 struct bfd_link_info *info)
13780 {
13781 bfd *ibfd = info->input_bfds;
13782
13783 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13784 {
13785 asection *sec;
13786 struct elf_reloc_cookie cookie;
13787
13788 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13789 continue;
13790 sec = ibfd->sections;
13791 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13792 continue;
13793
13794 if (!init_reloc_cookie (&cookie, info, ibfd))
13795 return FALSE;
13796
13797 for (sec = ibfd->sections; sec; sec = sec->next)
13798 {
13799 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13800 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13801 {
13802 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13803 fini_reloc_cookie_rels (&cookie, sec);
13804 }
13805 }
13806 }
13807 return TRUE;
13808 }
13809
13810 /* Do mark and sweep of unused sections. */
13811
13812 bfd_boolean
13813 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13814 {
13815 bfd_boolean ok = TRUE;
13816 bfd *sub;
13817 elf_gc_mark_hook_fn gc_mark_hook;
13818 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13819 struct elf_link_hash_table *htab;
13820
13821 if (!bed->can_gc_sections
13822 || !is_elf_hash_table (info->hash))
13823 {
13824 _bfd_error_handler(_("warning: gc-sections option ignored"));
13825 return TRUE;
13826 }
13827
13828 bed->gc_keep (info);
13829 htab = elf_hash_table (info);
13830
13831 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13832 at the .eh_frame section if we can mark the FDEs individually. */
13833 for (sub = info->input_bfds;
13834 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13835 sub = sub->link.next)
13836 {
13837 asection *sec;
13838 struct elf_reloc_cookie cookie;
13839
13840 sec = sub->sections;
13841 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13842 continue;
13843 sec = bfd_get_section_by_name (sub, ".eh_frame");
13844 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13845 {
13846 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13847 if (elf_section_data (sec)->sec_info
13848 && (sec->flags & SEC_LINKER_CREATED) == 0)
13849 elf_eh_frame_section (sub) = sec;
13850 fini_reloc_cookie_for_section (&cookie, sec);
13851 sec = bfd_get_next_section_by_name (NULL, sec);
13852 }
13853 }
13854
13855 /* Apply transitive closure to the vtable entry usage info. */
13856 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13857 if (!ok)
13858 return FALSE;
13859
13860 /* Kill the vtable relocations that were not used. */
13861 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13862 if (!ok)
13863 return FALSE;
13864
13865 /* Mark dynamically referenced symbols. */
13866 if (htab->dynamic_sections_created || info->gc_keep_exported)
13867 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13868
13869 /* Grovel through relocs to find out who stays ... */
13870 gc_mark_hook = bed->gc_mark_hook;
13871 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13872 {
13873 asection *o;
13874
13875 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13876 || elf_object_id (sub) != elf_hash_table_id (htab)
13877 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13878 continue;
13879
13880 o = sub->sections;
13881 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13882 continue;
13883
13884 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13885 Also treat note sections as a root, if the section is not part
13886 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13887 well as FINI_ARRAY sections for ld -r. */
13888 for (o = sub->sections; o != NULL; o = o->next)
13889 if (!o->gc_mark
13890 && (o->flags & SEC_EXCLUDE) == 0
13891 && ((o->flags & SEC_KEEP) != 0
13892 || (bfd_link_relocatable (info)
13893 && ((elf_section_data (o)->this_hdr.sh_type
13894 == SHT_PREINIT_ARRAY)
13895 || (elf_section_data (o)->this_hdr.sh_type
13896 == SHT_INIT_ARRAY)
13897 || (elf_section_data (o)->this_hdr.sh_type
13898 == SHT_FINI_ARRAY)))
13899 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13900 && elf_next_in_group (o) == NULL )))
13901 {
13902 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13903 return FALSE;
13904 }
13905 }
13906
13907 /* Allow the backend to mark additional target specific sections. */
13908 bed->gc_mark_extra_sections (info, gc_mark_hook);
13909
13910 /* ... and mark SEC_EXCLUDE for those that go. */
13911 return elf_gc_sweep (abfd, info);
13912 }
13913 \f
13914 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13915
13916 bfd_boolean
13917 bfd_elf_gc_record_vtinherit (bfd *abfd,
13918 asection *sec,
13919 struct elf_link_hash_entry *h,
13920 bfd_vma offset)
13921 {
13922 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13923 struct elf_link_hash_entry **search, *child;
13924 size_t extsymcount;
13925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13926
13927 /* The sh_info field of the symtab header tells us where the
13928 external symbols start. We don't care about the local symbols at
13929 this point. */
13930 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13931 if (!elf_bad_symtab (abfd))
13932 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13933
13934 sym_hashes = elf_sym_hashes (abfd);
13935 sym_hashes_end = sym_hashes + extsymcount;
13936
13937 /* Hunt down the child symbol, which is in this section at the same
13938 offset as the relocation. */
13939 for (search = sym_hashes; search != sym_hashes_end; ++search)
13940 {
13941 if ((child = *search) != NULL
13942 && (child->root.type == bfd_link_hash_defined
13943 || child->root.type == bfd_link_hash_defweak)
13944 && child->root.u.def.section == sec
13945 && child->root.u.def.value == offset)
13946 goto win;
13947 }
13948
13949 /* xgettext:c-format */
13950 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13951 abfd, sec, (uint64_t) offset);
13952 bfd_set_error (bfd_error_invalid_operation);
13953 return FALSE;
13954
13955 win:
13956 if (!child->u2.vtable)
13957 {
13958 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13959 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13960 if (!child->u2.vtable)
13961 return FALSE;
13962 }
13963 if (!h)
13964 {
13965 /* This *should* only be the absolute section. It could potentially
13966 be that someone has defined a non-global vtable though, which
13967 would be bad. It isn't worth paging in the local symbols to be
13968 sure though; that case should simply be handled by the assembler. */
13969
13970 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13971 }
13972 else
13973 child->u2.vtable->parent = h;
13974
13975 return TRUE;
13976 }
13977
13978 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13979
13980 bfd_boolean
13981 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13982 struct elf_link_hash_entry *h,
13983 bfd_vma addend)
13984 {
13985 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13986 unsigned int log_file_align = bed->s->log_file_align;
13987
13988 if (!h)
13989 {
13990 /* xgettext:c-format */
13991 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13992 abfd, sec);
13993 bfd_set_error (bfd_error_bad_value);
13994 return FALSE;
13995 }
13996
13997 if (!h->u2.vtable)
13998 {
13999 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
14000 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
14001 if (!h->u2.vtable)
14002 return FALSE;
14003 }
14004
14005 if (addend >= h->u2.vtable->size)
14006 {
14007 size_t size, bytes, file_align;
14008 bfd_boolean *ptr = h->u2.vtable->used;
14009
14010 /* While the symbol is undefined, we have to be prepared to handle
14011 a zero size. */
14012 file_align = 1 << log_file_align;
14013 if (h->root.type == bfd_link_hash_undefined)
14014 size = addend + file_align;
14015 else
14016 {
14017 size = h->size;
14018 if (addend >= size)
14019 {
14020 /* Oops! We've got a reference past the defined end of
14021 the table. This is probably a bug -- shall we warn? */
14022 size = addend + file_align;
14023 }
14024 }
14025 size = (size + file_align - 1) & -file_align;
14026
14027 /* Allocate one extra entry for use as a "done" flag for the
14028 consolidation pass. */
14029 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
14030
14031 if (ptr)
14032 {
14033 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
14034
14035 if (ptr != NULL)
14036 {
14037 size_t oldbytes;
14038
14039 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
14040 * sizeof (bfd_boolean));
14041 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
14042 }
14043 }
14044 else
14045 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
14046
14047 if (ptr == NULL)
14048 return FALSE;
14049
14050 /* And arrange for that done flag to be at index -1. */
14051 h->u2.vtable->used = ptr + 1;
14052 h->u2.vtable->size = size;
14053 }
14054
14055 h->u2.vtable->used[addend >> log_file_align] = TRUE;
14056
14057 return TRUE;
14058 }
14059
14060 /* Map an ELF section header flag to its corresponding string. */
14061 typedef struct
14062 {
14063 char *flag_name;
14064 flagword flag_value;
14065 } elf_flags_to_name_table;
14066
14067 static elf_flags_to_name_table elf_flags_to_names [] =
14068 {
14069 { "SHF_WRITE", SHF_WRITE },
14070 { "SHF_ALLOC", SHF_ALLOC },
14071 { "SHF_EXECINSTR", SHF_EXECINSTR },
14072 { "SHF_MERGE", SHF_MERGE },
14073 { "SHF_STRINGS", SHF_STRINGS },
14074 { "SHF_INFO_LINK", SHF_INFO_LINK},
14075 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
14076 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
14077 { "SHF_GROUP", SHF_GROUP },
14078 { "SHF_TLS", SHF_TLS },
14079 { "SHF_MASKOS", SHF_MASKOS },
14080 { "SHF_EXCLUDE", SHF_EXCLUDE },
14081 };
14082
14083 /* Returns TRUE if the section is to be included, otherwise FALSE. */
14084 bfd_boolean
14085 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
14086 struct flag_info *flaginfo,
14087 asection *section)
14088 {
14089 const bfd_vma sh_flags = elf_section_flags (section);
14090
14091 if (!flaginfo->flags_initialized)
14092 {
14093 bfd *obfd = info->output_bfd;
14094 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14095 struct flag_info_list *tf = flaginfo->flag_list;
14096 int with_hex = 0;
14097 int without_hex = 0;
14098
14099 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
14100 {
14101 unsigned i;
14102 flagword (*lookup) (char *);
14103
14104 lookup = bed->elf_backend_lookup_section_flags_hook;
14105 if (lookup != NULL)
14106 {
14107 flagword hexval = (*lookup) ((char *) tf->name);
14108
14109 if (hexval != 0)
14110 {
14111 if (tf->with == with_flags)
14112 with_hex |= hexval;
14113 else if (tf->with == without_flags)
14114 without_hex |= hexval;
14115 tf->valid = TRUE;
14116 continue;
14117 }
14118 }
14119 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14120 {
14121 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14122 {
14123 if (tf->with == with_flags)
14124 with_hex |= elf_flags_to_names[i].flag_value;
14125 else if (tf->with == without_flags)
14126 without_hex |= elf_flags_to_names[i].flag_value;
14127 tf->valid = TRUE;
14128 break;
14129 }
14130 }
14131 if (!tf->valid)
14132 {
14133 info->callbacks->einfo
14134 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14135 return FALSE;
14136 }
14137 }
14138 flaginfo->flags_initialized = TRUE;
14139 flaginfo->only_with_flags |= with_hex;
14140 flaginfo->not_with_flags |= without_hex;
14141 }
14142
14143 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14144 return FALSE;
14145
14146 if ((flaginfo->not_with_flags & sh_flags) != 0)
14147 return FALSE;
14148
14149 return TRUE;
14150 }
14151
14152 struct alloc_got_off_arg {
14153 bfd_vma gotoff;
14154 struct bfd_link_info *info;
14155 };
14156
14157 /* We need a special top-level link routine to convert got reference counts
14158 to real got offsets. */
14159
14160 static bfd_boolean
14161 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14162 {
14163 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14164 bfd *obfd = gofarg->info->output_bfd;
14165 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14166
14167 if (h->got.refcount > 0)
14168 {
14169 h->got.offset = gofarg->gotoff;
14170 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14171 }
14172 else
14173 h->got.offset = (bfd_vma) -1;
14174
14175 return TRUE;
14176 }
14177
14178 /* And an accompanying bit to work out final got entry offsets once
14179 we're done. Should be called from final_link. */
14180
14181 bfd_boolean
14182 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14183 struct bfd_link_info *info)
14184 {
14185 bfd *i;
14186 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14187 bfd_vma gotoff;
14188 struct alloc_got_off_arg gofarg;
14189
14190 BFD_ASSERT (abfd == info->output_bfd);
14191
14192 if (! is_elf_hash_table (info->hash))
14193 return FALSE;
14194
14195 /* The GOT offset is relative to the .got section, but the GOT header is
14196 put into the .got.plt section, if the backend uses it. */
14197 if (bed->want_got_plt)
14198 gotoff = 0;
14199 else
14200 gotoff = bed->got_header_size;
14201
14202 /* Do the local .got entries first. */
14203 for (i = info->input_bfds; i; i = i->link.next)
14204 {
14205 bfd_signed_vma *local_got;
14206 size_t j, locsymcount;
14207 Elf_Internal_Shdr *symtab_hdr;
14208
14209 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14210 continue;
14211
14212 local_got = elf_local_got_refcounts (i);
14213 if (!local_got)
14214 continue;
14215
14216 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14217 if (elf_bad_symtab (i))
14218 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14219 else
14220 locsymcount = symtab_hdr->sh_info;
14221
14222 for (j = 0; j < locsymcount; ++j)
14223 {
14224 if (local_got[j] > 0)
14225 {
14226 local_got[j] = gotoff;
14227 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14228 }
14229 else
14230 local_got[j] = (bfd_vma) -1;
14231 }
14232 }
14233
14234 /* Then the global .got entries. .plt refcounts are handled by
14235 adjust_dynamic_symbol */
14236 gofarg.gotoff = gotoff;
14237 gofarg.info = info;
14238 elf_link_hash_traverse (elf_hash_table (info),
14239 elf_gc_allocate_got_offsets,
14240 &gofarg);
14241 return TRUE;
14242 }
14243
14244 /* Many folk need no more in the way of final link than this, once
14245 got entry reference counting is enabled. */
14246
14247 bfd_boolean
14248 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14249 {
14250 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14251 return FALSE;
14252
14253 /* Invoke the regular ELF backend linker to do all the work. */
14254 return bfd_elf_final_link (abfd, info);
14255 }
14256
14257 bfd_boolean
14258 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14259 {
14260 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14261
14262 if (rcookie->bad_symtab)
14263 rcookie->rel = rcookie->rels;
14264
14265 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14266 {
14267 unsigned long r_symndx;
14268
14269 if (! rcookie->bad_symtab)
14270 if (rcookie->rel->r_offset > offset)
14271 return FALSE;
14272 if (rcookie->rel->r_offset != offset)
14273 continue;
14274
14275 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14276 if (r_symndx == STN_UNDEF)
14277 return TRUE;
14278
14279 if (r_symndx >= rcookie->locsymcount
14280 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14281 {
14282 struct elf_link_hash_entry *h;
14283
14284 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14285
14286 while (h->root.type == bfd_link_hash_indirect
14287 || h->root.type == bfd_link_hash_warning)
14288 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14289
14290 if ((h->root.type == bfd_link_hash_defined
14291 || h->root.type == bfd_link_hash_defweak)
14292 && (h->root.u.def.section->owner != rcookie->abfd
14293 || h->root.u.def.section->kept_section != NULL
14294 || discarded_section (h->root.u.def.section)))
14295 return TRUE;
14296 }
14297 else
14298 {
14299 /* It's not a relocation against a global symbol,
14300 but it could be a relocation against a local
14301 symbol for a discarded section. */
14302 asection *isec;
14303 Elf_Internal_Sym *isym;
14304
14305 /* Need to: get the symbol; get the section. */
14306 isym = &rcookie->locsyms[r_symndx];
14307 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14308 if (isec != NULL
14309 && (isec->kept_section != NULL
14310 || discarded_section (isec)))
14311 return TRUE;
14312 }
14313 return FALSE;
14314 }
14315 return FALSE;
14316 }
14317
14318 /* Discard unneeded references to discarded sections.
14319 Returns -1 on error, 1 if any section's size was changed, 0 if
14320 nothing changed. This function assumes that the relocations are in
14321 sorted order, which is true for all known assemblers. */
14322
14323 int
14324 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14325 {
14326 struct elf_reloc_cookie cookie;
14327 asection *o;
14328 bfd *abfd;
14329 int changed = 0;
14330
14331 if (info->traditional_format
14332 || !is_elf_hash_table (info->hash))
14333 return 0;
14334
14335 o = bfd_get_section_by_name (output_bfd, ".stab");
14336 if (o != NULL)
14337 {
14338 asection *i;
14339
14340 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14341 {
14342 if (i->size == 0
14343 || i->reloc_count == 0
14344 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14345 continue;
14346
14347 abfd = i->owner;
14348 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14349 continue;
14350
14351 if (!init_reloc_cookie_for_section (&cookie, info, i))
14352 return -1;
14353
14354 if (_bfd_discard_section_stabs (abfd, i,
14355 elf_section_data (i)->sec_info,
14356 bfd_elf_reloc_symbol_deleted_p,
14357 &cookie))
14358 changed = 1;
14359
14360 fini_reloc_cookie_for_section (&cookie, i);
14361 }
14362 }
14363
14364 o = NULL;
14365 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14366 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14367 if (o != NULL)
14368 {
14369 asection *i;
14370 int eh_changed = 0;
14371 unsigned int eh_alignment; /* Octets. */
14372
14373 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14374 {
14375 if (i->size == 0)
14376 continue;
14377
14378 abfd = i->owner;
14379 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14380 continue;
14381
14382 if (!init_reloc_cookie_for_section (&cookie, info, i))
14383 return -1;
14384
14385 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14386 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14387 bfd_elf_reloc_symbol_deleted_p,
14388 &cookie))
14389 {
14390 eh_changed = 1;
14391 if (i->size != i->rawsize)
14392 changed = 1;
14393 }
14394
14395 fini_reloc_cookie_for_section (&cookie, i);
14396 }
14397
14398 eh_alignment = ((1 << o->alignment_power)
14399 * bfd_octets_per_byte (output_bfd, o));
14400 /* Skip over zero terminator, and prevent empty sections from
14401 adding alignment padding at the end. */
14402 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14403 if (i->size == 0)
14404 i->flags |= SEC_EXCLUDE;
14405 else if (i->size > 4)
14406 break;
14407 /* The last non-empty eh_frame section doesn't need padding. */
14408 if (i != NULL)
14409 i = i->map_tail.s;
14410 /* Any prior sections must pad the last FDE out to the output
14411 section alignment. Otherwise we might have zero padding
14412 between sections, which would be seen as a terminator. */
14413 for (; i != NULL; i = i->map_tail.s)
14414 if (i->size == 4)
14415 /* All but the last zero terminator should have been removed. */
14416 BFD_FAIL ();
14417 else
14418 {
14419 bfd_size_type size
14420 = (i->size + eh_alignment - 1) & -eh_alignment;
14421 if (i->size != size)
14422 {
14423 i->size = size;
14424 changed = 1;
14425 eh_changed = 1;
14426 }
14427 }
14428 if (eh_changed)
14429 elf_link_hash_traverse (elf_hash_table (info),
14430 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14431 }
14432
14433 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14434 {
14435 const struct elf_backend_data *bed;
14436 asection *s;
14437
14438 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14439 continue;
14440 s = abfd->sections;
14441 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14442 continue;
14443
14444 bed = get_elf_backend_data (abfd);
14445
14446 if (bed->elf_backend_discard_info != NULL)
14447 {
14448 if (!init_reloc_cookie (&cookie, info, abfd))
14449 return -1;
14450
14451 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14452 changed = 1;
14453
14454 fini_reloc_cookie (&cookie, abfd);
14455 }
14456 }
14457
14458 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14459 _bfd_elf_end_eh_frame_parsing (info);
14460
14461 if (info->eh_frame_hdr_type
14462 && !bfd_link_relocatable (info)
14463 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14464 changed = 1;
14465
14466 return changed;
14467 }
14468
14469 bfd_boolean
14470 _bfd_elf_section_already_linked (bfd *abfd,
14471 asection *sec,
14472 struct bfd_link_info *info)
14473 {
14474 flagword flags;
14475 const char *name, *key;
14476 struct bfd_section_already_linked *l;
14477 struct bfd_section_already_linked_hash_entry *already_linked_list;
14478
14479 if (sec->output_section == bfd_abs_section_ptr)
14480 return FALSE;
14481
14482 flags = sec->flags;
14483
14484 /* Return if it isn't a linkonce section. A comdat group section
14485 also has SEC_LINK_ONCE set. */
14486 if ((flags & SEC_LINK_ONCE) == 0)
14487 return FALSE;
14488
14489 /* Don't put group member sections on our list of already linked
14490 sections. They are handled as a group via their group section. */
14491 if (elf_sec_group (sec) != NULL)
14492 return FALSE;
14493
14494 /* For a SHT_GROUP section, use the group signature as the key. */
14495 name = sec->name;
14496 if ((flags & SEC_GROUP) != 0
14497 && elf_next_in_group (sec) != NULL
14498 && elf_group_name (elf_next_in_group (sec)) != NULL)
14499 key = elf_group_name (elf_next_in_group (sec));
14500 else
14501 {
14502 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14503 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14504 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14505 key++;
14506 else
14507 /* Must be a user linkonce section that doesn't follow gcc's
14508 naming convention. In this case we won't be matching
14509 single member groups. */
14510 key = name;
14511 }
14512
14513 already_linked_list = bfd_section_already_linked_table_lookup (key);
14514
14515 for (l = already_linked_list->entry; l != NULL; l = l->next)
14516 {
14517 /* We may have 2 different types of sections on the list: group
14518 sections with a signature of <key> (<key> is some string),
14519 and linkonce sections named .gnu.linkonce.<type>.<key>.
14520 Match like sections. LTO plugin sections are an exception.
14521 They are always named .gnu.linkonce.t.<key> and match either
14522 type of section. */
14523 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14524 && ((flags & SEC_GROUP) != 0
14525 || strcmp (name, l->sec->name) == 0))
14526 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14527 {
14528 /* The section has already been linked. See if we should
14529 issue a warning. */
14530 if (!_bfd_handle_already_linked (sec, l, info))
14531 return FALSE;
14532
14533 if (flags & SEC_GROUP)
14534 {
14535 asection *first = elf_next_in_group (sec);
14536 asection *s = first;
14537
14538 while (s != NULL)
14539 {
14540 s->output_section = bfd_abs_section_ptr;
14541 /* Record which group discards it. */
14542 s->kept_section = l->sec;
14543 s = elf_next_in_group (s);
14544 /* These lists are circular. */
14545 if (s == first)
14546 break;
14547 }
14548 }
14549
14550 return TRUE;
14551 }
14552 }
14553
14554 /* A single member comdat group section may be discarded by a
14555 linkonce section and vice versa. */
14556 if ((flags & SEC_GROUP) != 0)
14557 {
14558 asection *first = elf_next_in_group (sec);
14559
14560 if (first != NULL && elf_next_in_group (first) == first)
14561 /* Check this single member group against linkonce sections. */
14562 for (l = already_linked_list->entry; l != NULL; l = l->next)
14563 if ((l->sec->flags & SEC_GROUP) == 0
14564 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14565 {
14566 first->output_section = bfd_abs_section_ptr;
14567 first->kept_section = l->sec;
14568 sec->output_section = bfd_abs_section_ptr;
14569 break;
14570 }
14571 }
14572 else
14573 /* Check this linkonce section against single member groups. */
14574 for (l = already_linked_list->entry; l != NULL; l = l->next)
14575 if (l->sec->flags & SEC_GROUP)
14576 {
14577 asection *first = elf_next_in_group (l->sec);
14578
14579 if (first != NULL
14580 && elf_next_in_group (first) == first
14581 && bfd_elf_match_symbols_in_sections (first, sec, info))
14582 {
14583 sec->output_section = bfd_abs_section_ptr;
14584 sec->kept_section = first;
14585 break;
14586 }
14587 }
14588
14589 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14590 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14591 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14592 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14593 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14594 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14595 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14596 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14597 The reverse order cannot happen as there is never a bfd with only the
14598 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14599 matter as here were are looking only for cross-bfd sections. */
14600
14601 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14602 for (l = already_linked_list->entry; l != NULL; l = l->next)
14603 if ((l->sec->flags & SEC_GROUP) == 0
14604 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14605 {
14606 if (abfd != l->sec->owner)
14607 sec->output_section = bfd_abs_section_ptr;
14608 break;
14609 }
14610
14611 /* This is the first section with this name. Record it. */
14612 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14613 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14614 return sec->output_section == bfd_abs_section_ptr;
14615 }
14616
14617 bfd_boolean
14618 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14619 {
14620 return sym->st_shndx == SHN_COMMON;
14621 }
14622
14623 unsigned int
14624 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14625 {
14626 return SHN_COMMON;
14627 }
14628
14629 asection *
14630 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14631 {
14632 return bfd_com_section_ptr;
14633 }
14634
14635 bfd_vma
14636 _bfd_elf_default_got_elt_size (bfd *abfd,
14637 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14638 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14639 bfd *ibfd ATTRIBUTE_UNUSED,
14640 unsigned long symndx ATTRIBUTE_UNUSED)
14641 {
14642 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14643 return bed->s->arch_size / 8;
14644 }
14645
14646 /* Routines to support the creation of dynamic relocs. */
14647
14648 /* Returns the name of the dynamic reloc section associated with SEC. */
14649
14650 static const char *
14651 get_dynamic_reloc_section_name (bfd * abfd,
14652 asection * sec,
14653 bfd_boolean is_rela)
14654 {
14655 char *name;
14656 const char *old_name = bfd_section_name (sec);
14657 const char *prefix = is_rela ? ".rela" : ".rel";
14658
14659 if (old_name == NULL)
14660 return NULL;
14661
14662 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14663 sprintf (name, "%s%s", prefix, old_name);
14664
14665 return name;
14666 }
14667
14668 /* Returns the dynamic reloc section associated with SEC.
14669 If necessary compute the name of the dynamic reloc section based
14670 on SEC's name (looked up in ABFD's string table) and the setting
14671 of IS_RELA. */
14672
14673 asection *
14674 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14675 asection * sec,
14676 bfd_boolean is_rela)
14677 {
14678 asection * reloc_sec = elf_section_data (sec)->sreloc;
14679
14680 if (reloc_sec == NULL)
14681 {
14682 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14683
14684 if (name != NULL)
14685 {
14686 reloc_sec = bfd_get_linker_section (abfd, name);
14687
14688 if (reloc_sec != NULL)
14689 elf_section_data (sec)->sreloc = reloc_sec;
14690 }
14691 }
14692
14693 return reloc_sec;
14694 }
14695
14696 /* Returns the dynamic reloc section associated with SEC. If the
14697 section does not exist it is created and attached to the DYNOBJ
14698 bfd and stored in the SRELOC field of SEC's elf_section_data
14699 structure.
14700
14701 ALIGNMENT is the alignment for the newly created section and
14702 IS_RELA defines whether the name should be .rela.<SEC's name>
14703 or .rel.<SEC's name>. The section name is looked up in the
14704 string table associated with ABFD. */
14705
14706 asection *
14707 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14708 bfd *dynobj,
14709 unsigned int alignment,
14710 bfd *abfd,
14711 bfd_boolean is_rela)
14712 {
14713 asection * reloc_sec = elf_section_data (sec)->sreloc;
14714
14715 if (reloc_sec == NULL)
14716 {
14717 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14718
14719 if (name == NULL)
14720 return NULL;
14721
14722 reloc_sec = bfd_get_linker_section (dynobj, name);
14723
14724 if (reloc_sec == NULL)
14725 {
14726 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14727 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14728 if ((sec->flags & SEC_ALLOC) != 0)
14729 flags |= SEC_ALLOC | SEC_LOAD;
14730
14731 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14732 if (reloc_sec != NULL)
14733 {
14734 /* _bfd_elf_get_sec_type_attr chooses a section type by
14735 name. Override as it may be wrong, eg. for a user
14736 section named "auto" we'll get ".relauto" which is
14737 seen to be a .rela section. */
14738 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14739 if (!bfd_set_section_alignment (reloc_sec, alignment))
14740 reloc_sec = NULL;
14741 }
14742 }
14743
14744 elf_section_data (sec)->sreloc = reloc_sec;
14745 }
14746
14747 return reloc_sec;
14748 }
14749
14750 /* Copy the ELF symbol type and other attributes for a linker script
14751 assignment from HSRC to HDEST. Generally this should be treated as
14752 if we found a strong non-dynamic definition for HDEST (except that
14753 ld ignores multiple definition errors). */
14754 void
14755 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14756 struct bfd_link_hash_entry *hdest,
14757 struct bfd_link_hash_entry *hsrc)
14758 {
14759 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14760 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14761 Elf_Internal_Sym isym;
14762
14763 ehdest->type = ehsrc->type;
14764 ehdest->target_internal = ehsrc->target_internal;
14765
14766 isym.st_other = ehsrc->other;
14767 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14768 }
14769
14770 /* Append a RELA relocation REL to section S in BFD. */
14771
14772 void
14773 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14774 {
14775 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14776 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14777 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14778 bed->s->swap_reloca_out (abfd, rel, loc);
14779 }
14780
14781 /* Append a REL relocation REL to section S in BFD. */
14782
14783 void
14784 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14785 {
14786 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14787 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14788 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14789 bed->s->swap_reloc_out (abfd, rel, loc);
14790 }
14791
14792 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14793
14794 struct bfd_link_hash_entry *
14795 bfd_elf_define_start_stop (struct bfd_link_info *info,
14796 const char *symbol, asection *sec)
14797 {
14798 struct elf_link_hash_entry *h;
14799
14800 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14801 FALSE, FALSE, TRUE);
14802 if (h != NULL
14803 && (h->root.type == bfd_link_hash_undefined
14804 || h->root.type == bfd_link_hash_undefweak
14805 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14806 {
14807 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14808 h->root.type = bfd_link_hash_defined;
14809 h->root.u.def.section = sec;
14810 h->root.u.def.value = 0;
14811 h->def_regular = 1;
14812 h->def_dynamic = 0;
14813 h->start_stop = 1;
14814 h->u2.start_stop_section = sec;
14815 if (symbol[0] == '.')
14816 {
14817 /* .startof. and .sizeof. symbols are local. */
14818 const struct elf_backend_data *bed;
14819 bed = get_elf_backend_data (info->output_bfd);
14820 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14821 }
14822 else
14823 {
14824 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14825 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14826 if (was_dynamic)
14827 bfd_elf_link_record_dynamic_symbol (info, h);
14828 }
14829 return &h->root;
14830 }
14831 return NULL;
14832 }
This page took 0.392637 seconds and 4 git commands to generate.