qsort: elf_link_add_object_symbols weak aliases
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 bfd_size_type amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular)
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 bfd_size_type amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular)
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 if (alloc1 != NULL)
2647 free (alloc1);
2648
2649 /* Don't free alloc2, since if it was allocated we are passing it
2650 back (under the name of internal_relocs). */
2651
2652 return internal_relocs;
2653
2654 error_return:
2655 if (alloc1 != NULL)
2656 free (alloc1);
2657 if (alloc2 != NULL)
2658 {
2659 if (keep_memory)
2660 bfd_release (abfd, alloc2);
2661 else
2662 free (alloc2);
2663 }
2664 return NULL;
2665 }
2666
2667 /* Compute the size of, and allocate space for, REL_HDR which is the
2668 section header for a section containing relocations for O. */
2669
2670 static bfd_boolean
2671 _bfd_elf_link_size_reloc_section (bfd *abfd,
2672 struct bfd_elf_section_reloc_data *reldata)
2673 {
2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2675
2676 /* That allows us to calculate the size of the section. */
2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2678
2679 /* The contents field must last into write_object_contents, so we
2680 allocate it with bfd_alloc rather than malloc. Also since we
2681 cannot be sure that the contents will actually be filled in,
2682 we zero the allocated space. */
2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2685 return FALSE;
2686
2687 if (reldata->hashes == NULL && reldata->count)
2688 {
2689 struct elf_link_hash_entry **p;
2690
2691 p = ((struct elf_link_hash_entry **)
2692 bfd_zmalloc (reldata->count * sizeof (*p)));
2693 if (p == NULL)
2694 return FALSE;
2695
2696 reldata->hashes = p;
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2703 originated from the section given by INPUT_REL_HDR) to the
2704 OUTPUT_BFD. */
2705
2706 bfd_boolean
2707 _bfd_elf_link_output_relocs (bfd *output_bfd,
2708 asection *input_section,
2709 Elf_Internal_Shdr *input_rel_hdr,
2710 Elf_Internal_Rela *internal_relocs,
2711 struct elf_link_hash_entry **rel_hash
2712 ATTRIBUTE_UNUSED)
2713 {
2714 Elf_Internal_Rela *irela;
2715 Elf_Internal_Rela *irelaend;
2716 bfd_byte *erel;
2717 struct bfd_elf_section_reloc_data *output_reldata;
2718 asection *output_section;
2719 const struct elf_backend_data *bed;
2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2721 struct bfd_elf_section_data *esdo;
2722
2723 output_section = input_section->output_section;
2724
2725 bed = get_elf_backend_data (output_bfd);
2726 esdo = elf_section_data (output_section);
2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2728 {
2729 output_reldata = &esdo->rel;
2730 swap_out = bed->s->swap_reloc_out;
2731 }
2732 else if (esdo->rela.hdr
2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2734 {
2735 output_reldata = &esdo->rela;
2736 swap_out = bed->s->swap_reloca_out;
2737 }
2738 else
2739 {
2740 _bfd_error_handler
2741 /* xgettext:c-format */
2742 (_("%pB: relocation size mismatch in %pB section %pA"),
2743 output_bfd, input_section->owner, input_section);
2744 bfd_set_error (bfd_error_wrong_format);
2745 return FALSE;
2746 }
2747
2748 erel = output_reldata->hdr->contents;
2749 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2750 irela = internal_relocs;
2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2752 * bed->s->int_rels_per_ext_rel);
2753 while (irela < irelaend)
2754 {
2755 (*swap_out) (output_bfd, irela, erel);
2756 irela += bed->s->int_rels_per_ext_rel;
2757 erel += input_rel_hdr->sh_entsize;
2758 }
2759
2760 /* Bump the counter, so that we know where to add the next set of
2761 relocations. */
2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2763
2764 return TRUE;
2765 }
2766 \f
2767 /* Make weak undefined symbols in PIE dynamic. */
2768
2769 bfd_boolean
2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2771 struct elf_link_hash_entry *h)
2772 {
2773 if (bfd_link_pie (info)
2774 && h->dynindx == -1
2775 && h->root.type == bfd_link_hash_undefweak)
2776 return bfd_elf_link_record_dynamic_symbol (info, h);
2777
2778 return TRUE;
2779 }
2780
2781 /* Fix up the flags for a symbol. This handles various cases which
2782 can only be fixed after all the input files are seen. This is
2783 currently called by both adjust_dynamic_symbol and
2784 assign_sym_version, which is unnecessary but perhaps more robust in
2785 the face of future changes. */
2786
2787 static bfd_boolean
2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2789 struct elf_info_failed *eif)
2790 {
2791 const struct elf_backend_data *bed;
2792
2793 /* If this symbol was mentioned in a non-ELF file, try to set
2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2795 permit a non-ELF file to correctly refer to a symbol defined in
2796 an ELF dynamic object. */
2797 if (h->non_elf)
2798 {
2799 while (h->root.type == bfd_link_hash_indirect)
2800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2801
2802 if (h->root.type != bfd_link_hash_defined
2803 && h->root.type != bfd_link_hash_defweak)
2804 {
2805 h->ref_regular = 1;
2806 h->ref_regular_nonweak = 1;
2807 }
2808 else
2809 {
2810 if (h->root.u.def.section->owner != NULL
2811 && (bfd_get_flavour (h->root.u.def.section->owner)
2812 == bfd_target_elf_flavour))
2813 {
2814 h->ref_regular = 1;
2815 h->ref_regular_nonweak = 1;
2816 }
2817 else
2818 h->def_regular = 1;
2819 }
2820
2821 if (h->dynindx == -1
2822 && (h->def_dynamic
2823 || h->ref_dynamic))
2824 {
2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832 else
2833 {
2834 /* Unfortunately, NON_ELF is only correct if the symbol
2835 was first seen in a non-ELF file. Fortunately, if the symbol
2836 was first seen in an ELF file, we're probably OK unless the
2837 symbol was defined in a non-ELF file. Catch that case here.
2838 FIXME: We're still in trouble if the symbol was first seen in
2839 a dynamic object, and then later in a non-ELF regular object. */
2840 if ((h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2842 && !h->def_regular
2843 && (h->root.u.def.section->owner != NULL
2844 ? (bfd_get_flavour (h->root.u.def.section->owner)
2845 != bfd_target_elf_flavour)
2846 : (bfd_is_abs_section (h->root.u.def.section)
2847 && !h->def_dynamic)))
2848 h->def_regular = 1;
2849 }
2850
2851 /* Backend specific symbol fixup. */
2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2853 if (bed->elf_backend_fixup_symbol
2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2855 return FALSE;
2856
2857 /* If this is a final link, and the symbol was defined as a common
2858 symbol in a regular object file, and there was no definition in
2859 any dynamic object, then the linker will have allocated space for
2860 the symbol in a common section but the DEF_REGULAR
2861 flag will not have been set. */
2862 if (h->root.type == bfd_link_hash_defined
2863 && !h->def_regular
2864 && h->ref_regular
2865 && !h->def_dynamic
2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2867 h->def_regular = 1;
2868
2869 /* Symbols defined in discarded sections shouldn't be dynamic. */
2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2872
2873 /* If a weak undefined symbol has non-default visibility, we also
2874 hide it from the dynamic linker. */
2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2876 && h->root.type == bfd_link_hash_undefweak)
2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2878
2879 /* A hidden versioned symbol in executable should be forced local if
2880 it is is locally defined, not referenced by shared library and not
2881 exported. */
2882 else if (bfd_link_executable (eif->info)
2883 && h->versioned == versioned_hidden
2884 && !eif->info->export_dynamic
2885 && !h->dynamic
2886 && !h->ref_dynamic
2887 && h->def_regular)
2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2889
2890 /* If -Bsymbolic was used (which means to bind references to global
2891 symbols to the definition within the shared object), and this
2892 symbol was defined in a regular object, then it actually doesn't
2893 need a PLT entry. Likewise, if the symbol has non-default
2894 visibility. If the symbol has hidden or internal visibility, we
2895 will force it local. */
2896 else if (h->needs_plt
2897 && bfd_link_pic (eif->info)
2898 && is_elf_hash_table (eif->info->hash)
2899 && (SYMBOLIC_BIND (eif->info, h)
2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2901 && h->def_regular)
2902 {
2903 bfd_boolean force_local;
2904
2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2908 }
2909
2910 /* If this is a weak defined symbol in a dynamic object, and we know
2911 the real definition in the dynamic object, copy interesting flags
2912 over to the real definition. */
2913 if (h->is_weakalias)
2914 {
2915 struct elf_link_hash_entry *def = weakdef (h);
2916
2917 /* If the real definition is defined by a regular object file,
2918 don't do anything special. See the longer description in
2919 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2920 bfd_link_hash_defined as it was when put on the alias list
2921 then it must have originally been a versioned symbol (for
2922 which a non-versioned indirect symbol is created) and later
2923 a definition for the non-versioned symbol is found. In that
2924 case the indirection is flipped with the versioned symbol
2925 becoming an indirect pointing at the non-versioned symbol.
2926 Thus, not an alias any more. */
2927 if (def->def_regular
2928 || def->root.type != bfd_link_hash_defined)
2929 {
2930 h = def;
2931 while ((h = h->u.alias) != def)
2932 h->is_weakalias = 0;
2933 }
2934 else
2935 {
2936 while (h->root.type == bfd_link_hash_indirect)
2937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2938 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2939 || h->root.type == bfd_link_hash_defweak);
2940 BFD_ASSERT (def->def_dynamic);
2941 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2942 }
2943 }
2944
2945 return TRUE;
2946 }
2947
2948 /* Make the backend pick a good value for a dynamic symbol. This is
2949 called via elf_link_hash_traverse, and also calls itself
2950 recursively. */
2951
2952 static bfd_boolean
2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2954 {
2955 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2956 struct elf_link_hash_table *htab;
2957 const struct elf_backend_data *bed;
2958
2959 if (! is_elf_hash_table (eif->info->hash))
2960 return FALSE;
2961
2962 /* Ignore indirect symbols. These are added by the versioning code. */
2963 if (h->root.type == bfd_link_hash_indirect)
2964 return TRUE;
2965
2966 /* Fix the symbol flags. */
2967 if (! _bfd_elf_fix_symbol_flags (h, eif))
2968 return FALSE;
2969
2970 htab = elf_hash_table (eif->info);
2971 bed = get_elf_backend_data (htab->dynobj);
2972
2973 if (h->root.type == bfd_link_hash_undefweak)
2974 {
2975 if (eif->info->dynamic_undefined_weak == 0)
2976 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2977 else if (eif->info->dynamic_undefined_weak > 0
2978 && h->ref_regular
2979 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 && !bfd_hide_sym_by_version (eif->info->version_info,
2981 h->root.root.string))
2982 {
2983 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2984 {
2985 eif->failed = TRUE;
2986 return FALSE;
2987 }
2988 }
2989 }
2990
2991 /* If this symbol does not require a PLT entry, and it is not
2992 defined by a dynamic object, or is not referenced by a regular
2993 object, ignore it. We do have to handle a weak defined symbol,
2994 even if no regular object refers to it, if we decided to add it
2995 to the dynamic symbol table. FIXME: Do we normally need to worry
2996 about symbols which are defined by one dynamic object and
2997 referenced by another one? */
2998 if (!h->needs_plt
2999 && h->type != STT_GNU_IFUNC
3000 && (h->def_regular
3001 || !h->def_dynamic
3002 || (!h->ref_regular
3003 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3004 {
3005 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3006 return TRUE;
3007 }
3008
3009 /* If we've already adjusted this symbol, don't do it again. This
3010 can happen via a recursive call. */
3011 if (h->dynamic_adjusted)
3012 return TRUE;
3013
3014 /* Don't look at this symbol again. Note that we must set this
3015 after checking the above conditions, because we may look at a
3016 symbol once, decide not to do anything, and then get called
3017 recursively later after REF_REGULAR is set below. */
3018 h->dynamic_adjusted = 1;
3019
3020 /* If this is a weak definition, and we know a real definition, and
3021 the real symbol is not itself defined by a regular object file,
3022 then get a good value for the real definition. We handle the
3023 real symbol first, for the convenience of the backend routine.
3024
3025 Note that there is a confusing case here. If the real definition
3026 is defined by a regular object file, we don't get the real symbol
3027 from the dynamic object, but we do get the weak symbol. If the
3028 processor backend uses a COPY reloc, then if some routine in the
3029 dynamic object changes the real symbol, we will not see that
3030 change in the corresponding weak symbol. This is the way other
3031 ELF linkers work as well, and seems to be a result of the shared
3032 library model.
3033
3034 I will clarify this issue. Most SVR4 shared libraries define the
3035 variable _timezone and define timezone as a weak synonym. The
3036 tzset call changes _timezone. If you write
3037 extern int timezone;
3038 int _timezone = 5;
3039 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3040 you might expect that, since timezone is a synonym for _timezone,
3041 the same number will print both times. However, if the processor
3042 backend uses a COPY reloc, then actually timezone will be copied
3043 into your process image, and, since you define _timezone
3044 yourself, _timezone will not. Thus timezone and _timezone will
3045 wind up at different memory locations. The tzset call will set
3046 _timezone, leaving timezone unchanged. */
3047
3048 if (h->is_weakalias)
3049 {
3050 struct elf_link_hash_entry *def = weakdef (h);
3051
3052 /* If we get to this point, there is an implicit reference to
3053 the alias by a regular object file via the weak symbol H. */
3054 def->ref_regular = 1;
3055
3056 /* Ensure that the backend adjust_dynamic_symbol function sees
3057 the strong alias before H by recursively calling ourselves. */
3058 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3059 return FALSE;
3060 }
3061
3062 /* If a symbol has no type and no size and does not require a PLT
3063 entry, then we are probably about to do the wrong thing here: we
3064 are probably going to create a COPY reloc for an empty object.
3065 This case can arise when a shared object is built with assembly
3066 code, and the assembly code fails to set the symbol type. */
3067 if (h->size == 0
3068 && h->type == STT_NOTYPE
3069 && !h->needs_plt)
3070 _bfd_error_handler
3071 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3072 h->root.root.string);
3073
3074 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3075 {
3076 eif->failed = TRUE;
3077 return FALSE;
3078 }
3079
3080 return TRUE;
3081 }
3082
3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3084 DYNBSS. */
3085
3086 bfd_boolean
3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3088 struct elf_link_hash_entry *h,
3089 asection *dynbss)
3090 {
3091 unsigned int power_of_two;
3092 bfd_vma mask;
3093 asection *sec = h->root.u.def.section;
3094
3095 /* The section alignment of the definition is the maximum alignment
3096 requirement of symbols defined in the section. Since we don't
3097 know the symbol alignment requirement, we start with the
3098 maximum alignment and check low bits of the symbol address
3099 for the minimum alignment. */
3100 power_of_two = bfd_section_alignment (sec);
3101 mask = ((bfd_vma) 1 << power_of_two) - 1;
3102 while ((h->root.u.def.value & mask) != 0)
3103 {
3104 mask >>= 1;
3105 --power_of_two;
3106 }
3107
3108 if (power_of_two > bfd_section_alignment (dynbss))
3109 {
3110 /* Adjust the section alignment if needed. */
3111 if (!bfd_set_section_alignment (dynbss, power_of_two))
3112 return FALSE;
3113 }
3114
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h->root.u.def.section = dynbss;
3120 h->root.u.def.value = dynbss->size;
3121
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss->size += h->size;
3124
3125 /* No error if extern_protected_data is true. */
3126 if (h->protected_def
3127 && (!info->extern_protected_data
3128 || (info->extern_protected_data < 0
3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130 info->callbacks->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h->root.root.string);
3133
3134 return TRUE;
3135 }
3136
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3139
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143 asection *sec;
3144
3145 if ((h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak)
3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149 {
3150 bfd *output_bfd = (bfd *) data;
3151
3152 h->root.u.def.value =
3153 _bfd_merged_section_offset (output_bfd,
3154 &h->root.u.def.section,
3155 elf_section_data (sec)->sec_info,
3156 h->root.u.def.value);
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3165
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 struct bfd_link_info *info,
3169 bfd_boolean not_local_protected)
3170 {
3171 bfd_boolean binding_stays_local_p;
3172 const struct elf_backend_data *bed;
3173 struct elf_link_hash_table *hash_table;
3174
3175 if (h == NULL)
3176 return FALSE;
3177
3178 while (h->root.type == bfd_link_hash_indirect
3179 || h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h->dynindx == -1)
3184 return FALSE;
3185 if (h->forced_local)
3186 return FALSE;
3187
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p = (bfd_link_executable (info)
3191 || SYMBOLIC_BIND (info, h));
3192
3193 switch (ELF_ST_VISIBILITY (h->other))
3194 {
3195 case STV_INTERNAL:
3196 case STV_HIDDEN:
3197 return FALSE;
3198
3199 case STV_PROTECTED:
3200 hash_table = elf_hash_table (info);
3201 if (!is_elf_hash_table (hash_table))
3202 return FALSE;
3203
3204 bed = get_elf_backend_data (hash_table->dynobj);
3205
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected || !bed->is_function_type (h->type))
3210 binding_stays_local_p = TRUE;
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219 return TRUE;
3220
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p;
3224 }
3225
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233 defined symbols.
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3238
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 struct bfd_link_info *info,
3242 bfd_boolean local_protected)
3243 {
3244 const struct elf_backend_data *bed;
3245 struct elf_link_hash_table *hash_table;
3246
3247 /* If it's a local sym, of course we resolve locally. */
3248 if (h == NULL)
3249 return TRUE;
3250
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254 return TRUE;
3255
3256 /* Forced local symbols resolve locally. */
3257 if (h->forced_local)
3258 return TRUE;
3259
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h))
3263 /* Do nothing. */;
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h->def_regular)
3267 return FALSE;
3268
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h->dynindx == -1)
3271 return TRUE;
3272
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277 return TRUE;
3278
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282 return FALSE;
3283
3284 hash_table = elf_hash_table (info);
3285 if (!is_elf_hash_table (hash_table))
3286 return TRUE;
3287
3288 bed = get_elf_backend_data (hash_table->dynobj);
3289
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info->extern_protected_data
3293 || (info->extern_protected_data < 0
3294 && !bed->extern_protected_data))
3295 && !bed->is_function_type (h->type))
3296 return TRUE;
3297
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected;
3304 }
3305
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3308
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312 struct bfd_section *sec, *tls;
3313 unsigned int align = 0;
3314
3315 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 break;
3318 tls = sec;
3319
3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321 if (sec->alignment_power > align)
3322 align = sec->alignment_power;
3323
3324 elf_hash_table (info)->tls_sec = tls;
3325
3326 /* Ensure the alignment of the first section is the largest alignment,
3327 so that the tls segment starts aligned. */
3328 if (tls != NULL)
3329 tls->alignment_power = align;
3330
3331 return tls;
3332 }
3333
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 Elf_Internal_Sym *sym)
3338 {
3339 const struct elf_backend_data *bed;
3340
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344 return FALSE;
3345
3346 bed = get_elf_backend_data (abfd);
3347 /* Function symbols do not count. */
3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349 return FALSE;
3350
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym->st_shndx == SHN_UNDEF)
3353 return FALSE;
3354
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed->common_definition (sym))
3358 return FALSE;
3359
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363 /* FIXME - this function is not coded yet:
3364
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3366
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3370 return FALSE;
3371
3372 return TRUE;
3373 }
3374
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381 Elf_Internal_Shdr * hdr;
3382 size_t symcount;
3383 size_t extsymcount;
3384 size_t extsymoff;
3385 Elf_Internal_Sym *isymbuf;
3386 Elf_Internal_Sym *isym;
3387 Elf_Internal_Sym *isymend;
3388 bfd_boolean result;
3389
3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (abfd == NULL)
3392 return FALSE;
3393
3394 if (! bfd_check_format (abfd, bfd_object))
3395 return FALSE;
3396
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd->plugin_format == bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd))
3404 #endif
3405 )
3406 {
3407 /* Use the IR symbol table if the object has been claimed by
3408 plugin. */
3409 abfd = abfd->plugin_dummy_bfd;
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 }
3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413 hdr = &elf_tdata (abfd)->symtab_hdr;
3414 else
3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416
3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd))
3422 {
3423 extsymcount = symcount;
3424 extsymoff = 0;
3425 }
3426 else
3427 {
3428 extsymcount = symcount - hdr->sh_info;
3429 extsymoff = hdr->sh_info;
3430 }
3431
3432 if (extsymcount == 0)
3433 return FALSE;
3434
3435 /* Read in the symbol table. */
3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 NULL, NULL, NULL);
3438 if (isymbuf == NULL)
3439 return FALSE;
3440
3441 /* Scan the symbol table looking for SYMDEF. */
3442 result = FALSE;
3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 {
3445 const char *name;
3446
3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 isym->st_name);
3449 if (name == NULL)
3450 break;
3451
3452 if (strcmp (name, symdef->name) == 0)
3453 {
3454 result = is_global_data_symbol_definition (abfd, isym);
3455 break;
3456 }
3457 }
3458
3459 free (isymbuf);
3460
3461 return result;
3462 }
3463 \f
3464 /* Add an entry to the .dynamic table. */
3465
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 bfd_vma tag,
3469 bfd_vma val)
3470 {
3471 struct elf_link_hash_table *hash_table;
3472 const struct elf_backend_data *bed;
3473 asection *s;
3474 bfd_size_type newsize;
3475 bfd_byte *newcontents;
3476 Elf_Internal_Dyn dyn;
3477
3478 hash_table = elf_hash_table (info);
3479 if (! is_elf_hash_table (hash_table))
3480 return FALSE;
3481
3482 if (tag == DT_RELA || tag == DT_REL)
3483 hash_table->dynamic_relocs = TRUE;
3484
3485 bed = get_elf_backend_data (hash_table->dynobj);
3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487 BFD_ASSERT (s != NULL);
3488
3489 newsize = s->size + bed->s->sizeof_dyn;
3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491 if (newcontents == NULL)
3492 return FALSE;
3493
3494 dyn.d_tag = tag;
3495 dyn.d_un.d_val = val;
3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497
3498 s->size = newsize;
3499 s->contents = newcontents;
3500
3501 return TRUE;
3502 }
3503
3504 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3505 otherwise just check whether one already exists. Returns -1 on error,
3506 1 if a DT_NEEDED tag already exists, and 0 on success. */
3507
3508 static int
3509 elf_add_dt_needed_tag (bfd *abfd,
3510 struct bfd_link_info *info,
3511 const char *soname,
3512 bfd_boolean do_it)
3513 {
3514 struct elf_link_hash_table *hash_table;
3515 size_t strindex;
3516
3517 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3518 return -1;
3519
3520 hash_table = elf_hash_table (info);
3521 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3522 if (strindex == (size_t) -1)
3523 return -1;
3524
3525 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3526 {
3527 asection *sdyn;
3528 const struct elf_backend_data *bed;
3529 bfd_byte *extdyn;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3533 if (sdyn != NULL)
3534 for (extdyn = sdyn->contents;
3535 extdyn < sdyn->contents + sdyn->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3541 if (dyn.d_tag == DT_NEEDED
3542 && dyn.d_un.d_val == strindex)
3543 {
3544 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3545 return 1;
3546 }
3547 }
3548 }
3549
3550 if (do_it)
3551 {
3552 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3553 return -1;
3554
3555 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3556 return -1;
3557 }
3558 else
3559 /* We were just checking for existence of the tag. */
3560 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3561
3562 return 0;
3563 }
3564
3565 /* Return true if SONAME is on the needed list between NEEDED and STOP
3566 (or the end of list if STOP is NULL), and needed by a library that
3567 will be loaded. */
3568
3569 static bfd_boolean
3570 on_needed_list (const char *soname,
3571 struct bfd_link_needed_list *needed,
3572 struct bfd_link_needed_list *stop)
3573 {
3574 struct bfd_link_needed_list *look;
3575 for (look = needed; look != stop; look = look->next)
3576 if (strcmp (soname, look->name) == 0
3577 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3578 /* If needed by a library that itself is not directly
3579 needed, recursively check whether that library is
3580 indirectly needed. Since we add DT_NEEDED entries to
3581 the end of the list, library dependencies appear after
3582 the library. Therefore search prior to the current
3583 LOOK, preventing possible infinite recursion. */
3584 || on_needed_list (elf_dt_name (look->by), needed, look)))
3585 return TRUE;
3586
3587 return FALSE;
3588 }
3589
3590 /* Sort symbol by value, section, size, and type. */
3591 static int
3592 elf_sort_symbol (const void *arg1, const void *arg2)
3593 {
3594 const struct elf_link_hash_entry *h1;
3595 const struct elf_link_hash_entry *h2;
3596 bfd_signed_vma vdiff;
3597 int sdiff;
3598 const char *n1;
3599 const char *n2;
3600
3601 h1 = *(const struct elf_link_hash_entry **) arg1;
3602 h2 = *(const struct elf_link_hash_entry **) arg2;
3603 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3604 if (vdiff != 0)
3605 return vdiff > 0 ? 1 : -1;
3606
3607 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3608 if (sdiff != 0)
3609 return sdiff;
3610
3611 /* Sort so that sized symbols are selected over zero size symbols. */
3612 vdiff = h1->size - h2->size;
3613 if (vdiff != 0)
3614 return vdiff > 0 ? 1 : -1;
3615
3616 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3617 if (h1->type != h2->type)
3618 return h1->type - h2->type;
3619
3620 /* If symbols are properly sized and typed, and multiple strong
3621 aliases are not defined in a shared library by the user we
3622 shouldn't get here. Unfortunately linker script symbols like
3623 __bss_start sometimes match a user symbol defined at the start of
3624 .bss without proper size and type. We'd like to preference the
3625 user symbol over reserved system symbols. Sort on leading
3626 underscores. */
3627 n1 = h1->root.root.string;
3628 n2 = h2->root.root.string;
3629 while (*n1 == *n2)
3630 {
3631 if (*n1 == 0)
3632 break;
3633 ++n1;
3634 ++n2;
3635 }
3636 if (*n1 == '_')
3637 return -1;
3638 if (*n2 == '_')
3639 return 1;
3640
3641 /* Final sort on name selects user symbols like '_u' over reserved
3642 system symbols like '_Z' and also will avoid qsort instability. */
3643 return *n1 - *n2;
3644 }
3645
3646 /* This function is used to adjust offsets into .dynstr for
3647 dynamic symbols. This is called via elf_link_hash_traverse. */
3648
3649 static bfd_boolean
3650 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3651 {
3652 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3653
3654 if (h->dynindx != -1)
3655 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3656 return TRUE;
3657 }
3658
3659 /* Assign string offsets in .dynstr, update all structures referencing
3660 them. */
3661
3662 static bfd_boolean
3663 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3664 {
3665 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3666 struct elf_link_local_dynamic_entry *entry;
3667 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3668 bfd *dynobj = hash_table->dynobj;
3669 asection *sdyn;
3670 bfd_size_type size;
3671 const struct elf_backend_data *bed;
3672 bfd_byte *extdyn;
3673
3674 _bfd_elf_strtab_finalize (dynstr);
3675 size = _bfd_elf_strtab_size (dynstr);
3676
3677 bed = get_elf_backend_data (dynobj);
3678 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3679 BFD_ASSERT (sdyn != NULL);
3680
3681 /* Update all .dynamic entries referencing .dynstr strings. */
3682 for (extdyn = sdyn->contents;
3683 extdyn < sdyn->contents + sdyn->size;
3684 extdyn += bed->s->sizeof_dyn)
3685 {
3686 Elf_Internal_Dyn dyn;
3687
3688 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3689 switch (dyn.d_tag)
3690 {
3691 case DT_STRSZ:
3692 dyn.d_un.d_val = size;
3693 break;
3694 case DT_NEEDED:
3695 case DT_SONAME:
3696 case DT_RPATH:
3697 case DT_RUNPATH:
3698 case DT_FILTER:
3699 case DT_AUXILIARY:
3700 case DT_AUDIT:
3701 case DT_DEPAUDIT:
3702 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3703 break;
3704 default:
3705 continue;
3706 }
3707 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3708 }
3709
3710 /* Now update local dynamic symbols. */
3711 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3712 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3713 entry->isym.st_name);
3714
3715 /* And the rest of dynamic symbols. */
3716 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3717
3718 /* Adjust version definitions. */
3719 if (elf_tdata (output_bfd)->cverdefs)
3720 {
3721 asection *s;
3722 bfd_byte *p;
3723 size_t i;
3724 Elf_Internal_Verdef def;
3725 Elf_Internal_Verdaux defaux;
3726
3727 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3728 p = s->contents;
3729 do
3730 {
3731 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3732 &def);
3733 p += sizeof (Elf_External_Verdef);
3734 if (def.vd_aux != sizeof (Elf_External_Verdef))
3735 continue;
3736 for (i = 0; i < def.vd_cnt; ++i)
3737 {
3738 _bfd_elf_swap_verdaux_in (output_bfd,
3739 (Elf_External_Verdaux *) p, &defaux);
3740 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3741 defaux.vda_name);
3742 _bfd_elf_swap_verdaux_out (output_bfd,
3743 &defaux, (Elf_External_Verdaux *) p);
3744 p += sizeof (Elf_External_Verdaux);
3745 }
3746 }
3747 while (def.vd_next);
3748 }
3749
3750 /* Adjust version references. */
3751 if (elf_tdata (output_bfd)->verref)
3752 {
3753 asection *s;
3754 bfd_byte *p;
3755 size_t i;
3756 Elf_Internal_Verneed need;
3757 Elf_Internal_Vernaux needaux;
3758
3759 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3760 p = s->contents;
3761 do
3762 {
3763 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3764 &need);
3765 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3766 _bfd_elf_swap_verneed_out (output_bfd, &need,
3767 (Elf_External_Verneed *) p);
3768 p += sizeof (Elf_External_Verneed);
3769 for (i = 0; i < need.vn_cnt; ++i)
3770 {
3771 _bfd_elf_swap_vernaux_in (output_bfd,
3772 (Elf_External_Vernaux *) p, &needaux);
3773 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3774 needaux.vna_name);
3775 _bfd_elf_swap_vernaux_out (output_bfd,
3776 &needaux,
3777 (Elf_External_Vernaux *) p);
3778 p += sizeof (Elf_External_Vernaux);
3779 }
3780 }
3781 while (need.vn_next);
3782 }
3783
3784 return TRUE;
3785 }
3786 \f
3787 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3788 The default is to only match when the INPUT and OUTPUT are exactly
3789 the same target. */
3790
3791 bfd_boolean
3792 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3793 const bfd_target *output)
3794 {
3795 return input == output;
3796 }
3797
3798 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3799 This version is used when different targets for the same architecture
3800 are virtually identical. */
3801
3802 bfd_boolean
3803 _bfd_elf_relocs_compatible (const bfd_target *input,
3804 const bfd_target *output)
3805 {
3806 const struct elf_backend_data *obed, *ibed;
3807
3808 if (input == output)
3809 return TRUE;
3810
3811 ibed = xvec_get_elf_backend_data (input);
3812 obed = xvec_get_elf_backend_data (output);
3813
3814 if (ibed->arch != obed->arch)
3815 return FALSE;
3816
3817 /* If both backends are using this function, deem them compatible. */
3818 return ibed->relocs_compatible == obed->relocs_compatible;
3819 }
3820
3821 /* Make a special call to the linker "notice" function to tell it that
3822 we are about to handle an as-needed lib, or have finished
3823 processing the lib. */
3824
3825 bfd_boolean
3826 _bfd_elf_notice_as_needed (bfd *ibfd,
3827 struct bfd_link_info *info,
3828 enum notice_asneeded_action act)
3829 {
3830 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3831 }
3832
3833 /* Check relocations an ELF object file. */
3834
3835 bfd_boolean
3836 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3837 {
3838 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3839 struct elf_link_hash_table *htab = elf_hash_table (info);
3840
3841 /* If this object is the same format as the output object, and it is
3842 not a shared library, then let the backend look through the
3843 relocs.
3844
3845 This is required to build global offset table entries and to
3846 arrange for dynamic relocs. It is not required for the
3847 particular common case of linking non PIC code, even when linking
3848 against shared libraries, but unfortunately there is no way of
3849 knowing whether an object file has been compiled PIC or not.
3850 Looking through the relocs is not particularly time consuming.
3851 The problem is that we must either (1) keep the relocs in memory,
3852 which causes the linker to require additional runtime memory or
3853 (2) read the relocs twice from the input file, which wastes time.
3854 This would be a good case for using mmap.
3855
3856 I have no idea how to handle linking PIC code into a file of a
3857 different format. It probably can't be done. */
3858 if ((abfd->flags & DYNAMIC) == 0
3859 && is_elf_hash_table (htab)
3860 && bed->check_relocs != NULL
3861 && elf_object_id (abfd) == elf_hash_table_id (htab)
3862 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3863 {
3864 asection *o;
3865
3866 for (o = abfd->sections; o != NULL; o = o->next)
3867 {
3868 Elf_Internal_Rela *internal_relocs;
3869 bfd_boolean ok;
3870
3871 /* Don't check relocations in excluded sections. */
3872 if ((o->flags & SEC_RELOC) == 0
3873 || (o->flags & SEC_EXCLUDE) != 0
3874 || o->reloc_count == 0
3875 || ((info->strip == strip_all || info->strip == strip_debugger)
3876 && (o->flags & SEC_DEBUGGING) != 0)
3877 || bfd_is_abs_section (o->output_section))
3878 continue;
3879
3880 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3881 info->keep_memory);
3882 if (internal_relocs == NULL)
3883 return FALSE;
3884
3885 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3886
3887 if (elf_section_data (o)->relocs != internal_relocs)
3888 free (internal_relocs);
3889
3890 if (! ok)
3891 return FALSE;
3892 }
3893 }
3894
3895 return TRUE;
3896 }
3897
3898 /* Add symbols from an ELF object file to the linker hash table. */
3899
3900 static bfd_boolean
3901 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3902 {
3903 Elf_Internal_Ehdr *ehdr;
3904 Elf_Internal_Shdr *hdr;
3905 size_t symcount;
3906 size_t extsymcount;
3907 size_t extsymoff;
3908 struct elf_link_hash_entry **sym_hash;
3909 bfd_boolean dynamic;
3910 Elf_External_Versym *extversym = NULL;
3911 Elf_External_Versym *extversym_end = NULL;
3912 Elf_External_Versym *ever;
3913 struct elf_link_hash_entry *weaks;
3914 struct elf_link_hash_entry **nondeflt_vers = NULL;
3915 size_t nondeflt_vers_cnt = 0;
3916 Elf_Internal_Sym *isymbuf = NULL;
3917 Elf_Internal_Sym *isym;
3918 Elf_Internal_Sym *isymend;
3919 const struct elf_backend_data *bed;
3920 bfd_boolean add_needed;
3921 struct elf_link_hash_table *htab;
3922 bfd_size_type amt;
3923 void *alloc_mark = NULL;
3924 struct bfd_hash_entry **old_table = NULL;
3925 unsigned int old_size = 0;
3926 unsigned int old_count = 0;
3927 void *old_tab = NULL;
3928 void *old_ent;
3929 struct bfd_link_hash_entry *old_undefs = NULL;
3930 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3931 void *old_strtab = NULL;
3932 size_t tabsize = 0;
3933 asection *s;
3934 bfd_boolean just_syms;
3935
3936 htab = elf_hash_table (info);
3937 bed = get_elf_backend_data (abfd);
3938
3939 if ((abfd->flags & DYNAMIC) == 0)
3940 dynamic = FALSE;
3941 else
3942 {
3943 dynamic = TRUE;
3944
3945 /* You can't use -r against a dynamic object. Also, there's no
3946 hope of using a dynamic object which does not exactly match
3947 the format of the output file. */
3948 if (bfd_link_relocatable (info)
3949 || !is_elf_hash_table (htab)
3950 || info->output_bfd->xvec != abfd->xvec)
3951 {
3952 if (bfd_link_relocatable (info))
3953 bfd_set_error (bfd_error_invalid_operation);
3954 else
3955 bfd_set_error (bfd_error_wrong_format);
3956 goto error_return;
3957 }
3958 }
3959
3960 ehdr = elf_elfheader (abfd);
3961 if (info->warn_alternate_em
3962 && bed->elf_machine_code != ehdr->e_machine
3963 && ((bed->elf_machine_alt1 != 0
3964 && ehdr->e_machine == bed->elf_machine_alt1)
3965 || (bed->elf_machine_alt2 != 0
3966 && ehdr->e_machine == bed->elf_machine_alt2)))
3967 _bfd_error_handler
3968 /* xgettext:c-format */
3969 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3970 ehdr->e_machine, abfd, bed->elf_machine_code);
3971
3972 /* As a GNU extension, any input sections which are named
3973 .gnu.warning.SYMBOL are treated as warning symbols for the given
3974 symbol. This differs from .gnu.warning sections, which generate
3975 warnings when they are included in an output file. */
3976 /* PR 12761: Also generate this warning when building shared libraries. */
3977 for (s = abfd->sections; s != NULL; s = s->next)
3978 {
3979 const char *name;
3980
3981 name = bfd_section_name (s);
3982 if (CONST_STRNEQ (name, ".gnu.warning."))
3983 {
3984 char *msg;
3985 bfd_size_type sz;
3986
3987 name += sizeof ".gnu.warning." - 1;
3988
3989 /* If this is a shared object, then look up the symbol
3990 in the hash table. If it is there, and it is already
3991 been defined, then we will not be using the entry
3992 from this shared object, so we don't need to warn.
3993 FIXME: If we see the definition in a regular object
3994 later on, we will warn, but we shouldn't. The only
3995 fix is to keep track of what warnings we are supposed
3996 to emit, and then handle them all at the end of the
3997 link. */
3998 if (dynamic)
3999 {
4000 struct elf_link_hash_entry *h;
4001
4002 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
4003
4004 /* FIXME: What about bfd_link_hash_common? */
4005 if (h != NULL
4006 && (h->root.type == bfd_link_hash_defined
4007 || h->root.type == bfd_link_hash_defweak))
4008 continue;
4009 }
4010
4011 sz = s->size;
4012 msg = (char *) bfd_alloc (abfd, sz + 1);
4013 if (msg == NULL)
4014 goto error_return;
4015
4016 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4017 goto error_return;
4018
4019 msg[sz] = '\0';
4020
4021 if (! (_bfd_generic_link_add_one_symbol
4022 (info, abfd, name, BSF_WARNING, s, 0, msg,
4023 FALSE, bed->collect, NULL)))
4024 goto error_return;
4025
4026 if (bfd_link_executable (info))
4027 {
4028 /* Clobber the section size so that the warning does
4029 not get copied into the output file. */
4030 s->size = 0;
4031
4032 /* Also set SEC_EXCLUDE, so that symbols defined in
4033 the warning section don't get copied to the output. */
4034 s->flags |= SEC_EXCLUDE;
4035 }
4036 }
4037 }
4038
4039 just_syms = ((s = abfd->sections) != NULL
4040 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4041
4042 add_needed = TRUE;
4043 if (! dynamic)
4044 {
4045 /* If we are creating a shared library, create all the dynamic
4046 sections immediately. We need to attach them to something,
4047 so we attach them to this BFD, provided it is the right
4048 format and is not from ld --just-symbols. Always create the
4049 dynamic sections for -E/--dynamic-list. FIXME: If there
4050 are no input BFD's of the same format as the output, we can't
4051 make a shared library. */
4052 if (!just_syms
4053 && (bfd_link_pic (info)
4054 || (!bfd_link_relocatable (info)
4055 && info->nointerp
4056 && (info->export_dynamic || info->dynamic)))
4057 && is_elf_hash_table (htab)
4058 && info->output_bfd->xvec == abfd->xvec
4059 && !htab->dynamic_sections_created)
4060 {
4061 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4062 goto error_return;
4063 }
4064 }
4065 else if (!is_elf_hash_table (htab))
4066 goto error_return;
4067 else
4068 {
4069 const char *soname = NULL;
4070 char *audit = NULL;
4071 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4072 const Elf_Internal_Phdr *phdr;
4073 int ret;
4074
4075 /* ld --just-symbols and dynamic objects don't mix very well.
4076 ld shouldn't allow it. */
4077 if (just_syms)
4078 abort ();
4079
4080 /* If this dynamic lib was specified on the command line with
4081 --as-needed in effect, then we don't want to add a DT_NEEDED
4082 tag unless the lib is actually used. Similary for libs brought
4083 in by another lib's DT_NEEDED. When --no-add-needed is used
4084 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4085 any dynamic library in DT_NEEDED tags in the dynamic lib at
4086 all. */
4087 add_needed = (elf_dyn_lib_class (abfd)
4088 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4089 | DYN_NO_NEEDED)) == 0;
4090
4091 s = bfd_get_section_by_name (abfd, ".dynamic");
4092 if (s != NULL)
4093 {
4094 bfd_byte *dynbuf;
4095 bfd_byte *extdyn;
4096 unsigned int elfsec;
4097 unsigned long shlink;
4098
4099 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4100 {
4101 error_free_dyn:
4102 free (dynbuf);
4103 goto error_return;
4104 }
4105
4106 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4107 if (elfsec == SHN_BAD)
4108 goto error_free_dyn;
4109 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4110
4111 for (extdyn = dynbuf;
4112 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4113 extdyn += bed->s->sizeof_dyn)
4114 {
4115 Elf_Internal_Dyn dyn;
4116
4117 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4118 if (dyn.d_tag == DT_SONAME)
4119 {
4120 unsigned int tagv = dyn.d_un.d_val;
4121 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4122 if (soname == NULL)
4123 goto error_free_dyn;
4124 }
4125 if (dyn.d_tag == DT_NEEDED)
4126 {
4127 struct bfd_link_needed_list *n, **pn;
4128 char *fnm, *anm;
4129 unsigned int tagv = dyn.d_un.d_val;
4130
4131 amt = sizeof (struct bfd_link_needed_list);
4132 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4133 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4134 if (n == NULL || fnm == NULL)
4135 goto error_free_dyn;
4136 amt = strlen (fnm) + 1;
4137 anm = (char *) bfd_alloc (abfd, amt);
4138 if (anm == NULL)
4139 goto error_free_dyn;
4140 memcpy (anm, fnm, amt);
4141 n->name = anm;
4142 n->by = abfd;
4143 n->next = NULL;
4144 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4145 ;
4146 *pn = n;
4147 }
4148 if (dyn.d_tag == DT_RUNPATH)
4149 {
4150 struct bfd_link_needed_list *n, **pn;
4151 char *fnm, *anm;
4152 unsigned int tagv = dyn.d_un.d_val;
4153
4154 amt = sizeof (struct bfd_link_needed_list);
4155 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4156 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4157 if (n == NULL || fnm == NULL)
4158 goto error_free_dyn;
4159 amt = strlen (fnm) + 1;
4160 anm = (char *) bfd_alloc (abfd, amt);
4161 if (anm == NULL)
4162 goto error_free_dyn;
4163 memcpy (anm, fnm, amt);
4164 n->name = anm;
4165 n->by = abfd;
4166 n->next = NULL;
4167 for (pn = & runpath;
4168 *pn != NULL;
4169 pn = &(*pn)->next)
4170 ;
4171 *pn = n;
4172 }
4173 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4174 if (!runpath && dyn.d_tag == DT_RPATH)
4175 {
4176 struct bfd_link_needed_list *n, **pn;
4177 char *fnm, *anm;
4178 unsigned int tagv = dyn.d_un.d_val;
4179
4180 amt = sizeof (struct bfd_link_needed_list);
4181 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4182 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4183 if (n == NULL || fnm == NULL)
4184 goto error_free_dyn;
4185 amt = strlen (fnm) + 1;
4186 anm = (char *) bfd_alloc (abfd, amt);
4187 if (anm == NULL)
4188 goto error_free_dyn;
4189 memcpy (anm, fnm, amt);
4190 n->name = anm;
4191 n->by = abfd;
4192 n->next = NULL;
4193 for (pn = & rpath;
4194 *pn != NULL;
4195 pn = &(*pn)->next)
4196 ;
4197 *pn = n;
4198 }
4199 if (dyn.d_tag == DT_AUDIT)
4200 {
4201 unsigned int tagv = dyn.d_un.d_val;
4202 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4203 }
4204 }
4205
4206 free (dynbuf);
4207 }
4208
4209 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4210 frees all more recently bfd_alloc'd blocks as well. */
4211 if (runpath)
4212 rpath = runpath;
4213
4214 if (rpath)
4215 {
4216 struct bfd_link_needed_list **pn;
4217 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4218 ;
4219 *pn = rpath;
4220 }
4221
4222 /* If we have a PT_GNU_RELRO program header, mark as read-only
4223 all sections contained fully therein. This makes relro
4224 shared library sections appear as they will at run-time. */
4225 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4226 while (phdr-- > elf_tdata (abfd)->phdr)
4227 if (phdr->p_type == PT_GNU_RELRO)
4228 {
4229 for (s = abfd->sections; s != NULL; s = s->next)
4230 if ((s->flags & SEC_ALLOC) != 0
4231 && s->vma >= phdr->p_vaddr
4232 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4233 s->flags |= SEC_READONLY;
4234 break;
4235 }
4236
4237 /* We do not want to include any of the sections in a dynamic
4238 object in the output file. We hack by simply clobbering the
4239 list of sections in the BFD. This could be handled more
4240 cleanly by, say, a new section flag; the existing
4241 SEC_NEVER_LOAD flag is not the one we want, because that one
4242 still implies that the section takes up space in the output
4243 file. */
4244 bfd_section_list_clear (abfd);
4245
4246 /* Find the name to use in a DT_NEEDED entry that refers to this
4247 object. If the object has a DT_SONAME entry, we use it.
4248 Otherwise, if the generic linker stuck something in
4249 elf_dt_name, we use that. Otherwise, we just use the file
4250 name. */
4251 if (soname == NULL || *soname == '\0')
4252 {
4253 soname = elf_dt_name (abfd);
4254 if (soname == NULL || *soname == '\0')
4255 soname = bfd_get_filename (abfd);
4256 }
4257
4258 /* Save the SONAME because sometimes the linker emulation code
4259 will need to know it. */
4260 elf_dt_name (abfd) = soname;
4261
4262 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4263 if (ret < 0)
4264 goto error_return;
4265
4266 /* If we have already included this dynamic object in the
4267 link, just ignore it. There is no reason to include a
4268 particular dynamic object more than once. */
4269 if (ret > 0)
4270 return TRUE;
4271
4272 /* Save the DT_AUDIT entry for the linker emulation code. */
4273 elf_dt_audit (abfd) = audit;
4274 }
4275
4276 /* If this is a dynamic object, we always link against the .dynsym
4277 symbol table, not the .symtab symbol table. The dynamic linker
4278 will only see the .dynsym symbol table, so there is no reason to
4279 look at .symtab for a dynamic object. */
4280
4281 if (! dynamic || elf_dynsymtab (abfd) == 0)
4282 hdr = &elf_tdata (abfd)->symtab_hdr;
4283 else
4284 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4285
4286 symcount = hdr->sh_size / bed->s->sizeof_sym;
4287
4288 /* The sh_info field of the symtab header tells us where the
4289 external symbols start. We don't care about the local symbols at
4290 this point. */
4291 if (elf_bad_symtab (abfd))
4292 {
4293 extsymcount = symcount;
4294 extsymoff = 0;
4295 }
4296 else
4297 {
4298 extsymcount = symcount - hdr->sh_info;
4299 extsymoff = hdr->sh_info;
4300 }
4301
4302 sym_hash = elf_sym_hashes (abfd);
4303 if (extsymcount != 0)
4304 {
4305 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4306 NULL, NULL, NULL);
4307 if (isymbuf == NULL)
4308 goto error_return;
4309
4310 if (sym_hash == NULL)
4311 {
4312 /* We store a pointer to the hash table entry for each
4313 external symbol. */
4314 amt = extsymcount;
4315 amt *= sizeof (struct elf_link_hash_entry *);
4316 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4317 if (sym_hash == NULL)
4318 goto error_free_sym;
4319 elf_sym_hashes (abfd) = sym_hash;
4320 }
4321 }
4322
4323 if (dynamic)
4324 {
4325 /* Read in any version definitions. */
4326 if (!_bfd_elf_slurp_version_tables (abfd,
4327 info->default_imported_symver))
4328 goto error_free_sym;
4329
4330 /* Read in the symbol versions, but don't bother to convert them
4331 to internal format. */
4332 if (elf_dynversym (abfd) != 0)
4333 {
4334 Elf_Internal_Shdr *versymhdr;
4335
4336 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4337 amt = versymhdr->sh_size;
4338 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4339 if (extversym == NULL)
4340 goto error_free_sym;
4341 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4342 || bfd_bread (extversym, amt, abfd) != amt)
4343 goto error_free_vers;
4344 extversym_end = extversym + (amt / sizeof (* extversym));
4345 }
4346 }
4347
4348 /* If we are loading an as-needed shared lib, save the symbol table
4349 state before we start adding symbols. If the lib turns out
4350 to be unneeded, restore the state. */
4351 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4352 {
4353 unsigned int i;
4354 size_t entsize;
4355
4356 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4357 {
4358 struct bfd_hash_entry *p;
4359 struct elf_link_hash_entry *h;
4360
4361 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4362 {
4363 h = (struct elf_link_hash_entry *) p;
4364 entsize += htab->root.table.entsize;
4365 if (h->root.type == bfd_link_hash_warning)
4366 entsize += htab->root.table.entsize;
4367 }
4368 }
4369
4370 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4371 old_tab = bfd_malloc (tabsize + entsize);
4372 if (old_tab == NULL)
4373 goto error_free_vers;
4374
4375 /* Remember the current objalloc pointer, so that all mem for
4376 symbols added can later be reclaimed. */
4377 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4378 if (alloc_mark == NULL)
4379 goto error_free_vers;
4380
4381 /* Make a special call to the linker "notice" function to
4382 tell it that we are about to handle an as-needed lib. */
4383 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4384 goto error_free_vers;
4385
4386 /* Clone the symbol table. Remember some pointers into the
4387 symbol table, and dynamic symbol count. */
4388 old_ent = (char *) old_tab + tabsize;
4389 memcpy (old_tab, htab->root.table.table, tabsize);
4390 old_undefs = htab->root.undefs;
4391 old_undefs_tail = htab->root.undefs_tail;
4392 old_table = htab->root.table.table;
4393 old_size = htab->root.table.size;
4394 old_count = htab->root.table.count;
4395 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4396 if (old_strtab == NULL)
4397 goto error_free_vers;
4398
4399 for (i = 0; i < htab->root.table.size; i++)
4400 {
4401 struct bfd_hash_entry *p;
4402 struct elf_link_hash_entry *h;
4403
4404 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4405 {
4406 memcpy (old_ent, p, htab->root.table.entsize);
4407 old_ent = (char *) old_ent + htab->root.table.entsize;
4408 h = (struct elf_link_hash_entry *) p;
4409 if (h->root.type == bfd_link_hash_warning)
4410 {
4411 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4412 old_ent = (char *) old_ent + htab->root.table.entsize;
4413 }
4414 }
4415 }
4416 }
4417
4418 weaks = NULL;
4419 if (extversym == NULL)
4420 ever = NULL;
4421 else if (extversym + extsymoff < extversym_end)
4422 ever = extversym + extsymoff;
4423 else
4424 {
4425 /* xgettext:c-format */
4426 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4427 abfd, (long) extsymoff,
4428 (long) (extversym_end - extversym) / sizeof (* extversym));
4429 bfd_set_error (bfd_error_bad_value);
4430 goto error_free_vers;
4431 }
4432
4433 if (!bfd_link_relocatable (info)
4434 && abfd->lto_slim_object)
4435 {
4436 _bfd_error_handler
4437 (_("%pB: plugin needed to handle lto object"), abfd);
4438 }
4439
4440 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4441 isym < isymend;
4442 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4443 {
4444 int bind;
4445 bfd_vma value;
4446 asection *sec, *new_sec;
4447 flagword flags;
4448 const char *name;
4449 struct elf_link_hash_entry *h;
4450 struct elf_link_hash_entry *hi;
4451 bfd_boolean definition;
4452 bfd_boolean size_change_ok;
4453 bfd_boolean type_change_ok;
4454 bfd_boolean new_weak;
4455 bfd_boolean old_weak;
4456 bfd_boolean override;
4457 bfd_boolean common;
4458 bfd_boolean discarded;
4459 unsigned int old_alignment;
4460 unsigned int shindex;
4461 bfd *old_bfd;
4462 bfd_boolean matched;
4463
4464 override = FALSE;
4465
4466 flags = BSF_NO_FLAGS;
4467 sec = NULL;
4468 value = isym->st_value;
4469 common = bed->common_definition (isym);
4470 if (common && info->inhibit_common_definition)
4471 {
4472 /* Treat common symbol as undefined for --no-define-common. */
4473 isym->st_shndx = SHN_UNDEF;
4474 common = FALSE;
4475 }
4476 discarded = FALSE;
4477
4478 bind = ELF_ST_BIND (isym->st_info);
4479 switch (bind)
4480 {
4481 case STB_LOCAL:
4482 /* This should be impossible, since ELF requires that all
4483 global symbols follow all local symbols, and that sh_info
4484 point to the first global symbol. Unfortunately, Irix 5
4485 screws this up. */
4486 if (elf_bad_symtab (abfd))
4487 continue;
4488
4489 /* If we aren't prepared to handle locals within the globals
4490 then we'll likely segfault on a NULL symbol hash if the
4491 symbol is ever referenced in relocations. */
4492 shindex = elf_elfheader (abfd)->e_shstrndx;
4493 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4494 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4495 " (>= sh_info of %lu)"),
4496 abfd, name, (long) (isym - isymbuf + extsymoff),
4497 (long) extsymoff);
4498
4499 /* Dynamic object relocations are not processed by ld, so
4500 ld won't run into the problem mentioned above. */
4501 if (dynamic)
4502 continue;
4503 bfd_set_error (bfd_error_bad_value);
4504 goto error_free_vers;
4505
4506 case STB_GLOBAL:
4507 if (isym->st_shndx != SHN_UNDEF && !common)
4508 flags = BSF_GLOBAL;
4509 break;
4510
4511 case STB_WEAK:
4512 flags = BSF_WEAK;
4513 break;
4514
4515 case STB_GNU_UNIQUE:
4516 flags = BSF_GNU_UNIQUE;
4517 break;
4518
4519 default:
4520 /* Leave it up to the processor backend. */
4521 break;
4522 }
4523
4524 if (isym->st_shndx == SHN_UNDEF)
4525 sec = bfd_und_section_ptr;
4526 else if (isym->st_shndx == SHN_ABS)
4527 sec = bfd_abs_section_ptr;
4528 else if (isym->st_shndx == SHN_COMMON)
4529 {
4530 sec = bfd_com_section_ptr;
4531 /* What ELF calls the size we call the value. What ELF
4532 calls the value we call the alignment. */
4533 value = isym->st_size;
4534 }
4535 else
4536 {
4537 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4538 if (sec == NULL)
4539 sec = bfd_abs_section_ptr;
4540 else if (discarded_section (sec))
4541 {
4542 /* Symbols from discarded section are undefined. We keep
4543 its visibility. */
4544 sec = bfd_und_section_ptr;
4545 discarded = TRUE;
4546 isym->st_shndx = SHN_UNDEF;
4547 }
4548 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4549 value -= sec->vma;
4550 }
4551
4552 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4553 isym->st_name);
4554 if (name == NULL)
4555 goto error_free_vers;
4556
4557 if (isym->st_shndx == SHN_COMMON
4558 && (abfd->flags & BFD_PLUGIN) != 0)
4559 {
4560 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4561
4562 if (xc == NULL)
4563 {
4564 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4565 | SEC_EXCLUDE);
4566 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4567 if (xc == NULL)
4568 goto error_free_vers;
4569 }
4570 sec = xc;
4571 }
4572 else if (isym->st_shndx == SHN_COMMON
4573 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4574 && !bfd_link_relocatable (info))
4575 {
4576 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4577
4578 if (tcomm == NULL)
4579 {
4580 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4581 | SEC_LINKER_CREATED);
4582 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4583 if (tcomm == NULL)
4584 goto error_free_vers;
4585 }
4586 sec = tcomm;
4587 }
4588 else if (bed->elf_add_symbol_hook)
4589 {
4590 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4591 &sec, &value))
4592 goto error_free_vers;
4593
4594 /* The hook function sets the name to NULL if this symbol
4595 should be skipped for some reason. */
4596 if (name == NULL)
4597 continue;
4598 }
4599
4600 /* Sanity check that all possibilities were handled. */
4601 if (sec == NULL)
4602 abort ();
4603
4604 /* Silently discard TLS symbols from --just-syms. There's
4605 no way to combine a static TLS block with a new TLS block
4606 for this executable. */
4607 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4608 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4609 continue;
4610
4611 if (bfd_is_und_section (sec)
4612 || bfd_is_com_section (sec))
4613 definition = FALSE;
4614 else
4615 definition = TRUE;
4616
4617 size_change_ok = FALSE;
4618 type_change_ok = bed->type_change_ok;
4619 old_weak = FALSE;
4620 matched = FALSE;
4621 old_alignment = 0;
4622 old_bfd = NULL;
4623 new_sec = sec;
4624
4625 if (is_elf_hash_table (htab))
4626 {
4627 Elf_Internal_Versym iver;
4628 unsigned int vernum = 0;
4629 bfd_boolean skip;
4630
4631 if (ever == NULL)
4632 {
4633 if (info->default_imported_symver)
4634 /* Use the default symbol version created earlier. */
4635 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4636 else
4637 iver.vs_vers = 0;
4638 }
4639 else if (ever >= extversym_end)
4640 {
4641 /* xgettext:c-format */
4642 _bfd_error_handler (_("%pB: not enough version information"),
4643 abfd);
4644 bfd_set_error (bfd_error_bad_value);
4645 goto error_free_vers;
4646 }
4647 else
4648 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4649
4650 vernum = iver.vs_vers & VERSYM_VERSION;
4651
4652 /* If this is a hidden symbol, or if it is not version
4653 1, we append the version name to the symbol name.
4654 However, we do not modify a non-hidden absolute symbol
4655 if it is not a function, because it might be the version
4656 symbol itself. FIXME: What if it isn't? */
4657 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4658 || (vernum > 1
4659 && (!bfd_is_abs_section (sec)
4660 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4661 {
4662 const char *verstr;
4663 size_t namelen, verlen, newlen;
4664 char *newname, *p;
4665
4666 if (isym->st_shndx != SHN_UNDEF)
4667 {
4668 if (vernum > elf_tdata (abfd)->cverdefs)
4669 verstr = NULL;
4670 else if (vernum > 1)
4671 verstr =
4672 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4673 else
4674 verstr = "";
4675
4676 if (verstr == NULL)
4677 {
4678 _bfd_error_handler
4679 /* xgettext:c-format */
4680 (_("%pB: %s: invalid version %u (max %d)"),
4681 abfd, name, vernum,
4682 elf_tdata (abfd)->cverdefs);
4683 bfd_set_error (bfd_error_bad_value);
4684 goto error_free_vers;
4685 }
4686 }
4687 else
4688 {
4689 /* We cannot simply test for the number of
4690 entries in the VERNEED section since the
4691 numbers for the needed versions do not start
4692 at 0. */
4693 Elf_Internal_Verneed *t;
4694
4695 verstr = NULL;
4696 for (t = elf_tdata (abfd)->verref;
4697 t != NULL;
4698 t = t->vn_nextref)
4699 {
4700 Elf_Internal_Vernaux *a;
4701
4702 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4703 {
4704 if (a->vna_other == vernum)
4705 {
4706 verstr = a->vna_nodename;
4707 break;
4708 }
4709 }
4710 if (a != NULL)
4711 break;
4712 }
4713 if (verstr == NULL)
4714 {
4715 _bfd_error_handler
4716 /* xgettext:c-format */
4717 (_("%pB: %s: invalid needed version %d"),
4718 abfd, name, vernum);
4719 bfd_set_error (bfd_error_bad_value);
4720 goto error_free_vers;
4721 }
4722 }
4723
4724 namelen = strlen (name);
4725 verlen = strlen (verstr);
4726 newlen = namelen + verlen + 2;
4727 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4728 && isym->st_shndx != SHN_UNDEF)
4729 ++newlen;
4730
4731 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4732 if (newname == NULL)
4733 goto error_free_vers;
4734 memcpy (newname, name, namelen);
4735 p = newname + namelen;
4736 *p++ = ELF_VER_CHR;
4737 /* If this is a defined non-hidden version symbol,
4738 we add another @ to the name. This indicates the
4739 default version of the symbol. */
4740 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4741 && isym->st_shndx != SHN_UNDEF)
4742 *p++ = ELF_VER_CHR;
4743 memcpy (p, verstr, verlen + 1);
4744
4745 name = newname;
4746 }
4747
4748 /* If this symbol has default visibility and the user has
4749 requested we not re-export it, then mark it as hidden. */
4750 if (!bfd_is_und_section (sec)
4751 && !dynamic
4752 && abfd->no_export
4753 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4754 isym->st_other = (STV_HIDDEN
4755 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4756
4757 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4758 sym_hash, &old_bfd, &old_weak,
4759 &old_alignment, &skip, &override,
4760 &type_change_ok, &size_change_ok,
4761 &matched))
4762 goto error_free_vers;
4763
4764 if (skip)
4765 continue;
4766
4767 /* Override a definition only if the new symbol matches the
4768 existing one. */
4769 if (override && matched)
4770 definition = FALSE;
4771
4772 h = *sym_hash;
4773 while (h->root.type == bfd_link_hash_indirect
4774 || h->root.type == bfd_link_hash_warning)
4775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4776
4777 if (elf_tdata (abfd)->verdef != NULL
4778 && vernum > 1
4779 && definition)
4780 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4781 }
4782
4783 if (! (_bfd_generic_link_add_one_symbol
4784 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4785 (struct bfd_link_hash_entry **) sym_hash)))
4786 goto error_free_vers;
4787
4788 h = *sym_hash;
4789 /* We need to make sure that indirect symbol dynamic flags are
4790 updated. */
4791 hi = h;
4792 while (h->root.type == bfd_link_hash_indirect
4793 || h->root.type == bfd_link_hash_warning)
4794 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4795
4796 /* Setting the index to -3 tells elf_link_output_extsym that
4797 this symbol is defined in a discarded section. */
4798 if (discarded)
4799 h->indx = -3;
4800
4801 *sym_hash = h;
4802
4803 new_weak = (flags & BSF_WEAK) != 0;
4804 if (dynamic
4805 && definition
4806 && new_weak
4807 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4808 && is_elf_hash_table (htab)
4809 && h->u.alias == NULL)
4810 {
4811 /* Keep a list of all weak defined non function symbols from
4812 a dynamic object, using the alias field. Later in this
4813 function we will set the alias field to the correct
4814 value. We only put non-function symbols from dynamic
4815 objects on this list, because that happens to be the only
4816 time we need to know the normal symbol corresponding to a
4817 weak symbol, and the information is time consuming to
4818 figure out. If the alias field is not already NULL,
4819 then this symbol was already defined by some previous
4820 dynamic object, and we will be using that previous
4821 definition anyhow. */
4822
4823 h->u.alias = weaks;
4824 weaks = h;
4825 }
4826
4827 /* Set the alignment of a common symbol. */
4828 if ((common || bfd_is_com_section (sec))
4829 && h->root.type == bfd_link_hash_common)
4830 {
4831 unsigned int align;
4832
4833 if (common)
4834 align = bfd_log2 (isym->st_value);
4835 else
4836 {
4837 /* The new symbol is a common symbol in a shared object.
4838 We need to get the alignment from the section. */
4839 align = new_sec->alignment_power;
4840 }
4841 if (align > old_alignment)
4842 h->root.u.c.p->alignment_power = align;
4843 else
4844 h->root.u.c.p->alignment_power = old_alignment;
4845 }
4846
4847 if (is_elf_hash_table (htab))
4848 {
4849 /* Set a flag in the hash table entry indicating the type of
4850 reference or definition we just found. A dynamic symbol
4851 is one which is referenced or defined by both a regular
4852 object and a shared object. */
4853 bfd_boolean dynsym = FALSE;
4854
4855 /* Plugin symbols aren't normal. Don't set def_regular or
4856 ref_regular for them, or make them dynamic. */
4857 if ((abfd->flags & BFD_PLUGIN) != 0)
4858 ;
4859 else if (! dynamic)
4860 {
4861 if (! definition)
4862 {
4863 h->ref_regular = 1;
4864 if (bind != STB_WEAK)
4865 h->ref_regular_nonweak = 1;
4866 }
4867 else
4868 {
4869 h->def_regular = 1;
4870 if (h->def_dynamic)
4871 {
4872 h->def_dynamic = 0;
4873 h->ref_dynamic = 1;
4874 }
4875 }
4876
4877 /* If the indirect symbol has been forced local, don't
4878 make the real symbol dynamic. */
4879 if ((h == hi || !hi->forced_local)
4880 && (bfd_link_dll (info)
4881 || h->def_dynamic
4882 || h->ref_dynamic))
4883 dynsym = TRUE;
4884 }
4885 else
4886 {
4887 if (! definition)
4888 {
4889 h->ref_dynamic = 1;
4890 hi->ref_dynamic = 1;
4891 }
4892 else
4893 {
4894 h->def_dynamic = 1;
4895 hi->def_dynamic = 1;
4896 }
4897
4898 /* If the indirect symbol has been forced local, don't
4899 make the real symbol dynamic. */
4900 if ((h == hi || !hi->forced_local)
4901 && (h->def_regular
4902 || h->ref_regular
4903 || (h->is_weakalias
4904 && weakdef (h)->dynindx != -1)))
4905 dynsym = TRUE;
4906 }
4907
4908 /* Check to see if we need to add an indirect symbol for
4909 the default name. */
4910 if (definition
4911 || (!override && h->root.type == bfd_link_hash_common))
4912 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4913 sec, value, &old_bfd, &dynsym))
4914 goto error_free_vers;
4915
4916 /* Check the alignment when a common symbol is involved. This
4917 can change when a common symbol is overridden by a normal
4918 definition or a common symbol is ignored due to the old
4919 normal definition. We need to make sure the maximum
4920 alignment is maintained. */
4921 if ((old_alignment || common)
4922 && h->root.type != bfd_link_hash_common)
4923 {
4924 unsigned int common_align;
4925 unsigned int normal_align;
4926 unsigned int symbol_align;
4927 bfd *normal_bfd;
4928 bfd *common_bfd;
4929
4930 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4931 || h->root.type == bfd_link_hash_defweak);
4932
4933 symbol_align = ffs (h->root.u.def.value) - 1;
4934 if (h->root.u.def.section->owner != NULL
4935 && (h->root.u.def.section->owner->flags
4936 & (DYNAMIC | BFD_PLUGIN)) == 0)
4937 {
4938 normal_align = h->root.u.def.section->alignment_power;
4939 if (normal_align > symbol_align)
4940 normal_align = symbol_align;
4941 }
4942 else
4943 normal_align = symbol_align;
4944
4945 if (old_alignment)
4946 {
4947 common_align = old_alignment;
4948 common_bfd = old_bfd;
4949 normal_bfd = abfd;
4950 }
4951 else
4952 {
4953 common_align = bfd_log2 (isym->st_value);
4954 common_bfd = abfd;
4955 normal_bfd = old_bfd;
4956 }
4957
4958 if (normal_align < common_align)
4959 {
4960 /* PR binutils/2735 */
4961 if (normal_bfd == NULL)
4962 _bfd_error_handler
4963 /* xgettext:c-format */
4964 (_("warning: alignment %u of common symbol `%s' in %pB is"
4965 " greater than the alignment (%u) of its section %pA"),
4966 1 << common_align, name, common_bfd,
4967 1 << normal_align, h->root.u.def.section);
4968 else
4969 _bfd_error_handler
4970 /* xgettext:c-format */
4971 (_("warning: alignment %u of symbol `%s' in %pB"
4972 " is smaller than %u in %pB"),
4973 1 << normal_align, name, normal_bfd,
4974 1 << common_align, common_bfd);
4975 }
4976 }
4977
4978 /* Remember the symbol size if it isn't undefined. */
4979 if (isym->st_size != 0
4980 && isym->st_shndx != SHN_UNDEF
4981 && (definition || h->size == 0))
4982 {
4983 if (h->size != 0
4984 && h->size != isym->st_size
4985 && ! size_change_ok)
4986 _bfd_error_handler
4987 /* xgettext:c-format */
4988 (_("warning: size of symbol `%s' changed"
4989 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4990 name, (uint64_t) h->size, old_bfd,
4991 (uint64_t) isym->st_size, abfd);
4992
4993 h->size = isym->st_size;
4994 }
4995
4996 /* If this is a common symbol, then we always want H->SIZE
4997 to be the size of the common symbol. The code just above
4998 won't fix the size if a common symbol becomes larger. We
4999 don't warn about a size change here, because that is
5000 covered by --warn-common. Allow changes between different
5001 function types. */
5002 if (h->root.type == bfd_link_hash_common)
5003 h->size = h->root.u.c.size;
5004
5005 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5006 && ((definition && !new_weak)
5007 || (old_weak && h->root.type == bfd_link_hash_common)
5008 || h->type == STT_NOTYPE))
5009 {
5010 unsigned int type = ELF_ST_TYPE (isym->st_info);
5011
5012 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5013 symbol. */
5014 if (type == STT_GNU_IFUNC
5015 && (abfd->flags & DYNAMIC) != 0)
5016 type = STT_FUNC;
5017
5018 if (h->type != type)
5019 {
5020 if (h->type != STT_NOTYPE && ! type_change_ok)
5021 /* xgettext:c-format */
5022 _bfd_error_handler
5023 (_("warning: type of symbol `%s' changed"
5024 " from %d to %d in %pB"),
5025 name, h->type, type, abfd);
5026
5027 h->type = type;
5028 }
5029 }
5030
5031 /* Merge st_other field. */
5032 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5033
5034 /* We don't want to make debug symbol dynamic. */
5035 if (definition
5036 && (sec->flags & SEC_DEBUGGING)
5037 && !bfd_link_relocatable (info))
5038 dynsym = FALSE;
5039
5040 /* Nor should we make plugin symbols dynamic. */
5041 if ((abfd->flags & BFD_PLUGIN) != 0)
5042 dynsym = FALSE;
5043
5044 if (definition)
5045 {
5046 h->target_internal = isym->st_target_internal;
5047 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5048 }
5049
5050 if (definition && !dynamic)
5051 {
5052 char *p = strchr (name, ELF_VER_CHR);
5053 if (p != NULL && p[1] != ELF_VER_CHR)
5054 {
5055 /* Queue non-default versions so that .symver x, x@FOO
5056 aliases can be checked. */
5057 if (!nondeflt_vers)
5058 {
5059 amt = ((isymend - isym + 1)
5060 * sizeof (struct elf_link_hash_entry *));
5061 nondeflt_vers
5062 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5063 if (!nondeflt_vers)
5064 goto error_free_vers;
5065 }
5066 nondeflt_vers[nondeflt_vers_cnt++] = h;
5067 }
5068 }
5069
5070 if (dynsym && h->dynindx == -1)
5071 {
5072 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5073 goto error_free_vers;
5074 if (h->is_weakalias
5075 && weakdef (h)->dynindx == -1)
5076 {
5077 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5078 goto error_free_vers;
5079 }
5080 }
5081 else if (h->dynindx != -1)
5082 /* If the symbol already has a dynamic index, but
5083 visibility says it should not be visible, turn it into
5084 a local symbol. */
5085 switch (ELF_ST_VISIBILITY (h->other))
5086 {
5087 case STV_INTERNAL:
5088 case STV_HIDDEN:
5089 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5090 dynsym = FALSE;
5091 break;
5092 }
5093
5094 /* Don't add DT_NEEDED for references from the dummy bfd nor
5095 for unmatched symbol. */
5096 if (!add_needed
5097 && matched
5098 && definition
5099 && ((dynsym
5100 && h->ref_regular_nonweak
5101 && (old_bfd == NULL
5102 || (old_bfd->flags & BFD_PLUGIN) == 0))
5103 || (h->ref_dynamic_nonweak
5104 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5105 && !on_needed_list (elf_dt_name (abfd),
5106 htab->needed, NULL))))
5107 {
5108 int ret;
5109 const char *soname = elf_dt_name (abfd);
5110
5111 info->callbacks->minfo ("%!", soname, old_bfd,
5112 h->root.root.string);
5113
5114 /* A symbol from a library loaded via DT_NEEDED of some
5115 other library is referenced by a regular object.
5116 Add a DT_NEEDED entry for it. Issue an error if
5117 --no-add-needed is used and the reference was not
5118 a weak one. */
5119 if (old_bfd != NULL
5120 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5121 {
5122 _bfd_error_handler
5123 /* xgettext:c-format */
5124 (_("%pB: undefined reference to symbol '%s'"),
5125 old_bfd, name);
5126 bfd_set_error (bfd_error_missing_dso);
5127 goto error_free_vers;
5128 }
5129
5130 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5131 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5132
5133 add_needed = TRUE;
5134 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5135 if (ret < 0)
5136 goto error_free_vers;
5137
5138 BFD_ASSERT (ret == 0);
5139 }
5140 }
5141 }
5142
5143 if (info->lto_plugin_active
5144 && !bfd_link_relocatable (info)
5145 && (abfd->flags & BFD_PLUGIN) == 0
5146 && !just_syms
5147 && extsymcount)
5148 {
5149 int r_sym_shift;
5150
5151 if (bed->s->arch_size == 32)
5152 r_sym_shift = 8;
5153 else
5154 r_sym_shift = 32;
5155
5156 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5157 referenced in regular objects so that linker plugin will get
5158 the correct symbol resolution. */
5159
5160 sym_hash = elf_sym_hashes (abfd);
5161 for (s = abfd->sections; s != NULL; s = s->next)
5162 {
5163 Elf_Internal_Rela *internal_relocs;
5164 Elf_Internal_Rela *rel, *relend;
5165
5166 /* Don't check relocations in excluded sections. */
5167 if ((s->flags & SEC_RELOC) == 0
5168 || s->reloc_count == 0
5169 || (s->flags & SEC_EXCLUDE) != 0
5170 || ((info->strip == strip_all
5171 || info->strip == strip_debugger)
5172 && (s->flags & SEC_DEBUGGING) != 0))
5173 continue;
5174
5175 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5176 NULL,
5177 info->keep_memory);
5178 if (internal_relocs == NULL)
5179 goto error_free_vers;
5180
5181 rel = internal_relocs;
5182 relend = rel + s->reloc_count;
5183 for ( ; rel < relend; rel++)
5184 {
5185 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5186 struct elf_link_hash_entry *h;
5187
5188 /* Skip local symbols. */
5189 if (r_symndx < extsymoff)
5190 continue;
5191
5192 h = sym_hash[r_symndx - extsymoff];
5193 if (h != NULL)
5194 h->root.non_ir_ref_regular = 1;
5195 }
5196
5197 if (elf_section_data (s)->relocs != internal_relocs)
5198 free (internal_relocs);
5199 }
5200 }
5201
5202 if (extversym != NULL)
5203 {
5204 free (extversym);
5205 extversym = NULL;
5206 }
5207
5208 if (isymbuf != NULL)
5209 {
5210 free (isymbuf);
5211 isymbuf = NULL;
5212 }
5213
5214 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5215 {
5216 unsigned int i;
5217
5218 /* Restore the symbol table. */
5219 old_ent = (char *) old_tab + tabsize;
5220 memset (elf_sym_hashes (abfd), 0,
5221 extsymcount * sizeof (struct elf_link_hash_entry *));
5222 htab->root.table.table = old_table;
5223 htab->root.table.size = old_size;
5224 htab->root.table.count = old_count;
5225 memcpy (htab->root.table.table, old_tab, tabsize);
5226 htab->root.undefs = old_undefs;
5227 htab->root.undefs_tail = old_undefs_tail;
5228 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5229 free (old_strtab);
5230 old_strtab = NULL;
5231 for (i = 0; i < htab->root.table.size; i++)
5232 {
5233 struct bfd_hash_entry *p;
5234 struct elf_link_hash_entry *h;
5235 bfd_size_type size;
5236 unsigned int alignment_power;
5237 unsigned int non_ir_ref_dynamic;
5238
5239 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5240 {
5241 h = (struct elf_link_hash_entry *) p;
5242 if (h->root.type == bfd_link_hash_warning)
5243 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5244
5245 /* Preserve the maximum alignment and size for common
5246 symbols even if this dynamic lib isn't on DT_NEEDED
5247 since it can still be loaded at run time by another
5248 dynamic lib. */
5249 if (h->root.type == bfd_link_hash_common)
5250 {
5251 size = h->root.u.c.size;
5252 alignment_power = h->root.u.c.p->alignment_power;
5253 }
5254 else
5255 {
5256 size = 0;
5257 alignment_power = 0;
5258 }
5259 /* Preserve non_ir_ref_dynamic so that this symbol
5260 will be exported when the dynamic lib becomes needed
5261 in the second pass. */
5262 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5263 memcpy (p, old_ent, htab->root.table.entsize);
5264 old_ent = (char *) old_ent + htab->root.table.entsize;
5265 h = (struct elf_link_hash_entry *) p;
5266 if (h->root.type == bfd_link_hash_warning)
5267 {
5268 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5269 old_ent = (char *) old_ent + htab->root.table.entsize;
5270 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5271 }
5272 if (h->root.type == bfd_link_hash_common)
5273 {
5274 if (size > h->root.u.c.size)
5275 h->root.u.c.size = size;
5276 if (alignment_power > h->root.u.c.p->alignment_power)
5277 h->root.u.c.p->alignment_power = alignment_power;
5278 }
5279 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5280 }
5281 }
5282
5283 /* Make a special call to the linker "notice" function to
5284 tell it that symbols added for crefs may need to be removed. */
5285 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5286 goto error_free_vers;
5287
5288 free (old_tab);
5289 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5290 alloc_mark);
5291 if (nondeflt_vers != NULL)
5292 free (nondeflt_vers);
5293 return TRUE;
5294 }
5295
5296 if (old_tab != NULL)
5297 {
5298 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5299 goto error_free_vers;
5300 free (old_tab);
5301 old_tab = NULL;
5302 }
5303
5304 /* Now that all the symbols from this input file are created, if
5305 not performing a relocatable link, handle .symver foo, foo@BAR
5306 such that any relocs against foo become foo@BAR. */
5307 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5308 {
5309 size_t cnt, symidx;
5310
5311 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5312 {
5313 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5314 char *shortname, *p;
5315
5316 p = strchr (h->root.root.string, ELF_VER_CHR);
5317 if (p == NULL
5318 || (h->root.type != bfd_link_hash_defined
5319 && h->root.type != bfd_link_hash_defweak))
5320 continue;
5321
5322 amt = p - h->root.root.string;
5323 shortname = (char *) bfd_malloc (amt + 1);
5324 if (!shortname)
5325 goto error_free_vers;
5326 memcpy (shortname, h->root.root.string, amt);
5327 shortname[amt] = '\0';
5328
5329 hi = (struct elf_link_hash_entry *)
5330 bfd_link_hash_lookup (&htab->root, shortname,
5331 FALSE, FALSE, FALSE);
5332 if (hi != NULL
5333 && hi->root.type == h->root.type
5334 && hi->root.u.def.value == h->root.u.def.value
5335 && hi->root.u.def.section == h->root.u.def.section)
5336 {
5337 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5338 hi->root.type = bfd_link_hash_indirect;
5339 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5340 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5341 sym_hash = elf_sym_hashes (abfd);
5342 if (sym_hash)
5343 for (symidx = 0; symidx < extsymcount; ++symidx)
5344 if (sym_hash[symidx] == hi)
5345 {
5346 sym_hash[symidx] = h;
5347 break;
5348 }
5349 }
5350 free (shortname);
5351 }
5352 free (nondeflt_vers);
5353 nondeflt_vers = NULL;
5354 }
5355
5356 /* Now set the alias field correctly for all the weak defined
5357 symbols we found. The only way to do this is to search all the
5358 symbols. Since we only need the information for non functions in
5359 dynamic objects, that's the only time we actually put anything on
5360 the list WEAKS. We need this information so that if a regular
5361 object refers to a symbol defined weakly in a dynamic object, the
5362 real symbol in the dynamic object is also put in the dynamic
5363 symbols; we also must arrange for both symbols to point to the
5364 same memory location. We could handle the general case of symbol
5365 aliasing, but a general symbol alias can only be generated in
5366 assembler code, handling it correctly would be very time
5367 consuming, and other ELF linkers don't handle general aliasing
5368 either. */
5369 if (weaks != NULL)
5370 {
5371 struct elf_link_hash_entry **hpp;
5372 struct elf_link_hash_entry **hppend;
5373 struct elf_link_hash_entry **sorted_sym_hash;
5374 struct elf_link_hash_entry *h;
5375 size_t sym_count;
5376
5377 /* Since we have to search the whole symbol list for each weak
5378 defined symbol, search time for N weak defined symbols will be
5379 O(N^2). Binary search will cut it down to O(NlogN). */
5380 amt = extsymcount;
5381 amt *= sizeof (*sorted_sym_hash);
5382 sorted_sym_hash = bfd_malloc (amt);
5383 if (sorted_sym_hash == NULL)
5384 goto error_return;
5385 sym_hash = sorted_sym_hash;
5386 hpp = elf_sym_hashes (abfd);
5387 hppend = hpp + extsymcount;
5388 sym_count = 0;
5389 for (; hpp < hppend; hpp++)
5390 {
5391 h = *hpp;
5392 if (h != NULL
5393 && h->root.type == bfd_link_hash_defined
5394 && !bed->is_function_type (h->type))
5395 {
5396 *sym_hash = h;
5397 sym_hash++;
5398 sym_count++;
5399 }
5400 }
5401
5402 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5403 elf_sort_symbol);
5404
5405 while (weaks != NULL)
5406 {
5407 struct elf_link_hash_entry *hlook;
5408 asection *slook;
5409 bfd_vma vlook;
5410 size_t i, j, idx = 0;
5411
5412 hlook = weaks;
5413 weaks = hlook->u.alias;
5414 hlook->u.alias = NULL;
5415
5416 if (hlook->root.type != bfd_link_hash_defined
5417 && hlook->root.type != bfd_link_hash_defweak)
5418 continue;
5419
5420 slook = hlook->root.u.def.section;
5421 vlook = hlook->root.u.def.value;
5422
5423 i = 0;
5424 j = sym_count;
5425 while (i != j)
5426 {
5427 bfd_signed_vma vdiff;
5428 idx = (i + j) / 2;
5429 h = sorted_sym_hash[idx];
5430 vdiff = vlook - h->root.u.def.value;
5431 if (vdiff < 0)
5432 j = idx;
5433 else if (vdiff > 0)
5434 i = idx + 1;
5435 else
5436 {
5437 int sdiff = slook->id - h->root.u.def.section->id;
5438 if (sdiff < 0)
5439 j = idx;
5440 else if (sdiff > 0)
5441 i = idx + 1;
5442 else
5443 break;
5444 }
5445 }
5446
5447 /* We didn't find a value/section match. */
5448 if (i == j)
5449 continue;
5450
5451 /* With multiple aliases, or when the weak symbol is already
5452 strongly defined, we have multiple matching symbols and
5453 the binary search above may land on any of them. Step
5454 one past the matching symbol(s). */
5455 while (++idx != j)
5456 {
5457 h = sorted_sym_hash[idx];
5458 if (h->root.u.def.section != slook
5459 || h->root.u.def.value != vlook)
5460 break;
5461 }
5462
5463 /* Now look back over the aliases. Since we sorted by size
5464 as well as value and section, we'll choose the one with
5465 the largest size. */
5466 while (idx-- != i)
5467 {
5468 h = sorted_sym_hash[idx];
5469
5470 /* Stop if value or section doesn't match. */
5471 if (h->root.u.def.section != slook
5472 || h->root.u.def.value != vlook)
5473 break;
5474 else if (h != hlook)
5475 {
5476 struct elf_link_hash_entry *t;
5477
5478 hlook->u.alias = h;
5479 hlook->is_weakalias = 1;
5480 t = h;
5481 if (t->u.alias != NULL)
5482 while (t->u.alias != h)
5483 t = t->u.alias;
5484 t->u.alias = hlook;
5485
5486 /* If the weak definition is in the list of dynamic
5487 symbols, make sure the real definition is put
5488 there as well. */
5489 if (hlook->dynindx != -1 && h->dynindx == -1)
5490 {
5491 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5492 {
5493 err_free_sym_hash:
5494 free (sorted_sym_hash);
5495 goto error_return;
5496 }
5497 }
5498
5499 /* If the real definition is in the list of dynamic
5500 symbols, make sure the weak definition is put
5501 there as well. If we don't do this, then the
5502 dynamic loader might not merge the entries for the
5503 real definition and the weak definition. */
5504 if (h->dynindx != -1 && hlook->dynindx == -1)
5505 {
5506 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5507 goto err_free_sym_hash;
5508 }
5509 break;
5510 }
5511 }
5512 }
5513
5514 free (sorted_sym_hash);
5515 }
5516
5517 if (bed->check_directives
5518 && !(*bed->check_directives) (abfd, info))
5519 return FALSE;
5520
5521 /* If this is a non-traditional link, try to optimize the handling
5522 of the .stab/.stabstr sections. */
5523 if (! dynamic
5524 && ! info->traditional_format
5525 && is_elf_hash_table (htab)
5526 && (info->strip != strip_all && info->strip != strip_debugger))
5527 {
5528 asection *stabstr;
5529
5530 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5531 if (stabstr != NULL)
5532 {
5533 bfd_size_type string_offset = 0;
5534 asection *stab;
5535
5536 for (stab = abfd->sections; stab; stab = stab->next)
5537 if (CONST_STRNEQ (stab->name, ".stab")
5538 && (!stab->name[5] ||
5539 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5540 && (stab->flags & SEC_MERGE) == 0
5541 && !bfd_is_abs_section (stab->output_section))
5542 {
5543 struct bfd_elf_section_data *secdata;
5544
5545 secdata = elf_section_data (stab);
5546 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5547 stabstr, &secdata->sec_info,
5548 &string_offset))
5549 goto error_return;
5550 if (secdata->sec_info)
5551 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5552 }
5553 }
5554 }
5555
5556 if (is_elf_hash_table (htab) && add_needed)
5557 {
5558 /* Add this bfd to the loaded list. */
5559 struct elf_link_loaded_list *n;
5560
5561 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5562 if (n == NULL)
5563 goto error_return;
5564 n->abfd = abfd;
5565 n->next = htab->loaded;
5566 htab->loaded = n;
5567 }
5568
5569 return TRUE;
5570
5571 error_free_vers:
5572 if (old_tab != NULL)
5573 free (old_tab);
5574 if (old_strtab != NULL)
5575 free (old_strtab);
5576 if (nondeflt_vers != NULL)
5577 free (nondeflt_vers);
5578 if (extversym != NULL)
5579 free (extversym);
5580 error_free_sym:
5581 if (isymbuf != NULL)
5582 free (isymbuf);
5583 error_return:
5584 return FALSE;
5585 }
5586
5587 /* Return the linker hash table entry of a symbol that might be
5588 satisfied by an archive symbol. Return -1 on error. */
5589
5590 struct elf_link_hash_entry *
5591 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5592 struct bfd_link_info *info,
5593 const char *name)
5594 {
5595 struct elf_link_hash_entry *h;
5596 char *p, *copy;
5597 size_t len, first;
5598
5599 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5600 if (h != NULL)
5601 return h;
5602
5603 /* If this is a default version (the name contains @@), look up the
5604 symbol again with only one `@' as well as without the version.
5605 The effect is that references to the symbol with and without the
5606 version will be matched by the default symbol in the archive. */
5607
5608 p = strchr (name, ELF_VER_CHR);
5609 if (p == NULL || p[1] != ELF_VER_CHR)
5610 return h;
5611
5612 /* First check with only one `@'. */
5613 len = strlen (name);
5614 copy = (char *) bfd_alloc (abfd, len);
5615 if (copy == NULL)
5616 return (struct elf_link_hash_entry *) -1;
5617
5618 first = p - name + 1;
5619 memcpy (copy, name, first);
5620 memcpy (copy + first, name + first + 1, len - first);
5621
5622 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5623 if (h == NULL)
5624 {
5625 /* We also need to check references to the symbol without the
5626 version. */
5627 copy[first - 1] = '\0';
5628 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5629 FALSE, FALSE, TRUE);
5630 }
5631
5632 bfd_release (abfd, copy);
5633 return h;
5634 }
5635
5636 /* Add symbols from an ELF archive file to the linker hash table. We
5637 don't use _bfd_generic_link_add_archive_symbols because we need to
5638 handle versioned symbols.
5639
5640 Fortunately, ELF archive handling is simpler than that done by
5641 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5642 oddities. In ELF, if we find a symbol in the archive map, and the
5643 symbol is currently undefined, we know that we must pull in that
5644 object file.
5645
5646 Unfortunately, we do have to make multiple passes over the symbol
5647 table until nothing further is resolved. */
5648
5649 static bfd_boolean
5650 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5651 {
5652 symindex c;
5653 unsigned char *included = NULL;
5654 carsym *symdefs;
5655 bfd_boolean loop;
5656 bfd_size_type amt;
5657 const struct elf_backend_data *bed;
5658 struct elf_link_hash_entry * (*archive_symbol_lookup)
5659 (bfd *, struct bfd_link_info *, const char *);
5660
5661 if (! bfd_has_map (abfd))
5662 {
5663 /* An empty archive is a special case. */
5664 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5665 return TRUE;
5666 bfd_set_error (bfd_error_no_armap);
5667 return FALSE;
5668 }
5669
5670 /* Keep track of all symbols we know to be already defined, and all
5671 files we know to be already included. This is to speed up the
5672 second and subsequent passes. */
5673 c = bfd_ardata (abfd)->symdef_count;
5674 if (c == 0)
5675 return TRUE;
5676 amt = c;
5677 amt *= sizeof (*included);
5678 included = (unsigned char *) bfd_zmalloc (amt);
5679 if (included == NULL)
5680 return FALSE;
5681
5682 symdefs = bfd_ardata (abfd)->symdefs;
5683 bed = get_elf_backend_data (abfd);
5684 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5685
5686 do
5687 {
5688 file_ptr last;
5689 symindex i;
5690 carsym *symdef;
5691 carsym *symdefend;
5692
5693 loop = FALSE;
5694 last = -1;
5695
5696 symdef = symdefs;
5697 symdefend = symdef + c;
5698 for (i = 0; symdef < symdefend; symdef++, i++)
5699 {
5700 struct elf_link_hash_entry *h;
5701 bfd *element;
5702 struct bfd_link_hash_entry *undefs_tail;
5703 symindex mark;
5704
5705 if (included[i])
5706 continue;
5707 if (symdef->file_offset == last)
5708 {
5709 included[i] = TRUE;
5710 continue;
5711 }
5712
5713 h = archive_symbol_lookup (abfd, info, symdef->name);
5714 if (h == (struct elf_link_hash_entry *) -1)
5715 goto error_return;
5716
5717 if (h == NULL)
5718 continue;
5719
5720 if (h->root.type == bfd_link_hash_common)
5721 {
5722 /* We currently have a common symbol. The archive map contains
5723 a reference to this symbol, so we may want to include it. We
5724 only want to include it however, if this archive element
5725 contains a definition of the symbol, not just another common
5726 declaration of it.
5727
5728 Unfortunately some archivers (including GNU ar) will put
5729 declarations of common symbols into their archive maps, as
5730 well as real definitions, so we cannot just go by the archive
5731 map alone. Instead we must read in the element's symbol
5732 table and check that to see what kind of symbol definition
5733 this is. */
5734 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5735 continue;
5736 }
5737 else if (h->root.type != bfd_link_hash_undefined)
5738 {
5739 if (h->root.type != bfd_link_hash_undefweak)
5740 /* Symbol must be defined. Don't check it again. */
5741 included[i] = TRUE;
5742 continue;
5743 }
5744
5745 /* We need to include this archive member. */
5746 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5747 if (element == NULL)
5748 goto error_return;
5749
5750 if (! bfd_check_format (element, bfd_object))
5751 goto error_return;
5752
5753 undefs_tail = info->hash->undefs_tail;
5754
5755 if (!(*info->callbacks
5756 ->add_archive_element) (info, element, symdef->name, &element))
5757 continue;
5758 if (!bfd_link_add_symbols (element, info))
5759 goto error_return;
5760
5761 /* If there are any new undefined symbols, we need to make
5762 another pass through the archive in order to see whether
5763 they can be defined. FIXME: This isn't perfect, because
5764 common symbols wind up on undefs_tail and because an
5765 undefined symbol which is defined later on in this pass
5766 does not require another pass. This isn't a bug, but it
5767 does make the code less efficient than it could be. */
5768 if (undefs_tail != info->hash->undefs_tail)
5769 loop = TRUE;
5770
5771 /* Look backward to mark all symbols from this object file
5772 which we have already seen in this pass. */
5773 mark = i;
5774 do
5775 {
5776 included[mark] = TRUE;
5777 if (mark == 0)
5778 break;
5779 --mark;
5780 }
5781 while (symdefs[mark].file_offset == symdef->file_offset);
5782
5783 /* We mark subsequent symbols from this object file as we go
5784 on through the loop. */
5785 last = symdef->file_offset;
5786 }
5787 }
5788 while (loop);
5789
5790 free (included);
5791
5792 return TRUE;
5793
5794 error_return:
5795 if (included != NULL)
5796 free (included);
5797 return FALSE;
5798 }
5799
5800 /* Given an ELF BFD, add symbols to the global hash table as
5801 appropriate. */
5802
5803 bfd_boolean
5804 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5805 {
5806 switch (bfd_get_format (abfd))
5807 {
5808 case bfd_object:
5809 return elf_link_add_object_symbols (abfd, info);
5810 case bfd_archive:
5811 return elf_link_add_archive_symbols (abfd, info);
5812 default:
5813 bfd_set_error (bfd_error_wrong_format);
5814 return FALSE;
5815 }
5816 }
5817 \f
5818 struct hash_codes_info
5819 {
5820 unsigned long *hashcodes;
5821 bfd_boolean error;
5822 };
5823
5824 /* This function will be called though elf_link_hash_traverse to store
5825 all hash value of the exported symbols in an array. */
5826
5827 static bfd_boolean
5828 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5829 {
5830 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5831 const char *name;
5832 unsigned long ha;
5833 char *alc = NULL;
5834
5835 /* Ignore indirect symbols. These are added by the versioning code. */
5836 if (h->dynindx == -1)
5837 return TRUE;
5838
5839 name = h->root.root.string;
5840 if (h->versioned >= versioned)
5841 {
5842 char *p = strchr (name, ELF_VER_CHR);
5843 if (p != NULL)
5844 {
5845 alc = (char *) bfd_malloc (p - name + 1);
5846 if (alc == NULL)
5847 {
5848 inf->error = TRUE;
5849 return FALSE;
5850 }
5851 memcpy (alc, name, p - name);
5852 alc[p - name] = '\0';
5853 name = alc;
5854 }
5855 }
5856
5857 /* Compute the hash value. */
5858 ha = bfd_elf_hash (name);
5859
5860 /* Store the found hash value in the array given as the argument. */
5861 *(inf->hashcodes)++ = ha;
5862
5863 /* And store it in the struct so that we can put it in the hash table
5864 later. */
5865 h->u.elf_hash_value = ha;
5866
5867 if (alc != NULL)
5868 free (alc);
5869
5870 return TRUE;
5871 }
5872
5873 struct collect_gnu_hash_codes
5874 {
5875 bfd *output_bfd;
5876 const struct elf_backend_data *bed;
5877 unsigned long int nsyms;
5878 unsigned long int maskbits;
5879 unsigned long int *hashcodes;
5880 unsigned long int *hashval;
5881 unsigned long int *indx;
5882 unsigned long int *counts;
5883 bfd_vma *bitmask;
5884 bfd_byte *contents;
5885 bfd_size_type xlat;
5886 long int min_dynindx;
5887 unsigned long int bucketcount;
5888 unsigned long int symindx;
5889 long int local_indx;
5890 long int shift1, shift2;
5891 unsigned long int mask;
5892 bfd_boolean error;
5893 };
5894
5895 /* This function will be called though elf_link_hash_traverse to store
5896 all hash value of the exported symbols in an array. */
5897
5898 static bfd_boolean
5899 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5900 {
5901 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5902 const char *name;
5903 unsigned long ha;
5904 char *alc = NULL;
5905
5906 /* Ignore indirect symbols. These are added by the versioning code. */
5907 if (h->dynindx == -1)
5908 return TRUE;
5909
5910 /* Ignore also local symbols and undefined symbols. */
5911 if (! (*s->bed->elf_hash_symbol) (h))
5912 return TRUE;
5913
5914 name = h->root.root.string;
5915 if (h->versioned >= versioned)
5916 {
5917 char *p = strchr (name, ELF_VER_CHR);
5918 if (p != NULL)
5919 {
5920 alc = (char *) bfd_malloc (p - name + 1);
5921 if (alc == NULL)
5922 {
5923 s->error = TRUE;
5924 return FALSE;
5925 }
5926 memcpy (alc, name, p - name);
5927 alc[p - name] = '\0';
5928 name = alc;
5929 }
5930 }
5931
5932 /* Compute the hash value. */
5933 ha = bfd_elf_gnu_hash (name);
5934
5935 /* Store the found hash value in the array for compute_bucket_count,
5936 and also for .dynsym reordering purposes. */
5937 s->hashcodes[s->nsyms] = ha;
5938 s->hashval[h->dynindx] = ha;
5939 ++s->nsyms;
5940 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5941 s->min_dynindx = h->dynindx;
5942
5943 if (alc != NULL)
5944 free (alc);
5945
5946 return TRUE;
5947 }
5948
5949 /* This function will be called though elf_link_hash_traverse to do
5950 final dynamic symbol renumbering in case of .gnu.hash.
5951 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
5952 to the translation table. */
5953
5954 static bfd_boolean
5955 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
5956 {
5957 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5958 unsigned long int bucket;
5959 unsigned long int val;
5960
5961 /* Ignore indirect symbols. */
5962 if (h->dynindx == -1)
5963 return TRUE;
5964
5965 /* Ignore also local symbols and undefined symbols. */
5966 if (! (*s->bed->elf_hash_symbol) (h))
5967 {
5968 if (h->dynindx >= s->min_dynindx)
5969 {
5970 if (s->bed->record_xhash_symbol != NULL)
5971 {
5972 (*s->bed->record_xhash_symbol) (h, 0);
5973 s->local_indx++;
5974 }
5975 else
5976 h->dynindx = s->local_indx++;
5977 }
5978 return TRUE;
5979 }
5980
5981 bucket = s->hashval[h->dynindx] % s->bucketcount;
5982 val = (s->hashval[h->dynindx] >> s->shift1)
5983 & ((s->maskbits >> s->shift1) - 1);
5984 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5985 s->bitmask[val]
5986 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5987 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5988 if (s->counts[bucket] == 1)
5989 /* Last element terminates the chain. */
5990 val |= 1;
5991 bfd_put_32 (s->output_bfd, val,
5992 s->contents + (s->indx[bucket] - s->symindx) * 4);
5993 --s->counts[bucket];
5994 if (s->bed->record_xhash_symbol != NULL)
5995 {
5996 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
5997
5998 (*s->bed->record_xhash_symbol) (h, xlat_loc);
5999 }
6000 else
6001 h->dynindx = s->indx[bucket]++;
6002 return TRUE;
6003 }
6004
6005 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6006
6007 bfd_boolean
6008 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6009 {
6010 return !(h->forced_local
6011 || h->root.type == bfd_link_hash_undefined
6012 || h->root.type == bfd_link_hash_undefweak
6013 || ((h->root.type == bfd_link_hash_defined
6014 || h->root.type == bfd_link_hash_defweak)
6015 && h->root.u.def.section->output_section == NULL));
6016 }
6017
6018 /* Array used to determine the number of hash table buckets to use
6019 based on the number of symbols there are. If there are fewer than
6020 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6021 fewer than 37 we use 17 buckets, and so forth. We never use more
6022 than 32771 buckets. */
6023
6024 static const size_t elf_buckets[] =
6025 {
6026 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6027 16411, 32771, 0
6028 };
6029
6030 /* Compute bucket count for hashing table. We do not use a static set
6031 of possible tables sizes anymore. Instead we determine for all
6032 possible reasonable sizes of the table the outcome (i.e., the
6033 number of collisions etc) and choose the best solution. The
6034 weighting functions are not too simple to allow the table to grow
6035 without bounds. Instead one of the weighting factors is the size.
6036 Therefore the result is always a good payoff between few collisions
6037 (= short chain lengths) and table size. */
6038 static size_t
6039 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6040 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6041 unsigned long int nsyms,
6042 int gnu_hash)
6043 {
6044 size_t best_size = 0;
6045 unsigned long int i;
6046
6047 /* We have a problem here. The following code to optimize the table
6048 size requires an integer type with more the 32 bits. If
6049 BFD_HOST_U_64_BIT is set we know about such a type. */
6050 #ifdef BFD_HOST_U_64_BIT
6051 if (info->optimize)
6052 {
6053 size_t minsize;
6054 size_t maxsize;
6055 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6056 bfd *dynobj = elf_hash_table (info)->dynobj;
6057 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6058 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6059 unsigned long int *counts;
6060 bfd_size_type amt;
6061 unsigned int no_improvement_count = 0;
6062
6063 /* Possible optimization parameters: if we have NSYMS symbols we say
6064 that the hashing table must at least have NSYMS/4 and at most
6065 2*NSYMS buckets. */
6066 minsize = nsyms / 4;
6067 if (minsize == 0)
6068 minsize = 1;
6069 best_size = maxsize = nsyms * 2;
6070 if (gnu_hash)
6071 {
6072 if (minsize < 2)
6073 minsize = 2;
6074 if ((best_size & 31) == 0)
6075 ++best_size;
6076 }
6077
6078 /* Create array where we count the collisions in. We must use bfd_malloc
6079 since the size could be large. */
6080 amt = maxsize;
6081 amt *= sizeof (unsigned long int);
6082 counts = (unsigned long int *) bfd_malloc (amt);
6083 if (counts == NULL)
6084 return 0;
6085
6086 /* Compute the "optimal" size for the hash table. The criteria is a
6087 minimal chain length. The minor criteria is (of course) the size
6088 of the table. */
6089 for (i = minsize; i < maxsize; ++i)
6090 {
6091 /* Walk through the array of hashcodes and count the collisions. */
6092 BFD_HOST_U_64_BIT max;
6093 unsigned long int j;
6094 unsigned long int fact;
6095
6096 if (gnu_hash && (i & 31) == 0)
6097 continue;
6098
6099 memset (counts, '\0', i * sizeof (unsigned long int));
6100
6101 /* Determine how often each hash bucket is used. */
6102 for (j = 0; j < nsyms; ++j)
6103 ++counts[hashcodes[j] % i];
6104
6105 /* For the weight function we need some information about the
6106 pagesize on the target. This is information need not be 100%
6107 accurate. Since this information is not available (so far) we
6108 define it here to a reasonable default value. If it is crucial
6109 to have a better value some day simply define this value. */
6110 # ifndef BFD_TARGET_PAGESIZE
6111 # define BFD_TARGET_PAGESIZE (4096)
6112 # endif
6113
6114 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6115 and the chains. */
6116 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6117
6118 # if 1
6119 /* Variant 1: optimize for short chains. We add the squares
6120 of all the chain lengths (which favors many small chain
6121 over a few long chains). */
6122 for (j = 0; j < i; ++j)
6123 max += counts[j] * counts[j];
6124
6125 /* This adds penalties for the overall size of the table. */
6126 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6127 max *= fact * fact;
6128 # else
6129 /* Variant 2: Optimize a lot more for small table. Here we
6130 also add squares of the size but we also add penalties for
6131 empty slots (the +1 term). */
6132 for (j = 0; j < i; ++j)
6133 max += (1 + counts[j]) * (1 + counts[j]);
6134
6135 /* The overall size of the table is considered, but not as
6136 strong as in variant 1, where it is squared. */
6137 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6138 max *= fact;
6139 # endif
6140
6141 /* Compare with current best results. */
6142 if (max < best_chlen)
6143 {
6144 best_chlen = max;
6145 best_size = i;
6146 no_improvement_count = 0;
6147 }
6148 /* PR 11843: Avoid futile long searches for the best bucket size
6149 when there are a large number of symbols. */
6150 else if (++no_improvement_count == 100)
6151 break;
6152 }
6153
6154 free (counts);
6155 }
6156 else
6157 #endif /* defined (BFD_HOST_U_64_BIT) */
6158 {
6159 /* This is the fallback solution if no 64bit type is available or if we
6160 are not supposed to spend much time on optimizations. We select the
6161 bucket count using a fixed set of numbers. */
6162 for (i = 0; elf_buckets[i] != 0; i++)
6163 {
6164 best_size = elf_buckets[i];
6165 if (nsyms < elf_buckets[i + 1])
6166 break;
6167 }
6168 if (gnu_hash && best_size < 2)
6169 best_size = 2;
6170 }
6171
6172 return best_size;
6173 }
6174
6175 /* Size any SHT_GROUP section for ld -r. */
6176
6177 bfd_boolean
6178 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6179 {
6180 bfd *ibfd;
6181 asection *s;
6182
6183 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6184 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6185 && (s = ibfd->sections) != NULL
6186 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6187 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6188 return FALSE;
6189 return TRUE;
6190 }
6191
6192 /* Set a default stack segment size. The value in INFO wins. If it
6193 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6194 undefined it is initialized. */
6195
6196 bfd_boolean
6197 bfd_elf_stack_segment_size (bfd *output_bfd,
6198 struct bfd_link_info *info,
6199 const char *legacy_symbol,
6200 bfd_vma default_size)
6201 {
6202 struct elf_link_hash_entry *h = NULL;
6203
6204 /* Look for legacy symbol. */
6205 if (legacy_symbol)
6206 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6207 FALSE, FALSE, FALSE);
6208 if (h && (h->root.type == bfd_link_hash_defined
6209 || h->root.type == bfd_link_hash_defweak)
6210 && h->def_regular
6211 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6212 {
6213 /* The symbol has no type if specified on the command line. */
6214 h->type = STT_OBJECT;
6215 if (info->stacksize)
6216 /* xgettext:c-format */
6217 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6218 output_bfd, legacy_symbol);
6219 else if (h->root.u.def.section != bfd_abs_section_ptr)
6220 /* xgettext:c-format */
6221 _bfd_error_handler (_("%pB: %s not absolute"),
6222 output_bfd, legacy_symbol);
6223 else
6224 info->stacksize = h->root.u.def.value;
6225 }
6226
6227 if (!info->stacksize)
6228 /* If the user didn't set a size, or explicitly inhibit the
6229 size, set it now. */
6230 info->stacksize = default_size;
6231
6232 /* Provide the legacy symbol, if it is referenced. */
6233 if (h && (h->root.type == bfd_link_hash_undefined
6234 || h->root.type == bfd_link_hash_undefweak))
6235 {
6236 struct bfd_link_hash_entry *bh = NULL;
6237
6238 if (!(_bfd_generic_link_add_one_symbol
6239 (info, output_bfd, legacy_symbol,
6240 BSF_GLOBAL, bfd_abs_section_ptr,
6241 info->stacksize >= 0 ? info->stacksize : 0,
6242 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6243 return FALSE;
6244
6245 h = (struct elf_link_hash_entry *) bh;
6246 h->def_regular = 1;
6247 h->type = STT_OBJECT;
6248 }
6249
6250 return TRUE;
6251 }
6252
6253 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6254
6255 struct elf_gc_sweep_symbol_info
6256 {
6257 struct bfd_link_info *info;
6258 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6259 bfd_boolean);
6260 };
6261
6262 static bfd_boolean
6263 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6264 {
6265 if (!h->mark
6266 && (((h->root.type == bfd_link_hash_defined
6267 || h->root.type == bfd_link_hash_defweak)
6268 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6269 && h->root.u.def.section->gc_mark))
6270 || h->root.type == bfd_link_hash_undefined
6271 || h->root.type == bfd_link_hash_undefweak))
6272 {
6273 struct elf_gc_sweep_symbol_info *inf;
6274
6275 inf = (struct elf_gc_sweep_symbol_info *) data;
6276 (*inf->hide_symbol) (inf->info, h, TRUE);
6277 h->def_regular = 0;
6278 h->ref_regular = 0;
6279 h->ref_regular_nonweak = 0;
6280 }
6281
6282 return TRUE;
6283 }
6284
6285 /* Set up the sizes and contents of the ELF dynamic sections. This is
6286 called by the ELF linker emulation before_allocation routine. We
6287 must set the sizes of the sections before the linker sets the
6288 addresses of the various sections. */
6289
6290 bfd_boolean
6291 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6292 const char *soname,
6293 const char *rpath,
6294 const char *filter_shlib,
6295 const char *audit,
6296 const char *depaudit,
6297 const char * const *auxiliary_filters,
6298 struct bfd_link_info *info,
6299 asection **sinterpptr)
6300 {
6301 bfd *dynobj;
6302 const struct elf_backend_data *bed;
6303
6304 *sinterpptr = NULL;
6305
6306 if (!is_elf_hash_table (info->hash))
6307 return TRUE;
6308
6309 dynobj = elf_hash_table (info)->dynobj;
6310
6311 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6312 {
6313 struct bfd_elf_version_tree *verdefs;
6314 struct elf_info_failed asvinfo;
6315 struct bfd_elf_version_tree *t;
6316 struct bfd_elf_version_expr *d;
6317 asection *s;
6318 size_t soname_indx;
6319
6320 /* If we are supposed to export all symbols into the dynamic symbol
6321 table (this is not the normal case), then do so. */
6322 if (info->export_dynamic
6323 || (bfd_link_executable (info) && info->dynamic))
6324 {
6325 struct elf_info_failed eif;
6326
6327 eif.info = info;
6328 eif.failed = FALSE;
6329 elf_link_hash_traverse (elf_hash_table (info),
6330 _bfd_elf_export_symbol,
6331 &eif);
6332 if (eif.failed)
6333 return FALSE;
6334 }
6335
6336 if (soname != NULL)
6337 {
6338 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6339 soname, TRUE);
6340 if (soname_indx == (size_t) -1
6341 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6342 return FALSE;
6343 }
6344 else
6345 soname_indx = (size_t) -1;
6346
6347 /* Make all global versions with definition. */
6348 for (t = info->version_info; t != NULL; t = t->next)
6349 for (d = t->globals.list; d != NULL; d = d->next)
6350 if (!d->symver && d->literal)
6351 {
6352 const char *verstr, *name;
6353 size_t namelen, verlen, newlen;
6354 char *newname, *p, leading_char;
6355 struct elf_link_hash_entry *newh;
6356
6357 leading_char = bfd_get_symbol_leading_char (output_bfd);
6358 name = d->pattern;
6359 namelen = strlen (name) + (leading_char != '\0');
6360 verstr = t->name;
6361 verlen = strlen (verstr);
6362 newlen = namelen + verlen + 3;
6363
6364 newname = (char *) bfd_malloc (newlen);
6365 if (newname == NULL)
6366 return FALSE;
6367 newname[0] = leading_char;
6368 memcpy (newname + (leading_char != '\0'), name, namelen);
6369
6370 /* Check the hidden versioned definition. */
6371 p = newname + namelen;
6372 *p++ = ELF_VER_CHR;
6373 memcpy (p, verstr, verlen + 1);
6374 newh = elf_link_hash_lookup (elf_hash_table (info),
6375 newname, FALSE, FALSE,
6376 FALSE);
6377 if (newh == NULL
6378 || (newh->root.type != bfd_link_hash_defined
6379 && newh->root.type != bfd_link_hash_defweak))
6380 {
6381 /* Check the default versioned definition. */
6382 *p++ = ELF_VER_CHR;
6383 memcpy (p, verstr, verlen + 1);
6384 newh = elf_link_hash_lookup (elf_hash_table (info),
6385 newname, FALSE, FALSE,
6386 FALSE);
6387 }
6388 free (newname);
6389
6390 /* Mark this version if there is a definition and it is
6391 not defined in a shared object. */
6392 if (newh != NULL
6393 && !newh->def_dynamic
6394 && (newh->root.type == bfd_link_hash_defined
6395 || newh->root.type == bfd_link_hash_defweak))
6396 d->symver = 1;
6397 }
6398
6399 /* Attach all the symbols to their version information. */
6400 asvinfo.info = info;
6401 asvinfo.failed = FALSE;
6402
6403 elf_link_hash_traverse (elf_hash_table (info),
6404 _bfd_elf_link_assign_sym_version,
6405 &asvinfo);
6406 if (asvinfo.failed)
6407 return FALSE;
6408
6409 if (!info->allow_undefined_version)
6410 {
6411 /* Check if all global versions have a definition. */
6412 bfd_boolean all_defined = TRUE;
6413 for (t = info->version_info; t != NULL; t = t->next)
6414 for (d = t->globals.list; d != NULL; d = d->next)
6415 if (d->literal && !d->symver && !d->script)
6416 {
6417 _bfd_error_handler
6418 (_("%s: undefined version: %s"),
6419 d->pattern, t->name);
6420 all_defined = FALSE;
6421 }
6422
6423 if (!all_defined)
6424 {
6425 bfd_set_error (bfd_error_bad_value);
6426 return FALSE;
6427 }
6428 }
6429
6430 /* Set up the version definition section. */
6431 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6432 BFD_ASSERT (s != NULL);
6433
6434 /* We may have created additional version definitions if we are
6435 just linking a regular application. */
6436 verdefs = info->version_info;
6437
6438 /* Skip anonymous version tag. */
6439 if (verdefs != NULL && verdefs->vernum == 0)
6440 verdefs = verdefs->next;
6441
6442 if (verdefs == NULL && !info->create_default_symver)
6443 s->flags |= SEC_EXCLUDE;
6444 else
6445 {
6446 unsigned int cdefs;
6447 bfd_size_type size;
6448 bfd_byte *p;
6449 Elf_Internal_Verdef def;
6450 Elf_Internal_Verdaux defaux;
6451 struct bfd_link_hash_entry *bh;
6452 struct elf_link_hash_entry *h;
6453 const char *name;
6454
6455 cdefs = 0;
6456 size = 0;
6457
6458 /* Make space for the base version. */
6459 size += sizeof (Elf_External_Verdef);
6460 size += sizeof (Elf_External_Verdaux);
6461 ++cdefs;
6462
6463 /* Make space for the default version. */
6464 if (info->create_default_symver)
6465 {
6466 size += sizeof (Elf_External_Verdef);
6467 ++cdefs;
6468 }
6469
6470 for (t = verdefs; t != NULL; t = t->next)
6471 {
6472 struct bfd_elf_version_deps *n;
6473
6474 /* Don't emit base version twice. */
6475 if (t->vernum == 0)
6476 continue;
6477
6478 size += sizeof (Elf_External_Verdef);
6479 size += sizeof (Elf_External_Verdaux);
6480 ++cdefs;
6481
6482 for (n = t->deps; n != NULL; n = n->next)
6483 size += sizeof (Elf_External_Verdaux);
6484 }
6485
6486 s->size = size;
6487 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6488 if (s->contents == NULL && s->size != 0)
6489 return FALSE;
6490
6491 /* Fill in the version definition section. */
6492
6493 p = s->contents;
6494
6495 def.vd_version = VER_DEF_CURRENT;
6496 def.vd_flags = VER_FLG_BASE;
6497 def.vd_ndx = 1;
6498 def.vd_cnt = 1;
6499 if (info->create_default_symver)
6500 {
6501 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6502 def.vd_next = sizeof (Elf_External_Verdef);
6503 }
6504 else
6505 {
6506 def.vd_aux = sizeof (Elf_External_Verdef);
6507 def.vd_next = (sizeof (Elf_External_Verdef)
6508 + sizeof (Elf_External_Verdaux));
6509 }
6510
6511 if (soname_indx != (size_t) -1)
6512 {
6513 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6514 soname_indx);
6515 def.vd_hash = bfd_elf_hash (soname);
6516 defaux.vda_name = soname_indx;
6517 name = soname;
6518 }
6519 else
6520 {
6521 size_t indx;
6522
6523 name = lbasename (output_bfd->filename);
6524 def.vd_hash = bfd_elf_hash (name);
6525 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6526 name, FALSE);
6527 if (indx == (size_t) -1)
6528 return FALSE;
6529 defaux.vda_name = indx;
6530 }
6531 defaux.vda_next = 0;
6532
6533 _bfd_elf_swap_verdef_out (output_bfd, &def,
6534 (Elf_External_Verdef *) p);
6535 p += sizeof (Elf_External_Verdef);
6536 if (info->create_default_symver)
6537 {
6538 /* Add a symbol representing this version. */
6539 bh = NULL;
6540 if (! (_bfd_generic_link_add_one_symbol
6541 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6542 0, NULL, FALSE,
6543 get_elf_backend_data (dynobj)->collect, &bh)))
6544 return FALSE;
6545 h = (struct elf_link_hash_entry *) bh;
6546 h->non_elf = 0;
6547 h->def_regular = 1;
6548 h->type = STT_OBJECT;
6549 h->verinfo.vertree = NULL;
6550
6551 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6552 return FALSE;
6553
6554 /* Create a duplicate of the base version with the same
6555 aux block, but different flags. */
6556 def.vd_flags = 0;
6557 def.vd_ndx = 2;
6558 def.vd_aux = sizeof (Elf_External_Verdef);
6559 if (verdefs)
6560 def.vd_next = (sizeof (Elf_External_Verdef)
6561 + sizeof (Elf_External_Verdaux));
6562 else
6563 def.vd_next = 0;
6564 _bfd_elf_swap_verdef_out (output_bfd, &def,
6565 (Elf_External_Verdef *) p);
6566 p += sizeof (Elf_External_Verdef);
6567 }
6568 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6569 (Elf_External_Verdaux *) p);
6570 p += sizeof (Elf_External_Verdaux);
6571
6572 for (t = verdefs; t != NULL; t = t->next)
6573 {
6574 unsigned int cdeps;
6575 struct bfd_elf_version_deps *n;
6576
6577 /* Don't emit the base version twice. */
6578 if (t->vernum == 0)
6579 continue;
6580
6581 cdeps = 0;
6582 for (n = t->deps; n != NULL; n = n->next)
6583 ++cdeps;
6584
6585 /* Add a symbol representing this version. */
6586 bh = NULL;
6587 if (! (_bfd_generic_link_add_one_symbol
6588 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6589 0, NULL, FALSE,
6590 get_elf_backend_data (dynobj)->collect, &bh)))
6591 return FALSE;
6592 h = (struct elf_link_hash_entry *) bh;
6593 h->non_elf = 0;
6594 h->def_regular = 1;
6595 h->type = STT_OBJECT;
6596 h->verinfo.vertree = t;
6597
6598 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6599 return FALSE;
6600
6601 def.vd_version = VER_DEF_CURRENT;
6602 def.vd_flags = 0;
6603 if (t->globals.list == NULL
6604 && t->locals.list == NULL
6605 && ! t->used)
6606 def.vd_flags |= VER_FLG_WEAK;
6607 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6608 def.vd_cnt = cdeps + 1;
6609 def.vd_hash = bfd_elf_hash (t->name);
6610 def.vd_aux = sizeof (Elf_External_Verdef);
6611 def.vd_next = 0;
6612
6613 /* If a basever node is next, it *must* be the last node in
6614 the chain, otherwise Verdef construction breaks. */
6615 if (t->next != NULL && t->next->vernum == 0)
6616 BFD_ASSERT (t->next->next == NULL);
6617
6618 if (t->next != NULL && t->next->vernum != 0)
6619 def.vd_next = (sizeof (Elf_External_Verdef)
6620 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6621
6622 _bfd_elf_swap_verdef_out (output_bfd, &def,
6623 (Elf_External_Verdef *) p);
6624 p += sizeof (Elf_External_Verdef);
6625
6626 defaux.vda_name = h->dynstr_index;
6627 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6628 h->dynstr_index);
6629 defaux.vda_next = 0;
6630 if (t->deps != NULL)
6631 defaux.vda_next = sizeof (Elf_External_Verdaux);
6632 t->name_indx = defaux.vda_name;
6633
6634 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6635 (Elf_External_Verdaux *) p);
6636 p += sizeof (Elf_External_Verdaux);
6637
6638 for (n = t->deps; n != NULL; n = n->next)
6639 {
6640 if (n->version_needed == NULL)
6641 {
6642 /* This can happen if there was an error in the
6643 version script. */
6644 defaux.vda_name = 0;
6645 }
6646 else
6647 {
6648 defaux.vda_name = n->version_needed->name_indx;
6649 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6650 defaux.vda_name);
6651 }
6652 if (n->next == NULL)
6653 defaux.vda_next = 0;
6654 else
6655 defaux.vda_next = sizeof (Elf_External_Verdaux);
6656
6657 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6658 (Elf_External_Verdaux *) p);
6659 p += sizeof (Elf_External_Verdaux);
6660 }
6661 }
6662
6663 elf_tdata (output_bfd)->cverdefs = cdefs;
6664 }
6665 }
6666
6667 bed = get_elf_backend_data (output_bfd);
6668
6669 if (info->gc_sections && bed->can_gc_sections)
6670 {
6671 struct elf_gc_sweep_symbol_info sweep_info;
6672
6673 /* Remove the symbols that were in the swept sections from the
6674 dynamic symbol table. */
6675 sweep_info.info = info;
6676 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6677 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6678 &sweep_info);
6679 }
6680
6681 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6682 {
6683 asection *s;
6684 struct elf_find_verdep_info sinfo;
6685
6686 /* Work out the size of the version reference section. */
6687
6688 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6689 BFD_ASSERT (s != NULL);
6690
6691 sinfo.info = info;
6692 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6693 if (sinfo.vers == 0)
6694 sinfo.vers = 1;
6695 sinfo.failed = FALSE;
6696
6697 elf_link_hash_traverse (elf_hash_table (info),
6698 _bfd_elf_link_find_version_dependencies,
6699 &sinfo);
6700 if (sinfo.failed)
6701 return FALSE;
6702
6703 if (elf_tdata (output_bfd)->verref == NULL)
6704 s->flags |= SEC_EXCLUDE;
6705 else
6706 {
6707 Elf_Internal_Verneed *vn;
6708 unsigned int size;
6709 unsigned int crefs;
6710 bfd_byte *p;
6711
6712 /* Build the version dependency section. */
6713 size = 0;
6714 crefs = 0;
6715 for (vn = elf_tdata (output_bfd)->verref;
6716 vn != NULL;
6717 vn = vn->vn_nextref)
6718 {
6719 Elf_Internal_Vernaux *a;
6720
6721 size += sizeof (Elf_External_Verneed);
6722 ++crefs;
6723 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6724 size += sizeof (Elf_External_Vernaux);
6725 }
6726
6727 s->size = size;
6728 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6729 if (s->contents == NULL)
6730 return FALSE;
6731
6732 p = s->contents;
6733 for (vn = elf_tdata (output_bfd)->verref;
6734 vn != NULL;
6735 vn = vn->vn_nextref)
6736 {
6737 unsigned int caux;
6738 Elf_Internal_Vernaux *a;
6739 size_t indx;
6740
6741 caux = 0;
6742 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6743 ++caux;
6744
6745 vn->vn_version = VER_NEED_CURRENT;
6746 vn->vn_cnt = caux;
6747 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6748 elf_dt_name (vn->vn_bfd) != NULL
6749 ? elf_dt_name (vn->vn_bfd)
6750 : lbasename (vn->vn_bfd->filename),
6751 FALSE);
6752 if (indx == (size_t) -1)
6753 return FALSE;
6754 vn->vn_file = indx;
6755 vn->vn_aux = sizeof (Elf_External_Verneed);
6756 if (vn->vn_nextref == NULL)
6757 vn->vn_next = 0;
6758 else
6759 vn->vn_next = (sizeof (Elf_External_Verneed)
6760 + caux * sizeof (Elf_External_Vernaux));
6761
6762 _bfd_elf_swap_verneed_out (output_bfd, vn,
6763 (Elf_External_Verneed *) p);
6764 p += sizeof (Elf_External_Verneed);
6765
6766 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6767 {
6768 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6769 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6770 a->vna_nodename, FALSE);
6771 if (indx == (size_t) -1)
6772 return FALSE;
6773 a->vna_name = indx;
6774 if (a->vna_nextptr == NULL)
6775 a->vna_next = 0;
6776 else
6777 a->vna_next = sizeof (Elf_External_Vernaux);
6778
6779 _bfd_elf_swap_vernaux_out (output_bfd, a,
6780 (Elf_External_Vernaux *) p);
6781 p += sizeof (Elf_External_Vernaux);
6782 }
6783 }
6784
6785 elf_tdata (output_bfd)->cverrefs = crefs;
6786 }
6787 }
6788
6789 /* Any syms created from now on start with -1 in
6790 got.refcount/offset and plt.refcount/offset. */
6791 elf_hash_table (info)->init_got_refcount
6792 = elf_hash_table (info)->init_got_offset;
6793 elf_hash_table (info)->init_plt_refcount
6794 = elf_hash_table (info)->init_plt_offset;
6795
6796 if (bfd_link_relocatable (info)
6797 && !_bfd_elf_size_group_sections (info))
6798 return FALSE;
6799
6800 /* The backend may have to create some sections regardless of whether
6801 we're dynamic or not. */
6802 if (bed->elf_backend_always_size_sections
6803 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6804 return FALSE;
6805
6806 /* Determine any GNU_STACK segment requirements, after the backend
6807 has had a chance to set a default segment size. */
6808 if (info->execstack)
6809 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6810 else if (info->noexecstack)
6811 elf_stack_flags (output_bfd) = PF_R | PF_W;
6812 else
6813 {
6814 bfd *inputobj;
6815 asection *notesec = NULL;
6816 int exec = 0;
6817
6818 for (inputobj = info->input_bfds;
6819 inputobj;
6820 inputobj = inputobj->link.next)
6821 {
6822 asection *s;
6823
6824 if (inputobj->flags
6825 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6826 continue;
6827 s = inputobj->sections;
6828 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6829 continue;
6830
6831 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6832 if (s)
6833 {
6834 if (s->flags & SEC_CODE)
6835 exec = PF_X;
6836 notesec = s;
6837 }
6838 else if (bed->default_execstack)
6839 exec = PF_X;
6840 }
6841 if (notesec || info->stacksize > 0)
6842 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6843 if (notesec && exec && bfd_link_relocatable (info)
6844 && notesec->output_section != bfd_abs_section_ptr)
6845 notesec->output_section->flags |= SEC_CODE;
6846 }
6847
6848 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6849 {
6850 struct elf_info_failed eif;
6851 struct elf_link_hash_entry *h;
6852 asection *dynstr;
6853 asection *s;
6854
6855 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6856 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6857
6858 if (info->symbolic)
6859 {
6860 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6861 return FALSE;
6862 info->flags |= DF_SYMBOLIC;
6863 }
6864
6865 if (rpath != NULL)
6866 {
6867 size_t indx;
6868 bfd_vma tag;
6869
6870 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6871 TRUE);
6872 if (indx == (size_t) -1)
6873 return FALSE;
6874
6875 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6876 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6877 return FALSE;
6878 }
6879
6880 if (filter_shlib != NULL)
6881 {
6882 size_t indx;
6883
6884 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6885 filter_shlib, TRUE);
6886 if (indx == (size_t) -1
6887 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6888 return FALSE;
6889 }
6890
6891 if (auxiliary_filters != NULL)
6892 {
6893 const char * const *p;
6894
6895 for (p = auxiliary_filters; *p != NULL; p++)
6896 {
6897 size_t indx;
6898
6899 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6900 *p, TRUE);
6901 if (indx == (size_t) -1
6902 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6903 return FALSE;
6904 }
6905 }
6906
6907 if (audit != NULL)
6908 {
6909 size_t indx;
6910
6911 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6912 TRUE);
6913 if (indx == (size_t) -1
6914 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6915 return FALSE;
6916 }
6917
6918 if (depaudit != NULL)
6919 {
6920 size_t indx;
6921
6922 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6923 TRUE);
6924 if (indx == (size_t) -1
6925 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6926 return FALSE;
6927 }
6928
6929 eif.info = info;
6930 eif.failed = FALSE;
6931
6932 /* Find all symbols which were defined in a dynamic object and make
6933 the backend pick a reasonable value for them. */
6934 elf_link_hash_traverse (elf_hash_table (info),
6935 _bfd_elf_adjust_dynamic_symbol,
6936 &eif);
6937 if (eif.failed)
6938 return FALSE;
6939
6940 /* Add some entries to the .dynamic section. We fill in some of the
6941 values later, in bfd_elf_final_link, but we must add the entries
6942 now so that we know the final size of the .dynamic section. */
6943
6944 /* If there are initialization and/or finalization functions to
6945 call then add the corresponding DT_INIT/DT_FINI entries. */
6946 h = (info->init_function
6947 ? elf_link_hash_lookup (elf_hash_table (info),
6948 info->init_function, FALSE,
6949 FALSE, FALSE)
6950 : NULL);
6951 if (h != NULL
6952 && (h->ref_regular
6953 || h->def_regular))
6954 {
6955 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6956 return FALSE;
6957 }
6958 h = (info->fini_function
6959 ? elf_link_hash_lookup (elf_hash_table (info),
6960 info->fini_function, FALSE,
6961 FALSE, FALSE)
6962 : NULL);
6963 if (h != NULL
6964 && (h->ref_regular
6965 || h->def_regular))
6966 {
6967 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6968 return FALSE;
6969 }
6970
6971 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6972 if (s != NULL && s->linker_has_input)
6973 {
6974 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6975 if (! bfd_link_executable (info))
6976 {
6977 bfd *sub;
6978 asection *o;
6979
6980 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6981 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6982 && (o = sub->sections) != NULL
6983 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6984 for (o = sub->sections; o != NULL; o = o->next)
6985 if (elf_section_data (o)->this_hdr.sh_type
6986 == SHT_PREINIT_ARRAY)
6987 {
6988 _bfd_error_handler
6989 (_("%pB: .preinit_array section is not allowed in DSO"),
6990 sub);
6991 break;
6992 }
6993
6994 bfd_set_error (bfd_error_nonrepresentable_section);
6995 return FALSE;
6996 }
6997
6998 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6999 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7000 return FALSE;
7001 }
7002 s = bfd_get_section_by_name (output_bfd, ".init_array");
7003 if (s != NULL && s->linker_has_input)
7004 {
7005 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7006 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7007 return FALSE;
7008 }
7009 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7010 if (s != NULL && s->linker_has_input)
7011 {
7012 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7013 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7014 return FALSE;
7015 }
7016
7017 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7018 /* If .dynstr is excluded from the link, we don't want any of
7019 these tags. Strictly, we should be checking each section
7020 individually; This quick check covers for the case where
7021 someone does a /DISCARD/ : { *(*) }. */
7022 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7023 {
7024 bfd_size_type strsize;
7025
7026 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7027 if ((info->emit_hash
7028 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7029 || (info->emit_gnu_hash
7030 && (bed->record_xhash_symbol == NULL
7031 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7032 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7033 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7034 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7035 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7036 bed->s->sizeof_sym))
7037 return FALSE;
7038 }
7039 }
7040
7041 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7042 return FALSE;
7043
7044 /* The backend must work out the sizes of all the other dynamic
7045 sections. */
7046 if (dynobj != NULL
7047 && bed->elf_backend_size_dynamic_sections != NULL
7048 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7049 return FALSE;
7050
7051 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7052 {
7053 if (elf_tdata (output_bfd)->cverdefs)
7054 {
7055 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7056
7057 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7058 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7059 return FALSE;
7060 }
7061
7062 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7063 {
7064 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7065 return FALSE;
7066 }
7067 else if (info->flags & DF_BIND_NOW)
7068 {
7069 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7070 return FALSE;
7071 }
7072
7073 if (info->flags_1)
7074 {
7075 if (bfd_link_executable (info))
7076 info->flags_1 &= ~ (DF_1_INITFIRST
7077 | DF_1_NODELETE
7078 | DF_1_NOOPEN);
7079 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7080 return FALSE;
7081 }
7082
7083 if (elf_tdata (output_bfd)->cverrefs)
7084 {
7085 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7086
7087 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7088 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7089 return FALSE;
7090 }
7091
7092 if ((elf_tdata (output_bfd)->cverrefs == 0
7093 && elf_tdata (output_bfd)->cverdefs == 0)
7094 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7095 {
7096 asection *s;
7097
7098 s = bfd_get_linker_section (dynobj, ".gnu.version");
7099 s->flags |= SEC_EXCLUDE;
7100 }
7101 }
7102 return TRUE;
7103 }
7104
7105 /* Find the first non-excluded output section. We'll use its
7106 section symbol for some emitted relocs. */
7107 void
7108 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7109 {
7110 asection *s;
7111 asection *found = NULL;
7112
7113 for (s = output_bfd->sections; s != NULL; s = s->next)
7114 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7115 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7116 {
7117 found = s;
7118 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7119 break;
7120 }
7121 elf_hash_table (info)->text_index_section = found;
7122 }
7123
7124 /* Find two non-excluded output sections, one for code, one for data.
7125 We'll use their section symbols for some emitted relocs. */
7126 void
7127 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7128 {
7129 asection *s;
7130 asection *found = NULL;
7131
7132 /* Data first, since setting text_index_section changes
7133 _bfd_elf_omit_section_dynsym_default. */
7134 for (s = output_bfd->sections; s != NULL; s = s->next)
7135 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7136 && !(s->flags & SEC_READONLY)
7137 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7138 {
7139 found = s;
7140 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7141 break;
7142 }
7143 elf_hash_table (info)->data_index_section = found;
7144
7145 for (s = output_bfd->sections; s != NULL; s = s->next)
7146 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7147 && (s->flags & SEC_READONLY)
7148 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7149 {
7150 found = s;
7151 break;
7152 }
7153 elf_hash_table (info)->text_index_section = found;
7154 }
7155
7156 #define GNU_HASH_SECTION_NAME(bed) \
7157 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7158
7159 bfd_boolean
7160 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7161 {
7162 const struct elf_backend_data *bed;
7163 unsigned long section_sym_count;
7164 bfd_size_type dynsymcount = 0;
7165
7166 if (!is_elf_hash_table (info->hash))
7167 return TRUE;
7168
7169 bed = get_elf_backend_data (output_bfd);
7170 (*bed->elf_backend_init_index_section) (output_bfd, info);
7171
7172 /* Assign dynsym indices. In a shared library we generate a section
7173 symbol for each output section, which come first. Next come all
7174 of the back-end allocated local dynamic syms, followed by the rest
7175 of the global symbols.
7176
7177 This is usually not needed for static binaries, however backends
7178 can request to always do it, e.g. the MIPS backend uses dynamic
7179 symbol counts to lay out GOT, which will be produced in the
7180 presence of GOT relocations even in static binaries (holding fixed
7181 data in that case, to satisfy those relocations). */
7182
7183 if (elf_hash_table (info)->dynamic_sections_created
7184 || bed->always_renumber_dynsyms)
7185 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7186 &section_sym_count);
7187
7188 if (elf_hash_table (info)->dynamic_sections_created)
7189 {
7190 bfd *dynobj;
7191 asection *s;
7192 unsigned int dtagcount;
7193
7194 dynobj = elf_hash_table (info)->dynobj;
7195
7196 /* Work out the size of the symbol version section. */
7197 s = bfd_get_linker_section (dynobj, ".gnu.version");
7198 BFD_ASSERT (s != NULL);
7199 if ((s->flags & SEC_EXCLUDE) == 0)
7200 {
7201 s->size = dynsymcount * sizeof (Elf_External_Versym);
7202 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7203 if (s->contents == NULL)
7204 return FALSE;
7205
7206 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7207 return FALSE;
7208 }
7209
7210 /* Set the size of the .dynsym and .hash sections. We counted
7211 the number of dynamic symbols in elf_link_add_object_symbols.
7212 We will build the contents of .dynsym and .hash when we build
7213 the final symbol table, because until then we do not know the
7214 correct value to give the symbols. We built the .dynstr
7215 section as we went along in elf_link_add_object_symbols. */
7216 s = elf_hash_table (info)->dynsym;
7217 BFD_ASSERT (s != NULL);
7218 s->size = dynsymcount * bed->s->sizeof_sym;
7219
7220 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7221 if (s->contents == NULL)
7222 return FALSE;
7223
7224 /* The first entry in .dynsym is a dummy symbol. Clear all the
7225 section syms, in case we don't output them all. */
7226 ++section_sym_count;
7227 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7228
7229 elf_hash_table (info)->bucketcount = 0;
7230
7231 /* Compute the size of the hashing table. As a side effect this
7232 computes the hash values for all the names we export. */
7233 if (info->emit_hash)
7234 {
7235 unsigned long int *hashcodes;
7236 struct hash_codes_info hashinf;
7237 bfd_size_type amt;
7238 unsigned long int nsyms;
7239 size_t bucketcount;
7240 size_t hash_entry_size;
7241
7242 /* Compute the hash values for all exported symbols. At the same
7243 time store the values in an array so that we could use them for
7244 optimizations. */
7245 amt = dynsymcount * sizeof (unsigned long int);
7246 hashcodes = (unsigned long int *) bfd_malloc (amt);
7247 if (hashcodes == NULL)
7248 return FALSE;
7249 hashinf.hashcodes = hashcodes;
7250 hashinf.error = FALSE;
7251
7252 /* Put all hash values in HASHCODES. */
7253 elf_link_hash_traverse (elf_hash_table (info),
7254 elf_collect_hash_codes, &hashinf);
7255 if (hashinf.error)
7256 {
7257 free (hashcodes);
7258 return FALSE;
7259 }
7260
7261 nsyms = hashinf.hashcodes - hashcodes;
7262 bucketcount
7263 = compute_bucket_count (info, hashcodes, nsyms, 0);
7264 free (hashcodes);
7265
7266 if (bucketcount == 0 && nsyms > 0)
7267 return FALSE;
7268
7269 elf_hash_table (info)->bucketcount = bucketcount;
7270
7271 s = bfd_get_linker_section (dynobj, ".hash");
7272 BFD_ASSERT (s != NULL);
7273 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7274 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7275 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7276 if (s->contents == NULL)
7277 return FALSE;
7278
7279 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7280 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7281 s->contents + hash_entry_size);
7282 }
7283
7284 if (info->emit_gnu_hash)
7285 {
7286 size_t i, cnt;
7287 unsigned char *contents;
7288 struct collect_gnu_hash_codes cinfo;
7289 bfd_size_type amt;
7290 size_t bucketcount;
7291
7292 memset (&cinfo, 0, sizeof (cinfo));
7293
7294 /* Compute the hash values for all exported symbols. At the same
7295 time store the values in an array so that we could use them for
7296 optimizations. */
7297 amt = dynsymcount * 2 * sizeof (unsigned long int);
7298 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7299 if (cinfo.hashcodes == NULL)
7300 return FALSE;
7301
7302 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7303 cinfo.min_dynindx = -1;
7304 cinfo.output_bfd = output_bfd;
7305 cinfo.bed = bed;
7306
7307 /* Put all hash values in HASHCODES. */
7308 elf_link_hash_traverse (elf_hash_table (info),
7309 elf_collect_gnu_hash_codes, &cinfo);
7310 if (cinfo.error)
7311 {
7312 free (cinfo.hashcodes);
7313 return FALSE;
7314 }
7315
7316 bucketcount
7317 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7318
7319 if (bucketcount == 0)
7320 {
7321 free (cinfo.hashcodes);
7322 return FALSE;
7323 }
7324
7325 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7326 BFD_ASSERT (s != NULL);
7327
7328 if (cinfo.nsyms == 0)
7329 {
7330 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7331 BFD_ASSERT (cinfo.min_dynindx == -1);
7332 free (cinfo.hashcodes);
7333 s->size = 5 * 4 + bed->s->arch_size / 8;
7334 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7335 if (contents == NULL)
7336 return FALSE;
7337 s->contents = contents;
7338 /* 1 empty bucket. */
7339 bfd_put_32 (output_bfd, 1, contents);
7340 /* SYMIDX above the special symbol 0. */
7341 bfd_put_32 (output_bfd, 1, contents + 4);
7342 /* Just one word for bitmask. */
7343 bfd_put_32 (output_bfd, 1, contents + 8);
7344 /* Only hash fn bloom filter. */
7345 bfd_put_32 (output_bfd, 0, contents + 12);
7346 /* No hashes are valid - empty bitmask. */
7347 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7348 /* No hashes in the only bucket. */
7349 bfd_put_32 (output_bfd, 0,
7350 contents + 16 + bed->s->arch_size / 8);
7351 }
7352 else
7353 {
7354 unsigned long int maskwords, maskbitslog2, x;
7355 BFD_ASSERT (cinfo.min_dynindx != -1);
7356
7357 x = cinfo.nsyms;
7358 maskbitslog2 = 1;
7359 while ((x >>= 1) != 0)
7360 ++maskbitslog2;
7361 if (maskbitslog2 < 3)
7362 maskbitslog2 = 5;
7363 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7364 maskbitslog2 = maskbitslog2 + 3;
7365 else
7366 maskbitslog2 = maskbitslog2 + 2;
7367 if (bed->s->arch_size == 64)
7368 {
7369 if (maskbitslog2 == 5)
7370 maskbitslog2 = 6;
7371 cinfo.shift1 = 6;
7372 }
7373 else
7374 cinfo.shift1 = 5;
7375 cinfo.mask = (1 << cinfo.shift1) - 1;
7376 cinfo.shift2 = maskbitslog2;
7377 cinfo.maskbits = 1 << maskbitslog2;
7378 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7379 amt = bucketcount * sizeof (unsigned long int) * 2;
7380 amt += maskwords * sizeof (bfd_vma);
7381 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7382 if (cinfo.bitmask == NULL)
7383 {
7384 free (cinfo.hashcodes);
7385 return FALSE;
7386 }
7387
7388 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7389 cinfo.indx = cinfo.counts + bucketcount;
7390 cinfo.symindx = dynsymcount - cinfo.nsyms;
7391 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7392
7393 /* Determine how often each hash bucket is used. */
7394 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7395 for (i = 0; i < cinfo.nsyms; ++i)
7396 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7397
7398 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7399 if (cinfo.counts[i] != 0)
7400 {
7401 cinfo.indx[i] = cnt;
7402 cnt += cinfo.counts[i];
7403 }
7404 BFD_ASSERT (cnt == dynsymcount);
7405 cinfo.bucketcount = bucketcount;
7406 cinfo.local_indx = cinfo.min_dynindx;
7407
7408 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7409 s->size += cinfo.maskbits / 8;
7410 if (bed->record_xhash_symbol != NULL)
7411 s->size += cinfo.nsyms * 4;
7412 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7413 if (contents == NULL)
7414 {
7415 free (cinfo.bitmask);
7416 free (cinfo.hashcodes);
7417 return FALSE;
7418 }
7419
7420 s->contents = contents;
7421 bfd_put_32 (output_bfd, bucketcount, contents);
7422 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7423 bfd_put_32 (output_bfd, maskwords, contents + 8);
7424 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7425 contents += 16 + cinfo.maskbits / 8;
7426
7427 for (i = 0; i < bucketcount; ++i)
7428 {
7429 if (cinfo.counts[i] == 0)
7430 bfd_put_32 (output_bfd, 0, contents);
7431 else
7432 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7433 contents += 4;
7434 }
7435
7436 cinfo.contents = contents;
7437
7438 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7439 /* Renumber dynamic symbols, if populating .gnu.hash section.
7440 If using .MIPS.xhash, populate the translation table. */
7441 elf_link_hash_traverse (elf_hash_table (info),
7442 elf_gnu_hash_process_symidx, &cinfo);
7443
7444 contents = s->contents + 16;
7445 for (i = 0; i < maskwords; ++i)
7446 {
7447 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7448 contents);
7449 contents += bed->s->arch_size / 8;
7450 }
7451
7452 free (cinfo.bitmask);
7453 free (cinfo.hashcodes);
7454 }
7455 }
7456
7457 s = bfd_get_linker_section (dynobj, ".dynstr");
7458 BFD_ASSERT (s != NULL);
7459
7460 elf_finalize_dynstr (output_bfd, info);
7461
7462 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7463
7464 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7465 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7466 return FALSE;
7467 }
7468
7469 return TRUE;
7470 }
7471 \f
7472 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7473
7474 static void
7475 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7476 asection *sec)
7477 {
7478 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7479 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7480 }
7481
7482 /* Finish SHF_MERGE section merging. */
7483
7484 bfd_boolean
7485 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7486 {
7487 bfd *ibfd;
7488 asection *sec;
7489
7490 if (!is_elf_hash_table (info->hash))
7491 return FALSE;
7492
7493 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7494 if ((ibfd->flags & DYNAMIC) == 0
7495 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7496 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7497 == get_elf_backend_data (obfd)->s->elfclass))
7498 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7499 if ((sec->flags & SEC_MERGE) != 0
7500 && !bfd_is_abs_section (sec->output_section))
7501 {
7502 struct bfd_elf_section_data *secdata;
7503
7504 secdata = elf_section_data (sec);
7505 if (! _bfd_add_merge_section (obfd,
7506 &elf_hash_table (info)->merge_info,
7507 sec, &secdata->sec_info))
7508 return FALSE;
7509 else if (secdata->sec_info)
7510 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7511 }
7512
7513 if (elf_hash_table (info)->merge_info != NULL)
7514 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7515 merge_sections_remove_hook);
7516 return TRUE;
7517 }
7518
7519 /* Create an entry in an ELF linker hash table. */
7520
7521 struct bfd_hash_entry *
7522 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7523 struct bfd_hash_table *table,
7524 const char *string)
7525 {
7526 /* Allocate the structure if it has not already been allocated by a
7527 subclass. */
7528 if (entry == NULL)
7529 {
7530 entry = (struct bfd_hash_entry *)
7531 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7532 if (entry == NULL)
7533 return entry;
7534 }
7535
7536 /* Call the allocation method of the superclass. */
7537 entry = _bfd_link_hash_newfunc (entry, table, string);
7538 if (entry != NULL)
7539 {
7540 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7541 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7542
7543 /* Set local fields. */
7544 ret->indx = -1;
7545 ret->dynindx = -1;
7546 ret->got = htab->init_got_refcount;
7547 ret->plt = htab->init_plt_refcount;
7548 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7549 - offsetof (struct elf_link_hash_entry, size)));
7550 /* Assume that we have been called by a non-ELF symbol reader.
7551 This flag is then reset by the code which reads an ELF input
7552 file. This ensures that a symbol created by a non-ELF symbol
7553 reader will have the flag set correctly. */
7554 ret->non_elf = 1;
7555 }
7556
7557 return entry;
7558 }
7559
7560 /* Copy data from an indirect symbol to its direct symbol, hiding the
7561 old indirect symbol. Also used for copying flags to a weakdef. */
7562
7563 void
7564 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7565 struct elf_link_hash_entry *dir,
7566 struct elf_link_hash_entry *ind)
7567 {
7568 struct elf_link_hash_table *htab;
7569
7570 /* Copy down any references that we may have already seen to the
7571 symbol which just became indirect. */
7572
7573 if (dir->versioned != versioned_hidden)
7574 dir->ref_dynamic |= ind->ref_dynamic;
7575 dir->ref_regular |= ind->ref_regular;
7576 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7577 dir->non_got_ref |= ind->non_got_ref;
7578 dir->needs_plt |= ind->needs_plt;
7579 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7580
7581 if (ind->root.type != bfd_link_hash_indirect)
7582 return;
7583
7584 /* Copy over the global and procedure linkage table refcount entries.
7585 These may have been already set up by a check_relocs routine. */
7586 htab = elf_hash_table (info);
7587 if (ind->got.refcount > htab->init_got_refcount.refcount)
7588 {
7589 if (dir->got.refcount < 0)
7590 dir->got.refcount = 0;
7591 dir->got.refcount += ind->got.refcount;
7592 ind->got.refcount = htab->init_got_refcount.refcount;
7593 }
7594
7595 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7596 {
7597 if (dir->plt.refcount < 0)
7598 dir->plt.refcount = 0;
7599 dir->plt.refcount += ind->plt.refcount;
7600 ind->plt.refcount = htab->init_plt_refcount.refcount;
7601 }
7602
7603 if (ind->dynindx != -1)
7604 {
7605 if (dir->dynindx != -1)
7606 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7607 dir->dynindx = ind->dynindx;
7608 dir->dynstr_index = ind->dynstr_index;
7609 ind->dynindx = -1;
7610 ind->dynstr_index = 0;
7611 }
7612 }
7613
7614 void
7615 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7616 struct elf_link_hash_entry *h,
7617 bfd_boolean force_local)
7618 {
7619 /* STT_GNU_IFUNC symbol must go through PLT. */
7620 if (h->type != STT_GNU_IFUNC)
7621 {
7622 h->plt = elf_hash_table (info)->init_plt_offset;
7623 h->needs_plt = 0;
7624 }
7625 if (force_local)
7626 {
7627 h->forced_local = 1;
7628 if (h->dynindx != -1)
7629 {
7630 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7631 h->dynstr_index);
7632 h->dynindx = -1;
7633 h->dynstr_index = 0;
7634 }
7635 }
7636 }
7637
7638 /* Hide a symbol. */
7639
7640 void
7641 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7642 struct bfd_link_info *info,
7643 struct bfd_link_hash_entry *h)
7644 {
7645 if (is_elf_hash_table (info->hash))
7646 {
7647 const struct elf_backend_data *bed
7648 = get_elf_backend_data (output_bfd);
7649 struct elf_link_hash_entry *eh
7650 = (struct elf_link_hash_entry *) h;
7651 bed->elf_backend_hide_symbol (info, eh, TRUE);
7652 eh->def_dynamic = 0;
7653 eh->ref_dynamic = 0;
7654 eh->dynamic_def = 0;
7655 }
7656 }
7657
7658 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7659 caller. */
7660
7661 bfd_boolean
7662 _bfd_elf_link_hash_table_init
7663 (struct elf_link_hash_table *table,
7664 bfd *abfd,
7665 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7666 struct bfd_hash_table *,
7667 const char *),
7668 unsigned int entsize,
7669 enum elf_target_id target_id)
7670 {
7671 bfd_boolean ret;
7672 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7673
7674 table->init_got_refcount.refcount = can_refcount - 1;
7675 table->init_plt_refcount.refcount = can_refcount - 1;
7676 table->init_got_offset.offset = -(bfd_vma) 1;
7677 table->init_plt_offset.offset = -(bfd_vma) 1;
7678 /* The first dynamic symbol is a dummy. */
7679 table->dynsymcount = 1;
7680
7681 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7682
7683 table->root.type = bfd_link_elf_hash_table;
7684 table->hash_table_id = target_id;
7685
7686 return ret;
7687 }
7688
7689 /* Create an ELF linker hash table. */
7690
7691 struct bfd_link_hash_table *
7692 _bfd_elf_link_hash_table_create (bfd *abfd)
7693 {
7694 struct elf_link_hash_table *ret;
7695 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7696
7697 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7698 if (ret == NULL)
7699 return NULL;
7700
7701 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7702 sizeof (struct elf_link_hash_entry),
7703 GENERIC_ELF_DATA))
7704 {
7705 free (ret);
7706 return NULL;
7707 }
7708 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7709
7710 return &ret->root;
7711 }
7712
7713 /* Destroy an ELF linker hash table. */
7714
7715 void
7716 _bfd_elf_link_hash_table_free (bfd *obfd)
7717 {
7718 struct elf_link_hash_table *htab;
7719
7720 htab = (struct elf_link_hash_table *) obfd->link.hash;
7721 if (htab->dynstr != NULL)
7722 _bfd_elf_strtab_free (htab->dynstr);
7723 _bfd_merge_sections_free (htab->merge_info);
7724 _bfd_generic_link_hash_table_free (obfd);
7725 }
7726
7727 /* This is a hook for the ELF emulation code in the generic linker to
7728 tell the backend linker what file name to use for the DT_NEEDED
7729 entry for a dynamic object. */
7730
7731 void
7732 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7733 {
7734 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7735 && bfd_get_format (abfd) == bfd_object)
7736 elf_dt_name (abfd) = name;
7737 }
7738
7739 int
7740 bfd_elf_get_dyn_lib_class (bfd *abfd)
7741 {
7742 int lib_class;
7743 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7744 && bfd_get_format (abfd) == bfd_object)
7745 lib_class = elf_dyn_lib_class (abfd);
7746 else
7747 lib_class = 0;
7748 return lib_class;
7749 }
7750
7751 void
7752 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7753 {
7754 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7755 && bfd_get_format (abfd) == bfd_object)
7756 elf_dyn_lib_class (abfd) = lib_class;
7757 }
7758
7759 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7760 the linker ELF emulation code. */
7761
7762 struct bfd_link_needed_list *
7763 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7764 struct bfd_link_info *info)
7765 {
7766 if (! is_elf_hash_table (info->hash))
7767 return NULL;
7768 return elf_hash_table (info)->needed;
7769 }
7770
7771 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7772 hook for the linker ELF emulation code. */
7773
7774 struct bfd_link_needed_list *
7775 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7776 struct bfd_link_info *info)
7777 {
7778 if (! is_elf_hash_table (info->hash))
7779 return NULL;
7780 return elf_hash_table (info)->runpath;
7781 }
7782
7783 /* Get the name actually used for a dynamic object for a link. This
7784 is the SONAME entry if there is one. Otherwise, it is the string
7785 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7786
7787 const char *
7788 bfd_elf_get_dt_soname (bfd *abfd)
7789 {
7790 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7791 && bfd_get_format (abfd) == bfd_object)
7792 return elf_dt_name (abfd);
7793 return NULL;
7794 }
7795
7796 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7797 the ELF linker emulation code. */
7798
7799 bfd_boolean
7800 bfd_elf_get_bfd_needed_list (bfd *abfd,
7801 struct bfd_link_needed_list **pneeded)
7802 {
7803 asection *s;
7804 bfd_byte *dynbuf = NULL;
7805 unsigned int elfsec;
7806 unsigned long shlink;
7807 bfd_byte *extdyn, *extdynend;
7808 size_t extdynsize;
7809 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7810
7811 *pneeded = NULL;
7812
7813 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7814 || bfd_get_format (abfd) != bfd_object)
7815 return TRUE;
7816
7817 s = bfd_get_section_by_name (abfd, ".dynamic");
7818 if (s == NULL || s->size == 0)
7819 return TRUE;
7820
7821 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7822 goto error_return;
7823
7824 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7825 if (elfsec == SHN_BAD)
7826 goto error_return;
7827
7828 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7829
7830 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7831 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7832
7833 extdyn = dynbuf;
7834 extdynend = extdyn + s->size;
7835 for (; extdyn < extdynend; extdyn += extdynsize)
7836 {
7837 Elf_Internal_Dyn dyn;
7838
7839 (*swap_dyn_in) (abfd, extdyn, &dyn);
7840
7841 if (dyn.d_tag == DT_NULL)
7842 break;
7843
7844 if (dyn.d_tag == DT_NEEDED)
7845 {
7846 const char *string;
7847 struct bfd_link_needed_list *l;
7848 unsigned int tagv = dyn.d_un.d_val;
7849 bfd_size_type amt;
7850
7851 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7852 if (string == NULL)
7853 goto error_return;
7854
7855 amt = sizeof *l;
7856 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7857 if (l == NULL)
7858 goto error_return;
7859
7860 l->by = abfd;
7861 l->name = string;
7862 l->next = *pneeded;
7863 *pneeded = l;
7864 }
7865 }
7866
7867 free (dynbuf);
7868
7869 return TRUE;
7870
7871 error_return:
7872 if (dynbuf != NULL)
7873 free (dynbuf);
7874 return FALSE;
7875 }
7876
7877 struct elf_symbuf_symbol
7878 {
7879 unsigned long st_name; /* Symbol name, index in string tbl */
7880 unsigned char st_info; /* Type and binding attributes */
7881 unsigned char st_other; /* Visibilty, and target specific */
7882 };
7883
7884 struct elf_symbuf_head
7885 {
7886 struct elf_symbuf_symbol *ssym;
7887 size_t count;
7888 unsigned int st_shndx;
7889 };
7890
7891 struct elf_symbol
7892 {
7893 union
7894 {
7895 Elf_Internal_Sym *isym;
7896 struct elf_symbuf_symbol *ssym;
7897 void *p;
7898 } u;
7899 const char *name;
7900 };
7901
7902 /* Sort references to symbols by ascending section number. */
7903
7904 static int
7905 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7906 {
7907 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7908 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7909
7910 if (s1->st_shndx != s2->st_shndx)
7911 return s1->st_shndx > s2->st_shndx ? 1 : -1;
7912 /* Final sort by the address of the sym in the symbuf ensures
7913 a stable sort. */
7914 if (s1 != s2)
7915 return s1 > s2 ? 1 : -1;
7916 return 0;
7917 }
7918
7919 static int
7920 elf_sym_name_compare (const void *arg1, const void *arg2)
7921 {
7922 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7923 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7924 int ret = strcmp (s1->name, s2->name);
7925 if (ret != 0)
7926 return ret;
7927 if (s1->u.p != s2->u.p)
7928 return s1->u.p > s2->u.p ? 1 : -1;
7929 return 0;
7930 }
7931
7932 static struct elf_symbuf_head *
7933 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7934 {
7935 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7936 struct elf_symbuf_symbol *ssym;
7937 struct elf_symbuf_head *ssymbuf, *ssymhead;
7938 size_t i, shndx_count, total_size;
7939
7940 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7941 if (indbuf == NULL)
7942 return NULL;
7943
7944 for (ind = indbuf, i = 0; i < symcount; i++)
7945 if (isymbuf[i].st_shndx != SHN_UNDEF)
7946 *ind++ = &isymbuf[i];
7947 indbufend = ind;
7948
7949 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7950 elf_sort_elf_symbol);
7951
7952 shndx_count = 0;
7953 if (indbufend > indbuf)
7954 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7955 if (ind[0]->st_shndx != ind[1]->st_shndx)
7956 shndx_count++;
7957
7958 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7959 + (indbufend - indbuf) * sizeof (*ssym));
7960 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7961 if (ssymbuf == NULL)
7962 {
7963 free (indbuf);
7964 return NULL;
7965 }
7966
7967 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7968 ssymbuf->ssym = NULL;
7969 ssymbuf->count = shndx_count;
7970 ssymbuf->st_shndx = 0;
7971 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7972 {
7973 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7974 {
7975 ssymhead++;
7976 ssymhead->ssym = ssym;
7977 ssymhead->count = 0;
7978 ssymhead->st_shndx = (*ind)->st_shndx;
7979 }
7980 ssym->st_name = (*ind)->st_name;
7981 ssym->st_info = (*ind)->st_info;
7982 ssym->st_other = (*ind)->st_other;
7983 ssymhead->count++;
7984 }
7985 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7986 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7987 == total_size));
7988
7989 free (indbuf);
7990 return ssymbuf;
7991 }
7992
7993 /* Check if 2 sections define the same set of local and global
7994 symbols. */
7995
7996 static bfd_boolean
7997 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7998 struct bfd_link_info *info)
7999 {
8000 bfd *bfd1, *bfd2;
8001 const struct elf_backend_data *bed1, *bed2;
8002 Elf_Internal_Shdr *hdr1, *hdr2;
8003 size_t symcount1, symcount2;
8004 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8005 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8006 Elf_Internal_Sym *isym, *isymend;
8007 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8008 size_t count1, count2, i;
8009 unsigned int shndx1, shndx2;
8010 bfd_boolean result;
8011
8012 bfd1 = sec1->owner;
8013 bfd2 = sec2->owner;
8014
8015 /* Both sections have to be in ELF. */
8016 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8017 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8018 return FALSE;
8019
8020 if (elf_section_type (sec1) != elf_section_type (sec2))
8021 return FALSE;
8022
8023 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8024 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8025 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8026 return FALSE;
8027
8028 bed1 = get_elf_backend_data (bfd1);
8029 bed2 = get_elf_backend_data (bfd2);
8030 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8031 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8032 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8033 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8034
8035 if (symcount1 == 0 || symcount2 == 0)
8036 return FALSE;
8037
8038 result = FALSE;
8039 isymbuf1 = NULL;
8040 isymbuf2 = NULL;
8041 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8042 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8043
8044 if (ssymbuf1 == NULL)
8045 {
8046 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8047 NULL, NULL, NULL);
8048 if (isymbuf1 == NULL)
8049 goto done;
8050
8051 if (!info->reduce_memory_overheads)
8052 {
8053 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8054 elf_tdata (bfd1)->symbuf = ssymbuf1;
8055 }
8056 }
8057
8058 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8059 {
8060 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8061 NULL, NULL, NULL);
8062 if (isymbuf2 == NULL)
8063 goto done;
8064
8065 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8066 {
8067 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8068 elf_tdata (bfd2)->symbuf = ssymbuf2;
8069 }
8070 }
8071
8072 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8073 {
8074 /* Optimized faster version. */
8075 size_t lo, hi, mid;
8076 struct elf_symbol *symp;
8077 struct elf_symbuf_symbol *ssym, *ssymend;
8078
8079 lo = 0;
8080 hi = ssymbuf1->count;
8081 ssymbuf1++;
8082 count1 = 0;
8083 while (lo < hi)
8084 {
8085 mid = (lo + hi) / 2;
8086 if (shndx1 < ssymbuf1[mid].st_shndx)
8087 hi = mid;
8088 else if (shndx1 > ssymbuf1[mid].st_shndx)
8089 lo = mid + 1;
8090 else
8091 {
8092 count1 = ssymbuf1[mid].count;
8093 ssymbuf1 += mid;
8094 break;
8095 }
8096 }
8097
8098 lo = 0;
8099 hi = ssymbuf2->count;
8100 ssymbuf2++;
8101 count2 = 0;
8102 while (lo < hi)
8103 {
8104 mid = (lo + hi) / 2;
8105 if (shndx2 < ssymbuf2[mid].st_shndx)
8106 hi = mid;
8107 else if (shndx2 > ssymbuf2[mid].st_shndx)
8108 lo = mid + 1;
8109 else
8110 {
8111 count2 = ssymbuf2[mid].count;
8112 ssymbuf2 += mid;
8113 break;
8114 }
8115 }
8116
8117 if (count1 == 0 || count2 == 0 || count1 != count2)
8118 goto done;
8119
8120 symtable1
8121 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8122 symtable2
8123 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8124 if (symtable1 == NULL || symtable2 == NULL)
8125 goto done;
8126
8127 symp = symtable1;
8128 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8129 ssym < ssymend; ssym++, symp++)
8130 {
8131 symp->u.ssym = ssym;
8132 symp->name = bfd_elf_string_from_elf_section (bfd1,
8133 hdr1->sh_link,
8134 ssym->st_name);
8135 }
8136
8137 symp = symtable2;
8138 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8139 ssym < ssymend; ssym++, symp++)
8140 {
8141 symp->u.ssym = ssym;
8142 symp->name = bfd_elf_string_from_elf_section (bfd2,
8143 hdr2->sh_link,
8144 ssym->st_name);
8145 }
8146
8147 /* Sort symbol by name. */
8148 qsort (symtable1, count1, sizeof (struct elf_symbol),
8149 elf_sym_name_compare);
8150 qsort (symtable2, count1, sizeof (struct elf_symbol),
8151 elf_sym_name_compare);
8152
8153 for (i = 0; i < count1; i++)
8154 /* Two symbols must have the same binding, type and name. */
8155 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8156 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8157 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8158 goto done;
8159
8160 result = TRUE;
8161 goto done;
8162 }
8163
8164 symtable1 = (struct elf_symbol *)
8165 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8166 symtable2 = (struct elf_symbol *)
8167 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8168 if (symtable1 == NULL || symtable2 == NULL)
8169 goto done;
8170
8171 /* Count definitions in the section. */
8172 count1 = 0;
8173 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8174 if (isym->st_shndx == shndx1)
8175 symtable1[count1++].u.isym = isym;
8176
8177 count2 = 0;
8178 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8179 if (isym->st_shndx == shndx2)
8180 symtable2[count2++].u.isym = isym;
8181
8182 if (count1 == 0 || count2 == 0 || count1 != count2)
8183 goto done;
8184
8185 for (i = 0; i < count1; i++)
8186 symtable1[i].name
8187 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8188 symtable1[i].u.isym->st_name);
8189
8190 for (i = 0; i < count2; i++)
8191 symtable2[i].name
8192 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8193 symtable2[i].u.isym->st_name);
8194
8195 /* Sort symbol by name. */
8196 qsort (symtable1, count1, sizeof (struct elf_symbol),
8197 elf_sym_name_compare);
8198 qsort (symtable2, count1, sizeof (struct elf_symbol),
8199 elf_sym_name_compare);
8200
8201 for (i = 0; i < count1; i++)
8202 /* Two symbols must have the same binding, type and name. */
8203 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8204 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8205 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8206 goto done;
8207
8208 result = TRUE;
8209
8210 done:
8211 if (symtable1)
8212 free (symtable1);
8213 if (symtable2)
8214 free (symtable2);
8215 if (isymbuf1)
8216 free (isymbuf1);
8217 if (isymbuf2)
8218 free (isymbuf2);
8219
8220 return result;
8221 }
8222
8223 /* Return TRUE if 2 section types are compatible. */
8224
8225 bfd_boolean
8226 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8227 bfd *bbfd, const asection *bsec)
8228 {
8229 if (asec == NULL
8230 || bsec == NULL
8231 || abfd->xvec->flavour != bfd_target_elf_flavour
8232 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8233 return TRUE;
8234
8235 return elf_section_type (asec) == elf_section_type (bsec);
8236 }
8237 \f
8238 /* Final phase of ELF linker. */
8239
8240 /* A structure we use to avoid passing large numbers of arguments. */
8241
8242 struct elf_final_link_info
8243 {
8244 /* General link information. */
8245 struct bfd_link_info *info;
8246 /* Output BFD. */
8247 bfd *output_bfd;
8248 /* Symbol string table. */
8249 struct elf_strtab_hash *symstrtab;
8250 /* .hash section. */
8251 asection *hash_sec;
8252 /* symbol version section (.gnu.version). */
8253 asection *symver_sec;
8254 /* Buffer large enough to hold contents of any section. */
8255 bfd_byte *contents;
8256 /* Buffer large enough to hold external relocs of any section. */
8257 void *external_relocs;
8258 /* Buffer large enough to hold internal relocs of any section. */
8259 Elf_Internal_Rela *internal_relocs;
8260 /* Buffer large enough to hold external local symbols of any input
8261 BFD. */
8262 bfd_byte *external_syms;
8263 /* And a buffer for symbol section indices. */
8264 Elf_External_Sym_Shndx *locsym_shndx;
8265 /* Buffer large enough to hold internal local symbols of any input
8266 BFD. */
8267 Elf_Internal_Sym *internal_syms;
8268 /* Array large enough to hold a symbol index for each local symbol
8269 of any input BFD. */
8270 long *indices;
8271 /* Array large enough to hold a section pointer for each local
8272 symbol of any input BFD. */
8273 asection **sections;
8274 /* Buffer for SHT_SYMTAB_SHNDX section. */
8275 Elf_External_Sym_Shndx *symshndxbuf;
8276 /* Number of STT_FILE syms seen. */
8277 size_t filesym_count;
8278 };
8279
8280 /* This struct is used to pass information to elf_link_output_extsym. */
8281
8282 struct elf_outext_info
8283 {
8284 bfd_boolean failed;
8285 bfd_boolean localsyms;
8286 bfd_boolean file_sym_done;
8287 struct elf_final_link_info *flinfo;
8288 };
8289
8290
8291 /* Support for evaluating a complex relocation.
8292
8293 Complex relocations are generalized, self-describing relocations. The
8294 implementation of them consists of two parts: complex symbols, and the
8295 relocations themselves.
8296
8297 The relocations are use a reserved elf-wide relocation type code (R_RELC
8298 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8299 information (start bit, end bit, word width, etc) into the addend. This
8300 information is extracted from CGEN-generated operand tables within gas.
8301
8302 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8303 internal) representing prefix-notation expressions, including but not
8304 limited to those sorts of expressions normally encoded as addends in the
8305 addend field. The symbol mangling format is:
8306
8307 <node> := <literal>
8308 | <unary-operator> ':' <node>
8309 | <binary-operator> ':' <node> ':' <node>
8310 ;
8311
8312 <literal> := 's' <digits=N> ':' <N character symbol name>
8313 | 'S' <digits=N> ':' <N character section name>
8314 | '#' <hexdigits>
8315 ;
8316
8317 <binary-operator> := as in C
8318 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8319
8320 static void
8321 set_symbol_value (bfd *bfd_with_globals,
8322 Elf_Internal_Sym *isymbuf,
8323 size_t locsymcount,
8324 size_t symidx,
8325 bfd_vma val)
8326 {
8327 struct elf_link_hash_entry **sym_hashes;
8328 struct elf_link_hash_entry *h;
8329 size_t extsymoff = locsymcount;
8330
8331 if (symidx < locsymcount)
8332 {
8333 Elf_Internal_Sym *sym;
8334
8335 sym = isymbuf + symidx;
8336 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8337 {
8338 /* It is a local symbol: move it to the
8339 "absolute" section and give it a value. */
8340 sym->st_shndx = SHN_ABS;
8341 sym->st_value = val;
8342 return;
8343 }
8344 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8345 extsymoff = 0;
8346 }
8347
8348 /* It is a global symbol: set its link type
8349 to "defined" and give it a value. */
8350
8351 sym_hashes = elf_sym_hashes (bfd_with_globals);
8352 h = sym_hashes [symidx - extsymoff];
8353 while (h->root.type == bfd_link_hash_indirect
8354 || h->root.type == bfd_link_hash_warning)
8355 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8356 h->root.type = bfd_link_hash_defined;
8357 h->root.u.def.value = val;
8358 h->root.u.def.section = bfd_abs_section_ptr;
8359 }
8360
8361 static bfd_boolean
8362 resolve_symbol (const char *name,
8363 bfd *input_bfd,
8364 struct elf_final_link_info *flinfo,
8365 bfd_vma *result,
8366 Elf_Internal_Sym *isymbuf,
8367 size_t locsymcount)
8368 {
8369 Elf_Internal_Sym *sym;
8370 struct bfd_link_hash_entry *global_entry;
8371 const char *candidate = NULL;
8372 Elf_Internal_Shdr *symtab_hdr;
8373 size_t i;
8374
8375 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8376
8377 for (i = 0; i < locsymcount; ++ i)
8378 {
8379 sym = isymbuf + i;
8380
8381 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8382 continue;
8383
8384 candidate = bfd_elf_string_from_elf_section (input_bfd,
8385 symtab_hdr->sh_link,
8386 sym->st_name);
8387 #ifdef DEBUG
8388 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8389 name, candidate, (unsigned long) sym->st_value);
8390 #endif
8391 if (candidate && strcmp (candidate, name) == 0)
8392 {
8393 asection *sec = flinfo->sections [i];
8394
8395 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8396 *result += sec->output_offset + sec->output_section->vma;
8397 #ifdef DEBUG
8398 printf ("Found symbol with value %8.8lx\n",
8399 (unsigned long) *result);
8400 #endif
8401 return TRUE;
8402 }
8403 }
8404
8405 /* Hmm, haven't found it yet. perhaps it is a global. */
8406 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8407 FALSE, FALSE, TRUE);
8408 if (!global_entry)
8409 return FALSE;
8410
8411 if (global_entry->type == bfd_link_hash_defined
8412 || global_entry->type == bfd_link_hash_defweak)
8413 {
8414 *result = (global_entry->u.def.value
8415 + global_entry->u.def.section->output_section->vma
8416 + global_entry->u.def.section->output_offset);
8417 #ifdef DEBUG
8418 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8419 global_entry->root.string, (unsigned long) *result);
8420 #endif
8421 return TRUE;
8422 }
8423
8424 return FALSE;
8425 }
8426
8427 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8428 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8429 names like "foo.end" which is the end address of section "foo". */
8430
8431 static bfd_boolean
8432 resolve_section (const char *name,
8433 asection *sections,
8434 bfd_vma *result,
8435 bfd * abfd)
8436 {
8437 asection *curr;
8438 unsigned int len;
8439
8440 for (curr = sections; curr; curr = curr->next)
8441 if (strcmp (curr->name, name) == 0)
8442 {
8443 *result = curr->vma;
8444 return TRUE;
8445 }
8446
8447 /* Hmm. still haven't found it. try pseudo-section names. */
8448 /* FIXME: This could be coded more efficiently... */
8449 for (curr = sections; curr; curr = curr->next)
8450 {
8451 len = strlen (curr->name);
8452 if (len > strlen (name))
8453 continue;
8454
8455 if (strncmp (curr->name, name, len) == 0)
8456 {
8457 if (strncmp (".end", name + len, 4) == 0)
8458 {
8459 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8460 return TRUE;
8461 }
8462
8463 /* Insert more pseudo-section names here, if you like. */
8464 }
8465 }
8466
8467 return FALSE;
8468 }
8469
8470 static void
8471 undefined_reference (const char *reftype, const char *name)
8472 {
8473 /* xgettext:c-format */
8474 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8475 reftype, name);
8476 }
8477
8478 static bfd_boolean
8479 eval_symbol (bfd_vma *result,
8480 const char **symp,
8481 bfd *input_bfd,
8482 struct elf_final_link_info *flinfo,
8483 bfd_vma dot,
8484 Elf_Internal_Sym *isymbuf,
8485 size_t locsymcount,
8486 int signed_p)
8487 {
8488 size_t len;
8489 size_t symlen;
8490 bfd_vma a;
8491 bfd_vma b;
8492 char symbuf[4096];
8493 const char *sym = *symp;
8494 const char *symend;
8495 bfd_boolean symbol_is_section = FALSE;
8496
8497 len = strlen (sym);
8498 symend = sym + len;
8499
8500 if (len < 1 || len > sizeof (symbuf))
8501 {
8502 bfd_set_error (bfd_error_invalid_operation);
8503 return FALSE;
8504 }
8505
8506 switch (* sym)
8507 {
8508 case '.':
8509 *result = dot;
8510 *symp = sym + 1;
8511 return TRUE;
8512
8513 case '#':
8514 ++sym;
8515 *result = strtoul (sym, (char **) symp, 16);
8516 return TRUE;
8517
8518 case 'S':
8519 symbol_is_section = TRUE;
8520 /* Fall through. */
8521 case 's':
8522 ++sym;
8523 symlen = strtol (sym, (char **) symp, 10);
8524 sym = *symp + 1; /* Skip the trailing ':'. */
8525
8526 if (symend < sym || symlen + 1 > sizeof (symbuf))
8527 {
8528 bfd_set_error (bfd_error_invalid_operation);
8529 return FALSE;
8530 }
8531
8532 memcpy (symbuf, sym, symlen);
8533 symbuf[symlen] = '\0';
8534 *symp = sym + symlen;
8535
8536 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8537 the symbol as a section, or vice-versa. so we're pretty liberal in our
8538 interpretation here; section means "try section first", not "must be a
8539 section", and likewise with symbol. */
8540
8541 if (symbol_is_section)
8542 {
8543 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8544 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8545 isymbuf, locsymcount))
8546 {
8547 undefined_reference ("section", symbuf);
8548 return FALSE;
8549 }
8550 }
8551 else
8552 {
8553 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8554 isymbuf, locsymcount)
8555 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8556 result, input_bfd))
8557 {
8558 undefined_reference ("symbol", symbuf);
8559 return FALSE;
8560 }
8561 }
8562
8563 return TRUE;
8564
8565 /* All that remains are operators. */
8566
8567 #define UNARY_OP(op) \
8568 if (strncmp (sym, #op, strlen (#op)) == 0) \
8569 { \
8570 sym += strlen (#op); \
8571 if (*sym == ':') \
8572 ++sym; \
8573 *symp = sym; \
8574 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8575 isymbuf, locsymcount, signed_p)) \
8576 return FALSE; \
8577 if (signed_p) \
8578 *result = op ((bfd_signed_vma) a); \
8579 else \
8580 *result = op a; \
8581 return TRUE; \
8582 }
8583
8584 #define BINARY_OP(op) \
8585 if (strncmp (sym, #op, strlen (#op)) == 0) \
8586 { \
8587 sym += strlen (#op); \
8588 if (*sym == ':') \
8589 ++sym; \
8590 *symp = sym; \
8591 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8592 isymbuf, locsymcount, signed_p)) \
8593 return FALSE; \
8594 ++*symp; \
8595 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8596 isymbuf, locsymcount, signed_p)) \
8597 return FALSE; \
8598 if (signed_p) \
8599 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8600 else \
8601 *result = a op b; \
8602 return TRUE; \
8603 }
8604
8605 default:
8606 UNARY_OP (0-);
8607 BINARY_OP (<<);
8608 BINARY_OP (>>);
8609 BINARY_OP (==);
8610 BINARY_OP (!=);
8611 BINARY_OP (<=);
8612 BINARY_OP (>=);
8613 BINARY_OP (&&);
8614 BINARY_OP (||);
8615 UNARY_OP (~);
8616 UNARY_OP (!);
8617 BINARY_OP (*);
8618 BINARY_OP (/);
8619 BINARY_OP (%);
8620 BINARY_OP (^);
8621 BINARY_OP (|);
8622 BINARY_OP (&);
8623 BINARY_OP (+);
8624 BINARY_OP (-);
8625 BINARY_OP (<);
8626 BINARY_OP (>);
8627 #undef UNARY_OP
8628 #undef BINARY_OP
8629 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8630 bfd_set_error (bfd_error_invalid_operation);
8631 return FALSE;
8632 }
8633 }
8634
8635 static void
8636 put_value (bfd_vma size,
8637 unsigned long chunksz,
8638 bfd *input_bfd,
8639 bfd_vma x,
8640 bfd_byte *location)
8641 {
8642 location += (size - chunksz);
8643
8644 for (; size; size -= chunksz, location -= chunksz)
8645 {
8646 switch (chunksz)
8647 {
8648 case 1:
8649 bfd_put_8 (input_bfd, x, location);
8650 x >>= 8;
8651 break;
8652 case 2:
8653 bfd_put_16 (input_bfd, x, location);
8654 x >>= 16;
8655 break;
8656 case 4:
8657 bfd_put_32 (input_bfd, x, location);
8658 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8659 x >>= 16;
8660 x >>= 16;
8661 break;
8662 #ifdef BFD64
8663 case 8:
8664 bfd_put_64 (input_bfd, x, location);
8665 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8666 x >>= 32;
8667 x >>= 32;
8668 break;
8669 #endif
8670 default:
8671 abort ();
8672 break;
8673 }
8674 }
8675 }
8676
8677 static bfd_vma
8678 get_value (bfd_vma size,
8679 unsigned long chunksz,
8680 bfd *input_bfd,
8681 bfd_byte *location)
8682 {
8683 int shift;
8684 bfd_vma x = 0;
8685
8686 /* Sanity checks. */
8687 BFD_ASSERT (chunksz <= sizeof (x)
8688 && size >= chunksz
8689 && chunksz != 0
8690 && (size % chunksz) == 0
8691 && input_bfd != NULL
8692 && location != NULL);
8693
8694 if (chunksz == sizeof (x))
8695 {
8696 BFD_ASSERT (size == chunksz);
8697
8698 /* Make sure that we do not perform an undefined shift operation.
8699 We know that size == chunksz so there will only be one iteration
8700 of the loop below. */
8701 shift = 0;
8702 }
8703 else
8704 shift = 8 * chunksz;
8705
8706 for (; size; size -= chunksz, location += chunksz)
8707 {
8708 switch (chunksz)
8709 {
8710 case 1:
8711 x = (x << shift) | bfd_get_8 (input_bfd, location);
8712 break;
8713 case 2:
8714 x = (x << shift) | bfd_get_16 (input_bfd, location);
8715 break;
8716 case 4:
8717 x = (x << shift) | bfd_get_32 (input_bfd, location);
8718 break;
8719 #ifdef BFD64
8720 case 8:
8721 x = (x << shift) | bfd_get_64 (input_bfd, location);
8722 break;
8723 #endif
8724 default:
8725 abort ();
8726 }
8727 }
8728 return x;
8729 }
8730
8731 static void
8732 decode_complex_addend (unsigned long *start, /* in bits */
8733 unsigned long *oplen, /* in bits */
8734 unsigned long *len, /* in bits */
8735 unsigned long *wordsz, /* in bytes */
8736 unsigned long *chunksz, /* in bytes */
8737 unsigned long *lsb0_p,
8738 unsigned long *signed_p,
8739 unsigned long *trunc_p,
8740 unsigned long encoded)
8741 {
8742 * start = encoded & 0x3F;
8743 * len = (encoded >> 6) & 0x3F;
8744 * oplen = (encoded >> 12) & 0x3F;
8745 * wordsz = (encoded >> 18) & 0xF;
8746 * chunksz = (encoded >> 22) & 0xF;
8747 * lsb0_p = (encoded >> 27) & 1;
8748 * signed_p = (encoded >> 28) & 1;
8749 * trunc_p = (encoded >> 29) & 1;
8750 }
8751
8752 bfd_reloc_status_type
8753 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8754 asection *input_section ATTRIBUTE_UNUSED,
8755 bfd_byte *contents,
8756 Elf_Internal_Rela *rel,
8757 bfd_vma relocation)
8758 {
8759 bfd_vma shift, x, mask;
8760 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8761 bfd_reloc_status_type r;
8762
8763 /* Perform this reloc, since it is complex.
8764 (this is not to say that it necessarily refers to a complex
8765 symbol; merely that it is a self-describing CGEN based reloc.
8766 i.e. the addend has the complete reloc information (bit start, end,
8767 word size, etc) encoded within it.). */
8768
8769 decode_complex_addend (&start, &oplen, &len, &wordsz,
8770 &chunksz, &lsb0_p, &signed_p,
8771 &trunc_p, rel->r_addend);
8772
8773 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8774
8775 if (lsb0_p)
8776 shift = (start + 1) - len;
8777 else
8778 shift = (8 * wordsz) - (start + len);
8779
8780 x = get_value (wordsz, chunksz, input_bfd,
8781 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8782
8783 #ifdef DEBUG
8784 printf ("Doing complex reloc: "
8785 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8786 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8787 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8788 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8789 oplen, (unsigned long) x, (unsigned long) mask,
8790 (unsigned long) relocation);
8791 #endif
8792
8793 r = bfd_reloc_ok;
8794 if (! trunc_p)
8795 /* Now do an overflow check. */
8796 r = bfd_check_overflow ((signed_p
8797 ? complain_overflow_signed
8798 : complain_overflow_unsigned),
8799 len, 0, (8 * wordsz),
8800 relocation);
8801
8802 /* Do the deed. */
8803 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8804
8805 #ifdef DEBUG
8806 printf (" relocation: %8.8lx\n"
8807 " shifted mask: %8.8lx\n"
8808 " shifted/masked reloc: %8.8lx\n"
8809 " result: %8.8lx\n",
8810 (unsigned long) relocation, (unsigned long) (mask << shift),
8811 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8812 #endif
8813 put_value (wordsz, chunksz, input_bfd, x,
8814 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8815 return r;
8816 }
8817
8818 /* Functions to read r_offset from external (target order) reloc
8819 entry. Faster than bfd_getl32 et al, because we let the compiler
8820 know the value is aligned. */
8821
8822 static bfd_vma
8823 ext32l_r_offset (const void *p)
8824 {
8825 union aligned32
8826 {
8827 uint32_t v;
8828 unsigned char c[4];
8829 };
8830 const union aligned32 *a
8831 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8832
8833 uint32_t aval = ( (uint32_t) a->c[0]
8834 | (uint32_t) a->c[1] << 8
8835 | (uint32_t) a->c[2] << 16
8836 | (uint32_t) a->c[3] << 24);
8837 return aval;
8838 }
8839
8840 static bfd_vma
8841 ext32b_r_offset (const void *p)
8842 {
8843 union aligned32
8844 {
8845 uint32_t v;
8846 unsigned char c[4];
8847 };
8848 const union aligned32 *a
8849 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8850
8851 uint32_t aval = ( (uint32_t) a->c[0] << 24
8852 | (uint32_t) a->c[1] << 16
8853 | (uint32_t) a->c[2] << 8
8854 | (uint32_t) a->c[3]);
8855 return aval;
8856 }
8857
8858 #ifdef BFD_HOST_64_BIT
8859 static bfd_vma
8860 ext64l_r_offset (const void *p)
8861 {
8862 union aligned64
8863 {
8864 uint64_t v;
8865 unsigned char c[8];
8866 };
8867 const union aligned64 *a
8868 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8869
8870 uint64_t aval = ( (uint64_t) a->c[0]
8871 | (uint64_t) a->c[1] << 8
8872 | (uint64_t) a->c[2] << 16
8873 | (uint64_t) a->c[3] << 24
8874 | (uint64_t) a->c[4] << 32
8875 | (uint64_t) a->c[5] << 40
8876 | (uint64_t) a->c[6] << 48
8877 | (uint64_t) a->c[7] << 56);
8878 return aval;
8879 }
8880
8881 static bfd_vma
8882 ext64b_r_offset (const void *p)
8883 {
8884 union aligned64
8885 {
8886 uint64_t v;
8887 unsigned char c[8];
8888 };
8889 const union aligned64 *a
8890 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8891
8892 uint64_t aval = ( (uint64_t) a->c[0] << 56
8893 | (uint64_t) a->c[1] << 48
8894 | (uint64_t) a->c[2] << 40
8895 | (uint64_t) a->c[3] << 32
8896 | (uint64_t) a->c[4] << 24
8897 | (uint64_t) a->c[5] << 16
8898 | (uint64_t) a->c[6] << 8
8899 | (uint64_t) a->c[7]);
8900 return aval;
8901 }
8902 #endif
8903
8904 /* When performing a relocatable link, the input relocations are
8905 preserved. But, if they reference global symbols, the indices
8906 referenced must be updated. Update all the relocations found in
8907 RELDATA. */
8908
8909 static bfd_boolean
8910 elf_link_adjust_relocs (bfd *abfd,
8911 asection *sec,
8912 struct bfd_elf_section_reloc_data *reldata,
8913 bfd_boolean sort,
8914 struct bfd_link_info *info)
8915 {
8916 unsigned int i;
8917 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8918 bfd_byte *erela;
8919 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8920 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8921 bfd_vma r_type_mask;
8922 int r_sym_shift;
8923 unsigned int count = reldata->count;
8924 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8925
8926 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8927 {
8928 swap_in = bed->s->swap_reloc_in;
8929 swap_out = bed->s->swap_reloc_out;
8930 }
8931 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8932 {
8933 swap_in = bed->s->swap_reloca_in;
8934 swap_out = bed->s->swap_reloca_out;
8935 }
8936 else
8937 abort ();
8938
8939 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8940 abort ();
8941
8942 if (bed->s->arch_size == 32)
8943 {
8944 r_type_mask = 0xff;
8945 r_sym_shift = 8;
8946 }
8947 else
8948 {
8949 r_type_mask = 0xffffffff;
8950 r_sym_shift = 32;
8951 }
8952
8953 erela = reldata->hdr->contents;
8954 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8955 {
8956 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8957 unsigned int j;
8958
8959 if (*rel_hash == NULL)
8960 continue;
8961
8962 if ((*rel_hash)->indx == -2
8963 && info->gc_sections
8964 && ! info->gc_keep_exported)
8965 {
8966 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8967 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8968 abfd, sec,
8969 (*rel_hash)->root.root.string);
8970 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8971 abfd, sec);
8972 bfd_set_error (bfd_error_invalid_operation);
8973 return FALSE;
8974 }
8975 BFD_ASSERT ((*rel_hash)->indx >= 0);
8976
8977 (*swap_in) (abfd, erela, irela);
8978 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8979 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8980 | (irela[j].r_info & r_type_mask));
8981 (*swap_out) (abfd, irela, erela);
8982 }
8983
8984 if (bed->elf_backend_update_relocs)
8985 (*bed->elf_backend_update_relocs) (sec, reldata);
8986
8987 if (sort && count != 0)
8988 {
8989 bfd_vma (*ext_r_off) (const void *);
8990 bfd_vma r_off;
8991 size_t elt_size;
8992 bfd_byte *base, *end, *p, *loc;
8993 bfd_byte *buf = NULL;
8994
8995 if (bed->s->arch_size == 32)
8996 {
8997 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8998 ext_r_off = ext32l_r_offset;
8999 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9000 ext_r_off = ext32b_r_offset;
9001 else
9002 abort ();
9003 }
9004 else
9005 {
9006 #ifdef BFD_HOST_64_BIT
9007 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9008 ext_r_off = ext64l_r_offset;
9009 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9010 ext_r_off = ext64b_r_offset;
9011 else
9012 #endif
9013 abort ();
9014 }
9015
9016 /* Must use a stable sort here. A modified insertion sort,
9017 since the relocs are mostly sorted already. */
9018 elt_size = reldata->hdr->sh_entsize;
9019 base = reldata->hdr->contents;
9020 end = base + count * elt_size;
9021 if (elt_size > sizeof (Elf64_External_Rela))
9022 abort ();
9023
9024 /* Ensure the first element is lowest. This acts as a sentinel,
9025 speeding the main loop below. */
9026 r_off = (*ext_r_off) (base);
9027 for (p = loc = base; (p += elt_size) < end; )
9028 {
9029 bfd_vma r_off2 = (*ext_r_off) (p);
9030 if (r_off > r_off2)
9031 {
9032 r_off = r_off2;
9033 loc = p;
9034 }
9035 }
9036 if (loc != base)
9037 {
9038 /* Don't just swap *base and *loc as that changes the order
9039 of the original base[0] and base[1] if they happen to
9040 have the same r_offset. */
9041 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9042 memcpy (onebuf, loc, elt_size);
9043 memmove (base + elt_size, base, loc - base);
9044 memcpy (base, onebuf, elt_size);
9045 }
9046
9047 for (p = base + elt_size; (p += elt_size) < end; )
9048 {
9049 /* base to p is sorted, *p is next to insert. */
9050 r_off = (*ext_r_off) (p);
9051 /* Search the sorted region for location to insert. */
9052 loc = p - elt_size;
9053 while (r_off < (*ext_r_off) (loc))
9054 loc -= elt_size;
9055 loc += elt_size;
9056 if (loc != p)
9057 {
9058 /* Chances are there is a run of relocs to insert here,
9059 from one of more input files. Files are not always
9060 linked in order due to the way elf_link_input_bfd is
9061 called. See pr17666. */
9062 size_t sortlen = p - loc;
9063 bfd_vma r_off2 = (*ext_r_off) (loc);
9064 size_t runlen = elt_size;
9065 size_t buf_size = 96 * 1024;
9066 while (p + runlen < end
9067 && (sortlen <= buf_size
9068 || runlen + elt_size <= buf_size)
9069 && r_off2 > (*ext_r_off) (p + runlen))
9070 runlen += elt_size;
9071 if (buf == NULL)
9072 {
9073 buf = bfd_malloc (buf_size);
9074 if (buf == NULL)
9075 return FALSE;
9076 }
9077 if (runlen < sortlen)
9078 {
9079 memcpy (buf, p, runlen);
9080 memmove (loc + runlen, loc, sortlen);
9081 memcpy (loc, buf, runlen);
9082 }
9083 else
9084 {
9085 memcpy (buf, loc, sortlen);
9086 memmove (loc, p, runlen);
9087 memcpy (loc + runlen, buf, sortlen);
9088 }
9089 p += runlen - elt_size;
9090 }
9091 }
9092 /* Hashes are no longer valid. */
9093 free (reldata->hashes);
9094 reldata->hashes = NULL;
9095 free (buf);
9096 }
9097 return TRUE;
9098 }
9099
9100 struct elf_link_sort_rela
9101 {
9102 union {
9103 bfd_vma offset;
9104 bfd_vma sym_mask;
9105 } u;
9106 enum elf_reloc_type_class type;
9107 /* We use this as an array of size int_rels_per_ext_rel. */
9108 Elf_Internal_Rela rela[1];
9109 };
9110
9111 /* qsort stability here and for cmp2 is only an issue if multiple
9112 dynamic relocations are emitted at the same address. But targets
9113 that apply a series of dynamic relocations each operating on the
9114 result of the prior relocation can't use -z combreloc as
9115 implemented anyway. Such schemes tend to be broken by sorting on
9116 symbol index. That leaves dynamic NONE relocs as the only other
9117 case where ld might emit multiple relocs at the same address, and
9118 those are only emitted due to target bugs. */
9119
9120 static int
9121 elf_link_sort_cmp1 (const void *A, const void *B)
9122 {
9123 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9124 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9125 int relativea, relativeb;
9126
9127 relativea = a->type == reloc_class_relative;
9128 relativeb = b->type == reloc_class_relative;
9129
9130 if (relativea < relativeb)
9131 return 1;
9132 if (relativea > relativeb)
9133 return -1;
9134 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9135 return -1;
9136 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9137 return 1;
9138 if (a->rela->r_offset < b->rela->r_offset)
9139 return -1;
9140 if (a->rela->r_offset > b->rela->r_offset)
9141 return 1;
9142 return 0;
9143 }
9144
9145 static int
9146 elf_link_sort_cmp2 (const void *A, const void *B)
9147 {
9148 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9149 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9150
9151 if (a->type < b->type)
9152 return -1;
9153 if (a->type > b->type)
9154 return 1;
9155 if (a->u.offset < b->u.offset)
9156 return -1;
9157 if (a->u.offset > b->u.offset)
9158 return 1;
9159 if (a->rela->r_offset < b->rela->r_offset)
9160 return -1;
9161 if (a->rela->r_offset > b->rela->r_offset)
9162 return 1;
9163 return 0;
9164 }
9165
9166 static size_t
9167 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9168 {
9169 asection *dynamic_relocs;
9170 asection *rela_dyn;
9171 asection *rel_dyn;
9172 bfd_size_type count, size;
9173 size_t i, ret, sort_elt, ext_size;
9174 bfd_byte *sort, *s_non_relative, *p;
9175 struct elf_link_sort_rela *sq;
9176 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9177 int i2e = bed->s->int_rels_per_ext_rel;
9178 unsigned int opb = bfd_octets_per_byte (abfd);
9179 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9180 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9181 struct bfd_link_order *lo;
9182 bfd_vma r_sym_mask;
9183 bfd_boolean use_rela;
9184
9185 /* Find a dynamic reloc section. */
9186 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9187 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9188 if (rela_dyn != NULL && rela_dyn->size > 0
9189 && rel_dyn != NULL && rel_dyn->size > 0)
9190 {
9191 bfd_boolean use_rela_initialised = FALSE;
9192
9193 /* This is just here to stop gcc from complaining.
9194 Its initialization checking code is not perfect. */
9195 use_rela = TRUE;
9196
9197 /* Both sections are present. Examine the sizes
9198 of the indirect sections to help us choose. */
9199 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9200 if (lo->type == bfd_indirect_link_order)
9201 {
9202 asection *o = lo->u.indirect.section;
9203
9204 if ((o->size % bed->s->sizeof_rela) == 0)
9205 {
9206 if ((o->size % bed->s->sizeof_rel) == 0)
9207 /* Section size is divisible by both rel and rela sizes.
9208 It is of no help to us. */
9209 ;
9210 else
9211 {
9212 /* Section size is only divisible by rela. */
9213 if (use_rela_initialised && !use_rela)
9214 {
9215 _bfd_error_handler (_("%pB: unable to sort relocs - "
9216 "they are in more than one size"),
9217 abfd);
9218 bfd_set_error (bfd_error_invalid_operation);
9219 return 0;
9220 }
9221 else
9222 {
9223 use_rela = TRUE;
9224 use_rela_initialised = TRUE;
9225 }
9226 }
9227 }
9228 else if ((o->size % bed->s->sizeof_rel) == 0)
9229 {
9230 /* Section size is only divisible by rel. */
9231 if (use_rela_initialised && use_rela)
9232 {
9233 _bfd_error_handler (_("%pB: unable to sort relocs - "
9234 "they are in more than one size"),
9235 abfd);
9236 bfd_set_error (bfd_error_invalid_operation);
9237 return 0;
9238 }
9239 else
9240 {
9241 use_rela = FALSE;
9242 use_rela_initialised = TRUE;
9243 }
9244 }
9245 else
9246 {
9247 /* The section size is not divisible by either -
9248 something is wrong. */
9249 _bfd_error_handler (_("%pB: unable to sort relocs - "
9250 "they are of an unknown size"), abfd);
9251 bfd_set_error (bfd_error_invalid_operation);
9252 return 0;
9253 }
9254 }
9255
9256 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9257 if (lo->type == bfd_indirect_link_order)
9258 {
9259 asection *o = lo->u.indirect.section;
9260
9261 if ((o->size % bed->s->sizeof_rela) == 0)
9262 {
9263 if ((o->size % bed->s->sizeof_rel) == 0)
9264 /* Section size is divisible by both rel and rela sizes.
9265 It is of no help to us. */
9266 ;
9267 else
9268 {
9269 /* Section size is only divisible by rela. */
9270 if (use_rela_initialised && !use_rela)
9271 {
9272 _bfd_error_handler (_("%pB: unable to sort relocs - "
9273 "they are in more than one size"),
9274 abfd);
9275 bfd_set_error (bfd_error_invalid_operation);
9276 return 0;
9277 }
9278 else
9279 {
9280 use_rela = TRUE;
9281 use_rela_initialised = TRUE;
9282 }
9283 }
9284 }
9285 else if ((o->size % bed->s->sizeof_rel) == 0)
9286 {
9287 /* Section size is only divisible by rel. */
9288 if (use_rela_initialised && use_rela)
9289 {
9290 _bfd_error_handler (_("%pB: unable to sort relocs - "
9291 "they are in more than one size"),
9292 abfd);
9293 bfd_set_error (bfd_error_invalid_operation);
9294 return 0;
9295 }
9296 else
9297 {
9298 use_rela = FALSE;
9299 use_rela_initialised = TRUE;
9300 }
9301 }
9302 else
9303 {
9304 /* The section size is not divisible by either -
9305 something is wrong. */
9306 _bfd_error_handler (_("%pB: unable to sort relocs - "
9307 "they are of an unknown size"), abfd);
9308 bfd_set_error (bfd_error_invalid_operation);
9309 return 0;
9310 }
9311 }
9312
9313 if (! use_rela_initialised)
9314 /* Make a guess. */
9315 use_rela = TRUE;
9316 }
9317 else if (rela_dyn != NULL && rela_dyn->size > 0)
9318 use_rela = TRUE;
9319 else if (rel_dyn != NULL && rel_dyn->size > 0)
9320 use_rela = FALSE;
9321 else
9322 return 0;
9323
9324 if (use_rela)
9325 {
9326 dynamic_relocs = rela_dyn;
9327 ext_size = bed->s->sizeof_rela;
9328 swap_in = bed->s->swap_reloca_in;
9329 swap_out = bed->s->swap_reloca_out;
9330 }
9331 else
9332 {
9333 dynamic_relocs = rel_dyn;
9334 ext_size = bed->s->sizeof_rel;
9335 swap_in = bed->s->swap_reloc_in;
9336 swap_out = bed->s->swap_reloc_out;
9337 }
9338
9339 size = 0;
9340 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9341 if (lo->type == bfd_indirect_link_order)
9342 size += lo->u.indirect.section->size;
9343
9344 if (size != dynamic_relocs->size)
9345 return 0;
9346
9347 sort_elt = (sizeof (struct elf_link_sort_rela)
9348 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9349
9350 count = dynamic_relocs->size / ext_size;
9351 if (count == 0)
9352 return 0;
9353 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9354
9355 if (sort == NULL)
9356 {
9357 (*info->callbacks->warning)
9358 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9359 return 0;
9360 }
9361
9362 if (bed->s->arch_size == 32)
9363 r_sym_mask = ~(bfd_vma) 0xff;
9364 else
9365 r_sym_mask = ~(bfd_vma) 0xffffffff;
9366
9367 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9368 if (lo->type == bfd_indirect_link_order)
9369 {
9370 bfd_byte *erel, *erelend;
9371 asection *o = lo->u.indirect.section;
9372
9373 if (o->contents == NULL && o->size != 0)
9374 {
9375 /* This is a reloc section that is being handled as a normal
9376 section. See bfd_section_from_shdr. We can't combine
9377 relocs in this case. */
9378 free (sort);
9379 return 0;
9380 }
9381 erel = o->contents;
9382 erelend = o->contents + o->size;
9383 p = sort + o->output_offset * opb / ext_size * sort_elt;
9384
9385 while (erel < erelend)
9386 {
9387 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9388
9389 (*swap_in) (abfd, erel, s->rela);
9390 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9391 s->u.sym_mask = r_sym_mask;
9392 p += sort_elt;
9393 erel += ext_size;
9394 }
9395 }
9396
9397 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9398
9399 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9400 {
9401 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9402 if (s->type != reloc_class_relative)
9403 break;
9404 }
9405 ret = i;
9406 s_non_relative = p;
9407
9408 sq = (struct elf_link_sort_rela *) s_non_relative;
9409 for (; i < count; i++, p += sort_elt)
9410 {
9411 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9412 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9413 sq = sp;
9414 sp->u.offset = sq->rela->r_offset;
9415 }
9416
9417 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9418
9419 struct elf_link_hash_table *htab = elf_hash_table (info);
9420 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9421 {
9422 /* We have plt relocs in .rela.dyn. */
9423 sq = (struct elf_link_sort_rela *) sort;
9424 for (i = 0; i < count; i++)
9425 if (sq[count - i - 1].type != reloc_class_plt)
9426 break;
9427 if (i != 0 && htab->srelplt->size == i * ext_size)
9428 {
9429 struct bfd_link_order **plo;
9430 /* Put srelplt link_order last. This is so the output_offset
9431 set in the next loop is correct for DT_JMPREL. */
9432 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9433 if ((*plo)->type == bfd_indirect_link_order
9434 && (*plo)->u.indirect.section == htab->srelplt)
9435 {
9436 lo = *plo;
9437 *plo = lo->next;
9438 }
9439 else
9440 plo = &(*plo)->next;
9441 *plo = lo;
9442 lo->next = NULL;
9443 dynamic_relocs->map_tail.link_order = lo;
9444 }
9445 }
9446
9447 p = sort;
9448 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9449 if (lo->type == bfd_indirect_link_order)
9450 {
9451 bfd_byte *erel, *erelend;
9452 asection *o = lo->u.indirect.section;
9453
9454 erel = o->contents;
9455 erelend = o->contents + o->size;
9456 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9457 while (erel < erelend)
9458 {
9459 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9460 (*swap_out) (abfd, s->rela, erel);
9461 p += sort_elt;
9462 erel += ext_size;
9463 }
9464 }
9465
9466 free (sort);
9467 *psec = dynamic_relocs;
9468 return ret;
9469 }
9470
9471 /* Add a symbol to the output symbol string table. */
9472
9473 static int
9474 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9475 const char *name,
9476 Elf_Internal_Sym *elfsym,
9477 asection *input_sec,
9478 struct elf_link_hash_entry *h)
9479 {
9480 int (*output_symbol_hook)
9481 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9482 struct elf_link_hash_entry *);
9483 struct elf_link_hash_table *hash_table;
9484 const struct elf_backend_data *bed;
9485 bfd_size_type strtabsize;
9486
9487 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9488
9489 bed = get_elf_backend_data (flinfo->output_bfd);
9490 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9491 if (output_symbol_hook != NULL)
9492 {
9493 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9494 if (ret != 1)
9495 return ret;
9496 }
9497
9498 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9499 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9500 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9501 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9502
9503 if (name == NULL
9504 || *name == '\0'
9505 || (input_sec->flags & SEC_EXCLUDE))
9506 elfsym->st_name = (unsigned long) -1;
9507 else
9508 {
9509 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9510 to get the final offset for st_name. */
9511 elfsym->st_name
9512 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9513 name, FALSE);
9514 if (elfsym->st_name == (unsigned long) -1)
9515 return 0;
9516 }
9517
9518 hash_table = elf_hash_table (flinfo->info);
9519 strtabsize = hash_table->strtabsize;
9520 if (strtabsize <= hash_table->strtabcount)
9521 {
9522 strtabsize += strtabsize;
9523 hash_table->strtabsize = strtabsize;
9524 strtabsize *= sizeof (*hash_table->strtab);
9525 hash_table->strtab
9526 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9527 strtabsize);
9528 if (hash_table->strtab == NULL)
9529 return 0;
9530 }
9531 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9532 hash_table->strtab[hash_table->strtabcount].dest_index
9533 = hash_table->strtabcount;
9534 hash_table->strtab[hash_table->strtabcount].destshndx_index
9535 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9536
9537 flinfo->output_bfd->symcount += 1;
9538 hash_table->strtabcount += 1;
9539
9540 return 1;
9541 }
9542
9543 /* Swap symbols out to the symbol table and flush the output symbols to
9544 the file. */
9545
9546 static bfd_boolean
9547 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9548 {
9549 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9550 bfd_size_type amt;
9551 size_t i;
9552 const struct elf_backend_data *bed;
9553 bfd_byte *symbuf;
9554 Elf_Internal_Shdr *hdr;
9555 file_ptr pos;
9556 bfd_boolean ret;
9557
9558 if (!hash_table->strtabcount)
9559 return TRUE;
9560
9561 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9562
9563 bed = get_elf_backend_data (flinfo->output_bfd);
9564
9565 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9566 symbuf = (bfd_byte *) bfd_malloc (amt);
9567 if (symbuf == NULL)
9568 return FALSE;
9569
9570 if (flinfo->symshndxbuf)
9571 {
9572 amt = sizeof (Elf_External_Sym_Shndx);
9573 amt *= bfd_get_symcount (flinfo->output_bfd);
9574 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9575 if (flinfo->symshndxbuf == NULL)
9576 {
9577 free (symbuf);
9578 return FALSE;
9579 }
9580 }
9581
9582 for (i = 0; i < hash_table->strtabcount; i++)
9583 {
9584 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9585 if (elfsym->sym.st_name == (unsigned long) -1)
9586 elfsym->sym.st_name = 0;
9587 else
9588 elfsym->sym.st_name
9589 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9590 elfsym->sym.st_name);
9591 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9592 ((bfd_byte *) symbuf
9593 + (elfsym->dest_index
9594 * bed->s->sizeof_sym)),
9595 (flinfo->symshndxbuf
9596 + elfsym->destshndx_index));
9597 }
9598
9599 /* Allow the linker to examine the strtab and symtab now they are
9600 populated. */
9601
9602 if (flinfo->info->callbacks->examine_strtab)
9603 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9604 hash_table->strtabcount,
9605 flinfo->symstrtab);
9606
9607 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9608 pos = hdr->sh_offset + hdr->sh_size;
9609 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9610 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9611 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9612 {
9613 hdr->sh_size += amt;
9614 ret = TRUE;
9615 }
9616 else
9617 ret = FALSE;
9618
9619 free (symbuf);
9620
9621 free (hash_table->strtab);
9622 hash_table->strtab = NULL;
9623
9624 return ret;
9625 }
9626
9627 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9628
9629 static bfd_boolean
9630 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9631 {
9632 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9633 && sym->st_shndx < SHN_LORESERVE)
9634 {
9635 /* The gABI doesn't support dynamic symbols in output sections
9636 beyond 64k. */
9637 _bfd_error_handler
9638 /* xgettext:c-format */
9639 (_("%pB: too many sections: %d (>= %d)"),
9640 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9641 bfd_set_error (bfd_error_nonrepresentable_section);
9642 return FALSE;
9643 }
9644 return TRUE;
9645 }
9646
9647 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9648 allowing an unsatisfied unversioned symbol in the DSO to match a
9649 versioned symbol that would normally require an explicit version.
9650 We also handle the case that a DSO references a hidden symbol
9651 which may be satisfied by a versioned symbol in another DSO. */
9652
9653 static bfd_boolean
9654 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9655 const struct elf_backend_data *bed,
9656 struct elf_link_hash_entry *h)
9657 {
9658 bfd *abfd;
9659 struct elf_link_loaded_list *loaded;
9660
9661 if (!is_elf_hash_table (info->hash))
9662 return FALSE;
9663
9664 /* Check indirect symbol. */
9665 while (h->root.type == bfd_link_hash_indirect)
9666 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9667
9668 switch (h->root.type)
9669 {
9670 default:
9671 abfd = NULL;
9672 break;
9673
9674 case bfd_link_hash_undefined:
9675 case bfd_link_hash_undefweak:
9676 abfd = h->root.u.undef.abfd;
9677 if (abfd == NULL
9678 || (abfd->flags & DYNAMIC) == 0
9679 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9680 return FALSE;
9681 break;
9682
9683 case bfd_link_hash_defined:
9684 case bfd_link_hash_defweak:
9685 abfd = h->root.u.def.section->owner;
9686 break;
9687
9688 case bfd_link_hash_common:
9689 abfd = h->root.u.c.p->section->owner;
9690 break;
9691 }
9692 BFD_ASSERT (abfd != NULL);
9693
9694 for (loaded = elf_hash_table (info)->loaded;
9695 loaded != NULL;
9696 loaded = loaded->next)
9697 {
9698 bfd *input;
9699 Elf_Internal_Shdr *hdr;
9700 size_t symcount;
9701 size_t extsymcount;
9702 size_t extsymoff;
9703 Elf_Internal_Shdr *versymhdr;
9704 Elf_Internal_Sym *isym;
9705 Elf_Internal_Sym *isymend;
9706 Elf_Internal_Sym *isymbuf;
9707 Elf_External_Versym *ever;
9708 Elf_External_Versym *extversym;
9709
9710 input = loaded->abfd;
9711
9712 /* We check each DSO for a possible hidden versioned definition. */
9713 if (input == abfd
9714 || (input->flags & DYNAMIC) == 0
9715 || elf_dynversym (input) == 0)
9716 continue;
9717
9718 hdr = &elf_tdata (input)->dynsymtab_hdr;
9719
9720 symcount = hdr->sh_size / bed->s->sizeof_sym;
9721 if (elf_bad_symtab (input))
9722 {
9723 extsymcount = symcount;
9724 extsymoff = 0;
9725 }
9726 else
9727 {
9728 extsymcount = symcount - hdr->sh_info;
9729 extsymoff = hdr->sh_info;
9730 }
9731
9732 if (extsymcount == 0)
9733 continue;
9734
9735 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9736 NULL, NULL, NULL);
9737 if (isymbuf == NULL)
9738 return FALSE;
9739
9740 /* Read in any version definitions. */
9741 versymhdr = &elf_tdata (input)->dynversym_hdr;
9742 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9743 if (extversym == NULL)
9744 goto error_ret;
9745
9746 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9747 || (bfd_bread (extversym, versymhdr->sh_size, input)
9748 != versymhdr->sh_size))
9749 {
9750 free (extversym);
9751 error_ret:
9752 free (isymbuf);
9753 return FALSE;
9754 }
9755
9756 ever = extversym + extsymoff;
9757 isymend = isymbuf + extsymcount;
9758 for (isym = isymbuf; isym < isymend; isym++, ever++)
9759 {
9760 const char *name;
9761 Elf_Internal_Versym iver;
9762 unsigned short version_index;
9763
9764 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9765 || isym->st_shndx == SHN_UNDEF)
9766 continue;
9767
9768 name = bfd_elf_string_from_elf_section (input,
9769 hdr->sh_link,
9770 isym->st_name);
9771 if (strcmp (name, h->root.root.string) != 0)
9772 continue;
9773
9774 _bfd_elf_swap_versym_in (input, ever, &iver);
9775
9776 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9777 && !(h->def_regular
9778 && h->forced_local))
9779 {
9780 /* If we have a non-hidden versioned sym, then it should
9781 have provided a definition for the undefined sym unless
9782 it is defined in a non-shared object and forced local.
9783 */
9784 abort ();
9785 }
9786
9787 version_index = iver.vs_vers & VERSYM_VERSION;
9788 if (version_index == 1 || version_index == 2)
9789 {
9790 /* This is the base or first version. We can use it. */
9791 free (extversym);
9792 free (isymbuf);
9793 return TRUE;
9794 }
9795 }
9796
9797 free (extversym);
9798 free (isymbuf);
9799 }
9800
9801 return FALSE;
9802 }
9803
9804 /* Convert ELF common symbol TYPE. */
9805
9806 static int
9807 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9808 {
9809 /* Commom symbol can only appear in relocatable link. */
9810 if (!bfd_link_relocatable (info))
9811 abort ();
9812 switch (info->elf_stt_common)
9813 {
9814 case unchanged:
9815 break;
9816 case elf_stt_common:
9817 type = STT_COMMON;
9818 break;
9819 case no_elf_stt_common:
9820 type = STT_OBJECT;
9821 break;
9822 }
9823 return type;
9824 }
9825
9826 /* Add an external symbol to the symbol table. This is called from
9827 the hash table traversal routine. When generating a shared object,
9828 we go through the symbol table twice. The first time we output
9829 anything that might have been forced to local scope in a version
9830 script. The second time we output the symbols that are still
9831 global symbols. */
9832
9833 static bfd_boolean
9834 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9835 {
9836 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9837 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9838 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9839 bfd_boolean strip;
9840 Elf_Internal_Sym sym;
9841 asection *input_sec;
9842 const struct elf_backend_data *bed;
9843 long indx;
9844 int ret;
9845 unsigned int type;
9846
9847 if (h->root.type == bfd_link_hash_warning)
9848 {
9849 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9850 if (h->root.type == bfd_link_hash_new)
9851 return TRUE;
9852 }
9853
9854 /* Decide whether to output this symbol in this pass. */
9855 if (eoinfo->localsyms)
9856 {
9857 if (!h->forced_local)
9858 return TRUE;
9859 }
9860 else
9861 {
9862 if (h->forced_local)
9863 return TRUE;
9864 }
9865
9866 bed = get_elf_backend_data (flinfo->output_bfd);
9867
9868 if (h->root.type == bfd_link_hash_undefined)
9869 {
9870 /* If we have an undefined symbol reference here then it must have
9871 come from a shared library that is being linked in. (Undefined
9872 references in regular files have already been handled unless
9873 they are in unreferenced sections which are removed by garbage
9874 collection). */
9875 bfd_boolean ignore_undef = FALSE;
9876
9877 /* Some symbols may be special in that the fact that they're
9878 undefined can be safely ignored - let backend determine that. */
9879 if (bed->elf_backend_ignore_undef_symbol)
9880 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9881
9882 /* If we are reporting errors for this situation then do so now. */
9883 if (!ignore_undef
9884 && h->ref_dynamic_nonweak
9885 && (!h->ref_regular || flinfo->info->gc_sections)
9886 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9887 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9888 (*flinfo->info->callbacks->undefined_symbol)
9889 (flinfo->info, h->root.root.string,
9890 h->ref_regular ? NULL : h->root.u.undef.abfd,
9891 NULL, 0,
9892 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9893
9894 /* Strip a global symbol defined in a discarded section. */
9895 if (h->indx == -3)
9896 return TRUE;
9897 }
9898
9899 /* We should also warn if a forced local symbol is referenced from
9900 shared libraries. */
9901 if (bfd_link_executable (flinfo->info)
9902 && h->forced_local
9903 && h->ref_dynamic
9904 && h->def_regular
9905 && !h->dynamic_def
9906 && h->ref_dynamic_nonweak
9907 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9908 {
9909 bfd *def_bfd;
9910 const char *msg;
9911 struct elf_link_hash_entry *hi = h;
9912
9913 /* Check indirect symbol. */
9914 while (hi->root.type == bfd_link_hash_indirect)
9915 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9916
9917 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9918 /* xgettext:c-format */
9919 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9920 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9921 /* xgettext:c-format */
9922 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9923 else
9924 /* xgettext:c-format */
9925 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9926 def_bfd = flinfo->output_bfd;
9927 if (hi->root.u.def.section != bfd_abs_section_ptr)
9928 def_bfd = hi->root.u.def.section->owner;
9929 _bfd_error_handler (msg, flinfo->output_bfd,
9930 h->root.root.string, def_bfd);
9931 bfd_set_error (bfd_error_bad_value);
9932 eoinfo->failed = TRUE;
9933 return FALSE;
9934 }
9935
9936 /* We don't want to output symbols that have never been mentioned by
9937 a regular file, or that we have been told to strip. However, if
9938 h->indx is set to -2, the symbol is used by a reloc and we must
9939 output it. */
9940 strip = FALSE;
9941 if (h->indx == -2)
9942 ;
9943 else if ((h->def_dynamic
9944 || h->ref_dynamic
9945 || h->root.type == bfd_link_hash_new)
9946 && !h->def_regular
9947 && !h->ref_regular)
9948 strip = TRUE;
9949 else if (flinfo->info->strip == strip_all)
9950 strip = TRUE;
9951 else if (flinfo->info->strip == strip_some
9952 && bfd_hash_lookup (flinfo->info->keep_hash,
9953 h->root.root.string, FALSE, FALSE) == NULL)
9954 strip = TRUE;
9955 else if ((h->root.type == bfd_link_hash_defined
9956 || h->root.type == bfd_link_hash_defweak)
9957 && ((flinfo->info->strip_discarded
9958 && discarded_section (h->root.u.def.section))
9959 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9960 && h->root.u.def.section->owner != NULL
9961 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9962 strip = TRUE;
9963 else if ((h->root.type == bfd_link_hash_undefined
9964 || h->root.type == bfd_link_hash_undefweak)
9965 && h->root.u.undef.abfd != NULL
9966 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9967 strip = TRUE;
9968
9969 type = h->type;
9970
9971 /* If we're stripping it, and it's not a dynamic symbol, there's
9972 nothing else to do. However, if it is a forced local symbol or
9973 an ifunc symbol we need to give the backend finish_dynamic_symbol
9974 function a chance to make it dynamic. */
9975 if (strip
9976 && h->dynindx == -1
9977 && type != STT_GNU_IFUNC
9978 && !h->forced_local)
9979 return TRUE;
9980
9981 sym.st_value = 0;
9982 sym.st_size = h->size;
9983 sym.st_other = h->other;
9984 switch (h->root.type)
9985 {
9986 default:
9987 case bfd_link_hash_new:
9988 case bfd_link_hash_warning:
9989 abort ();
9990 return FALSE;
9991
9992 case bfd_link_hash_undefined:
9993 case bfd_link_hash_undefweak:
9994 input_sec = bfd_und_section_ptr;
9995 sym.st_shndx = SHN_UNDEF;
9996 break;
9997
9998 case bfd_link_hash_defined:
9999 case bfd_link_hash_defweak:
10000 {
10001 input_sec = h->root.u.def.section;
10002 if (input_sec->output_section != NULL)
10003 {
10004 sym.st_shndx =
10005 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10006 input_sec->output_section);
10007 if (sym.st_shndx == SHN_BAD)
10008 {
10009 _bfd_error_handler
10010 /* xgettext:c-format */
10011 (_("%pB: could not find output section %pA for input section %pA"),
10012 flinfo->output_bfd, input_sec->output_section, input_sec);
10013 bfd_set_error (bfd_error_nonrepresentable_section);
10014 eoinfo->failed = TRUE;
10015 return FALSE;
10016 }
10017
10018 /* ELF symbols in relocatable files are section relative,
10019 but in nonrelocatable files they are virtual
10020 addresses. */
10021 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10022 if (!bfd_link_relocatable (flinfo->info))
10023 {
10024 sym.st_value += input_sec->output_section->vma;
10025 if (h->type == STT_TLS)
10026 {
10027 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10028 if (tls_sec != NULL)
10029 sym.st_value -= tls_sec->vma;
10030 }
10031 }
10032 }
10033 else
10034 {
10035 BFD_ASSERT (input_sec->owner == NULL
10036 || (input_sec->owner->flags & DYNAMIC) != 0);
10037 sym.st_shndx = SHN_UNDEF;
10038 input_sec = bfd_und_section_ptr;
10039 }
10040 }
10041 break;
10042
10043 case bfd_link_hash_common:
10044 input_sec = h->root.u.c.p->section;
10045 sym.st_shndx = bed->common_section_index (input_sec);
10046 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10047 break;
10048
10049 case bfd_link_hash_indirect:
10050 /* These symbols are created by symbol versioning. They point
10051 to the decorated version of the name. For example, if the
10052 symbol foo@@GNU_1.2 is the default, which should be used when
10053 foo is used with no version, then we add an indirect symbol
10054 foo which points to foo@@GNU_1.2. We ignore these symbols,
10055 since the indirected symbol is already in the hash table. */
10056 return TRUE;
10057 }
10058
10059 if (type == STT_COMMON || type == STT_OBJECT)
10060 switch (h->root.type)
10061 {
10062 case bfd_link_hash_common:
10063 type = elf_link_convert_common_type (flinfo->info, type);
10064 break;
10065 case bfd_link_hash_defined:
10066 case bfd_link_hash_defweak:
10067 if (bed->common_definition (&sym))
10068 type = elf_link_convert_common_type (flinfo->info, type);
10069 else
10070 type = STT_OBJECT;
10071 break;
10072 case bfd_link_hash_undefined:
10073 case bfd_link_hash_undefweak:
10074 break;
10075 default:
10076 abort ();
10077 }
10078
10079 if (h->forced_local)
10080 {
10081 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10082 /* Turn off visibility on local symbol. */
10083 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10084 }
10085 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10086 else if (h->unique_global && h->def_regular)
10087 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10088 else if (h->root.type == bfd_link_hash_undefweak
10089 || h->root.type == bfd_link_hash_defweak)
10090 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10091 else
10092 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10093 sym.st_target_internal = h->target_internal;
10094
10095 /* Give the processor backend a chance to tweak the symbol value,
10096 and also to finish up anything that needs to be done for this
10097 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10098 forced local syms when non-shared is due to a historical quirk.
10099 STT_GNU_IFUNC symbol must go through PLT. */
10100 if ((h->type == STT_GNU_IFUNC
10101 && h->def_regular
10102 && !bfd_link_relocatable (flinfo->info))
10103 || ((h->dynindx != -1
10104 || h->forced_local)
10105 && ((bfd_link_pic (flinfo->info)
10106 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10107 || h->root.type != bfd_link_hash_undefweak))
10108 || !h->forced_local)
10109 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10110 {
10111 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10112 (flinfo->output_bfd, flinfo->info, h, &sym)))
10113 {
10114 eoinfo->failed = TRUE;
10115 return FALSE;
10116 }
10117 }
10118
10119 /* If we are marking the symbol as undefined, and there are no
10120 non-weak references to this symbol from a regular object, then
10121 mark the symbol as weak undefined; if there are non-weak
10122 references, mark the symbol as strong. We can't do this earlier,
10123 because it might not be marked as undefined until the
10124 finish_dynamic_symbol routine gets through with it. */
10125 if (sym.st_shndx == SHN_UNDEF
10126 && h->ref_regular
10127 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10128 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10129 {
10130 int bindtype;
10131 type = ELF_ST_TYPE (sym.st_info);
10132
10133 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10134 if (type == STT_GNU_IFUNC)
10135 type = STT_FUNC;
10136
10137 if (h->ref_regular_nonweak)
10138 bindtype = STB_GLOBAL;
10139 else
10140 bindtype = STB_WEAK;
10141 sym.st_info = ELF_ST_INFO (bindtype, type);
10142 }
10143
10144 /* If this is a symbol defined in a dynamic library, don't use the
10145 symbol size from the dynamic library. Relinking an executable
10146 against a new library may introduce gratuitous changes in the
10147 executable's symbols if we keep the size. */
10148 if (sym.st_shndx == SHN_UNDEF
10149 && !h->def_regular
10150 && h->def_dynamic)
10151 sym.st_size = 0;
10152
10153 /* If a non-weak symbol with non-default visibility is not defined
10154 locally, it is a fatal error. */
10155 if (!bfd_link_relocatable (flinfo->info)
10156 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10157 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10158 && h->root.type == bfd_link_hash_undefined
10159 && !h->def_regular)
10160 {
10161 const char *msg;
10162
10163 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10164 /* xgettext:c-format */
10165 msg = _("%pB: protected symbol `%s' isn't defined");
10166 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10167 /* xgettext:c-format */
10168 msg = _("%pB: internal symbol `%s' isn't defined");
10169 else
10170 /* xgettext:c-format */
10171 msg = _("%pB: hidden symbol `%s' isn't defined");
10172 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10173 bfd_set_error (bfd_error_bad_value);
10174 eoinfo->failed = TRUE;
10175 return FALSE;
10176 }
10177
10178 /* If this symbol should be put in the .dynsym section, then put it
10179 there now. We already know the symbol index. We also fill in
10180 the entry in the .hash section. */
10181 if (h->dynindx != -1
10182 && elf_hash_table (flinfo->info)->dynamic_sections_created
10183 && elf_hash_table (flinfo->info)->dynsym != NULL
10184 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10185 {
10186 bfd_byte *esym;
10187
10188 /* Since there is no version information in the dynamic string,
10189 if there is no version info in symbol version section, we will
10190 have a run-time problem if not linking executable, referenced
10191 by shared library, or not bound locally. */
10192 if (h->verinfo.verdef == NULL
10193 && (!bfd_link_executable (flinfo->info)
10194 || h->ref_dynamic
10195 || !h->def_regular))
10196 {
10197 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10198
10199 if (p && p [1] != '\0')
10200 {
10201 _bfd_error_handler
10202 /* xgettext:c-format */
10203 (_("%pB: no symbol version section for versioned symbol `%s'"),
10204 flinfo->output_bfd, h->root.root.string);
10205 eoinfo->failed = TRUE;
10206 return FALSE;
10207 }
10208 }
10209
10210 sym.st_name = h->dynstr_index;
10211 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10212 + h->dynindx * bed->s->sizeof_sym);
10213 if (!check_dynsym (flinfo->output_bfd, &sym))
10214 {
10215 eoinfo->failed = TRUE;
10216 return FALSE;
10217 }
10218 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10219
10220 if (flinfo->hash_sec != NULL)
10221 {
10222 size_t hash_entry_size;
10223 bfd_byte *bucketpos;
10224 bfd_vma chain;
10225 size_t bucketcount;
10226 size_t bucket;
10227
10228 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10229 bucket = h->u.elf_hash_value % bucketcount;
10230
10231 hash_entry_size
10232 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10233 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10234 + (bucket + 2) * hash_entry_size);
10235 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10236 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10237 bucketpos);
10238 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10239 ((bfd_byte *) flinfo->hash_sec->contents
10240 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10241 }
10242
10243 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10244 {
10245 Elf_Internal_Versym iversym;
10246 Elf_External_Versym *eversym;
10247
10248 if (!h->def_regular)
10249 {
10250 if (h->verinfo.verdef == NULL
10251 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10252 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10253 iversym.vs_vers = 0;
10254 else
10255 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10256 }
10257 else
10258 {
10259 if (h->verinfo.vertree == NULL)
10260 iversym.vs_vers = 1;
10261 else
10262 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10263 if (flinfo->info->create_default_symver)
10264 iversym.vs_vers++;
10265 }
10266
10267 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10268 defined locally. */
10269 if (h->versioned == versioned_hidden && h->def_regular)
10270 iversym.vs_vers |= VERSYM_HIDDEN;
10271
10272 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10273 eversym += h->dynindx;
10274 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10275 }
10276 }
10277
10278 /* If the symbol is undefined, and we didn't output it to .dynsym,
10279 strip it from .symtab too. Obviously we can't do this for
10280 relocatable output or when needed for --emit-relocs. */
10281 else if (input_sec == bfd_und_section_ptr
10282 && h->indx != -2
10283 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10284 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10285 && !bfd_link_relocatable (flinfo->info))
10286 return TRUE;
10287
10288 /* Also strip others that we couldn't earlier due to dynamic symbol
10289 processing. */
10290 if (strip)
10291 return TRUE;
10292 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10293 return TRUE;
10294
10295 /* Output a FILE symbol so that following locals are not associated
10296 with the wrong input file. We need one for forced local symbols
10297 if we've seen more than one FILE symbol or when we have exactly
10298 one FILE symbol but global symbols are present in a file other
10299 than the one with the FILE symbol. We also need one if linker
10300 defined symbols are present. In practice these conditions are
10301 always met, so just emit the FILE symbol unconditionally. */
10302 if (eoinfo->localsyms
10303 && !eoinfo->file_sym_done
10304 && eoinfo->flinfo->filesym_count != 0)
10305 {
10306 Elf_Internal_Sym fsym;
10307
10308 memset (&fsym, 0, sizeof (fsym));
10309 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10310 fsym.st_shndx = SHN_ABS;
10311 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10312 bfd_und_section_ptr, NULL))
10313 return FALSE;
10314
10315 eoinfo->file_sym_done = TRUE;
10316 }
10317
10318 indx = bfd_get_symcount (flinfo->output_bfd);
10319 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10320 input_sec, h);
10321 if (ret == 0)
10322 {
10323 eoinfo->failed = TRUE;
10324 return FALSE;
10325 }
10326 else if (ret == 1)
10327 h->indx = indx;
10328 else if (h->indx == -2)
10329 abort();
10330
10331 return TRUE;
10332 }
10333
10334 /* Return TRUE if special handling is done for relocs in SEC against
10335 symbols defined in discarded sections. */
10336
10337 static bfd_boolean
10338 elf_section_ignore_discarded_relocs (asection *sec)
10339 {
10340 const struct elf_backend_data *bed;
10341
10342 switch (sec->sec_info_type)
10343 {
10344 case SEC_INFO_TYPE_STABS:
10345 case SEC_INFO_TYPE_EH_FRAME:
10346 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10347 return TRUE;
10348 default:
10349 break;
10350 }
10351
10352 bed = get_elf_backend_data (sec->owner);
10353 if (bed->elf_backend_ignore_discarded_relocs != NULL
10354 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10355 return TRUE;
10356
10357 return FALSE;
10358 }
10359
10360 /* Return a mask saying how ld should treat relocations in SEC against
10361 symbols defined in discarded sections. If this function returns
10362 COMPLAIN set, ld will issue a warning message. If this function
10363 returns PRETEND set, and the discarded section was link-once and the
10364 same size as the kept link-once section, ld will pretend that the
10365 symbol was actually defined in the kept section. Otherwise ld will
10366 zero the reloc (at least that is the intent, but some cooperation by
10367 the target dependent code is needed, particularly for REL targets). */
10368
10369 unsigned int
10370 _bfd_elf_default_action_discarded (asection *sec)
10371 {
10372 if (sec->flags & SEC_DEBUGGING)
10373 return PRETEND;
10374
10375 if (strcmp (".eh_frame", sec->name) == 0)
10376 return 0;
10377
10378 if (strcmp (".gcc_except_table", sec->name) == 0)
10379 return 0;
10380
10381 return COMPLAIN | PRETEND;
10382 }
10383
10384 /* Find a match between a section and a member of a section group. */
10385
10386 static asection *
10387 match_group_member (asection *sec, asection *group,
10388 struct bfd_link_info *info)
10389 {
10390 asection *first = elf_next_in_group (group);
10391 asection *s = first;
10392
10393 while (s != NULL)
10394 {
10395 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10396 return s;
10397
10398 s = elf_next_in_group (s);
10399 if (s == first)
10400 break;
10401 }
10402
10403 return NULL;
10404 }
10405
10406 /* Check if the kept section of a discarded section SEC can be used
10407 to replace it. Return the replacement if it is OK. Otherwise return
10408 NULL. */
10409
10410 asection *
10411 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10412 {
10413 asection *kept;
10414
10415 kept = sec->kept_section;
10416 if (kept != NULL)
10417 {
10418 if ((kept->flags & SEC_GROUP) != 0)
10419 kept = match_group_member (sec, kept, info);
10420 if (kept != NULL
10421 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10422 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10423 kept = NULL;
10424 sec->kept_section = kept;
10425 }
10426 return kept;
10427 }
10428
10429 /* Link an input file into the linker output file. This function
10430 handles all the sections and relocations of the input file at once.
10431 This is so that we only have to read the local symbols once, and
10432 don't have to keep them in memory. */
10433
10434 static bfd_boolean
10435 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10436 {
10437 int (*relocate_section)
10438 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10439 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10440 bfd *output_bfd;
10441 Elf_Internal_Shdr *symtab_hdr;
10442 size_t locsymcount;
10443 size_t extsymoff;
10444 Elf_Internal_Sym *isymbuf;
10445 Elf_Internal_Sym *isym;
10446 Elf_Internal_Sym *isymend;
10447 long *pindex;
10448 asection **ppsection;
10449 asection *o;
10450 const struct elf_backend_data *bed;
10451 struct elf_link_hash_entry **sym_hashes;
10452 bfd_size_type address_size;
10453 bfd_vma r_type_mask;
10454 int r_sym_shift;
10455 bfd_boolean have_file_sym = FALSE;
10456
10457 output_bfd = flinfo->output_bfd;
10458 bed = get_elf_backend_data (output_bfd);
10459 relocate_section = bed->elf_backend_relocate_section;
10460
10461 /* If this is a dynamic object, we don't want to do anything here:
10462 we don't want the local symbols, and we don't want the section
10463 contents. */
10464 if ((input_bfd->flags & DYNAMIC) != 0)
10465 return TRUE;
10466
10467 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10468 if (elf_bad_symtab (input_bfd))
10469 {
10470 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10471 extsymoff = 0;
10472 }
10473 else
10474 {
10475 locsymcount = symtab_hdr->sh_info;
10476 extsymoff = symtab_hdr->sh_info;
10477 }
10478
10479 /* Read the local symbols. */
10480 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10481 if (isymbuf == NULL && locsymcount != 0)
10482 {
10483 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10484 flinfo->internal_syms,
10485 flinfo->external_syms,
10486 flinfo->locsym_shndx);
10487 if (isymbuf == NULL)
10488 return FALSE;
10489 }
10490
10491 /* Find local symbol sections and adjust values of symbols in
10492 SEC_MERGE sections. Write out those local symbols we know are
10493 going into the output file. */
10494 isymend = isymbuf + locsymcount;
10495 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10496 isym < isymend;
10497 isym++, pindex++, ppsection++)
10498 {
10499 asection *isec;
10500 const char *name;
10501 Elf_Internal_Sym osym;
10502 long indx;
10503 int ret;
10504
10505 *pindex = -1;
10506
10507 if (elf_bad_symtab (input_bfd))
10508 {
10509 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10510 {
10511 *ppsection = NULL;
10512 continue;
10513 }
10514 }
10515
10516 if (isym->st_shndx == SHN_UNDEF)
10517 isec = bfd_und_section_ptr;
10518 else if (isym->st_shndx == SHN_ABS)
10519 isec = bfd_abs_section_ptr;
10520 else if (isym->st_shndx == SHN_COMMON)
10521 isec = bfd_com_section_ptr;
10522 else
10523 {
10524 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10525 if (isec == NULL)
10526 {
10527 /* Don't attempt to output symbols with st_shnx in the
10528 reserved range other than SHN_ABS and SHN_COMMON. */
10529 isec = bfd_und_section_ptr;
10530 }
10531 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10532 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10533 isym->st_value =
10534 _bfd_merged_section_offset (output_bfd, &isec,
10535 elf_section_data (isec)->sec_info,
10536 isym->st_value);
10537 }
10538
10539 *ppsection = isec;
10540
10541 /* Don't output the first, undefined, symbol. In fact, don't
10542 output any undefined local symbol. */
10543 if (isec == bfd_und_section_ptr)
10544 continue;
10545
10546 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10547 {
10548 /* We never output section symbols. Instead, we use the
10549 section symbol of the corresponding section in the output
10550 file. */
10551 continue;
10552 }
10553
10554 /* If we are stripping all symbols, we don't want to output this
10555 one. */
10556 if (flinfo->info->strip == strip_all)
10557 continue;
10558
10559 /* If we are discarding all local symbols, we don't want to
10560 output this one. If we are generating a relocatable output
10561 file, then some of the local symbols may be required by
10562 relocs; we output them below as we discover that they are
10563 needed. */
10564 if (flinfo->info->discard == discard_all)
10565 continue;
10566
10567 /* If this symbol is defined in a section which we are
10568 discarding, we don't need to keep it. */
10569 if (isym->st_shndx != SHN_UNDEF
10570 && isym->st_shndx < SHN_LORESERVE
10571 && bfd_section_removed_from_list (output_bfd,
10572 isec->output_section))
10573 continue;
10574
10575 /* Get the name of the symbol. */
10576 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10577 isym->st_name);
10578 if (name == NULL)
10579 return FALSE;
10580
10581 /* See if we are discarding symbols with this name. */
10582 if ((flinfo->info->strip == strip_some
10583 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10584 == NULL))
10585 || (((flinfo->info->discard == discard_sec_merge
10586 && (isec->flags & SEC_MERGE)
10587 && !bfd_link_relocatable (flinfo->info))
10588 || flinfo->info->discard == discard_l)
10589 && bfd_is_local_label_name (input_bfd, name)))
10590 continue;
10591
10592 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10593 {
10594 if (input_bfd->lto_output)
10595 /* -flto puts a temp file name here. This means builds
10596 are not reproducible. Discard the symbol. */
10597 continue;
10598 have_file_sym = TRUE;
10599 flinfo->filesym_count += 1;
10600 }
10601 if (!have_file_sym)
10602 {
10603 /* In the absence of debug info, bfd_find_nearest_line uses
10604 FILE symbols to determine the source file for local
10605 function symbols. Provide a FILE symbol here if input
10606 files lack such, so that their symbols won't be
10607 associated with a previous input file. It's not the
10608 source file, but the best we can do. */
10609 have_file_sym = TRUE;
10610 flinfo->filesym_count += 1;
10611 memset (&osym, 0, sizeof (osym));
10612 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10613 osym.st_shndx = SHN_ABS;
10614 if (!elf_link_output_symstrtab (flinfo,
10615 (input_bfd->lto_output ? NULL
10616 : input_bfd->filename),
10617 &osym, bfd_abs_section_ptr,
10618 NULL))
10619 return FALSE;
10620 }
10621
10622 osym = *isym;
10623
10624 /* Adjust the section index for the output file. */
10625 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10626 isec->output_section);
10627 if (osym.st_shndx == SHN_BAD)
10628 return FALSE;
10629
10630 /* ELF symbols in relocatable files are section relative, but
10631 in executable files they are virtual addresses. Note that
10632 this code assumes that all ELF sections have an associated
10633 BFD section with a reasonable value for output_offset; below
10634 we assume that they also have a reasonable value for
10635 output_section. Any special sections must be set up to meet
10636 these requirements. */
10637 osym.st_value += isec->output_offset;
10638 if (!bfd_link_relocatable (flinfo->info))
10639 {
10640 osym.st_value += isec->output_section->vma;
10641 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10642 {
10643 /* STT_TLS symbols are relative to PT_TLS segment base. */
10644 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10645 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10646 else
10647 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10648 STT_NOTYPE);
10649 }
10650 }
10651
10652 indx = bfd_get_symcount (output_bfd);
10653 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10654 if (ret == 0)
10655 return FALSE;
10656 else if (ret == 1)
10657 *pindex = indx;
10658 }
10659
10660 if (bed->s->arch_size == 32)
10661 {
10662 r_type_mask = 0xff;
10663 r_sym_shift = 8;
10664 address_size = 4;
10665 }
10666 else
10667 {
10668 r_type_mask = 0xffffffff;
10669 r_sym_shift = 32;
10670 address_size = 8;
10671 }
10672
10673 /* Relocate the contents of each section. */
10674 sym_hashes = elf_sym_hashes (input_bfd);
10675 for (o = input_bfd->sections; o != NULL; o = o->next)
10676 {
10677 bfd_byte *contents;
10678
10679 if (! o->linker_mark)
10680 {
10681 /* This section was omitted from the link. */
10682 continue;
10683 }
10684
10685 if (!flinfo->info->resolve_section_groups
10686 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10687 {
10688 /* Deal with the group signature symbol. */
10689 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10690 unsigned long symndx = sec_data->this_hdr.sh_info;
10691 asection *osec = o->output_section;
10692
10693 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10694 if (symndx >= locsymcount
10695 || (elf_bad_symtab (input_bfd)
10696 && flinfo->sections[symndx] == NULL))
10697 {
10698 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10699 while (h->root.type == bfd_link_hash_indirect
10700 || h->root.type == bfd_link_hash_warning)
10701 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10702 /* Arrange for symbol to be output. */
10703 h->indx = -2;
10704 elf_section_data (osec)->this_hdr.sh_info = -2;
10705 }
10706 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10707 {
10708 /* We'll use the output section target_index. */
10709 asection *sec = flinfo->sections[symndx]->output_section;
10710 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10711 }
10712 else
10713 {
10714 if (flinfo->indices[symndx] == -1)
10715 {
10716 /* Otherwise output the local symbol now. */
10717 Elf_Internal_Sym sym = isymbuf[symndx];
10718 asection *sec = flinfo->sections[symndx]->output_section;
10719 const char *name;
10720 long indx;
10721 int ret;
10722
10723 name = bfd_elf_string_from_elf_section (input_bfd,
10724 symtab_hdr->sh_link,
10725 sym.st_name);
10726 if (name == NULL)
10727 return FALSE;
10728
10729 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10730 sec);
10731 if (sym.st_shndx == SHN_BAD)
10732 return FALSE;
10733
10734 sym.st_value += o->output_offset;
10735
10736 indx = bfd_get_symcount (output_bfd);
10737 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10738 NULL);
10739 if (ret == 0)
10740 return FALSE;
10741 else if (ret == 1)
10742 flinfo->indices[symndx] = indx;
10743 else
10744 abort ();
10745 }
10746 elf_section_data (osec)->this_hdr.sh_info
10747 = flinfo->indices[symndx];
10748 }
10749 }
10750
10751 if ((o->flags & SEC_HAS_CONTENTS) == 0
10752 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10753 continue;
10754
10755 if ((o->flags & SEC_LINKER_CREATED) != 0)
10756 {
10757 /* Section was created by _bfd_elf_link_create_dynamic_sections
10758 or somesuch. */
10759 continue;
10760 }
10761
10762 /* Get the contents of the section. They have been cached by a
10763 relaxation routine. Note that o is a section in an input
10764 file, so the contents field will not have been set by any of
10765 the routines which work on output files. */
10766 if (elf_section_data (o)->this_hdr.contents != NULL)
10767 {
10768 contents = elf_section_data (o)->this_hdr.contents;
10769 if (bed->caches_rawsize
10770 && o->rawsize != 0
10771 && o->rawsize < o->size)
10772 {
10773 memcpy (flinfo->contents, contents, o->rawsize);
10774 contents = flinfo->contents;
10775 }
10776 }
10777 else
10778 {
10779 contents = flinfo->contents;
10780 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10781 return FALSE;
10782 }
10783
10784 if ((o->flags & SEC_RELOC) != 0)
10785 {
10786 Elf_Internal_Rela *internal_relocs;
10787 Elf_Internal_Rela *rel, *relend;
10788 int action_discarded;
10789 int ret;
10790
10791 /* Get the swapped relocs. */
10792 internal_relocs
10793 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10794 flinfo->internal_relocs, FALSE);
10795 if (internal_relocs == NULL
10796 && o->reloc_count > 0)
10797 return FALSE;
10798
10799 /* We need to reverse-copy input .ctors/.dtors sections if
10800 they are placed in .init_array/.finit_array for output. */
10801 if (o->size > address_size
10802 && ((strncmp (o->name, ".ctors", 6) == 0
10803 && strcmp (o->output_section->name,
10804 ".init_array") == 0)
10805 || (strncmp (o->name, ".dtors", 6) == 0
10806 && strcmp (o->output_section->name,
10807 ".fini_array") == 0))
10808 && (o->name[6] == 0 || o->name[6] == '.'))
10809 {
10810 if (o->size * bed->s->int_rels_per_ext_rel
10811 != o->reloc_count * address_size)
10812 {
10813 _bfd_error_handler
10814 /* xgettext:c-format */
10815 (_("error: %pB: size of section %pA is not "
10816 "multiple of address size"),
10817 input_bfd, o);
10818 bfd_set_error (bfd_error_bad_value);
10819 return FALSE;
10820 }
10821 o->flags |= SEC_ELF_REVERSE_COPY;
10822 }
10823
10824 action_discarded = -1;
10825 if (!elf_section_ignore_discarded_relocs (o))
10826 action_discarded = (*bed->action_discarded) (o);
10827
10828 /* Run through the relocs evaluating complex reloc symbols and
10829 looking for relocs against symbols from discarded sections
10830 or section symbols from removed link-once sections.
10831 Complain about relocs against discarded sections. Zero
10832 relocs against removed link-once sections. */
10833
10834 rel = internal_relocs;
10835 relend = rel + o->reloc_count;
10836 for ( ; rel < relend; rel++)
10837 {
10838 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10839 unsigned int s_type;
10840 asection **ps, *sec;
10841 struct elf_link_hash_entry *h = NULL;
10842 const char *sym_name;
10843
10844 if (r_symndx == STN_UNDEF)
10845 continue;
10846
10847 if (r_symndx >= locsymcount
10848 || (elf_bad_symtab (input_bfd)
10849 && flinfo->sections[r_symndx] == NULL))
10850 {
10851 h = sym_hashes[r_symndx - extsymoff];
10852
10853 /* Badly formatted input files can contain relocs that
10854 reference non-existant symbols. Check here so that
10855 we do not seg fault. */
10856 if (h == NULL)
10857 {
10858 _bfd_error_handler
10859 /* xgettext:c-format */
10860 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10861 "that references a non-existent global symbol"),
10862 input_bfd, (uint64_t) rel->r_info, o);
10863 bfd_set_error (bfd_error_bad_value);
10864 return FALSE;
10865 }
10866
10867 while (h->root.type == bfd_link_hash_indirect
10868 || h->root.type == bfd_link_hash_warning)
10869 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10870
10871 s_type = h->type;
10872
10873 /* If a plugin symbol is referenced from a non-IR file,
10874 mark the symbol as undefined. Note that the
10875 linker may attach linker created dynamic sections
10876 to the plugin bfd. Symbols defined in linker
10877 created sections are not plugin symbols. */
10878 if ((h->root.non_ir_ref_regular
10879 || h->root.non_ir_ref_dynamic)
10880 && (h->root.type == bfd_link_hash_defined
10881 || h->root.type == bfd_link_hash_defweak)
10882 && (h->root.u.def.section->flags
10883 & SEC_LINKER_CREATED) == 0
10884 && h->root.u.def.section->owner != NULL
10885 && (h->root.u.def.section->owner->flags
10886 & BFD_PLUGIN) != 0)
10887 {
10888 h->root.type = bfd_link_hash_undefined;
10889 h->root.u.undef.abfd = h->root.u.def.section->owner;
10890 }
10891
10892 ps = NULL;
10893 if (h->root.type == bfd_link_hash_defined
10894 || h->root.type == bfd_link_hash_defweak)
10895 ps = &h->root.u.def.section;
10896
10897 sym_name = h->root.root.string;
10898 }
10899 else
10900 {
10901 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10902
10903 s_type = ELF_ST_TYPE (sym->st_info);
10904 ps = &flinfo->sections[r_symndx];
10905 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10906 sym, *ps);
10907 }
10908
10909 if ((s_type == STT_RELC || s_type == STT_SRELC)
10910 && !bfd_link_relocatable (flinfo->info))
10911 {
10912 bfd_vma val;
10913 bfd_vma dot = (rel->r_offset
10914 + o->output_offset + o->output_section->vma);
10915 #ifdef DEBUG
10916 printf ("Encountered a complex symbol!");
10917 printf (" (input_bfd %s, section %s, reloc %ld\n",
10918 input_bfd->filename, o->name,
10919 (long) (rel - internal_relocs));
10920 printf (" symbol: idx %8.8lx, name %s\n",
10921 r_symndx, sym_name);
10922 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10923 (unsigned long) rel->r_info,
10924 (unsigned long) rel->r_offset);
10925 #endif
10926 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10927 isymbuf, locsymcount, s_type == STT_SRELC))
10928 return FALSE;
10929
10930 /* Symbol evaluated OK. Update to absolute value. */
10931 set_symbol_value (input_bfd, isymbuf, locsymcount,
10932 r_symndx, val);
10933 continue;
10934 }
10935
10936 if (action_discarded != -1 && ps != NULL)
10937 {
10938 /* Complain if the definition comes from a
10939 discarded section. */
10940 if ((sec = *ps) != NULL && discarded_section (sec))
10941 {
10942 BFD_ASSERT (r_symndx != STN_UNDEF);
10943 if (action_discarded & COMPLAIN)
10944 (*flinfo->info->callbacks->einfo)
10945 /* xgettext:c-format */
10946 (_("%X`%s' referenced in section `%pA' of %pB: "
10947 "defined in discarded section `%pA' of %pB\n"),
10948 sym_name, o, input_bfd, sec, sec->owner);
10949
10950 /* Try to do the best we can to support buggy old
10951 versions of gcc. Pretend that the symbol is
10952 really defined in the kept linkonce section.
10953 FIXME: This is quite broken. Modifying the
10954 symbol here means we will be changing all later
10955 uses of the symbol, not just in this section. */
10956 if (action_discarded & PRETEND)
10957 {
10958 asection *kept;
10959
10960 kept = _bfd_elf_check_kept_section (sec,
10961 flinfo->info);
10962 if (kept != NULL)
10963 {
10964 *ps = kept;
10965 continue;
10966 }
10967 }
10968 }
10969 }
10970 }
10971
10972 /* Relocate the section by invoking a back end routine.
10973
10974 The back end routine is responsible for adjusting the
10975 section contents as necessary, and (if using Rela relocs
10976 and generating a relocatable output file) adjusting the
10977 reloc addend as necessary.
10978
10979 The back end routine does not have to worry about setting
10980 the reloc address or the reloc symbol index.
10981
10982 The back end routine is given a pointer to the swapped in
10983 internal symbols, and can access the hash table entries
10984 for the external symbols via elf_sym_hashes (input_bfd).
10985
10986 When generating relocatable output, the back end routine
10987 must handle STB_LOCAL/STT_SECTION symbols specially. The
10988 output symbol is going to be a section symbol
10989 corresponding to the output section, which will require
10990 the addend to be adjusted. */
10991
10992 ret = (*relocate_section) (output_bfd, flinfo->info,
10993 input_bfd, o, contents,
10994 internal_relocs,
10995 isymbuf,
10996 flinfo->sections);
10997 if (!ret)
10998 return FALSE;
10999
11000 if (ret == 2
11001 || bfd_link_relocatable (flinfo->info)
11002 || flinfo->info->emitrelocations)
11003 {
11004 Elf_Internal_Rela *irela;
11005 Elf_Internal_Rela *irelaend, *irelamid;
11006 bfd_vma last_offset;
11007 struct elf_link_hash_entry **rel_hash;
11008 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11009 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11010 unsigned int next_erel;
11011 bfd_boolean rela_normal;
11012 struct bfd_elf_section_data *esdi, *esdo;
11013
11014 esdi = elf_section_data (o);
11015 esdo = elf_section_data (o->output_section);
11016 rela_normal = FALSE;
11017
11018 /* Adjust the reloc addresses and symbol indices. */
11019
11020 irela = internal_relocs;
11021 irelaend = irela + o->reloc_count;
11022 rel_hash = esdo->rel.hashes + esdo->rel.count;
11023 /* We start processing the REL relocs, if any. When we reach
11024 IRELAMID in the loop, we switch to the RELA relocs. */
11025 irelamid = irela;
11026 if (esdi->rel.hdr != NULL)
11027 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11028 * bed->s->int_rels_per_ext_rel);
11029 rel_hash_list = rel_hash;
11030 rela_hash_list = NULL;
11031 last_offset = o->output_offset;
11032 if (!bfd_link_relocatable (flinfo->info))
11033 last_offset += o->output_section->vma;
11034 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11035 {
11036 unsigned long r_symndx;
11037 asection *sec;
11038 Elf_Internal_Sym sym;
11039
11040 if (next_erel == bed->s->int_rels_per_ext_rel)
11041 {
11042 rel_hash++;
11043 next_erel = 0;
11044 }
11045
11046 if (irela == irelamid)
11047 {
11048 rel_hash = esdo->rela.hashes + esdo->rela.count;
11049 rela_hash_list = rel_hash;
11050 rela_normal = bed->rela_normal;
11051 }
11052
11053 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11054 flinfo->info, o,
11055 irela->r_offset);
11056 if (irela->r_offset >= (bfd_vma) -2)
11057 {
11058 /* This is a reloc for a deleted entry or somesuch.
11059 Turn it into an R_*_NONE reloc, at the same
11060 offset as the last reloc. elf_eh_frame.c and
11061 bfd_elf_discard_info rely on reloc offsets
11062 being ordered. */
11063 irela->r_offset = last_offset;
11064 irela->r_info = 0;
11065 irela->r_addend = 0;
11066 continue;
11067 }
11068
11069 irela->r_offset += o->output_offset;
11070
11071 /* Relocs in an executable have to be virtual addresses. */
11072 if (!bfd_link_relocatable (flinfo->info))
11073 irela->r_offset += o->output_section->vma;
11074
11075 last_offset = irela->r_offset;
11076
11077 r_symndx = irela->r_info >> r_sym_shift;
11078 if (r_symndx == STN_UNDEF)
11079 continue;
11080
11081 if (r_symndx >= locsymcount
11082 || (elf_bad_symtab (input_bfd)
11083 && flinfo->sections[r_symndx] == NULL))
11084 {
11085 struct elf_link_hash_entry *rh;
11086 unsigned long indx;
11087
11088 /* This is a reloc against a global symbol. We
11089 have not yet output all the local symbols, so
11090 we do not know the symbol index of any global
11091 symbol. We set the rel_hash entry for this
11092 reloc to point to the global hash table entry
11093 for this symbol. The symbol index is then
11094 set at the end of bfd_elf_final_link. */
11095 indx = r_symndx - extsymoff;
11096 rh = elf_sym_hashes (input_bfd)[indx];
11097 while (rh->root.type == bfd_link_hash_indirect
11098 || rh->root.type == bfd_link_hash_warning)
11099 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11100
11101 /* Setting the index to -2 tells
11102 elf_link_output_extsym that this symbol is
11103 used by a reloc. */
11104 BFD_ASSERT (rh->indx < 0);
11105 rh->indx = -2;
11106 *rel_hash = rh;
11107
11108 continue;
11109 }
11110
11111 /* This is a reloc against a local symbol. */
11112
11113 *rel_hash = NULL;
11114 sym = isymbuf[r_symndx];
11115 sec = flinfo->sections[r_symndx];
11116 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11117 {
11118 /* I suppose the backend ought to fill in the
11119 section of any STT_SECTION symbol against a
11120 processor specific section. */
11121 r_symndx = STN_UNDEF;
11122 if (bfd_is_abs_section (sec))
11123 ;
11124 else if (sec == NULL || sec->owner == NULL)
11125 {
11126 bfd_set_error (bfd_error_bad_value);
11127 return FALSE;
11128 }
11129 else
11130 {
11131 asection *osec = sec->output_section;
11132
11133 /* If we have discarded a section, the output
11134 section will be the absolute section. In
11135 case of discarded SEC_MERGE sections, use
11136 the kept section. relocate_section should
11137 have already handled discarded linkonce
11138 sections. */
11139 if (bfd_is_abs_section (osec)
11140 && sec->kept_section != NULL
11141 && sec->kept_section->output_section != NULL)
11142 {
11143 osec = sec->kept_section->output_section;
11144 irela->r_addend -= osec->vma;
11145 }
11146
11147 if (!bfd_is_abs_section (osec))
11148 {
11149 r_symndx = osec->target_index;
11150 if (r_symndx == STN_UNDEF)
11151 {
11152 irela->r_addend += osec->vma;
11153 osec = _bfd_nearby_section (output_bfd, osec,
11154 osec->vma);
11155 irela->r_addend -= osec->vma;
11156 r_symndx = osec->target_index;
11157 }
11158 }
11159 }
11160
11161 /* Adjust the addend according to where the
11162 section winds up in the output section. */
11163 if (rela_normal)
11164 irela->r_addend += sec->output_offset;
11165 }
11166 else
11167 {
11168 if (flinfo->indices[r_symndx] == -1)
11169 {
11170 unsigned long shlink;
11171 const char *name;
11172 asection *osec;
11173 long indx;
11174
11175 if (flinfo->info->strip == strip_all)
11176 {
11177 /* You can't do ld -r -s. */
11178 bfd_set_error (bfd_error_invalid_operation);
11179 return FALSE;
11180 }
11181
11182 /* This symbol was skipped earlier, but
11183 since it is needed by a reloc, we
11184 must output it now. */
11185 shlink = symtab_hdr->sh_link;
11186 name = (bfd_elf_string_from_elf_section
11187 (input_bfd, shlink, sym.st_name));
11188 if (name == NULL)
11189 return FALSE;
11190
11191 osec = sec->output_section;
11192 sym.st_shndx =
11193 _bfd_elf_section_from_bfd_section (output_bfd,
11194 osec);
11195 if (sym.st_shndx == SHN_BAD)
11196 return FALSE;
11197
11198 sym.st_value += sec->output_offset;
11199 if (!bfd_link_relocatable (flinfo->info))
11200 {
11201 sym.st_value += osec->vma;
11202 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11203 {
11204 struct elf_link_hash_table *htab
11205 = elf_hash_table (flinfo->info);
11206
11207 /* STT_TLS symbols are relative to PT_TLS
11208 segment base. */
11209 if (htab->tls_sec != NULL)
11210 sym.st_value -= htab->tls_sec->vma;
11211 else
11212 sym.st_info
11213 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11214 STT_NOTYPE);
11215 }
11216 }
11217
11218 indx = bfd_get_symcount (output_bfd);
11219 ret = elf_link_output_symstrtab (flinfo, name,
11220 &sym, sec,
11221 NULL);
11222 if (ret == 0)
11223 return FALSE;
11224 else if (ret == 1)
11225 flinfo->indices[r_symndx] = indx;
11226 else
11227 abort ();
11228 }
11229
11230 r_symndx = flinfo->indices[r_symndx];
11231 }
11232
11233 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11234 | (irela->r_info & r_type_mask));
11235 }
11236
11237 /* Swap out the relocs. */
11238 input_rel_hdr = esdi->rel.hdr;
11239 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11240 {
11241 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11242 input_rel_hdr,
11243 internal_relocs,
11244 rel_hash_list))
11245 return FALSE;
11246 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11247 * bed->s->int_rels_per_ext_rel);
11248 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11249 }
11250
11251 input_rela_hdr = esdi->rela.hdr;
11252 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11253 {
11254 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11255 input_rela_hdr,
11256 internal_relocs,
11257 rela_hash_list))
11258 return FALSE;
11259 }
11260 }
11261 }
11262
11263 /* Write out the modified section contents. */
11264 if (bed->elf_backend_write_section
11265 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11266 contents))
11267 {
11268 /* Section written out. */
11269 }
11270 else switch (o->sec_info_type)
11271 {
11272 case SEC_INFO_TYPE_STABS:
11273 if (! (_bfd_write_section_stabs
11274 (output_bfd,
11275 &elf_hash_table (flinfo->info)->stab_info,
11276 o, &elf_section_data (o)->sec_info, contents)))
11277 return FALSE;
11278 break;
11279 case SEC_INFO_TYPE_MERGE:
11280 if (! _bfd_write_merged_section (output_bfd, o,
11281 elf_section_data (o)->sec_info))
11282 return FALSE;
11283 break;
11284 case SEC_INFO_TYPE_EH_FRAME:
11285 {
11286 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11287 o, contents))
11288 return FALSE;
11289 }
11290 break;
11291 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11292 {
11293 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11294 flinfo->info,
11295 o, contents))
11296 return FALSE;
11297 }
11298 break;
11299 default:
11300 {
11301 if (! (o->flags & SEC_EXCLUDE))
11302 {
11303 file_ptr offset = (file_ptr) o->output_offset;
11304 bfd_size_type todo = o->size;
11305
11306 offset *= bfd_octets_per_byte (output_bfd);
11307
11308 if ((o->flags & SEC_ELF_REVERSE_COPY))
11309 {
11310 /* Reverse-copy input section to output. */
11311 do
11312 {
11313 todo -= address_size;
11314 if (! bfd_set_section_contents (output_bfd,
11315 o->output_section,
11316 contents + todo,
11317 offset,
11318 address_size))
11319 return FALSE;
11320 if (todo == 0)
11321 break;
11322 offset += address_size;
11323 }
11324 while (1);
11325 }
11326 else if (! bfd_set_section_contents (output_bfd,
11327 o->output_section,
11328 contents,
11329 offset, todo))
11330 return FALSE;
11331 }
11332 }
11333 break;
11334 }
11335 }
11336
11337 return TRUE;
11338 }
11339
11340 /* Generate a reloc when linking an ELF file. This is a reloc
11341 requested by the linker, and does not come from any input file. This
11342 is used to build constructor and destructor tables when linking
11343 with -Ur. */
11344
11345 static bfd_boolean
11346 elf_reloc_link_order (bfd *output_bfd,
11347 struct bfd_link_info *info,
11348 asection *output_section,
11349 struct bfd_link_order *link_order)
11350 {
11351 reloc_howto_type *howto;
11352 long indx;
11353 bfd_vma offset;
11354 bfd_vma addend;
11355 struct bfd_elf_section_reloc_data *reldata;
11356 struct elf_link_hash_entry **rel_hash_ptr;
11357 Elf_Internal_Shdr *rel_hdr;
11358 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11359 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11360 bfd_byte *erel;
11361 unsigned int i;
11362 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11363
11364 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11365 if (howto == NULL)
11366 {
11367 bfd_set_error (bfd_error_bad_value);
11368 return FALSE;
11369 }
11370
11371 addend = link_order->u.reloc.p->addend;
11372
11373 if (esdo->rel.hdr)
11374 reldata = &esdo->rel;
11375 else if (esdo->rela.hdr)
11376 reldata = &esdo->rela;
11377 else
11378 {
11379 reldata = NULL;
11380 BFD_ASSERT (0);
11381 }
11382
11383 /* Figure out the symbol index. */
11384 rel_hash_ptr = reldata->hashes + reldata->count;
11385 if (link_order->type == bfd_section_reloc_link_order)
11386 {
11387 indx = link_order->u.reloc.p->u.section->target_index;
11388 BFD_ASSERT (indx != 0);
11389 *rel_hash_ptr = NULL;
11390 }
11391 else
11392 {
11393 struct elf_link_hash_entry *h;
11394
11395 /* Treat a reloc against a defined symbol as though it were
11396 actually against the section. */
11397 h = ((struct elf_link_hash_entry *)
11398 bfd_wrapped_link_hash_lookup (output_bfd, info,
11399 link_order->u.reloc.p->u.name,
11400 FALSE, FALSE, TRUE));
11401 if (h != NULL
11402 && (h->root.type == bfd_link_hash_defined
11403 || h->root.type == bfd_link_hash_defweak))
11404 {
11405 asection *section;
11406
11407 section = h->root.u.def.section;
11408 indx = section->output_section->target_index;
11409 *rel_hash_ptr = NULL;
11410 /* It seems that we ought to add the symbol value to the
11411 addend here, but in practice it has already been added
11412 because it was passed to constructor_callback. */
11413 addend += section->output_section->vma + section->output_offset;
11414 }
11415 else if (h != NULL)
11416 {
11417 /* Setting the index to -2 tells elf_link_output_extsym that
11418 this symbol is used by a reloc. */
11419 h->indx = -2;
11420 *rel_hash_ptr = h;
11421 indx = 0;
11422 }
11423 else
11424 {
11425 (*info->callbacks->unattached_reloc)
11426 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11427 indx = 0;
11428 }
11429 }
11430
11431 /* If this is an inplace reloc, we must write the addend into the
11432 object file. */
11433 if (howto->partial_inplace && addend != 0)
11434 {
11435 bfd_size_type size;
11436 bfd_reloc_status_type rstat;
11437 bfd_byte *buf;
11438 bfd_boolean ok;
11439 const char *sym_name;
11440
11441 size = (bfd_size_type) bfd_get_reloc_size (howto);
11442 buf = (bfd_byte *) bfd_zmalloc (size);
11443 if (buf == NULL && size != 0)
11444 return FALSE;
11445 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11446 switch (rstat)
11447 {
11448 case bfd_reloc_ok:
11449 break;
11450
11451 default:
11452 case bfd_reloc_outofrange:
11453 abort ();
11454
11455 case bfd_reloc_overflow:
11456 if (link_order->type == bfd_section_reloc_link_order)
11457 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11458 else
11459 sym_name = link_order->u.reloc.p->u.name;
11460 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11461 howto->name, addend, NULL, NULL,
11462 (bfd_vma) 0);
11463 break;
11464 }
11465
11466 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11467 link_order->offset
11468 * bfd_octets_per_byte (output_bfd),
11469 size);
11470 free (buf);
11471 if (! ok)
11472 return FALSE;
11473 }
11474
11475 /* The address of a reloc is relative to the section in a
11476 relocatable file, and is a virtual address in an executable
11477 file. */
11478 offset = link_order->offset;
11479 if (! bfd_link_relocatable (info))
11480 offset += output_section->vma;
11481
11482 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11483 {
11484 irel[i].r_offset = offset;
11485 irel[i].r_info = 0;
11486 irel[i].r_addend = 0;
11487 }
11488 if (bed->s->arch_size == 32)
11489 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11490 else
11491 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11492
11493 rel_hdr = reldata->hdr;
11494 erel = rel_hdr->contents;
11495 if (rel_hdr->sh_type == SHT_REL)
11496 {
11497 erel += reldata->count * bed->s->sizeof_rel;
11498 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11499 }
11500 else
11501 {
11502 irel[0].r_addend = addend;
11503 erel += reldata->count * bed->s->sizeof_rela;
11504 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11505 }
11506
11507 ++reldata->count;
11508
11509 return TRUE;
11510 }
11511
11512
11513 /* Compare two sections based on the locations of the sections they are
11514 linked to. Used by elf_fixup_link_order. */
11515
11516 static int
11517 compare_link_order (const void *a, const void *b)
11518 {
11519 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11520 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11521 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11522 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11523 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11524 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11525
11526 if (apos < bpos)
11527 return -1;
11528 if (apos > bpos)
11529 return 1;
11530
11531 /* The only way we should get matching LMAs is when the first of two
11532 sections has zero size. */
11533 if (asec->size < bsec->size)
11534 return -1;
11535 if (asec->size > bsec->size)
11536 return 1;
11537
11538 /* If they are both zero size then they almost certainly have the same
11539 VMA and thus are not ordered with respect to each other. Test VMA
11540 anyway, and fall back to id to make the result reproducible across
11541 qsort implementations. */
11542 apos = asec->output_section->vma + asec->output_offset;
11543 bpos = bsec->output_section->vma + bsec->output_offset;
11544 if (apos < bpos)
11545 return -1;
11546 if (apos > bpos)
11547 return 1;
11548
11549 return asec->id - bsec->id;
11550 }
11551
11552
11553 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11554 order as their linked sections. Returns false if this could not be done
11555 because an output section includes both ordered and unordered
11556 sections. Ideally we'd do this in the linker proper. */
11557
11558 static bfd_boolean
11559 elf_fixup_link_order (bfd *abfd, asection *o)
11560 {
11561 size_t seen_linkorder;
11562 size_t seen_other;
11563 size_t n;
11564 struct bfd_link_order *p;
11565 bfd *sub;
11566 struct bfd_link_order **sections;
11567 asection *s, *other_sec, *linkorder_sec;
11568 bfd_vma offset;
11569
11570 other_sec = NULL;
11571 linkorder_sec = NULL;
11572 seen_other = 0;
11573 seen_linkorder = 0;
11574 for (p = o->map_head.link_order; p != NULL; p = p->next)
11575 {
11576 if (p->type == bfd_indirect_link_order)
11577 {
11578 s = p->u.indirect.section;
11579 sub = s->owner;
11580 if ((s->flags & SEC_LINKER_CREATED) == 0
11581 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11582 && elf_section_data (s) != NULL
11583 && elf_linked_to_section (s) != NULL)
11584 {
11585 seen_linkorder++;
11586 linkorder_sec = s;
11587 }
11588 else
11589 {
11590 seen_other++;
11591 other_sec = s;
11592 }
11593 }
11594 else
11595 seen_other++;
11596
11597 if (seen_other && seen_linkorder)
11598 {
11599 if (other_sec && linkorder_sec)
11600 _bfd_error_handler
11601 /* xgettext:c-format */
11602 (_("%pA has both ordered [`%pA' in %pB] "
11603 "and unordered [`%pA' in %pB] sections"),
11604 o, linkorder_sec, linkorder_sec->owner,
11605 other_sec, other_sec->owner);
11606 else
11607 _bfd_error_handler
11608 (_("%pA has both ordered and unordered sections"), o);
11609 bfd_set_error (bfd_error_bad_value);
11610 return FALSE;
11611 }
11612 }
11613
11614 if (!seen_linkorder)
11615 return TRUE;
11616
11617 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11618 if (sections == NULL)
11619 return FALSE;
11620
11621 seen_linkorder = 0;
11622 for (p = o->map_head.link_order; p != NULL; p = p->next)
11623 sections[seen_linkorder++] = p;
11624
11625 /* Sort the input sections in the order of their linked section. */
11626 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11627
11628 /* Change the offsets of the sections. */
11629 offset = 0;
11630 for (n = 0; n < seen_linkorder; n++)
11631 {
11632 bfd_vma mask;
11633 s = sections[n]->u.indirect.section;
11634 mask = ~(bfd_vma) 0 << s->alignment_power;
11635 offset = (offset + ~mask) & mask;
11636 s->output_offset = offset / bfd_octets_per_byte (abfd);
11637 sections[n]->offset = offset;
11638 offset += sections[n]->size;
11639 }
11640
11641 free (sections);
11642 return TRUE;
11643 }
11644
11645 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11646 Returns TRUE upon success, FALSE otherwise. */
11647
11648 static bfd_boolean
11649 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11650 {
11651 bfd_boolean ret = FALSE;
11652 bfd *implib_bfd;
11653 const struct elf_backend_data *bed;
11654 flagword flags;
11655 enum bfd_architecture arch;
11656 unsigned int mach;
11657 asymbol **sympp = NULL;
11658 long symsize;
11659 long symcount;
11660 long src_count;
11661 elf_symbol_type *osymbuf;
11662
11663 implib_bfd = info->out_implib_bfd;
11664 bed = get_elf_backend_data (abfd);
11665
11666 if (!bfd_set_format (implib_bfd, bfd_object))
11667 return FALSE;
11668
11669 /* Use flag from executable but make it a relocatable object. */
11670 flags = bfd_get_file_flags (abfd);
11671 flags &= ~HAS_RELOC;
11672 if (!bfd_set_start_address (implib_bfd, 0)
11673 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11674 return FALSE;
11675
11676 /* Copy architecture of output file to import library file. */
11677 arch = bfd_get_arch (abfd);
11678 mach = bfd_get_mach (abfd);
11679 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11680 && (abfd->target_defaulted
11681 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11682 return FALSE;
11683
11684 /* Get symbol table size. */
11685 symsize = bfd_get_symtab_upper_bound (abfd);
11686 if (symsize < 0)
11687 return FALSE;
11688
11689 /* Read in the symbol table. */
11690 sympp = (asymbol **) bfd_malloc (symsize);
11691 if (sympp == NULL)
11692 return FALSE;
11693
11694 symcount = bfd_canonicalize_symtab (abfd, sympp);
11695 if (symcount < 0)
11696 goto free_sym_buf;
11697
11698 /* Allow the BFD backend to copy any private header data it
11699 understands from the output BFD to the import library BFD. */
11700 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11701 goto free_sym_buf;
11702
11703 /* Filter symbols to appear in the import library. */
11704 if (bed->elf_backend_filter_implib_symbols)
11705 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11706 symcount);
11707 else
11708 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11709 if (symcount == 0)
11710 {
11711 bfd_set_error (bfd_error_no_symbols);
11712 _bfd_error_handler (_("%pB: no symbol found for import library"),
11713 implib_bfd);
11714 goto free_sym_buf;
11715 }
11716
11717
11718 /* Make symbols absolute. */
11719 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11720 sizeof (*osymbuf));
11721 if (osymbuf == NULL)
11722 goto free_sym_buf;
11723
11724 for (src_count = 0; src_count < symcount; src_count++)
11725 {
11726 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11727 sizeof (*osymbuf));
11728 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11729 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11730 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11731 osymbuf[src_count].internal_elf_sym.st_value =
11732 osymbuf[src_count].symbol.value;
11733 sympp[src_count] = &osymbuf[src_count].symbol;
11734 }
11735
11736 bfd_set_symtab (implib_bfd, sympp, symcount);
11737
11738 /* Allow the BFD backend to copy any private data it understands
11739 from the output BFD to the import library BFD. This is done last
11740 to permit the routine to look at the filtered symbol table. */
11741 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11742 goto free_sym_buf;
11743
11744 if (!bfd_close (implib_bfd))
11745 goto free_sym_buf;
11746
11747 ret = TRUE;
11748
11749 free_sym_buf:
11750 free (sympp);
11751 return ret;
11752 }
11753
11754 static void
11755 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11756 {
11757 asection *o;
11758
11759 if (flinfo->symstrtab != NULL)
11760 _bfd_elf_strtab_free (flinfo->symstrtab);
11761 if (flinfo->contents != NULL)
11762 free (flinfo->contents);
11763 if (flinfo->external_relocs != NULL)
11764 free (flinfo->external_relocs);
11765 if (flinfo->internal_relocs != NULL)
11766 free (flinfo->internal_relocs);
11767 if (flinfo->external_syms != NULL)
11768 free (flinfo->external_syms);
11769 if (flinfo->locsym_shndx != NULL)
11770 free (flinfo->locsym_shndx);
11771 if (flinfo->internal_syms != NULL)
11772 free (flinfo->internal_syms);
11773 if (flinfo->indices != NULL)
11774 free (flinfo->indices);
11775 if (flinfo->sections != NULL)
11776 free (flinfo->sections);
11777 if (flinfo->symshndxbuf != NULL
11778 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11779 free (flinfo->symshndxbuf);
11780 for (o = obfd->sections; o != NULL; o = o->next)
11781 {
11782 struct bfd_elf_section_data *esdo = elf_section_data (o);
11783 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11784 free (esdo->rel.hashes);
11785 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11786 free (esdo->rela.hashes);
11787 }
11788 }
11789
11790 /* Do the final step of an ELF link. */
11791
11792 bfd_boolean
11793 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11794 {
11795 bfd_boolean dynamic;
11796 bfd_boolean emit_relocs;
11797 bfd *dynobj;
11798 struct elf_final_link_info flinfo;
11799 asection *o;
11800 struct bfd_link_order *p;
11801 bfd *sub;
11802 bfd_size_type max_contents_size;
11803 bfd_size_type max_external_reloc_size;
11804 bfd_size_type max_internal_reloc_count;
11805 bfd_size_type max_sym_count;
11806 bfd_size_type max_sym_shndx_count;
11807 Elf_Internal_Sym elfsym;
11808 unsigned int i;
11809 Elf_Internal_Shdr *symtab_hdr;
11810 Elf_Internal_Shdr *symtab_shndx_hdr;
11811 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11812 struct elf_outext_info eoinfo;
11813 bfd_boolean merged;
11814 size_t relativecount = 0;
11815 asection *reldyn = 0;
11816 bfd_size_type amt;
11817 asection *attr_section = NULL;
11818 bfd_vma attr_size = 0;
11819 const char *std_attrs_section;
11820 struct elf_link_hash_table *htab = elf_hash_table (info);
11821
11822 if (!is_elf_hash_table (htab))
11823 return FALSE;
11824
11825 if (bfd_link_pic (info))
11826 abfd->flags |= DYNAMIC;
11827
11828 dynamic = htab->dynamic_sections_created;
11829 dynobj = htab->dynobj;
11830
11831 emit_relocs = (bfd_link_relocatable (info)
11832 || info->emitrelocations);
11833
11834 flinfo.info = info;
11835 flinfo.output_bfd = abfd;
11836 flinfo.symstrtab = _bfd_elf_strtab_init ();
11837 if (flinfo.symstrtab == NULL)
11838 return FALSE;
11839
11840 if (! dynamic)
11841 {
11842 flinfo.hash_sec = NULL;
11843 flinfo.symver_sec = NULL;
11844 }
11845 else
11846 {
11847 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11848 /* Note that dynsym_sec can be NULL (on VMS). */
11849 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11850 /* Note that it is OK if symver_sec is NULL. */
11851 }
11852
11853 flinfo.contents = NULL;
11854 flinfo.external_relocs = NULL;
11855 flinfo.internal_relocs = NULL;
11856 flinfo.external_syms = NULL;
11857 flinfo.locsym_shndx = NULL;
11858 flinfo.internal_syms = NULL;
11859 flinfo.indices = NULL;
11860 flinfo.sections = NULL;
11861 flinfo.symshndxbuf = NULL;
11862 flinfo.filesym_count = 0;
11863
11864 /* The object attributes have been merged. Remove the input
11865 sections from the link, and set the contents of the output
11866 section. */
11867 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11868 for (o = abfd->sections; o != NULL; o = o->next)
11869 {
11870 bfd_boolean remove_section = FALSE;
11871
11872 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11873 || strcmp (o->name, ".gnu.attributes") == 0)
11874 {
11875 for (p = o->map_head.link_order; p != NULL; p = p->next)
11876 {
11877 asection *input_section;
11878
11879 if (p->type != bfd_indirect_link_order)
11880 continue;
11881 input_section = p->u.indirect.section;
11882 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11883 elf_link_input_bfd ignores this section. */
11884 input_section->flags &= ~SEC_HAS_CONTENTS;
11885 }
11886
11887 attr_size = bfd_elf_obj_attr_size (abfd);
11888 bfd_set_section_size (o, attr_size);
11889 /* Skip this section later on. */
11890 o->map_head.link_order = NULL;
11891 if (attr_size)
11892 attr_section = o;
11893 else
11894 remove_section = TRUE;
11895 }
11896 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11897 {
11898 /* Remove empty group section from linker output. */
11899 remove_section = TRUE;
11900 }
11901 if (remove_section)
11902 {
11903 o->flags |= SEC_EXCLUDE;
11904 bfd_section_list_remove (abfd, o);
11905 abfd->section_count--;
11906 }
11907 }
11908
11909 /* Count up the number of relocations we will output for each output
11910 section, so that we know the sizes of the reloc sections. We
11911 also figure out some maximum sizes. */
11912 max_contents_size = 0;
11913 max_external_reloc_size = 0;
11914 max_internal_reloc_count = 0;
11915 max_sym_count = 0;
11916 max_sym_shndx_count = 0;
11917 merged = FALSE;
11918 for (o = abfd->sections; o != NULL; o = o->next)
11919 {
11920 struct bfd_elf_section_data *esdo = elf_section_data (o);
11921 o->reloc_count = 0;
11922
11923 for (p = o->map_head.link_order; p != NULL; p = p->next)
11924 {
11925 unsigned int reloc_count = 0;
11926 unsigned int additional_reloc_count = 0;
11927 struct bfd_elf_section_data *esdi = NULL;
11928
11929 if (p->type == bfd_section_reloc_link_order
11930 || p->type == bfd_symbol_reloc_link_order)
11931 reloc_count = 1;
11932 else if (p->type == bfd_indirect_link_order)
11933 {
11934 asection *sec;
11935
11936 sec = p->u.indirect.section;
11937
11938 /* Mark all sections which are to be included in the
11939 link. This will normally be every section. We need
11940 to do this so that we can identify any sections which
11941 the linker has decided to not include. */
11942 sec->linker_mark = TRUE;
11943
11944 if (sec->flags & SEC_MERGE)
11945 merged = TRUE;
11946
11947 if (sec->rawsize > max_contents_size)
11948 max_contents_size = sec->rawsize;
11949 if (sec->size > max_contents_size)
11950 max_contents_size = sec->size;
11951
11952 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11953 && (sec->owner->flags & DYNAMIC) == 0)
11954 {
11955 size_t sym_count;
11956
11957 /* We are interested in just local symbols, not all
11958 symbols. */
11959 if (elf_bad_symtab (sec->owner))
11960 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11961 / bed->s->sizeof_sym);
11962 else
11963 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11964
11965 if (sym_count > max_sym_count)
11966 max_sym_count = sym_count;
11967
11968 if (sym_count > max_sym_shndx_count
11969 && elf_symtab_shndx_list (sec->owner) != NULL)
11970 max_sym_shndx_count = sym_count;
11971
11972 if (esdo->this_hdr.sh_type == SHT_REL
11973 || esdo->this_hdr.sh_type == SHT_RELA)
11974 /* Some backends use reloc_count in relocation sections
11975 to count particular types of relocs. Of course,
11976 reloc sections themselves can't have relocations. */
11977 ;
11978 else if (emit_relocs)
11979 {
11980 reloc_count = sec->reloc_count;
11981 if (bed->elf_backend_count_additional_relocs)
11982 {
11983 int c;
11984 c = (*bed->elf_backend_count_additional_relocs) (sec);
11985 additional_reloc_count += c;
11986 }
11987 }
11988 else if (bed->elf_backend_count_relocs)
11989 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11990
11991 esdi = elf_section_data (sec);
11992
11993 if ((sec->flags & SEC_RELOC) != 0)
11994 {
11995 size_t ext_size = 0;
11996
11997 if (esdi->rel.hdr != NULL)
11998 ext_size = esdi->rel.hdr->sh_size;
11999 if (esdi->rela.hdr != NULL)
12000 ext_size += esdi->rela.hdr->sh_size;
12001
12002 if (ext_size > max_external_reloc_size)
12003 max_external_reloc_size = ext_size;
12004 if (sec->reloc_count > max_internal_reloc_count)
12005 max_internal_reloc_count = sec->reloc_count;
12006 }
12007 }
12008 }
12009
12010 if (reloc_count == 0)
12011 continue;
12012
12013 reloc_count += additional_reloc_count;
12014 o->reloc_count += reloc_count;
12015
12016 if (p->type == bfd_indirect_link_order && emit_relocs)
12017 {
12018 if (esdi->rel.hdr)
12019 {
12020 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12021 esdo->rel.count += additional_reloc_count;
12022 }
12023 if (esdi->rela.hdr)
12024 {
12025 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12026 esdo->rela.count += additional_reloc_count;
12027 }
12028 }
12029 else
12030 {
12031 if (o->use_rela_p)
12032 esdo->rela.count += reloc_count;
12033 else
12034 esdo->rel.count += reloc_count;
12035 }
12036 }
12037
12038 if (o->reloc_count > 0)
12039 o->flags |= SEC_RELOC;
12040 else
12041 {
12042 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12043 set it (this is probably a bug) and if it is set
12044 assign_section_numbers will create a reloc section. */
12045 o->flags &=~ SEC_RELOC;
12046 }
12047
12048 /* If the SEC_ALLOC flag is not set, force the section VMA to
12049 zero. This is done in elf_fake_sections as well, but forcing
12050 the VMA to 0 here will ensure that relocs against these
12051 sections are handled correctly. */
12052 if ((o->flags & SEC_ALLOC) == 0
12053 && ! o->user_set_vma)
12054 o->vma = 0;
12055 }
12056
12057 if (! bfd_link_relocatable (info) && merged)
12058 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12059
12060 /* Figure out the file positions for everything but the symbol table
12061 and the relocs. We set symcount to force assign_section_numbers
12062 to create a symbol table. */
12063 abfd->symcount = info->strip != strip_all || emit_relocs;
12064 BFD_ASSERT (! abfd->output_has_begun);
12065 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12066 goto error_return;
12067
12068 /* Set sizes, and assign file positions for reloc sections. */
12069 for (o = abfd->sections; o != NULL; o = o->next)
12070 {
12071 struct bfd_elf_section_data *esdo = elf_section_data (o);
12072 if ((o->flags & SEC_RELOC) != 0)
12073 {
12074 if (esdo->rel.hdr
12075 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12076 goto error_return;
12077
12078 if (esdo->rela.hdr
12079 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12080 goto error_return;
12081 }
12082
12083 /* _bfd_elf_compute_section_file_positions makes temporary use
12084 of target_index. Reset it. */
12085 o->target_index = 0;
12086
12087 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12088 to count upwards while actually outputting the relocations. */
12089 esdo->rel.count = 0;
12090 esdo->rela.count = 0;
12091
12092 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12093 && !bfd_section_is_ctf (o))
12094 {
12095 /* Cache the section contents so that they can be compressed
12096 later. Use bfd_malloc since it will be freed by
12097 bfd_compress_section_contents. */
12098 unsigned char *contents = esdo->this_hdr.contents;
12099 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12100 abort ();
12101 contents
12102 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12103 if (contents == NULL)
12104 goto error_return;
12105 esdo->this_hdr.contents = contents;
12106 }
12107 }
12108
12109 /* We have now assigned file positions for all the sections except .symtab,
12110 .strtab, and non-loaded reloc and compressed debugging sections. We start
12111 the .symtab section at the current file position, and write directly to it.
12112 We build the .strtab section in memory. */
12113 abfd->symcount = 0;
12114 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12115 /* sh_name is set in prep_headers. */
12116 symtab_hdr->sh_type = SHT_SYMTAB;
12117 /* sh_flags, sh_addr and sh_size all start off zero. */
12118 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12119 /* sh_link is set in assign_section_numbers. */
12120 /* sh_info is set below. */
12121 /* sh_offset is set just below. */
12122 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12123
12124 if (max_sym_count < 20)
12125 max_sym_count = 20;
12126 htab->strtabsize = max_sym_count;
12127 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12128 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12129 if (htab->strtab == NULL)
12130 goto error_return;
12131 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12132 flinfo.symshndxbuf
12133 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12134 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12135
12136 if (info->strip != strip_all || emit_relocs)
12137 {
12138 file_ptr off = elf_next_file_pos (abfd);
12139
12140 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12141
12142 /* Note that at this point elf_next_file_pos (abfd) is
12143 incorrect. We do not yet know the size of the .symtab section.
12144 We correct next_file_pos below, after we do know the size. */
12145
12146 /* Start writing out the symbol table. The first symbol is always a
12147 dummy symbol. */
12148 elfsym.st_value = 0;
12149 elfsym.st_size = 0;
12150 elfsym.st_info = 0;
12151 elfsym.st_other = 0;
12152 elfsym.st_shndx = SHN_UNDEF;
12153 elfsym.st_target_internal = 0;
12154 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12155 bfd_und_section_ptr, NULL) != 1)
12156 goto error_return;
12157
12158 /* Output a symbol for each section. We output these even if we are
12159 discarding local symbols, since they are used for relocs. These
12160 symbols have no names. We store the index of each one in the
12161 index field of the section, so that we can find it again when
12162 outputting relocs. */
12163
12164 elfsym.st_size = 0;
12165 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12166 elfsym.st_other = 0;
12167 elfsym.st_value = 0;
12168 elfsym.st_target_internal = 0;
12169 for (i = 1; i < elf_numsections (abfd); i++)
12170 {
12171 o = bfd_section_from_elf_index (abfd, i);
12172 if (o != NULL)
12173 {
12174 o->target_index = bfd_get_symcount (abfd);
12175 elfsym.st_shndx = i;
12176 if (!bfd_link_relocatable (info))
12177 elfsym.st_value = o->vma;
12178 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12179 NULL) != 1)
12180 goto error_return;
12181 }
12182 }
12183 }
12184
12185 /* Allocate some memory to hold information read in from the input
12186 files. */
12187 if (max_contents_size != 0)
12188 {
12189 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12190 if (flinfo.contents == NULL)
12191 goto error_return;
12192 }
12193
12194 if (max_external_reloc_size != 0)
12195 {
12196 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12197 if (flinfo.external_relocs == NULL)
12198 goto error_return;
12199 }
12200
12201 if (max_internal_reloc_count != 0)
12202 {
12203 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12204 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12205 if (flinfo.internal_relocs == NULL)
12206 goto error_return;
12207 }
12208
12209 if (max_sym_count != 0)
12210 {
12211 amt = max_sym_count * bed->s->sizeof_sym;
12212 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12213 if (flinfo.external_syms == NULL)
12214 goto error_return;
12215
12216 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12217 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12218 if (flinfo.internal_syms == NULL)
12219 goto error_return;
12220
12221 amt = max_sym_count * sizeof (long);
12222 flinfo.indices = (long int *) bfd_malloc (amt);
12223 if (flinfo.indices == NULL)
12224 goto error_return;
12225
12226 amt = max_sym_count * sizeof (asection *);
12227 flinfo.sections = (asection **) bfd_malloc (amt);
12228 if (flinfo.sections == NULL)
12229 goto error_return;
12230 }
12231
12232 if (max_sym_shndx_count != 0)
12233 {
12234 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12235 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12236 if (flinfo.locsym_shndx == NULL)
12237 goto error_return;
12238 }
12239
12240 if (htab->tls_sec)
12241 {
12242 bfd_vma base, end = 0;
12243 asection *sec;
12244
12245 for (sec = htab->tls_sec;
12246 sec && (sec->flags & SEC_THREAD_LOCAL);
12247 sec = sec->next)
12248 {
12249 bfd_size_type size = sec->size;
12250
12251 if (size == 0
12252 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12253 {
12254 struct bfd_link_order *ord = sec->map_tail.link_order;
12255
12256 if (ord != NULL)
12257 size = ord->offset + ord->size;
12258 }
12259 end = sec->vma + size;
12260 }
12261 base = htab->tls_sec->vma;
12262 /* Only align end of TLS section if static TLS doesn't have special
12263 alignment requirements. */
12264 if (bed->static_tls_alignment == 1)
12265 end = align_power (end, htab->tls_sec->alignment_power);
12266 htab->tls_size = end - base;
12267 }
12268
12269 /* Reorder SHF_LINK_ORDER sections. */
12270 for (o = abfd->sections; o != NULL; o = o->next)
12271 {
12272 if (!elf_fixup_link_order (abfd, o))
12273 return FALSE;
12274 }
12275
12276 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12277 return FALSE;
12278
12279 /* Since ELF permits relocations to be against local symbols, we
12280 must have the local symbols available when we do the relocations.
12281 Since we would rather only read the local symbols once, and we
12282 would rather not keep them in memory, we handle all the
12283 relocations for a single input file at the same time.
12284
12285 Unfortunately, there is no way to know the total number of local
12286 symbols until we have seen all of them, and the local symbol
12287 indices precede the global symbol indices. This means that when
12288 we are generating relocatable output, and we see a reloc against
12289 a global symbol, we can not know the symbol index until we have
12290 finished examining all the local symbols to see which ones we are
12291 going to output. To deal with this, we keep the relocations in
12292 memory, and don't output them until the end of the link. This is
12293 an unfortunate waste of memory, but I don't see a good way around
12294 it. Fortunately, it only happens when performing a relocatable
12295 link, which is not the common case. FIXME: If keep_memory is set
12296 we could write the relocs out and then read them again; I don't
12297 know how bad the memory loss will be. */
12298
12299 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12300 sub->output_has_begun = FALSE;
12301 for (o = abfd->sections; o != NULL; o = o->next)
12302 {
12303 for (p = o->map_head.link_order; p != NULL; p = p->next)
12304 {
12305 if (p->type == bfd_indirect_link_order
12306 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12307 == bfd_target_elf_flavour)
12308 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12309 {
12310 if (! sub->output_has_begun)
12311 {
12312 if (! elf_link_input_bfd (&flinfo, sub))
12313 goto error_return;
12314 sub->output_has_begun = TRUE;
12315 }
12316 }
12317 else if (p->type == bfd_section_reloc_link_order
12318 || p->type == bfd_symbol_reloc_link_order)
12319 {
12320 if (! elf_reloc_link_order (abfd, info, o, p))
12321 goto error_return;
12322 }
12323 else
12324 {
12325 if (! _bfd_default_link_order (abfd, info, o, p))
12326 {
12327 if (p->type == bfd_indirect_link_order
12328 && (bfd_get_flavour (sub)
12329 == bfd_target_elf_flavour)
12330 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12331 != bed->s->elfclass))
12332 {
12333 const char *iclass, *oclass;
12334
12335 switch (bed->s->elfclass)
12336 {
12337 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12338 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12339 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12340 default: abort ();
12341 }
12342
12343 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12344 {
12345 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12346 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12347 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12348 default: abort ();
12349 }
12350
12351 bfd_set_error (bfd_error_wrong_format);
12352 _bfd_error_handler
12353 /* xgettext:c-format */
12354 (_("%pB: file class %s incompatible with %s"),
12355 sub, iclass, oclass);
12356 }
12357
12358 goto error_return;
12359 }
12360 }
12361 }
12362 }
12363
12364 /* Free symbol buffer if needed. */
12365 if (!info->reduce_memory_overheads)
12366 {
12367 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12368 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12369 && elf_tdata (sub)->symbuf)
12370 {
12371 free (elf_tdata (sub)->symbuf);
12372 elf_tdata (sub)->symbuf = NULL;
12373 }
12374 }
12375
12376 /* Output any global symbols that got converted to local in a
12377 version script or due to symbol visibility. We do this in a
12378 separate step since ELF requires all local symbols to appear
12379 prior to any global symbols. FIXME: We should only do this if
12380 some global symbols were, in fact, converted to become local.
12381 FIXME: Will this work correctly with the Irix 5 linker? */
12382 eoinfo.failed = FALSE;
12383 eoinfo.flinfo = &flinfo;
12384 eoinfo.localsyms = TRUE;
12385 eoinfo.file_sym_done = FALSE;
12386 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12387 if (eoinfo.failed)
12388 return FALSE;
12389
12390 /* If backend needs to output some local symbols not present in the hash
12391 table, do it now. */
12392 if (bed->elf_backend_output_arch_local_syms
12393 && (info->strip != strip_all || emit_relocs))
12394 {
12395 typedef int (*out_sym_func)
12396 (void *, const char *, Elf_Internal_Sym *, asection *,
12397 struct elf_link_hash_entry *);
12398
12399 if (! ((*bed->elf_backend_output_arch_local_syms)
12400 (abfd, info, &flinfo,
12401 (out_sym_func) elf_link_output_symstrtab)))
12402 return FALSE;
12403 }
12404
12405 /* That wrote out all the local symbols. Finish up the symbol table
12406 with the global symbols. Even if we want to strip everything we
12407 can, we still need to deal with those global symbols that got
12408 converted to local in a version script. */
12409
12410 /* The sh_info field records the index of the first non local symbol. */
12411 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12412
12413 if (dynamic
12414 && htab->dynsym != NULL
12415 && htab->dynsym->output_section != bfd_abs_section_ptr)
12416 {
12417 Elf_Internal_Sym sym;
12418 bfd_byte *dynsym = htab->dynsym->contents;
12419
12420 o = htab->dynsym->output_section;
12421 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12422
12423 /* Write out the section symbols for the output sections. */
12424 if (bfd_link_pic (info)
12425 || htab->is_relocatable_executable)
12426 {
12427 asection *s;
12428
12429 sym.st_size = 0;
12430 sym.st_name = 0;
12431 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12432 sym.st_other = 0;
12433 sym.st_target_internal = 0;
12434
12435 for (s = abfd->sections; s != NULL; s = s->next)
12436 {
12437 int indx;
12438 bfd_byte *dest;
12439 long dynindx;
12440
12441 dynindx = elf_section_data (s)->dynindx;
12442 if (dynindx <= 0)
12443 continue;
12444 indx = elf_section_data (s)->this_idx;
12445 BFD_ASSERT (indx > 0);
12446 sym.st_shndx = indx;
12447 if (! check_dynsym (abfd, &sym))
12448 return FALSE;
12449 sym.st_value = s->vma;
12450 dest = dynsym + dynindx * bed->s->sizeof_sym;
12451 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12452 }
12453 }
12454
12455 /* Write out the local dynsyms. */
12456 if (htab->dynlocal)
12457 {
12458 struct elf_link_local_dynamic_entry *e;
12459 for (e = htab->dynlocal; e ; e = e->next)
12460 {
12461 asection *s;
12462 bfd_byte *dest;
12463
12464 /* Copy the internal symbol and turn off visibility.
12465 Note that we saved a word of storage and overwrote
12466 the original st_name with the dynstr_index. */
12467 sym = e->isym;
12468 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12469
12470 s = bfd_section_from_elf_index (e->input_bfd,
12471 e->isym.st_shndx);
12472 if (s != NULL)
12473 {
12474 sym.st_shndx =
12475 elf_section_data (s->output_section)->this_idx;
12476 if (! check_dynsym (abfd, &sym))
12477 return FALSE;
12478 sym.st_value = (s->output_section->vma
12479 + s->output_offset
12480 + e->isym.st_value);
12481 }
12482
12483 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12484 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12485 }
12486 }
12487 }
12488
12489 /* We get the global symbols from the hash table. */
12490 eoinfo.failed = FALSE;
12491 eoinfo.localsyms = FALSE;
12492 eoinfo.flinfo = &flinfo;
12493 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12494 if (eoinfo.failed)
12495 return FALSE;
12496
12497 /* If backend needs to output some symbols not present in the hash
12498 table, do it now. */
12499 if (bed->elf_backend_output_arch_syms
12500 && (info->strip != strip_all || emit_relocs))
12501 {
12502 typedef int (*out_sym_func)
12503 (void *, const char *, Elf_Internal_Sym *, asection *,
12504 struct elf_link_hash_entry *);
12505
12506 if (! ((*bed->elf_backend_output_arch_syms)
12507 (abfd, info, &flinfo,
12508 (out_sym_func) elf_link_output_symstrtab)))
12509 return FALSE;
12510 }
12511
12512 /* Finalize the .strtab section. */
12513 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12514
12515 /* Swap out the .strtab section. */
12516 if (!elf_link_swap_symbols_out (&flinfo))
12517 return FALSE;
12518
12519 /* Now we know the size of the symtab section. */
12520 if (bfd_get_symcount (abfd) > 0)
12521 {
12522 /* Finish up and write out the symbol string table (.strtab)
12523 section. */
12524 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12525 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12526
12527 if (elf_symtab_shndx_list (abfd))
12528 {
12529 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12530
12531 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12532 {
12533 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12534 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12535 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12536 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12537 symtab_shndx_hdr->sh_size = amt;
12538
12539 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12540 off, TRUE);
12541
12542 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12543 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12544 return FALSE;
12545 }
12546 }
12547
12548 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12549 /* sh_name was set in prep_headers. */
12550 symstrtab_hdr->sh_type = SHT_STRTAB;
12551 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12552 symstrtab_hdr->sh_addr = 0;
12553 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12554 symstrtab_hdr->sh_entsize = 0;
12555 symstrtab_hdr->sh_link = 0;
12556 symstrtab_hdr->sh_info = 0;
12557 /* sh_offset is set just below. */
12558 symstrtab_hdr->sh_addralign = 1;
12559
12560 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12561 off, TRUE);
12562 elf_next_file_pos (abfd) = off;
12563
12564 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12565 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12566 return FALSE;
12567 }
12568
12569 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12570 {
12571 _bfd_error_handler (_("%pB: failed to generate import library"),
12572 info->out_implib_bfd);
12573 return FALSE;
12574 }
12575
12576 /* Adjust the relocs to have the correct symbol indices. */
12577 for (o = abfd->sections; o != NULL; o = o->next)
12578 {
12579 struct bfd_elf_section_data *esdo = elf_section_data (o);
12580 bfd_boolean sort;
12581
12582 if ((o->flags & SEC_RELOC) == 0)
12583 continue;
12584
12585 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12586 if (esdo->rel.hdr != NULL
12587 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12588 return FALSE;
12589 if (esdo->rela.hdr != NULL
12590 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12591 return FALSE;
12592
12593 /* Set the reloc_count field to 0 to prevent write_relocs from
12594 trying to swap the relocs out itself. */
12595 o->reloc_count = 0;
12596 }
12597
12598 if (dynamic && info->combreloc && dynobj != NULL)
12599 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12600
12601 /* If we are linking against a dynamic object, or generating a
12602 shared library, finish up the dynamic linking information. */
12603 if (dynamic)
12604 {
12605 bfd_byte *dyncon, *dynconend;
12606
12607 /* Fix up .dynamic entries. */
12608 o = bfd_get_linker_section (dynobj, ".dynamic");
12609 BFD_ASSERT (o != NULL);
12610
12611 dyncon = o->contents;
12612 dynconend = o->contents + o->size;
12613 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12614 {
12615 Elf_Internal_Dyn dyn;
12616 const char *name;
12617 unsigned int type;
12618 bfd_size_type sh_size;
12619 bfd_vma sh_addr;
12620
12621 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12622
12623 switch (dyn.d_tag)
12624 {
12625 default:
12626 continue;
12627 case DT_NULL:
12628 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12629 {
12630 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12631 {
12632 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12633 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12634 default: continue;
12635 }
12636 dyn.d_un.d_val = relativecount;
12637 relativecount = 0;
12638 break;
12639 }
12640 continue;
12641
12642 case DT_INIT:
12643 name = info->init_function;
12644 goto get_sym;
12645 case DT_FINI:
12646 name = info->fini_function;
12647 get_sym:
12648 {
12649 struct elf_link_hash_entry *h;
12650
12651 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12652 if (h != NULL
12653 && (h->root.type == bfd_link_hash_defined
12654 || h->root.type == bfd_link_hash_defweak))
12655 {
12656 dyn.d_un.d_ptr = h->root.u.def.value;
12657 o = h->root.u.def.section;
12658 if (o->output_section != NULL)
12659 dyn.d_un.d_ptr += (o->output_section->vma
12660 + o->output_offset);
12661 else
12662 {
12663 /* The symbol is imported from another shared
12664 library and does not apply to this one. */
12665 dyn.d_un.d_ptr = 0;
12666 }
12667 break;
12668 }
12669 }
12670 continue;
12671
12672 case DT_PREINIT_ARRAYSZ:
12673 name = ".preinit_array";
12674 goto get_out_size;
12675 case DT_INIT_ARRAYSZ:
12676 name = ".init_array";
12677 goto get_out_size;
12678 case DT_FINI_ARRAYSZ:
12679 name = ".fini_array";
12680 get_out_size:
12681 o = bfd_get_section_by_name (abfd, name);
12682 if (o == NULL)
12683 {
12684 _bfd_error_handler
12685 (_("could not find section %s"), name);
12686 goto error_return;
12687 }
12688 if (o->size == 0)
12689 _bfd_error_handler
12690 (_("warning: %s section has zero size"), name);
12691 dyn.d_un.d_val = o->size;
12692 break;
12693
12694 case DT_PREINIT_ARRAY:
12695 name = ".preinit_array";
12696 goto get_out_vma;
12697 case DT_INIT_ARRAY:
12698 name = ".init_array";
12699 goto get_out_vma;
12700 case DT_FINI_ARRAY:
12701 name = ".fini_array";
12702 get_out_vma:
12703 o = bfd_get_section_by_name (abfd, name);
12704 goto do_vma;
12705
12706 case DT_HASH:
12707 name = ".hash";
12708 goto get_vma;
12709 case DT_GNU_HASH:
12710 name = ".gnu.hash";
12711 goto get_vma;
12712 case DT_STRTAB:
12713 name = ".dynstr";
12714 goto get_vma;
12715 case DT_SYMTAB:
12716 name = ".dynsym";
12717 goto get_vma;
12718 case DT_VERDEF:
12719 name = ".gnu.version_d";
12720 goto get_vma;
12721 case DT_VERNEED:
12722 name = ".gnu.version_r";
12723 goto get_vma;
12724 case DT_VERSYM:
12725 name = ".gnu.version";
12726 get_vma:
12727 o = bfd_get_linker_section (dynobj, name);
12728 do_vma:
12729 if (o == NULL || bfd_is_abs_section (o->output_section))
12730 {
12731 _bfd_error_handler
12732 (_("could not find section %s"), name);
12733 goto error_return;
12734 }
12735 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12736 {
12737 _bfd_error_handler
12738 (_("warning: section '%s' is being made into a note"), name);
12739 bfd_set_error (bfd_error_nonrepresentable_section);
12740 goto error_return;
12741 }
12742 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12743 break;
12744
12745 case DT_REL:
12746 case DT_RELA:
12747 case DT_RELSZ:
12748 case DT_RELASZ:
12749 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12750 type = SHT_REL;
12751 else
12752 type = SHT_RELA;
12753 sh_size = 0;
12754 sh_addr = 0;
12755 for (i = 1; i < elf_numsections (abfd); i++)
12756 {
12757 Elf_Internal_Shdr *hdr;
12758
12759 hdr = elf_elfsections (abfd)[i];
12760 if (hdr->sh_type == type
12761 && (hdr->sh_flags & SHF_ALLOC) != 0)
12762 {
12763 sh_size += hdr->sh_size;
12764 if (sh_addr == 0
12765 || sh_addr > hdr->sh_addr)
12766 sh_addr = hdr->sh_addr;
12767 }
12768 }
12769
12770 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12771 {
12772 /* Don't count procedure linkage table relocs in the
12773 overall reloc count. */
12774 sh_size -= htab->srelplt->size;
12775 if (sh_size == 0)
12776 /* If the size is zero, make the address zero too.
12777 This is to avoid a glibc bug. If the backend
12778 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12779 zero, then we'll put DT_RELA at the end of
12780 DT_JMPREL. glibc will interpret the end of
12781 DT_RELA matching the end of DT_JMPREL as the
12782 case where DT_RELA includes DT_JMPREL, and for
12783 LD_BIND_NOW will decide that processing DT_RELA
12784 will process the PLT relocs too. Net result:
12785 No PLT relocs applied. */
12786 sh_addr = 0;
12787
12788 /* If .rela.plt is the first .rela section, exclude
12789 it from DT_RELA. */
12790 else if (sh_addr == (htab->srelplt->output_section->vma
12791 + htab->srelplt->output_offset))
12792 sh_addr += htab->srelplt->size;
12793 }
12794
12795 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12796 dyn.d_un.d_val = sh_size;
12797 else
12798 dyn.d_un.d_ptr = sh_addr;
12799 break;
12800 }
12801 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12802 }
12803 }
12804
12805 /* If we have created any dynamic sections, then output them. */
12806 if (dynobj != NULL)
12807 {
12808 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12809 goto error_return;
12810
12811 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12812 if (((info->warn_shared_textrel && bfd_link_pic (info))
12813 || info->error_textrel)
12814 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12815 {
12816 bfd_byte *dyncon, *dynconend;
12817
12818 dyncon = o->contents;
12819 dynconend = o->contents + o->size;
12820 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12821 {
12822 Elf_Internal_Dyn dyn;
12823
12824 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12825
12826 if (dyn.d_tag == DT_TEXTREL)
12827 {
12828 if (info->error_textrel)
12829 info->callbacks->einfo
12830 (_("%P%X: read-only segment has dynamic relocations\n"));
12831 else
12832 info->callbacks->einfo
12833 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12834 break;
12835 }
12836 }
12837 }
12838
12839 for (o = dynobj->sections; o != NULL; o = o->next)
12840 {
12841 if ((o->flags & SEC_HAS_CONTENTS) == 0
12842 || o->size == 0
12843 || o->output_section == bfd_abs_section_ptr)
12844 continue;
12845 if ((o->flags & SEC_LINKER_CREATED) == 0)
12846 {
12847 /* At this point, we are only interested in sections
12848 created by _bfd_elf_link_create_dynamic_sections. */
12849 continue;
12850 }
12851 if (htab->stab_info.stabstr == o)
12852 continue;
12853 if (htab->eh_info.hdr_sec == o)
12854 continue;
12855 if (strcmp (o->name, ".dynstr") != 0)
12856 {
12857 if (! bfd_set_section_contents (abfd, o->output_section,
12858 o->contents,
12859 (file_ptr) o->output_offset
12860 * bfd_octets_per_byte (abfd),
12861 o->size))
12862 goto error_return;
12863 }
12864 else
12865 {
12866 /* The contents of the .dynstr section are actually in a
12867 stringtab. */
12868 file_ptr off;
12869
12870 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12871 if (bfd_seek (abfd, off, SEEK_SET) != 0
12872 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12873 goto error_return;
12874 }
12875 }
12876 }
12877
12878 if (!info->resolve_section_groups)
12879 {
12880 bfd_boolean failed = FALSE;
12881
12882 BFD_ASSERT (bfd_link_relocatable (info));
12883 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12884 if (failed)
12885 goto error_return;
12886 }
12887
12888 /* If we have optimized stabs strings, output them. */
12889 if (htab->stab_info.stabstr != NULL)
12890 {
12891 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12892 goto error_return;
12893 }
12894
12895 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12896 goto error_return;
12897
12898 if (info->callbacks->emit_ctf)
12899 info->callbacks->emit_ctf ();
12900
12901 elf_final_link_free (abfd, &flinfo);
12902
12903 if (attr_section)
12904 {
12905 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12906 if (contents == NULL)
12907 return FALSE; /* Bail out and fail. */
12908 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12909 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12910 free (contents);
12911 }
12912
12913 return TRUE;
12914
12915 error_return:
12916 elf_final_link_free (abfd, &flinfo);
12917 return FALSE;
12918 }
12919 \f
12920 /* Initialize COOKIE for input bfd ABFD. */
12921
12922 static bfd_boolean
12923 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12924 struct bfd_link_info *info, bfd *abfd)
12925 {
12926 Elf_Internal_Shdr *symtab_hdr;
12927 const struct elf_backend_data *bed;
12928
12929 bed = get_elf_backend_data (abfd);
12930 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12931
12932 cookie->abfd = abfd;
12933 cookie->sym_hashes = elf_sym_hashes (abfd);
12934 cookie->bad_symtab = elf_bad_symtab (abfd);
12935 if (cookie->bad_symtab)
12936 {
12937 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12938 cookie->extsymoff = 0;
12939 }
12940 else
12941 {
12942 cookie->locsymcount = symtab_hdr->sh_info;
12943 cookie->extsymoff = symtab_hdr->sh_info;
12944 }
12945
12946 if (bed->s->arch_size == 32)
12947 cookie->r_sym_shift = 8;
12948 else
12949 cookie->r_sym_shift = 32;
12950
12951 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12952 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12953 {
12954 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12955 cookie->locsymcount, 0,
12956 NULL, NULL, NULL);
12957 if (cookie->locsyms == NULL)
12958 {
12959 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12960 return FALSE;
12961 }
12962 if (info->keep_memory)
12963 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12964 }
12965 return TRUE;
12966 }
12967
12968 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12969
12970 static void
12971 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12972 {
12973 Elf_Internal_Shdr *symtab_hdr;
12974
12975 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12976 if (cookie->locsyms != NULL
12977 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12978 free (cookie->locsyms);
12979 }
12980
12981 /* Initialize the relocation information in COOKIE for input section SEC
12982 of input bfd ABFD. */
12983
12984 static bfd_boolean
12985 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12986 struct bfd_link_info *info, bfd *abfd,
12987 asection *sec)
12988 {
12989 if (sec->reloc_count == 0)
12990 {
12991 cookie->rels = NULL;
12992 cookie->relend = NULL;
12993 }
12994 else
12995 {
12996 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12997 info->keep_memory);
12998 if (cookie->rels == NULL)
12999 return FALSE;
13000 cookie->rel = cookie->rels;
13001 cookie->relend = cookie->rels + sec->reloc_count;
13002 }
13003 cookie->rel = cookie->rels;
13004 return TRUE;
13005 }
13006
13007 /* Free the memory allocated by init_reloc_cookie_rels,
13008 if appropriate. */
13009
13010 static void
13011 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13012 asection *sec)
13013 {
13014 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
13015 free (cookie->rels);
13016 }
13017
13018 /* Initialize the whole of COOKIE for input section SEC. */
13019
13020 static bfd_boolean
13021 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13022 struct bfd_link_info *info,
13023 asection *sec)
13024 {
13025 if (!init_reloc_cookie (cookie, info, sec->owner))
13026 goto error1;
13027 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13028 goto error2;
13029 return TRUE;
13030
13031 error2:
13032 fini_reloc_cookie (cookie, sec->owner);
13033 error1:
13034 return FALSE;
13035 }
13036
13037 /* Free the memory allocated by init_reloc_cookie_for_section,
13038 if appropriate. */
13039
13040 static void
13041 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13042 asection *sec)
13043 {
13044 fini_reloc_cookie_rels (cookie, sec);
13045 fini_reloc_cookie (cookie, sec->owner);
13046 }
13047 \f
13048 /* Garbage collect unused sections. */
13049
13050 /* Default gc_mark_hook. */
13051
13052 asection *
13053 _bfd_elf_gc_mark_hook (asection *sec,
13054 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13055 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13056 struct elf_link_hash_entry *h,
13057 Elf_Internal_Sym *sym)
13058 {
13059 if (h != NULL)
13060 {
13061 switch (h->root.type)
13062 {
13063 case bfd_link_hash_defined:
13064 case bfd_link_hash_defweak:
13065 return h->root.u.def.section;
13066
13067 case bfd_link_hash_common:
13068 return h->root.u.c.p->section;
13069
13070 default:
13071 break;
13072 }
13073 }
13074 else
13075 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13076
13077 return NULL;
13078 }
13079
13080 /* Return the debug definition section. */
13081
13082 static asection *
13083 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13084 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13085 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13086 struct elf_link_hash_entry *h,
13087 Elf_Internal_Sym *sym)
13088 {
13089 if (h != NULL)
13090 {
13091 /* Return the global debug definition section. */
13092 if ((h->root.type == bfd_link_hash_defined
13093 || h->root.type == bfd_link_hash_defweak)
13094 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13095 return h->root.u.def.section;
13096 }
13097 else
13098 {
13099 /* Return the local debug definition section. */
13100 asection *isec = bfd_section_from_elf_index (sec->owner,
13101 sym->st_shndx);
13102 if ((isec->flags & SEC_DEBUGGING) != 0)
13103 return isec;
13104 }
13105
13106 return NULL;
13107 }
13108
13109 /* COOKIE->rel describes a relocation against section SEC, which is
13110 a section we've decided to keep. Return the section that contains
13111 the relocation symbol, or NULL if no section contains it. */
13112
13113 asection *
13114 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13115 elf_gc_mark_hook_fn gc_mark_hook,
13116 struct elf_reloc_cookie *cookie,
13117 bfd_boolean *start_stop)
13118 {
13119 unsigned long r_symndx;
13120 struct elf_link_hash_entry *h;
13121
13122 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13123 if (r_symndx == STN_UNDEF)
13124 return NULL;
13125
13126 if (r_symndx >= cookie->locsymcount
13127 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13128 {
13129 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13130 if (h == NULL)
13131 {
13132 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13133 sec->owner);
13134 return NULL;
13135 }
13136 while (h->root.type == bfd_link_hash_indirect
13137 || h->root.type == bfd_link_hash_warning)
13138 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13139 h->mark = 1;
13140 /* If this symbol is weak and there is a non-weak definition, we
13141 keep the non-weak definition because many backends put
13142 dynamic reloc info on the non-weak definition for code
13143 handling copy relocs. */
13144 if (h->is_weakalias)
13145 weakdef (h)->mark = 1;
13146
13147 if (start_stop != NULL)
13148 {
13149 /* To work around a glibc bug, mark XXX input sections
13150 when there is a reference to __start_XXX or __stop_XXX
13151 symbols. */
13152 if (h->start_stop)
13153 {
13154 asection *s = h->u2.start_stop_section;
13155 *start_stop = !s->gc_mark;
13156 return s;
13157 }
13158 }
13159
13160 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13161 }
13162
13163 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13164 &cookie->locsyms[r_symndx]);
13165 }
13166
13167 /* COOKIE->rel describes a relocation against section SEC, which is
13168 a section we've decided to keep. Mark the section that contains
13169 the relocation symbol. */
13170
13171 bfd_boolean
13172 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13173 asection *sec,
13174 elf_gc_mark_hook_fn gc_mark_hook,
13175 struct elf_reloc_cookie *cookie)
13176 {
13177 asection *rsec;
13178 bfd_boolean start_stop = FALSE;
13179
13180 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13181 while (rsec != NULL)
13182 {
13183 if (!rsec->gc_mark)
13184 {
13185 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13186 || (rsec->owner->flags & DYNAMIC) != 0)
13187 rsec->gc_mark = 1;
13188 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13189 return FALSE;
13190 }
13191 if (!start_stop)
13192 break;
13193 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13194 }
13195 return TRUE;
13196 }
13197
13198 /* The mark phase of garbage collection. For a given section, mark
13199 it and any sections in this section's group, and all the sections
13200 which define symbols to which it refers. */
13201
13202 bfd_boolean
13203 _bfd_elf_gc_mark (struct bfd_link_info *info,
13204 asection *sec,
13205 elf_gc_mark_hook_fn gc_mark_hook)
13206 {
13207 bfd_boolean ret;
13208 asection *group_sec, *eh_frame;
13209
13210 sec->gc_mark = 1;
13211
13212 /* Mark all the sections in the group. */
13213 group_sec = elf_section_data (sec)->next_in_group;
13214 if (group_sec && !group_sec->gc_mark)
13215 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13216 return FALSE;
13217
13218 /* Look through the section relocs. */
13219 ret = TRUE;
13220 eh_frame = elf_eh_frame_section (sec->owner);
13221 if ((sec->flags & SEC_RELOC) != 0
13222 && sec->reloc_count > 0
13223 && sec != eh_frame)
13224 {
13225 struct elf_reloc_cookie cookie;
13226
13227 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13228 ret = FALSE;
13229 else
13230 {
13231 for (; cookie.rel < cookie.relend; cookie.rel++)
13232 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13233 {
13234 ret = FALSE;
13235 break;
13236 }
13237 fini_reloc_cookie_for_section (&cookie, sec);
13238 }
13239 }
13240
13241 if (ret && eh_frame && elf_fde_list (sec))
13242 {
13243 struct elf_reloc_cookie cookie;
13244
13245 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13246 ret = FALSE;
13247 else
13248 {
13249 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13250 gc_mark_hook, &cookie))
13251 ret = FALSE;
13252 fini_reloc_cookie_for_section (&cookie, eh_frame);
13253 }
13254 }
13255
13256 eh_frame = elf_section_eh_frame_entry (sec);
13257 if (ret && eh_frame && !eh_frame->gc_mark)
13258 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13259 ret = FALSE;
13260
13261 return ret;
13262 }
13263
13264 /* Scan and mark sections in a special or debug section group. */
13265
13266 static void
13267 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13268 {
13269 /* Point to first section of section group. */
13270 asection *ssec;
13271 /* Used to iterate the section group. */
13272 asection *msec;
13273
13274 bfd_boolean is_special_grp = TRUE;
13275 bfd_boolean is_debug_grp = TRUE;
13276
13277 /* First scan to see if group contains any section other than debug
13278 and special section. */
13279 ssec = msec = elf_next_in_group (grp);
13280 do
13281 {
13282 if ((msec->flags & SEC_DEBUGGING) == 0)
13283 is_debug_grp = FALSE;
13284
13285 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13286 is_special_grp = FALSE;
13287
13288 msec = elf_next_in_group (msec);
13289 }
13290 while (msec != ssec);
13291
13292 /* If this is a pure debug section group or pure special section group,
13293 keep all sections in this group. */
13294 if (is_debug_grp || is_special_grp)
13295 {
13296 do
13297 {
13298 msec->gc_mark = 1;
13299 msec = elf_next_in_group (msec);
13300 }
13301 while (msec != ssec);
13302 }
13303 }
13304
13305 /* Keep debug and special sections. */
13306
13307 bfd_boolean
13308 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13309 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13310 {
13311 bfd *ibfd;
13312
13313 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13314 {
13315 asection *isec;
13316 bfd_boolean some_kept;
13317 bfd_boolean debug_frag_seen;
13318 bfd_boolean has_kept_debug_info;
13319
13320 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13321 continue;
13322 isec = ibfd->sections;
13323 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13324 continue;
13325
13326 /* Ensure all linker created sections are kept,
13327 see if any other section is already marked,
13328 and note if we have any fragmented debug sections. */
13329 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13330 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13331 {
13332 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13333 isec->gc_mark = 1;
13334 else if (isec->gc_mark
13335 && (isec->flags & SEC_ALLOC) != 0
13336 && elf_section_type (isec) != SHT_NOTE)
13337 some_kept = TRUE;
13338
13339 if (!debug_frag_seen
13340 && (isec->flags & SEC_DEBUGGING)
13341 && CONST_STRNEQ (isec->name, ".debug_line."))
13342 debug_frag_seen = TRUE;
13343 }
13344
13345 /* If no non-note alloc section in this file will be kept, then
13346 we can toss out the debug and special sections. */
13347 if (!some_kept)
13348 continue;
13349
13350 /* Keep debug and special sections like .comment when they are
13351 not part of a group. Also keep section groups that contain
13352 just debug sections or special sections. */
13353 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13354 {
13355 if ((isec->flags & SEC_GROUP) != 0)
13356 _bfd_elf_gc_mark_debug_special_section_group (isec);
13357 else if (((isec->flags & SEC_DEBUGGING) != 0
13358 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13359 && elf_next_in_group (isec) == NULL)
13360 isec->gc_mark = 1;
13361 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13362 has_kept_debug_info = TRUE;
13363 }
13364
13365 /* Look for CODE sections which are going to be discarded,
13366 and find and discard any fragmented debug sections which
13367 are associated with that code section. */
13368 if (debug_frag_seen)
13369 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13370 if ((isec->flags & SEC_CODE) != 0
13371 && isec->gc_mark == 0)
13372 {
13373 unsigned int ilen;
13374 asection *dsec;
13375
13376 ilen = strlen (isec->name);
13377
13378 /* Association is determined by the name of the debug
13379 section containing the name of the code section as
13380 a suffix. For example .debug_line.text.foo is a
13381 debug section associated with .text.foo. */
13382 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13383 {
13384 unsigned int dlen;
13385
13386 if (dsec->gc_mark == 0
13387 || (dsec->flags & SEC_DEBUGGING) == 0)
13388 continue;
13389
13390 dlen = strlen (dsec->name);
13391
13392 if (dlen > ilen
13393 && strncmp (dsec->name + (dlen - ilen),
13394 isec->name, ilen) == 0)
13395 dsec->gc_mark = 0;
13396 }
13397 }
13398
13399 /* Mark debug sections referenced by kept debug sections. */
13400 if (has_kept_debug_info)
13401 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13402 if (isec->gc_mark
13403 && (isec->flags & SEC_DEBUGGING) != 0)
13404 if (!_bfd_elf_gc_mark (info, isec,
13405 elf_gc_mark_debug_section))
13406 return FALSE;
13407 }
13408 return TRUE;
13409 }
13410
13411 static bfd_boolean
13412 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13413 {
13414 bfd *sub;
13415 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13416
13417 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13418 {
13419 asection *o;
13420
13421 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13422 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13423 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13424 continue;
13425 o = sub->sections;
13426 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13427 continue;
13428
13429 for (o = sub->sections; o != NULL; o = o->next)
13430 {
13431 /* When any section in a section group is kept, we keep all
13432 sections in the section group. If the first member of
13433 the section group is excluded, we will also exclude the
13434 group section. */
13435 if (o->flags & SEC_GROUP)
13436 {
13437 asection *first = elf_next_in_group (o);
13438 o->gc_mark = first->gc_mark;
13439 }
13440
13441 if (o->gc_mark)
13442 continue;
13443
13444 /* Skip sweeping sections already excluded. */
13445 if (o->flags & SEC_EXCLUDE)
13446 continue;
13447
13448 /* Since this is early in the link process, it is simple
13449 to remove a section from the output. */
13450 o->flags |= SEC_EXCLUDE;
13451
13452 if (info->print_gc_sections && o->size != 0)
13453 /* xgettext:c-format */
13454 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13455 o, sub);
13456 }
13457 }
13458
13459 return TRUE;
13460 }
13461
13462 /* Propagate collected vtable information. This is called through
13463 elf_link_hash_traverse. */
13464
13465 static bfd_boolean
13466 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13467 {
13468 /* Those that are not vtables. */
13469 if (h->start_stop
13470 || h->u2.vtable == NULL
13471 || h->u2.vtable->parent == NULL)
13472 return TRUE;
13473
13474 /* Those vtables that do not have parents, we cannot merge. */
13475 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13476 return TRUE;
13477
13478 /* If we've already been done, exit. */
13479 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13480 return TRUE;
13481
13482 /* Make sure the parent's table is up to date. */
13483 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13484
13485 if (h->u2.vtable->used == NULL)
13486 {
13487 /* None of this table's entries were referenced. Re-use the
13488 parent's table. */
13489 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13490 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13491 }
13492 else
13493 {
13494 size_t n;
13495 bfd_boolean *cu, *pu;
13496
13497 /* Or the parent's entries into ours. */
13498 cu = h->u2.vtable->used;
13499 cu[-1] = TRUE;
13500 pu = h->u2.vtable->parent->u2.vtable->used;
13501 if (pu != NULL)
13502 {
13503 const struct elf_backend_data *bed;
13504 unsigned int log_file_align;
13505
13506 bed = get_elf_backend_data (h->root.u.def.section->owner);
13507 log_file_align = bed->s->log_file_align;
13508 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13509 while (n--)
13510 {
13511 if (*pu)
13512 *cu = TRUE;
13513 pu++;
13514 cu++;
13515 }
13516 }
13517 }
13518
13519 return TRUE;
13520 }
13521
13522 static bfd_boolean
13523 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13524 {
13525 asection *sec;
13526 bfd_vma hstart, hend;
13527 Elf_Internal_Rela *relstart, *relend, *rel;
13528 const struct elf_backend_data *bed;
13529 unsigned int log_file_align;
13530
13531 /* Take care of both those symbols that do not describe vtables as
13532 well as those that are not loaded. */
13533 if (h->start_stop
13534 || h->u2.vtable == NULL
13535 || h->u2.vtable->parent == NULL)
13536 return TRUE;
13537
13538 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13539 || h->root.type == bfd_link_hash_defweak);
13540
13541 sec = h->root.u.def.section;
13542 hstart = h->root.u.def.value;
13543 hend = hstart + h->size;
13544
13545 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13546 if (!relstart)
13547 return *(bfd_boolean *) okp = FALSE;
13548 bed = get_elf_backend_data (sec->owner);
13549 log_file_align = bed->s->log_file_align;
13550
13551 relend = relstart + sec->reloc_count;
13552
13553 for (rel = relstart; rel < relend; ++rel)
13554 if (rel->r_offset >= hstart && rel->r_offset < hend)
13555 {
13556 /* If the entry is in use, do nothing. */
13557 if (h->u2.vtable->used
13558 && (rel->r_offset - hstart) < h->u2.vtable->size)
13559 {
13560 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13561 if (h->u2.vtable->used[entry])
13562 continue;
13563 }
13564 /* Otherwise, kill it. */
13565 rel->r_offset = rel->r_info = rel->r_addend = 0;
13566 }
13567
13568 return TRUE;
13569 }
13570
13571 /* Mark sections containing dynamically referenced symbols. When
13572 building shared libraries, we must assume that any visible symbol is
13573 referenced. */
13574
13575 bfd_boolean
13576 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13577 {
13578 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13579 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13580
13581 if ((h->root.type == bfd_link_hash_defined
13582 || h->root.type == bfd_link_hash_defweak)
13583 && ((h->ref_dynamic && !h->forced_local)
13584 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13585 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13586 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13587 && (!bfd_link_executable (info)
13588 || info->gc_keep_exported
13589 || info->export_dynamic
13590 || (h->dynamic
13591 && d != NULL
13592 && (*d->match) (&d->head, NULL, h->root.root.string)))
13593 && (h->versioned >= versioned
13594 || !bfd_hide_sym_by_version (info->version_info,
13595 h->root.root.string)))))
13596 h->root.u.def.section->flags |= SEC_KEEP;
13597
13598 return TRUE;
13599 }
13600
13601 /* Keep all sections containing symbols undefined on the command-line,
13602 and the section containing the entry symbol. */
13603
13604 void
13605 _bfd_elf_gc_keep (struct bfd_link_info *info)
13606 {
13607 struct bfd_sym_chain *sym;
13608
13609 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13610 {
13611 struct elf_link_hash_entry *h;
13612
13613 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13614 FALSE, FALSE, FALSE);
13615
13616 if (h != NULL
13617 && (h->root.type == bfd_link_hash_defined
13618 || h->root.type == bfd_link_hash_defweak)
13619 && !bfd_is_abs_section (h->root.u.def.section)
13620 && !bfd_is_und_section (h->root.u.def.section))
13621 h->root.u.def.section->flags |= SEC_KEEP;
13622 }
13623 }
13624
13625 bfd_boolean
13626 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13627 struct bfd_link_info *info)
13628 {
13629 bfd *ibfd = info->input_bfds;
13630
13631 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13632 {
13633 asection *sec;
13634 struct elf_reloc_cookie cookie;
13635
13636 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13637 continue;
13638 sec = ibfd->sections;
13639 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13640 continue;
13641
13642 if (!init_reloc_cookie (&cookie, info, ibfd))
13643 return FALSE;
13644
13645 for (sec = ibfd->sections; sec; sec = sec->next)
13646 {
13647 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13648 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13649 {
13650 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13651 fini_reloc_cookie_rels (&cookie, sec);
13652 }
13653 }
13654 }
13655 return TRUE;
13656 }
13657
13658 /* Do mark and sweep of unused sections. */
13659
13660 bfd_boolean
13661 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13662 {
13663 bfd_boolean ok = TRUE;
13664 bfd *sub;
13665 elf_gc_mark_hook_fn gc_mark_hook;
13666 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13667 struct elf_link_hash_table *htab;
13668
13669 if (!bed->can_gc_sections
13670 || !is_elf_hash_table (info->hash))
13671 {
13672 _bfd_error_handler(_("warning: gc-sections option ignored"));
13673 return TRUE;
13674 }
13675
13676 bed->gc_keep (info);
13677 htab = elf_hash_table (info);
13678
13679 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13680 at the .eh_frame section if we can mark the FDEs individually. */
13681 for (sub = info->input_bfds;
13682 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13683 sub = sub->link.next)
13684 {
13685 asection *sec;
13686 struct elf_reloc_cookie cookie;
13687
13688 sec = sub->sections;
13689 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13690 continue;
13691 sec = bfd_get_section_by_name (sub, ".eh_frame");
13692 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13693 {
13694 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13695 if (elf_section_data (sec)->sec_info
13696 && (sec->flags & SEC_LINKER_CREATED) == 0)
13697 elf_eh_frame_section (sub) = sec;
13698 fini_reloc_cookie_for_section (&cookie, sec);
13699 sec = bfd_get_next_section_by_name (NULL, sec);
13700 }
13701 }
13702
13703 /* Apply transitive closure to the vtable entry usage info. */
13704 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13705 if (!ok)
13706 return FALSE;
13707
13708 /* Kill the vtable relocations that were not used. */
13709 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13710 if (!ok)
13711 return FALSE;
13712
13713 /* Mark dynamically referenced symbols. */
13714 if (htab->dynamic_sections_created || info->gc_keep_exported)
13715 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13716
13717 /* Grovel through relocs to find out who stays ... */
13718 gc_mark_hook = bed->gc_mark_hook;
13719 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13720 {
13721 asection *o;
13722
13723 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13724 || elf_object_id (sub) != elf_hash_table_id (htab)
13725 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13726 continue;
13727
13728 o = sub->sections;
13729 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13730 continue;
13731
13732 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13733 Also treat note sections as a root, if the section is not part
13734 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13735 well as FINI_ARRAY sections for ld -r. */
13736 for (o = sub->sections; o != NULL; o = o->next)
13737 if (!o->gc_mark
13738 && (o->flags & SEC_EXCLUDE) == 0
13739 && ((o->flags & SEC_KEEP) != 0
13740 || (bfd_link_relocatable (info)
13741 && ((elf_section_data (o)->this_hdr.sh_type
13742 == SHT_PREINIT_ARRAY)
13743 || (elf_section_data (o)->this_hdr.sh_type
13744 == SHT_INIT_ARRAY)
13745 || (elf_section_data (o)->this_hdr.sh_type
13746 == SHT_FINI_ARRAY)))
13747 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13748 && elf_next_in_group (o) == NULL )))
13749 {
13750 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13751 return FALSE;
13752 }
13753 }
13754
13755 /* Allow the backend to mark additional target specific sections. */
13756 bed->gc_mark_extra_sections (info, gc_mark_hook);
13757
13758 /* ... and mark SEC_EXCLUDE for those that go. */
13759 return elf_gc_sweep (abfd, info);
13760 }
13761 \f
13762 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13763
13764 bfd_boolean
13765 bfd_elf_gc_record_vtinherit (bfd *abfd,
13766 asection *sec,
13767 struct elf_link_hash_entry *h,
13768 bfd_vma offset)
13769 {
13770 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13771 struct elf_link_hash_entry **search, *child;
13772 size_t extsymcount;
13773 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13774
13775 /* The sh_info field of the symtab header tells us where the
13776 external symbols start. We don't care about the local symbols at
13777 this point. */
13778 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13779 if (!elf_bad_symtab (abfd))
13780 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13781
13782 sym_hashes = elf_sym_hashes (abfd);
13783 sym_hashes_end = sym_hashes + extsymcount;
13784
13785 /* Hunt down the child symbol, which is in this section at the same
13786 offset as the relocation. */
13787 for (search = sym_hashes; search != sym_hashes_end; ++search)
13788 {
13789 if ((child = *search) != NULL
13790 && (child->root.type == bfd_link_hash_defined
13791 || child->root.type == bfd_link_hash_defweak)
13792 && child->root.u.def.section == sec
13793 && child->root.u.def.value == offset)
13794 goto win;
13795 }
13796
13797 /* xgettext:c-format */
13798 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13799 abfd, sec, (uint64_t) offset);
13800 bfd_set_error (bfd_error_invalid_operation);
13801 return FALSE;
13802
13803 win:
13804 if (!child->u2.vtable)
13805 {
13806 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13807 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13808 if (!child->u2.vtable)
13809 return FALSE;
13810 }
13811 if (!h)
13812 {
13813 /* This *should* only be the absolute section. It could potentially
13814 be that someone has defined a non-global vtable though, which
13815 would be bad. It isn't worth paging in the local symbols to be
13816 sure though; that case should simply be handled by the assembler. */
13817
13818 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13819 }
13820 else
13821 child->u2.vtable->parent = h;
13822
13823 return TRUE;
13824 }
13825
13826 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13827
13828 bfd_boolean
13829 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13830 struct elf_link_hash_entry *h,
13831 bfd_vma addend)
13832 {
13833 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13834 unsigned int log_file_align = bed->s->log_file_align;
13835
13836 if (!h)
13837 {
13838 /* xgettext:c-format */
13839 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13840 abfd, sec);
13841 bfd_set_error (bfd_error_bad_value);
13842 return FALSE;
13843 }
13844
13845 if (!h->u2.vtable)
13846 {
13847 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13848 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13849 if (!h->u2.vtable)
13850 return FALSE;
13851 }
13852
13853 if (addend >= h->u2.vtable->size)
13854 {
13855 size_t size, bytes, file_align;
13856 bfd_boolean *ptr = h->u2.vtable->used;
13857
13858 /* While the symbol is undefined, we have to be prepared to handle
13859 a zero size. */
13860 file_align = 1 << log_file_align;
13861 if (h->root.type == bfd_link_hash_undefined)
13862 size = addend + file_align;
13863 else
13864 {
13865 size = h->size;
13866 if (addend >= size)
13867 {
13868 /* Oops! We've got a reference past the defined end of
13869 the table. This is probably a bug -- shall we warn? */
13870 size = addend + file_align;
13871 }
13872 }
13873 size = (size + file_align - 1) & -file_align;
13874
13875 /* Allocate one extra entry for use as a "done" flag for the
13876 consolidation pass. */
13877 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13878
13879 if (ptr)
13880 {
13881 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13882
13883 if (ptr != NULL)
13884 {
13885 size_t oldbytes;
13886
13887 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13888 * sizeof (bfd_boolean));
13889 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13890 }
13891 }
13892 else
13893 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13894
13895 if (ptr == NULL)
13896 return FALSE;
13897
13898 /* And arrange for that done flag to be at index -1. */
13899 h->u2.vtable->used = ptr + 1;
13900 h->u2.vtable->size = size;
13901 }
13902
13903 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13904
13905 return TRUE;
13906 }
13907
13908 /* Map an ELF section header flag to its corresponding string. */
13909 typedef struct
13910 {
13911 char *flag_name;
13912 flagword flag_value;
13913 } elf_flags_to_name_table;
13914
13915 static elf_flags_to_name_table elf_flags_to_names [] =
13916 {
13917 { "SHF_WRITE", SHF_WRITE },
13918 { "SHF_ALLOC", SHF_ALLOC },
13919 { "SHF_EXECINSTR", SHF_EXECINSTR },
13920 { "SHF_MERGE", SHF_MERGE },
13921 { "SHF_STRINGS", SHF_STRINGS },
13922 { "SHF_INFO_LINK", SHF_INFO_LINK},
13923 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13924 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13925 { "SHF_GROUP", SHF_GROUP },
13926 { "SHF_TLS", SHF_TLS },
13927 { "SHF_MASKOS", SHF_MASKOS },
13928 { "SHF_EXCLUDE", SHF_EXCLUDE },
13929 };
13930
13931 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13932 bfd_boolean
13933 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13934 struct flag_info *flaginfo,
13935 asection *section)
13936 {
13937 const bfd_vma sh_flags = elf_section_flags (section);
13938
13939 if (!flaginfo->flags_initialized)
13940 {
13941 bfd *obfd = info->output_bfd;
13942 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13943 struct flag_info_list *tf = flaginfo->flag_list;
13944 int with_hex = 0;
13945 int without_hex = 0;
13946
13947 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13948 {
13949 unsigned i;
13950 flagword (*lookup) (char *);
13951
13952 lookup = bed->elf_backend_lookup_section_flags_hook;
13953 if (lookup != NULL)
13954 {
13955 flagword hexval = (*lookup) ((char *) tf->name);
13956
13957 if (hexval != 0)
13958 {
13959 if (tf->with == with_flags)
13960 with_hex |= hexval;
13961 else if (tf->with == without_flags)
13962 without_hex |= hexval;
13963 tf->valid = TRUE;
13964 continue;
13965 }
13966 }
13967 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13968 {
13969 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13970 {
13971 if (tf->with == with_flags)
13972 with_hex |= elf_flags_to_names[i].flag_value;
13973 else if (tf->with == without_flags)
13974 without_hex |= elf_flags_to_names[i].flag_value;
13975 tf->valid = TRUE;
13976 break;
13977 }
13978 }
13979 if (!tf->valid)
13980 {
13981 info->callbacks->einfo
13982 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13983 return FALSE;
13984 }
13985 }
13986 flaginfo->flags_initialized = TRUE;
13987 flaginfo->only_with_flags |= with_hex;
13988 flaginfo->not_with_flags |= without_hex;
13989 }
13990
13991 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13992 return FALSE;
13993
13994 if ((flaginfo->not_with_flags & sh_flags) != 0)
13995 return FALSE;
13996
13997 return TRUE;
13998 }
13999
14000 struct alloc_got_off_arg {
14001 bfd_vma gotoff;
14002 struct bfd_link_info *info;
14003 };
14004
14005 /* We need a special top-level link routine to convert got reference counts
14006 to real got offsets. */
14007
14008 static bfd_boolean
14009 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14010 {
14011 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14012 bfd *obfd = gofarg->info->output_bfd;
14013 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14014
14015 if (h->got.refcount > 0)
14016 {
14017 h->got.offset = gofarg->gotoff;
14018 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14019 }
14020 else
14021 h->got.offset = (bfd_vma) -1;
14022
14023 return TRUE;
14024 }
14025
14026 /* And an accompanying bit to work out final got entry offsets once
14027 we're done. Should be called from final_link. */
14028
14029 bfd_boolean
14030 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14031 struct bfd_link_info *info)
14032 {
14033 bfd *i;
14034 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14035 bfd_vma gotoff;
14036 struct alloc_got_off_arg gofarg;
14037
14038 BFD_ASSERT (abfd == info->output_bfd);
14039
14040 if (! is_elf_hash_table (info->hash))
14041 return FALSE;
14042
14043 /* The GOT offset is relative to the .got section, but the GOT header is
14044 put into the .got.plt section, if the backend uses it. */
14045 if (bed->want_got_plt)
14046 gotoff = 0;
14047 else
14048 gotoff = bed->got_header_size;
14049
14050 /* Do the local .got entries first. */
14051 for (i = info->input_bfds; i; i = i->link.next)
14052 {
14053 bfd_signed_vma *local_got;
14054 size_t j, locsymcount;
14055 Elf_Internal_Shdr *symtab_hdr;
14056
14057 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14058 continue;
14059
14060 local_got = elf_local_got_refcounts (i);
14061 if (!local_got)
14062 continue;
14063
14064 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14065 if (elf_bad_symtab (i))
14066 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14067 else
14068 locsymcount = symtab_hdr->sh_info;
14069
14070 for (j = 0; j < locsymcount; ++j)
14071 {
14072 if (local_got[j] > 0)
14073 {
14074 local_got[j] = gotoff;
14075 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14076 }
14077 else
14078 local_got[j] = (bfd_vma) -1;
14079 }
14080 }
14081
14082 /* Then the global .got entries. .plt refcounts are handled by
14083 adjust_dynamic_symbol */
14084 gofarg.gotoff = gotoff;
14085 gofarg.info = info;
14086 elf_link_hash_traverse (elf_hash_table (info),
14087 elf_gc_allocate_got_offsets,
14088 &gofarg);
14089 return TRUE;
14090 }
14091
14092 /* Many folk need no more in the way of final link than this, once
14093 got entry reference counting is enabled. */
14094
14095 bfd_boolean
14096 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14097 {
14098 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14099 return FALSE;
14100
14101 /* Invoke the regular ELF backend linker to do all the work. */
14102 return bfd_elf_final_link (abfd, info);
14103 }
14104
14105 bfd_boolean
14106 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14107 {
14108 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14109
14110 if (rcookie->bad_symtab)
14111 rcookie->rel = rcookie->rels;
14112
14113 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14114 {
14115 unsigned long r_symndx;
14116
14117 if (! rcookie->bad_symtab)
14118 if (rcookie->rel->r_offset > offset)
14119 return FALSE;
14120 if (rcookie->rel->r_offset != offset)
14121 continue;
14122
14123 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14124 if (r_symndx == STN_UNDEF)
14125 return TRUE;
14126
14127 if (r_symndx >= rcookie->locsymcount
14128 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14129 {
14130 struct elf_link_hash_entry *h;
14131
14132 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14133
14134 while (h->root.type == bfd_link_hash_indirect
14135 || h->root.type == bfd_link_hash_warning)
14136 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14137
14138 if ((h->root.type == bfd_link_hash_defined
14139 || h->root.type == bfd_link_hash_defweak)
14140 && (h->root.u.def.section->owner != rcookie->abfd
14141 || h->root.u.def.section->kept_section != NULL
14142 || discarded_section (h->root.u.def.section)))
14143 return TRUE;
14144 }
14145 else
14146 {
14147 /* It's not a relocation against a global symbol,
14148 but it could be a relocation against a local
14149 symbol for a discarded section. */
14150 asection *isec;
14151 Elf_Internal_Sym *isym;
14152
14153 /* Need to: get the symbol; get the section. */
14154 isym = &rcookie->locsyms[r_symndx];
14155 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14156 if (isec != NULL
14157 && (isec->kept_section != NULL
14158 || discarded_section (isec)))
14159 return TRUE;
14160 }
14161 return FALSE;
14162 }
14163 return FALSE;
14164 }
14165
14166 /* Discard unneeded references to discarded sections.
14167 Returns -1 on error, 1 if any section's size was changed, 0 if
14168 nothing changed. This function assumes that the relocations are in
14169 sorted order, which is true for all known assemblers. */
14170
14171 int
14172 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14173 {
14174 struct elf_reloc_cookie cookie;
14175 asection *o;
14176 bfd *abfd;
14177 int changed = 0;
14178
14179 if (info->traditional_format
14180 || !is_elf_hash_table (info->hash))
14181 return 0;
14182
14183 o = bfd_get_section_by_name (output_bfd, ".stab");
14184 if (o != NULL)
14185 {
14186 asection *i;
14187
14188 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14189 {
14190 if (i->size == 0
14191 || i->reloc_count == 0
14192 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14193 continue;
14194
14195 abfd = i->owner;
14196 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14197 continue;
14198
14199 if (!init_reloc_cookie_for_section (&cookie, info, i))
14200 return -1;
14201
14202 if (_bfd_discard_section_stabs (abfd, i,
14203 elf_section_data (i)->sec_info,
14204 bfd_elf_reloc_symbol_deleted_p,
14205 &cookie))
14206 changed = 1;
14207
14208 fini_reloc_cookie_for_section (&cookie, i);
14209 }
14210 }
14211
14212 o = NULL;
14213 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14214 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14215 if (o != NULL)
14216 {
14217 asection *i;
14218 int eh_changed = 0;
14219 unsigned int eh_alignment;
14220
14221 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14222 {
14223 if (i->size == 0)
14224 continue;
14225
14226 abfd = i->owner;
14227 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14228 continue;
14229
14230 if (!init_reloc_cookie_for_section (&cookie, info, i))
14231 return -1;
14232
14233 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14234 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14235 bfd_elf_reloc_symbol_deleted_p,
14236 &cookie))
14237 {
14238 eh_changed = 1;
14239 if (i->size != i->rawsize)
14240 changed = 1;
14241 }
14242
14243 fini_reloc_cookie_for_section (&cookie, i);
14244 }
14245
14246 eh_alignment = 1 << o->alignment_power;
14247 /* Skip over zero terminator, and prevent empty sections from
14248 adding alignment padding at the end. */
14249 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14250 if (i->size == 0)
14251 i->flags |= SEC_EXCLUDE;
14252 else if (i->size > 4)
14253 break;
14254 /* The last non-empty eh_frame section doesn't need padding. */
14255 if (i != NULL)
14256 i = i->map_tail.s;
14257 /* Any prior sections must pad the last FDE out to the output
14258 section alignment. Otherwise we might have zero padding
14259 between sections, which would be seen as a terminator. */
14260 for (; i != NULL; i = i->map_tail.s)
14261 if (i->size == 4)
14262 /* All but the last zero terminator should have been removed. */
14263 BFD_FAIL ();
14264 else
14265 {
14266 bfd_size_type size
14267 = (i->size + eh_alignment - 1) & -eh_alignment;
14268 if (i->size != size)
14269 {
14270 i->size = size;
14271 changed = 1;
14272 eh_changed = 1;
14273 }
14274 }
14275 if (eh_changed)
14276 elf_link_hash_traverse (elf_hash_table (info),
14277 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14278 }
14279
14280 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14281 {
14282 const struct elf_backend_data *bed;
14283 asection *s;
14284
14285 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14286 continue;
14287 s = abfd->sections;
14288 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14289 continue;
14290
14291 bed = get_elf_backend_data (abfd);
14292
14293 if (bed->elf_backend_discard_info != NULL)
14294 {
14295 if (!init_reloc_cookie (&cookie, info, abfd))
14296 return -1;
14297
14298 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14299 changed = 1;
14300
14301 fini_reloc_cookie (&cookie, abfd);
14302 }
14303 }
14304
14305 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14306 _bfd_elf_end_eh_frame_parsing (info);
14307
14308 if (info->eh_frame_hdr_type
14309 && !bfd_link_relocatable (info)
14310 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14311 changed = 1;
14312
14313 return changed;
14314 }
14315
14316 bfd_boolean
14317 _bfd_elf_section_already_linked (bfd *abfd,
14318 asection *sec,
14319 struct bfd_link_info *info)
14320 {
14321 flagword flags;
14322 const char *name, *key;
14323 struct bfd_section_already_linked *l;
14324 struct bfd_section_already_linked_hash_entry *already_linked_list;
14325
14326 if (sec->output_section == bfd_abs_section_ptr)
14327 return FALSE;
14328
14329 flags = sec->flags;
14330
14331 /* Return if it isn't a linkonce section. A comdat group section
14332 also has SEC_LINK_ONCE set. */
14333 if ((flags & SEC_LINK_ONCE) == 0)
14334 return FALSE;
14335
14336 /* Don't put group member sections on our list of already linked
14337 sections. They are handled as a group via their group section. */
14338 if (elf_sec_group (sec) != NULL)
14339 return FALSE;
14340
14341 /* For a SHT_GROUP section, use the group signature as the key. */
14342 name = sec->name;
14343 if ((flags & SEC_GROUP) != 0
14344 && elf_next_in_group (sec) != NULL
14345 && elf_group_name (elf_next_in_group (sec)) != NULL)
14346 key = elf_group_name (elf_next_in_group (sec));
14347 else
14348 {
14349 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14350 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14351 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14352 key++;
14353 else
14354 /* Must be a user linkonce section that doesn't follow gcc's
14355 naming convention. In this case we won't be matching
14356 single member groups. */
14357 key = name;
14358 }
14359
14360 already_linked_list = bfd_section_already_linked_table_lookup (key);
14361
14362 for (l = already_linked_list->entry; l != NULL; l = l->next)
14363 {
14364 /* We may have 2 different types of sections on the list: group
14365 sections with a signature of <key> (<key> is some string),
14366 and linkonce sections named .gnu.linkonce.<type>.<key>.
14367 Match like sections. LTO plugin sections are an exception.
14368 They are always named .gnu.linkonce.t.<key> and match either
14369 type of section. */
14370 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14371 && ((flags & SEC_GROUP) != 0
14372 || strcmp (name, l->sec->name) == 0))
14373 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14374 {
14375 /* The section has already been linked. See if we should
14376 issue a warning. */
14377 if (!_bfd_handle_already_linked (sec, l, info))
14378 return FALSE;
14379
14380 if (flags & SEC_GROUP)
14381 {
14382 asection *first = elf_next_in_group (sec);
14383 asection *s = first;
14384
14385 while (s != NULL)
14386 {
14387 s->output_section = bfd_abs_section_ptr;
14388 /* Record which group discards it. */
14389 s->kept_section = l->sec;
14390 s = elf_next_in_group (s);
14391 /* These lists are circular. */
14392 if (s == first)
14393 break;
14394 }
14395 }
14396
14397 return TRUE;
14398 }
14399 }
14400
14401 /* A single member comdat group section may be discarded by a
14402 linkonce section and vice versa. */
14403 if ((flags & SEC_GROUP) != 0)
14404 {
14405 asection *first = elf_next_in_group (sec);
14406
14407 if (first != NULL && elf_next_in_group (first) == first)
14408 /* Check this single member group against linkonce sections. */
14409 for (l = already_linked_list->entry; l != NULL; l = l->next)
14410 if ((l->sec->flags & SEC_GROUP) == 0
14411 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14412 {
14413 first->output_section = bfd_abs_section_ptr;
14414 first->kept_section = l->sec;
14415 sec->output_section = bfd_abs_section_ptr;
14416 break;
14417 }
14418 }
14419 else
14420 /* Check this linkonce section against single member groups. */
14421 for (l = already_linked_list->entry; l != NULL; l = l->next)
14422 if (l->sec->flags & SEC_GROUP)
14423 {
14424 asection *first = elf_next_in_group (l->sec);
14425
14426 if (first != NULL
14427 && elf_next_in_group (first) == first
14428 && bfd_elf_match_symbols_in_sections (first, sec, info))
14429 {
14430 sec->output_section = bfd_abs_section_ptr;
14431 sec->kept_section = first;
14432 break;
14433 }
14434 }
14435
14436 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14437 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14438 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14439 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14440 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14441 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14442 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14443 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14444 The reverse order cannot happen as there is never a bfd with only the
14445 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14446 matter as here were are looking only for cross-bfd sections. */
14447
14448 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14449 for (l = already_linked_list->entry; l != NULL; l = l->next)
14450 if ((l->sec->flags & SEC_GROUP) == 0
14451 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14452 {
14453 if (abfd != l->sec->owner)
14454 sec->output_section = bfd_abs_section_ptr;
14455 break;
14456 }
14457
14458 /* This is the first section with this name. Record it. */
14459 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14460 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14461 return sec->output_section == bfd_abs_section_ptr;
14462 }
14463
14464 bfd_boolean
14465 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14466 {
14467 return sym->st_shndx == SHN_COMMON;
14468 }
14469
14470 unsigned int
14471 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14472 {
14473 return SHN_COMMON;
14474 }
14475
14476 asection *
14477 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14478 {
14479 return bfd_com_section_ptr;
14480 }
14481
14482 bfd_vma
14483 _bfd_elf_default_got_elt_size (bfd *abfd,
14484 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14485 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14486 bfd *ibfd ATTRIBUTE_UNUSED,
14487 unsigned long symndx ATTRIBUTE_UNUSED)
14488 {
14489 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14490 return bed->s->arch_size / 8;
14491 }
14492
14493 /* Routines to support the creation of dynamic relocs. */
14494
14495 /* Returns the name of the dynamic reloc section associated with SEC. */
14496
14497 static const char *
14498 get_dynamic_reloc_section_name (bfd * abfd,
14499 asection * sec,
14500 bfd_boolean is_rela)
14501 {
14502 char *name;
14503 const char *old_name = bfd_section_name (sec);
14504 const char *prefix = is_rela ? ".rela" : ".rel";
14505
14506 if (old_name == NULL)
14507 return NULL;
14508
14509 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14510 sprintf (name, "%s%s", prefix, old_name);
14511
14512 return name;
14513 }
14514
14515 /* Returns the dynamic reloc section associated with SEC.
14516 If necessary compute the name of the dynamic reloc section based
14517 on SEC's name (looked up in ABFD's string table) and the setting
14518 of IS_RELA. */
14519
14520 asection *
14521 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14522 asection * sec,
14523 bfd_boolean is_rela)
14524 {
14525 asection * reloc_sec = elf_section_data (sec)->sreloc;
14526
14527 if (reloc_sec == NULL)
14528 {
14529 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14530
14531 if (name != NULL)
14532 {
14533 reloc_sec = bfd_get_linker_section (abfd, name);
14534
14535 if (reloc_sec != NULL)
14536 elf_section_data (sec)->sreloc = reloc_sec;
14537 }
14538 }
14539
14540 return reloc_sec;
14541 }
14542
14543 /* Returns the dynamic reloc section associated with SEC. If the
14544 section does not exist it is created and attached to the DYNOBJ
14545 bfd and stored in the SRELOC field of SEC's elf_section_data
14546 structure.
14547
14548 ALIGNMENT is the alignment for the newly created section and
14549 IS_RELA defines whether the name should be .rela.<SEC's name>
14550 or .rel.<SEC's name>. The section name is looked up in the
14551 string table associated with ABFD. */
14552
14553 asection *
14554 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14555 bfd *dynobj,
14556 unsigned int alignment,
14557 bfd *abfd,
14558 bfd_boolean is_rela)
14559 {
14560 asection * reloc_sec = elf_section_data (sec)->sreloc;
14561
14562 if (reloc_sec == NULL)
14563 {
14564 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14565
14566 if (name == NULL)
14567 return NULL;
14568
14569 reloc_sec = bfd_get_linker_section (dynobj, name);
14570
14571 if (reloc_sec == NULL)
14572 {
14573 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14574 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14575 if ((sec->flags & SEC_ALLOC) != 0)
14576 flags |= SEC_ALLOC | SEC_LOAD;
14577
14578 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14579 if (reloc_sec != NULL)
14580 {
14581 /* _bfd_elf_get_sec_type_attr chooses a section type by
14582 name. Override as it may be wrong, eg. for a user
14583 section named "auto" we'll get ".relauto" which is
14584 seen to be a .rela section. */
14585 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14586 if (!bfd_set_section_alignment (reloc_sec, alignment))
14587 reloc_sec = NULL;
14588 }
14589 }
14590
14591 elf_section_data (sec)->sreloc = reloc_sec;
14592 }
14593
14594 return reloc_sec;
14595 }
14596
14597 /* Copy the ELF symbol type and other attributes for a linker script
14598 assignment from HSRC to HDEST. Generally this should be treated as
14599 if we found a strong non-dynamic definition for HDEST (except that
14600 ld ignores multiple definition errors). */
14601 void
14602 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14603 struct bfd_link_hash_entry *hdest,
14604 struct bfd_link_hash_entry *hsrc)
14605 {
14606 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14607 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14608 Elf_Internal_Sym isym;
14609
14610 ehdest->type = ehsrc->type;
14611 ehdest->target_internal = ehsrc->target_internal;
14612
14613 isym.st_other = ehsrc->other;
14614 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14615 }
14616
14617 /* Append a RELA relocation REL to section S in BFD. */
14618
14619 void
14620 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14621 {
14622 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14623 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14624 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14625 bed->s->swap_reloca_out (abfd, rel, loc);
14626 }
14627
14628 /* Append a REL relocation REL to section S in BFD. */
14629
14630 void
14631 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14632 {
14633 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14634 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14635 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14636 bed->s->swap_reloc_out (abfd, rel, loc);
14637 }
14638
14639 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14640
14641 struct bfd_link_hash_entry *
14642 bfd_elf_define_start_stop (struct bfd_link_info *info,
14643 const char *symbol, asection *sec)
14644 {
14645 struct elf_link_hash_entry *h;
14646
14647 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14648 FALSE, FALSE, TRUE);
14649 if (h != NULL
14650 && (h->root.type == bfd_link_hash_undefined
14651 || h->root.type == bfd_link_hash_undefweak
14652 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14653 {
14654 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14655 h->root.type = bfd_link_hash_defined;
14656 h->root.u.def.section = sec;
14657 h->root.u.def.value = 0;
14658 h->def_regular = 1;
14659 h->def_dynamic = 0;
14660 h->start_stop = 1;
14661 h->u2.start_stop_section = sec;
14662 if (symbol[0] == '.')
14663 {
14664 /* .startof. and .sizeof. symbols are local. */
14665 const struct elf_backend_data *bed;
14666 bed = get_elf_backend_data (info->output_bfd);
14667 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14668 }
14669 else
14670 {
14671 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14672 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14673 if (was_dynamic)
14674 bfd_elf_link_record_dynamic_symbol (info, h);
14675 }
14676 return &h->root;
14677 }
14678 return NULL;
14679 }
This page took 0.363313 seconds and 5 git commands to generate.