non_ir_ref_dynamic
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
224 {
225 abfd = ibfd;
226 break;
227 }
228 }
229 hash_table->dynobj = abfd;
230 }
231
232 if (hash_table->dynstr == NULL)
233 {
234 hash_table->dynstr = _bfd_elf_strtab_init ();
235 if (hash_table->dynstr == NULL)
236 return FALSE;
237 }
238 return TRUE;
239 }
240
241 /* Create some sections which will be filled in with dynamic linking
242 information. ABFD is an input file which requires dynamic sections
243 to be created. The dynamic sections take up virtual memory space
244 when the final executable is run, so we need to create them before
245 addresses are assigned to the output sections. We work out the
246 actual contents and size of these sections later. */
247
248 bfd_boolean
249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 {
251 flagword flags;
252 asection *s;
253 const struct elf_backend_data *bed;
254 struct elf_link_hash_entry *h;
255
256 if (! is_elf_hash_table (info->hash))
257 return FALSE;
258
259 if (elf_hash_table (info)->dynamic_sections_created)
260 return TRUE;
261
262 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
263 return FALSE;
264
265 abfd = elf_hash_table (info)->dynobj;
266 bed = get_elf_backend_data (abfd);
267
268 flags = bed->dynamic_sec_flags;
269
270 /* A dynamically linked executable has a .interp section, but a
271 shared library does not. */
272 if (bfd_link_executable (info) && !info->nointerp)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 flags | SEC_READONLY);
276 if (s == NULL)
277 return FALSE;
278 }
279
280 /* Create sections to hold version informations. These are removed
281 if they are not needed. */
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, 1))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299
300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 flags | SEC_READONLY);
302 if (s == NULL
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 return FALSE;
305 elf_hash_table (info)->dynsym = s;
306
307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 flags | SEC_READONLY);
309 if (s == NULL)
310 return FALSE;
311
312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
313 if (s == NULL
314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
315 return FALSE;
316
317 /* The special symbol _DYNAMIC is always set to the start of the
318 .dynamic section. We could set _DYNAMIC in a linker script, but we
319 only want to define it if we are, in fact, creating a .dynamic
320 section. We don't want to define it if there is no .dynamic
321 section, since on some ELF platforms the start up code examines it
322 to decide how to initialize the process. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324 elf_hash_table (info)->hdynamic = h;
325 if (h == NULL)
326 return FALSE;
327
328 if (info->emit_hash)
329 {
330 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 flags | SEC_READONLY);
332 if (s == NULL
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
334 return FALSE;
335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
336 }
337
338 if (info->emit_gnu_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 4 32-bit words followed by variable count of 64-bit words, then
347 variable count of 32-bit words. */
348 if (bed->s->arch_size == 64)
349 elf_section_data (s)->this_hdr.sh_entsize = 0;
350 else
351 elf_section_data (s)->this_hdr.sh_entsize = 4;
352 }
353
354 /* Let the backend create the rest of the sections. This lets the
355 backend set the right flags. The backend will normally create
356 the .got and .plt sections. */
357 if (bed->elf_backend_create_dynamic_sections == NULL
358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
359 return FALSE;
360
361 elf_hash_table (info)->dynamic_sections_created = TRUE;
362
363 return TRUE;
364 }
365
366 /* Create dynamic sections when linking against a dynamic object. */
367
368 bfd_boolean
369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
370 {
371 flagword flags, pltflags;
372 struct elf_link_hash_entry *h;
373 asection *s;
374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375 struct elf_link_hash_table *htab = elf_hash_table (info);
376
377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378 .rel[a].bss sections. */
379 flags = bed->dynamic_sec_flags;
380
381 pltflags = flags;
382 if (bed->plt_not_loaded)
383 /* We do not clear SEC_ALLOC here because we still want the OS to
384 allocate space for the section; it's just that there's nothing
385 to read in from the object file. */
386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
387 else
388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389 if (bed->plt_readonly)
390 pltflags |= SEC_READONLY;
391
392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
393 if (s == NULL
394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
395 return FALSE;
396 htab->splt = s;
397
398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
399 .plt section. */
400 if (bed->want_plt_sym)
401 {
402 h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 "_PROCEDURE_LINKAGE_TABLE_");
404 elf_hash_table (info)->hplt = h;
405 if (h == NULL)
406 return FALSE;
407 }
408
409 s = bfd_make_section_anyway_with_flags (abfd,
410 (bed->rela_plts_and_copies_p
411 ? ".rela.plt" : ".rel.plt"),
412 flags | SEC_READONLY);
413 if (s == NULL
414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
415 return FALSE;
416 htab->srelplt = s;
417
418 if (! _bfd_elf_create_got_section (abfd, info))
419 return FALSE;
420
421 if (bed->want_dynbss)
422 {
423 /* The .dynbss section is a place to put symbols which are defined
424 by dynamic objects, are referenced by regular objects, and are
425 not functions. We must allocate space for them in the process
426 image and use a R_*_COPY reloc to tell the dynamic linker to
427 initialize them at run time. The linker script puts the .dynbss
428 section into the .bss section of the final image. */
429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 SEC_ALLOC | SEC_LINKER_CREATED);
431 if (s == NULL)
432 return FALSE;
433 htab->sdynbss = s;
434
435 if (bed->want_dynrelro)
436 {
437 /* Similarly, but for symbols that were originally in read-only
438 sections. This section doesn't really need to have contents,
439 but make it like other .data.rel.ro sections. */
440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
441 flags);
442 if (s == NULL)
443 return FALSE;
444 htab->sdynrelro = s;
445 }
446
447 /* The .rel[a].bss section holds copy relocs. This section is not
448 normally needed. We need to create it here, though, so that the
449 linker will map it to an output section. We can't just create it
450 only if we need it, because we will not know whether we need it
451 until we have seen all the input files, and the first time the
452 main linker code calls BFD after examining all the input files
453 (size_dynamic_sections) the input sections have already been
454 mapped to the output sections. If the section turns out not to
455 be needed, we can discard it later. We will never need this
456 section when generating a shared object, since they do not use
457 copy relocs. */
458 if (bfd_link_executable (info))
459 {
460 s = bfd_make_section_anyway_with_flags (abfd,
461 (bed->rela_plts_and_copies_p
462 ? ".rela.bss" : ".rel.bss"),
463 flags | SEC_READONLY);
464 if (s == NULL
465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
466 return FALSE;
467 htab->srelbss = s;
468
469 if (bed->want_dynrelro)
470 {
471 s = (bfd_make_section_anyway_with_flags
472 (abfd, (bed->rela_plts_and_copies_p
473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 flags | SEC_READONLY));
475 if (s == NULL
476 || ! bfd_set_section_alignment (abfd, s,
477 bed->s->log_file_align))
478 return FALSE;
479 htab->sreldynrelro = s;
480 }
481 }
482 }
483
484 return TRUE;
485 }
486 \f
487 /* Record a new dynamic symbol. We record the dynamic symbols as we
488 read the input files, since we need to have a list of all of them
489 before we can determine the final sizes of the output sections.
490 Note that we may actually call this function even though we are not
491 going to output any dynamic symbols; in some cases we know that a
492 symbol should be in the dynamic symbol table, but only if there is
493 one. */
494
495 bfd_boolean
496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_hash_entry *h)
498 {
499 if (h->dynindx == -1)
500 {
501 struct elf_strtab_hash *dynstr;
502 char *p;
503 const char *name;
504 size_t indx;
505
506 /* XXX: The ABI draft says the linker must turn hidden and
507 internal symbols into STB_LOCAL symbols when producing the
508 DSO. However, if ld.so honors st_other in the dynamic table,
509 this would not be necessary. */
510 switch (ELF_ST_VISIBILITY (h->other))
511 {
512 case STV_INTERNAL:
513 case STV_HIDDEN:
514 if (h->root.type != bfd_link_hash_undefined
515 && h->root.type != bfd_link_hash_undefweak)
516 {
517 h->forced_local = 1;
518 if (!elf_hash_table (info)->is_relocatable_executable)
519 return TRUE;
520 }
521
522 default:
523 break;
524 }
525
526 h->dynindx = elf_hash_table (info)->dynsymcount;
527 ++elf_hash_table (info)->dynsymcount;
528
529 dynstr = elf_hash_table (info)->dynstr;
530 if (dynstr == NULL)
531 {
532 /* Create a strtab to hold the dynamic symbol names. */
533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
534 if (dynstr == NULL)
535 return FALSE;
536 }
537
538 /* We don't put any version information in the dynamic string
539 table. */
540 name = h->root.root.string;
541 p = strchr (name, ELF_VER_CHR);
542 if (p != NULL)
543 /* We know that the p points into writable memory. In fact,
544 there are only a few symbols that have read-only names, being
545 those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 by the backends. Most symbols will have names pointing into
547 an ELF string table read from a file, or to objalloc memory. */
548 *p = 0;
549
550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
551
552 if (p != NULL)
553 *p = ELF_VER_CHR;
554
555 if (indx == (size_t) -1)
556 return FALSE;
557 h->dynstr_index = indx;
558 }
559
560 return TRUE;
561 }
562 \f
563 /* Mark a symbol dynamic. */
564
565 static void
566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 struct elf_link_hash_entry *h,
568 Elf_Internal_Sym *sym)
569 {
570 struct bfd_elf_dynamic_list *d = info->dynamic_list;
571
572 /* It may be called more than once on the same H. */
573 if(h->dynamic || bfd_link_relocatable (info))
574 return;
575
576 if ((info->dynamic_data
577 && (h->type == STT_OBJECT
578 || h->type == STT_COMMON
579 || (sym != NULL
580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
582 || (d != NULL
583 && h->non_elf
584 && (*d->match) (&d->head, NULL, h->root.root.string)))
585 h->dynamic = 1;
586 }
587
588 /* Record an assignment to a symbol made by a linker script. We need
589 this in case some dynamic object refers to this symbol. */
590
591 bfd_boolean
592 bfd_elf_record_link_assignment (bfd *output_bfd,
593 struct bfd_link_info *info,
594 const char *name,
595 bfd_boolean provide,
596 bfd_boolean hidden)
597 {
598 struct elf_link_hash_entry *h, *hv;
599 struct elf_link_hash_table *htab;
600 const struct elf_backend_data *bed;
601
602 if (!is_elf_hash_table (info->hash))
603 return TRUE;
604
605 htab = elf_hash_table (info);
606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
607 if (h == NULL)
608 return provide;
609
610 if (h->root.type == bfd_link_hash_warning)
611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
612
613 if (h->versioned == unknown)
614 {
615 /* Set versioned if symbol version is unknown. */
616 char *version = strrchr (name, ELF_VER_CHR);
617 if (version)
618 {
619 if (version > name && version[-1] != ELF_VER_CHR)
620 h->versioned = versioned_hidden;
621 else
622 h->versioned = versioned;
623 }
624 }
625
626 /* Symbols defined in a linker script but not referenced anywhere
627 else will have non_elf set. */
628 if (h->non_elf)
629 {
630 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
631 h->non_elf = 0;
632 }
633
634 switch (h->root.type)
635 {
636 case bfd_link_hash_defined:
637 case bfd_link_hash_defweak:
638 case bfd_link_hash_common:
639 break;
640 case bfd_link_hash_undefweak:
641 case bfd_link_hash_undefined:
642 /* Since we're defining the symbol, don't let it seem to have not
643 been defined. record_dynamic_symbol and size_dynamic_sections
644 may depend on this. */
645 h->root.type = bfd_link_hash_new;
646 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
647 bfd_link_repair_undef_list (&htab->root);
648 break;
649 case bfd_link_hash_new:
650 break;
651 case bfd_link_hash_indirect:
652 /* We had a versioned symbol in a dynamic library. We make the
653 the versioned symbol point to this one. */
654 bed = get_elf_backend_data (output_bfd);
655 hv = h;
656 while (hv->root.type == bfd_link_hash_indirect
657 || hv->root.type == bfd_link_hash_warning)
658 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
659 /* We don't need to update h->root.u since linker will set them
660 later. */
661 h->root.type = bfd_link_hash_undefined;
662 hv->root.type = bfd_link_hash_indirect;
663 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
664 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
665 break;
666 default:
667 BFD_FAIL ();
668 return FALSE;
669 }
670
671 /* If this symbol is being provided by the linker script, and it is
672 currently defined by a dynamic object, but not by a regular
673 object, then mark it as undefined so that the generic linker will
674 force the correct value. */
675 if (provide
676 && h->def_dynamic
677 && !h->def_regular)
678 h->root.type = bfd_link_hash_undefined;
679
680 /* If this symbol is not being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular object,
682 then clear out any version information because the symbol will not be
683 associated with the dynamic object any more. */
684 if (!provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->verinfo.verdef = NULL;
688
689 /* Make sure this symbol is not garbage collected. */
690 h->mark = 1;
691
692 h->def_regular = 1;
693
694 if (hidden)
695 {
696 bed = get_elf_backend_data (output_bfd);
697 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
698 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
699 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
700 }
701
702 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
703 and executables. */
704 if (!bfd_link_relocatable (info)
705 && h->dynindx != -1
706 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
707 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
708 h->forced_local = 1;
709
710 if ((h->def_dynamic
711 || h->ref_dynamic
712 || bfd_link_dll (info)
713 || elf_hash_table (info)->is_relocatable_executable)
714 && h->dynindx == -1)
715 {
716 if (! bfd_elf_link_record_dynamic_symbol (info, h))
717 return FALSE;
718
719 /* If this is a weak defined symbol, and we know a corresponding
720 real symbol from the same dynamic object, make sure the real
721 symbol is also made into a dynamic symbol. */
722 if (h->u.weakdef != NULL
723 && h->u.weakdef->dynindx == -1)
724 {
725 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
726 return FALSE;
727 }
728 }
729
730 return TRUE;
731 }
732
733 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
734 success, and 2 on a failure caused by attempting to record a symbol
735 in a discarded section, eg. a discarded link-once section symbol. */
736
737 int
738 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
739 bfd *input_bfd,
740 long input_indx)
741 {
742 bfd_size_type amt;
743 struct elf_link_local_dynamic_entry *entry;
744 struct elf_link_hash_table *eht;
745 struct elf_strtab_hash *dynstr;
746 size_t dynstr_index;
747 char *name;
748 Elf_External_Sym_Shndx eshndx;
749 char esym[sizeof (Elf64_External_Sym)];
750
751 if (! is_elf_hash_table (info->hash))
752 return 0;
753
754 /* See if the entry exists already. */
755 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
756 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
757 return 1;
758
759 amt = sizeof (*entry);
760 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
761 if (entry == NULL)
762 return 0;
763
764 /* Go find the symbol, so that we can find it's name. */
765 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
766 1, input_indx, &entry->isym, esym, &eshndx))
767 {
768 bfd_release (input_bfd, entry);
769 return 0;
770 }
771
772 if (entry->isym.st_shndx != SHN_UNDEF
773 && entry->isym.st_shndx < SHN_LORESERVE)
774 {
775 asection *s;
776
777 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
778 if (s == NULL || bfd_is_abs_section (s->output_section))
779 {
780 /* We can still bfd_release here as nothing has done another
781 bfd_alloc. We can't do this later in this function. */
782 bfd_release (input_bfd, entry);
783 return 2;
784 }
785 }
786
787 name = (bfd_elf_string_from_elf_section
788 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
789 entry->isym.st_name));
790
791 dynstr = elf_hash_table (info)->dynstr;
792 if (dynstr == NULL)
793 {
794 /* Create a strtab to hold the dynamic symbol names. */
795 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
796 if (dynstr == NULL)
797 return 0;
798 }
799
800 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
801 if (dynstr_index == (size_t) -1)
802 return 0;
803 entry->isym.st_name = dynstr_index;
804
805 eht = elf_hash_table (info);
806
807 entry->next = eht->dynlocal;
808 eht->dynlocal = entry;
809 entry->input_bfd = input_bfd;
810 entry->input_indx = input_indx;
811 eht->dynsymcount++;
812
813 /* Whatever binding the symbol had before, it's now local. */
814 entry->isym.st_info
815 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
816
817 /* The dynindx will be set at the end of size_dynamic_sections. */
818
819 return 1;
820 }
821
822 /* Return the dynindex of a local dynamic symbol. */
823
824 long
825 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
826 bfd *input_bfd,
827 long input_indx)
828 {
829 struct elf_link_local_dynamic_entry *e;
830
831 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
832 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
833 return e->dynindx;
834 return -1;
835 }
836
837 /* This function is used to renumber the dynamic symbols, if some of
838 them are removed because they are marked as local. This is called
839 via elf_link_hash_traverse. */
840
841 static bfd_boolean
842 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
843 void *data)
844 {
845 size_t *count = (size_t *) data;
846
847 if (h->forced_local)
848 return TRUE;
849
850 if (h->dynindx != -1)
851 h->dynindx = ++(*count);
852
853 return TRUE;
854 }
855
856
857 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
858 STB_LOCAL binding. */
859
860 static bfd_boolean
861 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
862 void *data)
863 {
864 size_t *count = (size_t *) data;
865
866 if (!h->forced_local)
867 return TRUE;
868
869 if (h->dynindx != -1)
870 h->dynindx = ++(*count);
871
872 return TRUE;
873 }
874
875 /* Return true if the dynamic symbol for a given section should be
876 omitted when creating a shared library. */
877 bfd_boolean
878 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
879 struct bfd_link_info *info,
880 asection *p)
881 {
882 struct elf_link_hash_table *htab;
883 asection *ip;
884
885 switch (elf_section_data (p)->this_hdr.sh_type)
886 {
887 case SHT_PROGBITS:
888 case SHT_NOBITS:
889 /* If sh_type is yet undecided, assume it could be
890 SHT_PROGBITS/SHT_NOBITS. */
891 case SHT_NULL:
892 htab = elf_hash_table (info);
893 if (p == htab->tls_sec)
894 return FALSE;
895
896 if (htab->text_index_section != NULL)
897 return p != htab->text_index_section && p != htab->data_index_section;
898
899 return (htab->dynobj != NULL
900 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
901 && ip->output_section == p);
902
903 /* There shouldn't be section relative relocations
904 against any other section. */
905 default:
906 return TRUE;
907 }
908 }
909
910 /* Assign dynsym indices. In a shared library we generate a section
911 symbol for each output section, which come first. Next come symbols
912 which have been forced to local binding. Then all of the back-end
913 allocated local dynamic syms, followed by the rest of the global
914 symbols. */
915
916 static unsigned long
917 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
918 struct bfd_link_info *info,
919 unsigned long *section_sym_count)
920 {
921 unsigned long dynsymcount = 0;
922
923 if (bfd_link_pic (info)
924 || elf_hash_table (info)->is_relocatable_executable)
925 {
926 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
927 asection *p;
928 for (p = output_bfd->sections; p ; p = p->next)
929 if ((p->flags & SEC_EXCLUDE) == 0
930 && (p->flags & SEC_ALLOC) != 0
931 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
932 elf_section_data (p)->dynindx = ++dynsymcount;
933 else
934 elf_section_data (p)->dynindx = 0;
935 }
936 *section_sym_count = dynsymcount;
937
938 elf_link_hash_traverse (elf_hash_table (info),
939 elf_link_renumber_local_hash_table_dynsyms,
940 &dynsymcount);
941
942 if (elf_hash_table (info)->dynlocal)
943 {
944 struct elf_link_local_dynamic_entry *p;
945 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
946 p->dynindx = ++dynsymcount;
947 }
948 elf_hash_table (info)->local_dynsymcount = dynsymcount;
949
950 elf_link_hash_traverse (elf_hash_table (info),
951 elf_link_renumber_hash_table_dynsyms,
952 &dynsymcount);
953
954 /* There is an unused NULL entry at the head of the table which we
955 must account for in our count even if the table is empty since it
956 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
957 .dynamic section. */
958 dynsymcount++;
959
960 elf_hash_table (info)->dynsymcount = dynsymcount;
961 return dynsymcount;
962 }
963
964 /* Merge st_other field. */
965
966 static void
967 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
968 const Elf_Internal_Sym *isym, asection *sec,
969 bfd_boolean definition, bfd_boolean dynamic)
970 {
971 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
972
973 /* If st_other has a processor-specific meaning, specific
974 code might be needed here. */
975 if (bed->elf_backend_merge_symbol_attribute)
976 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
977 dynamic);
978
979 if (!dynamic)
980 {
981 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
982 unsigned hvis = ELF_ST_VISIBILITY (h->other);
983
984 /* Keep the most constraining visibility. Leave the remainder
985 of the st_other field to elf_backend_merge_symbol_attribute. */
986 if (symvis - 1 < hvis - 1)
987 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
988 }
989 else if (definition
990 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
991 && (sec->flags & SEC_READONLY) == 0)
992 h->protected_def = 1;
993 }
994
995 /* This function is called when we want to merge a new symbol with an
996 existing symbol. It handles the various cases which arise when we
997 find a definition in a dynamic object, or when there is already a
998 definition in a dynamic object. The new symbol is described by
999 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1000 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1001 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1002 of an old common symbol. We set OVERRIDE if the old symbol is
1003 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1004 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1005 to change. By OK to change, we mean that we shouldn't warn if the
1006 type or size does change. */
1007
1008 static bfd_boolean
1009 _bfd_elf_merge_symbol (bfd *abfd,
1010 struct bfd_link_info *info,
1011 const char *name,
1012 Elf_Internal_Sym *sym,
1013 asection **psec,
1014 bfd_vma *pvalue,
1015 struct elf_link_hash_entry **sym_hash,
1016 bfd **poldbfd,
1017 bfd_boolean *pold_weak,
1018 unsigned int *pold_alignment,
1019 bfd_boolean *skip,
1020 bfd_boolean *override,
1021 bfd_boolean *type_change_ok,
1022 bfd_boolean *size_change_ok,
1023 bfd_boolean *matched)
1024 {
1025 asection *sec, *oldsec;
1026 struct elf_link_hash_entry *h;
1027 struct elf_link_hash_entry *hi;
1028 struct elf_link_hash_entry *flip;
1029 int bind;
1030 bfd *oldbfd;
1031 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1032 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1033 const struct elf_backend_data *bed;
1034 char *new_version;
1035
1036 *skip = FALSE;
1037 *override = FALSE;
1038
1039 sec = *psec;
1040 bind = ELF_ST_BIND (sym->st_info);
1041
1042 if (! bfd_is_und_section (sec))
1043 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1044 else
1045 h = ((struct elf_link_hash_entry *)
1046 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1047 if (h == NULL)
1048 return FALSE;
1049 *sym_hash = h;
1050
1051 bed = get_elf_backend_data (abfd);
1052
1053 /* NEW_VERSION is the symbol version of the new symbol. */
1054 if (h->versioned != unversioned)
1055 {
1056 /* Symbol version is unknown or versioned. */
1057 new_version = strrchr (name, ELF_VER_CHR);
1058 if (new_version)
1059 {
1060 if (h->versioned == unknown)
1061 {
1062 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1063 h->versioned = versioned_hidden;
1064 else
1065 h->versioned = versioned;
1066 }
1067 new_version += 1;
1068 if (new_version[0] == '\0')
1069 new_version = NULL;
1070 }
1071 else
1072 h->versioned = unversioned;
1073 }
1074 else
1075 new_version = NULL;
1076
1077 /* For merging, we only care about real symbols. But we need to make
1078 sure that indirect symbol dynamic flags are updated. */
1079 hi = h;
1080 while (h->root.type == bfd_link_hash_indirect
1081 || h->root.type == bfd_link_hash_warning)
1082 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1083
1084 if (!*matched)
1085 {
1086 if (hi == h || h->root.type == bfd_link_hash_new)
1087 *matched = TRUE;
1088 else
1089 {
1090 /* OLD_HIDDEN is true if the existing symbol is only visible
1091 to the symbol with the same symbol version. NEW_HIDDEN is
1092 true if the new symbol is only visible to the symbol with
1093 the same symbol version. */
1094 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1095 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1096 if (!old_hidden && !new_hidden)
1097 /* The new symbol matches the existing symbol if both
1098 aren't hidden. */
1099 *matched = TRUE;
1100 else
1101 {
1102 /* OLD_VERSION is the symbol version of the existing
1103 symbol. */
1104 char *old_version;
1105
1106 if (h->versioned >= versioned)
1107 old_version = strrchr (h->root.root.string,
1108 ELF_VER_CHR) + 1;
1109 else
1110 old_version = NULL;
1111
1112 /* The new symbol matches the existing symbol if they
1113 have the same symbol version. */
1114 *matched = (old_version == new_version
1115 || (old_version != NULL
1116 && new_version != NULL
1117 && strcmp (old_version, new_version) == 0));
1118 }
1119 }
1120 }
1121
1122 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1123 existing symbol. */
1124
1125 oldbfd = NULL;
1126 oldsec = NULL;
1127 switch (h->root.type)
1128 {
1129 default:
1130 break;
1131
1132 case bfd_link_hash_undefined:
1133 case bfd_link_hash_undefweak:
1134 oldbfd = h->root.u.undef.abfd;
1135 break;
1136
1137 case bfd_link_hash_defined:
1138 case bfd_link_hash_defweak:
1139 oldbfd = h->root.u.def.section->owner;
1140 oldsec = h->root.u.def.section;
1141 break;
1142
1143 case bfd_link_hash_common:
1144 oldbfd = h->root.u.c.p->section->owner;
1145 oldsec = h->root.u.c.p->section;
1146 if (pold_alignment)
1147 *pold_alignment = h->root.u.c.p->alignment_power;
1148 break;
1149 }
1150 if (poldbfd && *poldbfd == NULL)
1151 *poldbfd = oldbfd;
1152
1153 /* Differentiate strong and weak symbols. */
1154 newweak = bind == STB_WEAK;
1155 oldweak = (h->root.type == bfd_link_hash_defweak
1156 || h->root.type == bfd_link_hash_undefweak);
1157 if (pold_weak)
1158 *pold_weak = oldweak;
1159
1160 /* This code is for coping with dynamic objects, and is only useful
1161 if we are doing an ELF link. */
1162 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1163 return TRUE;
1164
1165 /* We have to check it for every instance since the first few may be
1166 references and not all compilers emit symbol type for undefined
1167 symbols. */
1168 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1169
1170 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1171 respectively, is from a dynamic object. */
1172
1173 newdyn = (abfd->flags & DYNAMIC) != 0;
1174
1175 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1176 syms and defined syms in dynamic libraries respectively.
1177 ref_dynamic on the other hand can be set for a symbol defined in
1178 a dynamic library, and def_dynamic may not be set; When the
1179 definition in a dynamic lib is overridden by a definition in the
1180 executable use of the symbol in the dynamic lib becomes a
1181 reference to the executable symbol. */
1182 if (newdyn)
1183 {
1184 if (bfd_is_und_section (sec))
1185 {
1186 if (bind != STB_WEAK)
1187 {
1188 h->ref_dynamic_nonweak = 1;
1189 hi->ref_dynamic_nonweak = 1;
1190 }
1191 }
1192 else
1193 {
1194 /* Update the existing symbol only if they match. */
1195 if (*matched)
1196 h->dynamic_def = 1;
1197 hi->dynamic_def = 1;
1198 }
1199 }
1200
1201 /* If we just created the symbol, mark it as being an ELF symbol.
1202 Other than that, there is nothing to do--there is no merge issue
1203 with a newly defined symbol--so we just return. */
1204
1205 if (h->root.type == bfd_link_hash_new)
1206 {
1207 h->non_elf = 0;
1208 return TRUE;
1209 }
1210
1211 /* In cases involving weak versioned symbols, we may wind up trying
1212 to merge a symbol with itself. Catch that here, to avoid the
1213 confusion that results if we try to override a symbol with
1214 itself. The additional tests catch cases like
1215 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1216 dynamic object, which we do want to handle here. */
1217 if (abfd == oldbfd
1218 && (newweak || oldweak)
1219 && ((abfd->flags & DYNAMIC) == 0
1220 || !h->def_regular))
1221 return TRUE;
1222
1223 olddyn = FALSE;
1224 if (oldbfd != NULL)
1225 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1226 else if (oldsec != NULL)
1227 {
1228 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1229 indices used by MIPS ELF. */
1230 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1231 }
1232
1233 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1234 respectively, appear to be a definition rather than reference. */
1235
1236 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1237
1238 olddef = (h->root.type != bfd_link_hash_undefined
1239 && h->root.type != bfd_link_hash_undefweak
1240 && h->root.type != bfd_link_hash_common);
1241
1242 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1243 respectively, appear to be a function. */
1244
1245 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1246 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1247
1248 oldfunc = (h->type != STT_NOTYPE
1249 && bed->is_function_type (h->type));
1250
1251 if (!(newfunc && oldfunc)
1252 && ELF_ST_TYPE (sym->st_info) != h->type
1253 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1254 && h->type != STT_NOTYPE
1255 && (newdef || bfd_is_com_section (sec))
1256 && (olddef || h->root.type == bfd_link_hash_common))
1257 {
1258 /* If creating a default indirect symbol ("foo" or "foo@") from
1259 a dynamic versioned definition ("foo@@") skip doing so if
1260 there is an existing regular definition with a different
1261 type. We don't want, for example, a "time" variable in the
1262 executable overriding a "time" function in a shared library. */
1263 if (newdyn
1264 && !olddyn)
1265 {
1266 *skip = TRUE;
1267 return TRUE;
1268 }
1269
1270 /* When adding a symbol from a regular object file after we have
1271 created indirect symbols, undo the indirection and any
1272 dynamic state. */
1273 if (hi != h
1274 && !newdyn
1275 && olddyn)
1276 {
1277 h = hi;
1278 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1279 h->forced_local = 0;
1280 h->ref_dynamic = 0;
1281 h->def_dynamic = 0;
1282 h->dynamic_def = 0;
1283 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1284 {
1285 h->root.type = bfd_link_hash_undefined;
1286 h->root.u.undef.abfd = abfd;
1287 }
1288 else
1289 {
1290 h->root.type = bfd_link_hash_new;
1291 h->root.u.undef.abfd = NULL;
1292 }
1293 return TRUE;
1294 }
1295 }
1296
1297 /* Check TLS symbols. We don't check undefined symbols introduced
1298 by "ld -u" which have no type (and oldbfd NULL), and we don't
1299 check symbols from plugins because they also have no type. */
1300 if (oldbfd != NULL
1301 && (oldbfd->flags & BFD_PLUGIN) == 0
1302 && (abfd->flags & BFD_PLUGIN) == 0
1303 && ELF_ST_TYPE (sym->st_info) != h->type
1304 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1305 {
1306 bfd *ntbfd, *tbfd;
1307 bfd_boolean ntdef, tdef;
1308 asection *ntsec, *tsec;
1309
1310 if (h->type == STT_TLS)
1311 {
1312 ntbfd = abfd;
1313 ntsec = sec;
1314 ntdef = newdef;
1315 tbfd = oldbfd;
1316 tsec = oldsec;
1317 tdef = olddef;
1318 }
1319 else
1320 {
1321 ntbfd = oldbfd;
1322 ntsec = oldsec;
1323 ntdef = olddef;
1324 tbfd = abfd;
1325 tsec = sec;
1326 tdef = newdef;
1327 }
1328
1329 if (tdef && ntdef)
1330 _bfd_error_handler
1331 /* xgettext:c-format */
1332 (_("%s: TLS definition in %B section %A "
1333 "mismatches non-TLS definition in %B section %A"),
1334 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1335 else if (!tdef && !ntdef)
1336 _bfd_error_handler
1337 /* xgettext:c-format */
1338 (_("%s: TLS reference in %B "
1339 "mismatches non-TLS reference in %B"),
1340 h->root.root.string, tbfd, ntbfd);
1341 else if (tdef)
1342 _bfd_error_handler
1343 /* xgettext:c-format */
1344 (_("%s: TLS definition in %B section %A "
1345 "mismatches non-TLS reference in %B"),
1346 h->root.root.string, tbfd, tsec, ntbfd);
1347 else
1348 _bfd_error_handler
1349 /* xgettext:c-format */
1350 (_("%s: TLS reference in %B "
1351 "mismatches non-TLS definition in %B section %A"),
1352 h->root.root.string, tbfd, ntbfd, ntsec);
1353
1354 bfd_set_error (bfd_error_bad_value);
1355 return FALSE;
1356 }
1357
1358 /* If the old symbol has non-default visibility, we ignore the new
1359 definition from a dynamic object. */
1360 if (newdyn
1361 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1362 && !bfd_is_und_section (sec))
1363 {
1364 *skip = TRUE;
1365 /* Make sure this symbol is dynamic. */
1366 h->ref_dynamic = 1;
1367 hi->ref_dynamic = 1;
1368 /* A protected symbol has external availability. Make sure it is
1369 recorded as dynamic.
1370
1371 FIXME: Should we check type and size for protected symbol? */
1372 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1373 return bfd_elf_link_record_dynamic_symbol (info, h);
1374 else
1375 return TRUE;
1376 }
1377 else if (!newdyn
1378 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1379 && h->def_dynamic)
1380 {
1381 /* If the new symbol with non-default visibility comes from a
1382 relocatable file and the old definition comes from a dynamic
1383 object, we remove the old definition. */
1384 if (hi->root.type == bfd_link_hash_indirect)
1385 {
1386 /* Handle the case where the old dynamic definition is
1387 default versioned. We need to copy the symbol info from
1388 the symbol with default version to the normal one if it
1389 was referenced before. */
1390 if (h->ref_regular)
1391 {
1392 hi->root.type = h->root.type;
1393 h->root.type = bfd_link_hash_indirect;
1394 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1395
1396 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1397 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1398 {
1399 /* If the new symbol is hidden or internal, completely undo
1400 any dynamic link state. */
1401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1402 h->forced_local = 0;
1403 h->ref_dynamic = 0;
1404 }
1405 else
1406 h->ref_dynamic = 1;
1407
1408 h->def_dynamic = 0;
1409 /* FIXME: Should we check type and size for protected symbol? */
1410 h->size = 0;
1411 h->type = 0;
1412
1413 h = hi;
1414 }
1415 else
1416 h = hi;
1417 }
1418
1419 /* If the old symbol was undefined before, then it will still be
1420 on the undefs list. If the new symbol is undefined or
1421 common, we can't make it bfd_link_hash_new here, because new
1422 undefined or common symbols will be added to the undefs list
1423 by _bfd_generic_link_add_one_symbol. Symbols may not be
1424 added twice to the undefs list. Also, if the new symbol is
1425 undefweak then we don't want to lose the strong undef. */
1426 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1427 {
1428 h->root.type = bfd_link_hash_undefined;
1429 h->root.u.undef.abfd = abfd;
1430 }
1431 else
1432 {
1433 h->root.type = bfd_link_hash_new;
1434 h->root.u.undef.abfd = NULL;
1435 }
1436
1437 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1438 {
1439 /* If the new symbol is hidden or internal, completely undo
1440 any dynamic link state. */
1441 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1442 h->forced_local = 0;
1443 h->ref_dynamic = 0;
1444 }
1445 else
1446 h->ref_dynamic = 1;
1447 h->def_dynamic = 0;
1448 /* FIXME: Should we check type and size for protected symbol? */
1449 h->size = 0;
1450 h->type = 0;
1451 return TRUE;
1452 }
1453
1454 /* If a new weak symbol definition comes from a regular file and the
1455 old symbol comes from a dynamic library, we treat the new one as
1456 strong. Similarly, an old weak symbol definition from a regular
1457 file is treated as strong when the new symbol comes from a dynamic
1458 library. Further, an old weak symbol from a dynamic library is
1459 treated as strong if the new symbol is from a dynamic library.
1460 This reflects the way glibc's ld.so works.
1461
1462 Do this before setting *type_change_ok or *size_change_ok so that
1463 we warn properly when dynamic library symbols are overridden. */
1464
1465 if (newdef && !newdyn && olddyn)
1466 newweak = FALSE;
1467 if (olddef && newdyn)
1468 oldweak = FALSE;
1469
1470 /* Allow changes between different types of function symbol. */
1471 if (newfunc && oldfunc)
1472 *type_change_ok = TRUE;
1473
1474 /* It's OK to change the type if either the existing symbol or the
1475 new symbol is weak. A type change is also OK if the old symbol
1476 is undefined and the new symbol is defined. */
1477
1478 if (oldweak
1479 || newweak
1480 || (newdef
1481 && h->root.type == bfd_link_hash_undefined))
1482 *type_change_ok = TRUE;
1483
1484 /* It's OK to change the size if either the existing symbol or the
1485 new symbol is weak, or if the old symbol is undefined. */
1486
1487 if (*type_change_ok
1488 || h->root.type == bfd_link_hash_undefined)
1489 *size_change_ok = TRUE;
1490
1491 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1492 symbol, respectively, appears to be a common symbol in a dynamic
1493 object. If a symbol appears in an uninitialized section, and is
1494 not weak, and is not a function, then it may be a common symbol
1495 which was resolved when the dynamic object was created. We want
1496 to treat such symbols specially, because they raise special
1497 considerations when setting the symbol size: if the symbol
1498 appears as a common symbol in a regular object, and the size in
1499 the regular object is larger, we must make sure that we use the
1500 larger size. This problematic case can always be avoided in C,
1501 but it must be handled correctly when using Fortran shared
1502 libraries.
1503
1504 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1505 likewise for OLDDYNCOMMON and OLDDEF.
1506
1507 Note that this test is just a heuristic, and that it is quite
1508 possible to have an uninitialized symbol in a shared object which
1509 is really a definition, rather than a common symbol. This could
1510 lead to some minor confusion when the symbol really is a common
1511 symbol in some regular object. However, I think it will be
1512 harmless. */
1513
1514 if (newdyn
1515 && newdef
1516 && !newweak
1517 && (sec->flags & SEC_ALLOC) != 0
1518 && (sec->flags & SEC_LOAD) == 0
1519 && sym->st_size > 0
1520 && !newfunc)
1521 newdyncommon = TRUE;
1522 else
1523 newdyncommon = FALSE;
1524
1525 if (olddyn
1526 && olddef
1527 && h->root.type == bfd_link_hash_defined
1528 && h->def_dynamic
1529 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1530 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1531 && h->size > 0
1532 && !oldfunc)
1533 olddyncommon = TRUE;
1534 else
1535 olddyncommon = FALSE;
1536
1537 /* We now know everything about the old and new symbols. We ask the
1538 backend to check if we can merge them. */
1539 if (bed->merge_symbol != NULL)
1540 {
1541 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1542 return FALSE;
1543 sec = *psec;
1544 }
1545
1546 /* If both the old and the new symbols look like common symbols in a
1547 dynamic object, set the size of the symbol to the larger of the
1548 two. */
1549
1550 if (olddyncommon
1551 && newdyncommon
1552 && sym->st_size != h->size)
1553 {
1554 /* Since we think we have two common symbols, issue a multiple
1555 common warning if desired. Note that we only warn if the
1556 size is different. If the size is the same, we simply let
1557 the old symbol override the new one as normally happens with
1558 symbols defined in dynamic objects. */
1559
1560 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1561 bfd_link_hash_common, sym->st_size);
1562 if (sym->st_size > h->size)
1563 h->size = sym->st_size;
1564
1565 *size_change_ok = TRUE;
1566 }
1567
1568 /* If we are looking at a dynamic object, and we have found a
1569 definition, we need to see if the symbol was already defined by
1570 some other object. If so, we want to use the existing
1571 definition, and we do not want to report a multiple symbol
1572 definition error; we do this by clobbering *PSEC to be
1573 bfd_und_section_ptr.
1574
1575 We treat a common symbol as a definition if the symbol in the
1576 shared library is a function, since common symbols always
1577 represent variables; this can cause confusion in principle, but
1578 any such confusion would seem to indicate an erroneous program or
1579 shared library. We also permit a common symbol in a regular
1580 object to override a weak symbol in a shared object. */
1581
1582 if (newdyn
1583 && newdef
1584 && (olddef
1585 || (h->root.type == bfd_link_hash_common
1586 && (newweak || newfunc))))
1587 {
1588 *override = TRUE;
1589 newdef = FALSE;
1590 newdyncommon = FALSE;
1591
1592 *psec = sec = bfd_und_section_ptr;
1593 *size_change_ok = TRUE;
1594
1595 /* If we get here when the old symbol is a common symbol, then
1596 we are explicitly letting it override a weak symbol or
1597 function in a dynamic object, and we don't want to warn about
1598 a type change. If the old symbol is a defined symbol, a type
1599 change warning may still be appropriate. */
1600
1601 if (h->root.type == bfd_link_hash_common)
1602 *type_change_ok = TRUE;
1603 }
1604
1605 /* Handle the special case of an old common symbol merging with a
1606 new symbol which looks like a common symbol in a shared object.
1607 We change *PSEC and *PVALUE to make the new symbol look like a
1608 common symbol, and let _bfd_generic_link_add_one_symbol do the
1609 right thing. */
1610
1611 if (newdyncommon
1612 && h->root.type == bfd_link_hash_common)
1613 {
1614 *override = TRUE;
1615 newdef = FALSE;
1616 newdyncommon = FALSE;
1617 *pvalue = sym->st_size;
1618 *psec = sec = bed->common_section (oldsec);
1619 *size_change_ok = TRUE;
1620 }
1621
1622 /* Skip weak definitions of symbols that are already defined. */
1623 if (newdef && olddef && newweak)
1624 {
1625 /* Don't skip new non-IR weak syms. */
1626 if (!(oldbfd != NULL
1627 && (oldbfd->flags & BFD_PLUGIN) != 0
1628 && (abfd->flags & BFD_PLUGIN) == 0))
1629 {
1630 newdef = FALSE;
1631 *skip = TRUE;
1632 }
1633
1634 /* Merge st_other. If the symbol already has a dynamic index,
1635 but visibility says it should not be visible, turn it into a
1636 local symbol. */
1637 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1638 if (h->dynindx != -1)
1639 switch (ELF_ST_VISIBILITY (h->other))
1640 {
1641 case STV_INTERNAL:
1642 case STV_HIDDEN:
1643 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1644 break;
1645 }
1646 }
1647
1648 /* If the old symbol is from a dynamic object, and the new symbol is
1649 a definition which is not from a dynamic object, then the new
1650 symbol overrides the old symbol. Symbols from regular files
1651 always take precedence over symbols from dynamic objects, even if
1652 they are defined after the dynamic object in the link.
1653
1654 As above, we again permit a common symbol in a regular object to
1655 override a definition in a shared object if the shared object
1656 symbol is a function or is weak. */
1657
1658 flip = NULL;
1659 if (!newdyn
1660 && (newdef
1661 || (bfd_is_com_section (sec)
1662 && (oldweak || oldfunc)))
1663 && olddyn
1664 && olddef
1665 && h->def_dynamic)
1666 {
1667 /* Change the hash table entry to undefined, and let
1668 _bfd_generic_link_add_one_symbol do the right thing with the
1669 new definition. */
1670
1671 h->root.type = bfd_link_hash_undefined;
1672 h->root.u.undef.abfd = h->root.u.def.section->owner;
1673 *size_change_ok = TRUE;
1674
1675 olddef = FALSE;
1676 olddyncommon = FALSE;
1677
1678 /* We again permit a type change when a common symbol may be
1679 overriding a function. */
1680
1681 if (bfd_is_com_section (sec))
1682 {
1683 if (oldfunc)
1684 {
1685 /* If a common symbol overrides a function, make sure
1686 that it isn't defined dynamically nor has type
1687 function. */
1688 h->def_dynamic = 0;
1689 h->type = STT_NOTYPE;
1690 }
1691 *type_change_ok = TRUE;
1692 }
1693
1694 if (hi->root.type == bfd_link_hash_indirect)
1695 flip = hi;
1696 else
1697 /* This union may have been set to be non-NULL when this symbol
1698 was seen in a dynamic object. We must force the union to be
1699 NULL, so that it is correct for a regular symbol. */
1700 h->verinfo.vertree = NULL;
1701 }
1702
1703 /* Handle the special case of a new common symbol merging with an
1704 old symbol that looks like it might be a common symbol defined in
1705 a shared object. Note that we have already handled the case in
1706 which a new common symbol should simply override the definition
1707 in the shared library. */
1708
1709 if (! newdyn
1710 && bfd_is_com_section (sec)
1711 && olddyncommon)
1712 {
1713 /* It would be best if we could set the hash table entry to a
1714 common symbol, but we don't know what to use for the section
1715 or the alignment. */
1716 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1717 bfd_link_hash_common, sym->st_size);
1718
1719 /* If the presumed common symbol in the dynamic object is
1720 larger, pretend that the new symbol has its size. */
1721
1722 if (h->size > *pvalue)
1723 *pvalue = h->size;
1724
1725 /* We need to remember the alignment required by the symbol
1726 in the dynamic object. */
1727 BFD_ASSERT (pold_alignment);
1728 *pold_alignment = h->root.u.def.section->alignment_power;
1729
1730 olddef = FALSE;
1731 olddyncommon = FALSE;
1732
1733 h->root.type = bfd_link_hash_undefined;
1734 h->root.u.undef.abfd = h->root.u.def.section->owner;
1735
1736 *size_change_ok = TRUE;
1737 *type_change_ok = TRUE;
1738
1739 if (hi->root.type == bfd_link_hash_indirect)
1740 flip = hi;
1741 else
1742 h->verinfo.vertree = NULL;
1743 }
1744
1745 if (flip != NULL)
1746 {
1747 /* Handle the case where we had a versioned symbol in a dynamic
1748 library and now find a definition in a normal object. In this
1749 case, we make the versioned symbol point to the normal one. */
1750 flip->root.type = h->root.type;
1751 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1752 h->root.type = bfd_link_hash_indirect;
1753 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1754 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1755 if (h->def_dynamic)
1756 {
1757 h->def_dynamic = 0;
1758 flip->ref_dynamic = 1;
1759 }
1760 }
1761
1762 return TRUE;
1763 }
1764
1765 /* This function is called to create an indirect symbol from the
1766 default for the symbol with the default version if needed. The
1767 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1768 set DYNSYM if the new indirect symbol is dynamic. */
1769
1770 static bfd_boolean
1771 _bfd_elf_add_default_symbol (bfd *abfd,
1772 struct bfd_link_info *info,
1773 struct elf_link_hash_entry *h,
1774 const char *name,
1775 Elf_Internal_Sym *sym,
1776 asection *sec,
1777 bfd_vma value,
1778 bfd **poldbfd,
1779 bfd_boolean *dynsym)
1780 {
1781 bfd_boolean type_change_ok;
1782 bfd_boolean size_change_ok;
1783 bfd_boolean skip;
1784 char *shortname;
1785 struct elf_link_hash_entry *hi;
1786 struct bfd_link_hash_entry *bh;
1787 const struct elf_backend_data *bed;
1788 bfd_boolean collect;
1789 bfd_boolean dynamic;
1790 bfd_boolean override;
1791 char *p;
1792 size_t len, shortlen;
1793 asection *tmp_sec;
1794 bfd_boolean matched;
1795
1796 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1797 return TRUE;
1798
1799 /* If this symbol has a version, and it is the default version, we
1800 create an indirect symbol from the default name to the fully
1801 decorated name. This will cause external references which do not
1802 specify a version to be bound to this version of the symbol. */
1803 p = strchr (name, ELF_VER_CHR);
1804 if (h->versioned == unknown)
1805 {
1806 if (p == NULL)
1807 {
1808 h->versioned = unversioned;
1809 return TRUE;
1810 }
1811 else
1812 {
1813 if (p[1] != ELF_VER_CHR)
1814 {
1815 h->versioned = versioned_hidden;
1816 return TRUE;
1817 }
1818 else
1819 h->versioned = versioned;
1820 }
1821 }
1822 else
1823 {
1824 /* PR ld/19073: We may see an unversioned definition after the
1825 default version. */
1826 if (p == NULL)
1827 return TRUE;
1828 }
1829
1830 bed = get_elf_backend_data (abfd);
1831 collect = bed->collect;
1832 dynamic = (abfd->flags & DYNAMIC) != 0;
1833
1834 shortlen = p - name;
1835 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1836 if (shortname == NULL)
1837 return FALSE;
1838 memcpy (shortname, name, shortlen);
1839 shortname[shortlen] = '\0';
1840
1841 /* We are going to create a new symbol. Merge it with any existing
1842 symbol with this name. For the purposes of the merge, act as
1843 though we were defining the symbol we just defined, although we
1844 actually going to define an indirect symbol. */
1845 type_change_ok = FALSE;
1846 size_change_ok = FALSE;
1847 matched = TRUE;
1848 tmp_sec = sec;
1849 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1850 &hi, poldbfd, NULL, NULL, &skip, &override,
1851 &type_change_ok, &size_change_ok, &matched))
1852 return FALSE;
1853
1854 if (skip)
1855 goto nondefault;
1856
1857 if (hi->def_regular)
1858 {
1859 /* If the undecorated symbol will have a version added by a
1860 script different to H, then don't indirect to/from the
1861 undecorated symbol. This isn't ideal because we may not yet
1862 have seen symbol versions, if given by a script on the
1863 command line rather than via --version-script. */
1864 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1865 {
1866 bfd_boolean hide;
1867
1868 hi->verinfo.vertree
1869 = bfd_find_version_for_sym (info->version_info,
1870 hi->root.root.string, &hide);
1871 if (hi->verinfo.vertree != NULL && hide)
1872 {
1873 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1874 goto nondefault;
1875 }
1876 }
1877 if (hi->verinfo.vertree != NULL
1878 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1879 goto nondefault;
1880 }
1881
1882 if (! override)
1883 {
1884 /* Add the default symbol if not performing a relocatable link. */
1885 if (! bfd_link_relocatable (info))
1886 {
1887 bh = &hi->root;
1888 if (! (_bfd_generic_link_add_one_symbol
1889 (info, abfd, shortname, BSF_INDIRECT,
1890 bfd_ind_section_ptr,
1891 0, name, FALSE, collect, &bh)))
1892 return FALSE;
1893 hi = (struct elf_link_hash_entry *) bh;
1894 }
1895 }
1896 else
1897 {
1898 /* In this case the symbol named SHORTNAME is overriding the
1899 indirect symbol we want to add. We were planning on making
1900 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1901 is the name without a version. NAME is the fully versioned
1902 name, and it is the default version.
1903
1904 Overriding means that we already saw a definition for the
1905 symbol SHORTNAME in a regular object, and it is overriding
1906 the symbol defined in the dynamic object.
1907
1908 When this happens, we actually want to change NAME, the
1909 symbol we just added, to refer to SHORTNAME. This will cause
1910 references to NAME in the shared object to become references
1911 to SHORTNAME in the regular object. This is what we expect
1912 when we override a function in a shared object: that the
1913 references in the shared object will be mapped to the
1914 definition in the regular object. */
1915
1916 while (hi->root.type == bfd_link_hash_indirect
1917 || hi->root.type == bfd_link_hash_warning)
1918 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1919
1920 h->root.type = bfd_link_hash_indirect;
1921 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1922 if (h->def_dynamic)
1923 {
1924 h->def_dynamic = 0;
1925 hi->ref_dynamic = 1;
1926 if (hi->ref_regular
1927 || hi->def_regular)
1928 {
1929 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1930 return FALSE;
1931 }
1932 }
1933
1934 /* Now set HI to H, so that the following code will set the
1935 other fields correctly. */
1936 hi = h;
1937 }
1938
1939 /* Check if HI is a warning symbol. */
1940 if (hi->root.type == bfd_link_hash_warning)
1941 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1942
1943 /* If there is a duplicate definition somewhere, then HI may not
1944 point to an indirect symbol. We will have reported an error to
1945 the user in that case. */
1946
1947 if (hi->root.type == bfd_link_hash_indirect)
1948 {
1949 struct elf_link_hash_entry *ht;
1950
1951 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1952 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1953
1954 /* A reference to the SHORTNAME symbol from a dynamic library
1955 will be satisfied by the versioned symbol at runtime. In
1956 effect, we have a reference to the versioned symbol. */
1957 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1958 hi->dynamic_def |= ht->dynamic_def;
1959
1960 /* See if the new flags lead us to realize that the symbol must
1961 be dynamic. */
1962 if (! *dynsym)
1963 {
1964 if (! dynamic)
1965 {
1966 if (! bfd_link_executable (info)
1967 || hi->def_dynamic
1968 || hi->ref_dynamic)
1969 *dynsym = TRUE;
1970 }
1971 else
1972 {
1973 if (hi->ref_regular)
1974 *dynsym = TRUE;
1975 }
1976 }
1977 }
1978
1979 /* We also need to define an indirection from the nondefault version
1980 of the symbol. */
1981
1982 nondefault:
1983 len = strlen (name);
1984 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1985 if (shortname == NULL)
1986 return FALSE;
1987 memcpy (shortname, name, shortlen);
1988 memcpy (shortname + shortlen, p + 1, len - shortlen);
1989
1990 /* Once again, merge with any existing symbol. */
1991 type_change_ok = FALSE;
1992 size_change_ok = FALSE;
1993 tmp_sec = sec;
1994 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1995 &hi, poldbfd, NULL, NULL, &skip, &override,
1996 &type_change_ok, &size_change_ok, &matched))
1997 return FALSE;
1998
1999 if (skip)
2000 return TRUE;
2001
2002 if (override)
2003 {
2004 /* Here SHORTNAME is a versioned name, so we don't expect to see
2005 the type of override we do in the case above unless it is
2006 overridden by a versioned definition. */
2007 if (hi->root.type != bfd_link_hash_defined
2008 && hi->root.type != bfd_link_hash_defweak)
2009 _bfd_error_handler
2010 /* xgettext:c-format */
2011 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2012 abfd, shortname);
2013 }
2014 else
2015 {
2016 bh = &hi->root;
2017 if (! (_bfd_generic_link_add_one_symbol
2018 (info, abfd, shortname, BSF_INDIRECT,
2019 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2020 return FALSE;
2021 hi = (struct elf_link_hash_entry *) bh;
2022
2023 /* If there is a duplicate definition somewhere, then HI may not
2024 point to an indirect symbol. We will have reported an error
2025 to the user in that case. */
2026
2027 if (hi->root.type == bfd_link_hash_indirect)
2028 {
2029 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2030 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2031 hi->dynamic_def |= h->dynamic_def;
2032
2033 /* See if the new flags lead us to realize that the symbol
2034 must be dynamic. */
2035 if (! *dynsym)
2036 {
2037 if (! dynamic)
2038 {
2039 if (! bfd_link_executable (info)
2040 || hi->ref_dynamic)
2041 *dynsym = TRUE;
2042 }
2043 else
2044 {
2045 if (hi->ref_regular)
2046 *dynsym = TRUE;
2047 }
2048 }
2049 }
2050 }
2051
2052 return TRUE;
2053 }
2054 \f
2055 /* This routine is used to export all defined symbols into the dynamic
2056 symbol table. It is called via elf_link_hash_traverse. */
2057
2058 static bfd_boolean
2059 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2060 {
2061 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2062
2063 /* Ignore indirect symbols. These are added by the versioning code. */
2064 if (h->root.type == bfd_link_hash_indirect)
2065 return TRUE;
2066
2067 /* Ignore this if we won't export it. */
2068 if (!eif->info->export_dynamic && !h->dynamic)
2069 return TRUE;
2070
2071 if (h->dynindx == -1
2072 && (h->def_regular || h->ref_regular)
2073 && ! bfd_hide_sym_by_version (eif->info->version_info,
2074 h->root.root.string))
2075 {
2076 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2077 {
2078 eif->failed = TRUE;
2079 return FALSE;
2080 }
2081 }
2082
2083 return TRUE;
2084 }
2085 \f
2086 /* Look through the symbols which are defined in other shared
2087 libraries and referenced here. Update the list of version
2088 dependencies. This will be put into the .gnu.version_r section.
2089 This function is called via elf_link_hash_traverse. */
2090
2091 static bfd_boolean
2092 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2093 void *data)
2094 {
2095 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2096 Elf_Internal_Verneed *t;
2097 Elf_Internal_Vernaux *a;
2098 bfd_size_type amt;
2099
2100 /* We only care about symbols defined in shared objects with version
2101 information. */
2102 if (!h->def_dynamic
2103 || h->def_regular
2104 || h->dynindx == -1
2105 || h->verinfo.verdef == NULL
2106 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2107 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2108 return TRUE;
2109
2110 /* See if we already know about this version. */
2111 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2112 t != NULL;
2113 t = t->vn_nextref)
2114 {
2115 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2116 continue;
2117
2118 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2119 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2120 return TRUE;
2121
2122 break;
2123 }
2124
2125 /* This is a new version. Add it to tree we are building. */
2126
2127 if (t == NULL)
2128 {
2129 amt = sizeof *t;
2130 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2131 if (t == NULL)
2132 {
2133 rinfo->failed = TRUE;
2134 return FALSE;
2135 }
2136
2137 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2138 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2139 elf_tdata (rinfo->info->output_bfd)->verref = t;
2140 }
2141
2142 amt = sizeof *a;
2143 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2144 if (a == NULL)
2145 {
2146 rinfo->failed = TRUE;
2147 return FALSE;
2148 }
2149
2150 /* Note that we are copying a string pointer here, and testing it
2151 above. If bfd_elf_string_from_elf_section is ever changed to
2152 discard the string data when low in memory, this will have to be
2153 fixed. */
2154 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2155
2156 a->vna_flags = h->verinfo.verdef->vd_flags;
2157 a->vna_nextptr = t->vn_auxptr;
2158
2159 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2160 ++rinfo->vers;
2161
2162 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2163
2164 t->vn_auxptr = a;
2165
2166 return TRUE;
2167 }
2168
2169 /* Figure out appropriate versions for all the symbols. We may not
2170 have the version number script until we have read all of the input
2171 files, so until that point we don't know which symbols should be
2172 local. This function is called via elf_link_hash_traverse. */
2173
2174 static bfd_boolean
2175 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2176 {
2177 struct elf_info_failed *sinfo;
2178 struct bfd_link_info *info;
2179 const struct elf_backend_data *bed;
2180 struct elf_info_failed eif;
2181 char *p;
2182
2183 sinfo = (struct elf_info_failed *) data;
2184 info = sinfo->info;
2185
2186 /* Fix the symbol flags. */
2187 eif.failed = FALSE;
2188 eif.info = info;
2189 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2190 {
2191 if (eif.failed)
2192 sinfo->failed = TRUE;
2193 return FALSE;
2194 }
2195
2196 /* We only need version numbers for symbols defined in regular
2197 objects. */
2198 if (!h->def_regular)
2199 return TRUE;
2200
2201 bed = get_elf_backend_data (info->output_bfd);
2202 p = strchr (h->root.root.string, ELF_VER_CHR);
2203 if (p != NULL && h->verinfo.vertree == NULL)
2204 {
2205 struct bfd_elf_version_tree *t;
2206
2207 ++p;
2208 if (*p == ELF_VER_CHR)
2209 ++p;
2210
2211 /* If there is no version string, we can just return out. */
2212 if (*p == '\0')
2213 return TRUE;
2214
2215 /* Look for the version. If we find it, it is no longer weak. */
2216 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2217 {
2218 if (strcmp (t->name, p) == 0)
2219 {
2220 size_t len;
2221 char *alc;
2222 struct bfd_elf_version_expr *d;
2223
2224 len = p - h->root.root.string;
2225 alc = (char *) bfd_malloc (len);
2226 if (alc == NULL)
2227 {
2228 sinfo->failed = TRUE;
2229 return FALSE;
2230 }
2231 memcpy (alc, h->root.root.string, len - 1);
2232 alc[len - 1] = '\0';
2233 if (alc[len - 2] == ELF_VER_CHR)
2234 alc[len - 2] = '\0';
2235
2236 h->verinfo.vertree = t;
2237 t->used = TRUE;
2238 d = NULL;
2239
2240 if (t->globals.list != NULL)
2241 d = (*t->match) (&t->globals, NULL, alc);
2242
2243 /* See if there is anything to force this symbol to
2244 local scope. */
2245 if (d == NULL && t->locals.list != NULL)
2246 {
2247 d = (*t->match) (&t->locals, NULL, alc);
2248 if (d != NULL
2249 && h->dynindx != -1
2250 && ! info->export_dynamic)
2251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2252 }
2253
2254 free (alc);
2255 break;
2256 }
2257 }
2258
2259 /* If we are building an application, we need to create a
2260 version node for this version. */
2261 if (t == NULL && bfd_link_executable (info))
2262 {
2263 struct bfd_elf_version_tree **pp;
2264 int version_index;
2265
2266 /* If we aren't going to export this symbol, we don't need
2267 to worry about it. */
2268 if (h->dynindx == -1)
2269 return TRUE;
2270
2271 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2272 sizeof *t);
2273 if (t == NULL)
2274 {
2275 sinfo->failed = TRUE;
2276 return FALSE;
2277 }
2278
2279 t->name = p;
2280 t->name_indx = (unsigned int) -1;
2281 t->used = TRUE;
2282
2283 version_index = 1;
2284 /* Don't count anonymous version tag. */
2285 if (sinfo->info->version_info != NULL
2286 && sinfo->info->version_info->vernum == 0)
2287 version_index = 0;
2288 for (pp = &sinfo->info->version_info;
2289 *pp != NULL;
2290 pp = &(*pp)->next)
2291 ++version_index;
2292 t->vernum = version_index;
2293
2294 *pp = t;
2295
2296 h->verinfo.vertree = t;
2297 }
2298 else if (t == NULL)
2299 {
2300 /* We could not find the version for a symbol when
2301 generating a shared archive. Return an error. */
2302 _bfd_error_handler
2303 /* xgettext:c-format */
2304 (_("%B: version node not found for symbol %s"),
2305 info->output_bfd, h->root.root.string);
2306 bfd_set_error (bfd_error_bad_value);
2307 sinfo->failed = TRUE;
2308 return FALSE;
2309 }
2310 }
2311
2312 /* If we don't have a version for this symbol, see if we can find
2313 something. */
2314 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2315 {
2316 bfd_boolean hide;
2317
2318 h->verinfo.vertree
2319 = bfd_find_version_for_sym (sinfo->info->version_info,
2320 h->root.root.string, &hide);
2321 if (h->verinfo.vertree != NULL && hide)
2322 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2323 }
2324
2325 return TRUE;
2326 }
2327 \f
2328 /* Read and swap the relocs from the section indicated by SHDR. This
2329 may be either a REL or a RELA section. The relocations are
2330 translated into RELA relocations and stored in INTERNAL_RELOCS,
2331 which should have already been allocated to contain enough space.
2332 The EXTERNAL_RELOCS are a buffer where the external form of the
2333 relocations should be stored.
2334
2335 Returns FALSE if something goes wrong. */
2336
2337 static bfd_boolean
2338 elf_link_read_relocs_from_section (bfd *abfd,
2339 asection *sec,
2340 Elf_Internal_Shdr *shdr,
2341 void *external_relocs,
2342 Elf_Internal_Rela *internal_relocs)
2343 {
2344 const struct elf_backend_data *bed;
2345 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2346 const bfd_byte *erela;
2347 const bfd_byte *erelaend;
2348 Elf_Internal_Rela *irela;
2349 Elf_Internal_Shdr *symtab_hdr;
2350 size_t nsyms;
2351
2352 /* Position ourselves at the start of the section. */
2353 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2354 return FALSE;
2355
2356 /* Read the relocations. */
2357 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2358 return FALSE;
2359
2360 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2361 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2362
2363 bed = get_elf_backend_data (abfd);
2364
2365 /* Convert the external relocations to the internal format. */
2366 if (shdr->sh_entsize == bed->s->sizeof_rel)
2367 swap_in = bed->s->swap_reloc_in;
2368 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2369 swap_in = bed->s->swap_reloca_in;
2370 else
2371 {
2372 bfd_set_error (bfd_error_wrong_format);
2373 return FALSE;
2374 }
2375
2376 erela = (const bfd_byte *) external_relocs;
2377 erelaend = erela + shdr->sh_size;
2378 irela = internal_relocs;
2379 while (erela < erelaend)
2380 {
2381 bfd_vma r_symndx;
2382
2383 (*swap_in) (abfd, erela, irela);
2384 r_symndx = ELF32_R_SYM (irela->r_info);
2385 if (bed->s->arch_size == 64)
2386 r_symndx >>= 24;
2387 if (nsyms > 0)
2388 {
2389 if ((size_t) r_symndx >= nsyms)
2390 {
2391 _bfd_error_handler
2392 /* xgettext:c-format */
2393 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2394 " for offset 0x%lx in section `%A'"),
2395 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2396 irela->r_offset, sec);
2397 bfd_set_error (bfd_error_bad_value);
2398 return FALSE;
2399 }
2400 }
2401 else if (r_symndx != STN_UNDEF)
2402 {
2403 _bfd_error_handler
2404 /* xgettext:c-format */
2405 (_("%B: non-zero symbol index (0x%lx)"
2406 " for offset 0x%lx in section `%A'"
2407 " when the object file has no symbol table"),
2408 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2409 irela->r_offset, sec);
2410 bfd_set_error (bfd_error_bad_value);
2411 return FALSE;
2412 }
2413 irela += bed->s->int_rels_per_ext_rel;
2414 erela += shdr->sh_entsize;
2415 }
2416
2417 return TRUE;
2418 }
2419
2420 /* Read and swap the relocs for a section O. They may have been
2421 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2422 not NULL, they are used as buffers to read into. They are known to
2423 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2424 the return value is allocated using either malloc or bfd_alloc,
2425 according to the KEEP_MEMORY argument. If O has two relocation
2426 sections (both REL and RELA relocations), then the REL_HDR
2427 relocations will appear first in INTERNAL_RELOCS, followed by the
2428 RELA_HDR relocations. */
2429
2430 Elf_Internal_Rela *
2431 _bfd_elf_link_read_relocs (bfd *abfd,
2432 asection *o,
2433 void *external_relocs,
2434 Elf_Internal_Rela *internal_relocs,
2435 bfd_boolean keep_memory)
2436 {
2437 void *alloc1 = NULL;
2438 Elf_Internal_Rela *alloc2 = NULL;
2439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2440 struct bfd_elf_section_data *esdo = elf_section_data (o);
2441 Elf_Internal_Rela *internal_rela_relocs;
2442
2443 if (esdo->relocs != NULL)
2444 return esdo->relocs;
2445
2446 if (o->reloc_count == 0)
2447 return NULL;
2448
2449 if (internal_relocs == NULL)
2450 {
2451 bfd_size_type size;
2452
2453 size = o->reloc_count;
2454 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2455 if (keep_memory)
2456 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2457 else
2458 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2459 if (internal_relocs == NULL)
2460 goto error_return;
2461 }
2462
2463 if (external_relocs == NULL)
2464 {
2465 bfd_size_type size = 0;
2466
2467 if (esdo->rel.hdr)
2468 size += esdo->rel.hdr->sh_size;
2469 if (esdo->rela.hdr)
2470 size += esdo->rela.hdr->sh_size;
2471
2472 alloc1 = bfd_malloc (size);
2473 if (alloc1 == NULL)
2474 goto error_return;
2475 external_relocs = alloc1;
2476 }
2477
2478 internal_rela_relocs = internal_relocs;
2479 if (esdo->rel.hdr)
2480 {
2481 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2482 external_relocs,
2483 internal_relocs))
2484 goto error_return;
2485 external_relocs = (((bfd_byte *) external_relocs)
2486 + esdo->rel.hdr->sh_size);
2487 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2488 * bed->s->int_rels_per_ext_rel);
2489 }
2490
2491 if (esdo->rela.hdr
2492 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2493 external_relocs,
2494 internal_rela_relocs)))
2495 goto error_return;
2496
2497 /* Cache the results for next time, if we can. */
2498 if (keep_memory)
2499 esdo->relocs = internal_relocs;
2500
2501 if (alloc1 != NULL)
2502 free (alloc1);
2503
2504 /* Don't free alloc2, since if it was allocated we are passing it
2505 back (under the name of internal_relocs). */
2506
2507 return internal_relocs;
2508
2509 error_return:
2510 if (alloc1 != NULL)
2511 free (alloc1);
2512 if (alloc2 != NULL)
2513 {
2514 if (keep_memory)
2515 bfd_release (abfd, alloc2);
2516 else
2517 free (alloc2);
2518 }
2519 return NULL;
2520 }
2521
2522 /* Compute the size of, and allocate space for, REL_HDR which is the
2523 section header for a section containing relocations for O. */
2524
2525 static bfd_boolean
2526 _bfd_elf_link_size_reloc_section (bfd *abfd,
2527 struct bfd_elf_section_reloc_data *reldata)
2528 {
2529 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2530
2531 /* That allows us to calculate the size of the section. */
2532 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2533
2534 /* The contents field must last into write_object_contents, so we
2535 allocate it with bfd_alloc rather than malloc. Also since we
2536 cannot be sure that the contents will actually be filled in,
2537 we zero the allocated space. */
2538 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2539 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2540 return FALSE;
2541
2542 if (reldata->hashes == NULL && reldata->count)
2543 {
2544 struct elf_link_hash_entry **p;
2545
2546 p = ((struct elf_link_hash_entry **)
2547 bfd_zmalloc (reldata->count * sizeof (*p)));
2548 if (p == NULL)
2549 return FALSE;
2550
2551 reldata->hashes = p;
2552 }
2553
2554 return TRUE;
2555 }
2556
2557 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2558 originated from the section given by INPUT_REL_HDR) to the
2559 OUTPUT_BFD. */
2560
2561 bfd_boolean
2562 _bfd_elf_link_output_relocs (bfd *output_bfd,
2563 asection *input_section,
2564 Elf_Internal_Shdr *input_rel_hdr,
2565 Elf_Internal_Rela *internal_relocs,
2566 struct elf_link_hash_entry **rel_hash
2567 ATTRIBUTE_UNUSED)
2568 {
2569 Elf_Internal_Rela *irela;
2570 Elf_Internal_Rela *irelaend;
2571 bfd_byte *erel;
2572 struct bfd_elf_section_reloc_data *output_reldata;
2573 asection *output_section;
2574 const struct elf_backend_data *bed;
2575 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2576 struct bfd_elf_section_data *esdo;
2577
2578 output_section = input_section->output_section;
2579
2580 bed = get_elf_backend_data (output_bfd);
2581 esdo = elf_section_data (output_section);
2582 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2583 {
2584 output_reldata = &esdo->rel;
2585 swap_out = bed->s->swap_reloc_out;
2586 }
2587 else if (esdo->rela.hdr
2588 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2589 {
2590 output_reldata = &esdo->rela;
2591 swap_out = bed->s->swap_reloca_out;
2592 }
2593 else
2594 {
2595 _bfd_error_handler
2596 /* xgettext:c-format */
2597 (_("%B: relocation size mismatch in %B section %A"),
2598 output_bfd, input_section->owner, input_section);
2599 bfd_set_error (bfd_error_wrong_format);
2600 return FALSE;
2601 }
2602
2603 erel = output_reldata->hdr->contents;
2604 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2605 irela = internal_relocs;
2606 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2607 * bed->s->int_rels_per_ext_rel);
2608 while (irela < irelaend)
2609 {
2610 (*swap_out) (output_bfd, irela, erel);
2611 irela += bed->s->int_rels_per_ext_rel;
2612 erel += input_rel_hdr->sh_entsize;
2613 }
2614
2615 /* Bump the counter, so that we know where to add the next set of
2616 relocations. */
2617 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2618
2619 return TRUE;
2620 }
2621 \f
2622 /* Make weak undefined symbols in PIE dynamic. */
2623
2624 bfd_boolean
2625 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2626 struct elf_link_hash_entry *h)
2627 {
2628 if (bfd_link_pie (info)
2629 && h->dynindx == -1
2630 && h->root.type == bfd_link_hash_undefweak)
2631 return bfd_elf_link_record_dynamic_symbol (info, h);
2632
2633 return TRUE;
2634 }
2635
2636 /* Fix up the flags for a symbol. This handles various cases which
2637 can only be fixed after all the input files are seen. This is
2638 currently called by both adjust_dynamic_symbol and
2639 assign_sym_version, which is unnecessary but perhaps more robust in
2640 the face of future changes. */
2641
2642 static bfd_boolean
2643 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2644 struct elf_info_failed *eif)
2645 {
2646 const struct elf_backend_data *bed;
2647
2648 /* If this symbol was mentioned in a non-ELF file, try to set
2649 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2650 permit a non-ELF file to correctly refer to a symbol defined in
2651 an ELF dynamic object. */
2652 if (h->non_elf)
2653 {
2654 while (h->root.type == bfd_link_hash_indirect)
2655 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2656
2657 if (h->root.type != bfd_link_hash_defined
2658 && h->root.type != bfd_link_hash_defweak)
2659 {
2660 h->ref_regular = 1;
2661 h->ref_regular_nonweak = 1;
2662 }
2663 else
2664 {
2665 if (h->root.u.def.section->owner != NULL
2666 && (bfd_get_flavour (h->root.u.def.section->owner)
2667 == bfd_target_elf_flavour))
2668 {
2669 h->ref_regular = 1;
2670 h->ref_regular_nonweak = 1;
2671 }
2672 else
2673 h->def_regular = 1;
2674 }
2675
2676 if (h->dynindx == -1
2677 && (h->def_dynamic
2678 || h->ref_dynamic))
2679 {
2680 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2681 {
2682 eif->failed = TRUE;
2683 return FALSE;
2684 }
2685 }
2686 }
2687 else
2688 {
2689 /* Unfortunately, NON_ELF is only correct if the symbol
2690 was first seen in a non-ELF file. Fortunately, if the symbol
2691 was first seen in an ELF file, we're probably OK unless the
2692 symbol was defined in a non-ELF file. Catch that case here.
2693 FIXME: We're still in trouble if the symbol was first seen in
2694 a dynamic object, and then later in a non-ELF regular object. */
2695 if ((h->root.type == bfd_link_hash_defined
2696 || h->root.type == bfd_link_hash_defweak)
2697 && !h->def_regular
2698 && (h->root.u.def.section->owner != NULL
2699 ? (bfd_get_flavour (h->root.u.def.section->owner)
2700 != bfd_target_elf_flavour)
2701 : (bfd_is_abs_section (h->root.u.def.section)
2702 && !h->def_dynamic)))
2703 h->def_regular = 1;
2704 }
2705
2706 /* Backend specific symbol fixup. */
2707 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2708 if (bed->elf_backend_fixup_symbol
2709 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2710 return FALSE;
2711
2712 /* If this is a final link, and the symbol was defined as a common
2713 symbol in a regular object file, and there was no definition in
2714 any dynamic object, then the linker will have allocated space for
2715 the symbol in a common section but the DEF_REGULAR
2716 flag will not have been set. */
2717 if (h->root.type == bfd_link_hash_defined
2718 && !h->def_regular
2719 && h->ref_regular
2720 && !h->def_dynamic
2721 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2722 h->def_regular = 1;
2723
2724 /* If a weak undefined symbol has non-default visibility, we also
2725 hide it from the dynamic linker. */
2726 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2727 && h->root.type == bfd_link_hash_undefweak)
2728 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2729
2730 /* A hidden versioned symbol in executable should be forced local if
2731 it is is locally defined, not referenced by shared library and not
2732 exported. */
2733 else if (bfd_link_executable (eif->info)
2734 && h->versioned == versioned_hidden
2735 && !eif->info->export_dynamic
2736 && !h->dynamic
2737 && !h->ref_dynamic
2738 && h->def_regular)
2739 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2740
2741 /* If -Bsymbolic was used (which means to bind references to global
2742 symbols to the definition within the shared object), and this
2743 symbol was defined in a regular object, then it actually doesn't
2744 need a PLT entry. Likewise, if the symbol has non-default
2745 visibility. If the symbol has hidden or internal visibility, we
2746 will force it local. */
2747 else if (h->needs_plt
2748 && bfd_link_pic (eif->info)
2749 && is_elf_hash_table (eif->info->hash)
2750 && (SYMBOLIC_BIND (eif->info, h)
2751 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2752 && h->def_regular)
2753 {
2754 bfd_boolean force_local;
2755
2756 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2757 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2758 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2759 }
2760
2761 /* If this is a weak defined symbol in a dynamic object, and we know
2762 the real definition in the dynamic object, copy interesting flags
2763 over to the real definition. */
2764 if (h->u.weakdef != NULL)
2765 {
2766 /* If the real definition is defined by a regular object file,
2767 don't do anything special. See the longer description in
2768 _bfd_elf_adjust_dynamic_symbol, below. */
2769 if (h->u.weakdef->def_regular)
2770 h->u.weakdef = NULL;
2771 else
2772 {
2773 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2774
2775 while (h->root.type == bfd_link_hash_indirect)
2776 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2777
2778 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2779 || h->root.type == bfd_link_hash_defweak);
2780 BFD_ASSERT (weakdef->def_dynamic);
2781 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2782 || weakdef->root.type == bfd_link_hash_defweak);
2783 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2784 }
2785 }
2786
2787 return TRUE;
2788 }
2789
2790 /* Make the backend pick a good value for a dynamic symbol. This is
2791 called via elf_link_hash_traverse, and also calls itself
2792 recursively. */
2793
2794 static bfd_boolean
2795 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2796 {
2797 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2798 bfd *dynobj;
2799 const struct elf_backend_data *bed;
2800
2801 if (! is_elf_hash_table (eif->info->hash))
2802 return FALSE;
2803
2804 /* Ignore indirect symbols. These are added by the versioning code. */
2805 if (h->root.type == bfd_link_hash_indirect)
2806 return TRUE;
2807
2808 /* Fix the symbol flags. */
2809 if (! _bfd_elf_fix_symbol_flags (h, eif))
2810 return FALSE;
2811
2812 if (h->root.type == bfd_link_hash_undefweak)
2813 {
2814 if (eif->info->dynamic_undefined_weak == 0)
2815 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2816 else if (eif->info->dynamic_undefined_weak > 0
2817 && h->ref_regular
2818 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2819 && !bfd_hide_sym_by_version (eif->info->version_info,
2820 h->root.root.string))
2821 {
2822 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2823 {
2824 eif->failed = TRUE;
2825 return FALSE;
2826 }
2827 }
2828 }
2829
2830 /* If this symbol does not require a PLT entry, and it is not
2831 defined by a dynamic object, or is not referenced by a regular
2832 object, ignore it. We do have to handle a weak defined symbol,
2833 even if no regular object refers to it, if we decided to add it
2834 to the dynamic symbol table. FIXME: Do we normally need to worry
2835 about symbols which are defined by one dynamic object and
2836 referenced by another one? */
2837 if (!h->needs_plt
2838 && h->type != STT_GNU_IFUNC
2839 && (h->def_regular
2840 || !h->def_dynamic
2841 || (!h->ref_regular
2842 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2843 {
2844 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2845 return TRUE;
2846 }
2847
2848 /* If we've already adjusted this symbol, don't do it again. This
2849 can happen via a recursive call. */
2850 if (h->dynamic_adjusted)
2851 return TRUE;
2852
2853 /* Don't look at this symbol again. Note that we must set this
2854 after checking the above conditions, because we may look at a
2855 symbol once, decide not to do anything, and then get called
2856 recursively later after REF_REGULAR is set below. */
2857 h->dynamic_adjusted = 1;
2858
2859 /* If this is a weak definition, and we know a real definition, and
2860 the real symbol is not itself defined by a regular object file,
2861 then get a good value for the real definition. We handle the
2862 real symbol first, for the convenience of the backend routine.
2863
2864 Note that there is a confusing case here. If the real definition
2865 is defined by a regular object file, we don't get the real symbol
2866 from the dynamic object, but we do get the weak symbol. If the
2867 processor backend uses a COPY reloc, then if some routine in the
2868 dynamic object changes the real symbol, we will not see that
2869 change in the corresponding weak symbol. This is the way other
2870 ELF linkers work as well, and seems to be a result of the shared
2871 library model.
2872
2873 I will clarify this issue. Most SVR4 shared libraries define the
2874 variable _timezone and define timezone as a weak synonym. The
2875 tzset call changes _timezone. If you write
2876 extern int timezone;
2877 int _timezone = 5;
2878 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2879 you might expect that, since timezone is a synonym for _timezone,
2880 the same number will print both times. However, if the processor
2881 backend uses a COPY reloc, then actually timezone will be copied
2882 into your process image, and, since you define _timezone
2883 yourself, _timezone will not. Thus timezone and _timezone will
2884 wind up at different memory locations. The tzset call will set
2885 _timezone, leaving timezone unchanged. */
2886
2887 if (h->u.weakdef != NULL)
2888 {
2889 /* If we get to this point, there is an implicit reference to
2890 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2891 h->u.weakdef->ref_regular = 1;
2892
2893 /* Ensure that the backend adjust_dynamic_symbol function sees
2894 H->U.WEAKDEF before H by recursively calling ourselves. */
2895 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2896 return FALSE;
2897 }
2898
2899 /* If a symbol has no type and no size and does not require a PLT
2900 entry, then we are probably about to do the wrong thing here: we
2901 are probably going to create a COPY reloc for an empty object.
2902 This case can arise when a shared object is built with assembly
2903 code, and the assembly code fails to set the symbol type. */
2904 if (h->size == 0
2905 && h->type == STT_NOTYPE
2906 && !h->needs_plt)
2907 _bfd_error_handler
2908 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2909 h->root.root.string);
2910
2911 dynobj = elf_hash_table (eif->info)->dynobj;
2912 bed = get_elf_backend_data (dynobj);
2913
2914 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2915 {
2916 eif->failed = TRUE;
2917 return FALSE;
2918 }
2919
2920 return TRUE;
2921 }
2922
2923 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2924 DYNBSS. */
2925
2926 bfd_boolean
2927 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2928 struct elf_link_hash_entry *h,
2929 asection *dynbss)
2930 {
2931 unsigned int power_of_two;
2932 bfd_vma mask;
2933 asection *sec = h->root.u.def.section;
2934
2935 /* The section aligment of definition is the maximum alignment
2936 requirement of symbols defined in the section. Since we don't
2937 know the symbol alignment requirement, we start with the
2938 maximum alignment and check low bits of the symbol address
2939 for the minimum alignment. */
2940 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2941 mask = ((bfd_vma) 1 << power_of_two) - 1;
2942 while ((h->root.u.def.value & mask) != 0)
2943 {
2944 mask >>= 1;
2945 --power_of_two;
2946 }
2947
2948 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2949 dynbss))
2950 {
2951 /* Adjust the section alignment if needed. */
2952 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2953 power_of_two))
2954 return FALSE;
2955 }
2956
2957 /* We make sure that the symbol will be aligned properly. */
2958 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2959
2960 /* Define the symbol as being at this point in DYNBSS. */
2961 h->root.u.def.section = dynbss;
2962 h->root.u.def.value = dynbss->size;
2963
2964 /* Increment the size of DYNBSS to make room for the symbol. */
2965 dynbss->size += h->size;
2966
2967 /* No error if extern_protected_data is true. */
2968 if (h->protected_def
2969 && (!info->extern_protected_data
2970 || (info->extern_protected_data < 0
2971 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2972 info->callbacks->einfo
2973 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2974 h->root.root.string);
2975
2976 return TRUE;
2977 }
2978
2979 /* Adjust all external symbols pointing into SEC_MERGE sections
2980 to reflect the object merging within the sections. */
2981
2982 static bfd_boolean
2983 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2984 {
2985 asection *sec;
2986
2987 if ((h->root.type == bfd_link_hash_defined
2988 || h->root.type == bfd_link_hash_defweak)
2989 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2990 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2991 {
2992 bfd *output_bfd = (bfd *) data;
2993
2994 h->root.u.def.value =
2995 _bfd_merged_section_offset (output_bfd,
2996 &h->root.u.def.section,
2997 elf_section_data (sec)->sec_info,
2998 h->root.u.def.value);
2999 }
3000
3001 return TRUE;
3002 }
3003
3004 /* Returns false if the symbol referred to by H should be considered
3005 to resolve local to the current module, and true if it should be
3006 considered to bind dynamically. */
3007
3008 bfd_boolean
3009 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3010 struct bfd_link_info *info,
3011 bfd_boolean not_local_protected)
3012 {
3013 bfd_boolean binding_stays_local_p;
3014 const struct elf_backend_data *bed;
3015 struct elf_link_hash_table *hash_table;
3016
3017 if (h == NULL)
3018 return FALSE;
3019
3020 while (h->root.type == bfd_link_hash_indirect
3021 || h->root.type == bfd_link_hash_warning)
3022 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3023
3024 /* If it was forced local, then clearly it's not dynamic. */
3025 if (h->dynindx == -1)
3026 return FALSE;
3027 if (h->forced_local)
3028 return FALSE;
3029
3030 /* Identify the cases where name binding rules say that a
3031 visible symbol resolves locally. */
3032 binding_stays_local_p = (bfd_link_executable (info)
3033 || SYMBOLIC_BIND (info, h));
3034
3035 switch (ELF_ST_VISIBILITY (h->other))
3036 {
3037 case STV_INTERNAL:
3038 case STV_HIDDEN:
3039 return FALSE;
3040
3041 case STV_PROTECTED:
3042 hash_table = elf_hash_table (info);
3043 if (!is_elf_hash_table (hash_table))
3044 return FALSE;
3045
3046 bed = get_elf_backend_data (hash_table->dynobj);
3047
3048 /* Proper resolution for function pointer equality may require
3049 that these symbols perhaps be resolved dynamically, even though
3050 we should be resolving them to the current module. */
3051 if (!not_local_protected || !bed->is_function_type (h->type))
3052 binding_stays_local_p = TRUE;
3053 break;
3054
3055 default:
3056 break;
3057 }
3058
3059 /* If it isn't defined locally, then clearly it's dynamic. */
3060 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3061 return TRUE;
3062
3063 /* Otherwise, the symbol is dynamic if binding rules don't tell
3064 us that it remains local. */
3065 return !binding_stays_local_p;
3066 }
3067
3068 /* Return true if the symbol referred to by H should be considered
3069 to resolve local to the current module, and false otherwise. Differs
3070 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3071 undefined symbols. The two functions are virtually identical except
3072 for the place where dynindx == -1 is tested. If that test is true,
3073 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3074 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3075 defined symbols.
3076 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3077 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3078 treatment of undefined weak symbols. For those that do not make
3079 undefined weak symbols dynamic, both functions may return false. */
3080
3081 bfd_boolean
3082 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3083 struct bfd_link_info *info,
3084 bfd_boolean local_protected)
3085 {
3086 const struct elf_backend_data *bed;
3087 struct elf_link_hash_table *hash_table;
3088
3089 /* If it's a local sym, of course we resolve locally. */
3090 if (h == NULL)
3091 return TRUE;
3092
3093 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3094 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3095 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3096 return TRUE;
3097
3098 /* Forced local symbols resolve locally. */
3099 if (h->forced_local)
3100 return TRUE;
3101
3102 /* Common symbols that become definitions don't get the DEF_REGULAR
3103 flag set, so test it first, and don't bail out. */
3104 if (ELF_COMMON_DEF_P (h))
3105 /* Do nothing. */;
3106 /* If we don't have a definition in a regular file, then we can't
3107 resolve locally. The sym is either undefined or dynamic. */
3108 else if (!h->def_regular)
3109 return FALSE;
3110
3111 /* Non-dynamic symbols resolve locally. */
3112 if (h->dynindx == -1)
3113 return TRUE;
3114
3115 /* At this point, we know the symbol is defined and dynamic. In an
3116 executable it must resolve locally, likewise when building symbolic
3117 shared libraries. */
3118 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3119 return TRUE;
3120
3121 /* Now deal with defined dynamic symbols in shared libraries. Ones
3122 with default visibility might not resolve locally. */
3123 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3124 return FALSE;
3125
3126 hash_table = elf_hash_table (info);
3127 if (!is_elf_hash_table (hash_table))
3128 return TRUE;
3129
3130 bed = get_elf_backend_data (hash_table->dynobj);
3131
3132 /* If extern_protected_data is false, STV_PROTECTED non-function
3133 symbols are local. */
3134 if ((!info->extern_protected_data
3135 || (info->extern_protected_data < 0
3136 && !bed->extern_protected_data))
3137 && !bed->is_function_type (h->type))
3138 return TRUE;
3139
3140 /* Function pointer equality tests may require that STV_PROTECTED
3141 symbols be treated as dynamic symbols. If the address of a
3142 function not defined in an executable is set to that function's
3143 plt entry in the executable, then the address of the function in
3144 a shared library must also be the plt entry in the executable. */
3145 return local_protected;
3146 }
3147
3148 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3149 aligned. Returns the first TLS output section. */
3150
3151 struct bfd_section *
3152 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3153 {
3154 struct bfd_section *sec, *tls;
3155 unsigned int align = 0;
3156
3157 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3158 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3159 break;
3160 tls = sec;
3161
3162 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3163 if (sec->alignment_power > align)
3164 align = sec->alignment_power;
3165
3166 elf_hash_table (info)->tls_sec = tls;
3167
3168 /* Ensure the alignment of the first section is the largest alignment,
3169 so that the tls segment starts aligned. */
3170 if (tls != NULL)
3171 tls->alignment_power = align;
3172
3173 return tls;
3174 }
3175
3176 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3177 static bfd_boolean
3178 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3179 Elf_Internal_Sym *sym)
3180 {
3181 const struct elf_backend_data *bed;
3182
3183 /* Local symbols do not count, but target specific ones might. */
3184 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3185 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3186 return FALSE;
3187
3188 bed = get_elf_backend_data (abfd);
3189 /* Function symbols do not count. */
3190 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3191 return FALSE;
3192
3193 /* If the section is undefined, then so is the symbol. */
3194 if (sym->st_shndx == SHN_UNDEF)
3195 return FALSE;
3196
3197 /* If the symbol is defined in the common section, then
3198 it is a common definition and so does not count. */
3199 if (bed->common_definition (sym))
3200 return FALSE;
3201
3202 /* If the symbol is in a target specific section then we
3203 must rely upon the backend to tell us what it is. */
3204 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3205 /* FIXME - this function is not coded yet:
3206
3207 return _bfd_is_global_symbol_definition (abfd, sym);
3208
3209 Instead for now assume that the definition is not global,
3210 Even if this is wrong, at least the linker will behave
3211 in the same way that it used to do. */
3212 return FALSE;
3213
3214 return TRUE;
3215 }
3216
3217 /* Search the symbol table of the archive element of the archive ABFD
3218 whose archive map contains a mention of SYMDEF, and determine if
3219 the symbol is defined in this element. */
3220 static bfd_boolean
3221 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3222 {
3223 Elf_Internal_Shdr * hdr;
3224 size_t symcount;
3225 size_t extsymcount;
3226 size_t extsymoff;
3227 Elf_Internal_Sym *isymbuf;
3228 Elf_Internal_Sym *isym;
3229 Elf_Internal_Sym *isymend;
3230 bfd_boolean result;
3231
3232 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3233 if (abfd == NULL)
3234 return FALSE;
3235
3236 if (! bfd_check_format (abfd, bfd_object))
3237 return FALSE;
3238
3239 /* Select the appropriate symbol table. If we don't know if the
3240 object file is an IR object, give linker LTO plugin a chance to
3241 get the correct symbol table. */
3242 if (abfd->plugin_format == bfd_plugin_yes
3243 #if BFD_SUPPORTS_PLUGINS
3244 || (abfd->plugin_format == bfd_plugin_unknown
3245 && bfd_link_plugin_object_p (abfd))
3246 #endif
3247 )
3248 {
3249 /* Use the IR symbol table if the object has been claimed by
3250 plugin. */
3251 abfd = abfd->plugin_dummy_bfd;
3252 hdr = &elf_tdata (abfd)->symtab_hdr;
3253 }
3254 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3255 hdr = &elf_tdata (abfd)->symtab_hdr;
3256 else
3257 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3258
3259 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3260
3261 /* The sh_info field of the symtab header tells us where the
3262 external symbols start. We don't care about the local symbols. */
3263 if (elf_bad_symtab (abfd))
3264 {
3265 extsymcount = symcount;
3266 extsymoff = 0;
3267 }
3268 else
3269 {
3270 extsymcount = symcount - hdr->sh_info;
3271 extsymoff = hdr->sh_info;
3272 }
3273
3274 if (extsymcount == 0)
3275 return FALSE;
3276
3277 /* Read in the symbol table. */
3278 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3279 NULL, NULL, NULL);
3280 if (isymbuf == NULL)
3281 return FALSE;
3282
3283 /* Scan the symbol table looking for SYMDEF. */
3284 result = FALSE;
3285 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3286 {
3287 const char *name;
3288
3289 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3290 isym->st_name);
3291 if (name == NULL)
3292 break;
3293
3294 if (strcmp (name, symdef->name) == 0)
3295 {
3296 result = is_global_data_symbol_definition (abfd, isym);
3297 break;
3298 }
3299 }
3300
3301 free (isymbuf);
3302
3303 return result;
3304 }
3305 \f
3306 /* Add an entry to the .dynamic table. */
3307
3308 bfd_boolean
3309 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3310 bfd_vma tag,
3311 bfd_vma val)
3312 {
3313 struct elf_link_hash_table *hash_table;
3314 const struct elf_backend_data *bed;
3315 asection *s;
3316 bfd_size_type newsize;
3317 bfd_byte *newcontents;
3318 Elf_Internal_Dyn dyn;
3319
3320 hash_table = elf_hash_table (info);
3321 if (! is_elf_hash_table (hash_table))
3322 return FALSE;
3323
3324 bed = get_elf_backend_data (hash_table->dynobj);
3325 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3326 BFD_ASSERT (s != NULL);
3327
3328 newsize = s->size + bed->s->sizeof_dyn;
3329 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3330 if (newcontents == NULL)
3331 return FALSE;
3332
3333 dyn.d_tag = tag;
3334 dyn.d_un.d_val = val;
3335 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3336
3337 s->size = newsize;
3338 s->contents = newcontents;
3339
3340 return TRUE;
3341 }
3342
3343 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3344 otherwise just check whether one already exists. Returns -1 on error,
3345 1 if a DT_NEEDED tag already exists, and 0 on success. */
3346
3347 static int
3348 elf_add_dt_needed_tag (bfd *abfd,
3349 struct bfd_link_info *info,
3350 const char *soname,
3351 bfd_boolean do_it)
3352 {
3353 struct elf_link_hash_table *hash_table;
3354 size_t strindex;
3355
3356 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3357 return -1;
3358
3359 hash_table = elf_hash_table (info);
3360 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3361 if (strindex == (size_t) -1)
3362 return -1;
3363
3364 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3365 {
3366 asection *sdyn;
3367 const struct elf_backend_data *bed;
3368 bfd_byte *extdyn;
3369
3370 bed = get_elf_backend_data (hash_table->dynobj);
3371 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3372 if (sdyn != NULL)
3373 for (extdyn = sdyn->contents;
3374 extdyn < sdyn->contents + sdyn->size;
3375 extdyn += bed->s->sizeof_dyn)
3376 {
3377 Elf_Internal_Dyn dyn;
3378
3379 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3380 if (dyn.d_tag == DT_NEEDED
3381 && dyn.d_un.d_val == strindex)
3382 {
3383 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3384 return 1;
3385 }
3386 }
3387 }
3388
3389 if (do_it)
3390 {
3391 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3392 return -1;
3393
3394 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3395 return -1;
3396 }
3397 else
3398 /* We were just checking for existence of the tag. */
3399 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3400
3401 return 0;
3402 }
3403
3404 /* Return true if SONAME is on the needed list between NEEDED and STOP
3405 (or the end of list if STOP is NULL), and needed by a library that
3406 will be loaded. */
3407
3408 static bfd_boolean
3409 on_needed_list (const char *soname,
3410 struct bfd_link_needed_list *needed,
3411 struct bfd_link_needed_list *stop)
3412 {
3413 struct bfd_link_needed_list *look;
3414 for (look = needed; look != stop; look = look->next)
3415 if (strcmp (soname, look->name) == 0
3416 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3417 /* If needed by a library that itself is not directly
3418 needed, recursively check whether that library is
3419 indirectly needed. Since we add DT_NEEDED entries to
3420 the end of the list, library dependencies appear after
3421 the library. Therefore search prior to the current
3422 LOOK, preventing possible infinite recursion. */
3423 || on_needed_list (elf_dt_name (look->by), needed, look)))
3424 return TRUE;
3425
3426 return FALSE;
3427 }
3428
3429 /* Sort symbol by value, section, and size. */
3430 static int
3431 elf_sort_symbol (const void *arg1, const void *arg2)
3432 {
3433 const struct elf_link_hash_entry *h1;
3434 const struct elf_link_hash_entry *h2;
3435 bfd_signed_vma vdiff;
3436
3437 h1 = *(const struct elf_link_hash_entry **) arg1;
3438 h2 = *(const struct elf_link_hash_entry **) arg2;
3439 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3440 if (vdiff != 0)
3441 return vdiff > 0 ? 1 : -1;
3442 else
3443 {
3444 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3445 if (sdiff != 0)
3446 return sdiff > 0 ? 1 : -1;
3447 }
3448 vdiff = h1->size - h2->size;
3449 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3450 }
3451
3452 /* This function is used to adjust offsets into .dynstr for
3453 dynamic symbols. This is called via elf_link_hash_traverse. */
3454
3455 static bfd_boolean
3456 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3457 {
3458 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3459
3460 if (h->dynindx != -1)
3461 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3462 return TRUE;
3463 }
3464
3465 /* Assign string offsets in .dynstr, update all structures referencing
3466 them. */
3467
3468 static bfd_boolean
3469 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3470 {
3471 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3472 struct elf_link_local_dynamic_entry *entry;
3473 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3474 bfd *dynobj = hash_table->dynobj;
3475 asection *sdyn;
3476 bfd_size_type size;
3477 const struct elf_backend_data *bed;
3478 bfd_byte *extdyn;
3479
3480 _bfd_elf_strtab_finalize (dynstr);
3481 size = _bfd_elf_strtab_size (dynstr);
3482
3483 bed = get_elf_backend_data (dynobj);
3484 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3485 BFD_ASSERT (sdyn != NULL);
3486
3487 /* Update all .dynamic entries referencing .dynstr strings. */
3488 for (extdyn = sdyn->contents;
3489 extdyn < sdyn->contents + sdyn->size;
3490 extdyn += bed->s->sizeof_dyn)
3491 {
3492 Elf_Internal_Dyn dyn;
3493
3494 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3495 switch (dyn.d_tag)
3496 {
3497 case DT_STRSZ:
3498 dyn.d_un.d_val = size;
3499 break;
3500 case DT_NEEDED:
3501 case DT_SONAME:
3502 case DT_RPATH:
3503 case DT_RUNPATH:
3504 case DT_FILTER:
3505 case DT_AUXILIARY:
3506 case DT_AUDIT:
3507 case DT_DEPAUDIT:
3508 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3509 break;
3510 default:
3511 continue;
3512 }
3513 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3514 }
3515
3516 /* Now update local dynamic symbols. */
3517 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3518 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3519 entry->isym.st_name);
3520
3521 /* And the rest of dynamic symbols. */
3522 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3523
3524 /* Adjust version definitions. */
3525 if (elf_tdata (output_bfd)->cverdefs)
3526 {
3527 asection *s;
3528 bfd_byte *p;
3529 size_t i;
3530 Elf_Internal_Verdef def;
3531 Elf_Internal_Verdaux defaux;
3532
3533 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3534 p = s->contents;
3535 do
3536 {
3537 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3538 &def);
3539 p += sizeof (Elf_External_Verdef);
3540 if (def.vd_aux != sizeof (Elf_External_Verdef))
3541 continue;
3542 for (i = 0; i < def.vd_cnt; ++i)
3543 {
3544 _bfd_elf_swap_verdaux_in (output_bfd,
3545 (Elf_External_Verdaux *) p, &defaux);
3546 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3547 defaux.vda_name);
3548 _bfd_elf_swap_verdaux_out (output_bfd,
3549 &defaux, (Elf_External_Verdaux *) p);
3550 p += sizeof (Elf_External_Verdaux);
3551 }
3552 }
3553 while (def.vd_next);
3554 }
3555
3556 /* Adjust version references. */
3557 if (elf_tdata (output_bfd)->verref)
3558 {
3559 asection *s;
3560 bfd_byte *p;
3561 size_t i;
3562 Elf_Internal_Verneed need;
3563 Elf_Internal_Vernaux needaux;
3564
3565 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3566 p = s->contents;
3567 do
3568 {
3569 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3570 &need);
3571 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3572 _bfd_elf_swap_verneed_out (output_bfd, &need,
3573 (Elf_External_Verneed *) p);
3574 p += sizeof (Elf_External_Verneed);
3575 for (i = 0; i < need.vn_cnt; ++i)
3576 {
3577 _bfd_elf_swap_vernaux_in (output_bfd,
3578 (Elf_External_Vernaux *) p, &needaux);
3579 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3580 needaux.vna_name);
3581 _bfd_elf_swap_vernaux_out (output_bfd,
3582 &needaux,
3583 (Elf_External_Vernaux *) p);
3584 p += sizeof (Elf_External_Vernaux);
3585 }
3586 }
3587 while (need.vn_next);
3588 }
3589
3590 return TRUE;
3591 }
3592 \f
3593 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3594 The default is to only match when the INPUT and OUTPUT are exactly
3595 the same target. */
3596
3597 bfd_boolean
3598 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3599 const bfd_target *output)
3600 {
3601 return input == output;
3602 }
3603
3604 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3605 This version is used when different targets for the same architecture
3606 are virtually identical. */
3607
3608 bfd_boolean
3609 _bfd_elf_relocs_compatible (const bfd_target *input,
3610 const bfd_target *output)
3611 {
3612 const struct elf_backend_data *obed, *ibed;
3613
3614 if (input == output)
3615 return TRUE;
3616
3617 ibed = xvec_get_elf_backend_data (input);
3618 obed = xvec_get_elf_backend_data (output);
3619
3620 if (ibed->arch != obed->arch)
3621 return FALSE;
3622
3623 /* If both backends are using this function, deem them compatible. */
3624 return ibed->relocs_compatible == obed->relocs_compatible;
3625 }
3626
3627 /* Make a special call to the linker "notice" function to tell it that
3628 we are about to handle an as-needed lib, or have finished
3629 processing the lib. */
3630
3631 bfd_boolean
3632 _bfd_elf_notice_as_needed (bfd *ibfd,
3633 struct bfd_link_info *info,
3634 enum notice_asneeded_action act)
3635 {
3636 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3637 }
3638
3639 /* Check relocations an ELF object file. */
3640
3641 bfd_boolean
3642 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3643 {
3644 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3645 struct elf_link_hash_table *htab = elf_hash_table (info);
3646
3647 /* If this object is the same format as the output object, and it is
3648 not a shared library, then let the backend look through the
3649 relocs.
3650
3651 This is required to build global offset table entries and to
3652 arrange for dynamic relocs. It is not required for the
3653 particular common case of linking non PIC code, even when linking
3654 against shared libraries, but unfortunately there is no way of
3655 knowing whether an object file has been compiled PIC or not.
3656 Looking through the relocs is not particularly time consuming.
3657 The problem is that we must either (1) keep the relocs in memory,
3658 which causes the linker to require additional runtime memory or
3659 (2) read the relocs twice from the input file, which wastes time.
3660 This would be a good case for using mmap.
3661
3662 I have no idea how to handle linking PIC code into a file of a
3663 different format. It probably can't be done. */
3664 if ((abfd->flags & DYNAMIC) == 0
3665 && is_elf_hash_table (htab)
3666 && bed->check_relocs != NULL
3667 && elf_object_id (abfd) == elf_hash_table_id (htab)
3668 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3669 {
3670 asection *o;
3671
3672 for (o = abfd->sections; o != NULL; o = o->next)
3673 {
3674 Elf_Internal_Rela *internal_relocs;
3675 bfd_boolean ok;
3676
3677 /* Don't check relocations in excluded sections. */
3678 if ((o->flags & SEC_RELOC) == 0
3679 || (o->flags & SEC_EXCLUDE) != 0
3680 || o->reloc_count == 0
3681 || ((info->strip == strip_all || info->strip == strip_debugger)
3682 && (o->flags & SEC_DEBUGGING) != 0)
3683 || bfd_is_abs_section (o->output_section))
3684 continue;
3685
3686 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3687 info->keep_memory);
3688 if (internal_relocs == NULL)
3689 return FALSE;
3690
3691 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3692
3693 if (elf_section_data (o)->relocs != internal_relocs)
3694 free (internal_relocs);
3695
3696 if (! ok)
3697 return FALSE;
3698 }
3699 }
3700
3701 return TRUE;
3702 }
3703
3704 /* Add symbols from an ELF object file to the linker hash table. */
3705
3706 static bfd_boolean
3707 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3708 {
3709 Elf_Internal_Ehdr *ehdr;
3710 Elf_Internal_Shdr *hdr;
3711 size_t symcount;
3712 size_t extsymcount;
3713 size_t extsymoff;
3714 struct elf_link_hash_entry **sym_hash;
3715 bfd_boolean dynamic;
3716 Elf_External_Versym *extversym = NULL;
3717 Elf_External_Versym *ever;
3718 struct elf_link_hash_entry *weaks;
3719 struct elf_link_hash_entry **nondeflt_vers = NULL;
3720 size_t nondeflt_vers_cnt = 0;
3721 Elf_Internal_Sym *isymbuf = NULL;
3722 Elf_Internal_Sym *isym;
3723 Elf_Internal_Sym *isymend;
3724 const struct elf_backend_data *bed;
3725 bfd_boolean add_needed;
3726 struct elf_link_hash_table *htab;
3727 bfd_size_type amt;
3728 void *alloc_mark = NULL;
3729 struct bfd_hash_entry **old_table = NULL;
3730 unsigned int old_size = 0;
3731 unsigned int old_count = 0;
3732 void *old_tab = NULL;
3733 void *old_ent;
3734 struct bfd_link_hash_entry *old_undefs = NULL;
3735 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3736 void *old_strtab = NULL;
3737 size_t tabsize = 0;
3738 asection *s;
3739 bfd_boolean just_syms;
3740
3741 htab = elf_hash_table (info);
3742 bed = get_elf_backend_data (abfd);
3743
3744 if ((abfd->flags & DYNAMIC) == 0)
3745 dynamic = FALSE;
3746 else
3747 {
3748 dynamic = TRUE;
3749
3750 /* You can't use -r against a dynamic object. Also, there's no
3751 hope of using a dynamic object which does not exactly match
3752 the format of the output file. */
3753 if (bfd_link_relocatable (info)
3754 || !is_elf_hash_table (htab)
3755 || info->output_bfd->xvec != abfd->xvec)
3756 {
3757 if (bfd_link_relocatable (info))
3758 bfd_set_error (bfd_error_invalid_operation);
3759 else
3760 bfd_set_error (bfd_error_wrong_format);
3761 goto error_return;
3762 }
3763 }
3764
3765 ehdr = elf_elfheader (abfd);
3766 if (info->warn_alternate_em
3767 && bed->elf_machine_code != ehdr->e_machine
3768 && ((bed->elf_machine_alt1 != 0
3769 && ehdr->e_machine == bed->elf_machine_alt1)
3770 || (bed->elf_machine_alt2 != 0
3771 && ehdr->e_machine == bed->elf_machine_alt2)))
3772 info->callbacks->einfo
3773 /* xgettext:c-format */
3774 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3775 ehdr->e_machine, abfd, bed->elf_machine_code);
3776
3777 /* As a GNU extension, any input sections which are named
3778 .gnu.warning.SYMBOL are treated as warning symbols for the given
3779 symbol. This differs from .gnu.warning sections, which generate
3780 warnings when they are included in an output file. */
3781 /* PR 12761: Also generate this warning when building shared libraries. */
3782 for (s = abfd->sections; s != NULL; s = s->next)
3783 {
3784 const char *name;
3785
3786 name = bfd_get_section_name (abfd, s);
3787 if (CONST_STRNEQ (name, ".gnu.warning."))
3788 {
3789 char *msg;
3790 bfd_size_type sz;
3791
3792 name += sizeof ".gnu.warning." - 1;
3793
3794 /* If this is a shared object, then look up the symbol
3795 in the hash table. If it is there, and it is already
3796 been defined, then we will not be using the entry
3797 from this shared object, so we don't need to warn.
3798 FIXME: If we see the definition in a regular object
3799 later on, we will warn, but we shouldn't. The only
3800 fix is to keep track of what warnings we are supposed
3801 to emit, and then handle them all at the end of the
3802 link. */
3803 if (dynamic)
3804 {
3805 struct elf_link_hash_entry *h;
3806
3807 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3808
3809 /* FIXME: What about bfd_link_hash_common? */
3810 if (h != NULL
3811 && (h->root.type == bfd_link_hash_defined
3812 || h->root.type == bfd_link_hash_defweak))
3813 continue;
3814 }
3815
3816 sz = s->size;
3817 msg = (char *) bfd_alloc (abfd, sz + 1);
3818 if (msg == NULL)
3819 goto error_return;
3820
3821 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3822 goto error_return;
3823
3824 msg[sz] = '\0';
3825
3826 if (! (_bfd_generic_link_add_one_symbol
3827 (info, abfd, name, BSF_WARNING, s, 0, msg,
3828 FALSE, bed->collect, NULL)))
3829 goto error_return;
3830
3831 if (bfd_link_executable (info))
3832 {
3833 /* Clobber the section size so that the warning does
3834 not get copied into the output file. */
3835 s->size = 0;
3836
3837 /* Also set SEC_EXCLUDE, so that symbols defined in
3838 the warning section don't get copied to the output. */
3839 s->flags |= SEC_EXCLUDE;
3840 }
3841 }
3842 }
3843
3844 just_syms = ((s = abfd->sections) != NULL
3845 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3846
3847 add_needed = TRUE;
3848 if (! dynamic)
3849 {
3850 /* If we are creating a shared library, create all the dynamic
3851 sections immediately. We need to attach them to something,
3852 so we attach them to this BFD, provided it is the right
3853 format and is not from ld --just-symbols. Always create the
3854 dynamic sections for -E/--dynamic-list. FIXME: If there
3855 are no input BFD's of the same format as the output, we can't
3856 make a shared library. */
3857 if (!just_syms
3858 && (bfd_link_pic (info)
3859 || (!bfd_link_relocatable (info)
3860 && info->nointerp
3861 && (info->export_dynamic || info->dynamic)))
3862 && is_elf_hash_table (htab)
3863 && info->output_bfd->xvec == abfd->xvec
3864 && !htab->dynamic_sections_created)
3865 {
3866 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3867 goto error_return;
3868 }
3869 }
3870 else if (!is_elf_hash_table (htab))
3871 goto error_return;
3872 else
3873 {
3874 const char *soname = NULL;
3875 char *audit = NULL;
3876 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3877 const Elf_Internal_Phdr *phdr;
3878 int ret;
3879
3880 /* ld --just-symbols and dynamic objects don't mix very well.
3881 ld shouldn't allow it. */
3882 if (just_syms)
3883 abort ();
3884
3885 /* If this dynamic lib was specified on the command line with
3886 --as-needed in effect, then we don't want to add a DT_NEEDED
3887 tag unless the lib is actually used. Similary for libs brought
3888 in by another lib's DT_NEEDED. When --no-add-needed is used
3889 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3890 any dynamic library in DT_NEEDED tags in the dynamic lib at
3891 all. */
3892 add_needed = (elf_dyn_lib_class (abfd)
3893 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3894 | DYN_NO_NEEDED)) == 0;
3895
3896 s = bfd_get_section_by_name (abfd, ".dynamic");
3897 if (s != NULL)
3898 {
3899 bfd_byte *dynbuf;
3900 bfd_byte *extdyn;
3901 unsigned int elfsec;
3902 unsigned long shlink;
3903
3904 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3905 {
3906 error_free_dyn:
3907 free (dynbuf);
3908 goto error_return;
3909 }
3910
3911 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3912 if (elfsec == SHN_BAD)
3913 goto error_free_dyn;
3914 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3915
3916 for (extdyn = dynbuf;
3917 extdyn < dynbuf + s->size;
3918 extdyn += bed->s->sizeof_dyn)
3919 {
3920 Elf_Internal_Dyn dyn;
3921
3922 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3923 if (dyn.d_tag == DT_SONAME)
3924 {
3925 unsigned int tagv = dyn.d_un.d_val;
3926 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3927 if (soname == NULL)
3928 goto error_free_dyn;
3929 }
3930 if (dyn.d_tag == DT_NEEDED)
3931 {
3932 struct bfd_link_needed_list *n, **pn;
3933 char *fnm, *anm;
3934 unsigned int tagv = dyn.d_un.d_val;
3935
3936 amt = sizeof (struct bfd_link_needed_list);
3937 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3938 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3939 if (n == NULL || fnm == NULL)
3940 goto error_free_dyn;
3941 amt = strlen (fnm) + 1;
3942 anm = (char *) bfd_alloc (abfd, amt);
3943 if (anm == NULL)
3944 goto error_free_dyn;
3945 memcpy (anm, fnm, amt);
3946 n->name = anm;
3947 n->by = abfd;
3948 n->next = NULL;
3949 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3950 ;
3951 *pn = n;
3952 }
3953 if (dyn.d_tag == DT_RUNPATH)
3954 {
3955 struct bfd_link_needed_list *n, **pn;
3956 char *fnm, *anm;
3957 unsigned int tagv = dyn.d_un.d_val;
3958
3959 amt = sizeof (struct bfd_link_needed_list);
3960 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3961 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3962 if (n == NULL || fnm == NULL)
3963 goto error_free_dyn;
3964 amt = strlen (fnm) + 1;
3965 anm = (char *) bfd_alloc (abfd, amt);
3966 if (anm == NULL)
3967 goto error_free_dyn;
3968 memcpy (anm, fnm, amt);
3969 n->name = anm;
3970 n->by = abfd;
3971 n->next = NULL;
3972 for (pn = & runpath;
3973 *pn != NULL;
3974 pn = &(*pn)->next)
3975 ;
3976 *pn = n;
3977 }
3978 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3979 if (!runpath && dyn.d_tag == DT_RPATH)
3980 {
3981 struct bfd_link_needed_list *n, **pn;
3982 char *fnm, *anm;
3983 unsigned int tagv = dyn.d_un.d_val;
3984
3985 amt = sizeof (struct bfd_link_needed_list);
3986 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3987 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3988 if (n == NULL || fnm == NULL)
3989 goto error_free_dyn;
3990 amt = strlen (fnm) + 1;
3991 anm = (char *) bfd_alloc (abfd, amt);
3992 if (anm == NULL)
3993 goto error_free_dyn;
3994 memcpy (anm, fnm, amt);
3995 n->name = anm;
3996 n->by = abfd;
3997 n->next = NULL;
3998 for (pn = & rpath;
3999 *pn != NULL;
4000 pn = &(*pn)->next)
4001 ;
4002 *pn = n;
4003 }
4004 if (dyn.d_tag == DT_AUDIT)
4005 {
4006 unsigned int tagv = dyn.d_un.d_val;
4007 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4008 }
4009 }
4010
4011 free (dynbuf);
4012 }
4013
4014 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4015 frees all more recently bfd_alloc'd blocks as well. */
4016 if (runpath)
4017 rpath = runpath;
4018
4019 if (rpath)
4020 {
4021 struct bfd_link_needed_list **pn;
4022 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4023 ;
4024 *pn = rpath;
4025 }
4026
4027 /* If we have a PT_GNU_RELRO program header, mark as read-only
4028 all sections contained fully therein. This makes relro
4029 shared library sections appear as they will at run-time. */
4030 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4031 while (--phdr >= elf_tdata (abfd)->phdr)
4032 if (phdr->p_type == PT_GNU_RELRO)
4033 {
4034 for (s = abfd->sections; s != NULL; s = s->next)
4035 if ((s->flags & SEC_ALLOC) != 0
4036 && s->vma >= phdr->p_vaddr
4037 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4038 s->flags |= SEC_READONLY;
4039 break;
4040 }
4041
4042 /* We do not want to include any of the sections in a dynamic
4043 object in the output file. We hack by simply clobbering the
4044 list of sections in the BFD. This could be handled more
4045 cleanly by, say, a new section flag; the existing
4046 SEC_NEVER_LOAD flag is not the one we want, because that one
4047 still implies that the section takes up space in the output
4048 file. */
4049 bfd_section_list_clear (abfd);
4050
4051 /* Find the name to use in a DT_NEEDED entry that refers to this
4052 object. If the object has a DT_SONAME entry, we use it.
4053 Otherwise, if the generic linker stuck something in
4054 elf_dt_name, we use that. Otherwise, we just use the file
4055 name. */
4056 if (soname == NULL || *soname == '\0')
4057 {
4058 soname = elf_dt_name (abfd);
4059 if (soname == NULL || *soname == '\0')
4060 soname = bfd_get_filename (abfd);
4061 }
4062
4063 /* Save the SONAME because sometimes the linker emulation code
4064 will need to know it. */
4065 elf_dt_name (abfd) = soname;
4066
4067 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4068 if (ret < 0)
4069 goto error_return;
4070
4071 /* If we have already included this dynamic object in the
4072 link, just ignore it. There is no reason to include a
4073 particular dynamic object more than once. */
4074 if (ret > 0)
4075 return TRUE;
4076
4077 /* Save the DT_AUDIT entry for the linker emulation code. */
4078 elf_dt_audit (abfd) = audit;
4079 }
4080
4081 /* If this is a dynamic object, we always link against the .dynsym
4082 symbol table, not the .symtab symbol table. The dynamic linker
4083 will only see the .dynsym symbol table, so there is no reason to
4084 look at .symtab for a dynamic object. */
4085
4086 if (! dynamic || elf_dynsymtab (abfd) == 0)
4087 hdr = &elf_tdata (abfd)->symtab_hdr;
4088 else
4089 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4090
4091 symcount = hdr->sh_size / bed->s->sizeof_sym;
4092
4093 /* The sh_info field of the symtab header tells us where the
4094 external symbols start. We don't care about the local symbols at
4095 this point. */
4096 if (elf_bad_symtab (abfd))
4097 {
4098 extsymcount = symcount;
4099 extsymoff = 0;
4100 }
4101 else
4102 {
4103 extsymcount = symcount - hdr->sh_info;
4104 extsymoff = hdr->sh_info;
4105 }
4106
4107 sym_hash = elf_sym_hashes (abfd);
4108 if (extsymcount != 0)
4109 {
4110 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4111 NULL, NULL, NULL);
4112 if (isymbuf == NULL)
4113 goto error_return;
4114
4115 if (sym_hash == NULL)
4116 {
4117 /* We store a pointer to the hash table entry for each
4118 external symbol. */
4119 amt = extsymcount;
4120 amt *= sizeof (struct elf_link_hash_entry *);
4121 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4122 if (sym_hash == NULL)
4123 goto error_free_sym;
4124 elf_sym_hashes (abfd) = sym_hash;
4125 }
4126 }
4127
4128 if (dynamic)
4129 {
4130 /* Read in any version definitions. */
4131 if (!_bfd_elf_slurp_version_tables (abfd,
4132 info->default_imported_symver))
4133 goto error_free_sym;
4134
4135 /* Read in the symbol versions, but don't bother to convert them
4136 to internal format. */
4137 if (elf_dynversym (abfd) != 0)
4138 {
4139 Elf_Internal_Shdr *versymhdr;
4140
4141 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4142 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4143 if (extversym == NULL)
4144 goto error_free_sym;
4145 amt = versymhdr->sh_size;
4146 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4147 || bfd_bread (extversym, amt, abfd) != amt)
4148 goto error_free_vers;
4149 }
4150 }
4151
4152 /* If we are loading an as-needed shared lib, save the symbol table
4153 state before we start adding symbols. If the lib turns out
4154 to be unneeded, restore the state. */
4155 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4156 {
4157 unsigned int i;
4158 size_t entsize;
4159
4160 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4161 {
4162 struct bfd_hash_entry *p;
4163 struct elf_link_hash_entry *h;
4164
4165 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4166 {
4167 h = (struct elf_link_hash_entry *) p;
4168 entsize += htab->root.table.entsize;
4169 if (h->root.type == bfd_link_hash_warning)
4170 entsize += htab->root.table.entsize;
4171 }
4172 }
4173
4174 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4175 old_tab = bfd_malloc (tabsize + entsize);
4176 if (old_tab == NULL)
4177 goto error_free_vers;
4178
4179 /* Remember the current objalloc pointer, so that all mem for
4180 symbols added can later be reclaimed. */
4181 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4182 if (alloc_mark == NULL)
4183 goto error_free_vers;
4184
4185 /* Make a special call to the linker "notice" function to
4186 tell it that we are about to handle an as-needed lib. */
4187 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4188 goto error_free_vers;
4189
4190 /* Clone the symbol table. Remember some pointers into the
4191 symbol table, and dynamic symbol count. */
4192 old_ent = (char *) old_tab + tabsize;
4193 memcpy (old_tab, htab->root.table.table, tabsize);
4194 old_undefs = htab->root.undefs;
4195 old_undefs_tail = htab->root.undefs_tail;
4196 old_table = htab->root.table.table;
4197 old_size = htab->root.table.size;
4198 old_count = htab->root.table.count;
4199 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4200 if (old_strtab == NULL)
4201 goto error_free_vers;
4202
4203 for (i = 0; i < htab->root.table.size; i++)
4204 {
4205 struct bfd_hash_entry *p;
4206 struct elf_link_hash_entry *h;
4207
4208 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4209 {
4210 memcpy (old_ent, p, htab->root.table.entsize);
4211 old_ent = (char *) old_ent + htab->root.table.entsize;
4212 h = (struct elf_link_hash_entry *) p;
4213 if (h->root.type == bfd_link_hash_warning)
4214 {
4215 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4216 old_ent = (char *) old_ent + htab->root.table.entsize;
4217 }
4218 }
4219 }
4220 }
4221
4222 weaks = NULL;
4223 ever = extversym != NULL ? extversym + extsymoff : NULL;
4224 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4225 isym < isymend;
4226 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4227 {
4228 int bind;
4229 bfd_vma value;
4230 asection *sec, *new_sec;
4231 flagword flags;
4232 const char *name;
4233 struct elf_link_hash_entry *h;
4234 struct elf_link_hash_entry *hi;
4235 bfd_boolean definition;
4236 bfd_boolean size_change_ok;
4237 bfd_boolean type_change_ok;
4238 bfd_boolean new_weakdef;
4239 bfd_boolean new_weak;
4240 bfd_boolean old_weak;
4241 bfd_boolean override;
4242 bfd_boolean common;
4243 bfd_boolean discarded;
4244 unsigned int old_alignment;
4245 bfd *old_bfd;
4246 bfd_boolean matched;
4247
4248 override = FALSE;
4249
4250 flags = BSF_NO_FLAGS;
4251 sec = NULL;
4252 value = isym->st_value;
4253 common = bed->common_definition (isym);
4254 discarded = FALSE;
4255
4256 bind = ELF_ST_BIND (isym->st_info);
4257 switch (bind)
4258 {
4259 case STB_LOCAL:
4260 /* This should be impossible, since ELF requires that all
4261 global symbols follow all local symbols, and that sh_info
4262 point to the first global symbol. Unfortunately, Irix 5
4263 screws this up. */
4264 continue;
4265
4266 case STB_GLOBAL:
4267 if (isym->st_shndx != SHN_UNDEF && !common)
4268 flags = BSF_GLOBAL;
4269 break;
4270
4271 case STB_WEAK:
4272 flags = BSF_WEAK;
4273 break;
4274
4275 case STB_GNU_UNIQUE:
4276 flags = BSF_GNU_UNIQUE;
4277 break;
4278
4279 default:
4280 /* Leave it up to the processor backend. */
4281 break;
4282 }
4283
4284 if (isym->st_shndx == SHN_UNDEF)
4285 sec = bfd_und_section_ptr;
4286 else if (isym->st_shndx == SHN_ABS)
4287 sec = bfd_abs_section_ptr;
4288 else if (isym->st_shndx == SHN_COMMON)
4289 {
4290 sec = bfd_com_section_ptr;
4291 /* What ELF calls the size we call the value. What ELF
4292 calls the value we call the alignment. */
4293 value = isym->st_size;
4294 }
4295 else
4296 {
4297 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4298 if (sec == NULL)
4299 sec = bfd_abs_section_ptr;
4300 else if (discarded_section (sec))
4301 {
4302 /* Symbols from discarded section are undefined. We keep
4303 its visibility. */
4304 sec = bfd_und_section_ptr;
4305 discarded = TRUE;
4306 isym->st_shndx = SHN_UNDEF;
4307 }
4308 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4309 value -= sec->vma;
4310 }
4311
4312 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4313 isym->st_name);
4314 if (name == NULL)
4315 goto error_free_vers;
4316
4317 if (isym->st_shndx == SHN_COMMON
4318 && (abfd->flags & BFD_PLUGIN) != 0)
4319 {
4320 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4321
4322 if (xc == NULL)
4323 {
4324 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4325 | SEC_EXCLUDE);
4326 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4327 if (xc == NULL)
4328 goto error_free_vers;
4329 }
4330 sec = xc;
4331 }
4332 else if (isym->st_shndx == SHN_COMMON
4333 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4334 && !bfd_link_relocatable (info))
4335 {
4336 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4337
4338 if (tcomm == NULL)
4339 {
4340 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4341 | SEC_LINKER_CREATED);
4342 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4343 if (tcomm == NULL)
4344 goto error_free_vers;
4345 }
4346 sec = tcomm;
4347 }
4348 else if (bed->elf_add_symbol_hook)
4349 {
4350 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4351 &sec, &value))
4352 goto error_free_vers;
4353
4354 /* The hook function sets the name to NULL if this symbol
4355 should be skipped for some reason. */
4356 if (name == NULL)
4357 continue;
4358 }
4359
4360 /* Sanity check that all possibilities were handled. */
4361 if (sec == NULL)
4362 {
4363 bfd_set_error (bfd_error_bad_value);
4364 goto error_free_vers;
4365 }
4366
4367 /* Silently discard TLS symbols from --just-syms. There's
4368 no way to combine a static TLS block with a new TLS block
4369 for this executable. */
4370 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4371 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4372 continue;
4373
4374 if (bfd_is_und_section (sec)
4375 || bfd_is_com_section (sec))
4376 definition = FALSE;
4377 else
4378 definition = TRUE;
4379
4380 size_change_ok = FALSE;
4381 type_change_ok = bed->type_change_ok;
4382 old_weak = FALSE;
4383 matched = FALSE;
4384 old_alignment = 0;
4385 old_bfd = NULL;
4386 new_sec = sec;
4387
4388 if (is_elf_hash_table (htab))
4389 {
4390 Elf_Internal_Versym iver;
4391 unsigned int vernum = 0;
4392 bfd_boolean skip;
4393
4394 if (ever == NULL)
4395 {
4396 if (info->default_imported_symver)
4397 /* Use the default symbol version created earlier. */
4398 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4399 else
4400 iver.vs_vers = 0;
4401 }
4402 else
4403 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4404
4405 vernum = iver.vs_vers & VERSYM_VERSION;
4406
4407 /* If this is a hidden symbol, or if it is not version
4408 1, we append the version name to the symbol name.
4409 However, we do not modify a non-hidden absolute symbol
4410 if it is not a function, because it might be the version
4411 symbol itself. FIXME: What if it isn't? */
4412 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4413 || (vernum > 1
4414 && (!bfd_is_abs_section (sec)
4415 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4416 {
4417 const char *verstr;
4418 size_t namelen, verlen, newlen;
4419 char *newname, *p;
4420
4421 if (isym->st_shndx != SHN_UNDEF)
4422 {
4423 if (vernum > elf_tdata (abfd)->cverdefs)
4424 verstr = NULL;
4425 else if (vernum > 1)
4426 verstr =
4427 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4428 else
4429 verstr = "";
4430
4431 if (verstr == NULL)
4432 {
4433 _bfd_error_handler
4434 /* xgettext:c-format */
4435 (_("%B: %s: invalid version %u (max %d)"),
4436 abfd, name, vernum,
4437 elf_tdata (abfd)->cverdefs);
4438 bfd_set_error (bfd_error_bad_value);
4439 goto error_free_vers;
4440 }
4441 }
4442 else
4443 {
4444 /* We cannot simply test for the number of
4445 entries in the VERNEED section since the
4446 numbers for the needed versions do not start
4447 at 0. */
4448 Elf_Internal_Verneed *t;
4449
4450 verstr = NULL;
4451 for (t = elf_tdata (abfd)->verref;
4452 t != NULL;
4453 t = t->vn_nextref)
4454 {
4455 Elf_Internal_Vernaux *a;
4456
4457 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4458 {
4459 if (a->vna_other == vernum)
4460 {
4461 verstr = a->vna_nodename;
4462 break;
4463 }
4464 }
4465 if (a != NULL)
4466 break;
4467 }
4468 if (verstr == NULL)
4469 {
4470 _bfd_error_handler
4471 /* xgettext:c-format */
4472 (_("%B: %s: invalid needed version %d"),
4473 abfd, name, vernum);
4474 bfd_set_error (bfd_error_bad_value);
4475 goto error_free_vers;
4476 }
4477 }
4478
4479 namelen = strlen (name);
4480 verlen = strlen (verstr);
4481 newlen = namelen + verlen + 2;
4482 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4483 && isym->st_shndx != SHN_UNDEF)
4484 ++newlen;
4485
4486 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4487 if (newname == NULL)
4488 goto error_free_vers;
4489 memcpy (newname, name, namelen);
4490 p = newname + namelen;
4491 *p++ = ELF_VER_CHR;
4492 /* If this is a defined non-hidden version symbol,
4493 we add another @ to the name. This indicates the
4494 default version of the symbol. */
4495 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4496 && isym->st_shndx != SHN_UNDEF)
4497 *p++ = ELF_VER_CHR;
4498 memcpy (p, verstr, verlen + 1);
4499
4500 name = newname;
4501 }
4502
4503 /* If this symbol has default visibility and the user has
4504 requested we not re-export it, then mark it as hidden. */
4505 if (!bfd_is_und_section (sec)
4506 && !dynamic
4507 && abfd->no_export
4508 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4509 isym->st_other = (STV_HIDDEN
4510 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4511
4512 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4513 sym_hash, &old_bfd, &old_weak,
4514 &old_alignment, &skip, &override,
4515 &type_change_ok, &size_change_ok,
4516 &matched))
4517 goto error_free_vers;
4518
4519 if (skip)
4520 continue;
4521
4522 /* Override a definition only if the new symbol matches the
4523 existing one. */
4524 if (override && matched)
4525 definition = FALSE;
4526
4527 h = *sym_hash;
4528 while (h->root.type == bfd_link_hash_indirect
4529 || h->root.type == bfd_link_hash_warning)
4530 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4531
4532 if (elf_tdata (abfd)->verdef != NULL
4533 && vernum > 1
4534 && definition)
4535 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4536 }
4537
4538 if (! (_bfd_generic_link_add_one_symbol
4539 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4540 (struct bfd_link_hash_entry **) sym_hash)))
4541 goto error_free_vers;
4542
4543 if ((flags & BSF_GNU_UNIQUE)
4544 && (abfd->flags & DYNAMIC) == 0
4545 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4546 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4547
4548 h = *sym_hash;
4549 /* We need to make sure that indirect symbol dynamic flags are
4550 updated. */
4551 hi = h;
4552 while (h->root.type == bfd_link_hash_indirect
4553 || h->root.type == bfd_link_hash_warning)
4554 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4555
4556 /* Setting the index to -3 tells elf_link_output_extsym that
4557 this symbol is defined in a discarded section. */
4558 if (discarded)
4559 h->indx = -3;
4560
4561 *sym_hash = h;
4562
4563 new_weak = (flags & BSF_WEAK) != 0;
4564 new_weakdef = FALSE;
4565 if (dynamic
4566 && definition
4567 && new_weak
4568 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4569 && is_elf_hash_table (htab)
4570 && h->u.weakdef == NULL)
4571 {
4572 /* Keep a list of all weak defined non function symbols from
4573 a dynamic object, using the weakdef field. Later in this
4574 function we will set the weakdef field to the correct
4575 value. We only put non-function symbols from dynamic
4576 objects on this list, because that happens to be the only
4577 time we need to know the normal symbol corresponding to a
4578 weak symbol, and the information is time consuming to
4579 figure out. If the weakdef field is not already NULL,
4580 then this symbol was already defined by some previous
4581 dynamic object, and we will be using that previous
4582 definition anyhow. */
4583
4584 h->u.weakdef = weaks;
4585 weaks = h;
4586 new_weakdef = TRUE;
4587 }
4588
4589 /* Set the alignment of a common symbol. */
4590 if ((common || bfd_is_com_section (sec))
4591 && h->root.type == bfd_link_hash_common)
4592 {
4593 unsigned int align;
4594
4595 if (common)
4596 align = bfd_log2 (isym->st_value);
4597 else
4598 {
4599 /* The new symbol is a common symbol in a shared object.
4600 We need to get the alignment from the section. */
4601 align = new_sec->alignment_power;
4602 }
4603 if (align > old_alignment)
4604 h->root.u.c.p->alignment_power = align;
4605 else
4606 h->root.u.c.p->alignment_power = old_alignment;
4607 }
4608
4609 if (is_elf_hash_table (htab))
4610 {
4611 /* Set a flag in the hash table entry indicating the type of
4612 reference or definition we just found. A dynamic symbol
4613 is one which is referenced or defined by both a regular
4614 object and a shared object. */
4615 bfd_boolean dynsym = FALSE;
4616
4617 /* Plugin symbols aren't normal. Don't set def_regular or
4618 ref_regular for them, or make them dynamic. */
4619 if ((abfd->flags & BFD_PLUGIN) != 0)
4620 ;
4621 else if (! dynamic)
4622 {
4623 if (! definition)
4624 {
4625 h->ref_regular = 1;
4626 if (bind != STB_WEAK)
4627 h->ref_regular_nonweak = 1;
4628 }
4629 else
4630 {
4631 h->def_regular = 1;
4632 if (h->def_dynamic)
4633 {
4634 h->def_dynamic = 0;
4635 h->ref_dynamic = 1;
4636 }
4637 }
4638
4639 /* If the indirect symbol has been forced local, don't
4640 make the real symbol dynamic. */
4641 if ((h == hi || !hi->forced_local)
4642 && (bfd_link_dll (info)
4643 || h->def_dynamic
4644 || h->ref_dynamic))
4645 dynsym = TRUE;
4646 }
4647 else
4648 {
4649 if (! definition)
4650 {
4651 h->ref_dynamic = 1;
4652 hi->ref_dynamic = 1;
4653 }
4654 else
4655 {
4656 h->def_dynamic = 1;
4657 hi->def_dynamic = 1;
4658 }
4659
4660 /* If the indirect symbol has been forced local, don't
4661 make the real symbol dynamic. */
4662 if ((h == hi || !hi->forced_local)
4663 && (h->def_regular
4664 || h->ref_regular
4665 || (h->u.weakdef != NULL
4666 && ! new_weakdef
4667 && h->u.weakdef->dynindx != -1)))
4668 dynsym = TRUE;
4669 }
4670
4671 /* Check to see if we need to add an indirect symbol for
4672 the default name. */
4673 if (definition
4674 || (!override && h->root.type == bfd_link_hash_common))
4675 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4676 sec, value, &old_bfd, &dynsym))
4677 goto error_free_vers;
4678
4679 /* Check the alignment when a common symbol is involved. This
4680 can change when a common symbol is overridden by a normal
4681 definition or a common symbol is ignored due to the old
4682 normal definition. We need to make sure the maximum
4683 alignment is maintained. */
4684 if ((old_alignment || common)
4685 && h->root.type != bfd_link_hash_common)
4686 {
4687 unsigned int common_align;
4688 unsigned int normal_align;
4689 unsigned int symbol_align;
4690 bfd *normal_bfd;
4691 bfd *common_bfd;
4692
4693 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4694 || h->root.type == bfd_link_hash_defweak);
4695
4696 symbol_align = ffs (h->root.u.def.value) - 1;
4697 if (h->root.u.def.section->owner != NULL
4698 && (h->root.u.def.section->owner->flags
4699 & (DYNAMIC | BFD_PLUGIN)) == 0)
4700 {
4701 normal_align = h->root.u.def.section->alignment_power;
4702 if (normal_align > symbol_align)
4703 normal_align = symbol_align;
4704 }
4705 else
4706 normal_align = symbol_align;
4707
4708 if (old_alignment)
4709 {
4710 common_align = old_alignment;
4711 common_bfd = old_bfd;
4712 normal_bfd = abfd;
4713 }
4714 else
4715 {
4716 common_align = bfd_log2 (isym->st_value);
4717 common_bfd = abfd;
4718 normal_bfd = old_bfd;
4719 }
4720
4721 if (normal_align < common_align)
4722 {
4723 /* PR binutils/2735 */
4724 if (normal_bfd == NULL)
4725 _bfd_error_handler
4726 /* xgettext:c-format */
4727 (_("Warning: alignment %u of common symbol `%s' in %B is"
4728 " greater than the alignment (%u) of its section %A"),
4729 1 << common_align, name, common_bfd,
4730 1 << normal_align, h->root.u.def.section);
4731 else
4732 _bfd_error_handler
4733 /* xgettext:c-format */
4734 (_("Warning: alignment %u of symbol `%s' in %B"
4735 " is smaller than %u in %B"),
4736 1 << normal_align, name, normal_bfd,
4737 1 << common_align, common_bfd);
4738 }
4739 }
4740
4741 /* Remember the symbol size if it isn't undefined. */
4742 if (isym->st_size != 0
4743 && isym->st_shndx != SHN_UNDEF
4744 && (definition || h->size == 0))
4745 {
4746 if (h->size != 0
4747 && h->size != isym->st_size
4748 && ! size_change_ok)
4749 _bfd_error_handler
4750 /* xgettext:c-format */
4751 (_("Warning: size of symbol `%s' changed"
4752 " from %lu in %B to %lu in %B"),
4753 name, (unsigned long) h->size, old_bfd,
4754 (unsigned long) isym->st_size, abfd);
4755
4756 h->size = isym->st_size;
4757 }
4758
4759 /* If this is a common symbol, then we always want H->SIZE
4760 to be the size of the common symbol. The code just above
4761 won't fix the size if a common symbol becomes larger. We
4762 don't warn about a size change here, because that is
4763 covered by --warn-common. Allow changes between different
4764 function types. */
4765 if (h->root.type == bfd_link_hash_common)
4766 h->size = h->root.u.c.size;
4767
4768 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4769 && ((definition && !new_weak)
4770 || (old_weak && h->root.type == bfd_link_hash_common)
4771 || h->type == STT_NOTYPE))
4772 {
4773 unsigned int type = ELF_ST_TYPE (isym->st_info);
4774
4775 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4776 symbol. */
4777 if (type == STT_GNU_IFUNC
4778 && (abfd->flags & DYNAMIC) != 0)
4779 type = STT_FUNC;
4780
4781 if (h->type != type)
4782 {
4783 if (h->type != STT_NOTYPE && ! type_change_ok)
4784 /* xgettext:c-format */
4785 _bfd_error_handler
4786 (_("Warning: type of symbol `%s' changed"
4787 " from %d to %d in %B"),
4788 name, h->type, type, abfd);
4789
4790 h->type = type;
4791 }
4792 }
4793
4794 /* Merge st_other field. */
4795 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4796
4797 /* We don't want to make debug symbol dynamic. */
4798 if (definition
4799 && (sec->flags & SEC_DEBUGGING)
4800 && !bfd_link_relocatable (info))
4801 dynsym = FALSE;
4802
4803 /* Nor should we make plugin symbols dynamic. */
4804 if ((abfd->flags & BFD_PLUGIN) != 0)
4805 dynsym = FALSE;
4806
4807 if (definition)
4808 {
4809 h->target_internal = isym->st_target_internal;
4810 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4811 }
4812
4813 if (definition && !dynamic)
4814 {
4815 char *p = strchr (name, ELF_VER_CHR);
4816 if (p != NULL && p[1] != ELF_VER_CHR)
4817 {
4818 /* Queue non-default versions so that .symver x, x@FOO
4819 aliases can be checked. */
4820 if (!nondeflt_vers)
4821 {
4822 amt = ((isymend - isym + 1)
4823 * sizeof (struct elf_link_hash_entry *));
4824 nondeflt_vers
4825 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4826 if (!nondeflt_vers)
4827 goto error_free_vers;
4828 }
4829 nondeflt_vers[nondeflt_vers_cnt++] = h;
4830 }
4831 }
4832
4833 if (dynsym && h->dynindx == -1)
4834 {
4835 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4836 goto error_free_vers;
4837 if (h->u.weakdef != NULL
4838 && ! new_weakdef
4839 && h->u.weakdef->dynindx == -1)
4840 {
4841 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4842 goto error_free_vers;
4843 }
4844 }
4845 else if (h->dynindx != -1)
4846 /* If the symbol already has a dynamic index, but
4847 visibility says it should not be visible, turn it into
4848 a local symbol. */
4849 switch (ELF_ST_VISIBILITY (h->other))
4850 {
4851 case STV_INTERNAL:
4852 case STV_HIDDEN:
4853 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4854 dynsym = FALSE;
4855 break;
4856 }
4857
4858 /* Don't add DT_NEEDED for references from the dummy bfd nor
4859 for unmatched symbol. */
4860 if (!add_needed
4861 && matched
4862 && definition
4863 && ((dynsym
4864 && h->ref_regular_nonweak
4865 && (old_bfd == NULL
4866 || (old_bfd->flags & BFD_PLUGIN) == 0))
4867 || (h->ref_dynamic_nonweak
4868 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4869 && !on_needed_list (elf_dt_name (abfd),
4870 htab->needed, NULL))))
4871 {
4872 int ret;
4873 const char *soname = elf_dt_name (abfd);
4874
4875 info->callbacks->minfo ("%!", soname, old_bfd,
4876 h->root.root.string);
4877
4878 /* A symbol from a library loaded via DT_NEEDED of some
4879 other library is referenced by a regular object.
4880 Add a DT_NEEDED entry for it. Issue an error if
4881 --no-add-needed is used and the reference was not
4882 a weak one. */
4883 if (old_bfd != NULL
4884 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4885 {
4886 _bfd_error_handler
4887 /* xgettext:c-format */
4888 (_("%B: undefined reference to symbol '%s'"),
4889 old_bfd, name);
4890 bfd_set_error (bfd_error_missing_dso);
4891 goto error_free_vers;
4892 }
4893
4894 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4895 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4896
4897 add_needed = TRUE;
4898 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4899 if (ret < 0)
4900 goto error_free_vers;
4901
4902 BFD_ASSERT (ret == 0);
4903 }
4904 }
4905 }
4906
4907 if (extversym != NULL)
4908 {
4909 free (extversym);
4910 extversym = NULL;
4911 }
4912
4913 if (isymbuf != NULL)
4914 {
4915 free (isymbuf);
4916 isymbuf = NULL;
4917 }
4918
4919 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4920 {
4921 unsigned int i;
4922
4923 /* Restore the symbol table. */
4924 old_ent = (char *) old_tab + tabsize;
4925 memset (elf_sym_hashes (abfd), 0,
4926 extsymcount * sizeof (struct elf_link_hash_entry *));
4927 htab->root.table.table = old_table;
4928 htab->root.table.size = old_size;
4929 htab->root.table.count = old_count;
4930 memcpy (htab->root.table.table, old_tab, tabsize);
4931 htab->root.undefs = old_undefs;
4932 htab->root.undefs_tail = old_undefs_tail;
4933 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4934 free (old_strtab);
4935 old_strtab = NULL;
4936 for (i = 0; i < htab->root.table.size; i++)
4937 {
4938 struct bfd_hash_entry *p;
4939 struct elf_link_hash_entry *h;
4940 bfd_size_type size;
4941 unsigned int alignment_power;
4942 unsigned int non_ir_ref_dynamic;
4943
4944 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4945 {
4946 h = (struct elf_link_hash_entry *) p;
4947 if (h->root.type == bfd_link_hash_warning)
4948 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4949
4950 /* Preserve the maximum alignment and size for common
4951 symbols even if this dynamic lib isn't on DT_NEEDED
4952 since it can still be loaded at run time by another
4953 dynamic lib. */
4954 if (h->root.type == bfd_link_hash_common)
4955 {
4956 size = h->root.u.c.size;
4957 alignment_power = h->root.u.c.p->alignment_power;
4958 }
4959 else
4960 {
4961 size = 0;
4962 alignment_power = 0;
4963 }
4964 /* Preserve non_ir_ref_dynamic so that this symbol
4965 will be exported when the dynamic lib becomes needed
4966 in the second pass. */
4967 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
4968 memcpy (p, old_ent, htab->root.table.entsize);
4969 old_ent = (char *) old_ent + htab->root.table.entsize;
4970 h = (struct elf_link_hash_entry *) p;
4971 if (h->root.type == bfd_link_hash_warning)
4972 {
4973 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4974 old_ent = (char *) old_ent + htab->root.table.entsize;
4975 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4976 }
4977 if (h->root.type == bfd_link_hash_common)
4978 {
4979 if (size > h->root.u.c.size)
4980 h->root.u.c.size = size;
4981 if (alignment_power > h->root.u.c.p->alignment_power)
4982 h->root.u.c.p->alignment_power = alignment_power;
4983 }
4984 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
4985 }
4986 }
4987
4988 /* Make a special call to the linker "notice" function to
4989 tell it that symbols added for crefs may need to be removed. */
4990 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4991 goto error_free_vers;
4992
4993 free (old_tab);
4994 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4995 alloc_mark);
4996 if (nondeflt_vers != NULL)
4997 free (nondeflt_vers);
4998 return TRUE;
4999 }
5000
5001 if (old_tab != NULL)
5002 {
5003 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5004 goto error_free_vers;
5005 free (old_tab);
5006 old_tab = NULL;
5007 }
5008
5009 /* Now that all the symbols from this input file are created, if
5010 not performing a relocatable link, handle .symver foo, foo@BAR
5011 such that any relocs against foo become foo@BAR. */
5012 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5013 {
5014 size_t cnt, symidx;
5015
5016 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5017 {
5018 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5019 char *shortname, *p;
5020
5021 p = strchr (h->root.root.string, ELF_VER_CHR);
5022 if (p == NULL
5023 || (h->root.type != bfd_link_hash_defined
5024 && h->root.type != bfd_link_hash_defweak))
5025 continue;
5026
5027 amt = p - h->root.root.string;
5028 shortname = (char *) bfd_malloc (amt + 1);
5029 if (!shortname)
5030 goto error_free_vers;
5031 memcpy (shortname, h->root.root.string, amt);
5032 shortname[amt] = '\0';
5033
5034 hi = (struct elf_link_hash_entry *)
5035 bfd_link_hash_lookup (&htab->root, shortname,
5036 FALSE, FALSE, FALSE);
5037 if (hi != NULL
5038 && hi->root.type == h->root.type
5039 && hi->root.u.def.value == h->root.u.def.value
5040 && hi->root.u.def.section == h->root.u.def.section)
5041 {
5042 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5043 hi->root.type = bfd_link_hash_indirect;
5044 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5045 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5046 sym_hash = elf_sym_hashes (abfd);
5047 if (sym_hash)
5048 for (symidx = 0; symidx < extsymcount; ++symidx)
5049 if (sym_hash[symidx] == hi)
5050 {
5051 sym_hash[symidx] = h;
5052 break;
5053 }
5054 }
5055 free (shortname);
5056 }
5057 free (nondeflt_vers);
5058 nondeflt_vers = NULL;
5059 }
5060
5061 /* Now set the weakdefs field correctly for all the weak defined
5062 symbols we found. The only way to do this is to search all the
5063 symbols. Since we only need the information for non functions in
5064 dynamic objects, that's the only time we actually put anything on
5065 the list WEAKS. We need this information so that if a regular
5066 object refers to a symbol defined weakly in a dynamic object, the
5067 real symbol in the dynamic object is also put in the dynamic
5068 symbols; we also must arrange for both symbols to point to the
5069 same memory location. We could handle the general case of symbol
5070 aliasing, but a general symbol alias can only be generated in
5071 assembler code, handling it correctly would be very time
5072 consuming, and other ELF linkers don't handle general aliasing
5073 either. */
5074 if (weaks != NULL)
5075 {
5076 struct elf_link_hash_entry **hpp;
5077 struct elf_link_hash_entry **hppend;
5078 struct elf_link_hash_entry **sorted_sym_hash;
5079 struct elf_link_hash_entry *h;
5080 size_t sym_count;
5081
5082 /* Since we have to search the whole symbol list for each weak
5083 defined symbol, search time for N weak defined symbols will be
5084 O(N^2). Binary search will cut it down to O(NlogN). */
5085 amt = extsymcount;
5086 amt *= sizeof (struct elf_link_hash_entry *);
5087 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5088 if (sorted_sym_hash == NULL)
5089 goto error_return;
5090 sym_hash = sorted_sym_hash;
5091 hpp = elf_sym_hashes (abfd);
5092 hppend = hpp + extsymcount;
5093 sym_count = 0;
5094 for (; hpp < hppend; hpp++)
5095 {
5096 h = *hpp;
5097 if (h != NULL
5098 && h->root.type == bfd_link_hash_defined
5099 && !bed->is_function_type (h->type))
5100 {
5101 *sym_hash = h;
5102 sym_hash++;
5103 sym_count++;
5104 }
5105 }
5106
5107 qsort (sorted_sym_hash, sym_count,
5108 sizeof (struct elf_link_hash_entry *),
5109 elf_sort_symbol);
5110
5111 while (weaks != NULL)
5112 {
5113 struct elf_link_hash_entry *hlook;
5114 asection *slook;
5115 bfd_vma vlook;
5116 size_t i, j, idx = 0;
5117
5118 hlook = weaks;
5119 weaks = hlook->u.weakdef;
5120 hlook->u.weakdef = NULL;
5121
5122 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5123 || hlook->root.type == bfd_link_hash_defweak
5124 || hlook->root.type == bfd_link_hash_common
5125 || hlook->root.type == bfd_link_hash_indirect);
5126 slook = hlook->root.u.def.section;
5127 vlook = hlook->root.u.def.value;
5128
5129 i = 0;
5130 j = sym_count;
5131 while (i != j)
5132 {
5133 bfd_signed_vma vdiff;
5134 idx = (i + j) / 2;
5135 h = sorted_sym_hash[idx];
5136 vdiff = vlook - h->root.u.def.value;
5137 if (vdiff < 0)
5138 j = idx;
5139 else if (vdiff > 0)
5140 i = idx + 1;
5141 else
5142 {
5143 int sdiff = slook->id - h->root.u.def.section->id;
5144 if (sdiff < 0)
5145 j = idx;
5146 else if (sdiff > 0)
5147 i = idx + 1;
5148 else
5149 break;
5150 }
5151 }
5152
5153 /* We didn't find a value/section match. */
5154 if (i == j)
5155 continue;
5156
5157 /* With multiple aliases, or when the weak symbol is already
5158 strongly defined, we have multiple matching symbols and
5159 the binary search above may land on any of them. Step
5160 one past the matching symbol(s). */
5161 while (++idx != j)
5162 {
5163 h = sorted_sym_hash[idx];
5164 if (h->root.u.def.section != slook
5165 || h->root.u.def.value != vlook)
5166 break;
5167 }
5168
5169 /* Now look back over the aliases. Since we sorted by size
5170 as well as value and section, we'll choose the one with
5171 the largest size. */
5172 while (idx-- != i)
5173 {
5174 h = sorted_sym_hash[idx];
5175
5176 /* Stop if value or section doesn't match. */
5177 if (h->root.u.def.section != slook
5178 || h->root.u.def.value != vlook)
5179 break;
5180 else if (h != hlook)
5181 {
5182 hlook->u.weakdef = h;
5183
5184 /* If the weak definition is in the list of dynamic
5185 symbols, make sure the real definition is put
5186 there as well. */
5187 if (hlook->dynindx != -1 && h->dynindx == -1)
5188 {
5189 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5190 {
5191 err_free_sym_hash:
5192 free (sorted_sym_hash);
5193 goto error_return;
5194 }
5195 }
5196
5197 /* If the real definition is in the list of dynamic
5198 symbols, make sure the weak definition is put
5199 there as well. If we don't do this, then the
5200 dynamic loader might not merge the entries for the
5201 real definition and the weak definition. */
5202 if (h->dynindx != -1 && hlook->dynindx == -1)
5203 {
5204 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5205 goto err_free_sym_hash;
5206 }
5207 break;
5208 }
5209 }
5210 }
5211
5212 free (sorted_sym_hash);
5213 }
5214
5215 if (bed->check_directives
5216 && !(*bed->check_directives) (abfd, info))
5217 return FALSE;
5218
5219 if (!info->check_relocs_after_open_input
5220 && !_bfd_elf_link_check_relocs (abfd, info))
5221 return FALSE;
5222
5223 /* If this is a non-traditional link, try to optimize the handling
5224 of the .stab/.stabstr sections. */
5225 if (! dynamic
5226 && ! info->traditional_format
5227 && is_elf_hash_table (htab)
5228 && (info->strip != strip_all && info->strip != strip_debugger))
5229 {
5230 asection *stabstr;
5231
5232 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5233 if (stabstr != NULL)
5234 {
5235 bfd_size_type string_offset = 0;
5236 asection *stab;
5237
5238 for (stab = abfd->sections; stab; stab = stab->next)
5239 if (CONST_STRNEQ (stab->name, ".stab")
5240 && (!stab->name[5] ||
5241 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5242 && (stab->flags & SEC_MERGE) == 0
5243 && !bfd_is_abs_section (stab->output_section))
5244 {
5245 struct bfd_elf_section_data *secdata;
5246
5247 secdata = elf_section_data (stab);
5248 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5249 stabstr, &secdata->sec_info,
5250 &string_offset))
5251 goto error_return;
5252 if (secdata->sec_info)
5253 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5254 }
5255 }
5256 }
5257
5258 if (is_elf_hash_table (htab) && add_needed)
5259 {
5260 /* Add this bfd to the loaded list. */
5261 struct elf_link_loaded_list *n;
5262
5263 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5264 if (n == NULL)
5265 goto error_return;
5266 n->abfd = abfd;
5267 n->next = htab->loaded;
5268 htab->loaded = n;
5269 }
5270
5271 return TRUE;
5272
5273 error_free_vers:
5274 if (old_tab != NULL)
5275 free (old_tab);
5276 if (old_strtab != NULL)
5277 free (old_strtab);
5278 if (nondeflt_vers != NULL)
5279 free (nondeflt_vers);
5280 if (extversym != NULL)
5281 free (extversym);
5282 error_free_sym:
5283 if (isymbuf != NULL)
5284 free (isymbuf);
5285 error_return:
5286 return FALSE;
5287 }
5288
5289 /* Return the linker hash table entry of a symbol that might be
5290 satisfied by an archive symbol. Return -1 on error. */
5291
5292 struct elf_link_hash_entry *
5293 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5294 struct bfd_link_info *info,
5295 const char *name)
5296 {
5297 struct elf_link_hash_entry *h;
5298 char *p, *copy;
5299 size_t len, first;
5300
5301 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5302 if (h != NULL)
5303 return h;
5304
5305 /* If this is a default version (the name contains @@), look up the
5306 symbol again with only one `@' as well as without the version.
5307 The effect is that references to the symbol with and without the
5308 version will be matched by the default symbol in the archive. */
5309
5310 p = strchr (name, ELF_VER_CHR);
5311 if (p == NULL || p[1] != ELF_VER_CHR)
5312 return h;
5313
5314 /* First check with only one `@'. */
5315 len = strlen (name);
5316 copy = (char *) bfd_alloc (abfd, len);
5317 if (copy == NULL)
5318 return (struct elf_link_hash_entry *) 0 - 1;
5319
5320 first = p - name + 1;
5321 memcpy (copy, name, first);
5322 memcpy (copy + first, name + first + 1, len - first);
5323
5324 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5325 if (h == NULL)
5326 {
5327 /* We also need to check references to the symbol without the
5328 version. */
5329 copy[first - 1] = '\0';
5330 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5331 FALSE, FALSE, TRUE);
5332 }
5333
5334 bfd_release (abfd, copy);
5335 return h;
5336 }
5337
5338 /* Add symbols from an ELF archive file to the linker hash table. We
5339 don't use _bfd_generic_link_add_archive_symbols because we need to
5340 handle versioned symbols.
5341
5342 Fortunately, ELF archive handling is simpler than that done by
5343 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5344 oddities. In ELF, if we find a symbol in the archive map, and the
5345 symbol is currently undefined, we know that we must pull in that
5346 object file.
5347
5348 Unfortunately, we do have to make multiple passes over the symbol
5349 table until nothing further is resolved. */
5350
5351 static bfd_boolean
5352 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5353 {
5354 symindex c;
5355 unsigned char *included = NULL;
5356 carsym *symdefs;
5357 bfd_boolean loop;
5358 bfd_size_type amt;
5359 const struct elf_backend_data *bed;
5360 struct elf_link_hash_entry * (*archive_symbol_lookup)
5361 (bfd *, struct bfd_link_info *, const char *);
5362
5363 if (! bfd_has_map (abfd))
5364 {
5365 /* An empty archive is a special case. */
5366 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5367 return TRUE;
5368 bfd_set_error (bfd_error_no_armap);
5369 return FALSE;
5370 }
5371
5372 /* Keep track of all symbols we know to be already defined, and all
5373 files we know to be already included. This is to speed up the
5374 second and subsequent passes. */
5375 c = bfd_ardata (abfd)->symdef_count;
5376 if (c == 0)
5377 return TRUE;
5378 amt = c;
5379 amt *= sizeof (*included);
5380 included = (unsigned char *) bfd_zmalloc (amt);
5381 if (included == NULL)
5382 return FALSE;
5383
5384 symdefs = bfd_ardata (abfd)->symdefs;
5385 bed = get_elf_backend_data (abfd);
5386 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5387
5388 do
5389 {
5390 file_ptr last;
5391 symindex i;
5392 carsym *symdef;
5393 carsym *symdefend;
5394
5395 loop = FALSE;
5396 last = -1;
5397
5398 symdef = symdefs;
5399 symdefend = symdef + c;
5400 for (i = 0; symdef < symdefend; symdef++, i++)
5401 {
5402 struct elf_link_hash_entry *h;
5403 bfd *element;
5404 struct bfd_link_hash_entry *undefs_tail;
5405 symindex mark;
5406
5407 if (included[i])
5408 continue;
5409 if (symdef->file_offset == last)
5410 {
5411 included[i] = TRUE;
5412 continue;
5413 }
5414
5415 h = archive_symbol_lookup (abfd, info, symdef->name);
5416 if (h == (struct elf_link_hash_entry *) 0 - 1)
5417 goto error_return;
5418
5419 if (h == NULL)
5420 continue;
5421
5422 if (h->root.type == bfd_link_hash_common)
5423 {
5424 /* We currently have a common symbol. The archive map contains
5425 a reference to this symbol, so we may want to include it. We
5426 only want to include it however, if this archive element
5427 contains a definition of the symbol, not just another common
5428 declaration of it.
5429
5430 Unfortunately some archivers (including GNU ar) will put
5431 declarations of common symbols into their archive maps, as
5432 well as real definitions, so we cannot just go by the archive
5433 map alone. Instead we must read in the element's symbol
5434 table and check that to see what kind of symbol definition
5435 this is. */
5436 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5437 continue;
5438 }
5439 else if (h->root.type != bfd_link_hash_undefined)
5440 {
5441 if (h->root.type != bfd_link_hash_undefweak)
5442 /* Symbol must be defined. Don't check it again. */
5443 included[i] = TRUE;
5444 continue;
5445 }
5446
5447 /* We need to include this archive member. */
5448 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5449 if (element == NULL)
5450 goto error_return;
5451
5452 if (! bfd_check_format (element, bfd_object))
5453 goto error_return;
5454
5455 undefs_tail = info->hash->undefs_tail;
5456
5457 if (!(*info->callbacks
5458 ->add_archive_element) (info, element, symdef->name, &element))
5459 continue;
5460 if (!bfd_link_add_symbols (element, info))
5461 goto error_return;
5462
5463 /* If there are any new undefined symbols, we need to make
5464 another pass through the archive in order to see whether
5465 they can be defined. FIXME: This isn't perfect, because
5466 common symbols wind up on undefs_tail and because an
5467 undefined symbol which is defined later on in this pass
5468 does not require another pass. This isn't a bug, but it
5469 does make the code less efficient than it could be. */
5470 if (undefs_tail != info->hash->undefs_tail)
5471 loop = TRUE;
5472
5473 /* Look backward to mark all symbols from this object file
5474 which we have already seen in this pass. */
5475 mark = i;
5476 do
5477 {
5478 included[mark] = TRUE;
5479 if (mark == 0)
5480 break;
5481 --mark;
5482 }
5483 while (symdefs[mark].file_offset == symdef->file_offset);
5484
5485 /* We mark subsequent symbols from this object file as we go
5486 on through the loop. */
5487 last = symdef->file_offset;
5488 }
5489 }
5490 while (loop);
5491
5492 free (included);
5493
5494 return TRUE;
5495
5496 error_return:
5497 if (included != NULL)
5498 free (included);
5499 return FALSE;
5500 }
5501
5502 /* Given an ELF BFD, add symbols to the global hash table as
5503 appropriate. */
5504
5505 bfd_boolean
5506 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5507 {
5508 switch (bfd_get_format (abfd))
5509 {
5510 case bfd_object:
5511 return elf_link_add_object_symbols (abfd, info);
5512 case bfd_archive:
5513 return elf_link_add_archive_symbols (abfd, info);
5514 default:
5515 bfd_set_error (bfd_error_wrong_format);
5516 return FALSE;
5517 }
5518 }
5519 \f
5520 struct hash_codes_info
5521 {
5522 unsigned long *hashcodes;
5523 bfd_boolean error;
5524 };
5525
5526 /* This function will be called though elf_link_hash_traverse to store
5527 all hash value of the exported symbols in an array. */
5528
5529 static bfd_boolean
5530 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5531 {
5532 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5533 const char *name;
5534 unsigned long ha;
5535 char *alc = NULL;
5536
5537 /* Ignore indirect symbols. These are added by the versioning code. */
5538 if (h->dynindx == -1)
5539 return TRUE;
5540
5541 name = h->root.root.string;
5542 if (h->versioned >= versioned)
5543 {
5544 char *p = strchr (name, ELF_VER_CHR);
5545 if (p != NULL)
5546 {
5547 alc = (char *) bfd_malloc (p - name + 1);
5548 if (alc == NULL)
5549 {
5550 inf->error = TRUE;
5551 return FALSE;
5552 }
5553 memcpy (alc, name, p - name);
5554 alc[p - name] = '\0';
5555 name = alc;
5556 }
5557 }
5558
5559 /* Compute the hash value. */
5560 ha = bfd_elf_hash (name);
5561
5562 /* Store the found hash value in the array given as the argument. */
5563 *(inf->hashcodes)++ = ha;
5564
5565 /* And store it in the struct so that we can put it in the hash table
5566 later. */
5567 h->u.elf_hash_value = ha;
5568
5569 if (alc != NULL)
5570 free (alc);
5571
5572 return TRUE;
5573 }
5574
5575 struct collect_gnu_hash_codes
5576 {
5577 bfd *output_bfd;
5578 const struct elf_backend_data *bed;
5579 unsigned long int nsyms;
5580 unsigned long int maskbits;
5581 unsigned long int *hashcodes;
5582 unsigned long int *hashval;
5583 unsigned long int *indx;
5584 unsigned long int *counts;
5585 bfd_vma *bitmask;
5586 bfd_byte *contents;
5587 long int min_dynindx;
5588 unsigned long int bucketcount;
5589 unsigned long int symindx;
5590 long int local_indx;
5591 long int shift1, shift2;
5592 unsigned long int mask;
5593 bfd_boolean error;
5594 };
5595
5596 /* This function will be called though elf_link_hash_traverse to store
5597 all hash value of the exported symbols in an array. */
5598
5599 static bfd_boolean
5600 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5601 {
5602 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5603 const char *name;
5604 unsigned long ha;
5605 char *alc = NULL;
5606
5607 /* Ignore indirect symbols. These are added by the versioning code. */
5608 if (h->dynindx == -1)
5609 return TRUE;
5610
5611 /* Ignore also local symbols and undefined symbols. */
5612 if (! (*s->bed->elf_hash_symbol) (h))
5613 return TRUE;
5614
5615 name = h->root.root.string;
5616 if (h->versioned >= versioned)
5617 {
5618 char *p = strchr (name, ELF_VER_CHR);
5619 if (p != NULL)
5620 {
5621 alc = (char *) bfd_malloc (p - name + 1);
5622 if (alc == NULL)
5623 {
5624 s->error = TRUE;
5625 return FALSE;
5626 }
5627 memcpy (alc, name, p - name);
5628 alc[p - name] = '\0';
5629 name = alc;
5630 }
5631 }
5632
5633 /* Compute the hash value. */
5634 ha = bfd_elf_gnu_hash (name);
5635
5636 /* Store the found hash value in the array for compute_bucket_count,
5637 and also for .dynsym reordering purposes. */
5638 s->hashcodes[s->nsyms] = ha;
5639 s->hashval[h->dynindx] = ha;
5640 ++s->nsyms;
5641 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5642 s->min_dynindx = h->dynindx;
5643
5644 if (alc != NULL)
5645 free (alc);
5646
5647 return TRUE;
5648 }
5649
5650 /* This function will be called though elf_link_hash_traverse to do
5651 final dynaminc symbol renumbering. */
5652
5653 static bfd_boolean
5654 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5655 {
5656 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5657 unsigned long int bucket;
5658 unsigned long int val;
5659
5660 /* Ignore indirect symbols. */
5661 if (h->dynindx == -1)
5662 return TRUE;
5663
5664 /* Ignore also local symbols and undefined symbols. */
5665 if (! (*s->bed->elf_hash_symbol) (h))
5666 {
5667 if (h->dynindx >= s->min_dynindx)
5668 h->dynindx = s->local_indx++;
5669 return TRUE;
5670 }
5671
5672 bucket = s->hashval[h->dynindx] % s->bucketcount;
5673 val = (s->hashval[h->dynindx] >> s->shift1)
5674 & ((s->maskbits >> s->shift1) - 1);
5675 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5676 s->bitmask[val]
5677 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5678 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5679 if (s->counts[bucket] == 1)
5680 /* Last element terminates the chain. */
5681 val |= 1;
5682 bfd_put_32 (s->output_bfd, val,
5683 s->contents + (s->indx[bucket] - s->symindx) * 4);
5684 --s->counts[bucket];
5685 h->dynindx = s->indx[bucket]++;
5686 return TRUE;
5687 }
5688
5689 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5690
5691 bfd_boolean
5692 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5693 {
5694 return !(h->forced_local
5695 || h->root.type == bfd_link_hash_undefined
5696 || h->root.type == bfd_link_hash_undefweak
5697 || ((h->root.type == bfd_link_hash_defined
5698 || h->root.type == bfd_link_hash_defweak)
5699 && h->root.u.def.section->output_section == NULL));
5700 }
5701
5702 /* Array used to determine the number of hash table buckets to use
5703 based on the number of symbols there are. If there are fewer than
5704 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5705 fewer than 37 we use 17 buckets, and so forth. We never use more
5706 than 32771 buckets. */
5707
5708 static const size_t elf_buckets[] =
5709 {
5710 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5711 16411, 32771, 0
5712 };
5713
5714 /* Compute bucket count for hashing table. We do not use a static set
5715 of possible tables sizes anymore. Instead we determine for all
5716 possible reasonable sizes of the table the outcome (i.e., the
5717 number of collisions etc) and choose the best solution. The
5718 weighting functions are not too simple to allow the table to grow
5719 without bounds. Instead one of the weighting factors is the size.
5720 Therefore the result is always a good payoff between few collisions
5721 (= short chain lengths) and table size. */
5722 static size_t
5723 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5724 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5725 unsigned long int nsyms,
5726 int gnu_hash)
5727 {
5728 size_t best_size = 0;
5729 unsigned long int i;
5730
5731 /* We have a problem here. The following code to optimize the table
5732 size requires an integer type with more the 32 bits. If
5733 BFD_HOST_U_64_BIT is set we know about such a type. */
5734 #ifdef BFD_HOST_U_64_BIT
5735 if (info->optimize)
5736 {
5737 size_t minsize;
5738 size_t maxsize;
5739 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5740 bfd *dynobj = elf_hash_table (info)->dynobj;
5741 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5742 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5743 unsigned long int *counts;
5744 bfd_size_type amt;
5745 unsigned int no_improvement_count = 0;
5746
5747 /* Possible optimization parameters: if we have NSYMS symbols we say
5748 that the hashing table must at least have NSYMS/4 and at most
5749 2*NSYMS buckets. */
5750 minsize = nsyms / 4;
5751 if (minsize == 0)
5752 minsize = 1;
5753 best_size = maxsize = nsyms * 2;
5754 if (gnu_hash)
5755 {
5756 if (minsize < 2)
5757 minsize = 2;
5758 if ((best_size & 31) == 0)
5759 ++best_size;
5760 }
5761
5762 /* Create array where we count the collisions in. We must use bfd_malloc
5763 since the size could be large. */
5764 amt = maxsize;
5765 amt *= sizeof (unsigned long int);
5766 counts = (unsigned long int *) bfd_malloc (amt);
5767 if (counts == NULL)
5768 return 0;
5769
5770 /* Compute the "optimal" size for the hash table. The criteria is a
5771 minimal chain length. The minor criteria is (of course) the size
5772 of the table. */
5773 for (i = minsize; i < maxsize; ++i)
5774 {
5775 /* Walk through the array of hashcodes and count the collisions. */
5776 BFD_HOST_U_64_BIT max;
5777 unsigned long int j;
5778 unsigned long int fact;
5779
5780 if (gnu_hash && (i & 31) == 0)
5781 continue;
5782
5783 memset (counts, '\0', i * sizeof (unsigned long int));
5784
5785 /* Determine how often each hash bucket is used. */
5786 for (j = 0; j < nsyms; ++j)
5787 ++counts[hashcodes[j] % i];
5788
5789 /* For the weight function we need some information about the
5790 pagesize on the target. This is information need not be 100%
5791 accurate. Since this information is not available (so far) we
5792 define it here to a reasonable default value. If it is crucial
5793 to have a better value some day simply define this value. */
5794 # ifndef BFD_TARGET_PAGESIZE
5795 # define BFD_TARGET_PAGESIZE (4096)
5796 # endif
5797
5798 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5799 and the chains. */
5800 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5801
5802 # if 1
5803 /* Variant 1: optimize for short chains. We add the squares
5804 of all the chain lengths (which favors many small chain
5805 over a few long chains). */
5806 for (j = 0; j < i; ++j)
5807 max += counts[j] * counts[j];
5808
5809 /* This adds penalties for the overall size of the table. */
5810 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5811 max *= fact * fact;
5812 # else
5813 /* Variant 2: Optimize a lot more for small table. Here we
5814 also add squares of the size but we also add penalties for
5815 empty slots (the +1 term). */
5816 for (j = 0; j < i; ++j)
5817 max += (1 + counts[j]) * (1 + counts[j]);
5818
5819 /* The overall size of the table is considered, but not as
5820 strong as in variant 1, where it is squared. */
5821 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5822 max *= fact;
5823 # endif
5824
5825 /* Compare with current best results. */
5826 if (max < best_chlen)
5827 {
5828 best_chlen = max;
5829 best_size = i;
5830 no_improvement_count = 0;
5831 }
5832 /* PR 11843: Avoid futile long searches for the best bucket size
5833 when there are a large number of symbols. */
5834 else if (++no_improvement_count == 100)
5835 break;
5836 }
5837
5838 free (counts);
5839 }
5840 else
5841 #endif /* defined (BFD_HOST_U_64_BIT) */
5842 {
5843 /* This is the fallback solution if no 64bit type is available or if we
5844 are not supposed to spend much time on optimizations. We select the
5845 bucket count using a fixed set of numbers. */
5846 for (i = 0; elf_buckets[i] != 0; i++)
5847 {
5848 best_size = elf_buckets[i];
5849 if (nsyms < elf_buckets[i + 1])
5850 break;
5851 }
5852 if (gnu_hash && best_size < 2)
5853 best_size = 2;
5854 }
5855
5856 return best_size;
5857 }
5858
5859 /* Size any SHT_GROUP section for ld -r. */
5860
5861 bfd_boolean
5862 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5863 {
5864 bfd *ibfd;
5865
5866 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5867 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5868 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5869 return FALSE;
5870 return TRUE;
5871 }
5872
5873 /* Set a default stack segment size. The value in INFO wins. If it
5874 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5875 undefined it is initialized. */
5876
5877 bfd_boolean
5878 bfd_elf_stack_segment_size (bfd *output_bfd,
5879 struct bfd_link_info *info,
5880 const char *legacy_symbol,
5881 bfd_vma default_size)
5882 {
5883 struct elf_link_hash_entry *h = NULL;
5884
5885 /* Look for legacy symbol. */
5886 if (legacy_symbol)
5887 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5888 FALSE, FALSE, FALSE);
5889 if (h && (h->root.type == bfd_link_hash_defined
5890 || h->root.type == bfd_link_hash_defweak)
5891 && h->def_regular
5892 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5893 {
5894 /* The symbol has no type if specified on the command line. */
5895 h->type = STT_OBJECT;
5896 if (info->stacksize)
5897 /* xgettext:c-format */
5898 _bfd_error_handler (_("%B: stack size specified and %s set"),
5899 output_bfd, legacy_symbol);
5900 else if (h->root.u.def.section != bfd_abs_section_ptr)
5901 /* xgettext:c-format */
5902 _bfd_error_handler (_("%B: %s not absolute"),
5903 output_bfd, legacy_symbol);
5904 else
5905 info->stacksize = h->root.u.def.value;
5906 }
5907
5908 if (!info->stacksize)
5909 /* If the user didn't set a size, or explicitly inhibit the
5910 size, set it now. */
5911 info->stacksize = default_size;
5912
5913 /* Provide the legacy symbol, if it is referenced. */
5914 if (h && (h->root.type == bfd_link_hash_undefined
5915 || h->root.type == bfd_link_hash_undefweak))
5916 {
5917 struct bfd_link_hash_entry *bh = NULL;
5918
5919 if (!(_bfd_generic_link_add_one_symbol
5920 (info, output_bfd, legacy_symbol,
5921 BSF_GLOBAL, bfd_abs_section_ptr,
5922 info->stacksize >= 0 ? info->stacksize : 0,
5923 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5924 return FALSE;
5925
5926 h = (struct elf_link_hash_entry *) bh;
5927 h->def_regular = 1;
5928 h->type = STT_OBJECT;
5929 }
5930
5931 return TRUE;
5932 }
5933
5934 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5935
5936 struct elf_gc_sweep_symbol_info
5937 {
5938 struct bfd_link_info *info;
5939 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5940 bfd_boolean);
5941 };
5942
5943 static bfd_boolean
5944 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5945 {
5946 if (!h->mark
5947 && (((h->root.type == bfd_link_hash_defined
5948 || h->root.type == bfd_link_hash_defweak)
5949 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5950 && h->root.u.def.section->gc_mark))
5951 || h->root.type == bfd_link_hash_undefined
5952 || h->root.type == bfd_link_hash_undefweak))
5953 {
5954 struct elf_gc_sweep_symbol_info *inf;
5955
5956 inf = (struct elf_gc_sweep_symbol_info *) data;
5957 (*inf->hide_symbol) (inf->info, h, TRUE);
5958 h->def_regular = 0;
5959 h->ref_regular = 0;
5960 h->ref_regular_nonweak = 0;
5961 }
5962
5963 return TRUE;
5964 }
5965
5966 /* Set up the sizes and contents of the ELF dynamic sections. This is
5967 called by the ELF linker emulation before_allocation routine. We
5968 must set the sizes of the sections before the linker sets the
5969 addresses of the various sections. */
5970
5971 bfd_boolean
5972 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5973 const char *soname,
5974 const char *rpath,
5975 const char *filter_shlib,
5976 const char *audit,
5977 const char *depaudit,
5978 const char * const *auxiliary_filters,
5979 struct bfd_link_info *info,
5980 asection **sinterpptr)
5981 {
5982 bfd *dynobj;
5983 const struct elf_backend_data *bed;
5984
5985 *sinterpptr = NULL;
5986
5987 if (!is_elf_hash_table (info->hash))
5988 return TRUE;
5989
5990 dynobj = elf_hash_table (info)->dynobj;
5991
5992 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5993 {
5994 struct bfd_elf_version_tree *verdefs;
5995 struct elf_info_failed asvinfo;
5996 struct bfd_elf_version_tree *t;
5997 struct bfd_elf_version_expr *d;
5998 struct elf_info_failed eif;
5999 bfd_boolean all_defined;
6000 asection *s;
6001 size_t soname_indx;
6002
6003 eif.info = info;
6004 eif.failed = FALSE;
6005
6006 /* If we are supposed to export all symbols into the dynamic symbol
6007 table (this is not the normal case), then do so. */
6008 if (info->export_dynamic
6009 || (bfd_link_executable (info) && info->dynamic))
6010 {
6011 elf_link_hash_traverse (elf_hash_table (info),
6012 _bfd_elf_export_symbol,
6013 &eif);
6014 if (eif.failed)
6015 return FALSE;
6016 }
6017
6018 if (soname != NULL)
6019 {
6020 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6021 soname, TRUE);
6022 if (soname_indx == (size_t) -1
6023 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6024 return FALSE;
6025 }
6026 else
6027 soname_indx = (size_t) -1;
6028
6029 /* Make all global versions with definition. */
6030 for (t = info->version_info; t != NULL; t = t->next)
6031 for (d = t->globals.list; d != NULL; d = d->next)
6032 if (!d->symver && d->literal)
6033 {
6034 const char *verstr, *name;
6035 size_t namelen, verlen, newlen;
6036 char *newname, *p, leading_char;
6037 struct elf_link_hash_entry *newh;
6038
6039 leading_char = bfd_get_symbol_leading_char (output_bfd);
6040 name = d->pattern;
6041 namelen = strlen (name) + (leading_char != '\0');
6042 verstr = t->name;
6043 verlen = strlen (verstr);
6044 newlen = namelen + verlen + 3;
6045
6046 newname = (char *) bfd_malloc (newlen);
6047 if (newname == NULL)
6048 return FALSE;
6049 newname[0] = leading_char;
6050 memcpy (newname + (leading_char != '\0'), name, namelen);
6051
6052 /* Check the hidden versioned definition. */
6053 p = newname + namelen;
6054 *p++ = ELF_VER_CHR;
6055 memcpy (p, verstr, verlen + 1);
6056 newh = elf_link_hash_lookup (elf_hash_table (info),
6057 newname, FALSE, FALSE,
6058 FALSE);
6059 if (newh == NULL
6060 || (newh->root.type != bfd_link_hash_defined
6061 && newh->root.type != bfd_link_hash_defweak))
6062 {
6063 /* Check the default versioned definition. */
6064 *p++ = ELF_VER_CHR;
6065 memcpy (p, verstr, verlen + 1);
6066 newh = elf_link_hash_lookup (elf_hash_table (info),
6067 newname, FALSE, FALSE,
6068 FALSE);
6069 }
6070 free (newname);
6071
6072 /* Mark this version if there is a definition and it is
6073 not defined in a shared object. */
6074 if (newh != NULL
6075 && !newh->def_dynamic
6076 && (newh->root.type == bfd_link_hash_defined
6077 || newh->root.type == bfd_link_hash_defweak))
6078 d->symver = 1;
6079 }
6080
6081 /* Attach all the symbols to their version information. */
6082 asvinfo.info = info;
6083 asvinfo.failed = FALSE;
6084
6085 elf_link_hash_traverse (elf_hash_table (info),
6086 _bfd_elf_link_assign_sym_version,
6087 &asvinfo);
6088 if (asvinfo.failed)
6089 return FALSE;
6090
6091 if (!info->allow_undefined_version)
6092 {
6093 /* Check if all global versions have a definition. */
6094 all_defined = TRUE;
6095 for (t = info->version_info; t != NULL; t = t->next)
6096 for (d = t->globals.list; d != NULL; d = d->next)
6097 if (d->literal && !d->symver && !d->script)
6098 {
6099 _bfd_error_handler
6100 (_("%s: undefined version: %s"),
6101 d->pattern, t->name);
6102 all_defined = FALSE;
6103 }
6104
6105 if (!all_defined)
6106 {
6107 bfd_set_error (bfd_error_bad_value);
6108 return FALSE;
6109 }
6110 }
6111
6112 /* Set up the version definition section. */
6113 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6114 BFD_ASSERT (s != NULL);
6115
6116 /* We may have created additional version definitions if we are
6117 just linking a regular application. */
6118 verdefs = info->version_info;
6119
6120 /* Skip anonymous version tag. */
6121 if (verdefs != NULL && verdefs->vernum == 0)
6122 verdefs = verdefs->next;
6123
6124 if (verdefs == NULL && !info->create_default_symver)
6125 s->flags |= SEC_EXCLUDE;
6126 else
6127 {
6128 unsigned int cdefs;
6129 bfd_size_type size;
6130 bfd_byte *p;
6131 Elf_Internal_Verdef def;
6132 Elf_Internal_Verdaux defaux;
6133 struct bfd_link_hash_entry *bh;
6134 struct elf_link_hash_entry *h;
6135 const char *name;
6136
6137 cdefs = 0;
6138 size = 0;
6139
6140 /* Make space for the base version. */
6141 size += sizeof (Elf_External_Verdef);
6142 size += sizeof (Elf_External_Verdaux);
6143 ++cdefs;
6144
6145 /* Make space for the default version. */
6146 if (info->create_default_symver)
6147 {
6148 size += sizeof (Elf_External_Verdef);
6149 ++cdefs;
6150 }
6151
6152 for (t = verdefs; t != NULL; t = t->next)
6153 {
6154 struct bfd_elf_version_deps *n;
6155
6156 /* Don't emit base version twice. */
6157 if (t->vernum == 0)
6158 continue;
6159
6160 size += sizeof (Elf_External_Verdef);
6161 size += sizeof (Elf_External_Verdaux);
6162 ++cdefs;
6163
6164 for (n = t->deps; n != NULL; n = n->next)
6165 size += sizeof (Elf_External_Verdaux);
6166 }
6167
6168 s->size = size;
6169 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6170 if (s->contents == NULL && s->size != 0)
6171 return FALSE;
6172
6173 /* Fill in the version definition section. */
6174
6175 p = s->contents;
6176
6177 def.vd_version = VER_DEF_CURRENT;
6178 def.vd_flags = VER_FLG_BASE;
6179 def.vd_ndx = 1;
6180 def.vd_cnt = 1;
6181 if (info->create_default_symver)
6182 {
6183 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6184 def.vd_next = sizeof (Elf_External_Verdef);
6185 }
6186 else
6187 {
6188 def.vd_aux = sizeof (Elf_External_Verdef);
6189 def.vd_next = (sizeof (Elf_External_Verdef)
6190 + sizeof (Elf_External_Verdaux));
6191 }
6192
6193 if (soname_indx != (size_t) -1)
6194 {
6195 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6196 soname_indx);
6197 def.vd_hash = bfd_elf_hash (soname);
6198 defaux.vda_name = soname_indx;
6199 name = soname;
6200 }
6201 else
6202 {
6203 size_t indx;
6204
6205 name = lbasename (output_bfd->filename);
6206 def.vd_hash = bfd_elf_hash (name);
6207 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6208 name, FALSE);
6209 if (indx == (size_t) -1)
6210 return FALSE;
6211 defaux.vda_name = indx;
6212 }
6213 defaux.vda_next = 0;
6214
6215 _bfd_elf_swap_verdef_out (output_bfd, &def,
6216 (Elf_External_Verdef *) p);
6217 p += sizeof (Elf_External_Verdef);
6218 if (info->create_default_symver)
6219 {
6220 /* Add a symbol representing this version. */
6221 bh = NULL;
6222 if (! (_bfd_generic_link_add_one_symbol
6223 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6224 0, NULL, FALSE,
6225 get_elf_backend_data (dynobj)->collect, &bh)))
6226 return FALSE;
6227 h = (struct elf_link_hash_entry *) bh;
6228 h->non_elf = 0;
6229 h->def_regular = 1;
6230 h->type = STT_OBJECT;
6231 h->verinfo.vertree = NULL;
6232
6233 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6234 return FALSE;
6235
6236 /* Create a duplicate of the base version with the same
6237 aux block, but different flags. */
6238 def.vd_flags = 0;
6239 def.vd_ndx = 2;
6240 def.vd_aux = sizeof (Elf_External_Verdef);
6241 if (verdefs)
6242 def.vd_next = (sizeof (Elf_External_Verdef)
6243 + sizeof (Elf_External_Verdaux));
6244 else
6245 def.vd_next = 0;
6246 _bfd_elf_swap_verdef_out (output_bfd, &def,
6247 (Elf_External_Verdef *) p);
6248 p += sizeof (Elf_External_Verdef);
6249 }
6250 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6251 (Elf_External_Verdaux *) p);
6252 p += sizeof (Elf_External_Verdaux);
6253
6254 for (t = verdefs; t != NULL; t = t->next)
6255 {
6256 unsigned int cdeps;
6257 struct bfd_elf_version_deps *n;
6258
6259 /* Don't emit the base version twice. */
6260 if (t->vernum == 0)
6261 continue;
6262
6263 cdeps = 0;
6264 for (n = t->deps; n != NULL; n = n->next)
6265 ++cdeps;
6266
6267 /* Add a symbol representing this version. */
6268 bh = NULL;
6269 if (! (_bfd_generic_link_add_one_symbol
6270 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6271 0, NULL, FALSE,
6272 get_elf_backend_data (dynobj)->collect, &bh)))
6273 return FALSE;
6274 h = (struct elf_link_hash_entry *) bh;
6275 h->non_elf = 0;
6276 h->def_regular = 1;
6277 h->type = STT_OBJECT;
6278 h->verinfo.vertree = t;
6279
6280 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6281 return FALSE;
6282
6283 def.vd_version = VER_DEF_CURRENT;
6284 def.vd_flags = 0;
6285 if (t->globals.list == NULL
6286 && t->locals.list == NULL
6287 && ! t->used)
6288 def.vd_flags |= VER_FLG_WEAK;
6289 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6290 def.vd_cnt = cdeps + 1;
6291 def.vd_hash = bfd_elf_hash (t->name);
6292 def.vd_aux = sizeof (Elf_External_Verdef);
6293 def.vd_next = 0;
6294
6295 /* If a basever node is next, it *must* be the last node in
6296 the chain, otherwise Verdef construction breaks. */
6297 if (t->next != NULL && t->next->vernum == 0)
6298 BFD_ASSERT (t->next->next == NULL);
6299
6300 if (t->next != NULL && t->next->vernum != 0)
6301 def.vd_next = (sizeof (Elf_External_Verdef)
6302 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6303
6304 _bfd_elf_swap_verdef_out (output_bfd, &def,
6305 (Elf_External_Verdef *) p);
6306 p += sizeof (Elf_External_Verdef);
6307
6308 defaux.vda_name = h->dynstr_index;
6309 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6310 h->dynstr_index);
6311 defaux.vda_next = 0;
6312 if (t->deps != NULL)
6313 defaux.vda_next = sizeof (Elf_External_Verdaux);
6314 t->name_indx = defaux.vda_name;
6315
6316 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6317 (Elf_External_Verdaux *) p);
6318 p += sizeof (Elf_External_Verdaux);
6319
6320 for (n = t->deps; n != NULL; n = n->next)
6321 {
6322 if (n->version_needed == NULL)
6323 {
6324 /* This can happen if there was an error in the
6325 version script. */
6326 defaux.vda_name = 0;
6327 }
6328 else
6329 {
6330 defaux.vda_name = n->version_needed->name_indx;
6331 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6332 defaux.vda_name);
6333 }
6334 if (n->next == NULL)
6335 defaux.vda_next = 0;
6336 else
6337 defaux.vda_next = sizeof (Elf_External_Verdaux);
6338
6339 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6340 (Elf_External_Verdaux *) p);
6341 p += sizeof (Elf_External_Verdaux);
6342 }
6343 }
6344
6345 elf_tdata (output_bfd)->cverdefs = cdefs;
6346 }
6347
6348 /* Work out the size of the version reference section. */
6349
6350 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6351 BFD_ASSERT (s != NULL);
6352 {
6353 struct elf_find_verdep_info sinfo;
6354
6355 sinfo.info = info;
6356 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6357 if (sinfo.vers == 0)
6358 sinfo.vers = 1;
6359 sinfo.failed = FALSE;
6360
6361 elf_link_hash_traverse (elf_hash_table (info),
6362 _bfd_elf_link_find_version_dependencies,
6363 &sinfo);
6364 if (sinfo.failed)
6365 return FALSE;
6366
6367 if (elf_tdata (output_bfd)->verref == NULL)
6368 s->flags |= SEC_EXCLUDE;
6369 else
6370 {
6371 Elf_Internal_Verneed *vn;
6372 unsigned int size;
6373 unsigned int crefs;
6374 bfd_byte *p;
6375
6376 /* Build the version dependency section. */
6377 size = 0;
6378 crefs = 0;
6379 for (vn = elf_tdata (output_bfd)->verref;
6380 vn != NULL;
6381 vn = vn->vn_nextref)
6382 {
6383 Elf_Internal_Vernaux *a;
6384
6385 size += sizeof (Elf_External_Verneed);
6386 ++crefs;
6387 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6388 size += sizeof (Elf_External_Vernaux);
6389 }
6390
6391 s->size = size;
6392 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6393 if (s->contents == NULL)
6394 return FALSE;
6395
6396 p = s->contents;
6397 for (vn = elf_tdata (output_bfd)->verref;
6398 vn != NULL;
6399 vn = vn->vn_nextref)
6400 {
6401 unsigned int caux;
6402 Elf_Internal_Vernaux *a;
6403 size_t indx;
6404
6405 caux = 0;
6406 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6407 ++caux;
6408
6409 vn->vn_version = VER_NEED_CURRENT;
6410 vn->vn_cnt = caux;
6411 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6412 elf_dt_name (vn->vn_bfd) != NULL
6413 ? elf_dt_name (vn->vn_bfd)
6414 : lbasename (vn->vn_bfd->filename),
6415 FALSE);
6416 if (indx == (size_t) -1)
6417 return FALSE;
6418 vn->vn_file = indx;
6419 vn->vn_aux = sizeof (Elf_External_Verneed);
6420 if (vn->vn_nextref == NULL)
6421 vn->vn_next = 0;
6422 else
6423 vn->vn_next = (sizeof (Elf_External_Verneed)
6424 + caux * sizeof (Elf_External_Vernaux));
6425
6426 _bfd_elf_swap_verneed_out (output_bfd, vn,
6427 (Elf_External_Verneed *) p);
6428 p += sizeof (Elf_External_Verneed);
6429
6430 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6431 {
6432 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6433 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6434 a->vna_nodename, FALSE);
6435 if (indx == (size_t) -1)
6436 return FALSE;
6437 a->vna_name = indx;
6438 if (a->vna_nextptr == NULL)
6439 a->vna_next = 0;
6440 else
6441 a->vna_next = sizeof (Elf_External_Vernaux);
6442
6443 _bfd_elf_swap_vernaux_out (output_bfd, a,
6444 (Elf_External_Vernaux *) p);
6445 p += sizeof (Elf_External_Vernaux);
6446 }
6447 }
6448
6449 elf_tdata (output_bfd)->cverrefs = crefs;
6450 }
6451 }
6452 }
6453
6454 bed = get_elf_backend_data (output_bfd);
6455
6456 if (info->gc_sections && bed->can_gc_sections)
6457 {
6458 struct elf_gc_sweep_symbol_info sweep_info;
6459 unsigned long section_sym_count;
6460
6461 /* Remove the symbols that were in the swept sections from the
6462 dynamic symbol table. GCFIXME: Anyone know how to get them
6463 out of the static symbol table as well? */
6464 sweep_info.info = info;
6465 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6466 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6467 &sweep_info);
6468
6469 /* We need to reassign dynsym indices now that symbols may have
6470 been removed. See the call in `bfd_elf_size_dynsym_hash_dynstr'
6471 for the details of the conditions used here. */
6472 if (elf_hash_table (info)->dynamic_sections_created
6473 || bed->always_renumber_dynsyms)
6474 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6475 }
6476
6477 /* Any syms created from now on start with -1 in
6478 got.refcount/offset and plt.refcount/offset. */
6479 elf_hash_table (info)->init_got_refcount
6480 = elf_hash_table (info)->init_got_offset;
6481 elf_hash_table (info)->init_plt_refcount
6482 = elf_hash_table (info)->init_plt_offset;
6483
6484 if (bfd_link_relocatable (info)
6485 && !_bfd_elf_size_group_sections (info))
6486 return FALSE;
6487
6488 /* The backend may have to create some sections regardless of whether
6489 we're dynamic or not. */
6490 if (bed->elf_backend_always_size_sections
6491 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6492 return FALSE;
6493
6494 /* Determine any GNU_STACK segment requirements, after the backend
6495 has had a chance to set a default segment size. */
6496 if (info->execstack)
6497 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6498 else if (info->noexecstack)
6499 elf_stack_flags (output_bfd) = PF_R | PF_W;
6500 else
6501 {
6502 bfd *inputobj;
6503 asection *notesec = NULL;
6504 int exec = 0;
6505
6506 for (inputobj = info->input_bfds;
6507 inputobj;
6508 inputobj = inputobj->link.next)
6509 {
6510 asection *s;
6511
6512 if (inputobj->flags
6513 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6514 continue;
6515 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6516 if (s)
6517 {
6518 if (s->flags & SEC_CODE)
6519 exec = PF_X;
6520 notesec = s;
6521 }
6522 else if (bed->default_execstack)
6523 exec = PF_X;
6524 }
6525 if (notesec || info->stacksize > 0)
6526 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6527 if (notesec && exec && bfd_link_relocatable (info)
6528 && notesec->output_section != bfd_abs_section_ptr)
6529 notesec->output_section->flags |= SEC_CODE;
6530 }
6531
6532 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6533 {
6534 struct elf_info_failed eif;
6535 struct elf_link_hash_entry *h;
6536 asection *dynstr;
6537 asection *s;
6538
6539 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6540 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6541
6542 if (info->symbolic)
6543 {
6544 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6545 return FALSE;
6546 info->flags |= DF_SYMBOLIC;
6547 }
6548
6549 if (rpath != NULL)
6550 {
6551 size_t indx;
6552 bfd_vma tag;
6553
6554 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6555 TRUE);
6556 if (indx == (size_t) -1)
6557 return FALSE;
6558
6559 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6560 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6561 return FALSE;
6562 }
6563
6564 if (filter_shlib != NULL)
6565 {
6566 size_t indx;
6567
6568 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6569 filter_shlib, TRUE);
6570 if (indx == (size_t) -1
6571 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6572 return FALSE;
6573 }
6574
6575 if (auxiliary_filters != NULL)
6576 {
6577 const char * const *p;
6578
6579 for (p = auxiliary_filters; *p != NULL; p++)
6580 {
6581 size_t indx;
6582
6583 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6584 *p, TRUE);
6585 if (indx == (size_t) -1
6586 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6587 return FALSE;
6588 }
6589 }
6590
6591 if (audit != NULL)
6592 {
6593 size_t indx;
6594
6595 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6596 TRUE);
6597 if (indx == (size_t) -1
6598 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6599 return FALSE;
6600 }
6601
6602 if (depaudit != NULL)
6603 {
6604 size_t indx;
6605
6606 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6607 TRUE);
6608 if (indx == (size_t) -1
6609 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6610 return FALSE;
6611 }
6612
6613 eif.info = info;
6614 eif.failed = FALSE;
6615
6616 /* Find all symbols which were defined in a dynamic object and make
6617 the backend pick a reasonable value for them. */
6618 elf_link_hash_traverse (elf_hash_table (info),
6619 _bfd_elf_adjust_dynamic_symbol,
6620 &eif);
6621 if (eif.failed)
6622 return FALSE;
6623
6624 /* Add some entries to the .dynamic section. We fill in some of the
6625 values later, in bfd_elf_final_link, but we must add the entries
6626 now so that we know the final size of the .dynamic section. */
6627
6628 /* If there are initialization and/or finalization functions to
6629 call then add the corresponding DT_INIT/DT_FINI entries. */
6630 h = (info->init_function
6631 ? elf_link_hash_lookup (elf_hash_table (info),
6632 info->init_function, FALSE,
6633 FALSE, FALSE)
6634 : NULL);
6635 if (h != NULL
6636 && (h->ref_regular
6637 || h->def_regular))
6638 {
6639 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6640 return FALSE;
6641 }
6642 h = (info->fini_function
6643 ? elf_link_hash_lookup (elf_hash_table (info),
6644 info->fini_function, FALSE,
6645 FALSE, FALSE)
6646 : NULL);
6647 if (h != NULL
6648 && (h->ref_regular
6649 || h->def_regular))
6650 {
6651 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6652 return FALSE;
6653 }
6654
6655 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6656 if (s != NULL && s->linker_has_input)
6657 {
6658 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6659 if (! bfd_link_executable (info))
6660 {
6661 bfd *sub;
6662 asection *o;
6663
6664 for (sub = info->input_bfds; sub != NULL;
6665 sub = sub->link.next)
6666 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6667 for (o = sub->sections; o != NULL; o = o->next)
6668 if (elf_section_data (o)->this_hdr.sh_type
6669 == SHT_PREINIT_ARRAY)
6670 {
6671 _bfd_error_handler
6672 (_("%B: .preinit_array section is not allowed in DSO"),
6673 sub);
6674 break;
6675 }
6676
6677 bfd_set_error (bfd_error_nonrepresentable_section);
6678 return FALSE;
6679 }
6680
6681 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6682 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6683 return FALSE;
6684 }
6685 s = bfd_get_section_by_name (output_bfd, ".init_array");
6686 if (s != NULL && s->linker_has_input)
6687 {
6688 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6689 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6690 return FALSE;
6691 }
6692 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6693 if (s != NULL && s->linker_has_input)
6694 {
6695 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6696 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6697 return FALSE;
6698 }
6699
6700 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6701 /* If .dynstr is excluded from the link, we don't want any of
6702 these tags. Strictly, we should be checking each section
6703 individually; This quick check covers for the case where
6704 someone does a /DISCARD/ : { *(*) }. */
6705 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6706 {
6707 bfd_size_type strsize;
6708
6709 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6710 if ((info->emit_hash
6711 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6712 || (info->emit_gnu_hash
6713 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6714 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6715 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6716 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6717 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6718 bed->s->sizeof_sym))
6719 return FALSE;
6720 }
6721 }
6722
6723 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6724 return FALSE;
6725
6726 /* The backend must work out the sizes of all the other dynamic
6727 sections. */
6728 if (dynobj != NULL
6729 && bed->elf_backend_size_dynamic_sections != NULL
6730 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6731 return FALSE;
6732
6733 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6734 {
6735 unsigned long section_sym_count;
6736
6737 if (elf_tdata (output_bfd)->cverdefs)
6738 {
6739 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6740
6741 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6742 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6743 return FALSE;
6744 }
6745
6746 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6747 {
6748 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6749 return FALSE;
6750 }
6751 else if (info->flags & DF_BIND_NOW)
6752 {
6753 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6754 return FALSE;
6755 }
6756
6757 if (info->flags_1)
6758 {
6759 if (bfd_link_executable (info))
6760 info->flags_1 &= ~ (DF_1_INITFIRST
6761 | DF_1_NODELETE
6762 | DF_1_NOOPEN);
6763 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6764 return FALSE;
6765 }
6766
6767 if (elf_tdata (output_bfd)->cverrefs)
6768 {
6769 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6770
6771 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6772 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6773 return FALSE;
6774 }
6775
6776 if ((elf_tdata (output_bfd)->cverrefs == 0
6777 && elf_tdata (output_bfd)->cverdefs == 0)
6778 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6779 &section_sym_count) == 0)
6780 {
6781 asection *s;
6782
6783 s = bfd_get_linker_section (dynobj, ".gnu.version");
6784 s->flags |= SEC_EXCLUDE;
6785 }
6786 }
6787 return TRUE;
6788 }
6789
6790 /* Find the first non-excluded output section. We'll use its
6791 section symbol for some emitted relocs. */
6792 void
6793 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6794 {
6795 asection *s;
6796
6797 for (s = output_bfd->sections; s != NULL; s = s->next)
6798 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6799 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6800 {
6801 elf_hash_table (info)->text_index_section = s;
6802 break;
6803 }
6804 }
6805
6806 /* Find two non-excluded output sections, one for code, one for data.
6807 We'll use their section symbols for some emitted relocs. */
6808 void
6809 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6810 {
6811 asection *s;
6812
6813 /* Data first, since setting text_index_section changes
6814 _bfd_elf_link_omit_section_dynsym. */
6815 for (s = output_bfd->sections; s != NULL; s = s->next)
6816 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6817 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6818 {
6819 elf_hash_table (info)->data_index_section = s;
6820 break;
6821 }
6822
6823 for (s = output_bfd->sections; s != NULL; s = s->next)
6824 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6825 == (SEC_ALLOC | SEC_READONLY))
6826 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6827 {
6828 elf_hash_table (info)->text_index_section = s;
6829 break;
6830 }
6831
6832 if (elf_hash_table (info)->text_index_section == NULL)
6833 elf_hash_table (info)->text_index_section
6834 = elf_hash_table (info)->data_index_section;
6835 }
6836
6837 bfd_boolean
6838 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6839 {
6840 const struct elf_backend_data *bed;
6841 unsigned long section_sym_count;
6842 bfd_size_type dynsymcount;
6843
6844 if (!is_elf_hash_table (info->hash))
6845 return TRUE;
6846
6847 bed = get_elf_backend_data (output_bfd);
6848 (*bed->elf_backend_init_index_section) (output_bfd, info);
6849
6850 /* Assign dynsym indices. In a shared library we generate a section
6851 symbol for each output section, which come first. Next come all
6852 of the back-end allocated local dynamic syms, followed by the rest
6853 of the global symbols.
6854
6855 This is usually not needed for static binaries, however backends
6856 can request to always do it, e.g. the MIPS backend uses dynamic
6857 symbol counts to lay out GOT, which will be produced in the
6858 presence of GOT relocations even in static binaries (holding fixed
6859 data in that case, to satisfy those relocations). */
6860
6861 if (elf_hash_table (info)->dynamic_sections_created
6862 || bed->always_renumber_dynsyms)
6863 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6864 &section_sym_count);
6865
6866 if (elf_hash_table (info)->dynamic_sections_created)
6867 {
6868 bfd *dynobj;
6869 asection *s;
6870 unsigned int dtagcount;
6871
6872 dynobj = elf_hash_table (info)->dynobj;
6873
6874 /* Work out the size of the symbol version section. */
6875 s = bfd_get_linker_section (dynobj, ".gnu.version");
6876 BFD_ASSERT (s != NULL);
6877 if ((s->flags & SEC_EXCLUDE) == 0)
6878 {
6879 s->size = dynsymcount * sizeof (Elf_External_Versym);
6880 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6881 if (s->contents == NULL)
6882 return FALSE;
6883
6884 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6885 return FALSE;
6886 }
6887
6888 /* Set the size of the .dynsym and .hash sections. We counted
6889 the number of dynamic symbols in elf_link_add_object_symbols.
6890 We will build the contents of .dynsym and .hash when we build
6891 the final symbol table, because until then we do not know the
6892 correct value to give the symbols. We built the .dynstr
6893 section as we went along in elf_link_add_object_symbols. */
6894 s = elf_hash_table (info)->dynsym;
6895 BFD_ASSERT (s != NULL);
6896 s->size = dynsymcount * bed->s->sizeof_sym;
6897
6898 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6899 if (s->contents == NULL)
6900 return FALSE;
6901
6902 /* The first entry in .dynsym is a dummy symbol. Clear all the
6903 section syms, in case we don't output them all. */
6904 ++section_sym_count;
6905 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6906
6907 elf_hash_table (info)->bucketcount = 0;
6908
6909 /* Compute the size of the hashing table. As a side effect this
6910 computes the hash values for all the names we export. */
6911 if (info->emit_hash)
6912 {
6913 unsigned long int *hashcodes;
6914 struct hash_codes_info hashinf;
6915 bfd_size_type amt;
6916 unsigned long int nsyms;
6917 size_t bucketcount;
6918 size_t hash_entry_size;
6919
6920 /* Compute the hash values for all exported symbols. At the same
6921 time store the values in an array so that we could use them for
6922 optimizations. */
6923 amt = dynsymcount * sizeof (unsigned long int);
6924 hashcodes = (unsigned long int *) bfd_malloc (amt);
6925 if (hashcodes == NULL)
6926 return FALSE;
6927 hashinf.hashcodes = hashcodes;
6928 hashinf.error = FALSE;
6929
6930 /* Put all hash values in HASHCODES. */
6931 elf_link_hash_traverse (elf_hash_table (info),
6932 elf_collect_hash_codes, &hashinf);
6933 if (hashinf.error)
6934 {
6935 free (hashcodes);
6936 return FALSE;
6937 }
6938
6939 nsyms = hashinf.hashcodes - hashcodes;
6940 bucketcount
6941 = compute_bucket_count (info, hashcodes, nsyms, 0);
6942 free (hashcodes);
6943
6944 if (bucketcount == 0)
6945 return FALSE;
6946
6947 elf_hash_table (info)->bucketcount = bucketcount;
6948
6949 s = bfd_get_linker_section (dynobj, ".hash");
6950 BFD_ASSERT (s != NULL);
6951 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6952 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6953 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6954 if (s->contents == NULL)
6955 return FALSE;
6956
6957 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6958 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6959 s->contents + hash_entry_size);
6960 }
6961
6962 if (info->emit_gnu_hash)
6963 {
6964 size_t i, cnt;
6965 unsigned char *contents;
6966 struct collect_gnu_hash_codes cinfo;
6967 bfd_size_type amt;
6968 size_t bucketcount;
6969
6970 memset (&cinfo, 0, sizeof (cinfo));
6971
6972 /* Compute the hash values for all exported symbols. At the same
6973 time store the values in an array so that we could use them for
6974 optimizations. */
6975 amt = dynsymcount * 2 * sizeof (unsigned long int);
6976 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6977 if (cinfo.hashcodes == NULL)
6978 return FALSE;
6979
6980 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6981 cinfo.min_dynindx = -1;
6982 cinfo.output_bfd = output_bfd;
6983 cinfo.bed = bed;
6984
6985 /* Put all hash values in HASHCODES. */
6986 elf_link_hash_traverse (elf_hash_table (info),
6987 elf_collect_gnu_hash_codes, &cinfo);
6988 if (cinfo.error)
6989 {
6990 free (cinfo.hashcodes);
6991 return FALSE;
6992 }
6993
6994 bucketcount
6995 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6996
6997 if (bucketcount == 0)
6998 {
6999 free (cinfo.hashcodes);
7000 return FALSE;
7001 }
7002
7003 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7004 BFD_ASSERT (s != NULL);
7005
7006 if (cinfo.nsyms == 0)
7007 {
7008 /* Empty .gnu.hash section is special. */
7009 BFD_ASSERT (cinfo.min_dynindx == -1);
7010 free (cinfo.hashcodes);
7011 s->size = 5 * 4 + bed->s->arch_size / 8;
7012 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7013 if (contents == NULL)
7014 return FALSE;
7015 s->contents = contents;
7016 /* 1 empty bucket. */
7017 bfd_put_32 (output_bfd, 1, contents);
7018 /* SYMIDX above the special symbol 0. */
7019 bfd_put_32 (output_bfd, 1, contents + 4);
7020 /* Just one word for bitmask. */
7021 bfd_put_32 (output_bfd, 1, contents + 8);
7022 /* Only hash fn bloom filter. */
7023 bfd_put_32 (output_bfd, 0, contents + 12);
7024 /* No hashes are valid - empty bitmask. */
7025 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7026 /* No hashes in the only bucket. */
7027 bfd_put_32 (output_bfd, 0,
7028 contents + 16 + bed->s->arch_size / 8);
7029 }
7030 else
7031 {
7032 unsigned long int maskwords, maskbitslog2, x;
7033 BFD_ASSERT (cinfo.min_dynindx != -1);
7034
7035 x = cinfo.nsyms;
7036 maskbitslog2 = 1;
7037 while ((x >>= 1) != 0)
7038 ++maskbitslog2;
7039 if (maskbitslog2 < 3)
7040 maskbitslog2 = 5;
7041 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7042 maskbitslog2 = maskbitslog2 + 3;
7043 else
7044 maskbitslog2 = maskbitslog2 + 2;
7045 if (bed->s->arch_size == 64)
7046 {
7047 if (maskbitslog2 == 5)
7048 maskbitslog2 = 6;
7049 cinfo.shift1 = 6;
7050 }
7051 else
7052 cinfo.shift1 = 5;
7053 cinfo.mask = (1 << cinfo.shift1) - 1;
7054 cinfo.shift2 = maskbitslog2;
7055 cinfo.maskbits = 1 << maskbitslog2;
7056 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7057 amt = bucketcount * sizeof (unsigned long int) * 2;
7058 amt += maskwords * sizeof (bfd_vma);
7059 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7060 if (cinfo.bitmask == NULL)
7061 {
7062 free (cinfo.hashcodes);
7063 return FALSE;
7064 }
7065
7066 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7067 cinfo.indx = cinfo.counts + bucketcount;
7068 cinfo.symindx = dynsymcount - cinfo.nsyms;
7069 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7070
7071 /* Determine how often each hash bucket is used. */
7072 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7073 for (i = 0; i < cinfo.nsyms; ++i)
7074 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7075
7076 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7077 if (cinfo.counts[i] != 0)
7078 {
7079 cinfo.indx[i] = cnt;
7080 cnt += cinfo.counts[i];
7081 }
7082 BFD_ASSERT (cnt == dynsymcount);
7083 cinfo.bucketcount = bucketcount;
7084 cinfo.local_indx = cinfo.min_dynindx;
7085
7086 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7087 s->size += cinfo.maskbits / 8;
7088 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7089 if (contents == NULL)
7090 {
7091 free (cinfo.bitmask);
7092 free (cinfo.hashcodes);
7093 return FALSE;
7094 }
7095
7096 s->contents = contents;
7097 bfd_put_32 (output_bfd, bucketcount, contents);
7098 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7099 bfd_put_32 (output_bfd, maskwords, contents + 8);
7100 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7101 contents += 16 + cinfo.maskbits / 8;
7102
7103 for (i = 0; i < bucketcount; ++i)
7104 {
7105 if (cinfo.counts[i] == 0)
7106 bfd_put_32 (output_bfd, 0, contents);
7107 else
7108 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7109 contents += 4;
7110 }
7111
7112 cinfo.contents = contents;
7113
7114 /* Renumber dynamic symbols, populate .gnu.hash section. */
7115 elf_link_hash_traverse (elf_hash_table (info),
7116 elf_renumber_gnu_hash_syms, &cinfo);
7117
7118 contents = s->contents + 16;
7119 for (i = 0; i < maskwords; ++i)
7120 {
7121 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7122 contents);
7123 contents += bed->s->arch_size / 8;
7124 }
7125
7126 free (cinfo.bitmask);
7127 free (cinfo.hashcodes);
7128 }
7129 }
7130
7131 s = bfd_get_linker_section (dynobj, ".dynstr");
7132 BFD_ASSERT (s != NULL);
7133
7134 elf_finalize_dynstr (output_bfd, info);
7135
7136 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7137
7138 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7139 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7140 return FALSE;
7141 }
7142
7143 return TRUE;
7144 }
7145 \f
7146 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7147
7148 static void
7149 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7150 asection *sec)
7151 {
7152 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7153 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7154 }
7155
7156 /* Finish SHF_MERGE section merging. */
7157
7158 bfd_boolean
7159 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7160 {
7161 bfd *ibfd;
7162 asection *sec;
7163
7164 if (!is_elf_hash_table (info->hash))
7165 return FALSE;
7166
7167 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7168 if ((ibfd->flags & DYNAMIC) == 0
7169 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7170 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7171 == get_elf_backend_data (obfd)->s->elfclass))
7172 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7173 if ((sec->flags & SEC_MERGE) != 0
7174 && !bfd_is_abs_section (sec->output_section))
7175 {
7176 struct bfd_elf_section_data *secdata;
7177
7178 secdata = elf_section_data (sec);
7179 if (! _bfd_add_merge_section (obfd,
7180 &elf_hash_table (info)->merge_info,
7181 sec, &secdata->sec_info))
7182 return FALSE;
7183 else if (secdata->sec_info)
7184 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7185 }
7186
7187 if (elf_hash_table (info)->merge_info != NULL)
7188 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7189 merge_sections_remove_hook);
7190 return TRUE;
7191 }
7192
7193 /* Create an entry in an ELF linker hash table. */
7194
7195 struct bfd_hash_entry *
7196 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7197 struct bfd_hash_table *table,
7198 const char *string)
7199 {
7200 /* Allocate the structure if it has not already been allocated by a
7201 subclass. */
7202 if (entry == NULL)
7203 {
7204 entry = (struct bfd_hash_entry *)
7205 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7206 if (entry == NULL)
7207 return entry;
7208 }
7209
7210 /* Call the allocation method of the superclass. */
7211 entry = _bfd_link_hash_newfunc (entry, table, string);
7212 if (entry != NULL)
7213 {
7214 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7215 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7216
7217 /* Set local fields. */
7218 ret->indx = -1;
7219 ret->dynindx = -1;
7220 ret->got = htab->init_got_refcount;
7221 ret->plt = htab->init_plt_refcount;
7222 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7223 - offsetof (struct elf_link_hash_entry, size)));
7224 /* Assume that we have been called by a non-ELF symbol reader.
7225 This flag is then reset by the code which reads an ELF input
7226 file. This ensures that a symbol created by a non-ELF symbol
7227 reader will have the flag set correctly. */
7228 ret->non_elf = 1;
7229 }
7230
7231 return entry;
7232 }
7233
7234 /* Copy data from an indirect symbol to its direct symbol, hiding the
7235 old indirect symbol. Also used for copying flags to a weakdef. */
7236
7237 void
7238 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7239 struct elf_link_hash_entry *dir,
7240 struct elf_link_hash_entry *ind)
7241 {
7242 struct elf_link_hash_table *htab;
7243
7244 /* Copy down any references that we may have already seen to the
7245 symbol which just became indirect. */
7246
7247 if (dir->versioned != versioned_hidden)
7248 dir->ref_dynamic |= ind->ref_dynamic;
7249 dir->ref_regular |= ind->ref_regular;
7250 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7251 dir->non_got_ref |= ind->non_got_ref;
7252 dir->needs_plt |= ind->needs_plt;
7253 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7254
7255 if (ind->root.type != bfd_link_hash_indirect)
7256 return;
7257
7258 /* Copy over the global and procedure linkage table refcount entries.
7259 These may have been already set up by a check_relocs routine. */
7260 htab = elf_hash_table (info);
7261 if (ind->got.refcount > htab->init_got_refcount.refcount)
7262 {
7263 if (dir->got.refcount < 0)
7264 dir->got.refcount = 0;
7265 dir->got.refcount += ind->got.refcount;
7266 ind->got.refcount = htab->init_got_refcount.refcount;
7267 }
7268
7269 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7270 {
7271 if (dir->plt.refcount < 0)
7272 dir->plt.refcount = 0;
7273 dir->plt.refcount += ind->plt.refcount;
7274 ind->plt.refcount = htab->init_plt_refcount.refcount;
7275 }
7276
7277 if (ind->dynindx != -1)
7278 {
7279 if (dir->dynindx != -1)
7280 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7281 dir->dynindx = ind->dynindx;
7282 dir->dynstr_index = ind->dynstr_index;
7283 ind->dynindx = -1;
7284 ind->dynstr_index = 0;
7285 }
7286 }
7287
7288 void
7289 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7290 struct elf_link_hash_entry *h,
7291 bfd_boolean force_local)
7292 {
7293 /* STT_GNU_IFUNC symbol must go through PLT. */
7294 if (h->type != STT_GNU_IFUNC)
7295 {
7296 h->plt = elf_hash_table (info)->init_plt_offset;
7297 h->needs_plt = 0;
7298 }
7299 if (force_local)
7300 {
7301 h->forced_local = 1;
7302 if (h->dynindx != -1)
7303 {
7304 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7305 h->dynstr_index);
7306 h->dynindx = -1;
7307 h->dynstr_index = 0;
7308 }
7309 }
7310 }
7311
7312 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7313 caller. */
7314
7315 bfd_boolean
7316 _bfd_elf_link_hash_table_init
7317 (struct elf_link_hash_table *table,
7318 bfd *abfd,
7319 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7320 struct bfd_hash_table *,
7321 const char *),
7322 unsigned int entsize,
7323 enum elf_target_id target_id)
7324 {
7325 bfd_boolean ret;
7326 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7327
7328 table->init_got_refcount.refcount = can_refcount - 1;
7329 table->init_plt_refcount.refcount = can_refcount - 1;
7330 table->init_got_offset.offset = -(bfd_vma) 1;
7331 table->init_plt_offset.offset = -(bfd_vma) 1;
7332 /* The first dynamic symbol is a dummy. */
7333 table->dynsymcount = 1;
7334
7335 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7336
7337 table->root.type = bfd_link_elf_hash_table;
7338 table->hash_table_id = target_id;
7339
7340 return ret;
7341 }
7342
7343 /* Create an ELF linker hash table. */
7344
7345 struct bfd_link_hash_table *
7346 _bfd_elf_link_hash_table_create (bfd *abfd)
7347 {
7348 struct elf_link_hash_table *ret;
7349 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7350
7351 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7352 if (ret == NULL)
7353 return NULL;
7354
7355 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7356 sizeof (struct elf_link_hash_entry),
7357 GENERIC_ELF_DATA))
7358 {
7359 free (ret);
7360 return NULL;
7361 }
7362 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7363
7364 return &ret->root;
7365 }
7366
7367 /* Destroy an ELF linker hash table. */
7368
7369 void
7370 _bfd_elf_link_hash_table_free (bfd *obfd)
7371 {
7372 struct elf_link_hash_table *htab;
7373
7374 htab = (struct elf_link_hash_table *) obfd->link.hash;
7375 if (htab->dynstr != NULL)
7376 _bfd_elf_strtab_free (htab->dynstr);
7377 _bfd_merge_sections_free (htab->merge_info);
7378 _bfd_generic_link_hash_table_free (obfd);
7379 }
7380
7381 /* This is a hook for the ELF emulation code in the generic linker to
7382 tell the backend linker what file name to use for the DT_NEEDED
7383 entry for a dynamic object. */
7384
7385 void
7386 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7387 {
7388 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7389 && bfd_get_format (abfd) == bfd_object)
7390 elf_dt_name (abfd) = name;
7391 }
7392
7393 int
7394 bfd_elf_get_dyn_lib_class (bfd *abfd)
7395 {
7396 int lib_class;
7397 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7398 && bfd_get_format (abfd) == bfd_object)
7399 lib_class = elf_dyn_lib_class (abfd);
7400 else
7401 lib_class = 0;
7402 return lib_class;
7403 }
7404
7405 void
7406 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7407 {
7408 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7409 && bfd_get_format (abfd) == bfd_object)
7410 elf_dyn_lib_class (abfd) = lib_class;
7411 }
7412
7413 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7414 the linker ELF emulation code. */
7415
7416 struct bfd_link_needed_list *
7417 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7418 struct bfd_link_info *info)
7419 {
7420 if (! is_elf_hash_table (info->hash))
7421 return NULL;
7422 return elf_hash_table (info)->needed;
7423 }
7424
7425 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7426 hook for the linker ELF emulation code. */
7427
7428 struct bfd_link_needed_list *
7429 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7430 struct bfd_link_info *info)
7431 {
7432 if (! is_elf_hash_table (info->hash))
7433 return NULL;
7434 return elf_hash_table (info)->runpath;
7435 }
7436
7437 /* Get the name actually used for a dynamic object for a link. This
7438 is the SONAME entry if there is one. Otherwise, it is the string
7439 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7440
7441 const char *
7442 bfd_elf_get_dt_soname (bfd *abfd)
7443 {
7444 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7445 && bfd_get_format (abfd) == bfd_object)
7446 return elf_dt_name (abfd);
7447 return NULL;
7448 }
7449
7450 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7451 the ELF linker emulation code. */
7452
7453 bfd_boolean
7454 bfd_elf_get_bfd_needed_list (bfd *abfd,
7455 struct bfd_link_needed_list **pneeded)
7456 {
7457 asection *s;
7458 bfd_byte *dynbuf = NULL;
7459 unsigned int elfsec;
7460 unsigned long shlink;
7461 bfd_byte *extdyn, *extdynend;
7462 size_t extdynsize;
7463 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7464
7465 *pneeded = NULL;
7466
7467 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7468 || bfd_get_format (abfd) != bfd_object)
7469 return TRUE;
7470
7471 s = bfd_get_section_by_name (abfd, ".dynamic");
7472 if (s == NULL || s->size == 0)
7473 return TRUE;
7474
7475 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7476 goto error_return;
7477
7478 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7479 if (elfsec == SHN_BAD)
7480 goto error_return;
7481
7482 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7483
7484 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7485 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7486
7487 extdyn = dynbuf;
7488 extdynend = extdyn + s->size;
7489 for (; extdyn < extdynend; extdyn += extdynsize)
7490 {
7491 Elf_Internal_Dyn dyn;
7492
7493 (*swap_dyn_in) (abfd, extdyn, &dyn);
7494
7495 if (dyn.d_tag == DT_NULL)
7496 break;
7497
7498 if (dyn.d_tag == DT_NEEDED)
7499 {
7500 const char *string;
7501 struct bfd_link_needed_list *l;
7502 unsigned int tagv = dyn.d_un.d_val;
7503 bfd_size_type amt;
7504
7505 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7506 if (string == NULL)
7507 goto error_return;
7508
7509 amt = sizeof *l;
7510 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7511 if (l == NULL)
7512 goto error_return;
7513
7514 l->by = abfd;
7515 l->name = string;
7516 l->next = *pneeded;
7517 *pneeded = l;
7518 }
7519 }
7520
7521 free (dynbuf);
7522
7523 return TRUE;
7524
7525 error_return:
7526 if (dynbuf != NULL)
7527 free (dynbuf);
7528 return FALSE;
7529 }
7530
7531 struct elf_symbuf_symbol
7532 {
7533 unsigned long st_name; /* Symbol name, index in string tbl */
7534 unsigned char st_info; /* Type and binding attributes */
7535 unsigned char st_other; /* Visibilty, and target specific */
7536 };
7537
7538 struct elf_symbuf_head
7539 {
7540 struct elf_symbuf_symbol *ssym;
7541 size_t count;
7542 unsigned int st_shndx;
7543 };
7544
7545 struct elf_symbol
7546 {
7547 union
7548 {
7549 Elf_Internal_Sym *isym;
7550 struct elf_symbuf_symbol *ssym;
7551 } u;
7552 const char *name;
7553 };
7554
7555 /* Sort references to symbols by ascending section number. */
7556
7557 static int
7558 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7559 {
7560 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7561 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7562
7563 return s1->st_shndx - s2->st_shndx;
7564 }
7565
7566 static int
7567 elf_sym_name_compare (const void *arg1, const void *arg2)
7568 {
7569 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7570 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7571 return strcmp (s1->name, s2->name);
7572 }
7573
7574 static struct elf_symbuf_head *
7575 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7576 {
7577 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7578 struct elf_symbuf_symbol *ssym;
7579 struct elf_symbuf_head *ssymbuf, *ssymhead;
7580 size_t i, shndx_count, total_size;
7581
7582 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7583 if (indbuf == NULL)
7584 return NULL;
7585
7586 for (ind = indbuf, i = 0; i < symcount; i++)
7587 if (isymbuf[i].st_shndx != SHN_UNDEF)
7588 *ind++ = &isymbuf[i];
7589 indbufend = ind;
7590
7591 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7592 elf_sort_elf_symbol);
7593
7594 shndx_count = 0;
7595 if (indbufend > indbuf)
7596 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7597 if (ind[0]->st_shndx != ind[1]->st_shndx)
7598 shndx_count++;
7599
7600 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7601 + (indbufend - indbuf) * sizeof (*ssym));
7602 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7603 if (ssymbuf == NULL)
7604 {
7605 free (indbuf);
7606 return NULL;
7607 }
7608
7609 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7610 ssymbuf->ssym = NULL;
7611 ssymbuf->count = shndx_count;
7612 ssymbuf->st_shndx = 0;
7613 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7614 {
7615 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7616 {
7617 ssymhead++;
7618 ssymhead->ssym = ssym;
7619 ssymhead->count = 0;
7620 ssymhead->st_shndx = (*ind)->st_shndx;
7621 }
7622 ssym->st_name = (*ind)->st_name;
7623 ssym->st_info = (*ind)->st_info;
7624 ssym->st_other = (*ind)->st_other;
7625 ssymhead->count++;
7626 }
7627 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7628 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7629 == total_size));
7630
7631 free (indbuf);
7632 return ssymbuf;
7633 }
7634
7635 /* Check if 2 sections define the same set of local and global
7636 symbols. */
7637
7638 static bfd_boolean
7639 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7640 struct bfd_link_info *info)
7641 {
7642 bfd *bfd1, *bfd2;
7643 const struct elf_backend_data *bed1, *bed2;
7644 Elf_Internal_Shdr *hdr1, *hdr2;
7645 size_t symcount1, symcount2;
7646 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7647 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7648 Elf_Internal_Sym *isym, *isymend;
7649 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7650 size_t count1, count2, i;
7651 unsigned int shndx1, shndx2;
7652 bfd_boolean result;
7653
7654 bfd1 = sec1->owner;
7655 bfd2 = sec2->owner;
7656
7657 /* Both sections have to be in ELF. */
7658 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7659 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7660 return FALSE;
7661
7662 if (elf_section_type (sec1) != elf_section_type (sec2))
7663 return FALSE;
7664
7665 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7666 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7667 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7668 return FALSE;
7669
7670 bed1 = get_elf_backend_data (bfd1);
7671 bed2 = get_elf_backend_data (bfd2);
7672 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7673 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7674 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7675 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7676
7677 if (symcount1 == 0 || symcount2 == 0)
7678 return FALSE;
7679
7680 result = FALSE;
7681 isymbuf1 = NULL;
7682 isymbuf2 = NULL;
7683 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7684 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7685
7686 if (ssymbuf1 == NULL)
7687 {
7688 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7689 NULL, NULL, NULL);
7690 if (isymbuf1 == NULL)
7691 goto done;
7692
7693 if (!info->reduce_memory_overheads)
7694 elf_tdata (bfd1)->symbuf = ssymbuf1
7695 = elf_create_symbuf (symcount1, isymbuf1);
7696 }
7697
7698 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7699 {
7700 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7701 NULL, NULL, NULL);
7702 if (isymbuf2 == NULL)
7703 goto done;
7704
7705 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7706 elf_tdata (bfd2)->symbuf = ssymbuf2
7707 = elf_create_symbuf (symcount2, isymbuf2);
7708 }
7709
7710 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7711 {
7712 /* Optimized faster version. */
7713 size_t lo, hi, mid;
7714 struct elf_symbol *symp;
7715 struct elf_symbuf_symbol *ssym, *ssymend;
7716
7717 lo = 0;
7718 hi = ssymbuf1->count;
7719 ssymbuf1++;
7720 count1 = 0;
7721 while (lo < hi)
7722 {
7723 mid = (lo + hi) / 2;
7724 if (shndx1 < ssymbuf1[mid].st_shndx)
7725 hi = mid;
7726 else if (shndx1 > ssymbuf1[mid].st_shndx)
7727 lo = mid + 1;
7728 else
7729 {
7730 count1 = ssymbuf1[mid].count;
7731 ssymbuf1 += mid;
7732 break;
7733 }
7734 }
7735
7736 lo = 0;
7737 hi = ssymbuf2->count;
7738 ssymbuf2++;
7739 count2 = 0;
7740 while (lo < hi)
7741 {
7742 mid = (lo + hi) / 2;
7743 if (shndx2 < ssymbuf2[mid].st_shndx)
7744 hi = mid;
7745 else if (shndx2 > ssymbuf2[mid].st_shndx)
7746 lo = mid + 1;
7747 else
7748 {
7749 count2 = ssymbuf2[mid].count;
7750 ssymbuf2 += mid;
7751 break;
7752 }
7753 }
7754
7755 if (count1 == 0 || count2 == 0 || count1 != count2)
7756 goto done;
7757
7758 symtable1
7759 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7760 symtable2
7761 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7762 if (symtable1 == NULL || symtable2 == NULL)
7763 goto done;
7764
7765 symp = symtable1;
7766 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7767 ssym < ssymend; ssym++, symp++)
7768 {
7769 symp->u.ssym = ssym;
7770 symp->name = bfd_elf_string_from_elf_section (bfd1,
7771 hdr1->sh_link,
7772 ssym->st_name);
7773 }
7774
7775 symp = symtable2;
7776 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7777 ssym < ssymend; ssym++, symp++)
7778 {
7779 symp->u.ssym = ssym;
7780 symp->name = bfd_elf_string_from_elf_section (bfd2,
7781 hdr2->sh_link,
7782 ssym->st_name);
7783 }
7784
7785 /* Sort symbol by name. */
7786 qsort (symtable1, count1, sizeof (struct elf_symbol),
7787 elf_sym_name_compare);
7788 qsort (symtable2, count1, sizeof (struct elf_symbol),
7789 elf_sym_name_compare);
7790
7791 for (i = 0; i < count1; i++)
7792 /* Two symbols must have the same binding, type and name. */
7793 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7794 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7795 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7796 goto done;
7797
7798 result = TRUE;
7799 goto done;
7800 }
7801
7802 symtable1 = (struct elf_symbol *)
7803 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7804 symtable2 = (struct elf_symbol *)
7805 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7806 if (symtable1 == NULL || symtable2 == NULL)
7807 goto done;
7808
7809 /* Count definitions in the section. */
7810 count1 = 0;
7811 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7812 if (isym->st_shndx == shndx1)
7813 symtable1[count1++].u.isym = isym;
7814
7815 count2 = 0;
7816 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7817 if (isym->st_shndx == shndx2)
7818 symtable2[count2++].u.isym = isym;
7819
7820 if (count1 == 0 || count2 == 0 || count1 != count2)
7821 goto done;
7822
7823 for (i = 0; i < count1; i++)
7824 symtable1[i].name
7825 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7826 symtable1[i].u.isym->st_name);
7827
7828 for (i = 0; i < count2; i++)
7829 symtable2[i].name
7830 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7831 symtable2[i].u.isym->st_name);
7832
7833 /* Sort symbol by name. */
7834 qsort (symtable1, count1, sizeof (struct elf_symbol),
7835 elf_sym_name_compare);
7836 qsort (symtable2, count1, sizeof (struct elf_symbol),
7837 elf_sym_name_compare);
7838
7839 for (i = 0; i < count1; i++)
7840 /* Two symbols must have the same binding, type and name. */
7841 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7842 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7843 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7844 goto done;
7845
7846 result = TRUE;
7847
7848 done:
7849 if (symtable1)
7850 free (symtable1);
7851 if (symtable2)
7852 free (symtable2);
7853 if (isymbuf1)
7854 free (isymbuf1);
7855 if (isymbuf2)
7856 free (isymbuf2);
7857
7858 return result;
7859 }
7860
7861 /* Return TRUE if 2 section types are compatible. */
7862
7863 bfd_boolean
7864 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7865 bfd *bbfd, const asection *bsec)
7866 {
7867 if (asec == NULL
7868 || bsec == NULL
7869 || abfd->xvec->flavour != bfd_target_elf_flavour
7870 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7871 return TRUE;
7872
7873 return elf_section_type (asec) == elf_section_type (bsec);
7874 }
7875 \f
7876 /* Final phase of ELF linker. */
7877
7878 /* A structure we use to avoid passing large numbers of arguments. */
7879
7880 struct elf_final_link_info
7881 {
7882 /* General link information. */
7883 struct bfd_link_info *info;
7884 /* Output BFD. */
7885 bfd *output_bfd;
7886 /* Symbol string table. */
7887 struct elf_strtab_hash *symstrtab;
7888 /* .hash section. */
7889 asection *hash_sec;
7890 /* symbol version section (.gnu.version). */
7891 asection *symver_sec;
7892 /* Buffer large enough to hold contents of any section. */
7893 bfd_byte *contents;
7894 /* Buffer large enough to hold external relocs of any section. */
7895 void *external_relocs;
7896 /* Buffer large enough to hold internal relocs of any section. */
7897 Elf_Internal_Rela *internal_relocs;
7898 /* Buffer large enough to hold external local symbols of any input
7899 BFD. */
7900 bfd_byte *external_syms;
7901 /* And a buffer for symbol section indices. */
7902 Elf_External_Sym_Shndx *locsym_shndx;
7903 /* Buffer large enough to hold internal local symbols of any input
7904 BFD. */
7905 Elf_Internal_Sym *internal_syms;
7906 /* Array large enough to hold a symbol index for each local symbol
7907 of any input BFD. */
7908 long *indices;
7909 /* Array large enough to hold a section pointer for each local
7910 symbol of any input BFD. */
7911 asection **sections;
7912 /* Buffer for SHT_SYMTAB_SHNDX section. */
7913 Elf_External_Sym_Shndx *symshndxbuf;
7914 /* Number of STT_FILE syms seen. */
7915 size_t filesym_count;
7916 };
7917
7918 /* This struct is used to pass information to elf_link_output_extsym. */
7919
7920 struct elf_outext_info
7921 {
7922 bfd_boolean failed;
7923 bfd_boolean localsyms;
7924 bfd_boolean file_sym_done;
7925 struct elf_final_link_info *flinfo;
7926 };
7927
7928
7929 /* Support for evaluating a complex relocation.
7930
7931 Complex relocations are generalized, self-describing relocations. The
7932 implementation of them consists of two parts: complex symbols, and the
7933 relocations themselves.
7934
7935 The relocations are use a reserved elf-wide relocation type code (R_RELC
7936 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7937 information (start bit, end bit, word width, etc) into the addend. This
7938 information is extracted from CGEN-generated operand tables within gas.
7939
7940 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7941 internal) representing prefix-notation expressions, including but not
7942 limited to those sorts of expressions normally encoded as addends in the
7943 addend field. The symbol mangling format is:
7944
7945 <node> := <literal>
7946 | <unary-operator> ':' <node>
7947 | <binary-operator> ':' <node> ':' <node>
7948 ;
7949
7950 <literal> := 's' <digits=N> ':' <N character symbol name>
7951 | 'S' <digits=N> ':' <N character section name>
7952 | '#' <hexdigits>
7953 ;
7954
7955 <binary-operator> := as in C
7956 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7957
7958 static void
7959 set_symbol_value (bfd *bfd_with_globals,
7960 Elf_Internal_Sym *isymbuf,
7961 size_t locsymcount,
7962 size_t symidx,
7963 bfd_vma val)
7964 {
7965 struct elf_link_hash_entry **sym_hashes;
7966 struct elf_link_hash_entry *h;
7967 size_t extsymoff = locsymcount;
7968
7969 if (symidx < locsymcount)
7970 {
7971 Elf_Internal_Sym *sym;
7972
7973 sym = isymbuf + symidx;
7974 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7975 {
7976 /* It is a local symbol: move it to the
7977 "absolute" section and give it a value. */
7978 sym->st_shndx = SHN_ABS;
7979 sym->st_value = val;
7980 return;
7981 }
7982 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7983 extsymoff = 0;
7984 }
7985
7986 /* It is a global symbol: set its link type
7987 to "defined" and give it a value. */
7988
7989 sym_hashes = elf_sym_hashes (bfd_with_globals);
7990 h = sym_hashes [symidx - extsymoff];
7991 while (h->root.type == bfd_link_hash_indirect
7992 || h->root.type == bfd_link_hash_warning)
7993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7994 h->root.type = bfd_link_hash_defined;
7995 h->root.u.def.value = val;
7996 h->root.u.def.section = bfd_abs_section_ptr;
7997 }
7998
7999 static bfd_boolean
8000 resolve_symbol (const char *name,
8001 bfd *input_bfd,
8002 struct elf_final_link_info *flinfo,
8003 bfd_vma *result,
8004 Elf_Internal_Sym *isymbuf,
8005 size_t locsymcount)
8006 {
8007 Elf_Internal_Sym *sym;
8008 struct bfd_link_hash_entry *global_entry;
8009 const char *candidate = NULL;
8010 Elf_Internal_Shdr *symtab_hdr;
8011 size_t i;
8012
8013 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8014
8015 for (i = 0; i < locsymcount; ++ i)
8016 {
8017 sym = isymbuf + i;
8018
8019 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8020 continue;
8021
8022 candidate = bfd_elf_string_from_elf_section (input_bfd,
8023 symtab_hdr->sh_link,
8024 sym->st_name);
8025 #ifdef DEBUG
8026 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8027 name, candidate, (unsigned long) sym->st_value);
8028 #endif
8029 if (candidate && strcmp (candidate, name) == 0)
8030 {
8031 asection *sec = flinfo->sections [i];
8032
8033 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8034 *result += sec->output_offset + sec->output_section->vma;
8035 #ifdef DEBUG
8036 printf ("Found symbol with value %8.8lx\n",
8037 (unsigned long) *result);
8038 #endif
8039 return TRUE;
8040 }
8041 }
8042
8043 /* Hmm, haven't found it yet. perhaps it is a global. */
8044 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8045 FALSE, FALSE, TRUE);
8046 if (!global_entry)
8047 return FALSE;
8048
8049 if (global_entry->type == bfd_link_hash_defined
8050 || global_entry->type == bfd_link_hash_defweak)
8051 {
8052 *result = (global_entry->u.def.value
8053 + global_entry->u.def.section->output_section->vma
8054 + global_entry->u.def.section->output_offset);
8055 #ifdef DEBUG
8056 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8057 global_entry->root.string, (unsigned long) *result);
8058 #endif
8059 return TRUE;
8060 }
8061
8062 return FALSE;
8063 }
8064
8065 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8066 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8067 names like "foo.end" which is the end address of section "foo". */
8068
8069 static bfd_boolean
8070 resolve_section (const char *name,
8071 asection *sections,
8072 bfd_vma *result,
8073 bfd * abfd)
8074 {
8075 asection *curr;
8076 unsigned int len;
8077
8078 for (curr = sections; curr; curr = curr->next)
8079 if (strcmp (curr->name, name) == 0)
8080 {
8081 *result = curr->vma;
8082 return TRUE;
8083 }
8084
8085 /* Hmm. still haven't found it. try pseudo-section names. */
8086 /* FIXME: This could be coded more efficiently... */
8087 for (curr = sections; curr; curr = curr->next)
8088 {
8089 len = strlen (curr->name);
8090 if (len > strlen (name))
8091 continue;
8092
8093 if (strncmp (curr->name, name, len) == 0)
8094 {
8095 if (strncmp (".end", name + len, 4) == 0)
8096 {
8097 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8098 return TRUE;
8099 }
8100
8101 /* Insert more pseudo-section names here, if you like. */
8102 }
8103 }
8104
8105 return FALSE;
8106 }
8107
8108 static void
8109 undefined_reference (const char *reftype, const char *name)
8110 {
8111 /* xgettext:c-format */
8112 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8113 reftype, name);
8114 }
8115
8116 static bfd_boolean
8117 eval_symbol (bfd_vma *result,
8118 const char **symp,
8119 bfd *input_bfd,
8120 struct elf_final_link_info *flinfo,
8121 bfd_vma dot,
8122 Elf_Internal_Sym *isymbuf,
8123 size_t locsymcount,
8124 int signed_p)
8125 {
8126 size_t len;
8127 size_t symlen;
8128 bfd_vma a;
8129 bfd_vma b;
8130 char symbuf[4096];
8131 const char *sym = *symp;
8132 const char *symend;
8133 bfd_boolean symbol_is_section = FALSE;
8134
8135 len = strlen (sym);
8136 symend = sym + len;
8137
8138 if (len < 1 || len > sizeof (symbuf))
8139 {
8140 bfd_set_error (bfd_error_invalid_operation);
8141 return FALSE;
8142 }
8143
8144 switch (* sym)
8145 {
8146 case '.':
8147 *result = dot;
8148 *symp = sym + 1;
8149 return TRUE;
8150
8151 case '#':
8152 ++sym;
8153 *result = strtoul (sym, (char **) symp, 16);
8154 return TRUE;
8155
8156 case 'S':
8157 symbol_is_section = TRUE;
8158 /* Fall through. */
8159 case 's':
8160 ++sym;
8161 symlen = strtol (sym, (char **) symp, 10);
8162 sym = *symp + 1; /* Skip the trailing ':'. */
8163
8164 if (symend < sym || symlen + 1 > sizeof (symbuf))
8165 {
8166 bfd_set_error (bfd_error_invalid_operation);
8167 return FALSE;
8168 }
8169
8170 memcpy (symbuf, sym, symlen);
8171 symbuf[symlen] = '\0';
8172 *symp = sym + symlen;
8173
8174 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8175 the symbol as a section, or vice-versa. so we're pretty liberal in our
8176 interpretation here; section means "try section first", not "must be a
8177 section", and likewise with symbol. */
8178
8179 if (symbol_is_section)
8180 {
8181 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8182 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8183 isymbuf, locsymcount))
8184 {
8185 undefined_reference ("section", symbuf);
8186 return FALSE;
8187 }
8188 }
8189 else
8190 {
8191 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8192 isymbuf, locsymcount)
8193 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8194 result, input_bfd))
8195 {
8196 undefined_reference ("symbol", symbuf);
8197 return FALSE;
8198 }
8199 }
8200
8201 return TRUE;
8202
8203 /* All that remains are operators. */
8204
8205 #define UNARY_OP(op) \
8206 if (strncmp (sym, #op, strlen (#op)) == 0) \
8207 { \
8208 sym += strlen (#op); \
8209 if (*sym == ':') \
8210 ++sym; \
8211 *symp = sym; \
8212 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8213 isymbuf, locsymcount, signed_p)) \
8214 return FALSE; \
8215 if (signed_p) \
8216 *result = op ((bfd_signed_vma) a); \
8217 else \
8218 *result = op a; \
8219 return TRUE; \
8220 }
8221
8222 #define BINARY_OP(op) \
8223 if (strncmp (sym, #op, strlen (#op)) == 0) \
8224 { \
8225 sym += strlen (#op); \
8226 if (*sym == ':') \
8227 ++sym; \
8228 *symp = sym; \
8229 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8230 isymbuf, locsymcount, signed_p)) \
8231 return FALSE; \
8232 ++*symp; \
8233 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8234 isymbuf, locsymcount, signed_p)) \
8235 return FALSE; \
8236 if (signed_p) \
8237 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8238 else \
8239 *result = a op b; \
8240 return TRUE; \
8241 }
8242
8243 default:
8244 UNARY_OP (0-);
8245 BINARY_OP (<<);
8246 BINARY_OP (>>);
8247 BINARY_OP (==);
8248 BINARY_OP (!=);
8249 BINARY_OP (<=);
8250 BINARY_OP (>=);
8251 BINARY_OP (&&);
8252 BINARY_OP (||);
8253 UNARY_OP (~);
8254 UNARY_OP (!);
8255 BINARY_OP (*);
8256 BINARY_OP (/);
8257 BINARY_OP (%);
8258 BINARY_OP (^);
8259 BINARY_OP (|);
8260 BINARY_OP (&);
8261 BINARY_OP (+);
8262 BINARY_OP (-);
8263 BINARY_OP (<);
8264 BINARY_OP (>);
8265 #undef UNARY_OP
8266 #undef BINARY_OP
8267 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8268 bfd_set_error (bfd_error_invalid_operation);
8269 return FALSE;
8270 }
8271 }
8272
8273 static void
8274 put_value (bfd_vma size,
8275 unsigned long chunksz,
8276 bfd *input_bfd,
8277 bfd_vma x,
8278 bfd_byte *location)
8279 {
8280 location += (size - chunksz);
8281
8282 for (; size; size -= chunksz, location -= chunksz)
8283 {
8284 switch (chunksz)
8285 {
8286 case 1:
8287 bfd_put_8 (input_bfd, x, location);
8288 x >>= 8;
8289 break;
8290 case 2:
8291 bfd_put_16 (input_bfd, x, location);
8292 x >>= 16;
8293 break;
8294 case 4:
8295 bfd_put_32 (input_bfd, x, location);
8296 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8297 x >>= 16;
8298 x >>= 16;
8299 break;
8300 #ifdef BFD64
8301 case 8:
8302 bfd_put_64 (input_bfd, x, location);
8303 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8304 x >>= 32;
8305 x >>= 32;
8306 break;
8307 #endif
8308 default:
8309 abort ();
8310 break;
8311 }
8312 }
8313 }
8314
8315 static bfd_vma
8316 get_value (bfd_vma size,
8317 unsigned long chunksz,
8318 bfd *input_bfd,
8319 bfd_byte *location)
8320 {
8321 int shift;
8322 bfd_vma x = 0;
8323
8324 /* Sanity checks. */
8325 BFD_ASSERT (chunksz <= sizeof (x)
8326 && size >= chunksz
8327 && chunksz != 0
8328 && (size % chunksz) == 0
8329 && input_bfd != NULL
8330 && location != NULL);
8331
8332 if (chunksz == sizeof (x))
8333 {
8334 BFD_ASSERT (size == chunksz);
8335
8336 /* Make sure that we do not perform an undefined shift operation.
8337 We know that size == chunksz so there will only be one iteration
8338 of the loop below. */
8339 shift = 0;
8340 }
8341 else
8342 shift = 8 * chunksz;
8343
8344 for (; size; size -= chunksz, location += chunksz)
8345 {
8346 switch (chunksz)
8347 {
8348 case 1:
8349 x = (x << shift) | bfd_get_8 (input_bfd, location);
8350 break;
8351 case 2:
8352 x = (x << shift) | bfd_get_16 (input_bfd, location);
8353 break;
8354 case 4:
8355 x = (x << shift) | bfd_get_32 (input_bfd, location);
8356 break;
8357 #ifdef BFD64
8358 case 8:
8359 x = (x << shift) | bfd_get_64 (input_bfd, location);
8360 break;
8361 #endif
8362 default:
8363 abort ();
8364 }
8365 }
8366 return x;
8367 }
8368
8369 static void
8370 decode_complex_addend (unsigned long *start, /* in bits */
8371 unsigned long *oplen, /* in bits */
8372 unsigned long *len, /* in bits */
8373 unsigned long *wordsz, /* in bytes */
8374 unsigned long *chunksz, /* in bytes */
8375 unsigned long *lsb0_p,
8376 unsigned long *signed_p,
8377 unsigned long *trunc_p,
8378 unsigned long encoded)
8379 {
8380 * start = encoded & 0x3F;
8381 * len = (encoded >> 6) & 0x3F;
8382 * oplen = (encoded >> 12) & 0x3F;
8383 * wordsz = (encoded >> 18) & 0xF;
8384 * chunksz = (encoded >> 22) & 0xF;
8385 * lsb0_p = (encoded >> 27) & 1;
8386 * signed_p = (encoded >> 28) & 1;
8387 * trunc_p = (encoded >> 29) & 1;
8388 }
8389
8390 bfd_reloc_status_type
8391 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8392 asection *input_section ATTRIBUTE_UNUSED,
8393 bfd_byte *contents,
8394 Elf_Internal_Rela *rel,
8395 bfd_vma relocation)
8396 {
8397 bfd_vma shift, x, mask;
8398 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8399 bfd_reloc_status_type r;
8400
8401 /* Perform this reloc, since it is complex.
8402 (this is not to say that it necessarily refers to a complex
8403 symbol; merely that it is a self-describing CGEN based reloc.
8404 i.e. the addend has the complete reloc information (bit start, end,
8405 word size, etc) encoded within it.). */
8406
8407 decode_complex_addend (&start, &oplen, &len, &wordsz,
8408 &chunksz, &lsb0_p, &signed_p,
8409 &trunc_p, rel->r_addend);
8410
8411 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8412
8413 if (lsb0_p)
8414 shift = (start + 1) - len;
8415 else
8416 shift = (8 * wordsz) - (start + len);
8417
8418 x = get_value (wordsz, chunksz, input_bfd,
8419 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8420
8421 #ifdef DEBUG
8422 printf ("Doing complex reloc: "
8423 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8424 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8425 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8426 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8427 oplen, (unsigned long) x, (unsigned long) mask,
8428 (unsigned long) relocation);
8429 #endif
8430
8431 r = bfd_reloc_ok;
8432 if (! trunc_p)
8433 /* Now do an overflow check. */
8434 r = bfd_check_overflow ((signed_p
8435 ? complain_overflow_signed
8436 : complain_overflow_unsigned),
8437 len, 0, (8 * wordsz),
8438 relocation);
8439
8440 /* Do the deed. */
8441 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8442
8443 #ifdef DEBUG
8444 printf (" relocation: %8.8lx\n"
8445 " shifted mask: %8.8lx\n"
8446 " shifted/masked reloc: %8.8lx\n"
8447 " result: %8.8lx\n",
8448 (unsigned long) relocation, (unsigned long) (mask << shift),
8449 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8450 #endif
8451 put_value (wordsz, chunksz, input_bfd, x,
8452 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8453 return r;
8454 }
8455
8456 /* Functions to read r_offset from external (target order) reloc
8457 entry. Faster than bfd_getl32 et al, because we let the compiler
8458 know the value is aligned. */
8459
8460 static bfd_vma
8461 ext32l_r_offset (const void *p)
8462 {
8463 union aligned32
8464 {
8465 uint32_t v;
8466 unsigned char c[4];
8467 };
8468 const union aligned32 *a
8469 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8470
8471 uint32_t aval = ( (uint32_t) a->c[0]
8472 | (uint32_t) a->c[1] << 8
8473 | (uint32_t) a->c[2] << 16
8474 | (uint32_t) a->c[3] << 24);
8475 return aval;
8476 }
8477
8478 static bfd_vma
8479 ext32b_r_offset (const void *p)
8480 {
8481 union aligned32
8482 {
8483 uint32_t v;
8484 unsigned char c[4];
8485 };
8486 const union aligned32 *a
8487 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8488
8489 uint32_t aval = ( (uint32_t) a->c[0] << 24
8490 | (uint32_t) a->c[1] << 16
8491 | (uint32_t) a->c[2] << 8
8492 | (uint32_t) a->c[3]);
8493 return aval;
8494 }
8495
8496 #ifdef BFD_HOST_64_BIT
8497 static bfd_vma
8498 ext64l_r_offset (const void *p)
8499 {
8500 union aligned64
8501 {
8502 uint64_t v;
8503 unsigned char c[8];
8504 };
8505 const union aligned64 *a
8506 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8507
8508 uint64_t aval = ( (uint64_t) a->c[0]
8509 | (uint64_t) a->c[1] << 8
8510 | (uint64_t) a->c[2] << 16
8511 | (uint64_t) a->c[3] << 24
8512 | (uint64_t) a->c[4] << 32
8513 | (uint64_t) a->c[5] << 40
8514 | (uint64_t) a->c[6] << 48
8515 | (uint64_t) a->c[7] << 56);
8516 return aval;
8517 }
8518
8519 static bfd_vma
8520 ext64b_r_offset (const void *p)
8521 {
8522 union aligned64
8523 {
8524 uint64_t v;
8525 unsigned char c[8];
8526 };
8527 const union aligned64 *a
8528 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8529
8530 uint64_t aval = ( (uint64_t) a->c[0] << 56
8531 | (uint64_t) a->c[1] << 48
8532 | (uint64_t) a->c[2] << 40
8533 | (uint64_t) a->c[3] << 32
8534 | (uint64_t) a->c[4] << 24
8535 | (uint64_t) a->c[5] << 16
8536 | (uint64_t) a->c[6] << 8
8537 | (uint64_t) a->c[7]);
8538 return aval;
8539 }
8540 #endif
8541
8542 /* When performing a relocatable link, the input relocations are
8543 preserved. But, if they reference global symbols, the indices
8544 referenced must be updated. Update all the relocations found in
8545 RELDATA. */
8546
8547 static bfd_boolean
8548 elf_link_adjust_relocs (bfd *abfd,
8549 asection *sec,
8550 struct bfd_elf_section_reloc_data *reldata,
8551 bfd_boolean sort)
8552 {
8553 unsigned int i;
8554 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8555 bfd_byte *erela;
8556 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8557 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8558 bfd_vma r_type_mask;
8559 int r_sym_shift;
8560 unsigned int count = reldata->count;
8561 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8562
8563 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8564 {
8565 swap_in = bed->s->swap_reloc_in;
8566 swap_out = bed->s->swap_reloc_out;
8567 }
8568 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8569 {
8570 swap_in = bed->s->swap_reloca_in;
8571 swap_out = bed->s->swap_reloca_out;
8572 }
8573 else
8574 abort ();
8575
8576 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8577 abort ();
8578
8579 if (bed->s->arch_size == 32)
8580 {
8581 r_type_mask = 0xff;
8582 r_sym_shift = 8;
8583 }
8584 else
8585 {
8586 r_type_mask = 0xffffffff;
8587 r_sym_shift = 32;
8588 }
8589
8590 erela = reldata->hdr->contents;
8591 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8592 {
8593 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8594 unsigned int j;
8595
8596 if (*rel_hash == NULL)
8597 continue;
8598
8599 BFD_ASSERT ((*rel_hash)->indx >= 0);
8600
8601 (*swap_in) (abfd, erela, irela);
8602 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8603 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8604 | (irela[j].r_info & r_type_mask));
8605 (*swap_out) (abfd, irela, erela);
8606 }
8607
8608 if (bed->elf_backend_update_relocs)
8609 (*bed->elf_backend_update_relocs) (sec, reldata);
8610
8611 if (sort && count != 0)
8612 {
8613 bfd_vma (*ext_r_off) (const void *);
8614 bfd_vma r_off;
8615 size_t elt_size;
8616 bfd_byte *base, *end, *p, *loc;
8617 bfd_byte *buf = NULL;
8618
8619 if (bed->s->arch_size == 32)
8620 {
8621 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8622 ext_r_off = ext32l_r_offset;
8623 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8624 ext_r_off = ext32b_r_offset;
8625 else
8626 abort ();
8627 }
8628 else
8629 {
8630 #ifdef BFD_HOST_64_BIT
8631 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8632 ext_r_off = ext64l_r_offset;
8633 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8634 ext_r_off = ext64b_r_offset;
8635 else
8636 #endif
8637 abort ();
8638 }
8639
8640 /* Must use a stable sort here. A modified insertion sort,
8641 since the relocs are mostly sorted already. */
8642 elt_size = reldata->hdr->sh_entsize;
8643 base = reldata->hdr->contents;
8644 end = base + count * elt_size;
8645 if (elt_size > sizeof (Elf64_External_Rela))
8646 abort ();
8647
8648 /* Ensure the first element is lowest. This acts as a sentinel,
8649 speeding the main loop below. */
8650 r_off = (*ext_r_off) (base);
8651 for (p = loc = base; (p += elt_size) < end; )
8652 {
8653 bfd_vma r_off2 = (*ext_r_off) (p);
8654 if (r_off > r_off2)
8655 {
8656 r_off = r_off2;
8657 loc = p;
8658 }
8659 }
8660 if (loc != base)
8661 {
8662 /* Don't just swap *base and *loc as that changes the order
8663 of the original base[0] and base[1] if they happen to
8664 have the same r_offset. */
8665 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8666 memcpy (onebuf, loc, elt_size);
8667 memmove (base + elt_size, base, loc - base);
8668 memcpy (base, onebuf, elt_size);
8669 }
8670
8671 for (p = base + elt_size; (p += elt_size) < end; )
8672 {
8673 /* base to p is sorted, *p is next to insert. */
8674 r_off = (*ext_r_off) (p);
8675 /* Search the sorted region for location to insert. */
8676 loc = p - elt_size;
8677 while (r_off < (*ext_r_off) (loc))
8678 loc -= elt_size;
8679 loc += elt_size;
8680 if (loc != p)
8681 {
8682 /* Chances are there is a run of relocs to insert here,
8683 from one of more input files. Files are not always
8684 linked in order due to the way elf_link_input_bfd is
8685 called. See pr17666. */
8686 size_t sortlen = p - loc;
8687 bfd_vma r_off2 = (*ext_r_off) (loc);
8688 size_t runlen = elt_size;
8689 size_t buf_size = 96 * 1024;
8690 while (p + runlen < end
8691 && (sortlen <= buf_size
8692 || runlen + elt_size <= buf_size)
8693 && r_off2 > (*ext_r_off) (p + runlen))
8694 runlen += elt_size;
8695 if (buf == NULL)
8696 {
8697 buf = bfd_malloc (buf_size);
8698 if (buf == NULL)
8699 return FALSE;
8700 }
8701 if (runlen < sortlen)
8702 {
8703 memcpy (buf, p, runlen);
8704 memmove (loc + runlen, loc, sortlen);
8705 memcpy (loc, buf, runlen);
8706 }
8707 else
8708 {
8709 memcpy (buf, loc, sortlen);
8710 memmove (loc, p, runlen);
8711 memcpy (loc + runlen, buf, sortlen);
8712 }
8713 p += runlen - elt_size;
8714 }
8715 }
8716 /* Hashes are no longer valid. */
8717 free (reldata->hashes);
8718 reldata->hashes = NULL;
8719 free (buf);
8720 }
8721 return TRUE;
8722 }
8723
8724 struct elf_link_sort_rela
8725 {
8726 union {
8727 bfd_vma offset;
8728 bfd_vma sym_mask;
8729 } u;
8730 enum elf_reloc_type_class type;
8731 /* We use this as an array of size int_rels_per_ext_rel. */
8732 Elf_Internal_Rela rela[1];
8733 };
8734
8735 static int
8736 elf_link_sort_cmp1 (const void *A, const void *B)
8737 {
8738 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8739 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8740 int relativea, relativeb;
8741
8742 relativea = a->type == reloc_class_relative;
8743 relativeb = b->type == reloc_class_relative;
8744
8745 if (relativea < relativeb)
8746 return 1;
8747 if (relativea > relativeb)
8748 return -1;
8749 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8750 return -1;
8751 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8752 return 1;
8753 if (a->rela->r_offset < b->rela->r_offset)
8754 return -1;
8755 if (a->rela->r_offset > b->rela->r_offset)
8756 return 1;
8757 return 0;
8758 }
8759
8760 static int
8761 elf_link_sort_cmp2 (const void *A, const void *B)
8762 {
8763 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8764 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8765
8766 if (a->type < b->type)
8767 return -1;
8768 if (a->type > b->type)
8769 return 1;
8770 if (a->u.offset < b->u.offset)
8771 return -1;
8772 if (a->u.offset > b->u.offset)
8773 return 1;
8774 if (a->rela->r_offset < b->rela->r_offset)
8775 return -1;
8776 if (a->rela->r_offset > b->rela->r_offset)
8777 return 1;
8778 return 0;
8779 }
8780
8781 static size_t
8782 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8783 {
8784 asection *dynamic_relocs;
8785 asection *rela_dyn;
8786 asection *rel_dyn;
8787 bfd_size_type count, size;
8788 size_t i, ret, sort_elt, ext_size;
8789 bfd_byte *sort, *s_non_relative, *p;
8790 struct elf_link_sort_rela *sq;
8791 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8792 int i2e = bed->s->int_rels_per_ext_rel;
8793 unsigned int opb = bfd_octets_per_byte (abfd);
8794 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8795 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8796 struct bfd_link_order *lo;
8797 bfd_vma r_sym_mask;
8798 bfd_boolean use_rela;
8799
8800 /* Find a dynamic reloc section. */
8801 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8802 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8803 if (rela_dyn != NULL && rela_dyn->size > 0
8804 && rel_dyn != NULL && rel_dyn->size > 0)
8805 {
8806 bfd_boolean use_rela_initialised = FALSE;
8807
8808 /* This is just here to stop gcc from complaining.
8809 Its initialization checking code is not perfect. */
8810 use_rela = TRUE;
8811
8812 /* Both sections are present. Examine the sizes
8813 of the indirect sections to help us choose. */
8814 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8815 if (lo->type == bfd_indirect_link_order)
8816 {
8817 asection *o = lo->u.indirect.section;
8818
8819 if ((o->size % bed->s->sizeof_rela) == 0)
8820 {
8821 if ((o->size % bed->s->sizeof_rel) == 0)
8822 /* Section size is divisible by both rel and rela sizes.
8823 It is of no help to us. */
8824 ;
8825 else
8826 {
8827 /* Section size is only divisible by rela. */
8828 if (use_rela_initialised && (use_rela == FALSE))
8829 {
8830 _bfd_error_handler (_("%B: Unable to sort relocs - "
8831 "they are in more than one size"),
8832 abfd);
8833 bfd_set_error (bfd_error_invalid_operation);
8834 return 0;
8835 }
8836 else
8837 {
8838 use_rela = TRUE;
8839 use_rela_initialised = TRUE;
8840 }
8841 }
8842 }
8843 else if ((o->size % bed->s->sizeof_rel) == 0)
8844 {
8845 /* Section size is only divisible by rel. */
8846 if (use_rela_initialised && (use_rela == TRUE))
8847 {
8848 _bfd_error_handler (_("%B: Unable to sort relocs - "
8849 "they are in more than one size"),
8850 abfd);
8851 bfd_set_error (bfd_error_invalid_operation);
8852 return 0;
8853 }
8854 else
8855 {
8856 use_rela = FALSE;
8857 use_rela_initialised = TRUE;
8858 }
8859 }
8860 else
8861 {
8862 /* The section size is not divisible by either -
8863 something is wrong. */
8864 _bfd_error_handler (_("%B: Unable to sort relocs - "
8865 "they are of an unknown size"), abfd);
8866 bfd_set_error (bfd_error_invalid_operation);
8867 return 0;
8868 }
8869 }
8870
8871 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8872 if (lo->type == bfd_indirect_link_order)
8873 {
8874 asection *o = lo->u.indirect.section;
8875
8876 if ((o->size % bed->s->sizeof_rela) == 0)
8877 {
8878 if ((o->size % bed->s->sizeof_rel) == 0)
8879 /* Section size is divisible by both rel and rela sizes.
8880 It is of no help to us. */
8881 ;
8882 else
8883 {
8884 /* Section size is only divisible by rela. */
8885 if (use_rela_initialised && (use_rela == FALSE))
8886 {
8887 _bfd_error_handler (_("%B: Unable to sort relocs - "
8888 "they are in more than one size"),
8889 abfd);
8890 bfd_set_error (bfd_error_invalid_operation);
8891 return 0;
8892 }
8893 else
8894 {
8895 use_rela = TRUE;
8896 use_rela_initialised = TRUE;
8897 }
8898 }
8899 }
8900 else if ((o->size % bed->s->sizeof_rel) == 0)
8901 {
8902 /* Section size is only divisible by rel. */
8903 if (use_rela_initialised && (use_rela == TRUE))
8904 {
8905 _bfd_error_handler (_("%B: Unable to sort relocs - "
8906 "they are in more than one size"),
8907 abfd);
8908 bfd_set_error (bfd_error_invalid_operation);
8909 return 0;
8910 }
8911 else
8912 {
8913 use_rela = FALSE;
8914 use_rela_initialised = TRUE;
8915 }
8916 }
8917 else
8918 {
8919 /* The section size is not divisible by either -
8920 something is wrong. */
8921 _bfd_error_handler (_("%B: Unable to sort relocs - "
8922 "they are of an unknown size"), abfd);
8923 bfd_set_error (bfd_error_invalid_operation);
8924 return 0;
8925 }
8926 }
8927
8928 if (! use_rela_initialised)
8929 /* Make a guess. */
8930 use_rela = TRUE;
8931 }
8932 else if (rela_dyn != NULL && rela_dyn->size > 0)
8933 use_rela = TRUE;
8934 else if (rel_dyn != NULL && rel_dyn->size > 0)
8935 use_rela = FALSE;
8936 else
8937 return 0;
8938
8939 if (use_rela)
8940 {
8941 dynamic_relocs = rela_dyn;
8942 ext_size = bed->s->sizeof_rela;
8943 swap_in = bed->s->swap_reloca_in;
8944 swap_out = bed->s->swap_reloca_out;
8945 }
8946 else
8947 {
8948 dynamic_relocs = rel_dyn;
8949 ext_size = bed->s->sizeof_rel;
8950 swap_in = bed->s->swap_reloc_in;
8951 swap_out = bed->s->swap_reloc_out;
8952 }
8953
8954 size = 0;
8955 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8956 if (lo->type == bfd_indirect_link_order)
8957 size += lo->u.indirect.section->size;
8958
8959 if (size != dynamic_relocs->size)
8960 return 0;
8961
8962 sort_elt = (sizeof (struct elf_link_sort_rela)
8963 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8964
8965 count = dynamic_relocs->size / ext_size;
8966 if (count == 0)
8967 return 0;
8968 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8969
8970 if (sort == NULL)
8971 {
8972 (*info->callbacks->warning)
8973 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8974 return 0;
8975 }
8976
8977 if (bed->s->arch_size == 32)
8978 r_sym_mask = ~(bfd_vma) 0xff;
8979 else
8980 r_sym_mask = ~(bfd_vma) 0xffffffff;
8981
8982 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8983 if (lo->type == bfd_indirect_link_order)
8984 {
8985 bfd_byte *erel, *erelend;
8986 asection *o = lo->u.indirect.section;
8987
8988 if (o->contents == NULL && o->size != 0)
8989 {
8990 /* This is a reloc section that is being handled as a normal
8991 section. See bfd_section_from_shdr. We can't combine
8992 relocs in this case. */
8993 free (sort);
8994 return 0;
8995 }
8996 erel = o->contents;
8997 erelend = o->contents + o->size;
8998 p = sort + o->output_offset * opb / ext_size * sort_elt;
8999
9000 while (erel < erelend)
9001 {
9002 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9003
9004 (*swap_in) (abfd, erel, s->rela);
9005 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9006 s->u.sym_mask = r_sym_mask;
9007 p += sort_elt;
9008 erel += ext_size;
9009 }
9010 }
9011
9012 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9013
9014 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9015 {
9016 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9017 if (s->type != reloc_class_relative)
9018 break;
9019 }
9020 ret = i;
9021 s_non_relative = p;
9022
9023 sq = (struct elf_link_sort_rela *) s_non_relative;
9024 for (; i < count; i++, p += sort_elt)
9025 {
9026 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9027 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9028 sq = sp;
9029 sp->u.offset = sq->rela->r_offset;
9030 }
9031
9032 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9033
9034 struct elf_link_hash_table *htab = elf_hash_table (info);
9035 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9036 {
9037 /* We have plt relocs in .rela.dyn. */
9038 sq = (struct elf_link_sort_rela *) sort;
9039 for (i = 0; i < count; i++)
9040 if (sq[count - i - 1].type != reloc_class_plt)
9041 break;
9042 if (i != 0 && htab->srelplt->size == i * ext_size)
9043 {
9044 struct bfd_link_order **plo;
9045 /* Put srelplt link_order last. This is so the output_offset
9046 set in the next loop is correct for DT_JMPREL. */
9047 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9048 if ((*plo)->type == bfd_indirect_link_order
9049 && (*plo)->u.indirect.section == htab->srelplt)
9050 {
9051 lo = *plo;
9052 *plo = lo->next;
9053 }
9054 else
9055 plo = &(*plo)->next;
9056 *plo = lo;
9057 lo->next = NULL;
9058 dynamic_relocs->map_tail.link_order = lo;
9059 }
9060 }
9061
9062 p = sort;
9063 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9064 if (lo->type == bfd_indirect_link_order)
9065 {
9066 bfd_byte *erel, *erelend;
9067 asection *o = lo->u.indirect.section;
9068
9069 erel = o->contents;
9070 erelend = o->contents + o->size;
9071 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9072 while (erel < erelend)
9073 {
9074 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9075 (*swap_out) (abfd, s->rela, erel);
9076 p += sort_elt;
9077 erel += ext_size;
9078 }
9079 }
9080
9081 free (sort);
9082 *psec = dynamic_relocs;
9083 return ret;
9084 }
9085
9086 /* Add a symbol to the output symbol string table. */
9087
9088 static int
9089 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9090 const char *name,
9091 Elf_Internal_Sym *elfsym,
9092 asection *input_sec,
9093 struct elf_link_hash_entry *h)
9094 {
9095 int (*output_symbol_hook)
9096 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9097 struct elf_link_hash_entry *);
9098 struct elf_link_hash_table *hash_table;
9099 const struct elf_backend_data *bed;
9100 bfd_size_type strtabsize;
9101
9102 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9103
9104 bed = get_elf_backend_data (flinfo->output_bfd);
9105 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9106 if (output_symbol_hook != NULL)
9107 {
9108 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9109 if (ret != 1)
9110 return ret;
9111 }
9112
9113 if (name == NULL
9114 || *name == '\0'
9115 || (input_sec->flags & SEC_EXCLUDE))
9116 elfsym->st_name = (unsigned long) -1;
9117 else
9118 {
9119 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9120 to get the final offset for st_name. */
9121 elfsym->st_name
9122 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9123 name, FALSE);
9124 if (elfsym->st_name == (unsigned long) -1)
9125 return 0;
9126 }
9127
9128 hash_table = elf_hash_table (flinfo->info);
9129 strtabsize = hash_table->strtabsize;
9130 if (strtabsize <= hash_table->strtabcount)
9131 {
9132 strtabsize += strtabsize;
9133 hash_table->strtabsize = strtabsize;
9134 strtabsize *= sizeof (*hash_table->strtab);
9135 hash_table->strtab
9136 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9137 strtabsize);
9138 if (hash_table->strtab == NULL)
9139 return 0;
9140 }
9141 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9142 hash_table->strtab[hash_table->strtabcount].dest_index
9143 = hash_table->strtabcount;
9144 hash_table->strtab[hash_table->strtabcount].destshndx_index
9145 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9146
9147 bfd_get_symcount (flinfo->output_bfd) += 1;
9148 hash_table->strtabcount += 1;
9149
9150 return 1;
9151 }
9152
9153 /* Swap symbols out to the symbol table and flush the output symbols to
9154 the file. */
9155
9156 static bfd_boolean
9157 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9158 {
9159 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9160 bfd_size_type amt;
9161 size_t i;
9162 const struct elf_backend_data *bed;
9163 bfd_byte *symbuf;
9164 Elf_Internal_Shdr *hdr;
9165 file_ptr pos;
9166 bfd_boolean ret;
9167
9168 if (!hash_table->strtabcount)
9169 return TRUE;
9170
9171 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9172
9173 bed = get_elf_backend_data (flinfo->output_bfd);
9174
9175 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9176 symbuf = (bfd_byte *) bfd_malloc (amt);
9177 if (symbuf == NULL)
9178 return FALSE;
9179
9180 if (flinfo->symshndxbuf)
9181 {
9182 amt = sizeof (Elf_External_Sym_Shndx);
9183 amt *= bfd_get_symcount (flinfo->output_bfd);
9184 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9185 if (flinfo->symshndxbuf == NULL)
9186 {
9187 free (symbuf);
9188 return FALSE;
9189 }
9190 }
9191
9192 for (i = 0; i < hash_table->strtabcount; i++)
9193 {
9194 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9195 if (elfsym->sym.st_name == (unsigned long) -1)
9196 elfsym->sym.st_name = 0;
9197 else
9198 elfsym->sym.st_name
9199 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9200 elfsym->sym.st_name);
9201 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9202 ((bfd_byte *) symbuf
9203 + (elfsym->dest_index
9204 * bed->s->sizeof_sym)),
9205 (flinfo->symshndxbuf
9206 + elfsym->destshndx_index));
9207 }
9208
9209 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9210 pos = hdr->sh_offset + hdr->sh_size;
9211 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9212 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9213 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9214 {
9215 hdr->sh_size += amt;
9216 ret = TRUE;
9217 }
9218 else
9219 ret = FALSE;
9220
9221 free (symbuf);
9222
9223 free (hash_table->strtab);
9224 hash_table->strtab = NULL;
9225
9226 return ret;
9227 }
9228
9229 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9230
9231 static bfd_boolean
9232 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9233 {
9234 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9235 && sym->st_shndx < SHN_LORESERVE)
9236 {
9237 /* The gABI doesn't support dynamic symbols in output sections
9238 beyond 64k. */
9239 _bfd_error_handler
9240 /* xgettext:c-format */
9241 (_("%B: Too many sections: %d (>= %d)"),
9242 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9243 bfd_set_error (bfd_error_nonrepresentable_section);
9244 return FALSE;
9245 }
9246 return TRUE;
9247 }
9248
9249 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9250 allowing an unsatisfied unversioned symbol in the DSO to match a
9251 versioned symbol that would normally require an explicit version.
9252 We also handle the case that a DSO references a hidden symbol
9253 which may be satisfied by a versioned symbol in another DSO. */
9254
9255 static bfd_boolean
9256 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9257 const struct elf_backend_data *bed,
9258 struct elf_link_hash_entry *h)
9259 {
9260 bfd *abfd;
9261 struct elf_link_loaded_list *loaded;
9262
9263 if (!is_elf_hash_table (info->hash))
9264 return FALSE;
9265
9266 /* Check indirect symbol. */
9267 while (h->root.type == bfd_link_hash_indirect)
9268 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9269
9270 switch (h->root.type)
9271 {
9272 default:
9273 abfd = NULL;
9274 break;
9275
9276 case bfd_link_hash_undefined:
9277 case bfd_link_hash_undefweak:
9278 abfd = h->root.u.undef.abfd;
9279 if (abfd == NULL
9280 || (abfd->flags & DYNAMIC) == 0
9281 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9282 return FALSE;
9283 break;
9284
9285 case bfd_link_hash_defined:
9286 case bfd_link_hash_defweak:
9287 abfd = h->root.u.def.section->owner;
9288 break;
9289
9290 case bfd_link_hash_common:
9291 abfd = h->root.u.c.p->section->owner;
9292 break;
9293 }
9294 BFD_ASSERT (abfd != NULL);
9295
9296 for (loaded = elf_hash_table (info)->loaded;
9297 loaded != NULL;
9298 loaded = loaded->next)
9299 {
9300 bfd *input;
9301 Elf_Internal_Shdr *hdr;
9302 size_t symcount;
9303 size_t extsymcount;
9304 size_t extsymoff;
9305 Elf_Internal_Shdr *versymhdr;
9306 Elf_Internal_Sym *isym;
9307 Elf_Internal_Sym *isymend;
9308 Elf_Internal_Sym *isymbuf;
9309 Elf_External_Versym *ever;
9310 Elf_External_Versym *extversym;
9311
9312 input = loaded->abfd;
9313
9314 /* We check each DSO for a possible hidden versioned definition. */
9315 if (input == abfd
9316 || (input->flags & DYNAMIC) == 0
9317 || elf_dynversym (input) == 0)
9318 continue;
9319
9320 hdr = &elf_tdata (input)->dynsymtab_hdr;
9321
9322 symcount = hdr->sh_size / bed->s->sizeof_sym;
9323 if (elf_bad_symtab (input))
9324 {
9325 extsymcount = symcount;
9326 extsymoff = 0;
9327 }
9328 else
9329 {
9330 extsymcount = symcount - hdr->sh_info;
9331 extsymoff = hdr->sh_info;
9332 }
9333
9334 if (extsymcount == 0)
9335 continue;
9336
9337 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9338 NULL, NULL, NULL);
9339 if (isymbuf == NULL)
9340 return FALSE;
9341
9342 /* Read in any version definitions. */
9343 versymhdr = &elf_tdata (input)->dynversym_hdr;
9344 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9345 if (extversym == NULL)
9346 goto error_ret;
9347
9348 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9349 || (bfd_bread (extversym, versymhdr->sh_size, input)
9350 != versymhdr->sh_size))
9351 {
9352 free (extversym);
9353 error_ret:
9354 free (isymbuf);
9355 return FALSE;
9356 }
9357
9358 ever = extversym + extsymoff;
9359 isymend = isymbuf + extsymcount;
9360 for (isym = isymbuf; isym < isymend; isym++, ever++)
9361 {
9362 const char *name;
9363 Elf_Internal_Versym iver;
9364 unsigned short version_index;
9365
9366 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9367 || isym->st_shndx == SHN_UNDEF)
9368 continue;
9369
9370 name = bfd_elf_string_from_elf_section (input,
9371 hdr->sh_link,
9372 isym->st_name);
9373 if (strcmp (name, h->root.root.string) != 0)
9374 continue;
9375
9376 _bfd_elf_swap_versym_in (input, ever, &iver);
9377
9378 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9379 && !(h->def_regular
9380 && h->forced_local))
9381 {
9382 /* If we have a non-hidden versioned sym, then it should
9383 have provided a definition for the undefined sym unless
9384 it is defined in a non-shared object and forced local.
9385 */
9386 abort ();
9387 }
9388
9389 version_index = iver.vs_vers & VERSYM_VERSION;
9390 if (version_index == 1 || version_index == 2)
9391 {
9392 /* This is the base or first version. We can use it. */
9393 free (extversym);
9394 free (isymbuf);
9395 return TRUE;
9396 }
9397 }
9398
9399 free (extversym);
9400 free (isymbuf);
9401 }
9402
9403 return FALSE;
9404 }
9405
9406 /* Convert ELF common symbol TYPE. */
9407
9408 static int
9409 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9410 {
9411 /* Commom symbol can only appear in relocatable link. */
9412 if (!bfd_link_relocatable (info))
9413 abort ();
9414 switch (info->elf_stt_common)
9415 {
9416 case unchanged:
9417 break;
9418 case elf_stt_common:
9419 type = STT_COMMON;
9420 break;
9421 case no_elf_stt_common:
9422 type = STT_OBJECT;
9423 break;
9424 }
9425 return type;
9426 }
9427
9428 /* Add an external symbol to the symbol table. This is called from
9429 the hash table traversal routine. When generating a shared object,
9430 we go through the symbol table twice. The first time we output
9431 anything that might have been forced to local scope in a version
9432 script. The second time we output the symbols that are still
9433 global symbols. */
9434
9435 static bfd_boolean
9436 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9437 {
9438 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9439 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9440 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9441 bfd_boolean strip;
9442 Elf_Internal_Sym sym;
9443 asection *input_sec;
9444 const struct elf_backend_data *bed;
9445 long indx;
9446 int ret;
9447 unsigned int type;
9448
9449 if (h->root.type == bfd_link_hash_warning)
9450 {
9451 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9452 if (h->root.type == bfd_link_hash_new)
9453 return TRUE;
9454 }
9455
9456 /* Decide whether to output this symbol in this pass. */
9457 if (eoinfo->localsyms)
9458 {
9459 if (!h->forced_local)
9460 return TRUE;
9461 }
9462 else
9463 {
9464 if (h->forced_local)
9465 return TRUE;
9466 }
9467
9468 bed = get_elf_backend_data (flinfo->output_bfd);
9469
9470 if (h->root.type == bfd_link_hash_undefined)
9471 {
9472 /* If we have an undefined symbol reference here then it must have
9473 come from a shared library that is being linked in. (Undefined
9474 references in regular files have already been handled unless
9475 they are in unreferenced sections which are removed by garbage
9476 collection). */
9477 bfd_boolean ignore_undef = FALSE;
9478
9479 /* Some symbols may be special in that the fact that they're
9480 undefined can be safely ignored - let backend determine that. */
9481 if (bed->elf_backend_ignore_undef_symbol)
9482 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9483
9484 /* If we are reporting errors for this situation then do so now. */
9485 if (!ignore_undef
9486 && h->ref_dynamic
9487 && (!h->ref_regular || flinfo->info->gc_sections)
9488 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9489 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9490 (*flinfo->info->callbacks->undefined_symbol)
9491 (flinfo->info, h->root.root.string,
9492 h->ref_regular ? NULL : h->root.u.undef.abfd,
9493 NULL, 0,
9494 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9495
9496 /* Strip a global symbol defined in a discarded section. */
9497 if (h->indx == -3)
9498 return TRUE;
9499 }
9500
9501 /* We should also warn if a forced local symbol is referenced from
9502 shared libraries. */
9503 if (bfd_link_executable (flinfo->info)
9504 && h->forced_local
9505 && h->ref_dynamic
9506 && h->def_regular
9507 && !h->dynamic_def
9508 && h->ref_dynamic_nonweak
9509 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9510 {
9511 bfd *def_bfd;
9512 const char *msg;
9513 struct elf_link_hash_entry *hi = h;
9514
9515 /* Check indirect symbol. */
9516 while (hi->root.type == bfd_link_hash_indirect)
9517 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9518
9519 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9520 /* xgettext:c-format */
9521 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9522 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9523 /* xgettext:c-format */
9524 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9525 else
9526 /* xgettext:c-format */
9527 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9528 def_bfd = flinfo->output_bfd;
9529 if (hi->root.u.def.section != bfd_abs_section_ptr)
9530 def_bfd = hi->root.u.def.section->owner;
9531 _bfd_error_handler (msg, flinfo->output_bfd,
9532 h->root.root.string, def_bfd);
9533 bfd_set_error (bfd_error_bad_value);
9534 eoinfo->failed = TRUE;
9535 return FALSE;
9536 }
9537
9538 /* We don't want to output symbols that have never been mentioned by
9539 a regular file, or that we have been told to strip. However, if
9540 h->indx is set to -2, the symbol is used by a reloc and we must
9541 output it. */
9542 strip = FALSE;
9543 if (h->indx == -2)
9544 ;
9545 else if ((h->def_dynamic
9546 || h->ref_dynamic
9547 || h->root.type == bfd_link_hash_new)
9548 && !h->def_regular
9549 && !h->ref_regular)
9550 strip = TRUE;
9551 else if (flinfo->info->strip == strip_all)
9552 strip = TRUE;
9553 else if (flinfo->info->strip == strip_some
9554 && bfd_hash_lookup (flinfo->info->keep_hash,
9555 h->root.root.string, FALSE, FALSE) == NULL)
9556 strip = TRUE;
9557 else if ((h->root.type == bfd_link_hash_defined
9558 || h->root.type == bfd_link_hash_defweak)
9559 && ((flinfo->info->strip_discarded
9560 && discarded_section (h->root.u.def.section))
9561 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9562 && h->root.u.def.section->owner != NULL
9563 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9564 strip = TRUE;
9565 else if ((h->root.type == bfd_link_hash_undefined
9566 || h->root.type == bfd_link_hash_undefweak)
9567 && h->root.u.undef.abfd != NULL
9568 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9569 strip = TRUE;
9570
9571 type = h->type;
9572
9573 /* If we're stripping it, and it's not a dynamic symbol, there's
9574 nothing else to do. However, if it is a forced local symbol or
9575 an ifunc symbol we need to give the backend finish_dynamic_symbol
9576 function a chance to make it dynamic. */
9577 if (strip
9578 && h->dynindx == -1
9579 && type != STT_GNU_IFUNC
9580 && !h->forced_local)
9581 return TRUE;
9582
9583 sym.st_value = 0;
9584 sym.st_size = h->size;
9585 sym.st_other = h->other;
9586 switch (h->root.type)
9587 {
9588 default:
9589 case bfd_link_hash_new:
9590 case bfd_link_hash_warning:
9591 abort ();
9592 return FALSE;
9593
9594 case bfd_link_hash_undefined:
9595 case bfd_link_hash_undefweak:
9596 input_sec = bfd_und_section_ptr;
9597 sym.st_shndx = SHN_UNDEF;
9598 break;
9599
9600 case bfd_link_hash_defined:
9601 case bfd_link_hash_defweak:
9602 {
9603 input_sec = h->root.u.def.section;
9604 if (input_sec->output_section != NULL)
9605 {
9606 sym.st_shndx =
9607 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9608 input_sec->output_section);
9609 if (sym.st_shndx == SHN_BAD)
9610 {
9611 _bfd_error_handler
9612 /* xgettext:c-format */
9613 (_("%B: could not find output section %A for input section %A"),
9614 flinfo->output_bfd, input_sec->output_section, input_sec);
9615 bfd_set_error (bfd_error_nonrepresentable_section);
9616 eoinfo->failed = TRUE;
9617 return FALSE;
9618 }
9619
9620 /* ELF symbols in relocatable files are section relative,
9621 but in nonrelocatable files they are virtual
9622 addresses. */
9623 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9624 if (!bfd_link_relocatable (flinfo->info))
9625 {
9626 sym.st_value += input_sec->output_section->vma;
9627 if (h->type == STT_TLS)
9628 {
9629 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9630 if (tls_sec != NULL)
9631 sym.st_value -= tls_sec->vma;
9632 }
9633 }
9634 }
9635 else
9636 {
9637 BFD_ASSERT (input_sec->owner == NULL
9638 || (input_sec->owner->flags & DYNAMIC) != 0);
9639 sym.st_shndx = SHN_UNDEF;
9640 input_sec = bfd_und_section_ptr;
9641 }
9642 }
9643 break;
9644
9645 case bfd_link_hash_common:
9646 input_sec = h->root.u.c.p->section;
9647 sym.st_shndx = bed->common_section_index (input_sec);
9648 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9649 break;
9650
9651 case bfd_link_hash_indirect:
9652 /* These symbols are created by symbol versioning. They point
9653 to the decorated version of the name. For example, if the
9654 symbol foo@@GNU_1.2 is the default, which should be used when
9655 foo is used with no version, then we add an indirect symbol
9656 foo which points to foo@@GNU_1.2. We ignore these symbols,
9657 since the indirected symbol is already in the hash table. */
9658 return TRUE;
9659 }
9660
9661 if (type == STT_COMMON || type == STT_OBJECT)
9662 switch (h->root.type)
9663 {
9664 case bfd_link_hash_common:
9665 type = elf_link_convert_common_type (flinfo->info, type);
9666 break;
9667 case bfd_link_hash_defined:
9668 case bfd_link_hash_defweak:
9669 if (bed->common_definition (&sym))
9670 type = elf_link_convert_common_type (flinfo->info, type);
9671 else
9672 type = STT_OBJECT;
9673 break;
9674 case bfd_link_hash_undefined:
9675 case bfd_link_hash_undefweak:
9676 break;
9677 default:
9678 abort ();
9679 }
9680
9681 if (h->forced_local)
9682 {
9683 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9684 /* Turn off visibility on local symbol. */
9685 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9686 }
9687 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9688 else if (h->unique_global && h->def_regular)
9689 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9690 else if (h->root.type == bfd_link_hash_undefweak
9691 || h->root.type == bfd_link_hash_defweak)
9692 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9693 else
9694 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9695 sym.st_target_internal = h->target_internal;
9696
9697 /* Give the processor backend a chance to tweak the symbol value,
9698 and also to finish up anything that needs to be done for this
9699 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9700 forced local syms when non-shared is due to a historical quirk.
9701 STT_GNU_IFUNC symbol must go through PLT. */
9702 if ((h->type == STT_GNU_IFUNC
9703 && h->def_regular
9704 && !bfd_link_relocatable (flinfo->info))
9705 || ((h->dynindx != -1
9706 || h->forced_local)
9707 && ((bfd_link_pic (flinfo->info)
9708 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9709 || h->root.type != bfd_link_hash_undefweak))
9710 || !h->forced_local)
9711 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9712 {
9713 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9714 (flinfo->output_bfd, flinfo->info, h, &sym)))
9715 {
9716 eoinfo->failed = TRUE;
9717 return FALSE;
9718 }
9719 }
9720
9721 /* If we are marking the symbol as undefined, and there are no
9722 non-weak references to this symbol from a regular object, then
9723 mark the symbol as weak undefined; if there are non-weak
9724 references, mark the symbol as strong. We can't do this earlier,
9725 because it might not be marked as undefined until the
9726 finish_dynamic_symbol routine gets through with it. */
9727 if (sym.st_shndx == SHN_UNDEF
9728 && h->ref_regular
9729 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9730 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9731 {
9732 int bindtype;
9733 type = ELF_ST_TYPE (sym.st_info);
9734
9735 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9736 if (type == STT_GNU_IFUNC)
9737 type = STT_FUNC;
9738
9739 if (h->ref_regular_nonweak)
9740 bindtype = STB_GLOBAL;
9741 else
9742 bindtype = STB_WEAK;
9743 sym.st_info = ELF_ST_INFO (bindtype, type);
9744 }
9745
9746 /* If this is a symbol defined in a dynamic library, don't use the
9747 symbol size from the dynamic library. Relinking an executable
9748 against a new library may introduce gratuitous changes in the
9749 executable's symbols if we keep the size. */
9750 if (sym.st_shndx == SHN_UNDEF
9751 && !h->def_regular
9752 && h->def_dynamic)
9753 sym.st_size = 0;
9754
9755 /* If a non-weak symbol with non-default visibility is not defined
9756 locally, it is a fatal error. */
9757 if (!bfd_link_relocatable (flinfo->info)
9758 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9759 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9760 && h->root.type == bfd_link_hash_undefined
9761 && !h->def_regular)
9762 {
9763 const char *msg;
9764
9765 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9766 /* xgettext:c-format */
9767 msg = _("%B: protected symbol `%s' isn't defined");
9768 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9769 /* xgettext:c-format */
9770 msg = _("%B: internal symbol `%s' isn't defined");
9771 else
9772 /* xgettext:c-format */
9773 msg = _("%B: hidden symbol `%s' isn't defined");
9774 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9775 bfd_set_error (bfd_error_bad_value);
9776 eoinfo->failed = TRUE;
9777 return FALSE;
9778 }
9779
9780 /* If this symbol should be put in the .dynsym section, then put it
9781 there now. We already know the symbol index. We also fill in
9782 the entry in the .hash section. */
9783 if (elf_hash_table (flinfo->info)->dynsym != NULL
9784 && h->dynindx != -1
9785 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9786 {
9787 bfd_byte *esym;
9788
9789 /* Since there is no version information in the dynamic string,
9790 if there is no version info in symbol version section, we will
9791 have a run-time problem if not linking executable, referenced
9792 by shared library, or not bound locally. */
9793 if (h->verinfo.verdef == NULL
9794 && (!bfd_link_executable (flinfo->info)
9795 || h->ref_dynamic
9796 || !h->def_regular))
9797 {
9798 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9799
9800 if (p && p [1] != '\0')
9801 {
9802 _bfd_error_handler
9803 /* xgettext:c-format */
9804 (_("%B: No symbol version section for versioned symbol `%s'"),
9805 flinfo->output_bfd, h->root.root.string);
9806 eoinfo->failed = TRUE;
9807 return FALSE;
9808 }
9809 }
9810
9811 sym.st_name = h->dynstr_index;
9812 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9813 + h->dynindx * bed->s->sizeof_sym);
9814 if (!check_dynsym (flinfo->output_bfd, &sym))
9815 {
9816 eoinfo->failed = TRUE;
9817 return FALSE;
9818 }
9819 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9820
9821 if (flinfo->hash_sec != NULL)
9822 {
9823 size_t hash_entry_size;
9824 bfd_byte *bucketpos;
9825 bfd_vma chain;
9826 size_t bucketcount;
9827 size_t bucket;
9828
9829 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9830 bucket = h->u.elf_hash_value % bucketcount;
9831
9832 hash_entry_size
9833 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9834 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9835 + (bucket + 2) * hash_entry_size);
9836 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9837 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9838 bucketpos);
9839 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9840 ((bfd_byte *) flinfo->hash_sec->contents
9841 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9842 }
9843
9844 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9845 {
9846 Elf_Internal_Versym iversym;
9847 Elf_External_Versym *eversym;
9848
9849 if (!h->def_regular)
9850 {
9851 if (h->verinfo.verdef == NULL
9852 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9853 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9854 iversym.vs_vers = 0;
9855 else
9856 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9857 }
9858 else
9859 {
9860 if (h->verinfo.vertree == NULL)
9861 iversym.vs_vers = 1;
9862 else
9863 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9864 if (flinfo->info->create_default_symver)
9865 iversym.vs_vers++;
9866 }
9867
9868 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9869 defined locally. */
9870 if (h->versioned == versioned_hidden && h->def_regular)
9871 iversym.vs_vers |= VERSYM_HIDDEN;
9872
9873 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9874 eversym += h->dynindx;
9875 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9876 }
9877 }
9878
9879 /* If the symbol is undefined, and we didn't output it to .dynsym,
9880 strip it from .symtab too. Obviously we can't do this for
9881 relocatable output or when needed for --emit-relocs. */
9882 else if (input_sec == bfd_und_section_ptr
9883 && h->indx != -2
9884 && !bfd_link_relocatable (flinfo->info))
9885 return TRUE;
9886 /* Also strip others that we couldn't earlier due to dynamic symbol
9887 processing. */
9888 if (strip)
9889 return TRUE;
9890 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9891 return TRUE;
9892
9893 /* Output a FILE symbol so that following locals are not associated
9894 with the wrong input file. We need one for forced local symbols
9895 if we've seen more than one FILE symbol or when we have exactly
9896 one FILE symbol but global symbols are present in a file other
9897 than the one with the FILE symbol. We also need one if linker
9898 defined symbols are present. In practice these conditions are
9899 always met, so just emit the FILE symbol unconditionally. */
9900 if (eoinfo->localsyms
9901 && !eoinfo->file_sym_done
9902 && eoinfo->flinfo->filesym_count != 0)
9903 {
9904 Elf_Internal_Sym fsym;
9905
9906 memset (&fsym, 0, sizeof (fsym));
9907 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9908 fsym.st_shndx = SHN_ABS;
9909 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9910 bfd_und_section_ptr, NULL))
9911 return FALSE;
9912
9913 eoinfo->file_sym_done = TRUE;
9914 }
9915
9916 indx = bfd_get_symcount (flinfo->output_bfd);
9917 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9918 input_sec, h);
9919 if (ret == 0)
9920 {
9921 eoinfo->failed = TRUE;
9922 return FALSE;
9923 }
9924 else if (ret == 1)
9925 h->indx = indx;
9926 else if (h->indx == -2)
9927 abort();
9928
9929 return TRUE;
9930 }
9931
9932 /* Return TRUE if special handling is done for relocs in SEC against
9933 symbols defined in discarded sections. */
9934
9935 static bfd_boolean
9936 elf_section_ignore_discarded_relocs (asection *sec)
9937 {
9938 const struct elf_backend_data *bed;
9939
9940 switch (sec->sec_info_type)
9941 {
9942 case SEC_INFO_TYPE_STABS:
9943 case SEC_INFO_TYPE_EH_FRAME:
9944 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9945 return TRUE;
9946 default:
9947 break;
9948 }
9949
9950 bed = get_elf_backend_data (sec->owner);
9951 if (bed->elf_backend_ignore_discarded_relocs != NULL
9952 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9953 return TRUE;
9954
9955 return FALSE;
9956 }
9957
9958 /* Return a mask saying how ld should treat relocations in SEC against
9959 symbols defined in discarded sections. If this function returns
9960 COMPLAIN set, ld will issue a warning message. If this function
9961 returns PRETEND set, and the discarded section was link-once and the
9962 same size as the kept link-once section, ld will pretend that the
9963 symbol was actually defined in the kept section. Otherwise ld will
9964 zero the reloc (at least that is the intent, but some cooperation by
9965 the target dependent code is needed, particularly for REL targets). */
9966
9967 unsigned int
9968 _bfd_elf_default_action_discarded (asection *sec)
9969 {
9970 if (sec->flags & SEC_DEBUGGING)
9971 return PRETEND;
9972
9973 if (strcmp (".eh_frame", sec->name) == 0)
9974 return 0;
9975
9976 if (strcmp (".gcc_except_table", sec->name) == 0)
9977 return 0;
9978
9979 return COMPLAIN | PRETEND;
9980 }
9981
9982 /* Find a match between a section and a member of a section group. */
9983
9984 static asection *
9985 match_group_member (asection *sec, asection *group,
9986 struct bfd_link_info *info)
9987 {
9988 asection *first = elf_next_in_group (group);
9989 asection *s = first;
9990
9991 while (s != NULL)
9992 {
9993 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9994 return s;
9995
9996 s = elf_next_in_group (s);
9997 if (s == first)
9998 break;
9999 }
10000
10001 return NULL;
10002 }
10003
10004 /* Check if the kept section of a discarded section SEC can be used
10005 to replace it. Return the replacement if it is OK. Otherwise return
10006 NULL. */
10007
10008 asection *
10009 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10010 {
10011 asection *kept;
10012
10013 kept = sec->kept_section;
10014 if (kept != NULL)
10015 {
10016 if ((kept->flags & SEC_GROUP) != 0)
10017 kept = match_group_member (sec, kept, info);
10018 if (kept != NULL
10019 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10020 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10021 kept = NULL;
10022 sec->kept_section = kept;
10023 }
10024 return kept;
10025 }
10026
10027 /* Link an input file into the linker output file. This function
10028 handles all the sections and relocations of the input file at once.
10029 This is so that we only have to read the local symbols once, and
10030 don't have to keep them in memory. */
10031
10032 static bfd_boolean
10033 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10034 {
10035 int (*relocate_section)
10036 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10037 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10038 bfd *output_bfd;
10039 Elf_Internal_Shdr *symtab_hdr;
10040 size_t locsymcount;
10041 size_t extsymoff;
10042 Elf_Internal_Sym *isymbuf;
10043 Elf_Internal_Sym *isym;
10044 Elf_Internal_Sym *isymend;
10045 long *pindex;
10046 asection **ppsection;
10047 asection *o;
10048 const struct elf_backend_data *bed;
10049 struct elf_link_hash_entry **sym_hashes;
10050 bfd_size_type address_size;
10051 bfd_vma r_type_mask;
10052 int r_sym_shift;
10053 bfd_boolean have_file_sym = FALSE;
10054
10055 output_bfd = flinfo->output_bfd;
10056 bed = get_elf_backend_data (output_bfd);
10057 relocate_section = bed->elf_backend_relocate_section;
10058
10059 /* If this is a dynamic object, we don't want to do anything here:
10060 we don't want the local symbols, and we don't want the section
10061 contents. */
10062 if ((input_bfd->flags & DYNAMIC) != 0)
10063 return TRUE;
10064
10065 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10066 if (elf_bad_symtab (input_bfd))
10067 {
10068 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10069 extsymoff = 0;
10070 }
10071 else
10072 {
10073 locsymcount = symtab_hdr->sh_info;
10074 extsymoff = symtab_hdr->sh_info;
10075 }
10076
10077 /* Read the local symbols. */
10078 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10079 if (isymbuf == NULL && locsymcount != 0)
10080 {
10081 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10082 flinfo->internal_syms,
10083 flinfo->external_syms,
10084 flinfo->locsym_shndx);
10085 if (isymbuf == NULL)
10086 return FALSE;
10087 }
10088
10089 /* Find local symbol sections and adjust values of symbols in
10090 SEC_MERGE sections. Write out those local symbols we know are
10091 going into the output file. */
10092 isymend = isymbuf + locsymcount;
10093 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10094 isym < isymend;
10095 isym++, pindex++, ppsection++)
10096 {
10097 asection *isec;
10098 const char *name;
10099 Elf_Internal_Sym osym;
10100 long indx;
10101 int ret;
10102
10103 *pindex = -1;
10104
10105 if (elf_bad_symtab (input_bfd))
10106 {
10107 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10108 {
10109 *ppsection = NULL;
10110 continue;
10111 }
10112 }
10113
10114 if (isym->st_shndx == SHN_UNDEF)
10115 isec = bfd_und_section_ptr;
10116 else if (isym->st_shndx == SHN_ABS)
10117 isec = bfd_abs_section_ptr;
10118 else if (isym->st_shndx == SHN_COMMON)
10119 isec = bfd_com_section_ptr;
10120 else
10121 {
10122 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10123 if (isec == NULL)
10124 {
10125 /* Don't attempt to output symbols with st_shnx in the
10126 reserved range other than SHN_ABS and SHN_COMMON. */
10127 *ppsection = NULL;
10128 continue;
10129 }
10130 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10131 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10132 isym->st_value =
10133 _bfd_merged_section_offset (output_bfd, &isec,
10134 elf_section_data (isec)->sec_info,
10135 isym->st_value);
10136 }
10137
10138 *ppsection = isec;
10139
10140 /* Don't output the first, undefined, symbol. In fact, don't
10141 output any undefined local symbol. */
10142 if (isec == bfd_und_section_ptr)
10143 continue;
10144
10145 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10146 {
10147 /* We never output section symbols. Instead, we use the
10148 section symbol of the corresponding section in the output
10149 file. */
10150 continue;
10151 }
10152
10153 /* If we are stripping all symbols, we don't want to output this
10154 one. */
10155 if (flinfo->info->strip == strip_all)
10156 continue;
10157
10158 /* If we are discarding all local symbols, we don't want to
10159 output this one. If we are generating a relocatable output
10160 file, then some of the local symbols may be required by
10161 relocs; we output them below as we discover that they are
10162 needed. */
10163 if (flinfo->info->discard == discard_all)
10164 continue;
10165
10166 /* If this symbol is defined in a section which we are
10167 discarding, we don't need to keep it. */
10168 if (isym->st_shndx != SHN_UNDEF
10169 && isym->st_shndx < SHN_LORESERVE
10170 && bfd_section_removed_from_list (output_bfd,
10171 isec->output_section))
10172 continue;
10173
10174 /* Get the name of the symbol. */
10175 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10176 isym->st_name);
10177 if (name == NULL)
10178 return FALSE;
10179
10180 /* See if we are discarding symbols with this name. */
10181 if ((flinfo->info->strip == strip_some
10182 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10183 == NULL))
10184 || (((flinfo->info->discard == discard_sec_merge
10185 && (isec->flags & SEC_MERGE)
10186 && !bfd_link_relocatable (flinfo->info))
10187 || flinfo->info->discard == discard_l)
10188 && bfd_is_local_label_name (input_bfd, name)))
10189 continue;
10190
10191 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10192 {
10193 if (input_bfd->lto_output)
10194 /* -flto puts a temp file name here. This means builds
10195 are not reproducible. Discard the symbol. */
10196 continue;
10197 have_file_sym = TRUE;
10198 flinfo->filesym_count += 1;
10199 }
10200 if (!have_file_sym)
10201 {
10202 /* In the absence of debug info, bfd_find_nearest_line uses
10203 FILE symbols to determine the source file for local
10204 function symbols. Provide a FILE symbol here if input
10205 files lack such, so that their symbols won't be
10206 associated with a previous input file. It's not the
10207 source file, but the best we can do. */
10208 have_file_sym = TRUE;
10209 flinfo->filesym_count += 1;
10210 memset (&osym, 0, sizeof (osym));
10211 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10212 osym.st_shndx = SHN_ABS;
10213 if (!elf_link_output_symstrtab (flinfo,
10214 (input_bfd->lto_output ? NULL
10215 : input_bfd->filename),
10216 &osym, bfd_abs_section_ptr,
10217 NULL))
10218 return FALSE;
10219 }
10220
10221 osym = *isym;
10222
10223 /* Adjust the section index for the output file. */
10224 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10225 isec->output_section);
10226 if (osym.st_shndx == SHN_BAD)
10227 return FALSE;
10228
10229 /* ELF symbols in relocatable files are section relative, but
10230 in executable files they are virtual addresses. Note that
10231 this code assumes that all ELF sections have an associated
10232 BFD section with a reasonable value for output_offset; below
10233 we assume that they also have a reasonable value for
10234 output_section. Any special sections must be set up to meet
10235 these requirements. */
10236 osym.st_value += isec->output_offset;
10237 if (!bfd_link_relocatable (flinfo->info))
10238 {
10239 osym.st_value += isec->output_section->vma;
10240 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10241 {
10242 /* STT_TLS symbols are relative to PT_TLS segment base. */
10243 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10244 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10245 }
10246 }
10247
10248 indx = bfd_get_symcount (output_bfd);
10249 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10250 if (ret == 0)
10251 return FALSE;
10252 else if (ret == 1)
10253 *pindex = indx;
10254 }
10255
10256 if (bed->s->arch_size == 32)
10257 {
10258 r_type_mask = 0xff;
10259 r_sym_shift = 8;
10260 address_size = 4;
10261 }
10262 else
10263 {
10264 r_type_mask = 0xffffffff;
10265 r_sym_shift = 32;
10266 address_size = 8;
10267 }
10268
10269 /* Relocate the contents of each section. */
10270 sym_hashes = elf_sym_hashes (input_bfd);
10271 for (o = input_bfd->sections; o != NULL; o = o->next)
10272 {
10273 bfd_byte *contents;
10274
10275 if (! o->linker_mark)
10276 {
10277 /* This section was omitted from the link. */
10278 continue;
10279 }
10280
10281 if (bfd_link_relocatable (flinfo->info)
10282 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10283 {
10284 /* Deal with the group signature symbol. */
10285 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10286 unsigned long symndx = sec_data->this_hdr.sh_info;
10287 asection *osec = o->output_section;
10288
10289 if (symndx >= locsymcount
10290 || (elf_bad_symtab (input_bfd)
10291 && flinfo->sections[symndx] == NULL))
10292 {
10293 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10294 while (h->root.type == bfd_link_hash_indirect
10295 || h->root.type == bfd_link_hash_warning)
10296 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10297 /* Arrange for symbol to be output. */
10298 h->indx = -2;
10299 elf_section_data (osec)->this_hdr.sh_info = -2;
10300 }
10301 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10302 {
10303 /* We'll use the output section target_index. */
10304 asection *sec = flinfo->sections[symndx]->output_section;
10305 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10306 }
10307 else
10308 {
10309 if (flinfo->indices[symndx] == -1)
10310 {
10311 /* Otherwise output the local symbol now. */
10312 Elf_Internal_Sym sym = isymbuf[symndx];
10313 asection *sec = flinfo->sections[symndx]->output_section;
10314 const char *name;
10315 long indx;
10316 int ret;
10317
10318 name = bfd_elf_string_from_elf_section (input_bfd,
10319 symtab_hdr->sh_link,
10320 sym.st_name);
10321 if (name == NULL)
10322 return FALSE;
10323
10324 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10325 sec);
10326 if (sym.st_shndx == SHN_BAD)
10327 return FALSE;
10328
10329 sym.st_value += o->output_offset;
10330
10331 indx = bfd_get_symcount (output_bfd);
10332 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10333 NULL);
10334 if (ret == 0)
10335 return FALSE;
10336 else if (ret == 1)
10337 flinfo->indices[symndx] = indx;
10338 else
10339 abort ();
10340 }
10341 elf_section_data (osec)->this_hdr.sh_info
10342 = flinfo->indices[symndx];
10343 }
10344 }
10345
10346 if ((o->flags & SEC_HAS_CONTENTS) == 0
10347 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10348 continue;
10349
10350 if ((o->flags & SEC_LINKER_CREATED) != 0)
10351 {
10352 /* Section was created by _bfd_elf_link_create_dynamic_sections
10353 or somesuch. */
10354 continue;
10355 }
10356
10357 /* Get the contents of the section. They have been cached by a
10358 relaxation routine. Note that o is a section in an input
10359 file, so the contents field will not have been set by any of
10360 the routines which work on output files. */
10361 if (elf_section_data (o)->this_hdr.contents != NULL)
10362 {
10363 contents = elf_section_data (o)->this_hdr.contents;
10364 if (bed->caches_rawsize
10365 && o->rawsize != 0
10366 && o->rawsize < o->size)
10367 {
10368 memcpy (flinfo->contents, contents, o->rawsize);
10369 contents = flinfo->contents;
10370 }
10371 }
10372 else
10373 {
10374 contents = flinfo->contents;
10375 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10376 return FALSE;
10377 }
10378
10379 if ((o->flags & SEC_RELOC) != 0)
10380 {
10381 Elf_Internal_Rela *internal_relocs;
10382 Elf_Internal_Rela *rel, *relend;
10383 int action_discarded;
10384 int ret;
10385
10386 /* Get the swapped relocs. */
10387 internal_relocs
10388 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10389 flinfo->internal_relocs, FALSE);
10390 if (internal_relocs == NULL
10391 && o->reloc_count > 0)
10392 return FALSE;
10393
10394 /* We need to reverse-copy input .ctors/.dtors sections if
10395 they are placed in .init_array/.finit_array for output. */
10396 if (o->size > address_size
10397 && ((strncmp (o->name, ".ctors", 6) == 0
10398 && strcmp (o->output_section->name,
10399 ".init_array") == 0)
10400 || (strncmp (o->name, ".dtors", 6) == 0
10401 && strcmp (o->output_section->name,
10402 ".fini_array") == 0))
10403 && (o->name[6] == 0 || o->name[6] == '.'))
10404 {
10405 if (o->size != o->reloc_count * address_size)
10406 {
10407 _bfd_error_handler
10408 /* xgettext:c-format */
10409 (_("error: %B: size of section %A is not "
10410 "multiple of address size"),
10411 input_bfd, o);
10412 bfd_set_error (bfd_error_on_input);
10413 return FALSE;
10414 }
10415 o->flags |= SEC_ELF_REVERSE_COPY;
10416 }
10417
10418 action_discarded = -1;
10419 if (!elf_section_ignore_discarded_relocs (o))
10420 action_discarded = (*bed->action_discarded) (o);
10421
10422 /* Run through the relocs evaluating complex reloc symbols and
10423 looking for relocs against symbols from discarded sections
10424 or section symbols from removed link-once sections.
10425 Complain about relocs against discarded sections. Zero
10426 relocs against removed link-once sections. */
10427
10428 rel = internal_relocs;
10429 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10430 for ( ; rel < relend; rel++)
10431 {
10432 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10433 unsigned int s_type;
10434 asection **ps, *sec;
10435 struct elf_link_hash_entry *h = NULL;
10436 const char *sym_name;
10437
10438 if (r_symndx == STN_UNDEF)
10439 continue;
10440
10441 if (r_symndx >= locsymcount
10442 || (elf_bad_symtab (input_bfd)
10443 && flinfo->sections[r_symndx] == NULL))
10444 {
10445 h = sym_hashes[r_symndx - extsymoff];
10446
10447 /* Badly formatted input files can contain relocs that
10448 reference non-existant symbols. Check here so that
10449 we do not seg fault. */
10450 if (h == NULL)
10451 {
10452 char buffer [32];
10453
10454 sprintf_vma (buffer, rel->r_info);
10455 _bfd_error_handler
10456 /* xgettext:c-format */
10457 (_("error: %B contains a reloc (0x%s) for section %A "
10458 "that references a non-existent global symbol"),
10459 input_bfd, buffer, o);
10460 bfd_set_error (bfd_error_bad_value);
10461 return FALSE;
10462 }
10463
10464 while (h->root.type == bfd_link_hash_indirect
10465 || h->root.type == bfd_link_hash_warning)
10466 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10467
10468 s_type = h->type;
10469
10470 /* If a plugin symbol is referenced from a non-IR file,
10471 mark the symbol as undefined. Note that the
10472 linker may attach linker created dynamic sections
10473 to the plugin bfd. Symbols defined in linker
10474 created sections are not plugin symbols. */
10475 if ((h->root.non_ir_ref
10476 || h->root.non_ir_ref_dynamic)
10477 && (h->root.type == bfd_link_hash_defined
10478 || h->root.type == bfd_link_hash_defweak)
10479 && (h->root.u.def.section->flags
10480 & SEC_LINKER_CREATED) == 0
10481 && h->root.u.def.section->owner != NULL
10482 && (h->root.u.def.section->owner->flags
10483 & BFD_PLUGIN) != 0)
10484 {
10485 h->root.type = bfd_link_hash_undefined;
10486 h->root.u.undef.abfd = h->root.u.def.section->owner;
10487 }
10488
10489 ps = NULL;
10490 if (h->root.type == bfd_link_hash_defined
10491 || h->root.type == bfd_link_hash_defweak)
10492 ps = &h->root.u.def.section;
10493
10494 sym_name = h->root.root.string;
10495 }
10496 else
10497 {
10498 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10499
10500 s_type = ELF_ST_TYPE (sym->st_info);
10501 ps = &flinfo->sections[r_symndx];
10502 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10503 sym, *ps);
10504 }
10505
10506 if ((s_type == STT_RELC || s_type == STT_SRELC)
10507 && !bfd_link_relocatable (flinfo->info))
10508 {
10509 bfd_vma val;
10510 bfd_vma dot = (rel->r_offset
10511 + o->output_offset + o->output_section->vma);
10512 #ifdef DEBUG
10513 printf ("Encountered a complex symbol!");
10514 printf (" (input_bfd %s, section %s, reloc %ld\n",
10515 input_bfd->filename, o->name,
10516 (long) (rel - internal_relocs));
10517 printf (" symbol: idx %8.8lx, name %s\n",
10518 r_symndx, sym_name);
10519 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10520 (unsigned long) rel->r_info,
10521 (unsigned long) rel->r_offset);
10522 #endif
10523 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10524 isymbuf, locsymcount, s_type == STT_SRELC))
10525 return FALSE;
10526
10527 /* Symbol evaluated OK. Update to absolute value. */
10528 set_symbol_value (input_bfd, isymbuf, locsymcount,
10529 r_symndx, val);
10530 continue;
10531 }
10532
10533 if (action_discarded != -1 && ps != NULL)
10534 {
10535 /* Complain if the definition comes from a
10536 discarded section. */
10537 if ((sec = *ps) != NULL && discarded_section (sec))
10538 {
10539 BFD_ASSERT (r_symndx != STN_UNDEF);
10540 if (action_discarded & COMPLAIN)
10541 (*flinfo->info->callbacks->einfo)
10542 /* xgettext:c-format */
10543 (_("%X`%s' referenced in section `%A' of %B: "
10544 "defined in discarded section `%A' of %B\n"),
10545 sym_name, o, input_bfd, sec, sec->owner);
10546
10547 /* Try to do the best we can to support buggy old
10548 versions of gcc. Pretend that the symbol is
10549 really defined in the kept linkonce section.
10550 FIXME: This is quite broken. Modifying the
10551 symbol here means we will be changing all later
10552 uses of the symbol, not just in this section. */
10553 if (action_discarded & PRETEND)
10554 {
10555 asection *kept;
10556
10557 kept = _bfd_elf_check_kept_section (sec,
10558 flinfo->info);
10559 if (kept != NULL)
10560 {
10561 *ps = kept;
10562 continue;
10563 }
10564 }
10565 }
10566 }
10567 }
10568
10569 /* Relocate the section by invoking a back end routine.
10570
10571 The back end routine is responsible for adjusting the
10572 section contents as necessary, and (if using Rela relocs
10573 and generating a relocatable output file) adjusting the
10574 reloc addend as necessary.
10575
10576 The back end routine does not have to worry about setting
10577 the reloc address or the reloc symbol index.
10578
10579 The back end routine is given a pointer to the swapped in
10580 internal symbols, and can access the hash table entries
10581 for the external symbols via elf_sym_hashes (input_bfd).
10582
10583 When generating relocatable output, the back end routine
10584 must handle STB_LOCAL/STT_SECTION symbols specially. The
10585 output symbol is going to be a section symbol
10586 corresponding to the output section, which will require
10587 the addend to be adjusted. */
10588
10589 ret = (*relocate_section) (output_bfd, flinfo->info,
10590 input_bfd, o, contents,
10591 internal_relocs,
10592 isymbuf,
10593 flinfo->sections);
10594 if (!ret)
10595 return FALSE;
10596
10597 if (ret == 2
10598 || bfd_link_relocatable (flinfo->info)
10599 || flinfo->info->emitrelocations)
10600 {
10601 Elf_Internal_Rela *irela;
10602 Elf_Internal_Rela *irelaend, *irelamid;
10603 bfd_vma last_offset;
10604 struct elf_link_hash_entry **rel_hash;
10605 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10606 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10607 unsigned int next_erel;
10608 bfd_boolean rela_normal;
10609 struct bfd_elf_section_data *esdi, *esdo;
10610
10611 esdi = elf_section_data (o);
10612 esdo = elf_section_data (o->output_section);
10613 rela_normal = FALSE;
10614
10615 /* Adjust the reloc addresses and symbol indices. */
10616
10617 irela = internal_relocs;
10618 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10619 rel_hash = esdo->rel.hashes + esdo->rel.count;
10620 /* We start processing the REL relocs, if any. When we reach
10621 IRELAMID in the loop, we switch to the RELA relocs. */
10622 irelamid = irela;
10623 if (esdi->rel.hdr != NULL)
10624 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10625 * bed->s->int_rels_per_ext_rel);
10626 rel_hash_list = rel_hash;
10627 rela_hash_list = NULL;
10628 last_offset = o->output_offset;
10629 if (!bfd_link_relocatable (flinfo->info))
10630 last_offset += o->output_section->vma;
10631 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10632 {
10633 unsigned long r_symndx;
10634 asection *sec;
10635 Elf_Internal_Sym sym;
10636
10637 if (next_erel == bed->s->int_rels_per_ext_rel)
10638 {
10639 rel_hash++;
10640 next_erel = 0;
10641 }
10642
10643 if (irela == irelamid)
10644 {
10645 rel_hash = esdo->rela.hashes + esdo->rela.count;
10646 rela_hash_list = rel_hash;
10647 rela_normal = bed->rela_normal;
10648 }
10649
10650 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10651 flinfo->info, o,
10652 irela->r_offset);
10653 if (irela->r_offset >= (bfd_vma) -2)
10654 {
10655 /* This is a reloc for a deleted entry or somesuch.
10656 Turn it into an R_*_NONE reloc, at the same
10657 offset as the last reloc. elf_eh_frame.c and
10658 bfd_elf_discard_info rely on reloc offsets
10659 being ordered. */
10660 irela->r_offset = last_offset;
10661 irela->r_info = 0;
10662 irela->r_addend = 0;
10663 continue;
10664 }
10665
10666 irela->r_offset += o->output_offset;
10667
10668 /* Relocs in an executable have to be virtual addresses. */
10669 if (!bfd_link_relocatable (flinfo->info))
10670 irela->r_offset += o->output_section->vma;
10671
10672 last_offset = irela->r_offset;
10673
10674 r_symndx = irela->r_info >> r_sym_shift;
10675 if (r_symndx == STN_UNDEF)
10676 continue;
10677
10678 if (r_symndx >= locsymcount
10679 || (elf_bad_symtab (input_bfd)
10680 && flinfo->sections[r_symndx] == NULL))
10681 {
10682 struct elf_link_hash_entry *rh;
10683 unsigned long indx;
10684
10685 /* This is a reloc against a global symbol. We
10686 have not yet output all the local symbols, so
10687 we do not know the symbol index of any global
10688 symbol. We set the rel_hash entry for this
10689 reloc to point to the global hash table entry
10690 for this symbol. The symbol index is then
10691 set at the end of bfd_elf_final_link. */
10692 indx = r_symndx - extsymoff;
10693 rh = elf_sym_hashes (input_bfd)[indx];
10694 while (rh->root.type == bfd_link_hash_indirect
10695 || rh->root.type == bfd_link_hash_warning)
10696 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10697
10698 /* Setting the index to -2 tells
10699 elf_link_output_extsym that this symbol is
10700 used by a reloc. */
10701 BFD_ASSERT (rh->indx < 0);
10702 rh->indx = -2;
10703
10704 *rel_hash = rh;
10705
10706 continue;
10707 }
10708
10709 /* This is a reloc against a local symbol. */
10710
10711 *rel_hash = NULL;
10712 sym = isymbuf[r_symndx];
10713 sec = flinfo->sections[r_symndx];
10714 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10715 {
10716 /* I suppose the backend ought to fill in the
10717 section of any STT_SECTION symbol against a
10718 processor specific section. */
10719 r_symndx = STN_UNDEF;
10720 if (bfd_is_abs_section (sec))
10721 ;
10722 else if (sec == NULL || sec->owner == NULL)
10723 {
10724 bfd_set_error (bfd_error_bad_value);
10725 return FALSE;
10726 }
10727 else
10728 {
10729 asection *osec = sec->output_section;
10730
10731 /* If we have discarded a section, the output
10732 section will be the absolute section. In
10733 case of discarded SEC_MERGE sections, use
10734 the kept section. relocate_section should
10735 have already handled discarded linkonce
10736 sections. */
10737 if (bfd_is_abs_section (osec)
10738 && sec->kept_section != NULL
10739 && sec->kept_section->output_section != NULL)
10740 {
10741 osec = sec->kept_section->output_section;
10742 irela->r_addend -= osec->vma;
10743 }
10744
10745 if (!bfd_is_abs_section (osec))
10746 {
10747 r_symndx = osec->target_index;
10748 if (r_symndx == STN_UNDEF)
10749 {
10750 irela->r_addend += osec->vma;
10751 osec = _bfd_nearby_section (output_bfd, osec,
10752 osec->vma);
10753 irela->r_addend -= osec->vma;
10754 r_symndx = osec->target_index;
10755 }
10756 }
10757 }
10758
10759 /* Adjust the addend according to where the
10760 section winds up in the output section. */
10761 if (rela_normal)
10762 irela->r_addend += sec->output_offset;
10763 }
10764 else
10765 {
10766 if (flinfo->indices[r_symndx] == -1)
10767 {
10768 unsigned long shlink;
10769 const char *name;
10770 asection *osec;
10771 long indx;
10772
10773 if (flinfo->info->strip == strip_all)
10774 {
10775 /* You can't do ld -r -s. */
10776 bfd_set_error (bfd_error_invalid_operation);
10777 return FALSE;
10778 }
10779
10780 /* This symbol was skipped earlier, but
10781 since it is needed by a reloc, we
10782 must output it now. */
10783 shlink = symtab_hdr->sh_link;
10784 name = (bfd_elf_string_from_elf_section
10785 (input_bfd, shlink, sym.st_name));
10786 if (name == NULL)
10787 return FALSE;
10788
10789 osec = sec->output_section;
10790 sym.st_shndx =
10791 _bfd_elf_section_from_bfd_section (output_bfd,
10792 osec);
10793 if (sym.st_shndx == SHN_BAD)
10794 return FALSE;
10795
10796 sym.st_value += sec->output_offset;
10797 if (!bfd_link_relocatable (flinfo->info))
10798 {
10799 sym.st_value += osec->vma;
10800 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10801 {
10802 /* STT_TLS symbols are relative to PT_TLS
10803 segment base. */
10804 BFD_ASSERT (elf_hash_table (flinfo->info)
10805 ->tls_sec != NULL);
10806 sym.st_value -= (elf_hash_table (flinfo->info)
10807 ->tls_sec->vma);
10808 }
10809 }
10810
10811 indx = bfd_get_symcount (output_bfd);
10812 ret = elf_link_output_symstrtab (flinfo, name,
10813 &sym, sec,
10814 NULL);
10815 if (ret == 0)
10816 return FALSE;
10817 else if (ret == 1)
10818 flinfo->indices[r_symndx] = indx;
10819 else
10820 abort ();
10821 }
10822
10823 r_symndx = flinfo->indices[r_symndx];
10824 }
10825
10826 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10827 | (irela->r_info & r_type_mask));
10828 }
10829
10830 /* Swap out the relocs. */
10831 input_rel_hdr = esdi->rel.hdr;
10832 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10833 {
10834 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10835 input_rel_hdr,
10836 internal_relocs,
10837 rel_hash_list))
10838 return FALSE;
10839 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10840 * bed->s->int_rels_per_ext_rel);
10841 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10842 }
10843
10844 input_rela_hdr = esdi->rela.hdr;
10845 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10846 {
10847 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10848 input_rela_hdr,
10849 internal_relocs,
10850 rela_hash_list))
10851 return FALSE;
10852 }
10853 }
10854 }
10855
10856 /* Write out the modified section contents. */
10857 if (bed->elf_backend_write_section
10858 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10859 contents))
10860 {
10861 /* Section written out. */
10862 }
10863 else switch (o->sec_info_type)
10864 {
10865 case SEC_INFO_TYPE_STABS:
10866 if (! (_bfd_write_section_stabs
10867 (output_bfd,
10868 &elf_hash_table (flinfo->info)->stab_info,
10869 o, &elf_section_data (o)->sec_info, contents)))
10870 return FALSE;
10871 break;
10872 case SEC_INFO_TYPE_MERGE:
10873 if (! _bfd_write_merged_section (output_bfd, o,
10874 elf_section_data (o)->sec_info))
10875 return FALSE;
10876 break;
10877 case SEC_INFO_TYPE_EH_FRAME:
10878 {
10879 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10880 o, contents))
10881 return FALSE;
10882 }
10883 break;
10884 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10885 {
10886 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10887 flinfo->info,
10888 o, contents))
10889 return FALSE;
10890 }
10891 break;
10892 default:
10893 {
10894 if (! (o->flags & SEC_EXCLUDE))
10895 {
10896 file_ptr offset = (file_ptr) o->output_offset;
10897 bfd_size_type todo = o->size;
10898
10899 offset *= bfd_octets_per_byte (output_bfd);
10900
10901 if ((o->flags & SEC_ELF_REVERSE_COPY))
10902 {
10903 /* Reverse-copy input section to output. */
10904 do
10905 {
10906 todo -= address_size;
10907 if (! bfd_set_section_contents (output_bfd,
10908 o->output_section,
10909 contents + todo,
10910 offset,
10911 address_size))
10912 return FALSE;
10913 if (todo == 0)
10914 break;
10915 offset += address_size;
10916 }
10917 while (1);
10918 }
10919 else if (! bfd_set_section_contents (output_bfd,
10920 o->output_section,
10921 contents,
10922 offset, todo))
10923 return FALSE;
10924 }
10925 }
10926 break;
10927 }
10928 }
10929
10930 return TRUE;
10931 }
10932
10933 /* Generate a reloc when linking an ELF file. This is a reloc
10934 requested by the linker, and does not come from any input file. This
10935 is used to build constructor and destructor tables when linking
10936 with -Ur. */
10937
10938 static bfd_boolean
10939 elf_reloc_link_order (bfd *output_bfd,
10940 struct bfd_link_info *info,
10941 asection *output_section,
10942 struct bfd_link_order *link_order)
10943 {
10944 reloc_howto_type *howto;
10945 long indx;
10946 bfd_vma offset;
10947 bfd_vma addend;
10948 struct bfd_elf_section_reloc_data *reldata;
10949 struct elf_link_hash_entry **rel_hash_ptr;
10950 Elf_Internal_Shdr *rel_hdr;
10951 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10952 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10953 bfd_byte *erel;
10954 unsigned int i;
10955 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10956
10957 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10958 if (howto == NULL)
10959 {
10960 bfd_set_error (bfd_error_bad_value);
10961 return FALSE;
10962 }
10963
10964 addend = link_order->u.reloc.p->addend;
10965
10966 if (esdo->rel.hdr)
10967 reldata = &esdo->rel;
10968 else if (esdo->rela.hdr)
10969 reldata = &esdo->rela;
10970 else
10971 {
10972 reldata = NULL;
10973 BFD_ASSERT (0);
10974 }
10975
10976 /* Figure out the symbol index. */
10977 rel_hash_ptr = reldata->hashes + reldata->count;
10978 if (link_order->type == bfd_section_reloc_link_order)
10979 {
10980 indx = link_order->u.reloc.p->u.section->target_index;
10981 BFD_ASSERT (indx != 0);
10982 *rel_hash_ptr = NULL;
10983 }
10984 else
10985 {
10986 struct elf_link_hash_entry *h;
10987
10988 /* Treat a reloc against a defined symbol as though it were
10989 actually against the section. */
10990 h = ((struct elf_link_hash_entry *)
10991 bfd_wrapped_link_hash_lookup (output_bfd, info,
10992 link_order->u.reloc.p->u.name,
10993 FALSE, FALSE, TRUE));
10994 if (h != NULL
10995 && (h->root.type == bfd_link_hash_defined
10996 || h->root.type == bfd_link_hash_defweak))
10997 {
10998 asection *section;
10999
11000 section = h->root.u.def.section;
11001 indx = section->output_section->target_index;
11002 *rel_hash_ptr = NULL;
11003 /* It seems that we ought to add the symbol value to the
11004 addend here, but in practice it has already been added
11005 because it was passed to constructor_callback. */
11006 addend += section->output_section->vma + section->output_offset;
11007 }
11008 else if (h != NULL)
11009 {
11010 /* Setting the index to -2 tells elf_link_output_extsym that
11011 this symbol is used by a reloc. */
11012 h->indx = -2;
11013 *rel_hash_ptr = h;
11014 indx = 0;
11015 }
11016 else
11017 {
11018 (*info->callbacks->unattached_reloc)
11019 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11020 indx = 0;
11021 }
11022 }
11023
11024 /* If this is an inplace reloc, we must write the addend into the
11025 object file. */
11026 if (howto->partial_inplace && addend != 0)
11027 {
11028 bfd_size_type size;
11029 bfd_reloc_status_type rstat;
11030 bfd_byte *buf;
11031 bfd_boolean ok;
11032 const char *sym_name;
11033
11034 size = (bfd_size_type) bfd_get_reloc_size (howto);
11035 buf = (bfd_byte *) bfd_zmalloc (size);
11036 if (buf == NULL && size != 0)
11037 return FALSE;
11038 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11039 switch (rstat)
11040 {
11041 case bfd_reloc_ok:
11042 break;
11043
11044 default:
11045 case bfd_reloc_outofrange:
11046 abort ();
11047
11048 case bfd_reloc_overflow:
11049 if (link_order->type == bfd_section_reloc_link_order)
11050 sym_name = bfd_section_name (output_bfd,
11051 link_order->u.reloc.p->u.section);
11052 else
11053 sym_name = link_order->u.reloc.p->u.name;
11054 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11055 howto->name, addend, NULL, NULL,
11056 (bfd_vma) 0);
11057 break;
11058 }
11059
11060 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11061 link_order->offset
11062 * bfd_octets_per_byte (output_bfd),
11063 size);
11064 free (buf);
11065 if (! ok)
11066 return FALSE;
11067 }
11068
11069 /* The address of a reloc is relative to the section in a
11070 relocatable file, and is a virtual address in an executable
11071 file. */
11072 offset = link_order->offset;
11073 if (! bfd_link_relocatable (info))
11074 offset += output_section->vma;
11075
11076 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11077 {
11078 irel[i].r_offset = offset;
11079 irel[i].r_info = 0;
11080 irel[i].r_addend = 0;
11081 }
11082 if (bed->s->arch_size == 32)
11083 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11084 else
11085 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11086
11087 rel_hdr = reldata->hdr;
11088 erel = rel_hdr->contents;
11089 if (rel_hdr->sh_type == SHT_REL)
11090 {
11091 erel += reldata->count * bed->s->sizeof_rel;
11092 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11093 }
11094 else
11095 {
11096 irel[0].r_addend = addend;
11097 erel += reldata->count * bed->s->sizeof_rela;
11098 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11099 }
11100
11101 ++reldata->count;
11102
11103 return TRUE;
11104 }
11105
11106
11107 /* Get the output vma of the section pointed to by the sh_link field. */
11108
11109 static bfd_vma
11110 elf_get_linked_section_vma (struct bfd_link_order *p)
11111 {
11112 Elf_Internal_Shdr **elf_shdrp;
11113 asection *s;
11114 int elfsec;
11115
11116 s = p->u.indirect.section;
11117 elf_shdrp = elf_elfsections (s->owner);
11118 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11119 elfsec = elf_shdrp[elfsec]->sh_link;
11120 /* PR 290:
11121 The Intel C compiler generates SHT_IA_64_UNWIND with
11122 SHF_LINK_ORDER. But it doesn't set the sh_link or
11123 sh_info fields. Hence we could get the situation
11124 where elfsec is 0. */
11125 if (elfsec == 0)
11126 {
11127 const struct elf_backend_data *bed
11128 = get_elf_backend_data (s->owner);
11129 if (bed->link_order_error_handler)
11130 bed->link_order_error_handler
11131 /* xgettext:c-format */
11132 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11133 return 0;
11134 }
11135 else
11136 {
11137 s = elf_shdrp[elfsec]->bfd_section;
11138 return s->output_section->vma + s->output_offset;
11139 }
11140 }
11141
11142
11143 /* Compare two sections based on the locations of the sections they are
11144 linked to. Used by elf_fixup_link_order. */
11145
11146 static int
11147 compare_link_order (const void * a, const void * b)
11148 {
11149 bfd_vma apos;
11150 bfd_vma bpos;
11151
11152 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11153 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11154 if (apos < bpos)
11155 return -1;
11156 return apos > bpos;
11157 }
11158
11159
11160 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11161 order as their linked sections. Returns false if this could not be done
11162 because an output section includes both ordered and unordered
11163 sections. Ideally we'd do this in the linker proper. */
11164
11165 static bfd_boolean
11166 elf_fixup_link_order (bfd *abfd, asection *o)
11167 {
11168 int seen_linkorder;
11169 int seen_other;
11170 int n;
11171 struct bfd_link_order *p;
11172 bfd *sub;
11173 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11174 unsigned elfsec;
11175 struct bfd_link_order **sections;
11176 asection *s, *other_sec, *linkorder_sec;
11177 bfd_vma offset;
11178
11179 other_sec = NULL;
11180 linkorder_sec = NULL;
11181 seen_other = 0;
11182 seen_linkorder = 0;
11183 for (p = o->map_head.link_order; p != NULL; p = p->next)
11184 {
11185 if (p->type == bfd_indirect_link_order)
11186 {
11187 s = p->u.indirect.section;
11188 sub = s->owner;
11189 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11190 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11191 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11192 && elfsec < elf_numsections (sub)
11193 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11194 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11195 {
11196 seen_linkorder++;
11197 linkorder_sec = s;
11198 }
11199 else
11200 {
11201 seen_other++;
11202 other_sec = s;
11203 }
11204 }
11205 else
11206 seen_other++;
11207
11208 if (seen_other && seen_linkorder)
11209 {
11210 if (other_sec && linkorder_sec)
11211 _bfd_error_handler
11212 /* xgettext:c-format */
11213 (_("%A has both ordered [`%A' in %B] "
11214 "and unordered [`%A' in %B] sections"),
11215 o, linkorder_sec, linkorder_sec->owner,
11216 other_sec, other_sec->owner);
11217 else
11218 _bfd_error_handler
11219 (_("%A has both ordered and unordered sections"), o);
11220 bfd_set_error (bfd_error_bad_value);
11221 return FALSE;
11222 }
11223 }
11224
11225 if (!seen_linkorder)
11226 return TRUE;
11227
11228 sections = (struct bfd_link_order **)
11229 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11230 if (sections == NULL)
11231 return FALSE;
11232 seen_linkorder = 0;
11233
11234 for (p = o->map_head.link_order; p != NULL; p = p->next)
11235 {
11236 sections[seen_linkorder++] = p;
11237 }
11238 /* Sort the input sections in the order of their linked section. */
11239 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11240 compare_link_order);
11241
11242 /* Change the offsets of the sections. */
11243 offset = 0;
11244 for (n = 0; n < seen_linkorder; n++)
11245 {
11246 s = sections[n]->u.indirect.section;
11247 offset &= ~(bfd_vma) 0 << s->alignment_power;
11248 s->output_offset = offset / bfd_octets_per_byte (abfd);
11249 sections[n]->offset = offset;
11250 offset += sections[n]->size;
11251 }
11252
11253 free (sections);
11254 return TRUE;
11255 }
11256
11257 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11258 Returns TRUE upon success, FALSE otherwise. */
11259
11260 static bfd_boolean
11261 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11262 {
11263 bfd_boolean ret = FALSE;
11264 bfd *implib_bfd;
11265 const struct elf_backend_data *bed;
11266 flagword flags;
11267 enum bfd_architecture arch;
11268 unsigned int mach;
11269 asymbol **sympp = NULL;
11270 long symsize;
11271 long symcount;
11272 long src_count;
11273 elf_symbol_type *osymbuf;
11274
11275 implib_bfd = info->out_implib_bfd;
11276 bed = get_elf_backend_data (abfd);
11277
11278 if (!bfd_set_format (implib_bfd, bfd_object))
11279 return FALSE;
11280
11281 /* Use flag from executable but make it a relocatable object. */
11282 flags = bfd_get_file_flags (abfd);
11283 flags &= ~HAS_RELOC;
11284 if (!bfd_set_start_address (implib_bfd, 0)
11285 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11286 return FALSE;
11287
11288 /* Copy architecture of output file to import library file. */
11289 arch = bfd_get_arch (abfd);
11290 mach = bfd_get_mach (abfd);
11291 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11292 && (abfd->target_defaulted
11293 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11294 return FALSE;
11295
11296 /* Get symbol table size. */
11297 symsize = bfd_get_symtab_upper_bound (abfd);
11298 if (symsize < 0)
11299 return FALSE;
11300
11301 /* Read in the symbol table. */
11302 sympp = (asymbol **) xmalloc (symsize);
11303 symcount = bfd_canonicalize_symtab (abfd, sympp);
11304 if (symcount < 0)
11305 goto free_sym_buf;
11306
11307 /* Allow the BFD backend to copy any private header data it
11308 understands from the output BFD to the import library BFD. */
11309 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11310 goto free_sym_buf;
11311
11312 /* Filter symbols to appear in the import library. */
11313 if (bed->elf_backend_filter_implib_symbols)
11314 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11315 symcount);
11316 else
11317 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11318 if (symcount == 0)
11319 {
11320 bfd_set_error (bfd_error_no_symbols);
11321 _bfd_error_handler (_("%B: no symbol found for import library"),
11322 implib_bfd);
11323 goto free_sym_buf;
11324 }
11325
11326
11327 /* Make symbols absolute. */
11328 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11329 sizeof (*osymbuf));
11330 for (src_count = 0; src_count < symcount; src_count++)
11331 {
11332 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11333 sizeof (*osymbuf));
11334 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11335 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11336 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11337 osymbuf[src_count].internal_elf_sym.st_value =
11338 osymbuf[src_count].symbol.value;
11339 sympp[src_count] = &osymbuf[src_count].symbol;
11340 }
11341
11342 bfd_set_symtab (implib_bfd, sympp, symcount);
11343
11344 /* Allow the BFD backend to copy any private data it understands
11345 from the output BFD to the import library BFD. This is done last
11346 to permit the routine to look at the filtered symbol table. */
11347 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11348 goto free_sym_buf;
11349
11350 if (!bfd_close (implib_bfd))
11351 goto free_sym_buf;
11352
11353 ret = TRUE;
11354
11355 free_sym_buf:
11356 free (sympp);
11357 return ret;
11358 }
11359
11360 static void
11361 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11362 {
11363 asection *o;
11364
11365 if (flinfo->symstrtab != NULL)
11366 _bfd_elf_strtab_free (flinfo->symstrtab);
11367 if (flinfo->contents != NULL)
11368 free (flinfo->contents);
11369 if (flinfo->external_relocs != NULL)
11370 free (flinfo->external_relocs);
11371 if (flinfo->internal_relocs != NULL)
11372 free (flinfo->internal_relocs);
11373 if (flinfo->external_syms != NULL)
11374 free (flinfo->external_syms);
11375 if (flinfo->locsym_shndx != NULL)
11376 free (flinfo->locsym_shndx);
11377 if (flinfo->internal_syms != NULL)
11378 free (flinfo->internal_syms);
11379 if (flinfo->indices != NULL)
11380 free (flinfo->indices);
11381 if (flinfo->sections != NULL)
11382 free (flinfo->sections);
11383 if (flinfo->symshndxbuf != NULL)
11384 free (flinfo->symshndxbuf);
11385 for (o = obfd->sections; o != NULL; o = o->next)
11386 {
11387 struct bfd_elf_section_data *esdo = elf_section_data (o);
11388 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11389 free (esdo->rel.hashes);
11390 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11391 free (esdo->rela.hashes);
11392 }
11393 }
11394
11395 /* Do the final step of an ELF link. */
11396
11397 bfd_boolean
11398 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11399 {
11400 bfd_boolean dynamic;
11401 bfd_boolean emit_relocs;
11402 bfd *dynobj;
11403 struct elf_final_link_info flinfo;
11404 asection *o;
11405 struct bfd_link_order *p;
11406 bfd *sub;
11407 bfd_size_type max_contents_size;
11408 bfd_size_type max_external_reloc_size;
11409 bfd_size_type max_internal_reloc_count;
11410 bfd_size_type max_sym_count;
11411 bfd_size_type max_sym_shndx_count;
11412 Elf_Internal_Sym elfsym;
11413 unsigned int i;
11414 Elf_Internal_Shdr *symtab_hdr;
11415 Elf_Internal_Shdr *symtab_shndx_hdr;
11416 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11417 struct elf_outext_info eoinfo;
11418 bfd_boolean merged;
11419 size_t relativecount = 0;
11420 asection *reldyn = 0;
11421 bfd_size_type amt;
11422 asection *attr_section = NULL;
11423 bfd_vma attr_size = 0;
11424 const char *std_attrs_section;
11425 struct elf_link_hash_table *htab = elf_hash_table (info);
11426
11427 if (!is_elf_hash_table (htab))
11428 return FALSE;
11429
11430 if (bfd_link_pic (info))
11431 abfd->flags |= DYNAMIC;
11432
11433 dynamic = htab->dynamic_sections_created;
11434 dynobj = htab->dynobj;
11435
11436 emit_relocs = (bfd_link_relocatable (info)
11437 || info->emitrelocations);
11438
11439 flinfo.info = info;
11440 flinfo.output_bfd = abfd;
11441 flinfo.symstrtab = _bfd_elf_strtab_init ();
11442 if (flinfo.symstrtab == NULL)
11443 return FALSE;
11444
11445 if (! dynamic)
11446 {
11447 flinfo.hash_sec = NULL;
11448 flinfo.symver_sec = NULL;
11449 }
11450 else
11451 {
11452 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11453 /* Note that dynsym_sec can be NULL (on VMS). */
11454 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11455 /* Note that it is OK if symver_sec is NULL. */
11456 }
11457
11458 flinfo.contents = NULL;
11459 flinfo.external_relocs = NULL;
11460 flinfo.internal_relocs = NULL;
11461 flinfo.external_syms = NULL;
11462 flinfo.locsym_shndx = NULL;
11463 flinfo.internal_syms = NULL;
11464 flinfo.indices = NULL;
11465 flinfo.sections = NULL;
11466 flinfo.symshndxbuf = NULL;
11467 flinfo.filesym_count = 0;
11468
11469 /* The object attributes have been merged. Remove the input
11470 sections from the link, and set the contents of the output
11471 secton. */
11472 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11473 for (o = abfd->sections; o != NULL; o = o->next)
11474 {
11475 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11476 || strcmp (o->name, ".gnu.attributes") == 0)
11477 {
11478 for (p = o->map_head.link_order; p != NULL; p = p->next)
11479 {
11480 asection *input_section;
11481
11482 if (p->type != bfd_indirect_link_order)
11483 continue;
11484 input_section = p->u.indirect.section;
11485 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11486 elf_link_input_bfd ignores this section. */
11487 input_section->flags &= ~SEC_HAS_CONTENTS;
11488 }
11489
11490 attr_size = bfd_elf_obj_attr_size (abfd);
11491 if (attr_size)
11492 {
11493 bfd_set_section_size (abfd, o, attr_size);
11494 attr_section = o;
11495 /* Skip this section later on. */
11496 o->map_head.link_order = NULL;
11497 }
11498 else
11499 o->flags |= SEC_EXCLUDE;
11500 }
11501 }
11502
11503 /* Count up the number of relocations we will output for each output
11504 section, so that we know the sizes of the reloc sections. We
11505 also figure out some maximum sizes. */
11506 max_contents_size = 0;
11507 max_external_reloc_size = 0;
11508 max_internal_reloc_count = 0;
11509 max_sym_count = 0;
11510 max_sym_shndx_count = 0;
11511 merged = FALSE;
11512 for (o = abfd->sections; o != NULL; o = o->next)
11513 {
11514 struct bfd_elf_section_data *esdo = elf_section_data (o);
11515 o->reloc_count = 0;
11516
11517 for (p = o->map_head.link_order; p != NULL; p = p->next)
11518 {
11519 unsigned int reloc_count = 0;
11520 unsigned int additional_reloc_count = 0;
11521 struct bfd_elf_section_data *esdi = NULL;
11522
11523 if (p->type == bfd_section_reloc_link_order
11524 || p->type == bfd_symbol_reloc_link_order)
11525 reloc_count = 1;
11526 else if (p->type == bfd_indirect_link_order)
11527 {
11528 asection *sec;
11529
11530 sec = p->u.indirect.section;
11531
11532 /* Mark all sections which are to be included in the
11533 link. This will normally be every section. We need
11534 to do this so that we can identify any sections which
11535 the linker has decided to not include. */
11536 sec->linker_mark = TRUE;
11537
11538 if (sec->flags & SEC_MERGE)
11539 merged = TRUE;
11540
11541 if (sec->rawsize > max_contents_size)
11542 max_contents_size = sec->rawsize;
11543 if (sec->size > max_contents_size)
11544 max_contents_size = sec->size;
11545
11546 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11547 && (sec->owner->flags & DYNAMIC) == 0)
11548 {
11549 size_t sym_count;
11550
11551 /* We are interested in just local symbols, not all
11552 symbols. */
11553 if (elf_bad_symtab (sec->owner))
11554 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11555 / bed->s->sizeof_sym);
11556 else
11557 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11558
11559 if (sym_count > max_sym_count)
11560 max_sym_count = sym_count;
11561
11562 if (sym_count > max_sym_shndx_count
11563 && elf_symtab_shndx_list (sec->owner) != NULL)
11564 max_sym_shndx_count = sym_count;
11565
11566 if (esdo->this_hdr.sh_type == SHT_REL
11567 || esdo->this_hdr.sh_type == SHT_RELA)
11568 /* Some backends use reloc_count in relocation sections
11569 to count particular types of relocs. Of course,
11570 reloc sections themselves can't have relocations. */
11571 ;
11572 else if (emit_relocs)
11573 {
11574 reloc_count = sec->reloc_count;
11575 if (bed->elf_backend_count_additional_relocs)
11576 {
11577 int c;
11578 c = (*bed->elf_backend_count_additional_relocs) (sec);
11579 additional_reloc_count += c;
11580 }
11581 }
11582 else if (bed->elf_backend_count_relocs)
11583 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11584
11585 esdi = elf_section_data (sec);
11586
11587 if ((sec->flags & SEC_RELOC) != 0)
11588 {
11589 size_t ext_size = 0;
11590
11591 if (esdi->rel.hdr != NULL)
11592 ext_size = esdi->rel.hdr->sh_size;
11593 if (esdi->rela.hdr != NULL)
11594 ext_size += esdi->rela.hdr->sh_size;
11595
11596 if (ext_size > max_external_reloc_size)
11597 max_external_reloc_size = ext_size;
11598 if (sec->reloc_count > max_internal_reloc_count)
11599 max_internal_reloc_count = sec->reloc_count;
11600 }
11601 }
11602 }
11603
11604 if (reloc_count == 0)
11605 continue;
11606
11607 reloc_count += additional_reloc_count;
11608 o->reloc_count += reloc_count;
11609
11610 if (p->type == bfd_indirect_link_order && emit_relocs)
11611 {
11612 if (esdi->rel.hdr)
11613 {
11614 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11615 esdo->rel.count += additional_reloc_count;
11616 }
11617 if (esdi->rela.hdr)
11618 {
11619 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11620 esdo->rela.count += additional_reloc_count;
11621 }
11622 }
11623 else
11624 {
11625 if (o->use_rela_p)
11626 esdo->rela.count += reloc_count;
11627 else
11628 esdo->rel.count += reloc_count;
11629 }
11630 }
11631
11632 if (o->reloc_count > 0)
11633 o->flags |= SEC_RELOC;
11634 else
11635 {
11636 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11637 set it (this is probably a bug) and if it is set
11638 assign_section_numbers will create a reloc section. */
11639 o->flags &=~ SEC_RELOC;
11640 }
11641
11642 /* If the SEC_ALLOC flag is not set, force the section VMA to
11643 zero. This is done in elf_fake_sections as well, but forcing
11644 the VMA to 0 here will ensure that relocs against these
11645 sections are handled correctly. */
11646 if ((o->flags & SEC_ALLOC) == 0
11647 && ! o->user_set_vma)
11648 o->vma = 0;
11649 }
11650
11651 if (! bfd_link_relocatable (info) && merged)
11652 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11653
11654 /* Figure out the file positions for everything but the symbol table
11655 and the relocs. We set symcount to force assign_section_numbers
11656 to create a symbol table. */
11657 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11658 BFD_ASSERT (! abfd->output_has_begun);
11659 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11660 goto error_return;
11661
11662 /* Set sizes, and assign file positions for reloc sections. */
11663 for (o = abfd->sections; o != NULL; o = o->next)
11664 {
11665 struct bfd_elf_section_data *esdo = elf_section_data (o);
11666 if ((o->flags & SEC_RELOC) != 0)
11667 {
11668 if (esdo->rel.hdr
11669 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11670 goto error_return;
11671
11672 if (esdo->rela.hdr
11673 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11674 goto error_return;
11675 }
11676
11677 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11678 to count upwards while actually outputting the relocations. */
11679 esdo->rel.count = 0;
11680 esdo->rela.count = 0;
11681
11682 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11683 {
11684 /* Cache the section contents so that they can be compressed
11685 later. Use bfd_malloc since it will be freed by
11686 bfd_compress_section_contents. */
11687 unsigned char *contents = esdo->this_hdr.contents;
11688 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11689 abort ();
11690 contents
11691 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11692 if (contents == NULL)
11693 goto error_return;
11694 esdo->this_hdr.contents = contents;
11695 }
11696 }
11697
11698 /* We have now assigned file positions for all the sections except
11699 .symtab, .strtab, and non-loaded reloc sections. We start the
11700 .symtab section at the current file position, and write directly
11701 to it. We build the .strtab section in memory. */
11702 bfd_get_symcount (abfd) = 0;
11703 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11704 /* sh_name is set in prep_headers. */
11705 symtab_hdr->sh_type = SHT_SYMTAB;
11706 /* sh_flags, sh_addr and sh_size all start off zero. */
11707 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11708 /* sh_link is set in assign_section_numbers. */
11709 /* sh_info is set below. */
11710 /* sh_offset is set just below. */
11711 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11712
11713 if (max_sym_count < 20)
11714 max_sym_count = 20;
11715 htab->strtabsize = max_sym_count;
11716 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11717 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11718 if (htab->strtab == NULL)
11719 goto error_return;
11720 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11721 flinfo.symshndxbuf
11722 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11723 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11724
11725 if (info->strip != strip_all || emit_relocs)
11726 {
11727 file_ptr off = elf_next_file_pos (abfd);
11728
11729 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11730
11731 /* Note that at this point elf_next_file_pos (abfd) is
11732 incorrect. We do not yet know the size of the .symtab section.
11733 We correct next_file_pos below, after we do know the size. */
11734
11735 /* Start writing out the symbol table. The first symbol is always a
11736 dummy symbol. */
11737 elfsym.st_value = 0;
11738 elfsym.st_size = 0;
11739 elfsym.st_info = 0;
11740 elfsym.st_other = 0;
11741 elfsym.st_shndx = SHN_UNDEF;
11742 elfsym.st_target_internal = 0;
11743 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11744 bfd_und_section_ptr, NULL) != 1)
11745 goto error_return;
11746
11747 /* Output a symbol for each section. We output these even if we are
11748 discarding local symbols, since they are used for relocs. These
11749 symbols have no names. We store the index of each one in the
11750 index field of the section, so that we can find it again when
11751 outputting relocs. */
11752
11753 elfsym.st_size = 0;
11754 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11755 elfsym.st_other = 0;
11756 elfsym.st_value = 0;
11757 elfsym.st_target_internal = 0;
11758 for (i = 1; i < elf_numsections (abfd); i++)
11759 {
11760 o = bfd_section_from_elf_index (abfd, i);
11761 if (o != NULL)
11762 {
11763 o->target_index = bfd_get_symcount (abfd);
11764 elfsym.st_shndx = i;
11765 if (!bfd_link_relocatable (info))
11766 elfsym.st_value = o->vma;
11767 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11768 NULL) != 1)
11769 goto error_return;
11770 }
11771 }
11772 }
11773
11774 /* Allocate some memory to hold information read in from the input
11775 files. */
11776 if (max_contents_size != 0)
11777 {
11778 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11779 if (flinfo.contents == NULL)
11780 goto error_return;
11781 }
11782
11783 if (max_external_reloc_size != 0)
11784 {
11785 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11786 if (flinfo.external_relocs == NULL)
11787 goto error_return;
11788 }
11789
11790 if (max_internal_reloc_count != 0)
11791 {
11792 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11793 amt *= sizeof (Elf_Internal_Rela);
11794 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11795 if (flinfo.internal_relocs == NULL)
11796 goto error_return;
11797 }
11798
11799 if (max_sym_count != 0)
11800 {
11801 amt = max_sym_count * bed->s->sizeof_sym;
11802 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11803 if (flinfo.external_syms == NULL)
11804 goto error_return;
11805
11806 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11807 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11808 if (flinfo.internal_syms == NULL)
11809 goto error_return;
11810
11811 amt = max_sym_count * sizeof (long);
11812 flinfo.indices = (long int *) bfd_malloc (amt);
11813 if (flinfo.indices == NULL)
11814 goto error_return;
11815
11816 amt = max_sym_count * sizeof (asection *);
11817 flinfo.sections = (asection **) bfd_malloc (amt);
11818 if (flinfo.sections == NULL)
11819 goto error_return;
11820 }
11821
11822 if (max_sym_shndx_count != 0)
11823 {
11824 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11825 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11826 if (flinfo.locsym_shndx == NULL)
11827 goto error_return;
11828 }
11829
11830 if (htab->tls_sec)
11831 {
11832 bfd_vma base, end = 0;
11833 asection *sec;
11834
11835 for (sec = htab->tls_sec;
11836 sec && (sec->flags & SEC_THREAD_LOCAL);
11837 sec = sec->next)
11838 {
11839 bfd_size_type size = sec->size;
11840
11841 if (size == 0
11842 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11843 {
11844 struct bfd_link_order *ord = sec->map_tail.link_order;
11845
11846 if (ord != NULL)
11847 size = ord->offset + ord->size;
11848 }
11849 end = sec->vma + size;
11850 }
11851 base = htab->tls_sec->vma;
11852 /* Only align end of TLS section if static TLS doesn't have special
11853 alignment requirements. */
11854 if (bed->static_tls_alignment == 1)
11855 end = align_power (end, htab->tls_sec->alignment_power);
11856 htab->tls_size = end - base;
11857 }
11858
11859 /* Reorder SHF_LINK_ORDER sections. */
11860 for (o = abfd->sections; o != NULL; o = o->next)
11861 {
11862 if (!elf_fixup_link_order (abfd, o))
11863 return FALSE;
11864 }
11865
11866 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11867 return FALSE;
11868
11869 /* Since ELF permits relocations to be against local symbols, we
11870 must have the local symbols available when we do the relocations.
11871 Since we would rather only read the local symbols once, and we
11872 would rather not keep them in memory, we handle all the
11873 relocations for a single input file at the same time.
11874
11875 Unfortunately, there is no way to know the total number of local
11876 symbols until we have seen all of them, and the local symbol
11877 indices precede the global symbol indices. This means that when
11878 we are generating relocatable output, and we see a reloc against
11879 a global symbol, we can not know the symbol index until we have
11880 finished examining all the local symbols to see which ones we are
11881 going to output. To deal with this, we keep the relocations in
11882 memory, and don't output them until the end of the link. This is
11883 an unfortunate waste of memory, but I don't see a good way around
11884 it. Fortunately, it only happens when performing a relocatable
11885 link, which is not the common case. FIXME: If keep_memory is set
11886 we could write the relocs out and then read them again; I don't
11887 know how bad the memory loss will be. */
11888
11889 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11890 sub->output_has_begun = FALSE;
11891 for (o = abfd->sections; o != NULL; o = o->next)
11892 {
11893 for (p = o->map_head.link_order; p != NULL; p = p->next)
11894 {
11895 if (p->type == bfd_indirect_link_order
11896 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11897 == bfd_target_elf_flavour)
11898 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11899 {
11900 if (! sub->output_has_begun)
11901 {
11902 if (! elf_link_input_bfd (&flinfo, sub))
11903 goto error_return;
11904 sub->output_has_begun = TRUE;
11905 }
11906 }
11907 else if (p->type == bfd_section_reloc_link_order
11908 || p->type == bfd_symbol_reloc_link_order)
11909 {
11910 if (! elf_reloc_link_order (abfd, info, o, p))
11911 goto error_return;
11912 }
11913 else
11914 {
11915 if (! _bfd_default_link_order (abfd, info, o, p))
11916 {
11917 if (p->type == bfd_indirect_link_order
11918 && (bfd_get_flavour (sub)
11919 == bfd_target_elf_flavour)
11920 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11921 != bed->s->elfclass))
11922 {
11923 const char *iclass, *oclass;
11924
11925 switch (bed->s->elfclass)
11926 {
11927 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11928 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11929 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11930 default: abort ();
11931 }
11932
11933 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11934 {
11935 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11936 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11937 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11938 default: abort ();
11939 }
11940
11941 bfd_set_error (bfd_error_wrong_format);
11942 _bfd_error_handler
11943 /* xgettext:c-format */
11944 (_("%B: file class %s incompatible with %s"),
11945 sub, iclass, oclass);
11946 }
11947
11948 goto error_return;
11949 }
11950 }
11951 }
11952 }
11953
11954 /* Free symbol buffer if needed. */
11955 if (!info->reduce_memory_overheads)
11956 {
11957 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11958 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11959 && elf_tdata (sub)->symbuf)
11960 {
11961 free (elf_tdata (sub)->symbuf);
11962 elf_tdata (sub)->symbuf = NULL;
11963 }
11964 }
11965
11966 /* Output any global symbols that got converted to local in a
11967 version script or due to symbol visibility. We do this in a
11968 separate step since ELF requires all local symbols to appear
11969 prior to any global symbols. FIXME: We should only do this if
11970 some global symbols were, in fact, converted to become local.
11971 FIXME: Will this work correctly with the Irix 5 linker? */
11972 eoinfo.failed = FALSE;
11973 eoinfo.flinfo = &flinfo;
11974 eoinfo.localsyms = TRUE;
11975 eoinfo.file_sym_done = FALSE;
11976 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11977 if (eoinfo.failed)
11978 return FALSE;
11979
11980 /* If backend needs to output some local symbols not present in the hash
11981 table, do it now. */
11982 if (bed->elf_backend_output_arch_local_syms
11983 && (info->strip != strip_all || emit_relocs))
11984 {
11985 typedef int (*out_sym_func)
11986 (void *, const char *, Elf_Internal_Sym *, asection *,
11987 struct elf_link_hash_entry *);
11988
11989 if (! ((*bed->elf_backend_output_arch_local_syms)
11990 (abfd, info, &flinfo,
11991 (out_sym_func) elf_link_output_symstrtab)))
11992 return FALSE;
11993 }
11994
11995 /* That wrote out all the local symbols. Finish up the symbol table
11996 with the global symbols. Even if we want to strip everything we
11997 can, we still need to deal with those global symbols that got
11998 converted to local in a version script. */
11999
12000 /* The sh_info field records the index of the first non local symbol. */
12001 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12002
12003 if (dynamic
12004 && htab->dynsym != NULL
12005 && htab->dynsym->output_section != bfd_abs_section_ptr)
12006 {
12007 Elf_Internal_Sym sym;
12008 bfd_byte *dynsym = htab->dynsym->contents;
12009
12010 o = htab->dynsym->output_section;
12011 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12012
12013 /* Write out the section symbols for the output sections. */
12014 if (bfd_link_pic (info)
12015 || htab->is_relocatable_executable)
12016 {
12017 asection *s;
12018
12019 sym.st_size = 0;
12020 sym.st_name = 0;
12021 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12022 sym.st_other = 0;
12023 sym.st_target_internal = 0;
12024
12025 for (s = abfd->sections; s != NULL; s = s->next)
12026 {
12027 int indx;
12028 bfd_byte *dest;
12029 long dynindx;
12030
12031 dynindx = elf_section_data (s)->dynindx;
12032 if (dynindx <= 0)
12033 continue;
12034 indx = elf_section_data (s)->this_idx;
12035 BFD_ASSERT (indx > 0);
12036 sym.st_shndx = indx;
12037 if (! check_dynsym (abfd, &sym))
12038 return FALSE;
12039 sym.st_value = s->vma;
12040 dest = dynsym + dynindx * bed->s->sizeof_sym;
12041 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12042 }
12043 }
12044
12045 /* Write out the local dynsyms. */
12046 if (htab->dynlocal)
12047 {
12048 struct elf_link_local_dynamic_entry *e;
12049 for (e = htab->dynlocal; e ; e = e->next)
12050 {
12051 asection *s;
12052 bfd_byte *dest;
12053
12054 /* Copy the internal symbol and turn off visibility.
12055 Note that we saved a word of storage and overwrote
12056 the original st_name with the dynstr_index. */
12057 sym = e->isym;
12058 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12059
12060 s = bfd_section_from_elf_index (e->input_bfd,
12061 e->isym.st_shndx);
12062 if (s != NULL)
12063 {
12064 sym.st_shndx =
12065 elf_section_data (s->output_section)->this_idx;
12066 if (! check_dynsym (abfd, &sym))
12067 return FALSE;
12068 sym.st_value = (s->output_section->vma
12069 + s->output_offset
12070 + e->isym.st_value);
12071 }
12072
12073 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12074 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12075 }
12076 }
12077 }
12078
12079 /* We get the global symbols from the hash table. */
12080 eoinfo.failed = FALSE;
12081 eoinfo.localsyms = FALSE;
12082 eoinfo.flinfo = &flinfo;
12083 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12084 if (eoinfo.failed)
12085 return FALSE;
12086
12087 /* If backend needs to output some symbols not present in the hash
12088 table, do it now. */
12089 if (bed->elf_backend_output_arch_syms
12090 && (info->strip != strip_all || emit_relocs))
12091 {
12092 typedef int (*out_sym_func)
12093 (void *, const char *, Elf_Internal_Sym *, asection *,
12094 struct elf_link_hash_entry *);
12095
12096 if (! ((*bed->elf_backend_output_arch_syms)
12097 (abfd, info, &flinfo,
12098 (out_sym_func) elf_link_output_symstrtab)))
12099 return FALSE;
12100 }
12101
12102 /* Finalize the .strtab section. */
12103 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12104
12105 /* Swap out the .strtab section. */
12106 if (!elf_link_swap_symbols_out (&flinfo))
12107 return FALSE;
12108
12109 /* Now we know the size of the symtab section. */
12110 if (bfd_get_symcount (abfd) > 0)
12111 {
12112 /* Finish up and write out the symbol string table (.strtab)
12113 section. */
12114 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12115 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12116
12117 if (elf_symtab_shndx_list (abfd))
12118 {
12119 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12120
12121 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12122 {
12123 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12124 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12125 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12126 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12127 symtab_shndx_hdr->sh_size = amt;
12128
12129 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12130 off, TRUE);
12131
12132 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12133 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12134 return FALSE;
12135 }
12136 }
12137
12138 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12139 /* sh_name was set in prep_headers. */
12140 symstrtab_hdr->sh_type = SHT_STRTAB;
12141 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12142 symstrtab_hdr->sh_addr = 0;
12143 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12144 symstrtab_hdr->sh_entsize = 0;
12145 symstrtab_hdr->sh_link = 0;
12146 symstrtab_hdr->sh_info = 0;
12147 /* sh_offset is set just below. */
12148 symstrtab_hdr->sh_addralign = 1;
12149
12150 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12151 off, TRUE);
12152 elf_next_file_pos (abfd) = off;
12153
12154 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12155 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12156 return FALSE;
12157 }
12158
12159 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12160 {
12161 _bfd_error_handler (_("%B: failed to generate import library"),
12162 info->out_implib_bfd);
12163 return FALSE;
12164 }
12165
12166 /* Adjust the relocs to have the correct symbol indices. */
12167 for (o = abfd->sections; o != NULL; o = o->next)
12168 {
12169 struct bfd_elf_section_data *esdo = elf_section_data (o);
12170 bfd_boolean sort;
12171 if ((o->flags & SEC_RELOC) == 0)
12172 continue;
12173
12174 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12175 if (esdo->rel.hdr != NULL
12176 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12177 return FALSE;
12178 if (esdo->rela.hdr != NULL
12179 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12180 return FALSE;
12181
12182 /* Set the reloc_count field to 0 to prevent write_relocs from
12183 trying to swap the relocs out itself. */
12184 o->reloc_count = 0;
12185 }
12186
12187 if (dynamic && info->combreloc && dynobj != NULL)
12188 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12189
12190 /* If we are linking against a dynamic object, or generating a
12191 shared library, finish up the dynamic linking information. */
12192 if (dynamic)
12193 {
12194 bfd_byte *dyncon, *dynconend;
12195
12196 /* Fix up .dynamic entries. */
12197 o = bfd_get_linker_section (dynobj, ".dynamic");
12198 BFD_ASSERT (o != NULL);
12199
12200 dyncon = o->contents;
12201 dynconend = o->contents + o->size;
12202 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12203 {
12204 Elf_Internal_Dyn dyn;
12205 const char *name;
12206 unsigned int type;
12207 bfd_size_type sh_size;
12208 bfd_vma sh_addr;
12209
12210 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12211
12212 switch (dyn.d_tag)
12213 {
12214 default:
12215 continue;
12216 case DT_NULL:
12217 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12218 {
12219 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12220 {
12221 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12222 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12223 default: continue;
12224 }
12225 dyn.d_un.d_val = relativecount;
12226 relativecount = 0;
12227 break;
12228 }
12229 continue;
12230
12231 case DT_INIT:
12232 name = info->init_function;
12233 goto get_sym;
12234 case DT_FINI:
12235 name = info->fini_function;
12236 get_sym:
12237 {
12238 struct elf_link_hash_entry *h;
12239
12240 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12241 if (h != NULL
12242 && (h->root.type == bfd_link_hash_defined
12243 || h->root.type == bfd_link_hash_defweak))
12244 {
12245 dyn.d_un.d_ptr = h->root.u.def.value;
12246 o = h->root.u.def.section;
12247 if (o->output_section != NULL)
12248 dyn.d_un.d_ptr += (o->output_section->vma
12249 + o->output_offset);
12250 else
12251 {
12252 /* The symbol is imported from another shared
12253 library and does not apply to this one. */
12254 dyn.d_un.d_ptr = 0;
12255 }
12256 break;
12257 }
12258 }
12259 continue;
12260
12261 case DT_PREINIT_ARRAYSZ:
12262 name = ".preinit_array";
12263 goto get_out_size;
12264 case DT_INIT_ARRAYSZ:
12265 name = ".init_array";
12266 goto get_out_size;
12267 case DT_FINI_ARRAYSZ:
12268 name = ".fini_array";
12269 get_out_size:
12270 o = bfd_get_section_by_name (abfd, name);
12271 if (o == NULL)
12272 {
12273 _bfd_error_handler
12274 (_("could not find section %s"), name);
12275 goto error_return;
12276 }
12277 if (o->size == 0)
12278 _bfd_error_handler
12279 (_("warning: %s section has zero size"), name);
12280 dyn.d_un.d_val = o->size;
12281 break;
12282
12283 case DT_PREINIT_ARRAY:
12284 name = ".preinit_array";
12285 goto get_out_vma;
12286 case DT_INIT_ARRAY:
12287 name = ".init_array";
12288 goto get_out_vma;
12289 case DT_FINI_ARRAY:
12290 name = ".fini_array";
12291 get_out_vma:
12292 o = bfd_get_section_by_name (abfd, name);
12293 goto do_vma;
12294
12295 case DT_HASH:
12296 name = ".hash";
12297 goto get_vma;
12298 case DT_GNU_HASH:
12299 name = ".gnu.hash";
12300 goto get_vma;
12301 case DT_STRTAB:
12302 name = ".dynstr";
12303 goto get_vma;
12304 case DT_SYMTAB:
12305 name = ".dynsym";
12306 goto get_vma;
12307 case DT_VERDEF:
12308 name = ".gnu.version_d";
12309 goto get_vma;
12310 case DT_VERNEED:
12311 name = ".gnu.version_r";
12312 goto get_vma;
12313 case DT_VERSYM:
12314 name = ".gnu.version";
12315 get_vma:
12316 o = bfd_get_linker_section (dynobj, name);
12317 do_vma:
12318 if (o == NULL)
12319 {
12320 _bfd_error_handler
12321 (_("could not find section %s"), name);
12322 goto error_return;
12323 }
12324 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12325 {
12326 _bfd_error_handler
12327 (_("warning: section '%s' is being made into a note"), name);
12328 bfd_set_error (bfd_error_nonrepresentable_section);
12329 goto error_return;
12330 }
12331 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12332 break;
12333
12334 case DT_REL:
12335 case DT_RELA:
12336 case DT_RELSZ:
12337 case DT_RELASZ:
12338 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12339 type = SHT_REL;
12340 else
12341 type = SHT_RELA;
12342 sh_size = 0;
12343 sh_addr = 0;
12344 for (i = 1; i < elf_numsections (abfd); i++)
12345 {
12346 Elf_Internal_Shdr *hdr;
12347
12348 hdr = elf_elfsections (abfd)[i];
12349 if (hdr->sh_type == type
12350 && (hdr->sh_flags & SHF_ALLOC) != 0)
12351 {
12352 sh_size += hdr->sh_size;
12353 if (sh_addr == 0
12354 || sh_addr > hdr->sh_addr)
12355 sh_addr = hdr->sh_addr;
12356 }
12357 }
12358
12359 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12360 {
12361 /* Don't count procedure linkage table relocs in the
12362 overall reloc count. */
12363 sh_size -= htab->srelplt->size;
12364 if (sh_size == 0)
12365 /* If the size is zero, make the address zero too.
12366 This is to avoid a glibc bug. If the backend
12367 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12368 zero, then we'll put DT_RELA at the end of
12369 DT_JMPREL. glibc will interpret the end of
12370 DT_RELA matching the end of DT_JMPREL as the
12371 case where DT_RELA includes DT_JMPREL, and for
12372 LD_BIND_NOW will decide that processing DT_RELA
12373 will process the PLT relocs too. Net result:
12374 No PLT relocs applied. */
12375 sh_addr = 0;
12376
12377 /* If .rela.plt is the first .rela section, exclude
12378 it from DT_RELA. */
12379 else if (sh_addr == (htab->srelplt->output_section->vma
12380 + htab->srelplt->output_offset))
12381 sh_addr += htab->srelplt->size;
12382 }
12383
12384 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12385 dyn.d_un.d_val = sh_size;
12386 else
12387 dyn.d_un.d_ptr = sh_addr;
12388 break;
12389 }
12390 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12391 }
12392 }
12393
12394 /* If we have created any dynamic sections, then output them. */
12395 if (dynobj != NULL)
12396 {
12397 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12398 goto error_return;
12399
12400 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12401 if (((info->warn_shared_textrel && bfd_link_pic (info))
12402 || info->error_textrel)
12403 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12404 {
12405 bfd_byte *dyncon, *dynconend;
12406
12407 dyncon = o->contents;
12408 dynconend = o->contents + o->size;
12409 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12410 {
12411 Elf_Internal_Dyn dyn;
12412
12413 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12414
12415 if (dyn.d_tag == DT_TEXTREL)
12416 {
12417 if (info->error_textrel)
12418 info->callbacks->einfo
12419 (_("%P%X: read-only segment has dynamic relocations.\n"));
12420 else
12421 info->callbacks->einfo
12422 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12423 break;
12424 }
12425 }
12426 }
12427
12428 for (o = dynobj->sections; o != NULL; o = o->next)
12429 {
12430 if ((o->flags & SEC_HAS_CONTENTS) == 0
12431 || o->size == 0
12432 || o->output_section == bfd_abs_section_ptr)
12433 continue;
12434 if ((o->flags & SEC_LINKER_CREATED) == 0)
12435 {
12436 /* At this point, we are only interested in sections
12437 created by _bfd_elf_link_create_dynamic_sections. */
12438 continue;
12439 }
12440 if (htab->stab_info.stabstr == o)
12441 continue;
12442 if (htab->eh_info.hdr_sec == o)
12443 continue;
12444 if (strcmp (o->name, ".dynstr") != 0)
12445 {
12446 if (! bfd_set_section_contents (abfd, o->output_section,
12447 o->contents,
12448 (file_ptr) o->output_offset
12449 * bfd_octets_per_byte (abfd),
12450 o->size))
12451 goto error_return;
12452 }
12453 else
12454 {
12455 /* The contents of the .dynstr section are actually in a
12456 stringtab. */
12457 file_ptr off;
12458
12459 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12460 if (bfd_seek (abfd, off, SEEK_SET) != 0
12461 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12462 goto error_return;
12463 }
12464 }
12465 }
12466
12467 if (bfd_link_relocatable (info))
12468 {
12469 bfd_boolean failed = FALSE;
12470
12471 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12472 if (failed)
12473 goto error_return;
12474 }
12475
12476 /* If we have optimized stabs strings, output them. */
12477 if (htab->stab_info.stabstr != NULL)
12478 {
12479 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12480 goto error_return;
12481 }
12482
12483 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12484 goto error_return;
12485
12486 elf_final_link_free (abfd, &flinfo);
12487
12488 elf_linker (abfd) = TRUE;
12489
12490 if (attr_section)
12491 {
12492 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12493 if (contents == NULL)
12494 return FALSE; /* Bail out and fail. */
12495 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12496 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12497 free (contents);
12498 }
12499
12500 return TRUE;
12501
12502 error_return:
12503 elf_final_link_free (abfd, &flinfo);
12504 return FALSE;
12505 }
12506 \f
12507 /* Initialize COOKIE for input bfd ABFD. */
12508
12509 static bfd_boolean
12510 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12511 struct bfd_link_info *info, bfd *abfd)
12512 {
12513 Elf_Internal_Shdr *symtab_hdr;
12514 const struct elf_backend_data *bed;
12515
12516 bed = get_elf_backend_data (abfd);
12517 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12518
12519 cookie->abfd = abfd;
12520 cookie->sym_hashes = elf_sym_hashes (abfd);
12521 cookie->bad_symtab = elf_bad_symtab (abfd);
12522 if (cookie->bad_symtab)
12523 {
12524 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12525 cookie->extsymoff = 0;
12526 }
12527 else
12528 {
12529 cookie->locsymcount = symtab_hdr->sh_info;
12530 cookie->extsymoff = symtab_hdr->sh_info;
12531 }
12532
12533 if (bed->s->arch_size == 32)
12534 cookie->r_sym_shift = 8;
12535 else
12536 cookie->r_sym_shift = 32;
12537
12538 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12539 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12540 {
12541 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12542 cookie->locsymcount, 0,
12543 NULL, NULL, NULL);
12544 if (cookie->locsyms == NULL)
12545 {
12546 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12547 return FALSE;
12548 }
12549 if (info->keep_memory)
12550 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12551 }
12552 return TRUE;
12553 }
12554
12555 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12556
12557 static void
12558 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12559 {
12560 Elf_Internal_Shdr *symtab_hdr;
12561
12562 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12563 if (cookie->locsyms != NULL
12564 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12565 free (cookie->locsyms);
12566 }
12567
12568 /* Initialize the relocation information in COOKIE for input section SEC
12569 of input bfd ABFD. */
12570
12571 static bfd_boolean
12572 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12573 struct bfd_link_info *info, bfd *abfd,
12574 asection *sec)
12575 {
12576 const struct elf_backend_data *bed;
12577
12578 if (sec->reloc_count == 0)
12579 {
12580 cookie->rels = NULL;
12581 cookie->relend = NULL;
12582 }
12583 else
12584 {
12585 bed = get_elf_backend_data (abfd);
12586
12587 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12588 info->keep_memory);
12589 if (cookie->rels == NULL)
12590 return FALSE;
12591 cookie->rel = cookie->rels;
12592 cookie->relend = (cookie->rels
12593 + sec->reloc_count * bed->s->int_rels_per_ext_rel);
12594 }
12595 cookie->rel = cookie->rels;
12596 return TRUE;
12597 }
12598
12599 /* Free the memory allocated by init_reloc_cookie_rels,
12600 if appropriate. */
12601
12602 static void
12603 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12604 asection *sec)
12605 {
12606 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12607 free (cookie->rels);
12608 }
12609
12610 /* Initialize the whole of COOKIE for input section SEC. */
12611
12612 static bfd_boolean
12613 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12614 struct bfd_link_info *info,
12615 asection *sec)
12616 {
12617 if (!init_reloc_cookie (cookie, info, sec->owner))
12618 goto error1;
12619 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12620 goto error2;
12621 return TRUE;
12622
12623 error2:
12624 fini_reloc_cookie (cookie, sec->owner);
12625 error1:
12626 return FALSE;
12627 }
12628
12629 /* Free the memory allocated by init_reloc_cookie_for_section,
12630 if appropriate. */
12631
12632 static void
12633 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12634 asection *sec)
12635 {
12636 fini_reloc_cookie_rels (cookie, sec);
12637 fini_reloc_cookie (cookie, sec->owner);
12638 }
12639 \f
12640 /* Garbage collect unused sections. */
12641
12642 /* Default gc_mark_hook. */
12643
12644 asection *
12645 _bfd_elf_gc_mark_hook (asection *sec,
12646 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12647 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12648 struct elf_link_hash_entry *h,
12649 Elf_Internal_Sym *sym)
12650 {
12651 if (h != NULL)
12652 {
12653 switch (h->root.type)
12654 {
12655 case bfd_link_hash_defined:
12656 case bfd_link_hash_defweak:
12657 return h->root.u.def.section;
12658
12659 case bfd_link_hash_common:
12660 return h->root.u.c.p->section;
12661
12662 default:
12663 break;
12664 }
12665 }
12666 else
12667 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12668
12669 return NULL;
12670 }
12671
12672 /* For undefined __start_<name> and __stop_<name> symbols, return the
12673 first input section matching <name>. Return NULL otherwise. */
12674
12675 asection *
12676 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12677 struct elf_link_hash_entry *h)
12678 {
12679 asection *s;
12680 const char *sec_name;
12681
12682 if (h->root.type != bfd_link_hash_undefined
12683 && h->root.type != bfd_link_hash_undefweak)
12684 return NULL;
12685
12686 s = h->root.u.undef.section;
12687 if (s != NULL)
12688 {
12689 if (s == (asection *) 0 - 1)
12690 return NULL;
12691 return s;
12692 }
12693
12694 sec_name = NULL;
12695 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12696 sec_name = h->root.root.string + 8;
12697 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12698 sec_name = h->root.root.string + 7;
12699
12700 if (sec_name != NULL && *sec_name != '\0')
12701 {
12702 bfd *i;
12703
12704 for (i = info->input_bfds; i != NULL; i = i->link.next)
12705 {
12706 s = bfd_get_section_by_name (i, sec_name);
12707 if (s != NULL)
12708 {
12709 h->root.u.undef.section = s;
12710 break;
12711 }
12712 }
12713 }
12714
12715 if (s == NULL)
12716 h->root.u.undef.section = (asection *) 0 - 1;
12717
12718 return s;
12719 }
12720
12721 /* COOKIE->rel describes a relocation against section SEC, which is
12722 a section we've decided to keep. Return the section that contains
12723 the relocation symbol, or NULL if no section contains it. */
12724
12725 asection *
12726 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12727 elf_gc_mark_hook_fn gc_mark_hook,
12728 struct elf_reloc_cookie *cookie,
12729 bfd_boolean *start_stop)
12730 {
12731 unsigned long r_symndx;
12732 struct elf_link_hash_entry *h;
12733
12734 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12735 if (r_symndx == STN_UNDEF)
12736 return NULL;
12737
12738 if (r_symndx >= cookie->locsymcount
12739 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12740 {
12741 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12742 if (h == NULL)
12743 {
12744 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12745 sec->owner);
12746 return NULL;
12747 }
12748 while (h->root.type == bfd_link_hash_indirect
12749 || h->root.type == bfd_link_hash_warning)
12750 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12751 h->mark = 1;
12752 /* If this symbol is weak and there is a non-weak definition, we
12753 keep the non-weak definition because many backends put
12754 dynamic reloc info on the non-weak definition for code
12755 handling copy relocs. */
12756 if (h->u.weakdef != NULL)
12757 h->u.weakdef->mark = 1;
12758
12759 if (start_stop != NULL)
12760 {
12761 /* To work around a glibc bug, mark all XXX input sections
12762 when there is an as yet undefined reference to __start_XXX
12763 or __stop_XXX symbols. The linker will later define such
12764 symbols for orphan input sections that have a name
12765 representable as a C identifier. */
12766 asection *s = _bfd_elf_is_start_stop (info, h);
12767
12768 if (s != NULL)
12769 {
12770 *start_stop = !s->gc_mark;
12771 return s;
12772 }
12773 }
12774
12775 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12776 }
12777
12778 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12779 &cookie->locsyms[r_symndx]);
12780 }
12781
12782 /* COOKIE->rel describes a relocation against section SEC, which is
12783 a section we've decided to keep. Mark the section that contains
12784 the relocation symbol. */
12785
12786 bfd_boolean
12787 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12788 asection *sec,
12789 elf_gc_mark_hook_fn gc_mark_hook,
12790 struct elf_reloc_cookie *cookie)
12791 {
12792 asection *rsec;
12793 bfd_boolean start_stop = FALSE;
12794
12795 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12796 while (rsec != NULL)
12797 {
12798 if (!rsec->gc_mark)
12799 {
12800 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12801 || (rsec->owner->flags & DYNAMIC) != 0)
12802 rsec->gc_mark = 1;
12803 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12804 return FALSE;
12805 }
12806 if (!start_stop)
12807 break;
12808 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12809 }
12810 return TRUE;
12811 }
12812
12813 /* The mark phase of garbage collection. For a given section, mark
12814 it and any sections in this section's group, and all the sections
12815 which define symbols to which it refers. */
12816
12817 bfd_boolean
12818 _bfd_elf_gc_mark (struct bfd_link_info *info,
12819 asection *sec,
12820 elf_gc_mark_hook_fn gc_mark_hook)
12821 {
12822 bfd_boolean ret;
12823 asection *group_sec, *eh_frame;
12824
12825 sec->gc_mark = 1;
12826
12827 /* Mark all the sections in the group. */
12828 group_sec = elf_section_data (sec)->next_in_group;
12829 if (group_sec && !group_sec->gc_mark)
12830 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12831 return FALSE;
12832
12833 /* Look through the section relocs. */
12834 ret = TRUE;
12835 eh_frame = elf_eh_frame_section (sec->owner);
12836 if ((sec->flags & SEC_RELOC) != 0
12837 && sec->reloc_count > 0
12838 && sec != eh_frame)
12839 {
12840 struct elf_reloc_cookie cookie;
12841
12842 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12843 ret = FALSE;
12844 else
12845 {
12846 for (; cookie.rel < cookie.relend; cookie.rel++)
12847 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12848 {
12849 ret = FALSE;
12850 break;
12851 }
12852 fini_reloc_cookie_for_section (&cookie, sec);
12853 }
12854 }
12855
12856 if (ret && eh_frame && elf_fde_list (sec))
12857 {
12858 struct elf_reloc_cookie cookie;
12859
12860 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12861 ret = FALSE;
12862 else
12863 {
12864 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12865 gc_mark_hook, &cookie))
12866 ret = FALSE;
12867 fini_reloc_cookie_for_section (&cookie, eh_frame);
12868 }
12869 }
12870
12871 eh_frame = elf_section_eh_frame_entry (sec);
12872 if (ret && eh_frame && !eh_frame->gc_mark)
12873 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12874 ret = FALSE;
12875
12876 return ret;
12877 }
12878
12879 /* Scan and mark sections in a special or debug section group. */
12880
12881 static void
12882 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12883 {
12884 /* Point to first section of section group. */
12885 asection *ssec;
12886 /* Used to iterate the section group. */
12887 asection *msec;
12888
12889 bfd_boolean is_special_grp = TRUE;
12890 bfd_boolean is_debug_grp = TRUE;
12891
12892 /* First scan to see if group contains any section other than debug
12893 and special section. */
12894 ssec = msec = elf_next_in_group (grp);
12895 do
12896 {
12897 if ((msec->flags & SEC_DEBUGGING) == 0)
12898 is_debug_grp = FALSE;
12899
12900 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12901 is_special_grp = FALSE;
12902
12903 msec = elf_next_in_group (msec);
12904 }
12905 while (msec != ssec);
12906
12907 /* If this is a pure debug section group or pure special section group,
12908 keep all sections in this group. */
12909 if (is_debug_grp || is_special_grp)
12910 {
12911 do
12912 {
12913 msec->gc_mark = 1;
12914 msec = elf_next_in_group (msec);
12915 }
12916 while (msec != ssec);
12917 }
12918 }
12919
12920 /* Keep debug and special sections. */
12921
12922 bfd_boolean
12923 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12924 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12925 {
12926 bfd *ibfd;
12927
12928 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12929 {
12930 asection *isec;
12931 bfd_boolean some_kept;
12932 bfd_boolean debug_frag_seen;
12933
12934 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12935 continue;
12936
12937 /* Ensure all linker created sections are kept,
12938 see if any other section is already marked,
12939 and note if we have any fragmented debug sections. */
12940 debug_frag_seen = some_kept = FALSE;
12941 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12942 {
12943 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12944 isec->gc_mark = 1;
12945 else if (isec->gc_mark)
12946 some_kept = TRUE;
12947
12948 if (debug_frag_seen == FALSE
12949 && (isec->flags & SEC_DEBUGGING)
12950 && CONST_STRNEQ (isec->name, ".debug_line."))
12951 debug_frag_seen = TRUE;
12952 }
12953
12954 /* If no section in this file will be kept, then we can
12955 toss out the debug and special sections. */
12956 if (!some_kept)
12957 continue;
12958
12959 /* Keep debug and special sections like .comment when they are
12960 not part of a group. Also keep section groups that contain
12961 just debug sections or special sections. */
12962 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12963 {
12964 if ((isec->flags & SEC_GROUP) != 0)
12965 _bfd_elf_gc_mark_debug_special_section_group (isec);
12966 else if (((isec->flags & SEC_DEBUGGING) != 0
12967 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12968 && elf_next_in_group (isec) == NULL)
12969 isec->gc_mark = 1;
12970 }
12971
12972 if (! debug_frag_seen)
12973 continue;
12974
12975 /* Look for CODE sections which are going to be discarded,
12976 and find and discard any fragmented debug sections which
12977 are associated with that code section. */
12978 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12979 if ((isec->flags & SEC_CODE) != 0
12980 && isec->gc_mark == 0)
12981 {
12982 unsigned int ilen;
12983 asection *dsec;
12984
12985 ilen = strlen (isec->name);
12986
12987 /* Association is determined by the name of the debug section
12988 containing the name of the code section as a suffix. For
12989 example .debug_line.text.foo is a debug section associated
12990 with .text.foo. */
12991 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12992 {
12993 unsigned int dlen;
12994
12995 if (dsec->gc_mark == 0
12996 || (dsec->flags & SEC_DEBUGGING) == 0)
12997 continue;
12998
12999 dlen = strlen (dsec->name);
13000
13001 if (dlen > ilen
13002 && strncmp (dsec->name + (dlen - ilen),
13003 isec->name, ilen) == 0)
13004 {
13005 dsec->gc_mark = 0;
13006 }
13007 }
13008 }
13009 }
13010 return TRUE;
13011 }
13012
13013 /* The sweep phase of garbage collection. Remove all garbage sections. */
13014
13015 typedef bfd_boolean (*gc_sweep_hook_fn)
13016 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
13017
13018 static bfd_boolean
13019 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13020 {
13021 bfd *sub;
13022 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13023 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13024
13025 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13026 {
13027 asection *o;
13028
13029 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13030 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13031 continue;
13032
13033 for (o = sub->sections; o != NULL; o = o->next)
13034 {
13035 /* When any section in a section group is kept, we keep all
13036 sections in the section group. If the first member of
13037 the section group is excluded, we will also exclude the
13038 group section. */
13039 if (o->flags & SEC_GROUP)
13040 {
13041 asection *first = elf_next_in_group (o);
13042 o->gc_mark = first->gc_mark;
13043 }
13044
13045 if (o->gc_mark)
13046 continue;
13047
13048 /* Skip sweeping sections already excluded. */
13049 if (o->flags & SEC_EXCLUDE)
13050 continue;
13051
13052 /* Since this is early in the link process, it is simple
13053 to remove a section from the output. */
13054 o->flags |= SEC_EXCLUDE;
13055
13056 if (info->print_gc_sections && o->size != 0)
13057 /* xgettext:c-format */
13058 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13059 o, sub);
13060
13061 /* But we also have to update some of the relocation
13062 info we collected before. */
13063 if (gc_sweep_hook
13064 && (o->flags & SEC_RELOC) != 0
13065 && o->reloc_count != 0
13066 && !((info->strip == strip_all || info->strip == strip_debugger)
13067 && (o->flags & SEC_DEBUGGING) != 0)
13068 && !bfd_is_abs_section (o->output_section))
13069 {
13070 Elf_Internal_Rela *internal_relocs;
13071 bfd_boolean r;
13072
13073 internal_relocs
13074 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13075 info->keep_memory);
13076 if (internal_relocs == NULL)
13077 return FALSE;
13078
13079 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13080
13081 if (elf_section_data (o)->relocs != internal_relocs)
13082 free (internal_relocs);
13083
13084 if (!r)
13085 return FALSE;
13086 }
13087 }
13088 }
13089
13090 return TRUE;
13091 }
13092
13093 /* Propagate collected vtable information. This is called through
13094 elf_link_hash_traverse. */
13095
13096 static bfd_boolean
13097 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13098 {
13099 /* Those that are not vtables. */
13100 if (h->vtable == NULL || h->vtable->parent == NULL)
13101 return TRUE;
13102
13103 /* Those vtables that do not have parents, we cannot merge. */
13104 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13105 return TRUE;
13106
13107 /* If we've already been done, exit. */
13108 if (h->vtable->used && h->vtable->used[-1])
13109 return TRUE;
13110
13111 /* Make sure the parent's table is up to date. */
13112 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13113
13114 if (h->vtable->used == NULL)
13115 {
13116 /* None of this table's entries were referenced. Re-use the
13117 parent's table. */
13118 h->vtable->used = h->vtable->parent->vtable->used;
13119 h->vtable->size = h->vtable->parent->vtable->size;
13120 }
13121 else
13122 {
13123 size_t n;
13124 bfd_boolean *cu, *pu;
13125
13126 /* Or the parent's entries into ours. */
13127 cu = h->vtable->used;
13128 cu[-1] = TRUE;
13129 pu = h->vtable->parent->vtable->used;
13130 if (pu != NULL)
13131 {
13132 const struct elf_backend_data *bed;
13133 unsigned int log_file_align;
13134
13135 bed = get_elf_backend_data (h->root.u.def.section->owner);
13136 log_file_align = bed->s->log_file_align;
13137 n = h->vtable->parent->vtable->size >> log_file_align;
13138 while (n--)
13139 {
13140 if (*pu)
13141 *cu = TRUE;
13142 pu++;
13143 cu++;
13144 }
13145 }
13146 }
13147
13148 return TRUE;
13149 }
13150
13151 static bfd_boolean
13152 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13153 {
13154 asection *sec;
13155 bfd_vma hstart, hend;
13156 Elf_Internal_Rela *relstart, *relend, *rel;
13157 const struct elf_backend_data *bed;
13158 unsigned int log_file_align;
13159
13160 /* Take care of both those symbols that do not describe vtables as
13161 well as those that are not loaded. */
13162 if (h->vtable == NULL || h->vtable->parent == NULL)
13163 return TRUE;
13164
13165 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13166 || h->root.type == bfd_link_hash_defweak);
13167
13168 sec = h->root.u.def.section;
13169 hstart = h->root.u.def.value;
13170 hend = hstart + h->size;
13171
13172 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13173 if (!relstart)
13174 return *(bfd_boolean *) okp = FALSE;
13175 bed = get_elf_backend_data (sec->owner);
13176 log_file_align = bed->s->log_file_align;
13177
13178 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13179
13180 for (rel = relstart; rel < relend; ++rel)
13181 if (rel->r_offset >= hstart && rel->r_offset < hend)
13182 {
13183 /* If the entry is in use, do nothing. */
13184 if (h->vtable->used
13185 && (rel->r_offset - hstart) < h->vtable->size)
13186 {
13187 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13188 if (h->vtable->used[entry])
13189 continue;
13190 }
13191 /* Otherwise, kill it. */
13192 rel->r_offset = rel->r_info = rel->r_addend = 0;
13193 }
13194
13195 return TRUE;
13196 }
13197
13198 /* Mark sections containing dynamically referenced symbols. When
13199 building shared libraries, we must assume that any visible symbol is
13200 referenced. */
13201
13202 bfd_boolean
13203 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13204 {
13205 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13206 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13207
13208 if ((h->root.type == bfd_link_hash_defined
13209 || h->root.type == bfd_link_hash_defweak)
13210 && (h->ref_dynamic
13211 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13212 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13213 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13214 && (!bfd_link_executable (info)
13215 || info->gc_keep_exported
13216 || info->export_dynamic
13217 || (h->dynamic
13218 && d != NULL
13219 && (*d->match) (&d->head, NULL, h->root.root.string)))
13220 && (h->versioned >= versioned
13221 || !bfd_hide_sym_by_version (info->version_info,
13222 h->root.root.string)))))
13223 h->root.u.def.section->flags |= SEC_KEEP;
13224
13225 return TRUE;
13226 }
13227
13228 /* Keep all sections containing symbols undefined on the command-line,
13229 and the section containing the entry symbol. */
13230
13231 void
13232 _bfd_elf_gc_keep (struct bfd_link_info *info)
13233 {
13234 struct bfd_sym_chain *sym;
13235
13236 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13237 {
13238 struct elf_link_hash_entry *h;
13239
13240 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13241 FALSE, FALSE, FALSE);
13242
13243 if (h != NULL
13244 && (h->root.type == bfd_link_hash_defined
13245 || h->root.type == bfd_link_hash_defweak)
13246 && !bfd_is_abs_section (h->root.u.def.section)
13247 && !bfd_is_und_section (h->root.u.def.section))
13248 h->root.u.def.section->flags |= SEC_KEEP;
13249 }
13250 }
13251
13252 bfd_boolean
13253 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13254 struct bfd_link_info *info)
13255 {
13256 bfd *ibfd = info->input_bfds;
13257
13258 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13259 {
13260 asection *sec;
13261 struct elf_reloc_cookie cookie;
13262
13263 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13264 continue;
13265
13266 if (!init_reloc_cookie (&cookie, info, ibfd))
13267 return FALSE;
13268
13269 for (sec = ibfd->sections; sec; sec = sec->next)
13270 {
13271 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13272 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13273 {
13274 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13275 fini_reloc_cookie_rels (&cookie, sec);
13276 }
13277 }
13278 }
13279 return TRUE;
13280 }
13281
13282 /* Do mark and sweep of unused sections. */
13283
13284 bfd_boolean
13285 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13286 {
13287 bfd_boolean ok = TRUE;
13288 bfd *sub;
13289 elf_gc_mark_hook_fn gc_mark_hook;
13290 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13291 struct elf_link_hash_table *htab;
13292
13293 if (!bed->can_gc_sections
13294 || !is_elf_hash_table (info->hash))
13295 {
13296 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13297 return TRUE;
13298 }
13299
13300 bed->gc_keep (info);
13301 htab = elf_hash_table (info);
13302
13303 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13304 at the .eh_frame section if we can mark the FDEs individually. */
13305 for (sub = info->input_bfds;
13306 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13307 sub = sub->link.next)
13308 {
13309 asection *sec;
13310 struct elf_reloc_cookie cookie;
13311
13312 sec = bfd_get_section_by_name (sub, ".eh_frame");
13313 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13314 {
13315 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13316 if (elf_section_data (sec)->sec_info
13317 && (sec->flags & SEC_LINKER_CREATED) == 0)
13318 elf_eh_frame_section (sub) = sec;
13319 fini_reloc_cookie_for_section (&cookie, sec);
13320 sec = bfd_get_next_section_by_name (NULL, sec);
13321 }
13322 }
13323
13324 /* Apply transitive closure to the vtable entry usage info. */
13325 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13326 if (!ok)
13327 return FALSE;
13328
13329 /* Kill the vtable relocations that were not used. */
13330 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13331 if (!ok)
13332 return FALSE;
13333
13334 /* Mark dynamically referenced symbols. */
13335 if (htab->dynamic_sections_created || info->gc_keep_exported)
13336 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13337
13338 /* Grovel through relocs to find out who stays ... */
13339 gc_mark_hook = bed->gc_mark_hook;
13340 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13341 {
13342 asection *o;
13343
13344 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13345 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13346 continue;
13347
13348 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13349 Also treat note sections as a root, if the section is not part
13350 of a group. */
13351 for (o = sub->sections; o != NULL; o = o->next)
13352 if (!o->gc_mark
13353 && (o->flags & SEC_EXCLUDE) == 0
13354 && ((o->flags & SEC_KEEP) != 0
13355 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13356 && elf_next_in_group (o) == NULL )))
13357 {
13358 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13359 return FALSE;
13360 }
13361 }
13362
13363 /* Allow the backend to mark additional target specific sections. */
13364 bed->gc_mark_extra_sections (info, gc_mark_hook);
13365
13366 /* ... and mark SEC_EXCLUDE for those that go. */
13367 return elf_gc_sweep (abfd, info);
13368 }
13369 \f
13370 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13371
13372 bfd_boolean
13373 bfd_elf_gc_record_vtinherit (bfd *abfd,
13374 asection *sec,
13375 struct elf_link_hash_entry *h,
13376 bfd_vma offset)
13377 {
13378 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13379 struct elf_link_hash_entry **search, *child;
13380 size_t extsymcount;
13381 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13382
13383 /* The sh_info field of the symtab header tells us where the
13384 external symbols start. We don't care about the local symbols at
13385 this point. */
13386 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13387 if (!elf_bad_symtab (abfd))
13388 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13389
13390 sym_hashes = elf_sym_hashes (abfd);
13391 sym_hashes_end = sym_hashes + extsymcount;
13392
13393 /* Hunt down the child symbol, which is in this section at the same
13394 offset as the relocation. */
13395 for (search = sym_hashes; search != sym_hashes_end; ++search)
13396 {
13397 if ((child = *search) != NULL
13398 && (child->root.type == bfd_link_hash_defined
13399 || child->root.type == bfd_link_hash_defweak)
13400 && child->root.u.def.section == sec
13401 && child->root.u.def.value == offset)
13402 goto win;
13403 }
13404
13405 /* xgettext:c-format */
13406 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13407 abfd, sec, (unsigned long) offset);
13408 bfd_set_error (bfd_error_invalid_operation);
13409 return FALSE;
13410
13411 win:
13412 if (!child->vtable)
13413 {
13414 child->vtable = ((struct elf_link_virtual_table_entry *)
13415 bfd_zalloc (abfd, sizeof (*child->vtable)));
13416 if (!child->vtable)
13417 return FALSE;
13418 }
13419 if (!h)
13420 {
13421 /* This *should* only be the absolute section. It could potentially
13422 be that someone has defined a non-global vtable though, which
13423 would be bad. It isn't worth paging in the local symbols to be
13424 sure though; that case should simply be handled by the assembler. */
13425
13426 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13427 }
13428 else
13429 child->vtable->parent = h;
13430
13431 return TRUE;
13432 }
13433
13434 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13435
13436 bfd_boolean
13437 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13438 asection *sec ATTRIBUTE_UNUSED,
13439 struct elf_link_hash_entry *h,
13440 bfd_vma addend)
13441 {
13442 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13443 unsigned int log_file_align = bed->s->log_file_align;
13444
13445 if (!h->vtable)
13446 {
13447 h->vtable = ((struct elf_link_virtual_table_entry *)
13448 bfd_zalloc (abfd, sizeof (*h->vtable)));
13449 if (!h->vtable)
13450 return FALSE;
13451 }
13452
13453 if (addend >= h->vtable->size)
13454 {
13455 size_t size, bytes, file_align;
13456 bfd_boolean *ptr = h->vtable->used;
13457
13458 /* While the symbol is undefined, we have to be prepared to handle
13459 a zero size. */
13460 file_align = 1 << log_file_align;
13461 if (h->root.type == bfd_link_hash_undefined)
13462 size = addend + file_align;
13463 else
13464 {
13465 size = h->size;
13466 if (addend >= size)
13467 {
13468 /* Oops! We've got a reference past the defined end of
13469 the table. This is probably a bug -- shall we warn? */
13470 size = addend + file_align;
13471 }
13472 }
13473 size = (size + file_align - 1) & -file_align;
13474
13475 /* Allocate one extra entry for use as a "done" flag for the
13476 consolidation pass. */
13477 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13478
13479 if (ptr)
13480 {
13481 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13482
13483 if (ptr != NULL)
13484 {
13485 size_t oldbytes;
13486
13487 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13488 * sizeof (bfd_boolean));
13489 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13490 }
13491 }
13492 else
13493 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13494
13495 if (ptr == NULL)
13496 return FALSE;
13497
13498 /* And arrange for that done flag to be at index -1. */
13499 h->vtable->used = ptr + 1;
13500 h->vtable->size = size;
13501 }
13502
13503 h->vtable->used[addend >> log_file_align] = TRUE;
13504
13505 return TRUE;
13506 }
13507
13508 /* Map an ELF section header flag to its corresponding string. */
13509 typedef struct
13510 {
13511 char *flag_name;
13512 flagword flag_value;
13513 } elf_flags_to_name_table;
13514
13515 static elf_flags_to_name_table elf_flags_to_names [] =
13516 {
13517 { "SHF_WRITE", SHF_WRITE },
13518 { "SHF_ALLOC", SHF_ALLOC },
13519 { "SHF_EXECINSTR", SHF_EXECINSTR },
13520 { "SHF_MERGE", SHF_MERGE },
13521 { "SHF_STRINGS", SHF_STRINGS },
13522 { "SHF_INFO_LINK", SHF_INFO_LINK},
13523 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13524 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13525 { "SHF_GROUP", SHF_GROUP },
13526 { "SHF_TLS", SHF_TLS },
13527 { "SHF_MASKOS", SHF_MASKOS },
13528 { "SHF_EXCLUDE", SHF_EXCLUDE },
13529 };
13530
13531 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13532 bfd_boolean
13533 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13534 struct flag_info *flaginfo,
13535 asection *section)
13536 {
13537 const bfd_vma sh_flags = elf_section_flags (section);
13538
13539 if (!flaginfo->flags_initialized)
13540 {
13541 bfd *obfd = info->output_bfd;
13542 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13543 struct flag_info_list *tf = flaginfo->flag_list;
13544 int with_hex = 0;
13545 int without_hex = 0;
13546
13547 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13548 {
13549 unsigned i;
13550 flagword (*lookup) (char *);
13551
13552 lookup = bed->elf_backend_lookup_section_flags_hook;
13553 if (lookup != NULL)
13554 {
13555 flagword hexval = (*lookup) ((char *) tf->name);
13556
13557 if (hexval != 0)
13558 {
13559 if (tf->with == with_flags)
13560 with_hex |= hexval;
13561 else if (tf->with == without_flags)
13562 without_hex |= hexval;
13563 tf->valid = TRUE;
13564 continue;
13565 }
13566 }
13567 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13568 {
13569 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13570 {
13571 if (tf->with == with_flags)
13572 with_hex |= elf_flags_to_names[i].flag_value;
13573 else if (tf->with == without_flags)
13574 without_hex |= elf_flags_to_names[i].flag_value;
13575 tf->valid = TRUE;
13576 break;
13577 }
13578 }
13579 if (!tf->valid)
13580 {
13581 info->callbacks->einfo
13582 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13583 return FALSE;
13584 }
13585 }
13586 flaginfo->flags_initialized = TRUE;
13587 flaginfo->only_with_flags |= with_hex;
13588 flaginfo->not_with_flags |= without_hex;
13589 }
13590
13591 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13592 return FALSE;
13593
13594 if ((flaginfo->not_with_flags & sh_flags) != 0)
13595 return FALSE;
13596
13597 return TRUE;
13598 }
13599
13600 struct alloc_got_off_arg {
13601 bfd_vma gotoff;
13602 struct bfd_link_info *info;
13603 };
13604
13605 /* We need a special top-level link routine to convert got reference counts
13606 to real got offsets. */
13607
13608 static bfd_boolean
13609 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13610 {
13611 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13612 bfd *obfd = gofarg->info->output_bfd;
13613 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13614
13615 if (h->got.refcount > 0)
13616 {
13617 h->got.offset = gofarg->gotoff;
13618 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13619 }
13620 else
13621 h->got.offset = (bfd_vma) -1;
13622
13623 return TRUE;
13624 }
13625
13626 /* And an accompanying bit to work out final got entry offsets once
13627 we're done. Should be called from final_link. */
13628
13629 bfd_boolean
13630 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13631 struct bfd_link_info *info)
13632 {
13633 bfd *i;
13634 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13635 bfd_vma gotoff;
13636 struct alloc_got_off_arg gofarg;
13637
13638 BFD_ASSERT (abfd == info->output_bfd);
13639
13640 if (! is_elf_hash_table (info->hash))
13641 return FALSE;
13642
13643 /* The GOT offset is relative to the .got section, but the GOT header is
13644 put into the .got.plt section, if the backend uses it. */
13645 if (bed->want_got_plt)
13646 gotoff = 0;
13647 else
13648 gotoff = bed->got_header_size;
13649
13650 /* Do the local .got entries first. */
13651 for (i = info->input_bfds; i; i = i->link.next)
13652 {
13653 bfd_signed_vma *local_got;
13654 size_t j, locsymcount;
13655 Elf_Internal_Shdr *symtab_hdr;
13656
13657 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13658 continue;
13659
13660 local_got = elf_local_got_refcounts (i);
13661 if (!local_got)
13662 continue;
13663
13664 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13665 if (elf_bad_symtab (i))
13666 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13667 else
13668 locsymcount = symtab_hdr->sh_info;
13669
13670 for (j = 0; j < locsymcount; ++j)
13671 {
13672 if (local_got[j] > 0)
13673 {
13674 local_got[j] = gotoff;
13675 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13676 }
13677 else
13678 local_got[j] = (bfd_vma) -1;
13679 }
13680 }
13681
13682 /* Then the global .got entries. .plt refcounts are handled by
13683 adjust_dynamic_symbol */
13684 gofarg.gotoff = gotoff;
13685 gofarg.info = info;
13686 elf_link_hash_traverse (elf_hash_table (info),
13687 elf_gc_allocate_got_offsets,
13688 &gofarg);
13689 return TRUE;
13690 }
13691
13692 /* Many folk need no more in the way of final link than this, once
13693 got entry reference counting is enabled. */
13694
13695 bfd_boolean
13696 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13697 {
13698 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13699 return FALSE;
13700
13701 /* Invoke the regular ELF backend linker to do all the work. */
13702 return bfd_elf_final_link (abfd, info);
13703 }
13704
13705 bfd_boolean
13706 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13707 {
13708 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13709
13710 if (rcookie->bad_symtab)
13711 rcookie->rel = rcookie->rels;
13712
13713 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13714 {
13715 unsigned long r_symndx;
13716
13717 if (! rcookie->bad_symtab)
13718 if (rcookie->rel->r_offset > offset)
13719 return FALSE;
13720 if (rcookie->rel->r_offset != offset)
13721 continue;
13722
13723 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13724 if (r_symndx == STN_UNDEF)
13725 return TRUE;
13726
13727 if (r_symndx >= rcookie->locsymcount
13728 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13729 {
13730 struct elf_link_hash_entry *h;
13731
13732 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13733
13734 while (h->root.type == bfd_link_hash_indirect
13735 || h->root.type == bfd_link_hash_warning)
13736 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13737
13738 if ((h->root.type == bfd_link_hash_defined
13739 || h->root.type == bfd_link_hash_defweak)
13740 && (h->root.u.def.section->owner != rcookie->abfd
13741 || h->root.u.def.section->kept_section != NULL
13742 || discarded_section (h->root.u.def.section)))
13743 return TRUE;
13744 }
13745 else
13746 {
13747 /* It's not a relocation against a global symbol,
13748 but it could be a relocation against a local
13749 symbol for a discarded section. */
13750 asection *isec;
13751 Elf_Internal_Sym *isym;
13752
13753 /* Need to: get the symbol; get the section. */
13754 isym = &rcookie->locsyms[r_symndx];
13755 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13756 if (isec != NULL
13757 && (isec->kept_section != NULL
13758 || discarded_section (isec)))
13759 return TRUE;
13760 }
13761 return FALSE;
13762 }
13763 return FALSE;
13764 }
13765
13766 /* Discard unneeded references to discarded sections.
13767 Returns -1 on error, 1 if any section's size was changed, 0 if
13768 nothing changed. This function assumes that the relocations are in
13769 sorted order, which is true for all known assemblers. */
13770
13771 int
13772 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13773 {
13774 struct elf_reloc_cookie cookie;
13775 asection *o;
13776 bfd *abfd;
13777 int changed = 0;
13778
13779 if (info->traditional_format
13780 || !is_elf_hash_table (info->hash))
13781 return 0;
13782
13783 o = bfd_get_section_by_name (output_bfd, ".stab");
13784 if (o != NULL)
13785 {
13786 asection *i;
13787
13788 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13789 {
13790 if (i->size == 0
13791 || i->reloc_count == 0
13792 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13793 continue;
13794
13795 abfd = i->owner;
13796 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13797 continue;
13798
13799 if (!init_reloc_cookie_for_section (&cookie, info, i))
13800 return -1;
13801
13802 if (_bfd_discard_section_stabs (abfd, i,
13803 elf_section_data (i)->sec_info,
13804 bfd_elf_reloc_symbol_deleted_p,
13805 &cookie))
13806 changed = 1;
13807
13808 fini_reloc_cookie_for_section (&cookie, i);
13809 }
13810 }
13811
13812 o = NULL;
13813 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13814 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13815 if (o != NULL)
13816 {
13817 asection *i;
13818 int eh_changed = 0;
13819
13820 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13821 {
13822 if (i->size == 0)
13823 continue;
13824
13825 abfd = i->owner;
13826 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13827 continue;
13828
13829 if (!init_reloc_cookie_for_section (&cookie, info, i))
13830 return -1;
13831
13832 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13833 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13834 bfd_elf_reloc_symbol_deleted_p,
13835 &cookie))
13836 {
13837 eh_changed = 1;
13838 if (i->size != i->rawsize)
13839 changed = 1;
13840 }
13841
13842 fini_reloc_cookie_for_section (&cookie, i);
13843 }
13844 if (eh_changed)
13845 elf_link_hash_traverse (elf_hash_table (info),
13846 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13847 }
13848
13849 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13850 {
13851 const struct elf_backend_data *bed;
13852
13853 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13854 continue;
13855
13856 bed = get_elf_backend_data (abfd);
13857
13858 if (bed->elf_backend_discard_info != NULL)
13859 {
13860 if (!init_reloc_cookie (&cookie, info, abfd))
13861 return -1;
13862
13863 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13864 changed = 1;
13865
13866 fini_reloc_cookie (&cookie, abfd);
13867 }
13868 }
13869
13870 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13871 _bfd_elf_end_eh_frame_parsing (info);
13872
13873 if (info->eh_frame_hdr_type
13874 && !bfd_link_relocatable (info)
13875 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13876 changed = 1;
13877
13878 return changed;
13879 }
13880
13881 bfd_boolean
13882 _bfd_elf_section_already_linked (bfd *abfd,
13883 asection *sec,
13884 struct bfd_link_info *info)
13885 {
13886 flagword flags;
13887 const char *name, *key;
13888 struct bfd_section_already_linked *l;
13889 struct bfd_section_already_linked_hash_entry *already_linked_list;
13890
13891 if (sec->output_section == bfd_abs_section_ptr)
13892 return FALSE;
13893
13894 flags = sec->flags;
13895
13896 /* Return if it isn't a linkonce section. A comdat group section
13897 also has SEC_LINK_ONCE set. */
13898 if ((flags & SEC_LINK_ONCE) == 0)
13899 return FALSE;
13900
13901 /* Don't put group member sections on our list of already linked
13902 sections. They are handled as a group via their group section. */
13903 if (elf_sec_group (sec) != NULL)
13904 return FALSE;
13905
13906 /* For a SHT_GROUP section, use the group signature as the key. */
13907 name = sec->name;
13908 if ((flags & SEC_GROUP) != 0
13909 && elf_next_in_group (sec) != NULL
13910 && elf_group_name (elf_next_in_group (sec)) != NULL)
13911 key = elf_group_name (elf_next_in_group (sec));
13912 else
13913 {
13914 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13915 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13916 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13917 key++;
13918 else
13919 /* Must be a user linkonce section that doesn't follow gcc's
13920 naming convention. In this case we won't be matching
13921 single member groups. */
13922 key = name;
13923 }
13924
13925 already_linked_list = bfd_section_already_linked_table_lookup (key);
13926
13927 for (l = already_linked_list->entry; l != NULL; l = l->next)
13928 {
13929 /* We may have 2 different types of sections on the list: group
13930 sections with a signature of <key> (<key> is some string),
13931 and linkonce sections named .gnu.linkonce.<type>.<key>.
13932 Match like sections. LTO plugin sections are an exception.
13933 They are always named .gnu.linkonce.t.<key> and match either
13934 type of section. */
13935 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13936 && ((flags & SEC_GROUP) != 0
13937 || strcmp (name, l->sec->name) == 0))
13938 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13939 {
13940 /* The section has already been linked. See if we should
13941 issue a warning. */
13942 if (!_bfd_handle_already_linked (sec, l, info))
13943 return FALSE;
13944
13945 if (flags & SEC_GROUP)
13946 {
13947 asection *first = elf_next_in_group (sec);
13948 asection *s = first;
13949
13950 while (s != NULL)
13951 {
13952 s->output_section = bfd_abs_section_ptr;
13953 /* Record which group discards it. */
13954 s->kept_section = l->sec;
13955 s = elf_next_in_group (s);
13956 /* These lists are circular. */
13957 if (s == first)
13958 break;
13959 }
13960 }
13961
13962 return TRUE;
13963 }
13964 }
13965
13966 /* A single member comdat group section may be discarded by a
13967 linkonce section and vice versa. */
13968 if ((flags & SEC_GROUP) != 0)
13969 {
13970 asection *first = elf_next_in_group (sec);
13971
13972 if (first != NULL && elf_next_in_group (first) == first)
13973 /* Check this single member group against linkonce sections. */
13974 for (l = already_linked_list->entry; l != NULL; l = l->next)
13975 if ((l->sec->flags & SEC_GROUP) == 0
13976 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13977 {
13978 first->output_section = bfd_abs_section_ptr;
13979 first->kept_section = l->sec;
13980 sec->output_section = bfd_abs_section_ptr;
13981 break;
13982 }
13983 }
13984 else
13985 /* Check this linkonce section against single member groups. */
13986 for (l = already_linked_list->entry; l != NULL; l = l->next)
13987 if (l->sec->flags & SEC_GROUP)
13988 {
13989 asection *first = elf_next_in_group (l->sec);
13990
13991 if (first != NULL
13992 && elf_next_in_group (first) == first
13993 && bfd_elf_match_symbols_in_sections (first, sec, info))
13994 {
13995 sec->output_section = bfd_abs_section_ptr;
13996 sec->kept_section = first;
13997 break;
13998 }
13999 }
14000
14001 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14002 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14003 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14004 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14005 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14006 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14007 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14008 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14009 The reverse order cannot happen as there is never a bfd with only the
14010 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14011 matter as here were are looking only for cross-bfd sections. */
14012
14013 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14014 for (l = already_linked_list->entry; l != NULL; l = l->next)
14015 if ((l->sec->flags & SEC_GROUP) == 0
14016 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14017 {
14018 if (abfd != l->sec->owner)
14019 sec->output_section = bfd_abs_section_ptr;
14020 break;
14021 }
14022
14023 /* This is the first section with this name. Record it. */
14024 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14025 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14026 return sec->output_section == bfd_abs_section_ptr;
14027 }
14028
14029 bfd_boolean
14030 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14031 {
14032 return sym->st_shndx == SHN_COMMON;
14033 }
14034
14035 unsigned int
14036 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14037 {
14038 return SHN_COMMON;
14039 }
14040
14041 asection *
14042 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14043 {
14044 return bfd_com_section_ptr;
14045 }
14046
14047 bfd_vma
14048 _bfd_elf_default_got_elt_size (bfd *abfd,
14049 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14050 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14051 bfd *ibfd ATTRIBUTE_UNUSED,
14052 unsigned long symndx ATTRIBUTE_UNUSED)
14053 {
14054 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14055 return bed->s->arch_size / 8;
14056 }
14057
14058 /* Routines to support the creation of dynamic relocs. */
14059
14060 /* Returns the name of the dynamic reloc section associated with SEC. */
14061
14062 static const char *
14063 get_dynamic_reloc_section_name (bfd * abfd,
14064 asection * sec,
14065 bfd_boolean is_rela)
14066 {
14067 char *name;
14068 const char *old_name = bfd_get_section_name (NULL, sec);
14069 const char *prefix = is_rela ? ".rela" : ".rel";
14070
14071 if (old_name == NULL)
14072 return NULL;
14073
14074 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14075 sprintf (name, "%s%s", prefix, old_name);
14076
14077 return name;
14078 }
14079
14080 /* Returns the dynamic reloc section associated with SEC.
14081 If necessary compute the name of the dynamic reloc section based
14082 on SEC's name (looked up in ABFD's string table) and the setting
14083 of IS_RELA. */
14084
14085 asection *
14086 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14087 asection * sec,
14088 bfd_boolean is_rela)
14089 {
14090 asection * reloc_sec = elf_section_data (sec)->sreloc;
14091
14092 if (reloc_sec == NULL)
14093 {
14094 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14095
14096 if (name != NULL)
14097 {
14098 reloc_sec = bfd_get_linker_section (abfd, name);
14099
14100 if (reloc_sec != NULL)
14101 elf_section_data (sec)->sreloc = reloc_sec;
14102 }
14103 }
14104
14105 return reloc_sec;
14106 }
14107
14108 /* Returns the dynamic reloc section associated with SEC. If the
14109 section does not exist it is created and attached to the DYNOBJ
14110 bfd and stored in the SRELOC field of SEC's elf_section_data
14111 structure.
14112
14113 ALIGNMENT is the alignment for the newly created section and
14114 IS_RELA defines whether the name should be .rela.<SEC's name>
14115 or .rel.<SEC's name>. The section name is looked up in the
14116 string table associated with ABFD. */
14117
14118 asection *
14119 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14120 bfd *dynobj,
14121 unsigned int alignment,
14122 bfd *abfd,
14123 bfd_boolean is_rela)
14124 {
14125 asection * reloc_sec = elf_section_data (sec)->sreloc;
14126
14127 if (reloc_sec == NULL)
14128 {
14129 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14130
14131 if (name == NULL)
14132 return NULL;
14133
14134 reloc_sec = bfd_get_linker_section (dynobj, name);
14135
14136 if (reloc_sec == NULL)
14137 {
14138 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14139 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14140 if ((sec->flags & SEC_ALLOC) != 0)
14141 flags |= SEC_ALLOC | SEC_LOAD;
14142
14143 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14144 if (reloc_sec != NULL)
14145 {
14146 /* _bfd_elf_get_sec_type_attr chooses a section type by
14147 name. Override as it may be wrong, eg. for a user
14148 section named "auto" we'll get ".relauto" which is
14149 seen to be a .rela section. */
14150 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14151 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14152 reloc_sec = NULL;
14153 }
14154 }
14155
14156 elf_section_data (sec)->sreloc = reloc_sec;
14157 }
14158
14159 return reloc_sec;
14160 }
14161
14162 /* Copy the ELF symbol type and other attributes for a linker script
14163 assignment from HSRC to HDEST. Generally this should be treated as
14164 if we found a strong non-dynamic definition for HDEST (except that
14165 ld ignores multiple definition errors). */
14166 void
14167 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14168 struct bfd_link_hash_entry *hdest,
14169 struct bfd_link_hash_entry *hsrc)
14170 {
14171 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14172 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14173 Elf_Internal_Sym isym;
14174
14175 ehdest->type = ehsrc->type;
14176 ehdest->target_internal = ehsrc->target_internal;
14177
14178 isym.st_other = ehsrc->other;
14179 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14180 }
14181
14182 /* Append a RELA relocation REL to section S in BFD. */
14183
14184 void
14185 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14186 {
14187 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14188 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14189 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14190 bed->s->swap_reloca_out (abfd, rel, loc);
14191 }
14192
14193 /* Append a REL relocation REL to section S in BFD. */
14194
14195 void
14196 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14197 {
14198 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14199 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14200 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14201 bed->s->swap_reloc_out (abfd, rel, loc);
14202 }
This page took 0.313783 seconds and 5 git commands to generate.