ld: Allow section groups to be resolved as part of a relocatable link
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
224 {
225 abfd = ibfd;
226 break;
227 }
228 }
229 hash_table->dynobj = abfd;
230 }
231
232 if (hash_table->dynstr == NULL)
233 {
234 hash_table->dynstr = _bfd_elf_strtab_init ();
235 if (hash_table->dynstr == NULL)
236 return FALSE;
237 }
238 return TRUE;
239 }
240
241 /* Create some sections which will be filled in with dynamic linking
242 information. ABFD is an input file which requires dynamic sections
243 to be created. The dynamic sections take up virtual memory space
244 when the final executable is run, so we need to create them before
245 addresses are assigned to the output sections. We work out the
246 actual contents and size of these sections later. */
247
248 bfd_boolean
249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 {
251 flagword flags;
252 asection *s;
253 const struct elf_backend_data *bed;
254 struct elf_link_hash_entry *h;
255
256 if (! is_elf_hash_table (info->hash))
257 return FALSE;
258
259 if (elf_hash_table (info)->dynamic_sections_created)
260 return TRUE;
261
262 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
263 return FALSE;
264
265 abfd = elf_hash_table (info)->dynobj;
266 bed = get_elf_backend_data (abfd);
267
268 flags = bed->dynamic_sec_flags;
269
270 /* A dynamically linked executable has a .interp section, but a
271 shared library does not. */
272 if (bfd_link_executable (info) && !info->nointerp)
273 {
274 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 flags | SEC_READONLY);
276 if (s == NULL)
277 return FALSE;
278 }
279
280 /* Create sections to hold version informations. These are removed
281 if they are not needed. */
282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 flags | SEC_READONLY);
284 if (s == NULL
285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
286 return FALSE;
287
288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 flags | SEC_READONLY);
290 if (s == NULL
291 || ! bfd_set_section_alignment (abfd, s, 1))
292 return FALSE;
293
294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 flags | SEC_READONLY);
296 if (s == NULL
297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298 return FALSE;
299
300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 flags | SEC_READONLY);
302 if (s == NULL
303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304 return FALSE;
305 elf_hash_table (info)->dynsym = s;
306
307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 flags | SEC_READONLY);
309 if (s == NULL)
310 return FALSE;
311
312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
313 if (s == NULL
314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
315 return FALSE;
316
317 /* The special symbol _DYNAMIC is always set to the start of the
318 .dynamic section. We could set _DYNAMIC in a linker script, but we
319 only want to define it if we are, in fact, creating a .dynamic
320 section. We don't want to define it if there is no .dynamic
321 section, since on some ELF platforms the start up code examines it
322 to decide how to initialize the process. */
323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324 elf_hash_table (info)->hdynamic = h;
325 if (h == NULL)
326 return FALSE;
327
328 if (info->emit_hash)
329 {
330 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 flags | SEC_READONLY);
332 if (s == NULL
333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
334 return FALSE;
335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
336 }
337
338 if (info->emit_gnu_hash)
339 {
340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 flags | SEC_READONLY);
342 if (s == NULL
343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 return FALSE;
345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 4 32-bit words followed by variable count of 64-bit words, then
347 variable count of 32-bit words. */
348 if (bed->s->arch_size == 64)
349 elf_section_data (s)->this_hdr.sh_entsize = 0;
350 else
351 elf_section_data (s)->this_hdr.sh_entsize = 4;
352 }
353
354 /* Let the backend create the rest of the sections. This lets the
355 backend set the right flags. The backend will normally create
356 the .got and .plt sections. */
357 if (bed->elf_backend_create_dynamic_sections == NULL
358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
359 return FALSE;
360
361 elf_hash_table (info)->dynamic_sections_created = TRUE;
362
363 return TRUE;
364 }
365
366 /* Create dynamic sections when linking against a dynamic object. */
367
368 bfd_boolean
369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
370 {
371 flagword flags, pltflags;
372 struct elf_link_hash_entry *h;
373 asection *s;
374 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375 struct elf_link_hash_table *htab = elf_hash_table (info);
376
377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378 .rel[a].bss sections. */
379 flags = bed->dynamic_sec_flags;
380
381 pltflags = flags;
382 if (bed->plt_not_loaded)
383 /* We do not clear SEC_ALLOC here because we still want the OS to
384 allocate space for the section; it's just that there's nothing
385 to read in from the object file. */
386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
387 else
388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389 if (bed->plt_readonly)
390 pltflags |= SEC_READONLY;
391
392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
393 if (s == NULL
394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
395 return FALSE;
396 htab->splt = s;
397
398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
399 .plt section. */
400 if (bed->want_plt_sym)
401 {
402 h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 "_PROCEDURE_LINKAGE_TABLE_");
404 elf_hash_table (info)->hplt = h;
405 if (h == NULL)
406 return FALSE;
407 }
408
409 s = bfd_make_section_anyway_with_flags (abfd,
410 (bed->rela_plts_and_copies_p
411 ? ".rela.plt" : ".rel.plt"),
412 flags | SEC_READONLY);
413 if (s == NULL
414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
415 return FALSE;
416 htab->srelplt = s;
417
418 if (! _bfd_elf_create_got_section (abfd, info))
419 return FALSE;
420
421 if (bed->want_dynbss)
422 {
423 /* The .dynbss section is a place to put symbols which are defined
424 by dynamic objects, are referenced by regular objects, and are
425 not functions. We must allocate space for them in the process
426 image and use a R_*_COPY reloc to tell the dynamic linker to
427 initialize them at run time. The linker script puts the .dynbss
428 section into the .bss section of the final image. */
429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 SEC_ALLOC | SEC_LINKER_CREATED);
431 if (s == NULL)
432 return FALSE;
433 htab->sdynbss = s;
434
435 if (bed->want_dynrelro)
436 {
437 /* Similarly, but for symbols that were originally in read-only
438 sections. This section doesn't really need to have contents,
439 but make it like other .data.rel.ro sections. */
440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
441 flags);
442 if (s == NULL)
443 return FALSE;
444 htab->sdynrelro = s;
445 }
446
447 /* The .rel[a].bss section holds copy relocs. This section is not
448 normally needed. We need to create it here, though, so that the
449 linker will map it to an output section. We can't just create it
450 only if we need it, because we will not know whether we need it
451 until we have seen all the input files, and the first time the
452 main linker code calls BFD after examining all the input files
453 (size_dynamic_sections) the input sections have already been
454 mapped to the output sections. If the section turns out not to
455 be needed, we can discard it later. We will never need this
456 section when generating a shared object, since they do not use
457 copy relocs. */
458 if (bfd_link_executable (info))
459 {
460 s = bfd_make_section_anyway_with_flags (abfd,
461 (bed->rela_plts_and_copies_p
462 ? ".rela.bss" : ".rel.bss"),
463 flags | SEC_READONLY);
464 if (s == NULL
465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
466 return FALSE;
467 htab->srelbss = s;
468
469 if (bed->want_dynrelro)
470 {
471 s = (bfd_make_section_anyway_with_flags
472 (abfd, (bed->rela_plts_and_copies_p
473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 flags | SEC_READONLY));
475 if (s == NULL
476 || ! bfd_set_section_alignment (abfd, s,
477 bed->s->log_file_align))
478 return FALSE;
479 htab->sreldynrelro = s;
480 }
481 }
482 }
483
484 return TRUE;
485 }
486 \f
487 /* Record a new dynamic symbol. We record the dynamic symbols as we
488 read the input files, since we need to have a list of all of them
489 before we can determine the final sizes of the output sections.
490 Note that we may actually call this function even though we are not
491 going to output any dynamic symbols; in some cases we know that a
492 symbol should be in the dynamic symbol table, but only if there is
493 one. */
494
495 bfd_boolean
496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 struct elf_link_hash_entry *h)
498 {
499 if (h->dynindx == -1)
500 {
501 struct elf_strtab_hash *dynstr;
502 char *p;
503 const char *name;
504 size_t indx;
505
506 /* XXX: The ABI draft says the linker must turn hidden and
507 internal symbols into STB_LOCAL symbols when producing the
508 DSO. However, if ld.so honors st_other in the dynamic table,
509 this would not be necessary. */
510 switch (ELF_ST_VISIBILITY (h->other))
511 {
512 case STV_INTERNAL:
513 case STV_HIDDEN:
514 if (h->root.type != bfd_link_hash_undefined
515 && h->root.type != bfd_link_hash_undefweak)
516 {
517 h->forced_local = 1;
518 if (!elf_hash_table (info)->is_relocatable_executable)
519 return TRUE;
520 }
521
522 default:
523 break;
524 }
525
526 h->dynindx = elf_hash_table (info)->dynsymcount;
527 ++elf_hash_table (info)->dynsymcount;
528
529 dynstr = elf_hash_table (info)->dynstr;
530 if (dynstr == NULL)
531 {
532 /* Create a strtab to hold the dynamic symbol names. */
533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
534 if (dynstr == NULL)
535 return FALSE;
536 }
537
538 /* We don't put any version information in the dynamic string
539 table. */
540 name = h->root.root.string;
541 p = strchr (name, ELF_VER_CHR);
542 if (p != NULL)
543 /* We know that the p points into writable memory. In fact,
544 there are only a few symbols that have read-only names, being
545 those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 by the backends. Most symbols will have names pointing into
547 an ELF string table read from a file, or to objalloc memory. */
548 *p = 0;
549
550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
551
552 if (p != NULL)
553 *p = ELF_VER_CHR;
554
555 if (indx == (size_t) -1)
556 return FALSE;
557 h->dynstr_index = indx;
558 }
559
560 return TRUE;
561 }
562 \f
563 /* Mark a symbol dynamic. */
564
565 static void
566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 struct elf_link_hash_entry *h,
568 Elf_Internal_Sym *sym)
569 {
570 struct bfd_elf_dynamic_list *d = info->dynamic_list;
571
572 /* It may be called more than once on the same H. */
573 if(h->dynamic || bfd_link_relocatable (info))
574 return;
575
576 if ((info->dynamic_data
577 && (h->type == STT_OBJECT
578 || h->type == STT_COMMON
579 || (sym != NULL
580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
582 || (d != NULL
583 && h->non_elf
584 && (*d->match) (&d->head, NULL, h->root.root.string)))
585 h->dynamic = 1;
586 }
587
588 /* Record an assignment to a symbol made by a linker script. We need
589 this in case some dynamic object refers to this symbol. */
590
591 bfd_boolean
592 bfd_elf_record_link_assignment (bfd *output_bfd,
593 struct bfd_link_info *info,
594 const char *name,
595 bfd_boolean provide,
596 bfd_boolean hidden)
597 {
598 struct elf_link_hash_entry *h, *hv;
599 struct elf_link_hash_table *htab;
600 const struct elf_backend_data *bed;
601
602 if (!is_elf_hash_table (info->hash))
603 return TRUE;
604
605 htab = elf_hash_table (info);
606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
607 if (h == NULL)
608 return provide;
609
610 if (h->root.type == bfd_link_hash_warning)
611 h = (struct elf_link_hash_entry *) h->root.u.i.link;
612
613 if (h->versioned == unknown)
614 {
615 /* Set versioned if symbol version is unknown. */
616 char *version = strrchr (name, ELF_VER_CHR);
617 if (version)
618 {
619 if (version > name && version[-1] != ELF_VER_CHR)
620 h->versioned = versioned_hidden;
621 else
622 h->versioned = versioned;
623 }
624 }
625
626 /* Symbols defined in a linker script but not referenced anywhere
627 else will have non_elf set. */
628 if (h->non_elf)
629 {
630 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
631 h->non_elf = 0;
632 }
633
634 switch (h->root.type)
635 {
636 case bfd_link_hash_defined:
637 case bfd_link_hash_defweak:
638 case bfd_link_hash_common:
639 break;
640 case bfd_link_hash_undefweak:
641 case bfd_link_hash_undefined:
642 /* Since we're defining the symbol, don't let it seem to have not
643 been defined. record_dynamic_symbol and size_dynamic_sections
644 may depend on this. */
645 h->root.type = bfd_link_hash_new;
646 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
647 bfd_link_repair_undef_list (&htab->root);
648 break;
649 case bfd_link_hash_new:
650 break;
651 case bfd_link_hash_indirect:
652 /* We had a versioned symbol in a dynamic library. We make the
653 the versioned symbol point to this one. */
654 bed = get_elf_backend_data (output_bfd);
655 hv = h;
656 while (hv->root.type == bfd_link_hash_indirect
657 || hv->root.type == bfd_link_hash_warning)
658 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
659 /* We don't need to update h->root.u since linker will set them
660 later. */
661 h->root.type = bfd_link_hash_undefined;
662 hv->root.type = bfd_link_hash_indirect;
663 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
664 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
665 break;
666 default:
667 BFD_FAIL ();
668 return FALSE;
669 }
670
671 /* If this symbol is being provided by the linker script, and it is
672 currently defined by a dynamic object, but not by a regular
673 object, then mark it as undefined so that the generic linker will
674 force the correct value. */
675 if (provide
676 && h->def_dynamic
677 && !h->def_regular)
678 h->root.type = bfd_link_hash_undefined;
679
680 /* If this symbol is not being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular object,
682 then clear out any version information because the symbol will not be
683 associated with the dynamic object any more. */
684 if (!provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->verinfo.verdef = NULL;
688
689 /* Make sure this symbol is not garbage collected. */
690 h->mark = 1;
691
692 h->def_regular = 1;
693
694 if (hidden)
695 {
696 bed = get_elf_backend_data (output_bfd);
697 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
698 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
699 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
700 }
701
702 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
703 and executables. */
704 if (!bfd_link_relocatable (info)
705 && h->dynindx != -1
706 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
707 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
708 h->forced_local = 1;
709
710 if ((h->def_dynamic
711 || h->ref_dynamic
712 || bfd_link_dll (info)
713 || elf_hash_table (info)->is_relocatable_executable)
714 && h->dynindx == -1)
715 {
716 if (! bfd_elf_link_record_dynamic_symbol (info, h))
717 return FALSE;
718
719 /* If this is a weak defined symbol, and we know a corresponding
720 real symbol from the same dynamic object, make sure the real
721 symbol is also made into a dynamic symbol. */
722 if (h->u.weakdef != NULL
723 && h->u.weakdef->dynindx == -1)
724 {
725 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
726 return FALSE;
727 }
728 }
729
730 return TRUE;
731 }
732
733 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
734 success, and 2 on a failure caused by attempting to record a symbol
735 in a discarded section, eg. a discarded link-once section symbol. */
736
737 int
738 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
739 bfd *input_bfd,
740 long input_indx)
741 {
742 bfd_size_type amt;
743 struct elf_link_local_dynamic_entry *entry;
744 struct elf_link_hash_table *eht;
745 struct elf_strtab_hash *dynstr;
746 size_t dynstr_index;
747 char *name;
748 Elf_External_Sym_Shndx eshndx;
749 char esym[sizeof (Elf64_External_Sym)];
750
751 if (! is_elf_hash_table (info->hash))
752 return 0;
753
754 /* See if the entry exists already. */
755 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
756 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
757 return 1;
758
759 amt = sizeof (*entry);
760 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
761 if (entry == NULL)
762 return 0;
763
764 /* Go find the symbol, so that we can find it's name. */
765 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
766 1, input_indx, &entry->isym, esym, &eshndx))
767 {
768 bfd_release (input_bfd, entry);
769 return 0;
770 }
771
772 if (entry->isym.st_shndx != SHN_UNDEF
773 && entry->isym.st_shndx < SHN_LORESERVE)
774 {
775 asection *s;
776
777 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
778 if (s == NULL || bfd_is_abs_section (s->output_section))
779 {
780 /* We can still bfd_release here as nothing has done another
781 bfd_alloc. We can't do this later in this function. */
782 bfd_release (input_bfd, entry);
783 return 2;
784 }
785 }
786
787 name = (bfd_elf_string_from_elf_section
788 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
789 entry->isym.st_name));
790
791 dynstr = elf_hash_table (info)->dynstr;
792 if (dynstr == NULL)
793 {
794 /* Create a strtab to hold the dynamic symbol names. */
795 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
796 if (dynstr == NULL)
797 return 0;
798 }
799
800 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
801 if (dynstr_index == (size_t) -1)
802 return 0;
803 entry->isym.st_name = dynstr_index;
804
805 eht = elf_hash_table (info);
806
807 entry->next = eht->dynlocal;
808 eht->dynlocal = entry;
809 entry->input_bfd = input_bfd;
810 entry->input_indx = input_indx;
811 eht->dynsymcount++;
812
813 /* Whatever binding the symbol had before, it's now local. */
814 entry->isym.st_info
815 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
816
817 /* The dynindx will be set at the end of size_dynamic_sections. */
818
819 return 1;
820 }
821
822 /* Return the dynindex of a local dynamic symbol. */
823
824 long
825 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
826 bfd *input_bfd,
827 long input_indx)
828 {
829 struct elf_link_local_dynamic_entry *e;
830
831 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
832 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
833 return e->dynindx;
834 return -1;
835 }
836
837 /* This function is used to renumber the dynamic symbols, if some of
838 them are removed because they are marked as local. This is called
839 via elf_link_hash_traverse. */
840
841 static bfd_boolean
842 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
843 void *data)
844 {
845 size_t *count = (size_t *) data;
846
847 if (h->forced_local)
848 return TRUE;
849
850 if (h->dynindx != -1)
851 h->dynindx = ++(*count);
852
853 return TRUE;
854 }
855
856
857 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
858 STB_LOCAL binding. */
859
860 static bfd_boolean
861 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
862 void *data)
863 {
864 size_t *count = (size_t *) data;
865
866 if (!h->forced_local)
867 return TRUE;
868
869 if (h->dynindx != -1)
870 h->dynindx = ++(*count);
871
872 return TRUE;
873 }
874
875 /* Return true if the dynamic symbol for a given section should be
876 omitted when creating a shared library. */
877 bfd_boolean
878 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
879 struct bfd_link_info *info,
880 asection *p)
881 {
882 struct elf_link_hash_table *htab;
883 asection *ip;
884
885 switch (elf_section_data (p)->this_hdr.sh_type)
886 {
887 case SHT_PROGBITS:
888 case SHT_NOBITS:
889 /* If sh_type is yet undecided, assume it could be
890 SHT_PROGBITS/SHT_NOBITS. */
891 case SHT_NULL:
892 htab = elf_hash_table (info);
893 if (p == htab->tls_sec)
894 return FALSE;
895
896 if (htab->text_index_section != NULL)
897 return p != htab->text_index_section && p != htab->data_index_section;
898
899 return (htab->dynobj != NULL
900 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
901 && ip->output_section == p);
902
903 /* There shouldn't be section relative relocations
904 against any other section. */
905 default:
906 return TRUE;
907 }
908 }
909
910 /* Assign dynsym indices. In a shared library we generate a section
911 symbol for each output section, which come first. Next come symbols
912 which have been forced to local binding. Then all of the back-end
913 allocated local dynamic syms, followed by the rest of the global
914 symbols. */
915
916 static unsigned long
917 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
918 struct bfd_link_info *info,
919 unsigned long *section_sym_count)
920 {
921 unsigned long dynsymcount = 0;
922
923 if (bfd_link_pic (info)
924 || elf_hash_table (info)->is_relocatable_executable)
925 {
926 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
927 asection *p;
928 for (p = output_bfd->sections; p ; p = p->next)
929 if ((p->flags & SEC_EXCLUDE) == 0
930 && (p->flags & SEC_ALLOC) != 0
931 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
932 elf_section_data (p)->dynindx = ++dynsymcount;
933 else
934 elf_section_data (p)->dynindx = 0;
935 }
936 *section_sym_count = dynsymcount;
937
938 elf_link_hash_traverse (elf_hash_table (info),
939 elf_link_renumber_local_hash_table_dynsyms,
940 &dynsymcount);
941
942 if (elf_hash_table (info)->dynlocal)
943 {
944 struct elf_link_local_dynamic_entry *p;
945 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
946 p->dynindx = ++dynsymcount;
947 }
948 elf_hash_table (info)->local_dynsymcount = dynsymcount;
949
950 elf_link_hash_traverse (elf_hash_table (info),
951 elf_link_renumber_hash_table_dynsyms,
952 &dynsymcount);
953
954 /* There is an unused NULL entry at the head of the table which we
955 must account for in our count even if the table is empty since it
956 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
957 .dynamic section. */
958 dynsymcount++;
959
960 elf_hash_table (info)->dynsymcount = dynsymcount;
961 return dynsymcount;
962 }
963
964 /* Merge st_other field. */
965
966 static void
967 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
968 const Elf_Internal_Sym *isym, asection *sec,
969 bfd_boolean definition, bfd_boolean dynamic)
970 {
971 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
972
973 /* If st_other has a processor-specific meaning, specific
974 code might be needed here. */
975 if (bed->elf_backend_merge_symbol_attribute)
976 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
977 dynamic);
978
979 if (!dynamic)
980 {
981 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
982 unsigned hvis = ELF_ST_VISIBILITY (h->other);
983
984 /* Keep the most constraining visibility. Leave the remainder
985 of the st_other field to elf_backend_merge_symbol_attribute. */
986 if (symvis - 1 < hvis - 1)
987 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
988 }
989 else if (definition
990 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
991 && (sec->flags & SEC_READONLY) == 0)
992 h->protected_def = 1;
993 }
994
995 /* This function is called when we want to merge a new symbol with an
996 existing symbol. It handles the various cases which arise when we
997 find a definition in a dynamic object, or when there is already a
998 definition in a dynamic object. The new symbol is described by
999 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1000 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1001 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1002 of an old common symbol. We set OVERRIDE if the old symbol is
1003 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1004 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1005 to change. By OK to change, we mean that we shouldn't warn if the
1006 type or size does change. */
1007
1008 static bfd_boolean
1009 _bfd_elf_merge_symbol (bfd *abfd,
1010 struct bfd_link_info *info,
1011 const char *name,
1012 Elf_Internal_Sym *sym,
1013 asection **psec,
1014 bfd_vma *pvalue,
1015 struct elf_link_hash_entry **sym_hash,
1016 bfd **poldbfd,
1017 bfd_boolean *pold_weak,
1018 unsigned int *pold_alignment,
1019 bfd_boolean *skip,
1020 bfd_boolean *override,
1021 bfd_boolean *type_change_ok,
1022 bfd_boolean *size_change_ok,
1023 bfd_boolean *matched)
1024 {
1025 asection *sec, *oldsec;
1026 struct elf_link_hash_entry *h;
1027 struct elf_link_hash_entry *hi;
1028 struct elf_link_hash_entry *flip;
1029 int bind;
1030 bfd *oldbfd;
1031 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1032 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1033 const struct elf_backend_data *bed;
1034 char *new_version;
1035
1036 *skip = FALSE;
1037 *override = FALSE;
1038
1039 sec = *psec;
1040 bind = ELF_ST_BIND (sym->st_info);
1041
1042 if (! bfd_is_und_section (sec))
1043 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1044 else
1045 h = ((struct elf_link_hash_entry *)
1046 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1047 if (h == NULL)
1048 return FALSE;
1049 *sym_hash = h;
1050
1051 bed = get_elf_backend_data (abfd);
1052
1053 /* NEW_VERSION is the symbol version of the new symbol. */
1054 if (h->versioned != unversioned)
1055 {
1056 /* Symbol version is unknown or versioned. */
1057 new_version = strrchr (name, ELF_VER_CHR);
1058 if (new_version)
1059 {
1060 if (h->versioned == unknown)
1061 {
1062 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1063 h->versioned = versioned_hidden;
1064 else
1065 h->versioned = versioned;
1066 }
1067 new_version += 1;
1068 if (new_version[0] == '\0')
1069 new_version = NULL;
1070 }
1071 else
1072 h->versioned = unversioned;
1073 }
1074 else
1075 new_version = NULL;
1076
1077 /* For merging, we only care about real symbols. But we need to make
1078 sure that indirect symbol dynamic flags are updated. */
1079 hi = h;
1080 while (h->root.type == bfd_link_hash_indirect
1081 || h->root.type == bfd_link_hash_warning)
1082 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1083
1084 if (!*matched)
1085 {
1086 if (hi == h || h->root.type == bfd_link_hash_new)
1087 *matched = TRUE;
1088 else
1089 {
1090 /* OLD_HIDDEN is true if the existing symbol is only visible
1091 to the symbol with the same symbol version. NEW_HIDDEN is
1092 true if the new symbol is only visible to the symbol with
1093 the same symbol version. */
1094 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1095 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1096 if (!old_hidden && !new_hidden)
1097 /* The new symbol matches the existing symbol if both
1098 aren't hidden. */
1099 *matched = TRUE;
1100 else
1101 {
1102 /* OLD_VERSION is the symbol version of the existing
1103 symbol. */
1104 char *old_version;
1105
1106 if (h->versioned >= versioned)
1107 old_version = strrchr (h->root.root.string,
1108 ELF_VER_CHR) + 1;
1109 else
1110 old_version = NULL;
1111
1112 /* The new symbol matches the existing symbol if they
1113 have the same symbol version. */
1114 *matched = (old_version == new_version
1115 || (old_version != NULL
1116 && new_version != NULL
1117 && strcmp (old_version, new_version) == 0));
1118 }
1119 }
1120 }
1121
1122 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1123 existing symbol. */
1124
1125 oldbfd = NULL;
1126 oldsec = NULL;
1127 switch (h->root.type)
1128 {
1129 default:
1130 break;
1131
1132 case bfd_link_hash_undefined:
1133 case bfd_link_hash_undefweak:
1134 oldbfd = h->root.u.undef.abfd;
1135 break;
1136
1137 case bfd_link_hash_defined:
1138 case bfd_link_hash_defweak:
1139 oldbfd = h->root.u.def.section->owner;
1140 oldsec = h->root.u.def.section;
1141 break;
1142
1143 case bfd_link_hash_common:
1144 oldbfd = h->root.u.c.p->section->owner;
1145 oldsec = h->root.u.c.p->section;
1146 if (pold_alignment)
1147 *pold_alignment = h->root.u.c.p->alignment_power;
1148 break;
1149 }
1150 if (poldbfd && *poldbfd == NULL)
1151 *poldbfd = oldbfd;
1152
1153 /* Differentiate strong and weak symbols. */
1154 newweak = bind == STB_WEAK;
1155 oldweak = (h->root.type == bfd_link_hash_defweak
1156 || h->root.type == bfd_link_hash_undefweak);
1157 if (pold_weak)
1158 *pold_weak = oldweak;
1159
1160 /* This code is for coping with dynamic objects, and is only useful
1161 if we are doing an ELF link. */
1162 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1163 return TRUE;
1164
1165 /* We have to check it for every instance since the first few may be
1166 references and not all compilers emit symbol type for undefined
1167 symbols. */
1168 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1169
1170 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1171 respectively, is from a dynamic object. */
1172
1173 newdyn = (abfd->flags & DYNAMIC) != 0;
1174
1175 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1176 syms and defined syms in dynamic libraries respectively.
1177 ref_dynamic on the other hand can be set for a symbol defined in
1178 a dynamic library, and def_dynamic may not be set; When the
1179 definition in a dynamic lib is overridden by a definition in the
1180 executable use of the symbol in the dynamic lib becomes a
1181 reference to the executable symbol. */
1182 if (newdyn)
1183 {
1184 if (bfd_is_und_section (sec))
1185 {
1186 if (bind != STB_WEAK)
1187 {
1188 h->ref_dynamic_nonweak = 1;
1189 hi->ref_dynamic_nonweak = 1;
1190 }
1191 }
1192 else
1193 {
1194 /* Update the existing symbol only if they match. */
1195 if (*matched)
1196 h->dynamic_def = 1;
1197 hi->dynamic_def = 1;
1198 }
1199 }
1200
1201 /* If we just created the symbol, mark it as being an ELF symbol.
1202 Other than that, there is nothing to do--there is no merge issue
1203 with a newly defined symbol--so we just return. */
1204
1205 if (h->root.type == bfd_link_hash_new)
1206 {
1207 h->non_elf = 0;
1208 return TRUE;
1209 }
1210
1211 /* In cases involving weak versioned symbols, we may wind up trying
1212 to merge a symbol with itself. Catch that here, to avoid the
1213 confusion that results if we try to override a symbol with
1214 itself. The additional tests catch cases like
1215 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1216 dynamic object, which we do want to handle here. */
1217 if (abfd == oldbfd
1218 && (newweak || oldweak)
1219 && ((abfd->flags & DYNAMIC) == 0
1220 || !h->def_regular))
1221 return TRUE;
1222
1223 olddyn = FALSE;
1224 if (oldbfd != NULL)
1225 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1226 else if (oldsec != NULL)
1227 {
1228 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1229 indices used by MIPS ELF. */
1230 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1231 }
1232
1233 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1234 respectively, appear to be a definition rather than reference. */
1235
1236 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1237
1238 olddef = (h->root.type != bfd_link_hash_undefined
1239 && h->root.type != bfd_link_hash_undefweak
1240 && h->root.type != bfd_link_hash_common);
1241
1242 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1243 respectively, appear to be a function. */
1244
1245 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1246 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1247
1248 oldfunc = (h->type != STT_NOTYPE
1249 && bed->is_function_type (h->type));
1250
1251 if (!(newfunc && oldfunc)
1252 && ELF_ST_TYPE (sym->st_info) != h->type
1253 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1254 && h->type != STT_NOTYPE
1255 && (newdef || bfd_is_com_section (sec))
1256 && (olddef || h->root.type == bfd_link_hash_common))
1257 {
1258 /* If creating a default indirect symbol ("foo" or "foo@") from
1259 a dynamic versioned definition ("foo@@") skip doing so if
1260 there is an existing regular definition with a different
1261 type. We don't want, for example, a "time" variable in the
1262 executable overriding a "time" function in a shared library. */
1263 if (newdyn
1264 && !olddyn)
1265 {
1266 *skip = TRUE;
1267 return TRUE;
1268 }
1269
1270 /* When adding a symbol from a regular object file after we have
1271 created indirect symbols, undo the indirection and any
1272 dynamic state. */
1273 if (hi != h
1274 && !newdyn
1275 && olddyn)
1276 {
1277 h = hi;
1278 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1279 h->forced_local = 0;
1280 h->ref_dynamic = 0;
1281 h->def_dynamic = 0;
1282 h->dynamic_def = 0;
1283 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1284 {
1285 h->root.type = bfd_link_hash_undefined;
1286 h->root.u.undef.abfd = abfd;
1287 }
1288 else
1289 {
1290 h->root.type = bfd_link_hash_new;
1291 h->root.u.undef.abfd = NULL;
1292 }
1293 return TRUE;
1294 }
1295 }
1296
1297 /* Check TLS symbols. We don't check undefined symbols introduced
1298 by "ld -u" which have no type (and oldbfd NULL), and we don't
1299 check symbols from plugins because they also have no type. */
1300 if (oldbfd != NULL
1301 && (oldbfd->flags & BFD_PLUGIN) == 0
1302 && (abfd->flags & BFD_PLUGIN) == 0
1303 && ELF_ST_TYPE (sym->st_info) != h->type
1304 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1305 {
1306 bfd *ntbfd, *tbfd;
1307 bfd_boolean ntdef, tdef;
1308 asection *ntsec, *tsec;
1309
1310 if (h->type == STT_TLS)
1311 {
1312 ntbfd = abfd;
1313 ntsec = sec;
1314 ntdef = newdef;
1315 tbfd = oldbfd;
1316 tsec = oldsec;
1317 tdef = olddef;
1318 }
1319 else
1320 {
1321 ntbfd = oldbfd;
1322 ntsec = oldsec;
1323 ntdef = olddef;
1324 tbfd = abfd;
1325 tsec = sec;
1326 tdef = newdef;
1327 }
1328
1329 if (tdef && ntdef)
1330 _bfd_error_handler
1331 /* xgettext:c-format */
1332 (_("%s: TLS definition in %B section %A "
1333 "mismatches non-TLS definition in %B section %A"),
1334 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1335 else if (!tdef && !ntdef)
1336 _bfd_error_handler
1337 /* xgettext:c-format */
1338 (_("%s: TLS reference in %B "
1339 "mismatches non-TLS reference in %B"),
1340 h->root.root.string, tbfd, ntbfd);
1341 else if (tdef)
1342 _bfd_error_handler
1343 /* xgettext:c-format */
1344 (_("%s: TLS definition in %B section %A "
1345 "mismatches non-TLS reference in %B"),
1346 h->root.root.string, tbfd, tsec, ntbfd);
1347 else
1348 _bfd_error_handler
1349 /* xgettext:c-format */
1350 (_("%s: TLS reference in %B "
1351 "mismatches non-TLS definition in %B section %A"),
1352 h->root.root.string, tbfd, ntbfd, ntsec);
1353
1354 bfd_set_error (bfd_error_bad_value);
1355 return FALSE;
1356 }
1357
1358 /* If the old symbol has non-default visibility, we ignore the new
1359 definition from a dynamic object. */
1360 if (newdyn
1361 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1362 && !bfd_is_und_section (sec))
1363 {
1364 *skip = TRUE;
1365 /* Make sure this symbol is dynamic. */
1366 h->ref_dynamic = 1;
1367 hi->ref_dynamic = 1;
1368 /* A protected symbol has external availability. Make sure it is
1369 recorded as dynamic.
1370
1371 FIXME: Should we check type and size for protected symbol? */
1372 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1373 return bfd_elf_link_record_dynamic_symbol (info, h);
1374 else
1375 return TRUE;
1376 }
1377 else if (!newdyn
1378 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1379 && h->def_dynamic)
1380 {
1381 /* If the new symbol with non-default visibility comes from a
1382 relocatable file and the old definition comes from a dynamic
1383 object, we remove the old definition. */
1384 if (hi->root.type == bfd_link_hash_indirect)
1385 {
1386 /* Handle the case where the old dynamic definition is
1387 default versioned. We need to copy the symbol info from
1388 the symbol with default version to the normal one if it
1389 was referenced before. */
1390 if (h->ref_regular)
1391 {
1392 hi->root.type = h->root.type;
1393 h->root.type = bfd_link_hash_indirect;
1394 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1395
1396 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1397 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1398 {
1399 /* If the new symbol is hidden or internal, completely undo
1400 any dynamic link state. */
1401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1402 h->forced_local = 0;
1403 h->ref_dynamic = 0;
1404 }
1405 else
1406 h->ref_dynamic = 1;
1407
1408 h->def_dynamic = 0;
1409 /* FIXME: Should we check type and size for protected symbol? */
1410 h->size = 0;
1411 h->type = 0;
1412
1413 h = hi;
1414 }
1415 else
1416 h = hi;
1417 }
1418
1419 /* If the old symbol was undefined before, then it will still be
1420 on the undefs list. If the new symbol is undefined or
1421 common, we can't make it bfd_link_hash_new here, because new
1422 undefined or common symbols will be added to the undefs list
1423 by _bfd_generic_link_add_one_symbol. Symbols may not be
1424 added twice to the undefs list. Also, if the new symbol is
1425 undefweak then we don't want to lose the strong undef. */
1426 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1427 {
1428 h->root.type = bfd_link_hash_undefined;
1429 h->root.u.undef.abfd = abfd;
1430 }
1431 else
1432 {
1433 h->root.type = bfd_link_hash_new;
1434 h->root.u.undef.abfd = NULL;
1435 }
1436
1437 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1438 {
1439 /* If the new symbol is hidden or internal, completely undo
1440 any dynamic link state. */
1441 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1442 h->forced_local = 0;
1443 h->ref_dynamic = 0;
1444 }
1445 else
1446 h->ref_dynamic = 1;
1447 h->def_dynamic = 0;
1448 /* FIXME: Should we check type and size for protected symbol? */
1449 h->size = 0;
1450 h->type = 0;
1451 return TRUE;
1452 }
1453
1454 /* If a new weak symbol definition comes from a regular file and the
1455 old symbol comes from a dynamic library, we treat the new one as
1456 strong. Similarly, an old weak symbol definition from a regular
1457 file is treated as strong when the new symbol comes from a dynamic
1458 library. Further, an old weak symbol from a dynamic library is
1459 treated as strong if the new symbol is from a dynamic library.
1460 This reflects the way glibc's ld.so works.
1461
1462 Do this before setting *type_change_ok or *size_change_ok so that
1463 we warn properly when dynamic library symbols are overridden. */
1464
1465 if (newdef && !newdyn && olddyn)
1466 newweak = FALSE;
1467 if (olddef && newdyn)
1468 oldweak = FALSE;
1469
1470 /* Allow changes between different types of function symbol. */
1471 if (newfunc && oldfunc)
1472 *type_change_ok = TRUE;
1473
1474 /* It's OK to change the type if either the existing symbol or the
1475 new symbol is weak. A type change is also OK if the old symbol
1476 is undefined and the new symbol is defined. */
1477
1478 if (oldweak
1479 || newweak
1480 || (newdef
1481 && h->root.type == bfd_link_hash_undefined))
1482 *type_change_ok = TRUE;
1483
1484 /* It's OK to change the size if either the existing symbol or the
1485 new symbol is weak, or if the old symbol is undefined. */
1486
1487 if (*type_change_ok
1488 || h->root.type == bfd_link_hash_undefined)
1489 *size_change_ok = TRUE;
1490
1491 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1492 symbol, respectively, appears to be a common symbol in a dynamic
1493 object. If a symbol appears in an uninitialized section, and is
1494 not weak, and is not a function, then it may be a common symbol
1495 which was resolved when the dynamic object was created. We want
1496 to treat such symbols specially, because they raise special
1497 considerations when setting the symbol size: if the symbol
1498 appears as a common symbol in a regular object, and the size in
1499 the regular object is larger, we must make sure that we use the
1500 larger size. This problematic case can always be avoided in C,
1501 but it must be handled correctly when using Fortran shared
1502 libraries.
1503
1504 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1505 likewise for OLDDYNCOMMON and OLDDEF.
1506
1507 Note that this test is just a heuristic, and that it is quite
1508 possible to have an uninitialized symbol in a shared object which
1509 is really a definition, rather than a common symbol. This could
1510 lead to some minor confusion when the symbol really is a common
1511 symbol in some regular object. However, I think it will be
1512 harmless. */
1513
1514 if (newdyn
1515 && newdef
1516 && !newweak
1517 && (sec->flags & SEC_ALLOC) != 0
1518 && (sec->flags & SEC_LOAD) == 0
1519 && sym->st_size > 0
1520 && !newfunc)
1521 newdyncommon = TRUE;
1522 else
1523 newdyncommon = FALSE;
1524
1525 if (olddyn
1526 && olddef
1527 && h->root.type == bfd_link_hash_defined
1528 && h->def_dynamic
1529 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1530 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1531 && h->size > 0
1532 && !oldfunc)
1533 olddyncommon = TRUE;
1534 else
1535 olddyncommon = FALSE;
1536
1537 /* We now know everything about the old and new symbols. We ask the
1538 backend to check if we can merge them. */
1539 if (bed->merge_symbol != NULL)
1540 {
1541 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1542 return FALSE;
1543 sec = *psec;
1544 }
1545
1546 /* If both the old and the new symbols look like common symbols in a
1547 dynamic object, set the size of the symbol to the larger of the
1548 two. */
1549
1550 if (olddyncommon
1551 && newdyncommon
1552 && sym->st_size != h->size)
1553 {
1554 /* Since we think we have two common symbols, issue a multiple
1555 common warning if desired. Note that we only warn if the
1556 size is different. If the size is the same, we simply let
1557 the old symbol override the new one as normally happens with
1558 symbols defined in dynamic objects. */
1559
1560 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1561 bfd_link_hash_common, sym->st_size);
1562 if (sym->st_size > h->size)
1563 h->size = sym->st_size;
1564
1565 *size_change_ok = TRUE;
1566 }
1567
1568 /* If we are looking at a dynamic object, and we have found a
1569 definition, we need to see if the symbol was already defined by
1570 some other object. If so, we want to use the existing
1571 definition, and we do not want to report a multiple symbol
1572 definition error; we do this by clobbering *PSEC to be
1573 bfd_und_section_ptr.
1574
1575 We treat a common symbol as a definition if the symbol in the
1576 shared library is a function, since common symbols always
1577 represent variables; this can cause confusion in principle, but
1578 any such confusion would seem to indicate an erroneous program or
1579 shared library. We also permit a common symbol in a regular
1580 object to override a weak symbol in a shared object. */
1581
1582 if (newdyn
1583 && newdef
1584 && (olddef
1585 || (h->root.type == bfd_link_hash_common
1586 && (newweak || newfunc))))
1587 {
1588 *override = TRUE;
1589 newdef = FALSE;
1590 newdyncommon = FALSE;
1591
1592 *psec = sec = bfd_und_section_ptr;
1593 *size_change_ok = TRUE;
1594
1595 /* If we get here when the old symbol is a common symbol, then
1596 we are explicitly letting it override a weak symbol or
1597 function in a dynamic object, and we don't want to warn about
1598 a type change. If the old symbol is a defined symbol, a type
1599 change warning may still be appropriate. */
1600
1601 if (h->root.type == bfd_link_hash_common)
1602 *type_change_ok = TRUE;
1603 }
1604
1605 /* Handle the special case of an old common symbol merging with a
1606 new symbol which looks like a common symbol in a shared object.
1607 We change *PSEC and *PVALUE to make the new symbol look like a
1608 common symbol, and let _bfd_generic_link_add_one_symbol do the
1609 right thing. */
1610
1611 if (newdyncommon
1612 && h->root.type == bfd_link_hash_common)
1613 {
1614 *override = TRUE;
1615 newdef = FALSE;
1616 newdyncommon = FALSE;
1617 *pvalue = sym->st_size;
1618 *psec = sec = bed->common_section (oldsec);
1619 *size_change_ok = TRUE;
1620 }
1621
1622 /* Skip weak definitions of symbols that are already defined. */
1623 if (newdef && olddef && newweak)
1624 {
1625 /* Don't skip new non-IR weak syms. */
1626 if (!(oldbfd != NULL
1627 && (oldbfd->flags & BFD_PLUGIN) != 0
1628 && (abfd->flags & BFD_PLUGIN) == 0))
1629 {
1630 newdef = FALSE;
1631 *skip = TRUE;
1632 }
1633
1634 /* Merge st_other. If the symbol already has a dynamic index,
1635 but visibility says it should not be visible, turn it into a
1636 local symbol. */
1637 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1638 if (h->dynindx != -1)
1639 switch (ELF_ST_VISIBILITY (h->other))
1640 {
1641 case STV_INTERNAL:
1642 case STV_HIDDEN:
1643 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1644 break;
1645 }
1646 }
1647
1648 /* If the old symbol is from a dynamic object, and the new symbol is
1649 a definition which is not from a dynamic object, then the new
1650 symbol overrides the old symbol. Symbols from regular files
1651 always take precedence over symbols from dynamic objects, even if
1652 they are defined after the dynamic object in the link.
1653
1654 As above, we again permit a common symbol in a regular object to
1655 override a definition in a shared object if the shared object
1656 symbol is a function or is weak. */
1657
1658 flip = NULL;
1659 if (!newdyn
1660 && (newdef
1661 || (bfd_is_com_section (sec)
1662 && (oldweak || oldfunc)))
1663 && olddyn
1664 && olddef
1665 && h->def_dynamic)
1666 {
1667 /* Change the hash table entry to undefined, and let
1668 _bfd_generic_link_add_one_symbol do the right thing with the
1669 new definition. */
1670
1671 h->root.type = bfd_link_hash_undefined;
1672 h->root.u.undef.abfd = h->root.u.def.section->owner;
1673 *size_change_ok = TRUE;
1674
1675 olddef = FALSE;
1676 olddyncommon = FALSE;
1677
1678 /* We again permit a type change when a common symbol may be
1679 overriding a function. */
1680
1681 if (bfd_is_com_section (sec))
1682 {
1683 if (oldfunc)
1684 {
1685 /* If a common symbol overrides a function, make sure
1686 that it isn't defined dynamically nor has type
1687 function. */
1688 h->def_dynamic = 0;
1689 h->type = STT_NOTYPE;
1690 }
1691 *type_change_ok = TRUE;
1692 }
1693
1694 if (hi->root.type == bfd_link_hash_indirect)
1695 flip = hi;
1696 else
1697 /* This union may have been set to be non-NULL when this symbol
1698 was seen in a dynamic object. We must force the union to be
1699 NULL, so that it is correct for a regular symbol. */
1700 h->verinfo.vertree = NULL;
1701 }
1702
1703 /* Handle the special case of a new common symbol merging with an
1704 old symbol that looks like it might be a common symbol defined in
1705 a shared object. Note that we have already handled the case in
1706 which a new common symbol should simply override the definition
1707 in the shared library. */
1708
1709 if (! newdyn
1710 && bfd_is_com_section (sec)
1711 && olddyncommon)
1712 {
1713 /* It would be best if we could set the hash table entry to a
1714 common symbol, but we don't know what to use for the section
1715 or the alignment. */
1716 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1717 bfd_link_hash_common, sym->st_size);
1718
1719 /* If the presumed common symbol in the dynamic object is
1720 larger, pretend that the new symbol has its size. */
1721
1722 if (h->size > *pvalue)
1723 *pvalue = h->size;
1724
1725 /* We need to remember the alignment required by the symbol
1726 in the dynamic object. */
1727 BFD_ASSERT (pold_alignment);
1728 *pold_alignment = h->root.u.def.section->alignment_power;
1729
1730 olddef = FALSE;
1731 olddyncommon = FALSE;
1732
1733 h->root.type = bfd_link_hash_undefined;
1734 h->root.u.undef.abfd = h->root.u.def.section->owner;
1735
1736 *size_change_ok = TRUE;
1737 *type_change_ok = TRUE;
1738
1739 if (hi->root.type == bfd_link_hash_indirect)
1740 flip = hi;
1741 else
1742 h->verinfo.vertree = NULL;
1743 }
1744
1745 if (flip != NULL)
1746 {
1747 /* Handle the case where we had a versioned symbol in a dynamic
1748 library and now find a definition in a normal object. In this
1749 case, we make the versioned symbol point to the normal one. */
1750 flip->root.type = h->root.type;
1751 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1752 h->root.type = bfd_link_hash_indirect;
1753 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1754 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1755 if (h->def_dynamic)
1756 {
1757 h->def_dynamic = 0;
1758 flip->ref_dynamic = 1;
1759 }
1760 }
1761
1762 return TRUE;
1763 }
1764
1765 /* This function is called to create an indirect symbol from the
1766 default for the symbol with the default version if needed. The
1767 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1768 set DYNSYM if the new indirect symbol is dynamic. */
1769
1770 static bfd_boolean
1771 _bfd_elf_add_default_symbol (bfd *abfd,
1772 struct bfd_link_info *info,
1773 struct elf_link_hash_entry *h,
1774 const char *name,
1775 Elf_Internal_Sym *sym,
1776 asection *sec,
1777 bfd_vma value,
1778 bfd **poldbfd,
1779 bfd_boolean *dynsym)
1780 {
1781 bfd_boolean type_change_ok;
1782 bfd_boolean size_change_ok;
1783 bfd_boolean skip;
1784 char *shortname;
1785 struct elf_link_hash_entry *hi;
1786 struct bfd_link_hash_entry *bh;
1787 const struct elf_backend_data *bed;
1788 bfd_boolean collect;
1789 bfd_boolean dynamic;
1790 bfd_boolean override;
1791 char *p;
1792 size_t len, shortlen;
1793 asection *tmp_sec;
1794 bfd_boolean matched;
1795
1796 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1797 return TRUE;
1798
1799 /* If this symbol has a version, and it is the default version, we
1800 create an indirect symbol from the default name to the fully
1801 decorated name. This will cause external references which do not
1802 specify a version to be bound to this version of the symbol. */
1803 p = strchr (name, ELF_VER_CHR);
1804 if (h->versioned == unknown)
1805 {
1806 if (p == NULL)
1807 {
1808 h->versioned = unversioned;
1809 return TRUE;
1810 }
1811 else
1812 {
1813 if (p[1] != ELF_VER_CHR)
1814 {
1815 h->versioned = versioned_hidden;
1816 return TRUE;
1817 }
1818 else
1819 h->versioned = versioned;
1820 }
1821 }
1822 else
1823 {
1824 /* PR ld/19073: We may see an unversioned definition after the
1825 default version. */
1826 if (p == NULL)
1827 return TRUE;
1828 }
1829
1830 bed = get_elf_backend_data (abfd);
1831 collect = bed->collect;
1832 dynamic = (abfd->flags & DYNAMIC) != 0;
1833
1834 shortlen = p - name;
1835 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1836 if (shortname == NULL)
1837 return FALSE;
1838 memcpy (shortname, name, shortlen);
1839 shortname[shortlen] = '\0';
1840
1841 /* We are going to create a new symbol. Merge it with any existing
1842 symbol with this name. For the purposes of the merge, act as
1843 though we were defining the symbol we just defined, although we
1844 actually going to define an indirect symbol. */
1845 type_change_ok = FALSE;
1846 size_change_ok = FALSE;
1847 matched = TRUE;
1848 tmp_sec = sec;
1849 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1850 &hi, poldbfd, NULL, NULL, &skip, &override,
1851 &type_change_ok, &size_change_ok, &matched))
1852 return FALSE;
1853
1854 if (skip)
1855 goto nondefault;
1856
1857 if (hi->def_regular)
1858 {
1859 /* If the undecorated symbol will have a version added by a
1860 script different to H, then don't indirect to/from the
1861 undecorated symbol. This isn't ideal because we may not yet
1862 have seen symbol versions, if given by a script on the
1863 command line rather than via --version-script. */
1864 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1865 {
1866 bfd_boolean hide;
1867
1868 hi->verinfo.vertree
1869 = bfd_find_version_for_sym (info->version_info,
1870 hi->root.root.string, &hide);
1871 if (hi->verinfo.vertree != NULL && hide)
1872 {
1873 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1874 goto nondefault;
1875 }
1876 }
1877 if (hi->verinfo.vertree != NULL
1878 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1879 goto nondefault;
1880 }
1881
1882 if (! override)
1883 {
1884 /* Add the default symbol if not performing a relocatable link. */
1885 if (! bfd_link_relocatable (info))
1886 {
1887 bh = &hi->root;
1888 if (! (_bfd_generic_link_add_one_symbol
1889 (info, abfd, shortname, BSF_INDIRECT,
1890 bfd_ind_section_ptr,
1891 0, name, FALSE, collect, &bh)))
1892 return FALSE;
1893 hi = (struct elf_link_hash_entry *) bh;
1894 }
1895 }
1896 else
1897 {
1898 /* In this case the symbol named SHORTNAME is overriding the
1899 indirect symbol we want to add. We were planning on making
1900 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1901 is the name without a version. NAME is the fully versioned
1902 name, and it is the default version.
1903
1904 Overriding means that we already saw a definition for the
1905 symbol SHORTNAME in a regular object, and it is overriding
1906 the symbol defined in the dynamic object.
1907
1908 When this happens, we actually want to change NAME, the
1909 symbol we just added, to refer to SHORTNAME. This will cause
1910 references to NAME in the shared object to become references
1911 to SHORTNAME in the regular object. This is what we expect
1912 when we override a function in a shared object: that the
1913 references in the shared object will be mapped to the
1914 definition in the regular object. */
1915
1916 while (hi->root.type == bfd_link_hash_indirect
1917 || hi->root.type == bfd_link_hash_warning)
1918 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1919
1920 h->root.type = bfd_link_hash_indirect;
1921 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1922 if (h->def_dynamic)
1923 {
1924 h->def_dynamic = 0;
1925 hi->ref_dynamic = 1;
1926 if (hi->ref_regular
1927 || hi->def_regular)
1928 {
1929 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1930 return FALSE;
1931 }
1932 }
1933
1934 /* Now set HI to H, so that the following code will set the
1935 other fields correctly. */
1936 hi = h;
1937 }
1938
1939 /* Check if HI is a warning symbol. */
1940 if (hi->root.type == bfd_link_hash_warning)
1941 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1942
1943 /* If there is a duplicate definition somewhere, then HI may not
1944 point to an indirect symbol. We will have reported an error to
1945 the user in that case. */
1946
1947 if (hi->root.type == bfd_link_hash_indirect)
1948 {
1949 struct elf_link_hash_entry *ht;
1950
1951 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1952 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1953
1954 /* A reference to the SHORTNAME symbol from a dynamic library
1955 will be satisfied by the versioned symbol at runtime. In
1956 effect, we have a reference to the versioned symbol. */
1957 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1958 hi->dynamic_def |= ht->dynamic_def;
1959
1960 /* See if the new flags lead us to realize that the symbol must
1961 be dynamic. */
1962 if (! *dynsym)
1963 {
1964 if (! dynamic)
1965 {
1966 if (! bfd_link_executable (info)
1967 || hi->def_dynamic
1968 || hi->ref_dynamic)
1969 *dynsym = TRUE;
1970 }
1971 else
1972 {
1973 if (hi->ref_regular)
1974 *dynsym = TRUE;
1975 }
1976 }
1977 }
1978
1979 /* We also need to define an indirection from the nondefault version
1980 of the symbol. */
1981
1982 nondefault:
1983 len = strlen (name);
1984 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1985 if (shortname == NULL)
1986 return FALSE;
1987 memcpy (shortname, name, shortlen);
1988 memcpy (shortname + shortlen, p + 1, len - shortlen);
1989
1990 /* Once again, merge with any existing symbol. */
1991 type_change_ok = FALSE;
1992 size_change_ok = FALSE;
1993 tmp_sec = sec;
1994 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1995 &hi, poldbfd, NULL, NULL, &skip, &override,
1996 &type_change_ok, &size_change_ok, &matched))
1997 return FALSE;
1998
1999 if (skip)
2000 return TRUE;
2001
2002 if (override)
2003 {
2004 /* Here SHORTNAME is a versioned name, so we don't expect to see
2005 the type of override we do in the case above unless it is
2006 overridden by a versioned definition. */
2007 if (hi->root.type != bfd_link_hash_defined
2008 && hi->root.type != bfd_link_hash_defweak)
2009 _bfd_error_handler
2010 /* xgettext:c-format */
2011 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2012 abfd, shortname);
2013 }
2014 else
2015 {
2016 bh = &hi->root;
2017 if (! (_bfd_generic_link_add_one_symbol
2018 (info, abfd, shortname, BSF_INDIRECT,
2019 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2020 return FALSE;
2021 hi = (struct elf_link_hash_entry *) bh;
2022
2023 /* If there is a duplicate definition somewhere, then HI may not
2024 point to an indirect symbol. We will have reported an error
2025 to the user in that case. */
2026
2027 if (hi->root.type == bfd_link_hash_indirect)
2028 {
2029 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2030 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2031 hi->dynamic_def |= h->dynamic_def;
2032
2033 /* See if the new flags lead us to realize that the symbol
2034 must be dynamic. */
2035 if (! *dynsym)
2036 {
2037 if (! dynamic)
2038 {
2039 if (! bfd_link_executable (info)
2040 || hi->ref_dynamic)
2041 *dynsym = TRUE;
2042 }
2043 else
2044 {
2045 if (hi->ref_regular)
2046 *dynsym = TRUE;
2047 }
2048 }
2049 }
2050 }
2051
2052 return TRUE;
2053 }
2054 \f
2055 /* This routine is used to export all defined symbols into the dynamic
2056 symbol table. It is called via elf_link_hash_traverse. */
2057
2058 static bfd_boolean
2059 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2060 {
2061 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2062
2063 /* Ignore indirect symbols. These are added by the versioning code. */
2064 if (h->root.type == bfd_link_hash_indirect)
2065 return TRUE;
2066
2067 /* Ignore this if we won't export it. */
2068 if (!eif->info->export_dynamic && !h->dynamic)
2069 return TRUE;
2070
2071 if (h->dynindx == -1
2072 && (h->def_regular || h->ref_regular)
2073 && ! bfd_hide_sym_by_version (eif->info->version_info,
2074 h->root.root.string))
2075 {
2076 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2077 {
2078 eif->failed = TRUE;
2079 return FALSE;
2080 }
2081 }
2082
2083 return TRUE;
2084 }
2085 \f
2086 /* Look through the symbols which are defined in other shared
2087 libraries and referenced here. Update the list of version
2088 dependencies. This will be put into the .gnu.version_r section.
2089 This function is called via elf_link_hash_traverse. */
2090
2091 static bfd_boolean
2092 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2093 void *data)
2094 {
2095 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2096 Elf_Internal_Verneed *t;
2097 Elf_Internal_Vernaux *a;
2098 bfd_size_type amt;
2099
2100 /* We only care about symbols defined in shared objects with version
2101 information. */
2102 if (!h->def_dynamic
2103 || h->def_regular
2104 || h->dynindx == -1
2105 || h->verinfo.verdef == NULL
2106 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2107 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2108 return TRUE;
2109
2110 /* See if we already know about this version. */
2111 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2112 t != NULL;
2113 t = t->vn_nextref)
2114 {
2115 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2116 continue;
2117
2118 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2119 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2120 return TRUE;
2121
2122 break;
2123 }
2124
2125 /* This is a new version. Add it to tree we are building. */
2126
2127 if (t == NULL)
2128 {
2129 amt = sizeof *t;
2130 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2131 if (t == NULL)
2132 {
2133 rinfo->failed = TRUE;
2134 return FALSE;
2135 }
2136
2137 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2138 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2139 elf_tdata (rinfo->info->output_bfd)->verref = t;
2140 }
2141
2142 amt = sizeof *a;
2143 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2144 if (a == NULL)
2145 {
2146 rinfo->failed = TRUE;
2147 return FALSE;
2148 }
2149
2150 /* Note that we are copying a string pointer here, and testing it
2151 above. If bfd_elf_string_from_elf_section is ever changed to
2152 discard the string data when low in memory, this will have to be
2153 fixed. */
2154 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2155
2156 a->vna_flags = h->verinfo.verdef->vd_flags;
2157 a->vna_nextptr = t->vn_auxptr;
2158
2159 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2160 ++rinfo->vers;
2161
2162 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2163
2164 t->vn_auxptr = a;
2165
2166 return TRUE;
2167 }
2168
2169 /* Figure out appropriate versions for all the symbols. We may not
2170 have the version number script until we have read all of the input
2171 files, so until that point we don't know which symbols should be
2172 local. This function is called via elf_link_hash_traverse. */
2173
2174 static bfd_boolean
2175 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2176 {
2177 struct elf_info_failed *sinfo;
2178 struct bfd_link_info *info;
2179 const struct elf_backend_data *bed;
2180 struct elf_info_failed eif;
2181 char *p;
2182
2183 sinfo = (struct elf_info_failed *) data;
2184 info = sinfo->info;
2185
2186 /* Fix the symbol flags. */
2187 eif.failed = FALSE;
2188 eif.info = info;
2189 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2190 {
2191 if (eif.failed)
2192 sinfo->failed = TRUE;
2193 return FALSE;
2194 }
2195
2196 /* We only need version numbers for symbols defined in regular
2197 objects. */
2198 if (!h->def_regular)
2199 return TRUE;
2200
2201 bed = get_elf_backend_data (info->output_bfd);
2202 p = strchr (h->root.root.string, ELF_VER_CHR);
2203 if (p != NULL && h->verinfo.vertree == NULL)
2204 {
2205 struct bfd_elf_version_tree *t;
2206
2207 ++p;
2208 if (*p == ELF_VER_CHR)
2209 ++p;
2210
2211 /* If there is no version string, we can just return out. */
2212 if (*p == '\0')
2213 return TRUE;
2214
2215 /* Look for the version. If we find it, it is no longer weak. */
2216 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2217 {
2218 if (strcmp (t->name, p) == 0)
2219 {
2220 size_t len;
2221 char *alc;
2222 struct bfd_elf_version_expr *d;
2223
2224 len = p - h->root.root.string;
2225 alc = (char *) bfd_malloc (len);
2226 if (alc == NULL)
2227 {
2228 sinfo->failed = TRUE;
2229 return FALSE;
2230 }
2231 memcpy (alc, h->root.root.string, len - 1);
2232 alc[len - 1] = '\0';
2233 if (alc[len - 2] == ELF_VER_CHR)
2234 alc[len - 2] = '\0';
2235
2236 h->verinfo.vertree = t;
2237 t->used = TRUE;
2238 d = NULL;
2239
2240 if (t->globals.list != NULL)
2241 d = (*t->match) (&t->globals, NULL, alc);
2242
2243 /* See if there is anything to force this symbol to
2244 local scope. */
2245 if (d == NULL && t->locals.list != NULL)
2246 {
2247 d = (*t->match) (&t->locals, NULL, alc);
2248 if (d != NULL
2249 && h->dynindx != -1
2250 && ! info->export_dynamic)
2251 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2252 }
2253
2254 free (alc);
2255 break;
2256 }
2257 }
2258
2259 /* If we are building an application, we need to create a
2260 version node for this version. */
2261 if (t == NULL && bfd_link_executable (info))
2262 {
2263 struct bfd_elf_version_tree **pp;
2264 int version_index;
2265
2266 /* If we aren't going to export this symbol, we don't need
2267 to worry about it. */
2268 if (h->dynindx == -1)
2269 return TRUE;
2270
2271 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2272 sizeof *t);
2273 if (t == NULL)
2274 {
2275 sinfo->failed = TRUE;
2276 return FALSE;
2277 }
2278
2279 t->name = p;
2280 t->name_indx = (unsigned int) -1;
2281 t->used = TRUE;
2282
2283 version_index = 1;
2284 /* Don't count anonymous version tag. */
2285 if (sinfo->info->version_info != NULL
2286 && sinfo->info->version_info->vernum == 0)
2287 version_index = 0;
2288 for (pp = &sinfo->info->version_info;
2289 *pp != NULL;
2290 pp = &(*pp)->next)
2291 ++version_index;
2292 t->vernum = version_index;
2293
2294 *pp = t;
2295
2296 h->verinfo.vertree = t;
2297 }
2298 else if (t == NULL)
2299 {
2300 /* We could not find the version for a symbol when
2301 generating a shared archive. Return an error. */
2302 _bfd_error_handler
2303 /* xgettext:c-format */
2304 (_("%B: version node not found for symbol %s"),
2305 info->output_bfd, h->root.root.string);
2306 bfd_set_error (bfd_error_bad_value);
2307 sinfo->failed = TRUE;
2308 return FALSE;
2309 }
2310 }
2311
2312 /* If we don't have a version for this symbol, see if we can find
2313 something. */
2314 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2315 {
2316 bfd_boolean hide;
2317
2318 h->verinfo.vertree
2319 = bfd_find_version_for_sym (sinfo->info->version_info,
2320 h->root.root.string, &hide);
2321 if (h->verinfo.vertree != NULL && hide)
2322 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2323 }
2324
2325 return TRUE;
2326 }
2327 \f
2328 /* Read and swap the relocs from the section indicated by SHDR. This
2329 may be either a REL or a RELA section. The relocations are
2330 translated into RELA relocations and stored in INTERNAL_RELOCS,
2331 which should have already been allocated to contain enough space.
2332 The EXTERNAL_RELOCS are a buffer where the external form of the
2333 relocations should be stored.
2334
2335 Returns FALSE if something goes wrong. */
2336
2337 static bfd_boolean
2338 elf_link_read_relocs_from_section (bfd *abfd,
2339 asection *sec,
2340 Elf_Internal_Shdr *shdr,
2341 void *external_relocs,
2342 Elf_Internal_Rela *internal_relocs)
2343 {
2344 const struct elf_backend_data *bed;
2345 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2346 const bfd_byte *erela;
2347 const bfd_byte *erelaend;
2348 Elf_Internal_Rela *irela;
2349 Elf_Internal_Shdr *symtab_hdr;
2350 size_t nsyms;
2351
2352 /* Position ourselves at the start of the section. */
2353 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2354 return FALSE;
2355
2356 /* Read the relocations. */
2357 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2358 return FALSE;
2359
2360 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2361 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2362
2363 bed = get_elf_backend_data (abfd);
2364
2365 /* Convert the external relocations to the internal format. */
2366 if (shdr->sh_entsize == bed->s->sizeof_rel)
2367 swap_in = bed->s->swap_reloc_in;
2368 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2369 swap_in = bed->s->swap_reloca_in;
2370 else
2371 {
2372 bfd_set_error (bfd_error_wrong_format);
2373 return FALSE;
2374 }
2375
2376 erela = (const bfd_byte *) external_relocs;
2377 erelaend = erela + shdr->sh_size;
2378 irela = internal_relocs;
2379 while (erela < erelaend)
2380 {
2381 bfd_vma r_symndx;
2382
2383 (*swap_in) (abfd, erela, irela);
2384 r_symndx = ELF32_R_SYM (irela->r_info);
2385 if (bed->s->arch_size == 64)
2386 r_symndx >>= 24;
2387 if (nsyms > 0)
2388 {
2389 if ((size_t) r_symndx >= nsyms)
2390 {
2391 _bfd_error_handler
2392 /* xgettext:c-format */
2393 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2394 " for offset 0x%lx in section `%A'"),
2395 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2396 irela->r_offset, sec);
2397 bfd_set_error (bfd_error_bad_value);
2398 return FALSE;
2399 }
2400 }
2401 else if (r_symndx != STN_UNDEF)
2402 {
2403 _bfd_error_handler
2404 /* xgettext:c-format */
2405 (_("%B: non-zero symbol index (0x%lx)"
2406 " for offset 0x%lx in section `%A'"
2407 " when the object file has no symbol table"),
2408 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2409 irela->r_offset, sec);
2410 bfd_set_error (bfd_error_bad_value);
2411 return FALSE;
2412 }
2413 irela += bed->s->int_rels_per_ext_rel;
2414 erela += shdr->sh_entsize;
2415 }
2416
2417 return TRUE;
2418 }
2419
2420 /* Read and swap the relocs for a section O. They may have been
2421 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2422 not NULL, they are used as buffers to read into. They are known to
2423 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2424 the return value is allocated using either malloc or bfd_alloc,
2425 according to the KEEP_MEMORY argument. If O has two relocation
2426 sections (both REL and RELA relocations), then the REL_HDR
2427 relocations will appear first in INTERNAL_RELOCS, followed by the
2428 RELA_HDR relocations. */
2429
2430 Elf_Internal_Rela *
2431 _bfd_elf_link_read_relocs (bfd *abfd,
2432 asection *o,
2433 void *external_relocs,
2434 Elf_Internal_Rela *internal_relocs,
2435 bfd_boolean keep_memory)
2436 {
2437 void *alloc1 = NULL;
2438 Elf_Internal_Rela *alloc2 = NULL;
2439 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2440 struct bfd_elf_section_data *esdo = elf_section_data (o);
2441 Elf_Internal_Rela *internal_rela_relocs;
2442
2443 if (esdo->relocs != NULL)
2444 return esdo->relocs;
2445
2446 if (o->reloc_count == 0)
2447 return NULL;
2448
2449 if (internal_relocs == NULL)
2450 {
2451 bfd_size_type size;
2452
2453 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2454 if (keep_memory)
2455 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2456 else
2457 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2458 if (internal_relocs == NULL)
2459 goto error_return;
2460 }
2461
2462 if (external_relocs == NULL)
2463 {
2464 bfd_size_type size = 0;
2465
2466 if (esdo->rel.hdr)
2467 size += esdo->rel.hdr->sh_size;
2468 if (esdo->rela.hdr)
2469 size += esdo->rela.hdr->sh_size;
2470
2471 alloc1 = bfd_malloc (size);
2472 if (alloc1 == NULL)
2473 goto error_return;
2474 external_relocs = alloc1;
2475 }
2476
2477 internal_rela_relocs = internal_relocs;
2478 if (esdo->rel.hdr)
2479 {
2480 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2481 external_relocs,
2482 internal_relocs))
2483 goto error_return;
2484 external_relocs = (((bfd_byte *) external_relocs)
2485 + esdo->rel.hdr->sh_size);
2486 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2487 * bed->s->int_rels_per_ext_rel);
2488 }
2489
2490 if (esdo->rela.hdr
2491 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2492 external_relocs,
2493 internal_rela_relocs)))
2494 goto error_return;
2495
2496 /* Cache the results for next time, if we can. */
2497 if (keep_memory)
2498 esdo->relocs = internal_relocs;
2499
2500 if (alloc1 != NULL)
2501 free (alloc1);
2502
2503 /* Don't free alloc2, since if it was allocated we are passing it
2504 back (under the name of internal_relocs). */
2505
2506 return internal_relocs;
2507
2508 error_return:
2509 if (alloc1 != NULL)
2510 free (alloc1);
2511 if (alloc2 != NULL)
2512 {
2513 if (keep_memory)
2514 bfd_release (abfd, alloc2);
2515 else
2516 free (alloc2);
2517 }
2518 return NULL;
2519 }
2520
2521 /* Compute the size of, and allocate space for, REL_HDR which is the
2522 section header for a section containing relocations for O. */
2523
2524 static bfd_boolean
2525 _bfd_elf_link_size_reloc_section (bfd *abfd,
2526 struct bfd_elf_section_reloc_data *reldata)
2527 {
2528 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2529
2530 /* That allows us to calculate the size of the section. */
2531 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2532
2533 /* The contents field must last into write_object_contents, so we
2534 allocate it with bfd_alloc rather than malloc. Also since we
2535 cannot be sure that the contents will actually be filled in,
2536 we zero the allocated space. */
2537 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2538 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2539 return FALSE;
2540
2541 if (reldata->hashes == NULL && reldata->count)
2542 {
2543 struct elf_link_hash_entry **p;
2544
2545 p = ((struct elf_link_hash_entry **)
2546 bfd_zmalloc (reldata->count * sizeof (*p)));
2547 if (p == NULL)
2548 return FALSE;
2549
2550 reldata->hashes = p;
2551 }
2552
2553 return TRUE;
2554 }
2555
2556 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2557 originated from the section given by INPUT_REL_HDR) to the
2558 OUTPUT_BFD. */
2559
2560 bfd_boolean
2561 _bfd_elf_link_output_relocs (bfd *output_bfd,
2562 asection *input_section,
2563 Elf_Internal_Shdr *input_rel_hdr,
2564 Elf_Internal_Rela *internal_relocs,
2565 struct elf_link_hash_entry **rel_hash
2566 ATTRIBUTE_UNUSED)
2567 {
2568 Elf_Internal_Rela *irela;
2569 Elf_Internal_Rela *irelaend;
2570 bfd_byte *erel;
2571 struct bfd_elf_section_reloc_data *output_reldata;
2572 asection *output_section;
2573 const struct elf_backend_data *bed;
2574 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2575 struct bfd_elf_section_data *esdo;
2576
2577 output_section = input_section->output_section;
2578
2579 bed = get_elf_backend_data (output_bfd);
2580 esdo = elf_section_data (output_section);
2581 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2582 {
2583 output_reldata = &esdo->rel;
2584 swap_out = bed->s->swap_reloc_out;
2585 }
2586 else if (esdo->rela.hdr
2587 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2588 {
2589 output_reldata = &esdo->rela;
2590 swap_out = bed->s->swap_reloca_out;
2591 }
2592 else
2593 {
2594 _bfd_error_handler
2595 /* xgettext:c-format */
2596 (_("%B: relocation size mismatch in %B section %A"),
2597 output_bfd, input_section->owner, input_section);
2598 bfd_set_error (bfd_error_wrong_format);
2599 return FALSE;
2600 }
2601
2602 erel = output_reldata->hdr->contents;
2603 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2604 irela = internal_relocs;
2605 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2606 * bed->s->int_rels_per_ext_rel);
2607 while (irela < irelaend)
2608 {
2609 (*swap_out) (output_bfd, irela, erel);
2610 irela += bed->s->int_rels_per_ext_rel;
2611 erel += input_rel_hdr->sh_entsize;
2612 }
2613
2614 /* Bump the counter, so that we know where to add the next set of
2615 relocations. */
2616 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2617
2618 return TRUE;
2619 }
2620 \f
2621 /* Make weak undefined symbols in PIE dynamic. */
2622
2623 bfd_boolean
2624 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2625 struct elf_link_hash_entry *h)
2626 {
2627 if (bfd_link_pie (info)
2628 && h->dynindx == -1
2629 && h->root.type == bfd_link_hash_undefweak)
2630 return bfd_elf_link_record_dynamic_symbol (info, h);
2631
2632 return TRUE;
2633 }
2634
2635 /* Fix up the flags for a symbol. This handles various cases which
2636 can only be fixed after all the input files are seen. This is
2637 currently called by both adjust_dynamic_symbol and
2638 assign_sym_version, which is unnecessary but perhaps more robust in
2639 the face of future changes. */
2640
2641 static bfd_boolean
2642 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2643 struct elf_info_failed *eif)
2644 {
2645 const struct elf_backend_data *bed;
2646
2647 /* If this symbol was mentioned in a non-ELF file, try to set
2648 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2649 permit a non-ELF file to correctly refer to a symbol defined in
2650 an ELF dynamic object. */
2651 if (h->non_elf)
2652 {
2653 while (h->root.type == bfd_link_hash_indirect)
2654 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2655
2656 if (h->root.type != bfd_link_hash_defined
2657 && h->root.type != bfd_link_hash_defweak)
2658 {
2659 h->ref_regular = 1;
2660 h->ref_regular_nonweak = 1;
2661 }
2662 else
2663 {
2664 if (h->root.u.def.section->owner != NULL
2665 && (bfd_get_flavour (h->root.u.def.section->owner)
2666 == bfd_target_elf_flavour))
2667 {
2668 h->ref_regular = 1;
2669 h->ref_regular_nonweak = 1;
2670 }
2671 else
2672 h->def_regular = 1;
2673 }
2674
2675 if (h->dynindx == -1
2676 && (h->def_dynamic
2677 || h->ref_dynamic))
2678 {
2679 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2680 {
2681 eif->failed = TRUE;
2682 return FALSE;
2683 }
2684 }
2685 }
2686 else
2687 {
2688 /* Unfortunately, NON_ELF is only correct if the symbol
2689 was first seen in a non-ELF file. Fortunately, if the symbol
2690 was first seen in an ELF file, we're probably OK unless the
2691 symbol was defined in a non-ELF file. Catch that case here.
2692 FIXME: We're still in trouble if the symbol was first seen in
2693 a dynamic object, and then later in a non-ELF regular object. */
2694 if ((h->root.type == bfd_link_hash_defined
2695 || h->root.type == bfd_link_hash_defweak)
2696 && !h->def_regular
2697 && (h->root.u.def.section->owner != NULL
2698 ? (bfd_get_flavour (h->root.u.def.section->owner)
2699 != bfd_target_elf_flavour)
2700 : (bfd_is_abs_section (h->root.u.def.section)
2701 && !h->def_dynamic)))
2702 h->def_regular = 1;
2703 }
2704
2705 /* Backend specific symbol fixup. */
2706 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2707 if (bed->elf_backend_fixup_symbol
2708 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2709 return FALSE;
2710
2711 /* If this is a final link, and the symbol was defined as a common
2712 symbol in a regular object file, and there was no definition in
2713 any dynamic object, then the linker will have allocated space for
2714 the symbol in a common section but the DEF_REGULAR
2715 flag will not have been set. */
2716 if (h->root.type == bfd_link_hash_defined
2717 && !h->def_regular
2718 && h->ref_regular
2719 && !h->def_dynamic
2720 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2721 h->def_regular = 1;
2722
2723 /* If a weak undefined symbol has non-default visibility, we also
2724 hide it from the dynamic linker. */
2725 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2726 && h->root.type == bfd_link_hash_undefweak)
2727 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2728
2729 /* A hidden versioned symbol in executable should be forced local if
2730 it is is locally defined, not referenced by shared library and not
2731 exported. */
2732 else if (bfd_link_executable (eif->info)
2733 && h->versioned == versioned_hidden
2734 && !eif->info->export_dynamic
2735 && !h->dynamic
2736 && !h->ref_dynamic
2737 && h->def_regular)
2738 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2739
2740 /* If -Bsymbolic was used (which means to bind references to global
2741 symbols to the definition within the shared object), and this
2742 symbol was defined in a regular object, then it actually doesn't
2743 need a PLT entry. Likewise, if the symbol has non-default
2744 visibility. If the symbol has hidden or internal visibility, we
2745 will force it local. */
2746 else if (h->needs_plt
2747 && bfd_link_pic (eif->info)
2748 && is_elf_hash_table (eif->info->hash)
2749 && (SYMBOLIC_BIND (eif->info, h)
2750 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2751 && h->def_regular)
2752 {
2753 bfd_boolean force_local;
2754
2755 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2756 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2757 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2758 }
2759
2760 /* If this is a weak defined symbol in a dynamic object, and we know
2761 the real definition in the dynamic object, copy interesting flags
2762 over to the real definition. */
2763 if (h->u.weakdef != NULL)
2764 {
2765 /* If the real definition is defined by a regular object file,
2766 don't do anything special. See the longer description in
2767 _bfd_elf_adjust_dynamic_symbol, below. */
2768 if (h->u.weakdef->def_regular)
2769 h->u.weakdef = NULL;
2770 else
2771 {
2772 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2773
2774 while (h->root.type == bfd_link_hash_indirect)
2775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2776
2777 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2778 || h->root.type == bfd_link_hash_defweak);
2779 BFD_ASSERT (weakdef->def_dynamic);
2780 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2781 || weakdef->root.type == bfd_link_hash_defweak);
2782 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2783 }
2784 }
2785
2786 return TRUE;
2787 }
2788
2789 /* Make the backend pick a good value for a dynamic symbol. This is
2790 called via elf_link_hash_traverse, and also calls itself
2791 recursively. */
2792
2793 static bfd_boolean
2794 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2795 {
2796 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2797 bfd *dynobj;
2798 const struct elf_backend_data *bed;
2799
2800 if (! is_elf_hash_table (eif->info->hash))
2801 return FALSE;
2802
2803 /* Ignore indirect symbols. These are added by the versioning code. */
2804 if (h->root.type == bfd_link_hash_indirect)
2805 return TRUE;
2806
2807 /* Fix the symbol flags. */
2808 if (! _bfd_elf_fix_symbol_flags (h, eif))
2809 return FALSE;
2810
2811 if (h->root.type == bfd_link_hash_undefweak)
2812 {
2813 if (eif->info->dynamic_undefined_weak == 0)
2814 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2815 else if (eif->info->dynamic_undefined_weak > 0
2816 && h->ref_regular
2817 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2818 && !bfd_hide_sym_by_version (eif->info->version_info,
2819 h->root.root.string))
2820 {
2821 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2822 {
2823 eif->failed = TRUE;
2824 return FALSE;
2825 }
2826 }
2827 }
2828
2829 /* If this symbol does not require a PLT entry, and it is not
2830 defined by a dynamic object, or is not referenced by a regular
2831 object, ignore it. We do have to handle a weak defined symbol,
2832 even if no regular object refers to it, if we decided to add it
2833 to the dynamic symbol table. FIXME: Do we normally need to worry
2834 about symbols which are defined by one dynamic object and
2835 referenced by another one? */
2836 if (!h->needs_plt
2837 && h->type != STT_GNU_IFUNC
2838 && (h->def_regular
2839 || !h->def_dynamic
2840 || (!h->ref_regular
2841 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2842 {
2843 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2844 return TRUE;
2845 }
2846
2847 /* If we've already adjusted this symbol, don't do it again. This
2848 can happen via a recursive call. */
2849 if (h->dynamic_adjusted)
2850 return TRUE;
2851
2852 /* Don't look at this symbol again. Note that we must set this
2853 after checking the above conditions, because we may look at a
2854 symbol once, decide not to do anything, and then get called
2855 recursively later after REF_REGULAR is set below. */
2856 h->dynamic_adjusted = 1;
2857
2858 /* If this is a weak definition, and we know a real definition, and
2859 the real symbol is not itself defined by a regular object file,
2860 then get a good value for the real definition. We handle the
2861 real symbol first, for the convenience of the backend routine.
2862
2863 Note that there is a confusing case here. If the real definition
2864 is defined by a regular object file, we don't get the real symbol
2865 from the dynamic object, but we do get the weak symbol. If the
2866 processor backend uses a COPY reloc, then if some routine in the
2867 dynamic object changes the real symbol, we will not see that
2868 change in the corresponding weak symbol. This is the way other
2869 ELF linkers work as well, and seems to be a result of the shared
2870 library model.
2871
2872 I will clarify this issue. Most SVR4 shared libraries define the
2873 variable _timezone and define timezone as a weak synonym. The
2874 tzset call changes _timezone. If you write
2875 extern int timezone;
2876 int _timezone = 5;
2877 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2878 you might expect that, since timezone is a synonym for _timezone,
2879 the same number will print both times. However, if the processor
2880 backend uses a COPY reloc, then actually timezone will be copied
2881 into your process image, and, since you define _timezone
2882 yourself, _timezone will not. Thus timezone and _timezone will
2883 wind up at different memory locations. The tzset call will set
2884 _timezone, leaving timezone unchanged. */
2885
2886 if (h->u.weakdef != NULL)
2887 {
2888 /* If we get to this point, there is an implicit reference to
2889 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2890 h->u.weakdef->ref_regular = 1;
2891
2892 /* Ensure that the backend adjust_dynamic_symbol function sees
2893 H->U.WEAKDEF before H by recursively calling ourselves. */
2894 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2895 return FALSE;
2896 }
2897
2898 /* If a symbol has no type and no size and does not require a PLT
2899 entry, then we are probably about to do the wrong thing here: we
2900 are probably going to create a COPY reloc for an empty object.
2901 This case can arise when a shared object is built with assembly
2902 code, and the assembly code fails to set the symbol type. */
2903 if (h->size == 0
2904 && h->type == STT_NOTYPE
2905 && !h->needs_plt)
2906 _bfd_error_handler
2907 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2908 h->root.root.string);
2909
2910 dynobj = elf_hash_table (eif->info)->dynobj;
2911 bed = get_elf_backend_data (dynobj);
2912
2913 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2914 {
2915 eif->failed = TRUE;
2916 return FALSE;
2917 }
2918
2919 return TRUE;
2920 }
2921
2922 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2923 DYNBSS. */
2924
2925 bfd_boolean
2926 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2927 struct elf_link_hash_entry *h,
2928 asection *dynbss)
2929 {
2930 unsigned int power_of_two;
2931 bfd_vma mask;
2932 asection *sec = h->root.u.def.section;
2933
2934 /* The section aligment of definition is the maximum alignment
2935 requirement of symbols defined in the section. Since we don't
2936 know the symbol alignment requirement, we start with the
2937 maximum alignment and check low bits of the symbol address
2938 for the minimum alignment. */
2939 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2940 mask = ((bfd_vma) 1 << power_of_two) - 1;
2941 while ((h->root.u.def.value & mask) != 0)
2942 {
2943 mask >>= 1;
2944 --power_of_two;
2945 }
2946
2947 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2948 dynbss))
2949 {
2950 /* Adjust the section alignment if needed. */
2951 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2952 power_of_two))
2953 return FALSE;
2954 }
2955
2956 /* We make sure that the symbol will be aligned properly. */
2957 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2958
2959 /* Define the symbol as being at this point in DYNBSS. */
2960 h->root.u.def.section = dynbss;
2961 h->root.u.def.value = dynbss->size;
2962
2963 /* Increment the size of DYNBSS to make room for the symbol. */
2964 dynbss->size += h->size;
2965
2966 /* No error if extern_protected_data is true. */
2967 if (h->protected_def
2968 && (!info->extern_protected_data
2969 || (info->extern_protected_data < 0
2970 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2971 info->callbacks->einfo
2972 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2973 h->root.root.string);
2974
2975 return TRUE;
2976 }
2977
2978 /* Adjust all external symbols pointing into SEC_MERGE sections
2979 to reflect the object merging within the sections. */
2980
2981 static bfd_boolean
2982 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2983 {
2984 asection *sec;
2985
2986 if ((h->root.type == bfd_link_hash_defined
2987 || h->root.type == bfd_link_hash_defweak)
2988 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2989 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2990 {
2991 bfd *output_bfd = (bfd *) data;
2992
2993 h->root.u.def.value =
2994 _bfd_merged_section_offset (output_bfd,
2995 &h->root.u.def.section,
2996 elf_section_data (sec)->sec_info,
2997 h->root.u.def.value);
2998 }
2999
3000 return TRUE;
3001 }
3002
3003 /* Returns false if the symbol referred to by H should be considered
3004 to resolve local to the current module, and true if it should be
3005 considered to bind dynamically. */
3006
3007 bfd_boolean
3008 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3009 struct bfd_link_info *info,
3010 bfd_boolean not_local_protected)
3011 {
3012 bfd_boolean binding_stays_local_p;
3013 const struct elf_backend_data *bed;
3014 struct elf_link_hash_table *hash_table;
3015
3016 if (h == NULL)
3017 return FALSE;
3018
3019 while (h->root.type == bfd_link_hash_indirect
3020 || h->root.type == bfd_link_hash_warning)
3021 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3022
3023 /* If it was forced local, then clearly it's not dynamic. */
3024 if (h->dynindx == -1)
3025 return FALSE;
3026 if (h->forced_local)
3027 return FALSE;
3028
3029 /* Identify the cases where name binding rules say that a
3030 visible symbol resolves locally. */
3031 binding_stays_local_p = (bfd_link_executable (info)
3032 || SYMBOLIC_BIND (info, h));
3033
3034 switch (ELF_ST_VISIBILITY (h->other))
3035 {
3036 case STV_INTERNAL:
3037 case STV_HIDDEN:
3038 return FALSE;
3039
3040 case STV_PROTECTED:
3041 hash_table = elf_hash_table (info);
3042 if (!is_elf_hash_table (hash_table))
3043 return FALSE;
3044
3045 bed = get_elf_backend_data (hash_table->dynobj);
3046
3047 /* Proper resolution for function pointer equality may require
3048 that these symbols perhaps be resolved dynamically, even though
3049 we should be resolving them to the current module. */
3050 if (!not_local_protected || !bed->is_function_type (h->type))
3051 binding_stays_local_p = TRUE;
3052 break;
3053
3054 default:
3055 break;
3056 }
3057
3058 /* If it isn't defined locally, then clearly it's dynamic. */
3059 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3060 return TRUE;
3061
3062 /* Otherwise, the symbol is dynamic if binding rules don't tell
3063 us that it remains local. */
3064 return !binding_stays_local_p;
3065 }
3066
3067 /* Return true if the symbol referred to by H should be considered
3068 to resolve local to the current module, and false otherwise. Differs
3069 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3070 undefined symbols. The two functions are virtually identical except
3071 for the place where dynindx == -1 is tested. If that test is true,
3072 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3073 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3074 defined symbols.
3075 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3076 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3077 treatment of undefined weak symbols. For those that do not make
3078 undefined weak symbols dynamic, both functions may return false. */
3079
3080 bfd_boolean
3081 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3082 struct bfd_link_info *info,
3083 bfd_boolean local_protected)
3084 {
3085 const struct elf_backend_data *bed;
3086 struct elf_link_hash_table *hash_table;
3087
3088 /* If it's a local sym, of course we resolve locally. */
3089 if (h == NULL)
3090 return TRUE;
3091
3092 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3093 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3094 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3095 return TRUE;
3096
3097 /* Forced local symbols resolve locally. */
3098 if (h->forced_local)
3099 return TRUE;
3100
3101 /* Common symbols that become definitions don't get the DEF_REGULAR
3102 flag set, so test it first, and don't bail out. */
3103 if (ELF_COMMON_DEF_P (h))
3104 /* Do nothing. */;
3105 /* If we don't have a definition in a regular file, then we can't
3106 resolve locally. The sym is either undefined or dynamic. */
3107 else if (!h->def_regular)
3108 return FALSE;
3109
3110 /* Non-dynamic symbols resolve locally. */
3111 if (h->dynindx == -1)
3112 return TRUE;
3113
3114 /* At this point, we know the symbol is defined and dynamic. In an
3115 executable it must resolve locally, likewise when building symbolic
3116 shared libraries. */
3117 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3118 return TRUE;
3119
3120 /* Now deal with defined dynamic symbols in shared libraries. Ones
3121 with default visibility might not resolve locally. */
3122 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3123 return FALSE;
3124
3125 hash_table = elf_hash_table (info);
3126 if (!is_elf_hash_table (hash_table))
3127 return TRUE;
3128
3129 bed = get_elf_backend_data (hash_table->dynobj);
3130
3131 /* If extern_protected_data is false, STV_PROTECTED non-function
3132 symbols are local. */
3133 if ((!info->extern_protected_data
3134 || (info->extern_protected_data < 0
3135 && !bed->extern_protected_data))
3136 && !bed->is_function_type (h->type))
3137 return TRUE;
3138
3139 /* Function pointer equality tests may require that STV_PROTECTED
3140 symbols be treated as dynamic symbols. If the address of a
3141 function not defined in an executable is set to that function's
3142 plt entry in the executable, then the address of the function in
3143 a shared library must also be the plt entry in the executable. */
3144 return local_protected;
3145 }
3146
3147 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3148 aligned. Returns the first TLS output section. */
3149
3150 struct bfd_section *
3151 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3152 {
3153 struct bfd_section *sec, *tls;
3154 unsigned int align = 0;
3155
3156 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3157 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3158 break;
3159 tls = sec;
3160
3161 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3162 if (sec->alignment_power > align)
3163 align = sec->alignment_power;
3164
3165 elf_hash_table (info)->tls_sec = tls;
3166
3167 /* Ensure the alignment of the first section is the largest alignment,
3168 so that the tls segment starts aligned. */
3169 if (tls != NULL)
3170 tls->alignment_power = align;
3171
3172 return tls;
3173 }
3174
3175 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3176 static bfd_boolean
3177 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3178 Elf_Internal_Sym *sym)
3179 {
3180 const struct elf_backend_data *bed;
3181
3182 /* Local symbols do not count, but target specific ones might. */
3183 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3184 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3185 return FALSE;
3186
3187 bed = get_elf_backend_data (abfd);
3188 /* Function symbols do not count. */
3189 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3190 return FALSE;
3191
3192 /* If the section is undefined, then so is the symbol. */
3193 if (sym->st_shndx == SHN_UNDEF)
3194 return FALSE;
3195
3196 /* If the symbol is defined in the common section, then
3197 it is a common definition and so does not count. */
3198 if (bed->common_definition (sym))
3199 return FALSE;
3200
3201 /* If the symbol is in a target specific section then we
3202 must rely upon the backend to tell us what it is. */
3203 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3204 /* FIXME - this function is not coded yet:
3205
3206 return _bfd_is_global_symbol_definition (abfd, sym);
3207
3208 Instead for now assume that the definition is not global,
3209 Even if this is wrong, at least the linker will behave
3210 in the same way that it used to do. */
3211 return FALSE;
3212
3213 return TRUE;
3214 }
3215
3216 /* Search the symbol table of the archive element of the archive ABFD
3217 whose archive map contains a mention of SYMDEF, and determine if
3218 the symbol is defined in this element. */
3219 static bfd_boolean
3220 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3221 {
3222 Elf_Internal_Shdr * hdr;
3223 size_t symcount;
3224 size_t extsymcount;
3225 size_t extsymoff;
3226 Elf_Internal_Sym *isymbuf;
3227 Elf_Internal_Sym *isym;
3228 Elf_Internal_Sym *isymend;
3229 bfd_boolean result;
3230
3231 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3232 if (abfd == NULL)
3233 return FALSE;
3234
3235 if (! bfd_check_format (abfd, bfd_object))
3236 return FALSE;
3237
3238 /* Select the appropriate symbol table. If we don't know if the
3239 object file is an IR object, give linker LTO plugin a chance to
3240 get the correct symbol table. */
3241 if (abfd->plugin_format == bfd_plugin_yes
3242 #if BFD_SUPPORTS_PLUGINS
3243 || (abfd->plugin_format == bfd_plugin_unknown
3244 && bfd_link_plugin_object_p (abfd))
3245 #endif
3246 )
3247 {
3248 /* Use the IR symbol table if the object has been claimed by
3249 plugin. */
3250 abfd = abfd->plugin_dummy_bfd;
3251 hdr = &elf_tdata (abfd)->symtab_hdr;
3252 }
3253 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3254 hdr = &elf_tdata (abfd)->symtab_hdr;
3255 else
3256 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3257
3258 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3259
3260 /* The sh_info field of the symtab header tells us where the
3261 external symbols start. We don't care about the local symbols. */
3262 if (elf_bad_symtab (abfd))
3263 {
3264 extsymcount = symcount;
3265 extsymoff = 0;
3266 }
3267 else
3268 {
3269 extsymcount = symcount - hdr->sh_info;
3270 extsymoff = hdr->sh_info;
3271 }
3272
3273 if (extsymcount == 0)
3274 return FALSE;
3275
3276 /* Read in the symbol table. */
3277 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3278 NULL, NULL, NULL);
3279 if (isymbuf == NULL)
3280 return FALSE;
3281
3282 /* Scan the symbol table looking for SYMDEF. */
3283 result = FALSE;
3284 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3285 {
3286 const char *name;
3287
3288 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3289 isym->st_name);
3290 if (name == NULL)
3291 break;
3292
3293 if (strcmp (name, symdef->name) == 0)
3294 {
3295 result = is_global_data_symbol_definition (abfd, isym);
3296 break;
3297 }
3298 }
3299
3300 free (isymbuf);
3301
3302 return result;
3303 }
3304 \f
3305 /* Add an entry to the .dynamic table. */
3306
3307 bfd_boolean
3308 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3309 bfd_vma tag,
3310 bfd_vma val)
3311 {
3312 struct elf_link_hash_table *hash_table;
3313 const struct elf_backend_data *bed;
3314 asection *s;
3315 bfd_size_type newsize;
3316 bfd_byte *newcontents;
3317 Elf_Internal_Dyn dyn;
3318
3319 hash_table = elf_hash_table (info);
3320 if (! is_elf_hash_table (hash_table))
3321 return FALSE;
3322
3323 bed = get_elf_backend_data (hash_table->dynobj);
3324 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3325 BFD_ASSERT (s != NULL);
3326
3327 newsize = s->size + bed->s->sizeof_dyn;
3328 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3329 if (newcontents == NULL)
3330 return FALSE;
3331
3332 dyn.d_tag = tag;
3333 dyn.d_un.d_val = val;
3334 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3335
3336 s->size = newsize;
3337 s->contents = newcontents;
3338
3339 return TRUE;
3340 }
3341
3342 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3343 otherwise just check whether one already exists. Returns -1 on error,
3344 1 if a DT_NEEDED tag already exists, and 0 on success. */
3345
3346 static int
3347 elf_add_dt_needed_tag (bfd *abfd,
3348 struct bfd_link_info *info,
3349 const char *soname,
3350 bfd_boolean do_it)
3351 {
3352 struct elf_link_hash_table *hash_table;
3353 size_t strindex;
3354
3355 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3356 return -1;
3357
3358 hash_table = elf_hash_table (info);
3359 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3360 if (strindex == (size_t) -1)
3361 return -1;
3362
3363 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3364 {
3365 asection *sdyn;
3366 const struct elf_backend_data *bed;
3367 bfd_byte *extdyn;
3368
3369 bed = get_elf_backend_data (hash_table->dynobj);
3370 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3371 if (sdyn != NULL)
3372 for (extdyn = sdyn->contents;
3373 extdyn < sdyn->contents + sdyn->size;
3374 extdyn += bed->s->sizeof_dyn)
3375 {
3376 Elf_Internal_Dyn dyn;
3377
3378 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3379 if (dyn.d_tag == DT_NEEDED
3380 && dyn.d_un.d_val == strindex)
3381 {
3382 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3383 return 1;
3384 }
3385 }
3386 }
3387
3388 if (do_it)
3389 {
3390 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3391 return -1;
3392
3393 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3394 return -1;
3395 }
3396 else
3397 /* We were just checking for existence of the tag. */
3398 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3399
3400 return 0;
3401 }
3402
3403 /* Return true if SONAME is on the needed list between NEEDED and STOP
3404 (or the end of list if STOP is NULL), and needed by a library that
3405 will be loaded. */
3406
3407 static bfd_boolean
3408 on_needed_list (const char *soname,
3409 struct bfd_link_needed_list *needed,
3410 struct bfd_link_needed_list *stop)
3411 {
3412 struct bfd_link_needed_list *look;
3413 for (look = needed; look != stop; look = look->next)
3414 if (strcmp (soname, look->name) == 0
3415 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3416 /* If needed by a library that itself is not directly
3417 needed, recursively check whether that library is
3418 indirectly needed. Since we add DT_NEEDED entries to
3419 the end of the list, library dependencies appear after
3420 the library. Therefore search prior to the current
3421 LOOK, preventing possible infinite recursion. */
3422 || on_needed_list (elf_dt_name (look->by), needed, look)))
3423 return TRUE;
3424
3425 return FALSE;
3426 }
3427
3428 /* Sort symbol by value, section, and size. */
3429 static int
3430 elf_sort_symbol (const void *arg1, const void *arg2)
3431 {
3432 const struct elf_link_hash_entry *h1;
3433 const struct elf_link_hash_entry *h2;
3434 bfd_signed_vma vdiff;
3435
3436 h1 = *(const struct elf_link_hash_entry **) arg1;
3437 h2 = *(const struct elf_link_hash_entry **) arg2;
3438 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3439 if (vdiff != 0)
3440 return vdiff > 0 ? 1 : -1;
3441 else
3442 {
3443 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3444 if (sdiff != 0)
3445 return sdiff > 0 ? 1 : -1;
3446 }
3447 vdiff = h1->size - h2->size;
3448 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3449 }
3450
3451 /* This function is used to adjust offsets into .dynstr for
3452 dynamic symbols. This is called via elf_link_hash_traverse. */
3453
3454 static bfd_boolean
3455 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3456 {
3457 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3458
3459 if (h->dynindx != -1)
3460 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3461 return TRUE;
3462 }
3463
3464 /* Assign string offsets in .dynstr, update all structures referencing
3465 them. */
3466
3467 static bfd_boolean
3468 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3469 {
3470 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3471 struct elf_link_local_dynamic_entry *entry;
3472 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3473 bfd *dynobj = hash_table->dynobj;
3474 asection *sdyn;
3475 bfd_size_type size;
3476 const struct elf_backend_data *bed;
3477 bfd_byte *extdyn;
3478
3479 _bfd_elf_strtab_finalize (dynstr);
3480 size = _bfd_elf_strtab_size (dynstr);
3481
3482 bed = get_elf_backend_data (dynobj);
3483 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3484 BFD_ASSERT (sdyn != NULL);
3485
3486 /* Update all .dynamic entries referencing .dynstr strings. */
3487 for (extdyn = sdyn->contents;
3488 extdyn < sdyn->contents + sdyn->size;
3489 extdyn += bed->s->sizeof_dyn)
3490 {
3491 Elf_Internal_Dyn dyn;
3492
3493 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3494 switch (dyn.d_tag)
3495 {
3496 case DT_STRSZ:
3497 dyn.d_un.d_val = size;
3498 break;
3499 case DT_NEEDED:
3500 case DT_SONAME:
3501 case DT_RPATH:
3502 case DT_RUNPATH:
3503 case DT_FILTER:
3504 case DT_AUXILIARY:
3505 case DT_AUDIT:
3506 case DT_DEPAUDIT:
3507 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3508 break;
3509 default:
3510 continue;
3511 }
3512 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3513 }
3514
3515 /* Now update local dynamic symbols. */
3516 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3517 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3518 entry->isym.st_name);
3519
3520 /* And the rest of dynamic symbols. */
3521 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3522
3523 /* Adjust version definitions. */
3524 if (elf_tdata (output_bfd)->cverdefs)
3525 {
3526 asection *s;
3527 bfd_byte *p;
3528 size_t i;
3529 Elf_Internal_Verdef def;
3530 Elf_Internal_Verdaux defaux;
3531
3532 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3533 p = s->contents;
3534 do
3535 {
3536 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3537 &def);
3538 p += sizeof (Elf_External_Verdef);
3539 if (def.vd_aux != sizeof (Elf_External_Verdef))
3540 continue;
3541 for (i = 0; i < def.vd_cnt; ++i)
3542 {
3543 _bfd_elf_swap_verdaux_in (output_bfd,
3544 (Elf_External_Verdaux *) p, &defaux);
3545 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3546 defaux.vda_name);
3547 _bfd_elf_swap_verdaux_out (output_bfd,
3548 &defaux, (Elf_External_Verdaux *) p);
3549 p += sizeof (Elf_External_Verdaux);
3550 }
3551 }
3552 while (def.vd_next);
3553 }
3554
3555 /* Adjust version references. */
3556 if (elf_tdata (output_bfd)->verref)
3557 {
3558 asection *s;
3559 bfd_byte *p;
3560 size_t i;
3561 Elf_Internal_Verneed need;
3562 Elf_Internal_Vernaux needaux;
3563
3564 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3565 p = s->contents;
3566 do
3567 {
3568 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3569 &need);
3570 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3571 _bfd_elf_swap_verneed_out (output_bfd, &need,
3572 (Elf_External_Verneed *) p);
3573 p += sizeof (Elf_External_Verneed);
3574 for (i = 0; i < need.vn_cnt; ++i)
3575 {
3576 _bfd_elf_swap_vernaux_in (output_bfd,
3577 (Elf_External_Vernaux *) p, &needaux);
3578 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3579 needaux.vna_name);
3580 _bfd_elf_swap_vernaux_out (output_bfd,
3581 &needaux,
3582 (Elf_External_Vernaux *) p);
3583 p += sizeof (Elf_External_Vernaux);
3584 }
3585 }
3586 while (need.vn_next);
3587 }
3588
3589 return TRUE;
3590 }
3591 \f
3592 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3593 The default is to only match when the INPUT and OUTPUT are exactly
3594 the same target. */
3595
3596 bfd_boolean
3597 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3598 const bfd_target *output)
3599 {
3600 return input == output;
3601 }
3602
3603 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3604 This version is used when different targets for the same architecture
3605 are virtually identical. */
3606
3607 bfd_boolean
3608 _bfd_elf_relocs_compatible (const bfd_target *input,
3609 const bfd_target *output)
3610 {
3611 const struct elf_backend_data *obed, *ibed;
3612
3613 if (input == output)
3614 return TRUE;
3615
3616 ibed = xvec_get_elf_backend_data (input);
3617 obed = xvec_get_elf_backend_data (output);
3618
3619 if (ibed->arch != obed->arch)
3620 return FALSE;
3621
3622 /* If both backends are using this function, deem them compatible. */
3623 return ibed->relocs_compatible == obed->relocs_compatible;
3624 }
3625
3626 /* Make a special call to the linker "notice" function to tell it that
3627 we are about to handle an as-needed lib, or have finished
3628 processing the lib. */
3629
3630 bfd_boolean
3631 _bfd_elf_notice_as_needed (bfd *ibfd,
3632 struct bfd_link_info *info,
3633 enum notice_asneeded_action act)
3634 {
3635 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3636 }
3637
3638 /* Check relocations an ELF object file. */
3639
3640 bfd_boolean
3641 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3642 {
3643 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3644 struct elf_link_hash_table *htab = elf_hash_table (info);
3645
3646 /* If this object is the same format as the output object, and it is
3647 not a shared library, then let the backend look through the
3648 relocs.
3649
3650 This is required to build global offset table entries and to
3651 arrange for dynamic relocs. It is not required for the
3652 particular common case of linking non PIC code, even when linking
3653 against shared libraries, but unfortunately there is no way of
3654 knowing whether an object file has been compiled PIC or not.
3655 Looking through the relocs is not particularly time consuming.
3656 The problem is that we must either (1) keep the relocs in memory,
3657 which causes the linker to require additional runtime memory or
3658 (2) read the relocs twice from the input file, which wastes time.
3659 This would be a good case for using mmap.
3660
3661 I have no idea how to handle linking PIC code into a file of a
3662 different format. It probably can't be done. */
3663 if ((abfd->flags & DYNAMIC) == 0
3664 && is_elf_hash_table (htab)
3665 && bed->check_relocs != NULL
3666 && elf_object_id (abfd) == elf_hash_table_id (htab)
3667 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3668 {
3669 asection *o;
3670
3671 for (o = abfd->sections; o != NULL; o = o->next)
3672 {
3673 Elf_Internal_Rela *internal_relocs;
3674 bfd_boolean ok;
3675
3676 /* Don't check relocations in excluded sections. */
3677 if ((o->flags & SEC_RELOC) == 0
3678 || (o->flags & SEC_EXCLUDE) != 0
3679 || o->reloc_count == 0
3680 || ((info->strip == strip_all || info->strip == strip_debugger)
3681 && (o->flags & SEC_DEBUGGING) != 0)
3682 || bfd_is_abs_section (o->output_section))
3683 continue;
3684
3685 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3686 info->keep_memory);
3687 if (internal_relocs == NULL)
3688 return FALSE;
3689
3690 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3691
3692 if (elf_section_data (o)->relocs != internal_relocs)
3693 free (internal_relocs);
3694
3695 if (! ok)
3696 return FALSE;
3697 }
3698 }
3699
3700 return TRUE;
3701 }
3702
3703 /* Add symbols from an ELF object file to the linker hash table. */
3704
3705 static bfd_boolean
3706 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3707 {
3708 Elf_Internal_Ehdr *ehdr;
3709 Elf_Internal_Shdr *hdr;
3710 size_t symcount;
3711 size_t extsymcount;
3712 size_t extsymoff;
3713 struct elf_link_hash_entry **sym_hash;
3714 bfd_boolean dynamic;
3715 Elf_External_Versym *extversym = NULL;
3716 Elf_External_Versym *ever;
3717 struct elf_link_hash_entry *weaks;
3718 struct elf_link_hash_entry **nondeflt_vers = NULL;
3719 size_t nondeflt_vers_cnt = 0;
3720 Elf_Internal_Sym *isymbuf = NULL;
3721 Elf_Internal_Sym *isym;
3722 Elf_Internal_Sym *isymend;
3723 const struct elf_backend_data *bed;
3724 bfd_boolean add_needed;
3725 struct elf_link_hash_table *htab;
3726 bfd_size_type amt;
3727 void *alloc_mark = NULL;
3728 struct bfd_hash_entry **old_table = NULL;
3729 unsigned int old_size = 0;
3730 unsigned int old_count = 0;
3731 void *old_tab = NULL;
3732 void *old_ent;
3733 struct bfd_link_hash_entry *old_undefs = NULL;
3734 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3735 void *old_strtab = NULL;
3736 size_t tabsize = 0;
3737 asection *s;
3738 bfd_boolean just_syms;
3739
3740 htab = elf_hash_table (info);
3741 bed = get_elf_backend_data (abfd);
3742
3743 if ((abfd->flags & DYNAMIC) == 0)
3744 dynamic = FALSE;
3745 else
3746 {
3747 dynamic = TRUE;
3748
3749 /* You can't use -r against a dynamic object. Also, there's no
3750 hope of using a dynamic object which does not exactly match
3751 the format of the output file. */
3752 if (bfd_link_relocatable (info)
3753 || !is_elf_hash_table (htab)
3754 || info->output_bfd->xvec != abfd->xvec)
3755 {
3756 if (bfd_link_relocatable (info))
3757 bfd_set_error (bfd_error_invalid_operation);
3758 else
3759 bfd_set_error (bfd_error_wrong_format);
3760 goto error_return;
3761 }
3762 }
3763
3764 ehdr = elf_elfheader (abfd);
3765 if (info->warn_alternate_em
3766 && bed->elf_machine_code != ehdr->e_machine
3767 && ((bed->elf_machine_alt1 != 0
3768 && ehdr->e_machine == bed->elf_machine_alt1)
3769 || (bed->elf_machine_alt2 != 0
3770 && ehdr->e_machine == bed->elf_machine_alt2)))
3771 info->callbacks->einfo
3772 /* xgettext:c-format */
3773 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3774 ehdr->e_machine, abfd, bed->elf_machine_code);
3775
3776 /* As a GNU extension, any input sections which are named
3777 .gnu.warning.SYMBOL are treated as warning symbols for the given
3778 symbol. This differs from .gnu.warning sections, which generate
3779 warnings when they are included in an output file. */
3780 /* PR 12761: Also generate this warning when building shared libraries. */
3781 for (s = abfd->sections; s != NULL; s = s->next)
3782 {
3783 const char *name;
3784
3785 name = bfd_get_section_name (abfd, s);
3786 if (CONST_STRNEQ (name, ".gnu.warning."))
3787 {
3788 char *msg;
3789 bfd_size_type sz;
3790
3791 name += sizeof ".gnu.warning." - 1;
3792
3793 /* If this is a shared object, then look up the symbol
3794 in the hash table. If it is there, and it is already
3795 been defined, then we will not be using the entry
3796 from this shared object, so we don't need to warn.
3797 FIXME: If we see the definition in a regular object
3798 later on, we will warn, but we shouldn't. The only
3799 fix is to keep track of what warnings we are supposed
3800 to emit, and then handle them all at the end of the
3801 link. */
3802 if (dynamic)
3803 {
3804 struct elf_link_hash_entry *h;
3805
3806 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3807
3808 /* FIXME: What about bfd_link_hash_common? */
3809 if (h != NULL
3810 && (h->root.type == bfd_link_hash_defined
3811 || h->root.type == bfd_link_hash_defweak))
3812 continue;
3813 }
3814
3815 sz = s->size;
3816 msg = (char *) bfd_alloc (abfd, sz + 1);
3817 if (msg == NULL)
3818 goto error_return;
3819
3820 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3821 goto error_return;
3822
3823 msg[sz] = '\0';
3824
3825 if (! (_bfd_generic_link_add_one_symbol
3826 (info, abfd, name, BSF_WARNING, s, 0, msg,
3827 FALSE, bed->collect, NULL)))
3828 goto error_return;
3829
3830 if (bfd_link_executable (info))
3831 {
3832 /* Clobber the section size so that the warning does
3833 not get copied into the output file. */
3834 s->size = 0;
3835
3836 /* Also set SEC_EXCLUDE, so that symbols defined in
3837 the warning section don't get copied to the output. */
3838 s->flags |= SEC_EXCLUDE;
3839 }
3840 }
3841 }
3842
3843 just_syms = ((s = abfd->sections) != NULL
3844 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3845
3846 add_needed = TRUE;
3847 if (! dynamic)
3848 {
3849 /* If we are creating a shared library, create all the dynamic
3850 sections immediately. We need to attach them to something,
3851 so we attach them to this BFD, provided it is the right
3852 format and is not from ld --just-symbols. Always create the
3853 dynamic sections for -E/--dynamic-list. FIXME: If there
3854 are no input BFD's of the same format as the output, we can't
3855 make a shared library. */
3856 if (!just_syms
3857 && (bfd_link_pic (info)
3858 || (!bfd_link_relocatable (info)
3859 && info->nointerp
3860 && (info->export_dynamic || info->dynamic)))
3861 && is_elf_hash_table (htab)
3862 && info->output_bfd->xvec == abfd->xvec
3863 && !htab->dynamic_sections_created)
3864 {
3865 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3866 goto error_return;
3867 }
3868 }
3869 else if (!is_elf_hash_table (htab))
3870 goto error_return;
3871 else
3872 {
3873 const char *soname = NULL;
3874 char *audit = NULL;
3875 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3876 const Elf_Internal_Phdr *phdr;
3877 int ret;
3878
3879 /* ld --just-symbols and dynamic objects don't mix very well.
3880 ld shouldn't allow it. */
3881 if (just_syms)
3882 abort ();
3883
3884 /* If this dynamic lib was specified on the command line with
3885 --as-needed in effect, then we don't want to add a DT_NEEDED
3886 tag unless the lib is actually used. Similary for libs brought
3887 in by another lib's DT_NEEDED. When --no-add-needed is used
3888 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3889 any dynamic library in DT_NEEDED tags in the dynamic lib at
3890 all. */
3891 add_needed = (elf_dyn_lib_class (abfd)
3892 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3893 | DYN_NO_NEEDED)) == 0;
3894
3895 s = bfd_get_section_by_name (abfd, ".dynamic");
3896 if (s != NULL)
3897 {
3898 bfd_byte *dynbuf;
3899 bfd_byte *extdyn;
3900 unsigned int elfsec;
3901 unsigned long shlink;
3902
3903 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3904 {
3905 error_free_dyn:
3906 free (dynbuf);
3907 goto error_return;
3908 }
3909
3910 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3911 if (elfsec == SHN_BAD)
3912 goto error_free_dyn;
3913 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3914
3915 for (extdyn = dynbuf;
3916 extdyn < dynbuf + s->size;
3917 extdyn += bed->s->sizeof_dyn)
3918 {
3919 Elf_Internal_Dyn dyn;
3920
3921 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3922 if (dyn.d_tag == DT_SONAME)
3923 {
3924 unsigned int tagv = dyn.d_un.d_val;
3925 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3926 if (soname == NULL)
3927 goto error_free_dyn;
3928 }
3929 if (dyn.d_tag == DT_NEEDED)
3930 {
3931 struct bfd_link_needed_list *n, **pn;
3932 char *fnm, *anm;
3933 unsigned int tagv = dyn.d_un.d_val;
3934
3935 amt = sizeof (struct bfd_link_needed_list);
3936 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3937 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3938 if (n == NULL || fnm == NULL)
3939 goto error_free_dyn;
3940 amt = strlen (fnm) + 1;
3941 anm = (char *) bfd_alloc (abfd, amt);
3942 if (anm == NULL)
3943 goto error_free_dyn;
3944 memcpy (anm, fnm, amt);
3945 n->name = anm;
3946 n->by = abfd;
3947 n->next = NULL;
3948 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3949 ;
3950 *pn = n;
3951 }
3952 if (dyn.d_tag == DT_RUNPATH)
3953 {
3954 struct bfd_link_needed_list *n, **pn;
3955 char *fnm, *anm;
3956 unsigned int tagv = dyn.d_un.d_val;
3957
3958 amt = sizeof (struct bfd_link_needed_list);
3959 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3960 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3961 if (n == NULL || fnm == NULL)
3962 goto error_free_dyn;
3963 amt = strlen (fnm) + 1;
3964 anm = (char *) bfd_alloc (abfd, amt);
3965 if (anm == NULL)
3966 goto error_free_dyn;
3967 memcpy (anm, fnm, amt);
3968 n->name = anm;
3969 n->by = abfd;
3970 n->next = NULL;
3971 for (pn = & runpath;
3972 *pn != NULL;
3973 pn = &(*pn)->next)
3974 ;
3975 *pn = n;
3976 }
3977 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3978 if (!runpath && dyn.d_tag == DT_RPATH)
3979 {
3980 struct bfd_link_needed_list *n, **pn;
3981 char *fnm, *anm;
3982 unsigned int tagv = dyn.d_un.d_val;
3983
3984 amt = sizeof (struct bfd_link_needed_list);
3985 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3986 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3987 if (n == NULL || fnm == NULL)
3988 goto error_free_dyn;
3989 amt = strlen (fnm) + 1;
3990 anm = (char *) bfd_alloc (abfd, amt);
3991 if (anm == NULL)
3992 goto error_free_dyn;
3993 memcpy (anm, fnm, amt);
3994 n->name = anm;
3995 n->by = abfd;
3996 n->next = NULL;
3997 for (pn = & rpath;
3998 *pn != NULL;
3999 pn = &(*pn)->next)
4000 ;
4001 *pn = n;
4002 }
4003 if (dyn.d_tag == DT_AUDIT)
4004 {
4005 unsigned int tagv = dyn.d_un.d_val;
4006 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4007 }
4008 }
4009
4010 free (dynbuf);
4011 }
4012
4013 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4014 frees all more recently bfd_alloc'd blocks as well. */
4015 if (runpath)
4016 rpath = runpath;
4017
4018 if (rpath)
4019 {
4020 struct bfd_link_needed_list **pn;
4021 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4022 ;
4023 *pn = rpath;
4024 }
4025
4026 /* If we have a PT_GNU_RELRO program header, mark as read-only
4027 all sections contained fully therein. This makes relro
4028 shared library sections appear as they will at run-time. */
4029 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4030 while (--phdr >= elf_tdata (abfd)->phdr)
4031 if (phdr->p_type == PT_GNU_RELRO)
4032 {
4033 for (s = abfd->sections; s != NULL; s = s->next)
4034 if ((s->flags & SEC_ALLOC) != 0
4035 && s->vma >= phdr->p_vaddr
4036 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4037 s->flags |= SEC_READONLY;
4038 break;
4039 }
4040
4041 /* We do not want to include any of the sections in a dynamic
4042 object in the output file. We hack by simply clobbering the
4043 list of sections in the BFD. This could be handled more
4044 cleanly by, say, a new section flag; the existing
4045 SEC_NEVER_LOAD flag is not the one we want, because that one
4046 still implies that the section takes up space in the output
4047 file. */
4048 bfd_section_list_clear (abfd);
4049
4050 /* Find the name to use in a DT_NEEDED entry that refers to this
4051 object. If the object has a DT_SONAME entry, we use it.
4052 Otherwise, if the generic linker stuck something in
4053 elf_dt_name, we use that. Otherwise, we just use the file
4054 name. */
4055 if (soname == NULL || *soname == '\0')
4056 {
4057 soname = elf_dt_name (abfd);
4058 if (soname == NULL || *soname == '\0')
4059 soname = bfd_get_filename (abfd);
4060 }
4061
4062 /* Save the SONAME because sometimes the linker emulation code
4063 will need to know it. */
4064 elf_dt_name (abfd) = soname;
4065
4066 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4067 if (ret < 0)
4068 goto error_return;
4069
4070 /* If we have already included this dynamic object in the
4071 link, just ignore it. There is no reason to include a
4072 particular dynamic object more than once. */
4073 if (ret > 0)
4074 return TRUE;
4075
4076 /* Save the DT_AUDIT entry for the linker emulation code. */
4077 elf_dt_audit (abfd) = audit;
4078 }
4079
4080 /* If this is a dynamic object, we always link against the .dynsym
4081 symbol table, not the .symtab symbol table. The dynamic linker
4082 will only see the .dynsym symbol table, so there is no reason to
4083 look at .symtab for a dynamic object. */
4084
4085 if (! dynamic || elf_dynsymtab (abfd) == 0)
4086 hdr = &elf_tdata (abfd)->symtab_hdr;
4087 else
4088 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4089
4090 symcount = hdr->sh_size / bed->s->sizeof_sym;
4091
4092 /* The sh_info field of the symtab header tells us where the
4093 external symbols start. We don't care about the local symbols at
4094 this point. */
4095 if (elf_bad_symtab (abfd))
4096 {
4097 extsymcount = symcount;
4098 extsymoff = 0;
4099 }
4100 else
4101 {
4102 extsymcount = symcount - hdr->sh_info;
4103 extsymoff = hdr->sh_info;
4104 }
4105
4106 sym_hash = elf_sym_hashes (abfd);
4107 if (extsymcount != 0)
4108 {
4109 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4110 NULL, NULL, NULL);
4111 if (isymbuf == NULL)
4112 goto error_return;
4113
4114 if (sym_hash == NULL)
4115 {
4116 /* We store a pointer to the hash table entry for each
4117 external symbol. */
4118 amt = extsymcount;
4119 amt *= sizeof (struct elf_link_hash_entry *);
4120 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4121 if (sym_hash == NULL)
4122 goto error_free_sym;
4123 elf_sym_hashes (abfd) = sym_hash;
4124 }
4125 }
4126
4127 if (dynamic)
4128 {
4129 /* Read in any version definitions. */
4130 if (!_bfd_elf_slurp_version_tables (abfd,
4131 info->default_imported_symver))
4132 goto error_free_sym;
4133
4134 /* Read in the symbol versions, but don't bother to convert them
4135 to internal format. */
4136 if (elf_dynversym (abfd) != 0)
4137 {
4138 Elf_Internal_Shdr *versymhdr;
4139
4140 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4141 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4142 if (extversym == NULL)
4143 goto error_free_sym;
4144 amt = versymhdr->sh_size;
4145 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4146 || bfd_bread (extversym, amt, abfd) != amt)
4147 goto error_free_vers;
4148 }
4149 }
4150
4151 /* If we are loading an as-needed shared lib, save the symbol table
4152 state before we start adding symbols. If the lib turns out
4153 to be unneeded, restore the state. */
4154 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4155 {
4156 unsigned int i;
4157 size_t entsize;
4158
4159 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4160 {
4161 struct bfd_hash_entry *p;
4162 struct elf_link_hash_entry *h;
4163
4164 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4165 {
4166 h = (struct elf_link_hash_entry *) p;
4167 entsize += htab->root.table.entsize;
4168 if (h->root.type == bfd_link_hash_warning)
4169 entsize += htab->root.table.entsize;
4170 }
4171 }
4172
4173 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4174 old_tab = bfd_malloc (tabsize + entsize);
4175 if (old_tab == NULL)
4176 goto error_free_vers;
4177
4178 /* Remember the current objalloc pointer, so that all mem for
4179 symbols added can later be reclaimed. */
4180 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4181 if (alloc_mark == NULL)
4182 goto error_free_vers;
4183
4184 /* Make a special call to the linker "notice" function to
4185 tell it that we are about to handle an as-needed lib. */
4186 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4187 goto error_free_vers;
4188
4189 /* Clone the symbol table. Remember some pointers into the
4190 symbol table, and dynamic symbol count. */
4191 old_ent = (char *) old_tab + tabsize;
4192 memcpy (old_tab, htab->root.table.table, tabsize);
4193 old_undefs = htab->root.undefs;
4194 old_undefs_tail = htab->root.undefs_tail;
4195 old_table = htab->root.table.table;
4196 old_size = htab->root.table.size;
4197 old_count = htab->root.table.count;
4198 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4199 if (old_strtab == NULL)
4200 goto error_free_vers;
4201
4202 for (i = 0; i < htab->root.table.size; i++)
4203 {
4204 struct bfd_hash_entry *p;
4205 struct elf_link_hash_entry *h;
4206
4207 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4208 {
4209 memcpy (old_ent, p, htab->root.table.entsize);
4210 old_ent = (char *) old_ent + htab->root.table.entsize;
4211 h = (struct elf_link_hash_entry *) p;
4212 if (h->root.type == bfd_link_hash_warning)
4213 {
4214 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4215 old_ent = (char *) old_ent + htab->root.table.entsize;
4216 }
4217 }
4218 }
4219 }
4220
4221 weaks = NULL;
4222 ever = extversym != NULL ? extversym + extsymoff : NULL;
4223 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4224 isym < isymend;
4225 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4226 {
4227 int bind;
4228 bfd_vma value;
4229 asection *sec, *new_sec;
4230 flagword flags;
4231 const char *name;
4232 struct elf_link_hash_entry *h;
4233 struct elf_link_hash_entry *hi;
4234 bfd_boolean definition;
4235 bfd_boolean size_change_ok;
4236 bfd_boolean type_change_ok;
4237 bfd_boolean new_weakdef;
4238 bfd_boolean new_weak;
4239 bfd_boolean old_weak;
4240 bfd_boolean override;
4241 bfd_boolean common;
4242 bfd_boolean discarded;
4243 unsigned int old_alignment;
4244 bfd *old_bfd;
4245 bfd_boolean matched;
4246
4247 override = FALSE;
4248
4249 flags = BSF_NO_FLAGS;
4250 sec = NULL;
4251 value = isym->st_value;
4252 common = bed->common_definition (isym);
4253 discarded = FALSE;
4254
4255 bind = ELF_ST_BIND (isym->st_info);
4256 switch (bind)
4257 {
4258 case STB_LOCAL:
4259 /* This should be impossible, since ELF requires that all
4260 global symbols follow all local symbols, and that sh_info
4261 point to the first global symbol. Unfortunately, Irix 5
4262 screws this up. */
4263 continue;
4264
4265 case STB_GLOBAL:
4266 if (isym->st_shndx != SHN_UNDEF && !common)
4267 flags = BSF_GLOBAL;
4268 break;
4269
4270 case STB_WEAK:
4271 flags = BSF_WEAK;
4272 break;
4273
4274 case STB_GNU_UNIQUE:
4275 flags = BSF_GNU_UNIQUE;
4276 break;
4277
4278 default:
4279 /* Leave it up to the processor backend. */
4280 break;
4281 }
4282
4283 if (isym->st_shndx == SHN_UNDEF)
4284 sec = bfd_und_section_ptr;
4285 else if (isym->st_shndx == SHN_ABS)
4286 sec = bfd_abs_section_ptr;
4287 else if (isym->st_shndx == SHN_COMMON)
4288 {
4289 sec = bfd_com_section_ptr;
4290 /* What ELF calls the size we call the value. What ELF
4291 calls the value we call the alignment. */
4292 value = isym->st_size;
4293 }
4294 else
4295 {
4296 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4297 if (sec == NULL)
4298 sec = bfd_abs_section_ptr;
4299 else if (discarded_section (sec))
4300 {
4301 /* Symbols from discarded section are undefined. We keep
4302 its visibility. */
4303 sec = bfd_und_section_ptr;
4304 discarded = TRUE;
4305 isym->st_shndx = SHN_UNDEF;
4306 }
4307 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4308 value -= sec->vma;
4309 }
4310
4311 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4312 isym->st_name);
4313 if (name == NULL)
4314 goto error_free_vers;
4315
4316 if (isym->st_shndx == SHN_COMMON
4317 && (abfd->flags & BFD_PLUGIN) != 0)
4318 {
4319 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4320
4321 if (xc == NULL)
4322 {
4323 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4324 | SEC_EXCLUDE);
4325 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4326 if (xc == NULL)
4327 goto error_free_vers;
4328 }
4329 sec = xc;
4330 }
4331 else if (isym->st_shndx == SHN_COMMON
4332 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4333 && !bfd_link_relocatable (info))
4334 {
4335 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4336
4337 if (tcomm == NULL)
4338 {
4339 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4340 | SEC_LINKER_CREATED);
4341 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4342 if (tcomm == NULL)
4343 goto error_free_vers;
4344 }
4345 sec = tcomm;
4346 }
4347 else if (bed->elf_add_symbol_hook)
4348 {
4349 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4350 &sec, &value))
4351 goto error_free_vers;
4352
4353 /* The hook function sets the name to NULL if this symbol
4354 should be skipped for some reason. */
4355 if (name == NULL)
4356 continue;
4357 }
4358
4359 /* Sanity check that all possibilities were handled. */
4360 if (sec == NULL)
4361 {
4362 bfd_set_error (bfd_error_bad_value);
4363 goto error_free_vers;
4364 }
4365
4366 /* Silently discard TLS symbols from --just-syms. There's
4367 no way to combine a static TLS block with a new TLS block
4368 for this executable. */
4369 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4370 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4371 continue;
4372
4373 if (bfd_is_und_section (sec)
4374 || bfd_is_com_section (sec))
4375 definition = FALSE;
4376 else
4377 definition = TRUE;
4378
4379 size_change_ok = FALSE;
4380 type_change_ok = bed->type_change_ok;
4381 old_weak = FALSE;
4382 matched = FALSE;
4383 old_alignment = 0;
4384 old_bfd = NULL;
4385 new_sec = sec;
4386
4387 if (is_elf_hash_table (htab))
4388 {
4389 Elf_Internal_Versym iver;
4390 unsigned int vernum = 0;
4391 bfd_boolean skip;
4392
4393 if (ever == NULL)
4394 {
4395 if (info->default_imported_symver)
4396 /* Use the default symbol version created earlier. */
4397 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4398 else
4399 iver.vs_vers = 0;
4400 }
4401 else
4402 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4403
4404 vernum = iver.vs_vers & VERSYM_VERSION;
4405
4406 /* If this is a hidden symbol, or if it is not version
4407 1, we append the version name to the symbol name.
4408 However, we do not modify a non-hidden absolute symbol
4409 if it is not a function, because it might be the version
4410 symbol itself. FIXME: What if it isn't? */
4411 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4412 || (vernum > 1
4413 && (!bfd_is_abs_section (sec)
4414 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4415 {
4416 const char *verstr;
4417 size_t namelen, verlen, newlen;
4418 char *newname, *p;
4419
4420 if (isym->st_shndx != SHN_UNDEF)
4421 {
4422 if (vernum > elf_tdata (abfd)->cverdefs)
4423 verstr = NULL;
4424 else if (vernum > 1)
4425 verstr =
4426 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4427 else
4428 verstr = "";
4429
4430 if (verstr == NULL)
4431 {
4432 _bfd_error_handler
4433 /* xgettext:c-format */
4434 (_("%B: %s: invalid version %u (max %d)"),
4435 abfd, name, vernum,
4436 elf_tdata (abfd)->cverdefs);
4437 bfd_set_error (bfd_error_bad_value);
4438 goto error_free_vers;
4439 }
4440 }
4441 else
4442 {
4443 /* We cannot simply test for the number of
4444 entries in the VERNEED section since the
4445 numbers for the needed versions do not start
4446 at 0. */
4447 Elf_Internal_Verneed *t;
4448
4449 verstr = NULL;
4450 for (t = elf_tdata (abfd)->verref;
4451 t != NULL;
4452 t = t->vn_nextref)
4453 {
4454 Elf_Internal_Vernaux *a;
4455
4456 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4457 {
4458 if (a->vna_other == vernum)
4459 {
4460 verstr = a->vna_nodename;
4461 break;
4462 }
4463 }
4464 if (a != NULL)
4465 break;
4466 }
4467 if (verstr == NULL)
4468 {
4469 _bfd_error_handler
4470 /* xgettext:c-format */
4471 (_("%B: %s: invalid needed version %d"),
4472 abfd, name, vernum);
4473 bfd_set_error (bfd_error_bad_value);
4474 goto error_free_vers;
4475 }
4476 }
4477
4478 namelen = strlen (name);
4479 verlen = strlen (verstr);
4480 newlen = namelen + verlen + 2;
4481 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4482 && isym->st_shndx != SHN_UNDEF)
4483 ++newlen;
4484
4485 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4486 if (newname == NULL)
4487 goto error_free_vers;
4488 memcpy (newname, name, namelen);
4489 p = newname + namelen;
4490 *p++ = ELF_VER_CHR;
4491 /* If this is a defined non-hidden version symbol,
4492 we add another @ to the name. This indicates the
4493 default version of the symbol. */
4494 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4495 && isym->st_shndx != SHN_UNDEF)
4496 *p++ = ELF_VER_CHR;
4497 memcpy (p, verstr, verlen + 1);
4498
4499 name = newname;
4500 }
4501
4502 /* If this symbol has default visibility and the user has
4503 requested we not re-export it, then mark it as hidden. */
4504 if (!bfd_is_und_section (sec)
4505 && !dynamic
4506 && abfd->no_export
4507 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4508 isym->st_other = (STV_HIDDEN
4509 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4510
4511 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4512 sym_hash, &old_bfd, &old_weak,
4513 &old_alignment, &skip, &override,
4514 &type_change_ok, &size_change_ok,
4515 &matched))
4516 goto error_free_vers;
4517
4518 if (skip)
4519 continue;
4520
4521 /* Override a definition only if the new symbol matches the
4522 existing one. */
4523 if (override && matched)
4524 definition = FALSE;
4525
4526 h = *sym_hash;
4527 while (h->root.type == bfd_link_hash_indirect
4528 || h->root.type == bfd_link_hash_warning)
4529 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4530
4531 if (elf_tdata (abfd)->verdef != NULL
4532 && vernum > 1
4533 && definition)
4534 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4535 }
4536
4537 if (! (_bfd_generic_link_add_one_symbol
4538 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4539 (struct bfd_link_hash_entry **) sym_hash)))
4540 goto error_free_vers;
4541
4542 if ((flags & BSF_GNU_UNIQUE)
4543 && (abfd->flags & DYNAMIC) == 0
4544 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4545 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4546
4547 h = *sym_hash;
4548 /* We need to make sure that indirect symbol dynamic flags are
4549 updated. */
4550 hi = h;
4551 while (h->root.type == bfd_link_hash_indirect
4552 || h->root.type == bfd_link_hash_warning)
4553 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4554
4555 /* Setting the index to -3 tells elf_link_output_extsym that
4556 this symbol is defined in a discarded section. */
4557 if (discarded)
4558 h->indx = -3;
4559
4560 *sym_hash = h;
4561
4562 new_weak = (flags & BSF_WEAK) != 0;
4563 new_weakdef = FALSE;
4564 if (dynamic
4565 && definition
4566 && new_weak
4567 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4568 && is_elf_hash_table (htab)
4569 && h->u.weakdef == NULL)
4570 {
4571 /* Keep a list of all weak defined non function symbols from
4572 a dynamic object, using the weakdef field. Later in this
4573 function we will set the weakdef field to the correct
4574 value. We only put non-function symbols from dynamic
4575 objects on this list, because that happens to be the only
4576 time we need to know the normal symbol corresponding to a
4577 weak symbol, and the information is time consuming to
4578 figure out. If the weakdef field is not already NULL,
4579 then this symbol was already defined by some previous
4580 dynamic object, and we will be using that previous
4581 definition anyhow. */
4582
4583 h->u.weakdef = weaks;
4584 weaks = h;
4585 new_weakdef = TRUE;
4586 }
4587
4588 /* Set the alignment of a common symbol. */
4589 if ((common || bfd_is_com_section (sec))
4590 && h->root.type == bfd_link_hash_common)
4591 {
4592 unsigned int align;
4593
4594 if (common)
4595 align = bfd_log2 (isym->st_value);
4596 else
4597 {
4598 /* The new symbol is a common symbol in a shared object.
4599 We need to get the alignment from the section. */
4600 align = new_sec->alignment_power;
4601 }
4602 if (align > old_alignment)
4603 h->root.u.c.p->alignment_power = align;
4604 else
4605 h->root.u.c.p->alignment_power = old_alignment;
4606 }
4607
4608 if (is_elf_hash_table (htab))
4609 {
4610 /* Set a flag in the hash table entry indicating the type of
4611 reference or definition we just found. A dynamic symbol
4612 is one which is referenced or defined by both a regular
4613 object and a shared object. */
4614 bfd_boolean dynsym = FALSE;
4615
4616 /* Plugin symbols aren't normal. Don't set def_regular or
4617 ref_regular for them, or make them dynamic. */
4618 if ((abfd->flags & BFD_PLUGIN) != 0)
4619 ;
4620 else if (! dynamic)
4621 {
4622 if (! definition)
4623 {
4624 h->ref_regular = 1;
4625 if (bind != STB_WEAK)
4626 h->ref_regular_nonweak = 1;
4627 }
4628 else
4629 {
4630 h->def_regular = 1;
4631 if (h->def_dynamic)
4632 {
4633 h->def_dynamic = 0;
4634 h->ref_dynamic = 1;
4635 }
4636 }
4637
4638 /* If the indirect symbol has been forced local, don't
4639 make the real symbol dynamic. */
4640 if ((h == hi || !hi->forced_local)
4641 && (bfd_link_dll (info)
4642 || h->def_dynamic
4643 || h->ref_dynamic))
4644 dynsym = TRUE;
4645 }
4646 else
4647 {
4648 if (! definition)
4649 {
4650 h->ref_dynamic = 1;
4651 hi->ref_dynamic = 1;
4652 }
4653 else
4654 {
4655 h->def_dynamic = 1;
4656 hi->def_dynamic = 1;
4657 }
4658
4659 /* If the indirect symbol has been forced local, don't
4660 make the real symbol dynamic. */
4661 if ((h == hi || !hi->forced_local)
4662 && (h->def_regular
4663 || h->ref_regular
4664 || (h->u.weakdef != NULL
4665 && ! new_weakdef
4666 && h->u.weakdef->dynindx != -1)))
4667 dynsym = TRUE;
4668 }
4669
4670 /* Check to see if we need to add an indirect symbol for
4671 the default name. */
4672 if (definition
4673 || (!override && h->root.type == bfd_link_hash_common))
4674 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4675 sec, value, &old_bfd, &dynsym))
4676 goto error_free_vers;
4677
4678 /* Check the alignment when a common symbol is involved. This
4679 can change when a common symbol is overridden by a normal
4680 definition or a common symbol is ignored due to the old
4681 normal definition. We need to make sure the maximum
4682 alignment is maintained. */
4683 if ((old_alignment || common)
4684 && h->root.type != bfd_link_hash_common)
4685 {
4686 unsigned int common_align;
4687 unsigned int normal_align;
4688 unsigned int symbol_align;
4689 bfd *normal_bfd;
4690 bfd *common_bfd;
4691
4692 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4693 || h->root.type == bfd_link_hash_defweak);
4694
4695 symbol_align = ffs (h->root.u.def.value) - 1;
4696 if (h->root.u.def.section->owner != NULL
4697 && (h->root.u.def.section->owner->flags
4698 & (DYNAMIC | BFD_PLUGIN)) == 0)
4699 {
4700 normal_align = h->root.u.def.section->alignment_power;
4701 if (normal_align > symbol_align)
4702 normal_align = symbol_align;
4703 }
4704 else
4705 normal_align = symbol_align;
4706
4707 if (old_alignment)
4708 {
4709 common_align = old_alignment;
4710 common_bfd = old_bfd;
4711 normal_bfd = abfd;
4712 }
4713 else
4714 {
4715 common_align = bfd_log2 (isym->st_value);
4716 common_bfd = abfd;
4717 normal_bfd = old_bfd;
4718 }
4719
4720 if (normal_align < common_align)
4721 {
4722 /* PR binutils/2735 */
4723 if (normal_bfd == NULL)
4724 _bfd_error_handler
4725 /* xgettext:c-format */
4726 (_("Warning: alignment %u of common symbol `%s' in %B is"
4727 " greater than the alignment (%u) of its section %A"),
4728 1 << common_align, name, common_bfd,
4729 1 << normal_align, h->root.u.def.section);
4730 else
4731 _bfd_error_handler
4732 /* xgettext:c-format */
4733 (_("Warning: alignment %u of symbol `%s' in %B"
4734 " is smaller than %u in %B"),
4735 1 << normal_align, name, normal_bfd,
4736 1 << common_align, common_bfd);
4737 }
4738 }
4739
4740 /* Remember the symbol size if it isn't undefined. */
4741 if (isym->st_size != 0
4742 && isym->st_shndx != SHN_UNDEF
4743 && (definition || h->size == 0))
4744 {
4745 if (h->size != 0
4746 && h->size != isym->st_size
4747 && ! size_change_ok)
4748 _bfd_error_handler
4749 /* xgettext:c-format */
4750 (_("Warning: size of symbol `%s' changed"
4751 " from %lu in %B to %lu in %B"),
4752 name, (unsigned long) h->size, old_bfd,
4753 (unsigned long) isym->st_size, abfd);
4754
4755 h->size = isym->st_size;
4756 }
4757
4758 /* If this is a common symbol, then we always want H->SIZE
4759 to be the size of the common symbol. The code just above
4760 won't fix the size if a common symbol becomes larger. We
4761 don't warn about a size change here, because that is
4762 covered by --warn-common. Allow changes between different
4763 function types. */
4764 if (h->root.type == bfd_link_hash_common)
4765 h->size = h->root.u.c.size;
4766
4767 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4768 && ((definition && !new_weak)
4769 || (old_weak && h->root.type == bfd_link_hash_common)
4770 || h->type == STT_NOTYPE))
4771 {
4772 unsigned int type = ELF_ST_TYPE (isym->st_info);
4773
4774 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4775 symbol. */
4776 if (type == STT_GNU_IFUNC
4777 && (abfd->flags & DYNAMIC) != 0)
4778 type = STT_FUNC;
4779
4780 if (h->type != type)
4781 {
4782 if (h->type != STT_NOTYPE && ! type_change_ok)
4783 /* xgettext:c-format */
4784 _bfd_error_handler
4785 (_("Warning: type of symbol `%s' changed"
4786 " from %d to %d in %B"),
4787 name, h->type, type, abfd);
4788
4789 h->type = type;
4790 }
4791 }
4792
4793 /* Merge st_other field. */
4794 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4795
4796 /* We don't want to make debug symbol dynamic. */
4797 if (definition
4798 && (sec->flags & SEC_DEBUGGING)
4799 && !bfd_link_relocatable (info))
4800 dynsym = FALSE;
4801
4802 /* Nor should we make plugin symbols dynamic. */
4803 if ((abfd->flags & BFD_PLUGIN) != 0)
4804 dynsym = FALSE;
4805
4806 if (definition)
4807 {
4808 h->target_internal = isym->st_target_internal;
4809 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4810 }
4811
4812 if (definition && !dynamic)
4813 {
4814 char *p = strchr (name, ELF_VER_CHR);
4815 if (p != NULL && p[1] != ELF_VER_CHR)
4816 {
4817 /* Queue non-default versions so that .symver x, x@FOO
4818 aliases can be checked. */
4819 if (!nondeflt_vers)
4820 {
4821 amt = ((isymend - isym + 1)
4822 * sizeof (struct elf_link_hash_entry *));
4823 nondeflt_vers
4824 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4825 if (!nondeflt_vers)
4826 goto error_free_vers;
4827 }
4828 nondeflt_vers[nondeflt_vers_cnt++] = h;
4829 }
4830 }
4831
4832 if (dynsym && h->dynindx == -1)
4833 {
4834 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4835 goto error_free_vers;
4836 if (h->u.weakdef != NULL
4837 && ! new_weakdef
4838 && h->u.weakdef->dynindx == -1)
4839 {
4840 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4841 goto error_free_vers;
4842 }
4843 }
4844 else if (h->dynindx != -1)
4845 /* If the symbol already has a dynamic index, but
4846 visibility says it should not be visible, turn it into
4847 a local symbol. */
4848 switch (ELF_ST_VISIBILITY (h->other))
4849 {
4850 case STV_INTERNAL:
4851 case STV_HIDDEN:
4852 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4853 dynsym = FALSE;
4854 break;
4855 }
4856
4857 /* Don't add DT_NEEDED for references from the dummy bfd nor
4858 for unmatched symbol. */
4859 if (!add_needed
4860 && matched
4861 && definition
4862 && ((dynsym
4863 && h->ref_regular_nonweak
4864 && (old_bfd == NULL
4865 || (old_bfd->flags & BFD_PLUGIN) == 0))
4866 || (h->ref_dynamic_nonweak
4867 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4868 && !on_needed_list (elf_dt_name (abfd),
4869 htab->needed, NULL))))
4870 {
4871 int ret;
4872 const char *soname = elf_dt_name (abfd);
4873
4874 info->callbacks->minfo ("%!", soname, old_bfd,
4875 h->root.root.string);
4876
4877 /* A symbol from a library loaded via DT_NEEDED of some
4878 other library is referenced by a regular object.
4879 Add a DT_NEEDED entry for it. Issue an error if
4880 --no-add-needed is used and the reference was not
4881 a weak one. */
4882 if (old_bfd != NULL
4883 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4884 {
4885 _bfd_error_handler
4886 /* xgettext:c-format */
4887 (_("%B: undefined reference to symbol '%s'"),
4888 old_bfd, name);
4889 bfd_set_error (bfd_error_missing_dso);
4890 goto error_free_vers;
4891 }
4892
4893 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4894 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4895
4896 add_needed = TRUE;
4897 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4898 if (ret < 0)
4899 goto error_free_vers;
4900
4901 BFD_ASSERT (ret == 0);
4902 }
4903 }
4904 }
4905
4906 if (extversym != NULL)
4907 {
4908 free (extversym);
4909 extversym = NULL;
4910 }
4911
4912 if (isymbuf != NULL)
4913 {
4914 free (isymbuf);
4915 isymbuf = NULL;
4916 }
4917
4918 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4919 {
4920 unsigned int i;
4921
4922 /* Restore the symbol table. */
4923 old_ent = (char *) old_tab + tabsize;
4924 memset (elf_sym_hashes (abfd), 0,
4925 extsymcount * sizeof (struct elf_link_hash_entry *));
4926 htab->root.table.table = old_table;
4927 htab->root.table.size = old_size;
4928 htab->root.table.count = old_count;
4929 memcpy (htab->root.table.table, old_tab, tabsize);
4930 htab->root.undefs = old_undefs;
4931 htab->root.undefs_tail = old_undefs_tail;
4932 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4933 free (old_strtab);
4934 old_strtab = NULL;
4935 for (i = 0; i < htab->root.table.size; i++)
4936 {
4937 struct bfd_hash_entry *p;
4938 struct elf_link_hash_entry *h;
4939 bfd_size_type size;
4940 unsigned int alignment_power;
4941 unsigned int non_ir_ref_dynamic;
4942
4943 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4944 {
4945 h = (struct elf_link_hash_entry *) p;
4946 if (h->root.type == bfd_link_hash_warning)
4947 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4948
4949 /* Preserve the maximum alignment and size for common
4950 symbols even if this dynamic lib isn't on DT_NEEDED
4951 since it can still be loaded at run time by another
4952 dynamic lib. */
4953 if (h->root.type == bfd_link_hash_common)
4954 {
4955 size = h->root.u.c.size;
4956 alignment_power = h->root.u.c.p->alignment_power;
4957 }
4958 else
4959 {
4960 size = 0;
4961 alignment_power = 0;
4962 }
4963 /* Preserve non_ir_ref_dynamic so that this symbol
4964 will be exported when the dynamic lib becomes needed
4965 in the second pass. */
4966 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
4967 memcpy (p, old_ent, htab->root.table.entsize);
4968 old_ent = (char *) old_ent + htab->root.table.entsize;
4969 h = (struct elf_link_hash_entry *) p;
4970 if (h->root.type == bfd_link_hash_warning)
4971 {
4972 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4973 old_ent = (char *) old_ent + htab->root.table.entsize;
4974 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4975 }
4976 if (h->root.type == bfd_link_hash_common)
4977 {
4978 if (size > h->root.u.c.size)
4979 h->root.u.c.size = size;
4980 if (alignment_power > h->root.u.c.p->alignment_power)
4981 h->root.u.c.p->alignment_power = alignment_power;
4982 }
4983 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
4984 }
4985 }
4986
4987 /* Make a special call to the linker "notice" function to
4988 tell it that symbols added for crefs may need to be removed. */
4989 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4990 goto error_free_vers;
4991
4992 free (old_tab);
4993 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4994 alloc_mark);
4995 if (nondeflt_vers != NULL)
4996 free (nondeflt_vers);
4997 return TRUE;
4998 }
4999
5000 if (old_tab != NULL)
5001 {
5002 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5003 goto error_free_vers;
5004 free (old_tab);
5005 old_tab = NULL;
5006 }
5007
5008 /* Now that all the symbols from this input file are created, if
5009 not performing a relocatable link, handle .symver foo, foo@BAR
5010 such that any relocs against foo become foo@BAR. */
5011 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5012 {
5013 size_t cnt, symidx;
5014
5015 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5016 {
5017 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5018 char *shortname, *p;
5019
5020 p = strchr (h->root.root.string, ELF_VER_CHR);
5021 if (p == NULL
5022 || (h->root.type != bfd_link_hash_defined
5023 && h->root.type != bfd_link_hash_defweak))
5024 continue;
5025
5026 amt = p - h->root.root.string;
5027 shortname = (char *) bfd_malloc (amt + 1);
5028 if (!shortname)
5029 goto error_free_vers;
5030 memcpy (shortname, h->root.root.string, amt);
5031 shortname[amt] = '\0';
5032
5033 hi = (struct elf_link_hash_entry *)
5034 bfd_link_hash_lookup (&htab->root, shortname,
5035 FALSE, FALSE, FALSE);
5036 if (hi != NULL
5037 && hi->root.type == h->root.type
5038 && hi->root.u.def.value == h->root.u.def.value
5039 && hi->root.u.def.section == h->root.u.def.section)
5040 {
5041 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5042 hi->root.type = bfd_link_hash_indirect;
5043 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5044 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5045 sym_hash = elf_sym_hashes (abfd);
5046 if (sym_hash)
5047 for (symidx = 0; symidx < extsymcount; ++symidx)
5048 if (sym_hash[symidx] == hi)
5049 {
5050 sym_hash[symidx] = h;
5051 break;
5052 }
5053 }
5054 free (shortname);
5055 }
5056 free (nondeflt_vers);
5057 nondeflt_vers = NULL;
5058 }
5059
5060 /* Now set the weakdefs field correctly for all the weak defined
5061 symbols we found. The only way to do this is to search all the
5062 symbols. Since we only need the information for non functions in
5063 dynamic objects, that's the only time we actually put anything on
5064 the list WEAKS. We need this information so that if a regular
5065 object refers to a symbol defined weakly in a dynamic object, the
5066 real symbol in the dynamic object is also put in the dynamic
5067 symbols; we also must arrange for both symbols to point to the
5068 same memory location. We could handle the general case of symbol
5069 aliasing, but a general symbol alias can only be generated in
5070 assembler code, handling it correctly would be very time
5071 consuming, and other ELF linkers don't handle general aliasing
5072 either. */
5073 if (weaks != NULL)
5074 {
5075 struct elf_link_hash_entry **hpp;
5076 struct elf_link_hash_entry **hppend;
5077 struct elf_link_hash_entry **sorted_sym_hash;
5078 struct elf_link_hash_entry *h;
5079 size_t sym_count;
5080
5081 /* Since we have to search the whole symbol list for each weak
5082 defined symbol, search time for N weak defined symbols will be
5083 O(N^2). Binary search will cut it down to O(NlogN). */
5084 amt = extsymcount;
5085 amt *= sizeof (struct elf_link_hash_entry *);
5086 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5087 if (sorted_sym_hash == NULL)
5088 goto error_return;
5089 sym_hash = sorted_sym_hash;
5090 hpp = elf_sym_hashes (abfd);
5091 hppend = hpp + extsymcount;
5092 sym_count = 0;
5093 for (; hpp < hppend; hpp++)
5094 {
5095 h = *hpp;
5096 if (h != NULL
5097 && h->root.type == bfd_link_hash_defined
5098 && !bed->is_function_type (h->type))
5099 {
5100 *sym_hash = h;
5101 sym_hash++;
5102 sym_count++;
5103 }
5104 }
5105
5106 qsort (sorted_sym_hash, sym_count,
5107 sizeof (struct elf_link_hash_entry *),
5108 elf_sort_symbol);
5109
5110 while (weaks != NULL)
5111 {
5112 struct elf_link_hash_entry *hlook;
5113 asection *slook;
5114 bfd_vma vlook;
5115 size_t i, j, idx = 0;
5116
5117 hlook = weaks;
5118 weaks = hlook->u.weakdef;
5119 hlook->u.weakdef = NULL;
5120
5121 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5122 || hlook->root.type == bfd_link_hash_defweak
5123 || hlook->root.type == bfd_link_hash_common
5124 || hlook->root.type == bfd_link_hash_indirect);
5125 slook = hlook->root.u.def.section;
5126 vlook = hlook->root.u.def.value;
5127
5128 i = 0;
5129 j = sym_count;
5130 while (i != j)
5131 {
5132 bfd_signed_vma vdiff;
5133 idx = (i + j) / 2;
5134 h = sorted_sym_hash[idx];
5135 vdiff = vlook - h->root.u.def.value;
5136 if (vdiff < 0)
5137 j = idx;
5138 else if (vdiff > 0)
5139 i = idx + 1;
5140 else
5141 {
5142 int sdiff = slook->id - h->root.u.def.section->id;
5143 if (sdiff < 0)
5144 j = idx;
5145 else if (sdiff > 0)
5146 i = idx + 1;
5147 else
5148 break;
5149 }
5150 }
5151
5152 /* We didn't find a value/section match. */
5153 if (i == j)
5154 continue;
5155
5156 /* With multiple aliases, or when the weak symbol is already
5157 strongly defined, we have multiple matching symbols and
5158 the binary search above may land on any of them. Step
5159 one past the matching symbol(s). */
5160 while (++idx != j)
5161 {
5162 h = sorted_sym_hash[idx];
5163 if (h->root.u.def.section != slook
5164 || h->root.u.def.value != vlook)
5165 break;
5166 }
5167
5168 /* Now look back over the aliases. Since we sorted by size
5169 as well as value and section, we'll choose the one with
5170 the largest size. */
5171 while (idx-- != i)
5172 {
5173 h = sorted_sym_hash[idx];
5174
5175 /* Stop if value or section doesn't match. */
5176 if (h->root.u.def.section != slook
5177 || h->root.u.def.value != vlook)
5178 break;
5179 else if (h != hlook)
5180 {
5181 hlook->u.weakdef = h;
5182
5183 /* If the weak definition is in the list of dynamic
5184 symbols, make sure the real definition is put
5185 there as well. */
5186 if (hlook->dynindx != -1 && h->dynindx == -1)
5187 {
5188 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5189 {
5190 err_free_sym_hash:
5191 free (sorted_sym_hash);
5192 goto error_return;
5193 }
5194 }
5195
5196 /* If the real definition is in the list of dynamic
5197 symbols, make sure the weak definition is put
5198 there as well. If we don't do this, then the
5199 dynamic loader might not merge the entries for the
5200 real definition and the weak definition. */
5201 if (h->dynindx != -1 && hlook->dynindx == -1)
5202 {
5203 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5204 goto err_free_sym_hash;
5205 }
5206 break;
5207 }
5208 }
5209 }
5210
5211 free (sorted_sym_hash);
5212 }
5213
5214 if (bed->check_directives
5215 && !(*bed->check_directives) (abfd, info))
5216 return FALSE;
5217
5218 if (!info->check_relocs_after_open_input
5219 && !_bfd_elf_link_check_relocs (abfd, info))
5220 return FALSE;
5221
5222 /* If this is a non-traditional link, try to optimize the handling
5223 of the .stab/.stabstr sections. */
5224 if (! dynamic
5225 && ! info->traditional_format
5226 && is_elf_hash_table (htab)
5227 && (info->strip != strip_all && info->strip != strip_debugger))
5228 {
5229 asection *stabstr;
5230
5231 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5232 if (stabstr != NULL)
5233 {
5234 bfd_size_type string_offset = 0;
5235 asection *stab;
5236
5237 for (stab = abfd->sections; stab; stab = stab->next)
5238 if (CONST_STRNEQ (stab->name, ".stab")
5239 && (!stab->name[5] ||
5240 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5241 && (stab->flags & SEC_MERGE) == 0
5242 && !bfd_is_abs_section (stab->output_section))
5243 {
5244 struct bfd_elf_section_data *secdata;
5245
5246 secdata = elf_section_data (stab);
5247 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5248 stabstr, &secdata->sec_info,
5249 &string_offset))
5250 goto error_return;
5251 if (secdata->sec_info)
5252 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5253 }
5254 }
5255 }
5256
5257 if (is_elf_hash_table (htab) && add_needed)
5258 {
5259 /* Add this bfd to the loaded list. */
5260 struct elf_link_loaded_list *n;
5261
5262 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5263 if (n == NULL)
5264 goto error_return;
5265 n->abfd = abfd;
5266 n->next = htab->loaded;
5267 htab->loaded = n;
5268 }
5269
5270 return TRUE;
5271
5272 error_free_vers:
5273 if (old_tab != NULL)
5274 free (old_tab);
5275 if (old_strtab != NULL)
5276 free (old_strtab);
5277 if (nondeflt_vers != NULL)
5278 free (nondeflt_vers);
5279 if (extversym != NULL)
5280 free (extversym);
5281 error_free_sym:
5282 if (isymbuf != NULL)
5283 free (isymbuf);
5284 error_return:
5285 return FALSE;
5286 }
5287
5288 /* Return the linker hash table entry of a symbol that might be
5289 satisfied by an archive symbol. Return -1 on error. */
5290
5291 struct elf_link_hash_entry *
5292 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5293 struct bfd_link_info *info,
5294 const char *name)
5295 {
5296 struct elf_link_hash_entry *h;
5297 char *p, *copy;
5298 size_t len, first;
5299
5300 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5301 if (h != NULL)
5302 return h;
5303
5304 /* If this is a default version (the name contains @@), look up the
5305 symbol again with only one `@' as well as without the version.
5306 The effect is that references to the symbol with and without the
5307 version will be matched by the default symbol in the archive. */
5308
5309 p = strchr (name, ELF_VER_CHR);
5310 if (p == NULL || p[1] != ELF_VER_CHR)
5311 return h;
5312
5313 /* First check with only one `@'. */
5314 len = strlen (name);
5315 copy = (char *) bfd_alloc (abfd, len);
5316 if (copy == NULL)
5317 return (struct elf_link_hash_entry *) 0 - 1;
5318
5319 first = p - name + 1;
5320 memcpy (copy, name, first);
5321 memcpy (copy + first, name + first + 1, len - first);
5322
5323 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5324 if (h == NULL)
5325 {
5326 /* We also need to check references to the symbol without the
5327 version. */
5328 copy[first - 1] = '\0';
5329 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5330 FALSE, FALSE, TRUE);
5331 }
5332
5333 bfd_release (abfd, copy);
5334 return h;
5335 }
5336
5337 /* Add symbols from an ELF archive file to the linker hash table. We
5338 don't use _bfd_generic_link_add_archive_symbols because we need to
5339 handle versioned symbols.
5340
5341 Fortunately, ELF archive handling is simpler than that done by
5342 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5343 oddities. In ELF, if we find a symbol in the archive map, and the
5344 symbol is currently undefined, we know that we must pull in that
5345 object file.
5346
5347 Unfortunately, we do have to make multiple passes over the symbol
5348 table until nothing further is resolved. */
5349
5350 static bfd_boolean
5351 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5352 {
5353 symindex c;
5354 unsigned char *included = NULL;
5355 carsym *symdefs;
5356 bfd_boolean loop;
5357 bfd_size_type amt;
5358 const struct elf_backend_data *bed;
5359 struct elf_link_hash_entry * (*archive_symbol_lookup)
5360 (bfd *, struct bfd_link_info *, const char *);
5361
5362 if (! bfd_has_map (abfd))
5363 {
5364 /* An empty archive is a special case. */
5365 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5366 return TRUE;
5367 bfd_set_error (bfd_error_no_armap);
5368 return FALSE;
5369 }
5370
5371 /* Keep track of all symbols we know to be already defined, and all
5372 files we know to be already included. This is to speed up the
5373 second and subsequent passes. */
5374 c = bfd_ardata (abfd)->symdef_count;
5375 if (c == 0)
5376 return TRUE;
5377 amt = c;
5378 amt *= sizeof (*included);
5379 included = (unsigned char *) bfd_zmalloc (amt);
5380 if (included == NULL)
5381 return FALSE;
5382
5383 symdefs = bfd_ardata (abfd)->symdefs;
5384 bed = get_elf_backend_data (abfd);
5385 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5386
5387 do
5388 {
5389 file_ptr last;
5390 symindex i;
5391 carsym *symdef;
5392 carsym *symdefend;
5393
5394 loop = FALSE;
5395 last = -1;
5396
5397 symdef = symdefs;
5398 symdefend = symdef + c;
5399 for (i = 0; symdef < symdefend; symdef++, i++)
5400 {
5401 struct elf_link_hash_entry *h;
5402 bfd *element;
5403 struct bfd_link_hash_entry *undefs_tail;
5404 symindex mark;
5405
5406 if (included[i])
5407 continue;
5408 if (symdef->file_offset == last)
5409 {
5410 included[i] = TRUE;
5411 continue;
5412 }
5413
5414 h = archive_symbol_lookup (abfd, info, symdef->name);
5415 if (h == (struct elf_link_hash_entry *) 0 - 1)
5416 goto error_return;
5417
5418 if (h == NULL)
5419 continue;
5420
5421 if (h->root.type == bfd_link_hash_common)
5422 {
5423 /* We currently have a common symbol. The archive map contains
5424 a reference to this symbol, so we may want to include it. We
5425 only want to include it however, if this archive element
5426 contains a definition of the symbol, not just another common
5427 declaration of it.
5428
5429 Unfortunately some archivers (including GNU ar) will put
5430 declarations of common symbols into their archive maps, as
5431 well as real definitions, so we cannot just go by the archive
5432 map alone. Instead we must read in the element's symbol
5433 table and check that to see what kind of symbol definition
5434 this is. */
5435 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5436 continue;
5437 }
5438 else if (h->root.type != bfd_link_hash_undefined)
5439 {
5440 if (h->root.type != bfd_link_hash_undefweak)
5441 /* Symbol must be defined. Don't check it again. */
5442 included[i] = TRUE;
5443 continue;
5444 }
5445
5446 /* We need to include this archive member. */
5447 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5448 if (element == NULL)
5449 goto error_return;
5450
5451 if (! bfd_check_format (element, bfd_object))
5452 goto error_return;
5453
5454 undefs_tail = info->hash->undefs_tail;
5455
5456 if (!(*info->callbacks
5457 ->add_archive_element) (info, element, symdef->name, &element))
5458 continue;
5459 if (!bfd_link_add_symbols (element, info))
5460 goto error_return;
5461
5462 /* If there are any new undefined symbols, we need to make
5463 another pass through the archive in order to see whether
5464 they can be defined. FIXME: This isn't perfect, because
5465 common symbols wind up on undefs_tail and because an
5466 undefined symbol which is defined later on in this pass
5467 does not require another pass. This isn't a bug, but it
5468 does make the code less efficient than it could be. */
5469 if (undefs_tail != info->hash->undefs_tail)
5470 loop = TRUE;
5471
5472 /* Look backward to mark all symbols from this object file
5473 which we have already seen in this pass. */
5474 mark = i;
5475 do
5476 {
5477 included[mark] = TRUE;
5478 if (mark == 0)
5479 break;
5480 --mark;
5481 }
5482 while (symdefs[mark].file_offset == symdef->file_offset);
5483
5484 /* We mark subsequent symbols from this object file as we go
5485 on through the loop. */
5486 last = symdef->file_offset;
5487 }
5488 }
5489 while (loop);
5490
5491 free (included);
5492
5493 return TRUE;
5494
5495 error_return:
5496 if (included != NULL)
5497 free (included);
5498 return FALSE;
5499 }
5500
5501 /* Given an ELF BFD, add symbols to the global hash table as
5502 appropriate. */
5503
5504 bfd_boolean
5505 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5506 {
5507 switch (bfd_get_format (abfd))
5508 {
5509 case bfd_object:
5510 return elf_link_add_object_symbols (abfd, info);
5511 case bfd_archive:
5512 return elf_link_add_archive_symbols (abfd, info);
5513 default:
5514 bfd_set_error (bfd_error_wrong_format);
5515 return FALSE;
5516 }
5517 }
5518 \f
5519 struct hash_codes_info
5520 {
5521 unsigned long *hashcodes;
5522 bfd_boolean error;
5523 };
5524
5525 /* This function will be called though elf_link_hash_traverse to store
5526 all hash value of the exported symbols in an array. */
5527
5528 static bfd_boolean
5529 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5530 {
5531 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5532 const char *name;
5533 unsigned long ha;
5534 char *alc = NULL;
5535
5536 /* Ignore indirect symbols. These are added by the versioning code. */
5537 if (h->dynindx == -1)
5538 return TRUE;
5539
5540 name = h->root.root.string;
5541 if (h->versioned >= versioned)
5542 {
5543 char *p = strchr (name, ELF_VER_CHR);
5544 if (p != NULL)
5545 {
5546 alc = (char *) bfd_malloc (p - name + 1);
5547 if (alc == NULL)
5548 {
5549 inf->error = TRUE;
5550 return FALSE;
5551 }
5552 memcpy (alc, name, p - name);
5553 alc[p - name] = '\0';
5554 name = alc;
5555 }
5556 }
5557
5558 /* Compute the hash value. */
5559 ha = bfd_elf_hash (name);
5560
5561 /* Store the found hash value in the array given as the argument. */
5562 *(inf->hashcodes)++ = ha;
5563
5564 /* And store it in the struct so that we can put it in the hash table
5565 later. */
5566 h->u.elf_hash_value = ha;
5567
5568 if (alc != NULL)
5569 free (alc);
5570
5571 return TRUE;
5572 }
5573
5574 struct collect_gnu_hash_codes
5575 {
5576 bfd *output_bfd;
5577 const struct elf_backend_data *bed;
5578 unsigned long int nsyms;
5579 unsigned long int maskbits;
5580 unsigned long int *hashcodes;
5581 unsigned long int *hashval;
5582 unsigned long int *indx;
5583 unsigned long int *counts;
5584 bfd_vma *bitmask;
5585 bfd_byte *contents;
5586 long int min_dynindx;
5587 unsigned long int bucketcount;
5588 unsigned long int symindx;
5589 long int local_indx;
5590 long int shift1, shift2;
5591 unsigned long int mask;
5592 bfd_boolean error;
5593 };
5594
5595 /* This function will be called though elf_link_hash_traverse to store
5596 all hash value of the exported symbols in an array. */
5597
5598 static bfd_boolean
5599 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5600 {
5601 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5602 const char *name;
5603 unsigned long ha;
5604 char *alc = NULL;
5605
5606 /* Ignore indirect symbols. These are added by the versioning code. */
5607 if (h->dynindx == -1)
5608 return TRUE;
5609
5610 /* Ignore also local symbols and undefined symbols. */
5611 if (! (*s->bed->elf_hash_symbol) (h))
5612 return TRUE;
5613
5614 name = h->root.root.string;
5615 if (h->versioned >= versioned)
5616 {
5617 char *p = strchr (name, ELF_VER_CHR);
5618 if (p != NULL)
5619 {
5620 alc = (char *) bfd_malloc (p - name + 1);
5621 if (alc == NULL)
5622 {
5623 s->error = TRUE;
5624 return FALSE;
5625 }
5626 memcpy (alc, name, p - name);
5627 alc[p - name] = '\0';
5628 name = alc;
5629 }
5630 }
5631
5632 /* Compute the hash value. */
5633 ha = bfd_elf_gnu_hash (name);
5634
5635 /* Store the found hash value in the array for compute_bucket_count,
5636 and also for .dynsym reordering purposes. */
5637 s->hashcodes[s->nsyms] = ha;
5638 s->hashval[h->dynindx] = ha;
5639 ++s->nsyms;
5640 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5641 s->min_dynindx = h->dynindx;
5642
5643 if (alc != NULL)
5644 free (alc);
5645
5646 return TRUE;
5647 }
5648
5649 /* This function will be called though elf_link_hash_traverse to do
5650 final dynaminc symbol renumbering. */
5651
5652 static bfd_boolean
5653 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5654 {
5655 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5656 unsigned long int bucket;
5657 unsigned long int val;
5658
5659 /* Ignore indirect symbols. */
5660 if (h->dynindx == -1)
5661 return TRUE;
5662
5663 /* Ignore also local symbols and undefined symbols. */
5664 if (! (*s->bed->elf_hash_symbol) (h))
5665 {
5666 if (h->dynindx >= s->min_dynindx)
5667 h->dynindx = s->local_indx++;
5668 return TRUE;
5669 }
5670
5671 bucket = s->hashval[h->dynindx] % s->bucketcount;
5672 val = (s->hashval[h->dynindx] >> s->shift1)
5673 & ((s->maskbits >> s->shift1) - 1);
5674 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5675 s->bitmask[val]
5676 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5677 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5678 if (s->counts[bucket] == 1)
5679 /* Last element terminates the chain. */
5680 val |= 1;
5681 bfd_put_32 (s->output_bfd, val,
5682 s->contents + (s->indx[bucket] - s->symindx) * 4);
5683 --s->counts[bucket];
5684 h->dynindx = s->indx[bucket]++;
5685 return TRUE;
5686 }
5687
5688 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5689
5690 bfd_boolean
5691 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5692 {
5693 return !(h->forced_local
5694 || h->root.type == bfd_link_hash_undefined
5695 || h->root.type == bfd_link_hash_undefweak
5696 || ((h->root.type == bfd_link_hash_defined
5697 || h->root.type == bfd_link_hash_defweak)
5698 && h->root.u.def.section->output_section == NULL));
5699 }
5700
5701 /* Array used to determine the number of hash table buckets to use
5702 based on the number of symbols there are. If there are fewer than
5703 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5704 fewer than 37 we use 17 buckets, and so forth. We never use more
5705 than 32771 buckets. */
5706
5707 static const size_t elf_buckets[] =
5708 {
5709 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5710 16411, 32771, 0
5711 };
5712
5713 /* Compute bucket count for hashing table. We do not use a static set
5714 of possible tables sizes anymore. Instead we determine for all
5715 possible reasonable sizes of the table the outcome (i.e., the
5716 number of collisions etc) and choose the best solution. The
5717 weighting functions are not too simple to allow the table to grow
5718 without bounds. Instead one of the weighting factors is the size.
5719 Therefore the result is always a good payoff between few collisions
5720 (= short chain lengths) and table size. */
5721 static size_t
5722 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5723 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5724 unsigned long int nsyms,
5725 int gnu_hash)
5726 {
5727 size_t best_size = 0;
5728 unsigned long int i;
5729
5730 /* We have a problem here. The following code to optimize the table
5731 size requires an integer type with more the 32 bits. If
5732 BFD_HOST_U_64_BIT is set we know about such a type. */
5733 #ifdef BFD_HOST_U_64_BIT
5734 if (info->optimize)
5735 {
5736 size_t minsize;
5737 size_t maxsize;
5738 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5739 bfd *dynobj = elf_hash_table (info)->dynobj;
5740 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5741 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5742 unsigned long int *counts;
5743 bfd_size_type amt;
5744 unsigned int no_improvement_count = 0;
5745
5746 /* Possible optimization parameters: if we have NSYMS symbols we say
5747 that the hashing table must at least have NSYMS/4 and at most
5748 2*NSYMS buckets. */
5749 minsize = nsyms / 4;
5750 if (minsize == 0)
5751 minsize = 1;
5752 best_size = maxsize = nsyms * 2;
5753 if (gnu_hash)
5754 {
5755 if (minsize < 2)
5756 minsize = 2;
5757 if ((best_size & 31) == 0)
5758 ++best_size;
5759 }
5760
5761 /* Create array where we count the collisions in. We must use bfd_malloc
5762 since the size could be large. */
5763 amt = maxsize;
5764 amt *= sizeof (unsigned long int);
5765 counts = (unsigned long int *) bfd_malloc (amt);
5766 if (counts == NULL)
5767 return 0;
5768
5769 /* Compute the "optimal" size for the hash table. The criteria is a
5770 minimal chain length. The minor criteria is (of course) the size
5771 of the table. */
5772 for (i = minsize; i < maxsize; ++i)
5773 {
5774 /* Walk through the array of hashcodes and count the collisions. */
5775 BFD_HOST_U_64_BIT max;
5776 unsigned long int j;
5777 unsigned long int fact;
5778
5779 if (gnu_hash && (i & 31) == 0)
5780 continue;
5781
5782 memset (counts, '\0', i * sizeof (unsigned long int));
5783
5784 /* Determine how often each hash bucket is used. */
5785 for (j = 0; j < nsyms; ++j)
5786 ++counts[hashcodes[j] % i];
5787
5788 /* For the weight function we need some information about the
5789 pagesize on the target. This is information need not be 100%
5790 accurate. Since this information is not available (so far) we
5791 define it here to a reasonable default value. If it is crucial
5792 to have a better value some day simply define this value. */
5793 # ifndef BFD_TARGET_PAGESIZE
5794 # define BFD_TARGET_PAGESIZE (4096)
5795 # endif
5796
5797 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5798 and the chains. */
5799 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5800
5801 # if 1
5802 /* Variant 1: optimize for short chains. We add the squares
5803 of all the chain lengths (which favors many small chain
5804 over a few long chains). */
5805 for (j = 0; j < i; ++j)
5806 max += counts[j] * counts[j];
5807
5808 /* This adds penalties for the overall size of the table. */
5809 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5810 max *= fact * fact;
5811 # else
5812 /* Variant 2: Optimize a lot more for small table. Here we
5813 also add squares of the size but we also add penalties for
5814 empty slots (the +1 term). */
5815 for (j = 0; j < i; ++j)
5816 max += (1 + counts[j]) * (1 + counts[j]);
5817
5818 /* The overall size of the table is considered, but not as
5819 strong as in variant 1, where it is squared. */
5820 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5821 max *= fact;
5822 # endif
5823
5824 /* Compare with current best results. */
5825 if (max < best_chlen)
5826 {
5827 best_chlen = max;
5828 best_size = i;
5829 no_improvement_count = 0;
5830 }
5831 /* PR 11843: Avoid futile long searches for the best bucket size
5832 when there are a large number of symbols. */
5833 else if (++no_improvement_count == 100)
5834 break;
5835 }
5836
5837 free (counts);
5838 }
5839 else
5840 #endif /* defined (BFD_HOST_U_64_BIT) */
5841 {
5842 /* This is the fallback solution if no 64bit type is available or if we
5843 are not supposed to spend much time on optimizations. We select the
5844 bucket count using a fixed set of numbers. */
5845 for (i = 0; elf_buckets[i] != 0; i++)
5846 {
5847 best_size = elf_buckets[i];
5848 if (nsyms < elf_buckets[i + 1])
5849 break;
5850 }
5851 if (gnu_hash && best_size < 2)
5852 best_size = 2;
5853 }
5854
5855 return best_size;
5856 }
5857
5858 /* Size any SHT_GROUP section for ld -r. */
5859
5860 bfd_boolean
5861 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5862 {
5863 bfd *ibfd;
5864
5865 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5866 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5867 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5868 return FALSE;
5869 return TRUE;
5870 }
5871
5872 /* Set a default stack segment size. The value in INFO wins. If it
5873 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5874 undefined it is initialized. */
5875
5876 bfd_boolean
5877 bfd_elf_stack_segment_size (bfd *output_bfd,
5878 struct bfd_link_info *info,
5879 const char *legacy_symbol,
5880 bfd_vma default_size)
5881 {
5882 struct elf_link_hash_entry *h = NULL;
5883
5884 /* Look for legacy symbol. */
5885 if (legacy_symbol)
5886 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5887 FALSE, FALSE, FALSE);
5888 if (h && (h->root.type == bfd_link_hash_defined
5889 || h->root.type == bfd_link_hash_defweak)
5890 && h->def_regular
5891 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5892 {
5893 /* The symbol has no type if specified on the command line. */
5894 h->type = STT_OBJECT;
5895 if (info->stacksize)
5896 /* xgettext:c-format */
5897 _bfd_error_handler (_("%B: stack size specified and %s set"),
5898 output_bfd, legacy_symbol);
5899 else if (h->root.u.def.section != bfd_abs_section_ptr)
5900 /* xgettext:c-format */
5901 _bfd_error_handler (_("%B: %s not absolute"),
5902 output_bfd, legacy_symbol);
5903 else
5904 info->stacksize = h->root.u.def.value;
5905 }
5906
5907 if (!info->stacksize)
5908 /* If the user didn't set a size, or explicitly inhibit the
5909 size, set it now. */
5910 info->stacksize = default_size;
5911
5912 /* Provide the legacy symbol, if it is referenced. */
5913 if (h && (h->root.type == bfd_link_hash_undefined
5914 || h->root.type == bfd_link_hash_undefweak))
5915 {
5916 struct bfd_link_hash_entry *bh = NULL;
5917
5918 if (!(_bfd_generic_link_add_one_symbol
5919 (info, output_bfd, legacy_symbol,
5920 BSF_GLOBAL, bfd_abs_section_ptr,
5921 info->stacksize >= 0 ? info->stacksize : 0,
5922 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5923 return FALSE;
5924
5925 h = (struct elf_link_hash_entry *) bh;
5926 h->def_regular = 1;
5927 h->type = STT_OBJECT;
5928 }
5929
5930 return TRUE;
5931 }
5932
5933 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5934
5935 struct elf_gc_sweep_symbol_info
5936 {
5937 struct bfd_link_info *info;
5938 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5939 bfd_boolean);
5940 };
5941
5942 static bfd_boolean
5943 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5944 {
5945 if (!h->mark
5946 && (((h->root.type == bfd_link_hash_defined
5947 || h->root.type == bfd_link_hash_defweak)
5948 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5949 && h->root.u.def.section->gc_mark))
5950 || h->root.type == bfd_link_hash_undefined
5951 || h->root.type == bfd_link_hash_undefweak))
5952 {
5953 struct elf_gc_sweep_symbol_info *inf;
5954
5955 inf = (struct elf_gc_sweep_symbol_info *) data;
5956 (*inf->hide_symbol) (inf->info, h, TRUE);
5957 h->def_regular = 0;
5958 h->ref_regular = 0;
5959 h->ref_regular_nonweak = 0;
5960 }
5961
5962 return TRUE;
5963 }
5964
5965 /* Set up the sizes and contents of the ELF dynamic sections. This is
5966 called by the ELF linker emulation before_allocation routine. We
5967 must set the sizes of the sections before the linker sets the
5968 addresses of the various sections. */
5969
5970 bfd_boolean
5971 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5972 const char *soname,
5973 const char *rpath,
5974 const char *filter_shlib,
5975 const char *audit,
5976 const char *depaudit,
5977 const char * const *auxiliary_filters,
5978 struct bfd_link_info *info,
5979 asection **sinterpptr)
5980 {
5981 bfd *dynobj;
5982 const struct elf_backend_data *bed;
5983
5984 *sinterpptr = NULL;
5985
5986 if (!is_elf_hash_table (info->hash))
5987 return TRUE;
5988
5989 dynobj = elf_hash_table (info)->dynobj;
5990
5991 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5992 {
5993 struct bfd_elf_version_tree *verdefs;
5994 struct elf_info_failed asvinfo;
5995 struct bfd_elf_version_tree *t;
5996 struct bfd_elf_version_expr *d;
5997 struct elf_info_failed eif;
5998 bfd_boolean all_defined;
5999 asection *s;
6000 size_t soname_indx;
6001
6002 eif.info = info;
6003 eif.failed = FALSE;
6004
6005 /* If we are supposed to export all symbols into the dynamic symbol
6006 table (this is not the normal case), then do so. */
6007 if (info->export_dynamic
6008 || (bfd_link_executable (info) && info->dynamic))
6009 {
6010 elf_link_hash_traverse (elf_hash_table (info),
6011 _bfd_elf_export_symbol,
6012 &eif);
6013 if (eif.failed)
6014 return FALSE;
6015 }
6016
6017 if (soname != NULL)
6018 {
6019 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6020 soname, TRUE);
6021 if (soname_indx == (size_t) -1
6022 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6023 return FALSE;
6024 }
6025 else
6026 soname_indx = (size_t) -1;
6027
6028 /* Make all global versions with definition. */
6029 for (t = info->version_info; t != NULL; t = t->next)
6030 for (d = t->globals.list; d != NULL; d = d->next)
6031 if (!d->symver && d->literal)
6032 {
6033 const char *verstr, *name;
6034 size_t namelen, verlen, newlen;
6035 char *newname, *p, leading_char;
6036 struct elf_link_hash_entry *newh;
6037
6038 leading_char = bfd_get_symbol_leading_char (output_bfd);
6039 name = d->pattern;
6040 namelen = strlen (name) + (leading_char != '\0');
6041 verstr = t->name;
6042 verlen = strlen (verstr);
6043 newlen = namelen + verlen + 3;
6044
6045 newname = (char *) bfd_malloc (newlen);
6046 if (newname == NULL)
6047 return FALSE;
6048 newname[0] = leading_char;
6049 memcpy (newname + (leading_char != '\0'), name, namelen);
6050
6051 /* Check the hidden versioned definition. */
6052 p = newname + namelen;
6053 *p++ = ELF_VER_CHR;
6054 memcpy (p, verstr, verlen + 1);
6055 newh = elf_link_hash_lookup (elf_hash_table (info),
6056 newname, FALSE, FALSE,
6057 FALSE);
6058 if (newh == NULL
6059 || (newh->root.type != bfd_link_hash_defined
6060 && newh->root.type != bfd_link_hash_defweak))
6061 {
6062 /* Check the default versioned definition. */
6063 *p++ = ELF_VER_CHR;
6064 memcpy (p, verstr, verlen + 1);
6065 newh = elf_link_hash_lookup (elf_hash_table (info),
6066 newname, FALSE, FALSE,
6067 FALSE);
6068 }
6069 free (newname);
6070
6071 /* Mark this version if there is a definition and it is
6072 not defined in a shared object. */
6073 if (newh != NULL
6074 && !newh->def_dynamic
6075 && (newh->root.type == bfd_link_hash_defined
6076 || newh->root.type == bfd_link_hash_defweak))
6077 d->symver = 1;
6078 }
6079
6080 /* Attach all the symbols to their version information. */
6081 asvinfo.info = info;
6082 asvinfo.failed = FALSE;
6083
6084 elf_link_hash_traverse (elf_hash_table (info),
6085 _bfd_elf_link_assign_sym_version,
6086 &asvinfo);
6087 if (asvinfo.failed)
6088 return FALSE;
6089
6090 if (!info->allow_undefined_version)
6091 {
6092 /* Check if all global versions have a definition. */
6093 all_defined = TRUE;
6094 for (t = info->version_info; t != NULL; t = t->next)
6095 for (d = t->globals.list; d != NULL; d = d->next)
6096 if (d->literal && !d->symver && !d->script)
6097 {
6098 _bfd_error_handler
6099 (_("%s: undefined version: %s"),
6100 d->pattern, t->name);
6101 all_defined = FALSE;
6102 }
6103
6104 if (!all_defined)
6105 {
6106 bfd_set_error (bfd_error_bad_value);
6107 return FALSE;
6108 }
6109 }
6110
6111 /* Set up the version definition section. */
6112 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6113 BFD_ASSERT (s != NULL);
6114
6115 /* We may have created additional version definitions if we are
6116 just linking a regular application. */
6117 verdefs = info->version_info;
6118
6119 /* Skip anonymous version tag. */
6120 if (verdefs != NULL && verdefs->vernum == 0)
6121 verdefs = verdefs->next;
6122
6123 if (verdefs == NULL && !info->create_default_symver)
6124 s->flags |= SEC_EXCLUDE;
6125 else
6126 {
6127 unsigned int cdefs;
6128 bfd_size_type size;
6129 bfd_byte *p;
6130 Elf_Internal_Verdef def;
6131 Elf_Internal_Verdaux defaux;
6132 struct bfd_link_hash_entry *bh;
6133 struct elf_link_hash_entry *h;
6134 const char *name;
6135
6136 cdefs = 0;
6137 size = 0;
6138
6139 /* Make space for the base version. */
6140 size += sizeof (Elf_External_Verdef);
6141 size += sizeof (Elf_External_Verdaux);
6142 ++cdefs;
6143
6144 /* Make space for the default version. */
6145 if (info->create_default_symver)
6146 {
6147 size += sizeof (Elf_External_Verdef);
6148 ++cdefs;
6149 }
6150
6151 for (t = verdefs; t != NULL; t = t->next)
6152 {
6153 struct bfd_elf_version_deps *n;
6154
6155 /* Don't emit base version twice. */
6156 if (t->vernum == 0)
6157 continue;
6158
6159 size += sizeof (Elf_External_Verdef);
6160 size += sizeof (Elf_External_Verdaux);
6161 ++cdefs;
6162
6163 for (n = t->deps; n != NULL; n = n->next)
6164 size += sizeof (Elf_External_Verdaux);
6165 }
6166
6167 s->size = size;
6168 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6169 if (s->contents == NULL && s->size != 0)
6170 return FALSE;
6171
6172 /* Fill in the version definition section. */
6173
6174 p = s->contents;
6175
6176 def.vd_version = VER_DEF_CURRENT;
6177 def.vd_flags = VER_FLG_BASE;
6178 def.vd_ndx = 1;
6179 def.vd_cnt = 1;
6180 if (info->create_default_symver)
6181 {
6182 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6183 def.vd_next = sizeof (Elf_External_Verdef);
6184 }
6185 else
6186 {
6187 def.vd_aux = sizeof (Elf_External_Verdef);
6188 def.vd_next = (sizeof (Elf_External_Verdef)
6189 + sizeof (Elf_External_Verdaux));
6190 }
6191
6192 if (soname_indx != (size_t) -1)
6193 {
6194 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6195 soname_indx);
6196 def.vd_hash = bfd_elf_hash (soname);
6197 defaux.vda_name = soname_indx;
6198 name = soname;
6199 }
6200 else
6201 {
6202 size_t indx;
6203
6204 name = lbasename (output_bfd->filename);
6205 def.vd_hash = bfd_elf_hash (name);
6206 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6207 name, FALSE);
6208 if (indx == (size_t) -1)
6209 return FALSE;
6210 defaux.vda_name = indx;
6211 }
6212 defaux.vda_next = 0;
6213
6214 _bfd_elf_swap_verdef_out (output_bfd, &def,
6215 (Elf_External_Verdef *) p);
6216 p += sizeof (Elf_External_Verdef);
6217 if (info->create_default_symver)
6218 {
6219 /* Add a symbol representing this version. */
6220 bh = NULL;
6221 if (! (_bfd_generic_link_add_one_symbol
6222 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6223 0, NULL, FALSE,
6224 get_elf_backend_data (dynobj)->collect, &bh)))
6225 return FALSE;
6226 h = (struct elf_link_hash_entry *) bh;
6227 h->non_elf = 0;
6228 h->def_regular = 1;
6229 h->type = STT_OBJECT;
6230 h->verinfo.vertree = NULL;
6231
6232 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6233 return FALSE;
6234
6235 /* Create a duplicate of the base version with the same
6236 aux block, but different flags. */
6237 def.vd_flags = 0;
6238 def.vd_ndx = 2;
6239 def.vd_aux = sizeof (Elf_External_Verdef);
6240 if (verdefs)
6241 def.vd_next = (sizeof (Elf_External_Verdef)
6242 + sizeof (Elf_External_Verdaux));
6243 else
6244 def.vd_next = 0;
6245 _bfd_elf_swap_verdef_out (output_bfd, &def,
6246 (Elf_External_Verdef *) p);
6247 p += sizeof (Elf_External_Verdef);
6248 }
6249 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6250 (Elf_External_Verdaux *) p);
6251 p += sizeof (Elf_External_Verdaux);
6252
6253 for (t = verdefs; t != NULL; t = t->next)
6254 {
6255 unsigned int cdeps;
6256 struct bfd_elf_version_deps *n;
6257
6258 /* Don't emit the base version twice. */
6259 if (t->vernum == 0)
6260 continue;
6261
6262 cdeps = 0;
6263 for (n = t->deps; n != NULL; n = n->next)
6264 ++cdeps;
6265
6266 /* Add a symbol representing this version. */
6267 bh = NULL;
6268 if (! (_bfd_generic_link_add_one_symbol
6269 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6270 0, NULL, FALSE,
6271 get_elf_backend_data (dynobj)->collect, &bh)))
6272 return FALSE;
6273 h = (struct elf_link_hash_entry *) bh;
6274 h->non_elf = 0;
6275 h->def_regular = 1;
6276 h->type = STT_OBJECT;
6277 h->verinfo.vertree = t;
6278
6279 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6280 return FALSE;
6281
6282 def.vd_version = VER_DEF_CURRENT;
6283 def.vd_flags = 0;
6284 if (t->globals.list == NULL
6285 && t->locals.list == NULL
6286 && ! t->used)
6287 def.vd_flags |= VER_FLG_WEAK;
6288 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6289 def.vd_cnt = cdeps + 1;
6290 def.vd_hash = bfd_elf_hash (t->name);
6291 def.vd_aux = sizeof (Elf_External_Verdef);
6292 def.vd_next = 0;
6293
6294 /* If a basever node is next, it *must* be the last node in
6295 the chain, otherwise Verdef construction breaks. */
6296 if (t->next != NULL && t->next->vernum == 0)
6297 BFD_ASSERT (t->next->next == NULL);
6298
6299 if (t->next != NULL && t->next->vernum != 0)
6300 def.vd_next = (sizeof (Elf_External_Verdef)
6301 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6302
6303 _bfd_elf_swap_verdef_out (output_bfd, &def,
6304 (Elf_External_Verdef *) p);
6305 p += sizeof (Elf_External_Verdef);
6306
6307 defaux.vda_name = h->dynstr_index;
6308 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6309 h->dynstr_index);
6310 defaux.vda_next = 0;
6311 if (t->deps != NULL)
6312 defaux.vda_next = sizeof (Elf_External_Verdaux);
6313 t->name_indx = defaux.vda_name;
6314
6315 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6316 (Elf_External_Verdaux *) p);
6317 p += sizeof (Elf_External_Verdaux);
6318
6319 for (n = t->deps; n != NULL; n = n->next)
6320 {
6321 if (n->version_needed == NULL)
6322 {
6323 /* This can happen if there was an error in the
6324 version script. */
6325 defaux.vda_name = 0;
6326 }
6327 else
6328 {
6329 defaux.vda_name = n->version_needed->name_indx;
6330 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6331 defaux.vda_name);
6332 }
6333 if (n->next == NULL)
6334 defaux.vda_next = 0;
6335 else
6336 defaux.vda_next = sizeof (Elf_External_Verdaux);
6337
6338 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6339 (Elf_External_Verdaux *) p);
6340 p += sizeof (Elf_External_Verdaux);
6341 }
6342 }
6343
6344 elf_tdata (output_bfd)->cverdefs = cdefs;
6345 }
6346
6347 /* Work out the size of the version reference section. */
6348
6349 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6350 BFD_ASSERT (s != NULL);
6351 {
6352 struct elf_find_verdep_info sinfo;
6353
6354 sinfo.info = info;
6355 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6356 if (sinfo.vers == 0)
6357 sinfo.vers = 1;
6358 sinfo.failed = FALSE;
6359
6360 elf_link_hash_traverse (elf_hash_table (info),
6361 _bfd_elf_link_find_version_dependencies,
6362 &sinfo);
6363 if (sinfo.failed)
6364 return FALSE;
6365
6366 if (elf_tdata (output_bfd)->verref == NULL)
6367 s->flags |= SEC_EXCLUDE;
6368 else
6369 {
6370 Elf_Internal_Verneed *vn;
6371 unsigned int size;
6372 unsigned int crefs;
6373 bfd_byte *p;
6374
6375 /* Build the version dependency section. */
6376 size = 0;
6377 crefs = 0;
6378 for (vn = elf_tdata (output_bfd)->verref;
6379 vn != NULL;
6380 vn = vn->vn_nextref)
6381 {
6382 Elf_Internal_Vernaux *a;
6383
6384 size += sizeof (Elf_External_Verneed);
6385 ++crefs;
6386 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6387 size += sizeof (Elf_External_Vernaux);
6388 }
6389
6390 s->size = size;
6391 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6392 if (s->contents == NULL)
6393 return FALSE;
6394
6395 p = s->contents;
6396 for (vn = elf_tdata (output_bfd)->verref;
6397 vn != NULL;
6398 vn = vn->vn_nextref)
6399 {
6400 unsigned int caux;
6401 Elf_Internal_Vernaux *a;
6402 size_t indx;
6403
6404 caux = 0;
6405 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6406 ++caux;
6407
6408 vn->vn_version = VER_NEED_CURRENT;
6409 vn->vn_cnt = caux;
6410 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6411 elf_dt_name (vn->vn_bfd) != NULL
6412 ? elf_dt_name (vn->vn_bfd)
6413 : lbasename (vn->vn_bfd->filename),
6414 FALSE);
6415 if (indx == (size_t) -1)
6416 return FALSE;
6417 vn->vn_file = indx;
6418 vn->vn_aux = sizeof (Elf_External_Verneed);
6419 if (vn->vn_nextref == NULL)
6420 vn->vn_next = 0;
6421 else
6422 vn->vn_next = (sizeof (Elf_External_Verneed)
6423 + caux * sizeof (Elf_External_Vernaux));
6424
6425 _bfd_elf_swap_verneed_out (output_bfd, vn,
6426 (Elf_External_Verneed *) p);
6427 p += sizeof (Elf_External_Verneed);
6428
6429 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6430 {
6431 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6432 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6433 a->vna_nodename, FALSE);
6434 if (indx == (size_t) -1)
6435 return FALSE;
6436 a->vna_name = indx;
6437 if (a->vna_nextptr == NULL)
6438 a->vna_next = 0;
6439 else
6440 a->vna_next = sizeof (Elf_External_Vernaux);
6441
6442 _bfd_elf_swap_vernaux_out (output_bfd, a,
6443 (Elf_External_Vernaux *) p);
6444 p += sizeof (Elf_External_Vernaux);
6445 }
6446 }
6447
6448 elf_tdata (output_bfd)->cverrefs = crefs;
6449 }
6450 }
6451 }
6452
6453 bed = get_elf_backend_data (output_bfd);
6454
6455 if (info->gc_sections && bed->can_gc_sections)
6456 {
6457 struct elf_gc_sweep_symbol_info sweep_info;
6458 unsigned long section_sym_count;
6459
6460 /* Remove the symbols that were in the swept sections from the
6461 dynamic symbol table. GCFIXME: Anyone know how to get them
6462 out of the static symbol table as well? */
6463 sweep_info.info = info;
6464 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6465 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6466 &sweep_info);
6467
6468 /* We need to reassign dynsym indices now that symbols may have
6469 been removed. See the call in `bfd_elf_size_dynsym_hash_dynstr'
6470 for the details of the conditions used here. */
6471 if (elf_hash_table (info)->dynamic_sections_created
6472 || bed->always_renumber_dynsyms)
6473 _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6474 }
6475
6476 /* Any syms created from now on start with -1 in
6477 got.refcount/offset and plt.refcount/offset. */
6478 elf_hash_table (info)->init_got_refcount
6479 = elf_hash_table (info)->init_got_offset;
6480 elf_hash_table (info)->init_plt_refcount
6481 = elf_hash_table (info)->init_plt_offset;
6482
6483 if (bfd_link_relocatable (info)
6484 && !_bfd_elf_size_group_sections (info))
6485 return FALSE;
6486
6487 /* The backend may have to create some sections regardless of whether
6488 we're dynamic or not. */
6489 if (bed->elf_backend_always_size_sections
6490 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6491 return FALSE;
6492
6493 /* Determine any GNU_STACK segment requirements, after the backend
6494 has had a chance to set a default segment size. */
6495 if (info->execstack)
6496 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6497 else if (info->noexecstack)
6498 elf_stack_flags (output_bfd) = PF_R | PF_W;
6499 else
6500 {
6501 bfd *inputobj;
6502 asection *notesec = NULL;
6503 int exec = 0;
6504
6505 for (inputobj = info->input_bfds;
6506 inputobj;
6507 inputobj = inputobj->link.next)
6508 {
6509 asection *s;
6510
6511 if (inputobj->flags
6512 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6513 continue;
6514 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6515 if (s)
6516 {
6517 if (s->flags & SEC_CODE)
6518 exec = PF_X;
6519 notesec = s;
6520 }
6521 else if (bed->default_execstack)
6522 exec = PF_X;
6523 }
6524 if (notesec || info->stacksize > 0)
6525 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6526 if (notesec && exec && bfd_link_relocatable (info)
6527 && notesec->output_section != bfd_abs_section_ptr)
6528 notesec->output_section->flags |= SEC_CODE;
6529 }
6530
6531 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6532 {
6533 struct elf_info_failed eif;
6534 struct elf_link_hash_entry *h;
6535 asection *dynstr;
6536 asection *s;
6537
6538 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6539 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6540
6541 if (info->symbolic)
6542 {
6543 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6544 return FALSE;
6545 info->flags |= DF_SYMBOLIC;
6546 }
6547
6548 if (rpath != NULL)
6549 {
6550 size_t indx;
6551 bfd_vma tag;
6552
6553 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6554 TRUE);
6555 if (indx == (size_t) -1)
6556 return FALSE;
6557
6558 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6559 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6560 return FALSE;
6561 }
6562
6563 if (filter_shlib != NULL)
6564 {
6565 size_t indx;
6566
6567 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6568 filter_shlib, TRUE);
6569 if (indx == (size_t) -1
6570 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6571 return FALSE;
6572 }
6573
6574 if (auxiliary_filters != NULL)
6575 {
6576 const char * const *p;
6577
6578 for (p = auxiliary_filters; *p != NULL; p++)
6579 {
6580 size_t indx;
6581
6582 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6583 *p, TRUE);
6584 if (indx == (size_t) -1
6585 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6586 return FALSE;
6587 }
6588 }
6589
6590 if (audit != NULL)
6591 {
6592 size_t indx;
6593
6594 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6595 TRUE);
6596 if (indx == (size_t) -1
6597 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6598 return FALSE;
6599 }
6600
6601 if (depaudit != NULL)
6602 {
6603 size_t indx;
6604
6605 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6606 TRUE);
6607 if (indx == (size_t) -1
6608 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6609 return FALSE;
6610 }
6611
6612 eif.info = info;
6613 eif.failed = FALSE;
6614
6615 /* Find all symbols which were defined in a dynamic object and make
6616 the backend pick a reasonable value for them. */
6617 elf_link_hash_traverse (elf_hash_table (info),
6618 _bfd_elf_adjust_dynamic_symbol,
6619 &eif);
6620 if (eif.failed)
6621 return FALSE;
6622
6623 /* Add some entries to the .dynamic section. We fill in some of the
6624 values later, in bfd_elf_final_link, but we must add the entries
6625 now so that we know the final size of the .dynamic section. */
6626
6627 /* If there are initialization and/or finalization functions to
6628 call then add the corresponding DT_INIT/DT_FINI entries. */
6629 h = (info->init_function
6630 ? elf_link_hash_lookup (elf_hash_table (info),
6631 info->init_function, FALSE,
6632 FALSE, FALSE)
6633 : NULL);
6634 if (h != NULL
6635 && (h->ref_regular
6636 || h->def_regular))
6637 {
6638 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6639 return FALSE;
6640 }
6641 h = (info->fini_function
6642 ? elf_link_hash_lookup (elf_hash_table (info),
6643 info->fini_function, FALSE,
6644 FALSE, FALSE)
6645 : NULL);
6646 if (h != NULL
6647 && (h->ref_regular
6648 || h->def_regular))
6649 {
6650 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6651 return FALSE;
6652 }
6653
6654 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6655 if (s != NULL && s->linker_has_input)
6656 {
6657 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6658 if (! bfd_link_executable (info))
6659 {
6660 bfd *sub;
6661 asection *o;
6662
6663 for (sub = info->input_bfds; sub != NULL;
6664 sub = sub->link.next)
6665 if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6666 for (o = sub->sections; o != NULL; o = o->next)
6667 if (elf_section_data (o)->this_hdr.sh_type
6668 == SHT_PREINIT_ARRAY)
6669 {
6670 _bfd_error_handler
6671 (_("%B: .preinit_array section is not allowed in DSO"),
6672 sub);
6673 break;
6674 }
6675
6676 bfd_set_error (bfd_error_nonrepresentable_section);
6677 return FALSE;
6678 }
6679
6680 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6681 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6682 return FALSE;
6683 }
6684 s = bfd_get_section_by_name (output_bfd, ".init_array");
6685 if (s != NULL && s->linker_has_input)
6686 {
6687 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6688 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6689 return FALSE;
6690 }
6691 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6692 if (s != NULL && s->linker_has_input)
6693 {
6694 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6695 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6696 return FALSE;
6697 }
6698
6699 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6700 /* If .dynstr is excluded from the link, we don't want any of
6701 these tags. Strictly, we should be checking each section
6702 individually; This quick check covers for the case where
6703 someone does a /DISCARD/ : { *(*) }. */
6704 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6705 {
6706 bfd_size_type strsize;
6707
6708 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6709 if ((info->emit_hash
6710 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6711 || (info->emit_gnu_hash
6712 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6713 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6714 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6715 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6716 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6717 bed->s->sizeof_sym))
6718 return FALSE;
6719 }
6720 }
6721
6722 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6723 return FALSE;
6724
6725 /* The backend must work out the sizes of all the other dynamic
6726 sections. */
6727 if (dynobj != NULL
6728 && bed->elf_backend_size_dynamic_sections != NULL
6729 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6730 return FALSE;
6731
6732 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6733 {
6734 unsigned long section_sym_count;
6735
6736 if (elf_tdata (output_bfd)->cverdefs)
6737 {
6738 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6739
6740 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6741 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6742 return FALSE;
6743 }
6744
6745 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6746 {
6747 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6748 return FALSE;
6749 }
6750 else if (info->flags & DF_BIND_NOW)
6751 {
6752 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6753 return FALSE;
6754 }
6755
6756 if (info->flags_1)
6757 {
6758 if (bfd_link_executable (info))
6759 info->flags_1 &= ~ (DF_1_INITFIRST
6760 | DF_1_NODELETE
6761 | DF_1_NOOPEN);
6762 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6763 return FALSE;
6764 }
6765
6766 if (elf_tdata (output_bfd)->cverrefs)
6767 {
6768 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6769
6770 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6771 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6772 return FALSE;
6773 }
6774
6775 if ((elf_tdata (output_bfd)->cverrefs == 0
6776 && elf_tdata (output_bfd)->cverdefs == 0)
6777 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6778 &section_sym_count) == 0)
6779 {
6780 asection *s;
6781
6782 s = bfd_get_linker_section (dynobj, ".gnu.version");
6783 s->flags |= SEC_EXCLUDE;
6784 }
6785 }
6786 return TRUE;
6787 }
6788
6789 /* Find the first non-excluded output section. We'll use its
6790 section symbol for some emitted relocs. */
6791 void
6792 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6793 {
6794 asection *s;
6795
6796 for (s = output_bfd->sections; s != NULL; s = s->next)
6797 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6798 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6799 {
6800 elf_hash_table (info)->text_index_section = s;
6801 break;
6802 }
6803 }
6804
6805 /* Find two non-excluded output sections, one for code, one for data.
6806 We'll use their section symbols for some emitted relocs. */
6807 void
6808 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6809 {
6810 asection *s;
6811
6812 /* Data first, since setting text_index_section changes
6813 _bfd_elf_link_omit_section_dynsym. */
6814 for (s = output_bfd->sections; s != NULL; s = s->next)
6815 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6816 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6817 {
6818 elf_hash_table (info)->data_index_section = s;
6819 break;
6820 }
6821
6822 for (s = output_bfd->sections; s != NULL; s = s->next)
6823 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6824 == (SEC_ALLOC | SEC_READONLY))
6825 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6826 {
6827 elf_hash_table (info)->text_index_section = s;
6828 break;
6829 }
6830
6831 if (elf_hash_table (info)->text_index_section == NULL)
6832 elf_hash_table (info)->text_index_section
6833 = elf_hash_table (info)->data_index_section;
6834 }
6835
6836 bfd_boolean
6837 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6838 {
6839 const struct elf_backend_data *bed;
6840 unsigned long section_sym_count;
6841 bfd_size_type dynsymcount;
6842
6843 if (!is_elf_hash_table (info->hash))
6844 return TRUE;
6845
6846 bed = get_elf_backend_data (output_bfd);
6847 (*bed->elf_backend_init_index_section) (output_bfd, info);
6848
6849 /* Assign dynsym indices. In a shared library we generate a section
6850 symbol for each output section, which come first. Next come all
6851 of the back-end allocated local dynamic syms, followed by the rest
6852 of the global symbols.
6853
6854 This is usually not needed for static binaries, however backends
6855 can request to always do it, e.g. the MIPS backend uses dynamic
6856 symbol counts to lay out GOT, which will be produced in the
6857 presence of GOT relocations even in static binaries (holding fixed
6858 data in that case, to satisfy those relocations). */
6859
6860 if (elf_hash_table (info)->dynamic_sections_created
6861 || bed->always_renumber_dynsyms)
6862 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6863 &section_sym_count);
6864
6865 if (elf_hash_table (info)->dynamic_sections_created)
6866 {
6867 bfd *dynobj;
6868 asection *s;
6869 unsigned int dtagcount;
6870
6871 dynobj = elf_hash_table (info)->dynobj;
6872
6873 /* Work out the size of the symbol version section. */
6874 s = bfd_get_linker_section (dynobj, ".gnu.version");
6875 BFD_ASSERT (s != NULL);
6876 if ((s->flags & SEC_EXCLUDE) == 0)
6877 {
6878 s->size = dynsymcount * sizeof (Elf_External_Versym);
6879 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6880 if (s->contents == NULL)
6881 return FALSE;
6882
6883 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6884 return FALSE;
6885 }
6886
6887 /* Set the size of the .dynsym and .hash sections. We counted
6888 the number of dynamic symbols in elf_link_add_object_symbols.
6889 We will build the contents of .dynsym and .hash when we build
6890 the final symbol table, because until then we do not know the
6891 correct value to give the symbols. We built the .dynstr
6892 section as we went along in elf_link_add_object_symbols. */
6893 s = elf_hash_table (info)->dynsym;
6894 BFD_ASSERT (s != NULL);
6895 s->size = dynsymcount * bed->s->sizeof_sym;
6896
6897 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6898 if (s->contents == NULL)
6899 return FALSE;
6900
6901 /* The first entry in .dynsym is a dummy symbol. Clear all the
6902 section syms, in case we don't output them all. */
6903 ++section_sym_count;
6904 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6905
6906 elf_hash_table (info)->bucketcount = 0;
6907
6908 /* Compute the size of the hashing table. As a side effect this
6909 computes the hash values for all the names we export. */
6910 if (info->emit_hash)
6911 {
6912 unsigned long int *hashcodes;
6913 struct hash_codes_info hashinf;
6914 bfd_size_type amt;
6915 unsigned long int nsyms;
6916 size_t bucketcount;
6917 size_t hash_entry_size;
6918
6919 /* Compute the hash values for all exported symbols. At the same
6920 time store the values in an array so that we could use them for
6921 optimizations. */
6922 amt = dynsymcount * sizeof (unsigned long int);
6923 hashcodes = (unsigned long int *) bfd_malloc (amt);
6924 if (hashcodes == NULL)
6925 return FALSE;
6926 hashinf.hashcodes = hashcodes;
6927 hashinf.error = FALSE;
6928
6929 /* Put all hash values in HASHCODES. */
6930 elf_link_hash_traverse (elf_hash_table (info),
6931 elf_collect_hash_codes, &hashinf);
6932 if (hashinf.error)
6933 {
6934 free (hashcodes);
6935 return FALSE;
6936 }
6937
6938 nsyms = hashinf.hashcodes - hashcodes;
6939 bucketcount
6940 = compute_bucket_count (info, hashcodes, nsyms, 0);
6941 free (hashcodes);
6942
6943 if (bucketcount == 0)
6944 return FALSE;
6945
6946 elf_hash_table (info)->bucketcount = bucketcount;
6947
6948 s = bfd_get_linker_section (dynobj, ".hash");
6949 BFD_ASSERT (s != NULL);
6950 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6951 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6952 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6953 if (s->contents == NULL)
6954 return FALSE;
6955
6956 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6957 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6958 s->contents + hash_entry_size);
6959 }
6960
6961 if (info->emit_gnu_hash)
6962 {
6963 size_t i, cnt;
6964 unsigned char *contents;
6965 struct collect_gnu_hash_codes cinfo;
6966 bfd_size_type amt;
6967 size_t bucketcount;
6968
6969 memset (&cinfo, 0, sizeof (cinfo));
6970
6971 /* Compute the hash values for all exported symbols. At the same
6972 time store the values in an array so that we could use them for
6973 optimizations. */
6974 amt = dynsymcount * 2 * sizeof (unsigned long int);
6975 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6976 if (cinfo.hashcodes == NULL)
6977 return FALSE;
6978
6979 cinfo.hashval = cinfo.hashcodes + dynsymcount;
6980 cinfo.min_dynindx = -1;
6981 cinfo.output_bfd = output_bfd;
6982 cinfo.bed = bed;
6983
6984 /* Put all hash values in HASHCODES. */
6985 elf_link_hash_traverse (elf_hash_table (info),
6986 elf_collect_gnu_hash_codes, &cinfo);
6987 if (cinfo.error)
6988 {
6989 free (cinfo.hashcodes);
6990 return FALSE;
6991 }
6992
6993 bucketcount
6994 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6995
6996 if (bucketcount == 0)
6997 {
6998 free (cinfo.hashcodes);
6999 return FALSE;
7000 }
7001
7002 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7003 BFD_ASSERT (s != NULL);
7004
7005 if (cinfo.nsyms == 0)
7006 {
7007 /* Empty .gnu.hash section is special. */
7008 BFD_ASSERT (cinfo.min_dynindx == -1);
7009 free (cinfo.hashcodes);
7010 s->size = 5 * 4 + bed->s->arch_size / 8;
7011 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7012 if (contents == NULL)
7013 return FALSE;
7014 s->contents = contents;
7015 /* 1 empty bucket. */
7016 bfd_put_32 (output_bfd, 1, contents);
7017 /* SYMIDX above the special symbol 0. */
7018 bfd_put_32 (output_bfd, 1, contents + 4);
7019 /* Just one word for bitmask. */
7020 bfd_put_32 (output_bfd, 1, contents + 8);
7021 /* Only hash fn bloom filter. */
7022 bfd_put_32 (output_bfd, 0, contents + 12);
7023 /* No hashes are valid - empty bitmask. */
7024 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7025 /* No hashes in the only bucket. */
7026 bfd_put_32 (output_bfd, 0,
7027 contents + 16 + bed->s->arch_size / 8);
7028 }
7029 else
7030 {
7031 unsigned long int maskwords, maskbitslog2, x;
7032 BFD_ASSERT (cinfo.min_dynindx != -1);
7033
7034 x = cinfo.nsyms;
7035 maskbitslog2 = 1;
7036 while ((x >>= 1) != 0)
7037 ++maskbitslog2;
7038 if (maskbitslog2 < 3)
7039 maskbitslog2 = 5;
7040 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7041 maskbitslog2 = maskbitslog2 + 3;
7042 else
7043 maskbitslog2 = maskbitslog2 + 2;
7044 if (bed->s->arch_size == 64)
7045 {
7046 if (maskbitslog2 == 5)
7047 maskbitslog2 = 6;
7048 cinfo.shift1 = 6;
7049 }
7050 else
7051 cinfo.shift1 = 5;
7052 cinfo.mask = (1 << cinfo.shift1) - 1;
7053 cinfo.shift2 = maskbitslog2;
7054 cinfo.maskbits = 1 << maskbitslog2;
7055 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7056 amt = bucketcount * sizeof (unsigned long int) * 2;
7057 amt += maskwords * sizeof (bfd_vma);
7058 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7059 if (cinfo.bitmask == NULL)
7060 {
7061 free (cinfo.hashcodes);
7062 return FALSE;
7063 }
7064
7065 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7066 cinfo.indx = cinfo.counts + bucketcount;
7067 cinfo.symindx = dynsymcount - cinfo.nsyms;
7068 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7069
7070 /* Determine how often each hash bucket is used. */
7071 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7072 for (i = 0; i < cinfo.nsyms; ++i)
7073 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7074
7075 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7076 if (cinfo.counts[i] != 0)
7077 {
7078 cinfo.indx[i] = cnt;
7079 cnt += cinfo.counts[i];
7080 }
7081 BFD_ASSERT (cnt == dynsymcount);
7082 cinfo.bucketcount = bucketcount;
7083 cinfo.local_indx = cinfo.min_dynindx;
7084
7085 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7086 s->size += cinfo.maskbits / 8;
7087 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7088 if (contents == NULL)
7089 {
7090 free (cinfo.bitmask);
7091 free (cinfo.hashcodes);
7092 return FALSE;
7093 }
7094
7095 s->contents = contents;
7096 bfd_put_32 (output_bfd, bucketcount, contents);
7097 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7098 bfd_put_32 (output_bfd, maskwords, contents + 8);
7099 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7100 contents += 16 + cinfo.maskbits / 8;
7101
7102 for (i = 0; i < bucketcount; ++i)
7103 {
7104 if (cinfo.counts[i] == 0)
7105 bfd_put_32 (output_bfd, 0, contents);
7106 else
7107 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7108 contents += 4;
7109 }
7110
7111 cinfo.contents = contents;
7112
7113 /* Renumber dynamic symbols, populate .gnu.hash section. */
7114 elf_link_hash_traverse (elf_hash_table (info),
7115 elf_renumber_gnu_hash_syms, &cinfo);
7116
7117 contents = s->contents + 16;
7118 for (i = 0; i < maskwords; ++i)
7119 {
7120 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7121 contents);
7122 contents += bed->s->arch_size / 8;
7123 }
7124
7125 free (cinfo.bitmask);
7126 free (cinfo.hashcodes);
7127 }
7128 }
7129
7130 s = bfd_get_linker_section (dynobj, ".dynstr");
7131 BFD_ASSERT (s != NULL);
7132
7133 elf_finalize_dynstr (output_bfd, info);
7134
7135 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7136
7137 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7138 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7139 return FALSE;
7140 }
7141
7142 return TRUE;
7143 }
7144 \f
7145 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7146
7147 static void
7148 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7149 asection *sec)
7150 {
7151 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7152 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7153 }
7154
7155 /* Finish SHF_MERGE section merging. */
7156
7157 bfd_boolean
7158 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7159 {
7160 bfd *ibfd;
7161 asection *sec;
7162
7163 if (!is_elf_hash_table (info->hash))
7164 return FALSE;
7165
7166 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7167 if ((ibfd->flags & DYNAMIC) == 0
7168 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7169 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7170 == get_elf_backend_data (obfd)->s->elfclass))
7171 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7172 if ((sec->flags & SEC_MERGE) != 0
7173 && !bfd_is_abs_section (sec->output_section))
7174 {
7175 struct bfd_elf_section_data *secdata;
7176
7177 secdata = elf_section_data (sec);
7178 if (! _bfd_add_merge_section (obfd,
7179 &elf_hash_table (info)->merge_info,
7180 sec, &secdata->sec_info))
7181 return FALSE;
7182 else if (secdata->sec_info)
7183 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7184 }
7185
7186 if (elf_hash_table (info)->merge_info != NULL)
7187 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7188 merge_sections_remove_hook);
7189 return TRUE;
7190 }
7191
7192 /* Create an entry in an ELF linker hash table. */
7193
7194 struct bfd_hash_entry *
7195 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7196 struct bfd_hash_table *table,
7197 const char *string)
7198 {
7199 /* Allocate the structure if it has not already been allocated by a
7200 subclass. */
7201 if (entry == NULL)
7202 {
7203 entry = (struct bfd_hash_entry *)
7204 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7205 if (entry == NULL)
7206 return entry;
7207 }
7208
7209 /* Call the allocation method of the superclass. */
7210 entry = _bfd_link_hash_newfunc (entry, table, string);
7211 if (entry != NULL)
7212 {
7213 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7214 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7215
7216 /* Set local fields. */
7217 ret->indx = -1;
7218 ret->dynindx = -1;
7219 ret->got = htab->init_got_refcount;
7220 ret->plt = htab->init_plt_refcount;
7221 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7222 - offsetof (struct elf_link_hash_entry, size)));
7223 /* Assume that we have been called by a non-ELF symbol reader.
7224 This flag is then reset by the code which reads an ELF input
7225 file. This ensures that a symbol created by a non-ELF symbol
7226 reader will have the flag set correctly. */
7227 ret->non_elf = 1;
7228 }
7229
7230 return entry;
7231 }
7232
7233 /* Copy data from an indirect symbol to its direct symbol, hiding the
7234 old indirect symbol. Also used for copying flags to a weakdef. */
7235
7236 void
7237 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7238 struct elf_link_hash_entry *dir,
7239 struct elf_link_hash_entry *ind)
7240 {
7241 struct elf_link_hash_table *htab;
7242
7243 /* Copy down any references that we may have already seen to the
7244 symbol which just became indirect. */
7245
7246 if (dir->versioned != versioned_hidden)
7247 dir->ref_dynamic |= ind->ref_dynamic;
7248 dir->ref_regular |= ind->ref_regular;
7249 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7250 dir->non_got_ref |= ind->non_got_ref;
7251 dir->needs_plt |= ind->needs_plt;
7252 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7253
7254 if (ind->root.type != bfd_link_hash_indirect)
7255 return;
7256
7257 /* Copy over the global and procedure linkage table refcount entries.
7258 These may have been already set up by a check_relocs routine. */
7259 htab = elf_hash_table (info);
7260 if (ind->got.refcount > htab->init_got_refcount.refcount)
7261 {
7262 if (dir->got.refcount < 0)
7263 dir->got.refcount = 0;
7264 dir->got.refcount += ind->got.refcount;
7265 ind->got.refcount = htab->init_got_refcount.refcount;
7266 }
7267
7268 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7269 {
7270 if (dir->plt.refcount < 0)
7271 dir->plt.refcount = 0;
7272 dir->plt.refcount += ind->plt.refcount;
7273 ind->plt.refcount = htab->init_plt_refcount.refcount;
7274 }
7275
7276 if (ind->dynindx != -1)
7277 {
7278 if (dir->dynindx != -1)
7279 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7280 dir->dynindx = ind->dynindx;
7281 dir->dynstr_index = ind->dynstr_index;
7282 ind->dynindx = -1;
7283 ind->dynstr_index = 0;
7284 }
7285 }
7286
7287 void
7288 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7289 struct elf_link_hash_entry *h,
7290 bfd_boolean force_local)
7291 {
7292 /* STT_GNU_IFUNC symbol must go through PLT. */
7293 if (h->type != STT_GNU_IFUNC)
7294 {
7295 h->plt = elf_hash_table (info)->init_plt_offset;
7296 h->needs_plt = 0;
7297 }
7298 if (force_local)
7299 {
7300 h->forced_local = 1;
7301 if (h->dynindx != -1)
7302 {
7303 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7304 h->dynstr_index);
7305 h->dynindx = -1;
7306 h->dynstr_index = 0;
7307 }
7308 }
7309 }
7310
7311 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7312 caller. */
7313
7314 bfd_boolean
7315 _bfd_elf_link_hash_table_init
7316 (struct elf_link_hash_table *table,
7317 bfd *abfd,
7318 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7319 struct bfd_hash_table *,
7320 const char *),
7321 unsigned int entsize,
7322 enum elf_target_id target_id)
7323 {
7324 bfd_boolean ret;
7325 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7326
7327 table->init_got_refcount.refcount = can_refcount - 1;
7328 table->init_plt_refcount.refcount = can_refcount - 1;
7329 table->init_got_offset.offset = -(bfd_vma) 1;
7330 table->init_plt_offset.offset = -(bfd_vma) 1;
7331 /* The first dynamic symbol is a dummy. */
7332 table->dynsymcount = 1;
7333
7334 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7335
7336 table->root.type = bfd_link_elf_hash_table;
7337 table->hash_table_id = target_id;
7338
7339 return ret;
7340 }
7341
7342 /* Create an ELF linker hash table. */
7343
7344 struct bfd_link_hash_table *
7345 _bfd_elf_link_hash_table_create (bfd *abfd)
7346 {
7347 struct elf_link_hash_table *ret;
7348 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7349
7350 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7351 if (ret == NULL)
7352 return NULL;
7353
7354 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7355 sizeof (struct elf_link_hash_entry),
7356 GENERIC_ELF_DATA))
7357 {
7358 free (ret);
7359 return NULL;
7360 }
7361 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7362
7363 return &ret->root;
7364 }
7365
7366 /* Destroy an ELF linker hash table. */
7367
7368 void
7369 _bfd_elf_link_hash_table_free (bfd *obfd)
7370 {
7371 struct elf_link_hash_table *htab;
7372
7373 htab = (struct elf_link_hash_table *) obfd->link.hash;
7374 if (htab->dynstr != NULL)
7375 _bfd_elf_strtab_free (htab->dynstr);
7376 _bfd_merge_sections_free (htab->merge_info);
7377 _bfd_generic_link_hash_table_free (obfd);
7378 }
7379
7380 /* This is a hook for the ELF emulation code in the generic linker to
7381 tell the backend linker what file name to use for the DT_NEEDED
7382 entry for a dynamic object. */
7383
7384 void
7385 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7386 {
7387 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7388 && bfd_get_format (abfd) == bfd_object)
7389 elf_dt_name (abfd) = name;
7390 }
7391
7392 int
7393 bfd_elf_get_dyn_lib_class (bfd *abfd)
7394 {
7395 int lib_class;
7396 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7397 && bfd_get_format (abfd) == bfd_object)
7398 lib_class = elf_dyn_lib_class (abfd);
7399 else
7400 lib_class = 0;
7401 return lib_class;
7402 }
7403
7404 void
7405 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7406 {
7407 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7408 && bfd_get_format (abfd) == bfd_object)
7409 elf_dyn_lib_class (abfd) = lib_class;
7410 }
7411
7412 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7413 the linker ELF emulation code. */
7414
7415 struct bfd_link_needed_list *
7416 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7417 struct bfd_link_info *info)
7418 {
7419 if (! is_elf_hash_table (info->hash))
7420 return NULL;
7421 return elf_hash_table (info)->needed;
7422 }
7423
7424 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7425 hook for the linker ELF emulation code. */
7426
7427 struct bfd_link_needed_list *
7428 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7429 struct bfd_link_info *info)
7430 {
7431 if (! is_elf_hash_table (info->hash))
7432 return NULL;
7433 return elf_hash_table (info)->runpath;
7434 }
7435
7436 /* Get the name actually used for a dynamic object for a link. This
7437 is the SONAME entry if there is one. Otherwise, it is the string
7438 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7439
7440 const char *
7441 bfd_elf_get_dt_soname (bfd *abfd)
7442 {
7443 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7444 && bfd_get_format (abfd) == bfd_object)
7445 return elf_dt_name (abfd);
7446 return NULL;
7447 }
7448
7449 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7450 the ELF linker emulation code. */
7451
7452 bfd_boolean
7453 bfd_elf_get_bfd_needed_list (bfd *abfd,
7454 struct bfd_link_needed_list **pneeded)
7455 {
7456 asection *s;
7457 bfd_byte *dynbuf = NULL;
7458 unsigned int elfsec;
7459 unsigned long shlink;
7460 bfd_byte *extdyn, *extdynend;
7461 size_t extdynsize;
7462 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7463
7464 *pneeded = NULL;
7465
7466 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7467 || bfd_get_format (abfd) != bfd_object)
7468 return TRUE;
7469
7470 s = bfd_get_section_by_name (abfd, ".dynamic");
7471 if (s == NULL || s->size == 0)
7472 return TRUE;
7473
7474 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7475 goto error_return;
7476
7477 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7478 if (elfsec == SHN_BAD)
7479 goto error_return;
7480
7481 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7482
7483 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7484 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7485
7486 extdyn = dynbuf;
7487 extdynend = extdyn + s->size;
7488 for (; extdyn < extdynend; extdyn += extdynsize)
7489 {
7490 Elf_Internal_Dyn dyn;
7491
7492 (*swap_dyn_in) (abfd, extdyn, &dyn);
7493
7494 if (dyn.d_tag == DT_NULL)
7495 break;
7496
7497 if (dyn.d_tag == DT_NEEDED)
7498 {
7499 const char *string;
7500 struct bfd_link_needed_list *l;
7501 unsigned int tagv = dyn.d_un.d_val;
7502 bfd_size_type amt;
7503
7504 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7505 if (string == NULL)
7506 goto error_return;
7507
7508 amt = sizeof *l;
7509 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7510 if (l == NULL)
7511 goto error_return;
7512
7513 l->by = abfd;
7514 l->name = string;
7515 l->next = *pneeded;
7516 *pneeded = l;
7517 }
7518 }
7519
7520 free (dynbuf);
7521
7522 return TRUE;
7523
7524 error_return:
7525 if (dynbuf != NULL)
7526 free (dynbuf);
7527 return FALSE;
7528 }
7529
7530 struct elf_symbuf_symbol
7531 {
7532 unsigned long st_name; /* Symbol name, index in string tbl */
7533 unsigned char st_info; /* Type and binding attributes */
7534 unsigned char st_other; /* Visibilty, and target specific */
7535 };
7536
7537 struct elf_symbuf_head
7538 {
7539 struct elf_symbuf_symbol *ssym;
7540 size_t count;
7541 unsigned int st_shndx;
7542 };
7543
7544 struct elf_symbol
7545 {
7546 union
7547 {
7548 Elf_Internal_Sym *isym;
7549 struct elf_symbuf_symbol *ssym;
7550 } u;
7551 const char *name;
7552 };
7553
7554 /* Sort references to symbols by ascending section number. */
7555
7556 static int
7557 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7558 {
7559 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7560 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7561
7562 return s1->st_shndx - s2->st_shndx;
7563 }
7564
7565 static int
7566 elf_sym_name_compare (const void *arg1, const void *arg2)
7567 {
7568 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7569 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7570 return strcmp (s1->name, s2->name);
7571 }
7572
7573 static struct elf_symbuf_head *
7574 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7575 {
7576 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7577 struct elf_symbuf_symbol *ssym;
7578 struct elf_symbuf_head *ssymbuf, *ssymhead;
7579 size_t i, shndx_count, total_size;
7580
7581 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7582 if (indbuf == NULL)
7583 return NULL;
7584
7585 for (ind = indbuf, i = 0; i < symcount; i++)
7586 if (isymbuf[i].st_shndx != SHN_UNDEF)
7587 *ind++ = &isymbuf[i];
7588 indbufend = ind;
7589
7590 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7591 elf_sort_elf_symbol);
7592
7593 shndx_count = 0;
7594 if (indbufend > indbuf)
7595 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7596 if (ind[0]->st_shndx != ind[1]->st_shndx)
7597 shndx_count++;
7598
7599 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7600 + (indbufend - indbuf) * sizeof (*ssym));
7601 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7602 if (ssymbuf == NULL)
7603 {
7604 free (indbuf);
7605 return NULL;
7606 }
7607
7608 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7609 ssymbuf->ssym = NULL;
7610 ssymbuf->count = shndx_count;
7611 ssymbuf->st_shndx = 0;
7612 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7613 {
7614 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7615 {
7616 ssymhead++;
7617 ssymhead->ssym = ssym;
7618 ssymhead->count = 0;
7619 ssymhead->st_shndx = (*ind)->st_shndx;
7620 }
7621 ssym->st_name = (*ind)->st_name;
7622 ssym->st_info = (*ind)->st_info;
7623 ssym->st_other = (*ind)->st_other;
7624 ssymhead->count++;
7625 }
7626 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7627 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7628 == total_size));
7629
7630 free (indbuf);
7631 return ssymbuf;
7632 }
7633
7634 /* Check if 2 sections define the same set of local and global
7635 symbols. */
7636
7637 static bfd_boolean
7638 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7639 struct bfd_link_info *info)
7640 {
7641 bfd *bfd1, *bfd2;
7642 const struct elf_backend_data *bed1, *bed2;
7643 Elf_Internal_Shdr *hdr1, *hdr2;
7644 size_t symcount1, symcount2;
7645 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7646 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7647 Elf_Internal_Sym *isym, *isymend;
7648 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7649 size_t count1, count2, i;
7650 unsigned int shndx1, shndx2;
7651 bfd_boolean result;
7652
7653 bfd1 = sec1->owner;
7654 bfd2 = sec2->owner;
7655
7656 /* Both sections have to be in ELF. */
7657 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7658 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7659 return FALSE;
7660
7661 if (elf_section_type (sec1) != elf_section_type (sec2))
7662 return FALSE;
7663
7664 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7665 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7666 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7667 return FALSE;
7668
7669 bed1 = get_elf_backend_data (bfd1);
7670 bed2 = get_elf_backend_data (bfd2);
7671 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7672 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7673 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7674 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7675
7676 if (symcount1 == 0 || symcount2 == 0)
7677 return FALSE;
7678
7679 result = FALSE;
7680 isymbuf1 = NULL;
7681 isymbuf2 = NULL;
7682 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7683 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7684
7685 if (ssymbuf1 == NULL)
7686 {
7687 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7688 NULL, NULL, NULL);
7689 if (isymbuf1 == NULL)
7690 goto done;
7691
7692 if (!info->reduce_memory_overheads)
7693 elf_tdata (bfd1)->symbuf = ssymbuf1
7694 = elf_create_symbuf (symcount1, isymbuf1);
7695 }
7696
7697 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7698 {
7699 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7700 NULL, NULL, NULL);
7701 if (isymbuf2 == NULL)
7702 goto done;
7703
7704 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7705 elf_tdata (bfd2)->symbuf = ssymbuf2
7706 = elf_create_symbuf (symcount2, isymbuf2);
7707 }
7708
7709 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7710 {
7711 /* Optimized faster version. */
7712 size_t lo, hi, mid;
7713 struct elf_symbol *symp;
7714 struct elf_symbuf_symbol *ssym, *ssymend;
7715
7716 lo = 0;
7717 hi = ssymbuf1->count;
7718 ssymbuf1++;
7719 count1 = 0;
7720 while (lo < hi)
7721 {
7722 mid = (lo + hi) / 2;
7723 if (shndx1 < ssymbuf1[mid].st_shndx)
7724 hi = mid;
7725 else if (shndx1 > ssymbuf1[mid].st_shndx)
7726 lo = mid + 1;
7727 else
7728 {
7729 count1 = ssymbuf1[mid].count;
7730 ssymbuf1 += mid;
7731 break;
7732 }
7733 }
7734
7735 lo = 0;
7736 hi = ssymbuf2->count;
7737 ssymbuf2++;
7738 count2 = 0;
7739 while (lo < hi)
7740 {
7741 mid = (lo + hi) / 2;
7742 if (shndx2 < ssymbuf2[mid].st_shndx)
7743 hi = mid;
7744 else if (shndx2 > ssymbuf2[mid].st_shndx)
7745 lo = mid + 1;
7746 else
7747 {
7748 count2 = ssymbuf2[mid].count;
7749 ssymbuf2 += mid;
7750 break;
7751 }
7752 }
7753
7754 if (count1 == 0 || count2 == 0 || count1 != count2)
7755 goto done;
7756
7757 symtable1
7758 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7759 symtable2
7760 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7761 if (symtable1 == NULL || symtable2 == NULL)
7762 goto done;
7763
7764 symp = symtable1;
7765 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7766 ssym < ssymend; ssym++, symp++)
7767 {
7768 symp->u.ssym = ssym;
7769 symp->name = bfd_elf_string_from_elf_section (bfd1,
7770 hdr1->sh_link,
7771 ssym->st_name);
7772 }
7773
7774 symp = symtable2;
7775 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7776 ssym < ssymend; ssym++, symp++)
7777 {
7778 symp->u.ssym = ssym;
7779 symp->name = bfd_elf_string_from_elf_section (bfd2,
7780 hdr2->sh_link,
7781 ssym->st_name);
7782 }
7783
7784 /* Sort symbol by name. */
7785 qsort (symtable1, count1, sizeof (struct elf_symbol),
7786 elf_sym_name_compare);
7787 qsort (symtable2, count1, sizeof (struct elf_symbol),
7788 elf_sym_name_compare);
7789
7790 for (i = 0; i < count1; i++)
7791 /* Two symbols must have the same binding, type and name. */
7792 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7793 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7794 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7795 goto done;
7796
7797 result = TRUE;
7798 goto done;
7799 }
7800
7801 symtable1 = (struct elf_symbol *)
7802 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7803 symtable2 = (struct elf_symbol *)
7804 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7805 if (symtable1 == NULL || symtable2 == NULL)
7806 goto done;
7807
7808 /* Count definitions in the section. */
7809 count1 = 0;
7810 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7811 if (isym->st_shndx == shndx1)
7812 symtable1[count1++].u.isym = isym;
7813
7814 count2 = 0;
7815 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7816 if (isym->st_shndx == shndx2)
7817 symtable2[count2++].u.isym = isym;
7818
7819 if (count1 == 0 || count2 == 0 || count1 != count2)
7820 goto done;
7821
7822 for (i = 0; i < count1; i++)
7823 symtable1[i].name
7824 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7825 symtable1[i].u.isym->st_name);
7826
7827 for (i = 0; i < count2; i++)
7828 symtable2[i].name
7829 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7830 symtable2[i].u.isym->st_name);
7831
7832 /* Sort symbol by name. */
7833 qsort (symtable1, count1, sizeof (struct elf_symbol),
7834 elf_sym_name_compare);
7835 qsort (symtable2, count1, sizeof (struct elf_symbol),
7836 elf_sym_name_compare);
7837
7838 for (i = 0; i < count1; i++)
7839 /* Two symbols must have the same binding, type and name. */
7840 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7841 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7842 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7843 goto done;
7844
7845 result = TRUE;
7846
7847 done:
7848 if (symtable1)
7849 free (symtable1);
7850 if (symtable2)
7851 free (symtable2);
7852 if (isymbuf1)
7853 free (isymbuf1);
7854 if (isymbuf2)
7855 free (isymbuf2);
7856
7857 return result;
7858 }
7859
7860 /* Return TRUE if 2 section types are compatible. */
7861
7862 bfd_boolean
7863 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7864 bfd *bbfd, const asection *bsec)
7865 {
7866 if (asec == NULL
7867 || bsec == NULL
7868 || abfd->xvec->flavour != bfd_target_elf_flavour
7869 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7870 return TRUE;
7871
7872 return elf_section_type (asec) == elf_section_type (bsec);
7873 }
7874 \f
7875 /* Final phase of ELF linker. */
7876
7877 /* A structure we use to avoid passing large numbers of arguments. */
7878
7879 struct elf_final_link_info
7880 {
7881 /* General link information. */
7882 struct bfd_link_info *info;
7883 /* Output BFD. */
7884 bfd *output_bfd;
7885 /* Symbol string table. */
7886 struct elf_strtab_hash *symstrtab;
7887 /* .hash section. */
7888 asection *hash_sec;
7889 /* symbol version section (.gnu.version). */
7890 asection *symver_sec;
7891 /* Buffer large enough to hold contents of any section. */
7892 bfd_byte *contents;
7893 /* Buffer large enough to hold external relocs of any section. */
7894 void *external_relocs;
7895 /* Buffer large enough to hold internal relocs of any section. */
7896 Elf_Internal_Rela *internal_relocs;
7897 /* Buffer large enough to hold external local symbols of any input
7898 BFD. */
7899 bfd_byte *external_syms;
7900 /* And a buffer for symbol section indices. */
7901 Elf_External_Sym_Shndx *locsym_shndx;
7902 /* Buffer large enough to hold internal local symbols of any input
7903 BFD. */
7904 Elf_Internal_Sym *internal_syms;
7905 /* Array large enough to hold a symbol index for each local symbol
7906 of any input BFD. */
7907 long *indices;
7908 /* Array large enough to hold a section pointer for each local
7909 symbol of any input BFD. */
7910 asection **sections;
7911 /* Buffer for SHT_SYMTAB_SHNDX section. */
7912 Elf_External_Sym_Shndx *symshndxbuf;
7913 /* Number of STT_FILE syms seen. */
7914 size_t filesym_count;
7915 };
7916
7917 /* This struct is used to pass information to elf_link_output_extsym. */
7918
7919 struct elf_outext_info
7920 {
7921 bfd_boolean failed;
7922 bfd_boolean localsyms;
7923 bfd_boolean file_sym_done;
7924 struct elf_final_link_info *flinfo;
7925 };
7926
7927
7928 /* Support for evaluating a complex relocation.
7929
7930 Complex relocations are generalized, self-describing relocations. The
7931 implementation of them consists of two parts: complex symbols, and the
7932 relocations themselves.
7933
7934 The relocations are use a reserved elf-wide relocation type code (R_RELC
7935 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7936 information (start bit, end bit, word width, etc) into the addend. This
7937 information is extracted from CGEN-generated operand tables within gas.
7938
7939 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7940 internal) representing prefix-notation expressions, including but not
7941 limited to those sorts of expressions normally encoded as addends in the
7942 addend field. The symbol mangling format is:
7943
7944 <node> := <literal>
7945 | <unary-operator> ':' <node>
7946 | <binary-operator> ':' <node> ':' <node>
7947 ;
7948
7949 <literal> := 's' <digits=N> ':' <N character symbol name>
7950 | 'S' <digits=N> ':' <N character section name>
7951 | '#' <hexdigits>
7952 ;
7953
7954 <binary-operator> := as in C
7955 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7956
7957 static void
7958 set_symbol_value (bfd *bfd_with_globals,
7959 Elf_Internal_Sym *isymbuf,
7960 size_t locsymcount,
7961 size_t symidx,
7962 bfd_vma val)
7963 {
7964 struct elf_link_hash_entry **sym_hashes;
7965 struct elf_link_hash_entry *h;
7966 size_t extsymoff = locsymcount;
7967
7968 if (symidx < locsymcount)
7969 {
7970 Elf_Internal_Sym *sym;
7971
7972 sym = isymbuf + symidx;
7973 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7974 {
7975 /* It is a local symbol: move it to the
7976 "absolute" section and give it a value. */
7977 sym->st_shndx = SHN_ABS;
7978 sym->st_value = val;
7979 return;
7980 }
7981 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7982 extsymoff = 0;
7983 }
7984
7985 /* It is a global symbol: set its link type
7986 to "defined" and give it a value. */
7987
7988 sym_hashes = elf_sym_hashes (bfd_with_globals);
7989 h = sym_hashes [symidx - extsymoff];
7990 while (h->root.type == bfd_link_hash_indirect
7991 || h->root.type == bfd_link_hash_warning)
7992 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7993 h->root.type = bfd_link_hash_defined;
7994 h->root.u.def.value = val;
7995 h->root.u.def.section = bfd_abs_section_ptr;
7996 }
7997
7998 static bfd_boolean
7999 resolve_symbol (const char *name,
8000 bfd *input_bfd,
8001 struct elf_final_link_info *flinfo,
8002 bfd_vma *result,
8003 Elf_Internal_Sym *isymbuf,
8004 size_t locsymcount)
8005 {
8006 Elf_Internal_Sym *sym;
8007 struct bfd_link_hash_entry *global_entry;
8008 const char *candidate = NULL;
8009 Elf_Internal_Shdr *symtab_hdr;
8010 size_t i;
8011
8012 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8013
8014 for (i = 0; i < locsymcount; ++ i)
8015 {
8016 sym = isymbuf + i;
8017
8018 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8019 continue;
8020
8021 candidate = bfd_elf_string_from_elf_section (input_bfd,
8022 symtab_hdr->sh_link,
8023 sym->st_name);
8024 #ifdef DEBUG
8025 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8026 name, candidate, (unsigned long) sym->st_value);
8027 #endif
8028 if (candidate && strcmp (candidate, name) == 0)
8029 {
8030 asection *sec = flinfo->sections [i];
8031
8032 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8033 *result += sec->output_offset + sec->output_section->vma;
8034 #ifdef DEBUG
8035 printf ("Found symbol with value %8.8lx\n",
8036 (unsigned long) *result);
8037 #endif
8038 return TRUE;
8039 }
8040 }
8041
8042 /* Hmm, haven't found it yet. perhaps it is a global. */
8043 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8044 FALSE, FALSE, TRUE);
8045 if (!global_entry)
8046 return FALSE;
8047
8048 if (global_entry->type == bfd_link_hash_defined
8049 || global_entry->type == bfd_link_hash_defweak)
8050 {
8051 *result = (global_entry->u.def.value
8052 + global_entry->u.def.section->output_section->vma
8053 + global_entry->u.def.section->output_offset);
8054 #ifdef DEBUG
8055 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8056 global_entry->root.string, (unsigned long) *result);
8057 #endif
8058 return TRUE;
8059 }
8060
8061 return FALSE;
8062 }
8063
8064 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8065 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8066 names like "foo.end" which is the end address of section "foo". */
8067
8068 static bfd_boolean
8069 resolve_section (const char *name,
8070 asection *sections,
8071 bfd_vma *result,
8072 bfd * abfd)
8073 {
8074 asection *curr;
8075 unsigned int len;
8076
8077 for (curr = sections; curr; curr = curr->next)
8078 if (strcmp (curr->name, name) == 0)
8079 {
8080 *result = curr->vma;
8081 return TRUE;
8082 }
8083
8084 /* Hmm. still haven't found it. try pseudo-section names. */
8085 /* FIXME: This could be coded more efficiently... */
8086 for (curr = sections; curr; curr = curr->next)
8087 {
8088 len = strlen (curr->name);
8089 if (len > strlen (name))
8090 continue;
8091
8092 if (strncmp (curr->name, name, len) == 0)
8093 {
8094 if (strncmp (".end", name + len, 4) == 0)
8095 {
8096 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8097 return TRUE;
8098 }
8099
8100 /* Insert more pseudo-section names here, if you like. */
8101 }
8102 }
8103
8104 return FALSE;
8105 }
8106
8107 static void
8108 undefined_reference (const char *reftype, const char *name)
8109 {
8110 /* xgettext:c-format */
8111 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8112 reftype, name);
8113 }
8114
8115 static bfd_boolean
8116 eval_symbol (bfd_vma *result,
8117 const char **symp,
8118 bfd *input_bfd,
8119 struct elf_final_link_info *flinfo,
8120 bfd_vma dot,
8121 Elf_Internal_Sym *isymbuf,
8122 size_t locsymcount,
8123 int signed_p)
8124 {
8125 size_t len;
8126 size_t symlen;
8127 bfd_vma a;
8128 bfd_vma b;
8129 char symbuf[4096];
8130 const char *sym = *symp;
8131 const char *symend;
8132 bfd_boolean symbol_is_section = FALSE;
8133
8134 len = strlen (sym);
8135 symend = sym + len;
8136
8137 if (len < 1 || len > sizeof (symbuf))
8138 {
8139 bfd_set_error (bfd_error_invalid_operation);
8140 return FALSE;
8141 }
8142
8143 switch (* sym)
8144 {
8145 case '.':
8146 *result = dot;
8147 *symp = sym + 1;
8148 return TRUE;
8149
8150 case '#':
8151 ++sym;
8152 *result = strtoul (sym, (char **) symp, 16);
8153 return TRUE;
8154
8155 case 'S':
8156 symbol_is_section = TRUE;
8157 /* Fall through. */
8158 case 's':
8159 ++sym;
8160 symlen = strtol (sym, (char **) symp, 10);
8161 sym = *symp + 1; /* Skip the trailing ':'. */
8162
8163 if (symend < sym || symlen + 1 > sizeof (symbuf))
8164 {
8165 bfd_set_error (bfd_error_invalid_operation);
8166 return FALSE;
8167 }
8168
8169 memcpy (symbuf, sym, symlen);
8170 symbuf[symlen] = '\0';
8171 *symp = sym + symlen;
8172
8173 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8174 the symbol as a section, or vice-versa. so we're pretty liberal in our
8175 interpretation here; section means "try section first", not "must be a
8176 section", and likewise with symbol. */
8177
8178 if (symbol_is_section)
8179 {
8180 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8181 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8182 isymbuf, locsymcount))
8183 {
8184 undefined_reference ("section", symbuf);
8185 return FALSE;
8186 }
8187 }
8188 else
8189 {
8190 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8191 isymbuf, locsymcount)
8192 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8193 result, input_bfd))
8194 {
8195 undefined_reference ("symbol", symbuf);
8196 return FALSE;
8197 }
8198 }
8199
8200 return TRUE;
8201
8202 /* All that remains are operators. */
8203
8204 #define UNARY_OP(op) \
8205 if (strncmp (sym, #op, strlen (#op)) == 0) \
8206 { \
8207 sym += strlen (#op); \
8208 if (*sym == ':') \
8209 ++sym; \
8210 *symp = sym; \
8211 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8212 isymbuf, locsymcount, signed_p)) \
8213 return FALSE; \
8214 if (signed_p) \
8215 *result = op ((bfd_signed_vma) a); \
8216 else \
8217 *result = op a; \
8218 return TRUE; \
8219 }
8220
8221 #define BINARY_OP(op) \
8222 if (strncmp (sym, #op, strlen (#op)) == 0) \
8223 { \
8224 sym += strlen (#op); \
8225 if (*sym == ':') \
8226 ++sym; \
8227 *symp = sym; \
8228 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8229 isymbuf, locsymcount, signed_p)) \
8230 return FALSE; \
8231 ++*symp; \
8232 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8233 isymbuf, locsymcount, signed_p)) \
8234 return FALSE; \
8235 if (signed_p) \
8236 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8237 else \
8238 *result = a op b; \
8239 return TRUE; \
8240 }
8241
8242 default:
8243 UNARY_OP (0-);
8244 BINARY_OP (<<);
8245 BINARY_OP (>>);
8246 BINARY_OP (==);
8247 BINARY_OP (!=);
8248 BINARY_OP (<=);
8249 BINARY_OP (>=);
8250 BINARY_OP (&&);
8251 BINARY_OP (||);
8252 UNARY_OP (~);
8253 UNARY_OP (!);
8254 BINARY_OP (*);
8255 BINARY_OP (/);
8256 BINARY_OP (%);
8257 BINARY_OP (^);
8258 BINARY_OP (|);
8259 BINARY_OP (&);
8260 BINARY_OP (+);
8261 BINARY_OP (-);
8262 BINARY_OP (<);
8263 BINARY_OP (>);
8264 #undef UNARY_OP
8265 #undef BINARY_OP
8266 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8267 bfd_set_error (bfd_error_invalid_operation);
8268 return FALSE;
8269 }
8270 }
8271
8272 static void
8273 put_value (bfd_vma size,
8274 unsigned long chunksz,
8275 bfd *input_bfd,
8276 bfd_vma x,
8277 bfd_byte *location)
8278 {
8279 location += (size - chunksz);
8280
8281 for (; size; size -= chunksz, location -= chunksz)
8282 {
8283 switch (chunksz)
8284 {
8285 case 1:
8286 bfd_put_8 (input_bfd, x, location);
8287 x >>= 8;
8288 break;
8289 case 2:
8290 bfd_put_16 (input_bfd, x, location);
8291 x >>= 16;
8292 break;
8293 case 4:
8294 bfd_put_32 (input_bfd, x, location);
8295 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8296 x >>= 16;
8297 x >>= 16;
8298 break;
8299 #ifdef BFD64
8300 case 8:
8301 bfd_put_64 (input_bfd, x, location);
8302 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8303 x >>= 32;
8304 x >>= 32;
8305 break;
8306 #endif
8307 default:
8308 abort ();
8309 break;
8310 }
8311 }
8312 }
8313
8314 static bfd_vma
8315 get_value (bfd_vma size,
8316 unsigned long chunksz,
8317 bfd *input_bfd,
8318 bfd_byte *location)
8319 {
8320 int shift;
8321 bfd_vma x = 0;
8322
8323 /* Sanity checks. */
8324 BFD_ASSERT (chunksz <= sizeof (x)
8325 && size >= chunksz
8326 && chunksz != 0
8327 && (size % chunksz) == 0
8328 && input_bfd != NULL
8329 && location != NULL);
8330
8331 if (chunksz == sizeof (x))
8332 {
8333 BFD_ASSERT (size == chunksz);
8334
8335 /* Make sure that we do not perform an undefined shift operation.
8336 We know that size == chunksz so there will only be one iteration
8337 of the loop below. */
8338 shift = 0;
8339 }
8340 else
8341 shift = 8 * chunksz;
8342
8343 for (; size; size -= chunksz, location += chunksz)
8344 {
8345 switch (chunksz)
8346 {
8347 case 1:
8348 x = (x << shift) | bfd_get_8 (input_bfd, location);
8349 break;
8350 case 2:
8351 x = (x << shift) | bfd_get_16 (input_bfd, location);
8352 break;
8353 case 4:
8354 x = (x << shift) | bfd_get_32 (input_bfd, location);
8355 break;
8356 #ifdef BFD64
8357 case 8:
8358 x = (x << shift) | bfd_get_64 (input_bfd, location);
8359 break;
8360 #endif
8361 default:
8362 abort ();
8363 }
8364 }
8365 return x;
8366 }
8367
8368 static void
8369 decode_complex_addend (unsigned long *start, /* in bits */
8370 unsigned long *oplen, /* in bits */
8371 unsigned long *len, /* in bits */
8372 unsigned long *wordsz, /* in bytes */
8373 unsigned long *chunksz, /* in bytes */
8374 unsigned long *lsb0_p,
8375 unsigned long *signed_p,
8376 unsigned long *trunc_p,
8377 unsigned long encoded)
8378 {
8379 * start = encoded & 0x3F;
8380 * len = (encoded >> 6) & 0x3F;
8381 * oplen = (encoded >> 12) & 0x3F;
8382 * wordsz = (encoded >> 18) & 0xF;
8383 * chunksz = (encoded >> 22) & 0xF;
8384 * lsb0_p = (encoded >> 27) & 1;
8385 * signed_p = (encoded >> 28) & 1;
8386 * trunc_p = (encoded >> 29) & 1;
8387 }
8388
8389 bfd_reloc_status_type
8390 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8391 asection *input_section ATTRIBUTE_UNUSED,
8392 bfd_byte *contents,
8393 Elf_Internal_Rela *rel,
8394 bfd_vma relocation)
8395 {
8396 bfd_vma shift, x, mask;
8397 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8398 bfd_reloc_status_type r;
8399
8400 /* Perform this reloc, since it is complex.
8401 (this is not to say that it necessarily refers to a complex
8402 symbol; merely that it is a self-describing CGEN based reloc.
8403 i.e. the addend has the complete reloc information (bit start, end,
8404 word size, etc) encoded within it.). */
8405
8406 decode_complex_addend (&start, &oplen, &len, &wordsz,
8407 &chunksz, &lsb0_p, &signed_p,
8408 &trunc_p, rel->r_addend);
8409
8410 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8411
8412 if (lsb0_p)
8413 shift = (start + 1) - len;
8414 else
8415 shift = (8 * wordsz) - (start + len);
8416
8417 x = get_value (wordsz, chunksz, input_bfd,
8418 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8419
8420 #ifdef DEBUG
8421 printf ("Doing complex reloc: "
8422 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8423 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8424 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8425 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8426 oplen, (unsigned long) x, (unsigned long) mask,
8427 (unsigned long) relocation);
8428 #endif
8429
8430 r = bfd_reloc_ok;
8431 if (! trunc_p)
8432 /* Now do an overflow check. */
8433 r = bfd_check_overflow ((signed_p
8434 ? complain_overflow_signed
8435 : complain_overflow_unsigned),
8436 len, 0, (8 * wordsz),
8437 relocation);
8438
8439 /* Do the deed. */
8440 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8441
8442 #ifdef DEBUG
8443 printf (" relocation: %8.8lx\n"
8444 " shifted mask: %8.8lx\n"
8445 " shifted/masked reloc: %8.8lx\n"
8446 " result: %8.8lx\n",
8447 (unsigned long) relocation, (unsigned long) (mask << shift),
8448 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8449 #endif
8450 put_value (wordsz, chunksz, input_bfd, x,
8451 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8452 return r;
8453 }
8454
8455 /* Functions to read r_offset from external (target order) reloc
8456 entry. Faster than bfd_getl32 et al, because we let the compiler
8457 know the value is aligned. */
8458
8459 static bfd_vma
8460 ext32l_r_offset (const void *p)
8461 {
8462 union aligned32
8463 {
8464 uint32_t v;
8465 unsigned char c[4];
8466 };
8467 const union aligned32 *a
8468 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8469
8470 uint32_t aval = ( (uint32_t) a->c[0]
8471 | (uint32_t) a->c[1] << 8
8472 | (uint32_t) a->c[2] << 16
8473 | (uint32_t) a->c[3] << 24);
8474 return aval;
8475 }
8476
8477 static bfd_vma
8478 ext32b_r_offset (const void *p)
8479 {
8480 union aligned32
8481 {
8482 uint32_t v;
8483 unsigned char c[4];
8484 };
8485 const union aligned32 *a
8486 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8487
8488 uint32_t aval = ( (uint32_t) a->c[0] << 24
8489 | (uint32_t) a->c[1] << 16
8490 | (uint32_t) a->c[2] << 8
8491 | (uint32_t) a->c[3]);
8492 return aval;
8493 }
8494
8495 #ifdef BFD_HOST_64_BIT
8496 static bfd_vma
8497 ext64l_r_offset (const void *p)
8498 {
8499 union aligned64
8500 {
8501 uint64_t v;
8502 unsigned char c[8];
8503 };
8504 const union aligned64 *a
8505 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8506
8507 uint64_t aval = ( (uint64_t) a->c[0]
8508 | (uint64_t) a->c[1] << 8
8509 | (uint64_t) a->c[2] << 16
8510 | (uint64_t) a->c[3] << 24
8511 | (uint64_t) a->c[4] << 32
8512 | (uint64_t) a->c[5] << 40
8513 | (uint64_t) a->c[6] << 48
8514 | (uint64_t) a->c[7] << 56);
8515 return aval;
8516 }
8517
8518 static bfd_vma
8519 ext64b_r_offset (const void *p)
8520 {
8521 union aligned64
8522 {
8523 uint64_t v;
8524 unsigned char c[8];
8525 };
8526 const union aligned64 *a
8527 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8528
8529 uint64_t aval = ( (uint64_t) a->c[0] << 56
8530 | (uint64_t) a->c[1] << 48
8531 | (uint64_t) a->c[2] << 40
8532 | (uint64_t) a->c[3] << 32
8533 | (uint64_t) a->c[4] << 24
8534 | (uint64_t) a->c[5] << 16
8535 | (uint64_t) a->c[6] << 8
8536 | (uint64_t) a->c[7]);
8537 return aval;
8538 }
8539 #endif
8540
8541 /* When performing a relocatable link, the input relocations are
8542 preserved. But, if they reference global symbols, the indices
8543 referenced must be updated. Update all the relocations found in
8544 RELDATA. */
8545
8546 static bfd_boolean
8547 elf_link_adjust_relocs (bfd *abfd,
8548 asection *sec,
8549 struct bfd_elf_section_reloc_data *reldata,
8550 bfd_boolean sort)
8551 {
8552 unsigned int i;
8553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8554 bfd_byte *erela;
8555 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8556 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8557 bfd_vma r_type_mask;
8558 int r_sym_shift;
8559 unsigned int count = reldata->count;
8560 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8561
8562 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8563 {
8564 swap_in = bed->s->swap_reloc_in;
8565 swap_out = bed->s->swap_reloc_out;
8566 }
8567 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8568 {
8569 swap_in = bed->s->swap_reloca_in;
8570 swap_out = bed->s->swap_reloca_out;
8571 }
8572 else
8573 abort ();
8574
8575 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8576 abort ();
8577
8578 if (bed->s->arch_size == 32)
8579 {
8580 r_type_mask = 0xff;
8581 r_sym_shift = 8;
8582 }
8583 else
8584 {
8585 r_type_mask = 0xffffffff;
8586 r_sym_shift = 32;
8587 }
8588
8589 erela = reldata->hdr->contents;
8590 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8591 {
8592 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8593 unsigned int j;
8594
8595 if (*rel_hash == NULL)
8596 continue;
8597
8598 BFD_ASSERT ((*rel_hash)->indx >= 0);
8599
8600 (*swap_in) (abfd, erela, irela);
8601 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8602 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8603 | (irela[j].r_info & r_type_mask));
8604 (*swap_out) (abfd, irela, erela);
8605 }
8606
8607 if (bed->elf_backend_update_relocs)
8608 (*bed->elf_backend_update_relocs) (sec, reldata);
8609
8610 if (sort && count != 0)
8611 {
8612 bfd_vma (*ext_r_off) (const void *);
8613 bfd_vma r_off;
8614 size_t elt_size;
8615 bfd_byte *base, *end, *p, *loc;
8616 bfd_byte *buf = NULL;
8617
8618 if (bed->s->arch_size == 32)
8619 {
8620 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8621 ext_r_off = ext32l_r_offset;
8622 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8623 ext_r_off = ext32b_r_offset;
8624 else
8625 abort ();
8626 }
8627 else
8628 {
8629 #ifdef BFD_HOST_64_BIT
8630 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8631 ext_r_off = ext64l_r_offset;
8632 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8633 ext_r_off = ext64b_r_offset;
8634 else
8635 #endif
8636 abort ();
8637 }
8638
8639 /* Must use a stable sort here. A modified insertion sort,
8640 since the relocs are mostly sorted already. */
8641 elt_size = reldata->hdr->sh_entsize;
8642 base = reldata->hdr->contents;
8643 end = base + count * elt_size;
8644 if (elt_size > sizeof (Elf64_External_Rela))
8645 abort ();
8646
8647 /* Ensure the first element is lowest. This acts as a sentinel,
8648 speeding the main loop below. */
8649 r_off = (*ext_r_off) (base);
8650 for (p = loc = base; (p += elt_size) < end; )
8651 {
8652 bfd_vma r_off2 = (*ext_r_off) (p);
8653 if (r_off > r_off2)
8654 {
8655 r_off = r_off2;
8656 loc = p;
8657 }
8658 }
8659 if (loc != base)
8660 {
8661 /* Don't just swap *base and *loc as that changes the order
8662 of the original base[0] and base[1] if they happen to
8663 have the same r_offset. */
8664 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8665 memcpy (onebuf, loc, elt_size);
8666 memmove (base + elt_size, base, loc - base);
8667 memcpy (base, onebuf, elt_size);
8668 }
8669
8670 for (p = base + elt_size; (p += elt_size) < end; )
8671 {
8672 /* base to p is sorted, *p is next to insert. */
8673 r_off = (*ext_r_off) (p);
8674 /* Search the sorted region for location to insert. */
8675 loc = p - elt_size;
8676 while (r_off < (*ext_r_off) (loc))
8677 loc -= elt_size;
8678 loc += elt_size;
8679 if (loc != p)
8680 {
8681 /* Chances are there is a run of relocs to insert here,
8682 from one of more input files. Files are not always
8683 linked in order due to the way elf_link_input_bfd is
8684 called. See pr17666. */
8685 size_t sortlen = p - loc;
8686 bfd_vma r_off2 = (*ext_r_off) (loc);
8687 size_t runlen = elt_size;
8688 size_t buf_size = 96 * 1024;
8689 while (p + runlen < end
8690 && (sortlen <= buf_size
8691 || runlen + elt_size <= buf_size)
8692 && r_off2 > (*ext_r_off) (p + runlen))
8693 runlen += elt_size;
8694 if (buf == NULL)
8695 {
8696 buf = bfd_malloc (buf_size);
8697 if (buf == NULL)
8698 return FALSE;
8699 }
8700 if (runlen < sortlen)
8701 {
8702 memcpy (buf, p, runlen);
8703 memmove (loc + runlen, loc, sortlen);
8704 memcpy (loc, buf, runlen);
8705 }
8706 else
8707 {
8708 memcpy (buf, loc, sortlen);
8709 memmove (loc, p, runlen);
8710 memcpy (loc + runlen, buf, sortlen);
8711 }
8712 p += runlen - elt_size;
8713 }
8714 }
8715 /* Hashes are no longer valid. */
8716 free (reldata->hashes);
8717 reldata->hashes = NULL;
8718 free (buf);
8719 }
8720 return TRUE;
8721 }
8722
8723 struct elf_link_sort_rela
8724 {
8725 union {
8726 bfd_vma offset;
8727 bfd_vma sym_mask;
8728 } u;
8729 enum elf_reloc_type_class type;
8730 /* We use this as an array of size int_rels_per_ext_rel. */
8731 Elf_Internal_Rela rela[1];
8732 };
8733
8734 static int
8735 elf_link_sort_cmp1 (const void *A, const void *B)
8736 {
8737 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8738 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8739 int relativea, relativeb;
8740
8741 relativea = a->type == reloc_class_relative;
8742 relativeb = b->type == reloc_class_relative;
8743
8744 if (relativea < relativeb)
8745 return 1;
8746 if (relativea > relativeb)
8747 return -1;
8748 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8749 return -1;
8750 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8751 return 1;
8752 if (a->rela->r_offset < b->rela->r_offset)
8753 return -1;
8754 if (a->rela->r_offset > b->rela->r_offset)
8755 return 1;
8756 return 0;
8757 }
8758
8759 static int
8760 elf_link_sort_cmp2 (const void *A, const void *B)
8761 {
8762 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8763 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8764
8765 if (a->type < b->type)
8766 return -1;
8767 if (a->type > b->type)
8768 return 1;
8769 if (a->u.offset < b->u.offset)
8770 return -1;
8771 if (a->u.offset > b->u.offset)
8772 return 1;
8773 if (a->rela->r_offset < b->rela->r_offset)
8774 return -1;
8775 if (a->rela->r_offset > b->rela->r_offset)
8776 return 1;
8777 return 0;
8778 }
8779
8780 static size_t
8781 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8782 {
8783 asection *dynamic_relocs;
8784 asection *rela_dyn;
8785 asection *rel_dyn;
8786 bfd_size_type count, size;
8787 size_t i, ret, sort_elt, ext_size;
8788 bfd_byte *sort, *s_non_relative, *p;
8789 struct elf_link_sort_rela *sq;
8790 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8791 int i2e = bed->s->int_rels_per_ext_rel;
8792 unsigned int opb = bfd_octets_per_byte (abfd);
8793 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8794 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8795 struct bfd_link_order *lo;
8796 bfd_vma r_sym_mask;
8797 bfd_boolean use_rela;
8798
8799 /* Find a dynamic reloc section. */
8800 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8801 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8802 if (rela_dyn != NULL && rela_dyn->size > 0
8803 && rel_dyn != NULL && rel_dyn->size > 0)
8804 {
8805 bfd_boolean use_rela_initialised = FALSE;
8806
8807 /* This is just here to stop gcc from complaining.
8808 Its initialization checking code is not perfect. */
8809 use_rela = TRUE;
8810
8811 /* Both sections are present. Examine the sizes
8812 of the indirect sections to help us choose. */
8813 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8814 if (lo->type == bfd_indirect_link_order)
8815 {
8816 asection *o = lo->u.indirect.section;
8817
8818 if ((o->size % bed->s->sizeof_rela) == 0)
8819 {
8820 if ((o->size % bed->s->sizeof_rel) == 0)
8821 /* Section size is divisible by both rel and rela sizes.
8822 It is of no help to us. */
8823 ;
8824 else
8825 {
8826 /* Section size is only divisible by rela. */
8827 if (use_rela_initialised && !use_rela)
8828 {
8829 _bfd_error_handler (_("%B: Unable to sort relocs - "
8830 "they are in more than one size"),
8831 abfd);
8832 bfd_set_error (bfd_error_invalid_operation);
8833 return 0;
8834 }
8835 else
8836 {
8837 use_rela = TRUE;
8838 use_rela_initialised = TRUE;
8839 }
8840 }
8841 }
8842 else if ((o->size % bed->s->sizeof_rel) == 0)
8843 {
8844 /* Section size is only divisible by rel. */
8845 if (use_rela_initialised && use_rela)
8846 {
8847 _bfd_error_handler (_("%B: Unable to sort relocs - "
8848 "they are in more than one size"),
8849 abfd);
8850 bfd_set_error (bfd_error_invalid_operation);
8851 return 0;
8852 }
8853 else
8854 {
8855 use_rela = FALSE;
8856 use_rela_initialised = TRUE;
8857 }
8858 }
8859 else
8860 {
8861 /* The section size is not divisible by either -
8862 something is wrong. */
8863 _bfd_error_handler (_("%B: Unable to sort relocs - "
8864 "they are of an unknown size"), abfd);
8865 bfd_set_error (bfd_error_invalid_operation);
8866 return 0;
8867 }
8868 }
8869
8870 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8871 if (lo->type == bfd_indirect_link_order)
8872 {
8873 asection *o = lo->u.indirect.section;
8874
8875 if ((o->size % bed->s->sizeof_rela) == 0)
8876 {
8877 if ((o->size % bed->s->sizeof_rel) == 0)
8878 /* Section size is divisible by both rel and rela sizes.
8879 It is of no help to us. */
8880 ;
8881 else
8882 {
8883 /* Section size is only divisible by rela. */
8884 if (use_rela_initialised && !use_rela)
8885 {
8886 _bfd_error_handler (_("%B: Unable to sort relocs - "
8887 "they are in more than one size"),
8888 abfd);
8889 bfd_set_error (bfd_error_invalid_operation);
8890 return 0;
8891 }
8892 else
8893 {
8894 use_rela = TRUE;
8895 use_rela_initialised = TRUE;
8896 }
8897 }
8898 }
8899 else if ((o->size % bed->s->sizeof_rel) == 0)
8900 {
8901 /* Section size is only divisible by rel. */
8902 if (use_rela_initialised && use_rela)
8903 {
8904 _bfd_error_handler (_("%B: Unable to sort relocs - "
8905 "they are in more than one size"),
8906 abfd);
8907 bfd_set_error (bfd_error_invalid_operation);
8908 return 0;
8909 }
8910 else
8911 {
8912 use_rela = FALSE;
8913 use_rela_initialised = TRUE;
8914 }
8915 }
8916 else
8917 {
8918 /* The section size is not divisible by either -
8919 something is wrong. */
8920 _bfd_error_handler (_("%B: Unable to sort relocs - "
8921 "they are of an unknown size"), abfd);
8922 bfd_set_error (bfd_error_invalid_operation);
8923 return 0;
8924 }
8925 }
8926
8927 if (! use_rela_initialised)
8928 /* Make a guess. */
8929 use_rela = TRUE;
8930 }
8931 else if (rela_dyn != NULL && rela_dyn->size > 0)
8932 use_rela = TRUE;
8933 else if (rel_dyn != NULL && rel_dyn->size > 0)
8934 use_rela = FALSE;
8935 else
8936 return 0;
8937
8938 if (use_rela)
8939 {
8940 dynamic_relocs = rela_dyn;
8941 ext_size = bed->s->sizeof_rela;
8942 swap_in = bed->s->swap_reloca_in;
8943 swap_out = bed->s->swap_reloca_out;
8944 }
8945 else
8946 {
8947 dynamic_relocs = rel_dyn;
8948 ext_size = bed->s->sizeof_rel;
8949 swap_in = bed->s->swap_reloc_in;
8950 swap_out = bed->s->swap_reloc_out;
8951 }
8952
8953 size = 0;
8954 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8955 if (lo->type == bfd_indirect_link_order)
8956 size += lo->u.indirect.section->size;
8957
8958 if (size != dynamic_relocs->size)
8959 return 0;
8960
8961 sort_elt = (sizeof (struct elf_link_sort_rela)
8962 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8963
8964 count = dynamic_relocs->size / ext_size;
8965 if (count == 0)
8966 return 0;
8967 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8968
8969 if (sort == NULL)
8970 {
8971 (*info->callbacks->warning)
8972 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8973 return 0;
8974 }
8975
8976 if (bed->s->arch_size == 32)
8977 r_sym_mask = ~(bfd_vma) 0xff;
8978 else
8979 r_sym_mask = ~(bfd_vma) 0xffffffff;
8980
8981 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8982 if (lo->type == bfd_indirect_link_order)
8983 {
8984 bfd_byte *erel, *erelend;
8985 asection *o = lo->u.indirect.section;
8986
8987 if (o->contents == NULL && o->size != 0)
8988 {
8989 /* This is a reloc section that is being handled as a normal
8990 section. See bfd_section_from_shdr. We can't combine
8991 relocs in this case. */
8992 free (sort);
8993 return 0;
8994 }
8995 erel = o->contents;
8996 erelend = o->contents + o->size;
8997 p = sort + o->output_offset * opb / ext_size * sort_elt;
8998
8999 while (erel < erelend)
9000 {
9001 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9002
9003 (*swap_in) (abfd, erel, s->rela);
9004 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9005 s->u.sym_mask = r_sym_mask;
9006 p += sort_elt;
9007 erel += ext_size;
9008 }
9009 }
9010
9011 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9012
9013 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9014 {
9015 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9016 if (s->type != reloc_class_relative)
9017 break;
9018 }
9019 ret = i;
9020 s_non_relative = p;
9021
9022 sq = (struct elf_link_sort_rela *) s_non_relative;
9023 for (; i < count; i++, p += sort_elt)
9024 {
9025 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9026 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9027 sq = sp;
9028 sp->u.offset = sq->rela->r_offset;
9029 }
9030
9031 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9032
9033 struct elf_link_hash_table *htab = elf_hash_table (info);
9034 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9035 {
9036 /* We have plt relocs in .rela.dyn. */
9037 sq = (struct elf_link_sort_rela *) sort;
9038 for (i = 0; i < count; i++)
9039 if (sq[count - i - 1].type != reloc_class_plt)
9040 break;
9041 if (i != 0 && htab->srelplt->size == i * ext_size)
9042 {
9043 struct bfd_link_order **plo;
9044 /* Put srelplt link_order last. This is so the output_offset
9045 set in the next loop is correct for DT_JMPREL. */
9046 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9047 if ((*plo)->type == bfd_indirect_link_order
9048 && (*plo)->u.indirect.section == htab->srelplt)
9049 {
9050 lo = *plo;
9051 *plo = lo->next;
9052 }
9053 else
9054 plo = &(*plo)->next;
9055 *plo = lo;
9056 lo->next = NULL;
9057 dynamic_relocs->map_tail.link_order = lo;
9058 }
9059 }
9060
9061 p = sort;
9062 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9063 if (lo->type == bfd_indirect_link_order)
9064 {
9065 bfd_byte *erel, *erelend;
9066 asection *o = lo->u.indirect.section;
9067
9068 erel = o->contents;
9069 erelend = o->contents + o->size;
9070 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9071 while (erel < erelend)
9072 {
9073 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9074 (*swap_out) (abfd, s->rela, erel);
9075 p += sort_elt;
9076 erel += ext_size;
9077 }
9078 }
9079
9080 free (sort);
9081 *psec = dynamic_relocs;
9082 return ret;
9083 }
9084
9085 /* Add a symbol to the output symbol string table. */
9086
9087 static int
9088 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9089 const char *name,
9090 Elf_Internal_Sym *elfsym,
9091 asection *input_sec,
9092 struct elf_link_hash_entry *h)
9093 {
9094 int (*output_symbol_hook)
9095 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9096 struct elf_link_hash_entry *);
9097 struct elf_link_hash_table *hash_table;
9098 const struct elf_backend_data *bed;
9099 bfd_size_type strtabsize;
9100
9101 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9102
9103 bed = get_elf_backend_data (flinfo->output_bfd);
9104 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9105 if (output_symbol_hook != NULL)
9106 {
9107 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9108 if (ret != 1)
9109 return ret;
9110 }
9111
9112 if (name == NULL
9113 || *name == '\0'
9114 || (input_sec->flags & SEC_EXCLUDE))
9115 elfsym->st_name = (unsigned long) -1;
9116 else
9117 {
9118 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9119 to get the final offset for st_name. */
9120 elfsym->st_name
9121 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9122 name, FALSE);
9123 if (elfsym->st_name == (unsigned long) -1)
9124 return 0;
9125 }
9126
9127 hash_table = elf_hash_table (flinfo->info);
9128 strtabsize = hash_table->strtabsize;
9129 if (strtabsize <= hash_table->strtabcount)
9130 {
9131 strtabsize += strtabsize;
9132 hash_table->strtabsize = strtabsize;
9133 strtabsize *= sizeof (*hash_table->strtab);
9134 hash_table->strtab
9135 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9136 strtabsize);
9137 if (hash_table->strtab == NULL)
9138 return 0;
9139 }
9140 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9141 hash_table->strtab[hash_table->strtabcount].dest_index
9142 = hash_table->strtabcount;
9143 hash_table->strtab[hash_table->strtabcount].destshndx_index
9144 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9145
9146 bfd_get_symcount (flinfo->output_bfd) += 1;
9147 hash_table->strtabcount += 1;
9148
9149 return 1;
9150 }
9151
9152 /* Swap symbols out to the symbol table and flush the output symbols to
9153 the file. */
9154
9155 static bfd_boolean
9156 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9157 {
9158 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9159 bfd_size_type amt;
9160 size_t i;
9161 const struct elf_backend_data *bed;
9162 bfd_byte *symbuf;
9163 Elf_Internal_Shdr *hdr;
9164 file_ptr pos;
9165 bfd_boolean ret;
9166
9167 if (!hash_table->strtabcount)
9168 return TRUE;
9169
9170 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9171
9172 bed = get_elf_backend_data (flinfo->output_bfd);
9173
9174 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9175 symbuf = (bfd_byte *) bfd_malloc (amt);
9176 if (symbuf == NULL)
9177 return FALSE;
9178
9179 if (flinfo->symshndxbuf)
9180 {
9181 amt = sizeof (Elf_External_Sym_Shndx);
9182 amt *= bfd_get_symcount (flinfo->output_bfd);
9183 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9184 if (flinfo->symshndxbuf == NULL)
9185 {
9186 free (symbuf);
9187 return FALSE;
9188 }
9189 }
9190
9191 for (i = 0; i < hash_table->strtabcount; i++)
9192 {
9193 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9194 if (elfsym->sym.st_name == (unsigned long) -1)
9195 elfsym->sym.st_name = 0;
9196 else
9197 elfsym->sym.st_name
9198 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9199 elfsym->sym.st_name);
9200 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9201 ((bfd_byte *) symbuf
9202 + (elfsym->dest_index
9203 * bed->s->sizeof_sym)),
9204 (flinfo->symshndxbuf
9205 + elfsym->destshndx_index));
9206 }
9207
9208 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9209 pos = hdr->sh_offset + hdr->sh_size;
9210 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9211 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9212 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9213 {
9214 hdr->sh_size += amt;
9215 ret = TRUE;
9216 }
9217 else
9218 ret = FALSE;
9219
9220 free (symbuf);
9221
9222 free (hash_table->strtab);
9223 hash_table->strtab = NULL;
9224
9225 return ret;
9226 }
9227
9228 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9229
9230 static bfd_boolean
9231 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9232 {
9233 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9234 && sym->st_shndx < SHN_LORESERVE)
9235 {
9236 /* The gABI doesn't support dynamic symbols in output sections
9237 beyond 64k. */
9238 _bfd_error_handler
9239 /* xgettext:c-format */
9240 (_("%B: Too many sections: %d (>= %d)"),
9241 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9242 bfd_set_error (bfd_error_nonrepresentable_section);
9243 return FALSE;
9244 }
9245 return TRUE;
9246 }
9247
9248 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9249 allowing an unsatisfied unversioned symbol in the DSO to match a
9250 versioned symbol that would normally require an explicit version.
9251 We also handle the case that a DSO references a hidden symbol
9252 which may be satisfied by a versioned symbol in another DSO. */
9253
9254 static bfd_boolean
9255 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9256 const struct elf_backend_data *bed,
9257 struct elf_link_hash_entry *h)
9258 {
9259 bfd *abfd;
9260 struct elf_link_loaded_list *loaded;
9261
9262 if (!is_elf_hash_table (info->hash))
9263 return FALSE;
9264
9265 /* Check indirect symbol. */
9266 while (h->root.type == bfd_link_hash_indirect)
9267 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9268
9269 switch (h->root.type)
9270 {
9271 default:
9272 abfd = NULL;
9273 break;
9274
9275 case bfd_link_hash_undefined:
9276 case bfd_link_hash_undefweak:
9277 abfd = h->root.u.undef.abfd;
9278 if (abfd == NULL
9279 || (abfd->flags & DYNAMIC) == 0
9280 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9281 return FALSE;
9282 break;
9283
9284 case bfd_link_hash_defined:
9285 case bfd_link_hash_defweak:
9286 abfd = h->root.u.def.section->owner;
9287 break;
9288
9289 case bfd_link_hash_common:
9290 abfd = h->root.u.c.p->section->owner;
9291 break;
9292 }
9293 BFD_ASSERT (abfd != NULL);
9294
9295 for (loaded = elf_hash_table (info)->loaded;
9296 loaded != NULL;
9297 loaded = loaded->next)
9298 {
9299 bfd *input;
9300 Elf_Internal_Shdr *hdr;
9301 size_t symcount;
9302 size_t extsymcount;
9303 size_t extsymoff;
9304 Elf_Internal_Shdr *versymhdr;
9305 Elf_Internal_Sym *isym;
9306 Elf_Internal_Sym *isymend;
9307 Elf_Internal_Sym *isymbuf;
9308 Elf_External_Versym *ever;
9309 Elf_External_Versym *extversym;
9310
9311 input = loaded->abfd;
9312
9313 /* We check each DSO for a possible hidden versioned definition. */
9314 if (input == abfd
9315 || (input->flags & DYNAMIC) == 0
9316 || elf_dynversym (input) == 0)
9317 continue;
9318
9319 hdr = &elf_tdata (input)->dynsymtab_hdr;
9320
9321 symcount = hdr->sh_size / bed->s->sizeof_sym;
9322 if (elf_bad_symtab (input))
9323 {
9324 extsymcount = symcount;
9325 extsymoff = 0;
9326 }
9327 else
9328 {
9329 extsymcount = symcount - hdr->sh_info;
9330 extsymoff = hdr->sh_info;
9331 }
9332
9333 if (extsymcount == 0)
9334 continue;
9335
9336 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9337 NULL, NULL, NULL);
9338 if (isymbuf == NULL)
9339 return FALSE;
9340
9341 /* Read in any version definitions. */
9342 versymhdr = &elf_tdata (input)->dynversym_hdr;
9343 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9344 if (extversym == NULL)
9345 goto error_ret;
9346
9347 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9348 || (bfd_bread (extversym, versymhdr->sh_size, input)
9349 != versymhdr->sh_size))
9350 {
9351 free (extversym);
9352 error_ret:
9353 free (isymbuf);
9354 return FALSE;
9355 }
9356
9357 ever = extversym + extsymoff;
9358 isymend = isymbuf + extsymcount;
9359 for (isym = isymbuf; isym < isymend; isym++, ever++)
9360 {
9361 const char *name;
9362 Elf_Internal_Versym iver;
9363 unsigned short version_index;
9364
9365 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9366 || isym->st_shndx == SHN_UNDEF)
9367 continue;
9368
9369 name = bfd_elf_string_from_elf_section (input,
9370 hdr->sh_link,
9371 isym->st_name);
9372 if (strcmp (name, h->root.root.string) != 0)
9373 continue;
9374
9375 _bfd_elf_swap_versym_in (input, ever, &iver);
9376
9377 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9378 && !(h->def_regular
9379 && h->forced_local))
9380 {
9381 /* If we have a non-hidden versioned sym, then it should
9382 have provided a definition for the undefined sym unless
9383 it is defined in a non-shared object and forced local.
9384 */
9385 abort ();
9386 }
9387
9388 version_index = iver.vs_vers & VERSYM_VERSION;
9389 if (version_index == 1 || version_index == 2)
9390 {
9391 /* This is the base or first version. We can use it. */
9392 free (extversym);
9393 free (isymbuf);
9394 return TRUE;
9395 }
9396 }
9397
9398 free (extversym);
9399 free (isymbuf);
9400 }
9401
9402 return FALSE;
9403 }
9404
9405 /* Convert ELF common symbol TYPE. */
9406
9407 static int
9408 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9409 {
9410 /* Commom symbol can only appear in relocatable link. */
9411 if (!bfd_link_relocatable (info))
9412 abort ();
9413 switch (info->elf_stt_common)
9414 {
9415 case unchanged:
9416 break;
9417 case elf_stt_common:
9418 type = STT_COMMON;
9419 break;
9420 case no_elf_stt_common:
9421 type = STT_OBJECT;
9422 break;
9423 }
9424 return type;
9425 }
9426
9427 /* Add an external symbol to the symbol table. This is called from
9428 the hash table traversal routine. When generating a shared object,
9429 we go through the symbol table twice. The first time we output
9430 anything that might have been forced to local scope in a version
9431 script. The second time we output the symbols that are still
9432 global symbols. */
9433
9434 static bfd_boolean
9435 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9436 {
9437 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9438 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9439 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9440 bfd_boolean strip;
9441 Elf_Internal_Sym sym;
9442 asection *input_sec;
9443 const struct elf_backend_data *bed;
9444 long indx;
9445 int ret;
9446 unsigned int type;
9447
9448 if (h->root.type == bfd_link_hash_warning)
9449 {
9450 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9451 if (h->root.type == bfd_link_hash_new)
9452 return TRUE;
9453 }
9454
9455 /* Decide whether to output this symbol in this pass. */
9456 if (eoinfo->localsyms)
9457 {
9458 if (!h->forced_local)
9459 return TRUE;
9460 }
9461 else
9462 {
9463 if (h->forced_local)
9464 return TRUE;
9465 }
9466
9467 bed = get_elf_backend_data (flinfo->output_bfd);
9468
9469 if (h->root.type == bfd_link_hash_undefined)
9470 {
9471 /* If we have an undefined symbol reference here then it must have
9472 come from a shared library that is being linked in. (Undefined
9473 references in regular files have already been handled unless
9474 they are in unreferenced sections which are removed by garbage
9475 collection). */
9476 bfd_boolean ignore_undef = FALSE;
9477
9478 /* Some symbols may be special in that the fact that they're
9479 undefined can be safely ignored - let backend determine that. */
9480 if (bed->elf_backend_ignore_undef_symbol)
9481 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9482
9483 /* If we are reporting errors for this situation then do so now. */
9484 if (!ignore_undef
9485 && h->ref_dynamic
9486 && (!h->ref_regular || flinfo->info->gc_sections)
9487 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9488 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9489 (*flinfo->info->callbacks->undefined_symbol)
9490 (flinfo->info, h->root.root.string,
9491 h->ref_regular ? NULL : h->root.u.undef.abfd,
9492 NULL, 0,
9493 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9494
9495 /* Strip a global symbol defined in a discarded section. */
9496 if (h->indx == -3)
9497 return TRUE;
9498 }
9499
9500 /* We should also warn if a forced local symbol is referenced from
9501 shared libraries. */
9502 if (bfd_link_executable (flinfo->info)
9503 && h->forced_local
9504 && h->ref_dynamic
9505 && h->def_regular
9506 && !h->dynamic_def
9507 && h->ref_dynamic_nonweak
9508 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9509 {
9510 bfd *def_bfd;
9511 const char *msg;
9512 struct elf_link_hash_entry *hi = h;
9513
9514 /* Check indirect symbol. */
9515 while (hi->root.type == bfd_link_hash_indirect)
9516 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9517
9518 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9519 /* xgettext:c-format */
9520 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9521 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9522 /* xgettext:c-format */
9523 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9524 else
9525 /* xgettext:c-format */
9526 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9527 def_bfd = flinfo->output_bfd;
9528 if (hi->root.u.def.section != bfd_abs_section_ptr)
9529 def_bfd = hi->root.u.def.section->owner;
9530 _bfd_error_handler (msg, flinfo->output_bfd,
9531 h->root.root.string, def_bfd);
9532 bfd_set_error (bfd_error_bad_value);
9533 eoinfo->failed = TRUE;
9534 return FALSE;
9535 }
9536
9537 /* We don't want to output symbols that have never been mentioned by
9538 a regular file, or that we have been told to strip. However, if
9539 h->indx is set to -2, the symbol is used by a reloc and we must
9540 output it. */
9541 strip = FALSE;
9542 if (h->indx == -2)
9543 ;
9544 else if ((h->def_dynamic
9545 || h->ref_dynamic
9546 || h->root.type == bfd_link_hash_new)
9547 && !h->def_regular
9548 && !h->ref_regular)
9549 strip = TRUE;
9550 else if (flinfo->info->strip == strip_all)
9551 strip = TRUE;
9552 else if (flinfo->info->strip == strip_some
9553 && bfd_hash_lookup (flinfo->info->keep_hash,
9554 h->root.root.string, FALSE, FALSE) == NULL)
9555 strip = TRUE;
9556 else if ((h->root.type == bfd_link_hash_defined
9557 || h->root.type == bfd_link_hash_defweak)
9558 && ((flinfo->info->strip_discarded
9559 && discarded_section (h->root.u.def.section))
9560 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9561 && h->root.u.def.section->owner != NULL
9562 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9563 strip = TRUE;
9564 else if ((h->root.type == bfd_link_hash_undefined
9565 || h->root.type == bfd_link_hash_undefweak)
9566 && h->root.u.undef.abfd != NULL
9567 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9568 strip = TRUE;
9569
9570 type = h->type;
9571
9572 /* If we're stripping it, and it's not a dynamic symbol, there's
9573 nothing else to do. However, if it is a forced local symbol or
9574 an ifunc symbol we need to give the backend finish_dynamic_symbol
9575 function a chance to make it dynamic. */
9576 if (strip
9577 && h->dynindx == -1
9578 && type != STT_GNU_IFUNC
9579 && !h->forced_local)
9580 return TRUE;
9581
9582 sym.st_value = 0;
9583 sym.st_size = h->size;
9584 sym.st_other = h->other;
9585 switch (h->root.type)
9586 {
9587 default:
9588 case bfd_link_hash_new:
9589 case bfd_link_hash_warning:
9590 abort ();
9591 return FALSE;
9592
9593 case bfd_link_hash_undefined:
9594 case bfd_link_hash_undefweak:
9595 input_sec = bfd_und_section_ptr;
9596 sym.st_shndx = SHN_UNDEF;
9597 break;
9598
9599 case bfd_link_hash_defined:
9600 case bfd_link_hash_defweak:
9601 {
9602 input_sec = h->root.u.def.section;
9603 if (input_sec->output_section != NULL)
9604 {
9605 sym.st_shndx =
9606 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9607 input_sec->output_section);
9608 if (sym.st_shndx == SHN_BAD)
9609 {
9610 _bfd_error_handler
9611 /* xgettext:c-format */
9612 (_("%B: could not find output section %A for input section %A"),
9613 flinfo->output_bfd, input_sec->output_section, input_sec);
9614 bfd_set_error (bfd_error_nonrepresentable_section);
9615 eoinfo->failed = TRUE;
9616 return FALSE;
9617 }
9618
9619 /* ELF symbols in relocatable files are section relative,
9620 but in nonrelocatable files they are virtual
9621 addresses. */
9622 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9623 if (!bfd_link_relocatable (flinfo->info))
9624 {
9625 sym.st_value += input_sec->output_section->vma;
9626 if (h->type == STT_TLS)
9627 {
9628 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9629 if (tls_sec != NULL)
9630 sym.st_value -= tls_sec->vma;
9631 }
9632 }
9633 }
9634 else
9635 {
9636 BFD_ASSERT (input_sec->owner == NULL
9637 || (input_sec->owner->flags & DYNAMIC) != 0);
9638 sym.st_shndx = SHN_UNDEF;
9639 input_sec = bfd_und_section_ptr;
9640 }
9641 }
9642 break;
9643
9644 case bfd_link_hash_common:
9645 input_sec = h->root.u.c.p->section;
9646 sym.st_shndx = bed->common_section_index (input_sec);
9647 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9648 break;
9649
9650 case bfd_link_hash_indirect:
9651 /* These symbols are created by symbol versioning. They point
9652 to the decorated version of the name. For example, if the
9653 symbol foo@@GNU_1.2 is the default, which should be used when
9654 foo is used with no version, then we add an indirect symbol
9655 foo which points to foo@@GNU_1.2. We ignore these symbols,
9656 since the indirected symbol is already in the hash table. */
9657 return TRUE;
9658 }
9659
9660 if (type == STT_COMMON || type == STT_OBJECT)
9661 switch (h->root.type)
9662 {
9663 case bfd_link_hash_common:
9664 type = elf_link_convert_common_type (flinfo->info, type);
9665 break;
9666 case bfd_link_hash_defined:
9667 case bfd_link_hash_defweak:
9668 if (bed->common_definition (&sym))
9669 type = elf_link_convert_common_type (flinfo->info, type);
9670 else
9671 type = STT_OBJECT;
9672 break;
9673 case bfd_link_hash_undefined:
9674 case bfd_link_hash_undefweak:
9675 break;
9676 default:
9677 abort ();
9678 }
9679
9680 if (h->forced_local)
9681 {
9682 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9683 /* Turn off visibility on local symbol. */
9684 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9685 }
9686 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9687 else if (h->unique_global && h->def_regular)
9688 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9689 else if (h->root.type == bfd_link_hash_undefweak
9690 || h->root.type == bfd_link_hash_defweak)
9691 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9692 else
9693 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9694 sym.st_target_internal = h->target_internal;
9695
9696 /* Give the processor backend a chance to tweak the symbol value,
9697 and also to finish up anything that needs to be done for this
9698 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9699 forced local syms when non-shared is due to a historical quirk.
9700 STT_GNU_IFUNC symbol must go through PLT. */
9701 if ((h->type == STT_GNU_IFUNC
9702 && h->def_regular
9703 && !bfd_link_relocatable (flinfo->info))
9704 || ((h->dynindx != -1
9705 || h->forced_local)
9706 && ((bfd_link_pic (flinfo->info)
9707 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9708 || h->root.type != bfd_link_hash_undefweak))
9709 || !h->forced_local)
9710 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9711 {
9712 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9713 (flinfo->output_bfd, flinfo->info, h, &sym)))
9714 {
9715 eoinfo->failed = TRUE;
9716 return FALSE;
9717 }
9718 }
9719
9720 /* If we are marking the symbol as undefined, and there are no
9721 non-weak references to this symbol from a regular object, then
9722 mark the symbol as weak undefined; if there are non-weak
9723 references, mark the symbol as strong. We can't do this earlier,
9724 because it might not be marked as undefined until the
9725 finish_dynamic_symbol routine gets through with it. */
9726 if (sym.st_shndx == SHN_UNDEF
9727 && h->ref_regular
9728 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9729 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9730 {
9731 int bindtype;
9732 type = ELF_ST_TYPE (sym.st_info);
9733
9734 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9735 if (type == STT_GNU_IFUNC)
9736 type = STT_FUNC;
9737
9738 if (h->ref_regular_nonweak)
9739 bindtype = STB_GLOBAL;
9740 else
9741 bindtype = STB_WEAK;
9742 sym.st_info = ELF_ST_INFO (bindtype, type);
9743 }
9744
9745 /* If this is a symbol defined in a dynamic library, don't use the
9746 symbol size from the dynamic library. Relinking an executable
9747 against a new library may introduce gratuitous changes in the
9748 executable's symbols if we keep the size. */
9749 if (sym.st_shndx == SHN_UNDEF
9750 && !h->def_regular
9751 && h->def_dynamic)
9752 sym.st_size = 0;
9753
9754 /* If a non-weak symbol with non-default visibility is not defined
9755 locally, it is a fatal error. */
9756 if (!bfd_link_relocatable (flinfo->info)
9757 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9758 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9759 && h->root.type == bfd_link_hash_undefined
9760 && !h->def_regular)
9761 {
9762 const char *msg;
9763
9764 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9765 /* xgettext:c-format */
9766 msg = _("%B: protected symbol `%s' isn't defined");
9767 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9768 /* xgettext:c-format */
9769 msg = _("%B: internal symbol `%s' isn't defined");
9770 else
9771 /* xgettext:c-format */
9772 msg = _("%B: hidden symbol `%s' isn't defined");
9773 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9774 bfd_set_error (bfd_error_bad_value);
9775 eoinfo->failed = TRUE;
9776 return FALSE;
9777 }
9778
9779 /* If this symbol should be put in the .dynsym section, then put it
9780 there now. We already know the symbol index. We also fill in
9781 the entry in the .hash section. */
9782 if (elf_hash_table (flinfo->info)->dynsym != NULL
9783 && h->dynindx != -1
9784 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9785 {
9786 bfd_byte *esym;
9787
9788 /* Since there is no version information in the dynamic string,
9789 if there is no version info in symbol version section, we will
9790 have a run-time problem if not linking executable, referenced
9791 by shared library, or not bound locally. */
9792 if (h->verinfo.verdef == NULL
9793 && (!bfd_link_executable (flinfo->info)
9794 || h->ref_dynamic
9795 || !h->def_regular))
9796 {
9797 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9798
9799 if (p && p [1] != '\0')
9800 {
9801 _bfd_error_handler
9802 /* xgettext:c-format */
9803 (_("%B: No symbol version section for versioned symbol `%s'"),
9804 flinfo->output_bfd, h->root.root.string);
9805 eoinfo->failed = TRUE;
9806 return FALSE;
9807 }
9808 }
9809
9810 sym.st_name = h->dynstr_index;
9811 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9812 + h->dynindx * bed->s->sizeof_sym);
9813 if (!check_dynsym (flinfo->output_bfd, &sym))
9814 {
9815 eoinfo->failed = TRUE;
9816 return FALSE;
9817 }
9818 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9819
9820 if (flinfo->hash_sec != NULL)
9821 {
9822 size_t hash_entry_size;
9823 bfd_byte *bucketpos;
9824 bfd_vma chain;
9825 size_t bucketcount;
9826 size_t bucket;
9827
9828 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9829 bucket = h->u.elf_hash_value % bucketcount;
9830
9831 hash_entry_size
9832 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9833 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9834 + (bucket + 2) * hash_entry_size);
9835 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9836 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9837 bucketpos);
9838 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9839 ((bfd_byte *) flinfo->hash_sec->contents
9840 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9841 }
9842
9843 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9844 {
9845 Elf_Internal_Versym iversym;
9846 Elf_External_Versym *eversym;
9847
9848 if (!h->def_regular)
9849 {
9850 if (h->verinfo.verdef == NULL
9851 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9852 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9853 iversym.vs_vers = 0;
9854 else
9855 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9856 }
9857 else
9858 {
9859 if (h->verinfo.vertree == NULL)
9860 iversym.vs_vers = 1;
9861 else
9862 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9863 if (flinfo->info->create_default_symver)
9864 iversym.vs_vers++;
9865 }
9866
9867 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9868 defined locally. */
9869 if (h->versioned == versioned_hidden && h->def_regular)
9870 iversym.vs_vers |= VERSYM_HIDDEN;
9871
9872 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9873 eversym += h->dynindx;
9874 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9875 }
9876 }
9877
9878 /* If the symbol is undefined, and we didn't output it to .dynsym,
9879 strip it from .symtab too. Obviously we can't do this for
9880 relocatable output or when needed for --emit-relocs. */
9881 else if (input_sec == bfd_und_section_ptr
9882 && h->indx != -2
9883 && !bfd_link_relocatable (flinfo->info))
9884 return TRUE;
9885 /* Also strip others that we couldn't earlier due to dynamic symbol
9886 processing. */
9887 if (strip)
9888 return TRUE;
9889 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9890 return TRUE;
9891
9892 /* Output a FILE symbol so that following locals are not associated
9893 with the wrong input file. We need one for forced local symbols
9894 if we've seen more than one FILE symbol or when we have exactly
9895 one FILE symbol but global symbols are present in a file other
9896 than the one with the FILE symbol. We also need one if linker
9897 defined symbols are present. In practice these conditions are
9898 always met, so just emit the FILE symbol unconditionally. */
9899 if (eoinfo->localsyms
9900 && !eoinfo->file_sym_done
9901 && eoinfo->flinfo->filesym_count != 0)
9902 {
9903 Elf_Internal_Sym fsym;
9904
9905 memset (&fsym, 0, sizeof (fsym));
9906 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9907 fsym.st_shndx = SHN_ABS;
9908 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9909 bfd_und_section_ptr, NULL))
9910 return FALSE;
9911
9912 eoinfo->file_sym_done = TRUE;
9913 }
9914
9915 indx = bfd_get_symcount (flinfo->output_bfd);
9916 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9917 input_sec, h);
9918 if (ret == 0)
9919 {
9920 eoinfo->failed = TRUE;
9921 return FALSE;
9922 }
9923 else if (ret == 1)
9924 h->indx = indx;
9925 else if (h->indx == -2)
9926 abort();
9927
9928 return TRUE;
9929 }
9930
9931 /* Return TRUE if special handling is done for relocs in SEC against
9932 symbols defined in discarded sections. */
9933
9934 static bfd_boolean
9935 elf_section_ignore_discarded_relocs (asection *sec)
9936 {
9937 const struct elf_backend_data *bed;
9938
9939 switch (sec->sec_info_type)
9940 {
9941 case SEC_INFO_TYPE_STABS:
9942 case SEC_INFO_TYPE_EH_FRAME:
9943 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9944 return TRUE;
9945 default:
9946 break;
9947 }
9948
9949 bed = get_elf_backend_data (sec->owner);
9950 if (bed->elf_backend_ignore_discarded_relocs != NULL
9951 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9952 return TRUE;
9953
9954 return FALSE;
9955 }
9956
9957 /* Return a mask saying how ld should treat relocations in SEC against
9958 symbols defined in discarded sections. If this function returns
9959 COMPLAIN set, ld will issue a warning message. If this function
9960 returns PRETEND set, and the discarded section was link-once and the
9961 same size as the kept link-once section, ld will pretend that the
9962 symbol was actually defined in the kept section. Otherwise ld will
9963 zero the reloc (at least that is the intent, but some cooperation by
9964 the target dependent code is needed, particularly for REL targets). */
9965
9966 unsigned int
9967 _bfd_elf_default_action_discarded (asection *sec)
9968 {
9969 if (sec->flags & SEC_DEBUGGING)
9970 return PRETEND;
9971
9972 if (strcmp (".eh_frame", sec->name) == 0)
9973 return 0;
9974
9975 if (strcmp (".gcc_except_table", sec->name) == 0)
9976 return 0;
9977
9978 return COMPLAIN | PRETEND;
9979 }
9980
9981 /* Find a match between a section and a member of a section group. */
9982
9983 static asection *
9984 match_group_member (asection *sec, asection *group,
9985 struct bfd_link_info *info)
9986 {
9987 asection *first = elf_next_in_group (group);
9988 asection *s = first;
9989
9990 while (s != NULL)
9991 {
9992 if (bfd_elf_match_symbols_in_sections (s, sec, info))
9993 return s;
9994
9995 s = elf_next_in_group (s);
9996 if (s == first)
9997 break;
9998 }
9999
10000 return NULL;
10001 }
10002
10003 /* Check if the kept section of a discarded section SEC can be used
10004 to replace it. Return the replacement if it is OK. Otherwise return
10005 NULL. */
10006
10007 asection *
10008 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10009 {
10010 asection *kept;
10011
10012 kept = sec->kept_section;
10013 if (kept != NULL)
10014 {
10015 if ((kept->flags & SEC_GROUP) != 0)
10016 kept = match_group_member (sec, kept, info);
10017 if (kept != NULL
10018 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10019 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10020 kept = NULL;
10021 sec->kept_section = kept;
10022 }
10023 return kept;
10024 }
10025
10026 /* Link an input file into the linker output file. This function
10027 handles all the sections and relocations of the input file at once.
10028 This is so that we only have to read the local symbols once, and
10029 don't have to keep them in memory. */
10030
10031 static bfd_boolean
10032 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10033 {
10034 int (*relocate_section)
10035 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10036 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10037 bfd *output_bfd;
10038 Elf_Internal_Shdr *symtab_hdr;
10039 size_t locsymcount;
10040 size_t extsymoff;
10041 Elf_Internal_Sym *isymbuf;
10042 Elf_Internal_Sym *isym;
10043 Elf_Internal_Sym *isymend;
10044 long *pindex;
10045 asection **ppsection;
10046 asection *o;
10047 const struct elf_backend_data *bed;
10048 struct elf_link_hash_entry **sym_hashes;
10049 bfd_size_type address_size;
10050 bfd_vma r_type_mask;
10051 int r_sym_shift;
10052 bfd_boolean have_file_sym = FALSE;
10053
10054 output_bfd = flinfo->output_bfd;
10055 bed = get_elf_backend_data (output_bfd);
10056 relocate_section = bed->elf_backend_relocate_section;
10057
10058 /* If this is a dynamic object, we don't want to do anything here:
10059 we don't want the local symbols, and we don't want the section
10060 contents. */
10061 if ((input_bfd->flags & DYNAMIC) != 0)
10062 return TRUE;
10063
10064 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10065 if (elf_bad_symtab (input_bfd))
10066 {
10067 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10068 extsymoff = 0;
10069 }
10070 else
10071 {
10072 locsymcount = symtab_hdr->sh_info;
10073 extsymoff = symtab_hdr->sh_info;
10074 }
10075
10076 /* Read the local symbols. */
10077 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10078 if (isymbuf == NULL && locsymcount != 0)
10079 {
10080 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10081 flinfo->internal_syms,
10082 flinfo->external_syms,
10083 flinfo->locsym_shndx);
10084 if (isymbuf == NULL)
10085 return FALSE;
10086 }
10087
10088 /* Find local symbol sections and adjust values of symbols in
10089 SEC_MERGE sections. Write out those local symbols we know are
10090 going into the output file. */
10091 isymend = isymbuf + locsymcount;
10092 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10093 isym < isymend;
10094 isym++, pindex++, ppsection++)
10095 {
10096 asection *isec;
10097 const char *name;
10098 Elf_Internal_Sym osym;
10099 long indx;
10100 int ret;
10101
10102 *pindex = -1;
10103
10104 if (elf_bad_symtab (input_bfd))
10105 {
10106 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10107 {
10108 *ppsection = NULL;
10109 continue;
10110 }
10111 }
10112
10113 if (isym->st_shndx == SHN_UNDEF)
10114 isec = bfd_und_section_ptr;
10115 else if (isym->st_shndx == SHN_ABS)
10116 isec = bfd_abs_section_ptr;
10117 else if (isym->st_shndx == SHN_COMMON)
10118 isec = bfd_com_section_ptr;
10119 else
10120 {
10121 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10122 if (isec == NULL)
10123 {
10124 /* Don't attempt to output symbols with st_shnx in the
10125 reserved range other than SHN_ABS and SHN_COMMON. */
10126 *ppsection = NULL;
10127 continue;
10128 }
10129 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10130 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10131 isym->st_value =
10132 _bfd_merged_section_offset (output_bfd, &isec,
10133 elf_section_data (isec)->sec_info,
10134 isym->st_value);
10135 }
10136
10137 *ppsection = isec;
10138
10139 /* Don't output the first, undefined, symbol. In fact, don't
10140 output any undefined local symbol. */
10141 if (isec == bfd_und_section_ptr)
10142 continue;
10143
10144 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10145 {
10146 /* We never output section symbols. Instead, we use the
10147 section symbol of the corresponding section in the output
10148 file. */
10149 continue;
10150 }
10151
10152 /* If we are stripping all symbols, we don't want to output this
10153 one. */
10154 if (flinfo->info->strip == strip_all)
10155 continue;
10156
10157 /* If we are discarding all local symbols, we don't want to
10158 output this one. If we are generating a relocatable output
10159 file, then some of the local symbols may be required by
10160 relocs; we output them below as we discover that they are
10161 needed. */
10162 if (flinfo->info->discard == discard_all)
10163 continue;
10164
10165 /* If this symbol is defined in a section which we are
10166 discarding, we don't need to keep it. */
10167 if (isym->st_shndx != SHN_UNDEF
10168 && isym->st_shndx < SHN_LORESERVE
10169 && bfd_section_removed_from_list (output_bfd,
10170 isec->output_section))
10171 continue;
10172
10173 /* Get the name of the symbol. */
10174 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10175 isym->st_name);
10176 if (name == NULL)
10177 return FALSE;
10178
10179 /* See if we are discarding symbols with this name. */
10180 if ((flinfo->info->strip == strip_some
10181 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10182 == NULL))
10183 || (((flinfo->info->discard == discard_sec_merge
10184 && (isec->flags & SEC_MERGE)
10185 && !bfd_link_relocatable (flinfo->info))
10186 || flinfo->info->discard == discard_l)
10187 && bfd_is_local_label_name (input_bfd, name)))
10188 continue;
10189
10190 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10191 {
10192 if (input_bfd->lto_output)
10193 /* -flto puts a temp file name here. This means builds
10194 are not reproducible. Discard the symbol. */
10195 continue;
10196 have_file_sym = TRUE;
10197 flinfo->filesym_count += 1;
10198 }
10199 if (!have_file_sym)
10200 {
10201 /* In the absence of debug info, bfd_find_nearest_line uses
10202 FILE symbols to determine the source file for local
10203 function symbols. Provide a FILE symbol here if input
10204 files lack such, so that their symbols won't be
10205 associated with a previous input file. It's not the
10206 source file, but the best we can do. */
10207 have_file_sym = TRUE;
10208 flinfo->filesym_count += 1;
10209 memset (&osym, 0, sizeof (osym));
10210 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10211 osym.st_shndx = SHN_ABS;
10212 if (!elf_link_output_symstrtab (flinfo,
10213 (input_bfd->lto_output ? NULL
10214 : input_bfd->filename),
10215 &osym, bfd_abs_section_ptr,
10216 NULL))
10217 return FALSE;
10218 }
10219
10220 osym = *isym;
10221
10222 /* Adjust the section index for the output file. */
10223 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10224 isec->output_section);
10225 if (osym.st_shndx == SHN_BAD)
10226 return FALSE;
10227
10228 /* ELF symbols in relocatable files are section relative, but
10229 in executable files they are virtual addresses. Note that
10230 this code assumes that all ELF sections have an associated
10231 BFD section with a reasonable value for output_offset; below
10232 we assume that they also have a reasonable value for
10233 output_section. Any special sections must be set up to meet
10234 these requirements. */
10235 osym.st_value += isec->output_offset;
10236 if (!bfd_link_relocatable (flinfo->info))
10237 {
10238 osym.st_value += isec->output_section->vma;
10239 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10240 {
10241 /* STT_TLS symbols are relative to PT_TLS segment base. */
10242 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10243 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10244 }
10245 }
10246
10247 indx = bfd_get_symcount (output_bfd);
10248 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10249 if (ret == 0)
10250 return FALSE;
10251 else if (ret == 1)
10252 *pindex = indx;
10253 }
10254
10255 if (bed->s->arch_size == 32)
10256 {
10257 r_type_mask = 0xff;
10258 r_sym_shift = 8;
10259 address_size = 4;
10260 }
10261 else
10262 {
10263 r_type_mask = 0xffffffff;
10264 r_sym_shift = 32;
10265 address_size = 8;
10266 }
10267
10268 /* Relocate the contents of each section. */
10269 sym_hashes = elf_sym_hashes (input_bfd);
10270 for (o = input_bfd->sections; o != NULL; o = o->next)
10271 {
10272 bfd_byte *contents;
10273
10274 if (! o->linker_mark)
10275 {
10276 /* This section was omitted from the link. */
10277 continue;
10278 }
10279
10280 if (!flinfo->info->resolve_section_groups
10281 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10282 {
10283 /* Deal with the group signature symbol. */
10284 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10285 unsigned long symndx = sec_data->this_hdr.sh_info;
10286 asection *osec = o->output_section;
10287
10288 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10289 if (symndx >= locsymcount
10290 || (elf_bad_symtab (input_bfd)
10291 && flinfo->sections[symndx] == NULL))
10292 {
10293 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10294 while (h->root.type == bfd_link_hash_indirect
10295 || h->root.type == bfd_link_hash_warning)
10296 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10297 /* Arrange for symbol to be output. */
10298 h->indx = -2;
10299 elf_section_data (osec)->this_hdr.sh_info = -2;
10300 }
10301 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10302 {
10303 /* We'll use the output section target_index. */
10304 asection *sec = flinfo->sections[symndx]->output_section;
10305 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10306 }
10307 else
10308 {
10309 if (flinfo->indices[symndx] == -1)
10310 {
10311 /* Otherwise output the local symbol now. */
10312 Elf_Internal_Sym sym = isymbuf[symndx];
10313 asection *sec = flinfo->sections[symndx]->output_section;
10314 const char *name;
10315 long indx;
10316 int ret;
10317
10318 name = bfd_elf_string_from_elf_section (input_bfd,
10319 symtab_hdr->sh_link,
10320 sym.st_name);
10321 if (name == NULL)
10322 return FALSE;
10323
10324 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10325 sec);
10326 if (sym.st_shndx == SHN_BAD)
10327 return FALSE;
10328
10329 sym.st_value += o->output_offset;
10330
10331 indx = bfd_get_symcount (output_bfd);
10332 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10333 NULL);
10334 if (ret == 0)
10335 return FALSE;
10336 else if (ret == 1)
10337 flinfo->indices[symndx] = indx;
10338 else
10339 abort ();
10340 }
10341 elf_section_data (osec)->this_hdr.sh_info
10342 = flinfo->indices[symndx];
10343 }
10344 }
10345
10346 if ((o->flags & SEC_HAS_CONTENTS) == 0
10347 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10348 continue;
10349
10350 if ((o->flags & SEC_LINKER_CREATED) != 0)
10351 {
10352 /* Section was created by _bfd_elf_link_create_dynamic_sections
10353 or somesuch. */
10354 continue;
10355 }
10356
10357 /* Get the contents of the section. They have been cached by a
10358 relaxation routine. Note that o is a section in an input
10359 file, so the contents field will not have been set by any of
10360 the routines which work on output files. */
10361 if (elf_section_data (o)->this_hdr.contents != NULL)
10362 {
10363 contents = elf_section_data (o)->this_hdr.contents;
10364 if (bed->caches_rawsize
10365 && o->rawsize != 0
10366 && o->rawsize < o->size)
10367 {
10368 memcpy (flinfo->contents, contents, o->rawsize);
10369 contents = flinfo->contents;
10370 }
10371 }
10372 else
10373 {
10374 contents = flinfo->contents;
10375 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10376 return FALSE;
10377 }
10378
10379 if ((o->flags & SEC_RELOC) != 0)
10380 {
10381 Elf_Internal_Rela *internal_relocs;
10382 Elf_Internal_Rela *rel, *relend;
10383 int action_discarded;
10384 int ret;
10385
10386 /* Get the swapped relocs. */
10387 internal_relocs
10388 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10389 flinfo->internal_relocs, FALSE);
10390 if (internal_relocs == NULL
10391 && o->reloc_count > 0)
10392 return FALSE;
10393
10394 /* We need to reverse-copy input .ctors/.dtors sections if
10395 they are placed in .init_array/.finit_array for output. */
10396 if (o->size > address_size
10397 && ((strncmp (o->name, ".ctors", 6) == 0
10398 && strcmp (o->output_section->name,
10399 ".init_array") == 0)
10400 || (strncmp (o->name, ".dtors", 6) == 0
10401 && strcmp (o->output_section->name,
10402 ".fini_array") == 0))
10403 && (o->name[6] == 0 || o->name[6] == '.'))
10404 {
10405 if (o->size * bed->s->int_rels_per_ext_rel
10406 != o->reloc_count * address_size)
10407 {
10408 _bfd_error_handler
10409 /* xgettext:c-format */
10410 (_("error: %B: size of section %A is not "
10411 "multiple of address size"),
10412 input_bfd, o);
10413 bfd_set_error (bfd_error_on_input);
10414 return FALSE;
10415 }
10416 o->flags |= SEC_ELF_REVERSE_COPY;
10417 }
10418
10419 action_discarded = -1;
10420 if (!elf_section_ignore_discarded_relocs (o))
10421 action_discarded = (*bed->action_discarded) (o);
10422
10423 /* Run through the relocs evaluating complex reloc symbols and
10424 looking for relocs against symbols from discarded sections
10425 or section symbols from removed link-once sections.
10426 Complain about relocs against discarded sections. Zero
10427 relocs against removed link-once sections. */
10428
10429 rel = internal_relocs;
10430 relend = rel + o->reloc_count;
10431 for ( ; rel < relend; rel++)
10432 {
10433 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10434 unsigned int s_type;
10435 asection **ps, *sec;
10436 struct elf_link_hash_entry *h = NULL;
10437 const char *sym_name;
10438
10439 if (r_symndx == STN_UNDEF)
10440 continue;
10441
10442 if (r_symndx >= locsymcount
10443 || (elf_bad_symtab (input_bfd)
10444 && flinfo->sections[r_symndx] == NULL))
10445 {
10446 h = sym_hashes[r_symndx - extsymoff];
10447
10448 /* Badly formatted input files can contain relocs that
10449 reference non-existant symbols. Check here so that
10450 we do not seg fault. */
10451 if (h == NULL)
10452 {
10453 char buffer [32];
10454
10455 sprintf_vma (buffer, rel->r_info);
10456 _bfd_error_handler
10457 /* xgettext:c-format */
10458 (_("error: %B contains a reloc (0x%s) for section %A "
10459 "that references a non-existent global symbol"),
10460 input_bfd, buffer, o);
10461 bfd_set_error (bfd_error_bad_value);
10462 return FALSE;
10463 }
10464
10465 while (h->root.type == bfd_link_hash_indirect
10466 || h->root.type == bfd_link_hash_warning)
10467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10468
10469 s_type = h->type;
10470
10471 /* If a plugin symbol is referenced from a non-IR file,
10472 mark the symbol as undefined. Note that the
10473 linker may attach linker created dynamic sections
10474 to the plugin bfd. Symbols defined in linker
10475 created sections are not plugin symbols. */
10476 if ((h->root.non_ir_ref_regular
10477 || h->root.non_ir_ref_dynamic)
10478 && (h->root.type == bfd_link_hash_defined
10479 || h->root.type == bfd_link_hash_defweak)
10480 && (h->root.u.def.section->flags
10481 & SEC_LINKER_CREATED) == 0
10482 && h->root.u.def.section->owner != NULL
10483 && (h->root.u.def.section->owner->flags
10484 & BFD_PLUGIN) != 0)
10485 {
10486 h->root.type = bfd_link_hash_undefined;
10487 h->root.u.undef.abfd = h->root.u.def.section->owner;
10488 }
10489
10490 ps = NULL;
10491 if (h->root.type == bfd_link_hash_defined
10492 || h->root.type == bfd_link_hash_defweak)
10493 ps = &h->root.u.def.section;
10494
10495 sym_name = h->root.root.string;
10496 }
10497 else
10498 {
10499 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10500
10501 s_type = ELF_ST_TYPE (sym->st_info);
10502 ps = &flinfo->sections[r_symndx];
10503 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10504 sym, *ps);
10505 }
10506
10507 if ((s_type == STT_RELC || s_type == STT_SRELC)
10508 && !bfd_link_relocatable (flinfo->info))
10509 {
10510 bfd_vma val;
10511 bfd_vma dot = (rel->r_offset
10512 + o->output_offset + o->output_section->vma);
10513 #ifdef DEBUG
10514 printf ("Encountered a complex symbol!");
10515 printf (" (input_bfd %s, section %s, reloc %ld\n",
10516 input_bfd->filename, o->name,
10517 (long) (rel - internal_relocs));
10518 printf (" symbol: idx %8.8lx, name %s\n",
10519 r_symndx, sym_name);
10520 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10521 (unsigned long) rel->r_info,
10522 (unsigned long) rel->r_offset);
10523 #endif
10524 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10525 isymbuf, locsymcount, s_type == STT_SRELC))
10526 return FALSE;
10527
10528 /* Symbol evaluated OK. Update to absolute value. */
10529 set_symbol_value (input_bfd, isymbuf, locsymcount,
10530 r_symndx, val);
10531 continue;
10532 }
10533
10534 if (action_discarded != -1 && ps != NULL)
10535 {
10536 /* Complain if the definition comes from a
10537 discarded section. */
10538 if ((sec = *ps) != NULL && discarded_section (sec))
10539 {
10540 BFD_ASSERT (r_symndx != STN_UNDEF);
10541 if (action_discarded & COMPLAIN)
10542 (*flinfo->info->callbacks->einfo)
10543 /* xgettext:c-format */
10544 (_("%X`%s' referenced in section `%A' of %B: "
10545 "defined in discarded section `%A' of %B\n"),
10546 sym_name, o, input_bfd, sec, sec->owner);
10547
10548 /* Try to do the best we can to support buggy old
10549 versions of gcc. Pretend that the symbol is
10550 really defined in the kept linkonce section.
10551 FIXME: This is quite broken. Modifying the
10552 symbol here means we will be changing all later
10553 uses of the symbol, not just in this section. */
10554 if (action_discarded & PRETEND)
10555 {
10556 asection *kept;
10557
10558 kept = _bfd_elf_check_kept_section (sec,
10559 flinfo->info);
10560 if (kept != NULL)
10561 {
10562 *ps = kept;
10563 continue;
10564 }
10565 }
10566 }
10567 }
10568 }
10569
10570 /* Relocate the section by invoking a back end routine.
10571
10572 The back end routine is responsible for adjusting the
10573 section contents as necessary, and (if using Rela relocs
10574 and generating a relocatable output file) adjusting the
10575 reloc addend as necessary.
10576
10577 The back end routine does not have to worry about setting
10578 the reloc address or the reloc symbol index.
10579
10580 The back end routine is given a pointer to the swapped in
10581 internal symbols, and can access the hash table entries
10582 for the external symbols via elf_sym_hashes (input_bfd).
10583
10584 When generating relocatable output, the back end routine
10585 must handle STB_LOCAL/STT_SECTION symbols specially. The
10586 output symbol is going to be a section symbol
10587 corresponding to the output section, which will require
10588 the addend to be adjusted. */
10589
10590 ret = (*relocate_section) (output_bfd, flinfo->info,
10591 input_bfd, o, contents,
10592 internal_relocs,
10593 isymbuf,
10594 flinfo->sections);
10595 if (!ret)
10596 return FALSE;
10597
10598 if (ret == 2
10599 || bfd_link_relocatable (flinfo->info)
10600 || flinfo->info->emitrelocations)
10601 {
10602 Elf_Internal_Rela *irela;
10603 Elf_Internal_Rela *irelaend, *irelamid;
10604 bfd_vma last_offset;
10605 struct elf_link_hash_entry **rel_hash;
10606 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10607 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10608 unsigned int next_erel;
10609 bfd_boolean rela_normal;
10610 struct bfd_elf_section_data *esdi, *esdo;
10611
10612 esdi = elf_section_data (o);
10613 esdo = elf_section_data (o->output_section);
10614 rela_normal = FALSE;
10615
10616 /* Adjust the reloc addresses and symbol indices. */
10617
10618 irela = internal_relocs;
10619 irelaend = irela + o->reloc_count;
10620 rel_hash = esdo->rel.hashes + esdo->rel.count;
10621 /* We start processing the REL relocs, if any. When we reach
10622 IRELAMID in the loop, we switch to the RELA relocs. */
10623 irelamid = irela;
10624 if (esdi->rel.hdr != NULL)
10625 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10626 * bed->s->int_rels_per_ext_rel);
10627 rel_hash_list = rel_hash;
10628 rela_hash_list = NULL;
10629 last_offset = o->output_offset;
10630 if (!bfd_link_relocatable (flinfo->info))
10631 last_offset += o->output_section->vma;
10632 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10633 {
10634 unsigned long r_symndx;
10635 asection *sec;
10636 Elf_Internal_Sym sym;
10637
10638 if (next_erel == bed->s->int_rels_per_ext_rel)
10639 {
10640 rel_hash++;
10641 next_erel = 0;
10642 }
10643
10644 if (irela == irelamid)
10645 {
10646 rel_hash = esdo->rela.hashes + esdo->rela.count;
10647 rela_hash_list = rel_hash;
10648 rela_normal = bed->rela_normal;
10649 }
10650
10651 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10652 flinfo->info, o,
10653 irela->r_offset);
10654 if (irela->r_offset >= (bfd_vma) -2)
10655 {
10656 /* This is a reloc for a deleted entry or somesuch.
10657 Turn it into an R_*_NONE reloc, at the same
10658 offset as the last reloc. elf_eh_frame.c and
10659 bfd_elf_discard_info rely on reloc offsets
10660 being ordered. */
10661 irela->r_offset = last_offset;
10662 irela->r_info = 0;
10663 irela->r_addend = 0;
10664 continue;
10665 }
10666
10667 irela->r_offset += o->output_offset;
10668
10669 /* Relocs in an executable have to be virtual addresses. */
10670 if (!bfd_link_relocatable (flinfo->info))
10671 irela->r_offset += o->output_section->vma;
10672
10673 last_offset = irela->r_offset;
10674
10675 r_symndx = irela->r_info >> r_sym_shift;
10676 if (r_symndx == STN_UNDEF)
10677 continue;
10678
10679 if (r_symndx >= locsymcount
10680 || (elf_bad_symtab (input_bfd)
10681 && flinfo->sections[r_symndx] == NULL))
10682 {
10683 struct elf_link_hash_entry *rh;
10684 unsigned long indx;
10685
10686 /* This is a reloc against a global symbol. We
10687 have not yet output all the local symbols, so
10688 we do not know the symbol index of any global
10689 symbol. We set the rel_hash entry for this
10690 reloc to point to the global hash table entry
10691 for this symbol. The symbol index is then
10692 set at the end of bfd_elf_final_link. */
10693 indx = r_symndx - extsymoff;
10694 rh = elf_sym_hashes (input_bfd)[indx];
10695 while (rh->root.type == bfd_link_hash_indirect
10696 || rh->root.type == bfd_link_hash_warning)
10697 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10698
10699 /* Setting the index to -2 tells
10700 elf_link_output_extsym that this symbol is
10701 used by a reloc. */
10702 BFD_ASSERT (rh->indx < 0);
10703 rh->indx = -2;
10704
10705 *rel_hash = rh;
10706
10707 continue;
10708 }
10709
10710 /* This is a reloc against a local symbol. */
10711
10712 *rel_hash = NULL;
10713 sym = isymbuf[r_symndx];
10714 sec = flinfo->sections[r_symndx];
10715 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10716 {
10717 /* I suppose the backend ought to fill in the
10718 section of any STT_SECTION symbol against a
10719 processor specific section. */
10720 r_symndx = STN_UNDEF;
10721 if (bfd_is_abs_section (sec))
10722 ;
10723 else if (sec == NULL || sec->owner == NULL)
10724 {
10725 bfd_set_error (bfd_error_bad_value);
10726 return FALSE;
10727 }
10728 else
10729 {
10730 asection *osec = sec->output_section;
10731
10732 /* If we have discarded a section, the output
10733 section will be the absolute section. In
10734 case of discarded SEC_MERGE sections, use
10735 the kept section. relocate_section should
10736 have already handled discarded linkonce
10737 sections. */
10738 if (bfd_is_abs_section (osec)
10739 && sec->kept_section != NULL
10740 && sec->kept_section->output_section != NULL)
10741 {
10742 osec = sec->kept_section->output_section;
10743 irela->r_addend -= osec->vma;
10744 }
10745
10746 if (!bfd_is_abs_section (osec))
10747 {
10748 r_symndx = osec->target_index;
10749 if (r_symndx == STN_UNDEF)
10750 {
10751 irela->r_addend += osec->vma;
10752 osec = _bfd_nearby_section (output_bfd, osec,
10753 osec->vma);
10754 irela->r_addend -= osec->vma;
10755 r_symndx = osec->target_index;
10756 }
10757 }
10758 }
10759
10760 /* Adjust the addend according to where the
10761 section winds up in the output section. */
10762 if (rela_normal)
10763 irela->r_addend += sec->output_offset;
10764 }
10765 else
10766 {
10767 if (flinfo->indices[r_symndx] == -1)
10768 {
10769 unsigned long shlink;
10770 const char *name;
10771 asection *osec;
10772 long indx;
10773
10774 if (flinfo->info->strip == strip_all)
10775 {
10776 /* You can't do ld -r -s. */
10777 bfd_set_error (bfd_error_invalid_operation);
10778 return FALSE;
10779 }
10780
10781 /* This symbol was skipped earlier, but
10782 since it is needed by a reloc, we
10783 must output it now. */
10784 shlink = symtab_hdr->sh_link;
10785 name = (bfd_elf_string_from_elf_section
10786 (input_bfd, shlink, sym.st_name));
10787 if (name == NULL)
10788 return FALSE;
10789
10790 osec = sec->output_section;
10791 sym.st_shndx =
10792 _bfd_elf_section_from_bfd_section (output_bfd,
10793 osec);
10794 if (sym.st_shndx == SHN_BAD)
10795 return FALSE;
10796
10797 sym.st_value += sec->output_offset;
10798 if (!bfd_link_relocatable (flinfo->info))
10799 {
10800 sym.st_value += osec->vma;
10801 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10802 {
10803 /* STT_TLS symbols are relative to PT_TLS
10804 segment base. */
10805 BFD_ASSERT (elf_hash_table (flinfo->info)
10806 ->tls_sec != NULL);
10807 sym.st_value -= (elf_hash_table (flinfo->info)
10808 ->tls_sec->vma);
10809 }
10810 }
10811
10812 indx = bfd_get_symcount (output_bfd);
10813 ret = elf_link_output_symstrtab (flinfo, name,
10814 &sym, sec,
10815 NULL);
10816 if (ret == 0)
10817 return FALSE;
10818 else if (ret == 1)
10819 flinfo->indices[r_symndx] = indx;
10820 else
10821 abort ();
10822 }
10823
10824 r_symndx = flinfo->indices[r_symndx];
10825 }
10826
10827 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10828 | (irela->r_info & r_type_mask));
10829 }
10830
10831 /* Swap out the relocs. */
10832 input_rel_hdr = esdi->rel.hdr;
10833 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10834 {
10835 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10836 input_rel_hdr,
10837 internal_relocs,
10838 rel_hash_list))
10839 return FALSE;
10840 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10841 * bed->s->int_rels_per_ext_rel);
10842 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10843 }
10844
10845 input_rela_hdr = esdi->rela.hdr;
10846 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10847 {
10848 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10849 input_rela_hdr,
10850 internal_relocs,
10851 rela_hash_list))
10852 return FALSE;
10853 }
10854 }
10855 }
10856
10857 /* Write out the modified section contents. */
10858 if (bed->elf_backend_write_section
10859 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10860 contents))
10861 {
10862 /* Section written out. */
10863 }
10864 else switch (o->sec_info_type)
10865 {
10866 case SEC_INFO_TYPE_STABS:
10867 if (! (_bfd_write_section_stabs
10868 (output_bfd,
10869 &elf_hash_table (flinfo->info)->stab_info,
10870 o, &elf_section_data (o)->sec_info, contents)))
10871 return FALSE;
10872 break;
10873 case SEC_INFO_TYPE_MERGE:
10874 if (! _bfd_write_merged_section (output_bfd, o,
10875 elf_section_data (o)->sec_info))
10876 return FALSE;
10877 break;
10878 case SEC_INFO_TYPE_EH_FRAME:
10879 {
10880 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10881 o, contents))
10882 return FALSE;
10883 }
10884 break;
10885 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10886 {
10887 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10888 flinfo->info,
10889 o, contents))
10890 return FALSE;
10891 }
10892 break;
10893 default:
10894 {
10895 if (! (o->flags & SEC_EXCLUDE))
10896 {
10897 file_ptr offset = (file_ptr) o->output_offset;
10898 bfd_size_type todo = o->size;
10899
10900 offset *= bfd_octets_per_byte (output_bfd);
10901
10902 if ((o->flags & SEC_ELF_REVERSE_COPY))
10903 {
10904 /* Reverse-copy input section to output. */
10905 do
10906 {
10907 todo -= address_size;
10908 if (! bfd_set_section_contents (output_bfd,
10909 o->output_section,
10910 contents + todo,
10911 offset,
10912 address_size))
10913 return FALSE;
10914 if (todo == 0)
10915 break;
10916 offset += address_size;
10917 }
10918 while (1);
10919 }
10920 else if (! bfd_set_section_contents (output_bfd,
10921 o->output_section,
10922 contents,
10923 offset, todo))
10924 return FALSE;
10925 }
10926 }
10927 break;
10928 }
10929 }
10930
10931 return TRUE;
10932 }
10933
10934 /* Generate a reloc when linking an ELF file. This is a reloc
10935 requested by the linker, and does not come from any input file. This
10936 is used to build constructor and destructor tables when linking
10937 with -Ur. */
10938
10939 static bfd_boolean
10940 elf_reloc_link_order (bfd *output_bfd,
10941 struct bfd_link_info *info,
10942 asection *output_section,
10943 struct bfd_link_order *link_order)
10944 {
10945 reloc_howto_type *howto;
10946 long indx;
10947 bfd_vma offset;
10948 bfd_vma addend;
10949 struct bfd_elf_section_reloc_data *reldata;
10950 struct elf_link_hash_entry **rel_hash_ptr;
10951 Elf_Internal_Shdr *rel_hdr;
10952 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10953 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10954 bfd_byte *erel;
10955 unsigned int i;
10956 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10957
10958 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10959 if (howto == NULL)
10960 {
10961 bfd_set_error (bfd_error_bad_value);
10962 return FALSE;
10963 }
10964
10965 addend = link_order->u.reloc.p->addend;
10966
10967 if (esdo->rel.hdr)
10968 reldata = &esdo->rel;
10969 else if (esdo->rela.hdr)
10970 reldata = &esdo->rela;
10971 else
10972 {
10973 reldata = NULL;
10974 BFD_ASSERT (0);
10975 }
10976
10977 /* Figure out the symbol index. */
10978 rel_hash_ptr = reldata->hashes + reldata->count;
10979 if (link_order->type == bfd_section_reloc_link_order)
10980 {
10981 indx = link_order->u.reloc.p->u.section->target_index;
10982 BFD_ASSERT (indx != 0);
10983 *rel_hash_ptr = NULL;
10984 }
10985 else
10986 {
10987 struct elf_link_hash_entry *h;
10988
10989 /* Treat a reloc against a defined symbol as though it were
10990 actually against the section. */
10991 h = ((struct elf_link_hash_entry *)
10992 bfd_wrapped_link_hash_lookup (output_bfd, info,
10993 link_order->u.reloc.p->u.name,
10994 FALSE, FALSE, TRUE));
10995 if (h != NULL
10996 && (h->root.type == bfd_link_hash_defined
10997 || h->root.type == bfd_link_hash_defweak))
10998 {
10999 asection *section;
11000
11001 section = h->root.u.def.section;
11002 indx = section->output_section->target_index;
11003 *rel_hash_ptr = NULL;
11004 /* It seems that we ought to add the symbol value to the
11005 addend here, but in practice it has already been added
11006 because it was passed to constructor_callback. */
11007 addend += section->output_section->vma + section->output_offset;
11008 }
11009 else if (h != NULL)
11010 {
11011 /* Setting the index to -2 tells elf_link_output_extsym that
11012 this symbol is used by a reloc. */
11013 h->indx = -2;
11014 *rel_hash_ptr = h;
11015 indx = 0;
11016 }
11017 else
11018 {
11019 (*info->callbacks->unattached_reloc)
11020 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11021 indx = 0;
11022 }
11023 }
11024
11025 /* If this is an inplace reloc, we must write the addend into the
11026 object file. */
11027 if (howto->partial_inplace && addend != 0)
11028 {
11029 bfd_size_type size;
11030 bfd_reloc_status_type rstat;
11031 bfd_byte *buf;
11032 bfd_boolean ok;
11033 const char *sym_name;
11034
11035 size = (bfd_size_type) bfd_get_reloc_size (howto);
11036 buf = (bfd_byte *) bfd_zmalloc (size);
11037 if (buf == NULL && size != 0)
11038 return FALSE;
11039 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11040 switch (rstat)
11041 {
11042 case bfd_reloc_ok:
11043 break;
11044
11045 default:
11046 case bfd_reloc_outofrange:
11047 abort ();
11048
11049 case bfd_reloc_overflow:
11050 if (link_order->type == bfd_section_reloc_link_order)
11051 sym_name = bfd_section_name (output_bfd,
11052 link_order->u.reloc.p->u.section);
11053 else
11054 sym_name = link_order->u.reloc.p->u.name;
11055 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11056 howto->name, addend, NULL, NULL,
11057 (bfd_vma) 0);
11058 break;
11059 }
11060
11061 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11062 link_order->offset
11063 * bfd_octets_per_byte (output_bfd),
11064 size);
11065 free (buf);
11066 if (! ok)
11067 return FALSE;
11068 }
11069
11070 /* The address of a reloc is relative to the section in a
11071 relocatable file, and is a virtual address in an executable
11072 file. */
11073 offset = link_order->offset;
11074 if (! bfd_link_relocatable (info))
11075 offset += output_section->vma;
11076
11077 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11078 {
11079 irel[i].r_offset = offset;
11080 irel[i].r_info = 0;
11081 irel[i].r_addend = 0;
11082 }
11083 if (bed->s->arch_size == 32)
11084 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11085 else
11086 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11087
11088 rel_hdr = reldata->hdr;
11089 erel = rel_hdr->contents;
11090 if (rel_hdr->sh_type == SHT_REL)
11091 {
11092 erel += reldata->count * bed->s->sizeof_rel;
11093 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11094 }
11095 else
11096 {
11097 irel[0].r_addend = addend;
11098 erel += reldata->count * bed->s->sizeof_rela;
11099 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11100 }
11101
11102 ++reldata->count;
11103
11104 return TRUE;
11105 }
11106
11107
11108 /* Get the output vma of the section pointed to by the sh_link field. */
11109
11110 static bfd_vma
11111 elf_get_linked_section_vma (struct bfd_link_order *p)
11112 {
11113 Elf_Internal_Shdr **elf_shdrp;
11114 asection *s;
11115 int elfsec;
11116
11117 s = p->u.indirect.section;
11118 elf_shdrp = elf_elfsections (s->owner);
11119 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11120 elfsec = elf_shdrp[elfsec]->sh_link;
11121 /* PR 290:
11122 The Intel C compiler generates SHT_IA_64_UNWIND with
11123 SHF_LINK_ORDER. But it doesn't set the sh_link or
11124 sh_info fields. Hence we could get the situation
11125 where elfsec is 0. */
11126 if (elfsec == 0)
11127 {
11128 const struct elf_backend_data *bed
11129 = get_elf_backend_data (s->owner);
11130 if (bed->link_order_error_handler)
11131 bed->link_order_error_handler
11132 /* xgettext:c-format */
11133 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11134 return 0;
11135 }
11136 else
11137 {
11138 s = elf_shdrp[elfsec]->bfd_section;
11139 return s->output_section->vma + s->output_offset;
11140 }
11141 }
11142
11143
11144 /* Compare two sections based on the locations of the sections they are
11145 linked to. Used by elf_fixup_link_order. */
11146
11147 static int
11148 compare_link_order (const void * a, const void * b)
11149 {
11150 bfd_vma apos;
11151 bfd_vma bpos;
11152
11153 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11154 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11155 if (apos < bpos)
11156 return -1;
11157 return apos > bpos;
11158 }
11159
11160
11161 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11162 order as their linked sections. Returns false if this could not be done
11163 because an output section includes both ordered and unordered
11164 sections. Ideally we'd do this in the linker proper. */
11165
11166 static bfd_boolean
11167 elf_fixup_link_order (bfd *abfd, asection *o)
11168 {
11169 int seen_linkorder;
11170 int seen_other;
11171 int n;
11172 struct bfd_link_order *p;
11173 bfd *sub;
11174 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11175 unsigned elfsec;
11176 struct bfd_link_order **sections;
11177 asection *s, *other_sec, *linkorder_sec;
11178 bfd_vma offset;
11179
11180 other_sec = NULL;
11181 linkorder_sec = NULL;
11182 seen_other = 0;
11183 seen_linkorder = 0;
11184 for (p = o->map_head.link_order; p != NULL; p = p->next)
11185 {
11186 if (p->type == bfd_indirect_link_order)
11187 {
11188 s = p->u.indirect.section;
11189 sub = s->owner;
11190 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11191 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11192 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11193 && elfsec < elf_numsections (sub)
11194 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11195 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11196 {
11197 seen_linkorder++;
11198 linkorder_sec = s;
11199 }
11200 else
11201 {
11202 seen_other++;
11203 other_sec = s;
11204 }
11205 }
11206 else
11207 seen_other++;
11208
11209 if (seen_other && seen_linkorder)
11210 {
11211 if (other_sec && linkorder_sec)
11212 _bfd_error_handler
11213 /* xgettext:c-format */
11214 (_("%A has both ordered [`%A' in %B] "
11215 "and unordered [`%A' in %B] sections"),
11216 o, linkorder_sec, linkorder_sec->owner,
11217 other_sec, other_sec->owner);
11218 else
11219 _bfd_error_handler
11220 (_("%A has both ordered and unordered sections"), o);
11221 bfd_set_error (bfd_error_bad_value);
11222 return FALSE;
11223 }
11224 }
11225
11226 if (!seen_linkorder)
11227 return TRUE;
11228
11229 sections = (struct bfd_link_order **)
11230 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11231 if (sections == NULL)
11232 return FALSE;
11233 seen_linkorder = 0;
11234
11235 for (p = o->map_head.link_order; p != NULL; p = p->next)
11236 {
11237 sections[seen_linkorder++] = p;
11238 }
11239 /* Sort the input sections in the order of their linked section. */
11240 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11241 compare_link_order);
11242
11243 /* Change the offsets of the sections. */
11244 offset = 0;
11245 for (n = 0; n < seen_linkorder; n++)
11246 {
11247 s = sections[n]->u.indirect.section;
11248 offset &= ~(bfd_vma) 0 << s->alignment_power;
11249 s->output_offset = offset / bfd_octets_per_byte (abfd);
11250 sections[n]->offset = offset;
11251 offset += sections[n]->size;
11252 }
11253
11254 free (sections);
11255 return TRUE;
11256 }
11257
11258 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11259 Returns TRUE upon success, FALSE otherwise. */
11260
11261 static bfd_boolean
11262 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11263 {
11264 bfd_boolean ret = FALSE;
11265 bfd *implib_bfd;
11266 const struct elf_backend_data *bed;
11267 flagword flags;
11268 enum bfd_architecture arch;
11269 unsigned int mach;
11270 asymbol **sympp = NULL;
11271 long symsize;
11272 long symcount;
11273 long src_count;
11274 elf_symbol_type *osymbuf;
11275
11276 implib_bfd = info->out_implib_bfd;
11277 bed = get_elf_backend_data (abfd);
11278
11279 if (!bfd_set_format (implib_bfd, bfd_object))
11280 return FALSE;
11281
11282 /* Use flag from executable but make it a relocatable object. */
11283 flags = bfd_get_file_flags (abfd);
11284 flags &= ~HAS_RELOC;
11285 if (!bfd_set_start_address (implib_bfd, 0)
11286 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11287 return FALSE;
11288
11289 /* Copy architecture of output file to import library file. */
11290 arch = bfd_get_arch (abfd);
11291 mach = bfd_get_mach (abfd);
11292 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11293 && (abfd->target_defaulted
11294 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11295 return FALSE;
11296
11297 /* Get symbol table size. */
11298 symsize = bfd_get_symtab_upper_bound (abfd);
11299 if (symsize < 0)
11300 return FALSE;
11301
11302 /* Read in the symbol table. */
11303 sympp = (asymbol **) xmalloc (symsize);
11304 symcount = bfd_canonicalize_symtab (abfd, sympp);
11305 if (symcount < 0)
11306 goto free_sym_buf;
11307
11308 /* Allow the BFD backend to copy any private header data it
11309 understands from the output BFD to the import library BFD. */
11310 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11311 goto free_sym_buf;
11312
11313 /* Filter symbols to appear in the import library. */
11314 if (bed->elf_backend_filter_implib_symbols)
11315 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11316 symcount);
11317 else
11318 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11319 if (symcount == 0)
11320 {
11321 bfd_set_error (bfd_error_no_symbols);
11322 _bfd_error_handler (_("%B: no symbol found for import library"),
11323 implib_bfd);
11324 goto free_sym_buf;
11325 }
11326
11327
11328 /* Make symbols absolute. */
11329 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11330 sizeof (*osymbuf));
11331 for (src_count = 0; src_count < symcount; src_count++)
11332 {
11333 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11334 sizeof (*osymbuf));
11335 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11336 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11337 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11338 osymbuf[src_count].internal_elf_sym.st_value =
11339 osymbuf[src_count].symbol.value;
11340 sympp[src_count] = &osymbuf[src_count].symbol;
11341 }
11342
11343 bfd_set_symtab (implib_bfd, sympp, symcount);
11344
11345 /* Allow the BFD backend to copy any private data it understands
11346 from the output BFD to the import library BFD. This is done last
11347 to permit the routine to look at the filtered symbol table. */
11348 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11349 goto free_sym_buf;
11350
11351 if (!bfd_close (implib_bfd))
11352 goto free_sym_buf;
11353
11354 ret = TRUE;
11355
11356 free_sym_buf:
11357 free (sympp);
11358 return ret;
11359 }
11360
11361 static void
11362 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11363 {
11364 asection *o;
11365
11366 if (flinfo->symstrtab != NULL)
11367 _bfd_elf_strtab_free (flinfo->symstrtab);
11368 if (flinfo->contents != NULL)
11369 free (flinfo->contents);
11370 if (flinfo->external_relocs != NULL)
11371 free (flinfo->external_relocs);
11372 if (flinfo->internal_relocs != NULL)
11373 free (flinfo->internal_relocs);
11374 if (flinfo->external_syms != NULL)
11375 free (flinfo->external_syms);
11376 if (flinfo->locsym_shndx != NULL)
11377 free (flinfo->locsym_shndx);
11378 if (flinfo->internal_syms != NULL)
11379 free (flinfo->internal_syms);
11380 if (flinfo->indices != NULL)
11381 free (flinfo->indices);
11382 if (flinfo->sections != NULL)
11383 free (flinfo->sections);
11384 if (flinfo->symshndxbuf != NULL)
11385 free (flinfo->symshndxbuf);
11386 for (o = obfd->sections; o != NULL; o = o->next)
11387 {
11388 struct bfd_elf_section_data *esdo = elf_section_data (o);
11389 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11390 free (esdo->rel.hashes);
11391 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11392 free (esdo->rela.hashes);
11393 }
11394 }
11395
11396 /* Do the final step of an ELF link. */
11397
11398 bfd_boolean
11399 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11400 {
11401 bfd_boolean dynamic;
11402 bfd_boolean emit_relocs;
11403 bfd *dynobj;
11404 struct elf_final_link_info flinfo;
11405 asection *o;
11406 struct bfd_link_order *p;
11407 bfd *sub;
11408 bfd_size_type max_contents_size;
11409 bfd_size_type max_external_reloc_size;
11410 bfd_size_type max_internal_reloc_count;
11411 bfd_size_type max_sym_count;
11412 bfd_size_type max_sym_shndx_count;
11413 Elf_Internal_Sym elfsym;
11414 unsigned int i;
11415 Elf_Internal_Shdr *symtab_hdr;
11416 Elf_Internal_Shdr *symtab_shndx_hdr;
11417 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11418 struct elf_outext_info eoinfo;
11419 bfd_boolean merged;
11420 size_t relativecount = 0;
11421 asection *reldyn = 0;
11422 bfd_size_type amt;
11423 asection *attr_section = NULL;
11424 bfd_vma attr_size = 0;
11425 const char *std_attrs_section;
11426 struct elf_link_hash_table *htab = elf_hash_table (info);
11427
11428 if (!is_elf_hash_table (htab))
11429 return FALSE;
11430
11431 if (bfd_link_pic (info))
11432 abfd->flags |= DYNAMIC;
11433
11434 dynamic = htab->dynamic_sections_created;
11435 dynobj = htab->dynobj;
11436
11437 emit_relocs = (bfd_link_relocatable (info)
11438 || info->emitrelocations);
11439
11440 flinfo.info = info;
11441 flinfo.output_bfd = abfd;
11442 flinfo.symstrtab = _bfd_elf_strtab_init ();
11443 if (flinfo.symstrtab == NULL)
11444 return FALSE;
11445
11446 if (! dynamic)
11447 {
11448 flinfo.hash_sec = NULL;
11449 flinfo.symver_sec = NULL;
11450 }
11451 else
11452 {
11453 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11454 /* Note that dynsym_sec can be NULL (on VMS). */
11455 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11456 /* Note that it is OK if symver_sec is NULL. */
11457 }
11458
11459 flinfo.contents = NULL;
11460 flinfo.external_relocs = NULL;
11461 flinfo.internal_relocs = NULL;
11462 flinfo.external_syms = NULL;
11463 flinfo.locsym_shndx = NULL;
11464 flinfo.internal_syms = NULL;
11465 flinfo.indices = NULL;
11466 flinfo.sections = NULL;
11467 flinfo.symshndxbuf = NULL;
11468 flinfo.filesym_count = 0;
11469
11470 /* The object attributes have been merged. Remove the input
11471 sections from the link, and set the contents of the output
11472 secton. */
11473 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11474 for (o = abfd->sections; o != NULL; o = o->next)
11475 {
11476 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11477 || strcmp (o->name, ".gnu.attributes") == 0)
11478 {
11479 for (p = o->map_head.link_order; p != NULL; p = p->next)
11480 {
11481 asection *input_section;
11482
11483 if (p->type != bfd_indirect_link_order)
11484 continue;
11485 input_section = p->u.indirect.section;
11486 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11487 elf_link_input_bfd ignores this section. */
11488 input_section->flags &= ~SEC_HAS_CONTENTS;
11489 }
11490
11491 attr_size = bfd_elf_obj_attr_size (abfd);
11492 if (attr_size)
11493 {
11494 bfd_set_section_size (abfd, o, attr_size);
11495 attr_section = o;
11496 /* Skip this section later on. */
11497 o->map_head.link_order = NULL;
11498 }
11499 else
11500 o->flags |= SEC_EXCLUDE;
11501 }
11502 }
11503
11504 /* Count up the number of relocations we will output for each output
11505 section, so that we know the sizes of the reloc sections. We
11506 also figure out some maximum sizes. */
11507 max_contents_size = 0;
11508 max_external_reloc_size = 0;
11509 max_internal_reloc_count = 0;
11510 max_sym_count = 0;
11511 max_sym_shndx_count = 0;
11512 merged = FALSE;
11513 for (o = abfd->sections; o != NULL; o = o->next)
11514 {
11515 struct bfd_elf_section_data *esdo = elf_section_data (o);
11516 o->reloc_count = 0;
11517
11518 for (p = o->map_head.link_order; p != NULL; p = p->next)
11519 {
11520 unsigned int reloc_count = 0;
11521 unsigned int additional_reloc_count = 0;
11522 struct bfd_elf_section_data *esdi = NULL;
11523
11524 if (p->type == bfd_section_reloc_link_order
11525 || p->type == bfd_symbol_reloc_link_order)
11526 reloc_count = 1;
11527 else if (p->type == bfd_indirect_link_order)
11528 {
11529 asection *sec;
11530
11531 sec = p->u.indirect.section;
11532
11533 /* Mark all sections which are to be included in the
11534 link. This will normally be every section. We need
11535 to do this so that we can identify any sections which
11536 the linker has decided to not include. */
11537 sec->linker_mark = TRUE;
11538
11539 if (sec->flags & SEC_MERGE)
11540 merged = TRUE;
11541
11542 if (sec->rawsize > max_contents_size)
11543 max_contents_size = sec->rawsize;
11544 if (sec->size > max_contents_size)
11545 max_contents_size = sec->size;
11546
11547 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11548 && (sec->owner->flags & DYNAMIC) == 0)
11549 {
11550 size_t sym_count;
11551
11552 /* We are interested in just local symbols, not all
11553 symbols. */
11554 if (elf_bad_symtab (sec->owner))
11555 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11556 / bed->s->sizeof_sym);
11557 else
11558 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11559
11560 if (sym_count > max_sym_count)
11561 max_sym_count = sym_count;
11562
11563 if (sym_count > max_sym_shndx_count
11564 && elf_symtab_shndx_list (sec->owner) != NULL)
11565 max_sym_shndx_count = sym_count;
11566
11567 if (esdo->this_hdr.sh_type == SHT_REL
11568 || esdo->this_hdr.sh_type == SHT_RELA)
11569 /* Some backends use reloc_count in relocation sections
11570 to count particular types of relocs. Of course,
11571 reloc sections themselves can't have relocations. */
11572 ;
11573 else if (emit_relocs)
11574 {
11575 reloc_count = sec->reloc_count;
11576 if (bed->elf_backend_count_additional_relocs)
11577 {
11578 int c;
11579 c = (*bed->elf_backend_count_additional_relocs) (sec);
11580 additional_reloc_count += c;
11581 }
11582 }
11583 else if (bed->elf_backend_count_relocs)
11584 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11585
11586 esdi = elf_section_data (sec);
11587
11588 if ((sec->flags & SEC_RELOC) != 0)
11589 {
11590 size_t ext_size = 0;
11591
11592 if (esdi->rel.hdr != NULL)
11593 ext_size = esdi->rel.hdr->sh_size;
11594 if (esdi->rela.hdr != NULL)
11595 ext_size += esdi->rela.hdr->sh_size;
11596
11597 if (ext_size > max_external_reloc_size)
11598 max_external_reloc_size = ext_size;
11599 if (sec->reloc_count > max_internal_reloc_count)
11600 max_internal_reloc_count = sec->reloc_count;
11601 }
11602 }
11603 }
11604
11605 if (reloc_count == 0)
11606 continue;
11607
11608 reloc_count += additional_reloc_count;
11609 o->reloc_count += reloc_count;
11610
11611 if (p->type == bfd_indirect_link_order && emit_relocs)
11612 {
11613 if (esdi->rel.hdr)
11614 {
11615 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11616 esdo->rel.count += additional_reloc_count;
11617 }
11618 if (esdi->rela.hdr)
11619 {
11620 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11621 esdo->rela.count += additional_reloc_count;
11622 }
11623 }
11624 else
11625 {
11626 if (o->use_rela_p)
11627 esdo->rela.count += reloc_count;
11628 else
11629 esdo->rel.count += reloc_count;
11630 }
11631 }
11632
11633 if (o->reloc_count > 0)
11634 o->flags |= SEC_RELOC;
11635 else
11636 {
11637 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11638 set it (this is probably a bug) and if it is set
11639 assign_section_numbers will create a reloc section. */
11640 o->flags &=~ SEC_RELOC;
11641 }
11642
11643 /* If the SEC_ALLOC flag is not set, force the section VMA to
11644 zero. This is done in elf_fake_sections as well, but forcing
11645 the VMA to 0 here will ensure that relocs against these
11646 sections are handled correctly. */
11647 if ((o->flags & SEC_ALLOC) == 0
11648 && ! o->user_set_vma)
11649 o->vma = 0;
11650 }
11651
11652 if (! bfd_link_relocatable (info) && merged)
11653 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11654
11655 /* Figure out the file positions for everything but the symbol table
11656 and the relocs. We set symcount to force assign_section_numbers
11657 to create a symbol table. */
11658 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11659 BFD_ASSERT (! abfd->output_has_begun);
11660 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11661 goto error_return;
11662
11663 /* Set sizes, and assign file positions for reloc sections. */
11664 for (o = abfd->sections; o != NULL; o = o->next)
11665 {
11666 struct bfd_elf_section_data *esdo = elf_section_data (o);
11667 if ((o->flags & SEC_RELOC) != 0)
11668 {
11669 if (esdo->rel.hdr
11670 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11671 goto error_return;
11672
11673 if (esdo->rela.hdr
11674 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11675 goto error_return;
11676 }
11677
11678 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11679 to count upwards while actually outputting the relocations. */
11680 esdo->rel.count = 0;
11681 esdo->rela.count = 0;
11682
11683 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11684 {
11685 /* Cache the section contents so that they can be compressed
11686 later. Use bfd_malloc since it will be freed by
11687 bfd_compress_section_contents. */
11688 unsigned char *contents = esdo->this_hdr.contents;
11689 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11690 abort ();
11691 contents
11692 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11693 if (contents == NULL)
11694 goto error_return;
11695 esdo->this_hdr.contents = contents;
11696 }
11697 }
11698
11699 /* We have now assigned file positions for all the sections except
11700 .symtab, .strtab, and non-loaded reloc sections. We start the
11701 .symtab section at the current file position, and write directly
11702 to it. We build the .strtab section in memory. */
11703 bfd_get_symcount (abfd) = 0;
11704 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11705 /* sh_name is set in prep_headers. */
11706 symtab_hdr->sh_type = SHT_SYMTAB;
11707 /* sh_flags, sh_addr and sh_size all start off zero. */
11708 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11709 /* sh_link is set in assign_section_numbers. */
11710 /* sh_info is set below. */
11711 /* sh_offset is set just below. */
11712 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11713
11714 if (max_sym_count < 20)
11715 max_sym_count = 20;
11716 htab->strtabsize = max_sym_count;
11717 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11718 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11719 if (htab->strtab == NULL)
11720 goto error_return;
11721 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11722 flinfo.symshndxbuf
11723 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11724 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11725
11726 if (info->strip != strip_all || emit_relocs)
11727 {
11728 file_ptr off = elf_next_file_pos (abfd);
11729
11730 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11731
11732 /* Note that at this point elf_next_file_pos (abfd) is
11733 incorrect. We do not yet know the size of the .symtab section.
11734 We correct next_file_pos below, after we do know the size. */
11735
11736 /* Start writing out the symbol table. The first symbol is always a
11737 dummy symbol. */
11738 elfsym.st_value = 0;
11739 elfsym.st_size = 0;
11740 elfsym.st_info = 0;
11741 elfsym.st_other = 0;
11742 elfsym.st_shndx = SHN_UNDEF;
11743 elfsym.st_target_internal = 0;
11744 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11745 bfd_und_section_ptr, NULL) != 1)
11746 goto error_return;
11747
11748 /* Output a symbol for each section. We output these even if we are
11749 discarding local symbols, since they are used for relocs. These
11750 symbols have no names. We store the index of each one in the
11751 index field of the section, so that we can find it again when
11752 outputting relocs. */
11753
11754 elfsym.st_size = 0;
11755 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11756 elfsym.st_other = 0;
11757 elfsym.st_value = 0;
11758 elfsym.st_target_internal = 0;
11759 for (i = 1; i < elf_numsections (abfd); i++)
11760 {
11761 o = bfd_section_from_elf_index (abfd, i);
11762 if (o != NULL)
11763 {
11764 o->target_index = bfd_get_symcount (abfd);
11765 elfsym.st_shndx = i;
11766 if (!bfd_link_relocatable (info))
11767 elfsym.st_value = o->vma;
11768 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11769 NULL) != 1)
11770 goto error_return;
11771 }
11772 }
11773 }
11774
11775 /* Allocate some memory to hold information read in from the input
11776 files. */
11777 if (max_contents_size != 0)
11778 {
11779 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11780 if (flinfo.contents == NULL)
11781 goto error_return;
11782 }
11783
11784 if (max_external_reloc_size != 0)
11785 {
11786 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11787 if (flinfo.external_relocs == NULL)
11788 goto error_return;
11789 }
11790
11791 if (max_internal_reloc_count != 0)
11792 {
11793 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11794 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11795 if (flinfo.internal_relocs == NULL)
11796 goto error_return;
11797 }
11798
11799 if (max_sym_count != 0)
11800 {
11801 amt = max_sym_count * bed->s->sizeof_sym;
11802 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11803 if (flinfo.external_syms == NULL)
11804 goto error_return;
11805
11806 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11807 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11808 if (flinfo.internal_syms == NULL)
11809 goto error_return;
11810
11811 amt = max_sym_count * sizeof (long);
11812 flinfo.indices = (long int *) bfd_malloc (amt);
11813 if (flinfo.indices == NULL)
11814 goto error_return;
11815
11816 amt = max_sym_count * sizeof (asection *);
11817 flinfo.sections = (asection **) bfd_malloc (amt);
11818 if (flinfo.sections == NULL)
11819 goto error_return;
11820 }
11821
11822 if (max_sym_shndx_count != 0)
11823 {
11824 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11825 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11826 if (flinfo.locsym_shndx == NULL)
11827 goto error_return;
11828 }
11829
11830 if (htab->tls_sec)
11831 {
11832 bfd_vma base, end = 0;
11833 asection *sec;
11834
11835 for (sec = htab->tls_sec;
11836 sec && (sec->flags & SEC_THREAD_LOCAL);
11837 sec = sec->next)
11838 {
11839 bfd_size_type size = sec->size;
11840
11841 if (size == 0
11842 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11843 {
11844 struct bfd_link_order *ord = sec->map_tail.link_order;
11845
11846 if (ord != NULL)
11847 size = ord->offset + ord->size;
11848 }
11849 end = sec->vma + size;
11850 }
11851 base = htab->tls_sec->vma;
11852 /* Only align end of TLS section if static TLS doesn't have special
11853 alignment requirements. */
11854 if (bed->static_tls_alignment == 1)
11855 end = align_power (end, htab->tls_sec->alignment_power);
11856 htab->tls_size = end - base;
11857 }
11858
11859 /* Reorder SHF_LINK_ORDER sections. */
11860 for (o = abfd->sections; o != NULL; o = o->next)
11861 {
11862 if (!elf_fixup_link_order (abfd, o))
11863 return FALSE;
11864 }
11865
11866 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11867 return FALSE;
11868
11869 /* Since ELF permits relocations to be against local symbols, we
11870 must have the local symbols available when we do the relocations.
11871 Since we would rather only read the local symbols once, and we
11872 would rather not keep them in memory, we handle all the
11873 relocations for a single input file at the same time.
11874
11875 Unfortunately, there is no way to know the total number of local
11876 symbols until we have seen all of them, and the local symbol
11877 indices precede the global symbol indices. This means that when
11878 we are generating relocatable output, and we see a reloc against
11879 a global symbol, we can not know the symbol index until we have
11880 finished examining all the local symbols to see which ones we are
11881 going to output. To deal with this, we keep the relocations in
11882 memory, and don't output them until the end of the link. This is
11883 an unfortunate waste of memory, but I don't see a good way around
11884 it. Fortunately, it only happens when performing a relocatable
11885 link, which is not the common case. FIXME: If keep_memory is set
11886 we could write the relocs out and then read them again; I don't
11887 know how bad the memory loss will be. */
11888
11889 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11890 sub->output_has_begun = FALSE;
11891 for (o = abfd->sections; o != NULL; o = o->next)
11892 {
11893 for (p = o->map_head.link_order; p != NULL; p = p->next)
11894 {
11895 if (p->type == bfd_indirect_link_order
11896 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11897 == bfd_target_elf_flavour)
11898 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11899 {
11900 if (! sub->output_has_begun)
11901 {
11902 if (! elf_link_input_bfd (&flinfo, sub))
11903 goto error_return;
11904 sub->output_has_begun = TRUE;
11905 }
11906 }
11907 else if (p->type == bfd_section_reloc_link_order
11908 || p->type == bfd_symbol_reloc_link_order)
11909 {
11910 if (! elf_reloc_link_order (abfd, info, o, p))
11911 goto error_return;
11912 }
11913 else
11914 {
11915 if (! _bfd_default_link_order (abfd, info, o, p))
11916 {
11917 if (p->type == bfd_indirect_link_order
11918 && (bfd_get_flavour (sub)
11919 == bfd_target_elf_flavour)
11920 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11921 != bed->s->elfclass))
11922 {
11923 const char *iclass, *oclass;
11924
11925 switch (bed->s->elfclass)
11926 {
11927 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11928 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11929 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11930 default: abort ();
11931 }
11932
11933 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11934 {
11935 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11936 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11937 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11938 default: abort ();
11939 }
11940
11941 bfd_set_error (bfd_error_wrong_format);
11942 _bfd_error_handler
11943 /* xgettext:c-format */
11944 (_("%B: file class %s incompatible with %s"),
11945 sub, iclass, oclass);
11946 }
11947
11948 goto error_return;
11949 }
11950 }
11951 }
11952 }
11953
11954 /* Free symbol buffer if needed. */
11955 if (!info->reduce_memory_overheads)
11956 {
11957 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11958 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11959 && elf_tdata (sub)->symbuf)
11960 {
11961 free (elf_tdata (sub)->symbuf);
11962 elf_tdata (sub)->symbuf = NULL;
11963 }
11964 }
11965
11966 /* Output any global symbols that got converted to local in a
11967 version script or due to symbol visibility. We do this in a
11968 separate step since ELF requires all local symbols to appear
11969 prior to any global symbols. FIXME: We should only do this if
11970 some global symbols were, in fact, converted to become local.
11971 FIXME: Will this work correctly with the Irix 5 linker? */
11972 eoinfo.failed = FALSE;
11973 eoinfo.flinfo = &flinfo;
11974 eoinfo.localsyms = TRUE;
11975 eoinfo.file_sym_done = FALSE;
11976 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11977 if (eoinfo.failed)
11978 return FALSE;
11979
11980 /* If backend needs to output some local symbols not present in the hash
11981 table, do it now. */
11982 if (bed->elf_backend_output_arch_local_syms
11983 && (info->strip != strip_all || emit_relocs))
11984 {
11985 typedef int (*out_sym_func)
11986 (void *, const char *, Elf_Internal_Sym *, asection *,
11987 struct elf_link_hash_entry *);
11988
11989 if (! ((*bed->elf_backend_output_arch_local_syms)
11990 (abfd, info, &flinfo,
11991 (out_sym_func) elf_link_output_symstrtab)))
11992 return FALSE;
11993 }
11994
11995 /* That wrote out all the local symbols. Finish up the symbol table
11996 with the global symbols. Even if we want to strip everything we
11997 can, we still need to deal with those global symbols that got
11998 converted to local in a version script. */
11999
12000 /* The sh_info field records the index of the first non local symbol. */
12001 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12002
12003 if (dynamic
12004 && htab->dynsym != NULL
12005 && htab->dynsym->output_section != bfd_abs_section_ptr)
12006 {
12007 Elf_Internal_Sym sym;
12008 bfd_byte *dynsym = htab->dynsym->contents;
12009
12010 o = htab->dynsym->output_section;
12011 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12012
12013 /* Write out the section symbols for the output sections. */
12014 if (bfd_link_pic (info)
12015 || htab->is_relocatable_executable)
12016 {
12017 asection *s;
12018
12019 sym.st_size = 0;
12020 sym.st_name = 0;
12021 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12022 sym.st_other = 0;
12023 sym.st_target_internal = 0;
12024
12025 for (s = abfd->sections; s != NULL; s = s->next)
12026 {
12027 int indx;
12028 bfd_byte *dest;
12029 long dynindx;
12030
12031 dynindx = elf_section_data (s)->dynindx;
12032 if (dynindx <= 0)
12033 continue;
12034 indx = elf_section_data (s)->this_idx;
12035 BFD_ASSERT (indx > 0);
12036 sym.st_shndx = indx;
12037 if (! check_dynsym (abfd, &sym))
12038 return FALSE;
12039 sym.st_value = s->vma;
12040 dest = dynsym + dynindx * bed->s->sizeof_sym;
12041 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12042 }
12043 }
12044
12045 /* Write out the local dynsyms. */
12046 if (htab->dynlocal)
12047 {
12048 struct elf_link_local_dynamic_entry *e;
12049 for (e = htab->dynlocal; e ; e = e->next)
12050 {
12051 asection *s;
12052 bfd_byte *dest;
12053
12054 /* Copy the internal symbol and turn off visibility.
12055 Note that we saved a word of storage and overwrote
12056 the original st_name with the dynstr_index. */
12057 sym = e->isym;
12058 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12059
12060 s = bfd_section_from_elf_index (e->input_bfd,
12061 e->isym.st_shndx);
12062 if (s != NULL)
12063 {
12064 sym.st_shndx =
12065 elf_section_data (s->output_section)->this_idx;
12066 if (! check_dynsym (abfd, &sym))
12067 return FALSE;
12068 sym.st_value = (s->output_section->vma
12069 + s->output_offset
12070 + e->isym.st_value);
12071 }
12072
12073 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12074 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12075 }
12076 }
12077 }
12078
12079 /* We get the global symbols from the hash table. */
12080 eoinfo.failed = FALSE;
12081 eoinfo.localsyms = FALSE;
12082 eoinfo.flinfo = &flinfo;
12083 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12084 if (eoinfo.failed)
12085 return FALSE;
12086
12087 /* If backend needs to output some symbols not present in the hash
12088 table, do it now. */
12089 if (bed->elf_backend_output_arch_syms
12090 && (info->strip != strip_all || emit_relocs))
12091 {
12092 typedef int (*out_sym_func)
12093 (void *, const char *, Elf_Internal_Sym *, asection *,
12094 struct elf_link_hash_entry *);
12095
12096 if (! ((*bed->elf_backend_output_arch_syms)
12097 (abfd, info, &flinfo,
12098 (out_sym_func) elf_link_output_symstrtab)))
12099 return FALSE;
12100 }
12101
12102 /* Finalize the .strtab section. */
12103 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12104
12105 /* Swap out the .strtab section. */
12106 if (!elf_link_swap_symbols_out (&flinfo))
12107 return FALSE;
12108
12109 /* Now we know the size of the symtab section. */
12110 if (bfd_get_symcount (abfd) > 0)
12111 {
12112 /* Finish up and write out the symbol string table (.strtab)
12113 section. */
12114 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12115 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12116
12117 if (elf_symtab_shndx_list (abfd))
12118 {
12119 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12120
12121 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12122 {
12123 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12124 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12125 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12126 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12127 symtab_shndx_hdr->sh_size = amt;
12128
12129 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12130 off, TRUE);
12131
12132 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12133 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12134 return FALSE;
12135 }
12136 }
12137
12138 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12139 /* sh_name was set in prep_headers. */
12140 symstrtab_hdr->sh_type = SHT_STRTAB;
12141 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12142 symstrtab_hdr->sh_addr = 0;
12143 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12144 symstrtab_hdr->sh_entsize = 0;
12145 symstrtab_hdr->sh_link = 0;
12146 symstrtab_hdr->sh_info = 0;
12147 /* sh_offset is set just below. */
12148 symstrtab_hdr->sh_addralign = 1;
12149
12150 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12151 off, TRUE);
12152 elf_next_file_pos (abfd) = off;
12153
12154 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12155 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12156 return FALSE;
12157 }
12158
12159 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12160 {
12161 _bfd_error_handler (_("%B: failed to generate import library"),
12162 info->out_implib_bfd);
12163 return FALSE;
12164 }
12165
12166 /* Adjust the relocs to have the correct symbol indices. */
12167 for (o = abfd->sections; o != NULL; o = o->next)
12168 {
12169 struct bfd_elf_section_data *esdo = elf_section_data (o);
12170 bfd_boolean sort;
12171 if ((o->flags & SEC_RELOC) == 0)
12172 continue;
12173
12174 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12175 if (esdo->rel.hdr != NULL
12176 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12177 return FALSE;
12178 if (esdo->rela.hdr != NULL
12179 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12180 return FALSE;
12181
12182 /* Set the reloc_count field to 0 to prevent write_relocs from
12183 trying to swap the relocs out itself. */
12184 o->reloc_count = 0;
12185 }
12186
12187 if (dynamic && info->combreloc && dynobj != NULL)
12188 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12189
12190 /* If we are linking against a dynamic object, or generating a
12191 shared library, finish up the dynamic linking information. */
12192 if (dynamic)
12193 {
12194 bfd_byte *dyncon, *dynconend;
12195
12196 /* Fix up .dynamic entries. */
12197 o = bfd_get_linker_section (dynobj, ".dynamic");
12198 BFD_ASSERT (o != NULL);
12199
12200 dyncon = o->contents;
12201 dynconend = o->contents + o->size;
12202 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12203 {
12204 Elf_Internal_Dyn dyn;
12205 const char *name;
12206 unsigned int type;
12207 bfd_size_type sh_size;
12208 bfd_vma sh_addr;
12209
12210 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12211
12212 switch (dyn.d_tag)
12213 {
12214 default:
12215 continue;
12216 case DT_NULL:
12217 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12218 {
12219 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12220 {
12221 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12222 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12223 default: continue;
12224 }
12225 dyn.d_un.d_val = relativecount;
12226 relativecount = 0;
12227 break;
12228 }
12229 continue;
12230
12231 case DT_INIT:
12232 name = info->init_function;
12233 goto get_sym;
12234 case DT_FINI:
12235 name = info->fini_function;
12236 get_sym:
12237 {
12238 struct elf_link_hash_entry *h;
12239
12240 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12241 if (h != NULL
12242 && (h->root.type == bfd_link_hash_defined
12243 || h->root.type == bfd_link_hash_defweak))
12244 {
12245 dyn.d_un.d_ptr = h->root.u.def.value;
12246 o = h->root.u.def.section;
12247 if (o->output_section != NULL)
12248 dyn.d_un.d_ptr += (o->output_section->vma
12249 + o->output_offset);
12250 else
12251 {
12252 /* The symbol is imported from another shared
12253 library and does not apply to this one. */
12254 dyn.d_un.d_ptr = 0;
12255 }
12256 break;
12257 }
12258 }
12259 continue;
12260
12261 case DT_PREINIT_ARRAYSZ:
12262 name = ".preinit_array";
12263 goto get_out_size;
12264 case DT_INIT_ARRAYSZ:
12265 name = ".init_array";
12266 goto get_out_size;
12267 case DT_FINI_ARRAYSZ:
12268 name = ".fini_array";
12269 get_out_size:
12270 o = bfd_get_section_by_name (abfd, name);
12271 if (o == NULL)
12272 {
12273 _bfd_error_handler
12274 (_("could not find section %s"), name);
12275 goto error_return;
12276 }
12277 if (o->size == 0)
12278 _bfd_error_handler
12279 (_("warning: %s section has zero size"), name);
12280 dyn.d_un.d_val = o->size;
12281 break;
12282
12283 case DT_PREINIT_ARRAY:
12284 name = ".preinit_array";
12285 goto get_out_vma;
12286 case DT_INIT_ARRAY:
12287 name = ".init_array";
12288 goto get_out_vma;
12289 case DT_FINI_ARRAY:
12290 name = ".fini_array";
12291 get_out_vma:
12292 o = bfd_get_section_by_name (abfd, name);
12293 goto do_vma;
12294
12295 case DT_HASH:
12296 name = ".hash";
12297 goto get_vma;
12298 case DT_GNU_HASH:
12299 name = ".gnu.hash";
12300 goto get_vma;
12301 case DT_STRTAB:
12302 name = ".dynstr";
12303 goto get_vma;
12304 case DT_SYMTAB:
12305 name = ".dynsym";
12306 goto get_vma;
12307 case DT_VERDEF:
12308 name = ".gnu.version_d";
12309 goto get_vma;
12310 case DT_VERNEED:
12311 name = ".gnu.version_r";
12312 goto get_vma;
12313 case DT_VERSYM:
12314 name = ".gnu.version";
12315 get_vma:
12316 o = bfd_get_linker_section (dynobj, name);
12317 do_vma:
12318 if (o == NULL)
12319 {
12320 _bfd_error_handler
12321 (_("could not find section %s"), name);
12322 goto error_return;
12323 }
12324 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12325 {
12326 _bfd_error_handler
12327 (_("warning: section '%s' is being made into a note"), name);
12328 bfd_set_error (bfd_error_nonrepresentable_section);
12329 goto error_return;
12330 }
12331 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12332 break;
12333
12334 case DT_REL:
12335 case DT_RELA:
12336 case DT_RELSZ:
12337 case DT_RELASZ:
12338 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12339 type = SHT_REL;
12340 else
12341 type = SHT_RELA;
12342 sh_size = 0;
12343 sh_addr = 0;
12344 for (i = 1; i < elf_numsections (abfd); i++)
12345 {
12346 Elf_Internal_Shdr *hdr;
12347
12348 hdr = elf_elfsections (abfd)[i];
12349 if (hdr->sh_type == type
12350 && (hdr->sh_flags & SHF_ALLOC) != 0)
12351 {
12352 sh_size += hdr->sh_size;
12353 if (sh_addr == 0
12354 || sh_addr > hdr->sh_addr)
12355 sh_addr = hdr->sh_addr;
12356 }
12357 }
12358
12359 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12360 {
12361 /* Don't count procedure linkage table relocs in the
12362 overall reloc count. */
12363 sh_size -= htab->srelplt->size;
12364 if (sh_size == 0)
12365 /* If the size is zero, make the address zero too.
12366 This is to avoid a glibc bug. If the backend
12367 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12368 zero, then we'll put DT_RELA at the end of
12369 DT_JMPREL. glibc will interpret the end of
12370 DT_RELA matching the end of DT_JMPREL as the
12371 case where DT_RELA includes DT_JMPREL, and for
12372 LD_BIND_NOW will decide that processing DT_RELA
12373 will process the PLT relocs too. Net result:
12374 No PLT relocs applied. */
12375 sh_addr = 0;
12376
12377 /* If .rela.plt is the first .rela section, exclude
12378 it from DT_RELA. */
12379 else if (sh_addr == (htab->srelplt->output_section->vma
12380 + htab->srelplt->output_offset))
12381 sh_addr += htab->srelplt->size;
12382 }
12383
12384 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12385 dyn.d_un.d_val = sh_size;
12386 else
12387 dyn.d_un.d_ptr = sh_addr;
12388 break;
12389 }
12390 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12391 }
12392 }
12393
12394 /* If we have created any dynamic sections, then output them. */
12395 if (dynobj != NULL)
12396 {
12397 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12398 goto error_return;
12399
12400 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12401 if (((info->warn_shared_textrel && bfd_link_pic (info))
12402 || info->error_textrel)
12403 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12404 {
12405 bfd_byte *dyncon, *dynconend;
12406
12407 dyncon = o->contents;
12408 dynconend = o->contents + o->size;
12409 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12410 {
12411 Elf_Internal_Dyn dyn;
12412
12413 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12414
12415 if (dyn.d_tag == DT_TEXTREL)
12416 {
12417 if (info->error_textrel)
12418 info->callbacks->einfo
12419 (_("%P%X: read-only segment has dynamic relocations.\n"));
12420 else
12421 info->callbacks->einfo
12422 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12423 break;
12424 }
12425 }
12426 }
12427
12428 for (o = dynobj->sections; o != NULL; o = o->next)
12429 {
12430 if ((o->flags & SEC_HAS_CONTENTS) == 0
12431 || o->size == 0
12432 || o->output_section == bfd_abs_section_ptr)
12433 continue;
12434 if ((o->flags & SEC_LINKER_CREATED) == 0)
12435 {
12436 /* At this point, we are only interested in sections
12437 created by _bfd_elf_link_create_dynamic_sections. */
12438 continue;
12439 }
12440 if (htab->stab_info.stabstr == o)
12441 continue;
12442 if (htab->eh_info.hdr_sec == o)
12443 continue;
12444 if (strcmp (o->name, ".dynstr") != 0)
12445 {
12446 if (! bfd_set_section_contents (abfd, o->output_section,
12447 o->contents,
12448 (file_ptr) o->output_offset
12449 * bfd_octets_per_byte (abfd),
12450 o->size))
12451 goto error_return;
12452 }
12453 else
12454 {
12455 /* The contents of the .dynstr section are actually in a
12456 stringtab. */
12457 file_ptr off;
12458
12459 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12460 if (bfd_seek (abfd, off, SEEK_SET) != 0
12461 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12462 goto error_return;
12463 }
12464 }
12465 }
12466
12467 if (!info->resolve_section_groups)
12468 {
12469 bfd_boolean failed = FALSE;
12470
12471 BFD_ASSERT (bfd_link_relocatable (info));
12472 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12473 if (failed)
12474 goto error_return;
12475 }
12476
12477 /* If we have optimized stabs strings, output them. */
12478 if (htab->stab_info.stabstr != NULL)
12479 {
12480 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12481 goto error_return;
12482 }
12483
12484 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12485 goto error_return;
12486
12487 elf_final_link_free (abfd, &flinfo);
12488
12489 elf_linker (abfd) = TRUE;
12490
12491 if (attr_section)
12492 {
12493 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12494 if (contents == NULL)
12495 return FALSE; /* Bail out and fail. */
12496 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12497 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12498 free (contents);
12499 }
12500
12501 return TRUE;
12502
12503 error_return:
12504 elf_final_link_free (abfd, &flinfo);
12505 return FALSE;
12506 }
12507 \f
12508 /* Initialize COOKIE for input bfd ABFD. */
12509
12510 static bfd_boolean
12511 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12512 struct bfd_link_info *info, bfd *abfd)
12513 {
12514 Elf_Internal_Shdr *symtab_hdr;
12515 const struct elf_backend_data *bed;
12516
12517 bed = get_elf_backend_data (abfd);
12518 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12519
12520 cookie->abfd = abfd;
12521 cookie->sym_hashes = elf_sym_hashes (abfd);
12522 cookie->bad_symtab = elf_bad_symtab (abfd);
12523 if (cookie->bad_symtab)
12524 {
12525 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12526 cookie->extsymoff = 0;
12527 }
12528 else
12529 {
12530 cookie->locsymcount = symtab_hdr->sh_info;
12531 cookie->extsymoff = symtab_hdr->sh_info;
12532 }
12533
12534 if (bed->s->arch_size == 32)
12535 cookie->r_sym_shift = 8;
12536 else
12537 cookie->r_sym_shift = 32;
12538
12539 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12540 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12541 {
12542 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12543 cookie->locsymcount, 0,
12544 NULL, NULL, NULL);
12545 if (cookie->locsyms == NULL)
12546 {
12547 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12548 return FALSE;
12549 }
12550 if (info->keep_memory)
12551 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12552 }
12553 return TRUE;
12554 }
12555
12556 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12557
12558 static void
12559 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12560 {
12561 Elf_Internal_Shdr *symtab_hdr;
12562
12563 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12564 if (cookie->locsyms != NULL
12565 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12566 free (cookie->locsyms);
12567 }
12568
12569 /* Initialize the relocation information in COOKIE for input section SEC
12570 of input bfd ABFD. */
12571
12572 static bfd_boolean
12573 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12574 struct bfd_link_info *info, bfd *abfd,
12575 asection *sec)
12576 {
12577 if (sec->reloc_count == 0)
12578 {
12579 cookie->rels = NULL;
12580 cookie->relend = NULL;
12581 }
12582 else
12583 {
12584 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12585 info->keep_memory);
12586 if (cookie->rels == NULL)
12587 return FALSE;
12588 cookie->rel = cookie->rels;
12589 cookie->relend = cookie->rels + sec->reloc_count;
12590 }
12591 cookie->rel = cookie->rels;
12592 return TRUE;
12593 }
12594
12595 /* Free the memory allocated by init_reloc_cookie_rels,
12596 if appropriate. */
12597
12598 static void
12599 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12600 asection *sec)
12601 {
12602 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12603 free (cookie->rels);
12604 }
12605
12606 /* Initialize the whole of COOKIE for input section SEC. */
12607
12608 static bfd_boolean
12609 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12610 struct bfd_link_info *info,
12611 asection *sec)
12612 {
12613 if (!init_reloc_cookie (cookie, info, sec->owner))
12614 goto error1;
12615 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12616 goto error2;
12617 return TRUE;
12618
12619 error2:
12620 fini_reloc_cookie (cookie, sec->owner);
12621 error1:
12622 return FALSE;
12623 }
12624
12625 /* Free the memory allocated by init_reloc_cookie_for_section,
12626 if appropriate. */
12627
12628 static void
12629 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12630 asection *sec)
12631 {
12632 fini_reloc_cookie_rels (cookie, sec);
12633 fini_reloc_cookie (cookie, sec->owner);
12634 }
12635 \f
12636 /* Garbage collect unused sections. */
12637
12638 /* Default gc_mark_hook. */
12639
12640 asection *
12641 _bfd_elf_gc_mark_hook (asection *sec,
12642 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12643 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12644 struct elf_link_hash_entry *h,
12645 Elf_Internal_Sym *sym)
12646 {
12647 if (h != NULL)
12648 {
12649 switch (h->root.type)
12650 {
12651 case bfd_link_hash_defined:
12652 case bfd_link_hash_defweak:
12653 return h->root.u.def.section;
12654
12655 case bfd_link_hash_common:
12656 return h->root.u.c.p->section;
12657
12658 default:
12659 break;
12660 }
12661 }
12662 else
12663 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12664
12665 return NULL;
12666 }
12667
12668 /* Return the global debug definition section. */
12669
12670 static asection *
12671 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12672 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12673 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12674 struct elf_link_hash_entry *h,
12675 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
12676 {
12677 if (h != NULL
12678 && (h->root.type == bfd_link_hash_defined
12679 || h->root.type == bfd_link_hash_defweak)
12680 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12681 return h->root.u.def.section;
12682
12683 return NULL;
12684 }
12685
12686 /* For undefined __start_<name> and __stop_<name> symbols, return the
12687 first input section matching <name>. Return NULL otherwise. */
12688
12689 asection *
12690 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12691 struct elf_link_hash_entry *h)
12692 {
12693 asection *s;
12694 const char *sec_name;
12695
12696 if (h->root.type != bfd_link_hash_undefined
12697 && h->root.type != bfd_link_hash_undefweak)
12698 return NULL;
12699
12700 s = h->root.u.undef.section;
12701 if (s != NULL)
12702 {
12703 if (s == (asection *) 0 - 1)
12704 return NULL;
12705 return s;
12706 }
12707
12708 sec_name = NULL;
12709 if (strncmp (h->root.root.string, "__start_", 8) == 0)
12710 sec_name = h->root.root.string + 8;
12711 else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12712 sec_name = h->root.root.string + 7;
12713
12714 if (sec_name != NULL && *sec_name != '\0')
12715 {
12716 bfd *i;
12717
12718 for (i = info->input_bfds; i != NULL; i = i->link.next)
12719 {
12720 s = bfd_get_section_by_name (i, sec_name);
12721 if (s != NULL)
12722 {
12723 h->root.u.undef.section = s;
12724 break;
12725 }
12726 }
12727 }
12728
12729 if (s == NULL)
12730 h->root.u.undef.section = (asection *) 0 - 1;
12731
12732 return s;
12733 }
12734
12735 /* COOKIE->rel describes a relocation against section SEC, which is
12736 a section we've decided to keep. Return the section that contains
12737 the relocation symbol, or NULL if no section contains it. */
12738
12739 asection *
12740 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12741 elf_gc_mark_hook_fn gc_mark_hook,
12742 struct elf_reloc_cookie *cookie,
12743 bfd_boolean *start_stop)
12744 {
12745 unsigned long r_symndx;
12746 struct elf_link_hash_entry *h;
12747
12748 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12749 if (r_symndx == STN_UNDEF)
12750 return NULL;
12751
12752 if (r_symndx >= cookie->locsymcount
12753 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12754 {
12755 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12756 if (h == NULL)
12757 {
12758 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12759 sec->owner);
12760 return NULL;
12761 }
12762 while (h->root.type == bfd_link_hash_indirect
12763 || h->root.type == bfd_link_hash_warning)
12764 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12765 h->mark = 1;
12766 /* If this symbol is weak and there is a non-weak definition, we
12767 keep the non-weak definition because many backends put
12768 dynamic reloc info on the non-weak definition for code
12769 handling copy relocs. */
12770 if (h->u.weakdef != NULL)
12771 h->u.weakdef->mark = 1;
12772
12773 if (start_stop != NULL)
12774 {
12775 /* To work around a glibc bug, mark all XXX input sections
12776 when there is an as yet undefined reference to __start_XXX
12777 or __stop_XXX symbols. The linker will later define such
12778 symbols for orphan input sections that have a name
12779 representable as a C identifier. */
12780 asection *s = _bfd_elf_is_start_stop (info, h);
12781
12782 if (s != NULL)
12783 {
12784 *start_stop = !s->gc_mark;
12785 return s;
12786 }
12787 }
12788
12789 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12790 }
12791
12792 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12793 &cookie->locsyms[r_symndx]);
12794 }
12795
12796 /* COOKIE->rel describes a relocation against section SEC, which is
12797 a section we've decided to keep. Mark the section that contains
12798 the relocation symbol. */
12799
12800 bfd_boolean
12801 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12802 asection *sec,
12803 elf_gc_mark_hook_fn gc_mark_hook,
12804 struct elf_reloc_cookie *cookie)
12805 {
12806 asection *rsec;
12807 bfd_boolean start_stop = FALSE;
12808
12809 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12810 while (rsec != NULL)
12811 {
12812 if (!rsec->gc_mark)
12813 {
12814 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12815 || (rsec->owner->flags & DYNAMIC) != 0)
12816 rsec->gc_mark = 1;
12817 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12818 return FALSE;
12819 }
12820 if (!start_stop)
12821 break;
12822 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12823 }
12824 return TRUE;
12825 }
12826
12827 /* The mark phase of garbage collection. For a given section, mark
12828 it and any sections in this section's group, and all the sections
12829 which define symbols to which it refers. */
12830
12831 bfd_boolean
12832 _bfd_elf_gc_mark (struct bfd_link_info *info,
12833 asection *sec,
12834 elf_gc_mark_hook_fn gc_mark_hook)
12835 {
12836 bfd_boolean ret;
12837 asection *group_sec, *eh_frame;
12838
12839 sec->gc_mark = 1;
12840
12841 /* Mark all the sections in the group. */
12842 group_sec = elf_section_data (sec)->next_in_group;
12843 if (group_sec && !group_sec->gc_mark)
12844 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12845 return FALSE;
12846
12847 /* Look through the section relocs. */
12848 ret = TRUE;
12849 eh_frame = elf_eh_frame_section (sec->owner);
12850 if ((sec->flags & SEC_RELOC) != 0
12851 && sec->reloc_count > 0
12852 && sec != eh_frame)
12853 {
12854 struct elf_reloc_cookie cookie;
12855
12856 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12857 ret = FALSE;
12858 else
12859 {
12860 for (; cookie.rel < cookie.relend; cookie.rel++)
12861 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12862 {
12863 ret = FALSE;
12864 break;
12865 }
12866 fini_reloc_cookie_for_section (&cookie, sec);
12867 }
12868 }
12869
12870 if (ret && eh_frame && elf_fde_list (sec))
12871 {
12872 struct elf_reloc_cookie cookie;
12873
12874 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12875 ret = FALSE;
12876 else
12877 {
12878 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12879 gc_mark_hook, &cookie))
12880 ret = FALSE;
12881 fini_reloc_cookie_for_section (&cookie, eh_frame);
12882 }
12883 }
12884
12885 eh_frame = elf_section_eh_frame_entry (sec);
12886 if (ret && eh_frame && !eh_frame->gc_mark)
12887 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12888 ret = FALSE;
12889
12890 return ret;
12891 }
12892
12893 /* Scan and mark sections in a special or debug section group. */
12894
12895 static void
12896 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12897 {
12898 /* Point to first section of section group. */
12899 asection *ssec;
12900 /* Used to iterate the section group. */
12901 asection *msec;
12902
12903 bfd_boolean is_special_grp = TRUE;
12904 bfd_boolean is_debug_grp = TRUE;
12905
12906 /* First scan to see if group contains any section other than debug
12907 and special section. */
12908 ssec = msec = elf_next_in_group (grp);
12909 do
12910 {
12911 if ((msec->flags & SEC_DEBUGGING) == 0)
12912 is_debug_grp = FALSE;
12913
12914 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12915 is_special_grp = FALSE;
12916
12917 msec = elf_next_in_group (msec);
12918 }
12919 while (msec != ssec);
12920
12921 /* If this is a pure debug section group or pure special section group,
12922 keep all sections in this group. */
12923 if (is_debug_grp || is_special_grp)
12924 {
12925 do
12926 {
12927 msec->gc_mark = 1;
12928 msec = elf_next_in_group (msec);
12929 }
12930 while (msec != ssec);
12931 }
12932 }
12933
12934 /* Keep debug and special sections. */
12935
12936 bfd_boolean
12937 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12938 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12939 {
12940 bfd *ibfd;
12941
12942 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12943 {
12944 asection *isec;
12945 bfd_boolean some_kept;
12946 bfd_boolean debug_frag_seen;
12947 bfd_boolean has_kept_debug_info;
12948
12949 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12950 continue;
12951
12952 /* Ensure all linker created sections are kept,
12953 see if any other section is already marked,
12954 and note if we have any fragmented debug sections. */
12955 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
12956 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12957 {
12958 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12959 isec->gc_mark = 1;
12960 else if (isec->gc_mark
12961 && (isec->flags & SEC_ALLOC) != 0
12962 && elf_section_type (isec) != SHT_NOTE)
12963 some_kept = TRUE;
12964
12965 if (!debug_frag_seen
12966 && (isec->flags & SEC_DEBUGGING)
12967 && CONST_STRNEQ (isec->name, ".debug_line."))
12968 debug_frag_seen = TRUE;
12969 }
12970
12971 /* If no non-note alloc section in this file will be kept, then
12972 we can toss out the debug and special sections. */
12973 if (!some_kept)
12974 continue;
12975
12976 /* Keep debug and special sections like .comment when they are
12977 not part of a group. Also keep section groups that contain
12978 just debug sections or special sections. */
12979 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12980 {
12981 if ((isec->flags & SEC_GROUP) != 0)
12982 _bfd_elf_gc_mark_debug_special_section_group (isec);
12983 else if (((isec->flags & SEC_DEBUGGING) != 0
12984 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12985 && elf_next_in_group (isec) == NULL)
12986 isec->gc_mark = 1;
12987 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
12988 has_kept_debug_info = TRUE;
12989 }
12990
12991 /* Look for CODE sections which are going to be discarded,
12992 and find and discard any fragmented debug sections which
12993 are associated with that code section. */
12994 if (debug_frag_seen)
12995 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12996 if ((isec->flags & SEC_CODE) != 0
12997 && isec->gc_mark == 0)
12998 {
12999 unsigned int ilen;
13000 asection *dsec;
13001
13002 ilen = strlen (isec->name);
13003
13004 /* Association is determined by the name of the debug
13005 section containing the name of the code section as
13006 a suffix. For example .debug_line.text.foo is a
13007 debug section associated with .text.foo. */
13008 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13009 {
13010 unsigned int dlen;
13011
13012 if (dsec->gc_mark == 0
13013 || (dsec->flags & SEC_DEBUGGING) == 0)
13014 continue;
13015
13016 dlen = strlen (dsec->name);
13017
13018 if (dlen > ilen
13019 && strncmp (dsec->name + (dlen - ilen),
13020 isec->name, ilen) == 0)
13021 dsec->gc_mark = 0;
13022 }
13023 }
13024
13025 /* Mark debug sections referenced by kept debug sections. */
13026 if (has_kept_debug_info)
13027 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13028 if (isec->gc_mark
13029 && (isec->flags & SEC_DEBUGGING) != 0)
13030 if (!_bfd_elf_gc_mark (info, isec,
13031 elf_gc_mark_debug_section))
13032 return FALSE;
13033 }
13034 return TRUE;
13035 }
13036
13037 /* The sweep phase of garbage collection. Remove all garbage sections. */
13038
13039 typedef bfd_boolean (*gc_sweep_hook_fn)
13040 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
13041
13042 static bfd_boolean
13043 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13044 {
13045 bfd *sub;
13046 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13047 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13048
13049 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13050 {
13051 asection *o;
13052
13053 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13054 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13055 continue;
13056
13057 for (o = sub->sections; o != NULL; o = o->next)
13058 {
13059 /* When any section in a section group is kept, we keep all
13060 sections in the section group. If the first member of
13061 the section group is excluded, we will also exclude the
13062 group section. */
13063 if (o->flags & SEC_GROUP)
13064 {
13065 asection *first = elf_next_in_group (o);
13066 o->gc_mark = first->gc_mark;
13067 }
13068
13069 if (o->gc_mark)
13070 continue;
13071
13072 /* Skip sweeping sections already excluded. */
13073 if (o->flags & SEC_EXCLUDE)
13074 continue;
13075
13076 /* Since this is early in the link process, it is simple
13077 to remove a section from the output. */
13078 o->flags |= SEC_EXCLUDE;
13079
13080 if (info->print_gc_sections && o->size != 0)
13081 /* xgettext:c-format */
13082 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13083 o, sub);
13084
13085 /* But we also have to update some of the relocation
13086 info we collected before. */
13087 if (gc_sweep_hook
13088 && (o->flags & SEC_RELOC) != 0
13089 && o->reloc_count != 0
13090 && !((info->strip == strip_all || info->strip == strip_debugger)
13091 && (o->flags & SEC_DEBUGGING) != 0)
13092 && !bfd_is_abs_section (o->output_section))
13093 {
13094 Elf_Internal_Rela *internal_relocs;
13095 bfd_boolean r;
13096
13097 internal_relocs
13098 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13099 info->keep_memory);
13100 if (internal_relocs == NULL)
13101 return FALSE;
13102
13103 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13104
13105 if (elf_section_data (o)->relocs != internal_relocs)
13106 free (internal_relocs);
13107
13108 if (!r)
13109 return FALSE;
13110 }
13111 }
13112 }
13113
13114 return TRUE;
13115 }
13116
13117 /* Propagate collected vtable information. This is called through
13118 elf_link_hash_traverse. */
13119
13120 static bfd_boolean
13121 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13122 {
13123 /* Those that are not vtables. */
13124 if (h->vtable == NULL || h->vtable->parent == NULL)
13125 return TRUE;
13126
13127 /* Those vtables that do not have parents, we cannot merge. */
13128 if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13129 return TRUE;
13130
13131 /* If we've already been done, exit. */
13132 if (h->vtable->used && h->vtable->used[-1])
13133 return TRUE;
13134
13135 /* Make sure the parent's table is up to date. */
13136 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13137
13138 if (h->vtable->used == NULL)
13139 {
13140 /* None of this table's entries were referenced. Re-use the
13141 parent's table. */
13142 h->vtable->used = h->vtable->parent->vtable->used;
13143 h->vtable->size = h->vtable->parent->vtable->size;
13144 }
13145 else
13146 {
13147 size_t n;
13148 bfd_boolean *cu, *pu;
13149
13150 /* Or the parent's entries into ours. */
13151 cu = h->vtable->used;
13152 cu[-1] = TRUE;
13153 pu = h->vtable->parent->vtable->used;
13154 if (pu != NULL)
13155 {
13156 const struct elf_backend_data *bed;
13157 unsigned int log_file_align;
13158
13159 bed = get_elf_backend_data (h->root.u.def.section->owner);
13160 log_file_align = bed->s->log_file_align;
13161 n = h->vtable->parent->vtable->size >> log_file_align;
13162 while (n--)
13163 {
13164 if (*pu)
13165 *cu = TRUE;
13166 pu++;
13167 cu++;
13168 }
13169 }
13170 }
13171
13172 return TRUE;
13173 }
13174
13175 static bfd_boolean
13176 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13177 {
13178 asection *sec;
13179 bfd_vma hstart, hend;
13180 Elf_Internal_Rela *relstart, *relend, *rel;
13181 const struct elf_backend_data *bed;
13182 unsigned int log_file_align;
13183
13184 /* Take care of both those symbols that do not describe vtables as
13185 well as those that are not loaded. */
13186 if (h->vtable == NULL || h->vtable->parent == NULL)
13187 return TRUE;
13188
13189 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13190 || h->root.type == bfd_link_hash_defweak);
13191
13192 sec = h->root.u.def.section;
13193 hstart = h->root.u.def.value;
13194 hend = hstart + h->size;
13195
13196 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13197 if (!relstart)
13198 return *(bfd_boolean *) okp = FALSE;
13199 bed = get_elf_backend_data (sec->owner);
13200 log_file_align = bed->s->log_file_align;
13201
13202 relend = relstart + sec->reloc_count;
13203
13204 for (rel = relstart; rel < relend; ++rel)
13205 if (rel->r_offset >= hstart && rel->r_offset < hend)
13206 {
13207 /* If the entry is in use, do nothing. */
13208 if (h->vtable->used
13209 && (rel->r_offset - hstart) < h->vtable->size)
13210 {
13211 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13212 if (h->vtable->used[entry])
13213 continue;
13214 }
13215 /* Otherwise, kill it. */
13216 rel->r_offset = rel->r_info = rel->r_addend = 0;
13217 }
13218
13219 return TRUE;
13220 }
13221
13222 /* Mark sections containing dynamically referenced symbols. When
13223 building shared libraries, we must assume that any visible symbol is
13224 referenced. */
13225
13226 bfd_boolean
13227 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13228 {
13229 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13230 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13231
13232 if ((h->root.type == bfd_link_hash_defined
13233 || h->root.type == bfd_link_hash_defweak)
13234 && (h->ref_dynamic
13235 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13236 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13237 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13238 && (!bfd_link_executable (info)
13239 || info->gc_keep_exported
13240 || info->export_dynamic
13241 || (h->dynamic
13242 && d != NULL
13243 && (*d->match) (&d->head, NULL, h->root.root.string)))
13244 && (h->versioned >= versioned
13245 || !bfd_hide_sym_by_version (info->version_info,
13246 h->root.root.string)))))
13247 h->root.u.def.section->flags |= SEC_KEEP;
13248
13249 return TRUE;
13250 }
13251
13252 /* Keep all sections containing symbols undefined on the command-line,
13253 and the section containing the entry symbol. */
13254
13255 void
13256 _bfd_elf_gc_keep (struct bfd_link_info *info)
13257 {
13258 struct bfd_sym_chain *sym;
13259
13260 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13261 {
13262 struct elf_link_hash_entry *h;
13263
13264 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13265 FALSE, FALSE, FALSE);
13266
13267 if (h != NULL
13268 && (h->root.type == bfd_link_hash_defined
13269 || h->root.type == bfd_link_hash_defweak)
13270 && !bfd_is_abs_section (h->root.u.def.section)
13271 && !bfd_is_und_section (h->root.u.def.section))
13272 h->root.u.def.section->flags |= SEC_KEEP;
13273 }
13274 }
13275
13276 bfd_boolean
13277 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13278 struct bfd_link_info *info)
13279 {
13280 bfd *ibfd = info->input_bfds;
13281
13282 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13283 {
13284 asection *sec;
13285 struct elf_reloc_cookie cookie;
13286
13287 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13288 continue;
13289
13290 if (!init_reloc_cookie (&cookie, info, ibfd))
13291 return FALSE;
13292
13293 for (sec = ibfd->sections; sec; sec = sec->next)
13294 {
13295 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13296 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13297 {
13298 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13299 fini_reloc_cookie_rels (&cookie, sec);
13300 }
13301 }
13302 }
13303 return TRUE;
13304 }
13305
13306 /* Do mark and sweep of unused sections. */
13307
13308 bfd_boolean
13309 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13310 {
13311 bfd_boolean ok = TRUE;
13312 bfd *sub;
13313 elf_gc_mark_hook_fn gc_mark_hook;
13314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13315 struct elf_link_hash_table *htab;
13316
13317 if (!bed->can_gc_sections
13318 || !is_elf_hash_table (info->hash))
13319 {
13320 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13321 return TRUE;
13322 }
13323
13324 bed->gc_keep (info);
13325 htab = elf_hash_table (info);
13326
13327 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13328 at the .eh_frame section if we can mark the FDEs individually. */
13329 for (sub = info->input_bfds;
13330 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13331 sub = sub->link.next)
13332 {
13333 asection *sec;
13334 struct elf_reloc_cookie cookie;
13335
13336 sec = bfd_get_section_by_name (sub, ".eh_frame");
13337 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13338 {
13339 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13340 if (elf_section_data (sec)->sec_info
13341 && (sec->flags & SEC_LINKER_CREATED) == 0)
13342 elf_eh_frame_section (sub) = sec;
13343 fini_reloc_cookie_for_section (&cookie, sec);
13344 sec = bfd_get_next_section_by_name (NULL, sec);
13345 }
13346 }
13347
13348 /* Apply transitive closure to the vtable entry usage info. */
13349 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13350 if (!ok)
13351 return FALSE;
13352
13353 /* Kill the vtable relocations that were not used. */
13354 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13355 if (!ok)
13356 return FALSE;
13357
13358 /* Mark dynamically referenced symbols. */
13359 if (htab->dynamic_sections_created || info->gc_keep_exported)
13360 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13361
13362 /* Grovel through relocs to find out who stays ... */
13363 gc_mark_hook = bed->gc_mark_hook;
13364 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13365 {
13366 asection *o;
13367
13368 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13369 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13370 continue;
13371
13372 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13373 Also treat note sections as a root, if the section is not part
13374 of a group. */
13375 for (o = sub->sections; o != NULL; o = o->next)
13376 if (!o->gc_mark
13377 && (o->flags & SEC_EXCLUDE) == 0
13378 && ((o->flags & SEC_KEEP) != 0
13379 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13380 && elf_next_in_group (o) == NULL )))
13381 {
13382 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13383 return FALSE;
13384 }
13385 }
13386
13387 /* Allow the backend to mark additional target specific sections. */
13388 bed->gc_mark_extra_sections (info, gc_mark_hook);
13389
13390 /* ... and mark SEC_EXCLUDE for those that go. */
13391 return elf_gc_sweep (abfd, info);
13392 }
13393 \f
13394 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13395
13396 bfd_boolean
13397 bfd_elf_gc_record_vtinherit (bfd *abfd,
13398 asection *sec,
13399 struct elf_link_hash_entry *h,
13400 bfd_vma offset)
13401 {
13402 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13403 struct elf_link_hash_entry **search, *child;
13404 size_t extsymcount;
13405 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13406
13407 /* The sh_info field of the symtab header tells us where the
13408 external symbols start. We don't care about the local symbols at
13409 this point. */
13410 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13411 if (!elf_bad_symtab (abfd))
13412 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13413
13414 sym_hashes = elf_sym_hashes (abfd);
13415 sym_hashes_end = sym_hashes + extsymcount;
13416
13417 /* Hunt down the child symbol, which is in this section at the same
13418 offset as the relocation. */
13419 for (search = sym_hashes; search != sym_hashes_end; ++search)
13420 {
13421 if ((child = *search) != NULL
13422 && (child->root.type == bfd_link_hash_defined
13423 || child->root.type == bfd_link_hash_defweak)
13424 && child->root.u.def.section == sec
13425 && child->root.u.def.value == offset)
13426 goto win;
13427 }
13428
13429 /* xgettext:c-format */
13430 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13431 abfd, sec, (unsigned long) offset);
13432 bfd_set_error (bfd_error_invalid_operation);
13433 return FALSE;
13434
13435 win:
13436 if (!child->vtable)
13437 {
13438 child->vtable = ((struct elf_link_virtual_table_entry *)
13439 bfd_zalloc (abfd, sizeof (*child->vtable)));
13440 if (!child->vtable)
13441 return FALSE;
13442 }
13443 if (!h)
13444 {
13445 /* This *should* only be the absolute section. It could potentially
13446 be that someone has defined a non-global vtable though, which
13447 would be bad. It isn't worth paging in the local symbols to be
13448 sure though; that case should simply be handled by the assembler. */
13449
13450 child->vtable->parent = (struct elf_link_hash_entry *) -1;
13451 }
13452 else
13453 child->vtable->parent = h;
13454
13455 return TRUE;
13456 }
13457
13458 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13459
13460 bfd_boolean
13461 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13462 asection *sec ATTRIBUTE_UNUSED,
13463 struct elf_link_hash_entry *h,
13464 bfd_vma addend)
13465 {
13466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13467 unsigned int log_file_align = bed->s->log_file_align;
13468
13469 if (!h->vtable)
13470 {
13471 h->vtable = ((struct elf_link_virtual_table_entry *)
13472 bfd_zalloc (abfd, sizeof (*h->vtable)));
13473 if (!h->vtable)
13474 return FALSE;
13475 }
13476
13477 if (addend >= h->vtable->size)
13478 {
13479 size_t size, bytes, file_align;
13480 bfd_boolean *ptr = h->vtable->used;
13481
13482 /* While the symbol is undefined, we have to be prepared to handle
13483 a zero size. */
13484 file_align = 1 << log_file_align;
13485 if (h->root.type == bfd_link_hash_undefined)
13486 size = addend + file_align;
13487 else
13488 {
13489 size = h->size;
13490 if (addend >= size)
13491 {
13492 /* Oops! We've got a reference past the defined end of
13493 the table. This is probably a bug -- shall we warn? */
13494 size = addend + file_align;
13495 }
13496 }
13497 size = (size + file_align - 1) & -file_align;
13498
13499 /* Allocate one extra entry for use as a "done" flag for the
13500 consolidation pass. */
13501 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13502
13503 if (ptr)
13504 {
13505 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13506
13507 if (ptr != NULL)
13508 {
13509 size_t oldbytes;
13510
13511 oldbytes = (((h->vtable->size >> log_file_align) + 1)
13512 * sizeof (bfd_boolean));
13513 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13514 }
13515 }
13516 else
13517 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13518
13519 if (ptr == NULL)
13520 return FALSE;
13521
13522 /* And arrange for that done flag to be at index -1. */
13523 h->vtable->used = ptr + 1;
13524 h->vtable->size = size;
13525 }
13526
13527 h->vtable->used[addend >> log_file_align] = TRUE;
13528
13529 return TRUE;
13530 }
13531
13532 /* Map an ELF section header flag to its corresponding string. */
13533 typedef struct
13534 {
13535 char *flag_name;
13536 flagword flag_value;
13537 } elf_flags_to_name_table;
13538
13539 static elf_flags_to_name_table elf_flags_to_names [] =
13540 {
13541 { "SHF_WRITE", SHF_WRITE },
13542 { "SHF_ALLOC", SHF_ALLOC },
13543 { "SHF_EXECINSTR", SHF_EXECINSTR },
13544 { "SHF_MERGE", SHF_MERGE },
13545 { "SHF_STRINGS", SHF_STRINGS },
13546 { "SHF_INFO_LINK", SHF_INFO_LINK},
13547 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13548 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13549 { "SHF_GROUP", SHF_GROUP },
13550 { "SHF_TLS", SHF_TLS },
13551 { "SHF_MASKOS", SHF_MASKOS },
13552 { "SHF_EXCLUDE", SHF_EXCLUDE },
13553 };
13554
13555 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13556 bfd_boolean
13557 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13558 struct flag_info *flaginfo,
13559 asection *section)
13560 {
13561 const bfd_vma sh_flags = elf_section_flags (section);
13562
13563 if (!flaginfo->flags_initialized)
13564 {
13565 bfd *obfd = info->output_bfd;
13566 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13567 struct flag_info_list *tf = flaginfo->flag_list;
13568 int with_hex = 0;
13569 int without_hex = 0;
13570
13571 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13572 {
13573 unsigned i;
13574 flagword (*lookup) (char *);
13575
13576 lookup = bed->elf_backend_lookup_section_flags_hook;
13577 if (lookup != NULL)
13578 {
13579 flagword hexval = (*lookup) ((char *) tf->name);
13580
13581 if (hexval != 0)
13582 {
13583 if (tf->with == with_flags)
13584 with_hex |= hexval;
13585 else if (tf->with == without_flags)
13586 without_hex |= hexval;
13587 tf->valid = TRUE;
13588 continue;
13589 }
13590 }
13591 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13592 {
13593 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13594 {
13595 if (tf->with == with_flags)
13596 with_hex |= elf_flags_to_names[i].flag_value;
13597 else if (tf->with == without_flags)
13598 without_hex |= elf_flags_to_names[i].flag_value;
13599 tf->valid = TRUE;
13600 break;
13601 }
13602 }
13603 if (!tf->valid)
13604 {
13605 info->callbacks->einfo
13606 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13607 return FALSE;
13608 }
13609 }
13610 flaginfo->flags_initialized = TRUE;
13611 flaginfo->only_with_flags |= with_hex;
13612 flaginfo->not_with_flags |= without_hex;
13613 }
13614
13615 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13616 return FALSE;
13617
13618 if ((flaginfo->not_with_flags & sh_flags) != 0)
13619 return FALSE;
13620
13621 return TRUE;
13622 }
13623
13624 struct alloc_got_off_arg {
13625 bfd_vma gotoff;
13626 struct bfd_link_info *info;
13627 };
13628
13629 /* We need a special top-level link routine to convert got reference counts
13630 to real got offsets. */
13631
13632 static bfd_boolean
13633 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13634 {
13635 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13636 bfd *obfd = gofarg->info->output_bfd;
13637 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13638
13639 if (h->got.refcount > 0)
13640 {
13641 h->got.offset = gofarg->gotoff;
13642 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13643 }
13644 else
13645 h->got.offset = (bfd_vma) -1;
13646
13647 return TRUE;
13648 }
13649
13650 /* And an accompanying bit to work out final got entry offsets once
13651 we're done. Should be called from final_link. */
13652
13653 bfd_boolean
13654 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13655 struct bfd_link_info *info)
13656 {
13657 bfd *i;
13658 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13659 bfd_vma gotoff;
13660 struct alloc_got_off_arg gofarg;
13661
13662 BFD_ASSERT (abfd == info->output_bfd);
13663
13664 if (! is_elf_hash_table (info->hash))
13665 return FALSE;
13666
13667 /* The GOT offset is relative to the .got section, but the GOT header is
13668 put into the .got.plt section, if the backend uses it. */
13669 if (bed->want_got_plt)
13670 gotoff = 0;
13671 else
13672 gotoff = bed->got_header_size;
13673
13674 /* Do the local .got entries first. */
13675 for (i = info->input_bfds; i; i = i->link.next)
13676 {
13677 bfd_signed_vma *local_got;
13678 size_t j, locsymcount;
13679 Elf_Internal_Shdr *symtab_hdr;
13680
13681 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13682 continue;
13683
13684 local_got = elf_local_got_refcounts (i);
13685 if (!local_got)
13686 continue;
13687
13688 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13689 if (elf_bad_symtab (i))
13690 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13691 else
13692 locsymcount = symtab_hdr->sh_info;
13693
13694 for (j = 0; j < locsymcount; ++j)
13695 {
13696 if (local_got[j] > 0)
13697 {
13698 local_got[j] = gotoff;
13699 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13700 }
13701 else
13702 local_got[j] = (bfd_vma) -1;
13703 }
13704 }
13705
13706 /* Then the global .got entries. .plt refcounts are handled by
13707 adjust_dynamic_symbol */
13708 gofarg.gotoff = gotoff;
13709 gofarg.info = info;
13710 elf_link_hash_traverse (elf_hash_table (info),
13711 elf_gc_allocate_got_offsets,
13712 &gofarg);
13713 return TRUE;
13714 }
13715
13716 /* Many folk need no more in the way of final link than this, once
13717 got entry reference counting is enabled. */
13718
13719 bfd_boolean
13720 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13721 {
13722 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13723 return FALSE;
13724
13725 /* Invoke the regular ELF backend linker to do all the work. */
13726 return bfd_elf_final_link (abfd, info);
13727 }
13728
13729 bfd_boolean
13730 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13731 {
13732 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13733
13734 if (rcookie->bad_symtab)
13735 rcookie->rel = rcookie->rels;
13736
13737 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13738 {
13739 unsigned long r_symndx;
13740
13741 if (! rcookie->bad_symtab)
13742 if (rcookie->rel->r_offset > offset)
13743 return FALSE;
13744 if (rcookie->rel->r_offset != offset)
13745 continue;
13746
13747 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13748 if (r_symndx == STN_UNDEF)
13749 return TRUE;
13750
13751 if (r_symndx >= rcookie->locsymcount
13752 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13753 {
13754 struct elf_link_hash_entry *h;
13755
13756 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13757
13758 while (h->root.type == bfd_link_hash_indirect
13759 || h->root.type == bfd_link_hash_warning)
13760 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13761
13762 if ((h->root.type == bfd_link_hash_defined
13763 || h->root.type == bfd_link_hash_defweak)
13764 && (h->root.u.def.section->owner != rcookie->abfd
13765 || h->root.u.def.section->kept_section != NULL
13766 || discarded_section (h->root.u.def.section)))
13767 return TRUE;
13768 }
13769 else
13770 {
13771 /* It's not a relocation against a global symbol,
13772 but it could be a relocation against a local
13773 symbol for a discarded section. */
13774 asection *isec;
13775 Elf_Internal_Sym *isym;
13776
13777 /* Need to: get the symbol; get the section. */
13778 isym = &rcookie->locsyms[r_symndx];
13779 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13780 if (isec != NULL
13781 && (isec->kept_section != NULL
13782 || discarded_section (isec)))
13783 return TRUE;
13784 }
13785 return FALSE;
13786 }
13787 return FALSE;
13788 }
13789
13790 /* Discard unneeded references to discarded sections.
13791 Returns -1 on error, 1 if any section's size was changed, 0 if
13792 nothing changed. This function assumes that the relocations are in
13793 sorted order, which is true for all known assemblers. */
13794
13795 int
13796 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13797 {
13798 struct elf_reloc_cookie cookie;
13799 asection *o;
13800 bfd *abfd;
13801 int changed = 0;
13802
13803 if (info->traditional_format
13804 || !is_elf_hash_table (info->hash))
13805 return 0;
13806
13807 o = bfd_get_section_by_name (output_bfd, ".stab");
13808 if (o != NULL)
13809 {
13810 asection *i;
13811
13812 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13813 {
13814 if (i->size == 0
13815 || i->reloc_count == 0
13816 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13817 continue;
13818
13819 abfd = i->owner;
13820 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13821 continue;
13822
13823 if (!init_reloc_cookie_for_section (&cookie, info, i))
13824 return -1;
13825
13826 if (_bfd_discard_section_stabs (abfd, i,
13827 elf_section_data (i)->sec_info,
13828 bfd_elf_reloc_symbol_deleted_p,
13829 &cookie))
13830 changed = 1;
13831
13832 fini_reloc_cookie_for_section (&cookie, i);
13833 }
13834 }
13835
13836 o = NULL;
13837 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13838 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13839 if (o != NULL)
13840 {
13841 asection *i;
13842 int eh_changed = 0;
13843
13844 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13845 {
13846 if (i->size == 0)
13847 continue;
13848
13849 abfd = i->owner;
13850 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13851 continue;
13852
13853 if (!init_reloc_cookie_for_section (&cookie, info, i))
13854 return -1;
13855
13856 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13857 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13858 bfd_elf_reloc_symbol_deleted_p,
13859 &cookie))
13860 {
13861 eh_changed = 1;
13862 if (i->size != i->rawsize)
13863 changed = 1;
13864 }
13865
13866 fini_reloc_cookie_for_section (&cookie, i);
13867 }
13868 if (eh_changed)
13869 elf_link_hash_traverse (elf_hash_table (info),
13870 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13871 }
13872
13873 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13874 {
13875 const struct elf_backend_data *bed;
13876
13877 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13878 continue;
13879
13880 bed = get_elf_backend_data (abfd);
13881
13882 if (bed->elf_backend_discard_info != NULL)
13883 {
13884 if (!init_reloc_cookie (&cookie, info, abfd))
13885 return -1;
13886
13887 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13888 changed = 1;
13889
13890 fini_reloc_cookie (&cookie, abfd);
13891 }
13892 }
13893
13894 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13895 _bfd_elf_end_eh_frame_parsing (info);
13896
13897 if (info->eh_frame_hdr_type
13898 && !bfd_link_relocatable (info)
13899 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13900 changed = 1;
13901
13902 return changed;
13903 }
13904
13905 bfd_boolean
13906 _bfd_elf_section_already_linked (bfd *abfd,
13907 asection *sec,
13908 struct bfd_link_info *info)
13909 {
13910 flagword flags;
13911 const char *name, *key;
13912 struct bfd_section_already_linked *l;
13913 struct bfd_section_already_linked_hash_entry *already_linked_list;
13914
13915 if (sec->output_section == bfd_abs_section_ptr)
13916 return FALSE;
13917
13918 flags = sec->flags;
13919
13920 /* Return if it isn't a linkonce section. A comdat group section
13921 also has SEC_LINK_ONCE set. */
13922 if ((flags & SEC_LINK_ONCE) == 0)
13923 return FALSE;
13924
13925 /* Don't put group member sections on our list of already linked
13926 sections. They are handled as a group via their group section. */
13927 if (elf_sec_group (sec) != NULL)
13928 return FALSE;
13929
13930 /* For a SHT_GROUP section, use the group signature as the key. */
13931 name = sec->name;
13932 if ((flags & SEC_GROUP) != 0
13933 && elf_next_in_group (sec) != NULL
13934 && elf_group_name (elf_next_in_group (sec)) != NULL)
13935 key = elf_group_name (elf_next_in_group (sec));
13936 else
13937 {
13938 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13939 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13940 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13941 key++;
13942 else
13943 /* Must be a user linkonce section that doesn't follow gcc's
13944 naming convention. In this case we won't be matching
13945 single member groups. */
13946 key = name;
13947 }
13948
13949 already_linked_list = bfd_section_already_linked_table_lookup (key);
13950
13951 for (l = already_linked_list->entry; l != NULL; l = l->next)
13952 {
13953 /* We may have 2 different types of sections on the list: group
13954 sections with a signature of <key> (<key> is some string),
13955 and linkonce sections named .gnu.linkonce.<type>.<key>.
13956 Match like sections. LTO plugin sections are an exception.
13957 They are always named .gnu.linkonce.t.<key> and match either
13958 type of section. */
13959 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13960 && ((flags & SEC_GROUP) != 0
13961 || strcmp (name, l->sec->name) == 0))
13962 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13963 {
13964 /* The section has already been linked. See if we should
13965 issue a warning. */
13966 if (!_bfd_handle_already_linked (sec, l, info))
13967 return FALSE;
13968
13969 if (flags & SEC_GROUP)
13970 {
13971 asection *first = elf_next_in_group (sec);
13972 asection *s = first;
13973
13974 while (s != NULL)
13975 {
13976 s->output_section = bfd_abs_section_ptr;
13977 /* Record which group discards it. */
13978 s->kept_section = l->sec;
13979 s = elf_next_in_group (s);
13980 /* These lists are circular. */
13981 if (s == first)
13982 break;
13983 }
13984 }
13985
13986 return TRUE;
13987 }
13988 }
13989
13990 /* A single member comdat group section may be discarded by a
13991 linkonce section and vice versa. */
13992 if ((flags & SEC_GROUP) != 0)
13993 {
13994 asection *first = elf_next_in_group (sec);
13995
13996 if (first != NULL && elf_next_in_group (first) == first)
13997 /* Check this single member group against linkonce sections. */
13998 for (l = already_linked_list->entry; l != NULL; l = l->next)
13999 if ((l->sec->flags & SEC_GROUP) == 0
14000 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14001 {
14002 first->output_section = bfd_abs_section_ptr;
14003 first->kept_section = l->sec;
14004 sec->output_section = bfd_abs_section_ptr;
14005 break;
14006 }
14007 }
14008 else
14009 /* Check this linkonce section against single member groups. */
14010 for (l = already_linked_list->entry; l != NULL; l = l->next)
14011 if (l->sec->flags & SEC_GROUP)
14012 {
14013 asection *first = elf_next_in_group (l->sec);
14014
14015 if (first != NULL
14016 && elf_next_in_group (first) == first
14017 && bfd_elf_match_symbols_in_sections (first, sec, info))
14018 {
14019 sec->output_section = bfd_abs_section_ptr;
14020 sec->kept_section = first;
14021 break;
14022 }
14023 }
14024
14025 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14026 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14027 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14028 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14029 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14030 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14031 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14032 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14033 The reverse order cannot happen as there is never a bfd with only the
14034 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14035 matter as here were are looking only for cross-bfd sections. */
14036
14037 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14038 for (l = already_linked_list->entry; l != NULL; l = l->next)
14039 if ((l->sec->flags & SEC_GROUP) == 0
14040 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14041 {
14042 if (abfd != l->sec->owner)
14043 sec->output_section = bfd_abs_section_ptr;
14044 break;
14045 }
14046
14047 /* This is the first section with this name. Record it. */
14048 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14049 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14050 return sec->output_section == bfd_abs_section_ptr;
14051 }
14052
14053 bfd_boolean
14054 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14055 {
14056 return sym->st_shndx == SHN_COMMON;
14057 }
14058
14059 unsigned int
14060 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14061 {
14062 return SHN_COMMON;
14063 }
14064
14065 asection *
14066 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14067 {
14068 return bfd_com_section_ptr;
14069 }
14070
14071 bfd_vma
14072 _bfd_elf_default_got_elt_size (bfd *abfd,
14073 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14074 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14075 bfd *ibfd ATTRIBUTE_UNUSED,
14076 unsigned long symndx ATTRIBUTE_UNUSED)
14077 {
14078 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14079 return bed->s->arch_size / 8;
14080 }
14081
14082 /* Routines to support the creation of dynamic relocs. */
14083
14084 /* Returns the name of the dynamic reloc section associated with SEC. */
14085
14086 static const char *
14087 get_dynamic_reloc_section_name (bfd * abfd,
14088 asection * sec,
14089 bfd_boolean is_rela)
14090 {
14091 char *name;
14092 const char *old_name = bfd_get_section_name (NULL, sec);
14093 const char *prefix = is_rela ? ".rela" : ".rel";
14094
14095 if (old_name == NULL)
14096 return NULL;
14097
14098 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14099 sprintf (name, "%s%s", prefix, old_name);
14100
14101 return name;
14102 }
14103
14104 /* Returns the dynamic reloc section associated with SEC.
14105 If necessary compute the name of the dynamic reloc section based
14106 on SEC's name (looked up in ABFD's string table) and the setting
14107 of IS_RELA. */
14108
14109 asection *
14110 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14111 asection * sec,
14112 bfd_boolean is_rela)
14113 {
14114 asection * reloc_sec = elf_section_data (sec)->sreloc;
14115
14116 if (reloc_sec == NULL)
14117 {
14118 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14119
14120 if (name != NULL)
14121 {
14122 reloc_sec = bfd_get_linker_section (abfd, name);
14123
14124 if (reloc_sec != NULL)
14125 elf_section_data (sec)->sreloc = reloc_sec;
14126 }
14127 }
14128
14129 return reloc_sec;
14130 }
14131
14132 /* Returns the dynamic reloc section associated with SEC. If the
14133 section does not exist it is created and attached to the DYNOBJ
14134 bfd and stored in the SRELOC field of SEC's elf_section_data
14135 structure.
14136
14137 ALIGNMENT is the alignment for the newly created section and
14138 IS_RELA defines whether the name should be .rela.<SEC's name>
14139 or .rel.<SEC's name>. The section name is looked up in the
14140 string table associated with ABFD. */
14141
14142 asection *
14143 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14144 bfd *dynobj,
14145 unsigned int alignment,
14146 bfd *abfd,
14147 bfd_boolean is_rela)
14148 {
14149 asection * reloc_sec = elf_section_data (sec)->sreloc;
14150
14151 if (reloc_sec == NULL)
14152 {
14153 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14154
14155 if (name == NULL)
14156 return NULL;
14157
14158 reloc_sec = bfd_get_linker_section (dynobj, name);
14159
14160 if (reloc_sec == NULL)
14161 {
14162 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14163 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14164 if ((sec->flags & SEC_ALLOC) != 0)
14165 flags |= SEC_ALLOC | SEC_LOAD;
14166
14167 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14168 if (reloc_sec != NULL)
14169 {
14170 /* _bfd_elf_get_sec_type_attr chooses a section type by
14171 name. Override as it may be wrong, eg. for a user
14172 section named "auto" we'll get ".relauto" which is
14173 seen to be a .rela section. */
14174 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14175 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14176 reloc_sec = NULL;
14177 }
14178 }
14179
14180 elf_section_data (sec)->sreloc = reloc_sec;
14181 }
14182
14183 return reloc_sec;
14184 }
14185
14186 /* Copy the ELF symbol type and other attributes for a linker script
14187 assignment from HSRC to HDEST. Generally this should be treated as
14188 if we found a strong non-dynamic definition for HDEST (except that
14189 ld ignores multiple definition errors). */
14190 void
14191 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14192 struct bfd_link_hash_entry *hdest,
14193 struct bfd_link_hash_entry *hsrc)
14194 {
14195 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14196 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14197 Elf_Internal_Sym isym;
14198
14199 ehdest->type = ehsrc->type;
14200 ehdest->target_internal = ehsrc->target_internal;
14201
14202 isym.st_other = ehsrc->other;
14203 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14204 }
14205
14206 /* Append a RELA relocation REL to section S in BFD. */
14207
14208 void
14209 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14210 {
14211 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14212 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14213 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14214 bed->s->swap_reloca_out (abfd, rel, loc);
14215 }
14216
14217 /* Append a REL relocation REL to section S in BFD. */
14218
14219 void
14220 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14221 {
14222 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14223 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14224 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14225 bed->s->swap_reloc_out (abfd, rel, loc);
14226 }
This page took 0.465776 seconds and 5 git commands to generate.