bfd_error_on_input is for archives
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35
36 /* This struct is used to pass information to routines called via
37 elf_link_hash_traverse which must return failure. */
38
39 struct elf_info_failed
40 {
41 struct bfd_link_info *info;
42 bfd_boolean failed;
43 };
44
45 /* This structure is used to pass information to
46 _bfd_elf_link_find_version_dependencies. */
47
48 struct elf_find_verdep_info
49 {
50 /* General link information. */
51 struct bfd_link_info *info;
52 /* The number of dependencies. */
53 unsigned int vers;
54 /* Whether we had a failure. */
55 bfd_boolean failed;
56 };
57
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59 (struct elf_link_hash_entry *, struct elf_info_failed *);
60
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 unsigned long r_symndx,
64 bfd_boolean discard)
65 {
66 if (r_symndx >= cookie->locsymcount
67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68 {
69 struct elf_link_hash_entry *h;
70
71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72
73 while (h->root.type == bfd_link_hash_indirect
74 || h->root.type == bfd_link_hash_warning)
75 h = (struct elf_link_hash_entry *) h->root.u.i.link;
76
77 if ((h->root.type == bfd_link_hash_defined
78 || h->root.type == bfd_link_hash_defweak)
79 && discarded_section (h->root.u.def.section))
80 return h->root.u.def.section;
81 else
82 return NULL;
83 }
84 else
85 {
86 /* It's not a relocation against a global symbol,
87 but it could be a relocation against a local
88 symbol for a discarded section. */
89 asection *isec;
90 Elf_Internal_Sym *isym;
91
92 /* Need to: get the symbol; get the section. */
93 isym = &cookie->locsyms[r_symndx];
94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95 if (isec != NULL
96 && discard ? discarded_section (isec) : 1)
97 return isec;
98 }
99 return NULL;
100 }
101
102 /* Define a symbol in a dynamic linkage section. */
103
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 struct bfd_link_info *info,
107 asection *sec,
108 const char *name)
109 {
110 struct elf_link_hash_entry *h;
111 struct bfd_link_hash_entry *bh;
112 const struct elf_backend_data *bed;
113
114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115 if (h != NULL)
116 {
117 /* Zap symbol defined in an as-needed lib that wasn't linked.
118 This is a symptom of a larger problem: Absolute symbols
119 defined in shared libraries can't be overridden, because we
120 lose the link to the bfd which is via the symbol section. */
121 h->root.type = bfd_link_hash_new;
122 bh = &h->root;
123 }
124 else
125 bh = NULL;
126
127 bed = get_elf_backend_data (abfd);
128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 sec, 0, NULL, FALSE, bed->collect,
130 &bh))
131 return NULL;
132 h = (struct elf_link_hash_entry *) bh;
133 BFD_ASSERT (h != NULL);
134 h->def_regular = 1;
135 h->non_elf = 0;
136 h->root.linker_def = 1;
137 h->type = STT_OBJECT;
138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140
141 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142 return h;
143 }
144
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148 flagword flags;
149 asection *s;
150 struct elf_link_hash_entry *h;
151 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152 struct elf_link_hash_table *htab = elf_hash_table (info);
153
154 /* This function may be called more than once. */
155 if (htab->sgot != NULL)
156 return TRUE;
157
158 flags = bed->dynamic_sec_flags;
159
160 s = bfd_make_section_anyway_with_flags (abfd,
161 (bed->rela_plts_and_copies_p
162 ? ".rela.got" : ".rel.got"),
163 (bed->dynamic_sec_flags
164 | SEC_READONLY));
165 if (s == NULL
166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167 return FALSE;
168 htab->srelgot = s;
169
170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171 if (s == NULL
172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173 return FALSE;
174 htab->sgot = s;
175
176 if (bed->want_got_plt)
177 {
178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179 if (s == NULL
180 || !bfd_set_section_alignment (abfd, s,
181 bed->s->log_file_align))
182 return FALSE;
183 htab->sgotplt = s;
184 }
185
186 /* The first bit of the global offset table is the header. */
187 s->size += bed->got_header_size;
188
189 if (bed->want_got_sym)
190 {
191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 (or .got.plt) section. We don't do this in the linker script
193 because we don't want to define the symbol if we are not creating
194 a global offset table. */
195 h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 "_GLOBAL_OFFSET_TABLE_");
197 elf_hash_table (info)->hgot = h;
198 if (h == NULL)
199 return FALSE;
200 }
201
202 return TRUE;
203 }
204 \f
205 /* Create a strtab to hold the dynamic symbol names. */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209 struct elf_link_hash_table *hash_table;
210
211 hash_table = elf_hash_table (info);
212 if (hash_table->dynobj == NULL)
213 {
214 /* We may not set dynobj, an input file holding linker created
215 dynamic sections to abfd, which may be a dynamic object with
216 its own dynamic sections. We need to find a normal input file
217 to hold linker created sections if possible. */
218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 {
220 bfd *ibfd;
221 asection *s;
222 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
223 if ((ibfd->flags
224 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
225 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 h->dynamic = 1;
590 }
591
592 /* Record an assignment to a symbol made by a linker script. We need
593 this in case some dynamic object refers to this symbol. */
594
595 bfd_boolean
596 bfd_elf_record_link_assignment (bfd *output_bfd,
597 struct bfd_link_info *info,
598 const char *name,
599 bfd_boolean provide,
600 bfd_boolean hidden)
601 {
602 struct elf_link_hash_entry *h, *hv;
603 struct elf_link_hash_table *htab;
604 const struct elf_backend_data *bed;
605
606 if (!is_elf_hash_table (info->hash))
607 return TRUE;
608
609 htab = elf_hash_table (info);
610 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
611 if (h == NULL)
612 return provide;
613
614 if (h->root.type == bfd_link_hash_warning)
615 h = (struct elf_link_hash_entry *) h->root.u.i.link;
616
617 if (h->versioned == unknown)
618 {
619 /* Set versioned if symbol version is unknown. */
620 char *version = strrchr (name, ELF_VER_CHR);
621 if (version)
622 {
623 if (version > name && version[-1] != ELF_VER_CHR)
624 h->versioned = versioned_hidden;
625 else
626 h->versioned = versioned;
627 }
628 }
629
630 /* Symbols defined in a linker script but not referenced anywhere
631 else will have non_elf set. */
632 if (h->non_elf)
633 {
634 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
635 h->non_elf = 0;
636 }
637
638 switch (h->root.type)
639 {
640 case bfd_link_hash_defined:
641 case bfd_link_hash_defweak:
642 case bfd_link_hash_common:
643 break;
644 case bfd_link_hash_undefweak:
645 case bfd_link_hash_undefined:
646 /* Since we're defining the symbol, don't let it seem to have not
647 been defined. record_dynamic_symbol and size_dynamic_sections
648 may depend on this. */
649 h->root.type = bfd_link_hash_new;
650 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
651 bfd_link_repair_undef_list (&htab->root);
652 break;
653 case bfd_link_hash_new:
654 break;
655 case bfd_link_hash_indirect:
656 /* We had a versioned symbol in a dynamic library. We make the
657 the versioned symbol point to this one. */
658 bed = get_elf_backend_data (output_bfd);
659 hv = h;
660 while (hv->root.type == bfd_link_hash_indirect
661 || hv->root.type == bfd_link_hash_warning)
662 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
663 /* We don't need to update h->root.u since linker will set them
664 later. */
665 h->root.type = bfd_link_hash_undefined;
666 hv->root.type = bfd_link_hash_indirect;
667 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
668 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
669 break;
670 default:
671 BFD_FAIL ();
672 return FALSE;
673 }
674
675 /* If this symbol is being provided by the linker script, and it is
676 currently defined by a dynamic object, but not by a regular
677 object, then mark it as undefined so that the generic linker will
678 force the correct value. */
679 if (provide
680 && h->def_dynamic
681 && !h->def_regular)
682 h->root.type = bfd_link_hash_undefined;
683
684 /* If this symbol is not being provided by the linker script, and it is
685 currently defined by a dynamic object, but not by a regular object,
686 then clear out any version information because the symbol will not be
687 associated with the dynamic object any more. */
688 if (!provide
689 && h->def_dynamic
690 && !h->def_regular)
691 h->verinfo.verdef = NULL;
692
693 /* Make sure this symbol is not garbage collected. */
694 h->mark = 1;
695
696 h->def_regular = 1;
697
698 if (hidden)
699 {
700 bed = get_elf_backend_data (output_bfd);
701 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
702 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
703 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
704 }
705
706 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
707 and executables. */
708 if (!bfd_link_relocatable (info)
709 && h->dynindx != -1
710 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
711 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
712 h->forced_local = 1;
713
714 if ((h->def_dynamic
715 || h->ref_dynamic
716 || bfd_link_dll (info)
717 || elf_hash_table (info)->is_relocatable_executable)
718 && h->dynindx == -1)
719 {
720 if (! bfd_elf_link_record_dynamic_symbol (info, h))
721 return FALSE;
722
723 /* If this is a weak defined symbol, and we know a corresponding
724 real symbol from the same dynamic object, make sure the real
725 symbol is also made into a dynamic symbol. */
726 if (h->u.weakdef != NULL
727 && h->u.weakdef->dynindx == -1)
728 {
729 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
730 return FALSE;
731 }
732 }
733
734 return TRUE;
735 }
736
737 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
738 success, and 2 on a failure caused by attempting to record a symbol
739 in a discarded section, eg. a discarded link-once section symbol. */
740
741 int
742 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
743 bfd *input_bfd,
744 long input_indx)
745 {
746 bfd_size_type amt;
747 struct elf_link_local_dynamic_entry *entry;
748 struct elf_link_hash_table *eht;
749 struct elf_strtab_hash *dynstr;
750 size_t dynstr_index;
751 char *name;
752 Elf_External_Sym_Shndx eshndx;
753 char esym[sizeof (Elf64_External_Sym)];
754
755 if (! is_elf_hash_table (info->hash))
756 return 0;
757
758 /* See if the entry exists already. */
759 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
760 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
761 return 1;
762
763 amt = sizeof (*entry);
764 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
765 if (entry == NULL)
766 return 0;
767
768 /* Go find the symbol, so that we can find it's name. */
769 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
770 1, input_indx, &entry->isym, esym, &eshndx))
771 {
772 bfd_release (input_bfd, entry);
773 return 0;
774 }
775
776 if (entry->isym.st_shndx != SHN_UNDEF
777 && entry->isym.st_shndx < SHN_LORESERVE)
778 {
779 asection *s;
780
781 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
782 if (s == NULL || bfd_is_abs_section (s->output_section))
783 {
784 /* We can still bfd_release here as nothing has done another
785 bfd_alloc. We can't do this later in this function. */
786 bfd_release (input_bfd, entry);
787 return 2;
788 }
789 }
790
791 name = (bfd_elf_string_from_elf_section
792 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
793 entry->isym.st_name));
794
795 dynstr = elf_hash_table (info)->dynstr;
796 if (dynstr == NULL)
797 {
798 /* Create a strtab to hold the dynamic symbol names. */
799 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
800 if (dynstr == NULL)
801 return 0;
802 }
803
804 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
805 if (dynstr_index == (size_t) -1)
806 return 0;
807 entry->isym.st_name = dynstr_index;
808
809 eht = elf_hash_table (info);
810
811 entry->next = eht->dynlocal;
812 eht->dynlocal = entry;
813 entry->input_bfd = input_bfd;
814 entry->input_indx = input_indx;
815 eht->dynsymcount++;
816
817 /* Whatever binding the symbol had before, it's now local. */
818 entry->isym.st_info
819 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
820
821 /* The dynindx will be set at the end of size_dynamic_sections. */
822
823 return 1;
824 }
825
826 /* Return the dynindex of a local dynamic symbol. */
827
828 long
829 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
830 bfd *input_bfd,
831 long input_indx)
832 {
833 struct elf_link_local_dynamic_entry *e;
834
835 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
836 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
837 return e->dynindx;
838 return -1;
839 }
840
841 /* This function is used to renumber the dynamic symbols, if some of
842 them are removed because they are marked as local. This is called
843 via elf_link_hash_traverse. */
844
845 static bfd_boolean
846 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
847 void *data)
848 {
849 size_t *count = (size_t *) data;
850
851 if (h->forced_local)
852 return TRUE;
853
854 if (h->dynindx != -1)
855 h->dynindx = ++(*count);
856
857 return TRUE;
858 }
859
860
861 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
862 STB_LOCAL binding. */
863
864 static bfd_boolean
865 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
866 void *data)
867 {
868 size_t *count = (size_t *) data;
869
870 if (!h->forced_local)
871 return TRUE;
872
873 if (h->dynindx != -1)
874 h->dynindx = ++(*count);
875
876 return TRUE;
877 }
878
879 /* Return true if the dynamic symbol for a given section should be
880 omitted when creating a shared library. */
881 bfd_boolean
882 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
883 struct bfd_link_info *info,
884 asection *p)
885 {
886 struct elf_link_hash_table *htab;
887 asection *ip;
888
889 switch (elf_section_data (p)->this_hdr.sh_type)
890 {
891 case SHT_PROGBITS:
892 case SHT_NOBITS:
893 /* If sh_type is yet undecided, assume it could be
894 SHT_PROGBITS/SHT_NOBITS. */
895 case SHT_NULL:
896 htab = elf_hash_table (info);
897 if (p == htab->tls_sec)
898 return FALSE;
899
900 if (htab->text_index_section != NULL)
901 return p != htab->text_index_section && p != htab->data_index_section;
902
903 return (htab->dynobj != NULL
904 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
905 && ip->output_section == p);
906
907 /* There shouldn't be section relative relocations
908 against any other section. */
909 default:
910 return TRUE;
911 }
912 }
913
914 /* Assign dynsym indices. In a shared library we generate a section
915 symbol for each output section, which come first. Next come symbols
916 which have been forced to local binding. Then all of the back-end
917 allocated local dynamic syms, followed by the rest of the global
918 symbols. */
919
920 static unsigned long
921 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
922 struct bfd_link_info *info,
923 unsigned long *section_sym_count)
924 {
925 unsigned long dynsymcount = 0;
926
927 if (bfd_link_pic (info)
928 || elf_hash_table (info)->is_relocatable_executable)
929 {
930 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
931 asection *p;
932 for (p = output_bfd->sections; p ; p = p->next)
933 if ((p->flags & SEC_EXCLUDE) == 0
934 && (p->flags & SEC_ALLOC) != 0
935 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
936 elf_section_data (p)->dynindx = ++dynsymcount;
937 else
938 elf_section_data (p)->dynindx = 0;
939 }
940 *section_sym_count = dynsymcount;
941
942 elf_link_hash_traverse (elf_hash_table (info),
943 elf_link_renumber_local_hash_table_dynsyms,
944 &dynsymcount);
945
946 if (elf_hash_table (info)->dynlocal)
947 {
948 struct elf_link_local_dynamic_entry *p;
949 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
950 p->dynindx = ++dynsymcount;
951 }
952 elf_hash_table (info)->local_dynsymcount = dynsymcount;
953
954 elf_link_hash_traverse (elf_hash_table (info),
955 elf_link_renumber_hash_table_dynsyms,
956 &dynsymcount);
957
958 /* There is an unused NULL entry at the head of the table which we
959 must account for in our count even if the table is empty since it
960 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
961 .dynamic section. */
962 dynsymcount++;
963
964 elf_hash_table (info)->dynsymcount = dynsymcount;
965 return dynsymcount;
966 }
967
968 /* Merge st_other field. */
969
970 static void
971 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
972 const Elf_Internal_Sym *isym, asection *sec,
973 bfd_boolean definition, bfd_boolean dynamic)
974 {
975 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
976
977 /* If st_other has a processor-specific meaning, specific
978 code might be needed here. */
979 if (bed->elf_backend_merge_symbol_attribute)
980 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
981 dynamic);
982
983 if (!dynamic)
984 {
985 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
986 unsigned hvis = ELF_ST_VISIBILITY (h->other);
987
988 /* Keep the most constraining visibility. Leave the remainder
989 of the st_other field to elf_backend_merge_symbol_attribute. */
990 if (symvis - 1 < hvis - 1)
991 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
992 }
993 else if (definition
994 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
995 && (sec->flags & SEC_READONLY) == 0)
996 h->protected_def = 1;
997 }
998
999 /* This function is called when we want to merge a new symbol with an
1000 existing symbol. It handles the various cases which arise when we
1001 find a definition in a dynamic object, or when there is already a
1002 definition in a dynamic object. The new symbol is described by
1003 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1004 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1005 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1006 of an old common symbol. We set OVERRIDE if the old symbol is
1007 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1008 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1009 to change. By OK to change, we mean that we shouldn't warn if the
1010 type or size does change. */
1011
1012 static bfd_boolean
1013 _bfd_elf_merge_symbol (bfd *abfd,
1014 struct bfd_link_info *info,
1015 const char *name,
1016 Elf_Internal_Sym *sym,
1017 asection **psec,
1018 bfd_vma *pvalue,
1019 struct elf_link_hash_entry **sym_hash,
1020 bfd **poldbfd,
1021 bfd_boolean *pold_weak,
1022 unsigned int *pold_alignment,
1023 bfd_boolean *skip,
1024 bfd_boolean *override,
1025 bfd_boolean *type_change_ok,
1026 bfd_boolean *size_change_ok,
1027 bfd_boolean *matched)
1028 {
1029 asection *sec, *oldsec;
1030 struct elf_link_hash_entry *h;
1031 struct elf_link_hash_entry *hi;
1032 struct elf_link_hash_entry *flip;
1033 int bind;
1034 bfd *oldbfd;
1035 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1036 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1037 const struct elf_backend_data *bed;
1038 char *new_version;
1039
1040 *skip = FALSE;
1041 *override = FALSE;
1042
1043 sec = *psec;
1044 bind = ELF_ST_BIND (sym->st_info);
1045
1046 if (! bfd_is_und_section (sec))
1047 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1048 else
1049 h = ((struct elf_link_hash_entry *)
1050 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1051 if (h == NULL)
1052 return FALSE;
1053 *sym_hash = h;
1054
1055 bed = get_elf_backend_data (abfd);
1056
1057 /* NEW_VERSION is the symbol version of the new symbol. */
1058 if (h->versioned != unversioned)
1059 {
1060 /* Symbol version is unknown or versioned. */
1061 new_version = strrchr (name, ELF_VER_CHR);
1062 if (new_version)
1063 {
1064 if (h->versioned == unknown)
1065 {
1066 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1067 h->versioned = versioned_hidden;
1068 else
1069 h->versioned = versioned;
1070 }
1071 new_version += 1;
1072 if (new_version[0] == '\0')
1073 new_version = NULL;
1074 }
1075 else
1076 h->versioned = unversioned;
1077 }
1078 else
1079 new_version = NULL;
1080
1081 /* For merging, we only care about real symbols. But we need to make
1082 sure that indirect symbol dynamic flags are updated. */
1083 hi = h;
1084 while (h->root.type == bfd_link_hash_indirect
1085 || h->root.type == bfd_link_hash_warning)
1086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1087
1088 if (!*matched)
1089 {
1090 if (hi == h || h->root.type == bfd_link_hash_new)
1091 *matched = TRUE;
1092 else
1093 {
1094 /* OLD_HIDDEN is true if the existing symbol is only visible
1095 to the symbol with the same symbol version. NEW_HIDDEN is
1096 true if the new symbol is only visible to the symbol with
1097 the same symbol version. */
1098 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1099 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1100 if (!old_hidden && !new_hidden)
1101 /* The new symbol matches the existing symbol if both
1102 aren't hidden. */
1103 *matched = TRUE;
1104 else
1105 {
1106 /* OLD_VERSION is the symbol version of the existing
1107 symbol. */
1108 char *old_version;
1109
1110 if (h->versioned >= versioned)
1111 old_version = strrchr (h->root.root.string,
1112 ELF_VER_CHR) + 1;
1113 else
1114 old_version = NULL;
1115
1116 /* The new symbol matches the existing symbol if they
1117 have the same symbol version. */
1118 *matched = (old_version == new_version
1119 || (old_version != NULL
1120 && new_version != NULL
1121 && strcmp (old_version, new_version) == 0));
1122 }
1123 }
1124 }
1125
1126 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1127 existing symbol. */
1128
1129 oldbfd = NULL;
1130 oldsec = NULL;
1131 switch (h->root.type)
1132 {
1133 default:
1134 break;
1135
1136 case bfd_link_hash_undefined:
1137 case bfd_link_hash_undefweak:
1138 oldbfd = h->root.u.undef.abfd;
1139 break;
1140
1141 case bfd_link_hash_defined:
1142 case bfd_link_hash_defweak:
1143 oldbfd = h->root.u.def.section->owner;
1144 oldsec = h->root.u.def.section;
1145 break;
1146
1147 case bfd_link_hash_common:
1148 oldbfd = h->root.u.c.p->section->owner;
1149 oldsec = h->root.u.c.p->section;
1150 if (pold_alignment)
1151 *pold_alignment = h->root.u.c.p->alignment_power;
1152 break;
1153 }
1154 if (poldbfd && *poldbfd == NULL)
1155 *poldbfd = oldbfd;
1156
1157 /* Differentiate strong and weak symbols. */
1158 newweak = bind == STB_WEAK;
1159 oldweak = (h->root.type == bfd_link_hash_defweak
1160 || h->root.type == bfd_link_hash_undefweak);
1161 if (pold_weak)
1162 *pold_weak = oldweak;
1163
1164 /* This code is for coping with dynamic objects, and is only useful
1165 if we are doing an ELF link. */
1166 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1167 return TRUE;
1168
1169 /* We have to check it for every instance since the first few may be
1170 references and not all compilers emit symbol type for undefined
1171 symbols. */
1172 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1173
1174 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1175 respectively, is from a dynamic object. */
1176
1177 newdyn = (abfd->flags & DYNAMIC) != 0;
1178
1179 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1180 syms and defined syms in dynamic libraries respectively.
1181 ref_dynamic on the other hand can be set for a symbol defined in
1182 a dynamic library, and def_dynamic may not be set; When the
1183 definition in a dynamic lib is overridden by a definition in the
1184 executable use of the symbol in the dynamic lib becomes a
1185 reference to the executable symbol. */
1186 if (newdyn)
1187 {
1188 if (bfd_is_und_section (sec))
1189 {
1190 if (bind != STB_WEAK)
1191 {
1192 h->ref_dynamic_nonweak = 1;
1193 hi->ref_dynamic_nonweak = 1;
1194 }
1195 }
1196 else
1197 {
1198 /* Update the existing symbol only if they match. */
1199 if (*matched)
1200 h->dynamic_def = 1;
1201 hi->dynamic_def = 1;
1202 }
1203 }
1204
1205 /* If we just created the symbol, mark it as being an ELF symbol.
1206 Other than that, there is nothing to do--there is no merge issue
1207 with a newly defined symbol--so we just return. */
1208
1209 if (h->root.type == bfd_link_hash_new)
1210 {
1211 h->non_elf = 0;
1212 return TRUE;
1213 }
1214
1215 /* In cases involving weak versioned symbols, we may wind up trying
1216 to merge a symbol with itself. Catch that here, to avoid the
1217 confusion that results if we try to override a symbol with
1218 itself. The additional tests catch cases like
1219 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1220 dynamic object, which we do want to handle here. */
1221 if (abfd == oldbfd
1222 && (newweak || oldweak)
1223 && ((abfd->flags & DYNAMIC) == 0
1224 || !h->def_regular))
1225 return TRUE;
1226
1227 olddyn = FALSE;
1228 if (oldbfd != NULL)
1229 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1230 else if (oldsec != NULL)
1231 {
1232 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1233 indices used by MIPS ELF. */
1234 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1235 }
1236
1237 /* Handle a case where plugin_notice won't be called and thus won't
1238 set the non_ir_ref flags on the first pass over symbols. */
1239 if (oldbfd != NULL
1240 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1241 && newdyn != olddyn)
1242 {
1243 h->root.non_ir_ref_dynamic = TRUE;
1244 hi->root.non_ir_ref_dynamic = TRUE;
1245 }
1246
1247 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1248 respectively, appear to be a definition rather than reference. */
1249
1250 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1251
1252 olddef = (h->root.type != bfd_link_hash_undefined
1253 && h->root.type != bfd_link_hash_undefweak
1254 && h->root.type != bfd_link_hash_common);
1255
1256 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1257 respectively, appear to be a function. */
1258
1259 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1260 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1261
1262 oldfunc = (h->type != STT_NOTYPE
1263 && bed->is_function_type (h->type));
1264
1265 if (!(newfunc && oldfunc)
1266 && ELF_ST_TYPE (sym->st_info) != h->type
1267 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1268 && h->type != STT_NOTYPE
1269 && (newdef || bfd_is_com_section (sec))
1270 && (olddef || h->root.type == bfd_link_hash_common))
1271 {
1272 /* If creating a default indirect symbol ("foo" or "foo@") from
1273 a dynamic versioned definition ("foo@@") skip doing so if
1274 there is an existing regular definition with a different
1275 type. We don't want, for example, a "time" variable in the
1276 executable overriding a "time" function in a shared library. */
1277 if (newdyn
1278 && !olddyn)
1279 {
1280 *skip = TRUE;
1281 return TRUE;
1282 }
1283
1284 /* When adding a symbol from a regular object file after we have
1285 created indirect symbols, undo the indirection and any
1286 dynamic state. */
1287 if (hi != h
1288 && !newdyn
1289 && olddyn)
1290 {
1291 h = hi;
1292 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1293 h->forced_local = 0;
1294 h->ref_dynamic = 0;
1295 h->def_dynamic = 0;
1296 h->dynamic_def = 0;
1297 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1298 {
1299 h->root.type = bfd_link_hash_undefined;
1300 h->root.u.undef.abfd = abfd;
1301 }
1302 else
1303 {
1304 h->root.type = bfd_link_hash_new;
1305 h->root.u.undef.abfd = NULL;
1306 }
1307 return TRUE;
1308 }
1309 }
1310
1311 /* Check TLS symbols. We don't check undefined symbols introduced
1312 by "ld -u" which have no type (and oldbfd NULL), and we don't
1313 check symbols from plugins because they also have no type. */
1314 if (oldbfd != NULL
1315 && (oldbfd->flags & BFD_PLUGIN) == 0
1316 && (abfd->flags & BFD_PLUGIN) == 0
1317 && ELF_ST_TYPE (sym->st_info) != h->type
1318 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1319 {
1320 bfd *ntbfd, *tbfd;
1321 bfd_boolean ntdef, tdef;
1322 asection *ntsec, *tsec;
1323
1324 if (h->type == STT_TLS)
1325 {
1326 ntbfd = abfd;
1327 ntsec = sec;
1328 ntdef = newdef;
1329 tbfd = oldbfd;
1330 tsec = oldsec;
1331 tdef = olddef;
1332 }
1333 else
1334 {
1335 ntbfd = oldbfd;
1336 ntsec = oldsec;
1337 ntdef = olddef;
1338 tbfd = abfd;
1339 tsec = sec;
1340 tdef = newdef;
1341 }
1342
1343 if (tdef && ntdef)
1344 _bfd_error_handler
1345 /* xgettext:c-format */
1346 (_("%s: TLS definition in %B section %A "
1347 "mismatches non-TLS definition in %B section %A"),
1348 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1349 else if (!tdef && !ntdef)
1350 _bfd_error_handler
1351 /* xgettext:c-format */
1352 (_("%s: TLS reference in %B "
1353 "mismatches non-TLS reference in %B"),
1354 h->root.root.string, tbfd, ntbfd);
1355 else if (tdef)
1356 _bfd_error_handler
1357 /* xgettext:c-format */
1358 (_("%s: TLS definition in %B section %A "
1359 "mismatches non-TLS reference in %B"),
1360 h->root.root.string, tbfd, tsec, ntbfd);
1361 else
1362 _bfd_error_handler
1363 /* xgettext:c-format */
1364 (_("%s: TLS reference in %B "
1365 "mismatches non-TLS definition in %B section %A"),
1366 h->root.root.string, tbfd, ntbfd, ntsec);
1367
1368 bfd_set_error (bfd_error_bad_value);
1369 return FALSE;
1370 }
1371
1372 /* If the old symbol has non-default visibility, we ignore the new
1373 definition from a dynamic object. */
1374 if (newdyn
1375 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1376 && !bfd_is_und_section (sec))
1377 {
1378 *skip = TRUE;
1379 /* Make sure this symbol is dynamic. */
1380 h->ref_dynamic = 1;
1381 hi->ref_dynamic = 1;
1382 /* A protected symbol has external availability. Make sure it is
1383 recorded as dynamic.
1384
1385 FIXME: Should we check type and size for protected symbol? */
1386 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1387 return bfd_elf_link_record_dynamic_symbol (info, h);
1388 else
1389 return TRUE;
1390 }
1391 else if (!newdyn
1392 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1393 && h->def_dynamic)
1394 {
1395 /* If the new symbol with non-default visibility comes from a
1396 relocatable file and the old definition comes from a dynamic
1397 object, we remove the old definition. */
1398 if (hi->root.type == bfd_link_hash_indirect)
1399 {
1400 /* Handle the case where the old dynamic definition is
1401 default versioned. We need to copy the symbol info from
1402 the symbol with default version to the normal one if it
1403 was referenced before. */
1404 if (h->ref_regular)
1405 {
1406 hi->root.type = h->root.type;
1407 h->root.type = bfd_link_hash_indirect;
1408 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1409
1410 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1411 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1412 {
1413 /* If the new symbol is hidden or internal, completely undo
1414 any dynamic link state. */
1415 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1416 h->forced_local = 0;
1417 h->ref_dynamic = 0;
1418 }
1419 else
1420 h->ref_dynamic = 1;
1421
1422 h->def_dynamic = 0;
1423 /* FIXME: Should we check type and size for protected symbol? */
1424 h->size = 0;
1425 h->type = 0;
1426
1427 h = hi;
1428 }
1429 else
1430 h = hi;
1431 }
1432
1433 /* If the old symbol was undefined before, then it will still be
1434 on the undefs list. If the new symbol is undefined or
1435 common, we can't make it bfd_link_hash_new here, because new
1436 undefined or common symbols will be added to the undefs list
1437 by _bfd_generic_link_add_one_symbol. Symbols may not be
1438 added twice to the undefs list. Also, if the new symbol is
1439 undefweak then we don't want to lose the strong undef. */
1440 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1441 {
1442 h->root.type = bfd_link_hash_undefined;
1443 h->root.u.undef.abfd = abfd;
1444 }
1445 else
1446 {
1447 h->root.type = bfd_link_hash_new;
1448 h->root.u.undef.abfd = NULL;
1449 }
1450
1451 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1452 {
1453 /* If the new symbol is hidden or internal, completely undo
1454 any dynamic link state. */
1455 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1456 h->forced_local = 0;
1457 h->ref_dynamic = 0;
1458 }
1459 else
1460 h->ref_dynamic = 1;
1461 h->def_dynamic = 0;
1462 /* FIXME: Should we check type and size for protected symbol? */
1463 h->size = 0;
1464 h->type = 0;
1465 return TRUE;
1466 }
1467
1468 /* If a new weak symbol definition comes from a regular file and the
1469 old symbol comes from a dynamic library, we treat the new one as
1470 strong. Similarly, an old weak symbol definition from a regular
1471 file is treated as strong when the new symbol comes from a dynamic
1472 library. Further, an old weak symbol from a dynamic library is
1473 treated as strong if the new symbol is from a dynamic library.
1474 This reflects the way glibc's ld.so works.
1475
1476 Do this before setting *type_change_ok or *size_change_ok so that
1477 we warn properly when dynamic library symbols are overridden. */
1478
1479 if (newdef && !newdyn && olddyn)
1480 newweak = FALSE;
1481 if (olddef && newdyn)
1482 oldweak = FALSE;
1483
1484 /* Allow changes between different types of function symbol. */
1485 if (newfunc && oldfunc)
1486 *type_change_ok = TRUE;
1487
1488 /* It's OK to change the type if either the existing symbol or the
1489 new symbol is weak. A type change is also OK if the old symbol
1490 is undefined and the new symbol is defined. */
1491
1492 if (oldweak
1493 || newweak
1494 || (newdef
1495 && h->root.type == bfd_link_hash_undefined))
1496 *type_change_ok = TRUE;
1497
1498 /* It's OK to change the size if either the existing symbol or the
1499 new symbol is weak, or if the old symbol is undefined. */
1500
1501 if (*type_change_ok
1502 || h->root.type == bfd_link_hash_undefined)
1503 *size_change_ok = TRUE;
1504
1505 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1506 symbol, respectively, appears to be a common symbol in a dynamic
1507 object. If a symbol appears in an uninitialized section, and is
1508 not weak, and is not a function, then it may be a common symbol
1509 which was resolved when the dynamic object was created. We want
1510 to treat such symbols specially, because they raise special
1511 considerations when setting the symbol size: if the symbol
1512 appears as a common symbol in a regular object, and the size in
1513 the regular object is larger, we must make sure that we use the
1514 larger size. This problematic case can always be avoided in C,
1515 but it must be handled correctly when using Fortran shared
1516 libraries.
1517
1518 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1519 likewise for OLDDYNCOMMON and OLDDEF.
1520
1521 Note that this test is just a heuristic, and that it is quite
1522 possible to have an uninitialized symbol in a shared object which
1523 is really a definition, rather than a common symbol. This could
1524 lead to some minor confusion when the symbol really is a common
1525 symbol in some regular object. However, I think it will be
1526 harmless. */
1527
1528 if (newdyn
1529 && newdef
1530 && !newweak
1531 && (sec->flags & SEC_ALLOC) != 0
1532 && (sec->flags & SEC_LOAD) == 0
1533 && sym->st_size > 0
1534 && !newfunc)
1535 newdyncommon = TRUE;
1536 else
1537 newdyncommon = FALSE;
1538
1539 if (olddyn
1540 && olddef
1541 && h->root.type == bfd_link_hash_defined
1542 && h->def_dynamic
1543 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1544 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1545 && h->size > 0
1546 && !oldfunc)
1547 olddyncommon = TRUE;
1548 else
1549 olddyncommon = FALSE;
1550
1551 /* We now know everything about the old and new symbols. We ask the
1552 backend to check if we can merge them. */
1553 if (bed->merge_symbol != NULL)
1554 {
1555 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1556 return FALSE;
1557 sec = *psec;
1558 }
1559
1560 /* If both the old and the new symbols look like common symbols in a
1561 dynamic object, set the size of the symbol to the larger of the
1562 two. */
1563
1564 if (olddyncommon
1565 && newdyncommon
1566 && sym->st_size != h->size)
1567 {
1568 /* Since we think we have two common symbols, issue a multiple
1569 common warning if desired. Note that we only warn if the
1570 size is different. If the size is the same, we simply let
1571 the old symbol override the new one as normally happens with
1572 symbols defined in dynamic objects. */
1573
1574 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1575 bfd_link_hash_common, sym->st_size);
1576 if (sym->st_size > h->size)
1577 h->size = sym->st_size;
1578
1579 *size_change_ok = TRUE;
1580 }
1581
1582 /* If we are looking at a dynamic object, and we have found a
1583 definition, we need to see if the symbol was already defined by
1584 some other object. If so, we want to use the existing
1585 definition, and we do not want to report a multiple symbol
1586 definition error; we do this by clobbering *PSEC to be
1587 bfd_und_section_ptr.
1588
1589 We treat a common symbol as a definition if the symbol in the
1590 shared library is a function, since common symbols always
1591 represent variables; this can cause confusion in principle, but
1592 any such confusion would seem to indicate an erroneous program or
1593 shared library. We also permit a common symbol in a regular
1594 object to override a weak symbol in a shared object. */
1595
1596 if (newdyn
1597 && newdef
1598 && (olddef
1599 || (h->root.type == bfd_link_hash_common
1600 && (newweak || newfunc))))
1601 {
1602 *override = TRUE;
1603 newdef = FALSE;
1604 newdyncommon = FALSE;
1605
1606 *psec = sec = bfd_und_section_ptr;
1607 *size_change_ok = TRUE;
1608
1609 /* If we get here when the old symbol is a common symbol, then
1610 we are explicitly letting it override a weak symbol or
1611 function in a dynamic object, and we don't want to warn about
1612 a type change. If the old symbol is a defined symbol, a type
1613 change warning may still be appropriate. */
1614
1615 if (h->root.type == bfd_link_hash_common)
1616 *type_change_ok = TRUE;
1617 }
1618
1619 /* Handle the special case of an old common symbol merging with a
1620 new symbol which looks like a common symbol in a shared object.
1621 We change *PSEC and *PVALUE to make the new symbol look like a
1622 common symbol, and let _bfd_generic_link_add_one_symbol do the
1623 right thing. */
1624
1625 if (newdyncommon
1626 && h->root.type == bfd_link_hash_common)
1627 {
1628 *override = TRUE;
1629 newdef = FALSE;
1630 newdyncommon = FALSE;
1631 *pvalue = sym->st_size;
1632 *psec = sec = bed->common_section (oldsec);
1633 *size_change_ok = TRUE;
1634 }
1635
1636 /* Skip weak definitions of symbols that are already defined. */
1637 if (newdef && olddef && newweak)
1638 {
1639 /* Don't skip new non-IR weak syms. */
1640 if (!(oldbfd != NULL
1641 && (oldbfd->flags & BFD_PLUGIN) != 0
1642 && (abfd->flags & BFD_PLUGIN) == 0))
1643 {
1644 newdef = FALSE;
1645 *skip = TRUE;
1646 }
1647
1648 /* Merge st_other. If the symbol already has a dynamic index,
1649 but visibility says it should not be visible, turn it into a
1650 local symbol. */
1651 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1652 if (h->dynindx != -1)
1653 switch (ELF_ST_VISIBILITY (h->other))
1654 {
1655 case STV_INTERNAL:
1656 case STV_HIDDEN:
1657 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1658 break;
1659 }
1660 }
1661
1662 /* If the old symbol is from a dynamic object, and the new symbol is
1663 a definition which is not from a dynamic object, then the new
1664 symbol overrides the old symbol. Symbols from regular files
1665 always take precedence over symbols from dynamic objects, even if
1666 they are defined after the dynamic object in the link.
1667
1668 As above, we again permit a common symbol in a regular object to
1669 override a definition in a shared object if the shared object
1670 symbol is a function or is weak. */
1671
1672 flip = NULL;
1673 if (!newdyn
1674 && (newdef
1675 || (bfd_is_com_section (sec)
1676 && (oldweak || oldfunc)))
1677 && olddyn
1678 && olddef
1679 && h->def_dynamic)
1680 {
1681 /* Change the hash table entry to undefined, and let
1682 _bfd_generic_link_add_one_symbol do the right thing with the
1683 new definition. */
1684
1685 h->root.type = bfd_link_hash_undefined;
1686 h->root.u.undef.abfd = h->root.u.def.section->owner;
1687 *size_change_ok = TRUE;
1688
1689 olddef = FALSE;
1690 olddyncommon = FALSE;
1691
1692 /* We again permit a type change when a common symbol may be
1693 overriding a function. */
1694
1695 if (bfd_is_com_section (sec))
1696 {
1697 if (oldfunc)
1698 {
1699 /* If a common symbol overrides a function, make sure
1700 that it isn't defined dynamically nor has type
1701 function. */
1702 h->def_dynamic = 0;
1703 h->type = STT_NOTYPE;
1704 }
1705 *type_change_ok = TRUE;
1706 }
1707
1708 if (hi->root.type == bfd_link_hash_indirect)
1709 flip = hi;
1710 else
1711 /* This union may have been set to be non-NULL when this symbol
1712 was seen in a dynamic object. We must force the union to be
1713 NULL, so that it is correct for a regular symbol. */
1714 h->verinfo.vertree = NULL;
1715 }
1716
1717 /* Handle the special case of a new common symbol merging with an
1718 old symbol that looks like it might be a common symbol defined in
1719 a shared object. Note that we have already handled the case in
1720 which a new common symbol should simply override the definition
1721 in the shared library. */
1722
1723 if (! newdyn
1724 && bfd_is_com_section (sec)
1725 && olddyncommon)
1726 {
1727 /* It would be best if we could set the hash table entry to a
1728 common symbol, but we don't know what to use for the section
1729 or the alignment. */
1730 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1731 bfd_link_hash_common, sym->st_size);
1732
1733 /* If the presumed common symbol in the dynamic object is
1734 larger, pretend that the new symbol has its size. */
1735
1736 if (h->size > *pvalue)
1737 *pvalue = h->size;
1738
1739 /* We need to remember the alignment required by the symbol
1740 in the dynamic object. */
1741 BFD_ASSERT (pold_alignment);
1742 *pold_alignment = h->root.u.def.section->alignment_power;
1743
1744 olddef = FALSE;
1745 olddyncommon = FALSE;
1746
1747 h->root.type = bfd_link_hash_undefined;
1748 h->root.u.undef.abfd = h->root.u.def.section->owner;
1749
1750 *size_change_ok = TRUE;
1751 *type_change_ok = TRUE;
1752
1753 if (hi->root.type == bfd_link_hash_indirect)
1754 flip = hi;
1755 else
1756 h->verinfo.vertree = NULL;
1757 }
1758
1759 if (flip != NULL)
1760 {
1761 /* Handle the case where we had a versioned symbol in a dynamic
1762 library and now find a definition in a normal object. In this
1763 case, we make the versioned symbol point to the normal one. */
1764 flip->root.type = h->root.type;
1765 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1766 h->root.type = bfd_link_hash_indirect;
1767 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1768 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1769 if (h->def_dynamic)
1770 {
1771 h->def_dynamic = 0;
1772 flip->ref_dynamic = 1;
1773 }
1774 }
1775
1776 return TRUE;
1777 }
1778
1779 /* This function is called to create an indirect symbol from the
1780 default for the symbol with the default version if needed. The
1781 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1782 set DYNSYM if the new indirect symbol is dynamic. */
1783
1784 static bfd_boolean
1785 _bfd_elf_add_default_symbol (bfd *abfd,
1786 struct bfd_link_info *info,
1787 struct elf_link_hash_entry *h,
1788 const char *name,
1789 Elf_Internal_Sym *sym,
1790 asection *sec,
1791 bfd_vma value,
1792 bfd **poldbfd,
1793 bfd_boolean *dynsym)
1794 {
1795 bfd_boolean type_change_ok;
1796 bfd_boolean size_change_ok;
1797 bfd_boolean skip;
1798 char *shortname;
1799 struct elf_link_hash_entry *hi;
1800 struct bfd_link_hash_entry *bh;
1801 const struct elf_backend_data *bed;
1802 bfd_boolean collect;
1803 bfd_boolean dynamic;
1804 bfd_boolean override;
1805 char *p;
1806 size_t len, shortlen;
1807 asection *tmp_sec;
1808 bfd_boolean matched;
1809
1810 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1811 return TRUE;
1812
1813 /* If this symbol has a version, and it is the default version, we
1814 create an indirect symbol from the default name to the fully
1815 decorated name. This will cause external references which do not
1816 specify a version to be bound to this version of the symbol. */
1817 p = strchr (name, ELF_VER_CHR);
1818 if (h->versioned == unknown)
1819 {
1820 if (p == NULL)
1821 {
1822 h->versioned = unversioned;
1823 return TRUE;
1824 }
1825 else
1826 {
1827 if (p[1] != ELF_VER_CHR)
1828 {
1829 h->versioned = versioned_hidden;
1830 return TRUE;
1831 }
1832 else
1833 h->versioned = versioned;
1834 }
1835 }
1836 else
1837 {
1838 /* PR ld/19073: We may see an unversioned definition after the
1839 default version. */
1840 if (p == NULL)
1841 return TRUE;
1842 }
1843
1844 bed = get_elf_backend_data (abfd);
1845 collect = bed->collect;
1846 dynamic = (abfd->flags & DYNAMIC) != 0;
1847
1848 shortlen = p - name;
1849 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1850 if (shortname == NULL)
1851 return FALSE;
1852 memcpy (shortname, name, shortlen);
1853 shortname[shortlen] = '\0';
1854
1855 /* We are going to create a new symbol. Merge it with any existing
1856 symbol with this name. For the purposes of the merge, act as
1857 though we were defining the symbol we just defined, although we
1858 actually going to define an indirect symbol. */
1859 type_change_ok = FALSE;
1860 size_change_ok = FALSE;
1861 matched = TRUE;
1862 tmp_sec = sec;
1863 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1864 &hi, poldbfd, NULL, NULL, &skip, &override,
1865 &type_change_ok, &size_change_ok, &matched))
1866 return FALSE;
1867
1868 if (skip)
1869 goto nondefault;
1870
1871 if (hi->def_regular)
1872 {
1873 /* If the undecorated symbol will have a version added by a
1874 script different to H, then don't indirect to/from the
1875 undecorated symbol. This isn't ideal because we may not yet
1876 have seen symbol versions, if given by a script on the
1877 command line rather than via --version-script. */
1878 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1879 {
1880 bfd_boolean hide;
1881
1882 hi->verinfo.vertree
1883 = bfd_find_version_for_sym (info->version_info,
1884 hi->root.root.string, &hide);
1885 if (hi->verinfo.vertree != NULL && hide)
1886 {
1887 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1888 goto nondefault;
1889 }
1890 }
1891 if (hi->verinfo.vertree != NULL
1892 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1893 goto nondefault;
1894 }
1895
1896 if (! override)
1897 {
1898 /* Add the default symbol if not performing a relocatable link. */
1899 if (! bfd_link_relocatable (info))
1900 {
1901 bh = &hi->root;
1902 if (! (_bfd_generic_link_add_one_symbol
1903 (info, abfd, shortname, BSF_INDIRECT,
1904 bfd_ind_section_ptr,
1905 0, name, FALSE, collect, &bh)))
1906 return FALSE;
1907 hi = (struct elf_link_hash_entry *) bh;
1908 }
1909 }
1910 else
1911 {
1912 /* In this case the symbol named SHORTNAME is overriding the
1913 indirect symbol we want to add. We were planning on making
1914 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1915 is the name without a version. NAME is the fully versioned
1916 name, and it is the default version.
1917
1918 Overriding means that we already saw a definition for the
1919 symbol SHORTNAME in a regular object, and it is overriding
1920 the symbol defined in the dynamic object.
1921
1922 When this happens, we actually want to change NAME, the
1923 symbol we just added, to refer to SHORTNAME. This will cause
1924 references to NAME in the shared object to become references
1925 to SHORTNAME in the regular object. This is what we expect
1926 when we override a function in a shared object: that the
1927 references in the shared object will be mapped to the
1928 definition in the regular object. */
1929
1930 while (hi->root.type == bfd_link_hash_indirect
1931 || hi->root.type == bfd_link_hash_warning)
1932 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1933
1934 h->root.type = bfd_link_hash_indirect;
1935 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1936 if (h->def_dynamic)
1937 {
1938 h->def_dynamic = 0;
1939 hi->ref_dynamic = 1;
1940 if (hi->ref_regular
1941 || hi->def_regular)
1942 {
1943 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1944 return FALSE;
1945 }
1946 }
1947
1948 /* Now set HI to H, so that the following code will set the
1949 other fields correctly. */
1950 hi = h;
1951 }
1952
1953 /* Check if HI is a warning symbol. */
1954 if (hi->root.type == bfd_link_hash_warning)
1955 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1956
1957 /* If there is a duplicate definition somewhere, then HI may not
1958 point to an indirect symbol. We will have reported an error to
1959 the user in that case. */
1960
1961 if (hi->root.type == bfd_link_hash_indirect)
1962 {
1963 struct elf_link_hash_entry *ht;
1964
1965 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1966 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1967
1968 /* A reference to the SHORTNAME symbol from a dynamic library
1969 will be satisfied by the versioned symbol at runtime. In
1970 effect, we have a reference to the versioned symbol. */
1971 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1972 hi->dynamic_def |= ht->dynamic_def;
1973
1974 /* See if the new flags lead us to realize that the symbol must
1975 be dynamic. */
1976 if (! *dynsym)
1977 {
1978 if (! dynamic)
1979 {
1980 if (! bfd_link_executable (info)
1981 || hi->def_dynamic
1982 || hi->ref_dynamic)
1983 *dynsym = TRUE;
1984 }
1985 else
1986 {
1987 if (hi->ref_regular)
1988 *dynsym = TRUE;
1989 }
1990 }
1991 }
1992
1993 /* We also need to define an indirection from the nondefault version
1994 of the symbol. */
1995
1996 nondefault:
1997 len = strlen (name);
1998 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1999 if (shortname == NULL)
2000 return FALSE;
2001 memcpy (shortname, name, shortlen);
2002 memcpy (shortname + shortlen, p + 1, len - shortlen);
2003
2004 /* Once again, merge with any existing symbol. */
2005 type_change_ok = FALSE;
2006 size_change_ok = FALSE;
2007 tmp_sec = sec;
2008 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2009 &hi, poldbfd, NULL, NULL, &skip, &override,
2010 &type_change_ok, &size_change_ok, &matched))
2011 return FALSE;
2012
2013 if (skip)
2014 return TRUE;
2015
2016 if (override)
2017 {
2018 /* Here SHORTNAME is a versioned name, so we don't expect to see
2019 the type of override we do in the case above unless it is
2020 overridden by a versioned definition. */
2021 if (hi->root.type != bfd_link_hash_defined
2022 && hi->root.type != bfd_link_hash_defweak)
2023 _bfd_error_handler
2024 /* xgettext:c-format */
2025 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
2026 abfd, shortname);
2027 }
2028 else
2029 {
2030 bh = &hi->root;
2031 if (! (_bfd_generic_link_add_one_symbol
2032 (info, abfd, shortname, BSF_INDIRECT,
2033 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2034 return FALSE;
2035 hi = (struct elf_link_hash_entry *) bh;
2036
2037 /* If there is a duplicate definition somewhere, then HI may not
2038 point to an indirect symbol. We will have reported an error
2039 to the user in that case. */
2040
2041 if (hi->root.type == bfd_link_hash_indirect)
2042 {
2043 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2044 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2045 hi->dynamic_def |= h->dynamic_def;
2046
2047 /* See if the new flags lead us to realize that the symbol
2048 must be dynamic. */
2049 if (! *dynsym)
2050 {
2051 if (! dynamic)
2052 {
2053 if (! bfd_link_executable (info)
2054 || hi->ref_dynamic)
2055 *dynsym = TRUE;
2056 }
2057 else
2058 {
2059 if (hi->ref_regular)
2060 *dynsym = TRUE;
2061 }
2062 }
2063 }
2064 }
2065
2066 return TRUE;
2067 }
2068 \f
2069 /* This routine is used to export all defined symbols into the dynamic
2070 symbol table. It is called via elf_link_hash_traverse. */
2071
2072 static bfd_boolean
2073 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2074 {
2075 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2076
2077 /* Ignore indirect symbols. These are added by the versioning code. */
2078 if (h->root.type == bfd_link_hash_indirect)
2079 return TRUE;
2080
2081 /* Ignore this if we won't export it. */
2082 if (!eif->info->export_dynamic && !h->dynamic)
2083 return TRUE;
2084
2085 if (h->dynindx == -1
2086 && (h->def_regular || h->ref_regular)
2087 && ! bfd_hide_sym_by_version (eif->info->version_info,
2088 h->root.root.string))
2089 {
2090 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2091 {
2092 eif->failed = TRUE;
2093 return FALSE;
2094 }
2095 }
2096
2097 return TRUE;
2098 }
2099 \f
2100 /* Look through the symbols which are defined in other shared
2101 libraries and referenced here. Update the list of version
2102 dependencies. This will be put into the .gnu.version_r section.
2103 This function is called via elf_link_hash_traverse. */
2104
2105 static bfd_boolean
2106 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2107 void *data)
2108 {
2109 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2110 Elf_Internal_Verneed *t;
2111 Elf_Internal_Vernaux *a;
2112 bfd_size_type amt;
2113
2114 /* We only care about symbols defined in shared objects with version
2115 information. */
2116 if (!h->def_dynamic
2117 || h->def_regular
2118 || h->dynindx == -1
2119 || h->verinfo.verdef == NULL
2120 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2121 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2122 return TRUE;
2123
2124 /* See if we already know about this version. */
2125 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2126 t != NULL;
2127 t = t->vn_nextref)
2128 {
2129 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2130 continue;
2131
2132 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2133 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2134 return TRUE;
2135
2136 break;
2137 }
2138
2139 /* This is a new version. Add it to tree we are building. */
2140
2141 if (t == NULL)
2142 {
2143 amt = sizeof *t;
2144 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2145 if (t == NULL)
2146 {
2147 rinfo->failed = TRUE;
2148 return FALSE;
2149 }
2150
2151 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2152 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2153 elf_tdata (rinfo->info->output_bfd)->verref = t;
2154 }
2155
2156 amt = sizeof *a;
2157 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2158 if (a == NULL)
2159 {
2160 rinfo->failed = TRUE;
2161 return FALSE;
2162 }
2163
2164 /* Note that we are copying a string pointer here, and testing it
2165 above. If bfd_elf_string_from_elf_section is ever changed to
2166 discard the string data when low in memory, this will have to be
2167 fixed. */
2168 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2169
2170 a->vna_flags = h->verinfo.verdef->vd_flags;
2171 a->vna_nextptr = t->vn_auxptr;
2172
2173 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2174 ++rinfo->vers;
2175
2176 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2177
2178 t->vn_auxptr = a;
2179
2180 return TRUE;
2181 }
2182
2183 /* Figure out appropriate versions for all the symbols. We may not
2184 have the version number script until we have read all of the input
2185 files, so until that point we don't know which symbols should be
2186 local. This function is called via elf_link_hash_traverse. */
2187
2188 static bfd_boolean
2189 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2190 {
2191 struct elf_info_failed *sinfo;
2192 struct bfd_link_info *info;
2193 const struct elf_backend_data *bed;
2194 struct elf_info_failed eif;
2195 char *p;
2196
2197 sinfo = (struct elf_info_failed *) data;
2198 info = sinfo->info;
2199
2200 /* Fix the symbol flags. */
2201 eif.failed = FALSE;
2202 eif.info = info;
2203 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2204 {
2205 if (eif.failed)
2206 sinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* We only need version numbers for symbols defined in regular
2211 objects. */
2212 if (!h->def_regular)
2213 return TRUE;
2214
2215 bed = get_elf_backend_data (info->output_bfd);
2216 p = strchr (h->root.root.string, ELF_VER_CHR);
2217 if (p != NULL && h->verinfo.vertree == NULL)
2218 {
2219 struct bfd_elf_version_tree *t;
2220
2221 ++p;
2222 if (*p == ELF_VER_CHR)
2223 ++p;
2224
2225 /* If there is no version string, we can just return out. */
2226 if (*p == '\0')
2227 return TRUE;
2228
2229 /* Look for the version. If we find it, it is no longer weak. */
2230 for (t = sinfo->info->version_info; t != NULL; t = t->next)
2231 {
2232 if (strcmp (t->name, p) == 0)
2233 {
2234 size_t len;
2235 char *alc;
2236 struct bfd_elf_version_expr *d;
2237
2238 len = p - h->root.root.string;
2239 alc = (char *) bfd_malloc (len);
2240 if (alc == NULL)
2241 {
2242 sinfo->failed = TRUE;
2243 return FALSE;
2244 }
2245 memcpy (alc, h->root.root.string, len - 1);
2246 alc[len - 1] = '\0';
2247 if (alc[len - 2] == ELF_VER_CHR)
2248 alc[len - 2] = '\0';
2249
2250 h->verinfo.vertree = t;
2251 t->used = TRUE;
2252 d = NULL;
2253
2254 if (t->globals.list != NULL)
2255 d = (*t->match) (&t->globals, NULL, alc);
2256
2257 /* See if there is anything to force this symbol to
2258 local scope. */
2259 if (d == NULL && t->locals.list != NULL)
2260 {
2261 d = (*t->match) (&t->locals, NULL, alc);
2262 if (d != NULL
2263 && h->dynindx != -1
2264 && ! info->export_dynamic)
2265 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2266 }
2267
2268 free (alc);
2269 break;
2270 }
2271 }
2272
2273 /* If we are building an application, we need to create a
2274 version node for this version. */
2275 if (t == NULL && bfd_link_executable (info))
2276 {
2277 struct bfd_elf_version_tree **pp;
2278 int version_index;
2279
2280 /* If we aren't going to export this symbol, we don't need
2281 to worry about it. */
2282 if (h->dynindx == -1)
2283 return TRUE;
2284
2285 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2286 sizeof *t);
2287 if (t == NULL)
2288 {
2289 sinfo->failed = TRUE;
2290 return FALSE;
2291 }
2292
2293 t->name = p;
2294 t->name_indx = (unsigned int) -1;
2295 t->used = TRUE;
2296
2297 version_index = 1;
2298 /* Don't count anonymous version tag. */
2299 if (sinfo->info->version_info != NULL
2300 && sinfo->info->version_info->vernum == 0)
2301 version_index = 0;
2302 for (pp = &sinfo->info->version_info;
2303 *pp != NULL;
2304 pp = &(*pp)->next)
2305 ++version_index;
2306 t->vernum = version_index;
2307
2308 *pp = t;
2309
2310 h->verinfo.vertree = t;
2311 }
2312 else if (t == NULL)
2313 {
2314 /* We could not find the version for a symbol when
2315 generating a shared archive. Return an error. */
2316 _bfd_error_handler
2317 /* xgettext:c-format */
2318 (_("%B: version node not found for symbol %s"),
2319 info->output_bfd, h->root.root.string);
2320 bfd_set_error (bfd_error_bad_value);
2321 sinfo->failed = TRUE;
2322 return FALSE;
2323 }
2324 }
2325
2326 /* If we don't have a version for this symbol, see if we can find
2327 something. */
2328 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2329 {
2330 bfd_boolean hide;
2331
2332 h->verinfo.vertree
2333 = bfd_find_version_for_sym (sinfo->info->version_info,
2334 h->root.root.string, &hide);
2335 if (h->verinfo.vertree != NULL && hide)
2336 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2337 }
2338
2339 return TRUE;
2340 }
2341 \f
2342 /* Read and swap the relocs from the section indicated by SHDR. This
2343 may be either a REL or a RELA section. The relocations are
2344 translated into RELA relocations and stored in INTERNAL_RELOCS,
2345 which should have already been allocated to contain enough space.
2346 The EXTERNAL_RELOCS are a buffer where the external form of the
2347 relocations should be stored.
2348
2349 Returns FALSE if something goes wrong. */
2350
2351 static bfd_boolean
2352 elf_link_read_relocs_from_section (bfd *abfd,
2353 asection *sec,
2354 Elf_Internal_Shdr *shdr,
2355 void *external_relocs,
2356 Elf_Internal_Rela *internal_relocs)
2357 {
2358 const struct elf_backend_data *bed;
2359 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2360 const bfd_byte *erela;
2361 const bfd_byte *erelaend;
2362 Elf_Internal_Rela *irela;
2363 Elf_Internal_Shdr *symtab_hdr;
2364 size_t nsyms;
2365
2366 /* Position ourselves at the start of the section. */
2367 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2368 return FALSE;
2369
2370 /* Read the relocations. */
2371 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2372 return FALSE;
2373
2374 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2375 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2376
2377 bed = get_elf_backend_data (abfd);
2378
2379 /* Convert the external relocations to the internal format. */
2380 if (shdr->sh_entsize == bed->s->sizeof_rel)
2381 swap_in = bed->s->swap_reloc_in;
2382 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2383 swap_in = bed->s->swap_reloca_in;
2384 else
2385 {
2386 bfd_set_error (bfd_error_wrong_format);
2387 return FALSE;
2388 }
2389
2390 erela = (const bfd_byte *) external_relocs;
2391 erelaend = erela + shdr->sh_size;
2392 irela = internal_relocs;
2393 while (erela < erelaend)
2394 {
2395 bfd_vma r_symndx;
2396
2397 (*swap_in) (abfd, erela, irela);
2398 r_symndx = ELF32_R_SYM (irela->r_info);
2399 if (bed->s->arch_size == 64)
2400 r_symndx >>= 24;
2401 if (nsyms > 0)
2402 {
2403 if ((size_t) r_symndx >= nsyms)
2404 {
2405 _bfd_error_handler
2406 /* xgettext:c-format */
2407 (_("%B: bad reloc symbol index (%#Lx >= %#lx)"
2408 " for offset %#Lx in section `%A'"),
2409 abfd, r_symndx, (unsigned long) nsyms,
2410 irela->r_offset, sec);
2411 bfd_set_error (bfd_error_bad_value);
2412 return FALSE;
2413 }
2414 }
2415 else if (r_symndx != STN_UNDEF)
2416 {
2417 _bfd_error_handler
2418 /* xgettext:c-format */
2419 (_("%B: non-zero symbol index (%#Lx)"
2420 " for offset %#Lx in section `%A'"
2421 " when the object file has no symbol table"),
2422 abfd, r_symndx,
2423 irela->r_offset, sec);
2424 bfd_set_error (bfd_error_bad_value);
2425 return FALSE;
2426 }
2427 irela += bed->s->int_rels_per_ext_rel;
2428 erela += shdr->sh_entsize;
2429 }
2430
2431 return TRUE;
2432 }
2433
2434 /* Read and swap the relocs for a section O. They may have been
2435 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2436 not NULL, they are used as buffers to read into. They are known to
2437 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2438 the return value is allocated using either malloc or bfd_alloc,
2439 according to the KEEP_MEMORY argument. If O has two relocation
2440 sections (both REL and RELA relocations), then the REL_HDR
2441 relocations will appear first in INTERNAL_RELOCS, followed by the
2442 RELA_HDR relocations. */
2443
2444 Elf_Internal_Rela *
2445 _bfd_elf_link_read_relocs (bfd *abfd,
2446 asection *o,
2447 void *external_relocs,
2448 Elf_Internal_Rela *internal_relocs,
2449 bfd_boolean keep_memory)
2450 {
2451 void *alloc1 = NULL;
2452 Elf_Internal_Rela *alloc2 = NULL;
2453 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2454 struct bfd_elf_section_data *esdo = elf_section_data (o);
2455 Elf_Internal_Rela *internal_rela_relocs;
2456
2457 if (esdo->relocs != NULL)
2458 return esdo->relocs;
2459
2460 if (o->reloc_count == 0)
2461 return NULL;
2462
2463 if (internal_relocs == NULL)
2464 {
2465 bfd_size_type size;
2466
2467 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2468 if (keep_memory)
2469 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2470 else
2471 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2472 if (internal_relocs == NULL)
2473 goto error_return;
2474 }
2475
2476 if (external_relocs == NULL)
2477 {
2478 bfd_size_type size = 0;
2479
2480 if (esdo->rel.hdr)
2481 size += esdo->rel.hdr->sh_size;
2482 if (esdo->rela.hdr)
2483 size += esdo->rela.hdr->sh_size;
2484
2485 alloc1 = bfd_malloc (size);
2486 if (alloc1 == NULL)
2487 goto error_return;
2488 external_relocs = alloc1;
2489 }
2490
2491 internal_rela_relocs = internal_relocs;
2492 if (esdo->rel.hdr)
2493 {
2494 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2495 external_relocs,
2496 internal_relocs))
2497 goto error_return;
2498 external_relocs = (((bfd_byte *) external_relocs)
2499 + esdo->rel.hdr->sh_size);
2500 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2501 * bed->s->int_rels_per_ext_rel);
2502 }
2503
2504 if (esdo->rela.hdr
2505 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2506 external_relocs,
2507 internal_rela_relocs)))
2508 goto error_return;
2509
2510 /* Cache the results for next time, if we can. */
2511 if (keep_memory)
2512 esdo->relocs = internal_relocs;
2513
2514 if (alloc1 != NULL)
2515 free (alloc1);
2516
2517 /* Don't free alloc2, since if it was allocated we are passing it
2518 back (under the name of internal_relocs). */
2519
2520 return internal_relocs;
2521
2522 error_return:
2523 if (alloc1 != NULL)
2524 free (alloc1);
2525 if (alloc2 != NULL)
2526 {
2527 if (keep_memory)
2528 bfd_release (abfd, alloc2);
2529 else
2530 free (alloc2);
2531 }
2532 return NULL;
2533 }
2534
2535 /* Compute the size of, and allocate space for, REL_HDR which is the
2536 section header for a section containing relocations for O. */
2537
2538 static bfd_boolean
2539 _bfd_elf_link_size_reloc_section (bfd *abfd,
2540 struct bfd_elf_section_reloc_data *reldata)
2541 {
2542 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2543
2544 /* That allows us to calculate the size of the section. */
2545 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2546
2547 /* The contents field must last into write_object_contents, so we
2548 allocate it with bfd_alloc rather than malloc. Also since we
2549 cannot be sure that the contents will actually be filled in,
2550 we zero the allocated space. */
2551 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2552 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2553 return FALSE;
2554
2555 if (reldata->hashes == NULL && reldata->count)
2556 {
2557 struct elf_link_hash_entry **p;
2558
2559 p = ((struct elf_link_hash_entry **)
2560 bfd_zmalloc (reldata->count * sizeof (*p)));
2561 if (p == NULL)
2562 return FALSE;
2563
2564 reldata->hashes = p;
2565 }
2566
2567 return TRUE;
2568 }
2569
2570 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2571 originated from the section given by INPUT_REL_HDR) to the
2572 OUTPUT_BFD. */
2573
2574 bfd_boolean
2575 _bfd_elf_link_output_relocs (bfd *output_bfd,
2576 asection *input_section,
2577 Elf_Internal_Shdr *input_rel_hdr,
2578 Elf_Internal_Rela *internal_relocs,
2579 struct elf_link_hash_entry **rel_hash
2580 ATTRIBUTE_UNUSED)
2581 {
2582 Elf_Internal_Rela *irela;
2583 Elf_Internal_Rela *irelaend;
2584 bfd_byte *erel;
2585 struct bfd_elf_section_reloc_data *output_reldata;
2586 asection *output_section;
2587 const struct elf_backend_data *bed;
2588 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2589 struct bfd_elf_section_data *esdo;
2590
2591 output_section = input_section->output_section;
2592
2593 bed = get_elf_backend_data (output_bfd);
2594 esdo = elf_section_data (output_section);
2595 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2596 {
2597 output_reldata = &esdo->rel;
2598 swap_out = bed->s->swap_reloc_out;
2599 }
2600 else if (esdo->rela.hdr
2601 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2602 {
2603 output_reldata = &esdo->rela;
2604 swap_out = bed->s->swap_reloca_out;
2605 }
2606 else
2607 {
2608 _bfd_error_handler
2609 /* xgettext:c-format */
2610 (_("%B: relocation size mismatch in %B section %A"),
2611 output_bfd, input_section->owner, input_section);
2612 bfd_set_error (bfd_error_wrong_format);
2613 return FALSE;
2614 }
2615
2616 erel = output_reldata->hdr->contents;
2617 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2618 irela = internal_relocs;
2619 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2620 * bed->s->int_rels_per_ext_rel);
2621 while (irela < irelaend)
2622 {
2623 (*swap_out) (output_bfd, irela, erel);
2624 irela += bed->s->int_rels_per_ext_rel;
2625 erel += input_rel_hdr->sh_entsize;
2626 }
2627
2628 /* Bump the counter, so that we know where to add the next set of
2629 relocations. */
2630 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2631
2632 return TRUE;
2633 }
2634 \f
2635 /* Make weak undefined symbols in PIE dynamic. */
2636
2637 bfd_boolean
2638 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2639 struct elf_link_hash_entry *h)
2640 {
2641 if (bfd_link_pie (info)
2642 && h->dynindx == -1
2643 && h->root.type == bfd_link_hash_undefweak)
2644 return bfd_elf_link_record_dynamic_symbol (info, h);
2645
2646 return TRUE;
2647 }
2648
2649 /* Fix up the flags for a symbol. This handles various cases which
2650 can only be fixed after all the input files are seen. This is
2651 currently called by both adjust_dynamic_symbol and
2652 assign_sym_version, which is unnecessary but perhaps more robust in
2653 the face of future changes. */
2654
2655 static bfd_boolean
2656 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2657 struct elf_info_failed *eif)
2658 {
2659 const struct elf_backend_data *bed;
2660
2661 /* If this symbol was mentioned in a non-ELF file, try to set
2662 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2663 permit a non-ELF file to correctly refer to a symbol defined in
2664 an ELF dynamic object. */
2665 if (h->non_elf)
2666 {
2667 while (h->root.type == bfd_link_hash_indirect)
2668 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2669
2670 if (h->root.type != bfd_link_hash_defined
2671 && h->root.type != bfd_link_hash_defweak)
2672 {
2673 h->ref_regular = 1;
2674 h->ref_regular_nonweak = 1;
2675 }
2676 else
2677 {
2678 if (h->root.u.def.section->owner != NULL
2679 && (bfd_get_flavour (h->root.u.def.section->owner)
2680 == bfd_target_elf_flavour))
2681 {
2682 h->ref_regular = 1;
2683 h->ref_regular_nonweak = 1;
2684 }
2685 else
2686 h->def_regular = 1;
2687 }
2688
2689 if (h->dynindx == -1
2690 && (h->def_dynamic
2691 || h->ref_dynamic))
2692 {
2693 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2694 {
2695 eif->failed = TRUE;
2696 return FALSE;
2697 }
2698 }
2699 }
2700 else
2701 {
2702 /* Unfortunately, NON_ELF is only correct if the symbol
2703 was first seen in a non-ELF file. Fortunately, if the symbol
2704 was first seen in an ELF file, we're probably OK unless the
2705 symbol was defined in a non-ELF file. Catch that case here.
2706 FIXME: We're still in trouble if the symbol was first seen in
2707 a dynamic object, and then later in a non-ELF regular object. */
2708 if ((h->root.type == bfd_link_hash_defined
2709 || h->root.type == bfd_link_hash_defweak)
2710 && !h->def_regular
2711 && (h->root.u.def.section->owner != NULL
2712 ? (bfd_get_flavour (h->root.u.def.section->owner)
2713 != bfd_target_elf_flavour)
2714 : (bfd_is_abs_section (h->root.u.def.section)
2715 && !h->def_dynamic)))
2716 h->def_regular = 1;
2717 }
2718
2719 /* Backend specific symbol fixup. */
2720 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2721 if (bed->elf_backend_fixup_symbol
2722 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2723 return FALSE;
2724
2725 /* If this is a final link, and the symbol was defined as a common
2726 symbol in a regular object file, and there was no definition in
2727 any dynamic object, then the linker will have allocated space for
2728 the symbol in a common section but the DEF_REGULAR
2729 flag will not have been set. */
2730 if (h->root.type == bfd_link_hash_defined
2731 && !h->def_regular
2732 && h->ref_regular
2733 && !h->def_dynamic
2734 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2735 h->def_regular = 1;
2736
2737 /* If a weak undefined symbol has non-default visibility, we also
2738 hide it from the dynamic linker. */
2739 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2740 && h->root.type == bfd_link_hash_undefweak)
2741 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2742
2743 /* A hidden versioned symbol in executable should be forced local if
2744 it is is locally defined, not referenced by shared library and not
2745 exported. */
2746 else if (bfd_link_executable (eif->info)
2747 && h->versioned == versioned_hidden
2748 && !eif->info->export_dynamic
2749 && !h->dynamic
2750 && !h->ref_dynamic
2751 && h->def_regular)
2752 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2753
2754 /* If -Bsymbolic was used (which means to bind references to global
2755 symbols to the definition within the shared object), and this
2756 symbol was defined in a regular object, then it actually doesn't
2757 need a PLT entry. Likewise, if the symbol has non-default
2758 visibility. If the symbol has hidden or internal visibility, we
2759 will force it local. */
2760 else if (h->needs_plt
2761 && bfd_link_pic (eif->info)
2762 && is_elf_hash_table (eif->info->hash)
2763 && (SYMBOLIC_BIND (eif->info, h)
2764 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2765 && h->def_regular)
2766 {
2767 bfd_boolean force_local;
2768
2769 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2770 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2771 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2772 }
2773
2774 /* If this is a weak defined symbol in a dynamic object, and we know
2775 the real definition in the dynamic object, copy interesting flags
2776 over to the real definition. */
2777 if (h->u.weakdef != NULL)
2778 {
2779 /* If the real definition is defined by a regular object file,
2780 don't do anything special. See the longer description in
2781 _bfd_elf_adjust_dynamic_symbol, below. */
2782 if (h->u.weakdef->def_regular)
2783 h->u.weakdef = NULL;
2784 else
2785 {
2786 struct elf_link_hash_entry *weakdef = h->u.weakdef;
2787
2788 while (h->root.type == bfd_link_hash_indirect)
2789 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2790
2791 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2792 || h->root.type == bfd_link_hash_defweak);
2793 BFD_ASSERT (weakdef->def_dynamic);
2794 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2795 || weakdef->root.type == bfd_link_hash_defweak);
2796 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2797 }
2798 }
2799
2800 return TRUE;
2801 }
2802
2803 /* Make the backend pick a good value for a dynamic symbol. This is
2804 called via elf_link_hash_traverse, and also calls itself
2805 recursively. */
2806
2807 static bfd_boolean
2808 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2809 {
2810 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2811 bfd *dynobj;
2812 const struct elf_backend_data *bed;
2813
2814 if (! is_elf_hash_table (eif->info->hash))
2815 return FALSE;
2816
2817 /* Ignore indirect symbols. These are added by the versioning code. */
2818 if (h->root.type == bfd_link_hash_indirect)
2819 return TRUE;
2820
2821 /* Fix the symbol flags. */
2822 if (! _bfd_elf_fix_symbol_flags (h, eif))
2823 return FALSE;
2824
2825 if (h->root.type == bfd_link_hash_undefweak)
2826 {
2827 if (eif->info->dynamic_undefined_weak == 0)
2828 _bfd_elf_link_hash_hide_symbol (eif->info, h, TRUE);
2829 else if (eif->info->dynamic_undefined_weak > 0
2830 && h->ref_regular
2831 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2832 && !bfd_hide_sym_by_version (eif->info->version_info,
2833 h->root.root.string))
2834 {
2835 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2836 {
2837 eif->failed = TRUE;
2838 return FALSE;
2839 }
2840 }
2841 }
2842
2843 /* If this symbol does not require a PLT entry, and it is not
2844 defined by a dynamic object, or is not referenced by a regular
2845 object, ignore it. We do have to handle a weak defined symbol,
2846 even if no regular object refers to it, if we decided to add it
2847 to the dynamic symbol table. FIXME: Do we normally need to worry
2848 about symbols which are defined by one dynamic object and
2849 referenced by another one? */
2850 if (!h->needs_plt
2851 && h->type != STT_GNU_IFUNC
2852 && (h->def_regular
2853 || !h->def_dynamic
2854 || (!h->ref_regular
2855 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2856 {
2857 h->plt = elf_hash_table (eif->info)->init_plt_offset;
2858 return TRUE;
2859 }
2860
2861 /* If we've already adjusted this symbol, don't do it again. This
2862 can happen via a recursive call. */
2863 if (h->dynamic_adjusted)
2864 return TRUE;
2865
2866 /* Don't look at this symbol again. Note that we must set this
2867 after checking the above conditions, because we may look at a
2868 symbol once, decide not to do anything, and then get called
2869 recursively later after REF_REGULAR is set below. */
2870 h->dynamic_adjusted = 1;
2871
2872 /* If this is a weak definition, and we know a real definition, and
2873 the real symbol is not itself defined by a regular object file,
2874 then get a good value for the real definition. We handle the
2875 real symbol first, for the convenience of the backend routine.
2876
2877 Note that there is a confusing case here. If the real definition
2878 is defined by a regular object file, we don't get the real symbol
2879 from the dynamic object, but we do get the weak symbol. If the
2880 processor backend uses a COPY reloc, then if some routine in the
2881 dynamic object changes the real symbol, we will not see that
2882 change in the corresponding weak symbol. This is the way other
2883 ELF linkers work as well, and seems to be a result of the shared
2884 library model.
2885
2886 I will clarify this issue. Most SVR4 shared libraries define the
2887 variable _timezone and define timezone as a weak synonym. The
2888 tzset call changes _timezone. If you write
2889 extern int timezone;
2890 int _timezone = 5;
2891 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2892 you might expect that, since timezone is a synonym for _timezone,
2893 the same number will print both times. However, if the processor
2894 backend uses a COPY reloc, then actually timezone will be copied
2895 into your process image, and, since you define _timezone
2896 yourself, _timezone will not. Thus timezone and _timezone will
2897 wind up at different memory locations. The tzset call will set
2898 _timezone, leaving timezone unchanged. */
2899
2900 if (h->u.weakdef != NULL)
2901 {
2902 /* If we get to this point, there is an implicit reference to
2903 H->U.WEAKDEF by a regular object file via the weak symbol H. */
2904 h->u.weakdef->ref_regular = 1;
2905
2906 /* Ensure that the backend adjust_dynamic_symbol function sees
2907 H->U.WEAKDEF before H by recursively calling ourselves. */
2908 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2909 return FALSE;
2910 }
2911
2912 /* If a symbol has no type and no size and does not require a PLT
2913 entry, then we are probably about to do the wrong thing here: we
2914 are probably going to create a COPY reloc for an empty object.
2915 This case can arise when a shared object is built with assembly
2916 code, and the assembly code fails to set the symbol type. */
2917 if (h->size == 0
2918 && h->type == STT_NOTYPE
2919 && !h->needs_plt)
2920 _bfd_error_handler
2921 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2922 h->root.root.string);
2923
2924 dynobj = elf_hash_table (eif->info)->dynobj;
2925 bed = get_elf_backend_data (dynobj);
2926
2927 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2928 {
2929 eif->failed = TRUE;
2930 return FALSE;
2931 }
2932
2933 return TRUE;
2934 }
2935
2936 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2937 DYNBSS. */
2938
2939 bfd_boolean
2940 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2941 struct elf_link_hash_entry *h,
2942 asection *dynbss)
2943 {
2944 unsigned int power_of_two;
2945 bfd_vma mask;
2946 asection *sec = h->root.u.def.section;
2947
2948 /* The section alignment of the definition is the maximum alignment
2949 requirement of symbols defined in the section. Since we don't
2950 know the symbol alignment requirement, we start with the
2951 maximum alignment and check low bits of the symbol address
2952 for the minimum alignment. */
2953 power_of_two = bfd_get_section_alignment (sec->owner, sec);
2954 mask = ((bfd_vma) 1 << power_of_two) - 1;
2955 while ((h->root.u.def.value & mask) != 0)
2956 {
2957 mask >>= 1;
2958 --power_of_two;
2959 }
2960
2961 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2962 dynbss))
2963 {
2964 /* Adjust the section alignment if needed. */
2965 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2966 power_of_two))
2967 return FALSE;
2968 }
2969
2970 /* We make sure that the symbol will be aligned properly. */
2971 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2972
2973 /* Define the symbol as being at this point in DYNBSS. */
2974 h->root.u.def.section = dynbss;
2975 h->root.u.def.value = dynbss->size;
2976
2977 /* Increment the size of DYNBSS to make room for the symbol. */
2978 dynbss->size += h->size;
2979
2980 /* No error if extern_protected_data is true. */
2981 if (h->protected_def
2982 && (!info->extern_protected_data
2983 || (info->extern_protected_data < 0
2984 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2985 info->callbacks->einfo
2986 (_("%P: copy reloc against protected `%T' is dangerous\n"),
2987 h->root.root.string);
2988
2989 return TRUE;
2990 }
2991
2992 /* Adjust all external symbols pointing into SEC_MERGE sections
2993 to reflect the object merging within the sections. */
2994
2995 static bfd_boolean
2996 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2997 {
2998 asection *sec;
2999
3000 if ((h->root.type == bfd_link_hash_defined
3001 || h->root.type == bfd_link_hash_defweak)
3002 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3003 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3004 {
3005 bfd *output_bfd = (bfd *) data;
3006
3007 h->root.u.def.value =
3008 _bfd_merged_section_offset (output_bfd,
3009 &h->root.u.def.section,
3010 elf_section_data (sec)->sec_info,
3011 h->root.u.def.value);
3012 }
3013
3014 return TRUE;
3015 }
3016
3017 /* Returns false if the symbol referred to by H should be considered
3018 to resolve local to the current module, and true if it should be
3019 considered to bind dynamically. */
3020
3021 bfd_boolean
3022 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3023 struct bfd_link_info *info,
3024 bfd_boolean not_local_protected)
3025 {
3026 bfd_boolean binding_stays_local_p;
3027 const struct elf_backend_data *bed;
3028 struct elf_link_hash_table *hash_table;
3029
3030 if (h == NULL)
3031 return FALSE;
3032
3033 while (h->root.type == bfd_link_hash_indirect
3034 || h->root.type == bfd_link_hash_warning)
3035 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3036
3037 /* If it was forced local, then clearly it's not dynamic. */
3038 if (h->dynindx == -1)
3039 return FALSE;
3040 if (h->forced_local)
3041 return FALSE;
3042
3043 /* Identify the cases where name binding rules say that a
3044 visible symbol resolves locally. */
3045 binding_stays_local_p = (bfd_link_executable (info)
3046 || SYMBOLIC_BIND (info, h));
3047
3048 switch (ELF_ST_VISIBILITY (h->other))
3049 {
3050 case STV_INTERNAL:
3051 case STV_HIDDEN:
3052 return FALSE;
3053
3054 case STV_PROTECTED:
3055 hash_table = elf_hash_table (info);
3056 if (!is_elf_hash_table (hash_table))
3057 return FALSE;
3058
3059 bed = get_elf_backend_data (hash_table->dynobj);
3060
3061 /* Proper resolution for function pointer equality may require
3062 that these symbols perhaps be resolved dynamically, even though
3063 we should be resolving them to the current module. */
3064 if (!not_local_protected || !bed->is_function_type (h->type))
3065 binding_stays_local_p = TRUE;
3066 break;
3067
3068 default:
3069 break;
3070 }
3071
3072 /* If it isn't defined locally, then clearly it's dynamic. */
3073 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3074 return TRUE;
3075
3076 /* Otherwise, the symbol is dynamic if binding rules don't tell
3077 us that it remains local. */
3078 return !binding_stays_local_p;
3079 }
3080
3081 /* Return true if the symbol referred to by H should be considered
3082 to resolve local to the current module, and false otherwise. Differs
3083 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3084 undefined symbols. The two functions are virtually identical except
3085 for the place where dynindx == -1 is tested. If that test is true,
3086 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3087 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3088 defined symbols.
3089 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3090 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3091 treatment of undefined weak symbols. For those that do not make
3092 undefined weak symbols dynamic, both functions may return false. */
3093
3094 bfd_boolean
3095 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3096 struct bfd_link_info *info,
3097 bfd_boolean local_protected)
3098 {
3099 const struct elf_backend_data *bed;
3100 struct elf_link_hash_table *hash_table;
3101
3102 /* If it's a local sym, of course we resolve locally. */
3103 if (h == NULL)
3104 return TRUE;
3105
3106 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3107 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3108 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3109 return TRUE;
3110
3111 /* Forced local symbols resolve locally. */
3112 if (h->forced_local)
3113 return TRUE;
3114
3115 /* Common symbols that become definitions don't get the DEF_REGULAR
3116 flag set, so test it first, and don't bail out. */
3117 if (ELF_COMMON_DEF_P (h))
3118 /* Do nothing. */;
3119 /* If we don't have a definition in a regular file, then we can't
3120 resolve locally. The sym is either undefined or dynamic. */
3121 else if (!h->def_regular)
3122 return FALSE;
3123
3124 /* Non-dynamic symbols resolve locally. */
3125 if (h->dynindx == -1)
3126 return TRUE;
3127
3128 /* At this point, we know the symbol is defined and dynamic. In an
3129 executable it must resolve locally, likewise when building symbolic
3130 shared libraries. */
3131 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3132 return TRUE;
3133
3134 /* Now deal with defined dynamic symbols in shared libraries. Ones
3135 with default visibility might not resolve locally. */
3136 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3137 return FALSE;
3138
3139 hash_table = elf_hash_table (info);
3140 if (!is_elf_hash_table (hash_table))
3141 return TRUE;
3142
3143 bed = get_elf_backend_data (hash_table->dynobj);
3144
3145 /* If extern_protected_data is false, STV_PROTECTED non-function
3146 symbols are local. */
3147 if ((!info->extern_protected_data
3148 || (info->extern_protected_data < 0
3149 && !bed->extern_protected_data))
3150 && !bed->is_function_type (h->type))
3151 return TRUE;
3152
3153 /* Function pointer equality tests may require that STV_PROTECTED
3154 symbols be treated as dynamic symbols. If the address of a
3155 function not defined in an executable is set to that function's
3156 plt entry in the executable, then the address of the function in
3157 a shared library must also be the plt entry in the executable. */
3158 return local_protected;
3159 }
3160
3161 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3162 aligned. Returns the first TLS output section. */
3163
3164 struct bfd_section *
3165 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3166 {
3167 struct bfd_section *sec, *tls;
3168 unsigned int align = 0;
3169
3170 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3171 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3172 break;
3173 tls = sec;
3174
3175 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3176 if (sec->alignment_power > align)
3177 align = sec->alignment_power;
3178
3179 elf_hash_table (info)->tls_sec = tls;
3180
3181 /* Ensure the alignment of the first section is the largest alignment,
3182 so that the tls segment starts aligned. */
3183 if (tls != NULL)
3184 tls->alignment_power = align;
3185
3186 return tls;
3187 }
3188
3189 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3190 static bfd_boolean
3191 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3192 Elf_Internal_Sym *sym)
3193 {
3194 const struct elf_backend_data *bed;
3195
3196 /* Local symbols do not count, but target specific ones might. */
3197 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3198 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3199 return FALSE;
3200
3201 bed = get_elf_backend_data (abfd);
3202 /* Function symbols do not count. */
3203 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3204 return FALSE;
3205
3206 /* If the section is undefined, then so is the symbol. */
3207 if (sym->st_shndx == SHN_UNDEF)
3208 return FALSE;
3209
3210 /* If the symbol is defined in the common section, then
3211 it is a common definition and so does not count. */
3212 if (bed->common_definition (sym))
3213 return FALSE;
3214
3215 /* If the symbol is in a target specific section then we
3216 must rely upon the backend to tell us what it is. */
3217 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3218 /* FIXME - this function is not coded yet:
3219
3220 return _bfd_is_global_symbol_definition (abfd, sym);
3221
3222 Instead for now assume that the definition is not global,
3223 Even if this is wrong, at least the linker will behave
3224 in the same way that it used to do. */
3225 return FALSE;
3226
3227 return TRUE;
3228 }
3229
3230 /* Search the symbol table of the archive element of the archive ABFD
3231 whose archive map contains a mention of SYMDEF, and determine if
3232 the symbol is defined in this element. */
3233 static bfd_boolean
3234 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3235 {
3236 Elf_Internal_Shdr * hdr;
3237 size_t symcount;
3238 size_t extsymcount;
3239 size_t extsymoff;
3240 Elf_Internal_Sym *isymbuf;
3241 Elf_Internal_Sym *isym;
3242 Elf_Internal_Sym *isymend;
3243 bfd_boolean result;
3244
3245 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3246 if (abfd == NULL)
3247 return FALSE;
3248
3249 if (! bfd_check_format (abfd, bfd_object))
3250 return FALSE;
3251
3252 /* Select the appropriate symbol table. If we don't know if the
3253 object file is an IR object, give linker LTO plugin a chance to
3254 get the correct symbol table. */
3255 if (abfd->plugin_format == bfd_plugin_yes
3256 #if BFD_SUPPORTS_PLUGINS
3257 || (abfd->plugin_format == bfd_plugin_unknown
3258 && bfd_link_plugin_object_p (abfd))
3259 #endif
3260 )
3261 {
3262 /* Use the IR symbol table if the object has been claimed by
3263 plugin. */
3264 abfd = abfd->plugin_dummy_bfd;
3265 hdr = &elf_tdata (abfd)->symtab_hdr;
3266 }
3267 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3268 hdr = &elf_tdata (abfd)->symtab_hdr;
3269 else
3270 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3271
3272 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3273
3274 /* The sh_info field of the symtab header tells us where the
3275 external symbols start. We don't care about the local symbols. */
3276 if (elf_bad_symtab (abfd))
3277 {
3278 extsymcount = symcount;
3279 extsymoff = 0;
3280 }
3281 else
3282 {
3283 extsymcount = symcount - hdr->sh_info;
3284 extsymoff = hdr->sh_info;
3285 }
3286
3287 if (extsymcount == 0)
3288 return FALSE;
3289
3290 /* Read in the symbol table. */
3291 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3292 NULL, NULL, NULL);
3293 if (isymbuf == NULL)
3294 return FALSE;
3295
3296 /* Scan the symbol table looking for SYMDEF. */
3297 result = FALSE;
3298 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3299 {
3300 const char *name;
3301
3302 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3303 isym->st_name);
3304 if (name == NULL)
3305 break;
3306
3307 if (strcmp (name, symdef->name) == 0)
3308 {
3309 result = is_global_data_symbol_definition (abfd, isym);
3310 break;
3311 }
3312 }
3313
3314 free (isymbuf);
3315
3316 return result;
3317 }
3318 \f
3319 /* Add an entry to the .dynamic table. */
3320
3321 bfd_boolean
3322 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3323 bfd_vma tag,
3324 bfd_vma val)
3325 {
3326 struct elf_link_hash_table *hash_table;
3327 const struct elf_backend_data *bed;
3328 asection *s;
3329 bfd_size_type newsize;
3330 bfd_byte *newcontents;
3331 Elf_Internal_Dyn dyn;
3332
3333 hash_table = elf_hash_table (info);
3334 if (! is_elf_hash_table (hash_table))
3335 return FALSE;
3336
3337 bed = get_elf_backend_data (hash_table->dynobj);
3338 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3339 BFD_ASSERT (s != NULL);
3340
3341 newsize = s->size + bed->s->sizeof_dyn;
3342 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3343 if (newcontents == NULL)
3344 return FALSE;
3345
3346 dyn.d_tag = tag;
3347 dyn.d_un.d_val = val;
3348 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3349
3350 s->size = newsize;
3351 s->contents = newcontents;
3352
3353 return TRUE;
3354 }
3355
3356 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3357 otherwise just check whether one already exists. Returns -1 on error,
3358 1 if a DT_NEEDED tag already exists, and 0 on success. */
3359
3360 static int
3361 elf_add_dt_needed_tag (bfd *abfd,
3362 struct bfd_link_info *info,
3363 const char *soname,
3364 bfd_boolean do_it)
3365 {
3366 struct elf_link_hash_table *hash_table;
3367 size_t strindex;
3368
3369 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3370 return -1;
3371
3372 hash_table = elf_hash_table (info);
3373 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3374 if (strindex == (size_t) -1)
3375 return -1;
3376
3377 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3378 {
3379 asection *sdyn;
3380 const struct elf_backend_data *bed;
3381 bfd_byte *extdyn;
3382
3383 bed = get_elf_backend_data (hash_table->dynobj);
3384 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3385 if (sdyn != NULL)
3386 for (extdyn = sdyn->contents;
3387 extdyn < sdyn->contents + sdyn->size;
3388 extdyn += bed->s->sizeof_dyn)
3389 {
3390 Elf_Internal_Dyn dyn;
3391
3392 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3393 if (dyn.d_tag == DT_NEEDED
3394 && dyn.d_un.d_val == strindex)
3395 {
3396 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3397 return 1;
3398 }
3399 }
3400 }
3401
3402 if (do_it)
3403 {
3404 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3405 return -1;
3406
3407 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3408 return -1;
3409 }
3410 else
3411 /* We were just checking for existence of the tag. */
3412 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3413
3414 return 0;
3415 }
3416
3417 /* Return true if SONAME is on the needed list between NEEDED and STOP
3418 (or the end of list if STOP is NULL), and needed by a library that
3419 will be loaded. */
3420
3421 static bfd_boolean
3422 on_needed_list (const char *soname,
3423 struct bfd_link_needed_list *needed,
3424 struct bfd_link_needed_list *stop)
3425 {
3426 struct bfd_link_needed_list *look;
3427 for (look = needed; look != stop; look = look->next)
3428 if (strcmp (soname, look->name) == 0
3429 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3430 /* If needed by a library that itself is not directly
3431 needed, recursively check whether that library is
3432 indirectly needed. Since we add DT_NEEDED entries to
3433 the end of the list, library dependencies appear after
3434 the library. Therefore search prior to the current
3435 LOOK, preventing possible infinite recursion. */
3436 || on_needed_list (elf_dt_name (look->by), needed, look)))
3437 return TRUE;
3438
3439 return FALSE;
3440 }
3441
3442 /* Sort symbol by value, section, and size. */
3443 static int
3444 elf_sort_symbol (const void *arg1, const void *arg2)
3445 {
3446 const struct elf_link_hash_entry *h1;
3447 const struct elf_link_hash_entry *h2;
3448 bfd_signed_vma vdiff;
3449
3450 h1 = *(const struct elf_link_hash_entry **) arg1;
3451 h2 = *(const struct elf_link_hash_entry **) arg2;
3452 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3453 if (vdiff != 0)
3454 return vdiff > 0 ? 1 : -1;
3455 else
3456 {
3457 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3458 if (sdiff != 0)
3459 return sdiff > 0 ? 1 : -1;
3460 }
3461 vdiff = h1->size - h2->size;
3462 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3463 }
3464
3465 /* This function is used to adjust offsets into .dynstr for
3466 dynamic symbols. This is called via elf_link_hash_traverse. */
3467
3468 static bfd_boolean
3469 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3470 {
3471 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3472
3473 if (h->dynindx != -1)
3474 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3475 return TRUE;
3476 }
3477
3478 /* Assign string offsets in .dynstr, update all structures referencing
3479 them. */
3480
3481 static bfd_boolean
3482 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3483 {
3484 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3485 struct elf_link_local_dynamic_entry *entry;
3486 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3487 bfd *dynobj = hash_table->dynobj;
3488 asection *sdyn;
3489 bfd_size_type size;
3490 const struct elf_backend_data *bed;
3491 bfd_byte *extdyn;
3492
3493 _bfd_elf_strtab_finalize (dynstr);
3494 size = _bfd_elf_strtab_size (dynstr);
3495
3496 bed = get_elf_backend_data (dynobj);
3497 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3498 BFD_ASSERT (sdyn != NULL);
3499
3500 /* Update all .dynamic entries referencing .dynstr strings. */
3501 for (extdyn = sdyn->contents;
3502 extdyn < sdyn->contents + sdyn->size;
3503 extdyn += bed->s->sizeof_dyn)
3504 {
3505 Elf_Internal_Dyn dyn;
3506
3507 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3508 switch (dyn.d_tag)
3509 {
3510 case DT_STRSZ:
3511 dyn.d_un.d_val = size;
3512 break;
3513 case DT_NEEDED:
3514 case DT_SONAME:
3515 case DT_RPATH:
3516 case DT_RUNPATH:
3517 case DT_FILTER:
3518 case DT_AUXILIARY:
3519 case DT_AUDIT:
3520 case DT_DEPAUDIT:
3521 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3522 break;
3523 default:
3524 continue;
3525 }
3526 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3527 }
3528
3529 /* Now update local dynamic symbols. */
3530 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3531 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3532 entry->isym.st_name);
3533
3534 /* And the rest of dynamic symbols. */
3535 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3536
3537 /* Adjust version definitions. */
3538 if (elf_tdata (output_bfd)->cverdefs)
3539 {
3540 asection *s;
3541 bfd_byte *p;
3542 size_t i;
3543 Elf_Internal_Verdef def;
3544 Elf_Internal_Verdaux defaux;
3545
3546 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3547 p = s->contents;
3548 do
3549 {
3550 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3551 &def);
3552 p += sizeof (Elf_External_Verdef);
3553 if (def.vd_aux != sizeof (Elf_External_Verdef))
3554 continue;
3555 for (i = 0; i < def.vd_cnt; ++i)
3556 {
3557 _bfd_elf_swap_verdaux_in (output_bfd,
3558 (Elf_External_Verdaux *) p, &defaux);
3559 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3560 defaux.vda_name);
3561 _bfd_elf_swap_verdaux_out (output_bfd,
3562 &defaux, (Elf_External_Verdaux *) p);
3563 p += sizeof (Elf_External_Verdaux);
3564 }
3565 }
3566 while (def.vd_next);
3567 }
3568
3569 /* Adjust version references. */
3570 if (elf_tdata (output_bfd)->verref)
3571 {
3572 asection *s;
3573 bfd_byte *p;
3574 size_t i;
3575 Elf_Internal_Verneed need;
3576 Elf_Internal_Vernaux needaux;
3577
3578 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3579 p = s->contents;
3580 do
3581 {
3582 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3583 &need);
3584 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3585 _bfd_elf_swap_verneed_out (output_bfd, &need,
3586 (Elf_External_Verneed *) p);
3587 p += sizeof (Elf_External_Verneed);
3588 for (i = 0; i < need.vn_cnt; ++i)
3589 {
3590 _bfd_elf_swap_vernaux_in (output_bfd,
3591 (Elf_External_Vernaux *) p, &needaux);
3592 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3593 needaux.vna_name);
3594 _bfd_elf_swap_vernaux_out (output_bfd,
3595 &needaux,
3596 (Elf_External_Vernaux *) p);
3597 p += sizeof (Elf_External_Vernaux);
3598 }
3599 }
3600 while (need.vn_next);
3601 }
3602
3603 return TRUE;
3604 }
3605 \f
3606 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3607 The default is to only match when the INPUT and OUTPUT are exactly
3608 the same target. */
3609
3610 bfd_boolean
3611 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3612 const bfd_target *output)
3613 {
3614 return input == output;
3615 }
3616
3617 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3618 This version is used when different targets for the same architecture
3619 are virtually identical. */
3620
3621 bfd_boolean
3622 _bfd_elf_relocs_compatible (const bfd_target *input,
3623 const bfd_target *output)
3624 {
3625 const struct elf_backend_data *obed, *ibed;
3626
3627 if (input == output)
3628 return TRUE;
3629
3630 ibed = xvec_get_elf_backend_data (input);
3631 obed = xvec_get_elf_backend_data (output);
3632
3633 if (ibed->arch != obed->arch)
3634 return FALSE;
3635
3636 /* If both backends are using this function, deem them compatible. */
3637 return ibed->relocs_compatible == obed->relocs_compatible;
3638 }
3639
3640 /* Make a special call to the linker "notice" function to tell it that
3641 we are about to handle an as-needed lib, or have finished
3642 processing the lib. */
3643
3644 bfd_boolean
3645 _bfd_elf_notice_as_needed (bfd *ibfd,
3646 struct bfd_link_info *info,
3647 enum notice_asneeded_action act)
3648 {
3649 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3650 }
3651
3652 /* Check relocations an ELF object file. */
3653
3654 bfd_boolean
3655 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3656 {
3657 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3658 struct elf_link_hash_table *htab = elf_hash_table (info);
3659
3660 /* If this object is the same format as the output object, and it is
3661 not a shared library, then let the backend look through the
3662 relocs.
3663
3664 This is required to build global offset table entries and to
3665 arrange for dynamic relocs. It is not required for the
3666 particular common case of linking non PIC code, even when linking
3667 against shared libraries, but unfortunately there is no way of
3668 knowing whether an object file has been compiled PIC or not.
3669 Looking through the relocs is not particularly time consuming.
3670 The problem is that we must either (1) keep the relocs in memory,
3671 which causes the linker to require additional runtime memory or
3672 (2) read the relocs twice from the input file, which wastes time.
3673 This would be a good case for using mmap.
3674
3675 I have no idea how to handle linking PIC code into a file of a
3676 different format. It probably can't be done. */
3677 if ((abfd->flags & DYNAMIC) == 0
3678 && is_elf_hash_table (htab)
3679 && bed->check_relocs != NULL
3680 && elf_object_id (abfd) == elf_hash_table_id (htab)
3681 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3682 {
3683 asection *o;
3684
3685 for (o = abfd->sections; o != NULL; o = o->next)
3686 {
3687 Elf_Internal_Rela *internal_relocs;
3688 bfd_boolean ok;
3689
3690 /* Don't check relocations in excluded sections. */
3691 if ((o->flags & SEC_RELOC) == 0
3692 || (o->flags & SEC_EXCLUDE) != 0
3693 || o->reloc_count == 0
3694 || ((info->strip == strip_all || info->strip == strip_debugger)
3695 && (o->flags & SEC_DEBUGGING) != 0)
3696 || bfd_is_abs_section (o->output_section))
3697 continue;
3698
3699 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3700 info->keep_memory);
3701 if (internal_relocs == NULL)
3702 return FALSE;
3703
3704 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3705
3706 if (elf_section_data (o)->relocs != internal_relocs)
3707 free (internal_relocs);
3708
3709 if (! ok)
3710 return FALSE;
3711 }
3712 }
3713
3714 return TRUE;
3715 }
3716
3717 /* Add symbols from an ELF object file to the linker hash table. */
3718
3719 static bfd_boolean
3720 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3721 {
3722 Elf_Internal_Ehdr *ehdr;
3723 Elf_Internal_Shdr *hdr;
3724 size_t symcount;
3725 size_t extsymcount;
3726 size_t extsymoff;
3727 struct elf_link_hash_entry **sym_hash;
3728 bfd_boolean dynamic;
3729 Elf_External_Versym *extversym = NULL;
3730 Elf_External_Versym *ever;
3731 struct elf_link_hash_entry *weaks;
3732 struct elf_link_hash_entry **nondeflt_vers = NULL;
3733 size_t nondeflt_vers_cnt = 0;
3734 Elf_Internal_Sym *isymbuf = NULL;
3735 Elf_Internal_Sym *isym;
3736 Elf_Internal_Sym *isymend;
3737 const struct elf_backend_data *bed;
3738 bfd_boolean add_needed;
3739 struct elf_link_hash_table *htab;
3740 bfd_size_type amt;
3741 void *alloc_mark = NULL;
3742 struct bfd_hash_entry **old_table = NULL;
3743 unsigned int old_size = 0;
3744 unsigned int old_count = 0;
3745 void *old_tab = NULL;
3746 void *old_ent;
3747 struct bfd_link_hash_entry *old_undefs = NULL;
3748 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3749 void *old_strtab = NULL;
3750 size_t tabsize = 0;
3751 asection *s;
3752 bfd_boolean just_syms;
3753
3754 htab = elf_hash_table (info);
3755 bed = get_elf_backend_data (abfd);
3756
3757 if ((abfd->flags & DYNAMIC) == 0)
3758 dynamic = FALSE;
3759 else
3760 {
3761 dynamic = TRUE;
3762
3763 /* You can't use -r against a dynamic object. Also, there's no
3764 hope of using a dynamic object which does not exactly match
3765 the format of the output file. */
3766 if (bfd_link_relocatable (info)
3767 || !is_elf_hash_table (htab)
3768 || info->output_bfd->xvec != abfd->xvec)
3769 {
3770 if (bfd_link_relocatable (info))
3771 bfd_set_error (bfd_error_invalid_operation);
3772 else
3773 bfd_set_error (bfd_error_wrong_format);
3774 goto error_return;
3775 }
3776 }
3777
3778 ehdr = elf_elfheader (abfd);
3779 if (info->warn_alternate_em
3780 && bed->elf_machine_code != ehdr->e_machine
3781 && ((bed->elf_machine_alt1 != 0
3782 && ehdr->e_machine == bed->elf_machine_alt1)
3783 || (bed->elf_machine_alt2 != 0
3784 && ehdr->e_machine == bed->elf_machine_alt2)))
3785 info->callbacks->einfo
3786 /* xgettext:c-format */
3787 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3788 ehdr->e_machine, abfd, bed->elf_machine_code);
3789
3790 /* As a GNU extension, any input sections which are named
3791 .gnu.warning.SYMBOL are treated as warning symbols for the given
3792 symbol. This differs from .gnu.warning sections, which generate
3793 warnings when they are included in an output file. */
3794 /* PR 12761: Also generate this warning when building shared libraries. */
3795 for (s = abfd->sections; s != NULL; s = s->next)
3796 {
3797 const char *name;
3798
3799 name = bfd_get_section_name (abfd, s);
3800 if (CONST_STRNEQ (name, ".gnu.warning."))
3801 {
3802 char *msg;
3803 bfd_size_type sz;
3804
3805 name += sizeof ".gnu.warning." - 1;
3806
3807 /* If this is a shared object, then look up the symbol
3808 in the hash table. If it is there, and it is already
3809 been defined, then we will not be using the entry
3810 from this shared object, so we don't need to warn.
3811 FIXME: If we see the definition in a regular object
3812 later on, we will warn, but we shouldn't. The only
3813 fix is to keep track of what warnings we are supposed
3814 to emit, and then handle them all at the end of the
3815 link. */
3816 if (dynamic)
3817 {
3818 struct elf_link_hash_entry *h;
3819
3820 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3821
3822 /* FIXME: What about bfd_link_hash_common? */
3823 if (h != NULL
3824 && (h->root.type == bfd_link_hash_defined
3825 || h->root.type == bfd_link_hash_defweak))
3826 continue;
3827 }
3828
3829 sz = s->size;
3830 msg = (char *) bfd_alloc (abfd, sz + 1);
3831 if (msg == NULL)
3832 goto error_return;
3833
3834 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3835 goto error_return;
3836
3837 msg[sz] = '\0';
3838
3839 if (! (_bfd_generic_link_add_one_symbol
3840 (info, abfd, name, BSF_WARNING, s, 0, msg,
3841 FALSE, bed->collect, NULL)))
3842 goto error_return;
3843
3844 if (bfd_link_executable (info))
3845 {
3846 /* Clobber the section size so that the warning does
3847 not get copied into the output file. */
3848 s->size = 0;
3849
3850 /* Also set SEC_EXCLUDE, so that symbols defined in
3851 the warning section don't get copied to the output. */
3852 s->flags |= SEC_EXCLUDE;
3853 }
3854 }
3855 }
3856
3857 just_syms = ((s = abfd->sections) != NULL
3858 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3859
3860 add_needed = TRUE;
3861 if (! dynamic)
3862 {
3863 /* If we are creating a shared library, create all the dynamic
3864 sections immediately. We need to attach them to something,
3865 so we attach them to this BFD, provided it is the right
3866 format and is not from ld --just-symbols. Always create the
3867 dynamic sections for -E/--dynamic-list. FIXME: If there
3868 are no input BFD's of the same format as the output, we can't
3869 make a shared library. */
3870 if (!just_syms
3871 && (bfd_link_pic (info)
3872 || (!bfd_link_relocatable (info)
3873 && info->nointerp
3874 && (info->export_dynamic || info->dynamic)))
3875 && is_elf_hash_table (htab)
3876 && info->output_bfd->xvec == abfd->xvec
3877 && !htab->dynamic_sections_created)
3878 {
3879 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3880 goto error_return;
3881 }
3882 }
3883 else if (!is_elf_hash_table (htab))
3884 goto error_return;
3885 else
3886 {
3887 const char *soname = NULL;
3888 char *audit = NULL;
3889 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3890 const Elf_Internal_Phdr *phdr;
3891 int ret;
3892
3893 /* ld --just-symbols and dynamic objects don't mix very well.
3894 ld shouldn't allow it. */
3895 if (just_syms)
3896 abort ();
3897
3898 /* If this dynamic lib was specified on the command line with
3899 --as-needed in effect, then we don't want to add a DT_NEEDED
3900 tag unless the lib is actually used. Similary for libs brought
3901 in by another lib's DT_NEEDED. When --no-add-needed is used
3902 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3903 any dynamic library in DT_NEEDED tags in the dynamic lib at
3904 all. */
3905 add_needed = (elf_dyn_lib_class (abfd)
3906 & (DYN_AS_NEEDED | DYN_DT_NEEDED
3907 | DYN_NO_NEEDED)) == 0;
3908
3909 s = bfd_get_section_by_name (abfd, ".dynamic");
3910 if (s != NULL)
3911 {
3912 bfd_byte *dynbuf;
3913 bfd_byte *extdyn;
3914 unsigned int elfsec;
3915 unsigned long shlink;
3916
3917 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3918 {
3919 error_free_dyn:
3920 free (dynbuf);
3921 goto error_return;
3922 }
3923
3924 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3925 if (elfsec == SHN_BAD)
3926 goto error_free_dyn;
3927 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3928
3929 for (extdyn = dynbuf;
3930 extdyn < dynbuf + s->size;
3931 extdyn += bed->s->sizeof_dyn)
3932 {
3933 Elf_Internal_Dyn dyn;
3934
3935 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3936 if (dyn.d_tag == DT_SONAME)
3937 {
3938 unsigned int tagv = dyn.d_un.d_val;
3939 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3940 if (soname == NULL)
3941 goto error_free_dyn;
3942 }
3943 if (dyn.d_tag == DT_NEEDED)
3944 {
3945 struct bfd_link_needed_list *n, **pn;
3946 char *fnm, *anm;
3947 unsigned int tagv = dyn.d_un.d_val;
3948
3949 amt = sizeof (struct bfd_link_needed_list);
3950 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3951 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3952 if (n == NULL || fnm == NULL)
3953 goto error_free_dyn;
3954 amt = strlen (fnm) + 1;
3955 anm = (char *) bfd_alloc (abfd, amt);
3956 if (anm == NULL)
3957 goto error_free_dyn;
3958 memcpy (anm, fnm, amt);
3959 n->name = anm;
3960 n->by = abfd;
3961 n->next = NULL;
3962 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3963 ;
3964 *pn = n;
3965 }
3966 if (dyn.d_tag == DT_RUNPATH)
3967 {
3968 struct bfd_link_needed_list *n, **pn;
3969 char *fnm, *anm;
3970 unsigned int tagv = dyn.d_un.d_val;
3971
3972 amt = sizeof (struct bfd_link_needed_list);
3973 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3974 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3975 if (n == NULL || fnm == NULL)
3976 goto error_free_dyn;
3977 amt = strlen (fnm) + 1;
3978 anm = (char *) bfd_alloc (abfd, amt);
3979 if (anm == NULL)
3980 goto error_free_dyn;
3981 memcpy (anm, fnm, amt);
3982 n->name = anm;
3983 n->by = abfd;
3984 n->next = NULL;
3985 for (pn = & runpath;
3986 *pn != NULL;
3987 pn = &(*pn)->next)
3988 ;
3989 *pn = n;
3990 }
3991 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3992 if (!runpath && dyn.d_tag == DT_RPATH)
3993 {
3994 struct bfd_link_needed_list *n, **pn;
3995 char *fnm, *anm;
3996 unsigned int tagv = dyn.d_un.d_val;
3997
3998 amt = sizeof (struct bfd_link_needed_list);
3999 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4000 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4001 if (n == NULL || fnm == NULL)
4002 goto error_free_dyn;
4003 amt = strlen (fnm) + 1;
4004 anm = (char *) bfd_alloc (abfd, amt);
4005 if (anm == NULL)
4006 goto error_free_dyn;
4007 memcpy (anm, fnm, amt);
4008 n->name = anm;
4009 n->by = abfd;
4010 n->next = NULL;
4011 for (pn = & rpath;
4012 *pn != NULL;
4013 pn = &(*pn)->next)
4014 ;
4015 *pn = n;
4016 }
4017 if (dyn.d_tag == DT_AUDIT)
4018 {
4019 unsigned int tagv = dyn.d_un.d_val;
4020 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4021 }
4022 }
4023
4024 free (dynbuf);
4025 }
4026
4027 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4028 frees all more recently bfd_alloc'd blocks as well. */
4029 if (runpath)
4030 rpath = runpath;
4031
4032 if (rpath)
4033 {
4034 struct bfd_link_needed_list **pn;
4035 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4036 ;
4037 *pn = rpath;
4038 }
4039
4040 /* If we have a PT_GNU_RELRO program header, mark as read-only
4041 all sections contained fully therein. This makes relro
4042 shared library sections appear as they will at run-time. */
4043 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4044 while (--phdr >= elf_tdata (abfd)->phdr)
4045 if (phdr->p_type == PT_GNU_RELRO)
4046 {
4047 for (s = abfd->sections; s != NULL; s = s->next)
4048 if ((s->flags & SEC_ALLOC) != 0
4049 && s->vma >= phdr->p_vaddr
4050 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4051 s->flags |= SEC_READONLY;
4052 break;
4053 }
4054
4055 /* We do not want to include any of the sections in a dynamic
4056 object in the output file. We hack by simply clobbering the
4057 list of sections in the BFD. This could be handled more
4058 cleanly by, say, a new section flag; the existing
4059 SEC_NEVER_LOAD flag is not the one we want, because that one
4060 still implies that the section takes up space in the output
4061 file. */
4062 bfd_section_list_clear (abfd);
4063
4064 /* Find the name to use in a DT_NEEDED entry that refers to this
4065 object. If the object has a DT_SONAME entry, we use it.
4066 Otherwise, if the generic linker stuck something in
4067 elf_dt_name, we use that. Otherwise, we just use the file
4068 name. */
4069 if (soname == NULL || *soname == '\0')
4070 {
4071 soname = elf_dt_name (abfd);
4072 if (soname == NULL || *soname == '\0')
4073 soname = bfd_get_filename (abfd);
4074 }
4075
4076 /* Save the SONAME because sometimes the linker emulation code
4077 will need to know it. */
4078 elf_dt_name (abfd) = soname;
4079
4080 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4081 if (ret < 0)
4082 goto error_return;
4083
4084 /* If we have already included this dynamic object in the
4085 link, just ignore it. There is no reason to include a
4086 particular dynamic object more than once. */
4087 if (ret > 0)
4088 return TRUE;
4089
4090 /* Save the DT_AUDIT entry for the linker emulation code. */
4091 elf_dt_audit (abfd) = audit;
4092 }
4093
4094 /* If this is a dynamic object, we always link against the .dynsym
4095 symbol table, not the .symtab symbol table. The dynamic linker
4096 will only see the .dynsym symbol table, so there is no reason to
4097 look at .symtab for a dynamic object. */
4098
4099 if (! dynamic || elf_dynsymtab (abfd) == 0)
4100 hdr = &elf_tdata (abfd)->symtab_hdr;
4101 else
4102 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4103
4104 symcount = hdr->sh_size / bed->s->sizeof_sym;
4105
4106 /* The sh_info field of the symtab header tells us where the
4107 external symbols start. We don't care about the local symbols at
4108 this point. */
4109 if (elf_bad_symtab (abfd))
4110 {
4111 extsymcount = symcount;
4112 extsymoff = 0;
4113 }
4114 else
4115 {
4116 extsymcount = symcount - hdr->sh_info;
4117 extsymoff = hdr->sh_info;
4118 }
4119
4120 sym_hash = elf_sym_hashes (abfd);
4121 if (extsymcount != 0)
4122 {
4123 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4124 NULL, NULL, NULL);
4125 if (isymbuf == NULL)
4126 goto error_return;
4127
4128 if (sym_hash == NULL)
4129 {
4130 /* We store a pointer to the hash table entry for each
4131 external symbol. */
4132 amt = extsymcount;
4133 amt *= sizeof (struct elf_link_hash_entry *);
4134 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4135 if (sym_hash == NULL)
4136 goto error_free_sym;
4137 elf_sym_hashes (abfd) = sym_hash;
4138 }
4139 }
4140
4141 if (dynamic)
4142 {
4143 /* Read in any version definitions. */
4144 if (!_bfd_elf_slurp_version_tables (abfd,
4145 info->default_imported_symver))
4146 goto error_free_sym;
4147
4148 /* Read in the symbol versions, but don't bother to convert them
4149 to internal format. */
4150 if (elf_dynversym (abfd) != 0)
4151 {
4152 Elf_Internal_Shdr *versymhdr;
4153
4154 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4155 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4156 if (extversym == NULL)
4157 goto error_free_sym;
4158 amt = versymhdr->sh_size;
4159 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4160 || bfd_bread (extversym, amt, abfd) != amt)
4161 goto error_free_vers;
4162 }
4163 }
4164
4165 /* If we are loading an as-needed shared lib, save the symbol table
4166 state before we start adding symbols. If the lib turns out
4167 to be unneeded, restore the state. */
4168 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4169 {
4170 unsigned int i;
4171 size_t entsize;
4172
4173 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4174 {
4175 struct bfd_hash_entry *p;
4176 struct elf_link_hash_entry *h;
4177
4178 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4179 {
4180 h = (struct elf_link_hash_entry *) p;
4181 entsize += htab->root.table.entsize;
4182 if (h->root.type == bfd_link_hash_warning)
4183 entsize += htab->root.table.entsize;
4184 }
4185 }
4186
4187 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4188 old_tab = bfd_malloc (tabsize + entsize);
4189 if (old_tab == NULL)
4190 goto error_free_vers;
4191
4192 /* Remember the current objalloc pointer, so that all mem for
4193 symbols added can later be reclaimed. */
4194 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4195 if (alloc_mark == NULL)
4196 goto error_free_vers;
4197
4198 /* Make a special call to the linker "notice" function to
4199 tell it that we are about to handle an as-needed lib. */
4200 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4201 goto error_free_vers;
4202
4203 /* Clone the symbol table. Remember some pointers into the
4204 symbol table, and dynamic symbol count. */
4205 old_ent = (char *) old_tab + tabsize;
4206 memcpy (old_tab, htab->root.table.table, tabsize);
4207 old_undefs = htab->root.undefs;
4208 old_undefs_tail = htab->root.undefs_tail;
4209 old_table = htab->root.table.table;
4210 old_size = htab->root.table.size;
4211 old_count = htab->root.table.count;
4212 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4213 if (old_strtab == NULL)
4214 goto error_free_vers;
4215
4216 for (i = 0; i < htab->root.table.size; i++)
4217 {
4218 struct bfd_hash_entry *p;
4219 struct elf_link_hash_entry *h;
4220
4221 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4222 {
4223 memcpy (old_ent, p, htab->root.table.entsize);
4224 old_ent = (char *) old_ent + htab->root.table.entsize;
4225 h = (struct elf_link_hash_entry *) p;
4226 if (h->root.type == bfd_link_hash_warning)
4227 {
4228 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4229 old_ent = (char *) old_ent + htab->root.table.entsize;
4230 }
4231 }
4232 }
4233 }
4234
4235 weaks = NULL;
4236 ever = extversym != NULL ? extversym + extsymoff : NULL;
4237 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4238 isym < isymend;
4239 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4240 {
4241 int bind;
4242 bfd_vma value;
4243 asection *sec, *new_sec;
4244 flagword flags;
4245 const char *name;
4246 struct elf_link_hash_entry *h;
4247 struct elf_link_hash_entry *hi;
4248 bfd_boolean definition;
4249 bfd_boolean size_change_ok;
4250 bfd_boolean type_change_ok;
4251 bfd_boolean new_weakdef;
4252 bfd_boolean new_weak;
4253 bfd_boolean old_weak;
4254 bfd_boolean override;
4255 bfd_boolean common;
4256 bfd_boolean discarded;
4257 unsigned int old_alignment;
4258 bfd *old_bfd;
4259 bfd_boolean matched;
4260
4261 override = FALSE;
4262
4263 flags = BSF_NO_FLAGS;
4264 sec = NULL;
4265 value = isym->st_value;
4266 common = bed->common_definition (isym);
4267 if (common && info->inhibit_common_definition)
4268 {
4269 /* Treat common symbol as undefined for --no-define-common. */
4270 isym->st_shndx = SHN_UNDEF;
4271 common = FALSE;
4272 }
4273 discarded = FALSE;
4274
4275 bind = ELF_ST_BIND (isym->st_info);
4276 switch (bind)
4277 {
4278 case STB_LOCAL:
4279 /* This should be impossible, since ELF requires that all
4280 global symbols follow all local symbols, and that sh_info
4281 point to the first global symbol. Unfortunately, Irix 5
4282 screws this up. */
4283 continue;
4284
4285 case STB_GLOBAL:
4286 if (isym->st_shndx != SHN_UNDEF && !common)
4287 flags = BSF_GLOBAL;
4288 break;
4289
4290 case STB_WEAK:
4291 flags = BSF_WEAK;
4292 break;
4293
4294 case STB_GNU_UNIQUE:
4295 flags = BSF_GNU_UNIQUE;
4296 break;
4297
4298 default:
4299 /* Leave it up to the processor backend. */
4300 break;
4301 }
4302
4303 if (isym->st_shndx == SHN_UNDEF)
4304 sec = bfd_und_section_ptr;
4305 else if (isym->st_shndx == SHN_ABS)
4306 sec = bfd_abs_section_ptr;
4307 else if (isym->st_shndx == SHN_COMMON)
4308 {
4309 sec = bfd_com_section_ptr;
4310 /* What ELF calls the size we call the value. What ELF
4311 calls the value we call the alignment. */
4312 value = isym->st_size;
4313 }
4314 else
4315 {
4316 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4317 if (sec == NULL)
4318 sec = bfd_abs_section_ptr;
4319 else if (discarded_section (sec))
4320 {
4321 /* Symbols from discarded section are undefined. We keep
4322 its visibility. */
4323 sec = bfd_und_section_ptr;
4324 discarded = TRUE;
4325 isym->st_shndx = SHN_UNDEF;
4326 }
4327 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4328 value -= sec->vma;
4329 }
4330
4331 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4332 isym->st_name);
4333 if (name == NULL)
4334 goto error_free_vers;
4335
4336 if (isym->st_shndx == SHN_COMMON
4337 && (abfd->flags & BFD_PLUGIN) != 0)
4338 {
4339 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4340
4341 if (xc == NULL)
4342 {
4343 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4344 | SEC_EXCLUDE);
4345 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4346 if (xc == NULL)
4347 goto error_free_vers;
4348 }
4349 sec = xc;
4350 }
4351 else if (isym->st_shndx == SHN_COMMON
4352 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4353 && !bfd_link_relocatable (info))
4354 {
4355 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4356
4357 if (tcomm == NULL)
4358 {
4359 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4360 | SEC_LINKER_CREATED);
4361 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4362 if (tcomm == NULL)
4363 goto error_free_vers;
4364 }
4365 sec = tcomm;
4366 }
4367 else if (bed->elf_add_symbol_hook)
4368 {
4369 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4370 &sec, &value))
4371 goto error_free_vers;
4372
4373 /* The hook function sets the name to NULL if this symbol
4374 should be skipped for some reason. */
4375 if (name == NULL)
4376 continue;
4377 }
4378
4379 /* Sanity check that all possibilities were handled. */
4380 if (sec == NULL)
4381 {
4382 bfd_set_error (bfd_error_bad_value);
4383 goto error_free_vers;
4384 }
4385
4386 /* Silently discard TLS symbols from --just-syms. There's
4387 no way to combine a static TLS block with a new TLS block
4388 for this executable. */
4389 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4390 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4391 continue;
4392
4393 if (bfd_is_und_section (sec)
4394 || bfd_is_com_section (sec))
4395 definition = FALSE;
4396 else
4397 definition = TRUE;
4398
4399 size_change_ok = FALSE;
4400 type_change_ok = bed->type_change_ok;
4401 old_weak = FALSE;
4402 matched = FALSE;
4403 old_alignment = 0;
4404 old_bfd = NULL;
4405 new_sec = sec;
4406
4407 if (is_elf_hash_table (htab))
4408 {
4409 Elf_Internal_Versym iver;
4410 unsigned int vernum = 0;
4411 bfd_boolean skip;
4412
4413 if (ever == NULL)
4414 {
4415 if (info->default_imported_symver)
4416 /* Use the default symbol version created earlier. */
4417 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4418 else
4419 iver.vs_vers = 0;
4420 }
4421 else
4422 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4423
4424 vernum = iver.vs_vers & VERSYM_VERSION;
4425
4426 /* If this is a hidden symbol, or if it is not version
4427 1, we append the version name to the symbol name.
4428 However, we do not modify a non-hidden absolute symbol
4429 if it is not a function, because it might be the version
4430 symbol itself. FIXME: What if it isn't? */
4431 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4432 || (vernum > 1
4433 && (!bfd_is_abs_section (sec)
4434 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4435 {
4436 const char *verstr;
4437 size_t namelen, verlen, newlen;
4438 char *newname, *p;
4439
4440 if (isym->st_shndx != SHN_UNDEF)
4441 {
4442 if (vernum > elf_tdata (abfd)->cverdefs)
4443 verstr = NULL;
4444 else if (vernum > 1)
4445 verstr =
4446 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4447 else
4448 verstr = "";
4449
4450 if (verstr == NULL)
4451 {
4452 _bfd_error_handler
4453 /* xgettext:c-format */
4454 (_("%B: %s: invalid version %u (max %d)"),
4455 abfd, name, vernum,
4456 elf_tdata (abfd)->cverdefs);
4457 bfd_set_error (bfd_error_bad_value);
4458 goto error_free_vers;
4459 }
4460 }
4461 else
4462 {
4463 /* We cannot simply test for the number of
4464 entries in the VERNEED section since the
4465 numbers for the needed versions do not start
4466 at 0. */
4467 Elf_Internal_Verneed *t;
4468
4469 verstr = NULL;
4470 for (t = elf_tdata (abfd)->verref;
4471 t != NULL;
4472 t = t->vn_nextref)
4473 {
4474 Elf_Internal_Vernaux *a;
4475
4476 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4477 {
4478 if (a->vna_other == vernum)
4479 {
4480 verstr = a->vna_nodename;
4481 break;
4482 }
4483 }
4484 if (a != NULL)
4485 break;
4486 }
4487 if (verstr == NULL)
4488 {
4489 _bfd_error_handler
4490 /* xgettext:c-format */
4491 (_("%B: %s: invalid needed version %d"),
4492 abfd, name, vernum);
4493 bfd_set_error (bfd_error_bad_value);
4494 goto error_free_vers;
4495 }
4496 }
4497
4498 namelen = strlen (name);
4499 verlen = strlen (verstr);
4500 newlen = namelen + verlen + 2;
4501 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4502 && isym->st_shndx != SHN_UNDEF)
4503 ++newlen;
4504
4505 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4506 if (newname == NULL)
4507 goto error_free_vers;
4508 memcpy (newname, name, namelen);
4509 p = newname + namelen;
4510 *p++ = ELF_VER_CHR;
4511 /* If this is a defined non-hidden version symbol,
4512 we add another @ to the name. This indicates the
4513 default version of the symbol. */
4514 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4515 && isym->st_shndx != SHN_UNDEF)
4516 *p++ = ELF_VER_CHR;
4517 memcpy (p, verstr, verlen + 1);
4518
4519 name = newname;
4520 }
4521
4522 /* If this symbol has default visibility and the user has
4523 requested we not re-export it, then mark it as hidden. */
4524 if (!bfd_is_und_section (sec)
4525 && !dynamic
4526 && abfd->no_export
4527 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4528 isym->st_other = (STV_HIDDEN
4529 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4530
4531 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4532 sym_hash, &old_bfd, &old_weak,
4533 &old_alignment, &skip, &override,
4534 &type_change_ok, &size_change_ok,
4535 &matched))
4536 goto error_free_vers;
4537
4538 if (skip)
4539 continue;
4540
4541 /* Override a definition only if the new symbol matches the
4542 existing one. */
4543 if (override && matched)
4544 definition = FALSE;
4545
4546 h = *sym_hash;
4547 while (h->root.type == bfd_link_hash_indirect
4548 || h->root.type == bfd_link_hash_warning)
4549 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4550
4551 if (elf_tdata (abfd)->verdef != NULL
4552 && vernum > 1
4553 && definition)
4554 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4555 }
4556
4557 if (! (_bfd_generic_link_add_one_symbol
4558 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4559 (struct bfd_link_hash_entry **) sym_hash)))
4560 goto error_free_vers;
4561
4562 if ((flags & BSF_GNU_UNIQUE)
4563 && (abfd->flags & DYNAMIC) == 0
4564 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4565 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4566
4567 h = *sym_hash;
4568 /* We need to make sure that indirect symbol dynamic flags are
4569 updated. */
4570 hi = h;
4571 while (h->root.type == bfd_link_hash_indirect
4572 || h->root.type == bfd_link_hash_warning)
4573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4574
4575 /* Setting the index to -3 tells elf_link_output_extsym that
4576 this symbol is defined in a discarded section. */
4577 if (discarded)
4578 h->indx = -3;
4579
4580 *sym_hash = h;
4581
4582 new_weak = (flags & BSF_WEAK) != 0;
4583 new_weakdef = FALSE;
4584 if (dynamic
4585 && definition
4586 && new_weak
4587 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4588 && is_elf_hash_table (htab)
4589 && h->u.weakdef == NULL)
4590 {
4591 /* Keep a list of all weak defined non function symbols from
4592 a dynamic object, using the weakdef field. Later in this
4593 function we will set the weakdef field to the correct
4594 value. We only put non-function symbols from dynamic
4595 objects on this list, because that happens to be the only
4596 time we need to know the normal symbol corresponding to a
4597 weak symbol, and the information is time consuming to
4598 figure out. If the weakdef field is not already NULL,
4599 then this symbol was already defined by some previous
4600 dynamic object, and we will be using that previous
4601 definition anyhow. */
4602
4603 h->u.weakdef = weaks;
4604 weaks = h;
4605 new_weakdef = TRUE;
4606 }
4607
4608 /* Set the alignment of a common symbol. */
4609 if ((common || bfd_is_com_section (sec))
4610 && h->root.type == bfd_link_hash_common)
4611 {
4612 unsigned int align;
4613
4614 if (common)
4615 align = bfd_log2 (isym->st_value);
4616 else
4617 {
4618 /* The new symbol is a common symbol in a shared object.
4619 We need to get the alignment from the section. */
4620 align = new_sec->alignment_power;
4621 }
4622 if (align > old_alignment)
4623 h->root.u.c.p->alignment_power = align;
4624 else
4625 h->root.u.c.p->alignment_power = old_alignment;
4626 }
4627
4628 if (is_elf_hash_table (htab))
4629 {
4630 /* Set a flag in the hash table entry indicating the type of
4631 reference or definition we just found. A dynamic symbol
4632 is one which is referenced or defined by both a regular
4633 object and a shared object. */
4634 bfd_boolean dynsym = FALSE;
4635
4636 /* Plugin symbols aren't normal. Don't set def_regular or
4637 ref_regular for them, or make them dynamic. */
4638 if ((abfd->flags & BFD_PLUGIN) != 0)
4639 ;
4640 else if (! dynamic)
4641 {
4642 if (! definition)
4643 {
4644 h->ref_regular = 1;
4645 if (bind != STB_WEAK)
4646 h->ref_regular_nonweak = 1;
4647 }
4648 else
4649 {
4650 h->def_regular = 1;
4651 if (h->def_dynamic)
4652 {
4653 h->def_dynamic = 0;
4654 h->ref_dynamic = 1;
4655 }
4656 }
4657
4658 /* If the indirect symbol has been forced local, don't
4659 make the real symbol dynamic. */
4660 if ((h == hi || !hi->forced_local)
4661 && (bfd_link_dll (info)
4662 || h->def_dynamic
4663 || h->ref_dynamic))
4664 dynsym = TRUE;
4665 }
4666 else
4667 {
4668 if (! definition)
4669 {
4670 h->ref_dynamic = 1;
4671 hi->ref_dynamic = 1;
4672 }
4673 else
4674 {
4675 h->def_dynamic = 1;
4676 hi->def_dynamic = 1;
4677 }
4678
4679 /* If the indirect symbol has been forced local, don't
4680 make the real symbol dynamic. */
4681 if ((h == hi || !hi->forced_local)
4682 && (h->def_regular
4683 || h->ref_regular
4684 || (h->u.weakdef != NULL
4685 && ! new_weakdef
4686 && h->u.weakdef->dynindx != -1)))
4687 dynsym = TRUE;
4688 }
4689
4690 /* Check to see if we need to add an indirect symbol for
4691 the default name. */
4692 if (definition
4693 || (!override && h->root.type == bfd_link_hash_common))
4694 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4695 sec, value, &old_bfd, &dynsym))
4696 goto error_free_vers;
4697
4698 /* Check the alignment when a common symbol is involved. This
4699 can change when a common symbol is overridden by a normal
4700 definition or a common symbol is ignored due to the old
4701 normal definition. We need to make sure the maximum
4702 alignment is maintained. */
4703 if ((old_alignment || common)
4704 && h->root.type != bfd_link_hash_common)
4705 {
4706 unsigned int common_align;
4707 unsigned int normal_align;
4708 unsigned int symbol_align;
4709 bfd *normal_bfd;
4710 bfd *common_bfd;
4711
4712 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4713 || h->root.type == bfd_link_hash_defweak);
4714
4715 symbol_align = ffs (h->root.u.def.value) - 1;
4716 if (h->root.u.def.section->owner != NULL
4717 && (h->root.u.def.section->owner->flags
4718 & (DYNAMIC | BFD_PLUGIN)) == 0)
4719 {
4720 normal_align = h->root.u.def.section->alignment_power;
4721 if (normal_align > symbol_align)
4722 normal_align = symbol_align;
4723 }
4724 else
4725 normal_align = symbol_align;
4726
4727 if (old_alignment)
4728 {
4729 common_align = old_alignment;
4730 common_bfd = old_bfd;
4731 normal_bfd = abfd;
4732 }
4733 else
4734 {
4735 common_align = bfd_log2 (isym->st_value);
4736 common_bfd = abfd;
4737 normal_bfd = old_bfd;
4738 }
4739
4740 if (normal_align < common_align)
4741 {
4742 /* PR binutils/2735 */
4743 if (normal_bfd == NULL)
4744 _bfd_error_handler
4745 /* xgettext:c-format */
4746 (_("Warning: alignment %u of common symbol `%s' in %B is"
4747 " greater than the alignment (%u) of its section %A"),
4748 1 << common_align, name, common_bfd,
4749 1 << normal_align, h->root.u.def.section);
4750 else
4751 _bfd_error_handler
4752 /* xgettext:c-format */
4753 (_("Warning: alignment %u of symbol `%s' in %B"
4754 " is smaller than %u in %B"),
4755 1 << normal_align, name, normal_bfd,
4756 1 << common_align, common_bfd);
4757 }
4758 }
4759
4760 /* Remember the symbol size if it isn't undefined. */
4761 if (isym->st_size != 0
4762 && isym->st_shndx != SHN_UNDEF
4763 && (definition || h->size == 0))
4764 {
4765 if (h->size != 0
4766 && h->size != isym->st_size
4767 && ! size_change_ok)
4768 _bfd_error_handler
4769 /* xgettext:c-format */
4770 (_("Warning: size of symbol `%s' changed"
4771 " from %Lu in %B to %Lu in %B"),
4772 name, h->size, old_bfd, isym->st_size, abfd);
4773
4774 h->size = isym->st_size;
4775 }
4776
4777 /* If this is a common symbol, then we always want H->SIZE
4778 to be the size of the common symbol. The code just above
4779 won't fix the size if a common symbol becomes larger. We
4780 don't warn about a size change here, because that is
4781 covered by --warn-common. Allow changes between different
4782 function types. */
4783 if (h->root.type == bfd_link_hash_common)
4784 h->size = h->root.u.c.size;
4785
4786 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4787 && ((definition && !new_weak)
4788 || (old_weak && h->root.type == bfd_link_hash_common)
4789 || h->type == STT_NOTYPE))
4790 {
4791 unsigned int type = ELF_ST_TYPE (isym->st_info);
4792
4793 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4794 symbol. */
4795 if (type == STT_GNU_IFUNC
4796 && (abfd->flags & DYNAMIC) != 0)
4797 type = STT_FUNC;
4798
4799 if (h->type != type)
4800 {
4801 if (h->type != STT_NOTYPE && ! type_change_ok)
4802 /* xgettext:c-format */
4803 _bfd_error_handler
4804 (_("Warning: type of symbol `%s' changed"
4805 " from %d to %d in %B"),
4806 name, h->type, type, abfd);
4807
4808 h->type = type;
4809 }
4810 }
4811
4812 /* Merge st_other field. */
4813 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4814
4815 /* We don't want to make debug symbol dynamic. */
4816 if (definition
4817 && (sec->flags & SEC_DEBUGGING)
4818 && !bfd_link_relocatable (info))
4819 dynsym = FALSE;
4820
4821 /* Nor should we make plugin symbols dynamic. */
4822 if ((abfd->flags & BFD_PLUGIN) != 0)
4823 dynsym = FALSE;
4824
4825 if (definition)
4826 {
4827 h->target_internal = isym->st_target_internal;
4828 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4829 }
4830
4831 if (definition && !dynamic)
4832 {
4833 char *p = strchr (name, ELF_VER_CHR);
4834 if (p != NULL && p[1] != ELF_VER_CHR)
4835 {
4836 /* Queue non-default versions so that .symver x, x@FOO
4837 aliases can be checked. */
4838 if (!nondeflt_vers)
4839 {
4840 amt = ((isymend - isym + 1)
4841 * sizeof (struct elf_link_hash_entry *));
4842 nondeflt_vers
4843 = (struct elf_link_hash_entry **) bfd_malloc (amt);
4844 if (!nondeflt_vers)
4845 goto error_free_vers;
4846 }
4847 nondeflt_vers[nondeflt_vers_cnt++] = h;
4848 }
4849 }
4850
4851 if (dynsym && h->dynindx == -1)
4852 {
4853 if (! bfd_elf_link_record_dynamic_symbol (info, h))
4854 goto error_free_vers;
4855 if (h->u.weakdef != NULL
4856 && ! new_weakdef
4857 && h->u.weakdef->dynindx == -1)
4858 {
4859 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4860 goto error_free_vers;
4861 }
4862 }
4863 else if (h->dynindx != -1)
4864 /* If the symbol already has a dynamic index, but
4865 visibility says it should not be visible, turn it into
4866 a local symbol. */
4867 switch (ELF_ST_VISIBILITY (h->other))
4868 {
4869 case STV_INTERNAL:
4870 case STV_HIDDEN:
4871 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
4872 dynsym = FALSE;
4873 break;
4874 }
4875
4876 /* Don't add DT_NEEDED for references from the dummy bfd nor
4877 for unmatched symbol. */
4878 if (!add_needed
4879 && matched
4880 && definition
4881 && ((dynsym
4882 && h->ref_regular_nonweak
4883 && (old_bfd == NULL
4884 || (old_bfd->flags & BFD_PLUGIN) == 0))
4885 || (h->ref_dynamic_nonweak
4886 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4887 && !on_needed_list (elf_dt_name (abfd),
4888 htab->needed, NULL))))
4889 {
4890 int ret;
4891 const char *soname = elf_dt_name (abfd);
4892
4893 info->callbacks->minfo ("%!", soname, old_bfd,
4894 h->root.root.string);
4895
4896 /* A symbol from a library loaded via DT_NEEDED of some
4897 other library is referenced by a regular object.
4898 Add a DT_NEEDED entry for it. Issue an error if
4899 --no-add-needed is used and the reference was not
4900 a weak one. */
4901 if (old_bfd != NULL
4902 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4903 {
4904 _bfd_error_handler
4905 /* xgettext:c-format */
4906 (_("%B: undefined reference to symbol '%s'"),
4907 old_bfd, name);
4908 bfd_set_error (bfd_error_missing_dso);
4909 goto error_free_vers;
4910 }
4911
4912 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4913 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4914
4915 add_needed = TRUE;
4916 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4917 if (ret < 0)
4918 goto error_free_vers;
4919
4920 BFD_ASSERT (ret == 0);
4921 }
4922 }
4923 }
4924
4925 if (extversym != NULL)
4926 {
4927 free (extversym);
4928 extversym = NULL;
4929 }
4930
4931 if (isymbuf != NULL)
4932 {
4933 free (isymbuf);
4934 isymbuf = NULL;
4935 }
4936
4937 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4938 {
4939 unsigned int i;
4940
4941 /* Restore the symbol table. */
4942 old_ent = (char *) old_tab + tabsize;
4943 memset (elf_sym_hashes (abfd), 0,
4944 extsymcount * sizeof (struct elf_link_hash_entry *));
4945 htab->root.table.table = old_table;
4946 htab->root.table.size = old_size;
4947 htab->root.table.count = old_count;
4948 memcpy (htab->root.table.table, old_tab, tabsize);
4949 htab->root.undefs = old_undefs;
4950 htab->root.undefs_tail = old_undefs_tail;
4951 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4952 free (old_strtab);
4953 old_strtab = NULL;
4954 for (i = 0; i < htab->root.table.size; i++)
4955 {
4956 struct bfd_hash_entry *p;
4957 struct elf_link_hash_entry *h;
4958 bfd_size_type size;
4959 unsigned int alignment_power;
4960 unsigned int non_ir_ref_dynamic;
4961
4962 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4963 {
4964 h = (struct elf_link_hash_entry *) p;
4965 if (h->root.type == bfd_link_hash_warning)
4966 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4967
4968 /* Preserve the maximum alignment and size for common
4969 symbols even if this dynamic lib isn't on DT_NEEDED
4970 since it can still be loaded at run time by another
4971 dynamic lib. */
4972 if (h->root.type == bfd_link_hash_common)
4973 {
4974 size = h->root.u.c.size;
4975 alignment_power = h->root.u.c.p->alignment_power;
4976 }
4977 else
4978 {
4979 size = 0;
4980 alignment_power = 0;
4981 }
4982 /* Preserve non_ir_ref_dynamic so that this symbol
4983 will be exported when the dynamic lib becomes needed
4984 in the second pass. */
4985 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
4986 memcpy (p, old_ent, htab->root.table.entsize);
4987 old_ent = (char *) old_ent + htab->root.table.entsize;
4988 h = (struct elf_link_hash_entry *) p;
4989 if (h->root.type == bfd_link_hash_warning)
4990 {
4991 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4992 old_ent = (char *) old_ent + htab->root.table.entsize;
4993 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4994 }
4995 if (h->root.type == bfd_link_hash_common)
4996 {
4997 if (size > h->root.u.c.size)
4998 h->root.u.c.size = size;
4999 if (alignment_power > h->root.u.c.p->alignment_power)
5000 h->root.u.c.p->alignment_power = alignment_power;
5001 }
5002 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5003 }
5004 }
5005
5006 /* Make a special call to the linker "notice" function to
5007 tell it that symbols added for crefs may need to be removed. */
5008 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5009 goto error_free_vers;
5010
5011 free (old_tab);
5012 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5013 alloc_mark);
5014 if (nondeflt_vers != NULL)
5015 free (nondeflt_vers);
5016 return TRUE;
5017 }
5018
5019 if (old_tab != NULL)
5020 {
5021 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5022 goto error_free_vers;
5023 free (old_tab);
5024 old_tab = NULL;
5025 }
5026
5027 /* Now that all the symbols from this input file are created, if
5028 not performing a relocatable link, handle .symver foo, foo@BAR
5029 such that any relocs against foo become foo@BAR. */
5030 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5031 {
5032 size_t cnt, symidx;
5033
5034 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5035 {
5036 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5037 char *shortname, *p;
5038
5039 p = strchr (h->root.root.string, ELF_VER_CHR);
5040 if (p == NULL
5041 || (h->root.type != bfd_link_hash_defined
5042 && h->root.type != bfd_link_hash_defweak))
5043 continue;
5044
5045 amt = p - h->root.root.string;
5046 shortname = (char *) bfd_malloc (amt + 1);
5047 if (!shortname)
5048 goto error_free_vers;
5049 memcpy (shortname, h->root.root.string, amt);
5050 shortname[amt] = '\0';
5051
5052 hi = (struct elf_link_hash_entry *)
5053 bfd_link_hash_lookup (&htab->root, shortname,
5054 FALSE, FALSE, FALSE);
5055 if (hi != NULL
5056 && hi->root.type == h->root.type
5057 && hi->root.u.def.value == h->root.u.def.value
5058 && hi->root.u.def.section == h->root.u.def.section)
5059 {
5060 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5061 hi->root.type = bfd_link_hash_indirect;
5062 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5063 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5064 sym_hash = elf_sym_hashes (abfd);
5065 if (sym_hash)
5066 for (symidx = 0; symidx < extsymcount; ++symidx)
5067 if (sym_hash[symidx] == hi)
5068 {
5069 sym_hash[symidx] = h;
5070 break;
5071 }
5072 }
5073 free (shortname);
5074 }
5075 free (nondeflt_vers);
5076 nondeflt_vers = NULL;
5077 }
5078
5079 /* Now set the weakdefs field correctly for all the weak defined
5080 symbols we found. The only way to do this is to search all the
5081 symbols. Since we only need the information for non functions in
5082 dynamic objects, that's the only time we actually put anything on
5083 the list WEAKS. We need this information so that if a regular
5084 object refers to a symbol defined weakly in a dynamic object, the
5085 real symbol in the dynamic object is also put in the dynamic
5086 symbols; we also must arrange for both symbols to point to the
5087 same memory location. We could handle the general case of symbol
5088 aliasing, but a general symbol alias can only be generated in
5089 assembler code, handling it correctly would be very time
5090 consuming, and other ELF linkers don't handle general aliasing
5091 either. */
5092 if (weaks != NULL)
5093 {
5094 struct elf_link_hash_entry **hpp;
5095 struct elf_link_hash_entry **hppend;
5096 struct elf_link_hash_entry **sorted_sym_hash;
5097 struct elf_link_hash_entry *h;
5098 size_t sym_count;
5099
5100 /* Since we have to search the whole symbol list for each weak
5101 defined symbol, search time for N weak defined symbols will be
5102 O(N^2). Binary search will cut it down to O(NlogN). */
5103 amt = extsymcount;
5104 amt *= sizeof (struct elf_link_hash_entry *);
5105 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5106 if (sorted_sym_hash == NULL)
5107 goto error_return;
5108 sym_hash = sorted_sym_hash;
5109 hpp = elf_sym_hashes (abfd);
5110 hppend = hpp + extsymcount;
5111 sym_count = 0;
5112 for (; hpp < hppend; hpp++)
5113 {
5114 h = *hpp;
5115 if (h != NULL
5116 && h->root.type == bfd_link_hash_defined
5117 && !bed->is_function_type (h->type))
5118 {
5119 *sym_hash = h;
5120 sym_hash++;
5121 sym_count++;
5122 }
5123 }
5124
5125 qsort (sorted_sym_hash, sym_count,
5126 sizeof (struct elf_link_hash_entry *),
5127 elf_sort_symbol);
5128
5129 while (weaks != NULL)
5130 {
5131 struct elf_link_hash_entry *hlook;
5132 asection *slook;
5133 bfd_vma vlook;
5134 size_t i, j, idx = 0;
5135
5136 hlook = weaks;
5137 weaks = hlook->u.weakdef;
5138 hlook->u.weakdef = NULL;
5139
5140 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5141 || hlook->root.type == bfd_link_hash_defweak
5142 || hlook->root.type == bfd_link_hash_common
5143 || hlook->root.type == bfd_link_hash_indirect);
5144 slook = hlook->root.u.def.section;
5145 vlook = hlook->root.u.def.value;
5146
5147 i = 0;
5148 j = sym_count;
5149 while (i != j)
5150 {
5151 bfd_signed_vma vdiff;
5152 idx = (i + j) / 2;
5153 h = sorted_sym_hash[idx];
5154 vdiff = vlook - h->root.u.def.value;
5155 if (vdiff < 0)
5156 j = idx;
5157 else if (vdiff > 0)
5158 i = idx + 1;
5159 else
5160 {
5161 int sdiff = slook->id - h->root.u.def.section->id;
5162 if (sdiff < 0)
5163 j = idx;
5164 else if (sdiff > 0)
5165 i = idx + 1;
5166 else
5167 break;
5168 }
5169 }
5170
5171 /* We didn't find a value/section match. */
5172 if (i == j)
5173 continue;
5174
5175 /* With multiple aliases, or when the weak symbol is already
5176 strongly defined, we have multiple matching symbols and
5177 the binary search above may land on any of them. Step
5178 one past the matching symbol(s). */
5179 while (++idx != j)
5180 {
5181 h = sorted_sym_hash[idx];
5182 if (h->root.u.def.section != slook
5183 || h->root.u.def.value != vlook)
5184 break;
5185 }
5186
5187 /* Now look back over the aliases. Since we sorted by size
5188 as well as value and section, we'll choose the one with
5189 the largest size. */
5190 while (idx-- != i)
5191 {
5192 h = sorted_sym_hash[idx];
5193
5194 /* Stop if value or section doesn't match. */
5195 if (h->root.u.def.section != slook
5196 || h->root.u.def.value != vlook)
5197 break;
5198 else if (h != hlook)
5199 {
5200 hlook->u.weakdef = h;
5201
5202 /* If the weak definition is in the list of dynamic
5203 symbols, make sure the real definition is put
5204 there as well. */
5205 if (hlook->dynindx != -1 && h->dynindx == -1)
5206 {
5207 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5208 {
5209 err_free_sym_hash:
5210 free (sorted_sym_hash);
5211 goto error_return;
5212 }
5213 }
5214
5215 /* If the real definition is in the list of dynamic
5216 symbols, make sure the weak definition is put
5217 there as well. If we don't do this, then the
5218 dynamic loader might not merge the entries for the
5219 real definition and the weak definition. */
5220 if (h->dynindx != -1 && hlook->dynindx == -1)
5221 {
5222 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5223 goto err_free_sym_hash;
5224 }
5225 break;
5226 }
5227 }
5228 }
5229
5230 free (sorted_sym_hash);
5231 }
5232
5233 if (bed->check_directives
5234 && !(*bed->check_directives) (abfd, info))
5235 return FALSE;
5236
5237 if (!info->check_relocs_after_open_input
5238 && !_bfd_elf_link_check_relocs (abfd, info))
5239 return FALSE;
5240
5241 /* If this is a non-traditional link, try to optimize the handling
5242 of the .stab/.stabstr sections. */
5243 if (! dynamic
5244 && ! info->traditional_format
5245 && is_elf_hash_table (htab)
5246 && (info->strip != strip_all && info->strip != strip_debugger))
5247 {
5248 asection *stabstr;
5249
5250 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5251 if (stabstr != NULL)
5252 {
5253 bfd_size_type string_offset = 0;
5254 asection *stab;
5255
5256 for (stab = abfd->sections; stab; stab = stab->next)
5257 if (CONST_STRNEQ (stab->name, ".stab")
5258 && (!stab->name[5] ||
5259 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5260 && (stab->flags & SEC_MERGE) == 0
5261 && !bfd_is_abs_section (stab->output_section))
5262 {
5263 struct bfd_elf_section_data *secdata;
5264
5265 secdata = elf_section_data (stab);
5266 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5267 stabstr, &secdata->sec_info,
5268 &string_offset))
5269 goto error_return;
5270 if (secdata->sec_info)
5271 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5272 }
5273 }
5274 }
5275
5276 if (is_elf_hash_table (htab) && add_needed)
5277 {
5278 /* Add this bfd to the loaded list. */
5279 struct elf_link_loaded_list *n;
5280
5281 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5282 if (n == NULL)
5283 goto error_return;
5284 n->abfd = abfd;
5285 n->next = htab->loaded;
5286 htab->loaded = n;
5287 }
5288
5289 return TRUE;
5290
5291 error_free_vers:
5292 if (old_tab != NULL)
5293 free (old_tab);
5294 if (old_strtab != NULL)
5295 free (old_strtab);
5296 if (nondeflt_vers != NULL)
5297 free (nondeflt_vers);
5298 if (extversym != NULL)
5299 free (extversym);
5300 error_free_sym:
5301 if (isymbuf != NULL)
5302 free (isymbuf);
5303 error_return:
5304 return FALSE;
5305 }
5306
5307 /* Return the linker hash table entry of a symbol that might be
5308 satisfied by an archive symbol. Return -1 on error. */
5309
5310 struct elf_link_hash_entry *
5311 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5312 struct bfd_link_info *info,
5313 const char *name)
5314 {
5315 struct elf_link_hash_entry *h;
5316 char *p, *copy;
5317 size_t len, first;
5318
5319 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5320 if (h != NULL)
5321 return h;
5322
5323 /* If this is a default version (the name contains @@), look up the
5324 symbol again with only one `@' as well as without the version.
5325 The effect is that references to the symbol with and without the
5326 version will be matched by the default symbol in the archive. */
5327
5328 p = strchr (name, ELF_VER_CHR);
5329 if (p == NULL || p[1] != ELF_VER_CHR)
5330 return h;
5331
5332 /* First check with only one `@'. */
5333 len = strlen (name);
5334 copy = (char *) bfd_alloc (abfd, len);
5335 if (copy == NULL)
5336 return (struct elf_link_hash_entry *) 0 - 1;
5337
5338 first = p - name + 1;
5339 memcpy (copy, name, first);
5340 memcpy (copy + first, name + first + 1, len - first);
5341
5342 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5343 if (h == NULL)
5344 {
5345 /* We also need to check references to the symbol without the
5346 version. */
5347 copy[first - 1] = '\0';
5348 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5349 FALSE, FALSE, TRUE);
5350 }
5351
5352 bfd_release (abfd, copy);
5353 return h;
5354 }
5355
5356 /* Add symbols from an ELF archive file to the linker hash table. We
5357 don't use _bfd_generic_link_add_archive_symbols because we need to
5358 handle versioned symbols.
5359
5360 Fortunately, ELF archive handling is simpler than that done by
5361 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5362 oddities. In ELF, if we find a symbol in the archive map, and the
5363 symbol is currently undefined, we know that we must pull in that
5364 object file.
5365
5366 Unfortunately, we do have to make multiple passes over the symbol
5367 table until nothing further is resolved. */
5368
5369 static bfd_boolean
5370 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5371 {
5372 symindex c;
5373 unsigned char *included = NULL;
5374 carsym *symdefs;
5375 bfd_boolean loop;
5376 bfd_size_type amt;
5377 const struct elf_backend_data *bed;
5378 struct elf_link_hash_entry * (*archive_symbol_lookup)
5379 (bfd *, struct bfd_link_info *, const char *);
5380
5381 if (! bfd_has_map (abfd))
5382 {
5383 /* An empty archive is a special case. */
5384 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5385 return TRUE;
5386 bfd_set_error (bfd_error_no_armap);
5387 return FALSE;
5388 }
5389
5390 /* Keep track of all symbols we know to be already defined, and all
5391 files we know to be already included. This is to speed up the
5392 second and subsequent passes. */
5393 c = bfd_ardata (abfd)->symdef_count;
5394 if (c == 0)
5395 return TRUE;
5396 amt = c;
5397 amt *= sizeof (*included);
5398 included = (unsigned char *) bfd_zmalloc (amt);
5399 if (included == NULL)
5400 return FALSE;
5401
5402 symdefs = bfd_ardata (abfd)->symdefs;
5403 bed = get_elf_backend_data (abfd);
5404 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5405
5406 do
5407 {
5408 file_ptr last;
5409 symindex i;
5410 carsym *symdef;
5411 carsym *symdefend;
5412
5413 loop = FALSE;
5414 last = -1;
5415
5416 symdef = symdefs;
5417 symdefend = symdef + c;
5418 for (i = 0; symdef < symdefend; symdef++, i++)
5419 {
5420 struct elf_link_hash_entry *h;
5421 bfd *element;
5422 struct bfd_link_hash_entry *undefs_tail;
5423 symindex mark;
5424
5425 if (included[i])
5426 continue;
5427 if (symdef->file_offset == last)
5428 {
5429 included[i] = TRUE;
5430 continue;
5431 }
5432
5433 h = archive_symbol_lookup (abfd, info, symdef->name);
5434 if (h == (struct elf_link_hash_entry *) 0 - 1)
5435 goto error_return;
5436
5437 if (h == NULL)
5438 continue;
5439
5440 if (h->root.type == bfd_link_hash_common)
5441 {
5442 /* We currently have a common symbol. The archive map contains
5443 a reference to this symbol, so we may want to include it. We
5444 only want to include it however, if this archive element
5445 contains a definition of the symbol, not just another common
5446 declaration of it.
5447
5448 Unfortunately some archivers (including GNU ar) will put
5449 declarations of common symbols into their archive maps, as
5450 well as real definitions, so we cannot just go by the archive
5451 map alone. Instead we must read in the element's symbol
5452 table and check that to see what kind of symbol definition
5453 this is. */
5454 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5455 continue;
5456 }
5457 else if (h->root.type != bfd_link_hash_undefined)
5458 {
5459 if (h->root.type != bfd_link_hash_undefweak)
5460 /* Symbol must be defined. Don't check it again. */
5461 included[i] = TRUE;
5462 continue;
5463 }
5464
5465 /* We need to include this archive member. */
5466 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5467 if (element == NULL)
5468 goto error_return;
5469
5470 if (! bfd_check_format (element, bfd_object))
5471 goto error_return;
5472
5473 undefs_tail = info->hash->undefs_tail;
5474
5475 if (!(*info->callbacks
5476 ->add_archive_element) (info, element, symdef->name, &element))
5477 continue;
5478 if (!bfd_link_add_symbols (element, info))
5479 goto error_return;
5480
5481 /* If there are any new undefined symbols, we need to make
5482 another pass through the archive in order to see whether
5483 they can be defined. FIXME: This isn't perfect, because
5484 common symbols wind up on undefs_tail and because an
5485 undefined symbol which is defined later on in this pass
5486 does not require another pass. This isn't a bug, but it
5487 does make the code less efficient than it could be. */
5488 if (undefs_tail != info->hash->undefs_tail)
5489 loop = TRUE;
5490
5491 /* Look backward to mark all symbols from this object file
5492 which we have already seen in this pass. */
5493 mark = i;
5494 do
5495 {
5496 included[mark] = TRUE;
5497 if (mark == 0)
5498 break;
5499 --mark;
5500 }
5501 while (symdefs[mark].file_offset == symdef->file_offset);
5502
5503 /* We mark subsequent symbols from this object file as we go
5504 on through the loop. */
5505 last = symdef->file_offset;
5506 }
5507 }
5508 while (loop);
5509
5510 free (included);
5511
5512 return TRUE;
5513
5514 error_return:
5515 if (included != NULL)
5516 free (included);
5517 return FALSE;
5518 }
5519
5520 /* Given an ELF BFD, add symbols to the global hash table as
5521 appropriate. */
5522
5523 bfd_boolean
5524 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5525 {
5526 switch (bfd_get_format (abfd))
5527 {
5528 case bfd_object:
5529 return elf_link_add_object_symbols (abfd, info);
5530 case bfd_archive:
5531 return elf_link_add_archive_symbols (abfd, info);
5532 default:
5533 bfd_set_error (bfd_error_wrong_format);
5534 return FALSE;
5535 }
5536 }
5537 \f
5538 struct hash_codes_info
5539 {
5540 unsigned long *hashcodes;
5541 bfd_boolean error;
5542 };
5543
5544 /* This function will be called though elf_link_hash_traverse to store
5545 all hash value of the exported symbols in an array. */
5546
5547 static bfd_boolean
5548 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5549 {
5550 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5551 const char *name;
5552 unsigned long ha;
5553 char *alc = NULL;
5554
5555 /* Ignore indirect symbols. These are added by the versioning code. */
5556 if (h->dynindx == -1)
5557 return TRUE;
5558
5559 name = h->root.root.string;
5560 if (h->versioned >= versioned)
5561 {
5562 char *p = strchr (name, ELF_VER_CHR);
5563 if (p != NULL)
5564 {
5565 alc = (char *) bfd_malloc (p - name + 1);
5566 if (alc == NULL)
5567 {
5568 inf->error = TRUE;
5569 return FALSE;
5570 }
5571 memcpy (alc, name, p - name);
5572 alc[p - name] = '\0';
5573 name = alc;
5574 }
5575 }
5576
5577 /* Compute the hash value. */
5578 ha = bfd_elf_hash (name);
5579
5580 /* Store the found hash value in the array given as the argument. */
5581 *(inf->hashcodes)++ = ha;
5582
5583 /* And store it in the struct so that we can put it in the hash table
5584 later. */
5585 h->u.elf_hash_value = ha;
5586
5587 if (alc != NULL)
5588 free (alc);
5589
5590 return TRUE;
5591 }
5592
5593 struct collect_gnu_hash_codes
5594 {
5595 bfd *output_bfd;
5596 const struct elf_backend_data *bed;
5597 unsigned long int nsyms;
5598 unsigned long int maskbits;
5599 unsigned long int *hashcodes;
5600 unsigned long int *hashval;
5601 unsigned long int *indx;
5602 unsigned long int *counts;
5603 bfd_vma *bitmask;
5604 bfd_byte *contents;
5605 long int min_dynindx;
5606 unsigned long int bucketcount;
5607 unsigned long int symindx;
5608 long int local_indx;
5609 long int shift1, shift2;
5610 unsigned long int mask;
5611 bfd_boolean error;
5612 };
5613
5614 /* This function will be called though elf_link_hash_traverse to store
5615 all hash value of the exported symbols in an array. */
5616
5617 static bfd_boolean
5618 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5619 {
5620 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5621 const char *name;
5622 unsigned long ha;
5623 char *alc = NULL;
5624
5625 /* Ignore indirect symbols. These are added by the versioning code. */
5626 if (h->dynindx == -1)
5627 return TRUE;
5628
5629 /* Ignore also local symbols and undefined symbols. */
5630 if (! (*s->bed->elf_hash_symbol) (h))
5631 return TRUE;
5632
5633 name = h->root.root.string;
5634 if (h->versioned >= versioned)
5635 {
5636 char *p = strchr (name, ELF_VER_CHR);
5637 if (p != NULL)
5638 {
5639 alc = (char *) bfd_malloc (p - name + 1);
5640 if (alc == NULL)
5641 {
5642 s->error = TRUE;
5643 return FALSE;
5644 }
5645 memcpy (alc, name, p - name);
5646 alc[p - name] = '\0';
5647 name = alc;
5648 }
5649 }
5650
5651 /* Compute the hash value. */
5652 ha = bfd_elf_gnu_hash (name);
5653
5654 /* Store the found hash value in the array for compute_bucket_count,
5655 and also for .dynsym reordering purposes. */
5656 s->hashcodes[s->nsyms] = ha;
5657 s->hashval[h->dynindx] = ha;
5658 ++s->nsyms;
5659 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5660 s->min_dynindx = h->dynindx;
5661
5662 if (alc != NULL)
5663 free (alc);
5664
5665 return TRUE;
5666 }
5667
5668 /* This function will be called though elf_link_hash_traverse to do
5669 final dynaminc symbol renumbering. */
5670
5671 static bfd_boolean
5672 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5673 {
5674 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5675 unsigned long int bucket;
5676 unsigned long int val;
5677
5678 /* Ignore indirect symbols. */
5679 if (h->dynindx == -1)
5680 return TRUE;
5681
5682 /* Ignore also local symbols and undefined symbols. */
5683 if (! (*s->bed->elf_hash_symbol) (h))
5684 {
5685 if (h->dynindx >= s->min_dynindx)
5686 h->dynindx = s->local_indx++;
5687 return TRUE;
5688 }
5689
5690 bucket = s->hashval[h->dynindx] % s->bucketcount;
5691 val = (s->hashval[h->dynindx] >> s->shift1)
5692 & ((s->maskbits >> s->shift1) - 1);
5693 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5694 s->bitmask[val]
5695 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5696 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5697 if (s->counts[bucket] == 1)
5698 /* Last element terminates the chain. */
5699 val |= 1;
5700 bfd_put_32 (s->output_bfd, val,
5701 s->contents + (s->indx[bucket] - s->symindx) * 4);
5702 --s->counts[bucket];
5703 h->dynindx = s->indx[bucket]++;
5704 return TRUE;
5705 }
5706
5707 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5708
5709 bfd_boolean
5710 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5711 {
5712 return !(h->forced_local
5713 || h->root.type == bfd_link_hash_undefined
5714 || h->root.type == bfd_link_hash_undefweak
5715 || ((h->root.type == bfd_link_hash_defined
5716 || h->root.type == bfd_link_hash_defweak)
5717 && h->root.u.def.section->output_section == NULL));
5718 }
5719
5720 /* Array used to determine the number of hash table buckets to use
5721 based on the number of symbols there are. If there are fewer than
5722 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5723 fewer than 37 we use 17 buckets, and so forth. We never use more
5724 than 32771 buckets. */
5725
5726 static const size_t elf_buckets[] =
5727 {
5728 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5729 16411, 32771, 0
5730 };
5731
5732 /* Compute bucket count for hashing table. We do not use a static set
5733 of possible tables sizes anymore. Instead we determine for all
5734 possible reasonable sizes of the table the outcome (i.e., the
5735 number of collisions etc) and choose the best solution. The
5736 weighting functions are not too simple to allow the table to grow
5737 without bounds. Instead one of the weighting factors is the size.
5738 Therefore the result is always a good payoff between few collisions
5739 (= short chain lengths) and table size. */
5740 static size_t
5741 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5742 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5743 unsigned long int nsyms,
5744 int gnu_hash)
5745 {
5746 size_t best_size = 0;
5747 unsigned long int i;
5748
5749 /* We have a problem here. The following code to optimize the table
5750 size requires an integer type with more the 32 bits. If
5751 BFD_HOST_U_64_BIT is set we know about such a type. */
5752 #ifdef BFD_HOST_U_64_BIT
5753 if (info->optimize)
5754 {
5755 size_t minsize;
5756 size_t maxsize;
5757 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5758 bfd *dynobj = elf_hash_table (info)->dynobj;
5759 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5760 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5761 unsigned long int *counts;
5762 bfd_size_type amt;
5763 unsigned int no_improvement_count = 0;
5764
5765 /* Possible optimization parameters: if we have NSYMS symbols we say
5766 that the hashing table must at least have NSYMS/4 and at most
5767 2*NSYMS buckets. */
5768 minsize = nsyms / 4;
5769 if (minsize == 0)
5770 minsize = 1;
5771 best_size = maxsize = nsyms * 2;
5772 if (gnu_hash)
5773 {
5774 if (minsize < 2)
5775 minsize = 2;
5776 if ((best_size & 31) == 0)
5777 ++best_size;
5778 }
5779
5780 /* Create array where we count the collisions in. We must use bfd_malloc
5781 since the size could be large. */
5782 amt = maxsize;
5783 amt *= sizeof (unsigned long int);
5784 counts = (unsigned long int *) bfd_malloc (amt);
5785 if (counts == NULL)
5786 return 0;
5787
5788 /* Compute the "optimal" size for the hash table. The criteria is a
5789 minimal chain length. The minor criteria is (of course) the size
5790 of the table. */
5791 for (i = minsize; i < maxsize; ++i)
5792 {
5793 /* Walk through the array of hashcodes and count the collisions. */
5794 BFD_HOST_U_64_BIT max;
5795 unsigned long int j;
5796 unsigned long int fact;
5797
5798 if (gnu_hash && (i & 31) == 0)
5799 continue;
5800
5801 memset (counts, '\0', i * sizeof (unsigned long int));
5802
5803 /* Determine how often each hash bucket is used. */
5804 for (j = 0; j < nsyms; ++j)
5805 ++counts[hashcodes[j] % i];
5806
5807 /* For the weight function we need some information about the
5808 pagesize on the target. This is information need not be 100%
5809 accurate. Since this information is not available (so far) we
5810 define it here to a reasonable default value. If it is crucial
5811 to have a better value some day simply define this value. */
5812 # ifndef BFD_TARGET_PAGESIZE
5813 # define BFD_TARGET_PAGESIZE (4096)
5814 # endif
5815
5816 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5817 and the chains. */
5818 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5819
5820 # if 1
5821 /* Variant 1: optimize for short chains. We add the squares
5822 of all the chain lengths (which favors many small chain
5823 over a few long chains). */
5824 for (j = 0; j < i; ++j)
5825 max += counts[j] * counts[j];
5826
5827 /* This adds penalties for the overall size of the table. */
5828 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5829 max *= fact * fact;
5830 # else
5831 /* Variant 2: Optimize a lot more for small table. Here we
5832 also add squares of the size but we also add penalties for
5833 empty slots (the +1 term). */
5834 for (j = 0; j < i; ++j)
5835 max += (1 + counts[j]) * (1 + counts[j]);
5836
5837 /* The overall size of the table is considered, but not as
5838 strong as in variant 1, where it is squared. */
5839 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5840 max *= fact;
5841 # endif
5842
5843 /* Compare with current best results. */
5844 if (max < best_chlen)
5845 {
5846 best_chlen = max;
5847 best_size = i;
5848 no_improvement_count = 0;
5849 }
5850 /* PR 11843: Avoid futile long searches for the best bucket size
5851 when there are a large number of symbols. */
5852 else if (++no_improvement_count == 100)
5853 break;
5854 }
5855
5856 free (counts);
5857 }
5858 else
5859 #endif /* defined (BFD_HOST_U_64_BIT) */
5860 {
5861 /* This is the fallback solution if no 64bit type is available or if we
5862 are not supposed to spend much time on optimizations. We select the
5863 bucket count using a fixed set of numbers. */
5864 for (i = 0; elf_buckets[i] != 0; i++)
5865 {
5866 best_size = elf_buckets[i];
5867 if (nsyms < elf_buckets[i + 1])
5868 break;
5869 }
5870 if (gnu_hash && best_size < 2)
5871 best_size = 2;
5872 }
5873
5874 return best_size;
5875 }
5876
5877 /* Size any SHT_GROUP section for ld -r. */
5878
5879 bfd_boolean
5880 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5881 {
5882 bfd *ibfd;
5883 asection *s;
5884
5885 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5886 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5887 && (s = ibfd->sections) != NULL
5888 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
5889 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5890 return FALSE;
5891 return TRUE;
5892 }
5893
5894 /* Set a default stack segment size. The value in INFO wins. If it
5895 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5896 undefined it is initialized. */
5897
5898 bfd_boolean
5899 bfd_elf_stack_segment_size (bfd *output_bfd,
5900 struct bfd_link_info *info,
5901 const char *legacy_symbol,
5902 bfd_vma default_size)
5903 {
5904 struct elf_link_hash_entry *h = NULL;
5905
5906 /* Look for legacy symbol. */
5907 if (legacy_symbol)
5908 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5909 FALSE, FALSE, FALSE);
5910 if (h && (h->root.type == bfd_link_hash_defined
5911 || h->root.type == bfd_link_hash_defweak)
5912 && h->def_regular
5913 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5914 {
5915 /* The symbol has no type if specified on the command line. */
5916 h->type = STT_OBJECT;
5917 if (info->stacksize)
5918 /* xgettext:c-format */
5919 _bfd_error_handler (_("%B: stack size specified and %s set"),
5920 output_bfd, legacy_symbol);
5921 else if (h->root.u.def.section != bfd_abs_section_ptr)
5922 /* xgettext:c-format */
5923 _bfd_error_handler (_("%B: %s not absolute"),
5924 output_bfd, legacy_symbol);
5925 else
5926 info->stacksize = h->root.u.def.value;
5927 }
5928
5929 if (!info->stacksize)
5930 /* If the user didn't set a size, or explicitly inhibit the
5931 size, set it now. */
5932 info->stacksize = default_size;
5933
5934 /* Provide the legacy symbol, if it is referenced. */
5935 if (h && (h->root.type == bfd_link_hash_undefined
5936 || h->root.type == bfd_link_hash_undefweak))
5937 {
5938 struct bfd_link_hash_entry *bh = NULL;
5939
5940 if (!(_bfd_generic_link_add_one_symbol
5941 (info, output_bfd, legacy_symbol,
5942 BSF_GLOBAL, bfd_abs_section_ptr,
5943 info->stacksize >= 0 ? info->stacksize : 0,
5944 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5945 return FALSE;
5946
5947 h = (struct elf_link_hash_entry *) bh;
5948 h->def_regular = 1;
5949 h->type = STT_OBJECT;
5950 }
5951
5952 return TRUE;
5953 }
5954
5955 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
5956
5957 struct elf_gc_sweep_symbol_info
5958 {
5959 struct bfd_link_info *info;
5960 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5961 bfd_boolean);
5962 };
5963
5964 static bfd_boolean
5965 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5966 {
5967 if (!h->mark
5968 && (((h->root.type == bfd_link_hash_defined
5969 || h->root.type == bfd_link_hash_defweak)
5970 && !((h->def_regular || ELF_COMMON_DEF_P (h))
5971 && h->root.u.def.section->gc_mark))
5972 || h->root.type == bfd_link_hash_undefined
5973 || h->root.type == bfd_link_hash_undefweak))
5974 {
5975 struct elf_gc_sweep_symbol_info *inf;
5976
5977 inf = (struct elf_gc_sweep_symbol_info *) data;
5978 (*inf->hide_symbol) (inf->info, h, TRUE);
5979 h->def_regular = 0;
5980 h->ref_regular = 0;
5981 h->ref_regular_nonweak = 0;
5982 }
5983
5984 return TRUE;
5985 }
5986
5987 /* Set up the sizes and contents of the ELF dynamic sections. This is
5988 called by the ELF linker emulation before_allocation routine. We
5989 must set the sizes of the sections before the linker sets the
5990 addresses of the various sections. */
5991
5992 bfd_boolean
5993 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5994 const char *soname,
5995 const char *rpath,
5996 const char *filter_shlib,
5997 const char *audit,
5998 const char *depaudit,
5999 const char * const *auxiliary_filters,
6000 struct bfd_link_info *info,
6001 asection **sinterpptr)
6002 {
6003 bfd *dynobj;
6004 const struct elf_backend_data *bed;
6005
6006 *sinterpptr = NULL;
6007
6008 if (!is_elf_hash_table (info->hash))
6009 return TRUE;
6010
6011 dynobj = elf_hash_table (info)->dynobj;
6012
6013 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6014 {
6015 struct bfd_elf_version_tree *verdefs;
6016 struct elf_info_failed asvinfo;
6017 struct bfd_elf_version_tree *t;
6018 struct bfd_elf_version_expr *d;
6019 asection *s;
6020 size_t soname_indx;
6021
6022 /* If we are supposed to export all symbols into the dynamic symbol
6023 table (this is not the normal case), then do so. */
6024 if (info->export_dynamic
6025 || (bfd_link_executable (info) && info->dynamic))
6026 {
6027 struct elf_info_failed eif;
6028
6029 eif.info = info;
6030 eif.failed = FALSE;
6031 elf_link_hash_traverse (elf_hash_table (info),
6032 _bfd_elf_export_symbol,
6033 &eif);
6034 if (eif.failed)
6035 return FALSE;
6036 }
6037
6038 if (soname != NULL)
6039 {
6040 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6041 soname, TRUE);
6042 if (soname_indx == (size_t) -1
6043 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6044 return FALSE;
6045 }
6046 else
6047 soname_indx = (size_t) -1;
6048
6049 /* Make all global versions with definition. */
6050 for (t = info->version_info; t != NULL; t = t->next)
6051 for (d = t->globals.list; d != NULL; d = d->next)
6052 if (!d->symver && d->literal)
6053 {
6054 const char *verstr, *name;
6055 size_t namelen, verlen, newlen;
6056 char *newname, *p, leading_char;
6057 struct elf_link_hash_entry *newh;
6058
6059 leading_char = bfd_get_symbol_leading_char (output_bfd);
6060 name = d->pattern;
6061 namelen = strlen (name) + (leading_char != '\0');
6062 verstr = t->name;
6063 verlen = strlen (verstr);
6064 newlen = namelen + verlen + 3;
6065
6066 newname = (char *) bfd_malloc (newlen);
6067 if (newname == NULL)
6068 return FALSE;
6069 newname[0] = leading_char;
6070 memcpy (newname + (leading_char != '\0'), name, namelen);
6071
6072 /* Check the hidden versioned definition. */
6073 p = newname + namelen;
6074 *p++ = ELF_VER_CHR;
6075 memcpy (p, verstr, verlen + 1);
6076 newh = elf_link_hash_lookup (elf_hash_table (info),
6077 newname, FALSE, FALSE,
6078 FALSE);
6079 if (newh == NULL
6080 || (newh->root.type != bfd_link_hash_defined
6081 && newh->root.type != bfd_link_hash_defweak))
6082 {
6083 /* Check the default versioned definition. */
6084 *p++ = ELF_VER_CHR;
6085 memcpy (p, verstr, verlen + 1);
6086 newh = elf_link_hash_lookup (elf_hash_table (info),
6087 newname, FALSE, FALSE,
6088 FALSE);
6089 }
6090 free (newname);
6091
6092 /* Mark this version if there is a definition and it is
6093 not defined in a shared object. */
6094 if (newh != NULL
6095 && !newh->def_dynamic
6096 && (newh->root.type == bfd_link_hash_defined
6097 || newh->root.type == bfd_link_hash_defweak))
6098 d->symver = 1;
6099 }
6100
6101 /* Attach all the symbols to their version information. */
6102 asvinfo.info = info;
6103 asvinfo.failed = FALSE;
6104
6105 elf_link_hash_traverse (elf_hash_table (info),
6106 _bfd_elf_link_assign_sym_version,
6107 &asvinfo);
6108 if (asvinfo.failed)
6109 return FALSE;
6110
6111 if (!info->allow_undefined_version)
6112 {
6113 /* Check if all global versions have a definition. */
6114 bfd_boolean all_defined = TRUE;
6115 for (t = info->version_info; t != NULL; t = t->next)
6116 for (d = t->globals.list; d != NULL; d = d->next)
6117 if (d->literal && !d->symver && !d->script)
6118 {
6119 _bfd_error_handler
6120 (_("%s: undefined version: %s"),
6121 d->pattern, t->name);
6122 all_defined = FALSE;
6123 }
6124
6125 if (!all_defined)
6126 {
6127 bfd_set_error (bfd_error_bad_value);
6128 return FALSE;
6129 }
6130 }
6131
6132 /* Set up the version definition section. */
6133 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6134 BFD_ASSERT (s != NULL);
6135
6136 /* We may have created additional version definitions if we are
6137 just linking a regular application. */
6138 verdefs = info->version_info;
6139
6140 /* Skip anonymous version tag. */
6141 if (verdefs != NULL && verdefs->vernum == 0)
6142 verdefs = verdefs->next;
6143
6144 if (verdefs == NULL && !info->create_default_symver)
6145 s->flags |= SEC_EXCLUDE;
6146 else
6147 {
6148 unsigned int cdefs;
6149 bfd_size_type size;
6150 bfd_byte *p;
6151 Elf_Internal_Verdef def;
6152 Elf_Internal_Verdaux defaux;
6153 struct bfd_link_hash_entry *bh;
6154 struct elf_link_hash_entry *h;
6155 const char *name;
6156
6157 cdefs = 0;
6158 size = 0;
6159
6160 /* Make space for the base version. */
6161 size += sizeof (Elf_External_Verdef);
6162 size += sizeof (Elf_External_Verdaux);
6163 ++cdefs;
6164
6165 /* Make space for the default version. */
6166 if (info->create_default_symver)
6167 {
6168 size += sizeof (Elf_External_Verdef);
6169 ++cdefs;
6170 }
6171
6172 for (t = verdefs; t != NULL; t = t->next)
6173 {
6174 struct bfd_elf_version_deps *n;
6175
6176 /* Don't emit base version twice. */
6177 if (t->vernum == 0)
6178 continue;
6179
6180 size += sizeof (Elf_External_Verdef);
6181 size += sizeof (Elf_External_Verdaux);
6182 ++cdefs;
6183
6184 for (n = t->deps; n != NULL; n = n->next)
6185 size += sizeof (Elf_External_Verdaux);
6186 }
6187
6188 s->size = size;
6189 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6190 if (s->contents == NULL && s->size != 0)
6191 return FALSE;
6192
6193 /* Fill in the version definition section. */
6194
6195 p = s->contents;
6196
6197 def.vd_version = VER_DEF_CURRENT;
6198 def.vd_flags = VER_FLG_BASE;
6199 def.vd_ndx = 1;
6200 def.vd_cnt = 1;
6201 if (info->create_default_symver)
6202 {
6203 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6204 def.vd_next = sizeof (Elf_External_Verdef);
6205 }
6206 else
6207 {
6208 def.vd_aux = sizeof (Elf_External_Verdef);
6209 def.vd_next = (sizeof (Elf_External_Verdef)
6210 + sizeof (Elf_External_Verdaux));
6211 }
6212
6213 if (soname_indx != (size_t) -1)
6214 {
6215 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6216 soname_indx);
6217 def.vd_hash = bfd_elf_hash (soname);
6218 defaux.vda_name = soname_indx;
6219 name = soname;
6220 }
6221 else
6222 {
6223 size_t indx;
6224
6225 name = lbasename (output_bfd->filename);
6226 def.vd_hash = bfd_elf_hash (name);
6227 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6228 name, FALSE);
6229 if (indx == (size_t) -1)
6230 return FALSE;
6231 defaux.vda_name = indx;
6232 }
6233 defaux.vda_next = 0;
6234
6235 _bfd_elf_swap_verdef_out (output_bfd, &def,
6236 (Elf_External_Verdef *) p);
6237 p += sizeof (Elf_External_Verdef);
6238 if (info->create_default_symver)
6239 {
6240 /* Add a symbol representing this version. */
6241 bh = NULL;
6242 if (! (_bfd_generic_link_add_one_symbol
6243 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6244 0, NULL, FALSE,
6245 get_elf_backend_data (dynobj)->collect, &bh)))
6246 return FALSE;
6247 h = (struct elf_link_hash_entry *) bh;
6248 h->non_elf = 0;
6249 h->def_regular = 1;
6250 h->type = STT_OBJECT;
6251 h->verinfo.vertree = NULL;
6252
6253 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6254 return FALSE;
6255
6256 /* Create a duplicate of the base version with the same
6257 aux block, but different flags. */
6258 def.vd_flags = 0;
6259 def.vd_ndx = 2;
6260 def.vd_aux = sizeof (Elf_External_Verdef);
6261 if (verdefs)
6262 def.vd_next = (sizeof (Elf_External_Verdef)
6263 + sizeof (Elf_External_Verdaux));
6264 else
6265 def.vd_next = 0;
6266 _bfd_elf_swap_verdef_out (output_bfd, &def,
6267 (Elf_External_Verdef *) p);
6268 p += sizeof (Elf_External_Verdef);
6269 }
6270 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6271 (Elf_External_Verdaux *) p);
6272 p += sizeof (Elf_External_Verdaux);
6273
6274 for (t = verdefs; t != NULL; t = t->next)
6275 {
6276 unsigned int cdeps;
6277 struct bfd_elf_version_deps *n;
6278
6279 /* Don't emit the base version twice. */
6280 if (t->vernum == 0)
6281 continue;
6282
6283 cdeps = 0;
6284 for (n = t->deps; n != NULL; n = n->next)
6285 ++cdeps;
6286
6287 /* Add a symbol representing this version. */
6288 bh = NULL;
6289 if (! (_bfd_generic_link_add_one_symbol
6290 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6291 0, NULL, FALSE,
6292 get_elf_backend_data (dynobj)->collect, &bh)))
6293 return FALSE;
6294 h = (struct elf_link_hash_entry *) bh;
6295 h->non_elf = 0;
6296 h->def_regular = 1;
6297 h->type = STT_OBJECT;
6298 h->verinfo.vertree = t;
6299
6300 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6301 return FALSE;
6302
6303 def.vd_version = VER_DEF_CURRENT;
6304 def.vd_flags = 0;
6305 if (t->globals.list == NULL
6306 && t->locals.list == NULL
6307 && ! t->used)
6308 def.vd_flags |= VER_FLG_WEAK;
6309 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6310 def.vd_cnt = cdeps + 1;
6311 def.vd_hash = bfd_elf_hash (t->name);
6312 def.vd_aux = sizeof (Elf_External_Verdef);
6313 def.vd_next = 0;
6314
6315 /* If a basever node is next, it *must* be the last node in
6316 the chain, otherwise Verdef construction breaks. */
6317 if (t->next != NULL && t->next->vernum == 0)
6318 BFD_ASSERT (t->next->next == NULL);
6319
6320 if (t->next != NULL && t->next->vernum != 0)
6321 def.vd_next = (sizeof (Elf_External_Verdef)
6322 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6323
6324 _bfd_elf_swap_verdef_out (output_bfd, &def,
6325 (Elf_External_Verdef *) p);
6326 p += sizeof (Elf_External_Verdef);
6327
6328 defaux.vda_name = h->dynstr_index;
6329 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6330 h->dynstr_index);
6331 defaux.vda_next = 0;
6332 if (t->deps != NULL)
6333 defaux.vda_next = sizeof (Elf_External_Verdaux);
6334 t->name_indx = defaux.vda_name;
6335
6336 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6337 (Elf_External_Verdaux *) p);
6338 p += sizeof (Elf_External_Verdaux);
6339
6340 for (n = t->deps; n != NULL; n = n->next)
6341 {
6342 if (n->version_needed == NULL)
6343 {
6344 /* This can happen if there was an error in the
6345 version script. */
6346 defaux.vda_name = 0;
6347 }
6348 else
6349 {
6350 defaux.vda_name = n->version_needed->name_indx;
6351 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6352 defaux.vda_name);
6353 }
6354 if (n->next == NULL)
6355 defaux.vda_next = 0;
6356 else
6357 defaux.vda_next = sizeof (Elf_External_Verdaux);
6358
6359 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6360 (Elf_External_Verdaux *) p);
6361 p += sizeof (Elf_External_Verdaux);
6362 }
6363 }
6364
6365 elf_tdata (output_bfd)->cverdefs = cdefs;
6366 }
6367 }
6368
6369 bed = get_elf_backend_data (output_bfd);
6370
6371 if (info->gc_sections && bed->can_gc_sections)
6372 {
6373 struct elf_gc_sweep_symbol_info sweep_info;
6374
6375 /* Remove the symbols that were in the swept sections from the
6376 dynamic symbol table. */
6377 sweep_info.info = info;
6378 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6379 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6380 &sweep_info);
6381 }
6382
6383 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6384 {
6385 asection *s;
6386 struct elf_find_verdep_info sinfo;
6387
6388 /* Work out the size of the version reference section. */
6389
6390 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6391 BFD_ASSERT (s != NULL);
6392
6393 sinfo.info = info;
6394 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6395 if (sinfo.vers == 0)
6396 sinfo.vers = 1;
6397 sinfo.failed = FALSE;
6398
6399 elf_link_hash_traverse (elf_hash_table (info),
6400 _bfd_elf_link_find_version_dependencies,
6401 &sinfo);
6402 if (sinfo.failed)
6403 return FALSE;
6404
6405 if (elf_tdata (output_bfd)->verref == NULL)
6406 s->flags |= SEC_EXCLUDE;
6407 else
6408 {
6409 Elf_Internal_Verneed *vn;
6410 unsigned int size;
6411 unsigned int crefs;
6412 bfd_byte *p;
6413
6414 /* Build the version dependency section. */
6415 size = 0;
6416 crefs = 0;
6417 for (vn = elf_tdata (output_bfd)->verref;
6418 vn != NULL;
6419 vn = vn->vn_nextref)
6420 {
6421 Elf_Internal_Vernaux *a;
6422
6423 size += sizeof (Elf_External_Verneed);
6424 ++crefs;
6425 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6426 size += sizeof (Elf_External_Vernaux);
6427 }
6428
6429 s->size = size;
6430 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6431 if (s->contents == NULL)
6432 return FALSE;
6433
6434 p = s->contents;
6435 for (vn = elf_tdata (output_bfd)->verref;
6436 vn != NULL;
6437 vn = vn->vn_nextref)
6438 {
6439 unsigned int caux;
6440 Elf_Internal_Vernaux *a;
6441 size_t indx;
6442
6443 caux = 0;
6444 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6445 ++caux;
6446
6447 vn->vn_version = VER_NEED_CURRENT;
6448 vn->vn_cnt = caux;
6449 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6450 elf_dt_name (vn->vn_bfd) != NULL
6451 ? elf_dt_name (vn->vn_bfd)
6452 : lbasename (vn->vn_bfd->filename),
6453 FALSE);
6454 if (indx == (size_t) -1)
6455 return FALSE;
6456 vn->vn_file = indx;
6457 vn->vn_aux = sizeof (Elf_External_Verneed);
6458 if (vn->vn_nextref == NULL)
6459 vn->vn_next = 0;
6460 else
6461 vn->vn_next = (sizeof (Elf_External_Verneed)
6462 + caux * sizeof (Elf_External_Vernaux));
6463
6464 _bfd_elf_swap_verneed_out (output_bfd, vn,
6465 (Elf_External_Verneed *) p);
6466 p += sizeof (Elf_External_Verneed);
6467
6468 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6469 {
6470 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6471 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6472 a->vna_nodename, FALSE);
6473 if (indx == (size_t) -1)
6474 return FALSE;
6475 a->vna_name = indx;
6476 if (a->vna_nextptr == NULL)
6477 a->vna_next = 0;
6478 else
6479 a->vna_next = sizeof (Elf_External_Vernaux);
6480
6481 _bfd_elf_swap_vernaux_out (output_bfd, a,
6482 (Elf_External_Vernaux *) p);
6483 p += sizeof (Elf_External_Vernaux);
6484 }
6485 }
6486
6487 elf_tdata (output_bfd)->cverrefs = crefs;
6488 }
6489 }
6490
6491 /* Any syms created from now on start with -1 in
6492 got.refcount/offset and plt.refcount/offset. */
6493 elf_hash_table (info)->init_got_refcount
6494 = elf_hash_table (info)->init_got_offset;
6495 elf_hash_table (info)->init_plt_refcount
6496 = elf_hash_table (info)->init_plt_offset;
6497
6498 if (bfd_link_relocatable (info)
6499 && !_bfd_elf_size_group_sections (info))
6500 return FALSE;
6501
6502 /* The backend may have to create some sections regardless of whether
6503 we're dynamic or not. */
6504 if (bed->elf_backend_always_size_sections
6505 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6506 return FALSE;
6507
6508 /* Determine any GNU_STACK segment requirements, after the backend
6509 has had a chance to set a default segment size. */
6510 if (info->execstack)
6511 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6512 else if (info->noexecstack)
6513 elf_stack_flags (output_bfd) = PF_R | PF_W;
6514 else
6515 {
6516 bfd *inputobj;
6517 asection *notesec = NULL;
6518 int exec = 0;
6519
6520 for (inputobj = info->input_bfds;
6521 inputobj;
6522 inputobj = inputobj->link.next)
6523 {
6524 asection *s;
6525
6526 if (inputobj->flags
6527 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6528 continue;
6529 s = inputobj->sections;
6530 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6531 continue;
6532
6533 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6534 if (s)
6535 {
6536 if (s->flags & SEC_CODE)
6537 exec = PF_X;
6538 notesec = s;
6539 }
6540 else if (bed->default_execstack)
6541 exec = PF_X;
6542 }
6543 if (notesec || info->stacksize > 0)
6544 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6545 if (notesec && exec && bfd_link_relocatable (info)
6546 && notesec->output_section != bfd_abs_section_ptr)
6547 notesec->output_section->flags |= SEC_CODE;
6548 }
6549
6550 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6551 {
6552 struct elf_info_failed eif;
6553 struct elf_link_hash_entry *h;
6554 asection *dynstr;
6555 asection *s;
6556
6557 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6558 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6559
6560 if (info->symbolic)
6561 {
6562 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6563 return FALSE;
6564 info->flags |= DF_SYMBOLIC;
6565 }
6566
6567 if (rpath != NULL)
6568 {
6569 size_t indx;
6570 bfd_vma tag;
6571
6572 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6573 TRUE);
6574 if (indx == (size_t) -1)
6575 return FALSE;
6576
6577 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6578 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6579 return FALSE;
6580 }
6581
6582 if (filter_shlib != NULL)
6583 {
6584 size_t indx;
6585
6586 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6587 filter_shlib, TRUE);
6588 if (indx == (size_t) -1
6589 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6590 return FALSE;
6591 }
6592
6593 if (auxiliary_filters != NULL)
6594 {
6595 const char * const *p;
6596
6597 for (p = auxiliary_filters; *p != NULL; p++)
6598 {
6599 size_t indx;
6600
6601 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6602 *p, TRUE);
6603 if (indx == (size_t) -1
6604 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6605 return FALSE;
6606 }
6607 }
6608
6609 if (audit != NULL)
6610 {
6611 size_t indx;
6612
6613 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6614 TRUE);
6615 if (indx == (size_t) -1
6616 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6617 return FALSE;
6618 }
6619
6620 if (depaudit != NULL)
6621 {
6622 size_t indx;
6623
6624 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6625 TRUE);
6626 if (indx == (size_t) -1
6627 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6628 return FALSE;
6629 }
6630
6631 eif.info = info;
6632 eif.failed = FALSE;
6633
6634 /* Find all symbols which were defined in a dynamic object and make
6635 the backend pick a reasonable value for them. */
6636 elf_link_hash_traverse (elf_hash_table (info),
6637 _bfd_elf_adjust_dynamic_symbol,
6638 &eif);
6639 if (eif.failed)
6640 return FALSE;
6641
6642 /* Add some entries to the .dynamic section. We fill in some of the
6643 values later, in bfd_elf_final_link, but we must add the entries
6644 now so that we know the final size of the .dynamic section. */
6645
6646 /* If there are initialization and/or finalization functions to
6647 call then add the corresponding DT_INIT/DT_FINI entries. */
6648 h = (info->init_function
6649 ? elf_link_hash_lookup (elf_hash_table (info),
6650 info->init_function, FALSE,
6651 FALSE, FALSE)
6652 : NULL);
6653 if (h != NULL
6654 && (h->ref_regular
6655 || h->def_regular))
6656 {
6657 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6658 return FALSE;
6659 }
6660 h = (info->fini_function
6661 ? elf_link_hash_lookup (elf_hash_table (info),
6662 info->fini_function, FALSE,
6663 FALSE, FALSE)
6664 : NULL);
6665 if (h != NULL
6666 && (h->ref_regular
6667 || h->def_regular))
6668 {
6669 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6670 return FALSE;
6671 }
6672
6673 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6674 if (s != NULL && s->linker_has_input)
6675 {
6676 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6677 if (! bfd_link_executable (info))
6678 {
6679 bfd *sub;
6680 asection *o;
6681
6682 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6683 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6684 && (o = sub->sections) != NULL
6685 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6686 for (o = sub->sections; o != NULL; o = o->next)
6687 if (elf_section_data (o)->this_hdr.sh_type
6688 == SHT_PREINIT_ARRAY)
6689 {
6690 _bfd_error_handler
6691 (_("%B: .preinit_array section is not allowed in DSO"),
6692 sub);
6693 break;
6694 }
6695
6696 bfd_set_error (bfd_error_nonrepresentable_section);
6697 return FALSE;
6698 }
6699
6700 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6701 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6702 return FALSE;
6703 }
6704 s = bfd_get_section_by_name (output_bfd, ".init_array");
6705 if (s != NULL && s->linker_has_input)
6706 {
6707 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6708 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6709 return FALSE;
6710 }
6711 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6712 if (s != NULL && s->linker_has_input)
6713 {
6714 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6715 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6716 return FALSE;
6717 }
6718
6719 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6720 /* If .dynstr is excluded from the link, we don't want any of
6721 these tags. Strictly, we should be checking each section
6722 individually; This quick check covers for the case where
6723 someone does a /DISCARD/ : { *(*) }. */
6724 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6725 {
6726 bfd_size_type strsize;
6727
6728 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6729 if ((info->emit_hash
6730 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6731 || (info->emit_gnu_hash
6732 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6733 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6734 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6735 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6736 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6737 bed->s->sizeof_sym))
6738 return FALSE;
6739 }
6740 }
6741
6742 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6743 return FALSE;
6744
6745 /* The backend must work out the sizes of all the other dynamic
6746 sections. */
6747 if (dynobj != NULL
6748 && bed->elf_backend_size_dynamic_sections != NULL
6749 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6750 return FALSE;
6751
6752 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6753 {
6754 unsigned long section_sym_count;
6755
6756 if (elf_tdata (output_bfd)->cverdefs)
6757 {
6758 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6759
6760 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6761 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6762 return FALSE;
6763 }
6764
6765 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6766 {
6767 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6768 return FALSE;
6769 }
6770 else if (info->flags & DF_BIND_NOW)
6771 {
6772 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6773 return FALSE;
6774 }
6775
6776 if (info->flags_1)
6777 {
6778 if (bfd_link_executable (info))
6779 info->flags_1 &= ~ (DF_1_INITFIRST
6780 | DF_1_NODELETE
6781 | DF_1_NOOPEN);
6782 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6783 return FALSE;
6784 }
6785
6786 if (elf_tdata (output_bfd)->cverrefs)
6787 {
6788 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6789
6790 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6791 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6792 return FALSE;
6793 }
6794
6795 if ((elf_tdata (output_bfd)->cverrefs == 0
6796 && elf_tdata (output_bfd)->cverdefs == 0)
6797 || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6798 &section_sym_count) <= 1)
6799 {
6800 asection *s;
6801
6802 s = bfd_get_linker_section (dynobj, ".gnu.version");
6803 s->flags |= SEC_EXCLUDE;
6804 }
6805 }
6806 return TRUE;
6807 }
6808
6809 /* Find the first non-excluded output section. We'll use its
6810 section symbol for some emitted relocs. */
6811 void
6812 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6813 {
6814 asection *s;
6815
6816 for (s = output_bfd->sections; s != NULL; s = s->next)
6817 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6818 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6819 {
6820 elf_hash_table (info)->text_index_section = s;
6821 break;
6822 }
6823 }
6824
6825 /* Find two non-excluded output sections, one for code, one for data.
6826 We'll use their section symbols for some emitted relocs. */
6827 void
6828 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6829 {
6830 asection *s;
6831
6832 /* Data first, since setting text_index_section changes
6833 _bfd_elf_link_omit_section_dynsym. */
6834 for (s = output_bfd->sections; s != NULL; s = s->next)
6835 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6836 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6837 {
6838 elf_hash_table (info)->data_index_section = s;
6839 break;
6840 }
6841
6842 for (s = output_bfd->sections; s != NULL; s = s->next)
6843 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6844 == (SEC_ALLOC | SEC_READONLY))
6845 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6846 {
6847 elf_hash_table (info)->text_index_section = s;
6848 break;
6849 }
6850
6851 if (elf_hash_table (info)->text_index_section == NULL)
6852 elf_hash_table (info)->text_index_section
6853 = elf_hash_table (info)->data_index_section;
6854 }
6855
6856 bfd_boolean
6857 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6858 {
6859 const struct elf_backend_data *bed;
6860 unsigned long section_sym_count;
6861 bfd_size_type dynsymcount = 0;
6862
6863 if (!is_elf_hash_table (info->hash))
6864 return TRUE;
6865
6866 bed = get_elf_backend_data (output_bfd);
6867 (*bed->elf_backend_init_index_section) (output_bfd, info);
6868
6869 /* Assign dynsym indices. In a shared library we generate a section
6870 symbol for each output section, which come first. Next come all
6871 of the back-end allocated local dynamic syms, followed by the rest
6872 of the global symbols.
6873
6874 This is usually not needed for static binaries, however backends
6875 can request to always do it, e.g. the MIPS backend uses dynamic
6876 symbol counts to lay out GOT, which will be produced in the
6877 presence of GOT relocations even in static binaries (holding fixed
6878 data in that case, to satisfy those relocations). */
6879
6880 if (elf_hash_table (info)->dynamic_sections_created
6881 || bed->always_renumber_dynsyms)
6882 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6883 &section_sym_count);
6884
6885 if (elf_hash_table (info)->dynamic_sections_created)
6886 {
6887 bfd *dynobj;
6888 asection *s;
6889 unsigned int dtagcount;
6890
6891 dynobj = elf_hash_table (info)->dynobj;
6892
6893 /* Work out the size of the symbol version section. */
6894 s = bfd_get_linker_section (dynobj, ".gnu.version");
6895 BFD_ASSERT (s != NULL);
6896 if ((s->flags & SEC_EXCLUDE) == 0)
6897 {
6898 s->size = dynsymcount * sizeof (Elf_External_Versym);
6899 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6900 if (s->contents == NULL)
6901 return FALSE;
6902
6903 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6904 return FALSE;
6905 }
6906
6907 /* Set the size of the .dynsym and .hash sections. We counted
6908 the number of dynamic symbols in elf_link_add_object_symbols.
6909 We will build the contents of .dynsym and .hash when we build
6910 the final symbol table, because until then we do not know the
6911 correct value to give the symbols. We built the .dynstr
6912 section as we went along in elf_link_add_object_symbols. */
6913 s = elf_hash_table (info)->dynsym;
6914 BFD_ASSERT (s != NULL);
6915 s->size = dynsymcount * bed->s->sizeof_sym;
6916
6917 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6918 if (s->contents == NULL)
6919 return FALSE;
6920
6921 /* The first entry in .dynsym is a dummy symbol. Clear all the
6922 section syms, in case we don't output them all. */
6923 ++section_sym_count;
6924 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6925
6926 elf_hash_table (info)->bucketcount = 0;
6927
6928 /* Compute the size of the hashing table. As a side effect this
6929 computes the hash values for all the names we export. */
6930 if (info->emit_hash)
6931 {
6932 unsigned long int *hashcodes;
6933 struct hash_codes_info hashinf;
6934 bfd_size_type amt;
6935 unsigned long int nsyms;
6936 size_t bucketcount;
6937 size_t hash_entry_size;
6938
6939 /* Compute the hash values for all exported symbols. At the same
6940 time store the values in an array so that we could use them for
6941 optimizations. */
6942 amt = dynsymcount * sizeof (unsigned long int);
6943 hashcodes = (unsigned long int *) bfd_malloc (amt);
6944 if (hashcodes == NULL)
6945 return FALSE;
6946 hashinf.hashcodes = hashcodes;
6947 hashinf.error = FALSE;
6948
6949 /* Put all hash values in HASHCODES. */
6950 elf_link_hash_traverse (elf_hash_table (info),
6951 elf_collect_hash_codes, &hashinf);
6952 if (hashinf.error)
6953 {
6954 free (hashcodes);
6955 return FALSE;
6956 }
6957
6958 nsyms = hashinf.hashcodes - hashcodes;
6959 bucketcount
6960 = compute_bucket_count (info, hashcodes, nsyms, 0);
6961 free (hashcodes);
6962
6963 if (bucketcount == 0 && nsyms > 0)
6964 return FALSE;
6965
6966 elf_hash_table (info)->bucketcount = bucketcount;
6967
6968 s = bfd_get_linker_section (dynobj, ".hash");
6969 BFD_ASSERT (s != NULL);
6970 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6971 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6972 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6973 if (s->contents == NULL)
6974 return FALSE;
6975
6976 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6977 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6978 s->contents + hash_entry_size);
6979 }
6980
6981 if (info->emit_gnu_hash)
6982 {
6983 size_t i, cnt;
6984 unsigned char *contents;
6985 struct collect_gnu_hash_codes cinfo;
6986 bfd_size_type amt;
6987 size_t bucketcount;
6988
6989 memset (&cinfo, 0, sizeof (cinfo));
6990
6991 /* Compute the hash values for all exported symbols. At the same
6992 time store the values in an array so that we could use them for
6993 optimizations. */
6994 amt = dynsymcount * 2 * sizeof (unsigned long int);
6995 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6996 if (cinfo.hashcodes == NULL)
6997 return FALSE;
6998
6999 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7000 cinfo.min_dynindx = -1;
7001 cinfo.output_bfd = output_bfd;
7002 cinfo.bed = bed;
7003
7004 /* Put all hash values in HASHCODES. */
7005 elf_link_hash_traverse (elf_hash_table (info),
7006 elf_collect_gnu_hash_codes, &cinfo);
7007 if (cinfo.error)
7008 {
7009 free (cinfo.hashcodes);
7010 return FALSE;
7011 }
7012
7013 bucketcount
7014 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7015
7016 if (bucketcount == 0)
7017 {
7018 free (cinfo.hashcodes);
7019 return FALSE;
7020 }
7021
7022 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7023 BFD_ASSERT (s != NULL);
7024
7025 if (cinfo.nsyms == 0)
7026 {
7027 /* Empty .gnu.hash section is special. */
7028 BFD_ASSERT (cinfo.min_dynindx == -1);
7029 free (cinfo.hashcodes);
7030 s->size = 5 * 4 + bed->s->arch_size / 8;
7031 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7032 if (contents == NULL)
7033 return FALSE;
7034 s->contents = contents;
7035 /* 1 empty bucket. */
7036 bfd_put_32 (output_bfd, 1, contents);
7037 /* SYMIDX above the special symbol 0. */
7038 bfd_put_32 (output_bfd, 1, contents + 4);
7039 /* Just one word for bitmask. */
7040 bfd_put_32 (output_bfd, 1, contents + 8);
7041 /* Only hash fn bloom filter. */
7042 bfd_put_32 (output_bfd, 0, contents + 12);
7043 /* No hashes are valid - empty bitmask. */
7044 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7045 /* No hashes in the only bucket. */
7046 bfd_put_32 (output_bfd, 0,
7047 contents + 16 + bed->s->arch_size / 8);
7048 }
7049 else
7050 {
7051 unsigned long int maskwords, maskbitslog2, x;
7052 BFD_ASSERT (cinfo.min_dynindx != -1);
7053
7054 x = cinfo.nsyms;
7055 maskbitslog2 = 1;
7056 while ((x >>= 1) != 0)
7057 ++maskbitslog2;
7058 if (maskbitslog2 < 3)
7059 maskbitslog2 = 5;
7060 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7061 maskbitslog2 = maskbitslog2 + 3;
7062 else
7063 maskbitslog2 = maskbitslog2 + 2;
7064 if (bed->s->arch_size == 64)
7065 {
7066 if (maskbitslog2 == 5)
7067 maskbitslog2 = 6;
7068 cinfo.shift1 = 6;
7069 }
7070 else
7071 cinfo.shift1 = 5;
7072 cinfo.mask = (1 << cinfo.shift1) - 1;
7073 cinfo.shift2 = maskbitslog2;
7074 cinfo.maskbits = 1 << maskbitslog2;
7075 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7076 amt = bucketcount * sizeof (unsigned long int) * 2;
7077 amt += maskwords * sizeof (bfd_vma);
7078 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7079 if (cinfo.bitmask == NULL)
7080 {
7081 free (cinfo.hashcodes);
7082 return FALSE;
7083 }
7084
7085 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7086 cinfo.indx = cinfo.counts + bucketcount;
7087 cinfo.symindx = dynsymcount - cinfo.nsyms;
7088 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7089
7090 /* Determine how often each hash bucket is used. */
7091 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7092 for (i = 0; i < cinfo.nsyms; ++i)
7093 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7094
7095 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7096 if (cinfo.counts[i] != 0)
7097 {
7098 cinfo.indx[i] = cnt;
7099 cnt += cinfo.counts[i];
7100 }
7101 BFD_ASSERT (cnt == dynsymcount);
7102 cinfo.bucketcount = bucketcount;
7103 cinfo.local_indx = cinfo.min_dynindx;
7104
7105 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7106 s->size += cinfo.maskbits / 8;
7107 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7108 if (contents == NULL)
7109 {
7110 free (cinfo.bitmask);
7111 free (cinfo.hashcodes);
7112 return FALSE;
7113 }
7114
7115 s->contents = contents;
7116 bfd_put_32 (output_bfd, bucketcount, contents);
7117 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7118 bfd_put_32 (output_bfd, maskwords, contents + 8);
7119 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7120 contents += 16 + cinfo.maskbits / 8;
7121
7122 for (i = 0; i < bucketcount; ++i)
7123 {
7124 if (cinfo.counts[i] == 0)
7125 bfd_put_32 (output_bfd, 0, contents);
7126 else
7127 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7128 contents += 4;
7129 }
7130
7131 cinfo.contents = contents;
7132
7133 /* Renumber dynamic symbols, populate .gnu.hash section. */
7134 elf_link_hash_traverse (elf_hash_table (info),
7135 elf_renumber_gnu_hash_syms, &cinfo);
7136
7137 contents = s->contents + 16;
7138 for (i = 0; i < maskwords; ++i)
7139 {
7140 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7141 contents);
7142 contents += bed->s->arch_size / 8;
7143 }
7144
7145 free (cinfo.bitmask);
7146 free (cinfo.hashcodes);
7147 }
7148 }
7149
7150 s = bfd_get_linker_section (dynobj, ".dynstr");
7151 BFD_ASSERT (s != NULL);
7152
7153 elf_finalize_dynstr (output_bfd, info);
7154
7155 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7156
7157 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7158 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7159 return FALSE;
7160 }
7161
7162 return TRUE;
7163 }
7164 \f
7165 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7166
7167 static void
7168 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7169 asection *sec)
7170 {
7171 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7172 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7173 }
7174
7175 /* Finish SHF_MERGE section merging. */
7176
7177 bfd_boolean
7178 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7179 {
7180 bfd *ibfd;
7181 asection *sec;
7182
7183 if (!is_elf_hash_table (info->hash))
7184 return FALSE;
7185
7186 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7187 if ((ibfd->flags & DYNAMIC) == 0
7188 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7189 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7190 == get_elf_backend_data (obfd)->s->elfclass))
7191 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7192 if ((sec->flags & SEC_MERGE) != 0
7193 && !bfd_is_abs_section (sec->output_section))
7194 {
7195 struct bfd_elf_section_data *secdata;
7196
7197 secdata = elf_section_data (sec);
7198 if (! _bfd_add_merge_section (obfd,
7199 &elf_hash_table (info)->merge_info,
7200 sec, &secdata->sec_info))
7201 return FALSE;
7202 else if (secdata->sec_info)
7203 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7204 }
7205
7206 if (elf_hash_table (info)->merge_info != NULL)
7207 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7208 merge_sections_remove_hook);
7209 return TRUE;
7210 }
7211
7212 /* Create an entry in an ELF linker hash table. */
7213
7214 struct bfd_hash_entry *
7215 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7216 struct bfd_hash_table *table,
7217 const char *string)
7218 {
7219 /* Allocate the structure if it has not already been allocated by a
7220 subclass. */
7221 if (entry == NULL)
7222 {
7223 entry = (struct bfd_hash_entry *)
7224 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7225 if (entry == NULL)
7226 return entry;
7227 }
7228
7229 /* Call the allocation method of the superclass. */
7230 entry = _bfd_link_hash_newfunc (entry, table, string);
7231 if (entry != NULL)
7232 {
7233 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7234 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7235
7236 /* Set local fields. */
7237 ret->indx = -1;
7238 ret->dynindx = -1;
7239 ret->got = htab->init_got_refcount;
7240 ret->plt = htab->init_plt_refcount;
7241 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7242 - offsetof (struct elf_link_hash_entry, size)));
7243 /* Assume that we have been called by a non-ELF symbol reader.
7244 This flag is then reset by the code which reads an ELF input
7245 file. This ensures that a symbol created by a non-ELF symbol
7246 reader will have the flag set correctly. */
7247 ret->non_elf = 1;
7248 }
7249
7250 return entry;
7251 }
7252
7253 /* Copy data from an indirect symbol to its direct symbol, hiding the
7254 old indirect symbol. Also used for copying flags to a weakdef. */
7255
7256 void
7257 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7258 struct elf_link_hash_entry *dir,
7259 struct elf_link_hash_entry *ind)
7260 {
7261 struct elf_link_hash_table *htab;
7262
7263 /* Copy down any references that we may have already seen to the
7264 symbol which just became indirect. */
7265
7266 if (dir->versioned != versioned_hidden)
7267 dir->ref_dynamic |= ind->ref_dynamic;
7268 dir->ref_regular |= ind->ref_regular;
7269 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7270 dir->non_got_ref |= ind->non_got_ref;
7271 dir->needs_plt |= ind->needs_plt;
7272 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7273
7274 if (ind->root.type != bfd_link_hash_indirect)
7275 return;
7276
7277 /* Copy over the global and procedure linkage table refcount entries.
7278 These may have been already set up by a check_relocs routine. */
7279 htab = elf_hash_table (info);
7280 if (ind->got.refcount > htab->init_got_refcount.refcount)
7281 {
7282 if (dir->got.refcount < 0)
7283 dir->got.refcount = 0;
7284 dir->got.refcount += ind->got.refcount;
7285 ind->got.refcount = htab->init_got_refcount.refcount;
7286 }
7287
7288 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7289 {
7290 if (dir->plt.refcount < 0)
7291 dir->plt.refcount = 0;
7292 dir->plt.refcount += ind->plt.refcount;
7293 ind->plt.refcount = htab->init_plt_refcount.refcount;
7294 }
7295
7296 if (ind->dynindx != -1)
7297 {
7298 if (dir->dynindx != -1)
7299 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7300 dir->dynindx = ind->dynindx;
7301 dir->dynstr_index = ind->dynstr_index;
7302 ind->dynindx = -1;
7303 ind->dynstr_index = 0;
7304 }
7305 }
7306
7307 void
7308 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7309 struct elf_link_hash_entry *h,
7310 bfd_boolean force_local)
7311 {
7312 /* STT_GNU_IFUNC symbol must go through PLT. */
7313 if (h->type != STT_GNU_IFUNC)
7314 {
7315 h->plt = elf_hash_table (info)->init_plt_offset;
7316 h->needs_plt = 0;
7317 }
7318 if (force_local)
7319 {
7320 h->forced_local = 1;
7321 if (h->dynindx != -1)
7322 {
7323 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7324 h->dynstr_index);
7325 h->dynindx = -1;
7326 h->dynstr_index = 0;
7327 }
7328 }
7329 }
7330
7331 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7332 caller. */
7333
7334 bfd_boolean
7335 _bfd_elf_link_hash_table_init
7336 (struct elf_link_hash_table *table,
7337 bfd *abfd,
7338 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7339 struct bfd_hash_table *,
7340 const char *),
7341 unsigned int entsize,
7342 enum elf_target_id target_id)
7343 {
7344 bfd_boolean ret;
7345 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7346
7347 table->init_got_refcount.refcount = can_refcount - 1;
7348 table->init_plt_refcount.refcount = can_refcount - 1;
7349 table->init_got_offset.offset = -(bfd_vma) 1;
7350 table->init_plt_offset.offset = -(bfd_vma) 1;
7351 /* The first dynamic symbol is a dummy. */
7352 table->dynsymcount = 1;
7353
7354 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7355
7356 table->root.type = bfd_link_elf_hash_table;
7357 table->hash_table_id = target_id;
7358
7359 return ret;
7360 }
7361
7362 /* Create an ELF linker hash table. */
7363
7364 struct bfd_link_hash_table *
7365 _bfd_elf_link_hash_table_create (bfd *abfd)
7366 {
7367 struct elf_link_hash_table *ret;
7368 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7369
7370 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7371 if (ret == NULL)
7372 return NULL;
7373
7374 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7375 sizeof (struct elf_link_hash_entry),
7376 GENERIC_ELF_DATA))
7377 {
7378 free (ret);
7379 return NULL;
7380 }
7381 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7382
7383 return &ret->root;
7384 }
7385
7386 /* Destroy an ELF linker hash table. */
7387
7388 void
7389 _bfd_elf_link_hash_table_free (bfd *obfd)
7390 {
7391 struct elf_link_hash_table *htab;
7392
7393 htab = (struct elf_link_hash_table *) obfd->link.hash;
7394 if (htab->dynstr != NULL)
7395 _bfd_elf_strtab_free (htab->dynstr);
7396 _bfd_merge_sections_free (htab->merge_info);
7397 _bfd_generic_link_hash_table_free (obfd);
7398 }
7399
7400 /* This is a hook for the ELF emulation code in the generic linker to
7401 tell the backend linker what file name to use for the DT_NEEDED
7402 entry for a dynamic object. */
7403
7404 void
7405 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7406 {
7407 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7408 && bfd_get_format (abfd) == bfd_object)
7409 elf_dt_name (abfd) = name;
7410 }
7411
7412 int
7413 bfd_elf_get_dyn_lib_class (bfd *abfd)
7414 {
7415 int lib_class;
7416 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7417 && bfd_get_format (abfd) == bfd_object)
7418 lib_class = elf_dyn_lib_class (abfd);
7419 else
7420 lib_class = 0;
7421 return lib_class;
7422 }
7423
7424 void
7425 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7426 {
7427 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7428 && bfd_get_format (abfd) == bfd_object)
7429 elf_dyn_lib_class (abfd) = lib_class;
7430 }
7431
7432 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7433 the linker ELF emulation code. */
7434
7435 struct bfd_link_needed_list *
7436 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7437 struct bfd_link_info *info)
7438 {
7439 if (! is_elf_hash_table (info->hash))
7440 return NULL;
7441 return elf_hash_table (info)->needed;
7442 }
7443
7444 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7445 hook for the linker ELF emulation code. */
7446
7447 struct bfd_link_needed_list *
7448 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7449 struct bfd_link_info *info)
7450 {
7451 if (! is_elf_hash_table (info->hash))
7452 return NULL;
7453 return elf_hash_table (info)->runpath;
7454 }
7455
7456 /* Get the name actually used for a dynamic object for a link. This
7457 is the SONAME entry if there is one. Otherwise, it is the string
7458 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7459
7460 const char *
7461 bfd_elf_get_dt_soname (bfd *abfd)
7462 {
7463 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7464 && bfd_get_format (abfd) == bfd_object)
7465 return elf_dt_name (abfd);
7466 return NULL;
7467 }
7468
7469 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7470 the ELF linker emulation code. */
7471
7472 bfd_boolean
7473 bfd_elf_get_bfd_needed_list (bfd *abfd,
7474 struct bfd_link_needed_list **pneeded)
7475 {
7476 asection *s;
7477 bfd_byte *dynbuf = NULL;
7478 unsigned int elfsec;
7479 unsigned long shlink;
7480 bfd_byte *extdyn, *extdynend;
7481 size_t extdynsize;
7482 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7483
7484 *pneeded = NULL;
7485
7486 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7487 || bfd_get_format (abfd) != bfd_object)
7488 return TRUE;
7489
7490 s = bfd_get_section_by_name (abfd, ".dynamic");
7491 if (s == NULL || s->size == 0)
7492 return TRUE;
7493
7494 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7495 goto error_return;
7496
7497 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7498 if (elfsec == SHN_BAD)
7499 goto error_return;
7500
7501 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7502
7503 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7504 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7505
7506 extdyn = dynbuf;
7507 extdynend = extdyn + s->size;
7508 for (; extdyn < extdynend; extdyn += extdynsize)
7509 {
7510 Elf_Internal_Dyn dyn;
7511
7512 (*swap_dyn_in) (abfd, extdyn, &dyn);
7513
7514 if (dyn.d_tag == DT_NULL)
7515 break;
7516
7517 if (dyn.d_tag == DT_NEEDED)
7518 {
7519 const char *string;
7520 struct bfd_link_needed_list *l;
7521 unsigned int tagv = dyn.d_un.d_val;
7522 bfd_size_type amt;
7523
7524 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7525 if (string == NULL)
7526 goto error_return;
7527
7528 amt = sizeof *l;
7529 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7530 if (l == NULL)
7531 goto error_return;
7532
7533 l->by = abfd;
7534 l->name = string;
7535 l->next = *pneeded;
7536 *pneeded = l;
7537 }
7538 }
7539
7540 free (dynbuf);
7541
7542 return TRUE;
7543
7544 error_return:
7545 if (dynbuf != NULL)
7546 free (dynbuf);
7547 return FALSE;
7548 }
7549
7550 struct elf_symbuf_symbol
7551 {
7552 unsigned long st_name; /* Symbol name, index in string tbl */
7553 unsigned char st_info; /* Type and binding attributes */
7554 unsigned char st_other; /* Visibilty, and target specific */
7555 };
7556
7557 struct elf_symbuf_head
7558 {
7559 struct elf_symbuf_symbol *ssym;
7560 size_t count;
7561 unsigned int st_shndx;
7562 };
7563
7564 struct elf_symbol
7565 {
7566 union
7567 {
7568 Elf_Internal_Sym *isym;
7569 struct elf_symbuf_symbol *ssym;
7570 } u;
7571 const char *name;
7572 };
7573
7574 /* Sort references to symbols by ascending section number. */
7575
7576 static int
7577 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7578 {
7579 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7580 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7581
7582 return s1->st_shndx - s2->st_shndx;
7583 }
7584
7585 static int
7586 elf_sym_name_compare (const void *arg1, const void *arg2)
7587 {
7588 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7589 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7590 return strcmp (s1->name, s2->name);
7591 }
7592
7593 static struct elf_symbuf_head *
7594 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7595 {
7596 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7597 struct elf_symbuf_symbol *ssym;
7598 struct elf_symbuf_head *ssymbuf, *ssymhead;
7599 size_t i, shndx_count, total_size;
7600
7601 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7602 if (indbuf == NULL)
7603 return NULL;
7604
7605 for (ind = indbuf, i = 0; i < symcount; i++)
7606 if (isymbuf[i].st_shndx != SHN_UNDEF)
7607 *ind++ = &isymbuf[i];
7608 indbufend = ind;
7609
7610 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7611 elf_sort_elf_symbol);
7612
7613 shndx_count = 0;
7614 if (indbufend > indbuf)
7615 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7616 if (ind[0]->st_shndx != ind[1]->st_shndx)
7617 shndx_count++;
7618
7619 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7620 + (indbufend - indbuf) * sizeof (*ssym));
7621 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7622 if (ssymbuf == NULL)
7623 {
7624 free (indbuf);
7625 return NULL;
7626 }
7627
7628 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7629 ssymbuf->ssym = NULL;
7630 ssymbuf->count = shndx_count;
7631 ssymbuf->st_shndx = 0;
7632 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7633 {
7634 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7635 {
7636 ssymhead++;
7637 ssymhead->ssym = ssym;
7638 ssymhead->count = 0;
7639 ssymhead->st_shndx = (*ind)->st_shndx;
7640 }
7641 ssym->st_name = (*ind)->st_name;
7642 ssym->st_info = (*ind)->st_info;
7643 ssym->st_other = (*ind)->st_other;
7644 ssymhead->count++;
7645 }
7646 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7647 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7648 == total_size));
7649
7650 free (indbuf);
7651 return ssymbuf;
7652 }
7653
7654 /* Check if 2 sections define the same set of local and global
7655 symbols. */
7656
7657 static bfd_boolean
7658 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7659 struct bfd_link_info *info)
7660 {
7661 bfd *bfd1, *bfd2;
7662 const struct elf_backend_data *bed1, *bed2;
7663 Elf_Internal_Shdr *hdr1, *hdr2;
7664 size_t symcount1, symcount2;
7665 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7666 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7667 Elf_Internal_Sym *isym, *isymend;
7668 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7669 size_t count1, count2, i;
7670 unsigned int shndx1, shndx2;
7671 bfd_boolean result;
7672
7673 bfd1 = sec1->owner;
7674 bfd2 = sec2->owner;
7675
7676 /* Both sections have to be in ELF. */
7677 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7678 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7679 return FALSE;
7680
7681 if (elf_section_type (sec1) != elf_section_type (sec2))
7682 return FALSE;
7683
7684 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7685 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7686 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7687 return FALSE;
7688
7689 bed1 = get_elf_backend_data (bfd1);
7690 bed2 = get_elf_backend_data (bfd2);
7691 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7692 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7693 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7694 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7695
7696 if (symcount1 == 0 || symcount2 == 0)
7697 return FALSE;
7698
7699 result = FALSE;
7700 isymbuf1 = NULL;
7701 isymbuf2 = NULL;
7702 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7703 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7704
7705 if (ssymbuf1 == NULL)
7706 {
7707 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7708 NULL, NULL, NULL);
7709 if (isymbuf1 == NULL)
7710 goto done;
7711
7712 if (!info->reduce_memory_overheads)
7713 elf_tdata (bfd1)->symbuf = ssymbuf1
7714 = elf_create_symbuf (symcount1, isymbuf1);
7715 }
7716
7717 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7718 {
7719 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7720 NULL, NULL, NULL);
7721 if (isymbuf2 == NULL)
7722 goto done;
7723
7724 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7725 elf_tdata (bfd2)->symbuf = ssymbuf2
7726 = elf_create_symbuf (symcount2, isymbuf2);
7727 }
7728
7729 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7730 {
7731 /* Optimized faster version. */
7732 size_t lo, hi, mid;
7733 struct elf_symbol *symp;
7734 struct elf_symbuf_symbol *ssym, *ssymend;
7735
7736 lo = 0;
7737 hi = ssymbuf1->count;
7738 ssymbuf1++;
7739 count1 = 0;
7740 while (lo < hi)
7741 {
7742 mid = (lo + hi) / 2;
7743 if (shndx1 < ssymbuf1[mid].st_shndx)
7744 hi = mid;
7745 else if (shndx1 > ssymbuf1[mid].st_shndx)
7746 lo = mid + 1;
7747 else
7748 {
7749 count1 = ssymbuf1[mid].count;
7750 ssymbuf1 += mid;
7751 break;
7752 }
7753 }
7754
7755 lo = 0;
7756 hi = ssymbuf2->count;
7757 ssymbuf2++;
7758 count2 = 0;
7759 while (lo < hi)
7760 {
7761 mid = (lo + hi) / 2;
7762 if (shndx2 < ssymbuf2[mid].st_shndx)
7763 hi = mid;
7764 else if (shndx2 > ssymbuf2[mid].st_shndx)
7765 lo = mid + 1;
7766 else
7767 {
7768 count2 = ssymbuf2[mid].count;
7769 ssymbuf2 += mid;
7770 break;
7771 }
7772 }
7773
7774 if (count1 == 0 || count2 == 0 || count1 != count2)
7775 goto done;
7776
7777 symtable1
7778 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7779 symtable2
7780 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7781 if (symtable1 == NULL || symtable2 == NULL)
7782 goto done;
7783
7784 symp = symtable1;
7785 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7786 ssym < ssymend; ssym++, symp++)
7787 {
7788 symp->u.ssym = ssym;
7789 symp->name = bfd_elf_string_from_elf_section (bfd1,
7790 hdr1->sh_link,
7791 ssym->st_name);
7792 }
7793
7794 symp = symtable2;
7795 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7796 ssym < ssymend; ssym++, symp++)
7797 {
7798 symp->u.ssym = ssym;
7799 symp->name = bfd_elf_string_from_elf_section (bfd2,
7800 hdr2->sh_link,
7801 ssym->st_name);
7802 }
7803
7804 /* Sort symbol by name. */
7805 qsort (symtable1, count1, sizeof (struct elf_symbol),
7806 elf_sym_name_compare);
7807 qsort (symtable2, count1, sizeof (struct elf_symbol),
7808 elf_sym_name_compare);
7809
7810 for (i = 0; i < count1; i++)
7811 /* Two symbols must have the same binding, type and name. */
7812 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7813 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7814 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7815 goto done;
7816
7817 result = TRUE;
7818 goto done;
7819 }
7820
7821 symtable1 = (struct elf_symbol *)
7822 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7823 symtable2 = (struct elf_symbol *)
7824 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7825 if (symtable1 == NULL || symtable2 == NULL)
7826 goto done;
7827
7828 /* Count definitions in the section. */
7829 count1 = 0;
7830 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7831 if (isym->st_shndx == shndx1)
7832 symtable1[count1++].u.isym = isym;
7833
7834 count2 = 0;
7835 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7836 if (isym->st_shndx == shndx2)
7837 symtable2[count2++].u.isym = isym;
7838
7839 if (count1 == 0 || count2 == 0 || count1 != count2)
7840 goto done;
7841
7842 for (i = 0; i < count1; i++)
7843 symtable1[i].name
7844 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7845 symtable1[i].u.isym->st_name);
7846
7847 for (i = 0; i < count2; i++)
7848 symtable2[i].name
7849 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7850 symtable2[i].u.isym->st_name);
7851
7852 /* Sort symbol by name. */
7853 qsort (symtable1, count1, sizeof (struct elf_symbol),
7854 elf_sym_name_compare);
7855 qsort (symtable2, count1, sizeof (struct elf_symbol),
7856 elf_sym_name_compare);
7857
7858 for (i = 0; i < count1; i++)
7859 /* Two symbols must have the same binding, type and name. */
7860 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7861 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7862 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7863 goto done;
7864
7865 result = TRUE;
7866
7867 done:
7868 if (symtable1)
7869 free (symtable1);
7870 if (symtable2)
7871 free (symtable2);
7872 if (isymbuf1)
7873 free (isymbuf1);
7874 if (isymbuf2)
7875 free (isymbuf2);
7876
7877 return result;
7878 }
7879
7880 /* Return TRUE if 2 section types are compatible. */
7881
7882 bfd_boolean
7883 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7884 bfd *bbfd, const asection *bsec)
7885 {
7886 if (asec == NULL
7887 || bsec == NULL
7888 || abfd->xvec->flavour != bfd_target_elf_flavour
7889 || bbfd->xvec->flavour != bfd_target_elf_flavour)
7890 return TRUE;
7891
7892 return elf_section_type (asec) == elf_section_type (bsec);
7893 }
7894 \f
7895 /* Final phase of ELF linker. */
7896
7897 /* A structure we use to avoid passing large numbers of arguments. */
7898
7899 struct elf_final_link_info
7900 {
7901 /* General link information. */
7902 struct bfd_link_info *info;
7903 /* Output BFD. */
7904 bfd *output_bfd;
7905 /* Symbol string table. */
7906 struct elf_strtab_hash *symstrtab;
7907 /* .hash section. */
7908 asection *hash_sec;
7909 /* symbol version section (.gnu.version). */
7910 asection *symver_sec;
7911 /* Buffer large enough to hold contents of any section. */
7912 bfd_byte *contents;
7913 /* Buffer large enough to hold external relocs of any section. */
7914 void *external_relocs;
7915 /* Buffer large enough to hold internal relocs of any section. */
7916 Elf_Internal_Rela *internal_relocs;
7917 /* Buffer large enough to hold external local symbols of any input
7918 BFD. */
7919 bfd_byte *external_syms;
7920 /* And a buffer for symbol section indices. */
7921 Elf_External_Sym_Shndx *locsym_shndx;
7922 /* Buffer large enough to hold internal local symbols of any input
7923 BFD. */
7924 Elf_Internal_Sym *internal_syms;
7925 /* Array large enough to hold a symbol index for each local symbol
7926 of any input BFD. */
7927 long *indices;
7928 /* Array large enough to hold a section pointer for each local
7929 symbol of any input BFD. */
7930 asection **sections;
7931 /* Buffer for SHT_SYMTAB_SHNDX section. */
7932 Elf_External_Sym_Shndx *symshndxbuf;
7933 /* Number of STT_FILE syms seen. */
7934 size_t filesym_count;
7935 };
7936
7937 /* This struct is used to pass information to elf_link_output_extsym. */
7938
7939 struct elf_outext_info
7940 {
7941 bfd_boolean failed;
7942 bfd_boolean localsyms;
7943 bfd_boolean file_sym_done;
7944 struct elf_final_link_info *flinfo;
7945 };
7946
7947
7948 /* Support for evaluating a complex relocation.
7949
7950 Complex relocations are generalized, self-describing relocations. The
7951 implementation of them consists of two parts: complex symbols, and the
7952 relocations themselves.
7953
7954 The relocations are use a reserved elf-wide relocation type code (R_RELC
7955 external / BFD_RELOC_RELC internal) and an encoding of relocation field
7956 information (start bit, end bit, word width, etc) into the addend. This
7957 information is extracted from CGEN-generated operand tables within gas.
7958
7959 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7960 internal) representing prefix-notation expressions, including but not
7961 limited to those sorts of expressions normally encoded as addends in the
7962 addend field. The symbol mangling format is:
7963
7964 <node> := <literal>
7965 | <unary-operator> ':' <node>
7966 | <binary-operator> ':' <node> ':' <node>
7967 ;
7968
7969 <literal> := 's' <digits=N> ':' <N character symbol name>
7970 | 'S' <digits=N> ':' <N character section name>
7971 | '#' <hexdigits>
7972 ;
7973
7974 <binary-operator> := as in C
7975 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
7976
7977 static void
7978 set_symbol_value (bfd *bfd_with_globals,
7979 Elf_Internal_Sym *isymbuf,
7980 size_t locsymcount,
7981 size_t symidx,
7982 bfd_vma val)
7983 {
7984 struct elf_link_hash_entry **sym_hashes;
7985 struct elf_link_hash_entry *h;
7986 size_t extsymoff = locsymcount;
7987
7988 if (symidx < locsymcount)
7989 {
7990 Elf_Internal_Sym *sym;
7991
7992 sym = isymbuf + symidx;
7993 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7994 {
7995 /* It is a local symbol: move it to the
7996 "absolute" section and give it a value. */
7997 sym->st_shndx = SHN_ABS;
7998 sym->st_value = val;
7999 return;
8000 }
8001 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8002 extsymoff = 0;
8003 }
8004
8005 /* It is a global symbol: set its link type
8006 to "defined" and give it a value. */
8007
8008 sym_hashes = elf_sym_hashes (bfd_with_globals);
8009 h = sym_hashes [symidx - extsymoff];
8010 while (h->root.type == bfd_link_hash_indirect
8011 || h->root.type == bfd_link_hash_warning)
8012 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8013 h->root.type = bfd_link_hash_defined;
8014 h->root.u.def.value = val;
8015 h->root.u.def.section = bfd_abs_section_ptr;
8016 }
8017
8018 static bfd_boolean
8019 resolve_symbol (const char *name,
8020 bfd *input_bfd,
8021 struct elf_final_link_info *flinfo,
8022 bfd_vma *result,
8023 Elf_Internal_Sym *isymbuf,
8024 size_t locsymcount)
8025 {
8026 Elf_Internal_Sym *sym;
8027 struct bfd_link_hash_entry *global_entry;
8028 const char *candidate = NULL;
8029 Elf_Internal_Shdr *symtab_hdr;
8030 size_t i;
8031
8032 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8033
8034 for (i = 0; i < locsymcount; ++ i)
8035 {
8036 sym = isymbuf + i;
8037
8038 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8039 continue;
8040
8041 candidate = bfd_elf_string_from_elf_section (input_bfd,
8042 symtab_hdr->sh_link,
8043 sym->st_name);
8044 #ifdef DEBUG
8045 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8046 name, candidate, (unsigned long) sym->st_value);
8047 #endif
8048 if (candidate && strcmp (candidate, name) == 0)
8049 {
8050 asection *sec = flinfo->sections [i];
8051
8052 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8053 *result += sec->output_offset + sec->output_section->vma;
8054 #ifdef DEBUG
8055 printf ("Found symbol with value %8.8lx\n",
8056 (unsigned long) *result);
8057 #endif
8058 return TRUE;
8059 }
8060 }
8061
8062 /* Hmm, haven't found it yet. perhaps it is a global. */
8063 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8064 FALSE, FALSE, TRUE);
8065 if (!global_entry)
8066 return FALSE;
8067
8068 if (global_entry->type == bfd_link_hash_defined
8069 || global_entry->type == bfd_link_hash_defweak)
8070 {
8071 *result = (global_entry->u.def.value
8072 + global_entry->u.def.section->output_section->vma
8073 + global_entry->u.def.section->output_offset);
8074 #ifdef DEBUG
8075 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8076 global_entry->root.string, (unsigned long) *result);
8077 #endif
8078 return TRUE;
8079 }
8080
8081 return FALSE;
8082 }
8083
8084 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8085 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8086 names like "foo.end" which is the end address of section "foo". */
8087
8088 static bfd_boolean
8089 resolve_section (const char *name,
8090 asection *sections,
8091 bfd_vma *result,
8092 bfd * abfd)
8093 {
8094 asection *curr;
8095 unsigned int len;
8096
8097 for (curr = sections; curr; curr = curr->next)
8098 if (strcmp (curr->name, name) == 0)
8099 {
8100 *result = curr->vma;
8101 return TRUE;
8102 }
8103
8104 /* Hmm. still haven't found it. try pseudo-section names. */
8105 /* FIXME: This could be coded more efficiently... */
8106 for (curr = sections; curr; curr = curr->next)
8107 {
8108 len = strlen (curr->name);
8109 if (len > strlen (name))
8110 continue;
8111
8112 if (strncmp (curr->name, name, len) == 0)
8113 {
8114 if (strncmp (".end", name + len, 4) == 0)
8115 {
8116 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8117 return TRUE;
8118 }
8119
8120 /* Insert more pseudo-section names here, if you like. */
8121 }
8122 }
8123
8124 return FALSE;
8125 }
8126
8127 static void
8128 undefined_reference (const char *reftype, const char *name)
8129 {
8130 /* xgettext:c-format */
8131 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8132 reftype, name);
8133 }
8134
8135 static bfd_boolean
8136 eval_symbol (bfd_vma *result,
8137 const char **symp,
8138 bfd *input_bfd,
8139 struct elf_final_link_info *flinfo,
8140 bfd_vma dot,
8141 Elf_Internal_Sym *isymbuf,
8142 size_t locsymcount,
8143 int signed_p)
8144 {
8145 size_t len;
8146 size_t symlen;
8147 bfd_vma a;
8148 bfd_vma b;
8149 char symbuf[4096];
8150 const char *sym = *symp;
8151 const char *symend;
8152 bfd_boolean symbol_is_section = FALSE;
8153
8154 len = strlen (sym);
8155 symend = sym + len;
8156
8157 if (len < 1 || len > sizeof (symbuf))
8158 {
8159 bfd_set_error (bfd_error_invalid_operation);
8160 return FALSE;
8161 }
8162
8163 switch (* sym)
8164 {
8165 case '.':
8166 *result = dot;
8167 *symp = sym + 1;
8168 return TRUE;
8169
8170 case '#':
8171 ++sym;
8172 *result = strtoul (sym, (char **) symp, 16);
8173 return TRUE;
8174
8175 case 'S':
8176 symbol_is_section = TRUE;
8177 /* Fall through. */
8178 case 's':
8179 ++sym;
8180 symlen = strtol (sym, (char **) symp, 10);
8181 sym = *symp + 1; /* Skip the trailing ':'. */
8182
8183 if (symend < sym || symlen + 1 > sizeof (symbuf))
8184 {
8185 bfd_set_error (bfd_error_invalid_operation);
8186 return FALSE;
8187 }
8188
8189 memcpy (symbuf, sym, symlen);
8190 symbuf[symlen] = '\0';
8191 *symp = sym + symlen;
8192
8193 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8194 the symbol as a section, or vice-versa. so we're pretty liberal in our
8195 interpretation here; section means "try section first", not "must be a
8196 section", and likewise with symbol. */
8197
8198 if (symbol_is_section)
8199 {
8200 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8201 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8202 isymbuf, locsymcount))
8203 {
8204 undefined_reference ("section", symbuf);
8205 return FALSE;
8206 }
8207 }
8208 else
8209 {
8210 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8211 isymbuf, locsymcount)
8212 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8213 result, input_bfd))
8214 {
8215 undefined_reference ("symbol", symbuf);
8216 return FALSE;
8217 }
8218 }
8219
8220 return TRUE;
8221
8222 /* All that remains are operators. */
8223
8224 #define UNARY_OP(op) \
8225 if (strncmp (sym, #op, strlen (#op)) == 0) \
8226 { \
8227 sym += strlen (#op); \
8228 if (*sym == ':') \
8229 ++sym; \
8230 *symp = sym; \
8231 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8232 isymbuf, locsymcount, signed_p)) \
8233 return FALSE; \
8234 if (signed_p) \
8235 *result = op ((bfd_signed_vma) a); \
8236 else \
8237 *result = op a; \
8238 return TRUE; \
8239 }
8240
8241 #define BINARY_OP(op) \
8242 if (strncmp (sym, #op, strlen (#op)) == 0) \
8243 { \
8244 sym += strlen (#op); \
8245 if (*sym == ':') \
8246 ++sym; \
8247 *symp = sym; \
8248 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8249 isymbuf, locsymcount, signed_p)) \
8250 return FALSE; \
8251 ++*symp; \
8252 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8253 isymbuf, locsymcount, signed_p)) \
8254 return FALSE; \
8255 if (signed_p) \
8256 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8257 else \
8258 *result = a op b; \
8259 return TRUE; \
8260 }
8261
8262 default:
8263 UNARY_OP (0-);
8264 BINARY_OP (<<);
8265 BINARY_OP (>>);
8266 BINARY_OP (==);
8267 BINARY_OP (!=);
8268 BINARY_OP (<=);
8269 BINARY_OP (>=);
8270 BINARY_OP (&&);
8271 BINARY_OP (||);
8272 UNARY_OP (~);
8273 UNARY_OP (!);
8274 BINARY_OP (*);
8275 BINARY_OP (/);
8276 BINARY_OP (%);
8277 BINARY_OP (^);
8278 BINARY_OP (|);
8279 BINARY_OP (&);
8280 BINARY_OP (+);
8281 BINARY_OP (-);
8282 BINARY_OP (<);
8283 BINARY_OP (>);
8284 #undef UNARY_OP
8285 #undef BINARY_OP
8286 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8287 bfd_set_error (bfd_error_invalid_operation);
8288 return FALSE;
8289 }
8290 }
8291
8292 static void
8293 put_value (bfd_vma size,
8294 unsigned long chunksz,
8295 bfd *input_bfd,
8296 bfd_vma x,
8297 bfd_byte *location)
8298 {
8299 location += (size - chunksz);
8300
8301 for (; size; size -= chunksz, location -= chunksz)
8302 {
8303 switch (chunksz)
8304 {
8305 case 1:
8306 bfd_put_8 (input_bfd, x, location);
8307 x >>= 8;
8308 break;
8309 case 2:
8310 bfd_put_16 (input_bfd, x, location);
8311 x >>= 16;
8312 break;
8313 case 4:
8314 bfd_put_32 (input_bfd, x, location);
8315 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8316 x >>= 16;
8317 x >>= 16;
8318 break;
8319 #ifdef BFD64
8320 case 8:
8321 bfd_put_64 (input_bfd, x, location);
8322 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8323 x >>= 32;
8324 x >>= 32;
8325 break;
8326 #endif
8327 default:
8328 abort ();
8329 break;
8330 }
8331 }
8332 }
8333
8334 static bfd_vma
8335 get_value (bfd_vma size,
8336 unsigned long chunksz,
8337 bfd *input_bfd,
8338 bfd_byte *location)
8339 {
8340 int shift;
8341 bfd_vma x = 0;
8342
8343 /* Sanity checks. */
8344 BFD_ASSERT (chunksz <= sizeof (x)
8345 && size >= chunksz
8346 && chunksz != 0
8347 && (size % chunksz) == 0
8348 && input_bfd != NULL
8349 && location != NULL);
8350
8351 if (chunksz == sizeof (x))
8352 {
8353 BFD_ASSERT (size == chunksz);
8354
8355 /* Make sure that we do not perform an undefined shift operation.
8356 We know that size == chunksz so there will only be one iteration
8357 of the loop below. */
8358 shift = 0;
8359 }
8360 else
8361 shift = 8 * chunksz;
8362
8363 for (; size; size -= chunksz, location += chunksz)
8364 {
8365 switch (chunksz)
8366 {
8367 case 1:
8368 x = (x << shift) | bfd_get_8 (input_bfd, location);
8369 break;
8370 case 2:
8371 x = (x << shift) | bfd_get_16 (input_bfd, location);
8372 break;
8373 case 4:
8374 x = (x << shift) | bfd_get_32 (input_bfd, location);
8375 break;
8376 #ifdef BFD64
8377 case 8:
8378 x = (x << shift) | bfd_get_64 (input_bfd, location);
8379 break;
8380 #endif
8381 default:
8382 abort ();
8383 }
8384 }
8385 return x;
8386 }
8387
8388 static void
8389 decode_complex_addend (unsigned long *start, /* in bits */
8390 unsigned long *oplen, /* in bits */
8391 unsigned long *len, /* in bits */
8392 unsigned long *wordsz, /* in bytes */
8393 unsigned long *chunksz, /* in bytes */
8394 unsigned long *lsb0_p,
8395 unsigned long *signed_p,
8396 unsigned long *trunc_p,
8397 unsigned long encoded)
8398 {
8399 * start = encoded & 0x3F;
8400 * len = (encoded >> 6) & 0x3F;
8401 * oplen = (encoded >> 12) & 0x3F;
8402 * wordsz = (encoded >> 18) & 0xF;
8403 * chunksz = (encoded >> 22) & 0xF;
8404 * lsb0_p = (encoded >> 27) & 1;
8405 * signed_p = (encoded >> 28) & 1;
8406 * trunc_p = (encoded >> 29) & 1;
8407 }
8408
8409 bfd_reloc_status_type
8410 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8411 asection *input_section ATTRIBUTE_UNUSED,
8412 bfd_byte *contents,
8413 Elf_Internal_Rela *rel,
8414 bfd_vma relocation)
8415 {
8416 bfd_vma shift, x, mask;
8417 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8418 bfd_reloc_status_type r;
8419
8420 /* Perform this reloc, since it is complex.
8421 (this is not to say that it necessarily refers to a complex
8422 symbol; merely that it is a self-describing CGEN based reloc.
8423 i.e. the addend has the complete reloc information (bit start, end,
8424 word size, etc) encoded within it.). */
8425
8426 decode_complex_addend (&start, &oplen, &len, &wordsz,
8427 &chunksz, &lsb0_p, &signed_p,
8428 &trunc_p, rel->r_addend);
8429
8430 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8431
8432 if (lsb0_p)
8433 shift = (start + 1) - len;
8434 else
8435 shift = (8 * wordsz) - (start + len);
8436
8437 x = get_value (wordsz, chunksz, input_bfd,
8438 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8439
8440 #ifdef DEBUG
8441 printf ("Doing complex reloc: "
8442 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8443 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8444 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8445 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8446 oplen, (unsigned long) x, (unsigned long) mask,
8447 (unsigned long) relocation);
8448 #endif
8449
8450 r = bfd_reloc_ok;
8451 if (! trunc_p)
8452 /* Now do an overflow check. */
8453 r = bfd_check_overflow ((signed_p
8454 ? complain_overflow_signed
8455 : complain_overflow_unsigned),
8456 len, 0, (8 * wordsz),
8457 relocation);
8458
8459 /* Do the deed. */
8460 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8461
8462 #ifdef DEBUG
8463 printf (" relocation: %8.8lx\n"
8464 " shifted mask: %8.8lx\n"
8465 " shifted/masked reloc: %8.8lx\n"
8466 " result: %8.8lx\n",
8467 (unsigned long) relocation, (unsigned long) (mask << shift),
8468 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8469 #endif
8470 put_value (wordsz, chunksz, input_bfd, x,
8471 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8472 return r;
8473 }
8474
8475 /* Functions to read r_offset from external (target order) reloc
8476 entry. Faster than bfd_getl32 et al, because we let the compiler
8477 know the value is aligned. */
8478
8479 static bfd_vma
8480 ext32l_r_offset (const void *p)
8481 {
8482 union aligned32
8483 {
8484 uint32_t v;
8485 unsigned char c[4];
8486 };
8487 const union aligned32 *a
8488 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8489
8490 uint32_t aval = ( (uint32_t) a->c[0]
8491 | (uint32_t) a->c[1] << 8
8492 | (uint32_t) a->c[2] << 16
8493 | (uint32_t) a->c[3] << 24);
8494 return aval;
8495 }
8496
8497 static bfd_vma
8498 ext32b_r_offset (const void *p)
8499 {
8500 union aligned32
8501 {
8502 uint32_t v;
8503 unsigned char c[4];
8504 };
8505 const union aligned32 *a
8506 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8507
8508 uint32_t aval = ( (uint32_t) a->c[0] << 24
8509 | (uint32_t) a->c[1] << 16
8510 | (uint32_t) a->c[2] << 8
8511 | (uint32_t) a->c[3]);
8512 return aval;
8513 }
8514
8515 #ifdef BFD_HOST_64_BIT
8516 static bfd_vma
8517 ext64l_r_offset (const void *p)
8518 {
8519 union aligned64
8520 {
8521 uint64_t v;
8522 unsigned char c[8];
8523 };
8524 const union aligned64 *a
8525 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8526
8527 uint64_t aval = ( (uint64_t) a->c[0]
8528 | (uint64_t) a->c[1] << 8
8529 | (uint64_t) a->c[2] << 16
8530 | (uint64_t) a->c[3] << 24
8531 | (uint64_t) a->c[4] << 32
8532 | (uint64_t) a->c[5] << 40
8533 | (uint64_t) a->c[6] << 48
8534 | (uint64_t) a->c[7] << 56);
8535 return aval;
8536 }
8537
8538 static bfd_vma
8539 ext64b_r_offset (const void *p)
8540 {
8541 union aligned64
8542 {
8543 uint64_t v;
8544 unsigned char c[8];
8545 };
8546 const union aligned64 *a
8547 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8548
8549 uint64_t aval = ( (uint64_t) a->c[0] << 56
8550 | (uint64_t) a->c[1] << 48
8551 | (uint64_t) a->c[2] << 40
8552 | (uint64_t) a->c[3] << 32
8553 | (uint64_t) a->c[4] << 24
8554 | (uint64_t) a->c[5] << 16
8555 | (uint64_t) a->c[6] << 8
8556 | (uint64_t) a->c[7]);
8557 return aval;
8558 }
8559 #endif
8560
8561 /* When performing a relocatable link, the input relocations are
8562 preserved. But, if they reference global symbols, the indices
8563 referenced must be updated. Update all the relocations found in
8564 RELDATA. */
8565
8566 static bfd_boolean
8567 elf_link_adjust_relocs (bfd *abfd,
8568 asection *sec,
8569 struct bfd_elf_section_reloc_data *reldata,
8570 bfd_boolean sort,
8571 struct bfd_link_info *info)
8572 {
8573 unsigned int i;
8574 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8575 bfd_byte *erela;
8576 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8577 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8578 bfd_vma r_type_mask;
8579 int r_sym_shift;
8580 unsigned int count = reldata->count;
8581 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8582
8583 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8584 {
8585 swap_in = bed->s->swap_reloc_in;
8586 swap_out = bed->s->swap_reloc_out;
8587 }
8588 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8589 {
8590 swap_in = bed->s->swap_reloca_in;
8591 swap_out = bed->s->swap_reloca_out;
8592 }
8593 else
8594 abort ();
8595
8596 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8597 abort ();
8598
8599 if (bed->s->arch_size == 32)
8600 {
8601 r_type_mask = 0xff;
8602 r_sym_shift = 8;
8603 }
8604 else
8605 {
8606 r_type_mask = 0xffffffff;
8607 r_sym_shift = 32;
8608 }
8609
8610 erela = reldata->hdr->contents;
8611 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8612 {
8613 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8614 unsigned int j;
8615
8616 if (*rel_hash == NULL)
8617 continue;
8618
8619 if ((*rel_hash)->indx == -2
8620 && info->gc_sections
8621 && ! info->gc_keep_exported)
8622 {
8623 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8624 _bfd_error_handler (_("%B:%A: error: relocation references symbol %s which was removed by garbage collection."),
8625 abfd, sec,
8626 (*rel_hash)->root.root.string);
8627 _bfd_error_handler (_("%B:%A: error: try relinking with --gc-keep-exported enabled."),
8628 abfd, sec);
8629 bfd_set_error (bfd_error_invalid_operation);
8630 return FALSE;
8631 }
8632 BFD_ASSERT ((*rel_hash)->indx >= 0);
8633
8634 (*swap_in) (abfd, erela, irela);
8635 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8636 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8637 | (irela[j].r_info & r_type_mask));
8638 (*swap_out) (abfd, irela, erela);
8639 }
8640
8641 if (bed->elf_backend_update_relocs)
8642 (*bed->elf_backend_update_relocs) (sec, reldata);
8643
8644 if (sort && count != 0)
8645 {
8646 bfd_vma (*ext_r_off) (const void *);
8647 bfd_vma r_off;
8648 size_t elt_size;
8649 bfd_byte *base, *end, *p, *loc;
8650 bfd_byte *buf = NULL;
8651
8652 if (bed->s->arch_size == 32)
8653 {
8654 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8655 ext_r_off = ext32l_r_offset;
8656 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8657 ext_r_off = ext32b_r_offset;
8658 else
8659 abort ();
8660 }
8661 else
8662 {
8663 #ifdef BFD_HOST_64_BIT
8664 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8665 ext_r_off = ext64l_r_offset;
8666 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8667 ext_r_off = ext64b_r_offset;
8668 else
8669 #endif
8670 abort ();
8671 }
8672
8673 /* Must use a stable sort here. A modified insertion sort,
8674 since the relocs are mostly sorted already. */
8675 elt_size = reldata->hdr->sh_entsize;
8676 base = reldata->hdr->contents;
8677 end = base + count * elt_size;
8678 if (elt_size > sizeof (Elf64_External_Rela))
8679 abort ();
8680
8681 /* Ensure the first element is lowest. This acts as a sentinel,
8682 speeding the main loop below. */
8683 r_off = (*ext_r_off) (base);
8684 for (p = loc = base; (p += elt_size) < end; )
8685 {
8686 bfd_vma r_off2 = (*ext_r_off) (p);
8687 if (r_off > r_off2)
8688 {
8689 r_off = r_off2;
8690 loc = p;
8691 }
8692 }
8693 if (loc != base)
8694 {
8695 /* Don't just swap *base and *loc as that changes the order
8696 of the original base[0] and base[1] if they happen to
8697 have the same r_offset. */
8698 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8699 memcpy (onebuf, loc, elt_size);
8700 memmove (base + elt_size, base, loc - base);
8701 memcpy (base, onebuf, elt_size);
8702 }
8703
8704 for (p = base + elt_size; (p += elt_size) < end; )
8705 {
8706 /* base to p is sorted, *p is next to insert. */
8707 r_off = (*ext_r_off) (p);
8708 /* Search the sorted region for location to insert. */
8709 loc = p - elt_size;
8710 while (r_off < (*ext_r_off) (loc))
8711 loc -= elt_size;
8712 loc += elt_size;
8713 if (loc != p)
8714 {
8715 /* Chances are there is a run of relocs to insert here,
8716 from one of more input files. Files are not always
8717 linked in order due to the way elf_link_input_bfd is
8718 called. See pr17666. */
8719 size_t sortlen = p - loc;
8720 bfd_vma r_off2 = (*ext_r_off) (loc);
8721 size_t runlen = elt_size;
8722 size_t buf_size = 96 * 1024;
8723 while (p + runlen < end
8724 && (sortlen <= buf_size
8725 || runlen + elt_size <= buf_size)
8726 && r_off2 > (*ext_r_off) (p + runlen))
8727 runlen += elt_size;
8728 if (buf == NULL)
8729 {
8730 buf = bfd_malloc (buf_size);
8731 if (buf == NULL)
8732 return FALSE;
8733 }
8734 if (runlen < sortlen)
8735 {
8736 memcpy (buf, p, runlen);
8737 memmove (loc + runlen, loc, sortlen);
8738 memcpy (loc, buf, runlen);
8739 }
8740 else
8741 {
8742 memcpy (buf, loc, sortlen);
8743 memmove (loc, p, runlen);
8744 memcpy (loc + runlen, buf, sortlen);
8745 }
8746 p += runlen - elt_size;
8747 }
8748 }
8749 /* Hashes are no longer valid. */
8750 free (reldata->hashes);
8751 reldata->hashes = NULL;
8752 free (buf);
8753 }
8754 return TRUE;
8755 }
8756
8757 struct elf_link_sort_rela
8758 {
8759 union {
8760 bfd_vma offset;
8761 bfd_vma sym_mask;
8762 } u;
8763 enum elf_reloc_type_class type;
8764 /* We use this as an array of size int_rels_per_ext_rel. */
8765 Elf_Internal_Rela rela[1];
8766 };
8767
8768 static int
8769 elf_link_sort_cmp1 (const void *A, const void *B)
8770 {
8771 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8772 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8773 int relativea, relativeb;
8774
8775 relativea = a->type == reloc_class_relative;
8776 relativeb = b->type == reloc_class_relative;
8777
8778 if (relativea < relativeb)
8779 return 1;
8780 if (relativea > relativeb)
8781 return -1;
8782 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8783 return -1;
8784 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8785 return 1;
8786 if (a->rela->r_offset < b->rela->r_offset)
8787 return -1;
8788 if (a->rela->r_offset > b->rela->r_offset)
8789 return 1;
8790 return 0;
8791 }
8792
8793 static int
8794 elf_link_sort_cmp2 (const void *A, const void *B)
8795 {
8796 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8797 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8798
8799 if (a->type < b->type)
8800 return -1;
8801 if (a->type > b->type)
8802 return 1;
8803 if (a->u.offset < b->u.offset)
8804 return -1;
8805 if (a->u.offset > b->u.offset)
8806 return 1;
8807 if (a->rela->r_offset < b->rela->r_offset)
8808 return -1;
8809 if (a->rela->r_offset > b->rela->r_offset)
8810 return 1;
8811 return 0;
8812 }
8813
8814 static size_t
8815 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8816 {
8817 asection *dynamic_relocs;
8818 asection *rela_dyn;
8819 asection *rel_dyn;
8820 bfd_size_type count, size;
8821 size_t i, ret, sort_elt, ext_size;
8822 bfd_byte *sort, *s_non_relative, *p;
8823 struct elf_link_sort_rela *sq;
8824 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8825 int i2e = bed->s->int_rels_per_ext_rel;
8826 unsigned int opb = bfd_octets_per_byte (abfd);
8827 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8828 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8829 struct bfd_link_order *lo;
8830 bfd_vma r_sym_mask;
8831 bfd_boolean use_rela;
8832
8833 /* Find a dynamic reloc section. */
8834 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8835 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
8836 if (rela_dyn != NULL && rela_dyn->size > 0
8837 && rel_dyn != NULL && rel_dyn->size > 0)
8838 {
8839 bfd_boolean use_rela_initialised = FALSE;
8840
8841 /* This is just here to stop gcc from complaining.
8842 Its initialization checking code is not perfect. */
8843 use_rela = TRUE;
8844
8845 /* Both sections are present. Examine the sizes
8846 of the indirect sections to help us choose. */
8847 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8848 if (lo->type == bfd_indirect_link_order)
8849 {
8850 asection *o = lo->u.indirect.section;
8851
8852 if ((o->size % bed->s->sizeof_rela) == 0)
8853 {
8854 if ((o->size % bed->s->sizeof_rel) == 0)
8855 /* Section size is divisible by both rel and rela sizes.
8856 It is of no help to us. */
8857 ;
8858 else
8859 {
8860 /* Section size is only divisible by rela. */
8861 if (use_rela_initialised && !use_rela)
8862 {
8863 _bfd_error_handler (_("%B: Unable to sort relocs - "
8864 "they are in more than one size"),
8865 abfd);
8866 bfd_set_error (bfd_error_invalid_operation);
8867 return 0;
8868 }
8869 else
8870 {
8871 use_rela = TRUE;
8872 use_rela_initialised = TRUE;
8873 }
8874 }
8875 }
8876 else if ((o->size % bed->s->sizeof_rel) == 0)
8877 {
8878 /* Section size is only divisible by rel. */
8879 if (use_rela_initialised && use_rela)
8880 {
8881 _bfd_error_handler (_("%B: Unable to sort relocs - "
8882 "they are in more than one size"),
8883 abfd);
8884 bfd_set_error (bfd_error_invalid_operation);
8885 return 0;
8886 }
8887 else
8888 {
8889 use_rela = FALSE;
8890 use_rela_initialised = TRUE;
8891 }
8892 }
8893 else
8894 {
8895 /* The section size is not divisible by either -
8896 something is wrong. */
8897 _bfd_error_handler (_("%B: Unable to sort relocs - "
8898 "they are of an unknown size"), abfd);
8899 bfd_set_error (bfd_error_invalid_operation);
8900 return 0;
8901 }
8902 }
8903
8904 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8905 if (lo->type == bfd_indirect_link_order)
8906 {
8907 asection *o = lo->u.indirect.section;
8908
8909 if ((o->size % bed->s->sizeof_rela) == 0)
8910 {
8911 if ((o->size % bed->s->sizeof_rel) == 0)
8912 /* Section size is divisible by both rel and rela sizes.
8913 It is of no help to us. */
8914 ;
8915 else
8916 {
8917 /* Section size is only divisible by rela. */
8918 if (use_rela_initialised && !use_rela)
8919 {
8920 _bfd_error_handler (_("%B: Unable to sort relocs - "
8921 "they are in more than one size"),
8922 abfd);
8923 bfd_set_error (bfd_error_invalid_operation);
8924 return 0;
8925 }
8926 else
8927 {
8928 use_rela = TRUE;
8929 use_rela_initialised = TRUE;
8930 }
8931 }
8932 }
8933 else if ((o->size % bed->s->sizeof_rel) == 0)
8934 {
8935 /* Section size is only divisible by rel. */
8936 if (use_rela_initialised && use_rela)
8937 {
8938 _bfd_error_handler (_("%B: Unable to sort relocs - "
8939 "they are in more than one size"),
8940 abfd);
8941 bfd_set_error (bfd_error_invalid_operation);
8942 return 0;
8943 }
8944 else
8945 {
8946 use_rela = FALSE;
8947 use_rela_initialised = TRUE;
8948 }
8949 }
8950 else
8951 {
8952 /* The section size is not divisible by either -
8953 something is wrong. */
8954 _bfd_error_handler (_("%B: Unable to sort relocs - "
8955 "they are of an unknown size"), abfd);
8956 bfd_set_error (bfd_error_invalid_operation);
8957 return 0;
8958 }
8959 }
8960
8961 if (! use_rela_initialised)
8962 /* Make a guess. */
8963 use_rela = TRUE;
8964 }
8965 else if (rela_dyn != NULL && rela_dyn->size > 0)
8966 use_rela = TRUE;
8967 else if (rel_dyn != NULL && rel_dyn->size > 0)
8968 use_rela = FALSE;
8969 else
8970 return 0;
8971
8972 if (use_rela)
8973 {
8974 dynamic_relocs = rela_dyn;
8975 ext_size = bed->s->sizeof_rela;
8976 swap_in = bed->s->swap_reloca_in;
8977 swap_out = bed->s->swap_reloca_out;
8978 }
8979 else
8980 {
8981 dynamic_relocs = rel_dyn;
8982 ext_size = bed->s->sizeof_rel;
8983 swap_in = bed->s->swap_reloc_in;
8984 swap_out = bed->s->swap_reloc_out;
8985 }
8986
8987 size = 0;
8988 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8989 if (lo->type == bfd_indirect_link_order)
8990 size += lo->u.indirect.section->size;
8991
8992 if (size != dynamic_relocs->size)
8993 return 0;
8994
8995 sort_elt = (sizeof (struct elf_link_sort_rela)
8996 + (i2e - 1) * sizeof (Elf_Internal_Rela));
8997
8998 count = dynamic_relocs->size / ext_size;
8999 if (count == 0)
9000 return 0;
9001 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9002
9003 if (sort == NULL)
9004 {
9005 (*info->callbacks->warning)
9006 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
9007 return 0;
9008 }
9009
9010 if (bed->s->arch_size == 32)
9011 r_sym_mask = ~(bfd_vma) 0xff;
9012 else
9013 r_sym_mask = ~(bfd_vma) 0xffffffff;
9014
9015 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9016 if (lo->type == bfd_indirect_link_order)
9017 {
9018 bfd_byte *erel, *erelend;
9019 asection *o = lo->u.indirect.section;
9020
9021 if (o->contents == NULL && o->size != 0)
9022 {
9023 /* This is a reloc section that is being handled as a normal
9024 section. See bfd_section_from_shdr. We can't combine
9025 relocs in this case. */
9026 free (sort);
9027 return 0;
9028 }
9029 erel = o->contents;
9030 erelend = o->contents + o->size;
9031 p = sort + o->output_offset * opb / ext_size * sort_elt;
9032
9033 while (erel < erelend)
9034 {
9035 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9036
9037 (*swap_in) (abfd, erel, s->rela);
9038 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9039 s->u.sym_mask = r_sym_mask;
9040 p += sort_elt;
9041 erel += ext_size;
9042 }
9043 }
9044
9045 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9046
9047 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9048 {
9049 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9050 if (s->type != reloc_class_relative)
9051 break;
9052 }
9053 ret = i;
9054 s_non_relative = p;
9055
9056 sq = (struct elf_link_sort_rela *) s_non_relative;
9057 for (; i < count; i++, p += sort_elt)
9058 {
9059 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9060 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9061 sq = sp;
9062 sp->u.offset = sq->rela->r_offset;
9063 }
9064
9065 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9066
9067 struct elf_link_hash_table *htab = elf_hash_table (info);
9068 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9069 {
9070 /* We have plt relocs in .rela.dyn. */
9071 sq = (struct elf_link_sort_rela *) sort;
9072 for (i = 0; i < count; i++)
9073 if (sq[count - i - 1].type != reloc_class_plt)
9074 break;
9075 if (i != 0 && htab->srelplt->size == i * ext_size)
9076 {
9077 struct bfd_link_order **plo;
9078 /* Put srelplt link_order last. This is so the output_offset
9079 set in the next loop is correct for DT_JMPREL. */
9080 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9081 if ((*plo)->type == bfd_indirect_link_order
9082 && (*plo)->u.indirect.section == htab->srelplt)
9083 {
9084 lo = *plo;
9085 *plo = lo->next;
9086 }
9087 else
9088 plo = &(*plo)->next;
9089 *plo = lo;
9090 lo->next = NULL;
9091 dynamic_relocs->map_tail.link_order = lo;
9092 }
9093 }
9094
9095 p = sort;
9096 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9097 if (lo->type == bfd_indirect_link_order)
9098 {
9099 bfd_byte *erel, *erelend;
9100 asection *o = lo->u.indirect.section;
9101
9102 erel = o->contents;
9103 erelend = o->contents + o->size;
9104 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9105 while (erel < erelend)
9106 {
9107 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9108 (*swap_out) (abfd, s->rela, erel);
9109 p += sort_elt;
9110 erel += ext_size;
9111 }
9112 }
9113
9114 free (sort);
9115 *psec = dynamic_relocs;
9116 return ret;
9117 }
9118
9119 /* Add a symbol to the output symbol string table. */
9120
9121 static int
9122 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9123 const char *name,
9124 Elf_Internal_Sym *elfsym,
9125 asection *input_sec,
9126 struct elf_link_hash_entry *h)
9127 {
9128 int (*output_symbol_hook)
9129 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9130 struct elf_link_hash_entry *);
9131 struct elf_link_hash_table *hash_table;
9132 const struct elf_backend_data *bed;
9133 bfd_size_type strtabsize;
9134
9135 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9136
9137 bed = get_elf_backend_data (flinfo->output_bfd);
9138 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9139 if (output_symbol_hook != NULL)
9140 {
9141 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9142 if (ret != 1)
9143 return ret;
9144 }
9145
9146 if (name == NULL
9147 || *name == '\0'
9148 || (input_sec->flags & SEC_EXCLUDE))
9149 elfsym->st_name = (unsigned long) -1;
9150 else
9151 {
9152 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9153 to get the final offset for st_name. */
9154 elfsym->st_name
9155 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9156 name, FALSE);
9157 if (elfsym->st_name == (unsigned long) -1)
9158 return 0;
9159 }
9160
9161 hash_table = elf_hash_table (flinfo->info);
9162 strtabsize = hash_table->strtabsize;
9163 if (strtabsize <= hash_table->strtabcount)
9164 {
9165 strtabsize += strtabsize;
9166 hash_table->strtabsize = strtabsize;
9167 strtabsize *= sizeof (*hash_table->strtab);
9168 hash_table->strtab
9169 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9170 strtabsize);
9171 if (hash_table->strtab == NULL)
9172 return 0;
9173 }
9174 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9175 hash_table->strtab[hash_table->strtabcount].dest_index
9176 = hash_table->strtabcount;
9177 hash_table->strtab[hash_table->strtabcount].destshndx_index
9178 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9179
9180 bfd_get_symcount (flinfo->output_bfd) += 1;
9181 hash_table->strtabcount += 1;
9182
9183 return 1;
9184 }
9185
9186 /* Swap symbols out to the symbol table and flush the output symbols to
9187 the file. */
9188
9189 static bfd_boolean
9190 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9191 {
9192 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9193 bfd_size_type amt;
9194 size_t i;
9195 const struct elf_backend_data *bed;
9196 bfd_byte *symbuf;
9197 Elf_Internal_Shdr *hdr;
9198 file_ptr pos;
9199 bfd_boolean ret;
9200
9201 if (!hash_table->strtabcount)
9202 return TRUE;
9203
9204 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9205
9206 bed = get_elf_backend_data (flinfo->output_bfd);
9207
9208 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9209 symbuf = (bfd_byte *) bfd_malloc (amt);
9210 if (symbuf == NULL)
9211 return FALSE;
9212
9213 if (flinfo->symshndxbuf)
9214 {
9215 amt = sizeof (Elf_External_Sym_Shndx);
9216 amt *= bfd_get_symcount (flinfo->output_bfd);
9217 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9218 if (flinfo->symshndxbuf == NULL)
9219 {
9220 free (symbuf);
9221 return FALSE;
9222 }
9223 }
9224
9225 for (i = 0; i < hash_table->strtabcount; i++)
9226 {
9227 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9228 if (elfsym->sym.st_name == (unsigned long) -1)
9229 elfsym->sym.st_name = 0;
9230 else
9231 elfsym->sym.st_name
9232 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9233 elfsym->sym.st_name);
9234 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9235 ((bfd_byte *) symbuf
9236 + (elfsym->dest_index
9237 * bed->s->sizeof_sym)),
9238 (flinfo->symshndxbuf
9239 + elfsym->destshndx_index));
9240 }
9241
9242 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9243 pos = hdr->sh_offset + hdr->sh_size;
9244 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9245 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9246 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9247 {
9248 hdr->sh_size += amt;
9249 ret = TRUE;
9250 }
9251 else
9252 ret = FALSE;
9253
9254 free (symbuf);
9255
9256 free (hash_table->strtab);
9257 hash_table->strtab = NULL;
9258
9259 return ret;
9260 }
9261
9262 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9263
9264 static bfd_boolean
9265 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9266 {
9267 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9268 && sym->st_shndx < SHN_LORESERVE)
9269 {
9270 /* The gABI doesn't support dynamic symbols in output sections
9271 beyond 64k. */
9272 _bfd_error_handler
9273 /* xgettext:c-format */
9274 (_("%B: Too many sections: %d (>= %d)"),
9275 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9276 bfd_set_error (bfd_error_nonrepresentable_section);
9277 return FALSE;
9278 }
9279 return TRUE;
9280 }
9281
9282 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9283 allowing an unsatisfied unversioned symbol in the DSO to match a
9284 versioned symbol that would normally require an explicit version.
9285 We also handle the case that a DSO references a hidden symbol
9286 which may be satisfied by a versioned symbol in another DSO. */
9287
9288 static bfd_boolean
9289 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9290 const struct elf_backend_data *bed,
9291 struct elf_link_hash_entry *h)
9292 {
9293 bfd *abfd;
9294 struct elf_link_loaded_list *loaded;
9295
9296 if (!is_elf_hash_table (info->hash))
9297 return FALSE;
9298
9299 /* Check indirect symbol. */
9300 while (h->root.type == bfd_link_hash_indirect)
9301 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9302
9303 switch (h->root.type)
9304 {
9305 default:
9306 abfd = NULL;
9307 break;
9308
9309 case bfd_link_hash_undefined:
9310 case bfd_link_hash_undefweak:
9311 abfd = h->root.u.undef.abfd;
9312 if (abfd == NULL
9313 || (abfd->flags & DYNAMIC) == 0
9314 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9315 return FALSE;
9316 break;
9317
9318 case bfd_link_hash_defined:
9319 case bfd_link_hash_defweak:
9320 abfd = h->root.u.def.section->owner;
9321 break;
9322
9323 case bfd_link_hash_common:
9324 abfd = h->root.u.c.p->section->owner;
9325 break;
9326 }
9327 BFD_ASSERT (abfd != NULL);
9328
9329 for (loaded = elf_hash_table (info)->loaded;
9330 loaded != NULL;
9331 loaded = loaded->next)
9332 {
9333 bfd *input;
9334 Elf_Internal_Shdr *hdr;
9335 size_t symcount;
9336 size_t extsymcount;
9337 size_t extsymoff;
9338 Elf_Internal_Shdr *versymhdr;
9339 Elf_Internal_Sym *isym;
9340 Elf_Internal_Sym *isymend;
9341 Elf_Internal_Sym *isymbuf;
9342 Elf_External_Versym *ever;
9343 Elf_External_Versym *extversym;
9344
9345 input = loaded->abfd;
9346
9347 /* We check each DSO for a possible hidden versioned definition. */
9348 if (input == abfd
9349 || (input->flags & DYNAMIC) == 0
9350 || elf_dynversym (input) == 0)
9351 continue;
9352
9353 hdr = &elf_tdata (input)->dynsymtab_hdr;
9354
9355 symcount = hdr->sh_size / bed->s->sizeof_sym;
9356 if (elf_bad_symtab (input))
9357 {
9358 extsymcount = symcount;
9359 extsymoff = 0;
9360 }
9361 else
9362 {
9363 extsymcount = symcount - hdr->sh_info;
9364 extsymoff = hdr->sh_info;
9365 }
9366
9367 if (extsymcount == 0)
9368 continue;
9369
9370 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9371 NULL, NULL, NULL);
9372 if (isymbuf == NULL)
9373 return FALSE;
9374
9375 /* Read in any version definitions. */
9376 versymhdr = &elf_tdata (input)->dynversym_hdr;
9377 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9378 if (extversym == NULL)
9379 goto error_ret;
9380
9381 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9382 || (bfd_bread (extversym, versymhdr->sh_size, input)
9383 != versymhdr->sh_size))
9384 {
9385 free (extversym);
9386 error_ret:
9387 free (isymbuf);
9388 return FALSE;
9389 }
9390
9391 ever = extversym + extsymoff;
9392 isymend = isymbuf + extsymcount;
9393 for (isym = isymbuf; isym < isymend; isym++, ever++)
9394 {
9395 const char *name;
9396 Elf_Internal_Versym iver;
9397 unsigned short version_index;
9398
9399 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9400 || isym->st_shndx == SHN_UNDEF)
9401 continue;
9402
9403 name = bfd_elf_string_from_elf_section (input,
9404 hdr->sh_link,
9405 isym->st_name);
9406 if (strcmp (name, h->root.root.string) != 0)
9407 continue;
9408
9409 _bfd_elf_swap_versym_in (input, ever, &iver);
9410
9411 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9412 && !(h->def_regular
9413 && h->forced_local))
9414 {
9415 /* If we have a non-hidden versioned sym, then it should
9416 have provided a definition for the undefined sym unless
9417 it is defined in a non-shared object and forced local.
9418 */
9419 abort ();
9420 }
9421
9422 version_index = iver.vs_vers & VERSYM_VERSION;
9423 if (version_index == 1 || version_index == 2)
9424 {
9425 /* This is the base or first version. We can use it. */
9426 free (extversym);
9427 free (isymbuf);
9428 return TRUE;
9429 }
9430 }
9431
9432 free (extversym);
9433 free (isymbuf);
9434 }
9435
9436 return FALSE;
9437 }
9438
9439 /* Convert ELF common symbol TYPE. */
9440
9441 static int
9442 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9443 {
9444 /* Commom symbol can only appear in relocatable link. */
9445 if (!bfd_link_relocatable (info))
9446 abort ();
9447 switch (info->elf_stt_common)
9448 {
9449 case unchanged:
9450 break;
9451 case elf_stt_common:
9452 type = STT_COMMON;
9453 break;
9454 case no_elf_stt_common:
9455 type = STT_OBJECT;
9456 break;
9457 }
9458 return type;
9459 }
9460
9461 /* Add an external symbol to the symbol table. This is called from
9462 the hash table traversal routine. When generating a shared object,
9463 we go through the symbol table twice. The first time we output
9464 anything that might have been forced to local scope in a version
9465 script. The second time we output the symbols that are still
9466 global symbols. */
9467
9468 static bfd_boolean
9469 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9470 {
9471 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9472 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9473 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9474 bfd_boolean strip;
9475 Elf_Internal_Sym sym;
9476 asection *input_sec;
9477 const struct elf_backend_data *bed;
9478 long indx;
9479 int ret;
9480 unsigned int type;
9481
9482 if (h->root.type == bfd_link_hash_warning)
9483 {
9484 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9485 if (h->root.type == bfd_link_hash_new)
9486 return TRUE;
9487 }
9488
9489 /* Decide whether to output this symbol in this pass. */
9490 if (eoinfo->localsyms)
9491 {
9492 if (!h->forced_local)
9493 return TRUE;
9494 }
9495 else
9496 {
9497 if (h->forced_local)
9498 return TRUE;
9499 }
9500
9501 bed = get_elf_backend_data (flinfo->output_bfd);
9502
9503 if (h->root.type == bfd_link_hash_undefined)
9504 {
9505 /* If we have an undefined symbol reference here then it must have
9506 come from a shared library that is being linked in. (Undefined
9507 references in regular files have already been handled unless
9508 they are in unreferenced sections which are removed by garbage
9509 collection). */
9510 bfd_boolean ignore_undef = FALSE;
9511
9512 /* Some symbols may be special in that the fact that they're
9513 undefined can be safely ignored - let backend determine that. */
9514 if (bed->elf_backend_ignore_undef_symbol)
9515 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9516
9517 /* If we are reporting errors for this situation then do so now. */
9518 if (!ignore_undef
9519 && h->ref_dynamic
9520 && (!h->ref_regular || flinfo->info->gc_sections)
9521 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9522 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9523 (*flinfo->info->callbacks->undefined_symbol)
9524 (flinfo->info, h->root.root.string,
9525 h->ref_regular ? NULL : h->root.u.undef.abfd,
9526 NULL, 0,
9527 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9528
9529 /* Strip a global symbol defined in a discarded section. */
9530 if (h->indx == -3)
9531 return TRUE;
9532 }
9533
9534 /* We should also warn if a forced local symbol is referenced from
9535 shared libraries. */
9536 if (bfd_link_executable (flinfo->info)
9537 && h->forced_local
9538 && h->ref_dynamic
9539 && h->def_regular
9540 && !h->dynamic_def
9541 && h->ref_dynamic_nonweak
9542 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9543 {
9544 bfd *def_bfd;
9545 const char *msg;
9546 struct elf_link_hash_entry *hi = h;
9547
9548 /* Check indirect symbol. */
9549 while (hi->root.type == bfd_link_hash_indirect)
9550 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9551
9552 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9553 /* xgettext:c-format */
9554 msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9555 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9556 /* xgettext:c-format */
9557 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9558 else
9559 /* xgettext:c-format */
9560 msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9561 def_bfd = flinfo->output_bfd;
9562 if (hi->root.u.def.section != bfd_abs_section_ptr)
9563 def_bfd = hi->root.u.def.section->owner;
9564 _bfd_error_handler (msg, flinfo->output_bfd,
9565 h->root.root.string, def_bfd);
9566 bfd_set_error (bfd_error_bad_value);
9567 eoinfo->failed = TRUE;
9568 return FALSE;
9569 }
9570
9571 /* We don't want to output symbols that have never been mentioned by
9572 a regular file, or that we have been told to strip. However, if
9573 h->indx is set to -2, the symbol is used by a reloc and we must
9574 output it. */
9575 strip = FALSE;
9576 if (h->indx == -2)
9577 ;
9578 else if ((h->def_dynamic
9579 || h->ref_dynamic
9580 || h->root.type == bfd_link_hash_new)
9581 && !h->def_regular
9582 && !h->ref_regular)
9583 strip = TRUE;
9584 else if (flinfo->info->strip == strip_all)
9585 strip = TRUE;
9586 else if (flinfo->info->strip == strip_some
9587 && bfd_hash_lookup (flinfo->info->keep_hash,
9588 h->root.root.string, FALSE, FALSE) == NULL)
9589 strip = TRUE;
9590 else if ((h->root.type == bfd_link_hash_defined
9591 || h->root.type == bfd_link_hash_defweak)
9592 && ((flinfo->info->strip_discarded
9593 && discarded_section (h->root.u.def.section))
9594 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9595 && h->root.u.def.section->owner != NULL
9596 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9597 strip = TRUE;
9598 else if ((h->root.type == bfd_link_hash_undefined
9599 || h->root.type == bfd_link_hash_undefweak)
9600 && h->root.u.undef.abfd != NULL
9601 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9602 strip = TRUE;
9603
9604 type = h->type;
9605
9606 /* If we're stripping it, and it's not a dynamic symbol, there's
9607 nothing else to do. However, if it is a forced local symbol or
9608 an ifunc symbol we need to give the backend finish_dynamic_symbol
9609 function a chance to make it dynamic. */
9610 if (strip
9611 && h->dynindx == -1
9612 && type != STT_GNU_IFUNC
9613 && !h->forced_local)
9614 return TRUE;
9615
9616 sym.st_value = 0;
9617 sym.st_size = h->size;
9618 sym.st_other = h->other;
9619 switch (h->root.type)
9620 {
9621 default:
9622 case bfd_link_hash_new:
9623 case bfd_link_hash_warning:
9624 abort ();
9625 return FALSE;
9626
9627 case bfd_link_hash_undefined:
9628 case bfd_link_hash_undefweak:
9629 input_sec = bfd_und_section_ptr;
9630 sym.st_shndx = SHN_UNDEF;
9631 break;
9632
9633 case bfd_link_hash_defined:
9634 case bfd_link_hash_defweak:
9635 {
9636 input_sec = h->root.u.def.section;
9637 if (input_sec->output_section != NULL)
9638 {
9639 sym.st_shndx =
9640 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9641 input_sec->output_section);
9642 if (sym.st_shndx == SHN_BAD)
9643 {
9644 _bfd_error_handler
9645 /* xgettext:c-format */
9646 (_("%B: could not find output section %A for input section %A"),
9647 flinfo->output_bfd, input_sec->output_section, input_sec);
9648 bfd_set_error (bfd_error_nonrepresentable_section);
9649 eoinfo->failed = TRUE;
9650 return FALSE;
9651 }
9652
9653 /* ELF symbols in relocatable files are section relative,
9654 but in nonrelocatable files they are virtual
9655 addresses. */
9656 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9657 if (!bfd_link_relocatable (flinfo->info))
9658 {
9659 sym.st_value += input_sec->output_section->vma;
9660 if (h->type == STT_TLS)
9661 {
9662 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9663 if (tls_sec != NULL)
9664 sym.st_value -= tls_sec->vma;
9665 }
9666 }
9667 }
9668 else
9669 {
9670 BFD_ASSERT (input_sec->owner == NULL
9671 || (input_sec->owner->flags & DYNAMIC) != 0);
9672 sym.st_shndx = SHN_UNDEF;
9673 input_sec = bfd_und_section_ptr;
9674 }
9675 }
9676 break;
9677
9678 case bfd_link_hash_common:
9679 input_sec = h->root.u.c.p->section;
9680 sym.st_shndx = bed->common_section_index (input_sec);
9681 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9682 break;
9683
9684 case bfd_link_hash_indirect:
9685 /* These symbols are created by symbol versioning. They point
9686 to the decorated version of the name. For example, if the
9687 symbol foo@@GNU_1.2 is the default, which should be used when
9688 foo is used with no version, then we add an indirect symbol
9689 foo which points to foo@@GNU_1.2. We ignore these symbols,
9690 since the indirected symbol is already in the hash table. */
9691 return TRUE;
9692 }
9693
9694 if (type == STT_COMMON || type == STT_OBJECT)
9695 switch (h->root.type)
9696 {
9697 case bfd_link_hash_common:
9698 type = elf_link_convert_common_type (flinfo->info, type);
9699 break;
9700 case bfd_link_hash_defined:
9701 case bfd_link_hash_defweak:
9702 if (bed->common_definition (&sym))
9703 type = elf_link_convert_common_type (flinfo->info, type);
9704 else
9705 type = STT_OBJECT;
9706 break;
9707 case bfd_link_hash_undefined:
9708 case bfd_link_hash_undefweak:
9709 break;
9710 default:
9711 abort ();
9712 }
9713
9714 if (h->forced_local)
9715 {
9716 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9717 /* Turn off visibility on local symbol. */
9718 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9719 }
9720 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9721 else if (h->unique_global && h->def_regular)
9722 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9723 else if (h->root.type == bfd_link_hash_undefweak
9724 || h->root.type == bfd_link_hash_defweak)
9725 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9726 else
9727 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9728 sym.st_target_internal = h->target_internal;
9729
9730 /* Give the processor backend a chance to tweak the symbol value,
9731 and also to finish up anything that needs to be done for this
9732 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9733 forced local syms when non-shared is due to a historical quirk.
9734 STT_GNU_IFUNC symbol must go through PLT. */
9735 if ((h->type == STT_GNU_IFUNC
9736 && h->def_regular
9737 && !bfd_link_relocatable (flinfo->info))
9738 || ((h->dynindx != -1
9739 || h->forced_local)
9740 && ((bfd_link_pic (flinfo->info)
9741 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9742 || h->root.type != bfd_link_hash_undefweak))
9743 || !h->forced_local)
9744 && elf_hash_table (flinfo->info)->dynamic_sections_created))
9745 {
9746 if (! ((*bed->elf_backend_finish_dynamic_symbol)
9747 (flinfo->output_bfd, flinfo->info, h, &sym)))
9748 {
9749 eoinfo->failed = TRUE;
9750 return FALSE;
9751 }
9752 }
9753
9754 /* If we are marking the symbol as undefined, and there are no
9755 non-weak references to this symbol from a regular object, then
9756 mark the symbol as weak undefined; if there are non-weak
9757 references, mark the symbol as strong. We can't do this earlier,
9758 because it might not be marked as undefined until the
9759 finish_dynamic_symbol routine gets through with it. */
9760 if (sym.st_shndx == SHN_UNDEF
9761 && h->ref_regular
9762 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9763 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9764 {
9765 int bindtype;
9766 type = ELF_ST_TYPE (sym.st_info);
9767
9768 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9769 if (type == STT_GNU_IFUNC)
9770 type = STT_FUNC;
9771
9772 if (h->ref_regular_nonweak)
9773 bindtype = STB_GLOBAL;
9774 else
9775 bindtype = STB_WEAK;
9776 sym.st_info = ELF_ST_INFO (bindtype, type);
9777 }
9778
9779 /* If this is a symbol defined in a dynamic library, don't use the
9780 symbol size from the dynamic library. Relinking an executable
9781 against a new library may introduce gratuitous changes in the
9782 executable's symbols if we keep the size. */
9783 if (sym.st_shndx == SHN_UNDEF
9784 && !h->def_regular
9785 && h->def_dynamic)
9786 sym.st_size = 0;
9787
9788 /* If a non-weak symbol with non-default visibility is not defined
9789 locally, it is a fatal error. */
9790 if (!bfd_link_relocatable (flinfo->info)
9791 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9792 && ELF_ST_BIND (sym.st_info) != STB_WEAK
9793 && h->root.type == bfd_link_hash_undefined
9794 && !h->def_regular)
9795 {
9796 const char *msg;
9797
9798 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9799 /* xgettext:c-format */
9800 msg = _("%B: protected symbol `%s' isn't defined");
9801 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9802 /* xgettext:c-format */
9803 msg = _("%B: internal symbol `%s' isn't defined");
9804 else
9805 /* xgettext:c-format */
9806 msg = _("%B: hidden symbol `%s' isn't defined");
9807 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9808 bfd_set_error (bfd_error_bad_value);
9809 eoinfo->failed = TRUE;
9810 return FALSE;
9811 }
9812
9813 /* If this symbol should be put in the .dynsym section, then put it
9814 there now. We already know the symbol index. We also fill in
9815 the entry in the .hash section. */
9816 if (elf_hash_table (flinfo->info)->dynsym != NULL
9817 && h->dynindx != -1
9818 && elf_hash_table (flinfo->info)->dynamic_sections_created)
9819 {
9820 bfd_byte *esym;
9821
9822 /* Since there is no version information in the dynamic string,
9823 if there is no version info in symbol version section, we will
9824 have a run-time problem if not linking executable, referenced
9825 by shared library, or not bound locally. */
9826 if (h->verinfo.verdef == NULL
9827 && (!bfd_link_executable (flinfo->info)
9828 || h->ref_dynamic
9829 || !h->def_regular))
9830 {
9831 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9832
9833 if (p && p [1] != '\0')
9834 {
9835 _bfd_error_handler
9836 /* xgettext:c-format */
9837 (_("%B: No symbol version section for versioned symbol `%s'"),
9838 flinfo->output_bfd, h->root.root.string);
9839 eoinfo->failed = TRUE;
9840 return FALSE;
9841 }
9842 }
9843
9844 sym.st_name = h->dynstr_index;
9845 esym = (elf_hash_table (flinfo->info)->dynsym->contents
9846 + h->dynindx * bed->s->sizeof_sym);
9847 if (!check_dynsym (flinfo->output_bfd, &sym))
9848 {
9849 eoinfo->failed = TRUE;
9850 return FALSE;
9851 }
9852 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9853
9854 if (flinfo->hash_sec != NULL)
9855 {
9856 size_t hash_entry_size;
9857 bfd_byte *bucketpos;
9858 bfd_vma chain;
9859 size_t bucketcount;
9860 size_t bucket;
9861
9862 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9863 bucket = h->u.elf_hash_value % bucketcount;
9864
9865 hash_entry_size
9866 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9867 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9868 + (bucket + 2) * hash_entry_size);
9869 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9870 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9871 bucketpos);
9872 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9873 ((bfd_byte *) flinfo->hash_sec->contents
9874 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9875 }
9876
9877 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9878 {
9879 Elf_Internal_Versym iversym;
9880 Elf_External_Versym *eversym;
9881
9882 if (!h->def_regular)
9883 {
9884 if (h->verinfo.verdef == NULL
9885 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9886 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9887 iversym.vs_vers = 0;
9888 else
9889 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9890 }
9891 else
9892 {
9893 if (h->verinfo.vertree == NULL)
9894 iversym.vs_vers = 1;
9895 else
9896 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9897 if (flinfo->info->create_default_symver)
9898 iversym.vs_vers++;
9899 }
9900
9901 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9902 defined locally. */
9903 if (h->versioned == versioned_hidden && h->def_regular)
9904 iversym.vs_vers |= VERSYM_HIDDEN;
9905
9906 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9907 eversym += h->dynindx;
9908 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9909 }
9910 }
9911
9912 /* If the symbol is undefined, and we didn't output it to .dynsym,
9913 strip it from .symtab too. Obviously we can't do this for
9914 relocatable output or when needed for --emit-relocs. */
9915 else if (input_sec == bfd_und_section_ptr
9916 && h->indx != -2
9917 && !bfd_link_relocatable (flinfo->info))
9918 return TRUE;
9919 /* Also strip others that we couldn't earlier due to dynamic symbol
9920 processing. */
9921 if (strip)
9922 return TRUE;
9923 if ((input_sec->flags & SEC_EXCLUDE) != 0)
9924 return TRUE;
9925
9926 /* Output a FILE symbol so that following locals are not associated
9927 with the wrong input file. We need one for forced local symbols
9928 if we've seen more than one FILE symbol or when we have exactly
9929 one FILE symbol but global symbols are present in a file other
9930 than the one with the FILE symbol. We also need one if linker
9931 defined symbols are present. In practice these conditions are
9932 always met, so just emit the FILE symbol unconditionally. */
9933 if (eoinfo->localsyms
9934 && !eoinfo->file_sym_done
9935 && eoinfo->flinfo->filesym_count != 0)
9936 {
9937 Elf_Internal_Sym fsym;
9938
9939 memset (&fsym, 0, sizeof (fsym));
9940 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9941 fsym.st_shndx = SHN_ABS;
9942 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9943 bfd_und_section_ptr, NULL))
9944 return FALSE;
9945
9946 eoinfo->file_sym_done = TRUE;
9947 }
9948
9949 indx = bfd_get_symcount (flinfo->output_bfd);
9950 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9951 input_sec, h);
9952 if (ret == 0)
9953 {
9954 eoinfo->failed = TRUE;
9955 return FALSE;
9956 }
9957 else if (ret == 1)
9958 h->indx = indx;
9959 else if (h->indx == -2)
9960 abort();
9961
9962 return TRUE;
9963 }
9964
9965 /* Return TRUE if special handling is done for relocs in SEC against
9966 symbols defined in discarded sections. */
9967
9968 static bfd_boolean
9969 elf_section_ignore_discarded_relocs (asection *sec)
9970 {
9971 const struct elf_backend_data *bed;
9972
9973 switch (sec->sec_info_type)
9974 {
9975 case SEC_INFO_TYPE_STABS:
9976 case SEC_INFO_TYPE_EH_FRAME:
9977 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9978 return TRUE;
9979 default:
9980 break;
9981 }
9982
9983 bed = get_elf_backend_data (sec->owner);
9984 if (bed->elf_backend_ignore_discarded_relocs != NULL
9985 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9986 return TRUE;
9987
9988 return FALSE;
9989 }
9990
9991 /* Return a mask saying how ld should treat relocations in SEC against
9992 symbols defined in discarded sections. If this function returns
9993 COMPLAIN set, ld will issue a warning message. If this function
9994 returns PRETEND set, and the discarded section was link-once and the
9995 same size as the kept link-once section, ld will pretend that the
9996 symbol was actually defined in the kept section. Otherwise ld will
9997 zero the reloc (at least that is the intent, but some cooperation by
9998 the target dependent code is needed, particularly for REL targets). */
9999
10000 unsigned int
10001 _bfd_elf_default_action_discarded (asection *sec)
10002 {
10003 if (sec->flags & SEC_DEBUGGING)
10004 return PRETEND;
10005
10006 if (strcmp (".eh_frame", sec->name) == 0)
10007 return 0;
10008
10009 if (strcmp (".gcc_except_table", sec->name) == 0)
10010 return 0;
10011
10012 return COMPLAIN | PRETEND;
10013 }
10014
10015 /* Find a match between a section and a member of a section group. */
10016
10017 static asection *
10018 match_group_member (asection *sec, asection *group,
10019 struct bfd_link_info *info)
10020 {
10021 asection *first = elf_next_in_group (group);
10022 asection *s = first;
10023
10024 while (s != NULL)
10025 {
10026 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10027 return s;
10028
10029 s = elf_next_in_group (s);
10030 if (s == first)
10031 break;
10032 }
10033
10034 return NULL;
10035 }
10036
10037 /* Check if the kept section of a discarded section SEC can be used
10038 to replace it. Return the replacement if it is OK. Otherwise return
10039 NULL. */
10040
10041 asection *
10042 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10043 {
10044 asection *kept;
10045
10046 kept = sec->kept_section;
10047 if (kept != NULL)
10048 {
10049 if ((kept->flags & SEC_GROUP) != 0)
10050 kept = match_group_member (sec, kept, info);
10051 if (kept != NULL
10052 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10053 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10054 kept = NULL;
10055 sec->kept_section = kept;
10056 }
10057 return kept;
10058 }
10059
10060 /* Link an input file into the linker output file. This function
10061 handles all the sections and relocations of the input file at once.
10062 This is so that we only have to read the local symbols once, and
10063 don't have to keep them in memory. */
10064
10065 static bfd_boolean
10066 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10067 {
10068 int (*relocate_section)
10069 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10070 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10071 bfd *output_bfd;
10072 Elf_Internal_Shdr *symtab_hdr;
10073 size_t locsymcount;
10074 size_t extsymoff;
10075 Elf_Internal_Sym *isymbuf;
10076 Elf_Internal_Sym *isym;
10077 Elf_Internal_Sym *isymend;
10078 long *pindex;
10079 asection **ppsection;
10080 asection *o;
10081 const struct elf_backend_data *bed;
10082 struct elf_link_hash_entry **sym_hashes;
10083 bfd_size_type address_size;
10084 bfd_vma r_type_mask;
10085 int r_sym_shift;
10086 bfd_boolean have_file_sym = FALSE;
10087
10088 output_bfd = flinfo->output_bfd;
10089 bed = get_elf_backend_data (output_bfd);
10090 relocate_section = bed->elf_backend_relocate_section;
10091
10092 /* If this is a dynamic object, we don't want to do anything here:
10093 we don't want the local symbols, and we don't want the section
10094 contents. */
10095 if ((input_bfd->flags & DYNAMIC) != 0)
10096 return TRUE;
10097
10098 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10099 if (elf_bad_symtab (input_bfd))
10100 {
10101 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10102 extsymoff = 0;
10103 }
10104 else
10105 {
10106 locsymcount = symtab_hdr->sh_info;
10107 extsymoff = symtab_hdr->sh_info;
10108 }
10109
10110 /* Read the local symbols. */
10111 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10112 if (isymbuf == NULL && locsymcount != 0)
10113 {
10114 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10115 flinfo->internal_syms,
10116 flinfo->external_syms,
10117 flinfo->locsym_shndx);
10118 if (isymbuf == NULL)
10119 return FALSE;
10120 }
10121
10122 /* Find local symbol sections and adjust values of symbols in
10123 SEC_MERGE sections. Write out those local symbols we know are
10124 going into the output file. */
10125 isymend = isymbuf + locsymcount;
10126 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10127 isym < isymend;
10128 isym++, pindex++, ppsection++)
10129 {
10130 asection *isec;
10131 const char *name;
10132 Elf_Internal_Sym osym;
10133 long indx;
10134 int ret;
10135
10136 *pindex = -1;
10137
10138 if (elf_bad_symtab (input_bfd))
10139 {
10140 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10141 {
10142 *ppsection = NULL;
10143 continue;
10144 }
10145 }
10146
10147 if (isym->st_shndx == SHN_UNDEF)
10148 isec = bfd_und_section_ptr;
10149 else if (isym->st_shndx == SHN_ABS)
10150 isec = bfd_abs_section_ptr;
10151 else if (isym->st_shndx == SHN_COMMON)
10152 isec = bfd_com_section_ptr;
10153 else
10154 {
10155 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10156 if (isec == NULL)
10157 {
10158 /* Don't attempt to output symbols with st_shnx in the
10159 reserved range other than SHN_ABS and SHN_COMMON. */
10160 *ppsection = NULL;
10161 continue;
10162 }
10163 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10164 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10165 isym->st_value =
10166 _bfd_merged_section_offset (output_bfd, &isec,
10167 elf_section_data (isec)->sec_info,
10168 isym->st_value);
10169 }
10170
10171 *ppsection = isec;
10172
10173 /* Don't output the first, undefined, symbol. In fact, don't
10174 output any undefined local symbol. */
10175 if (isec == bfd_und_section_ptr)
10176 continue;
10177
10178 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10179 {
10180 /* We never output section symbols. Instead, we use the
10181 section symbol of the corresponding section in the output
10182 file. */
10183 continue;
10184 }
10185
10186 /* If we are stripping all symbols, we don't want to output this
10187 one. */
10188 if (flinfo->info->strip == strip_all)
10189 continue;
10190
10191 /* If we are discarding all local symbols, we don't want to
10192 output this one. If we are generating a relocatable output
10193 file, then some of the local symbols may be required by
10194 relocs; we output them below as we discover that they are
10195 needed. */
10196 if (flinfo->info->discard == discard_all)
10197 continue;
10198
10199 /* If this symbol is defined in a section which we are
10200 discarding, we don't need to keep it. */
10201 if (isym->st_shndx != SHN_UNDEF
10202 && isym->st_shndx < SHN_LORESERVE
10203 && bfd_section_removed_from_list (output_bfd,
10204 isec->output_section))
10205 continue;
10206
10207 /* Get the name of the symbol. */
10208 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10209 isym->st_name);
10210 if (name == NULL)
10211 return FALSE;
10212
10213 /* See if we are discarding symbols with this name. */
10214 if ((flinfo->info->strip == strip_some
10215 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10216 == NULL))
10217 || (((flinfo->info->discard == discard_sec_merge
10218 && (isec->flags & SEC_MERGE)
10219 && !bfd_link_relocatable (flinfo->info))
10220 || flinfo->info->discard == discard_l)
10221 && bfd_is_local_label_name (input_bfd, name)))
10222 continue;
10223
10224 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10225 {
10226 if (input_bfd->lto_output)
10227 /* -flto puts a temp file name here. This means builds
10228 are not reproducible. Discard the symbol. */
10229 continue;
10230 have_file_sym = TRUE;
10231 flinfo->filesym_count += 1;
10232 }
10233 if (!have_file_sym)
10234 {
10235 /* In the absence of debug info, bfd_find_nearest_line uses
10236 FILE symbols to determine the source file for local
10237 function symbols. Provide a FILE symbol here if input
10238 files lack such, so that their symbols won't be
10239 associated with a previous input file. It's not the
10240 source file, but the best we can do. */
10241 have_file_sym = TRUE;
10242 flinfo->filesym_count += 1;
10243 memset (&osym, 0, sizeof (osym));
10244 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10245 osym.st_shndx = SHN_ABS;
10246 if (!elf_link_output_symstrtab (flinfo,
10247 (input_bfd->lto_output ? NULL
10248 : input_bfd->filename),
10249 &osym, bfd_abs_section_ptr,
10250 NULL))
10251 return FALSE;
10252 }
10253
10254 osym = *isym;
10255
10256 /* Adjust the section index for the output file. */
10257 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10258 isec->output_section);
10259 if (osym.st_shndx == SHN_BAD)
10260 return FALSE;
10261
10262 /* ELF symbols in relocatable files are section relative, but
10263 in executable files they are virtual addresses. Note that
10264 this code assumes that all ELF sections have an associated
10265 BFD section with a reasonable value for output_offset; below
10266 we assume that they also have a reasonable value for
10267 output_section. Any special sections must be set up to meet
10268 these requirements. */
10269 osym.st_value += isec->output_offset;
10270 if (!bfd_link_relocatable (flinfo->info))
10271 {
10272 osym.st_value += isec->output_section->vma;
10273 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10274 {
10275 /* STT_TLS symbols are relative to PT_TLS segment base. */
10276 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10277 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10278 }
10279 }
10280
10281 indx = bfd_get_symcount (output_bfd);
10282 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10283 if (ret == 0)
10284 return FALSE;
10285 else if (ret == 1)
10286 *pindex = indx;
10287 }
10288
10289 if (bed->s->arch_size == 32)
10290 {
10291 r_type_mask = 0xff;
10292 r_sym_shift = 8;
10293 address_size = 4;
10294 }
10295 else
10296 {
10297 r_type_mask = 0xffffffff;
10298 r_sym_shift = 32;
10299 address_size = 8;
10300 }
10301
10302 /* Relocate the contents of each section. */
10303 sym_hashes = elf_sym_hashes (input_bfd);
10304 for (o = input_bfd->sections; o != NULL; o = o->next)
10305 {
10306 bfd_byte *contents;
10307
10308 if (! o->linker_mark)
10309 {
10310 /* This section was omitted from the link. */
10311 continue;
10312 }
10313
10314 if (!flinfo->info->resolve_section_groups
10315 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10316 {
10317 /* Deal with the group signature symbol. */
10318 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10319 unsigned long symndx = sec_data->this_hdr.sh_info;
10320 asection *osec = o->output_section;
10321
10322 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10323 if (symndx >= locsymcount
10324 || (elf_bad_symtab (input_bfd)
10325 && flinfo->sections[symndx] == NULL))
10326 {
10327 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10328 while (h->root.type == bfd_link_hash_indirect
10329 || h->root.type == bfd_link_hash_warning)
10330 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10331 /* Arrange for symbol to be output. */
10332 h->indx = -2;
10333 elf_section_data (osec)->this_hdr.sh_info = -2;
10334 }
10335 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10336 {
10337 /* We'll use the output section target_index. */
10338 asection *sec = flinfo->sections[symndx]->output_section;
10339 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10340 }
10341 else
10342 {
10343 if (flinfo->indices[symndx] == -1)
10344 {
10345 /* Otherwise output the local symbol now. */
10346 Elf_Internal_Sym sym = isymbuf[symndx];
10347 asection *sec = flinfo->sections[symndx]->output_section;
10348 const char *name;
10349 long indx;
10350 int ret;
10351
10352 name = bfd_elf_string_from_elf_section (input_bfd,
10353 symtab_hdr->sh_link,
10354 sym.st_name);
10355 if (name == NULL)
10356 return FALSE;
10357
10358 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10359 sec);
10360 if (sym.st_shndx == SHN_BAD)
10361 return FALSE;
10362
10363 sym.st_value += o->output_offset;
10364
10365 indx = bfd_get_symcount (output_bfd);
10366 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10367 NULL);
10368 if (ret == 0)
10369 return FALSE;
10370 else if (ret == 1)
10371 flinfo->indices[symndx] = indx;
10372 else
10373 abort ();
10374 }
10375 elf_section_data (osec)->this_hdr.sh_info
10376 = flinfo->indices[symndx];
10377 }
10378 }
10379
10380 if ((o->flags & SEC_HAS_CONTENTS) == 0
10381 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10382 continue;
10383
10384 if ((o->flags & SEC_LINKER_CREATED) != 0)
10385 {
10386 /* Section was created by _bfd_elf_link_create_dynamic_sections
10387 or somesuch. */
10388 continue;
10389 }
10390
10391 /* Get the contents of the section. They have been cached by a
10392 relaxation routine. Note that o is a section in an input
10393 file, so the contents field will not have been set by any of
10394 the routines which work on output files. */
10395 if (elf_section_data (o)->this_hdr.contents != NULL)
10396 {
10397 contents = elf_section_data (o)->this_hdr.contents;
10398 if (bed->caches_rawsize
10399 && o->rawsize != 0
10400 && o->rawsize < o->size)
10401 {
10402 memcpy (flinfo->contents, contents, o->rawsize);
10403 contents = flinfo->contents;
10404 }
10405 }
10406 else
10407 {
10408 contents = flinfo->contents;
10409 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10410 return FALSE;
10411 }
10412
10413 if ((o->flags & SEC_RELOC) != 0)
10414 {
10415 Elf_Internal_Rela *internal_relocs;
10416 Elf_Internal_Rela *rel, *relend;
10417 int action_discarded;
10418 int ret;
10419
10420 /* Get the swapped relocs. */
10421 internal_relocs
10422 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10423 flinfo->internal_relocs, FALSE);
10424 if (internal_relocs == NULL
10425 && o->reloc_count > 0)
10426 return FALSE;
10427
10428 /* We need to reverse-copy input .ctors/.dtors sections if
10429 they are placed in .init_array/.finit_array for output. */
10430 if (o->size > address_size
10431 && ((strncmp (o->name, ".ctors", 6) == 0
10432 && strcmp (o->output_section->name,
10433 ".init_array") == 0)
10434 || (strncmp (o->name, ".dtors", 6) == 0
10435 && strcmp (o->output_section->name,
10436 ".fini_array") == 0))
10437 && (o->name[6] == 0 || o->name[6] == '.'))
10438 {
10439 if (o->size * bed->s->int_rels_per_ext_rel
10440 != o->reloc_count * address_size)
10441 {
10442 _bfd_error_handler
10443 /* xgettext:c-format */
10444 (_("error: %B: size of section %A is not "
10445 "multiple of address size"),
10446 input_bfd, o);
10447 bfd_set_error (bfd_error_bad_value);
10448 return FALSE;
10449 }
10450 o->flags |= SEC_ELF_REVERSE_COPY;
10451 }
10452
10453 action_discarded = -1;
10454 if (!elf_section_ignore_discarded_relocs (o))
10455 action_discarded = (*bed->action_discarded) (o);
10456
10457 /* Run through the relocs evaluating complex reloc symbols and
10458 looking for relocs against symbols from discarded sections
10459 or section symbols from removed link-once sections.
10460 Complain about relocs against discarded sections. Zero
10461 relocs against removed link-once sections. */
10462
10463 rel = internal_relocs;
10464 relend = rel + o->reloc_count;
10465 for ( ; rel < relend; rel++)
10466 {
10467 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10468 unsigned int s_type;
10469 asection **ps, *sec;
10470 struct elf_link_hash_entry *h = NULL;
10471 const char *sym_name;
10472
10473 if (r_symndx == STN_UNDEF)
10474 continue;
10475
10476 if (r_symndx >= locsymcount
10477 || (elf_bad_symtab (input_bfd)
10478 && flinfo->sections[r_symndx] == NULL))
10479 {
10480 h = sym_hashes[r_symndx - extsymoff];
10481
10482 /* Badly formatted input files can contain relocs that
10483 reference non-existant symbols. Check here so that
10484 we do not seg fault. */
10485 if (h == NULL)
10486 {
10487 _bfd_error_handler
10488 /* xgettext:c-format */
10489 (_("error: %B contains a reloc (%#Lx) for section %A "
10490 "that references a non-existent global symbol"),
10491 input_bfd, rel->r_info, o);
10492 bfd_set_error (bfd_error_bad_value);
10493 return FALSE;
10494 }
10495
10496 while (h->root.type == bfd_link_hash_indirect
10497 || h->root.type == bfd_link_hash_warning)
10498 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10499
10500 s_type = h->type;
10501
10502 /* If a plugin symbol is referenced from a non-IR file,
10503 mark the symbol as undefined. Note that the
10504 linker may attach linker created dynamic sections
10505 to the plugin bfd. Symbols defined in linker
10506 created sections are not plugin symbols. */
10507 if ((h->root.non_ir_ref_regular
10508 || h->root.non_ir_ref_dynamic)
10509 && (h->root.type == bfd_link_hash_defined
10510 || h->root.type == bfd_link_hash_defweak)
10511 && (h->root.u.def.section->flags
10512 & SEC_LINKER_CREATED) == 0
10513 && h->root.u.def.section->owner != NULL
10514 && (h->root.u.def.section->owner->flags
10515 & BFD_PLUGIN) != 0)
10516 {
10517 h->root.type = bfd_link_hash_undefined;
10518 h->root.u.undef.abfd = h->root.u.def.section->owner;
10519 }
10520
10521 ps = NULL;
10522 if (h->root.type == bfd_link_hash_defined
10523 || h->root.type == bfd_link_hash_defweak)
10524 ps = &h->root.u.def.section;
10525
10526 sym_name = h->root.root.string;
10527 }
10528 else
10529 {
10530 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10531
10532 s_type = ELF_ST_TYPE (sym->st_info);
10533 ps = &flinfo->sections[r_symndx];
10534 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10535 sym, *ps);
10536 }
10537
10538 if ((s_type == STT_RELC || s_type == STT_SRELC)
10539 && !bfd_link_relocatable (flinfo->info))
10540 {
10541 bfd_vma val;
10542 bfd_vma dot = (rel->r_offset
10543 + o->output_offset + o->output_section->vma);
10544 #ifdef DEBUG
10545 printf ("Encountered a complex symbol!");
10546 printf (" (input_bfd %s, section %s, reloc %ld\n",
10547 input_bfd->filename, o->name,
10548 (long) (rel - internal_relocs));
10549 printf (" symbol: idx %8.8lx, name %s\n",
10550 r_symndx, sym_name);
10551 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10552 (unsigned long) rel->r_info,
10553 (unsigned long) rel->r_offset);
10554 #endif
10555 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10556 isymbuf, locsymcount, s_type == STT_SRELC))
10557 return FALSE;
10558
10559 /* Symbol evaluated OK. Update to absolute value. */
10560 set_symbol_value (input_bfd, isymbuf, locsymcount,
10561 r_symndx, val);
10562 continue;
10563 }
10564
10565 if (action_discarded != -1 && ps != NULL)
10566 {
10567 /* Complain if the definition comes from a
10568 discarded section. */
10569 if ((sec = *ps) != NULL && discarded_section (sec))
10570 {
10571 BFD_ASSERT (r_symndx != STN_UNDEF);
10572 if (action_discarded & COMPLAIN)
10573 (*flinfo->info->callbacks->einfo)
10574 /* xgettext:c-format */
10575 (_("%X`%s' referenced in section `%A' of %B: "
10576 "defined in discarded section `%A' of %B\n"),
10577 sym_name, o, input_bfd, sec, sec->owner);
10578
10579 /* Try to do the best we can to support buggy old
10580 versions of gcc. Pretend that the symbol is
10581 really defined in the kept linkonce section.
10582 FIXME: This is quite broken. Modifying the
10583 symbol here means we will be changing all later
10584 uses of the symbol, not just in this section. */
10585 if (action_discarded & PRETEND)
10586 {
10587 asection *kept;
10588
10589 kept = _bfd_elf_check_kept_section (sec,
10590 flinfo->info);
10591 if (kept != NULL)
10592 {
10593 *ps = kept;
10594 continue;
10595 }
10596 }
10597 }
10598 }
10599 }
10600
10601 /* Relocate the section by invoking a back end routine.
10602
10603 The back end routine is responsible for adjusting the
10604 section contents as necessary, and (if using Rela relocs
10605 and generating a relocatable output file) adjusting the
10606 reloc addend as necessary.
10607
10608 The back end routine does not have to worry about setting
10609 the reloc address or the reloc symbol index.
10610
10611 The back end routine is given a pointer to the swapped in
10612 internal symbols, and can access the hash table entries
10613 for the external symbols via elf_sym_hashes (input_bfd).
10614
10615 When generating relocatable output, the back end routine
10616 must handle STB_LOCAL/STT_SECTION symbols specially. The
10617 output symbol is going to be a section symbol
10618 corresponding to the output section, which will require
10619 the addend to be adjusted. */
10620
10621 ret = (*relocate_section) (output_bfd, flinfo->info,
10622 input_bfd, o, contents,
10623 internal_relocs,
10624 isymbuf,
10625 flinfo->sections);
10626 if (!ret)
10627 return FALSE;
10628
10629 if (ret == 2
10630 || bfd_link_relocatable (flinfo->info)
10631 || flinfo->info->emitrelocations)
10632 {
10633 Elf_Internal_Rela *irela;
10634 Elf_Internal_Rela *irelaend, *irelamid;
10635 bfd_vma last_offset;
10636 struct elf_link_hash_entry **rel_hash;
10637 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10638 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10639 unsigned int next_erel;
10640 bfd_boolean rela_normal;
10641 struct bfd_elf_section_data *esdi, *esdo;
10642
10643 esdi = elf_section_data (o);
10644 esdo = elf_section_data (o->output_section);
10645 rela_normal = FALSE;
10646
10647 /* Adjust the reloc addresses and symbol indices. */
10648
10649 irela = internal_relocs;
10650 irelaend = irela + o->reloc_count;
10651 rel_hash = esdo->rel.hashes + esdo->rel.count;
10652 /* We start processing the REL relocs, if any. When we reach
10653 IRELAMID in the loop, we switch to the RELA relocs. */
10654 irelamid = irela;
10655 if (esdi->rel.hdr != NULL)
10656 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10657 * bed->s->int_rels_per_ext_rel);
10658 rel_hash_list = rel_hash;
10659 rela_hash_list = NULL;
10660 last_offset = o->output_offset;
10661 if (!bfd_link_relocatable (flinfo->info))
10662 last_offset += o->output_section->vma;
10663 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10664 {
10665 unsigned long r_symndx;
10666 asection *sec;
10667 Elf_Internal_Sym sym;
10668
10669 if (next_erel == bed->s->int_rels_per_ext_rel)
10670 {
10671 rel_hash++;
10672 next_erel = 0;
10673 }
10674
10675 if (irela == irelamid)
10676 {
10677 rel_hash = esdo->rela.hashes + esdo->rela.count;
10678 rela_hash_list = rel_hash;
10679 rela_normal = bed->rela_normal;
10680 }
10681
10682 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10683 flinfo->info, o,
10684 irela->r_offset);
10685 if (irela->r_offset >= (bfd_vma) -2)
10686 {
10687 /* This is a reloc for a deleted entry or somesuch.
10688 Turn it into an R_*_NONE reloc, at the same
10689 offset as the last reloc. elf_eh_frame.c and
10690 bfd_elf_discard_info rely on reloc offsets
10691 being ordered. */
10692 irela->r_offset = last_offset;
10693 irela->r_info = 0;
10694 irela->r_addend = 0;
10695 continue;
10696 }
10697
10698 irela->r_offset += o->output_offset;
10699
10700 /* Relocs in an executable have to be virtual addresses. */
10701 if (!bfd_link_relocatable (flinfo->info))
10702 irela->r_offset += o->output_section->vma;
10703
10704 last_offset = irela->r_offset;
10705
10706 r_symndx = irela->r_info >> r_sym_shift;
10707 if (r_symndx == STN_UNDEF)
10708 continue;
10709
10710 if (r_symndx >= locsymcount
10711 || (elf_bad_symtab (input_bfd)
10712 && flinfo->sections[r_symndx] == NULL))
10713 {
10714 struct elf_link_hash_entry *rh;
10715 unsigned long indx;
10716
10717 /* This is a reloc against a global symbol. We
10718 have not yet output all the local symbols, so
10719 we do not know the symbol index of any global
10720 symbol. We set the rel_hash entry for this
10721 reloc to point to the global hash table entry
10722 for this symbol. The symbol index is then
10723 set at the end of bfd_elf_final_link. */
10724 indx = r_symndx - extsymoff;
10725 rh = elf_sym_hashes (input_bfd)[indx];
10726 while (rh->root.type == bfd_link_hash_indirect
10727 || rh->root.type == bfd_link_hash_warning)
10728 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10729
10730 /* Setting the index to -2 tells
10731 elf_link_output_extsym that this symbol is
10732 used by a reloc. */
10733 BFD_ASSERT (rh->indx < 0);
10734 rh->indx = -2;
10735 *rel_hash = rh;
10736
10737 continue;
10738 }
10739
10740 /* This is a reloc against a local symbol. */
10741
10742 *rel_hash = NULL;
10743 sym = isymbuf[r_symndx];
10744 sec = flinfo->sections[r_symndx];
10745 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10746 {
10747 /* I suppose the backend ought to fill in the
10748 section of any STT_SECTION symbol against a
10749 processor specific section. */
10750 r_symndx = STN_UNDEF;
10751 if (bfd_is_abs_section (sec))
10752 ;
10753 else if (sec == NULL || sec->owner == NULL)
10754 {
10755 bfd_set_error (bfd_error_bad_value);
10756 return FALSE;
10757 }
10758 else
10759 {
10760 asection *osec = sec->output_section;
10761
10762 /* If we have discarded a section, the output
10763 section will be the absolute section. In
10764 case of discarded SEC_MERGE sections, use
10765 the kept section. relocate_section should
10766 have already handled discarded linkonce
10767 sections. */
10768 if (bfd_is_abs_section (osec)
10769 && sec->kept_section != NULL
10770 && sec->kept_section->output_section != NULL)
10771 {
10772 osec = sec->kept_section->output_section;
10773 irela->r_addend -= osec->vma;
10774 }
10775
10776 if (!bfd_is_abs_section (osec))
10777 {
10778 r_symndx = osec->target_index;
10779 if (r_symndx == STN_UNDEF)
10780 {
10781 irela->r_addend += osec->vma;
10782 osec = _bfd_nearby_section (output_bfd, osec,
10783 osec->vma);
10784 irela->r_addend -= osec->vma;
10785 r_symndx = osec->target_index;
10786 }
10787 }
10788 }
10789
10790 /* Adjust the addend according to where the
10791 section winds up in the output section. */
10792 if (rela_normal)
10793 irela->r_addend += sec->output_offset;
10794 }
10795 else
10796 {
10797 if (flinfo->indices[r_symndx] == -1)
10798 {
10799 unsigned long shlink;
10800 const char *name;
10801 asection *osec;
10802 long indx;
10803
10804 if (flinfo->info->strip == strip_all)
10805 {
10806 /* You can't do ld -r -s. */
10807 bfd_set_error (bfd_error_invalid_operation);
10808 return FALSE;
10809 }
10810
10811 /* This symbol was skipped earlier, but
10812 since it is needed by a reloc, we
10813 must output it now. */
10814 shlink = symtab_hdr->sh_link;
10815 name = (bfd_elf_string_from_elf_section
10816 (input_bfd, shlink, sym.st_name));
10817 if (name == NULL)
10818 return FALSE;
10819
10820 osec = sec->output_section;
10821 sym.st_shndx =
10822 _bfd_elf_section_from_bfd_section (output_bfd,
10823 osec);
10824 if (sym.st_shndx == SHN_BAD)
10825 return FALSE;
10826
10827 sym.st_value += sec->output_offset;
10828 if (!bfd_link_relocatable (flinfo->info))
10829 {
10830 sym.st_value += osec->vma;
10831 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10832 {
10833 /* STT_TLS symbols are relative to PT_TLS
10834 segment base. */
10835 BFD_ASSERT (elf_hash_table (flinfo->info)
10836 ->tls_sec != NULL);
10837 sym.st_value -= (elf_hash_table (flinfo->info)
10838 ->tls_sec->vma);
10839 }
10840 }
10841
10842 indx = bfd_get_symcount (output_bfd);
10843 ret = elf_link_output_symstrtab (flinfo, name,
10844 &sym, sec,
10845 NULL);
10846 if (ret == 0)
10847 return FALSE;
10848 else if (ret == 1)
10849 flinfo->indices[r_symndx] = indx;
10850 else
10851 abort ();
10852 }
10853
10854 r_symndx = flinfo->indices[r_symndx];
10855 }
10856
10857 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10858 | (irela->r_info & r_type_mask));
10859 }
10860
10861 /* Swap out the relocs. */
10862 input_rel_hdr = esdi->rel.hdr;
10863 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10864 {
10865 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10866 input_rel_hdr,
10867 internal_relocs,
10868 rel_hash_list))
10869 return FALSE;
10870 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10871 * bed->s->int_rels_per_ext_rel);
10872 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10873 }
10874
10875 input_rela_hdr = esdi->rela.hdr;
10876 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10877 {
10878 if (!bed->elf_backend_emit_relocs (output_bfd, o,
10879 input_rela_hdr,
10880 internal_relocs,
10881 rela_hash_list))
10882 return FALSE;
10883 }
10884 }
10885 }
10886
10887 /* Write out the modified section contents. */
10888 if (bed->elf_backend_write_section
10889 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10890 contents))
10891 {
10892 /* Section written out. */
10893 }
10894 else switch (o->sec_info_type)
10895 {
10896 case SEC_INFO_TYPE_STABS:
10897 if (! (_bfd_write_section_stabs
10898 (output_bfd,
10899 &elf_hash_table (flinfo->info)->stab_info,
10900 o, &elf_section_data (o)->sec_info, contents)))
10901 return FALSE;
10902 break;
10903 case SEC_INFO_TYPE_MERGE:
10904 if (! _bfd_write_merged_section (output_bfd, o,
10905 elf_section_data (o)->sec_info))
10906 return FALSE;
10907 break;
10908 case SEC_INFO_TYPE_EH_FRAME:
10909 {
10910 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10911 o, contents))
10912 return FALSE;
10913 }
10914 break;
10915 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10916 {
10917 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10918 flinfo->info,
10919 o, contents))
10920 return FALSE;
10921 }
10922 break;
10923 default:
10924 {
10925 if (! (o->flags & SEC_EXCLUDE))
10926 {
10927 file_ptr offset = (file_ptr) o->output_offset;
10928 bfd_size_type todo = o->size;
10929
10930 offset *= bfd_octets_per_byte (output_bfd);
10931
10932 if ((o->flags & SEC_ELF_REVERSE_COPY))
10933 {
10934 /* Reverse-copy input section to output. */
10935 do
10936 {
10937 todo -= address_size;
10938 if (! bfd_set_section_contents (output_bfd,
10939 o->output_section,
10940 contents + todo,
10941 offset,
10942 address_size))
10943 return FALSE;
10944 if (todo == 0)
10945 break;
10946 offset += address_size;
10947 }
10948 while (1);
10949 }
10950 else if (! bfd_set_section_contents (output_bfd,
10951 o->output_section,
10952 contents,
10953 offset, todo))
10954 return FALSE;
10955 }
10956 }
10957 break;
10958 }
10959 }
10960
10961 return TRUE;
10962 }
10963
10964 /* Generate a reloc when linking an ELF file. This is a reloc
10965 requested by the linker, and does not come from any input file. This
10966 is used to build constructor and destructor tables when linking
10967 with -Ur. */
10968
10969 static bfd_boolean
10970 elf_reloc_link_order (bfd *output_bfd,
10971 struct bfd_link_info *info,
10972 asection *output_section,
10973 struct bfd_link_order *link_order)
10974 {
10975 reloc_howto_type *howto;
10976 long indx;
10977 bfd_vma offset;
10978 bfd_vma addend;
10979 struct bfd_elf_section_reloc_data *reldata;
10980 struct elf_link_hash_entry **rel_hash_ptr;
10981 Elf_Internal_Shdr *rel_hdr;
10982 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10983 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10984 bfd_byte *erel;
10985 unsigned int i;
10986 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10987
10988 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10989 if (howto == NULL)
10990 {
10991 bfd_set_error (bfd_error_bad_value);
10992 return FALSE;
10993 }
10994
10995 addend = link_order->u.reloc.p->addend;
10996
10997 if (esdo->rel.hdr)
10998 reldata = &esdo->rel;
10999 else if (esdo->rela.hdr)
11000 reldata = &esdo->rela;
11001 else
11002 {
11003 reldata = NULL;
11004 BFD_ASSERT (0);
11005 }
11006
11007 /* Figure out the symbol index. */
11008 rel_hash_ptr = reldata->hashes + reldata->count;
11009 if (link_order->type == bfd_section_reloc_link_order)
11010 {
11011 indx = link_order->u.reloc.p->u.section->target_index;
11012 BFD_ASSERT (indx != 0);
11013 *rel_hash_ptr = NULL;
11014 }
11015 else
11016 {
11017 struct elf_link_hash_entry *h;
11018
11019 /* Treat a reloc against a defined symbol as though it were
11020 actually against the section. */
11021 h = ((struct elf_link_hash_entry *)
11022 bfd_wrapped_link_hash_lookup (output_bfd, info,
11023 link_order->u.reloc.p->u.name,
11024 FALSE, FALSE, TRUE));
11025 if (h != NULL
11026 && (h->root.type == bfd_link_hash_defined
11027 || h->root.type == bfd_link_hash_defweak))
11028 {
11029 asection *section;
11030
11031 section = h->root.u.def.section;
11032 indx = section->output_section->target_index;
11033 *rel_hash_ptr = NULL;
11034 /* It seems that we ought to add the symbol value to the
11035 addend here, but in practice it has already been added
11036 because it was passed to constructor_callback. */
11037 addend += section->output_section->vma + section->output_offset;
11038 }
11039 else if (h != NULL)
11040 {
11041 /* Setting the index to -2 tells elf_link_output_extsym that
11042 this symbol is used by a reloc. */
11043 h->indx = -2;
11044 *rel_hash_ptr = h;
11045 indx = 0;
11046 }
11047 else
11048 {
11049 (*info->callbacks->unattached_reloc)
11050 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11051 indx = 0;
11052 }
11053 }
11054
11055 /* If this is an inplace reloc, we must write the addend into the
11056 object file. */
11057 if (howto->partial_inplace && addend != 0)
11058 {
11059 bfd_size_type size;
11060 bfd_reloc_status_type rstat;
11061 bfd_byte *buf;
11062 bfd_boolean ok;
11063 const char *sym_name;
11064
11065 size = (bfd_size_type) bfd_get_reloc_size (howto);
11066 buf = (bfd_byte *) bfd_zmalloc (size);
11067 if (buf == NULL && size != 0)
11068 return FALSE;
11069 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11070 switch (rstat)
11071 {
11072 case bfd_reloc_ok:
11073 break;
11074
11075 default:
11076 case bfd_reloc_outofrange:
11077 abort ();
11078
11079 case bfd_reloc_overflow:
11080 if (link_order->type == bfd_section_reloc_link_order)
11081 sym_name = bfd_section_name (output_bfd,
11082 link_order->u.reloc.p->u.section);
11083 else
11084 sym_name = link_order->u.reloc.p->u.name;
11085 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11086 howto->name, addend, NULL, NULL,
11087 (bfd_vma) 0);
11088 break;
11089 }
11090
11091 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11092 link_order->offset
11093 * bfd_octets_per_byte (output_bfd),
11094 size);
11095 free (buf);
11096 if (! ok)
11097 return FALSE;
11098 }
11099
11100 /* The address of a reloc is relative to the section in a
11101 relocatable file, and is a virtual address in an executable
11102 file. */
11103 offset = link_order->offset;
11104 if (! bfd_link_relocatable (info))
11105 offset += output_section->vma;
11106
11107 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11108 {
11109 irel[i].r_offset = offset;
11110 irel[i].r_info = 0;
11111 irel[i].r_addend = 0;
11112 }
11113 if (bed->s->arch_size == 32)
11114 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11115 else
11116 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11117
11118 rel_hdr = reldata->hdr;
11119 erel = rel_hdr->contents;
11120 if (rel_hdr->sh_type == SHT_REL)
11121 {
11122 erel += reldata->count * bed->s->sizeof_rel;
11123 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11124 }
11125 else
11126 {
11127 irel[0].r_addend = addend;
11128 erel += reldata->count * bed->s->sizeof_rela;
11129 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11130 }
11131
11132 ++reldata->count;
11133
11134 return TRUE;
11135 }
11136
11137
11138 /* Get the output vma of the section pointed to by the sh_link field. */
11139
11140 static bfd_vma
11141 elf_get_linked_section_vma (struct bfd_link_order *p)
11142 {
11143 Elf_Internal_Shdr **elf_shdrp;
11144 asection *s;
11145 int elfsec;
11146
11147 s = p->u.indirect.section;
11148 elf_shdrp = elf_elfsections (s->owner);
11149 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11150 elfsec = elf_shdrp[elfsec]->sh_link;
11151 /* PR 290:
11152 The Intel C compiler generates SHT_IA_64_UNWIND with
11153 SHF_LINK_ORDER. But it doesn't set the sh_link or
11154 sh_info fields. Hence we could get the situation
11155 where elfsec is 0. */
11156 if (elfsec == 0)
11157 {
11158 const struct elf_backend_data *bed
11159 = get_elf_backend_data (s->owner);
11160 if (bed->link_order_error_handler)
11161 bed->link_order_error_handler
11162 /* xgettext:c-format */
11163 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11164 return 0;
11165 }
11166 else
11167 {
11168 s = elf_shdrp[elfsec]->bfd_section;
11169 return s->output_section->vma + s->output_offset;
11170 }
11171 }
11172
11173
11174 /* Compare two sections based on the locations of the sections they are
11175 linked to. Used by elf_fixup_link_order. */
11176
11177 static int
11178 compare_link_order (const void * a, const void * b)
11179 {
11180 bfd_vma apos;
11181 bfd_vma bpos;
11182
11183 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11184 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11185 if (apos < bpos)
11186 return -1;
11187 return apos > bpos;
11188 }
11189
11190
11191 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11192 order as their linked sections. Returns false if this could not be done
11193 because an output section includes both ordered and unordered
11194 sections. Ideally we'd do this in the linker proper. */
11195
11196 static bfd_boolean
11197 elf_fixup_link_order (bfd *abfd, asection *o)
11198 {
11199 int seen_linkorder;
11200 int seen_other;
11201 int n;
11202 struct bfd_link_order *p;
11203 bfd *sub;
11204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11205 unsigned elfsec;
11206 struct bfd_link_order **sections;
11207 asection *s, *other_sec, *linkorder_sec;
11208 bfd_vma offset;
11209
11210 other_sec = NULL;
11211 linkorder_sec = NULL;
11212 seen_other = 0;
11213 seen_linkorder = 0;
11214 for (p = o->map_head.link_order; p != NULL; p = p->next)
11215 {
11216 if (p->type == bfd_indirect_link_order)
11217 {
11218 s = p->u.indirect.section;
11219 sub = s->owner;
11220 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11221 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11222 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11223 && elfsec < elf_numsections (sub)
11224 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11225 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11226 {
11227 seen_linkorder++;
11228 linkorder_sec = s;
11229 }
11230 else
11231 {
11232 seen_other++;
11233 other_sec = s;
11234 }
11235 }
11236 else
11237 seen_other++;
11238
11239 if (seen_other && seen_linkorder)
11240 {
11241 if (other_sec && linkorder_sec)
11242 _bfd_error_handler
11243 /* xgettext:c-format */
11244 (_("%A has both ordered [`%A' in %B] "
11245 "and unordered [`%A' in %B] sections"),
11246 o, linkorder_sec, linkorder_sec->owner,
11247 other_sec, other_sec->owner);
11248 else
11249 _bfd_error_handler
11250 (_("%A has both ordered and unordered sections"), o);
11251 bfd_set_error (bfd_error_bad_value);
11252 return FALSE;
11253 }
11254 }
11255
11256 if (!seen_linkorder)
11257 return TRUE;
11258
11259 sections = (struct bfd_link_order **)
11260 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11261 if (sections == NULL)
11262 return FALSE;
11263 seen_linkorder = 0;
11264
11265 for (p = o->map_head.link_order; p != NULL; p = p->next)
11266 {
11267 sections[seen_linkorder++] = p;
11268 }
11269 /* Sort the input sections in the order of their linked section. */
11270 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11271 compare_link_order);
11272
11273 /* Change the offsets of the sections. */
11274 offset = 0;
11275 for (n = 0; n < seen_linkorder; n++)
11276 {
11277 s = sections[n]->u.indirect.section;
11278 offset &= ~(bfd_vma) 0 << s->alignment_power;
11279 s->output_offset = offset / bfd_octets_per_byte (abfd);
11280 sections[n]->offset = offset;
11281 offset += sections[n]->size;
11282 }
11283
11284 free (sections);
11285 return TRUE;
11286 }
11287
11288 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11289 Returns TRUE upon success, FALSE otherwise. */
11290
11291 static bfd_boolean
11292 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11293 {
11294 bfd_boolean ret = FALSE;
11295 bfd *implib_bfd;
11296 const struct elf_backend_data *bed;
11297 flagword flags;
11298 enum bfd_architecture arch;
11299 unsigned int mach;
11300 asymbol **sympp = NULL;
11301 long symsize;
11302 long symcount;
11303 long src_count;
11304 elf_symbol_type *osymbuf;
11305
11306 implib_bfd = info->out_implib_bfd;
11307 bed = get_elf_backend_data (abfd);
11308
11309 if (!bfd_set_format (implib_bfd, bfd_object))
11310 return FALSE;
11311
11312 /* Use flag from executable but make it a relocatable object. */
11313 flags = bfd_get_file_flags (abfd);
11314 flags &= ~HAS_RELOC;
11315 if (!bfd_set_start_address (implib_bfd, 0)
11316 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11317 return FALSE;
11318
11319 /* Copy architecture of output file to import library file. */
11320 arch = bfd_get_arch (abfd);
11321 mach = bfd_get_mach (abfd);
11322 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11323 && (abfd->target_defaulted
11324 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11325 return FALSE;
11326
11327 /* Get symbol table size. */
11328 symsize = bfd_get_symtab_upper_bound (abfd);
11329 if (symsize < 0)
11330 return FALSE;
11331
11332 /* Read in the symbol table. */
11333 sympp = (asymbol **) xmalloc (symsize);
11334 symcount = bfd_canonicalize_symtab (abfd, sympp);
11335 if (symcount < 0)
11336 goto free_sym_buf;
11337
11338 /* Allow the BFD backend to copy any private header data it
11339 understands from the output BFD to the import library BFD. */
11340 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11341 goto free_sym_buf;
11342
11343 /* Filter symbols to appear in the import library. */
11344 if (bed->elf_backend_filter_implib_symbols)
11345 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11346 symcount);
11347 else
11348 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11349 if (symcount == 0)
11350 {
11351 bfd_set_error (bfd_error_no_symbols);
11352 _bfd_error_handler (_("%B: no symbol found for import library"),
11353 implib_bfd);
11354 goto free_sym_buf;
11355 }
11356
11357
11358 /* Make symbols absolute. */
11359 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11360 sizeof (*osymbuf));
11361 for (src_count = 0; src_count < symcount; src_count++)
11362 {
11363 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11364 sizeof (*osymbuf));
11365 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11366 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11367 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11368 osymbuf[src_count].internal_elf_sym.st_value =
11369 osymbuf[src_count].symbol.value;
11370 sympp[src_count] = &osymbuf[src_count].symbol;
11371 }
11372
11373 bfd_set_symtab (implib_bfd, sympp, symcount);
11374
11375 /* Allow the BFD backend to copy any private data it understands
11376 from the output BFD to the import library BFD. This is done last
11377 to permit the routine to look at the filtered symbol table. */
11378 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11379 goto free_sym_buf;
11380
11381 if (!bfd_close (implib_bfd))
11382 goto free_sym_buf;
11383
11384 ret = TRUE;
11385
11386 free_sym_buf:
11387 free (sympp);
11388 return ret;
11389 }
11390
11391 static void
11392 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11393 {
11394 asection *o;
11395
11396 if (flinfo->symstrtab != NULL)
11397 _bfd_elf_strtab_free (flinfo->symstrtab);
11398 if (flinfo->contents != NULL)
11399 free (flinfo->contents);
11400 if (flinfo->external_relocs != NULL)
11401 free (flinfo->external_relocs);
11402 if (flinfo->internal_relocs != NULL)
11403 free (flinfo->internal_relocs);
11404 if (flinfo->external_syms != NULL)
11405 free (flinfo->external_syms);
11406 if (flinfo->locsym_shndx != NULL)
11407 free (flinfo->locsym_shndx);
11408 if (flinfo->internal_syms != NULL)
11409 free (flinfo->internal_syms);
11410 if (flinfo->indices != NULL)
11411 free (flinfo->indices);
11412 if (flinfo->sections != NULL)
11413 free (flinfo->sections);
11414 if (flinfo->symshndxbuf != NULL)
11415 free (flinfo->symshndxbuf);
11416 for (o = obfd->sections; o != NULL; o = o->next)
11417 {
11418 struct bfd_elf_section_data *esdo = elf_section_data (o);
11419 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11420 free (esdo->rel.hashes);
11421 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11422 free (esdo->rela.hashes);
11423 }
11424 }
11425
11426 /* Do the final step of an ELF link. */
11427
11428 bfd_boolean
11429 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11430 {
11431 bfd_boolean dynamic;
11432 bfd_boolean emit_relocs;
11433 bfd *dynobj;
11434 struct elf_final_link_info flinfo;
11435 asection *o;
11436 struct bfd_link_order *p;
11437 bfd *sub;
11438 bfd_size_type max_contents_size;
11439 bfd_size_type max_external_reloc_size;
11440 bfd_size_type max_internal_reloc_count;
11441 bfd_size_type max_sym_count;
11442 bfd_size_type max_sym_shndx_count;
11443 Elf_Internal_Sym elfsym;
11444 unsigned int i;
11445 Elf_Internal_Shdr *symtab_hdr;
11446 Elf_Internal_Shdr *symtab_shndx_hdr;
11447 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11448 struct elf_outext_info eoinfo;
11449 bfd_boolean merged;
11450 size_t relativecount = 0;
11451 asection *reldyn = 0;
11452 bfd_size_type amt;
11453 asection *attr_section = NULL;
11454 bfd_vma attr_size = 0;
11455 const char *std_attrs_section;
11456 struct elf_link_hash_table *htab = elf_hash_table (info);
11457
11458 if (!is_elf_hash_table (htab))
11459 return FALSE;
11460
11461 if (bfd_link_pic (info))
11462 abfd->flags |= DYNAMIC;
11463
11464 dynamic = htab->dynamic_sections_created;
11465 dynobj = htab->dynobj;
11466
11467 emit_relocs = (bfd_link_relocatable (info)
11468 || info->emitrelocations);
11469
11470 flinfo.info = info;
11471 flinfo.output_bfd = abfd;
11472 flinfo.symstrtab = _bfd_elf_strtab_init ();
11473 if (flinfo.symstrtab == NULL)
11474 return FALSE;
11475
11476 if (! dynamic)
11477 {
11478 flinfo.hash_sec = NULL;
11479 flinfo.symver_sec = NULL;
11480 }
11481 else
11482 {
11483 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11484 /* Note that dynsym_sec can be NULL (on VMS). */
11485 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11486 /* Note that it is OK if symver_sec is NULL. */
11487 }
11488
11489 flinfo.contents = NULL;
11490 flinfo.external_relocs = NULL;
11491 flinfo.internal_relocs = NULL;
11492 flinfo.external_syms = NULL;
11493 flinfo.locsym_shndx = NULL;
11494 flinfo.internal_syms = NULL;
11495 flinfo.indices = NULL;
11496 flinfo.sections = NULL;
11497 flinfo.symshndxbuf = NULL;
11498 flinfo.filesym_count = 0;
11499
11500 /* The object attributes have been merged. Remove the input
11501 sections from the link, and set the contents of the output
11502 secton. */
11503 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11504 for (o = abfd->sections; o != NULL; o = o->next)
11505 {
11506 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11507 || strcmp (o->name, ".gnu.attributes") == 0)
11508 {
11509 for (p = o->map_head.link_order; p != NULL; p = p->next)
11510 {
11511 asection *input_section;
11512
11513 if (p->type != bfd_indirect_link_order)
11514 continue;
11515 input_section = p->u.indirect.section;
11516 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11517 elf_link_input_bfd ignores this section. */
11518 input_section->flags &= ~SEC_HAS_CONTENTS;
11519 }
11520
11521 attr_size = bfd_elf_obj_attr_size (abfd);
11522 if (attr_size)
11523 {
11524 bfd_set_section_size (abfd, o, attr_size);
11525 attr_section = o;
11526 /* Skip this section later on. */
11527 o->map_head.link_order = NULL;
11528 }
11529 else
11530 o->flags |= SEC_EXCLUDE;
11531 }
11532 }
11533
11534 /* Count up the number of relocations we will output for each output
11535 section, so that we know the sizes of the reloc sections. We
11536 also figure out some maximum sizes. */
11537 max_contents_size = 0;
11538 max_external_reloc_size = 0;
11539 max_internal_reloc_count = 0;
11540 max_sym_count = 0;
11541 max_sym_shndx_count = 0;
11542 merged = FALSE;
11543 for (o = abfd->sections; o != NULL; o = o->next)
11544 {
11545 struct bfd_elf_section_data *esdo = elf_section_data (o);
11546 o->reloc_count = 0;
11547
11548 for (p = o->map_head.link_order; p != NULL; p = p->next)
11549 {
11550 unsigned int reloc_count = 0;
11551 unsigned int additional_reloc_count = 0;
11552 struct bfd_elf_section_data *esdi = NULL;
11553
11554 if (p->type == bfd_section_reloc_link_order
11555 || p->type == bfd_symbol_reloc_link_order)
11556 reloc_count = 1;
11557 else if (p->type == bfd_indirect_link_order)
11558 {
11559 asection *sec;
11560
11561 sec = p->u.indirect.section;
11562
11563 /* Mark all sections which are to be included in the
11564 link. This will normally be every section. We need
11565 to do this so that we can identify any sections which
11566 the linker has decided to not include. */
11567 sec->linker_mark = TRUE;
11568
11569 if (sec->flags & SEC_MERGE)
11570 merged = TRUE;
11571
11572 if (sec->rawsize > max_contents_size)
11573 max_contents_size = sec->rawsize;
11574 if (sec->size > max_contents_size)
11575 max_contents_size = sec->size;
11576
11577 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11578 && (sec->owner->flags & DYNAMIC) == 0)
11579 {
11580 size_t sym_count;
11581
11582 /* We are interested in just local symbols, not all
11583 symbols. */
11584 if (elf_bad_symtab (sec->owner))
11585 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11586 / bed->s->sizeof_sym);
11587 else
11588 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11589
11590 if (sym_count > max_sym_count)
11591 max_sym_count = sym_count;
11592
11593 if (sym_count > max_sym_shndx_count
11594 && elf_symtab_shndx_list (sec->owner) != NULL)
11595 max_sym_shndx_count = sym_count;
11596
11597 if (esdo->this_hdr.sh_type == SHT_REL
11598 || esdo->this_hdr.sh_type == SHT_RELA)
11599 /* Some backends use reloc_count in relocation sections
11600 to count particular types of relocs. Of course,
11601 reloc sections themselves can't have relocations. */
11602 ;
11603 else if (emit_relocs)
11604 {
11605 reloc_count = sec->reloc_count;
11606 if (bed->elf_backend_count_additional_relocs)
11607 {
11608 int c;
11609 c = (*bed->elf_backend_count_additional_relocs) (sec);
11610 additional_reloc_count += c;
11611 }
11612 }
11613 else if (bed->elf_backend_count_relocs)
11614 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11615
11616 esdi = elf_section_data (sec);
11617
11618 if ((sec->flags & SEC_RELOC) != 0)
11619 {
11620 size_t ext_size = 0;
11621
11622 if (esdi->rel.hdr != NULL)
11623 ext_size = esdi->rel.hdr->sh_size;
11624 if (esdi->rela.hdr != NULL)
11625 ext_size += esdi->rela.hdr->sh_size;
11626
11627 if (ext_size > max_external_reloc_size)
11628 max_external_reloc_size = ext_size;
11629 if (sec->reloc_count > max_internal_reloc_count)
11630 max_internal_reloc_count = sec->reloc_count;
11631 }
11632 }
11633 }
11634
11635 if (reloc_count == 0)
11636 continue;
11637
11638 reloc_count += additional_reloc_count;
11639 o->reloc_count += reloc_count;
11640
11641 if (p->type == bfd_indirect_link_order && emit_relocs)
11642 {
11643 if (esdi->rel.hdr)
11644 {
11645 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11646 esdo->rel.count += additional_reloc_count;
11647 }
11648 if (esdi->rela.hdr)
11649 {
11650 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11651 esdo->rela.count += additional_reloc_count;
11652 }
11653 }
11654 else
11655 {
11656 if (o->use_rela_p)
11657 esdo->rela.count += reloc_count;
11658 else
11659 esdo->rel.count += reloc_count;
11660 }
11661 }
11662
11663 if (o->reloc_count > 0)
11664 o->flags |= SEC_RELOC;
11665 else
11666 {
11667 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11668 set it (this is probably a bug) and if it is set
11669 assign_section_numbers will create a reloc section. */
11670 o->flags &=~ SEC_RELOC;
11671 }
11672
11673 /* If the SEC_ALLOC flag is not set, force the section VMA to
11674 zero. This is done in elf_fake_sections as well, but forcing
11675 the VMA to 0 here will ensure that relocs against these
11676 sections are handled correctly. */
11677 if ((o->flags & SEC_ALLOC) == 0
11678 && ! o->user_set_vma)
11679 o->vma = 0;
11680 }
11681
11682 if (! bfd_link_relocatable (info) && merged)
11683 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11684
11685 /* Figure out the file positions for everything but the symbol table
11686 and the relocs. We set symcount to force assign_section_numbers
11687 to create a symbol table. */
11688 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11689 BFD_ASSERT (! abfd->output_has_begun);
11690 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11691 goto error_return;
11692
11693 /* Set sizes, and assign file positions for reloc sections. */
11694 for (o = abfd->sections; o != NULL; o = o->next)
11695 {
11696 struct bfd_elf_section_data *esdo = elf_section_data (o);
11697 if ((o->flags & SEC_RELOC) != 0)
11698 {
11699 if (esdo->rel.hdr
11700 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11701 goto error_return;
11702
11703 if (esdo->rela.hdr
11704 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11705 goto error_return;
11706 }
11707
11708 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11709 to count upwards while actually outputting the relocations. */
11710 esdo->rel.count = 0;
11711 esdo->rela.count = 0;
11712
11713 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11714 {
11715 /* Cache the section contents so that they can be compressed
11716 later. Use bfd_malloc since it will be freed by
11717 bfd_compress_section_contents. */
11718 unsigned char *contents = esdo->this_hdr.contents;
11719 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11720 abort ();
11721 contents
11722 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11723 if (contents == NULL)
11724 goto error_return;
11725 esdo->this_hdr.contents = contents;
11726 }
11727 }
11728
11729 /* We have now assigned file positions for all the sections except
11730 .symtab, .strtab, and non-loaded reloc sections. We start the
11731 .symtab section at the current file position, and write directly
11732 to it. We build the .strtab section in memory. */
11733 bfd_get_symcount (abfd) = 0;
11734 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11735 /* sh_name is set in prep_headers. */
11736 symtab_hdr->sh_type = SHT_SYMTAB;
11737 /* sh_flags, sh_addr and sh_size all start off zero. */
11738 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11739 /* sh_link is set in assign_section_numbers. */
11740 /* sh_info is set below. */
11741 /* sh_offset is set just below. */
11742 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11743
11744 if (max_sym_count < 20)
11745 max_sym_count = 20;
11746 htab->strtabsize = max_sym_count;
11747 amt = max_sym_count * sizeof (struct elf_sym_strtab);
11748 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11749 if (htab->strtab == NULL)
11750 goto error_return;
11751 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
11752 flinfo.symshndxbuf
11753 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11754 ? (Elf_External_Sym_Shndx *) -1 : NULL);
11755
11756 if (info->strip != strip_all || emit_relocs)
11757 {
11758 file_ptr off = elf_next_file_pos (abfd);
11759
11760 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11761
11762 /* Note that at this point elf_next_file_pos (abfd) is
11763 incorrect. We do not yet know the size of the .symtab section.
11764 We correct next_file_pos below, after we do know the size. */
11765
11766 /* Start writing out the symbol table. The first symbol is always a
11767 dummy symbol. */
11768 elfsym.st_value = 0;
11769 elfsym.st_size = 0;
11770 elfsym.st_info = 0;
11771 elfsym.st_other = 0;
11772 elfsym.st_shndx = SHN_UNDEF;
11773 elfsym.st_target_internal = 0;
11774 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11775 bfd_und_section_ptr, NULL) != 1)
11776 goto error_return;
11777
11778 /* Output a symbol for each section. We output these even if we are
11779 discarding local symbols, since they are used for relocs. These
11780 symbols have no names. We store the index of each one in the
11781 index field of the section, so that we can find it again when
11782 outputting relocs. */
11783
11784 elfsym.st_size = 0;
11785 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11786 elfsym.st_other = 0;
11787 elfsym.st_value = 0;
11788 elfsym.st_target_internal = 0;
11789 for (i = 1; i < elf_numsections (abfd); i++)
11790 {
11791 o = bfd_section_from_elf_index (abfd, i);
11792 if (o != NULL)
11793 {
11794 o->target_index = bfd_get_symcount (abfd);
11795 elfsym.st_shndx = i;
11796 if (!bfd_link_relocatable (info))
11797 elfsym.st_value = o->vma;
11798 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11799 NULL) != 1)
11800 goto error_return;
11801 }
11802 }
11803 }
11804
11805 /* Allocate some memory to hold information read in from the input
11806 files. */
11807 if (max_contents_size != 0)
11808 {
11809 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11810 if (flinfo.contents == NULL)
11811 goto error_return;
11812 }
11813
11814 if (max_external_reloc_size != 0)
11815 {
11816 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11817 if (flinfo.external_relocs == NULL)
11818 goto error_return;
11819 }
11820
11821 if (max_internal_reloc_count != 0)
11822 {
11823 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
11824 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11825 if (flinfo.internal_relocs == NULL)
11826 goto error_return;
11827 }
11828
11829 if (max_sym_count != 0)
11830 {
11831 amt = max_sym_count * bed->s->sizeof_sym;
11832 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11833 if (flinfo.external_syms == NULL)
11834 goto error_return;
11835
11836 amt = max_sym_count * sizeof (Elf_Internal_Sym);
11837 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11838 if (flinfo.internal_syms == NULL)
11839 goto error_return;
11840
11841 amt = max_sym_count * sizeof (long);
11842 flinfo.indices = (long int *) bfd_malloc (amt);
11843 if (flinfo.indices == NULL)
11844 goto error_return;
11845
11846 amt = max_sym_count * sizeof (asection *);
11847 flinfo.sections = (asection **) bfd_malloc (amt);
11848 if (flinfo.sections == NULL)
11849 goto error_return;
11850 }
11851
11852 if (max_sym_shndx_count != 0)
11853 {
11854 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11855 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11856 if (flinfo.locsym_shndx == NULL)
11857 goto error_return;
11858 }
11859
11860 if (htab->tls_sec)
11861 {
11862 bfd_vma base, end = 0;
11863 asection *sec;
11864
11865 for (sec = htab->tls_sec;
11866 sec && (sec->flags & SEC_THREAD_LOCAL);
11867 sec = sec->next)
11868 {
11869 bfd_size_type size = sec->size;
11870
11871 if (size == 0
11872 && (sec->flags & SEC_HAS_CONTENTS) == 0)
11873 {
11874 struct bfd_link_order *ord = sec->map_tail.link_order;
11875
11876 if (ord != NULL)
11877 size = ord->offset + ord->size;
11878 }
11879 end = sec->vma + size;
11880 }
11881 base = htab->tls_sec->vma;
11882 /* Only align end of TLS section if static TLS doesn't have special
11883 alignment requirements. */
11884 if (bed->static_tls_alignment == 1)
11885 end = align_power (end, htab->tls_sec->alignment_power);
11886 htab->tls_size = end - base;
11887 }
11888
11889 /* Reorder SHF_LINK_ORDER sections. */
11890 for (o = abfd->sections; o != NULL; o = o->next)
11891 {
11892 if (!elf_fixup_link_order (abfd, o))
11893 return FALSE;
11894 }
11895
11896 if (!_bfd_elf_fixup_eh_frame_hdr (info))
11897 return FALSE;
11898
11899 /* Since ELF permits relocations to be against local symbols, we
11900 must have the local symbols available when we do the relocations.
11901 Since we would rather only read the local symbols once, and we
11902 would rather not keep them in memory, we handle all the
11903 relocations for a single input file at the same time.
11904
11905 Unfortunately, there is no way to know the total number of local
11906 symbols until we have seen all of them, and the local symbol
11907 indices precede the global symbol indices. This means that when
11908 we are generating relocatable output, and we see a reloc against
11909 a global symbol, we can not know the symbol index until we have
11910 finished examining all the local symbols to see which ones we are
11911 going to output. To deal with this, we keep the relocations in
11912 memory, and don't output them until the end of the link. This is
11913 an unfortunate waste of memory, but I don't see a good way around
11914 it. Fortunately, it only happens when performing a relocatable
11915 link, which is not the common case. FIXME: If keep_memory is set
11916 we could write the relocs out and then read them again; I don't
11917 know how bad the memory loss will be. */
11918
11919 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11920 sub->output_has_begun = FALSE;
11921 for (o = abfd->sections; o != NULL; o = o->next)
11922 {
11923 for (p = o->map_head.link_order; p != NULL; p = p->next)
11924 {
11925 if (p->type == bfd_indirect_link_order
11926 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11927 == bfd_target_elf_flavour)
11928 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11929 {
11930 if (! sub->output_has_begun)
11931 {
11932 if (! elf_link_input_bfd (&flinfo, sub))
11933 goto error_return;
11934 sub->output_has_begun = TRUE;
11935 }
11936 }
11937 else if (p->type == bfd_section_reloc_link_order
11938 || p->type == bfd_symbol_reloc_link_order)
11939 {
11940 if (! elf_reloc_link_order (abfd, info, o, p))
11941 goto error_return;
11942 }
11943 else
11944 {
11945 if (! _bfd_default_link_order (abfd, info, o, p))
11946 {
11947 if (p->type == bfd_indirect_link_order
11948 && (bfd_get_flavour (sub)
11949 == bfd_target_elf_flavour)
11950 && (elf_elfheader (sub)->e_ident[EI_CLASS]
11951 != bed->s->elfclass))
11952 {
11953 const char *iclass, *oclass;
11954
11955 switch (bed->s->elfclass)
11956 {
11957 case ELFCLASS64: oclass = "ELFCLASS64"; break;
11958 case ELFCLASS32: oclass = "ELFCLASS32"; break;
11959 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11960 default: abort ();
11961 }
11962
11963 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11964 {
11965 case ELFCLASS64: iclass = "ELFCLASS64"; break;
11966 case ELFCLASS32: iclass = "ELFCLASS32"; break;
11967 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11968 default: abort ();
11969 }
11970
11971 bfd_set_error (bfd_error_wrong_format);
11972 _bfd_error_handler
11973 /* xgettext:c-format */
11974 (_("%B: file class %s incompatible with %s"),
11975 sub, iclass, oclass);
11976 }
11977
11978 goto error_return;
11979 }
11980 }
11981 }
11982 }
11983
11984 /* Free symbol buffer if needed. */
11985 if (!info->reduce_memory_overheads)
11986 {
11987 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11988 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11989 && elf_tdata (sub)->symbuf)
11990 {
11991 free (elf_tdata (sub)->symbuf);
11992 elf_tdata (sub)->symbuf = NULL;
11993 }
11994 }
11995
11996 /* Output any global symbols that got converted to local in a
11997 version script or due to symbol visibility. We do this in a
11998 separate step since ELF requires all local symbols to appear
11999 prior to any global symbols. FIXME: We should only do this if
12000 some global symbols were, in fact, converted to become local.
12001 FIXME: Will this work correctly with the Irix 5 linker? */
12002 eoinfo.failed = FALSE;
12003 eoinfo.flinfo = &flinfo;
12004 eoinfo.localsyms = TRUE;
12005 eoinfo.file_sym_done = FALSE;
12006 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12007 if (eoinfo.failed)
12008 return FALSE;
12009
12010 /* If backend needs to output some local symbols not present in the hash
12011 table, do it now. */
12012 if (bed->elf_backend_output_arch_local_syms
12013 && (info->strip != strip_all || emit_relocs))
12014 {
12015 typedef int (*out_sym_func)
12016 (void *, const char *, Elf_Internal_Sym *, asection *,
12017 struct elf_link_hash_entry *);
12018
12019 if (! ((*bed->elf_backend_output_arch_local_syms)
12020 (abfd, info, &flinfo,
12021 (out_sym_func) elf_link_output_symstrtab)))
12022 return FALSE;
12023 }
12024
12025 /* That wrote out all the local symbols. Finish up the symbol table
12026 with the global symbols. Even if we want to strip everything we
12027 can, we still need to deal with those global symbols that got
12028 converted to local in a version script. */
12029
12030 /* The sh_info field records the index of the first non local symbol. */
12031 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12032
12033 if (dynamic
12034 && htab->dynsym != NULL
12035 && htab->dynsym->output_section != bfd_abs_section_ptr)
12036 {
12037 Elf_Internal_Sym sym;
12038 bfd_byte *dynsym = htab->dynsym->contents;
12039
12040 o = htab->dynsym->output_section;
12041 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12042
12043 /* Write out the section symbols for the output sections. */
12044 if (bfd_link_pic (info)
12045 || htab->is_relocatable_executable)
12046 {
12047 asection *s;
12048
12049 sym.st_size = 0;
12050 sym.st_name = 0;
12051 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12052 sym.st_other = 0;
12053 sym.st_target_internal = 0;
12054
12055 for (s = abfd->sections; s != NULL; s = s->next)
12056 {
12057 int indx;
12058 bfd_byte *dest;
12059 long dynindx;
12060
12061 dynindx = elf_section_data (s)->dynindx;
12062 if (dynindx <= 0)
12063 continue;
12064 indx = elf_section_data (s)->this_idx;
12065 BFD_ASSERT (indx > 0);
12066 sym.st_shndx = indx;
12067 if (! check_dynsym (abfd, &sym))
12068 return FALSE;
12069 sym.st_value = s->vma;
12070 dest = dynsym + dynindx * bed->s->sizeof_sym;
12071 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12072 }
12073 }
12074
12075 /* Write out the local dynsyms. */
12076 if (htab->dynlocal)
12077 {
12078 struct elf_link_local_dynamic_entry *e;
12079 for (e = htab->dynlocal; e ; e = e->next)
12080 {
12081 asection *s;
12082 bfd_byte *dest;
12083
12084 /* Copy the internal symbol and turn off visibility.
12085 Note that we saved a word of storage and overwrote
12086 the original st_name with the dynstr_index. */
12087 sym = e->isym;
12088 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12089
12090 s = bfd_section_from_elf_index (e->input_bfd,
12091 e->isym.st_shndx);
12092 if (s != NULL)
12093 {
12094 sym.st_shndx =
12095 elf_section_data (s->output_section)->this_idx;
12096 if (! check_dynsym (abfd, &sym))
12097 return FALSE;
12098 sym.st_value = (s->output_section->vma
12099 + s->output_offset
12100 + e->isym.st_value);
12101 }
12102
12103 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12104 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12105 }
12106 }
12107 }
12108
12109 /* We get the global symbols from the hash table. */
12110 eoinfo.failed = FALSE;
12111 eoinfo.localsyms = FALSE;
12112 eoinfo.flinfo = &flinfo;
12113 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12114 if (eoinfo.failed)
12115 return FALSE;
12116
12117 /* If backend needs to output some symbols not present in the hash
12118 table, do it now. */
12119 if (bed->elf_backend_output_arch_syms
12120 && (info->strip != strip_all || emit_relocs))
12121 {
12122 typedef int (*out_sym_func)
12123 (void *, const char *, Elf_Internal_Sym *, asection *,
12124 struct elf_link_hash_entry *);
12125
12126 if (! ((*bed->elf_backend_output_arch_syms)
12127 (abfd, info, &flinfo,
12128 (out_sym_func) elf_link_output_symstrtab)))
12129 return FALSE;
12130 }
12131
12132 /* Finalize the .strtab section. */
12133 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12134
12135 /* Swap out the .strtab section. */
12136 if (!elf_link_swap_symbols_out (&flinfo))
12137 return FALSE;
12138
12139 /* Now we know the size of the symtab section. */
12140 if (bfd_get_symcount (abfd) > 0)
12141 {
12142 /* Finish up and write out the symbol string table (.strtab)
12143 section. */
12144 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12145 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12146
12147 if (elf_symtab_shndx_list (abfd))
12148 {
12149 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12150
12151 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12152 {
12153 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12154 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12155 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12156 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12157 symtab_shndx_hdr->sh_size = amt;
12158
12159 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12160 off, TRUE);
12161
12162 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12163 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12164 return FALSE;
12165 }
12166 }
12167
12168 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12169 /* sh_name was set in prep_headers. */
12170 symstrtab_hdr->sh_type = SHT_STRTAB;
12171 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12172 symstrtab_hdr->sh_addr = 0;
12173 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12174 symstrtab_hdr->sh_entsize = 0;
12175 symstrtab_hdr->sh_link = 0;
12176 symstrtab_hdr->sh_info = 0;
12177 /* sh_offset is set just below. */
12178 symstrtab_hdr->sh_addralign = 1;
12179
12180 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12181 off, TRUE);
12182 elf_next_file_pos (abfd) = off;
12183
12184 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12185 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12186 return FALSE;
12187 }
12188
12189 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12190 {
12191 _bfd_error_handler (_("%B: failed to generate import library"),
12192 info->out_implib_bfd);
12193 return FALSE;
12194 }
12195
12196 /* Adjust the relocs to have the correct symbol indices. */
12197 for (o = abfd->sections; o != NULL; o = o->next)
12198 {
12199 struct bfd_elf_section_data *esdo = elf_section_data (o);
12200 bfd_boolean sort;
12201
12202 if ((o->flags & SEC_RELOC) == 0)
12203 continue;
12204
12205 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12206 if (esdo->rel.hdr != NULL
12207 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12208 return FALSE;
12209 if (esdo->rela.hdr != NULL
12210 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12211 return FALSE;
12212
12213 /* Set the reloc_count field to 0 to prevent write_relocs from
12214 trying to swap the relocs out itself. */
12215 o->reloc_count = 0;
12216 }
12217
12218 if (dynamic && info->combreloc && dynobj != NULL)
12219 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12220
12221 /* If we are linking against a dynamic object, or generating a
12222 shared library, finish up the dynamic linking information. */
12223 if (dynamic)
12224 {
12225 bfd_byte *dyncon, *dynconend;
12226
12227 /* Fix up .dynamic entries. */
12228 o = bfd_get_linker_section (dynobj, ".dynamic");
12229 BFD_ASSERT (o != NULL);
12230
12231 dyncon = o->contents;
12232 dynconend = o->contents + o->size;
12233 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12234 {
12235 Elf_Internal_Dyn dyn;
12236 const char *name;
12237 unsigned int type;
12238 bfd_size_type sh_size;
12239 bfd_vma sh_addr;
12240
12241 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12242
12243 switch (dyn.d_tag)
12244 {
12245 default:
12246 continue;
12247 case DT_NULL:
12248 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12249 {
12250 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12251 {
12252 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12253 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12254 default: continue;
12255 }
12256 dyn.d_un.d_val = relativecount;
12257 relativecount = 0;
12258 break;
12259 }
12260 continue;
12261
12262 case DT_INIT:
12263 name = info->init_function;
12264 goto get_sym;
12265 case DT_FINI:
12266 name = info->fini_function;
12267 get_sym:
12268 {
12269 struct elf_link_hash_entry *h;
12270
12271 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12272 if (h != NULL
12273 && (h->root.type == bfd_link_hash_defined
12274 || h->root.type == bfd_link_hash_defweak))
12275 {
12276 dyn.d_un.d_ptr = h->root.u.def.value;
12277 o = h->root.u.def.section;
12278 if (o->output_section != NULL)
12279 dyn.d_un.d_ptr += (o->output_section->vma
12280 + o->output_offset);
12281 else
12282 {
12283 /* The symbol is imported from another shared
12284 library and does not apply to this one. */
12285 dyn.d_un.d_ptr = 0;
12286 }
12287 break;
12288 }
12289 }
12290 continue;
12291
12292 case DT_PREINIT_ARRAYSZ:
12293 name = ".preinit_array";
12294 goto get_out_size;
12295 case DT_INIT_ARRAYSZ:
12296 name = ".init_array";
12297 goto get_out_size;
12298 case DT_FINI_ARRAYSZ:
12299 name = ".fini_array";
12300 get_out_size:
12301 o = bfd_get_section_by_name (abfd, name);
12302 if (o == NULL)
12303 {
12304 _bfd_error_handler
12305 (_("could not find section %s"), name);
12306 goto error_return;
12307 }
12308 if (o->size == 0)
12309 _bfd_error_handler
12310 (_("warning: %s section has zero size"), name);
12311 dyn.d_un.d_val = o->size;
12312 break;
12313
12314 case DT_PREINIT_ARRAY:
12315 name = ".preinit_array";
12316 goto get_out_vma;
12317 case DT_INIT_ARRAY:
12318 name = ".init_array";
12319 goto get_out_vma;
12320 case DT_FINI_ARRAY:
12321 name = ".fini_array";
12322 get_out_vma:
12323 o = bfd_get_section_by_name (abfd, name);
12324 goto do_vma;
12325
12326 case DT_HASH:
12327 name = ".hash";
12328 goto get_vma;
12329 case DT_GNU_HASH:
12330 name = ".gnu.hash";
12331 goto get_vma;
12332 case DT_STRTAB:
12333 name = ".dynstr";
12334 goto get_vma;
12335 case DT_SYMTAB:
12336 name = ".dynsym";
12337 goto get_vma;
12338 case DT_VERDEF:
12339 name = ".gnu.version_d";
12340 goto get_vma;
12341 case DT_VERNEED:
12342 name = ".gnu.version_r";
12343 goto get_vma;
12344 case DT_VERSYM:
12345 name = ".gnu.version";
12346 get_vma:
12347 o = bfd_get_linker_section (dynobj, name);
12348 do_vma:
12349 if (o == NULL || bfd_is_abs_section (o->output_section))
12350 {
12351 _bfd_error_handler
12352 (_("could not find section %s"), name);
12353 goto error_return;
12354 }
12355 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12356 {
12357 _bfd_error_handler
12358 (_("warning: section '%s' is being made into a note"), name);
12359 bfd_set_error (bfd_error_nonrepresentable_section);
12360 goto error_return;
12361 }
12362 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12363 break;
12364
12365 case DT_REL:
12366 case DT_RELA:
12367 case DT_RELSZ:
12368 case DT_RELASZ:
12369 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12370 type = SHT_REL;
12371 else
12372 type = SHT_RELA;
12373 sh_size = 0;
12374 sh_addr = 0;
12375 for (i = 1; i < elf_numsections (abfd); i++)
12376 {
12377 Elf_Internal_Shdr *hdr;
12378
12379 hdr = elf_elfsections (abfd)[i];
12380 if (hdr->sh_type == type
12381 && (hdr->sh_flags & SHF_ALLOC) != 0)
12382 {
12383 sh_size += hdr->sh_size;
12384 if (sh_addr == 0
12385 || sh_addr > hdr->sh_addr)
12386 sh_addr = hdr->sh_addr;
12387 }
12388 }
12389
12390 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12391 {
12392 /* Don't count procedure linkage table relocs in the
12393 overall reloc count. */
12394 sh_size -= htab->srelplt->size;
12395 if (sh_size == 0)
12396 /* If the size is zero, make the address zero too.
12397 This is to avoid a glibc bug. If the backend
12398 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12399 zero, then we'll put DT_RELA at the end of
12400 DT_JMPREL. glibc will interpret the end of
12401 DT_RELA matching the end of DT_JMPREL as the
12402 case where DT_RELA includes DT_JMPREL, and for
12403 LD_BIND_NOW will decide that processing DT_RELA
12404 will process the PLT relocs too. Net result:
12405 No PLT relocs applied. */
12406 sh_addr = 0;
12407
12408 /* If .rela.plt is the first .rela section, exclude
12409 it from DT_RELA. */
12410 else if (sh_addr == (htab->srelplt->output_section->vma
12411 + htab->srelplt->output_offset))
12412 sh_addr += htab->srelplt->size;
12413 }
12414
12415 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12416 dyn.d_un.d_val = sh_size;
12417 else
12418 dyn.d_un.d_ptr = sh_addr;
12419 break;
12420 }
12421 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12422 }
12423 }
12424
12425 /* If we have created any dynamic sections, then output them. */
12426 if (dynobj != NULL)
12427 {
12428 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12429 goto error_return;
12430
12431 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12432 if (((info->warn_shared_textrel && bfd_link_pic (info))
12433 || info->error_textrel)
12434 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12435 {
12436 bfd_byte *dyncon, *dynconend;
12437
12438 dyncon = o->contents;
12439 dynconend = o->contents + o->size;
12440 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12441 {
12442 Elf_Internal_Dyn dyn;
12443
12444 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12445
12446 if (dyn.d_tag == DT_TEXTREL)
12447 {
12448 if (info->error_textrel)
12449 info->callbacks->einfo
12450 (_("%P%X: read-only segment has dynamic relocations.\n"));
12451 else
12452 info->callbacks->einfo
12453 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12454 break;
12455 }
12456 }
12457 }
12458
12459 for (o = dynobj->sections; o != NULL; o = o->next)
12460 {
12461 if ((o->flags & SEC_HAS_CONTENTS) == 0
12462 || o->size == 0
12463 || o->output_section == bfd_abs_section_ptr)
12464 continue;
12465 if ((o->flags & SEC_LINKER_CREATED) == 0)
12466 {
12467 /* At this point, we are only interested in sections
12468 created by _bfd_elf_link_create_dynamic_sections. */
12469 continue;
12470 }
12471 if (htab->stab_info.stabstr == o)
12472 continue;
12473 if (htab->eh_info.hdr_sec == o)
12474 continue;
12475 if (strcmp (o->name, ".dynstr") != 0)
12476 {
12477 if (! bfd_set_section_contents (abfd, o->output_section,
12478 o->contents,
12479 (file_ptr) o->output_offset
12480 * bfd_octets_per_byte (abfd),
12481 o->size))
12482 goto error_return;
12483 }
12484 else
12485 {
12486 /* The contents of the .dynstr section are actually in a
12487 stringtab. */
12488 file_ptr off;
12489
12490 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12491 if (bfd_seek (abfd, off, SEEK_SET) != 0
12492 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12493 goto error_return;
12494 }
12495 }
12496 }
12497
12498 if (!info->resolve_section_groups)
12499 {
12500 bfd_boolean failed = FALSE;
12501
12502 BFD_ASSERT (bfd_link_relocatable (info));
12503 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12504 if (failed)
12505 goto error_return;
12506 }
12507
12508 /* If we have optimized stabs strings, output them. */
12509 if (htab->stab_info.stabstr != NULL)
12510 {
12511 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12512 goto error_return;
12513 }
12514
12515 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12516 goto error_return;
12517
12518 elf_final_link_free (abfd, &flinfo);
12519
12520 elf_linker (abfd) = TRUE;
12521
12522 if (attr_section)
12523 {
12524 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12525 if (contents == NULL)
12526 return FALSE; /* Bail out and fail. */
12527 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12528 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12529 free (contents);
12530 }
12531
12532 return TRUE;
12533
12534 error_return:
12535 elf_final_link_free (abfd, &flinfo);
12536 return FALSE;
12537 }
12538 \f
12539 /* Initialize COOKIE for input bfd ABFD. */
12540
12541 static bfd_boolean
12542 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12543 struct bfd_link_info *info, bfd *abfd)
12544 {
12545 Elf_Internal_Shdr *symtab_hdr;
12546 const struct elf_backend_data *bed;
12547
12548 bed = get_elf_backend_data (abfd);
12549 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12550
12551 cookie->abfd = abfd;
12552 cookie->sym_hashes = elf_sym_hashes (abfd);
12553 cookie->bad_symtab = elf_bad_symtab (abfd);
12554 if (cookie->bad_symtab)
12555 {
12556 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12557 cookie->extsymoff = 0;
12558 }
12559 else
12560 {
12561 cookie->locsymcount = symtab_hdr->sh_info;
12562 cookie->extsymoff = symtab_hdr->sh_info;
12563 }
12564
12565 if (bed->s->arch_size == 32)
12566 cookie->r_sym_shift = 8;
12567 else
12568 cookie->r_sym_shift = 32;
12569
12570 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12571 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12572 {
12573 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12574 cookie->locsymcount, 0,
12575 NULL, NULL, NULL);
12576 if (cookie->locsyms == NULL)
12577 {
12578 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12579 return FALSE;
12580 }
12581 if (info->keep_memory)
12582 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12583 }
12584 return TRUE;
12585 }
12586
12587 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12588
12589 static void
12590 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12591 {
12592 Elf_Internal_Shdr *symtab_hdr;
12593
12594 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12595 if (cookie->locsyms != NULL
12596 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12597 free (cookie->locsyms);
12598 }
12599
12600 /* Initialize the relocation information in COOKIE for input section SEC
12601 of input bfd ABFD. */
12602
12603 static bfd_boolean
12604 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12605 struct bfd_link_info *info, bfd *abfd,
12606 asection *sec)
12607 {
12608 if (sec->reloc_count == 0)
12609 {
12610 cookie->rels = NULL;
12611 cookie->relend = NULL;
12612 }
12613 else
12614 {
12615 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12616 info->keep_memory);
12617 if (cookie->rels == NULL)
12618 return FALSE;
12619 cookie->rel = cookie->rels;
12620 cookie->relend = cookie->rels + sec->reloc_count;
12621 }
12622 cookie->rel = cookie->rels;
12623 return TRUE;
12624 }
12625
12626 /* Free the memory allocated by init_reloc_cookie_rels,
12627 if appropriate. */
12628
12629 static void
12630 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12631 asection *sec)
12632 {
12633 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12634 free (cookie->rels);
12635 }
12636
12637 /* Initialize the whole of COOKIE for input section SEC. */
12638
12639 static bfd_boolean
12640 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12641 struct bfd_link_info *info,
12642 asection *sec)
12643 {
12644 if (!init_reloc_cookie (cookie, info, sec->owner))
12645 goto error1;
12646 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12647 goto error2;
12648 return TRUE;
12649
12650 error2:
12651 fini_reloc_cookie (cookie, sec->owner);
12652 error1:
12653 return FALSE;
12654 }
12655
12656 /* Free the memory allocated by init_reloc_cookie_for_section,
12657 if appropriate. */
12658
12659 static void
12660 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12661 asection *sec)
12662 {
12663 fini_reloc_cookie_rels (cookie, sec);
12664 fini_reloc_cookie (cookie, sec->owner);
12665 }
12666 \f
12667 /* Garbage collect unused sections. */
12668
12669 /* Default gc_mark_hook. */
12670
12671 asection *
12672 _bfd_elf_gc_mark_hook (asection *sec,
12673 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12674 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12675 struct elf_link_hash_entry *h,
12676 Elf_Internal_Sym *sym)
12677 {
12678 if (h != NULL)
12679 {
12680 switch (h->root.type)
12681 {
12682 case bfd_link_hash_defined:
12683 case bfd_link_hash_defweak:
12684 return h->root.u.def.section;
12685
12686 case bfd_link_hash_common:
12687 return h->root.u.c.p->section;
12688
12689 default:
12690 break;
12691 }
12692 }
12693 else
12694 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12695
12696 return NULL;
12697 }
12698
12699 /* Return the global debug definition section. */
12700
12701 static asection *
12702 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12703 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12704 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12705 struct elf_link_hash_entry *h,
12706 Elf_Internal_Sym *sym ATTRIBUTE_UNUSED)
12707 {
12708 if (h != NULL
12709 && (h->root.type == bfd_link_hash_defined
12710 || h->root.type == bfd_link_hash_defweak)
12711 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12712 return h->root.u.def.section;
12713
12714 return NULL;
12715 }
12716
12717 /* COOKIE->rel describes a relocation against section SEC, which is
12718 a section we've decided to keep. Return the section that contains
12719 the relocation symbol, or NULL if no section contains it. */
12720
12721 asection *
12722 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12723 elf_gc_mark_hook_fn gc_mark_hook,
12724 struct elf_reloc_cookie *cookie,
12725 bfd_boolean *start_stop)
12726 {
12727 unsigned long r_symndx;
12728 struct elf_link_hash_entry *h;
12729
12730 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12731 if (r_symndx == STN_UNDEF)
12732 return NULL;
12733
12734 if (r_symndx >= cookie->locsymcount
12735 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12736 {
12737 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12738 if (h == NULL)
12739 {
12740 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12741 sec->owner);
12742 return NULL;
12743 }
12744 while (h->root.type == bfd_link_hash_indirect
12745 || h->root.type == bfd_link_hash_warning)
12746 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12747 h->mark = 1;
12748 /* If this symbol is weak and there is a non-weak definition, we
12749 keep the non-weak definition because many backends put
12750 dynamic reloc info on the non-weak definition for code
12751 handling copy relocs. */
12752 if (h->u.weakdef != NULL)
12753 h->u.weakdef->mark = 1;
12754
12755 if (start_stop != NULL)
12756 {
12757 /* To work around a glibc bug, mark XXX input sections
12758 when there is a reference to __start_XXX or __stop_XXX
12759 symbols. */
12760 if (h->start_stop)
12761 {
12762 asection *s = h->u2.start_stop_section;
12763 *start_stop = !s->gc_mark;
12764 return s;
12765 }
12766 }
12767
12768 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12769 }
12770
12771 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12772 &cookie->locsyms[r_symndx]);
12773 }
12774
12775 /* COOKIE->rel describes a relocation against section SEC, which is
12776 a section we've decided to keep. Mark the section that contains
12777 the relocation symbol. */
12778
12779 bfd_boolean
12780 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12781 asection *sec,
12782 elf_gc_mark_hook_fn gc_mark_hook,
12783 struct elf_reloc_cookie *cookie)
12784 {
12785 asection *rsec;
12786 bfd_boolean start_stop = FALSE;
12787
12788 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12789 while (rsec != NULL)
12790 {
12791 if (!rsec->gc_mark)
12792 {
12793 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12794 || (rsec->owner->flags & DYNAMIC) != 0)
12795 rsec->gc_mark = 1;
12796 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12797 return FALSE;
12798 }
12799 if (!start_stop)
12800 break;
12801 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12802 }
12803 return TRUE;
12804 }
12805
12806 /* The mark phase of garbage collection. For a given section, mark
12807 it and any sections in this section's group, and all the sections
12808 which define symbols to which it refers. */
12809
12810 bfd_boolean
12811 _bfd_elf_gc_mark (struct bfd_link_info *info,
12812 asection *sec,
12813 elf_gc_mark_hook_fn gc_mark_hook)
12814 {
12815 bfd_boolean ret;
12816 asection *group_sec, *eh_frame;
12817
12818 sec->gc_mark = 1;
12819
12820 /* Mark all the sections in the group. */
12821 group_sec = elf_section_data (sec)->next_in_group;
12822 if (group_sec && !group_sec->gc_mark)
12823 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12824 return FALSE;
12825
12826 /* Look through the section relocs. */
12827 ret = TRUE;
12828 eh_frame = elf_eh_frame_section (sec->owner);
12829 if ((sec->flags & SEC_RELOC) != 0
12830 && sec->reloc_count > 0
12831 && sec != eh_frame)
12832 {
12833 struct elf_reloc_cookie cookie;
12834
12835 if (!init_reloc_cookie_for_section (&cookie, info, sec))
12836 ret = FALSE;
12837 else
12838 {
12839 for (; cookie.rel < cookie.relend; cookie.rel++)
12840 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12841 {
12842 ret = FALSE;
12843 break;
12844 }
12845 fini_reloc_cookie_for_section (&cookie, sec);
12846 }
12847 }
12848
12849 if (ret && eh_frame && elf_fde_list (sec))
12850 {
12851 struct elf_reloc_cookie cookie;
12852
12853 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12854 ret = FALSE;
12855 else
12856 {
12857 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12858 gc_mark_hook, &cookie))
12859 ret = FALSE;
12860 fini_reloc_cookie_for_section (&cookie, eh_frame);
12861 }
12862 }
12863
12864 eh_frame = elf_section_eh_frame_entry (sec);
12865 if (ret && eh_frame && !eh_frame->gc_mark)
12866 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12867 ret = FALSE;
12868
12869 return ret;
12870 }
12871
12872 /* Scan and mark sections in a special or debug section group. */
12873
12874 static void
12875 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12876 {
12877 /* Point to first section of section group. */
12878 asection *ssec;
12879 /* Used to iterate the section group. */
12880 asection *msec;
12881
12882 bfd_boolean is_special_grp = TRUE;
12883 bfd_boolean is_debug_grp = TRUE;
12884
12885 /* First scan to see if group contains any section other than debug
12886 and special section. */
12887 ssec = msec = elf_next_in_group (grp);
12888 do
12889 {
12890 if ((msec->flags & SEC_DEBUGGING) == 0)
12891 is_debug_grp = FALSE;
12892
12893 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12894 is_special_grp = FALSE;
12895
12896 msec = elf_next_in_group (msec);
12897 }
12898 while (msec != ssec);
12899
12900 /* If this is a pure debug section group or pure special section group,
12901 keep all sections in this group. */
12902 if (is_debug_grp || is_special_grp)
12903 {
12904 do
12905 {
12906 msec->gc_mark = 1;
12907 msec = elf_next_in_group (msec);
12908 }
12909 while (msec != ssec);
12910 }
12911 }
12912
12913 /* Keep debug and special sections. */
12914
12915 bfd_boolean
12916 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12917 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12918 {
12919 bfd *ibfd;
12920
12921 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12922 {
12923 asection *isec;
12924 bfd_boolean some_kept;
12925 bfd_boolean debug_frag_seen;
12926 bfd_boolean has_kept_debug_info;
12927
12928 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12929 continue;
12930 isec = ibfd->sections;
12931 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
12932 continue;
12933
12934 /* Ensure all linker created sections are kept,
12935 see if any other section is already marked,
12936 and note if we have any fragmented debug sections. */
12937 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
12938 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12939 {
12940 if ((isec->flags & SEC_LINKER_CREATED) != 0)
12941 isec->gc_mark = 1;
12942 else if (isec->gc_mark
12943 && (isec->flags & SEC_ALLOC) != 0
12944 && elf_section_type (isec) != SHT_NOTE)
12945 some_kept = TRUE;
12946
12947 if (!debug_frag_seen
12948 && (isec->flags & SEC_DEBUGGING)
12949 && CONST_STRNEQ (isec->name, ".debug_line."))
12950 debug_frag_seen = TRUE;
12951 }
12952
12953 /* If no non-note alloc section in this file will be kept, then
12954 we can toss out the debug and special sections. */
12955 if (!some_kept)
12956 continue;
12957
12958 /* Keep debug and special sections like .comment when they are
12959 not part of a group. Also keep section groups that contain
12960 just debug sections or special sections. */
12961 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12962 {
12963 if ((isec->flags & SEC_GROUP) != 0)
12964 _bfd_elf_gc_mark_debug_special_section_group (isec);
12965 else if (((isec->flags & SEC_DEBUGGING) != 0
12966 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12967 && elf_next_in_group (isec) == NULL)
12968 isec->gc_mark = 1;
12969 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
12970 has_kept_debug_info = TRUE;
12971 }
12972
12973 /* Look for CODE sections which are going to be discarded,
12974 and find and discard any fragmented debug sections which
12975 are associated with that code section. */
12976 if (debug_frag_seen)
12977 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12978 if ((isec->flags & SEC_CODE) != 0
12979 && isec->gc_mark == 0)
12980 {
12981 unsigned int ilen;
12982 asection *dsec;
12983
12984 ilen = strlen (isec->name);
12985
12986 /* Association is determined by the name of the debug
12987 section containing the name of the code section as
12988 a suffix. For example .debug_line.text.foo is a
12989 debug section associated with .text.foo. */
12990 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12991 {
12992 unsigned int dlen;
12993
12994 if (dsec->gc_mark == 0
12995 || (dsec->flags & SEC_DEBUGGING) == 0)
12996 continue;
12997
12998 dlen = strlen (dsec->name);
12999
13000 if (dlen > ilen
13001 && strncmp (dsec->name + (dlen - ilen),
13002 isec->name, ilen) == 0)
13003 dsec->gc_mark = 0;
13004 }
13005 }
13006
13007 /* Mark debug sections referenced by kept debug sections. */
13008 if (has_kept_debug_info)
13009 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13010 if (isec->gc_mark
13011 && (isec->flags & SEC_DEBUGGING) != 0)
13012 if (!_bfd_elf_gc_mark (info, isec,
13013 elf_gc_mark_debug_section))
13014 return FALSE;
13015 }
13016 return TRUE;
13017 }
13018
13019 /* The sweep phase of garbage collection. Remove all garbage sections. */
13020
13021 typedef bfd_boolean (*gc_sweep_hook_fn)
13022 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
13023
13024 static bfd_boolean
13025 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13026 {
13027 bfd *sub;
13028 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13029 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
13030
13031 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13032 {
13033 asection *o;
13034
13035 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13036 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13037 continue;
13038 o = sub->sections;
13039 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13040 continue;
13041
13042 for (o = sub->sections; o != NULL; o = o->next)
13043 {
13044 /* When any section in a section group is kept, we keep all
13045 sections in the section group. If the first member of
13046 the section group is excluded, we will also exclude the
13047 group section. */
13048 if (o->flags & SEC_GROUP)
13049 {
13050 asection *first = elf_next_in_group (o);
13051 o->gc_mark = first->gc_mark;
13052 }
13053
13054 if (o->gc_mark)
13055 continue;
13056
13057 /* Skip sweeping sections already excluded. */
13058 if (o->flags & SEC_EXCLUDE)
13059 continue;
13060
13061 /* Since this is early in the link process, it is simple
13062 to remove a section from the output. */
13063 o->flags |= SEC_EXCLUDE;
13064
13065 if (info->print_gc_sections && o->size != 0)
13066 /* xgettext:c-format */
13067 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
13068 o, sub);
13069
13070 /* But we also have to update some of the relocation
13071 info we collected before. */
13072 if (gc_sweep_hook
13073 && (o->flags & SEC_RELOC) != 0
13074 && o->reloc_count != 0
13075 && !((info->strip == strip_all || info->strip == strip_debugger)
13076 && (o->flags & SEC_DEBUGGING) != 0)
13077 && !bfd_is_abs_section (o->output_section))
13078 {
13079 Elf_Internal_Rela *internal_relocs;
13080 bfd_boolean r;
13081
13082 internal_relocs
13083 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13084 info->keep_memory);
13085 if (internal_relocs == NULL)
13086 return FALSE;
13087
13088 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13089
13090 if (elf_section_data (o)->relocs != internal_relocs)
13091 free (internal_relocs);
13092
13093 if (!r)
13094 return FALSE;
13095 }
13096 }
13097 }
13098
13099 return TRUE;
13100 }
13101
13102 /* Propagate collected vtable information. This is called through
13103 elf_link_hash_traverse. */
13104
13105 static bfd_boolean
13106 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13107 {
13108 /* Those that are not vtables. */
13109 if (h->start_stop
13110 || h->u2.vtable == NULL
13111 || h->u2.vtable->parent == NULL)
13112 return TRUE;
13113
13114 /* Those vtables that do not have parents, we cannot merge. */
13115 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13116 return TRUE;
13117
13118 /* If we've already been done, exit. */
13119 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13120 return TRUE;
13121
13122 /* Make sure the parent's table is up to date. */
13123 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13124
13125 if (h->u2.vtable->used == NULL)
13126 {
13127 /* None of this table's entries were referenced. Re-use the
13128 parent's table. */
13129 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13130 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13131 }
13132 else
13133 {
13134 size_t n;
13135 bfd_boolean *cu, *pu;
13136
13137 /* Or the parent's entries into ours. */
13138 cu = h->u2.vtable->used;
13139 cu[-1] = TRUE;
13140 pu = h->u2.vtable->parent->u2.vtable->used;
13141 if (pu != NULL)
13142 {
13143 const struct elf_backend_data *bed;
13144 unsigned int log_file_align;
13145
13146 bed = get_elf_backend_data (h->root.u.def.section->owner);
13147 log_file_align = bed->s->log_file_align;
13148 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13149 while (n--)
13150 {
13151 if (*pu)
13152 *cu = TRUE;
13153 pu++;
13154 cu++;
13155 }
13156 }
13157 }
13158
13159 return TRUE;
13160 }
13161
13162 static bfd_boolean
13163 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13164 {
13165 asection *sec;
13166 bfd_vma hstart, hend;
13167 Elf_Internal_Rela *relstart, *relend, *rel;
13168 const struct elf_backend_data *bed;
13169 unsigned int log_file_align;
13170
13171 /* Take care of both those symbols that do not describe vtables as
13172 well as those that are not loaded. */
13173 if (h->start_stop
13174 || h->u2.vtable == NULL
13175 || h->u2.vtable->parent == NULL)
13176 return TRUE;
13177
13178 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13179 || h->root.type == bfd_link_hash_defweak);
13180
13181 sec = h->root.u.def.section;
13182 hstart = h->root.u.def.value;
13183 hend = hstart + h->size;
13184
13185 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13186 if (!relstart)
13187 return *(bfd_boolean *) okp = FALSE;
13188 bed = get_elf_backend_data (sec->owner);
13189 log_file_align = bed->s->log_file_align;
13190
13191 relend = relstart + sec->reloc_count;
13192
13193 for (rel = relstart; rel < relend; ++rel)
13194 if (rel->r_offset >= hstart && rel->r_offset < hend)
13195 {
13196 /* If the entry is in use, do nothing. */
13197 if (h->u2.vtable->used
13198 && (rel->r_offset - hstart) < h->u2.vtable->size)
13199 {
13200 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13201 if (h->u2.vtable->used[entry])
13202 continue;
13203 }
13204 /* Otherwise, kill it. */
13205 rel->r_offset = rel->r_info = rel->r_addend = 0;
13206 }
13207
13208 return TRUE;
13209 }
13210
13211 /* Mark sections containing dynamically referenced symbols. When
13212 building shared libraries, we must assume that any visible symbol is
13213 referenced. */
13214
13215 bfd_boolean
13216 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13217 {
13218 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13219 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13220
13221 if ((h->root.type == bfd_link_hash_defined
13222 || h->root.type == bfd_link_hash_defweak)
13223 && (h->ref_dynamic
13224 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13225 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13226 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13227 && (!bfd_link_executable (info)
13228 || info->gc_keep_exported
13229 || info->export_dynamic
13230 || (h->dynamic
13231 && d != NULL
13232 && (*d->match) (&d->head, NULL, h->root.root.string)))
13233 && (h->versioned >= versioned
13234 || !bfd_hide_sym_by_version (info->version_info,
13235 h->root.root.string)))))
13236 h->root.u.def.section->flags |= SEC_KEEP;
13237
13238 return TRUE;
13239 }
13240
13241 /* Keep all sections containing symbols undefined on the command-line,
13242 and the section containing the entry symbol. */
13243
13244 void
13245 _bfd_elf_gc_keep (struct bfd_link_info *info)
13246 {
13247 struct bfd_sym_chain *sym;
13248
13249 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13250 {
13251 struct elf_link_hash_entry *h;
13252
13253 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13254 FALSE, FALSE, FALSE);
13255
13256 if (h != NULL
13257 && (h->root.type == bfd_link_hash_defined
13258 || h->root.type == bfd_link_hash_defweak)
13259 && !bfd_is_abs_section (h->root.u.def.section)
13260 && !bfd_is_und_section (h->root.u.def.section))
13261 h->root.u.def.section->flags |= SEC_KEEP;
13262 }
13263 }
13264
13265 bfd_boolean
13266 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13267 struct bfd_link_info *info)
13268 {
13269 bfd *ibfd = info->input_bfds;
13270
13271 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13272 {
13273 asection *sec;
13274 struct elf_reloc_cookie cookie;
13275
13276 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13277 continue;
13278 sec = ibfd->sections;
13279 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13280 continue;
13281
13282 if (!init_reloc_cookie (&cookie, info, ibfd))
13283 return FALSE;
13284
13285 for (sec = ibfd->sections; sec; sec = sec->next)
13286 {
13287 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13288 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13289 {
13290 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13291 fini_reloc_cookie_rels (&cookie, sec);
13292 }
13293 }
13294 }
13295 return TRUE;
13296 }
13297
13298 /* Do mark and sweep of unused sections. */
13299
13300 bfd_boolean
13301 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13302 {
13303 bfd_boolean ok = TRUE;
13304 bfd *sub;
13305 elf_gc_mark_hook_fn gc_mark_hook;
13306 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13307 struct elf_link_hash_table *htab;
13308
13309 if (!bed->can_gc_sections
13310 || !is_elf_hash_table (info->hash))
13311 {
13312 _bfd_error_handler(_("Warning: gc-sections option ignored"));
13313 return TRUE;
13314 }
13315
13316 bed->gc_keep (info);
13317 htab = elf_hash_table (info);
13318
13319 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13320 at the .eh_frame section if we can mark the FDEs individually. */
13321 for (sub = info->input_bfds;
13322 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13323 sub = sub->link.next)
13324 {
13325 asection *sec;
13326 struct elf_reloc_cookie cookie;
13327
13328 sec = sub->sections;
13329 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13330 continue;
13331 sec = bfd_get_section_by_name (sub, ".eh_frame");
13332 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13333 {
13334 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13335 if (elf_section_data (sec)->sec_info
13336 && (sec->flags & SEC_LINKER_CREATED) == 0)
13337 elf_eh_frame_section (sub) = sec;
13338 fini_reloc_cookie_for_section (&cookie, sec);
13339 sec = bfd_get_next_section_by_name (NULL, sec);
13340 }
13341 }
13342
13343 /* Apply transitive closure to the vtable entry usage info. */
13344 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13345 if (!ok)
13346 return FALSE;
13347
13348 /* Kill the vtable relocations that were not used. */
13349 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13350 if (!ok)
13351 return FALSE;
13352
13353 /* Mark dynamically referenced symbols. */
13354 if (htab->dynamic_sections_created || info->gc_keep_exported)
13355 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13356
13357 /* Grovel through relocs to find out who stays ... */
13358 gc_mark_hook = bed->gc_mark_hook;
13359 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13360 {
13361 asection *o;
13362
13363 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13364 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13365 continue;
13366
13367 o = sub->sections;
13368 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13369 continue;
13370
13371 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13372 Also treat note sections as a root, if the section is not part
13373 of a group. */
13374 for (o = sub->sections; o != NULL; o = o->next)
13375 if (!o->gc_mark
13376 && (o->flags & SEC_EXCLUDE) == 0
13377 && ((o->flags & SEC_KEEP) != 0
13378 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13379 && elf_next_in_group (o) == NULL )))
13380 {
13381 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13382 return FALSE;
13383 }
13384 }
13385
13386 /* Allow the backend to mark additional target specific sections. */
13387 bed->gc_mark_extra_sections (info, gc_mark_hook);
13388
13389 /* ... and mark SEC_EXCLUDE for those that go. */
13390 return elf_gc_sweep (abfd, info);
13391 }
13392 \f
13393 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13394
13395 bfd_boolean
13396 bfd_elf_gc_record_vtinherit (bfd *abfd,
13397 asection *sec,
13398 struct elf_link_hash_entry *h,
13399 bfd_vma offset)
13400 {
13401 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13402 struct elf_link_hash_entry **search, *child;
13403 size_t extsymcount;
13404 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13405
13406 /* The sh_info field of the symtab header tells us where the
13407 external symbols start. We don't care about the local symbols at
13408 this point. */
13409 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13410 if (!elf_bad_symtab (abfd))
13411 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13412
13413 sym_hashes = elf_sym_hashes (abfd);
13414 sym_hashes_end = sym_hashes + extsymcount;
13415
13416 /* Hunt down the child symbol, which is in this section at the same
13417 offset as the relocation. */
13418 for (search = sym_hashes; search != sym_hashes_end; ++search)
13419 {
13420 if ((child = *search) != NULL
13421 && (child->root.type == bfd_link_hash_defined
13422 || child->root.type == bfd_link_hash_defweak)
13423 && child->root.u.def.section == sec
13424 && child->root.u.def.value == offset)
13425 goto win;
13426 }
13427
13428 /* xgettext:c-format */
13429 _bfd_error_handler (_("%B: %A+%#Lx: No symbol found for INHERIT"),
13430 abfd, sec, offset);
13431 bfd_set_error (bfd_error_invalid_operation);
13432 return FALSE;
13433
13434 win:
13435 if (!child->u2.vtable)
13436 {
13437 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13438 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13439 if (!child->u2.vtable)
13440 return FALSE;
13441 }
13442 if (!h)
13443 {
13444 /* This *should* only be the absolute section. It could potentially
13445 be that someone has defined a non-global vtable though, which
13446 would be bad. It isn't worth paging in the local symbols to be
13447 sure though; that case should simply be handled by the assembler. */
13448
13449 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13450 }
13451 else
13452 child->u2.vtable->parent = h;
13453
13454 return TRUE;
13455 }
13456
13457 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13458
13459 bfd_boolean
13460 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13461 asection *sec ATTRIBUTE_UNUSED,
13462 struct elf_link_hash_entry *h,
13463 bfd_vma addend)
13464 {
13465 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13466 unsigned int log_file_align = bed->s->log_file_align;
13467
13468 if (!h->u2.vtable)
13469 {
13470 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13471 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13472 if (!h->u2.vtable)
13473 return FALSE;
13474 }
13475
13476 if (addend >= h->u2.vtable->size)
13477 {
13478 size_t size, bytes, file_align;
13479 bfd_boolean *ptr = h->u2.vtable->used;
13480
13481 /* While the symbol is undefined, we have to be prepared to handle
13482 a zero size. */
13483 file_align = 1 << log_file_align;
13484 if (h->root.type == bfd_link_hash_undefined)
13485 size = addend + file_align;
13486 else
13487 {
13488 size = h->size;
13489 if (addend >= size)
13490 {
13491 /* Oops! We've got a reference past the defined end of
13492 the table. This is probably a bug -- shall we warn? */
13493 size = addend + file_align;
13494 }
13495 }
13496 size = (size + file_align - 1) & -file_align;
13497
13498 /* Allocate one extra entry for use as a "done" flag for the
13499 consolidation pass. */
13500 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13501
13502 if (ptr)
13503 {
13504 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13505
13506 if (ptr != NULL)
13507 {
13508 size_t oldbytes;
13509
13510 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13511 * sizeof (bfd_boolean));
13512 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13513 }
13514 }
13515 else
13516 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13517
13518 if (ptr == NULL)
13519 return FALSE;
13520
13521 /* And arrange for that done flag to be at index -1. */
13522 h->u2.vtable->used = ptr + 1;
13523 h->u2.vtable->size = size;
13524 }
13525
13526 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13527
13528 return TRUE;
13529 }
13530
13531 /* Map an ELF section header flag to its corresponding string. */
13532 typedef struct
13533 {
13534 char *flag_name;
13535 flagword flag_value;
13536 } elf_flags_to_name_table;
13537
13538 static elf_flags_to_name_table elf_flags_to_names [] =
13539 {
13540 { "SHF_WRITE", SHF_WRITE },
13541 { "SHF_ALLOC", SHF_ALLOC },
13542 { "SHF_EXECINSTR", SHF_EXECINSTR },
13543 { "SHF_MERGE", SHF_MERGE },
13544 { "SHF_STRINGS", SHF_STRINGS },
13545 { "SHF_INFO_LINK", SHF_INFO_LINK},
13546 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13547 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13548 { "SHF_GROUP", SHF_GROUP },
13549 { "SHF_TLS", SHF_TLS },
13550 { "SHF_MASKOS", SHF_MASKOS },
13551 { "SHF_EXCLUDE", SHF_EXCLUDE },
13552 };
13553
13554 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13555 bfd_boolean
13556 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13557 struct flag_info *flaginfo,
13558 asection *section)
13559 {
13560 const bfd_vma sh_flags = elf_section_flags (section);
13561
13562 if (!flaginfo->flags_initialized)
13563 {
13564 bfd *obfd = info->output_bfd;
13565 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13566 struct flag_info_list *tf = flaginfo->flag_list;
13567 int with_hex = 0;
13568 int without_hex = 0;
13569
13570 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13571 {
13572 unsigned i;
13573 flagword (*lookup) (char *);
13574
13575 lookup = bed->elf_backend_lookup_section_flags_hook;
13576 if (lookup != NULL)
13577 {
13578 flagword hexval = (*lookup) ((char *) tf->name);
13579
13580 if (hexval != 0)
13581 {
13582 if (tf->with == with_flags)
13583 with_hex |= hexval;
13584 else if (tf->with == without_flags)
13585 without_hex |= hexval;
13586 tf->valid = TRUE;
13587 continue;
13588 }
13589 }
13590 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13591 {
13592 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13593 {
13594 if (tf->with == with_flags)
13595 with_hex |= elf_flags_to_names[i].flag_value;
13596 else if (tf->with == without_flags)
13597 without_hex |= elf_flags_to_names[i].flag_value;
13598 tf->valid = TRUE;
13599 break;
13600 }
13601 }
13602 if (!tf->valid)
13603 {
13604 info->callbacks->einfo
13605 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13606 return FALSE;
13607 }
13608 }
13609 flaginfo->flags_initialized = TRUE;
13610 flaginfo->only_with_flags |= with_hex;
13611 flaginfo->not_with_flags |= without_hex;
13612 }
13613
13614 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13615 return FALSE;
13616
13617 if ((flaginfo->not_with_flags & sh_flags) != 0)
13618 return FALSE;
13619
13620 return TRUE;
13621 }
13622
13623 struct alloc_got_off_arg {
13624 bfd_vma gotoff;
13625 struct bfd_link_info *info;
13626 };
13627
13628 /* We need a special top-level link routine to convert got reference counts
13629 to real got offsets. */
13630
13631 static bfd_boolean
13632 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13633 {
13634 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13635 bfd *obfd = gofarg->info->output_bfd;
13636 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13637
13638 if (h->got.refcount > 0)
13639 {
13640 h->got.offset = gofarg->gotoff;
13641 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13642 }
13643 else
13644 h->got.offset = (bfd_vma) -1;
13645
13646 return TRUE;
13647 }
13648
13649 /* And an accompanying bit to work out final got entry offsets once
13650 we're done. Should be called from final_link. */
13651
13652 bfd_boolean
13653 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13654 struct bfd_link_info *info)
13655 {
13656 bfd *i;
13657 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13658 bfd_vma gotoff;
13659 struct alloc_got_off_arg gofarg;
13660
13661 BFD_ASSERT (abfd == info->output_bfd);
13662
13663 if (! is_elf_hash_table (info->hash))
13664 return FALSE;
13665
13666 /* The GOT offset is relative to the .got section, but the GOT header is
13667 put into the .got.plt section, if the backend uses it. */
13668 if (bed->want_got_plt)
13669 gotoff = 0;
13670 else
13671 gotoff = bed->got_header_size;
13672
13673 /* Do the local .got entries first. */
13674 for (i = info->input_bfds; i; i = i->link.next)
13675 {
13676 bfd_signed_vma *local_got;
13677 size_t j, locsymcount;
13678 Elf_Internal_Shdr *symtab_hdr;
13679
13680 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13681 continue;
13682
13683 local_got = elf_local_got_refcounts (i);
13684 if (!local_got)
13685 continue;
13686
13687 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13688 if (elf_bad_symtab (i))
13689 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13690 else
13691 locsymcount = symtab_hdr->sh_info;
13692
13693 for (j = 0; j < locsymcount; ++j)
13694 {
13695 if (local_got[j] > 0)
13696 {
13697 local_got[j] = gotoff;
13698 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13699 }
13700 else
13701 local_got[j] = (bfd_vma) -1;
13702 }
13703 }
13704
13705 /* Then the global .got entries. .plt refcounts are handled by
13706 adjust_dynamic_symbol */
13707 gofarg.gotoff = gotoff;
13708 gofarg.info = info;
13709 elf_link_hash_traverse (elf_hash_table (info),
13710 elf_gc_allocate_got_offsets,
13711 &gofarg);
13712 return TRUE;
13713 }
13714
13715 /* Many folk need no more in the way of final link than this, once
13716 got entry reference counting is enabled. */
13717
13718 bfd_boolean
13719 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13720 {
13721 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13722 return FALSE;
13723
13724 /* Invoke the regular ELF backend linker to do all the work. */
13725 return bfd_elf_final_link (abfd, info);
13726 }
13727
13728 bfd_boolean
13729 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13730 {
13731 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13732
13733 if (rcookie->bad_symtab)
13734 rcookie->rel = rcookie->rels;
13735
13736 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13737 {
13738 unsigned long r_symndx;
13739
13740 if (! rcookie->bad_symtab)
13741 if (rcookie->rel->r_offset > offset)
13742 return FALSE;
13743 if (rcookie->rel->r_offset != offset)
13744 continue;
13745
13746 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13747 if (r_symndx == STN_UNDEF)
13748 return TRUE;
13749
13750 if (r_symndx >= rcookie->locsymcount
13751 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13752 {
13753 struct elf_link_hash_entry *h;
13754
13755 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13756
13757 while (h->root.type == bfd_link_hash_indirect
13758 || h->root.type == bfd_link_hash_warning)
13759 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13760
13761 if ((h->root.type == bfd_link_hash_defined
13762 || h->root.type == bfd_link_hash_defweak)
13763 && (h->root.u.def.section->owner != rcookie->abfd
13764 || h->root.u.def.section->kept_section != NULL
13765 || discarded_section (h->root.u.def.section)))
13766 return TRUE;
13767 }
13768 else
13769 {
13770 /* It's not a relocation against a global symbol,
13771 but it could be a relocation against a local
13772 symbol for a discarded section. */
13773 asection *isec;
13774 Elf_Internal_Sym *isym;
13775
13776 /* Need to: get the symbol; get the section. */
13777 isym = &rcookie->locsyms[r_symndx];
13778 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13779 if (isec != NULL
13780 && (isec->kept_section != NULL
13781 || discarded_section (isec)))
13782 return TRUE;
13783 }
13784 return FALSE;
13785 }
13786 return FALSE;
13787 }
13788
13789 /* Discard unneeded references to discarded sections.
13790 Returns -1 on error, 1 if any section's size was changed, 0 if
13791 nothing changed. This function assumes that the relocations are in
13792 sorted order, which is true for all known assemblers. */
13793
13794 int
13795 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13796 {
13797 struct elf_reloc_cookie cookie;
13798 asection *o;
13799 bfd *abfd;
13800 int changed = 0;
13801
13802 if (info->traditional_format
13803 || !is_elf_hash_table (info->hash))
13804 return 0;
13805
13806 o = bfd_get_section_by_name (output_bfd, ".stab");
13807 if (o != NULL)
13808 {
13809 asection *i;
13810
13811 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13812 {
13813 if (i->size == 0
13814 || i->reloc_count == 0
13815 || i->sec_info_type != SEC_INFO_TYPE_STABS)
13816 continue;
13817
13818 abfd = i->owner;
13819 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13820 continue;
13821
13822 if (!init_reloc_cookie_for_section (&cookie, info, i))
13823 return -1;
13824
13825 if (_bfd_discard_section_stabs (abfd, i,
13826 elf_section_data (i)->sec_info,
13827 bfd_elf_reloc_symbol_deleted_p,
13828 &cookie))
13829 changed = 1;
13830
13831 fini_reloc_cookie_for_section (&cookie, i);
13832 }
13833 }
13834
13835 o = NULL;
13836 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13837 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13838 if (o != NULL)
13839 {
13840 asection *i;
13841 int eh_changed = 0;
13842 unsigned int eh_alignment;
13843
13844 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13845 {
13846 if (i->size == 0)
13847 continue;
13848
13849 abfd = i->owner;
13850 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13851 continue;
13852
13853 if (!init_reloc_cookie_for_section (&cookie, info, i))
13854 return -1;
13855
13856 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13857 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13858 bfd_elf_reloc_symbol_deleted_p,
13859 &cookie))
13860 {
13861 eh_changed = 1;
13862 if (i->size != i->rawsize)
13863 changed = 1;
13864 }
13865
13866 fini_reloc_cookie_for_section (&cookie, i);
13867 }
13868
13869 eh_alignment = 1 << o->alignment_power;
13870 /* Skip over zero terminator, and prevent empty sections from
13871 adding alignment padding at the end. */
13872 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
13873 if (i->size == 0)
13874 i->flags |= SEC_EXCLUDE;
13875 else if (i->size > 4)
13876 break;
13877 /* The last non-empty eh_frame section doesn't need padding. */
13878 if (i != NULL)
13879 i = i->map_tail.s;
13880 /* Any prior sections must pad the last FDE out to the output
13881 section alignment. Otherwise we might have zero padding
13882 between sections, which would be seen as a terminator. */
13883 for (; i != NULL; i = i->map_tail.s)
13884 if (i->size == 4)
13885 /* All but the last zero terminator should have been removed. */
13886 BFD_FAIL ();
13887 else
13888 {
13889 bfd_size_type size
13890 = (i->size + eh_alignment - 1) & -eh_alignment;
13891 if (i->size != size)
13892 {
13893 i->size = size;
13894 changed = 1;
13895 eh_changed = 1;
13896 }
13897 }
13898 if (eh_changed)
13899 elf_link_hash_traverse (elf_hash_table (info),
13900 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
13901 }
13902
13903 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13904 {
13905 const struct elf_backend_data *bed;
13906 asection *s;
13907
13908 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13909 continue;
13910 s = abfd->sections;
13911 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13912 continue;
13913
13914 bed = get_elf_backend_data (abfd);
13915
13916 if (bed->elf_backend_discard_info != NULL)
13917 {
13918 if (!init_reloc_cookie (&cookie, info, abfd))
13919 return -1;
13920
13921 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13922 changed = 1;
13923
13924 fini_reloc_cookie (&cookie, abfd);
13925 }
13926 }
13927
13928 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13929 _bfd_elf_end_eh_frame_parsing (info);
13930
13931 if (info->eh_frame_hdr_type
13932 && !bfd_link_relocatable (info)
13933 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13934 changed = 1;
13935
13936 return changed;
13937 }
13938
13939 bfd_boolean
13940 _bfd_elf_section_already_linked (bfd *abfd,
13941 asection *sec,
13942 struct bfd_link_info *info)
13943 {
13944 flagword flags;
13945 const char *name, *key;
13946 struct bfd_section_already_linked *l;
13947 struct bfd_section_already_linked_hash_entry *already_linked_list;
13948
13949 if (sec->output_section == bfd_abs_section_ptr)
13950 return FALSE;
13951
13952 flags = sec->flags;
13953
13954 /* Return if it isn't a linkonce section. A comdat group section
13955 also has SEC_LINK_ONCE set. */
13956 if ((flags & SEC_LINK_ONCE) == 0)
13957 return FALSE;
13958
13959 /* Don't put group member sections on our list of already linked
13960 sections. They are handled as a group via their group section. */
13961 if (elf_sec_group (sec) != NULL)
13962 return FALSE;
13963
13964 /* For a SHT_GROUP section, use the group signature as the key. */
13965 name = sec->name;
13966 if ((flags & SEC_GROUP) != 0
13967 && elf_next_in_group (sec) != NULL
13968 && elf_group_name (elf_next_in_group (sec)) != NULL)
13969 key = elf_group_name (elf_next_in_group (sec));
13970 else
13971 {
13972 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
13973 if (CONST_STRNEQ (name, ".gnu.linkonce.")
13974 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13975 key++;
13976 else
13977 /* Must be a user linkonce section that doesn't follow gcc's
13978 naming convention. In this case we won't be matching
13979 single member groups. */
13980 key = name;
13981 }
13982
13983 already_linked_list = bfd_section_already_linked_table_lookup (key);
13984
13985 for (l = already_linked_list->entry; l != NULL; l = l->next)
13986 {
13987 /* We may have 2 different types of sections on the list: group
13988 sections with a signature of <key> (<key> is some string),
13989 and linkonce sections named .gnu.linkonce.<type>.<key>.
13990 Match like sections. LTO plugin sections are an exception.
13991 They are always named .gnu.linkonce.t.<key> and match either
13992 type of section. */
13993 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13994 && ((flags & SEC_GROUP) != 0
13995 || strcmp (name, l->sec->name) == 0))
13996 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13997 {
13998 /* The section has already been linked. See if we should
13999 issue a warning. */
14000 if (!_bfd_handle_already_linked (sec, l, info))
14001 return FALSE;
14002
14003 if (flags & SEC_GROUP)
14004 {
14005 asection *first = elf_next_in_group (sec);
14006 asection *s = first;
14007
14008 while (s != NULL)
14009 {
14010 s->output_section = bfd_abs_section_ptr;
14011 /* Record which group discards it. */
14012 s->kept_section = l->sec;
14013 s = elf_next_in_group (s);
14014 /* These lists are circular. */
14015 if (s == first)
14016 break;
14017 }
14018 }
14019
14020 return TRUE;
14021 }
14022 }
14023
14024 /* A single member comdat group section may be discarded by a
14025 linkonce section and vice versa. */
14026 if ((flags & SEC_GROUP) != 0)
14027 {
14028 asection *first = elf_next_in_group (sec);
14029
14030 if (first != NULL && elf_next_in_group (first) == first)
14031 /* Check this single member group against linkonce sections. */
14032 for (l = already_linked_list->entry; l != NULL; l = l->next)
14033 if ((l->sec->flags & SEC_GROUP) == 0
14034 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14035 {
14036 first->output_section = bfd_abs_section_ptr;
14037 first->kept_section = l->sec;
14038 sec->output_section = bfd_abs_section_ptr;
14039 break;
14040 }
14041 }
14042 else
14043 /* Check this linkonce section against single member groups. */
14044 for (l = already_linked_list->entry; l != NULL; l = l->next)
14045 if (l->sec->flags & SEC_GROUP)
14046 {
14047 asection *first = elf_next_in_group (l->sec);
14048
14049 if (first != NULL
14050 && elf_next_in_group (first) == first
14051 && bfd_elf_match_symbols_in_sections (first, sec, info))
14052 {
14053 sec->output_section = bfd_abs_section_ptr;
14054 sec->kept_section = first;
14055 break;
14056 }
14057 }
14058
14059 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14060 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14061 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14062 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14063 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14064 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14065 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14066 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14067 The reverse order cannot happen as there is never a bfd with only the
14068 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14069 matter as here were are looking only for cross-bfd sections. */
14070
14071 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14072 for (l = already_linked_list->entry; l != NULL; l = l->next)
14073 if ((l->sec->flags & SEC_GROUP) == 0
14074 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14075 {
14076 if (abfd != l->sec->owner)
14077 sec->output_section = bfd_abs_section_ptr;
14078 break;
14079 }
14080
14081 /* This is the first section with this name. Record it. */
14082 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14083 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14084 return sec->output_section == bfd_abs_section_ptr;
14085 }
14086
14087 bfd_boolean
14088 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14089 {
14090 return sym->st_shndx == SHN_COMMON;
14091 }
14092
14093 unsigned int
14094 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14095 {
14096 return SHN_COMMON;
14097 }
14098
14099 asection *
14100 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14101 {
14102 return bfd_com_section_ptr;
14103 }
14104
14105 bfd_vma
14106 _bfd_elf_default_got_elt_size (bfd *abfd,
14107 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14108 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14109 bfd *ibfd ATTRIBUTE_UNUSED,
14110 unsigned long symndx ATTRIBUTE_UNUSED)
14111 {
14112 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14113 return bed->s->arch_size / 8;
14114 }
14115
14116 /* Routines to support the creation of dynamic relocs. */
14117
14118 /* Returns the name of the dynamic reloc section associated with SEC. */
14119
14120 static const char *
14121 get_dynamic_reloc_section_name (bfd * abfd,
14122 asection * sec,
14123 bfd_boolean is_rela)
14124 {
14125 char *name;
14126 const char *old_name = bfd_get_section_name (NULL, sec);
14127 const char *prefix = is_rela ? ".rela" : ".rel";
14128
14129 if (old_name == NULL)
14130 return NULL;
14131
14132 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14133 sprintf (name, "%s%s", prefix, old_name);
14134
14135 return name;
14136 }
14137
14138 /* Returns the dynamic reloc section associated with SEC.
14139 If necessary compute the name of the dynamic reloc section based
14140 on SEC's name (looked up in ABFD's string table) and the setting
14141 of IS_RELA. */
14142
14143 asection *
14144 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14145 asection * sec,
14146 bfd_boolean is_rela)
14147 {
14148 asection * reloc_sec = elf_section_data (sec)->sreloc;
14149
14150 if (reloc_sec == NULL)
14151 {
14152 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14153
14154 if (name != NULL)
14155 {
14156 reloc_sec = bfd_get_linker_section (abfd, name);
14157
14158 if (reloc_sec != NULL)
14159 elf_section_data (sec)->sreloc = reloc_sec;
14160 }
14161 }
14162
14163 return reloc_sec;
14164 }
14165
14166 /* Returns the dynamic reloc section associated with SEC. If the
14167 section does not exist it is created and attached to the DYNOBJ
14168 bfd and stored in the SRELOC field of SEC's elf_section_data
14169 structure.
14170
14171 ALIGNMENT is the alignment for the newly created section and
14172 IS_RELA defines whether the name should be .rela.<SEC's name>
14173 or .rel.<SEC's name>. The section name is looked up in the
14174 string table associated with ABFD. */
14175
14176 asection *
14177 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14178 bfd *dynobj,
14179 unsigned int alignment,
14180 bfd *abfd,
14181 bfd_boolean is_rela)
14182 {
14183 asection * reloc_sec = elf_section_data (sec)->sreloc;
14184
14185 if (reloc_sec == NULL)
14186 {
14187 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14188
14189 if (name == NULL)
14190 return NULL;
14191
14192 reloc_sec = bfd_get_linker_section (dynobj, name);
14193
14194 if (reloc_sec == NULL)
14195 {
14196 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14197 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14198 if ((sec->flags & SEC_ALLOC) != 0)
14199 flags |= SEC_ALLOC | SEC_LOAD;
14200
14201 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14202 if (reloc_sec != NULL)
14203 {
14204 /* _bfd_elf_get_sec_type_attr chooses a section type by
14205 name. Override as it may be wrong, eg. for a user
14206 section named "auto" we'll get ".relauto" which is
14207 seen to be a .rela section. */
14208 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14209 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14210 reloc_sec = NULL;
14211 }
14212 }
14213
14214 elf_section_data (sec)->sreloc = reloc_sec;
14215 }
14216
14217 return reloc_sec;
14218 }
14219
14220 /* Copy the ELF symbol type and other attributes for a linker script
14221 assignment from HSRC to HDEST. Generally this should be treated as
14222 if we found a strong non-dynamic definition for HDEST (except that
14223 ld ignores multiple definition errors). */
14224 void
14225 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14226 struct bfd_link_hash_entry *hdest,
14227 struct bfd_link_hash_entry *hsrc)
14228 {
14229 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14230 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14231 Elf_Internal_Sym isym;
14232
14233 ehdest->type = ehsrc->type;
14234 ehdest->target_internal = ehsrc->target_internal;
14235
14236 isym.st_other = ehsrc->other;
14237 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14238 }
14239
14240 /* Append a RELA relocation REL to section S in BFD. */
14241
14242 void
14243 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14244 {
14245 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14246 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14247 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14248 bed->s->swap_reloca_out (abfd, rel, loc);
14249 }
14250
14251 /* Append a REL relocation REL to section S in BFD. */
14252
14253 void
14254 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14255 {
14256 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14257 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14258 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14259 bed->s->swap_reloc_out (abfd, rel, loc);
14260 }
14261
14262 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14263
14264 struct bfd_link_hash_entry *
14265 bfd_elf_define_start_stop (struct bfd_link_info *info,
14266 const char *symbol, asection *sec)
14267 {
14268 struct elf_link_hash_entry *h;
14269
14270 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14271 FALSE, FALSE, TRUE);
14272 if (h != NULL
14273 && (h->root.type == bfd_link_hash_undefined
14274 || h->root.type == bfd_link_hash_undefweak
14275 || (h->ref_regular && !h->def_regular)))
14276 {
14277 h->root.type = bfd_link_hash_defined;
14278 h->root.u.def.section = sec;
14279 h->root.u.def.value = 0;
14280 h->def_regular = 1;
14281 h->def_dynamic = 0;
14282 h->start_stop = 1;
14283 h->u2.start_stop_section = sec;
14284 if (symbol[0] == '.')
14285 {
14286 /* .startof. and .sizeof. symbols are local. */
14287 _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
14288 }
14289 else if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14290 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14291 return &h->root;
14292 }
14293 return NULL;
14294 }
This page took 0.408566 seconds and 5 git commands to generate.