Add support for non-contiguous memory regions
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || !bfd_set_section_alignment (s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (s, bed->s->log_file_align))
180 return FALSE;
181 htab->sgotplt = s;
182 }
183
184 /* The first bit of the global offset table is the header. */
185 s->size += bed->got_header_size;
186
187 if (bed->want_got_sym)
188 {
189 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
190 (or .got.plt) section. We don't do this in the linker script
191 because we don't want to define the symbol if we are not creating
192 a global offset table. */
193 h = _bfd_elf_define_linkage_sym (abfd, info, s,
194 "_GLOBAL_OFFSET_TABLE_");
195 elf_hash_table (info)->hgot = h;
196 if (h == NULL)
197 return FALSE;
198 }
199
200 return TRUE;
201 }
202 \f
203 /* Create a strtab to hold the dynamic symbol names. */
204 static bfd_boolean
205 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
206 {
207 struct elf_link_hash_table *hash_table;
208
209 hash_table = elf_hash_table (info);
210 if (hash_table->dynobj == NULL)
211 {
212 /* We may not set dynobj, an input file holding linker created
213 dynamic sections to abfd, which may be a dynamic object with
214 its own dynamic sections. We need to find a normal input file
215 to hold linker created sections if possible. */
216 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
217 {
218 bfd *ibfd;
219 asection *s;
220 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
221 if ((ibfd->flags
222 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
223 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
224 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
225 && !((s = ibfd->sections) != NULL
226 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
227 {
228 abfd = ibfd;
229 break;
230 }
231 }
232 hash_table->dynobj = abfd;
233 }
234
235 if (hash_table->dynstr == NULL)
236 {
237 hash_table->dynstr = _bfd_elf_strtab_init ();
238 if (hash_table->dynstr == NULL)
239 return FALSE;
240 }
241 return TRUE;
242 }
243
244 /* Create some sections which will be filled in with dynamic linking
245 information. ABFD is an input file which requires dynamic sections
246 to be created. The dynamic sections take up virtual memory space
247 when the final executable is run, so we need to create them before
248 addresses are assigned to the output sections. We work out the
249 actual contents and size of these sections later. */
250
251 bfd_boolean
252 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
253 {
254 flagword flags;
255 asection *s;
256 const struct elf_backend_data *bed;
257 struct elf_link_hash_entry *h;
258
259 if (! is_elf_hash_table (info->hash))
260 return FALSE;
261
262 if (elf_hash_table (info)->dynamic_sections_created)
263 return TRUE;
264
265 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
266 return FALSE;
267
268 abfd = elf_hash_table (info)->dynobj;
269 bed = get_elf_backend_data (abfd);
270
271 flags = bed->dynamic_sec_flags;
272
273 /* A dynamically linked executable has a .interp section, but a
274 shared library does not. */
275 if (bfd_link_executable (info) && !info->nointerp)
276 {
277 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
278 flags | SEC_READONLY);
279 if (s == NULL)
280 return FALSE;
281 }
282
283 /* Create sections to hold version informations. These are removed
284 if they are not needed. */
285 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
286 flags | SEC_READONLY);
287 if (s == NULL
288 || !bfd_set_section_alignment (s, bed->s->log_file_align))
289 return FALSE;
290
291 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
292 flags | SEC_READONLY);
293 if (s == NULL
294 || !bfd_set_section_alignment (s, 1))
295 return FALSE;
296
297 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
298 flags | SEC_READONLY);
299 if (s == NULL
300 || !bfd_set_section_alignment (s, bed->s->log_file_align))
301 return FALSE;
302
303 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
304 flags | SEC_READONLY);
305 if (s == NULL
306 || !bfd_set_section_alignment (s, bed->s->log_file_align))
307 return FALSE;
308 elf_hash_table (info)->dynsym = s;
309
310 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
311 flags | SEC_READONLY);
312 if (s == NULL)
313 return FALSE;
314
315 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
316 if (s == NULL
317 || !bfd_set_section_alignment (s, bed->s->log_file_align))
318 return FALSE;
319
320 /* The special symbol _DYNAMIC is always set to the start of the
321 .dynamic section. We could set _DYNAMIC in a linker script, but we
322 only want to define it if we are, in fact, creating a .dynamic
323 section. We don't want to define it if there is no .dynamic
324 section, since on some ELF platforms the start up code examines it
325 to decide how to initialize the process. */
326 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
327 elf_hash_table (info)->hdynamic = h;
328 if (h == NULL)
329 return FALSE;
330
331 if (info->emit_hash)
332 {
333 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
334 flags | SEC_READONLY);
335 if (s == NULL
336 || !bfd_set_section_alignment (s, bed->s->log_file_align))
337 return FALSE;
338 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
339 }
340
341 if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL)
342 {
343 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
344 flags | SEC_READONLY);
345 if (s == NULL
346 || !bfd_set_section_alignment (s, bed->s->log_file_align))
347 return FALSE;
348 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
349 4 32-bit words followed by variable count of 64-bit words, then
350 variable count of 32-bit words. */
351 if (bed->s->arch_size == 64)
352 elf_section_data (s)->this_hdr.sh_entsize = 0;
353 else
354 elf_section_data (s)->this_hdr.sh_entsize = 4;
355 }
356
357 /* Let the backend create the rest of the sections. This lets the
358 backend set the right flags. The backend will normally create
359 the .got and .plt sections. */
360 if (bed->elf_backend_create_dynamic_sections == NULL
361 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
362 return FALSE;
363
364 elf_hash_table (info)->dynamic_sections_created = TRUE;
365
366 return TRUE;
367 }
368
369 /* Create dynamic sections when linking against a dynamic object. */
370
371 bfd_boolean
372 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
373 {
374 flagword flags, pltflags;
375 struct elf_link_hash_entry *h;
376 asection *s;
377 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
378 struct elf_link_hash_table *htab = elf_hash_table (info);
379
380 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
381 .rel[a].bss sections. */
382 flags = bed->dynamic_sec_flags;
383
384 pltflags = flags;
385 if (bed->plt_not_loaded)
386 /* We do not clear SEC_ALLOC here because we still want the OS to
387 allocate space for the section; it's just that there's nothing
388 to read in from the object file. */
389 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
390 else
391 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
392 if (bed->plt_readonly)
393 pltflags |= SEC_READONLY;
394
395 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
396 if (s == NULL
397 || !bfd_set_section_alignment (s, bed->plt_alignment))
398 return FALSE;
399 htab->splt = s;
400
401 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
402 .plt section. */
403 if (bed->want_plt_sym)
404 {
405 h = _bfd_elf_define_linkage_sym (abfd, info, s,
406 "_PROCEDURE_LINKAGE_TABLE_");
407 elf_hash_table (info)->hplt = h;
408 if (h == NULL)
409 return FALSE;
410 }
411
412 s = bfd_make_section_anyway_with_flags (abfd,
413 (bed->rela_plts_and_copies_p
414 ? ".rela.plt" : ".rel.plt"),
415 flags | SEC_READONLY);
416 if (s == NULL
417 || !bfd_set_section_alignment (s, bed->s->log_file_align))
418 return FALSE;
419 htab->srelplt = s;
420
421 if (! _bfd_elf_create_got_section (abfd, info))
422 return FALSE;
423
424 if (bed->want_dynbss)
425 {
426 /* The .dynbss section is a place to put symbols which are defined
427 by dynamic objects, are referenced by regular objects, and are
428 not functions. We must allocate space for them in the process
429 image and use a R_*_COPY reloc to tell the dynamic linker to
430 initialize them at run time. The linker script puts the .dynbss
431 section into the .bss section of the final image. */
432 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
433 SEC_ALLOC | SEC_LINKER_CREATED);
434 if (s == NULL)
435 return FALSE;
436 htab->sdynbss = s;
437
438 if (bed->want_dynrelro)
439 {
440 /* Similarly, but for symbols that were originally in read-only
441 sections. This section doesn't really need to have contents,
442 but make it like other .data.rel.ro sections. */
443 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
444 flags);
445 if (s == NULL)
446 return FALSE;
447 htab->sdynrelro = s;
448 }
449
450 /* The .rel[a].bss section holds copy relocs. This section is not
451 normally needed. We need to create it here, though, so that the
452 linker will map it to an output section. We can't just create it
453 only if we need it, because we will not know whether we need it
454 until we have seen all the input files, and the first time the
455 main linker code calls BFD after examining all the input files
456 (size_dynamic_sections) the input sections have already been
457 mapped to the output sections. If the section turns out not to
458 be needed, we can discard it later. We will never need this
459 section when generating a shared object, since they do not use
460 copy relocs. */
461 if (bfd_link_executable (info))
462 {
463 s = bfd_make_section_anyway_with_flags (abfd,
464 (bed->rela_plts_and_copies_p
465 ? ".rela.bss" : ".rel.bss"),
466 flags | SEC_READONLY);
467 if (s == NULL
468 || !bfd_set_section_alignment (s, bed->s->log_file_align))
469 return FALSE;
470 htab->srelbss = s;
471
472 if (bed->want_dynrelro)
473 {
474 s = (bfd_make_section_anyway_with_flags
475 (abfd, (bed->rela_plts_and_copies_p
476 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
477 flags | SEC_READONLY));
478 if (s == NULL
479 || !bfd_set_section_alignment (s, bed->s->log_file_align))
480 return FALSE;
481 htab->sreldynrelro = s;
482 }
483 }
484 }
485
486 return TRUE;
487 }
488 \f
489 /* Record a new dynamic symbol. We record the dynamic symbols as we
490 read the input files, since we need to have a list of all of them
491 before we can determine the final sizes of the output sections.
492 Note that we may actually call this function even though we are not
493 going to output any dynamic symbols; in some cases we know that a
494 symbol should be in the dynamic symbol table, but only if there is
495 one. */
496
497 bfd_boolean
498 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
499 struct elf_link_hash_entry *h)
500 {
501 if (h->dynindx == -1)
502 {
503 struct elf_strtab_hash *dynstr;
504 char *p;
505 const char *name;
506 size_t indx;
507
508 /* XXX: The ABI draft says the linker must turn hidden and
509 internal symbols into STB_LOCAL symbols when producing the
510 DSO. However, if ld.so honors st_other in the dynamic table,
511 this would not be necessary. */
512 switch (ELF_ST_VISIBILITY (h->other))
513 {
514 case STV_INTERNAL:
515 case STV_HIDDEN:
516 if (h->root.type != bfd_link_hash_undefined
517 && h->root.type != bfd_link_hash_undefweak)
518 {
519 h->forced_local = 1;
520 if (!elf_hash_table (info)->is_relocatable_executable)
521 return TRUE;
522 }
523
524 default:
525 break;
526 }
527
528 h->dynindx = elf_hash_table (info)->dynsymcount;
529 ++elf_hash_table (info)->dynsymcount;
530
531 dynstr = elf_hash_table (info)->dynstr;
532 if (dynstr == NULL)
533 {
534 /* Create a strtab to hold the dynamic symbol names. */
535 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
536 if (dynstr == NULL)
537 return FALSE;
538 }
539
540 /* We don't put any version information in the dynamic string
541 table. */
542 name = h->root.root.string;
543 p = strchr (name, ELF_VER_CHR);
544 if (p != NULL)
545 /* We know that the p points into writable memory. In fact,
546 there are only a few symbols that have read-only names, being
547 those like _GLOBAL_OFFSET_TABLE_ that are created specially
548 by the backends. Most symbols will have names pointing into
549 an ELF string table read from a file, or to objalloc memory. */
550 *p = 0;
551
552 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
553
554 if (p != NULL)
555 *p = ELF_VER_CHR;
556
557 if (indx == (size_t) -1)
558 return FALSE;
559 h->dynstr_index = indx;
560 }
561
562 return TRUE;
563 }
564 \f
565 /* Mark a symbol dynamic. */
566
567 static void
568 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
569 struct elf_link_hash_entry *h,
570 Elf_Internal_Sym *sym)
571 {
572 struct bfd_elf_dynamic_list *d = info->dynamic_list;
573
574 /* It may be called more than once on the same H. */
575 if(h->dynamic || bfd_link_relocatable (info))
576 return;
577
578 if ((info->dynamic_data
579 && (h->type == STT_OBJECT
580 || h->type == STT_COMMON
581 || (sym != NULL
582 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
583 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
584 || (d != NULL
585 && h->non_elf
586 && (*d->match) (&d->head, NULL, h->root.root.string)))
587 {
588 h->dynamic = 1;
589 /* NB: If a symbol is made dynamic by --dynamic-list, it has
590 non-IR reference. */
591 h->root.non_ir_ref_dynamic = 1;
592 }
593 }
594
595 /* Record an assignment to a symbol made by a linker script. We need
596 this in case some dynamic object refers to this symbol. */
597
598 bfd_boolean
599 bfd_elf_record_link_assignment (bfd *output_bfd,
600 struct bfd_link_info *info,
601 const char *name,
602 bfd_boolean provide,
603 bfd_boolean hidden)
604 {
605 struct elf_link_hash_entry *h, *hv;
606 struct elf_link_hash_table *htab;
607 const struct elf_backend_data *bed;
608
609 if (!is_elf_hash_table (info->hash))
610 return TRUE;
611
612 htab = elf_hash_table (info);
613 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
614 if (h == NULL)
615 return provide;
616
617 if (h->root.type == bfd_link_hash_warning)
618 h = (struct elf_link_hash_entry *) h->root.u.i.link;
619
620 if (h->versioned == unknown)
621 {
622 /* Set versioned if symbol version is unknown. */
623 char *version = strrchr (name, ELF_VER_CHR);
624 if (version)
625 {
626 if (version > name && version[-1] != ELF_VER_CHR)
627 h->versioned = versioned_hidden;
628 else
629 h->versioned = versioned;
630 }
631 }
632
633 /* Symbols defined in a linker script but not referenced anywhere
634 else will have non_elf set. */
635 if (h->non_elf)
636 {
637 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
638 h->non_elf = 0;
639 }
640
641 switch (h->root.type)
642 {
643 case bfd_link_hash_defined:
644 case bfd_link_hash_defweak:
645 case bfd_link_hash_common:
646 break;
647 case bfd_link_hash_undefweak:
648 case bfd_link_hash_undefined:
649 /* Since we're defining the symbol, don't let it seem to have not
650 been defined. record_dynamic_symbol and size_dynamic_sections
651 may depend on this. */
652 h->root.type = bfd_link_hash_new;
653 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
654 bfd_link_repair_undef_list (&htab->root);
655 break;
656 case bfd_link_hash_new:
657 break;
658 case bfd_link_hash_indirect:
659 /* We had a versioned symbol in a dynamic library. We make the
660 the versioned symbol point to this one. */
661 bed = get_elf_backend_data (output_bfd);
662 hv = h;
663 while (hv->root.type == bfd_link_hash_indirect
664 || hv->root.type == bfd_link_hash_warning)
665 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
666 /* We don't need to update h->root.u since linker will set them
667 later. */
668 h->root.type = bfd_link_hash_undefined;
669 hv->root.type = bfd_link_hash_indirect;
670 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
671 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
672 break;
673 default:
674 BFD_FAIL ();
675 return FALSE;
676 }
677
678 /* If this symbol is being provided by the linker script, and it is
679 currently defined by a dynamic object, but not by a regular
680 object, then mark it as undefined so that the generic linker will
681 force the correct value. */
682 if (provide
683 && h->def_dynamic
684 && !h->def_regular)
685 h->root.type = bfd_link_hash_undefined;
686
687 /* If this symbol is currently defined by a dynamic object, but not
688 by a regular object, then clear out any version information because
689 the symbol will not be associated with the dynamic object any
690 more. */
691 if (h->def_dynamic && !h->def_regular)
692 h->verinfo.verdef = NULL;
693
694 /* Make sure this symbol is not garbage collected. */
695 h->mark = 1;
696
697 h->def_regular = 1;
698
699 if (hidden)
700 {
701 bed = get_elf_backend_data (output_bfd);
702 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
703 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
704 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
705 }
706
707 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
708 and executables. */
709 if (!bfd_link_relocatable (info)
710 && h->dynindx != -1
711 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
712 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
713 h->forced_local = 1;
714
715 if ((h->def_dynamic
716 || h->ref_dynamic
717 || bfd_link_dll (info)
718 || elf_hash_table (info)->is_relocatable_executable)
719 && !h->forced_local
720 && h->dynindx == -1)
721 {
722 if (! bfd_elf_link_record_dynamic_symbol (info, h))
723 return FALSE;
724
725 /* If this is a weak defined symbol, and we know a corresponding
726 real symbol from the same dynamic object, make sure the real
727 symbol is also made into a dynamic symbol. */
728 if (h->is_weakalias)
729 {
730 struct elf_link_hash_entry *def = weakdef (h);
731
732 if (def->dynindx == -1
733 && !bfd_elf_link_record_dynamic_symbol (info, def))
734 return FALSE;
735 }
736 }
737
738 return TRUE;
739 }
740
741 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
742 success, and 2 on a failure caused by attempting to record a symbol
743 in a discarded section, eg. a discarded link-once section symbol. */
744
745 int
746 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
747 bfd *input_bfd,
748 long input_indx)
749 {
750 size_t amt;
751 struct elf_link_local_dynamic_entry *entry;
752 struct elf_link_hash_table *eht;
753 struct elf_strtab_hash *dynstr;
754 size_t dynstr_index;
755 char *name;
756 Elf_External_Sym_Shndx eshndx;
757 char esym[sizeof (Elf64_External_Sym)];
758
759 if (! is_elf_hash_table (info->hash))
760 return 0;
761
762 /* See if the entry exists already. */
763 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
764 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
765 return 1;
766
767 amt = sizeof (*entry);
768 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
769 if (entry == NULL)
770 return 0;
771
772 /* Go find the symbol, so that we can find it's name. */
773 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
774 1, input_indx, &entry->isym, esym, &eshndx))
775 {
776 bfd_release (input_bfd, entry);
777 return 0;
778 }
779
780 if (entry->isym.st_shndx != SHN_UNDEF
781 && entry->isym.st_shndx < SHN_LORESERVE)
782 {
783 asection *s;
784
785 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
786 if (s == NULL || bfd_is_abs_section (s->output_section))
787 {
788 /* We can still bfd_release here as nothing has done another
789 bfd_alloc. We can't do this later in this function. */
790 bfd_release (input_bfd, entry);
791 return 2;
792 }
793 }
794
795 name = (bfd_elf_string_from_elf_section
796 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
797 entry->isym.st_name));
798
799 dynstr = elf_hash_table (info)->dynstr;
800 if (dynstr == NULL)
801 {
802 /* Create a strtab to hold the dynamic symbol names. */
803 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
804 if (dynstr == NULL)
805 return 0;
806 }
807
808 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
809 if (dynstr_index == (size_t) -1)
810 return 0;
811 entry->isym.st_name = dynstr_index;
812
813 eht = elf_hash_table (info);
814
815 entry->next = eht->dynlocal;
816 eht->dynlocal = entry;
817 entry->input_bfd = input_bfd;
818 entry->input_indx = input_indx;
819 eht->dynsymcount++;
820
821 /* Whatever binding the symbol had before, it's now local. */
822 entry->isym.st_info
823 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
824
825 /* The dynindx will be set at the end of size_dynamic_sections. */
826
827 return 1;
828 }
829
830 /* Return the dynindex of a local dynamic symbol. */
831
832 long
833 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
834 bfd *input_bfd,
835 long input_indx)
836 {
837 struct elf_link_local_dynamic_entry *e;
838
839 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
840 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
841 return e->dynindx;
842 return -1;
843 }
844
845 /* This function is used to renumber the dynamic symbols, if some of
846 them are removed because they are marked as local. This is called
847 via elf_link_hash_traverse. */
848
849 static bfd_boolean
850 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
851 void *data)
852 {
853 size_t *count = (size_t *) data;
854
855 if (h->forced_local)
856 return TRUE;
857
858 if (h->dynindx != -1)
859 h->dynindx = ++(*count);
860
861 return TRUE;
862 }
863
864
865 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
866 STB_LOCAL binding. */
867
868 static bfd_boolean
869 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
870 void *data)
871 {
872 size_t *count = (size_t *) data;
873
874 if (!h->forced_local)
875 return TRUE;
876
877 if (h->dynindx != -1)
878 h->dynindx = ++(*count);
879
880 return TRUE;
881 }
882
883 /* Return true if the dynamic symbol for a given section should be
884 omitted when creating a shared library. */
885 bfd_boolean
886 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
887 struct bfd_link_info *info,
888 asection *p)
889 {
890 struct elf_link_hash_table *htab;
891 asection *ip;
892
893 switch (elf_section_data (p)->this_hdr.sh_type)
894 {
895 case SHT_PROGBITS:
896 case SHT_NOBITS:
897 /* If sh_type is yet undecided, assume it could be
898 SHT_PROGBITS/SHT_NOBITS. */
899 case SHT_NULL:
900 htab = elf_hash_table (info);
901 if (htab->text_index_section != NULL)
902 return p != htab->text_index_section && p != htab->data_index_section;
903
904 return (htab->dynobj != NULL
905 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
906 && ip->output_section == p);
907
908 /* There shouldn't be section relative relocations
909 against any other section. */
910 default:
911 return TRUE;
912 }
913 }
914
915 bfd_boolean
916 _bfd_elf_omit_section_dynsym_all
917 (bfd *output_bfd ATTRIBUTE_UNUSED,
918 struct bfd_link_info *info ATTRIBUTE_UNUSED,
919 asection *p ATTRIBUTE_UNUSED)
920 {
921 return TRUE;
922 }
923
924 /* Assign dynsym indices. In a shared library we generate a section
925 symbol for each output section, which come first. Next come symbols
926 which have been forced to local binding. Then all of the back-end
927 allocated local dynamic syms, followed by the rest of the global
928 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
929 (This prevents the early call before elf_backend_init_index_section
930 and strip_excluded_output_sections setting dynindx for sections
931 that are stripped.) */
932
933 static unsigned long
934 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
935 struct bfd_link_info *info,
936 unsigned long *section_sym_count)
937 {
938 unsigned long dynsymcount = 0;
939 bfd_boolean do_sec = section_sym_count != NULL;
940
941 if (bfd_link_pic (info)
942 || elf_hash_table (info)->is_relocatable_executable)
943 {
944 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
945 asection *p;
946 for (p = output_bfd->sections; p ; p = p->next)
947 if ((p->flags & SEC_EXCLUDE) == 0
948 && (p->flags & SEC_ALLOC) != 0
949 && elf_hash_table (info)->dynamic_relocs
950 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
951 {
952 ++dynsymcount;
953 if (do_sec)
954 elf_section_data (p)->dynindx = dynsymcount;
955 }
956 else if (do_sec)
957 elf_section_data (p)->dynindx = 0;
958 }
959 if (do_sec)
960 *section_sym_count = dynsymcount;
961
962 elf_link_hash_traverse (elf_hash_table (info),
963 elf_link_renumber_local_hash_table_dynsyms,
964 &dynsymcount);
965
966 if (elf_hash_table (info)->dynlocal)
967 {
968 struct elf_link_local_dynamic_entry *p;
969 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
970 p->dynindx = ++dynsymcount;
971 }
972 elf_hash_table (info)->local_dynsymcount = dynsymcount;
973
974 elf_link_hash_traverse (elf_hash_table (info),
975 elf_link_renumber_hash_table_dynsyms,
976 &dynsymcount);
977
978 /* There is an unused NULL entry at the head of the table which we
979 must account for in our count even if the table is empty since it
980 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
981 .dynamic section. */
982 dynsymcount++;
983
984 elf_hash_table (info)->dynsymcount = dynsymcount;
985 return dynsymcount;
986 }
987
988 /* Merge st_other field. */
989
990 static void
991 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
992 const Elf_Internal_Sym *isym, asection *sec,
993 bfd_boolean definition, bfd_boolean dynamic)
994 {
995 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
996
997 /* If st_other has a processor-specific meaning, specific
998 code might be needed here. */
999 if (bed->elf_backend_merge_symbol_attribute)
1000 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1001 dynamic);
1002
1003 if (!dynamic)
1004 {
1005 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1006 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1007
1008 /* Keep the most constraining visibility. Leave the remainder
1009 of the st_other field to elf_backend_merge_symbol_attribute. */
1010 if (symvis - 1 < hvis - 1)
1011 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1012 }
1013 else if (definition
1014 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1015 && (sec->flags & SEC_READONLY) == 0)
1016 h->protected_def = 1;
1017 }
1018
1019 /* This function is called when we want to merge a new symbol with an
1020 existing symbol. It handles the various cases which arise when we
1021 find a definition in a dynamic object, or when there is already a
1022 definition in a dynamic object. The new symbol is described by
1023 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1024 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1025 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1026 of an old common symbol. We set OVERRIDE if the old symbol is
1027 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1028 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1029 to change. By OK to change, we mean that we shouldn't warn if the
1030 type or size does change. */
1031
1032 static bfd_boolean
1033 _bfd_elf_merge_symbol (bfd *abfd,
1034 struct bfd_link_info *info,
1035 const char *name,
1036 Elf_Internal_Sym *sym,
1037 asection **psec,
1038 bfd_vma *pvalue,
1039 struct elf_link_hash_entry **sym_hash,
1040 bfd **poldbfd,
1041 bfd_boolean *pold_weak,
1042 unsigned int *pold_alignment,
1043 bfd_boolean *skip,
1044 bfd_boolean *override,
1045 bfd_boolean *type_change_ok,
1046 bfd_boolean *size_change_ok,
1047 bfd_boolean *matched)
1048 {
1049 asection *sec, *oldsec;
1050 struct elf_link_hash_entry *h;
1051 struct elf_link_hash_entry *hi;
1052 struct elf_link_hash_entry *flip;
1053 int bind;
1054 bfd *oldbfd;
1055 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1056 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1057 const struct elf_backend_data *bed;
1058 char *new_version;
1059 bfd_boolean default_sym = *matched;
1060
1061 *skip = FALSE;
1062 *override = FALSE;
1063
1064 sec = *psec;
1065 bind = ELF_ST_BIND (sym->st_info);
1066
1067 if (! bfd_is_und_section (sec))
1068 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1069 else
1070 h = ((struct elf_link_hash_entry *)
1071 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1072 if (h == NULL)
1073 return FALSE;
1074 *sym_hash = h;
1075
1076 bed = get_elf_backend_data (abfd);
1077
1078 /* NEW_VERSION is the symbol version of the new symbol. */
1079 if (h->versioned != unversioned)
1080 {
1081 /* Symbol version is unknown or versioned. */
1082 new_version = strrchr (name, ELF_VER_CHR);
1083 if (new_version)
1084 {
1085 if (h->versioned == unknown)
1086 {
1087 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1088 h->versioned = versioned_hidden;
1089 else
1090 h->versioned = versioned;
1091 }
1092 new_version += 1;
1093 if (new_version[0] == '\0')
1094 new_version = NULL;
1095 }
1096 else
1097 h->versioned = unversioned;
1098 }
1099 else
1100 new_version = NULL;
1101
1102 /* For merging, we only care about real symbols. But we need to make
1103 sure that indirect symbol dynamic flags are updated. */
1104 hi = h;
1105 while (h->root.type == bfd_link_hash_indirect
1106 || h->root.type == bfd_link_hash_warning)
1107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1108
1109 if (!*matched)
1110 {
1111 if (hi == h || h->root.type == bfd_link_hash_new)
1112 *matched = TRUE;
1113 else
1114 {
1115 /* OLD_HIDDEN is true if the existing symbol is only visible
1116 to the symbol with the same symbol version. NEW_HIDDEN is
1117 true if the new symbol is only visible to the symbol with
1118 the same symbol version. */
1119 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1120 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1121 if (!old_hidden && !new_hidden)
1122 /* The new symbol matches the existing symbol if both
1123 aren't hidden. */
1124 *matched = TRUE;
1125 else
1126 {
1127 /* OLD_VERSION is the symbol version of the existing
1128 symbol. */
1129 char *old_version;
1130
1131 if (h->versioned >= versioned)
1132 old_version = strrchr (h->root.root.string,
1133 ELF_VER_CHR) + 1;
1134 else
1135 old_version = NULL;
1136
1137 /* The new symbol matches the existing symbol if they
1138 have the same symbol version. */
1139 *matched = (old_version == new_version
1140 || (old_version != NULL
1141 && new_version != NULL
1142 && strcmp (old_version, new_version) == 0));
1143 }
1144 }
1145 }
1146
1147 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1148 existing symbol. */
1149
1150 oldbfd = NULL;
1151 oldsec = NULL;
1152 switch (h->root.type)
1153 {
1154 default:
1155 break;
1156
1157 case bfd_link_hash_undefined:
1158 case bfd_link_hash_undefweak:
1159 oldbfd = h->root.u.undef.abfd;
1160 break;
1161
1162 case bfd_link_hash_defined:
1163 case bfd_link_hash_defweak:
1164 oldbfd = h->root.u.def.section->owner;
1165 oldsec = h->root.u.def.section;
1166 break;
1167
1168 case bfd_link_hash_common:
1169 oldbfd = h->root.u.c.p->section->owner;
1170 oldsec = h->root.u.c.p->section;
1171 if (pold_alignment)
1172 *pold_alignment = h->root.u.c.p->alignment_power;
1173 break;
1174 }
1175 if (poldbfd && *poldbfd == NULL)
1176 *poldbfd = oldbfd;
1177
1178 /* Differentiate strong and weak symbols. */
1179 newweak = bind == STB_WEAK;
1180 oldweak = (h->root.type == bfd_link_hash_defweak
1181 || h->root.type == bfd_link_hash_undefweak);
1182 if (pold_weak)
1183 *pold_weak = oldweak;
1184
1185 /* We have to check it for every instance since the first few may be
1186 references and not all compilers emit symbol type for undefined
1187 symbols. */
1188 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1189
1190 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1191 respectively, is from a dynamic object. */
1192
1193 newdyn = (abfd->flags & DYNAMIC) != 0;
1194
1195 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1196 syms and defined syms in dynamic libraries respectively.
1197 ref_dynamic on the other hand can be set for a symbol defined in
1198 a dynamic library, and def_dynamic may not be set; When the
1199 definition in a dynamic lib is overridden by a definition in the
1200 executable use of the symbol in the dynamic lib becomes a
1201 reference to the executable symbol. */
1202 if (newdyn)
1203 {
1204 if (bfd_is_und_section (sec))
1205 {
1206 if (bind != STB_WEAK)
1207 {
1208 h->ref_dynamic_nonweak = 1;
1209 hi->ref_dynamic_nonweak = 1;
1210 }
1211 }
1212 else
1213 {
1214 /* Update the existing symbol only if they match. */
1215 if (*matched)
1216 h->dynamic_def = 1;
1217 hi->dynamic_def = 1;
1218 }
1219 }
1220
1221 /* If we just created the symbol, mark it as being an ELF symbol.
1222 Other than that, there is nothing to do--there is no merge issue
1223 with a newly defined symbol--so we just return. */
1224
1225 if (h->root.type == bfd_link_hash_new)
1226 {
1227 h->non_elf = 0;
1228 return TRUE;
1229 }
1230
1231 /* In cases involving weak versioned symbols, we may wind up trying
1232 to merge a symbol with itself. Catch that here, to avoid the
1233 confusion that results if we try to override a symbol with
1234 itself. The additional tests catch cases like
1235 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1236 dynamic object, which we do want to handle here. */
1237 if (abfd == oldbfd
1238 && (newweak || oldweak)
1239 && ((abfd->flags & DYNAMIC) == 0
1240 || !h->def_regular))
1241 return TRUE;
1242
1243 olddyn = FALSE;
1244 if (oldbfd != NULL)
1245 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1246 else if (oldsec != NULL)
1247 {
1248 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1249 indices used by MIPS ELF. */
1250 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1251 }
1252
1253 /* Handle a case where plugin_notice won't be called and thus won't
1254 set the non_ir_ref flags on the first pass over symbols. */
1255 if (oldbfd != NULL
1256 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1257 && newdyn != olddyn)
1258 {
1259 h->root.non_ir_ref_dynamic = TRUE;
1260 hi->root.non_ir_ref_dynamic = TRUE;
1261 }
1262
1263 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1264 respectively, appear to be a definition rather than reference. */
1265
1266 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1267
1268 olddef = (h->root.type != bfd_link_hash_undefined
1269 && h->root.type != bfd_link_hash_undefweak
1270 && h->root.type != bfd_link_hash_common);
1271
1272 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1273 respectively, appear to be a function. */
1274
1275 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1276 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1277
1278 oldfunc = (h->type != STT_NOTYPE
1279 && bed->is_function_type (h->type));
1280
1281 if (!(newfunc && oldfunc)
1282 && ELF_ST_TYPE (sym->st_info) != h->type
1283 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1284 && h->type != STT_NOTYPE
1285 && (newdef || bfd_is_com_section (sec))
1286 && (olddef || h->root.type == bfd_link_hash_common))
1287 {
1288 /* If creating a default indirect symbol ("foo" or "foo@") from
1289 a dynamic versioned definition ("foo@@") skip doing so if
1290 there is an existing regular definition with a different
1291 type. We don't want, for example, a "time" variable in the
1292 executable overriding a "time" function in a shared library. */
1293 if (newdyn
1294 && !olddyn)
1295 {
1296 *skip = TRUE;
1297 return TRUE;
1298 }
1299
1300 /* When adding a symbol from a regular object file after we have
1301 created indirect symbols, undo the indirection and any
1302 dynamic state. */
1303 if (hi != h
1304 && !newdyn
1305 && olddyn)
1306 {
1307 h = hi;
1308 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1309 h->forced_local = 0;
1310 h->ref_dynamic = 0;
1311 h->def_dynamic = 0;
1312 h->dynamic_def = 0;
1313 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1314 {
1315 h->root.type = bfd_link_hash_undefined;
1316 h->root.u.undef.abfd = abfd;
1317 }
1318 else
1319 {
1320 h->root.type = bfd_link_hash_new;
1321 h->root.u.undef.abfd = NULL;
1322 }
1323 return TRUE;
1324 }
1325 }
1326
1327 /* Check TLS symbols. We don't check undefined symbols introduced
1328 by "ld -u" which have no type (and oldbfd NULL), and we don't
1329 check symbols from plugins because they also have no type. */
1330 if (oldbfd != NULL
1331 && (oldbfd->flags & BFD_PLUGIN) == 0
1332 && (abfd->flags & BFD_PLUGIN) == 0
1333 && ELF_ST_TYPE (sym->st_info) != h->type
1334 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1335 {
1336 bfd *ntbfd, *tbfd;
1337 bfd_boolean ntdef, tdef;
1338 asection *ntsec, *tsec;
1339
1340 if (h->type == STT_TLS)
1341 {
1342 ntbfd = abfd;
1343 ntsec = sec;
1344 ntdef = newdef;
1345 tbfd = oldbfd;
1346 tsec = oldsec;
1347 tdef = olddef;
1348 }
1349 else
1350 {
1351 ntbfd = oldbfd;
1352 ntsec = oldsec;
1353 ntdef = olddef;
1354 tbfd = abfd;
1355 tsec = sec;
1356 tdef = newdef;
1357 }
1358
1359 if (tdef && ntdef)
1360 _bfd_error_handler
1361 /* xgettext:c-format */
1362 (_("%s: TLS definition in %pB section %pA "
1363 "mismatches non-TLS definition in %pB section %pA"),
1364 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1365 else if (!tdef && !ntdef)
1366 _bfd_error_handler
1367 /* xgettext:c-format */
1368 (_("%s: TLS reference in %pB "
1369 "mismatches non-TLS reference in %pB"),
1370 h->root.root.string, tbfd, ntbfd);
1371 else if (tdef)
1372 _bfd_error_handler
1373 /* xgettext:c-format */
1374 (_("%s: TLS definition in %pB section %pA "
1375 "mismatches non-TLS reference in %pB"),
1376 h->root.root.string, tbfd, tsec, ntbfd);
1377 else
1378 _bfd_error_handler
1379 /* xgettext:c-format */
1380 (_("%s: TLS reference in %pB "
1381 "mismatches non-TLS definition in %pB section %pA"),
1382 h->root.root.string, tbfd, ntbfd, ntsec);
1383
1384 bfd_set_error (bfd_error_bad_value);
1385 return FALSE;
1386 }
1387
1388 /* If the old symbol has non-default visibility, we ignore the new
1389 definition from a dynamic object. */
1390 if (newdyn
1391 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1392 && !bfd_is_und_section (sec))
1393 {
1394 *skip = TRUE;
1395 /* Make sure this symbol is dynamic. */
1396 h->ref_dynamic = 1;
1397 hi->ref_dynamic = 1;
1398 /* A protected symbol has external availability. Make sure it is
1399 recorded as dynamic.
1400
1401 FIXME: Should we check type and size for protected symbol? */
1402 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1403 return bfd_elf_link_record_dynamic_symbol (info, h);
1404 else
1405 return TRUE;
1406 }
1407 else if (!newdyn
1408 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1409 && h->def_dynamic)
1410 {
1411 /* If the new symbol with non-default visibility comes from a
1412 relocatable file and the old definition comes from a dynamic
1413 object, we remove the old definition. */
1414 if (hi->root.type == bfd_link_hash_indirect)
1415 {
1416 /* Handle the case where the old dynamic definition is
1417 default versioned. We need to copy the symbol info from
1418 the symbol with default version to the normal one if it
1419 was referenced before. */
1420 if (h->ref_regular)
1421 {
1422 hi->root.type = h->root.type;
1423 h->root.type = bfd_link_hash_indirect;
1424 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1425
1426 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1427 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1428 {
1429 /* If the new symbol is hidden or internal, completely undo
1430 any dynamic link state. */
1431 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1432 h->forced_local = 0;
1433 h->ref_dynamic = 0;
1434 }
1435 else
1436 h->ref_dynamic = 1;
1437
1438 h->def_dynamic = 0;
1439 /* FIXME: Should we check type and size for protected symbol? */
1440 h->size = 0;
1441 h->type = 0;
1442
1443 h = hi;
1444 }
1445 else
1446 h = hi;
1447 }
1448
1449 /* If the old symbol was undefined before, then it will still be
1450 on the undefs list. If the new symbol is undefined or
1451 common, we can't make it bfd_link_hash_new here, because new
1452 undefined or common symbols will be added to the undefs list
1453 by _bfd_generic_link_add_one_symbol. Symbols may not be
1454 added twice to the undefs list. Also, if the new symbol is
1455 undefweak then we don't want to lose the strong undef. */
1456 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1457 {
1458 h->root.type = bfd_link_hash_undefined;
1459 h->root.u.undef.abfd = abfd;
1460 }
1461 else
1462 {
1463 h->root.type = bfd_link_hash_new;
1464 h->root.u.undef.abfd = NULL;
1465 }
1466
1467 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1468 {
1469 /* If the new symbol is hidden or internal, completely undo
1470 any dynamic link state. */
1471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1472 h->forced_local = 0;
1473 h->ref_dynamic = 0;
1474 }
1475 else
1476 h->ref_dynamic = 1;
1477 h->def_dynamic = 0;
1478 /* FIXME: Should we check type and size for protected symbol? */
1479 h->size = 0;
1480 h->type = 0;
1481 return TRUE;
1482 }
1483
1484 /* If a new weak symbol definition comes from a regular file and the
1485 old symbol comes from a dynamic library, we treat the new one as
1486 strong. Similarly, an old weak symbol definition from a regular
1487 file is treated as strong when the new symbol comes from a dynamic
1488 library. Further, an old weak symbol from a dynamic library is
1489 treated as strong if the new symbol is from a dynamic library.
1490 This reflects the way glibc's ld.so works.
1491
1492 Also allow a weak symbol to override a linker script symbol
1493 defined by an early pass over the script. This is done so the
1494 linker knows the symbol is defined in an object file, for the
1495 DEFINED script function.
1496
1497 Do this before setting *type_change_ok or *size_change_ok so that
1498 we warn properly when dynamic library symbols are overridden. */
1499
1500 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1501 newweak = FALSE;
1502 if (olddef && newdyn)
1503 oldweak = FALSE;
1504
1505 /* Allow changes between different types of function symbol. */
1506 if (newfunc && oldfunc)
1507 *type_change_ok = TRUE;
1508
1509 /* It's OK to change the type if either the existing symbol or the
1510 new symbol is weak. A type change is also OK if the old symbol
1511 is undefined and the new symbol is defined. */
1512
1513 if (oldweak
1514 || newweak
1515 || (newdef
1516 && h->root.type == bfd_link_hash_undefined))
1517 *type_change_ok = TRUE;
1518
1519 /* It's OK to change the size if either the existing symbol or the
1520 new symbol is weak, or if the old symbol is undefined. */
1521
1522 if (*type_change_ok
1523 || h->root.type == bfd_link_hash_undefined)
1524 *size_change_ok = TRUE;
1525
1526 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1527 symbol, respectively, appears to be a common symbol in a dynamic
1528 object. If a symbol appears in an uninitialized section, and is
1529 not weak, and is not a function, then it may be a common symbol
1530 which was resolved when the dynamic object was created. We want
1531 to treat such symbols specially, because they raise special
1532 considerations when setting the symbol size: if the symbol
1533 appears as a common symbol in a regular object, and the size in
1534 the regular object is larger, we must make sure that we use the
1535 larger size. This problematic case can always be avoided in C,
1536 but it must be handled correctly when using Fortran shared
1537 libraries.
1538
1539 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1540 likewise for OLDDYNCOMMON and OLDDEF.
1541
1542 Note that this test is just a heuristic, and that it is quite
1543 possible to have an uninitialized symbol in a shared object which
1544 is really a definition, rather than a common symbol. This could
1545 lead to some minor confusion when the symbol really is a common
1546 symbol in some regular object. However, I think it will be
1547 harmless. */
1548
1549 if (newdyn
1550 && newdef
1551 && !newweak
1552 && (sec->flags & SEC_ALLOC) != 0
1553 && (sec->flags & SEC_LOAD) == 0
1554 && sym->st_size > 0
1555 && !newfunc)
1556 newdyncommon = TRUE;
1557 else
1558 newdyncommon = FALSE;
1559
1560 if (olddyn
1561 && olddef
1562 && h->root.type == bfd_link_hash_defined
1563 && h->def_dynamic
1564 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1565 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1566 && h->size > 0
1567 && !oldfunc)
1568 olddyncommon = TRUE;
1569 else
1570 olddyncommon = FALSE;
1571
1572 /* We now know everything about the old and new symbols. We ask the
1573 backend to check if we can merge them. */
1574 if (bed->merge_symbol != NULL)
1575 {
1576 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1577 return FALSE;
1578 sec = *psec;
1579 }
1580
1581 /* There are multiple definitions of a normal symbol. Skip the
1582 default symbol as well as definition from an IR object. */
1583 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1584 && !default_sym && h->def_regular
1585 && !(oldbfd != NULL
1586 && (oldbfd->flags & BFD_PLUGIN) != 0
1587 && (abfd->flags & BFD_PLUGIN) == 0))
1588 {
1589 /* Handle a multiple definition. */
1590 (*info->callbacks->multiple_definition) (info, &h->root,
1591 abfd, sec, *pvalue);
1592 *skip = TRUE;
1593 return TRUE;
1594 }
1595
1596 /* If both the old and the new symbols look like common symbols in a
1597 dynamic object, set the size of the symbol to the larger of the
1598 two. */
1599
1600 if (olddyncommon
1601 && newdyncommon
1602 && sym->st_size != h->size)
1603 {
1604 /* Since we think we have two common symbols, issue a multiple
1605 common warning if desired. Note that we only warn if the
1606 size is different. If the size is the same, we simply let
1607 the old symbol override the new one as normally happens with
1608 symbols defined in dynamic objects. */
1609
1610 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1611 bfd_link_hash_common, sym->st_size);
1612 if (sym->st_size > h->size)
1613 h->size = sym->st_size;
1614
1615 *size_change_ok = TRUE;
1616 }
1617
1618 /* If we are looking at a dynamic object, and we have found a
1619 definition, we need to see if the symbol was already defined by
1620 some other object. If so, we want to use the existing
1621 definition, and we do not want to report a multiple symbol
1622 definition error; we do this by clobbering *PSEC to be
1623 bfd_und_section_ptr.
1624
1625 We treat a common symbol as a definition if the symbol in the
1626 shared library is a function, since common symbols always
1627 represent variables; this can cause confusion in principle, but
1628 any such confusion would seem to indicate an erroneous program or
1629 shared library. We also permit a common symbol in a regular
1630 object to override a weak symbol in a shared object. */
1631
1632 if (newdyn
1633 && newdef
1634 && (olddef
1635 || (h->root.type == bfd_link_hash_common
1636 && (newweak || newfunc))))
1637 {
1638 *override = TRUE;
1639 newdef = FALSE;
1640 newdyncommon = FALSE;
1641
1642 *psec = sec = bfd_und_section_ptr;
1643 *size_change_ok = TRUE;
1644
1645 /* If we get here when the old symbol is a common symbol, then
1646 we are explicitly letting it override a weak symbol or
1647 function in a dynamic object, and we don't want to warn about
1648 a type change. If the old symbol is a defined symbol, a type
1649 change warning may still be appropriate. */
1650
1651 if (h->root.type == bfd_link_hash_common)
1652 *type_change_ok = TRUE;
1653 }
1654
1655 /* Handle the special case of an old common symbol merging with a
1656 new symbol which looks like a common symbol in a shared object.
1657 We change *PSEC and *PVALUE to make the new symbol look like a
1658 common symbol, and let _bfd_generic_link_add_one_symbol do the
1659 right thing. */
1660
1661 if (newdyncommon
1662 && h->root.type == bfd_link_hash_common)
1663 {
1664 *override = TRUE;
1665 newdef = FALSE;
1666 newdyncommon = FALSE;
1667 *pvalue = sym->st_size;
1668 *psec = sec = bed->common_section (oldsec);
1669 *size_change_ok = TRUE;
1670 }
1671
1672 /* Skip weak definitions of symbols that are already defined. */
1673 if (newdef && olddef && newweak)
1674 {
1675 /* Don't skip new non-IR weak syms. */
1676 if (!(oldbfd != NULL
1677 && (oldbfd->flags & BFD_PLUGIN) != 0
1678 && (abfd->flags & BFD_PLUGIN) == 0))
1679 {
1680 newdef = FALSE;
1681 *skip = TRUE;
1682 }
1683
1684 /* Merge st_other. If the symbol already has a dynamic index,
1685 but visibility says it should not be visible, turn it into a
1686 local symbol. */
1687 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1688 if (h->dynindx != -1)
1689 switch (ELF_ST_VISIBILITY (h->other))
1690 {
1691 case STV_INTERNAL:
1692 case STV_HIDDEN:
1693 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1694 break;
1695 }
1696 }
1697
1698 /* If the old symbol is from a dynamic object, and the new symbol is
1699 a definition which is not from a dynamic object, then the new
1700 symbol overrides the old symbol. Symbols from regular files
1701 always take precedence over symbols from dynamic objects, even if
1702 they are defined after the dynamic object in the link.
1703
1704 As above, we again permit a common symbol in a regular object to
1705 override a definition in a shared object if the shared object
1706 symbol is a function or is weak. */
1707
1708 flip = NULL;
1709 if (!newdyn
1710 && (newdef
1711 || (bfd_is_com_section (sec)
1712 && (oldweak || oldfunc)))
1713 && olddyn
1714 && olddef
1715 && h->def_dynamic)
1716 {
1717 /* Change the hash table entry to undefined, and let
1718 _bfd_generic_link_add_one_symbol do the right thing with the
1719 new definition. */
1720
1721 h->root.type = bfd_link_hash_undefined;
1722 h->root.u.undef.abfd = h->root.u.def.section->owner;
1723 *size_change_ok = TRUE;
1724
1725 olddef = FALSE;
1726 olddyncommon = FALSE;
1727
1728 /* We again permit a type change when a common symbol may be
1729 overriding a function. */
1730
1731 if (bfd_is_com_section (sec))
1732 {
1733 if (oldfunc)
1734 {
1735 /* If a common symbol overrides a function, make sure
1736 that it isn't defined dynamically nor has type
1737 function. */
1738 h->def_dynamic = 0;
1739 h->type = STT_NOTYPE;
1740 }
1741 *type_change_ok = TRUE;
1742 }
1743
1744 if (hi->root.type == bfd_link_hash_indirect)
1745 flip = hi;
1746 else
1747 /* This union may have been set to be non-NULL when this symbol
1748 was seen in a dynamic object. We must force the union to be
1749 NULL, so that it is correct for a regular symbol. */
1750 h->verinfo.vertree = NULL;
1751 }
1752
1753 /* Handle the special case of a new common symbol merging with an
1754 old symbol that looks like it might be a common symbol defined in
1755 a shared object. Note that we have already handled the case in
1756 which a new common symbol should simply override the definition
1757 in the shared library. */
1758
1759 if (! newdyn
1760 && bfd_is_com_section (sec)
1761 && olddyncommon)
1762 {
1763 /* It would be best if we could set the hash table entry to a
1764 common symbol, but we don't know what to use for the section
1765 or the alignment. */
1766 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1767 bfd_link_hash_common, sym->st_size);
1768
1769 /* If the presumed common symbol in the dynamic object is
1770 larger, pretend that the new symbol has its size. */
1771
1772 if (h->size > *pvalue)
1773 *pvalue = h->size;
1774
1775 /* We need to remember the alignment required by the symbol
1776 in the dynamic object. */
1777 BFD_ASSERT (pold_alignment);
1778 *pold_alignment = h->root.u.def.section->alignment_power;
1779
1780 olddef = FALSE;
1781 olddyncommon = FALSE;
1782
1783 h->root.type = bfd_link_hash_undefined;
1784 h->root.u.undef.abfd = h->root.u.def.section->owner;
1785
1786 *size_change_ok = TRUE;
1787 *type_change_ok = TRUE;
1788
1789 if (hi->root.type == bfd_link_hash_indirect)
1790 flip = hi;
1791 else
1792 h->verinfo.vertree = NULL;
1793 }
1794
1795 if (flip != NULL)
1796 {
1797 /* Handle the case where we had a versioned symbol in a dynamic
1798 library and now find a definition in a normal object. In this
1799 case, we make the versioned symbol point to the normal one. */
1800 flip->root.type = h->root.type;
1801 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1802 h->root.type = bfd_link_hash_indirect;
1803 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1804 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1805 if (h->def_dynamic)
1806 {
1807 h->def_dynamic = 0;
1808 flip->ref_dynamic = 1;
1809 }
1810 }
1811
1812 return TRUE;
1813 }
1814
1815 /* This function is called to create an indirect symbol from the
1816 default for the symbol with the default version if needed. The
1817 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1818 set DYNSYM if the new indirect symbol is dynamic. */
1819
1820 static bfd_boolean
1821 _bfd_elf_add_default_symbol (bfd *abfd,
1822 struct bfd_link_info *info,
1823 struct elf_link_hash_entry *h,
1824 const char *name,
1825 Elf_Internal_Sym *sym,
1826 asection *sec,
1827 bfd_vma value,
1828 bfd **poldbfd,
1829 bfd_boolean *dynsym)
1830 {
1831 bfd_boolean type_change_ok;
1832 bfd_boolean size_change_ok;
1833 bfd_boolean skip;
1834 char *shortname;
1835 struct elf_link_hash_entry *hi;
1836 struct bfd_link_hash_entry *bh;
1837 const struct elf_backend_data *bed;
1838 bfd_boolean collect;
1839 bfd_boolean dynamic;
1840 bfd_boolean override;
1841 char *p;
1842 size_t len, shortlen;
1843 asection *tmp_sec;
1844 bfd_boolean matched;
1845
1846 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1847 return TRUE;
1848
1849 /* If this symbol has a version, and it is the default version, we
1850 create an indirect symbol from the default name to the fully
1851 decorated name. This will cause external references which do not
1852 specify a version to be bound to this version of the symbol. */
1853 p = strchr (name, ELF_VER_CHR);
1854 if (h->versioned == unknown)
1855 {
1856 if (p == NULL)
1857 {
1858 h->versioned = unversioned;
1859 return TRUE;
1860 }
1861 else
1862 {
1863 if (p[1] != ELF_VER_CHR)
1864 {
1865 h->versioned = versioned_hidden;
1866 return TRUE;
1867 }
1868 else
1869 h->versioned = versioned;
1870 }
1871 }
1872 else
1873 {
1874 /* PR ld/19073: We may see an unversioned definition after the
1875 default version. */
1876 if (p == NULL)
1877 return TRUE;
1878 }
1879
1880 bed = get_elf_backend_data (abfd);
1881 collect = bed->collect;
1882 dynamic = (abfd->flags & DYNAMIC) != 0;
1883
1884 shortlen = p - name;
1885 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1886 if (shortname == NULL)
1887 return FALSE;
1888 memcpy (shortname, name, shortlen);
1889 shortname[shortlen] = '\0';
1890
1891 /* We are going to create a new symbol. Merge it with any existing
1892 symbol with this name. For the purposes of the merge, act as
1893 though we were defining the symbol we just defined, although we
1894 actually going to define an indirect symbol. */
1895 type_change_ok = FALSE;
1896 size_change_ok = FALSE;
1897 matched = TRUE;
1898 tmp_sec = sec;
1899 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1900 &hi, poldbfd, NULL, NULL, &skip, &override,
1901 &type_change_ok, &size_change_ok, &matched))
1902 return FALSE;
1903
1904 if (skip)
1905 goto nondefault;
1906
1907 if (hi->def_regular || ELF_COMMON_DEF_P (hi))
1908 {
1909 /* If the undecorated symbol will have a version added by a
1910 script different to H, then don't indirect to/from the
1911 undecorated symbol. This isn't ideal because we may not yet
1912 have seen symbol versions, if given by a script on the
1913 command line rather than via --version-script. */
1914 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1915 {
1916 bfd_boolean hide;
1917
1918 hi->verinfo.vertree
1919 = bfd_find_version_for_sym (info->version_info,
1920 hi->root.root.string, &hide);
1921 if (hi->verinfo.vertree != NULL && hide)
1922 {
1923 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1924 goto nondefault;
1925 }
1926 }
1927 if (hi->verinfo.vertree != NULL
1928 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1929 goto nondefault;
1930 }
1931
1932 if (! override)
1933 {
1934 /* Add the default symbol if not performing a relocatable link. */
1935 if (! bfd_link_relocatable (info))
1936 {
1937 bh = &hi->root;
1938 if (bh->type == bfd_link_hash_defined
1939 && bh->u.def.section->owner != NULL
1940 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1941 {
1942 /* Mark the previous definition from IR object as
1943 undefined so that the generic linker will override
1944 it. */
1945 bh->type = bfd_link_hash_undefined;
1946 bh->u.undef.abfd = bh->u.def.section->owner;
1947 }
1948 if (! (_bfd_generic_link_add_one_symbol
1949 (info, abfd, shortname, BSF_INDIRECT,
1950 bfd_ind_section_ptr,
1951 0, name, FALSE, collect, &bh)))
1952 return FALSE;
1953 hi = (struct elf_link_hash_entry *) bh;
1954 }
1955 }
1956 else
1957 {
1958 /* In this case the symbol named SHORTNAME is overriding the
1959 indirect symbol we want to add. We were planning on making
1960 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1961 is the name without a version. NAME is the fully versioned
1962 name, and it is the default version.
1963
1964 Overriding means that we already saw a definition for the
1965 symbol SHORTNAME in a regular object, and it is overriding
1966 the symbol defined in the dynamic object.
1967
1968 When this happens, we actually want to change NAME, the
1969 symbol we just added, to refer to SHORTNAME. This will cause
1970 references to NAME in the shared object to become references
1971 to SHORTNAME in the regular object. This is what we expect
1972 when we override a function in a shared object: that the
1973 references in the shared object will be mapped to the
1974 definition in the regular object. */
1975
1976 while (hi->root.type == bfd_link_hash_indirect
1977 || hi->root.type == bfd_link_hash_warning)
1978 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1979
1980 h->root.type = bfd_link_hash_indirect;
1981 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1982 if (h->def_dynamic)
1983 {
1984 h->def_dynamic = 0;
1985 hi->ref_dynamic = 1;
1986 if (hi->ref_regular
1987 || hi->def_regular)
1988 {
1989 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1990 return FALSE;
1991 }
1992 }
1993
1994 /* Now set HI to H, so that the following code will set the
1995 other fields correctly. */
1996 hi = h;
1997 }
1998
1999 /* Check if HI is a warning symbol. */
2000 if (hi->root.type == bfd_link_hash_warning)
2001 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2002
2003 /* If there is a duplicate definition somewhere, then HI may not
2004 point to an indirect symbol. We will have reported an error to
2005 the user in that case. */
2006
2007 if (hi->root.type == bfd_link_hash_indirect)
2008 {
2009 struct elf_link_hash_entry *ht;
2010
2011 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2012 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2013
2014 /* A reference to the SHORTNAME symbol from a dynamic library
2015 will be satisfied by the versioned symbol at runtime. In
2016 effect, we have a reference to the versioned symbol. */
2017 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2018 hi->dynamic_def |= ht->dynamic_def;
2019
2020 /* See if the new flags lead us to realize that the symbol must
2021 be dynamic. */
2022 if (! *dynsym)
2023 {
2024 if (! dynamic)
2025 {
2026 if (! bfd_link_executable (info)
2027 || hi->def_dynamic
2028 || hi->ref_dynamic)
2029 *dynsym = TRUE;
2030 }
2031 else
2032 {
2033 if (hi->ref_regular)
2034 *dynsym = TRUE;
2035 }
2036 }
2037 }
2038
2039 /* We also need to define an indirection from the nondefault version
2040 of the symbol. */
2041
2042 nondefault:
2043 len = strlen (name);
2044 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2045 if (shortname == NULL)
2046 return FALSE;
2047 memcpy (shortname, name, shortlen);
2048 memcpy (shortname + shortlen, p + 1, len - shortlen);
2049
2050 /* Once again, merge with any existing symbol. */
2051 type_change_ok = FALSE;
2052 size_change_ok = FALSE;
2053 tmp_sec = sec;
2054 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2055 &hi, poldbfd, NULL, NULL, &skip, &override,
2056 &type_change_ok, &size_change_ok, &matched))
2057 return FALSE;
2058
2059 if (skip)
2060 return TRUE;
2061
2062 if (override)
2063 {
2064 /* Here SHORTNAME is a versioned name, so we don't expect to see
2065 the type of override we do in the case above unless it is
2066 overridden by a versioned definition. */
2067 if (hi->root.type != bfd_link_hash_defined
2068 && hi->root.type != bfd_link_hash_defweak)
2069 _bfd_error_handler
2070 /* xgettext:c-format */
2071 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2072 abfd, shortname);
2073 }
2074 else
2075 {
2076 bh = &hi->root;
2077 if (! (_bfd_generic_link_add_one_symbol
2078 (info, abfd, shortname, BSF_INDIRECT,
2079 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2080 return FALSE;
2081 hi = (struct elf_link_hash_entry *) bh;
2082
2083 /* If there is a duplicate definition somewhere, then HI may not
2084 point to an indirect symbol. We will have reported an error
2085 to the user in that case. */
2086
2087 if (hi->root.type == bfd_link_hash_indirect)
2088 {
2089 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2090 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2091 hi->dynamic_def |= h->dynamic_def;
2092
2093 /* See if the new flags lead us to realize that the symbol
2094 must be dynamic. */
2095 if (! *dynsym)
2096 {
2097 if (! dynamic)
2098 {
2099 if (! bfd_link_executable (info)
2100 || hi->ref_dynamic)
2101 *dynsym = TRUE;
2102 }
2103 else
2104 {
2105 if (hi->ref_regular)
2106 *dynsym = TRUE;
2107 }
2108 }
2109 }
2110 }
2111
2112 return TRUE;
2113 }
2114 \f
2115 /* This routine is used to export all defined symbols into the dynamic
2116 symbol table. It is called via elf_link_hash_traverse. */
2117
2118 static bfd_boolean
2119 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2120 {
2121 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2122
2123 /* Ignore indirect symbols. These are added by the versioning code. */
2124 if (h->root.type == bfd_link_hash_indirect)
2125 return TRUE;
2126
2127 /* Ignore this if we won't export it. */
2128 if (!eif->info->export_dynamic && !h->dynamic)
2129 return TRUE;
2130
2131 if (h->dynindx == -1
2132 && (h->def_regular || h->ref_regular)
2133 && ! bfd_hide_sym_by_version (eif->info->version_info,
2134 h->root.root.string))
2135 {
2136 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2137 {
2138 eif->failed = TRUE;
2139 return FALSE;
2140 }
2141 }
2142
2143 return TRUE;
2144 }
2145 \f
2146 /* Look through the symbols which are defined in other shared
2147 libraries and referenced here. Update the list of version
2148 dependencies. This will be put into the .gnu.version_r section.
2149 This function is called via elf_link_hash_traverse. */
2150
2151 static bfd_boolean
2152 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2153 void *data)
2154 {
2155 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2156 Elf_Internal_Verneed *t;
2157 Elf_Internal_Vernaux *a;
2158 size_t amt;
2159
2160 /* We only care about symbols defined in shared objects with version
2161 information. */
2162 if (!h->def_dynamic
2163 || h->def_regular
2164 || h->dynindx == -1
2165 || h->verinfo.verdef == NULL
2166 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2167 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2168 return TRUE;
2169
2170 /* See if we already know about this version. */
2171 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2172 t != NULL;
2173 t = t->vn_nextref)
2174 {
2175 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2176 continue;
2177
2178 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2179 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2180 return TRUE;
2181
2182 break;
2183 }
2184
2185 /* This is a new version. Add it to tree we are building. */
2186
2187 if (t == NULL)
2188 {
2189 amt = sizeof *t;
2190 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2191 if (t == NULL)
2192 {
2193 rinfo->failed = TRUE;
2194 return FALSE;
2195 }
2196
2197 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2198 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2199 elf_tdata (rinfo->info->output_bfd)->verref = t;
2200 }
2201
2202 amt = sizeof *a;
2203 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2204 if (a == NULL)
2205 {
2206 rinfo->failed = TRUE;
2207 return FALSE;
2208 }
2209
2210 /* Note that we are copying a string pointer here, and testing it
2211 above. If bfd_elf_string_from_elf_section is ever changed to
2212 discard the string data when low in memory, this will have to be
2213 fixed. */
2214 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2215
2216 a->vna_flags = h->verinfo.verdef->vd_flags;
2217 a->vna_nextptr = t->vn_auxptr;
2218
2219 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2220 ++rinfo->vers;
2221
2222 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2223
2224 t->vn_auxptr = a;
2225
2226 return TRUE;
2227 }
2228
2229 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2230 hidden. Set *T_P to NULL if there is no match. */
2231
2232 static bfd_boolean
2233 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2234 struct elf_link_hash_entry *h,
2235 const char *version_p,
2236 struct bfd_elf_version_tree **t_p,
2237 bfd_boolean *hide)
2238 {
2239 struct bfd_elf_version_tree *t;
2240
2241 /* Look for the version. If we find it, it is no longer weak. */
2242 for (t = info->version_info; t != NULL; t = t->next)
2243 {
2244 if (strcmp (t->name, version_p) == 0)
2245 {
2246 size_t len;
2247 char *alc;
2248 struct bfd_elf_version_expr *d;
2249
2250 len = version_p - h->root.root.string;
2251 alc = (char *) bfd_malloc (len);
2252 if (alc == NULL)
2253 return FALSE;
2254 memcpy (alc, h->root.root.string, len - 1);
2255 alc[len - 1] = '\0';
2256 if (alc[len - 2] == ELF_VER_CHR)
2257 alc[len - 2] = '\0';
2258
2259 h->verinfo.vertree = t;
2260 t->used = TRUE;
2261 d = NULL;
2262
2263 if (t->globals.list != NULL)
2264 d = (*t->match) (&t->globals, NULL, alc);
2265
2266 /* See if there is anything to force this symbol to
2267 local scope. */
2268 if (d == NULL && t->locals.list != NULL)
2269 {
2270 d = (*t->match) (&t->locals, NULL, alc);
2271 if (d != NULL
2272 && h->dynindx != -1
2273 && ! info->export_dynamic)
2274 *hide = TRUE;
2275 }
2276
2277 free (alc);
2278 break;
2279 }
2280 }
2281
2282 *t_p = t;
2283
2284 return TRUE;
2285 }
2286
2287 /* Return TRUE if the symbol H is hidden by version script. */
2288
2289 bfd_boolean
2290 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2291 struct elf_link_hash_entry *h)
2292 {
2293 const char *p;
2294 bfd_boolean hide = FALSE;
2295 const struct elf_backend_data *bed
2296 = get_elf_backend_data (info->output_bfd);
2297
2298 /* Version script only hides symbols defined in regular objects. */
2299 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2300 return TRUE;
2301
2302 p = strchr (h->root.root.string, ELF_VER_CHR);
2303 if (p != NULL && h->verinfo.vertree == NULL)
2304 {
2305 struct bfd_elf_version_tree *t;
2306
2307 ++p;
2308 if (*p == ELF_VER_CHR)
2309 ++p;
2310
2311 if (*p != '\0'
2312 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2313 && hide)
2314 {
2315 if (hide)
2316 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2317 return TRUE;
2318 }
2319 }
2320
2321 /* If we don't have a version for this symbol, see if we can find
2322 something. */
2323 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2324 {
2325 h->verinfo.vertree
2326 = bfd_find_version_for_sym (info->version_info,
2327 h->root.root.string, &hide);
2328 if (h->verinfo.vertree != NULL && hide)
2329 {
2330 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2331 return TRUE;
2332 }
2333 }
2334
2335 return FALSE;
2336 }
2337
2338 /* Figure out appropriate versions for all the symbols. We may not
2339 have the version number script until we have read all of the input
2340 files, so until that point we don't know which symbols should be
2341 local. This function is called via elf_link_hash_traverse. */
2342
2343 static bfd_boolean
2344 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2345 {
2346 struct elf_info_failed *sinfo;
2347 struct bfd_link_info *info;
2348 const struct elf_backend_data *bed;
2349 struct elf_info_failed eif;
2350 char *p;
2351 bfd_boolean hide;
2352
2353 sinfo = (struct elf_info_failed *) data;
2354 info = sinfo->info;
2355
2356 /* Fix the symbol flags. */
2357 eif.failed = FALSE;
2358 eif.info = info;
2359 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2360 {
2361 if (eif.failed)
2362 sinfo->failed = TRUE;
2363 return FALSE;
2364 }
2365
2366 bed = get_elf_backend_data (info->output_bfd);
2367
2368 /* We only need version numbers for symbols defined in regular
2369 objects. */
2370 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2371 {
2372 /* Hide symbols defined in discarded input sections. */
2373 if ((h->root.type == bfd_link_hash_defined
2374 || h->root.type == bfd_link_hash_defweak)
2375 && discarded_section (h->root.u.def.section))
2376 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2377 return TRUE;
2378 }
2379
2380 hide = FALSE;
2381 p = strchr (h->root.root.string, ELF_VER_CHR);
2382 if (p != NULL && h->verinfo.vertree == NULL)
2383 {
2384 struct bfd_elf_version_tree *t;
2385
2386 ++p;
2387 if (*p == ELF_VER_CHR)
2388 ++p;
2389
2390 /* If there is no version string, we can just return out. */
2391 if (*p == '\0')
2392 return TRUE;
2393
2394 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2395 {
2396 sinfo->failed = TRUE;
2397 return FALSE;
2398 }
2399
2400 if (hide)
2401 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2402
2403 /* If we are building an application, we need to create a
2404 version node for this version. */
2405 if (t == NULL && bfd_link_executable (info))
2406 {
2407 struct bfd_elf_version_tree **pp;
2408 int version_index;
2409
2410 /* If we aren't going to export this symbol, we don't need
2411 to worry about it. */
2412 if (h->dynindx == -1)
2413 return TRUE;
2414
2415 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2416 sizeof *t);
2417 if (t == NULL)
2418 {
2419 sinfo->failed = TRUE;
2420 return FALSE;
2421 }
2422
2423 t->name = p;
2424 t->name_indx = (unsigned int) -1;
2425 t->used = TRUE;
2426
2427 version_index = 1;
2428 /* Don't count anonymous version tag. */
2429 if (sinfo->info->version_info != NULL
2430 && sinfo->info->version_info->vernum == 0)
2431 version_index = 0;
2432 for (pp = &sinfo->info->version_info;
2433 *pp != NULL;
2434 pp = &(*pp)->next)
2435 ++version_index;
2436 t->vernum = version_index;
2437
2438 *pp = t;
2439
2440 h->verinfo.vertree = t;
2441 }
2442 else if (t == NULL)
2443 {
2444 /* We could not find the version for a symbol when
2445 generating a shared archive. Return an error. */
2446 _bfd_error_handler
2447 /* xgettext:c-format */
2448 (_("%pB: version node not found for symbol %s"),
2449 info->output_bfd, h->root.root.string);
2450 bfd_set_error (bfd_error_bad_value);
2451 sinfo->failed = TRUE;
2452 return FALSE;
2453 }
2454 }
2455
2456 /* If we don't have a version for this symbol, see if we can find
2457 something. */
2458 if (!hide
2459 && h->verinfo.vertree == NULL
2460 && sinfo->info->version_info != NULL)
2461 {
2462 h->verinfo.vertree
2463 = bfd_find_version_for_sym (sinfo->info->version_info,
2464 h->root.root.string, &hide);
2465 if (h->verinfo.vertree != NULL && hide)
2466 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2467 }
2468
2469 return TRUE;
2470 }
2471 \f
2472 /* Read and swap the relocs from the section indicated by SHDR. This
2473 may be either a REL or a RELA section. The relocations are
2474 translated into RELA relocations and stored in INTERNAL_RELOCS,
2475 which should have already been allocated to contain enough space.
2476 The EXTERNAL_RELOCS are a buffer where the external form of the
2477 relocations should be stored.
2478
2479 Returns FALSE if something goes wrong. */
2480
2481 static bfd_boolean
2482 elf_link_read_relocs_from_section (bfd *abfd,
2483 asection *sec,
2484 Elf_Internal_Shdr *shdr,
2485 void *external_relocs,
2486 Elf_Internal_Rela *internal_relocs)
2487 {
2488 const struct elf_backend_data *bed;
2489 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2490 const bfd_byte *erela;
2491 const bfd_byte *erelaend;
2492 Elf_Internal_Rela *irela;
2493 Elf_Internal_Shdr *symtab_hdr;
2494 size_t nsyms;
2495
2496 /* Position ourselves at the start of the section. */
2497 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2498 return FALSE;
2499
2500 /* Read the relocations. */
2501 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2502 return FALSE;
2503
2504 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2505 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2506
2507 bed = get_elf_backend_data (abfd);
2508
2509 /* Convert the external relocations to the internal format. */
2510 if (shdr->sh_entsize == bed->s->sizeof_rel)
2511 swap_in = bed->s->swap_reloc_in;
2512 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2513 swap_in = bed->s->swap_reloca_in;
2514 else
2515 {
2516 bfd_set_error (bfd_error_wrong_format);
2517 return FALSE;
2518 }
2519
2520 erela = (const bfd_byte *) external_relocs;
2521 /* Setting erelaend like this and comparing with <= handles case of
2522 a fuzzed object with sh_size not a multiple of sh_entsize. */
2523 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2524 irela = internal_relocs;
2525 while (erela <= erelaend)
2526 {
2527 bfd_vma r_symndx;
2528
2529 (*swap_in) (abfd, erela, irela);
2530 r_symndx = ELF32_R_SYM (irela->r_info);
2531 if (bed->s->arch_size == 64)
2532 r_symndx >>= 24;
2533 if (nsyms > 0)
2534 {
2535 if ((size_t) r_symndx >= nsyms)
2536 {
2537 _bfd_error_handler
2538 /* xgettext:c-format */
2539 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2540 " for offset %#" PRIx64 " in section `%pA'"),
2541 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2542 (uint64_t) irela->r_offset, sec);
2543 bfd_set_error (bfd_error_bad_value);
2544 return FALSE;
2545 }
2546 }
2547 else if (r_symndx != STN_UNDEF)
2548 {
2549 _bfd_error_handler
2550 /* xgettext:c-format */
2551 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2552 " for offset %#" PRIx64 " in section `%pA'"
2553 " when the object file has no symbol table"),
2554 abfd, (uint64_t) r_symndx,
2555 (uint64_t) irela->r_offset, sec);
2556 bfd_set_error (bfd_error_bad_value);
2557 return FALSE;
2558 }
2559 irela += bed->s->int_rels_per_ext_rel;
2560 erela += shdr->sh_entsize;
2561 }
2562
2563 return TRUE;
2564 }
2565
2566 /* Read and swap the relocs for a section O. They may have been
2567 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2568 not NULL, they are used as buffers to read into. They are known to
2569 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2570 the return value is allocated using either malloc or bfd_alloc,
2571 according to the KEEP_MEMORY argument. If O has two relocation
2572 sections (both REL and RELA relocations), then the REL_HDR
2573 relocations will appear first in INTERNAL_RELOCS, followed by the
2574 RELA_HDR relocations. */
2575
2576 Elf_Internal_Rela *
2577 _bfd_elf_link_read_relocs (bfd *abfd,
2578 asection *o,
2579 void *external_relocs,
2580 Elf_Internal_Rela *internal_relocs,
2581 bfd_boolean keep_memory)
2582 {
2583 void *alloc1 = NULL;
2584 Elf_Internal_Rela *alloc2 = NULL;
2585 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2586 struct bfd_elf_section_data *esdo = elf_section_data (o);
2587 Elf_Internal_Rela *internal_rela_relocs;
2588
2589 if (esdo->relocs != NULL)
2590 return esdo->relocs;
2591
2592 if (o->reloc_count == 0)
2593 return NULL;
2594
2595 if (internal_relocs == NULL)
2596 {
2597 bfd_size_type size;
2598
2599 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2600 if (keep_memory)
2601 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2602 else
2603 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2604 if (internal_relocs == NULL)
2605 goto error_return;
2606 }
2607
2608 if (external_relocs == NULL)
2609 {
2610 bfd_size_type size = 0;
2611
2612 if (esdo->rel.hdr)
2613 size += esdo->rel.hdr->sh_size;
2614 if (esdo->rela.hdr)
2615 size += esdo->rela.hdr->sh_size;
2616
2617 alloc1 = bfd_malloc (size);
2618 if (alloc1 == NULL)
2619 goto error_return;
2620 external_relocs = alloc1;
2621 }
2622
2623 internal_rela_relocs = internal_relocs;
2624 if (esdo->rel.hdr)
2625 {
2626 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2627 external_relocs,
2628 internal_relocs))
2629 goto error_return;
2630 external_relocs = (((bfd_byte *) external_relocs)
2631 + esdo->rel.hdr->sh_size);
2632 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2633 * bed->s->int_rels_per_ext_rel);
2634 }
2635
2636 if (esdo->rela.hdr
2637 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2638 external_relocs,
2639 internal_rela_relocs)))
2640 goto error_return;
2641
2642 /* Cache the results for next time, if we can. */
2643 if (keep_memory)
2644 esdo->relocs = internal_relocs;
2645
2646 if (alloc1 != NULL)
2647 free (alloc1);
2648
2649 /* Don't free alloc2, since if it was allocated we are passing it
2650 back (under the name of internal_relocs). */
2651
2652 return internal_relocs;
2653
2654 error_return:
2655 if (alloc1 != NULL)
2656 free (alloc1);
2657 if (alloc2 != NULL)
2658 {
2659 if (keep_memory)
2660 bfd_release (abfd, alloc2);
2661 else
2662 free (alloc2);
2663 }
2664 return NULL;
2665 }
2666
2667 /* Compute the size of, and allocate space for, REL_HDR which is the
2668 section header for a section containing relocations for O. */
2669
2670 static bfd_boolean
2671 _bfd_elf_link_size_reloc_section (bfd *abfd,
2672 struct bfd_elf_section_reloc_data *reldata)
2673 {
2674 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2675
2676 /* That allows us to calculate the size of the section. */
2677 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2678
2679 /* The contents field must last into write_object_contents, so we
2680 allocate it with bfd_alloc rather than malloc. Also since we
2681 cannot be sure that the contents will actually be filled in,
2682 we zero the allocated space. */
2683 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2684 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2685 return FALSE;
2686
2687 if (reldata->hashes == NULL && reldata->count)
2688 {
2689 struct elf_link_hash_entry **p;
2690
2691 p = ((struct elf_link_hash_entry **)
2692 bfd_zmalloc (reldata->count * sizeof (*p)));
2693 if (p == NULL)
2694 return FALSE;
2695
2696 reldata->hashes = p;
2697 }
2698
2699 return TRUE;
2700 }
2701
2702 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2703 originated from the section given by INPUT_REL_HDR) to the
2704 OUTPUT_BFD. */
2705
2706 bfd_boolean
2707 _bfd_elf_link_output_relocs (bfd *output_bfd,
2708 asection *input_section,
2709 Elf_Internal_Shdr *input_rel_hdr,
2710 Elf_Internal_Rela *internal_relocs,
2711 struct elf_link_hash_entry **rel_hash
2712 ATTRIBUTE_UNUSED)
2713 {
2714 Elf_Internal_Rela *irela;
2715 Elf_Internal_Rela *irelaend;
2716 bfd_byte *erel;
2717 struct bfd_elf_section_reloc_data *output_reldata;
2718 asection *output_section;
2719 const struct elf_backend_data *bed;
2720 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2721 struct bfd_elf_section_data *esdo;
2722
2723 output_section = input_section->output_section;
2724
2725 bed = get_elf_backend_data (output_bfd);
2726 esdo = elf_section_data (output_section);
2727 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2728 {
2729 output_reldata = &esdo->rel;
2730 swap_out = bed->s->swap_reloc_out;
2731 }
2732 else if (esdo->rela.hdr
2733 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2734 {
2735 output_reldata = &esdo->rela;
2736 swap_out = bed->s->swap_reloca_out;
2737 }
2738 else
2739 {
2740 _bfd_error_handler
2741 /* xgettext:c-format */
2742 (_("%pB: relocation size mismatch in %pB section %pA"),
2743 output_bfd, input_section->owner, input_section);
2744 bfd_set_error (bfd_error_wrong_format);
2745 return FALSE;
2746 }
2747
2748 erel = output_reldata->hdr->contents;
2749 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2750 irela = internal_relocs;
2751 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2752 * bed->s->int_rels_per_ext_rel);
2753 while (irela < irelaend)
2754 {
2755 (*swap_out) (output_bfd, irela, erel);
2756 irela += bed->s->int_rels_per_ext_rel;
2757 erel += input_rel_hdr->sh_entsize;
2758 }
2759
2760 /* Bump the counter, so that we know where to add the next set of
2761 relocations. */
2762 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2763
2764 return TRUE;
2765 }
2766 \f
2767 /* Make weak undefined symbols in PIE dynamic. */
2768
2769 bfd_boolean
2770 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2771 struct elf_link_hash_entry *h)
2772 {
2773 if (bfd_link_pie (info)
2774 && h->dynindx == -1
2775 && h->root.type == bfd_link_hash_undefweak)
2776 return bfd_elf_link_record_dynamic_symbol (info, h);
2777
2778 return TRUE;
2779 }
2780
2781 /* Fix up the flags for a symbol. This handles various cases which
2782 can only be fixed after all the input files are seen. This is
2783 currently called by both adjust_dynamic_symbol and
2784 assign_sym_version, which is unnecessary but perhaps more robust in
2785 the face of future changes. */
2786
2787 static bfd_boolean
2788 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2789 struct elf_info_failed *eif)
2790 {
2791 const struct elf_backend_data *bed;
2792
2793 /* If this symbol was mentioned in a non-ELF file, try to set
2794 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2795 permit a non-ELF file to correctly refer to a symbol defined in
2796 an ELF dynamic object. */
2797 if (h->non_elf)
2798 {
2799 while (h->root.type == bfd_link_hash_indirect)
2800 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2801
2802 if (h->root.type != bfd_link_hash_defined
2803 && h->root.type != bfd_link_hash_defweak)
2804 {
2805 h->ref_regular = 1;
2806 h->ref_regular_nonweak = 1;
2807 }
2808 else
2809 {
2810 if (h->root.u.def.section->owner != NULL
2811 && (bfd_get_flavour (h->root.u.def.section->owner)
2812 == bfd_target_elf_flavour))
2813 {
2814 h->ref_regular = 1;
2815 h->ref_regular_nonweak = 1;
2816 }
2817 else
2818 h->def_regular = 1;
2819 }
2820
2821 if (h->dynindx == -1
2822 && (h->def_dynamic
2823 || h->ref_dynamic))
2824 {
2825 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2826 {
2827 eif->failed = TRUE;
2828 return FALSE;
2829 }
2830 }
2831 }
2832 else
2833 {
2834 /* Unfortunately, NON_ELF is only correct if the symbol
2835 was first seen in a non-ELF file. Fortunately, if the symbol
2836 was first seen in an ELF file, we're probably OK unless the
2837 symbol was defined in a non-ELF file. Catch that case here.
2838 FIXME: We're still in trouble if the symbol was first seen in
2839 a dynamic object, and then later in a non-ELF regular object. */
2840 if ((h->root.type == bfd_link_hash_defined
2841 || h->root.type == bfd_link_hash_defweak)
2842 && !h->def_regular
2843 && (h->root.u.def.section->owner != NULL
2844 ? (bfd_get_flavour (h->root.u.def.section->owner)
2845 != bfd_target_elf_flavour)
2846 : (bfd_is_abs_section (h->root.u.def.section)
2847 && !h->def_dynamic)))
2848 h->def_regular = 1;
2849 }
2850
2851 /* Backend specific symbol fixup. */
2852 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2853 if (bed->elf_backend_fixup_symbol
2854 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2855 return FALSE;
2856
2857 /* If this is a final link, and the symbol was defined as a common
2858 symbol in a regular object file, and there was no definition in
2859 any dynamic object, then the linker will have allocated space for
2860 the symbol in a common section but the DEF_REGULAR
2861 flag will not have been set. */
2862 if (h->root.type == bfd_link_hash_defined
2863 && !h->def_regular
2864 && h->ref_regular
2865 && !h->def_dynamic
2866 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2867 h->def_regular = 1;
2868
2869 /* Symbols defined in discarded sections shouldn't be dynamic. */
2870 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2871 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2872
2873 /* If a weak undefined symbol has non-default visibility, we also
2874 hide it from the dynamic linker. */
2875 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2876 && h->root.type == bfd_link_hash_undefweak)
2877 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2878
2879 /* A hidden versioned symbol in executable should be forced local if
2880 it is is locally defined, not referenced by shared library and not
2881 exported. */
2882 else if (bfd_link_executable (eif->info)
2883 && h->versioned == versioned_hidden
2884 && !eif->info->export_dynamic
2885 && !h->dynamic
2886 && !h->ref_dynamic
2887 && h->def_regular)
2888 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2889
2890 /* If -Bsymbolic was used (which means to bind references to global
2891 symbols to the definition within the shared object), and this
2892 symbol was defined in a regular object, then it actually doesn't
2893 need a PLT entry. Likewise, if the symbol has non-default
2894 visibility. If the symbol has hidden or internal visibility, we
2895 will force it local. */
2896 else if (h->needs_plt
2897 && bfd_link_pic (eif->info)
2898 && is_elf_hash_table (eif->info->hash)
2899 && (SYMBOLIC_BIND (eif->info, h)
2900 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2901 && h->def_regular)
2902 {
2903 bfd_boolean force_local;
2904
2905 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2906 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2907 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2908 }
2909
2910 /* If this is a weak defined symbol in a dynamic object, and we know
2911 the real definition in the dynamic object, copy interesting flags
2912 over to the real definition. */
2913 if (h->is_weakalias)
2914 {
2915 struct elf_link_hash_entry *def = weakdef (h);
2916
2917 /* If the real definition is defined by a regular object file,
2918 don't do anything special. See the longer description in
2919 _bfd_elf_adjust_dynamic_symbol, below. If the def is not
2920 bfd_link_hash_defined as it was when put on the alias list
2921 then it must have originally been a versioned symbol (for
2922 which a non-versioned indirect symbol is created) and later
2923 a definition for the non-versioned symbol is found. In that
2924 case the indirection is flipped with the versioned symbol
2925 becoming an indirect pointing at the non-versioned symbol.
2926 Thus, not an alias any more. */
2927 if (def->def_regular
2928 || def->root.type != bfd_link_hash_defined)
2929 {
2930 h = def;
2931 while ((h = h->u.alias) != def)
2932 h->is_weakalias = 0;
2933 }
2934 else
2935 {
2936 while (h->root.type == bfd_link_hash_indirect)
2937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2938 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2939 || h->root.type == bfd_link_hash_defweak);
2940 BFD_ASSERT (def->def_dynamic);
2941 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2942 }
2943 }
2944
2945 return TRUE;
2946 }
2947
2948 /* Make the backend pick a good value for a dynamic symbol. This is
2949 called via elf_link_hash_traverse, and also calls itself
2950 recursively. */
2951
2952 static bfd_boolean
2953 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2954 {
2955 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2956 struct elf_link_hash_table *htab;
2957 const struct elf_backend_data *bed;
2958
2959 if (! is_elf_hash_table (eif->info->hash))
2960 return FALSE;
2961
2962 /* Ignore indirect symbols. These are added by the versioning code. */
2963 if (h->root.type == bfd_link_hash_indirect)
2964 return TRUE;
2965
2966 /* Fix the symbol flags. */
2967 if (! _bfd_elf_fix_symbol_flags (h, eif))
2968 return FALSE;
2969
2970 htab = elf_hash_table (eif->info);
2971 bed = get_elf_backend_data (htab->dynobj);
2972
2973 if (h->root.type == bfd_link_hash_undefweak)
2974 {
2975 if (eif->info->dynamic_undefined_weak == 0)
2976 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2977 else if (eif->info->dynamic_undefined_weak > 0
2978 && h->ref_regular
2979 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2980 && !bfd_hide_sym_by_version (eif->info->version_info,
2981 h->root.root.string))
2982 {
2983 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2984 {
2985 eif->failed = TRUE;
2986 return FALSE;
2987 }
2988 }
2989 }
2990
2991 /* If this symbol does not require a PLT entry, and it is not
2992 defined by a dynamic object, or is not referenced by a regular
2993 object, ignore it. We do have to handle a weak defined symbol,
2994 even if no regular object refers to it, if we decided to add it
2995 to the dynamic symbol table. FIXME: Do we normally need to worry
2996 about symbols which are defined by one dynamic object and
2997 referenced by another one? */
2998 if (!h->needs_plt
2999 && h->type != STT_GNU_IFUNC
3000 && (h->def_regular
3001 || !h->def_dynamic
3002 || (!h->ref_regular
3003 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3004 {
3005 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3006 return TRUE;
3007 }
3008
3009 /* If we've already adjusted this symbol, don't do it again. This
3010 can happen via a recursive call. */
3011 if (h->dynamic_adjusted)
3012 return TRUE;
3013
3014 /* Don't look at this symbol again. Note that we must set this
3015 after checking the above conditions, because we may look at a
3016 symbol once, decide not to do anything, and then get called
3017 recursively later after REF_REGULAR is set below. */
3018 h->dynamic_adjusted = 1;
3019
3020 /* If this is a weak definition, and we know a real definition, and
3021 the real symbol is not itself defined by a regular object file,
3022 then get a good value for the real definition. We handle the
3023 real symbol first, for the convenience of the backend routine.
3024
3025 Note that there is a confusing case here. If the real definition
3026 is defined by a regular object file, we don't get the real symbol
3027 from the dynamic object, but we do get the weak symbol. If the
3028 processor backend uses a COPY reloc, then if some routine in the
3029 dynamic object changes the real symbol, we will not see that
3030 change in the corresponding weak symbol. This is the way other
3031 ELF linkers work as well, and seems to be a result of the shared
3032 library model.
3033
3034 I will clarify this issue. Most SVR4 shared libraries define the
3035 variable _timezone and define timezone as a weak synonym. The
3036 tzset call changes _timezone. If you write
3037 extern int timezone;
3038 int _timezone = 5;
3039 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3040 you might expect that, since timezone is a synonym for _timezone,
3041 the same number will print both times. However, if the processor
3042 backend uses a COPY reloc, then actually timezone will be copied
3043 into your process image, and, since you define _timezone
3044 yourself, _timezone will not. Thus timezone and _timezone will
3045 wind up at different memory locations. The tzset call will set
3046 _timezone, leaving timezone unchanged. */
3047
3048 if (h->is_weakalias)
3049 {
3050 struct elf_link_hash_entry *def = weakdef (h);
3051
3052 /* If we get to this point, there is an implicit reference to
3053 the alias by a regular object file via the weak symbol H. */
3054 def->ref_regular = 1;
3055
3056 /* Ensure that the backend adjust_dynamic_symbol function sees
3057 the strong alias before H by recursively calling ourselves. */
3058 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3059 return FALSE;
3060 }
3061
3062 /* If a symbol has no type and no size and does not require a PLT
3063 entry, then we are probably about to do the wrong thing here: we
3064 are probably going to create a COPY reloc for an empty object.
3065 This case can arise when a shared object is built with assembly
3066 code, and the assembly code fails to set the symbol type. */
3067 if (h->size == 0
3068 && h->type == STT_NOTYPE
3069 && !h->needs_plt)
3070 _bfd_error_handler
3071 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3072 h->root.root.string);
3073
3074 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3075 {
3076 eif->failed = TRUE;
3077 return FALSE;
3078 }
3079
3080 return TRUE;
3081 }
3082
3083 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3084 DYNBSS. */
3085
3086 bfd_boolean
3087 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3088 struct elf_link_hash_entry *h,
3089 asection *dynbss)
3090 {
3091 unsigned int power_of_two;
3092 bfd_vma mask;
3093 asection *sec = h->root.u.def.section;
3094
3095 /* The section alignment of the definition is the maximum alignment
3096 requirement of symbols defined in the section. Since we don't
3097 know the symbol alignment requirement, we start with the
3098 maximum alignment and check low bits of the symbol address
3099 for the minimum alignment. */
3100 power_of_two = bfd_section_alignment (sec);
3101 mask = ((bfd_vma) 1 << power_of_two) - 1;
3102 while ((h->root.u.def.value & mask) != 0)
3103 {
3104 mask >>= 1;
3105 --power_of_two;
3106 }
3107
3108 if (power_of_two > bfd_section_alignment (dynbss))
3109 {
3110 /* Adjust the section alignment if needed. */
3111 if (!bfd_set_section_alignment (dynbss, power_of_two))
3112 return FALSE;
3113 }
3114
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h->root.u.def.section = dynbss;
3120 h->root.u.def.value = dynbss->size;
3121
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss->size += h->size;
3124
3125 /* No error if extern_protected_data is true. */
3126 if (h->protected_def
3127 && (!info->extern_protected_data
3128 || (info->extern_protected_data < 0
3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130 info->callbacks->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h->root.root.string);
3133
3134 return TRUE;
3135 }
3136
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3139
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143 asection *sec;
3144
3145 if ((h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak)
3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149 {
3150 bfd *output_bfd = (bfd *) data;
3151
3152 h->root.u.def.value =
3153 _bfd_merged_section_offset (output_bfd,
3154 &h->root.u.def.section,
3155 elf_section_data (sec)->sec_info,
3156 h->root.u.def.value);
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3165
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 struct bfd_link_info *info,
3169 bfd_boolean not_local_protected)
3170 {
3171 bfd_boolean binding_stays_local_p;
3172 const struct elf_backend_data *bed;
3173 struct elf_link_hash_table *hash_table;
3174
3175 if (h == NULL)
3176 return FALSE;
3177
3178 while (h->root.type == bfd_link_hash_indirect
3179 || h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h->dynindx == -1)
3184 return FALSE;
3185 if (h->forced_local)
3186 return FALSE;
3187
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p = (bfd_link_executable (info)
3191 || SYMBOLIC_BIND (info, h));
3192
3193 switch (ELF_ST_VISIBILITY (h->other))
3194 {
3195 case STV_INTERNAL:
3196 case STV_HIDDEN:
3197 return FALSE;
3198
3199 case STV_PROTECTED:
3200 hash_table = elf_hash_table (info);
3201 if (!is_elf_hash_table (hash_table))
3202 return FALSE;
3203
3204 bed = get_elf_backend_data (hash_table->dynobj);
3205
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected || !bed->is_function_type (h->type))
3210 binding_stays_local_p = TRUE;
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219 return TRUE;
3220
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p;
3224 }
3225
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233 defined symbols.
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3238
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 struct bfd_link_info *info,
3242 bfd_boolean local_protected)
3243 {
3244 const struct elf_backend_data *bed;
3245 struct elf_link_hash_table *hash_table;
3246
3247 /* If it's a local sym, of course we resolve locally. */
3248 if (h == NULL)
3249 return TRUE;
3250
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254 return TRUE;
3255
3256 /* Forced local symbols resolve locally. */
3257 if (h->forced_local)
3258 return TRUE;
3259
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h))
3263 /* Do nothing. */;
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h->def_regular)
3267 return FALSE;
3268
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h->dynindx == -1)
3271 return TRUE;
3272
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277 return TRUE;
3278
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282 return FALSE;
3283
3284 hash_table = elf_hash_table (info);
3285 if (!is_elf_hash_table (hash_table))
3286 return TRUE;
3287
3288 bed = get_elf_backend_data (hash_table->dynobj);
3289
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info->extern_protected_data
3293 || (info->extern_protected_data < 0
3294 && !bed->extern_protected_data))
3295 && !bed->is_function_type (h->type))
3296 return TRUE;
3297
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected;
3304 }
3305
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3308
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312 struct bfd_section *sec, *tls;
3313 unsigned int align = 0;
3314
3315 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 break;
3318 tls = sec;
3319
3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321 if (sec->alignment_power > align)
3322 align = sec->alignment_power;
3323
3324 elf_hash_table (info)->tls_sec = tls;
3325
3326 /* Ensure the alignment of the first section is the largest alignment,
3327 so that the tls segment starts aligned. */
3328 if (tls != NULL)
3329 tls->alignment_power = align;
3330
3331 return tls;
3332 }
3333
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 Elf_Internal_Sym *sym)
3338 {
3339 const struct elf_backend_data *bed;
3340
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344 return FALSE;
3345
3346 bed = get_elf_backend_data (abfd);
3347 /* Function symbols do not count. */
3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349 return FALSE;
3350
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym->st_shndx == SHN_UNDEF)
3353 return FALSE;
3354
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed->common_definition (sym))
3358 return FALSE;
3359
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363 /* FIXME - this function is not coded yet:
3364
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3366
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3370 return FALSE;
3371
3372 return TRUE;
3373 }
3374
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381 Elf_Internal_Shdr * hdr;
3382 size_t symcount;
3383 size_t extsymcount;
3384 size_t extsymoff;
3385 Elf_Internal_Sym *isymbuf;
3386 Elf_Internal_Sym *isym;
3387 Elf_Internal_Sym *isymend;
3388 bfd_boolean result;
3389
3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (abfd == NULL)
3392 return FALSE;
3393
3394 if (! bfd_check_format (abfd, bfd_object))
3395 return FALSE;
3396
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd->plugin_format == bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd))
3404 #endif
3405 )
3406 {
3407 /* Use the IR symbol table if the object has been claimed by
3408 plugin. */
3409 abfd = abfd->plugin_dummy_bfd;
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 }
3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413 hdr = &elf_tdata (abfd)->symtab_hdr;
3414 else
3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416
3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd))
3422 {
3423 extsymcount = symcount;
3424 extsymoff = 0;
3425 }
3426 else
3427 {
3428 extsymcount = symcount - hdr->sh_info;
3429 extsymoff = hdr->sh_info;
3430 }
3431
3432 if (extsymcount == 0)
3433 return FALSE;
3434
3435 /* Read in the symbol table. */
3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 NULL, NULL, NULL);
3438 if (isymbuf == NULL)
3439 return FALSE;
3440
3441 /* Scan the symbol table looking for SYMDEF. */
3442 result = FALSE;
3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 {
3445 const char *name;
3446
3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 isym->st_name);
3449 if (name == NULL)
3450 break;
3451
3452 if (strcmp (name, symdef->name) == 0)
3453 {
3454 result = is_global_data_symbol_definition (abfd, isym);
3455 break;
3456 }
3457 }
3458
3459 free (isymbuf);
3460
3461 return result;
3462 }
3463 \f
3464 /* Add an entry to the .dynamic table. */
3465
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 bfd_vma tag,
3469 bfd_vma val)
3470 {
3471 struct elf_link_hash_table *hash_table;
3472 const struct elf_backend_data *bed;
3473 asection *s;
3474 bfd_size_type newsize;
3475 bfd_byte *newcontents;
3476 Elf_Internal_Dyn dyn;
3477
3478 hash_table = elf_hash_table (info);
3479 if (! is_elf_hash_table (hash_table))
3480 return FALSE;
3481
3482 if (tag == DT_RELA || tag == DT_REL)
3483 hash_table->dynamic_relocs = TRUE;
3484
3485 bed = get_elf_backend_data (hash_table->dynobj);
3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487 BFD_ASSERT (s != NULL);
3488
3489 newsize = s->size + bed->s->sizeof_dyn;
3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491 if (newcontents == NULL)
3492 return FALSE;
3493
3494 dyn.d_tag = tag;
3495 dyn.d_un.d_val = val;
3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497
3498 s->size = newsize;
3499 s->contents = newcontents;
3500
3501 return TRUE;
3502 }
3503
3504 /* Add a DT_NEEDED entry for this dynamic object. Returns -1 on error,
3505 1 if a DT_NEEDED tag already exists, and 0 on success. */
3506
3507 int
3508 bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info)
3509 {
3510 struct elf_link_hash_table *hash_table;
3511 size_t strindex;
3512 const char *soname;
3513
3514 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3515 return -1;
3516
3517 hash_table = elf_hash_table (info);
3518 soname = elf_dt_name (abfd);
3519 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3520 if (strindex == (size_t) -1)
3521 return -1;
3522
3523 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3524 {
3525 asection *sdyn;
3526 const struct elf_backend_data *bed;
3527 bfd_byte *extdyn;
3528
3529 bed = get_elf_backend_data (hash_table->dynobj);
3530 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3531 if (sdyn != NULL)
3532 for (extdyn = sdyn->contents;
3533 extdyn < sdyn->contents + sdyn->size;
3534 extdyn += bed->s->sizeof_dyn)
3535 {
3536 Elf_Internal_Dyn dyn;
3537
3538 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3539 if (dyn.d_tag == DT_NEEDED
3540 && dyn.d_un.d_val == strindex)
3541 {
3542 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3543 return 1;
3544 }
3545 }
3546 }
3547
3548 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3549 return -1;
3550
3551 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3552 return -1;
3553
3554 return 0;
3555 }
3556
3557 /* Return true if SONAME is on the needed list between NEEDED and STOP
3558 (or the end of list if STOP is NULL), and needed by a library that
3559 will be loaded. */
3560
3561 static bfd_boolean
3562 on_needed_list (const char *soname,
3563 struct bfd_link_needed_list *needed,
3564 struct bfd_link_needed_list *stop)
3565 {
3566 struct bfd_link_needed_list *look;
3567 for (look = needed; look != stop; look = look->next)
3568 if (strcmp (soname, look->name) == 0
3569 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3570 /* If needed by a library that itself is not directly
3571 needed, recursively check whether that library is
3572 indirectly needed. Since we add DT_NEEDED entries to
3573 the end of the list, library dependencies appear after
3574 the library. Therefore search prior to the current
3575 LOOK, preventing possible infinite recursion. */
3576 || on_needed_list (elf_dt_name (look->by), needed, look)))
3577 return TRUE;
3578
3579 return FALSE;
3580 }
3581
3582 /* Sort symbol by value, section, size, and type. */
3583 static int
3584 elf_sort_symbol (const void *arg1, const void *arg2)
3585 {
3586 const struct elf_link_hash_entry *h1;
3587 const struct elf_link_hash_entry *h2;
3588 bfd_signed_vma vdiff;
3589 int sdiff;
3590 const char *n1;
3591 const char *n2;
3592
3593 h1 = *(const struct elf_link_hash_entry **) arg1;
3594 h2 = *(const struct elf_link_hash_entry **) arg2;
3595 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3596 if (vdiff != 0)
3597 return vdiff > 0 ? 1 : -1;
3598
3599 sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3600 if (sdiff != 0)
3601 return sdiff;
3602
3603 /* Sort so that sized symbols are selected over zero size symbols. */
3604 vdiff = h1->size - h2->size;
3605 if (vdiff != 0)
3606 return vdiff > 0 ? 1 : -1;
3607
3608 /* Sort so that STT_OBJECT is selected over STT_NOTYPE. */
3609 if (h1->type != h2->type)
3610 return h1->type - h2->type;
3611
3612 /* If symbols are properly sized and typed, and multiple strong
3613 aliases are not defined in a shared library by the user we
3614 shouldn't get here. Unfortunately linker script symbols like
3615 __bss_start sometimes match a user symbol defined at the start of
3616 .bss without proper size and type. We'd like to preference the
3617 user symbol over reserved system symbols. Sort on leading
3618 underscores. */
3619 n1 = h1->root.root.string;
3620 n2 = h2->root.root.string;
3621 while (*n1 == *n2)
3622 {
3623 if (*n1 == 0)
3624 break;
3625 ++n1;
3626 ++n2;
3627 }
3628 if (*n1 == '_')
3629 return -1;
3630 if (*n2 == '_')
3631 return 1;
3632
3633 /* Final sort on name selects user symbols like '_u' over reserved
3634 system symbols like '_Z' and also will avoid qsort instability. */
3635 return *n1 - *n2;
3636 }
3637
3638 /* This function is used to adjust offsets into .dynstr for
3639 dynamic symbols. This is called via elf_link_hash_traverse. */
3640
3641 static bfd_boolean
3642 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3643 {
3644 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3645
3646 if (h->dynindx != -1)
3647 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3648 return TRUE;
3649 }
3650
3651 /* Assign string offsets in .dynstr, update all structures referencing
3652 them. */
3653
3654 static bfd_boolean
3655 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3656 {
3657 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3658 struct elf_link_local_dynamic_entry *entry;
3659 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3660 bfd *dynobj = hash_table->dynobj;
3661 asection *sdyn;
3662 bfd_size_type size;
3663 const struct elf_backend_data *bed;
3664 bfd_byte *extdyn;
3665
3666 _bfd_elf_strtab_finalize (dynstr);
3667 size = _bfd_elf_strtab_size (dynstr);
3668
3669 bed = get_elf_backend_data (dynobj);
3670 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3671 BFD_ASSERT (sdyn != NULL);
3672
3673 /* Update all .dynamic entries referencing .dynstr strings. */
3674 for (extdyn = sdyn->contents;
3675 extdyn < sdyn->contents + sdyn->size;
3676 extdyn += bed->s->sizeof_dyn)
3677 {
3678 Elf_Internal_Dyn dyn;
3679
3680 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3681 switch (dyn.d_tag)
3682 {
3683 case DT_STRSZ:
3684 dyn.d_un.d_val = size;
3685 break;
3686 case DT_NEEDED:
3687 case DT_SONAME:
3688 case DT_RPATH:
3689 case DT_RUNPATH:
3690 case DT_FILTER:
3691 case DT_AUXILIARY:
3692 case DT_AUDIT:
3693 case DT_DEPAUDIT:
3694 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3695 break;
3696 default:
3697 continue;
3698 }
3699 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3700 }
3701
3702 /* Now update local dynamic symbols. */
3703 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3704 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3705 entry->isym.st_name);
3706
3707 /* And the rest of dynamic symbols. */
3708 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3709
3710 /* Adjust version definitions. */
3711 if (elf_tdata (output_bfd)->cverdefs)
3712 {
3713 asection *s;
3714 bfd_byte *p;
3715 size_t i;
3716 Elf_Internal_Verdef def;
3717 Elf_Internal_Verdaux defaux;
3718
3719 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3720 p = s->contents;
3721 do
3722 {
3723 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3724 &def);
3725 p += sizeof (Elf_External_Verdef);
3726 if (def.vd_aux != sizeof (Elf_External_Verdef))
3727 continue;
3728 for (i = 0; i < def.vd_cnt; ++i)
3729 {
3730 _bfd_elf_swap_verdaux_in (output_bfd,
3731 (Elf_External_Verdaux *) p, &defaux);
3732 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3733 defaux.vda_name);
3734 _bfd_elf_swap_verdaux_out (output_bfd,
3735 &defaux, (Elf_External_Verdaux *) p);
3736 p += sizeof (Elf_External_Verdaux);
3737 }
3738 }
3739 while (def.vd_next);
3740 }
3741
3742 /* Adjust version references. */
3743 if (elf_tdata (output_bfd)->verref)
3744 {
3745 asection *s;
3746 bfd_byte *p;
3747 size_t i;
3748 Elf_Internal_Verneed need;
3749 Elf_Internal_Vernaux needaux;
3750
3751 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3752 p = s->contents;
3753 do
3754 {
3755 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3756 &need);
3757 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3758 _bfd_elf_swap_verneed_out (output_bfd, &need,
3759 (Elf_External_Verneed *) p);
3760 p += sizeof (Elf_External_Verneed);
3761 for (i = 0; i < need.vn_cnt; ++i)
3762 {
3763 _bfd_elf_swap_vernaux_in (output_bfd,
3764 (Elf_External_Vernaux *) p, &needaux);
3765 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3766 needaux.vna_name);
3767 _bfd_elf_swap_vernaux_out (output_bfd,
3768 &needaux,
3769 (Elf_External_Vernaux *) p);
3770 p += sizeof (Elf_External_Vernaux);
3771 }
3772 }
3773 while (need.vn_next);
3774 }
3775
3776 return TRUE;
3777 }
3778 \f
3779 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3780 The default is to only match when the INPUT and OUTPUT are exactly
3781 the same target. */
3782
3783 bfd_boolean
3784 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3785 const bfd_target *output)
3786 {
3787 return input == output;
3788 }
3789
3790 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3791 This version is used when different targets for the same architecture
3792 are virtually identical. */
3793
3794 bfd_boolean
3795 _bfd_elf_relocs_compatible (const bfd_target *input,
3796 const bfd_target *output)
3797 {
3798 const struct elf_backend_data *obed, *ibed;
3799
3800 if (input == output)
3801 return TRUE;
3802
3803 ibed = xvec_get_elf_backend_data (input);
3804 obed = xvec_get_elf_backend_data (output);
3805
3806 if (ibed->arch != obed->arch)
3807 return FALSE;
3808
3809 /* If both backends are using this function, deem them compatible. */
3810 return ibed->relocs_compatible == obed->relocs_compatible;
3811 }
3812
3813 /* Make a special call to the linker "notice" function to tell it that
3814 we are about to handle an as-needed lib, or have finished
3815 processing the lib. */
3816
3817 bfd_boolean
3818 _bfd_elf_notice_as_needed (bfd *ibfd,
3819 struct bfd_link_info *info,
3820 enum notice_asneeded_action act)
3821 {
3822 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3823 }
3824
3825 /* Check relocations an ELF object file. */
3826
3827 bfd_boolean
3828 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3829 {
3830 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3831 struct elf_link_hash_table *htab = elf_hash_table (info);
3832
3833 /* If this object is the same format as the output object, and it is
3834 not a shared library, then let the backend look through the
3835 relocs.
3836
3837 This is required to build global offset table entries and to
3838 arrange for dynamic relocs. It is not required for the
3839 particular common case of linking non PIC code, even when linking
3840 against shared libraries, but unfortunately there is no way of
3841 knowing whether an object file has been compiled PIC or not.
3842 Looking through the relocs is not particularly time consuming.
3843 The problem is that we must either (1) keep the relocs in memory,
3844 which causes the linker to require additional runtime memory or
3845 (2) read the relocs twice from the input file, which wastes time.
3846 This would be a good case for using mmap.
3847
3848 I have no idea how to handle linking PIC code into a file of a
3849 different format. It probably can't be done. */
3850 if ((abfd->flags & DYNAMIC) == 0
3851 && is_elf_hash_table (htab)
3852 && bed->check_relocs != NULL
3853 && elf_object_id (abfd) == elf_hash_table_id (htab)
3854 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3855 {
3856 asection *o;
3857
3858 for (o = abfd->sections; o != NULL; o = o->next)
3859 {
3860 Elf_Internal_Rela *internal_relocs;
3861 bfd_boolean ok;
3862
3863 /* Don't check relocations in excluded sections. */
3864 if ((o->flags & SEC_RELOC) == 0
3865 || (o->flags & SEC_EXCLUDE) != 0
3866 || o->reloc_count == 0
3867 || ((info->strip == strip_all || info->strip == strip_debugger)
3868 && (o->flags & SEC_DEBUGGING) != 0)
3869 || bfd_is_abs_section (o->output_section))
3870 continue;
3871
3872 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3873 info->keep_memory);
3874 if (internal_relocs == NULL)
3875 return FALSE;
3876
3877 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3878
3879 if (elf_section_data (o)->relocs != internal_relocs)
3880 free (internal_relocs);
3881
3882 if (! ok)
3883 return FALSE;
3884 }
3885 }
3886
3887 return TRUE;
3888 }
3889
3890 /* Add symbols from an ELF object file to the linker hash table. */
3891
3892 static bfd_boolean
3893 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3894 {
3895 Elf_Internal_Ehdr *ehdr;
3896 Elf_Internal_Shdr *hdr;
3897 size_t symcount;
3898 size_t extsymcount;
3899 size_t extsymoff;
3900 struct elf_link_hash_entry **sym_hash;
3901 bfd_boolean dynamic;
3902 Elf_External_Versym *extversym = NULL;
3903 Elf_External_Versym *extversym_end = NULL;
3904 Elf_External_Versym *ever;
3905 struct elf_link_hash_entry *weaks;
3906 struct elf_link_hash_entry **nondeflt_vers = NULL;
3907 size_t nondeflt_vers_cnt = 0;
3908 Elf_Internal_Sym *isymbuf = NULL;
3909 Elf_Internal_Sym *isym;
3910 Elf_Internal_Sym *isymend;
3911 const struct elf_backend_data *bed;
3912 bfd_boolean add_needed;
3913 struct elf_link_hash_table *htab;
3914 void *alloc_mark = NULL;
3915 struct bfd_hash_entry **old_table = NULL;
3916 unsigned int old_size = 0;
3917 unsigned int old_count = 0;
3918 void *old_tab = NULL;
3919 void *old_ent;
3920 struct bfd_link_hash_entry *old_undefs = NULL;
3921 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3922 void *old_strtab = NULL;
3923 size_t tabsize = 0;
3924 asection *s;
3925 bfd_boolean just_syms;
3926
3927 htab = elf_hash_table (info);
3928 bed = get_elf_backend_data (abfd);
3929
3930 if ((abfd->flags & DYNAMIC) == 0)
3931 dynamic = FALSE;
3932 else
3933 {
3934 dynamic = TRUE;
3935
3936 /* You can't use -r against a dynamic object. Also, there's no
3937 hope of using a dynamic object which does not exactly match
3938 the format of the output file. */
3939 if (bfd_link_relocatable (info)
3940 || !is_elf_hash_table (htab)
3941 || info->output_bfd->xvec != abfd->xvec)
3942 {
3943 if (bfd_link_relocatable (info))
3944 bfd_set_error (bfd_error_invalid_operation);
3945 else
3946 bfd_set_error (bfd_error_wrong_format);
3947 goto error_return;
3948 }
3949 }
3950
3951 ehdr = elf_elfheader (abfd);
3952 if (info->warn_alternate_em
3953 && bed->elf_machine_code != ehdr->e_machine
3954 && ((bed->elf_machine_alt1 != 0
3955 && ehdr->e_machine == bed->elf_machine_alt1)
3956 || (bed->elf_machine_alt2 != 0
3957 && ehdr->e_machine == bed->elf_machine_alt2)))
3958 _bfd_error_handler
3959 /* xgettext:c-format */
3960 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3961 ehdr->e_machine, abfd, bed->elf_machine_code);
3962
3963 /* As a GNU extension, any input sections which are named
3964 .gnu.warning.SYMBOL are treated as warning symbols for the given
3965 symbol. This differs from .gnu.warning sections, which generate
3966 warnings when they are included in an output file. */
3967 /* PR 12761: Also generate this warning when building shared libraries. */
3968 for (s = abfd->sections; s != NULL; s = s->next)
3969 {
3970 const char *name;
3971
3972 name = bfd_section_name (s);
3973 if (CONST_STRNEQ (name, ".gnu.warning."))
3974 {
3975 char *msg;
3976 bfd_size_type sz;
3977
3978 name += sizeof ".gnu.warning." - 1;
3979
3980 /* If this is a shared object, then look up the symbol
3981 in the hash table. If it is there, and it is already
3982 been defined, then we will not be using the entry
3983 from this shared object, so we don't need to warn.
3984 FIXME: If we see the definition in a regular object
3985 later on, we will warn, but we shouldn't. The only
3986 fix is to keep track of what warnings we are supposed
3987 to emit, and then handle them all at the end of the
3988 link. */
3989 if (dynamic)
3990 {
3991 struct elf_link_hash_entry *h;
3992
3993 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3994
3995 /* FIXME: What about bfd_link_hash_common? */
3996 if (h != NULL
3997 && (h->root.type == bfd_link_hash_defined
3998 || h->root.type == bfd_link_hash_defweak))
3999 continue;
4000 }
4001
4002 sz = s->size;
4003 msg = (char *) bfd_alloc (abfd, sz + 1);
4004 if (msg == NULL)
4005 goto error_return;
4006
4007 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
4008 goto error_return;
4009
4010 msg[sz] = '\0';
4011
4012 if (! (_bfd_generic_link_add_one_symbol
4013 (info, abfd, name, BSF_WARNING, s, 0, msg,
4014 FALSE, bed->collect, NULL)))
4015 goto error_return;
4016
4017 if (bfd_link_executable (info))
4018 {
4019 /* Clobber the section size so that the warning does
4020 not get copied into the output file. */
4021 s->size = 0;
4022
4023 /* Also set SEC_EXCLUDE, so that symbols defined in
4024 the warning section don't get copied to the output. */
4025 s->flags |= SEC_EXCLUDE;
4026 }
4027 }
4028 }
4029
4030 just_syms = ((s = abfd->sections) != NULL
4031 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4032
4033 add_needed = TRUE;
4034 if (! dynamic)
4035 {
4036 /* If we are creating a shared library, create all the dynamic
4037 sections immediately. We need to attach them to something,
4038 so we attach them to this BFD, provided it is the right
4039 format and is not from ld --just-symbols. Always create the
4040 dynamic sections for -E/--dynamic-list. FIXME: If there
4041 are no input BFD's of the same format as the output, we can't
4042 make a shared library. */
4043 if (!just_syms
4044 && (bfd_link_pic (info)
4045 || (!bfd_link_relocatable (info)
4046 && info->nointerp
4047 && (info->export_dynamic || info->dynamic)))
4048 && is_elf_hash_table (htab)
4049 && info->output_bfd->xvec == abfd->xvec
4050 && !htab->dynamic_sections_created)
4051 {
4052 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4053 goto error_return;
4054 }
4055 }
4056 else if (!is_elf_hash_table (htab))
4057 goto error_return;
4058 else
4059 {
4060 const char *soname = NULL;
4061 char *audit = NULL;
4062 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4063 const Elf_Internal_Phdr *phdr;
4064 struct elf_link_loaded_list *loaded_lib;
4065
4066 /* ld --just-symbols and dynamic objects don't mix very well.
4067 ld shouldn't allow it. */
4068 if (just_syms)
4069 abort ();
4070
4071 /* If this dynamic lib was specified on the command line with
4072 --as-needed in effect, then we don't want to add a DT_NEEDED
4073 tag unless the lib is actually used. Similary for libs brought
4074 in by another lib's DT_NEEDED. When --no-add-needed is used
4075 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4076 any dynamic library in DT_NEEDED tags in the dynamic lib at
4077 all. */
4078 add_needed = (elf_dyn_lib_class (abfd)
4079 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4080 | DYN_NO_NEEDED)) == 0;
4081
4082 s = bfd_get_section_by_name (abfd, ".dynamic");
4083 if (s != NULL)
4084 {
4085 bfd_byte *dynbuf;
4086 bfd_byte *extdyn;
4087 unsigned int elfsec;
4088 unsigned long shlink;
4089
4090 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4091 {
4092 error_free_dyn:
4093 free (dynbuf);
4094 goto error_return;
4095 }
4096
4097 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4098 if (elfsec == SHN_BAD)
4099 goto error_free_dyn;
4100 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4101
4102 for (extdyn = dynbuf;
4103 extdyn <= dynbuf + s->size - bed->s->sizeof_dyn;
4104 extdyn += bed->s->sizeof_dyn)
4105 {
4106 Elf_Internal_Dyn dyn;
4107
4108 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4109 if (dyn.d_tag == DT_SONAME)
4110 {
4111 unsigned int tagv = dyn.d_un.d_val;
4112 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4113 if (soname == NULL)
4114 goto error_free_dyn;
4115 }
4116 if (dyn.d_tag == DT_NEEDED)
4117 {
4118 struct bfd_link_needed_list *n, **pn;
4119 char *fnm, *anm;
4120 unsigned int tagv = dyn.d_un.d_val;
4121 size_t amt = sizeof (struct bfd_link_needed_list);
4122
4123 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4124 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4125 if (n == NULL || fnm == NULL)
4126 goto error_free_dyn;
4127 amt = strlen (fnm) + 1;
4128 anm = (char *) bfd_alloc (abfd, amt);
4129 if (anm == NULL)
4130 goto error_free_dyn;
4131 memcpy (anm, fnm, amt);
4132 n->name = anm;
4133 n->by = abfd;
4134 n->next = NULL;
4135 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4136 ;
4137 *pn = n;
4138 }
4139 if (dyn.d_tag == DT_RUNPATH)
4140 {
4141 struct bfd_link_needed_list *n, **pn;
4142 char *fnm, *anm;
4143 unsigned int tagv = dyn.d_un.d_val;
4144 size_t amt = sizeof (struct bfd_link_needed_list);
4145
4146 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4147 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4148 if (n == NULL || fnm == NULL)
4149 goto error_free_dyn;
4150 amt = strlen (fnm) + 1;
4151 anm = (char *) bfd_alloc (abfd, amt);
4152 if (anm == NULL)
4153 goto error_free_dyn;
4154 memcpy (anm, fnm, amt);
4155 n->name = anm;
4156 n->by = abfd;
4157 n->next = NULL;
4158 for (pn = & runpath;
4159 *pn != NULL;
4160 pn = &(*pn)->next)
4161 ;
4162 *pn = n;
4163 }
4164 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4165 if (!runpath && dyn.d_tag == DT_RPATH)
4166 {
4167 struct bfd_link_needed_list *n, **pn;
4168 char *fnm, *anm;
4169 unsigned int tagv = dyn.d_un.d_val;
4170 size_t amt = sizeof (struct bfd_link_needed_list);
4171
4172 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4173 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4174 if (n == NULL || fnm == NULL)
4175 goto error_free_dyn;
4176 amt = strlen (fnm) + 1;
4177 anm = (char *) bfd_alloc (abfd, amt);
4178 if (anm == NULL)
4179 goto error_free_dyn;
4180 memcpy (anm, fnm, amt);
4181 n->name = anm;
4182 n->by = abfd;
4183 n->next = NULL;
4184 for (pn = & rpath;
4185 *pn != NULL;
4186 pn = &(*pn)->next)
4187 ;
4188 *pn = n;
4189 }
4190 if (dyn.d_tag == DT_AUDIT)
4191 {
4192 unsigned int tagv = dyn.d_un.d_val;
4193 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4194 }
4195 }
4196
4197 free (dynbuf);
4198 }
4199
4200 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4201 frees all more recently bfd_alloc'd blocks as well. */
4202 if (runpath)
4203 rpath = runpath;
4204
4205 if (rpath)
4206 {
4207 struct bfd_link_needed_list **pn;
4208 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4209 ;
4210 *pn = rpath;
4211 }
4212
4213 /* If we have a PT_GNU_RELRO program header, mark as read-only
4214 all sections contained fully therein. This makes relro
4215 shared library sections appear as they will at run-time. */
4216 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4217 while (phdr-- > elf_tdata (abfd)->phdr)
4218 if (phdr->p_type == PT_GNU_RELRO)
4219 {
4220 for (s = abfd->sections; s != NULL; s = s->next)
4221 {
4222 unsigned int opb = bfd_octets_per_byte (abfd, s);
4223
4224 if ((s->flags & SEC_ALLOC) != 0
4225 && s->vma * opb >= phdr->p_vaddr
4226 && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz)
4227 s->flags |= SEC_READONLY;
4228 }
4229 break;
4230 }
4231
4232 /* We do not want to include any of the sections in a dynamic
4233 object in the output file. We hack by simply clobbering the
4234 list of sections in the BFD. This could be handled more
4235 cleanly by, say, a new section flag; the existing
4236 SEC_NEVER_LOAD flag is not the one we want, because that one
4237 still implies that the section takes up space in the output
4238 file. */
4239 bfd_section_list_clear (abfd);
4240
4241 /* Find the name to use in a DT_NEEDED entry that refers to this
4242 object. If the object has a DT_SONAME entry, we use it.
4243 Otherwise, if the generic linker stuck something in
4244 elf_dt_name, we use that. Otherwise, we just use the file
4245 name. */
4246 if (soname == NULL || *soname == '\0')
4247 {
4248 soname = elf_dt_name (abfd);
4249 if (soname == NULL || *soname == '\0')
4250 soname = bfd_get_filename (abfd);
4251 }
4252
4253 /* Save the SONAME because sometimes the linker emulation code
4254 will need to know it. */
4255 elf_dt_name (abfd) = soname;
4256
4257 /* If we have already included this dynamic object in the
4258 link, just ignore it. There is no reason to include a
4259 particular dynamic object more than once. */
4260 for (loaded_lib = htab->dyn_loaded;
4261 loaded_lib != NULL;
4262 loaded_lib = loaded_lib->next)
4263 {
4264 if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0)
4265 return TRUE;
4266 }
4267
4268 /* Create dynamic sections for backends that require that be done
4269 before setup_gnu_properties. */
4270 if (add_needed
4271 && !_bfd_elf_link_create_dynamic_sections (abfd, info))
4272 return FALSE;
4273
4274 /* Save the DT_AUDIT entry for the linker emulation code. */
4275 elf_dt_audit (abfd) = audit;
4276 }
4277
4278 /* If this is a dynamic object, we always link against the .dynsym
4279 symbol table, not the .symtab symbol table. The dynamic linker
4280 will only see the .dynsym symbol table, so there is no reason to
4281 look at .symtab for a dynamic object. */
4282
4283 if (! dynamic || elf_dynsymtab (abfd) == 0)
4284 hdr = &elf_tdata (abfd)->symtab_hdr;
4285 else
4286 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4287
4288 symcount = hdr->sh_size / bed->s->sizeof_sym;
4289
4290 /* The sh_info field of the symtab header tells us where the
4291 external symbols start. We don't care about the local symbols at
4292 this point. */
4293 if (elf_bad_symtab (abfd))
4294 {
4295 extsymcount = symcount;
4296 extsymoff = 0;
4297 }
4298 else
4299 {
4300 extsymcount = symcount - hdr->sh_info;
4301 extsymoff = hdr->sh_info;
4302 }
4303
4304 sym_hash = elf_sym_hashes (abfd);
4305 if (extsymcount != 0)
4306 {
4307 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4308 NULL, NULL, NULL);
4309 if (isymbuf == NULL)
4310 goto error_return;
4311
4312 if (sym_hash == NULL)
4313 {
4314 /* We store a pointer to the hash table entry for each
4315 external symbol. */
4316 size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4317 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4318 if (sym_hash == NULL)
4319 goto error_free_sym;
4320 elf_sym_hashes (abfd) = sym_hash;
4321 }
4322 }
4323
4324 if (dynamic)
4325 {
4326 /* Read in any version definitions. */
4327 if (!_bfd_elf_slurp_version_tables (abfd,
4328 info->default_imported_symver))
4329 goto error_free_sym;
4330
4331 /* Read in the symbol versions, but don't bother to convert them
4332 to internal format. */
4333 if (elf_dynversym (abfd) != 0)
4334 {
4335 Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4336 bfd_size_type amt = versymhdr->sh_size;
4337
4338 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0)
4339 goto error_free_sym;
4340 extversym = (Elf_External_Versym *)
4341 _bfd_malloc_and_read (abfd, amt, amt);
4342 if (extversym == NULL)
4343 goto error_free_sym;
4344 extversym_end = extversym + amt / sizeof (*extversym);
4345 }
4346 }
4347
4348 /* If we are loading an as-needed shared lib, save the symbol table
4349 state before we start adding symbols. If the lib turns out
4350 to be unneeded, restore the state. */
4351 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4352 {
4353 unsigned int i;
4354 size_t entsize;
4355
4356 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4357 {
4358 struct bfd_hash_entry *p;
4359 struct elf_link_hash_entry *h;
4360
4361 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4362 {
4363 h = (struct elf_link_hash_entry *) p;
4364 entsize += htab->root.table.entsize;
4365 if (h->root.type == bfd_link_hash_warning)
4366 entsize += htab->root.table.entsize;
4367 }
4368 }
4369
4370 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4371 old_tab = bfd_malloc (tabsize + entsize);
4372 if (old_tab == NULL)
4373 goto error_free_vers;
4374
4375 /* Remember the current objalloc pointer, so that all mem for
4376 symbols added can later be reclaimed. */
4377 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4378 if (alloc_mark == NULL)
4379 goto error_free_vers;
4380
4381 /* Make a special call to the linker "notice" function to
4382 tell it that we are about to handle an as-needed lib. */
4383 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4384 goto error_free_vers;
4385
4386 /* Clone the symbol table. Remember some pointers into the
4387 symbol table, and dynamic symbol count. */
4388 old_ent = (char *) old_tab + tabsize;
4389 memcpy (old_tab, htab->root.table.table, tabsize);
4390 old_undefs = htab->root.undefs;
4391 old_undefs_tail = htab->root.undefs_tail;
4392 old_table = htab->root.table.table;
4393 old_size = htab->root.table.size;
4394 old_count = htab->root.table.count;
4395 old_strtab = NULL;
4396 if (htab->dynstr != NULL)
4397 {
4398 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4399 if (old_strtab == NULL)
4400 goto error_free_vers;
4401 }
4402
4403 for (i = 0; i < htab->root.table.size; i++)
4404 {
4405 struct bfd_hash_entry *p;
4406 struct elf_link_hash_entry *h;
4407
4408 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4409 {
4410 memcpy (old_ent, p, htab->root.table.entsize);
4411 old_ent = (char *) old_ent + htab->root.table.entsize;
4412 h = (struct elf_link_hash_entry *) p;
4413 if (h->root.type == bfd_link_hash_warning)
4414 {
4415 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4416 old_ent = (char *) old_ent + htab->root.table.entsize;
4417 }
4418 }
4419 }
4420 }
4421
4422 weaks = NULL;
4423 if (extversym == NULL)
4424 ever = NULL;
4425 else if (extversym + extsymoff < extversym_end)
4426 ever = extversym + extsymoff;
4427 else
4428 {
4429 /* xgettext:c-format */
4430 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4431 abfd, (long) extsymoff,
4432 (long) (extversym_end - extversym) / sizeof (* extversym));
4433 bfd_set_error (bfd_error_bad_value);
4434 goto error_free_vers;
4435 }
4436
4437 if (!bfd_link_relocatable (info)
4438 && abfd->lto_slim_object)
4439 {
4440 _bfd_error_handler
4441 (_("%pB: plugin needed to handle lto object"), abfd);
4442 }
4443
4444 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4445 isym < isymend;
4446 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4447 {
4448 int bind;
4449 bfd_vma value;
4450 asection *sec, *new_sec;
4451 flagword flags;
4452 const char *name;
4453 struct elf_link_hash_entry *h;
4454 struct elf_link_hash_entry *hi;
4455 bfd_boolean definition;
4456 bfd_boolean size_change_ok;
4457 bfd_boolean type_change_ok;
4458 bfd_boolean new_weak;
4459 bfd_boolean old_weak;
4460 bfd_boolean override;
4461 bfd_boolean common;
4462 bfd_boolean discarded;
4463 unsigned int old_alignment;
4464 unsigned int shindex;
4465 bfd *old_bfd;
4466 bfd_boolean matched;
4467
4468 override = FALSE;
4469
4470 flags = BSF_NO_FLAGS;
4471 sec = NULL;
4472 value = isym->st_value;
4473 common = bed->common_definition (isym);
4474 if (common && info->inhibit_common_definition)
4475 {
4476 /* Treat common symbol as undefined for --no-define-common. */
4477 isym->st_shndx = SHN_UNDEF;
4478 common = FALSE;
4479 }
4480 discarded = FALSE;
4481
4482 bind = ELF_ST_BIND (isym->st_info);
4483 switch (bind)
4484 {
4485 case STB_LOCAL:
4486 /* This should be impossible, since ELF requires that all
4487 global symbols follow all local symbols, and that sh_info
4488 point to the first global symbol. Unfortunately, Irix 5
4489 screws this up. */
4490 if (elf_bad_symtab (abfd))
4491 continue;
4492
4493 /* If we aren't prepared to handle locals within the globals
4494 then we'll likely segfault on a NULL symbol hash if the
4495 symbol is ever referenced in relocations. */
4496 shindex = elf_elfheader (abfd)->e_shstrndx;
4497 name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name);
4498 _bfd_error_handler (_("%pB: %s local symbol at index %lu"
4499 " (>= sh_info of %lu)"),
4500 abfd, name, (long) (isym - isymbuf + extsymoff),
4501 (long) extsymoff);
4502
4503 /* Dynamic object relocations are not processed by ld, so
4504 ld won't run into the problem mentioned above. */
4505 if (dynamic)
4506 continue;
4507 bfd_set_error (bfd_error_bad_value);
4508 goto error_free_vers;
4509
4510 case STB_GLOBAL:
4511 if (isym->st_shndx != SHN_UNDEF && !common)
4512 flags = BSF_GLOBAL;
4513 break;
4514
4515 case STB_WEAK:
4516 flags = BSF_WEAK;
4517 break;
4518
4519 case STB_GNU_UNIQUE:
4520 flags = BSF_GNU_UNIQUE;
4521 break;
4522
4523 default:
4524 /* Leave it up to the processor backend. */
4525 break;
4526 }
4527
4528 if (isym->st_shndx == SHN_UNDEF)
4529 sec = bfd_und_section_ptr;
4530 else if (isym->st_shndx == SHN_ABS)
4531 sec = bfd_abs_section_ptr;
4532 else if (isym->st_shndx == SHN_COMMON)
4533 {
4534 sec = bfd_com_section_ptr;
4535 /* What ELF calls the size we call the value. What ELF
4536 calls the value we call the alignment. */
4537 value = isym->st_size;
4538 }
4539 else
4540 {
4541 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4542 if (sec == NULL)
4543 sec = bfd_abs_section_ptr;
4544 else if (discarded_section (sec))
4545 {
4546 /* Symbols from discarded section are undefined. We keep
4547 its visibility. */
4548 sec = bfd_und_section_ptr;
4549 discarded = TRUE;
4550 isym->st_shndx = SHN_UNDEF;
4551 }
4552 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4553 value -= sec->vma;
4554 }
4555
4556 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4557 isym->st_name);
4558 if (name == NULL)
4559 goto error_free_vers;
4560
4561 if (isym->st_shndx == SHN_COMMON
4562 && (abfd->flags & BFD_PLUGIN) != 0)
4563 {
4564 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4565
4566 if (xc == NULL)
4567 {
4568 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4569 | SEC_EXCLUDE);
4570 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4571 if (xc == NULL)
4572 goto error_free_vers;
4573 }
4574 sec = xc;
4575 }
4576 else if (isym->st_shndx == SHN_COMMON
4577 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4578 && !bfd_link_relocatable (info))
4579 {
4580 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4581
4582 if (tcomm == NULL)
4583 {
4584 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4585 | SEC_LINKER_CREATED);
4586 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4587 if (tcomm == NULL)
4588 goto error_free_vers;
4589 }
4590 sec = tcomm;
4591 }
4592 else if (bed->elf_add_symbol_hook)
4593 {
4594 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4595 &sec, &value))
4596 goto error_free_vers;
4597
4598 /* The hook function sets the name to NULL if this symbol
4599 should be skipped for some reason. */
4600 if (name == NULL)
4601 continue;
4602 }
4603
4604 /* Sanity check that all possibilities were handled. */
4605 if (sec == NULL)
4606 abort ();
4607
4608 /* Silently discard TLS symbols from --just-syms. There's
4609 no way to combine a static TLS block with a new TLS block
4610 for this executable. */
4611 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4612 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4613 continue;
4614
4615 if (bfd_is_und_section (sec)
4616 || bfd_is_com_section (sec))
4617 definition = FALSE;
4618 else
4619 definition = TRUE;
4620
4621 size_change_ok = FALSE;
4622 type_change_ok = bed->type_change_ok;
4623 old_weak = FALSE;
4624 matched = FALSE;
4625 old_alignment = 0;
4626 old_bfd = NULL;
4627 new_sec = sec;
4628
4629 if (is_elf_hash_table (htab))
4630 {
4631 Elf_Internal_Versym iver;
4632 unsigned int vernum = 0;
4633 bfd_boolean skip;
4634
4635 if (ever == NULL)
4636 {
4637 if (info->default_imported_symver)
4638 /* Use the default symbol version created earlier. */
4639 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4640 else
4641 iver.vs_vers = 0;
4642 }
4643 else if (ever >= extversym_end)
4644 {
4645 /* xgettext:c-format */
4646 _bfd_error_handler (_("%pB: not enough version information"),
4647 abfd);
4648 bfd_set_error (bfd_error_bad_value);
4649 goto error_free_vers;
4650 }
4651 else
4652 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4653
4654 vernum = iver.vs_vers & VERSYM_VERSION;
4655
4656 /* If this is a hidden symbol, or if it is not version
4657 1, we append the version name to the symbol name.
4658 However, we do not modify a non-hidden absolute symbol
4659 if it is not a function, because it might be the version
4660 symbol itself. FIXME: What if it isn't? */
4661 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4662 || (vernum > 1
4663 && (!bfd_is_abs_section (sec)
4664 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4665 {
4666 const char *verstr;
4667 size_t namelen, verlen, newlen;
4668 char *newname, *p;
4669
4670 if (isym->st_shndx != SHN_UNDEF)
4671 {
4672 if (vernum > elf_tdata (abfd)->cverdefs)
4673 verstr = NULL;
4674 else if (vernum > 1)
4675 verstr =
4676 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4677 else
4678 verstr = "";
4679
4680 if (verstr == NULL)
4681 {
4682 _bfd_error_handler
4683 /* xgettext:c-format */
4684 (_("%pB: %s: invalid version %u (max %d)"),
4685 abfd, name, vernum,
4686 elf_tdata (abfd)->cverdefs);
4687 bfd_set_error (bfd_error_bad_value);
4688 goto error_free_vers;
4689 }
4690 }
4691 else
4692 {
4693 /* We cannot simply test for the number of
4694 entries in the VERNEED section since the
4695 numbers for the needed versions do not start
4696 at 0. */
4697 Elf_Internal_Verneed *t;
4698
4699 verstr = NULL;
4700 for (t = elf_tdata (abfd)->verref;
4701 t != NULL;
4702 t = t->vn_nextref)
4703 {
4704 Elf_Internal_Vernaux *a;
4705
4706 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4707 {
4708 if (a->vna_other == vernum)
4709 {
4710 verstr = a->vna_nodename;
4711 break;
4712 }
4713 }
4714 if (a != NULL)
4715 break;
4716 }
4717 if (verstr == NULL)
4718 {
4719 _bfd_error_handler
4720 /* xgettext:c-format */
4721 (_("%pB: %s: invalid needed version %d"),
4722 abfd, name, vernum);
4723 bfd_set_error (bfd_error_bad_value);
4724 goto error_free_vers;
4725 }
4726 }
4727
4728 namelen = strlen (name);
4729 verlen = strlen (verstr);
4730 newlen = namelen + verlen + 2;
4731 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4732 && isym->st_shndx != SHN_UNDEF)
4733 ++newlen;
4734
4735 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4736 if (newname == NULL)
4737 goto error_free_vers;
4738 memcpy (newname, name, namelen);
4739 p = newname + namelen;
4740 *p++ = ELF_VER_CHR;
4741 /* If this is a defined non-hidden version symbol,
4742 we add another @ to the name. This indicates the
4743 default version of the symbol. */
4744 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4745 && isym->st_shndx != SHN_UNDEF)
4746 *p++ = ELF_VER_CHR;
4747 memcpy (p, verstr, verlen + 1);
4748
4749 name = newname;
4750 }
4751
4752 /* If this symbol has default visibility and the user has
4753 requested we not re-export it, then mark it as hidden. */
4754 if (!bfd_is_und_section (sec)
4755 && !dynamic
4756 && abfd->no_export
4757 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4758 isym->st_other = (STV_HIDDEN
4759 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4760
4761 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4762 sym_hash, &old_bfd, &old_weak,
4763 &old_alignment, &skip, &override,
4764 &type_change_ok, &size_change_ok,
4765 &matched))
4766 goto error_free_vers;
4767
4768 if (skip)
4769 continue;
4770
4771 /* Override a definition only if the new symbol matches the
4772 existing one. */
4773 if (override && matched)
4774 definition = FALSE;
4775
4776 h = *sym_hash;
4777 while (h->root.type == bfd_link_hash_indirect
4778 || h->root.type == bfd_link_hash_warning)
4779 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4780
4781 if (elf_tdata (abfd)->verdef != NULL
4782 && vernum > 1
4783 && definition)
4784 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4785 }
4786
4787 if (! (_bfd_generic_link_add_one_symbol
4788 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4789 (struct bfd_link_hash_entry **) sym_hash)))
4790 goto error_free_vers;
4791
4792 h = *sym_hash;
4793 /* We need to make sure that indirect symbol dynamic flags are
4794 updated. */
4795 hi = h;
4796 while (h->root.type == bfd_link_hash_indirect
4797 || h->root.type == bfd_link_hash_warning)
4798 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4799
4800 /* Setting the index to -3 tells elf_link_output_extsym that
4801 this symbol is defined in a discarded section. */
4802 if (discarded)
4803 h->indx = -3;
4804
4805 *sym_hash = h;
4806
4807 new_weak = (flags & BSF_WEAK) != 0;
4808 if (dynamic
4809 && definition
4810 && new_weak
4811 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4812 && is_elf_hash_table (htab)
4813 && h->u.alias == NULL)
4814 {
4815 /* Keep a list of all weak defined non function symbols from
4816 a dynamic object, using the alias field. Later in this
4817 function we will set the alias field to the correct
4818 value. We only put non-function symbols from dynamic
4819 objects on this list, because that happens to be the only
4820 time we need to know the normal symbol corresponding to a
4821 weak symbol, and the information is time consuming to
4822 figure out. If the alias field is not already NULL,
4823 then this symbol was already defined by some previous
4824 dynamic object, and we will be using that previous
4825 definition anyhow. */
4826
4827 h->u.alias = weaks;
4828 weaks = h;
4829 }
4830
4831 /* Set the alignment of a common symbol. */
4832 if ((common || bfd_is_com_section (sec))
4833 && h->root.type == bfd_link_hash_common)
4834 {
4835 unsigned int align;
4836
4837 if (common)
4838 align = bfd_log2 (isym->st_value);
4839 else
4840 {
4841 /* The new symbol is a common symbol in a shared object.
4842 We need to get the alignment from the section. */
4843 align = new_sec->alignment_power;
4844 }
4845 if (align > old_alignment)
4846 h->root.u.c.p->alignment_power = align;
4847 else
4848 h->root.u.c.p->alignment_power = old_alignment;
4849 }
4850
4851 if (is_elf_hash_table (htab))
4852 {
4853 /* Set a flag in the hash table entry indicating the type of
4854 reference or definition we just found. A dynamic symbol
4855 is one which is referenced or defined by both a regular
4856 object and a shared object. */
4857 bfd_boolean dynsym = FALSE;
4858
4859 /* Plugin symbols aren't normal. Don't set def_regular or
4860 ref_regular for them, or make them dynamic. */
4861 if ((abfd->flags & BFD_PLUGIN) != 0)
4862 ;
4863 else if (! dynamic)
4864 {
4865 if (! definition)
4866 {
4867 h->ref_regular = 1;
4868 if (bind != STB_WEAK)
4869 h->ref_regular_nonweak = 1;
4870 }
4871 else
4872 {
4873 h->def_regular = 1;
4874 if (h->def_dynamic)
4875 {
4876 h->def_dynamic = 0;
4877 h->ref_dynamic = 1;
4878 }
4879 }
4880
4881 /* If the indirect symbol has been forced local, don't
4882 make the real symbol dynamic. */
4883 if ((h == hi || !hi->forced_local)
4884 && (bfd_link_dll (info)
4885 || h->def_dynamic
4886 || h->ref_dynamic))
4887 dynsym = TRUE;
4888 }
4889 else
4890 {
4891 if (! definition)
4892 {
4893 h->ref_dynamic = 1;
4894 hi->ref_dynamic = 1;
4895 }
4896 else
4897 {
4898 h->def_dynamic = 1;
4899 hi->def_dynamic = 1;
4900 }
4901
4902 /* If the indirect symbol has been forced local, don't
4903 make the real symbol dynamic. */
4904 if ((h == hi || !hi->forced_local)
4905 && (h->def_regular
4906 || h->ref_regular
4907 || (h->is_weakalias
4908 && weakdef (h)->dynindx != -1)))
4909 dynsym = TRUE;
4910 }
4911
4912 /* Check to see if we need to add an indirect symbol for
4913 the default name. */
4914 if (definition
4915 || (!override && h->root.type == bfd_link_hash_common))
4916 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4917 sec, value, &old_bfd, &dynsym))
4918 goto error_free_vers;
4919
4920 /* Check the alignment when a common symbol is involved. This
4921 can change when a common symbol is overridden by a normal
4922 definition or a common symbol is ignored due to the old
4923 normal definition. We need to make sure the maximum
4924 alignment is maintained. */
4925 if ((old_alignment || common)
4926 && h->root.type != bfd_link_hash_common)
4927 {
4928 unsigned int common_align;
4929 unsigned int normal_align;
4930 unsigned int symbol_align;
4931 bfd *normal_bfd;
4932 bfd *common_bfd;
4933
4934 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4935 || h->root.type == bfd_link_hash_defweak);
4936
4937 symbol_align = ffs (h->root.u.def.value) - 1;
4938 if (h->root.u.def.section->owner != NULL
4939 && (h->root.u.def.section->owner->flags
4940 & (DYNAMIC | BFD_PLUGIN)) == 0)
4941 {
4942 normal_align = h->root.u.def.section->alignment_power;
4943 if (normal_align > symbol_align)
4944 normal_align = symbol_align;
4945 }
4946 else
4947 normal_align = symbol_align;
4948
4949 if (old_alignment)
4950 {
4951 common_align = old_alignment;
4952 common_bfd = old_bfd;
4953 normal_bfd = abfd;
4954 }
4955 else
4956 {
4957 common_align = bfd_log2 (isym->st_value);
4958 common_bfd = abfd;
4959 normal_bfd = old_bfd;
4960 }
4961
4962 if (normal_align < common_align)
4963 {
4964 /* PR binutils/2735 */
4965 if (normal_bfd == NULL)
4966 _bfd_error_handler
4967 /* xgettext:c-format */
4968 (_("warning: alignment %u of common symbol `%s' in %pB is"
4969 " greater than the alignment (%u) of its section %pA"),
4970 1 << common_align, name, common_bfd,
4971 1 << normal_align, h->root.u.def.section);
4972 else
4973 _bfd_error_handler
4974 /* xgettext:c-format */
4975 (_("warning: alignment %u of symbol `%s' in %pB"
4976 " is smaller than %u in %pB"),
4977 1 << normal_align, name, normal_bfd,
4978 1 << common_align, common_bfd);
4979 }
4980 }
4981
4982 /* Remember the symbol size if it isn't undefined. */
4983 if (isym->st_size != 0
4984 && isym->st_shndx != SHN_UNDEF
4985 && (definition || h->size == 0))
4986 {
4987 if (h->size != 0
4988 && h->size != isym->st_size
4989 && ! size_change_ok)
4990 _bfd_error_handler
4991 /* xgettext:c-format */
4992 (_("warning: size of symbol `%s' changed"
4993 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4994 name, (uint64_t) h->size, old_bfd,
4995 (uint64_t) isym->st_size, abfd);
4996
4997 h->size = isym->st_size;
4998 }
4999
5000 /* If this is a common symbol, then we always want H->SIZE
5001 to be the size of the common symbol. The code just above
5002 won't fix the size if a common symbol becomes larger. We
5003 don't warn about a size change here, because that is
5004 covered by --warn-common. Allow changes between different
5005 function types. */
5006 if (h->root.type == bfd_link_hash_common)
5007 h->size = h->root.u.c.size;
5008
5009 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
5010 && ((definition && !new_weak)
5011 || (old_weak && h->root.type == bfd_link_hash_common)
5012 || h->type == STT_NOTYPE))
5013 {
5014 unsigned int type = ELF_ST_TYPE (isym->st_info);
5015
5016 /* Turn an IFUNC symbol from a DSO into a normal FUNC
5017 symbol. */
5018 if (type == STT_GNU_IFUNC
5019 && (abfd->flags & DYNAMIC) != 0)
5020 type = STT_FUNC;
5021
5022 if (h->type != type)
5023 {
5024 if (h->type != STT_NOTYPE && ! type_change_ok)
5025 /* xgettext:c-format */
5026 _bfd_error_handler
5027 (_("warning: type of symbol `%s' changed"
5028 " from %d to %d in %pB"),
5029 name, h->type, type, abfd);
5030
5031 h->type = type;
5032 }
5033 }
5034
5035 /* Merge st_other field. */
5036 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
5037
5038 /* We don't want to make debug symbol dynamic. */
5039 if (definition
5040 && (sec->flags & SEC_DEBUGGING)
5041 && !bfd_link_relocatable (info))
5042 dynsym = FALSE;
5043
5044 /* Nor should we make plugin symbols dynamic. */
5045 if ((abfd->flags & BFD_PLUGIN) != 0)
5046 dynsym = FALSE;
5047
5048 if (definition)
5049 {
5050 h->target_internal = isym->st_target_internal;
5051 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5052 }
5053
5054 if (definition && !dynamic)
5055 {
5056 char *p = strchr (name, ELF_VER_CHR);
5057 if (p != NULL && p[1] != ELF_VER_CHR)
5058 {
5059 /* Queue non-default versions so that .symver x, x@FOO
5060 aliases can be checked. */
5061 if (!nondeflt_vers)
5062 {
5063 size_t amt = ((isymend - isym + 1)
5064 * sizeof (struct elf_link_hash_entry *));
5065 nondeflt_vers
5066 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5067 if (!nondeflt_vers)
5068 goto error_free_vers;
5069 }
5070 nondeflt_vers[nondeflt_vers_cnt++] = h;
5071 }
5072 }
5073
5074 if (dynsym && h->dynindx == -1)
5075 {
5076 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5077 goto error_free_vers;
5078 if (h->is_weakalias
5079 && weakdef (h)->dynindx == -1)
5080 {
5081 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5082 goto error_free_vers;
5083 }
5084 }
5085 else if (h->dynindx != -1)
5086 /* If the symbol already has a dynamic index, but
5087 visibility says it should not be visible, turn it into
5088 a local symbol. */
5089 switch (ELF_ST_VISIBILITY (h->other))
5090 {
5091 case STV_INTERNAL:
5092 case STV_HIDDEN:
5093 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5094 dynsym = FALSE;
5095 break;
5096 }
5097
5098 /* Don't add DT_NEEDED for references from the dummy bfd nor
5099 for unmatched symbol. */
5100 if (!add_needed
5101 && matched
5102 && definition
5103 && ((dynsym
5104 && h->ref_regular_nonweak
5105 && (old_bfd == NULL
5106 || (old_bfd->flags & BFD_PLUGIN) == 0))
5107 || (h->ref_dynamic_nonweak
5108 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5109 && !on_needed_list (elf_dt_name (abfd),
5110 htab->needed, NULL))))
5111 {
5112 const char *soname = elf_dt_name (abfd);
5113
5114 info->callbacks->minfo ("%!", soname, old_bfd,
5115 h->root.root.string);
5116
5117 /* A symbol from a library loaded via DT_NEEDED of some
5118 other library is referenced by a regular object.
5119 Add a DT_NEEDED entry for it. Issue an error if
5120 --no-add-needed is used and the reference was not
5121 a weak one. */
5122 if (old_bfd != NULL
5123 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5124 {
5125 _bfd_error_handler
5126 /* xgettext:c-format */
5127 (_("%pB: undefined reference to symbol '%s'"),
5128 old_bfd, name);
5129 bfd_set_error (bfd_error_missing_dso);
5130 goto error_free_vers;
5131 }
5132
5133 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5134 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5135
5136 /* Create dynamic sections for backends that require
5137 that be done before setup_gnu_properties. */
5138 if (!_bfd_elf_link_create_dynamic_sections (abfd, info))
5139 return FALSE;
5140 add_needed = TRUE;
5141 }
5142 }
5143 }
5144
5145 if (info->lto_plugin_active
5146 && !bfd_link_relocatable (info)
5147 && (abfd->flags & BFD_PLUGIN) == 0
5148 && !just_syms
5149 && extsymcount)
5150 {
5151 int r_sym_shift;
5152
5153 if (bed->s->arch_size == 32)
5154 r_sym_shift = 8;
5155 else
5156 r_sym_shift = 32;
5157
5158 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5159 referenced in regular objects so that linker plugin will get
5160 the correct symbol resolution. */
5161
5162 sym_hash = elf_sym_hashes (abfd);
5163 for (s = abfd->sections; s != NULL; s = s->next)
5164 {
5165 Elf_Internal_Rela *internal_relocs;
5166 Elf_Internal_Rela *rel, *relend;
5167
5168 /* Don't check relocations in excluded sections. */
5169 if ((s->flags & SEC_RELOC) == 0
5170 || s->reloc_count == 0
5171 || (s->flags & SEC_EXCLUDE) != 0
5172 || ((info->strip == strip_all
5173 || info->strip == strip_debugger)
5174 && (s->flags & SEC_DEBUGGING) != 0))
5175 continue;
5176
5177 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5178 NULL,
5179 info->keep_memory);
5180 if (internal_relocs == NULL)
5181 goto error_free_vers;
5182
5183 rel = internal_relocs;
5184 relend = rel + s->reloc_count;
5185 for ( ; rel < relend; rel++)
5186 {
5187 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5188 struct elf_link_hash_entry *h;
5189
5190 /* Skip local symbols. */
5191 if (r_symndx < extsymoff)
5192 continue;
5193
5194 h = sym_hash[r_symndx - extsymoff];
5195 if (h != NULL)
5196 h->root.non_ir_ref_regular = 1;
5197 }
5198
5199 if (elf_section_data (s)->relocs != internal_relocs)
5200 free (internal_relocs);
5201 }
5202 }
5203
5204 if (extversym != NULL)
5205 {
5206 free (extversym);
5207 extversym = NULL;
5208 }
5209
5210 if (isymbuf != NULL)
5211 {
5212 free (isymbuf);
5213 isymbuf = NULL;
5214 }
5215
5216 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5217 {
5218 unsigned int i;
5219
5220 /* Restore the symbol table. */
5221 old_ent = (char *) old_tab + tabsize;
5222 memset (elf_sym_hashes (abfd), 0,
5223 extsymcount * sizeof (struct elf_link_hash_entry *));
5224 htab->root.table.table = old_table;
5225 htab->root.table.size = old_size;
5226 htab->root.table.count = old_count;
5227 memcpy (htab->root.table.table, old_tab, tabsize);
5228 htab->root.undefs = old_undefs;
5229 htab->root.undefs_tail = old_undefs_tail;
5230 if (htab->dynstr != NULL)
5231 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5232 free (old_strtab);
5233 old_strtab = NULL;
5234 for (i = 0; i < htab->root.table.size; i++)
5235 {
5236 struct bfd_hash_entry *p;
5237 struct elf_link_hash_entry *h;
5238 bfd_size_type size;
5239 unsigned int alignment_power;
5240 unsigned int non_ir_ref_dynamic;
5241
5242 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5243 {
5244 h = (struct elf_link_hash_entry *) p;
5245 if (h->root.type == bfd_link_hash_warning)
5246 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5247
5248 /* Preserve the maximum alignment and size for common
5249 symbols even if this dynamic lib isn't on DT_NEEDED
5250 since it can still be loaded at run time by another
5251 dynamic lib. */
5252 if (h->root.type == bfd_link_hash_common)
5253 {
5254 size = h->root.u.c.size;
5255 alignment_power = h->root.u.c.p->alignment_power;
5256 }
5257 else
5258 {
5259 size = 0;
5260 alignment_power = 0;
5261 }
5262 /* Preserve non_ir_ref_dynamic so that this symbol
5263 will be exported when the dynamic lib becomes needed
5264 in the second pass. */
5265 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5266 memcpy (p, old_ent, htab->root.table.entsize);
5267 old_ent = (char *) old_ent + htab->root.table.entsize;
5268 h = (struct elf_link_hash_entry *) p;
5269 if (h->root.type == bfd_link_hash_warning)
5270 {
5271 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5272 old_ent = (char *) old_ent + htab->root.table.entsize;
5273 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5274 }
5275 if (h->root.type == bfd_link_hash_common)
5276 {
5277 if (size > h->root.u.c.size)
5278 h->root.u.c.size = size;
5279 if (alignment_power > h->root.u.c.p->alignment_power)
5280 h->root.u.c.p->alignment_power = alignment_power;
5281 }
5282 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5283 }
5284 }
5285
5286 /* Make a special call to the linker "notice" function to
5287 tell it that symbols added for crefs may need to be removed. */
5288 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5289 goto error_free_vers;
5290
5291 free (old_tab);
5292 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5293 alloc_mark);
5294 if (nondeflt_vers != NULL)
5295 free (nondeflt_vers);
5296 return TRUE;
5297 }
5298
5299 if (old_tab != NULL)
5300 {
5301 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5302 goto error_free_vers;
5303 free (old_tab);
5304 old_tab = NULL;
5305 }
5306
5307 /* Now that all the symbols from this input file are created, if
5308 not performing a relocatable link, handle .symver foo, foo@BAR
5309 such that any relocs against foo become foo@BAR. */
5310 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5311 {
5312 size_t cnt, symidx;
5313
5314 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5315 {
5316 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5317 char *shortname, *p;
5318 size_t amt;
5319
5320 p = strchr (h->root.root.string, ELF_VER_CHR);
5321 if (p == NULL
5322 || (h->root.type != bfd_link_hash_defined
5323 && h->root.type != bfd_link_hash_defweak))
5324 continue;
5325
5326 amt = p - h->root.root.string;
5327 shortname = (char *) bfd_malloc (amt + 1);
5328 if (!shortname)
5329 goto error_free_vers;
5330 memcpy (shortname, h->root.root.string, amt);
5331 shortname[amt] = '\0';
5332
5333 hi = (struct elf_link_hash_entry *)
5334 bfd_link_hash_lookup (&htab->root, shortname,
5335 FALSE, FALSE, FALSE);
5336 if (hi != NULL
5337 && hi->root.type == h->root.type
5338 && hi->root.u.def.value == h->root.u.def.value
5339 && hi->root.u.def.section == h->root.u.def.section)
5340 {
5341 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5342 hi->root.type = bfd_link_hash_indirect;
5343 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5344 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5345 sym_hash = elf_sym_hashes (abfd);
5346 if (sym_hash)
5347 for (symidx = 0; symidx < extsymcount; ++symidx)
5348 if (sym_hash[symidx] == hi)
5349 {
5350 sym_hash[symidx] = h;
5351 break;
5352 }
5353 }
5354 free (shortname);
5355 }
5356 free (nondeflt_vers);
5357 nondeflt_vers = NULL;
5358 }
5359
5360 /* Now set the alias field correctly for all the weak defined
5361 symbols we found. The only way to do this is to search all the
5362 symbols. Since we only need the information for non functions in
5363 dynamic objects, that's the only time we actually put anything on
5364 the list WEAKS. We need this information so that if a regular
5365 object refers to a symbol defined weakly in a dynamic object, the
5366 real symbol in the dynamic object is also put in the dynamic
5367 symbols; we also must arrange for both symbols to point to the
5368 same memory location. We could handle the general case of symbol
5369 aliasing, but a general symbol alias can only be generated in
5370 assembler code, handling it correctly would be very time
5371 consuming, and other ELF linkers don't handle general aliasing
5372 either. */
5373 if (weaks != NULL)
5374 {
5375 struct elf_link_hash_entry **hpp;
5376 struct elf_link_hash_entry **hppend;
5377 struct elf_link_hash_entry **sorted_sym_hash;
5378 struct elf_link_hash_entry *h;
5379 size_t sym_count, amt;
5380
5381 /* Since we have to search the whole symbol list for each weak
5382 defined symbol, search time for N weak defined symbols will be
5383 O(N^2). Binary search will cut it down to O(NlogN). */
5384 amt = extsymcount * sizeof (*sorted_sym_hash);
5385 sorted_sym_hash = bfd_malloc (amt);
5386 if (sorted_sym_hash == NULL)
5387 goto error_return;
5388 sym_hash = sorted_sym_hash;
5389 hpp = elf_sym_hashes (abfd);
5390 hppend = hpp + extsymcount;
5391 sym_count = 0;
5392 for (; hpp < hppend; hpp++)
5393 {
5394 h = *hpp;
5395 if (h != NULL
5396 && h->root.type == bfd_link_hash_defined
5397 && !bed->is_function_type (h->type))
5398 {
5399 *sym_hash = h;
5400 sym_hash++;
5401 sym_count++;
5402 }
5403 }
5404
5405 qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash),
5406 elf_sort_symbol);
5407
5408 while (weaks != NULL)
5409 {
5410 struct elf_link_hash_entry *hlook;
5411 asection *slook;
5412 bfd_vma vlook;
5413 size_t i, j, idx = 0;
5414
5415 hlook = weaks;
5416 weaks = hlook->u.alias;
5417 hlook->u.alias = NULL;
5418
5419 if (hlook->root.type != bfd_link_hash_defined
5420 && hlook->root.type != bfd_link_hash_defweak)
5421 continue;
5422
5423 slook = hlook->root.u.def.section;
5424 vlook = hlook->root.u.def.value;
5425
5426 i = 0;
5427 j = sym_count;
5428 while (i != j)
5429 {
5430 bfd_signed_vma vdiff;
5431 idx = (i + j) / 2;
5432 h = sorted_sym_hash[idx];
5433 vdiff = vlook - h->root.u.def.value;
5434 if (vdiff < 0)
5435 j = idx;
5436 else if (vdiff > 0)
5437 i = idx + 1;
5438 else
5439 {
5440 int sdiff = slook->id - h->root.u.def.section->id;
5441 if (sdiff < 0)
5442 j = idx;
5443 else if (sdiff > 0)
5444 i = idx + 1;
5445 else
5446 break;
5447 }
5448 }
5449
5450 /* We didn't find a value/section match. */
5451 if (i == j)
5452 continue;
5453
5454 /* With multiple aliases, or when the weak symbol is already
5455 strongly defined, we have multiple matching symbols and
5456 the binary search above may land on any of them. Step
5457 one past the matching symbol(s). */
5458 while (++idx != j)
5459 {
5460 h = sorted_sym_hash[idx];
5461 if (h->root.u.def.section != slook
5462 || h->root.u.def.value != vlook)
5463 break;
5464 }
5465
5466 /* Now look back over the aliases. Since we sorted by size
5467 as well as value and section, we'll choose the one with
5468 the largest size. */
5469 while (idx-- != i)
5470 {
5471 h = sorted_sym_hash[idx];
5472
5473 /* Stop if value or section doesn't match. */
5474 if (h->root.u.def.section != slook
5475 || h->root.u.def.value != vlook)
5476 break;
5477 else if (h != hlook)
5478 {
5479 struct elf_link_hash_entry *t;
5480
5481 hlook->u.alias = h;
5482 hlook->is_weakalias = 1;
5483 t = h;
5484 if (t->u.alias != NULL)
5485 while (t->u.alias != h)
5486 t = t->u.alias;
5487 t->u.alias = hlook;
5488
5489 /* If the weak definition is in the list of dynamic
5490 symbols, make sure the real definition is put
5491 there as well. */
5492 if (hlook->dynindx != -1 && h->dynindx == -1)
5493 {
5494 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5495 {
5496 err_free_sym_hash:
5497 free (sorted_sym_hash);
5498 goto error_return;
5499 }
5500 }
5501
5502 /* If the real definition is in the list of dynamic
5503 symbols, make sure the weak definition is put
5504 there as well. If we don't do this, then the
5505 dynamic loader might not merge the entries for the
5506 real definition and the weak definition. */
5507 if (h->dynindx != -1 && hlook->dynindx == -1)
5508 {
5509 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5510 goto err_free_sym_hash;
5511 }
5512 break;
5513 }
5514 }
5515 }
5516
5517 free (sorted_sym_hash);
5518 }
5519
5520 if (bed->check_directives
5521 && !(*bed->check_directives) (abfd, info))
5522 return FALSE;
5523
5524 /* If this is a non-traditional link, try to optimize the handling
5525 of the .stab/.stabstr sections. */
5526 if (! dynamic
5527 && ! info->traditional_format
5528 && is_elf_hash_table (htab)
5529 && (info->strip != strip_all && info->strip != strip_debugger))
5530 {
5531 asection *stabstr;
5532
5533 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5534 if (stabstr != NULL)
5535 {
5536 bfd_size_type string_offset = 0;
5537 asection *stab;
5538
5539 for (stab = abfd->sections; stab; stab = stab->next)
5540 if (CONST_STRNEQ (stab->name, ".stab")
5541 && (!stab->name[5] ||
5542 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5543 && (stab->flags & SEC_MERGE) == 0
5544 && !bfd_is_abs_section (stab->output_section))
5545 {
5546 struct bfd_elf_section_data *secdata;
5547
5548 secdata = elf_section_data (stab);
5549 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5550 stabstr, &secdata->sec_info,
5551 &string_offset))
5552 goto error_return;
5553 if (secdata->sec_info)
5554 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5555 }
5556 }
5557 }
5558
5559 if (dynamic && add_needed)
5560 {
5561 /* Add this bfd to the loaded list. */
5562 struct elf_link_loaded_list *n;
5563
5564 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5565 if (n == NULL)
5566 goto error_return;
5567 n->abfd = abfd;
5568 n->next = htab->dyn_loaded;
5569 htab->dyn_loaded = n;
5570 }
5571 if (dynamic && !add_needed
5572 && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0)
5573 elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED;
5574
5575 return TRUE;
5576
5577 error_free_vers:
5578 if (old_tab != NULL)
5579 free (old_tab);
5580 if (old_strtab != NULL)
5581 free (old_strtab);
5582 if (nondeflt_vers != NULL)
5583 free (nondeflt_vers);
5584 if (extversym != NULL)
5585 free (extversym);
5586 error_free_sym:
5587 if (isymbuf != NULL)
5588 free (isymbuf);
5589 error_return:
5590 return FALSE;
5591 }
5592
5593 /* Return the linker hash table entry of a symbol that might be
5594 satisfied by an archive symbol. Return -1 on error. */
5595
5596 struct elf_link_hash_entry *
5597 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5598 struct bfd_link_info *info,
5599 const char *name)
5600 {
5601 struct elf_link_hash_entry *h;
5602 char *p, *copy;
5603 size_t len, first;
5604
5605 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5606 if (h != NULL)
5607 return h;
5608
5609 /* If this is a default version (the name contains @@), look up the
5610 symbol again with only one `@' as well as without the version.
5611 The effect is that references to the symbol with and without the
5612 version will be matched by the default symbol in the archive. */
5613
5614 p = strchr (name, ELF_VER_CHR);
5615 if (p == NULL || p[1] != ELF_VER_CHR)
5616 return h;
5617
5618 /* First check with only one `@'. */
5619 len = strlen (name);
5620 copy = (char *) bfd_alloc (abfd, len);
5621 if (copy == NULL)
5622 return (struct elf_link_hash_entry *) -1;
5623
5624 first = p - name + 1;
5625 memcpy (copy, name, first);
5626 memcpy (copy + first, name + first + 1, len - first);
5627
5628 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5629 if (h == NULL)
5630 {
5631 /* We also need to check references to the symbol without the
5632 version. */
5633 copy[first - 1] = '\0';
5634 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5635 FALSE, FALSE, TRUE);
5636 }
5637
5638 bfd_release (abfd, copy);
5639 return h;
5640 }
5641
5642 /* Add symbols from an ELF archive file to the linker hash table. We
5643 don't use _bfd_generic_link_add_archive_symbols because we need to
5644 handle versioned symbols.
5645
5646 Fortunately, ELF archive handling is simpler than that done by
5647 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5648 oddities. In ELF, if we find a symbol in the archive map, and the
5649 symbol is currently undefined, we know that we must pull in that
5650 object file.
5651
5652 Unfortunately, we do have to make multiple passes over the symbol
5653 table until nothing further is resolved. */
5654
5655 static bfd_boolean
5656 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5657 {
5658 symindex c;
5659 unsigned char *included = NULL;
5660 carsym *symdefs;
5661 bfd_boolean loop;
5662 size_t amt;
5663 const struct elf_backend_data *bed;
5664 struct elf_link_hash_entry * (*archive_symbol_lookup)
5665 (bfd *, struct bfd_link_info *, const char *);
5666
5667 if (! bfd_has_map (abfd))
5668 {
5669 /* An empty archive is a special case. */
5670 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5671 return TRUE;
5672 bfd_set_error (bfd_error_no_armap);
5673 return FALSE;
5674 }
5675
5676 /* Keep track of all symbols we know to be already defined, and all
5677 files we know to be already included. This is to speed up the
5678 second and subsequent passes. */
5679 c = bfd_ardata (abfd)->symdef_count;
5680 if (c == 0)
5681 return TRUE;
5682 amt = c * sizeof (*included);
5683 included = (unsigned char *) bfd_zmalloc (amt);
5684 if (included == NULL)
5685 return FALSE;
5686
5687 symdefs = bfd_ardata (abfd)->symdefs;
5688 bed = get_elf_backend_data (abfd);
5689 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5690
5691 do
5692 {
5693 file_ptr last;
5694 symindex i;
5695 carsym *symdef;
5696 carsym *symdefend;
5697
5698 loop = FALSE;
5699 last = -1;
5700
5701 symdef = symdefs;
5702 symdefend = symdef + c;
5703 for (i = 0; symdef < symdefend; symdef++, i++)
5704 {
5705 struct elf_link_hash_entry *h;
5706 bfd *element;
5707 struct bfd_link_hash_entry *undefs_tail;
5708 symindex mark;
5709
5710 if (included[i])
5711 continue;
5712 if (symdef->file_offset == last)
5713 {
5714 included[i] = TRUE;
5715 continue;
5716 }
5717
5718 h = archive_symbol_lookup (abfd, info, symdef->name);
5719 if (h == (struct elf_link_hash_entry *) -1)
5720 goto error_return;
5721
5722 if (h == NULL)
5723 continue;
5724
5725 if (h->root.type == bfd_link_hash_common)
5726 {
5727 /* We currently have a common symbol. The archive map contains
5728 a reference to this symbol, so we may want to include it. We
5729 only want to include it however, if this archive element
5730 contains a definition of the symbol, not just another common
5731 declaration of it.
5732
5733 Unfortunately some archivers (including GNU ar) will put
5734 declarations of common symbols into their archive maps, as
5735 well as real definitions, so we cannot just go by the archive
5736 map alone. Instead we must read in the element's symbol
5737 table and check that to see what kind of symbol definition
5738 this is. */
5739 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5740 continue;
5741 }
5742 else if (h->root.type != bfd_link_hash_undefined)
5743 {
5744 if (h->root.type != bfd_link_hash_undefweak)
5745 /* Symbol must be defined. Don't check it again. */
5746 included[i] = TRUE;
5747 continue;
5748 }
5749
5750 /* We need to include this archive member. */
5751 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5752 if (element == NULL)
5753 goto error_return;
5754
5755 if (! bfd_check_format (element, bfd_object))
5756 goto error_return;
5757
5758 undefs_tail = info->hash->undefs_tail;
5759
5760 if (!(*info->callbacks
5761 ->add_archive_element) (info, element, symdef->name, &element))
5762 continue;
5763 if (!bfd_link_add_symbols (element, info))
5764 goto error_return;
5765
5766 /* If there are any new undefined symbols, we need to make
5767 another pass through the archive in order to see whether
5768 they can be defined. FIXME: This isn't perfect, because
5769 common symbols wind up on undefs_tail and because an
5770 undefined symbol which is defined later on in this pass
5771 does not require another pass. This isn't a bug, but it
5772 does make the code less efficient than it could be. */
5773 if (undefs_tail != info->hash->undefs_tail)
5774 loop = TRUE;
5775
5776 /* Look backward to mark all symbols from this object file
5777 which we have already seen in this pass. */
5778 mark = i;
5779 do
5780 {
5781 included[mark] = TRUE;
5782 if (mark == 0)
5783 break;
5784 --mark;
5785 }
5786 while (symdefs[mark].file_offset == symdef->file_offset);
5787
5788 /* We mark subsequent symbols from this object file as we go
5789 on through the loop. */
5790 last = symdef->file_offset;
5791 }
5792 }
5793 while (loop);
5794
5795 free (included);
5796
5797 return TRUE;
5798
5799 error_return:
5800 if (included != NULL)
5801 free (included);
5802 return FALSE;
5803 }
5804
5805 /* Given an ELF BFD, add symbols to the global hash table as
5806 appropriate. */
5807
5808 bfd_boolean
5809 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5810 {
5811 switch (bfd_get_format (abfd))
5812 {
5813 case bfd_object:
5814 return elf_link_add_object_symbols (abfd, info);
5815 case bfd_archive:
5816 return elf_link_add_archive_symbols (abfd, info);
5817 default:
5818 bfd_set_error (bfd_error_wrong_format);
5819 return FALSE;
5820 }
5821 }
5822 \f
5823 struct hash_codes_info
5824 {
5825 unsigned long *hashcodes;
5826 bfd_boolean error;
5827 };
5828
5829 /* This function will be called though elf_link_hash_traverse to store
5830 all hash value of the exported symbols in an array. */
5831
5832 static bfd_boolean
5833 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5834 {
5835 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5836 const char *name;
5837 unsigned long ha;
5838 char *alc = NULL;
5839
5840 /* Ignore indirect symbols. These are added by the versioning code. */
5841 if (h->dynindx == -1)
5842 return TRUE;
5843
5844 name = h->root.root.string;
5845 if (h->versioned >= versioned)
5846 {
5847 char *p = strchr (name, ELF_VER_CHR);
5848 if (p != NULL)
5849 {
5850 alc = (char *) bfd_malloc (p - name + 1);
5851 if (alc == NULL)
5852 {
5853 inf->error = TRUE;
5854 return FALSE;
5855 }
5856 memcpy (alc, name, p - name);
5857 alc[p - name] = '\0';
5858 name = alc;
5859 }
5860 }
5861
5862 /* Compute the hash value. */
5863 ha = bfd_elf_hash (name);
5864
5865 /* Store the found hash value in the array given as the argument. */
5866 *(inf->hashcodes)++ = ha;
5867
5868 /* And store it in the struct so that we can put it in the hash table
5869 later. */
5870 h->u.elf_hash_value = ha;
5871
5872 if (alc != NULL)
5873 free (alc);
5874
5875 return TRUE;
5876 }
5877
5878 struct collect_gnu_hash_codes
5879 {
5880 bfd *output_bfd;
5881 const struct elf_backend_data *bed;
5882 unsigned long int nsyms;
5883 unsigned long int maskbits;
5884 unsigned long int *hashcodes;
5885 unsigned long int *hashval;
5886 unsigned long int *indx;
5887 unsigned long int *counts;
5888 bfd_vma *bitmask;
5889 bfd_byte *contents;
5890 bfd_size_type xlat;
5891 long int min_dynindx;
5892 unsigned long int bucketcount;
5893 unsigned long int symindx;
5894 long int local_indx;
5895 long int shift1, shift2;
5896 unsigned long int mask;
5897 bfd_boolean error;
5898 };
5899
5900 /* This function will be called though elf_link_hash_traverse to store
5901 all hash value of the exported symbols in an array. */
5902
5903 static bfd_boolean
5904 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5905 {
5906 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5907 const char *name;
5908 unsigned long ha;
5909 char *alc = NULL;
5910
5911 /* Ignore indirect symbols. These are added by the versioning code. */
5912 if (h->dynindx == -1)
5913 return TRUE;
5914
5915 /* Ignore also local symbols and undefined symbols. */
5916 if (! (*s->bed->elf_hash_symbol) (h))
5917 return TRUE;
5918
5919 name = h->root.root.string;
5920 if (h->versioned >= versioned)
5921 {
5922 char *p = strchr (name, ELF_VER_CHR);
5923 if (p != NULL)
5924 {
5925 alc = (char *) bfd_malloc (p - name + 1);
5926 if (alc == NULL)
5927 {
5928 s->error = TRUE;
5929 return FALSE;
5930 }
5931 memcpy (alc, name, p - name);
5932 alc[p - name] = '\0';
5933 name = alc;
5934 }
5935 }
5936
5937 /* Compute the hash value. */
5938 ha = bfd_elf_gnu_hash (name);
5939
5940 /* Store the found hash value in the array for compute_bucket_count,
5941 and also for .dynsym reordering purposes. */
5942 s->hashcodes[s->nsyms] = ha;
5943 s->hashval[h->dynindx] = ha;
5944 ++s->nsyms;
5945 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5946 s->min_dynindx = h->dynindx;
5947
5948 if (alc != NULL)
5949 free (alc);
5950
5951 return TRUE;
5952 }
5953
5954 /* This function will be called though elf_link_hash_traverse to do
5955 final dynamic symbol renumbering in case of .gnu.hash.
5956 If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index
5957 to the translation table. */
5958
5959 static bfd_boolean
5960 elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data)
5961 {
5962 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5963 unsigned long int bucket;
5964 unsigned long int val;
5965
5966 /* Ignore indirect symbols. */
5967 if (h->dynindx == -1)
5968 return TRUE;
5969
5970 /* Ignore also local symbols and undefined symbols. */
5971 if (! (*s->bed->elf_hash_symbol) (h))
5972 {
5973 if (h->dynindx >= s->min_dynindx)
5974 {
5975 if (s->bed->record_xhash_symbol != NULL)
5976 {
5977 (*s->bed->record_xhash_symbol) (h, 0);
5978 s->local_indx++;
5979 }
5980 else
5981 h->dynindx = s->local_indx++;
5982 }
5983 return TRUE;
5984 }
5985
5986 bucket = s->hashval[h->dynindx] % s->bucketcount;
5987 val = (s->hashval[h->dynindx] >> s->shift1)
5988 & ((s->maskbits >> s->shift1) - 1);
5989 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5990 s->bitmask[val]
5991 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5992 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5993 if (s->counts[bucket] == 1)
5994 /* Last element terminates the chain. */
5995 val |= 1;
5996 bfd_put_32 (s->output_bfd, val,
5997 s->contents + (s->indx[bucket] - s->symindx) * 4);
5998 --s->counts[bucket];
5999 if (s->bed->record_xhash_symbol != NULL)
6000 {
6001 bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4;
6002
6003 (*s->bed->record_xhash_symbol) (h, xlat_loc);
6004 }
6005 else
6006 h->dynindx = s->indx[bucket]++;
6007 return TRUE;
6008 }
6009
6010 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
6011
6012 bfd_boolean
6013 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
6014 {
6015 return !(h->forced_local
6016 || h->root.type == bfd_link_hash_undefined
6017 || h->root.type == bfd_link_hash_undefweak
6018 || ((h->root.type == bfd_link_hash_defined
6019 || h->root.type == bfd_link_hash_defweak)
6020 && h->root.u.def.section->output_section == NULL));
6021 }
6022
6023 /* Array used to determine the number of hash table buckets to use
6024 based on the number of symbols there are. If there are fewer than
6025 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
6026 fewer than 37 we use 17 buckets, and so forth. We never use more
6027 than 32771 buckets. */
6028
6029 static const size_t elf_buckets[] =
6030 {
6031 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
6032 16411, 32771, 0
6033 };
6034
6035 /* Compute bucket count for hashing table. We do not use a static set
6036 of possible tables sizes anymore. Instead we determine for all
6037 possible reasonable sizes of the table the outcome (i.e., the
6038 number of collisions etc) and choose the best solution. The
6039 weighting functions are not too simple to allow the table to grow
6040 without bounds. Instead one of the weighting factors is the size.
6041 Therefore the result is always a good payoff between few collisions
6042 (= short chain lengths) and table size. */
6043 static size_t
6044 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6045 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
6046 unsigned long int nsyms,
6047 int gnu_hash)
6048 {
6049 size_t best_size = 0;
6050 unsigned long int i;
6051
6052 /* We have a problem here. The following code to optimize the table
6053 size requires an integer type with more the 32 bits. If
6054 BFD_HOST_U_64_BIT is set we know about such a type. */
6055 #ifdef BFD_HOST_U_64_BIT
6056 if (info->optimize)
6057 {
6058 size_t minsize;
6059 size_t maxsize;
6060 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6061 bfd *dynobj = elf_hash_table (info)->dynobj;
6062 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6063 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6064 unsigned long int *counts;
6065 bfd_size_type amt;
6066 unsigned int no_improvement_count = 0;
6067
6068 /* Possible optimization parameters: if we have NSYMS symbols we say
6069 that the hashing table must at least have NSYMS/4 and at most
6070 2*NSYMS buckets. */
6071 minsize = nsyms / 4;
6072 if (minsize == 0)
6073 minsize = 1;
6074 best_size = maxsize = nsyms * 2;
6075 if (gnu_hash)
6076 {
6077 if (minsize < 2)
6078 minsize = 2;
6079 if ((best_size & 31) == 0)
6080 ++best_size;
6081 }
6082
6083 /* Create array where we count the collisions in. We must use bfd_malloc
6084 since the size could be large. */
6085 amt = maxsize;
6086 amt *= sizeof (unsigned long int);
6087 counts = (unsigned long int *) bfd_malloc (amt);
6088 if (counts == NULL)
6089 return 0;
6090
6091 /* Compute the "optimal" size for the hash table. The criteria is a
6092 minimal chain length. The minor criteria is (of course) the size
6093 of the table. */
6094 for (i = minsize; i < maxsize; ++i)
6095 {
6096 /* Walk through the array of hashcodes and count the collisions. */
6097 BFD_HOST_U_64_BIT max;
6098 unsigned long int j;
6099 unsigned long int fact;
6100
6101 if (gnu_hash && (i & 31) == 0)
6102 continue;
6103
6104 memset (counts, '\0', i * sizeof (unsigned long int));
6105
6106 /* Determine how often each hash bucket is used. */
6107 for (j = 0; j < nsyms; ++j)
6108 ++counts[hashcodes[j] % i];
6109
6110 /* For the weight function we need some information about the
6111 pagesize on the target. This is information need not be 100%
6112 accurate. Since this information is not available (so far) we
6113 define it here to a reasonable default value. If it is crucial
6114 to have a better value some day simply define this value. */
6115 # ifndef BFD_TARGET_PAGESIZE
6116 # define BFD_TARGET_PAGESIZE (4096)
6117 # endif
6118
6119 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6120 and the chains. */
6121 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6122
6123 # if 1
6124 /* Variant 1: optimize for short chains. We add the squares
6125 of all the chain lengths (which favors many small chain
6126 over a few long chains). */
6127 for (j = 0; j < i; ++j)
6128 max += counts[j] * counts[j];
6129
6130 /* This adds penalties for the overall size of the table. */
6131 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6132 max *= fact * fact;
6133 # else
6134 /* Variant 2: Optimize a lot more for small table. Here we
6135 also add squares of the size but we also add penalties for
6136 empty slots (the +1 term). */
6137 for (j = 0; j < i; ++j)
6138 max += (1 + counts[j]) * (1 + counts[j]);
6139
6140 /* The overall size of the table is considered, but not as
6141 strong as in variant 1, where it is squared. */
6142 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6143 max *= fact;
6144 # endif
6145
6146 /* Compare with current best results. */
6147 if (max < best_chlen)
6148 {
6149 best_chlen = max;
6150 best_size = i;
6151 no_improvement_count = 0;
6152 }
6153 /* PR 11843: Avoid futile long searches for the best bucket size
6154 when there are a large number of symbols. */
6155 else if (++no_improvement_count == 100)
6156 break;
6157 }
6158
6159 free (counts);
6160 }
6161 else
6162 #endif /* defined (BFD_HOST_U_64_BIT) */
6163 {
6164 /* This is the fallback solution if no 64bit type is available or if we
6165 are not supposed to spend much time on optimizations. We select the
6166 bucket count using a fixed set of numbers. */
6167 for (i = 0; elf_buckets[i] != 0; i++)
6168 {
6169 best_size = elf_buckets[i];
6170 if (nsyms < elf_buckets[i + 1])
6171 break;
6172 }
6173 if (gnu_hash && best_size < 2)
6174 best_size = 2;
6175 }
6176
6177 return best_size;
6178 }
6179
6180 /* Size any SHT_GROUP section for ld -r. */
6181
6182 bfd_boolean
6183 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6184 {
6185 bfd *ibfd;
6186 asection *s;
6187
6188 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6189 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6190 && (s = ibfd->sections) != NULL
6191 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6192 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6193 return FALSE;
6194 return TRUE;
6195 }
6196
6197 /* Set a default stack segment size. The value in INFO wins. If it
6198 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6199 undefined it is initialized. */
6200
6201 bfd_boolean
6202 bfd_elf_stack_segment_size (bfd *output_bfd,
6203 struct bfd_link_info *info,
6204 const char *legacy_symbol,
6205 bfd_vma default_size)
6206 {
6207 struct elf_link_hash_entry *h = NULL;
6208
6209 /* Look for legacy symbol. */
6210 if (legacy_symbol)
6211 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6212 FALSE, FALSE, FALSE);
6213 if (h && (h->root.type == bfd_link_hash_defined
6214 || h->root.type == bfd_link_hash_defweak)
6215 && h->def_regular
6216 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6217 {
6218 /* The symbol has no type if specified on the command line. */
6219 h->type = STT_OBJECT;
6220 if (info->stacksize)
6221 /* xgettext:c-format */
6222 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6223 output_bfd, legacy_symbol);
6224 else if (h->root.u.def.section != bfd_abs_section_ptr)
6225 /* xgettext:c-format */
6226 _bfd_error_handler (_("%pB: %s not absolute"),
6227 output_bfd, legacy_symbol);
6228 else
6229 info->stacksize = h->root.u.def.value;
6230 }
6231
6232 if (!info->stacksize)
6233 /* If the user didn't set a size, or explicitly inhibit the
6234 size, set it now. */
6235 info->stacksize = default_size;
6236
6237 /* Provide the legacy symbol, if it is referenced. */
6238 if (h && (h->root.type == bfd_link_hash_undefined
6239 || h->root.type == bfd_link_hash_undefweak))
6240 {
6241 struct bfd_link_hash_entry *bh = NULL;
6242
6243 if (!(_bfd_generic_link_add_one_symbol
6244 (info, output_bfd, legacy_symbol,
6245 BSF_GLOBAL, bfd_abs_section_ptr,
6246 info->stacksize >= 0 ? info->stacksize : 0,
6247 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6248 return FALSE;
6249
6250 h = (struct elf_link_hash_entry *) bh;
6251 h->def_regular = 1;
6252 h->type = STT_OBJECT;
6253 }
6254
6255 return TRUE;
6256 }
6257
6258 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6259
6260 struct elf_gc_sweep_symbol_info
6261 {
6262 struct bfd_link_info *info;
6263 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6264 bfd_boolean);
6265 };
6266
6267 static bfd_boolean
6268 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6269 {
6270 if (!h->mark
6271 && (((h->root.type == bfd_link_hash_defined
6272 || h->root.type == bfd_link_hash_defweak)
6273 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6274 && h->root.u.def.section->gc_mark))
6275 || h->root.type == bfd_link_hash_undefined
6276 || h->root.type == bfd_link_hash_undefweak))
6277 {
6278 struct elf_gc_sweep_symbol_info *inf;
6279
6280 inf = (struct elf_gc_sweep_symbol_info *) data;
6281 (*inf->hide_symbol) (inf->info, h, TRUE);
6282 h->def_regular = 0;
6283 h->ref_regular = 0;
6284 h->ref_regular_nonweak = 0;
6285 }
6286
6287 return TRUE;
6288 }
6289
6290 /* Set up the sizes and contents of the ELF dynamic sections. This is
6291 called by the ELF linker emulation before_allocation routine. We
6292 must set the sizes of the sections before the linker sets the
6293 addresses of the various sections. */
6294
6295 bfd_boolean
6296 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6297 const char *soname,
6298 const char *rpath,
6299 const char *filter_shlib,
6300 const char *audit,
6301 const char *depaudit,
6302 const char * const *auxiliary_filters,
6303 struct bfd_link_info *info,
6304 asection **sinterpptr)
6305 {
6306 bfd *dynobj;
6307 const struct elf_backend_data *bed;
6308
6309 *sinterpptr = NULL;
6310
6311 if (!is_elf_hash_table (info->hash))
6312 return TRUE;
6313
6314 dynobj = elf_hash_table (info)->dynobj;
6315
6316 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6317 {
6318 struct bfd_elf_version_tree *verdefs;
6319 struct elf_info_failed asvinfo;
6320 struct bfd_elf_version_tree *t;
6321 struct bfd_elf_version_expr *d;
6322 asection *s;
6323 size_t soname_indx;
6324
6325 /* If we are supposed to export all symbols into the dynamic symbol
6326 table (this is not the normal case), then do so. */
6327 if (info->export_dynamic
6328 || (bfd_link_executable (info) && info->dynamic))
6329 {
6330 struct elf_info_failed eif;
6331
6332 eif.info = info;
6333 eif.failed = FALSE;
6334 elf_link_hash_traverse (elf_hash_table (info),
6335 _bfd_elf_export_symbol,
6336 &eif);
6337 if (eif.failed)
6338 return FALSE;
6339 }
6340
6341 if (soname != NULL)
6342 {
6343 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6344 soname, TRUE);
6345 if (soname_indx == (size_t) -1
6346 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6347 return FALSE;
6348 }
6349 else
6350 soname_indx = (size_t) -1;
6351
6352 /* Make all global versions with definition. */
6353 for (t = info->version_info; t != NULL; t = t->next)
6354 for (d = t->globals.list; d != NULL; d = d->next)
6355 if (!d->symver && d->literal)
6356 {
6357 const char *verstr, *name;
6358 size_t namelen, verlen, newlen;
6359 char *newname, *p, leading_char;
6360 struct elf_link_hash_entry *newh;
6361
6362 leading_char = bfd_get_symbol_leading_char (output_bfd);
6363 name = d->pattern;
6364 namelen = strlen (name) + (leading_char != '\0');
6365 verstr = t->name;
6366 verlen = strlen (verstr);
6367 newlen = namelen + verlen + 3;
6368
6369 newname = (char *) bfd_malloc (newlen);
6370 if (newname == NULL)
6371 return FALSE;
6372 newname[0] = leading_char;
6373 memcpy (newname + (leading_char != '\0'), name, namelen);
6374
6375 /* Check the hidden versioned definition. */
6376 p = newname + namelen;
6377 *p++ = ELF_VER_CHR;
6378 memcpy (p, verstr, verlen + 1);
6379 newh = elf_link_hash_lookup (elf_hash_table (info),
6380 newname, FALSE, FALSE,
6381 FALSE);
6382 if (newh == NULL
6383 || (newh->root.type != bfd_link_hash_defined
6384 && newh->root.type != bfd_link_hash_defweak))
6385 {
6386 /* Check the default versioned definition. */
6387 *p++ = ELF_VER_CHR;
6388 memcpy (p, verstr, verlen + 1);
6389 newh = elf_link_hash_lookup (elf_hash_table (info),
6390 newname, FALSE, FALSE,
6391 FALSE);
6392 }
6393 free (newname);
6394
6395 /* Mark this version if there is a definition and it is
6396 not defined in a shared object. */
6397 if (newh != NULL
6398 && !newh->def_dynamic
6399 && (newh->root.type == bfd_link_hash_defined
6400 || newh->root.type == bfd_link_hash_defweak))
6401 d->symver = 1;
6402 }
6403
6404 /* Attach all the symbols to their version information. */
6405 asvinfo.info = info;
6406 asvinfo.failed = FALSE;
6407
6408 elf_link_hash_traverse (elf_hash_table (info),
6409 _bfd_elf_link_assign_sym_version,
6410 &asvinfo);
6411 if (asvinfo.failed)
6412 return FALSE;
6413
6414 if (!info->allow_undefined_version)
6415 {
6416 /* Check if all global versions have a definition. */
6417 bfd_boolean all_defined = TRUE;
6418 for (t = info->version_info; t != NULL; t = t->next)
6419 for (d = t->globals.list; d != NULL; d = d->next)
6420 if (d->literal && !d->symver && !d->script)
6421 {
6422 _bfd_error_handler
6423 (_("%s: undefined version: %s"),
6424 d->pattern, t->name);
6425 all_defined = FALSE;
6426 }
6427
6428 if (!all_defined)
6429 {
6430 bfd_set_error (bfd_error_bad_value);
6431 return FALSE;
6432 }
6433 }
6434
6435 /* Set up the version definition section. */
6436 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6437 BFD_ASSERT (s != NULL);
6438
6439 /* We may have created additional version definitions if we are
6440 just linking a regular application. */
6441 verdefs = info->version_info;
6442
6443 /* Skip anonymous version tag. */
6444 if (verdefs != NULL && verdefs->vernum == 0)
6445 verdefs = verdefs->next;
6446
6447 if (verdefs == NULL && !info->create_default_symver)
6448 s->flags |= SEC_EXCLUDE;
6449 else
6450 {
6451 unsigned int cdefs;
6452 bfd_size_type size;
6453 bfd_byte *p;
6454 Elf_Internal_Verdef def;
6455 Elf_Internal_Verdaux defaux;
6456 struct bfd_link_hash_entry *bh;
6457 struct elf_link_hash_entry *h;
6458 const char *name;
6459
6460 cdefs = 0;
6461 size = 0;
6462
6463 /* Make space for the base version. */
6464 size += sizeof (Elf_External_Verdef);
6465 size += sizeof (Elf_External_Verdaux);
6466 ++cdefs;
6467
6468 /* Make space for the default version. */
6469 if (info->create_default_symver)
6470 {
6471 size += sizeof (Elf_External_Verdef);
6472 ++cdefs;
6473 }
6474
6475 for (t = verdefs; t != NULL; t = t->next)
6476 {
6477 struct bfd_elf_version_deps *n;
6478
6479 /* Don't emit base version twice. */
6480 if (t->vernum == 0)
6481 continue;
6482
6483 size += sizeof (Elf_External_Verdef);
6484 size += sizeof (Elf_External_Verdaux);
6485 ++cdefs;
6486
6487 for (n = t->deps; n != NULL; n = n->next)
6488 size += sizeof (Elf_External_Verdaux);
6489 }
6490
6491 s->size = size;
6492 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6493 if (s->contents == NULL && s->size != 0)
6494 return FALSE;
6495
6496 /* Fill in the version definition section. */
6497
6498 p = s->contents;
6499
6500 def.vd_version = VER_DEF_CURRENT;
6501 def.vd_flags = VER_FLG_BASE;
6502 def.vd_ndx = 1;
6503 def.vd_cnt = 1;
6504 if (info->create_default_symver)
6505 {
6506 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6507 def.vd_next = sizeof (Elf_External_Verdef);
6508 }
6509 else
6510 {
6511 def.vd_aux = sizeof (Elf_External_Verdef);
6512 def.vd_next = (sizeof (Elf_External_Verdef)
6513 + sizeof (Elf_External_Verdaux));
6514 }
6515
6516 if (soname_indx != (size_t) -1)
6517 {
6518 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6519 soname_indx);
6520 def.vd_hash = bfd_elf_hash (soname);
6521 defaux.vda_name = soname_indx;
6522 name = soname;
6523 }
6524 else
6525 {
6526 size_t indx;
6527
6528 name = lbasename (output_bfd->filename);
6529 def.vd_hash = bfd_elf_hash (name);
6530 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6531 name, FALSE);
6532 if (indx == (size_t) -1)
6533 return FALSE;
6534 defaux.vda_name = indx;
6535 }
6536 defaux.vda_next = 0;
6537
6538 _bfd_elf_swap_verdef_out (output_bfd, &def,
6539 (Elf_External_Verdef *) p);
6540 p += sizeof (Elf_External_Verdef);
6541 if (info->create_default_symver)
6542 {
6543 /* Add a symbol representing this version. */
6544 bh = NULL;
6545 if (! (_bfd_generic_link_add_one_symbol
6546 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6547 0, NULL, FALSE,
6548 get_elf_backend_data (dynobj)->collect, &bh)))
6549 return FALSE;
6550 h = (struct elf_link_hash_entry *) bh;
6551 h->non_elf = 0;
6552 h->def_regular = 1;
6553 h->type = STT_OBJECT;
6554 h->verinfo.vertree = NULL;
6555
6556 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6557 return FALSE;
6558
6559 /* Create a duplicate of the base version with the same
6560 aux block, but different flags. */
6561 def.vd_flags = 0;
6562 def.vd_ndx = 2;
6563 def.vd_aux = sizeof (Elf_External_Verdef);
6564 if (verdefs)
6565 def.vd_next = (sizeof (Elf_External_Verdef)
6566 + sizeof (Elf_External_Verdaux));
6567 else
6568 def.vd_next = 0;
6569 _bfd_elf_swap_verdef_out (output_bfd, &def,
6570 (Elf_External_Verdef *) p);
6571 p += sizeof (Elf_External_Verdef);
6572 }
6573 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6574 (Elf_External_Verdaux *) p);
6575 p += sizeof (Elf_External_Verdaux);
6576
6577 for (t = verdefs; t != NULL; t = t->next)
6578 {
6579 unsigned int cdeps;
6580 struct bfd_elf_version_deps *n;
6581
6582 /* Don't emit the base version twice. */
6583 if (t->vernum == 0)
6584 continue;
6585
6586 cdeps = 0;
6587 for (n = t->deps; n != NULL; n = n->next)
6588 ++cdeps;
6589
6590 /* Add a symbol representing this version. */
6591 bh = NULL;
6592 if (! (_bfd_generic_link_add_one_symbol
6593 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6594 0, NULL, FALSE,
6595 get_elf_backend_data (dynobj)->collect, &bh)))
6596 return FALSE;
6597 h = (struct elf_link_hash_entry *) bh;
6598 h->non_elf = 0;
6599 h->def_regular = 1;
6600 h->type = STT_OBJECT;
6601 h->verinfo.vertree = t;
6602
6603 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6604 return FALSE;
6605
6606 def.vd_version = VER_DEF_CURRENT;
6607 def.vd_flags = 0;
6608 if (t->globals.list == NULL
6609 && t->locals.list == NULL
6610 && ! t->used)
6611 def.vd_flags |= VER_FLG_WEAK;
6612 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6613 def.vd_cnt = cdeps + 1;
6614 def.vd_hash = bfd_elf_hash (t->name);
6615 def.vd_aux = sizeof (Elf_External_Verdef);
6616 def.vd_next = 0;
6617
6618 /* If a basever node is next, it *must* be the last node in
6619 the chain, otherwise Verdef construction breaks. */
6620 if (t->next != NULL && t->next->vernum == 0)
6621 BFD_ASSERT (t->next->next == NULL);
6622
6623 if (t->next != NULL && t->next->vernum != 0)
6624 def.vd_next = (sizeof (Elf_External_Verdef)
6625 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6626
6627 _bfd_elf_swap_verdef_out (output_bfd, &def,
6628 (Elf_External_Verdef *) p);
6629 p += sizeof (Elf_External_Verdef);
6630
6631 defaux.vda_name = h->dynstr_index;
6632 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6633 h->dynstr_index);
6634 defaux.vda_next = 0;
6635 if (t->deps != NULL)
6636 defaux.vda_next = sizeof (Elf_External_Verdaux);
6637 t->name_indx = defaux.vda_name;
6638
6639 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6640 (Elf_External_Verdaux *) p);
6641 p += sizeof (Elf_External_Verdaux);
6642
6643 for (n = t->deps; n != NULL; n = n->next)
6644 {
6645 if (n->version_needed == NULL)
6646 {
6647 /* This can happen if there was an error in the
6648 version script. */
6649 defaux.vda_name = 0;
6650 }
6651 else
6652 {
6653 defaux.vda_name = n->version_needed->name_indx;
6654 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6655 defaux.vda_name);
6656 }
6657 if (n->next == NULL)
6658 defaux.vda_next = 0;
6659 else
6660 defaux.vda_next = sizeof (Elf_External_Verdaux);
6661
6662 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6663 (Elf_External_Verdaux *) p);
6664 p += sizeof (Elf_External_Verdaux);
6665 }
6666 }
6667
6668 elf_tdata (output_bfd)->cverdefs = cdefs;
6669 }
6670 }
6671
6672 bed = get_elf_backend_data (output_bfd);
6673
6674 if (info->gc_sections && bed->can_gc_sections)
6675 {
6676 struct elf_gc_sweep_symbol_info sweep_info;
6677
6678 /* Remove the symbols that were in the swept sections from the
6679 dynamic symbol table. */
6680 sweep_info.info = info;
6681 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6682 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6683 &sweep_info);
6684 }
6685
6686 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6687 {
6688 asection *s;
6689 struct elf_find_verdep_info sinfo;
6690
6691 /* Work out the size of the version reference section. */
6692
6693 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6694 BFD_ASSERT (s != NULL);
6695
6696 sinfo.info = info;
6697 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6698 if (sinfo.vers == 0)
6699 sinfo.vers = 1;
6700 sinfo.failed = FALSE;
6701
6702 elf_link_hash_traverse (elf_hash_table (info),
6703 _bfd_elf_link_find_version_dependencies,
6704 &sinfo);
6705 if (sinfo.failed)
6706 return FALSE;
6707
6708 if (elf_tdata (output_bfd)->verref == NULL)
6709 s->flags |= SEC_EXCLUDE;
6710 else
6711 {
6712 Elf_Internal_Verneed *vn;
6713 unsigned int size;
6714 unsigned int crefs;
6715 bfd_byte *p;
6716
6717 /* Build the version dependency section. */
6718 size = 0;
6719 crefs = 0;
6720 for (vn = elf_tdata (output_bfd)->verref;
6721 vn != NULL;
6722 vn = vn->vn_nextref)
6723 {
6724 Elf_Internal_Vernaux *a;
6725
6726 size += sizeof (Elf_External_Verneed);
6727 ++crefs;
6728 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6729 size += sizeof (Elf_External_Vernaux);
6730 }
6731
6732 s->size = size;
6733 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6734 if (s->contents == NULL)
6735 return FALSE;
6736
6737 p = s->contents;
6738 for (vn = elf_tdata (output_bfd)->verref;
6739 vn != NULL;
6740 vn = vn->vn_nextref)
6741 {
6742 unsigned int caux;
6743 Elf_Internal_Vernaux *a;
6744 size_t indx;
6745
6746 caux = 0;
6747 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6748 ++caux;
6749
6750 vn->vn_version = VER_NEED_CURRENT;
6751 vn->vn_cnt = caux;
6752 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6753 elf_dt_name (vn->vn_bfd) != NULL
6754 ? elf_dt_name (vn->vn_bfd)
6755 : lbasename (vn->vn_bfd->filename),
6756 FALSE);
6757 if (indx == (size_t) -1)
6758 return FALSE;
6759 vn->vn_file = indx;
6760 vn->vn_aux = sizeof (Elf_External_Verneed);
6761 if (vn->vn_nextref == NULL)
6762 vn->vn_next = 0;
6763 else
6764 vn->vn_next = (sizeof (Elf_External_Verneed)
6765 + caux * sizeof (Elf_External_Vernaux));
6766
6767 _bfd_elf_swap_verneed_out (output_bfd, vn,
6768 (Elf_External_Verneed *) p);
6769 p += sizeof (Elf_External_Verneed);
6770
6771 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6772 {
6773 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6774 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6775 a->vna_nodename, FALSE);
6776 if (indx == (size_t) -1)
6777 return FALSE;
6778 a->vna_name = indx;
6779 if (a->vna_nextptr == NULL)
6780 a->vna_next = 0;
6781 else
6782 a->vna_next = sizeof (Elf_External_Vernaux);
6783
6784 _bfd_elf_swap_vernaux_out (output_bfd, a,
6785 (Elf_External_Vernaux *) p);
6786 p += sizeof (Elf_External_Vernaux);
6787 }
6788 }
6789
6790 elf_tdata (output_bfd)->cverrefs = crefs;
6791 }
6792 }
6793
6794 /* Any syms created from now on start with -1 in
6795 got.refcount/offset and plt.refcount/offset. */
6796 elf_hash_table (info)->init_got_refcount
6797 = elf_hash_table (info)->init_got_offset;
6798 elf_hash_table (info)->init_plt_refcount
6799 = elf_hash_table (info)->init_plt_offset;
6800
6801 if (bfd_link_relocatable (info)
6802 && !_bfd_elf_size_group_sections (info))
6803 return FALSE;
6804
6805 /* The backend may have to create some sections regardless of whether
6806 we're dynamic or not. */
6807 if (bed->elf_backend_always_size_sections
6808 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6809 return FALSE;
6810
6811 /* Determine any GNU_STACK segment requirements, after the backend
6812 has had a chance to set a default segment size. */
6813 if (info->execstack)
6814 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6815 else if (info->noexecstack)
6816 elf_stack_flags (output_bfd) = PF_R | PF_W;
6817 else
6818 {
6819 bfd *inputobj;
6820 asection *notesec = NULL;
6821 int exec = 0;
6822
6823 for (inputobj = info->input_bfds;
6824 inputobj;
6825 inputobj = inputobj->link.next)
6826 {
6827 asection *s;
6828
6829 if (inputobj->flags
6830 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6831 continue;
6832 s = inputobj->sections;
6833 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6834 continue;
6835
6836 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6837 if (s)
6838 {
6839 if (s->flags & SEC_CODE)
6840 exec = PF_X;
6841 notesec = s;
6842 }
6843 else if (bed->default_execstack)
6844 exec = PF_X;
6845 }
6846 if (notesec || info->stacksize > 0)
6847 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6848 if (notesec && exec && bfd_link_relocatable (info)
6849 && notesec->output_section != bfd_abs_section_ptr)
6850 notesec->output_section->flags |= SEC_CODE;
6851 }
6852
6853 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6854 {
6855 struct elf_info_failed eif;
6856 struct elf_link_hash_entry *h;
6857 asection *dynstr;
6858 asection *s;
6859
6860 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6861 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6862
6863 if (info->symbolic)
6864 {
6865 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6866 return FALSE;
6867 info->flags |= DF_SYMBOLIC;
6868 }
6869
6870 if (rpath != NULL)
6871 {
6872 size_t indx;
6873 bfd_vma tag;
6874
6875 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6876 TRUE);
6877 if (indx == (size_t) -1)
6878 return FALSE;
6879
6880 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6881 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6882 return FALSE;
6883 }
6884
6885 if (filter_shlib != NULL)
6886 {
6887 size_t indx;
6888
6889 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6890 filter_shlib, TRUE);
6891 if (indx == (size_t) -1
6892 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6893 return FALSE;
6894 }
6895
6896 if (auxiliary_filters != NULL)
6897 {
6898 const char * const *p;
6899
6900 for (p = auxiliary_filters; *p != NULL; p++)
6901 {
6902 size_t indx;
6903
6904 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6905 *p, TRUE);
6906 if (indx == (size_t) -1
6907 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6908 return FALSE;
6909 }
6910 }
6911
6912 if (audit != NULL)
6913 {
6914 size_t indx;
6915
6916 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6917 TRUE);
6918 if (indx == (size_t) -1
6919 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6920 return FALSE;
6921 }
6922
6923 if (depaudit != NULL)
6924 {
6925 size_t indx;
6926
6927 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6928 TRUE);
6929 if (indx == (size_t) -1
6930 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6931 return FALSE;
6932 }
6933
6934 eif.info = info;
6935 eif.failed = FALSE;
6936
6937 /* Find all symbols which were defined in a dynamic object and make
6938 the backend pick a reasonable value for them. */
6939 elf_link_hash_traverse (elf_hash_table (info),
6940 _bfd_elf_adjust_dynamic_symbol,
6941 &eif);
6942 if (eif.failed)
6943 return FALSE;
6944
6945 /* Add some entries to the .dynamic section. We fill in some of the
6946 values later, in bfd_elf_final_link, but we must add the entries
6947 now so that we know the final size of the .dynamic section. */
6948
6949 /* If there are initialization and/or finalization functions to
6950 call then add the corresponding DT_INIT/DT_FINI entries. */
6951 h = (info->init_function
6952 ? elf_link_hash_lookup (elf_hash_table (info),
6953 info->init_function, FALSE,
6954 FALSE, FALSE)
6955 : NULL);
6956 if (h != NULL
6957 && (h->ref_regular
6958 || h->def_regular))
6959 {
6960 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6961 return FALSE;
6962 }
6963 h = (info->fini_function
6964 ? elf_link_hash_lookup (elf_hash_table (info),
6965 info->fini_function, FALSE,
6966 FALSE, FALSE)
6967 : NULL);
6968 if (h != NULL
6969 && (h->ref_regular
6970 || h->def_regular))
6971 {
6972 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6973 return FALSE;
6974 }
6975
6976 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6977 if (s != NULL && s->linker_has_input)
6978 {
6979 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6980 if (! bfd_link_executable (info))
6981 {
6982 bfd *sub;
6983 asection *o;
6984
6985 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6986 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6987 && (o = sub->sections) != NULL
6988 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6989 for (o = sub->sections; o != NULL; o = o->next)
6990 if (elf_section_data (o)->this_hdr.sh_type
6991 == SHT_PREINIT_ARRAY)
6992 {
6993 _bfd_error_handler
6994 (_("%pB: .preinit_array section is not allowed in DSO"),
6995 sub);
6996 break;
6997 }
6998
6999 bfd_set_error (bfd_error_nonrepresentable_section);
7000 return FALSE;
7001 }
7002
7003 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
7004 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
7005 return FALSE;
7006 }
7007 s = bfd_get_section_by_name (output_bfd, ".init_array");
7008 if (s != NULL && s->linker_has_input)
7009 {
7010 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
7011 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
7012 return FALSE;
7013 }
7014 s = bfd_get_section_by_name (output_bfd, ".fini_array");
7015 if (s != NULL && s->linker_has_input)
7016 {
7017 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
7018 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
7019 return FALSE;
7020 }
7021
7022 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
7023 /* If .dynstr is excluded from the link, we don't want any of
7024 these tags. Strictly, we should be checking each section
7025 individually; This quick check covers for the case where
7026 someone does a /DISCARD/ : { *(*) }. */
7027 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
7028 {
7029 bfd_size_type strsize;
7030
7031 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7032 if ((info->emit_hash
7033 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
7034 || (info->emit_gnu_hash
7035 && (bed->record_xhash_symbol == NULL
7036 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)))
7037 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
7038 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
7039 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
7040 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
7041 bed->s->sizeof_sym))
7042 return FALSE;
7043 }
7044 }
7045
7046 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
7047 return FALSE;
7048
7049 /* The backend must work out the sizes of all the other dynamic
7050 sections. */
7051 if (dynobj != NULL
7052 && bed->elf_backend_size_dynamic_sections != NULL
7053 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
7054 return FALSE;
7055
7056 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
7057 {
7058 if (elf_tdata (output_bfd)->cverdefs)
7059 {
7060 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7061
7062 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7063 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7064 return FALSE;
7065 }
7066
7067 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7068 {
7069 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7070 return FALSE;
7071 }
7072 else if (info->flags & DF_BIND_NOW)
7073 {
7074 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7075 return FALSE;
7076 }
7077
7078 if (info->flags_1)
7079 {
7080 if (bfd_link_executable (info))
7081 info->flags_1 &= ~ (DF_1_INITFIRST
7082 | DF_1_NODELETE
7083 | DF_1_NOOPEN);
7084 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7085 return FALSE;
7086 }
7087
7088 if (elf_tdata (output_bfd)->cverrefs)
7089 {
7090 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7091
7092 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7093 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7094 return FALSE;
7095 }
7096
7097 if ((elf_tdata (output_bfd)->cverrefs == 0
7098 && elf_tdata (output_bfd)->cverdefs == 0)
7099 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7100 {
7101 asection *s;
7102
7103 s = bfd_get_linker_section (dynobj, ".gnu.version");
7104 s->flags |= SEC_EXCLUDE;
7105 }
7106 }
7107 return TRUE;
7108 }
7109
7110 /* Find the first non-excluded output section. We'll use its
7111 section symbol for some emitted relocs. */
7112 void
7113 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7114 {
7115 asection *s;
7116 asection *found = NULL;
7117
7118 for (s = output_bfd->sections; s != NULL; s = s->next)
7119 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7120 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7121 {
7122 found = s;
7123 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7124 break;
7125 }
7126 elf_hash_table (info)->text_index_section = found;
7127 }
7128
7129 /* Find two non-excluded output sections, one for code, one for data.
7130 We'll use their section symbols for some emitted relocs. */
7131 void
7132 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7133 {
7134 asection *s;
7135 asection *found = NULL;
7136
7137 /* Data first, since setting text_index_section changes
7138 _bfd_elf_omit_section_dynsym_default. */
7139 for (s = output_bfd->sections; s != NULL; s = s->next)
7140 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7141 && !(s->flags & SEC_READONLY)
7142 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7143 {
7144 found = s;
7145 if ((s->flags & SEC_THREAD_LOCAL) == 0)
7146 break;
7147 }
7148 elf_hash_table (info)->data_index_section = found;
7149
7150 for (s = output_bfd->sections; s != NULL; s = s->next)
7151 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7152 && (s->flags & SEC_READONLY)
7153 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7154 {
7155 found = s;
7156 break;
7157 }
7158 elf_hash_table (info)->text_index_section = found;
7159 }
7160
7161 #define GNU_HASH_SECTION_NAME(bed) \
7162 (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash"
7163
7164 bfd_boolean
7165 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7166 {
7167 const struct elf_backend_data *bed;
7168 unsigned long section_sym_count;
7169 bfd_size_type dynsymcount = 0;
7170
7171 if (!is_elf_hash_table (info->hash))
7172 return TRUE;
7173
7174 bed = get_elf_backend_data (output_bfd);
7175 (*bed->elf_backend_init_index_section) (output_bfd, info);
7176
7177 /* Assign dynsym indices. In a shared library we generate a section
7178 symbol for each output section, which come first. Next come all
7179 of the back-end allocated local dynamic syms, followed by the rest
7180 of the global symbols.
7181
7182 This is usually not needed for static binaries, however backends
7183 can request to always do it, e.g. the MIPS backend uses dynamic
7184 symbol counts to lay out GOT, which will be produced in the
7185 presence of GOT relocations even in static binaries (holding fixed
7186 data in that case, to satisfy those relocations). */
7187
7188 if (elf_hash_table (info)->dynamic_sections_created
7189 || bed->always_renumber_dynsyms)
7190 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7191 &section_sym_count);
7192
7193 if (elf_hash_table (info)->dynamic_sections_created)
7194 {
7195 bfd *dynobj;
7196 asection *s;
7197 unsigned int dtagcount;
7198
7199 dynobj = elf_hash_table (info)->dynobj;
7200
7201 /* Work out the size of the symbol version section. */
7202 s = bfd_get_linker_section (dynobj, ".gnu.version");
7203 BFD_ASSERT (s != NULL);
7204 if ((s->flags & SEC_EXCLUDE) == 0)
7205 {
7206 s->size = dynsymcount * sizeof (Elf_External_Versym);
7207 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7208 if (s->contents == NULL)
7209 return FALSE;
7210
7211 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7212 return FALSE;
7213 }
7214
7215 /* Set the size of the .dynsym and .hash sections. We counted
7216 the number of dynamic symbols in elf_link_add_object_symbols.
7217 We will build the contents of .dynsym and .hash when we build
7218 the final symbol table, because until then we do not know the
7219 correct value to give the symbols. We built the .dynstr
7220 section as we went along in elf_link_add_object_symbols. */
7221 s = elf_hash_table (info)->dynsym;
7222 BFD_ASSERT (s != NULL);
7223 s->size = dynsymcount * bed->s->sizeof_sym;
7224
7225 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7226 if (s->contents == NULL)
7227 return FALSE;
7228
7229 /* The first entry in .dynsym is a dummy symbol. Clear all the
7230 section syms, in case we don't output them all. */
7231 ++section_sym_count;
7232 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7233
7234 elf_hash_table (info)->bucketcount = 0;
7235
7236 /* Compute the size of the hashing table. As a side effect this
7237 computes the hash values for all the names we export. */
7238 if (info->emit_hash)
7239 {
7240 unsigned long int *hashcodes;
7241 struct hash_codes_info hashinf;
7242 bfd_size_type amt;
7243 unsigned long int nsyms;
7244 size_t bucketcount;
7245 size_t hash_entry_size;
7246
7247 /* Compute the hash values for all exported symbols. At the same
7248 time store the values in an array so that we could use them for
7249 optimizations. */
7250 amt = dynsymcount * sizeof (unsigned long int);
7251 hashcodes = (unsigned long int *) bfd_malloc (amt);
7252 if (hashcodes == NULL)
7253 return FALSE;
7254 hashinf.hashcodes = hashcodes;
7255 hashinf.error = FALSE;
7256
7257 /* Put all hash values in HASHCODES. */
7258 elf_link_hash_traverse (elf_hash_table (info),
7259 elf_collect_hash_codes, &hashinf);
7260 if (hashinf.error)
7261 {
7262 free (hashcodes);
7263 return FALSE;
7264 }
7265
7266 nsyms = hashinf.hashcodes - hashcodes;
7267 bucketcount
7268 = compute_bucket_count (info, hashcodes, nsyms, 0);
7269 free (hashcodes);
7270
7271 if (bucketcount == 0 && nsyms > 0)
7272 return FALSE;
7273
7274 elf_hash_table (info)->bucketcount = bucketcount;
7275
7276 s = bfd_get_linker_section (dynobj, ".hash");
7277 BFD_ASSERT (s != NULL);
7278 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7279 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7280 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7281 if (s->contents == NULL)
7282 return FALSE;
7283
7284 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7285 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7286 s->contents + hash_entry_size);
7287 }
7288
7289 if (info->emit_gnu_hash)
7290 {
7291 size_t i, cnt;
7292 unsigned char *contents;
7293 struct collect_gnu_hash_codes cinfo;
7294 bfd_size_type amt;
7295 size_t bucketcount;
7296
7297 memset (&cinfo, 0, sizeof (cinfo));
7298
7299 /* Compute the hash values for all exported symbols. At the same
7300 time store the values in an array so that we could use them for
7301 optimizations. */
7302 amt = dynsymcount * 2 * sizeof (unsigned long int);
7303 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7304 if (cinfo.hashcodes == NULL)
7305 return FALSE;
7306
7307 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7308 cinfo.min_dynindx = -1;
7309 cinfo.output_bfd = output_bfd;
7310 cinfo.bed = bed;
7311
7312 /* Put all hash values in HASHCODES. */
7313 elf_link_hash_traverse (elf_hash_table (info),
7314 elf_collect_gnu_hash_codes, &cinfo);
7315 if (cinfo.error)
7316 {
7317 free (cinfo.hashcodes);
7318 return FALSE;
7319 }
7320
7321 bucketcount
7322 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7323
7324 if (bucketcount == 0)
7325 {
7326 free (cinfo.hashcodes);
7327 return FALSE;
7328 }
7329
7330 s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed));
7331 BFD_ASSERT (s != NULL);
7332
7333 if (cinfo.nsyms == 0)
7334 {
7335 /* Empty .gnu.hash or .MIPS.xhash section is special. */
7336 BFD_ASSERT (cinfo.min_dynindx == -1);
7337 free (cinfo.hashcodes);
7338 s->size = 5 * 4 + bed->s->arch_size / 8;
7339 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7340 if (contents == NULL)
7341 return FALSE;
7342 s->contents = contents;
7343 /* 1 empty bucket. */
7344 bfd_put_32 (output_bfd, 1, contents);
7345 /* SYMIDX above the special symbol 0. */
7346 bfd_put_32 (output_bfd, 1, contents + 4);
7347 /* Just one word for bitmask. */
7348 bfd_put_32 (output_bfd, 1, contents + 8);
7349 /* Only hash fn bloom filter. */
7350 bfd_put_32 (output_bfd, 0, contents + 12);
7351 /* No hashes are valid - empty bitmask. */
7352 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7353 /* No hashes in the only bucket. */
7354 bfd_put_32 (output_bfd, 0,
7355 contents + 16 + bed->s->arch_size / 8);
7356 }
7357 else
7358 {
7359 unsigned long int maskwords, maskbitslog2, x;
7360 BFD_ASSERT (cinfo.min_dynindx != -1);
7361
7362 x = cinfo.nsyms;
7363 maskbitslog2 = 1;
7364 while ((x >>= 1) != 0)
7365 ++maskbitslog2;
7366 if (maskbitslog2 < 3)
7367 maskbitslog2 = 5;
7368 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7369 maskbitslog2 = maskbitslog2 + 3;
7370 else
7371 maskbitslog2 = maskbitslog2 + 2;
7372 if (bed->s->arch_size == 64)
7373 {
7374 if (maskbitslog2 == 5)
7375 maskbitslog2 = 6;
7376 cinfo.shift1 = 6;
7377 }
7378 else
7379 cinfo.shift1 = 5;
7380 cinfo.mask = (1 << cinfo.shift1) - 1;
7381 cinfo.shift2 = maskbitslog2;
7382 cinfo.maskbits = 1 << maskbitslog2;
7383 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7384 amt = bucketcount * sizeof (unsigned long int) * 2;
7385 amt += maskwords * sizeof (bfd_vma);
7386 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7387 if (cinfo.bitmask == NULL)
7388 {
7389 free (cinfo.hashcodes);
7390 return FALSE;
7391 }
7392
7393 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7394 cinfo.indx = cinfo.counts + bucketcount;
7395 cinfo.symindx = dynsymcount - cinfo.nsyms;
7396 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7397
7398 /* Determine how often each hash bucket is used. */
7399 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7400 for (i = 0; i < cinfo.nsyms; ++i)
7401 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7402
7403 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7404 if (cinfo.counts[i] != 0)
7405 {
7406 cinfo.indx[i] = cnt;
7407 cnt += cinfo.counts[i];
7408 }
7409 BFD_ASSERT (cnt == dynsymcount);
7410 cinfo.bucketcount = bucketcount;
7411 cinfo.local_indx = cinfo.min_dynindx;
7412
7413 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7414 s->size += cinfo.maskbits / 8;
7415 if (bed->record_xhash_symbol != NULL)
7416 s->size += cinfo.nsyms * 4;
7417 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7418 if (contents == NULL)
7419 {
7420 free (cinfo.bitmask);
7421 free (cinfo.hashcodes);
7422 return FALSE;
7423 }
7424
7425 s->contents = contents;
7426 bfd_put_32 (output_bfd, bucketcount, contents);
7427 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7428 bfd_put_32 (output_bfd, maskwords, contents + 8);
7429 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7430 contents += 16 + cinfo.maskbits / 8;
7431
7432 for (i = 0; i < bucketcount; ++i)
7433 {
7434 if (cinfo.counts[i] == 0)
7435 bfd_put_32 (output_bfd, 0, contents);
7436 else
7437 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7438 contents += 4;
7439 }
7440
7441 cinfo.contents = contents;
7442
7443 cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents;
7444 /* Renumber dynamic symbols, if populating .gnu.hash section.
7445 If using .MIPS.xhash, populate the translation table. */
7446 elf_link_hash_traverse (elf_hash_table (info),
7447 elf_gnu_hash_process_symidx, &cinfo);
7448
7449 contents = s->contents + 16;
7450 for (i = 0; i < maskwords; ++i)
7451 {
7452 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7453 contents);
7454 contents += bed->s->arch_size / 8;
7455 }
7456
7457 free (cinfo.bitmask);
7458 free (cinfo.hashcodes);
7459 }
7460 }
7461
7462 s = bfd_get_linker_section (dynobj, ".dynstr");
7463 BFD_ASSERT (s != NULL);
7464
7465 elf_finalize_dynstr (output_bfd, info);
7466
7467 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7468
7469 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7470 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7471 return FALSE;
7472 }
7473
7474 return TRUE;
7475 }
7476 \f
7477 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7478
7479 static void
7480 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7481 asection *sec)
7482 {
7483 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7484 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7485 }
7486
7487 /* Finish SHF_MERGE section merging. */
7488
7489 bfd_boolean
7490 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7491 {
7492 bfd *ibfd;
7493 asection *sec;
7494
7495 if (!is_elf_hash_table (info->hash))
7496 return FALSE;
7497
7498 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7499 if ((ibfd->flags & DYNAMIC) == 0
7500 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7501 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7502 == get_elf_backend_data (obfd)->s->elfclass))
7503 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7504 if ((sec->flags & SEC_MERGE) != 0
7505 && !bfd_is_abs_section (sec->output_section))
7506 {
7507 struct bfd_elf_section_data *secdata;
7508
7509 secdata = elf_section_data (sec);
7510 if (! _bfd_add_merge_section (obfd,
7511 &elf_hash_table (info)->merge_info,
7512 sec, &secdata->sec_info))
7513 return FALSE;
7514 else if (secdata->sec_info)
7515 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7516 }
7517
7518 if (elf_hash_table (info)->merge_info != NULL)
7519 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7520 merge_sections_remove_hook);
7521 return TRUE;
7522 }
7523
7524 /* Create an entry in an ELF linker hash table. */
7525
7526 struct bfd_hash_entry *
7527 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7528 struct bfd_hash_table *table,
7529 const char *string)
7530 {
7531 /* Allocate the structure if it has not already been allocated by a
7532 subclass. */
7533 if (entry == NULL)
7534 {
7535 entry = (struct bfd_hash_entry *)
7536 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7537 if (entry == NULL)
7538 return entry;
7539 }
7540
7541 /* Call the allocation method of the superclass. */
7542 entry = _bfd_link_hash_newfunc (entry, table, string);
7543 if (entry != NULL)
7544 {
7545 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7546 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7547
7548 /* Set local fields. */
7549 ret->indx = -1;
7550 ret->dynindx = -1;
7551 ret->got = htab->init_got_refcount;
7552 ret->plt = htab->init_plt_refcount;
7553 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7554 - offsetof (struct elf_link_hash_entry, size)));
7555 /* Assume that we have been called by a non-ELF symbol reader.
7556 This flag is then reset by the code which reads an ELF input
7557 file. This ensures that a symbol created by a non-ELF symbol
7558 reader will have the flag set correctly. */
7559 ret->non_elf = 1;
7560 }
7561
7562 return entry;
7563 }
7564
7565 /* Copy data from an indirect symbol to its direct symbol, hiding the
7566 old indirect symbol. Also used for copying flags to a weakdef. */
7567
7568 void
7569 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7570 struct elf_link_hash_entry *dir,
7571 struct elf_link_hash_entry *ind)
7572 {
7573 struct elf_link_hash_table *htab;
7574
7575 /* Copy down any references that we may have already seen to the
7576 symbol which just became indirect. */
7577
7578 if (dir->versioned != versioned_hidden)
7579 dir->ref_dynamic |= ind->ref_dynamic;
7580 dir->ref_regular |= ind->ref_regular;
7581 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7582 dir->non_got_ref |= ind->non_got_ref;
7583 dir->needs_plt |= ind->needs_plt;
7584 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7585
7586 if (ind->root.type != bfd_link_hash_indirect)
7587 return;
7588
7589 /* Copy over the global and procedure linkage table refcount entries.
7590 These may have been already set up by a check_relocs routine. */
7591 htab = elf_hash_table (info);
7592 if (ind->got.refcount > htab->init_got_refcount.refcount)
7593 {
7594 if (dir->got.refcount < 0)
7595 dir->got.refcount = 0;
7596 dir->got.refcount += ind->got.refcount;
7597 ind->got.refcount = htab->init_got_refcount.refcount;
7598 }
7599
7600 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7601 {
7602 if (dir->plt.refcount < 0)
7603 dir->plt.refcount = 0;
7604 dir->plt.refcount += ind->plt.refcount;
7605 ind->plt.refcount = htab->init_plt_refcount.refcount;
7606 }
7607
7608 if (ind->dynindx != -1)
7609 {
7610 if (dir->dynindx != -1)
7611 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7612 dir->dynindx = ind->dynindx;
7613 dir->dynstr_index = ind->dynstr_index;
7614 ind->dynindx = -1;
7615 ind->dynstr_index = 0;
7616 }
7617 }
7618
7619 void
7620 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7621 struct elf_link_hash_entry *h,
7622 bfd_boolean force_local)
7623 {
7624 /* STT_GNU_IFUNC symbol must go through PLT. */
7625 if (h->type != STT_GNU_IFUNC)
7626 {
7627 h->plt = elf_hash_table (info)->init_plt_offset;
7628 h->needs_plt = 0;
7629 }
7630 if (force_local)
7631 {
7632 h->forced_local = 1;
7633 if (h->dynindx != -1)
7634 {
7635 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7636 h->dynstr_index);
7637 h->dynindx = -1;
7638 h->dynstr_index = 0;
7639 }
7640 }
7641 }
7642
7643 /* Hide a symbol. */
7644
7645 void
7646 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7647 struct bfd_link_info *info,
7648 struct bfd_link_hash_entry *h)
7649 {
7650 if (is_elf_hash_table (info->hash))
7651 {
7652 const struct elf_backend_data *bed
7653 = get_elf_backend_data (output_bfd);
7654 struct elf_link_hash_entry *eh
7655 = (struct elf_link_hash_entry *) h;
7656 bed->elf_backend_hide_symbol (info, eh, TRUE);
7657 eh->def_dynamic = 0;
7658 eh->ref_dynamic = 0;
7659 eh->dynamic_def = 0;
7660 }
7661 }
7662
7663 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7664 caller. */
7665
7666 bfd_boolean
7667 _bfd_elf_link_hash_table_init
7668 (struct elf_link_hash_table *table,
7669 bfd *abfd,
7670 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7671 struct bfd_hash_table *,
7672 const char *),
7673 unsigned int entsize,
7674 enum elf_target_id target_id)
7675 {
7676 bfd_boolean ret;
7677 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7678
7679 table->init_got_refcount.refcount = can_refcount - 1;
7680 table->init_plt_refcount.refcount = can_refcount - 1;
7681 table->init_got_offset.offset = -(bfd_vma) 1;
7682 table->init_plt_offset.offset = -(bfd_vma) 1;
7683 /* The first dynamic symbol is a dummy. */
7684 table->dynsymcount = 1;
7685
7686 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7687
7688 table->root.type = bfd_link_elf_hash_table;
7689 table->hash_table_id = target_id;
7690
7691 return ret;
7692 }
7693
7694 /* Create an ELF linker hash table. */
7695
7696 struct bfd_link_hash_table *
7697 _bfd_elf_link_hash_table_create (bfd *abfd)
7698 {
7699 struct elf_link_hash_table *ret;
7700 size_t amt = sizeof (struct elf_link_hash_table);
7701
7702 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7703 if (ret == NULL)
7704 return NULL;
7705
7706 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7707 sizeof (struct elf_link_hash_entry),
7708 GENERIC_ELF_DATA))
7709 {
7710 free (ret);
7711 return NULL;
7712 }
7713 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7714
7715 return &ret->root;
7716 }
7717
7718 /* Destroy an ELF linker hash table. */
7719
7720 void
7721 _bfd_elf_link_hash_table_free (bfd *obfd)
7722 {
7723 struct elf_link_hash_table *htab;
7724
7725 htab = (struct elf_link_hash_table *) obfd->link.hash;
7726 if (htab->dynstr != NULL)
7727 _bfd_elf_strtab_free (htab->dynstr);
7728 _bfd_merge_sections_free (htab->merge_info);
7729 _bfd_generic_link_hash_table_free (obfd);
7730 }
7731
7732 /* This is a hook for the ELF emulation code in the generic linker to
7733 tell the backend linker what file name to use for the DT_NEEDED
7734 entry for a dynamic object. */
7735
7736 void
7737 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7738 {
7739 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7740 && bfd_get_format (abfd) == bfd_object)
7741 elf_dt_name (abfd) = name;
7742 }
7743
7744 int
7745 bfd_elf_get_dyn_lib_class (bfd *abfd)
7746 {
7747 int lib_class;
7748 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7749 && bfd_get_format (abfd) == bfd_object)
7750 lib_class = elf_dyn_lib_class (abfd);
7751 else
7752 lib_class = 0;
7753 return lib_class;
7754 }
7755
7756 void
7757 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7758 {
7759 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7760 && bfd_get_format (abfd) == bfd_object)
7761 elf_dyn_lib_class (abfd) = lib_class;
7762 }
7763
7764 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7765 the linker ELF emulation code. */
7766
7767 struct bfd_link_needed_list *
7768 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7769 struct bfd_link_info *info)
7770 {
7771 if (! is_elf_hash_table (info->hash))
7772 return NULL;
7773 return elf_hash_table (info)->needed;
7774 }
7775
7776 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7777 hook for the linker ELF emulation code. */
7778
7779 struct bfd_link_needed_list *
7780 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7781 struct bfd_link_info *info)
7782 {
7783 if (! is_elf_hash_table (info->hash))
7784 return NULL;
7785 return elf_hash_table (info)->runpath;
7786 }
7787
7788 /* Get the name actually used for a dynamic object for a link. This
7789 is the SONAME entry if there is one. Otherwise, it is the string
7790 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7791
7792 const char *
7793 bfd_elf_get_dt_soname (bfd *abfd)
7794 {
7795 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7796 && bfd_get_format (abfd) == bfd_object)
7797 return elf_dt_name (abfd);
7798 return NULL;
7799 }
7800
7801 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7802 the ELF linker emulation code. */
7803
7804 bfd_boolean
7805 bfd_elf_get_bfd_needed_list (bfd *abfd,
7806 struct bfd_link_needed_list **pneeded)
7807 {
7808 asection *s;
7809 bfd_byte *dynbuf = NULL;
7810 unsigned int elfsec;
7811 unsigned long shlink;
7812 bfd_byte *extdyn, *extdynend;
7813 size_t extdynsize;
7814 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7815
7816 *pneeded = NULL;
7817
7818 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7819 || bfd_get_format (abfd) != bfd_object)
7820 return TRUE;
7821
7822 s = bfd_get_section_by_name (abfd, ".dynamic");
7823 if (s == NULL || s->size == 0)
7824 return TRUE;
7825
7826 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7827 goto error_return;
7828
7829 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7830 if (elfsec == SHN_BAD)
7831 goto error_return;
7832
7833 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7834
7835 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7836 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7837
7838 extdyn = dynbuf;
7839 extdynend = extdyn + s->size;
7840 for (; extdyn < extdynend; extdyn += extdynsize)
7841 {
7842 Elf_Internal_Dyn dyn;
7843
7844 (*swap_dyn_in) (abfd, extdyn, &dyn);
7845
7846 if (dyn.d_tag == DT_NULL)
7847 break;
7848
7849 if (dyn.d_tag == DT_NEEDED)
7850 {
7851 const char *string;
7852 struct bfd_link_needed_list *l;
7853 unsigned int tagv = dyn.d_un.d_val;
7854 size_t amt;
7855
7856 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7857 if (string == NULL)
7858 goto error_return;
7859
7860 amt = sizeof *l;
7861 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7862 if (l == NULL)
7863 goto error_return;
7864
7865 l->by = abfd;
7866 l->name = string;
7867 l->next = *pneeded;
7868 *pneeded = l;
7869 }
7870 }
7871
7872 free (dynbuf);
7873
7874 return TRUE;
7875
7876 error_return:
7877 if (dynbuf != NULL)
7878 free (dynbuf);
7879 return FALSE;
7880 }
7881
7882 struct elf_symbuf_symbol
7883 {
7884 unsigned long st_name; /* Symbol name, index in string tbl */
7885 unsigned char st_info; /* Type and binding attributes */
7886 unsigned char st_other; /* Visibilty, and target specific */
7887 };
7888
7889 struct elf_symbuf_head
7890 {
7891 struct elf_symbuf_symbol *ssym;
7892 size_t count;
7893 unsigned int st_shndx;
7894 };
7895
7896 struct elf_symbol
7897 {
7898 union
7899 {
7900 Elf_Internal_Sym *isym;
7901 struct elf_symbuf_symbol *ssym;
7902 void *p;
7903 } u;
7904 const char *name;
7905 };
7906
7907 /* Sort references to symbols by ascending section number. */
7908
7909 static int
7910 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7911 {
7912 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7913 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7914
7915 if (s1->st_shndx != s2->st_shndx)
7916 return s1->st_shndx > s2->st_shndx ? 1 : -1;
7917 /* Final sort by the address of the sym in the symbuf ensures
7918 a stable sort. */
7919 if (s1 != s2)
7920 return s1 > s2 ? 1 : -1;
7921 return 0;
7922 }
7923
7924 static int
7925 elf_sym_name_compare (const void *arg1, const void *arg2)
7926 {
7927 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7928 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7929 int ret = strcmp (s1->name, s2->name);
7930 if (ret != 0)
7931 return ret;
7932 if (s1->u.p != s2->u.p)
7933 return s1->u.p > s2->u.p ? 1 : -1;
7934 return 0;
7935 }
7936
7937 static struct elf_symbuf_head *
7938 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7939 {
7940 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7941 struct elf_symbuf_symbol *ssym;
7942 struct elf_symbuf_head *ssymbuf, *ssymhead;
7943 size_t i, shndx_count, total_size, amt;
7944
7945 amt = symcount * sizeof (*indbuf);
7946 indbuf = (Elf_Internal_Sym **) bfd_malloc (amt);
7947 if (indbuf == NULL)
7948 return NULL;
7949
7950 for (ind = indbuf, i = 0; i < symcount; i++)
7951 if (isymbuf[i].st_shndx != SHN_UNDEF)
7952 *ind++ = &isymbuf[i];
7953 indbufend = ind;
7954
7955 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7956 elf_sort_elf_symbol);
7957
7958 shndx_count = 0;
7959 if (indbufend > indbuf)
7960 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7961 if (ind[0]->st_shndx != ind[1]->st_shndx)
7962 shndx_count++;
7963
7964 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7965 + (indbufend - indbuf) * sizeof (*ssym));
7966 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7967 if (ssymbuf == NULL)
7968 {
7969 free (indbuf);
7970 return NULL;
7971 }
7972
7973 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7974 ssymbuf->ssym = NULL;
7975 ssymbuf->count = shndx_count;
7976 ssymbuf->st_shndx = 0;
7977 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7978 {
7979 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7980 {
7981 ssymhead++;
7982 ssymhead->ssym = ssym;
7983 ssymhead->count = 0;
7984 ssymhead->st_shndx = (*ind)->st_shndx;
7985 }
7986 ssym->st_name = (*ind)->st_name;
7987 ssym->st_info = (*ind)->st_info;
7988 ssym->st_other = (*ind)->st_other;
7989 ssymhead->count++;
7990 }
7991 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7992 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7993 == total_size));
7994
7995 free (indbuf);
7996 return ssymbuf;
7997 }
7998
7999 /* Check if 2 sections define the same set of local and global
8000 symbols. */
8001
8002 static bfd_boolean
8003 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
8004 struct bfd_link_info *info)
8005 {
8006 bfd *bfd1, *bfd2;
8007 const struct elf_backend_data *bed1, *bed2;
8008 Elf_Internal_Shdr *hdr1, *hdr2;
8009 size_t symcount1, symcount2;
8010 Elf_Internal_Sym *isymbuf1, *isymbuf2;
8011 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
8012 Elf_Internal_Sym *isym, *isymend;
8013 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
8014 size_t count1, count2, i;
8015 unsigned int shndx1, shndx2;
8016 bfd_boolean result;
8017
8018 bfd1 = sec1->owner;
8019 bfd2 = sec2->owner;
8020
8021 /* Both sections have to be in ELF. */
8022 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8023 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8024 return FALSE;
8025
8026 if (elf_section_type (sec1) != elf_section_type (sec2))
8027 return FALSE;
8028
8029 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8030 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8031 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
8032 return FALSE;
8033
8034 bed1 = get_elf_backend_data (bfd1);
8035 bed2 = get_elf_backend_data (bfd2);
8036 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8037 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8038 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8039 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8040
8041 if (symcount1 == 0 || symcount2 == 0)
8042 return FALSE;
8043
8044 result = FALSE;
8045 isymbuf1 = NULL;
8046 isymbuf2 = NULL;
8047 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
8048 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
8049
8050 if (ssymbuf1 == NULL)
8051 {
8052 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8053 NULL, NULL, NULL);
8054 if (isymbuf1 == NULL)
8055 goto done;
8056
8057 if (!info->reduce_memory_overheads)
8058 {
8059 ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1);
8060 elf_tdata (bfd1)->symbuf = ssymbuf1;
8061 }
8062 }
8063
8064 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
8065 {
8066 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8067 NULL, NULL, NULL);
8068 if (isymbuf2 == NULL)
8069 goto done;
8070
8071 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
8072 {
8073 ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2);
8074 elf_tdata (bfd2)->symbuf = ssymbuf2;
8075 }
8076 }
8077
8078 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
8079 {
8080 /* Optimized faster version. */
8081 size_t lo, hi, mid;
8082 struct elf_symbol *symp;
8083 struct elf_symbuf_symbol *ssym, *ssymend;
8084
8085 lo = 0;
8086 hi = ssymbuf1->count;
8087 ssymbuf1++;
8088 count1 = 0;
8089 while (lo < hi)
8090 {
8091 mid = (lo + hi) / 2;
8092 if (shndx1 < ssymbuf1[mid].st_shndx)
8093 hi = mid;
8094 else if (shndx1 > ssymbuf1[mid].st_shndx)
8095 lo = mid + 1;
8096 else
8097 {
8098 count1 = ssymbuf1[mid].count;
8099 ssymbuf1 += mid;
8100 break;
8101 }
8102 }
8103
8104 lo = 0;
8105 hi = ssymbuf2->count;
8106 ssymbuf2++;
8107 count2 = 0;
8108 while (lo < hi)
8109 {
8110 mid = (lo + hi) / 2;
8111 if (shndx2 < ssymbuf2[mid].st_shndx)
8112 hi = mid;
8113 else if (shndx2 > ssymbuf2[mid].st_shndx)
8114 lo = mid + 1;
8115 else
8116 {
8117 count2 = ssymbuf2[mid].count;
8118 ssymbuf2 += mid;
8119 break;
8120 }
8121 }
8122
8123 if (count1 == 0 || count2 == 0 || count1 != count2)
8124 goto done;
8125
8126 symtable1
8127 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8128 symtable2
8129 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8130 if (symtable1 == NULL || symtable2 == NULL)
8131 goto done;
8132
8133 symp = symtable1;
8134 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8135 ssym < ssymend; ssym++, symp++)
8136 {
8137 symp->u.ssym = ssym;
8138 symp->name = bfd_elf_string_from_elf_section (bfd1,
8139 hdr1->sh_link,
8140 ssym->st_name);
8141 }
8142
8143 symp = symtable2;
8144 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8145 ssym < ssymend; ssym++, symp++)
8146 {
8147 symp->u.ssym = ssym;
8148 symp->name = bfd_elf_string_from_elf_section (bfd2,
8149 hdr2->sh_link,
8150 ssym->st_name);
8151 }
8152
8153 /* Sort symbol by name. */
8154 qsort (symtable1, count1, sizeof (struct elf_symbol),
8155 elf_sym_name_compare);
8156 qsort (symtable2, count1, sizeof (struct elf_symbol),
8157 elf_sym_name_compare);
8158
8159 for (i = 0; i < count1; i++)
8160 /* Two symbols must have the same binding, type and name. */
8161 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8162 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8163 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8164 goto done;
8165
8166 result = TRUE;
8167 goto done;
8168 }
8169
8170 symtable1 = (struct elf_symbol *)
8171 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8172 symtable2 = (struct elf_symbol *)
8173 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8174 if (symtable1 == NULL || symtable2 == NULL)
8175 goto done;
8176
8177 /* Count definitions in the section. */
8178 count1 = 0;
8179 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8180 if (isym->st_shndx == shndx1)
8181 symtable1[count1++].u.isym = isym;
8182
8183 count2 = 0;
8184 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8185 if (isym->st_shndx == shndx2)
8186 symtable2[count2++].u.isym = isym;
8187
8188 if (count1 == 0 || count2 == 0 || count1 != count2)
8189 goto done;
8190
8191 for (i = 0; i < count1; i++)
8192 symtable1[i].name
8193 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8194 symtable1[i].u.isym->st_name);
8195
8196 for (i = 0; i < count2; i++)
8197 symtable2[i].name
8198 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8199 symtable2[i].u.isym->st_name);
8200
8201 /* Sort symbol by name. */
8202 qsort (symtable1, count1, sizeof (struct elf_symbol),
8203 elf_sym_name_compare);
8204 qsort (symtable2, count1, sizeof (struct elf_symbol),
8205 elf_sym_name_compare);
8206
8207 for (i = 0; i < count1; i++)
8208 /* Two symbols must have the same binding, type and name. */
8209 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8210 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8211 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8212 goto done;
8213
8214 result = TRUE;
8215
8216 done:
8217 if (symtable1)
8218 free (symtable1);
8219 if (symtable2)
8220 free (symtable2);
8221 if (isymbuf1)
8222 free (isymbuf1);
8223 if (isymbuf2)
8224 free (isymbuf2);
8225
8226 return result;
8227 }
8228
8229 /* Return TRUE if 2 section types are compatible. */
8230
8231 bfd_boolean
8232 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8233 bfd *bbfd, const asection *bsec)
8234 {
8235 if (asec == NULL
8236 || bsec == NULL
8237 || abfd->xvec->flavour != bfd_target_elf_flavour
8238 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8239 return TRUE;
8240
8241 return elf_section_type (asec) == elf_section_type (bsec);
8242 }
8243 \f
8244 /* Final phase of ELF linker. */
8245
8246 /* A structure we use to avoid passing large numbers of arguments. */
8247
8248 struct elf_final_link_info
8249 {
8250 /* General link information. */
8251 struct bfd_link_info *info;
8252 /* Output BFD. */
8253 bfd *output_bfd;
8254 /* Symbol string table. */
8255 struct elf_strtab_hash *symstrtab;
8256 /* .hash section. */
8257 asection *hash_sec;
8258 /* symbol version section (.gnu.version). */
8259 asection *symver_sec;
8260 /* Buffer large enough to hold contents of any section. */
8261 bfd_byte *contents;
8262 /* Buffer large enough to hold external relocs of any section. */
8263 void *external_relocs;
8264 /* Buffer large enough to hold internal relocs of any section. */
8265 Elf_Internal_Rela *internal_relocs;
8266 /* Buffer large enough to hold external local symbols of any input
8267 BFD. */
8268 bfd_byte *external_syms;
8269 /* And a buffer for symbol section indices. */
8270 Elf_External_Sym_Shndx *locsym_shndx;
8271 /* Buffer large enough to hold internal local symbols of any input
8272 BFD. */
8273 Elf_Internal_Sym *internal_syms;
8274 /* Array large enough to hold a symbol index for each local symbol
8275 of any input BFD. */
8276 long *indices;
8277 /* Array large enough to hold a section pointer for each local
8278 symbol of any input BFD. */
8279 asection **sections;
8280 /* Buffer for SHT_SYMTAB_SHNDX section. */
8281 Elf_External_Sym_Shndx *symshndxbuf;
8282 /* Number of STT_FILE syms seen. */
8283 size_t filesym_count;
8284 };
8285
8286 /* This struct is used to pass information to elf_link_output_extsym. */
8287
8288 struct elf_outext_info
8289 {
8290 bfd_boolean failed;
8291 bfd_boolean localsyms;
8292 bfd_boolean file_sym_done;
8293 struct elf_final_link_info *flinfo;
8294 };
8295
8296
8297 /* Support for evaluating a complex relocation.
8298
8299 Complex relocations are generalized, self-describing relocations. The
8300 implementation of them consists of two parts: complex symbols, and the
8301 relocations themselves.
8302
8303 The relocations are use a reserved elf-wide relocation type code (R_RELC
8304 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8305 information (start bit, end bit, word width, etc) into the addend. This
8306 information is extracted from CGEN-generated operand tables within gas.
8307
8308 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8309 internal) representing prefix-notation expressions, including but not
8310 limited to those sorts of expressions normally encoded as addends in the
8311 addend field. The symbol mangling format is:
8312
8313 <node> := <literal>
8314 | <unary-operator> ':' <node>
8315 | <binary-operator> ':' <node> ':' <node>
8316 ;
8317
8318 <literal> := 's' <digits=N> ':' <N character symbol name>
8319 | 'S' <digits=N> ':' <N character section name>
8320 | '#' <hexdigits>
8321 ;
8322
8323 <binary-operator> := as in C
8324 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8325
8326 static void
8327 set_symbol_value (bfd *bfd_with_globals,
8328 Elf_Internal_Sym *isymbuf,
8329 size_t locsymcount,
8330 size_t symidx,
8331 bfd_vma val)
8332 {
8333 struct elf_link_hash_entry **sym_hashes;
8334 struct elf_link_hash_entry *h;
8335 size_t extsymoff = locsymcount;
8336
8337 if (symidx < locsymcount)
8338 {
8339 Elf_Internal_Sym *sym;
8340
8341 sym = isymbuf + symidx;
8342 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8343 {
8344 /* It is a local symbol: move it to the
8345 "absolute" section and give it a value. */
8346 sym->st_shndx = SHN_ABS;
8347 sym->st_value = val;
8348 return;
8349 }
8350 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8351 extsymoff = 0;
8352 }
8353
8354 /* It is a global symbol: set its link type
8355 to "defined" and give it a value. */
8356
8357 sym_hashes = elf_sym_hashes (bfd_with_globals);
8358 h = sym_hashes [symidx - extsymoff];
8359 while (h->root.type == bfd_link_hash_indirect
8360 || h->root.type == bfd_link_hash_warning)
8361 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8362 h->root.type = bfd_link_hash_defined;
8363 h->root.u.def.value = val;
8364 h->root.u.def.section = bfd_abs_section_ptr;
8365 }
8366
8367 static bfd_boolean
8368 resolve_symbol (const char *name,
8369 bfd *input_bfd,
8370 struct elf_final_link_info *flinfo,
8371 bfd_vma *result,
8372 Elf_Internal_Sym *isymbuf,
8373 size_t locsymcount)
8374 {
8375 Elf_Internal_Sym *sym;
8376 struct bfd_link_hash_entry *global_entry;
8377 const char *candidate = NULL;
8378 Elf_Internal_Shdr *symtab_hdr;
8379 size_t i;
8380
8381 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8382
8383 for (i = 0; i < locsymcount; ++ i)
8384 {
8385 sym = isymbuf + i;
8386
8387 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8388 continue;
8389
8390 candidate = bfd_elf_string_from_elf_section (input_bfd,
8391 symtab_hdr->sh_link,
8392 sym->st_name);
8393 #ifdef DEBUG
8394 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8395 name, candidate, (unsigned long) sym->st_value);
8396 #endif
8397 if (candidate && strcmp (candidate, name) == 0)
8398 {
8399 asection *sec = flinfo->sections [i];
8400
8401 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8402 *result += sec->output_offset + sec->output_section->vma;
8403 #ifdef DEBUG
8404 printf ("Found symbol with value %8.8lx\n",
8405 (unsigned long) *result);
8406 #endif
8407 return TRUE;
8408 }
8409 }
8410
8411 /* Hmm, haven't found it yet. perhaps it is a global. */
8412 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8413 FALSE, FALSE, TRUE);
8414 if (!global_entry)
8415 return FALSE;
8416
8417 if (global_entry->type == bfd_link_hash_defined
8418 || global_entry->type == bfd_link_hash_defweak)
8419 {
8420 *result = (global_entry->u.def.value
8421 + global_entry->u.def.section->output_section->vma
8422 + global_entry->u.def.section->output_offset);
8423 #ifdef DEBUG
8424 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8425 global_entry->root.string, (unsigned long) *result);
8426 #endif
8427 return TRUE;
8428 }
8429
8430 return FALSE;
8431 }
8432
8433 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8434 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8435 names like "foo.end" which is the end address of section "foo". */
8436
8437 static bfd_boolean
8438 resolve_section (const char *name,
8439 asection *sections,
8440 bfd_vma *result,
8441 bfd * abfd)
8442 {
8443 asection *curr;
8444 unsigned int len;
8445
8446 for (curr = sections; curr; curr = curr->next)
8447 if (strcmp (curr->name, name) == 0)
8448 {
8449 *result = curr->vma;
8450 return TRUE;
8451 }
8452
8453 /* Hmm. still haven't found it. try pseudo-section names. */
8454 /* FIXME: This could be coded more efficiently... */
8455 for (curr = sections; curr; curr = curr->next)
8456 {
8457 len = strlen (curr->name);
8458 if (len > strlen (name))
8459 continue;
8460
8461 if (strncmp (curr->name, name, len) == 0)
8462 {
8463 if (strncmp (".end", name + len, 4) == 0)
8464 {
8465 *result = (curr->vma
8466 + curr->size / bfd_octets_per_byte (abfd, curr));
8467 return TRUE;
8468 }
8469
8470 /* Insert more pseudo-section names here, if you like. */
8471 }
8472 }
8473
8474 return FALSE;
8475 }
8476
8477 static void
8478 undefined_reference (const char *reftype, const char *name)
8479 {
8480 /* xgettext:c-format */
8481 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8482 reftype, name);
8483 }
8484
8485 static bfd_boolean
8486 eval_symbol (bfd_vma *result,
8487 const char **symp,
8488 bfd *input_bfd,
8489 struct elf_final_link_info *flinfo,
8490 bfd_vma dot,
8491 Elf_Internal_Sym *isymbuf,
8492 size_t locsymcount,
8493 int signed_p)
8494 {
8495 size_t len;
8496 size_t symlen;
8497 bfd_vma a;
8498 bfd_vma b;
8499 char symbuf[4096];
8500 const char *sym = *symp;
8501 const char *symend;
8502 bfd_boolean symbol_is_section = FALSE;
8503
8504 len = strlen (sym);
8505 symend = sym + len;
8506
8507 if (len < 1 || len > sizeof (symbuf))
8508 {
8509 bfd_set_error (bfd_error_invalid_operation);
8510 return FALSE;
8511 }
8512
8513 switch (* sym)
8514 {
8515 case '.':
8516 *result = dot;
8517 *symp = sym + 1;
8518 return TRUE;
8519
8520 case '#':
8521 ++sym;
8522 *result = strtoul (sym, (char **) symp, 16);
8523 return TRUE;
8524
8525 case 'S':
8526 symbol_is_section = TRUE;
8527 /* Fall through. */
8528 case 's':
8529 ++sym;
8530 symlen = strtol (sym, (char **) symp, 10);
8531 sym = *symp + 1; /* Skip the trailing ':'. */
8532
8533 if (symend < sym || symlen + 1 > sizeof (symbuf))
8534 {
8535 bfd_set_error (bfd_error_invalid_operation);
8536 return FALSE;
8537 }
8538
8539 memcpy (symbuf, sym, symlen);
8540 symbuf[symlen] = '\0';
8541 *symp = sym + symlen;
8542
8543 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8544 the symbol as a section, or vice-versa. so we're pretty liberal in our
8545 interpretation here; section means "try section first", not "must be a
8546 section", and likewise with symbol. */
8547
8548 if (symbol_is_section)
8549 {
8550 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8551 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8552 isymbuf, locsymcount))
8553 {
8554 undefined_reference ("section", symbuf);
8555 return FALSE;
8556 }
8557 }
8558 else
8559 {
8560 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8561 isymbuf, locsymcount)
8562 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8563 result, input_bfd))
8564 {
8565 undefined_reference ("symbol", symbuf);
8566 return FALSE;
8567 }
8568 }
8569
8570 return TRUE;
8571
8572 /* All that remains are operators. */
8573
8574 #define UNARY_OP(op) \
8575 if (strncmp (sym, #op, strlen (#op)) == 0) \
8576 { \
8577 sym += strlen (#op); \
8578 if (*sym == ':') \
8579 ++sym; \
8580 *symp = sym; \
8581 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8582 isymbuf, locsymcount, signed_p)) \
8583 return FALSE; \
8584 if (signed_p) \
8585 *result = op ((bfd_signed_vma) a); \
8586 else \
8587 *result = op a; \
8588 return TRUE; \
8589 }
8590
8591 #define BINARY_OP(op) \
8592 if (strncmp (sym, #op, strlen (#op)) == 0) \
8593 { \
8594 sym += strlen (#op); \
8595 if (*sym == ':') \
8596 ++sym; \
8597 *symp = sym; \
8598 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8599 isymbuf, locsymcount, signed_p)) \
8600 return FALSE; \
8601 ++*symp; \
8602 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8603 isymbuf, locsymcount, signed_p)) \
8604 return FALSE; \
8605 if (signed_p) \
8606 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8607 else \
8608 *result = a op b; \
8609 return TRUE; \
8610 }
8611
8612 default:
8613 UNARY_OP (0-);
8614 BINARY_OP (<<);
8615 BINARY_OP (>>);
8616 BINARY_OP (==);
8617 BINARY_OP (!=);
8618 BINARY_OP (<=);
8619 BINARY_OP (>=);
8620 BINARY_OP (&&);
8621 BINARY_OP (||);
8622 UNARY_OP (~);
8623 UNARY_OP (!);
8624 BINARY_OP (*);
8625 BINARY_OP (/);
8626 BINARY_OP (%);
8627 BINARY_OP (^);
8628 BINARY_OP (|);
8629 BINARY_OP (&);
8630 BINARY_OP (+);
8631 BINARY_OP (-);
8632 BINARY_OP (<);
8633 BINARY_OP (>);
8634 #undef UNARY_OP
8635 #undef BINARY_OP
8636 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8637 bfd_set_error (bfd_error_invalid_operation);
8638 return FALSE;
8639 }
8640 }
8641
8642 static void
8643 put_value (bfd_vma size,
8644 unsigned long chunksz,
8645 bfd *input_bfd,
8646 bfd_vma x,
8647 bfd_byte *location)
8648 {
8649 location += (size - chunksz);
8650
8651 for (; size; size -= chunksz, location -= chunksz)
8652 {
8653 switch (chunksz)
8654 {
8655 case 1:
8656 bfd_put_8 (input_bfd, x, location);
8657 x >>= 8;
8658 break;
8659 case 2:
8660 bfd_put_16 (input_bfd, x, location);
8661 x >>= 16;
8662 break;
8663 case 4:
8664 bfd_put_32 (input_bfd, x, location);
8665 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8666 x >>= 16;
8667 x >>= 16;
8668 break;
8669 #ifdef BFD64
8670 case 8:
8671 bfd_put_64 (input_bfd, x, location);
8672 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8673 x >>= 32;
8674 x >>= 32;
8675 break;
8676 #endif
8677 default:
8678 abort ();
8679 break;
8680 }
8681 }
8682 }
8683
8684 static bfd_vma
8685 get_value (bfd_vma size,
8686 unsigned long chunksz,
8687 bfd *input_bfd,
8688 bfd_byte *location)
8689 {
8690 int shift;
8691 bfd_vma x = 0;
8692
8693 /* Sanity checks. */
8694 BFD_ASSERT (chunksz <= sizeof (x)
8695 && size >= chunksz
8696 && chunksz != 0
8697 && (size % chunksz) == 0
8698 && input_bfd != NULL
8699 && location != NULL);
8700
8701 if (chunksz == sizeof (x))
8702 {
8703 BFD_ASSERT (size == chunksz);
8704
8705 /* Make sure that we do not perform an undefined shift operation.
8706 We know that size == chunksz so there will only be one iteration
8707 of the loop below. */
8708 shift = 0;
8709 }
8710 else
8711 shift = 8 * chunksz;
8712
8713 for (; size; size -= chunksz, location += chunksz)
8714 {
8715 switch (chunksz)
8716 {
8717 case 1:
8718 x = (x << shift) | bfd_get_8 (input_bfd, location);
8719 break;
8720 case 2:
8721 x = (x << shift) | bfd_get_16 (input_bfd, location);
8722 break;
8723 case 4:
8724 x = (x << shift) | bfd_get_32 (input_bfd, location);
8725 break;
8726 #ifdef BFD64
8727 case 8:
8728 x = (x << shift) | bfd_get_64 (input_bfd, location);
8729 break;
8730 #endif
8731 default:
8732 abort ();
8733 }
8734 }
8735 return x;
8736 }
8737
8738 static void
8739 decode_complex_addend (unsigned long *start, /* in bits */
8740 unsigned long *oplen, /* in bits */
8741 unsigned long *len, /* in bits */
8742 unsigned long *wordsz, /* in bytes */
8743 unsigned long *chunksz, /* in bytes */
8744 unsigned long *lsb0_p,
8745 unsigned long *signed_p,
8746 unsigned long *trunc_p,
8747 unsigned long encoded)
8748 {
8749 * start = encoded & 0x3F;
8750 * len = (encoded >> 6) & 0x3F;
8751 * oplen = (encoded >> 12) & 0x3F;
8752 * wordsz = (encoded >> 18) & 0xF;
8753 * chunksz = (encoded >> 22) & 0xF;
8754 * lsb0_p = (encoded >> 27) & 1;
8755 * signed_p = (encoded >> 28) & 1;
8756 * trunc_p = (encoded >> 29) & 1;
8757 }
8758
8759 bfd_reloc_status_type
8760 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8761 asection *input_section,
8762 bfd_byte *contents,
8763 Elf_Internal_Rela *rel,
8764 bfd_vma relocation)
8765 {
8766 bfd_vma shift, x, mask;
8767 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8768 bfd_reloc_status_type r;
8769 bfd_size_type octets;
8770
8771 /* Perform this reloc, since it is complex.
8772 (this is not to say that it necessarily refers to a complex
8773 symbol; merely that it is a self-describing CGEN based reloc.
8774 i.e. the addend has the complete reloc information (bit start, end,
8775 word size, etc) encoded within it.). */
8776
8777 decode_complex_addend (&start, &oplen, &len, &wordsz,
8778 &chunksz, &lsb0_p, &signed_p,
8779 &trunc_p, rel->r_addend);
8780
8781 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8782
8783 if (lsb0_p)
8784 shift = (start + 1) - len;
8785 else
8786 shift = (8 * wordsz) - (start + len);
8787
8788 octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section);
8789 x = get_value (wordsz, chunksz, input_bfd, contents + octets);
8790
8791 #ifdef DEBUG
8792 printf ("Doing complex reloc: "
8793 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8794 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8795 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8796 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8797 oplen, (unsigned long) x, (unsigned long) mask,
8798 (unsigned long) relocation);
8799 #endif
8800
8801 r = bfd_reloc_ok;
8802 if (! trunc_p)
8803 /* Now do an overflow check. */
8804 r = bfd_check_overflow ((signed_p
8805 ? complain_overflow_signed
8806 : complain_overflow_unsigned),
8807 len, 0, (8 * wordsz),
8808 relocation);
8809
8810 /* Do the deed. */
8811 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8812
8813 #ifdef DEBUG
8814 printf (" relocation: %8.8lx\n"
8815 " shifted mask: %8.8lx\n"
8816 " shifted/masked reloc: %8.8lx\n"
8817 " result: %8.8lx\n",
8818 (unsigned long) relocation, (unsigned long) (mask << shift),
8819 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8820 #endif
8821 put_value (wordsz, chunksz, input_bfd, x, contents + octets);
8822 return r;
8823 }
8824
8825 /* Functions to read r_offset from external (target order) reloc
8826 entry. Faster than bfd_getl32 et al, because we let the compiler
8827 know the value is aligned. */
8828
8829 static bfd_vma
8830 ext32l_r_offset (const void *p)
8831 {
8832 union aligned32
8833 {
8834 uint32_t v;
8835 unsigned char c[4];
8836 };
8837 const union aligned32 *a
8838 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8839
8840 uint32_t aval = ( (uint32_t) a->c[0]
8841 | (uint32_t) a->c[1] << 8
8842 | (uint32_t) a->c[2] << 16
8843 | (uint32_t) a->c[3] << 24);
8844 return aval;
8845 }
8846
8847 static bfd_vma
8848 ext32b_r_offset (const void *p)
8849 {
8850 union aligned32
8851 {
8852 uint32_t v;
8853 unsigned char c[4];
8854 };
8855 const union aligned32 *a
8856 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8857
8858 uint32_t aval = ( (uint32_t) a->c[0] << 24
8859 | (uint32_t) a->c[1] << 16
8860 | (uint32_t) a->c[2] << 8
8861 | (uint32_t) a->c[3]);
8862 return aval;
8863 }
8864
8865 #ifdef BFD_HOST_64_BIT
8866 static bfd_vma
8867 ext64l_r_offset (const void *p)
8868 {
8869 union aligned64
8870 {
8871 uint64_t v;
8872 unsigned char c[8];
8873 };
8874 const union aligned64 *a
8875 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8876
8877 uint64_t aval = ( (uint64_t) a->c[0]
8878 | (uint64_t) a->c[1] << 8
8879 | (uint64_t) a->c[2] << 16
8880 | (uint64_t) a->c[3] << 24
8881 | (uint64_t) a->c[4] << 32
8882 | (uint64_t) a->c[5] << 40
8883 | (uint64_t) a->c[6] << 48
8884 | (uint64_t) a->c[7] << 56);
8885 return aval;
8886 }
8887
8888 static bfd_vma
8889 ext64b_r_offset (const void *p)
8890 {
8891 union aligned64
8892 {
8893 uint64_t v;
8894 unsigned char c[8];
8895 };
8896 const union aligned64 *a
8897 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8898
8899 uint64_t aval = ( (uint64_t) a->c[0] << 56
8900 | (uint64_t) a->c[1] << 48
8901 | (uint64_t) a->c[2] << 40
8902 | (uint64_t) a->c[3] << 32
8903 | (uint64_t) a->c[4] << 24
8904 | (uint64_t) a->c[5] << 16
8905 | (uint64_t) a->c[6] << 8
8906 | (uint64_t) a->c[7]);
8907 return aval;
8908 }
8909 #endif
8910
8911 /* When performing a relocatable link, the input relocations are
8912 preserved. But, if they reference global symbols, the indices
8913 referenced must be updated. Update all the relocations found in
8914 RELDATA. */
8915
8916 static bfd_boolean
8917 elf_link_adjust_relocs (bfd *abfd,
8918 asection *sec,
8919 struct bfd_elf_section_reloc_data *reldata,
8920 bfd_boolean sort,
8921 struct bfd_link_info *info)
8922 {
8923 unsigned int i;
8924 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8925 bfd_byte *erela;
8926 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8927 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8928 bfd_vma r_type_mask;
8929 int r_sym_shift;
8930 unsigned int count = reldata->count;
8931 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8932
8933 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8934 {
8935 swap_in = bed->s->swap_reloc_in;
8936 swap_out = bed->s->swap_reloc_out;
8937 }
8938 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8939 {
8940 swap_in = bed->s->swap_reloca_in;
8941 swap_out = bed->s->swap_reloca_out;
8942 }
8943 else
8944 abort ();
8945
8946 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8947 abort ();
8948
8949 if (bed->s->arch_size == 32)
8950 {
8951 r_type_mask = 0xff;
8952 r_sym_shift = 8;
8953 }
8954 else
8955 {
8956 r_type_mask = 0xffffffff;
8957 r_sym_shift = 32;
8958 }
8959
8960 erela = reldata->hdr->contents;
8961 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8962 {
8963 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8964 unsigned int j;
8965
8966 if (*rel_hash == NULL)
8967 continue;
8968
8969 if ((*rel_hash)->indx == -2
8970 && info->gc_sections
8971 && ! info->gc_keep_exported)
8972 {
8973 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8974 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8975 abfd, sec,
8976 (*rel_hash)->root.root.string);
8977 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8978 abfd, sec);
8979 bfd_set_error (bfd_error_invalid_operation);
8980 return FALSE;
8981 }
8982 BFD_ASSERT ((*rel_hash)->indx >= 0);
8983
8984 (*swap_in) (abfd, erela, irela);
8985 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8986 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8987 | (irela[j].r_info & r_type_mask));
8988 (*swap_out) (abfd, irela, erela);
8989 }
8990
8991 if (bed->elf_backend_update_relocs)
8992 (*bed->elf_backend_update_relocs) (sec, reldata);
8993
8994 if (sort && count != 0)
8995 {
8996 bfd_vma (*ext_r_off) (const void *);
8997 bfd_vma r_off;
8998 size_t elt_size;
8999 bfd_byte *base, *end, *p, *loc;
9000 bfd_byte *buf = NULL;
9001
9002 if (bed->s->arch_size == 32)
9003 {
9004 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9005 ext_r_off = ext32l_r_offset;
9006 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9007 ext_r_off = ext32b_r_offset;
9008 else
9009 abort ();
9010 }
9011 else
9012 {
9013 #ifdef BFD_HOST_64_BIT
9014 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
9015 ext_r_off = ext64l_r_offset;
9016 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
9017 ext_r_off = ext64b_r_offset;
9018 else
9019 #endif
9020 abort ();
9021 }
9022
9023 /* Must use a stable sort here. A modified insertion sort,
9024 since the relocs are mostly sorted already. */
9025 elt_size = reldata->hdr->sh_entsize;
9026 base = reldata->hdr->contents;
9027 end = base + count * elt_size;
9028 if (elt_size > sizeof (Elf64_External_Rela))
9029 abort ();
9030
9031 /* Ensure the first element is lowest. This acts as a sentinel,
9032 speeding the main loop below. */
9033 r_off = (*ext_r_off) (base);
9034 for (p = loc = base; (p += elt_size) < end; )
9035 {
9036 bfd_vma r_off2 = (*ext_r_off) (p);
9037 if (r_off > r_off2)
9038 {
9039 r_off = r_off2;
9040 loc = p;
9041 }
9042 }
9043 if (loc != base)
9044 {
9045 /* Don't just swap *base and *loc as that changes the order
9046 of the original base[0] and base[1] if they happen to
9047 have the same r_offset. */
9048 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
9049 memcpy (onebuf, loc, elt_size);
9050 memmove (base + elt_size, base, loc - base);
9051 memcpy (base, onebuf, elt_size);
9052 }
9053
9054 for (p = base + elt_size; (p += elt_size) < end; )
9055 {
9056 /* base to p is sorted, *p is next to insert. */
9057 r_off = (*ext_r_off) (p);
9058 /* Search the sorted region for location to insert. */
9059 loc = p - elt_size;
9060 while (r_off < (*ext_r_off) (loc))
9061 loc -= elt_size;
9062 loc += elt_size;
9063 if (loc != p)
9064 {
9065 /* Chances are there is a run of relocs to insert here,
9066 from one of more input files. Files are not always
9067 linked in order due to the way elf_link_input_bfd is
9068 called. See pr17666. */
9069 size_t sortlen = p - loc;
9070 bfd_vma r_off2 = (*ext_r_off) (loc);
9071 size_t runlen = elt_size;
9072 size_t buf_size = 96 * 1024;
9073 while (p + runlen < end
9074 && (sortlen <= buf_size
9075 || runlen + elt_size <= buf_size)
9076 && r_off2 > (*ext_r_off) (p + runlen))
9077 runlen += elt_size;
9078 if (buf == NULL)
9079 {
9080 buf = bfd_malloc (buf_size);
9081 if (buf == NULL)
9082 return FALSE;
9083 }
9084 if (runlen < sortlen)
9085 {
9086 memcpy (buf, p, runlen);
9087 memmove (loc + runlen, loc, sortlen);
9088 memcpy (loc, buf, runlen);
9089 }
9090 else
9091 {
9092 memcpy (buf, loc, sortlen);
9093 memmove (loc, p, runlen);
9094 memcpy (loc + runlen, buf, sortlen);
9095 }
9096 p += runlen - elt_size;
9097 }
9098 }
9099 /* Hashes are no longer valid. */
9100 free (reldata->hashes);
9101 reldata->hashes = NULL;
9102 free (buf);
9103 }
9104 return TRUE;
9105 }
9106
9107 struct elf_link_sort_rela
9108 {
9109 union {
9110 bfd_vma offset;
9111 bfd_vma sym_mask;
9112 } u;
9113 enum elf_reloc_type_class type;
9114 /* We use this as an array of size int_rels_per_ext_rel. */
9115 Elf_Internal_Rela rela[1];
9116 };
9117
9118 /* qsort stability here and for cmp2 is only an issue if multiple
9119 dynamic relocations are emitted at the same address. But targets
9120 that apply a series of dynamic relocations each operating on the
9121 result of the prior relocation can't use -z combreloc as
9122 implemented anyway. Such schemes tend to be broken by sorting on
9123 symbol index. That leaves dynamic NONE relocs as the only other
9124 case where ld might emit multiple relocs at the same address, and
9125 those are only emitted due to target bugs. */
9126
9127 static int
9128 elf_link_sort_cmp1 (const void *A, const void *B)
9129 {
9130 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9131 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9132 int relativea, relativeb;
9133
9134 relativea = a->type == reloc_class_relative;
9135 relativeb = b->type == reloc_class_relative;
9136
9137 if (relativea < relativeb)
9138 return 1;
9139 if (relativea > relativeb)
9140 return -1;
9141 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9142 return -1;
9143 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9144 return 1;
9145 if (a->rela->r_offset < b->rela->r_offset)
9146 return -1;
9147 if (a->rela->r_offset > b->rela->r_offset)
9148 return 1;
9149 return 0;
9150 }
9151
9152 static int
9153 elf_link_sort_cmp2 (const void *A, const void *B)
9154 {
9155 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9156 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9157
9158 if (a->type < b->type)
9159 return -1;
9160 if (a->type > b->type)
9161 return 1;
9162 if (a->u.offset < b->u.offset)
9163 return -1;
9164 if (a->u.offset > b->u.offset)
9165 return 1;
9166 if (a->rela->r_offset < b->rela->r_offset)
9167 return -1;
9168 if (a->rela->r_offset > b->rela->r_offset)
9169 return 1;
9170 return 0;
9171 }
9172
9173 static size_t
9174 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9175 {
9176 asection *dynamic_relocs;
9177 asection *rela_dyn;
9178 asection *rel_dyn;
9179 bfd_size_type count, size;
9180 size_t i, ret, sort_elt, ext_size;
9181 bfd_byte *sort, *s_non_relative, *p;
9182 struct elf_link_sort_rela *sq;
9183 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9184 int i2e = bed->s->int_rels_per_ext_rel;
9185 unsigned int opb = bfd_octets_per_byte (abfd, NULL);
9186 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9187 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9188 struct bfd_link_order *lo;
9189 bfd_vma r_sym_mask;
9190 bfd_boolean use_rela;
9191
9192 /* Find a dynamic reloc section. */
9193 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9194 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9195 if (rela_dyn != NULL && rela_dyn->size > 0
9196 && rel_dyn != NULL && rel_dyn->size > 0)
9197 {
9198 bfd_boolean use_rela_initialised = FALSE;
9199
9200 /* This is just here to stop gcc from complaining.
9201 Its initialization checking code is not perfect. */
9202 use_rela = TRUE;
9203
9204 /* Both sections are present. Examine the sizes
9205 of the indirect sections to help us choose. */
9206 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9207 if (lo->type == bfd_indirect_link_order)
9208 {
9209 asection *o = lo->u.indirect.section;
9210
9211 if ((o->size % bed->s->sizeof_rela) == 0)
9212 {
9213 if ((o->size % bed->s->sizeof_rel) == 0)
9214 /* Section size is divisible by both rel and rela sizes.
9215 It is of no help to us. */
9216 ;
9217 else
9218 {
9219 /* Section size is only divisible by rela. */
9220 if (use_rela_initialised && !use_rela)
9221 {
9222 _bfd_error_handler (_("%pB: unable to sort relocs - "
9223 "they are in more than one size"),
9224 abfd);
9225 bfd_set_error (bfd_error_invalid_operation);
9226 return 0;
9227 }
9228 else
9229 {
9230 use_rela = TRUE;
9231 use_rela_initialised = TRUE;
9232 }
9233 }
9234 }
9235 else if ((o->size % bed->s->sizeof_rel) == 0)
9236 {
9237 /* Section size is only divisible by rel. */
9238 if (use_rela_initialised && use_rela)
9239 {
9240 _bfd_error_handler (_("%pB: unable to sort relocs - "
9241 "they are in more than one size"),
9242 abfd);
9243 bfd_set_error (bfd_error_invalid_operation);
9244 return 0;
9245 }
9246 else
9247 {
9248 use_rela = FALSE;
9249 use_rela_initialised = TRUE;
9250 }
9251 }
9252 else
9253 {
9254 /* The section size is not divisible by either -
9255 something is wrong. */
9256 _bfd_error_handler (_("%pB: unable to sort relocs - "
9257 "they are of an unknown size"), abfd);
9258 bfd_set_error (bfd_error_invalid_operation);
9259 return 0;
9260 }
9261 }
9262
9263 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9264 if (lo->type == bfd_indirect_link_order)
9265 {
9266 asection *o = lo->u.indirect.section;
9267
9268 if ((o->size % bed->s->sizeof_rela) == 0)
9269 {
9270 if ((o->size % bed->s->sizeof_rel) == 0)
9271 /* Section size is divisible by both rel and rela sizes.
9272 It is of no help to us. */
9273 ;
9274 else
9275 {
9276 /* Section size is only divisible by rela. */
9277 if (use_rela_initialised && !use_rela)
9278 {
9279 _bfd_error_handler (_("%pB: unable to sort relocs - "
9280 "they are in more than one size"),
9281 abfd);
9282 bfd_set_error (bfd_error_invalid_operation);
9283 return 0;
9284 }
9285 else
9286 {
9287 use_rela = TRUE;
9288 use_rela_initialised = TRUE;
9289 }
9290 }
9291 }
9292 else if ((o->size % bed->s->sizeof_rel) == 0)
9293 {
9294 /* Section size is only divisible by rel. */
9295 if (use_rela_initialised && use_rela)
9296 {
9297 _bfd_error_handler (_("%pB: unable to sort relocs - "
9298 "they are in more than one size"),
9299 abfd);
9300 bfd_set_error (bfd_error_invalid_operation);
9301 return 0;
9302 }
9303 else
9304 {
9305 use_rela = FALSE;
9306 use_rela_initialised = TRUE;
9307 }
9308 }
9309 else
9310 {
9311 /* The section size is not divisible by either -
9312 something is wrong. */
9313 _bfd_error_handler (_("%pB: unable to sort relocs - "
9314 "they are of an unknown size"), abfd);
9315 bfd_set_error (bfd_error_invalid_operation);
9316 return 0;
9317 }
9318 }
9319
9320 if (! use_rela_initialised)
9321 /* Make a guess. */
9322 use_rela = TRUE;
9323 }
9324 else if (rela_dyn != NULL && rela_dyn->size > 0)
9325 use_rela = TRUE;
9326 else if (rel_dyn != NULL && rel_dyn->size > 0)
9327 use_rela = FALSE;
9328 else
9329 return 0;
9330
9331 if (use_rela)
9332 {
9333 dynamic_relocs = rela_dyn;
9334 ext_size = bed->s->sizeof_rela;
9335 swap_in = bed->s->swap_reloca_in;
9336 swap_out = bed->s->swap_reloca_out;
9337 }
9338 else
9339 {
9340 dynamic_relocs = rel_dyn;
9341 ext_size = bed->s->sizeof_rel;
9342 swap_in = bed->s->swap_reloc_in;
9343 swap_out = bed->s->swap_reloc_out;
9344 }
9345
9346 size = 0;
9347 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9348 if (lo->type == bfd_indirect_link_order)
9349 size += lo->u.indirect.section->size;
9350
9351 if (size != dynamic_relocs->size)
9352 return 0;
9353
9354 sort_elt = (sizeof (struct elf_link_sort_rela)
9355 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9356
9357 count = dynamic_relocs->size / ext_size;
9358 if (count == 0)
9359 return 0;
9360 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9361
9362 if (sort == NULL)
9363 {
9364 (*info->callbacks->warning)
9365 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9366 return 0;
9367 }
9368
9369 if (bed->s->arch_size == 32)
9370 r_sym_mask = ~(bfd_vma) 0xff;
9371 else
9372 r_sym_mask = ~(bfd_vma) 0xffffffff;
9373
9374 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9375 if (lo->type == bfd_indirect_link_order)
9376 {
9377 bfd_byte *erel, *erelend;
9378 asection *o = lo->u.indirect.section;
9379
9380 if (o->contents == NULL && o->size != 0)
9381 {
9382 /* This is a reloc section that is being handled as a normal
9383 section. See bfd_section_from_shdr. We can't combine
9384 relocs in this case. */
9385 free (sort);
9386 return 0;
9387 }
9388 erel = o->contents;
9389 erelend = o->contents + o->size;
9390 p = sort + o->output_offset * opb / ext_size * sort_elt;
9391
9392 while (erel < erelend)
9393 {
9394 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9395
9396 (*swap_in) (abfd, erel, s->rela);
9397 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9398 s->u.sym_mask = r_sym_mask;
9399 p += sort_elt;
9400 erel += ext_size;
9401 }
9402 }
9403
9404 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9405
9406 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9407 {
9408 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9409 if (s->type != reloc_class_relative)
9410 break;
9411 }
9412 ret = i;
9413 s_non_relative = p;
9414
9415 sq = (struct elf_link_sort_rela *) s_non_relative;
9416 for (; i < count; i++, p += sort_elt)
9417 {
9418 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9419 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9420 sq = sp;
9421 sp->u.offset = sq->rela->r_offset;
9422 }
9423
9424 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9425
9426 struct elf_link_hash_table *htab = elf_hash_table (info);
9427 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9428 {
9429 /* We have plt relocs in .rela.dyn. */
9430 sq = (struct elf_link_sort_rela *) sort;
9431 for (i = 0; i < count; i++)
9432 if (sq[count - i - 1].type != reloc_class_plt)
9433 break;
9434 if (i != 0 && htab->srelplt->size == i * ext_size)
9435 {
9436 struct bfd_link_order **plo;
9437 /* Put srelplt link_order last. This is so the output_offset
9438 set in the next loop is correct for DT_JMPREL. */
9439 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9440 if ((*plo)->type == bfd_indirect_link_order
9441 && (*plo)->u.indirect.section == htab->srelplt)
9442 {
9443 lo = *plo;
9444 *plo = lo->next;
9445 }
9446 else
9447 plo = &(*plo)->next;
9448 *plo = lo;
9449 lo->next = NULL;
9450 dynamic_relocs->map_tail.link_order = lo;
9451 }
9452 }
9453
9454 p = sort;
9455 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9456 if (lo->type == bfd_indirect_link_order)
9457 {
9458 bfd_byte *erel, *erelend;
9459 asection *o = lo->u.indirect.section;
9460
9461 erel = o->contents;
9462 erelend = o->contents + o->size;
9463 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9464 while (erel < erelend)
9465 {
9466 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9467 (*swap_out) (abfd, s->rela, erel);
9468 p += sort_elt;
9469 erel += ext_size;
9470 }
9471 }
9472
9473 free (sort);
9474 *psec = dynamic_relocs;
9475 return ret;
9476 }
9477
9478 /* Add a symbol to the output symbol string table. */
9479
9480 static int
9481 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9482 const char *name,
9483 Elf_Internal_Sym *elfsym,
9484 asection *input_sec,
9485 struct elf_link_hash_entry *h)
9486 {
9487 int (*output_symbol_hook)
9488 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9489 struct elf_link_hash_entry *);
9490 struct elf_link_hash_table *hash_table;
9491 const struct elf_backend_data *bed;
9492 bfd_size_type strtabsize;
9493
9494 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9495
9496 bed = get_elf_backend_data (flinfo->output_bfd);
9497 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9498 if (output_symbol_hook != NULL)
9499 {
9500 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9501 if (ret != 1)
9502 return ret;
9503 }
9504
9505 if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC)
9506 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc;
9507 if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE)
9508 elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique;
9509
9510 if (name == NULL
9511 || *name == '\0'
9512 || (input_sec->flags & SEC_EXCLUDE))
9513 elfsym->st_name = (unsigned long) -1;
9514 else
9515 {
9516 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9517 to get the final offset for st_name. */
9518 elfsym->st_name
9519 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9520 name, FALSE);
9521 if (elfsym->st_name == (unsigned long) -1)
9522 return 0;
9523 }
9524
9525 hash_table = elf_hash_table (flinfo->info);
9526 strtabsize = hash_table->strtabsize;
9527 if (strtabsize <= hash_table->strtabcount)
9528 {
9529 strtabsize += strtabsize;
9530 hash_table->strtabsize = strtabsize;
9531 strtabsize *= sizeof (*hash_table->strtab);
9532 hash_table->strtab
9533 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9534 strtabsize);
9535 if (hash_table->strtab == NULL)
9536 return 0;
9537 }
9538 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9539 hash_table->strtab[hash_table->strtabcount].dest_index
9540 = hash_table->strtabcount;
9541 hash_table->strtab[hash_table->strtabcount].destshndx_index
9542 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9543
9544 flinfo->output_bfd->symcount += 1;
9545 hash_table->strtabcount += 1;
9546
9547 return 1;
9548 }
9549
9550 /* Swap symbols out to the symbol table and flush the output symbols to
9551 the file. */
9552
9553 static bfd_boolean
9554 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9555 {
9556 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9557 size_t amt;
9558 size_t i;
9559 const struct elf_backend_data *bed;
9560 bfd_byte *symbuf;
9561 Elf_Internal_Shdr *hdr;
9562 file_ptr pos;
9563 bfd_boolean ret;
9564
9565 if (!hash_table->strtabcount)
9566 return TRUE;
9567
9568 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9569
9570 bed = get_elf_backend_data (flinfo->output_bfd);
9571
9572 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9573 symbuf = (bfd_byte *) bfd_malloc (amt);
9574 if (symbuf == NULL)
9575 return FALSE;
9576
9577 if (flinfo->symshndxbuf)
9578 {
9579 amt = sizeof (Elf_External_Sym_Shndx);
9580 amt *= bfd_get_symcount (flinfo->output_bfd);
9581 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9582 if (flinfo->symshndxbuf == NULL)
9583 {
9584 free (symbuf);
9585 return FALSE;
9586 }
9587 }
9588
9589 for (i = 0; i < hash_table->strtabcount; i++)
9590 {
9591 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9592 if (elfsym->sym.st_name == (unsigned long) -1)
9593 elfsym->sym.st_name = 0;
9594 else
9595 elfsym->sym.st_name
9596 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9597 elfsym->sym.st_name);
9598 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9599 ((bfd_byte *) symbuf
9600 + (elfsym->dest_index
9601 * bed->s->sizeof_sym)),
9602 (flinfo->symshndxbuf
9603 + elfsym->destshndx_index));
9604 }
9605
9606 /* Allow the linker to examine the strtab and symtab now they are
9607 populated. */
9608
9609 if (flinfo->info->callbacks->examine_strtab)
9610 flinfo->info->callbacks->examine_strtab (hash_table->strtab,
9611 hash_table->strtabcount,
9612 flinfo->symstrtab);
9613
9614 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9615 pos = hdr->sh_offset + hdr->sh_size;
9616 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9617 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9618 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9619 {
9620 hdr->sh_size += amt;
9621 ret = TRUE;
9622 }
9623 else
9624 ret = FALSE;
9625
9626 free (symbuf);
9627
9628 free (hash_table->strtab);
9629 hash_table->strtab = NULL;
9630
9631 return ret;
9632 }
9633
9634 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9635
9636 static bfd_boolean
9637 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9638 {
9639 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9640 && sym->st_shndx < SHN_LORESERVE)
9641 {
9642 /* The gABI doesn't support dynamic symbols in output sections
9643 beyond 64k. */
9644 _bfd_error_handler
9645 /* xgettext:c-format */
9646 (_("%pB: too many sections: %d (>= %d)"),
9647 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9648 bfd_set_error (bfd_error_nonrepresentable_section);
9649 return FALSE;
9650 }
9651 return TRUE;
9652 }
9653
9654 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9655 allowing an unsatisfied unversioned symbol in the DSO to match a
9656 versioned symbol that would normally require an explicit version.
9657 We also handle the case that a DSO references a hidden symbol
9658 which may be satisfied by a versioned symbol in another DSO. */
9659
9660 static bfd_boolean
9661 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9662 const struct elf_backend_data *bed,
9663 struct elf_link_hash_entry *h)
9664 {
9665 bfd *abfd;
9666 struct elf_link_loaded_list *loaded;
9667
9668 if (!is_elf_hash_table (info->hash))
9669 return FALSE;
9670
9671 /* Check indirect symbol. */
9672 while (h->root.type == bfd_link_hash_indirect)
9673 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9674
9675 switch (h->root.type)
9676 {
9677 default:
9678 abfd = NULL;
9679 break;
9680
9681 case bfd_link_hash_undefined:
9682 case bfd_link_hash_undefweak:
9683 abfd = h->root.u.undef.abfd;
9684 if (abfd == NULL
9685 || (abfd->flags & DYNAMIC) == 0
9686 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9687 return FALSE;
9688 break;
9689
9690 case bfd_link_hash_defined:
9691 case bfd_link_hash_defweak:
9692 abfd = h->root.u.def.section->owner;
9693 break;
9694
9695 case bfd_link_hash_common:
9696 abfd = h->root.u.c.p->section->owner;
9697 break;
9698 }
9699 BFD_ASSERT (abfd != NULL);
9700
9701 for (loaded = elf_hash_table (info)->dyn_loaded;
9702 loaded != NULL;
9703 loaded = loaded->next)
9704 {
9705 bfd *input;
9706 Elf_Internal_Shdr *hdr;
9707 size_t symcount;
9708 size_t extsymcount;
9709 size_t extsymoff;
9710 Elf_Internal_Shdr *versymhdr;
9711 Elf_Internal_Sym *isym;
9712 Elf_Internal_Sym *isymend;
9713 Elf_Internal_Sym *isymbuf;
9714 Elf_External_Versym *ever;
9715 Elf_External_Versym *extversym;
9716
9717 input = loaded->abfd;
9718
9719 /* We check each DSO for a possible hidden versioned definition. */
9720 if (input == abfd
9721 || elf_dynversym (input) == 0)
9722 continue;
9723
9724 hdr = &elf_tdata (input)->dynsymtab_hdr;
9725
9726 symcount = hdr->sh_size / bed->s->sizeof_sym;
9727 if (elf_bad_symtab (input))
9728 {
9729 extsymcount = symcount;
9730 extsymoff = 0;
9731 }
9732 else
9733 {
9734 extsymcount = symcount - hdr->sh_info;
9735 extsymoff = hdr->sh_info;
9736 }
9737
9738 if (extsymcount == 0)
9739 continue;
9740
9741 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9742 NULL, NULL, NULL);
9743 if (isymbuf == NULL)
9744 return FALSE;
9745
9746 /* Read in any version definitions. */
9747 versymhdr = &elf_tdata (input)->dynversym_hdr;
9748 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9749 || (extversym = (Elf_External_Versym *)
9750 _bfd_malloc_and_read (input, versymhdr->sh_size,
9751 versymhdr->sh_size)) == NULL)
9752 {
9753 free (isymbuf);
9754 return FALSE;
9755 }
9756
9757 ever = extversym + extsymoff;
9758 isymend = isymbuf + extsymcount;
9759 for (isym = isymbuf; isym < isymend; isym++, ever++)
9760 {
9761 const char *name;
9762 Elf_Internal_Versym iver;
9763 unsigned short version_index;
9764
9765 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9766 || isym->st_shndx == SHN_UNDEF)
9767 continue;
9768
9769 name = bfd_elf_string_from_elf_section (input,
9770 hdr->sh_link,
9771 isym->st_name);
9772 if (strcmp (name, h->root.root.string) != 0)
9773 continue;
9774
9775 _bfd_elf_swap_versym_in (input, ever, &iver);
9776
9777 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9778 && !(h->def_regular
9779 && h->forced_local))
9780 {
9781 /* If we have a non-hidden versioned sym, then it should
9782 have provided a definition for the undefined sym unless
9783 it is defined in a non-shared object and forced local.
9784 */
9785 abort ();
9786 }
9787
9788 version_index = iver.vs_vers & VERSYM_VERSION;
9789 if (version_index == 1 || version_index == 2)
9790 {
9791 /* This is the base or first version. We can use it. */
9792 free (extversym);
9793 free (isymbuf);
9794 return TRUE;
9795 }
9796 }
9797
9798 free (extversym);
9799 free (isymbuf);
9800 }
9801
9802 return FALSE;
9803 }
9804
9805 /* Convert ELF common symbol TYPE. */
9806
9807 static int
9808 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9809 {
9810 /* Commom symbol can only appear in relocatable link. */
9811 if (!bfd_link_relocatable (info))
9812 abort ();
9813 switch (info->elf_stt_common)
9814 {
9815 case unchanged:
9816 break;
9817 case elf_stt_common:
9818 type = STT_COMMON;
9819 break;
9820 case no_elf_stt_common:
9821 type = STT_OBJECT;
9822 break;
9823 }
9824 return type;
9825 }
9826
9827 /* Add an external symbol to the symbol table. This is called from
9828 the hash table traversal routine. When generating a shared object,
9829 we go through the symbol table twice. The first time we output
9830 anything that might have been forced to local scope in a version
9831 script. The second time we output the symbols that are still
9832 global symbols. */
9833
9834 static bfd_boolean
9835 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9836 {
9837 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9838 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9839 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9840 bfd_boolean strip;
9841 Elf_Internal_Sym sym;
9842 asection *input_sec;
9843 const struct elf_backend_data *bed;
9844 long indx;
9845 int ret;
9846 unsigned int type;
9847
9848 if (h->root.type == bfd_link_hash_warning)
9849 {
9850 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9851 if (h->root.type == bfd_link_hash_new)
9852 return TRUE;
9853 }
9854
9855 /* Decide whether to output this symbol in this pass. */
9856 if (eoinfo->localsyms)
9857 {
9858 if (!h->forced_local)
9859 return TRUE;
9860 }
9861 else
9862 {
9863 if (h->forced_local)
9864 return TRUE;
9865 }
9866
9867 bed = get_elf_backend_data (flinfo->output_bfd);
9868
9869 if (h->root.type == bfd_link_hash_undefined)
9870 {
9871 /* If we have an undefined symbol reference here then it must have
9872 come from a shared library that is being linked in. (Undefined
9873 references in regular files have already been handled unless
9874 they are in unreferenced sections which are removed by garbage
9875 collection). */
9876 bfd_boolean ignore_undef = FALSE;
9877
9878 /* Some symbols may be special in that the fact that they're
9879 undefined can be safely ignored - let backend determine that. */
9880 if (bed->elf_backend_ignore_undef_symbol)
9881 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9882
9883 /* If we are reporting errors for this situation then do so now. */
9884 if (!ignore_undef
9885 && h->ref_dynamic_nonweak
9886 && (!h->ref_regular || flinfo->info->gc_sections)
9887 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9888 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9889 (*flinfo->info->callbacks->undefined_symbol)
9890 (flinfo->info, h->root.root.string,
9891 h->ref_regular ? NULL : h->root.u.undef.abfd,
9892 NULL, 0,
9893 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9894
9895 /* Strip a global symbol defined in a discarded section. */
9896 if (h->indx == -3)
9897 return TRUE;
9898 }
9899
9900 /* We should also warn if a forced local symbol is referenced from
9901 shared libraries. */
9902 if (bfd_link_executable (flinfo->info)
9903 && h->forced_local
9904 && h->ref_dynamic
9905 && h->def_regular
9906 && !h->dynamic_def
9907 && h->ref_dynamic_nonweak
9908 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9909 {
9910 bfd *def_bfd;
9911 const char *msg;
9912 struct elf_link_hash_entry *hi = h;
9913
9914 /* Check indirect symbol. */
9915 while (hi->root.type == bfd_link_hash_indirect)
9916 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9917
9918 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9919 /* xgettext:c-format */
9920 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9921 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9922 /* xgettext:c-format */
9923 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9924 else
9925 /* xgettext:c-format */
9926 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9927 def_bfd = flinfo->output_bfd;
9928 if (hi->root.u.def.section != bfd_abs_section_ptr)
9929 def_bfd = hi->root.u.def.section->owner;
9930 _bfd_error_handler (msg, flinfo->output_bfd,
9931 h->root.root.string, def_bfd);
9932 bfd_set_error (bfd_error_bad_value);
9933 eoinfo->failed = TRUE;
9934 return FALSE;
9935 }
9936
9937 /* We don't want to output symbols that have never been mentioned by
9938 a regular file, or that we have been told to strip. However, if
9939 h->indx is set to -2, the symbol is used by a reloc and we must
9940 output it. */
9941 strip = FALSE;
9942 if (h->indx == -2)
9943 ;
9944 else if ((h->def_dynamic
9945 || h->ref_dynamic
9946 || h->root.type == bfd_link_hash_new)
9947 && !h->def_regular
9948 && !h->ref_regular)
9949 strip = TRUE;
9950 else if (flinfo->info->strip == strip_all)
9951 strip = TRUE;
9952 else if (flinfo->info->strip == strip_some
9953 && bfd_hash_lookup (flinfo->info->keep_hash,
9954 h->root.root.string, FALSE, FALSE) == NULL)
9955 strip = TRUE;
9956 else if ((h->root.type == bfd_link_hash_defined
9957 || h->root.type == bfd_link_hash_defweak)
9958 && ((flinfo->info->strip_discarded
9959 && discarded_section (h->root.u.def.section))
9960 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9961 && h->root.u.def.section->owner != NULL
9962 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9963 strip = TRUE;
9964 else if ((h->root.type == bfd_link_hash_undefined
9965 || h->root.type == bfd_link_hash_undefweak)
9966 && h->root.u.undef.abfd != NULL
9967 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9968 strip = TRUE;
9969
9970 type = h->type;
9971
9972 /* If we're stripping it, and it's not a dynamic symbol, there's
9973 nothing else to do. However, if it is a forced local symbol or
9974 an ifunc symbol we need to give the backend finish_dynamic_symbol
9975 function a chance to make it dynamic. */
9976 if (strip
9977 && h->dynindx == -1
9978 && type != STT_GNU_IFUNC
9979 && !h->forced_local)
9980 return TRUE;
9981
9982 sym.st_value = 0;
9983 sym.st_size = h->size;
9984 sym.st_other = h->other;
9985 switch (h->root.type)
9986 {
9987 default:
9988 case bfd_link_hash_new:
9989 case bfd_link_hash_warning:
9990 abort ();
9991 return FALSE;
9992
9993 case bfd_link_hash_undefined:
9994 case bfd_link_hash_undefweak:
9995 input_sec = bfd_und_section_ptr;
9996 sym.st_shndx = SHN_UNDEF;
9997 break;
9998
9999 case bfd_link_hash_defined:
10000 case bfd_link_hash_defweak:
10001 {
10002 input_sec = h->root.u.def.section;
10003 if (input_sec->output_section != NULL)
10004 {
10005 sym.st_shndx =
10006 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
10007 input_sec->output_section);
10008 if (sym.st_shndx == SHN_BAD)
10009 {
10010 _bfd_error_handler
10011 /* xgettext:c-format */
10012 (_("%pB: could not find output section %pA for input section %pA"),
10013 flinfo->output_bfd, input_sec->output_section, input_sec);
10014 bfd_set_error (bfd_error_nonrepresentable_section);
10015 eoinfo->failed = TRUE;
10016 return FALSE;
10017 }
10018
10019 /* ELF symbols in relocatable files are section relative,
10020 but in nonrelocatable files they are virtual
10021 addresses. */
10022 sym.st_value = h->root.u.def.value + input_sec->output_offset;
10023 if (!bfd_link_relocatable (flinfo->info))
10024 {
10025 sym.st_value += input_sec->output_section->vma;
10026 if (h->type == STT_TLS)
10027 {
10028 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
10029 if (tls_sec != NULL)
10030 sym.st_value -= tls_sec->vma;
10031 }
10032 }
10033 }
10034 else
10035 {
10036 BFD_ASSERT (input_sec->owner == NULL
10037 || (input_sec->owner->flags & DYNAMIC) != 0);
10038 sym.st_shndx = SHN_UNDEF;
10039 input_sec = bfd_und_section_ptr;
10040 }
10041 }
10042 break;
10043
10044 case bfd_link_hash_common:
10045 input_sec = h->root.u.c.p->section;
10046 sym.st_shndx = bed->common_section_index (input_sec);
10047 sym.st_value = 1 << h->root.u.c.p->alignment_power;
10048 break;
10049
10050 case bfd_link_hash_indirect:
10051 /* These symbols are created by symbol versioning. They point
10052 to the decorated version of the name. For example, if the
10053 symbol foo@@GNU_1.2 is the default, which should be used when
10054 foo is used with no version, then we add an indirect symbol
10055 foo which points to foo@@GNU_1.2. We ignore these symbols,
10056 since the indirected symbol is already in the hash table. */
10057 return TRUE;
10058 }
10059
10060 if (type == STT_COMMON || type == STT_OBJECT)
10061 switch (h->root.type)
10062 {
10063 case bfd_link_hash_common:
10064 type = elf_link_convert_common_type (flinfo->info, type);
10065 break;
10066 case bfd_link_hash_defined:
10067 case bfd_link_hash_defweak:
10068 if (bed->common_definition (&sym))
10069 type = elf_link_convert_common_type (flinfo->info, type);
10070 else
10071 type = STT_OBJECT;
10072 break;
10073 case bfd_link_hash_undefined:
10074 case bfd_link_hash_undefweak:
10075 break;
10076 default:
10077 abort ();
10078 }
10079
10080 if (h->forced_local)
10081 {
10082 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
10083 /* Turn off visibility on local symbol. */
10084 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
10085 }
10086 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
10087 else if (h->unique_global && h->def_regular)
10088 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
10089 else if (h->root.type == bfd_link_hash_undefweak
10090 || h->root.type == bfd_link_hash_defweak)
10091 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
10092 else
10093 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
10094 sym.st_target_internal = h->target_internal;
10095
10096 /* Give the processor backend a chance to tweak the symbol value,
10097 and also to finish up anything that needs to be done for this
10098 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
10099 forced local syms when non-shared is due to a historical quirk.
10100 STT_GNU_IFUNC symbol must go through PLT. */
10101 if ((h->type == STT_GNU_IFUNC
10102 && h->def_regular
10103 && !bfd_link_relocatable (flinfo->info))
10104 || ((h->dynindx != -1
10105 || h->forced_local)
10106 && ((bfd_link_pic (flinfo->info)
10107 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10108 || h->root.type != bfd_link_hash_undefweak))
10109 || !h->forced_local)
10110 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10111 {
10112 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10113 (flinfo->output_bfd, flinfo->info, h, &sym)))
10114 {
10115 eoinfo->failed = TRUE;
10116 return FALSE;
10117 }
10118 }
10119
10120 /* If we are marking the symbol as undefined, and there are no
10121 non-weak references to this symbol from a regular object, then
10122 mark the symbol as weak undefined; if there are non-weak
10123 references, mark the symbol as strong. We can't do this earlier,
10124 because it might not be marked as undefined until the
10125 finish_dynamic_symbol routine gets through with it. */
10126 if (sym.st_shndx == SHN_UNDEF
10127 && h->ref_regular
10128 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10129 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10130 {
10131 int bindtype;
10132 type = ELF_ST_TYPE (sym.st_info);
10133
10134 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10135 if (type == STT_GNU_IFUNC)
10136 type = STT_FUNC;
10137
10138 if (h->ref_regular_nonweak)
10139 bindtype = STB_GLOBAL;
10140 else
10141 bindtype = STB_WEAK;
10142 sym.st_info = ELF_ST_INFO (bindtype, type);
10143 }
10144
10145 /* If this is a symbol defined in a dynamic library, don't use the
10146 symbol size from the dynamic library. Relinking an executable
10147 against a new library may introduce gratuitous changes in the
10148 executable's symbols if we keep the size. */
10149 if (sym.st_shndx == SHN_UNDEF
10150 && !h->def_regular
10151 && h->def_dynamic)
10152 sym.st_size = 0;
10153
10154 /* If a non-weak symbol with non-default visibility is not defined
10155 locally, it is a fatal error. */
10156 if (!bfd_link_relocatable (flinfo->info)
10157 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10158 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10159 && h->root.type == bfd_link_hash_undefined
10160 && !h->def_regular)
10161 {
10162 const char *msg;
10163
10164 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10165 /* xgettext:c-format */
10166 msg = _("%pB: protected symbol `%s' isn't defined");
10167 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10168 /* xgettext:c-format */
10169 msg = _("%pB: internal symbol `%s' isn't defined");
10170 else
10171 /* xgettext:c-format */
10172 msg = _("%pB: hidden symbol `%s' isn't defined");
10173 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10174 bfd_set_error (bfd_error_bad_value);
10175 eoinfo->failed = TRUE;
10176 return FALSE;
10177 }
10178
10179 /* If this symbol should be put in the .dynsym section, then put it
10180 there now. We already know the symbol index. We also fill in
10181 the entry in the .hash section. */
10182 if (h->dynindx != -1
10183 && elf_hash_table (flinfo->info)->dynamic_sections_created
10184 && elf_hash_table (flinfo->info)->dynsym != NULL
10185 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10186 {
10187 bfd_byte *esym;
10188
10189 /* Since there is no version information in the dynamic string,
10190 if there is no version info in symbol version section, we will
10191 have a run-time problem if not linking executable, referenced
10192 by shared library, or not bound locally. */
10193 if (h->verinfo.verdef == NULL
10194 && (!bfd_link_executable (flinfo->info)
10195 || h->ref_dynamic
10196 || !h->def_regular))
10197 {
10198 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10199
10200 if (p && p [1] != '\0')
10201 {
10202 _bfd_error_handler
10203 /* xgettext:c-format */
10204 (_("%pB: no symbol version section for versioned symbol `%s'"),
10205 flinfo->output_bfd, h->root.root.string);
10206 eoinfo->failed = TRUE;
10207 return FALSE;
10208 }
10209 }
10210
10211 sym.st_name = h->dynstr_index;
10212 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10213 + h->dynindx * bed->s->sizeof_sym);
10214 if (!check_dynsym (flinfo->output_bfd, &sym))
10215 {
10216 eoinfo->failed = TRUE;
10217 return FALSE;
10218 }
10219 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10220
10221 if (flinfo->hash_sec != NULL)
10222 {
10223 size_t hash_entry_size;
10224 bfd_byte *bucketpos;
10225 bfd_vma chain;
10226 size_t bucketcount;
10227 size_t bucket;
10228
10229 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10230 bucket = h->u.elf_hash_value % bucketcount;
10231
10232 hash_entry_size
10233 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10234 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10235 + (bucket + 2) * hash_entry_size);
10236 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10237 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10238 bucketpos);
10239 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10240 ((bfd_byte *) flinfo->hash_sec->contents
10241 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10242 }
10243
10244 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10245 {
10246 Elf_Internal_Versym iversym;
10247 Elf_External_Versym *eversym;
10248
10249 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
10250 {
10251 if (h->verinfo.verdef == NULL
10252 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10253 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10254 iversym.vs_vers = 0;
10255 else
10256 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10257 }
10258 else
10259 {
10260 if (h->verinfo.vertree == NULL)
10261 iversym.vs_vers = 1;
10262 else
10263 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10264 if (flinfo->info->create_default_symver)
10265 iversym.vs_vers++;
10266 }
10267
10268 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10269 defined locally. */
10270 if (h->versioned == versioned_hidden && h->def_regular)
10271 iversym.vs_vers |= VERSYM_HIDDEN;
10272
10273 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10274 eversym += h->dynindx;
10275 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10276 }
10277 }
10278
10279 /* If the symbol is undefined, and we didn't output it to .dynsym,
10280 strip it from .symtab too. Obviously we can't do this for
10281 relocatable output or when needed for --emit-relocs. */
10282 else if (input_sec == bfd_und_section_ptr
10283 && h->indx != -2
10284 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10285 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10286 && !bfd_link_relocatable (flinfo->info))
10287 return TRUE;
10288
10289 /* Also strip others that we couldn't earlier due to dynamic symbol
10290 processing. */
10291 if (strip)
10292 return TRUE;
10293 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10294 return TRUE;
10295
10296 /* Output a FILE symbol so that following locals are not associated
10297 with the wrong input file. We need one for forced local symbols
10298 if we've seen more than one FILE symbol or when we have exactly
10299 one FILE symbol but global symbols are present in a file other
10300 than the one with the FILE symbol. We also need one if linker
10301 defined symbols are present. In practice these conditions are
10302 always met, so just emit the FILE symbol unconditionally. */
10303 if (eoinfo->localsyms
10304 && !eoinfo->file_sym_done
10305 && eoinfo->flinfo->filesym_count != 0)
10306 {
10307 Elf_Internal_Sym fsym;
10308
10309 memset (&fsym, 0, sizeof (fsym));
10310 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10311 fsym.st_shndx = SHN_ABS;
10312 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10313 bfd_und_section_ptr, NULL))
10314 return FALSE;
10315
10316 eoinfo->file_sym_done = TRUE;
10317 }
10318
10319 indx = bfd_get_symcount (flinfo->output_bfd);
10320 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10321 input_sec, h);
10322 if (ret == 0)
10323 {
10324 eoinfo->failed = TRUE;
10325 return FALSE;
10326 }
10327 else if (ret == 1)
10328 h->indx = indx;
10329 else if (h->indx == -2)
10330 abort();
10331
10332 return TRUE;
10333 }
10334
10335 /* Return TRUE if special handling is done for relocs in SEC against
10336 symbols defined in discarded sections. */
10337
10338 static bfd_boolean
10339 elf_section_ignore_discarded_relocs (asection *sec)
10340 {
10341 const struct elf_backend_data *bed;
10342
10343 switch (sec->sec_info_type)
10344 {
10345 case SEC_INFO_TYPE_STABS:
10346 case SEC_INFO_TYPE_EH_FRAME:
10347 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10348 return TRUE;
10349 default:
10350 break;
10351 }
10352
10353 bed = get_elf_backend_data (sec->owner);
10354 if (bed->elf_backend_ignore_discarded_relocs != NULL
10355 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10356 return TRUE;
10357
10358 return FALSE;
10359 }
10360
10361 /* Return a mask saying how ld should treat relocations in SEC against
10362 symbols defined in discarded sections. If this function returns
10363 COMPLAIN set, ld will issue a warning message. If this function
10364 returns PRETEND set, and the discarded section was link-once and the
10365 same size as the kept link-once section, ld will pretend that the
10366 symbol was actually defined in the kept section. Otherwise ld will
10367 zero the reloc (at least that is the intent, but some cooperation by
10368 the target dependent code is needed, particularly for REL targets). */
10369
10370 unsigned int
10371 _bfd_elf_default_action_discarded (asection *sec)
10372 {
10373 if (sec->flags & SEC_DEBUGGING)
10374 return PRETEND;
10375
10376 if (strcmp (".eh_frame", sec->name) == 0)
10377 return 0;
10378
10379 if (strcmp (".gcc_except_table", sec->name) == 0)
10380 return 0;
10381
10382 return COMPLAIN | PRETEND;
10383 }
10384
10385 /* Find a match between a section and a member of a section group. */
10386
10387 static asection *
10388 match_group_member (asection *sec, asection *group,
10389 struct bfd_link_info *info)
10390 {
10391 asection *first = elf_next_in_group (group);
10392 asection *s = first;
10393
10394 while (s != NULL)
10395 {
10396 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10397 return s;
10398
10399 s = elf_next_in_group (s);
10400 if (s == first)
10401 break;
10402 }
10403
10404 return NULL;
10405 }
10406
10407 /* Check if the kept section of a discarded section SEC can be used
10408 to replace it. Return the replacement if it is OK. Otherwise return
10409 NULL. */
10410
10411 asection *
10412 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10413 {
10414 asection *kept;
10415
10416 kept = sec->kept_section;
10417 if (kept != NULL)
10418 {
10419 if ((kept->flags & SEC_GROUP) != 0)
10420 kept = match_group_member (sec, kept, info);
10421 if (kept != NULL
10422 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10423 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10424 kept = NULL;
10425 sec->kept_section = kept;
10426 }
10427 return kept;
10428 }
10429
10430 /* Link an input file into the linker output file. This function
10431 handles all the sections and relocations of the input file at once.
10432 This is so that we only have to read the local symbols once, and
10433 don't have to keep them in memory. */
10434
10435 static bfd_boolean
10436 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10437 {
10438 int (*relocate_section)
10439 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10440 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10441 bfd *output_bfd;
10442 Elf_Internal_Shdr *symtab_hdr;
10443 size_t locsymcount;
10444 size_t extsymoff;
10445 Elf_Internal_Sym *isymbuf;
10446 Elf_Internal_Sym *isym;
10447 Elf_Internal_Sym *isymend;
10448 long *pindex;
10449 asection **ppsection;
10450 asection *o;
10451 const struct elf_backend_data *bed;
10452 struct elf_link_hash_entry **sym_hashes;
10453 bfd_size_type address_size;
10454 bfd_vma r_type_mask;
10455 int r_sym_shift;
10456 bfd_boolean have_file_sym = FALSE;
10457
10458 output_bfd = flinfo->output_bfd;
10459 bed = get_elf_backend_data (output_bfd);
10460 relocate_section = bed->elf_backend_relocate_section;
10461
10462 /* If this is a dynamic object, we don't want to do anything here:
10463 we don't want the local symbols, and we don't want the section
10464 contents. */
10465 if ((input_bfd->flags & DYNAMIC) != 0)
10466 return TRUE;
10467
10468 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10469 if (elf_bad_symtab (input_bfd))
10470 {
10471 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10472 extsymoff = 0;
10473 }
10474 else
10475 {
10476 locsymcount = symtab_hdr->sh_info;
10477 extsymoff = symtab_hdr->sh_info;
10478 }
10479
10480 /* Read the local symbols. */
10481 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10482 if (isymbuf == NULL && locsymcount != 0)
10483 {
10484 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10485 flinfo->internal_syms,
10486 flinfo->external_syms,
10487 flinfo->locsym_shndx);
10488 if (isymbuf == NULL)
10489 return FALSE;
10490 }
10491
10492 /* Find local symbol sections and adjust values of symbols in
10493 SEC_MERGE sections. Write out those local symbols we know are
10494 going into the output file. */
10495 isymend = isymbuf + locsymcount;
10496 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10497 isym < isymend;
10498 isym++, pindex++, ppsection++)
10499 {
10500 asection *isec;
10501 const char *name;
10502 Elf_Internal_Sym osym;
10503 long indx;
10504 int ret;
10505
10506 *pindex = -1;
10507
10508 if (elf_bad_symtab (input_bfd))
10509 {
10510 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10511 {
10512 *ppsection = NULL;
10513 continue;
10514 }
10515 }
10516
10517 if (isym->st_shndx == SHN_UNDEF)
10518 isec = bfd_und_section_ptr;
10519 else if (isym->st_shndx == SHN_ABS)
10520 isec = bfd_abs_section_ptr;
10521 else if (isym->st_shndx == SHN_COMMON)
10522 isec = bfd_com_section_ptr;
10523 else
10524 {
10525 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10526 if (isec == NULL)
10527 {
10528 /* Don't attempt to output symbols with st_shnx in the
10529 reserved range other than SHN_ABS and SHN_COMMON. */
10530 isec = bfd_und_section_ptr;
10531 }
10532 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10533 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10534 isym->st_value =
10535 _bfd_merged_section_offset (output_bfd, &isec,
10536 elf_section_data (isec)->sec_info,
10537 isym->st_value);
10538 }
10539
10540 *ppsection = isec;
10541
10542 /* Don't output the first, undefined, symbol. In fact, don't
10543 output any undefined local symbol. */
10544 if (isec == bfd_und_section_ptr)
10545 continue;
10546
10547 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10548 {
10549 /* We never output section symbols. Instead, we use the
10550 section symbol of the corresponding section in the output
10551 file. */
10552 continue;
10553 }
10554
10555 /* If we are stripping all symbols, we don't want to output this
10556 one. */
10557 if (flinfo->info->strip == strip_all)
10558 continue;
10559
10560 /* If we are discarding all local symbols, we don't want to
10561 output this one. If we are generating a relocatable output
10562 file, then some of the local symbols may be required by
10563 relocs; we output them below as we discover that they are
10564 needed. */
10565 if (flinfo->info->discard == discard_all)
10566 continue;
10567
10568 /* If this symbol is defined in a section which we are
10569 discarding, we don't need to keep it. */
10570 if (isym->st_shndx != SHN_UNDEF
10571 && isym->st_shndx < SHN_LORESERVE
10572 && isec->output_section == NULL
10573 && flinfo->info->non_contiguous_regions
10574 && flinfo->info->non_contiguous_regions_warnings)
10575 {
10576 _bfd_error_handler (_("warning: --enable-non-contiguous-regions "
10577 "discards section `%s' from '%s'\n"),
10578 isec->name, isec->owner->filename);
10579 continue;
10580 }
10581
10582 if (isym->st_shndx != SHN_UNDEF
10583 && isym->st_shndx < SHN_LORESERVE
10584 && bfd_section_removed_from_list (output_bfd,
10585 isec->output_section))
10586 continue;
10587
10588 /* Get the name of the symbol. */
10589 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10590 isym->st_name);
10591 if (name == NULL)
10592 return FALSE;
10593
10594 /* See if we are discarding symbols with this name. */
10595 if ((flinfo->info->strip == strip_some
10596 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10597 == NULL))
10598 || (((flinfo->info->discard == discard_sec_merge
10599 && (isec->flags & SEC_MERGE)
10600 && !bfd_link_relocatable (flinfo->info))
10601 || flinfo->info->discard == discard_l)
10602 && bfd_is_local_label_name (input_bfd, name)))
10603 continue;
10604
10605 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10606 {
10607 if (input_bfd->lto_output)
10608 /* -flto puts a temp file name here. This means builds
10609 are not reproducible. Discard the symbol. */
10610 continue;
10611 have_file_sym = TRUE;
10612 flinfo->filesym_count += 1;
10613 }
10614 if (!have_file_sym)
10615 {
10616 /* In the absence of debug info, bfd_find_nearest_line uses
10617 FILE symbols to determine the source file for local
10618 function symbols. Provide a FILE symbol here if input
10619 files lack such, so that their symbols won't be
10620 associated with a previous input file. It's not the
10621 source file, but the best we can do. */
10622 have_file_sym = TRUE;
10623 flinfo->filesym_count += 1;
10624 memset (&osym, 0, sizeof (osym));
10625 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10626 osym.st_shndx = SHN_ABS;
10627 if (!elf_link_output_symstrtab (flinfo,
10628 (input_bfd->lto_output ? NULL
10629 : input_bfd->filename),
10630 &osym, bfd_abs_section_ptr,
10631 NULL))
10632 return FALSE;
10633 }
10634
10635 osym = *isym;
10636
10637 /* Adjust the section index for the output file. */
10638 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10639 isec->output_section);
10640 if (osym.st_shndx == SHN_BAD)
10641 return FALSE;
10642
10643 /* ELF symbols in relocatable files are section relative, but
10644 in executable files they are virtual addresses. Note that
10645 this code assumes that all ELF sections have an associated
10646 BFD section with a reasonable value for output_offset; below
10647 we assume that they also have a reasonable value for
10648 output_section. Any special sections must be set up to meet
10649 these requirements. */
10650 osym.st_value += isec->output_offset;
10651 if (!bfd_link_relocatable (flinfo->info))
10652 {
10653 osym.st_value += isec->output_section->vma;
10654 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10655 {
10656 /* STT_TLS symbols are relative to PT_TLS segment base. */
10657 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10658 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10659 else
10660 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10661 STT_NOTYPE);
10662 }
10663 }
10664
10665 indx = bfd_get_symcount (output_bfd);
10666 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10667 if (ret == 0)
10668 return FALSE;
10669 else if (ret == 1)
10670 *pindex = indx;
10671 }
10672
10673 if (bed->s->arch_size == 32)
10674 {
10675 r_type_mask = 0xff;
10676 r_sym_shift = 8;
10677 address_size = 4;
10678 }
10679 else
10680 {
10681 r_type_mask = 0xffffffff;
10682 r_sym_shift = 32;
10683 address_size = 8;
10684 }
10685
10686 /* Relocate the contents of each section. */
10687 sym_hashes = elf_sym_hashes (input_bfd);
10688 for (o = input_bfd->sections; o != NULL; o = o->next)
10689 {
10690 bfd_byte *contents;
10691
10692 if (! o->linker_mark)
10693 {
10694 /* This section was omitted from the link. */
10695 continue;
10696 }
10697
10698 if (!flinfo->info->resolve_section_groups
10699 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10700 {
10701 /* Deal with the group signature symbol. */
10702 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10703 unsigned long symndx = sec_data->this_hdr.sh_info;
10704 asection *osec = o->output_section;
10705
10706 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10707 if (symndx >= locsymcount
10708 || (elf_bad_symtab (input_bfd)
10709 && flinfo->sections[symndx] == NULL))
10710 {
10711 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10712 while (h->root.type == bfd_link_hash_indirect
10713 || h->root.type == bfd_link_hash_warning)
10714 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10715 /* Arrange for symbol to be output. */
10716 h->indx = -2;
10717 elf_section_data (osec)->this_hdr.sh_info = -2;
10718 }
10719 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10720 {
10721 /* We'll use the output section target_index. */
10722 asection *sec = flinfo->sections[symndx]->output_section;
10723 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10724 }
10725 else
10726 {
10727 if (flinfo->indices[symndx] == -1)
10728 {
10729 /* Otherwise output the local symbol now. */
10730 Elf_Internal_Sym sym = isymbuf[symndx];
10731 asection *sec = flinfo->sections[symndx]->output_section;
10732 const char *name;
10733 long indx;
10734 int ret;
10735
10736 name = bfd_elf_string_from_elf_section (input_bfd,
10737 symtab_hdr->sh_link,
10738 sym.st_name);
10739 if (name == NULL)
10740 return FALSE;
10741
10742 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10743 sec);
10744 if (sym.st_shndx == SHN_BAD)
10745 return FALSE;
10746
10747 sym.st_value += o->output_offset;
10748
10749 indx = bfd_get_symcount (output_bfd);
10750 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10751 NULL);
10752 if (ret == 0)
10753 return FALSE;
10754 else if (ret == 1)
10755 flinfo->indices[symndx] = indx;
10756 else
10757 abort ();
10758 }
10759 elf_section_data (osec)->this_hdr.sh_info
10760 = flinfo->indices[symndx];
10761 }
10762 }
10763
10764 if ((o->flags & SEC_HAS_CONTENTS) == 0
10765 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10766 continue;
10767
10768 if ((o->flags & SEC_LINKER_CREATED) != 0)
10769 {
10770 /* Section was created by _bfd_elf_link_create_dynamic_sections
10771 or somesuch. */
10772 continue;
10773 }
10774
10775 /* Get the contents of the section. They have been cached by a
10776 relaxation routine. Note that o is a section in an input
10777 file, so the contents field will not have been set by any of
10778 the routines which work on output files. */
10779 if (elf_section_data (o)->this_hdr.contents != NULL)
10780 {
10781 contents = elf_section_data (o)->this_hdr.contents;
10782 if (bed->caches_rawsize
10783 && o->rawsize != 0
10784 && o->rawsize < o->size)
10785 {
10786 memcpy (flinfo->contents, contents, o->rawsize);
10787 contents = flinfo->contents;
10788 }
10789 }
10790 else
10791 {
10792 contents = flinfo->contents;
10793 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10794 return FALSE;
10795 }
10796
10797 if ((o->flags & SEC_RELOC) != 0)
10798 {
10799 Elf_Internal_Rela *internal_relocs;
10800 Elf_Internal_Rela *rel, *relend;
10801 int action_discarded;
10802 int ret;
10803
10804 /* Get the swapped relocs. */
10805 internal_relocs
10806 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10807 flinfo->internal_relocs, FALSE);
10808 if (internal_relocs == NULL
10809 && o->reloc_count > 0)
10810 return FALSE;
10811
10812 /* We need to reverse-copy input .ctors/.dtors sections if
10813 they are placed in .init_array/.finit_array for output. */
10814 if (o->size > address_size
10815 && ((strncmp (o->name, ".ctors", 6) == 0
10816 && strcmp (o->output_section->name,
10817 ".init_array") == 0)
10818 || (strncmp (o->name, ".dtors", 6) == 0
10819 && strcmp (o->output_section->name,
10820 ".fini_array") == 0))
10821 && (o->name[6] == 0 || o->name[6] == '.'))
10822 {
10823 if (o->size * bed->s->int_rels_per_ext_rel
10824 != o->reloc_count * address_size)
10825 {
10826 _bfd_error_handler
10827 /* xgettext:c-format */
10828 (_("error: %pB: size of section %pA is not "
10829 "multiple of address size"),
10830 input_bfd, o);
10831 bfd_set_error (bfd_error_bad_value);
10832 return FALSE;
10833 }
10834 o->flags |= SEC_ELF_REVERSE_COPY;
10835 }
10836
10837 action_discarded = -1;
10838 if (!elf_section_ignore_discarded_relocs (o))
10839 action_discarded = (*bed->action_discarded) (o);
10840
10841 /* Run through the relocs evaluating complex reloc symbols and
10842 looking for relocs against symbols from discarded sections
10843 or section symbols from removed link-once sections.
10844 Complain about relocs against discarded sections. Zero
10845 relocs against removed link-once sections. */
10846
10847 rel = internal_relocs;
10848 relend = rel + o->reloc_count;
10849 for ( ; rel < relend; rel++)
10850 {
10851 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10852 unsigned int s_type;
10853 asection **ps, *sec;
10854 struct elf_link_hash_entry *h = NULL;
10855 const char *sym_name;
10856
10857 if (r_symndx == STN_UNDEF)
10858 continue;
10859
10860 if (r_symndx >= locsymcount
10861 || (elf_bad_symtab (input_bfd)
10862 && flinfo->sections[r_symndx] == NULL))
10863 {
10864 h = sym_hashes[r_symndx - extsymoff];
10865
10866 /* Badly formatted input files can contain relocs that
10867 reference non-existant symbols. Check here so that
10868 we do not seg fault. */
10869 if (h == NULL)
10870 {
10871 _bfd_error_handler
10872 /* xgettext:c-format */
10873 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10874 "that references a non-existent global symbol"),
10875 input_bfd, (uint64_t) rel->r_info, o);
10876 bfd_set_error (bfd_error_bad_value);
10877 return FALSE;
10878 }
10879
10880 while (h->root.type == bfd_link_hash_indirect
10881 || h->root.type == bfd_link_hash_warning)
10882 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10883
10884 s_type = h->type;
10885
10886 /* If a plugin symbol is referenced from a non-IR file,
10887 mark the symbol as undefined. Note that the
10888 linker may attach linker created dynamic sections
10889 to the plugin bfd. Symbols defined in linker
10890 created sections are not plugin symbols. */
10891 if ((h->root.non_ir_ref_regular
10892 || h->root.non_ir_ref_dynamic)
10893 && (h->root.type == bfd_link_hash_defined
10894 || h->root.type == bfd_link_hash_defweak)
10895 && (h->root.u.def.section->flags
10896 & SEC_LINKER_CREATED) == 0
10897 && h->root.u.def.section->owner != NULL
10898 && (h->root.u.def.section->owner->flags
10899 & BFD_PLUGIN) != 0)
10900 {
10901 h->root.type = bfd_link_hash_undefined;
10902 h->root.u.undef.abfd = h->root.u.def.section->owner;
10903 }
10904
10905 ps = NULL;
10906 if (h->root.type == bfd_link_hash_defined
10907 || h->root.type == bfd_link_hash_defweak)
10908 ps = &h->root.u.def.section;
10909
10910 sym_name = h->root.root.string;
10911 }
10912 else
10913 {
10914 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10915
10916 s_type = ELF_ST_TYPE (sym->st_info);
10917 ps = &flinfo->sections[r_symndx];
10918 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10919 sym, *ps);
10920 }
10921
10922 if ((s_type == STT_RELC || s_type == STT_SRELC)
10923 && !bfd_link_relocatable (flinfo->info))
10924 {
10925 bfd_vma val;
10926 bfd_vma dot = (rel->r_offset
10927 + o->output_offset + o->output_section->vma);
10928 #ifdef DEBUG
10929 printf ("Encountered a complex symbol!");
10930 printf (" (input_bfd %s, section %s, reloc %ld\n",
10931 input_bfd->filename, o->name,
10932 (long) (rel - internal_relocs));
10933 printf (" symbol: idx %8.8lx, name %s\n",
10934 r_symndx, sym_name);
10935 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10936 (unsigned long) rel->r_info,
10937 (unsigned long) rel->r_offset);
10938 #endif
10939 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10940 isymbuf, locsymcount, s_type == STT_SRELC))
10941 return FALSE;
10942
10943 /* Symbol evaluated OK. Update to absolute value. */
10944 set_symbol_value (input_bfd, isymbuf, locsymcount,
10945 r_symndx, val);
10946 continue;
10947 }
10948
10949 if (action_discarded != -1 && ps != NULL)
10950 {
10951 /* Complain if the definition comes from a
10952 discarded section. */
10953 if ((sec = *ps) != NULL && discarded_section (sec))
10954 {
10955 BFD_ASSERT (r_symndx != STN_UNDEF);
10956 if (action_discarded & COMPLAIN)
10957 (*flinfo->info->callbacks->einfo)
10958 /* xgettext:c-format */
10959 (_("%X`%s' referenced in section `%pA' of %pB: "
10960 "defined in discarded section `%pA' of %pB\n"),
10961 sym_name, o, input_bfd, sec, sec->owner);
10962
10963 /* Try to do the best we can to support buggy old
10964 versions of gcc. Pretend that the symbol is
10965 really defined in the kept linkonce section.
10966 FIXME: This is quite broken. Modifying the
10967 symbol here means we will be changing all later
10968 uses of the symbol, not just in this section. */
10969 if (action_discarded & PRETEND)
10970 {
10971 asection *kept;
10972
10973 kept = _bfd_elf_check_kept_section (sec,
10974 flinfo->info);
10975 if (kept != NULL)
10976 {
10977 *ps = kept;
10978 continue;
10979 }
10980 }
10981 }
10982 }
10983 }
10984
10985 /* Relocate the section by invoking a back end routine.
10986
10987 The back end routine is responsible for adjusting the
10988 section contents as necessary, and (if using Rela relocs
10989 and generating a relocatable output file) adjusting the
10990 reloc addend as necessary.
10991
10992 The back end routine does not have to worry about setting
10993 the reloc address or the reloc symbol index.
10994
10995 The back end routine is given a pointer to the swapped in
10996 internal symbols, and can access the hash table entries
10997 for the external symbols via elf_sym_hashes (input_bfd).
10998
10999 When generating relocatable output, the back end routine
11000 must handle STB_LOCAL/STT_SECTION symbols specially. The
11001 output symbol is going to be a section symbol
11002 corresponding to the output section, which will require
11003 the addend to be adjusted. */
11004
11005 ret = (*relocate_section) (output_bfd, flinfo->info,
11006 input_bfd, o, contents,
11007 internal_relocs,
11008 isymbuf,
11009 flinfo->sections);
11010 if (!ret)
11011 return FALSE;
11012
11013 if (ret == 2
11014 || bfd_link_relocatable (flinfo->info)
11015 || flinfo->info->emitrelocations)
11016 {
11017 Elf_Internal_Rela *irela;
11018 Elf_Internal_Rela *irelaend, *irelamid;
11019 bfd_vma last_offset;
11020 struct elf_link_hash_entry **rel_hash;
11021 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
11022 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
11023 unsigned int next_erel;
11024 bfd_boolean rela_normal;
11025 struct bfd_elf_section_data *esdi, *esdo;
11026
11027 esdi = elf_section_data (o);
11028 esdo = elf_section_data (o->output_section);
11029 rela_normal = FALSE;
11030
11031 /* Adjust the reloc addresses and symbol indices. */
11032
11033 irela = internal_relocs;
11034 irelaend = irela + o->reloc_count;
11035 rel_hash = esdo->rel.hashes + esdo->rel.count;
11036 /* We start processing the REL relocs, if any. When we reach
11037 IRELAMID in the loop, we switch to the RELA relocs. */
11038 irelamid = irela;
11039 if (esdi->rel.hdr != NULL)
11040 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
11041 * bed->s->int_rels_per_ext_rel);
11042 rel_hash_list = rel_hash;
11043 rela_hash_list = NULL;
11044 last_offset = o->output_offset;
11045 if (!bfd_link_relocatable (flinfo->info))
11046 last_offset += o->output_section->vma;
11047 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
11048 {
11049 unsigned long r_symndx;
11050 asection *sec;
11051 Elf_Internal_Sym sym;
11052
11053 if (next_erel == bed->s->int_rels_per_ext_rel)
11054 {
11055 rel_hash++;
11056 next_erel = 0;
11057 }
11058
11059 if (irela == irelamid)
11060 {
11061 rel_hash = esdo->rela.hashes + esdo->rela.count;
11062 rela_hash_list = rel_hash;
11063 rela_normal = bed->rela_normal;
11064 }
11065
11066 irela->r_offset = _bfd_elf_section_offset (output_bfd,
11067 flinfo->info, o,
11068 irela->r_offset);
11069 if (irela->r_offset >= (bfd_vma) -2)
11070 {
11071 /* This is a reloc for a deleted entry or somesuch.
11072 Turn it into an R_*_NONE reloc, at the same
11073 offset as the last reloc. elf_eh_frame.c and
11074 bfd_elf_discard_info rely on reloc offsets
11075 being ordered. */
11076 irela->r_offset = last_offset;
11077 irela->r_info = 0;
11078 irela->r_addend = 0;
11079 continue;
11080 }
11081
11082 irela->r_offset += o->output_offset;
11083
11084 /* Relocs in an executable have to be virtual addresses. */
11085 if (!bfd_link_relocatable (flinfo->info))
11086 irela->r_offset += o->output_section->vma;
11087
11088 last_offset = irela->r_offset;
11089
11090 r_symndx = irela->r_info >> r_sym_shift;
11091 if (r_symndx == STN_UNDEF)
11092 continue;
11093
11094 if (r_symndx >= locsymcount
11095 || (elf_bad_symtab (input_bfd)
11096 && flinfo->sections[r_symndx] == NULL))
11097 {
11098 struct elf_link_hash_entry *rh;
11099 unsigned long indx;
11100
11101 /* This is a reloc against a global symbol. We
11102 have not yet output all the local symbols, so
11103 we do not know the symbol index of any global
11104 symbol. We set the rel_hash entry for this
11105 reloc to point to the global hash table entry
11106 for this symbol. The symbol index is then
11107 set at the end of bfd_elf_final_link. */
11108 indx = r_symndx - extsymoff;
11109 rh = elf_sym_hashes (input_bfd)[indx];
11110 while (rh->root.type == bfd_link_hash_indirect
11111 || rh->root.type == bfd_link_hash_warning)
11112 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
11113
11114 /* Setting the index to -2 tells
11115 elf_link_output_extsym that this symbol is
11116 used by a reloc. */
11117 BFD_ASSERT (rh->indx < 0);
11118 rh->indx = -2;
11119 *rel_hash = rh;
11120
11121 continue;
11122 }
11123
11124 /* This is a reloc against a local symbol. */
11125
11126 *rel_hash = NULL;
11127 sym = isymbuf[r_symndx];
11128 sec = flinfo->sections[r_symndx];
11129 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11130 {
11131 /* I suppose the backend ought to fill in the
11132 section of any STT_SECTION symbol against a
11133 processor specific section. */
11134 r_symndx = STN_UNDEF;
11135 if (bfd_is_abs_section (sec))
11136 ;
11137 else if (sec == NULL || sec->owner == NULL)
11138 {
11139 bfd_set_error (bfd_error_bad_value);
11140 return FALSE;
11141 }
11142 else
11143 {
11144 asection *osec = sec->output_section;
11145
11146 /* If we have discarded a section, the output
11147 section will be the absolute section. In
11148 case of discarded SEC_MERGE sections, use
11149 the kept section. relocate_section should
11150 have already handled discarded linkonce
11151 sections. */
11152 if (bfd_is_abs_section (osec)
11153 && sec->kept_section != NULL
11154 && sec->kept_section->output_section != NULL)
11155 {
11156 osec = sec->kept_section->output_section;
11157 irela->r_addend -= osec->vma;
11158 }
11159
11160 if (!bfd_is_abs_section (osec))
11161 {
11162 r_symndx = osec->target_index;
11163 if (r_symndx == STN_UNDEF)
11164 {
11165 irela->r_addend += osec->vma;
11166 osec = _bfd_nearby_section (output_bfd, osec,
11167 osec->vma);
11168 irela->r_addend -= osec->vma;
11169 r_symndx = osec->target_index;
11170 }
11171 }
11172 }
11173
11174 /* Adjust the addend according to where the
11175 section winds up in the output section. */
11176 if (rela_normal)
11177 irela->r_addend += sec->output_offset;
11178 }
11179 else
11180 {
11181 if (flinfo->indices[r_symndx] == -1)
11182 {
11183 unsigned long shlink;
11184 const char *name;
11185 asection *osec;
11186 long indx;
11187
11188 if (flinfo->info->strip == strip_all)
11189 {
11190 /* You can't do ld -r -s. */
11191 bfd_set_error (bfd_error_invalid_operation);
11192 return FALSE;
11193 }
11194
11195 /* This symbol was skipped earlier, but
11196 since it is needed by a reloc, we
11197 must output it now. */
11198 shlink = symtab_hdr->sh_link;
11199 name = (bfd_elf_string_from_elf_section
11200 (input_bfd, shlink, sym.st_name));
11201 if (name == NULL)
11202 return FALSE;
11203
11204 osec = sec->output_section;
11205 sym.st_shndx =
11206 _bfd_elf_section_from_bfd_section (output_bfd,
11207 osec);
11208 if (sym.st_shndx == SHN_BAD)
11209 return FALSE;
11210
11211 sym.st_value += sec->output_offset;
11212 if (!bfd_link_relocatable (flinfo->info))
11213 {
11214 sym.st_value += osec->vma;
11215 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11216 {
11217 struct elf_link_hash_table *htab
11218 = elf_hash_table (flinfo->info);
11219
11220 /* STT_TLS symbols are relative to PT_TLS
11221 segment base. */
11222 if (htab->tls_sec != NULL)
11223 sym.st_value -= htab->tls_sec->vma;
11224 else
11225 sym.st_info
11226 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11227 STT_NOTYPE);
11228 }
11229 }
11230
11231 indx = bfd_get_symcount (output_bfd);
11232 ret = elf_link_output_symstrtab (flinfo, name,
11233 &sym, sec,
11234 NULL);
11235 if (ret == 0)
11236 return FALSE;
11237 else if (ret == 1)
11238 flinfo->indices[r_symndx] = indx;
11239 else
11240 abort ();
11241 }
11242
11243 r_symndx = flinfo->indices[r_symndx];
11244 }
11245
11246 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11247 | (irela->r_info & r_type_mask));
11248 }
11249
11250 /* Swap out the relocs. */
11251 input_rel_hdr = esdi->rel.hdr;
11252 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11253 {
11254 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11255 input_rel_hdr,
11256 internal_relocs,
11257 rel_hash_list))
11258 return FALSE;
11259 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11260 * bed->s->int_rels_per_ext_rel);
11261 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11262 }
11263
11264 input_rela_hdr = esdi->rela.hdr;
11265 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11266 {
11267 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11268 input_rela_hdr,
11269 internal_relocs,
11270 rela_hash_list))
11271 return FALSE;
11272 }
11273 }
11274 }
11275
11276 /* Write out the modified section contents. */
11277 if (bed->elf_backend_write_section
11278 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11279 contents))
11280 {
11281 /* Section written out. */
11282 }
11283 else switch (o->sec_info_type)
11284 {
11285 case SEC_INFO_TYPE_STABS:
11286 if (! (_bfd_write_section_stabs
11287 (output_bfd,
11288 &elf_hash_table (flinfo->info)->stab_info,
11289 o, &elf_section_data (o)->sec_info, contents)))
11290 return FALSE;
11291 break;
11292 case SEC_INFO_TYPE_MERGE:
11293 if (! _bfd_write_merged_section (output_bfd, o,
11294 elf_section_data (o)->sec_info))
11295 return FALSE;
11296 break;
11297 case SEC_INFO_TYPE_EH_FRAME:
11298 {
11299 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11300 o, contents))
11301 return FALSE;
11302 }
11303 break;
11304 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11305 {
11306 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11307 flinfo->info,
11308 o, contents))
11309 return FALSE;
11310 }
11311 break;
11312 default:
11313 {
11314 if (! (o->flags & SEC_EXCLUDE))
11315 {
11316 file_ptr offset = (file_ptr) o->output_offset;
11317 bfd_size_type todo = o->size;
11318
11319 offset *= bfd_octets_per_byte (output_bfd, o);
11320
11321 if ((o->flags & SEC_ELF_REVERSE_COPY))
11322 {
11323 /* Reverse-copy input section to output. */
11324 do
11325 {
11326 todo -= address_size;
11327 if (! bfd_set_section_contents (output_bfd,
11328 o->output_section,
11329 contents + todo,
11330 offset,
11331 address_size))
11332 return FALSE;
11333 if (todo == 0)
11334 break;
11335 offset += address_size;
11336 }
11337 while (1);
11338 }
11339 else if (! bfd_set_section_contents (output_bfd,
11340 o->output_section,
11341 contents,
11342 offset, todo))
11343 return FALSE;
11344 }
11345 }
11346 break;
11347 }
11348 }
11349
11350 return TRUE;
11351 }
11352
11353 /* Generate a reloc when linking an ELF file. This is a reloc
11354 requested by the linker, and does not come from any input file. This
11355 is used to build constructor and destructor tables when linking
11356 with -Ur. */
11357
11358 static bfd_boolean
11359 elf_reloc_link_order (bfd *output_bfd,
11360 struct bfd_link_info *info,
11361 asection *output_section,
11362 struct bfd_link_order *link_order)
11363 {
11364 reloc_howto_type *howto;
11365 long indx;
11366 bfd_vma offset;
11367 bfd_vma addend;
11368 struct bfd_elf_section_reloc_data *reldata;
11369 struct elf_link_hash_entry **rel_hash_ptr;
11370 Elf_Internal_Shdr *rel_hdr;
11371 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11372 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11373 bfd_byte *erel;
11374 unsigned int i;
11375 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11376
11377 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11378 if (howto == NULL)
11379 {
11380 bfd_set_error (bfd_error_bad_value);
11381 return FALSE;
11382 }
11383
11384 addend = link_order->u.reloc.p->addend;
11385
11386 if (esdo->rel.hdr)
11387 reldata = &esdo->rel;
11388 else if (esdo->rela.hdr)
11389 reldata = &esdo->rela;
11390 else
11391 {
11392 reldata = NULL;
11393 BFD_ASSERT (0);
11394 }
11395
11396 /* Figure out the symbol index. */
11397 rel_hash_ptr = reldata->hashes + reldata->count;
11398 if (link_order->type == bfd_section_reloc_link_order)
11399 {
11400 indx = link_order->u.reloc.p->u.section->target_index;
11401 BFD_ASSERT (indx != 0);
11402 *rel_hash_ptr = NULL;
11403 }
11404 else
11405 {
11406 struct elf_link_hash_entry *h;
11407
11408 /* Treat a reloc against a defined symbol as though it were
11409 actually against the section. */
11410 h = ((struct elf_link_hash_entry *)
11411 bfd_wrapped_link_hash_lookup (output_bfd, info,
11412 link_order->u.reloc.p->u.name,
11413 FALSE, FALSE, TRUE));
11414 if (h != NULL
11415 && (h->root.type == bfd_link_hash_defined
11416 || h->root.type == bfd_link_hash_defweak))
11417 {
11418 asection *section;
11419
11420 section = h->root.u.def.section;
11421 indx = section->output_section->target_index;
11422 *rel_hash_ptr = NULL;
11423 /* It seems that we ought to add the symbol value to the
11424 addend here, but in practice it has already been added
11425 because it was passed to constructor_callback. */
11426 addend += section->output_section->vma + section->output_offset;
11427 }
11428 else if (h != NULL)
11429 {
11430 /* Setting the index to -2 tells elf_link_output_extsym that
11431 this symbol is used by a reloc. */
11432 h->indx = -2;
11433 *rel_hash_ptr = h;
11434 indx = 0;
11435 }
11436 else
11437 {
11438 (*info->callbacks->unattached_reloc)
11439 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11440 indx = 0;
11441 }
11442 }
11443
11444 /* If this is an inplace reloc, we must write the addend into the
11445 object file. */
11446 if (howto->partial_inplace && addend != 0)
11447 {
11448 bfd_size_type size;
11449 bfd_reloc_status_type rstat;
11450 bfd_byte *buf;
11451 bfd_boolean ok;
11452 const char *sym_name;
11453 bfd_size_type octets;
11454
11455 size = (bfd_size_type) bfd_get_reloc_size (howto);
11456 buf = (bfd_byte *) bfd_zmalloc (size);
11457 if (buf == NULL && size != 0)
11458 return FALSE;
11459 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11460 switch (rstat)
11461 {
11462 case bfd_reloc_ok:
11463 break;
11464
11465 default:
11466 case bfd_reloc_outofrange:
11467 abort ();
11468
11469 case bfd_reloc_overflow:
11470 if (link_order->type == bfd_section_reloc_link_order)
11471 sym_name = bfd_section_name (link_order->u.reloc.p->u.section);
11472 else
11473 sym_name = link_order->u.reloc.p->u.name;
11474 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11475 howto->name, addend, NULL, NULL,
11476 (bfd_vma) 0);
11477 break;
11478 }
11479
11480 octets = link_order->offset * bfd_octets_per_byte (output_bfd,
11481 output_section);
11482 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11483 octets, size);
11484 free (buf);
11485 if (! ok)
11486 return FALSE;
11487 }
11488
11489 /* The address of a reloc is relative to the section in a
11490 relocatable file, and is a virtual address in an executable
11491 file. */
11492 offset = link_order->offset;
11493 if (! bfd_link_relocatable (info))
11494 offset += output_section->vma;
11495
11496 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11497 {
11498 irel[i].r_offset = offset;
11499 irel[i].r_info = 0;
11500 irel[i].r_addend = 0;
11501 }
11502 if (bed->s->arch_size == 32)
11503 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11504 else
11505 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11506
11507 rel_hdr = reldata->hdr;
11508 erel = rel_hdr->contents;
11509 if (rel_hdr->sh_type == SHT_REL)
11510 {
11511 erel += reldata->count * bed->s->sizeof_rel;
11512 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11513 }
11514 else
11515 {
11516 irel[0].r_addend = addend;
11517 erel += reldata->count * bed->s->sizeof_rela;
11518 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11519 }
11520
11521 ++reldata->count;
11522
11523 return TRUE;
11524 }
11525
11526
11527 /* Compare two sections based on the locations of the sections they are
11528 linked to. Used by elf_fixup_link_order. */
11529
11530 static int
11531 compare_link_order (const void *a, const void *b)
11532 {
11533 const struct bfd_link_order *alo = *(const struct bfd_link_order **) a;
11534 const struct bfd_link_order *blo = *(const struct bfd_link_order **) b;
11535 asection *asec = elf_linked_to_section (alo->u.indirect.section);
11536 asection *bsec = elf_linked_to_section (blo->u.indirect.section);
11537 bfd_vma apos = asec->output_section->lma + asec->output_offset;
11538 bfd_vma bpos = bsec->output_section->lma + bsec->output_offset;
11539
11540 if (apos < bpos)
11541 return -1;
11542 if (apos > bpos)
11543 return 1;
11544
11545 /* The only way we should get matching LMAs is when the first of two
11546 sections has zero size. */
11547 if (asec->size < bsec->size)
11548 return -1;
11549 if (asec->size > bsec->size)
11550 return 1;
11551
11552 /* If they are both zero size then they almost certainly have the same
11553 VMA and thus are not ordered with respect to each other. Test VMA
11554 anyway, and fall back to id to make the result reproducible across
11555 qsort implementations. */
11556 apos = asec->output_section->vma + asec->output_offset;
11557 bpos = bsec->output_section->vma + bsec->output_offset;
11558 if (apos < bpos)
11559 return -1;
11560 if (apos > bpos)
11561 return 1;
11562
11563 return asec->id - bsec->id;
11564 }
11565
11566
11567 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11568 order as their linked sections. Returns false if this could not be done
11569 because an output section includes both ordered and unordered
11570 sections. Ideally we'd do this in the linker proper. */
11571
11572 static bfd_boolean
11573 elf_fixup_link_order (bfd *abfd, asection *o)
11574 {
11575 size_t seen_linkorder;
11576 size_t seen_other;
11577 size_t n;
11578 struct bfd_link_order *p;
11579 bfd *sub;
11580 struct bfd_link_order **sections;
11581 asection *other_sec, *linkorder_sec;
11582 bfd_vma offset; /* Octets. */
11583
11584 other_sec = NULL;
11585 linkorder_sec = NULL;
11586 seen_other = 0;
11587 seen_linkorder = 0;
11588 for (p = o->map_head.link_order; p != NULL; p = p->next)
11589 {
11590 if (p->type == bfd_indirect_link_order)
11591 {
11592 asection *s = p->u.indirect.section;
11593 sub = s->owner;
11594 if ((s->flags & SEC_LINKER_CREATED) == 0
11595 && bfd_get_flavour (sub) == bfd_target_elf_flavour
11596 && elf_section_data (s) != NULL
11597 && elf_linked_to_section (s) != NULL)
11598 {
11599 seen_linkorder++;
11600 linkorder_sec = s;
11601 }
11602 else
11603 {
11604 seen_other++;
11605 other_sec = s;
11606 }
11607 }
11608 else
11609 seen_other++;
11610
11611 if (seen_other && seen_linkorder)
11612 {
11613 if (other_sec && linkorder_sec)
11614 _bfd_error_handler
11615 /* xgettext:c-format */
11616 (_("%pA has both ordered [`%pA' in %pB] "
11617 "and unordered [`%pA' in %pB] sections"),
11618 o, linkorder_sec, linkorder_sec->owner,
11619 other_sec, other_sec->owner);
11620 else
11621 _bfd_error_handler
11622 (_("%pA has both ordered and unordered sections"), o);
11623 bfd_set_error (bfd_error_bad_value);
11624 return FALSE;
11625 }
11626 }
11627
11628 if (!seen_linkorder)
11629 return TRUE;
11630
11631 sections = bfd_malloc (seen_linkorder * sizeof (*sections));
11632 if (sections == NULL)
11633 return FALSE;
11634
11635 seen_linkorder = 0;
11636 for (p = o->map_head.link_order; p != NULL; p = p->next)
11637 sections[seen_linkorder++] = p;
11638
11639 /* Sort the input sections in the order of their linked section. */
11640 qsort (sections, seen_linkorder, sizeof (*sections), compare_link_order);
11641
11642 /* Change the offsets of the sections. */
11643 offset = 0;
11644 for (n = 0; n < seen_linkorder; n++)
11645 {
11646 bfd_vma mask;
11647 asection *s = sections[n]->u.indirect.section;
11648 unsigned int opb = bfd_octets_per_byte (abfd, s);
11649
11650 mask = ~(bfd_vma) 0 << s->alignment_power * opb;
11651 offset = (offset + ~mask) & mask;
11652 sections[n]->offset = s->output_offset = offset / opb;
11653 offset += sections[n]->size;
11654 }
11655
11656 free (sections);
11657 return TRUE;
11658 }
11659
11660 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11661 Returns TRUE upon success, FALSE otherwise. */
11662
11663 static bfd_boolean
11664 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11665 {
11666 bfd_boolean ret = FALSE;
11667 bfd *implib_bfd;
11668 const struct elf_backend_data *bed;
11669 flagword flags;
11670 enum bfd_architecture arch;
11671 unsigned int mach;
11672 asymbol **sympp = NULL;
11673 long symsize;
11674 long symcount;
11675 long src_count;
11676 elf_symbol_type *osymbuf;
11677 size_t amt;
11678
11679 implib_bfd = info->out_implib_bfd;
11680 bed = get_elf_backend_data (abfd);
11681
11682 if (!bfd_set_format (implib_bfd, bfd_object))
11683 return FALSE;
11684
11685 /* Use flag from executable but make it a relocatable object. */
11686 flags = bfd_get_file_flags (abfd);
11687 flags &= ~HAS_RELOC;
11688 if (!bfd_set_start_address (implib_bfd, 0)
11689 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11690 return FALSE;
11691
11692 /* Copy architecture of output file to import library file. */
11693 arch = bfd_get_arch (abfd);
11694 mach = bfd_get_mach (abfd);
11695 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11696 && (abfd->target_defaulted
11697 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11698 return FALSE;
11699
11700 /* Get symbol table size. */
11701 symsize = bfd_get_symtab_upper_bound (abfd);
11702 if (symsize < 0)
11703 return FALSE;
11704
11705 /* Read in the symbol table. */
11706 sympp = (asymbol **) bfd_malloc (symsize);
11707 if (sympp == NULL)
11708 return FALSE;
11709
11710 symcount = bfd_canonicalize_symtab (abfd, sympp);
11711 if (symcount < 0)
11712 goto free_sym_buf;
11713
11714 /* Allow the BFD backend to copy any private header data it
11715 understands from the output BFD to the import library BFD. */
11716 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11717 goto free_sym_buf;
11718
11719 /* Filter symbols to appear in the import library. */
11720 if (bed->elf_backend_filter_implib_symbols)
11721 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11722 symcount);
11723 else
11724 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11725 if (symcount == 0)
11726 {
11727 bfd_set_error (bfd_error_no_symbols);
11728 _bfd_error_handler (_("%pB: no symbol found for import library"),
11729 implib_bfd);
11730 goto free_sym_buf;
11731 }
11732
11733
11734 /* Make symbols absolute. */
11735 amt = symcount * sizeof (*osymbuf);
11736 osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt);
11737 if (osymbuf == NULL)
11738 goto free_sym_buf;
11739
11740 for (src_count = 0; src_count < symcount; src_count++)
11741 {
11742 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11743 sizeof (*osymbuf));
11744 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11745 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11746 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11747 osymbuf[src_count].internal_elf_sym.st_value =
11748 osymbuf[src_count].symbol.value;
11749 sympp[src_count] = &osymbuf[src_count].symbol;
11750 }
11751
11752 bfd_set_symtab (implib_bfd, sympp, symcount);
11753
11754 /* Allow the BFD backend to copy any private data it understands
11755 from the output BFD to the import library BFD. This is done last
11756 to permit the routine to look at the filtered symbol table. */
11757 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11758 goto free_sym_buf;
11759
11760 if (!bfd_close (implib_bfd))
11761 goto free_sym_buf;
11762
11763 ret = TRUE;
11764
11765 free_sym_buf:
11766 free (sympp);
11767 return ret;
11768 }
11769
11770 static void
11771 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11772 {
11773 asection *o;
11774
11775 if (flinfo->symstrtab != NULL)
11776 _bfd_elf_strtab_free (flinfo->symstrtab);
11777 if (flinfo->contents != NULL)
11778 free (flinfo->contents);
11779 if (flinfo->external_relocs != NULL)
11780 free (flinfo->external_relocs);
11781 if (flinfo->internal_relocs != NULL)
11782 free (flinfo->internal_relocs);
11783 if (flinfo->external_syms != NULL)
11784 free (flinfo->external_syms);
11785 if (flinfo->locsym_shndx != NULL)
11786 free (flinfo->locsym_shndx);
11787 if (flinfo->internal_syms != NULL)
11788 free (flinfo->internal_syms);
11789 if (flinfo->indices != NULL)
11790 free (flinfo->indices);
11791 if (flinfo->sections != NULL)
11792 free (flinfo->sections);
11793 if (flinfo->symshndxbuf != NULL
11794 && flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1)
11795 free (flinfo->symshndxbuf);
11796 for (o = obfd->sections; o != NULL; o = o->next)
11797 {
11798 struct bfd_elf_section_data *esdo = elf_section_data (o);
11799 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11800 free (esdo->rel.hashes);
11801 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11802 free (esdo->rela.hashes);
11803 }
11804 }
11805
11806 /* Do the final step of an ELF link. */
11807
11808 bfd_boolean
11809 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11810 {
11811 bfd_boolean dynamic;
11812 bfd_boolean emit_relocs;
11813 bfd *dynobj;
11814 struct elf_final_link_info flinfo;
11815 asection *o;
11816 struct bfd_link_order *p;
11817 bfd *sub;
11818 bfd_size_type max_contents_size;
11819 bfd_size_type max_external_reloc_size;
11820 bfd_size_type max_internal_reloc_count;
11821 bfd_size_type max_sym_count;
11822 bfd_size_type max_sym_shndx_count;
11823 Elf_Internal_Sym elfsym;
11824 unsigned int i;
11825 Elf_Internal_Shdr *symtab_hdr;
11826 Elf_Internal_Shdr *symtab_shndx_hdr;
11827 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11828 struct elf_outext_info eoinfo;
11829 bfd_boolean merged;
11830 size_t relativecount = 0;
11831 asection *reldyn = 0;
11832 bfd_size_type amt;
11833 asection *attr_section = NULL;
11834 bfd_vma attr_size = 0;
11835 const char *std_attrs_section;
11836 struct elf_link_hash_table *htab = elf_hash_table (info);
11837 bfd_boolean sections_removed;
11838
11839 if (!is_elf_hash_table (htab))
11840 return FALSE;
11841
11842 if (bfd_link_pic (info))
11843 abfd->flags |= DYNAMIC;
11844
11845 dynamic = htab->dynamic_sections_created;
11846 dynobj = htab->dynobj;
11847
11848 emit_relocs = (bfd_link_relocatable (info)
11849 || info->emitrelocations);
11850
11851 flinfo.info = info;
11852 flinfo.output_bfd = abfd;
11853 flinfo.symstrtab = _bfd_elf_strtab_init ();
11854 if (flinfo.symstrtab == NULL)
11855 return FALSE;
11856
11857 if (! dynamic)
11858 {
11859 flinfo.hash_sec = NULL;
11860 flinfo.symver_sec = NULL;
11861 }
11862 else
11863 {
11864 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11865 /* Note that dynsym_sec can be NULL (on VMS). */
11866 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11867 /* Note that it is OK if symver_sec is NULL. */
11868 }
11869
11870 flinfo.contents = NULL;
11871 flinfo.external_relocs = NULL;
11872 flinfo.internal_relocs = NULL;
11873 flinfo.external_syms = NULL;
11874 flinfo.locsym_shndx = NULL;
11875 flinfo.internal_syms = NULL;
11876 flinfo.indices = NULL;
11877 flinfo.sections = NULL;
11878 flinfo.symshndxbuf = NULL;
11879 flinfo.filesym_count = 0;
11880
11881 /* The object attributes have been merged. Remove the input
11882 sections from the link, and set the contents of the output
11883 section. */
11884 sections_removed = FALSE;
11885 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11886 for (o = abfd->sections; o != NULL; o = o->next)
11887 {
11888 bfd_boolean remove_section = FALSE;
11889
11890 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11891 || strcmp (o->name, ".gnu.attributes") == 0)
11892 {
11893 for (p = o->map_head.link_order; p != NULL; p = p->next)
11894 {
11895 asection *input_section;
11896
11897 if (p->type != bfd_indirect_link_order)
11898 continue;
11899 input_section = p->u.indirect.section;
11900 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11901 elf_link_input_bfd ignores this section. */
11902 input_section->flags &= ~SEC_HAS_CONTENTS;
11903 }
11904
11905 attr_size = bfd_elf_obj_attr_size (abfd);
11906 bfd_set_section_size (o, attr_size);
11907 /* Skip this section later on. */
11908 o->map_head.link_order = NULL;
11909 if (attr_size)
11910 attr_section = o;
11911 else
11912 remove_section = TRUE;
11913 }
11914 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11915 {
11916 /* Remove empty group section from linker output. */
11917 remove_section = TRUE;
11918 }
11919 if (remove_section)
11920 {
11921 o->flags |= SEC_EXCLUDE;
11922 bfd_section_list_remove (abfd, o);
11923 abfd->section_count--;
11924 sections_removed = TRUE;
11925 }
11926 }
11927 if (sections_removed)
11928 _bfd_fix_excluded_sec_syms (abfd, info);
11929
11930 /* Count up the number of relocations we will output for each output
11931 section, so that we know the sizes of the reloc sections. We
11932 also figure out some maximum sizes. */
11933 max_contents_size = 0;
11934 max_external_reloc_size = 0;
11935 max_internal_reloc_count = 0;
11936 max_sym_count = 0;
11937 max_sym_shndx_count = 0;
11938 merged = FALSE;
11939 for (o = abfd->sections; o != NULL; o = o->next)
11940 {
11941 struct bfd_elf_section_data *esdo = elf_section_data (o);
11942 o->reloc_count = 0;
11943
11944 for (p = o->map_head.link_order; p != NULL; p = p->next)
11945 {
11946 unsigned int reloc_count = 0;
11947 unsigned int additional_reloc_count = 0;
11948 struct bfd_elf_section_data *esdi = NULL;
11949
11950 if (p->type == bfd_section_reloc_link_order
11951 || p->type == bfd_symbol_reloc_link_order)
11952 reloc_count = 1;
11953 else if (p->type == bfd_indirect_link_order)
11954 {
11955 asection *sec;
11956
11957 sec = p->u.indirect.section;
11958
11959 /* Mark all sections which are to be included in the
11960 link. This will normally be every section. We need
11961 to do this so that we can identify any sections which
11962 the linker has decided to not include. */
11963 sec->linker_mark = TRUE;
11964
11965 if (sec->flags & SEC_MERGE)
11966 merged = TRUE;
11967
11968 if (sec->rawsize > max_contents_size)
11969 max_contents_size = sec->rawsize;
11970 if (sec->size > max_contents_size)
11971 max_contents_size = sec->size;
11972
11973 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11974 && (sec->owner->flags & DYNAMIC) == 0)
11975 {
11976 size_t sym_count;
11977
11978 /* We are interested in just local symbols, not all
11979 symbols. */
11980 if (elf_bad_symtab (sec->owner))
11981 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11982 / bed->s->sizeof_sym);
11983 else
11984 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11985
11986 if (sym_count > max_sym_count)
11987 max_sym_count = sym_count;
11988
11989 if (sym_count > max_sym_shndx_count
11990 && elf_symtab_shndx_list (sec->owner) != NULL)
11991 max_sym_shndx_count = sym_count;
11992
11993 if (esdo->this_hdr.sh_type == SHT_REL
11994 || esdo->this_hdr.sh_type == SHT_RELA)
11995 /* Some backends use reloc_count in relocation sections
11996 to count particular types of relocs. Of course,
11997 reloc sections themselves can't have relocations. */
11998 ;
11999 else if (emit_relocs)
12000 {
12001 reloc_count = sec->reloc_count;
12002 if (bed->elf_backend_count_additional_relocs)
12003 {
12004 int c;
12005 c = (*bed->elf_backend_count_additional_relocs) (sec);
12006 additional_reloc_count += c;
12007 }
12008 }
12009 else if (bed->elf_backend_count_relocs)
12010 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
12011
12012 esdi = elf_section_data (sec);
12013
12014 if ((sec->flags & SEC_RELOC) != 0)
12015 {
12016 size_t ext_size = 0;
12017
12018 if (esdi->rel.hdr != NULL)
12019 ext_size = esdi->rel.hdr->sh_size;
12020 if (esdi->rela.hdr != NULL)
12021 ext_size += esdi->rela.hdr->sh_size;
12022
12023 if (ext_size > max_external_reloc_size)
12024 max_external_reloc_size = ext_size;
12025 if (sec->reloc_count > max_internal_reloc_count)
12026 max_internal_reloc_count = sec->reloc_count;
12027 }
12028 }
12029 }
12030
12031 if (reloc_count == 0)
12032 continue;
12033
12034 reloc_count += additional_reloc_count;
12035 o->reloc_count += reloc_count;
12036
12037 if (p->type == bfd_indirect_link_order && emit_relocs)
12038 {
12039 if (esdi->rel.hdr)
12040 {
12041 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
12042 esdo->rel.count += additional_reloc_count;
12043 }
12044 if (esdi->rela.hdr)
12045 {
12046 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
12047 esdo->rela.count += additional_reloc_count;
12048 }
12049 }
12050 else
12051 {
12052 if (o->use_rela_p)
12053 esdo->rela.count += reloc_count;
12054 else
12055 esdo->rel.count += reloc_count;
12056 }
12057 }
12058
12059 if (o->reloc_count > 0)
12060 o->flags |= SEC_RELOC;
12061 else
12062 {
12063 /* Explicitly clear the SEC_RELOC flag. The linker tends to
12064 set it (this is probably a bug) and if it is set
12065 assign_section_numbers will create a reloc section. */
12066 o->flags &=~ SEC_RELOC;
12067 }
12068
12069 /* If the SEC_ALLOC flag is not set, force the section VMA to
12070 zero. This is done in elf_fake_sections as well, but forcing
12071 the VMA to 0 here will ensure that relocs against these
12072 sections are handled correctly. */
12073 if ((o->flags & SEC_ALLOC) == 0
12074 && ! o->user_set_vma)
12075 o->vma = 0;
12076 }
12077
12078 if (! bfd_link_relocatable (info) && merged)
12079 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
12080
12081 /* Figure out the file positions for everything but the symbol table
12082 and the relocs. We set symcount to force assign_section_numbers
12083 to create a symbol table. */
12084 abfd->symcount = info->strip != strip_all || emit_relocs;
12085 BFD_ASSERT (! abfd->output_has_begun);
12086 if (! _bfd_elf_compute_section_file_positions (abfd, info))
12087 goto error_return;
12088
12089 /* Set sizes, and assign file positions for reloc sections. */
12090 for (o = abfd->sections; o != NULL; o = o->next)
12091 {
12092 struct bfd_elf_section_data *esdo = elf_section_data (o);
12093 if ((o->flags & SEC_RELOC) != 0)
12094 {
12095 if (esdo->rel.hdr
12096 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
12097 goto error_return;
12098
12099 if (esdo->rela.hdr
12100 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
12101 goto error_return;
12102 }
12103
12104 /* _bfd_elf_compute_section_file_positions makes temporary use
12105 of target_index. Reset it. */
12106 o->target_index = 0;
12107
12108 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
12109 to count upwards while actually outputting the relocations. */
12110 esdo->rel.count = 0;
12111 esdo->rela.count = 0;
12112
12113 if ((esdo->this_hdr.sh_offset == (file_ptr) -1)
12114 && !bfd_section_is_ctf (o))
12115 {
12116 /* Cache the section contents so that they can be compressed
12117 later. Use bfd_malloc since it will be freed by
12118 bfd_compress_section_contents. */
12119 unsigned char *contents = esdo->this_hdr.contents;
12120 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12121 abort ();
12122 contents
12123 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12124 if (contents == NULL)
12125 goto error_return;
12126 esdo->this_hdr.contents = contents;
12127 }
12128 }
12129
12130 /* We have now assigned file positions for all the sections except .symtab,
12131 .strtab, and non-loaded reloc and compressed debugging sections. We start
12132 the .symtab section at the current file position, and write directly to it.
12133 We build the .strtab section in memory. */
12134 abfd->symcount = 0;
12135 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12136 /* sh_name is set in prep_headers. */
12137 symtab_hdr->sh_type = SHT_SYMTAB;
12138 /* sh_flags, sh_addr and sh_size all start off zero. */
12139 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12140 /* sh_link is set in assign_section_numbers. */
12141 /* sh_info is set below. */
12142 /* sh_offset is set just below. */
12143 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12144
12145 if (max_sym_count < 20)
12146 max_sym_count = 20;
12147 htab->strtabsize = max_sym_count;
12148 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12149 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12150 if (htab->strtab == NULL)
12151 goto error_return;
12152 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12153 flinfo.symshndxbuf
12154 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12155 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12156
12157 if (info->strip != strip_all || emit_relocs)
12158 {
12159 file_ptr off = elf_next_file_pos (abfd);
12160
12161 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12162
12163 /* Note that at this point elf_next_file_pos (abfd) is
12164 incorrect. We do not yet know the size of the .symtab section.
12165 We correct next_file_pos below, after we do know the size. */
12166
12167 /* Start writing out the symbol table. The first symbol is always a
12168 dummy symbol. */
12169 elfsym.st_value = 0;
12170 elfsym.st_size = 0;
12171 elfsym.st_info = 0;
12172 elfsym.st_other = 0;
12173 elfsym.st_shndx = SHN_UNDEF;
12174 elfsym.st_target_internal = 0;
12175 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12176 bfd_und_section_ptr, NULL) != 1)
12177 goto error_return;
12178
12179 /* Output a symbol for each section. We output these even if we are
12180 discarding local symbols, since they are used for relocs. These
12181 symbols have no names. We store the index of each one in the
12182 index field of the section, so that we can find it again when
12183 outputting relocs. */
12184
12185 elfsym.st_size = 0;
12186 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12187 elfsym.st_other = 0;
12188 elfsym.st_value = 0;
12189 elfsym.st_target_internal = 0;
12190 for (i = 1; i < elf_numsections (abfd); i++)
12191 {
12192 o = bfd_section_from_elf_index (abfd, i);
12193 if (o != NULL)
12194 {
12195 o->target_index = bfd_get_symcount (abfd);
12196 elfsym.st_shndx = i;
12197 if (!bfd_link_relocatable (info))
12198 elfsym.st_value = o->vma;
12199 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12200 NULL) != 1)
12201 goto error_return;
12202 }
12203 }
12204 }
12205
12206 /* Allocate some memory to hold information read in from the input
12207 files. */
12208 if (max_contents_size != 0)
12209 {
12210 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12211 if (flinfo.contents == NULL)
12212 goto error_return;
12213 }
12214
12215 if (max_external_reloc_size != 0)
12216 {
12217 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12218 if (flinfo.external_relocs == NULL)
12219 goto error_return;
12220 }
12221
12222 if (max_internal_reloc_count != 0)
12223 {
12224 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12225 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12226 if (flinfo.internal_relocs == NULL)
12227 goto error_return;
12228 }
12229
12230 if (max_sym_count != 0)
12231 {
12232 amt = max_sym_count * bed->s->sizeof_sym;
12233 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12234 if (flinfo.external_syms == NULL)
12235 goto error_return;
12236
12237 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12238 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12239 if (flinfo.internal_syms == NULL)
12240 goto error_return;
12241
12242 amt = max_sym_count * sizeof (long);
12243 flinfo.indices = (long int *) bfd_malloc (amt);
12244 if (flinfo.indices == NULL)
12245 goto error_return;
12246
12247 amt = max_sym_count * sizeof (asection *);
12248 flinfo.sections = (asection **) bfd_malloc (amt);
12249 if (flinfo.sections == NULL)
12250 goto error_return;
12251 }
12252
12253 if (max_sym_shndx_count != 0)
12254 {
12255 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12256 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12257 if (flinfo.locsym_shndx == NULL)
12258 goto error_return;
12259 }
12260
12261 if (htab->tls_sec)
12262 {
12263 bfd_vma base, end = 0; /* Both bytes. */
12264 asection *sec;
12265
12266 for (sec = htab->tls_sec;
12267 sec && (sec->flags & SEC_THREAD_LOCAL);
12268 sec = sec->next)
12269 {
12270 bfd_size_type size = sec->size;
12271 unsigned int opb = bfd_octets_per_byte (abfd, sec);
12272
12273 if (size == 0
12274 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12275 {
12276 struct bfd_link_order *ord = sec->map_tail.link_order;
12277
12278 if (ord != NULL)
12279 size = ord->offset * opb + ord->size;
12280 }
12281 end = sec->vma + size / opb;
12282 }
12283 base = htab->tls_sec->vma;
12284 /* Only align end of TLS section if static TLS doesn't have special
12285 alignment requirements. */
12286 if (bed->static_tls_alignment == 1)
12287 end = align_power (end, htab->tls_sec->alignment_power);
12288 htab->tls_size = end - base;
12289 }
12290
12291 /* Reorder SHF_LINK_ORDER sections. */
12292 for (o = abfd->sections; o != NULL; o = o->next)
12293 {
12294 if (!elf_fixup_link_order (abfd, o))
12295 return FALSE;
12296 }
12297
12298 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12299 return FALSE;
12300
12301 /* Since ELF permits relocations to be against local symbols, we
12302 must have the local symbols available when we do the relocations.
12303 Since we would rather only read the local symbols once, and we
12304 would rather not keep them in memory, we handle all the
12305 relocations for a single input file at the same time.
12306
12307 Unfortunately, there is no way to know the total number of local
12308 symbols until we have seen all of them, and the local symbol
12309 indices precede the global symbol indices. This means that when
12310 we are generating relocatable output, and we see a reloc against
12311 a global symbol, we can not know the symbol index until we have
12312 finished examining all the local symbols to see which ones we are
12313 going to output. To deal with this, we keep the relocations in
12314 memory, and don't output them until the end of the link. This is
12315 an unfortunate waste of memory, but I don't see a good way around
12316 it. Fortunately, it only happens when performing a relocatable
12317 link, which is not the common case. FIXME: If keep_memory is set
12318 we could write the relocs out and then read them again; I don't
12319 know how bad the memory loss will be. */
12320
12321 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12322 sub->output_has_begun = FALSE;
12323 for (o = abfd->sections; o != NULL; o = o->next)
12324 {
12325 for (p = o->map_head.link_order; p != NULL; p = p->next)
12326 {
12327 if (p->type == bfd_indirect_link_order
12328 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12329 == bfd_target_elf_flavour)
12330 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12331 {
12332 if (! sub->output_has_begun)
12333 {
12334 if (! elf_link_input_bfd (&flinfo, sub))
12335 goto error_return;
12336 sub->output_has_begun = TRUE;
12337 }
12338 }
12339 else if (p->type == bfd_section_reloc_link_order
12340 || p->type == bfd_symbol_reloc_link_order)
12341 {
12342 if (! elf_reloc_link_order (abfd, info, o, p))
12343 goto error_return;
12344 }
12345 else
12346 {
12347 if (! _bfd_default_link_order (abfd, info, o, p))
12348 {
12349 if (p->type == bfd_indirect_link_order
12350 && (bfd_get_flavour (sub)
12351 == bfd_target_elf_flavour)
12352 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12353 != bed->s->elfclass))
12354 {
12355 const char *iclass, *oclass;
12356
12357 switch (bed->s->elfclass)
12358 {
12359 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12360 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12361 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12362 default: abort ();
12363 }
12364
12365 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12366 {
12367 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12368 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12369 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12370 default: abort ();
12371 }
12372
12373 bfd_set_error (bfd_error_wrong_format);
12374 _bfd_error_handler
12375 /* xgettext:c-format */
12376 (_("%pB: file class %s incompatible with %s"),
12377 sub, iclass, oclass);
12378 }
12379
12380 goto error_return;
12381 }
12382 }
12383 }
12384 }
12385
12386 /* Free symbol buffer if needed. */
12387 if (!info->reduce_memory_overheads)
12388 {
12389 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12390 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12391 && elf_tdata (sub)->symbuf)
12392 {
12393 free (elf_tdata (sub)->symbuf);
12394 elf_tdata (sub)->symbuf = NULL;
12395 }
12396 }
12397
12398 /* Output any global symbols that got converted to local in a
12399 version script or due to symbol visibility. We do this in a
12400 separate step since ELF requires all local symbols to appear
12401 prior to any global symbols. FIXME: We should only do this if
12402 some global symbols were, in fact, converted to become local.
12403 FIXME: Will this work correctly with the Irix 5 linker? */
12404 eoinfo.failed = FALSE;
12405 eoinfo.flinfo = &flinfo;
12406 eoinfo.localsyms = TRUE;
12407 eoinfo.file_sym_done = FALSE;
12408 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12409 if (eoinfo.failed)
12410 return FALSE;
12411
12412 /* If backend needs to output some local symbols not present in the hash
12413 table, do it now. */
12414 if (bed->elf_backend_output_arch_local_syms
12415 && (info->strip != strip_all || emit_relocs))
12416 {
12417 typedef int (*out_sym_func)
12418 (void *, const char *, Elf_Internal_Sym *, asection *,
12419 struct elf_link_hash_entry *);
12420
12421 if (! ((*bed->elf_backend_output_arch_local_syms)
12422 (abfd, info, &flinfo,
12423 (out_sym_func) elf_link_output_symstrtab)))
12424 return FALSE;
12425 }
12426
12427 /* That wrote out all the local symbols. Finish up the symbol table
12428 with the global symbols. Even if we want to strip everything we
12429 can, we still need to deal with those global symbols that got
12430 converted to local in a version script. */
12431
12432 /* The sh_info field records the index of the first non local symbol. */
12433 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12434
12435 if (dynamic
12436 && htab->dynsym != NULL
12437 && htab->dynsym->output_section != bfd_abs_section_ptr)
12438 {
12439 Elf_Internal_Sym sym;
12440 bfd_byte *dynsym = htab->dynsym->contents;
12441
12442 o = htab->dynsym->output_section;
12443 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12444
12445 /* Write out the section symbols for the output sections. */
12446 if (bfd_link_pic (info)
12447 || htab->is_relocatable_executable)
12448 {
12449 asection *s;
12450
12451 sym.st_size = 0;
12452 sym.st_name = 0;
12453 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12454 sym.st_other = 0;
12455 sym.st_target_internal = 0;
12456
12457 for (s = abfd->sections; s != NULL; s = s->next)
12458 {
12459 int indx;
12460 bfd_byte *dest;
12461 long dynindx;
12462
12463 dynindx = elf_section_data (s)->dynindx;
12464 if (dynindx <= 0)
12465 continue;
12466 indx = elf_section_data (s)->this_idx;
12467 BFD_ASSERT (indx > 0);
12468 sym.st_shndx = indx;
12469 if (! check_dynsym (abfd, &sym))
12470 return FALSE;
12471 sym.st_value = s->vma;
12472 dest = dynsym + dynindx * bed->s->sizeof_sym;
12473 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12474 }
12475 }
12476
12477 /* Write out the local dynsyms. */
12478 if (htab->dynlocal)
12479 {
12480 struct elf_link_local_dynamic_entry *e;
12481 for (e = htab->dynlocal; e ; e = e->next)
12482 {
12483 asection *s;
12484 bfd_byte *dest;
12485
12486 /* Copy the internal symbol and turn off visibility.
12487 Note that we saved a word of storage and overwrote
12488 the original st_name with the dynstr_index. */
12489 sym = e->isym;
12490 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12491
12492 s = bfd_section_from_elf_index (e->input_bfd,
12493 e->isym.st_shndx);
12494 if (s != NULL)
12495 {
12496 sym.st_shndx =
12497 elf_section_data (s->output_section)->this_idx;
12498 if (! check_dynsym (abfd, &sym))
12499 return FALSE;
12500 sym.st_value = (s->output_section->vma
12501 + s->output_offset
12502 + e->isym.st_value);
12503 }
12504
12505 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12506 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12507 }
12508 }
12509 }
12510
12511 /* We get the global symbols from the hash table. */
12512 eoinfo.failed = FALSE;
12513 eoinfo.localsyms = FALSE;
12514 eoinfo.flinfo = &flinfo;
12515 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12516 if (eoinfo.failed)
12517 return FALSE;
12518
12519 /* If backend needs to output some symbols not present in the hash
12520 table, do it now. */
12521 if (bed->elf_backend_output_arch_syms
12522 && (info->strip != strip_all || emit_relocs))
12523 {
12524 typedef int (*out_sym_func)
12525 (void *, const char *, Elf_Internal_Sym *, asection *,
12526 struct elf_link_hash_entry *);
12527
12528 if (! ((*bed->elf_backend_output_arch_syms)
12529 (abfd, info, &flinfo,
12530 (out_sym_func) elf_link_output_symstrtab)))
12531 return FALSE;
12532 }
12533
12534 /* Finalize the .strtab section. */
12535 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12536
12537 /* Swap out the .strtab section. */
12538 if (!elf_link_swap_symbols_out (&flinfo))
12539 return FALSE;
12540
12541 /* Now we know the size of the symtab section. */
12542 if (bfd_get_symcount (abfd) > 0)
12543 {
12544 /* Finish up and write out the symbol string table (.strtab)
12545 section. */
12546 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12547 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12548
12549 if (elf_symtab_shndx_list (abfd))
12550 {
12551 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12552
12553 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12554 {
12555 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12556 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12557 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12558 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12559 symtab_shndx_hdr->sh_size = amt;
12560
12561 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12562 off, TRUE);
12563
12564 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12565 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12566 return FALSE;
12567 }
12568 }
12569
12570 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12571 /* sh_name was set in prep_headers. */
12572 symstrtab_hdr->sh_type = SHT_STRTAB;
12573 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12574 symstrtab_hdr->sh_addr = 0;
12575 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12576 symstrtab_hdr->sh_entsize = 0;
12577 symstrtab_hdr->sh_link = 0;
12578 symstrtab_hdr->sh_info = 0;
12579 /* sh_offset is set just below. */
12580 symstrtab_hdr->sh_addralign = 1;
12581
12582 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12583 off, TRUE);
12584 elf_next_file_pos (abfd) = off;
12585
12586 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12587 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12588 return FALSE;
12589 }
12590
12591 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12592 {
12593 _bfd_error_handler (_("%pB: failed to generate import library"),
12594 info->out_implib_bfd);
12595 return FALSE;
12596 }
12597
12598 /* Adjust the relocs to have the correct symbol indices. */
12599 for (o = abfd->sections; o != NULL; o = o->next)
12600 {
12601 struct bfd_elf_section_data *esdo = elf_section_data (o);
12602 bfd_boolean sort;
12603
12604 if ((o->flags & SEC_RELOC) == 0)
12605 continue;
12606
12607 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12608 if (esdo->rel.hdr != NULL
12609 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12610 return FALSE;
12611 if (esdo->rela.hdr != NULL
12612 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12613 return FALSE;
12614
12615 /* Set the reloc_count field to 0 to prevent write_relocs from
12616 trying to swap the relocs out itself. */
12617 o->reloc_count = 0;
12618 }
12619
12620 if (dynamic && info->combreloc && dynobj != NULL)
12621 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12622
12623 /* If we are linking against a dynamic object, or generating a
12624 shared library, finish up the dynamic linking information. */
12625 if (dynamic)
12626 {
12627 bfd_byte *dyncon, *dynconend;
12628
12629 /* Fix up .dynamic entries. */
12630 o = bfd_get_linker_section (dynobj, ".dynamic");
12631 BFD_ASSERT (o != NULL);
12632
12633 dyncon = o->contents;
12634 dynconend = o->contents + o->size;
12635 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12636 {
12637 Elf_Internal_Dyn dyn;
12638 const char *name;
12639 unsigned int type;
12640 bfd_size_type sh_size;
12641 bfd_vma sh_addr;
12642
12643 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12644
12645 switch (dyn.d_tag)
12646 {
12647 default:
12648 continue;
12649 case DT_NULL:
12650 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12651 {
12652 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12653 {
12654 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12655 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12656 default: continue;
12657 }
12658 dyn.d_un.d_val = relativecount;
12659 relativecount = 0;
12660 break;
12661 }
12662 continue;
12663
12664 case DT_INIT:
12665 name = info->init_function;
12666 goto get_sym;
12667 case DT_FINI:
12668 name = info->fini_function;
12669 get_sym:
12670 {
12671 struct elf_link_hash_entry *h;
12672
12673 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12674 if (h != NULL
12675 && (h->root.type == bfd_link_hash_defined
12676 || h->root.type == bfd_link_hash_defweak))
12677 {
12678 dyn.d_un.d_ptr = h->root.u.def.value;
12679 o = h->root.u.def.section;
12680 if (o->output_section != NULL)
12681 dyn.d_un.d_ptr += (o->output_section->vma
12682 + o->output_offset);
12683 else
12684 {
12685 /* The symbol is imported from another shared
12686 library and does not apply to this one. */
12687 dyn.d_un.d_ptr = 0;
12688 }
12689 break;
12690 }
12691 }
12692 continue;
12693
12694 case DT_PREINIT_ARRAYSZ:
12695 name = ".preinit_array";
12696 goto get_out_size;
12697 case DT_INIT_ARRAYSZ:
12698 name = ".init_array";
12699 goto get_out_size;
12700 case DT_FINI_ARRAYSZ:
12701 name = ".fini_array";
12702 get_out_size:
12703 o = bfd_get_section_by_name (abfd, name);
12704 if (o == NULL)
12705 {
12706 _bfd_error_handler
12707 (_("could not find section %s"), name);
12708 goto error_return;
12709 }
12710 if (o->size == 0)
12711 _bfd_error_handler
12712 (_("warning: %s section has zero size"), name);
12713 dyn.d_un.d_val = o->size;
12714 break;
12715
12716 case DT_PREINIT_ARRAY:
12717 name = ".preinit_array";
12718 goto get_out_vma;
12719 case DT_INIT_ARRAY:
12720 name = ".init_array";
12721 goto get_out_vma;
12722 case DT_FINI_ARRAY:
12723 name = ".fini_array";
12724 get_out_vma:
12725 o = bfd_get_section_by_name (abfd, name);
12726 goto do_vma;
12727
12728 case DT_HASH:
12729 name = ".hash";
12730 goto get_vma;
12731 case DT_GNU_HASH:
12732 name = ".gnu.hash";
12733 goto get_vma;
12734 case DT_STRTAB:
12735 name = ".dynstr";
12736 goto get_vma;
12737 case DT_SYMTAB:
12738 name = ".dynsym";
12739 goto get_vma;
12740 case DT_VERDEF:
12741 name = ".gnu.version_d";
12742 goto get_vma;
12743 case DT_VERNEED:
12744 name = ".gnu.version_r";
12745 goto get_vma;
12746 case DT_VERSYM:
12747 name = ".gnu.version";
12748 get_vma:
12749 o = bfd_get_linker_section (dynobj, name);
12750 do_vma:
12751 if (o == NULL || bfd_is_abs_section (o->output_section))
12752 {
12753 _bfd_error_handler
12754 (_("could not find section %s"), name);
12755 goto error_return;
12756 }
12757 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12758 {
12759 _bfd_error_handler
12760 (_("warning: section '%s' is being made into a note"), name);
12761 bfd_set_error (bfd_error_nonrepresentable_section);
12762 goto error_return;
12763 }
12764 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12765 break;
12766
12767 case DT_REL:
12768 case DT_RELA:
12769 case DT_RELSZ:
12770 case DT_RELASZ:
12771 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12772 type = SHT_REL;
12773 else
12774 type = SHT_RELA;
12775 sh_size = 0;
12776 sh_addr = 0;
12777 for (i = 1; i < elf_numsections (abfd); i++)
12778 {
12779 Elf_Internal_Shdr *hdr;
12780
12781 hdr = elf_elfsections (abfd)[i];
12782 if (hdr->sh_type == type
12783 && (hdr->sh_flags & SHF_ALLOC) != 0)
12784 {
12785 sh_size += hdr->sh_size;
12786 if (sh_addr == 0
12787 || sh_addr > hdr->sh_addr)
12788 sh_addr = hdr->sh_addr;
12789 }
12790 }
12791
12792 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12793 {
12794 unsigned int opb = bfd_octets_per_byte (abfd, o);
12795
12796 /* Don't count procedure linkage table relocs in the
12797 overall reloc count. */
12798 sh_size -= htab->srelplt->size;
12799 if (sh_size == 0)
12800 /* If the size is zero, make the address zero too.
12801 This is to avoid a glibc bug. If the backend
12802 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12803 zero, then we'll put DT_RELA at the end of
12804 DT_JMPREL. glibc will interpret the end of
12805 DT_RELA matching the end of DT_JMPREL as the
12806 case where DT_RELA includes DT_JMPREL, and for
12807 LD_BIND_NOW will decide that processing DT_RELA
12808 will process the PLT relocs too. Net result:
12809 No PLT relocs applied. */
12810 sh_addr = 0;
12811
12812 /* If .rela.plt is the first .rela section, exclude
12813 it from DT_RELA. */
12814 else if (sh_addr == (htab->srelplt->output_section->vma
12815 + htab->srelplt->output_offset) * opb)
12816 sh_addr += htab->srelplt->size;
12817 }
12818
12819 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12820 dyn.d_un.d_val = sh_size;
12821 else
12822 dyn.d_un.d_ptr = sh_addr;
12823 break;
12824 }
12825 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12826 }
12827 }
12828
12829 /* If we have created any dynamic sections, then output them. */
12830 if (dynobj != NULL)
12831 {
12832 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12833 goto error_return;
12834
12835 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12836 if (((info->warn_shared_textrel && bfd_link_pic (info))
12837 || info->error_textrel)
12838 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12839 {
12840 bfd_byte *dyncon, *dynconend;
12841
12842 dyncon = o->contents;
12843 dynconend = o->contents + o->size;
12844 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12845 {
12846 Elf_Internal_Dyn dyn;
12847
12848 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12849
12850 if (dyn.d_tag == DT_TEXTREL)
12851 {
12852 if (info->error_textrel)
12853 info->callbacks->einfo
12854 (_("%P%X: read-only segment has dynamic relocations\n"));
12855 else
12856 info->callbacks->einfo
12857 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12858 break;
12859 }
12860 }
12861 }
12862
12863 for (o = dynobj->sections; o != NULL; o = o->next)
12864 {
12865 if ((o->flags & SEC_HAS_CONTENTS) == 0
12866 || o->size == 0
12867 || o->output_section == bfd_abs_section_ptr)
12868 continue;
12869 if ((o->flags & SEC_LINKER_CREATED) == 0)
12870 {
12871 /* At this point, we are only interested in sections
12872 created by _bfd_elf_link_create_dynamic_sections. */
12873 continue;
12874 }
12875 if (htab->stab_info.stabstr == o)
12876 continue;
12877 if (htab->eh_info.hdr_sec == o)
12878 continue;
12879 if (strcmp (o->name, ".dynstr") != 0)
12880 {
12881 bfd_size_type octets = ((file_ptr) o->output_offset
12882 * bfd_octets_per_byte (abfd, o));
12883 if (!bfd_set_section_contents (abfd, o->output_section,
12884 o->contents, octets, o->size))
12885 goto error_return;
12886 }
12887 else
12888 {
12889 /* The contents of the .dynstr section are actually in a
12890 stringtab. */
12891 file_ptr off;
12892
12893 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12894 if (bfd_seek (abfd, off, SEEK_SET) != 0
12895 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12896 goto error_return;
12897 }
12898 }
12899 }
12900
12901 if (!info->resolve_section_groups)
12902 {
12903 bfd_boolean failed = FALSE;
12904
12905 BFD_ASSERT (bfd_link_relocatable (info));
12906 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12907 if (failed)
12908 goto error_return;
12909 }
12910
12911 /* If we have optimized stabs strings, output them. */
12912 if (htab->stab_info.stabstr != NULL)
12913 {
12914 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12915 goto error_return;
12916 }
12917
12918 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12919 goto error_return;
12920
12921 if (info->callbacks->emit_ctf)
12922 info->callbacks->emit_ctf ();
12923
12924 elf_final_link_free (abfd, &flinfo);
12925
12926 if (attr_section)
12927 {
12928 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12929 if (contents == NULL)
12930 return FALSE; /* Bail out and fail. */
12931 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12932 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12933 free (contents);
12934 }
12935
12936 return TRUE;
12937
12938 error_return:
12939 elf_final_link_free (abfd, &flinfo);
12940 return FALSE;
12941 }
12942 \f
12943 /* Initialize COOKIE for input bfd ABFD. */
12944
12945 static bfd_boolean
12946 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12947 struct bfd_link_info *info, bfd *abfd)
12948 {
12949 Elf_Internal_Shdr *symtab_hdr;
12950 const struct elf_backend_data *bed;
12951
12952 bed = get_elf_backend_data (abfd);
12953 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12954
12955 cookie->abfd = abfd;
12956 cookie->sym_hashes = elf_sym_hashes (abfd);
12957 cookie->bad_symtab = elf_bad_symtab (abfd);
12958 if (cookie->bad_symtab)
12959 {
12960 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12961 cookie->extsymoff = 0;
12962 }
12963 else
12964 {
12965 cookie->locsymcount = symtab_hdr->sh_info;
12966 cookie->extsymoff = symtab_hdr->sh_info;
12967 }
12968
12969 if (bed->s->arch_size == 32)
12970 cookie->r_sym_shift = 8;
12971 else
12972 cookie->r_sym_shift = 32;
12973
12974 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12975 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12976 {
12977 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12978 cookie->locsymcount, 0,
12979 NULL, NULL, NULL);
12980 if (cookie->locsyms == NULL)
12981 {
12982 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12983 return FALSE;
12984 }
12985 if (info->keep_memory)
12986 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12987 }
12988 return TRUE;
12989 }
12990
12991 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12992
12993 static void
12994 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12995 {
12996 Elf_Internal_Shdr *symtab_hdr;
12997
12998 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12999 if (cookie->locsyms != NULL
13000 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
13001 free (cookie->locsyms);
13002 }
13003
13004 /* Initialize the relocation information in COOKIE for input section SEC
13005 of input bfd ABFD. */
13006
13007 static bfd_boolean
13008 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13009 struct bfd_link_info *info, bfd *abfd,
13010 asection *sec)
13011 {
13012 if (sec->reloc_count == 0)
13013 {
13014 cookie->rels = NULL;
13015 cookie->relend = NULL;
13016 }
13017 else
13018 {
13019 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
13020 info->keep_memory);
13021 if (cookie->rels == NULL)
13022 return FALSE;
13023 cookie->rel = cookie->rels;
13024 cookie->relend = cookie->rels + sec->reloc_count;
13025 }
13026 cookie->rel = cookie->rels;
13027 return TRUE;
13028 }
13029
13030 /* Free the memory allocated by init_reloc_cookie_rels,
13031 if appropriate. */
13032
13033 static void
13034 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
13035 asection *sec)
13036 {
13037 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
13038 free (cookie->rels);
13039 }
13040
13041 /* Initialize the whole of COOKIE for input section SEC. */
13042
13043 static bfd_boolean
13044 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13045 struct bfd_link_info *info,
13046 asection *sec)
13047 {
13048 if (!init_reloc_cookie (cookie, info, sec->owner))
13049 goto error1;
13050 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
13051 goto error2;
13052 return TRUE;
13053
13054 error2:
13055 fini_reloc_cookie (cookie, sec->owner);
13056 error1:
13057 return FALSE;
13058 }
13059
13060 /* Free the memory allocated by init_reloc_cookie_for_section,
13061 if appropriate. */
13062
13063 static void
13064 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
13065 asection *sec)
13066 {
13067 fini_reloc_cookie_rels (cookie, sec);
13068 fini_reloc_cookie (cookie, sec->owner);
13069 }
13070 \f
13071 /* Garbage collect unused sections. */
13072
13073 /* Default gc_mark_hook. */
13074
13075 asection *
13076 _bfd_elf_gc_mark_hook (asection *sec,
13077 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13078 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13079 struct elf_link_hash_entry *h,
13080 Elf_Internal_Sym *sym)
13081 {
13082 if (h != NULL)
13083 {
13084 switch (h->root.type)
13085 {
13086 case bfd_link_hash_defined:
13087 case bfd_link_hash_defweak:
13088 return h->root.u.def.section;
13089
13090 case bfd_link_hash_common:
13091 return h->root.u.c.p->section;
13092
13093 default:
13094 break;
13095 }
13096 }
13097 else
13098 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
13099
13100 return NULL;
13101 }
13102
13103 /* Return the debug definition section. */
13104
13105 static asection *
13106 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
13107 struct bfd_link_info *info ATTRIBUTE_UNUSED,
13108 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
13109 struct elf_link_hash_entry *h,
13110 Elf_Internal_Sym *sym)
13111 {
13112 if (h != NULL)
13113 {
13114 /* Return the global debug definition section. */
13115 if ((h->root.type == bfd_link_hash_defined
13116 || h->root.type == bfd_link_hash_defweak)
13117 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
13118 return h->root.u.def.section;
13119 }
13120 else
13121 {
13122 /* Return the local debug definition section. */
13123 asection *isec = bfd_section_from_elf_index (sec->owner,
13124 sym->st_shndx);
13125 if ((isec->flags & SEC_DEBUGGING) != 0)
13126 return isec;
13127 }
13128
13129 return NULL;
13130 }
13131
13132 /* COOKIE->rel describes a relocation against section SEC, which is
13133 a section we've decided to keep. Return the section that contains
13134 the relocation symbol, or NULL if no section contains it. */
13135
13136 asection *
13137 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13138 elf_gc_mark_hook_fn gc_mark_hook,
13139 struct elf_reloc_cookie *cookie,
13140 bfd_boolean *start_stop)
13141 {
13142 unsigned long r_symndx;
13143 struct elf_link_hash_entry *h, *hw;
13144
13145 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13146 if (r_symndx == STN_UNDEF)
13147 return NULL;
13148
13149 if (r_symndx >= cookie->locsymcount
13150 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13151 {
13152 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13153 if (h == NULL)
13154 {
13155 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13156 sec->owner);
13157 return NULL;
13158 }
13159 while (h->root.type == bfd_link_hash_indirect
13160 || h->root.type == bfd_link_hash_warning)
13161 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13162 h->mark = 1;
13163 /* Keep all aliases of the symbol too. If an object symbol
13164 needs to be copied into .dynbss then all of its aliases
13165 should be present as dynamic symbols, not just the one used
13166 on the copy relocation. */
13167 hw = h;
13168 while (hw->is_weakalias)
13169 {
13170 hw = hw->u.alias;
13171 hw->mark = 1;
13172 }
13173
13174 if (start_stop != NULL)
13175 {
13176 /* To work around a glibc bug, mark XXX input sections
13177 when there is a reference to __start_XXX or __stop_XXX
13178 symbols. */
13179 if (h->start_stop)
13180 {
13181 asection *s = h->u2.start_stop_section;
13182 *start_stop = !s->gc_mark;
13183 return s;
13184 }
13185 }
13186
13187 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13188 }
13189
13190 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13191 &cookie->locsyms[r_symndx]);
13192 }
13193
13194 /* COOKIE->rel describes a relocation against section SEC, which is
13195 a section we've decided to keep. Mark the section that contains
13196 the relocation symbol. */
13197
13198 bfd_boolean
13199 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13200 asection *sec,
13201 elf_gc_mark_hook_fn gc_mark_hook,
13202 struct elf_reloc_cookie *cookie)
13203 {
13204 asection *rsec;
13205 bfd_boolean start_stop = FALSE;
13206
13207 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13208 while (rsec != NULL)
13209 {
13210 if (!rsec->gc_mark)
13211 {
13212 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13213 || (rsec->owner->flags & DYNAMIC) != 0)
13214 rsec->gc_mark = 1;
13215 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13216 return FALSE;
13217 }
13218 if (!start_stop)
13219 break;
13220 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13221 }
13222 return TRUE;
13223 }
13224
13225 /* The mark phase of garbage collection. For a given section, mark
13226 it and any sections in this section's group, and all the sections
13227 which define symbols to which it refers. */
13228
13229 bfd_boolean
13230 _bfd_elf_gc_mark (struct bfd_link_info *info,
13231 asection *sec,
13232 elf_gc_mark_hook_fn gc_mark_hook)
13233 {
13234 bfd_boolean ret;
13235 asection *group_sec, *eh_frame;
13236
13237 sec->gc_mark = 1;
13238
13239 /* Mark all the sections in the group. */
13240 group_sec = elf_section_data (sec)->next_in_group;
13241 if (group_sec && !group_sec->gc_mark)
13242 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13243 return FALSE;
13244
13245 /* Look through the section relocs. */
13246 ret = TRUE;
13247 eh_frame = elf_eh_frame_section (sec->owner);
13248 if ((sec->flags & SEC_RELOC) != 0
13249 && sec->reloc_count > 0
13250 && sec != eh_frame)
13251 {
13252 struct elf_reloc_cookie cookie;
13253
13254 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13255 ret = FALSE;
13256 else
13257 {
13258 for (; cookie.rel < cookie.relend; cookie.rel++)
13259 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13260 {
13261 ret = FALSE;
13262 break;
13263 }
13264 fini_reloc_cookie_for_section (&cookie, sec);
13265 }
13266 }
13267
13268 if (ret && eh_frame && elf_fde_list (sec))
13269 {
13270 struct elf_reloc_cookie cookie;
13271
13272 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13273 ret = FALSE;
13274 else
13275 {
13276 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13277 gc_mark_hook, &cookie))
13278 ret = FALSE;
13279 fini_reloc_cookie_for_section (&cookie, eh_frame);
13280 }
13281 }
13282
13283 eh_frame = elf_section_eh_frame_entry (sec);
13284 if (ret && eh_frame && !eh_frame->gc_mark)
13285 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13286 ret = FALSE;
13287
13288 return ret;
13289 }
13290
13291 /* Scan and mark sections in a special or debug section group. */
13292
13293 static void
13294 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13295 {
13296 /* Point to first section of section group. */
13297 asection *ssec;
13298 /* Used to iterate the section group. */
13299 asection *msec;
13300
13301 bfd_boolean is_special_grp = TRUE;
13302 bfd_boolean is_debug_grp = TRUE;
13303
13304 /* First scan to see if group contains any section other than debug
13305 and special section. */
13306 ssec = msec = elf_next_in_group (grp);
13307 do
13308 {
13309 if ((msec->flags & SEC_DEBUGGING) == 0)
13310 is_debug_grp = FALSE;
13311
13312 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13313 is_special_grp = FALSE;
13314
13315 msec = elf_next_in_group (msec);
13316 }
13317 while (msec != ssec);
13318
13319 /* If this is a pure debug section group or pure special section group,
13320 keep all sections in this group. */
13321 if (is_debug_grp || is_special_grp)
13322 {
13323 do
13324 {
13325 msec->gc_mark = 1;
13326 msec = elf_next_in_group (msec);
13327 }
13328 while (msec != ssec);
13329 }
13330 }
13331
13332 /* Keep debug and special sections. */
13333
13334 bfd_boolean
13335 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13336 elf_gc_mark_hook_fn mark_hook)
13337 {
13338 bfd *ibfd;
13339
13340 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13341 {
13342 asection *isec;
13343 bfd_boolean some_kept;
13344 bfd_boolean debug_frag_seen;
13345 bfd_boolean has_kept_debug_info;
13346
13347 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13348 continue;
13349 isec = ibfd->sections;
13350 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13351 continue;
13352
13353 /* Ensure all linker created sections are kept,
13354 see if any other section is already marked,
13355 and note if we have any fragmented debug sections. */
13356 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13357 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13358 {
13359 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13360 isec->gc_mark = 1;
13361 else if (isec->gc_mark
13362 && (isec->flags & SEC_ALLOC) != 0
13363 && elf_section_type (isec) != SHT_NOTE)
13364 some_kept = TRUE;
13365 else
13366 {
13367 /* Since all sections, except for backend specific ones,
13368 have been garbage collected, call mark_hook on this
13369 section if any of its linked-to sections is marked. */
13370 asection *linked_to_sec = elf_linked_to_section (isec);
13371 for (; linked_to_sec != NULL;
13372 linked_to_sec = elf_linked_to_section (linked_to_sec))
13373 if (linked_to_sec->gc_mark)
13374 {
13375 if (!_bfd_elf_gc_mark (info, isec, mark_hook))
13376 return FALSE;
13377 break;
13378 }
13379 }
13380
13381 if (!debug_frag_seen
13382 && (isec->flags & SEC_DEBUGGING)
13383 && CONST_STRNEQ (isec->name, ".debug_line."))
13384 debug_frag_seen = TRUE;
13385 else if (strcmp (bfd_section_name (isec),
13386 "__patchable_function_entries") == 0
13387 && elf_linked_to_section (isec) == NULL)
13388 info->callbacks->einfo (_("%F%P: %pB(%pA): error: "
13389 "need linked-to section "
13390 "for --gc-sections\n"),
13391 isec->owner, isec);
13392 }
13393
13394 /* If no non-note alloc section in this file will be kept, then
13395 we can toss out the debug and special sections. */
13396 if (!some_kept)
13397 continue;
13398
13399 /* Keep debug and special sections like .comment when they are
13400 not part of a group. Also keep section groups that contain
13401 just debug sections or special sections. NB: Sections with
13402 linked-to section has been handled above. */
13403 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13404 {
13405 if ((isec->flags & SEC_GROUP) != 0)
13406 _bfd_elf_gc_mark_debug_special_section_group (isec);
13407 else if (((isec->flags & SEC_DEBUGGING) != 0
13408 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13409 && elf_next_in_group (isec) == NULL
13410 && elf_linked_to_section (isec) == NULL)
13411 isec->gc_mark = 1;
13412 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13413 has_kept_debug_info = TRUE;
13414 }
13415
13416 /* Look for CODE sections which are going to be discarded,
13417 and find and discard any fragmented debug sections which
13418 are associated with that code section. */
13419 if (debug_frag_seen)
13420 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13421 if ((isec->flags & SEC_CODE) != 0
13422 && isec->gc_mark == 0)
13423 {
13424 unsigned int ilen;
13425 asection *dsec;
13426
13427 ilen = strlen (isec->name);
13428
13429 /* Association is determined by the name of the debug
13430 section containing the name of the code section as
13431 a suffix. For example .debug_line.text.foo is a
13432 debug section associated with .text.foo. */
13433 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13434 {
13435 unsigned int dlen;
13436
13437 if (dsec->gc_mark == 0
13438 || (dsec->flags & SEC_DEBUGGING) == 0)
13439 continue;
13440
13441 dlen = strlen (dsec->name);
13442
13443 if (dlen > ilen
13444 && strncmp (dsec->name + (dlen - ilen),
13445 isec->name, ilen) == 0)
13446 dsec->gc_mark = 0;
13447 }
13448 }
13449
13450 /* Mark debug sections referenced by kept debug sections. */
13451 if (has_kept_debug_info)
13452 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13453 if (isec->gc_mark
13454 && (isec->flags & SEC_DEBUGGING) != 0)
13455 if (!_bfd_elf_gc_mark (info, isec,
13456 elf_gc_mark_debug_section))
13457 return FALSE;
13458 }
13459 return TRUE;
13460 }
13461
13462 static bfd_boolean
13463 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13464 {
13465 bfd *sub;
13466 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13467
13468 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13469 {
13470 asection *o;
13471
13472 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13473 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13474 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13475 continue;
13476 o = sub->sections;
13477 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13478 continue;
13479
13480 for (o = sub->sections; o != NULL; o = o->next)
13481 {
13482 /* When any section in a section group is kept, we keep all
13483 sections in the section group. If the first member of
13484 the section group is excluded, we will also exclude the
13485 group section. */
13486 if (o->flags & SEC_GROUP)
13487 {
13488 asection *first = elf_next_in_group (o);
13489 o->gc_mark = first->gc_mark;
13490 }
13491
13492 if (o->gc_mark)
13493 continue;
13494
13495 /* Skip sweeping sections already excluded. */
13496 if (o->flags & SEC_EXCLUDE)
13497 continue;
13498
13499 /* Since this is early in the link process, it is simple
13500 to remove a section from the output. */
13501 o->flags |= SEC_EXCLUDE;
13502
13503 if (info->print_gc_sections && o->size != 0)
13504 /* xgettext:c-format */
13505 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13506 o, sub);
13507 }
13508 }
13509
13510 return TRUE;
13511 }
13512
13513 /* Propagate collected vtable information. This is called through
13514 elf_link_hash_traverse. */
13515
13516 static bfd_boolean
13517 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13518 {
13519 /* Those that are not vtables. */
13520 if (h->start_stop
13521 || h->u2.vtable == NULL
13522 || h->u2.vtable->parent == NULL)
13523 return TRUE;
13524
13525 /* Those vtables that do not have parents, we cannot merge. */
13526 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13527 return TRUE;
13528
13529 /* If we've already been done, exit. */
13530 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13531 return TRUE;
13532
13533 /* Make sure the parent's table is up to date. */
13534 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13535
13536 if (h->u2.vtable->used == NULL)
13537 {
13538 /* None of this table's entries were referenced. Re-use the
13539 parent's table. */
13540 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13541 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13542 }
13543 else
13544 {
13545 size_t n;
13546 bfd_boolean *cu, *pu;
13547
13548 /* Or the parent's entries into ours. */
13549 cu = h->u2.vtable->used;
13550 cu[-1] = TRUE;
13551 pu = h->u2.vtable->parent->u2.vtable->used;
13552 if (pu != NULL)
13553 {
13554 const struct elf_backend_data *bed;
13555 unsigned int log_file_align;
13556
13557 bed = get_elf_backend_data (h->root.u.def.section->owner);
13558 log_file_align = bed->s->log_file_align;
13559 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13560 while (n--)
13561 {
13562 if (*pu)
13563 *cu = TRUE;
13564 pu++;
13565 cu++;
13566 }
13567 }
13568 }
13569
13570 return TRUE;
13571 }
13572
13573 static bfd_boolean
13574 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13575 {
13576 asection *sec;
13577 bfd_vma hstart, hend;
13578 Elf_Internal_Rela *relstart, *relend, *rel;
13579 const struct elf_backend_data *bed;
13580 unsigned int log_file_align;
13581
13582 /* Take care of both those symbols that do not describe vtables as
13583 well as those that are not loaded. */
13584 if (h->start_stop
13585 || h->u2.vtable == NULL
13586 || h->u2.vtable->parent == NULL)
13587 return TRUE;
13588
13589 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13590 || h->root.type == bfd_link_hash_defweak);
13591
13592 sec = h->root.u.def.section;
13593 hstart = h->root.u.def.value;
13594 hend = hstart + h->size;
13595
13596 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13597 if (!relstart)
13598 return *(bfd_boolean *) okp = FALSE;
13599 bed = get_elf_backend_data (sec->owner);
13600 log_file_align = bed->s->log_file_align;
13601
13602 relend = relstart + sec->reloc_count;
13603
13604 for (rel = relstart; rel < relend; ++rel)
13605 if (rel->r_offset >= hstart && rel->r_offset < hend)
13606 {
13607 /* If the entry is in use, do nothing. */
13608 if (h->u2.vtable->used
13609 && (rel->r_offset - hstart) < h->u2.vtable->size)
13610 {
13611 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13612 if (h->u2.vtable->used[entry])
13613 continue;
13614 }
13615 /* Otherwise, kill it. */
13616 rel->r_offset = rel->r_info = rel->r_addend = 0;
13617 }
13618
13619 return TRUE;
13620 }
13621
13622 /* Mark sections containing dynamically referenced symbols. When
13623 building shared libraries, we must assume that any visible symbol is
13624 referenced. */
13625
13626 bfd_boolean
13627 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13628 {
13629 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13630 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13631
13632 if ((h->root.type == bfd_link_hash_defined
13633 || h->root.type == bfd_link_hash_defweak)
13634 && ((h->ref_dynamic && !h->forced_local)
13635 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13636 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13637 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13638 && (!bfd_link_executable (info)
13639 || info->gc_keep_exported
13640 || info->export_dynamic
13641 || (h->dynamic
13642 && d != NULL
13643 && (*d->match) (&d->head, NULL, h->root.root.string)))
13644 && (h->versioned >= versioned
13645 || !bfd_hide_sym_by_version (info->version_info,
13646 h->root.root.string)))))
13647 h->root.u.def.section->flags |= SEC_KEEP;
13648
13649 return TRUE;
13650 }
13651
13652 /* Keep all sections containing symbols undefined on the command-line,
13653 and the section containing the entry symbol. */
13654
13655 void
13656 _bfd_elf_gc_keep (struct bfd_link_info *info)
13657 {
13658 struct bfd_sym_chain *sym;
13659
13660 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13661 {
13662 struct elf_link_hash_entry *h;
13663
13664 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13665 FALSE, FALSE, FALSE);
13666
13667 if (h != NULL
13668 && (h->root.type == bfd_link_hash_defined
13669 || h->root.type == bfd_link_hash_defweak)
13670 && !bfd_is_abs_section (h->root.u.def.section)
13671 && !bfd_is_und_section (h->root.u.def.section))
13672 h->root.u.def.section->flags |= SEC_KEEP;
13673 }
13674 }
13675
13676 bfd_boolean
13677 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13678 struct bfd_link_info *info)
13679 {
13680 bfd *ibfd = info->input_bfds;
13681
13682 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13683 {
13684 asection *sec;
13685 struct elf_reloc_cookie cookie;
13686
13687 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13688 continue;
13689 sec = ibfd->sections;
13690 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13691 continue;
13692
13693 if (!init_reloc_cookie (&cookie, info, ibfd))
13694 return FALSE;
13695
13696 for (sec = ibfd->sections; sec; sec = sec->next)
13697 {
13698 if (CONST_STRNEQ (bfd_section_name (sec), ".eh_frame_entry")
13699 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13700 {
13701 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13702 fini_reloc_cookie_rels (&cookie, sec);
13703 }
13704 }
13705 }
13706 return TRUE;
13707 }
13708
13709 /* Do mark and sweep of unused sections. */
13710
13711 bfd_boolean
13712 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13713 {
13714 bfd_boolean ok = TRUE;
13715 bfd *sub;
13716 elf_gc_mark_hook_fn gc_mark_hook;
13717 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13718 struct elf_link_hash_table *htab;
13719
13720 if (!bed->can_gc_sections
13721 || !is_elf_hash_table (info->hash))
13722 {
13723 _bfd_error_handler(_("warning: gc-sections option ignored"));
13724 return TRUE;
13725 }
13726
13727 bed->gc_keep (info);
13728 htab = elf_hash_table (info);
13729
13730 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13731 at the .eh_frame section if we can mark the FDEs individually. */
13732 for (sub = info->input_bfds;
13733 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13734 sub = sub->link.next)
13735 {
13736 asection *sec;
13737 struct elf_reloc_cookie cookie;
13738
13739 sec = sub->sections;
13740 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13741 continue;
13742 sec = bfd_get_section_by_name (sub, ".eh_frame");
13743 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13744 {
13745 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13746 if (elf_section_data (sec)->sec_info
13747 && (sec->flags & SEC_LINKER_CREATED) == 0)
13748 elf_eh_frame_section (sub) = sec;
13749 fini_reloc_cookie_for_section (&cookie, sec);
13750 sec = bfd_get_next_section_by_name (NULL, sec);
13751 }
13752 }
13753
13754 /* Apply transitive closure to the vtable entry usage info. */
13755 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13756 if (!ok)
13757 return FALSE;
13758
13759 /* Kill the vtable relocations that were not used. */
13760 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13761 if (!ok)
13762 return FALSE;
13763
13764 /* Mark dynamically referenced symbols. */
13765 if (htab->dynamic_sections_created || info->gc_keep_exported)
13766 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13767
13768 /* Grovel through relocs to find out who stays ... */
13769 gc_mark_hook = bed->gc_mark_hook;
13770 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13771 {
13772 asection *o;
13773
13774 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13775 || elf_object_id (sub) != elf_hash_table_id (htab)
13776 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13777 continue;
13778
13779 o = sub->sections;
13780 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13781 continue;
13782
13783 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13784 Also treat note sections as a root, if the section is not part
13785 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13786 well as FINI_ARRAY sections for ld -r. */
13787 for (o = sub->sections; o != NULL; o = o->next)
13788 if (!o->gc_mark
13789 && (o->flags & SEC_EXCLUDE) == 0
13790 && ((o->flags & SEC_KEEP) != 0
13791 || (bfd_link_relocatable (info)
13792 && ((elf_section_data (o)->this_hdr.sh_type
13793 == SHT_PREINIT_ARRAY)
13794 || (elf_section_data (o)->this_hdr.sh_type
13795 == SHT_INIT_ARRAY)
13796 || (elf_section_data (o)->this_hdr.sh_type
13797 == SHT_FINI_ARRAY)))
13798 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13799 && elf_next_in_group (o) == NULL )))
13800 {
13801 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13802 return FALSE;
13803 }
13804 }
13805
13806 /* Allow the backend to mark additional target specific sections. */
13807 bed->gc_mark_extra_sections (info, gc_mark_hook);
13808
13809 /* ... and mark SEC_EXCLUDE for those that go. */
13810 return elf_gc_sweep (abfd, info);
13811 }
13812 \f
13813 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13814
13815 bfd_boolean
13816 bfd_elf_gc_record_vtinherit (bfd *abfd,
13817 asection *sec,
13818 struct elf_link_hash_entry *h,
13819 bfd_vma offset)
13820 {
13821 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13822 struct elf_link_hash_entry **search, *child;
13823 size_t extsymcount;
13824 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13825
13826 /* The sh_info field of the symtab header tells us where the
13827 external symbols start. We don't care about the local symbols at
13828 this point. */
13829 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13830 if (!elf_bad_symtab (abfd))
13831 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13832
13833 sym_hashes = elf_sym_hashes (abfd);
13834 sym_hashes_end = sym_hashes + extsymcount;
13835
13836 /* Hunt down the child symbol, which is in this section at the same
13837 offset as the relocation. */
13838 for (search = sym_hashes; search != sym_hashes_end; ++search)
13839 {
13840 if ((child = *search) != NULL
13841 && (child->root.type == bfd_link_hash_defined
13842 || child->root.type == bfd_link_hash_defweak)
13843 && child->root.u.def.section == sec
13844 && child->root.u.def.value == offset)
13845 goto win;
13846 }
13847
13848 /* xgettext:c-format */
13849 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13850 abfd, sec, (uint64_t) offset);
13851 bfd_set_error (bfd_error_invalid_operation);
13852 return FALSE;
13853
13854 win:
13855 if (!child->u2.vtable)
13856 {
13857 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13858 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13859 if (!child->u2.vtable)
13860 return FALSE;
13861 }
13862 if (!h)
13863 {
13864 /* This *should* only be the absolute section. It could potentially
13865 be that someone has defined a non-global vtable though, which
13866 would be bad. It isn't worth paging in the local symbols to be
13867 sure though; that case should simply be handled by the assembler. */
13868
13869 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13870 }
13871 else
13872 child->u2.vtable->parent = h;
13873
13874 return TRUE;
13875 }
13876
13877 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13878
13879 bfd_boolean
13880 bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec,
13881 struct elf_link_hash_entry *h,
13882 bfd_vma addend)
13883 {
13884 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13885 unsigned int log_file_align = bed->s->log_file_align;
13886
13887 if (!h)
13888 {
13889 /* xgettext:c-format */
13890 _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"),
13891 abfd, sec);
13892 bfd_set_error (bfd_error_bad_value);
13893 return FALSE;
13894 }
13895
13896 if (!h->u2.vtable)
13897 {
13898 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13899 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13900 if (!h->u2.vtable)
13901 return FALSE;
13902 }
13903
13904 if (addend >= h->u2.vtable->size)
13905 {
13906 size_t size, bytes, file_align;
13907 bfd_boolean *ptr = h->u2.vtable->used;
13908
13909 /* While the symbol is undefined, we have to be prepared to handle
13910 a zero size. */
13911 file_align = 1 << log_file_align;
13912 if (h->root.type == bfd_link_hash_undefined)
13913 size = addend + file_align;
13914 else
13915 {
13916 size = h->size;
13917 if (addend >= size)
13918 {
13919 /* Oops! We've got a reference past the defined end of
13920 the table. This is probably a bug -- shall we warn? */
13921 size = addend + file_align;
13922 }
13923 }
13924 size = (size + file_align - 1) & -file_align;
13925
13926 /* Allocate one extra entry for use as a "done" flag for the
13927 consolidation pass. */
13928 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13929
13930 if (ptr)
13931 {
13932 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13933
13934 if (ptr != NULL)
13935 {
13936 size_t oldbytes;
13937
13938 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13939 * sizeof (bfd_boolean));
13940 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13941 }
13942 }
13943 else
13944 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13945
13946 if (ptr == NULL)
13947 return FALSE;
13948
13949 /* And arrange for that done flag to be at index -1. */
13950 h->u2.vtable->used = ptr + 1;
13951 h->u2.vtable->size = size;
13952 }
13953
13954 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13955
13956 return TRUE;
13957 }
13958
13959 /* Map an ELF section header flag to its corresponding string. */
13960 typedef struct
13961 {
13962 char *flag_name;
13963 flagword flag_value;
13964 } elf_flags_to_name_table;
13965
13966 static elf_flags_to_name_table elf_flags_to_names [] =
13967 {
13968 { "SHF_WRITE", SHF_WRITE },
13969 { "SHF_ALLOC", SHF_ALLOC },
13970 { "SHF_EXECINSTR", SHF_EXECINSTR },
13971 { "SHF_MERGE", SHF_MERGE },
13972 { "SHF_STRINGS", SHF_STRINGS },
13973 { "SHF_INFO_LINK", SHF_INFO_LINK},
13974 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13975 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13976 { "SHF_GROUP", SHF_GROUP },
13977 { "SHF_TLS", SHF_TLS },
13978 { "SHF_MASKOS", SHF_MASKOS },
13979 { "SHF_EXCLUDE", SHF_EXCLUDE },
13980 };
13981
13982 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13983 bfd_boolean
13984 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13985 struct flag_info *flaginfo,
13986 asection *section)
13987 {
13988 const bfd_vma sh_flags = elf_section_flags (section);
13989
13990 if (!flaginfo->flags_initialized)
13991 {
13992 bfd *obfd = info->output_bfd;
13993 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13994 struct flag_info_list *tf = flaginfo->flag_list;
13995 int with_hex = 0;
13996 int without_hex = 0;
13997
13998 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13999 {
14000 unsigned i;
14001 flagword (*lookup) (char *);
14002
14003 lookup = bed->elf_backend_lookup_section_flags_hook;
14004 if (lookup != NULL)
14005 {
14006 flagword hexval = (*lookup) ((char *) tf->name);
14007
14008 if (hexval != 0)
14009 {
14010 if (tf->with == with_flags)
14011 with_hex |= hexval;
14012 else if (tf->with == without_flags)
14013 without_hex |= hexval;
14014 tf->valid = TRUE;
14015 continue;
14016 }
14017 }
14018 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
14019 {
14020 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
14021 {
14022 if (tf->with == with_flags)
14023 with_hex |= elf_flags_to_names[i].flag_value;
14024 else if (tf->with == without_flags)
14025 without_hex |= elf_flags_to_names[i].flag_value;
14026 tf->valid = TRUE;
14027 break;
14028 }
14029 }
14030 if (!tf->valid)
14031 {
14032 info->callbacks->einfo
14033 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
14034 return FALSE;
14035 }
14036 }
14037 flaginfo->flags_initialized = TRUE;
14038 flaginfo->only_with_flags |= with_hex;
14039 flaginfo->not_with_flags |= without_hex;
14040 }
14041
14042 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
14043 return FALSE;
14044
14045 if ((flaginfo->not_with_flags & sh_flags) != 0)
14046 return FALSE;
14047
14048 return TRUE;
14049 }
14050
14051 struct alloc_got_off_arg {
14052 bfd_vma gotoff;
14053 struct bfd_link_info *info;
14054 };
14055
14056 /* We need a special top-level link routine to convert got reference counts
14057 to real got offsets. */
14058
14059 static bfd_boolean
14060 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
14061 {
14062 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
14063 bfd *obfd = gofarg->info->output_bfd;
14064 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
14065
14066 if (h->got.refcount > 0)
14067 {
14068 h->got.offset = gofarg->gotoff;
14069 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
14070 }
14071 else
14072 h->got.offset = (bfd_vma) -1;
14073
14074 return TRUE;
14075 }
14076
14077 /* And an accompanying bit to work out final got entry offsets once
14078 we're done. Should be called from final_link. */
14079
14080 bfd_boolean
14081 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
14082 struct bfd_link_info *info)
14083 {
14084 bfd *i;
14085 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14086 bfd_vma gotoff;
14087 struct alloc_got_off_arg gofarg;
14088
14089 BFD_ASSERT (abfd == info->output_bfd);
14090
14091 if (! is_elf_hash_table (info->hash))
14092 return FALSE;
14093
14094 /* The GOT offset is relative to the .got section, but the GOT header is
14095 put into the .got.plt section, if the backend uses it. */
14096 if (bed->want_got_plt)
14097 gotoff = 0;
14098 else
14099 gotoff = bed->got_header_size;
14100
14101 /* Do the local .got entries first. */
14102 for (i = info->input_bfds; i; i = i->link.next)
14103 {
14104 bfd_signed_vma *local_got;
14105 size_t j, locsymcount;
14106 Elf_Internal_Shdr *symtab_hdr;
14107
14108 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
14109 continue;
14110
14111 local_got = elf_local_got_refcounts (i);
14112 if (!local_got)
14113 continue;
14114
14115 symtab_hdr = &elf_tdata (i)->symtab_hdr;
14116 if (elf_bad_symtab (i))
14117 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
14118 else
14119 locsymcount = symtab_hdr->sh_info;
14120
14121 for (j = 0; j < locsymcount; ++j)
14122 {
14123 if (local_got[j] > 0)
14124 {
14125 local_got[j] = gotoff;
14126 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
14127 }
14128 else
14129 local_got[j] = (bfd_vma) -1;
14130 }
14131 }
14132
14133 /* Then the global .got entries. .plt refcounts are handled by
14134 adjust_dynamic_symbol */
14135 gofarg.gotoff = gotoff;
14136 gofarg.info = info;
14137 elf_link_hash_traverse (elf_hash_table (info),
14138 elf_gc_allocate_got_offsets,
14139 &gofarg);
14140 return TRUE;
14141 }
14142
14143 /* Many folk need no more in the way of final link than this, once
14144 got entry reference counting is enabled. */
14145
14146 bfd_boolean
14147 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
14148 {
14149 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
14150 return FALSE;
14151
14152 /* Invoke the regular ELF backend linker to do all the work. */
14153 return bfd_elf_final_link (abfd, info);
14154 }
14155
14156 bfd_boolean
14157 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14158 {
14159 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14160
14161 if (rcookie->bad_symtab)
14162 rcookie->rel = rcookie->rels;
14163
14164 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14165 {
14166 unsigned long r_symndx;
14167
14168 if (! rcookie->bad_symtab)
14169 if (rcookie->rel->r_offset > offset)
14170 return FALSE;
14171 if (rcookie->rel->r_offset != offset)
14172 continue;
14173
14174 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14175 if (r_symndx == STN_UNDEF)
14176 return TRUE;
14177
14178 if (r_symndx >= rcookie->locsymcount
14179 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14180 {
14181 struct elf_link_hash_entry *h;
14182
14183 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14184
14185 while (h->root.type == bfd_link_hash_indirect
14186 || h->root.type == bfd_link_hash_warning)
14187 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14188
14189 if ((h->root.type == bfd_link_hash_defined
14190 || h->root.type == bfd_link_hash_defweak)
14191 && (h->root.u.def.section->owner != rcookie->abfd
14192 || h->root.u.def.section->kept_section != NULL
14193 || discarded_section (h->root.u.def.section)))
14194 return TRUE;
14195 }
14196 else
14197 {
14198 /* It's not a relocation against a global symbol,
14199 but it could be a relocation against a local
14200 symbol for a discarded section. */
14201 asection *isec;
14202 Elf_Internal_Sym *isym;
14203
14204 /* Need to: get the symbol; get the section. */
14205 isym = &rcookie->locsyms[r_symndx];
14206 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14207 if (isec != NULL
14208 && (isec->kept_section != NULL
14209 || discarded_section (isec)))
14210 return TRUE;
14211 }
14212 return FALSE;
14213 }
14214 return FALSE;
14215 }
14216
14217 /* Discard unneeded references to discarded sections.
14218 Returns -1 on error, 1 if any section's size was changed, 0 if
14219 nothing changed. This function assumes that the relocations are in
14220 sorted order, which is true for all known assemblers. */
14221
14222 int
14223 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14224 {
14225 struct elf_reloc_cookie cookie;
14226 asection *o;
14227 bfd *abfd;
14228 int changed = 0;
14229
14230 if (info->traditional_format
14231 || !is_elf_hash_table (info->hash))
14232 return 0;
14233
14234 o = bfd_get_section_by_name (output_bfd, ".stab");
14235 if (o != NULL)
14236 {
14237 asection *i;
14238
14239 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14240 {
14241 if (i->size == 0
14242 || i->reloc_count == 0
14243 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14244 continue;
14245
14246 abfd = i->owner;
14247 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14248 continue;
14249
14250 if (!init_reloc_cookie_for_section (&cookie, info, i))
14251 return -1;
14252
14253 if (_bfd_discard_section_stabs (abfd, i,
14254 elf_section_data (i)->sec_info,
14255 bfd_elf_reloc_symbol_deleted_p,
14256 &cookie))
14257 changed = 1;
14258
14259 fini_reloc_cookie_for_section (&cookie, i);
14260 }
14261 }
14262
14263 o = NULL;
14264 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14265 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14266 if (o != NULL)
14267 {
14268 asection *i;
14269 int eh_changed = 0;
14270 unsigned int eh_alignment; /* Octets. */
14271
14272 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14273 {
14274 if (i->size == 0)
14275 continue;
14276
14277 abfd = i->owner;
14278 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14279 continue;
14280
14281 if (!init_reloc_cookie_for_section (&cookie, info, i))
14282 return -1;
14283
14284 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14285 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14286 bfd_elf_reloc_symbol_deleted_p,
14287 &cookie))
14288 {
14289 eh_changed = 1;
14290 if (i->size != i->rawsize)
14291 changed = 1;
14292 }
14293
14294 fini_reloc_cookie_for_section (&cookie, i);
14295 }
14296
14297 eh_alignment = ((1 << o->alignment_power)
14298 * bfd_octets_per_byte (output_bfd, o));
14299 /* Skip over zero terminator, and prevent empty sections from
14300 adding alignment padding at the end. */
14301 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14302 if (i->size == 0)
14303 i->flags |= SEC_EXCLUDE;
14304 else if (i->size > 4)
14305 break;
14306 /* The last non-empty eh_frame section doesn't need padding. */
14307 if (i != NULL)
14308 i = i->map_tail.s;
14309 /* Any prior sections must pad the last FDE out to the output
14310 section alignment. Otherwise we might have zero padding
14311 between sections, which would be seen as a terminator. */
14312 for (; i != NULL; i = i->map_tail.s)
14313 if (i->size == 4)
14314 /* All but the last zero terminator should have been removed. */
14315 BFD_FAIL ();
14316 else
14317 {
14318 bfd_size_type size
14319 = (i->size + eh_alignment - 1) & -eh_alignment;
14320 if (i->size != size)
14321 {
14322 i->size = size;
14323 changed = 1;
14324 eh_changed = 1;
14325 }
14326 }
14327 if (eh_changed)
14328 elf_link_hash_traverse (elf_hash_table (info),
14329 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14330 }
14331
14332 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14333 {
14334 const struct elf_backend_data *bed;
14335 asection *s;
14336
14337 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14338 continue;
14339 s = abfd->sections;
14340 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14341 continue;
14342
14343 bed = get_elf_backend_data (abfd);
14344
14345 if (bed->elf_backend_discard_info != NULL)
14346 {
14347 if (!init_reloc_cookie (&cookie, info, abfd))
14348 return -1;
14349
14350 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14351 changed = 1;
14352
14353 fini_reloc_cookie (&cookie, abfd);
14354 }
14355 }
14356
14357 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14358 _bfd_elf_end_eh_frame_parsing (info);
14359
14360 if (info->eh_frame_hdr_type
14361 && !bfd_link_relocatable (info)
14362 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14363 changed = 1;
14364
14365 return changed;
14366 }
14367
14368 bfd_boolean
14369 _bfd_elf_section_already_linked (bfd *abfd,
14370 asection *sec,
14371 struct bfd_link_info *info)
14372 {
14373 flagword flags;
14374 const char *name, *key;
14375 struct bfd_section_already_linked *l;
14376 struct bfd_section_already_linked_hash_entry *already_linked_list;
14377
14378 if (sec->output_section == bfd_abs_section_ptr)
14379 return FALSE;
14380
14381 flags = sec->flags;
14382
14383 /* Return if it isn't a linkonce section. A comdat group section
14384 also has SEC_LINK_ONCE set. */
14385 if ((flags & SEC_LINK_ONCE) == 0)
14386 return FALSE;
14387
14388 /* Don't put group member sections on our list of already linked
14389 sections. They are handled as a group via their group section. */
14390 if (elf_sec_group (sec) != NULL)
14391 return FALSE;
14392
14393 /* For a SHT_GROUP section, use the group signature as the key. */
14394 name = sec->name;
14395 if ((flags & SEC_GROUP) != 0
14396 && elf_next_in_group (sec) != NULL
14397 && elf_group_name (elf_next_in_group (sec)) != NULL)
14398 key = elf_group_name (elf_next_in_group (sec));
14399 else
14400 {
14401 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14402 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14403 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14404 key++;
14405 else
14406 /* Must be a user linkonce section that doesn't follow gcc's
14407 naming convention. In this case we won't be matching
14408 single member groups. */
14409 key = name;
14410 }
14411
14412 already_linked_list = bfd_section_already_linked_table_lookup (key);
14413
14414 for (l = already_linked_list->entry; l != NULL; l = l->next)
14415 {
14416 /* We may have 2 different types of sections on the list: group
14417 sections with a signature of <key> (<key> is some string),
14418 and linkonce sections named .gnu.linkonce.<type>.<key>.
14419 Match like sections. LTO plugin sections are an exception.
14420 They are always named .gnu.linkonce.t.<key> and match either
14421 type of section. */
14422 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14423 && ((flags & SEC_GROUP) != 0
14424 || strcmp (name, l->sec->name) == 0))
14425 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14426 {
14427 /* The section has already been linked. See if we should
14428 issue a warning. */
14429 if (!_bfd_handle_already_linked (sec, l, info))
14430 return FALSE;
14431
14432 if (flags & SEC_GROUP)
14433 {
14434 asection *first = elf_next_in_group (sec);
14435 asection *s = first;
14436
14437 while (s != NULL)
14438 {
14439 s->output_section = bfd_abs_section_ptr;
14440 /* Record which group discards it. */
14441 s->kept_section = l->sec;
14442 s = elf_next_in_group (s);
14443 /* These lists are circular. */
14444 if (s == first)
14445 break;
14446 }
14447 }
14448
14449 return TRUE;
14450 }
14451 }
14452
14453 /* A single member comdat group section may be discarded by a
14454 linkonce section and vice versa. */
14455 if ((flags & SEC_GROUP) != 0)
14456 {
14457 asection *first = elf_next_in_group (sec);
14458
14459 if (first != NULL && elf_next_in_group (first) == first)
14460 /* Check this single member group against linkonce sections. */
14461 for (l = already_linked_list->entry; l != NULL; l = l->next)
14462 if ((l->sec->flags & SEC_GROUP) == 0
14463 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14464 {
14465 first->output_section = bfd_abs_section_ptr;
14466 first->kept_section = l->sec;
14467 sec->output_section = bfd_abs_section_ptr;
14468 break;
14469 }
14470 }
14471 else
14472 /* Check this linkonce section against single member groups. */
14473 for (l = already_linked_list->entry; l != NULL; l = l->next)
14474 if (l->sec->flags & SEC_GROUP)
14475 {
14476 asection *first = elf_next_in_group (l->sec);
14477
14478 if (first != NULL
14479 && elf_next_in_group (first) == first
14480 && bfd_elf_match_symbols_in_sections (first, sec, info))
14481 {
14482 sec->output_section = bfd_abs_section_ptr;
14483 sec->kept_section = first;
14484 break;
14485 }
14486 }
14487
14488 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14489 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14490 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14491 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14492 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14493 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14494 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14495 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14496 The reverse order cannot happen as there is never a bfd with only the
14497 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14498 matter as here were are looking only for cross-bfd sections. */
14499
14500 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14501 for (l = already_linked_list->entry; l != NULL; l = l->next)
14502 if ((l->sec->flags & SEC_GROUP) == 0
14503 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14504 {
14505 if (abfd != l->sec->owner)
14506 sec->output_section = bfd_abs_section_ptr;
14507 break;
14508 }
14509
14510 /* This is the first section with this name. Record it. */
14511 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14512 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14513 return sec->output_section == bfd_abs_section_ptr;
14514 }
14515
14516 bfd_boolean
14517 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14518 {
14519 return sym->st_shndx == SHN_COMMON;
14520 }
14521
14522 unsigned int
14523 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14524 {
14525 return SHN_COMMON;
14526 }
14527
14528 asection *
14529 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14530 {
14531 return bfd_com_section_ptr;
14532 }
14533
14534 bfd_vma
14535 _bfd_elf_default_got_elt_size (bfd *abfd,
14536 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14537 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14538 bfd *ibfd ATTRIBUTE_UNUSED,
14539 unsigned long symndx ATTRIBUTE_UNUSED)
14540 {
14541 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14542 return bed->s->arch_size / 8;
14543 }
14544
14545 /* Routines to support the creation of dynamic relocs. */
14546
14547 /* Returns the name of the dynamic reloc section associated with SEC. */
14548
14549 static const char *
14550 get_dynamic_reloc_section_name (bfd * abfd,
14551 asection * sec,
14552 bfd_boolean is_rela)
14553 {
14554 char *name;
14555 const char *old_name = bfd_section_name (sec);
14556 const char *prefix = is_rela ? ".rela" : ".rel";
14557
14558 if (old_name == NULL)
14559 return NULL;
14560
14561 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14562 sprintf (name, "%s%s", prefix, old_name);
14563
14564 return name;
14565 }
14566
14567 /* Returns the dynamic reloc section associated with SEC.
14568 If necessary compute the name of the dynamic reloc section based
14569 on SEC's name (looked up in ABFD's string table) and the setting
14570 of IS_RELA. */
14571
14572 asection *
14573 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14574 asection * sec,
14575 bfd_boolean is_rela)
14576 {
14577 asection * reloc_sec = elf_section_data (sec)->sreloc;
14578
14579 if (reloc_sec == NULL)
14580 {
14581 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14582
14583 if (name != NULL)
14584 {
14585 reloc_sec = bfd_get_linker_section (abfd, name);
14586
14587 if (reloc_sec != NULL)
14588 elf_section_data (sec)->sreloc = reloc_sec;
14589 }
14590 }
14591
14592 return reloc_sec;
14593 }
14594
14595 /* Returns the dynamic reloc section associated with SEC. If the
14596 section does not exist it is created and attached to the DYNOBJ
14597 bfd and stored in the SRELOC field of SEC's elf_section_data
14598 structure.
14599
14600 ALIGNMENT is the alignment for the newly created section and
14601 IS_RELA defines whether the name should be .rela.<SEC's name>
14602 or .rel.<SEC's name>. The section name is looked up in the
14603 string table associated with ABFD. */
14604
14605 asection *
14606 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14607 bfd *dynobj,
14608 unsigned int alignment,
14609 bfd *abfd,
14610 bfd_boolean is_rela)
14611 {
14612 asection * reloc_sec = elf_section_data (sec)->sreloc;
14613
14614 if (reloc_sec == NULL)
14615 {
14616 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14617
14618 if (name == NULL)
14619 return NULL;
14620
14621 reloc_sec = bfd_get_linker_section (dynobj, name);
14622
14623 if (reloc_sec == NULL)
14624 {
14625 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14626 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14627 if ((sec->flags & SEC_ALLOC) != 0)
14628 flags |= SEC_ALLOC | SEC_LOAD;
14629
14630 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14631 if (reloc_sec != NULL)
14632 {
14633 /* _bfd_elf_get_sec_type_attr chooses a section type by
14634 name. Override as it may be wrong, eg. for a user
14635 section named "auto" we'll get ".relauto" which is
14636 seen to be a .rela section. */
14637 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14638 if (!bfd_set_section_alignment (reloc_sec, alignment))
14639 reloc_sec = NULL;
14640 }
14641 }
14642
14643 elf_section_data (sec)->sreloc = reloc_sec;
14644 }
14645
14646 return reloc_sec;
14647 }
14648
14649 /* Copy the ELF symbol type and other attributes for a linker script
14650 assignment from HSRC to HDEST. Generally this should be treated as
14651 if we found a strong non-dynamic definition for HDEST (except that
14652 ld ignores multiple definition errors). */
14653 void
14654 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14655 struct bfd_link_hash_entry *hdest,
14656 struct bfd_link_hash_entry *hsrc)
14657 {
14658 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14659 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14660 Elf_Internal_Sym isym;
14661
14662 ehdest->type = ehsrc->type;
14663 ehdest->target_internal = ehsrc->target_internal;
14664
14665 isym.st_other = ehsrc->other;
14666 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14667 }
14668
14669 /* Append a RELA relocation REL to section S in BFD. */
14670
14671 void
14672 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14673 {
14674 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14675 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14676 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14677 bed->s->swap_reloca_out (abfd, rel, loc);
14678 }
14679
14680 /* Append a REL relocation REL to section S in BFD. */
14681
14682 void
14683 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14684 {
14685 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14686 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14687 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14688 bed->s->swap_reloc_out (abfd, rel, loc);
14689 }
14690
14691 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14692
14693 struct bfd_link_hash_entry *
14694 bfd_elf_define_start_stop (struct bfd_link_info *info,
14695 const char *symbol, asection *sec)
14696 {
14697 struct elf_link_hash_entry *h;
14698
14699 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14700 FALSE, FALSE, TRUE);
14701 if (h != NULL
14702 && (h->root.type == bfd_link_hash_undefined
14703 || h->root.type == bfd_link_hash_undefweak
14704 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14705 {
14706 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14707 h->root.type = bfd_link_hash_defined;
14708 h->root.u.def.section = sec;
14709 h->root.u.def.value = 0;
14710 h->def_regular = 1;
14711 h->def_dynamic = 0;
14712 h->start_stop = 1;
14713 h->u2.start_stop_section = sec;
14714 if (symbol[0] == '.')
14715 {
14716 /* .startof. and .sizeof. symbols are local. */
14717 const struct elf_backend_data *bed;
14718 bed = get_elf_backend_data (info->output_bfd);
14719 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14720 }
14721 else
14722 {
14723 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14724 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14725 if (was_dynamic)
14726 bfd_elf_link_record_dynamic_symbol (info, h);
14727 }
14728 return &h->root;
14729 }
14730 return NULL;
14731 }
This page took 0.329019 seconds and 5 git commands to generate.