PR24339, segfault on NULL symbol section
[deliverable/binutils-gdb.git] / bfd / elflink.c
1 /* ELF linking support for BFD.
2 Copyright (C) 1995-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 #if BFD_SUPPORTS_PLUGINS
31 #include "plugin-api.h"
32 #include "plugin.h"
33 #endif
34
35 /* This struct is used to pass information to routines called via
36 elf_link_hash_traverse which must return failure. */
37
38 struct elf_info_failed
39 {
40 struct bfd_link_info *info;
41 bfd_boolean failed;
42 };
43
44 /* This structure is used to pass information to
45 _bfd_elf_link_find_version_dependencies. */
46
47 struct elf_find_verdep_info
48 {
49 /* General link information. */
50 struct bfd_link_info *info;
51 /* The number of dependencies. */
52 unsigned int vers;
53 /* Whether we had a failure. */
54 bfd_boolean failed;
55 };
56
57 static bfd_boolean _bfd_elf_fix_symbol_flags
58 (struct elf_link_hash_entry *, struct elf_info_failed *);
59
60 asection *
61 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
62 unsigned long r_symndx,
63 bfd_boolean discard)
64 {
65 if (r_symndx >= cookie->locsymcount
66 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
67 {
68 struct elf_link_hash_entry *h;
69
70 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
71
72 while (h->root.type == bfd_link_hash_indirect
73 || h->root.type == bfd_link_hash_warning)
74 h = (struct elf_link_hash_entry *) h->root.u.i.link;
75
76 if ((h->root.type == bfd_link_hash_defined
77 || h->root.type == bfd_link_hash_defweak)
78 && discarded_section (h->root.u.def.section))
79 return h->root.u.def.section;
80 else
81 return NULL;
82 }
83 else
84 {
85 /* It's not a relocation against a global symbol,
86 but it could be a relocation against a local
87 symbol for a discarded section. */
88 asection *isec;
89 Elf_Internal_Sym *isym;
90
91 /* Need to: get the symbol; get the section. */
92 isym = &cookie->locsyms[r_symndx];
93 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
94 if (isec != NULL
95 && discard ? discarded_section (isec) : 1)
96 return isec;
97 }
98 return NULL;
99 }
100
101 /* Define a symbol in a dynamic linkage section. */
102
103 struct elf_link_hash_entry *
104 _bfd_elf_define_linkage_sym (bfd *abfd,
105 struct bfd_link_info *info,
106 asection *sec,
107 const char *name)
108 {
109 struct elf_link_hash_entry *h;
110 struct bfd_link_hash_entry *bh;
111 const struct elf_backend_data *bed;
112
113 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
114 if (h != NULL)
115 {
116 /* Zap symbol defined in an as-needed lib that wasn't linked.
117 This is a symptom of a larger problem: Absolute symbols
118 defined in shared libraries can't be overridden, because we
119 lose the link to the bfd which is via the symbol section. */
120 h->root.type = bfd_link_hash_new;
121 bh = &h->root;
122 }
123 else
124 bh = NULL;
125
126 bed = get_elf_backend_data (abfd);
127 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
128 sec, 0, NULL, FALSE, bed->collect,
129 &bh))
130 return NULL;
131 h = (struct elf_link_hash_entry *) bh;
132 BFD_ASSERT (h != NULL);
133 h->def_regular = 1;
134 h->non_elf = 0;
135 h->root.linker_def = 1;
136 h->type = STT_OBJECT;
137 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
138 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
139
140 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
141 return h;
142 }
143
144 bfd_boolean
145 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
146 {
147 flagword flags;
148 asection *s;
149 struct elf_link_hash_entry *h;
150 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
151 struct elf_link_hash_table *htab = elf_hash_table (info);
152
153 /* This function may be called more than once. */
154 if (htab->sgot != NULL)
155 return TRUE;
156
157 flags = bed->dynamic_sec_flags;
158
159 s = bfd_make_section_anyway_with_flags (abfd,
160 (bed->rela_plts_and_copies_p
161 ? ".rela.got" : ".rel.got"),
162 (bed->dynamic_sec_flags
163 | SEC_READONLY));
164 if (s == NULL
165 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
166 return FALSE;
167 htab->srelgot = s;
168
169 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
170 if (s == NULL
171 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
172 return FALSE;
173 htab->sgot = s;
174
175 if (bed->want_got_plt)
176 {
177 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
178 if (s == NULL
179 || !bfd_set_section_alignment (abfd, s,
180 bed->s->log_file_align))
181 return FALSE;
182 htab->sgotplt = s;
183 }
184
185 /* The first bit of the global offset table is the header. */
186 s->size += bed->got_header_size;
187
188 if (bed->want_got_sym)
189 {
190 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
191 (or .got.plt) section. We don't do this in the linker script
192 because we don't want to define the symbol if we are not creating
193 a global offset table. */
194 h = _bfd_elf_define_linkage_sym (abfd, info, s,
195 "_GLOBAL_OFFSET_TABLE_");
196 elf_hash_table (info)->hgot = h;
197 if (h == NULL)
198 return FALSE;
199 }
200
201 return TRUE;
202 }
203 \f
204 /* Create a strtab to hold the dynamic symbol names. */
205 static bfd_boolean
206 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
207 {
208 struct elf_link_hash_table *hash_table;
209
210 hash_table = elf_hash_table (info);
211 if (hash_table->dynobj == NULL)
212 {
213 /* We may not set dynobj, an input file holding linker created
214 dynamic sections to abfd, which may be a dynamic object with
215 its own dynamic sections. We need to find a normal input file
216 to hold linker created sections if possible. */
217 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
218 {
219 bfd *ibfd;
220 asection *s;
221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 if ((ibfd->flags
223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0
224 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
225 && elf_object_id (ibfd) == elf_hash_table_id (hash_table)
226 && !((s = ibfd->sections) != NULL
227 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS))
228 {
229 abfd = ibfd;
230 break;
231 }
232 }
233 hash_table->dynobj = abfd;
234 }
235
236 if (hash_table->dynstr == NULL)
237 {
238 hash_table->dynstr = _bfd_elf_strtab_init ();
239 if (hash_table->dynstr == NULL)
240 return FALSE;
241 }
242 return TRUE;
243 }
244
245 /* Create some sections which will be filled in with dynamic linking
246 information. ABFD is an input file which requires dynamic sections
247 to be created. The dynamic sections take up virtual memory space
248 when the final executable is run, so we need to create them before
249 addresses are assigned to the output sections. We work out the
250 actual contents and size of these sections later. */
251
252 bfd_boolean
253 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
254 {
255 flagword flags;
256 asection *s;
257 const struct elf_backend_data *bed;
258 struct elf_link_hash_entry *h;
259
260 if (! is_elf_hash_table (info->hash))
261 return FALSE;
262
263 if (elf_hash_table (info)->dynamic_sections_created)
264 return TRUE;
265
266 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
267 return FALSE;
268
269 abfd = elf_hash_table (info)->dynobj;
270 bed = get_elf_backend_data (abfd);
271
272 flags = bed->dynamic_sec_flags;
273
274 /* A dynamically linked executable has a .interp section, but a
275 shared library does not. */
276 if (bfd_link_executable (info) && !info->nointerp)
277 {
278 s = bfd_make_section_anyway_with_flags (abfd, ".interp",
279 flags | SEC_READONLY);
280 if (s == NULL)
281 return FALSE;
282 }
283
284 /* Create sections to hold version informations. These are removed
285 if they are not needed. */
286 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
287 flags | SEC_READONLY);
288 if (s == NULL
289 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
290 return FALSE;
291
292 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
293 flags | SEC_READONLY);
294 if (s == NULL
295 || ! bfd_set_section_alignment (abfd, s, 1))
296 return FALSE;
297
298 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
299 flags | SEC_READONLY);
300 if (s == NULL
301 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
302 return FALSE;
303
304 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
305 flags | SEC_READONLY);
306 if (s == NULL
307 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
308 return FALSE;
309 elf_hash_table (info)->dynsym = s;
310
311 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
312 flags | SEC_READONLY);
313 if (s == NULL)
314 return FALSE;
315
316 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
317 if (s == NULL
318 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
319 return FALSE;
320
321 /* The special symbol _DYNAMIC is always set to the start of the
322 .dynamic section. We could set _DYNAMIC in a linker script, but we
323 only want to define it if we are, in fact, creating a .dynamic
324 section. We don't want to define it if there is no .dynamic
325 section, since on some ELF platforms the start up code examines it
326 to decide how to initialize the process. */
327 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
328 elf_hash_table (info)->hdynamic = h;
329 if (h == NULL)
330 return FALSE;
331
332 if (info->emit_hash)
333 {
334 s = bfd_make_section_anyway_with_flags (abfd, ".hash",
335 flags | SEC_READONLY);
336 if (s == NULL
337 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
338 return FALSE;
339 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
340 }
341
342 if (info->emit_gnu_hash)
343 {
344 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
345 flags | SEC_READONLY);
346 if (s == NULL
347 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
348 return FALSE;
349 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
350 4 32-bit words followed by variable count of 64-bit words, then
351 variable count of 32-bit words. */
352 if (bed->s->arch_size == 64)
353 elf_section_data (s)->this_hdr.sh_entsize = 0;
354 else
355 elf_section_data (s)->this_hdr.sh_entsize = 4;
356 }
357
358 /* Let the backend create the rest of the sections. This lets the
359 backend set the right flags. The backend will normally create
360 the .got and .plt sections. */
361 if (bed->elf_backend_create_dynamic_sections == NULL
362 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
363 return FALSE;
364
365 elf_hash_table (info)->dynamic_sections_created = TRUE;
366
367 return TRUE;
368 }
369
370 /* Create dynamic sections when linking against a dynamic object. */
371
372 bfd_boolean
373 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
374 {
375 flagword flags, pltflags;
376 struct elf_link_hash_entry *h;
377 asection *s;
378 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
379 struct elf_link_hash_table *htab = elf_hash_table (info);
380
381 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
382 .rel[a].bss sections. */
383 flags = bed->dynamic_sec_flags;
384
385 pltflags = flags;
386 if (bed->plt_not_loaded)
387 /* We do not clear SEC_ALLOC here because we still want the OS to
388 allocate space for the section; it's just that there's nothing
389 to read in from the object file. */
390 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
391 else
392 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
393 if (bed->plt_readonly)
394 pltflags |= SEC_READONLY;
395
396 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
397 if (s == NULL
398 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
399 return FALSE;
400 htab->splt = s;
401
402 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
403 .plt section. */
404 if (bed->want_plt_sym)
405 {
406 h = _bfd_elf_define_linkage_sym (abfd, info, s,
407 "_PROCEDURE_LINKAGE_TABLE_");
408 elf_hash_table (info)->hplt = h;
409 if (h == NULL)
410 return FALSE;
411 }
412
413 s = bfd_make_section_anyway_with_flags (abfd,
414 (bed->rela_plts_and_copies_p
415 ? ".rela.plt" : ".rel.plt"),
416 flags | SEC_READONLY);
417 if (s == NULL
418 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
419 return FALSE;
420 htab->srelplt = s;
421
422 if (! _bfd_elf_create_got_section (abfd, info))
423 return FALSE;
424
425 if (bed->want_dynbss)
426 {
427 /* The .dynbss section is a place to put symbols which are defined
428 by dynamic objects, are referenced by regular objects, and are
429 not functions. We must allocate space for them in the process
430 image and use a R_*_COPY reloc to tell the dynamic linker to
431 initialize them at run time. The linker script puts the .dynbss
432 section into the .bss section of the final image. */
433 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
434 SEC_ALLOC | SEC_LINKER_CREATED);
435 if (s == NULL)
436 return FALSE;
437 htab->sdynbss = s;
438
439 if (bed->want_dynrelro)
440 {
441 /* Similarly, but for symbols that were originally in read-only
442 sections. This section doesn't really need to have contents,
443 but make it like other .data.rel.ro sections. */
444 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
445 flags);
446 if (s == NULL)
447 return FALSE;
448 htab->sdynrelro = s;
449 }
450
451 /* The .rel[a].bss section holds copy relocs. This section is not
452 normally needed. We need to create it here, though, so that the
453 linker will map it to an output section. We can't just create it
454 only if we need it, because we will not know whether we need it
455 until we have seen all the input files, and the first time the
456 main linker code calls BFD after examining all the input files
457 (size_dynamic_sections) the input sections have already been
458 mapped to the output sections. If the section turns out not to
459 be needed, we can discard it later. We will never need this
460 section when generating a shared object, since they do not use
461 copy relocs. */
462 if (bfd_link_executable (info))
463 {
464 s = bfd_make_section_anyway_with_flags (abfd,
465 (bed->rela_plts_and_copies_p
466 ? ".rela.bss" : ".rel.bss"),
467 flags | SEC_READONLY);
468 if (s == NULL
469 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
470 return FALSE;
471 htab->srelbss = s;
472
473 if (bed->want_dynrelro)
474 {
475 s = (bfd_make_section_anyway_with_flags
476 (abfd, (bed->rela_plts_and_copies_p
477 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
478 flags | SEC_READONLY));
479 if (s == NULL
480 || ! bfd_set_section_alignment (abfd, s,
481 bed->s->log_file_align))
482 return FALSE;
483 htab->sreldynrelro = s;
484 }
485 }
486 }
487
488 return TRUE;
489 }
490 \f
491 /* Record a new dynamic symbol. We record the dynamic symbols as we
492 read the input files, since we need to have a list of all of them
493 before we can determine the final sizes of the output sections.
494 Note that we may actually call this function even though we are not
495 going to output any dynamic symbols; in some cases we know that a
496 symbol should be in the dynamic symbol table, but only if there is
497 one. */
498
499 bfd_boolean
500 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
501 struct elf_link_hash_entry *h)
502 {
503 if (h->dynindx == -1)
504 {
505 struct elf_strtab_hash *dynstr;
506 char *p;
507 const char *name;
508 size_t indx;
509
510 /* XXX: The ABI draft says the linker must turn hidden and
511 internal symbols into STB_LOCAL symbols when producing the
512 DSO. However, if ld.so honors st_other in the dynamic table,
513 this would not be necessary. */
514 switch (ELF_ST_VISIBILITY (h->other))
515 {
516 case STV_INTERNAL:
517 case STV_HIDDEN:
518 if (h->root.type != bfd_link_hash_undefined
519 && h->root.type != bfd_link_hash_undefweak)
520 {
521 h->forced_local = 1;
522 if (!elf_hash_table (info)->is_relocatable_executable)
523 return TRUE;
524 }
525
526 default:
527 break;
528 }
529
530 h->dynindx = elf_hash_table (info)->dynsymcount;
531 ++elf_hash_table (info)->dynsymcount;
532
533 dynstr = elf_hash_table (info)->dynstr;
534 if (dynstr == NULL)
535 {
536 /* Create a strtab to hold the dynamic symbol names. */
537 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
538 if (dynstr == NULL)
539 return FALSE;
540 }
541
542 /* We don't put any version information in the dynamic string
543 table. */
544 name = h->root.root.string;
545 p = strchr (name, ELF_VER_CHR);
546 if (p != NULL)
547 /* We know that the p points into writable memory. In fact,
548 there are only a few symbols that have read-only names, being
549 those like _GLOBAL_OFFSET_TABLE_ that are created specially
550 by the backends. Most symbols will have names pointing into
551 an ELF string table read from a file, or to objalloc memory. */
552 *p = 0;
553
554 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
555
556 if (p != NULL)
557 *p = ELF_VER_CHR;
558
559 if (indx == (size_t) -1)
560 return FALSE;
561 h->dynstr_index = indx;
562 }
563
564 return TRUE;
565 }
566 \f
567 /* Mark a symbol dynamic. */
568
569 static void
570 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
571 struct elf_link_hash_entry *h,
572 Elf_Internal_Sym *sym)
573 {
574 struct bfd_elf_dynamic_list *d = info->dynamic_list;
575
576 /* It may be called more than once on the same H. */
577 if(h->dynamic || bfd_link_relocatable (info))
578 return;
579
580 if ((info->dynamic_data
581 && (h->type == STT_OBJECT
582 || h->type == STT_COMMON
583 || (sym != NULL
584 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
585 || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
586 || (d != NULL
587 && h->non_elf
588 && (*d->match) (&d->head, NULL, h->root.root.string)))
589 {
590 h->dynamic = 1;
591 /* NB: If a symbol is made dynamic by --dynamic-list, it has
592 non-IR reference. */
593 h->root.non_ir_ref_dynamic = 1;
594 }
595 }
596
597 /* Record an assignment to a symbol made by a linker script. We need
598 this in case some dynamic object refers to this symbol. */
599
600 bfd_boolean
601 bfd_elf_record_link_assignment (bfd *output_bfd,
602 struct bfd_link_info *info,
603 const char *name,
604 bfd_boolean provide,
605 bfd_boolean hidden)
606 {
607 struct elf_link_hash_entry *h, *hv;
608 struct elf_link_hash_table *htab;
609 const struct elf_backend_data *bed;
610
611 if (!is_elf_hash_table (info->hash))
612 return TRUE;
613
614 htab = elf_hash_table (info);
615 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
616 if (h == NULL)
617 return provide;
618
619 if (h->root.type == bfd_link_hash_warning)
620 h = (struct elf_link_hash_entry *) h->root.u.i.link;
621
622 if (h->versioned == unknown)
623 {
624 /* Set versioned if symbol version is unknown. */
625 char *version = strrchr (name, ELF_VER_CHR);
626 if (version)
627 {
628 if (version > name && version[-1] != ELF_VER_CHR)
629 h->versioned = versioned_hidden;
630 else
631 h->versioned = versioned;
632 }
633 }
634
635 /* Symbols defined in a linker script but not referenced anywhere
636 else will have non_elf set. */
637 if (h->non_elf)
638 {
639 bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
640 h->non_elf = 0;
641 }
642
643 switch (h->root.type)
644 {
645 case bfd_link_hash_defined:
646 case bfd_link_hash_defweak:
647 case bfd_link_hash_common:
648 break;
649 case bfd_link_hash_undefweak:
650 case bfd_link_hash_undefined:
651 /* Since we're defining the symbol, don't let it seem to have not
652 been defined. record_dynamic_symbol and size_dynamic_sections
653 may depend on this. */
654 h->root.type = bfd_link_hash_new;
655 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
656 bfd_link_repair_undef_list (&htab->root);
657 break;
658 case bfd_link_hash_new:
659 break;
660 case bfd_link_hash_indirect:
661 /* We had a versioned symbol in a dynamic library. We make the
662 the versioned symbol point to this one. */
663 bed = get_elf_backend_data (output_bfd);
664 hv = h;
665 while (hv->root.type == bfd_link_hash_indirect
666 || hv->root.type == bfd_link_hash_warning)
667 hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
668 /* We don't need to update h->root.u since linker will set them
669 later. */
670 h->root.type = bfd_link_hash_undefined;
671 hv->root.type = bfd_link_hash_indirect;
672 hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
673 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
674 break;
675 default:
676 BFD_FAIL ();
677 return FALSE;
678 }
679
680 /* If this symbol is being provided by the linker script, and it is
681 currently defined by a dynamic object, but not by a regular
682 object, then mark it as undefined so that the generic linker will
683 force the correct value. */
684 if (provide
685 && h->def_dynamic
686 && !h->def_regular)
687 h->root.type = bfd_link_hash_undefined;
688
689 /* If this symbol is currently defined by a dynamic object, but not
690 by a regular object, then clear out any version information because
691 the symbol will not be associated with the dynamic object any
692 more. */
693 if (h->def_dynamic && !h->def_regular)
694 h->verinfo.verdef = NULL;
695
696 /* Make sure this symbol is not garbage collected. */
697 h->mark = 1;
698
699 h->def_regular = 1;
700
701 if (hidden)
702 {
703 bed = get_elf_backend_data (output_bfd);
704 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
705 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
706 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
707 }
708
709 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
710 and executables. */
711 if (!bfd_link_relocatable (info)
712 && h->dynindx != -1
713 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
714 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
715 h->forced_local = 1;
716
717 if ((h->def_dynamic
718 || h->ref_dynamic
719 || bfd_link_dll (info)
720 || elf_hash_table (info)->is_relocatable_executable)
721 && !h->forced_local
722 && h->dynindx == -1)
723 {
724 if (! bfd_elf_link_record_dynamic_symbol (info, h))
725 return FALSE;
726
727 /* If this is a weak defined symbol, and we know a corresponding
728 real symbol from the same dynamic object, make sure the real
729 symbol is also made into a dynamic symbol. */
730 if (h->is_weakalias)
731 {
732 struct elf_link_hash_entry *def = weakdef (h);
733
734 if (def->dynindx == -1
735 && !bfd_elf_link_record_dynamic_symbol (info, def))
736 return FALSE;
737 }
738 }
739
740 return TRUE;
741 }
742
743 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
744 success, and 2 on a failure caused by attempting to record a symbol
745 in a discarded section, eg. a discarded link-once section symbol. */
746
747 int
748 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
749 bfd *input_bfd,
750 long input_indx)
751 {
752 bfd_size_type amt;
753 struct elf_link_local_dynamic_entry *entry;
754 struct elf_link_hash_table *eht;
755 struct elf_strtab_hash *dynstr;
756 size_t dynstr_index;
757 char *name;
758 Elf_External_Sym_Shndx eshndx;
759 char esym[sizeof (Elf64_External_Sym)];
760
761 if (! is_elf_hash_table (info->hash))
762 return 0;
763
764 /* See if the entry exists already. */
765 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
766 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
767 return 1;
768
769 amt = sizeof (*entry);
770 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
771 if (entry == NULL)
772 return 0;
773
774 /* Go find the symbol, so that we can find it's name. */
775 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
776 1, input_indx, &entry->isym, esym, &eshndx))
777 {
778 bfd_release (input_bfd, entry);
779 return 0;
780 }
781
782 if (entry->isym.st_shndx != SHN_UNDEF
783 && entry->isym.st_shndx < SHN_LORESERVE)
784 {
785 asection *s;
786
787 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
788 if (s == NULL || bfd_is_abs_section (s->output_section))
789 {
790 /* We can still bfd_release here as nothing has done another
791 bfd_alloc. We can't do this later in this function. */
792 bfd_release (input_bfd, entry);
793 return 2;
794 }
795 }
796
797 name = (bfd_elf_string_from_elf_section
798 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
799 entry->isym.st_name));
800
801 dynstr = elf_hash_table (info)->dynstr;
802 if (dynstr == NULL)
803 {
804 /* Create a strtab to hold the dynamic symbol names. */
805 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
806 if (dynstr == NULL)
807 return 0;
808 }
809
810 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
811 if (dynstr_index == (size_t) -1)
812 return 0;
813 entry->isym.st_name = dynstr_index;
814
815 eht = elf_hash_table (info);
816
817 entry->next = eht->dynlocal;
818 eht->dynlocal = entry;
819 entry->input_bfd = input_bfd;
820 entry->input_indx = input_indx;
821 eht->dynsymcount++;
822
823 /* Whatever binding the symbol had before, it's now local. */
824 entry->isym.st_info
825 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
826
827 /* The dynindx will be set at the end of size_dynamic_sections. */
828
829 return 1;
830 }
831
832 /* Return the dynindex of a local dynamic symbol. */
833
834 long
835 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
836 bfd *input_bfd,
837 long input_indx)
838 {
839 struct elf_link_local_dynamic_entry *e;
840
841 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
842 if (e->input_bfd == input_bfd && e->input_indx == input_indx)
843 return e->dynindx;
844 return -1;
845 }
846
847 /* This function is used to renumber the dynamic symbols, if some of
848 them are removed because they are marked as local. This is called
849 via elf_link_hash_traverse. */
850
851 static bfd_boolean
852 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
853 void *data)
854 {
855 size_t *count = (size_t *) data;
856
857 if (h->forced_local)
858 return TRUE;
859
860 if (h->dynindx != -1)
861 h->dynindx = ++(*count);
862
863 return TRUE;
864 }
865
866
867 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
868 STB_LOCAL binding. */
869
870 static bfd_boolean
871 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
872 void *data)
873 {
874 size_t *count = (size_t *) data;
875
876 if (!h->forced_local)
877 return TRUE;
878
879 if (h->dynindx != -1)
880 h->dynindx = ++(*count);
881
882 return TRUE;
883 }
884
885 /* Return true if the dynamic symbol for a given section should be
886 omitted when creating a shared library. */
887 bfd_boolean
888 _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED,
889 struct bfd_link_info *info,
890 asection *p)
891 {
892 struct elf_link_hash_table *htab;
893 asection *ip;
894
895 switch (elf_section_data (p)->this_hdr.sh_type)
896 {
897 case SHT_PROGBITS:
898 case SHT_NOBITS:
899 /* If sh_type is yet undecided, assume it could be
900 SHT_PROGBITS/SHT_NOBITS. */
901 case SHT_NULL:
902 htab = elf_hash_table (info);
903 if (p == htab->tls_sec)
904 return FALSE;
905
906 if (htab->text_index_section != NULL)
907 return p != htab->text_index_section && p != htab->data_index_section;
908
909 return (htab->dynobj != NULL
910 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
911 && ip->output_section == p);
912
913 /* There shouldn't be section relative relocations
914 against any other section. */
915 default:
916 return TRUE;
917 }
918 }
919
920 bfd_boolean
921 _bfd_elf_omit_section_dynsym_all
922 (bfd *output_bfd ATTRIBUTE_UNUSED,
923 struct bfd_link_info *info ATTRIBUTE_UNUSED,
924 asection *p ATTRIBUTE_UNUSED)
925 {
926 return TRUE;
927 }
928
929 /* Assign dynsym indices. In a shared library we generate a section
930 symbol for each output section, which come first. Next come symbols
931 which have been forced to local binding. Then all of the back-end
932 allocated local dynamic syms, followed by the rest of the global
933 symbols. If SECTION_SYM_COUNT is NULL, section dynindx is not set.
934 (This prevents the early call before elf_backend_init_index_section
935 and strip_excluded_output_sections setting dynindx for sections
936 that are stripped.) */
937
938 static unsigned long
939 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
940 struct bfd_link_info *info,
941 unsigned long *section_sym_count)
942 {
943 unsigned long dynsymcount = 0;
944 bfd_boolean do_sec = section_sym_count != NULL;
945
946 if (bfd_link_pic (info)
947 || elf_hash_table (info)->is_relocatable_executable)
948 {
949 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
950 asection *p;
951 for (p = output_bfd->sections; p ; p = p->next)
952 if ((p->flags & SEC_EXCLUDE) == 0
953 && (p->flags & SEC_ALLOC) != 0
954 && elf_hash_table (info)->dynamic_relocs
955 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
956 {
957 ++dynsymcount;
958 if (do_sec)
959 elf_section_data (p)->dynindx = dynsymcount;
960 }
961 else if (do_sec)
962 elf_section_data (p)->dynindx = 0;
963 }
964 if (do_sec)
965 *section_sym_count = dynsymcount;
966
967 elf_link_hash_traverse (elf_hash_table (info),
968 elf_link_renumber_local_hash_table_dynsyms,
969 &dynsymcount);
970
971 if (elf_hash_table (info)->dynlocal)
972 {
973 struct elf_link_local_dynamic_entry *p;
974 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
975 p->dynindx = ++dynsymcount;
976 }
977 elf_hash_table (info)->local_dynsymcount = dynsymcount;
978
979 elf_link_hash_traverse (elf_hash_table (info),
980 elf_link_renumber_hash_table_dynsyms,
981 &dynsymcount);
982
983 /* There is an unused NULL entry at the head of the table which we
984 must account for in our count even if the table is empty since it
985 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
986 .dynamic section. */
987 dynsymcount++;
988
989 elf_hash_table (info)->dynsymcount = dynsymcount;
990 return dynsymcount;
991 }
992
993 /* Merge st_other field. */
994
995 static void
996 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
997 const Elf_Internal_Sym *isym, asection *sec,
998 bfd_boolean definition, bfd_boolean dynamic)
999 {
1000 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1001
1002 /* If st_other has a processor-specific meaning, specific
1003 code might be needed here. */
1004 if (bed->elf_backend_merge_symbol_attribute)
1005 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
1006 dynamic);
1007
1008 if (!dynamic)
1009 {
1010 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
1011 unsigned hvis = ELF_ST_VISIBILITY (h->other);
1012
1013 /* Keep the most constraining visibility. Leave the remainder
1014 of the st_other field to elf_backend_merge_symbol_attribute. */
1015 if (symvis - 1 < hvis - 1)
1016 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
1017 }
1018 else if (definition
1019 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
1020 && (sec->flags & SEC_READONLY) == 0)
1021 h->protected_def = 1;
1022 }
1023
1024 /* This function is called when we want to merge a new symbol with an
1025 existing symbol. It handles the various cases which arise when we
1026 find a definition in a dynamic object, or when there is already a
1027 definition in a dynamic object. The new symbol is described by
1028 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table
1029 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK
1030 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment
1031 of an old common symbol. We set OVERRIDE if the old symbol is
1032 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for
1033 the type to change. We set SIZE_CHANGE_OK if it is OK for the size
1034 to change. By OK to change, we mean that we shouldn't warn if the
1035 type or size does change. */
1036
1037 static bfd_boolean
1038 _bfd_elf_merge_symbol (bfd *abfd,
1039 struct bfd_link_info *info,
1040 const char *name,
1041 Elf_Internal_Sym *sym,
1042 asection **psec,
1043 bfd_vma *pvalue,
1044 struct elf_link_hash_entry **sym_hash,
1045 bfd **poldbfd,
1046 bfd_boolean *pold_weak,
1047 unsigned int *pold_alignment,
1048 bfd_boolean *skip,
1049 bfd_boolean *override,
1050 bfd_boolean *type_change_ok,
1051 bfd_boolean *size_change_ok,
1052 bfd_boolean *matched)
1053 {
1054 asection *sec, *oldsec;
1055 struct elf_link_hash_entry *h;
1056 struct elf_link_hash_entry *hi;
1057 struct elf_link_hash_entry *flip;
1058 int bind;
1059 bfd *oldbfd;
1060 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1061 bfd_boolean newweak, oldweak, newfunc, oldfunc;
1062 const struct elf_backend_data *bed;
1063 char *new_version;
1064 bfd_boolean default_sym = *matched;
1065
1066 *skip = FALSE;
1067 *override = FALSE;
1068
1069 sec = *psec;
1070 bind = ELF_ST_BIND (sym->st_info);
1071
1072 if (! bfd_is_und_section (sec))
1073 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1074 else
1075 h = ((struct elf_link_hash_entry *)
1076 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1077 if (h == NULL)
1078 return FALSE;
1079 *sym_hash = h;
1080
1081 bed = get_elf_backend_data (abfd);
1082
1083 /* NEW_VERSION is the symbol version of the new symbol. */
1084 if (h->versioned != unversioned)
1085 {
1086 /* Symbol version is unknown or versioned. */
1087 new_version = strrchr (name, ELF_VER_CHR);
1088 if (new_version)
1089 {
1090 if (h->versioned == unknown)
1091 {
1092 if (new_version > name && new_version[-1] != ELF_VER_CHR)
1093 h->versioned = versioned_hidden;
1094 else
1095 h->versioned = versioned;
1096 }
1097 new_version += 1;
1098 if (new_version[0] == '\0')
1099 new_version = NULL;
1100 }
1101 else
1102 h->versioned = unversioned;
1103 }
1104 else
1105 new_version = NULL;
1106
1107 /* For merging, we only care about real symbols. But we need to make
1108 sure that indirect symbol dynamic flags are updated. */
1109 hi = h;
1110 while (h->root.type == bfd_link_hash_indirect
1111 || h->root.type == bfd_link_hash_warning)
1112 h = (struct elf_link_hash_entry *) h->root.u.i.link;
1113
1114 if (!*matched)
1115 {
1116 if (hi == h || h->root.type == bfd_link_hash_new)
1117 *matched = TRUE;
1118 else
1119 {
1120 /* OLD_HIDDEN is true if the existing symbol is only visible
1121 to the symbol with the same symbol version. NEW_HIDDEN is
1122 true if the new symbol is only visible to the symbol with
1123 the same symbol version. */
1124 bfd_boolean old_hidden = h->versioned == versioned_hidden;
1125 bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1126 if (!old_hidden && !new_hidden)
1127 /* The new symbol matches the existing symbol if both
1128 aren't hidden. */
1129 *matched = TRUE;
1130 else
1131 {
1132 /* OLD_VERSION is the symbol version of the existing
1133 symbol. */
1134 char *old_version;
1135
1136 if (h->versioned >= versioned)
1137 old_version = strrchr (h->root.root.string,
1138 ELF_VER_CHR) + 1;
1139 else
1140 old_version = NULL;
1141
1142 /* The new symbol matches the existing symbol if they
1143 have the same symbol version. */
1144 *matched = (old_version == new_version
1145 || (old_version != NULL
1146 && new_version != NULL
1147 && strcmp (old_version, new_version) == 0));
1148 }
1149 }
1150 }
1151
1152 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1153 existing symbol. */
1154
1155 oldbfd = NULL;
1156 oldsec = NULL;
1157 switch (h->root.type)
1158 {
1159 default:
1160 break;
1161
1162 case bfd_link_hash_undefined:
1163 case bfd_link_hash_undefweak:
1164 oldbfd = h->root.u.undef.abfd;
1165 break;
1166
1167 case bfd_link_hash_defined:
1168 case bfd_link_hash_defweak:
1169 oldbfd = h->root.u.def.section->owner;
1170 oldsec = h->root.u.def.section;
1171 break;
1172
1173 case bfd_link_hash_common:
1174 oldbfd = h->root.u.c.p->section->owner;
1175 oldsec = h->root.u.c.p->section;
1176 if (pold_alignment)
1177 *pold_alignment = h->root.u.c.p->alignment_power;
1178 break;
1179 }
1180 if (poldbfd && *poldbfd == NULL)
1181 *poldbfd = oldbfd;
1182
1183 /* Differentiate strong and weak symbols. */
1184 newweak = bind == STB_WEAK;
1185 oldweak = (h->root.type == bfd_link_hash_defweak
1186 || h->root.type == bfd_link_hash_undefweak);
1187 if (pold_weak)
1188 *pold_weak = oldweak;
1189
1190 /* We have to check it for every instance since the first few may be
1191 references and not all compilers emit symbol type for undefined
1192 symbols. */
1193 bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1194
1195 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1196 respectively, is from a dynamic object. */
1197
1198 newdyn = (abfd->flags & DYNAMIC) != 0;
1199
1200 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1201 syms and defined syms in dynamic libraries respectively.
1202 ref_dynamic on the other hand can be set for a symbol defined in
1203 a dynamic library, and def_dynamic may not be set; When the
1204 definition in a dynamic lib is overridden by a definition in the
1205 executable use of the symbol in the dynamic lib becomes a
1206 reference to the executable symbol. */
1207 if (newdyn)
1208 {
1209 if (bfd_is_und_section (sec))
1210 {
1211 if (bind != STB_WEAK)
1212 {
1213 h->ref_dynamic_nonweak = 1;
1214 hi->ref_dynamic_nonweak = 1;
1215 }
1216 }
1217 else
1218 {
1219 /* Update the existing symbol only if they match. */
1220 if (*matched)
1221 h->dynamic_def = 1;
1222 hi->dynamic_def = 1;
1223 }
1224 }
1225
1226 /* If we just created the symbol, mark it as being an ELF symbol.
1227 Other than that, there is nothing to do--there is no merge issue
1228 with a newly defined symbol--so we just return. */
1229
1230 if (h->root.type == bfd_link_hash_new)
1231 {
1232 h->non_elf = 0;
1233 return TRUE;
1234 }
1235
1236 /* In cases involving weak versioned symbols, we may wind up trying
1237 to merge a symbol with itself. Catch that here, to avoid the
1238 confusion that results if we try to override a symbol with
1239 itself. The additional tests catch cases like
1240 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1241 dynamic object, which we do want to handle here. */
1242 if (abfd == oldbfd
1243 && (newweak || oldweak)
1244 && ((abfd->flags & DYNAMIC) == 0
1245 || !h->def_regular))
1246 return TRUE;
1247
1248 olddyn = FALSE;
1249 if (oldbfd != NULL)
1250 olddyn = (oldbfd->flags & DYNAMIC) != 0;
1251 else if (oldsec != NULL)
1252 {
1253 /* This handles the special SHN_MIPS_{TEXT,DATA} section
1254 indices used by MIPS ELF. */
1255 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1256 }
1257
1258 /* Handle a case where plugin_notice won't be called and thus won't
1259 set the non_ir_ref flags on the first pass over symbols. */
1260 if (oldbfd != NULL
1261 && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)
1262 && newdyn != olddyn)
1263 {
1264 h->root.non_ir_ref_dynamic = TRUE;
1265 hi->root.non_ir_ref_dynamic = TRUE;
1266 }
1267
1268 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1269 respectively, appear to be a definition rather than reference. */
1270
1271 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1272
1273 olddef = (h->root.type != bfd_link_hash_undefined
1274 && h->root.type != bfd_link_hash_undefweak
1275 && h->root.type != bfd_link_hash_common);
1276
1277 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1278 respectively, appear to be a function. */
1279
1280 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1281 && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1282
1283 oldfunc = (h->type != STT_NOTYPE
1284 && bed->is_function_type (h->type));
1285
1286 if (!(newfunc && oldfunc)
1287 && ELF_ST_TYPE (sym->st_info) != h->type
1288 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1289 && h->type != STT_NOTYPE
1290 && (newdef || bfd_is_com_section (sec))
1291 && (olddef || h->root.type == bfd_link_hash_common))
1292 {
1293 /* If creating a default indirect symbol ("foo" or "foo@") from
1294 a dynamic versioned definition ("foo@@") skip doing so if
1295 there is an existing regular definition with a different
1296 type. We don't want, for example, a "time" variable in the
1297 executable overriding a "time" function in a shared library. */
1298 if (newdyn
1299 && !olddyn)
1300 {
1301 *skip = TRUE;
1302 return TRUE;
1303 }
1304
1305 /* When adding a symbol from a regular object file after we have
1306 created indirect symbols, undo the indirection and any
1307 dynamic state. */
1308 if (hi != h
1309 && !newdyn
1310 && olddyn)
1311 {
1312 h = hi;
1313 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1314 h->forced_local = 0;
1315 h->ref_dynamic = 0;
1316 h->def_dynamic = 0;
1317 h->dynamic_def = 0;
1318 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1319 {
1320 h->root.type = bfd_link_hash_undefined;
1321 h->root.u.undef.abfd = abfd;
1322 }
1323 else
1324 {
1325 h->root.type = bfd_link_hash_new;
1326 h->root.u.undef.abfd = NULL;
1327 }
1328 return TRUE;
1329 }
1330 }
1331
1332 /* Check TLS symbols. We don't check undefined symbols introduced
1333 by "ld -u" which have no type (and oldbfd NULL), and we don't
1334 check symbols from plugins because they also have no type. */
1335 if (oldbfd != NULL
1336 && (oldbfd->flags & BFD_PLUGIN) == 0
1337 && (abfd->flags & BFD_PLUGIN) == 0
1338 && ELF_ST_TYPE (sym->st_info) != h->type
1339 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1340 {
1341 bfd *ntbfd, *tbfd;
1342 bfd_boolean ntdef, tdef;
1343 asection *ntsec, *tsec;
1344
1345 if (h->type == STT_TLS)
1346 {
1347 ntbfd = abfd;
1348 ntsec = sec;
1349 ntdef = newdef;
1350 tbfd = oldbfd;
1351 tsec = oldsec;
1352 tdef = olddef;
1353 }
1354 else
1355 {
1356 ntbfd = oldbfd;
1357 ntsec = oldsec;
1358 ntdef = olddef;
1359 tbfd = abfd;
1360 tsec = sec;
1361 tdef = newdef;
1362 }
1363
1364 if (tdef && ntdef)
1365 _bfd_error_handler
1366 /* xgettext:c-format */
1367 (_("%s: TLS definition in %pB section %pA "
1368 "mismatches non-TLS definition in %pB section %pA"),
1369 h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1370 else if (!tdef && !ntdef)
1371 _bfd_error_handler
1372 /* xgettext:c-format */
1373 (_("%s: TLS reference in %pB "
1374 "mismatches non-TLS reference in %pB"),
1375 h->root.root.string, tbfd, ntbfd);
1376 else if (tdef)
1377 _bfd_error_handler
1378 /* xgettext:c-format */
1379 (_("%s: TLS definition in %pB section %pA "
1380 "mismatches non-TLS reference in %pB"),
1381 h->root.root.string, tbfd, tsec, ntbfd);
1382 else
1383 _bfd_error_handler
1384 /* xgettext:c-format */
1385 (_("%s: TLS reference in %pB "
1386 "mismatches non-TLS definition in %pB section %pA"),
1387 h->root.root.string, tbfd, ntbfd, ntsec);
1388
1389 bfd_set_error (bfd_error_bad_value);
1390 return FALSE;
1391 }
1392
1393 /* If the old symbol has non-default visibility, we ignore the new
1394 definition from a dynamic object. */
1395 if (newdyn
1396 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1397 && !bfd_is_und_section (sec))
1398 {
1399 *skip = TRUE;
1400 /* Make sure this symbol is dynamic. */
1401 h->ref_dynamic = 1;
1402 hi->ref_dynamic = 1;
1403 /* A protected symbol has external availability. Make sure it is
1404 recorded as dynamic.
1405
1406 FIXME: Should we check type and size for protected symbol? */
1407 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1408 return bfd_elf_link_record_dynamic_symbol (info, h);
1409 else
1410 return TRUE;
1411 }
1412 else if (!newdyn
1413 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1414 && h->def_dynamic)
1415 {
1416 /* If the new symbol with non-default visibility comes from a
1417 relocatable file and the old definition comes from a dynamic
1418 object, we remove the old definition. */
1419 if (hi->root.type == bfd_link_hash_indirect)
1420 {
1421 /* Handle the case where the old dynamic definition is
1422 default versioned. We need to copy the symbol info from
1423 the symbol with default version to the normal one if it
1424 was referenced before. */
1425 if (h->ref_regular)
1426 {
1427 hi->root.type = h->root.type;
1428 h->root.type = bfd_link_hash_indirect;
1429 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1430
1431 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1432 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1433 {
1434 /* If the new symbol is hidden or internal, completely undo
1435 any dynamic link state. */
1436 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1437 h->forced_local = 0;
1438 h->ref_dynamic = 0;
1439 }
1440 else
1441 h->ref_dynamic = 1;
1442
1443 h->def_dynamic = 0;
1444 /* FIXME: Should we check type and size for protected symbol? */
1445 h->size = 0;
1446 h->type = 0;
1447
1448 h = hi;
1449 }
1450 else
1451 h = hi;
1452 }
1453
1454 /* If the old symbol was undefined before, then it will still be
1455 on the undefs list. If the new symbol is undefined or
1456 common, we can't make it bfd_link_hash_new here, because new
1457 undefined or common symbols will be added to the undefs list
1458 by _bfd_generic_link_add_one_symbol. Symbols may not be
1459 added twice to the undefs list. Also, if the new symbol is
1460 undefweak then we don't want to lose the strong undef. */
1461 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1462 {
1463 h->root.type = bfd_link_hash_undefined;
1464 h->root.u.undef.abfd = abfd;
1465 }
1466 else
1467 {
1468 h->root.type = bfd_link_hash_new;
1469 h->root.u.undef.abfd = NULL;
1470 }
1471
1472 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1473 {
1474 /* If the new symbol is hidden or internal, completely undo
1475 any dynamic link state. */
1476 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1477 h->forced_local = 0;
1478 h->ref_dynamic = 0;
1479 }
1480 else
1481 h->ref_dynamic = 1;
1482 h->def_dynamic = 0;
1483 /* FIXME: Should we check type and size for protected symbol? */
1484 h->size = 0;
1485 h->type = 0;
1486 return TRUE;
1487 }
1488
1489 /* If a new weak symbol definition comes from a regular file and the
1490 old symbol comes from a dynamic library, we treat the new one as
1491 strong. Similarly, an old weak symbol definition from a regular
1492 file is treated as strong when the new symbol comes from a dynamic
1493 library. Further, an old weak symbol from a dynamic library is
1494 treated as strong if the new symbol is from a dynamic library.
1495 This reflects the way glibc's ld.so works.
1496
1497 Also allow a weak symbol to override a linker script symbol
1498 defined by an early pass over the script. This is done so the
1499 linker knows the symbol is defined in an object file, for the
1500 DEFINED script function.
1501
1502 Do this before setting *type_change_ok or *size_change_ok so that
1503 we warn properly when dynamic library symbols are overridden. */
1504
1505 if (newdef && !newdyn && (olddyn || h->root.ldscript_def))
1506 newweak = FALSE;
1507 if (olddef && newdyn)
1508 oldweak = FALSE;
1509
1510 /* Allow changes between different types of function symbol. */
1511 if (newfunc && oldfunc)
1512 *type_change_ok = TRUE;
1513
1514 /* It's OK to change the type if either the existing symbol or the
1515 new symbol is weak. A type change is also OK if the old symbol
1516 is undefined and the new symbol is defined. */
1517
1518 if (oldweak
1519 || newweak
1520 || (newdef
1521 && h->root.type == bfd_link_hash_undefined))
1522 *type_change_ok = TRUE;
1523
1524 /* It's OK to change the size if either the existing symbol or the
1525 new symbol is weak, or if the old symbol is undefined. */
1526
1527 if (*type_change_ok
1528 || h->root.type == bfd_link_hash_undefined)
1529 *size_change_ok = TRUE;
1530
1531 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1532 symbol, respectively, appears to be a common symbol in a dynamic
1533 object. If a symbol appears in an uninitialized section, and is
1534 not weak, and is not a function, then it may be a common symbol
1535 which was resolved when the dynamic object was created. We want
1536 to treat such symbols specially, because they raise special
1537 considerations when setting the symbol size: if the symbol
1538 appears as a common symbol in a regular object, and the size in
1539 the regular object is larger, we must make sure that we use the
1540 larger size. This problematic case can always be avoided in C,
1541 but it must be handled correctly when using Fortran shared
1542 libraries.
1543
1544 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1545 likewise for OLDDYNCOMMON and OLDDEF.
1546
1547 Note that this test is just a heuristic, and that it is quite
1548 possible to have an uninitialized symbol in a shared object which
1549 is really a definition, rather than a common symbol. This could
1550 lead to some minor confusion when the symbol really is a common
1551 symbol in some regular object. However, I think it will be
1552 harmless. */
1553
1554 if (newdyn
1555 && newdef
1556 && !newweak
1557 && (sec->flags & SEC_ALLOC) != 0
1558 && (sec->flags & SEC_LOAD) == 0
1559 && sym->st_size > 0
1560 && !newfunc)
1561 newdyncommon = TRUE;
1562 else
1563 newdyncommon = FALSE;
1564
1565 if (olddyn
1566 && olddef
1567 && h->root.type == bfd_link_hash_defined
1568 && h->def_dynamic
1569 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1570 && (h->root.u.def.section->flags & SEC_LOAD) == 0
1571 && h->size > 0
1572 && !oldfunc)
1573 olddyncommon = TRUE;
1574 else
1575 olddyncommon = FALSE;
1576
1577 /* We now know everything about the old and new symbols. We ask the
1578 backend to check if we can merge them. */
1579 if (bed->merge_symbol != NULL)
1580 {
1581 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1582 return FALSE;
1583 sec = *psec;
1584 }
1585
1586 /* There are multiple definitions of a normal symbol. Skip the
1587 default symbol as well as definition from an IR object. */
1588 if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak
1589 && !default_sym && h->def_regular
1590 && !(oldbfd != NULL
1591 && (oldbfd->flags & BFD_PLUGIN) != 0
1592 && (abfd->flags & BFD_PLUGIN) == 0))
1593 {
1594 /* Handle a multiple definition. */
1595 (*info->callbacks->multiple_definition) (info, &h->root,
1596 abfd, sec, *pvalue);
1597 *skip = TRUE;
1598 return TRUE;
1599 }
1600
1601 /* If both the old and the new symbols look like common symbols in a
1602 dynamic object, set the size of the symbol to the larger of the
1603 two. */
1604
1605 if (olddyncommon
1606 && newdyncommon
1607 && sym->st_size != h->size)
1608 {
1609 /* Since we think we have two common symbols, issue a multiple
1610 common warning if desired. Note that we only warn if the
1611 size is different. If the size is the same, we simply let
1612 the old symbol override the new one as normally happens with
1613 symbols defined in dynamic objects. */
1614
1615 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1616 bfd_link_hash_common, sym->st_size);
1617 if (sym->st_size > h->size)
1618 h->size = sym->st_size;
1619
1620 *size_change_ok = TRUE;
1621 }
1622
1623 /* If we are looking at a dynamic object, and we have found a
1624 definition, we need to see if the symbol was already defined by
1625 some other object. If so, we want to use the existing
1626 definition, and we do not want to report a multiple symbol
1627 definition error; we do this by clobbering *PSEC to be
1628 bfd_und_section_ptr.
1629
1630 We treat a common symbol as a definition if the symbol in the
1631 shared library is a function, since common symbols always
1632 represent variables; this can cause confusion in principle, but
1633 any such confusion would seem to indicate an erroneous program or
1634 shared library. We also permit a common symbol in a regular
1635 object to override a weak symbol in a shared object. */
1636
1637 if (newdyn
1638 && newdef
1639 && (olddef
1640 || (h->root.type == bfd_link_hash_common
1641 && (newweak || newfunc))))
1642 {
1643 *override = TRUE;
1644 newdef = FALSE;
1645 newdyncommon = FALSE;
1646
1647 *psec = sec = bfd_und_section_ptr;
1648 *size_change_ok = TRUE;
1649
1650 /* If we get here when the old symbol is a common symbol, then
1651 we are explicitly letting it override a weak symbol or
1652 function in a dynamic object, and we don't want to warn about
1653 a type change. If the old symbol is a defined symbol, a type
1654 change warning may still be appropriate. */
1655
1656 if (h->root.type == bfd_link_hash_common)
1657 *type_change_ok = TRUE;
1658 }
1659
1660 /* Handle the special case of an old common symbol merging with a
1661 new symbol which looks like a common symbol in a shared object.
1662 We change *PSEC and *PVALUE to make the new symbol look like a
1663 common symbol, and let _bfd_generic_link_add_one_symbol do the
1664 right thing. */
1665
1666 if (newdyncommon
1667 && h->root.type == bfd_link_hash_common)
1668 {
1669 *override = TRUE;
1670 newdef = FALSE;
1671 newdyncommon = FALSE;
1672 *pvalue = sym->st_size;
1673 *psec = sec = bed->common_section (oldsec);
1674 *size_change_ok = TRUE;
1675 }
1676
1677 /* Skip weak definitions of symbols that are already defined. */
1678 if (newdef && olddef && newweak)
1679 {
1680 /* Don't skip new non-IR weak syms. */
1681 if (!(oldbfd != NULL
1682 && (oldbfd->flags & BFD_PLUGIN) != 0
1683 && (abfd->flags & BFD_PLUGIN) == 0))
1684 {
1685 newdef = FALSE;
1686 *skip = TRUE;
1687 }
1688
1689 /* Merge st_other. If the symbol already has a dynamic index,
1690 but visibility says it should not be visible, turn it into a
1691 local symbol. */
1692 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1693 if (h->dynindx != -1)
1694 switch (ELF_ST_VISIBILITY (h->other))
1695 {
1696 case STV_INTERNAL:
1697 case STV_HIDDEN:
1698 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1699 break;
1700 }
1701 }
1702
1703 /* If the old symbol is from a dynamic object, and the new symbol is
1704 a definition which is not from a dynamic object, then the new
1705 symbol overrides the old symbol. Symbols from regular files
1706 always take precedence over symbols from dynamic objects, even if
1707 they are defined after the dynamic object in the link.
1708
1709 As above, we again permit a common symbol in a regular object to
1710 override a definition in a shared object if the shared object
1711 symbol is a function or is weak. */
1712
1713 flip = NULL;
1714 if (!newdyn
1715 && (newdef
1716 || (bfd_is_com_section (sec)
1717 && (oldweak || oldfunc)))
1718 && olddyn
1719 && olddef
1720 && h->def_dynamic)
1721 {
1722 /* Change the hash table entry to undefined, and let
1723 _bfd_generic_link_add_one_symbol do the right thing with the
1724 new definition. */
1725
1726 h->root.type = bfd_link_hash_undefined;
1727 h->root.u.undef.abfd = h->root.u.def.section->owner;
1728 *size_change_ok = TRUE;
1729
1730 olddef = FALSE;
1731 olddyncommon = FALSE;
1732
1733 /* We again permit a type change when a common symbol may be
1734 overriding a function. */
1735
1736 if (bfd_is_com_section (sec))
1737 {
1738 if (oldfunc)
1739 {
1740 /* If a common symbol overrides a function, make sure
1741 that it isn't defined dynamically nor has type
1742 function. */
1743 h->def_dynamic = 0;
1744 h->type = STT_NOTYPE;
1745 }
1746 *type_change_ok = TRUE;
1747 }
1748
1749 if (hi->root.type == bfd_link_hash_indirect)
1750 flip = hi;
1751 else
1752 /* This union may have been set to be non-NULL when this symbol
1753 was seen in a dynamic object. We must force the union to be
1754 NULL, so that it is correct for a regular symbol. */
1755 h->verinfo.vertree = NULL;
1756 }
1757
1758 /* Handle the special case of a new common symbol merging with an
1759 old symbol that looks like it might be a common symbol defined in
1760 a shared object. Note that we have already handled the case in
1761 which a new common symbol should simply override the definition
1762 in the shared library. */
1763
1764 if (! newdyn
1765 && bfd_is_com_section (sec)
1766 && olddyncommon)
1767 {
1768 /* It would be best if we could set the hash table entry to a
1769 common symbol, but we don't know what to use for the section
1770 or the alignment. */
1771 (*info->callbacks->multiple_common) (info, &h->root, abfd,
1772 bfd_link_hash_common, sym->st_size);
1773
1774 /* If the presumed common symbol in the dynamic object is
1775 larger, pretend that the new symbol has its size. */
1776
1777 if (h->size > *pvalue)
1778 *pvalue = h->size;
1779
1780 /* We need to remember the alignment required by the symbol
1781 in the dynamic object. */
1782 BFD_ASSERT (pold_alignment);
1783 *pold_alignment = h->root.u.def.section->alignment_power;
1784
1785 olddef = FALSE;
1786 olddyncommon = FALSE;
1787
1788 h->root.type = bfd_link_hash_undefined;
1789 h->root.u.undef.abfd = h->root.u.def.section->owner;
1790
1791 *size_change_ok = TRUE;
1792 *type_change_ok = TRUE;
1793
1794 if (hi->root.type == bfd_link_hash_indirect)
1795 flip = hi;
1796 else
1797 h->verinfo.vertree = NULL;
1798 }
1799
1800 if (flip != NULL)
1801 {
1802 /* Handle the case where we had a versioned symbol in a dynamic
1803 library and now find a definition in a normal object. In this
1804 case, we make the versioned symbol point to the normal one. */
1805 flip->root.type = h->root.type;
1806 flip->root.u.undef.abfd = h->root.u.undef.abfd;
1807 h->root.type = bfd_link_hash_indirect;
1808 h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1809 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1810 if (h->def_dynamic)
1811 {
1812 h->def_dynamic = 0;
1813 flip->ref_dynamic = 1;
1814 }
1815 }
1816
1817 return TRUE;
1818 }
1819
1820 /* This function is called to create an indirect symbol from the
1821 default for the symbol with the default version if needed. The
1822 symbol is described by H, NAME, SYM, SEC, and VALUE. We
1823 set DYNSYM if the new indirect symbol is dynamic. */
1824
1825 static bfd_boolean
1826 _bfd_elf_add_default_symbol (bfd *abfd,
1827 struct bfd_link_info *info,
1828 struct elf_link_hash_entry *h,
1829 const char *name,
1830 Elf_Internal_Sym *sym,
1831 asection *sec,
1832 bfd_vma value,
1833 bfd **poldbfd,
1834 bfd_boolean *dynsym)
1835 {
1836 bfd_boolean type_change_ok;
1837 bfd_boolean size_change_ok;
1838 bfd_boolean skip;
1839 char *shortname;
1840 struct elf_link_hash_entry *hi;
1841 struct bfd_link_hash_entry *bh;
1842 const struct elf_backend_data *bed;
1843 bfd_boolean collect;
1844 bfd_boolean dynamic;
1845 bfd_boolean override;
1846 char *p;
1847 size_t len, shortlen;
1848 asection *tmp_sec;
1849 bfd_boolean matched;
1850
1851 if (h->versioned == unversioned || h->versioned == versioned_hidden)
1852 return TRUE;
1853
1854 /* If this symbol has a version, and it is the default version, we
1855 create an indirect symbol from the default name to the fully
1856 decorated name. This will cause external references which do not
1857 specify a version to be bound to this version of the symbol. */
1858 p = strchr (name, ELF_VER_CHR);
1859 if (h->versioned == unknown)
1860 {
1861 if (p == NULL)
1862 {
1863 h->versioned = unversioned;
1864 return TRUE;
1865 }
1866 else
1867 {
1868 if (p[1] != ELF_VER_CHR)
1869 {
1870 h->versioned = versioned_hidden;
1871 return TRUE;
1872 }
1873 else
1874 h->versioned = versioned;
1875 }
1876 }
1877 else
1878 {
1879 /* PR ld/19073: We may see an unversioned definition after the
1880 default version. */
1881 if (p == NULL)
1882 return TRUE;
1883 }
1884
1885 bed = get_elf_backend_data (abfd);
1886 collect = bed->collect;
1887 dynamic = (abfd->flags & DYNAMIC) != 0;
1888
1889 shortlen = p - name;
1890 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1891 if (shortname == NULL)
1892 return FALSE;
1893 memcpy (shortname, name, shortlen);
1894 shortname[shortlen] = '\0';
1895
1896 /* We are going to create a new symbol. Merge it with any existing
1897 symbol with this name. For the purposes of the merge, act as
1898 though we were defining the symbol we just defined, although we
1899 actually going to define an indirect symbol. */
1900 type_change_ok = FALSE;
1901 size_change_ok = FALSE;
1902 matched = TRUE;
1903 tmp_sec = sec;
1904 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1905 &hi, poldbfd, NULL, NULL, &skip, &override,
1906 &type_change_ok, &size_change_ok, &matched))
1907 return FALSE;
1908
1909 if (skip)
1910 goto nondefault;
1911
1912 if (hi->def_regular)
1913 {
1914 /* If the undecorated symbol will have a version added by a
1915 script different to H, then don't indirect to/from the
1916 undecorated symbol. This isn't ideal because we may not yet
1917 have seen symbol versions, if given by a script on the
1918 command line rather than via --version-script. */
1919 if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1920 {
1921 bfd_boolean hide;
1922
1923 hi->verinfo.vertree
1924 = bfd_find_version_for_sym (info->version_info,
1925 hi->root.root.string, &hide);
1926 if (hi->verinfo.vertree != NULL && hide)
1927 {
1928 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1929 goto nondefault;
1930 }
1931 }
1932 if (hi->verinfo.vertree != NULL
1933 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1934 goto nondefault;
1935 }
1936
1937 if (! override)
1938 {
1939 /* Add the default symbol if not performing a relocatable link. */
1940 if (! bfd_link_relocatable (info))
1941 {
1942 bh = &hi->root;
1943 if (bh->type == bfd_link_hash_defined
1944 && bh->u.def.section->owner != NULL
1945 && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0)
1946 {
1947 /* Mark the previous definition from IR object as
1948 undefined so that the generic linker will override
1949 it. */
1950 bh->type = bfd_link_hash_undefined;
1951 bh->u.undef.abfd = bh->u.def.section->owner;
1952 }
1953 if (! (_bfd_generic_link_add_one_symbol
1954 (info, abfd, shortname, BSF_INDIRECT,
1955 bfd_ind_section_ptr,
1956 0, name, FALSE, collect, &bh)))
1957 return FALSE;
1958 hi = (struct elf_link_hash_entry *) bh;
1959 }
1960 }
1961 else
1962 {
1963 /* In this case the symbol named SHORTNAME is overriding the
1964 indirect symbol we want to add. We were planning on making
1965 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1966 is the name without a version. NAME is the fully versioned
1967 name, and it is the default version.
1968
1969 Overriding means that we already saw a definition for the
1970 symbol SHORTNAME in a regular object, and it is overriding
1971 the symbol defined in the dynamic object.
1972
1973 When this happens, we actually want to change NAME, the
1974 symbol we just added, to refer to SHORTNAME. This will cause
1975 references to NAME in the shared object to become references
1976 to SHORTNAME in the regular object. This is what we expect
1977 when we override a function in a shared object: that the
1978 references in the shared object will be mapped to the
1979 definition in the regular object. */
1980
1981 while (hi->root.type == bfd_link_hash_indirect
1982 || hi->root.type == bfd_link_hash_warning)
1983 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1984
1985 h->root.type = bfd_link_hash_indirect;
1986 h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1987 if (h->def_dynamic)
1988 {
1989 h->def_dynamic = 0;
1990 hi->ref_dynamic = 1;
1991 if (hi->ref_regular
1992 || hi->def_regular)
1993 {
1994 if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1995 return FALSE;
1996 }
1997 }
1998
1999 /* Now set HI to H, so that the following code will set the
2000 other fields correctly. */
2001 hi = h;
2002 }
2003
2004 /* Check if HI is a warning symbol. */
2005 if (hi->root.type == bfd_link_hash_warning)
2006 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
2007
2008 /* If there is a duplicate definition somewhere, then HI may not
2009 point to an indirect symbol. We will have reported an error to
2010 the user in that case. */
2011
2012 if (hi->root.type == bfd_link_hash_indirect)
2013 {
2014 struct elf_link_hash_entry *ht;
2015
2016 ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
2017 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
2018
2019 /* A reference to the SHORTNAME symbol from a dynamic library
2020 will be satisfied by the versioned symbol at runtime. In
2021 effect, we have a reference to the versioned symbol. */
2022 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2023 hi->dynamic_def |= ht->dynamic_def;
2024
2025 /* See if the new flags lead us to realize that the symbol must
2026 be dynamic. */
2027 if (! *dynsym)
2028 {
2029 if (! dynamic)
2030 {
2031 if (! bfd_link_executable (info)
2032 || hi->def_dynamic
2033 || hi->ref_dynamic)
2034 *dynsym = TRUE;
2035 }
2036 else
2037 {
2038 if (hi->ref_regular)
2039 *dynsym = TRUE;
2040 }
2041 }
2042 }
2043
2044 /* We also need to define an indirection from the nondefault version
2045 of the symbol. */
2046
2047 nondefault:
2048 len = strlen (name);
2049 shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
2050 if (shortname == NULL)
2051 return FALSE;
2052 memcpy (shortname, name, shortlen);
2053 memcpy (shortname + shortlen, p + 1, len - shortlen);
2054
2055 /* Once again, merge with any existing symbol. */
2056 type_change_ok = FALSE;
2057 size_change_ok = FALSE;
2058 tmp_sec = sec;
2059 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
2060 &hi, poldbfd, NULL, NULL, &skip, &override,
2061 &type_change_ok, &size_change_ok, &matched))
2062 return FALSE;
2063
2064 if (skip)
2065 return TRUE;
2066
2067 if (override)
2068 {
2069 /* Here SHORTNAME is a versioned name, so we don't expect to see
2070 the type of override we do in the case above unless it is
2071 overridden by a versioned definition. */
2072 if (hi->root.type != bfd_link_hash_defined
2073 && hi->root.type != bfd_link_hash_defweak)
2074 _bfd_error_handler
2075 /* xgettext:c-format */
2076 (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"),
2077 abfd, shortname);
2078 }
2079 else
2080 {
2081 bh = &hi->root;
2082 if (! (_bfd_generic_link_add_one_symbol
2083 (info, abfd, shortname, BSF_INDIRECT,
2084 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
2085 return FALSE;
2086 hi = (struct elf_link_hash_entry *) bh;
2087
2088 /* If there is a duplicate definition somewhere, then HI may not
2089 point to an indirect symbol. We will have reported an error
2090 to the user in that case. */
2091
2092 if (hi->root.type == bfd_link_hash_indirect)
2093 {
2094 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
2095 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
2096 hi->dynamic_def |= h->dynamic_def;
2097
2098 /* See if the new flags lead us to realize that the symbol
2099 must be dynamic. */
2100 if (! *dynsym)
2101 {
2102 if (! dynamic)
2103 {
2104 if (! bfd_link_executable (info)
2105 || hi->ref_dynamic)
2106 *dynsym = TRUE;
2107 }
2108 else
2109 {
2110 if (hi->ref_regular)
2111 *dynsym = TRUE;
2112 }
2113 }
2114 }
2115 }
2116
2117 return TRUE;
2118 }
2119 \f
2120 /* This routine is used to export all defined symbols into the dynamic
2121 symbol table. It is called via elf_link_hash_traverse. */
2122
2123 static bfd_boolean
2124 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2125 {
2126 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2127
2128 /* Ignore indirect symbols. These are added by the versioning code. */
2129 if (h->root.type == bfd_link_hash_indirect)
2130 return TRUE;
2131
2132 /* Ignore this if we won't export it. */
2133 if (!eif->info->export_dynamic && !h->dynamic)
2134 return TRUE;
2135
2136 if (h->dynindx == -1
2137 && (h->def_regular || h->ref_regular)
2138 && ! bfd_hide_sym_by_version (eif->info->version_info,
2139 h->root.root.string))
2140 {
2141 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2142 {
2143 eif->failed = TRUE;
2144 return FALSE;
2145 }
2146 }
2147
2148 return TRUE;
2149 }
2150 \f
2151 /* Look through the symbols which are defined in other shared
2152 libraries and referenced here. Update the list of version
2153 dependencies. This will be put into the .gnu.version_r section.
2154 This function is called via elf_link_hash_traverse. */
2155
2156 static bfd_boolean
2157 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2158 void *data)
2159 {
2160 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2161 Elf_Internal_Verneed *t;
2162 Elf_Internal_Vernaux *a;
2163 bfd_size_type amt;
2164
2165 /* We only care about symbols defined in shared objects with version
2166 information. */
2167 if (!h->def_dynamic
2168 || h->def_regular
2169 || h->dynindx == -1
2170 || h->verinfo.verdef == NULL
2171 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2172 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2173 return TRUE;
2174
2175 /* See if we already know about this version. */
2176 for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2177 t != NULL;
2178 t = t->vn_nextref)
2179 {
2180 if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2181 continue;
2182
2183 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2184 if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2185 return TRUE;
2186
2187 break;
2188 }
2189
2190 /* This is a new version. Add it to tree we are building. */
2191
2192 if (t == NULL)
2193 {
2194 amt = sizeof *t;
2195 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2196 if (t == NULL)
2197 {
2198 rinfo->failed = TRUE;
2199 return FALSE;
2200 }
2201
2202 t->vn_bfd = h->verinfo.verdef->vd_bfd;
2203 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2204 elf_tdata (rinfo->info->output_bfd)->verref = t;
2205 }
2206
2207 amt = sizeof *a;
2208 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2209 if (a == NULL)
2210 {
2211 rinfo->failed = TRUE;
2212 return FALSE;
2213 }
2214
2215 /* Note that we are copying a string pointer here, and testing it
2216 above. If bfd_elf_string_from_elf_section is ever changed to
2217 discard the string data when low in memory, this will have to be
2218 fixed. */
2219 a->vna_nodename = h->verinfo.verdef->vd_nodename;
2220
2221 a->vna_flags = h->verinfo.verdef->vd_flags;
2222 a->vna_nextptr = t->vn_auxptr;
2223
2224 h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2225 ++rinfo->vers;
2226
2227 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2228
2229 t->vn_auxptr = a;
2230
2231 return TRUE;
2232 }
2233
2234 /* Return TRUE and set *HIDE to TRUE if the versioned symbol is
2235 hidden. Set *T_P to NULL if there is no match. */
2236
2237 static bfd_boolean
2238 _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info,
2239 struct elf_link_hash_entry *h,
2240 const char *version_p,
2241 struct bfd_elf_version_tree **t_p,
2242 bfd_boolean *hide)
2243 {
2244 struct bfd_elf_version_tree *t;
2245
2246 /* Look for the version. If we find it, it is no longer weak. */
2247 for (t = info->version_info; t != NULL; t = t->next)
2248 {
2249 if (strcmp (t->name, version_p) == 0)
2250 {
2251 size_t len;
2252 char *alc;
2253 struct bfd_elf_version_expr *d;
2254
2255 len = version_p - h->root.root.string;
2256 alc = (char *) bfd_malloc (len);
2257 if (alc == NULL)
2258 return FALSE;
2259 memcpy (alc, h->root.root.string, len - 1);
2260 alc[len - 1] = '\0';
2261 if (alc[len - 2] == ELF_VER_CHR)
2262 alc[len - 2] = '\0';
2263
2264 h->verinfo.vertree = t;
2265 t->used = TRUE;
2266 d = NULL;
2267
2268 if (t->globals.list != NULL)
2269 d = (*t->match) (&t->globals, NULL, alc);
2270
2271 /* See if there is anything to force this symbol to
2272 local scope. */
2273 if (d == NULL && t->locals.list != NULL)
2274 {
2275 d = (*t->match) (&t->locals, NULL, alc);
2276 if (d != NULL
2277 && h->dynindx != -1
2278 && ! info->export_dynamic)
2279 *hide = TRUE;
2280 }
2281
2282 free (alc);
2283 break;
2284 }
2285 }
2286
2287 *t_p = t;
2288
2289 return TRUE;
2290 }
2291
2292 /* Return TRUE if the symbol H is hidden by version script. */
2293
2294 bfd_boolean
2295 _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info,
2296 struct elf_link_hash_entry *h)
2297 {
2298 const char *p;
2299 bfd_boolean hide = FALSE;
2300 const struct elf_backend_data *bed
2301 = get_elf_backend_data (info->output_bfd);
2302
2303 /* Version script only hides symbols defined in regular objects. */
2304 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2305 return TRUE;
2306
2307 p = strchr (h->root.root.string, ELF_VER_CHR);
2308 if (p != NULL && h->verinfo.vertree == NULL)
2309 {
2310 struct bfd_elf_version_tree *t;
2311
2312 ++p;
2313 if (*p == ELF_VER_CHR)
2314 ++p;
2315
2316 if (*p != '\0'
2317 && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)
2318 && hide)
2319 {
2320 if (hide)
2321 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2322 return TRUE;
2323 }
2324 }
2325
2326 /* If we don't have a version for this symbol, see if we can find
2327 something. */
2328 if (h->verinfo.vertree == NULL && info->version_info != NULL)
2329 {
2330 h->verinfo.vertree
2331 = bfd_find_version_for_sym (info->version_info,
2332 h->root.root.string, &hide);
2333 if (h->verinfo.vertree != NULL && hide)
2334 {
2335 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2336 return TRUE;
2337 }
2338 }
2339
2340 return FALSE;
2341 }
2342
2343 /* Figure out appropriate versions for all the symbols. We may not
2344 have the version number script until we have read all of the input
2345 files, so until that point we don't know which symbols should be
2346 local. This function is called via elf_link_hash_traverse. */
2347
2348 static bfd_boolean
2349 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2350 {
2351 struct elf_info_failed *sinfo;
2352 struct bfd_link_info *info;
2353 const struct elf_backend_data *bed;
2354 struct elf_info_failed eif;
2355 char *p;
2356 bfd_boolean hide;
2357
2358 sinfo = (struct elf_info_failed *) data;
2359 info = sinfo->info;
2360
2361 /* Fix the symbol flags. */
2362 eif.failed = FALSE;
2363 eif.info = info;
2364 if (! _bfd_elf_fix_symbol_flags (h, &eif))
2365 {
2366 if (eif.failed)
2367 sinfo->failed = TRUE;
2368 return FALSE;
2369 }
2370
2371 bed = get_elf_backend_data (info->output_bfd);
2372
2373 /* We only need version numbers for symbols defined in regular
2374 objects. */
2375 if (!h->def_regular)
2376 {
2377 /* Hide symbols defined in discarded input sections. */
2378 if ((h->root.type == bfd_link_hash_defined
2379 || h->root.type == bfd_link_hash_defweak)
2380 && discarded_section (h->root.u.def.section))
2381 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2382 return TRUE;
2383 }
2384
2385 hide = FALSE;
2386 p = strchr (h->root.root.string, ELF_VER_CHR);
2387 if (p != NULL && h->verinfo.vertree == NULL)
2388 {
2389 struct bfd_elf_version_tree *t;
2390
2391 ++p;
2392 if (*p == ELF_VER_CHR)
2393 ++p;
2394
2395 /* If there is no version string, we can just return out. */
2396 if (*p == '\0')
2397 return TRUE;
2398
2399 if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide))
2400 {
2401 sinfo->failed = TRUE;
2402 return FALSE;
2403 }
2404
2405 if (hide)
2406 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2407
2408 /* If we are building an application, we need to create a
2409 version node for this version. */
2410 if (t == NULL && bfd_link_executable (info))
2411 {
2412 struct bfd_elf_version_tree **pp;
2413 int version_index;
2414
2415 /* If we aren't going to export this symbol, we don't need
2416 to worry about it. */
2417 if (h->dynindx == -1)
2418 return TRUE;
2419
2420 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2421 sizeof *t);
2422 if (t == NULL)
2423 {
2424 sinfo->failed = TRUE;
2425 return FALSE;
2426 }
2427
2428 t->name = p;
2429 t->name_indx = (unsigned int) -1;
2430 t->used = TRUE;
2431
2432 version_index = 1;
2433 /* Don't count anonymous version tag. */
2434 if (sinfo->info->version_info != NULL
2435 && sinfo->info->version_info->vernum == 0)
2436 version_index = 0;
2437 for (pp = &sinfo->info->version_info;
2438 *pp != NULL;
2439 pp = &(*pp)->next)
2440 ++version_index;
2441 t->vernum = version_index;
2442
2443 *pp = t;
2444
2445 h->verinfo.vertree = t;
2446 }
2447 else if (t == NULL)
2448 {
2449 /* We could not find the version for a symbol when
2450 generating a shared archive. Return an error. */
2451 _bfd_error_handler
2452 /* xgettext:c-format */
2453 (_("%pB: version node not found for symbol %s"),
2454 info->output_bfd, h->root.root.string);
2455 bfd_set_error (bfd_error_bad_value);
2456 sinfo->failed = TRUE;
2457 return FALSE;
2458 }
2459 }
2460
2461 /* If we don't have a version for this symbol, see if we can find
2462 something. */
2463 if (!hide
2464 && h->verinfo.vertree == NULL
2465 && sinfo->info->version_info != NULL)
2466 {
2467 h->verinfo.vertree
2468 = bfd_find_version_for_sym (sinfo->info->version_info,
2469 h->root.root.string, &hide);
2470 if (h->verinfo.vertree != NULL && hide)
2471 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2472 }
2473
2474 return TRUE;
2475 }
2476 \f
2477 /* Read and swap the relocs from the section indicated by SHDR. This
2478 may be either a REL or a RELA section. The relocations are
2479 translated into RELA relocations and stored in INTERNAL_RELOCS,
2480 which should have already been allocated to contain enough space.
2481 The EXTERNAL_RELOCS are a buffer where the external form of the
2482 relocations should be stored.
2483
2484 Returns FALSE if something goes wrong. */
2485
2486 static bfd_boolean
2487 elf_link_read_relocs_from_section (bfd *abfd,
2488 asection *sec,
2489 Elf_Internal_Shdr *shdr,
2490 void *external_relocs,
2491 Elf_Internal_Rela *internal_relocs)
2492 {
2493 const struct elf_backend_data *bed;
2494 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2495 const bfd_byte *erela;
2496 const bfd_byte *erelaend;
2497 Elf_Internal_Rela *irela;
2498 Elf_Internal_Shdr *symtab_hdr;
2499 size_t nsyms;
2500
2501 /* Position ourselves at the start of the section. */
2502 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2503 return FALSE;
2504
2505 /* Read the relocations. */
2506 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2507 return FALSE;
2508
2509 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2510 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2511
2512 bed = get_elf_backend_data (abfd);
2513
2514 /* Convert the external relocations to the internal format. */
2515 if (shdr->sh_entsize == bed->s->sizeof_rel)
2516 swap_in = bed->s->swap_reloc_in;
2517 else if (shdr->sh_entsize == bed->s->sizeof_rela)
2518 swap_in = bed->s->swap_reloca_in;
2519 else
2520 {
2521 bfd_set_error (bfd_error_wrong_format);
2522 return FALSE;
2523 }
2524
2525 erela = (const bfd_byte *) external_relocs;
2526 /* Setting erelaend like this and comparing with <= handles case of
2527 a fuzzed object with sh_size not a multiple of sh_entsize. */
2528 erelaend = erela + shdr->sh_size - shdr->sh_entsize;
2529 irela = internal_relocs;
2530 while (erela <= erelaend)
2531 {
2532 bfd_vma r_symndx;
2533
2534 (*swap_in) (abfd, erela, irela);
2535 r_symndx = ELF32_R_SYM (irela->r_info);
2536 if (bed->s->arch_size == 64)
2537 r_symndx >>= 24;
2538 if (nsyms > 0)
2539 {
2540 if ((size_t) r_symndx >= nsyms)
2541 {
2542 _bfd_error_handler
2543 /* xgettext:c-format */
2544 (_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)"
2545 " for offset %#" PRIx64 " in section `%pA'"),
2546 abfd, (uint64_t) r_symndx, (unsigned long) nsyms,
2547 (uint64_t) irela->r_offset, sec);
2548 bfd_set_error (bfd_error_bad_value);
2549 return FALSE;
2550 }
2551 }
2552 else if (r_symndx != STN_UNDEF)
2553 {
2554 _bfd_error_handler
2555 /* xgettext:c-format */
2556 (_("%pB: non-zero symbol index (%#" PRIx64 ")"
2557 " for offset %#" PRIx64 " in section `%pA'"
2558 " when the object file has no symbol table"),
2559 abfd, (uint64_t) r_symndx,
2560 (uint64_t) irela->r_offset, sec);
2561 bfd_set_error (bfd_error_bad_value);
2562 return FALSE;
2563 }
2564 irela += bed->s->int_rels_per_ext_rel;
2565 erela += shdr->sh_entsize;
2566 }
2567
2568 return TRUE;
2569 }
2570
2571 /* Read and swap the relocs for a section O. They may have been
2572 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2573 not NULL, they are used as buffers to read into. They are known to
2574 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
2575 the return value is allocated using either malloc or bfd_alloc,
2576 according to the KEEP_MEMORY argument. If O has two relocation
2577 sections (both REL and RELA relocations), then the REL_HDR
2578 relocations will appear first in INTERNAL_RELOCS, followed by the
2579 RELA_HDR relocations. */
2580
2581 Elf_Internal_Rela *
2582 _bfd_elf_link_read_relocs (bfd *abfd,
2583 asection *o,
2584 void *external_relocs,
2585 Elf_Internal_Rela *internal_relocs,
2586 bfd_boolean keep_memory)
2587 {
2588 void *alloc1 = NULL;
2589 Elf_Internal_Rela *alloc2 = NULL;
2590 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2591 struct bfd_elf_section_data *esdo = elf_section_data (o);
2592 Elf_Internal_Rela *internal_rela_relocs;
2593
2594 if (esdo->relocs != NULL)
2595 return esdo->relocs;
2596
2597 if (o->reloc_count == 0)
2598 return NULL;
2599
2600 if (internal_relocs == NULL)
2601 {
2602 bfd_size_type size;
2603
2604 size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela);
2605 if (keep_memory)
2606 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2607 else
2608 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2609 if (internal_relocs == NULL)
2610 goto error_return;
2611 }
2612
2613 if (external_relocs == NULL)
2614 {
2615 bfd_size_type size = 0;
2616
2617 if (esdo->rel.hdr)
2618 size += esdo->rel.hdr->sh_size;
2619 if (esdo->rela.hdr)
2620 size += esdo->rela.hdr->sh_size;
2621
2622 alloc1 = bfd_malloc (size);
2623 if (alloc1 == NULL)
2624 goto error_return;
2625 external_relocs = alloc1;
2626 }
2627
2628 internal_rela_relocs = internal_relocs;
2629 if (esdo->rel.hdr)
2630 {
2631 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2632 external_relocs,
2633 internal_relocs))
2634 goto error_return;
2635 external_relocs = (((bfd_byte *) external_relocs)
2636 + esdo->rel.hdr->sh_size);
2637 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2638 * bed->s->int_rels_per_ext_rel);
2639 }
2640
2641 if (esdo->rela.hdr
2642 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2643 external_relocs,
2644 internal_rela_relocs)))
2645 goto error_return;
2646
2647 /* Cache the results for next time, if we can. */
2648 if (keep_memory)
2649 esdo->relocs = internal_relocs;
2650
2651 if (alloc1 != NULL)
2652 free (alloc1);
2653
2654 /* Don't free alloc2, since if it was allocated we are passing it
2655 back (under the name of internal_relocs). */
2656
2657 return internal_relocs;
2658
2659 error_return:
2660 if (alloc1 != NULL)
2661 free (alloc1);
2662 if (alloc2 != NULL)
2663 {
2664 if (keep_memory)
2665 bfd_release (abfd, alloc2);
2666 else
2667 free (alloc2);
2668 }
2669 return NULL;
2670 }
2671
2672 /* Compute the size of, and allocate space for, REL_HDR which is the
2673 section header for a section containing relocations for O. */
2674
2675 static bfd_boolean
2676 _bfd_elf_link_size_reloc_section (bfd *abfd,
2677 struct bfd_elf_section_reloc_data *reldata)
2678 {
2679 Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2680
2681 /* That allows us to calculate the size of the section. */
2682 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2683
2684 /* The contents field must last into write_object_contents, so we
2685 allocate it with bfd_alloc rather than malloc. Also since we
2686 cannot be sure that the contents will actually be filled in,
2687 we zero the allocated space. */
2688 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2689 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2690 return FALSE;
2691
2692 if (reldata->hashes == NULL && reldata->count)
2693 {
2694 struct elf_link_hash_entry **p;
2695
2696 p = ((struct elf_link_hash_entry **)
2697 bfd_zmalloc (reldata->count * sizeof (*p)));
2698 if (p == NULL)
2699 return FALSE;
2700
2701 reldata->hashes = p;
2702 }
2703
2704 return TRUE;
2705 }
2706
2707 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2708 originated from the section given by INPUT_REL_HDR) to the
2709 OUTPUT_BFD. */
2710
2711 bfd_boolean
2712 _bfd_elf_link_output_relocs (bfd *output_bfd,
2713 asection *input_section,
2714 Elf_Internal_Shdr *input_rel_hdr,
2715 Elf_Internal_Rela *internal_relocs,
2716 struct elf_link_hash_entry **rel_hash
2717 ATTRIBUTE_UNUSED)
2718 {
2719 Elf_Internal_Rela *irela;
2720 Elf_Internal_Rela *irelaend;
2721 bfd_byte *erel;
2722 struct bfd_elf_section_reloc_data *output_reldata;
2723 asection *output_section;
2724 const struct elf_backend_data *bed;
2725 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2726 struct bfd_elf_section_data *esdo;
2727
2728 output_section = input_section->output_section;
2729
2730 bed = get_elf_backend_data (output_bfd);
2731 esdo = elf_section_data (output_section);
2732 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2733 {
2734 output_reldata = &esdo->rel;
2735 swap_out = bed->s->swap_reloc_out;
2736 }
2737 else if (esdo->rela.hdr
2738 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2739 {
2740 output_reldata = &esdo->rela;
2741 swap_out = bed->s->swap_reloca_out;
2742 }
2743 else
2744 {
2745 _bfd_error_handler
2746 /* xgettext:c-format */
2747 (_("%pB: relocation size mismatch in %pB section %pA"),
2748 output_bfd, input_section->owner, input_section);
2749 bfd_set_error (bfd_error_wrong_format);
2750 return FALSE;
2751 }
2752
2753 erel = output_reldata->hdr->contents;
2754 erel += output_reldata->count * input_rel_hdr->sh_entsize;
2755 irela = internal_relocs;
2756 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2757 * bed->s->int_rels_per_ext_rel);
2758 while (irela < irelaend)
2759 {
2760 (*swap_out) (output_bfd, irela, erel);
2761 irela += bed->s->int_rels_per_ext_rel;
2762 erel += input_rel_hdr->sh_entsize;
2763 }
2764
2765 /* Bump the counter, so that we know where to add the next set of
2766 relocations. */
2767 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2768
2769 return TRUE;
2770 }
2771 \f
2772 /* Make weak undefined symbols in PIE dynamic. */
2773
2774 bfd_boolean
2775 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2776 struct elf_link_hash_entry *h)
2777 {
2778 if (bfd_link_pie (info)
2779 && h->dynindx == -1
2780 && h->root.type == bfd_link_hash_undefweak)
2781 return bfd_elf_link_record_dynamic_symbol (info, h);
2782
2783 return TRUE;
2784 }
2785
2786 /* Fix up the flags for a symbol. This handles various cases which
2787 can only be fixed after all the input files are seen. This is
2788 currently called by both adjust_dynamic_symbol and
2789 assign_sym_version, which is unnecessary but perhaps more robust in
2790 the face of future changes. */
2791
2792 static bfd_boolean
2793 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2794 struct elf_info_failed *eif)
2795 {
2796 const struct elf_backend_data *bed;
2797
2798 /* If this symbol was mentioned in a non-ELF file, try to set
2799 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2800 permit a non-ELF file to correctly refer to a symbol defined in
2801 an ELF dynamic object. */
2802 if (h->non_elf)
2803 {
2804 while (h->root.type == bfd_link_hash_indirect)
2805 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2806
2807 if (h->root.type != bfd_link_hash_defined
2808 && h->root.type != bfd_link_hash_defweak)
2809 {
2810 h->ref_regular = 1;
2811 h->ref_regular_nonweak = 1;
2812 }
2813 else
2814 {
2815 if (h->root.u.def.section->owner != NULL
2816 && (bfd_get_flavour (h->root.u.def.section->owner)
2817 == bfd_target_elf_flavour))
2818 {
2819 h->ref_regular = 1;
2820 h->ref_regular_nonweak = 1;
2821 }
2822 else
2823 h->def_regular = 1;
2824 }
2825
2826 if (h->dynindx == -1
2827 && (h->def_dynamic
2828 || h->ref_dynamic))
2829 {
2830 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2831 {
2832 eif->failed = TRUE;
2833 return FALSE;
2834 }
2835 }
2836 }
2837 else
2838 {
2839 /* Unfortunately, NON_ELF is only correct if the symbol
2840 was first seen in a non-ELF file. Fortunately, if the symbol
2841 was first seen in an ELF file, we're probably OK unless the
2842 symbol was defined in a non-ELF file. Catch that case here.
2843 FIXME: We're still in trouble if the symbol was first seen in
2844 a dynamic object, and then later in a non-ELF regular object. */
2845 if ((h->root.type == bfd_link_hash_defined
2846 || h->root.type == bfd_link_hash_defweak)
2847 && !h->def_regular
2848 && (h->root.u.def.section->owner != NULL
2849 ? (bfd_get_flavour (h->root.u.def.section->owner)
2850 != bfd_target_elf_flavour)
2851 : (bfd_is_abs_section (h->root.u.def.section)
2852 && !h->def_dynamic)))
2853 h->def_regular = 1;
2854 }
2855
2856 /* Backend specific symbol fixup. */
2857 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2858 if (bed->elf_backend_fixup_symbol
2859 && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2860 return FALSE;
2861
2862 /* If this is a final link, and the symbol was defined as a common
2863 symbol in a regular object file, and there was no definition in
2864 any dynamic object, then the linker will have allocated space for
2865 the symbol in a common section but the DEF_REGULAR
2866 flag will not have been set. */
2867 if (h->root.type == bfd_link_hash_defined
2868 && !h->def_regular
2869 && h->ref_regular
2870 && !h->def_dynamic
2871 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2872 h->def_regular = 1;
2873
2874 /* Symbols defined in discarded sections shouldn't be dynamic. */
2875 if (h->root.type == bfd_link_hash_undefined && h->indx == -3)
2876 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2877
2878 /* If a weak undefined symbol has non-default visibility, we also
2879 hide it from the dynamic linker. */
2880 else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2881 && h->root.type == bfd_link_hash_undefweak)
2882 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2883
2884 /* A hidden versioned symbol in executable should be forced local if
2885 it is is locally defined, not referenced by shared library and not
2886 exported. */
2887 else if (bfd_link_executable (eif->info)
2888 && h->versioned == versioned_hidden
2889 && !eif->info->export_dynamic
2890 && !h->dynamic
2891 && !h->ref_dynamic
2892 && h->def_regular)
2893 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2894
2895 /* If -Bsymbolic was used (which means to bind references to global
2896 symbols to the definition within the shared object), and this
2897 symbol was defined in a regular object, then it actually doesn't
2898 need a PLT entry. Likewise, if the symbol has non-default
2899 visibility. If the symbol has hidden or internal visibility, we
2900 will force it local. */
2901 else if (h->needs_plt
2902 && bfd_link_pic (eif->info)
2903 && is_elf_hash_table (eif->info->hash)
2904 && (SYMBOLIC_BIND (eif->info, h)
2905 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2906 && h->def_regular)
2907 {
2908 bfd_boolean force_local;
2909
2910 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2911 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2912 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2913 }
2914
2915 /* If this is a weak defined symbol in a dynamic object, and we know
2916 the real definition in the dynamic object, copy interesting flags
2917 over to the real definition. */
2918 if (h->is_weakalias)
2919 {
2920 struct elf_link_hash_entry *def = weakdef (h);
2921
2922 /* If the real definition is defined by a regular object file,
2923 don't do anything special. See the longer description in
2924 _bfd_elf_adjust_dynamic_symbol, below. */
2925 if (def->def_regular)
2926 {
2927 h = def;
2928 while ((h = h->u.alias) != def)
2929 h->is_weakalias = 0;
2930 }
2931 else
2932 {
2933 while (h->root.type == bfd_link_hash_indirect)
2934 h = (struct elf_link_hash_entry *) h->root.u.i.link;
2935 BFD_ASSERT (h->root.type == bfd_link_hash_defined
2936 || h->root.type == bfd_link_hash_defweak);
2937 BFD_ASSERT (def->def_dynamic);
2938 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
2939 (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h);
2940 }
2941 }
2942
2943 return TRUE;
2944 }
2945
2946 /* Make the backend pick a good value for a dynamic symbol. This is
2947 called via elf_link_hash_traverse, and also calls itself
2948 recursively. */
2949
2950 static bfd_boolean
2951 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2952 {
2953 struct elf_info_failed *eif = (struct elf_info_failed *) data;
2954 struct elf_link_hash_table *htab;
2955 const struct elf_backend_data *bed;
2956
2957 if (! is_elf_hash_table (eif->info->hash))
2958 return FALSE;
2959
2960 /* Ignore indirect symbols. These are added by the versioning code. */
2961 if (h->root.type == bfd_link_hash_indirect)
2962 return TRUE;
2963
2964 /* Fix the symbol flags. */
2965 if (! _bfd_elf_fix_symbol_flags (h, eif))
2966 return FALSE;
2967
2968 htab = elf_hash_table (eif->info);
2969 bed = get_elf_backend_data (htab->dynobj);
2970
2971 if (h->root.type == bfd_link_hash_undefweak)
2972 {
2973 if (eif->info->dynamic_undefined_weak == 0)
2974 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2975 else if (eif->info->dynamic_undefined_weak > 0
2976 && h->ref_regular
2977 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2978 && !bfd_hide_sym_by_version (eif->info->version_info,
2979 h->root.root.string))
2980 {
2981 if (!bfd_elf_link_record_dynamic_symbol (eif->info, h))
2982 {
2983 eif->failed = TRUE;
2984 return FALSE;
2985 }
2986 }
2987 }
2988
2989 /* If this symbol does not require a PLT entry, and it is not
2990 defined by a dynamic object, or is not referenced by a regular
2991 object, ignore it. We do have to handle a weak defined symbol,
2992 even if no regular object refers to it, if we decided to add it
2993 to the dynamic symbol table. FIXME: Do we normally need to worry
2994 about symbols which are defined by one dynamic object and
2995 referenced by another one? */
2996 if (!h->needs_plt
2997 && h->type != STT_GNU_IFUNC
2998 && (h->def_regular
2999 || !h->def_dynamic
3000 || (!h->ref_regular
3001 && (!h->is_weakalias || weakdef (h)->dynindx == -1))))
3002 {
3003 h->plt = elf_hash_table (eif->info)->init_plt_offset;
3004 return TRUE;
3005 }
3006
3007 /* If we've already adjusted this symbol, don't do it again. This
3008 can happen via a recursive call. */
3009 if (h->dynamic_adjusted)
3010 return TRUE;
3011
3012 /* Don't look at this symbol again. Note that we must set this
3013 after checking the above conditions, because we may look at a
3014 symbol once, decide not to do anything, and then get called
3015 recursively later after REF_REGULAR is set below. */
3016 h->dynamic_adjusted = 1;
3017
3018 /* If this is a weak definition, and we know a real definition, and
3019 the real symbol is not itself defined by a regular object file,
3020 then get a good value for the real definition. We handle the
3021 real symbol first, for the convenience of the backend routine.
3022
3023 Note that there is a confusing case here. If the real definition
3024 is defined by a regular object file, we don't get the real symbol
3025 from the dynamic object, but we do get the weak symbol. If the
3026 processor backend uses a COPY reloc, then if some routine in the
3027 dynamic object changes the real symbol, we will not see that
3028 change in the corresponding weak symbol. This is the way other
3029 ELF linkers work as well, and seems to be a result of the shared
3030 library model.
3031
3032 I will clarify this issue. Most SVR4 shared libraries define the
3033 variable _timezone and define timezone as a weak synonym. The
3034 tzset call changes _timezone. If you write
3035 extern int timezone;
3036 int _timezone = 5;
3037 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
3038 you might expect that, since timezone is a synonym for _timezone,
3039 the same number will print both times. However, if the processor
3040 backend uses a COPY reloc, then actually timezone will be copied
3041 into your process image, and, since you define _timezone
3042 yourself, _timezone will not. Thus timezone and _timezone will
3043 wind up at different memory locations. The tzset call will set
3044 _timezone, leaving timezone unchanged. */
3045
3046 if (h->is_weakalias)
3047 {
3048 struct elf_link_hash_entry *def = weakdef (h);
3049
3050 /* If we get to this point, there is an implicit reference to
3051 the alias by a regular object file via the weak symbol H. */
3052 def->ref_regular = 1;
3053
3054 /* Ensure that the backend adjust_dynamic_symbol function sees
3055 the strong alias before H by recursively calling ourselves. */
3056 if (!_bfd_elf_adjust_dynamic_symbol (def, eif))
3057 return FALSE;
3058 }
3059
3060 /* If a symbol has no type and no size and does not require a PLT
3061 entry, then we are probably about to do the wrong thing here: we
3062 are probably going to create a COPY reloc for an empty object.
3063 This case can arise when a shared object is built with assembly
3064 code, and the assembly code fails to set the symbol type. */
3065 if (h->size == 0
3066 && h->type == STT_NOTYPE
3067 && !h->needs_plt)
3068 _bfd_error_handler
3069 (_("warning: type and size of dynamic symbol `%s' are not defined"),
3070 h->root.root.string);
3071
3072 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
3073 {
3074 eif->failed = TRUE;
3075 return FALSE;
3076 }
3077
3078 return TRUE;
3079 }
3080
3081 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
3082 DYNBSS. */
3083
3084 bfd_boolean
3085 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
3086 struct elf_link_hash_entry *h,
3087 asection *dynbss)
3088 {
3089 unsigned int power_of_two;
3090 bfd_vma mask;
3091 asection *sec = h->root.u.def.section;
3092
3093 /* The section alignment of the definition is the maximum alignment
3094 requirement of symbols defined in the section. Since we don't
3095 know the symbol alignment requirement, we start with the
3096 maximum alignment and check low bits of the symbol address
3097 for the minimum alignment. */
3098 power_of_two = bfd_get_section_alignment (sec->owner, sec);
3099 mask = ((bfd_vma) 1 << power_of_two) - 1;
3100 while ((h->root.u.def.value & mask) != 0)
3101 {
3102 mask >>= 1;
3103 --power_of_two;
3104 }
3105
3106 if (power_of_two > bfd_get_section_alignment (dynbss->owner,
3107 dynbss))
3108 {
3109 /* Adjust the section alignment if needed. */
3110 if (! bfd_set_section_alignment (dynbss->owner, dynbss,
3111 power_of_two))
3112 return FALSE;
3113 }
3114
3115 /* We make sure that the symbol will be aligned properly. */
3116 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
3117
3118 /* Define the symbol as being at this point in DYNBSS. */
3119 h->root.u.def.section = dynbss;
3120 h->root.u.def.value = dynbss->size;
3121
3122 /* Increment the size of DYNBSS to make room for the symbol. */
3123 dynbss->size += h->size;
3124
3125 /* No error if extern_protected_data is true. */
3126 if (h->protected_def
3127 && (!info->extern_protected_data
3128 || (info->extern_protected_data < 0
3129 && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
3130 info->callbacks->einfo
3131 (_("%P: copy reloc against protected `%pT' is dangerous\n"),
3132 h->root.root.string);
3133
3134 return TRUE;
3135 }
3136
3137 /* Adjust all external symbols pointing into SEC_MERGE sections
3138 to reflect the object merging within the sections. */
3139
3140 static bfd_boolean
3141 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
3142 {
3143 asection *sec;
3144
3145 if ((h->root.type == bfd_link_hash_defined
3146 || h->root.type == bfd_link_hash_defweak)
3147 && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
3148 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
3149 {
3150 bfd *output_bfd = (bfd *) data;
3151
3152 h->root.u.def.value =
3153 _bfd_merged_section_offset (output_bfd,
3154 &h->root.u.def.section,
3155 elf_section_data (sec)->sec_info,
3156 h->root.u.def.value);
3157 }
3158
3159 return TRUE;
3160 }
3161
3162 /* Returns false if the symbol referred to by H should be considered
3163 to resolve local to the current module, and true if it should be
3164 considered to bind dynamically. */
3165
3166 bfd_boolean
3167 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
3168 struct bfd_link_info *info,
3169 bfd_boolean not_local_protected)
3170 {
3171 bfd_boolean binding_stays_local_p;
3172 const struct elf_backend_data *bed;
3173 struct elf_link_hash_table *hash_table;
3174
3175 if (h == NULL)
3176 return FALSE;
3177
3178 while (h->root.type == bfd_link_hash_indirect
3179 || h->root.type == bfd_link_hash_warning)
3180 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3181
3182 /* If it was forced local, then clearly it's not dynamic. */
3183 if (h->dynindx == -1)
3184 return FALSE;
3185 if (h->forced_local)
3186 return FALSE;
3187
3188 /* Identify the cases where name binding rules say that a
3189 visible symbol resolves locally. */
3190 binding_stays_local_p = (bfd_link_executable (info)
3191 || SYMBOLIC_BIND (info, h));
3192
3193 switch (ELF_ST_VISIBILITY (h->other))
3194 {
3195 case STV_INTERNAL:
3196 case STV_HIDDEN:
3197 return FALSE;
3198
3199 case STV_PROTECTED:
3200 hash_table = elf_hash_table (info);
3201 if (!is_elf_hash_table (hash_table))
3202 return FALSE;
3203
3204 bed = get_elf_backend_data (hash_table->dynobj);
3205
3206 /* Proper resolution for function pointer equality may require
3207 that these symbols perhaps be resolved dynamically, even though
3208 we should be resolving them to the current module. */
3209 if (!not_local_protected || !bed->is_function_type (h->type))
3210 binding_stays_local_p = TRUE;
3211 break;
3212
3213 default:
3214 break;
3215 }
3216
3217 /* If it isn't defined locally, then clearly it's dynamic. */
3218 if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3219 return TRUE;
3220
3221 /* Otherwise, the symbol is dynamic if binding rules don't tell
3222 us that it remains local. */
3223 return !binding_stays_local_p;
3224 }
3225
3226 /* Return true if the symbol referred to by H should be considered
3227 to resolve local to the current module, and false otherwise. Differs
3228 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3229 undefined symbols. The two functions are virtually identical except
3230 for the place where dynindx == -1 is tested. If that test is true,
3231 _bfd_elf_dynamic_symbol_p will say the symbol is local, while
3232 _bfd_elf_symbol_refs_local_p will say the symbol is local only for
3233 defined symbols.
3234 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3235 !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3236 treatment of undefined weak symbols. For those that do not make
3237 undefined weak symbols dynamic, both functions may return false. */
3238
3239 bfd_boolean
3240 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3241 struct bfd_link_info *info,
3242 bfd_boolean local_protected)
3243 {
3244 const struct elf_backend_data *bed;
3245 struct elf_link_hash_table *hash_table;
3246
3247 /* If it's a local sym, of course we resolve locally. */
3248 if (h == NULL)
3249 return TRUE;
3250
3251 /* STV_HIDDEN or STV_INTERNAL ones must be local. */
3252 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3253 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3254 return TRUE;
3255
3256 /* Forced local symbols resolve locally. */
3257 if (h->forced_local)
3258 return TRUE;
3259
3260 /* Common symbols that become definitions don't get the DEF_REGULAR
3261 flag set, so test it first, and don't bail out. */
3262 if (ELF_COMMON_DEF_P (h))
3263 /* Do nothing. */;
3264 /* If we don't have a definition in a regular file, then we can't
3265 resolve locally. The sym is either undefined or dynamic. */
3266 else if (!h->def_regular)
3267 return FALSE;
3268
3269 /* Non-dynamic symbols resolve locally. */
3270 if (h->dynindx == -1)
3271 return TRUE;
3272
3273 /* At this point, we know the symbol is defined and dynamic. In an
3274 executable it must resolve locally, likewise when building symbolic
3275 shared libraries. */
3276 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3277 return TRUE;
3278
3279 /* Now deal with defined dynamic symbols in shared libraries. Ones
3280 with default visibility might not resolve locally. */
3281 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3282 return FALSE;
3283
3284 hash_table = elf_hash_table (info);
3285 if (!is_elf_hash_table (hash_table))
3286 return TRUE;
3287
3288 bed = get_elf_backend_data (hash_table->dynobj);
3289
3290 /* If extern_protected_data is false, STV_PROTECTED non-function
3291 symbols are local. */
3292 if ((!info->extern_protected_data
3293 || (info->extern_protected_data < 0
3294 && !bed->extern_protected_data))
3295 && !bed->is_function_type (h->type))
3296 return TRUE;
3297
3298 /* Function pointer equality tests may require that STV_PROTECTED
3299 symbols be treated as dynamic symbols. If the address of a
3300 function not defined in an executable is set to that function's
3301 plt entry in the executable, then the address of the function in
3302 a shared library must also be the plt entry in the executable. */
3303 return local_protected;
3304 }
3305
3306 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3307 aligned. Returns the first TLS output section. */
3308
3309 struct bfd_section *
3310 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3311 {
3312 struct bfd_section *sec, *tls;
3313 unsigned int align = 0;
3314
3315 for (sec = obfd->sections; sec != NULL; sec = sec->next)
3316 if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3317 break;
3318 tls = sec;
3319
3320 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3321 if (sec->alignment_power > align)
3322 align = sec->alignment_power;
3323
3324 elf_hash_table (info)->tls_sec = tls;
3325
3326 /* Ensure the alignment of the first section is the largest alignment,
3327 so that the tls segment starts aligned. */
3328 if (tls != NULL)
3329 tls->alignment_power = align;
3330
3331 return tls;
3332 }
3333
3334 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
3335 static bfd_boolean
3336 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3337 Elf_Internal_Sym *sym)
3338 {
3339 const struct elf_backend_data *bed;
3340
3341 /* Local symbols do not count, but target specific ones might. */
3342 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3343 && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3344 return FALSE;
3345
3346 bed = get_elf_backend_data (abfd);
3347 /* Function symbols do not count. */
3348 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3349 return FALSE;
3350
3351 /* If the section is undefined, then so is the symbol. */
3352 if (sym->st_shndx == SHN_UNDEF)
3353 return FALSE;
3354
3355 /* If the symbol is defined in the common section, then
3356 it is a common definition and so does not count. */
3357 if (bed->common_definition (sym))
3358 return FALSE;
3359
3360 /* If the symbol is in a target specific section then we
3361 must rely upon the backend to tell us what it is. */
3362 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3363 /* FIXME - this function is not coded yet:
3364
3365 return _bfd_is_global_symbol_definition (abfd, sym);
3366
3367 Instead for now assume that the definition is not global,
3368 Even if this is wrong, at least the linker will behave
3369 in the same way that it used to do. */
3370 return FALSE;
3371
3372 return TRUE;
3373 }
3374
3375 /* Search the symbol table of the archive element of the archive ABFD
3376 whose archive map contains a mention of SYMDEF, and determine if
3377 the symbol is defined in this element. */
3378 static bfd_boolean
3379 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3380 {
3381 Elf_Internal_Shdr * hdr;
3382 size_t symcount;
3383 size_t extsymcount;
3384 size_t extsymoff;
3385 Elf_Internal_Sym *isymbuf;
3386 Elf_Internal_Sym *isym;
3387 Elf_Internal_Sym *isymend;
3388 bfd_boolean result;
3389
3390 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3391 if (abfd == NULL)
3392 return FALSE;
3393
3394 if (! bfd_check_format (abfd, bfd_object))
3395 return FALSE;
3396
3397 /* Select the appropriate symbol table. If we don't know if the
3398 object file is an IR object, give linker LTO plugin a chance to
3399 get the correct symbol table. */
3400 if (abfd->plugin_format == bfd_plugin_yes
3401 #if BFD_SUPPORTS_PLUGINS
3402 || (abfd->plugin_format == bfd_plugin_unknown
3403 && bfd_link_plugin_object_p (abfd))
3404 #endif
3405 )
3406 {
3407 /* Use the IR symbol table if the object has been claimed by
3408 plugin. */
3409 abfd = abfd->plugin_dummy_bfd;
3410 hdr = &elf_tdata (abfd)->symtab_hdr;
3411 }
3412 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3413 hdr = &elf_tdata (abfd)->symtab_hdr;
3414 else
3415 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3416
3417 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3418
3419 /* The sh_info field of the symtab header tells us where the
3420 external symbols start. We don't care about the local symbols. */
3421 if (elf_bad_symtab (abfd))
3422 {
3423 extsymcount = symcount;
3424 extsymoff = 0;
3425 }
3426 else
3427 {
3428 extsymcount = symcount - hdr->sh_info;
3429 extsymoff = hdr->sh_info;
3430 }
3431
3432 if (extsymcount == 0)
3433 return FALSE;
3434
3435 /* Read in the symbol table. */
3436 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3437 NULL, NULL, NULL);
3438 if (isymbuf == NULL)
3439 return FALSE;
3440
3441 /* Scan the symbol table looking for SYMDEF. */
3442 result = FALSE;
3443 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3444 {
3445 const char *name;
3446
3447 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3448 isym->st_name);
3449 if (name == NULL)
3450 break;
3451
3452 if (strcmp (name, symdef->name) == 0)
3453 {
3454 result = is_global_data_symbol_definition (abfd, isym);
3455 break;
3456 }
3457 }
3458
3459 free (isymbuf);
3460
3461 return result;
3462 }
3463 \f
3464 /* Add an entry to the .dynamic table. */
3465
3466 bfd_boolean
3467 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3468 bfd_vma tag,
3469 bfd_vma val)
3470 {
3471 struct elf_link_hash_table *hash_table;
3472 const struct elf_backend_data *bed;
3473 asection *s;
3474 bfd_size_type newsize;
3475 bfd_byte *newcontents;
3476 Elf_Internal_Dyn dyn;
3477
3478 hash_table = elf_hash_table (info);
3479 if (! is_elf_hash_table (hash_table))
3480 return FALSE;
3481
3482 if (tag == DT_RELA || tag == DT_REL)
3483 hash_table->dynamic_relocs = TRUE;
3484
3485 bed = get_elf_backend_data (hash_table->dynobj);
3486 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3487 BFD_ASSERT (s != NULL);
3488
3489 newsize = s->size + bed->s->sizeof_dyn;
3490 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3491 if (newcontents == NULL)
3492 return FALSE;
3493
3494 dyn.d_tag = tag;
3495 dyn.d_un.d_val = val;
3496 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3497
3498 s->size = newsize;
3499 s->contents = newcontents;
3500
3501 return TRUE;
3502 }
3503
3504 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3505 otherwise just check whether one already exists. Returns -1 on error,
3506 1 if a DT_NEEDED tag already exists, and 0 on success. */
3507
3508 static int
3509 elf_add_dt_needed_tag (bfd *abfd,
3510 struct bfd_link_info *info,
3511 const char *soname,
3512 bfd_boolean do_it)
3513 {
3514 struct elf_link_hash_table *hash_table;
3515 size_t strindex;
3516
3517 if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3518 return -1;
3519
3520 hash_table = elf_hash_table (info);
3521 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3522 if (strindex == (size_t) -1)
3523 return -1;
3524
3525 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3526 {
3527 asection *sdyn;
3528 const struct elf_backend_data *bed;
3529 bfd_byte *extdyn;
3530
3531 bed = get_elf_backend_data (hash_table->dynobj);
3532 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3533 if (sdyn != NULL)
3534 for (extdyn = sdyn->contents;
3535 extdyn < sdyn->contents + sdyn->size;
3536 extdyn += bed->s->sizeof_dyn)
3537 {
3538 Elf_Internal_Dyn dyn;
3539
3540 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3541 if (dyn.d_tag == DT_NEEDED
3542 && dyn.d_un.d_val == strindex)
3543 {
3544 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3545 return 1;
3546 }
3547 }
3548 }
3549
3550 if (do_it)
3551 {
3552 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3553 return -1;
3554
3555 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3556 return -1;
3557 }
3558 else
3559 /* We were just checking for existence of the tag. */
3560 _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3561
3562 return 0;
3563 }
3564
3565 /* Return true if SONAME is on the needed list between NEEDED and STOP
3566 (or the end of list if STOP is NULL), and needed by a library that
3567 will be loaded. */
3568
3569 static bfd_boolean
3570 on_needed_list (const char *soname,
3571 struct bfd_link_needed_list *needed,
3572 struct bfd_link_needed_list *stop)
3573 {
3574 struct bfd_link_needed_list *look;
3575 for (look = needed; look != stop; look = look->next)
3576 if (strcmp (soname, look->name) == 0
3577 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3578 /* If needed by a library that itself is not directly
3579 needed, recursively check whether that library is
3580 indirectly needed. Since we add DT_NEEDED entries to
3581 the end of the list, library dependencies appear after
3582 the library. Therefore search prior to the current
3583 LOOK, preventing possible infinite recursion. */
3584 || on_needed_list (elf_dt_name (look->by), needed, look)))
3585 return TRUE;
3586
3587 return FALSE;
3588 }
3589
3590 /* Sort symbol by value, section, and size. */
3591 static int
3592 elf_sort_symbol (const void *arg1, const void *arg2)
3593 {
3594 const struct elf_link_hash_entry *h1;
3595 const struct elf_link_hash_entry *h2;
3596 bfd_signed_vma vdiff;
3597
3598 h1 = *(const struct elf_link_hash_entry **) arg1;
3599 h2 = *(const struct elf_link_hash_entry **) arg2;
3600 vdiff = h1->root.u.def.value - h2->root.u.def.value;
3601 if (vdiff != 0)
3602 return vdiff > 0 ? 1 : -1;
3603 else
3604 {
3605 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3606 if (sdiff != 0)
3607 return sdiff > 0 ? 1 : -1;
3608 }
3609 vdiff = h1->size - h2->size;
3610 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3611 }
3612
3613 /* This function is used to adjust offsets into .dynstr for
3614 dynamic symbols. This is called via elf_link_hash_traverse. */
3615
3616 static bfd_boolean
3617 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3618 {
3619 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3620
3621 if (h->dynindx != -1)
3622 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3623 return TRUE;
3624 }
3625
3626 /* Assign string offsets in .dynstr, update all structures referencing
3627 them. */
3628
3629 static bfd_boolean
3630 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3631 {
3632 struct elf_link_hash_table *hash_table = elf_hash_table (info);
3633 struct elf_link_local_dynamic_entry *entry;
3634 struct elf_strtab_hash *dynstr = hash_table->dynstr;
3635 bfd *dynobj = hash_table->dynobj;
3636 asection *sdyn;
3637 bfd_size_type size;
3638 const struct elf_backend_data *bed;
3639 bfd_byte *extdyn;
3640
3641 _bfd_elf_strtab_finalize (dynstr);
3642 size = _bfd_elf_strtab_size (dynstr);
3643
3644 bed = get_elf_backend_data (dynobj);
3645 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3646 BFD_ASSERT (sdyn != NULL);
3647
3648 /* Update all .dynamic entries referencing .dynstr strings. */
3649 for (extdyn = sdyn->contents;
3650 extdyn < sdyn->contents + sdyn->size;
3651 extdyn += bed->s->sizeof_dyn)
3652 {
3653 Elf_Internal_Dyn dyn;
3654
3655 bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3656 switch (dyn.d_tag)
3657 {
3658 case DT_STRSZ:
3659 dyn.d_un.d_val = size;
3660 break;
3661 case DT_NEEDED:
3662 case DT_SONAME:
3663 case DT_RPATH:
3664 case DT_RUNPATH:
3665 case DT_FILTER:
3666 case DT_AUXILIARY:
3667 case DT_AUDIT:
3668 case DT_DEPAUDIT:
3669 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3670 break;
3671 default:
3672 continue;
3673 }
3674 bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3675 }
3676
3677 /* Now update local dynamic symbols. */
3678 for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3679 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3680 entry->isym.st_name);
3681
3682 /* And the rest of dynamic symbols. */
3683 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3684
3685 /* Adjust version definitions. */
3686 if (elf_tdata (output_bfd)->cverdefs)
3687 {
3688 asection *s;
3689 bfd_byte *p;
3690 size_t i;
3691 Elf_Internal_Verdef def;
3692 Elf_Internal_Verdaux defaux;
3693
3694 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3695 p = s->contents;
3696 do
3697 {
3698 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3699 &def);
3700 p += sizeof (Elf_External_Verdef);
3701 if (def.vd_aux != sizeof (Elf_External_Verdef))
3702 continue;
3703 for (i = 0; i < def.vd_cnt; ++i)
3704 {
3705 _bfd_elf_swap_verdaux_in (output_bfd,
3706 (Elf_External_Verdaux *) p, &defaux);
3707 defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3708 defaux.vda_name);
3709 _bfd_elf_swap_verdaux_out (output_bfd,
3710 &defaux, (Elf_External_Verdaux *) p);
3711 p += sizeof (Elf_External_Verdaux);
3712 }
3713 }
3714 while (def.vd_next);
3715 }
3716
3717 /* Adjust version references. */
3718 if (elf_tdata (output_bfd)->verref)
3719 {
3720 asection *s;
3721 bfd_byte *p;
3722 size_t i;
3723 Elf_Internal_Verneed need;
3724 Elf_Internal_Vernaux needaux;
3725
3726 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3727 p = s->contents;
3728 do
3729 {
3730 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3731 &need);
3732 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3733 _bfd_elf_swap_verneed_out (output_bfd, &need,
3734 (Elf_External_Verneed *) p);
3735 p += sizeof (Elf_External_Verneed);
3736 for (i = 0; i < need.vn_cnt; ++i)
3737 {
3738 _bfd_elf_swap_vernaux_in (output_bfd,
3739 (Elf_External_Vernaux *) p, &needaux);
3740 needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3741 needaux.vna_name);
3742 _bfd_elf_swap_vernaux_out (output_bfd,
3743 &needaux,
3744 (Elf_External_Vernaux *) p);
3745 p += sizeof (Elf_External_Vernaux);
3746 }
3747 }
3748 while (need.vn_next);
3749 }
3750
3751 return TRUE;
3752 }
3753 \f
3754 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3755 The default is to only match when the INPUT and OUTPUT are exactly
3756 the same target. */
3757
3758 bfd_boolean
3759 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3760 const bfd_target *output)
3761 {
3762 return input == output;
3763 }
3764
3765 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3766 This version is used when different targets for the same architecture
3767 are virtually identical. */
3768
3769 bfd_boolean
3770 _bfd_elf_relocs_compatible (const bfd_target *input,
3771 const bfd_target *output)
3772 {
3773 const struct elf_backend_data *obed, *ibed;
3774
3775 if (input == output)
3776 return TRUE;
3777
3778 ibed = xvec_get_elf_backend_data (input);
3779 obed = xvec_get_elf_backend_data (output);
3780
3781 if (ibed->arch != obed->arch)
3782 return FALSE;
3783
3784 /* If both backends are using this function, deem them compatible. */
3785 return ibed->relocs_compatible == obed->relocs_compatible;
3786 }
3787
3788 /* Make a special call to the linker "notice" function to tell it that
3789 we are about to handle an as-needed lib, or have finished
3790 processing the lib. */
3791
3792 bfd_boolean
3793 _bfd_elf_notice_as_needed (bfd *ibfd,
3794 struct bfd_link_info *info,
3795 enum notice_asneeded_action act)
3796 {
3797 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3798 }
3799
3800 /* Check relocations an ELF object file. */
3801
3802 bfd_boolean
3803 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3804 {
3805 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3806 struct elf_link_hash_table *htab = elf_hash_table (info);
3807
3808 /* If this object is the same format as the output object, and it is
3809 not a shared library, then let the backend look through the
3810 relocs.
3811
3812 This is required to build global offset table entries and to
3813 arrange for dynamic relocs. It is not required for the
3814 particular common case of linking non PIC code, even when linking
3815 against shared libraries, but unfortunately there is no way of
3816 knowing whether an object file has been compiled PIC or not.
3817 Looking through the relocs is not particularly time consuming.
3818 The problem is that we must either (1) keep the relocs in memory,
3819 which causes the linker to require additional runtime memory or
3820 (2) read the relocs twice from the input file, which wastes time.
3821 This would be a good case for using mmap.
3822
3823 I have no idea how to handle linking PIC code into a file of a
3824 different format. It probably can't be done. */
3825 if ((abfd->flags & DYNAMIC) == 0
3826 && is_elf_hash_table (htab)
3827 && bed->check_relocs != NULL
3828 && elf_object_id (abfd) == elf_hash_table_id (htab)
3829 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3830 {
3831 asection *o;
3832
3833 for (o = abfd->sections; o != NULL; o = o->next)
3834 {
3835 Elf_Internal_Rela *internal_relocs;
3836 bfd_boolean ok;
3837
3838 /* Don't check relocations in excluded sections. */
3839 if ((o->flags & SEC_RELOC) == 0
3840 || (o->flags & SEC_EXCLUDE) != 0
3841 || o->reloc_count == 0
3842 || ((info->strip == strip_all || info->strip == strip_debugger)
3843 && (o->flags & SEC_DEBUGGING) != 0)
3844 || bfd_is_abs_section (o->output_section))
3845 continue;
3846
3847 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3848 info->keep_memory);
3849 if (internal_relocs == NULL)
3850 return FALSE;
3851
3852 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3853
3854 if (elf_section_data (o)->relocs != internal_relocs)
3855 free (internal_relocs);
3856
3857 if (! ok)
3858 return FALSE;
3859 }
3860 }
3861
3862 return TRUE;
3863 }
3864
3865 /* Add symbols from an ELF object file to the linker hash table. */
3866
3867 static bfd_boolean
3868 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3869 {
3870 Elf_Internal_Ehdr *ehdr;
3871 Elf_Internal_Shdr *hdr;
3872 size_t symcount;
3873 size_t extsymcount;
3874 size_t extsymoff;
3875 struct elf_link_hash_entry **sym_hash;
3876 bfd_boolean dynamic;
3877 Elf_External_Versym *extversym = NULL;
3878 Elf_External_Versym *extversym_end = NULL;
3879 Elf_External_Versym *ever;
3880 struct elf_link_hash_entry *weaks;
3881 struct elf_link_hash_entry **nondeflt_vers = NULL;
3882 size_t nondeflt_vers_cnt = 0;
3883 Elf_Internal_Sym *isymbuf = NULL;
3884 Elf_Internal_Sym *isym;
3885 Elf_Internal_Sym *isymend;
3886 const struct elf_backend_data *bed;
3887 bfd_boolean add_needed;
3888 struct elf_link_hash_table *htab;
3889 bfd_size_type amt;
3890 void *alloc_mark = NULL;
3891 struct bfd_hash_entry **old_table = NULL;
3892 unsigned int old_size = 0;
3893 unsigned int old_count = 0;
3894 void *old_tab = NULL;
3895 void *old_ent;
3896 struct bfd_link_hash_entry *old_undefs = NULL;
3897 struct bfd_link_hash_entry *old_undefs_tail = NULL;
3898 void *old_strtab = NULL;
3899 size_t tabsize = 0;
3900 asection *s;
3901 bfd_boolean just_syms;
3902
3903 htab = elf_hash_table (info);
3904 bed = get_elf_backend_data (abfd);
3905
3906 if ((abfd->flags & DYNAMIC) == 0)
3907 dynamic = FALSE;
3908 else
3909 {
3910 dynamic = TRUE;
3911
3912 /* You can't use -r against a dynamic object. Also, there's no
3913 hope of using a dynamic object which does not exactly match
3914 the format of the output file. */
3915 if (bfd_link_relocatable (info)
3916 || !is_elf_hash_table (htab)
3917 || info->output_bfd->xvec != abfd->xvec)
3918 {
3919 if (bfd_link_relocatable (info))
3920 bfd_set_error (bfd_error_invalid_operation);
3921 else
3922 bfd_set_error (bfd_error_wrong_format);
3923 goto error_return;
3924 }
3925 }
3926
3927 ehdr = elf_elfheader (abfd);
3928 if (info->warn_alternate_em
3929 && bed->elf_machine_code != ehdr->e_machine
3930 && ((bed->elf_machine_alt1 != 0
3931 && ehdr->e_machine == bed->elf_machine_alt1)
3932 || (bed->elf_machine_alt2 != 0
3933 && ehdr->e_machine == bed->elf_machine_alt2)))
3934 _bfd_error_handler
3935 /* xgettext:c-format */
3936 (_("alternate ELF machine code found (%d) in %pB, expecting %d"),
3937 ehdr->e_machine, abfd, bed->elf_machine_code);
3938
3939 /* As a GNU extension, any input sections which are named
3940 .gnu.warning.SYMBOL are treated as warning symbols for the given
3941 symbol. This differs from .gnu.warning sections, which generate
3942 warnings when they are included in an output file. */
3943 /* PR 12761: Also generate this warning when building shared libraries. */
3944 for (s = abfd->sections; s != NULL; s = s->next)
3945 {
3946 const char *name;
3947
3948 name = bfd_get_section_name (abfd, s);
3949 if (CONST_STRNEQ (name, ".gnu.warning."))
3950 {
3951 char *msg;
3952 bfd_size_type sz;
3953
3954 name += sizeof ".gnu.warning." - 1;
3955
3956 /* If this is a shared object, then look up the symbol
3957 in the hash table. If it is there, and it is already
3958 been defined, then we will not be using the entry
3959 from this shared object, so we don't need to warn.
3960 FIXME: If we see the definition in a regular object
3961 later on, we will warn, but we shouldn't. The only
3962 fix is to keep track of what warnings we are supposed
3963 to emit, and then handle them all at the end of the
3964 link. */
3965 if (dynamic)
3966 {
3967 struct elf_link_hash_entry *h;
3968
3969 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3970
3971 /* FIXME: What about bfd_link_hash_common? */
3972 if (h != NULL
3973 && (h->root.type == bfd_link_hash_defined
3974 || h->root.type == bfd_link_hash_defweak))
3975 continue;
3976 }
3977
3978 sz = s->size;
3979 msg = (char *) bfd_alloc (abfd, sz + 1);
3980 if (msg == NULL)
3981 goto error_return;
3982
3983 if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3984 goto error_return;
3985
3986 msg[sz] = '\0';
3987
3988 if (! (_bfd_generic_link_add_one_symbol
3989 (info, abfd, name, BSF_WARNING, s, 0, msg,
3990 FALSE, bed->collect, NULL)))
3991 goto error_return;
3992
3993 if (bfd_link_executable (info))
3994 {
3995 /* Clobber the section size so that the warning does
3996 not get copied into the output file. */
3997 s->size = 0;
3998
3999 /* Also set SEC_EXCLUDE, so that symbols defined in
4000 the warning section don't get copied to the output. */
4001 s->flags |= SEC_EXCLUDE;
4002 }
4003 }
4004 }
4005
4006 just_syms = ((s = abfd->sections) != NULL
4007 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
4008
4009 add_needed = TRUE;
4010 if (! dynamic)
4011 {
4012 /* If we are creating a shared library, create all the dynamic
4013 sections immediately. We need to attach them to something,
4014 so we attach them to this BFD, provided it is the right
4015 format and is not from ld --just-symbols. Always create the
4016 dynamic sections for -E/--dynamic-list. FIXME: If there
4017 are no input BFD's of the same format as the output, we can't
4018 make a shared library. */
4019 if (!just_syms
4020 && (bfd_link_pic (info)
4021 || (!bfd_link_relocatable (info)
4022 && info->nointerp
4023 && (info->export_dynamic || info->dynamic)))
4024 && is_elf_hash_table (htab)
4025 && info->output_bfd->xvec == abfd->xvec
4026 && !htab->dynamic_sections_created)
4027 {
4028 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
4029 goto error_return;
4030 }
4031 }
4032 else if (!is_elf_hash_table (htab))
4033 goto error_return;
4034 else
4035 {
4036 const char *soname = NULL;
4037 char *audit = NULL;
4038 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
4039 const Elf_Internal_Phdr *phdr;
4040 int ret;
4041
4042 /* ld --just-symbols and dynamic objects don't mix very well.
4043 ld shouldn't allow it. */
4044 if (just_syms)
4045 abort ();
4046
4047 /* If this dynamic lib was specified on the command line with
4048 --as-needed in effect, then we don't want to add a DT_NEEDED
4049 tag unless the lib is actually used. Similary for libs brought
4050 in by another lib's DT_NEEDED. When --no-add-needed is used
4051 on a dynamic lib, we don't want to add a DT_NEEDED entry for
4052 any dynamic library in DT_NEEDED tags in the dynamic lib at
4053 all. */
4054 add_needed = (elf_dyn_lib_class (abfd)
4055 & (DYN_AS_NEEDED | DYN_DT_NEEDED
4056 | DYN_NO_NEEDED)) == 0;
4057
4058 s = bfd_get_section_by_name (abfd, ".dynamic");
4059 if (s != NULL)
4060 {
4061 bfd_byte *dynbuf;
4062 bfd_byte *extdyn;
4063 unsigned int elfsec;
4064 unsigned long shlink;
4065
4066 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
4067 {
4068 error_free_dyn:
4069 free (dynbuf);
4070 goto error_return;
4071 }
4072
4073 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
4074 if (elfsec == SHN_BAD)
4075 goto error_free_dyn;
4076 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
4077
4078 for (extdyn = dynbuf;
4079 extdyn < dynbuf + s->size;
4080 extdyn += bed->s->sizeof_dyn)
4081 {
4082 Elf_Internal_Dyn dyn;
4083
4084 bed->s->swap_dyn_in (abfd, extdyn, &dyn);
4085 if (dyn.d_tag == DT_SONAME)
4086 {
4087 unsigned int tagv = dyn.d_un.d_val;
4088 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4089 if (soname == NULL)
4090 goto error_free_dyn;
4091 }
4092 if (dyn.d_tag == DT_NEEDED)
4093 {
4094 struct bfd_link_needed_list *n, **pn;
4095 char *fnm, *anm;
4096 unsigned int tagv = dyn.d_un.d_val;
4097
4098 amt = sizeof (struct bfd_link_needed_list);
4099 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4100 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4101 if (n == NULL || fnm == NULL)
4102 goto error_free_dyn;
4103 amt = strlen (fnm) + 1;
4104 anm = (char *) bfd_alloc (abfd, amt);
4105 if (anm == NULL)
4106 goto error_free_dyn;
4107 memcpy (anm, fnm, amt);
4108 n->name = anm;
4109 n->by = abfd;
4110 n->next = NULL;
4111 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
4112 ;
4113 *pn = n;
4114 }
4115 if (dyn.d_tag == DT_RUNPATH)
4116 {
4117 struct bfd_link_needed_list *n, **pn;
4118 char *fnm, *anm;
4119 unsigned int tagv = dyn.d_un.d_val;
4120
4121 amt = sizeof (struct bfd_link_needed_list);
4122 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4123 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4124 if (n == NULL || fnm == NULL)
4125 goto error_free_dyn;
4126 amt = strlen (fnm) + 1;
4127 anm = (char *) bfd_alloc (abfd, amt);
4128 if (anm == NULL)
4129 goto error_free_dyn;
4130 memcpy (anm, fnm, amt);
4131 n->name = anm;
4132 n->by = abfd;
4133 n->next = NULL;
4134 for (pn = & runpath;
4135 *pn != NULL;
4136 pn = &(*pn)->next)
4137 ;
4138 *pn = n;
4139 }
4140 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
4141 if (!runpath && dyn.d_tag == DT_RPATH)
4142 {
4143 struct bfd_link_needed_list *n, **pn;
4144 char *fnm, *anm;
4145 unsigned int tagv = dyn.d_un.d_val;
4146
4147 amt = sizeof (struct bfd_link_needed_list);
4148 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
4149 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4150 if (n == NULL || fnm == NULL)
4151 goto error_free_dyn;
4152 amt = strlen (fnm) + 1;
4153 anm = (char *) bfd_alloc (abfd, amt);
4154 if (anm == NULL)
4155 goto error_free_dyn;
4156 memcpy (anm, fnm, amt);
4157 n->name = anm;
4158 n->by = abfd;
4159 n->next = NULL;
4160 for (pn = & rpath;
4161 *pn != NULL;
4162 pn = &(*pn)->next)
4163 ;
4164 *pn = n;
4165 }
4166 if (dyn.d_tag == DT_AUDIT)
4167 {
4168 unsigned int tagv = dyn.d_un.d_val;
4169 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
4170 }
4171 }
4172
4173 free (dynbuf);
4174 }
4175
4176 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
4177 frees all more recently bfd_alloc'd blocks as well. */
4178 if (runpath)
4179 rpath = runpath;
4180
4181 if (rpath)
4182 {
4183 struct bfd_link_needed_list **pn;
4184 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
4185 ;
4186 *pn = rpath;
4187 }
4188
4189 /* If we have a PT_GNU_RELRO program header, mark as read-only
4190 all sections contained fully therein. This makes relro
4191 shared library sections appear as they will at run-time. */
4192 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
4193 while (phdr-- > elf_tdata (abfd)->phdr)
4194 if (phdr->p_type == PT_GNU_RELRO)
4195 {
4196 for (s = abfd->sections; s != NULL; s = s->next)
4197 if ((s->flags & SEC_ALLOC) != 0
4198 && s->vma >= phdr->p_vaddr
4199 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
4200 s->flags |= SEC_READONLY;
4201 break;
4202 }
4203
4204 /* We do not want to include any of the sections in a dynamic
4205 object in the output file. We hack by simply clobbering the
4206 list of sections in the BFD. This could be handled more
4207 cleanly by, say, a new section flag; the existing
4208 SEC_NEVER_LOAD flag is not the one we want, because that one
4209 still implies that the section takes up space in the output
4210 file. */
4211 bfd_section_list_clear (abfd);
4212
4213 /* Find the name to use in a DT_NEEDED entry that refers to this
4214 object. If the object has a DT_SONAME entry, we use it.
4215 Otherwise, if the generic linker stuck something in
4216 elf_dt_name, we use that. Otherwise, we just use the file
4217 name. */
4218 if (soname == NULL || *soname == '\0')
4219 {
4220 soname = elf_dt_name (abfd);
4221 if (soname == NULL || *soname == '\0')
4222 soname = bfd_get_filename (abfd);
4223 }
4224
4225 /* Save the SONAME because sometimes the linker emulation code
4226 will need to know it. */
4227 elf_dt_name (abfd) = soname;
4228
4229 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4230 if (ret < 0)
4231 goto error_return;
4232
4233 /* If we have already included this dynamic object in the
4234 link, just ignore it. There is no reason to include a
4235 particular dynamic object more than once. */
4236 if (ret > 0)
4237 return TRUE;
4238
4239 /* Save the DT_AUDIT entry for the linker emulation code. */
4240 elf_dt_audit (abfd) = audit;
4241 }
4242
4243 /* If this is a dynamic object, we always link against the .dynsym
4244 symbol table, not the .symtab symbol table. The dynamic linker
4245 will only see the .dynsym symbol table, so there is no reason to
4246 look at .symtab for a dynamic object. */
4247
4248 if (! dynamic || elf_dynsymtab (abfd) == 0)
4249 hdr = &elf_tdata (abfd)->symtab_hdr;
4250 else
4251 hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4252
4253 symcount = hdr->sh_size / bed->s->sizeof_sym;
4254
4255 /* The sh_info field of the symtab header tells us where the
4256 external symbols start. We don't care about the local symbols at
4257 this point. */
4258 if (elf_bad_symtab (abfd))
4259 {
4260 extsymcount = symcount;
4261 extsymoff = 0;
4262 }
4263 else
4264 {
4265 extsymcount = symcount - hdr->sh_info;
4266 extsymoff = hdr->sh_info;
4267 }
4268
4269 sym_hash = elf_sym_hashes (abfd);
4270 if (extsymcount != 0)
4271 {
4272 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4273 NULL, NULL, NULL);
4274 if (isymbuf == NULL)
4275 goto error_return;
4276
4277 if (sym_hash == NULL)
4278 {
4279 /* We store a pointer to the hash table entry for each
4280 external symbol. */
4281 amt = extsymcount;
4282 amt *= sizeof (struct elf_link_hash_entry *);
4283 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4284 if (sym_hash == NULL)
4285 goto error_free_sym;
4286 elf_sym_hashes (abfd) = sym_hash;
4287 }
4288 }
4289
4290 if (dynamic)
4291 {
4292 /* Read in any version definitions. */
4293 if (!_bfd_elf_slurp_version_tables (abfd,
4294 info->default_imported_symver))
4295 goto error_free_sym;
4296
4297 /* Read in the symbol versions, but don't bother to convert them
4298 to internal format. */
4299 if (elf_dynversym (abfd) != 0)
4300 {
4301 Elf_Internal_Shdr *versymhdr;
4302
4303 versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4304 amt = versymhdr->sh_size;
4305 extversym = (Elf_External_Versym *) bfd_malloc (amt);
4306 if (extversym == NULL)
4307 goto error_free_sym;
4308 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4309 || bfd_bread (extversym, amt, abfd) != amt)
4310 goto error_free_vers;
4311 extversym_end = extversym + (amt / sizeof (* extversym));
4312 }
4313 }
4314
4315 /* If we are loading an as-needed shared lib, save the symbol table
4316 state before we start adding symbols. If the lib turns out
4317 to be unneeded, restore the state. */
4318 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4319 {
4320 unsigned int i;
4321 size_t entsize;
4322
4323 for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4324 {
4325 struct bfd_hash_entry *p;
4326 struct elf_link_hash_entry *h;
4327
4328 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4329 {
4330 h = (struct elf_link_hash_entry *) p;
4331 entsize += htab->root.table.entsize;
4332 if (h->root.type == bfd_link_hash_warning)
4333 entsize += htab->root.table.entsize;
4334 }
4335 }
4336
4337 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4338 old_tab = bfd_malloc (tabsize + entsize);
4339 if (old_tab == NULL)
4340 goto error_free_vers;
4341
4342 /* Remember the current objalloc pointer, so that all mem for
4343 symbols added can later be reclaimed. */
4344 alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4345 if (alloc_mark == NULL)
4346 goto error_free_vers;
4347
4348 /* Make a special call to the linker "notice" function to
4349 tell it that we are about to handle an as-needed lib. */
4350 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4351 goto error_free_vers;
4352
4353 /* Clone the symbol table. Remember some pointers into the
4354 symbol table, and dynamic symbol count. */
4355 old_ent = (char *) old_tab + tabsize;
4356 memcpy (old_tab, htab->root.table.table, tabsize);
4357 old_undefs = htab->root.undefs;
4358 old_undefs_tail = htab->root.undefs_tail;
4359 old_table = htab->root.table.table;
4360 old_size = htab->root.table.size;
4361 old_count = htab->root.table.count;
4362 old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4363 if (old_strtab == NULL)
4364 goto error_free_vers;
4365
4366 for (i = 0; i < htab->root.table.size; i++)
4367 {
4368 struct bfd_hash_entry *p;
4369 struct elf_link_hash_entry *h;
4370
4371 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4372 {
4373 memcpy (old_ent, p, htab->root.table.entsize);
4374 old_ent = (char *) old_ent + htab->root.table.entsize;
4375 h = (struct elf_link_hash_entry *) p;
4376 if (h->root.type == bfd_link_hash_warning)
4377 {
4378 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4379 old_ent = (char *) old_ent + htab->root.table.entsize;
4380 }
4381 }
4382 }
4383 }
4384
4385 weaks = NULL;
4386 if (extversym == NULL)
4387 ever = NULL;
4388 else if (extversym + extsymoff < extversym_end)
4389 ever = extversym + extsymoff;
4390 else
4391 {
4392 /* xgettext:c-format */
4393 _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"),
4394 abfd, (long) extsymoff,
4395 (long) (extversym_end - extversym) / sizeof (* extversym));
4396 bfd_set_error (bfd_error_bad_value);
4397 goto error_free_vers;
4398 }
4399
4400 for (isym = isymbuf, isymend = isymbuf + extsymcount;
4401 isym < isymend;
4402 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4403 {
4404 int bind;
4405 bfd_vma value;
4406 asection *sec, *new_sec;
4407 flagword flags;
4408 const char *name;
4409 struct elf_link_hash_entry *h;
4410 struct elf_link_hash_entry *hi;
4411 bfd_boolean definition;
4412 bfd_boolean size_change_ok;
4413 bfd_boolean type_change_ok;
4414 bfd_boolean new_weak;
4415 bfd_boolean old_weak;
4416 bfd_boolean override;
4417 bfd_boolean common;
4418 bfd_boolean discarded;
4419 unsigned int old_alignment;
4420 bfd *old_bfd;
4421 bfd_boolean matched;
4422
4423 override = FALSE;
4424
4425 flags = BSF_NO_FLAGS;
4426 sec = NULL;
4427 value = isym->st_value;
4428 common = bed->common_definition (isym);
4429 if (common && info->inhibit_common_definition)
4430 {
4431 /* Treat common symbol as undefined for --no-define-common. */
4432 isym->st_shndx = SHN_UNDEF;
4433 common = FALSE;
4434 }
4435 discarded = FALSE;
4436
4437 bind = ELF_ST_BIND (isym->st_info);
4438 switch (bind)
4439 {
4440 case STB_LOCAL:
4441 /* This should be impossible, since ELF requires that all
4442 global symbols follow all local symbols, and that sh_info
4443 point to the first global symbol. Unfortunately, Irix 5
4444 screws this up. */
4445 if (elf_bad_symtab (abfd))
4446 continue;
4447
4448 /* If we aren't prepared to handle locals within the globals
4449 then we'll likely segfault on a NULL section. */
4450 bfd_set_error (bfd_error_bad_value);
4451 goto error_free_vers;
4452
4453 case STB_GLOBAL:
4454 if (isym->st_shndx != SHN_UNDEF && !common)
4455 flags = BSF_GLOBAL;
4456 break;
4457
4458 case STB_WEAK:
4459 flags = BSF_WEAK;
4460 break;
4461
4462 case STB_GNU_UNIQUE:
4463 flags = BSF_GNU_UNIQUE;
4464 break;
4465
4466 default:
4467 /* Leave it up to the processor backend. */
4468 break;
4469 }
4470
4471 if (isym->st_shndx == SHN_UNDEF)
4472 sec = bfd_und_section_ptr;
4473 else if (isym->st_shndx == SHN_ABS)
4474 sec = bfd_abs_section_ptr;
4475 else if (isym->st_shndx == SHN_COMMON)
4476 {
4477 sec = bfd_com_section_ptr;
4478 /* What ELF calls the size we call the value. What ELF
4479 calls the value we call the alignment. */
4480 value = isym->st_size;
4481 }
4482 else
4483 {
4484 sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4485 if (sec == NULL)
4486 sec = bfd_abs_section_ptr;
4487 else if (discarded_section (sec))
4488 {
4489 /* Symbols from discarded section are undefined. We keep
4490 its visibility. */
4491 sec = bfd_und_section_ptr;
4492 discarded = TRUE;
4493 isym->st_shndx = SHN_UNDEF;
4494 }
4495 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4496 value -= sec->vma;
4497 }
4498
4499 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4500 isym->st_name);
4501 if (name == NULL)
4502 goto error_free_vers;
4503
4504 if (isym->st_shndx == SHN_COMMON
4505 && (abfd->flags & BFD_PLUGIN) != 0)
4506 {
4507 asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4508
4509 if (xc == NULL)
4510 {
4511 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4512 | SEC_EXCLUDE);
4513 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4514 if (xc == NULL)
4515 goto error_free_vers;
4516 }
4517 sec = xc;
4518 }
4519 else if (isym->st_shndx == SHN_COMMON
4520 && ELF_ST_TYPE (isym->st_info) == STT_TLS
4521 && !bfd_link_relocatable (info))
4522 {
4523 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4524
4525 if (tcomm == NULL)
4526 {
4527 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4528 | SEC_LINKER_CREATED);
4529 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4530 if (tcomm == NULL)
4531 goto error_free_vers;
4532 }
4533 sec = tcomm;
4534 }
4535 else if (bed->elf_add_symbol_hook)
4536 {
4537 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4538 &sec, &value))
4539 goto error_free_vers;
4540
4541 /* The hook function sets the name to NULL if this symbol
4542 should be skipped for some reason. */
4543 if (name == NULL)
4544 continue;
4545 }
4546
4547 /* Sanity check that all possibilities were handled. */
4548 if (sec == NULL)
4549 {
4550 bfd_set_error (bfd_error_bad_value);
4551 goto error_free_vers;
4552 }
4553
4554 /* Silently discard TLS symbols from --just-syms. There's
4555 no way to combine a static TLS block with a new TLS block
4556 for this executable. */
4557 if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4558 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4559 continue;
4560
4561 if (bfd_is_und_section (sec)
4562 || bfd_is_com_section (sec))
4563 definition = FALSE;
4564 else
4565 definition = TRUE;
4566
4567 size_change_ok = FALSE;
4568 type_change_ok = bed->type_change_ok;
4569 old_weak = FALSE;
4570 matched = FALSE;
4571 old_alignment = 0;
4572 old_bfd = NULL;
4573 new_sec = sec;
4574
4575 if (is_elf_hash_table (htab))
4576 {
4577 Elf_Internal_Versym iver;
4578 unsigned int vernum = 0;
4579 bfd_boolean skip;
4580
4581 if (ever == NULL)
4582 {
4583 if (info->default_imported_symver)
4584 /* Use the default symbol version created earlier. */
4585 iver.vs_vers = elf_tdata (abfd)->cverdefs;
4586 else
4587 iver.vs_vers = 0;
4588 }
4589 else if (ever >= extversym_end)
4590 {
4591 /* xgettext:c-format */
4592 _bfd_error_handler (_("%pB: not enough version information"),
4593 abfd);
4594 bfd_set_error (bfd_error_bad_value);
4595 goto error_free_vers;
4596 }
4597 else
4598 _bfd_elf_swap_versym_in (abfd, ever, &iver);
4599
4600 vernum = iver.vs_vers & VERSYM_VERSION;
4601
4602 /* If this is a hidden symbol, or if it is not version
4603 1, we append the version name to the symbol name.
4604 However, we do not modify a non-hidden absolute symbol
4605 if it is not a function, because it might be the version
4606 symbol itself. FIXME: What if it isn't? */
4607 if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4608 || (vernum > 1
4609 && (!bfd_is_abs_section (sec)
4610 || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4611 {
4612 const char *verstr;
4613 size_t namelen, verlen, newlen;
4614 char *newname, *p;
4615
4616 if (isym->st_shndx != SHN_UNDEF)
4617 {
4618 if (vernum > elf_tdata (abfd)->cverdefs)
4619 verstr = NULL;
4620 else if (vernum > 1)
4621 verstr =
4622 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4623 else
4624 verstr = "";
4625
4626 if (verstr == NULL)
4627 {
4628 _bfd_error_handler
4629 /* xgettext:c-format */
4630 (_("%pB: %s: invalid version %u (max %d)"),
4631 abfd, name, vernum,
4632 elf_tdata (abfd)->cverdefs);
4633 bfd_set_error (bfd_error_bad_value);
4634 goto error_free_vers;
4635 }
4636 }
4637 else
4638 {
4639 /* We cannot simply test for the number of
4640 entries in the VERNEED section since the
4641 numbers for the needed versions do not start
4642 at 0. */
4643 Elf_Internal_Verneed *t;
4644
4645 verstr = NULL;
4646 for (t = elf_tdata (abfd)->verref;
4647 t != NULL;
4648 t = t->vn_nextref)
4649 {
4650 Elf_Internal_Vernaux *a;
4651
4652 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4653 {
4654 if (a->vna_other == vernum)
4655 {
4656 verstr = a->vna_nodename;
4657 break;
4658 }
4659 }
4660 if (a != NULL)
4661 break;
4662 }
4663 if (verstr == NULL)
4664 {
4665 _bfd_error_handler
4666 /* xgettext:c-format */
4667 (_("%pB: %s: invalid needed version %d"),
4668 abfd, name, vernum);
4669 bfd_set_error (bfd_error_bad_value);
4670 goto error_free_vers;
4671 }
4672 }
4673
4674 namelen = strlen (name);
4675 verlen = strlen (verstr);
4676 newlen = namelen + verlen + 2;
4677 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4678 && isym->st_shndx != SHN_UNDEF)
4679 ++newlen;
4680
4681 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4682 if (newname == NULL)
4683 goto error_free_vers;
4684 memcpy (newname, name, namelen);
4685 p = newname + namelen;
4686 *p++ = ELF_VER_CHR;
4687 /* If this is a defined non-hidden version symbol,
4688 we add another @ to the name. This indicates the
4689 default version of the symbol. */
4690 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4691 && isym->st_shndx != SHN_UNDEF)
4692 *p++ = ELF_VER_CHR;
4693 memcpy (p, verstr, verlen + 1);
4694
4695 name = newname;
4696 }
4697
4698 /* If this symbol has default visibility and the user has
4699 requested we not re-export it, then mark it as hidden. */
4700 if (!bfd_is_und_section (sec)
4701 && !dynamic
4702 && abfd->no_export
4703 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4704 isym->st_other = (STV_HIDDEN
4705 | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4706
4707 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4708 sym_hash, &old_bfd, &old_weak,
4709 &old_alignment, &skip, &override,
4710 &type_change_ok, &size_change_ok,
4711 &matched))
4712 goto error_free_vers;
4713
4714 if (skip)
4715 continue;
4716
4717 /* Override a definition only if the new symbol matches the
4718 existing one. */
4719 if (override && matched)
4720 definition = FALSE;
4721
4722 h = *sym_hash;
4723 while (h->root.type == bfd_link_hash_indirect
4724 || h->root.type == bfd_link_hash_warning)
4725 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4726
4727 if (elf_tdata (abfd)->verdef != NULL
4728 && vernum > 1
4729 && definition)
4730 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4731 }
4732
4733 if (! (_bfd_generic_link_add_one_symbol
4734 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4735 (struct bfd_link_hash_entry **) sym_hash)))
4736 goto error_free_vers;
4737
4738 if ((abfd->flags & DYNAMIC) == 0
4739 && (bfd_get_flavour (info->output_bfd)
4740 == bfd_target_elf_flavour))
4741 {
4742 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
4743 elf_tdata (info->output_bfd)->has_gnu_symbols
4744 |= elf_gnu_symbol_ifunc;
4745 if ((flags & BSF_GNU_UNIQUE))
4746 elf_tdata (info->output_bfd)->has_gnu_symbols
4747 |= elf_gnu_symbol_unique;
4748 }
4749
4750 h = *sym_hash;
4751 /* We need to make sure that indirect symbol dynamic flags are
4752 updated. */
4753 hi = h;
4754 while (h->root.type == bfd_link_hash_indirect
4755 || h->root.type == bfd_link_hash_warning)
4756 h = (struct elf_link_hash_entry *) h->root.u.i.link;
4757
4758 /* Setting the index to -3 tells elf_link_output_extsym that
4759 this symbol is defined in a discarded section. */
4760 if (discarded)
4761 h->indx = -3;
4762
4763 *sym_hash = h;
4764
4765 new_weak = (flags & BSF_WEAK) != 0;
4766 if (dynamic
4767 && definition
4768 && new_weak
4769 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4770 && is_elf_hash_table (htab)
4771 && h->u.alias == NULL)
4772 {
4773 /* Keep a list of all weak defined non function symbols from
4774 a dynamic object, using the alias field. Later in this
4775 function we will set the alias field to the correct
4776 value. We only put non-function symbols from dynamic
4777 objects on this list, because that happens to be the only
4778 time we need to know the normal symbol corresponding to a
4779 weak symbol, and the information is time consuming to
4780 figure out. If the alias field is not already NULL,
4781 then this symbol was already defined by some previous
4782 dynamic object, and we will be using that previous
4783 definition anyhow. */
4784
4785 h->u.alias = weaks;
4786 weaks = h;
4787 }
4788
4789 /* Set the alignment of a common symbol. */
4790 if ((common || bfd_is_com_section (sec))
4791 && h->root.type == bfd_link_hash_common)
4792 {
4793 unsigned int align;
4794
4795 if (common)
4796 align = bfd_log2 (isym->st_value);
4797 else
4798 {
4799 /* The new symbol is a common symbol in a shared object.
4800 We need to get the alignment from the section. */
4801 align = new_sec->alignment_power;
4802 }
4803 if (align > old_alignment)
4804 h->root.u.c.p->alignment_power = align;
4805 else
4806 h->root.u.c.p->alignment_power = old_alignment;
4807 }
4808
4809 if (is_elf_hash_table (htab))
4810 {
4811 /* Set a flag in the hash table entry indicating the type of
4812 reference or definition we just found. A dynamic symbol
4813 is one which is referenced or defined by both a regular
4814 object and a shared object. */
4815 bfd_boolean dynsym = FALSE;
4816
4817 /* Plugin symbols aren't normal. Don't set def_regular or
4818 ref_regular for them, or make them dynamic. */
4819 if ((abfd->flags & BFD_PLUGIN) != 0)
4820 ;
4821 else if (! dynamic)
4822 {
4823 if (! definition)
4824 {
4825 h->ref_regular = 1;
4826 if (bind != STB_WEAK)
4827 h->ref_regular_nonweak = 1;
4828 }
4829 else
4830 {
4831 h->def_regular = 1;
4832 if (h->def_dynamic)
4833 {
4834 h->def_dynamic = 0;
4835 h->ref_dynamic = 1;
4836 }
4837 }
4838
4839 /* If the indirect symbol has been forced local, don't
4840 make the real symbol dynamic. */
4841 if ((h == hi || !hi->forced_local)
4842 && (bfd_link_dll (info)
4843 || h->def_dynamic
4844 || h->ref_dynamic))
4845 dynsym = TRUE;
4846 }
4847 else
4848 {
4849 if (! definition)
4850 {
4851 h->ref_dynamic = 1;
4852 hi->ref_dynamic = 1;
4853 }
4854 else
4855 {
4856 h->def_dynamic = 1;
4857 hi->def_dynamic = 1;
4858 }
4859
4860 /* If the indirect symbol has been forced local, don't
4861 make the real symbol dynamic. */
4862 if ((h == hi || !hi->forced_local)
4863 && (h->def_regular
4864 || h->ref_regular
4865 || (h->is_weakalias
4866 && weakdef (h)->dynindx != -1)))
4867 dynsym = TRUE;
4868 }
4869
4870 /* Check to see if we need to add an indirect symbol for
4871 the default name. */
4872 if (definition
4873 || (!override && h->root.type == bfd_link_hash_common))
4874 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4875 sec, value, &old_bfd, &dynsym))
4876 goto error_free_vers;
4877
4878 /* Check the alignment when a common symbol is involved. This
4879 can change when a common symbol is overridden by a normal
4880 definition or a common symbol is ignored due to the old
4881 normal definition. We need to make sure the maximum
4882 alignment is maintained. */
4883 if ((old_alignment || common)
4884 && h->root.type != bfd_link_hash_common)
4885 {
4886 unsigned int common_align;
4887 unsigned int normal_align;
4888 unsigned int symbol_align;
4889 bfd *normal_bfd;
4890 bfd *common_bfd;
4891
4892 BFD_ASSERT (h->root.type == bfd_link_hash_defined
4893 || h->root.type == bfd_link_hash_defweak);
4894
4895 symbol_align = ffs (h->root.u.def.value) - 1;
4896 if (h->root.u.def.section->owner != NULL
4897 && (h->root.u.def.section->owner->flags
4898 & (DYNAMIC | BFD_PLUGIN)) == 0)
4899 {
4900 normal_align = h->root.u.def.section->alignment_power;
4901 if (normal_align > symbol_align)
4902 normal_align = symbol_align;
4903 }
4904 else
4905 normal_align = symbol_align;
4906
4907 if (old_alignment)
4908 {
4909 common_align = old_alignment;
4910 common_bfd = old_bfd;
4911 normal_bfd = abfd;
4912 }
4913 else
4914 {
4915 common_align = bfd_log2 (isym->st_value);
4916 common_bfd = abfd;
4917 normal_bfd = old_bfd;
4918 }
4919
4920 if (normal_align < common_align)
4921 {
4922 /* PR binutils/2735 */
4923 if (normal_bfd == NULL)
4924 _bfd_error_handler
4925 /* xgettext:c-format */
4926 (_("warning: alignment %u of common symbol `%s' in %pB is"
4927 " greater than the alignment (%u) of its section %pA"),
4928 1 << common_align, name, common_bfd,
4929 1 << normal_align, h->root.u.def.section);
4930 else
4931 _bfd_error_handler
4932 /* xgettext:c-format */
4933 (_("warning: alignment %u of symbol `%s' in %pB"
4934 " is smaller than %u in %pB"),
4935 1 << normal_align, name, normal_bfd,
4936 1 << common_align, common_bfd);
4937 }
4938 }
4939
4940 /* Remember the symbol size if it isn't undefined. */
4941 if (isym->st_size != 0
4942 && isym->st_shndx != SHN_UNDEF
4943 && (definition || h->size == 0))
4944 {
4945 if (h->size != 0
4946 && h->size != isym->st_size
4947 && ! size_change_ok)
4948 _bfd_error_handler
4949 /* xgettext:c-format */
4950 (_("warning: size of symbol `%s' changed"
4951 " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"),
4952 name, (uint64_t) h->size, old_bfd,
4953 (uint64_t) isym->st_size, abfd);
4954
4955 h->size = isym->st_size;
4956 }
4957
4958 /* If this is a common symbol, then we always want H->SIZE
4959 to be the size of the common symbol. The code just above
4960 won't fix the size if a common symbol becomes larger. We
4961 don't warn about a size change here, because that is
4962 covered by --warn-common. Allow changes between different
4963 function types. */
4964 if (h->root.type == bfd_link_hash_common)
4965 h->size = h->root.u.c.size;
4966
4967 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4968 && ((definition && !new_weak)
4969 || (old_weak && h->root.type == bfd_link_hash_common)
4970 || h->type == STT_NOTYPE))
4971 {
4972 unsigned int type = ELF_ST_TYPE (isym->st_info);
4973
4974 /* Turn an IFUNC symbol from a DSO into a normal FUNC
4975 symbol. */
4976 if (type == STT_GNU_IFUNC
4977 && (abfd->flags & DYNAMIC) != 0)
4978 type = STT_FUNC;
4979
4980 if (h->type != type)
4981 {
4982 if (h->type != STT_NOTYPE && ! type_change_ok)
4983 /* xgettext:c-format */
4984 _bfd_error_handler
4985 (_("warning: type of symbol `%s' changed"
4986 " from %d to %d in %pB"),
4987 name, h->type, type, abfd);
4988
4989 h->type = type;
4990 }
4991 }
4992
4993 /* Merge st_other field. */
4994 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4995
4996 /* We don't want to make debug symbol dynamic. */
4997 if (definition
4998 && (sec->flags & SEC_DEBUGGING)
4999 && !bfd_link_relocatable (info))
5000 dynsym = FALSE;
5001
5002 /* Nor should we make plugin symbols dynamic. */
5003 if ((abfd->flags & BFD_PLUGIN) != 0)
5004 dynsym = FALSE;
5005
5006 if (definition)
5007 {
5008 h->target_internal = isym->st_target_internal;
5009 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
5010 }
5011
5012 if (definition && !dynamic)
5013 {
5014 char *p = strchr (name, ELF_VER_CHR);
5015 if (p != NULL && p[1] != ELF_VER_CHR)
5016 {
5017 /* Queue non-default versions so that .symver x, x@FOO
5018 aliases can be checked. */
5019 if (!nondeflt_vers)
5020 {
5021 amt = ((isymend - isym + 1)
5022 * sizeof (struct elf_link_hash_entry *));
5023 nondeflt_vers
5024 = (struct elf_link_hash_entry **) bfd_malloc (amt);
5025 if (!nondeflt_vers)
5026 goto error_free_vers;
5027 }
5028 nondeflt_vers[nondeflt_vers_cnt++] = h;
5029 }
5030 }
5031
5032 if (dynsym && h->dynindx == -1)
5033 {
5034 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5035 goto error_free_vers;
5036 if (h->is_weakalias
5037 && weakdef (h)->dynindx == -1)
5038 {
5039 if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h)))
5040 goto error_free_vers;
5041 }
5042 }
5043 else if (h->dynindx != -1)
5044 /* If the symbol already has a dynamic index, but
5045 visibility says it should not be visible, turn it into
5046 a local symbol. */
5047 switch (ELF_ST_VISIBILITY (h->other))
5048 {
5049 case STV_INTERNAL:
5050 case STV_HIDDEN:
5051 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
5052 dynsym = FALSE;
5053 break;
5054 }
5055
5056 /* Don't add DT_NEEDED for references from the dummy bfd nor
5057 for unmatched symbol. */
5058 if (!add_needed
5059 && matched
5060 && definition
5061 && ((dynsym
5062 && h->ref_regular_nonweak
5063 && (old_bfd == NULL
5064 || (old_bfd->flags & BFD_PLUGIN) == 0))
5065 || (h->ref_dynamic_nonweak
5066 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
5067 && !on_needed_list (elf_dt_name (abfd),
5068 htab->needed, NULL))))
5069 {
5070 int ret;
5071 const char *soname = elf_dt_name (abfd);
5072
5073 info->callbacks->minfo ("%!", soname, old_bfd,
5074 h->root.root.string);
5075
5076 /* A symbol from a library loaded via DT_NEEDED of some
5077 other library is referenced by a regular object.
5078 Add a DT_NEEDED entry for it. Issue an error if
5079 --no-add-needed is used and the reference was not
5080 a weak one. */
5081 if (old_bfd != NULL
5082 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
5083 {
5084 _bfd_error_handler
5085 /* xgettext:c-format */
5086 (_("%pB: undefined reference to symbol '%s'"),
5087 old_bfd, name);
5088 bfd_set_error (bfd_error_missing_dso);
5089 goto error_free_vers;
5090 }
5091
5092 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
5093 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
5094
5095 add_needed = TRUE;
5096 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
5097 if (ret < 0)
5098 goto error_free_vers;
5099
5100 BFD_ASSERT (ret == 0);
5101 }
5102 }
5103 }
5104
5105 if (info->lto_plugin_active
5106 && !bfd_link_relocatable (info)
5107 && (abfd->flags & BFD_PLUGIN) == 0
5108 && !just_syms
5109 && extsymcount)
5110 {
5111 int r_sym_shift;
5112
5113 if (bed->s->arch_size == 32)
5114 r_sym_shift = 8;
5115 else
5116 r_sym_shift = 32;
5117
5118 /* If linker plugin is enabled, set non_ir_ref_regular on symbols
5119 referenced in regular objects so that linker plugin will get
5120 the correct symbol resolution. */
5121
5122 sym_hash = elf_sym_hashes (abfd);
5123 for (s = abfd->sections; s != NULL; s = s->next)
5124 {
5125 Elf_Internal_Rela *internal_relocs;
5126 Elf_Internal_Rela *rel, *relend;
5127
5128 /* Don't check relocations in excluded sections. */
5129 if ((s->flags & SEC_RELOC) == 0
5130 || s->reloc_count == 0
5131 || (s->flags & SEC_EXCLUDE) != 0
5132 || ((info->strip == strip_all
5133 || info->strip == strip_debugger)
5134 && (s->flags & SEC_DEBUGGING) != 0))
5135 continue;
5136
5137 internal_relocs = _bfd_elf_link_read_relocs (abfd, s, NULL,
5138 NULL,
5139 info->keep_memory);
5140 if (internal_relocs == NULL)
5141 goto error_free_vers;
5142
5143 rel = internal_relocs;
5144 relend = rel + s->reloc_count;
5145 for ( ; rel < relend; rel++)
5146 {
5147 unsigned long r_symndx = rel->r_info >> r_sym_shift;
5148 struct elf_link_hash_entry *h;
5149
5150 /* Skip local symbols. */
5151 if (r_symndx < extsymoff)
5152 continue;
5153
5154 h = sym_hash[r_symndx - extsymoff];
5155 if (h != NULL)
5156 h->root.non_ir_ref_regular = 1;
5157 }
5158
5159 if (elf_section_data (s)->relocs != internal_relocs)
5160 free (internal_relocs);
5161 }
5162 }
5163
5164 if (extversym != NULL)
5165 {
5166 free (extversym);
5167 extversym = NULL;
5168 }
5169
5170 if (isymbuf != NULL)
5171 {
5172 free (isymbuf);
5173 isymbuf = NULL;
5174 }
5175
5176 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
5177 {
5178 unsigned int i;
5179
5180 /* Restore the symbol table. */
5181 old_ent = (char *) old_tab + tabsize;
5182 memset (elf_sym_hashes (abfd), 0,
5183 extsymcount * sizeof (struct elf_link_hash_entry *));
5184 htab->root.table.table = old_table;
5185 htab->root.table.size = old_size;
5186 htab->root.table.count = old_count;
5187 memcpy (htab->root.table.table, old_tab, tabsize);
5188 htab->root.undefs = old_undefs;
5189 htab->root.undefs_tail = old_undefs_tail;
5190 _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
5191 free (old_strtab);
5192 old_strtab = NULL;
5193 for (i = 0; i < htab->root.table.size; i++)
5194 {
5195 struct bfd_hash_entry *p;
5196 struct elf_link_hash_entry *h;
5197 bfd_size_type size;
5198 unsigned int alignment_power;
5199 unsigned int non_ir_ref_dynamic;
5200
5201 for (p = htab->root.table.table[i]; p != NULL; p = p->next)
5202 {
5203 h = (struct elf_link_hash_entry *) p;
5204 if (h->root.type == bfd_link_hash_warning)
5205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5206
5207 /* Preserve the maximum alignment and size for common
5208 symbols even if this dynamic lib isn't on DT_NEEDED
5209 since it can still be loaded at run time by another
5210 dynamic lib. */
5211 if (h->root.type == bfd_link_hash_common)
5212 {
5213 size = h->root.u.c.size;
5214 alignment_power = h->root.u.c.p->alignment_power;
5215 }
5216 else
5217 {
5218 size = 0;
5219 alignment_power = 0;
5220 }
5221 /* Preserve non_ir_ref_dynamic so that this symbol
5222 will be exported when the dynamic lib becomes needed
5223 in the second pass. */
5224 non_ir_ref_dynamic = h->root.non_ir_ref_dynamic;
5225 memcpy (p, old_ent, htab->root.table.entsize);
5226 old_ent = (char *) old_ent + htab->root.table.entsize;
5227 h = (struct elf_link_hash_entry *) p;
5228 if (h->root.type == bfd_link_hash_warning)
5229 {
5230 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
5231 old_ent = (char *) old_ent + htab->root.table.entsize;
5232 h = (struct elf_link_hash_entry *) h->root.u.i.link;
5233 }
5234 if (h->root.type == bfd_link_hash_common)
5235 {
5236 if (size > h->root.u.c.size)
5237 h->root.u.c.size = size;
5238 if (alignment_power > h->root.u.c.p->alignment_power)
5239 h->root.u.c.p->alignment_power = alignment_power;
5240 }
5241 h->root.non_ir_ref_dynamic = non_ir_ref_dynamic;
5242 }
5243 }
5244
5245 /* Make a special call to the linker "notice" function to
5246 tell it that symbols added for crefs may need to be removed. */
5247 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
5248 goto error_free_vers;
5249
5250 free (old_tab);
5251 objalloc_free_block ((struct objalloc *) htab->root.table.memory,
5252 alloc_mark);
5253 if (nondeflt_vers != NULL)
5254 free (nondeflt_vers);
5255 return TRUE;
5256 }
5257
5258 if (old_tab != NULL)
5259 {
5260 if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
5261 goto error_free_vers;
5262 free (old_tab);
5263 old_tab = NULL;
5264 }
5265
5266 /* Now that all the symbols from this input file are created, if
5267 not performing a relocatable link, handle .symver foo, foo@BAR
5268 such that any relocs against foo become foo@BAR. */
5269 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
5270 {
5271 size_t cnt, symidx;
5272
5273 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
5274 {
5275 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
5276 char *shortname, *p;
5277
5278 p = strchr (h->root.root.string, ELF_VER_CHR);
5279 if (p == NULL
5280 || (h->root.type != bfd_link_hash_defined
5281 && h->root.type != bfd_link_hash_defweak))
5282 continue;
5283
5284 amt = p - h->root.root.string;
5285 shortname = (char *) bfd_malloc (amt + 1);
5286 if (!shortname)
5287 goto error_free_vers;
5288 memcpy (shortname, h->root.root.string, amt);
5289 shortname[amt] = '\0';
5290
5291 hi = (struct elf_link_hash_entry *)
5292 bfd_link_hash_lookup (&htab->root, shortname,
5293 FALSE, FALSE, FALSE);
5294 if (hi != NULL
5295 && hi->root.type == h->root.type
5296 && hi->root.u.def.value == h->root.u.def.value
5297 && hi->root.u.def.section == h->root.u.def.section)
5298 {
5299 (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
5300 hi->root.type = bfd_link_hash_indirect;
5301 hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
5302 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
5303 sym_hash = elf_sym_hashes (abfd);
5304 if (sym_hash)
5305 for (symidx = 0; symidx < extsymcount; ++symidx)
5306 if (sym_hash[symidx] == hi)
5307 {
5308 sym_hash[symidx] = h;
5309 break;
5310 }
5311 }
5312 free (shortname);
5313 }
5314 free (nondeflt_vers);
5315 nondeflt_vers = NULL;
5316 }
5317
5318 /* Now set the alias field correctly for all the weak defined
5319 symbols we found. The only way to do this is to search all the
5320 symbols. Since we only need the information for non functions in
5321 dynamic objects, that's the only time we actually put anything on
5322 the list WEAKS. We need this information so that if a regular
5323 object refers to a symbol defined weakly in a dynamic object, the
5324 real symbol in the dynamic object is also put in the dynamic
5325 symbols; we also must arrange for both symbols to point to the
5326 same memory location. We could handle the general case of symbol
5327 aliasing, but a general symbol alias can only be generated in
5328 assembler code, handling it correctly would be very time
5329 consuming, and other ELF linkers don't handle general aliasing
5330 either. */
5331 if (weaks != NULL)
5332 {
5333 struct elf_link_hash_entry **hpp;
5334 struct elf_link_hash_entry **hppend;
5335 struct elf_link_hash_entry **sorted_sym_hash;
5336 struct elf_link_hash_entry *h;
5337 size_t sym_count;
5338
5339 /* Since we have to search the whole symbol list for each weak
5340 defined symbol, search time for N weak defined symbols will be
5341 O(N^2). Binary search will cut it down to O(NlogN). */
5342 amt = extsymcount;
5343 amt *= sizeof (struct elf_link_hash_entry *);
5344 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5345 if (sorted_sym_hash == NULL)
5346 goto error_return;
5347 sym_hash = sorted_sym_hash;
5348 hpp = elf_sym_hashes (abfd);
5349 hppend = hpp + extsymcount;
5350 sym_count = 0;
5351 for (; hpp < hppend; hpp++)
5352 {
5353 h = *hpp;
5354 if (h != NULL
5355 && h->root.type == bfd_link_hash_defined
5356 && !bed->is_function_type (h->type))
5357 {
5358 *sym_hash = h;
5359 sym_hash++;
5360 sym_count++;
5361 }
5362 }
5363
5364 qsort (sorted_sym_hash, sym_count,
5365 sizeof (struct elf_link_hash_entry *),
5366 elf_sort_symbol);
5367
5368 while (weaks != NULL)
5369 {
5370 struct elf_link_hash_entry *hlook;
5371 asection *slook;
5372 bfd_vma vlook;
5373 size_t i, j, idx = 0;
5374
5375 hlook = weaks;
5376 weaks = hlook->u.alias;
5377 hlook->u.alias = NULL;
5378
5379 if (hlook->root.type != bfd_link_hash_defined
5380 && hlook->root.type != bfd_link_hash_defweak)
5381 continue;
5382
5383 slook = hlook->root.u.def.section;
5384 vlook = hlook->root.u.def.value;
5385
5386 i = 0;
5387 j = sym_count;
5388 while (i != j)
5389 {
5390 bfd_signed_vma vdiff;
5391 idx = (i + j) / 2;
5392 h = sorted_sym_hash[idx];
5393 vdiff = vlook - h->root.u.def.value;
5394 if (vdiff < 0)
5395 j = idx;
5396 else if (vdiff > 0)
5397 i = idx + 1;
5398 else
5399 {
5400 int sdiff = slook->id - h->root.u.def.section->id;
5401 if (sdiff < 0)
5402 j = idx;
5403 else if (sdiff > 0)
5404 i = idx + 1;
5405 else
5406 break;
5407 }
5408 }
5409
5410 /* We didn't find a value/section match. */
5411 if (i == j)
5412 continue;
5413
5414 /* With multiple aliases, or when the weak symbol is already
5415 strongly defined, we have multiple matching symbols and
5416 the binary search above may land on any of them. Step
5417 one past the matching symbol(s). */
5418 while (++idx != j)
5419 {
5420 h = sorted_sym_hash[idx];
5421 if (h->root.u.def.section != slook
5422 || h->root.u.def.value != vlook)
5423 break;
5424 }
5425
5426 /* Now look back over the aliases. Since we sorted by size
5427 as well as value and section, we'll choose the one with
5428 the largest size. */
5429 while (idx-- != i)
5430 {
5431 h = sorted_sym_hash[idx];
5432
5433 /* Stop if value or section doesn't match. */
5434 if (h->root.u.def.section != slook
5435 || h->root.u.def.value != vlook)
5436 break;
5437 else if (h != hlook)
5438 {
5439 struct elf_link_hash_entry *t;
5440
5441 hlook->u.alias = h;
5442 hlook->is_weakalias = 1;
5443 t = h;
5444 if (t->u.alias != NULL)
5445 while (t->u.alias != h)
5446 t = t->u.alias;
5447 t->u.alias = hlook;
5448
5449 /* If the weak definition is in the list of dynamic
5450 symbols, make sure the real definition is put
5451 there as well. */
5452 if (hlook->dynindx != -1 && h->dynindx == -1)
5453 {
5454 if (! bfd_elf_link_record_dynamic_symbol (info, h))
5455 {
5456 err_free_sym_hash:
5457 free (sorted_sym_hash);
5458 goto error_return;
5459 }
5460 }
5461
5462 /* If the real definition is in the list of dynamic
5463 symbols, make sure the weak definition is put
5464 there as well. If we don't do this, then the
5465 dynamic loader might not merge the entries for the
5466 real definition and the weak definition. */
5467 if (h->dynindx != -1 && hlook->dynindx == -1)
5468 {
5469 if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5470 goto err_free_sym_hash;
5471 }
5472 break;
5473 }
5474 }
5475 }
5476
5477 free (sorted_sym_hash);
5478 }
5479
5480 if (bed->check_directives
5481 && !(*bed->check_directives) (abfd, info))
5482 return FALSE;
5483
5484 /* If this is a non-traditional link, try to optimize the handling
5485 of the .stab/.stabstr sections. */
5486 if (! dynamic
5487 && ! info->traditional_format
5488 && is_elf_hash_table (htab)
5489 && (info->strip != strip_all && info->strip != strip_debugger))
5490 {
5491 asection *stabstr;
5492
5493 stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5494 if (stabstr != NULL)
5495 {
5496 bfd_size_type string_offset = 0;
5497 asection *stab;
5498
5499 for (stab = abfd->sections; stab; stab = stab->next)
5500 if (CONST_STRNEQ (stab->name, ".stab")
5501 && (!stab->name[5] ||
5502 (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5503 && (stab->flags & SEC_MERGE) == 0
5504 && !bfd_is_abs_section (stab->output_section))
5505 {
5506 struct bfd_elf_section_data *secdata;
5507
5508 secdata = elf_section_data (stab);
5509 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5510 stabstr, &secdata->sec_info,
5511 &string_offset))
5512 goto error_return;
5513 if (secdata->sec_info)
5514 stab->sec_info_type = SEC_INFO_TYPE_STABS;
5515 }
5516 }
5517 }
5518
5519 if (is_elf_hash_table (htab) && add_needed)
5520 {
5521 /* Add this bfd to the loaded list. */
5522 struct elf_link_loaded_list *n;
5523
5524 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5525 if (n == NULL)
5526 goto error_return;
5527 n->abfd = abfd;
5528 n->next = htab->loaded;
5529 htab->loaded = n;
5530 }
5531
5532 return TRUE;
5533
5534 error_free_vers:
5535 if (old_tab != NULL)
5536 free (old_tab);
5537 if (old_strtab != NULL)
5538 free (old_strtab);
5539 if (nondeflt_vers != NULL)
5540 free (nondeflt_vers);
5541 if (extversym != NULL)
5542 free (extversym);
5543 error_free_sym:
5544 if (isymbuf != NULL)
5545 free (isymbuf);
5546 error_return:
5547 return FALSE;
5548 }
5549
5550 /* Return the linker hash table entry of a symbol that might be
5551 satisfied by an archive symbol. Return -1 on error. */
5552
5553 struct elf_link_hash_entry *
5554 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5555 struct bfd_link_info *info,
5556 const char *name)
5557 {
5558 struct elf_link_hash_entry *h;
5559 char *p, *copy;
5560 size_t len, first;
5561
5562 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5563 if (h != NULL)
5564 return h;
5565
5566 /* If this is a default version (the name contains @@), look up the
5567 symbol again with only one `@' as well as without the version.
5568 The effect is that references to the symbol with and without the
5569 version will be matched by the default symbol in the archive. */
5570
5571 p = strchr (name, ELF_VER_CHR);
5572 if (p == NULL || p[1] != ELF_VER_CHR)
5573 return h;
5574
5575 /* First check with only one `@'. */
5576 len = strlen (name);
5577 copy = (char *) bfd_alloc (abfd, len);
5578 if (copy == NULL)
5579 return (struct elf_link_hash_entry *) -1;
5580
5581 first = p - name + 1;
5582 memcpy (copy, name, first);
5583 memcpy (copy + first, name + first + 1, len - first);
5584
5585 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5586 if (h == NULL)
5587 {
5588 /* We also need to check references to the symbol without the
5589 version. */
5590 copy[first - 1] = '\0';
5591 h = elf_link_hash_lookup (elf_hash_table (info), copy,
5592 FALSE, FALSE, TRUE);
5593 }
5594
5595 bfd_release (abfd, copy);
5596 return h;
5597 }
5598
5599 /* Add symbols from an ELF archive file to the linker hash table. We
5600 don't use _bfd_generic_link_add_archive_symbols because we need to
5601 handle versioned symbols.
5602
5603 Fortunately, ELF archive handling is simpler than that done by
5604 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5605 oddities. In ELF, if we find a symbol in the archive map, and the
5606 symbol is currently undefined, we know that we must pull in that
5607 object file.
5608
5609 Unfortunately, we do have to make multiple passes over the symbol
5610 table until nothing further is resolved. */
5611
5612 static bfd_boolean
5613 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5614 {
5615 symindex c;
5616 unsigned char *included = NULL;
5617 carsym *symdefs;
5618 bfd_boolean loop;
5619 bfd_size_type amt;
5620 const struct elf_backend_data *bed;
5621 struct elf_link_hash_entry * (*archive_symbol_lookup)
5622 (bfd *, struct bfd_link_info *, const char *);
5623
5624 if (! bfd_has_map (abfd))
5625 {
5626 /* An empty archive is a special case. */
5627 if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5628 return TRUE;
5629 bfd_set_error (bfd_error_no_armap);
5630 return FALSE;
5631 }
5632
5633 /* Keep track of all symbols we know to be already defined, and all
5634 files we know to be already included. This is to speed up the
5635 second and subsequent passes. */
5636 c = bfd_ardata (abfd)->symdef_count;
5637 if (c == 0)
5638 return TRUE;
5639 amt = c;
5640 amt *= sizeof (*included);
5641 included = (unsigned char *) bfd_zmalloc (amt);
5642 if (included == NULL)
5643 return FALSE;
5644
5645 symdefs = bfd_ardata (abfd)->symdefs;
5646 bed = get_elf_backend_data (abfd);
5647 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5648
5649 do
5650 {
5651 file_ptr last;
5652 symindex i;
5653 carsym *symdef;
5654 carsym *symdefend;
5655
5656 loop = FALSE;
5657 last = -1;
5658
5659 symdef = symdefs;
5660 symdefend = symdef + c;
5661 for (i = 0; symdef < symdefend; symdef++, i++)
5662 {
5663 struct elf_link_hash_entry *h;
5664 bfd *element;
5665 struct bfd_link_hash_entry *undefs_tail;
5666 symindex mark;
5667
5668 if (included[i])
5669 continue;
5670 if (symdef->file_offset == last)
5671 {
5672 included[i] = TRUE;
5673 continue;
5674 }
5675
5676 h = archive_symbol_lookup (abfd, info, symdef->name);
5677 if (h == (struct elf_link_hash_entry *) -1)
5678 goto error_return;
5679
5680 if (h == NULL)
5681 continue;
5682
5683 if (h->root.type == bfd_link_hash_common)
5684 {
5685 /* We currently have a common symbol. The archive map contains
5686 a reference to this symbol, so we may want to include it. We
5687 only want to include it however, if this archive element
5688 contains a definition of the symbol, not just another common
5689 declaration of it.
5690
5691 Unfortunately some archivers (including GNU ar) will put
5692 declarations of common symbols into their archive maps, as
5693 well as real definitions, so we cannot just go by the archive
5694 map alone. Instead we must read in the element's symbol
5695 table and check that to see what kind of symbol definition
5696 this is. */
5697 if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5698 continue;
5699 }
5700 else if (h->root.type != bfd_link_hash_undefined)
5701 {
5702 if (h->root.type != bfd_link_hash_undefweak)
5703 /* Symbol must be defined. Don't check it again. */
5704 included[i] = TRUE;
5705 continue;
5706 }
5707
5708 /* We need to include this archive member. */
5709 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5710 if (element == NULL)
5711 goto error_return;
5712
5713 if (! bfd_check_format (element, bfd_object))
5714 goto error_return;
5715
5716 undefs_tail = info->hash->undefs_tail;
5717
5718 if (!(*info->callbacks
5719 ->add_archive_element) (info, element, symdef->name, &element))
5720 continue;
5721 if (!bfd_link_add_symbols (element, info))
5722 goto error_return;
5723
5724 /* If there are any new undefined symbols, we need to make
5725 another pass through the archive in order to see whether
5726 they can be defined. FIXME: This isn't perfect, because
5727 common symbols wind up on undefs_tail and because an
5728 undefined symbol which is defined later on in this pass
5729 does not require another pass. This isn't a bug, but it
5730 does make the code less efficient than it could be. */
5731 if (undefs_tail != info->hash->undefs_tail)
5732 loop = TRUE;
5733
5734 /* Look backward to mark all symbols from this object file
5735 which we have already seen in this pass. */
5736 mark = i;
5737 do
5738 {
5739 included[mark] = TRUE;
5740 if (mark == 0)
5741 break;
5742 --mark;
5743 }
5744 while (symdefs[mark].file_offset == symdef->file_offset);
5745
5746 /* We mark subsequent symbols from this object file as we go
5747 on through the loop. */
5748 last = symdef->file_offset;
5749 }
5750 }
5751 while (loop);
5752
5753 free (included);
5754
5755 return TRUE;
5756
5757 error_return:
5758 if (included != NULL)
5759 free (included);
5760 return FALSE;
5761 }
5762
5763 /* Given an ELF BFD, add symbols to the global hash table as
5764 appropriate. */
5765
5766 bfd_boolean
5767 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5768 {
5769 switch (bfd_get_format (abfd))
5770 {
5771 case bfd_object:
5772 return elf_link_add_object_symbols (abfd, info);
5773 case bfd_archive:
5774 return elf_link_add_archive_symbols (abfd, info);
5775 default:
5776 bfd_set_error (bfd_error_wrong_format);
5777 return FALSE;
5778 }
5779 }
5780 \f
5781 struct hash_codes_info
5782 {
5783 unsigned long *hashcodes;
5784 bfd_boolean error;
5785 };
5786
5787 /* This function will be called though elf_link_hash_traverse to store
5788 all hash value of the exported symbols in an array. */
5789
5790 static bfd_boolean
5791 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5792 {
5793 struct hash_codes_info *inf = (struct hash_codes_info *) data;
5794 const char *name;
5795 unsigned long ha;
5796 char *alc = NULL;
5797
5798 /* Ignore indirect symbols. These are added by the versioning code. */
5799 if (h->dynindx == -1)
5800 return TRUE;
5801
5802 name = h->root.root.string;
5803 if (h->versioned >= versioned)
5804 {
5805 char *p = strchr (name, ELF_VER_CHR);
5806 if (p != NULL)
5807 {
5808 alc = (char *) bfd_malloc (p - name + 1);
5809 if (alc == NULL)
5810 {
5811 inf->error = TRUE;
5812 return FALSE;
5813 }
5814 memcpy (alc, name, p - name);
5815 alc[p - name] = '\0';
5816 name = alc;
5817 }
5818 }
5819
5820 /* Compute the hash value. */
5821 ha = bfd_elf_hash (name);
5822
5823 /* Store the found hash value in the array given as the argument. */
5824 *(inf->hashcodes)++ = ha;
5825
5826 /* And store it in the struct so that we can put it in the hash table
5827 later. */
5828 h->u.elf_hash_value = ha;
5829
5830 if (alc != NULL)
5831 free (alc);
5832
5833 return TRUE;
5834 }
5835
5836 struct collect_gnu_hash_codes
5837 {
5838 bfd *output_bfd;
5839 const struct elf_backend_data *bed;
5840 unsigned long int nsyms;
5841 unsigned long int maskbits;
5842 unsigned long int *hashcodes;
5843 unsigned long int *hashval;
5844 unsigned long int *indx;
5845 unsigned long int *counts;
5846 bfd_vma *bitmask;
5847 bfd_byte *contents;
5848 long int min_dynindx;
5849 unsigned long int bucketcount;
5850 unsigned long int symindx;
5851 long int local_indx;
5852 long int shift1, shift2;
5853 unsigned long int mask;
5854 bfd_boolean error;
5855 };
5856
5857 /* This function will be called though elf_link_hash_traverse to store
5858 all hash value of the exported symbols in an array. */
5859
5860 static bfd_boolean
5861 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5862 {
5863 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5864 const char *name;
5865 unsigned long ha;
5866 char *alc = NULL;
5867
5868 /* Ignore indirect symbols. These are added by the versioning code. */
5869 if (h->dynindx == -1)
5870 return TRUE;
5871
5872 /* Ignore also local symbols and undefined symbols. */
5873 if (! (*s->bed->elf_hash_symbol) (h))
5874 return TRUE;
5875
5876 name = h->root.root.string;
5877 if (h->versioned >= versioned)
5878 {
5879 char *p = strchr (name, ELF_VER_CHR);
5880 if (p != NULL)
5881 {
5882 alc = (char *) bfd_malloc (p - name + 1);
5883 if (alc == NULL)
5884 {
5885 s->error = TRUE;
5886 return FALSE;
5887 }
5888 memcpy (alc, name, p - name);
5889 alc[p - name] = '\0';
5890 name = alc;
5891 }
5892 }
5893
5894 /* Compute the hash value. */
5895 ha = bfd_elf_gnu_hash (name);
5896
5897 /* Store the found hash value in the array for compute_bucket_count,
5898 and also for .dynsym reordering purposes. */
5899 s->hashcodes[s->nsyms] = ha;
5900 s->hashval[h->dynindx] = ha;
5901 ++s->nsyms;
5902 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5903 s->min_dynindx = h->dynindx;
5904
5905 if (alc != NULL)
5906 free (alc);
5907
5908 return TRUE;
5909 }
5910
5911 /* This function will be called though elf_link_hash_traverse to do
5912 final dynaminc symbol renumbering. */
5913
5914 static bfd_boolean
5915 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5916 {
5917 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5918 unsigned long int bucket;
5919 unsigned long int val;
5920
5921 /* Ignore indirect symbols. */
5922 if (h->dynindx == -1)
5923 return TRUE;
5924
5925 /* Ignore also local symbols and undefined symbols. */
5926 if (! (*s->bed->elf_hash_symbol) (h))
5927 {
5928 if (h->dynindx >= s->min_dynindx)
5929 h->dynindx = s->local_indx++;
5930 return TRUE;
5931 }
5932
5933 bucket = s->hashval[h->dynindx] % s->bucketcount;
5934 val = (s->hashval[h->dynindx] >> s->shift1)
5935 & ((s->maskbits >> s->shift1) - 1);
5936 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5937 s->bitmask[val]
5938 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5939 val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5940 if (s->counts[bucket] == 1)
5941 /* Last element terminates the chain. */
5942 val |= 1;
5943 bfd_put_32 (s->output_bfd, val,
5944 s->contents + (s->indx[bucket] - s->symindx) * 4);
5945 --s->counts[bucket];
5946 h->dynindx = s->indx[bucket]++;
5947 return TRUE;
5948 }
5949
5950 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */
5951
5952 bfd_boolean
5953 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5954 {
5955 return !(h->forced_local
5956 || h->root.type == bfd_link_hash_undefined
5957 || h->root.type == bfd_link_hash_undefweak
5958 || ((h->root.type == bfd_link_hash_defined
5959 || h->root.type == bfd_link_hash_defweak)
5960 && h->root.u.def.section->output_section == NULL));
5961 }
5962
5963 /* Array used to determine the number of hash table buckets to use
5964 based on the number of symbols there are. If there are fewer than
5965 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5966 fewer than 37 we use 17 buckets, and so forth. We never use more
5967 than 32771 buckets. */
5968
5969 static const size_t elf_buckets[] =
5970 {
5971 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5972 16411, 32771, 0
5973 };
5974
5975 /* Compute bucket count for hashing table. We do not use a static set
5976 of possible tables sizes anymore. Instead we determine for all
5977 possible reasonable sizes of the table the outcome (i.e., the
5978 number of collisions etc) and choose the best solution. The
5979 weighting functions are not too simple to allow the table to grow
5980 without bounds. Instead one of the weighting factors is the size.
5981 Therefore the result is always a good payoff between few collisions
5982 (= short chain lengths) and table size. */
5983 static size_t
5984 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5985 unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5986 unsigned long int nsyms,
5987 int gnu_hash)
5988 {
5989 size_t best_size = 0;
5990 unsigned long int i;
5991
5992 /* We have a problem here. The following code to optimize the table
5993 size requires an integer type with more the 32 bits. If
5994 BFD_HOST_U_64_BIT is set we know about such a type. */
5995 #ifdef BFD_HOST_U_64_BIT
5996 if (info->optimize)
5997 {
5998 size_t minsize;
5999 size_t maxsize;
6000 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
6001 bfd *dynobj = elf_hash_table (info)->dynobj;
6002 size_t dynsymcount = elf_hash_table (info)->dynsymcount;
6003 const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
6004 unsigned long int *counts;
6005 bfd_size_type amt;
6006 unsigned int no_improvement_count = 0;
6007
6008 /* Possible optimization parameters: if we have NSYMS symbols we say
6009 that the hashing table must at least have NSYMS/4 and at most
6010 2*NSYMS buckets. */
6011 minsize = nsyms / 4;
6012 if (minsize == 0)
6013 minsize = 1;
6014 best_size = maxsize = nsyms * 2;
6015 if (gnu_hash)
6016 {
6017 if (minsize < 2)
6018 minsize = 2;
6019 if ((best_size & 31) == 0)
6020 ++best_size;
6021 }
6022
6023 /* Create array where we count the collisions in. We must use bfd_malloc
6024 since the size could be large. */
6025 amt = maxsize;
6026 amt *= sizeof (unsigned long int);
6027 counts = (unsigned long int *) bfd_malloc (amt);
6028 if (counts == NULL)
6029 return 0;
6030
6031 /* Compute the "optimal" size for the hash table. The criteria is a
6032 minimal chain length. The minor criteria is (of course) the size
6033 of the table. */
6034 for (i = minsize; i < maxsize; ++i)
6035 {
6036 /* Walk through the array of hashcodes and count the collisions. */
6037 BFD_HOST_U_64_BIT max;
6038 unsigned long int j;
6039 unsigned long int fact;
6040
6041 if (gnu_hash && (i & 31) == 0)
6042 continue;
6043
6044 memset (counts, '\0', i * sizeof (unsigned long int));
6045
6046 /* Determine how often each hash bucket is used. */
6047 for (j = 0; j < nsyms; ++j)
6048 ++counts[hashcodes[j] % i];
6049
6050 /* For the weight function we need some information about the
6051 pagesize on the target. This is information need not be 100%
6052 accurate. Since this information is not available (so far) we
6053 define it here to a reasonable default value. If it is crucial
6054 to have a better value some day simply define this value. */
6055 # ifndef BFD_TARGET_PAGESIZE
6056 # define BFD_TARGET_PAGESIZE (4096)
6057 # endif
6058
6059 /* We in any case need 2 + DYNSYMCOUNT entries for the size values
6060 and the chains. */
6061 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
6062
6063 # if 1
6064 /* Variant 1: optimize for short chains. We add the squares
6065 of all the chain lengths (which favors many small chain
6066 over a few long chains). */
6067 for (j = 0; j < i; ++j)
6068 max += counts[j] * counts[j];
6069
6070 /* This adds penalties for the overall size of the table. */
6071 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6072 max *= fact * fact;
6073 # else
6074 /* Variant 2: Optimize a lot more for small table. Here we
6075 also add squares of the size but we also add penalties for
6076 empty slots (the +1 term). */
6077 for (j = 0; j < i; ++j)
6078 max += (1 + counts[j]) * (1 + counts[j]);
6079
6080 /* The overall size of the table is considered, but not as
6081 strong as in variant 1, where it is squared. */
6082 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
6083 max *= fact;
6084 # endif
6085
6086 /* Compare with current best results. */
6087 if (max < best_chlen)
6088 {
6089 best_chlen = max;
6090 best_size = i;
6091 no_improvement_count = 0;
6092 }
6093 /* PR 11843: Avoid futile long searches for the best bucket size
6094 when there are a large number of symbols. */
6095 else if (++no_improvement_count == 100)
6096 break;
6097 }
6098
6099 free (counts);
6100 }
6101 else
6102 #endif /* defined (BFD_HOST_U_64_BIT) */
6103 {
6104 /* This is the fallback solution if no 64bit type is available or if we
6105 are not supposed to spend much time on optimizations. We select the
6106 bucket count using a fixed set of numbers. */
6107 for (i = 0; elf_buckets[i] != 0; i++)
6108 {
6109 best_size = elf_buckets[i];
6110 if (nsyms < elf_buckets[i + 1])
6111 break;
6112 }
6113 if (gnu_hash && best_size < 2)
6114 best_size = 2;
6115 }
6116
6117 return best_size;
6118 }
6119
6120 /* Size any SHT_GROUP section for ld -r. */
6121
6122 bfd_boolean
6123 _bfd_elf_size_group_sections (struct bfd_link_info *info)
6124 {
6125 bfd *ibfd;
6126 asection *s;
6127
6128 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
6129 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
6130 && (s = ibfd->sections) != NULL
6131 && s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS
6132 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
6133 return FALSE;
6134 return TRUE;
6135 }
6136
6137 /* Set a default stack segment size. The value in INFO wins. If it
6138 is unset, LEGACY_SYMBOL's value is used, and if that symbol is
6139 undefined it is initialized. */
6140
6141 bfd_boolean
6142 bfd_elf_stack_segment_size (bfd *output_bfd,
6143 struct bfd_link_info *info,
6144 const char *legacy_symbol,
6145 bfd_vma default_size)
6146 {
6147 struct elf_link_hash_entry *h = NULL;
6148
6149 /* Look for legacy symbol. */
6150 if (legacy_symbol)
6151 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
6152 FALSE, FALSE, FALSE);
6153 if (h && (h->root.type == bfd_link_hash_defined
6154 || h->root.type == bfd_link_hash_defweak)
6155 && h->def_regular
6156 && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
6157 {
6158 /* The symbol has no type if specified on the command line. */
6159 h->type = STT_OBJECT;
6160 if (info->stacksize)
6161 /* xgettext:c-format */
6162 _bfd_error_handler (_("%pB: stack size specified and %s set"),
6163 output_bfd, legacy_symbol);
6164 else if (h->root.u.def.section != bfd_abs_section_ptr)
6165 /* xgettext:c-format */
6166 _bfd_error_handler (_("%pB: %s not absolute"),
6167 output_bfd, legacy_symbol);
6168 else
6169 info->stacksize = h->root.u.def.value;
6170 }
6171
6172 if (!info->stacksize)
6173 /* If the user didn't set a size, or explicitly inhibit the
6174 size, set it now. */
6175 info->stacksize = default_size;
6176
6177 /* Provide the legacy symbol, if it is referenced. */
6178 if (h && (h->root.type == bfd_link_hash_undefined
6179 || h->root.type == bfd_link_hash_undefweak))
6180 {
6181 struct bfd_link_hash_entry *bh = NULL;
6182
6183 if (!(_bfd_generic_link_add_one_symbol
6184 (info, output_bfd, legacy_symbol,
6185 BSF_GLOBAL, bfd_abs_section_ptr,
6186 info->stacksize >= 0 ? info->stacksize : 0,
6187 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
6188 return FALSE;
6189
6190 h = (struct elf_link_hash_entry *) bh;
6191 h->def_regular = 1;
6192 h->type = STT_OBJECT;
6193 }
6194
6195 return TRUE;
6196 }
6197
6198 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
6199
6200 struct elf_gc_sweep_symbol_info
6201 {
6202 struct bfd_link_info *info;
6203 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
6204 bfd_boolean);
6205 };
6206
6207 static bfd_boolean
6208 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
6209 {
6210 if (!h->mark
6211 && (((h->root.type == bfd_link_hash_defined
6212 || h->root.type == bfd_link_hash_defweak)
6213 && !((h->def_regular || ELF_COMMON_DEF_P (h))
6214 && h->root.u.def.section->gc_mark))
6215 || h->root.type == bfd_link_hash_undefined
6216 || h->root.type == bfd_link_hash_undefweak))
6217 {
6218 struct elf_gc_sweep_symbol_info *inf;
6219
6220 inf = (struct elf_gc_sweep_symbol_info *) data;
6221 (*inf->hide_symbol) (inf->info, h, TRUE);
6222 h->def_regular = 0;
6223 h->ref_regular = 0;
6224 h->ref_regular_nonweak = 0;
6225 }
6226
6227 return TRUE;
6228 }
6229
6230 /* Set up the sizes and contents of the ELF dynamic sections. This is
6231 called by the ELF linker emulation before_allocation routine. We
6232 must set the sizes of the sections before the linker sets the
6233 addresses of the various sections. */
6234
6235 bfd_boolean
6236 bfd_elf_size_dynamic_sections (bfd *output_bfd,
6237 const char *soname,
6238 const char *rpath,
6239 const char *filter_shlib,
6240 const char *audit,
6241 const char *depaudit,
6242 const char * const *auxiliary_filters,
6243 struct bfd_link_info *info,
6244 asection **sinterpptr)
6245 {
6246 bfd *dynobj;
6247 const struct elf_backend_data *bed;
6248
6249 *sinterpptr = NULL;
6250
6251 if (!is_elf_hash_table (info->hash))
6252 return TRUE;
6253
6254 dynobj = elf_hash_table (info)->dynobj;
6255
6256 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6257 {
6258 struct bfd_elf_version_tree *verdefs;
6259 struct elf_info_failed asvinfo;
6260 struct bfd_elf_version_tree *t;
6261 struct bfd_elf_version_expr *d;
6262 asection *s;
6263 size_t soname_indx;
6264
6265 /* If we are supposed to export all symbols into the dynamic symbol
6266 table (this is not the normal case), then do so. */
6267 if (info->export_dynamic
6268 || (bfd_link_executable (info) && info->dynamic))
6269 {
6270 struct elf_info_failed eif;
6271
6272 eif.info = info;
6273 eif.failed = FALSE;
6274 elf_link_hash_traverse (elf_hash_table (info),
6275 _bfd_elf_export_symbol,
6276 &eif);
6277 if (eif.failed)
6278 return FALSE;
6279 }
6280
6281 if (soname != NULL)
6282 {
6283 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6284 soname, TRUE);
6285 if (soname_indx == (size_t) -1
6286 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6287 return FALSE;
6288 }
6289 else
6290 soname_indx = (size_t) -1;
6291
6292 /* Make all global versions with definition. */
6293 for (t = info->version_info; t != NULL; t = t->next)
6294 for (d = t->globals.list; d != NULL; d = d->next)
6295 if (!d->symver && d->literal)
6296 {
6297 const char *verstr, *name;
6298 size_t namelen, verlen, newlen;
6299 char *newname, *p, leading_char;
6300 struct elf_link_hash_entry *newh;
6301
6302 leading_char = bfd_get_symbol_leading_char (output_bfd);
6303 name = d->pattern;
6304 namelen = strlen (name) + (leading_char != '\0');
6305 verstr = t->name;
6306 verlen = strlen (verstr);
6307 newlen = namelen + verlen + 3;
6308
6309 newname = (char *) bfd_malloc (newlen);
6310 if (newname == NULL)
6311 return FALSE;
6312 newname[0] = leading_char;
6313 memcpy (newname + (leading_char != '\0'), name, namelen);
6314
6315 /* Check the hidden versioned definition. */
6316 p = newname + namelen;
6317 *p++ = ELF_VER_CHR;
6318 memcpy (p, verstr, verlen + 1);
6319 newh = elf_link_hash_lookup (elf_hash_table (info),
6320 newname, FALSE, FALSE,
6321 FALSE);
6322 if (newh == NULL
6323 || (newh->root.type != bfd_link_hash_defined
6324 && newh->root.type != bfd_link_hash_defweak))
6325 {
6326 /* Check the default versioned definition. */
6327 *p++ = ELF_VER_CHR;
6328 memcpy (p, verstr, verlen + 1);
6329 newh = elf_link_hash_lookup (elf_hash_table (info),
6330 newname, FALSE, FALSE,
6331 FALSE);
6332 }
6333 free (newname);
6334
6335 /* Mark this version if there is a definition and it is
6336 not defined in a shared object. */
6337 if (newh != NULL
6338 && !newh->def_dynamic
6339 && (newh->root.type == bfd_link_hash_defined
6340 || newh->root.type == bfd_link_hash_defweak))
6341 d->symver = 1;
6342 }
6343
6344 /* Attach all the symbols to their version information. */
6345 asvinfo.info = info;
6346 asvinfo.failed = FALSE;
6347
6348 elf_link_hash_traverse (elf_hash_table (info),
6349 _bfd_elf_link_assign_sym_version,
6350 &asvinfo);
6351 if (asvinfo.failed)
6352 return FALSE;
6353
6354 if (!info->allow_undefined_version)
6355 {
6356 /* Check if all global versions have a definition. */
6357 bfd_boolean all_defined = TRUE;
6358 for (t = info->version_info; t != NULL; t = t->next)
6359 for (d = t->globals.list; d != NULL; d = d->next)
6360 if (d->literal && !d->symver && !d->script)
6361 {
6362 _bfd_error_handler
6363 (_("%s: undefined version: %s"),
6364 d->pattern, t->name);
6365 all_defined = FALSE;
6366 }
6367
6368 if (!all_defined)
6369 {
6370 bfd_set_error (bfd_error_bad_value);
6371 return FALSE;
6372 }
6373 }
6374
6375 /* Set up the version definition section. */
6376 s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6377 BFD_ASSERT (s != NULL);
6378
6379 /* We may have created additional version definitions if we are
6380 just linking a regular application. */
6381 verdefs = info->version_info;
6382
6383 /* Skip anonymous version tag. */
6384 if (verdefs != NULL && verdefs->vernum == 0)
6385 verdefs = verdefs->next;
6386
6387 if (verdefs == NULL && !info->create_default_symver)
6388 s->flags |= SEC_EXCLUDE;
6389 else
6390 {
6391 unsigned int cdefs;
6392 bfd_size_type size;
6393 bfd_byte *p;
6394 Elf_Internal_Verdef def;
6395 Elf_Internal_Verdaux defaux;
6396 struct bfd_link_hash_entry *bh;
6397 struct elf_link_hash_entry *h;
6398 const char *name;
6399
6400 cdefs = 0;
6401 size = 0;
6402
6403 /* Make space for the base version. */
6404 size += sizeof (Elf_External_Verdef);
6405 size += sizeof (Elf_External_Verdaux);
6406 ++cdefs;
6407
6408 /* Make space for the default version. */
6409 if (info->create_default_symver)
6410 {
6411 size += sizeof (Elf_External_Verdef);
6412 ++cdefs;
6413 }
6414
6415 for (t = verdefs; t != NULL; t = t->next)
6416 {
6417 struct bfd_elf_version_deps *n;
6418
6419 /* Don't emit base version twice. */
6420 if (t->vernum == 0)
6421 continue;
6422
6423 size += sizeof (Elf_External_Verdef);
6424 size += sizeof (Elf_External_Verdaux);
6425 ++cdefs;
6426
6427 for (n = t->deps; n != NULL; n = n->next)
6428 size += sizeof (Elf_External_Verdaux);
6429 }
6430
6431 s->size = size;
6432 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6433 if (s->contents == NULL && s->size != 0)
6434 return FALSE;
6435
6436 /* Fill in the version definition section. */
6437
6438 p = s->contents;
6439
6440 def.vd_version = VER_DEF_CURRENT;
6441 def.vd_flags = VER_FLG_BASE;
6442 def.vd_ndx = 1;
6443 def.vd_cnt = 1;
6444 if (info->create_default_symver)
6445 {
6446 def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6447 def.vd_next = sizeof (Elf_External_Verdef);
6448 }
6449 else
6450 {
6451 def.vd_aux = sizeof (Elf_External_Verdef);
6452 def.vd_next = (sizeof (Elf_External_Verdef)
6453 + sizeof (Elf_External_Verdaux));
6454 }
6455
6456 if (soname_indx != (size_t) -1)
6457 {
6458 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6459 soname_indx);
6460 def.vd_hash = bfd_elf_hash (soname);
6461 defaux.vda_name = soname_indx;
6462 name = soname;
6463 }
6464 else
6465 {
6466 size_t indx;
6467
6468 name = lbasename (output_bfd->filename);
6469 def.vd_hash = bfd_elf_hash (name);
6470 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6471 name, FALSE);
6472 if (indx == (size_t) -1)
6473 return FALSE;
6474 defaux.vda_name = indx;
6475 }
6476 defaux.vda_next = 0;
6477
6478 _bfd_elf_swap_verdef_out (output_bfd, &def,
6479 (Elf_External_Verdef *) p);
6480 p += sizeof (Elf_External_Verdef);
6481 if (info->create_default_symver)
6482 {
6483 /* Add a symbol representing this version. */
6484 bh = NULL;
6485 if (! (_bfd_generic_link_add_one_symbol
6486 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6487 0, NULL, FALSE,
6488 get_elf_backend_data (dynobj)->collect, &bh)))
6489 return FALSE;
6490 h = (struct elf_link_hash_entry *) bh;
6491 h->non_elf = 0;
6492 h->def_regular = 1;
6493 h->type = STT_OBJECT;
6494 h->verinfo.vertree = NULL;
6495
6496 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6497 return FALSE;
6498
6499 /* Create a duplicate of the base version with the same
6500 aux block, but different flags. */
6501 def.vd_flags = 0;
6502 def.vd_ndx = 2;
6503 def.vd_aux = sizeof (Elf_External_Verdef);
6504 if (verdefs)
6505 def.vd_next = (sizeof (Elf_External_Verdef)
6506 + sizeof (Elf_External_Verdaux));
6507 else
6508 def.vd_next = 0;
6509 _bfd_elf_swap_verdef_out (output_bfd, &def,
6510 (Elf_External_Verdef *) p);
6511 p += sizeof (Elf_External_Verdef);
6512 }
6513 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6514 (Elf_External_Verdaux *) p);
6515 p += sizeof (Elf_External_Verdaux);
6516
6517 for (t = verdefs; t != NULL; t = t->next)
6518 {
6519 unsigned int cdeps;
6520 struct bfd_elf_version_deps *n;
6521
6522 /* Don't emit the base version twice. */
6523 if (t->vernum == 0)
6524 continue;
6525
6526 cdeps = 0;
6527 for (n = t->deps; n != NULL; n = n->next)
6528 ++cdeps;
6529
6530 /* Add a symbol representing this version. */
6531 bh = NULL;
6532 if (! (_bfd_generic_link_add_one_symbol
6533 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6534 0, NULL, FALSE,
6535 get_elf_backend_data (dynobj)->collect, &bh)))
6536 return FALSE;
6537 h = (struct elf_link_hash_entry *) bh;
6538 h->non_elf = 0;
6539 h->def_regular = 1;
6540 h->type = STT_OBJECT;
6541 h->verinfo.vertree = t;
6542
6543 if (! bfd_elf_link_record_dynamic_symbol (info, h))
6544 return FALSE;
6545
6546 def.vd_version = VER_DEF_CURRENT;
6547 def.vd_flags = 0;
6548 if (t->globals.list == NULL
6549 && t->locals.list == NULL
6550 && ! t->used)
6551 def.vd_flags |= VER_FLG_WEAK;
6552 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6553 def.vd_cnt = cdeps + 1;
6554 def.vd_hash = bfd_elf_hash (t->name);
6555 def.vd_aux = sizeof (Elf_External_Verdef);
6556 def.vd_next = 0;
6557
6558 /* If a basever node is next, it *must* be the last node in
6559 the chain, otherwise Verdef construction breaks. */
6560 if (t->next != NULL && t->next->vernum == 0)
6561 BFD_ASSERT (t->next->next == NULL);
6562
6563 if (t->next != NULL && t->next->vernum != 0)
6564 def.vd_next = (sizeof (Elf_External_Verdef)
6565 + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6566
6567 _bfd_elf_swap_verdef_out (output_bfd, &def,
6568 (Elf_External_Verdef *) p);
6569 p += sizeof (Elf_External_Verdef);
6570
6571 defaux.vda_name = h->dynstr_index;
6572 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6573 h->dynstr_index);
6574 defaux.vda_next = 0;
6575 if (t->deps != NULL)
6576 defaux.vda_next = sizeof (Elf_External_Verdaux);
6577 t->name_indx = defaux.vda_name;
6578
6579 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6580 (Elf_External_Verdaux *) p);
6581 p += sizeof (Elf_External_Verdaux);
6582
6583 for (n = t->deps; n != NULL; n = n->next)
6584 {
6585 if (n->version_needed == NULL)
6586 {
6587 /* This can happen if there was an error in the
6588 version script. */
6589 defaux.vda_name = 0;
6590 }
6591 else
6592 {
6593 defaux.vda_name = n->version_needed->name_indx;
6594 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6595 defaux.vda_name);
6596 }
6597 if (n->next == NULL)
6598 defaux.vda_next = 0;
6599 else
6600 defaux.vda_next = sizeof (Elf_External_Verdaux);
6601
6602 _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6603 (Elf_External_Verdaux *) p);
6604 p += sizeof (Elf_External_Verdaux);
6605 }
6606 }
6607
6608 elf_tdata (output_bfd)->cverdefs = cdefs;
6609 }
6610 }
6611
6612 bed = get_elf_backend_data (output_bfd);
6613
6614 if (info->gc_sections && bed->can_gc_sections)
6615 {
6616 struct elf_gc_sweep_symbol_info sweep_info;
6617
6618 /* Remove the symbols that were in the swept sections from the
6619 dynamic symbol table. */
6620 sweep_info.info = info;
6621 sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6622 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6623 &sweep_info);
6624 }
6625
6626 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6627 {
6628 asection *s;
6629 struct elf_find_verdep_info sinfo;
6630
6631 /* Work out the size of the version reference section. */
6632
6633 s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6634 BFD_ASSERT (s != NULL);
6635
6636 sinfo.info = info;
6637 sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6638 if (sinfo.vers == 0)
6639 sinfo.vers = 1;
6640 sinfo.failed = FALSE;
6641
6642 elf_link_hash_traverse (elf_hash_table (info),
6643 _bfd_elf_link_find_version_dependencies,
6644 &sinfo);
6645 if (sinfo.failed)
6646 return FALSE;
6647
6648 if (elf_tdata (output_bfd)->verref == NULL)
6649 s->flags |= SEC_EXCLUDE;
6650 else
6651 {
6652 Elf_Internal_Verneed *vn;
6653 unsigned int size;
6654 unsigned int crefs;
6655 bfd_byte *p;
6656
6657 /* Build the version dependency section. */
6658 size = 0;
6659 crefs = 0;
6660 for (vn = elf_tdata (output_bfd)->verref;
6661 vn != NULL;
6662 vn = vn->vn_nextref)
6663 {
6664 Elf_Internal_Vernaux *a;
6665
6666 size += sizeof (Elf_External_Verneed);
6667 ++crefs;
6668 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6669 size += sizeof (Elf_External_Vernaux);
6670 }
6671
6672 s->size = size;
6673 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6674 if (s->contents == NULL)
6675 return FALSE;
6676
6677 p = s->contents;
6678 for (vn = elf_tdata (output_bfd)->verref;
6679 vn != NULL;
6680 vn = vn->vn_nextref)
6681 {
6682 unsigned int caux;
6683 Elf_Internal_Vernaux *a;
6684 size_t indx;
6685
6686 caux = 0;
6687 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6688 ++caux;
6689
6690 vn->vn_version = VER_NEED_CURRENT;
6691 vn->vn_cnt = caux;
6692 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6693 elf_dt_name (vn->vn_bfd) != NULL
6694 ? elf_dt_name (vn->vn_bfd)
6695 : lbasename (vn->vn_bfd->filename),
6696 FALSE);
6697 if (indx == (size_t) -1)
6698 return FALSE;
6699 vn->vn_file = indx;
6700 vn->vn_aux = sizeof (Elf_External_Verneed);
6701 if (vn->vn_nextref == NULL)
6702 vn->vn_next = 0;
6703 else
6704 vn->vn_next = (sizeof (Elf_External_Verneed)
6705 + caux * sizeof (Elf_External_Vernaux));
6706
6707 _bfd_elf_swap_verneed_out (output_bfd, vn,
6708 (Elf_External_Verneed *) p);
6709 p += sizeof (Elf_External_Verneed);
6710
6711 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6712 {
6713 a->vna_hash = bfd_elf_hash (a->vna_nodename);
6714 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6715 a->vna_nodename, FALSE);
6716 if (indx == (size_t) -1)
6717 return FALSE;
6718 a->vna_name = indx;
6719 if (a->vna_nextptr == NULL)
6720 a->vna_next = 0;
6721 else
6722 a->vna_next = sizeof (Elf_External_Vernaux);
6723
6724 _bfd_elf_swap_vernaux_out (output_bfd, a,
6725 (Elf_External_Vernaux *) p);
6726 p += sizeof (Elf_External_Vernaux);
6727 }
6728 }
6729
6730 elf_tdata (output_bfd)->cverrefs = crefs;
6731 }
6732 }
6733
6734 /* Any syms created from now on start with -1 in
6735 got.refcount/offset and plt.refcount/offset. */
6736 elf_hash_table (info)->init_got_refcount
6737 = elf_hash_table (info)->init_got_offset;
6738 elf_hash_table (info)->init_plt_refcount
6739 = elf_hash_table (info)->init_plt_offset;
6740
6741 if (bfd_link_relocatable (info)
6742 && !_bfd_elf_size_group_sections (info))
6743 return FALSE;
6744
6745 /* The backend may have to create some sections regardless of whether
6746 we're dynamic or not. */
6747 if (bed->elf_backend_always_size_sections
6748 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6749 return FALSE;
6750
6751 /* Determine any GNU_STACK segment requirements, after the backend
6752 has had a chance to set a default segment size. */
6753 if (info->execstack)
6754 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6755 else if (info->noexecstack)
6756 elf_stack_flags (output_bfd) = PF_R | PF_W;
6757 else
6758 {
6759 bfd *inputobj;
6760 asection *notesec = NULL;
6761 int exec = 0;
6762
6763 for (inputobj = info->input_bfds;
6764 inputobj;
6765 inputobj = inputobj->link.next)
6766 {
6767 asection *s;
6768
6769 if (inputobj->flags
6770 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6771 continue;
6772 s = inputobj->sections;
6773 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
6774 continue;
6775
6776 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6777 if (s)
6778 {
6779 if (s->flags & SEC_CODE)
6780 exec = PF_X;
6781 notesec = s;
6782 }
6783 else if (bed->default_execstack)
6784 exec = PF_X;
6785 }
6786 if (notesec || info->stacksize > 0)
6787 elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6788 if (notesec && exec && bfd_link_relocatable (info)
6789 && notesec->output_section != bfd_abs_section_ptr)
6790 notesec->output_section->flags |= SEC_CODE;
6791 }
6792
6793 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6794 {
6795 struct elf_info_failed eif;
6796 struct elf_link_hash_entry *h;
6797 asection *dynstr;
6798 asection *s;
6799
6800 *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6801 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6802
6803 if (info->symbolic)
6804 {
6805 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6806 return FALSE;
6807 info->flags |= DF_SYMBOLIC;
6808 }
6809
6810 if (rpath != NULL)
6811 {
6812 size_t indx;
6813 bfd_vma tag;
6814
6815 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6816 TRUE);
6817 if (indx == (size_t) -1)
6818 return FALSE;
6819
6820 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6821 if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6822 return FALSE;
6823 }
6824
6825 if (filter_shlib != NULL)
6826 {
6827 size_t indx;
6828
6829 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6830 filter_shlib, TRUE);
6831 if (indx == (size_t) -1
6832 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6833 return FALSE;
6834 }
6835
6836 if (auxiliary_filters != NULL)
6837 {
6838 const char * const *p;
6839
6840 for (p = auxiliary_filters; *p != NULL; p++)
6841 {
6842 size_t indx;
6843
6844 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6845 *p, TRUE);
6846 if (indx == (size_t) -1
6847 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6848 return FALSE;
6849 }
6850 }
6851
6852 if (audit != NULL)
6853 {
6854 size_t indx;
6855
6856 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6857 TRUE);
6858 if (indx == (size_t) -1
6859 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6860 return FALSE;
6861 }
6862
6863 if (depaudit != NULL)
6864 {
6865 size_t indx;
6866
6867 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6868 TRUE);
6869 if (indx == (size_t) -1
6870 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6871 return FALSE;
6872 }
6873
6874 eif.info = info;
6875 eif.failed = FALSE;
6876
6877 /* Find all symbols which were defined in a dynamic object and make
6878 the backend pick a reasonable value for them. */
6879 elf_link_hash_traverse (elf_hash_table (info),
6880 _bfd_elf_adjust_dynamic_symbol,
6881 &eif);
6882 if (eif.failed)
6883 return FALSE;
6884
6885 /* Add some entries to the .dynamic section. We fill in some of the
6886 values later, in bfd_elf_final_link, but we must add the entries
6887 now so that we know the final size of the .dynamic section. */
6888
6889 /* If there are initialization and/or finalization functions to
6890 call then add the corresponding DT_INIT/DT_FINI entries. */
6891 h = (info->init_function
6892 ? elf_link_hash_lookup (elf_hash_table (info),
6893 info->init_function, FALSE,
6894 FALSE, FALSE)
6895 : NULL);
6896 if (h != NULL
6897 && (h->ref_regular
6898 || h->def_regular))
6899 {
6900 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6901 return FALSE;
6902 }
6903 h = (info->fini_function
6904 ? elf_link_hash_lookup (elf_hash_table (info),
6905 info->fini_function, FALSE,
6906 FALSE, FALSE)
6907 : NULL);
6908 if (h != NULL
6909 && (h->ref_regular
6910 || h->def_regular))
6911 {
6912 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6913 return FALSE;
6914 }
6915
6916 s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6917 if (s != NULL && s->linker_has_input)
6918 {
6919 /* DT_PREINIT_ARRAY is not allowed in shared library. */
6920 if (! bfd_link_executable (info))
6921 {
6922 bfd *sub;
6923 asection *o;
6924
6925 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
6926 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
6927 && (o = sub->sections) != NULL
6928 && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS)
6929 for (o = sub->sections; o != NULL; o = o->next)
6930 if (elf_section_data (o)->this_hdr.sh_type
6931 == SHT_PREINIT_ARRAY)
6932 {
6933 _bfd_error_handler
6934 (_("%pB: .preinit_array section is not allowed in DSO"),
6935 sub);
6936 break;
6937 }
6938
6939 bfd_set_error (bfd_error_nonrepresentable_section);
6940 return FALSE;
6941 }
6942
6943 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6944 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6945 return FALSE;
6946 }
6947 s = bfd_get_section_by_name (output_bfd, ".init_array");
6948 if (s != NULL && s->linker_has_input)
6949 {
6950 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6951 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6952 return FALSE;
6953 }
6954 s = bfd_get_section_by_name (output_bfd, ".fini_array");
6955 if (s != NULL && s->linker_has_input)
6956 {
6957 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6958 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6959 return FALSE;
6960 }
6961
6962 dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6963 /* If .dynstr is excluded from the link, we don't want any of
6964 these tags. Strictly, we should be checking each section
6965 individually; This quick check covers for the case where
6966 someone does a /DISCARD/ : { *(*) }. */
6967 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6968 {
6969 bfd_size_type strsize;
6970
6971 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6972 if ((info->emit_hash
6973 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6974 || (info->emit_gnu_hash
6975 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6976 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6977 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6978 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6979 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6980 bed->s->sizeof_sym))
6981 return FALSE;
6982 }
6983 }
6984
6985 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6986 return FALSE;
6987
6988 /* The backend must work out the sizes of all the other dynamic
6989 sections. */
6990 if (dynobj != NULL
6991 && bed->elf_backend_size_dynamic_sections != NULL
6992 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6993 return FALSE;
6994
6995 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6996 {
6997 if (elf_tdata (output_bfd)->cverdefs)
6998 {
6999 unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
7000
7001 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
7002 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
7003 return FALSE;
7004 }
7005
7006 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
7007 {
7008 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
7009 return FALSE;
7010 }
7011 else if (info->flags & DF_BIND_NOW)
7012 {
7013 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
7014 return FALSE;
7015 }
7016
7017 if (info->flags_1)
7018 {
7019 if (bfd_link_executable (info))
7020 info->flags_1 &= ~ (DF_1_INITFIRST
7021 | DF_1_NODELETE
7022 | DF_1_NOOPEN);
7023 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
7024 return FALSE;
7025 }
7026
7027 if (elf_tdata (output_bfd)->cverrefs)
7028 {
7029 unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
7030
7031 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
7032 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
7033 return FALSE;
7034 }
7035
7036 if ((elf_tdata (output_bfd)->cverrefs == 0
7037 && elf_tdata (output_bfd)->cverdefs == 0)
7038 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1)
7039 {
7040 asection *s;
7041
7042 s = bfd_get_linker_section (dynobj, ".gnu.version");
7043 s->flags |= SEC_EXCLUDE;
7044 }
7045 }
7046 return TRUE;
7047 }
7048
7049 /* Find the first non-excluded output section. We'll use its
7050 section symbol for some emitted relocs. */
7051 void
7052 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
7053 {
7054 asection *s;
7055
7056 for (s = output_bfd->sections; s != NULL; s = s->next)
7057 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
7058 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7059 {
7060 elf_hash_table (info)->text_index_section = s;
7061 break;
7062 }
7063 }
7064
7065 /* Find two non-excluded output sections, one for code, one for data.
7066 We'll use their section symbols for some emitted relocs. */
7067 void
7068 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
7069 {
7070 asection *s;
7071
7072 /* Data first, since setting text_index_section changes
7073 _bfd_elf_omit_section_dynsym_default. */
7074 for (s = output_bfd->sections; s != NULL; s = s->next)
7075 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
7076 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7077 {
7078 elf_hash_table (info)->data_index_section = s;
7079 break;
7080 }
7081
7082 for (s = output_bfd->sections; s != NULL; s = s->next)
7083 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
7084 == (SEC_ALLOC | SEC_READONLY))
7085 && !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s))
7086 {
7087 elf_hash_table (info)->text_index_section = s;
7088 break;
7089 }
7090
7091 if (elf_hash_table (info)->text_index_section == NULL)
7092 elf_hash_table (info)->text_index_section
7093 = elf_hash_table (info)->data_index_section;
7094 }
7095
7096 bfd_boolean
7097 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
7098 {
7099 const struct elf_backend_data *bed;
7100 unsigned long section_sym_count;
7101 bfd_size_type dynsymcount = 0;
7102
7103 if (!is_elf_hash_table (info->hash))
7104 return TRUE;
7105
7106 bed = get_elf_backend_data (output_bfd);
7107 (*bed->elf_backend_init_index_section) (output_bfd, info);
7108
7109 /* Assign dynsym indices. In a shared library we generate a section
7110 symbol for each output section, which come first. Next come all
7111 of the back-end allocated local dynamic syms, followed by the rest
7112 of the global symbols.
7113
7114 This is usually not needed for static binaries, however backends
7115 can request to always do it, e.g. the MIPS backend uses dynamic
7116 symbol counts to lay out GOT, which will be produced in the
7117 presence of GOT relocations even in static binaries (holding fixed
7118 data in that case, to satisfy those relocations). */
7119
7120 if (elf_hash_table (info)->dynamic_sections_created
7121 || bed->always_renumber_dynsyms)
7122 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
7123 &section_sym_count);
7124
7125 if (elf_hash_table (info)->dynamic_sections_created)
7126 {
7127 bfd *dynobj;
7128 asection *s;
7129 unsigned int dtagcount;
7130
7131 dynobj = elf_hash_table (info)->dynobj;
7132
7133 /* Work out the size of the symbol version section. */
7134 s = bfd_get_linker_section (dynobj, ".gnu.version");
7135 BFD_ASSERT (s != NULL);
7136 if ((s->flags & SEC_EXCLUDE) == 0)
7137 {
7138 s->size = dynsymcount * sizeof (Elf_External_Versym);
7139 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7140 if (s->contents == NULL)
7141 return FALSE;
7142
7143 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
7144 return FALSE;
7145 }
7146
7147 /* Set the size of the .dynsym and .hash sections. We counted
7148 the number of dynamic symbols in elf_link_add_object_symbols.
7149 We will build the contents of .dynsym and .hash when we build
7150 the final symbol table, because until then we do not know the
7151 correct value to give the symbols. We built the .dynstr
7152 section as we went along in elf_link_add_object_symbols. */
7153 s = elf_hash_table (info)->dynsym;
7154 BFD_ASSERT (s != NULL);
7155 s->size = dynsymcount * bed->s->sizeof_sym;
7156
7157 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
7158 if (s->contents == NULL)
7159 return FALSE;
7160
7161 /* The first entry in .dynsym is a dummy symbol. Clear all the
7162 section syms, in case we don't output them all. */
7163 ++section_sym_count;
7164 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
7165
7166 elf_hash_table (info)->bucketcount = 0;
7167
7168 /* Compute the size of the hashing table. As a side effect this
7169 computes the hash values for all the names we export. */
7170 if (info->emit_hash)
7171 {
7172 unsigned long int *hashcodes;
7173 struct hash_codes_info hashinf;
7174 bfd_size_type amt;
7175 unsigned long int nsyms;
7176 size_t bucketcount;
7177 size_t hash_entry_size;
7178
7179 /* Compute the hash values for all exported symbols. At the same
7180 time store the values in an array so that we could use them for
7181 optimizations. */
7182 amt = dynsymcount * sizeof (unsigned long int);
7183 hashcodes = (unsigned long int *) bfd_malloc (amt);
7184 if (hashcodes == NULL)
7185 return FALSE;
7186 hashinf.hashcodes = hashcodes;
7187 hashinf.error = FALSE;
7188
7189 /* Put all hash values in HASHCODES. */
7190 elf_link_hash_traverse (elf_hash_table (info),
7191 elf_collect_hash_codes, &hashinf);
7192 if (hashinf.error)
7193 {
7194 free (hashcodes);
7195 return FALSE;
7196 }
7197
7198 nsyms = hashinf.hashcodes - hashcodes;
7199 bucketcount
7200 = compute_bucket_count (info, hashcodes, nsyms, 0);
7201 free (hashcodes);
7202
7203 if (bucketcount == 0 && nsyms > 0)
7204 return FALSE;
7205
7206 elf_hash_table (info)->bucketcount = bucketcount;
7207
7208 s = bfd_get_linker_section (dynobj, ".hash");
7209 BFD_ASSERT (s != NULL);
7210 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
7211 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
7212 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7213 if (s->contents == NULL)
7214 return FALSE;
7215
7216 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
7217 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
7218 s->contents + hash_entry_size);
7219 }
7220
7221 if (info->emit_gnu_hash)
7222 {
7223 size_t i, cnt;
7224 unsigned char *contents;
7225 struct collect_gnu_hash_codes cinfo;
7226 bfd_size_type amt;
7227 size_t bucketcount;
7228
7229 memset (&cinfo, 0, sizeof (cinfo));
7230
7231 /* Compute the hash values for all exported symbols. At the same
7232 time store the values in an array so that we could use them for
7233 optimizations. */
7234 amt = dynsymcount * 2 * sizeof (unsigned long int);
7235 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
7236 if (cinfo.hashcodes == NULL)
7237 return FALSE;
7238
7239 cinfo.hashval = cinfo.hashcodes + dynsymcount;
7240 cinfo.min_dynindx = -1;
7241 cinfo.output_bfd = output_bfd;
7242 cinfo.bed = bed;
7243
7244 /* Put all hash values in HASHCODES. */
7245 elf_link_hash_traverse (elf_hash_table (info),
7246 elf_collect_gnu_hash_codes, &cinfo);
7247 if (cinfo.error)
7248 {
7249 free (cinfo.hashcodes);
7250 return FALSE;
7251 }
7252
7253 bucketcount
7254 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
7255
7256 if (bucketcount == 0)
7257 {
7258 free (cinfo.hashcodes);
7259 return FALSE;
7260 }
7261
7262 s = bfd_get_linker_section (dynobj, ".gnu.hash");
7263 BFD_ASSERT (s != NULL);
7264
7265 if (cinfo.nsyms == 0)
7266 {
7267 /* Empty .gnu.hash section is special. */
7268 BFD_ASSERT (cinfo.min_dynindx == -1);
7269 free (cinfo.hashcodes);
7270 s->size = 5 * 4 + bed->s->arch_size / 8;
7271 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7272 if (contents == NULL)
7273 return FALSE;
7274 s->contents = contents;
7275 /* 1 empty bucket. */
7276 bfd_put_32 (output_bfd, 1, contents);
7277 /* SYMIDX above the special symbol 0. */
7278 bfd_put_32 (output_bfd, 1, contents + 4);
7279 /* Just one word for bitmask. */
7280 bfd_put_32 (output_bfd, 1, contents + 8);
7281 /* Only hash fn bloom filter. */
7282 bfd_put_32 (output_bfd, 0, contents + 12);
7283 /* No hashes are valid - empty bitmask. */
7284 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
7285 /* No hashes in the only bucket. */
7286 bfd_put_32 (output_bfd, 0,
7287 contents + 16 + bed->s->arch_size / 8);
7288 }
7289 else
7290 {
7291 unsigned long int maskwords, maskbitslog2, x;
7292 BFD_ASSERT (cinfo.min_dynindx != -1);
7293
7294 x = cinfo.nsyms;
7295 maskbitslog2 = 1;
7296 while ((x >>= 1) != 0)
7297 ++maskbitslog2;
7298 if (maskbitslog2 < 3)
7299 maskbitslog2 = 5;
7300 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
7301 maskbitslog2 = maskbitslog2 + 3;
7302 else
7303 maskbitslog2 = maskbitslog2 + 2;
7304 if (bed->s->arch_size == 64)
7305 {
7306 if (maskbitslog2 == 5)
7307 maskbitslog2 = 6;
7308 cinfo.shift1 = 6;
7309 }
7310 else
7311 cinfo.shift1 = 5;
7312 cinfo.mask = (1 << cinfo.shift1) - 1;
7313 cinfo.shift2 = maskbitslog2;
7314 cinfo.maskbits = 1 << maskbitslog2;
7315 maskwords = 1 << (maskbitslog2 - cinfo.shift1);
7316 amt = bucketcount * sizeof (unsigned long int) * 2;
7317 amt += maskwords * sizeof (bfd_vma);
7318 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
7319 if (cinfo.bitmask == NULL)
7320 {
7321 free (cinfo.hashcodes);
7322 return FALSE;
7323 }
7324
7325 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
7326 cinfo.indx = cinfo.counts + bucketcount;
7327 cinfo.symindx = dynsymcount - cinfo.nsyms;
7328 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
7329
7330 /* Determine how often each hash bucket is used. */
7331 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7332 for (i = 0; i < cinfo.nsyms; ++i)
7333 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7334
7335 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7336 if (cinfo.counts[i] != 0)
7337 {
7338 cinfo.indx[i] = cnt;
7339 cnt += cinfo.counts[i];
7340 }
7341 BFD_ASSERT (cnt == dynsymcount);
7342 cinfo.bucketcount = bucketcount;
7343 cinfo.local_indx = cinfo.min_dynindx;
7344
7345 s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7346 s->size += cinfo.maskbits / 8;
7347 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7348 if (contents == NULL)
7349 {
7350 free (cinfo.bitmask);
7351 free (cinfo.hashcodes);
7352 return FALSE;
7353 }
7354
7355 s->contents = contents;
7356 bfd_put_32 (output_bfd, bucketcount, contents);
7357 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7358 bfd_put_32 (output_bfd, maskwords, contents + 8);
7359 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7360 contents += 16 + cinfo.maskbits / 8;
7361
7362 for (i = 0; i < bucketcount; ++i)
7363 {
7364 if (cinfo.counts[i] == 0)
7365 bfd_put_32 (output_bfd, 0, contents);
7366 else
7367 bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7368 contents += 4;
7369 }
7370
7371 cinfo.contents = contents;
7372
7373 /* Renumber dynamic symbols, populate .gnu.hash section. */
7374 elf_link_hash_traverse (elf_hash_table (info),
7375 elf_renumber_gnu_hash_syms, &cinfo);
7376
7377 contents = s->contents + 16;
7378 for (i = 0; i < maskwords; ++i)
7379 {
7380 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7381 contents);
7382 contents += bed->s->arch_size / 8;
7383 }
7384
7385 free (cinfo.bitmask);
7386 free (cinfo.hashcodes);
7387 }
7388 }
7389
7390 s = bfd_get_linker_section (dynobj, ".dynstr");
7391 BFD_ASSERT (s != NULL);
7392
7393 elf_finalize_dynstr (output_bfd, info);
7394
7395 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7396
7397 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7398 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7399 return FALSE;
7400 }
7401
7402 return TRUE;
7403 }
7404 \f
7405 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
7406
7407 static void
7408 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7409 asection *sec)
7410 {
7411 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7412 sec->sec_info_type = SEC_INFO_TYPE_NONE;
7413 }
7414
7415 /* Finish SHF_MERGE section merging. */
7416
7417 bfd_boolean
7418 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7419 {
7420 bfd *ibfd;
7421 asection *sec;
7422
7423 if (!is_elf_hash_table (info->hash))
7424 return FALSE;
7425
7426 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7427 if ((ibfd->flags & DYNAMIC) == 0
7428 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7429 && (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7430 == get_elf_backend_data (obfd)->s->elfclass))
7431 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7432 if ((sec->flags & SEC_MERGE) != 0
7433 && !bfd_is_abs_section (sec->output_section))
7434 {
7435 struct bfd_elf_section_data *secdata;
7436
7437 secdata = elf_section_data (sec);
7438 if (! _bfd_add_merge_section (obfd,
7439 &elf_hash_table (info)->merge_info,
7440 sec, &secdata->sec_info))
7441 return FALSE;
7442 else if (secdata->sec_info)
7443 sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7444 }
7445
7446 if (elf_hash_table (info)->merge_info != NULL)
7447 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7448 merge_sections_remove_hook);
7449 return TRUE;
7450 }
7451
7452 /* Create an entry in an ELF linker hash table. */
7453
7454 struct bfd_hash_entry *
7455 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7456 struct bfd_hash_table *table,
7457 const char *string)
7458 {
7459 /* Allocate the structure if it has not already been allocated by a
7460 subclass. */
7461 if (entry == NULL)
7462 {
7463 entry = (struct bfd_hash_entry *)
7464 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7465 if (entry == NULL)
7466 return entry;
7467 }
7468
7469 /* Call the allocation method of the superclass. */
7470 entry = _bfd_link_hash_newfunc (entry, table, string);
7471 if (entry != NULL)
7472 {
7473 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7474 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7475
7476 /* Set local fields. */
7477 ret->indx = -1;
7478 ret->dynindx = -1;
7479 ret->got = htab->init_got_refcount;
7480 ret->plt = htab->init_plt_refcount;
7481 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7482 - offsetof (struct elf_link_hash_entry, size)));
7483 /* Assume that we have been called by a non-ELF symbol reader.
7484 This flag is then reset by the code which reads an ELF input
7485 file. This ensures that a symbol created by a non-ELF symbol
7486 reader will have the flag set correctly. */
7487 ret->non_elf = 1;
7488 }
7489
7490 return entry;
7491 }
7492
7493 /* Copy data from an indirect symbol to its direct symbol, hiding the
7494 old indirect symbol. Also used for copying flags to a weakdef. */
7495
7496 void
7497 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7498 struct elf_link_hash_entry *dir,
7499 struct elf_link_hash_entry *ind)
7500 {
7501 struct elf_link_hash_table *htab;
7502
7503 /* Copy down any references that we may have already seen to the
7504 symbol which just became indirect. */
7505
7506 if (dir->versioned != versioned_hidden)
7507 dir->ref_dynamic |= ind->ref_dynamic;
7508 dir->ref_regular |= ind->ref_regular;
7509 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7510 dir->non_got_ref |= ind->non_got_ref;
7511 dir->needs_plt |= ind->needs_plt;
7512 dir->pointer_equality_needed |= ind->pointer_equality_needed;
7513
7514 if (ind->root.type != bfd_link_hash_indirect)
7515 return;
7516
7517 /* Copy over the global and procedure linkage table refcount entries.
7518 These may have been already set up by a check_relocs routine. */
7519 htab = elf_hash_table (info);
7520 if (ind->got.refcount > htab->init_got_refcount.refcount)
7521 {
7522 if (dir->got.refcount < 0)
7523 dir->got.refcount = 0;
7524 dir->got.refcount += ind->got.refcount;
7525 ind->got.refcount = htab->init_got_refcount.refcount;
7526 }
7527
7528 if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7529 {
7530 if (dir->plt.refcount < 0)
7531 dir->plt.refcount = 0;
7532 dir->plt.refcount += ind->plt.refcount;
7533 ind->plt.refcount = htab->init_plt_refcount.refcount;
7534 }
7535
7536 if (ind->dynindx != -1)
7537 {
7538 if (dir->dynindx != -1)
7539 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7540 dir->dynindx = ind->dynindx;
7541 dir->dynstr_index = ind->dynstr_index;
7542 ind->dynindx = -1;
7543 ind->dynstr_index = 0;
7544 }
7545 }
7546
7547 void
7548 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7549 struct elf_link_hash_entry *h,
7550 bfd_boolean force_local)
7551 {
7552 /* STT_GNU_IFUNC symbol must go through PLT. */
7553 if (h->type != STT_GNU_IFUNC)
7554 {
7555 h->plt = elf_hash_table (info)->init_plt_offset;
7556 h->needs_plt = 0;
7557 }
7558 if (force_local)
7559 {
7560 h->forced_local = 1;
7561 if (h->dynindx != -1)
7562 {
7563 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7564 h->dynstr_index);
7565 h->dynindx = -1;
7566 h->dynstr_index = 0;
7567 }
7568 }
7569 }
7570
7571 /* Hide a symbol. */
7572
7573 void
7574 _bfd_elf_link_hide_symbol (bfd *output_bfd,
7575 struct bfd_link_info *info,
7576 struct bfd_link_hash_entry *h)
7577 {
7578 if (is_elf_hash_table (info->hash))
7579 {
7580 const struct elf_backend_data *bed
7581 = get_elf_backend_data (output_bfd);
7582 struct elf_link_hash_entry *eh
7583 = (struct elf_link_hash_entry *) h;
7584 bed->elf_backend_hide_symbol (info, eh, TRUE);
7585 eh->def_dynamic = 0;
7586 eh->ref_dynamic = 0;
7587 eh->dynamic_def = 0;
7588 }
7589 }
7590
7591 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our
7592 caller. */
7593
7594 bfd_boolean
7595 _bfd_elf_link_hash_table_init
7596 (struct elf_link_hash_table *table,
7597 bfd *abfd,
7598 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7599 struct bfd_hash_table *,
7600 const char *),
7601 unsigned int entsize,
7602 enum elf_target_id target_id)
7603 {
7604 bfd_boolean ret;
7605 int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7606
7607 table->init_got_refcount.refcount = can_refcount - 1;
7608 table->init_plt_refcount.refcount = can_refcount - 1;
7609 table->init_got_offset.offset = -(bfd_vma) 1;
7610 table->init_plt_offset.offset = -(bfd_vma) 1;
7611 /* The first dynamic symbol is a dummy. */
7612 table->dynsymcount = 1;
7613
7614 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7615
7616 table->root.type = bfd_link_elf_hash_table;
7617 table->hash_table_id = target_id;
7618
7619 return ret;
7620 }
7621
7622 /* Create an ELF linker hash table. */
7623
7624 struct bfd_link_hash_table *
7625 _bfd_elf_link_hash_table_create (bfd *abfd)
7626 {
7627 struct elf_link_hash_table *ret;
7628 bfd_size_type amt = sizeof (struct elf_link_hash_table);
7629
7630 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7631 if (ret == NULL)
7632 return NULL;
7633
7634 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7635 sizeof (struct elf_link_hash_entry),
7636 GENERIC_ELF_DATA))
7637 {
7638 free (ret);
7639 return NULL;
7640 }
7641 ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7642
7643 return &ret->root;
7644 }
7645
7646 /* Destroy an ELF linker hash table. */
7647
7648 void
7649 _bfd_elf_link_hash_table_free (bfd *obfd)
7650 {
7651 struct elf_link_hash_table *htab;
7652
7653 htab = (struct elf_link_hash_table *) obfd->link.hash;
7654 if (htab->dynstr != NULL)
7655 _bfd_elf_strtab_free (htab->dynstr);
7656 _bfd_merge_sections_free (htab->merge_info);
7657 _bfd_generic_link_hash_table_free (obfd);
7658 }
7659
7660 /* This is a hook for the ELF emulation code in the generic linker to
7661 tell the backend linker what file name to use for the DT_NEEDED
7662 entry for a dynamic object. */
7663
7664 void
7665 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7666 {
7667 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7668 && bfd_get_format (abfd) == bfd_object)
7669 elf_dt_name (abfd) = name;
7670 }
7671
7672 int
7673 bfd_elf_get_dyn_lib_class (bfd *abfd)
7674 {
7675 int lib_class;
7676 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7677 && bfd_get_format (abfd) == bfd_object)
7678 lib_class = elf_dyn_lib_class (abfd);
7679 else
7680 lib_class = 0;
7681 return lib_class;
7682 }
7683
7684 void
7685 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7686 {
7687 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7688 && bfd_get_format (abfd) == bfd_object)
7689 elf_dyn_lib_class (abfd) = lib_class;
7690 }
7691
7692 /* Get the list of DT_NEEDED entries for a link. This is a hook for
7693 the linker ELF emulation code. */
7694
7695 struct bfd_link_needed_list *
7696 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7697 struct bfd_link_info *info)
7698 {
7699 if (! is_elf_hash_table (info->hash))
7700 return NULL;
7701 return elf_hash_table (info)->needed;
7702 }
7703
7704 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
7705 hook for the linker ELF emulation code. */
7706
7707 struct bfd_link_needed_list *
7708 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7709 struct bfd_link_info *info)
7710 {
7711 if (! is_elf_hash_table (info->hash))
7712 return NULL;
7713 return elf_hash_table (info)->runpath;
7714 }
7715
7716 /* Get the name actually used for a dynamic object for a link. This
7717 is the SONAME entry if there is one. Otherwise, it is the string
7718 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
7719
7720 const char *
7721 bfd_elf_get_dt_soname (bfd *abfd)
7722 {
7723 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7724 && bfd_get_format (abfd) == bfd_object)
7725 return elf_dt_name (abfd);
7726 return NULL;
7727 }
7728
7729 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
7730 the ELF linker emulation code. */
7731
7732 bfd_boolean
7733 bfd_elf_get_bfd_needed_list (bfd *abfd,
7734 struct bfd_link_needed_list **pneeded)
7735 {
7736 asection *s;
7737 bfd_byte *dynbuf = NULL;
7738 unsigned int elfsec;
7739 unsigned long shlink;
7740 bfd_byte *extdyn, *extdynend;
7741 size_t extdynsize;
7742 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7743
7744 *pneeded = NULL;
7745
7746 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7747 || bfd_get_format (abfd) != bfd_object)
7748 return TRUE;
7749
7750 s = bfd_get_section_by_name (abfd, ".dynamic");
7751 if (s == NULL || s->size == 0)
7752 return TRUE;
7753
7754 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7755 goto error_return;
7756
7757 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7758 if (elfsec == SHN_BAD)
7759 goto error_return;
7760
7761 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7762
7763 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7764 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7765
7766 extdyn = dynbuf;
7767 extdynend = extdyn + s->size;
7768 for (; extdyn < extdynend; extdyn += extdynsize)
7769 {
7770 Elf_Internal_Dyn dyn;
7771
7772 (*swap_dyn_in) (abfd, extdyn, &dyn);
7773
7774 if (dyn.d_tag == DT_NULL)
7775 break;
7776
7777 if (dyn.d_tag == DT_NEEDED)
7778 {
7779 const char *string;
7780 struct bfd_link_needed_list *l;
7781 unsigned int tagv = dyn.d_un.d_val;
7782 bfd_size_type amt;
7783
7784 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7785 if (string == NULL)
7786 goto error_return;
7787
7788 amt = sizeof *l;
7789 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7790 if (l == NULL)
7791 goto error_return;
7792
7793 l->by = abfd;
7794 l->name = string;
7795 l->next = *pneeded;
7796 *pneeded = l;
7797 }
7798 }
7799
7800 free (dynbuf);
7801
7802 return TRUE;
7803
7804 error_return:
7805 if (dynbuf != NULL)
7806 free (dynbuf);
7807 return FALSE;
7808 }
7809
7810 struct elf_symbuf_symbol
7811 {
7812 unsigned long st_name; /* Symbol name, index in string tbl */
7813 unsigned char st_info; /* Type and binding attributes */
7814 unsigned char st_other; /* Visibilty, and target specific */
7815 };
7816
7817 struct elf_symbuf_head
7818 {
7819 struct elf_symbuf_symbol *ssym;
7820 size_t count;
7821 unsigned int st_shndx;
7822 };
7823
7824 struct elf_symbol
7825 {
7826 union
7827 {
7828 Elf_Internal_Sym *isym;
7829 struct elf_symbuf_symbol *ssym;
7830 } u;
7831 const char *name;
7832 };
7833
7834 /* Sort references to symbols by ascending section number. */
7835
7836 static int
7837 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7838 {
7839 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7840 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7841
7842 return s1->st_shndx - s2->st_shndx;
7843 }
7844
7845 static int
7846 elf_sym_name_compare (const void *arg1, const void *arg2)
7847 {
7848 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7849 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7850 return strcmp (s1->name, s2->name);
7851 }
7852
7853 static struct elf_symbuf_head *
7854 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7855 {
7856 Elf_Internal_Sym **ind, **indbufend, **indbuf;
7857 struct elf_symbuf_symbol *ssym;
7858 struct elf_symbuf_head *ssymbuf, *ssymhead;
7859 size_t i, shndx_count, total_size;
7860
7861 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7862 if (indbuf == NULL)
7863 return NULL;
7864
7865 for (ind = indbuf, i = 0; i < symcount; i++)
7866 if (isymbuf[i].st_shndx != SHN_UNDEF)
7867 *ind++ = &isymbuf[i];
7868 indbufend = ind;
7869
7870 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7871 elf_sort_elf_symbol);
7872
7873 shndx_count = 0;
7874 if (indbufend > indbuf)
7875 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7876 if (ind[0]->st_shndx != ind[1]->st_shndx)
7877 shndx_count++;
7878
7879 total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7880 + (indbufend - indbuf) * sizeof (*ssym));
7881 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7882 if (ssymbuf == NULL)
7883 {
7884 free (indbuf);
7885 return NULL;
7886 }
7887
7888 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7889 ssymbuf->ssym = NULL;
7890 ssymbuf->count = shndx_count;
7891 ssymbuf->st_shndx = 0;
7892 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7893 {
7894 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7895 {
7896 ssymhead++;
7897 ssymhead->ssym = ssym;
7898 ssymhead->count = 0;
7899 ssymhead->st_shndx = (*ind)->st_shndx;
7900 }
7901 ssym->st_name = (*ind)->st_name;
7902 ssym->st_info = (*ind)->st_info;
7903 ssym->st_other = (*ind)->st_other;
7904 ssymhead->count++;
7905 }
7906 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7907 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7908 == total_size));
7909
7910 free (indbuf);
7911 return ssymbuf;
7912 }
7913
7914 /* Check if 2 sections define the same set of local and global
7915 symbols. */
7916
7917 static bfd_boolean
7918 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7919 struct bfd_link_info *info)
7920 {
7921 bfd *bfd1, *bfd2;
7922 const struct elf_backend_data *bed1, *bed2;
7923 Elf_Internal_Shdr *hdr1, *hdr2;
7924 size_t symcount1, symcount2;
7925 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7926 struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7927 Elf_Internal_Sym *isym, *isymend;
7928 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7929 size_t count1, count2, i;
7930 unsigned int shndx1, shndx2;
7931 bfd_boolean result;
7932
7933 bfd1 = sec1->owner;
7934 bfd2 = sec2->owner;
7935
7936 /* Both sections have to be in ELF. */
7937 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7938 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7939 return FALSE;
7940
7941 if (elf_section_type (sec1) != elf_section_type (sec2))
7942 return FALSE;
7943
7944 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7945 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7946 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7947 return FALSE;
7948
7949 bed1 = get_elf_backend_data (bfd1);
7950 bed2 = get_elf_backend_data (bfd2);
7951 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7952 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7953 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7954 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7955
7956 if (symcount1 == 0 || symcount2 == 0)
7957 return FALSE;
7958
7959 result = FALSE;
7960 isymbuf1 = NULL;
7961 isymbuf2 = NULL;
7962 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7963 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7964
7965 if (ssymbuf1 == NULL)
7966 {
7967 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7968 NULL, NULL, NULL);
7969 if (isymbuf1 == NULL)
7970 goto done;
7971
7972 if (!info->reduce_memory_overheads)
7973 elf_tdata (bfd1)->symbuf = ssymbuf1
7974 = elf_create_symbuf (symcount1, isymbuf1);
7975 }
7976
7977 if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7978 {
7979 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7980 NULL, NULL, NULL);
7981 if (isymbuf2 == NULL)
7982 goto done;
7983
7984 if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7985 elf_tdata (bfd2)->symbuf = ssymbuf2
7986 = elf_create_symbuf (symcount2, isymbuf2);
7987 }
7988
7989 if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7990 {
7991 /* Optimized faster version. */
7992 size_t lo, hi, mid;
7993 struct elf_symbol *symp;
7994 struct elf_symbuf_symbol *ssym, *ssymend;
7995
7996 lo = 0;
7997 hi = ssymbuf1->count;
7998 ssymbuf1++;
7999 count1 = 0;
8000 while (lo < hi)
8001 {
8002 mid = (lo + hi) / 2;
8003 if (shndx1 < ssymbuf1[mid].st_shndx)
8004 hi = mid;
8005 else if (shndx1 > ssymbuf1[mid].st_shndx)
8006 lo = mid + 1;
8007 else
8008 {
8009 count1 = ssymbuf1[mid].count;
8010 ssymbuf1 += mid;
8011 break;
8012 }
8013 }
8014
8015 lo = 0;
8016 hi = ssymbuf2->count;
8017 ssymbuf2++;
8018 count2 = 0;
8019 while (lo < hi)
8020 {
8021 mid = (lo + hi) / 2;
8022 if (shndx2 < ssymbuf2[mid].st_shndx)
8023 hi = mid;
8024 else if (shndx2 > ssymbuf2[mid].st_shndx)
8025 lo = mid + 1;
8026 else
8027 {
8028 count2 = ssymbuf2[mid].count;
8029 ssymbuf2 += mid;
8030 break;
8031 }
8032 }
8033
8034 if (count1 == 0 || count2 == 0 || count1 != count2)
8035 goto done;
8036
8037 symtable1
8038 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
8039 symtable2
8040 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
8041 if (symtable1 == NULL || symtable2 == NULL)
8042 goto done;
8043
8044 symp = symtable1;
8045 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
8046 ssym < ssymend; ssym++, symp++)
8047 {
8048 symp->u.ssym = ssym;
8049 symp->name = bfd_elf_string_from_elf_section (bfd1,
8050 hdr1->sh_link,
8051 ssym->st_name);
8052 }
8053
8054 symp = symtable2;
8055 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
8056 ssym < ssymend; ssym++, symp++)
8057 {
8058 symp->u.ssym = ssym;
8059 symp->name = bfd_elf_string_from_elf_section (bfd2,
8060 hdr2->sh_link,
8061 ssym->st_name);
8062 }
8063
8064 /* Sort symbol by name. */
8065 qsort (symtable1, count1, sizeof (struct elf_symbol),
8066 elf_sym_name_compare);
8067 qsort (symtable2, count1, sizeof (struct elf_symbol),
8068 elf_sym_name_compare);
8069
8070 for (i = 0; i < count1; i++)
8071 /* Two symbols must have the same binding, type and name. */
8072 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
8073 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
8074 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8075 goto done;
8076
8077 result = TRUE;
8078 goto done;
8079 }
8080
8081 symtable1 = (struct elf_symbol *)
8082 bfd_malloc (symcount1 * sizeof (struct elf_symbol));
8083 symtable2 = (struct elf_symbol *)
8084 bfd_malloc (symcount2 * sizeof (struct elf_symbol));
8085 if (symtable1 == NULL || symtable2 == NULL)
8086 goto done;
8087
8088 /* Count definitions in the section. */
8089 count1 = 0;
8090 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
8091 if (isym->st_shndx == shndx1)
8092 symtable1[count1++].u.isym = isym;
8093
8094 count2 = 0;
8095 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
8096 if (isym->st_shndx == shndx2)
8097 symtable2[count2++].u.isym = isym;
8098
8099 if (count1 == 0 || count2 == 0 || count1 != count2)
8100 goto done;
8101
8102 for (i = 0; i < count1; i++)
8103 symtable1[i].name
8104 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
8105 symtable1[i].u.isym->st_name);
8106
8107 for (i = 0; i < count2; i++)
8108 symtable2[i].name
8109 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
8110 symtable2[i].u.isym->st_name);
8111
8112 /* Sort symbol by name. */
8113 qsort (symtable1, count1, sizeof (struct elf_symbol),
8114 elf_sym_name_compare);
8115 qsort (symtable2, count1, sizeof (struct elf_symbol),
8116 elf_sym_name_compare);
8117
8118 for (i = 0; i < count1; i++)
8119 /* Two symbols must have the same binding, type and name. */
8120 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
8121 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
8122 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8123 goto done;
8124
8125 result = TRUE;
8126
8127 done:
8128 if (symtable1)
8129 free (symtable1);
8130 if (symtable2)
8131 free (symtable2);
8132 if (isymbuf1)
8133 free (isymbuf1);
8134 if (isymbuf2)
8135 free (isymbuf2);
8136
8137 return result;
8138 }
8139
8140 /* Return TRUE if 2 section types are compatible. */
8141
8142 bfd_boolean
8143 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
8144 bfd *bbfd, const asection *bsec)
8145 {
8146 if (asec == NULL
8147 || bsec == NULL
8148 || abfd->xvec->flavour != bfd_target_elf_flavour
8149 || bbfd->xvec->flavour != bfd_target_elf_flavour)
8150 return TRUE;
8151
8152 return elf_section_type (asec) == elf_section_type (bsec);
8153 }
8154 \f
8155 /* Final phase of ELF linker. */
8156
8157 /* A structure we use to avoid passing large numbers of arguments. */
8158
8159 struct elf_final_link_info
8160 {
8161 /* General link information. */
8162 struct bfd_link_info *info;
8163 /* Output BFD. */
8164 bfd *output_bfd;
8165 /* Symbol string table. */
8166 struct elf_strtab_hash *symstrtab;
8167 /* .hash section. */
8168 asection *hash_sec;
8169 /* symbol version section (.gnu.version). */
8170 asection *symver_sec;
8171 /* Buffer large enough to hold contents of any section. */
8172 bfd_byte *contents;
8173 /* Buffer large enough to hold external relocs of any section. */
8174 void *external_relocs;
8175 /* Buffer large enough to hold internal relocs of any section. */
8176 Elf_Internal_Rela *internal_relocs;
8177 /* Buffer large enough to hold external local symbols of any input
8178 BFD. */
8179 bfd_byte *external_syms;
8180 /* And a buffer for symbol section indices. */
8181 Elf_External_Sym_Shndx *locsym_shndx;
8182 /* Buffer large enough to hold internal local symbols of any input
8183 BFD. */
8184 Elf_Internal_Sym *internal_syms;
8185 /* Array large enough to hold a symbol index for each local symbol
8186 of any input BFD. */
8187 long *indices;
8188 /* Array large enough to hold a section pointer for each local
8189 symbol of any input BFD. */
8190 asection **sections;
8191 /* Buffer for SHT_SYMTAB_SHNDX section. */
8192 Elf_External_Sym_Shndx *symshndxbuf;
8193 /* Number of STT_FILE syms seen. */
8194 size_t filesym_count;
8195 };
8196
8197 /* This struct is used to pass information to elf_link_output_extsym. */
8198
8199 struct elf_outext_info
8200 {
8201 bfd_boolean failed;
8202 bfd_boolean localsyms;
8203 bfd_boolean file_sym_done;
8204 struct elf_final_link_info *flinfo;
8205 };
8206
8207
8208 /* Support for evaluating a complex relocation.
8209
8210 Complex relocations are generalized, self-describing relocations. The
8211 implementation of them consists of two parts: complex symbols, and the
8212 relocations themselves.
8213
8214 The relocations are use a reserved elf-wide relocation type code (R_RELC
8215 external / BFD_RELOC_RELC internal) and an encoding of relocation field
8216 information (start bit, end bit, word width, etc) into the addend. This
8217 information is extracted from CGEN-generated operand tables within gas.
8218
8219 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
8220 internal) representing prefix-notation expressions, including but not
8221 limited to those sorts of expressions normally encoded as addends in the
8222 addend field. The symbol mangling format is:
8223
8224 <node> := <literal>
8225 | <unary-operator> ':' <node>
8226 | <binary-operator> ':' <node> ':' <node>
8227 ;
8228
8229 <literal> := 's' <digits=N> ':' <N character symbol name>
8230 | 'S' <digits=N> ':' <N character section name>
8231 | '#' <hexdigits>
8232 ;
8233
8234 <binary-operator> := as in C
8235 <unary-operator> := as in C, plus "0-" for unambiguous negation. */
8236
8237 static void
8238 set_symbol_value (bfd *bfd_with_globals,
8239 Elf_Internal_Sym *isymbuf,
8240 size_t locsymcount,
8241 size_t symidx,
8242 bfd_vma val)
8243 {
8244 struct elf_link_hash_entry **sym_hashes;
8245 struct elf_link_hash_entry *h;
8246 size_t extsymoff = locsymcount;
8247
8248 if (symidx < locsymcount)
8249 {
8250 Elf_Internal_Sym *sym;
8251
8252 sym = isymbuf + symidx;
8253 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
8254 {
8255 /* It is a local symbol: move it to the
8256 "absolute" section and give it a value. */
8257 sym->st_shndx = SHN_ABS;
8258 sym->st_value = val;
8259 return;
8260 }
8261 BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
8262 extsymoff = 0;
8263 }
8264
8265 /* It is a global symbol: set its link type
8266 to "defined" and give it a value. */
8267
8268 sym_hashes = elf_sym_hashes (bfd_with_globals);
8269 h = sym_hashes [symidx - extsymoff];
8270 while (h->root.type == bfd_link_hash_indirect
8271 || h->root.type == bfd_link_hash_warning)
8272 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8273 h->root.type = bfd_link_hash_defined;
8274 h->root.u.def.value = val;
8275 h->root.u.def.section = bfd_abs_section_ptr;
8276 }
8277
8278 static bfd_boolean
8279 resolve_symbol (const char *name,
8280 bfd *input_bfd,
8281 struct elf_final_link_info *flinfo,
8282 bfd_vma *result,
8283 Elf_Internal_Sym *isymbuf,
8284 size_t locsymcount)
8285 {
8286 Elf_Internal_Sym *sym;
8287 struct bfd_link_hash_entry *global_entry;
8288 const char *candidate = NULL;
8289 Elf_Internal_Shdr *symtab_hdr;
8290 size_t i;
8291
8292 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
8293
8294 for (i = 0; i < locsymcount; ++ i)
8295 {
8296 sym = isymbuf + i;
8297
8298 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
8299 continue;
8300
8301 candidate = bfd_elf_string_from_elf_section (input_bfd,
8302 symtab_hdr->sh_link,
8303 sym->st_name);
8304 #ifdef DEBUG
8305 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
8306 name, candidate, (unsigned long) sym->st_value);
8307 #endif
8308 if (candidate && strcmp (candidate, name) == 0)
8309 {
8310 asection *sec = flinfo->sections [i];
8311
8312 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
8313 *result += sec->output_offset + sec->output_section->vma;
8314 #ifdef DEBUG
8315 printf ("Found symbol with value %8.8lx\n",
8316 (unsigned long) *result);
8317 #endif
8318 return TRUE;
8319 }
8320 }
8321
8322 /* Hmm, haven't found it yet. perhaps it is a global. */
8323 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
8324 FALSE, FALSE, TRUE);
8325 if (!global_entry)
8326 return FALSE;
8327
8328 if (global_entry->type == bfd_link_hash_defined
8329 || global_entry->type == bfd_link_hash_defweak)
8330 {
8331 *result = (global_entry->u.def.value
8332 + global_entry->u.def.section->output_section->vma
8333 + global_entry->u.def.section->output_offset);
8334 #ifdef DEBUG
8335 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
8336 global_entry->root.string, (unsigned long) *result);
8337 #endif
8338 return TRUE;
8339 }
8340
8341 return FALSE;
8342 }
8343
8344 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in
8345 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section
8346 names like "foo.end" which is the end address of section "foo". */
8347
8348 static bfd_boolean
8349 resolve_section (const char *name,
8350 asection *sections,
8351 bfd_vma *result,
8352 bfd * abfd)
8353 {
8354 asection *curr;
8355 unsigned int len;
8356
8357 for (curr = sections; curr; curr = curr->next)
8358 if (strcmp (curr->name, name) == 0)
8359 {
8360 *result = curr->vma;
8361 return TRUE;
8362 }
8363
8364 /* Hmm. still haven't found it. try pseudo-section names. */
8365 /* FIXME: This could be coded more efficiently... */
8366 for (curr = sections; curr; curr = curr->next)
8367 {
8368 len = strlen (curr->name);
8369 if (len > strlen (name))
8370 continue;
8371
8372 if (strncmp (curr->name, name, len) == 0)
8373 {
8374 if (strncmp (".end", name + len, 4) == 0)
8375 {
8376 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8377 return TRUE;
8378 }
8379
8380 /* Insert more pseudo-section names here, if you like. */
8381 }
8382 }
8383
8384 return FALSE;
8385 }
8386
8387 static void
8388 undefined_reference (const char *reftype, const char *name)
8389 {
8390 /* xgettext:c-format */
8391 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8392 reftype, name);
8393 }
8394
8395 static bfd_boolean
8396 eval_symbol (bfd_vma *result,
8397 const char **symp,
8398 bfd *input_bfd,
8399 struct elf_final_link_info *flinfo,
8400 bfd_vma dot,
8401 Elf_Internal_Sym *isymbuf,
8402 size_t locsymcount,
8403 int signed_p)
8404 {
8405 size_t len;
8406 size_t symlen;
8407 bfd_vma a;
8408 bfd_vma b;
8409 char symbuf[4096];
8410 const char *sym = *symp;
8411 const char *symend;
8412 bfd_boolean symbol_is_section = FALSE;
8413
8414 len = strlen (sym);
8415 symend = sym + len;
8416
8417 if (len < 1 || len > sizeof (symbuf))
8418 {
8419 bfd_set_error (bfd_error_invalid_operation);
8420 return FALSE;
8421 }
8422
8423 switch (* sym)
8424 {
8425 case '.':
8426 *result = dot;
8427 *symp = sym + 1;
8428 return TRUE;
8429
8430 case '#':
8431 ++sym;
8432 *result = strtoul (sym, (char **) symp, 16);
8433 return TRUE;
8434
8435 case 'S':
8436 symbol_is_section = TRUE;
8437 /* Fall through. */
8438 case 's':
8439 ++sym;
8440 symlen = strtol (sym, (char **) symp, 10);
8441 sym = *symp + 1; /* Skip the trailing ':'. */
8442
8443 if (symend < sym || symlen + 1 > sizeof (symbuf))
8444 {
8445 bfd_set_error (bfd_error_invalid_operation);
8446 return FALSE;
8447 }
8448
8449 memcpy (symbuf, sym, symlen);
8450 symbuf[symlen] = '\0';
8451 *symp = sym + symlen;
8452
8453 /* Is it always possible, with complex symbols, that gas "mis-guessed"
8454 the symbol as a section, or vice-versa. so we're pretty liberal in our
8455 interpretation here; section means "try section first", not "must be a
8456 section", and likewise with symbol. */
8457
8458 if (symbol_is_section)
8459 {
8460 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8461 && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8462 isymbuf, locsymcount))
8463 {
8464 undefined_reference ("section", symbuf);
8465 return FALSE;
8466 }
8467 }
8468 else
8469 {
8470 if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8471 isymbuf, locsymcount)
8472 && !resolve_section (symbuf, flinfo->output_bfd->sections,
8473 result, input_bfd))
8474 {
8475 undefined_reference ("symbol", symbuf);
8476 return FALSE;
8477 }
8478 }
8479
8480 return TRUE;
8481
8482 /* All that remains are operators. */
8483
8484 #define UNARY_OP(op) \
8485 if (strncmp (sym, #op, strlen (#op)) == 0) \
8486 { \
8487 sym += strlen (#op); \
8488 if (*sym == ':') \
8489 ++sym; \
8490 *symp = sym; \
8491 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8492 isymbuf, locsymcount, signed_p)) \
8493 return FALSE; \
8494 if (signed_p) \
8495 *result = op ((bfd_signed_vma) a); \
8496 else \
8497 *result = op a; \
8498 return TRUE; \
8499 }
8500
8501 #define BINARY_OP(op) \
8502 if (strncmp (sym, #op, strlen (#op)) == 0) \
8503 { \
8504 sym += strlen (#op); \
8505 if (*sym == ':') \
8506 ++sym; \
8507 *symp = sym; \
8508 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \
8509 isymbuf, locsymcount, signed_p)) \
8510 return FALSE; \
8511 ++*symp; \
8512 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \
8513 isymbuf, locsymcount, signed_p)) \
8514 return FALSE; \
8515 if (signed_p) \
8516 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \
8517 else \
8518 *result = a op b; \
8519 return TRUE; \
8520 }
8521
8522 default:
8523 UNARY_OP (0-);
8524 BINARY_OP (<<);
8525 BINARY_OP (>>);
8526 BINARY_OP (==);
8527 BINARY_OP (!=);
8528 BINARY_OP (<=);
8529 BINARY_OP (>=);
8530 BINARY_OP (&&);
8531 BINARY_OP (||);
8532 UNARY_OP (~);
8533 UNARY_OP (!);
8534 BINARY_OP (*);
8535 BINARY_OP (/);
8536 BINARY_OP (%);
8537 BINARY_OP (^);
8538 BINARY_OP (|);
8539 BINARY_OP (&);
8540 BINARY_OP (+);
8541 BINARY_OP (-);
8542 BINARY_OP (<);
8543 BINARY_OP (>);
8544 #undef UNARY_OP
8545 #undef BINARY_OP
8546 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8547 bfd_set_error (bfd_error_invalid_operation);
8548 return FALSE;
8549 }
8550 }
8551
8552 static void
8553 put_value (bfd_vma size,
8554 unsigned long chunksz,
8555 bfd *input_bfd,
8556 bfd_vma x,
8557 bfd_byte *location)
8558 {
8559 location += (size - chunksz);
8560
8561 for (; size; size -= chunksz, location -= chunksz)
8562 {
8563 switch (chunksz)
8564 {
8565 case 1:
8566 bfd_put_8 (input_bfd, x, location);
8567 x >>= 8;
8568 break;
8569 case 2:
8570 bfd_put_16 (input_bfd, x, location);
8571 x >>= 16;
8572 break;
8573 case 4:
8574 bfd_put_32 (input_bfd, x, location);
8575 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */
8576 x >>= 16;
8577 x >>= 16;
8578 break;
8579 #ifdef BFD64
8580 case 8:
8581 bfd_put_64 (input_bfd, x, location);
8582 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */
8583 x >>= 32;
8584 x >>= 32;
8585 break;
8586 #endif
8587 default:
8588 abort ();
8589 break;
8590 }
8591 }
8592 }
8593
8594 static bfd_vma
8595 get_value (bfd_vma size,
8596 unsigned long chunksz,
8597 bfd *input_bfd,
8598 bfd_byte *location)
8599 {
8600 int shift;
8601 bfd_vma x = 0;
8602
8603 /* Sanity checks. */
8604 BFD_ASSERT (chunksz <= sizeof (x)
8605 && size >= chunksz
8606 && chunksz != 0
8607 && (size % chunksz) == 0
8608 && input_bfd != NULL
8609 && location != NULL);
8610
8611 if (chunksz == sizeof (x))
8612 {
8613 BFD_ASSERT (size == chunksz);
8614
8615 /* Make sure that we do not perform an undefined shift operation.
8616 We know that size == chunksz so there will only be one iteration
8617 of the loop below. */
8618 shift = 0;
8619 }
8620 else
8621 shift = 8 * chunksz;
8622
8623 for (; size; size -= chunksz, location += chunksz)
8624 {
8625 switch (chunksz)
8626 {
8627 case 1:
8628 x = (x << shift) | bfd_get_8 (input_bfd, location);
8629 break;
8630 case 2:
8631 x = (x << shift) | bfd_get_16 (input_bfd, location);
8632 break;
8633 case 4:
8634 x = (x << shift) | bfd_get_32 (input_bfd, location);
8635 break;
8636 #ifdef BFD64
8637 case 8:
8638 x = (x << shift) | bfd_get_64 (input_bfd, location);
8639 break;
8640 #endif
8641 default:
8642 abort ();
8643 }
8644 }
8645 return x;
8646 }
8647
8648 static void
8649 decode_complex_addend (unsigned long *start, /* in bits */
8650 unsigned long *oplen, /* in bits */
8651 unsigned long *len, /* in bits */
8652 unsigned long *wordsz, /* in bytes */
8653 unsigned long *chunksz, /* in bytes */
8654 unsigned long *lsb0_p,
8655 unsigned long *signed_p,
8656 unsigned long *trunc_p,
8657 unsigned long encoded)
8658 {
8659 * start = encoded & 0x3F;
8660 * len = (encoded >> 6) & 0x3F;
8661 * oplen = (encoded >> 12) & 0x3F;
8662 * wordsz = (encoded >> 18) & 0xF;
8663 * chunksz = (encoded >> 22) & 0xF;
8664 * lsb0_p = (encoded >> 27) & 1;
8665 * signed_p = (encoded >> 28) & 1;
8666 * trunc_p = (encoded >> 29) & 1;
8667 }
8668
8669 bfd_reloc_status_type
8670 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8671 asection *input_section ATTRIBUTE_UNUSED,
8672 bfd_byte *contents,
8673 Elf_Internal_Rela *rel,
8674 bfd_vma relocation)
8675 {
8676 bfd_vma shift, x, mask;
8677 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8678 bfd_reloc_status_type r;
8679
8680 /* Perform this reloc, since it is complex.
8681 (this is not to say that it necessarily refers to a complex
8682 symbol; merely that it is a self-describing CGEN based reloc.
8683 i.e. the addend has the complete reloc information (bit start, end,
8684 word size, etc) encoded within it.). */
8685
8686 decode_complex_addend (&start, &oplen, &len, &wordsz,
8687 &chunksz, &lsb0_p, &signed_p,
8688 &trunc_p, rel->r_addend);
8689
8690 mask = (((1L << (len - 1)) - 1) << 1) | 1;
8691
8692 if (lsb0_p)
8693 shift = (start + 1) - len;
8694 else
8695 shift = (8 * wordsz) - (start + len);
8696
8697 x = get_value (wordsz, chunksz, input_bfd,
8698 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8699
8700 #ifdef DEBUG
8701 printf ("Doing complex reloc: "
8702 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8703 "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8704 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8705 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8706 oplen, (unsigned long) x, (unsigned long) mask,
8707 (unsigned long) relocation);
8708 #endif
8709
8710 r = bfd_reloc_ok;
8711 if (! trunc_p)
8712 /* Now do an overflow check. */
8713 r = bfd_check_overflow ((signed_p
8714 ? complain_overflow_signed
8715 : complain_overflow_unsigned),
8716 len, 0, (8 * wordsz),
8717 relocation);
8718
8719 /* Do the deed. */
8720 x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8721
8722 #ifdef DEBUG
8723 printf (" relocation: %8.8lx\n"
8724 " shifted mask: %8.8lx\n"
8725 " shifted/masked reloc: %8.8lx\n"
8726 " result: %8.8lx\n",
8727 (unsigned long) relocation, (unsigned long) (mask << shift),
8728 (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8729 #endif
8730 put_value (wordsz, chunksz, input_bfd, x,
8731 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8732 return r;
8733 }
8734
8735 /* Functions to read r_offset from external (target order) reloc
8736 entry. Faster than bfd_getl32 et al, because we let the compiler
8737 know the value is aligned. */
8738
8739 static bfd_vma
8740 ext32l_r_offset (const void *p)
8741 {
8742 union aligned32
8743 {
8744 uint32_t v;
8745 unsigned char c[4];
8746 };
8747 const union aligned32 *a
8748 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8749
8750 uint32_t aval = ( (uint32_t) a->c[0]
8751 | (uint32_t) a->c[1] << 8
8752 | (uint32_t) a->c[2] << 16
8753 | (uint32_t) a->c[3] << 24);
8754 return aval;
8755 }
8756
8757 static bfd_vma
8758 ext32b_r_offset (const void *p)
8759 {
8760 union aligned32
8761 {
8762 uint32_t v;
8763 unsigned char c[4];
8764 };
8765 const union aligned32 *a
8766 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8767
8768 uint32_t aval = ( (uint32_t) a->c[0] << 24
8769 | (uint32_t) a->c[1] << 16
8770 | (uint32_t) a->c[2] << 8
8771 | (uint32_t) a->c[3]);
8772 return aval;
8773 }
8774
8775 #ifdef BFD_HOST_64_BIT
8776 static bfd_vma
8777 ext64l_r_offset (const void *p)
8778 {
8779 union aligned64
8780 {
8781 uint64_t v;
8782 unsigned char c[8];
8783 };
8784 const union aligned64 *a
8785 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8786
8787 uint64_t aval = ( (uint64_t) a->c[0]
8788 | (uint64_t) a->c[1] << 8
8789 | (uint64_t) a->c[2] << 16
8790 | (uint64_t) a->c[3] << 24
8791 | (uint64_t) a->c[4] << 32
8792 | (uint64_t) a->c[5] << 40
8793 | (uint64_t) a->c[6] << 48
8794 | (uint64_t) a->c[7] << 56);
8795 return aval;
8796 }
8797
8798 static bfd_vma
8799 ext64b_r_offset (const void *p)
8800 {
8801 union aligned64
8802 {
8803 uint64_t v;
8804 unsigned char c[8];
8805 };
8806 const union aligned64 *a
8807 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8808
8809 uint64_t aval = ( (uint64_t) a->c[0] << 56
8810 | (uint64_t) a->c[1] << 48
8811 | (uint64_t) a->c[2] << 40
8812 | (uint64_t) a->c[3] << 32
8813 | (uint64_t) a->c[4] << 24
8814 | (uint64_t) a->c[5] << 16
8815 | (uint64_t) a->c[6] << 8
8816 | (uint64_t) a->c[7]);
8817 return aval;
8818 }
8819 #endif
8820
8821 /* When performing a relocatable link, the input relocations are
8822 preserved. But, if they reference global symbols, the indices
8823 referenced must be updated. Update all the relocations found in
8824 RELDATA. */
8825
8826 static bfd_boolean
8827 elf_link_adjust_relocs (bfd *abfd,
8828 asection *sec,
8829 struct bfd_elf_section_reloc_data *reldata,
8830 bfd_boolean sort,
8831 struct bfd_link_info *info)
8832 {
8833 unsigned int i;
8834 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8835 bfd_byte *erela;
8836 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8837 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8838 bfd_vma r_type_mask;
8839 int r_sym_shift;
8840 unsigned int count = reldata->count;
8841 struct elf_link_hash_entry **rel_hash = reldata->hashes;
8842
8843 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8844 {
8845 swap_in = bed->s->swap_reloc_in;
8846 swap_out = bed->s->swap_reloc_out;
8847 }
8848 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8849 {
8850 swap_in = bed->s->swap_reloca_in;
8851 swap_out = bed->s->swap_reloca_out;
8852 }
8853 else
8854 abort ();
8855
8856 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8857 abort ();
8858
8859 if (bed->s->arch_size == 32)
8860 {
8861 r_type_mask = 0xff;
8862 r_sym_shift = 8;
8863 }
8864 else
8865 {
8866 r_type_mask = 0xffffffff;
8867 r_sym_shift = 32;
8868 }
8869
8870 erela = reldata->hdr->contents;
8871 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8872 {
8873 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8874 unsigned int j;
8875
8876 if (*rel_hash == NULL)
8877 continue;
8878
8879 if ((*rel_hash)->indx == -2
8880 && info->gc_sections
8881 && ! info->gc_keep_exported)
8882 {
8883 /* PR 21524: Let the user know if a symbol was removed by garbage collection. */
8884 _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"),
8885 abfd, sec,
8886 (*rel_hash)->root.root.string);
8887 _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"),
8888 abfd, sec);
8889 bfd_set_error (bfd_error_invalid_operation);
8890 return FALSE;
8891 }
8892 BFD_ASSERT ((*rel_hash)->indx >= 0);
8893
8894 (*swap_in) (abfd, erela, irela);
8895 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8896 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8897 | (irela[j].r_info & r_type_mask));
8898 (*swap_out) (abfd, irela, erela);
8899 }
8900
8901 if (bed->elf_backend_update_relocs)
8902 (*bed->elf_backend_update_relocs) (sec, reldata);
8903
8904 if (sort && count != 0)
8905 {
8906 bfd_vma (*ext_r_off) (const void *);
8907 bfd_vma r_off;
8908 size_t elt_size;
8909 bfd_byte *base, *end, *p, *loc;
8910 bfd_byte *buf = NULL;
8911
8912 if (bed->s->arch_size == 32)
8913 {
8914 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8915 ext_r_off = ext32l_r_offset;
8916 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8917 ext_r_off = ext32b_r_offset;
8918 else
8919 abort ();
8920 }
8921 else
8922 {
8923 #ifdef BFD_HOST_64_BIT
8924 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8925 ext_r_off = ext64l_r_offset;
8926 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8927 ext_r_off = ext64b_r_offset;
8928 else
8929 #endif
8930 abort ();
8931 }
8932
8933 /* Must use a stable sort here. A modified insertion sort,
8934 since the relocs are mostly sorted already. */
8935 elt_size = reldata->hdr->sh_entsize;
8936 base = reldata->hdr->contents;
8937 end = base + count * elt_size;
8938 if (elt_size > sizeof (Elf64_External_Rela))
8939 abort ();
8940
8941 /* Ensure the first element is lowest. This acts as a sentinel,
8942 speeding the main loop below. */
8943 r_off = (*ext_r_off) (base);
8944 for (p = loc = base; (p += elt_size) < end; )
8945 {
8946 bfd_vma r_off2 = (*ext_r_off) (p);
8947 if (r_off > r_off2)
8948 {
8949 r_off = r_off2;
8950 loc = p;
8951 }
8952 }
8953 if (loc != base)
8954 {
8955 /* Don't just swap *base and *loc as that changes the order
8956 of the original base[0] and base[1] if they happen to
8957 have the same r_offset. */
8958 bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8959 memcpy (onebuf, loc, elt_size);
8960 memmove (base + elt_size, base, loc - base);
8961 memcpy (base, onebuf, elt_size);
8962 }
8963
8964 for (p = base + elt_size; (p += elt_size) < end; )
8965 {
8966 /* base to p is sorted, *p is next to insert. */
8967 r_off = (*ext_r_off) (p);
8968 /* Search the sorted region for location to insert. */
8969 loc = p - elt_size;
8970 while (r_off < (*ext_r_off) (loc))
8971 loc -= elt_size;
8972 loc += elt_size;
8973 if (loc != p)
8974 {
8975 /* Chances are there is a run of relocs to insert here,
8976 from one of more input files. Files are not always
8977 linked in order due to the way elf_link_input_bfd is
8978 called. See pr17666. */
8979 size_t sortlen = p - loc;
8980 bfd_vma r_off2 = (*ext_r_off) (loc);
8981 size_t runlen = elt_size;
8982 size_t buf_size = 96 * 1024;
8983 while (p + runlen < end
8984 && (sortlen <= buf_size
8985 || runlen + elt_size <= buf_size)
8986 && r_off2 > (*ext_r_off) (p + runlen))
8987 runlen += elt_size;
8988 if (buf == NULL)
8989 {
8990 buf = bfd_malloc (buf_size);
8991 if (buf == NULL)
8992 return FALSE;
8993 }
8994 if (runlen < sortlen)
8995 {
8996 memcpy (buf, p, runlen);
8997 memmove (loc + runlen, loc, sortlen);
8998 memcpy (loc, buf, runlen);
8999 }
9000 else
9001 {
9002 memcpy (buf, loc, sortlen);
9003 memmove (loc, p, runlen);
9004 memcpy (loc + runlen, buf, sortlen);
9005 }
9006 p += runlen - elt_size;
9007 }
9008 }
9009 /* Hashes are no longer valid. */
9010 free (reldata->hashes);
9011 reldata->hashes = NULL;
9012 free (buf);
9013 }
9014 return TRUE;
9015 }
9016
9017 struct elf_link_sort_rela
9018 {
9019 union {
9020 bfd_vma offset;
9021 bfd_vma sym_mask;
9022 } u;
9023 enum elf_reloc_type_class type;
9024 /* We use this as an array of size int_rels_per_ext_rel. */
9025 Elf_Internal_Rela rela[1];
9026 };
9027
9028 static int
9029 elf_link_sort_cmp1 (const void *A, const void *B)
9030 {
9031 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9032 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9033 int relativea, relativeb;
9034
9035 relativea = a->type == reloc_class_relative;
9036 relativeb = b->type == reloc_class_relative;
9037
9038 if (relativea < relativeb)
9039 return 1;
9040 if (relativea > relativeb)
9041 return -1;
9042 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
9043 return -1;
9044 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
9045 return 1;
9046 if (a->rela->r_offset < b->rela->r_offset)
9047 return -1;
9048 if (a->rela->r_offset > b->rela->r_offset)
9049 return 1;
9050 return 0;
9051 }
9052
9053 static int
9054 elf_link_sort_cmp2 (const void *A, const void *B)
9055 {
9056 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
9057 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
9058
9059 if (a->type < b->type)
9060 return -1;
9061 if (a->type > b->type)
9062 return 1;
9063 if (a->u.offset < b->u.offset)
9064 return -1;
9065 if (a->u.offset > b->u.offset)
9066 return 1;
9067 if (a->rela->r_offset < b->rela->r_offset)
9068 return -1;
9069 if (a->rela->r_offset > b->rela->r_offset)
9070 return 1;
9071 return 0;
9072 }
9073
9074 static size_t
9075 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
9076 {
9077 asection *dynamic_relocs;
9078 asection *rela_dyn;
9079 asection *rel_dyn;
9080 bfd_size_type count, size;
9081 size_t i, ret, sort_elt, ext_size;
9082 bfd_byte *sort, *s_non_relative, *p;
9083 struct elf_link_sort_rela *sq;
9084 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9085 int i2e = bed->s->int_rels_per_ext_rel;
9086 unsigned int opb = bfd_octets_per_byte (abfd);
9087 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
9088 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
9089 struct bfd_link_order *lo;
9090 bfd_vma r_sym_mask;
9091 bfd_boolean use_rela;
9092
9093 /* Find a dynamic reloc section. */
9094 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
9095 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn");
9096 if (rela_dyn != NULL && rela_dyn->size > 0
9097 && rel_dyn != NULL && rel_dyn->size > 0)
9098 {
9099 bfd_boolean use_rela_initialised = FALSE;
9100
9101 /* This is just here to stop gcc from complaining.
9102 Its initialization checking code is not perfect. */
9103 use_rela = TRUE;
9104
9105 /* Both sections are present. Examine the sizes
9106 of the indirect sections to help us choose. */
9107 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9108 if (lo->type == bfd_indirect_link_order)
9109 {
9110 asection *o = lo->u.indirect.section;
9111
9112 if ((o->size % bed->s->sizeof_rela) == 0)
9113 {
9114 if ((o->size % bed->s->sizeof_rel) == 0)
9115 /* Section size is divisible by both rel and rela sizes.
9116 It is of no help to us. */
9117 ;
9118 else
9119 {
9120 /* Section size is only divisible by rela. */
9121 if (use_rela_initialised && !use_rela)
9122 {
9123 _bfd_error_handler (_("%pB: unable to sort relocs - "
9124 "they are in more than one size"),
9125 abfd);
9126 bfd_set_error (bfd_error_invalid_operation);
9127 return 0;
9128 }
9129 else
9130 {
9131 use_rela = TRUE;
9132 use_rela_initialised = TRUE;
9133 }
9134 }
9135 }
9136 else if ((o->size % bed->s->sizeof_rel) == 0)
9137 {
9138 /* Section size is only divisible by rel. */
9139 if (use_rela_initialised && use_rela)
9140 {
9141 _bfd_error_handler (_("%pB: unable to sort relocs - "
9142 "they are in more than one size"),
9143 abfd);
9144 bfd_set_error (bfd_error_invalid_operation);
9145 return 0;
9146 }
9147 else
9148 {
9149 use_rela = FALSE;
9150 use_rela_initialised = TRUE;
9151 }
9152 }
9153 else
9154 {
9155 /* The section size is not divisible by either -
9156 something is wrong. */
9157 _bfd_error_handler (_("%pB: unable to sort relocs - "
9158 "they are of an unknown size"), abfd);
9159 bfd_set_error (bfd_error_invalid_operation);
9160 return 0;
9161 }
9162 }
9163
9164 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
9165 if (lo->type == bfd_indirect_link_order)
9166 {
9167 asection *o = lo->u.indirect.section;
9168
9169 if ((o->size % bed->s->sizeof_rela) == 0)
9170 {
9171 if ((o->size % bed->s->sizeof_rel) == 0)
9172 /* Section size is divisible by both rel and rela sizes.
9173 It is of no help to us. */
9174 ;
9175 else
9176 {
9177 /* Section size is only divisible by rela. */
9178 if (use_rela_initialised && !use_rela)
9179 {
9180 _bfd_error_handler (_("%pB: unable to sort relocs - "
9181 "they are in more than one size"),
9182 abfd);
9183 bfd_set_error (bfd_error_invalid_operation);
9184 return 0;
9185 }
9186 else
9187 {
9188 use_rela = TRUE;
9189 use_rela_initialised = TRUE;
9190 }
9191 }
9192 }
9193 else if ((o->size % bed->s->sizeof_rel) == 0)
9194 {
9195 /* Section size is only divisible by rel. */
9196 if (use_rela_initialised && use_rela)
9197 {
9198 _bfd_error_handler (_("%pB: unable to sort relocs - "
9199 "they are in more than one size"),
9200 abfd);
9201 bfd_set_error (bfd_error_invalid_operation);
9202 return 0;
9203 }
9204 else
9205 {
9206 use_rela = FALSE;
9207 use_rela_initialised = TRUE;
9208 }
9209 }
9210 else
9211 {
9212 /* The section size is not divisible by either -
9213 something is wrong. */
9214 _bfd_error_handler (_("%pB: unable to sort relocs - "
9215 "they are of an unknown size"), abfd);
9216 bfd_set_error (bfd_error_invalid_operation);
9217 return 0;
9218 }
9219 }
9220
9221 if (! use_rela_initialised)
9222 /* Make a guess. */
9223 use_rela = TRUE;
9224 }
9225 else if (rela_dyn != NULL && rela_dyn->size > 0)
9226 use_rela = TRUE;
9227 else if (rel_dyn != NULL && rel_dyn->size > 0)
9228 use_rela = FALSE;
9229 else
9230 return 0;
9231
9232 if (use_rela)
9233 {
9234 dynamic_relocs = rela_dyn;
9235 ext_size = bed->s->sizeof_rela;
9236 swap_in = bed->s->swap_reloca_in;
9237 swap_out = bed->s->swap_reloca_out;
9238 }
9239 else
9240 {
9241 dynamic_relocs = rel_dyn;
9242 ext_size = bed->s->sizeof_rel;
9243 swap_in = bed->s->swap_reloc_in;
9244 swap_out = bed->s->swap_reloc_out;
9245 }
9246
9247 size = 0;
9248 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9249 if (lo->type == bfd_indirect_link_order)
9250 size += lo->u.indirect.section->size;
9251
9252 if (size != dynamic_relocs->size)
9253 return 0;
9254
9255 sort_elt = (sizeof (struct elf_link_sort_rela)
9256 + (i2e - 1) * sizeof (Elf_Internal_Rela));
9257
9258 count = dynamic_relocs->size / ext_size;
9259 if (count == 0)
9260 return 0;
9261 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
9262
9263 if (sort == NULL)
9264 {
9265 (*info->callbacks->warning)
9266 (info, _("not enough memory to sort relocations"), 0, abfd, 0, 0);
9267 return 0;
9268 }
9269
9270 if (bed->s->arch_size == 32)
9271 r_sym_mask = ~(bfd_vma) 0xff;
9272 else
9273 r_sym_mask = ~(bfd_vma) 0xffffffff;
9274
9275 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9276 if (lo->type == bfd_indirect_link_order)
9277 {
9278 bfd_byte *erel, *erelend;
9279 asection *o = lo->u.indirect.section;
9280
9281 if (o->contents == NULL && o->size != 0)
9282 {
9283 /* This is a reloc section that is being handled as a normal
9284 section. See bfd_section_from_shdr. We can't combine
9285 relocs in this case. */
9286 free (sort);
9287 return 0;
9288 }
9289 erel = o->contents;
9290 erelend = o->contents + o->size;
9291 p = sort + o->output_offset * opb / ext_size * sort_elt;
9292
9293 while (erel < erelend)
9294 {
9295 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9296
9297 (*swap_in) (abfd, erel, s->rela);
9298 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
9299 s->u.sym_mask = r_sym_mask;
9300 p += sort_elt;
9301 erel += ext_size;
9302 }
9303 }
9304
9305 qsort (sort, count, sort_elt, elf_link_sort_cmp1);
9306
9307 for (i = 0, p = sort; i < count; i++, p += sort_elt)
9308 {
9309 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9310 if (s->type != reloc_class_relative)
9311 break;
9312 }
9313 ret = i;
9314 s_non_relative = p;
9315
9316 sq = (struct elf_link_sort_rela *) s_non_relative;
9317 for (; i < count; i++, p += sort_elt)
9318 {
9319 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
9320 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
9321 sq = sp;
9322 sp->u.offset = sq->rela->r_offset;
9323 }
9324
9325 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
9326
9327 struct elf_link_hash_table *htab = elf_hash_table (info);
9328 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
9329 {
9330 /* We have plt relocs in .rela.dyn. */
9331 sq = (struct elf_link_sort_rela *) sort;
9332 for (i = 0; i < count; i++)
9333 if (sq[count - i - 1].type != reloc_class_plt)
9334 break;
9335 if (i != 0 && htab->srelplt->size == i * ext_size)
9336 {
9337 struct bfd_link_order **plo;
9338 /* Put srelplt link_order last. This is so the output_offset
9339 set in the next loop is correct for DT_JMPREL. */
9340 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
9341 if ((*plo)->type == bfd_indirect_link_order
9342 && (*plo)->u.indirect.section == htab->srelplt)
9343 {
9344 lo = *plo;
9345 *plo = lo->next;
9346 }
9347 else
9348 plo = &(*plo)->next;
9349 *plo = lo;
9350 lo->next = NULL;
9351 dynamic_relocs->map_tail.link_order = lo;
9352 }
9353 }
9354
9355 p = sort;
9356 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
9357 if (lo->type == bfd_indirect_link_order)
9358 {
9359 bfd_byte *erel, *erelend;
9360 asection *o = lo->u.indirect.section;
9361
9362 erel = o->contents;
9363 erelend = o->contents + o->size;
9364 o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9365 while (erel < erelend)
9366 {
9367 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9368 (*swap_out) (abfd, s->rela, erel);
9369 p += sort_elt;
9370 erel += ext_size;
9371 }
9372 }
9373
9374 free (sort);
9375 *psec = dynamic_relocs;
9376 return ret;
9377 }
9378
9379 /* Add a symbol to the output symbol string table. */
9380
9381 static int
9382 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9383 const char *name,
9384 Elf_Internal_Sym *elfsym,
9385 asection *input_sec,
9386 struct elf_link_hash_entry *h)
9387 {
9388 int (*output_symbol_hook)
9389 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9390 struct elf_link_hash_entry *);
9391 struct elf_link_hash_table *hash_table;
9392 const struct elf_backend_data *bed;
9393 bfd_size_type strtabsize;
9394
9395 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9396
9397 bed = get_elf_backend_data (flinfo->output_bfd);
9398 output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9399 if (output_symbol_hook != NULL)
9400 {
9401 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9402 if (ret != 1)
9403 return ret;
9404 }
9405
9406 if (name == NULL
9407 || *name == '\0'
9408 || (input_sec->flags & SEC_EXCLUDE))
9409 elfsym->st_name = (unsigned long) -1;
9410 else
9411 {
9412 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9413 to get the final offset for st_name. */
9414 elfsym->st_name
9415 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9416 name, FALSE);
9417 if (elfsym->st_name == (unsigned long) -1)
9418 return 0;
9419 }
9420
9421 hash_table = elf_hash_table (flinfo->info);
9422 strtabsize = hash_table->strtabsize;
9423 if (strtabsize <= hash_table->strtabcount)
9424 {
9425 strtabsize += strtabsize;
9426 hash_table->strtabsize = strtabsize;
9427 strtabsize *= sizeof (*hash_table->strtab);
9428 hash_table->strtab
9429 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9430 strtabsize);
9431 if (hash_table->strtab == NULL)
9432 return 0;
9433 }
9434 hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9435 hash_table->strtab[hash_table->strtabcount].dest_index
9436 = hash_table->strtabcount;
9437 hash_table->strtab[hash_table->strtabcount].destshndx_index
9438 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9439
9440 bfd_get_symcount (flinfo->output_bfd) += 1;
9441 hash_table->strtabcount += 1;
9442
9443 return 1;
9444 }
9445
9446 /* Swap symbols out to the symbol table and flush the output symbols to
9447 the file. */
9448
9449 static bfd_boolean
9450 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9451 {
9452 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9453 bfd_size_type amt;
9454 size_t i;
9455 const struct elf_backend_data *bed;
9456 bfd_byte *symbuf;
9457 Elf_Internal_Shdr *hdr;
9458 file_ptr pos;
9459 bfd_boolean ret;
9460
9461 if (!hash_table->strtabcount)
9462 return TRUE;
9463
9464 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9465
9466 bed = get_elf_backend_data (flinfo->output_bfd);
9467
9468 amt = bed->s->sizeof_sym * hash_table->strtabcount;
9469 symbuf = (bfd_byte *) bfd_malloc (amt);
9470 if (symbuf == NULL)
9471 return FALSE;
9472
9473 if (flinfo->symshndxbuf)
9474 {
9475 amt = sizeof (Elf_External_Sym_Shndx);
9476 amt *= bfd_get_symcount (flinfo->output_bfd);
9477 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9478 if (flinfo->symshndxbuf == NULL)
9479 {
9480 free (symbuf);
9481 return FALSE;
9482 }
9483 }
9484
9485 for (i = 0; i < hash_table->strtabcount; i++)
9486 {
9487 struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9488 if (elfsym->sym.st_name == (unsigned long) -1)
9489 elfsym->sym.st_name = 0;
9490 else
9491 elfsym->sym.st_name
9492 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9493 elfsym->sym.st_name);
9494 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9495 ((bfd_byte *) symbuf
9496 + (elfsym->dest_index
9497 * bed->s->sizeof_sym)),
9498 (flinfo->symshndxbuf
9499 + elfsym->destshndx_index));
9500 }
9501
9502 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9503 pos = hdr->sh_offset + hdr->sh_size;
9504 amt = hash_table->strtabcount * bed->s->sizeof_sym;
9505 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9506 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9507 {
9508 hdr->sh_size += amt;
9509 ret = TRUE;
9510 }
9511 else
9512 ret = FALSE;
9513
9514 free (symbuf);
9515
9516 free (hash_table->strtab);
9517 hash_table->strtab = NULL;
9518
9519 return ret;
9520 }
9521
9522 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */
9523
9524 static bfd_boolean
9525 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9526 {
9527 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9528 && sym->st_shndx < SHN_LORESERVE)
9529 {
9530 /* The gABI doesn't support dynamic symbols in output sections
9531 beyond 64k. */
9532 _bfd_error_handler
9533 /* xgettext:c-format */
9534 (_("%pB: too many sections: %d (>= %d)"),
9535 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9536 bfd_set_error (bfd_error_nonrepresentable_section);
9537 return FALSE;
9538 }
9539 return TRUE;
9540 }
9541
9542 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9543 allowing an unsatisfied unversioned symbol in the DSO to match a
9544 versioned symbol that would normally require an explicit version.
9545 We also handle the case that a DSO references a hidden symbol
9546 which may be satisfied by a versioned symbol in another DSO. */
9547
9548 static bfd_boolean
9549 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9550 const struct elf_backend_data *bed,
9551 struct elf_link_hash_entry *h)
9552 {
9553 bfd *abfd;
9554 struct elf_link_loaded_list *loaded;
9555
9556 if (!is_elf_hash_table (info->hash))
9557 return FALSE;
9558
9559 /* Check indirect symbol. */
9560 while (h->root.type == bfd_link_hash_indirect)
9561 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9562
9563 switch (h->root.type)
9564 {
9565 default:
9566 abfd = NULL;
9567 break;
9568
9569 case bfd_link_hash_undefined:
9570 case bfd_link_hash_undefweak:
9571 abfd = h->root.u.undef.abfd;
9572 if (abfd == NULL
9573 || (abfd->flags & DYNAMIC) == 0
9574 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9575 return FALSE;
9576 break;
9577
9578 case bfd_link_hash_defined:
9579 case bfd_link_hash_defweak:
9580 abfd = h->root.u.def.section->owner;
9581 break;
9582
9583 case bfd_link_hash_common:
9584 abfd = h->root.u.c.p->section->owner;
9585 break;
9586 }
9587 BFD_ASSERT (abfd != NULL);
9588
9589 for (loaded = elf_hash_table (info)->loaded;
9590 loaded != NULL;
9591 loaded = loaded->next)
9592 {
9593 bfd *input;
9594 Elf_Internal_Shdr *hdr;
9595 size_t symcount;
9596 size_t extsymcount;
9597 size_t extsymoff;
9598 Elf_Internal_Shdr *versymhdr;
9599 Elf_Internal_Sym *isym;
9600 Elf_Internal_Sym *isymend;
9601 Elf_Internal_Sym *isymbuf;
9602 Elf_External_Versym *ever;
9603 Elf_External_Versym *extversym;
9604
9605 input = loaded->abfd;
9606
9607 /* We check each DSO for a possible hidden versioned definition. */
9608 if (input == abfd
9609 || (input->flags & DYNAMIC) == 0
9610 || elf_dynversym (input) == 0)
9611 continue;
9612
9613 hdr = &elf_tdata (input)->dynsymtab_hdr;
9614
9615 symcount = hdr->sh_size / bed->s->sizeof_sym;
9616 if (elf_bad_symtab (input))
9617 {
9618 extsymcount = symcount;
9619 extsymoff = 0;
9620 }
9621 else
9622 {
9623 extsymcount = symcount - hdr->sh_info;
9624 extsymoff = hdr->sh_info;
9625 }
9626
9627 if (extsymcount == 0)
9628 continue;
9629
9630 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9631 NULL, NULL, NULL);
9632 if (isymbuf == NULL)
9633 return FALSE;
9634
9635 /* Read in any version definitions. */
9636 versymhdr = &elf_tdata (input)->dynversym_hdr;
9637 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9638 if (extversym == NULL)
9639 goto error_ret;
9640
9641 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9642 || (bfd_bread (extversym, versymhdr->sh_size, input)
9643 != versymhdr->sh_size))
9644 {
9645 free (extversym);
9646 error_ret:
9647 free (isymbuf);
9648 return FALSE;
9649 }
9650
9651 ever = extversym + extsymoff;
9652 isymend = isymbuf + extsymcount;
9653 for (isym = isymbuf; isym < isymend; isym++, ever++)
9654 {
9655 const char *name;
9656 Elf_Internal_Versym iver;
9657 unsigned short version_index;
9658
9659 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9660 || isym->st_shndx == SHN_UNDEF)
9661 continue;
9662
9663 name = bfd_elf_string_from_elf_section (input,
9664 hdr->sh_link,
9665 isym->st_name);
9666 if (strcmp (name, h->root.root.string) != 0)
9667 continue;
9668
9669 _bfd_elf_swap_versym_in (input, ever, &iver);
9670
9671 if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9672 && !(h->def_regular
9673 && h->forced_local))
9674 {
9675 /* If we have a non-hidden versioned sym, then it should
9676 have provided a definition for the undefined sym unless
9677 it is defined in a non-shared object and forced local.
9678 */
9679 abort ();
9680 }
9681
9682 version_index = iver.vs_vers & VERSYM_VERSION;
9683 if (version_index == 1 || version_index == 2)
9684 {
9685 /* This is the base or first version. We can use it. */
9686 free (extversym);
9687 free (isymbuf);
9688 return TRUE;
9689 }
9690 }
9691
9692 free (extversym);
9693 free (isymbuf);
9694 }
9695
9696 return FALSE;
9697 }
9698
9699 /* Convert ELF common symbol TYPE. */
9700
9701 static int
9702 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9703 {
9704 /* Commom symbol can only appear in relocatable link. */
9705 if (!bfd_link_relocatable (info))
9706 abort ();
9707 switch (info->elf_stt_common)
9708 {
9709 case unchanged:
9710 break;
9711 case elf_stt_common:
9712 type = STT_COMMON;
9713 break;
9714 case no_elf_stt_common:
9715 type = STT_OBJECT;
9716 break;
9717 }
9718 return type;
9719 }
9720
9721 /* Add an external symbol to the symbol table. This is called from
9722 the hash table traversal routine. When generating a shared object,
9723 we go through the symbol table twice. The first time we output
9724 anything that might have been forced to local scope in a version
9725 script. The second time we output the symbols that are still
9726 global symbols. */
9727
9728 static bfd_boolean
9729 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9730 {
9731 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9732 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9733 struct elf_final_link_info *flinfo = eoinfo->flinfo;
9734 bfd_boolean strip;
9735 Elf_Internal_Sym sym;
9736 asection *input_sec;
9737 const struct elf_backend_data *bed;
9738 long indx;
9739 int ret;
9740 unsigned int type;
9741
9742 if (h->root.type == bfd_link_hash_warning)
9743 {
9744 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9745 if (h->root.type == bfd_link_hash_new)
9746 return TRUE;
9747 }
9748
9749 /* Decide whether to output this symbol in this pass. */
9750 if (eoinfo->localsyms)
9751 {
9752 if (!h->forced_local)
9753 return TRUE;
9754 }
9755 else
9756 {
9757 if (h->forced_local)
9758 return TRUE;
9759 }
9760
9761 bed = get_elf_backend_data (flinfo->output_bfd);
9762
9763 if (h->root.type == bfd_link_hash_undefined)
9764 {
9765 /* If we have an undefined symbol reference here then it must have
9766 come from a shared library that is being linked in. (Undefined
9767 references in regular files have already been handled unless
9768 they are in unreferenced sections which are removed by garbage
9769 collection). */
9770 bfd_boolean ignore_undef = FALSE;
9771
9772 /* Some symbols may be special in that the fact that they're
9773 undefined can be safely ignored - let backend determine that. */
9774 if (bed->elf_backend_ignore_undef_symbol)
9775 ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9776
9777 /* If we are reporting errors for this situation then do so now. */
9778 if (!ignore_undef
9779 && h->ref_dynamic
9780 && (!h->ref_regular || flinfo->info->gc_sections)
9781 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9782 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9783 (*flinfo->info->callbacks->undefined_symbol)
9784 (flinfo->info, h->root.root.string,
9785 h->ref_regular ? NULL : h->root.u.undef.abfd,
9786 NULL, 0,
9787 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9788
9789 /* Strip a global symbol defined in a discarded section. */
9790 if (h->indx == -3)
9791 return TRUE;
9792 }
9793
9794 /* We should also warn if a forced local symbol is referenced from
9795 shared libraries. */
9796 if (bfd_link_executable (flinfo->info)
9797 && h->forced_local
9798 && h->ref_dynamic
9799 && h->def_regular
9800 && !h->dynamic_def
9801 && h->ref_dynamic_nonweak
9802 && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9803 {
9804 bfd *def_bfd;
9805 const char *msg;
9806 struct elf_link_hash_entry *hi = h;
9807
9808 /* Check indirect symbol. */
9809 while (hi->root.type == bfd_link_hash_indirect)
9810 hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9811
9812 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9813 /* xgettext:c-format */
9814 msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO");
9815 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9816 /* xgettext:c-format */
9817 msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO");
9818 else
9819 /* xgettext:c-format */
9820 msg = _("%pB: local symbol `%s' in %pB is referenced by DSO");
9821 def_bfd = flinfo->output_bfd;
9822 if (hi->root.u.def.section != bfd_abs_section_ptr)
9823 def_bfd = hi->root.u.def.section->owner;
9824 _bfd_error_handler (msg, flinfo->output_bfd,
9825 h->root.root.string, def_bfd);
9826 bfd_set_error (bfd_error_bad_value);
9827 eoinfo->failed = TRUE;
9828 return FALSE;
9829 }
9830
9831 /* We don't want to output symbols that have never been mentioned by
9832 a regular file, or that we have been told to strip. However, if
9833 h->indx is set to -2, the symbol is used by a reloc and we must
9834 output it. */
9835 strip = FALSE;
9836 if (h->indx == -2)
9837 ;
9838 else if ((h->def_dynamic
9839 || h->ref_dynamic
9840 || h->root.type == bfd_link_hash_new)
9841 && !h->def_regular
9842 && !h->ref_regular)
9843 strip = TRUE;
9844 else if (flinfo->info->strip == strip_all)
9845 strip = TRUE;
9846 else if (flinfo->info->strip == strip_some
9847 && bfd_hash_lookup (flinfo->info->keep_hash,
9848 h->root.root.string, FALSE, FALSE) == NULL)
9849 strip = TRUE;
9850 else if ((h->root.type == bfd_link_hash_defined
9851 || h->root.type == bfd_link_hash_defweak)
9852 && ((flinfo->info->strip_discarded
9853 && discarded_section (h->root.u.def.section))
9854 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9855 && h->root.u.def.section->owner != NULL
9856 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9857 strip = TRUE;
9858 else if ((h->root.type == bfd_link_hash_undefined
9859 || h->root.type == bfd_link_hash_undefweak)
9860 && h->root.u.undef.abfd != NULL
9861 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9862 strip = TRUE;
9863
9864 type = h->type;
9865
9866 /* If we're stripping it, and it's not a dynamic symbol, there's
9867 nothing else to do. However, if it is a forced local symbol or
9868 an ifunc symbol we need to give the backend finish_dynamic_symbol
9869 function a chance to make it dynamic. */
9870 if (strip
9871 && h->dynindx == -1
9872 && type != STT_GNU_IFUNC
9873 && !h->forced_local)
9874 return TRUE;
9875
9876 sym.st_value = 0;
9877 sym.st_size = h->size;
9878 sym.st_other = h->other;
9879 switch (h->root.type)
9880 {
9881 default:
9882 case bfd_link_hash_new:
9883 case bfd_link_hash_warning:
9884 abort ();
9885 return FALSE;
9886
9887 case bfd_link_hash_undefined:
9888 case bfd_link_hash_undefweak:
9889 input_sec = bfd_und_section_ptr;
9890 sym.st_shndx = SHN_UNDEF;
9891 break;
9892
9893 case bfd_link_hash_defined:
9894 case bfd_link_hash_defweak:
9895 {
9896 input_sec = h->root.u.def.section;
9897 if (input_sec->output_section != NULL)
9898 {
9899 sym.st_shndx =
9900 _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9901 input_sec->output_section);
9902 if (sym.st_shndx == SHN_BAD)
9903 {
9904 _bfd_error_handler
9905 /* xgettext:c-format */
9906 (_("%pB: could not find output section %pA for input section %pA"),
9907 flinfo->output_bfd, input_sec->output_section, input_sec);
9908 bfd_set_error (bfd_error_nonrepresentable_section);
9909 eoinfo->failed = TRUE;
9910 return FALSE;
9911 }
9912
9913 /* ELF symbols in relocatable files are section relative,
9914 but in nonrelocatable files they are virtual
9915 addresses. */
9916 sym.st_value = h->root.u.def.value + input_sec->output_offset;
9917 if (!bfd_link_relocatable (flinfo->info))
9918 {
9919 sym.st_value += input_sec->output_section->vma;
9920 if (h->type == STT_TLS)
9921 {
9922 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9923 if (tls_sec != NULL)
9924 sym.st_value -= tls_sec->vma;
9925 }
9926 }
9927 }
9928 else
9929 {
9930 BFD_ASSERT (input_sec->owner == NULL
9931 || (input_sec->owner->flags & DYNAMIC) != 0);
9932 sym.st_shndx = SHN_UNDEF;
9933 input_sec = bfd_und_section_ptr;
9934 }
9935 }
9936 break;
9937
9938 case bfd_link_hash_common:
9939 input_sec = h->root.u.c.p->section;
9940 sym.st_shndx = bed->common_section_index (input_sec);
9941 sym.st_value = 1 << h->root.u.c.p->alignment_power;
9942 break;
9943
9944 case bfd_link_hash_indirect:
9945 /* These symbols are created by symbol versioning. They point
9946 to the decorated version of the name. For example, if the
9947 symbol foo@@GNU_1.2 is the default, which should be used when
9948 foo is used with no version, then we add an indirect symbol
9949 foo which points to foo@@GNU_1.2. We ignore these symbols,
9950 since the indirected symbol is already in the hash table. */
9951 return TRUE;
9952 }
9953
9954 if (type == STT_COMMON || type == STT_OBJECT)
9955 switch (h->root.type)
9956 {
9957 case bfd_link_hash_common:
9958 type = elf_link_convert_common_type (flinfo->info, type);
9959 break;
9960 case bfd_link_hash_defined:
9961 case bfd_link_hash_defweak:
9962 if (bed->common_definition (&sym))
9963 type = elf_link_convert_common_type (flinfo->info, type);
9964 else
9965 type = STT_OBJECT;
9966 break;
9967 case bfd_link_hash_undefined:
9968 case bfd_link_hash_undefweak:
9969 break;
9970 default:
9971 abort ();
9972 }
9973
9974 if (h->forced_local)
9975 {
9976 sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9977 /* Turn off visibility on local symbol. */
9978 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9979 }
9980 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */
9981 else if (h->unique_global && h->def_regular)
9982 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9983 else if (h->root.type == bfd_link_hash_undefweak
9984 || h->root.type == bfd_link_hash_defweak)
9985 sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9986 else
9987 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9988 sym.st_target_internal = h->target_internal;
9989
9990 /* Give the processor backend a chance to tweak the symbol value,
9991 and also to finish up anything that needs to be done for this
9992 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
9993 forced local syms when non-shared is due to a historical quirk.
9994 STT_GNU_IFUNC symbol must go through PLT. */
9995 if ((h->type == STT_GNU_IFUNC
9996 && h->def_regular
9997 && !bfd_link_relocatable (flinfo->info))
9998 || ((h->dynindx != -1
9999 || h->forced_local)
10000 && ((bfd_link_pic (flinfo->info)
10001 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10002 || h->root.type != bfd_link_hash_undefweak))
10003 || !h->forced_local)
10004 && elf_hash_table (flinfo->info)->dynamic_sections_created))
10005 {
10006 if (! ((*bed->elf_backend_finish_dynamic_symbol)
10007 (flinfo->output_bfd, flinfo->info, h, &sym)))
10008 {
10009 eoinfo->failed = TRUE;
10010 return FALSE;
10011 }
10012 }
10013
10014 /* If we are marking the symbol as undefined, and there are no
10015 non-weak references to this symbol from a regular object, then
10016 mark the symbol as weak undefined; if there are non-weak
10017 references, mark the symbol as strong. We can't do this earlier,
10018 because it might not be marked as undefined until the
10019 finish_dynamic_symbol routine gets through with it. */
10020 if (sym.st_shndx == SHN_UNDEF
10021 && h->ref_regular
10022 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
10023 || ELF_ST_BIND (sym.st_info) == STB_WEAK))
10024 {
10025 int bindtype;
10026 type = ELF_ST_TYPE (sym.st_info);
10027
10028 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
10029 if (type == STT_GNU_IFUNC)
10030 type = STT_FUNC;
10031
10032 if (h->ref_regular_nonweak)
10033 bindtype = STB_GLOBAL;
10034 else
10035 bindtype = STB_WEAK;
10036 sym.st_info = ELF_ST_INFO (bindtype, type);
10037 }
10038
10039 /* If this is a symbol defined in a dynamic library, don't use the
10040 symbol size from the dynamic library. Relinking an executable
10041 against a new library may introduce gratuitous changes in the
10042 executable's symbols if we keep the size. */
10043 if (sym.st_shndx == SHN_UNDEF
10044 && !h->def_regular
10045 && h->def_dynamic)
10046 sym.st_size = 0;
10047
10048 /* If a non-weak symbol with non-default visibility is not defined
10049 locally, it is a fatal error. */
10050 if (!bfd_link_relocatable (flinfo->info)
10051 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
10052 && ELF_ST_BIND (sym.st_info) != STB_WEAK
10053 && h->root.type == bfd_link_hash_undefined
10054 && !h->def_regular)
10055 {
10056 const char *msg;
10057
10058 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
10059 /* xgettext:c-format */
10060 msg = _("%pB: protected symbol `%s' isn't defined");
10061 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
10062 /* xgettext:c-format */
10063 msg = _("%pB: internal symbol `%s' isn't defined");
10064 else
10065 /* xgettext:c-format */
10066 msg = _("%pB: hidden symbol `%s' isn't defined");
10067 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
10068 bfd_set_error (bfd_error_bad_value);
10069 eoinfo->failed = TRUE;
10070 return FALSE;
10071 }
10072
10073 /* If this symbol should be put in the .dynsym section, then put it
10074 there now. We already know the symbol index. We also fill in
10075 the entry in the .hash section. */
10076 if (h->dynindx != -1
10077 && elf_hash_table (flinfo->info)->dynamic_sections_created
10078 && elf_hash_table (flinfo->info)->dynsym != NULL
10079 && !discarded_section (elf_hash_table (flinfo->info)->dynsym))
10080 {
10081 bfd_byte *esym;
10082
10083 /* Since there is no version information in the dynamic string,
10084 if there is no version info in symbol version section, we will
10085 have a run-time problem if not linking executable, referenced
10086 by shared library, or not bound locally. */
10087 if (h->verinfo.verdef == NULL
10088 && (!bfd_link_executable (flinfo->info)
10089 || h->ref_dynamic
10090 || !h->def_regular))
10091 {
10092 char *p = strrchr (h->root.root.string, ELF_VER_CHR);
10093
10094 if (p && p [1] != '\0')
10095 {
10096 _bfd_error_handler
10097 /* xgettext:c-format */
10098 (_("%pB: no symbol version section for versioned symbol `%s'"),
10099 flinfo->output_bfd, h->root.root.string);
10100 eoinfo->failed = TRUE;
10101 return FALSE;
10102 }
10103 }
10104
10105 sym.st_name = h->dynstr_index;
10106 esym = (elf_hash_table (flinfo->info)->dynsym->contents
10107 + h->dynindx * bed->s->sizeof_sym);
10108 if (!check_dynsym (flinfo->output_bfd, &sym))
10109 {
10110 eoinfo->failed = TRUE;
10111 return FALSE;
10112 }
10113 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
10114
10115 if (flinfo->hash_sec != NULL)
10116 {
10117 size_t hash_entry_size;
10118 bfd_byte *bucketpos;
10119 bfd_vma chain;
10120 size_t bucketcount;
10121 size_t bucket;
10122
10123 bucketcount = elf_hash_table (flinfo->info)->bucketcount;
10124 bucket = h->u.elf_hash_value % bucketcount;
10125
10126 hash_entry_size
10127 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
10128 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
10129 + (bucket + 2) * hash_entry_size);
10130 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
10131 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
10132 bucketpos);
10133 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
10134 ((bfd_byte *) flinfo->hash_sec->contents
10135 + (bucketcount + 2 + h->dynindx) * hash_entry_size));
10136 }
10137
10138 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
10139 {
10140 Elf_Internal_Versym iversym;
10141 Elf_External_Versym *eversym;
10142
10143 if (!h->def_regular)
10144 {
10145 if (h->verinfo.verdef == NULL
10146 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
10147 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
10148 iversym.vs_vers = 0;
10149 else
10150 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
10151 }
10152 else
10153 {
10154 if (h->verinfo.vertree == NULL)
10155 iversym.vs_vers = 1;
10156 else
10157 iversym.vs_vers = h->verinfo.vertree->vernum + 1;
10158 if (flinfo->info->create_default_symver)
10159 iversym.vs_vers++;
10160 }
10161
10162 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
10163 defined locally. */
10164 if (h->versioned == versioned_hidden && h->def_regular)
10165 iversym.vs_vers |= VERSYM_HIDDEN;
10166
10167 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
10168 eversym += h->dynindx;
10169 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
10170 }
10171 }
10172
10173 /* If the symbol is undefined, and we didn't output it to .dynsym,
10174 strip it from .symtab too. Obviously we can't do this for
10175 relocatable output or when needed for --emit-relocs. */
10176 else if (input_sec == bfd_und_section_ptr
10177 && h->indx != -2
10178 /* PR 22319 Do not strip global undefined symbols marked as being needed. */
10179 && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL)
10180 && !bfd_link_relocatable (flinfo->info))
10181 return TRUE;
10182
10183 /* Also strip others that we couldn't earlier due to dynamic symbol
10184 processing. */
10185 if (strip)
10186 return TRUE;
10187 if ((input_sec->flags & SEC_EXCLUDE) != 0)
10188 return TRUE;
10189
10190 /* Output a FILE symbol so that following locals are not associated
10191 with the wrong input file. We need one for forced local symbols
10192 if we've seen more than one FILE symbol or when we have exactly
10193 one FILE symbol but global symbols are present in a file other
10194 than the one with the FILE symbol. We also need one if linker
10195 defined symbols are present. In practice these conditions are
10196 always met, so just emit the FILE symbol unconditionally. */
10197 if (eoinfo->localsyms
10198 && !eoinfo->file_sym_done
10199 && eoinfo->flinfo->filesym_count != 0)
10200 {
10201 Elf_Internal_Sym fsym;
10202
10203 memset (&fsym, 0, sizeof (fsym));
10204 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10205 fsym.st_shndx = SHN_ABS;
10206 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
10207 bfd_und_section_ptr, NULL))
10208 return FALSE;
10209
10210 eoinfo->file_sym_done = TRUE;
10211 }
10212
10213 indx = bfd_get_symcount (flinfo->output_bfd);
10214 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
10215 input_sec, h);
10216 if (ret == 0)
10217 {
10218 eoinfo->failed = TRUE;
10219 return FALSE;
10220 }
10221 else if (ret == 1)
10222 h->indx = indx;
10223 else if (h->indx == -2)
10224 abort();
10225
10226 return TRUE;
10227 }
10228
10229 /* Return TRUE if special handling is done for relocs in SEC against
10230 symbols defined in discarded sections. */
10231
10232 static bfd_boolean
10233 elf_section_ignore_discarded_relocs (asection *sec)
10234 {
10235 const struct elf_backend_data *bed;
10236
10237 switch (sec->sec_info_type)
10238 {
10239 case SEC_INFO_TYPE_STABS:
10240 case SEC_INFO_TYPE_EH_FRAME:
10241 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10242 return TRUE;
10243 default:
10244 break;
10245 }
10246
10247 bed = get_elf_backend_data (sec->owner);
10248 if (bed->elf_backend_ignore_discarded_relocs != NULL
10249 && (*bed->elf_backend_ignore_discarded_relocs) (sec))
10250 return TRUE;
10251
10252 return FALSE;
10253 }
10254
10255 /* Return a mask saying how ld should treat relocations in SEC against
10256 symbols defined in discarded sections. If this function returns
10257 COMPLAIN set, ld will issue a warning message. If this function
10258 returns PRETEND set, and the discarded section was link-once and the
10259 same size as the kept link-once section, ld will pretend that the
10260 symbol was actually defined in the kept section. Otherwise ld will
10261 zero the reloc (at least that is the intent, but some cooperation by
10262 the target dependent code is needed, particularly for REL targets). */
10263
10264 unsigned int
10265 _bfd_elf_default_action_discarded (asection *sec)
10266 {
10267 if (sec->flags & SEC_DEBUGGING)
10268 return PRETEND;
10269
10270 if (strcmp (".eh_frame", sec->name) == 0)
10271 return 0;
10272
10273 if (strcmp (".gcc_except_table", sec->name) == 0)
10274 return 0;
10275
10276 return COMPLAIN | PRETEND;
10277 }
10278
10279 /* Find a match between a section and a member of a section group. */
10280
10281 static asection *
10282 match_group_member (asection *sec, asection *group,
10283 struct bfd_link_info *info)
10284 {
10285 asection *first = elf_next_in_group (group);
10286 asection *s = first;
10287
10288 while (s != NULL)
10289 {
10290 if (bfd_elf_match_symbols_in_sections (s, sec, info))
10291 return s;
10292
10293 s = elf_next_in_group (s);
10294 if (s == first)
10295 break;
10296 }
10297
10298 return NULL;
10299 }
10300
10301 /* Check if the kept section of a discarded section SEC can be used
10302 to replace it. Return the replacement if it is OK. Otherwise return
10303 NULL. */
10304
10305 asection *
10306 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
10307 {
10308 asection *kept;
10309
10310 kept = sec->kept_section;
10311 if (kept != NULL)
10312 {
10313 if ((kept->flags & SEC_GROUP) != 0)
10314 kept = match_group_member (sec, kept, info);
10315 if (kept != NULL
10316 && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
10317 != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
10318 kept = NULL;
10319 sec->kept_section = kept;
10320 }
10321 return kept;
10322 }
10323
10324 /* Link an input file into the linker output file. This function
10325 handles all the sections and relocations of the input file at once.
10326 This is so that we only have to read the local symbols once, and
10327 don't have to keep them in memory. */
10328
10329 static bfd_boolean
10330 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
10331 {
10332 int (*relocate_section)
10333 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
10334 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
10335 bfd *output_bfd;
10336 Elf_Internal_Shdr *symtab_hdr;
10337 size_t locsymcount;
10338 size_t extsymoff;
10339 Elf_Internal_Sym *isymbuf;
10340 Elf_Internal_Sym *isym;
10341 Elf_Internal_Sym *isymend;
10342 long *pindex;
10343 asection **ppsection;
10344 asection *o;
10345 const struct elf_backend_data *bed;
10346 struct elf_link_hash_entry **sym_hashes;
10347 bfd_size_type address_size;
10348 bfd_vma r_type_mask;
10349 int r_sym_shift;
10350 bfd_boolean have_file_sym = FALSE;
10351
10352 output_bfd = flinfo->output_bfd;
10353 bed = get_elf_backend_data (output_bfd);
10354 relocate_section = bed->elf_backend_relocate_section;
10355
10356 /* If this is a dynamic object, we don't want to do anything here:
10357 we don't want the local symbols, and we don't want the section
10358 contents. */
10359 if ((input_bfd->flags & DYNAMIC) != 0)
10360 return TRUE;
10361
10362 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10363 if (elf_bad_symtab (input_bfd))
10364 {
10365 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
10366 extsymoff = 0;
10367 }
10368 else
10369 {
10370 locsymcount = symtab_hdr->sh_info;
10371 extsymoff = symtab_hdr->sh_info;
10372 }
10373
10374 /* Read the local symbols. */
10375 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10376 if (isymbuf == NULL && locsymcount != 0)
10377 {
10378 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10379 flinfo->internal_syms,
10380 flinfo->external_syms,
10381 flinfo->locsym_shndx);
10382 if (isymbuf == NULL)
10383 return FALSE;
10384 }
10385
10386 /* Find local symbol sections and adjust values of symbols in
10387 SEC_MERGE sections. Write out those local symbols we know are
10388 going into the output file. */
10389 isymend = isymbuf + locsymcount;
10390 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10391 isym < isymend;
10392 isym++, pindex++, ppsection++)
10393 {
10394 asection *isec;
10395 const char *name;
10396 Elf_Internal_Sym osym;
10397 long indx;
10398 int ret;
10399
10400 *pindex = -1;
10401
10402 if (elf_bad_symtab (input_bfd))
10403 {
10404 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10405 {
10406 *ppsection = NULL;
10407 continue;
10408 }
10409 }
10410
10411 if (isym->st_shndx == SHN_UNDEF)
10412 isec = bfd_und_section_ptr;
10413 else if (isym->st_shndx == SHN_ABS)
10414 isec = bfd_abs_section_ptr;
10415 else if (isym->st_shndx == SHN_COMMON)
10416 isec = bfd_com_section_ptr;
10417 else
10418 {
10419 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10420 if (isec == NULL)
10421 {
10422 /* Don't attempt to output symbols with st_shnx in the
10423 reserved range other than SHN_ABS and SHN_COMMON. */
10424 *ppsection = NULL;
10425 continue;
10426 }
10427 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10428 && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10429 isym->st_value =
10430 _bfd_merged_section_offset (output_bfd, &isec,
10431 elf_section_data (isec)->sec_info,
10432 isym->st_value);
10433 }
10434
10435 *ppsection = isec;
10436
10437 /* Don't output the first, undefined, symbol. In fact, don't
10438 output any undefined local symbol. */
10439 if (isec == bfd_und_section_ptr)
10440 continue;
10441
10442 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10443 {
10444 /* We never output section symbols. Instead, we use the
10445 section symbol of the corresponding section in the output
10446 file. */
10447 continue;
10448 }
10449
10450 /* If we are stripping all symbols, we don't want to output this
10451 one. */
10452 if (flinfo->info->strip == strip_all)
10453 continue;
10454
10455 /* If we are discarding all local symbols, we don't want to
10456 output this one. If we are generating a relocatable output
10457 file, then some of the local symbols may be required by
10458 relocs; we output them below as we discover that they are
10459 needed. */
10460 if (flinfo->info->discard == discard_all)
10461 continue;
10462
10463 /* If this symbol is defined in a section which we are
10464 discarding, we don't need to keep it. */
10465 if (isym->st_shndx != SHN_UNDEF
10466 && isym->st_shndx < SHN_LORESERVE
10467 && bfd_section_removed_from_list (output_bfd,
10468 isec->output_section))
10469 continue;
10470
10471 /* Get the name of the symbol. */
10472 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10473 isym->st_name);
10474 if (name == NULL)
10475 return FALSE;
10476
10477 /* See if we are discarding symbols with this name. */
10478 if ((flinfo->info->strip == strip_some
10479 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10480 == NULL))
10481 || (((flinfo->info->discard == discard_sec_merge
10482 && (isec->flags & SEC_MERGE)
10483 && !bfd_link_relocatable (flinfo->info))
10484 || flinfo->info->discard == discard_l)
10485 && bfd_is_local_label_name (input_bfd, name)))
10486 continue;
10487
10488 if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10489 {
10490 if (input_bfd->lto_output)
10491 /* -flto puts a temp file name here. This means builds
10492 are not reproducible. Discard the symbol. */
10493 continue;
10494 have_file_sym = TRUE;
10495 flinfo->filesym_count += 1;
10496 }
10497 if (!have_file_sym)
10498 {
10499 /* In the absence of debug info, bfd_find_nearest_line uses
10500 FILE symbols to determine the source file for local
10501 function symbols. Provide a FILE symbol here if input
10502 files lack such, so that their symbols won't be
10503 associated with a previous input file. It's not the
10504 source file, but the best we can do. */
10505 have_file_sym = TRUE;
10506 flinfo->filesym_count += 1;
10507 memset (&osym, 0, sizeof (osym));
10508 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10509 osym.st_shndx = SHN_ABS;
10510 if (!elf_link_output_symstrtab (flinfo,
10511 (input_bfd->lto_output ? NULL
10512 : input_bfd->filename),
10513 &osym, bfd_abs_section_ptr,
10514 NULL))
10515 return FALSE;
10516 }
10517
10518 osym = *isym;
10519
10520 /* Adjust the section index for the output file. */
10521 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10522 isec->output_section);
10523 if (osym.st_shndx == SHN_BAD)
10524 return FALSE;
10525
10526 /* ELF symbols in relocatable files are section relative, but
10527 in executable files they are virtual addresses. Note that
10528 this code assumes that all ELF sections have an associated
10529 BFD section with a reasonable value for output_offset; below
10530 we assume that they also have a reasonable value for
10531 output_section. Any special sections must be set up to meet
10532 these requirements. */
10533 osym.st_value += isec->output_offset;
10534 if (!bfd_link_relocatable (flinfo->info))
10535 {
10536 osym.st_value += isec->output_section->vma;
10537 if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10538 {
10539 /* STT_TLS symbols are relative to PT_TLS segment base. */
10540 if (elf_hash_table (flinfo->info)->tls_sec != NULL)
10541 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10542 else
10543 osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info),
10544 STT_NOTYPE);
10545 }
10546 }
10547
10548 indx = bfd_get_symcount (output_bfd);
10549 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10550 if (ret == 0)
10551 return FALSE;
10552 else if (ret == 1)
10553 *pindex = indx;
10554 }
10555
10556 if (bed->s->arch_size == 32)
10557 {
10558 r_type_mask = 0xff;
10559 r_sym_shift = 8;
10560 address_size = 4;
10561 }
10562 else
10563 {
10564 r_type_mask = 0xffffffff;
10565 r_sym_shift = 32;
10566 address_size = 8;
10567 }
10568
10569 /* Relocate the contents of each section. */
10570 sym_hashes = elf_sym_hashes (input_bfd);
10571 for (o = input_bfd->sections; o != NULL; o = o->next)
10572 {
10573 bfd_byte *contents;
10574
10575 if (! o->linker_mark)
10576 {
10577 /* This section was omitted from the link. */
10578 continue;
10579 }
10580
10581 if (!flinfo->info->resolve_section_groups
10582 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10583 {
10584 /* Deal with the group signature symbol. */
10585 struct bfd_elf_section_data *sec_data = elf_section_data (o);
10586 unsigned long symndx = sec_data->this_hdr.sh_info;
10587 asection *osec = o->output_section;
10588
10589 BFD_ASSERT (bfd_link_relocatable (flinfo->info));
10590 if (symndx >= locsymcount
10591 || (elf_bad_symtab (input_bfd)
10592 && flinfo->sections[symndx] == NULL))
10593 {
10594 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10595 while (h->root.type == bfd_link_hash_indirect
10596 || h->root.type == bfd_link_hash_warning)
10597 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10598 /* Arrange for symbol to be output. */
10599 h->indx = -2;
10600 elf_section_data (osec)->this_hdr.sh_info = -2;
10601 }
10602 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10603 {
10604 /* We'll use the output section target_index. */
10605 asection *sec = flinfo->sections[symndx]->output_section;
10606 elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10607 }
10608 else
10609 {
10610 if (flinfo->indices[symndx] == -1)
10611 {
10612 /* Otherwise output the local symbol now. */
10613 Elf_Internal_Sym sym = isymbuf[symndx];
10614 asection *sec = flinfo->sections[symndx]->output_section;
10615 const char *name;
10616 long indx;
10617 int ret;
10618
10619 name = bfd_elf_string_from_elf_section (input_bfd,
10620 symtab_hdr->sh_link,
10621 sym.st_name);
10622 if (name == NULL)
10623 return FALSE;
10624
10625 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10626 sec);
10627 if (sym.st_shndx == SHN_BAD)
10628 return FALSE;
10629
10630 sym.st_value += o->output_offset;
10631
10632 indx = bfd_get_symcount (output_bfd);
10633 ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10634 NULL);
10635 if (ret == 0)
10636 return FALSE;
10637 else if (ret == 1)
10638 flinfo->indices[symndx] = indx;
10639 else
10640 abort ();
10641 }
10642 elf_section_data (osec)->this_hdr.sh_info
10643 = flinfo->indices[symndx];
10644 }
10645 }
10646
10647 if ((o->flags & SEC_HAS_CONTENTS) == 0
10648 || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10649 continue;
10650
10651 if ((o->flags & SEC_LINKER_CREATED) != 0)
10652 {
10653 /* Section was created by _bfd_elf_link_create_dynamic_sections
10654 or somesuch. */
10655 continue;
10656 }
10657
10658 /* Get the contents of the section. They have been cached by a
10659 relaxation routine. Note that o is a section in an input
10660 file, so the contents field will not have been set by any of
10661 the routines which work on output files. */
10662 if (elf_section_data (o)->this_hdr.contents != NULL)
10663 {
10664 contents = elf_section_data (o)->this_hdr.contents;
10665 if (bed->caches_rawsize
10666 && o->rawsize != 0
10667 && o->rawsize < o->size)
10668 {
10669 memcpy (flinfo->contents, contents, o->rawsize);
10670 contents = flinfo->contents;
10671 }
10672 }
10673 else
10674 {
10675 contents = flinfo->contents;
10676 if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10677 return FALSE;
10678 }
10679
10680 if ((o->flags & SEC_RELOC) != 0)
10681 {
10682 Elf_Internal_Rela *internal_relocs;
10683 Elf_Internal_Rela *rel, *relend;
10684 int action_discarded;
10685 int ret;
10686
10687 /* Get the swapped relocs. */
10688 internal_relocs
10689 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10690 flinfo->internal_relocs, FALSE);
10691 if (internal_relocs == NULL
10692 && o->reloc_count > 0)
10693 return FALSE;
10694
10695 /* We need to reverse-copy input .ctors/.dtors sections if
10696 they are placed in .init_array/.finit_array for output. */
10697 if (o->size > address_size
10698 && ((strncmp (o->name, ".ctors", 6) == 0
10699 && strcmp (o->output_section->name,
10700 ".init_array") == 0)
10701 || (strncmp (o->name, ".dtors", 6) == 0
10702 && strcmp (o->output_section->name,
10703 ".fini_array") == 0))
10704 && (o->name[6] == 0 || o->name[6] == '.'))
10705 {
10706 if (o->size * bed->s->int_rels_per_ext_rel
10707 != o->reloc_count * address_size)
10708 {
10709 _bfd_error_handler
10710 /* xgettext:c-format */
10711 (_("error: %pB: size of section %pA is not "
10712 "multiple of address size"),
10713 input_bfd, o);
10714 bfd_set_error (bfd_error_bad_value);
10715 return FALSE;
10716 }
10717 o->flags |= SEC_ELF_REVERSE_COPY;
10718 }
10719
10720 action_discarded = -1;
10721 if (!elf_section_ignore_discarded_relocs (o))
10722 action_discarded = (*bed->action_discarded) (o);
10723
10724 /* Run through the relocs evaluating complex reloc symbols and
10725 looking for relocs against symbols from discarded sections
10726 or section symbols from removed link-once sections.
10727 Complain about relocs against discarded sections. Zero
10728 relocs against removed link-once sections. */
10729
10730 rel = internal_relocs;
10731 relend = rel + o->reloc_count;
10732 for ( ; rel < relend; rel++)
10733 {
10734 unsigned long r_symndx = rel->r_info >> r_sym_shift;
10735 unsigned int s_type;
10736 asection **ps, *sec;
10737 struct elf_link_hash_entry *h = NULL;
10738 const char *sym_name;
10739
10740 if (r_symndx == STN_UNDEF)
10741 continue;
10742
10743 if (r_symndx >= locsymcount
10744 || (elf_bad_symtab (input_bfd)
10745 && flinfo->sections[r_symndx] == NULL))
10746 {
10747 h = sym_hashes[r_symndx - extsymoff];
10748
10749 /* Badly formatted input files can contain relocs that
10750 reference non-existant symbols. Check here so that
10751 we do not seg fault. */
10752 if (h == NULL)
10753 {
10754 _bfd_error_handler
10755 /* xgettext:c-format */
10756 (_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA "
10757 "that references a non-existent global symbol"),
10758 input_bfd, (uint64_t) rel->r_info, o);
10759 bfd_set_error (bfd_error_bad_value);
10760 return FALSE;
10761 }
10762
10763 while (h->root.type == bfd_link_hash_indirect
10764 || h->root.type == bfd_link_hash_warning)
10765 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10766
10767 s_type = h->type;
10768
10769 /* If a plugin symbol is referenced from a non-IR file,
10770 mark the symbol as undefined. Note that the
10771 linker may attach linker created dynamic sections
10772 to the plugin bfd. Symbols defined in linker
10773 created sections are not plugin symbols. */
10774 if ((h->root.non_ir_ref_regular
10775 || h->root.non_ir_ref_dynamic)
10776 && (h->root.type == bfd_link_hash_defined
10777 || h->root.type == bfd_link_hash_defweak)
10778 && (h->root.u.def.section->flags
10779 & SEC_LINKER_CREATED) == 0
10780 && h->root.u.def.section->owner != NULL
10781 && (h->root.u.def.section->owner->flags
10782 & BFD_PLUGIN) != 0)
10783 {
10784 h->root.type = bfd_link_hash_undefined;
10785 h->root.u.undef.abfd = h->root.u.def.section->owner;
10786 }
10787
10788 ps = NULL;
10789 if (h->root.type == bfd_link_hash_defined
10790 || h->root.type == bfd_link_hash_defweak)
10791 ps = &h->root.u.def.section;
10792
10793 sym_name = h->root.root.string;
10794 }
10795 else
10796 {
10797 Elf_Internal_Sym *sym = isymbuf + r_symndx;
10798
10799 s_type = ELF_ST_TYPE (sym->st_info);
10800 ps = &flinfo->sections[r_symndx];
10801 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10802 sym, *ps);
10803 }
10804
10805 if ((s_type == STT_RELC || s_type == STT_SRELC)
10806 && !bfd_link_relocatable (flinfo->info))
10807 {
10808 bfd_vma val;
10809 bfd_vma dot = (rel->r_offset
10810 + o->output_offset + o->output_section->vma);
10811 #ifdef DEBUG
10812 printf ("Encountered a complex symbol!");
10813 printf (" (input_bfd %s, section %s, reloc %ld\n",
10814 input_bfd->filename, o->name,
10815 (long) (rel - internal_relocs));
10816 printf (" symbol: idx %8.8lx, name %s\n",
10817 r_symndx, sym_name);
10818 printf (" reloc : info %8.8lx, addr %8.8lx\n",
10819 (unsigned long) rel->r_info,
10820 (unsigned long) rel->r_offset);
10821 #endif
10822 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10823 isymbuf, locsymcount, s_type == STT_SRELC))
10824 return FALSE;
10825
10826 /* Symbol evaluated OK. Update to absolute value. */
10827 set_symbol_value (input_bfd, isymbuf, locsymcount,
10828 r_symndx, val);
10829 continue;
10830 }
10831
10832 if (action_discarded != -1 && ps != NULL)
10833 {
10834 /* Complain if the definition comes from a
10835 discarded section. */
10836 if ((sec = *ps) != NULL && discarded_section (sec))
10837 {
10838 BFD_ASSERT (r_symndx != STN_UNDEF);
10839 if (action_discarded & COMPLAIN)
10840 (*flinfo->info->callbacks->einfo)
10841 /* xgettext:c-format */
10842 (_("%X`%s' referenced in section `%pA' of %pB: "
10843 "defined in discarded section `%pA' of %pB\n"),
10844 sym_name, o, input_bfd, sec, sec->owner);
10845
10846 /* Try to do the best we can to support buggy old
10847 versions of gcc. Pretend that the symbol is
10848 really defined in the kept linkonce section.
10849 FIXME: This is quite broken. Modifying the
10850 symbol here means we will be changing all later
10851 uses of the symbol, not just in this section. */
10852 if (action_discarded & PRETEND)
10853 {
10854 asection *kept;
10855
10856 kept = _bfd_elf_check_kept_section (sec,
10857 flinfo->info);
10858 if (kept != NULL)
10859 {
10860 *ps = kept;
10861 continue;
10862 }
10863 }
10864 }
10865 }
10866 }
10867
10868 /* Relocate the section by invoking a back end routine.
10869
10870 The back end routine is responsible for adjusting the
10871 section contents as necessary, and (if using Rela relocs
10872 and generating a relocatable output file) adjusting the
10873 reloc addend as necessary.
10874
10875 The back end routine does not have to worry about setting
10876 the reloc address or the reloc symbol index.
10877
10878 The back end routine is given a pointer to the swapped in
10879 internal symbols, and can access the hash table entries
10880 for the external symbols via elf_sym_hashes (input_bfd).
10881
10882 When generating relocatable output, the back end routine
10883 must handle STB_LOCAL/STT_SECTION symbols specially. The
10884 output symbol is going to be a section symbol
10885 corresponding to the output section, which will require
10886 the addend to be adjusted. */
10887
10888 ret = (*relocate_section) (output_bfd, flinfo->info,
10889 input_bfd, o, contents,
10890 internal_relocs,
10891 isymbuf,
10892 flinfo->sections);
10893 if (!ret)
10894 return FALSE;
10895
10896 if (ret == 2
10897 || bfd_link_relocatable (flinfo->info)
10898 || flinfo->info->emitrelocations)
10899 {
10900 Elf_Internal_Rela *irela;
10901 Elf_Internal_Rela *irelaend, *irelamid;
10902 bfd_vma last_offset;
10903 struct elf_link_hash_entry **rel_hash;
10904 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10905 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10906 unsigned int next_erel;
10907 bfd_boolean rela_normal;
10908 struct bfd_elf_section_data *esdi, *esdo;
10909
10910 esdi = elf_section_data (o);
10911 esdo = elf_section_data (o->output_section);
10912 rela_normal = FALSE;
10913
10914 /* Adjust the reloc addresses and symbol indices. */
10915
10916 irela = internal_relocs;
10917 irelaend = irela + o->reloc_count;
10918 rel_hash = esdo->rel.hashes + esdo->rel.count;
10919 /* We start processing the REL relocs, if any. When we reach
10920 IRELAMID in the loop, we switch to the RELA relocs. */
10921 irelamid = irela;
10922 if (esdi->rel.hdr != NULL)
10923 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10924 * bed->s->int_rels_per_ext_rel);
10925 rel_hash_list = rel_hash;
10926 rela_hash_list = NULL;
10927 last_offset = o->output_offset;
10928 if (!bfd_link_relocatable (flinfo->info))
10929 last_offset += o->output_section->vma;
10930 for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10931 {
10932 unsigned long r_symndx;
10933 asection *sec;
10934 Elf_Internal_Sym sym;
10935
10936 if (next_erel == bed->s->int_rels_per_ext_rel)
10937 {
10938 rel_hash++;
10939 next_erel = 0;
10940 }
10941
10942 if (irela == irelamid)
10943 {
10944 rel_hash = esdo->rela.hashes + esdo->rela.count;
10945 rela_hash_list = rel_hash;
10946 rela_normal = bed->rela_normal;
10947 }
10948
10949 irela->r_offset = _bfd_elf_section_offset (output_bfd,
10950 flinfo->info, o,
10951 irela->r_offset);
10952 if (irela->r_offset >= (bfd_vma) -2)
10953 {
10954 /* This is a reloc for a deleted entry or somesuch.
10955 Turn it into an R_*_NONE reloc, at the same
10956 offset as the last reloc. elf_eh_frame.c and
10957 bfd_elf_discard_info rely on reloc offsets
10958 being ordered. */
10959 irela->r_offset = last_offset;
10960 irela->r_info = 0;
10961 irela->r_addend = 0;
10962 continue;
10963 }
10964
10965 irela->r_offset += o->output_offset;
10966
10967 /* Relocs in an executable have to be virtual addresses. */
10968 if (!bfd_link_relocatable (flinfo->info))
10969 irela->r_offset += o->output_section->vma;
10970
10971 last_offset = irela->r_offset;
10972
10973 r_symndx = irela->r_info >> r_sym_shift;
10974 if (r_symndx == STN_UNDEF)
10975 continue;
10976
10977 if (r_symndx >= locsymcount
10978 || (elf_bad_symtab (input_bfd)
10979 && flinfo->sections[r_symndx] == NULL))
10980 {
10981 struct elf_link_hash_entry *rh;
10982 unsigned long indx;
10983
10984 /* This is a reloc against a global symbol. We
10985 have not yet output all the local symbols, so
10986 we do not know the symbol index of any global
10987 symbol. We set the rel_hash entry for this
10988 reloc to point to the global hash table entry
10989 for this symbol. The symbol index is then
10990 set at the end of bfd_elf_final_link. */
10991 indx = r_symndx - extsymoff;
10992 rh = elf_sym_hashes (input_bfd)[indx];
10993 while (rh->root.type == bfd_link_hash_indirect
10994 || rh->root.type == bfd_link_hash_warning)
10995 rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10996
10997 /* Setting the index to -2 tells
10998 elf_link_output_extsym that this symbol is
10999 used by a reloc. */
11000 BFD_ASSERT (rh->indx < 0);
11001 rh->indx = -2;
11002 *rel_hash = rh;
11003
11004 continue;
11005 }
11006
11007 /* This is a reloc against a local symbol. */
11008
11009 *rel_hash = NULL;
11010 sym = isymbuf[r_symndx];
11011 sec = flinfo->sections[r_symndx];
11012 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
11013 {
11014 /* I suppose the backend ought to fill in the
11015 section of any STT_SECTION symbol against a
11016 processor specific section. */
11017 r_symndx = STN_UNDEF;
11018 if (bfd_is_abs_section (sec))
11019 ;
11020 else if (sec == NULL || sec->owner == NULL)
11021 {
11022 bfd_set_error (bfd_error_bad_value);
11023 return FALSE;
11024 }
11025 else
11026 {
11027 asection *osec = sec->output_section;
11028
11029 /* If we have discarded a section, the output
11030 section will be the absolute section. In
11031 case of discarded SEC_MERGE sections, use
11032 the kept section. relocate_section should
11033 have already handled discarded linkonce
11034 sections. */
11035 if (bfd_is_abs_section (osec)
11036 && sec->kept_section != NULL
11037 && sec->kept_section->output_section != NULL)
11038 {
11039 osec = sec->kept_section->output_section;
11040 irela->r_addend -= osec->vma;
11041 }
11042
11043 if (!bfd_is_abs_section (osec))
11044 {
11045 r_symndx = osec->target_index;
11046 if (r_symndx == STN_UNDEF)
11047 {
11048 irela->r_addend += osec->vma;
11049 osec = _bfd_nearby_section (output_bfd, osec,
11050 osec->vma);
11051 irela->r_addend -= osec->vma;
11052 r_symndx = osec->target_index;
11053 }
11054 }
11055 }
11056
11057 /* Adjust the addend according to where the
11058 section winds up in the output section. */
11059 if (rela_normal)
11060 irela->r_addend += sec->output_offset;
11061 }
11062 else
11063 {
11064 if (flinfo->indices[r_symndx] == -1)
11065 {
11066 unsigned long shlink;
11067 const char *name;
11068 asection *osec;
11069 long indx;
11070
11071 if (flinfo->info->strip == strip_all)
11072 {
11073 /* You can't do ld -r -s. */
11074 bfd_set_error (bfd_error_invalid_operation);
11075 return FALSE;
11076 }
11077
11078 /* This symbol was skipped earlier, but
11079 since it is needed by a reloc, we
11080 must output it now. */
11081 shlink = symtab_hdr->sh_link;
11082 name = (bfd_elf_string_from_elf_section
11083 (input_bfd, shlink, sym.st_name));
11084 if (name == NULL)
11085 return FALSE;
11086
11087 osec = sec->output_section;
11088 sym.st_shndx =
11089 _bfd_elf_section_from_bfd_section (output_bfd,
11090 osec);
11091 if (sym.st_shndx == SHN_BAD)
11092 return FALSE;
11093
11094 sym.st_value += sec->output_offset;
11095 if (!bfd_link_relocatable (flinfo->info))
11096 {
11097 sym.st_value += osec->vma;
11098 if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
11099 {
11100 struct elf_link_hash_table *htab
11101 = elf_hash_table (flinfo->info);
11102
11103 /* STT_TLS symbols are relative to PT_TLS
11104 segment base. */
11105 if (htab->tls_sec != NULL)
11106 sym.st_value -= htab->tls_sec->vma;
11107 else
11108 sym.st_info
11109 = ELF_ST_INFO (ELF_ST_BIND (sym.st_info),
11110 STT_NOTYPE);
11111 }
11112 }
11113
11114 indx = bfd_get_symcount (output_bfd);
11115 ret = elf_link_output_symstrtab (flinfo, name,
11116 &sym, sec,
11117 NULL);
11118 if (ret == 0)
11119 return FALSE;
11120 else if (ret == 1)
11121 flinfo->indices[r_symndx] = indx;
11122 else
11123 abort ();
11124 }
11125
11126 r_symndx = flinfo->indices[r_symndx];
11127 }
11128
11129 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
11130 | (irela->r_info & r_type_mask));
11131 }
11132
11133 /* Swap out the relocs. */
11134 input_rel_hdr = esdi->rel.hdr;
11135 if (input_rel_hdr && input_rel_hdr->sh_size != 0)
11136 {
11137 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11138 input_rel_hdr,
11139 internal_relocs,
11140 rel_hash_list))
11141 return FALSE;
11142 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
11143 * bed->s->int_rels_per_ext_rel);
11144 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
11145 }
11146
11147 input_rela_hdr = esdi->rela.hdr;
11148 if (input_rela_hdr && input_rela_hdr->sh_size != 0)
11149 {
11150 if (!bed->elf_backend_emit_relocs (output_bfd, o,
11151 input_rela_hdr,
11152 internal_relocs,
11153 rela_hash_list))
11154 return FALSE;
11155 }
11156 }
11157 }
11158
11159 /* Write out the modified section contents. */
11160 if (bed->elf_backend_write_section
11161 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
11162 contents))
11163 {
11164 /* Section written out. */
11165 }
11166 else switch (o->sec_info_type)
11167 {
11168 case SEC_INFO_TYPE_STABS:
11169 if (! (_bfd_write_section_stabs
11170 (output_bfd,
11171 &elf_hash_table (flinfo->info)->stab_info,
11172 o, &elf_section_data (o)->sec_info, contents)))
11173 return FALSE;
11174 break;
11175 case SEC_INFO_TYPE_MERGE:
11176 if (! _bfd_write_merged_section (output_bfd, o,
11177 elf_section_data (o)->sec_info))
11178 return FALSE;
11179 break;
11180 case SEC_INFO_TYPE_EH_FRAME:
11181 {
11182 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
11183 o, contents))
11184 return FALSE;
11185 }
11186 break;
11187 case SEC_INFO_TYPE_EH_FRAME_ENTRY:
11188 {
11189 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
11190 flinfo->info,
11191 o, contents))
11192 return FALSE;
11193 }
11194 break;
11195 default:
11196 {
11197 if (! (o->flags & SEC_EXCLUDE))
11198 {
11199 file_ptr offset = (file_ptr) o->output_offset;
11200 bfd_size_type todo = o->size;
11201
11202 offset *= bfd_octets_per_byte (output_bfd);
11203
11204 if ((o->flags & SEC_ELF_REVERSE_COPY))
11205 {
11206 /* Reverse-copy input section to output. */
11207 do
11208 {
11209 todo -= address_size;
11210 if (! bfd_set_section_contents (output_bfd,
11211 o->output_section,
11212 contents + todo,
11213 offset,
11214 address_size))
11215 return FALSE;
11216 if (todo == 0)
11217 break;
11218 offset += address_size;
11219 }
11220 while (1);
11221 }
11222 else if (! bfd_set_section_contents (output_bfd,
11223 o->output_section,
11224 contents,
11225 offset, todo))
11226 return FALSE;
11227 }
11228 }
11229 break;
11230 }
11231 }
11232
11233 return TRUE;
11234 }
11235
11236 /* Generate a reloc when linking an ELF file. This is a reloc
11237 requested by the linker, and does not come from any input file. This
11238 is used to build constructor and destructor tables when linking
11239 with -Ur. */
11240
11241 static bfd_boolean
11242 elf_reloc_link_order (bfd *output_bfd,
11243 struct bfd_link_info *info,
11244 asection *output_section,
11245 struct bfd_link_order *link_order)
11246 {
11247 reloc_howto_type *howto;
11248 long indx;
11249 bfd_vma offset;
11250 bfd_vma addend;
11251 struct bfd_elf_section_reloc_data *reldata;
11252 struct elf_link_hash_entry **rel_hash_ptr;
11253 Elf_Internal_Shdr *rel_hdr;
11254 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
11255 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
11256 bfd_byte *erel;
11257 unsigned int i;
11258 struct bfd_elf_section_data *esdo = elf_section_data (output_section);
11259
11260 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
11261 if (howto == NULL)
11262 {
11263 bfd_set_error (bfd_error_bad_value);
11264 return FALSE;
11265 }
11266
11267 addend = link_order->u.reloc.p->addend;
11268
11269 if (esdo->rel.hdr)
11270 reldata = &esdo->rel;
11271 else if (esdo->rela.hdr)
11272 reldata = &esdo->rela;
11273 else
11274 {
11275 reldata = NULL;
11276 BFD_ASSERT (0);
11277 }
11278
11279 /* Figure out the symbol index. */
11280 rel_hash_ptr = reldata->hashes + reldata->count;
11281 if (link_order->type == bfd_section_reloc_link_order)
11282 {
11283 indx = link_order->u.reloc.p->u.section->target_index;
11284 BFD_ASSERT (indx != 0);
11285 *rel_hash_ptr = NULL;
11286 }
11287 else
11288 {
11289 struct elf_link_hash_entry *h;
11290
11291 /* Treat a reloc against a defined symbol as though it were
11292 actually against the section. */
11293 h = ((struct elf_link_hash_entry *)
11294 bfd_wrapped_link_hash_lookup (output_bfd, info,
11295 link_order->u.reloc.p->u.name,
11296 FALSE, FALSE, TRUE));
11297 if (h != NULL
11298 && (h->root.type == bfd_link_hash_defined
11299 || h->root.type == bfd_link_hash_defweak))
11300 {
11301 asection *section;
11302
11303 section = h->root.u.def.section;
11304 indx = section->output_section->target_index;
11305 *rel_hash_ptr = NULL;
11306 /* It seems that we ought to add the symbol value to the
11307 addend here, but in practice it has already been added
11308 because it was passed to constructor_callback. */
11309 addend += section->output_section->vma + section->output_offset;
11310 }
11311 else if (h != NULL)
11312 {
11313 /* Setting the index to -2 tells elf_link_output_extsym that
11314 this symbol is used by a reloc. */
11315 h->indx = -2;
11316 *rel_hash_ptr = h;
11317 indx = 0;
11318 }
11319 else
11320 {
11321 (*info->callbacks->unattached_reloc)
11322 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
11323 indx = 0;
11324 }
11325 }
11326
11327 /* If this is an inplace reloc, we must write the addend into the
11328 object file. */
11329 if (howto->partial_inplace && addend != 0)
11330 {
11331 bfd_size_type size;
11332 bfd_reloc_status_type rstat;
11333 bfd_byte *buf;
11334 bfd_boolean ok;
11335 const char *sym_name;
11336
11337 size = (bfd_size_type) bfd_get_reloc_size (howto);
11338 buf = (bfd_byte *) bfd_zmalloc (size);
11339 if (buf == NULL && size != 0)
11340 return FALSE;
11341 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
11342 switch (rstat)
11343 {
11344 case bfd_reloc_ok:
11345 break;
11346
11347 default:
11348 case bfd_reloc_outofrange:
11349 abort ();
11350
11351 case bfd_reloc_overflow:
11352 if (link_order->type == bfd_section_reloc_link_order)
11353 sym_name = bfd_section_name (output_bfd,
11354 link_order->u.reloc.p->u.section);
11355 else
11356 sym_name = link_order->u.reloc.p->u.name;
11357 (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
11358 howto->name, addend, NULL, NULL,
11359 (bfd_vma) 0);
11360 break;
11361 }
11362
11363 ok = bfd_set_section_contents (output_bfd, output_section, buf,
11364 link_order->offset
11365 * bfd_octets_per_byte (output_bfd),
11366 size);
11367 free (buf);
11368 if (! ok)
11369 return FALSE;
11370 }
11371
11372 /* The address of a reloc is relative to the section in a
11373 relocatable file, and is a virtual address in an executable
11374 file. */
11375 offset = link_order->offset;
11376 if (! bfd_link_relocatable (info))
11377 offset += output_section->vma;
11378
11379 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11380 {
11381 irel[i].r_offset = offset;
11382 irel[i].r_info = 0;
11383 irel[i].r_addend = 0;
11384 }
11385 if (bed->s->arch_size == 32)
11386 irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11387 else
11388 irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11389
11390 rel_hdr = reldata->hdr;
11391 erel = rel_hdr->contents;
11392 if (rel_hdr->sh_type == SHT_REL)
11393 {
11394 erel += reldata->count * bed->s->sizeof_rel;
11395 (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11396 }
11397 else
11398 {
11399 irel[0].r_addend = addend;
11400 erel += reldata->count * bed->s->sizeof_rela;
11401 (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11402 }
11403
11404 ++reldata->count;
11405
11406 return TRUE;
11407 }
11408
11409
11410 /* Get the output vma of the section pointed to by the sh_link field. */
11411
11412 static bfd_vma
11413 elf_get_linked_section_vma (struct bfd_link_order *p)
11414 {
11415 Elf_Internal_Shdr **elf_shdrp;
11416 asection *s;
11417 int elfsec;
11418
11419 s = p->u.indirect.section;
11420 elf_shdrp = elf_elfsections (s->owner);
11421 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11422 elfsec = elf_shdrp[elfsec]->sh_link;
11423 /* PR 290:
11424 The Intel C compiler generates SHT_IA_64_UNWIND with
11425 SHF_LINK_ORDER. But it doesn't set the sh_link or
11426 sh_info fields. Hence we could get the situation
11427 where elfsec is 0. */
11428 if (elfsec == 0)
11429 {
11430 const struct elf_backend_data *bed
11431 = get_elf_backend_data (s->owner);
11432 if (bed->link_order_error_handler)
11433 bed->link_order_error_handler
11434 /* xgettext:c-format */
11435 (_("%pB: warning: sh_link not set for section `%pA'"), s->owner, s);
11436 return 0;
11437 }
11438 else
11439 {
11440 s = elf_shdrp[elfsec]->bfd_section;
11441 return s->output_section->vma + s->output_offset;
11442 }
11443 }
11444
11445
11446 /* Compare two sections based on the locations of the sections they are
11447 linked to. Used by elf_fixup_link_order. */
11448
11449 static int
11450 compare_link_order (const void * a, const void * b)
11451 {
11452 bfd_vma apos;
11453 bfd_vma bpos;
11454
11455 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11456 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11457 if (apos < bpos)
11458 return -1;
11459 return apos > bpos;
11460 }
11461
11462
11463 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same
11464 order as their linked sections. Returns false if this could not be done
11465 because an output section includes both ordered and unordered
11466 sections. Ideally we'd do this in the linker proper. */
11467
11468 static bfd_boolean
11469 elf_fixup_link_order (bfd *abfd, asection *o)
11470 {
11471 int seen_linkorder;
11472 int seen_other;
11473 int n;
11474 struct bfd_link_order *p;
11475 bfd *sub;
11476 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11477 unsigned elfsec;
11478 struct bfd_link_order **sections;
11479 asection *s, *other_sec, *linkorder_sec;
11480 bfd_vma offset;
11481
11482 other_sec = NULL;
11483 linkorder_sec = NULL;
11484 seen_other = 0;
11485 seen_linkorder = 0;
11486 for (p = o->map_head.link_order; p != NULL; p = p->next)
11487 {
11488 if (p->type == bfd_indirect_link_order)
11489 {
11490 s = p->u.indirect.section;
11491 sub = s->owner;
11492 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11493 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11494 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11495 && elfsec < elf_numsections (sub)
11496 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11497 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11498 {
11499 seen_linkorder++;
11500 linkorder_sec = s;
11501 }
11502 else
11503 {
11504 seen_other++;
11505 other_sec = s;
11506 }
11507 }
11508 else
11509 seen_other++;
11510
11511 if (seen_other && seen_linkorder)
11512 {
11513 if (other_sec && linkorder_sec)
11514 _bfd_error_handler
11515 /* xgettext:c-format */
11516 (_("%pA has both ordered [`%pA' in %pB] "
11517 "and unordered [`%pA' in %pB] sections"),
11518 o, linkorder_sec, linkorder_sec->owner,
11519 other_sec, other_sec->owner);
11520 else
11521 _bfd_error_handler
11522 (_("%pA has both ordered and unordered sections"), o);
11523 bfd_set_error (bfd_error_bad_value);
11524 return FALSE;
11525 }
11526 }
11527
11528 if (!seen_linkorder)
11529 return TRUE;
11530
11531 sections = (struct bfd_link_order **)
11532 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11533 if (sections == NULL)
11534 return FALSE;
11535 seen_linkorder = 0;
11536
11537 for (p = o->map_head.link_order; p != NULL; p = p->next)
11538 {
11539 sections[seen_linkorder++] = p;
11540 }
11541 /* Sort the input sections in the order of their linked section. */
11542 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11543 compare_link_order);
11544
11545 /* Change the offsets of the sections. */
11546 offset = 0;
11547 for (n = 0; n < seen_linkorder; n++)
11548 {
11549 s = sections[n]->u.indirect.section;
11550 offset &= ~(bfd_vma) 0 << s->alignment_power;
11551 s->output_offset = offset / bfd_octets_per_byte (abfd);
11552 sections[n]->offset = offset;
11553 offset += sections[n]->size;
11554 }
11555
11556 free (sections);
11557 return TRUE;
11558 }
11559
11560 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11561 Returns TRUE upon success, FALSE otherwise. */
11562
11563 static bfd_boolean
11564 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11565 {
11566 bfd_boolean ret = FALSE;
11567 bfd *implib_bfd;
11568 const struct elf_backend_data *bed;
11569 flagword flags;
11570 enum bfd_architecture arch;
11571 unsigned int mach;
11572 asymbol **sympp = NULL;
11573 long symsize;
11574 long symcount;
11575 long src_count;
11576 elf_symbol_type *osymbuf;
11577
11578 implib_bfd = info->out_implib_bfd;
11579 bed = get_elf_backend_data (abfd);
11580
11581 if (!bfd_set_format (implib_bfd, bfd_object))
11582 return FALSE;
11583
11584 /* Use flag from executable but make it a relocatable object. */
11585 flags = bfd_get_file_flags (abfd);
11586 flags &= ~HAS_RELOC;
11587 if (!bfd_set_start_address (implib_bfd, 0)
11588 || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P))
11589 return FALSE;
11590
11591 /* Copy architecture of output file to import library file. */
11592 arch = bfd_get_arch (abfd);
11593 mach = bfd_get_mach (abfd);
11594 if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11595 && (abfd->target_defaulted
11596 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11597 return FALSE;
11598
11599 /* Get symbol table size. */
11600 symsize = bfd_get_symtab_upper_bound (abfd);
11601 if (symsize < 0)
11602 return FALSE;
11603
11604 /* Read in the symbol table. */
11605 sympp = (asymbol **) xmalloc (symsize);
11606 symcount = bfd_canonicalize_symtab (abfd, sympp);
11607 if (symcount < 0)
11608 goto free_sym_buf;
11609
11610 /* Allow the BFD backend to copy any private header data it
11611 understands from the output BFD to the import library BFD. */
11612 if (! bfd_copy_private_header_data (abfd, implib_bfd))
11613 goto free_sym_buf;
11614
11615 /* Filter symbols to appear in the import library. */
11616 if (bed->elf_backend_filter_implib_symbols)
11617 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11618 symcount);
11619 else
11620 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11621 if (symcount == 0)
11622 {
11623 bfd_set_error (bfd_error_no_symbols);
11624 _bfd_error_handler (_("%pB: no symbol found for import library"),
11625 implib_bfd);
11626 goto free_sym_buf;
11627 }
11628
11629
11630 /* Make symbols absolute. */
11631 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11632 sizeof (*osymbuf));
11633 for (src_count = 0; src_count < symcount; src_count++)
11634 {
11635 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11636 sizeof (*osymbuf));
11637 osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11638 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11639 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11640 osymbuf[src_count].internal_elf_sym.st_value =
11641 osymbuf[src_count].symbol.value;
11642 sympp[src_count] = &osymbuf[src_count].symbol;
11643 }
11644
11645 bfd_set_symtab (implib_bfd, sympp, symcount);
11646
11647 /* Allow the BFD backend to copy any private data it understands
11648 from the output BFD to the import library BFD. This is done last
11649 to permit the routine to look at the filtered symbol table. */
11650 if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11651 goto free_sym_buf;
11652
11653 if (!bfd_close (implib_bfd))
11654 goto free_sym_buf;
11655
11656 ret = TRUE;
11657
11658 free_sym_buf:
11659 free (sympp);
11660 return ret;
11661 }
11662
11663 static void
11664 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11665 {
11666 asection *o;
11667
11668 if (flinfo->symstrtab != NULL)
11669 _bfd_elf_strtab_free (flinfo->symstrtab);
11670 if (flinfo->contents != NULL)
11671 free (flinfo->contents);
11672 if (flinfo->external_relocs != NULL)
11673 free (flinfo->external_relocs);
11674 if (flinfo->internal_relocs != NULL)
11675 free (flinfo->internal_relocs);
11676 if (flinfo->external_syms != NULL)
11677 free (flinfo->external_syms);
11678 if (flinfo->locsym_shndx != NULL)
11679 free (flinfo->locsym_shndx);
11680 if (flinfo->internal_syms != NULL)
11681 free (flinfo->internal_syms);
11682 if (flinfo->indices != NULL)
11683 free (flinfo->indices);
11684 if (flinfo->sections != NULL)
11685 free (flinfo->sections);
11686 if (flinfo->symshndxbuf != NULL)
11687 free (flinfo->symshndxbuf);
11688 for (o = obfd->sections; o != NULL; o = o->next)
11689 {
11690 struct bfd_elf_section_data *esdo = elf_section_data (o);
11691 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11692 free (esdo->rel.hashes);
11693 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11694 free (esdo->rela.hashes);
11695 }
11696 }
11697
11698 /* Do the final step of an ELF link. */
11699
11700 bfd_boolean
11701 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11702 {
11703 bfd_boolean dynamic;
11704 bfd_boolean emit_relocs;
11705 bfd *dynobj;
11706 struct elf_final_link_info flinfo;
11707 asection *o;
11708 struct bfd_link_order *p;
11709 bfd *sub;
11710 bfd_size_type max_contents_size;
11711 bfd_size_type max_external_reloc_size;
11712 bfd_size_type max_internal_reloc_count;
11713 bfd_size_type max_sym_count;
11714 bfd_size_type max_sym_shndx_count;
11715 Elf_Internal_Sym elfsym;
11716 unsigned int i;
11717 Elf_Internal_Shdr *symtab_hdr;
11718 Elf_Internal_Shdr *symtab_shndx_hdr;
11719 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11720 struct elf_outext_info eoinfo;
11721 bfd_boolean merged;
11722 size_t relativecount = 0;
11723 asection *reldyn = 0;
11724 bfd_size_type amt;
11725 asection *attr_section = NULL;
11726 bfd_vma attr_size = 0;
11727 const char *std_attrs_section;
11728 struct elf_link_hash_table *htab = elf_hash_table (info);
11729
11730 if (!is_elf_hash_table (htab))
11731 return FALSE;
11732
11733 if (bfd_link_pic (info))
11734 abfd->flags |= DYNAMIC;
11735
11736 dynamic = htab->dynamic_sections_created;
11737 dynobj = htab->dynobj;
11738
11739 emit_relocs = (bfd_link_relocatable (info)
11740 || info->emitrelocations);
11741
11742 flinfo.info = info;
11743 flinfo.output_bfd = abfd;
11744 flinfo.symstrtab = _bfd_elf_strtab_init ();
11745 if (flinfo.symstrtab == NULL)
11746 return FALSE;
11747
11748 if (! dynamic)
11749 {
11750 flinfo.hash_sec = NULL;
11751 flinfo.symver_sec = NULL;
11752 }
11753 else
11754 {
11755 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11756 /* Note that dynsym_sec can be NULL (on VMS). */
11757 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11758 /* Note that it is OK if symver_sec is NULL. */
11759 }
11760
11761 flinfo.contents = NULL;
11762 flinfo.external_relocs = NULL;
11763 flinfo.internal_relocs = NULL;
11764 flinfo.external_syms = NULL;
11765 flinfo.locsym_shndx = NULL;
11766 flinfo.internal_syms = NULL;
11767 flinfo.indices = NULL;
11768 flinfo.sections = NULL;
11769 flinfo.symshndxbuf = NULL;
11770 flinfo.filesym_count = 0;
11771
11772 /* The object attributes have been merged. Remove the input
11773 sections from the link, and set the contents of the output
11774 secton. */
11775 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11776 for (o = abfd->sections; o != NULL; o = o->next)
11777 {
11778 bfd_boolean remove_section = FALSE;
11779
11780 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11781 || strcmp (o->name, ".gnu.attributes") == 0)
11782 {
11783 for (p = o->map_head.link_order; p != NULL; p = p->next)
11784 {
11785 asection *input_section;
11786
11787 if (p->type != bfd_indirect_link_order)
11788 continue;
11789 input_section = p->u.indirect.section;
11790 /* Hack: reset the SEC_HAS_CONTENTS flag so that
11791 elf_link_input_bfd ignores this section. */
11792 input_section->flags &= ~SEC_HAS_CONTENTS;
11793 }
11794
11795 attr_size = bfd_elf_obj_attr_size (abfd);
11796 bfd_set_section_size (abfd, o, attr_size);
11797 /* Skip this section later on. */
11798 o->map_head.link_order = NULL;
11799 if (attr_size)
11800 attr_section = o;
11801 else
11802 remove_section = TRUE;
11803 }
11804 else if ((o->flags & SEC_GROUP) != 0 && o->size == 0)
11805 {
11806 /* Remove empty group section from linker output. */
11807 remove_section = TRUE;
11808 }
11809 if (remove_section)
11810 {
11811 o->flags |= SEC_EXCLUDE;
11812 bfd_section_list_remove (abfd, o);
11813 abfd->section_count--;
11814 }
11815 }
11816
11817 /* Count up the number of relocations we will output for each output
11818 section, so that we know the sizes of the reloc sections. We
11819 also figure out some maximum sizes. */
11820 max_contents_size = 0;
11821 max_external_reloc_size = 0;
11822 max_internal_reloc_count = 0;
11823 max_sym_count = 0;
11824 max_sym_shndx_count = 0;
11825 merged = FALSE;
11826 for (o = abfd->sections; o != NULL; o = o->next)
11827 {
11828 struct bfd_elf_section_data *esdo = elf_section_data (o);
11829 o->reloc_count = 0;
11830
11831 for (p = o->map_head.link_order; p != NULL; p = p->next)
11832 {
11833 unsigned int reloc_count = 0;
11834 unsigned int additional_reloc_count = 0;
11835 struct bfd_elf_section_data *esdi = NULL;
11836
11837 if (p->type == bfd_section_reloc_link_order
11838 || p->type == bfd_symbol_reloc_link_order)
11839 reloc_count = 1;
11840 else if (p->type == bfd_indirect_link_order)
11841 {
11842 asection *sec;
11843
11844 sec = p->u.indirect.section;
11845
11846 /* Mark all sections which are to be included in the
11847 link. This will normally be every section. We need
11848 to do this so that we can identify any sections which
11849 the linker has decided to not include. */
11850 sec->linker_mark = TRUE;
11851
11852 if (sec->flags & SEC_MERGE)
11853 merged = TRUE;
11854
11855 if (sec->rawsize > max_contents_size)
11856 max_contents_size = sec->rawsize;
11857 if (sec->size > max_contents_size)
11858 max_contents_size = sec->size;
11859
11860 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11861 && (sec->owner->flags & DYNAMIC) == 0)
11862 {
11863 size_t sym_count;
11864
11865 /* We are interested in just local symbols, not all
11866 symbols. */
11867 if (elf_bad_symtab (sec->owner))
11868 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11869 / bed->s->sizeof_sym);
11870 else
11871 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11872
11873 if (sym_count > max_sym_count)
11874 max_sym_count = sym_count;
11875
11876 if (sym_count > max_sym_shndx_count
11877 && elf_symtab_shndx_list (sec->owner) != NULL)
11878 max_sym_shndx_count = sym_count;
11879
11880 if (esdo->this_hdr.sh_type == SHT_REL
11881 || esdo->this_hdr.sh_type == SHT_RELA)
11882 /* Some backends use reloc_count in relocation sections
11883 to count particular types of relocs. Of course,
11884 reloc sections themselves can't have relocations. */
11885 ;
11886 else if (emit_relocs)
11887 {
11888 reloc_count = sec->reloc_count;
11889 if (bed->elf_backend_count_additional_relocs)
11890 {
11891 int c;
11892 c = (*bed->elf_backend_count_additional_relocs) (sec);
11893 additional_reloc_count += c;
11894 }
11895 }
11896 else if (bed->elf_backend_count_relocs)
11897 reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11898
11899 esdi = elf_section_data (sec);
11900
11901 if ((sec->flags & SEC_RELOC) != 0)
11902 {
11903 size_t ext_size = 0;
11904
11905 if (esdi->rel.hdr != NULL)
11906 ext_size = esdi->rel.hdr->sh_size;
11907 if (esdi->rela.hdr != NULL)
11908 ext_size += esdi->rela.hdr->sh_size;
11909
11910 if (ext_size > max_external_reloc_size)
11911 max_external_reloc_size = ext_size;
11912 if (sec->reloc_count > max_internal_reloc_count)
11913 max_internal_reloc_count = sec->reloc_count;
11914 }
11915 }
11916 }
11917
11918 if (reloc_count == 0)
11919 continue;
11920
11921 reloc_count += additional_reloc_count;
11922 o->reloc_count += reloc_count;
11923
11924 if (p->type == bfd_indirect_link_order && emit_relocs)
11925 {
11926 if (esdi->rel.hdr)
11927 {
11928 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11929 esdo->rel.count += additional_reloc_count;
11930 }
11931 if (esdi->rela.hdr)
11932 {
11933 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11934 esdo->rela.count += additional_reloc_count;
11935 }
11936 }
11937 else
11938 {
11939 if (o->use_rela_p)
11940 esdo->rela.count += reloc_count;
11941 else
11942 esdo->rel.count += reloc_count;
11943 }
11944 }
11945
11946 if (o->reloc_count > 0)
11947 o->flags |= SEC_RELOC;
11948 else
11949 {
11950 /* Explicitly clear the SEC_RELOC flag. The linker tends to
11951 set it (this is probably a bug) and if it is set
11952 assign_section_numbers will create a reloc section. */
11953 o->flags &=~ SEC_RELOC;
11954 }
11955
11956 /* If the SEC_ALLOC flag is not set, force the section VMA to
11957 zero. This is done in elf_fake_sections as well, but forcing
11958 the VMA to 0 here will ensure that relocs against these
11959 sections are handled correctly. */
11960 if ((o->flags & SEC_ALLOC) == 0
11961 && ! o->user_set_vma)
11962 o->vma = 0;
11963 }
11964
11965 if (! bfd_link_relocatable (info) && merged)
11966 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11967
11968 /* Figure out the file positions for everything but the symbol table
11969 and the relocs. We set symcount to force assign_section_numbers
11970 to create a symbol table. */
11971 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11972 BFD_ASSERT (! abfd->output_has_begun);
11973 if (! _bfd_elf_compute_section_file_positions (abfd, info))
11974 goto error_return;
11975
11976 /* Set sizes, and assign file positions for reloc sections. */
11977 for (o = abfd->sections; o != NULL; o = o->next)
11978 {
11979 struct bfd_elf_section_data *esdo = elf_section_data (o);
11980 if ((o->flags & SEC_RELOC) != 0)
11981 {
11982 if (esdo->rel.hdr
11983 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11984 goto error_return;
11985
11986 if (esdo->rela.hdr
11987 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11988 goto error_return;
11989 }
11990
11991 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11992 to count upwards while actually outputting the relocations. */
11993 esdo->rel.count = 0;
11994 esdo->rela.count = 0;
11995
11996 if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11997 {
11998 /* Cache the section contents so that they can be compressed
11999 later. Use bfd_malloc since it will be freed by
12000 bfd_compress_section_contents. */
12001 unsigned char *contents = esdo->this_hdr.contents;
12002 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
12003 abort ();
12004 contents
12005 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
12006 if (contents == NULL)
12007 goto error_return;
12008 esdo->this_hdr.contents = contents;
12009 }
12010 }
12011
12012 /* We have now assigned file positions for all the sections except
12013 .symtab, .strtab, and non-loaded reloc sections. We start the
12014 .symtab section at the current file position, and write directly
12015 to it. We build the .strtab section in memory. */
12016 bfd_get_symcount (abfd) = 0;
12017 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12018 /* sh_name is set in prep_headers. */
12019 symtab_hdr->sh_type = SHT_SYMTAB;
12020 /* sh_flags, sh_addr and sh_size all start off zero. */
12021 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
12022 /* sh_link is set in assign_section_numbers. */
12023 /* sh_info is set below. */
12024 /* sh_offset is set just below. */
12025 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
12026
12027 if (max_sym_count < 20)
12028 max_sym_count = 20;
12029 htab->strtabsize = max_sym_count;
12030 amt = max_sym_count * sizeof (struct elf_sym_strtab);
12031 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
12032 if (htab->strtab == NULL)
12033 goto error_return;
12034 /* The real buffer will be allocated in elf_link_swap_symbols_out. */
12035 flinfo.symshndxbuf
12036 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
12037 ? (Elf_External_Sym_Shndx *) -1 : NULL);
12038
12039 if (info->strip != strip_all || emit_relocs)
12040 {
12041 file_ptr off = elf_next_file_pos (abfd);
12042
12043 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
12044
12045 /* Note that at this point elf_next_file_pos (abfd) is
12046 incorrect. We do not yet know the size of the .symtab section.
12047 We correct next_file_pos below, after we do know the size. */
12048
12049 /* Start writing out the symbol table. The first symbol is always a
12050 dummy symbol. */
12051 elfsym.st_value = 0;
12052 elfsym.st_size = 0;
12053 elfsym.st_info = 0;
12054 elfsym.st_other = 0;
12055 elfsym.st_shndx = SHN_UNDEF;
12056 elfsym.st_target_internal = 0;
12057 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
12058 bfd_und_section_ptr, NULL) != 1)
12059 goto error_return;
12060
12061 /* Output a symbol for each section. We output these even if we are
12062 discarding local symbols, since they are used for relocs. These
12063 symbols have no names. We store the index of each one in the
12064 index field of the section, so that we can find it again when
12065 outputting relocs. */
12066
12067 elfsym.st_size = 0;
12068 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12069 elfsym.st_other = 0;
12070 elfsym.st_value = 0;
12071 elfsym.st_target_internal = 0;
12072 for (i = 1; i < elf_numsections (abfd); i++)
12073 {
12074 o = bfd_section_from_elf_index (abfd, i);
12075 if (o != NULL)
12076 {
12077 o->target_index = bfd_get_symcount (abfd);
12078 elfsym.st_shndx = i;
12079 if (!bfd_link_relocatable (info))
12080 elfsym.st_value = o->vma;
12081 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
12082 NULL) != 1)
12083 goto error_return;
12084 }
12085 }
12086 }
12087
12088 /* Allocate some memory to hold information read in from the input
12089 files. */
12090 if (max_contents_size != 0)
12091 {
12092 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
12093 if (flinfo.contents == NULL)
12094 goto error_return;
12095 }
12096
12097 if (max_external_reloc_size != 0)
12098 {
12099 flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
12100 if (flinfo.external_relocs == NULL)
12101 goto error_return;
12102 }
12103
12104 if (max_internal_reloc_count != 0)
12105 {
12106 amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela);
12107 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
12108 if (flinfo.internal_relocs == NULL)
12109 goto error_return;
12110 }
12111
12112 if (max_sym_count != 0)
12113 {
12114 amt = max_sym_count * bed->s->sizeof_sym;
12115 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
12116 if (flinfo.external_syms == NULL)
12117 goto error_return;
12118
12119 amt = max_sym_count * sizeof (Elf_Internal_Sym);
12120 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
12121 if (flinfo.internal_syms == NULL)
12122 goto error_return;
12123
12124 amt = max_sym_count * sizeof (long);
12125 flinfo.indices = (long int *) bfd_malloc (amt);
12126 if (flinfo.indices == NULL)
12127 goto error_return;
12128
12129 amt = max_sym_count * sizeof (asection *);
12130 flinfo.sections = (asection **) bfd_malloc (amt);
12131 if (flinfo.sections == NULL)
12132 goto error_return;
12133 }
12134
12135 if (max_sym_shndx_count != 0)
12136 {
12137 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
12138 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
12139 if (flinfo.locsym_shndx == NULL)
12140 goto error_return;
12141 }
12142
12143 if (htab->tls_sec)
12144 {
12145 bfd_vma base, end = 0;
12146 asection *sec;
12147
12148 for (sec = htab->tls_sec;
12149 sec && (sec->flags & SEC_THREAD_LOCAL);
12150 sec = sec->next)
12151 {
12152 bfd_size_type size = sec->size;
12153
12154 if (size == 0
12155 && (sec->flags & SEC_HAS_CONTENTS) == 0)
12156 {
12157 struct bfd_link_order *ord = sec->map_tail.link_order;
12158
12159 if (ord != NULL)
12160 size = ord->offset + ord->size;
12161 }
12162 end = sec->vma + size;
12163 }
12164 base = htab->tls_sec->vma;
12165 /* Only align end of TLS section if static TLS doesn't have special
12166 alignment requirements. */
12167 if (bed->static_tls_alignment == 1)
12168 end = align_power (end, htab->tls_sec->alignment_power);
12169 htab->tls_size = end - base;
12170 }
12171
12172 /* Reorder SHF_LINK_ORDER sections. */
12173 for (o = abfd->sections; o != NULL; o = o->next)
12174 {
12175 if (!elf_fixup_link_order (abfd, o))
12176 return FALSE;
12177 }
12178
12179 if (!_bfd_elf_fixup_eh_frame_hdr (info))
12180 return FALSE;
12181
12182 /* Since ELF permits relocations to be against local symbols, we
12183 must have the local symbols available when we do the relocations.
12184 Since we would rather only read the local symbols once, and we
12185 would rather not keep them in memory, we handle all the
12186 relocations for a single input file at the same time.
12187
12188 Unfortunately, there is no way to know the total number of local
12189 symbols until we have seen all of them, and the local symbol
12190 indices precede the global symbol indices. This means that when
12191 we are generating relocatable output, and we see a reloc against
12192 a global symbol, we can not know the symbol index until we have
12193 finished examining all the local symbols to see which ones we are
12194 going to output. To deal with this, we keep the relocations in
12195 memory, and don't output them until the end of the link. This is
12196 an unfortunate waste of memory, but I don't see a good way around
12197 it. Fortunately, it only happens when performing a relocatable
12198 link, which is not the common case. FIXME: If keep_memory is set
12199 we could write the relocs out and then read them again; I don't
12200 know how bad the memory loss will be. */
12201
12202 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12203 sub->output_has_begun = FALSE;
12204 for (o = abfd->sections; o != NULL; o = o->next)
12205 {
12206 for (p = o->map_head.link_order; p != NULL; p = p->next)
12207 {
12208 if (p->type == bfd_indirect_link_order
12209 && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
12210 == bfd_target_elf_flavour)
12211 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
12212 {
12213 if (! sub->output_has_begun)
12214 {
12215 if (! elf_link_input_bfd (&flinfo, sub))
12216 goto error_return;
12217 sub->output_has_begun = TRUE;
12218 }
12219 }
12220 else if (p->type == bfd_section_reloc_link_order
12221 || p->type == bfd_symbol_reloc_link_order)
12222 {
12223 if (! elf_reloc_link_order (abfd, info, o, p))
12224 goto error_return;
12225 }
12226 else
12227 {
12228 if (! _bfd_default_link_order (abfd, info, o, p))
12229 {
12230 if (p->type == bfd_indirect_link_order
12231 && (bfd_get_flavour (sub)
12232 == bfd_target_elf_flavour)
12233 && (elf_elfheader (sub)->e_ident[EI_CLASS]
12234 != bed->s->elfclass))
12235 {
12236 const char *iclass, *oclass;
12237
12238 switch (bed->s->elfclass)
12239 {
12240 case ELFCLASS64: oclass = "ELFCLASS64"; break;
12241 case ELFCLASS32: oclass = "ELFCLASS32"; break;
12242 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
12243 default: abort ();
12244 }
12245
12246 switch (elf_elfheader (sub)->e_ident[EI_CLASS])
12247 {
12248 case ELFCLASS64: iclass = "ELFCLASS64"; break;
12249 case ELFCLASS32: iclass = "ELFCLASS32"; break;
12250 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
12251 default: abort ();
12252 }
12253
12254 bfd_set_error (bfd_error_wrong_format);
12255 _bfd_error_handler
12256 /* xgettext:c-format */
12257 (_("%pB: file class %s incompatible with %s"),
12258 sub, iclass, oclass);
12259 }
12260
12261 goto error_return;
12262 }
12263 }
12264 }
12265 }
12266
12267 /* Free symbol buffer if needed. */
12268 if (!info->reduce_memory_overheads)
12269 {
12270 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12271 if (bfd_get_flavour (sub) == bfd_target_elf_flavour
12272 && elf_tdata (sub)->symbuf)
12273 {
12274 free (elf_tdata (sub)->symbuf);
12275 elf_tdata (sub)->symbuf = NULL;
12276 }
12277 }
12278
12279 /* Output any global symbols that got converted to local in a
12280 version script or due to symbol visibility. We do this in a
12281 separate step since ELF requires all local symbols to appear
12282 prior to any global symbols. FIXME: We should only do this if
12283 some global symbols were, in fact, converted to become local.
12284 FIXME: Will this work correctly with the Irix 5 linker? */
12285 eoinfo.failed = FALSE;
12286 eoinfo.flinfo = &flinfo;
12287 eoinfo.localsyms = TRUE;
12288 eoinfo.file_sym_done = FALSE;
12289 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12290 if (eoinfo.failed)
12291 return FALSE;
12292
12293 /* If backend needs to output some local symbols not present in the hash
12294 table, do it now. */
12295 if (bed->elf_backend_output_arch_local_syms
12296 && (info->strip != strip_all || emit_relocs))
12297 {
12298 typedef int (*out_sym_func)
12299 (void *, const char *, Elf_Internal_Sym *, asection *,
12300 struct elf_link_hash_entry *);
12301
12302 if (! ((*bed->elf_backend_output_arch_local_syms)
12303 (abfd, info, &flinfo,
12304 (out_sym_func) elf_link_output_symstrtab)))
12305 return FALSE;
12306 }
12307
12308 /* That wrote out all the local symbols. Finish up the symbol table
12309 with the global symbols. Even if we want to strip everything we
12310 can, we still need to deal with those global symbols that got
12311 converted to local in a version script. */
12312
12313 /* The sh_info field records the index of the first non local symbol. */
12314 symtab_hdr->sh_info = bfd_get_symcount (abfd);
12315
12316 if (dynamic
12317 && htab->dynsym != NULL
12318 && htab->dynsym->output_section != bfd_abs_section_ptr)
12319 {
12320 Elf_Internal_Sym sym;
12321 bfd_byte *dynsym = htab->dynsym->contents;
12322
12323 o = htab->dynsym->output_section;
12324 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
12325
12326 /* Write out the section symbols for the output sections. */
12327 if (bfd_link_pic (info)
12328 || htab->is_relocatable_executable)
12329 {
12330 asection *s;
12331
12332 sym.st_size = 0;
12333 sym.st_name = 0;
12334 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
12335 sym.st_other = 0;
12336 sym.st_target_internal = 0;
12337
12338 for (s = abfd->sections; s != NULL; s = s->next)
12339 {
12340 int indx;
12341 bfd_byte *dest;
12342 long dynindx;
12343
12344 dynindx = elf_section_data (s)->dynindx;
12345 if (dynindx <= 0)
12346 continue;
12347 indx = elf_section_data (s)->this_idx;
12348 BFD_ASSERT (indx > 0);
12349 sym.st_shndx = indx;
12350 if (! check_dynsym (abfd, &sym))
12351 return FALSE;
12352 sym.st_value = s->vma;
12353 dest = dynsym + dynindx * bed->s->sizeof_sym;
12354 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12355 }
12356 }
12357
12358 /* Write out the local dynsyms. */
12359 if (htab->dynlocal)
12360 {
12361 struct elf_link_local_dynamic_entry *e;
12362 for (e = htab->dynlocal; e ; e = e->next)
12363 {
12364 asection *s;
12365 bfd_byte *dest;
12366
12367 /* Copy the internal symbol and turn off visibility.
12368 Note that we saved a word of storage and overwrote
12369 the original st_name with the dynstr_index. */
12370 sym = e->isym;
12371 sym.st_other &= ~ELF_ST_VISIBILITY (-1);
12372
12373 s = bfd_section_from_elf_index (e->input_bfd,
12374 e->isym.st_shndx);
12375 if (s != NULL)
12376 {
12377 sym.st_shndx =
12378 elf_section_data (s->output_section)->this_idx;
12379 if (! check_dynsym (abfd, &sym))
12380 return FALSE;
12381 sym.st_value = (s->output_section->vma
12382 + s->output_offset
12383 + e->isym.st_value);
12384 }
12385
12386 dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12387 bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12388 }
12389 }
12390 }
12391
12392 /* We get the global symbols from the hash table. */
12393 eoinfo.failed = FALSE;
12394 eoinfo.localsyms = FALSE;
12395 eoinfo.flinfo = &flinfo;
12396 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12397 if (eoinfo.failed)
12398 return FALSE;
12399
12400 /* If backend needs to output some symbols not present in the hash
12401 table, do it now. */
12402 if (bed->elf_backend_output_arch_syms
12403 && (info->strip != strip_all || emit_relocs))
12404 {
12405 typedef int (*out_sym_func)
12406 (void *, const char *, Elf_Internal_Sym *, asection *,
12407 struct elf_link_hash_entry *);
12408
12409 if (! ((*bed->elf_backend_output_arch_syms)
12410 (abfd, info, &flinfo,
12411 (out_sym_func) elf_link_output_symstrtab)))
12412 return FALSE;
12413 }
12414
12415 /* Finalize the .strtab section. */
12416 _bfd_elf_strtab_finalize (flinfo.symstrtab);
12417
12418 /* Swap out the .strtab section. */
12419 if (!elf_link_swap_symbols_out (&flinfo))
12420 return FALSE;
12421
12422 /* Now we know the size of the symtab section. */
12423 if (bfd_get_symcount (abfd) > 0)
12424 {
12425 /* Finish up and write out the symbol string table (.strtab)
12426 section. */
12427 Elf_Internal_Shdr *symstrtab_hdr = NULL;
12428 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12429
12430 if (elf_symtab_shndx_list (abfd))
12431 {
12432 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12433
12434 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12435 {
12436 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12437 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12438 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12439 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12440 symtab_shndx_hdr->sh_size = amt;
12441
12442 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12443 off, TRUE);
12444
12445 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12446 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12447 return FALSE;
12448 }
12449 }
12450
12451 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12452 /* sh_name was set in prep_headers. */
12453 symstrtab_hdr->sh_type = SHT_STRTAB;
12454 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12455 symstrtab_hdr->sh_addr = 0;
12456 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12457 symstrtab_hdr->sh_entsize = 0;
12458 symstrtab_hdr->sh_link = 0;
12459 symstrtab_hdr->sh_info = 0;
12460 /* sh_offset is set just below. */
12461 symstrtab_hdr->sh_addralign = 1;
12462
12463 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12464 off, TRUE);
12465 elf_next_file_pos (abfd) = off;
12466
12467 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12468 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12469 return FALSE;
12470 }
12471
12472 if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12473 {
12474 _bfd_error_handler (_("%pB: failed to generate import library"),
12475 info->out_implib_bfd);
12476 return FALSE;
12477 }
12478
12479 /* Adjust the relocs to have the correct symbol indices. */
12480 for (o = abfd->sections; o != NULL; o = o->next)
12481 {
12482 struct bfd_elf_section_data *esdo = elf_section_data (o);
12483 bfd_boolean sort;
12484
12485 if ((o->flags & SEC_RELOC) == 0)
12486 continue;
12487
12488 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12489 if (esdo->rel.hdr != NULL
12490 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info))
12491 return FALSE;
12492 if (esdo->rela.hdr != NULL
12493 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info))
12494 return FALSE;
12495
12496 /* Set the reloc_count field to 0 to prevent write_relocs from
12497 trying to swap the relocs out itself. */
12498 o->reloc_count = 0;
12499 }
12500
12501 if (dynamic && info->combreloc && dynobj != NULL)
12502 relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12503
12504 /* If we are linking against a dynamic object, or generating a
12505 shared library, finish up the dynamic linking information. */
12506 if (dynamic)
12507 {
12508 bfd_byte *dyncon, *dynconend;
12509
12510 /* Fix up .dynamic entries. */
12511 o = bfd_get_linker_section (dynobj, ".dynamic");
12512 BFD_ASSERT (o != NULL);
12513
12514 dyncon = o->contents;
12515 dynconend = o->contents + o->size;
12516 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12517 {
12518 Elf_Internal_Dyn dyn;
12519 const char *name;
12520 unsigned int type;
12521 bfd_size_type sh_size;
12522 bfd_vma sh_addr;
12523
12524 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12525
12526 switch (dyn.d_tag)
12527 {
12528 default:
12529 continue;
12530 case DT_NULL:
12531 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12532 {
12533 switch (elf_section_data (reldyn)->this_hdr.sh_type)
12534 {
12535 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12536 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12537 default: continue;
12538 }
12539 dyn.d_un.d_val = relativecount;
12540 relativecount = 0;
12541 break;
12542 }
12543 continue;
12544
12545 case DT_INIT:
12546 name = info->init_function;
12547 goto get_sym;
12548 case DT_FINI:
12549 name = info->fini_function;
12550 get_sym:
12551 {
12552 struct elf_link_hash_entry *h;
12553
12554 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12555 if (h != NULL
12556 && (h->root.type == bfd_link_hash_defined
12557 || h->root.type == bfd_link_hash_defweak))
12558 {
12559 dyn.d_un.d_ptr = h->root.u.def.value;
12560 o = h->root.u.def.section;
12561 if (o->output_section != NULL)
12562 dyn.d_un.d_ptr += (o->output_section->vma
12563 + o->output_offset);
12564 else
12565 {
12566 /* The symbol is imported from another shared
12567 library and does not apply to this one. */
12568 dyn.d_un.d_ptr = 0;
12569 }
12570 break;
12571 }
12572 }
12573 continue;
12574
12575 case DT_PREINIT_ARRAYSZ:
12576 name = ".preinit_array";
12577 goto get_out_size;
12578 case DT_INIT_ARRAYSZ:
12579 name = ".init_array";
12580 goto get_out_size;
12581 case DT_FINI_ARRAYSZ:
12582 name = ".fini_array";
12583 get_out_size:
12584 o = bfd_get_section_by_name (abfd, name);
12585 if (o == NULL)
12586 {
12587 _bfd_error_handler
12588 (_("could not find section %s"), name);
12589 goto error_return;
12590 }
12591 if (o->size == 0)
12592 _bfd_error_handler
12593 (_("warning: %s section has zero size"), name);
12594 dyn.d_un.d_val = o->size;
12595 break;
12596
12597 case DT_PREINIT_ARRAY:
12598 name = ".preinit_array";
12599 goto get_out_vma;
12600 case DT_INIT_ARRAY:
12601 name = ".init_array";
12602 goto get_out_vma;
12603 case DT_FINI_ARRAY:
12604 name = ".fini_array";
12605 get_out_vma:
12606 o = bfd_get_section_by_name (abfd, name);
12607 goto do_vma;
12608
12609 case DT_HASH:
12610 name = ".hash";
12611 goto get_vma;
12612 case DT_GNU_HASH:
12613 name = ".gnu.hash";
12614 goto get_vma;
12615 case DT_STRTAB:
12616 name = ".dynstr";
12617 goto get_vma;
12618 case DT_SYMTAB:
12619 name = ".dynsym";
12620 goto get_vma;
12621 case DT_VERDEF:
12622 name = ".gnu.version_d";
12623 goto get_vma;
12624 case DT_VERNEED:
12625 name = ".gnu.version_r";
12626 goto get_vma;
12627 case DT_VERSYM:
12628 name = ".gnu.version";
12629 get_vma:
12630 o = bfd_get_linker_section (dynobj, name);
12631 do_vma:
12632 if (o == NULL || bfd_is_abs_section (o->output_section))
12633 {
12634 _bfd_error_handler
12635 (_("could not find section %s"), name);
12636 goto error_return;
12637 }
12638 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12639 {
12640 _bfd_error_handler
12641 (_("warning: section '%s' is being made into a note"), name);
12642 bfd_set_error (bfd_error_nonrepresentable_section);
12643 goto error_return;
12644 }
12645 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12646 break;
12647
12648 case DT_REL:
12649 case DT_RELA:
12650 case DT_RELSZ:
12651 case DT_RELASZ:
12652 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12653 type = SHT_REL;
12654 else
12655 type = SHT_RELA;
12656 sh_size = 0;
12657 sh_addr = 0;
12658 for (i = 1; i < elf_numsections (abfd); i++)
12659 {
12660 Elf_Internal_Shdr *hdr;
12661
12662 hdr = elf_elfsections (abfd)[i];
12663 if (hdr->sh_type == type
12664 && (hdr->sh_flags & SHF_ALLOC) != 0)
12665 {
12666 sh_size += hdr->sh_size;
12667 if (sh_addr == 0
12668 || sh_addr > hdr->sh_addr)
12669 sh_addr = hdr->sh_addr;
12670 }
12671 }
12672
12673 if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12674 {
12675 /* Don't count procedure linkage table relocs in the
12676 overall reloc count. */
12677 sh_size -= htab->srelplt->size;
12678 if (sh_size == 0)
12679 /* If the size is zero, make the address zero too.
12680 This is to avoid a glibc bug. If the backend
12681 emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12682 zero, then we'll put DT_RELA at the end of
12683 DT_JMPREL. glibc will interpret the end of
12684 DT_RELA matching the end of DT_JMPREL as the
12685 case where DT_RELA includes DT_JMPREL, and for
12686 LD_BIND_NOW will decide that processing DT_RELA
12687 will process the PLT relocs too. Net result:
12688 No PLT relocs applied. */
12689 sh_addr = 0;
12690
12691 /* If .rela.plt is the first .rela section, exclude
12692 it from DT_RELA. */
12693 else if (sh_addr == (htab->srelplt->output_section->vma
12694 + htab->srelplt->output_offset))
12695 sh_addr += htab->srelplt->size;
12696 }
12697
12698 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12699 dyn.d_un.d_val = sh_size;
12700 else
12701 dyn.d_un.d_ptr = sh_addr;
12702 break;
12703 }
12704 bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12705 }
12706 }
12707
12708 /* If we have created any dynamic sections, then output them. */
12709 if (dynobj != NULL)
12710 {
12711 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12712 goto error_return;
12713
12714 /* Check for DT_TEXTREL (late, in case the backend removes it). */
12715 if (((info->warn_shared_textrel && bfd_link_pic (info))
12716 || info->error_textrel)
12717 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12718 {
12719 bfd_byte *dyncon, *dynconend;
12720
12721 dyncon = o->contents;
12722 dynconend = o->contents + o->size;
12723 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12724 {
12725 Elf_Internal_Dyn dyn;
12726
12727 bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12728
12729 if (dyn.d_tag == DT_TEXTREL)
12730 {
12731 if (info->error_textrel)
12732 info->callbacks->einfo
12733 (_("%P%X: read-only segment has dynamic relocations\n"));
12734 else
12735 info->callbacks->einfo
12736 (_("%P: warning: creating a DT_TEXTREL in a shared object\n"));
12737 break;
12738 }
12739 }
12740 }
12741
12742 for (o = dynobj->sections; o != NULL; o = o->next)
12743 {
12744 if ((o->flags & SEC_HAS_CONTENTS) == 0
12745 || o->size == 0
12746 || o->output_section == bfd_abs_section_ptr)
12747 continue;
12748 if ((o->flags & SEC_LINKER_CREATED) == 0)
12749 {
12750 /* At this point, we are only interested in sections
12751 created by _bfd_elf_link_create_dynamic_sections. */
12752 continue;
12753 }
12754 if (htab->stab_info.stabstr == o)
12755 continue;
12756 if (htab->eh_info.hdr_sec == o)
12757 continue;
12758 if (strcmp (o->name, ".dynstr") != 0)
12759 {
12760 if (! bfd_set_section_contents (abfd, o->output_section,
12761 o->contents,
12762 (file_ptr) o->output_offset
12763 * bfd_octets_per_byte (abfd),
12764 o->size))
12765 goto error_return;
12766 }
12767 else
12768 {
12769 /* The contents of the .dynstr section are actually in a
12770 stringtab. */
12771 file_ptr off;
12772
12773 off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12774 if (bfd_seek (abfd, off, SEEK_SET) != 0
12775 || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12776 goto error_return;
12777 }
12778 }
12779 }
12780
12781 if (!info->resolve_section_groups)
12782 {
12783 bfd_boolean failed = FALSE;
12784
12785 BFD_ASSERT (bfd_link_relocatable (info));
12786 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12787 if (failed)
12788 goto error_return;
12789 }
12790
12791 /* If we have optimized stabs strings, output them. */
12792 if (htab->stab_info.stabstr != NULL)
12793 {
12794 if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12795 goto error_return;
12796 }
12797
12798 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12799 goto error_return;
12800
12801 elf_final_link_free (abfd, &flinfo);
12802
12803 elf_linker (abfd) = TRUE;
12804
12805 if (attr_section)
12806 {
12807 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12808 if (contents == NULL)
12809 return FALSE; /* Bail out and fail. */
12810 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12811 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12812 free (contents);
12813 }
12814
12815 return TRUE;
12816
12817 error_return:
12818 elf_final_link_free (abfd, &flinfo);
12819 return FALSE;
12820 }
12821 \f
12822 /* Initialize COOKIE for input bfd ABFD. */
12823
12824 static bfd_boolean
12825 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12826 struct bfd_link_info *info, bfd *abfd)
12827 {
12828 Elf_Internal_Shdr *symtab_hdr;
12829 const struct elf_backend_data *bed;
12830
12831 bed = get_elf_backend_data (abfd);
12832 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12833
12834 cookie->abfd = abfd;
12835 cookie->sym_hashes = elf_sym_hashes (abfd);
12836 cookie->bad_symtab = elf_bad_symtab (abfd);
12837 if (cookie->bad_symtab)
12838 {
12839 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12840 cookie->extsymoff = 0;
12841 }
12842 else
12843 {
12844 cookie->locsymcount = symtab_hdr->sh_info;
12845 cookie->extsymoff = symtab_hdr->sh_info;
12846 }
12847
12848 if (bed->s->arch_size == 32)
12849 cookie->r_sym_shift = 8;
12850 else
12851 cookie->r_sym_shift = 32;
12852
12853 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12854 if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12855 {
12856 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12857 cookie->locsymcount, 0,
12858 NULL, NULL, NULL);
12859 if (cookie->locsyms == NULL)
12860 {
12861 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12862 return FALSE;
12863 }
12864 if (info->keep_memory)
12865 symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12866 }
12867 return TRUE;
12868 }
12869
12870 /* Free the memory allocated by init_reloc_cookie, if appropriate. */
12871
12872 static void
12873 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12874 {
12875 Elf_Internal_Shdr *symtab_hdr;
12876
12877 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12878 if (cookie->locsyms != NULL
12879 && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12880 free (cookie->locsyms);
12881 }
12882
12883 /* Initialize the relocation information in COOKIE for input section SEC
12884 of input bfd ABFD. */
12885
12886 static bfd_boolean
12887 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12888 struct bfd_link_info *info, bfd *abfd,
12889 asection *sec)
12890 {
12891 if (sec->reloc_count == 0)
12892 {
12893 cookie->rels = NULL;
12894 cookie->relend = NULL;
12895 }
12896 else
12897 {
12898 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12899 info->keep_memory);
12900 if (cookie->rels == NULL)
12901 return FALSE;
12902 cookie->rel = cookie->rels;
12903 cookie->relend = cookie->rels + sec->reloc_count;
12904 }
12905 cookie->rel = cookie->rels;
12906 return TRUE;
12907 }
12908
12909 /* Free the memory allocated by init_reloc_cookie_rels,
12910 if appropriate. */
12911
12912 static void
12913 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12914 asection *sec)
12915 {
12916 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12917 free (cookie->rels);
12918 }
12919
12920 /* Initialize the whole of COOKIE for input section SEC. */
12921
12922 static bfd_boolean
12923 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12924 struct bfd_link_info *info,
12925 asection *sec)
12926 {
12927 if (!init_reloc_cookie (cookie, info, sec->owner))
12928 goto error1;
12929 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12930 goto error2;
12931 return TRUE;
12932
12933 error2:
12934 fini_reloc_cookie (cookie, sec->owner);
12935 error1:
12936 return FALSE;
12937 }
12938
12939 /* Free the memory allocated by init_reloc_cookie_for_section,
12940 if appropriate. */
12941
12942 static void
12943 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12944 asection *sec)
12945 {
12946 fini_reloc_cookie_rels (cookie, sec);
12947 fini_reloc_cookie (cookie, sec->owner);
12948 }
12949 \f
12950 /* Garbage collect unused sections. */
12951
12952 /* Default gc_mark_hook. */
12953
12954 asection *
12955 _bfd_elf_gc_mark_hook (asection *sec,
12956 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12957 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12958 struct elf_link_hash_entry *h,
12959 Elf_Internal_Sym *sym)
12960 {
12961 if (h != NULL)
12962 {
12963 switch (h->root.type)
12964 {
12965 case bfd_link_hash_defined:
12966 case bfd_link_hash_defweak:
12967 return h->root.u.def.section;
12968
12969 case bfd_link_hash_common:
12970 return h->root.u.c.p->section;
12971
12972 default:
12973 break;
12974 }
12975 }
12976 else
12977 return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12978
12979 return NULL;
12980 }
12981
12982 /* Return the debug definition section. */
12983
12984 static asection *
12985 elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED,
12986 struct bfd_link_info *info ATTRIBUTE_UNUSED,
12987 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12988 struct elf_link_hash_entry *h,
12989 Elf_Internal_Sym *sym)
12990 {
12991 if (h != NULL)
12992 {
12993 /* Return the global debug definition section. */
12994 if ((h->root.type == bfd_link_hash_defined
12995 || h->root.type == bfd_link_hash_defweak)
12996 && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0)
12997 return h->root.u.def.section;
12998 }
12999 else
13000 {
13001 /* Return the local debug definition section. */
13002 asection *isec = bfd_section_from_elf_index (sec->owner,
13003 sym->st_shndx);
13004 if ((isec->flags & SEC_DEBUGGING) != 0)
13005 return isec;
13006 }
13007
13008 return NULL;
13009 }
13010
13011 /* COOKIE->rel describes a relocation against section SEC, which is
13012 a section we've decided to keep. Return the section that contains
13013 the relocation symbol, or NULL if no section contains it. */
13014
13015 asection *
13016 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
13017 elf_gc_mark_hook_fn gc_mark_hook,
13018 struct elf_reloc_cookie *cookie,
13019 bfd_boolean *start_stop)
13020 {
13021 unsigned long r_symndx;
13022 struct elf_link_hash_entry *h;
13023
13024 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
13025 if (r_symndx == STN_UNDEF)
13026 return NULL;
13027
13028 if (r_symndx >= cookie->locsymcount
13029 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13030 {
13031 h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
13032 if (h == NULL)
13033 {
13034 info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"),
13035 sec->owner);
13036 return NULL;
13037 }
13038 while (h->root.type == bfd_link_hash_indirect
13039 || h->root.type == bfd_link_hash_warning)
13040 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13041 h->mark = 1;
13042 /* If this symbol is weak and there is a non-weak definition, we
13043 keep the non-weak definition because many backends put
13044 dynamic reloc info on the non-weak definition for code
13045 handling copy relocs. */
13046 if (h->is_weakalias)
13047 weakdef (h)->mark = 1;
13048
13049 if (start_stop != NULL)
13050 {
13051 /* To work around a glibc bug, mark XXX input sections
13052 when there is a reference to __start_XXX or __stop_XXX
13053 symbols. */
13054 if (h->start_stop)
13055 {
13056 asection *s = h->u2.start_stop_section;
13057 *start_stop = !s->gc_mark;
13058 return s;
13059 }
13060 }
13061
13062 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
13063 }
13064
13065 return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
13066 &cookie->locsyms[r_symndx]);
13067 }
13068
13069 /* COOKIE->rel describes a relocation against section SEC, which is
13070 a section we've decided to keep. Mark the section that contains
13071 the relocation symbol. */
13072
13073 bfd_boolean
13074 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
13075 asection *sec,
13076 elf_gc_mark_hook_fn gc_mark_hook,
13077 struct elf_reloc_cookie *cookie)
13078 {
13079 asection *rsec;
13080 bfd_boolean start_stop = FALSE;
13081
13082 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
13083 while (rsec != NULL)
13084 {
13085 if (!rsec->gc_mark)
13086 {
13087 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
13088 || (rsec->owner->flags & DYNAMIC) != 0)
13089 rsec->gc_mark = 1;
13090 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
13091 return FALSE;
13092 }
13093 if (!start_stop)
13094 break;
13095 rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
13096 }
13097 return TRUE;
13098 }
13099
13100 /* The mark phase of garbage collection. For a given section, mark
13101 it and any sections in this section's group, and all the sections
13102 which define symbols to which it refers. */
13103
13104 bfd_boolean
13105 _bfd_elf_gc_mark (struct bfd_link_info *info,
13106 asection *sec,
13107 elf_gc_mark_hook_fn gc_mark_hook)
13108 {
13109 bfd_boolean ret;
13110 asection *group_sec, *eh_frame;
13111
13112 sec->gc_mark = 1;
13113
13114 /* Mark all the sections in the group. */
13115 group_sec = elf_section_data (sec)->next_in_group;
13116 if (group_sec && !group_sec->gc_mark)
13117 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
13118 return FALSE;
13119
13120 /* Look through the section relocs. */
13121 ret = TRUE;
13122 eh_frame = elf_eh_frame_section (sec->owner);
13123 if ((sec->flags & SEC_RELOC) != 0
13124 && sec->reloc_count > 0
13125 && sec != eh_frame)
13126 {
13127 struct elf_reloc_cookie cookie;
13128
13129 if (!init_reloc_cookie_for_section (&cookie, info, sec))
13130 ret = FALSE;
13131 else
13132 {
13133 for (; cookie.rel < cookie.relend; cookie.rel++)
13134 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
13135 {
13136 ret = FALSE;
13137 break;
13138 }
13139 fini_reloc_cookie_for_section (&cookie, sec);
13140 }
13141 }
13142
13143 if (ret && eh_frame && elf_fde_list (sec))
13144 {
13145 struct elf_reloc_cookie cookie;
13146
13147 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
13148 ret = FALSE;
13149 else
13150 {
13151 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
13152 gc_mark_hook, &cookie))
13153 ret = FALSE;
13154 fini_reloc_cookie_for_section (&cookie, eh_frame);
13155 }
13156 }
13157
13158 eh_frame = elf_section_eh_frame_entry (sec);
13159 if (ret && eh_frame && !eh_frame->gc_mark)
13160 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
13161 ret = FALSE;
13162
13163 return ret;
13164 }
13165
13166 /* Scan and mark sections in a special or debug section group. */
13167
13168 static void
13169 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
13170 {
13171 /* Point to first section of section group. */
13172 asection *ssec;
13173 /* Used to iterate the section group. */
13174 asection *msec;
13175
13176 bfd_boolean is_special_grp = TRUE;
13177 bfd_boolean is_debug_grp = TRUE;
13178
13179 /* First scan to see if group contains any section other than debug
13180 and special section. */
13181 ssec = msec = elf_next_in_group (grp);
13182 do
13183 {
13184 if ((msec->flags & SEC_DEBUGGING) == 0)
13185 is_debug_grp = FALSE;
13186
13187 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
13188 is_special_grp = FALSE;
13189
13190 msec = elf_next_in_group (msec);
13191 }
13192 while (msec != ssec);
13193
13194 /* If this is a pure debug section group or pure special section group,
13195 keep all sections in this group. */
13196 if (is_debug_grp || is_special_grp)
13197 {
13198 do
13199 {
13200 msec->gc_mark = 1;
13201 msec = elf_next_in_group (msec);
13202 }
13203 while (msec != ssec);
13204 }
13205 }
13206
13207 /* Keep debug and special sections. */
13208
13209 bfd_boolean
13210 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
13211 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
13212 {
13213 bfd *ibfd;
13214
13215 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13216 {
13217 asection *isec;
13218 bfd_boolean some_kept;
13219 bfd_boolean debug_frag_seen;
13220 bfd_boolean has_kept_debug_info;
13221
13222 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13223 continue;
13224 isec = ibfd->sections;
13225 if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13226 continue;
13227
13228 /* Ensure all linker created sections are kept,
13229 see if any other section is already marked,
13230 and note if we have any fragmented debug sections. */
13231 debug_frag_seen = some_kept = has_kept_debug_info = FALSE;
13232 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13233 {
13234 if ((isec->flags & SEC_LINKER_CREATED) != 0)
13235 isec->gc_mark = 1;
13236 else if (isec->gc_mark
13237 && (isec->flags & SEC_ALLOC) != 0
13238 && elf_section_type (isec) != SHT_NOTE)
13239 some_kept = TRUE;
13240
13241 if (!debug_frag_seen
13242 && (isec->flags & SEC_DEBUGGING)
13243 && CONST_STRNEQ (isec->name, ".debug_line."))
13244 debug_frag_seen = TRUE;
13245 }
13246
13247 /* If no non-note alloc section in this file will be kept, then
13248 we can toss out the debug and special sections. */
13249 if (!some_kept)
13250 continue;
13251
13252 /* Keep debug and special sections like .comment when they are
13253 not part of a group. Also keep section groups that contain
13254 just debug sections or special sections. */
13255 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13256 {
13257 if ((isec->flags & SEC_GROUP) != 0)
13258 _bfd_elf_gc_mark_debug_special_section_group (isec);
13259 else if (((isec->flags & SEC_DEBUGGING) != 0
13260 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
13261 && elf_next_in_group (isec) == NULL)
13262 isec->gc_mark = 1;
13263 if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0)
13264 has_kept_debug_info = TRUE;
13265 }
13266
13267 /* Look for CODE sections which are going to be discarded,
13268 and find and discard any fragmented debug sections which
13269 are associated with that code section. */
13270 if (debug_frag_seen)
13271 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13272 if ((isec->flags & SEC_CODE) != 0
13273 && isec->gc_mark == 0)
13274 {
13275 unsigned int ilen;
13276 asection *dsec;
13277
13278 ilen = strlen (isec->name);
13279
13280 /* Association is determined by the name of the debug
13281 section containing the name of the code section as
13282 a suffix. For example .debug_line.text.foo is a
13283 debug section associated with .text.foo. */
13284 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
13285 {
13286 unsigned int dlen;
13287
13288 if (dsec->gc_mark == 0
13289 || (dsec->flags & SEC_DEBUGGING) == 0)
13290 continue;
13291
13292 dlen = strlen (dsec->name);
13293
13294 if (dlen > ilen
13295 && strncmp (dsec->name + (dlen - ilen),
13296 isec->name, ilen) == 0)
13297 dsec->gc_mark = 0;
13298 }
13299 }
13300
13301 /* Mark debug sections referenced by kept debug sections. */
13302 if (has_kept_debug_info)
13303 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
13304 if (isec->gc_mark
13305 && (isec->flags & SEC_DEBUGGING) != 0)
13306 if (!_bfd_elf_gc_mark (info, isec,
13307 elf_gc_mark_debug_section))
13308 return FALSE;
13309 }
13310 return TRUE;
13311 }
13312
13313 static bfd_boolean
13314 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
13315 {
13316 bfd *sub;
13317 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13318
13319 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13320 {
13321 asection *o;
13322
13323 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13324 || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info))
13325 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13326 continue;
13327 o = sub->sections;
13328 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13329 continue;
13330
13331 for (o = sub->sections; o != NULL; o = o->next)
13332 {
13333 /* When any section in a section group is kept, we keep all
13334 sections in the section group. If the first member of
13335 the section group is excluded, we will also exclude the
13336 group section. */
13337 if (o->flags & SEC_GROUP)
13338 {
13339 asection *first = elf_next_in_group (o);
13340 o->gc_mark = first->gc_mark;
13341 }
13342
13343 if (o->gc_mark)
13344 continue;
13345
13346 /* Skip sweeping sections already excluded. */
13347 if (o->flags & SEC_EXCLUDE)
13348 continue;
13349
13350 /* Since this is early in the link process, it is simple
13351 to remove a section from the output. */
13352 o->flags |= SEC_EXCLUDE;
13353
13354 if (info->print_gc_sections && o->size != 0)
13355 /* xgettext:c-format */
13356 _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"),
13357 o, sub);
13358 }
13359 }
13360
13361 return TRUE;
13362 }
13363
13364 /* Propagate collected vtable information. This is called through
13365 elf_link_hash_traverse. */
13366
13367 static bfd_boolean
13368 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13369 {
13370 /* Those that are not vtables. */
13371 if (h->start_stop
13372 || h->u2.vtable == NULL
13373 || h->u2.vtable->parent == NULL)
13374 return TRUE;
13375
13376 /* Those vtables that do not have parents, we cannot merge. */
13377 if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1)
13378 return TRUE;
13379
13380 /* If we've already been done, exit. */
13381 if (h->u2.vtable->used && h->u2.vtable->used[-1])
13382 return TRUE;
13383
13384 /* Make sure the parent's table is up to date. */
13385 elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp);
13386
13387 if (h->u2.vtable->used == NULL)
13388 {
13389 /* None of this table's entries were referenced. Re-use the
13390 parent's table. */
13391 h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used;
13392 h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size;
13393 }
13394 else
13395 {
13396 size_t n;
13397 bfd_boolean *cu, *pu;
13398
13399 /* Or the parent's entries into ours. */
13400 cu = h->u2.vtable->used;
13401 cu[-1] = TRUE;
13402 pu = h->u2.vtable->parent->u2.vtable->used;
13403 if (pu != NULL)
13404 {
13405 const struct elf_backend_data *bed;
13406 unsigned int log_file_align;
13407
13408 bed = get_elf_backend_data (h->root.u.def.section->owner);
13409 log_file_align = bed->s->log_file_align;
13410 n = h->u2.vtable->parent->u2.vtable->size >> log_file_align;
13411 while (n--)
13412 {
13413 if (*pu)
13414 *cu = TRUE;
13415 pu++;
13416 cu++;
13417 }
13418 }
13419 }
13420
13421 return TRUE;
13422 }
13423
13424 static bfd_boolean
13425 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13426 {
13427 asection *sec;
13428 bfd_vma hstart, hend;
13429 Elf_Internal_Rela *relstart, *relend, *rel;
13430 const struct elf_backend_data *bed;
13431 unsigned int log_file_align;
13432
13433 /* Take care of both those symbols that do not describe vtables as
13434 well as those that are not loaded. */
13435 if (h->start_stop
13436 || h->u2.vtable == NULL
13437 || h->u2.vtable->parent == NULL)
13438 return TRUE;
13439
13440 BFD_ASSERT (h->root.type == bfd_link_hash_defined
13441 || h->root.type == bfd_link_hash_defweak);
13442
13443 sec = h->root.u.def.section;
13444 hstart = h->root.u.def.value;
13445 hend = hstart + h->size;
13446
13447 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13448 if (!relstart)
13449 return *(bfd_boolean *) okp = FALSE;
13450 bed = get_elf_backend_data (sec->owner);
13451 log_file_align = bed->s->log_file_align;
13452
13453 relend = relstart + sec->reloc_count;
13454
13455 for (rel = relstart; rel < relend; ++rel)
13456 if (rel->r_offset >= hstart && rel->r_offset < hend)
13457 {
13458 /* If the entry is in use, do nothing. */
13459 if (h->u2.vtable->used
13460 && (rel->r_offset - hstart) < h->u2.vtable->size)
13461 {
13462 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13463 if (h->u2.vtable->used[entry])
13464 continue;
13465 }
13466 /* Otherwise, kill it. */
13467 rel->r_offset = rel->r_info = rel->r_addend = 0;
13468 }
13469
13470 return TRUE;
13471 }
13472
13473 /* Mark sections containing dynamically referenced symbols. When
13474 building shared libraries, we must assume that any visible symbol is
13475 referenced. */
13476
13477 bfd_boolean
13478 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13479 {
13480 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13481 struct bfd_elf_dynamic_list *d = info->dynamic_list;
13482
13483 if ((h->root.type == bfd_link_hash_defined
13484 || h->root.type == bfd_link_hash_defweak)
13485 && ((h->ref_dynamic && !h->forced_local)
13486 || ((h->def_regular || ELF_COMMON_DEF_P (h))
13487 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13488 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13489 && (!bfd_link_executable (info)
13490 || info->gc_keep_exported
13491 || info->export_dynamic
13492 || (h->dynamic
13493 && d != NULL
13494 && (*d->match) (&d->head, NULL, h->root.root.string)))
13495 && (h->versioned >= versioned
13496 || !bfd_hide_sym_by_version (info->version_info,
13497 h->root.root.string)))))
13498 h->root.u.def.section->flags |= SEC_KEEP;
13499
13500 return TRUE;
13501 }
13502
13503 /* Keep all sections containing symbols undefined on the command-line,
13504 and the section containing the entry symbol. */
13505
13506 void
13507 _bfd_elf_gc_keep (struct bfd_link_info *info)
13508 {
13509 struct bfd_sym_chain *sym;
13510
13511 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13512 {
13513 struct elf_link_hash_entry *h;
13514
13515 h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13516 FALSE, FALSE, FALSE);
13517
13518 if (h != NULL
13519 && (h->root.type == bfd_link_hash_defined
13520 || h->root.type == bfd_link_hash_defweak)
13521 && !bfd_is_abs_section (h->root.u.def.section)
13522 && !bfd_is_und_section (h->root.u.def.section))
13523 h->root.u.def.section->flags |= SEC_KEEP;
13524 }
13525 }
13526
13527 bfd_boolean
13528 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13529 struct bfd_link_info *info)
13530 {
13531 bfd *ibfd = info->input_bfds;
13532
13533 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13534 {
13535 asection *sec;
13536 struct elf_reloc_cookie cookie;
13537
13538 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13539 continue;
13540 sec = ibfd->sections;
13541 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13542 continue;
13543
13544 if (!init_reloc_cookie (&cookie, info, ibfd))
13545 return FALSE;
13546
13547 for (sec = ibfd->sections; sec; sec = sec->next)
13548 {
13549 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13550 && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13551 {
13552 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13553 fini_reloc_cookie_rels (&cookie, sec);
13554 }
13555 }
13556 }
13557 return TRUE;
13558 }
13559
13560 /* Do mark and sweep of unused sections. */
13561
13562 bfd_boolean
13563 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13564 {
13565 bfd_boolean ok = TRUE;
13566 bfd *sub;
13567 elf_gc_mark_hook_fn gc_mark_hook;
13568 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13569 struct elf_link_hash_table *htab;
13570
13571 if (!bed->can_gc_sections
13572 || !is_elf_hash_table (info->hash))
13573 {
13574 _bfd_error_handler(_("warning: gc-sections option ignored"));
13575 return TRUE;
13576 }
13577
13578 bed->gc_keep (info);
13579 htab = elf_hash_table (info);
13580
13581 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section
13582 at the .eh_frame section if we can mark the FDEs individually. */
13583 for (sub = info->input_bfds;
13584 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13585 sub = sub->link.next)
13586 {
13587 asection *sec;
13588 struct elf_reloc_cookie cookie;
13589
13590 sec = sub->sections;
13591 if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13592 continue;
13593 sec = bfd_get_section_by_name (sub, ".eh_frame");
13594 while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13595 {
13596 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13597 if (elf_section_data (sec)->sec_info
13598 && (sec->flags & SEC_LINKER_CREATED) == 0)
13599 elf_eh_frame_section (sub) = sec;
13600 fini_reloc_cookie_for_section (&cookie, sec);
13601 sec = bfd_get_next_section_by_name (NULL, sec);
13602 }
13603 }
13604
13605 /* Apply transitive closure to the vtable entry usage info. */
13606 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13607 if (!ok)
13608 return FALSE;
13609
13610 /* Kill the vtable relocations that were not used. */
13611 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13612 if (!ok)
13613 return FALSE;
13614
13615 /* Mark dynamically referenced symbols. */
13616 if (htab->dynamic_sections_created || info->gc_keep_exported)
13617 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13618
13619 /* Grovel through relocs to find out who stays ... */
13620 gc_mark_hook = bed->gc_mark_hook;
13621 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13622 {
13623 asection *o;
13624
13625 if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13626 || elf_object_id (sub) != elf_hash_table_id (htab)
13627 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13628 continue;
13629
13630 o = sub->sections;
13631 if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
13632 continue;
13633
13634 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13635 Also treat note sections as a root, if the section is not part
13636 of a group. We must keep all PREINIT_ARRAY, INIT_ARRAY as
13637 well as FINI_ARRAY sections for ld -r. */
13638 for (o = sub->sections; o != NULL; o = o->next)
13639 if (!o->gc_mark
13640 && (o->flags & SEC_EXCLUDE) == 0
13641 && ((o->flags & SEC_KEEP) != 0
13642 || (bfd_link_relocatable (info)
13643 && ((elf_section_data (o)->this_hdr.sh_type
13644 == SHT_PREINIT_ARRAY)
13645 || (elf_section_data (o)->this_hdr.sh_type
13646 == SHT_INIT_ARRAY)
13647 || (elf_section_data (o)->this_hdr.sh_type
13648 == SHT_FINI_ARRAY)))
13649 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13650 && elf_next_in_group (o) == NULL )))
13651 {
13652 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13653 return FALSE;
13654 }
13655 }
13656
13657 /* Allow the backend to mark additional target specific sections. */
13658 bed->gc_mark_extra_sections (info, gc_mark_hook);
13659
13660 /* ... and mark SEC_EXCLUDE for those that go. */
13661 return elf_gc_sweep (abfd, info);
13662 }
13663 \f
13664 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
13665
13666 bfd_boolean
13667 bfd_elf_gc_record_vtinherit (bfd *abfd,
13668 asection *sec,
13669 struct elf_link_hash_entry *h,
13670 bfd_vma offset)
13671 {
13672 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13673 struct elf_link_hash_entry **search, *child;
13674 size_t extsymcount;
13675 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13676
13677 /* The sh_info field of the symtab header tells us where the
13678 external symbols start. We don't care about the local symbols at
13679 this point. */
13680 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13681 if (!elf_bad_symtab (abfd))
13682 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13683
13684 sym_hashes = elf_sym_hashes (abfd);
13685 sym_hashes_end = sym_hashes + extsymcount;
13686
13687 /* Hunt down the child symbol, which is in this section at the same
13688 offset as the relocation. */
13689 for (search = sym_hashes; search != sym_hashes_end; ++search)
13690 {
13691 if ((child = *search) != NULL
13692 && (child->root.type == bfd_link_hash_defined
13693 || child->root.type == bfd_link_hash_defweak)
13694 && child->root.u.def.section == sec
13695 && child->root.u.def.value == offset)
13696 goto win;
13697 }
13698
13699 /* xgettext:c-format */
13700 _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"),
13701 abfd, sec, (uint64_t) offset);
13702 bfd_set_error (bfd_error_invalid_operation);
13703 return FALSE;
13704
13705 win:
13706 if (!child->u2.vtable)
13707 {
13708 child->u2.vtable = ((struct elf_link_virtual_table_entry *)
13709 bfd_zalloc (abfd, sizeof (*child->u2.vtable)));
13710 if (!child->u2.vtable)
13711 return FALSE;
13712 }
13713 if (!h)
13714 {
13715 /* This *should* only be the absolute section. It could potentially
13716 be that someone has defined a non-global vtable though, which
13717 would be bad. It isn't worth paging in the local symbols to be
13718 sure though; that case should simply be handled by the assembler. */
13719
13720 child->u2.vtable->parent = (struct elf_link_hash_entry *) -1;
13721 }
13722 else
13723 child->u2.vtable->parent = h;
13724
13725 return TRUE;
13726 }
13727
13728 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
13729
13730 bfd_boolean
13731 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13732 asection *sec ATTRIBUTE_UNUSED,
13733 struct elf_link_hash_entry *h,
13734 bfd_vma addend)
13735 {
13736 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13737 unsigned int log_file_align = bed->s->log_file_align;
13738
13739 if (!h->u2.vtable)
13740 {
13741 h->u2.vtable = ((struct elf_link_virtual_table_entry *)
13742 bfd_zalloc (abfd, sizeof (*h->u2.vtable)));
13743 if (!h->u2.vtable)
13744 return FALSE;
13745 }
13746
13747 if (addend >= h->u2.vtable->size)
13748 {
13749 size_t size, bytes, file_align;
13750 bfd_boolean *ptr = h->u2.vtable->used;
13751
13752 /* While the symbol is undefined, we have to be prepared to handle
13753 a zero size. */
13754 file_align = 1 << log_file_align;
13755 if (h->root.type == bfd_link_hash_undefined)
13756 size = addend + file_align;
13757 else
13758 {
13759 size = h->size;
13760 if (addend >= size)
13761 {
13762 /* Oops! We've got a reference past the defined end of
13763 the table. This is probably a bug -- shall we warn? */
13764 size = addend + file_align;
13765 }
13766 }
13767 size = (size + file_align - 1) & -file_align;
13768
13769 /* Allocate one extra entry for use as a "done" flag for the
13770 consolidation pass. */
13771 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13772
13773 if (ptr)
13774 {
13775 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13776
13777 if (ptr != NULL)
13778 {
13779 size_t oldbytes;
13780
13781 oldbytes = (((h->u2.vtable->size >> log_file_align) + 1)
13782 * sizeof (bfd_boolean));
13783 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13784 }
13785 }
13786 else
13787 ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13788
13789 if (ptr == NULL)
13790 return FALSE;
13791
13792 /* And arrange for that done flag to be at index -1. */
13793 h->u2.vtable->used = ptr + 1;
13794 h->u2.vtable->size = size;
13795 }
13796
13797 h->u2.vtable->used[addend >> log_file_align] = TRUE;
13798
13799 return TRUE;
13800 }
13801
13802 /* Map an ELF section header flag to its corresponding string. */
13803 typedef struct
13804 {
13805 char *flag_name;
13806 flagword flag_value;
13807 } elf_flags_to_name_table;
13808
13809 static elf_flags_to_name_table elf_flags_to_names [] =
13810 {
13811 { "SHF_WRITE", SHF_WRITE },
13812 { "SHF_ALLOC", SHF_ALLOC },
13813 { "SHF_EXECINSTR", SHF_EXECINSTR },
13814 { "SHF_MERGE", SHF_MERGE },
13815 { "SHF_STRINGS", SHF_STRINGS },
13816 { "SHF_INFO_LINK", SHF_INFO_LINK},
13817 { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13818 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13819 { "SHF_GROUP", SHF_GROUP },
13820 { "SHF_TLS", SHF_TLS },
13821 { "SHF_MASKOS", SHF_MASKOS },
13822 { "SHF_EXCLUDE", SHF_EXCLUDE },
13823 };
13824
13825 /* Returns TRUE if the section is to be included, otherwise FALSE. */
13826 bfd_boolean
13827 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13828 struct flag_info *flaginfo,
13829 asection *section)
13830 {
13831 const bfd_vma sh_flags = elf_section_flags (section);
13832
13833 if (!flaginfo->flags_initialized)
13834 {
13835 bfd *obfd = info->output_bfd;
13836 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13837 struct flag_info_list *tf = flaginfo->flag_list;
13838 int with_hex = 0;
13839 int without_hex = 0;
13840
13841 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13842 {
13843 unsigned i;
13844 flagword (*lookup) (char *);
13845
13846 lookup = bed->elf_backend_lookup_section_flags_hook;
13847 if (lookup != NULL)
13848 {
13849 flagword hexval = (*lookup) ((char *) tf->name);
13850
13851 if (hexval != 0)
13852 {
13853 if (tf->with == with_flags)
13854 with_hex |= hexval;
13855 else if (tf->with == without_flags)
13856 without_hex |= hexval;
13857 tf->valid = TRUE;
13858 continue;
13859 }
13860 }
13861 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13862 {
13863 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13864 {
13865 if (tf->with == with_flags)
13866 with_hex |= elf_flags_to_names[i].flag_value;
13867 else if (tf->with == without_flags)
13868 without_hex |= elf_flags_to_names[i].flag_value;
13869 tf->valid = TRUE;
13870 break;
13871 }
13872 }
13873 if (!tf->valid)
13874 {
13875 info->callbacks->einfo
13876 (_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13877 return FALSE;
13878 }
13879 }
13880 flaginfo->flags_initialized = TRUE;
13881 flaginfo->only_with_flags |= with_hex;
13882 flaginfo->not_with_flags |= without_hex;
13883 }
13884
13885 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13886 return FALSE;
13887
13888 if ((flaginfo->not_with_flags & sh_flags) != 0)
13889 return FALSE;
13890
13891 return TRUE;
13892 }
13893
13894 struct alloc_got_off_arg {
13895 bfd_vma gotoff;
13896 struct bfd_link_info *info;
13897 };
13898
13899 /* We need a special top-level link routine to convert got reference counts
13900 to real got offsets. */
13901
13902 static bfd_boolean
13903 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13904 {
13905 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13906 bfd *obfd = gofarg->info->output_bfd;
13907 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13908
13909 if (h->got.refcount > 0)
13910 {
13911 h->got.offset = gofarg->gotoff;
13912 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13913 }
13914 else
13915 h->got.offset = (bfd_vma) -1;
13916
13917 return TRUE;
13918 }
13919
13920 /* And an accompanying bit to work out final got entry offsets once
13921 we're done. Should be called from final_link. */
13922
13923 bfd_boolean
13924 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13925 struct bfd_link_info *info)
13926 {
13927 bfd *i;
13928 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13929 bfd_vma gotoff;
13930 struct alloc_got_off_arg gofarg;
13931
13932 BFD_ASSERT (abfd == info->output_bfd);
13933
13934 if (! is_elf_hash_table (info->hash))
13935 return FALSE;
13936
13937 /* The GOT offset is relative to the .got section, but the GOT header is
13938 put into the .got.plt section, if the backend uses it. */
13939 if (bed->want_got_plt)
13940 gotoff = 0;
13941 else
13942 gotoff = bed->got_header_size;
13943
13944 /* Do the local .got entries first. */
13945 for (i = info->input_bfds; i; i = i->link.next)
13946 {
13947 bfd_signed_vma *local_got;
13948 size_t j, locsymcount;
13949 Elf_Internal_Shdr *symtab_hdr;
13950
13951 if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13952 continue;
13953
13954 local_got = elf_local_got_refcounts (i);
13955 if (!local_got)
13956 continue;
13957
13958 symtab_hdr = &elf_tdata (i)->symtab_hdr;
13959 if (elf_bad_symtab (i))
13960 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13961 else
13962 locsymcount = symtab_hdr->sh_info;
13963
13964 for (j = 0; j < locsymcount; ++j)
13965 {
13966 if (local_got[j] > 0)
13967 {
13968 local_got[j] = gotoff;
13969 gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13970 }
13971 else
13972 local_got[j] = (bfd_vma) -1;
13973 }
13974 }
13975
13976 /* Then the global .got entries. .plt refcounts are handled by
13977 adjust_dynamic_symbol */
13978 gofarg.gotoff = gotoff;
13979 gofarg.info = info;
13980 elf_link_hash_traverse (elf_hash_table (info),
13981 elf_gc_allocate_got_offsets,
13982 &gofarg);
13983 return TRUE;
13984 }
13985
13986 /* Many folk need no more in the way of final link than this, once
13987 got entry reference counting is enabled. */
13988
13989 bfd_boolean
13990 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13991 {
13992 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13993 return FALSE;
13994
13995 /* Invoke the regular ELF backend linker to do all the work. */
13996 return bfd_elf_final_link (abfd, info);
13997 }
13998
13999 bfd_boolean
14000 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
14001 {
14002 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
14003
14004 if (rcookie->bad_symtab)
14005 rcookie->rel = rcookie->rels;
14006
14007 for (; rcookie->rel < rcookie->relend; rcookie->rel++)
14008 {
14009 unsigned long r_symndx;
14010
14011 if (! rcookie->bad_symtab)
14012 if (rcookie->rel->r_offset > offset)
14013 return FALSE;
14014 if (rcookie->rel->r_offset != offset)
14015 continue;
14016
14017 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
14018 if (r_symndx == STN_UNDEF)
14019 return TRUE;
14020
14021 if (r_symndx >= rcookie->locsymcount
14022 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
14023 {
14024 struct elf_link_hash_entry *h;
14025
14026 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
14027
14028 while (h->root.type == bfd_link_hash_indirect
14029 || h->root.type == bfd_link_hash_warning)
14030 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14031
14032 if ((h->root.type == bfd_link_hash_defined
14033 || h->root.type == bfd_link_hash_defweak)
14034 && (h->root.u.def.section->owner != rcookie->abfd
14035 || h->root.u.def.section->kept_section != NULL
14036 || discarded_section (h->root.u.def.section)))
14037 return TRUE;
14038 }
14039 else
14040 {
14041 /* It's not a relocation against a global symbol,
14042 but it could be a relocation against a local
14043 symbol for a discarded section. */
14044 asection *isec;
14045 Elf_Internal_Sym *isym;
14046
14047 /* Need to: get the symbol; get the section. */
14048 isym = &rcookie->locsyms[r_symndx];
14049 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
14050 if (isec != NULL
14051 && (isec->kept_section != NULL
14052 || discarded_section (isec)))
14053 return TRUE;
14054 }
14055 return FALSE;
14056 }
14057 return FALSE;
14058 }
14059
14060 /* Discard unneeded references to discarded sections.
14061 Returns -1 on error, 1 if any section's size was changed, 0 if
14062 nothing changed. This function assumes that the relocations are in
14063 sorted order, which is true for all known assemblers. */
14064
14065 int
14066 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
14067 {
14068 struct elf_reloc_cookie cookie;
14069 asection *o;
14070 bfd *abfd;
14071 int changed = 0;
14072
14073 if (info->traditional_format
14074 || !is_elf_hash_table (info->hash))
14075 return 0;
14076
14077 o = bfd_get_section_by_name (output_bfd, ".stab");
14078 if (o != NULL)
14079 {
14080 asection *i;
14081
14082 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14083 {
14084 if (i->size == 0
14085 || i->reloc_count == 0
14086 || i->sec_info_type != SEC_INFO_TYPE_STABS)
14087 continue;
14088
14089 abfd = i->owner;
14090 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14091 continue;
14092
14093 if (!init_reloc_cookie_for_section (&cookie, info, i))
14094 return -1;
14095
14096 if (_bfd_discard_section_stabs (abfd, i,
14097 elf_section_data (i)->sec_info,
14098 bfd_elf_reloc_symbol_deleted_p,
14099 &cookie))
14100 changed = 1;
14101
14102 fini_reloc_cookie_for_section (&cookie, i);
14103 }
14104 }
14105
14106 o = NULL;
14107 if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
14108 o = bfd_get_section_by_name (output_bfd, ".eh_frame");
14109 if (o != NULL)
14110 {
14111 asection *i;
14112 int eh_changed = 0;
14113 unsigned int eh_alignment;
14114
14115 for (i = o->map_head.s; i != NULL; i = i->map_head.s)
14116 {
14117 if (i->size == 0)
14118 continue;
14119
14120 abfd = i->owner;
14121 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14122 continue;
14123
14124 if (!init_reloc_cookie_for_section (&cookie, info, i))
14125 return -1;
14126
14127 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
14128 if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
14129 bfd_elf_reloc_symbol_deleted_p,
14130 &cookie))
14131 {
14132 eh_changed = 1;
14133 if (i->size != i->rawsize)
14134 changed = 1;
14135 }
14136
14137 fini_reloc_cookie_for_section (&cookie, i);
14138 }
14139
14140 eh_alignment = 1 << o->alignment_power;
14141 /* Skip over zero terminator, and prevent empty sections from
14142 adding alignment padding at the end. */
14143 for (i = o->map_tail.s; i != NULL; i = i->map_tail.s)
14144 if (i->size == 0)
14145 i->flags |= SEC_EXCLUDE;
14146 else if (i->size > 4)
14147 break;
14148 /* The last non-empty eh_frame section doesn't need padding. */
14149 if (i != NULL)
14150 i = i->map_tail.s;
14151 /* Any prior sections must pad the last FDE out to the output
14152 section alignment. Otherwise we might have zero padding
14153 between sections, which would be seen as a terminator. */
14154 for (; i != NULL; i = i->map_tail.s)
14155 if (i->size == 4)
14156 /* All but the last zero terminator should have been removed. */
14157 BFD_FAIL ();
14158 else
14159 {
14160 bfd_size_type size
14161 = (i->size + eh_alignment - 1) & -eh_alignment;
14162 if (i->size != size)
14163 {
14164 i->size = size;
14165 changed = 1;
14166 eh_changed = 1;
14167 }
14168 }
14169 if (eh_changed)
14170 elf_link_hash_traverse (elf_hash_table (info),
14171 _bfd_elf_adjust_eh_frame_global_symbol, NULL);
14172 }
14173
14174 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
14175 {
14176 const struct elf_backend_data *bed;
14177 asection *s;
14178
14179 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
14180 continue;
14181 s = abfd->sections;
14182 if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
14183 continue;
14184
14185 bed = get_elf_backend_data (abfd);
14186
14187 if (bed->elf_backend_discard_info != NULL)
14188 {
14189 if (!init_reloc_cookie (&cookie, info, abfd))
14190 return -1;
14191
14192 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
14193 changed = 1;
14194
14195 fini_reloc_cookie (&cookie, abfd);
14196 }
14197 }
14198
14199 if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
14200 _bfd_elf_end_eh_frame_parsing (info);
14201
14202 if (info->eh_frame_hdr_type
14203 && !bfd_link_relocatable (info)
14204 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
14205 changed = 1;
14206
14207 return changed;
14208 }
14209
14210 bfd_boolean
14211 _bfd_elf_section_already_linked (bfd *abfd,
14212 asection *sec,
14213 struct bfd_link_info *info)
14214 {
14215 flagword flags;
14216 const char *name, *key;
14217 struct bfd_section_already_linked *l;
14218 struct bfd_section_already_linked_hash_entry *already_linked_list;
14219
14220 if (sec->output_section == bfd_abs_section_ptr)
14221 return FALSE;
14222
14223 flags = sec->flags;
14224
14225 /* Return if it isn't a linkonce section. A comdat group section
14226 also has SEC_LINK_ONCE set. */
14227 if ((flags & SEC_LINK_ONCE) == 0)
14228 return FALSE;
14229
14230 /* Don't put group member sections on our list of already linked
14231 sections. They are handled as a group via their group section. */
14232 if (elf_sec_group (sec) != NULL)
14233 return FALSE;
14234
14235 /* For a SHT_GROUP section, use the group signature as the key. */
14236 name = sec->name;
14237 if ((flags & SEC_GROUP) != 0
14238 && elf_next_in_group (sec) != NULL
14239 && elf_group_name (elf_next_in_group (sec)) != NULL)
14240 key = elf_group_name (elf_next_in_group (sec));
14241 else
14242 {
14243 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */
14244 if (CONST_STRNEQ (name, ".gnu.linkonce.")
14245 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
14246 key++;
14247 else
14248 /* Must be a user linkonce section that doesn't follow gcc's
14249 naming convention. In this case we won't be matching
14250 single member groups. */
14251 key = name;
14252 }
14253
14254 already_linked_list = bfd_section_already_linked_table_lookup (key);
14255
14256 for (l = already_linked_list->entry; l != NULL; l = l->next)
14257 {
14258 /* We may have 2 different types of sections on the list: group
14259 sections with a signature of <key> (<key> is some string),
14260 and linkonce sections named .gnu.linkonce.<type>.<key>.
14261 Match like sections. LTO plugin sections are an exception.
14262 They are always named .gnu.linkonce.t.<key> and match either
14263 type of section. */
14264 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
14265 && ((flags & SEC_GROUP) != 0
14266 || strcmp (name, l->sec->name) == 0))
14267 || (l->sec->owner->flags & BFD_PLUGIN) != 0)
14268 {
14269 /* The section has already been linked. See if we should
14270 issue a warning. */
14271 if (!_bfd_handle_already_linked (sec, l, info))
14272 return FALSE;
14273
14274 if (flags & SEC_GROUP)
14275 {
14276 asection *first = elf_next_in_group (sec);
14277 asection *s = first;
14278
14279 while (s != NULL)
14280 {
14281 s->output_section = bfd_abs_section_ptr;
14282 /* Record which group discards it. */
14283 s->kept_section = l->sec;
14284 s = elf_next_in_group (s);
14285 /* These lists are circular. */
14286 if (s == first)
14287 break;
14288 }
14289 }
14290
14291 return TRUE;
14292 }
14293 }
14294
14295 /* A single member comdat group section may be discarded by a
14296 linkonce section and vice versa. */
14297 if ((flags & SEC_GROUP) != 0)
14298 {
14299 asection *first = elf_next_in_group (sec);
14300
14301 if (first != NULL && elf_next_in_group (first) == first)
14302 /* Check this single member group against linkonce sections. */
14303 for (l = already_linked_list->entry; l != NULL; l = l->next)
14304 if ((l->sec->flags & SEC_GROUP) == 0
14305 && bfd_elf_match_symbols_in_sections (l->sec, first, info))
14306 {
14307 first->output_section = bfd_abs_section_ptr;
14308 first->kept_section = l->sec;
14309 sec->output_section = bfd_abs_section_ptr;
14310 break;
14311 }
14312 }
14313 else
14314 /* Check this linkonce section against single member groups. */
14315 for (l = already_linked_list->entry; l != NULL; l = l->next)
14316 if (l->sec->flags & SEC_GROUP)
14317 {
14318 asection *first = elf_next_in_group (l->sec);
14319
14320 if (first != NULL
14321 && elf_next_in_group (first) == first
14322 && bfd_elf_match_symbols_in_sections (first, sec, info))
14323 {
14324 sec->output_section = bfd_abs_section_ptr;
14325 sec->kept_section = first;
14326 break;
14327 }
14328 }
14329
14330 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
14331 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
14332 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
14333 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its
14334 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded
14335 but its `.gnu.linkonce.t.F' is discarded means we chose one-only
14336 `.gnu.linkonce.t.F' section from a different bfd not requiring any
14337 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded.
14338 The reverse order cannot happen as there is never a bfd with only the
14339 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not
14340 matter as here were are looking only for cross-bfd sections. */
14341
14342 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
14343 for (l = already_linked_list->entry; l != NULL; l = l->next)
14344 if ((l->sec->flags & SEC_GROUP) == 0
14345 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
14346 {
14347 if (abfd != l->sec->owner)
14348 sec->output_section = bfd_abs_section_ptr;
14349 break;
14350 }
14351
14352 /* This is the first section with this name. Record it. */
14353 if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
14354 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
14355 return sec->output_section == bfd_abs_section_ptr;
14356 }
14357
14358 bfd_boolean
14359 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
14360 {
14361 return sym->st_shndx == SHN_COMMON;
14362 }
14363
14364 unsigned int
14365 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
14366 {
14367 return SHN_COMMON;
14368 }
14369
14370 asection *
14371 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
14372 {
14373 return bfd_com_section_ptr;
14374 }
14375
14376 bfd_vma
14377 _bfd_elf_default_got_elt_size (bfd *abfd,
14378 struct bfd_link_info *info ATTRIBUTE_UNUSED,
14379 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
14380 bfd *ibfd ATTRIBUTE_UNUSED,
14381 unsigned long symndx ATTRIBUTE_UNUSED)
14382 {
14383 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14384 return bed->s->arch_size / 8;
14385 }
14386
14387 /* Routines to support the creation of dynamic relocs. */
14388
14389 /* Returns the name of the dynamic reloc section associated with SEC. */
14390
14391 static const char *
14392 get_dynamic_reloc_section_name (bfd * abfd,
14393 asection * sec,
14394 bfd_boolean is_rela)
14395 {
14396 char *name;
14397 const char *old_name = bfd_get_section_name (NULL, sec);
14398 const char *prefix = is_rela ? ".rela" : ".rel";
14399
14400 if (old_name == NULL)
14401 return NULL;
14402
14403 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
14404 sprintf (name, "%s%s", prefix, old_name);
14405
14406 return name;
14407 }
14408
14409 /* Returns the dynamic reloc section associated with SEC.
14410 If necessary compute the name of the dynamic reloc section based
14411 on SEC's name (looked up in ABFD's string table) and the setting
14412 of IS_RELA. */
14413
14414 asection *
14415 _bfd_elf_get_dynamic_reloc_section (bfd * abfd,
14416 asection * sec,
14417 bfd_boolean is_rela)
14418 {
14419 asection * reloc_sec = elf_section_data (sec)->sreloc;
14420
14421 if (reloc_sec == NULL)
14422 {
14423 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14424
14425 if (name != NULL)
14426 {
14427 reloc_sec = bfd_get_linker_section (abfd, name);
14428
14429 if (reloc_sec != NULL)
14430 elf_section_data (sec)->sreloc = reloc_sec;
14431 }
14432 }
14433
14434 return reloc_sec;
14435 }
14436
14437 /* Returns the dynamic reloc section associated with SEC. If the
14438 section does not exist it is created and attached to the DYNOBJ
14439 bfd and stored in the SRELOC field of SEC's elf_section_data
14440 structure.
14441
14442 ALIGNMENT is the alignment for the newly created section and
14443 IS_RELA defines whether the name should be .rela.<SEC's name>
14444 or .rel.<SEC's name>. The section name is looked up in the
14445 string table associated with ABFD. */
14446
14447 asection *
14448 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14449 bfd *dynobj,
14450 unsigned int alignment,
14451 bfd *abfd,
14452 bfd_boolean is_rela)
14453 {
14454 asection * reloc_sec = elf_section_data (sec)->sreloc;
14455
14456 if (reloc_sec == NULL)
14457 {
14458 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14459
14460 if (name == NULL)
14461 return NULL;
14462
14463 reloc_sec = bfd_get_linker_section (dynobj, name);
14464
14465 if (reloc_sec == NULL)
14466 {
14467 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14468 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14469 if ((sec->flags & SEC_ALLOC) != 0)
14470 flags |= SEC_ALLOC | SEC_LOAD;
14471
14472 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14473 if (reloc_sec != NULL)
14474 {
14475 /* _bfd_elf_get_sec_type_attr chooses a section type by
14476 name. Override as it may be wrong, eg. for a user
14477 section named "auto" we'll get ".relauto" which is
14478 seen to be a .rela section. */
14479 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14480 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14481 reloc_sec = NULL;
14482 }
14483 }
14484
14485 elf_section_data (sec)->sreloc = reloc_sec;
14486 }
14487
14488 return reloc_sec;
14489 }
14490
14491 /* Copy the ELF symbol type and other attributes for a linker script
14492 assignment from HSRC to HDEST. Generally this should be treated as
14493 if we found a strong non-dynamic definition for HDEST (except that
14494 ld ignores multiple definition errors). */
14495 void
14496 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14497 struct bfd_link_hash_entry *hdest,
14498 struct bfd_link_hash_entry *hsrc)
14499 {
14500 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14501 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14502 Elf_Internal_Sym isym;
14503
14504 ehdest->type = ehsrc->type;
14505 ehdest->target_internal = ehsrc->target_internal;
14506
14507 isym.st_other = ehsrc->other;
14508 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14509 }
14510
14511 /* Append a RELA relocation REL to section S in BFD. */
14512
14513 void
14514 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14515 {
14516 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14517 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14518 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14519 bed->s->swap_reloca_out (abfd, rel, loc);
14520 }
14521
14522 /* Append a REL relocation REL to section S in BFD. */
14523
14524 void
14525 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14526 {
14527 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14528 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14529 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14530 bed->s->swap_reloc_out (abfd, rel, loc);
14531 }
14532
14533 /* Define __start, __stop, .startof. or .sizeof. symbol. */
14534
14535 struct bfd_link_hash_entry *
14536 bfd_elf_define_start_stop (struct bfd_link_info *info,
14537 const char *symbol, asection *sec)
14538 {
14539 struct elf_link_hash_entry *h;
14540
14541 h = elf_link_hash_lookup (elf_hash_table (info), symbol,
14542 FALSE, FALSE, TRUE);
14543 if (h != NULL
14544 && (h->root.type == bfd_link_hash_undefined
14545 || h->root.type == bfd_link_hash_undefweak
14546 || ((h->ref_regular || h->def_dynamic) && !h->def_regular)))
14547 {
14548 bfd_boolean was_dynamic = h->ref_dynamic || h->def_dynamic;
14549 h->root.type = bfd_link_hash_defined;
14550 h->root.u.def.section = sec;
14551 h->root.u.def.value = 0;
14552 h->def_regular = 1;
14553 h->def_dynamic = 0;
14554 h->start_stop = 1;
14555 h->u2.start_stop_section = sec;
14556 if (symbol[0] == '.')
14557 {
14558 /* .startof. and .sizeof. symbols are local. */
14559 const struct elf_backend_data *bed;
14560 bed = get_elf_backend_data (info->output_bfd);
14561 (*bed->elf_backend_hide_symbol) (info, h, TRUE);
14562 }
14563 else
14564 {
14565 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
14566 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_PROTECTED;
14567 if (was_dynamic)
14568 bfd_elf_link_record_dynamic_symbol (info, h);
14569 }
14570 return &h->root;
14571 }
14572 return NULL;
14573 }
This page took 0.388086 seconds and 5 git commands to generate.